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Abstrat. The present artile is part of the program desribed in [2℄.

Here we study the Phan-theoreti ipop geometries related to the ip

indued by a nondegenerate orthogonal form on a vetor spae over an

arbitrary �eld of harateristi distint from two. We obtain amalgam

results in the spirit of Phan's theorems [6℄, [7℄ for �elds that do not

admit a quadrati extension and for real losed �elds.

1. Introdution

Let n � 1 and let V be an (n + 1)-dimensional vetor spae over some

�eld F of harateristi distint from two endowed with some nondegenerate

orthogonal form f = (�; �). By � = �

n

(F; f) we denote the pregeometry on

the proper subspaes of V that are nondegenerate with respet to (�; �) with

symmetrized ontainment as inidene and the vetor spae dimension as

the type. It is easily seen that �

n

(F; f) is a geometry, f. Proposition 2.1.

Our �rst main result is the simple onnetedness of that geometry:

Theorem 1. Let n � 3 and let F be an arbitrary �eld of harateristi

not two distint from F

3

and F

5

. Then the geometry �

n

(F; f) is simply

onneted.

For suÆiently large n, say n � 7, the geometry �

n

(F; f) is also simply

onneted over the �elds F

3

and F

5

. We do not know whether the geometries

in smaller dimension atually are not simply onneted or just are not ov-

ered by our partiular proof. We did not invest too muh energy into that

problem as the geometries fail to be ag-transitive and hene Tits' Lemma

4.2 does not apply anyway. The ag-transitive geometries are given in the

following theorem.

Theorem 2. Let V be an (n+ 1)-dimensional vetor spae over some �eld

F of harateristi distint from two. The group SO

n+1

(F; f) ats ag-

transitively on the geometry �

n

(F; f) if and only if F does not admit a qua-

drati extension.

As usual we want to ombine Theorems 1 and 2 by Tits' Lemma 4.2. As

mentioned before this lemma does not apply in ase of intransitive geome-

tries. Fortunately, there is a method to onstrut a ag-transitive subge-

ometry of �

n

(F; f). Let as before �

n

(F; f) = (X; typ; �) be the geometry

on the nondegenerate proper subspaes of V and let F = (x

i

)

1�i�n

be

1



2 KRISTINA ALTMANN AND RALF GRAMLICH

some ag of � (not neessarily maximal). De�ne the geometry �

F

n

(F; f) =

(Y; typ

jY

; �

jY�Y

) over typ

jY

(Y ) with Y = fx 2 X j x 2 F

g

for some g 2 SO

n+1

(F; f)g.

Theorem 3. Let V be an (n+ 1)-dimensional vetor spae over some �eld

of harateristi distint from two and let F be a ag of �

n

(F; f). Then the

group SO

n+1

(F; f) ats ag-transitively on the geometry �

F

n

(F; f).

The proof of Theorem 3 relies on Witt's theorem. In general the above

onstrution does not lead to a ag-transitive geometry.

Of ourse, by passing to a ag-transitive subgeometry �

F

n

(F; f) from an

intransitive geometry �

n

(F; f) we have lost elements of our geometry, so in

the worst ase we may end up with a geometry that is not simply onneted

any more. However, in some ases one an prove that the smaller geometry

still is simply onneted as in the following setting.

Theorem 4. Let m;n � 0 suh that one of m and n is greater than or

equal to three and the sum of m and n is greater than or equal to four. Let

R be a real losed �eld and let V

�

=

R

m+n

be endowed with a nondegenerate

symmetri bilinear form with isometry group SO

R

(m;n). If F is a ag

of �

m+n�1

(R; f) ontaining anisotropi one-, two-, and three-dimensional

subspaes of V , then �

F

m+n�1

(R; f) is simply onneted.

Combining Theorem 1 and Theorem 2 we get the following.

Theorem 5. Let V be an (n+ 1)-dimensional vetor spae over some �eld

F of harateristi distint from two that does not admit any quadrati ex-

tension. Let F be a maximal ag of �

n

(F; f) and let A

(2)

be the amalgam

of all rank two parabolis, i.e., stabilizers in SO

n+1

(F; f) of subags of F of

orank two. Then SO

n+1

(F; f) is the universal ompletion of A

(2)

.

Finally, Theorem 3 and Theorem 4 imply an analogous result.

Theorem 6. Let m;n � 0 suh that one of m and n is greater than or

equal to three and the sum of m and n is greater than or equal to four.

Let R be a real losed �eld and let V

�

=

R

m+n

be endowed with a nonde-

generate symmetri bilinear form with isometry group SO

R

(m;n) and let

F be a ag of �

m+n�1

(R; f) of rank at least three onsisting of all posi-

tive de�nite (negative de�nite) subspaes of V . Let A

(2)

be the amalgam of

all rank two parabolis in SO

R

(m;n) with respet to the maximal ag F of

�

F

m+n�1

(R; f). Then SO

R

(m;n) is the universal ompletion of A

(2)

.

This paper is organized as follows. In Setion 2 we study the onnet-

edness and residual onnetedness of �

n

(F; f). In Setion 3 we turn our

attention to the simple onnetedness of �

n

(F; f) and provide a proof of

Theorem 1. Setion 4 deals with transitivity properties of �

n

(F; f) and

proofs of Theorem 2 and Theorem 5. Finally, Setion 5 fouses on ag-

transitive subgeometries of �

n

(F; f) and provides proofs of Theorems 3, 4,

and 6.
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2. Nondegenerate subspaes of orthogonal spae

Our geometri notions are standard. As a referene see [3℄ or [4℄. We will

remind the reader of relevant notions as they our. Let n � 1 and let V be

an (n+1)-dimensional vetor spae over some �eld F of harateristi distint

from two endowed with some nondegenerate orthogonal form f = (�; �). By

� = �

n

(F; f) we denote the pregeometry on the proper subspaes of V

that are nondegenerate with respet to (�; �) with symmetrized ontainment

as inidene and the vetor spae dimension as the type. Reall that the

di�erene between a geometry and a pregeometry over the type set f1; : : : ; ng

is that in the former eah ag is ontained in a hamber, i.e., a ag of type

f1; : : : ; ng, while in the latter this need not neessarily be the ase.

Proposition 2.1. The pregeometry �

n

(F; f) is a geometry.

Proof: We have to prove that eah ag an be embedded in a ag of

ardinality n. To this end let F = fx

1

; : : : ; x

t

g be a ag of �. We an

assume that the nondegenerate subspae x

1

of V has dimension one. Indeed,

if it has not, then we an �nd a nondegenerate one-dimensional subspae

x

0

of x

1

and study the ag F

0

= F [ fx

0

g instead. Now observe that the

residue of the nondegenerate one-dimensional subspae x

1

is isomorphi to

�

n�1

(F; f

0

) for some indued form f

0

via the map that sends an element U

of the residue of x

1

to U \ x

?

1

. Hene indution applies. �

Lemma 2.2. If l is a line and p is a point not on l, then there are at most

two points of � on l whih are not ollinear to p.

Proof: This follows immediately from the fat that at most two two-

dimensional subspaes of hp; li ontaining p are degenerate with respet to

(�; �). �

The ollinearity graph of a pregeometry � is the graph on the points of

� in whih two verties are adjaent if and only if the orresponding points

of � are ollinear.

Proposition 2.3. Let n � 2. The ollinearity graph of �

n

(F; f) has diam-

eter two.

Proof: Suppose n � 3, then the dimension of the vetor spae V is at

least 4. Now �x two points hai and hbi, whih are not ollinear. Two

points hai and hbi are not ollinear if and only if the spae ha; bi is singular

with respet to (�; �). However ha; bi is a two-dimensional subspae of V

whih is not totally singular, beause (a; a) and (b; b) are distint from zero.

Therefore the radial of ha; bi is a one-dimensional spae. The dimension of

ha; bi

?

is greater or equal to two, as n � 3. Consequently, the orthogonal

omplement of ha; bi ontains a point, say hi. Now onsider the two two-

dimensional subspaes ha; i and hb; i. Sine hai and hbi are perpendiular

to hi both ha; i and hb; i are lines. The distane between hai and hi is

one and so is the distane between hi and hbi. Thus the distane between
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hai and hbi is two. Certainly � ontains a pair of nonollinear points, so we

are done.

Now assume n = 2 and let hai and hbi be two arbitrary points in V . If

the spae l = ha; bi is a line then the distane between hai and hbi is one.

Otherwise pik a point h~ai in hai

?

. The spae ha; ~ai is a line and the point hbi

is not on ha; ~ai. The point hbi is ollinear with at least two points on ha; ~ai

by Lemma 2.2. Pik one of these points, say the point hi. The distane

between hai and hi is one, beause the spae ha; i is the line ha; ~ai. The

distane between hbi and hi is one as well, beause hi and hbi are ollinear.

This implies that the distane between point hai and point hbi is two. �

Reall that a pregeometry is alled residually onneted if eah residue of

a ag of orank at least two is onneted and eah residue of a ag of orank

one is non-empty.

Corollary 2.4. Let n � 2. Then �

n

(F; f) is residually onneted.

Proof: Eah residue of �

n

(F; f) with respet to some ag of orank at least

two is of the form ��

m

(F; f

0

), i.e., the diret sum of geometries �

m

(F; f

0

) for

suitable m and suitable nondegenerate orthogonal forms f

0

. If ��

m

(F; f

0

)

onsists of a unique diret summand, this summand is onneted by Propo-

sition 2.3. If ��

m

(F; f

0

) has more than one diret summand then it is

onneted anyway. �

3. Simple onnetedness

Reall the de�nition of the fundamental group of a onneted geometry �.

A path of length k in the geometry is a sequene of elements x

0

; : : : ; x

k

suh

that x

i

and x

i+1

are inident, 0 � i � k� 1. A yle based at an element x

is a path in whih x

0

= x

k

= x. Two paths are homotopially equivalent

if one an be obtained from the other via the following operations alled

elementary homotopies: inserting or deleting a repetition (i.e., a yle

of length 1), a return (i.e., a yle of length 2), or a triangle (i.e., a yle of

length 3). The equivalene lasses of yles based at an element x form a

group under the operation indued by onatenation of yles. This group is

alled the fundamental group of � and denoted by �

1

(�; x). A geometry

is alled simply onneted if its fundamental group is trivial. Notie that

in order to prove that � is simply onneted it is enough to prove that any

yle based at x is homotopially equivalent to the yle of length 0. A yle

with this property is alled null-homotopi, or homotopially trivial.

We refer the reader to [8℄ or [9℄ for more detailled information.

Reall that the inidene graph of some geometry is the graph on the

elements of that geometry in whih two distint elements are adjaent if

and only if they are inident. This means the fundamental group of a rank

n geometry is nothing else than the fundamental group of its inidene graph

onsidered as a (n� 1)-dimensional simpliial omplex.
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Lemma 3.1. Let n � 1. Every yle  = x

0

x

1

: : : x

k�1

x

0

in the inidene

graph of �

n

(F; f) is homotopially equivalent to a yle 

0

touhing only

points and lines.

Proof: This follows by a standard argument using the residual onnet-

edness of �, see Lemma 5.1 of [5℄. �

If n = 2, then the vetor spae V has dimension three. Thus, the geometry

�

2

(F; f) ontains only elements of type one or two. In the inidene graph

of �

2

(F; f), only points and lines are adjaent but never two di�erent points

or two di�erent lines. Therefore, the inidene graph of �

2

(F; f) annot be

deomposed into triangles. We have proved the following.

Proposition 3.2. Let n = 2. The geometry �

2

(F; f) is not simply on-

neted. �

In the remainder of this setion we will prove the simple onnetedness

of �

n

(F; f) for n � 3. Sine every losed path based on an arbitrary el-

ement in the inidene graph of � is homotopially equivalent to a yles

based on a point and passing only points and lines, there is, for every y-

le in the inidene graph, a homotopially equivalent losed path in the

point-line-inidene graph whih implies that it suÆes to study the point-

line-inidene graph. Moreover, sine � is a partial linear spae, eah line

is uniquely determined by two of its points, so it is enough to study the

ollinearity graph of �.

In the nondegenerate vetor spae V , let hai, hbi and hi be di�erent points

and the three two-dimensional spaes ha; bi, ha; i, and hb; i be lines. We

all the 3-yle haihbihihai a nondegenerate triangle or good triangle

if ha; b; i is a nondegenerate vetor subspae of V . Otherwise haihbihihai

is a degenerate triangle or bad triangle.

Sine the diameter of the ollinearity graph of � is two, in order to prove

simple onnetedness it suÆes to prove that we an deompose triangles,

quadrangles and pentagons in the ollinearity graph into produts of good

triangles. Let's start with pentagons:

Proposition 3.3. Let n � 3 and let jFj � 5. Every pentagon in the

ollinearity graph of � an be deomposed into a produt of triangles and

quadrangles.

Proof: Let  = haihbihihdiheihai be an arbitrary 5-yle in the ollinear-

ity graph of �. Sine jFj � 5, the line h; di ontains at least four points of

�, so by Lemma 2.2 it ontains a point of � ollinear to hai, say hyi. Sine

hai is ollinear to hyi the spae ha; yi is a line. We have deomposed the

5-yle  into a produt of 4-yles and 3-yles. �

Now we deal with 4-yles.

Proposition 3.4. Let n � 3 and let jFj � 7. Every quadrangle in the

ollinearity graph of � an be deomposed into a produt of triangles.
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Proof: Let  = haihbihihdihai be an arbitrary 4-yle in the ollinearity

graph of �. Sine jFj � 7, the line ha; bi ontains at least six points of �.

By Lemma 2.2 of those six points at least four are ollinear to hi, and,

by Lemma 2.2 again, of those four points at least two are ollinear to hdi

deomposing the 4-yle  into 3-yles. �

We have deomposed pentagons and quadrangles into produts of trian-

gles. However, those triangles may be bad. For that reason we �nish the

proof of the simple onnetivity of the geometry � by showing that a bad

triangle in the ollinearity graph of � an be deomposed in a produt of

good triangles. In the sequel we will distinguish between n = 3 and n � 4.

Proposition 3.5. For n � 4 every degenerate triangle an be deomposed

into a produt of nondegenerate triangles.

Proof: Let  = haihbihihai be an arbitrary 3-yle in the ollinearity

graph of � suh that U = ha; b; i is singular. Sine U ontains the lines ha; bi,

ha; i and hb; i, the radial of U has dimension one. But dim(U

?

) � 2 and

therefore the spae U

?

ontains a one-dimensional subspae hdi of V with

(d; d) 6= 0. The two-dimensional spaes ha; di, hb; di and h; di are lines as

(a; d) = (b; d) = (; d) = 0. Now we have to prove that ha; b; di, ha; ; di and

hb; ; di are nondegenerate vetor subspaes of V . The Gram matrix G

ha;b;di

is

0

�

(a; a) (a; b) (a; d)

(b; a) (b; b) (b; d)

(a; d) (b; d) (d; d)

1

A

=

0

�

(a; a) (a; b) 0

(b; a) (b; b) 0

0 0 (d; d)

1

A

. The determinant

of G

ha;b;di

is det(G

ha;bi

) � (d; d) 6= 0 beause det(G

ha;bi

) 6= 0 and (d; d) 6= 0,

whih shows that ha; b; di is a nondegenerate vetor subspae. The same

argument holds for the spaes ha; ; di and hb; ; di. �

Now we turn to the ase n = 3. The proof of Proposition 3.5 does

not apply in ase n = 3, beause the orthogonal omplement of a three-

dimensional singular spae in a four-dimensional spae is equal to the radial

of the three-dimensional spae. Hene we have to onstrut the point hdi in

another way.

Let haihbihihai be a 3-yle in the ollinearity graph of �. We all

haihbihihai of perpendiular type if one of the equalities (a; b) = 0,

(a; ) = 0, or (b; ) = 0 holds.

The idea is to show that every triangle an be deomposed into a produt

of triangles of perpendiular type and then that every triangle of perpendiu-

lar type an be deomposed again into a produt of nondegenerate triangles.

For the �rst step assume jFj � 5. Let  = haihbihihai be an arbitrary

3-yle. If C is a yle of perpendiular type then we have nothing to prove.

Otherwise take the line ha; i

?

and pik a point hdi from that line, whih

is ollinear with hbi. Lemma 2.2 implies that suh a point hdi exists. The

resulting 3-yles are of perpendiular type. We have proved the following.

Lemma 3.6. Let jFj � 5. Any 3-yle an be deomposed into a produt of

3-yles of perpendiular type. �
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Let ha; b; i be a 3-spae and take hdi to be a point in ha; i

?

. We say hdi

is good if the vetor subspae h; b; di is nondegenerate; otherwise we all

hdi bad.

Assume jFj � 7 and let  = haihbihihai be a degenerate 3-yle of per-

pendiular type, say a is perpendiular to b. The two-dimensional vetor

subspae ha; i

?

is a line and beause ha; b; i is singular, b is not an element

of ha; i

?

. Using Lemma 2.2, there exists a point hdi of ha; i

?

suh that

hdi and hbi are ollinear. The point hdi an be good or bad with respet

to the spae hb; ; di. We laim that we an �nd a good point. Suppose

hdi is a bad point. Then U

d

= hb; ; di is a singular spae. Beause the

line hb; i is properly ontained in U

d

, the radial of U

d

has dimension one.

Let hsi be the radial of U

d

. Then hsi is ontained in the spae hb; i

?

. It

follows that hb; ; si is a three-dimensional spae ontained in hb; ; di whih

implies that hb; ; si = hb; ; di. We laim that there is an one-to-one or-

respondene between a bad point hdi and the radial of U

d

. For, suppose

for two di�erent bad points hdi and h

�

di we have Rad(U

d

) = Rad(U

�

d

) = hsi,

and hene hb; ; di = hb; ; si = hb; ;

�

di. Moreover, s, d and

�

d are elements

of hi

?

, in fat hs; d;

�

di � hi

?

\ hb; ; si. The dimension of hi

?

\ hb; ; si

is two, whih implies hs; d;

�

di = hs; di = hs;

�

di. Sine hs; di is singular, the

spae hs; di is distint from the spae ha; i

?

. Therefore the vetor subspae

hs; di \ ha; i

?

= hs;

�

di \ ha; i

?

has dimension one and ontains both point

hdi and point h

�

di, whih shows that the vetor

�

d is an element of hdi, a

ontradition to the hypothesis that hdi is distint from h

�

di.

It follows that the number of di�erent bad points is equal to the number

of di�erent one-dimensional singular vetor subspaes in hb; i

?

, whih is at

most two as hb; i is nondegenerate.

Sine we assumed F to ontain at least seven elements, we an �nd a

good point hdi. We know that ha; ; di and hb; ; di are nondegenerate vetor

subspaes. For the nondegeneray of ha; b; di we use the following argument.

The Gram matrix G

ha;b;di

is

0

�

(a; a) (a; b) (a; d)

(b; a) (b; b) (b; d)

(a; d) (b; d) (d; d)

1

A

=

�

(a; a) 0

0 G

hb;di

�

and hb; di is a line. The determinant of G

ha;b;di

is (a; a) �det(G

hb;di

) 6= 0. This

shows that ha; b; di is nondegenerate and proves the following proposition.

Proposition 3.7. Let jFj � 7. Eah degenerate triangle of perpendiular

type in the ollinearity graph of �

3

(F; f) an be deomposed into nondegen-

erate triangles. �

Altogether we have proved Theorem 1.

4. Flag transitivity

Let F be a �eld of harateristi distint from two that does not admit

any quadrati extension and let V be a nondegenerate orthogonal spae over

F of dimension n+ 1. The lassi�ation of nondegenerate orthogonal forms
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shows that eah orthogonal form on V is isometri to the form whose Gram

matrix is the identity matrix.

Proposition 4.1. Let V be an (n+ 1)-dimensional vetor spae over some

�eld F of harateristi distint from two that does not admit any quadrati

extension. The group SO

n+1

(F; f) ats transitively on the points of �.

Proof: The group O

n+1

(F; f) ats transitively on the points of � by Witt's

theorem, so for any pair p, q of points of � we an �nd an element of

O

n+1

(F; f) that maps p to q. On the other hand, the matrix

�

�1 0

0 id

n�n

�

with respet to a basis whose �rst vetor spans q has determinant �1 and

stabilizes q. Therefore also SO

n+1

(F; f) ats transitively on the points of �.

�

Proof of Theorem 2: One impliation of the laim follows from Proposi-

tion 4.1 by indution on n using the isomorphism between the residue of a

point in �

n

(F; f) and �

n�1

(F; f

0

). The other impliation is obvious. �

In the present paper an amalgam A of groups is a set with a partial

operation of multipliation and a olletion of subsets fH

i

g

i2I

, for some

index set I, suh that the following hold: (1) A = [

i2I

H

i

; (2) the produt

ab is de�ned if and only if a; b 2 H

i

for some i 2 I; (3) the restrition of

the multipliation to eah H

i

turns H

i

into a group; and (4) H

i

\ H

j

is a

subgroup in both H

i

and H

j

for all i; j 2 I. It follows that the groups H

i

share the same identity element, whih is then the only identity element

in A, and that a

�1

2 A is well-de�ned for every a 2 A. We will all

the groups H

i

the members of the amalgam A. A group H is alled a

ompletion of an amalgam A if there exists a map � : A ! H suh

that (1) for all i 2 I the restrition of � to H

i

is a homomorphism of H

i

to H; and (2) �(A) generates H. Among all ompletions of A there is

one \largest" whih an be de�ned as the group having the presentation

U(A) = ht

h

j h 2 A; t

x

t

y

= t

z

; whenever xy = z in Ai. Obviously, U(A) is

a ompletion of A sine one an take � to be the mapping h 7! t

h

. Every

ompletion of A is isomorphi to a quotient of U(A), and beause of that

U(A) is alled the universal ompletion.

Suppose a group H � Aut(�) ats ag-transitively on a geometry �.

A rank k paraboli is the stabilizer in H of a ag of orank k from �.

Parabolis of rank n � 1 (where n is the rank of �) are alled maximal

parabolis. They are exatly the stabilizers in H of single elements of �.

Let F be a maximal ag in �, and let H

x

denote the stabilizer in H

of x 2 �. The amalgam A = A(F ) = [

x2F

H

x

is alled the amalgam

of maximal parabolis in H. Sine the ation of H is ag-transitive, this

amalgam is de�ned uniquely up to onjugation in H. For a �xed ag F we

an also use the notation M

i

for the maximal paraboli H

x

, where x 2 F

is of type i. For a subset J � I = f1; 2 : : : ; ng, de�ne M

J

to be \

j2J

M

j

,

inluding M

;

= H. Notie that M

J

is a paraboli of rank jI n J j; indeed, it
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is the stabilizer of the subag of F of type J . Similarly to A, we an de�ne

the amalgam A

(s)

as the union of all rank s parabolis. With this notation

we an write A = A

(n�1)

. Moreover, aording to our de�nition, A

(n)

= H.

Now we need to de�ne overings of geometries. Suppose � and

^

� are two

geometries over the same type set and suppose � :

^

�! � is a morphism of

geometries, i.e., � preserves the type and sends inident elements to inident

elements. The morphism � is alled a overing if and only if for every

non-empty ag

^

F in

^

� the mapping � indues an isomorphism between the

residue of

^

F in

^

� and the residue of F = �(

^

F ) in �. Coverings of a geometry

orrespond to the usual topologial overings of its ag omplex, see also [8℄

or [9℄. In partiular, by x55 of [8℄ or Theorem 1.1 of [9℄ a simply onneted

geometry (as de�ned in Setion 3) admits no nontrivial overing.

The following lemma from [10℄ ombines the topologial struture of a

geometry with amalgams obtained from ag-transitive groups of automor-

phisms.

Tits' Lemma 4.2. Suppose a group H ats ag-transitively on a geometry

� and let A be the amalgam of maximal parabolis assoiated with some

maximal ag F . Then H is the universal ompletion of the amalgam A if

and only if � is simply onneted.

Tits' Lemma together with Theorems 1 and 2 immediately implies that

SO

n+1

(F; f) is the universal ompletion of the amalgam of maximal parabol-

is in SO

n+1

(F; f) with respet to some maximal ag of �. Theorem 5 follows

from that observation by a standard indution argument using the residual

onnetedness of � and the simple onnetedness of all residues of � as in

the proof of Theorem 1 of [5℄.

5. Flag-transitive parts

What remains is a disrepany between the �elds that our in Theo-

rem 1 and the ones that our in Theorem 2. The standard method to

fore ag-transitivity would be to study the orbit of one ag under the

group SO

n+1

(F; f) of isometries of the form (�; �) on V . To be preise

let as before �

n

(F; f) = (X; typ; �) be the geometry on the nondegen-

erate proper subspaes of V and let F = (x

i

)

i2J

, J � I = f1; : : : ; ng

be a ag of �. De�ne the geometry �

F

n

(F; f) = (Y; typ

jY

; �

jY�Y

) with

Y = fx 2 X j x 2 F

g

for some g 2 SO

n+1

(F; f)g.

Proof of Theorem 3: Let x

1

and x

2

be elements of �

F

n

(F; f) � �

n

(F; f)

with x

1

� x

2

. This means there exist g

1

, g

2

in SO

n+1

(F; f) with x

1

2 F

g

1

and x

2

2 F

g

2

or, equivalently, x

g

�1

1

1

2 F and x

g

�1

1

2

2 F

g

2

g

�1

1

. Note that x

g

�1

1

1

is inident with both x

g

�1

1

2

and the element y 2 F of type typ(x

g

�1

1

2

). The

subspaes y and x

g

�1

1

2

of V are isometri so by Witt's theorem applied to

x

g

�1

1

1

if typ(x

1

) > typ(x

2

), resp. (x

g

�1

1

1

)

?

if typ(x

1

) < typ(x

2

) there exists an
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element of SO

n+1

(F; f) stabilizing x

g

�1

1

1

that maps x

g

�1

1

2

onto y. Indution

on jJ j shows that SO

n+1

(F; f) ats ag-transitively on �

F

n

(F; f). �

Proof of Theorem 4: Let U be the three-dimensional spae of the ag

F . Notie that, as U is anisotropi, any yle onsisting of elements of U is

null-homotopi. If p and q are points of �

F

m+n�1

(R; f), then p

?

\ q

?

\ U

ontains an anisotropi one-dimensional subspae r ollinear to both p and q.

Therefore the diameter of �

F

m+n�1

(R; f) is two. The argument of Lemma 3.1

implies that it suÆes to deompose triangles, quadrangles and pentagons

in the ollinearity graph of �

F

m+n�1

(R; f). Pentagons deompose as for

any point p and any line l there exists a point q in p

?

\ l ollinear to

p. A quadrangle a, b, , d deomposes by the following argument. Let

p

ab

be a point ontained in a

?

\ b

?

\ U . Similarly, de�ne p

b

, p

d

, p

ad

.

Certainly, the quadrangle p

ab

, p

b

, p

d

, p

ad

is null-homotopi. Therefore we

have deomposed the original quadrangle into a null-homotopi quadrangle

and a number of triangles. A triangle is deomposed in exatly the same

way as a quadrangle. �

Tits' Lemma 4.2 together with Theorems 3 and 4 immediately implies that

SO

R

(m;n) is the universal ompletion of the amalgam of maximal parabolis

in SO

R

(m;n) with respet to some maximal ag of �

F

m+n�1

(R; f). Theorem

6 follows from that observation by a standard indution argument using the

residual onnetedness of �

F

m+n�1

(R; f) and the simple onnetedness of all

residues of �

F

m+n�1

(R; f) as in the proof of Theorem 1 of [5℄.
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