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ABsTRACT. The present article is part of the program described in [2].
Here we study the Phan-theoretic flipflop geometries related to the flip
induced by a nondegenerate orthogonal form on a vector space over an
arbitrary field of characteristic distinct from two. We obtain amalgam
results in the spirit of Phan’s theorems [6], [7] for fields that do not
admit a quadratic extension and for real closed fields.

1. INTRODUCTION

Let n > 1 and let V be an (n + 1)-dimensional vector space over some
field IF of characteristic distinct from two endowed with some nondegenerate
orthogonal form f = (-,-). By I' = I',(F, f) we denote the pregeometry on
the proper subspaces of V' that are nondegenerate with respect to (-,-) with
symmetrized containment as incidence and the vector space dimension as
the type. It is easily seen that ['),(F, f) is a geometry, cf. Proposition 2.1.
Our first main result is the simple connectedness of that geometry:

Theorem 1. Let n > 3 and let F be an arbitrary field of characteristic
not two distinct from Fs and Fs. Then the geometry 'y (F, f) is simply
connected.

For sufficiently large n, say n > 7, the geometry I, (F, f) is also simply
connected over the fields 5 and F5. We do not know whether the geometries
in smaller dimension actually are not simply connected or just are not cov-
ered by our particular proof. We did not invest too much energy into that
problem as the geometries fail to be flag-transitive and hence Tits’ Lemma
4.2 does not apply anyway. The flag-transitive geometries are given in the
following theorem.

Theorem 2. Let V be an (n + 1)-dimensional vector space over some field
F of characteristic distinct from two. The group SOn11(F, f) acts flag-
transitively on the geometry Ty (F, f) if and only if F does not admit a qua-
dratic extension.

As usual we want to combine Theorems 1 and 2 by Tits’ Lemma 4.2. As
mentioned before this lemma does not apply in case of intransitive geome-
tries. Fortunately, there is a method to construct a flag-transitive subge-
ometry of T',(F, f). Let as before I'),(F, f) = (X, typ, ) be the geometry
on the nondegenerate proper subspaces of V and let F' = (z;)i1<i<n be
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some flag of T' (not necessarily maximal). Define the geometry AL(F, f) =
(Y, typ|y, )y xy) over typ)y (Y) withY = {z € X | 2 € F for some g € SO,11(F, f)}.

Theorem 3. Let V be an (n + 1)-dimensional vector space over some field
of characteristic distinct from two and let F be a flag of Ty (F, f). Then the
group SOy, 11(F, f) acts flag-transitively on the geometry AL (F, f).

The proof of Theorem 3 relies on Witt’s theorem. In general the above
construction does not lead to a flag-transitive geometry.

Of course, by passing to a flag-transitive subgeometry AL (F, f) from an
intransitive geometry I'), (F, f) we have lost elements of our geometry, so in
the worst case we may end up with a geometry that is not simply connected
any more. However, in some cases one can prove that the smaller geometry
still is simply connected as in the following setting.

Theorem 4. Let m,n > 0 such that one of m and n s greater than or
equal to three and the sum of m and n is greater than or equal to four. Let
R be a real closed field and let V =2 R™™ be endowed with a nondegenerate
symmetric bilinear form with isometry group SOgr(m,n). If F is a flag
of Upin—1(R, f) containing anisotropic one-, two-, and three-dimensional
subspaces of V', then Agwnfl(R, f) is simply connected.

Combining Theorem 1 and Theorem 2 we get the following.

Theorem 5. Let V' be an (n + 1)-dimensional vector space over some field
I of characteristic distinct from two that does not admit any quadratic ex-
tension. Let F be a maximal flag of T (F, f) and let A(2) be the amalgam
of all rank two parabolics, i.e., stabilizers in SOp11(F, f) of subflags of F of
corank two. Then SOny1(F, f) is the universal completion of Agy).

Finally, Theorem 3 and Theorem 4 imply an analogous result.

Theorem 6. Let m,n > 0 such that one of m and n is greater than or
equal to three and the sum of m and n is greater than or equal to four.
Let R be a real closed field and let V' = R™™ be endowed with a nonde-
generate symmetric bilinear form with isometry group SOgr(m,n) and let
F be a flag of Tppyn—1(R, f) of rank at least three consisting of all posi-
tive definite (negative definite) subspaces of V. Let Aoy be the amalgam of
all rank two parabolics in SOgr(m,n) with respect to the mazimal flag F of
A£+n71(R,f). Then SOg(m,n) is the universal completion of As).

This paper is organized as follows. In Section 2 we study the connect-
edness and residual connectedness of T',(F, f). In Section 3 we turn our
attention to the simple connectedness of T'y(F, f) and provide a proof of
Theorem 1. Section 4 deals with transitivity properties of 'y (F, f) and
proofs of Theorem 2 and Theorem 5. Finally, Section 5 focuses on flag-
transitive subgeometries of ', (FF, f) and provides proofs of Theorems 3, 4,
and 6.
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2. NONDEGENERATE SUBSPACES OF ORTHOGONAL SPACE

Our geometric notions are standard. As a reference see [3] or [4]. We will
remind the reader of relevant notions as they occur. Let n > 1 and let V be
an (n+1)-dimensional vector space over some field IF of characteristic distinct
from two endowed with some nondegenerate orthogonal form f = (-,-). By
' = T',(F, f) we denote the pregeometry on the proper subspaces of V
that are nondegenerate with respect to (-,-) with symmetrized containment
as incidence and the vector space dimension as the type. Recall that the

difference between a geometry and a pregeometry over the typeset {1,...,n}
is that in the former each flag is contained in a chamber, i.e., a flag of type
{1,...,n}, while in the latter this need not necessarily be the case.

Proposition 2.1. The pregeometry 'y (F, f) is a geometry.

Proof: We have to prove that each flag can be embedded in a flag of
cardinality n. To this end let F' = {zy,...,z;} be a flag of I We can
assume that the nondegenerate subspace z; of V' has dimension one. Indeed,
if it has not, then we can find a nondegenerate one-dimensional subspace
zo of 21 and study the flag F' = F U {xo} instead. Now observe that the
residue of the nondegenerate one-dimensional subspace z; is isomorphic to
[y—1(F, f') for some induced form f’ via the map that sends an element U
of the residue of 71 to U N zi. Hence induction applies. ]

Lemma 2.2. If] is a line and p is a point not on I, then there are at most
two points of I' on I which are not collinear to p.

Proof: This follows immediately from the fact that at most two two-
dimensional subspaces of (p,[) containing p are degenerate with respect to
('7 ) u

The collinearity graph of a pregeometry I' is the graph on the points of

I' in which two vertices are adjacent if and only if the corresponding points
of I are collinear.

Proposition 2.3. Let n > 2. The collinearity graph of I'y,(F, f) has diam-
eter two.

Proof: Suppose n > 3, then the dimension of the vector space V is at
least 4. Now fix two points (a) and (b), which are not collinear. Two
points (a) and (b) are not collinear if and only if the space (a, b) is singular
with respect to (-,-). However (a,b) is a two-dimensional subspace of V'
which is not totally singular, because (a,a) and (b, b) are distinct from zero.
Therefore the radical of {(a,b) is a one-dimensional space. The dimension of
(a,b)* is greater or equal to two, as n > 3. Consequently, the orthogonal
complement of (a,b) contains a point, say (c). Now consider the two two-
dimensional subspaces (a,c) and (b,c). Since (a) and (b) are perpendicular
to (c) both (a,c) and (b,c) are lines. The distance between (a) and (c) is
one and so is the distance between (¢) and (b). Thus the distance between
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(a) and (b) is two. Certainly I" contains a pair of noncollinear points, so we
are done.

Now assume n = 2 and let {(a) and (b) be two arbitrary points in V. If
the space | = (a,b) is a line then the distance between (a) and (b) is one.
Otherwise pick a point (&) in (a)*. The space (a, @) is a line and the point (b)
is not on (a,a). The point (b) is collinear with at least two points on (a, a)
by Lemma 2.2. Pick one of these points, say the point (¢). The distance
between (a) and (c) is one, because the space (a,c) is the line {a,a). The
distance between (b) and (c) is one as well, because (c) and (b) are collinear.
This implies that the distance between point (a) and point (b) is two. =

Recall that a pregeometry is called residually connected if each residue of
a flag of corank at least two is connected and each residue of a flag of corank
one is non-empty.

Corollary 2.4. Let n > 2. Then T'y(F, f) is residually connected.

Proof: Each residue of I';, (F, f) with respect to some flag of corank at least
two is of the form @', (F, f'), i.e., the direct sum of geometries T, (F, f’) for
suitable m and suitable nondegenerate orthogonal forms f'. If @I, (F, f')
consists of a unique direct summand, this summand is connected by Propo-
sition 2.3. If @I, (F, f') has more than one direct summand then it is
connected anyway. ]

3. SIMPLE CONNECTEDNESS

Recall the definition of the fundamental group of a connected geometry A.
A path of length £ in the geometry is a sequence of elements xg, . .., T such
that x; and x;41 are incident, 0 < ¢ < k—1. A cycle based at an element z
is a path in which zg = xx = x. Two paths are homotopically equivalent
if one can be obtained from the other via the following operations called
elementary homotopies: inserting or deleting a repetition (i.e., a cycle
of length 1), a return (i.e., a cycle of length 2), or a triangle (i.e., a cycle of
length 3). The equivalence classes of cycles based at an element z form a
group under the operation induced by concatenation of cycles. This group is
called the fundamental group of A and denoted by 71 (A, z). A geometry
is called simply connected if its fundamental group is trivial. Notice that
in order to prove that A is simply connected it is enough to prove that any
cycle based at z is homotopically equivalent to the cycle of length 0. A cycle
with this property is called null-homotopic, or homotopically trivial.
We refer the reader to [8] or [9] for more detailled information.

Recall that the incidence graph of some geometry is the graph on the
elements of that geometry in which two distinct elements are adjacent if
and only if they are incident. This means the fundamental group of a rank
n geometry is nothing else than the fundamental group of its incidence graph
considered as a (n — 1)-dimensional simplicial complex.
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Lemma 3.1. Let n > 1. Every cycle v = xpx1...%r_1x0 in the incidence
graph of Ty (F, f) is homotopically equivalent to a cycle ' touching only
points and lines.

Proof: This follows by a standard argument using the residual connect-
edness of I', see Lemma 5.1 of [5]. ]

If n = 2, then the vector space V has dimension three. Thus, the geometry
[y (F, f) contains only elements of type one or two. In the incidence graph
of I'y(FF, f), only points and lines are adjacent but never two different points
or two different lines. Therefore, the incidence graph of I'y(F, f) cannot be
decomposed into triangles. We have proved the following.

Proposition 3.2. Let n = 2. The geometry Ts(F, ) is not simply con-
nected. ]

In the remainder of this section we will prove the simple connectedness
of I'y(F, f) for n > 3. Since every closed path based on an arbitrary el-
ement in the incidence graph of I' is homotopically equivalent to a cycles
based on a point and passing only points and lines, there is, for every cy-
cle in the incidence graph, a homotopically equivalent closed path in the
point-line-incidence graph which implies that it suffices to study the point-
line-incidence graph. Moreover, since I' is a partial linear space, each line
is uniquely determined by two of its points, so it is enough to study the
collinearity graph of I.

In the nondegenerate vector space V', let (a), (b) and (c) be different points
and the three two-dimensional spaces (a,b), (a,c), and (b,c) be lines. We
call the 3-cycle (a)(b)(c)(a) a nondegenerate triangle or good triangle
if (a,b,c) is a nondegenerate vector subspace of V. Otherwise (a)(b)(c)(a)
is a degenerate triangle or bad triangle.

Since the diameter of the collinearity graph of I' is two, in order to prove
simple connectedness it suffices to prove that we can decompose triangles,
quadrangles and pentagons in the collinearity graph into products of good
triangles. Let’s start with pentagons:

Proposition 3.3. Let n > 3 and let |F| > 5. FEvery pentagon in the
collinearity graph of T can be decomposed into a product of triangles and
quadrangles.

Proof: Let v = (a)(b)(c){(d)(e)(a) be an arbitrary 5-cycle in the collinear-
ity graph of I'. Since |F| > 5, the line (c¢,d) contains at least four points of
I', so by Lemma 2.2 it contains a point of I collinear to (a), say (y). Since
(a) is collinear to (y) the space (a,y) is a line. We have decomposed the
5-cycle 7 into a product of 4-cycles and 3-cycles. ]

Now we deal with 4-cycles.

Proposition 3.4. Let n > 3 and let |F| > 7. Ewvery quadrangle in the
collinearity graph of I' can be decomposed into a product of triangles.
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Proof: Let v = (a){(b)(c)(d){(a) be an arbitrary 4-cycle in the collinearity
graph of I'. Since |F| > 7, the line (a,b) contains at least six points of I
By Lemma 2.2 of those six points at least four are collinear to (c), and,
by Lemma 2.2 again, of those four points at least two are collinear to (d)
decomposing the 4-cycle v into 3-cycles. ]

We have decomposed pentagons and quadrangles into products of trian-
gles. However, those triangles may be bad. For that reason we finish the
proof of the simple connectivity of the geometry I' by showing that a bad
triangle in the collinearity graph of I' can be decomposed in a product of
good triangles. In the sequel we will distinguish between n = 3 and n > 4.

Proposition 3.5. For n > 4 every degenerate triangle can be decomposed
into a product of nondegenerate triangles.

Proof: Let v = (a)(b)(c){(a) be an arbitrary 3-cycle in the collinearity
graph of I' such that U = (a, b, ¢) is singular. Since U contains the lines (a, b),
(a,c) and (b, c), the radical of U has dimension one. But dim(U~+) > 2 and
therefore the space UL contains a one-dimensional subspace (d) of V with
(d,d) # 0. The two-dimensional spaces (a,d), (b,d) and (c,d) are lines as
(a,d) = (b,d) = (c,d) = 0. Now we have to prove that (a,b,d), (a,c,d) and
(b, c,d) are nondegenerate vector subspaces of V. The Gram matrix G a,b,d)

(a,a) (a,b) (a,d) (a,a) (a,b) 0
is | (b,a) (b,b) (b,d) | =1 (b,a) (b,b) 0 . The determinant
(a,d) (b,d) (d,d) 0 0 (dd)

of Gap,ay is det(Gqpy) - (d,d) # 0 because det(Gq ) # 0 and (d,d) # 0,
which shows that (a,b,d) is a nondegenerate vector subspace. The same
argument holds for the spaces (a, ¢, d) and (b, ¢, d). |

Now we turn to the case n = 3. The proof of Proposition 3.5 does
not apply in case n = 3, because the orthogonal complement of a three-
dimensional singular space in a four-dimensional space is equal to the radical
of the three-dimensional space. Hence we have to construct the point (d) in
another way.

Let (a)(b){c)(a) be a 3-cycle in the collinearity graph of I'. We call
(a)(b){c)(a) of perpendicular type if one of the equalities (a,b) = 0,
(a,c) =0, or (b,c) =0 holds.

The idea is to show that every triangle can be decomposed into a product
of triangles of perpendicular type and then that every triangle of perpendicu-
lar type can be decomposed again into a product of nondegenerate triangles.

For the first step assume |F| > 5. Let v = (a)(b)(c){(a) be an arbitrary
3-cycle. If C is a cycle of perpendicular type then we have nothing to prove.
Otherwise take the line (a,c)® and pick a point (d) from that line, which
is collinear with (b). Lemma 2.2 implies that such a point (d) exists. The
resulting 3-cycles are of perpendicular type. We have proved the following.

Lemma 3.6. Let |F| > 5. Any 3-cycle can be decomposed into a product of
3-cycles of perpendicular type. ]
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Let (a,b, c) be a 3-space and take (d) to be a point in (a,c)*. We say (d)
is good if the vector subspace (c,b,d) is nondegenerate; otherwise we call
(d) bad.

Assume |F| > 7 and let v = (a)(b)(c)(a) be a degenerate 3-cycle of per-
pendicular type, say a is perpendicular to b. The two-dimensional vector
subspace (a, c)= is a line and because (a, b, ¢) is singular, b is not an element
of (a,c)*. Using Lemma 2.2, there exists a point (d) of {a,c)* such that
(d) and (b) are collinear. The point (d) can be good or bad with respect
to the space (b,c,d). We claim that we can find a good point. Suppose
(d) is a bad point. Then U; = (b,c,d) is a singular space. Because the
line (b, ¢) is properly contained in Uy, the radical of U; has dimension one.
Let (s) be the radical of Uy. Then (s) is contained in the space (b,c)*. It
follows that (b, c, s) is a three-dimensional space contained in (b, ¢, d) which
implies that (b,c,s) = (b,c,d). We claim that there is an one-to-one cor-
respondence between a bad point (d) and the radical of Uy. For, suppose

for two different bad points (d) and (d) we have Rad(U;) = Rad(Uy) = (s),
and hence (b,c,d) = (b,c,s) = (b,c,d). Moreover, s, d and d are elements
of {¢)*, in fact (s,d,d) C {c)* N (b,c,s). The dimension of (c)* N (b,c, s)
is two, which implies (s,d,d) = (s,d) = (s,d). Since (s,d) is singular, the
space (s, d) is distinct from the space (a,c)*. Therefore the vector subspace
(s,d) N {a,c)*t = (s,d) N (a,c)" has dimension one and contains both point
(d) and point (d), which shows that the vector d is an element of (d), a
contradiction to the hypothesis that (d) is distinct from (d).

It follows that the number of different bad points is equal to the number
of different one-dimensional singular vector subspaces in (b, c)*, which is at
most two as (b, c) is nondegenerate.

Since we assumed F to contain at least seven elements, we can find a
good point {d). We know that (a,c,d) and (b, c,d) are nondegenerate vector
subspaces. For the nondegeneracy of (a, b, d) we use the following argument.

(CI,, CI,) (aa b) (CI,, d) (a a) 0
The Gram matrix Gapq) is | (b,a) (b,b) (b,d) | = ( [’) a )
(a,d) (b,d) (d.d) {bd)
and (b, d) is a line. The determinant of G, q) is (a,a)-det (G 4y) # 0. This
shows that (a, b, d) is nondegenerate and proves the following proposition.

Proposition 3.7. Let |F| > 7. Each degenerate triangle of perpendicular
type in the collinearity graph of I's(F, f) can be decomposed into nondegen-
erate triangles. [ |

Altogether we have proved Theorem 1.

4. FLAG TRANSITIVITY

Let F be a field of characteristic distinct from two that does not admit
any quadratic extension and let V be a nondegenerate orthogonal space over
I of dimension n + 1. The classification of nondegenerate orthogonal forms



8 KRISTINA ALTMANN AND RALF GRAMLICH

shows that each orthogonal form on V' is isometric to the form whose Gram
matrix is the identity matrix.

Proposition 4.1. Let V' be an (n + 1)-dimensional vector space over some
field F of characteristic distinct from two that does not admit any quadratic
extension. The group SOy11(F, f) acts transitively on the points of T'.

Proof: The group O,,+1(F, f) acts transitively on the points of I' by Witt’s
theorem, so for any pair p, ¢ of points of I' we can find an element of

On+1(F, f) that maps p to ¢. On the other hand, the matrix -1 . 0
0 idpxn

with respect to a basis whose first vector spans ¢ has determinant —1 and
stabilizes q. Therefore also SO,,+1(F, f) acts transitively on the points of I'.
|

Proof of Theorem 2: One implication of the claim follows from Proposi-
tion 4.1 by induction on n using the isomorphism between the residue of a
point in ', (F, f) and T',,_1(F, f'). The other implication is obvious. [ ]

In the present paper an amalgam A of groups is a set with a partial
operation of multiplication and a collection of subsets {H;};cr, for some
index set I, such that the following hold: (1) A = U;crH;; (2) the product
ab is defined if and only if a,b € H; for some i € I; (3) the restriction of
the multiplication to each H; turns H; into a group; and (4) H; N Hj is a
subgroup in both H; and H; for all 2,5 € I. It follows that the groups H;
share the same identity element, which is then the only identity element
in A, and that a=' € A is well-defined for every a € A. We will call
the groups H; the members of the amalgam A. A group H is called a
completion of an amalgam A if there exists a map m : A — H such
that (1) for all ¢ € I the restriction of w to H; is a homomorphism of H;
to H; and (2) w(A) generates H. Among all completions of A there is
one “largest” which can be defined as the group having the presentation
U(A) = (tp | h € A, tgt, = t,, whenever zy = z in A). Obviously, U(A) is
a completion of A since one can take 7 to be the mapping h — t;,. Every
completion of A is isomorphic to a quotient of U(A), and because of that
U(A) is called the universal completion.

Suppose a group H < Aut(T) acts flag-transitively on a geometry T
A rank k parabolic is the stabilizer in H of a flag of corank £k from I
Parabolics of rank n — 1 (where n is the rank of I') are called maximal
parabolics. They are exactly the stabilizers in H of single elements of T'.

Let F' be a maximal flag in I'; and let H, denote the stabilizer in H
of x € T. The amalgam A = A(F) = Ugcp H; is called the amalgam
of maximal parabolics in H. Since the action of H is flag-transitive, this
amalgam is defined uniquely up to conjugation in H. For a fixed flag F' we
can also use the notation M; for the maximal parabolic H,, where z € F
is of type i. For a subset J C I = {1,2...,n}, define M; to be Njc; M;,
including My = H. Notice that M is a parabolic of rank |I\ J|; indeed, it
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is the stabilizer of the subflag of F' of type J. Similarly to .4, we can define
the amalgam A(,) as the union of all rank s parabolics. With this notation
we can write A = A,_1). Moreover, according to our definition, A,y = H.

Now we need to define coverings of geometries. Suppose I and I" are two
geometries over the same type set and suppose ¢ : [’ - T is a morphism of
geometries, i.e., ¢ preserves the type and sends incident elements to incident
elements. The morphism ¢ is called a covering if and only if for every
non-empty flag F' in T' the mapping ¢ induces an isomorphism between the
residue of F in I’ and the residue of F = ¢(F") in I'. Coverings of a geometry
correspond to the usual topological coverings of its flag complex, see also [8]

r [9]. In particular, by §55 of [8] or Theorem 1.1 of [9] a simply connected
geometry (as defined in Section 3) admits no nontrivial covering.

The following lemma from [10] combines the topological structure of a
geometry with amalgams obtained from flag-transitive groups of automor-
phisms.

Tits’ Lemma 4.2. Suppose a group H acts flag-transitively on a geometry
' and let A be the amalgam of mazimal parabolics associated with some
mazimal flag F. Then H is the universal completion of the amalgam A if
and only if ' is simply connected.

Tits’ Lemma together with Theorems 1 and 2 immediately implies that
SOp+1(F, f) is the universal completion of the amalgam of maximal parabol-
ics in SOy 41 (F, f) with respect to some maximal flag of I'. Theorem 5 follows
from that observation by a standard induction argument using the residual
connectedness of I' and the simple connectedness of all residues of I' as in
the proof of Theorem 1 of [5].

5. FLAG-TRANSITIVE PARTS

What remains is a discrepancy between the fields that occur in Theo-
rem 1 and the ones that occur in Theorem 2. The standard method to
force flag-transitivity would be to study the orbit of one flag under the
group SO, 11(F, f) of isometries of the form (-,-) on V. To be precise
let as before T',(F, f) = (X,typ,*) be the geometry on the nondegen-
erate proper subspaces of V and let F' = (z;)ics, J C I = {1,...,n}
be a flag of I'. Define the geometry AL(F, f) = (Y, tyPjy, *|yxy) Wwith
Y={zeX|ze€FY for some g € SO,+1(F, f)}.

Proof of Theorem 3: Let z; and x5 be elements of AL(F, f) C T',(F, f)
with 21 * 29. This means there ex1st g1, g2 in SO,H_l(]F f) with 21 € Fg1
and zo € F92 or, equivalently, :vl € F and :v € F929." . Note that .’I?‘({l

-1 -1
is incident with both a;2 and the element y € F of type typ(av2 ). The
—1
subspaces y and .’Egl of V are isometric so by Witt’s theorem applied to

—1 —1
‘({1 if typ(z1) > typ(z2), resp. (z]' )+ if typ(z1) < typ(zs) there exists an
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—1 —1
element of SO, 1(F, f) stabilizing .’I?‘({l that maps mgl onto y. Induction
on |J| shows that SO, 1(F, f) acts flag-transitively on AL (F, f). ]

Proof of Theorem 4: Let U be the three-dimensional space of the flag
F. Notice that, as U is anisotropic, any cycle consisting of elements of U is
null-homotopic. If p and ¢ are points of AflJrnfl(R, f), then p- Ngt-NU
contains an anisotropic one-dimensional subspace r collinear to both p and ¢.
Therefore the diameter of AZ (R, f) is two. The argument of Lemma 3.1
implies that it suffices to decompose triangles, quadrangles and pentagons
in the collinearity graph of AL +n_1(R, f). Pentagons decompose as for
any point p and any line / there exists a point ¢ in p™ N1 collinear to
p. A quadrangle a, b, ¢, d decomposes by the following argument. Let
Pap be a point contained in at N b+ N U. Similarly, define pye, ped, Pad-
Certainly, the quadrangle pup, Poe, Peds Pad 18 null-homotopic. Therefore we
have decomposed the original quadrangle into a null-homotopic quadrangle
and a number of triangles. A triangle is decomposed in exactly the same
way as a quadrangle. [ |

Tits’ Lemma 4.2 together with Theorems 3 and 4 immediately implies that
SOpg(m,n) is the universal completion of the amalgam of maximal parabolics
in SOg(m,n) with respect to some maximal flag of AL .| (R, f). Theorem
6 follows from that observation by a standard induction argument using the
residual connectedness of AL tn_1(R, f) and the simple connectedness of all
residues of AL .| (R, f) as in the proof of Theorem 1 of [5].
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