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Abstrat

We redue a visoelasti �nite-strain ontinuum model to a two-dimensional membrane-

plate. The redution is based on assumed kinematis, analytial integration through the

thikness and physially motivated simpli�ations. The resulting formulation is observer-

invariant and aounts for thikness streth and �nite rotations.

The membrane energy is a quadrati, uniformly Legendre-Hadamard ellipti, �rst order

energy in ontrast to lassial membrane models and the orresponding system of balane

equations remains of seond order. An evolution equation for some independent rotation is

appended (already in the bulk-model) introduing visoelasti transverse shear resistane. It

an be shown that this redued membrane formulation is loally well-posed. Use is made of a

dimensionally redued version of an extended Korn's �rst inequality.

In the equilibrium relaxation limit an intrinsi membrane-plate formulation is obtained

similar to the proposal of Fox/Simo, whih is, however, non-ellipti. Nevertheless, the lin-

earization of this last equilibrium model oinides with the lassial linear membrane-plate

model. In this sense, the new visoelasti membrane-plate model regularizes the ourring

loss of elliptiity in lassial �nite-strain membrane models.
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1 Introdution

1.1 The underlying �nite-strain visoelasti-plasti 3D-model

In [Nef03b℄ a model of �nite-strain elasto-plastiity has been introdued, based on the multiplia-

tive deomposition of the deformation gradient F = F

e

F

p

, inorporating visoelasti e�ets due

to grain boundary relaxation. The model preserves observer-invariane and is invariant

with respet to superposed spatially onstant rotations of the so alled intermediate on�guration

indued by F

p

. The model is geometrially nonlinear and allows for �nite elasti rotations, �-

nite plasti deformations and overall �nite deformations but remains a truly "physially linear"

theory in the sense that simple uniaxial tension is modelled as linear and without visosity.

We need to mention, however, that the new model is intrinsially rate-dependent, i.e., it

is not possible to "freeze" the "visoelasti" rotations and obtain a frame-indi�erent redued

plastiity model. In other words, the used elasti free energy W is not expressible as a redued

funtion of C = F

T

F , nevertheless, the model is observer-invariant

1

and the ommon wisdom

that observer-invariane implies a representation in C or the streth U applies as suh only to

intrinsially non-dissipative problems [MH83, p.203℄. In general, form-invariane under superposed

time-dependent rigid rotations (frame-indi�erene) implies observer-invariane but is not idential

to it. For this subtle point ompare also to the luid disussion in [Hau00, p.269℄ and [Kra86,

p.159℄ together with [SB97, BS01, MR02℄.

2

To begin with let us �rst introdue the onsidered 3D-model whih we have modi�ed ompared

to [Nef03b, Nef00℄ to inlude also in a onsistent manner "ompressible" plastiity, i.e., det[F

p

℄ 6=

1. In the quasi-stati setting appropriate for slow loading, where we neglet onsistently inertia

terms, we are led to study the following oupled minimization and evolution problem for the

�nite deformation ' : [0; T ℄� 
 7! R

3

, the plasti variable F

p

: [0; T ℄� 
 7! GL

+

(3;R) and the

independent loal visoelasti rotation R

e

: [0; T ℄� 
 7! SO(3) on 


Z




W (F

e

;R

e

) det[F

p

℄� hf; 'i det[F

p

℄ dV

�

Z

�

S

hN;'i kCof F

p

:~n

�


k dS 7! min :w.r.t. ' at �xed (R

e

; F

p

) ; (1.1)

with presribed Dirihlet boundary onditions '

j

�

= g

d

(t) on � � �
. The onstitutive assumption

on the density is

W (F

e

; R

e

) =

�

4

kF

T

e

R

e

+R

T

e

F

e

� 211k

2

+

�

8

tr

h

F

T

e

R

e

+R

T

e

F

e

� 211

i

2

;

= � k sym(U

e

� 11)k

2

+

�

2

tr

�

U

e

� 11

�

2

; U

e

= R

T

e

F

e

; (1.2)

F

e

= r'�F

�1

p

; S

1

(F

e

; R

e

) = R

e

h

�(F

T

e

R

e

+R

T

e

F

e

� 211) + � tr

�

F

T

e

R

e

� 11

�

11

i

F

�T

p

;

where S

1

= D

F

�

W (F

e

; R

e

)

�

denotes the �rst Piola-Kirhho� stress tensor and �; � > 0 are the

lassial Lam�e onstants of isotropi elastiity. The oupled plasti and visoelasti evolution is

1

observer-invariant means that material properties do not depend on the hoie of representation tools used to

portray them.

2

And the undisputed physial priniple is observer-invariane and not diretly frame-indi�erene (form-invariane

under rigid rotations). The strengthening of form-invariane of the equations under superposed rigid rotations to

form-invariane under the group of all di�eomorphisms is alled ovariane [MH83℄. We understand that form-

invariane and ovariane are additional onstitutive assumptions.

3



de�ned by

d

dt

�

F

�1

p

�

2 �F

�1

p

� �

�

(�

E

); �

E

= F

T

e

D

F

e

W (F

e

; R

e

) det[F

p

℄�W (F

e

; R

e

) det[F

p

℄11 ;

d

!̂

dt

R

e

(t) = �

+

skew(B) � R

e

(t); B = B

meh

or B

t

; �

+

= �

+

(F

e

; R

e

) 2 R

+

; (1.3)

B

meh

= �F

e

R

T

e

; B

t

=

h

�(2 11� F

e

R

T

e

) + � [3� hF

e

R

T

e

; 11i℄

i

F

e

R

T

e

;

F

�1

p

(0) = F

�1

p

0

; F

p

0

2 GL(3;R); R

e

(0) = R

0

e

; R

0

e

2 SO(3); R

0

e

= 11 ifF

p

0

= r�;

where the ow potential

�

: M

3�3

7! R governs the plasti evolution (here assoiated plastiity

for simpliity only) and whih is motivated through the priniple of maximal dissipation suÆient

for the thermodynamial onsisteny of the model. B

meh

or B

t

are alternative onstitutive

hoies. The dead load body fore and the boundary trations on �

S

� �
 are denoted by

f; N , respetively and de�ned w.r.t. the intermediate plasti on�guration F

p

and ~n

�


is the unit

outward normal to �
. Corresponding natural boundary onditions apply. Here �

E

denotes the

elasti Eshelby stress tensor (the driving fore behind evolving inhomogeneities in the referene

on�guration [Mau99℄) whih may be redued to �

M

= F

T

e

D

F

e

W (F

e

; R

e

), the elasti Mandel

stress tensor in ase of a deviatori ow rule whih preserves the inompressibility onstraint

det[F

p

℄ = 1.

By

d

!̂

dt

we mean the observer-invariant (orotated) time derivative on SO(3;R)

d

!̂

dt

[R(t)℄ :=

d

dt

[R(t)℄� !̂(t) �R(t) ; !̂ :=

d

dt

[Q(t)℄ �Q(t)

T

; (1.4)

where Q(t) 2 SO(3;R) is the instantaneous rotation of the urrent frame with respet to the

inertial frame and !̂ is the orresponding angular veloity. Without loss of generality, we on�ne

attention to the inertial frame, i.e. !̂ � 0 and

d

!̂

dt

=

d

dt

.

The term �

+

:=

1

�

e

�

+

(F

e

; R

e

) represents a salar valued funtion introduing elasti visosity

within the elasti domain and �

e

plays the role of a relaxation time with units [�

e

℄ = se. F

�1

p

0

and

R

0

e

are the initial onditions for the plasti variable and visoelasti rotation part, respetively.

The hoie B = B

t

is thermodynamially onsistent whereas the simpler hoie B = B

meh

is

(only) mehanially onsistent in the sense that various invariane requirements are met. Due to

the underlying isotropy the resulting model (1.1) with B = B

meh

approahes in the (vanishing

elasti visosity = zero relaxation limit �

e

! 0 viz. for arbitrary slow proesses) equilibrium limit

�

+

!1 formally the oupled problem

Z




W

1

(F

e

) det[F

p

℄� hf; 'i det[F

p

℄ dV

�

Z

�

S

hN;'i kCof F

p

:~n

�


k dS 7! stat :w.r.t. ' at �xed F

p

;

W

1

(F

e

) := � kU

e

� 11k

2

+

�

2

tr [U

e

� 11℄

2

; F

e

= r'F

�1

p

; (1.5)

d

dt

�

F

�1

p

�

(t) 2 �F

�1

p

(t) � �

�

(�

E;1

) ; �

E;1

:= U

e

D

U

e

W

1

(U

e

) det[F

p

℄�W

1

(U

e

) det[F

p

℄ 11 ;

with U

e

= (F

T

e

F

e

)

1

2

the lassial symmetri elasti streth, U

e

�11 the elasti Biot strain tensor and

W

1

(U

e

) the non-ellipti equilibrium energy. The system (1.5) is an exat equilibrium model for

small elasti strains and �nite plasti deformations in the lassial sense with no extra internal dis-

sipation. The transition from (1.1) to (1.5) is not entirely trivial sine it is not just the replaement

of the independent rotation R

e

by the ontinuum rotation R

e

! R

e

= polar(F

e

) and note the sub-

tle hange from global minimization to a stationarity requirement only. Observe as well that
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� kU � 11k

2

+

�

2

tr [U � 11℄

2

leads to a linear stress response in uniaxial tension/ompression while

e.g. � kEk

2

+

�

2

tr [E℄

2

; E =

1

2

(F

T

F � 11) would lead to a nonlinear, unphysial non-monotone

stress response in uniaxial tension/ompression.

In the ompanion paper [Nef03b℄ the impliations, preditions and physial relevane of the

new model have been investigated in great detail. It is shown that the additional degrees of

freedom inherent through the independent loal visoelasti rotations R

e

an be interpreted in

the framework of a material with a polyrystalline substruture where the individual rotations

of the grains may deviate from the ontinuum rotation. Then, in the presene of plastiity, R

e

represents a reversible, "visoelasti" part of the total rotation of the grains and leads to texture

e�ets (deformation indued anisotropy). The evolution equation for R

e

introdues hysteresis

e�ets into the model already within the elasti region, i.e. immediately for arbitrary small stress

levels. The physial reality of this behaviour for polyrystalline material is well doumented and

it is shown that the new model (1.1) allows a qualitative and in parts quantitative desription of

suh e�ets whih are asribed to internal frition at the grain boundaries. In [Nef03b℄ it has also

been motivated that the elasti visosity is larger for larger internal surfaes, i.e. the smaller the

grain size, while single rystals behave nearly rate-independent for that matter.

In [Nef04a℄ the loal well-posedness of (1.1) under Dirihlet onditions has been shown, while

suh a result is not yet known for (1.5). The general appliability of the model (1.1) in the three-

dimensional ase has been investigated numerially in [NW03℄. This is our motivation to extend

the model to a redued membrane formulation. It is planned to investigate in a sequel the full

dimensional redution problem for the visoelasti-visoplasti problem (1.1). Here, we onentrate

on the visoelasti formulation.

1.2 The �nite-strain visoelasti 3D-model

Before we proeed to the dimensional redution, the need has been felt to further motivate this

model (1.1) sine it departs onsiderably from lassial visoelasti models to whih the reader

might be aquainted. Let us therefore look at the purely visoelasti version of (1.1) with B =

B

meh

; �

+

2 R but without surfae trations. The problem reads

Z




W (F;R)� hf; 'i dV 7! min :w.r.t. ' at �xed R ; '

j

�


= g

d

(t) ;

W (F;R) =

�

4

kF

T

R +R

T

F � 211k

2

+

�

8

tr

h

F

T

R+R

T

F � 211

i

2

; F = r' ; (1.6)

with oupled visoelasti evolution

d

dt

R(t; x) = �

+

skew(F (t; x)R(t; x)

T

) �R(t; x) ; R(0; x) = R

0

(x) : (1.7)

The minimization at �xed R 2 SO(3;R) in (1.6) is in fat stritly equivalent to the balane of

linear momentum equation

�Div

x

D

F

[W (r'(t; x); R(t; x))℄ = f(t; x) ; '

j

�


(t; x) = g

d

(t; x) ; (1.8)

as long as �
 and g

d

are suÆiently smooth. The loal evolution equation for R introdues the

visoelasti e�ets. In ontrast to a more traditional Cosserat approah, the rotations are not

determined by simultanuous minimization of some augmented elasti energy (whih

would inlude urvature terms D

x

R) w.r.t. both ' and R.

In order to appreiate the relaxation properties of (1.7) already hinted at, assume now that we

are given a deformation history F 2 C

1

(R

+

;GL

+

(3;R)) for a spei� point x

0

2 
. Then

Theorem 1.1 (Dynami polar deomposition and relaxation)

The visoelasti evolution problem (1.7) admits a unique global in time solutionR 2 C

1

(R

+

; SO(3;R)).

Moreover,
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1. if F is onstant in time and kR � polar(F )k

2

< 8, then we have the asymptoti behaviour

R(t)! polar(F ) for t!1.

2. 8 t 2 R

+

: k skew(F (t)R

T

(t))k

2

�

M

+

�

+

(1� e

��

+

t

)+ kF (0)

T

R(0)� 11k

2

e

��

+

t

, where M

+

=

(kFk

1

+

p

3) kF

0

k

1

is independent of �

+

.

Proof. The right hand side in (1.7) is globally Lipshitz as a funtion of R, hene there exists a

unique global solution R 2 C

1

(R

+

; SO(3;R)).

Part i.) is proved in [Nef03b, p.173℄. The proof of part ii.) will be given in the appendix. �

Sine k skew(F (t)R(t)

T

)k is a measure for the di�erene between R(t) and the ontinuum rotation

polar(F (t)) .f. Lemma 7.4, we see that by hoosing �

+

appropriately large (low visosity) this

di�erene an be e�etively ontrolled. In the limit �

+

!1 we determine the onstraint rotation

R(t) = polar(F (t)).

1.3 Dimensionally redued kinematis

The dimensional redution of a given model is already an old and mature subjet and it has seen

many "solutions". The di�erent approahes toward elasti shell theory proposed in the literature

and relevant referenes thereof are, therefore, too numerous to list here. In any ase our proposal

falls within the so alled derivation approah, i.e., reduing a given three-dimensional model via

(physially) reasonable onstitutive assumptions to a two-dimensional modelas opposed to either

the intrinsi approah whih views the shell from the onset as a two-dimensional surfae and

invokes onepts from di�erential geometry or the asymptoti methods whih try to establish

two-dimensional equations by formal expansion of the three-dimensional solution in power series

in terms of a small parameter. The intrinsi approah is losely related to the diret approah

whih takes the shell to be a direted medium in the sense of a restrited Cosserat-theory

[CC09℄.

3

A detailed presentation of the lassial shell theories an be found in [Nag72℄. A thorough

mathematial analysis of linear, in�nitesimal shell theory, based on asymptoti methods is to be

found in [Cia98℄ and the extensive referenes therein, see also [Cia97, Cia99, Ant95, DS96, Dik82℄.

Exellent reviews and insightful disussions of the modelling and �nite element implementation

may be found in [SB92, San95, San98, GSW89, GT92, BGS96, BR92℄ and in the series of papers

[SF89, SFR89, SFR90, SRF90, SK92, SF92, COS00℄. Properly invariant elasti plate theories for

membrane and bending are derived by formal asymptoti methods in [FRS93℄ and extended to the

ase of urvilinear oordinates in [Mia98, LM98℄.

The mathematial analysis establishing the wellposedness of all the in�nitesimal linearized

models is fairly well established and will not be our onern.

In the �nite-strain, geometrially exat elasti ase, mostly based on the Saint Venant-Kirhho�

free energy density � kEk

2

+

�

2

tr [E℄

2

, the formal asymptoti methods are still suessful in that

they identify again leading membrane and bending terms. As far as the ourring membrane

ontribution is onerned, it is the form (7.9) whih is given e.g. in [GKM96, FRS93, Mia98℄.

However, variational methods based on �-onvergene [DR95a℄ suggest a fundamentally di�erent

membrane term whih leads to a non-resistane of the membrane plate/shell in ompression.

4

The

non-resistane to ompression in this analysis is related to the use of the quasionvex hull

5

QW

0

of

a dimensionally redued St.Venant Kirhho� energy, see (7.10). This quasionvex hull, surprisingly

enough, an be given in losed form [DR95, HP96℄ and shows to be in general positive but zero

in the ompression range.

The lassial linear models proposed in the literature lead to e�etive numerial shemes only

if the thikness h of the struture is still appreiable, i.e. lassial bending terms are present and

3

Restrited, sine no material length sale enters the diret approah, only the thikness h appears.

4

They remark [DR95b, p.550℄: "...then the orresponding nonlinear membranes o�er no resistane to rumpling.

This is an empirial fat, witnessed by anyone who ever played with a deated balloon."

5

"... the fat that this funtion is not quasionvex already implied that it had to be relaxed in order to give rise

to a well posed problem." [DR95b, p.575℄.

6



regularize the omputation. However, there is an abundane of new appliations where very thin

strutures are used, e.g. very thin metal layers on a substrate (in omputer hardware, for the

harateristi non dimensional relative thikness h � 5 � 10

�4

). See [BJ99℄ for an appliation to

thin �lms.

Sine loally rotating the thin struture is energetially "heap" ompared to strething, we

are fored to onsider models inluding �nite rotations in an objetive manner. But the proposed

�nite-strain membrane terms found in the literature are either non-ellipti and the remaining

(minimization) problem is not well-posed or they lead to the aforementioned non-resistane in

ompression.

1.4 Outline and sope of this ontribution

In order to improve on this unsatisfatory state of the art for �nite-strain membrane plate for-

mulations we propose here a new membrane-plate model for very thin almost rigid

6

, visoelasti

materials whih is non-degenerate in the thin shell limit without addition of bending terms and

whih in priniple allows to desribe the detailed geometry of deformation in a �nely wrinkled

plate. This might be ontrasted with the variational approah in [DR95a℄ and tension �eld theory

whih desribes the approximate stress distribution in the membrane but determines the deforma-

tion only to within a probability measure. Stritly speaking, the use of the quasionvex hull leads

to a so alled tension �eld theory [Ste90℄. Steigmann [Ste90, p.143℄ notes "A question then

arises onerning the validity of tension �led theory as an approximation to a theory of shells with

bending sti�ness that is small in some sense. Evidently, the deformation is not well desribed,

though the theory delivers solutions that approximate the average of the deformation observed in

a real membrane ontaining many wrinkles. We onjeture that the stress is aurately predited,

however."

Our ontribution is organized as follows. After this introdutory part we onsider the �nite-

strain purely visoelasti model (1.1) on an absolutely thin domain. Using a quadrati kinematial

ansatz through the thikness, whih is onsistent with the appearane of independent rotations in

the three-dimensional theory and subsequent analytial integration through the thikness together

with ertain simpli�ations we formally redue the equilibrium energy.

7

For the visoelasti evolu-

tion equation we obtain the dimensional redution by averaging the generator on the Lie-algebra

of the ow through the thikness. Consistently reduing the boundary onditions and putting the

results together de�nes formally the visoelasti membrane-plate model (3.1).

The new visoelasti model is shown to remain observer-invariant and its membrane equilibrium

energy density satis�es a uniform Legendre-Hadamard elliptiity ondition (3.7) while it is not

uniformly onvex.

Then the elasti equilibrium limit for vanishing visosity (�

+

!1) is investigated. It is shown

that the formal limit exhibits a non-ellipti membrane strain energy density (3.20), similar to

the membrane model of Fox/Simo (7.9). We lose with a loal existene and uniqueness result for

the obtained visoelasti membrane-plate.

The notation will be found in the appendix as well as the dimensional redution of the external

loads. Finally, we present two alternative propositions from the literature for the omputation of

membrane dominated problems.

A di�erent formulation of elasti plate models with independent rotations leading to a true,

geometrially exat Cosserat theory of plates has been given in [Nef03a, Nefal℄.

6

almost rigid: a material with high Lam�e moduli �; �� 1[MPa℄ suh that F � SO(3;R) whenever kinematially

possible.

7

One should not onfuse this approah with energy projetion on a redued ansatz spae, sine we do not

introdue additional �elds in the proess of dimensional redution.

7



2 The formal dimensional redution in the visoelasti ase

2.1 The three-dimensional �nite-strain visoelasti problem on a thin

domain

The basi task of any shell theory is a onsistent redution of some presumably "exat" 3D-theory

to 2D. We assume from now on small elasti strains (almost rigidity) and no plastiity (i.e., F

p

= 11

in (1.1) and R

e

= R). We will adapt the bulk problem to a plate like theory. Let us assume that

we are given a three-dimensional absolutely thin domain




h

:= ! � [�

h

2

;

h

2

℄; ! � R

2

; (2.1)

with transverse boundary �


trans

h

= !�f�

h

2

;

h

2

g and lateral boundary �


lat

h

= �!� [�

h

2

;

h

2

℄,

where ! is a bounded domain in R

2

with smooth boundary �! and h > 0 is the thikness, and a

deformation '

3d

and rotation R

3d

'

3d

: 


h

� R

3

7! R

3

; R

3d

: 


h

� R

3

7! SO(3;R) ; (2.2)

solving the following oupled minimization and evolution problem on 


h

:

Z




h

W (U)� hf; 'i dV �

Z

�


trans

h

[f

s

�[�

h

2

;

h

2

℄g

hN;'i dS 7! min : w.r.t. ' at �xed R;

U = R

T

F; '

j

�

h

0

= g

d

; �

h

0

= 

0

� [�

h

2

;

h

2

℄; 

0

� �!; 

s

\ 

0

= ; ;

W (U) = � k sym(U � 11)k

2

+

�

2

tr

�

sym(U � 11)

�

2

; (2.3)

d

!̂

dt

R(t) = �

+

skew(B) � R(t); B = B

meh

or B

t

; �

+

= �

+

(F;R) 2 R

+

;

B

meh

= �FR

T

; B

t

=

h

�(2 11� FR

T

) + � [3� hFR

T

; 11i℄

i

FR

T

; R(0) 2 SO(3) ;

where U = R

T

F is not neessarily symmetri. U is known as the �rst Cosserat deformation

tensor. We want to �nd a reasonable approximation ('

s

; R

s

) of ('

3d

; R

3d

) involving only two-

dimensional quantities. The redution is based on assumed kinematis and analytial integration

through the thikness.

2.2 Enrihed quadrati kinematis

In order to haraterize the shell deformation, let us assume that the deformation '

3d

an be

represented by a onverging funtion expansion in thikness diretion, i.e.

'

3d

(x; y; z) =

1

X

i=0

~�

i

(x; y) � v

i

(z); ~�

i

: ! 7! R

3

; v

i

: [�h=2; h=2℄ 7! R ; (2.4)

with linearly independent funtions v

i

. Without loss of generality, we may take v

i

(z) = z

i

.

In the engineering shell ommunity it is well known [Che80, Sh85, Pie85℄ that the ansatz

through the thikness should at least be quadrati in order to avoid the Poisson thikness-

loking

8

and to fully apture the three-dimensional kinematis without arti�ial modi�ation of

the material lawsif applying projetion methods. See the detailed disussion of this point in [BR00℄

and ompare with [BR92, BBR94, RR96, BR97, SB98℄.

For the three-dimensional theory with small elasti strains whih aptures shells with large

in-plane rigidity and high transverse exibility we trunate (2.4) and assume the quadrati

ansatz in the thikness diretion

9

for the reonstruted �nite deformation '

s

: 


h

� R

3

7! R

3

8

The bending sti�ness of the redued theory would tend to 1 as the Poisson-number � !

1

2

.

9

Identify ~�

0

= m; ~�

1

= %

m

~

d; ~�

2

= %

b

~

d.

8



of the shell-like struture

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

�

~

d(x; y) ; (2.5)

where m : ! � R

2

7! R

3

takes on the role of the deformation of themidsurfae of the shell viewed

as a parametrized surfae and the independent unit diretor of the shell

~

d : ! � R

2

7! S

2

.

The yet indeterminate salar funtions %

m

; %

b

: ! � R

2

7! R allow in prinipal for symmetri

thikness streth (%

m

6= 1) and asymmetri thikness streth (%

b

6= 0) about the midsurfae.

For

~

d 6= ~n

m

(~n

m

the outer unit normal to m) transverse shear ours.

This leads at �rst glane to a 10 "dof" onstraint theory: 3 omponents of the membrane

deformation, 3 degrees of freedom for the bulk mirorotations R 2 SO(3;R), inluding naturally

one drilling degree of freedom for in-plane rotations, 2 degrees of freedom for the unit diretor

~

d 2 S

2

and 2 degrees of freedom %

m

; %

b

over the thikness. However, the diretor

~

d will be

speialized and the two thikness oeÆients %

m

; %

b

will be eliminated analytially, leaving us

�nally with 6 six degrees of freedom and the rotations R remain loally oupled to the deformation

gradient through visoelastiity. Already in the lassial elastiity ontext the bene�ial inuene

of drill rotations for the numerial implementation has been investigated in the linear ase in

[HB89℄ and in the �nite-strain ase in [SFH92℄.

The (reonstruted) rotations R

s

: 


h

7! SO(3;R) in the thin shell are assumed not to depend

on the thikness variable z

R

s

(x; y; z) = R(x; y) ; (2.6)

in line with the assumed thinness and material homogeneity of the struture. This is now a kind

of plate formulation, sine for the moment the unstressed referene on�guration ! was assumed

to lie in the plane. We immediately replae the independent unit diretor

~

d in the ansatz (2.5) by

speializing

~

d(x; y) := R

s

(x; y; 0):e

3

=: R

3

; (2.7)

inluding now also drill-rotations. This implies for the (reonstruted) deformation gradient of

the shell (plate)

F

s

= r'

s

(x; y; z) = (rmj %

m

R

3

)

| {z }

A

m

+z (r(%

m

R

3

)j%

b

R

3

)

| {z }

~

A

r

+

z

2

2

(r(%

b

R

3

)j0)

| {z }

~

~

A

r

: (2.8)

It should be noted that the augmented quadrati ansatz already hanges the term whih is linear

in the transverse diretion. The stress �eld through the thikness R

s;T

S

1

(r'

s

(x; y; z); R

s

):e

3

is

at least linear in the transverse variable z and not onstant, as would be the ase in a �rst order

(linear) ansatz for the deformation.

Invertibility of the reonstruted shell deformation (as a physial requirement) entails

8 z 2 [�h=2; h=2℄ : det[r'

s

(x; y; z)℄ > 0) %

m

(x; y) > 0 ; (2.9)

and we should guarantee that %

m

: ! 7! R

+

. The three-dimensional loal part of the elasti free

energy in (2.3) has the form

W (F;R) =

�

4

kR

T

F + F

T

R� 211k

2

+

�

8

tr

h

R

T

F + F

T

R� 211

i

2

: (2.10)

The equilibrium equations ensuing from (2.3) show that on the transverse boundary (upper and

lower fae of the plate) the Neumann ondition (3D-exat)

S

3d

1

(r'

3d

(x; y;�h=2); R

3d

(x; y;�h=2)):(�e

3

) = N

trans

(x; y;�h=2) ; (2.11)

9



holds. N

trans

are the presribed trations N [N=m

2

℄ on the transverse boundary given globally in

the basis (e

1

; e

2

; e

3

). This implies (3D-exat, multipliation with R

3d;T

)

R

3d

(x; y;�h=2)

T

S

3d

1

(r'

3d

(x; y;�h=2); R

3d

(x; y;�h=2)):(�e

3

) =

R

3d

(x; y;�h=2)

T

N

trans

(x; y;�h=2) : (2.12)

As a onsequene of (2.11) we have (3D-exat)

hR

3d

(x; y;�h=2)

T

S

3d

1

(r'

3d

(x; y;�h=2); R

3d

(x; y;�h=2)):e

3

; e

3

i =

� hN

trans

(x; y;�h=2); R

3d

(x; y;�h=2):e

3

i : (2.13)

We determine the oeÆients %

m

; %

b

from the orresponding requirement in terms of the assumed

kinematis ('

s

; R

s

), yielding

hR

s;T

(x; y;�h=2)S

1

(r'

s

(x; y;�h=2); R

s

):e

3

; e

3

i = �hN

trans

(x; y;�h=2); R

s

(x; y;�h=2):e

3

i )

hR

T

S

1

(r'

s

(x; y;�h=2); R):e

3

; e

3

i = �hN

trans

(x; y;�h=2); R:e

3

i ; (2.14)

whih ondition redues to zero normal trations on the transverse free boundary (in the

absene of transverse trations N

trans

) in the lassial, non-polar ontinuum limit of R ! R =

polar(r'). The physial motivation for this ondition is simple: if the transverse surfae of the

plate is free of loads and if we take the plate to be a thin three-dimensional struture made of a

regular array of springs, the springs will not be elongated in normal diretion. Sine from (2.10)

D

F

W

mp

(F;R) = S

1

(F;R) = R

�

�

�

F

T

R+R

T

F � 211

�

+

�

2

tr

h

F

T

R+R

T

F � 211

i

11

�

; (2.15)

the requirement (2.14) turns for z = �h=2 into the loal ondition

� hN

trans

(x; y;�h=2); R:e

3

i = � (2(%

m

� 1) + 2z %

b

) (2.16)

+ �

�

hR

T

(rmj0); 11i+ %

m

+ z %

m

h(rR

3

j0)

T

R; 11i+ z %

b

� 3 +

z

2

2

%

b

hR

T

(rR

3

j0); 11i

�

;

surprisingly without spatial derivatives of %

m

; %

b

appearing, whih would have been the ase

did we not assume (2.7). De�ne now N

res

; N

di�

: ! 7! R

3

by

N

res

(x; y) :=

�

N

trans

(x; y;+h=2) +N

trans

(x; y;�h=2)

�

;

N

di�

(x; y) :=

1

2

�

N

trans

(x; y;+h=2)�N

trans

(x; y;�h=2)

�

: (2.17)

In terms of (2.17) the loal statement (2.16) yields two linear equations in %

m

; %

b

10

the exat

solution of whih is given by

�

%

ex

m

%

ex

b

�

=

1

(2�+ �)

2

h�

�

2

h

3

8

h(rR

3

j0)

T

R; 11i

2

| {z }

small of higher order

�

(2�+ �)h �

�h

2

8

hrR

3

j0)

T

R; 11i

��hh(rR

3

j0)

T

R; 11i (2�+ �)

�

�

�

hN

di�

; R

3

i+ (2�+ �)� �

�

h(rmj0); Ri � 2

�

hN

res

; R

3

i

�

: (2.18)

10

%

m

; %

b

have di�erent units. %

m

is dimensionless, whereas [%

b

℄ = m

�1

.

10



Skipping the indiated term of higher order we obtain the approximation

%

ex

m

� 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

(2�+ �)

�

�h

8(2�+ �)

2

| {z }

small for �� 1

h(rR

3

j0); Ri hN

res

; R

3

i ;

%

ex

b

� �

�

2�+ �

h(rR

3

j0); Ri

| {z }

℄

+

hN

res

; R

3

i

(2�+ �)h

�

�

2(2�+ �)

2

| {z }

small for �� 1

h(rR

3

j0); RihN

di�

; R

3

i (2.19)

+

�

2

(2�+ �)

2

h(rR

3

j0); Ri

�

h(rmj0); Ri � 2

�

| {z }

small for small elongational strain, ompared to ℄

:

For an almost rigid material with � � 1 we have

�

(2�+�)

2

� 1, whih motivates to neglet these

terms. The term

�

2

(2�+�)

2

h(rR

3

j0); Ri

�

h(rmj0); Ri � 2

�

represents a nonlinear oupling be-

tween midsurfae in-plane (membrane) strain and normal urvature, a result of the derivation not

present in the underlying three-dimensional theory where only produts of deformation gradient

and rotations our. Sine we have in mind a small strain situation, this produt is one order

smaller than h(rR

3

j0); Ri. Therefore, we neglet this term as well. Thus we set �nally

%

m

:= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

(2�+ �)

; mainly membrane related ;

%

b

:= �

�

2�+ �

h(rR

3

j0); Ri+

hN

res

; R

3

i

(2�+ �)h

; mainly bending related : (2.20)

Note that the possibility to determine %

m

; %

b

exatly in (2.18) is prediated on the isotropy of the

underlying model and the hoie (2.7).

The last formula (2.20) has a lear physial signi�ane:

1. to �rst order: transverse �bers will be symmetrially elongated by opposite transverse tra-

tions and symmetrially shortened through in-plane streth.

2. to seond order: the midsurfae will be asymmetrially shifted through bending, moderated

through resulting transverse trations.

3. in pure bending there is only a shift of the midsurfae.

Having obtained a physially reasonable form of the relevant oeÆients %

m

; %

b

, it is expedient to

base the expansion and subsequent integration of the three-dimensional elasti energy on a further

simpli�ed expression. We take F

s

, where

F

s

= r'

s

(x; y; z) � (rmj %

m

R

3

)

| {z }

A

m

+z (rR

3

j%

b

R

3

)

| {z }

A

r

=: A

m

+ z A

r

=: F

s

; (2.21)

motivated by the form of the deformation gradient F

lin

s

= (rmjR

3

) + z(rR

3

j0), based on a naive

linear Reissner-Mindlin (1j1j0)-ansatz '

lin

s

= m+ z �R

3

. Note that the "assumed gradient" F

s

is in general not a gradient of some form of reonstruted deformation any more. It should be

observed that by using (2.21) we are onsistent with John's general result [Joh65, Joh71℄ that the

stress distribution through the thikness is approximately linear for a thin shell.

A simple but tedious alulation reveals now that (reminder A

r

:= (rR

3

j%

b

R

3

))

�

4

kR

T

A

r

+A

T

r

Rk

2

+

�

8

tr

h

R

T

A

r

+A

T

r

R

i

2

= �k sym(R

T

A

r

)k

2

+

�

8

tr

h

sym(R

T

A

r

)

i

2

(2.22)

= �k sym(R

T

(rR

3

j0))k

2

+

��

2�+ �

tr

h

sym(R

T

(rR

3

j0))

i

2

+

hN

res

; R

3

i

2

2(2�+ �)h

2

:
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Exatly the same omputations as for the bending term allows us to onlude that (reminder

A

m

:= (rmj%

m

R

3

))

�

4

kR

T

A

m

+A

T

m

R� 211k

2

+

�

8

tr

h

R

T

A

m

+A

T

m

R� 2 11

i

2

(2.23)

= �k sym(R

T

(rmjR

3

))� 11k

2

+

��

2�+ �

tr

h

sym(R

T

(rmjR

3

))� 11

i

2

+

hN

di�

; R

3

i

2

2(2�+ �)

:

2.3 Dimensionally redued energy: analytial integration through the

thikness

Now we perform the analytial integration through the thikness in terms of the redued kinematis.

We insert the assumed expression F

s

(2.21) and R

s

instead of F and R

3d

into the bulk energy

(2.3). Sine

k sym(R

T

s

F

s

)� 11k

2

=

1

4

kA

T

m

R+R

T

A

m

+ z A

T

r

R + z R

T

A

r

� 211k

2

(2.24)

=

1

4

kA

T

m

R +R

T

A

m

� 211k

2

+ z hA

T

m

R+R

T

A

m

� 211; A

T

r

Ri+

z

2

4

kA

T

r

R+R

T

A

r

k

2

:

and a similar result for tr

h

sym(R

T

s

F

s

)� 11

i

2

, we obtain by expliitly integrating over the (abso-

lutely thin plate like referential) domain 


h

= ! � [�

h

2

;

h

2

℄, using (2.23) and (2.22)

Z

!

Z
h

2

�

h

2

W

mp

(F

s

; R

s

) dV =

Z

!

h

�

�k sym(R

T

(rmjR

3

))� 11k

2

+

��

2�+ �

tr

h

sym(R

T

(rmjR

3

))� 11

i

2

+

hN

di�

; R

3

i

2

2(2�+ �)

+

hN

res

; R

3

i

2

24 (2�+ �)

!

d! (2.25)

+

Z

!

h

3

12

�

�k sym(R

T

(rR

3

j0))k

2

+

��

2�+ �

tr

h

sym(R

T

(rR

3

j0))

i

2

�

d! ;

and we all the fator of h the membrane part and the fator of h

3

the bending part, in line

with the lassial terminology. The result (2.25) shows the harateristi apparent hange of the

Lam�e moduli for the two-dimensional struture in membrane and bending as well as the additive

deoupling of these e�ets. Suh a deoupling would also have been obtained by formal energy

projetion based on the naive linear Reissner-Mindlin ansatz '

s

= m + z R

3

. The �nal energy

expression (2.25), however, annot be obtained by energy projetion.

2.4 E�etive evolution of rotations: averaged generator on so(3;R)

It remains to redue the three-dimensional evolution equation for the rotations of the thin struture

into an evolution equation for some e�etive rotation de�ned over the midsurfae ! only. Now

onsider the evolution equation for the visoelasti rotations in (1.1) with B = B

meh

�rst. If we

insert F

s

(2.8) instead of F we an ompletely reonstrut the three-dimensional evolution equation

d

dt

R(t; x; y; z) = �

+

skew

�

F

s

R(t; x; y; z)

T

�

� R(t; x; y; z) : (2.26)

In order to get some e�etive equation for rotationsR whih are de�ned over the two-dimensional

referential domain ! only, we onsider

d

dt

R(x; y; z) = �

+

skew(B

res;h

meh

) � R(x; y; z) ; B

res;h

meh

(x; y) :=

1

h

Z

h

2

�h

2

F

s

R(x; y; z)

T

dz ; (2.27)

12



where B

res;h

meh

is the thikness averaged generator on the Lie-algebra of the evolution and we

use F

s

instead of F

s

to be onsistent with the simpli�ation (2.21).

11

In addition we assume that

the rotations do not depend on the transverse variable z, i.e. R(x; y; z) = R(x; y; 0). This leads to

d

dt

R(x; y; z) = �

+

skew

 

1

h

Z

h

2

�h

2

(A

m

(x; y) + z A

r

(x; y))R(x; y; 0)

T

dz

!

�R(x; y; z)

= �

+

skew

�

A

m

(x; y)R(x; y; 0)

T

�

�R(x; y; z) : (2.28)

Hene an e�etive equation based on B = B

meh

is

d

dt

R(x; y) = �

+

skew(B

res;h

meh

)R(x; y) ; B

res;h

meh

= A

m

R

T

; (2.29)

independent of the thikness h. This result ould have been obtained by setting z = 0 in (2.26)

inidentally. The derivation for B = B

t

proeeds similarly. We need the averaged quantity

B

res;h

t

(x; y) :=

1

h

R

h

2

�h

2

B

t

(x; y; z) dz. A small alulation reveals

B

res;h

t

=

�

� (211�A

m

R

T

) + � [3� hA

m

R

T

; 11i℄

�

A

m

R

T

�

h

2

12

�

�A

r

R

T

+ �hA

r

R

T

; 11i

�

A

r

R

T

;

(2.30)

i.e., the three-dimensional thermodynamially onsistent evolution equation automatially fur-

nishes a ertain "bending" like inuene in the visoelasti ow, while the mehanially onsistent

evolution equation alone does not.

2.5 Dedution of the boundary onditions

Taking the Dirihlet boundary onditions for ' into aount and the quadrati kinematial ansatz,

we should have '

s

(x; y; z)

j

�

h

0

= g

d

(x; y; z) and

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

� R

s;3

(x; y; 0) ; (2.31)

Evaluating for �h=2 yields two vetor equations:

g

d

(x; y;�h=2) = m(x; y) +

�

�h=2 %

m

(x; y) +

h

2

8

%

b

(x; y)

�

� R

s;3

(x; y; 0) : (2.32)

Adding and subtrating shows

g

d

(x; y;+h=2) + g

d

(x; y;�h=2) = 2m(x; y) +

h

2

4

%

b

(x; y) � R

s;3

(x; y; 0) (2.33)

g

d

(x; y;+h=2)� g

d

(x; y;�h=2) = h %

m

(x; y)R

s;3

(x; y; 0))

rg

d

(x; y; 0):e

3

= %

m

(x; y)R

s;3

(x; y; 0) + o(h) :

This implies to �rst order m(x; y) =

1

2

(g

d

(x; y;+h=2) + g

d

(x; y;�h=2)) � g

d

(x; y; 0), whih we

take as redued boundary ondition for simple support. It is also suggested that one should take

R

s;3

(x; y; 0) =

rg

d

(x;y;0):e

3

krg

d

(x;y;0):e

3

k

. However, for a membrane plate it is not possible to speify higher

order boundary onditions orresponding to some sort of lamping.

11

Rotations live on the nonlinear manifold SO(3;R) and annot be averaged over the thikness, sine the average

might ease to be a rotation.

13



Figure 1: The assumed membrane-plate kinematis inorporating visoelasti transverse shear

resistane (R

3

6= ~n

m

), instantaneous thikness streth (%

m

6= 1) and visoelasti drill-

rotations. Reonstruted three-dimensional deformation '

s

: 


h

7! R

3

; '

s

(x; y; z) = m(x; y) +

z %

m

(x; y)R

3

(x; y), midsurfae deformation m : ! 7! R

3

, independent visoelasti rotation

R : ! 7! SO(3;R).

3 The redued visoelasti membrane-plate model

Sine in the underlying three-dimensional model (1.1) we minimized the elasti energy at �xed

rotations R we are led to minimizing (2.25) with respet to the deformation of the midsurfae m

at �xed redued rotation R : ! 7! SO(3). We observe that the term h

�

hN

diff

;R

3

i

2

2(2�+�)

+

hN

res

;R

3

i

2

24 (2�+�)

�

in the membrane part of the redued energy (2.25) does not ontribute to the minimization w.r.t.

the membrane deformation m. The same is true for the omplete h

3

-bending expression in (2.25).

3.1 The two-dimensional membrane-plate

Colleting all the former results we postulate the following oupled problem for the deformation of

the midsurfae of the membrane plate m : [0; T ℄� ! 7! R

3

and the independent loal visoelasti

rotation R : [0; T ℄� ! 7! SO(3;R) on !

Z

!

hW (F;R) d! ��(m;R

3

) 7! min :w.r.t. m at �xed R ; (3.1)

with presribed Dirihlet boundary onditions for simple support m

j



0

(t; x; y) = g

d

(t; x; y; 0). 

0

�

�!. The onstitutive assumptions on the redued density are

W (F;R) :=

�

4

kF

T

R+R

T

F � 211k

2

+

�

8

tr

h

F

T

R +R

T

F � 211

i

2

(3.2)

F = (rmj%

m

R

3

); %

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

2�+ �

:

14



The e�etive visoelasti evolution for the "moving orthonormal three-frame" R(t; x; y) 2 SO(3;R)

is given by

d

!̂

dt

R(t) = �

+

� skew (B

res

) � R(t) ; B

res

= B

res;h

meh

= �FR

T

or B

res;h

t

; (3.3)

B

res;h

t

=

h

�(2 11� FR

T

) + � [3� hFR

T

; 11i℄

i

FR

T

�

h

2

12

�

�A

r

R

T

+ �hA

r

R

T

; 11i

�

A

r

R

T

;

where

A

r

= (rR

3

j%

b

R

3

) ; %

b

= �

�

2�+ �

h(rR

3

j0); Ri+

hN

res

; R

3

i

(2�+ �)h

: (3.4)

The e�etive visoelasti evolution (3.3) is a loal, nonlinear ordinary di�erential equation for

B

res

= B

res;h

meh

, but turns into a nonloal, nonlinear �rst order partial di�erential system for R in

ase of B

res

= B

res;h

t

if h > 0. Subsequently, we restrit attention to the simpler loal hoie

B

res

= B

res;h

meh

.

Here, � is the linear funtional of resultant external loading, f.(7.8). We have already observed

(2.23) that for

b

F = (rmjR

3

) and N

di�

= 0 in fat

W (F;R) = � k sym

�

F

T

R� 11

�

k

2

+

�

2

tr

�

sym

�

F

T

R� 11

��

2

= � k sym

�

b

F

T

R� 11

�

k

2

+

��

(2�+ �)

tr

h

sym

�

b

F

T

R� 11

�i

2

; (3.5)

showing the harateristi apparent hange of the Lam�e moduli for the two-dimensional struture.

12

Observe that

��

(2�+�)

=

2

1

�

+

2

�

is half the harmoni mean of � and

�

2

.

3.2 Uniform Legendre-Hadamard elliptiity

Let us onsider the membrane ontribution to the elasti free energy (for simpliity take � > 0; � =

0)

Z

!

hW (F;R) d! = h

Z

!

�

4

k(rmj%

m

(rm;R)R

3

)

T

R +R

T

(rmj%

m

(rm;R)R

3

)� 211k

2

d! : (3.6)

It is easy to see that this remaining membrane energy density is uniformly Legendre-Hadamard

ellipti at frozen R 2 SO(3;R) with elliptiity onstant � independent of R(x; y), sine its seond

di�erential with respet to m veri�es (reminder F = (rmj%

m

R

3

) and (3.5))

8H 2 M

2�3

D

2

rm

W (F;R):(H;H) �

�

2

k(H j0)

T

R +R

T

(H j0)k

2

)

8 � 
 � 2 M

2�3

D

2

rm

W (F;R):(� 
 �; � 
 �) � � k�k

2

R

3

� k�k

2

R

2

: (3.7)

Moreover, the membrane energy is a onvex funtional in rm at frozen R, later we will see that it

is indeed uniformly onvex if integrated over ! also for nononstant rotations R if R satis�es some

additional smoothness requirements. This is preisely the property whih an be exploited to our

advantage in a subsequent mathematial analysis.

Remark 3.1

A possible advantage of the resulting model (3.1) is the fat that the membrane part alone is not

degenerate. This has to be paid with the additional internal visoelasti relaxation whih is, how-

ever, only a loal problem and does not involve additional �eld equations. Spatially disontinuous

12

It is not expedient to use

b

F in general in (3.1) sine it is F whih appears in the loal evolution.
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rotations R(x; y) are no major numerial onern, sine they are only loal quantities. Usually, the

implementational burden assoiated with either a fourth order system oming from the lassial

Kirho�-Love ansatz or the additional �eld equations for the rotations R in a Reissner-Mindlin

(restrited Cosserat-surfae) type theory ounterbalanes the gain of the dimensional redution.

A partiular appealing feature of the model (3.1) is the absene of a C

1

-ontinuity requirement

and the absene of additional �eld equations. For the membrane equilibrium part any standard

2D-H

1

-�nite element might be suitable.

3.3 Observer-invariane of the redued visoelasti model

Observer-invariane amounts to the requirement of invariane of the stresses in model (3.1) with

respet to superposed rigid body rotations Q 2 SO(3;R) in the sense that

8Q 2 SO(3) : QS

1

(F;R) = S

1

(QF;QR) ; (3.8)

where S

1

is the �rst Piola-Kirhho� stress tensor. In our ontext we hek invariane of the model

under the transformation (m;R) 7! (Q:m;QR). Now,

W ((rQ:mj((QR)

3

); QR)) =W ((Qrmj((QR)

3

); QR) =W (Q(rmjR

3

); QR)

=W (QF;QR) =W (F;R) =W ((rmjR

3

); R) ; (3.9)

by frame-indi�erene of the 3D-strain energy density. The evolution equation for the rotations is

also observer-invariant due to the use of the orotated time derivative

d

!̂

dt

. Thus the invariane

of the redued thin plate visoelasti model under m 7! Q:m; R 7! QR is guaranteed. However,

unlike lassial theories based on just one hyperelasti free energy formulation and Hamilton's

priniple, where frame-indi�erene of the energy implies balane of external angular momentum,

this is not true in the ase (3.1) due to a visoelasti dissipative nonsymmetri stress ontribution

oming from the evolution equation for R.

3.4 Thin membrane-plate non-ellipti relaxation limit

If the visosity is related to frition ouring at internal surfaes, it is reasonable to assume that the

visosity for the plate should sale like �

+

�

1

h

3

with h the plate thikness. Hene, the (vanishing

elasti visosity) limit �

+

!1 orresponds to the interesting limit of vanishing thikness h! 0.

Assume now that for a sequene of vanishing visosity �

+

k

! 1 we obtain a orresponding

sequene m

k

; R

k

as solutions to the problem (3.1) with thikness streth %

m

� 1 (for simpliity

only) and whih onverges to bm 2 C

1

(R

+

; H

1

(!;R

3

)) and

b

R 2 C

1

(R

+

; L

1

(!; SO(3;R))), respe-

tively. Then the limit membrane deformation bm and rotation

b

R satisfy forall times (note that

skew(FR

T

) = 0 � R = polar(F ), .f. Lemma 7.3 and reall Theorem 1.1)

Z

!

hW (F;R) d! ��(m;R

3

) 7! min :w.r.t. m at �xed R ; (3.10)

F = (rmjR

3

); R = polar(F ) = polar

�

(rmjR

3

)

�

;

and the omputed equilibrium energy level at a given time is

W (F;R) =

�

4

kF

T

R+R

T

F � 211k

2

+

�

8

tr

h

F

T

R+R

T

F � 211

i

2

(3.11)

= � kU � 11k

2

+

�

2

tr [U � 11℄

2

=:W

1

(U) ;

with U = (F

T

F )

1

2

the lassial symmetri elasti streth and U�11 the elasti Biot strain tensor.

Remark, however, that it is not W

1

whih underlies the variational problem (3.10).
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Let us investigate in more detail this limit equilibrium system in the visoelasti ase without

external loads and without loss of generality only based on the simpli�ed energy expression (� =

1; � = 0)

W (rm;R) =

1

4

k(rmjR

3

)

T

R+R

T

(rmjR

3

)� 211k

2

: (3.12)

Sine bm minimizes (3.10) with respet to m at �xed

b

R 2 SO(3;R), we have neessarily for the

relaxation limit bm;

b

R

0 =

d

dt

j

t=0

Z

!

W ((rbm + tr�j

b

R

3

);

b

R) d!

=

1

2

h(rbmj

b

R

3

)

T

b

R+

b

R

T

(rbmj

b

R

3

)� 211; (r�j0)

T

b

R+

b

R

T

(r�j0)i

!

= h(rbmj

b

R

3

)

T

b

R+

b

R

T

(rbmj

b

R

3

)� 211; (r�j0)

T

b

Ri

!

; 8 � 2 H

1;2

Æ

(!;R

3

; 

0

) : (3.13)

Now based on the identity polar(X)

T

� polar(X) = 11 for X 2 GL(3;R) the (pointwise) expansion

polar((rbm+H j

b

R

3

)) = polar((rbmj

b

R

3

) + (H j0))

= polar((rbmj

b

R

3

)) +D polar((rbmj

b

R

3

)):(H j0) + : : : (3.14)

with H 2 M

2�3

implies that

polar((rbmj

b

R

3

))

T

�D polar((rbmj

b

R

3

)):(r�j0) 2 so(3): (3.15)

Taking U =

1

2

(F

T

b

R+

b

R

T

F ) if

b

R = polar(F ) into aount and omputing the variation with respet

to bm at �xed olumn

b

R

3

of

kU((rbmj

b

R

3

))� 11k

2

!

=

1

4

k(rbmj

b

R

3

)

T

polar(rbmj

b

R

3

) + polar(rbmj

b

R

3

)

T

(rbmj

b

R

3

)� 211k

2

!

; (3.16)

we get

d

dt

j

t=0

kU((r(bm+ t�)j

b

R

3

))� 11k

2

!

= (3.17)

=

1

2

h(rbmj

b

R

3

)

T

polar(rbmj

b

R

3

) + polar(rbmj

b

R

3

)

T

(rbmj

b

R

3

)� 211; (r�j0)

T

b

R+

b

R

T

(r�j0)i

!

+

hU � 11; (rbmj

b

R

3

)

T

D polar((rbmj

b

R

3

)):(H j0) +D polar((rbmj

b

R

3

)):(H j0)

T

(rbmj

b

R

3

)i

!

(3.13)

= 0 + hU � 11; (rbmj

b

R

3

)

T

b

R

b

R

T

D polar((rbmj

b

R

3

)):(H j0)+

D polar((rbmj

b

R

3

)):(H j0)

T

b

R

b

R

T

(rbmj

b

R

3

)i

!

= hU � 11; U

b

R

T

D polar((rbmj

b

R

3

)):(H j0) +D polar((rbmj

b

R

3

)):(H j0)

T

b

RUi

!

(3.15)

= hU

2

� U;

b

R

T

D polar((rbmj

b

R

3

)):(H j0) +D polar((rbmj

b

R

3

)):(H j0)

T

b

Ri

!

= 0 ;

by (3.13) and (3.15), sine U is symmetri. Thus we have proved that if the equilibrium relaxation

limit exists in fat

Z

!

hW

1

(U((rmjR

3

)) d! ��(m;R

3

) 7! stat :w.r.t. m at �xed R

3

; R = polar

�

(rmjR

3

)

�

;

W

1

(U) = � kU � 11k

2

+

�

2

tr [U � 11℄

2

; (3.18)

17



is solved by bm;

b

R. This means that at �xed visoelasti "diretor" R:e

3

, the membrane energy is

stationary, but no laim as respets minimality of this solution an be made and indeed it is very

likely to end up in a metastable state by whih we mean a loal but not a global minimum.

In this relaxation limit the true Cauhy-stresses � =

1

det[F ℄

S

1

F

T

turn out to be symmet-

ri upon inspetion of (3.1), whih means that lassial balane of external angular momentum

onstrains the theory to its relaxed version. It might be worth remembering, however, that in on-

tinuum mehanis balane of external angular momentum is an additional hypotheses, independent

of balane of linear momentum and frame-indi�erene [MH83, p.137℄.

We push the analysis of the elasti ase further: the holonomi onstraint R = polar

�

(rmjR

3

)

�

in (3.18) is essentially a generalization of the normality ondition for the unit outward normal to

the surfae m, the diretor ~n

m

in a Kirhho�-Love model. To see this we note that the ondition

R = polar(rmjR

3

) implies already R

3

= ~n

m

. Thus R

3

oinides with the unit normal on the

midsurfae ~n

m

. This is a welome feature of the theory sine normality has not been imposed

yet anywhere. Sine

U

2

= C = F

T

F = (rmj~n

m

)

T

(rmj~n

m

) =

0

�

km

x

k

2

hm

x

;m

y

i 0

hm

x

;m

y

i km

y

k

2

0

0 0 1

1

A

; (3.19)

we understand that U = U((rmj~n

m

)) is in fat independent of ~n

m

, suh that in the elasti

relaxation equilibrium limit we have atually solved the intrinsi, purely elasti

13

problem

(%

m

6= 1)

Z

!

hW

1

(U((rmj~n

m

)) d! ��(m;~n

m

) 7! stat :w.r.t. m;

W

1

(U) := � kU � 11k

2

+

��

2�+ �

tr [U � 11℄

2

: (3.20)

Note that W

1

(U) is a non-quasionvex, non-ellipti elasti energy w.r.t. rm but onvex in

U , ensuring in fat the Baker-Eriksen inequalities.

14

Currently there are no mathematial

theorems available establishing the existene of minimizers or stationary points based diretly on

W

1

. In this sense, the visoelasti formulation (3.1) provides a physial regularization of the

ourring loss of elliptiity. The linearization of (3.20) oinides with the lassial, rigourously

justi�ed linearized membrane plate, f. [CSP95℄.

To sum up, we have motivated that normality of the diretor R

3

is an asymptoti feature

of our model for vanishing absolute thikness or the absolutely thinner the shell the less

transverse shear is possible.

4 Loal existene and uniqueness

In this part we sketh the methods and mathematial tools whih allow us to establish a loal

existene and uniqueness result. Sine the formal struture of energy projetion does not obtain

for our membrane model, it is not possible to simply transfer the three-dimensional existene and

uniqueness result [Nef04a℄ to a redued ansatz spae. However, the ideas used in [Nef04a℄ still

apply.

At frozen visoelasti rotations R the equilibrium system orresponding to (3.1) proves to be a

linear, seond order, stritly Legendre-Hadamard ellipti boundary value problem with nononstant

13

intrinsi: depending only on the �rst fundamental form I

m

= rm

T

rm 2 M

2�2

of the surfaem : ! � R

2

7! R

3

:

14

One version of the BE-inequalities for membranes an be stated as follows: for �

2

i

� 0; i = 1; 2 ; �

2

3

= 1 the

(generalized) prinipal strethes (here �

2

i

are the eigenvalues of (rmj~n)

T

(rmj~n)), the free energy �(�

1

; �

2

; 1) :=

^

W (rm

T

rm) = W

1

(U) is separately onvex in �

i

. No mathematial existene results based only on BE

are known. Note also that BE is enough to e�etively exlude phase-transformations, modelled with multi-well

potentials.
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oeÆients set by R(t; x; y). This system has variational struture in the sense that the equilibrium

part of (3.1) is formally equivalent to the minimization problem

8 t 2 [0; T ℄ : I(m(t); R(t)) 7! min :w.r.t. m, m(t) 2 g

d

(t) +H

1;2

Æ

(!;R

3

; 

0

) ;

I(m;R) :=

Z

!

hW (F;R) d! ��(m;R

3

) ; (4.1)

W (F;R) :=

�

4

kF

T

R+R

T

F � 211k

2

+

�

8

tr

h

F

T

R+R

T

F � 211

i

2

;

F = (rmj%

m

R

3

); %

m

= %

m

(rm;R) :

The main task in proving that (3.1) is well posed onsists of showing uniform estimates for solutions

of ellipti systems whose oeÆients are time dependent and do not indue a pointwise uniformly

positive bilinear form. Thus we are �rst onerned with the stati situation where R is assumed to

be known. We prove the existene, uniqueness and regularity of solutions to the two-dimensional

boundary value problem orresponding to (4.1). In addition we eluidate in whih manner these

solutions depend on the rotations R. Deisive use is made of the following new two-dimensional

oerivity inequality:

Theorem 4.1 (Improved Korn's inequality for rigid plates and shells)

Let ! � R

2

be a bounded domain with smooth boundary and let 

0

� �! be a part of the

boundary with non vanishing 1-dimensional Hausdor� measure. De�ne H

1;2

Æ

(!;R

3

; 

0

) := f� 2

H

1;2

(!) j �

j



0

= 0g and let F

p

; F

�1

p

2W

1;2+Æ

(!;GL(3;R)). Then

9 

+

> 0 8 � 2 H

1;2

Æ

(!;R

3

; 

0

) :

k(r�j0)F

�1

p

(x) + F

�T

p

(x)(r�j0)

T

k

2

L

2

(!)

� 

+

k�k

2

H

1;2

(!)

; (4.2)

and the onstant is bounded away from zero for F

p

; F

�1

p

bounded in W

1;2+Æ

(!;GL(3;R)).

Proof. The proof is based on a generalized three-dimensional Korn's �rst inequality [Nef02, Pom03℄

and subsequent dimensional redution; it an be found in [Nef03a, Nefal℄. �

We have not yet spei�ed the form of �

+

. One possible hoie is to take �

+

saled with the thikness

of the plate h (not neessary) and set formally similar to a visoplasti Norton-Ho� formulation

�

+

: =

[1m℄

3

h

3

�

0

�

1 +

"

k skew(�FR

T

)k � 0

��

0

#

r+1

+

1

A

k

�

2

4

k skew

�

�FR

T

�

k � 0

��

0

3

5

r�1

+

; (4.3)

with � a relaxation time, ��

0

= 1[MPa℄ and positive parameters r; k.

The oneptual idea to treat the evolution problem is then straightforward: we write the

ordinary di�erential equation (3.3) in the following form

d

dt

R(t) = f(r

x

m(R); R) � R ; (4.4)

with some "nie" funtion f : M

2�3

�M

3�3

7! so(3;R) and where m = m(R) is the unique solution

of the ellipti seond order two-dimensional boundary value problem orresponding to (4.1) at �xed

rotations R.

It remains to show that the right hand side of (4.4) as a funtion of R is loally Lipshitz,

15

allowing to apply the standard loal existene and uniqueness theorem. With appropriate hanges

this program an be arried out similar to [Nef01, Nef04a℄, but will be presented in detail elsewhere

[Nef04b℄. Thus we are in a position to announe the following result for the ase of the everywhere

(

0

= �!) simply supported �nite-strain visoelasti membrane-plate:

15

This is more than a simple requirement on f; preise estimates of the non-loal solution operator R 7! m(R)

are involved.
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Theorem 4.2 (Loal existene and uniqueness for the visoelasti membrane-plate)

Let ! � R

2

be a bounded smooth domain and suppose for the displaement boundary data

g

d

2 C

1

(R; H

3;2

(!;R

3

)). Moreover, assume for the resultant body fore f 2 L

2

(!;R

3

), see (7.8).

Assume for the initial ondition on the rotation R

0

2 H

2;2

(!; SO(3))). Then there exists a time

t

1

> 0 suh that the initial boundary value problem (3.1) with B

res

= B

res;h

meh

and �

+

aording to

(4.3) together with 

0

= �! admits a unique solution

(m;R) 2 C([0; t

1

℄; H

3;2

(!;R

3

))� C

1

([0; t

1

℄; H

2;2

(!; SO(3))): �

Remark 4.3

The level of smoothness required and the kind of boundary onditions are due to tehnial details

pending on the use of re�ned ellipti regularity.

5 Disussion and onluding remarks

In this ontribution we have formally derived membrane-plate equations for visoelasti materials

at small elasti strains starting from a given three-dimensional formulation. The ensuing theory

is neither a Kirhho�-Love nor a Reissner-Mindlin (restrited Cosserat surfae) type theory, but

ombines elements of both theories together with the use of the spei� strain measure symR

T

F�11

and a non-standard treatment of �nite rotations. The derivation turns out to be straight forward

in the elasti ase one the orret orresponding kinematial assumption for small elasti strains

on the underlying �nite deformation of the plate is made. The resulting equations in the thin plate

limit, where the possibility of bending-like inuene in the visoelasti evolution problem has been

negleted, retain a partiular simple form. The dimensionally redued system inherits in a natural

way the observer-invariane of the three-dimensional formulation whih is a basi requirement in

ontinuum mehanis.

A speial feature of the new system (3.1) is that the remaining membrane part at frozen vis-

oelasti rotations R is uniformly Legendre-Hadamard ellipti and indeed non-degenerate due to a

novel extended Korn's �rst inequality appliable to thin plates (and shells). This struture of the

resulting plate model allows to prove a loal existene and uniqueness result following the ideas

whih made the treatment of the three-dimensional system possible [Nef01, Nef04a℄. The model is

loally in time well-posed independent of the thikness h > 0. And it is again this struture whih

should prove its worth when doing numerial alulations: only a standard 2D-H

1

-�nite element

is in prinipal required in refreshing ontrast to the ubiquitous C

1

-smoothness requirement for

Kirhho�-Love shells. The numerial treatment of the evolution equations may follow merely stan-

dard pratie in �nite-strain elasto-plastiity (exponential-update for the rotations and onsistent

tangent). An extension of the model (3.1) and the announed mathematial results to �nite-strain

visoelasti-visoplasti membrane plates and shells is already known to the author but will be

detailed in a subsequent part.

In onlusion in an be seen that the general assumption of small elasti strains (almost rigidity)

in onjuntion with a non-standard treatment of �nite rotations represents a refreshing departure

from more traditional degenerate approahes. It opens a rih and as yet mostly unexplored stru-

ture linking the well established in�nitesimal, linear theories to the at present analytially diÆult

two-dimensional, geometrially exat �nite-strain problems.
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7 Appendix

7.1 Notation

7.1.1 Notation for bulk material

Let 
 � R

3

be a bounded domain with Lipshitz boundary �
 and let � be a smooth subset of �
 with non-

vanishing 2-dimensional Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote the salar produt on R

3

with

assoiated vetor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3 � 3 seond order tensors, written

with apital letters. The standard Eulidean salar produt on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and

thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. In the following we omit the index R

3

;M

3�3

. The identity

tensor on M

3�3

will be denoted by 11, so that tr [X℄ = hX; 11i. We let Sym and PSym denote the symmetri

and positive de�nite symmetri tensors respetively. We adopt the usual abbreviations of Lie-group theory, i.e.,

GL(3;R) := fX 2 M

3�3

jdet[X℄ 6= 0g the general linear group, SL(3;R) := fX 2 GL(3;R) jdet[X℄ = 1g; O(3) :=

fX 2 GL(3;R) j X

T

X = 11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X℄ = 1g with orresponding Lie-algebras

so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri tensors and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g of traeless

tensors. We set sym(X) =

1

2

(X

T

+ X) and skew(X) =

1

2

(X � X

T

) suh that X = sym(X) + skew(X) and for

vetors �; � 2 R

n

we have the tensor produt (� 
 �)

ij

= �

i

�

j

.

We write the polar deomposition in the form F = RU = polar(F )U with R = polar(F ) the orthogonal part

of F and U the symmetri streth. In general we work in the ontext of nonlinear, �nite elastiity. For the total

deformation ' 2 C

1

(
;R

3

) we have the deformation gradient F = r' 2 C(
;M

3�3

). Furthermore, S

1

(F ) and

S

2

(F ) denote the �rst and seond Piola Kirhho� stress tensors, respetively. Total time derivatives are written

d

dt

X(t) =

_

X. The �rst and seond di�erential of a salar valued funtion W (F ) are written D

F

W (F ):H and

D

2

F

W (F ):(H;H), respetively. We employ the standard notation of Sobolev spaes, i.e. L

2

(
); H

1;2

(
); H

1;2

Æ

(
),

whih we use indi�erently for salar-valued funtions as well as for vetor-valued and tensor-valued funtions.

Moreover, we set kXk

1

= sup

x2


kX(x)k. For A 2 C

1

(
;M

3�3

) we de�ne CurlA(x) as the operation url applied

row wise. We de�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the sense of

traes and by C

1

0

(
) we denote in�nitely di�erentiable funtions with ompat support in 
. We use apital letters

to denote possibly large positive onstants, e.g. C

+

;K and lower ase letters to denote possibly small positive

onstants, e.g. 

+

; d

+

. The smallest eigenvalue of a positive de�nite symmetri tensor P is abbreviated by �

min

(P ).

7.1.2 Notation for shells

Let ! � R

2

be a bounded domain with Lipshitz boundary �! and let 

0

be a smooth subset of �! with non-

vanishing 1-dimensional Hausdor� measure. The thikness of the plate is taken to be h > 0 with dimension length
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(ontrary to Ciarlet's de�nition of the thikness to be 2", whih di�erene leads to various di�erent onstants in

the resulting formulas). We denote by M

n�m

the set of matries mapping R

n

7! R

m

. For H 2 M

2�3

and � 2 R

3

we employ also the notation (Hj�) 2 M

3�3

to denote the matrix omposed of H and the olumn �. Likewise

(vj�j�) is the matrix omposed of the olumns v; �; �. The identity tensor on M

2�2

will be denoted by 11

2

. The

mapping m : ! � R

2

7! R

3

is the deformation of the midsurfae, rm = (m

x

jm

y

) is the orresponding deformation

gradient with m

x

= (m

1;x

;m

2;x

;m

3;x

)

T

; m

y

= (m

1;y

;m

2;y

;m

3;y

)

T

. The standard volume element is written

dx dy dz = dV = d! dz.

7.2 The treatment of external loads

7.2.1 Dead load body fores for the thin plate

In the three-dimensional theory the dead load body fores f(x; y; z) 2 R

3

were simply inluded by appending the

potential with the term

R




h

f(x; y; z)�'(x; y; z) dV. Inserting the quadrati ansatz for the reonstruted deformation

'

s

results in the approximation

Z




h

f(x; y; z) � '(x; y; z) dV �

Z




h

f(x; y; z) �

�

m(x; y) + z %

m

R

3

+

z

2

2

%

b

R

3

�

dV

=

Z

!

h

^

f(x; y) �m(x; y) d! +

Z

!

 

Z

h=2

�h=2

z f(x; y; z) dz

!

%

m

R

3

d! +

Z

!

 

Z

h=2

�h=2

z

2

2

f(x; y; z) dz

!

%

b

R

3

d! (7.1)

Let us de�ne

^

f

0

(x; y) :=

Z

h=2

�h=2

f(x; y; z) dz ;

^

f

1

(x; y) :=

Z

h=2

�h=2

z f(x; y; z) dz ;

^

f

2

(x; y) :=

Z

h=2

�h=2

z

2

2

f(x; y; z) dz ; (7.2)

suh that

^

f

0

;

^

f

1

;

^

f

2

are the zero, �rst, seond moment of f in thikness diretion. This implies

Z




h

f(x; y; z) � '(x; y; z) dV �

Z

!

^

f

0

(x; y) �m(x; y) d! +

Z

!

^

f

1

(x; y)%

m

R

3

d! +

Z

!

^

f

2

(x; y)%

b

R

3

d! : (7.3)

7.2.2 Tration boundary onditions for the thin plate

In the three-dimensional theory the tration boundary fores N(x; y; z) 2 R

3

; [N ℄ =

[Newt:℄

[m℄

2

were simply inluded by

appending the potential with the term

R

�


trans

h

[f

s

�[�

h

2

;

h

2

℄g

N(x; y; z) �'(x; y; z) dS. Inserting our quadrati ansatz

for the reonstruted deformation '

s

results in the approximation

Z

�


trans

h

[f

s

�[�

h

2

;

h

2

℄g

N(x; y; z) � '(x; y; z) dS �

Z

!�f�

h

2

;

h

2

g

N(x; y; z) �

�

m(x; y) + z%

m

R

3

+

z

2

2

%

b

R

3

�

dS

+

Z



s

�[�

h

2

;

h

2

℄

N(x; y; z) �

�

m(x; y) + z%

m

R

3

+

z

2

2

%

b

R

3

�

dS:

Let us de�ne on 

s

^

N

lat;0

(x; y) :=

Z

h=2

�h=2

N(x; y; z) dz ;

^

N

lat;1

(x; y) :=

Z

h=2

�h=2

z N(x; y; z) dz ;

^

N

lat;2

(x; y) :=

Z

h=2

�h=2

z

2

2

N(x; y; z) dz ;

(7.4)

suh that

^

N

lat;0

;

^

N

lat;1

;

^

N

lat;2

are the zero, �rst, seond moment of the trations N at the lateral boundary in

thikness diretion. Hene

Z

�


h

N(x; y; z) � '(x; y; z) dS �

Z

!

N

res

(x; y) �m(x; y) d! +

Z

!

hN

di�

(x; y)%

m

R

3

d! +

Z

!

h

2

8

N

res

%

b

R

3

d! (7.5)

+

Z



s

^

N

lat;0

(x; y) �m(x; y) ds +

Z



s

^

N

lat;1

(x; y) %

m

R

3

ds +

Z



s

^

N

lat;2

(x; y) %

b

R

3

ds ;

with

N

res

:= [N(x; y;

h

2

) +N(x; y;�

h

2

)℄ ; N

di�

:=

1

2

[N(x; y;

h

2

)�N(x; y;�

h

2

)℄ : (7.6)
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7.2.3 The external loading funtional

Let us gather all inuenes of the external loading terms. In view of a reasonable simpli�ation for membrane-plates

we onsider only those terms, whih would have appeared, if we had made the restrited linear ansatz without

thikness streth '

s

= m+ z R

3

. To leading order we have

f =

^

f

0

+N

res

; resultant body fore

M =

^

f

1

+ hN

di�

; resultant body ouple (7.7)

N =

^

N

lat;0

; resultant surfae tration

M



=

^

N

lat;1

; resultant surfae ouple :

The resultant loading funtional � is given by

�(m;R

3

) =

Z

!

hf;mi + hM;R

3

i d! +

Z



s

hN;mi+ hM



; R

3

i ds : (7.8)

If we denote the dependene of � on the loads of the underlying three-dimensional problem as �(f;N ; m;R

3

), then

it is easily seen that frame-indi�erene of the external loading funtional is satis�ed in the sense that

�(Q:f;Q:N ; Q:m;Q:R

3

) = �(f;N ; m;R

3

) for all rigid rotations Q 2 SO(3;R). Sine R is only a passive parameter

in the stati minimization problem (3.1) of the visoelasti plate, the dependene in the resulting loading funtional

� on R an be dropped.

7.3 The �nite-strain membrane model of Fox/Simo

In [FRS93℄ the following geometrially exat, frame-indi�erent membrane model has been derived by formal asymp-

toti analysis based on the St. Venant-Kirhho� energy. In a variational form the model an be written in our nota-

tion in the form of a minimization problem for the deformation of the midsurfae of the membranem : ! � R

2

7! R

3

on !:

Z

!

hW

mp

(C) d! � �(m;~n

m

) 7! min : w.r.t. m; m

j



0

= g

d

(x; y; 0)

C =

b

F

T

b

F ;

b

F = (rmj~n

m

); F

s

= (rmj%

m

~n

m

) ; (7.9)

%

m

=

hN

di�

; ~n

m

i

(2� + �)

+

s

1�

�

(2� + �)

tr

�

C � 11

�

+

hN

di�

; ~n

m

i

2

(2� + �)

2

; �rst order thikness streth ;

W

mp

(C) =

�

4

kC � 11k

2

+

2��

8(2� + �)

tr

�

C � 11

�

2

=

�

4

krm

T

rm� 11

2

k

2

+

2��

8(2� + �)

tr

h

rm

T

rm� 11

2

i

2

;

=

�

4

kI

m

� 11

2

k

2

+

2��

8(2� + �)

tr [I

m

� 11

2

℄

2

; I

m

= rm

T

rm: �rst fundamental form :

The reonstruted membrane deformation '

s

(x; y; z) = m(x; y) + z%

m

~n

m

yields the plane stress ondition

S

1

(r'

s

(x; y; 0):e

3

= 0, whih is only onsistent with three-dimensional equilibrium if there are no normal trations

at the transverse boundary and indeed, in [FRS93, p.176℄ it is assumed that N

di�

� 0, for otherwise, formal

asymptoti expansion is impossible.

It is easily seen that the resultant membrane strain energy W

mp

(C) is neither quasionvex nor Legendre-

Hadamard ellipti. Moreover, the resultant membrane strain energy density does not satisfy the Baker-Eriksen

inequalities in ontrast to the equilibrium model (3.20).

7.4 The �nite-strain, quasionvex membrane model of Le Dret/Raoult

By means of �-onvergene arguments based on the St. Venant-Kirhho� energy LeDret and Raoult [DR95b℄ derive

the following quasionvex geometrially exat, frame-indi�erent minimization problem whih is, however, degenerate

in ompression. The membrane deformation m : ! � R

2

7! R

3

satis�es on !:

Z

!

hQW

0

(rm) d! ��(m;~n

m

) 7! min : w.r.t. m; m

j



0

= g

d

(x; y; 0) ; (7.10)

W

0

(rm) := inf

�2R

3

W ((rmj�)

T

(rmj�)) ; W (C) =

�

4

kC � 11k

2

+

�

8

tr [C � 11℄

2

;

b%

m

:=

(

%

m

1�

�

(2�+�)

�

krmk

2

� 2

�

� 0 ; (rmjb%

m

~n) 2 GL

+

(3;R)

0 1�

�

(2�+�)

�

krmk

2

� 2

�

< 0 ; (rmjb%

m

~n) 62 GL

+

(3;R)

)

W

0

(rm) =W ((rmjb%

m

~n)

T

(rmjb%

m

~n)) =W

mp

(C) if b%

m

= %

m

with the de�nition of C ; %

m

and W

mp

given in (7.9). QW

0

denotes the quasionvex hull of W

0

whih an be

determined analytially showing the degenerate feature that QW

0

= 0 in uniform ompression. In ompression, this

model an only predit the stresses in the membrane appropriately while the geometry of deformation annot be

aounted for.
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7.5 The visoelasti evolution

Here we provide the missing proofs for the properties of the visoelasti evolution in Theorem 1.1.

Lemma 7.1

Assume that for positive onstants A

+

;M

+

; �

+

> 0 it holds that

8 t > 0 : u

2

(t) + �

+

t

Z

0

u

2

(s) ds � A

+

+M

+

t : (7.11)

Then we have the estimate

8 t > 0 : u

2

(t) � A

+

e

��

+

t

+

M

+

�

+

�

1� e

��

+

t

�

: (7.12)

Proof. We an easily �nd a smooth funtion g : R

+

7! R, whih satis�es

g(t) + �

+

t

Z

0

g(s) ds = A

+

+M

+

t : (7.13)

This implies g(0) = A

+

. Di�erentiation yields the equation

g

0

(t) + �

+

g(t) =M

+

: (7.14)

The unique solution is given by

g(t) = A

+

e

��

+

t

+

M

+

�

+

�

1� e

��

+

t

�

: (7.15)

Now we onsider the di�erene u

2

(t) � g(t). Substrating the equality for g from the inequality for u

2

we obtain

the di�erential inequality

[u

2

(t) � g(t)℄ + �

+

t

Z

0

[u

2

(s)� g(s)℄ ds � 0: (7.16)

De�ne h(t) =

R

t

0

[u

2

(s)� g(s)℄. This implies h(0) = 0 and the di�erential inequality

h

0

+ �

+

h(t) � 0: (7.17)

Mulipliation with e

�

+

t

and integration shows that e

�

+

t

h(t) � 0, hene u

2

(t) � g(t). �

Lemma 7.2

Assume that F 2 C

1

(R

+

;GL

+

(3;R)) is given and onsider the ordinary di�erential equation for R 2 SO(3;R):

d

dt

R(t) = �

+

skew(F (t)R

T

(t)) �R(t) ; R(0) = R

0

: (7.18)

Then the unique global solution satis�es for all times t 2 R

+

k skew(F (t)R

T

(t))k

2

�� 2�

+

t

Z

0

k skew(F (s)R

T

(s))k

2

ds

+ 2

t

Z

0

�

kF (s)k+ kR(s)k

�

kF

0

(s)k ds + kF

T

(0)R(0) � 11k

2

: (7.19)

Proof. Consider

d

dt

�

1

2

kF

T

R � 11k

2

�

= hF

T

R� 11; F

T

d

dt

R(t) + [F

0

(t)℄

T

Ri

= hF

T

R� 11; �

+

F

T

skew(FR

T

)R + [F

0

(t)℄

T

Ri

= �

+

hFF

T

� FR

T

; skew(FR

T

)i+ hF

T

R � 11; [F

0

(t)℄

T

Ri

= ��

+

k skew(FR

T

)k

2

+ hF � R;F

0

(t)i

� ��

+

k skew(FR

T

)k

2

+ kF

0

(t)k (kFk �

p

3) : (7.20)
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Integration yields

1

2

kF

T

(t)R(t) � 11k

2

� ��

+

t

Z

0

k skew(F (s)R

T

(s))k

2

ds +

t

Z

0

kF

0

(2)k (kF (s)k �

p

3) ds

+

1

2

kF

T

(0)R(0) � 11k

2

: (7.21)

We use �nally that

k skew(FR

T

)k = k skew(FR

T

� 11)k � kFR

T

� 11k = kRF

T

� 11k = kR

T

(RF

T

� 11)Rk = kF

T

R� 11k : (7.22)

This shows the desired integral inequality. �

The proof of Theorem 1.1, part ii.) is ahieved by identifying u

2

(t) = k skew(F (t)R

T

(t))k

2

and using Lemma 7.4

and Lemma 7.1.

Lemma 7.3 (The rotation onstraint)

Let F 2 GL

+

(3;R) and R 2 SO(3;R). Then

skew(FR

T

) = 0 , R

T

polar(F ) 2

8

<

:

0

�

1 0 0

0 1 0

0 0 1

1

A

;

0

�

1 0 0

0 �1 0

0 0 �1

1

A

;

0

�

�1 0 0

0 1 0

0 0 �1

1

A

;

0

�

�1 0 0

0 �1 0

0 0 1

1

A

9

=

;

:

Proof. The proof is based on the polar deomposition of F and an be found in [Nef03b, p. 175℄. �

Lemma 7.4

Let F 2 GL

+

(3;R) be given, then

8 R 2 SO(3;R) : kR � polar(F )k

2

< 8 : 9 

+

> 0 : k skew(FR

T

)k

2

� 

+

kR � polar(F )k

2

: (7.23)

Proof. We proeed by ontradition and a ompatness argument. Assume to the ontrary that the inequality

does not hold good. Then we an �nd a sequene of rotations R

k

2 SO(3;R) with kR

k

� polar(F )k

2

< 8 suh

that k skew(FR

T

k

)k ! 0 but kR

k

� polar(F )k � a

+

> 0. Sine SO(3;R) is ompat, by Bolzano-Weierstrass

we an extrat a subsequene R

k

j

, onverging to some

b

R with k

b

R � polar(F )k

2

< 8, k skew(F

b

R

T

)k = 0 and

k

b

R� polar(F )k � a

+

> 0. This is a ontradition due to Lemma 7.3.
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