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Abstrat

We study omplex ommutative Banah algebras, and more gener-

ally ontinuous inverse algebras, in whih the holomorphi funtions of

a �xed n-tuple of elements are dense. In partiular, we haraterize the

ompat subsets of C

n

whih appear as joint spetra of suh n-tuples.

The haraterization is ompared to several established notions of holo-

morphi onvexity by means of approximation onditions.
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Introdution

By a lassi result, the joint spetra of topologially generating n-tuples in

omplex ommutative Banah algebras are exatly the polynomially onvex

ompat subsets of C

n

. The prinipal result of this paper is a similar har-

aterization of the joint spetra of holomorphially generating n-tuples in

omplex ommutative Banah algebras. Here holomorphi generation refers

to the holomorphi funtional alulus, whih assoiates with every n-tuple

a 2 A

n

in a omplex ommutative Banah algebra A a ontinuous algebra

homomorphism �

a

: O(Sp(a)) ! A, where O(Sp(a)) denotes the algebra of

germs of holomorphi funtions near the joint spetrum Sp(a) in its natural

indutive limit topology. The tuple a is said to generate A holomorphially

if the image of �

a

is dense in A. We �nd (7.2 and 7.3) that a ompat subset

K � C

n

is the joint spetrum of a holomorphially generating n-tuple in a

omplex ommutative Banah algebra if and only if every homomorphism

from O(K) into C is evaluation in a point of K. A ompat subset of a

Stein manifold with this property is alled auto-spetral.
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Given a holomorphially generating n-tuple a 2 A

n

, one may strengthen

the hypotheses by assuming that ertain subalgebras B � O(Sp(a)) already

have dense image under �

a

. This situation is interesting in its own right.

Moreover, it helps to relate auto-spetrality to other holomorphi onvexity

onditions (7.4). If B onsists of the germs of holomorphi funtions de-

�ned in a �xed open neighbourhood U � C

n

of Sp(a) then �

a

(B) is dense

in A if and only if Sp(a) is holomorphially onvex in U . Similarly, if B

onsists of the germs of holomorphi funtions de�ned in holomorphially

onvex open neighbourhoods of Sp(a) then �

a

(B) is dense in A if and only

if Sp(a) is a Stein ompatum, i.e. it has a neighbourhood basis onsist-

ing of holomorphially onvex open sets. Finally, let B � O(Sp(a)) be the

algebra of germs of quotients of holomorphi funtions de�ned in a �xed

open neighbourhood U � C

n

of Sp(a) suh that the denominator does not

vanish anywhere in Sp(a). Then �

a

(B) is dense in A if and only if Sp(a)

is meromorphially onvex in U . In fat, ompat subsets of a Stein mani-

fold X whih are holomorphially onvex with respet to some open neigh-

bourhood an be haraterized among the auto-spetral subsets of X by a

ertain approximation property (4.5). A similar haraterization holds for

Stein ompata (5.4) and for meromorphially onvex ompata (6.12).

Setion 1 provides several important tools, and Setion 2 introdues auto-

spetral ompata. Setion 3 ontains the diret proof that rationally onvex

ompat subsets of C

n

are auto-spetral. The three middle setions 4 to 6

treat holomorphi onvexity, Stein ompata, and meromorphi onvexity,

respetively. The �nal Setion 7 applies all this material to the theory of

Banah algebras.

As the polynomials are ontained in O(Sp(a)), every n-tuple whih gen-

erates A in the usual sense generates A holomorphially. Therefore, we

are onsidering a wider lass of algebras, and polynomially onvex om-

pat subsets of C

n

are examples of auto-spetral sets. The main bene�t of

the onept of holomorphi generation, however, lies in the following ad-

vantage of O(Sp(a)) over the algebra of polynomials. Even if O(Sp(a)) is

not a Banah algebra, it is a omplete loally onvex algebra with open

unit group and ontinuous inversion. Loally onvex algebras with these

properties are alled omplete ontinuous inverse algebras. Large parts of

the theory of Banah algebras an be generalized to these algebras, and in

fat they form a more natural lass than Banah algebras for many ques-

tions, inluding those onsidered here. Continuous inverse algebras were

introdued by Waelbroek [45℄. They play a role in non-ommutative geo-

metry, in partiular in K-theory [8, 10, 12, 35℄, and in the theory of pseudo-

di�erential operators [21℄. Currently, they are attrating attention as the

natural framework for Lie groups and algebras of in�nite dimension [20℄.

They appear as oordinate algebras in root-graded loally onvex Lie al-

gebras [33℄. Their role in the theory of Banah algebras is related to the

fat that every omplex ommutative Banah algebra A is \sandwihed", for

2



every hoie of an n-tuple a 2 A

n

, between an algebra of holomorphi germs

and an algebra of ontinuous funtions by the funtional alulus homomor-

phism �

a

: O(Sp(a))! A and the Gelfand homomorphism 

A

: A! C(�

A

).

If a 2 A

n

holomorphially generates A then the Gelfand spetrum �

A

is

naturally homeomorphi to Sp(a) � C

n

. Under this homeomorphism, the

omposition 

A

Æ �

a

: O(Sp(a))! A! C(�

A

) orresponds to the restrition

map O(Sp(a))! C(Sp(a)).

This observation ould be applied in the theory of entral extensions

of in�nite-dimensional Lie groups. Every omplete ommutative ontinu-

ous inverse algebra A over C gives rise to a universal di�erential module

d : A ! 


1

(A) and a natural universal period homomorphism per: A

�

!

HC

1

(A); a 7! [a

�1

da℄, where HC

1

(A)

:

= 


1

(A)=im(d) is the �rst yli

homology spae of A. Note that the period homomorphism fators through

�

0

(A)

�

=

A

�

= exp(A), whih is naturally isomorphi to the �rst

�

Ceh o-

homology group of �

A

beause the analogue of the Arens{Royden Theorem

an be proved for ontinuous inverse algebras [4℄. If im(per) is disrete

then the identity omponent of SL

m

(A) has a universal entral extension

for every m 2 N. This ondition is satis�ed in all examples for whih it

has been heked, whih is diÆult beause it depends on detailed under-

standing of HC

1

(A). The examples inlude ommutative C

�

-algebras, for

whih the universal di�erential module vanishes (Maier [29℄), the algebra of

smooth funtions on a ompat manifold (Maier and Neeb [30℄), and the

algebra of ompatly supported smooth funtions on a non-ompat mani-

fold (Neeb [32℄). In the light of the present paper, it would be interesting to

deide whether the image of the universal period homomorphism of O(K)

is disrete for a ompat subset K � C

n

, at least if K satis�es one of the

additional onditions studied here. As a �rst step, Neeb and Wagemann [34℄

have reently proved that the di�erential module of germs of holomorphi

1-forms in K is universal for O(K).

1 The algebras O(K) and A(K)

A ontinuous inverse algebra is a loally onvex unital algebra A over C

suh that the group A

�

of invertible elements is open in A and inversion

is ontinuous. We will usually assume that A is ommutative. Then the

Gelfand spetrum of A is the set �

A

of (unital) algebra homomorphisms

from A onto C , whih are automatially ontinuous. Under the topology of

pointwise onvergene on A, the Gelfand spetrum is a ompat Hausdor�

spae, and a Gelfand Theory an be developed as in the ase of Banah

algebras [6℄.

We assoiate several algebras with eah ompat subset K of a seond

ountable omplex analyti manifoldX. (We will always taitly assume that

all onneted omponents of a manifold have the same dimension.) The al-
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gebra O(K) is the algebra of germs inK of holomorphi funtions de�ned in

open neighbourhoods of K in X. We topologize O(K) as the loally onvex

diret limit of the Fr�ehet algebras O(U) of holomorphi funtions in U with

the ompat-open topology (or, equivalently, of the Banah algebras O

1

(U)

of bounded holomorphi funtions with the supremum norm), where U varies

over the open neighbourhoods of K in X. In this topology, O(K) is a om-

plete ontinuous inverse Hausdor� algebra. Indeed, we may hoose a met-

ri d on X ompatible with the topology and onsider O(K) as the loally

onvex diret limit of the Banah algebras O

1

(U

n

), where U

n

is the union

of those onneted omponents of

�

x 2 X; d(x;K) <

1

n

	

whih meet K. In

this direted system, the onneting restrition maps are injetive by the

Identity Theorem. Aording to Dierolf and Wengenroth [13℄, a loally on-

vex diret limit of a sequene of normed algebras with injetive onneting

maps is a loally m-onvex algebra. In partiular, inversion in O(K) is

ontinuous on its domain (Mihael [31, 2.8℄). Moreover, the Arzela{Asoli

Theorem (see, for instane, Dugundji [15, XII.6.4℄) entails that almost all

onneting maps in the above direted system are ompat. A loally onvex

diret limit of a sequene of Banah spaes with ompat injetive onnet-

ing maps is alled a Silva spae, and these spaes are omplete Hausdor�

spaes (see Floret [17, x 7℄). The spetrum of an element f 2 O(K) is the

image of K under any representative of f , for whih we just write f(K). In

partiular, the spetral radius r in O(K) is given by r(f) = kf j

K

k

1

. Sine

the ompositions of r with the limit maps are ontinuous, we �nd that r is

a ontinuous semi-norm on O(K). We onlude that the unit group O(K)

�

is open in O(K). Further details of these arguments as well as a general-

ization to algebras of germs with in�nite-dimensional domain and range an

be found in [5℄.

Three more algebras assoiated to K � X are onstruted as follows.

The restrition of an element of O(K) to K is a ontinuous omplex-valued

funtion on K. We obtain a Banah algebra A(K) � C(K) as the losure

of the image of the restrition homomorphism O(K)! C(K). We de�ne a

omplete ontinuous inverse algebra O

X

(K) � O(K) as the losure of the

image of the germ map O(X) ! O(K), and a Banah algebra A

X

(K) �

A(K) as the losure of the image of the restrition map O(X)! A(K).

Between the subalgebras of C(K) obtained from these algebras by re-

strition, we have the inlusions

O(X)j

K

� O

X

(K)j

K

�

(

O(K)j

K

A

X

(K)

)

� A(K) � C(K):

All these algebras are di�erent if X = C and K is the annulus

K =

�

� 2 C ;

1

2

� j�j � 1

	

:

Indeed, an element f 2 O

X

(K)j

K

n O(X)j

K

is de�ned by f(�) = (� � 2)

�1

.

All elements g 2 A

X

(K) satisfy

H

j�j=1

g(�) d� = 0, so that we �nd a funtion

4



g 2 O(K)j

K

nA

X

(K) by setting g(�) = �

�1

. Sine

P

1

k=1

1

k

2

os kt =

(t��)

2

4

�

�

2

12

for all t 2 [0; 2�℄, the funtion

h : K �! C ; � 7�!

1

X

k=1

1

k

2

�

k

is an element of A

X

(K) whih is not real-di�erentiable on the unit irle and

hene does not belong to O(K)j

K

. The funtion g+h belongs to A(K), but

not to O(K)j

K

[A

X

(K), and A(K) 6= C(K) beause the elements of A(K)

are holomorphi in the interior of K.

1.1 Remark. For a ompat subset K of a omplex analyti manifold, the

algebra of ontinuous omplex-valued funtions onK whih are holomorphi

in the interior of K is another interesting losed subalgebra of C(K). It is

also sometimes denoted by A(K). This algebra and A(K) in our sense

oinide for simple K, for instane if K is onvex, but they are di�erent

in general. A (topologially ompliated) ompat subset of C for whih

this ours is desribed by Gamelin [19, Setion II.1℄. We illustrate this

phenomenon by three ompat subsets of C

2

whih are inreasingly omplex

and onvining. The �rst (and rather trivial) example is provided by K

:

=

�

� 2 C

2

; j�

1

j < 1; �

2

= 0

	

. Seondly, ifK � C

2

is the unit sphere then every

element of O(K) extends to a holomorphi funtion on a neighbourhood

of the unit ball (see, for instane, Range [36, II.1.6℄). Therefore, every

f 2 A(K) satis�es

H

j�

1

j=1

f(�

1

; 0) d�

1

= 0. While these two examples are

\thin", the third is a ompat subset K � C

2

whih is the losure of its

interior. De�ne

K

1

:

=

�

� 2 C

2

; k�k

2

� 3; j�

1

j � 1

	

;

K

2

:

=

�

� 2 C

2

; k� � (4; 0)k

2

� 1

	

;

K

3

:

=

�

� 2 C

2

; 5 � k�k

2

� 6

	

; and

K

:

= K

1

[K

2

[K

3

:

Then K

1

\ K

2

= f(3; 0)g and K

2

\ K

3

= f(5; 0)g, while K

1

and K

3

are

disjoint. The interior K

Æ

is the disjoint union of K

Æ

1

, K

Æ

2

, and K

Æ

3

. Every

element ofO(K) is the germ of a holomorphi funtion de�ned in a onneted

open neighbourhood of K, and hene of a holomorphi funtion de�ned in

an open neighbourhood of the ompat ball with entre 0 and radius 6 by

the extension phenomenon quoted above. Therefore, every f 2 A(K) satis-

�es

H

j�

1

j=2

f(�

1

; 0) d�

1

= 0. Thus an element of ff 2 C(K); f j

K

Æ

2 O(K

Æ

)g

whih does not belong to A(K) is de�ned by � 7!

1

�

1

on K

1

and � 7!

1

3

on

K

2

[K

3

. A slightly more ompliated example for whih the interior of K

is even a Stein domain is desribed by Range [36, VII.2.2℄.
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Conditions on ompat subsets K � C

n

under whih A(K) equals the

algebra of ontinuous omplex-valued funtions on K whih are holomor-

phi in the interior of K have been studied extensively; see Gamelin [19,

Setion VIII.8℄ for n = 1 and Range [36, VII.2.1℄ for n > 1.

For the following lemma, reall the notion of the joint spetrum of an

n-tuple a = (a

1

; : : : ; a

n

) in a ommutative ontinuous inverse algebra A

over C . This is the ompat subset of C

n

de�ned as

Sp

A

(a

1

; : : : ; a

n

)

:

=

��

�(a

1

); : : : ; �(a

n

)

�

; � 2 �

A

	

:

As in the ase of Banah algebras, the joint spetrum of a 2 A

n

is the set of

� 2 C

n

suh that the ideal of A generated by �

1

� a

1

; : : : ; �

n

� a

n

is proper.

The ompat sets in whih we are most interested are joint spetra of n-

tuples in ontinuous inverse algebras, so they are subsets of C

n

. In Setion 4,

however, we will also be led to onsider more general ambient manifolds,

namely, envelopes of holomorphy of open subsets of C

n

. The natural lass

of manifolds for our theory is the lass of Stein manifolds. These an be

de�ned as those omplex analyti manifoldsX whih admit a biholomorphi

embedding � : X ,! C

n

onto a losed submanifold of some spae C

n

. Their

intrinsi haraterization will be realled in Setion 4. Their most important

property for us is the existene of an open neighbourhood U � C

n

of �(X)

and of a holomorphi map � : U ! X whih is a retration for �, i.e. whih

satis�es � Æ � = id

X

. This fat is due to Doquier and Grauert [14℄. A proof

an also be found in the monograph by Gunning and Rossi [23, VIII.C.8℄.

In fat, a Stein manifold is a holomorphi neighbourhood retrat in any

omplex manifold in whih it is embedded as a losed submanifold, see

Siu [42, Corollary 1℄.

Here, Stein manifolds give rise to another pair of ontinuous inverse

algebras, whih will be used in Setion 5. Let K be a ompat subset of a

Stein manifold. The losure in O(K) of the algebra of germs of holomorphi

funtions de�ned in Stein open neighbourhoods of K will be alled O

St

(K).

The losure of its image under the restrition map O(K) ! A(K) will be

alled A

St

(K).

1.2 Lemma (Spetra of O(K) and of A(K)). Let X be a seond ount-

able omplex analyti manifold, and let K � X be a ompat subset. Let

A � O(K) be a losed unital subalgebra, and set B

:

= Aj

K

� C(K), the lo-

sure of the image of A under the restrition homomorphism O(K)! C(K).

Then the spetral radii in A and in B are given by the supremum norm

on K. The restrition map f 7! f j

K

: A ! B indues a homeomorphism

from �

B

onto �

A

. In partiular, if f 2 A

n

then Sp

A

(f) = Sp

B

(f j

K

).

In the important speial ase that A = O(K), this result is due to Harvey

and Wells [24, 2.4℄. It often allows us to swith between A and B. The
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algebra A is useful beause it onsists of germs of holomorphi funtions.

The algebra B is only de�ned in terms of A, but the desription of its

topology is more onrete, and it has the advantage of being a Banah

algebra.

Proof. The spetrum of an element f 2 C(K) is f(K). Similarly, if f is

a holomorphi funtion de�ned in an open neighbourhood of K in X then

the germ

~

f of f in K satis�es Sp

O(K)

(

~

f) = f(K). Hene the spetral radii

in C(K) and in O(K) are the supremum norm on K. In a Banah algebra,

the spetral radius of an element of a losed subalgebra with respet to

that subalgebra equals the spetral radius with respet to the whole algebra

(see, for instane, Rudin [40, 10.18℄). In a ontinuous inverse algebra, the

orresponding fat an be proved in a similar way [3, 2.3℄. This proves the

assertion about spetral radii in A and in B.

The map �

�

: �

B

! �

A

indued by the restrition map � : A ! B is

ontinuous, and it is injetive beause �(A) is dense in B. Sine haraters

of ontinuous inverse algebras are majorized by the spetral radius, every

element � 2 �

A

fators through � and indues a harater of B. This proves

that �

�

is surjetive, and it is a homeomorphism beause the spetra are

ompat.

Finally, we hoose f 2 A

n

and alulate

Sp

A

(f) =

�

�

�n

(f); � 2 �

A

	

=

�

�

�n

(f j

K

); � 2 �

B

	

= Sp

B

(f j

K

):

(Here �

�n

(f)

:

= (�(f

1

); : : : ; �(f

n

)).) �

1.3 Remark. In the situation of Lemma 1.2, note that B � C(K) is

a realization of the ompleted quotient of A � O(K) with respet to the

spetral radius seminorm, or, equivalently, a realization of the losure of the

image of A under the Gelfand homomorphism into C(�

A

). In partiular, the

set fev

�

; � 2 �Kg � �

B

of evaluations in boundary points of K ontains

the

�

Silov boundary of B.

Under mild ompleteness assumptions, a ommutative ontinuous inverse

algebra A over C admits an n-variable holomorphi funtional alulus, of

whih we reall the main statements. The appropriate ompleteness hy-

pothesis is Makey-ompleteness, whih means that the Riemann integral

R

1

0

(t) dt exists for every smooth urve  : [0; 1℄ ! A. This is equivalent to

the onvergene of all members of a ertain lass of Cauhy sequenes. A

onvenient and omprehensive referene for this onept is Setion 2 of the

monograph by Kriegl and Mihor [28℄.

In the situation of the preeding paragraph, hoose an n-tuple a 2 A

n

.

The holomorphi funtional alulus provides a ontinuous homomorphism

of unital algebras f 7! f [a℄ : O(Sp(a)) ! A whih maps the germ of the

j-th oordinate funtion � 7! �

j

: C

n

! C to a

j

. For Banah algebras, the
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onstrution is due to

�

Silov [41℄ and Arens and Calder�on [1℄. Bourbaki [11,

I x 4℄ presents an alternative approah. For omplete ontinuous inverse

algebras, the holomorphi funtional alulus is due to Waelbroek, who

developed an early variant in [44℄ and skethed the modern version in [46℄

and in [47℄. A detailed aount an be found in [6℄.

A property of the holomorphi funtional alulus whih is stressed by

Waelbroek [47℄ and whih we will use several times is its naturality with

respet to homomorphisms ' : A ! B between Makey-omplete ommu-

tative ontinuous inverse algebras over C . For an n-tuple a 2 A

n

and a

holomorphi germ f 2 O(Sp

A

(a)), this means that '(f [a℄) = f ['

�n

(a)℄.

(Note that the right-hand side is de�ned beause Sp

B

�

'

�n

(a)

�

� Sp

A

(a).)

Sine the holomorphi funtional alulus in the algebra C is given by ap-

pliation of the funtion, a speial ase of naturality is the observation that

�(f [a℄) = f

�

�

�n

(a)

�

holds for eah � 2 �

A

.

1.4 Lemma (Funtional alulus in O(K) and in A(K)). Assume

that A is either a losed subalgebra of C(K) for some ompat Hausdor�

spae K, or a losed subalgebra of O(K) for some ompat subset K of a

seond ountable omplex analyti manifold X. Let a 2 A

n

, let U � C

n

be

an open neighbourhood of Sp

A

(a), and let f 2 O(U). Then f [a℄ = f Æ a.

Proof. In both ases, aj

K

is a ontinuous map from K into C

n

. For eah

x 2 K, the evaluation homomorphism ev

x

: A! C ; g 7! g(x) belongs to �

A

.

Hene a(K) = fev

�n

x

(a); x 2 Kg � Sp

A

(a), so that we an form f Æ a.

Assume that A is a losed subalgebra of C(K) for some ompat Haus-

dor� spae K. For any x 2 K, naturality of the holomorphi funtional

alulus yields

f [a℄(x) = ev

x

(f [a℄) = f

�

ev

�n

x

(a)

�

= (f Æ a)(x):

(In partiular, the omposition f Æ a is an element of A.)

Assume that A is a losed subalgebra of O(K) for some ompat sub-

set K of a omplex analyti manifold X. Naturality of the holomorphi

funtional alulus with respet to the inlusion map � : A ,! O(K) means

that �(f [a℄) = f [�

�n

(a)℄, and it implies that we may assume that A = O(K).

First onsider the ase that K = f�g, a single point. Lemma 1.2 implies that

�

O(K)

= fev

�

g. Hene Sp

O(K)

(a) = fa(�)g, and we may assume that U is

an open polydis in C

n

. If f is a oordinate funtion, the result is a funda-

mental property of the holomorphi funtional alulus. Sine every element

of O(U) has a power series expansion around the entre of U whih onverges

on U , the oordinate funtions generate a dense subalgebra of O(U), and

the result extends to all f 2 O(U). In the ase that K onsists of more than

one point, de�ne a ontinuous homomorphism '

�

: O(K)! O(f�g) for eah

� 2 K by assigning to f 2 O(K) its germ in �. By naturality,

'

�

(f [a℄) = f

�

'

�n

�

(a)

�

= f Æ

�

'

�n

�

(a)

�

= '

�

(f Æ a):

8



Sine f [a℄ and f Æ a have the same germ at every � 2 K, we onlude that

they are equal. (This argument was adapted from Waelbroek [47, 5.2℄.) �

2 Auto-spetral ompata

This setion introdues the important onept of an auto-spetral ompat

subset of a Stein manifold. The properties of these manifolds whih are most

relevant for our purposes were briey reviewed before Lemma 1.2.

2.1 Lemma. Let X be a Stein manifold, let K � X be ompat, and let A

be a losed unital subalgebra of O(K) with O

X

(K) � A. Choose a losed

(biholomorphi) embedding � : X ,! C

n

, and let ~� 2 A

n

be the germ of �.

Then Sp

A

(~�) = �(K) if and only if every harater of A is evaluation in a

point of K.

Proof. If �

A

onsists of evaluations in points of K then Sp

A

(~�) = �(K).

Conversely, assume that this equation holds, and hoose � 2 �

A

. Choose

an open neighbourhood U � C

n

of �(X) and a holomorphi map � : U ! X

suh that � Æ � = id

X

. Let � 2 K be de�ned by �(�) = �

�n

(~�). Let f 2 A.

Then

~

f

:

= f Æ� 2 O(�(K)) = O(Sp

A

(~�)), and

~

f [~�℄ =

~

f Æ� = f by Lemma 1.4.

Hene

�(f) = �

�

~

f [~�℄

�

=

~

f

�

�

�n

(~�)

�

=

~

f(�(�)) = f(�)

by naturality of the holomorphi funtional alulus. We onlude that � is

evaluation in � 2 K. �

Note that we do not need the theory of Stein manifolds if we ontent our-

selves with the ase that X = C

n

and � = id

C

n

. The latter remark applies

to large parts of the present paper. Also note that in this ase, the hypo-

thesis O

X

(K) � A just means that A ontains the germs of the oordinate

funtions.

2.2 De�nition. Let X be a Stein manifold, and hoose a losed embedding

� : X ,! C

n

. A ompat subset K � X is alled auto-spetral if the following

onditions are satis�ed, all of whih are equivalent by Lemmas 1.2 and 2.1.

(i) Every harater of O(K) is evaluation in a point of K.

(ii) Sp

O(K)

(~�) = �(K).

(iii) Every harater of A(K) is evaluation in a point of K.

(iv) Sp

A(K)

(�j

K

) = �(K).
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Auto-spetral ompat sets seem to have been introdued byWells [48℄ under

the name of \holomorphially onvex ompat sets". Some of their basi

properties had already been obtained by Rossi [37℄. In view of a result

due to Harvey and Wells [24, 3.4℄, auto-spetral sets are what Grauert and

Remmert [22, IV.1.1℄ all ompat Stein subsets.

It is easy to desribe the e�et of replaing O(K) by a losed subalgebra

in the preeding de�nition.

2.3 Lemma. Let X be a Stein manifold, let K � X be ompat, and

let A � O(K) be a losed unital subalgebra with O

X

(K) � A. Then the

following onditions are equivalent:

(i) Every harater of A is evaluation in a point of K.

(ii) K is auto-spetral, and A = O(K).

(iii) K is auto-spetral, and Aj

K

= A(K).

Proof. Assume that ondition (i) holds. Choose a losed embedding

� : X ,! C

n

, an open neighbourhood U � C

n

of �(X), and a holomorphi

retration � : U ! X for �. Then K is auto-spetral beause

�(K) � Sp

O(K)

(~�) � Sp

A

(~�) = �(K):

For any f 2 O(K), we an form the element (f Æ �)[~�℄ 2 A, and Lemma 1.4

shows that this element is equal to f . Thus we have proved ondition (ii),

whih in turn trivially implies ondition (iii). Finally, ondition (iii) im-

plies (i) by Lemma 1.2. �

Let X be a Stein manifold. For K � U � X with K ompat and U

open, Corollary 4.5 will show that K is holomorphially onvex in U if and

only if K is auto-spetral and O

U

(K) = O(K). In Proposition 5.4, we

will see that a ompat subset K � X is a Stein ompatum if and only

if it is auto-spetral and the restritions of funtions de�ned in Stein open

neighbourhoods of K form a dense subset of A(K).

Auto-spetrality is a onvexity ondition in the sense of the following

proposition and its orollary.

2.4 Proposition. The intersetion of any family of auto-spetral subsets

of a Stein manifold is again auto-spetral.

Proof. Let (K

j

)

j2J

be a family of auto-spetral subsets of a Stein mani-

fold X, and set K

:

=

T

j2J

K

j

. Choose a losed embedding � : X ,! C

n

. For

eah j 2 J , onsider the natural map from O(K

j

) into O(K). This yields

the middle inlusion in

�(K) � Sp

O(K)

(~�) � Sp

O(K

j

)

(~�) = �(K

j

):

We onlude that Sp

O(K)

(~�) = �(K). �
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2.5 Corollary. Every ompat subsetK of a Stein manifoldX is ontained

in a smallest auto-spetral subset of X, the auto-spetral hull of K in X.

Proof. This follows from the preeding proposition, provided that K is

ontained in an auto-spetral subset of X. Now Corollary 4.5 will yield that

the holomorphially onvex hull of K in X is auto-spetral. (The argument

is easier for the ase that X = C

n

. Indeed, Remark 3.3 and Proposition 3.5

below imply that all onvex ompat subsets of C

n

are auto-spetral.) �

Waelbroek [47, 5.2℄ de�ned auto-spetral subsets of C

n

under the name

of \analyti ompat sets", and he essentially proved the following proposi-

tion about them. As was realled after Remark 1.3, Makey-ompleteness

is the weak ompleteness assumption used in the onstrution of the holo-

morphi funtional alulus.

2.6 Proposition. Let A be a Makey-omplete ommutative ontinu-

ous inverse algebra over C , let a 2 A

n

, and let K � C

n

be an auto-

spetral ompat set. Then a ontinuous homomorphism ' : O(K) ! A

with '

�n

�

e

id

C

n

�

= a exists if and only if Sp(a) � K. If this is the ase then '

is uniquely determined by the equation '(f) = f [a℄ for all f 2 O(K).

Proof. Waelbroek's proof for Banah algebras [47, 5.2℄ essentially applies

to the present situation. If suh a homomorphism ' exists then Sp

A

(a) =

Sp

A

�

'

�n

�

e

id

C

n

��

� Sp

O(K)

�

e

id

C

n

�

= K. Moreover, all f 2 O(K) satisfy

'(f) = '

�

f

h

e

id

C

n

i�

= f

h

'

�n

�

e

id

C

n

�i

= f [a℄

by Lemma 1.4 and naturality of the holomorphi funtional alulus. Con-

versely, if Sp

A

(a) � K then ' : f 7! f [a℄ is a ontinuous homomorphism

from O(K) into A whih maps

e

id

C

n

to a. �

2.7 Corollary (Uniqueness of the holomorphi funtional alulus).

Let A be a Makey-omplete ommutative ontinuous inverse algebra over C ,

let a 2 A

n

, and let K � C

n

be the auto-spetral hull of Sp(a) in C

n

. Then

f 7! f [a℄ is the unique ontinuous homomorphism from O(K) into A whih

maps

e

id

C

n

to a. �

2.8 Remark. The orollary is the uniqueness statement for the restrition

of the funtional alulus to funtions whih are holomorphi on a neighbour-

hood of the auto-spetral hull of the joint spetrum. By ontrast, the full

holomorphi alulus for holomorphi funtions de�ned in a neighbourhood

of the joint spetrum is unique only under ertain additional onditions.

(One suh ondition an be found in Bourbaki [11, I x 4℄, another ondition

is due to Zame [50℄.)
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In his original de�nition of the holomorphi funtional alulus [44℄,

Waelbroek only developed it for funtions whih are holomorphi on a

neighbourhood of the rationally onvex hull (see the following setion) of

what is now alled the joint spetrum of an n-tuple. Sine rationally onvex

ompat subsets of C

n

are auto-spetral, Waelbroek thus ahieved unique-

ness of his funtional alulus.

2.9 Proposition (Gelfand spetrum and onneted omponents).

Let X be a seond ountable omplex analyti manifold, and let K � X be

a ompat subset. For eah losed subset L � K, let �

L

: O(K)! O(L) be

the restrition homomorphism. Then

�

O(K)

=

[

L2omp(K)

�

 Æ �

L

;  2 �

O(L)

	

;

where omp(K) denotes the set of onneted omponents of K, and the

union is disjoint.

Proof. The key tool for the proof is the set of idempotent elements of O(K).

At eah point of K, the germ of an idempotent is either 1 or 0. Sine an

idempotent element indues a ontinuous funtion on K, its support is an

open and losed subset of K. Conversely, for eah open and losed subset

L � K, there is a unique idempotent e

L

2 O(K) with support L, whih is

onstruted in the following way. Choose disjoint open neighbourhoods U

of L and V of K n L in the ambient manifold X, and let e

L

2 O(K) be the

germ of the funtion whih is 1 on U and 0 on V . Note that e

L

only depends

on L and not on the hoie of the neighbourhoods U and V .

We �rst prove that the union in the proposition is disjoint. Let L

1

; L

2

�

K be di�erent onneted omponents, and hoose 

j

2 �

O(L

j

)

for j 2 f1; 2g.

In a ompat Hausdor� spae, the onneted omponent of a point p is the

intersetion of the open and losed neighbourhoods of p (see Engelking [16,

6.1.23℄). By ompatness, there is an open and losed subset L � K suh

that L

1

� L and L

2

\ L = ;. Now 

1

(�

L

1

(e

L

)) = 1 and 

2

(�

L

2

(e

L

)) = 0.

We onlude that 

1

Æ �

L

1

6= 

2

Æ �

L

2

.

Let  2 �

O(K)

. We have to �nd a onneted omponent L � K and a

harater 

0

2 �

O(L)

suh that  = 

0

Æ �

L

. De�ne

S

:

=

�

L

0

� K; L

0

is open and losed in K, and (e

L

0

) = 1

	

:

If L

1

; L

2

2 S then (e

L

1

\L

2

) = (e

L

1

� e

L

2

) = 1, so that L

1

\ L

2

2 S.

Hene S is losed under �nite intersetions. Sine ; 62 S, ompatness of K

implies that the intersetion L

:

=

T

S is not empty. If L

0

� K is open and

losed then either L

0

2 S or K n L

0

2 S. This entails that L is onneted.

The restrition homomorphism �

L

maps O(K) onto O(L) beause every

neighbourhood of L ontains an open and losed subset of K.
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We laim that the kernel of �

L

is ontained in the kernel of . Indeed,

let f 2 O(U) for an open neighbourhood U � X of K suh that the germ

~

f

of f in K satis�es �

L

(

~

f) = 0. Then f vanishes on a neighbourhood V of L.

There is an open and losed subset L

0

� K suh that L � L

0

� V . Sine

(e

L

0

) = 1 and

~

f = (1�e

L

0

)

~

f , we �nd that (

~

f) = 0. This proves the laim.

We onlude that there is an algebra homomorphism 

0

: O(L) ! C

whih satis�es  = 

0

Æ �

L

. �

2.10 Corollary. A ompat subset of a Stein manifold is auto-spetral if

and only if eah of its onneted omponents is auto-spetral.

Proof. If a ompat subset K of a Stein manifold X has only auto-spetral

onneted omponents then Proposition 2.9 shows that K is auto-spetral.

Conversely, let L � K be a onneted omponent whih is not auto-spetral.

Choose a losed embedding � : X ,! C

n

. Then �(L) is a proper subset of

L

0

:

= Sp

A(L)

(�j

L

). Sine A(L) does not ontain any non-trivial idempo-

tent, the

�

Silov Idempotent Theorem (see Bonsall and Dunan [9, 21.5℄)

implies that �

A(L)

and hene L

0

are onneted. Hene L

0

is not ontained

in �(K). Sine Sp

A(K)

(�j

K

) ontains L

0

, it properly ontains �(K). We

onlude that K is not auto-spetral. �

Zame [49, 3.4℄ gives a ompletely di�erent proof of this orollary in terms

of the ohomology of oherent analyti sheaves.

3 Rational onvexity

We introdue the onept of a rationally onvex ompat subset of C

n

. It

will be easy to prove that suh a set is auto-spetral.

3.1 De�nition. Let P(C

n

) denote the algebra of omplex-valued polyno-

mial funtions on C

n

. De�ne the rationally onvex hull of a ompat subset

K � C

n

as

b

K

R(C

n

)

:

=

\

p2P(C

n

)

p

�1

�

p(K)

�

:

A ompat subset K � C

n

is alled rationally onvex if K =

b

K

R(C

n

)

.

Note that K 7!

b

K

R(C

n

)

is a hull operation in the sense that it preserves

inlusion, that K �

b

K

R(C

n

)

, and that

b

K

R(C

n

)

is its own rationally onvex

hull.

3.2 Example. Every ompat subset of C is rationally onvex (use the

identity funtion).
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3.3 Remark. Using linear polynomials, we �nd that an aÆne omplex

hyperplane whih does not meet K does not meet

b

K

R(C

n

)

. Sine every

aÆne real hyperplane is the union of aÆne omplex hyperplanes, this entails

that

b

K

R(C

n

)

is ontained in the onvex hull of K. In partiular,

b

K

R(C

n

)

is

ompat, and every onvex ompat subset of C

n

is rationally onvex.

3.4 Example. For n � 2, the rationally onvex hull of the unit sphere

S � C

n

is the unit ball B � C

n

. To prove this, reall that every element

of O(S) extends to an element of O(B) (see, for instane, Range [36, II.1.6℄).

Now suppose that � 2 B n

b

S

R(C

n

)

. Then there is a polynomial p 2 P(C

n

)

suh that p(�) 62 p(S), and we may assume that p(�) = 0. The germ of

1

p

in S is an element of O(S) whih does not extend to an element of O(B),

whih is a ontradition.

Note that the same extension phenomenon entails that S is not auto-

spetral.

3.5 Proposition. Every rationally onvex ompat subset of C

n

is auto-

spetral.

Proof. Let K � C

n

be a rationally onvex ompat subset. Choose � 2

C

n

n K. We have to show that � 62 Sp

O(K)

�

e

id

C

n

�

. There is a polynomial

p 2 P(C

n

) suh that p(�) = 0 62 p(K). Expanding p at �, we �nd a

representation

p(�) =

X

k2N

0

n



k

(�

1

� �

1

)

k

1

� : : : � (�

n

� �

n

)

k

n

(� 2 C

n

)

with oeÆients 

k

2 C

n

, where 

0

= 0. We rewrite this as

p(�) =

n

X

j=1

(�

j

� �

j

)q

j

(�) (� 2 C

n

)

with suitable polynomials q

j

2 P(C

n

). Set U

:

= C

n

n p

�1

(f0g), and de�ne

f

1

; : : : ; f

n

2 O(U) by f

j

:

= �

q

j

p

. Then all � 2 U satisfy

1 =

n

X

j=1

(�

j

� �

j

)f

j

(�):

This proves that the ideal of O(K) generated by the elements �

j

� �

j

is all

of O(K), so that � 62 Sp

O(K)

�

e

id

C

n

�

. �

4 Holomorphi onvexity

This setion uses the envelope of holomorphy of an open subset U of a Stein

manifold in order to study the Gelfand spetrum of A

U

(K), the losure
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in C(K) of ff j

K

; f 2 O(U)g, for a ompat subset K � U . In partiu-

lar, we show that K is auto-spetral if it is holomorphially onvex in U ,

whih is a fundamental onept in omplex analysis. More preisely, the

holomorphially onvex ompat subsets of U are haraterized among the

auto-spetral ompat subsets of U by an approximation property.

4.1 Lemma (Evaluation homomorphisms). Let X be a seond ount-

able omplex analyti manifold, and let K � X be a ompat subset. Let

� : O(X)! A

X

(K) be the restrition map, and hoose a point � 2 X. Then

the evaluation homomorphism ev

�

: O(X)! C ; f 7! f(�) has the form �Æ�

for some harater � 2 �

A

X

(K)

if and only if jf(�)j � kf j

K

k

1

holds for all

f 2 O(X).

The set of all these points,

b

K

O(X)

:

=

�

� 2 X; 8 f 2 O(X) : jf(�)j �





f j

K





1

	

;

is alled the holomorphially onvex hull of K in X. For eah point � 2

b

K

O(X)

, there is a unique harater eev

�

2 �

A

X

(K)

suh that ev

�

= eev

�

Æ �.

Moreover, the map

� 7�! eev

�

:

b

K

O(X)

�! �

A

X

(K)

is ontinuous. For � 2 K and f 2 A

X

(K), we have eev

�

(f) = f(�).

Proof. If ev

�

= � Æ � for some � 2 �

A

X

(K)

then all f 2 O(X) satisfy

jf(�)j = j ev

�

(f)j =

�

�

�

�

f j

K

�

�

�

�





f j

K





1

:

Conversely, if jf(�)j � kf j

K

k

1

holds for all f 2 O(X) then ev

�

fators

through �, and the indued omplex homomorphism of im(�) � A

X

(K) is

ontinuous and hene extends to a harater of A

X

(K). This harater is

uniquely determined by ev

�

beause im(�) is a dense subalgebra of A

X

(K).

In order to prove that the map � 7! eev

�

:

b

K

O(X)

! �

A

X

(K)

is ontinuous,

we have to show that the map � 7! eev

�

(f) is ontinuous for every f 2

A

X

(K). It suÆes to take f from the dense subalgebra im(�). But if

f 2 O(X) then eev

�

(f j

K

) = f(�) depends ontinuously on �.

Choose � 2 K. Then eev

�

(f) = f(�) holds if f 2 im(�). By ontinuity,

this equation extends to all f 2 A

X

(K). �

The holomorphially onvex hull

b

K

O(X)

is an important onept in om-

plex analysis. Note that it is a losed subset of X. If U � X is an open

subset with K � U then

b

K

O(U)

�

b

K

O(X)

. Moreover, if X is an open subset

of C

n

then

b

K

O(X)

is ontained in the onvex hull of K, as one sees by using

the funtions � 7! e

h�;�i

, where � 2 C

n

.
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4.2 Example. (a) Let K � U � C with K ompat and U open.

Then

b

K

O(U)

is the union of K with those bounded onneted omponents

of C nK whih are ontained in U . Indeed, let K

0

be this union. The Max-

imum Modulus Theorem (see Rudin [39, 10.24℄) implies that K

0

�

b

K

O(U)

.

Conversely, let � 2 U n K

0

, hoose disjoint open neighbourhoods V

1

of K

0

and V

2

of � in C , and let f 2 O(V

1

[V

2

) be the harateristi funtion of V

2

.

Sine C n U meets every bounded onneted omponent of C n (K

0

[ f�g),

Runge's Theorem [39, 13.6℄ yields a omplex rational funtion g with poles

only in C n U suh that jf(�) � g(�)j <

1

2

for every � 2 K

0

[ f�g. Then

gj

U

2 O(U) satis�es jg(�)j >

1

2

> kgj

K

0

k

1

� kgj

K

k

1

, and we onlude that

� 62

b

K

O(U)

.

(b) In higher dimensions, holomorphially onvex hulls need not be om-

pat. For the lassi example, onsider the ompat unit polydis D

:

=

�

� 2 C

2

; j�

1

j; j�

2

j � 1

	

and let K

:

= f� 2 D; �

1

= 0 or j�

2

j = 1g. Then

every holomorphi funtion de�ned in an open neighbourhood of K extends

to a holomorphi funtion on an open neighbourhood of D (see, for example,

Range [36, II.1.1℄). In partiular, the set K is not auto-spetral.

For a onneted open neighbourhood U � C

2

of K, we laim that

b

K

O(U)

= U \ D. Indeed, the left-hand side is ontained in the right-hand

side beause D is onvex. The reverse inlusion follows from the Maximum

Modulus Theorem (in its one-variable version, atually).

() Reall that the polynomially onvex hull of a ompat subset K �

C

n

is the ompat set f� 2 C

n

; 8 p 2 P(C

n

) : jp(�)j � kpj

K

k

1

g. An open

subset U � C

n

is alled polynomially onvex if it ontains the polynomially

onvex hull of eah of its ompat subsets. For suh an open subset U , the

polynomials are dense in O(U) (see Gunning and Rossi [23, I.F.9℄).

If K � U � C

n

with K ompat and U open and polynomially onvex

then

b

K

O(U)

is the polynomially onvex hull of K. Indeed, assume that

� 2 U belongs to the polynomially onvex hull of K, hoose f 2 O(U), and

let " > 0. Then there is a polynomial p 2 P(C

n

) suh that jf(�)� p(�)j < "

and k(f � p)j

K

k

1

< ", whene

jf(�)j < jp(�)j+ " �





pj

K





1

+ " <





f j

K





1

+ 2":

Thus jf(�)j � kf j

K

k

1

, and we onlude that � 2

b

K

O(U)

.

(d) Every ompat subsetK � R

n

is a polynomially onvex subset of C

n

.

Indeed, by (), it suÆes to show that K is holomorphially onvex in C

n

.

Let � 2 C

n

n K. If � 2 R

n

then � 62

b

K

O(C

n

)

beause the polynomials are

dense in C(K [ f�g) by the Stone{Weierstrass Theorem (see Hewitt and

Stromberg [25, 7.34℄). If Im �

j

< 0 for some j 2 f1; : : : ; ng then the entire

funtion � 7! e

i�

j

: C

n

! C separates � from K beause je

i�

j

j = e

Re i�

j

> 1.

Similarly, if Im �

j

> 0 then one uses the entire funtion � 7! e

�i�

j

.

A omplex analyti manifold is alled holomorphially onvex if for every

ompat subset, the holomorphially onvex hull is ompat. For instane,
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the preeding example shows that all open subsets of C and all polynomi-

ally onvex open subsets of C

n

are holomorphially onvex manifolds. Stein

manifolds an be haraterized in terms of holomorphi onvexity. Indeed,

a seond ountable omplex analyti manifold X of omplex dimension n

is a Stein manifold if and only if it is holomorphially onvex, the holo-

morphi funtions separate the points of X, and for every � 2 X, one an

�nd n holomorphi funtions on X whih form a oordinate system at �. In

fat, the last two onditions are equivalent if X is holomorphially onvex

(H�ormander [27, 5.2.12℄ and Taylor [43, Exerise 11.13℄). Moreover, in the

presene of the other onditions, holomorphi onvexity of X is equivalent

to the property that every ontinuous homomorphism from O(X) into C is

evaluation in a point of X. These fats are proved in many monographs on

omplex analysis; see, for instane, H�ormander [27, 5.1.3, 5.1.5 and 5.3.9℄

and Gunning and Rossi [23, VII.C.5 and VII.C.13℄. Note that an open

subset of C

n

is a Stein manifold if and only if it is holomorphially onvex.

Let X be a Stein manifold. A Riemann domain over X is a pair (Y; �)

onsisting of a seond ountable omplex analyti manifold Y and an ana-

lyti loal di�eomorphism � : Y ! X. Following H�ormander [27, 5.4.4℄,

we also require that the holomorphi funtions on Y separate points. For

example, any open subset of X will be onsidered as a Riemann domain

together with the inlusion map. A holomorphi extension of a Riemann

domain (Y; �) over X is a Riemann domain (Y

0

; �

0

) over X suh that Y

0

ontains Y as an open submanifold, we have �

0

j

Y

= �, and every f 2 O(Y )

has a unique holomorphi extension

^

f 2 O(Y

0

). By the Open Mapping

Theorem (see Rudin [40, 2.12℄), the restrition map O(Y

0

) ! O(Y ) is an

isomorphism of Fr�ehet spaes.

An envelope of holomorphy of a Riemann domain (Y; �) over X is a holo-

morphi extension (E; ") of (Y; �) whih is as large as possible, in the sense

of the following universal property: if (Y

0

; �

0

) is a holomorphi extension of

(Y; �) then there is a unique analyti map ' : Y

0

! E suh that 'j

Y

= id

Y

.

Note that " Æ' = �

0

beause both restrit to � and that '

�

: O(E)! O(Y

0

)

is an isomorphism. Sine the holomorphi funtions on Y

0

separate points,

the map ' is injetive, and hene an open embedding by the Open Map-

ping Theorem (see Range [36, I.1.21℄). If (E

0

; "

0

) is another envelope of

holomorphy of (Y; �), the universal property yields a unique analyti di�eo-

morphism ' : E ! E

0

suh that 'j

Y

= id

Y

. Aording to a lassi result (see

Rossi [38℄, and H�ormander [27, 5.4.3 and 5.4.5℄ or Gunning and Rossi [23,

I.G.11℄ for the ase X = C

n

), every Riemann domain (Y; �) over a Stein

manifold X has an envelope of holomorphy (E; "). Sine (E; ") is unique

up to a natural analyti di�eomorphism, one usually speaks of the envelope

of holomorphy of (Y; �). The envelope of holomorphy an also be hara-

terized as the unique holomorphi extension whih is a Stein manifold (see

H�ormander [27, 5.4.2 and 5.4.3℄).
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4.3 Proposition. Let X be a Stein manifold, let (Y; �) be a Riemann

domain over X with envelope of holomorphy (E; "), and let K � Y be a

ompat subset. Then A

Y

(K) = A

E

(K), and the map

' :

b

K

O(E)

�! �

A

Y

(K)

; � 7�! eev

�

is a homeomorphism. The equation

b

K

O(Y )

=

b

K

O(E)

holds if and only

if

b

K

O(Y )

is ompat.

The fat that ' is a homeomorphism was �rst observed by Rossi [37, 2.3℄,

f. Gunning and Rossi [23, VII.A.7℄.

Proof. The de�nition of a holomorphi extension implies that A

Y

(K) =

A

E

(K).

The assertion that ' is a homeomorphism follows from the fat that E

is a Stein manifold. Indeed,

b

K

O(E)

is ompat beause E is holomorphi-

ally onvex, and ' is bijetive beause every ontinuous homomorphism

from O(E) into C is evaluation in a unique point of E. Hene ' is a on-

tinuous bijetion between ompat Hausdor� spaes and therefore a homeo-

morphism.

If

b

K

O(Y )

=

b

K

O(E)

then

b

K

O(Y )

is ompat. Conversely, assume om-

patness of

b

K

O(Y )

. Sine

b

K

O(Y )

= Y \

b

K

O(E)

, this implies that '

�

b

K

O(Y )

�

is an open and losed subset of �

A

Y

(K)

. By the

�

Silov Idempotent The-

orem (see, for instane, Bonsall and Dunan [9, 21.5℄), the harateristi

funtion of '

�

b

K

O(Y )

�

in �

A

Y

(K)

is the Gelfand transform of an idempo-

tent e 2 A

Y

(K). If � 2 K then e(�) = eev

�

(e) = 1. Hene e = 1, and

'

�

b

K

O(Y )

�

= �

A

Y

(K)

. We onlude that

b

K

O(Y )

=

b

K

O(E)

. �

4.4 Corollary (Spetrum of A

U

(K)). Let X be a Stein manifold, and

let K � U � X with K ompat and U open. Choose a losed embedding

� : X ,! C

n

. Then the following onditions are equivalent:

(i) Sp

A

U

(K)

(�j

K

) � �(U);

(ii) �

A

U

(K)

=

n

eev

�

; � 2

b

K

O(U)

o

;

(iii)

b

K

O(U)

is ompat;

(iv) Sp

A

U

(K)

(�j

K

) = �

�

b

K

O(U)

�

.

Proof. Let (E; ") be the envelope of holomorphy of (U; id

U

). Let � 2

b

K

O(E)

.

Aording to Lemma 4.1, the evaluation homomorphism ev

�

: O(E) ! C

indues a harater eev

�

of A

E

(K) = A

U

(K). Sine "j

U

= id

U

, we �nd that

�("(�)) = ev

�n

�

(� Æ ") = eev

�n

�

(� Æ "j

K

) = eev

�n

�

(�j

K

):
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Proposition 4.3 implies that Sp

A

U

(K)

(�j

K

) = �

�

"

�

b

K

O(E)

��

.

By the same proposition, ondition (ii) is equivalent to the equation

b

K

O(U)

=

b

K

O(E)

, whih is equivalent to (iii). If

b

K

O(U)

=

b

K

O(E)

then

Sp

A

U

(K)

(�j

K

) = �

�

"

�

b

K

O(E)

��

= �

�

b

K

O(U)

�

, whih is (iv). Condition (iv)

implies (i). Sine

�

�

b

K

O(U)

�

= �

�

U \

b

K

O(E)

�

� �

�

"

�

b

K

O(E)

��

= Sp

A

U

(K)

(�j

K

)

and

b

K

O(U)

is losed in U , ondition (i) implies (iii). �

4.5 Corollary (Auto-spetrality and holomorphi onvexity). Let U

be a Riemann domain over a Stein manifold, and let K � U be ompat.

Then the following onditions are equivalent:

(i) K is holomorphially onvex in U (i.e.

b

K

O(U)

= K).

(ii) K is auto-spetral, and O

U

(K) = O(K).

(iii) K is auto-spetral, and A

U

(K) = A(K).

Proof. Sine U is an open subset of its envelope of holomorphy, whih is a

Stein manifold, Lemma 1.2 and Corollary 4.4 show that ondition (i) holds

if and only if �

O

U

(K)

onsists of evaluations in points of K. By Lemma 2.3,

this is equivalent to both (ii) and (iii). �

4.6 Corollary (Auto-spetrality and polynomial onvexity). A om-

pat subset K � C

n

is polynomially onvex if and only if it is auto-spetral

and the polynomials are dense in A(K) or, equivalently, in O(K).

Proof. The polynomially onvex hull of a ompat subset K � C

n

equals

b

K

O(C

n

)

by Example 4.2, and the polynomials are dense in A

C

n

(K) and

in O

C

n

(K). Therefore, the assertions follow from Corollary 4.5. �

5 Stein ompata

Every ompat subset of a Stein manifold whih is holomorphially on-

vex with respet to some open neighbourhood is a Stein ompatum, and

every Stein ompatum is auto-spetral. In addition to the proofs of these

fats, this setion ontains several examples. One of them, whih is due to

Bj�ork [7℄, is an auto-spetral subset of C

2

whih is not a Stein ompatum.

Let X be a seond ountable omplex analyti manifold suh that O(X)

separates points. For a ompat subset K � X, let U

St

(K) be the set of

Stein open neighbourhoods of K. (Note that an open subset of X is a Stein

manifold if and only if it is holomorphially onvex.) A Stein ompatum

in X is a ompat subset K � X suh that U

St

(K) is a neighbourhood basis

of K.
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5.1 Example. (a) Let X be a seond ountable omplex analyti manifold

suh that O(X) separates points. Then any ompat subset K � X suh

that

b

K

O(X)

= K is a Stein ompatum. Indeed, K has a neighbourhood

basis onsisting of open analyti polyhedra, and every suh neighbourhood

is holomorphially onvex and hene a Stein manifold. The proofs given by

Range [36, II.3.9 and II.3.10℄ for subsets of C

n

arry over to the present

situation.

(b) Every ompat subset of C is a Stein ompatum by Example 4.2.

However, not every ompat subset of C has an open neighbourhood in

whih it is holomorphially onvex. As an example, onsider the ompat

set

([0; 1℄ + f0; ig) [ i[0; 1℄ [

[

n2N

�

1

n

+ i[0; 1℄

�

:

Example 5.1 implies that every ompat subset of a Stein manifold X

has a relatively ompat holomorphially onvex open neighbourhood. Sine

the intersetion of two holomorphially onvex open subsets of X is holo-

morphially onvex, a ompat subset of X is a Stein ompatum if (and

only if) it is an intersetion of holomorphially onvex open sets. In par-

tiular, the intersetion of any family of Stein ompata in X is again a

Stein ompatum. Therefore, every ompat subset K � X is ontained in

a smallest Stein ompatum, whih we denote by

b

K

St

. This ompatum an

also be desribed as

b

K

St

=

T

U

St

(K).

For a ompat subset K of a Stein manifold, reall that O

St

(K) was

de�ned as the losure in O(K) of the algebra of germs of holomorphi fun-

tions de�ned in some member of U

St

(K). The losure of the image of O

St

(K)

under the restrition map O(K)! A(K) is the Banah algebra A

St

(K).

5.2 Proposition. For a ompat subset K of a Stein manifold X, the

restrition homomorphism � : A(

b

K

St

) ! A

St

(K); f 7! f j

K

is an isomor-

phism.

Proof. Set A

:

=

n

f j

b

K

St

; f 2 O(

b

K

St

)

o

� C(

b

K

St

). We laim that all f 2 A

satisfy kfk

1

= kf j

K

k

1

. It is lear that the left-hand side is greater than

or equal to the right-hand side. Conversely, hoose U 2 U

St

(K), and note

that

b

K

St

�

b

K

O(U)

beause the right-hand side is a Stein ompatum whih

ontains K. If f 2 O(U) then





f j

b

K

St





1

�





f j

b

K

O(U)





1

�





f j

K





1

by the de�nition of

b

K

O(U)

. This proves the laim. Hene the restrition

�j

A

: A ! A

St

(K) is a dense isometri embedding, and � is the ompletion

of �j

A

. �
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5.3 Corollary. Let K � C

n

be a ompat subset. Then for every � 2

b

K

St

,

evaluation in � indues a unique harater eev

�

: A

St

(K)! C . �

5.4 Proposition (Auto-spetrality and Stein ompata). Let X be

a Stein manifold, and let K � X be ompat. Choose a losed embedding

� : X ,! C

n

.

(a) We have �

A

St

(K)

=

n

eev

�

; � 2

b

K

St

o

and Sp

A

St

(K)

(�j

K

) = �

�

b

K

St

�

.

(b) The set K is a Stein ompatum if and only if it is auto-spetral and

satis�es A

St

(K) = A(K) or, equivalently, O

St

(K) = O(K).

The fat that Stein ompata are auto-spetral is due to Rossi [37, 2.12℄.

Proof. If U 2 U

St

(K) then

�(K) � Sp

A(K)

(�j

K

) � Sp

A

U

(K)

(�j

K

) = �(

b

K

O(U)

);

where the last equation follows from Corollary 4.4. Now assume that K

is a Stein ompatum. Then O

St

(K) = O(K) and A

St

(K) = A(K) hold

by de�nition. Moreover, K =

T

U2U

St

(K)

b

K

O(U)

, whih implies that �(K) =

Sp

A(K)

(�j

K

). Thus K is auto-spetral.

Sine

b

K

St

is auto-spetral, statement (a) now follows immediately from

Proposition 5.2.

Conversely, assume that K is auto-spetral. If O

St

(K) = O(K) then

A

St

(K) = A(K). Assume that the latter equation holds. Then

�(K) = Sp

A(K)

(�j

K

) = Sp

A

St

(K)

(�j

K

) = �(

b

K

St

)

by statement (a). We onlude that K =

b

K

St

, whih means that K is a

Stein ompatum. �

5.5 Example. De�ne D and K as in Example 4.2 (b). The arguments

in that example show that D � Sp

A(K)

(id

K

) and that

b

K

St

= D. Hene

Sp

A(K)

(id

K

) = D.

5.6 Remark. A subset S � C

n

is alled a Reinhardt subset (with en-

tre 0) if for all � 2 S and all � 2 C

n

with j�

1

j = � � � = j�

n

j = 1, the

point (�

1

�

1

; : : : ; �

n

�

n

) also belongs to S. If this even holds for all � 2 C

n

with j�

1

j; : : : ; j�

n

j � 1 then S is alled a omplete Reinhardt subset (with

entre 0).

For suh subsets, there is a partiularly easy haraterization of holo-

morphi onvexity. Let U � C

n

be an open onneted Reinhardt subset

with 0 2 U . Then U is holomorphially onvex if and only if it is omplete

and logarithmially onvex, whih means that the subset

�

(t

1

; : : : ; t

n

) 2 R

n

; (e

t

1

; : : : ; e

t

n

) 2 U
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of R

n

is onvex (see, for instane, H�ormander [27, 2.5.5 and 2.5.8℄). If U

is not holomorphially onvex, this shows that there is a unique smallest

holomorphially onvex open Reinhardt subset V � C

n

suh that U � V .

Every holomorphi funtion on U has a unique holomorphi extension to V

(see H�ormander [27, 2.4.6℄). In other words, the domain V is a realization

of the envelope of holomorphy of U .

Let K � C

n

be a ompat onneted Reinhardt subset with 0 2 K. By

the above disussion,

b

K

St

is the smallest omplete logarithmially onvex

Reinhardt subset of C

n

whih ontains K, and every f 2 O(K) extends

uniquely to an element of O(

b

K

St

). In partiular, K is a Stein ompatum

if and only if it is a omplete Reinhardt set and logarithmially onvex.

Moreover, this holds if and only if K is auto-spetral (f. Bj�ork [7, 4.4℄).

Indeed, if � 2

b

K

St

n K then evaluation in � is a harater of O(

b

K

St

) and

hene of O(K).

Similar fats an be shown for Reinhardt sets whih do not ontain their

entre. In partiular, a ompat onneted Reinhardt subset of C

n

is a Stein

ompatum if and only if it is auto-spetral.

For 0 � r

1

� R

1

and 0 � r

2

� R

2

, we de�ne a ompat Reinhardt subset

of C

2

by

K(r

1

; r

2

;R

1

; R

2

)

:

=

�

� 2 C

2

; r

1

� j�

1

j � R

1

; r

2

� j�

2

j � R

2

	

:

For instane, the set K from Example 4.2 (b) an onisely be written as

K(0; 0; 0; 1) [ K(0; 1; 1; 1). Using the funtions � 7! �

j

and � 7! �

�1

j

for

j 2 f1; 2g, we �nd that eah K(r

1

; r

2

;R

1

; R

2

) is holomorphially onvex in

any suÆiently small open neighbourhood. In partiular, K(r

1

; r

2

;R

1

; R

2

)

is a Stein ompatum. We will now use these sets in order to illustrate two

important phenomena. The �rst of the following two examples is essentially

due to Bj�ork [7℄.

5.7 Example. The ompat subset

K

:

= K(0; 0; 0; 1)

| {z }

=:K

0

[

[

n2N

K(2

�n

; 1 � 2

�n

; 2

�n+1

; 1� 2

�n

)

| {z }

=:K

n

� C

2

is auto-spetral by Corollary 2.10, but it is not a Stein ompatum. Indeed,

let U � C

2

be a holomorphially onvex open neighbourhood of K. Then

the onneted omponent U

0

of 0 in U ontains K

0

[

S

n>N

K

n

for some

N 2 N. Hene U

0

ontains

S

n>N

K(0; 0; 2

�n+1

; 1�2

�n

). But then U

0

must

also ontain K

N

. Desending indutively, we �nd that U must ontain

K(0; 0; 0; 1) [

[

n2N

K(0; 0; 2

�n+1

; 1� 2

�n

);

and

b

K

St

is the logarithmially onvex hull of this ompat Reinhardt set.
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Example 5.7

From a similar example, Bj�ork [7℄ dedues a ompat onneted auto-

spetral subset of C

3

whih is not a Stein ompatum.

5.8 Example. This example will show that the auto-spetral hull of a

ompat subset of C

m

annot be omputed by repeatedly assigning K 7!

Sp

O(K)

�

e

id

C

m

�

. (Sine this assignment preserves inlusion, the spetrum

Sp

O(K)

�

e

id

C

m

�

is ontained in the auto-spetral hull of K.) De�ne

K

0

:

= K(0; 0; 0; 2) [K(1; 1; 1; 1) [K

�

1;

1

2

; 2;

1

2

�

[

[

n2N

K

�

n�1

n

;

n+1

n

;

n

n+1

;

n+1

n

�

:

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Example 5.8

For n 2 N, set K

n

:

= Sp

O(K

n�1

)

�

e

id

C

2

�

. Using Proposition 2.9 and Re-
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mark 5.6, one indutively omputes that

K

n

= K

0

[

n

� 2 C

2

; j�

1

j �

n

n+1

; j�

2

j � 2; j�

1

� �

2

j � 1

o

:

Hene the sets K

n

form a stritly inreasing sequene. In partiular, assign-

ing Sp

O(K)

�

e

id

C

m

�

to a ompat set K � C

m

is not a hull operation. The

union

S

n2N

K

n

is not losed. Its losure is the set

K

1

:

= K

0

[

�

� 2 C

2

; j�

1

j � 1; j�

2

j � 2; j�

1

� �

2

j � 1

	

:

It is still not auto-spetral. The auto-spetral hull of K

0

is

�

� 2 C

2

; j�

1

j � 2; j�

2

j � 2; j�

1

� �

2

j � 1

	

:

It oinides with Sp

O(K

1

)

�

e

id

C

2

�

.

Note that not every holomorphi funtion de�ned in an open neighbour-

hood of K

0

extends to a holomorphially onvex open neighbourhood. An

example is provided by any non-onstant loally onstant funtion de�ned

in a neighbourhood of K

0

. A ompat onneted set for whih this phe-

nomenon ours an be derived from Exerise II.3.13 in Range [36℄.

6 Meromorphi onvexity

In this setion, we relate holomorphi onvexity and Stein ompata to the

onept of rational onvexity, whih has been introdued in Setion 3.

6.1 De�nition. Let X be a seond ountable omplex analyti manifold,

and let K � X be a ompat subset. The meromorphially onvex hull of K

in X is de�ned as

b

K

M(X)

:

=

\

f2O(X)

f

�1

�

f(K)

�

:

Note that every open subset U � X with K � U satis�es

b

K

M(U)

�

b

K

M(X)

.

6.2 Remark. Let D(f(K)) denote the smallest losed dis around 0 in C

whih ontains f(K). Then the holomorphially onvex hull of K in X an

be expressed as

b

K

O(X)

=

T

f2O(X)

f

�1

�

D(f(K))

�

. This observation proves

that

b

K

M(X)

�

b

K

O(X)

.

6.3 Lemma. Let X be a seond ountable omplex analyti manifold, let

K � X be a ompat subset, and let �

0

2

b

K

M(X)

. Then all f; g 2 O(X)

with 0 62 g(K) satisfy

�

�

�

�

f(�

0

)

g(�

0

)

�

�

�

�

�









f

g

�

�

�

�

K









1

:
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Proof. The holomorphi funtion

h : X �! C ; � 7�! f(�

0

) � g(�)� f(�) � g(�

0

)

vanishes in �

0

. Hene there is an element � 2 K suh that h(�) = 0. This

equation is equivalent to

f(�

0

)

g(�

0

)

=

f(�)

g(�)

. �

The lemma shows that to some extent, the de�nition of meromorphi

onvexity �ts into the general onept of onvexity with respet to a �xed set

of funtions. However, a meromorphi funtion need not be the quotient of

two global holomorphi funtions. In order to understand the situation, we

briey reall the de�nition of a meromorphi funtion on a omplex analyti

manifold X. For eah � 2 X, let M

�

be the �eld of frations of the domain

O

�

:

= O(f�g). In the disjoint union M

:

=

S

�2X

M

�

, onsider the subsets

ff

�

=g

�

; � 2 Ug, where U � X is a onneted open subset, f; g 2 O(U),

f

�

and g

�

are the germs at � 2 U , and g is not the zero funtion on U .

These subsets are the basis of a topology whih turns M with the natural

projetion onto X into a sheaf, the sheaf of germs of meromorphi funtions.

A meromorphi funtion on an open subset U � X is a setion ofM over U .

Note that a meromorphi funtion on X need not give rise to a ontinuous

funtion from X into the Riemann sphere C [ f1g. This problem already

ours for the meromorphi funtion on C

2

given by � 7! �

1

=�

2

.

Sine O

�

�M

�

, we may de�ne the singular set of a meromorphi fun-

tion m on X as the subset S(m)

:

= f� 2 X; m(�) 62 O

�

g. This is a losed

subvariety of X (see Gunning and Rossi [23, VIII.B.4℄), and the restrition

of m to R(m)

:

= X n S(m) is a holomorphi funtion. A singular point

�

0

2 S(m) is alled a pole of m if lim

�!�

0

; �2R(m)

m(�) = 1. The singular

points whih are not poles are alled points of indeterminay of m.

6.4 Lemma. Let X be a seond ountable omplex analyti manifold suh

that O(X) separates points, let K � X be ompat, and hoose � 2 X.

Then the impliations (i) ) (ii) ) (iii) ) (iv) hold between the following

statements.

(i) There exists f 2 O(X) suh that f(�) 62 f(K), i.e. � 62

b

K

M(X)

.

(ii) There exists a meromorphi funtion m on X suh that K [ f�g �

R(m) and jm(�)j > kmj

K

k

1

.

(iii) There exists a meromorphi funtion m on X suh that K � R(m)

and � is a pole of m.

(iv) There exists a meromorphi funtion m on X suh that K � R(m)

and � 2 S(m).

If X is a Stein manifold and H

2

(X;Z) = 0 then the four statements are

equivalent.
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Proof. Assume that f 2 O(X) satis�es f(�) 62 f(K). After adding a

suitable onstant to f , we may assume that 0 < jf(�)j < jf(�)j holds for

every � 2 K. Then m

:

= 1=f is a meromorphi funtion on X with K [

f�g � R(m) and jm(�)j > kmj

K

k

1

.

Assume that m is a meromorphi funtion on X with these properties.

We may assume that every onneted omponent of X meets K [ f�g. The

meromorphi funtion m � m(�) neither has zeros nor singularities in a

neighbourhood of K. Ifm is not loally onstant at � then (m�m(�))

�1

is a

meromorphi funtion onX with the properties stipulated in statement (iii).

Ifm is loally onstant at � then the onneted omponent of � inX does not

meet K. Sine O(X) separates points, it is easy to onstrut a meromorphi

funtion on X whih is regular in a neighbourhood of K and has a pole at �.

The impliation (iii)) (iv) is trivial.

Assume that X is a Stein manifold and thatm is a meromorphi funtion

on X suh that K � R(m) and � 2 S(m). Then there are f; g 2 O(X) suh

that m = f=g (Gunning and Rossi [23, VIII.B.10℄), and g(�) = 0 beause

� 2 S(m). Assume, moreover, that H

2

(X;Z) = 0. Then we may hoose the

holomorphi funtions f and g suh that the germs f

�

and g

�

are relatively

prime for eah � 2 X (Gunning and Rossi [23, VIII.B.3 and 13℄). Then S(m)

is exatly the set of zeros of g. In partiular, 0 62 g(K) beause K � R(m).

Thus under these additional assumptions, statement (iv) implies (i). �

The preeding lemma shows that there is no obvious hoie of the def-

inition of meromorphi onvexity on a general omplex analyti manifold.

Our de�nition is the strongest and also the easiest.

Our distintion of poles and points of indeterminay follows Range [36,

VI, x 4℄. Rossi [37℄ alls S(m) the poleset ofm. Rossi's paper is an important

soure for the present setion, in partiular for Lemmas 6.6, 6.7, and 6.11.

However, some of Rossi's arguments seem to disregard the possible presene

of points of indeterminay, so that it seemed worthwhile to adapt his proofs.

This also yields an extension of Rossi's results beyond the framework of Stein

manifolds.

6.5 Remark. Let U � C

n

be open and polynomially onvex, and letK � U

be ompat. Then

b

K

M(U)

oinides with the rationally onvex hull of K,

i.e.

b

K

M(U)

=

\

p2P(C

n

)

p

�1

�

p(K)

�

:

Indeed, the forward inlusion is trivial, and the reverse inlusion follows

easily from the fat that the polynomials are dense in O(U), whih was

mentioned in Example 4.2.

For a meromorphially onvex ompat subset of a omplex analyti

manifold, a simple ompatness argument yields what might be alled a

neighbourhood basis of meromorphi polyhedra.
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6.6 Lemma (Meromorphi polyhedra). Let X be a seond ountable

omplex analyti manifold, let K � X be a meromorphially onvex om-

pat subset, and let U � X be a relatively ompat open neighbourhood

of K. Then there is a �nite set F � O(X) of holomorphi funtions on X

suh that

K � f� 2 U ; 8 f 2 F : jf(�)j > 1g

and f� 2 U ; 8 f 2 F : jf(�)j � 1g is ompat.

Proof. For eah boundary point � 2 �U , there is a holomorphi funtion

f

�

2 O(X) suh that f

�

(�) = 0 and f

�

(K) � f� 2 C ; j�j � 2g. Set U

�

:

=

f� 2 X; jf(�)j < 1g. Sine these open sets over the ompat boundary �U ,

there is a �nite subset F

0

� �U suh that �U �

S

�2F

0

U

�

. Set F

:

=

ff

�

; � 2 F

0

g. Then K � f� 2 U ; 8 f 2 F : jf(�)j > 1g, and

f� 2 U ; 8 f 2 F : jf(�)j � 1g = U n

[

�2F

0

U

�

is ompat. �

6.7 Lemma (Meromorphially onvex ompata are Stein). Let X

be a seond ountable omplex analyti manifold suh that O(X) separates

points, and let K � X be ompat subset whih is meromorphially onvex

in X. Then K is a Stein ompatum.

Proof. Let U � X be a relatively ompat open neighbourhood of K.

Choose a �nite subset F � O(X) as in Lemma 6.6. De�ne an open neigh-

bourhood of K by V

:

= U n

S

f2F

f

�1

(f0g). If f 2 F then f

�1

j

V

2 O(V ).

The holomorphially onvex hull of K in V satis�es

b

K

O(V )

�

�

� 2 V ; 8 f 2 F : jf(�)

�1

j �





f

�1

j

K





1

	

�

�

� 2 V ; 8 f 2 F : jf(�)

�1

j � 1

	

= f� 2 U ; 8 f 2 F : jf(�)j � 1g :

The right-hand side is a ompat subset of V , whene

b

K

O(V )

is ompat.

Example 5.1 shows that

b

K

O(V )

is a Stein ompatum.

Sine the relatively ompat open neighbourhood U � X of K an be

hosen arbitrarily small, the set K is an intersetion of Stein ompata and

hene a Stein ompatum. �

6.8 Remark. H�ormander and Wermer [26℄ onstruted a smoothly embed-

ded dis in C

2

whih is a Stein ompatum but not rationally onvex (f.

Forstneri� [18℄).
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6.9 Proposition. Let X be a seond ountable omplex analyti manifold

suh that O(X) separates points. Then a ompat subset K � X is a

Stein ompatum if and only ifK has arbitrarily small open neighbourhoods

U � X suh that

b

K

M(U)

is ompat.

Proof. A Stein ompatum K � X has arbitrarily small holomorphially

onvex open neighbourhoods, and for eah suh neighbourhood U � X,

the set

b

K

M(U)

is a losed subset of

b

K

O(U)

and hene ompat. Conversely,

if K � X is a ompat subset with arbitrarily small open neighbourhoods

U � X suh that

b

K

M(U)

is ompat then the preeding lemma shows thatK

is an intersetion of Stein ompata and hene a Stein ompatum. �

6.10 Proposition (Meromorphially onvex manifolds are Stein).

Let U be an open subset of a Stein manifold X. Then U is holomorphially

onvex (i.e. a Stein manifold) if and only if

b

K

M(U)

is ompat for every

ompat subset K � U .

It is oneivable that this also holds for more general omplex analyti mani-

folds U .

Proof. If U is holomorphially onvex then

b

K

M(U)

�

b

K

O(U)

is ompat for

eah ompat subset K � U .

Conversely, assume that every ompat subset of U has ompat mero-

morphially onvex hull in U . We laim that U is Hartogs pseudoonvex.

The meaning of this laim is as follows. Let d be the omplex dimension

of U . Extending the notation introdued before Example 5.7 to subsets

of C

d

in the obvious way, de�ne K � C

d

by K

:

= K(0; 0; : : : ; 0; 0; 1) [

K(0; : : : ; 0; 0; 1; 0; : : : ; 0; 1; 1), and

^

K � C

d

by

^

K

:

= K(0; 0; : : : ; 0; 1; 1).

Let ' be a biholomorphi embedding of a neighbourhood of

^

K in C

d

into X

suh that L

:

= '(K) � U . What we laim is that

^

L

:

= '(

^

K) is also on-

tained in U . The key to the proof of this laim is Hartogs' result that every

holomorphi funtion de�ned in a neighbourhood of L extends holomorphi-

ally to a neighbourhood of

^

L (see Range [36, II.2.2℄). Pik � 2

^

L \ U .

We laim that � 2

b

L

M(U)

. Otherwise, there exists f 2 O(U) suh that

f(�) = 0 62 f(L). Then 1=f is a holomorphi funtion near L whih does

not extend to

^

L. This ontradition shows that

^

L \ U �

b

L

M(U)

. Hene

^

L \ U =

^

L \

b

L

M(U)

is open and losed in

^

L. Sine this set is not empty

and

^

L is onneted, this proves our laim that

^

L � U , i.e. that U is Hartogs

pseudoonvex.

Eah Hartogs pseudoonvex open subset of C

n

is holomorphially onvex

(see Range [36, II.5.8 and VI.1.17℄). In the ase that X = C

n

, we have thus

ompleted the proof of the proposition.

In the ase that X is a general Stein manifold, hoose a losed embedding

� : X ,! C

n

, an open neighbourhood V � C

n

of �(X), and a holomorphi
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retration � : V ! X for �. By shrinking V , we may assume that V is

holomorphially onvex (see Siu [42℄). Set W

:

= �

�1

(U) � V , and hoose

a ompat subset K � W . We laim that

b

K

M(W )

is ompat. We have

b

K

M(W )

�

b

K

O(W )

�

b

K

O(V )

, and the latter set is ompat. Thus it suÆes

to show that

b

K

M(W )

is losed in V . Set L

:

= �(K), and hoose � 2 W n

�

�1

�

b

L

M(U)

�

. Then there exists f 2 O(U) suh that f(�(�)) 62 f(L) =

f(�(K)). Using f Æ � 2 O(W ), we �nd that � 62

b

K

M(W )

. Thus

b

K

M(W )

�

�

�1

(

b

L

M(U)

), and the latter set is losed in V . Sine

b

K

M(W )

is losed in W ,

we onlude that it is losed in V and hene indeed ompat.

The �rst part of the proof now shows that W is holomorphially onvex,

whene the same holds for U = �

�1

(W ). �

In the ase that X = C

n

, Proposition 6.10 also follows from Lemma 6.7 and

the Behnke{Stein Exhaustion Theorem [2℄. A similar result is ontained in

the same paper by Behnke and Stein.

To end this setion, we haraterize meromorphi onvexity in terms of

approximation by meromorphi funtions. This result is analogous to our

haraterizations of holomorphially onvex ompata in Corollary 4.5 and

of Stein ompata in Proposition 5.4.

If X is a omplex analyti manifold and K � X ompat, de�ne an

algebra of meromorphi funtions on X by

M

K

(X) = ff=g; f; g 2 O(X); 0 62 g(K)g :

6.11 Lemma (Meromorphi approximation, f. Rossi [37, 3.4℄).

Let X be a seond ountable omplex analyti manifold suh that O(X)

separates points, and let K � X be a meromorphially onvex ompat

subset. Then the subalgebra M

K

(X)j

K

= ff j

K

; f 2M

K

(X)g is dense

in A(K).

Proof. Let U � X be an open neighbourhood of K, let f 2 O(U), and

let " > 0. We have to onstrut an element g 2 M

K

(X) suh that all

� 2 K satisfy jf(�)�g(�)j < ". We may assume that U has ompat losure

in X, and also that U is a Stein manifold, by Lemma 6.7. Choose F =

ff

1

; : : : ; f

m

g � O(X) as in Lemma 6.6, and hoose a losed biholomorphi

embedding � : U ! C

n

. The map

h : U �! C

m+n

; � 7�!

�

f

1

(�); : : : ; f

m

(�); �

1

(�); : : : ; �

n

(�)

�

is a losed biholomorphi embedding. Set

Y

:

=

�

� 2 C

m+n

; j�

1

j > 1; : : : ; j�

m

j > 1

	

and

V

:

= h

�1

(Y ) = f� 2 U ; 8 j 2 f1; : : : ;mg : jf

j

(�)j > 1g :
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Then Y is a Stein manifold, V is an open neighbourhood of K, and h(V ) =

Y \h(U) is a losed submanifold of Y . Every holomorphi funtion on h(V )

has a holomorphi extension to Y (Gunning and Rossi [23, VIII.A.18℄).

Hene there exists k 2 O(Y ) suh that k Æhj

V

= f j

V

. By Laurent extension

(see Range [36, II.1.4℄), there is a Laurent polynomial

p 2 C

�

�

1

; �

�1

1

; : : : ; �

m

; �

�1

m

; �

m+1

; : : : ; �

m+n

�

suh that all � 2 h(K) satisfy jk(�) � p(�)j < ". In other words, all � 2 K

satisfy jf(�) � p(h(�))j < ". Sine none of the f

j

has a zero in K, the

omposition g

:

= p Æ h is an element of M

K

(X), and it has the desired

approximation property. �

6.12 Proposition (Auto-spetrality and meromorphi onvexity).

Let X be a seond ountable omplex analyti manifold suh that O(X)

separates points, and let K � X be ompat. Then the following onditions

are equivalent:

(i) K is meromorphially onvex in X (i.e.

b

K

M(X)

= K).

(ii) K is auto-spetral, and the subalgebra of germs of elements ofM

X

(K)

in K is dense in O(K).

(iii) K is auto-spetral, and M

X

(K)j

K

is dense in A(K).

Proof. If ondition (i) holds then K is auto-spetral by Lemma 6.7 and

Proposition 5.4, so that statement (iii) follows from Lemma 6.11. By Lem-

mas 1.2 and 2.3, statements (ii) and (iii) are equivalent to eah other and to

the ondition that the Gelfand spetrum of A

:

=M

X

(K)j

K

onsists of the

evaluations in points ofK. It remains to show that this implies ondition (i).

Let � 2

b

K

M(X)

. No element of M

K

(X) has a singularity at �, so that

evaluation in � is a homomorphism from M

K

(X) onto C . By Lemma 6.3,

every f 2M

K

(X) satis�es jf(�)j � kf j

K

k

1

. Hene evaluation in � indues

a harater of A. Thus if �

A

onsists of the evaluations in points of K

then K is meromorphially onvex in X. �

6.13 Corollary (Auto-spetrality and rational onvexity). A om-

pat subset K � C

n

is rationally onvex if and only if it is auto-spetral and

the algebra of rational funtions on C

n

without singularities in K is dense

in A(K) or, equivalently, in O(K).

Proof. The rationally onvex hull of a ompat subset K � C

n

equals

b

K

M(C

n

)

by Remark 6.5. A rational funtion an be written as a quotient

of relatively prime polynomials, and then the singular set equals the set of

zeros of the denominator. Therefore, every rational funtion on C

n

with-

out singularities in K is an element of M

X

(K). Sine the polynomials are
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dense in A

C

n

(K) and in O

C

n

(K), every element ofM

K

(C

n

) an be approxi-

mated by rational funtions without singularities inK, both in the topology

of A(K) and in the topology of O(K). Therefore, the assertions follow from

Proposition 6.12. �

6.14 Remark. The strategy of proof for Lemma 6.6 and Proposition 6.12

an immediately be applied in the ontext of holomorphi onvexity, yielding

the following results.

Let K be a ompat subset of a seond ountable omplex analyti mani-

fold X.

(a) Assume that

b

K

O(X)

= K, and let U � X be a relatively ompat open

neighbourhood of K. Then there is a �nite subset F � O(X) suh

that f� 2 U ; 8 f 2 F : jf(�)j � 1g is a ompat neighbourhood of K.

(b) The equation

b

K

O(X)

= K holds if and only if K is auto-spetral and

satis�es A

X

(K) = A(K) or, equivalently, O

X

(K) = O(K).

Thus Corollary 4.5 is generalized from Riemann domains over Stein

manifolds to omplex analyti manifolds in whih the holomorphi fun-

tions separate points. However, Proposition 4.3 ontains additional insights,

and its proof is more elementary, at least in the ase of Riemann domains

over C

n

.

7 Holomorphi generation

The �nal setion relates our previous results to Makey-omplete omplex

ommutative ontinuous inverse algebras A whih are generated by n-tuples

a 2 A

n

in the sense of the holomorphi funtional alulus. In this situa-

tion, the joint spetrum Sp(a) is an auto-spetral set, and the algebra A is

\sandwihed" between O(Sp(a)) and A(Sp(a)). The joint spetrum of the

n-tuple a also shows whether a generates the algebra A in a stronger sense.

(Reall that Makey-ompleteness is just the weak ompleteness assumption

used in the onstrution of the holomorphi funtional alulus.)

7.1 Lemma. Let A be a Makey-omplete ommutative ontinuous inverse

algebra over C , let a 2 A

n

, and set K

:

= Sp

A

(a). Let � : O(K) ! A; f 7!

f [a℄ be the funtional alulus homomorphism, and let  : A! C(�

A

); x 7!

x̂ be the Gelfand homomorphism. Then the omposition  Æ � : O(K) !

C(�

A

) equals the homomorphism â

�

indued by the ontinuous surjetion

â : �

A

�! K; � 7�!

�

�(a

1

); : : : ; �(a

n

)

�

:

Proof. The statement follows from a short alulation by means of natural-

ity of the holomorphi funtional alulus. Indeed, if f 2 O(K) and � 2 �

A
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then

�

( Æ �)(f)

�

(�) =

�

(f [a℄)

�

(�) = �(f [a℄)

= f

�

�

�n

(a)

�

= f

�

â(�)

�

= (f Æ â)(�) =

�

â

�

(f)

�

(�):

�

The preeding observation is partiularly interesting in the ase that â

is a homeomorphism. In this ase, we an use â to identify �

A

and K and

think of â

�

as the restrition map from O(K) into C(K).

7.2 Theorem (Holomorphially generated algebras). Let A be a

Makey-omplete ommutative ontinuous inverse algebra over C , let a 2

A

n

, and set K

:

= Sp

A

(a) and � : O(K) ! A; f 7! f [a℄. Assume that �

has dense image. (In this situation, we say that the n-tuple a generates the

algebra A holomorphially.) Then

â : �

A

�! K; � 7�!

�

�(a

1

); : : : ; �(a

n

)

�

is a homeomorphism. Let  : A! C(K); x 7! x̂Æ â

�1

be the homomorphism

indued by â and the Gelfand homomorphism. Then im() = A(K), and

the omposition

O(K)

�

�! A



�! A(K)

�

�! C(K);

where � is the inlusion, equals the restrition homomorphism f 7! f j

K

.

The indued maps

�

C(K)

�

�

�! �

A(K)



�

�! �

A

�

�

�! �

O(K)

are homeomorphisms. In partiular, the joint spetrumK is an auto-spetral

ompat subset of C

n

.

Proof. By de�nition, the map â is a ontinuous surjetion. As both �

A

and K are ompat Hausdor� spaes, it suÆes to show that â is injetive.

If � 2 �

A

and f 2 O(K) then �(f [a℄) = f(â(�)) by naturality of the holo-

morphi funtional alulus. Therefore, â(�) uniquely determines �j

im(�)

and hene �.

Choose f 2 O(K). If � 2 �

A

then �(f)b (�) = �(f [a℄) = f(â(�)).

Thus if � 2 K then (�(f))(�) = �(f)b (â

�1

(�)) = f(�). This proves that

Æ� : O(K)! C(K) is the restrition homomorphism. Sine � has dense im-

age, we onlude that A(K) = im( Æ �) = im(), so that we may onsider 

as a map into A(K).

Lemma 1.2 shows that ( Æ �)

�

= �

�

Æ 

�

is a homeomorphism. Sine �

�

is injetive and 

�

is surjetive, we �nd that both �

�

and 

�

are homeo-

morphisms. The map (�Æ)

�

= 

�

Æ �

�

is a homeomorphism by onstrution.
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Sine every harater of the algebra C(K) is evaluation in a point of K,

the same holds for the algebras A(K) and O(K). We onlude that K is

auto-spetral. �

7.3 Remark. Let K � C

n

be an auto-spetral ompat set. Then O(K) is

holomorphially generated by the n-tuple

e

id

C

n

, and Sp

O(K)

�

e

id

C

n

�

= K. The

analogous statement holds for the Banah algebra A(K). Thus the auto-

spetral ompat subsets of C

n

are exatly the joint spetra of holomor-

phially generating n-tuples in Makey-omplete ommutative ontinuous

inverse algebras (or in ommutative Banah algebras).

An n-tuple a in a ommutative ontinuous inverse algebra A may gen-

erate the algebra not only holomorphially, but in a stronger sense. For

instane, the algebra A may be the topologial losure of the subalgebra

generated by a. Suh a situation yields ertain additional neessary on-

ditions on the spetrum of a, whih are also suÆient if the n-tuple a is

assumed to be holomorphially generating. Several situations of this kind

are studied in the following orollary.

7.4 Corollary (Holomorphi generation by subalgebras). Let A be

a Makey-omplete ommutative ontinuous inverse algebra over C whih is

generated holomorphially by a 2 A

n

. Set K

:

= Sp

A

(a).

(a) For a unital subalgebra B � O(K) whih ontains the germs of the

oordinate funtions, the following are equivalent:

(i) ff [a℄; f 2 Bg is dense in A;

(ii) B is dense in O(K);

(iii) Bj

K

is dense in A(K).

(b) Let U � C

n

be an open neighbourhood of K. Then the subalgebra

ff [a℄; f 2 O(U)g is dense in A if and only if K is holomorphially

onvex in U .

() The unital subalgebra generated by fa

1

; : : : ; a

n

g is dense in A if and

only if K is polynomially onvex.

(d) The subalgebra ff [a℄; f 2 O

St

(K)g is dense in A if and only if K is a

Stein ompatum.

(e) Let U � C

n

be an open neighbourhood of K. Then the subalgebra

of elements of the form (f=g)[a℄, where f; g 2 O(U) and 0 62 g(K), is

dense in A if and only if K is meromorphially onvex in U .

(f) The subalgebra of elements of the form f [a℄, where f is a rational

funtion on C

n

without singularities in K, is dense in A if and only

if K is rationally onvex.
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The forward impliation in assertion (), whih is lassi at least in the ase

of ommutative Banah algebras (see Bonsall and Dunan [9, 19.11℄), was

one piee of motivation for the present paper.

Proof. First note that K is auto-spetral by Theorem 7.2. For the proof of

assertion (a), Theorem 7.2 also yields that ondition (i) implies (iii), whih

implies (ii) by Lemma 2.3. The de�nitions show that (ii) implies (i).

To prove assertions (b) to (f), hoose the subalgebra B � O(K) in

part (a) suitably and use, respetively, Corollary 4.5, Corollary 4.6, Propo-

sition 5.4, Proposition 6.12, and Corollary 6.13. �

Referenes

[1℄ Rihard Arens and Alberto P. Calder�on, Analyti funtions of several

Banah algebra elements, Ann. of Math. (2) 62 (1955), 204{216. MR

17,177

[2℄ H. Behnke and K. Stein, Konvergente Folgen von Regularit�atsbereihen

und die Meromorphiekonvexit�at, Math. Ann. 116 (1938), 204{216 (Ger-

man).

[3℄ Harald Biller, Algebras with ontinuous inversion and involution, in

preparation.

[4℄ , Topologial invariants of the Gelfand spetrum of a ontinuous

inverse algebra, in preparation.

[5℄ , Algebras of omplex analyti germs, Preprint 2331, Fahbereih

Mathematik, Tehnishe Universit�at Darmstadt, April 2004,

http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/

Preprints/Listen/shadow/pp2331.html.

[6℄ , Analytiity and naturality of the multi-variable funtional al-

ulus, Preprint 2332, Fahbereih Mathematik, Tehnishe Universit�at

Darmstadt, April 2004,

http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/

Preprints/Listen/shadow/pp2332.html.

[7℄ Jan-Erik Bj�ork, Holomorphi onvexity and analyti strutures in Ba-

nah algebras, Ark. Mat. 9 (1971), 39{54. MR 52 #6035

[8℄ Brue Blakadar, K-theory for operator algebras, seond ed., Math-

ematial Sienes Researh Institute Publiations, vol. 5, Cambridge

University Press, Cambridge, 1998. MR 99g:46104

[9℄ Frank F. Bonsall and John Dunan, Complete normed algebras, Ergeb-

nisse der Mathematik und ihrer Grenzgebiete 80, Springer, Berlin 1973.

34



[10℄ J.-B. Bost, Prinipe d'Oka, K-th�eorie et syst�emes dynamiques non om-

mutatifs, Invent. Math. 101 (1990), no. 2, 261{333. MR 92j:46126

[11℄ N. Bourbaki,

�

El�ements de math�ematique. Fas. XXXII. Th�eories spe-

trales. Chapitre I: Alg�ebres norm�ees. Chapitre II: Groupes loalement

ompats ommutatifs, Atualit�es Sienti�ques et Industrielles, No.

1332, Hermann, Paris, 1967. MR 35 #4725

[12℄ Alain Connes, Nonommutative di�erential geometry, Inst. Hautes

�

Etudes Si. Publ. Math. (1985), no. 62, 257{360. MR 87i:58162

[13℄ Susanne Dierolf and Johen Wengenroth, Indutive limits of topologial

algebras, Linear Topol. Spaes Complex Anal. 3 (1997), 45{49, Dedi-

ated to Professor Vyaheslav Pavlovih Zahariuta. MR 2000:46094

[14℄ Ferdinand Doquier and Hans Grauert, Levishes Problem und

Rungesher Satz f�ur Teilgebiete Steinsher Mannigfaltigkeiten, Math.

Ann. 140 (1960), 94{123. MR 26 #6435

[15℄ James Dugundji, Topology, Allyn and Baon In., Boston, Mass., 1966.

MR 33 #1824

[16℄ Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure

Mathematis 6, Heldermann Verlag, Berlin 1989.

[17℄ Klaus Floret, Lokalkonvexe Sequenzen mit kompakten Abbildungen, J.

Reine Angew. Math. 247 (1971), 155{195 (German). MR 44 #4478

[18℄ Fran Forstneri�, A smooth holomorphially onvex dis in C

2

that is

not loally polynomially onvex, Pro. Amer. Math. So. 116 (1992),

no. 2, 411{415. MR 92m:32019

[19℄ Theodore W. Gamelin, Uniform algebras, Prentie-Hall In., Engle-

wood Cli�s, N. J., 1969. MR 53 #14137

[20℄ Helge Gl�okner, Algebras whose groups of units are Lie groups, Studia

Math. 153 (2002), no. 2, 147{177.

[21℄ Bernhard Gramsh, Relative Inversion in der St�orungstheorie von Op-

eratoren und 	-Algebren, Math. Ann. 269 (1984), no. 1, 27{71. MR

86j:47065

[22℄ H. Grauert and R. Remmert, Theorie der Steinshen R�aume,

Grundlehren der Mathematishen Wissenshaften, vol. 227, Springer-

Verlag, Berlin, 1977 (German). MR 80j:32001

[23℄ Robert C. Gunning and Hugo Rossi, Analyti funtions of several om-

plex variables, Prentie-Hall In., Englewood Cli�s, N.J., 1965. MR 31

#4927

35



[24℄ Reese Harvey and R. O. Wells, Jr., Compat holomorphially onvex

subsets of a Stein manifold, Trans. Amer. Math. So. 136 (1969), 509{

516. MR 38 #3470

[25℄ Edwin Hewitt and Karl Stromberg, Real and abstrat analysis,

Springer-Verlag, New York, 1975, A modern treatment of the theory

of funtions of a real variable, Third printing, Graduate Texts in Math-

ematis, No. 25. MR 51 #3363

[26℄ L. H�ormander and J. Wermer, Uniform approximation on ompat sets

in C

n

, Math. Sand. 23 (1968), 5{21 (1969). MR 40 #7484

[27℄ Lars H�ormander, An introdution to omplex analysis in several vari-

ables, revised ed., North-Holland Publishing Co., Amsterdam, 1973,

North-Holland Mathematial Library, Vol. 7. MR 49 #9246

[28℄ Andreas Kriegl and Peter W. Mihor, The onvenient setting of global

analysis, Amerian Mathematial Soiety, Providene, RI, 1997. MR

98i:58015

[29℄ Peter Maier, Central extensions of topologial urrent algebras, Geo-

metry and analysis on �nite- and in�nite-dimensional Lie groups

(B

`

edlewo, 2000), Banah Center Publ., vol. 55, Polish Aad. Si., War-

saw, 2002, pp. 61{76. MR 2003f:17023

[30℄ Peter Maier and Karl-Hermann Neeb, Central extensions of urrent

groups, Math. Ann. 326 (2003), no. 2, 367{415. MR 1 990 915

[31℄ Ernest A. Mihael, Loally multipliatively-onvex topologial algebras,

Mem. Amer. Math. So., 1952 (1952), no. 11, 79. MR 14,482a

[32℄ Karl-Hermann Neeb, Current groups for non-ompat manifolds and

their entral extensions, In�nite Dimensional Groups and Manifolds in

Mathematis and Quantum Physis, Proeedings of the 70�eme R.C.P.,

Strasbourg (V. Turaev and T. Wurzbaher, eds.), 2002, to appear.

[33℄ , Loally onvex root graded Lie algebras, Travaux

math�ematiques (Univ. du Luxembourg) XIV (2003), 25{120.

[34℄ Karl-Hermann Neeb and Friedrih Wagemann, The universal entral

extension of the holomorphi urrent algebra, to appear in Manusripta

Math., 2003.

[35℄ N. Christopher Phillips, K-theory for Fr�ehet algebras, Internat. J.

Math. 2 (1991), no. 1, 77{129. MR 92e:46143

[36℄ R. Mihael Range, Holomorphi funtions and integral representations

in several omplex variables, Graduate Texts in Mathematis, vol. 108,

Springer-Verlag, New York, 1986. MR 87i:32001

36



[37℄ Hugo Rossi, Holomorphially onvex sets in several omplex variables,

Ann. of Math. (2) 74 (1961), 470{493. MR 24 #A3310

[38℄ , On envelopes of holomorphy, Comm. Pure Appl. Math. 16

(1963), 9{17. MR 26 #6436

[39℄ Walter Rudin, Real and omplex analysis, third ed., MGraw-Hill Book

Co., New York, 1987. MR 88k:00002

[40℄ , Funtional analysis, MGraw-Hill Series in Higher Mathemat-

is, MGraw-Hill, New York 1973.

[41℄ G. E.

�

Silov, On the deomposition of a ommutative normed ring into

a diret sum of ideals, Amer. Math. So. Transl. (2) 1 (1955), 37{48.

MR 17,512

[42℄ Yum Tong Siu, Every Stein subvariety admits a Stein neighborhood,

Invent. Math. 38 (1976/77), no. 1, 89{100. MR 55 #8407

[43℄ Joseph L. Taylor, Several omplex variables with onnetions to al-

gebrai geometry and Lie groups, Graduate Studies in Mathematis,

vol. 46, Amerian Mathematial Soiety, Providene, RI, 2002. MR 1

900 941

[44℄ Luien Waelbroek, Le alul symbolique dans les alg�ebres ommuta-

tives, J. Math. Pures Appl. (9) 33 (1954), 147{186 (Frenh). MR

17,513

[45℄ , Les alg�ebres �a inverse ontinu, C. R. Aad. Si. Paris 238

(1954), 640{641 (Frenh). MR 17,513a

[46℄ , The holomorphi funtional alulus and non-Banah algebras,

Algebras in analysis (Pro. Instrutional Conf. and NATO Advaned

Study Inst., Birmingham, 1973), Aademi Press, London, 1975, Notes

elaborated with the ollaboration of Peter Ludvik, pp. 187{251. MR 55

#8798

[47℄ , The holomorphi funtional alulus as an operational alulus,

Spetral theory (Warsaw, 1977), Banah Center Publ., vol. 8, PWN,

Warsaw, 1982, pp. 513{552. MR 85g:46061

[48℄ R. O. Wells, Jr., Holomorphi hulls and holomorphi onvexity of di�er-

entiable submanifolds, Trans. Amer. Math. So. 132 (1968), 245{262.

MR 36 #5392

[49℄ William R. Zame, Holomorphi onvexity of ompat sets in analyti

spaes and the struture of algebras of holomorphi germs, Trans. Amer.

Math. So. 222 (1976), 107{127. MR 54 #13136

37



[50℄ , Existene, uniqueness and ontinuity of funtional alulus ho-

momorphisms, Pro. London Math. So. (3) 39 (1979), no. 1, 73{92.

MR 81i:46065

38


