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Abstrat

Makey-omplete omplex ommutative ontinuous inverse alge-

bras generalize omplex ommutative Banah algebras. After on-

struting the Gelfand transform for these algebras, we develop the

funtional alulus for holomorphi funtions on neighbourhoods of the

joint spetra of �nitely many elements and for holomorphi funtions

on neighbourhoods of the Gelfand spetrum. To this end, we study the

algebra of holomorphi germs in weak

�

-ompat subsets of the dual.

We emphasize the simultaneous analytiity of the funtional alulus

in both the funtion and its arguments and its naturality. Finally, we

treat systems of analyti equations in these algebras.
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Introdution

A ontinuous inverse algebra is a loally onvex unital assoiative algebra

in whih the set of invertible elements is open and inversion is ontinuous.

Suh an algebra is alled Makey-omplete if every smooth urve has a weak

integral. This weak ompleteness property an also be de�ned in terms of

the bounded struture, or in terms of the onvergene of speial Cauhy

sequenes.

Continuous inverse algebras were introdued by Waelbroek [47℄. They

play a role in non-ommutative geometry, in partiular in K-theory [7, 10,

14, 36℄, and in the theory of pseudo-di�erential operators [23℄. Currently,

they are attrating attention in the theory of Lie groups and algebras of

in�nite dimension [18℄. They appear as oordinate algebras in root-graded

loally onvex Lie algebras [34℄. Linear Lie groups are most naturally de�ned

as subgroups of ontinuous inverse algebras. These algebras have advantages

�
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over Banah algebras (whih are a speial ase), for instane beause they

lead to a rih supply of entral extensions of Lie groups and algebras [32, 33℄.

This is due to the fat that unlike semi-simple ommutative Banah alge-

bras, ommutative ontinuous inverse algebras an have non-zero deriva-

tions. A typial example is the algebra of smooth funtions on a ompat

manifold.

In other ways, ontinuous inverse algebras are strikingly similar to Ba-

nah algebras. In partiular, the theory of the Gelfand spetrum and the

holomorphi funtional alulus, whih are probably the most important

tools for ommutative Banah algebras, an be worked out for omplex

ommutative ontinuous inverse algebras. This is the purpose of the present

paper. Setion 1 establishes the basi properties of spetra and treats the

Gelfand transform. Setion 2 is a brief introdution to the di�erential al-

ulus on loally onvex vetor spaes whih we use. Setion 3 develops the

funtional alulus for holomorphi funtions on neighbourhoods of the joint

spetrum of �nitely many elements in a omplex ommutative ontinuous

inverse algebra. Sine it is based on Cauhy's integral formula, we have to

assume that the algebra is Makey-omplete. Setion 4 studies the algebra

of holomorphi germs in a ompat subset of the weak

�

-dual of a loally

onvex omplex vetor spae E. The most obvious topology on this alge-

bra, the loally onvex diret limit topology, has to be modi�ed in order to

make the algebra multipliation ontinuous. Setion 5 shows that the seond

topology di�ers from the �rst unless E has ountable dimension. These two

setions prepare Setion 6, whih is devoted to the funtional alulus for

holomorphi funtions on neighbourhoods of the Gelfand spetrum in the

weak

�

-dual of a omplex ommutative ontinuous inverse algebra. Setion 7

treats systems of analyti equations in omplex ommutative ontinuous

inverse algebras.

In the speial ase of ommutative Banah algebras, the main results

of Setions 1 to 3 and 6 are known. Here a new aspet is the analytiity

of the funtional alulus map (f; a) 7! f [a℄. Naturality of the funtional

alulus with respet to algebra homomorphisms is a onsequene whih

may not have reeived the attention it deserves. Setions 4 and 5 treat the

algebra of holomorphi germs in a weak

�

-ompatum K as the diret limit

of the system of Banah algebras of bounded holomorphi funtions on open

neighbourhoods of K. The progress lies in the fat that this direted system

is unountable in general, so that we have to get by without the powerful

theory of ountable diret limits, whih one uses in the framework of met-

rizable vetor spaes (f. [5℄ and Gl�okner [20℄). In Setion 7, the solution

of analyti equations is simpli�ed by the use of impliitly de�ned holomor-

phi funtions on the weak

�

-dual of the algebra and of the orresponding

funtional alulus. This approah allows us to treat systems of analyti

equations with the same ease.

These results require a development of the theory whih also applies to
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ontinuous inverse algebras. For this purpose, the original approah due to

�

Silov [42℄, Arens and Calder�on [3℄, and Waelbroek [45℄ seems more suitable

than the approah by Bourbaki [12℄. When Waelbroek developed his theory

in detail [46℄, even for omplete ommutative ontinuous inverse algebras,

the joint spetrum whih he used was larger than its modern version. Later,

he skethed a modernized version of his n-variable holomorphi funtional

alulus [49, 50℄. He also gave a detailed aount for algebras with a ertain

bounded struture, where questions of ontinuity and analytiity do not

arise [48℄. Therefore, it seemed worthwhile to give a omplete aount of

Waelbroek's theory, whih forms Setion 3. Setion 6 ontinues the short

treatment of the ase of ommutative Banah algebras by Craw [15℄ and

Taylor [43℄.

1 The Gelfand transform in ommutative ontinu-

ous inverse algebras

In our terminology, a loally onvex algebra over K 2 fR; C g is an assoiative

algebra over K with a loally onvex Hausdor� vetor spae topology suh

that the algebra multipliation is jointly ontinuous.

1.1 De�nition. A ontinuous inverse algebra over K 2 fR; C g is a loally

onvex algebra A over K with unit in whih the set A

�

of invertible elements

is open and inversion is ontinuous.

If a ontinuous inverse algebra is ommutative, Turpin [44℄ has proved that

its topology an be desribed by a family of semi-norms whih are sub-

multipliative. A loally onvex algebra with this property is alled lo-

ally multipliatively onvex, or (loally) m-onvex for short. However,

_

Zelazko [52℄ has onstruted a non-ommutative ontinuous inverse Fr�ehet

algebra whih is not loally multipliatively onvex.

1.2 Lemma. Let A be a ontinuous inverse algebra over C , and let U � A

be an open balaned neighbourhood of 0 suh that 1 + U � A

�

. For every

element a 2 U , the spetrum Sp(a) = f� 2 C ; � � 1 � a 2 A

�

g is ontained

in the open unit dis around 0.

Proof. Choose a 2 U . If � 2 C satis�es j�j � 1 then ��

�1

a 2 U , whene

� � 1� a 2 A

�

, so that � 62 Sp(a). The assertion follows. �

1.3 Lemma. Let A be a ontinuous inverse algebra over C , and let J � A

be a proper losed two-sided ideal. Then the quotient algebra A=J is a

ontinuous inverse algebra with respet to the quotient topology.
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Proof. The quotient algebra A=J is a loally onvex algebra over C . Let

pr: A! A=J denote the anonial projetion. The image pr(A

�

) is a neigh-

bourhood of the unit element of A=J whih onsists of invertible elements.

The restrition and orestrition of the inversion map of A=J to pr(A

�

)

is ontinuous. Aording to Gl�okner [18, 2.8℄, this implies that A=J is a

ontinuous inverse algebra. �

1.4 Lemma (Arens [2℄, Waelbroek [46℄). In a ontinuous inverse

algebra A over C , the following statements hold.

(a) Every element has non-empty ompat spetrum.

(b) If A is a skew �eld then A is topologially isomorphi to C .

Proof. The spetrum of an arbitrary element is losed by de�nition and

bounded by Lemma 1.2. Waelbroek [46, II.1.2℄ has proved that it is non-

empty. Statement (b) is due to Arens [2℄. Conise modern proofs are given

by Gl�okner [18, 4.3 and 4.15℄. As Gl�okner himself observes [18, 4.15℄, the

standing ompleteness hypothesis of [18, Setion 4℄ is not used in the proofs

of these results. �

1.5 Lemma. LetM be a maximal proper ideal in a ommutative ontinuous

inverse algebra A over C . Then M is the kernel of some unital algebra

homomorphism from A onto C .

Proof. Sine M is disjoint from the open set A

�

, the same holds for its

losure M , whih is therefore a proper ideal. Maximality of M implies

that M is losed. By the Lemma 1.3, the quotient A=M is a ontinuous

inverse algebra over C . Sine A is ommutative, the quotient A=M is a

�eld, whene it is isomorphi to C by Lemma 1.4. Hene M is the kernel of

a omplex homomorphism. �

1.6 De�nition. Let A be a omplex algebra with unit.

(a) De�ne the Gelfand spetrum of A as �

A

:

= Hom(A; C ) with the

topology of pointwise onvergene on A. Note that 0 62 �

A

beause we

require homomorphisms to respet the unit elements.

(b) Eah element a 2 A gives rise to a funtion â from the linear dual of A

into C by â(')

:

= '(a), whih is ontinuous with respet to the topology of

pointwise onvergene. The restrition âj

�

A

: �

A

! C is alled the Gelfand

transform of a. The map a 7! âj

�

A

: A! C(�

A

), whih is a homomorphism

of unital algebras, is alled the Gelfand homomorphism of the algebra A.

The restrition âj

�

A

is often denoted by â. We use the more ompliated

notation beause â in our sense will play an important role in Setion 6.

1.7 Theorem (The Gelfand transform). In a ommutative ontinuous

inverse algebra A over C , the following statements hold.
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(a) Every element a 2 A satis�es

Sp(a) = f�(a); � 2 �

A

g = â(�

A

):

(b) The Gelfand spetrum �

A

is a ompat Hausdor� spae.

() The Gelfand homomorphism is ontinuous with respet to the topology

of uniform onvergene on C(�

A

). Its kernel is the Jaobson radial

of A.

(d) The spetral radius a 7! �(a) =





âj

�

A





1

: A ! R

+

0

is a ontinuous

algebra semi-norm on A with the Jaobson radial as its zero spae.

Proof. (a) Choose � 2 C n Sp(a) and � 2 �

A

. Sine �� a is invertible, the

same holds for ���(a), whene � 6= �(a). This proves that â(�

A

) � Sp(a).

To prove the reverse inlusion, hoose � 2 Sp(a). Then (�� a)A is a proper

ideal of A. Therefore, we may hoose a maximal proper ideal M � A suh

that �� a 2M . By Lemma 1.5, the maximal ideal M is the kernel of some

� 2 �

A

. Hene � = �(a).

(b) The Gelfand spetrum is ompat beause it is a losed subspae of

the produt

Y

a2A

Sp(a) � C

A

:

() The kernel of the Gelfand homomorphism is the intersetion of all

maximal ideals. This is one possible de�nition of the Jaobson radial.

To prove ontinuity, it suÆes to prove that the Gelfand homomorphism

is ontinuous at 0. Choose " > 0, and let U � A be an open balaned

neighbourhood of 0 suh that 1 + U � A

�

. By Lemma 1.2 and part (a),

every element a 2 "U satis�es





âj

�

A





1

< ".

(d) This follows immediately from (a) and (). �

1.8 Proposition (The joint spetrum). Let A be a ommutative on-

tinuous inverse algebra over C . Reall that the joint spetrum of an n-tuple

a 2 A

n

is the ompat subset of C

n

de�ned as

Sp(a)

:

=

��

�(a

1

); : : : ; �(a

n

)

�

; � 2 �

A

	

:

If U � C

n

is an open subset then

A

U

:

= fa 2 A

n

; Sp(a) � Ug

is an open subset of A

n

.

Proof. Choose a 2 A

U

, and hoose " > 0 suh that the open polydis

V � C

n

around 0 of polyradius ("; : : : ; ") satis�es Sp(a)+V � U . LetW � A

be an open balaned neighbourhood of 0 suh that 1+W � A

�

. Lemma 1.2

and Theorem 1.7 (a) imply that the open neighbourhood a + ("W )

n

of a

in A

n

is ontained in A

U

. �
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2 Di�erentiable funtions between loally onvex

vetor spaes

The onepts of di�erentiability and smoothness whih we use go bak to

Mihal and Bastiani [4℄, see also Hamilton [25℄ and Milnor [31℄. The re-

quired generality and the onnetions to analytiity have been worked out

by Gl�okner [19℄.

2.1 De�nition. Let E and F be loally onvex real vetor spaes, and let

U � E be open. A map f : U ! F is alled ontinuously di�erentiable, and

we write f 2 C

1

(U;F ), if the diretional derivative

df(x; v)

:

= lim

t!0

f(x+ tv)� f(x)

t

exists for all x 2 U and all v 2 E and if the map df : U � E ! F whih is

thus de�ned is ontinuous.

One of the basi properties of a ontinuously di�erentiable map f : U ! F

is the fundamental theorem of alulus whih states that whenever x; y 2 U

and U ontains the line segment from x to y then

f(y)� f(x) =

Z

1

0

df(x+ t(y � x); y � x) dt:

Integrals are always understood in the weak sense (see Rudin [40, 3.26℄).

The present integral ertainly exists in the ompletion of F , but it atu-

ally belongs to F just beause it equals the left-hand side. This formula

implies that a ontinuously di�erentiable map f is ontinuous, and that its

derivative df is real-linear in its seond argument (Gl�okner [19, 1.9℄).

Let E

1

; E

2

; : : : ; E

n

and F be loally onvex real vetor spaes, and let

U

1

� E

1

; : : : ; U

n

� E

n

be open. Let f : U

1

�� � ��U

n

! F be a map, and let

x

1

2 U

1

; : : : ; x

n

2 U

n

. If the partial diretional derivative of f at (x

1

; : : : ; x

n

)

with respet to the j-th argument in diretion v 2 E

j

exists, it is alled

the j-th partial derivative �

j

f(x

1

; : : : ; x

n

; v). The map f is ontinuously

di�erentiable if and only if �

j

f : U

1

� � � � � U

n

� E

j

! F exists and is

ontinuous for eah j 2 f1; : : : ; ng (f. Gl�okner [19, 1.10℄). In this ase, its

derivative satis�es

df(x

1

; : : : ; x

n

; v

1

; : : : ; v

n

) =

n

X

j=1

�

j

f(x

1

; : : : ; x

n

; v

j

) (x

j

2 U

j

; v

j

2 E

j

):

2.2 De�nition. (a) Let E and F be loally onvex real vetor spaes,

and let U � E be open. Indutively, a map f : U ! F is alled k times

ontinuously di�erentiable, and we write f 2 C

k

(U;F ), if f 2 C

1

(U;F ) and

df 2 C

k�1

(U �E;F ).
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(b) A map f : U ! F is alled smooth if it belongs to

C

1

(U;F )

:

=

\

k2N

C

k

(U;F ):

2.3 De�nition. Let E and F be loally onvex omplex vetor spaes, and

let U � E be open. A smooth map f : U ! F is alled omplex analyti

if the ontinuous real-linear map df(x; �) : E ! F is omplex-linear for all

x 2 U .

Gl�okner [19, 2.5℄ has proved that this holds if and only if f is ontinuous,

and for every x 2 U , there exists a zero-neighbourhood V in E suh that

x + V � U and f(x+ h) =

P

1

n=0

�

n

(h) for all h 2 V as a pointwise limit,

where eah �

n

: E ! F is a ontinuous homogeneous polynomial over C of

degree n. This is the de�nition of omplex analytiity given by Bohnak

and Siiak [8, 5.6℄.

2.4 De�nition. (a) A sequene (x

n

)

n2N

in a loally onvex real vetor

spae E is alled aMakey{Cauhy sequene if there is a net (t

m;n

)

(m;n)2N�N

of positive real numbers whih onverges to 0 suh that the set

�

x

m

� x

n

t

m;n

; m;n 2 N

�

is a bounded subset of E. Every Makey{Cauhy sequene is a Cauhy

sequene.

(b) The loally onvex real vetor spae E is alled Makey omplete

if every Makey{Cauhy sequene in E onverges. This holds if and only

if every smooth urve � : [a; b℄ ! E (where a; b 2 R) has a Riemann inte-

gral

R

b

a

�(t) dt in E (see Kriegl and Mihor [29, 2.14℄). Another equivalent

ondition is that every bounded subset of E is ontained in a onvex bal-

aned bounded subset B � E suh that the Minkowski funtional of B in

the linear span of B is a omplete norm [29, 2.2℄.

Let E and F be loally onvex omplex vetor spaes, and let U � E be

open. Assume that F is Makey omplete. Gl�okner [18, 1.4℄ has proved

that a ontinuously di�erentiable map f : U ! F with df omplex-linear in

the seond argument is omplex analyti.

2.5 Proposition (Parameter-dependent integrals). Let a; b 2 R with

a � b, let X be a topologial spae, and let F be a loally onvex real vetor

spae. Let f : [a; b℄�X ! F be a ontinuous map suh that

g(x)

:

=

Z

b

a

f(t; x) dt

exists in F for every x 2 X. Then g : X ! F is ontinuous.
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Suppose, in addition, that X is an open subset of a loally onvex real

vetor spae E, that �

2

f : [a; b℄�X �E ! F exists and is ontinuous, and

that

g

1

(x; v)

:

=

Z

b

a

�

2

f(t; x; v) dt

exists in F for every x 2 X and every v 2 E. Then g 2 C

1

(X;F ) with

dg = g

1

.

Note that integrals of ontinuous urves automatially exist in F if F is

sequentially omplete.

Proof. Choose a point x

0

2 X and a losed onvex zero-neighbourhood

U � F . Sine

' : [a; b℄�X �! F; (t; x) 7�! f(t; x)� f(t; x

0

)

is ontinuous and maps the ompat set [a; b℄ � fx

0

g to 0, there is a neigh-

bourhood V � X of x

0

suh that '([a; b℄ � V ) � U . For any x 2 V , the

Hahn{Banah Theorem entails that

g(x) � g(x

0

) =

Z

b

a

�

f(t; x)� f(t; x

0

)

�

dt =

Z

b

a

'(t; x) dt 2 (b� a)U:

This shows that g is ontinuous at x

0

.

For the seond part, hoose x 2 X, v 2 E, and h 2 R

�

suh that X

ontains the line segment from x to x+ hv. Then

g(x+ hv)� g(x)

h

=

1

h

Z

b

a

�

f(t; x+ hv)� f(t; x)

�

dt

=

Z

b

a

Z

1

0

�

2

f(t; x+ shv; v) ds dt:

In partiular, the integral on the right-hand side exists in F if h 6= 0, and by

hypothesis also if h = 0. Applying the �rst part of the proposition twie, we

�nd that the right-hand side depends ontinuously on (x; v; h). In partiular,

its limit for h! 0 exists and satis�es

dg(x; v) =

Z

b

a

�

2

f(t; x; v) dt;

and this depends ontinuously on (x; v) 2 X �E. �

2.6 Corollary. Let U � R be an open interval, hoose a; b 2 U , let E

and F be loally onvex real vetor spaes, let V � E be open, and let

f 2 C

1

(U � V; F ). If F is Makey omplete then

g : V �! F; x 7�!

Z

b

a

f(t; x) dt

is smooth. �
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2.7 Corollary. Let a; b 2 R with a � b, let U � C be open, and

let  : [a; b℄! U be a smooth urve. Let E and F be loally onvex omplex

vetor spaes, let V � E be open, and let f : U � V ! F be a omplex

analyti map. If F is Makey omplete then

g : V �! F; x 7�!

Z



f(�; x) d�

is omplex analyti. �

3 Holomorphi funtions on subsets of C

n

Like Waelbroek [46℄, we base the n-variable funtional alulus on the fol-

lowing result from omplex analysis in several variables. Reall that an open

polynomial polyhedron U � C

n

is a subset de�ned by a �nite set of polyno-

mials in n variables, P

0

� P(C

n

), as U

:

= f� 2 C

n

; 8 p 2 P

0

: jp(�)j < 1g.

3.1 Theorem (Oka's Extension Theorem [35℄, f. Allan [1℄). Let

P(C

n

) denote the polynomial funtions on C

n

, let p

1

; : : : ; p

k

2 P(C

n

), and

de�ne the \Oka map"

� : C

n

�! C

n+k

; � 7�! (�; p

1

(�); : : : ; p

k

(�)):

Let U � C

n

be an open polydis around 0, let D � C be the open unit

dis, set V

:

= U � D

k

, and de�ne an open polynomial polyhedron W

:

=

�

�1

(V ) � U . Then the algebra homomorphism

�

�

: O(V ) �! O(W ); f 7�! f Æ �j

W

is surjetive, ontinuous, and open, and its kernel is generated by the fun-

tions

(�

1

; : : : ; �

n+k

) 7�! �

n+j

� p

j

(�

1

; : : : ; �

n

) : V �! C (j 2 f1; : : : ; kg): �

Reall that the polynomially onvex hull of a ompat subset K � C

n

is

the ompat set

�

� 2 C

n

; 8 p 2 P(C

n

) : jp(�)j �





pj

K





1

	

;

whih ontains K. A subset of C

n

is alled polynomially onvex if it ontains

the polynomially onvex hull of eah of its ompat subsets. Oka's Extension

Theorem implies the following density theorem (see Gunning and Rossi [24,

I.F.9℄).

3.2 Corollary. For any polynomially onvex open subset U � C

n

, the

polynomials are dense in O(U). �
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3.3 Proposition (The funtional alulus for holomorphi funtions

on polynomially onvex neighbourhoods of the joint spetrum).

Let A be a Makey-omplete ommutative ontinuous inverse algebra over C ,

and let U � C

n

be a polynomially onvex open subset. Then there is a

unique map

�

A;U

: O(U)�A

U

�! A;

where A

U

= fa 2 A

n

; Sp(a) � Ug is an open subset of A

n

by Proposi-

tion 1.8, suh that for eah a 2 A

U

, the map

�

A;U

(�; a) : O(U) �! A; f 7�! �

A;U

(f; a)

is a ontinuous unital algebra homomorphism whih maps the j-th oordi-

nate funtion � 7! �

j

to a

j

. Moreover, the map �

A;U

is omplex analyti.

Proof. By Corollary 3.2, a ontinuous unital algebra homomorphism on

O(U) is uniquely determined by the images of the oordinate funtions.

Therefore, there is at most one map �

A;U

with the required properties.

Assume �rst that U is an open polydis with entre 0 and polyradius

r 2 (R

+

)

n

, i.e. assume that

U = f� 2 C

n

; j�

1

j < r

1

; : : : ; j�

n

j < r

n

g:

Fix " > 0 with " < minfr

1

; : : : ; r

n

g. Let V � C

n

be the open polydis

around 0 with polyradius (r

1

� "; : : : ; r

n

� "). For f 2 O(U) and a 2 A

V

�

A

n

, set

�

A;U

(f; a)

:

=

1

(2�i)

n

Z

j�

1

j=r

1

�

"

2

� � �

Z

j�

n

j=r

n

�

"

2

f(�

1

; : : : ; �

n

)

� (�

1

� a

1

)

�1

� � � (�

n

� a

n

)

�1

d�

n

� � � d�

1

:

Sine inversion in A is omplex analyti (Gl�okner [18, 3.2℄) and evaluation

O(U) � U ! C is ontinuous, the integrand is a omplex analyti funtion

of (�; f; a) 2 (U n V ) � O(U) � A

V

. By Corollary 2.7, the n-fold integral

exists and de�nes a omplex analyti map O(U)�A

V

! A. Moreover, this

map is linear in its �rst argument.

If f(�

1

; : : : ; �

n

) = �

1

k

1

� � � �

n

k

n

for ertain k

j

2 N

0

then

�

A;U

(f; a) =

1

(2�i)

n

Z

j�

1

j=r

1

�

"

2

�

1

k

1

(�

1

� a

1

)

�1

d�

1

� : : : �

Z

j�

n

j=r

n

�

"

2

�

n

k

n

(�

n

� a

n

)

�1

d�

n

= a

1

k

1

� : : : � a

n

k

n

:

10



This follows from the one-variable ase,

Z

j�

j

j=r

j

�

"

2

�

j

k

j

(�

j

� a

j

)

�1

d�

j

=

Z

j�

j

j=r

j

�

"

2

�

j

k

j

�1

(1�

1

�

j

a

j

)

�1

d�

j

=

Z

j�

j

j=r

j

�

"

2

1

X

m=0

�

j

k

j

�1�m

a

j

m

d�

j

=

1

X

m=0

a

j

m

Z

j�

j

j=r

j

�

"

2

�

j

k

j

�1�m

d�

j

= 2�i � a

j

k

j

(see [18, 4.9℄ for details). By linearity and ontinuity, the map �

A;U

(�; a) is a

ontinuous unital algebra homomorphism whih satis�es �

A;U

(p; a) = p(a)

for every polynomial p 2 P(C

n

).

We have de�ned the restrition of �

A;U

to O(U) � A

V

. By uniqueness

of �

A;U

(�; a), di�erent hoies of V lead to ompatible de�nitions. Sine the

open sets A

V

with V as above over A

U

, the proposition holds if U is an

open polydis.

Now let U � C

n

be a general polynomially onvex open subset. Choose

a 2 A

U

. Let U

0

� C

n

be a (bounded) open polydis with entre 0 suh that

Sp(a) � U

0

. The polynomially onvex hull of Sp(a) is ontained in U . Hene

for eah � in the ompat set L

:

= U

0

n U , there is a p

�

2 P(C

n

) suh that

jp

�

(�)j > 1 > kp

�

j

Sp(a)

k

1

. Choose a �nite subset fp

1

; : : : ; p

k

g � fp

�

; � 2 Lg

suh that the open sets f� 2 C

n

; jp

j

(�)j > 1g over L. De�ne

� : C

n

�! C

n+k

; � 7�! (�; p

1

(�); : : : ; p

k

(�)):

Let D � C be the open unit dis, set V

0

:

= U

0

� D

k

� C

n+k

, and de�ne

an open polynomial polyhedron V

:

= �

�1

(V

0

) � U

0

. By the hoie of the

polynomials p

j

, we have Sp(a) � V � U . By Oka's Theorem 3.1, the algebra

homomorphism

�

�

: O(V

0

) �! O(V ); f 7�! f Æ �j

V

is surjetive, ontinuous, and open, and its kernel is generated by the poly-

nomial funtions

q

j

: V

0

�! C ; (�

1

; : : : ; �

n+k

) 7�! �

n+j

� p

j

(�

1

; : : : ; �

n

) (j 2 f1; : : : ; kg):

By the spetral mapping theorem for polynomials, we have Sp(�(a)) =

�(Sp(a)) � V

0

whenever a 2 A

V

. The map �

A;V

0

whih we have onstruted

in the �rst part of the proof leads to a omplex analyti map

�: O(V

0

)�A

V

�! A; (f; a) 7�! �

A;V

0

(f; �(a)):

For eah a 2 A

V

, we have �(q

j

; a) = p

j

(a) � p

j

(a) = 0, so that the homo-

morphism �(�; a) : O(V

0

) ! A fators through �

�

. Hene there is a map

11



	: O(V )� A

V

! A suh that � = 	 Æ (�

�

� id

A

V

). For eah a 2 A

V

, the

map 	(�; a) is a unital algebra homomorphism, and sine the j-th oordi-

nate funtion on V is the �

�

-image of the j-th oordinate funtion on V

0

,

its image under 	(�; a) is a

j

. Aording to Gl�okner [19, 2.10℄, the map 	 is

omplex analyti beause �

�

� id

A

n

is a linear quotient map. The restrition

of �

A;U

to O(U) � A

V

an thus be de�ned by �

A;U

(f; a) := 	(f jV; a) for

f 2 O(U) and a 2 A

V

. As in the ase of polydiss, di�erent hoies of V

lead to ompatible de�nitions, and the open sets A

V

with V � U an open

polynomial polyhedron over A

U

. This ompletes the proof. �

The onstrution of V in the seond part of the proof will be used again,

so that we formulate it as a lemma.

3.4 Lemma. Let K � U � C

n

with K ompat and polynomially onvex

and U open. Then there is an open polynomial polyhedron V � U suh

that K � V . �

3.5 Lemma. Let A be a ommutative ontinuous inverse algebra over C

whih is topologially generated by �nitely many elements a

1

; : : : ; a

n

. Then

Sp(a

1

; : : : ; a

n

) is polynomially onvex.

Proof (f. Bonsall and Dunan [9, II.19.11℄). Write �

A

� A

0

for the

Gelfand spetrum of A and � : A ! R

+

0

for the spetral radius, whih is

a ontinuous algebra seminorm by Theorem 1.7. Set a

:

= (a

1

; : : : ; a

n

). If

p 2 P(C

n

) then





pj

Sp(a)





1

= sup

�

�

�

p

�

�(a

1

); : : : ; �(a

n

)

�

�

�

;� 2 �

A

	

= supfj�(p(a))j;� 2 �

A

g = �(p(a)):

Choose � 2 C

n

n Sp(a). Then there are elements b

1

; : : : ; b

n

2 A suh that

1 = (�

1

�a

1

)b

1

+� � �+(�

n

�a

n

)b

n

. Sine we an approximate the elements b

j

by polynomials in a, we �nd p

1

; : : : ; p

n

2 P(C

n

) suh that

�

0

�

1�

n

X

j=1

(�

j

� a

j

)p

j

(a)

1

A

< 1:

De�ne p 2 P(C

n

) by p(�) = 1 �

P

n

j=1

(�

j

� �

j

)p

j

(�). Then p(�) = 1 >

�(p(a)) = kpj

Sp(a)

k

1

, whih shows that � does not belong to the polynomi-

ally onvex hull of Sp(a). �

3.6 Lemma (f. Arens and Calder�on [3, 2.3℄). Let A be a ommutative

ontinuous inverse algebra over C , let a = (a

1

; : : : ; a

n

) 2 A

n

, and let U � C

n

be an open neighbourhood of Sp

A

(a). Then there exists a topologially

�nitely generated losed unital subalgebra B of A ontaining a

1

; : : : ; a

n

suh

that Sp

B

(a) � U .

12



Proof. The proof given by Bonsall and Dunan [9, II.20.3℄ for Banah

algebras applies to ontinuous inverse algebras if the norm is replaed by

the spetral radius. �

3.7 Corollary. Let A be a ommutative ontinuous inverse algebra over C ,

let U � C

n

be open, and hoose a 2 A

U

. Then there is a natural number

k 2 N, a k-tuple b 2 A

k

, and an open polynomial polyhedron V � C

n+k

suh that

Sp(a; b)

:

= Sp(a

1

; : : : ; a

n

; b

1

; : : : ; b

k

) � V � pr

�1

n;n+k

(U);

where pr

n;n+k

: C

n+k

! C

n

denotes the projetion onto the �rst n oordi-

nates.

Proof. The Arens{Calder�on trik (Lemma 3.6) yields a losed unital sub-

algebra B of A whih is topologially generated by a

1

; : : : ; a

n

and �nitely

many additional elements b

1

; : : : ; b

k

2 A and satis�es Sp

B

(a) � U . Sine

Sp

B

(a) = pr

n;n+k

(Sp

B

(a; b)), we have

Sp

A

(a; b) � Sp

B

(a; b) � pr

n;n+k

�1

(U):

Lemmas 3.4 and 3.5 yield an open polynomial polyhedron V � pr

n;n+k

�1

(U)

suh that Sp

A

(a; b) � Sp

B

(a; b) � V . �

3.8 Theorem (The n-variable holomorphi funtional alulus).

Let A be a Makey-omplete ommutative ontinuous inverse algebra over C .

Then there is a unique family of maps

�

A;U

: O(U)�A

U

�! A;

where U varies over the open subsets of all spaes C

n

(n 2 N) and A

U

=

fa 2 A

n

; Sp(a) � Ug, suh that the following two onditions hold.

(i) For eah a 2 A

U

� A

n

, the map

�

A;U

(�; a) : O(U) �! A; f 7�! �

A;U

(f; a)

is a ontinuous unital algebra homomorphism whih maps the j-th

oordinate funtion � 7! �

j

to a

j

.

(ii) Let m � n, let pr

m;n

: C

n

! C

m

be the projetion onto the �rst m o-

ordinates, and let V � C

n

and U � C

m

be open sets with pr

m;n

(V ) �

U . If f 2 O(U) and a 2 A

V

� A

n

then

�

A;V

�

f Æ pr

m;n

j

V

; (a

1

; : : : ; a

n

)

�

= �

A;U

�

f; (a

1

; : : : ; a

m

)

�

:

Moreover, the unique family (�

A;U

)

U

satisfying (i) and (ii) onsists of om-

plex analyti maps.
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Note that ondition (ii) is a speial ase of ompatibility of the holomorphi

funtional alulus with omposition of holomorphi maps (see Theorem 3.11

below). Also note that if V;U � C

n

are open subsets with V � U then

ondition (ii) says that �

A;V

(f j

V

; a) = �

A;U

(f; a) for all f 2 O(U) and all

a 2 A

V

� A

U

� A

n

. For �xed a 2 A

n

, we thus obtain a ontinuous algebra

homomorphism from the loally onvex diret limit O(Sp(a))

:

= lim

��!

O(U),

where U varies over the open neighbourhoods of Sp(a) in C

n

, into A.

When no ambiguities arise, one writes �

A;U

(f; a) =

:

f [a℄.

Proof. Let us �rst prove uniqueness of the family (�

A;U

)

U

. Choose n 2 N,

an open subset U 2 C

n

, and an n-tuple a 2 A

U

. Corollary 3.7 yields a

natural number k 2 N, a k-tuple b 2 A

k

, and an open polynomial polyhedron

V � C

n+k

suh that pr

n;n+k

(V ) � U and Sp(a; b) � V . Then �

A;V

must

be the map de�ned in Proposition 3.3, by the uniqueness assertion of that

proposition. Condition (ii) of the present theorem shows that

�

A;U

(f; a) = �

A;V

�

f Æ pr

n;n+k

j

V

; (a; b)

�

for all f 2 O(U), where we write (a; b) for (a

1

; : : : ; a

n

; b

1

; : : : ; b

k

) 2 A

n+k

.

We would like to use this equation in order to de�ne �

A;U

. Before

proving that this de�nition is independent of the hoies we made, note that

it will yield omplex analyti maps. Indeed, if we �x b and V then the same

de�nition an be used for all f 2 O(U) and all a 2 fx 2 A

n

; Sp

A

(x; b) � V g.

The latter is an open subset of A

U

, and the subsets of this form over A

U

if k, b, and V are allowed to vary.

Return to the situation of the �rst paragraph. Choose a number l 2 N,

an l-tuple b

0

2 A

l

, and an open polynomial polyhedron V

0

� C

n+l

suh that

pr

n;n+l

(V

0

) � U and Sp(a; b

0

) � V

0

. We have to show that

�

A;V

0

�

f Æ pr

n;n+l

j

V

0

; (a; b

0

)

�

= �

A;V

�

f Æ pr

n;n+k

j

V

; (a; b)

�

holds for all f 2 O(U). De�ne pr

:

= pr

n+k;n+k+l

: C

n+k+l

! C

n+k

and

pr

0

: C

n+k+l

�! C

n+l

; � 7�! (�

1

; �

2

; : : : ; �

n

; �

n+k+1

; �

n+k+2

; : : : ; �

n+k+l

):

Then Sp(a; b; b

0

) is ontained in W

:

= pr

�1

(V ) \ pr

0

�1

(V

0

), and this is an

open polynomial polyhedron in C

n+k+l

.

The map g 7! �

A;W

(gÆpr j

W

; (a; b; b

0

)) : O(V )! A is a ontinuous unital

algebra homomorphism whih maps the j-th oordinate funtion to a

j

if

j 2 f1; : : : ; ng, and to b

j�n

if j 2 fn+ 1; : : : ; n+ kg. Sine the polynomials

are dense in O(V ) by Corollary 3.2, we infer that

�

A;W

�

g Æ pr j

W

; (a; b; b

0

)

�

= �

A;V

�

g; (a; b)

�

(g 2 O(V )):

Similarly, we �nd that

�

A;W

�

h Æ pr

0

j

W

; (a; b; b

0

)

�

= �

A;V

0

�

h; (a; b

0

)

�

(h 2 O(V

0

)):
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Putting this together, we onlude that all f 2 O(U) satisfy

�

A;V

0

�

f Æ pr

n;n+l

j

V

0

; (a; b

0

)

�

= �

A;W

�

f Æ pr

n;n+l

Æpr

0

j

W

; (a; b; b

0

)

�

= �

A;W

�

f Æ pr

n;n+k+l

j

W

; (a; b; b

0

)

�

= �

A;W

�

f Æ pr

n;n+k

Æpr j

W

; (a; b; b

0

)

�

= �

A;V

�

f Æ pr

n;n+k

j

V

; (a; b)

�

as required. �

3.9 Theorem (Naturality of �

A;U

in A). Let ' : A! B be a unital ho-

momorphism of Makey-omplete ommutative ontinuous inverse algebras

over C , and let U � C

n

be open. If f 2 O(U) and a 2 A

U

� A

n

then

'

�

�

A;U

(f; a)

�

= �

B;U

�

f; ('(a

1

); : : : ; '(a

n

))

�

or, writing '

�n

(a)

:

= ('(a

1

); : : : ; '(a

n

)), just '(f [a℄) = f ['

�n

(a)℄.

Proof. Assume �rst that U is polynomially onvex. Choose a 2 A

U

, and

note that Sp

B

('

�n

(a)) � Sp

A

(a), so that '

�n

(a) 2 B

U

. We have two

ontinuous unital algebra homomorphisms from O(U) into B,

f 7�! '

�

�

A;U

(f; a)

�

and f 7�! �

B;U

�

f; '

�n

(a)

�

:

Sine both map the j-th oordinate funtion to '(a

j

), these homomorphisms

are equal by Corollary 3.2, whih proves the theorem for polynomially onvex

open sets U .

For a general open subset U � C

n

, let a 2 A

U

, and hoose k 2 N, b 2 A

k

and V � C

n+k

as in Corollary 3.7. Then

'

�

�

A;U

(f; a)

�

= '

�

�

A;V

�

f Æ pr

n;n+k

j

V

; (a; b)

�

�

= �

B;V

�

f Æ pr

n;n+k

j

V

; '

�(n+k)

(a; b)

�

= �

B;U

�

f; '

�n

(a)

�

:

This ompletes the proof. �

3.10 Corollary (Spetral Mapping Theorem). Let A be a Makey-

omplete ommutative ontinuous inverse algebra over C . Let U � C

n

be

open, and let f : U ! C

m

be omplex analyti. If a 2 A

U

� A

n

then

Sp

�

f

1

[a℄; : : : ; f

m

[a℄

�

= f

�

Sp(a)

�

:

15



Proof. If f 2 O(U) and � 2 U , note that �

C ;U

(f; �) = f(�). Let �

A

denote

the Gelfand spetrum of A. Eah a 2 A

U

satis�es

Sp

�

f

1

[a℄; : : : ; f

m

[a℄

�

=

n�

�

�

�

A;U

(f

1

; a)

�

; : : : ; �

�

�

A;U

(f

m

; a)

�

�

;� 2 �

A

o

=

n�

�

C ;U

�

f

1

; �

�n

(a)

�

; : : : ;�

C ;U

�

f

m

; �

�n

(a)

�

�

;� 2 �

A

o

=

n�

f

1

�

�

�n

(a)

�

; : : : ; f

m

�

�

�n

(a)

�

�

;� 2 �

A

o

= f

�

Sp(a)

�

as we laimed. �

3.11 Theorem (Compatibility of �

A;U

with omposition). Let A

be a Makey-omplete ommutative ontinuous inverse algebra over C . Let

V � C

n

and U � C

m

be open subsets, and let f : V ! U be omplex

analyti. If g 2 O(U) and a 2 A

V

� A

n

then

�

A;V

(g Æ f; a) = �

A;U

�

g;

�

�

A;V

(f

1

; a); : : : ;�

A;V

(f

m

; a)

�

�

or, in short, (g Æ f)[a℄ = g

�

f [a℄

�

.

Proof. Assume �rst that U is polynomially onvex. For eah a 2 A

V

, we

write

�

A;V

(f; a)

:

=

�

�

A;V

(f

1

; a); : : : ;�

A;V

(f

m

; a)

�

2 A

m

;

and we obtain two ontinuous unital algebra homomorphisms from O(U)

into A,

g 7�! �

A;V

(g Æ f; a) and g 7�! �

A;U

�

g;�

A;V

(f; a)

�

:

Sine both homomorphisms map the j-th oordinate funtion to �

A;V

(f

j

; a),

they are equal by Corollary 3.2, whih proves the theorem for the ase that U

is polynomially onvex.

In the general ase, let a 2 A

V

, and set b

:

= �

A;V

(f; a) 2 A

m

, so

that Sp(b) = f(Sp(a)) � U . Corollary 3.7 yields a number k 2 N, a k-

tuple  2 A

k

, and an open polynomial polyhedron W � C

m+k

suh that

Sp(b; ) �W � pr

m;m+k

�1

(U). Set h

:

= f � id

C

k

: V � C

k

! U � C

k

. Then

�

A;V�C

k

(h; (a; )) = (b; ) and

h

�

Sp(a; )

�

= Sp

�

�

A;V�C

k

�

h; (a; )

�

�

= Sp(b; ) �W;

whene Sp(a; ) � h

�1

(W ) =

:

V

0

� V � C

k

. The ase whih we already
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have proved yields

�

A;U

(g; b) = �

A;W

�

g Æ pr

m;m+k

j

W

; (b; )

�

= �

A;W

�

g Æ pr

m;m+k

j

W

;�

A;V�C

k

�

h; (a; )

�

�

= �

A;W

�

g Æ pr

m;m+k

j

W

;�

A;V

0

�

hj

V

0

; (a; )

�

�

= �

A;V

0

�

g Æ pr

m;m+k

Æhj

V

0

; (a; )

�

= �

A;V

0

�

g Æ f Æ pr

m;m+k

j

V

0

; (a; )

�

= �

A;V

(g Æ f; a);

whih was to be proved. �

3.12 Proposition (Compatibility of �

A;U

with di�erentiation). Let A

be a Makey-omplete ommutative ontinuous inverse algebra over C , and

let U � C

n

be open. Let j 2 f1; : : : ; ng and b 2 A. Then the (j+1)-th partial

derivative of the funtional alulus map �

A;U

at (f; a) 2 O(U) � A

U

�

O(U)�A

n

satis�es

�

j+1

�

A;U

(f; a

1

; : : : ; a

n

; b) = �

A;U

(�

j

f; a

1

; : : : ; a

n

) � b:

Proof. Let �(b) be the spetral radius of b. Choose " > 0 suh that

the eulidean (2 + �(b))"-neighbourhood of Sp(a) in C

n

is ontained in U .

Let V � C

n

be the open "-neighbourhood of Sp(a), and let W � C be the

open dis of radius 1 + �(b) around 0. For every � 2 C with 0 < j�j < ",

de�ne g

�

2 O(V �W ) by

g

�

(�; �) =

f(�

1

; : : : ; �

j

+ ��; : : : ; �

n

)� f(�

1

; : : : ; �

n

)

�

:

De�ne g

0

2 O(V �W ) by g

0

(�; �) = �

j

f(�) � �. In view of Theorem 3.11, we

have to prove that

lim

�!0;� 6=0

�

A;V�W

�

g

�

; (a; b)

�

= �

A;V�W

�

g

0

; (a; b)

�

:

Sine �

A;V�W

is ontinuous, it suÆes to prove that lim

�!0

g

�

= g

0

holds

in O(V � W ). This equation follows from uniform ontinuity of �

j

f on

ompat sets by means of the integral representation

g

�

(�; �) =

Z

1

0

�

j

f(�

1

; : : : ; �

j

+ t��; : : : ; �

n

) � � dt;

whih holds for all (�; �) 2 V �W and all � 2 C with j�j < ". �
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4 Holomorphi germs in weak

�

-duals

In Setion 6, we will develop the funtional alulus for holomorphi fun-

tions whih are de�ned on open neighbourhoods of the Gelfand spetrum of

a Makey-omplete ommutative ontinuous inverse algebra over C . In the

present setion and in Setion 5, we prepare this by studying the algebra of

germs of holomorphi funtions in a general ompat subset of a weak

�

-dual

vetor spae.

Let E be a loally onvex omplex vetor spae, and onsider the topolo-

gial dual E

0

with the weak

�

-topology. For x 2 E

n

, de�ne x̂ : E

0

! C

n

; ' 7!

('(x

1

); : : : ; '(x

n

)). Note that every ontinuous linear map from E

0

into C

n

has this form (see Rudin [40, 3.10℄). The Hahn{Banah Separation Theorem

entails that the map x̂ is surjetive if and only if the n-tuple x is linearly

independent. If this is the ase, we �x a linear setion s

x

: C

n

! E

0

for x̂.

For an open subset U � E

0

, let O(U) be the algebra of holomorphi (i.e.

analyti omplex-valued) funtions on U , and let O

1

(U) � O(U) be the

subalgebra of bounded holomorphi funtions on U .

Suppose that U = x̂

�1

(V ) for a linearly independent n-tuple x 2 E

n

and an open subset V � C

n

. (Note that the subsets U of this kind form

a basis of the weak

�

-topology on E

0

.) Then we have an injetive algebra

homomorphism f 7! f Æ x̂j

U

: O

1

(V )! O

1

(U). This homomorphism is in

fat bijetive, with inverse given by g 7! g Æ s

x

j

V

. To prove this, it suÆes

to show that every funtion g 2 O

1

(U) is onstant on the �bres of x̂j

U

.

Now if '; 2 U satisfy x̂(') = x̂( ) then � 7! g('+ �( � ')) : C ! C is a

bounded entire funtion, so that Liouville's Theorem yields g(') = g( ).

In partiular, this observation implies that eah uniform limit of bounded

holomorphi funtions on an arbitrary open subset U � E

0

is holomorphi.

In other words, the algebra O

1

(U) with the supremum norm is a Banah

algebra.

For a ompat subset K � E

0

, let O(K) be the algebra of germs at K

of holomorphi funtions de�ned in open neighbourhoods of K in E

0

. By

ompatness, every element of O(K) is the germ of a bounded holomor-

phi funtion on some open neighbourhood of K. We topologize O(K) as

the diret limit of the system of Banah algebras (O

1

(U))

U2U

Æ

(K)

in the

ategory of loally multipliatively onvex omplex algebras, where U

Æ

(K)

denotes the set of open neighbourhoods of K in E

0

. This topology was

introdued by Warner [51℄. It an be desribed in several ways.

(a) It is the �nest loally multipliatively onvex algebra topology suh

that the germ maps 

U

: O

1

(U) ! O(K) are ontinuous for all U 2

U

Æ

(K). Thus it has a basis onsisting of all �nite intersetions W

1

\

� � � \W

m

, where eah W

j

is open with respet to some loally mul-

tipliatively onvex algebra topology on O(K) whih makes all the

maps 

U

ontinuous.
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(b) The topology of O(K) is desribed by all sub-multipliative semi-

norms � on O(K) for whih the ompositions � Æ 

U

are ontinuous

for all U 2 U

Æ

(K). In other words, a basis of zero-neighbourhoods

in O(K) is given by the family of onvex balaned absorbing subsets

W � O(K) with W �W �W for whih 

�1

U

(W ) � O

1

(U) is a neigh-

bourhood of 0 for all U 2 U

Æ

(K).

() A basis of zero-neighbourhoods inO(K) is also given by allW � O(K)

of the following form. Choose a zero-neighbourhood W

U

� O

1

(U)

for eah U 2 U

Æ

(K). Set W

1

:

=

S



U

(W

U

) and W

2

:

=

S

1

n=1

W

n

1

,

where W

n

1

is indutively de�ned by W

n

1

= W

n�1

1

� W

1

. Thus W

2

�

W

2

� W

2

. Let W be the onvex balaned hull of W

2

. Then W is

a zero-neighbourhood by (b). Conversely, every zero-neighbourhood

W

0

2 O(K) ontains a zero-neighbourhood of the form desribed in

this paragraph.

(d) Finally, the topology is the unique loally multipliatively onvex al-

gebra topology whih satis�es the universal property that an algebra

homomorphism ' : O(K) ! A from O(K) into a loally multiplia-

tively onvex algebra A over C is ontinuous if and only if the ompo-

sitions ' Æ

U

are ontinuous for all U 2 U

Æ

(K). We will usually apply

this property to ommutative ontinuous inverse algebras A, whih are

loally multipliatively onvex by Turpin's result [44℄.

Note that if K � U � E

0

with K ompat and U open then there

exist n 2 N, an n-tuple x 2 E

n

, and an open subset V � C

n

suh that

K � x̂

�1

(V ) � U , and we may assume that x is linearly independent.

Therefore, the orresponding algebras O

1

(x̂

�1

(V ))

�

=

O

1

(V ) are o�nal in

the direted system whih de�nes O(K).

4.1 Proposition (O(K) is a ontinuous inverse algebra). Let E be

a loally onvex omplex vetor spae, let K � E

0

be a ompat subset of

the weak

�

-dual of E, and topologize the algebra O(K) of germs of holo-

morphi funtions in K as the loally multipliatively onvex diret limit of

the Banah algebras of bounded holomorphi funtions on open neighbour-

hoods of K in E

0

. Then O(K) is a Hausdor� spae and a ontinuous inverse

algebra.

Proof. In order to prove the Hausdor� property, hoose a linearly inde-

pendent n-tuple x 2 E

n

, an open neighbourhood V � C

n

of x̂(K), and a

funtion f 2 O

1

(x̂

�1

(V )) suh that the germ of f inK does not vanish. We

will separate f from 0 by an algebra homomorphism  from O(K) into the

algebra C [[z℄℄ of formal power series suh that  is ontinuous with respet

to the sequene of sub-multipliative semi-norms

1

X

j=0

a

j

z

j

7�!

m

X

j=0

ja

j

j : C [[z℄℄ �! R

+

0

(m 2 N

0

):

19



Note that these semi-norms desribe the produt topology on C

N

0

if we iden-

tify a formal power series with its sequene of oeÆients. Choose ' 2 K

suh that the germ of f in ' does not vanish. Considering the Taylor expan-

sion of fÆs

x

at x̂(') 2 C

n

, we �nd a vetor � 2 C

n

suh that the holomorphi

funtion � 7! f

�

s

x

(x̂(') + ��)

�

, whih is de�ned in a neighbourhood of 0

in C , has non-vanishing germ in 0 2 C . De�ne s : C ! E

0

; � 7! '+ �s

x

(�).

Note that all � 2 C satisfy x̂(s(�)) = x̂(') + ��, so that the equation

f(s(�)) = f

�

s

x

(x̂(') + ��)

�

holds for all � 2 C for whih f(s(�)) is de-

�ned. In partiular, the germ of f Æ s in 0 2 C does not vanish. For eah

U 2 U

Æ

(K), de�ne an algebra homomorphism  

U

: O

1

(U) ! C [[z℄℄ by as-

signing to g 2 O

1

(U) the Taylor expansion of g Æ s at 0 2 C . The Cauhy

integral formula implies that eah  

U

is ontinuous. As C [[z℄℄ is a loally

multipliatively onvex algebra, the family ( 

U

)

U2U

Æ

(K)

indues a unique

ontinuous algebra homomorphism  : O(K)! C [[z℄℄ suh that  Æ

U

=  

U

holds for eah U 2 U

Æ

(K). Sine C [[z℄℄ is a Hausdor� spae and  (f) 6= 0,

we onlude that 0 and f have disjoint neighbourhoods in O(K).

Let W � O(K) be the union of the images of the open unit balls

in O

1

(U) under the germ maps 

U

, where U ranges over U

Æ

(K). ThenW is

onvex, balaned, and absorbing, andW �W �W . HeneW is a neighbour-

hood of 0 in O(K). Sine 1 +W is ontained in the unit group O(K)

�

, we

onlude that O(K)

�

is a neighbourhood of 1 and hene open in O(K). As

inversion is ontinuous with respet to every sub-multipliative semi-norm

(Mihael [30, 2.8℄), this proves that O(K) is a ontinuous inverse algebra.

�

The question whether O(K) is omplete (or at least Makey omplete) is

left open exept in the ase that the dimension of E is ountable, in whih a

positive answer will be given in Remark 4.6. I do not know any positive result

about the ompleteness of the diret limit of an unountable direted system

of vetor spaes. Countable diret limits of Banah spaes are omplete if the

onneting maps are embeddings (Bourbaki [13, II, x 4, prop. 9℄) or ompat

(Floret [16, x 7.4℄). Bourbaki [11, III, x 1, exer. 2℄ gives an example of an

unountable diret limit whih is not omplete although the direted system

onsists of embeddings between Banah spaes. Ra��kov [38, x 6℄ observed

that every diret limit of Banah spaes an be written as the diret limit of

a system in whih the onneting maps are ompat (see Floret [16, x 6.7℄).

One ould try to irumvent this problem by onsidering the ompletion

of O(K). Unfortunately, it seems to be unknown whether the ompletion of

a ontinuous inverse algebra is always a ontinuous inverse algebra.

As a substitute for ompleteness, the holomorphi funtional alulus

works for the algebra O(K). Indeed, let f 2 O(K)

n

. Then f(K) �

Sp

O(K)

(f) beause the Gelfand spetrum �

O(K)

ontains the evaluations

in points of K. Hene for all g 2 O(Sp

O(K)

(f)), one an form g Æ f 2 O(K).

If f 2 O(K) is a single element then f 2 O(K)

�

if and only if 0 62 f(K),
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so that Sp

O(K)

(f) = f(K). The analogue of the last statement for the

joint spetrum of an n-tuple in O(K) already fails if E = C

2

and K is a

Hartogs �gure (see Range [37, II.2℄). However, this analogue is ontained

in Proposition 4.5 below under the hypothesis that K is equiontinuous and

rationally onvex. The latter ondition means that for every ' 2 E

0

n K,

there is a polynomial funtion p : E

0

! C suh that p(') 62 p(K).

4.2 Lemma (Approximation by rational polyhedra). Let E be a

loally onvex omplex vetor spae, let K � E

0

be an rationally onvex

equiontinuous losed subset, and let U � E

0

be an open neighbourhood

of K. Then there exist a �nite subset F � E and a �nite set P of omplex-

valued polynomial funtions on E

0

suh that

K �

�

' 2 E

0

; 8x 2 F : j'(x)j < 1 and 8 p 2 P : jp(')j > 1

	

and

�

' 2 E

0

; 8x 2 F : j'(x)j � 1 and 8 p 2 P : jp(')j � 1

	

� U:

In partiular, the �nite set P

0

:

= P [ fx̂; x 2 Fg of polynomial funtions

on E

0

satis�es

T

p2P

0

p

�1

�

p(K)

�

� U .

Note that an equiontinuous losed subset of E

0

is ompat by the Alaoglu{

Bourbaki Theorem (Shaefer [41, III.4.3℄). Conversely, ifE is a Fr�ehet spae

then every weak

�

-ompat subset of E

0

is equiontinuous by the Banah{

Steinhaus Theorem (Rudin [40, 2.6℄).

Proof. Sine K is equiontinuous, the polar

K

Æ

= fy 2 E; 8 2 K : j (y)j � 1g

of K is a neighbourhood of 0 in E. Hene the bipolar K

ÆÆ

is an equion-

tinuous losed subset of E

0

and therefore ompat. Note that K

ÆÆ

is the

losed onvex balaned hull of K by the Bipolar Theorem (see, for instane,

Jarhow [28, 8.2.2℄.)

Choose a number n 2 N, an n-tuple y 2 E

n

, and an open subset V �

C

n

suh that K � ŷ

�1

(V ) � U . Set K

1

:

= K

ÆÆ

n ŷ

�1

(V ). For eah

 2 K

1

, there is a polynomial funtion p

 

: E

0

! C suh that p

 

( ) 62

p

 

(K), and we may assume that p

 

( ) = 0 and p

 

(K) � f� 2 C ; j�j � 2g.

Thus f' 2 E

0

; jp

 

(')j < 1g is an open neighbourhood of  . By ompatness

of K

1

, there is a �nite subset F

1

2 K

1

suh that

K

1

�

[

 2F

1

�

' 2 E

0

; jp

 

(')j < 1

	

:

Set P

:

= fp

 

;  2 F

1

g. Then K � f' 2 E

0

; 8 p 2 P : jp(')j > 1g.

Enlarging n and extending y if neessary, we may assume that for every

 2 F

1

, there is a polynomial q

 

: C

n

! C suh that p

 

= q

 

Æ ŷ. Set

C

:

= f� 2 C

n

; 8 2 F

1

: jq

 

(�)j � 1g :
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If ' 2 K

ÆÆ

satis�es ŷ(') 2 C then ' 62 K

1

and hene ' 2 ŷ

�1

(V ). Thus

C \ ŷ(K

ÆÆ

) � V . Sine the ompat onvex balaned set ŷ(K

ÆÆ

) and the

losed set CnV are disjoint, we may hoose a ompat onvex neighbourhood

K

2

� C

n

of ŷ(K

ÆÆ

) whih does not meet C n V . For eah boundary point

� 2 �K

2

, there is a linear funtional  

�

2 (C

n

)

0

suh that j 

�

(�)j > 1 and

 

�

�

ŷ(K

ÆÆ

)

�

� f� 2 C ; j�j < 1g. By ompatness of �K

2

, there is a �nite

subset F

2

� �K

2

suh that

�K

2

�

[

�2F

2

f� 2 C

n

; j 

�

(�)j > 1g :

Thus the set f� 2 C

n

; 8 � 2 F

2

: j 

�

(�)j � 1g is a onvex neighbourhood

of ŷ(K

ÆÆ

) whih does not meet �K

2

and hene is ontained in the interior

of K

2

. For eah � 2 F

2

, there is a unique x

�

2 E suh that x̂

�

=  

�

Æ ŷ. Set

F

:

= fx

�

; � 2 F

2

g. Then K � f' 2 E

0

; 8x 2 F : j'(x)j < 1g.

It remains to prove that

�

' 2 E

0

; 8x 2 F : j'(x)j � 1 and 8 p 2 P : jp(')j � 1

	

� U:

Let ' be an element of the set on the left-hand side. All � 2 F

2

satisfy

1 � j'(x

�

)j = j 

�

(ŷ('))j, so that ŷ(') 2 K

2

. All  2 F

1

satisfy 1 �

jp

 

(')j = jq

 

(ŷ('))j, so that ŷ(') 2 C. Hene ŷ(') 2 C \K

2

� V , and we

onlude that ' 2 ŷ

�1

(V ) � U . �

4.3 Remark. Let E be a loally onvex omplex vetor spae, let K � E

0

be an polynomially onvex equiontinuous losed subset, and let U � E

0

be

an open neighbourhood of K. Then there is a �nite set F of omplex-valued

polynomial funtions on E

0

suh that

K �

�

' 2 E

0

; 8 p 2 P : jp(')j < 1

	

and

�

' 2 E

0

; 8 p 2 P : jp(')j � 1

	

� U:

The proof of this fat is a small modi�ation of the preeding proof of

Lemma 4.2. This result, applied to the Gelfand spetrum of a ontinuous

inverse algebra over C , entails Corollary 3.7. This illustrates the Arens{

Calder�on trik.

4.4 Lemma (Approximation by rational funtions). Let E be a lo-

ally onvex omplex vetor spae, and let K � E

0

be an rationally onvex

equiontinuous losed subset. Let f 2 O(K) and " > 0. Then there are poly-

nomial funtions s and t on E

0

with 0 62 t(K) suh that





�

f �

s

t

�

�

�

K





1

< ".

The proof of this lemma was inspired by Rossi's work [39℄ on meromorphi

onvexity.
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Proof. Choose a linearly independent n-tuple y 2 E

n

, an open neighbour-

hood V � C

n

of ŷ(K), and a holomorphi funtion g 2 O(V ) suh that f

is the germ of g Æ ŷ in K. Set U

:

= ŷ

�1

(V ), and hoose a �nite subset

F = fx

1

; : : : ; x

l

g � E and a �nite set P = fp

1

; : : : ; p

m

g of omplex-valued

polynomial funtions on E

0

as in Lemma 4.2. Enlarging n and extending y if

neessary, we may assume that every p 2 P has the form q

p

Æŷ for some poly-

nomial q

p

on C

n

and that F is ontained in the linear span of fy

1

; : : : ; y

n

g.

We may still assume that the n-tuple y is linearly independent, so that

ŷ : E ! C

n

is surjetive. Under these hypotheses, we have a well-de�ned

omplex analyti map

h : C

n

�! C

l+m+n

ŷ(') 7�!

�

x̂

1

('); : : : ; x̂

l

('); p

1

('); : : : ; p

m

('); ŷ

1

('); : : : ; ŷ

n

(')

�

;

where ' 2 E

0

. Note that h is a losed embedding. The omplex analyti

manifold

Y

:

=

n

� 2 C

l+m+n

; j�

1

j < 1; : : : ; j�

l

j < 1; j�

l+1

j > 1; : : : ; j�

l+m

j > 1

o

is a produt of open subsets of C and hene a Stein manifold (see, for

instane, Range [37, II.3.8℄). We laim that W

:

= h

�1

(Y ) � V . Indeed,

if � 2 W then � = ŷ(') for some ' 2 E

0

, and we have j'(x)j < 1 for all

x 2 F and jp(')j > 1 for all p 2 P . Hene ' 2 ŷ

�1

(V ) by the hoie of F

and P , and we onlude that � 2 V . Similarly, we �nd that ŷ(K) �W . The

image h(W ) = Y \ im(h) is a losed submanifold of Y . Sine Y is a Stein

manifold, every holomorphi funtion on h(W ) has a holomorphi extension

to Y (Gunning and Rossi [24, VIII.A.18℄). Hene there exists k 2 O(Y )

suh that k Æ hj

W

= gj

W

. By Laurent extension (see Range [37, II.1.4℄),

there is a Laurent polynomial

r 2 C

�

�

1

; : : : ; �

l

; �

l+1

; �

�1

l+1

; : : : ; �

l+m

; �

�1

l+m

; �

l+m+1

; : : : ; �

l+m+n

�

suh that jk(�) � r(�)j < " holds for every � 2 h(ŷ(K)). In other words,

every ' 2 K satis�es jf(')�(rÆhÆ ŷ)(')j < ". Sine none of the polynomial

funtions p 2 P has a zero in K, the rational funtion r Æ h Æ ŷ on E

0

an be

written as a quotient of two polynomials suh that the denominator has no

zero in K. �

4.5 Proposition (Gelfand spetrum of O(K)). Let E be a loally on-

vex omplex vetor spae, and let K � E

0

be an rationally onvex equion-

tinuous losed subset of the weak

�

-dual of E. Then the map

�: K �! �

O(K)

; ' 7�!

�

f 7! f(')

�

;

whih maps ' 2 K to the evaluation in ', is a homeomorphism. Its inverse

is given by �

�1

(�)(x) = �(x̂) for � 2 �

O(K)

and x 2 E. In partiular, every

n-tuple f 2 O(K)

n

satis�es Sp

O(K)

(f) = f(K).
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Note that the hypotheses of the proposition are satis�ed if E is a ontinuous

inverse algebra over C and K � E

0

is its Gelfand spetrum.

Proof. The map � is ontinuous beause ' 7! f(') : K ! C is ontinuous

for every f 2 O(K). It is injetive beause the elements of O(K), and

indeed those of the form x̂ for x 2 E, separate the points of K.

Choose � 2 �

O(K)

, and de�ne a linear funtional ' : E ! C ; x 7! �(x̂).

In order to see that ' is ontinuous, let U � C be a zero-neighbourhood.

By equiontinuity of K, there is a zero-neighbourhood V � E suh that

 (V ) � U holds for every  2 K. Hene every x 2 V satis�es

'(x) = �(x̂) 2 Sp

O(K)

(x̂) = x̂(K) � U:

Thus ' is ontinuous. Every polynomial funtion from E

0

into C has the

form pÆx̂ for some x 2 E

n

and some polynomial p : C

n

! C . The alulation

(p Æ x̂)(') = p

�

�(x̂

1

); : : : ; �(x̂

n

)

�

= �(p Æ x̂) 2 Sp

O(K)

(p Æ x̂) = (p Æ x̂)(K)

shows that ' 2 K. Therefore, we may de�ne a map

	: �

O(K)

�! K; � 7�!

�

x 7! �(x̂)

�

:

This map is ontinuous beause � 7! �(x̂) : �

O(K)

! C is ontinuous for

every x 2 E. If ' 2 K and x 2 E then

	

�

�(')

�

(x) = �(')(x̂) = x̂(') = '(x);

whene 	(�(')) = '.

It remains to prove that � Æ 	 is the identity map on �

O(K)

. Let � 2

�

O(K)

and f 2 O(K). We have to prove that �(	(�))(f) = �(f). Choose

" > 0. Lemma 4.4 yields polynomial funtions s and t on E

0

with 0 62 t(K)

suh that





�

f �

s

t

�

�

�

K





1

< ". The alulation

�(f)� �

�

s

t

�

= �

�

f �

s

t

�

2 Sp

O(K)

�

f �

s

t

�

=

�

f �

s

t

�

(K)

shows that

�

�

�(f)��

�

s

t

�

�

�

< ", and similarly

�

�

�(	(�))(f)��(	(�))

�

s

t

�

�

�

< ".

There exist an n-tuple x 2 E

n

and polynomials p and q on C

n

suh that

s = p Æ x̂ and t = q Æ x̂. We alulate

�

�

	(�)

�

�

s

t

�

=

s

t

�

	(�)

�

=

�

p

q

Æ x̂

�

�

	(�)

�

=

p

q

�

�(x̂

1

); : : : ; �(x̂

n

)

�

=

p

�

�(x̂

1

); : : : ; �(x̂

n

)

�

q

�

�(x̂

1

); : : : ; �(x̂

n

)

�

=

�(p Æ x̂)

�(q Æ x̂)

= �

�

p Æ x̂

q Æ x̂

�

= �

�

s

t

�

:

Thus j�(	(�))(f) � �(f)j < 2". Sine this holds for arbitrary " > 0, we

onlude that �(	(�))(f) = �(f). �
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4.6 Remark. One ould also topologize O(K) as the diret limit of the

algebras O

1

(U) in the ategory of loally onvex vetor spaes. This topo-

logy is �ner than the one onsidered before. The onstrution of a basis of

zero-neighbourhoods whih is analogous to () in the desription of the lo-

ally multipliatively onvex diret limit topology above (see Bourbaki [13,

II, x 4.4℄) is simpler, and the universal property applies to all linear maps

into loally onvex omplex vetor spaes rather than to algebra homomor-

phisms only. If E

0

is metrizable, whih holds if and only if the dimension

of E is at most ountable, then O(K) in its loally onvex diret limit

topology is a omplete ontinuous inverse algebra over C and hene loally

multipliatively onvex, see [5℄ or Gl�okner [21℄. Therefore, the two diret

limit topologies oinide for metrizable E

0

. This implies that O(K) is a Silva

spae and hene omplete (f. Floret [16, x 7.4℄). However, if E has unount-

able dimension, we will prove in Setion 5 that multipliation in O(K) is not

jointly ontinuous with respet to the loally onvex diret limit topology.

Aording to Turpin [44℄, this implies that inversion in O(K) is not on-

tinuous either. For this reason, we will always onsider O(K) in its loally

multipliatively onvex diret limit topology.

5 Disontinuity of multipliation in O(K)

When we introdued the algebra O(K) for a ompat subsetK of the weak

�

-

dual of a loally onvex vetor spae E in Setion 4, we announed that

its multipliation is no longer ontinuous if its topology is replaed by the

diret limit topology in the ategory of loally onvex omplex vetor spaes,

provided that the dimension of E is unountable. This setion is devoted to

the proof of this fat.

5.1 Theorem. Let E be a loally onvex omplex vetor spae of unount-

able dimension, let K � E

0

be a ompat subset of the weak

�

-dual of E, and

topologize the algebra O(K) of germs of holomorphi funtions in K as the

loally onvex diret limit of the Banah algebras of bounded holomorphi

funtions on open neighbourhoods of K in E

0

. Then multipliation in O(K)

is not jointly ontinuous.

This situation arises in many relevant examples. For instane, the Baire

Category Theorem implies that every in�nite-dimensional Fr�ehet spae has

unountable dimension. Note, however, that a real vetor spae of ountable

dimension is omplete with respet to its �nest loally onvex topology (f.

Bourbaki [13, II, x 4.6℄), i.e. if it is topologized as the loally onvex diret

limit of its �nite-dimensional subspaes.

Note that the weak

�

-topology is slightly more general than it might seem.

Indeed, let E � F ! C be a non-degenerate bilinear pairing of omplex
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vetor spaes. Then F , equipped with the E-topology, is the weak

�

-dual

of E, equipped with the F -topology (f. Rudin [40, 3.10℄).

Proof of Theorem 5.1. By translation invariane, we may assume that

0 2 K. Choose a basis B � E of the vetor spae E. This gives rise to a

linear topologial embedding E

0

,! C

B

; ' 7! (x 7! '(x)). Let F be the set

of �nite subsets of B. If F 2 F then the linear map

^

F : E

0

�! C

F

; ' 7�!

�

x 7! x̂(') = '(x)

�

;

whih is the omposition of the above embedding E

0

,! C

B

with the restri-

tion projetion C

B

! C

F

, is surjetive by the Hahn{Banah Separation

Theorem. Like in Setion 4, we �x a linear setion s

F

: C

F

! E

0

for

^

F .

Equip C

F

with the maximum metri. For eah F 2 F and eah n 2 N,

set

V

F;n

:

=

n

� 2 C

F

; d(�;

^

F (K)) <

1

n

o

and U

F;n

:

=

^

F

�1

(V

F;n

). Note that V

F;n

ontains the open polyylinder with

entre 0 and polyradius

�

1

n

; : : : ;

1

n

�

beause 0 2 K. All F; F

0

2 F and n 2 N

satisfy U

F[F

0

;n

� U

F;n

\ U

F

0

;n

. The sets U

F;n

form a neighbourhood basis

of K in E

0

. As we saw at the beginning of Setion 4, the map

f 7�! f Æ

^

F j

U

F;n

: O

1

(V

F;n

) �! O

1

(U

F;n

)

is an isomorphism with inverse g 7! g Æ s

F

j

V

F;n

. Let A

F;n

� A

:

= O(K) be

the subalgebra of germs of funtions in O

1

(U

F;n

), and let B

F;n

� A

F;n

be

the open unit ball with respet to the supremum norm on O

1

(U

F;n

).

The loally onvex diret limit topology on A an be desribed as follows

(see Bourbaki [13, II, x 4.4℄). Sine the U

F;n

form a neighbourhood basis ofK

in E

0

, the algebras A

F;n

are o�nal in the direted system whih de�nes A.

For every funtion h : F � N ! R

+

, set

W

h

:

= onv

[

fh(F; n) B

F;n

; F 2 F ; n 2 Ng :

The sets W

h

form a basis of zero-neighbourhoods in A.

Sine B is an unountable set, a lemma due to Bisgaard [6℄ yields a

funtion g : B �B ! R

+

with the property that for every funtion f : B !

R

+

, there is some (x; y) 2 B

2

suh that g(x; y) < f(x) � f(y). Bisgaard's

proof shows that one may assume x 6= y. (Instead of analysing the proof,

one ould apply Bisgaard's Lemma to the funtion x 7! minff(x);

p

g(x; x)g

in the plae of f .) De�ne

h : F � N �! R

+

; (F; n) 7�!

1

n

2

min

�

g(x; y); (x; y) 2 F

2

	

;
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and let W

h

be the zero-neighbourhood in A de�ned in terms of h as above.

Let k : F � N ! R

+

be arbitrary. We will show that W

k

�W

k

6� W

h

, whih

implies that multipliation in A is not ontinuous. De�ne

f : B �! R

+

; x 7�!

k(fxg; 1)

2 sup

�

j�j; � 2 V

fxg;1

	

;

so that every x 2 B satis�es

f(x) � x̂ 2 k(fxg; 1) B

fxg;1

�W

k

:

Bisgaard's Lemma yields x; y 2 B with x 6= y suh that g(x; y) < f(x) �f(y).

We laim that the germ

u

:

= f(x) � x̂ � f(y) � ŷ 2W

k

�W

k

does not belong to W

h

. Suppose, to the ontrary, that u an be written as

a onvex ombination u =

P

l

j=1

�

j

u

j

with �

j

� 0 and

P

l

j=1

�

j

= 1, where

u

j

2 h(F

j

; n

j

) B

F

j

;n

j

for some F

j

2 F and some n

j

2 N.

Set F

:

= fx; yg [

S

l

j=1

F

j

. Observe that

^

F (U

F

j

;n

j

) = s

�1

F

(U

F

j

;n

j

) =

�

� 2 C

F

; (�

z

)

z2F

j

2 V

F

j

;n

j

	

holds for all j 2 f1; : : : ; lg. Extending the germs u and u

j

to holomor-

phi funtions in a natural way, we may de�ne holomorphi funtions on

neighbourhoods of 0 in C

F

by

~u

:

=

1

g(x; y)

u Æ s

F

2 O

1

�

s

�1

F

(U

fx;yg;1

)

�

;

~u

j

:

=

1

g(x; y)

u

j

Æ s

F

2 O

1

�

s

�1

F

(U

F

j

;n

j

)

�

:

Note that ~u(�) =  �

x

�

y

with  :=

f(x)�f(y)

g(x;y)

> 1. Moreover, if fx; yg � F

j

then





~u

j





1

<

h(F

j

; n

j

)

g(x; y)

�

1

n

2

j

:

If x 62 F

j

then

�

�

x

; � 2 s

�1

F

(U

F

j

;n

j

)

	

= C , whene ~u

j

does not depend on �

x

by Liouville's Theorem. Similarly, if y 62 F

j

then ~u

j

does not depend on �

y

.

Hene all j 2 f1; : : : ; lg satisfy





~u

j





1

<

1

n

2

j

or

�

2

~u

j

��

x

��

y

(0) = 0:

As the germs of ~u and of

P

l

j=1

�

j

~u

j

at 0 2 C

F

oinide, we have reahed a

ontradition to the following lemma. �
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5.2 Lemma. Let l;m 2 N with m � 2, and let n

1

; : : : ; n

l

2 N. For eah

j 2 f1; : : : ; lg, let f

j

2 O

1

�

1

n

j

D

m

�

, where D

:

= f� 2 C ; j�j < 1g denotes

the open unit dis, and assume that

kf

j

k

1

<

1

n

2

j

or

�

2

f

j

��

1

��

2

(0) = 0:

Let �

1

; : : : ; �

l

� 0 with

P

l

j=1

�

j

= 1, let  2 C , and assume that

 �

1

�

2

=

l

X

j=1

�

j

f

j

(�)

holds for all suÆiently small � 2 C

m

. Then jj < 1.

Proof. The equation in the lemma holds, in partiular, for all suÆiently

small � 2 C

m

with �

3

= �

4

= � � � = �

m

= 0. Therefore, it suÆes to treat

the ase that m = 2, whih we will now assume.

Fix j 2 f1; : : : ; lg. The funtion f

j

has a Taylor series expansion

f

j

(�) =

X

k2N

0

2

a

k

�

k

1

1

�

k

2

2

�

� 2

1

n

j

D

2

�

;

and the oeÆients a

k

2 C satisfy the Cauhy estimates ja

k

j � kf

j

k

1

�n

k

1

+k

2

j

(see, for instane, Range [37, Chapter 1℄). In partiular, the hypotheses on f

j

imply that the oeÆient a

(1;1)

=

�

2

f

j

��

1

��

2

(0) satis�es ja

(1;1)

j < 1. De�ne

holomorphi funtions by

g

j

:

1

n

j

D �! C ; � 7�!

1

X

k=1

a

(k;0)

�

k�1

;

h

j

:

1

n

j

D �! C ; � 7�!

1

X

k=1

a

(0;k)

�

k�1

;

k

j

:

1

n

j

D

2

�! C ; � 7�!

X

k2N

2

a

k

�

k

1

�1

1

�

k

2

�1

2

;

so that

f

j

(�) = f

j

(0) + �

1

g

j

(�

1

) + �

2

h

j

(�

2

) + �

1

�

2

k

j

(�)

and jk

j

(0)j = ja

(1;1)

j < 1.

We obtain the equation

�

1

�

2

=

l

X

j=1

�

j

f

j

(0) + �

1

l

X

j=1

�

j

g

j

(�

1

) + �

2

l

X

j=1

�

j

h

j

(�

2

) + �

1

�

2

l

X

j=1

�

j

k

j

(�)
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for all suÆiently small � 2 C

2

. Setting the variables equal to 0 in turn,

we �nd that the �rst three sums on the right-hand side vanish. Thus  =

P

l

j=1

�

j

k

j

(�). For � = 0, we onlude that

jj =

�

�

�

�

�

�

l

X

j=1

�

j

k

j

(0)

�

�

�

�

�

�

�

l

X

j=1

�

j

jk

j

(0)j < 1;

whih was to be proved. �

6 Holomorphi funtions on neighbourhoods of

the Gelfand spetrum

6.1 Theorem (The funtional alulus for holomorphi funtions

on neighbourhoods of the Gelfand spetrum). Let A be a Makey-

omplete ommutative ontinuous inverse algebra over C . Then there is

a unique ontinuous unital algebra homomorphism �

A

: O(�

A

) ! A with

�

A

�

(â)e

�

= a for every a 2 A.

Here (â)e denotes the germ of â in �

A

.

Proof. Assume that �

A

: O(�

A

)! A is a homomorphism with the required

properties. For eah n 2 N and eah open subset U � C

n

, de�ne

�

U

: O(U)�A

U

�! A; (f; a) 7�! �

A

�

(f Æ â)e

�

:

Choose a 2 A

U

. Let V � C

n

be a relatively ompat open neigh-

bourhood of Sp(a) suh that V � U . If f 2 O(U) then f Æ âj

â

�1

(V )

2

O

1

(â

�1

(V )). This shows that f 7! (f Æ â)e : O(U)! O(�

A

) is ontinuous.

Hene �

U

(�; a) : O(U) ! A is a ontinuous unital algebra homomorphism,

and it maps the j-th oordinate funtion to a

j

.

Let m � n, and let V � C

n

and U � C

m

be open sets with pr

m;n

(V ) �

U . If f 2 O(U) and a 2 A

V

� A

n

then

�

V

�

f Æ pr

m;n

j

V

; (a

1

; : : : ; a

n

)

�

= �

A

�

�

f Æ pr

m;n

Æ(â

1

; : : : ; â

n

)

�

e

�

= �

A

�

�

f Æ (â

1

; : : : ; â

m

)

�

e

�

= �

U

�

f; (a

1

; : : : ; a

m

)

�

:

The uniqueness of the n-variable holomorphi funtional alulus (The-

orem 3.8) yields �

U

= �

A;U

for eah open subset U of some C

n

. Sine

every element of O(�

A

) is the germ of f Æ â for suitable U � C

n

and

(f; â) 2 O(U)�A

U

, the equation

�

A

�

(f Æ â)e

�

= �

A;U

(f; a) (1)

29



proves uniqueness of �

A

.

We will use this equation in order to de�ne �

A

. Let U � A

0

be an

open neighbourhood of �

A

. Choose m 2 N, a linearly independent m-tuple

a 2 A

m

, and a bounded open subset V � C

m

suh that �

A

� â

�1

(V ) � U .

Let s

a

: C

m

! A

0

be a linear setion for â. De�ne a ontinuous unital algebra

homomorphism

�

U

: O

1

(U) �! A; f 7�! �

A;V

(f Æ s

a

j

V

; a):

We laim that �

U

does not depend on the hoie ofm, a, V , and s

a

. Di�erent

hoies of s

a

lead to the same omposition f Æ s

a

j

V

beause every funtion

f 2 O

1

(U) is onstant on the �bres â

�1

(�) for � 2 V . The hoie of V does

not matter sine if V

0

� C

m

is a bounded open subset with �

A

� â

�1

(V

0

) �

U then f Æs

a

j

V

and f Æs

a

j

V

0

oinide on the neighbourhood V \V

0

of Sp(a).

Choose n 2 N, a linearly independent n-tuple b 2 A

n

, and a bounded open

subsetW � C

n

suh that �

A

�

^

b

�1

(W ) � U , and let s

b

: C

n

! A

0

be a linear

setion for

^

b. In order to prove that �

A;V

(f Æs

a

j

V

; a) = �

A;W

(f Æs

b

j

W

; b), we

may assume that

^

b

�1

(W ) � â

�1

(V ). The set

^

b

�1

(W ) ontains a translate of

ker(

^

b), and the image of this aÆne subspae under â is ontained in V and

hene bounded. This shows that ker(

^

b) � ker(â). Hene there is a linear map

� : C

n

! C

m

suh that â = �Æ

^

b. The Hahn{Banah Theorem shows that the

matrix (l

jk

)

jk

of � with respet to the standard bases satis�es a

j

=

P

k

l

jk

b

k

whenever 1 � j � m. This implies that �

A;C

n

(�

j

; b) = a

j

. Let ' 2

^

b

�1

(W ).

Then f(') = (f Æ s

b

Æ

^

b)(') and f(') = (f Æ s

a

Æ â)(') = (f Æ s

a

Æ � Æ

^

b)(').

Hene f Æ s

b

j

W

= f Æ s

a

Æ �j

W

. Compatibility of the n-variable holomorphi

funtional alulus with omposition of analyti maps (Theorem 3.11) allows

us to onlude that

�

A;W

(f Æ s

b

j

W

; b) = �

A;W

(f Æ s

a

Æ �j

W

; b)

= �

A;V

�

f Æ s

a

j

V

;

�

�

A;W

(�

j

j

W

; b)

�

j=1;:::;m

�

= �

A;V

(f Æ s

a

j

V

; a):

Hene the de�nition of �

U

is indeed independent of all our hoies. Moreover,

if U

0

� A

0

is an open neighbourhood of �

A

with U

0

� U then the same

argument shows that every f 2 O

1

(U) satis�es �

U

0

(f j

U

0

) = �

U

(f). Hene

the system (�

U

)

U

indues a ontinuous unital algebra homomorphism �

A

from the diret limitO(�

A

) intoA. Finally, let a 2 Anf0g, so that â : A

0

! C

is surjetive, and let V � C be a bounded neighbourhood of Sp(a). Then

�

A

�

(â)e

�

= �

A;V

(id

V

; a) = a. �

6.2 Theorem (Naturality of �

A

). Let ' : A! B be a unital homomor-

phism of Makey-omplete ommutative ontinuous inverse algebras over C ,

and let '

�

: B

0

! A

0

be the adjoint map. If f 2 O(�

A

) then

'

�

�

A

(f)

�

= �

B

(f Æ '

�

):
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Note that the germ f Æ '

�

is de�ned beause '

�

(�

B

) � �

A

.

Proof. Choose n 2 N, an n-tuple a 2 A

n

, an open neighbourhood U �

C

n

of Sp

A

(a), and a funtion g 2 O(U) suh that f = (g Æ â)e. Then

Equation (1) in the proof of Theorem 6.1 and naturality of the n-variable

holomorphi funtional alulus with respet to algebra homomorphisms

(Theorem 3.9) yield

�

B

(f Æ '

�

) = �

B

�

(g Æ â Æ '

�

)e

�

= �

B

�

�

g Æ '

�n

(a)b

�

e

�

= �

B;U

�

g; '

�n

(a)

�

= '

�

�

A;U

(g; a)

�

= '

�

�

A

�

(g Æ â)e

�

�

= '

�

�

A

(f)

�

as required. �

6.3 Corollary (Compatibility of �

A

with haraters). Let A be a

Makey-omplete ommutative ontinuous inverse algebra over C . If f 2

O(�

A

) and � 2 �

A

then �

�

�

A

(f)

�

= f(�). In partiular, Sp

�

�

A

(f)

�

=

f(�

A

).

Proof. In order to understand �

C

, we identify C with its own dual, using

multipliation as the pairing. Then �

C

= f1g and �

�

(�) = � � �. The germ

at 1 of a holomorphi funtion g de�ned on an open neighbourhood of 1

in C an be identi�ed with the power series expansion of g at 1. We have

�

C

(1) = 1 and �

C

�

e

id

C

�

= �

C

�

(

^

1)e

�

= 1. Continuity of �

C

implies that

�

C

0

�

 

� 7!

1

X

n=0

a

n

(� � 1)

n

!

e

1

A

= a

0

or, in other words, that �

C

(~g) = g(1). We onlude from Theorem 6.2 that

�

�

�

A

(f)

�

= �

C

�

(f Æ �

�

)e

�

= f(�

�

(1)) = f(�): �

6.4 Proposition (Compatibility of �

A

with omposition). Let A be

a Makey-omplete ommutative ontinuous inverse algebra over C . Let

f 2

�

O(�

A

)

�

n

, let U � C

n

be an open neighbourhood of f(�

A

), and let

g 2 O(U). Then

�

A

(g Æ f) = �

A;U

�

g;

�

�

A

(f

1

); : : : ;�

A

(f

n

)

�

�

:

Proof. Choose a number m 2 N, an m-tuple a 2 A

m

, an open neighbour-

hood V � C

m

of Sp(a), and a omplex analyti map h : V ! U suh that

f = (h Æ â)e. Then Equation (1) in the proof of Theorem 6.1 and ompati-

bility of the n-variable holomorphi funtional alulus with omposition of

analyti maps (Theorem 3.11) show that

�

A

(g Æ f) = �

A

�

(g Æ h Æ â)e

�

= �

A;V

(g Æ h; a)

= �

A;U

�

g;

�

�

A;V

(h

j

; a)

�

j=1;:::;n

�

= �

A;U

�

g;

�

�

A

(f

j

)

�

j=1;:::;n

�

;

whih is what we had to prove. �
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7 The Impliit Funtion Theorem

Let A be a Makey-omplete ontinuous inverse algebra over C . Let U �

C

m

� C

n

be open, let F : U ! C

n

be omplex analyti, and let a 2 A

m

. We

would like to �nd an n-tuple b 2 A

n

suh that Sp(a; b) � U and F [a; b℄ = 0.

A neessary ondition for the existene of a solution b 2 A

n

is the existene

of a ontinuous funtion g : �

A

! C

n

suh that F (â(�); g(�)) is de�ned and

vanishes for all � 2 �

A

. Indeed, the Gelfand transform of a solution is suh a

funtion. We prove that this ondition is also suÆient if �

2

F (â(�); g(�); �) 2

End(C

n

) is invertible for all � 2 �

A

. Under this hypothesis, there is exatly

one solution b 2 A

n

whih satis�es

^

bj

�

A

= g.

When n = 1 and A is a Banah algebra, this is due to Arens and

Calder�on [3℄ (for polynomial equations) and to Gamelin [17℄. We ombine

the in�nite-dimensional holomorphi funtional alulus with reent results

on impliitly de�ned funtions from loally onvex vetor spaes into Ba-

nah spaes due to Hiltunen [26, 27℄ and Gl�okner [22℄ in order to obtain a

proof of the n-variable result. Even in the one-variable situation, this proof

seems partiularly short and transparent.

7.1 Proposition (Analyti extension of impliit funtions). Let X

be a loally onvex vetor spae over C , and let Y be a omplex Banah

spae. Let U � X � Y be open, and let F : U ! Y be omplex analyti.

Let K � X be ompat. Let g : K ! Y be a ontinuous map suh that

for all x 2 K, the relations (x; g(x)) 2 U and F (x; g(x)) = 0 hold, and

the ontinuous linear endomorphism �

2

F (x; g(x); �) of Y is invertible. Then

there is an open neighbourhood U

0

� U of the graph of g and a omplex

analyti funtion h : pr

1

(U

0

)! Y suh that the graph of h is U

0

\F

�1

(0).

In other words, for every x 2 pr

1

(U

0

), the equation F (x; y) = 0 has a unique

solution (x; y) 2 U

0

, and this solution depends omplex analytially on x.

(Here pr

1

: X � Y ! X is the anonial projetion.)

Proof. For eah x 2 K, the Impliit Funtion Theorem as given by Gl�ok-

ner [22, 2.3℄ yields open neighbourhoods V

x

� X of x and W

x

� Y of g(x)

and a omplex analyti funtion h

x

: V

x

!W

x

suh that V

x

�W

x

� U , and

the graph of h

x

is (V

x

�W

x

)\F

�1

(0). We may assume that g(V

x

\K) �W

x

,

so that the funtions g and h

x

agree on V

x

\K, and that V

x

is onvex.

By Lebesgue's Lemma, we may hoose an open onvex balaned neigh-

bourhood V of 0 in X suh that for every x 2 K, there is a y 2 K suh

that x+ 3V � V

y

. For eah x 2 K, the set V

0

x

:

= V

x

\ (x + V ) is an open

onvex neighbourhood of x. Choose x; y 2 K, and assume that V

0

x

\V

0

y

6= ;.

Then y + V � x + 3V , and we �nd z 2 K suh that V

0

x

[ V

0

y

� V

z

. The

set fx

0

2 V

0

x

; h

x

(x

0

) = h

z

(x

0

)g is both open and losed in V

0

x

, and it is not

empty beause it ontains x. Hene the funtions h

x

and h

z

agree on V

0

x

.

32



Similarly, the funtions h

y

and h

z

agree on V

0

y

. Therefore, the funtions h

x

and h

y

agree on the intersetion V

0

x

\ V

0

y

.

Set V

0

:

=

S

x2K

V

0

x

. The preeding paragraph shows that we may de�ne

an analyti funtion h : V

0

! Y by h(x

0

) = h

x

(x

0

) if x

0

2 V

0

x

. This funtion

and the open neighbourhood U

0

:

=

S

x2K

V

0

x

�W

x

of the graph of g have

the required properties. �

7.2 Theorem (Analyti equations in ontinuous inverse algebras).

Let A be a Makey-omplete ommutative ontinuous inverse algebra over C .

Let U � C

m

� C

n

be open, and let F : U ! C

n

be omplex analyti. Let

a 2 A

m

, and let g : �

A

! C

n

be ontinuous. For all � 2 �

A

, suppose

that (â(�); g(�)) 2 U and F (â(�); g(�)) = 0 and that �

2

F (â(�); g(�); �) 2

End(C

n

) is invertible. Then there is a unique n-tuple b 2 A

n

suh that

^

bj

�

A

= g and �

A;U

(F; (a; b)) = 0.

Proof. Set U

0

:

= (â� id

C

n

)

�1

(U) � A

0

� C

n

, and de�ne

F

0

: U

0

�! C

n

; ('; �) 7�! F

�

â('); �

�

:

Proposition 7.1 yields an open neighbourhood V � A

0

of �

A

and a omplex

analyti funtion h : V ! C

n

suh that hj

�

A

= g, and every ' 2 V satis�es

('; h(')) 2 U

0

and 0 = F

0

('; h(')) = F (â('); h(')). Set

b

:

= �

A

(

~

h) =

�

�

A

(

~

h

1

); : : : ;�

A

(

~

h

n

)

�

2 A

n

:

If � 2 �

A

then

^

b(�) = �

�n

(b) = h(�) = g(�) by Corollary 6.3. Moreover,

Proposition 6.4 shows that

�

A;U

�

F; (a; b)

�

= �

A;U

�

F;

�

�

A

�

(â

1

)e

�

; : : : ;�

A

�

(â

m

)e

�

;�

A

�

~

h

1

�

; : : : ;�

A

�

~

h

n

�

�

�

= �

A

�

�

F Æ (â; h)

�

e

�

= �

A

(0) = 0:

This proves the existene of a solution b 2 A

n

.

Let  2 A

n

be an n-tuple with ̂j

�

A

= g and �

A;U

(F; (a; )) = 0. Set

r

:

=  � b, and let W � C

m

� C

n

� C

n

be the set of all (�; �; �) suh

that U ontains the line segment [(�; �); (�; � + �)℄. Then W is an open

neighbourhood of Sp(a; b; r) = Sp(a; b) � f0g. For j; k; l 2 f1; : : : ; ng, let

e

k

; e

l

2 C

n

be the standard basis vetors, and de�ne omplex analyti maps

G

jk

: U �! C ; (�; �) 7�! �

2

F

j

(�; �; e

k

) and

H

jkl

: W �! C ; (�; �; �) 7�!

Z

1

0

(1� t) �

2

2

F

j

(�; � + t�; e

k

; e

l

) dt:
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Here �

2

2

F

j

is the derivative of the map � 7! �

2

F

j

(�; �; �). By the Taylor

Formula, all (�; �; �) 2W satisfy

F

j

(�; � + �)� F

j

(�; �) =

n

X

k=1

G

jk

(�; �)�

k

+

n

X

k;l=1

H

jkl

(�; �; �)�

k

�

l

:

Applying �

A;W

to both sides of this equation at (a; b; r), we �nd that 0 =

P

n

k=1

m

jk

r

k

, where

m

jk

= G

jk

[a; b℄ +

n

X

l=1

r

l

H

jkl

[a; b; r℄:

Let M 2 M

n

(A) be the n� n matrix with entries m

jk

. For all � 2 �

A

,

�(detM) = det

�

�(m

jk

)

�

j;k2f1;:::;ng

= det

�

�(G

jk

[a; b℄)

�

j;k2f1;:::;ng

= det

�

G

jk

(â(�);

^

b(�))

�

j;k2f1;:::;ng

= det �

2

F (â(�); g(�); �) 6= 0:

Hene detM 2 A

�

, whih implies thatM is an invertible element of M

n

(A).

We onlude that r = 0. �

7.3 Corollary (The

�

Silov Idempotent Theorem [42℄). Let A be a

Makey-omplete ommutative ontinuous inverse algebra over C . Let K �

�

A

be ompat and open. Then there is a unique idempotent e 2 A suh

that êj

�

A

is the harateristi funtion of K.

Proof. Apply Theorem 7.2 with m = 0, n = 1, U = C , and F (�) = �

2

� �.

�

One an easily prove

�

Silov's Theorem diretly from Theorem 6.1. Indeed,

hoose disjoint open neighbourhoods U; V � A

0

of K and of �

A

nK. De�ne

f 2 O(U [ V ) by f j

U

� 1 and f j

V

� 0. Then e = �

A

(

~

f) is an idempotent,

and Corollary 6.3 shows that �(e) = f(�) holds for every � 2 �

A

.

If e

0

2 A is another idempotent with the required property then e

0

� e =

(e

0

)

2

� e

2

= (e

0

� e)(e

0

+ e), whene (e

0

� e)(e

0

+ e � 1) = 0. Sine the

element e

0

+ e� 1 has non-vanishing Gelfand transform, it is invertible, and

we onlude that e

0

= e.

This is the result for whih

�

Silov originally developed his early version of

the n-variable funtional alulus. Like

�

Silov's Theorem, many of the numer-

ous and important onsequenes of the holomorphi funtional alulus for

ommutative Banah algebras arry over to Makey-omplete ommutative

ontinuous inverse algebras with only minor hanges in the proofs.
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