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Abstra
t

We study 
omplex 
ommutative Bana
h algebras, and more gener-

ally 
ontinuous inverse algebras, in whi
h the holomorphi
 fun
tions of

a �xed n-tuple of elements are dense. In parti
ular, we 
hara
terize the


ompa
t subsets of C

n

whi
h appear as joint spe
tra of su
h n-tuples.

The 
hara
terization is 
ompared to several established notions of holo-

morphi
 
onvexity by means of approximation 
onditions.
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Introdu
tion

By a 
lassi
 result, the joint spe
tra of topologi
ally generating n-tuples in


omplex 
ommutative Bana
h algebras are exa
tly the polynomially 
onvex


ompa
t subsets of C

n

. The prin
ipal result of this paper is a similar 
har-

a
terization of the joint spe
tra of holomorphi
ally generating n-tuples in


omplex 
ommutative Bana
h algebras. Here holomorphi
 generation refers

to the holomorphi
 fun
tional 
al
ulus, whi
h asso
iates with every n-tuple

a 2 A

n

in a 
omplex 
ommutative Bana
h algebra A a 
ontinuous algebra

homomorphism �

a

: O(Sp(a)) ! A, where O(Sp(a)) denotes the algebra of

germs of holomorphi
 fun
tions near the joint spe
trum Sp(a) in its natural

indu
tive limit topology. The tuple a is said to generate A holomorphi
ally

if the image of �

a

is dense in A. We �nd (7.2 and 7.3) that a 
ompa
t subset

K � C

n

is the joint spe
trum of a holomorphi
ally generating n-tuple in a


omplex 
ommutative Bana
h algebra if and only if every homomorphism

from O(K) into C is evaluation in a point of K. A 
ompa
t subset of a

Stein manifold with this property is 
alled auto-spe
tral.
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Given a holomorphi
ally generating n-tuple a 2 A

n

, one may strengthen

the hypotheses by assuming that 
ertain subalgebras B � O(Sp(a)) already

have dense image under �

a

. This situation is interesting in its own right.

Moreover, it helps to relate auto-spe
trality to other holomorphi
 
onvexity


onditions (7.4). If B 
onsists of the germs of holomorphi
 fun
tions de-

�ned in a �xed open neighbourhood U � C

n

of Sp(a) then �

a

(B) is dense

in A if and only if Sp(a) is holomorphi
ally 
onvex in U . Similarly, if B


onsists of the germs of holomorphi
 fun
tions de�ned in holomorphi
ally


onvex open neighbourhoods of Sp(a) then �

a

(B) is dense in A if and only

if Sp(a) is a Stein 
ompa
tum, i.e. it has a neighbourhood basis 
onsist-

ing of holomorphi
ally 
onvex open sets. Finally, let B � O(Sp(a)) be the

algebra of germs of quotients of holomorphi
 fun
tions de�ned in a �xed

open neighbourhood U � C

n

of Sp(a) su
h that the denominator does not

vanish anywhere in Sp(a). Then �

a

(B) is dense in A if and only if Sp(a)

is meromorphi
ally 
onvex in U . In fa
t, 
ompa
t subsets of a Stein mani-

fold X whi
h are holomorphi
ally 
onvex with respe
t to some open neigh-

bourhood 
an be 
hara
terized among the auto-spe
tral subsets of X by a


ertain approximation property (4.5). A similar 
hara
terization holds for

Stein 
ompa
ta (5.4) and for meromorphi
ally 
onvex 
ompa
ta (6.12).

Se
tion 1 provides several important tools, and Se
tion 2 introdu
es auto-

spe
tral 
ompa
ta. Se
tion 3 
ontains the dire
t proof that rationally 
onvex


ompa
t subsets of C

n

are auto-spe
tral. The three middle se
tions 4 to 6

treat holomorphi
 
onvexity, Stein 
ompa
ta, and meromorphi
 
onvexity,

respe
tively. The �nal Se
tion 7 applies all this material to the theory of

Bana
h algebras.

As the polynomials are 
ontained in O(Sp(a)), every n-tuple whi
h gen-

erates A in the usual sense generates A holomorphi
ally. Therefore, we

are 
onsidering a wider 
lass of algebras, and polynomially 
onvex 
om-

pa
t subsets of C

n

are examples of auto-spe
tral sets. The main bene�t of

the 
on
ept of holomorphi
 generation, however, lies in the following ad-

vantage of O(Sp(a)) over the algebra of polynomials. Even if O(Sp(a)) is

not a Bana
h algebra, it is a 
omplete lo
ally 
onvex algebra with open

unit group and 
ontinuous inversion. Lo
ally 
onvex algebras with these

properties are 
alled 
omplete 
ontinuous inverse algebras. Large parts of

the theory of Bana
h algebras 
an be generalized to these algebras, and in

fa
t they form a more natural 
lass than Bana
h algebras for many ques-

tions, in
luding those 
onsidered here. Continuous inverse algebras were

introdu
ed by Waelbroe
k [45℄. They play a role in non-
ommutative geo-

metry, in parti
ular in K-theory [8, 10, 12, 35℄, and in the theory of pseudo-

di�erential operators [21℄. Currently, they are attra
ting attention as the

natural framework for Lie groups and algebras of in�nite dimension [20℄.

They appear as 
oordinate algebras in root-graded lo
ally 
onvex Lie al-

gebras [33℄. Their role in the theory of Bana
h algebras is related to the

fa
t that every 
omplex 
ommutative Bana
h algebra A is \sandwi
hed", for
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every 
hoi
e of an n-tuple a 2 A

n

, between an algebra of holomorphi
 germs

and an algebra of 
ontinuous fun
tions by the fun
tional 
al
ulus homomor-

phism �

a

: O(Sp(a))! A and the Gelfand homomorphism 


A

: A! C(�

A

).

If a 2 A

n

holomorphi
ally generates A then the Gelfand spe
trum �

A

is

naturally homeomorphi
 to Sp(a) � C

n

. Under this homeomorphism, the


omposition 


A

Æ �

a

: O(Sp(a))! A! C(�

A

) 
orresponds to the restri
tion

map O(Sp(a))! C(Sp(a)).

This observation 
ould be applied in the theory of 
entral extensions

of in�nite-dimensional Lie groups. Every 
omplete 
ommutative 
ontinu-

ous inverse algebra A over C gives rise to a universal di�erential module

d : A ! 


1

(A) and a natural universal period homomorphism per: A

�

!

HC

1

(A); a 7! [a

�1

da℄, where HC

1

(A)

:

= 


1

(A)=im(d) is the �rst 
y
li


homology spa
e of A. Note that the period homomorphism fa
tors through

�

0

(A)

�

=

A

�

= exp(A), whi
h is naturally isomorphi
 to the �rst

�

Ce
h 
o-

homology group of �

A

be
ause the analogue of the Arens{Royden Theorem


an be proved for 
ontinuous inverse algebras [4℄. If im(per) is dis
rete

then the identity 
omponent of SL

m

(A) has a universal 
entral extension

for every m 2 N. This 
ondition is satis�ed in all examples for whi
h it

has been 
he
ked, whi
h is diÆ
ult be
ause it depends on detailed under-

standing of HC

1

(A). The examples in
lude 
ommutative C

�

-algebras, for

whi
h the universal di�erential module vanishes (Maier [29℄), the algebra of

smooth fun
tions on a 
ompa
t manifold (Maier and Neeb [30℄), and the

algebra of 
ompa
tly supported smooth fun
tions on a non-
ompa
t mani-

fold (Neeb [32℄). In the light of the present paper, it would be interesting to

de
ide whether the image of the universal period homomorphism of O(K)

is dis
rete for a 
ompa
t subset K � C

n

, at least if K satis�es one of the

additional 
onditions studied here. As a �rst step, Neeb and Wagemann [34℄

have re
ently proved that the di�erential module of germs of holomorphi


1-forms in K is universal for O(K).

1 The algebras O(K) and A(K)

A 
ontinuous inverse algebra is a lo
ally 
onvex unital algebra A over C

su
h that the group A

�

of invertible elements is open in A and inversion

is 
ontinuous. We will usually assume that A is 
ommutative. Then the

Gelfand spe
trum of A is the set �

A

of (unital) algebra homomorphisms

from A onto C , whi
h are automati
ally 
ontinuous. Under the topology of

pointwise 
onvergen
e on A, the Gelfand spe
trum is a 
ompa
t Hausdor�

spa
e, and a Gelfand Theory 
an be developed as in the 
ase of Bana
h

algebras [6℄.

We asso
iate several algebras with ea
h 
ompa
t subset K of a se
ond


ountable 
omplex analyti
 manifoldX. (We will always ta
itly assume that

all 
onne
ted 
omponents of a manifold have the same dimension.) The al-

3



gebra O(K) is the algebra of germs inK of holomorphi
 fun
tions de�ned in

open neighbourhoods of K in X. We topologize O(K) as the lo
ally 
onvex

dire
t limit of the Fr�e
het algebras O(U) of holomorphi
 fun
tions in U with

the 
ompa
t-open topology (or, equivalently, of the Bana
h algebras O

1

(U)

of bounded holomorphi
 fun
tions with the supremum norm), where U varies

over the open neighbourhoods of K in X. In this topology, O(K) is a 
om-

plete 
ontinuous inverse Hausdor� algebra. Indeed, we may 
hoose a met-

ri
 d on X 
ompatible with the topology and 
onsider O(K) as the lo
ally


onvex dire
t limit of the Bana
h algebras O

1

(U

n

), where U

n

is the union

of those 
onne
ted 
omponents of

�

x 2 X; d(x;K) <

1

n

	

whi
h meet K. In

this dire
ted system, the 
onne
ting restri
tion maps are inje
tive by the

Identity Theorem. A

ording to Dierolf and Wengenroth [13℄, a lo
ally 
on-

vex dire
t limit of a sequen
e of normed algebras with inje
tive 
onne
ting

maps is a lo
ally m-
onvex algebra. In parti
ular, inversion in O(K) is


ontinuous on its domain (Mi
hael [31, 2.8℄). Moreover, the Arzela{As
oli

Theorem (see, for instan
e, Dugundji [15, XII.6.4℄) entails that almost all


onne
ting maps in the above dire
ted system are 
ompa
t. A lo
ally 
onvex

dire
t limit of a sequen
e of Bana
h spa
es with 
ompa
t inje
tive 
onne
t-

ing maps is 
alled a Silva spa
e, and these spa
es are 
omplete Hausdor�

spa
es (see Floret [17, x 7℄). The spe
trum of an element f 2 O(K) is the

image of K under any representative of f , for whi
h we just write f(K). In

parti
ular, the spe
tral radius r in O(K) is given by r(f) = kf j

K

k

1

. Sin
e

the 
ompositions of r with the limit maps are 
ontinuous, we �nd that r is

a 
ontinuous semi-norm on O(K). We 
on
lude that the unit group O(K)

�

is open in O(K). Further details of these arguments as well as a general-

ization to algebras of germs with in�nite-dimensional domain and range 
an

be found in [5℄.

Three more algebras asso
iated to K � X are 
onstru
ted as follows.

The restri
tion of an element of O(K) to K is a 
ontinuous 
omplex-valued

fun
tion on K. We obtain a Bana
h algebra A(K) � C(K) as the 
losure

of the image of the restri
tion homomorphism O(K)! C(K). We de�ne a


omplete 
ontinuous inverse algebra O

X

(K) � O(K) as the 
losure of the

image of the germ map O(X) ! O(K), and a Bana
h algebra A

X

(K) �

A(K) as the 
losure of the image of the restri
tion map O(X)! A(K).

Between the subalgebras of C(K) obtained from these algebras by re-

stri
tion, we have the in
lusions

O(X)j

K

� O

X

(K)j

K

�

(

O(K)j

K

A

X

(K)

)

� A(K) � C(K):

All these algebras are di�erent if X = C and K is the annulus

K =

�

� 2 C ;

1

2

� j�j � 1

	

:

Indeed, an element f 2 O

X

(K)j

K

n O(X)j

K

is de�ned by f(�) = (� � 2)

�1

.

All elements g 2 A

X

(K) satisfy

H

j�j=1

g(�) d� = 0, so that we �nd a fun
tion
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g 2 O(K)j

K

nA

X

(K) by setting g(�) = �

�1

. Sin
e

P

1

k=1

1

k

2


os kt =

(t��)

2

4

�

�

2

12

for all t 2 [0; 2�℄, the fun
tion

h : K �! C ; � 7�!

1

X

k=1

1

k

2

�

k

is an element of A

X

(K) whi
h is not real-di�erentiable on the unit 
ir
le and

hen
e does not belong to O(K)j

K

. The fun
tion g+h belongs to A(K), but

not to O(K)j

K

[A

X

(K), and A(K) 6= C(K) be
ause the elements of A(K)

are holomorphi
 in the interior of K.

1.1 Remark. For a 
ompa
t subset K of a 
omplex analyti
 manifold, the

algebra of 
ontinuous 
omplex-valued fun
tions onK whi
h are holomorphi


in the interior of K is another interesting 
losed subalgebra of C(K). It is

also sometimes denoted by A(K). This algebra and A(K) in our sense


oin
ide for simple K, for instan
e if K is 
onvex, but they are di�erent

in general. A (topologi
ally 
ompli
ated) 
ompa
t subset of C for whi
h

this o

urs is des
ribed by Gamelin [19, Se
tion II.1℄. We illustrate this

phenomenon by three 
ompa
t subsets of C

2

whi
h are in
reasingly 
omplex

and 
onvin
ing. The �rst (and rather trivial) example is provided by K

:

=

�

� 2 C

2

; j�

1

j < 1; �

2

= 0

	

. Se
ondly, ifK � C

2

is the unit sphere then every

element of O(K) extends to a holomorphi
 fun
tion on a neighbourhood

of the unit ball (see, for instan
e, Range [36, II.1.6℄). Therefore, every

f 2 A(K) satis�es

H

j�

1

j=1

f(�

1

; 0) d�

1

= 0. While these two examples are

\thin", the third is a 
ompa
t subset K � C

2

whi
h is the 
losure of its

interior. De�ne

K

1

:

=

�

� 2 C

2

; k�k

2

� 3; j�

1

j � 1

	

;

K

2

:

=

�

� 2 C

2

; k� � (4; 0)k

2

� 1

	

;

K

3

:

=

�

� 2 C

2

; 5 � k�k

2

� 6

	

; and

K

:

= K

1

[K

2

[K

3

:

Then K

1

\ K

2

= f(3; 0)g and K

2

\ K

3

= f(5; 0)g, while K

1

and K

3

are

disjoint. The interior K

Æ

is the disjoint union of K

Æ

1

, K

Æ

2

, and K

Æ

3

. Every

element ofO(K) is the germ of a holomorphi
 fun
tion de�ned in a 
onne
ted

open neighbourhood of K, and hen
e of a holomorphi
 fun
tion de�ned in

an open neighbourhood of the 
ompa
t ball with 
entre 0 and radius 6 by

the extension phenomenon quoted above. Therefore, every f 2 A(K) satis-

�es

H

j�

1

j=2

f(�

1

; 0) d�

1

= 0. Thus an element of ff 2 C(K); f j

K

Æ

2 O(K

Æ

)g

whi
h does not belong to A(K) is de�ned by � 7!

1

�

1

on K

1

and � 7!

1

3

on

K

2

[K

3

. A slightly more 
ompli
ated example for whi
h the interior of K

is even a Stein domain is des
ribed by Range [36, VII.2.2℄.
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Conditions on 
ompa
t subsets K � C

n

under whi
h A(K) equals the

algebra of 
ontinuous 
omplex-valued fun
tions on K whi
h are holomor-

phi
 in the interior of K have been studied extensively; see Gamelin [19,

Se
tion VIII.8℄ for n = 1 and Range [36, VII.2.1℄ for n > 1.

For the following lemma, re
all the notion of the joint spe
trum of an

n-tuple a = (a

1

; : : : ; a

n

) in a 
ommutative 
ontinuous inverse algebra A

over C . This is the 
ompa
t subset of C

n

de�ned as

Sp

A

(a

1

; : : : ; a

n

)

:

=

��

�(a

1

); : : : ; �(a

n

)

�

; � 2 �

A

	

:

As in the 
ase of Bana
h algebras, the joint spe
trum of a 2 A

n

is the set of

� 2 C

n

su
h that the ideal of A generated by �

1

� a

1

; : : : ; �

n

� a

n

is proper.

The 
ompa
t sets in whi
h we are most interested are joint spe
tra of n-

tuples in 
ontinuous inverse algebras, so they are subsets of C

n

. In Se
tion 4,

however, we will also be led to 
onsider more general ambient manifolds,

namely, envelopes of holomorphy of open subsets of C

n

. The natural 
lass

of manifolds for our theory is the 
lass of Stein manifolds. These 
an be

de�ned as those 
omplex analyti
 manifoldsX whi
h admit a biholomorphi


embedding � : X ,! C

n

onto a 
losed submanifold of some spa
e C

n

. Their

intrinsi
 
hara
terization will be re
alled in Se
tion 4. Their most important

property for us is the existen
e of an open neighbourhood U � C

n

of �(X)

and of a holomorphi
 map � : U ! X whi
h is a retra
tion for �, i.e. whi
h

satis�es � Æ � = id

X

. This fa
t is due to Do
quier and Grauert [14℄. A proof


an also be found in the monograph by Gunning and Rossi [23, VIII.C.8℄.

In fa
t, a Stein manifold is a holomorphi
 neighbourhood retra
t in any


omplex manifold in whi
h it is embedded as a 
losed submanifold, see

Siu [42, Corollary 1℄.

Here, Stein manifolds give rise to another pair of 
ontinuous inverse

algebras, whi
h will be used in Se
tion 5. Let K be a 
ompa
t subset of a

Stein manifold. The 
losure in O(K) of the algebra of germs of holomorphi


fun
tions de�ned in Stein open neighbourhoods of K will be 
alled O

St

(K).

The 
losure of its image under the restri
tion map O(K) ! A(K) will be


alled A

St

(K).

1.2 Lemma (Spe
tra of O(K) and of A(K)). Let X be a se
ond 
ount-

able 
omplex analyti
 manifold, and let K � X be a 
ompa
t subset. Let

A � O(K) be a 
losed unital subalgebra, and set B

:

= Aj

K

� C(K), the 
lo-

sure of the image of A under the restri
tion homomorphism O(K)! C(K).

Then the spe
tral radii in A and in B are given by the supremum norm

on K. The restri
tion map f 7! f j

K

: A ! B indu
es a homeomorphism

from �

B

onto �

A

. In parti
ular, if f 2 A

n

then Sp

A

(f) = Sp

B

(f j

K

).

In the important spe
ial 
ase that A = O(K), this result is due to Harvey

and Wells [24, 2.4℄. It often allows us to swit
h between A and B. The
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algebra A is useful be
ause it 
onsists of germs of holomorphi
 fun
tions.

The algebra B is only de�ned in terms of A, but the des
ription of its

topology is more 
on
rete, and it has the advantage of being a Bana
h

algebra.

Proof. The spe
trum of an element f 2 C(K) is f(K). Similarly, if f is

a holomorphi
 fun
tion de�ned in an open neighbourhood of K in X then

the germ

~

f of f in K satis�es Sp

O(K)

(

~

f) = f(K). Hen
e the spe
tral radii

in C(K) and in O(K) are the supremum norm on K. In a Bana
h algebra,

the spe
tral radius of an element of a 
losed subalgebra with respe
t to

that subalgebra equals the spe
tral radius with respe
t to the whole algebra

(see, for instan
e, Rudin [40, 10.18℄). In a 
ontinuous inverse algebra, the


orresponding fa
t 
an be proved in a similar way [3, 2.3℄. This proves the

assertion about spe
tral radii in A and in B.

The map �

�

: �

B

! �

A

indu
ed by the restri
tion map � : A ! B is


ontinuous, and it is inje
tive be
ause �(A) is dense in B. Sin
e 
hara
ters

of 
ontinuous inverse algebras are majorized by the spe
tral radius, every

element � 2 �

A

fa
tors through � and indu
es a 
hara
ter of B. This proves

that �

�

is surje
tive, and it is a homeomorphism be
ause the spe
tra are


ompa
t.

Finally, we 
hoose f 2 A

n

and 
al
ulate

Sp

A

(f) =

�

�

�n

(f); � 2 �

A

	

=

�

�

�n

(f j

K

); � 2 �

B

	

= Sp

B

(f j

K

):

(Here �

�n

(f)

:

= (�(f

1

); : : : ; �(f

n

)).) �

1.3 Remark. In the situation of Lemma 1.2, note that B � C(K) is

a realization of the 
ompleted quotient of A � O(K) with respe
t to the

spe
tral radius seminorm, or, equivalently, a realization of the 
losure of the

image of A under the Gelfand homomorphism into C(�

A

). In parti
ular, the

set fev

�

; � 2 �Kg � �

B

of evaluations in boundary points of K 
ontains

the

�

Silov boundary of B.

Under mild 
ompleteness assumptions, a 
ommutative 
ontinuous inverse

algebra A over C admits an n-variable holomorphi
 fun
tional 
al
ulus, of

whi
h we re
all the main statements. The appropriate 
ompleteness hy-

pothesis is Ma
key-
ompleteness, whi
h means that the Riemann integral

R

1

0


(t) dt exists for every smooth 
urve 
 : [0; 1℄ ! A. This is equivalent to

the 
onvergen
e of all members of a 
ertain 
lass of Cau
hy sequen
es. A


onvenient and 
omprehensive referen
e for this 
on
ept is Se
tion 2 of the

monograph by Kriegl and Mi
hor [28℄.

In the situation of the pre
eding paragraph, 
hoose an n-tuple a 2 A

n

.

The holomorphi
 fun
tional 
al
ulus provides a 
ontinuous homomorphism

of unital algebras f 7! f [a℄ : O(Sp(a)) ! A whi
h maps the germ of the

j-th 
oordinate fun
tion � 7! �

j

: C

n

! C to a

j

. For Bana
h algebras, the

7




onstru
tion is due to

�

Silov [41℄ and Arens and Calder�on [1℄. Bourbaki [11,

I x 4℄ presents an alternative approa
h. For 
omplete 
ontinuous inverse

algebras, the holomorphi
 fun
tional 
al
ulus is due to Waelbroe
k, who

developed an early variant in [44℄ and sket
hed the modern version in [46℄

and in [47℄. A detailed a

ount 
an be found in [6℄.

A property of the holomorphi
 fun
tional 
al
ulus whi
h is stressed by

Waelbroe
k [47℄ and whi
h we will use several times is its naturality with

respe
t to homomorphisms ' : A ! B between Ma
key-
omplete 
ommu-

tative 
ontinuous inverse algebras over C . For an n-tuple a 2 A

n

and a

holomorphi
 germ f 2 O(Sp

A

(a)), this means that '(f [a℄) = f ['

�n

(a)℄.

(Note that the right-hand side is de�ned be
ause Sp

B

�

'

�n

(a)

�

� Sp

A

(a).)

Sin
e the holomorphi
 fun
tional 
al
ulus in the algebra C is given by ap-

pli
ation of the fun
tion, a spe
ial 
ase of naturality is the observation that

�(f [a℄) = f

�

�

�n

(a)

�

holds for ea
h � 2 �

A

.

1.4 Lemma (Fun
tional 
al
ulus in O(K) and in A(K)). Assume

that A is either a 
losed subalgebra of C(K) for some 
ompa
t Hausdor�

spa
e K, or a 
losed subalgebra of O(K) for some 
ompa
t subset K of a

se
ond 
ountable 
omplex analyti
 manifold X. Let a 2 A

n

, let U � C

n

be

an open neighbourhood of Sp

A

(a), and let f 2 O(U). Then f [a℄ = f Æ a.

Proof. In both 
ases, aj

K

is a 
ontinuous map from K into C

n

. For ea
h

x 2 K, the evaluation homomorphism ev

x

: A! C ; g 7! g(x) belongs to �

A

.

Hen
e a(K) = fev

�n

x

(a); x 2 Kg � Sp

A

(a), so that we 
an form f Æ a.

Assume that A is a 
losed subalgebra of C(K) for some 
ompa
t Haus-

dor� spa
e K. For any x 2 K, naturality of the holomorphi
 fun
tional


al
ulus yields

f [a℄(x) = ev

x

(f [a℄) = f

�

ev

�n

x

(a)

�

= (f Æ a)(x):

(In parti
ular, the 
omposition f Æ a is an element of A.)

Assume that A is a 
losed subalgebra of O(K) for some 
ompa
t sub-

set K of a 
omplex analyti
 manifold X. Naturality of the holomorphi


fun
tional 
al
ulus with respe
t to the in
lusion map � : A ,! O(K) means

that �(f [a℄) = f [�

�n

(a)℄, and it implies that we may assume that A = O(K).

First 
onsider the 
ase that K = f�g, a single point. Lemma 1.2 implies that

�

O(K)

= fev

�

g. Hen
e Sp

O(K)

(a) = fa(�)g, and we may assume that U is

an open polydis
 in C

n

. If f is a 
oordinate fun
tion, the result is a funda-

mental property of the holomorphi
 fun
tional 
al
ulus. Sin
e every element

of O(U) has a power series expansion around the 
entre of U whi
h 
onverges

on U , the 
oordinate fun
tions generate a dense subalgebra of O(U), and

the result extends to all f 2 O(U). In the 
ase that K 
onsists of more than

one point, de�ne a 
ontinuous homomorphism '

�

: O(K)! O(f�g) for ea
h

� 2 K by assigning to f 2 O(K) its germ in �. By naturality,

'

�

(f [a℄) = f

�

'

�n

�

(a)

�

= f Æ

�

'

�n

�

(a)

�

= '

�

(f Æ a):

8



Sin
e f [a℄ and f Æ a have the same germ at every � 2 K, we 
on
lude that

they are equal. (This argument was adapted from Waelbroe
k [47, 5.2℄.) �

2 Auto-spe
tral 
ompa
ta

This se
tion introdu
es the important 
on
ept of an auto-spe
tral 
ompa
t

subset of a Stein manifold. The properties of these manifolds whi
h are most

relevant for our purposes were brie
y reviewed before Lemma 1.2.

2.1 Lemma. Let X be a Stein manifold, let K � X be 
ompa
t, and let A

be a 
losed unital subalgebra of O(K) with O

X

(K) � A. Choose a 
losed

(biholomorphi
) embedding � : X ,! C

n

, and let ~� 2 A

n

be the germ of �.

Then Sp

A

(~�) = �(K) if and only if every 
hara
ter of A is evaluation in a

point of K.

Proof. If �

A


onsists of evaluations in points of K then Sp

A

(~�) = �(K).

Conversely, assume that this equation holds, and 
hoose � 2 �

A

. Choose

an open neighbourhood U � C

n

of �(X) and a holomorphi
 map � : U ! X

su
h that � Æ � = id

X

. Let � 2 K be de�ned by �(�) = �

�n

(~�). Let f 2 A.

Then

~

f

:

= f Æ� 2 O(�(K)) = O(Sp

A

(~�)), and

~

f [~�℄ =

~

f Æ� = f by Lemma 1.4.

Hen
e

�(f) = �

�

~

f [~�℄

�

=

~

f

�

�

�n

(~�)

�

=

~

f(�(�)) = f(�)

by naturality of the holomorphi
 fun
tional 
al
ulus. We 
on
lude that � is

evaluation in � 2 K. �

Note that we do not need the theory of Stein manifolds if we 
ontent our-

selves with the 
ase that X = C

n

and � = id

C

n

. The latter remark applies

to large parts of the present paper. Also note that in this 
ase, the hypo-

thesis O

X

(K) � A just means that A 
ontains the germs of the 
oordinate

fun
tions.

2.2 De�nition. Let X be a Stein manifold, and 
hoose a 
losed embedding

� : X ,! C

n

. A 
ompa
t subset K � X is 
alled auto-spe
tral if the following


onditions are satis�ed, all of whi
h are equivalent by Lemmas 1.2 and 2.1.

(i) Every 
hara
ter of O(K) is evaluation in a point of K.

(ii) Sp

O(K)

(~�) = �(K).

(iii) Every 
hara
ter of A(K) is evaluation in a point of K.

(iv) Sp

A(K)

(�j

K

) = �(K).
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Auto-spe
tral 
ompa
t sets seem to have been introdu
ed byWells [48℄ under

the name of \holomorphi
ally 
onvex 
ompa
t sets". Some of their basi


properties had already been obtained by Rossi [37℄. In view of a result

due to Harvey and Wells [24, 3.4℄, auto-spe
tral sets are what Grauert and

Remmert [22, IV.1.1℄ 
all 
ompa
t Stein subsets.

It is easy to des
ribe the e�e
t of repla
ing O(K) by a 
losed subalgebra

in the pre
eding de�nition.

2.3 Lemma. Let X be a Stein manifold, let K � X be 
ompa
t, and

let A � O(K) be a 
losed unital subalgebra with O

X

(K) � A. Then the

following 
onditions are equivalent:

(i) Every 
hara
ter of A is evaluation in a point of K.

(ii) K is auto-spe
tral, and A = O(K).

(iii) K is auto-spe
tral, and Aj

K

= A(K).

Proof. Assume that 
ondition (i) holds. Choose a 
losed embedding

� : X ,! C

n

, an open neighbourhood U � C

n

of �(X), and a holomorphi


retra
tion � : U ! X for �. Then K is auto-spe
tral be
ause

�(K) � Sp

O(K)

(~�) � Sp

A

(~�) = �(K):

For any f 2 O(K), we 
an form the element (f Æ �)[~�℄ 2 A, and Lemma 1.4

shows that this element is equal to f . Thus we have proved 
ondition (ii),

whi
h in turn trivially implies 
ondition (iii). Finally, 
ondition (iii) im-

plies (i) by Lemma 1.2. �

Let X be a Stein manifold. For K � U � X with K 
ompa
t and U

open, Corollary 4.5 will show that K is holomorphi
ally 
onvex in U if and

only if K is auto-spe
tral and O

U

(K) = O(K). In Proposition 5.4, we

will see that a 
ompa
t subset K � X is a Stein 
ompa
tum if and only

if it is auto-spe
tral and the restri
tions of fun
tions de�ned in Stein open

neighbourhoods of K form a dense subset of A(K).

Auto-spe
trality is a 
onvexity 
ondition in the sense of the following

proposition and its 
orollary.

2.4 Proposition. The interse
tion of any family of auto-spe
tral subsets

of a Stein manifold is again auto-spe
tral.

Proof. Let (K

j

)

j2J

be a family of auto-spe
tral subsets of a Stein mani-

fold X, and set K

:

=

T

j2J

K

j

. Choose a 
losed embedding � : X ,! C

n

. For

ea
h j 2 J , 
onsider the natural map from O(K

j

) into O(K). This yields

the middle in
lusion in

�(K) � Sp

O(K)

(~�) � Sp

O(K

j

)

(~�) = �(K

j

):

We 
on
lude that Sp

O(K)

(~�) = �(K). �
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2.5 Corollary. Every 
ompa
t subsetK of a Stein manifoldX is 
ontained

in a smallest auto-spe
tral subset of X, the auto-spe
tral hull of K in X.

Proof. This follows from the pre
eding proposition, provided that K is


ontained in an auto-spe
tral subset of X. Now Corollary 4.5 will yield that

the holomorphi
ally 
onvex hull of K in X is auto-spe
tral. (The argument

is easier for the 
ase that X = C

n

. Indeed, Remark 3.3 and Proposition 3.5

below imply that all 
onvex 
ompa
t subsets of C

n

are auto-spe
tral.) �

Waelbroe
k [47, 5.2℄ de�ned auto-spe
tral subsets of C

n

under the name

of \analyti
 
ompa
t sets", and he essentially proved the following proposi-

tion about them. As was re
alled after Remark 1.3, Ma
key-
ompleteness

is the weak 
ompleteness assumption used in the 
onstru
tion of the holo-

morphi
 fun
tional 
al
ulus.

2.6 Proposition. Let A be a Ma
key-
omplete 
ommutative 
ontinu-

ous inverse algebra over C , let a 2 A

n

, and let K � C

n

be an auto-

spe
tral 
ompa
t set. Then a 
ontinuous homomorphism ' : O(K) ! A

with '

�n

�

e

id

C

n

�

= a exists if and only if Sp(a) � K. If this is the 
ase then '

is uniquely determined by the equation '(f) = f [a℄ for all f 2 O(K).

Proof. Waelbroe
k's proof for Bana
h algebras [47, 5.2℄ essentially applies

to the present situation. If su
h a homomorphism ' exists then Sp

A

(a) =

Sp

A

�

'

�n

�

e

id

C

n

��

� Sp

O(K)

�

e

id

C

n

�

= K. Moreover, all f 2 O(K) satisfy

'(f) = '

�

f

h

e

id

C

n

i�

= f

h

'

�n

�

e

id

C

n

�i

= f [a℄

by Lemma 1.4 and naturality of the holomorphi
 fun
tional 
al
ulus. Con-

versely, if Sp

A

(a) � K then ' : f 7! f [a℄ is a 
ontinuous homomorphism

from O(K) into A whi
h maps

e

id

C

n

to a. �

2.7 Corollary (Uniqueness of the holomorphi
 fun
tional 
al
ulus).

Let A be a Ma
key-
omplete 
ommutative 
ontinuous inverse algebra over C ,

let a 2 A

n

, and let K � C

n

be the auto-spe
tral hull of Sp(a) in C

n

. Then

f 7! f [a℄ is the unique 
ontinuous homomorphism from O(K) into A whi
h

maps

e

id

C

n

to a. �

2.8 Remark. The 
orollary is the uniqueness statement for the restri
tion

of the fun
tional 
al
ulus to fun
tions whi
h are holomorphi
 on a neighbour-

hood of the auto-spe
tral hull of the joint spe
trum. By 
ontrast, the full

holomorphi
 
al
ulus for holomorphi
 fun
tions de�ned in a neighbourhood

of the joint spe
trum is unique only under 
ertain additional 
onditions.

(One su
h 
ondition 
an be found in Bourbaki [11, I x 4℄, another 
ondition

is due to Zame [50℄.)
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In his original de�nition of the holomorphi
 fun
tional 
al
ulus [44℄,

Waelbroe
k only developed it for fun
tions whi
h are holomorphi
 on a

neighbourhood of the rationally 
onvex hull (see the following se
tion) of

what is now 
alled the joint spe
trum of an n-tuple. Sin
e rationally 
onvex


ompa
t subsets of C

n

are auto-spe
tral, Waelbroe
k thus a
hieved unique-

ness of his fun
tional 
al
ulus.

2.9 Proposition (Gelfand spe
trum and 
onne
ted 
omponents).

Let X be a se
ond 
ountable 
omplex analyti
 manifold, and let K � X be

a 
ompa
t subset. For ea
h 
losed subset L � K, let �

L

: O(K)! O(L) be

the restri
tion homomorphism. Then

�

O(K)

=

[

L2
omp(K)

�


 Æ �

L

; 
 2 �

O(L)

	

;

where 
omp(K) denotes the set of 
onne
ted 
omponents of K, and the

union is disjoint.

Proof. The key tool for the proof is the set of idempotent elements of O(K).

At ea
h point of K, the germ of an idempotent is either 1 or 0. Sin
e an

idempotent element indu
es a 
ontinuous fun
tion on K, its support is an

open and 
losed subset of K. Conversely, for ea
h open and 
losed subset

L � K, there is a unique idempotent e

L

2 O(K) with support L, whi
h is


onstru
ted in the following way. Choose disjoint open neighbourhoods U

of L and V of K n L in the ambient manifold X, and let e

L

2 O(K) be the

germ of the fun
tion whi
h is 1 on U and 0 on V . Note that e

L

only depends

on L and not on the 
hoi
e of the neighbourhoods U and V .

We �rst prove that the union in the proposition is disjoint. Let L

1

; L

2

�

K be di�erent 
onne
ted 
omponents, and 
hoose 


j

2 �

O(L

j

)

for j 2 f1; 2g.

In a 
ompa
t Hausdor� spa
e, the 
onne
ted 
omponent of a point p is the

interse
tion of the open and 
losed neighbourhoods of p (see Engelking [16,

6.1.23℄). By 
ompa
tness, there is an open and 
losed subset L � K su
h

that L

1

� L and L

2

\ L = ;. Now 


1

(�

L

1

(e

L

)) = 1 and 


2

(�

L

2

(e

L

)) = 0.

We 
on
lude that 


1

Æ �

L

1

6= 


2

Æ �

L

2

.

Let 
 2 �

O(K)

. We have to �nd a 
onne
ted 
omponent L � K and a


hara
ter 


0

2 �

O(L)

su
h that 
 = 


0

Æ �

L

. De�ne

S

:

=

�

L

0

� K; L

0

is open and 
losed in K, and 
(e

L

0

) = 1

	

:

If L

1

; L

2

2 S then 
(e

L

1

\L

2

) = 
(e

L

1

� e

L

2

) = 1, so that L

1

\ L

2

2 S.

Hen
e S is 
losed under �nite interse
tions. Sin
e ; 62 S, 
ompa
tness of K

implies that the interse
tion L

:

=

T

S is not empty. If L

0

� K is open and


losed then either L

0

2 S or K n L

0

2 S. This entails that L is 
onne
ted.

The restri
tion homomorphism �

L

maps O(K) onto O(L) be
ause every

neighbourhood of L 
ontains an open and 
losed subset of K.
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We 
laim that the kernel of �

L

is 
ontained in the kernel of 
. Indeed,

let f 2 O(U) for an open neighbourhood U � X of K su
h that the germ

~

f

of f in K satis�es �

L

(

~

f) = 0. Then f vanishes on a neighbourhood V of L.

There is an open and 
losed subset L

0

� K su
h that L � L

0

� V . Sin
e


(e

L

0

) = 1 and

~

f = (1�e

L

0

)

~

f , we �nd that 
(

~

f) = 0. This proves the 
laim.

We 
on
lude that there is an algebra homomorphism 


0

: O(L) ! C

whi
h satis�es 
 = 


0

Æ �

L

. �

2.10 Corollary. A 
ompa
t subset of a Stein manifold is auto-spe
tral if

and only if ea
h of its 
onne
ted 
omponents is auto-spe
tral.

Proof. If a 
ompa
t subset K of a Stein manifold X has only auto-spe
tral


onne
ted 
omponents then Proposition 2.9 shows that K is auto-spe
tral.

Conversely, let L � K be a 
onne
ted 
omponent whi
h is not auto-spe
tral.

Choose a 
losed embedding � : X ,! C

n

. Then �(L) is a proper subset of

L

0

:

= Sp

A(L)

(�j

L

). Sin
e A(L) does not 
ontain any non-trivial idempo-

tent, the

�

Silov Idempotent Theorem (see Bonsall and Dun
an [9, 21.5℄)

implies that �

A(L)

and hen
e L

0

are 
onne
ted. Hen
e L

0

is not 
ontained

in �(K). Sin
e Sp

A(K)

(�j

K

) 
ontains L

0

, it properly 
ontains �(K). We


on
lude that K is not auto-spe
tral. �

Zame [49, 3.4℄ gives a 
ompletely di�erent proof of this 
orollary in terms

of the 
ohomology of 
oherent analyti
 sheaves.

3 Rational 
onvexity

We introdu
e the 
on
ept of a rationally 
onvex 
ompa
t subset of C

n

. It

will be easy to prove that su
h a set is auto-spe
tral.

3.1 De�nition. Let P(C

n

) denote the algebra of 
omplex-valued polyno-

mial fun
tions on C

n

. De�ne the rationally 
onvex hull of a 
ompa
t subset

K � C

n

as

b

K

R(C

n

)

:

=

\

p2P(C

n

)

p

�1

�

p(K)

�

:

A 
ompa
t subset K � C

n

is 
alled rationally 
onvex if K =

b

K

R(C

n

)

.

Note that K 7!

b

K

R(C

n

)

is a hull operation in the sense that it preserves

in
lusion, that K �

b

K

R(C

n

)

, and that

b

K

R(C

n

)

is its own rationally 
onvex

hull.

3.2 Example. Every 
ompa
t subset of C is rationally 
onvex (use the

identity fun
tion).
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3.3 Remark. Using linear polynomials, we �nd that an aÆne 
omplex

hyperplane whi
h does not meet K does not meet

b

K

R(C

n

)

. Sin
e every

aÆne real hyperplane is the union of aÆne 
omplex hyperplanes, this entails

that

b

K

R(C

n

)

is 
ontained in the 
onvex hull of K. In parti
ular,

b

K

R(C

n

)

is


ompa
t, and every 
onvex 
ompa
t subset of C

n

is rationally 
onvex.

3.4 Example. For n � 2, the rationally 
onvex hull of the unit sphere

S � C

n

is the unit ball B � C

n

. To prove this, re
all that every element

of O(S) extends to an element of O(B) (see, for instan
e, Range [36, II.1.6℄).

Now suppose that � 2 B n

b

S

R(C

n

)

. Then there is a polynomial p 2 P(C

n

)

su
h that p(�) 62 p(S), and we may assume that p(�) = 0. The germ of

1

p

in S is an element of O(S) whi
h does not extend to an element of O(B),

whi
h is a 
ontradi
tion.

Note that the same extension phenomenon entails that S is not auto-

spe
tral.

3.5 Proposition. Every rationally 
onvex 
ompa
t subset of C

n

is auto-

spe
tral.

Proof. Let K � C

n

be a rationally 
onvex 
ompa
t subset. Choose � 2

C

n

n K. We have to show that � 62 Sp

O(K)

�

e

id

C

n

�

. There is a polynomial

p 2 P(C

n

) su
h that p(�) = 0 62 p(K). Expanding p at �, we �nd a

representation

p(�) =

X

k2N

0

n




k

(�

1

� �

1

)

k

1

� : : : � (�

n

� �

n

)

k

n

(� 2 C

n

)

with 
oeÆ
ients 


k

2 C

n

, where 


0

= 0. We rewrite this as

p(�) =

n

X

j=1

(�

j

� �

j

)q

j

(�) (� 2 C

n

)

with suitable polynomials q

j

2 P(C

n

). Set U

:

= C

n

n p

�1

(f0g), and de�ne

f

1

; : : : ; f

n

2 O(U) by f

j

:

= �

q

j

p

. Then all � 2 U satisfy

1 =

n

X

j=1

(�

j

� �

j

)f

j

(�):

This proves that the ideal of O(K) generated by the elements �

j

� �

j

is all

of O(K), so that � 62 Sp

O(K)

�

e

id

C

n

�

. �

4 Holomorphi
 
onvexity

This se
tion uses the envelope of holomorphy of an open subset U of a Stein

manifold in order to study the Gelfand spe
trum of A

U

(K), the 
losure

14



in C(K) of ff j

K

; f 2 O(U)g, for a 
ompa
t subset K � U . In parti
u-

lar, we show that K is auto-spe
tral if it is holomorphi
ally 
onvex in U ,

whi
h is a fundamental 
on
ept in 
omplex analysis. More pre
isely, the

holomorphi
ally 
onvex 
ompa
t subsets of U are 
hara
terized among the

auto-spe
tral 
ompa
t subsets of U by an approximation property.

4.1 Lemma (Evaluation homomorphisms). Let X be a se
ond 
ount-

able 
omplex analyti
 manifold, and let K � X be a 
ompa
t subset. Let

� : O(X)! A

X

(K) be the restri
tion map, and 
hoose a point � 2 X. Then

the evaluation homomorphism ev

�

: O(X)! C ; f 7! f(�) has the form �Æ�

for some 
hara
ter � 2 �

A

X

(K)

if and only if jf(�)j � kf j

K

k

1

holds for all

f 2 O(X).

The set of all these points,

b

K

O(X)

:

=

�

� 2 X; 8 f 2 O(X) : jf(�)j �







f j

K







1

	

;

is 
alled the holomorphi
ally 
onvex hull of K in X. For ea
h point � 2

b

K

O(X)

, there is a unique 
hara
ter eev

�

2 �

A

X

(K)

su
h that ev

�

= eev

�

Æ �.

Moreover, the map

� 7�! eev

�

:

b

K

O(X)

�! �

A

X

(K)

is 
ontinuous. For � 2 K and f 2 A

X

(K), we have eev

�

(f) = f(�).

Proof. If ev

�

= � Æ � for some � 2 �

A

X

(K)

then all f 2 O(X) satisfy

jf(�)j = j ev

�

(f)j =

�

�

�

�

f j

K

�

�

�

�







f j

K







1

:

Conversely, if jf(�)j � kf j

K

k

1

holds for all f 2 O(X) then ev

�

fa
tors

through �, and the indu
ed 
omplex homomorphism of im(�) � A

X

(K) is


ontinuous and hen
e extends to a 
hara
ter of A

X

(K). This 
hara
ter is

uniquely determined by ev

�

be
ause im(�) is a dense subalgebra of A

X

(K).

In order to prove that the map � 7! eev

�

:

b

K

O(X)

! �

A

X

(K)

is 
ontinuous,

we have to show that the map � 7! eev

�

(f) is 
ontinuous for every f 2

A

X

(K). It suÆ
es to take f from the dense subalgebra im(�). But if

f 2 O(X) then eev

�

(f j

K

) = f(�) depends 
ontinuously on �.

Choose � 2 K. Then eev

�

(f) = f(�) holds if f 2 im(�). By 
ontinuity,

this equation extends to all f 2 A

X

(K). �

The holomorphi
ally 
onvex hull

b

K

O(X)

is an important 
on
ept in 
om-

plex analysis. Note that it is a 
losed subset of X. If U � X is an open

subset with K � U then

b

K

O(U)

�

b

K

O(X)

. Moreover, if X is an open subset

of C

n

then

b

K

O(X)

is 
ontained in the 
onvex hull of K, as one sees by using

the fun
tions � 7! e

h�;�i

, where � 2 C

n

.
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4.2 Example. (a) Let K � U � C with K 
ompa
t and U open.

Then

b

K

O(U)

is the union of K with those bounded 
onne
ted 
omponents

of C nK whi
h are 
ontained in U . Indeed, let K

0

be this union. The Max-

imum Modulus Theorem (see Rudin [39, 10.24℄) implies that K

0

�

b

K

O(U)

.

Conversely, let � 2 U n K

0

, 
hoose disjoint open neighbourhoods V

1

of K

0

and V

2

of � in C , and let f 2 O(V

1

[V

2

) be the 
hara
teristi
 fun
tion of V

2

.

Sin
e C n U meets every bounded 
onne
ted 
omponent of C n (K

0

[ f�g),

Runge's Theorem [39, 13.6℄ yields a 
omplex rational fun
tion g with poles

only in C n U su
h that jf(�) � g(�)j <

1

2

for every � 2 K

0

[ f�g. Then

gj

U

2 O(U) satis�es jg(�)j >

1

2

> kgj

K

0

k

1

� kgj

K

k

1

, and we 
on
lude that

� 62

b

K

O(U)

.

(b) In higher dimensions, holomorphi
ally 
onvex hulls need not be 
om-

pa
t. For the 
lassi
 example, 
onsider the 
ompa
t unit polydis
 D

:

=

�

� 2 C

2

; j�

1

j; j�

2

j � 1

	

and let K

:

= f� 2 D; �

1

= 0 or j�

2

j = 1g. Then

every holomorphi
 fun
tion de�ned in an open neighbourhood of K extends

to a holomorphi
 fun
tion on an open neighbourhood of D (see, for example,

Range [36, II.1.1℄). In parti
ular, the set K is not auto-spe
tral.

For a 
onne
ted open neighbourhood U � C

2

of K, we 
laim that

b

K

O(U)

= U \ D. Indeed, the left-hand side is 
ontained in the right-hand

side be
ause D is 
onvex. The reverse in
lusion follows from the Maximum

Modulus Theorem (in its one-variable version, a
tually).

(
) Re
all that the polynomially 
onvex hull of a 
ompa
t subset K �

C

n

is the 
ompa
t set f� 2 C

n

; 8 p 2 P(C

n

) : jp(�)j � kpj

K

k

1

g. An open

subset U � C

n

is 
alled polynomially 
onvex if it 
ontains the polynomially


onvex hull of ea
h of its 
ompa
t subsets. For su
h an open subset U , the

polynomials are dense in O(U) (see Gunning and Rossi [23, I.F.9℄).

If K � U � C

n

with K 
ompa
t and U open and polynomially 
onvex

then

b

K

O(U)

is the polynomially 
onvex hull of K. Indeed, assume that

� 2 U belongs to the polynomially 
onvex hull of K, 
hoose f 2 O(U), and

let " > 0. Then there is a polynomial p 2 P(C

n

) su
h that jf(�)� p(�)j < "

and k(f � p)j

K

k

1

< ", when
e

jf(�)j < jp(�)j+ " �







pj

K







1

+ " <







f j

K







1

+ 2":

Thus jf(�)j � kf j

K

k

1

, and we 
on
lude that � 2

b

K

O(U)

.

(d) Every 
ompa
t subsetK � R

n

is a polynomially 
onvex subset of C

n

.

Indeed, by (
), it suÆ
es to show that K is holomorphi
ally 
onvex in C

n

.

Let � 2 C

n

n K. If � 2 R

n

then � 62

b

K

O(C

n

)

be
ause the polynomials are

dense in C(K [ f�g) by the Stone{Weierstrass Theorem (see Hewitt and

Stromberg [25, 7.34℄). If Im �

j

< 0 for some j 2 f1; : : : ; ng then the entire

fun
tion � 7! e

i�

j

: C

n

! C separates � from K be
ause je

i�

j

j = e

Re i�

j

> 1.

Similarly, if Im �

j

> 0 then one uses the entire fun
tion � 7! e

�i�

j

.

A 
omplex analyti
 manifold is 
alled holomorphi
ally 
onvex if for every


ompa
t subset, the holomorphi
ally 
onvex hull is 
ompa
t. For instan
e,

16



the pre
eding example shows that all open subsets of C and all polynomi-

ally 
onvex open subsets of C

n

are holomorphi
ally 
onvex manifolds. Stein

manifolds 
an be 
hara
terized in terms of holomorphi
 
onvexity. Indeed,

a se
ond 
ountable 
omplex analyti
 manifold X of 
omplex dimension n

is a Stein manifold if and only if it is holomorphi
ally 
onvex, the holo-

morphi
 fun
tions separate the points of X, and for every � 2 X, one 
an

�nd n holomorphi
 fun
tions on X whi
h form a 
oordinate system at �. In

fa
t, the last two 
onditions are equivalent if X is holomorphi
ally 
onvex

(H�ormander [27, 5.2.12℄ and Taylor [43, Exer
ise 11.13℄). Moreover, in the

presen
e of the other 
onditions, holomorphi
 
onvexity of X is equivalent

to the property that every 
ontinuous homomorphism from O(X) into C is

evaluation in a point of X. These fa
ts are proved in many monographs on


omplex analysis; see, for instan
e, H�ormander [27, 5.1.3, 5.1.5 and 5.3.9℄

and Gunning and Rossi [23, VII.C.5 and VII.C.13℄. Note that an open

subset of C

n

is a Stein manifold if and only if it is holomorphi
ally 
onvex.

Let X be a Stein manifold. A Riemann domain over X is a pair (Y; �)


onsisting of a se
ond 
ountable 
omplex analyti
 manifold Y and an ana-

lyti
 lo
al di�eomorphism � : Y ! X. Following H�ormander [27, 5.4.4℄,

we also require that the holomorphi
 fun
tions on Y separate points. For

example, any open subset of X will be 
onsidered as a Riemann domain

together with the in
lusion map. A holomorphi
 extension of a Riemann

domain (Y; �) over X is a Riemann domain (Y

0

; �

0

) over X su
h that Y

0


ontains Y as an open submanifold, we have �

0

j

Y

= �, and every f 2 O(Y )

has a unique holomorphi
 extension

^

f 2 O(Y

0

). By the Open Mapping

Theorem (see Rudin [40, 2.12℄), the restri
tion map O(Y

0

) ! O(Y ) is an

isomorphism of Fr�e
het spa
es.

An envelope of holomorphy of a Riemann domain (Y; �) over X is a holo-

morphi
 extension (E; ") of (Y; �) whi
h is as large as possible, in the sense

of the following universal property: if (Y

0

; �

0

) is a holomorphi
 extension of

(Y; �) then there is a unique analyti
 map ' : Y

0

! E su
h that 'j

Y

= id

Y

.

Note that " Æ' = �

0

be
ause both restri
t to � and that '

�

: O(E)! O(Y

0

)

is an isomorphism. Sin
e the holomorphi
 fun
tions on Y

0

separate points,

the map ' is inje
tive, and hen
e an open embedding by the Open Map-

ping Theorem (see Range [36, I.1.21℄). If (E

0

; "

0

) is another envelope of

holomorphy of (Y; �), the universal property yields a unique analyti
 di�eo-

morphism ' : E ! E

0

su
h that 'j

Y

= id

Y

. A

ording to a 
lassi
 result (see

Rossi [38℄, and H�ormander [27, 5.4.3 and 5.4.5℄ or Gunning and Rossi [23,

I.G.11℄ for the 
ase X = C

n

), every Riemann domain (Y; �) over a Stein

manifold X has an envelope of holomorphy (E; "). Sin
e (E; ") is unique

up to a natural analyti
 di�eomorphism, one usually speaks of the envelope

of holomorphy of (Y; �). The envelope of holomorphy 
an also be 
hara
-

terized as the unique holomorphi
 extension whi
h is a Stein manifold (see

H�ormander [27, 5.4.2 and 5.4.3℄).
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4.3 Proposition. Let X be a Stein manifold, let (Y; �) be a Riemann

domain over X with envelope of holomorphy (E; "), and let K � Y be a


ompa
t subset. Then A

Y

(K) = A

E

(K), and the map

' :

b

K

O(E)

�! �

A

Y

(K)

; � 7�! eev

�

is a homeomorphism. The equation

b

K

O(Y )

=

b

K

O(E)

holds if and only

if

b

K

O(Y )

is 
ompa
t.

The fa
t that ' is a homeomorphism was �rst observed by Rossi [37, 2.3℄,


f. Gunning and Rossi [23, VII.A.7℄.

Proof. The de�nition of a holomorphi
 extension implies that A

Y

(K) =

A

E

(K).

The assertion that ' is a homeomorphism follows from the fa
t that E

is a Stein manifold. Indeed,

b

K

O(E)

is 
ompa
t be
ause E is holomorphi-


ally 
onvex, and ' is bije
tive be
ause every 
ontinuous homomorphism

from O(E) into C is evaluation in a unique point of E. Hen
e ' is a 
on-

tinuous bije
tion between 
ompa
t Hausdor� spa
es and therefore a homeo-

morphism.

If

b

K

O(Y )

=

b

K

O(E)

then

b

K

O(Y )

is 
ompa
t. Conversely, assume 
om-

pa
tness of

b

K

O(Y )

. Sin
e

b

K

O(Y )

= Y \

b

K

O(E)

, this implies that '

�

b

K

O(Y )

�

is an open and 
losed subset of �

A

Y

(K)

. By the

�

Silov Idempotent The-

orem (see, for instan
e, Bonsall and Dun
an [9, 21.5℄), the 
hara
teristi


fun
tion of '

�

b

K

O(Y )

�

in �

A

Y

(K)

is the Gelfand transform of an idempo-

tent e 2 A

Y

(K). If � 2 K then e(�) = eev

�

(e) = 1. Hen
e e = 1, and

'

�

b

K

O(Y )

�

= �

A

Y

(K)

. We 
on
lude that

b

K

O(Y )

=

b

K

O(E)

. �

4.4 Corollary (Spe
trum of A

U

(K)). Let X be a Stein manifold, and

let K � U � X with K 
ompa
t and U open. Choose a 
losed embedding

� : X ,! C

n

. Then the following 
onditions are equivalent:

(i) Sp

A

U

(K)

(�j

K

) � �(U);

(ii) �

A

U

(K)

=

n

eev

�

; � 2

b

K

O(U)

o

;

(iii)

b

K

O(U)

is 
ompa
t;

(iv) Sp

A

U

(K)

(�j

K

) = �

�

b

K

O(U)

�

.

Proof. Let (E; ") be the envelope of holomorphy of (U; id

U

). Let � 2

b

K

O(E)

.

A

ording to Lemma 4.1, the evaluation homomorphism ev

�

: O(E) ! C

indu
es a 
hara
ter eev

�

of A

E

(K) = A

U

(K). Sin
e "j

U

= id

U

, we �nd that

�("(�)) = ev

�n

�

(� Æ ") = eev

�n

�

(� Æ "j

K

) = eev

�n

�

(�j

K

):
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Proposition 4.3 implies that Sp

A

U

(K)

(�j

K

) = �

�

"

�

b

K

O(E)

��

.

By the same proposition, 
ondition (ii) is equivalent to the equation

b

K

O(U)

=

b

K

O(E)

, whi
h is equivalent to (iii). If

b

K

O(U)

=

b

K

O(E)

then

Sp

A

U

(K)

(�j

K

) = �

�

"

�

b

K

O(E)

��

= �

�

b

K

O(U)

�

, whi
h is (iv). Condition (iv)

implies (i). Sin
e

�

�

b

K

O(U)

�

= �

�

U \

b

K

O(E)

�

� �

�

"

�

b

K

O(E)

��

= Sp

A

U

(K)

(�j

K

)

and

b

K

O(U)

is 
losed in U , 
ondition (i) implies (iii). �

4.5 Corollary (Auto-spe
trality and holomorphi
 
onvexity). Let U

be a Riemann domain over a Stein manifold, and let K � U be 
ompa
t.

Then the following 
onditions are equivalent:

(i) K is holomorphi
ally 
onvex in U (i.e.

b

K

O(U)

= K).

(ii) K is auto-spe
tral, and O

U

(K) = O(K).

(iii) K is auto-spe
tral, and A

U

(K) = A(K).

Proof. Sin
e U is an open subset of its envelope of holomorphy, whi
h is a

Stein manifold, Lemma 1.2 and Corollary 4.4 show that 
ondition (i) holds

if and only if �

O

U

(K)


onsists of evaluations in points of K. By Lemma 2.3,

this is equivalent to both (ii) and (iii). �

4.6 Corollary (Auto-spe
trality and polynomial 
onvexity). A 
om-

pa
t subset K � C

n

is polynomially 
onvex if and only if it is auto-spe
tral

and the polynomials are dense in A(K) or, equivalently, in O(K).

Proof. The polynomially 
onvex hull of a 
ompa
t subset K � C

n

equals

b

K

O(C

n

)

by Example 4.2, and the polynomials are dense in A

C

n

(K) and

in O

C

n

(K). Therefore, the assertions follow from Corollary 4.5. �

5 Stein 
ompa
ta

Every 
ompa
t subset of a Stein manifold whi
h is holomorphi
ally 
on-

vex with respe
t to some open neighbourhood is a Stein 
ompa
tum, and

every Stein 
ompa
tum is auto-spe
tral. In addition to the proofs of these

fa
ts, this se
tion 
ontains several examples. One of them, whi
h is due to

Bj�ork [7℄, is an auto-spe
tral subset of C

2

whi
h is not a Stein 
ompa
tum.

Let X be a se
ond 
ountable 
omplex analyti
 manifold su
h that O(X)

separates points. For a 
ompa
t subset K � X, let U

St

(K) be the set of

Stein open neighbourhoods of K. (Note that an open subset of X is a Stein

manifold if and only if it is holomorphi
ally 
onvex.) A Stein 
ompa
tum

in X is a 
ompa
t subset K � X su
h that U

St

(K) is a neighbourhood basis

of K.
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5.1 Example. (a) Let X be a se
ond 
ountable 
omplex analyti
 manifold

su
h that O(X) separates points. Then any 
ompa
t subset K � X su
h

that

b

K

O(X)

= K is a Stein 
ompa
tum. Indeed, K has a neighbourhood

basis 
onsisting of open analyti
 polyhedra, and every su
h neighbourhood

is holomorphi
ally 
onvex and hen
e a Stein manifold. The proofs given by

Range [36, II.3.9 and II.3.10℄ for subsets of C

n


arry over to the present

situation.

(b) Every 
ompa
t subset of C is a Stein 
ompa
tum by Example 4.2.

However, not every 
ompa
t subset of C has an open neighbourhood in

whi
h it is holomorphi
ally 
onvex. As an example, 
onsider the 
ompa
t

set

([0; 1℄ + f0; ig) [ i[0; 1℄ [

[

n2N

�

1

n

+ i[0; 1℄

�

:

Example 5.1 implies that every 
ompa
t subset of a Stein manifold X

has a relatively 
ompa
t holomorphi
ally 
onvex open neighbourhood. Sin
e

the interse
tion of two holomorphi
ally 
onvex open subsets of X is holo-

morphi
ally 
onvex, a 
ompa
t subset of X is a Stein 
ompa
tum if (and

only if) it is an interse
tion of holomorphi
ally 
onvex open sets. In par-

ti
ular, the interse
tion of any family of Stein 
ompa
ta in X is again a

Stein 
ompa
tum. Therefore, every 
ompa
t subset K � X is 
ontained in

a smallest Stein 
ompa
tum, whi
h we denote by

b

K

St

. This 
ompa
tum 
an

also be des
ribed as

b

K

St

=

T

U

St

(K).

For a 
ompa
t subset K of a Stein manifold, re
all that O

St

(K) was

de�ned as the 
losure in O(K) of the algebra of germs of holomorphi
 fun
-

tions de�ned in some member of U

St

(K). The 
losure of the image of O

St

(K)

under the restri
tion map O(K)! A(K) is the Bana
h algebra A

St

(K).

5.2 Proposition. For a 
ompa
t subset K of a Stein manifold X, the

restri
tion homomorphism � : A(

b

K

St

) ! A

St

(K); f 7! f j

K

is an isomor-

phism.

Proof. Set A

:

=

n

f j

b

K

St

; f 2 O(

b

K

St

)

o

� C(

b

K

St

). We 
laim that all f 2 A

satisfy kfk

1

= kf j

K

k

1

. It is 
lear that the left-hand side is greater than

or equal to the right-hand side. Conversely, 
hoose U 2 U

St

(K), and note

that

b

K

St

�

b

K

O(U)

be
ause the right-hand side is a Stein 
ompa
tum whi
h


ontains K. If f 2 O(U) then







f j

b

K

St







1

�







f j

b

K

O(U)







1

�







f j

K







1

by the de�nition of

b

K

O(U)

. This proves the 
laim. Hen
e the restri
tion

�j

A

: A ! A

St

(K) is a dense isometri
 embedding, and � is the 
ompletion

of �j

A

. �
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5.3 Corollary. Let K � C

n

be a 
ompa
t subset. Then for every � 2

b

K

St

,

evaluation in � indu
es a unique 
hara
ter eev

�

: A

St

(K)! C . �

5.4 Proposition (Auto-spe
trality and Stein 
ompa
ta). Let X be

a Stein manifold, and let K � X be 
ompa
t. Choose a 
losed embedding

� : X ,! C

n

.

(a) We have �

A

St

(K)

=

n

eev

�

; � 2

b

K

St

o

and Sp

A

St

(K)

(�j

K

) = �

�

b

K

St

�

.

(b) The set K is a Stein 
ompa
tum if and only if it is auto-spe
tral and

satis�es A

St

(K) = A(K) or, equivalently, O

St

(K) = O(K).

The fa
t that Stein 
ompa
ta are auto-spe
tral is due to Rossi [37, 2.12℄.

Proof. If U 2 U

St

(K) then

�(K) � Sp

A(K)

(�j

K

) � Sp

A

U

(K)

(�j

K

) = �(

b

K

O(U)

);

where the last equation follows from Corollary 4.4. Now assume that K

is a Stein 
ompa
tum. Then O

St

(K) = O(K) and A

St

(K) = A(K) hold

by de�nition. Moreover, K =

T

U2U

St

(K)

b

K

O(U)

, whi
h implies that �(K) =

Sp

A(K)

(�j

K

). Thus K is auto-spe
tral.

Sin
e

b

K

St

is auto-spe
tral, statement (a) now follows immediately from

Proposition 5.2.

Conversely, assume that K is auto-spe
tral. If O

St

(K) = O(K) then

A

St

(K) = A(K). Assume that the latter equation holds. Then

�(K) = Sp

A(K)

(�j

K

) = Sp

A

St

(K)

(�j

K

) = �(

b

K

St

)

by statement (a). We 
on
lude that K =

b

K

St

, whi
h means that K is a

Stein 
ompa
tum. �

5.5 Example. De�ne D and K as in Example 4.2 (b). The arguments

in that example show that D � Sp

A(K)

(id

K

) and that

b

K

St

= D. Hen
e

Sp

A(K)

(id

K

) = D.

5.6 Remark. A subset S � C

n

is 
alled a Reinhardt subset (with 
en-

tre 0) if for all � 2 S and all � 2 C

n

with j�

1

j = � � � = j�

n

j = 1, the

point (�

1

�

1

; : : : ; �

n

�

n

) also belongs to S. If this even holds for all � 2 C

n

with j�

1

j; : : : ; j�

n

j � 1 then S is 
alled a 
omplete Reinhardt subset (with


entre 0).

For su
h subsets, there is a parti
ularly easy 
hara
terization of holo-

morphi
 
onvexity. Let U � C

n

be an open 
onne
ted Reinhardt subset

with 0 2 U . Then U is holomorphi
ally 
onvex if and only if it is 
omplete

and logarithmi
ally 
onvex, whi
h means that the subset

�

(t

1

; : : : ; t

n

) 2 R

n

; (e

t

1

; : : : ; e

t

n

) 2 U
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of R

n

is 
onvex (see, for instan
e, H�ormander [27, 2.5.5 and 2.5.8℄). If U

is not holomorphi
ally 
onvex, this shows that there is a unique smallest

holomorphi
ally 
onvex open Reinhardt subset V � C

n

su
h that U � V .

Every holomorphi
 fun
tion on U has a unique holomorphi
 extension to V

(see H�ormander [27, 2.4.6℄). In other words, the domain V is a realization

of the envelope of holomorphy of U .

Let K � C

n

be a 
ompa
t 
onne
ted Reinhardt subset with 0 2 K. By

the above dis
ussion,

b

K

St

is the smallest 
omplete logarithmi
ally 
onvex

Reinhardt subset of C

n

whi
h 
ontains K, and every f 2 O(K) extends

uniquely to an element of O(

b

K

St

). In parti
ular, K is a Stein 
ompa
tum

if and only if it is a 
omplete Reinhardt set and logarithmi
ally 
onvex.

Moreover, this holds if and only if K is auto-spe
tral (
f. Bj�ork [7, 4.4℄).

Indeed, if � 2

b

K

St

n K then evaluation in � is a 
hara
ter of O(

b

K

St

) and

hen
e of O(K).

Similar fa
ts 
an be shown for Reinhardt sets whi
h do not 
ontain their


entre. In parti
ular, a 
ompa
t 
onne
ted Reinhardt subset of C

n

is a Stein


ompa
tum if and only if it is auto-spe
tral.

For 0 � r

1

� R

1

and 0 � r

2

� R

2

, we de�ne a 
ompa
t Reinhardt subset

of C

2

by

K(r

1

; r

2

;R

1

; R

2

)

:

=

�

� 2 C

2

; r

1

� j�

1

j � R

1

; r

2

� j�

2

j � R

2

	

:

For instan
e, the set K from Example 4.2 (b) 
an 
on
isely be written as

K(0; 0; 0; 1) [ K(0; 1; 1; 1). Using the fun
tions � 7! �

j

and � 7! �

�1

j

for

j 2 f1; 2g, we �nd that ea
h K(r

1

; r

2

;R

1

; R

2

) is holomorphi
ally 
onvex in

any suÆ
iently small open neighbourhood. In parti
ular, K(r

1

; r

2

;R

1

; R

2

)

is a Stein 
ompa
tum. We will now use these sets in order to illustrate two

important phenomena. The �rst of the following two examples is essentially

due to Bj�ork [7℄.

5.7 Example. The 
ompa
t subset

K

:

= K(0; 0; 0; 1)

| {z }

=:K

0

[

[

n2N

K(2

�n

; 1 � 2

�n

; 2

�n+1

; 1� 2

�n

)

| {z }

=:K

n

� C

2

is auto-spe
tral by Corollary 2.10, but it is not a Stein 
ompa
tum. Indeed,

let U � C

2

be a holomorphi
ally 
onvex open neighbourhood of K. Then

the 
onne
ted 
omponent U

0

of 0 in U 
ontains K

0

[

S

n>N

K

n

for some

N 2 N. Hen
e U

0


ontains

S

n>N

K(0; 0; 2

�n+1

; 1�2

�n

). But then U

0

must

also 
ontain K

N

. Des
ending indu
tively, we �nd that U must 
ontain

K(0; 0; 0; 1) [

[

n2N

K(0; 0; 2

�n+1

; 1� 2

�n

);

and

b

K

St

is the logarithmi
ally 
onvex hull of this 
ompa
t Reinhardt set.
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Example 5.7

From a similar example, Bj�ork [7℄ dedu
es a 
ompa
t 
onne
ted auto-

spe
tral subset of C

3

whi
h is not a Stein 
ompa
tum.

5.8 Example. This example will show that the auto-spe
tral hull of a


ompa
t subset of C

m


annot be 
omputed by repeatedly assigning K 7!

Sp

O(K)

�

e

id

C

m

�

. (Sin
e this assignment preserves in
lusion, the spe
trum

Sp

O(K)

�

e

id

C

m

�

is 
ontained in the auto-spe
tral hull of K.) De�ne

K

0

:

= K(0; 0; 0; 2) [K(1; 1; 1; 1) [K

�

1;

1

2

; 2;

1

2

�

[

[

n2N

K

�

n�1

n

;

n+1

n

;

n

n+1

;

n+1

n

�

:

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Example 5.8

For n 2 N, set K

n

:

= Sp

O(K

n�1

)

�

e

id

C

2

�

. Using Proposition 2.9 and Re-
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mark 5.6, one indu
tively 
omputes that

K

n

= K

0

[

n

� 2 C

2

; j�

1

j �

n

n+1

; j�

2

j � 2; j�

1

� �

2

j � 1

o

:

Hen
e the sets K

n

form a stri
tly in
reasing sequen
e. In parti
ular, assign-

ing Sp

O(K)

�

e

id

C

m

�

to a 
ompa
t set K � C

m

is not a hull operation. The

union

S

n2N

K

n

is not 
losed. Its 
losure is the set

K

1

:

= K

0

[

�

� 2 C

2

; j�

1

j � 1; j�

2

j � 2; j�

1

� �

2

j � 1

	

:

It is still not auto-spe
tral. The auto-spe
tral hull of K

0

is

�

� 2 C

2

; j�

1

j � 2; j�

2

j � 2; j�

1

� �

2

j � 1

	

:

It 
oin
ides with Sp

O(K

1

)

�

e

id

C

2

�

.

Note that not every holomorphi
 fun
tion de�ned in an open neighbour-

hood of K

0

extends to a holomorphi
ally 
onvex open neighbourhood. An

example is provided by any non-
onstant lo
ally 
onstant fun
tion de�ned

in a neighbourhood of K

0

. A 
ompa
t 
onne
ted set for whi
h this phe-

nomenon o

urs 
an be derived from Exer
ise II.3.13 in Range [36℄.

6 Meromorphi
 
onvexity

In this se
tion, we relate holomorphi
 
onvexity and Stein 
ompa
ta to the


on
ept of rational 
onvexity, whi
h has been introdu
ed in Se
tion 3.

6.1 De�nition. Let X be a se
ond 
ountable 
omplex analyti
 manifold,

and let K � X be a 
ompa
t subset. The meromorphi
ally 
onvex hull of K

in X is de�ned as

b

K

M(X)

:

=

\

f2O(X)

f

�1

�

f(K)

�

:

Note that every open subset U � X with K � U satis�es

b

K

M(U)

�

b

K

M(X)

.

6.2 Remark. Let D(f(K)) denote the smallest 
losed dis
 around 0 in C

whi
h 
ontains f(K). Then the holomorphi
ally 
onvex hull of K in X 
an

be expressed as

b

K

O(X)

=

T

f2O(X)

f

�1

�

D(f(K))

�

. This observation proves

that

b

K

M(X)

�

b

K

O(X)

.

6.3 Lemma. Let X be a se
ond 
ountable 
omplex analyti
 manifold, let

K � X be a 
ompa
t subset, and let �

0

2

b

K

M(X)

. Then all f; g 2 O(X)

with 0 62 g(K) satisfy

�

�

�

�

f(�

0

)

g(�

0

)

�

�

�

�

�













f

g

�

�

�

�

K













1

:
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Proof. The holomorphi
 fun
tion

h : X �! C ; � 7�! f(�

0

) � g(�)� f(�) � g(�

0

)

vanishes in �

0

. Hen
e there is an element � 2 K su
h that h(�) = 0. This

equation is equivalent to

f(�

0

)

g(�

0

)

=

f(�)

g(�)

. �

The lemma shows that to some extent, the de�nition of meromorphi



onvexity �ts into the general 
on
ept of 
onvexity with respe
t to a �xed set

of fun
tions. However, a meromorphi
 fun
tion need not be the quotient of

two global holomorphi
 fun
tions. In order to understand the situation, we

brie
y re
all the de�nition of a meromorphi
 fun
tion on a 
omplex analyti


manifold X. For ea
h � 2 X, let M

�

be the �eld of fra
tions of the domain

O

�

:

= O(f�g). In the disjoint union M

:

=

S

�2X

M

�

, 
onsider the subsets

ff

�

=g

�

; � 2 Ug, where U � X is a 
onne
ted open subset, f; g 2 O(U),

f

�

and g

�

are the germs at � 2 U , and g is not the zero fun
tion on U .

These subsets are the basis of a topology whi
h turns M with the natural

proje
tion onto X into a sheaf, the sheaf of germs of meromorphi
 fun
tions.

A meromorphi
 fun
tion on an open subset U � X is a se
tion ofM over U .

Note that a meromorphi
 fun
tion on X need not give rise to a 
ontinuous

fun
tion from X into the Riemann sphere C [ f1g. This problem already

o

urs for the meromorphi
 fun
tion on C

2

given by � 7! �

1

=�

2

.

Sin
e O

�

�M

�

, we may de�ne the singular set of a meromorphi
 fun
-

tion m on X as the subset S(m)

:

= f� 2 X; m(�) 62 O

�

g. This is a 
losed

subvariety of X (see Gunning and Rossi [23, VIII.B.4℄), and the restri
tion

of m to R(m)

:

= X n S(m) is a holomorphi
 fun
tion. A singular point

�

0

2 S(m) is 
alled a pole of m if lim

�!�

0

; �2R(m)

m(�) = 1. The singular

points whi
h are not poles are 
alled points of indetermina
y of m.

6.4 Lemma. Let X be a se
ond 
ountable 
omplex analyti
 manifold su
h

that O(X) separates points, let K � X be 
ompa
t, and 
hoose � 2 X.

Then the impli
ations (i) ) (ii) ) (iii) ) (iv) hold between the following

statements.

(i) There exists f 2 O(X) su
h that f(�) 62 f(K), i.e. � 62

b

K

M(X)

.

(ii) There exists a meromorphi
 fun
tion m on X su
h that K [ f�g �

R(m) and jm(�)j > kmj

K

k

1

.

(iii) There exists a meromorphi
 fun
tion m on X su
h that K � R(m)

and � is a pole of m.

(iv) There exists a meromorphi
 fun
tion m on X su
h that K � R(m)

and � 2 S(m).

If X is a Stein manifold and H

2

(X;Z) = 0 then the four statements are

equivalent.
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Proof. Assume that f 2 O(X) satis�es f(�) 62 f(K). After adding a

suitable 
onstant to f , we may assume that 0 < jf(�)j < jf(�)j holds for

every � 2 K. Then m

:

= 1=f is a meromorphi
 fun
tion on X with K [

f�g � R(m) and jm(�)j > kmj

K

k

1

.

Assume that m is a meromorphi
 fun
tion on X with these properties.

We may assume that every 
onne
ted 
omponent of X meets K [ f�g. The

meromorphi
 fun
tion m � m(�) neither has zeros nor singularities in a

neighbourhood of K. Ifm is not lo
ally 
onstant at � then (m�m(�))

�1

is a

meromorphi
 fun
tion onX with the properties stipulated in statement (iii).

Ifm is lo
ally 
onstant at � then the 
onne
ted 
omponent of � inX does not

meet K. Sin
e O(X) separates points, it is easy to 
onstru
t a meromorphi


fun
tion on X whi
h is regular in a neighbourhood of K and has a pole at �.

The impli
ation (iii)) (iv) is trivial.

Assume that X is a Stein manifold and thatm is a meromorphi
 fun
tion

on X su
h that K � R(m) and � 2 S(m). Then there are f; g 2 O(X) su
h

that m = f=g (Gunning and Rossi [23, VIII.B.10℄), and g(�) = 0 be
ause

� 2 S(m). Assume, moreover, that H

2

(X;Z) = 0. Then we may 
hoose the

holomorphi
 fun
tions f and g su
h that the germs f

�

and g

�

are relatively

prime for ea
h � 2 X (Gunning and Rossi [23, VIII.B.3 and 13℄). Then S(m)

is exa
tly the set of zeros of g. In parti
ular, 0 62 g(K) be
ause K � R(m).

Thus under these additional assumptions, statement (iv) implies (i). �

The pre
eding lemma shows that there is no obvious 
hoi
e of the def-

inition of meromorphi
 
onvexity on a general 
omplex analyti
 manifold.

Our de�nition is the strongest and also the easiest.

Our distin
tion of poles and points of indetermina
y follows Range [36,

VI, x 4℄. Rossi [37℄ 
alls S(m) the poleset ofm. Rossi's paper is an important

sour
e for the present se
tion, in parti
ular for Lemmas 6.6, 6.7, and 6.11.

However, some of Rossi's arguments seem to disregard the possible presen
e

of points of indetermina
y, so that it seemed worthwhile to adapt his proofs.

This also yields an extension of Rossi's results beyond the framework of Stein

manifolds.

6.5 Remark. Let U � C

n

be open and polynomially 
onvex, and letK � U

be 
ompa
t. Then

b

K

M(U)


oin
ides with the rationally 
onvex hull of K,

i.e.

b

K

M(U)

=

\

p2P(C

n

)

p

�1

�

p(K)

�

:

Indeed, the forward in
lusion is trivial, and the reverse in
lusion follows

easily from the fa
t that the polynomials are dense in O(U), whi
h was

mentioned in Example 4.2.

For a meromorphi
ally 
onvex 
ompa
t subset of a 
omplex analyti


manifold, a simple 
ompa
tness argument yields what might be 
alled a

neighbourhood basis of meromorphi
 polyhedra.
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6.6 Lemma (Meromorphi
 polyhedra). Let X be a se
ond 
ountable


omplex analyti
 manifold, let K � X be a meromorphi
ally 
onvex 
om-

pa
t subset, and let U � X be a relatively 
ompa
t open neighbourhood

of K. Then there is a �nite set F � O(X) of holomorphi
 fun
tions on X

su
h that

K � f� 2 U ; 8 f 2 F : jf(�)j > 1g

and f� 2 U ; 8 f 2 F : jf(�)j � 1g is 
ompa
t.

Proof. For ea
h boundary point � 2 �U , there is a holomorphi
 fun
tion

f

�

2 O(X) su
h that f

�

(�) = 0 and f

�

(K) � f� 2 C ; j�j � 2g. Set U

�

:

=

f� 2 X; jf(�)j < 1g. Sin
e these open sets 
over the 
ompa
t boundary �U ,

there is a �nite subset F

0

� �U su
h that �U �

S

�2F

0

U

�

. Set F

:

=

ff

�

; � 2 F

0

g. Then K � f� 2 U ; 8 f 2 F : jf(�)j > 1g, and

f� 2 U ; 8 f 2 F : jf(�)j � 1g = U n

[

�2F

0

U

�

is 
ompa
t. �

6.7 Lemma (Meromorphi
ally 
onvex 
ompa
ta are Stein). Let X

be a se
ond 
ountable 
omplex analyti
 manifold su
h that O(X) separates

points, and let K � X be 
ompa
t subset whi
h is meromorphi
ally 
onvex

in X. Then K is a Stein 
ompa
tum.

Proof. Let U � X be a relatively 
ompa
t open neighbourhood of K.

Choose a �nite subset F � O(X) as in Lemma 6.6. De�ne an open neigh-

bourhood of K by V

:

= U n

S

f2F

f

�1

(f0g). If f 2 F then f

�1

j

V

2 O(V ).

The holomorphi
ally 
onvex hull of K in V satis�es

b

K

O(V )

�

�

� 2 V ; 8 f 2 F : jf(�)

�1

j �







f

�1

j

K







1

	

�

�

� 2 V ; 8 f 2 F : jf(�)

�1

j � 1

	

= f� 2 U ; 8 f 2 F : jf(�)j � 1g :

The right-hand side is a 
ompa
t subset of V , when
e

b

K

O(V )

is 
ompa
t.

Example 5.1 shows that

b

K

O(V )

is a Stein 
ompa
tum.

Sin
e the relatively 
ompa
t open neighbourhood U � X of K 
an be


hosen arbitrarily small, the set K is an interse
tion of Stein 
ompa
ta and

hen
e a Stein 
ompa
tum. �

6.8 Remark. H�ormander and Wermer [26℄ 
onstru
ted a smoothly embed-

ded dis
 in C

2

whi
h is a Stein 
ompa
tum but not rationally 
onvex (
f.

Forstneri�
 [18℄).
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6.9 Proposition. Let X be a se
ond 
ountable 
omplex analyti
 manifold

su
h that O(X) separates points. Then a 
ompa
t subset K � X is a

Stein 
ompa
tum if and only ifK has arbitrarily small open neighbourhoods

U � X su
h that

b

K

M(U)

is 
ompa
t.

Proof. A Stein 
ompa
tum K � X has arbitrarily small holomorphi
ally


onvex open neighbourhoods, and for ea
h su
h neighbourhood U � X,

the set

b

K

M(U)

is a 
losed subset of

b

K

O(U)

and hen
e 
ompa
t. Conversely,

if K � X is a 
ompa
t subset with arbitrarily small open neighbourhoods

U � X su
h that

b

K

M(U)

is 
ompa
t then the pre
eding lemma shows thatK

is an interse
tion of Stein 
ompa
ta and hen
e a Stein 
ompa
tum. �

6.10 Proposition (Meromorphi
ally 
onvex manifolds are Stein).

Let U be an open subset of a Stein manifold X. Then U is holomorphi
ally


onvex (i.e. a Stein manifold) if and only if

b

K

M(U)

is 
ompa
t for every


ompa
t subset K � U .

It is 
on
eivable that this also holds for more general 
omplex analyti
 mani-

folds U .

Proof. If U is holomorphi
ally 
onvex then

b

K

M(U)

�

b

K

O(U)

is 
ompa
t for

ea
h 
ompa
t subset K � U .

Conversely, assume that every 
ompa
t subset of U has 
ompa
t mero-

morphi
ally 
onvex hull in U . We 
laim that U is Hartogs pseudo
onvex.

The meaning of this 
laim is as follows. Let d be the 
omplex dimension

of U . Extending the notation introdu
ed before Example 5.7 to subsets

of C

d

in the obvious way, de�ne K � C

d

by K

:

= K(0; 0; : : : ; 0; 0; 1) [

K(0; : : : ; 0; 0; 1; 0; : : : ; 0; 1; 1), and

^

K � C

d

by

^

K

:

= K(0; 0; : : : ; 0; 1; 1).

Let ' be a biholomorphi
 embedding of a neighbourhood of

^

K in C

d

into X

su
h that L

:

= '(K) � U . What we 
laim is that

^

L

:

= '(

^

K) is also 
on-

tained in U . The key to the proof of this 
laim is Hartogs' result that every

holomorphi
 fun
tion de�ned in a neighbourhood of L extends holomorphi-


ally to a neighbourhood of

^

L (see Range [36, II.2.2℄). Pi
k � 2

^

L \ U .

We 
laim that � 2

b

L

M(U)

. Otherwise, there exists f 2 O(U) su
h that

f(�) = 0 62 f(L). Then 1=f is a holomorphi
 fun
tion near L whi
h does

not extend to

^

L. This 
ontradi
tion shows that

^

L \ U �

b

L

M(U)

. Hen
e

^

L \ U =

^

L \

b

L

M(U)

is open and 
losed in

^

L. Sin
e this set is not empty

and

^

L is 
onne
ted, this proves our 
laim that

^

L � U , i.e. that U is Hartogs

pseudo
onvex.

Ea
h Hartogs pseudo
onvex open subset of C

n

is holomorphi
ally 
onvex

(see Range [36, II.5.8 and VI.1.17℄). In the 
ase that X = C

n

, we have thus


ompleted the proof of the proposition.

In the 
ase that X is a general Stein manifold, 
hoose a 
losed embedding

� : X ,! C

n

, an open neighbourhood V � C

n

of �(X), and a holomorphi


28



retra
tion � : V ! X for �. By shrinking V , we may assume that V is

holomorphi
ally 
onvex (see Siu [42℄). Set W

:

= �

�1

(U) � V , and 
hoose

a 
ompa
t subset K � W . We 
laim that

b

K

M(W )

is 
ompa
t. We have

b

K

M(W )

�

b

K

O(W )

�

b

K

O(V )

, and the latter set is 
ompa
t. Thus it suÆ
es

to show that

b

K

M(W )

is 
losed in V . Set L

:

= �(K), and 
hoose � 2 W n

�

�1

�

b

L

M(U)

�

. Then there exists f 2 O(U) su
h that f(�(�)) 62 f(L) =

f(�(K)). Using f Æ � 2 O(W ), we �nd that � 62

b

K

M(W )

. Thus

b

K

M(W )

�

�

�1

(

b

L

M(U)

), and the latter set is 
losed in V . Sin
e

b

K

M(W )

is 
losed in W ,

we 
on
lude that it is 
losed in V and hen
e indeed 
ompa
t.

The �rst part of the proof now shows that W is holomorphi
ally 
onvex,

when
e the same holds for U = �

�1

(W ). �

In the 
ase that X = C

n

, Proposition 6.10 also follows from Lemma 6.7 and

the Behnke{Stein Exhaustion Theorem [2℄. A similar result is 
ontained in

the same paper by Behnke and Stein.

To end this se
tion, we 
hara
terize meromorphi
 
onvexity in terms of

approximation by meromorphi
 fun
tions. This result is analogous to our


hara
terizations of holomorphi
ally 
onvex 
ompa
ta in Corollary 4.5 and

of Stein 
ompa
ta in Proposition 5.4.

If X is a 
omplex analyti
 manifold and K � X 
ompa
t, de�ne an

algebra of meromorphi
 fun
tions on X by

M

K

(X) = ff=g; f; g 2 O(X); 0 62 g(K)g :

6.11 Lemma (Meromorphi
 approximation, 
f. Rossi [37, 3.4℄).

Let X be a se
ond 
ountable 
omplex analyti
 manifold su
h that O(X)

separates points, and let K � X be a meromorphi
ally 
onvex 
ompa
t

subset. Then the subalgebra M

K

(X)j

K

= ff j

K

; f 2M

K

(X)g is dense

in A(K).

Proof. Let U � X be an open neighbourhood of K, let f 2 O(U), and

let " > 0. We have to 
onstru
t an element g 2 M

K

(X) su
h that all

� 2 K satisfy jf(�)�g(�)j < ". We may assume that U has 
ompa
t 
losure

in X, and also that U is a Stein manifold, by Lemma 6.7. Choose F =

ff

1

; : : : ; f

m

g � O(X) as in Lemma 6.6, and 
hoose a 
losed biholomorphi


embedding � : U ! C

n

. The map

h : U �! C

m+n

; � 7�!

�

f

1

(�); : : : ; f

m

(�); �

1

(�); : : : ; �

n

(�)

�

is a 
losed biholomorphi
 embedding. Set

Y

:

=

�

� 2 C

m+n

; j�

1

j > 1; : : : ; j�

m

j > 1

	

and

V

:

= h

�1

(Y ) = f� 2 U ; 8 j 2 f1; : : : ;mg : jf

j

(�)j > 1g :
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Then Y is a Stein manifold, V is an open neighbourhood of K, and h(V ) =

Y \h(U) is a 
losed submanifold of Y . Every holomorphi
 fun
tion on h(V )

has a holomorphi
 extension to Y (Gunning and Rossi [23, VIII.A.18℄).

Hen
e there exists k 2 O(Y ) su
h that k Æhj

V

= f j

V

. By Laurent extension

(see Range [36, II.1.4℄), there is a Laurent polynomial

p 2 C

�

�

1

; �

�1

1

; : : : ; �

m

; �

�1

m

; �

m+1

; : : : ; �

m+n

�

su
h that all � 2 h(K) satisfy jk(�) � p(�)j < ". In other words, all � 2 K

satisfy jf(�) � p(h(�))j < ". Sin
e none of the f

j

has a zero in K, the


omposition g

:

= p Æ h is an element of M

K

(X), and it has the desired

approximation property. �

6.12 Proposition (Auto-spe
trality and meromorphi
 
onvexity).

Let X be a se
ond 
ountable 
omplex analyti
 manifold su
h that O(X)

separates points, and let K � X be 
ompa
t. Then the following 
onditions

are equivalent:

(i) K is meromorphi
ally 
onvex in X (i.e.

b

K

M(X)

= K).

(ii) K is auto-spe
tral, and the subalgebra of germs of elements ofM

X

(K)

in K is dense in O(K).

(iii) K is auto-spe
tral, and M

X

(K)j

K

is dense in A(K).

Proof. If 
ondition (i) holds then K is auto-spe
tral by Lemma 6.7 and

Proposition 5.4, so that statement (iii) follows from Lemma 6.11. By Lem-

mas 1.2 and 2.3, statements (ii) and (iii) are equivalent to ea
h other and to

the 
ondition that the Gelfand spe
trum of A

:

=M

X

(K)j

K


onsists of the

evaluations in points ofK. It remains to show that this implies 
ondition (i).

Let � 2

b

K

M(X)

. No element of M

K

(X) has a singularity at �, so that

evaluation in � is a homomorphism from M

K

(X) onto C . By Lemma 6.3,

every f 2M

K

(X) satis�es jf(�)j � kf j

K

k

1

. Hen
e evaluation in � indu
es

a 
hara
ter of A. Thus if �

A


onsists of the evaluations in points of K

then K is meromorphi
ally 
onvex in X. �

6.13 Corollary (Auto-spe
trality and rational 
onvexity). A 
om-

pa
t subset K � C

n

is rationally 
onvex if and only if it is auto-spe
tral and

the algebra of rational fun
tions on C

n

without singularities in K is dense

in A(K) or, equivalently, in O(K).

Proof. The rationally 
onvex hull of a 
ompa
t subset K � C

n

equals

b

K

M(C

n

)

by Remark 6.5. A rational fun
tion 
an be written as a quotient

of relatively prime polynomials, and then the singular set equals the set of

zeros of the denominator. Therefore, every rational fun
tion on C

n

with-

out singularities in K is an element of M

X

(K). Sin
e the polynomials are
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dense in A

C

n

(K) and in O

C

n

(K), every element ofM

K

(C

n

) 
an be approxi-

mated by rational fun
tions without singularities inK, both in the topology

of A(K) and in the topology of O(K). Therefore, the assertions follow from

Proposition 6.12. �

6.14 Remark. The strategy of proof for Lemma 6.6 and Proposition 6.12


an immediately be applied in the 
ontext of holomorphi
 
onvexity, yielding

the following results.

Let K be a 
ompa
t subset of a se
ond 
ountable 
omplex analyti
 mani-

fold X.

(a) Assume that

b

K

O(X)

= K, and let U � X be a relatively 
ompa
t open

neighbourhood of K. Then there is a �nite subset F � O(X) su
h

that f� 2 U ; 8 f 2 F : jf(�)j � 1g is a 
ompa
t neighbourhood of K.

(b) The equation

b

K

O(X)

= K holds if and only if K is auto-spe
tral and

satis�es A

X

(K) = A(K) or, equivalently, O

X

(K) = O(K).

Thus Corollary 4.5 is generalized from Riemann domains over Stein

manifolds to 
omplex analyti
 manifolds in whi
h the holomorphi
 fun
-

tions separate points. However, Proposition 4.3 
ontains additional insights,

and its proof is more elementary, at least in the 
ase of Riemann domains

over C

n

.

7 Holomorphi
 generation

The �nal se
tion relates our previous results to Ma
key-
omplete 
omplex


ommutative 
ontinuous inverse algebras A whi
h are generated by n-tuples

a 2 A

n

in the sense of the holomorphi
 fun
tional 
al
ulus. In this situa-

tion, the joint spe
trum Sp(a) is an auto-spe
tral set, and the algebra A is

\sandwi
hed" between O(Sp(a)) and A(Sp(a)). The joint spe
trum of the

n-tuple a also shows whether a generates the algebra A in a stronger sense.

(Re
all that Ma
key-
ompleteness is just the weak 
ompleteness assumption

used in the 
onstru
tion of the holomorphi
 fun
tional 
al
ulus.)

7.1 Lemma. Let A be a Ma
key-
omplete 
ommutative 
ontinuous inverse

algebra over C , let a 2 A

n

, and set K

:

= Sp

A

(a). Let � : O(K) ! A; f 7!

f [a℄ be the fun
tional 
al
ulus homomorphism, and let 
 : A! C(�

A

); x 7!

x̂ be the Gelfand homomorphism. Then the 
omposition 
 Æ � : O(K) !

C(�

A

) equals the homomorphism â

�

indu
ed by the 
ontinuous surje
tion

â : �

A

�! K; � 7�!

�

�(a

1

); : : : ; �(a

n

)

�

:

Proof. The statement follows from a short 
al
ulation by means of natural-

ity of the holomorphi
 fun
tional 
al
ulus. Indeed, if f 2 O(K) and � 2 �

A
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then

�

(
 Æ �)(f)

�

(�) =

�


(f [a℄)

�

(�) = �(f [a℄)

= f

�

�

�n

(a)

�

= f

�

â(�)

�

= (f Æ â)(�) =

�

â

�

(f)

�

(�):

�

The pre
eding observation is parti
ularly interesting in the 
ase that â

is a homeomorphism. In this 
ase, we 
an use â to identify �

A

and K and

think of â

�

as the restri
tion map from O(K) into C(K).

7.2 Theorem (Holomorphi
ally generated algebras). Let A be a

Ma
key-
omplete 
ommutative 
ontinuous inverse algebra over C , let a 2

A

n

, and set K

:

= Sp

A

(a) and � : O(K) ! A; f 7! f [a℄. Assume that �

has dense image. (In this situation, we say that the n-tuple a generates the

algebra A holomorphi
ally.) Then

â : �

A

�! K; � 7�!

�

�(a

1

); : : : ; �(a

n

)

�

is a homeomorphism. Let 
 : A! C(K); x 7! x̂Æ â

�1

be the homomorphism

indu
ed by â and the Gelfand homomorphism. Then im(
) = A(K), and

the 
omposition

O(K)

�

�! A




�! A(K)

�

�! C(K);

where � is the in
lusion, equals the restri
tion homomorphism f 7! f j

K

.

The indu
ed maps

�

C(K)

�

�

�! �

A(K)




�

�! �

A

�

�

�! �

O(K)

are homeomorphisms. In parti
ular, the joint spe
trumK is an auto-spe
tral


ompa
t subset of C

n

.

Proof. By de�nition, the map â is a 
ontinuous surje
tion. As both �

A

and K are 
ompa
t Hausdor� spa
es, it suÆ
es to show that â is inje
tive.

If � 2 �

A

and f 2 O(K) then �(f [a℄) = f(â(�)) by naturality of the holo-

morphi
 fun
tional 
al
ulus. Therefore, â(�) uniquely determines �j

im(�)

and hen
e �.

Choose f 2 O(K). If � 2 �

A

then �(f)b (�) = �(f [a℄) = f(â(�)).

Thus if � 2 K then 
(�(f))(�) = �(f)b (â

�1

(�)) = f(�). This proves that


Æ� : O(K)! C(K) is the restri
tion homomorphism. Sin
e � has dense im-

age, we 
on
lude that A(K) = im(
 Æ �) = im(
), so that we may 
onsider 


as a map into A(K).

Lemma 1.2 shows that (
 Æ �)

�

= �

�

Æ 


�

is a homeomorphism. Sin
e �

�

is inje
tive and 


�

is surje
tive, we �nd that both �

�

and 


�

are homeo-

morphisms. The map (�Æ
)

�

= 


�

Æ �

�

is a homeomorphism by 
onstru
tion.
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Sin
e every 
hara
ter of the algebra C(K) is evaluation in a point of K,

the same holds for the algebras A(K) and O(K). We 
on
lude that K is

auto-spe
tral. �

7.3 Remark. Let K � C

n

be an auto-spe
tral 
ompa
t set. Then O(K) is

holomorphi
ally generated by the n-tuple

e

id

C

n

, and Sp

O(K)

�

e

id

C

n

�

= K. The

analogous statement holds for the Bana
h algebra A(K). Thus the auto-

spe
tral 
ompa
t subsets of C

n

are exa
tly the joint spe
tra of holomor-

phi
ally generating n-tuples in Ma
key-
omplete 
ommutative 
ontinuous

inverse algebras (or in 
ommutative Bana
h algebras).

An n-tuple a in a 
ommutative 
ontinuous inverse algebra A may gen-

erate the algebra not only holomorphi
ally, but in a stronger sense. For

instan
e, the algebra A may be the topologi
al 
losure of the subalgebra

generated by a. Su
h a situation yields 
ertain additional ne
essary 
on-

ditions on the spe
trum of a, whi
h are also suÆ
ient if the n-tuple a is

assumed to be holomorphi
ally generating. Several situations of this kind

are studied in the following 
orollary.

7.4 Corollary (Holomorphi
 generation by subalgebras). Let A be

a Ma
key-
omplete 
ommutative 
ontinuous inverse algebra over C whi
h is

generated holomorphi
ally by a 2 A

n

. Set K

:

= Sp

A

(a).

(a) For a unital subalgebra B � O(K) whi
h 
ontains the germs of the


oordinate fun
tions, the following are equivalent:

(i) ff [a℄; f 2 Bg is dense in A;

(ii) B is dense in O(K);

(iii) Bj

K

is dense in A(K).

(b) Let U � C

n

be an open neighbourhood of K. Then the subalgebra

ff [a℄; f 2 O(U)g is dense in A if and only if K is holomorphi
ally


onvex in U .

(
) The unital subalgebra generated by fa

1

; : : : ; a

n

g is dense in A if and

only if K is polynomially 
onvex.

(d) The subalgebra ff [a℄; f 2 O

St

(K)g is dense in A if and only if K is a

Stein 
ompa
tum.

(e) Let U � C

n

be an open neighbourhood of K. Then the subalgebra

of elements of the form (f=g)[a℄, where f; g 2 O(U) and 0 62 g(K), is

dense in A if and only if K is meromorphi
ally 
onvex in U .

(f) The subalgebra of elements of the form f [a℄, where f is a rational

fun
tion on C

n

without singularities in K, is dense in A if and only

if K is rationally 
onvex.
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The forward impli
ation in assertion (
), whi
h is 
lassi
 at least in the 
ase

of 
ommutative Bana
h algebras (see Bonsall and Dun
an [9, 19.11℄), was

one pie
e of motivation for the present paper.

Proof. First note that K is auto-spe
tral by Theorem 7.2. For the proof of

assertion (a), Theorem 7.2 also yields that 
ondition (i) implies (iii), whi
h

implies (ii) by Lemma 2.3. The de�nitions show that (ii) implies (i).

To prove assertions (b) to (f), 
hoose the subalgebra B � O(K) in

part (a) suitably and use, respe
tively, Corollary 4.5, Corollary 4.6, Propo-

sition 5.4, Proposition 6.12, and Corollary 6.13. �
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