
A geometri
ally exa
t vis
oplasti
 membrane-shell with

vis
oelasti
 transverse shear resistan
e avoiding degenera
y in

the thin-shell limit. Part I: The vis
oelasti
 membrane-plate.

Patrizio Ne�

�

Department of Mathemati
s

University of Te
hnology

Darmstadt

9th August 2004

Abstra
t

We redu
e a vis
oelasti
 �nite-strain 
ontinuum model to a two-dimensional membrane-

plate. The redu
tion is based on assumed kinemati
s, analyti
al integration through the

thi
kness and physi
ally motivated simpli�
ations. The resulting formulation is observer-

invariant and a

ounts for thi
kness stret
h and �nite rotations.

The membrane energy is a quadrati
, uniformly Legendre-Hadamard ellipti
, �rst order

energy in 
ontrast to 
lassi
al membrane models and the 
orresponding system of balan
e

equations remains of se
ond order. An evolution equation for some independent rotation is

appended (already in the bulk-model) introdu
ing vis
oelasti
 transverse shear resistan
e. It


an be shown that this redu
ed membrane formulation is lo
ally well-posed. Use is made of a

dimensionally redu
ed version of an extended Korn's �rst inequality.

In the equilibrium relaxation limit an intrinsi
 membrane-plate formulation is obtained

similar to the proposal of Fox/Simo, whi
h is, however, non-ellipti
. Nevertheless, the lin-

earization of this last equilibrium model 
oin
ides with the 
lassi
al linear membrane-plate

model. In this sense, the new vis
oelasti
 membrane-plate model regularizes the o

urring

loss of ellipti
ity in 
lassi
al �nite-strain membrane models.
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1 Introdu
tion

1.1 The underlying �nite-strain vis
oelasti
-plasti
 3D-model

In [Nef03b℄ a model of �nite-strain elasto-plasti
ity has been introdu
ed, based on the multipli
a-

tive de
omposition of the deformation gradient F = F

e

F

p

, in
orporating vis
oelasti
 e�e
ts due

to grain boundary relaxation. The model preserves observer-invarian
e and is invariant

with respe
t to superposed spatially 
onstant rotations of the so 
alled intermediate 
on�guration

indu
ed by F

p

. The model is geometri
ally nonlinear and allows for �nite elasti
 rotations, �-

nite plasti
 deformations and overall �nite deformations but remains a truly "physi
ally linear"

theory in the sense that simple uniaxial tension is modelled as linear and without vis
osity.

We need to mention, however, that the new model is intrinsi
ally rate-dependent, i.e., it

is not possible to "freeze" the "vis
oelasti
" rotations and obtain a frame-indi�erent redu
ed

plasti
ity model. In other words, the used elasti
 free energy W is not expressible as a redu
ed

fun
tion of C = F

T

F , nevertheless, the model is observer-invariant

1

and the 
ommon wisdom

that observer-invarian
e implies a representation in C or the stret
h U applies as su
h only to

intrinsi
ally non-dissipative problems [MH83, p.203℄. In general, form-invarian
e under superposed

time-dependent rigid rotations (frame-indi�eren
e) implies observer-invarian
e but is not identi
al

to it. For this subtle point 
ompare also to the lu
id dis
ussion in [Hau00, p.269℄ and [Kra86,

p.159℄ together with [SB97, BS01, MR02℄.

2

To begin with let us �rst introdu
e the 
onsidered 3D-model whi
h we have modi�ed 
ompared

to [Nef03b, Nef00℄ to in
lude also in a 
onsistent manner "
ompressible" plasti
ity, i.e., det[F

p

℄ 6=

1. In the quasi-stati
 setting appropriate for slow loading, where we negle
t 
onsistently inertia

terms, we are led to study the following 
oupled minimization and evolution problem for the

�nite deformation ' : [0; T ℄� 
 7! R

3

, the plasti
 variable F

p

: [0; T ℄� 
 7! GL

+

(3;R) and the

independent lo
al vis
oelasti
 rotation R

e

: [0; T ℄� 
 7! SO(3) on 


Z




W (F

e

;R

e

) det[F

p

℄� hf; 'i det[F

p

℄ dV

�

Z

�

S

hN;'i kCof F

p

:~n

�


k dS 7! min :w.r.t. ' at �xed (R

e

; F

p

) ; (1.1)

with pres
ribed Diri
hlet boundary 
onditions '

j

�

= g

d

(t) on � � �
. The 
onstitutive assumption

on the density is

W (F

e

; R

e

) =

�

4

kF

T

e

R

e

+R

T

e

F

e

� 211k

2

+

�

8

tr

h

F

T

e

R

e

+R

T

e

F

e

� 211

i

2

;

= � k sym(U

e

� 11)k

2

+

�

2

tr

�

U

e

� 11

�

2

; U

e

= R

T

e

F

e

; (1.2)

F

e

= r'�F

�1

p

; S

1

(F

e

; R

e

) = R

e

h

�(F

T

e

R

e

+R

T

e

F

e

� 211) + � tr

�

F

T

e

R

e

� 11

�

11

i

F

�T

p

;

where S

1

= D

F

�

W (F

e

; R

e

)

�

denotes the �rst Piola-Kir
hho� stress tensor and �; � > 0 are the


lassi
al Lam�e 
onstants of isotropi
 elasti
ity. The 
oupled plasti
 and vis
oelasti
 evolution is

1

observer-invariant means that material properties do not depend on the 
hoi
e of representation tools used to

portray them.

2

And the undisputed physi
al prin
iple is observer-invarian
e and not dire
tly frame-indi�eren
e (form-invarian
e

under rigid rotations). The strengthening of form-invarian
e of the equations under superposed rigid rotations to

form-invarian
e under the group of all di�eomorphisms is 
alled 
ovarian
e [MH83℄. We understand that form-

invarian
e and 
ovarian
e are additional 
onstitutive assumptions.
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de�ned by

d

dt

�

F

�1

p

�

2 �F

�1

p

� �

�

(�

E

); �

E

= F

T

e

D

F

e

W (F

e

; R

e

) det[F

p

℄�W (F

e

; R

e

) det[F

p

℄11 ;

d

!̂

dt

R

e

(t) = �

+

skew(B) � R

e

(t); B = B

me
h

or B

t


; �

+

= �

+

(F

e

; R

e

) 2 R

+

; (1.3)

B

me
h

= �F

e

R

T

e

; B

t


=

h

�(2 11� F

e

R

T

e

) + � [3� hF

e

R

T

e

; 11i℄

i

F

e

R

T

e

;

F

�1

p

(0) = F

�1

p

0

; F

p

0

2 GL(3;R); R

e

(0) = R

0

e

; R

0

e

2 SO(3); R

0

e

= 11 ifF

p

0

= r�;

where the 
ow potential

�

: M

3�3

7! R governs the plasti
 evolution (here asso
iated plasti
ity

for simpli
ity only) and whi
h is motivated through the prin
iple of maximal dissipation suÆ
ient

for the thermodynami
al 
onsisten
y of the model. B

me
h

or B

t


are alternative 
onstitutive


hoi
es. The dead load body for
e and the boundary tra
tions on �

S

� �
 are denoted by

f; N , respe
tively and de�ned w.r.t. the intermediate plasti
 
on�guration F

p

and ~n

�


is the unit

outward normal to �
. Corresponding natural boundary 
onditions apply. Here �

E

denotes the

elasti
 Eshelby stress tensor (the driving for
e behind evolving inhomogeneities in the referen
e


on�guration [Mau99℄) whi
h may be redu
ed to �

M

= F

T

e

D

F

e

W (F

e

; R

e

), the elasti
 Mandel

stress tensor in 
ase of a deviatori
 
ow rule whi
h preserves the in
ompressibility 
onstraint

det[F

p

℄ = 1.

By

d

!̂

dt

we mean the observer-invariant (
orotated) time derivative on SO(3;R)

d

!̂

dt

[R(t)℄ :=

d

dt

[R(t)℄� !̂(t) �R(t) ; !̂ :=

d

dt

[Q(t)℄ �Q(t)

T

; (1.4)

where Q(t) 2 SO(3;R) is the instantaneous rotation of the 
urrent frame with respe
t to the

inertial frame and !̂ is the 
orresponding angular velo
ity. Without loss of generality, we 
on�ne

attention to the inertial frame, i.e. !̂ � 0 and

d

!̂

dt

=

d

dt

.

The term �

+

:=

1

�

e

�

+

(F

e

; R

e

) represents a s
alar valued fun
tion introdu
ing elasti
 vis
osity

within the elasti
 domain and �

e

plays the role of a relaxation time with units [�

e

℄ = se
. F

�1

p

0

and

R

0

e

are the initial 
onditions for the plasti
 variable and vis
oelasti
 rotation part, respe
tively.

The 
hoi
e B = B

t


is thermodynami
ally 
onsistent whereas the simpler 
hoi
e B = B

me
h

is

(only) me
hani
ally 
onsistent in the sense that various invarian
e requirements are met. Due to

the underlying isotropy the resulting model (1.1) with B = B

me
h

approa
hes in the (vanishing

elasti
 vis
osity = zero relaxation limit �

e

! 0 viz. for arbitrary slow pro
esses) equilibrium limit

�

+

!1 formally the 
oupled problem

Z




W

1

(F

e

) det[F

p

℄� hf; 'i det[F

p

℄ dV

�

Z

�

S

hN;'i kCof F

p

:~n

�


k dS 7! stat :w.r.t. ' at �xed F

p

;

W

1

(F

e

) := � kU

e

� 11k

2

+

�

2

tr [U

e

� 11℄

2

; F

e

= r'F

�1

p

; (1.5)

d

dt

�

F

�1

p

�

(t) 2 �F

�1

p

(t) � �

�

(�

E;1

) ; �

E;1

:= U

e

D

U

e

W

1

(U

e

) det[F

p

℄�W

1

(U

e

) det[F

p

℄ 11 ;

with U

e

= (F

T

e

F

e

)

1

2

the 
lassi
al symmetri
 elasti
 stret
h, U

e

�11 the elasti
 Biot strain tensor and

W

1

(U

e

) the non-ellipti
 equilibrium energy. The system (1.5) is an exa
t equilibrium model for

small elasti
 strains and �nite plasti
 deformations in the 
lassi
al sense with no extra internal dis-

sipation. The transition from (1.1) to (1.5) is not entirely trivial sin
e it is not just the repla
ement

of the independent rotation R

e

by the 
ontinuum rotation R

e

! R

e

= polar(F

e

) and note the sub-

tle 
hange from global minimization to a stationarity requirement only. Observe as well that
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� kU � 11k

2

+

�

2

tr [U � 11℄

2

leads to a linear stress response in uniaxial tension/
ompression while

e.g. � kEk

2

+

�

2

tr [E℄

2

; E =

1

2

(F

T

F � 11) would lead to a nonlinear, unphysi
al non-monotone

stress response in uniaxial tension/
ompression.

In the 
ompanion paper [Nef03b℄ the impli
ations, predi
tions and physi
al relevan
e of the

new model have been investigated in great detail. It is shown that the additional degrees of

freedom inherent through the independent lo
al vis
oelasti
 rotations R

e


an be interpreted in

the framework of a material with a poly
rystalline substru
ture where the individual rotations

of the grains may deviate from the 
ontinuum rotation. Then, in the presen
e of plasti
ity, R

e

represents a reversible, "vis
oelasti
" part of the total rotation of the grains and leads to texture

e�e
ts (deformation indu
ed anisotropy). The evolution equation for R

e

introdu
es hysteresis

e�e
ts into the model already within the elasti
 region, i.e. immediately for arbitrary small stress

levels. The physi
al reality of this behaviour for poly
rystalline material is well do
umented and

it is shown that the new model (1.1) allows a qualitative and in parts quantitative des
ription of

su
h e�e
ts whi
h are as
ribed to internal fri
tion at the grain boundaries. In [Nef03b℄ it has also

been motivated that the elasti
 vis
osity is larger for larger internal surfa
es, i.e. the smaller the

grain size, while single 
rystals behave nearly rate-independent for that matter.

In [Nef04a℄ the lo
al well-posedness of (1.1) under Diri
hlet 
onditions has been shown, while

su
h a result is not yet known for (1.5). The general appli
ability of the model (1.1) in the three-

dimensional 
ase has been investigated numeri
ally in [NW03℄. This is our motivation to extend

the model to a redu
ed membrane formulation. It is planned to investigate in a sequel the full

dimensional redu
tion problem for the vis
oelasti
-vis
oplasti
 problem (1.1). Here, we 
on
entrate

on the vis
oelasti
 formulation.

1.2 The �nite-strain vis
oelasti
 3D-model

Before we pro
eed to the dimensional redu
tion, the need has been felt to further motivate this

model (1.1) sin
e it departs 
onsiderably from 
lassi
al vis
oelasti
 models to whi
h the reader

might be aquainted. Let us therefore look at the purely vis
oelasti
 version of (1.1) with B =

B

me
h

; �

+

2 R but without surfa
e tra
tions. The problem reads

Z




W (F;R)� hf; 'i dV 7! min :w.r.t. ' at �xed R ; '

j

�


= g

d

(t) ;

W (F;R) =

�

4

kF

T

R +R

T

F � 211k

2

+

�

8

tr

h

F

T

R+R

T

F � 211

i

2

; F = r' ; (1.6)

with 
oupled vis
oelasti
 evolution

d

dt

R(t; x) = �

+

skew(F (t; x)R(t; x)

T

) �R(t; x) ; R(0; x) = R

0

(x) : (1.7)

The minimization at �xed R 2 SO(3;R) in (1.6) is in fa
t stri
tly equivalent to the balan
e of

linear momentum equation

�Div

x

D

F

[W (r'(t; x); R(t; x))℄ = f(t; x) ; '

j

�


(t; x) = g

d

(t; x) ; (1.8)

as long as �
 and g

d

are suÆ
iently smooth. The lo
al evolution equation for R introdu
es the

vis
oelasti
 e�e
ts. In 
ontrast to a more traditional Cosserat approa
h, the rotations are not

determined by simultanuous minimization of some augmented elasti
 energy (whi
h

would in
lude 
urvature terms D

x

R) w.r.t. both ' and R.

In order to appre
iate the relaxation properties of (1.7) already hinted at, assume now that we

are given a deformation history F 2 C

1

(R

+

;GL

+

(3;R)) for a spe
i�
 point x

0

2 
. Then

Theorem 1.1 (Dynami
 polar de
omposition and relaxation)

The vis
oelasti
 evolution problem (1.7) admits a unique global in time solutionR 2 C

1

(R

+

; SO(3;R)).

Moreover,
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1. if F is 
onstant in time and kR � polar(F )k

2

< 8, then we have the asymptoti
 behaviour

R(t)! polar(F ) for t!1.

2. 8 t 2 R

+

: k skew(F (t)R

T

(t))k

2

�

M

+

�

+

(1� e

��

+

t

)+ kF (0)

T

R(0)� 11k

2

e

��

+

t

, where M

+

=

(kFk

1

+

p

3) kF

0

k

1

is independent of �

+

.

Proof. The right hand side in (1.7) is globally Lips
hitz as a fun
tion of R, hen
e there exists a

unique global solution R 2 C

1

(R

+

; SO(3;R)).

Part i.) is proved in [Nef03b, p.173℄. The proof of part ii.) will be given in the appendix. �

Sin
e k skew(F (t)R(t)

T

)k is a measure for the di�eren
e between R(t) and the 
ontinuum rotation

polar(F (t)) 
.f. Lemma 7.4, we see that by 
hoosing �

+

appropriately large (low vis
osity) this

di�eren
e 
an be e�e
tively 
ontrolled. In the limit �

+

!1 we determine the 
onstraint rotation

R(t) = polar(F (t)).

1.3 Dimensionally redu
ed kinemati
s

The dimensional redu
tion of a given model is already an old and mature subje
t and it has seen

many "solutions". The di�erent approa
hes toward elasti
 shell theory proposed in the literature

and relevant referen
es thereof are, therefore, too numerous to list here. In any 
ase our proposal

falls within the so 
alled derivation approa
h, i.e., redu
ing a given three-dimensional model via

(physi
ally) reasonable 
onstitutive assumptions to a two-dimensional modelas opposed to either

the intrinsi
 approa
h whi
h views the shell from the onset as a two-dimensional surfa
e and

invokes 
on
epts from di�erential geometry or the asymptoti
 methods whi
h try to establish

two-dimensional equations by formal expansion of the three-dimensional solution in power series

in terms of a small parameter. The intrinsi
 approa
h is 
losely related to the dire
t approa
h

whi
h takes the shell to be a dire
ted medium in the sense of a restri
ted Cosserat-theory

[CC09℄.

3

A detailed presentation of the 
lassi
al shell theories 
an be found in [Nag72℄. A thorough

mathemati
al analysis of linear, in�nitesimal shell theory, based on asymptoti
 methods is to be

found in [Cia98℄ and the extensive referen
es therein, see also [Cia97, Cia99, Ant95, DS96, Dik82℄.

Ex
ellent reviews and insightful dis
ussions of the modelling and �nite element implementation

may be found in [SB92, San95, San98, GSW89, GT92, BGS96, BR92℄ and in the series of papers

[SF89, SFR89, SFR90, SRF90, SK92, SF92, COS00℄. Properly invariant elasti
 plate theories for

membrane and bending are derived by formal asymptoti
 methods in [FRS93℄ and extended to the


ase of 
urvilinear 
oordinates in [Mia98, LM98℄.

The mathemati
al analysis establishing the wellposedness of all the in�nitesimal linearized

models is fairly well established and will not be our 
on
ern.

In the �nite-strain, geometri
ally exa
t elasti
 
ase, mostly based on the Saint Venant-Kir
hho�

free energy density � kEk

2

+

�

2

tr [E℄

2

, the formal asymptoti
 methods are still su

essful in that

they identify again leading membrane and bending terms. As far as the o

urring membrane


ontribution is 
on
erned, it is the form (7.9) whi
h is given e.g. in [GKM96, FRS93, Mia98℄.

However, variational methods based on �-
onvergen
e [DR95a℄ suggest a fundamentally di�erent

membrane term whi
h leads to a non-resistan
e of the membrane plate/shell in 
ompression.

4

The

non-resistan
e to 
ompression in this analysis is related to the use of the quasi
onvex hull

5

QW

0

of

a dimensionally redu
ed St.Venant Kir
hho� energy, see (7.10). This quasi
onvex hull, surprisingly

enough, 
an be given in 
losed form [DR95
, HP96℄ and shows to be in general positive but zero

in the 
ompression range.

The 
lassi
al linear models proposed in the literature lead to e�e
tive numeri
al s
hemes only

if the thi
kness h of the stru
ture is still appre
iable, i.e. 
lassi
al bending terms are present and

3

Restri
ted, sin
e no material length s
ale enters the dire
t approa
h, only the thi
kness h appears.

4

They remark [DR95b, p.550℄: "...then the 
orresponding nonlinear membranes o�er no resistan
e to 
rumpling.

This is an empiri
al fa
t, witnessed by anyone who ever played with a de
ated balloon."

5

"... the fa
t that this fun
tion is not quasi
onvex already implied that it had to be relaxed in order to give rise

to a well posed problem." [DR95b, p.575℄.

6



regularize the 
omputation. However, there is an abundan
e of new appli
ations where very thin

stru
tures are used, e.g. very thin metal layers on a substrate (in 
omputer hardware, for the


hara
teristi
 non dimensional relative thi
kness h � 5 � 10

�4

). See [BJ99℄ for an appli
ation to

thin �lms.

Sin
e lo
ally rotating the thin stru
ture is energeti
ally "
heap" 
ompared to stret
hing, we

are for
ed to 
onsider models in
luding �nite rotations in an obje
tive manner. But the proposed

�nite-strain membrane terms found in the literature are either non-ellipti
 and the remaining

(minimization) problem is not well-posed or they lead to the aforementioned non-resistan
e in


ompression.

1.4 Outline and s
ope of this 
ontribution

In order to improve on this unsatisfa
tory state of the art for �nite-strain membrane plate for-

mulations we propose here a new membrane-plate model for very thin almost rigid

6

, vis
oelasti


materials whi
h is non-degenerate in the thin shell limit without addition of bending terms and

whi
h in prin
iple allows to des
ribe the detailed geometry of deformation in a �nely wrinkled

plate. This might be 
ontrasted with the variational approa
h in [DR95a℄ and tension �eld theory

whi
h des
ribes the approximate stress distribution in the membrane but determines the deforma-

tion only to within a probability measure. Stri
tly speaking, the use of the quasi
onvex hull leads

to a so 
alled tension �eld theory [Ste90℄. Steigmann [Ste90, p.143℄ notes "A question then

arises 
on
erning the validity of tension �led theory as an approximation to a theory of shells with

bending sti�ness that is small in some sense. Evidently, the deformation is not well des
ribed,

though the theory delivers solutions that approximate the average of the deformation observed in

a real membrane 
ontaining many wrinkles. We 
onje
ture that the stress is a

urately predi
ted,

however."

Our 
ontribution is organized as follows. After this introdu
tory part we 
onsider the �nite-

strain purely vis
oelasti
 model (1.1) on an absolutely thin domain. Using a quadrati
 kinemati
al

ansatz through the thi
kness, whi
h is 
onsistent with the appearan
e of independent rotations in

the three-dimensional theory and subsequent analyti
al integration through the thi
kness together

with 
ertain simpli�
ations we formally redu
e the equilibrium energy.

7

For the vis
oelasti
 evolu-

tion equation we obtain the dimensional redu
tion by averaging the generator on the Lie-algebra

of the 
ow through the thi
kness. Consistently redu
ing the boundary 
onditions and putting the

results together de�nes formally the vis
oelasti
 membrane-plate model (3.1).

The new vis
oelasti
 model is shown to remain observer-invariant and its membrane equilibrium

energy density satis�es a uniform Legendre-Hadamard ellipti
ity 
ondition (3.7) while it is not

uniformly 
onvex.

Then the elasti
 equilibrium limit for vanishing vis
osity (�

+

!1) is investigated. It is shown

that the formal limit exhibits a non-ellipti
 membrane strain energy density (3.20), similar to

the membrane model of Fox/Simo (7.9). We 
lose with a lo
al existen
e and uniqueness result for

the obtained vis
oelasti
 membrane-plate.

The notation will be found in the appendix as well as the dimensional redu
tion of the external

loads. Finally, we present two alternative propositions from the literature for the 
omputation of

membrane dominated problems.

A di�erent formulation of elasti
 plate models with independent rotations leading to a true,

geometri
ally exa
t Cosserat theory of plates has been given in [Nef03a, Nefal℄.

6

almost rigid: a material with high Lam�e moduli �; �� 1[MPa℄ su
h that F � SO(3;R) whenever kinemati
ally

possible.

7

One should not 
onfuse this approa
h with energy proje
tion on a redu
ed ansatz spa
e, sin
e we do not

introdu
e additional �elds in the pro
ess of dimensional redu
tion.

7



2 The formal dimensional redu
tion in the vis
oelasti
 
ase

2.1 The three-dimensional �nite-strain vis
oelasti
 problem on a thin

domain

The basi
 task of any shell theory is a 
onsistent redu
tion of some presumably "exa
t" 3D-theory

to 2D. We assume from now on small elasti
 strains (almost rigidity) and no plasti
ity (i.e., F

p

= 11

in (1.1) and R

e

= R). We will adapt the bulk problem to a plate like theory. Let us assume that

we are given a three-dimensional absolutely thin domain




h

:= ! � [�

h

2

;

h

2

℄; ! � R

2

; (2.1)

with transverse boundary �


trans

h

= !�f�

h

2

;

h

2

g and lateral boundary �


lat

h

= �!� [�

h

2

;

h

2

℄,

where ! is a bounded domain in R

2

with smooth boundary �! and h > 0 is the thi
kness, and a

deformation '

3d

and rotation R

3d

'

3d

: 


h

� R

3

7! R

3

; R

3d

: 


h

� R

3

7! SO(3;R) ; (2.2)

solving the following 
oupled minimization and evolution problem on 


h

:

Z




h

W (U)� hf; 'i dV �

Z

�


trans

h

[f


s

�[�

h

2

;

h

2

℄g

hN;'i dS 7! min : w.r.t. ' at �xed R;

U = R

T

F; '

j

�

h

0

= g

d

; �

h

0

= 


0

� [�

h

2

;

h

2

℄; 


0

� �!; 


s

\ 


0

= ; ;

W (U) = � k sym(U � 11)k

2

+

�

2

tr

�

sym(U � 11)

�

2

; (2.3)

d

!̂

dt

R(t) = �

+

skew(B) � R(t); B = B

me
h

or B

t


; �

+

= �

+

(F;R) 2 R

+

;

B

me
h

= �FR

T

; B

t


=

h

�(2 11� FR

T

) + � [3� hFR

T

; 11i℄

i

FR

T

; R(0) 2 SO(3) ;

where U = R

T

F is not ne
essarily symmetri
. U is known as the �rst Cosserat deformation

tensor. We want to �nd a reasonable approximation ('

s

; R

s

) of ('

3d

; R

3d

) involving only two-

dimensional quantities. The redu
tion is based on assumed kinemati
s and analyti
al integration

through the thi
kness.

2.2 Enri
hed quadrati
 kinemati
s

In order to 
hara
terize the shell deformation, let us assume that the deformation '

3d


an be

represented by a 
onverging fun
tion expansion in thi
kness dire
tion, i.e.

'

3d

(x; y; z) =

1

X

i=0

~�

i

(x; y) � v

i

(z); ~�

i

: ! 7! R

3

; v

i

: [�h=2; h=2℄ 7! R ; (2.4)

with linearly independent fun
tions v

i

. Without loss of generality, we may take v

i

(z) = z

i

.

In the engineering shell 
ommunity it is well known [Che80, S
h85, Pie85℄ that the ansatz

through the thi
kness should at least be quadrati
 in order to avoid the Poisson thi
kness-

lo
king

8

and to fully 
apture the three-dimensional kinemati
s without arti�
ial modi�
ation of

the material lawsif applying proje
tion methods. See the detailed dis
ussion of this point in [BR00℄

and 
ompare with [BR92, BBR94, RR96, BR97, SB98℄.

For the three-dimensional theory with small elasti
 strains whi
h 
aptures shells with large

in-plane rigidity and high transverse 
exibility we trun
ate (2.4) and assume the quadrati


ansatz in the thi
kness dire
tion

9

for the re
onstru
ted �nite deformation '

s

: 


h

� R

3

7! R

3

8

The bending sti�ness of the redu
ed theory would tend to 1 as the Poisson-number � !

1

2

.

9

Identify ~�

0

= m; ~�

1

= %

m

~

d; ~�

2

= %

b

~

d.

8



of the shell-like stru
ture

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

�

~

d(x; y) ; (2.5)

where m : ! � R

2

7! R

3

takes on the role of the deformation of themidsurfa
e of the shell viewed

as a parametrized surfa
e and the independent unit dire
tor of the shell

~

d : ! � R

2

7! S

2

.

The yet indeterminate s
alar fun
tions %

m

; %

b

: ! � R

2

7! R allow in prin
ipal for symmetri


thi
kness stret
h (%

m

6= 1) and asymmetri
 thi
kness stret
h (%

b

6= 0) about the midsurfa
e.

For

~

d 6= ~n

m

(~n

m

the outer unit normal to m) transverse shear o

urs.

This leads at �rst glan
e to a 10 "dof" 
onstraint theory: 3 
omponents of the membrane

deformation, 3 degrees of freedom for the bulk mi
rorotations R 2 SO(3;R), in
luding naturally

one drilling degree of freedom for in-plane rotations, 2 degrees of freedom for the unit dire
tor

~

d 2 S

2

and 2 degrees of freedom %

m

; %

b

over the thi
kness. However, the dire
tor

~

d will be

spe
ialized and the two thi
kness 
oeÆ
ients %

m

; %

b

will be eliminated analyti
ally, leaving us

�nally with 6 six degrees of freedom and the rotations R remain lo
ally 
oupled to the deformation

gradient through vis
oelasti
ity. Already in the 
lassi
al elasti
ity 
ontext the bene�
ial in
uen
e

of drill rotations for the numeri
al implementation has been investigated in the linear 
ase in

[HB89℄ and in the �nite-strain 
ase in [SFH92℄.

The (re
onstru
ted) rotations R

s

: 


h

7! SO(3;R) in the thin shell are assumed not to depend

on the thi
kness variable z

R

s

(x; y; z) = R(x; y) ; (2.6)

in line with the assumed thinness and material homogeneity of the stru
ture. This is now a kind

of plate formulation, sin
e for the moment the unstressed referen
e 
on�guration ! was assumed

to lie in the plane. We immediately repla
e the independent unit dire
tor

~

d in the ansatz (2.5) by

spe
ializing

~

d(x; y) := R

s

(x; y; 0):e

3

=: R

3

; (2.7)

in
luding now also drill-rotations. This implies for the (re
onstru
ted) deformation gradient of

the shell (plate)

F

s

= r'

s

(x; y; z) = (rmj %

m

R

3

)

| {z }

A

m

+z (r(%

m

R

3

)j%

b

R

3

)

| {z }

~

A

r

+

z

2

2

(r(%

b

R

3

)j0)

| {z }

~

~

A

r

: (2.8)

It should be noted that the augmented quadrati
 ansatz already 
hanges the term whi
h is linear

in the transverse dire
tion. The stress �eld through the thi
kness R

s;T

S

1

(r'

s

(x; y; z); R

s

):e

3

is

at least linear in the transverse variable z and not 
onstant, as would be the 
ase in a �rst order

(linear) ansatz for the deformation.

Invertibility of the re
onstru
ted shell deformation (as a physi
al requirement) entails

8 z 2 [�h=2; h=2℄ : det[r'

s

(x; y; z)℄ > 0) %

m

(x; y) > 0 ; (2.9)

and we should guarantee that %

m

: ! 7! R

+

. The three-dimensional lo
al part of the elasti
 free

energy in (2.3) has the form

W (F;R) =

�

4

kR

T

F + F

T

R� 211k

2

+

�

8

tr

h

R

T

F + F

T

R� 211

i

2

: (2.10)

The equilibrium equations ensuing from (2.3) show that on the transverse boundary (upper and

lower fa
e of the plate) the Neumann 
ondition (3D-exa
t)

S

3d

1

(r'

3d

(x; y;�h=2); R

3d

(x; y;�h=2)):(�e

3

) = N

trans

(x; y;�h=2) ; (2.11)

9



holds. N

trans

are the pres
ribed tra
tions N [N=m

2

℄ on the transverse boundary given globally in

the basis (e

1

; e

2

; e

3

). This implies (3D-exa
t, multipli
ation with R

3d;T

)

R

3d

(x; y;�h=2)

T

S

3d

1

(r'

3d

(x; y;�h=2); R

3d

(x; y;�h=2)):(�e

3

) =

R

3d

(x; y;�h=2)

T

N

trans

(x; y;�h=2) : (2.12)

As a 
onsequen
e of (2.11) we have (3D-exa
t)

hR

3d

(x; y;�h=2)

T

S

3d

1

(r'

3d

(x; y;�h=2); R

3d

(x; y;�h=2)):e

3

; e

3

i =

� hN

trans

(x; y;�h=2); R

3d

(x; y;�h=2):e

3

i : (2.13)

We determine the 
oeÆ
ients %

m

; %

b

from the 
orresponding requirement in terms of the assumed

kinemati
s ('

s

; R

s

), yielding

hR

s;T

(x; y;�h=2)S

1

(r'

s

(x; y;�h=2); R

s

):e

3

; e

3

i = �hN

trans

(x; y;�h=2); R

s

(x; y;�h=2):e

3

i )

hR

T

S

1

(r'

s

(x; y;�h=2); R):e

3

; e

3

i = �hN

trans

(x; y;�h=2); R:e

3

i ; (2.14)

whi
h 
ondition redu
es to zero normal tra
tions on the transverse free boundary (in the

absen
e of transverse tra
tions N

trans

) in the 
lassi
al, non-polar 
ontinuum limit of R ! R =

polar(r'). The physi
al motivation for this 
ondition is simple: if the transverse surfa
e of the

plate is free of loads and if we take the plate to be a thin three-dimensional stru
ture made of a

regular array of springs, the springs will not be elongated in normal dire
tion. Sin
e from (2.10)

D

F

W

mp

(F;R) = S

1

(F;R) = R

�

�

�

F

T

R+R

T

F � 211

�

+

�

2

tr

h

F

T

R+R

T

F � 211

i

11

�

; (2.15)

the requirement (2.14) turns for z = �h=2 into the lo
al 
ondition

� hN

trans

(x; y;�h=2); R:e

3

i = � (2(%

m

� 1) + 2z %

b

) (2.16)

+ �

�

hR

T

(rmj0); 11i+ %

m

+ z %

m

h(rR

3

j0)

T

R; 11i+ z %

b

� 3 +

z

2

2

%

b

hR

T

(rR

3

j0); 11i

�

;

surprisingly without spatial derivatives of %

m

; %

b

appearing, whi
h would have been the 
ase

did we not assume (2.7). De�ne now N

res

; N

di�

: ! 7! R

3

by

N

res

(x; y) :=

�

N

trans

(x; y;+h=2) +N

trans

(x; y;�h=2)

�

;

N

di�

(x; y) :=

1

2

�

N

trans

(x; y;+h=2)�N

trans

(x; y;�h=2)

�

: (2.17)

In terms of (2.17) the lo
al statement (2.16) yields two linear equations in %

m

; %

b

10

the exa
t

solution of whi
h is given by

�

%

ex

m

%

ex

b

�

=

1

(2�+ �)

2

h�

�

2

h

3

8

h(rR

3

j0)

T

R; 11i

2

| {z }

small of higher order

�

(2�+ �)h �

�h

2

8

hrR

3

j0)

T

R; 11i

��hh(rR

3

j0)

T

R; 11i (2�+ �)

�

�

�

hN

di�

; R

3

i+ (2�+ �)� �

�

h(rmj0); Ri � 2

�

hN

res

; R

3

i

�

: (2.18)

10

%

m

; %

b

have di�erent units. %

m

is dimensionless, whereas [%

b

℄ = m

�1

.

10



Skipping the indi
ated term of higher order we obtain the approximation

%

ex

m

� 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

(2�+ �)

�

�h

8(2�+ �)

2

| {z }

small for �� 1

h(rR

3

j0); Ri hN

res

; R

3

i ;

%

ex

b

� �

�

2�+ �

h(rR

3

j0); Ri

| {z }

℄

+

hN

res

; R

3

i

(2�+ �)h

�

�

2(2�+ �)

2

| {z }

small for �� 1

h(rR

3

j0); RihN

di�

; R

3

i (2.19)

+

�

2

(2�+ �)

2

h(rR

3

j0); Ri

�

h(rmj0); Ri � 2

�

| {z }

small for small elongational strain, 
ompared to ℄

:

For an almost rigid material with � � 1 we have

�

(2�+�)

2

� 1, whi
h motivates to negle
t these

terms. The term

�

2

(2�+�)

2

h(rR

3

j0); Ri

�

h(rmj0); Ri � 2

�

represents a nonlinear 
oupling be-

tween midsurfa
e in-plane (membrane) strain and normal 
urvature, a result of the derivation not

present in the underlying three-dimensional theory where only produ
ts of deformation gradient

and rotations o

ur. Sin
e we have in mind a small strain situation, this produ
t is one order

smaller than h(rR

3

j0); Ri. Therefore, we negle
t this term as well. Thus we set �nally

%

m

:= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

(2�+ �)

; mainly membrane related ;

%

b

:= �

�

2�+ �

h(rR

3

j0); Ri+

hN

res

; R

3

i

(2�+ �)h

; mainly bending related : (2.20)

Note that the possibility to determine %

m

; %

b

exa
tly in (2.18) is predi
ated on the isotropy of the

underlying model and the 
hoi
e (2.7).

The last formula (2.20) has a 
lear physi
al signi�
an
e:

1. to �rst order: transverse �bers will be symmetri
ally elongated by opposite transverse tra
-

tions and symmetri
ally shortened through in-plane stret
h.

2. to se
ond order: the midsurfa
e will be asymmetri
ally shifted through bending, moderated

through resulting transverse tra
tions.

3. in pure bending there is only a shift of the midsurfa
e.

Having obtained a physi
ally reasonable form of the relevant 
oeÆ
ients %

m

; %

b

, it is expedient to

base the expansion and subsequent integration of the three-dimensional elasti
 energy on a further

simpli�ed expression. We take F

s

, where

F

s

= r'

s

(x; y; z) � (rmj %

m

R

3

)

| {z }

A

m

+z (rR

3

j%

b

R

3

)

| {z }

A

r

=: A

m

+ z A

r

=: F

s

; (2.21)

motivated by the form of the deformation gradient F

lin

s

= (rmjR

3

) + z(rR

3

j0), based on a naive

linear Reissner-Mindlin (1j1j0)-ansatz '

lin

s

= m+ z �R

3

. Note that the "assumed gradient" F

s

is in general not a gradient of some form of re
onstru
ted deformation any more. It should be

observed that by using (2.21) we are 
onsistent with John's general result [Joh65, Joh71℄ that the

stress distribution through the thi
kness is approximately linear for a thin shell.

A simple but tedious 
al
ulation reveals now that (reminder A

r

:= (rR

3

j%

b

R

3

))

�

4

kR

T

A

r

+A

T

r

Rk

2

+

�

8

tr

h

R

T

A

r

+A

T

r

R

i

2

= �k sym(R

T

A

r

)k

2

+

�

8

tr

h

sym(R

T

A

r

)

i

2

(2.22)

= �k sym(R

T

(rR

3

j0))k

2

+

��

2�+ �

tr

h

sym(R

T

(rR

3

j0))

i

2

+

hN

res

; R

3

i

2

2(2�+ �)h

2

:
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Exa
tly the same 
omputations as for the bending term allows us to 
on
lude that (reminder

A

m

:= (rmj%

m

R

3

))

�

4

kR

T

A

m

+A

T

m

R� 211k

2

+

�

8

tr

h

R

T

A

m

+A

T

m

R� 2 11

i

2

(2.23)

= �k sym(R

T

(rmjR

3

))� 11k

2

+

��

2�+ �

tr

h

sym(R

T

(rmjR

3

))� 11

i

2

+

hN

di�

; R

3

i

2

2(2�+ �)

:

2.3 Dimensionally redu
ed energy: analyti
al integration through the

thi
kness

Now we perform the analyti
al integration through the thi
kness in terms of the redu
ed kinemati
s.

We insert the assumed expression F

s

(2.21) and R

s

instead of F and R

3d

into the bulk energy

(2.3). Sin
e

k sym(R

T

s

F

s

)� 11k

2

=

1

4

kA

T

m

R+R

T

A

m

+ z A

T

r

R + z R

T

A

r

� 211k

2

(2.24)

=

1

4

kA

T

m

R +R

T

A

m

� 211k

2

+ z hA

T

m

R+R

T

A

m

� 211; A

T

r

Ri+

z

2

4

kA

T

r

R+R

T

A

r

k

2

:

and a similar result for tr

h

sym(R

T

s

F

s

)� 11

i

2

, we obtain by expli
itly integrating over the (abso-

lutely thin plate like referential) domain 


h

= ! � [�

h

2

;

h

2

℄, using (2.23) and (2.22)

Z

!

Z
h

2

�

h

2

W

mp

(F

s

; R

s

) dV =

Z

!

h

�

�k sym(R

T

(rmjR

3

))� 11k

2

+

��

2�+ �

tr

h

sym(R

T

(rmjR

3

))� 11

i

2

+

hN

di�

; R

3

i

2

2(2�+ �)

+

hN

res

; R

3

i

2

24 (2�+ �)

!

d! (2.25)

+

Z

!

h

3

12

�

�k sym(R

T

(rR

3

j0))k

2

+

��

2�+ �

tr

h

sym(R

T

(rR

3

j0))

i

2

�

d! ;

and we 
all the fa
tor of h the membrane part and the fa
tor of h

3

the bending part, in line

with the 
lassi
al terminology. The result (2.25) shows the 
hara
teristi
 apparent 
hange of the

Lam�e moduli for the two-dimensional stru
ture in membrane and bending as well as the additive

de
oupling of these e�e
ts. Su
h a de
oupling would also have been obtained by formal energy

proje
tion based on the naive linear Reissner-Mindlin ansatz '

s

= m + z R

3

. The �nal energy

expression (2.25), however, 
annot be obtained by energy proje
tion.

2.4 E�e
tive evolution of rotations: averaged generator on so(3;R)

It remains to redu
e the three-dimensional evolution equation for the rotations of the thin stru
ture

into an evolution equation for some e�e
tive rotation de�ned over the midsurfa
e ! only. Now


onsider the evolution equation for the vis
oelasti
 rotations in (1.1) with B = B

me
h

�rst. If we

insert F

s

(2.8) instead of F we 
an 
ompletely re
onstru
t the three-dimensional evolution equation

d

dt

R(t; x; y; z) = �

+

skew

�

F

s

R(t; x; y; z)

T

�

� R(t; x; y; z) : (2.26)

In order to get some e�e
tive equation for rotationsR whi
h are de�ned over the two-dimensional

referential domain ! only, we 
onsider

d

dt

R(x; y; z) = �

+

skew(B

res;h

me
h

) � R(x; y; z) ; B

res;h

me
h

(x; y) :=

1

h

Z

h

2

�h

2

F

s

R(x; y; z)

T

dz ; (2.27)

12



where B

res;h

me
h

is the thi
kness averaged generator on the Lie-algebra of the evolution and we

use F

s

instead of F

s

to be 
onsistent with the simpli�
ation (2.21).

11

In addition we assume that

the rotations do not depend on the transverse variable z, i.e. R(x; y; z) = R(x; y; 0). This leads to

d

dt

R(x; y; z) = �

+

skew

 

1

h

Z

h

2

�h

2

(A

m

(x; y) + z A

r

(x; y))R(x; y; 0)

T

dz

!

�R(x; y; z)

= �

+

skew

�

A

m

(x; y)R(x; y; 0)

T

�

�R(x; y; z) : (2.28)

Hen
e an e�e
tive equation based on B = B

me
h

is

d

dt

R(x; y) = �

+

skew(B

res;h

me
h

)R(x; y) ; B

res;h

me
h

= A

m

R

T

; (2.29)

independent of the thi
kness h. This result 
ould have been obtained by setting z = 0 in (2.26)

in
identally. The derivation for B = B

t


pro
eeds similarly. We need the averaged quantity

B

res;h

t


(x; y) :=

1

h

R

h

2

�h

2

B

t


(x; y; z) dz. A small 
al
ulation reveals

B

res;h

t


=

�

� (211�A

m

R

T

) + � [3� hA

m

R

T

; 11i℄

�

A

m

R

T

�

h

2

12

�

�A

r

R

T

+ �hA

r

R

T

; 11i

�

A

r

R

T

;

(2.30)

i.e., the three-dimensional thermodynami
ally 
onsistent evolution equation automati
ally fur-

nishes a 
ertain "bending" like in
uen
e in the vis
oelasti
 
ow, while the me
hani
ally 
onsistent

evolution equation alone does not.

2.5 Dedu
tion of the boundary 
onditions

Taking the Diri
hlet boundary 
onditions for ' into a

ount and the quadrati
 kinemati
al ansatz,

we should have '

s

(x; y; z)

j

�

h

0

= g

d

(x; y; z) and

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

� R

s;3

(x; y; 0) ; (2.31)

Evaluating for �h=2 yields two ve
tor equations:

g

d

(x; y;�h=2) = m(x; y) +

�

�h=2 %

m

(x; y) +

h

2

8

%

b

(x; y)

�

� R

s;3

(x; y; 0) : (2.32)

Adding and subtra
ting shows

g

d

(x; y;+h=2) + g

d

(x; y;�h=2) = 2m(x; y) +

h

2

4

%

b

(x; y) � R

s;3

(x; y; 0) (2.33)

g

d

(x; y;+h=2)� g

d

(x; y;�h=2) = h %

m

(x; y)R

s;3

(x; y; 0))

rg

d

(x; y; 0):e

3

= %

m

(x; y)R

s;3

(x; y; 0) + o(h) :

This implies to �rst order m(x; y) =

1

2

(g

d

(x; y;+h=2) + g

d

(x; y;�h=2)) � g

d

(x; y; 0), whi
h we

take as redu
ed boundary 
ondition for simple support. It is also suggested that one should take

R

s;3

(x; y; 0) =

rg

d

(x;y;0):e

3

krg

d

(x;y;0):e

3

k

. However, for a membrane plate it is not possible to spe
ify higher

order boundary 
onditions 
orresponding to some sort of 
lamping.

11

Rotations live on the nonlinear manifold SO(3;R) and 
annot be averaged over the thi
kness, sin
e the average

might 
ease to be a rotation.

13



Figure 1: The assumed membrane-plate kinemati
s in
orporating vis
oelasti
 transverse shear

resistan
e (R

3

6= ~n

m

), instantaneous thi
kness stret
h (%

m

6= 1) and vis
oelasti
 drill-

rotations. Re
onstru
ted three-dimensional deformation '

s

: 


h

7! R

3

; '

s

(x; y; z) = m(x; y) +

z %

m

(x; y)R

3

(x; y), midsurfa
e deformation m : ! 7! R

3

, independent vis
oelasti
 rotation

R : ! 7! SO(3;R).

3 The redu
ed vis
oelasti
 membrane-plate model

Sin
e in the underlying three-dimensional model (1.1) we minimized the elasti
 energy at �xed

rotations R we are led to minimizing (2.25) with respe
t to the deformation of the midsurfa
e m

at �xed redu
ed rotation R : ! 7! SO(3). We observe that the term h

�

hN

diff

;R

3

i

2

2(2�+�)

+

hN

res

;R

3

i

2

24 (2�+�)

�

in the membrane part of the redu
ed energy (2.25) does not 
ontribute to the minimization w.r.t.

the membrane deformation m. The same is true for the 
omplete h

3

-bending expression in (2.25).

3.1 The two-dimensional membrane-plate

Colle
ting all the former results we postulate the following 
oupled problem for the deformation of

the midsurfa
e of the membrane plate m : [0; T ℄� ! 7! R

3

and the independent lo
al vis
oelasti


rotation R : [0; T ℄� ! 7! SO(3;R) on !

Z

!

hW (F;R) d! ��(m;R

3

) 7! min :w.r.t. m at �xed R ; (3.1)

with pres
ribed Diri
hlet boundary 
onditions for simple support m

j




0

(t; x; y) = g

d

(t; x; y; 0). 


0

�

�!. The 
onstitutive assumptions on the redu
ed density are

W (F;R) :=

�

4

kF

T

R+R

T

F � 211k

2

+

�

8

tr

h

F

T

R +R

T

F � 211

i

2

(3.2)

F = (rmj%

m

R

3

); %

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

2�+ �

:

14



The e�e
tive vis
oelasti
 evolution for the "moving orthonormal three-frame" R(t; x; y) 2 SO(3;R)

is given by

d

!̂

dt

R(t) = �

+

� skew (B

res

) � R(t) ; B

res

= B

res;h

me
h

= �FR

T

or B

res;h

t


; (3.3)

B

res;h

t


=

h

�(2 11� FR

T

) + � [3� hFR

T

; 11i℄

i

FR

T

�

h

2

12

�

�A

r

R

T

+ �hA

r

R

T

; 11i

�

A

r

R

T

;

where

A

r

= (rR

3

j%

b

R

3

) ; %

b

= �

�

2�+ �

h(rR

3

j0); Ri+

hN

res

; R

3

i

(2�+ �)h

: (3.4)

The e�e
tive vis
oelasti
 evolution (3.3) is a lo
al, nonlinear ordinary di�erential equation for

B

res

= B

res;h

me
h

, but turns into a nonlo
al, nonlinear �rst order partial di�erential system for R in


ase of B

res

= B

res;h

t


if h > 0. Subsequently, we restri
t attention to the simpler lo
al 
hoi
e

B

res

= B

res;h

me
h

.

Here, � is the linear fun
tional of resultant external loading, 
f.(7.8). We have already observed

(2.23) that for

b

F = (rmjR

3

) and N

di�

= 0 in fa
t

W (F;R) = � k sym

�

F

T

R� 11

�

k

2

+

�

2

tr

�

sym

�

F

T

R� 11

��

2

= � k sym

�

b

F

T

R� 11

�

k

2

+

��

(2�+ �)

tr

h

sym

�

b

F

T

R� 11

�i

2

; (3.5)

showing the 
hara
teristi
 apparent 
hange of the Lam�e moduli for the two-dimensional stru
ture.

12

Observe that

��

(2�+�)

=

2

1

�

+

2

�

is half the harmoni
 mean of � and

�

2

.

3.2 Uniform Legendre-Hadamard ellipti
ity

Let us 
onsider the membrane 
ontribution to the elasti
 free energy (for simpli
ity take � > 0; � =

0)

Z

!

hW (F;R) d! = h

Z

!

�

4

k(rmj%

m

(rm;R)R

3

)

T

R +R

T

(rmj%

m

(rm;R)R

3

)� 211k

2

d! : (3.6)

It is easy to see that this remaining membrane energy density is uniformly Legendre-Hadamard

ellipti
 at frozen R 2 SO(3;R) with ellipti
ity 
onstant � independent of R(x; y), sin
e its se
ond

di�erential with respe
t to m veri�es (reminder F = (rmj%

m

R

3

) and (3.5))

8H 2 M

2�3

D

2

rm

W (F;R):(H;H) �

�

2

k(H j0)

T

R +R

T

(H j0)k

2

)

8 � 
 � 2 M

2�3

D

2

rm

W (F;R):(� 
 �; � 
 �) � � k�k

2

R

3

� k�k

2

R

2

: (3.7)

Moreover, the membrane energy is a 
onvex fun
tional in rm at frozen R, later we will see that it

is indeed uniformly 
onvex if integrated over ! also for non
onstant rotations R if R satis�es some

additional smoothness requirements. This is pre
isely the property whi
h 
an be exploited to our

advantage in a subsequent mathemati
al analysis.

Remark 3.1

A possible advantage of the resulting model (3.1) is the fa
t that the membrane part alone is not

degenerate. This has to be paid with the additional internal vis
oelasti
 relaxation whi
h is, how-

ever, only a lo
al problem and does not involve additional �eld equations. Spatially dis
ontinuous

12

It is not expedient to use

b

F in general in (3.1) sin
e it is F whi
h appears in the lo
al evolution.
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rotations R(x; y) are no major numeri
al 
on
ern, sin
e they are only lo
al quantities. Usually, the

implementational burden asso
iated with either a fourth order system 
oming from the 
lassi
al

Kir
ho�-Love ansatz or the additional �eld equations for the rotations R in a Reissner-Mindlin

(restri
ted Cosserat-surfa
e) type theory 
ounterbalan
es the gain of the dimensional redu
tion.

A parti
ular appealing feature of the model (3.1) is the absen
e of a C

1

-
ontinuity requirement

and the absen
e of additional �eld equations. For the membrane equilibrium part any standard

2D-H

1

-�nite element might be suitable.

3.3 Observer-invarian
e of the redu
ed vis
oelasti
 model

Observer-invarian
e amounts to the requirement of invarian
e of the stresses in model (3.1) with

respe
t to superposed rigid body rotations Q 2 SO(3;R) in the sense that

8Q 2 SO(3) : QS

1

(F;R) = S

1

(QF;QR) ; (3.8)

where S

1

is the �rst Piola-Kir
hho� stress tensor. In our 
ontext we 
he
k invarian
e of the model

under the transformation (m;R) 7! (Q:m;QR). Now,

W ((rQ:mj((QR)

3

); QR)) =W ((Qrmj((QR)

3

); QR) =W (Q(rmjR

3

); QR)

=W (QF;QR) =W (F;R) =W ((rmjR

3

); R) ; (3.9)

by frame-indi�eren
e of the 3D-strain energy density. The evolution equation for the rotations is

also observer-invariant due to the use of the 
orotated time derivative

d

!̂

dt

. Thus the invarian
e

of the redu
ed thin plate vis
oelasti
 model under m 7! Q:m; R 7! QR is guaranteed. However,

unlike 
lassi
al theories based on just one hyperelasti
 free energy formulation and Hamilton's

prin
iple, where frame-indi�eren
e of the energy implies balan
e of external angular momentum,

this is not true in the 
ase (3.1) due to a vis
oelasti
 dissipative nonsymmetri
 stress 
ontribution


oming from the evolution equation for R.

3.4 Thin membrane-plate non-ellipti
 relaxation limit

If the vis
osity is related to fri
tion o

uring at internal surfa
es, it is reasonable to assume that the

vis
osity for the plate should s
ale like �

+

�

1

h

3

with h the plate thi
kness. Hen
e, the (vanishing

elasti
 vis
osity) limit �

+

!1 
orresponds to the interesting limit of vanishing thi
kness h! 0.

Assume now that for a sequen
e of vanishing vis
osity �

+

k

! 1 we obtain a 
orresponding

sequen
e m

k

; R

k

as solutions to the problem (3.1) with thi
kness stret
h %

m

� 1 (for simpli
ity

only) and whi
h 
onverges to bm 2 C

1

(R

+

; H

1

(!;R

3

)) and

b

R 2 C

1

(R

+

; L

1

(!; SO(3;R))), respe
-

tively. Then the limit membrane deformation bm and rotation

b

R satisfy forall times (note that

skew(FR

T

) = 0 � R = polar(F ), 
.f. Lemma 7.3 and re
all Theorem 1.1)

Z

!

hW (F;R) d! ��(m;R

3

) 7! min :w.r.t. m at �xed R ; (3.10)

F = (rmjR

3

); R = polar(F ) = polar

�

(rmjR

3

)

�

;

and the 
omputed equilibrium energy level at a given time is

W (F;R) =

�

4

kF

T

R+R

T

F � 211k

2

+

�

8

tr

h

F

T

R+R

T

F � 211

i

2

(3.11)

= � kU � 11k

2

+

�

2

tr [U � 11℄

2

=:W

1

(U) ;

with U = (F

T

F )

1

2

the 
lassi
al symmetri
 elasti
 stret
h and U�11 the elasti
 Biot strain tensor.

Remark, however, that it is not W

1

whi
h underlies the variational problem (3.10).

16



Let us investigate in more detail this limit equilibrium system in the vis
oelasti
 
ase without

external loads and without loss of generality only based on the simpli�ed energy expression (� =

1; � = 0)

W (rm;R) =

1

4

k(rmjR

3

)

T

R+R

T

(rmjR

3

)� 211k

2

: (3.12)

Sin
e bm minimizes (3.10) with respe
t to m at �xed

b

R 2 SO(3;R), we have ne
essarily for the

relaxation limit bm;

b

R

0 =

d

dt

j

t=0

Z

!

W ((rbm + tr�j

b

R

3

);

b

R) d!

=

1

2

h(rbmj

b

R

3

)

T

b

R+

b

R

T

(rbmj

b

R

3

)� 211; (r�j0)

T

b

R+

b

R

T

(r�j0)i

!

= h(rbmj

b

R

3

)

T

b

R+

b

R

T

(rbmj

b

R

3

)� 211; (r�j0)

T

b

Ri

!

; 8 � 2 H

1;2

Æ

(!;R

3

; 


0

) : (3.13)

Now based on the identity polar(X)

T

� polar(X) = 11 for X 2 GL(3;R) the (pointwise) expansion

polar((rbm+H j

b

R

3

)) = polar((rbmj

b

R

3

) + (H j0))

= polar((rbmj

b

R

3

)) +D polar((rbmj

b

R

3

)):(H j0) + : : : (3.14)

with H 2 M

2�3

implies that

polar((rbmj

b

R

3

))

T

�D polar((rbmj

b

R

3

)):(r�j0) 2 so(3): (3.15)

Taking U =

1

2

(F

T

b

R+

b

R

T

F ) if

b

R = polar(F ) into a

ount and 
omputing the variation with respe
t

to bm at �xed 
olumn

b

R

3

of

kU((rbmj

b

R

3

))� 11k

2

!

=

1

4

k(rbmj

b

R

3

)

T

polar(rbmj

b

R

3

) + polar(rbmj

b

R

3

)

T

(rbmj

b

R

3

)� 211k

2

!

; (3.16)

we get

d

dt

j

t=0

kU((r(bm+ t�)j

b

R

3

))� 11k

2

!

= (3.17)

=

1

2

h(rbmj

b

R

3

)

T

polar(rbmj

b

R

3

) + polar(rbmj

b

R

3

)

T

(rbmj

b

R

3

)� 211; (r�j0)

T

b

R+

b

R

T

(r�j0)i

!

+

hU � 11; (rbmj

b

R

3

)

T

D polar((rbmj

b

R

3

)):(H j0) +D polar((rbmj

b

R

3

)):(H j0)

T

(rbmj

b

R

3

)i

!

(3.13)

= 0 + hU � 11; (rbmj

b

R

3

)

T

b

R

b

R

T

D polar((rbmj

b

R

3

)):(H j0)+

D polar((rbmj

b

R

3

)):(H j0)

T

b

R

b

R

T

(rbmj

b

R

3

)i

!

= hU � 11; U

b

R

T

D polar((rbmj

b

R

3

)):(H j0) +D polar((rbmj

b

R

3

)):(H j0)

T

b

RUi

!

(3.15)

= hU

2

� U;

b

R

T

D polar((rbmj

b

R

3

)):(H j0) +D polar((rbmj

b

R

3

)):(H j0)

T

b

Ri

!

= 0 ;

by (3.13) and (3.15), sin
e U is symmetri
. Thus we have proved that if the equilibrium relaxation

limit exists in fa
t

Z

!

hW

1

(U((rmjR

3

)) d! ��(m;R

3

) 7! stat :w.r.t. m at �xed R

3

; R = polar

�

(rmjR

3

)

�

;

W

1

(U) = � kU � 11k

2

+

�

2

tr [U � 11℄

2

; (3.18)
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is solved by bm;

b

R. This means that at �xed vis
oelasti
 "dire
tor" R:e

3

, the membrane energy is

stationary, but no 
laim as respe
ts minimality of this solution 
an be made and indeed it is very

likely to end up in a metastable state by whi
h we mean a lo
al but not a global minimum.

In this relaxation limit the true Cau
hy-stresses � =

1

det[F ℄

S

1

F

T

turn out to be symmet-

ri
 upon inspe
tion of (3.1), whi
h means that 
lassi
al balan
e of external angular momentum


onstrains the theory to its relaxed version. It might be worth remembering, however, that in 
on-

tinuum me
hani
s balan
e of external angular momentum is an additional hypotheses, independent

of balan
e of linear momentum and frame-indi�eren
e [MH83, p.137℄.

We push the analysis of the elasti
 
ase further: the holonomi
 
onstraint R = polar

�

(rmjR

3

)

�

in (3.18) is essentially a generalization of the normality 
ondition for the unit outward normal to

the surfa
e m, the dire
tor ~n

m

in a Kir
hho�-Love model. To see this we note that the 
ondition

R = polar(rmjR

3

) implies already R

3

= ~n

m

. Thus R

3


oin
ides with the unit normal on the

midsurfa
e ~n

m

. This is a wel
ome feature of the theory sin
e normality has not been imposed

yet anywhere. Sin
e

U

2

= C = F

T

F = (rmj~n

m

)

T

(rmj~n

m

) =

0

�

km

x

k

2

hm

x

;m

y

i 0

hm

x

;m

y

i km

y

k

2

0

0 0 1

1

A

; (3.19)

we understand that U = U((rmj~n

m

)) is in fa
t independent of ~n

m

, su
h that in the elasti


relaxation equilibrium limit we have a
tually solved the intrinsi
, purely elasti


13

problem

(%

m

6= 1)

Z

!

hW

1

(U((rmj~n

m

)) d! ��(m;~n

m

) 7! stat :w.r.t. m;

W

1

(U) := � kU � 11k

2

+

��

2�+ �

tr [U � 11℄

2

: (3.20)

Note that W

1

(U) is a non-quasi
onvex, non-ellipti
 elasti
 energy w.r.t. rm but 
onvex in

U , ensuring in fa
t the Baker-Eri
ksen inequalities.

14

Currently there are no mathemati
al

theorems available establishing the existen
e of minimizers or stationary points based dire
tly on

W

1

. In this sense, the vis
oelasti
 formulation (3.1) provides a physi
al regularization of the

o

urring loss of ellipti
ity. The linearization of (3.20) 
oin
ides with the 
lassi
al, rigourously

justi�ed linearized membrane plate, 
f. [CSP95℄.

To sum up, we have motivated that normality of the dire
tor R

3

is an asymptoti
 feature

of our model for vanishing absolute thi
kness or the absolutely thinner the shell the less

transverse shear is possible.

4 Lo
al existen
e and uniqueness

In this part we sket
h the methods and mathemati
al tools whi
h allow us to establish a lo
al

existen
e and uniqueness result. Sin
e the formal stru
ture of energy proje
tion does not obtain

for our membrane model, it is not possible to simply transfer the three-dimensional existen
e and

uniqueness result [Nef04a℄ to a redu
ed ansatz spa
e. However, the ideas used in [Nef04a℄ still

apply.

At frozen vis
oelasti
 rotations R the equilibrium system 
orresponding to (3.1) proves to be a

linear, se
ond order, stri
tly Legendre-Hadamard ellipti
 boundary value problem with non
onstant

13

intrinsi
: depending only on the �rst fundamental form I

m

= rm

T

rm 2 M

2�2

of the surfa
em : ! � R

2

7! R

3

:

14

One version of the BE-inequalities for membranes 
an be stated as follows: for �

2

i

� 0; i = 1; 2 ; �

2

3

= 1 the

(generalized) prin
ipal stret
hes (here �

2

i

are the eigenvalues of (rmj~n)

T

(rmj~n)), the free energy �(�

1

; �

2

; 1) :=

^

W (rm

T

rm) = W

1

(U) is separately 
onvex in �

i

. No mathemati
al existen
e results based only on BE

are known. Note also that BE is enough to e�e
tively ex
lude phase-transformations, modelled with multi-well

potentials.

18




oeÆ
ients set by R(t; x; y). This system has variational stru
ture in the sense that the equilibrium

part of (3.1) is formally equivalent to the minimization problem

8 t 2 [0; T ℄ : I(m(t); R(t)) 7! min :w.r.t. m, m(t) 2 g

d

(t) +H

1;2

Æ

(!;R

3

; 


0

) ;

I(m;R) :=

Z

!

hW (F;R) d! ��(m;R

3

) ; (4.1)

W (F;R) :=

�

4

kF

T

R+R

T

F � 211k

2

+

�

8

tr

h

F

T

R+R

T

F � 211

i

2

;

F = (rmj%

m

R

3

); %

m

= %

m

(rm;R) :

The main task in proving that (3.1) is well posed 
onsists of showing uniform estimates for solutions

of ellipti
 systems whose 
oeÆ
ients are time dependent and do not indu
e a pointwise uniformly

positive bilinear form. Thus we are �rst 
on
erned with the stati
 situation where R is assumed to

be known. We prove the existen
e, uniqueness and regularity of solutions to the two-dimensional

boundary value problem 
orresponding to (4.1). In addition we elu
idate in whi
h manner these

solutions depend on the rotations R. De
isive use is made of the following new two-dimensional


oer
ivity inequality:

Theorem 4.1 (Improved Korn's inequality for rigid plates and shells)

Let ! � R

2

be a bounded domain with smooth boundary and let 


0

� �! be a part of the

boundary with non vanishing 1-dimensional Hausdor� measure. De�ne H

1;2

Æ

(!;R

3

; 


0

) := f� 2

H

1;2

(!) j �

j




0

= 0g and let F

p

; F

�1

p

2W

1;2+Æ

(!;GL(3;R)). Then

9 


+

> 0 8 � 2 H

1;2

Æ

(!;R

3

; 


0

) :

k(r�j0)F

�1

p

(x) + F

�T

p

(x)(r�j0)

T

k

2

L

2

(!)

� 


+

k�k

2

H

1;2

(!)

; (4.2)

and the 
onstant is bounded away from zero for F

p

; F

�1

p

bounded in W

1;2+Æ

(!;GL(3;R)).

Proof. The proof is based on a generalized three-dimensional Korn's �rst inequality [Nef02, Pom03℄

and subsequent dimensional redu
tion; it 
an be found in [Nef03a, Nefal℄. �

We have not yet spe
i�ed the form of �

+

. One possible 
hoi
e is to take �

+

s
aled with the thi
kness

of the plate h (not ne
essary) and set formally similar to a vis
oplasti
 Norton-Ho� formulation

�

+

: =

[1m℄

3

h

3

�

0

�

1 +

"

k skew(�FR

T

)k � 0

��

0

#

r+1

+

1

A

k

�

2

4

k skew

�

�FR

T

�

k � 0

��

0

3

5

r�1

+

; (4.3)

with � a relaxation time, ��

0

= 1[MPa℄ and positive parameters r; k.

The 
on
eptual idea to treat the evolution problem is then straightforward: we write the

ordinary di�erential equation (3.3) in the following form

d

dt

R(t) = f(r

x

m(R); R) � R ; (4.4)

with some "ni
e" fun
tion f : M

2�3

�M

3�3

7! so(3;R) and where m = m(R) is the unique solution

of the ellipti
 se
ond order two-dimensional boundary value problem 
orresponding to (4.1) at �xed

rotations R.

It remains to show that the right hand side of (4.4) as a fun
tion of R is lo
ally Lips
hitz,

15

allowing to apply the standard lo
al existen
e and uniqueness theorem. With appropriate 
hanges

this program 
an be 
arried out similar to [Nef01, Nef04a℄, but will be presented in detail elsewhere

[Nef04b℄. Thus we are in a position to announ
e the following result for the 
ase of the everywhere

(


0

= �!) simply supported �nite-strain vis
oelasti
 membrane-plate:

15

This is more than a simple requirement on f; pre
ise estimates of the non-lo
al solution operator R 7! m(R)

are involved.
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Theorem 4.2 (Lo
al existen
e and uniqueness for the vis
oelasti
 membrane-plate)

Let ! � R

2

be a bounded smooth domain and suppose for the displa
ement boundary data

g

d

2 C

1

(R; H

3;2

(!;R

3

)). Moreover, assume for the resultant body for
e f 2 L

2

(!;R

3

), see (7.8).

Assume for the initial 
ondition on the rotation R

0

2 H

2;2

(!; SO(3))). Then there exists a time

t

1

> 0 su
h that the initial boundary value problem (3.1) with B

res

= B

res;h

me
h

and �

+

a

ording to

(4.3) together with 


0

= �! admits a unique solution

(m;R) 2 C([0; t

1

℄; H

3;2

(!;R

3

))� C

1

([0; t

1

℄; H

2;2

(!; SO(3))): �

Remark 4.3

The level of smoothness required and the kind of boundary 
onditions are due to te
hni
al details

pending on the use of re�ned ellipti
 regularity.

5 Dis
ussion and 
on
luding remarks

In this 
ontribution we have formally derived membrane-plate equations for vis
oelasti
 materials

at small elasti
 strains starting from a given three-dimensional formulation. The ensuing theory

is neither a Kir
hho�-Love nor a Reissner-Mindlin (restri
ted Cosserat surfa
e) type theory, but


ombines elements of both theories together with the use of the spe
i�
 strain measure symR

T

F�11

and a non-standard treatment of �nite rotations. The derivation turns out to be straight forward

in the elasti
 
ase on
e the 
orre
t 
orresponding kinemati
al assumption for small elasti
 strains

on the underlying �nite deformation of the plate is made. The resulting equations in the thin plate

limit, where the possibility of bending-like in
uen
e in the vis
oelasti
 evolution problem has been

negle
ted, retain a parti
ular simple form. The dimensionally redu
ed system inherits in a natural

way the observer-invarian
e of the three-dimensional formulation whi
h is a basi
 requirement in


ontinuum me
hani
s.

A spe
ial feature of the new system (3.1) is that the remaining membrane part at frozen vis-


oelasti
 rotations R is uniformly Legendre-Hadamard ellipti
 and indeed non-degenerate due to a

novel extended Korn's �rst inequality appli
able to thin plates (and shells). This stru
ture of the

resulting plate model allows to prove a lo
al existen
e and uniqueness result following the ideas

whi
h made the treatment of the three-dimensional system possible [Nef01, Nef04a℄. The model is

lo
ally in time well-posed independent of the thi
kness h > 0. And it is again this stru
ture whi
h

should prove its worth when doing numeri
al 
al
ulations: only a standard 2D-H

1

-�nite element

is in prin
ipal required in refreshing 
ontrast to the ubiquitous C

1

-smoothness requirement for

Kir
hho�-Love shells. The numeri
al treatment of the evolution equations may follow merely stan-

dard pra
ti
e in �nite-strain elasto-plasti
ity (exponential-update for the rotations and 
onsistent

tangent). An extension of the model (3.1) and the announ
ed mathemati
al results to �nite-strain

vis
oelasti
-vis
oplasti
 membrane plates and shells is already known to the author but will be

detailed in a subsequent part.

In 
on
lusion in 
an be seen that the general assumption of small elasti
 strains (almost rigidity)

in 
onjun
tion with a non-standard treatment of �nite rotations represents a refreshing departure

from more traditional degenerate approa
hes. It opens a ri
h and as yet mostly unexplored stru
-

ture linking the well established in�nitesimal, linear theories to the at present analyti
ally diÆ
ult

two-dimensional, geometri
ally exa
t �nite-strain problems.
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7 Appendix

7.1 Notation

7.1.1 Notation for bulk material

Let 
 � R

3

be a bounded domain with Lips
hitz boundary �
 and let � be a smooth subset of �
 with non-

vanishing 2-dimensional Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote the s
alar produ
t on R

3

with

asso
iated ve
tor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3 � 3 se
ond order tensors, written

with 
apital letters. The standard Eu
lidean s
alar produ
t on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and

thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. In the following we omit the index R

3

;M

3�3

. The identity

tensor on M

3�3

will be denoted by 11, so that tr [X℄ = hX; 11i. We let Sym and PSym denote the symmetri


and positive de�nite symmetri
 tensors respe
tively. We adopt the usual abbreviations of Lie-group theory, i.e.,

GL(3;R) := fX 2 M

3�3

jdet[X℄ 6= 0g the general linear group, SL(3;R) := fX 2 GL(3;R) jdet[X℄ = 1g; O(3) :=

fX 2 GL(3;R) j X

T

X = 11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X℄ = 1g with 
orresponding Lie-algebras

so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri
 tensors and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g of tra
eless

tensors. We set sym(X) =

1

2

(X

T

+ X) and skew(X) =

1

2

(X � X

T

) su
h that X = sym(X) + skew(X) and for

ve
tors �; � 2 R

n

we have the tensor produ
t (� 
 �)

ij

= �

i

�

j

.

We write the polar de
omposition in the form F = RU = polar(F )U with R = polar(F ) the orthogonal part

of F and U the symmetri
 stret
h. In general we work in the 
ontext of nonlinear, �nite elasti
ity. For the total

deformation ' 2 C

1

(
;R

3

) we have the deformation gradient F = r' 2 C(
;M

3�3

). Furthermore, S

1

(F ) and

S

2

(F ) denote the �rst and se
ond Piola Kir
hho� stress tensors, respe
tively. Total time derivatives are written

d

dt

X(t) =

_

X. The �rst and se
ond di�erential of a s
alar valued fun
tion W (F ) are written D

F

W (F ):H and

D

2

F

W (F ):(H;H), respe
tively. We employ the standard notation of Sobolev spa
es, i.e. L

2

(
); H

1;2

(
); H

1;2

Æ

(
),

whi
h we use indi�erently for s
alar-valued fun
tions as well as for ve
tor-valued and tensor-valued fun
tions.

Moreover, we set kXk

1

= sup

x2


kX(x)k. For A 2 C

1

(
;M

3�3

) we de�ne CurlA(x) as the operation 
url applied

row wise. We de�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the sense of

tra
es and by C

1

0

(
) we denote in�nitely di�erentiable fun
tions with 
ompa
t support in 
. We use 
apital letters

to denote possibly large positive 
onstants, e.g. C

+

;K and lower 
ase letters to denote possibly small positive


onstants, e.g. 


+

; d

+

. The smallest eigenvalue of a positive de�nite symmetri
 tensor P is abbreviated by �

min

(P ).

7.1.2 Notation for shells

Let ! � R

2

be a bounded domain with Lips
hitz boundary �! and let 


0

be a smooth subset of �! with non-

vanishing 1-dimensional Hausdor� measure. The thi
kness of the plate is taken to be h > 0 with dimension length
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(
ontrary to Ciarlet's de�nition of the thi
kness to be 2", whi
h di�eren
e leads to various di�erent 
onstants in

the resulting formulas). We denote by M

n�m

the set of matri
es mapping R

n

7! R

m

. For H 2 M

2�3

and � 2 R

3

we employ also the notation (Hj�) 2 M

3�3

to denote the matrix 
omposed of H and the 
olumn �. Likewise

(vj�j�) is the matrix 
omposed of the 
olumns v; �; �. The identity tensor on M

2�2

will be denoted by 11

2

. The

mapping m : ! � R

2

7! R

3

is the deformation of the midsurfa
e, rm = (m

x

jm

y

) is the 
orresponding deformation

gradient with m

x

= (m

1;x

;m

2;x

;m

3;x

)

T

; m

y

= (m

1;y

;m

2;y

;m

3;y

)

T

. The standard volume element is written

dx dy dz = dV = d! dz.

7.2 The treatment of external loads

7.2.1 Dead load body for
es for the thin plate

In the three-dimensional theory the dead load body for
es f(x; y; z) 2 R

3

were simply in
luded by appending the

potential with the term

R




h

f(x; y; z)�'(x; y; z) dV. Inserting the quadrati
 ansatz for the re
onstru
ted deformation

'

s

results in the approximation

Z




h

f(x; y; z) � '(x; y; z) dV �

Z




h

f(x; y; z) �

�

m(x; y) + z %

m

R

3

+

z

2

2

%

b

R

3

�

dV

=

Z

!

h

^

f(x; y) �m(x; y) d! +

Z

!

 

Z

h=2

�h=2

z f(x; y; z) dz

!

%

m

R

3

d! +

Z

!

 

Z

h=2

�h=2

z

2

2

f(x; y; z) dz

!

%

b

R

3

d! (7.1)

Let us de�ne

^

f

0

(x; y) :=

Z

h=2

�h=2

f(x; y; z) dz ;

^

f

1

(x; y) :=

Z

h=2

�h=2

z f(x; y; z) dz ;

^

f

2

(x; y) :=

Z

h=2

�h=2

z

2

2

f(x; y; z) dz ; (7.2)

su
h that

^

f

0

;

^

f

1

;

^

f

2

are the zero, �rst, se
ond moment of f in thi
kness dire
tion. This implies

Z




h

f(x; y; z) � '(x; y; z) dV �

Z

!

^

f

0

(x; y) �m(x; y) d! +

Z

!

^

f

1

(x; y)%

m

R

3

d! +

Z

!

^

f

2

(x; y)%

b

R

3

d! : (7.3)

7.2.2 Tra
tion boundary 
onditions for the thin plate

In the three-dimensional theory the tra
tion boundary for
es N(x; y; z) 2 R

3

; [N ℄ =

[Newt:℄

[m℄

2

were simply in
luded by

appending the potential with the term

R

�


trans

h

[f


s

�[�

h

2

;

h

2

℄g

N(x; y; z) �'(x; y; z) dS. Inserting our quadrati
 ansatz

for the re
onstru
ted deformation '

s

results in the approximation

Z

�


trans

h

[f


s

�[�

h

2

;

h

2

℄g

N(x; y; z) � '(x; y; z) dS �

Z

!�f�

h

2

;

h

2

g

N(x; y; z) �

�

m(x; y) + z%

m

R

3

+

z

2

2

%

b

R

3

�

dS

+

Z




s

�[�

h

2

;

h

2

℄

N(x; y; z) �

�

m(x; y) + z%

m

R

3

+

z

2

2

%

b

R

3

�

dS:

Let us de�ne on 


s

^

N

lat;0

(x; y) :=

Z

h=2

�h=2

N(x; y; z) dz ;

^

N

lat;1

(x; y) :=

Z

h=2

�h=2

z N(x; y; z) dz ;

^

N

lat;2

(x; y) :=

Z

h=2

�h=2

z

2

2

N(x; y; z) dz ;

(7.4)

su
h that

^

N

lat;0

;

^

N

lat;1

;

^

N

lat;2

are the zero, �rst, se
ond moment of the tra
tions N at the lateral boundary in

thi
kness dire
tion. Hen
e

Z

�


h

N(x; y; z) � '(x; y; z) dS �

Z

!

N

res

(x; y) �m(x; y) d! +

Z

!

hN

di�

(x; y)%

m

R

3

d! +

Z

!

h

2

8

N

res

%

b

R

3

d! (7.5)

+

Z




s

^

N

lat;0

(x; y) �m(x; y) ds +

Z




s

^

N

lat;1

(x; y) %

m

R

3

ds +

Z




s

^

N

lat;2

(x; y) %

b

R

3

ds ;

with

N

res

:= [N(x; y;

h

2

) +N(x; y;�

h

2

)℄ ; N

di�

:=

1

2

[N(x; y;

h

2

)�N(x; y;�

h

2

)℄ : (7.6)
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7.2.3 The external loading fun
tional

Let us gather all in
uen
es of the external loading terms. In view of a reasonable simpli�
ation for membrane-plates

we 
onsider only those terms, whi
h would have appeared, if we had made the restri
ted linear ansatz without

thi
kness stret
h '

s

= m+ z R

3

. To leading order we have

f =

^

f

0

+N

res

; resultant body for
e

M =

^

f

1

+ hN

di�

; resultant body 
ouple (7.7)

N =

^

N

lat;0

; resultant surfa
e tra
tion

M




=

^

N

lat;1

; resultant surfa
e 
ouple :

The resultant loading fun
tional � is given by

�(m;R

3

) =

Z

!

hf;mi + hM;R

3

i d! +

Z




s

hN;mi+ hM




; R

3

i ds : (7.8)

If we denote the dependen
e of � on the loads of the underlying three-dimensional problem as �(f;N ; m;R

3

), then

it is easily seen that frame-indi�eren
e of the external loading fun
tional is satis�ed in the sense that

�(Q:f;Q:N ; Q:m;Q:R

3

) = �(f;N ; m;R

3

) for all rigid rotations Q 2 SO(3;R). Sin
e R is only a passive parameter

in the stati
 minimization problem (3.1) of the vis
oelasti
 plate, the dependen
e in the resulting loading fun
tional

� on R 
an be dropped.

7.3 The �nite-strain membrane model of Fox/Simo

In [FRS93℄ the following geometri
ally exa
t, frame-indi�erent membrane model has been derived by formal asymp-

toti
 analysis based on the St. Venant-Kir
hho� energy. In a variational form the model 
an be written in our nota-

tion in the form of a minimization problem for the deformation of the midsurfa
e of the membranem : ! � R

2

7! R

3

on !:

Z

!

hW

mp

(C) d! � �(m;~n

m

) 7! min : w.r.t. m; m

j




0

= g

d

(x; y; 0)

C =

b

F

T

b

F ;

b

F = (rmj~n

m

); F

s

= (rmj%

m

~n

m

) ; (7.9)

%

m

=

hN

di�

; ~n

m

i

(2� + �)

+

s

1�

�

(2� + �)

tr

�

C � 11

�

+

hN

di�

; ~n

m

i

2

(2� + �)

2

; �rst order thi
kness stret
h ;

W

mp

(C) =

�

4

kC � 11k

2

+

2��

8(2� + �)

tr

�

C � 11

�

2

=

�

4

krm

T

rm� 11

2

k

2

+

2��

8(2� + �)

tr

h

rm

T

rm� 11

2

i

2

;

=

�

4

kI

m

� 11

2

k

2

+

2��

8(2� + �)

tr [I

m

� 11

2

℄

2

; I

m

= rm

T

rm: �rst fundamental form :

The re
onstru
ted membrane deformation '

s

(x; y; z) = m(x; y) + z%

m

~n

m

yields the plane stress 
ondition

S

1

(r'

s

(x; y; 0):e

3

= 0, whi
h is only 
onsistent with three-dimensional equilibrium if there are no normal tra
tions

at the transverse boundary and indeed, in [FRS93, p.176℄ it is assumed that N

di�

� 0, for otherwise, formal

asymptoti
 expansion is impossible.

It is easily seen that the resultant membrane strain energy W

mp

(C) is neither quasi
onvex nor Legendre-

Hadamard ellipti
. Moreover, the resultant membrane strain energy density does not satisfy the Baker-Eri
ksen

inequalities in 
ontrast to the equilibrium model (3.20).

7.4 The �nite-strain, quasi
onvex membrane model of Le Dret/Raoult

By means of �-
onvergen
e arguments based on the St. Venant-Kir
hho� energy LeDret and Raoult [DR95b℄ derive

the following quasi
onvex geometri
ally exa
t, frame-indi�erent minimization problem whi
h is, however, degenerate

in 
ompression. The membrane deformation m : ! � R

2

7! R

3

satis�es on !:

Z

!

hQW

0

(rm) d! ��(m;~n

m

) 7! min : w.r.t. m; m

j




0

= g

d

(x; y; 0) ; (7.10)

W

0

(rm) := inf

�2R

3

W ((rmj�)

T

(rmj�)) ; W (C) =

�

4

kC � 11k

2

+

�

8

tr [C � 11℄

2

;

b%

m

:=

(

%

m

1�

�

(2�+�)

�

krmk

2

� 2

�

� 0 ; (rmjb%

m

~n) 2 GL

+

(3;R)

0 1�

�

(2�+�)

�

krmk

2

� 2

�

< 0 ; (rmjb%

m

~n) 62 GL

+

(3;R)

)

W

0

(rm) =W ((rmjb%

m

~n)

T

(rmjb%

m

~n)) =W

mp

(C) if b%

m

= %

m

with the de�nition of C ; %

m

and W

mp

given in (7.9). QW

0

denotes the quasi
onvex hull of W

0

whi
h 
an be

determined analyti
ally showing the degenerate feature that QW

0

= 0 in uniform 
ompression. In 
ompression, this

model 
an only predi
t the stresses in the membrane appropriately while the geometry of deformation 
annot be

a

ounted for.
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7.5 The vis
oelasti
 evolution

Here we provide the missing proofs for the properties of the vis
oelasti
 evolution in Theorem 1.1.

Lemma 7.1

Assume that for positive 
onstants A

+

;M

+

; �

+

> 0 it holds that

8 t > 0 : u

2

(t) + �

+

t

Z

0

u

2

(s) ds � A

+

+M

+

t : (7.11)

Then we have the estimate

8 t > 0 : u

2

(t) � A

+

e

��

+

t

+

M

+

�

+

�

1� e

��

+

t

�

: (7.12)

Proof. We 
an easily �nd a smooth fun
tion g : R

+

7! R, whi
h satis�es

g(t) + �

+

t

Z

0

g(s) ds = A

+

+M

+

t : (7.13)

This implies g(0) = A

+

. Di�erentiation yields the equation

g

0

(t) + �

+

g(t) =M

+

: (7.14)

The unique solution is given by

g(t) = A

+

e

��

+

t

+

M

+

�

+

�

1� e

��

+

t

�

: (7.15)

Now we 
onsider the di�eren
e u

2

(t) � g(t). Substra
ting the equality for g from the inequality for u

2

we obtain

the di�erential inequality

[u

2

(t) � g(t)℄ + �

+

t

Z

0

[u

2

(s)� g(s)℄ ds � 0: (7.16)

De�ne h(t) =

R

t

0

[u

2

(s)� g(s)℄. This implies h(0) = 0 and the di�erential inequality

h

0

+ �

+

h(t) � 0: (7.17)

Mulipli
ation with e

�

+

t

and integration shows that e

�

+

t

h(t) � 0, hen
e u

2

(t) � g(t). �

Lemma 7.2

Assume that F 2 C

1

(R

+

;GL

+

(3;R)) is given and 
onsider the ordinary di�erential equation for R 2 SO(3;R):

d

dt

R(t) = �

+

skew(F (t)R

T

(t)) �R(t) ; R(0) = R

0

: (7.18)

Then the unique global solution satis�es for all times t 2 R

+

k skew(F (t)R

T

(t))k

2

�� 2�

+

t

Z

0

k skew(F (s)R

T

(s))k

2

ds

+ 2

t

Z

0

�

kF (s)k+ kR(s)k

�

kF

0

(s)k ds + kF

T

(0)R(0) � 11k

2

: (7.19)

Proof. Consider

d

dt

�

1

2

kF

T

R � 11k

2

�

= hF

T

R� 11; F

T

d

dt

R(t) + [F

0

(t)℄

T

Ri

= hF

T

R� 11; �

+

F

T

skew(FR

T

)R + [F

0

(t)℄

T

Ri

= �

+

hFF

T

� FR

T

; skew(FR

T

)i+ hF

T

R � 11; [F

0

(t)℄

T

Ri

= ��

+

k skew(FR

T

)k

2

+ hF � R;F

0

(t)i

� ��

+

k skew(FR

T

)k

2

+ kF

0

(t)k (kFk �

p

3) : (7.20)
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Integration yields

1

2

kF

T

(t)R(t) � 11k

2

� ��

+

t

Z

0

k skew(F (s)R

T

(s))k

2

ds +

t

Z

0

kF

0

(2)k (kF (s)k �

p

3) ds

+

1

2

kF

T

(0)R(0) � 11k

2

: (7.21)

We use �nally that

k skew(FR

T

)k = k skew(FR

T

� 11)k � kFR

T

� 11k = kRF

T

� 11k = kR

T

(RF

T

� 11)Rk = kF

T

R� 11k : (7.22)

This shows the desired integral inequality. �

The proof of Theorem 1.1, part ii.) is a
hieved by identifying u

2

(t) = k skew(F (t)R

T

(t))k

2

and using Lemma 7.4

and Lemma 7.1.

Lemma 7.3 (The rotation 
onstraint)

Let F 2 GL

+

(3;R) and R 2 SO(3;R). Then

skew(FR

T

) = 0 , R

T

polar(F ) 2

8

<

:

0

�

1 0 0

0 1 0

0 0 1

1

A

;

0

�

1 0 0

0 �1 0

0 0 �1

1

A

;

0

�

�1 0 0

0 1 0

0 0 �1

1

A

;

0

�

�1 0 0

0 �1 0

0 0 1

1

A

9

=

;

:

Proof. The proof is based on the polar de
omposition of F and 
an be found in [Nef03b, p. 175℄. �

Lemma 7.4

Let F 2 GL

+

(3;R) be given, then

8 R 2 SO(3;R) : kR � polar(F )k

2

< 8 : 9 


+

> 0 : k skew(FR

T

)k

2

� 


+

kR � polar(F )k

2

: (7.23)

Proof. We pro
eed by 
ontradi
tion and a 
ompa
tness argument. Assume to the 
ontrary that the inequality

does not hold good. Then we 
an �nd a sequen
e of rotations R

k

2 SO(3;R) with kR

k

� polar(F )k

2

< 8 su
h

that k skew(FR

T

k

)k ! 0 but kR

k

� polar(F )k � a

+

> 0. Sin
e SO(3;R) is 
ompa
t, by Bolzano-Weierstrass

we 
an extra
t a subsequen
e R

k

j

, 
onverging to some

b

R with k

b

R � polar(F )k

2

< 8, k skew(F

b

R

T

)k = 0 and

k

b

R� polar(F )k � a

+

> 0. This is a 
ontradi
tion due to Lemma 7.3.
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