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Abstra
t. The present arti
le is part of the program des
ribed in [2℄.

Here we study the Phan-theoreti
 
ip
op geometries related to the 
ip

indu
ed by a nondegenerate orthogonal form on a ve
tor spa
e over an

arbitrary �eld of 
hara
teristi
 distin
t from two. We obtain amalgam

results in the spirit of Phan's theorems [6℄, [7℄ for �elds that do not

admit a quadrati
 extension and for real 
losed �elds.

1. Introdu
tion

Let n � 1 and let V be an (n + 1)-dimensional ve
tor spa
e over some

�eld F of 
hara
teristi
 distin
t from two endowed with some nondegenerate

orthogonal form f = (�; �). By � = �

n

(F; f) we denote the pregeometry on

the proper subspa
es of V that are nondegenerate with respe
t to (�; �) with

symmetrized 
ontainment as in
iden
e and the ve
tor spa
e dimension as

the type. It is easily seen that �

n

(F; f) is a geometry, 
f. Proposition 2.1.

Our �rst main result is the simple 
onne
tedness of that geometry:

Theorem 1. Let n � 3 and let F be an arbitrary �eld of 
hara
teristi


not two distin
t from F

3

and F

5

. Then the geometry �

n

(F; f) is simply


onne
ted.

For suÆ
iently large n, say n � 7, the geometry �

n

(F; f) is also simply


onne
ted over the �elds F

3

and F

5

. We do not know whether the geometries

in smaller dimension a
tually are not simply 
onne
ted or just are not 
ov-

ered by our parti
ular proof. We did not invest too mu
h energy into that

problem as the geometries fail to be 
ag-transitive and hen
e Tits' Lemma

4.2 does not apply anyway. The 
ag-transitive geometries are given in the

following theorem.

Theorem 2. Let V be an (n+ 1)-dimensional ve
tor spa
e over some �eld

F of 
hara
teristi
 distin
t from two. The group SO

n+1

(F; f) a
ts 
ag-

transitively on the geometry �

n

(F; f) if and only if F does not admit a qua-

drati
 extension.

As usual we want to 
ombine Theorems 1 and 2 by Tits' Lemma 4.2. As

mentioned before this lemma does not apply in 
ase of intransitive geome-

tries. Fortunately, there is a method to 
onstru
t a 
ag-transitive subge-

ometry of �

n

(F; f). Let as before �

n

(F; f) = (X; typ; �) be the geometry

on the nondegenerate proper subspa
es of V and let F = (x

i

)

1�i�n

be

1
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some 
ag of � (not ne
essarily maximal). De�ne the geometry �

F

n

(F; f) =

(Y; typ

jY

; �

jY�Y

) over typ

jY

(Y ) with Y = fx 2 X j x 2 F

g

for some g 2 SO

n+1

(F; f)g.

Theorem 3. Let V be an (n+ 1)-dimensional ve
tor spa
e over some �eld

of 
hara
teristi
 distin
t from two and let F be a 
ag of �

n

(F; f). Then the

group SO

n+1

(F; f) a
ts 
ag-transitively on the geometry �

F

n

(F; f).

The proof of Theorem 3 relies on Witt's theorem. In general the above


onstru
tion does not lead to a 
ag-transitive geometry.

Of 
ourse, by passing to a 
ag-transitive subgeometry �

F

n

(F; f) from an

intransitive geometry �

n

(F; f) we have lost elements of our geometry, so in

the worst 
ase we may end up with a geometry that is not simply 
onne
ted

any more. However, in some 
ases one 
an prove that the smaller geometry

still is simply 
onne
ted as in the following setting.

Theorem 4. Let m;n � 0 su
h that one of m and n is greater than or

equal to three and the sum of m and n is greater than or equal to four. Let

R be a real 
losed �eld and let V

�

=

R

m+n

be endowed with a nondegenerate

symmetri
 bilinear form with isometry group SO

R

(m;n). If F is a 
ag

of �

m+n�1

(R; f) 
ontaining anisotropi
 one-, two-, and three-dimensional

subspa
es of V , then �

F

m+n�1

(R; f) is simply 
onne
ted.

Combining Theorem 1 and Theorem 2 we get the following.

Theorem 5. Let V be an (n+ 1)-dimensional ve
tor spa
e over some �eld

F of 
hara
teristi
 distin
t from two that does not admit any quadrati
 ex-

tension. Let F be a maximal 
ag of �

n

(F; f) and let A

(2)

be the amalgam

of all rank two paraboli
s, i.e., stabilizers in SO

n+1

(F; f) of sub
ags of F of


orank two. Then SO

n+1

(F; f) is the universal 
ompletion of A

(2)

.

Finally, Theorem 3 and Theorem 4 imply an analogous result.

Theorem 6. Let m;n � 0 su
h that one of m and n is greater than or

equal to three and the sum of m and n is greater than or equal to four.

Let R be a real 
losed �eld and let V

�

=

R

m+n

be endowed with a nonde-

generate symmetri
 bilinear form with isometry group SO

R

(m;n) and let

F be a 
ag of �

m+n�1

(R; f) of rank at least three 
onsisting of all posi-

tive de�nite (negative de�nite) subspa
es of V . Let A

(2)

be the amalgam of

all rank two paraboli
s in SO

R

(m;n) with respe
t to the maximal 
ag F of

�

F

m+n�1

(R; f). Then SO

R

(m;n) is the universal 
ompletion of A

(2)

.

This paper is organized as follows. In Se
tion 2 we study the 
onne
t-

edness and residual 
onne
tedness of �

n

(F; f). In Se
tion 3 we turn our

attention to the simple 
onne
tedness of �

n

(F; f) and provide a proof of

Theorem 1. Se
tion 4 deals with transitivity properties of �

n

(F; f) and

proofs of Theorem 2 and Theorem 5. Finally, Se
tion 5 fo
uses on 
ag-

transitive subgeometries of �

n

(F; f) and provides proofs of Theorems 3, 4,

and 6.
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2. Nondegenerate subspa
es of orthogonal spa
e

Our geometri
 notions are standard. As a referen
e see [3℄ or [4℄. We will

remind the reader of relevant notions as they o

ur. Let n � 1 and let V be

an (n+1)-dimensional ve
tor spa
e over some �eld F of 
hara
teristi
 distin
t

from two endowed with some nondegenerate orthogonal form f = (�; �). By

� = �

n

(F; f) we denote the pregeometry on the proper subspa
es of V

that are nondegenerate with respe
t to (�; �) with symmetrized 
ontainment

as in
iden
e and the ve
tor spa
e dimension as the type. Re
all that the

di�eren
e between a geometry and a pregeometry over the type set f1; : : : ; ng

is that in the former ea
h 
ag is 
ontained in a 
hamber, i.e., a 
ag of type

f1; : : : ; ng, while in the latter this need not ne
essarily be the 
ase.

Proposition 2.1. The pregeometry �

n

(F; f) is a geometry.

Proof: We have to prove that ea
h 
ag 
an be embedded in a 
ag of


ardinality n. To this end let F = fx

1

; : : : ; x

t

g be a 
ag of �. We 
an

assume that the nondegenerate subspa
e x

1

of V has dimension one. Indeed,

if it has not, then we 
an �nd a nondegenerate one-dimensional subspa
e

x

0

of x

1

and study the 
ag F

0

= F [ fx

0

g instead. Now observe that the

residue of the nondegenerate one-dimensional subspa
e x

1

is isomorphi
 to

�

n�1

(F; f

0

) for some indu
ed form f

0

via the map that sends an element U

of the residue of x

1

to U \ x

?

1

. Hen
e indu
tion applies. �

Lemma 2.2. If l is a line and p is a point not on l, then there are at most

two points of � on l whi
h are not 
ollinear to p.

Proof: This follows immediately from the fa
t that at most two two-

dimensional subspa
es of hp; li 
ontaining p are degenerate with respe
t to

(�; �). �

The 
ollinearity graph of a pregeometry � is the graph on the points of

� in whi
h two verti
es are adja
ent if and only if the 
orresponding points

of � are 
ollinear.

Proposition 2.3. Let n � 2. The 
ollinearity graph of �

n

(F; f) has diam-

eter two.

Proof: Suppose n � 3, then the dimension of the ve
tor spa
e V is at

least 4. Now �x two points hai and hbi, whi
h are not 
ollinear. Two

points hai and hbi are not 
ollinear if and only if the spa
e ha; bi is singular

with respe
t to (�; �). However ha; bi is a two-dimensional subspa
e of V

whi
h is not totally singular, be
ause (a; a) and (b; b) are distin
t from zero.

Therefore the radi
al of ha; bi is a one-dimensional spa
e. The dimension of

ha; bi

?

is greater or equal to two, as n � 3. Consequently, the orthogonal


omplement of ha; bi 
ontains a point, say h
i. Now 
onsider the two two-

dimensional subspa
es ha; 
i and hb; 
i. Sin
e hai and hbi are perpendi
ular

to h
i both ha; 
i and hb; 
i are lines. The distan
e between hai and h
i is

one and so is the distan
e between h
i and hbi. Thus the distan
e between
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hai and hbi is two. Certainly � 
ontains a pair of non
ollinear points, so we

are done.

Now assume n = 2 and let hai and hbi be two arbitrary points in V . If

the spa
e l = ha; bi is a line then the distan
e between hai and hbi is one.

Otherwise pi
k a point h~ai in hai

?

. The spa
e ha; ~ai is a line and the point hbi

is not on ha; ~ai. The point hbi is 
ollinear with at least two points on ha; ~ai

by Lemma 2.2. Pi
k one of these points, say the point h
i. The distan
e

between hai and h
i is one, be
ause the spa
e ha; 
i is the line ha; ~ai. The

distan
e between hbi and h
i is one as well, be
ause h
i and hbi are 
ollinear.

This implies that the distan
e between point hai and point hbi is two. �

Re
all that a pregeometry is 
alled residually 
onne
ted if ea
h residue of

a 
ag of 
orank at least two is 
onne
ted and ea
h residue of a 
ag of 
orank

one is non-empty.

Corollary 2.4. Let n � 2. Then �

n

(F; f) is residually 
onne
ted.

Proof: Ea
h residue of �

n

(F; f) with respe
t to some 
ag of 
orank at least

two is of the form ��

m

(F; f

0

), i.e., the dire
t sum of geometries �

m

(F; f

0

) for

suitable m and suitable nondegenerate orthogonal forms f

0

. If ��

m

(F; f

0

)


onsists of a unique dire
t summand, this summand is 
onne
ted by Propo-

sition 2.3. If ��

m

(F; f

0

) has more than one dire
t summand then it is


onne
ted anyway. �

3. Simple 
onne
tedness

Re
all the de�nition of the fundamental group of a 
onne
ted geometry �.

A path of length k in the geometry is a sequen
e of elements x

0

; : : : ; x

k

su
h

that x

i

and x

i+1

are in
ident, 0 � i � k� 1. A 
y
le based at an element x

is a path in whi
h x

0

= x

k

= x. Two paths are homotopi
ally equivalent

if one 
an be obtained from the other via the following operations 
alled

elementary homotopies: inserting or deleting a repetition (i.e., a 
y
le

of length 1), a return (i.e., a 
y
le of length 2), or a triangle (i.e., a 
y
le of

length 3). The equivalen
e 
lasses of 
y
les based at an element x form a

group under the operation indu
ed by 
on
atenation of 
y
les. This group is


alled the fundamental group of � and denoted by �

1

(�; x). A geometry

is 
alled simply 
onne
ted if its fundamental group is trivial. Noti
e that

in order to prove that � is simply 
onne
ted it is enough to prove that any


y
le based at x is homotopi
ally equivalent to the 
y
le of length 0. A 
y
le

with this property is 
alled null-homotopi
, or homotopi
ally trivial.

We refer the reader to [8℄ or [9℄ for more detailled information.

Re
all that the in
iden
e graph of some geometry is the graph on the

elements of that geometry in whi
h two distin
t elements are adja
ent if

and only if they are in
ident. This means the fundamental group of a rank

n geometry is nothing else than the fundamental group of its in
iden
e graph


onsidered as a (n� 1)-dimensional simpli
ial 
omplex.
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Lemma 3.1. Let n � 1. Every 
y
le 
 = x

0

x

1

: : : x

k�1

x

0

in the in
iden
e

graph of �

n

(F; f) is homotopi
ally equivalent to a 
y
le 


0

tou
hing only

points and lines.

Proof: This follows by a standard argument using the residual 
onne
t-

edness of �, see Lemma 5.1 of [5℄. �

If n = 2, then the ve
tor spa
e V has dimension three. Thus, the geometry

�

2

(F; f) 
ontains only elements of type one or two. In the in
iden
e graph

of �

2

(F; f), only points and lines are adja
ent but never two di�erent points

or two di�erent lines. Therefore, the in
iden
e graph of �

2

(F; f) 
annot be

de
omposed into triangles. We have proved the following.

Proposition 3.2. Let n = 2. The geometry �

2

(F; f) is not simply 
on-

ne
ted. �

In the remainder of this se
tion we will prove the simple 
onne
tedness

of �

n

(F; f) for n � 3. Sin
e every 
losed path based on an arbitrary el-

ement in the in
iden
e graph of � is homotopi
ally equivalent to a 
y
les

based on a point and passing only points and lines, there is, for every 
y-


le in the in
iden
e graph, a homotopi
ally equivalent 
losed path in the

point-line-in
iden
e graph whi
h implies that it suÆ
es to study the point-

line-in
iden
e graph. Moreover, sin
e � is a partial linear spa
e, ea
h line

is uniquely determined by two of its points, so it is enough to study the


ollinearity graph of �.

In the nondegenerate ve
tor spa
e V , let hai, hbi and h
i be di�erent points

and the three two-dimensional spa
es ha; bi, ha; 
i, and hb; 
i be lines. We


all the 3-
y
le haihbih
ihai a nondegenerate triangle or good triangle

if ha; b; 
i is a nondegenerate ve
tor subspa
e of V . Otherwise haihbih
ihai

is a degenerate triangle or bad triangle.

Sin
e the diameter of the 
ollinearity graph of � is two, in order to prove

simple 
onne
tedness it suÆ
es to prove that we 
an de
ompose triangles,

quadrangles and pentagons in the 
ollinearity graph into produ
ts of good

triangles. Let's start with pentagons:

Proposition 3.3. Let n � 3 and let jFj � 5. Every pentagon in the


ollinearity graph of � 
an be de
omposed into a produ
t of triangles and

quadrangles.

Proof: Let 
 = haihbih
ihdiheihai be an arbitrary 5-
y
le in the 
ollinear-

ity graph of �. Sin
e jFj � 5, the line h
; di 
ontains at least four points of

�, so by Lemma 2.2 it 
ontains a point of � 
ollinear to hai, say hyi. Sin
e

hai is 
ollinear to hyi the spa
e ha; yi is a line. We have de
omposed the

5-
y
le 
 into a produ
t of 4-
y
les and 3-
y
les. �

Now we deal with 4-
y
les.

Proposition 3.4. Let n � 3 and let jFj � 7. Every quadrangle in the


ollinearity graph of � 
an be de
omposed into a produ
t of triangles.
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Proof: Let 
 = haihbih
ihdihai be an arbitrary 4-
y
le in the 
ollinearity

graph of �. Sin
e jFj � 7, the line ha; bi 
ontains at least six points of �.

By Lemma 2.2 of those six points at least four are 
ollinear to h
i, and,

by Lemma 2.2 again, of those four points at least two are 
ollinear to hdi

de
omposing the 4-
y
le 
 into 3-
y
les. �

We have de
omposed pentagons and quadrangles into produ
ts of trian-

gles. However, those triangles may be bad. For that reason we �nish the

proof of the simple 
onne
tivity of the geometry � by showing that a bad

triangle in the 
ollinearity graph of � 
an be de
omposed in a produ
t of

good triangles. In the sequel we will distinguish between n = 3 and n � 4.

Proposition 3.5. For n � 4 every degenerate triangle 
an be de
omposed

into a produ
t of nondegenerate triangles.

Proof: Let 
 = haihbih
ihai be an arbitrary 3-
y
le in the 
ollinearity

graph of � su
h that U = ha; b; 
i is singular. Sin
e U 
ontains the lines ha; bi,

ha; 
i and hb; 
i, the radi
al of U has dimension one. But dim(U

?

) � 2 and

therefore the spa
e U

?


ontains a one-dimensional subspa
e hdi of V with

(d; d) 6= 0. The two-dimensional spa
es ha; di, hb; di and h
; di are lines as

(a; d) = (b; d) = (
; d) = 0. Now we have to prove that ha; b; di, ha; 
; di and

hb; 
; di are nondegenerate ve
tor subspa
es of V . The Gram matrix G

ha;b;di

is

0

�

(a; a) (a; b) (a; d)

(b; a) (b; b) (b; d)

(a; d) (b; d) (d; d)

1

A

=

0

�

(a; a) (a; b) 0

(b; a) (b; b) 0

0 0 (d; d)

1

A

. The determinant

of G

ha;b;di

is det(G

ha;bi

) � (d; d) 6= 0 be
ause det(G

ha;bi

) 6= 0 and (d; d) 6= 0,

whi
h shows that ha; b; di is a nondegenerate ve
tor subspa
e. The same

argument holds for the spa
es ha; 
; di and hb; 
; di. �

Now we turn to the 
ase n = 3. The proof of Proposition 3.5 does

not apply in 
ase n = 3, be
ause the orthogonal 
omplement of a three-

dimensional singular spa
e in a four-dimensional spa
e is equal to the radi
al

of the three-dimensional spa
e. Hen
e we have to 
onstru
t the point hdi in

another way.

Let haihbih
ihai be a 3-
y
le in the 
ollinearity graph of �. We 
all

haihbih
ihai of perpendi
ular type if one of the equalities (a; b) = 0,

(a; 
) = 0, or (b; 
) = 0 holds.

The idea is to show that every triangle 
an be de
omposed into a produ
t

of triangles of perpendi
ular type and then that every triangle of perpendi
u-

lar type 
an be de
omposed again into a produ
t of nondegenerate triangles.

For the �rst step assume jFj � 5. Let 
 = haihbih
ihai be an arbitrary

3-
y
le. If C is a 
y
le of perpendi
ular type then we have nothing to prove.

Otherwise take the line ha; 
i

?

and pi
k a point hdi from that line, whi
h

is 
ollinear with hbi. Lemma 2.2 implies that su
h a point hdi exists. The

resulting 3-
y
les are of perpendi
ular type. We have proved the following.

Lemma 3.6. Let jFj � 5. Any 3-
y
le 
an be de
omposed into a produ
t of

3-
y
les of perpendi
ular type. �
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Let ha; b; 
i be a 3-spa
e and take hdi to be a point in ha; 
i

?

. We say hdi

is good if the ve
tor subspa
e h
; b; di is nondegenerate; otherwise we 
all

hdi bad.

Assume jFj � 7 and let 
 = haihbih
ihai be a degenerate 3-
y
le of per-

pendi
ular type, say a is perpendi
ular to b. The two-dimensional ve
tor

subspa
e ha; 
i

?

is a line and be
ause ha; b; 
i is singular, b is not an element

of ha; 
i

?

. Using Lemma 2.2, there exists a point hdi of ha; 
i

?

su
h that

hdi and hbi are 
ollinear. The point hdi 
an be good or bad with respe
t

to the spa
e hb; 
; di. We 
laim that we 
an �nd a good point. Suppose

hdi is a bad point. Then U

d

= hb; 
; di is a singular spa
e. Be
ause the

line hb; 
i is properly 
ontained in U

d

, the radi
al of U

d

has dimension one.

Let hsi be the radi
al of U

d

. Then hsi is 
ontained in the spa
e hb; 
i

?

. It

follows that hb; 
; si is a three-dimensional spa
e 
ontained in hb; 
; di whi
h

implies that hb; 
; si = hb; 
; di. We 
laim that there is an one-to-one 
or-

responden
e between a bad point hdi and the radi
al of U

d

. For, suppose

for two di�erent bad points hdi and h

�

di we have Rad(U

d

) = Rad(U

�

d

) = hsi,

and hen
e hb; 
; di = hb; 
; si = hb; 
;

�

di. Moreover, s, d and

�

d are elements

of h
i

?

, in fa
t hs; d;

�

di � h
i

?

\ hb; 
; si. The dimension of h
i

?

\ hb; 
; si

is two, whi
h implies hs; d;

�

di = hs; di = hs;

�

di. Sin
e hs; di is singular, the

spa
e hs; di is distin
t from the spa
e ha; 
i

?

. Therefore the ve
tor subspa
e

hs; di \ ha; 
i

?

= hs;

�

di \ ha; 
i

?

has dimension one and 
ontains both point

hdi and point h

�

di, whi
h shows that the ve
tor

�

d is an element of hdi, a


ontradi
tion to the hypothesis that hdi is distin
t from h

�

di.

It follows that the number of di�erent bad points is equal to the number

of di�erent one-dimensional singular ve
tor subspa
es in hb; 
i

?

, whi
h is at

most two as hb; 
i is nondegenerate.

Sin
e we assumed F to 
ontain at least seven elements, we 
an �nd a

good point hdi. We know that ha; 
; di and hb; 
; di are nondegenerate ve
tor

subspa
es. For the nondegenera
y of ha; b; di we use the following argument.

The Gram matrix G

ha;b;di

is

0

�

(a; a) (a; b) (a; d)

(b; a) (b; b) (b; d)

(a; d) (b; d) (d; d)

1

A

=

�

(a; a) 0

0 G

hb;di

�

and hb; di is a line. The determinant of G

ha;b;di

is (a; a) �det(G

hb;di

) 6= 0. This

shows that ha; b; di is nondegenerate and proves the following proposition.

Proposition 3.7. Let jFj � 7. Ea
h degenerate triangle of perpendi
ular

type in the 
ollinearity graph of �

3

(F; f) 
an be de
omposed into nondegen-

erate triangles. �

Altogether we have proved Theorem 1.

4. Flag transitivity

Let F be a �eld of 
hara
teristi
 distin
t from two that does not admit

any quadrati
 extension and let V be a nondegenerate orthogonal spa
e over

F of dimension n+ 1. The 
lassi�
ation of nondegenerate orthogonal forms
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shows that ea
h orthogonal form on V is isometri
 to the form whose Gram

matrix is the identity matrix.

Proposition 4.1. Let V be an (n+ 1)-dimensional ve
tor spa
e over some

�eld F of 
hara
teristi
 distin
t from two that does not admit any quadrati


extension. The group SO

n+1

(F; f) a
ts transitively on the points of �.

Proof: The group O

n+1

(F; f) a
ts transitively on the points of � by Witt's

theorem, so for any pair p, q of points of � we 
an �nd an element of

O

n+1

(F; f) that maps p to q. On the other hand, the matrix

�

�1 0

0 id

n�n

�

with respe
t to a basis whose �rst ve
tor spans q has determinant �1 and

stabilizes q. Therefore also SO

n+1

(F; f) a
ts transitively on the points of �.

�

Proof of Theorem 2: One impli
ation of the 
laim follows from Proposi-

tion 4.1 by indu
tion on n using the isomorphism between the residue of a

point in �

n

(F; f) and �

n�1

(F; f

0

). The other impli
ation is obvious. �

In the present paper an amalgam A of groups is a set with a partial

operation of multipli
ation and a 
olle
tion of subsets fH

i

g

i2I

, for some

index set I, su
h that the following hold: (1) A = [

i2I

H

i

; (2) the produ
t

ab is de�ned if and only if a; b 2 H

i

for some i 2 I; (3) the restri
tion of

the multipli
ation to ea
h H

i

turns H

i

into a group; and (4) H

i

\ H

j

is a

subgroup in both H

i

and H

j

for all i; j 2 I. It follows that the groups H

i

share the same identity element, whi
h is then the only identity element

in A, and that a

�1

2 A is well-de�ned for every a 2 A. We will 
all

the groups H

i

the members of the amalgam A. A group H is 
alled a


ompletion of an amalgam A if there exists a map � : A ! H su
h

that (1) for all i 2 I the restri
tion of � to H

i

is a homomorphism of H

i

to H; and (2) �(A) generates H. Among all 
ompletions of A there is

one \largest" whi
h 
an be de�ned as the group having the presentation

U(A) = ht

h

j h 2 A; t

x

t

y

= t

z

; whenever xy = z in Ai. Obviously, U(A) is

a 
ompletion of A sin
e one 
an take � to be the mapping h 7! t

h

. Every


ompletion of A is isomorphi
 to a quotient of U(A), and be
ause of that

U(A) is 
alled the universal 
ompletion.

Suppose a group H � Aut(�) a
ts 
ag-transitively on a geometry �.

A rank k paraboli
 is the stabilizer in H of a 
ag of 
orank k from �.

Paraboli
s of rank n � 1 (where n is the rank of �) are 
alled maximal

paraboli
s. They are exa
tly the stabilizers in H of single elements of �.

Let F be a maximal 
ag in �, and let H

x

denote the stabilizer in H

of x 2 �. The amalgam A = A(F ) = [

x2F

H

x

is 
alled the amalgam

of maximal paraboli
s in H. Sin
e the a
tion of H is 
ag-transitive, this

amalgam is de�ned uniquely up to 
onjugation in H. For a �xed 
ag F we


an also use the notation M

i

for the maximal paraboli
 H

x

, where x 2 F

is of type i. For a subset J � I = f1; 2 : : : ; ng, de�ne M

J

to be \

j2J

M

j

,

in
luding M

;

= H. Noti
e that M

J

is a paraboli
 of rank jI n J j; indeed, it
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is the stabilizer of the sub
ag of F of type J . Similarly to A, we 
an de�ne

the amalgam A

(s)

as the union of all rank s paraboli
s. With this notation

we 
an write A = A

(n�1)

. Moreover, a

ording to our de�nition, A

(n)

= H.

Now we need to de�ne 
overings of geometries. Suppose � and

^

� are two

geometries over the same type set and suppose � :

^

�! � is a morphism of

geometries, i.e., � preserves the type and sends in
ident elements to in
ident

elements. The morphism � is 
alled a 
overing if and only if for every

non-empty 
ag

^

F in

^

� the mapping � indu
es an isomorphism between the

residue of

^

F in

^

� and the residue of F = �(

^

F ) in �. Coverings of a geometry


orrespond to the usual topologi
al 
overings of its 
ag 
omplex, see also [8℄

or [9℄. In parti
ular, by x55 of [8℄ or Theorem 1.1 of [9℄ a simply 
onne
ted

geometry (as de�ned in Se
tion 3) admits no nontrivial 
overing.

The following lemma from [10℄ 
ombines the topologi
al stru
ture of a

geometry with amalgams obtained from 
ag-transitive groups of automor-

phisms.

Tits' Lemma 4.2. Suppose a group H a
ts 
ag-transitively on a geometry

� and let A be the amalgam of maximal paraboli
s asso
iated with some

maximal 
ag F . Then H is the universal 
ompletion of the amalgam A if

and only if � is simply 
onne
ted.

Tits' Lemma together with Theorems 1 and 2 immediately implies that

SO

n+1

(F; f) is the universal 
ompletion of the amalgam of maximal parabol-

i
s in SO

n+1

(F; f) with respe
t to some maximal 
ag of �. Theorem 5 follows

from that observation by a standard indu
tion argument using the residual


onne
tedness of � and the simple 
onne
tedness of all residues of � as in

the proof of Theorem 1 of [5℄.

5. Flag-transitive parts

What remains is a dis
repan
y between the �elds that o

ur in Theo-

rem 1 and the ones that o

ur in Theorem 2. The standard method to

for
e 
ag-transitivity would be to study the orbit of one 
ag under the

group SO

n+1

(F; f) of isometries of the form (�; �) on V . To be pre
ise

let as before �

n

(F; f) = (X; typ; �) be the geometry on the nondegen-

erate proper subspa
es of V and let F = (x

i

)

i2J

, J � I = f1; : : : ; ng

be a 
ag of �. De�ne the geometry �

F

n

(F; f) = (Y; typ

jY

; �

jY�Y

) with

Y = fx 2 X j x 2 F

g

for some g 2 SO

n+1

(F; f)g.

Proof of Theorem 3: Let x

1

and x

2

be elements of �

F

n

(F; f) � �

n

(F; f)

with x

1

� x

2

. This means there exist g

1

, g

2

in SO

n+1

(F; f) with x

1

2 F

g

1

and x

2

2 F

g

2

or, equivalently, x

g

�1

1

1

2 F and x

g

�1

1

2

2 F

g

2

g

�1

1

. Note that x

g

�1

1

1

is in
ident with both x

g

�1

1

2

and the element y 2 F of type typ(x

g

�1

1

2

). The

subspa
es y and x

g

�1

1

2

of V are isometri
 so by Witt's theorem applied to

x

g

�1

1

1

if typ(x

1

) > typ(x

2

), resp. (x

g

�1

1

1

)

?

if typ(x

1

) < typ(x

2

) there exists an
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element of SO

n+1

(F; f) stabilizing x

g

�1

1

1

that maps x

g

�1

1

2

onto y. Indu
tion

on jJ j shows that SO

n+1

(F; f) a
ts 
ag-transitively on �

F

n

(F; f). �

Proof of Theorem 4: Let U be the three-dimensional spa
e of the 
ag

F . Noti
e that, as U is anisotropi
, any 
y
le 
onsisting of elements of U is

null-homotopi
. If p and q are points of �

F

m+n�1

(R; f), then p

?

\ q

?

\ U


ontains an anisotropi
 one-dimensional subspa
e r 
ollinear to both p and q.

Therefore the diameter of �

F

m+n�1

(R; f) is two. The argument of Lemma 3.1

implies that it suÆ
es to de
ompose triangles, quadrangles and pentagons

in the 
ollinearity graph of �

F

m+n�1

(R; f). Pentagons de
ompose as for

any point p and any line l there exists a point q in p

?

\ l 
ollinear to

p. A quadrangle a, b, 
, d de
omposes by the following argument. Let

p

ab

be a point 
ontained in a

?

\ b

?

\ U . Similarly, de�ne p

b


, p


d

, p

ad

.

Certainly, the quadrangle p

ab

, p

b


, p


d

, p

ad

is null-homotopi
. Therefore we

have de
omposed the original quadrangle into a null-homotopi
 quadrangle

and a number of triangles. A triangle is de
omposed in exa
tly the same

way as a quadrangle. �

Tits' Lemma 4.2 together with Theorems 3 and 4 immediately implies that

SO

R

(m;n) is the universal 
ompletion of the amalgam of maximal paraboli
s

in SO

R

(m;n) with respe
t to some maximal 
ag of �

F

m+n�1

(R; f). Theorem

6 follows from that observation by a standard indu
tion argument using the

residual 
onne
tedness of �

F

m+n�1

(R; f) and the simple 
onne
tedness of all

residues of �

F

m+n�1

(R; f) as in the proof of Theorem 1 of [5℄.
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