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Abstract

We study complex commutative Banach algebras, and more gener-
ally continuous inverse algebras, in which the holomorphic functions of
a fixed n-tuple of elements are dense. In particular, we characterize the
compact subsets of C* which appear as joint spectra of such n-tuples.
The characterization is compared to several established notions of holo-
morphic convexity by means of approximation conditions.! 2

Introduction

By a classic result, the joint spectra of topologically generating n-tuples in
complex commutative Banach algebras are exactly the polynomially convex
compact subsets of C*. The principal result of this paper is a similar char-
acterization of the joint spectra of holomorphically generating n-tuples in
complex commutative Banach algebras. Here holomorphic generation refers
to the holomorphic functional calculus, which associates with every n-tuple
a € A" in a complex commutative Banach algebra A a continuous algebra
homomorphism 6,: O(Sp(a)) = A, where O(Sp(a)) denotes the algebra of
germs of holomorphic functions near the joint spectrum Sp(a) in its natural
inductive limit topology. The tuple a is said to generate A holomorphically
if the image of 6, is dense in A. We find (7.2 and 7.3) that a compact subset
K C C" is the joint spectrum of a holomorphically generating n-tuple in a
complex commutative Banach algebra if and only if every homomorphism
from O(K) into C is evaluation in a point of K. A compact subset of a
Stein manifold with this property is called auto-spectral.

*Fachbereich Mathematik, Technische Universitdt Darmstadt, Schlossgartenstr. 7,
64289 Darmstadt, Germany; e-mail address: biller@mathematik.tu-darmstadt.de

! Mathematics Subject Classification (2000): 46H30; 32A38, 32E30, 41A20, 46J15

2 Keywords: holomorphic functional calculus; commutative continuous inverse algebra;
holomorphic convexity; Stein compacta; meromorphic convexity; holomorphic approxima-
tion



Given a holomorphically generating n-tuple a € A", one may strengthen
the hypotheses by assuming that certain subalgebras B C O(Sp(a)) already
have dense image under 6,. This situation is interesting in its own right.
Moreover, it helps to relate auto-spectrality to other holomorphic convexity
conditions (7.4). If B consists of the germs of holomorphic functions de-
fined in a fixed open neighbourhood U C C" of Sp(a) then 0,(B) is dense
in A if and only if Sp(a) is holomorphically convex in U. Similarly, if B
consists of the germs of holomorphic functions defined in holomorphically
convex open neighbourhoods of Sp(a) then 6,(B) is dense in A if and only
if Sp(a) is a Stein compactum, i.e. it has a neighbourhood basis consist-
ing of holomorphically convex open sets. Finally, let B C O(Sp(a)) be the
algebra of germs of quotients of holomorphic functions defined in a fixed
open neighbourhood U C C" of Sp(a) such that the denominator does not
vanish anywhere in Sp(a). Then 6,(B) is dense in A if and only if Sp(a)
is meromorphically convex in U. In fact, compact subsets of a Stein mani-
fold X which are holomorphically convex with respect to some open neigh-
bourhood can be characterized among the auto-spectral subsets of X by a
certain approximation property (4.5). A similar characterization holds for
Stein compacta (5.4) and for meromorphically convex compacta (6.12).

Section 1 provides several important tools, and Section 2 introduces auto-
spectral compacta. Section 3 contains the direct proof that rationally convex
compact subsets of C" are auto-spectral. The three middle sections 4 to 6
treat holomorphic convexity, Stein compacta, and meromorphic convexity,
respectively. The final Section 7 applies all this material to the theory of
Banach algebras.

As the polynomials are contained in O(Sp(a)), every n-tuple which gen-
erates A in the usual sense generates A holomorphically. Therefore, we
are considering a wider class of algebras, and polynomially convex com-
pact subsets of C" are examples of auto-spectral sets. The main benefit of
the concept of holomorphic generation, however, lies in the following ad-
vantage of O(Sp(a)) over the algebra of polynomials. Even if O(Sp(a)) is
not a Banach algebra, it is a complete locally convex algebra with open
unit group and continuous inversion. Locally convex algebras with these
properties are called complete continuous inverse algebras. Large parts of
the theory of Banach algebras can be generalized to these algebras, and in
fact they form a more natural class than Banach algebras for many ques-
tions, including those considered here. Continuous inverse algebras were
introduced by Waelbroeck [45]. They play a role in non-commutative geo-
metry, in particular in K-theory [8, 10, 12, 35], and in the theory of pseudo-
differential operators [21]. Currently, they are attracting attention as the
natural framework for Lie groups and algebras of infinite dimension [20].
They appear as coordinate algebras in root-graded locally convex Lie al-
gebras [33]. Their role in the theory of Banach algebras is related to the
fact that every complex commutative Banach algebra A is “sandwiched”, for



every choice of an n-tuple a € A™, between an algebra of holomorphic germs
and an algebra of continuous functions by the functional calculus homomor-
phism 60,: O(Sp(a)) — A and the Gelfand homomorphism v4: A — C(T'4).
If a € A™ holomorphically generates A then the Gelfand spectrum I'4 is
naturally homeomorphic to Sp(a) C C"*. Under this homeomorphism, the
composition y4 06,: O(Sp(a)) = A — C(T'4) corresponds to the restriction
map O(Sp(a)) — C(Sp(a)).

This observation could be applied in the theory of central extensions
of infinite-dimensional Lie groups. Every complete commutative continu-
ous inverse algebra A over C gives rise to a universal differential module
d: A — Q'(A) and a natural universal period homomorphism per: AX —
HC,(A), a — [a 'da], where HC{(A) := Q'(A)/im(d) is the first cyclic
homology space of A. Note that the period homomorphism factors through
mo(A) = AX/exp(A), which is naturally isomorphic to the first Cech co-
homology group of I' 4 because the analogue of the Arens—Royden Theorem
can be proved for continuous inverse algebras [4]. If im(per) is discrete
then the identity component of SL,,(A) has a universal central extension
for every mm € N. This condition is satisfied in all examples for which it
has been checked, which is difficult because it depends on detailed under-
standing of HC;(A). The examples include commutative C*-algebras, for
which the universal differential module vanishes (Maier [29]), the algebra of
smooth functions on a compact manifold (Maier and Neeb [30]), and the
algebra of compactly supported smooth functions on a non-compact mani-
fold (Neeb [32]). In the light of the present paper, it would be interesting to
decide whether the image of the universal period homomorphism of O(K)
is discrete for a compact subset K C C", at least if K satisfies one of the
additional conditions studied here. As a first step, Neeb and Wagemann [34]
have recently proved that the differential module of germs of holomorphic
1-forms in K is universal for O(K).

1 The algebras O(K) and A(K)

A continuous inverse algebra is a locally convex unital algebra A over C
such that the group A* of invertible elements is open in A and inversion
is continuous. We will usually assume that A is commutative. Then the
Gelfand spectrum of A is the set I'4 of (unital) algebra homomorphisms
from A onto C, which are automatically continuous. Under the topology of
pointwise convergence on A, the Gelfand spectrum is a compact Hausdorff
space, and a Gelfand Theory can be developed as in the case of Banach
algebras [6].

We associate several algebras with each compact subset K of a second
countable complex analytic manifold X. (We will always tacitly assume that
all connected components of a manifold have the same dimension.) The al-



gebra O(K) is the algebra of germs in K of holomorphic functions defined in
open neighbourhoods of K in X. We topologize O(K) as the locally convex
direct limit of the Fréchet algebras O(U) of holomorphic functions in U with
the compact-open topology (or, equivalently, of the Banach algebras O>°(U)
of bounded holomorphic functions with the supremum norm), where U varies
over the open neighbourhoods of K in X. In this topology, O(K) is a com-
plete continuous inverse Hausdorff algebra. Indeed, we may choose a met-
ric d on X compatible with the topology and consider O(K) as the locally
convex direct limit of the Banach algebras O*°(U,,), where U, is the union
of those connected components of {z € X; d(z, K) < 1} which meet K. In
this directed system, the connecting restriction maps are injective by the
Identity Theorem. According to Dierolf and Wengenroth [13], a locally con-
vex direct limit of a sequence of normed algebras with injective connecting
maps is a locally m-convex algebra. In particular, inversion in O(K) is
continuous on its domain (Michael [31, 2.8]). Moreover, the Arzela—Ascoli
Theorem (see, for instance, Dugundji [15, XII.6.4]) entails that almost all
connecting maps in the above directed system are compact. A locally convex
direct limit of a sequence of Banach spaces with compact injective connect-
ing maps is called a Silva space, and these spaces are complete Hausdorff
spaces (see Floret [17, § 7]). The spectrum of an element f € O(K) is the
image of K under any representative of f, for which we just write f(K). In
particular, the spectral radius r in O(K) is given by 7(f) = || f|k||co- Since
the compositions of  with the limit maps are continuous, we find that r is
a continuous semi-norm on O(K). We conclude that the unit group O(K)*
is open in O(K). Further details of these arguments as well as a general-
ization to algebras of germs with infinite-dimensional domain and range can
be found in [5].

Three more algebras associated to K C X are constructed as follows.
The restriction of an element of O(K) to K is a continuous complex-valued
function on K. We obtain a Banach algebra A(K) C C(K) as the closure
of the image of the restriction homomorphism O(K) — C(K). We define a
complete continuous inverse algebra Ox(K) C O(K) as the closure of the
image of the germ map O(X) — O(K), and a Banach algebra Ax(K) C
A(K) as the closure of the image of the restriction map O(X) — A(K).

Between the subalgebras of C'(K) obtained from these algebras by re-
striction, we have the inclusions
OOl } C A(K) € O(K).
Ax (K)

All these algebras are different if X = C and K is the annulus

K={CeC 5<[¢|<1}.

Indeed, an element f € Ox(K)|x \ O(X)|k is defined by f(¢) = (¢ —2)~%
All elements g € Ay (K) satisfy §|C|=1 g(¢) d¢ = 0, so that we find a function

O(X)|k COx(K)|x C {
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926 O(K) |k \ Ax (K) by setting g(¢) = ¢~!. Since SR k_12 cos kit — (t—47r)2 _
15 for all ¢ € [0, 27], the function

h: K —C, (Y &
k=1

is an element of Ay (K') which is not real-differentiable on the unit circle and
hence does not belong to O(K)|x. The function g+ h belongs to A(K), but
not to O(K)|x UAx(K), and A(K) # C(K) because the elements of A(K)
are holomorphic in the interior of K.

1.1 Remark. For a compact subset K of a complex analytic manifold, the
algebra of continuous complex-valued functions on K which are holomorphic
in the interior of K is another interesting closed subalgebra of C(K). It is
also sometimes denoted by A(K). This algebra and A(K) in our sense
coincide for simple K, for instance if K is convex, but they are different
in general. A (topologically complicated) compact subset of C for which
this occurs is described by Gamelin [19, Section II.1]. We illustrate this
phenomenon by three compact subsets of C? which are increasingly complex
and convincing. The first (and rather trivial) example is provided by K :=
{¢ e C% |G1] <1, {, =0}. Secondly, if K C C? is the unit sphere then every
element of O(K) extends to a holomorphic function on a neighbourhood
of the unit ball (see, for instance, Range [36, 11.1.6]). Therefore, every
[ € A(K) satisfies ﬁm:lf(Cl,O) d(; = 0. While these two examples are

“thin”, the third is a compact subset K C C? which is the closure of its
interior. Define

Ki = {CeC ¢l <3, [l > 1},
Ky = {(eC (- (4,0) <1},

Ky = {¢eC5<|¢l2<6}, and
K := K, UK,UK;.

Then K1 N Ky = {(3,0)} and Ky N K3 = {(5,0)}, while K; and K3 are
disjoint. The interior K° is the disjoint union of K7, K3, and K3. Every
element of O(K) is the germ of a holomorphic function defined in a connected
open neighbourhood of K, and hence of a holomorphic function defined in
an open neighbourhood of the compact ball with centre 0 and radius 6 by
the extension phenomenon quoted above. Therefore, every f € A(K) satis-
fies f‘m:Qf(Cl,O) d¢y = 0. Thus an element of {f € C(K); f|k- € O(K°)}

which does not belong to A(K) is defined by ¢ — (Ll on Ky and ¢ — % on
Ky U K3. A slightly more complicated example for which the interior of K
is even a Stein domain is described by Range [36, VII.2.2].



Conditions on compact subsets K C C" under which A(K) equals the
algebra of continuous complex-valued functions on K which are holomor-

phic in the interior of K have been studied extensively; see Gamelin [19,
Section VIIIL.8] for n = 1 and Range [36, VII.2.1] for n > 1.

For the following lemma, recall the notion of the joint spectrum of an
n-tuple ¢ = (ai,...,a,) in a commutative continuous inverse algebra A
over C. This is the compact subset of C* defined as

Spalat,...,ay) 1= {(X(al),...,x(an)); X € I‘A}.

As in the case of Banach algebras, the joint spectrum of a € A" is the set of
A € C" such that the ideal of A generated by A\; —a, ..., A\, — ay is proper.

The compact sets in which we are most interested are joint spectra of n-
tuples in continuous inverse algebras, so they are subsets of C". In Section 4,
however, we will also be led to consider more general ambient manifolds,
namely, envelopes of holomorphy of open subsets of C"*. The natural class
of manifolds for our theory is the class of Stein manifolds. These can be
defined as those complex analytic manifolds X which admit a biholomorphic
embedding ¢: X — C" onto a closed submanifold of some space C*. Their
intrinsic characterization will be recalled in Section 4. Their most important
property for us is the existence of an open neighbourhood U C C" of +(X)
and of a holomorphic map p: U — X which is a retraction for ¢, i.e. which
satisfies p ot = idx. This fact is due to Docquier and Grauert [14]. A proof
can also be found in the monograph by Gunning and Rossi [23, VIIL.C.8].
In fact, a Stein manifold is a holomorphic neighbourhood retract in any
complex manifold in which it is embedded as a closed submanifold, see
Siu [42, Corollary 1].

Here, Stein manifolds give rise to another pair of continuous inverse
algebras, which will be used in Section 5. Let K be a compact subset of a
Stein manifold. The closure in O(K) of the algebra of germs of holomorphic
functions defined in Stein open neighbourhoods of K will be called Og(K).
The closure of its image under the restriction map O(K) — A(K) will be
called Ag;(K).

1.2 Lemma (Spectra of O(K) and of A(K)). Let X be a second count-
able complex analytic manifold, and let K C X be a compact subset. Let
A C O(K) be a closed unital subalgebra, and set B := A|x C C(K), the clo-
sure of the image of A under the restriction homomorphism O(K) — C(K).
Then the spectral radii in A and in B are given by the supremum norm
on K. The restriction map f — f|x: A — B induces a homeomorphism
from I'g onto I' 4. In particular, if f € A" then Sp,(f) = Spg(flk)-

In the important special case that A = O(K), this result is due to Harvey
and Wells [24, 2.4]. It often allows us to switch between A and B. The



algebra A is useful because it consists of germs of holomorphic functions.
The algebra B is only defined in terms of A, but the description of its
topology is more concrete, and it has the advantage of being a Banach
algebra.

Proof. The spectrum of an element f € C(K) is f(K). Similarly, if f is
a holomorphic function defined in an open neighbourhood of K in X then
the germ f of f in K satisfies Spo(K)(f) = f(K). Hence the spectral radii
in C(K) and in O(K) are the supremum norm on K. In a Banach algebra,
the spectral radius of an element of a closed subalgebra with respect to
that subalgebra equals the spectral radius with respect to the whole algebra
(see, for instance, Rudin [40, 10.18]). In a continuous inverse algebra, the
corresponding fact can be proved in a similar way [3, 2.3]. This proves the
assertion about spectral radii in A and in B.

The map p*: I'p — I'4 induced by the restriction map p: A — B is
continuous, and it is injective because p(A) is dense in B. Since characters
of continuous inverse algebras are majorized by the spectral radius, every
element x € ['4 factors through p and induces a character of B. This proves
that p* is surjective, and it is a homeomorphism because the spectra are
compact.

Finally, we choose f € A™ and calculate

SpA(f) = {x""(f); x €Ta} = {x*"(flx); x €T} =Spp(flk).
(Here x*"*(f) := (x(f1),---, x(fn))-) O

1.3 Remark. In the situation of Lemma 1.2, note that B C C(K) is
a realization of the completed quotient of A C O(K) with respect to the
spectral radius seminorm, or, equivalently, a realization of the closure of the
image of A under the Gelfand homomorphism into C'(I"4). In particular, the
set {eve; ( € 0K} C I'p of evaluations in boundary points of K contains
the Silov boundary of B.

Under mild completeness assumptions, a commutative continuous inverse
algebra A over C admits an n-variable holomorphic functional calculus, of
which we recall the main statements. The appropriate completeness hy-
pothesis is Mackey-completeness, which means that the Riemann integral
fol 7v(t) dt exists for every smooth curve y: [0,1] — A. This is equivalent to
the convergence of all members of a certain class of Cauchy sequences. A
convenient and comprehensive reference for this concept is Section 2 of the
monograph by Kriegl and Michor [28].

In the situation of the preceding paragraph, choose an n-tuple a € A™.
The holomorphic functional calculus provides a continuous homomorphism
of unital algebras f — f[a]: O(Sp(a)) — A which maps the germ of the
J-th coordinate function ¢ + (;: C* — C to a;. For Banach algebras, the



construction is due to Silov [41] and Arens and Calderén [1]. Bourbaki [11,
I § 4] presents an alternative approach. For complete continuous inverse
algebras, the holomorphic functional calculus is due to Waelbroeck, who
developed an early variant in [44] and sketched the modern version in [46]
and in [47]. A detailed account can be found in [6].

A property of the holomorphic functional calculus which is stressed by
Waelbroeck [47] and which we will use several times is its naturality with
respect to homomorphisms ¢: A — B between Mackey-complete commu-
tative continuous inverse algebras over C. For an n-tuple a € A" and a
holomorphic germ f € O(Spy(a)), this means that ¢(f[a]) = flp*"(a)].
(Note that the right-hand side is defined because Spg(p*"(a)) C Spa(a).)
Since the holomorphic functional calculus in the algebra C is given by ap-
plication of the function, a special case of naturality is the observation that
x(fla]) = f(x*™(a)) holds for each x € T 4.

1.4 Lemma (Functional calculus in O(K) and in A(K)). Assume
that A is either a closed subalgebra of C'(K) for some compact Hausdorff
space K, or a closed subalgebra of O(K) for some compact subset K of a
second countable complex analytic manifold X. Let a € A", let U C C" be
an open neighbourhood of Sp,(a), and let f € O(U). Then fla] = f o a.

Proof. In both cases, a|x is a continuous map from K into C". For each
x € K, the evaluation homomorphism ev,: A — C, g — g(z) belongs to T 4.
Hence a(K) = {ev;"(a); x € K} C Spy(a), so that we can form f oa.

Assume that A is a closed subalgebra of C'(K) for some compact Haus-
dorff space K. For any x € K, naturality of the holomorphic functional
calculus yields

flal(z) = eva(flal) = f(evi"(a)) = (f 0 a)(x).

(In particular, the composition f o a is an element of A.)

Assume that A is a closed subalgebra of O(K) for some compact sub-
set K of a complex analytic manifold X. Naturality of the holomorphic
functional calculus with respect to the inclusion map ¢: A — O(K) means
that «(f[a]) = f[t*™(a)], and it implies that we may assume that A = O(K).
First consider the case that K = {(}, a single point. Lemma 1.2 implies that
Loxy = {ev¢}. Hence Sppky(a) = {a(¢)}, and we may assume that U is
an open polydisc in C". If f is a coordinate function, the result is a funda-
mental property of the holomorphic functional calculus. Since every element
of O(U) has a power series expansion around the centre of U which converges
on U, the coordinate functions generate a dense subalgebra of O(U), and
the result extends to all f € O(U). In the case that K consists of more than
one point, define a continuous homomorphism ¢.: O(K) — O({(}) for each
¢ € K by assigning to f € O(K) its germ in (. By naturality,

pc(fla)) = flpi™(@)] = fo (pf"(a) = pc(f o a).
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Since f[a] and f o a have the same germ at every ¢ € K, we conclude that
they are equal. (This argument was adapted from Waelbroeck [47, 5.2].) O

2 Auto-spectral compacta

This section introduces the important concept of an auto-spectral compact
subset of a Stein manifold. The properties of these manifolds which are most
relevant for our purposes were briefly reviewed before Lemma 1.2.

2.1 Lemma. Let X be a Stein manifold, let K C X be compact, and let A
be a closed unital subalgebra of O(K) with Ox(K) C A. Choose a closed
(biholomorphic) embedding v: X — C", and let i € A™ be the germ of ..
Then Sp4(2) = «(K) if and only if every character of A is evaluation in a
point of K.

Proof. If I'4 consists of evaluations in points of K then Sp,(7) = «(K).
Conversely, assume that this equation holds, and choose x € I'4. Choose
an open neighbourhood U C C" of +(X) and a holomorphic map p: U — X
such that po:t =idx. Let ( € K be defined by ¢({) = x*"(¢). Let f € A.
Then f := fop € O((K)) = O(Sp4(i)), and f[i] = for = f by Lemma 1.4.
Hence

x(f) = x(f[il) = F(™(@) = F((Q)) = f(C)

by naturality of the holomorphic functional calculus. We conclude that yx is
evaluation in ¢ € K. O

Note that we do not need the theory of Stein manifolds if we content our-
selves with the case that X = C" and + = idge. The latter remark applies
to large parts of the present paper. Also note that in this case, the hypo-
thesis Ox(K) C A just means that A contains the germs of the coordinate
functions.

2.2 Definition. Let X be a Stein manifold, and choose a closed embedding
t: X = C". A compact subset K C X is called auto-spectral if the following
conditions are satisfied, all of which are equivalent by Lemmas 1.2 and 2.1.

(i) Every character of O(K) is evaluation in a point of K.
(ii) Spo(s)(2) = (K).

(iii) Every character of A(K) is evaluation in a point of K.

(iv) Spac)(tlx) = o(K).



Auto-spectral compact sets seem to have been introduced by Wells [48] under
the name of “holomorphically convex compact sets”. Some of their basic
properties had already been obtained by Rossi [37]. In view of a result
due to Harvey and Wells [24, 3.4], auto-spectral sets are what Grauert and
Remmert [22, IV.1.1] call compact Stein subsets.

It is easy to describe the effect of replacing O(K) by a closed subalgebra
in the preceding definition.

2.3 Lemma. Let X be a Stein manifold, let K C X be compact, and
let A C O(K) be a closed unital subalgebra with Ox(K) C A. Then the
following conditions are equivalent:

(i) Every character of A is evaluation in a point of K.
(ii) K is auto-spectral, and A = O(K).
(iii) K is auto-spectral, and A|g = A(K).

Proof. Assume that condition (i) holds. Choose a closed embedding
t: X — C", an open neighbourhood U C C" of +(X), and a holomorphic
retraction p: U — X for ¢. Then K is auto-spectral because

W(K) C Spok)(8) € Spali) = o(K).

For any f € O(K), we can form the element (f o p)[i] € A, and Lemma 1.4
shows that this element is equal to f. Thus we have proved condition (ii),
which in turn trivially implies condition (iii). Finally, condition (iii) im-
plies (i) by Lemma 1.2. O

Let X be a Stein manifold. For K C U C X with K compact and U
open, Corollary 4.5 will show that K is holomorphically convex in U if and
only if K is auto-spectral and Oy (K) = O(K). In Proposition 5.4, we
will see that a compact subset K C X is a Stein compactum if and only
if it is auto-spectral and the restrictions of functions defined in Stein open
neighbourhoods of K form a dense subset of A(K).

Auto-spectrality is a convexity condition in the sense of the following
proposition and its corollary.

2.4 Proposition. The intersection of any family of auto-spectral subsets
of a Stein manifold is again auto-spectral.

Proof. Let (Kj)jecs be a family of auto-spectral subsets of a Stein mani-
fold X, and set K := ﬂjeJ K. Choose a closed embedding +: X — C". For
each j € J, consider the natural map from O(Kj) into O(K). This yields
the middle inclusion in

UK) C Spok)(t) € Spok;)(t) = t(Kj).
We conclude that Spp k) () = t(K). O
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2.5 Corollary. Every compact subset K of a Stein manifold X is contained
in a smallest auto-spectral subset of X, the auto-spectral hull of K in X.

Proof. This follows from the preceding proposition, provided that K is
contained in an auto-spectral subset of X. Now Corollary 4.5 will yield that
the holomorphically convex hull of K in X is auto-spectral. (The argument
is easier for the case that X = C". Indeed, Remark 3.3 and Proposition 3.5
below imply that all convex compact subsets of C* are auto-spectral.) [

Waelbroeck [47, 5.2] defined auto-spectral subsets of C" under the name
of “analytic compact sets”, and he essentially proved the following proposi-
tion about them. As was recalled after Remark 1.3, Mackey-completeness
is the weak completeness assumption used in the construction of the holo-
morphic functional calculus.

2.6 Proposition. Let A be a Mackey-complete commutative continu-
ous inverse algebra over C, let a € A", and let K C C" be an auto-
spectral compact set. Then a continuous homomorphism ¢: O(K) — A
with p*" (ﬁ@n) = q exists if and only if Sp(a) C K. If this is the case then ¢
is uniquely determined by the equation ¢(f) = fla] for all f € O(K).

Proof. Waelbroeck’s proof for Banach algebras [47, 5.2] essentially applies
to the present situation. If such a homomorphism ¢ exists then Sp,(a) =
Sp4 (¢ ™ (iden ) C Spo(k) (iden ) = K. Moreover, all f € O(K) satisfy

o(f) = o/ [iden | ) = rlo" (i )| = fla]

by Lemma 1.4 and naturality of the holomorphic functional calculus. Con-
versely, if Spy(a) C K then ¢: f — fla] is a continuous homomorphism
from O(K) into A which maps idcr to a. O

2.7 Corollary (Uniqueness of the holomorphic functional calculus).
Let A be a Mackey-complete commutative continuous inverse algebra over C,
let a € A", and let K C C" be the auto-spectral hull of Sp(a) in C*. Then
f + fla] is the unique continuous homomorphism from O(K) into A which
maps idce to a. U

2.8 Remark. The corollary is the uniqueness statement for the restriction
of the functional calculus to functions which are holomorphic on a neighbour-
hood of the auto-spectral hull of the joint spectrum. By contrast, the full
holomorphic calculus for holomorphic functions defined in a neighbourhood
of the joint spectrum is unique only under certain additional conditions.
(One such condition can be found in Bourbaki [11, I § 4], another condition
is due to Zame [50].)
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In his original definition of the holomorphic functional calculus [44],
Waelbroeck only developed it for functions which are holomorphic on a
neighbourhood of the rationally convex hull (see the following section) of
what is now called the joint spectrum of an n-tuple. Since rationally convex
compact subsets of C" are auto-spectral, Waelbroeck thus achieved unique-
ness of his functional calculus.

2.9 Proposition (Gelfand spectrum and connected components).
Let X be a second countable complex analytic manifold, and let K C X be
a compact subset. For each closed subset L C K, let p,: O(K) — O(L) be
the restriction homomorphism. Then

Loy = U {vopr;veTow},
Lecomp(K)

where comp(K) denotes the set of connected components of K, and the
union is disjoint.

Proof. The key tool for the proof is the set of idempotent elements of O(K).
At each point of K, the germ of an idempotent is either 1 or 0. Since an
idempotent element induces a continuous function on K, its support is an
open and closed subset of K. Conversely, for each open and closed subset
L C K, there is a unique idempotent e; € O(K) with support L, which is
constructed in the following way. Choose disjoint open neighbourhoods U
of L and V of K \ L in the ambient manifold X, and let e, € O(K) be the
germ of the function which is 1 on U and 0 on V. Note that e¢;, only depends
on L and not on the choice of the neighbourhoods U and V.

We first prove that the union in the proposition is disjoint. Let L, Lo C
K be different connected components, and choose v; € T'o(z;) for j € {1,2}.
In a compact Hausdorff space, the connected component of a point p is the
intersection of the open and closed neighbourhoods of p (see Engelking [16,
6.1.23]). By compactness, there is an open and closed subset L C K such
that L1 C L and Ly N L = (. Now v1(pr,(er)) = 1 and y2(pr,(er)) = 0.
We conclude that v o pr,, # 720 pL,.

Let v € T'p(x). We have to find a connected component L C K and a
character 7' € T'p(py such that v =" o py. Define

S:={L' CK; L' is open and closed in K, and y(er/) =1} .

If Li,Ly € S then y(er,nr,) = 7v(er, - er,) = 1, so that Ly N Ly € S.
Hence S is closed under finite intersections. Since ) ¢ S, compactness of K
implies that the intersection L := S is not empty. If L' C K is open and
closed then either L' € S or K \ L' € S. This entails that L is connected.
The restriction homomorphism p;, maps O(K) onto O(L) because every
neighbourhood of L contains an open and closed subset of K.
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We claim that the kernel of py, is contained in the kernel of . Indeed,
let f € O(U) for an open neighbourhood U C X of K such that the germ f
of f in K satisfies py( f ) = 0. Then f vanishes on a neighbourhood V' of L.
There is an open and closed subset L' C K such that L C L' C V. Since
y(er) =1and f = (1—ep)f, we find that y(f) = 0. This proves the claim.

We conclude that there is an algebra homomorphism +': O(L) — C
which satisfies v = 7' o py.. O

2.10 Corollary. A compact subset of a Stein manifold is auto-spectral if
and only if each of its connected components is auto-spectral.

Proof. If a compact subset K of a Stein manifold X has only auto-spectral
connected components then Proposition 2.9 shows that K is auto-spectral.
Conversely, let L C K be a connected component which is not auto-spectral.
Choose a closed embedding ¢: X < C". Then «(L) is a proper subset of
L" := Sp 41)(¢|r). Since A(L) does not contain any non-trivial idempo-
tent, the Silov Idempotent Theorem (see Bonsall and Duncan [9, 21.5])
implies that T' 47y and hence L' are connected. Hence L' is not contained
in ¢(K). Since Spy)(t/x) contains L', it properly contains t(K). We
conclude that K is not auto-spectral. [l

Zame [49, 3.4] gives a completely different proof of this corollary in terms
of the cohomology of coherent analytic sheaves.

3 Rational convexity

We introduce the concept of a rationally convex compact subset of C*. It
will be easy to prove that such a set is auto-spectral.

3.1 Definition. Let P(C") denote the algebra of complex-valued polyno-
mial functions on C". Define the rationally convex hull of a compact subset
K C(C" as

~

Kr(cny := ﬂ p ! (p(K)).
peEP(C)
A compact subset K C C" is called rationally convex if K = ER((CTL).

Note that K — I?R(@L) is a hull operation in the sense that it preserves

inclusion, that K C Kg(cn), and that I?R(Cn) is its own rationally convex
hull.

3.2 Example. Every compact subset of C is rationally convex (use the
identity function).

13



3.3 Remark. Using linear polynomials, we find that an affine complex
hyperplane which does not meet K does not meet I?R((Cn). Since every
affine real hyperplane is the union of affine complex hyperplanes, this entails
that ER((Cn) is contained in the convex hull of K. In particular, ER((Cn) is
compact, and every convex compact subset of C" is rationally convex.

3.4 Example. For n > 2, the rationally convex hull of the unit sphere
S C (C" is the unit ball B C C". To prove this, recall that every element
of O(S) extends to an element of O(B) (see, for instance, Range [36, 11.1.6]).
Now suppose that ¢ € B\ §R((Cn). Then there is a polynomial p € P(C")
such that p(¢) & p(S), and we may assume that p({) = 0. The germ of 1—1)
in S is an element of O(S) which does not extend to an element of O(B),
which is a contradiction.

Note that the same extension phenomenon entails that S is not auto-
spectral.

3.5 Proposition. FEvery rationally convex compact subset of C" is auto-
spectral.

Proof. Let K C C" be a rationally convex compact subset. Choose A €
C" \ K. We have to show that A\ & Spp(x) (idce ). There is a polynomial
p € P(C") such that p(\) = 0 ¢ p(K). Expanding p at A, we find a
representation

PO = D (G =2 (G =) (e
keNg™

with coefficients ¢, € C", where ¢cp = 0. We rewrite this as

n

p(Q) =D (G =X  (CeC)

J=1

with suitable polynomials ¢; € P(C"). Set U := C" \ p~1({0}), and define
fio-- 0, fn € OWU) by fj:= —%. Then all ¢ € U satisfy

n

L= (A = )15(0)

J=1

This proves that the ideal of O(K) generated by the elements A; — (; is all
of O(K), so that A € Spp (k) (iden ). O

4 Holomorphic convexity

This section uses the envelope of holomorphy of an open subset U of a Stein
manifold in order to study the Gelfand spectrum of Ay (K), the closure
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in C(K) of {f|k; f € OWU)}, for a compact subset K C U. In particu-
lar, we show that K is auto-spectral if it is holomorphically convex in U,
which is a fundamental concept in complex analysis. More precisely, the
holomorphically convex compact subsets of U are characterized among the
auto-spectral compact subsets of U by an approximation property.

4.1 Lemma (Evaluation homomorphisms). Let X be a second count-
able complex analytic manifold, and let K C X be a compact subset. Let
p: O(X) — Ax(K) be the restriction map, and choose a point ( € X. Then
the evaluation homomorphismev:: O(X) — C, f — f(() has the form xop
for some character x € T 4, (g if and only if |f(¢)| < [|f|klloc holds for all
feO0X).

The set of all these points,

Rogxyi={Ce X; V1 € OX): [£(O)] < || Flxcllo}

is called the holomorphically convex hull of K in X. For each point ( €
Ko(x), there is a unique character ev¢ € I' 4, (k) such that eve = ev¢ o p.
Moreover, the map

Ci—) é\{/'ci I?O(X) — FAX(K)
is continuous. For ¢ € K and f € Ax(K), we have ev¢(f) = f().

Proof. If eve = x o p for some x € T 4, (k) then all f € O(X) satisfy

F(Ol = leve(NI = [x(flre) | < [ f1x]|o -

Conversely, if |f({)| < [|f|k|ls holds for all f € O(X) then ev, factors
through p, and the induced complex homomorphism of im(p) C Ax(K) is
continuous and hence extends to a character of Ax(K). This character is
uniquely determined by ev, because im(p) is a dense subalgebra of Ax (K).

In order to prove that the map ¢ — ev: I?O(X) — ' 4y (i) 1s continuous,
we have to show that the map ¢ — ev¢(f) is continuous for every f €
Ax(K). It suffices to take f from the dense subalgebra im(p). But if
f € O(X) then ev¢(f|k) = f(¢) depends continuously on (.

Choose ¢ € K. Then ev¢(f) = f(¢) holds if f € im(p). By continuity,
this equation extends to all f € Ax(K). O

The holomorphically convex hull K o(x) 18 an important concept in com-
plex analysis. Note that it is a closed subset of X. If U C X is an open
subset with K C U then Koy € Ko(x). Moreover, if X is an open subset
of C" then I?O( x) 1s contained in the convex hull of K, as one sees by using
the functions ¢ — (& where o € C".
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4.2 Example. (a) Let K C U C C with K compact and U open.
Then I?O(U) is the union of K with those bounded connected components
of C\ K which are contained in U. Indeed, let K’ be this union. The Max-
imum Modulus Theorem (see Rudin [39, 10.24]) implies that K' C I?O(U).
Conversely, let ¢ € U\ K', choose disjoint open neighbourhoods Vi of K’
and V5 of ( in C, and let f € O(V; UV3) be the characteristic function of V5.
Since C \ U meets every bounded connected component of C\ (K'U {(}),
Runge’s Theorem [39, 13.6] yields a complex rational function g with poles
only in C\ U such that |f(n) — g(n)| < 3 for every n € K' U {(}. Then
glu € O(U) satisfies [g(¢)| > 3 > |lg|x|lso > ll9]K |lso, and we conclude that
¢ & Kow-

(b) In higher dimensions, holomorphically convex hulls need not be com-
pact. For the classic example, consider the compact unit polydisc D :=
{C € C?; |Cu),1¢e] < 1} and let K := {{(€D; (s =0o0r|(2] =1}. Then
every holomorphic function defined in an open neighbourhood of K extends
to a holomorphic function on an open neighbourhood of D (see, for example,
Range [36, I1.1.1]). In particular, the set K is not auto-spectral.

For a connected open neighbourhood U C C? of K, we claim that
I/(\'O(U) = U N D. Indeed, the left-hand side is contained in the right-hand
side because D is convex. The reverse inclusion follows from the Maximum
Modulus Theorem (in its one-variable version, actually).

(c) Recall that the polynomially convex hull of a compact subset K C
C" is the compact set {( € C"; Vp e P(C"): p(¢)| < |lplkllw}. An open
subset U C C" is called polynomially convex if it contains the polynomially
convex hull of each of its compact subsets. For such an open subset U, the
polynomials are dense in O(U) (see Gunning and Rossi [23, L.F.9]).

If K CU CC" with K compact and U open and polynomially convex
then I/(\'O(U) is the polynomially convex hull of K. Indeed, assume that
¢ € U belongs to the polynomially convex hull of K, choose f € O(U), and
let € > 0. Then there is a polynomial p € P(C") such that |f({) —p(¢)| < e
and ||(f —p)|k|lec < €, whence

Q1< 11+ < [plic ]|, +e < | flic]l, + 2.

Thus |f(¢)| < ||flk|loo, and we conclude that ¢ € I?O(U).

(d) Every compact subset K C R" is a polynomially convex subset of C".
Indeed, by (c), it suffices to show that K is holomorphically convex in C".
Let ( € C"\ K. If ( € R" then ( ¢ I?O((Cn) because the polynomials are
dense in C(K U {(¢}) by the Stone-Weierstrass Theorem (see Hewitt and
Stromberg [25, 7.34]). If Im(; < 0 for some j € {1,...,n} then the entire
function & — €% : C* — C separates ¢ from K because |e’i| = eR¢6 > 1.
Similarly, if Im ¢; > 0 then one uses the entire function & — e %,

A complex analytic manifold is called holomorphically convez if for every
compact subset, the holomorphically convex hull is compact. For instance,

16



the preceding example shows that all open subsets of C and all polynomi-
ally convex open subsets of C* are holomorphically convex manifolds. Stein
manifolds can be characterized in terms of holomorphic convexity. Indeed,
a second countable complex analytic manifold X of complex dimension n
is a Stein manifold if and only if it is holomorphically convex, the holo-
morphic functions separate the points of X, and for every ¢ € X, one can
find n holomorphic functions on X which form a coordinate system at (. In
fact, the last two conditions are equivalent if X is holomorphically convex
(Hormander [27, 5.2.12] and Taylor [43, Exercise 11.13]). Moreover, in the
presence of the other conditions, holomorphic convexity of X is equivalent
to the property that every continuous homomorphism from O(X) into C is
evaluation in a point of X. These facts are proved in many monographs on
complex analysis; see, for instance, Hérmander [27, 5.1.3, 5.1.5 and 5.3.9]
and Gunning and Rossi [23, VIL.C.5 and VIL.C.13]. Note that an open
subset of C" is a Stein manifold if and only if it is holomorphically convex.

Let X be a Stein manifold. A Riemann domain over X is a pair (Y, )
consisting of a second countable complex analytic manifold ¥ and an ana-
lytic local diffeomorphism 7: Y — X. Following Hérmander [27, 5.4.4],
we also require that the holomorphic functions on Y separate points. For
example, any open subset of X will be considered as a Riemann domain
together with the inclusion map. A holomorphic extension of a Riemann
domain (Y,7) over X is a Riemann domain (Y',7’) over X such that Y’
contains Y as an open submanifold, we have 7’|y = 7, and every f € O(Y)
has a unique holomorphic extension f € O(Y'). By the Open Mapping
Theorem (see Rudin [40, 2.12]), the restriction map O(Y') — O(Y) is an
isomorphism of Fréchet spaces.

An envelope of holomorphy of a Riemann domain (Y, 7) over X is a holo-
morphic extension (£, ¢) of (Y, ) which is as large as possible, in the sense
of the following universal property: if (Y', ') is a holomorphic extension of
(Y, ) then there is a unique analytic map ¢: Y' — F such that ¢|y =idy.
Note that € o ¢ = 7’ because both restrict to 7 and that ¢*: O(E) — O(Y")
is an isomorphism. Since the holomorphic functions on Y’ separate points,
the map ¢ is injective, and hence an open embedding by the Open Map-
ping Theorem (see Range [36, 1.1.21]). If (E’,¢’) is another envelope of
holomorphy of (Y, ), the universal property yields a unique analytic diffeo-
morphism ¢: E — E' such that ¢|y = idy. According to a classic result (see
Rossi [38], and Hormander [27, 5.4.3 and 5.4.5] or Gunning and Rossi [23,
I.G.11] for the case X = C"), every Riemann domain (Y, 7) over a Stein
manifold X has an envelope of holomorphy (E,¢). Since (E,¢) is unique
up to a natural analytic diffeomorphism, one usually speaks of the envelope
of holomorphy of (Y, w). The envelope of holomorphy can also be charac-
terized as the unique holomorphic extension which is a Stein manifold (see
Hormander [27, 5.4.2 and 5.4.3)).
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4.3 Proposition. Let X be a Stein manifold, let (Y, ) be a Riemann
domain over X with envelope of holomorphy (E,¢), and let K C'Y be a
compact subset. Then Ay (K) = Ag(K), and the map

p: I?(’)(E) — FAy(K)a C'—) é?/g

is a homeomorphism. The equation E@(Y) = I?O(E) holds if and only
.if[?o(y) is compact.

The fact that ¢ is a homeomorphism was first observed by Rossi [37, 2.3],
cf. Gunning and Rossi [23, VIL.A.7].

Proof. The definition of a holomorphic extension implies that Ay (K) =
Ag(K).

The assertion that ¢ is a homeomorphism follows from the fact that £
is a Stein manifold. Indeed, I/(\'o( g) 1s compact because £ is holomorphi-
cally convex, and ¢ is bijective because every continuous homomorphism
from O(F) into C is evaluation in a unique point of E. Hence ¢ is a con-
tinuous bijection between compact Hausdorff spaces and therefore a homeo-
morphism.

If ko(y) = I?O(E) then I?O(Y) is compact. Conversely, assume com-
pactness of I?o(y). Since I?o(y) =YnN I/(\'O(E), this implies that @(ko(y))
is an open and closed subset of I'4, (k). By the Silov Idempotent The-
orem (see, for instance, Bonsall and Duncan [9, 21.5]), the characteristic
function of (p(ko(y)) in I' 4, (k) is the Gelfand transform of an idempo-
tent e € Ay (K). If ( € K then e({) = ev¢(e) = 1. Hence e = 1, and
(P(KO(Y)) = FAy(K)' We conclude that K(f)(y) = KO(E) U

4.4 Corollary (Spectrum of Ay (K)). Let X be a Stein manifold, and
let K CU C X with K compact and U open. Choose a closed embedding
t: X — C". Then the following conditions are equivalent:

() Spa, ) (elx) € e(U);
(i) Tap(x) = {GNVQ (€ IA(O(U)};
(iii) I?O(U) is compact;
(iv) Spay, (k) (LK) = t(Kow)-
Proof. Let (E,¢) be the envelope of holomorphy of (U, idy ). Let ¢ € I/(\'O(E).
According to Lemma 4.1, the evaluation homomorphism ev¢: O(EF) — C
induces a character ev¢ of Ax(K) = Ay (K). Since €|y = idy, we find that

We(0)) = evi (1o e) = v (1olk) = v (t])-

18



Proposition 4.3 implies that SpAU(K)(L|K) = L(a (I/(\'O(E))).

__ By the same proposition, condition (i) is equivalent to the equation
Kow) = Ko(g), which is equivalent to (iii). If Koy = Kom) then
SPa, (k) (k) = L(&(K(f)(E))) = L(K(f)(U)), which is (iv). Condition (iv)
implies (i). Since

WEowy) = o(UNKom) € ule(Kom))) = Spay ) (tlx)
and Koy is closed in U, condition (i) implies (iii). O

4.5 Corollary (Auto-spectrality and holomorphic convexity). Let U
be a Riemann domain over a Stein manifold, and let K C U be compact.
Then the following conditions are equivalent:

(i) K is holomorphically convex in U (i.e. I?(')(U) =K).
(ii) K is auto-spectral, and Oy (K) = O(K).
(iii) K is auto-spectral, and Ay(K) = A(K).

Proof. Since U is an open subset of its envelope of holomorphy, which is a
Stein manifold, Lemma 1.2 and Corollary 4.4 show that condition (i) holds
if and only if T'p,, (i) consists of evaluations in points of K. By Lemma 2.3,
this is equivalent to both (ii) and (iii). O

4.6 Corollary (Auto-spectrality and polynomial convexity). A com-
pact subset K C C" is polynomially convex if and only if it is auto-spectral
and the polynomials are dense in A(K) or, equivalently, in O(K).

Proof. The polynomially convex hull of a compact subset K C C" equals
Ko(cry by Example 4.2, and the polynomials are dense in Ac» (K) and
in Ocn (K). Therefore, the assertions follow from Corollary 4.5. O

5 Stein compacta

Every compact subset of a Stein manifold which is holomorphically con-
vex with respect to some open neighbourhood is a Stein compactum, and
every Stein compactum is auto-spectral. In addition to the proofs of these
facts, this section contains several examples. One of them, which is due to
Bjork [7], is an auto-spectral subset of C? which is not a Stein compactum.

Let X be a second countable complex analytic manifold such that O(X)
separates points. For a compact subset K C X, let U5'(K) be the set of
Stein open neighbourhoods of K. (Note that an open subset of X is a Stein
manifold if and only if it is holomorphically convex.) A Stein compactum
in X is a compact subset K C X such that 5*(K) is a neighbourhood basis
of K.
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5.1 Example. (a) Let X be a second countable complex analytic manifold
such that O(X) separates points. Then any compact subset K C X such
that I/(\'o( x) = K is a Stein compactum. Indeed, K has a neighbourhood
basis counsisting of open analytic polyhedra, and every such neighbourhood
is holomorphically convex and hence a Stein manifold. The proofs given by
Range [36, 11.3.9 and I1.3.10] for subsets of C" carry over to the present
situation.

(b) Every compact subset of C is a Stein compactum by Example 4.2.
However, not every compact subset of C has an open neighbourhood in
which it is holomorphically convex. As an example, consider the compact
set

(0,1] + {0, Uilo, 1] U | (% o, 1]) .

neN

Example 5.1 implies that every compact subset of a Stein manifold X
has a relatively compact holomorphically convex open neighbourhood. Since
the intersection of two holomorphically convex open subsets of X is holo-
morphically convex, a compact subset of X is a Stein compactum if (and
only if) it is an intersection of holomorphically convex open sets. In par-
ticular, the intersection of any family of Stein compacta in X is again a
Stein compactum. Therefore, every compact subset K C X is contained in
a smallest Stein compactum, which we denote by I?gt. This compactum can
also be described as Kg; = NU> (K).

For a compact subset K of a Stein manifold, recall that Og;(K) was
defined as the closure in O(K) of the algebra of germs of holomorphic func-
tions defined in some member of /5 (K). The closure of the image of Og; (K)
under the restriction map O(K) — A(K) is the Banach algebra Ag;(K).

5.2 Proposition. For a compact subset K of a Stein manifold X, the
restriction homomorphism p: A(Ksy) — Asi(K), f — f|k is an isomor-
phism.

Proof. Set A:= {f|f(5t; fe O(I?St)} C C(Ksg;). We claim that all f € A

satisty || flloc = IIf|xlloo- It is clear that the left-hand side is greater than
or equal to the right-hand side. Conversely, choose U € U5'(K), and note
that I?gt C I?O(U) because the right-hand side is a Stein compactum which
contains K. If f € O(U) then

/125 lloo < 11 &0 lloo < 11l

by the definition of I?O(U). This proves the claim. Hence the restriction
pla: A = Asi(K) is a dense isometric embedding, and p is the completion
of pla. O
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5.3 Corollary. Let K C C" be a compact subset. Then for every ¢ € I?St,
evaluation in ¢ induces a unique character ev:: Asi(K) — C. O

5.4 Proposition (Auto-spectrality and Stein compacta). Let X be
a Stein manifold, and let K C X be compact. Choose a closed embedding
L X = C".

(a) We have FASt(K) = {é?/g; C S I?St} and SpASt ( |K) = L(th)

(b) The set K is a Stein compactum if and only if it is auto-spectral and
satisfies Agy(K) = A(K) or, equivalently, Og;(K) = O(K).

The fact that Stein compacta are auto-spectral is due to Rossi [37, 2.12].
Proof. If U € U5 (K) then

U(K) C Sp ) (L) €SPy ) (tlie) = e(Kow),

where the last equation follows from Corollary 4.4. Now assume that K
is a Stein compactum. Then Og(K) = O(K) and Asi(K) = A(K) hold
by definition. Moreover, K = ﬂUeuSt(K) I?O(U), which implies that +(K) =
SP (k) (¢ |K) Thus K is auto-spectral.

Slnce th is auto-spectral, statement (a) now follows immediately from
Proposition 5.2.

Conversely, assume that K is auto-spectral. If Ogi(K) = O(K) then
Asi(K) = A(K). Assume that the latter equation holds. Then

LK) = Spacro) (1K) = SPag, i) (i) = (K1)

by statement (a). We conclude that K = Kg;, which means that K is a
Stein compactum. O

5.5 Example. Define D and K as in Example 4.2 (b). The arguments
in that example show that D C Sp4x)(idk) and that Kgy = D. Hence

SpA(K)(idK) =D.

5.6 Remark. A subset S C C" is called a Reinhardt subset (with cen-

tre 0) if for all ( € S and all n € C* with || = --- = |n,| = 1, the
point (171(1,...,mm(,) also belongs to S. If this even holds for all n € C*
with [m1],...,|7s| < 1 then S is called a complete Reinhardt subset (with
centre 0).

For such subsets, there is a particularly easy characterization of holo-
morphic convexity. Let U C C" be an open connected Reinhardt subset
with 0 € U. Then U is holomorphically convex if and only if it is complete
and logarithmically convez, which means that the subset

{(t, .. tn) € R (1, e") e U}
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of R" is convex (see, for instance, Hormander [27, 2.5.5 and 2.5.8]). If U
is not holomorphically convex, this shows that there is a unique smallest
holomorphically convex open Reinhardt subset V' C C" such that U C V.
Every holomorphic function on U has a unique holomorphic extension to V'
(see Hormander [27, 2.4.6]). In other words, the domain V' is a realization
of the envelope of holomorphy of U.

Let K C C" be a compact connected Reinhardt subset with 0 € K. By
the above discussion, I?gt is the smallest complete logarithmically convex
Reinhardt subset of C"* which contains K, and every f € O(K) extends
uniquely to an element of (’)(I/(\'St). In particular, K is a Stein compactum
if and only if it is a complete Reinhardt set and logarithmically convex.
Moreover, this holds if and only if K is auto-spectral (cf. Bjork L? 4.4])
Indeed, if ¢ € th \ K then evaluation in ( is a character of O(Kg;) and
hence of O(K).

Similar facts can be shown for Reinhardt sets which do not contain their
centre. In particular, a compact connected Reinhardt subset of C™ is a Stein
compactum if and only if it is auto-spectral.

For 0 <71 < Ry and 0 < ry < Ry, we define a compact Reinhardt subset

of C? by
K(r1,m2; R, Ry) := {¢ € C*; r1 < |G| < Ry, m2 < |G| < Ro} .

For instance, the set K from Example 4.2 (b) can concisely be written as
K(0,0;0,1) U K(0,1;1,1). Using the functions ¢ = ¢j and ¢ — ;" for
J € {1,2}, we find that each K(ry,rs; Ri, R2) is holomorphically convex in
any sufficiently small open neighbourhood. In particular, K(rq,r9; R1, R2)
is a Stein compactum. We will now use these sets in order to illustrate two

important phenomena. The first of the following two examples is essentially
due to Bjork [7].

5.7 Example. The compact subset

K :=K(0,0;0,)u | J K@ ™ 1-2""27" 1-27") CC?
ﬁ—/ \ . ~ 7

=:Kjp neN =Ky

is auto-spectral by Corollary 2.10, but it is not a Stein compactum. Indeed,
let U C C? be a holomorphically convex open neighbourhood of K. Then
the connected component Uy of 0 in U contains Ko U Un> ~ Ky, for some
N e N. Hence Uy contains | J,,- y K(0,0;27 "1, 1—2""). But then Uy must
also contain K. Descending inductively, we ﬁnd that U must contain

K(0,0;0,1) U | K(0,0;27"4,1—27™),
neN

and I?St is the logarithmically convex hull of this compact Reinhardt set.
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Example 5.7

From a similar example, Bjork [7] deduces a compact connected auto-
spectral subset of C* which is not a Stein compactum.

5.8 Example. This example will show that the auto-spectral hull of a
compact subset of C™ cannot be computed by repeatedly assigning K
Spo( K) (id(cm). (Since this assignment preserves inclusion, the spectrum

SPo(k) (id(Cm) is contained in the auto-spectral hull of K.) Define

n n n+l’ n
neN

2 —_—
1.5 —

1 N
0.5

0

0 0.5 1 1.5 2
Example 5.8

For n € N, set K,, := Spo(Kn_l)(ia(Cz). Using Proposition 2.9 and Re-
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mark 5.6, one inductively computes that

Kn_KOU{CE(CQ |C1| < n—l—l’ |C2| <2, |C1C2| Sl}

Hence the sets K, form a strictly increasing sequence. In particular, assign-
ing Spo(x) (id(Cm) to a compact set K C C™ is not a hull operation. The
union J, .y Ky, is not closed. Its closure is the set

Koo :=KoU{C€C |G| <1, G| €2, |G- Gl <1}
It is still not auto-spectral. The auto-spectral hull of Kj is
{CeC; |Gl <2, | <2, [¢-¢f <1}.

It coincides with Sppk..) (i?i(cz).

Note that not every holomorphic function defined in an open neighbour-
hood of Ky extends to a holomorphically convex open neighbourhood. An
example is provided by any non-constant locally constant function defined
in a neighbourhood of Ky. A compact connected set for which this phe-
nomenon occurs can be derived from Exercise 11.3.13 in Range [36].

6 Meromorphic convexity

In this section, we relate holomorphic convexity and Stein compacta to the
concept of rational convexity, which has been introduced in Section 3.

6.1 Definition. Let X be a second countable complex analytic manifold,
and let K C X be a compact subset. The meromorphically convex hull of K
in X is defined as

= N f

feO0(XxX
Note that every open subset U C X with K C U satisfies I?M(U) - I?M(X).

6.2 Remark. Let D(f(K)) denote the smallest closed disc around 0 in C
which contains f &K Then the holomorphically convex hull of K in X can
be expressed as Ko(x) = (jeo(x L(D(f(K))). This observation proves

that KM( )CKO( )

6.3 Lemma. Let X be a second countable complex analytic manifold, let
K C X be a compact subset, and let (o € Kyqx). Then all f,g € O(X)

C =
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Proof. The holomorphic function

h: X —C, ¢— f(Co) - 9(¢) = £(¢) - 9(Co)

vanishes in {y. Hence there is an element ( € K such that A({) = 0. This
f(Co) _ £(Q)

equation is equivalent to 78) = 90 O

The lemma shows that to some extent, the definition of meromorphic
convexity fits into the general concept of convexity with respect to a fixed set
of functions. However, a meromorphic function need not be the quotient of
two global holomorphic functions. In order to understand the situation, we
briefly recall the definition of a meromorphic function on a complex analytic
manifold X. For each ¢ € X, let M be the field of fractions of the domain
O¢ := O({¢}). In the disjoint union M := (J.cx M, consider the subsets
{fc/9¢; ¢ €U}, where U C X is a connected open subset, f,g € O(U),
fc and g¢ are the germs at ¢ € U, and g is not the zero function on U.
These subsets are the basis of a topology which turns M with the natural
projection onto X into a sheaf, the sheaf of germs of meromorphic functions.
A meromorphic function on an open subset U C X is a section of M over U.
Note that a meromorphic function on X need not give rise to a continuous
function from X into the Riemann sphere C U {oo}. This problem already
occurs for the meromorphic function on C? given by ¢ — (1/(o.

Since O¢ C M, we may define the singular set of a meromorphic func-
tion m on X as the subset S(m) := {¢ € X; m({) € O¢}. This is a closed
subvariety of X (see Gunning and Rossi [23, VIII.B.4]), and the restriction
of m to R(m) := X \ S(m) is a holomorphic function. A singular point
Co € S(m) is called a pole of m if lim¢_,¢, cer(m) m(C) = oco. The singular
points which are not poles are called points of indeterminacy of m.

6.4 Lemma. Let X be a second countable complex analytic manifold such
that O(X) separates points, let K C X be compact, and choose ( € X.
Then the implications (i) = (ii) = (iii) = (iv) hold between the following
statements.

(i) There exists f € O(X) such that f(¢) & f(K), i.e. ¢ & Kaa(x)-

(ii) There exists a meromorphic function m on X such that K U {(} C
R(m) and [m(C)] > [lm]s|loc-

(iii) There exists a meromorphic function m on X such that K C R(m)
and ( is a pole of m.

(iv) There exists a meromorphic function m on X such that K C R(m)
and ¢ € S(m).

If X is a Stein manifold and H*(X;Z) = 0 then the four statements are
equivalent.
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Proof. Assume that f € O(X) satisfies f({) ¢ f(K). After adding a
suitable constant to f, we may assume that 0 < [f(¢)| < |f(n)| holds for
every n € K. Then m := 1/f is a meromorphic function on X with K U
[C} C R(m) and |m(Q)] > mlkllo.

Assume that m is a meromorphic function on X with these properties.
We may assume that every connected component of X meets K U {C}. The
meromorphic function m — m(() neither has zeros nor singularities in a
neighbourhood of K. If m is not locally constant at ¢ then (m —m(¢)) !isa
meromorphic function on X with the properties stipulated in statement (iii).
If m is locally constant at ( then the connected component of { in X does not
meet K. Since O(X) separates points, it is easy to construct a meromorphic
function on X which is regular in a neighbourhood of K and has a pole at (.

The implication (iii) = (iv) is trivial.

Assume that X is a Stein manifold and that m is a meromorphic function
on X such that K C R(m) and ¢ € S(m). Then there are f,g € O(X) such
that m = f/g (Gunning and Rossi [23, VIII.B.10]), and ¢g(¢) = 0 because
¢ € S(m). Assume, moreover, that H?(X;Z) = 0. Then we may choose the
holomorphic functions f and g such that the germs f and g; are relatively
prime for each { € X (Gunning and Rossi [23, VIII.B.3 and 13]). Then S(m)
is exactly the set of zeros of g. In particular, 0 € g(K) because K C R(m).
Thus under these additional assumptions, statement (iv) implies (i). O

The preceding lemma shows that there is no obvious choice of the def-
inition of meromorphic convexity on a general complex analytic manifold.
Our definition is the strongest and also the easiest.

Our distinction of poles and points of indeterminacy follows Range [36,
VI, § 4]. Rossi [37] calls S(m) the poleset of m. Rossi’s paper is an important
source for the present section, in particular for Lemmas 6.6, 6.7, and 6.11.
However, some of Rossi’s arguments seem to disregard the possible presence
of points of indeterminacy, so that it seemed worthwhile to adapt his proofs.
This also yields an extension of Rossi’s results beyond the framework of Stein
manifolds.

6.5 Remark. Let U C C" be open and polynomially convex, and let K C U
be compact. Then K M(uy coincides with the rationally convex hull of K,
ie.
Kvoy= () »'(pEK)).

peP(C™)
Indeed, the forward inclusion is trivial, and the reverse inclusion follows
easily from the fact that the polynomials are dense in O(U), which was
mentioned in Example 4.2.

For a meromorphically convex compact subset of a complex analytic
manifold, a simple compactness argument yields what might be called a
neighbourhood basis of meromorphic polyhedra.
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6.6 Lemma (Meromorphic polyhedra). Let X be a second countable
complex analytic manifold, let K C X be a meromorphically convex com-
pact subset, and let U C X be a relatively compact open neighbourhood
of K. Then there is a finite set F' C O(X) of holomorphic functions on X
such that

KC{CeU; VieF:|f(Q>1}
and {C e U; VfeF:|f(C)|>1} is compact.

Proof. For each boundary point ( € JU, there is a holomorphic function
fc € O(X) such that f:({) = 0 and f¢(K) C {ne€C; |n| >2}. Set Us :=
{n € X; |f(n)| < 1}. Since these open sets cover the compact boundary oU,
there is a finite subset F' C OU such that 0U C UCEF’ Ue. Set F :=
{fe; CeF'}. Then K C{(€U; VfeF:|f(¢)|>1}, and

{CeU; VieF: [fOI=1}=U\ | U

CEF!

is compact. [

6.7 Lemma (Meromorphically convex compacta are Stein). Let X
be a second countable complex analytic manifold such that O(X) separates
points, and let K C X be compact subset which is meromorphically convex
in X. Then K is a Stein compactum.

Proof. Let U C X be a relatively compact open neighbourhood of K.
Choose a finite subset F' C O(X) as in Lemma 6.6. Define an open neigh-
bourhood of K by V := U\ Uscp f~1({0}). If f € F then f~'|y € O(V).
The holomorphically convex hull of K in V satisfies

{CevivieF: fQO M <|f Mxll)
{CeviVieF: |f(O! <1}
{CeU; YfeF:|f(Q)]>1}.

Kowy C
C

The right-hand side is a compact subset of V', whence I/(\'O(V) is compact.
Example 5.1 shows that I?O(V) is a Stein compactum.

Since the relatively compact open neighbourhood U C X of K can be
chosen arbitrarily small, the set K is an intersection of Stein compacta and
hence a Stein compactum. [

6.8 Remark. Hormander and Wermer [26] constructed a smoothly embed-
ded disc in C? which is a Stein compactum but not rationally convex (cf.
Forstneric [18]).
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6.9 Proposition. Let X be a second countable complex analytic manifold
such that O(X) separates points. Then a compact subset K C X is a
Stein compactum if and only if K has arbitrarily small open neighbourhoods
U C X such that I?M(U) is compact.

Proof. A Stein compactum K C X has arbitrarily small holomorphically
convex open neighbourhoods, and for each such neighbourhood U C X,
the set K M(v) 18 a closed subset of I?O(U) and hence compact. Conversely,
if K C X is a compact subset with arbitrarily small open neighbourhoods
U C X such that K is compact then the preceding lemma shows that K
is an intersection of Stein compacta and hence a Stein compactum. U

6.10 Proposition (Meromorphically convex manifolds are Stein).
Let U be an open subset of a Stein manifold X. Then U is holomorphically
convex (i.e. a Stein manifold) if and only if K M(u) s compact for every
compact subset K C U.

It is conceivable that this also holds for more general complex analytic mani-
folds U.

Proof. If U is holomorphically convex then K M) C I/(\'O(U) is compact for
each compact subset K C U.

Conversely, assume that every compact subset of U has compact mero-
morphically convex hull in U. We claim that U is Hartogs pseudoconvex.
The meaning of this claim is as follows. Let d be the complex dimension
of U. Extending the notation introduced before Example 5.7 to subsets
of C? in the obvious way, define K C C? by K := K(0;0,...,0,0,1) U
K(0,...,0,0,1;0,...,0,1,1), and K C C? by K := K(0;0,...,0,1,1).
Let ¢ be a biholomorphic embedding of a neighbourhood of K in C? into X
such that L := ¢(K) C U. What we claim is that L := ¢(K) is also con-
tained in U. The key to the proof of this claim is Hartogs’ result that every
holomorphic function defined in a neighbourhood of L extends holomorphi-
cally to a neighbourhood of L (see Range [36, 11.2.2]). Pick ¢ € LN U.
We claim that ¢ € EM(U). Otherwise, there exists f € O(U) such that
f(¢) =0 ¢ f(L). Then 1/f is a holomorphic function near L which does
not extend to L. This contradiction shows that L N U C L m(v)- Hence
Lnu=1LnL M(v) is open and closed in L. Since this set is not empty
and L is connected, this proves our claim that L C U, i.e. that U is Hartogs
pseudoconvex.

Each Hartogs pseudoconvex open subset of C" is holomorphically convex
(see Range [36, I1.5.8 and VI.1.17]). In the case that X = C", we have thus
completed the proof of the proposition.

In the case that X is a general Stein manifold, choose a closed embedding
t: X — C", an open neighbourhood V' C C" of +(X), and a holomorphic
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retraction p: V. — X for (. By shrinking V, we may assume that V is
holomorphically convex (see Siu [42]). Set W := p~1(U) C V, and choose
a compact subset K C W. We claim that Kiy) is compact. We have

I?M(W) C I/(\'O(W) C I?O(V), and the latter set is compact. Thus it suffices

-~

to show that Ky is closed in V. Set L := p(K), and choose ( € W\
pfl(EM(U)). Then there exists f € O(U) such that f(p(¢)) ¢ f(L) =
f(p(K)). Using fop e O(W), we find that ¢ ¢ Kaqwy). Thus Ky C
pfl(zM(U)), and the latter set is closed in V. Since I/(\'M(W) is closed in W,
we conclude that it is closed in V and hence indeed compact.

The first part of the proof now shows that W is holomorphically convex,
whence the same holds for U = =1 (W). O

In the case that X = C", Proposition 6.10 also follows from Lemma 6.7 and
the Behnke-Stein Exhaustion Theorem [2]. A similar result is contained in
the same paper by Behnke and Stein.

To end this section, we characterize meromorphic convexity in terms of
approximation by meromorphic functions. This result is analogous to our
characterizations of holomorphically convex compacta in Corollary 4.5 and
of Stein compacta in Proposition 5.4.

If X is a complex analytic manifold and K C X compact, define an
algebra of meromorphic functions on X by

Mk (X)={f/g; f,9 € OX), 0 £ g(K)}.

6.11 Lemma (Meromorphic approximation, cf. Rossi [37, 3.4]).
Let X be a second countable complex analytic manifold such that O(X)
separates points, and let K C X be a meromorphically convex compact
subset. Then the subalgebra Mg (X)|xk = {f|k; f € Mk(X)} is dense
in A(K).

Proof. Let U C X be an open neighbourhood of K, let f € O(U), and
let ¢ > 0. We have to construct an element g € Mg(X) such that all
¢ € K satisty |f(¢) —g(¢)] < e. We may assume that U has compact closure
in X, and also that U is a Stein manifold, by Lemma 6.7. Choose F =
{fi,--+sfm} € O(X) as in Lemma 6.6, and choose a closed biholomorphic
embedding ¢: U — C". The map

h:U—C"™ 0 (e (f1Q)s -, fm(€), 1 (€), - en(C))

is a closed biholomorphic embedding. Set
Y:={CeC™"; |G| >1,...,[¢n| > 1}

and
Vi=hT'(Y)={CeU; Vje{l,...,m}:|f;(¢)| > 1}.
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Then Y is a Stein manifold, V' is an open neighbourhood of K, and h(V') =
Y Nh(U) is a closed submanifold of Y. Every holomorphic function on h(V)
has a holomorphic extension to Y (Gunning and Rossi [23, VIII.A.18]).
Hence there exists k& € O(Y') such that kohl|y = f|y. By Laurent extension
(see Range [36, I1.1.4]), there is a Laurent polynomial

)

pe (C[Clagl_la' . aCmaCr?zlaCm—l—la' o 7Cm+n]
)
)

such that all ¢ € h(K) satisfy |k({) — p({)| < e. In other words, all { € K
satisfy |f(¢) — p(h(¢))] < e. Since none of the f; has a zero in K, the
composition g := po h is an element of Mg (X), and it has the desired
approximation property. U

6.12 Proposition (Auto-spectrality and meromorphic convexity).
Let X be a second countable complex analytic manifold such that O(X)
separates points, and let K C X be compact. Then the following conditions
are equivalent:

(i) K is meromorphically convex in X (i.e. I?M(X) =K).

(ii) K is auto-spectral, and the subalgebra of germs of elements of M x (K)
in K is dense in O(K).

(iii) K is auto-spectral, and M x(K)|xk is dense in A(K).

Proof. If condition (i) holds then K is auto-spectral by Lemma 6.7 and
Proposition 5.4, so that statement (iii) follows from Lemma 6.11. By Lem-
mas 1.2 and 2.3, statements (ii) and (iii) are equivalent to each other and to
the condition that the Gelfand spectrum of A := M x (K)|x consists of the
evaluations in points of K. It remains to show that this implies condition (i).

Let ¢ € I?M(X). No element of Mg (X) has a singularity at ¢, so that
evaluation in ¢ is a homomorphism from Mg (X) onto C. By Lemma 6.3,
every f € Mg (X) satisfies |f({)| < ||f|x|loo- Hence evaluation in ¢ induces
a character of A. Thus if I'4 consists of the evaluations in points of K
then K is meromorphically convex in X. U

6.13 Corollary (Auto-spectrality and rational convexity). A com-
pact subset K C C" is rationally convex if and only if it is auto-spectral and
the algebra of rational functions on C* without singularities in K is dense
in A(K) or, equivalently, in O(K).

Proof. The rationally convex hull of a compact subset K C C" equals
K Mm(cr) by Remark 6.5. A rational function can be written as a quotient
of relatively prime polynomials, and then the singular set equals the set of
zeros of the denominator. Therefore, every rational function on C* with-
out singularities in K is an element of Mx (K). Since the polynomials are
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dense in Acn (K) and in Ocn (K), every element of M g (C™") can be approxi-
mated by rational functions without singularities in K, both in the topology
of A(K) and in the topology of O(K). Therefore, the assertions follow from
Proposition 6.12. U

6.14 Remark. The strategy of proof for Lemma 6.6 and Proposition 6.12
can immediately be applied in the context of holomorphic convexity, yielding
the following results.

Let K be a compact subset of a second countable complex analytic mani-
fold X.

(a) Assume that I?O(X) = K, and let U C X be a relatively compact open
neighbourhood of K. Then there is a finite subset F' C O(X) such
that {( € U; Vf e F:|f(¢)] <1} is a compact neighbourhood of K.

(b) The equation I?O( x) = K holds if and only if K is auto-spectral and
satisfies Ay (K) = A(K) or, equivalently, Ox (K) = O(K).

Thus Corollary 4.5 is generalized from Riemann domains over Stein
manifolds to complex analytic manifolds in which the holomorphic func-
tions separate points. However, Proposition 4.3 contains additional insights,
and its proof is more elementary, at least in the case of Riemann domains
over C".

7 Holomorphic generation

The final section relates our previous results to Mackey-complete complex
commutative continuous inverse algebras A which are generated by n-tuples
a € A" in the sense of the holomorphic functional calculus. In this situa-
tion, the joint spectrum Sp(a) is an auto-spectral set, and the algebra A is
“sandwiched” between O(Sp(a)) and A(Sp(a)). The joint spectrum of the
n-tuple a also shows whether a generates the algebra A in a stronger sense.
(Recall that Mackey-completeness is just the weak completeness assumption
used in the construction of the holomorphic functional calculus.)

7.1 Lemma. Let A be a Mackey-complete commutative continuous inverse
algebra over C, let a € A", and set K := Spy(a). Let 0: O(K) — A, f —
fla] be the functional calculus homomorphism, and let y: A — C(T'4), x —
% be the Gelfand homomorphism. Then the composition yo 6: O(K) —
C(T 4) equals the homomorphism &* induced by the continuous surjection

a: Ty — K, x — (x(a1),...,x(an)).

Proof. The statement follows from a short calculation by means of natural-
ity of the holomorphic functional calculus. Indeed, if f € O(K) and x € I'4
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The preceding observation is particularly interesting in the case that a
is a homeomorphism. In this case, we can use a to identify I'4 and K and
think of ¢* as the restriction map from O(K) into C(K).

7.2 Theorem (Holomorphically generated algebras). Let A be a
Mackey-complete commutative continuous inverse algebra over C, let a €
A", and set K := Spy(a) and 0: O(K) — A, f — fla]. Assume that 0
has dense image. (In this situation, we say that the n-tuple a generates the
algebra A holomorphically.) Then

a: 'y — K; Xt (X(al)"" ’X(an))

is a homeomorphism. Let y: A — C(K), z + £0a~! be the homomorphism

induced by a and the Gelfand homomorphism. Then im(y) = A(K), and
the composition

O(K) -5 4L AK) -5 C(K),

where ¢ is the inclusion, equals the restriction homomorphism f +— f|k.
The induced maps

* * 0*
FC’(K) L—) F.A(K) 7—) 'y, — F(’)(K)

are homeomorphisms. In particular, the joint spectrum K is an auto-spectral
compact subset of C".

Proof. By definition, the map & is a continuous surjection. As both I'4
and K are compact Hausdorff spaces, it suffices to show that a is injective.
If x eIy and f € O(K) then x(f[a]) = f(a(x)) by naturality of the holo-
morphic functional calculus. Therefore, a(x) uniquely determines x|y (g)
and hence ¥.

Choose f € O(K). It x € T4 then 6(f)"(x) = x(fla]) = F(a(x))-
Thus if ¢ € K then v(8(f))(¢) = 0(f)" (a"'(¢)) = f(¢). This proves that
vo8: O(K) = C(K) is the restriction homomorphism. Since 6 has dense im-
age, we conclude that A(K) = im(7y o ) = im(7), so that we may consider -y
as a map into A(K).

Lemma 1.2 shows that (70 6)* = 6* o v* is a homeomorphism. Since 6*
is injective and «* is surjective, we find that both 8* and +* are homeo-
morphisms. The map (to7y)* = v*o.* is a homeomorphism by construction.
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Since every character of the algebra C'(K) is evaluation in a point of K,
the same holds for the algebras A(K) and O(K). We conclude that K is
auto-spectral. O

7.3 Remark. Let K C C" be an auto-spectral compact set. Then O(K) is
holomorphically generated by the n-tuple idcr , and Spo( K) (id@n) = K. The
analogous statement holds for the Banach algebra A(K). Thus the auto-
spectral compact subsets of C" are exactly the joint spectra of holomor-
phically generating n-tuples in Mackey-complete commutative continuous
inverse algebras (or in commutative Banach algebras).

An n-tuple a in a commutative continuous inverse algebra A may gen-
erate the algebra not only holomorphically, but in a stronger sense. For
instance, the algebra A may be the topological closure of the subalgebra
generated by a. Such a situation yields certain additional necessary con-
ditions on the spectrum of a, which are also sufficient if the n-tuple a is
assumed to be holomorphically generating. Several situations of this kind
are studied in the following corollary.

7.4 Corollary (Holomorphic generation by subalgebras). Let A be
a Mackey-complete commutative continuous inverse algebra over C which is
generated holomorphically by a € A™. Set K := Sp,(a).

(a) For a unital subalgebra B C O(K) which contains the germs of the
coordinate functions, the following are equivalent:

(1) {fla]; f € B} is dense in A;
(ii) B is dense in O(K);
(iii) B|g is dense in A(K).
(b) Let U C C* be an open neighbourhood of K. Then the subalgebra

{fla]; f € O(U)} is dense in A if and only if K is holomorphically
convex in U.

(c) The unital subalgebra generated by {ai,...,a,} is dense in A if and
only if K is polynomially convex.

(d) The subalgebra {f[a]; f € Oss(K)} is dense in A if and only if K is a
Stein compactum.

(e) Let U C C* be an open neighbourhood of K. Then the subalgebra
of elements of the form (f/g)[a], where f,g € O(U) and 0 ¢ g(K), is
dense in A if and only if K is meromorphically convex in U.

(f) The subalgebra of elements of the form f[a], where f is a rational
function on C" without singularities in K, is dense in A if and only
if K is rationally convex.

33



The forward implication in assertion (c), which is classic at least in the case
of commutative Banach algebras (see Bonsall and Duncan [9, 19.11]), was
one piece of motivation for the present paper.

Proof. First note that K is auto-spectral by Theorem 7.2. For the proof of
assertion (a), Theorem 7.2 also yields that condition (i) implies (iii), which
implies (ii) by Lemma 2.3. The definitions show that (ii) implies (i).

To prove assertions (b) to (f), choose the subalgebra B C O(K) in
part (a) suitably and use, respectively, Corollary 4.5, Corollary 4.6, Propo-
sition 5.4, Proposition 6.12, and Corollary 6.13. O
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