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Abstrat

In this artile an initial-boundary value problem modeling the evolution

of a surfae of strain disontinuity driven by on�gurational fores is stud-

ied. Starting from a sharp interfae model the problem is transformed into

a problem with an evolution equation for the order parameter, whih has

similarities with a hyperboli balane law. It is proved that in one spae

dimension global solutions exist. The method of transformation suggests

that solutions of this evolution equation are approximated by solutions of

a visous Hamilton-Jaobi equation. If the approximation is valid then the

initial-boundary value problem to this Hamilton-Jaobi eqution is a phase

�eld model regularizing the sharp interfae model.

1 Introdution and statement of main results

Changes of the morphology of material struture are often aused by on�gura-

tional fores. In rystalline materials for example, disontinuous hanges of the

rystal struture generate on�gurational fores, whih an move the disontinuity

surfae. This is observed in superalloys, whih may exist in two di�erent phases.

In the two phases the lattie onstants of the rystal latties di�er slightly, re-

sulting in a strain disontinuity at the phase interfae. The on�gurational fores

generated by this disontinuity together with di�usion lead to the evolution of the

mirostruture generated by phase hanges, f. [14, 22, 27, 28, 19℄. Another exam-

ple for a on�gurational fore moving disontinuities of the material struture is

the Peah-K�ohler fore f. [18, 24℄, whih drives the glide of disloations and leads

to plasti deformation.

In this artile we study an initial-boundary value problem whih models the

evolution of a surfae of strain disontinuity driven by on�gurational fores. This

problem has been thoroughly formulated in [1℄; other disussions of this problem

and appliations in mehanis and material sienes an be found in [14, 23, 25,
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26, 27℄, for example. The theory of on�gurational fores and, more generally,

on�gurational mehanis is an intensively studied �eld with a large number of

publiations; we only mention here [4, 5, 12, 16, 20, 21℄.

The goal of our investigations is twofold. In the introdution we set the initial-

boundary value problem into the general ontext of phase transformation models

and ompare it to other suh models. In the main part of our investigations we

study the mathematial struture and show that in one spae dimension the prob-

lem is well posed and has solutions. We explain this more preisely:

The model formulated in [1℄ is of sharp interfae type. In an attempt to avoid

the diÆulties onneted with sharp interfae models it has been disovered in

[2℄ that this model an be transformed rigorously into an initial-boundary value

problem with a partial di�erential equation governing the evolution of an order

parameter haraterising the di�erent phases. In the following we all this partial

di�erential equation the evolution equation for the order parameter. This is an

unusual equation, whih has similarities with a salar hyperboli balane law. In

fat, in [1℄ the surfaes of strain disontinuity are alled material shoks. Solutions

of the sharp interfae model are also solutions of the new initial-boundary value

problem, but the new problem allows for more general solutions with the order

parameter belonging to the spae BV of funtions with bounded variation.

The numerial solution of initial-boundary value problems, whih an have suh

general disontinuous solutions, presents diÆulties. Beause of this one often

prefers phase �eld models with smooth solutions. The results in [2℄ suggest that

the initial-boundary value problem an be approximated by a problem with the

evolution equation replaed by a well known Hamilton-Jaobi transport equation,

whih has smooth solutions. If this approximation is valid then the initial-boundary

value problem with the Hamilton-Jaobi equation is a phase �eld model regularising

the sharp interfae model.

In this artile we study the initial-boundary value problem with the evolution

equation for the order parameter and show that solutions exist to several lasses of

initial data, however only in one spae dimension. Some of our methods used in the

proof are similar to methods used in the theory of hyperboli onservation laws,

but in the �nal steps, where we use weak onvergene of measures to onstrut

solutions, ompletely new ideas are needed.

We next state the initial-boundary value problem with the evolution equation

for the order parameter and disuss the onnetion to the original sharp interfae

model. This motivates the form of the evolution equation and shows how the

Hamilton-Jaobi equation arises. We also relate our model to the well known

models of Allen-Cahn and Cahn-Hilliard. Finally, our main mathematial existene

results proved in Setions 2 { 5 are stated at the end of the introdution.

Let 
 be an open bounded set in IR

3

. It represents the material points of a

solid body. The material of this body an exist in two di�erent phases. We denote

by (t) the subset of 
, whih onsists of all points, at whih at time t the material

is in the matrix phase. 

0

(t) denotes the subset of all points, at whih at time t the

material is in the seond phase. For  =

S

t�0

((t)�ftg) and 

0

=

S

t�0

(

0

(t)�ftg)
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we thus have

 [ 

0

= 
� [0;1);  \ 

0

= ;:

We set

~ = 
 \  \ 

0

; ~(t) = fx 2 
 j (x; t) 2 ~g:

~ is the interfae between the  and 

0

phases. Let S : 
� [0;1)! R denote the

harateristi funtion of the set 

0

, hene

S(x; t) =

�

0; (x; t) 2 

1; (x; t) 2 

0

:

S is the order parameter, whih haraterizes the 

0

-phase.

We assume that the values whih the linear strain tensor would have if the

material would be unstressed di�er between the two phases. The di�erene is the

mis�t or transformation strain. ~(t) is thus a surfae of strain disontinuity. It is

assumed that the on�gurational fore generated by the mis�t strain transforms by

some proess the material along ~(t) from one phase to the other. This leads to an

evolution of the phase interfae. The goal is to ompute this interfae evolution.

The initial-boundary value problem whih we use to model this material be-

havior is based on the assumption that only small strains our. The unknowns

are the order parameter S(x; t) 2 R, the displaement u(x; t) 2 IR

3

of the material

point x 2 
 at time t, and the Cauhy stress tensor T (x; t) 2 S

3

. Here S

3

denotes

the set of symmetri 3� 3{matries. These unknowns must satisfy the quasi-stati

equations

�div

x

T (x; t) = b(x; t); (1.1)

T (x; t) = D ("(r

x

u(x; t))� �"S(x; t)) ; (1.2)

jS

t

(x; t)j = jdiv

x

C(r

x

u(x; t); S(x; t))� (r

x

u(x; t))

T

b(x; t)j (1.3)

in 
� (0;1) and the boundary and initial onditions

u(x; t) = f(x; t); (x; t) 2 �
 � [0;1); (1.4)

S(x; 0) = S

(0)

(x); x 2 
: (1.5)

Moreover, the Clausius-Duhem inequality

�

�t

 ("(r

x

u); S)� div

x

(Tu

t

)� b � u

t

� 0 (1.6)

must hold in 
 � (0;1). Here r

x

u(x; t) denotes the 3 � 3{matrix of �rst order

derivatives of u, the deformation gradient, (r

x

u(x; t))

T

denotes the transposed

matrix and

"(r

x

u(x; t)) =

1

2

�

r

x

u(x; t) + (r

x

u(x; t))

T

�

2 S

3

is the strain tensor. �" 2 S

3

is a given matrix, the mis�t strain, and D : S

3

! S

3

is a linear, symmetri, positive de�nite matrix, the elastiity tensor. Given are the
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volume fore b : 
� [0;1)! R

3

, the boundary displaement f : �
� [0;1)! R

3

and the initial data S

(0)

: 
! IR.

(1.3) is the evolution equation for the order parameter S. In this equation 

is a positive onstant and C = C(r

x

u(x; t); S(x; t)) denotes the Eshelby tensor

de�ned by

C(r

x

u(x; t); S(x; t)) =  

�

"(r

x

u(x; t)); S(x; t)

�

I �

�

r

x

u(x; t)

�

T

T (x; t): (1.7)

Here (r

x

u)

T

T denotes the matrix produt, I is the unit matrix in S

3

and

 ("; S) =

1

2

�

D("� �"S)

�

� ("� �"S) +  

1

(S) (1.8)

is the free energy. For the funtion S de�ned above only the values of  

1

at S = 0

and S = 1 matter. However, as explained next, we also onsider order parameters

whih vary smoothly between 0 and 1. For  

1

2 C

1

(R; [0;1)) we therefore hoose

a double well potential with minima at 0 and 1.

The evolution equation (1.3) must allow for solutions (u; T; S) with S being

the harateristi funtion of the set 

0

. For suh S the derivatives S

t

and S

x

i

are measures. Therefore (1.3) is understood in the sense of measures: We seek

a solution (u; T; S) suh that S 2 BV

lo

(
 � (0;1);R) and suh that to the

distributional derivative div

x

C(r

x

u; S) there is a Radon measure � and a �{

measureable funtion � : 
� (0;1)! R

3

with j�(x; t)j = 1, � almost everywhere,

satisfying

�� = div

x

C(r

x

u; S)� (r

x

u(x; t))

T

b(x; t):

The measure � is denoted by jdiv

x

C � (r

x

u)

T

bj, and jS

t

j denotes the variation

measure of the measure S

t

. Of ourse, this de�nition allows for solutions with

S di�ering from a harateristi funtion. Pieewise smooth S are allowed, for

example. This ompletes the formulation of the initial-boundary value problem.

The sharp interfae model. Next we introdue the sharp interfae model and

explain how the initial-boundary value problem (1.1) { (1.6) is derived from it.

In the sharp interfae model the unknowns u; T; S satisfy the equation (1.1)

expressing onservation of momentum, the equation (1.2) stating the linear stress-

strain relation, and the boundary and initial onditions (1.4), (1.5). Equation

(1.3) is replaed by an equation for the normal speed of the phase interfae. To

formulate suh an equation we �rst study the restritions imposed by the seond

law of thermodynamis, i.e. by the Clausius-Duhem inequality (1.6).

It is shown in [1, 2℄ that (1.6) holds if and only if at every point x 2 ~(t) the

dissipation inequality

s(x; t)

�

n(x; t) �

�

C

�

r

x

u(x; t); S(x; t)

��

n(x; t)

�

� 0 (1.9)

is satis�ed, where n(x; t) 2 R

3

denotes a unit normal vetor to the interfae ~(t)

oriented suh that the jump of S at ~(t) in the diretion of n is positive, s(x; t)

is the normal speed of the interfae measured positive in the diretion of n, and
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[C(r

x

u; S)℄ denotes the jump of the Eshelby tensor aross ~(t) in the diretion

of n. This inequality implies that s and n � [C℄n must have the same sign. This

suggests to onsider n � [C℄n as driving fore for the interfae and to require s to

be a funtion of this on�gurational fore suh that (1.9) is satis�ed. The simplest

equation guaranteeing this is

s(x; t) [S(x; t)℄ =  n(x; t) �

�

C(r

x

u(x; t); S(x; t))

�

n(x; t); (1.10)

with a positive onstant . By the above de�nitions the jump of S satis�es [S℄ = 1;

this term ould thus be dropped. We inluded it sine later we allow for jumps

smaller than one, in whih ase we need the term.

(1.10) is a onstitutive equation for the normal speed of the phase interfae.

It has been suggested in [1℄ that (1.1), (1.2), (1.10) and the boundary and initial

onditions (1.4), (1.5) form a losed system of equations, whih allows to ompute

the movement of this interfae. This is the sharp interfae model.

The derivation of the evolution equation (1.3) from the equation (1.10) for the

normal speed is based on a result proved in [2℄: Assume that (u; T; S) : 
�(0;1)!

R

3

� S

3

� R is a pieewise smooth solution of (1.1) and (1.2) with a jump along a

pieewise smooth manifold ~. The funtion S an vary smoothly away from ~ and

needs not to be pieewise onstant. Then if (1.3), (1.6) hold it follows that along

~ the jump ondition (1.10) must be satis�ed, whereas in regions where (u; T; S)

is smooth (1.3), (1.6) redue to the Hamilton-Jaobi transport equation

S

t

(x; t) = �  

S

("(r

x

u(x; t)); S(x; t))jr

x

S(x; t)j: (1.11)

The neessity to ombine (1.3) with the Clausius-Duhem inequality (1.6) is seen

here, sine from (1.3) alone we an only dedue that the absolute values of both

sides of the equations (1.10) and (1.11) are equal. (1.6) is thus needed to �x the

signs.

In fat, if S is pieewise smooth and (u; T; S) solves (1.1) and (1.2), then (1.10)

and (1.11) hold if and only if (1.3) and (1.6) are satis�ed. This an be shown by a

slight extension of the investigations in [2℄; for one spae dimension it is proved in

Corollary 2.3 in the next setion.

It is lear that a pieewise onstant funtion S satis�es the transport equation

(1.11) away from the jumps. Consequently, a pieewise smooth funtion (u; T; S)

with pieewise onstant S is a solution of the sharp interfae model (1.1), (1.2),

(1.10), (1.4), (1.5) if and only if it satis�es the relations (1.1) { (1.6). Therefore,

sine (1.3) is well de�ned even if the order parameter S is not pieewise onstant,

the initial-boundary value problem (1.1) { (1.6) generalizes the sharp interfae

model. Moreover, if the order parameter S in the solution is smooth then the

evolution equation (1.3) redues to the simpler and well known Hamilton-Jaobi

equation (1.11). The idea suggests itself to fore the solution to stay smooth by

replaing (1.11) with the equation (1.13) derived below, whih is obtained from

the Hamilton-Jaobi equation by adding a small visosity term. The hope is that

when the visosity term tends to zero, the order parameter onverges to a solution
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of the initial-boundary value problem (1.1) { (1.6). In this ase the Hamilton-

Jaobi equation with the small visosity term an be used as a phase �eld model

regularizing the sharp interfae model.

Our results on existene of solutions of the initial-boundary value problem (1.1)

{ (1.6) in one spae dimension ontribute to the problem of onvergene, sine one

expets of ourse that this onvergene takes plae only when the limit problem

(1.1) { (1.6) has solutions. Still, the problem of onvergene of solutions of the

model with the Hamilton-Jaobi equation when the visosity tends to zero remains

open.

Comparison to other phase �eld models and properties of the evolution

equation for the order parameter. To ompare the model disussed in this

artile to other models for phase transformation problems we sketh the usual

derivation of these phase �eld models, f. [8, 14, 10, 3℄: For � � 0 onsider the

modi�ed free energy

^

 ("(r

x

u); S;r

x

S) =  ("(x; t); S(x; t)) + �

1

2

jr

x

S(x; t)j;

with  de�ned in (1.8). We assume that (u; T; S) is a smooth solution of the

equations (1.1), (1.2). The seond law of thermodynamis requires that (1.6) is

satis�ed with  replaed by

^

 . We integrate (1.6) over 
 and employ the Divergene

Theorem to obtain

d

dt

Z




^

 ("; S;r

x

S) dx�

Z

�


(Tn) � u

t

d�

x

�

Z




b � u

t

dx � 0: (1.12)

(1.2) yields  

"

= T . From the symmetry of T we thus obtain

^

 

t

=  

"

� "

t

+  

S

S

t

+ �r

x

S � r

x

S

t

= T � r

x

u

t

+  

S

S

t

+ �r

x

S � r

x

S

t

:

We insert this equation into (1.12), use the Divergene Theorem, assume a suitable

boundary ondition for S and note (1.1) to dedue

Z




 

S

S

t

+ �r

x

S � r

x

S

t

dx =

Z




�

 

S

� ��

x

S

�

S

t

dx � 0:

The standard method to ensure that this inequality holds is to postulate

S

t

= �( 

S

� ��

x

S);

whih is an evolution equation for S, the Allen-Cahn equation with terms oupling

to the equations (1.1) and (1.2). However, this inequality is as well satis�ed if we

instead postulate

S

t

= �( 

S

� ��

x

S)jr

x

Sj; (1.13)

whih for � = 0 is the Hamilton-Jaobi equation (1.11). The Allen-Cahn equa-

tion is used when di�usion playes an important role, whereas the Hamilton-Jaobi

equation is the right equation when the interfaes are driven by on�gurational
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fores. This is seen from the above investigations. Thus, the indeterminateness in

the standard method allows to formulate phase �eld models for both situations.

The Cahn-Hilliard equation is used when di�usion is the dominating proess

and the order parameter is onserved. It is derived in a similar, but slightly more

ompliated way than the Allen-Cahn equation. Just as above we an modify this

derivation and introdue the term jr

x

Sj in the evolution equation. This suggests

that the resulting equation is a model valid when the interfaes are driven by

on�gurational fores and the order parameter is onserved. We do not dwell on

this question here, but only mention for omparison that the model onsisting of

the Cahn-Hilliard equation oupled to the equations (1.1), (1.2) and related models

are formulated or investigated mathematially in [19, 9, 14, 15, 7, 11℄, for example.

We surmise that solutions of the equations (1.1), (1.2), (1.13) with � > 0 are

smooth and approximate solutions of the system (1.1) { (1.3), (1.6) for � ! 0.

These three equations would thus form a phase �eld model regularizing the sharp

interfae model (1.1), (1.2), (1.10).

Of ourse, it is not immediately obvious whether it is really neessary to add

the term ��

x

S jr

x

Sj to the Hamilton-Jaobi equation for getting smooth so-

lutions. Namely, it is tempting to prove existene of smooth solutions for the

initial-boundary value problem (1.1), (1.2), (1.11), (1.4), (1.5) by using the method

of visosity solutions to solve (1.11), ombined with methods for ellipti systems

to solve the other equations. Yet, sine  

1

in (1.8) is a double well potential,

the funtion S 7!  

S

("; S) in (1.11) is not monotone; therefore the assumptions

needed to apply omparison arguments and to prove existene of ontinuous vis-

osity solutions of (1.11) are not satis�ed. Instead, simple examples show that

S develops disontinuities even if the initial data are smooth. Consequently, the

theory of disontinuous visosity solutions has to be used. It turns out, however,

that the standard de�nition of disontinuous visosity solutions (f. [17, 6℄) allows

too muh freedom for the propagation speed of the phase interfaes modelled by

jump disontinuities of S.

This an be seen best if we study jump disontinuities for a problem in one

spae dimension. Note �rst that for a pieewise smooth solution (u; T; S) of (1.1)

{ (1.6) we have

[r

x

u(x; t)℄ �(x; t) = [T (x; t)℄n(x; t) = 0; (x; t) 2 ~;

for all tangential vetors �(x; t) to ~. With these equations the right hand side of

(1.10) an be simpli�ed by a short omputation to obtain

s[S℄ =  n � [C℄n =



2

�

[T ℄ � h"i � hT i � ["℄� [T � �"S℄

�

+  [ 

1

(S)℄; (1.14)

with h"i =

1

2

("(r

x

u+) + "(r

x

u�)). Here w(x; t)+ = lim

y!x; y2

0

(t)

w(y; t) and

w(x; t)� = lim

y!x; y2(t)

w(y; t) are the limit values on both sides of ~(t). It an

be seen from Lemma 2.1 in Setion 2 that if we redue (1.1) { (1.6) to a problem

in one spae dimension with a salar funtion T then T is ontinuous aross the

phase interfae. This implies ["℄ = [u

x

℄ = �" [S℄. If we denote by s the speed of
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propagation of disontinuities measured in the positive x{diretion, we thus obtain

from (1.14)

s = 

�

[ 

1

℄

[S℄

� T � �"

�

S

+

� S

�

jS

+

� S

�

j

: (1.15)

Here S

+

and S

�

are the values of S to the right and to the left of the jump

disontinuity. On the other hand, noting that in (1.11)

  

S

("; S) = 

�

 

0

1

(S)� T � �"

�

; (1.16)

the de�nition of disontinuous visosity solutions implies that any jump disonti-

nuity is allowed whose normal speed s satis�es the two inequalities



�

 

0

1

(S

�

)� T � �"

�

S

+

� S

�

jS

+

� S

�

j

� s � 

�

 

0

1

(S

+

)� T � �"

�

S

+

� S

�

jS

+

� S

�

j

:

Sine 

�

 

0

1

(S)�T � �"

�

is the speed of harateristis of (1.11), these two inequalities

require that the harateristi urves must end in the jump disontinuity on both

sides, and thus allow for any normal speed of the disontinuity between the two

harateristi speeds to the left and to the right of the disontinuity. Therefore

disontinuities in visosity solutions do not need to have the veloity given by

(1.15). Yet, if (1.15) is not satis�ed then phase interfaes are not modeled orretly.

This implies that to onstrut disontinuous visosity solutions we must use a

onstrution proedure whih automatially selets the right speed of propagation.

We surmise that the usual onstrution proedure based on Perron`s method does

not satisfy this requirement.

Therefore we use another method to prove existene of solutions of the initial-

boundary value problem in one spae dimension, whih is based on the similarity

of equation (1.3) to a hyperboli balane law. For the problem in one spae dimen-

sion the similarity beomes even greater, f. (1.19) below. The main di�erene to a

hyperboli balane law lies in the absolute value signs on both sides of (1.19). The

mapping whih assigns to the measures S

t

and C

1

(u

x

; S)

x

�u

x

�b the variation mea-

sures is nonlinear, and thus is disontinuous with respet to weak onvergene, in

general. Thus, while in the investigation of onservation laws the main diÆulties

are onneted with the funtion S 7! C

1

(u

x

; S), whih is nonlinear, whene dison-

tinuous with respet to weak onvergene, new diÆulties arise in the investigation

of (1.19) due to the variation measures. In our existene proof we use ideas from

the shok traking method in hyperboli onservation laws to onstrut a sequene

of approximate solutions, but beause of this diÆulty ompletely new ideas are

needed when going to the limit.

Statement of the main results. In the remainder of this artile we assume that

all funtions in the initial-boundary value problem (1.1) { (1.6) only depend on

the x

1

and t variables, but are independent of the x

2

and x

3

variables. To simplify

the notation we therefore write x instead of x

1

, and assume that 
 = (a; b) � R is

a bounded open interval. By T

e

we denote a positive number (time of existene),

and we set

Z

T

e

= (a; b)� (0; T

e

); Z = (a; b)� (0;1):
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We still allow that the material points an be displaed in three spae diretions,

hene u(x; t) 2 R

3

, T (x; t) 2 S

3

, S 2 R. If we denote the �rst olumn of the matrix

T (x; t) by T

1

(x; t) and set

"(u

x

) =

1

2

�

(u

x

; 0; 0) + (u

x

; 0; 0)

T

�

2 S

3

;

C

1

(u

x

; S) =  ("(u

x

); S)� u

x

� T

1

;

then (1.1) { (1.6) an be written in the slightly simpli�ed form:

�T

1x

= b; (1.17)

T = D("(u

x

)� �"S); (1.18)

jS

t

j =  jC

1

(u

x

; S)

x

� u

x

� bj ; (1.19)

u(a; t) = f(a; t); u(b; t) = f(b; t); t � 0; (1.20)

S(x; 0) = S

(0)

(x); x 2 [a; b℄; (1.21)

�

�t

 ("(u

x

); S)� (T

1

� u

t

)

x

� b � u

t

� 0: (1.22)

For this initial-boundary value problem we prove existene of solutions to three

di�erent lasses of initial data. To formulate these existene results in the next two

lemmas and in Theorem 1.3 we need solutions of the boundary value problem of

linear elastiity theory in one spae dimension. This problem is

��

1x

(x) =

^

b(x); a < x < b; (1.23)

�(x) = D"(w

x

(x)); a < x < b; (1.24)

w(a) =

^

f(a); w(b) =

^

f(b): (1.25)

Let H

i

(W ) be the usual Sobolev spaes of funtions with quadratially integrable

weak derivatives up to order i, where W � R

n

is a Lebesgue measurable set. The

norms of these spaes are denoted by kvk

i;W

. The L

2

{norm is kvk

0;W

= kvk

W

.

Lemma 1.1 (Pieewise onstant initial data) Let b; f : Z ! R

3

satisfy b 2

H

2

(Z

T

e

;R

3

) and f 2 H

2

(fa; bg � [0; T

e

℄;R

3

) for all T

e

> 0. Assume that S

(0)

:

[a; b℄ ! [0; 1℄ is pieewise onstant with �nitely many jumps, whih all lie in the

interior of [a; b℄.

Then there is a weak solution (u; T; S) : Z ! R

3

� S

3

� [0; 1℄ of (1.17) {

(1.22). The funtion S in this solution is pieewise onstant and belongs to the

spae BV (Z

T

e

). Moreover, (u; T ) satis�es

u(x; t) = u

�

�

Z

x

a

S(y; t)dy �

x� a

b� a

Z

b

a

S(y; t)dy

�

+ w(x; t);

T (x; t) = D("

�

� �")S(x; t)�D"

�

1

b� a

Z

b

a

S(y; t)dy + �(x; t);

9



where u

�

2 R

3

, "

�

2 S

3

only depend on the mis�t strain ", and where (w(t); �(t))

is the unique solution of the boundary value problem (1.23) { (1.25) to the data

^

b = b(t);

^

f = f(t) for every t > 0. This solution satis�es

(w; �) 2

2

\

i=0

H

2�i

�

(0; T

e

); H

2+i

((a; b);R

3

)�H

1+i

((a; b);S

3

)

�

:

for all T

e

> 0.

Lemma 1.2 (Monotoni initial data) Let b and f satisfy the assumptions of

the preeding lemma. Assume that S

(0)

: [a; b℄ ! [0; 1℄ is a ontinuous monotoni

funtion. Then there is a weak solution (u; T; S) : Z ! R

3

� S

3

� [0; 1℄ of (1.17)

{ (1.22), where (u; T ) is of the same form as in the preeding lemma, and where

S 2 BV (Z

T

e

). Moreover, the funtion S(t) : [a; b℄ ! [0; 1℄ de�ned by x 7! S(x; t)

is monotoni and satis�es

var(S(t)) � var(S

(0)

)

for almost all t 2 [0; T

e

℄.

Our main result is

Theorem 1.3 (Nonmonotone initial data) Assume that b 2 H

2

(Z

T

e

;R

3

) and

f 2 H

2

(fa; bg � [0; T

e

℄;R

3

) are given funtions. Let a <  < b and assume that

S

(0)

2 C([a; b℄; [0; 1℄) is inreasing in [a; ℄ and dereasing in [; b℄. For every t > 0

let (w(t); �(t)) be the solution of the boundary value problem (1.23) { (1.25) to the

data

^

b = b(t);

^

f = f(t). If there is a onstant M

1

> 0 suh that this solution

satis�es

�" � �(x; t) �M

1

+ max

0�s�1

j 

0

1

(s)j (1.26)

for almost all (x; t), then there is a weak solution (u; T; S) of (1.17) { (1.22), for

whih S 2 BV (Z

T

e

) and for whih (u; T ) is of the same form as in Lemma 1.1.

Remark. We surmise that the result of Theorem 1.3 holds without ondition

(1.26), and that we need this ondition only for tehnial reasons. This ondition

guarantees that the harateristi speeds of (1.3) and the speeds of jump disonti-

nuities in solutions of (1.3) are bounded away from 0. Moreover, it guarantees that

these disontinuities are direted suh that the embedded phase asymptotially

vanishes for t!1, i.e. that S tends asymptotially to the value min

a�x�b

S

(0)

(x).

If the �rst row of the matrix D�" does not vanish then the ondition an always be

guaranteed to hold by hoosing suitable data b and f .

If the salar produt " � �(x; t) is zero for all (x; t) and all boundary data

^

f and

right hand sides

^

b in (1.23) { (1.25), then the order parameter S in the solution

is independend of the boundary trations and the volume fore, hene the phase

evolution is independent of the exterior fores. This is in aordane with the

experimental observation that the phase evolution depends on the mis�t strain "

in relation to the diretion of the exterior stress �eld. Note that by onsidering

a one dimensional problem we have intrinsially �xed a diretion for the exterior

fores.

10



2 Pieewise onstant initial data

Here we prove Lemma 1.1. The proof is based on the observation that the jump

ondition (1.10), whih must hold along any jump urve of S, yields a di�erential

equation in time for this jump urve. To determine the �nitely many jump urves

of S we must therefore solve a oupled system of di�erential equations. This system

ontains the unknown funtion T and is therefore not losed. To lose it we observe

that if the funtion S(t) is known for a �xed time t, then the equations (1.17), (1.18)

and (1.20) form a boundary value problem for the funtions u(t) and T (t), a slight

extension of the boundary value problem of linear elastiity theory, whih in one

spae dimension an be solved expliitly. Insertion of the expliit solution formulas

into the system of ordinary di�erential equations loses the system.

In the �rst step of the proof we thus derive the expliit solution formulas for

(1.17), (1.18), (1.20). Subsequently we derive the system of ordinary di�erential

equations and disuss the onstrution of the jump urves. In the last step we

verify that the funtion (u; T; S) onstruted in this way satis�es all the equations

(1.17) { (1.22) and thus is a solution of this initial-boundary value problem.

We begin with some notations: Let

^

S

3

denote the subspae of all matries

A 2 S

3

with A

ij

= 0 for i; j = 2; 3. The orthogonal spae to

^

S

3

is denoted by

~

S

3

. It onsists of all A 2 S

3

satisfying A

i1

= A

1i

= 0 for i = 1; 2; 3. Note that

"(u

x

(x; t)) 2

^

S

3

. For the anonial projetion of S

3

onto

^

S

3

we write

^

P . Sine

D : S

3

! S

3

is a positive de�nite linear mapping, h�; �i = � �D� de�nes a salar

produt on S

3

. The projetion of S

3

onto

^

S

3

, whih is orthogonal with respet to

this salar produt is denoted by

^

Q. These de�nitions imply

ker

^

Q = D

�1

~

S

3

= D

�1

ker

^

P: (2.1)

Lemma 2.1 Let " 2 S

3

, b 2 H

2

(Z

T

e

;R

3

), f 2 H

2

(fa; bg � [0; T

e

℄;R

3

) and the

measurable funtion S : Z

T

e

! [0; 1℄ be given. De�ne the matrix "

�

2

^

S

3

and the

vetor u

�

2 R

3

by

"

�

=

^

Q"; u

�

= ("

�

11

; 2"

�

21

; 2"

�

31

): (2.2)

Then the boundary value problem

�T

1

(x; t)

x

= b(x; t); (2.3)

T (x; t) = D("(u

x

(x; t))� �"S(x; t)); (2.4)

u(a; t) = f(a; t); u(b; t) = f(b; t); (2.5)

11



has a unique solution (u; T ) in Z

T

e

given by

u(x; t) = u

�

�

Z

x

a

S(y; t)dy �

x� a

b� a

Z

b

a

S(y; t)dy

�

+ w(x; t); (2.6)

"(u

x

(x; t)) = "

�

�

S(x; t)�

1

b� a

Z

b

a

S(y; t)dy

�

+ "(w

x

(x; t)); (2.7)

T (x; t) = D("

�

� �")S(x; t)�D"

�

1

b� a

Z

b

a

S(y; t)dy + �(x; t); (2.8)

^

PT (x; t) =

^

P

�

�(x; t)�D"

�

1

b� a

Z

b

a

S(y; t)dy

�

: (2.9)

Here (w(t); �(t)) is the unique solution of the boundary value problem (1.23) {

(1.25) to the data

^

b = b(t);

^

f = f(t) for every t > 0. We have

(w; �) 2

2

\

i=0

H

2�i

�

(0; T

e

); H

2+i

((a; b);R

3

)�H

1+i

((a; b);S

3

)

�

:

Proof. We de�ne v and � by

v(x; t) = u

�

�

Z

x

a

S(y; t)dy �

x� a

b� a

Z

b

a

S(y; t)dy

�

; (2.10)

�(x; t) = D("(v

x

(x; t))� "S(x; t)): (2.11)

The de�nition of u

�

in (2.2) implies

"(v

x

(x; t)) = "

�

�

S(x; t)�

1

b� a

Z

b

a

S(y; t)dy

�

; (2.12)

whene, from (2.11)

�(x; t) = D("

�

� �")S(x; t)�D"

�

1

b� a

Z

b

a

S(y; t)dy: (2.13)

(2.1) implies

^

PD(

^

Q � I)S

3

=

^

PD ker

^

Q = f0g, hene the de�nition of "

�

in (2.2)

yields

^

PD("

�

� ")S =

^

PD(

^

Q � I)"S = 0. Appliation of

^

P to (2.13) thus results

in

^

P�(x; t) = �

^

PD"

�

1

b� a

Z

b

a

S(y; t)dy ; (2.14)

whih is onstant with respet to x. Thene �

1

(x; t) is onstant with respet to x.

Consequently, the funtion (v(t); �(t)) solves the system

��

1x

= 0;

� = D("(v

x

)� �"S);

v(a; t) = v(b; t) = 0:

12



It is immediately seen and well known that for

^

b = b(t) 2 H

2

([a; b℄;R

3

) and for

^

f =

f(t) the system (1.23) { (1.25) has a unique solution (w(t); �(t)) 2 H

4

([a; b℄;R

3

)�

H

3

([a; b℄;S

3

). Clearly, (u; T ) = (v + w; � + �) is the unique solution of (2.3) {

(2.5). Equations (2.6) { (2.8) follow from (2.10), (2.12) and (2.13), equation (2.9)

is implied by (2.14), noting that T = � + �. This proves the lemma.

The jump ondition in one spae dimension. In the jump ondition (1.10) the

speed of propagation s of the disontinuity is measured positive in the diretion of

inreasing S. Thus, if for a funtion w with a jump we write [w℄ = w

+

�w

�

, where

w

+

, w

�

are the values to the right and to the left of the jump, and if we denote by

s the veloity measured positive in positive x{diretion, we obtain [S℄s = j[S℄js.

Using this equation and the de�nition of C

1

we see that in one spae dimension

(1.10) beomes

j[S℄js =  [C

1

(u

x

; S)℄: (2.15)

The funtion (u; T ) in this formula is the solution of the boundary value problem

(2.3) { (2.5) to the funtion S(t). Sine u

x

� T

1

= "(u

x

) � T , the omputation whih

leads to (1.14) remains valid in one spae dimension and an be used to evaluate

the jump [C

1

℄. To determine an expliit formula for this jump we use (2.6) {

(2.9): Sine � 2 H

2

(Z

T

e

;S

3

), it follows from (2.9) and from the Sobolev embedding

theorem that

^

PT (t) is a ontinuous funtion of x, whene [

^

PT ℄ = 0. From this

relation and from "(u

x

(x; t)) 2

^

S

3

, whih implies h"i =

1

2

("(u

+

x

) + "(u

�

x

)) 2

^

S

3

, we

obtain

[T ℄ � h"i = [T ℄ � h

^

P"i = [

^

PT ℄ � h"i = 0; hT i � ["℄ = hT i � [

^

P"℄ =

^

PT � ["℄:

Using these equations and ["℄ = "

�

[S℄, whih is implied by (2.7), we obtain from

(1.14) by insertion of (2.8) and (2.9) that

[C

1

℄ =

1

2

�

[T ℄ � h"i � hT i � ["℄� [T � "S℄

�

+ [ 

1

(S)℄

= �

1

2

�

[T � �"S℄ +

^

PT � "

�

[S℄

�

+ [ 

1

(S)℄

= �

1

2

�" �D("

�

� �")[S

2

℄ (2.16)

+

1

2

("

�

+ �") �

�

D"

�

1

b� a

Z

b

a

S(y; t)dy � �

�

[S℄ + [ 

1

(S)℄ = [	℄ :

Here 	 is a new potential, whih we an write in the form

	

�

x; t; S;

R

b

a

S(y; t)dy

�

=

1

2

(�"� "

�

) �D(�"� "

�

)S

2

+  

1

(S) (2.17)

+

�

"

�

�D"

�

1

b� a

Z

b

a

S(y; t)dy� " � �(x; t)

�

S :
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To see this note that "

�

=

^

Q", that the projetion

^

Q is orthogonal with respet to

the salar produt h�; ��i and that � = D"(w

x

), whih relations together imply

" �D("� "

�

) = h"; (I �

^

Q)"i = h(I �

^

Q)"; (I �

^

Q)"i = ("� "

�

) �D("� "

�

) ;

("+ "

�

) �D"

�

= h"+ "

�

;

^

Q"

�

i = h

^

Q("+ "

�

); "

�

i = 2"

�

�D"

�

;

"

�

� � = h

^

Q"; "(w

x

)i = h";

^

Q"(w

x

)i = h"; "(w

x

)i = " � � :

From (2.15) and (2.16) we �nally obtain for the speed of propagation

s(x; t) = 

h

	(x; t; S;

R

b

a

S(y; t)dy)

i

j[S℄j

: (2.18)

Constrution of the solution. Let S

(0)

be the pieewise onstant initial data

given in Lemma 1.1 and assume that S

(0)

has jumps at the points x

1

; � � � ; x

n

with

a < x

1

< � � � < x

n

< b. We set x

0

= a; x

n+1

= b. Let S

+

i

and S

�

i

be the onstant

values of S

(0)

to the right and to the left of x

i

for i = 1; 2; � � � ; n. Obviously we

have S

+

i

= S

�

i+1

for i = 1; 2; � � � ; n� 1. In the domain [a; b℄� [0; t

1

℄ with a suitable

time t

1

> 0 to be determined below the omponent S of the solution (u; T; S) will

be pieewise onstant with jumps along urves given by the graphs of ontinuously

di�erentiable funtions �

i

: [0; t

1

℄ ! [a; b℄, i = 1; 2; � � � ; n. The urve �

i

starts at

the disontinuity (x

i

; 0) of S

(0)

and we have

a < �

i

(t) < �

i+1

(t) < b; 0 � t < t

1

; i = 1; 2; � � � ; n� 1:

The values of S are de�ned by

S(x; t) =

8

>

<

>

:

S

�

1

; a � x < �

1

(t);

S

+

i

; �

i

(t) � x < �

i+1

(t); i = 1; 2; � � � ; n� 1;

S

+

n

; �

n

(t) � x � b:

(2.19)

The disontinuities �

i

have the speed of propagation given by (2.18). Thus,

d

dt

�

i

(t) = 

	

�

�

i

(t); t; S

+

i

;

R

b

a

S(y; t)dy

�

�	

�

�

i

(t); t; S

�

i

;

R

b

a

S(y; t)dy

�

jS

+

i

� S

�

i

j

; (2.20)

for i = 1; : : : ; n. If we note that by (2.19)

Z

b

a

S(y; t)dy =

n

X

i=0

�

�

i+1

(t)� �

i

(t)

�

S

+

i

;

where we use the notations �

0

(t) = a; �

n+1

(t) = b; S

+

0

= S

�

1

, we see that (2.20) is

a system of ordinary di�erential equations for the funtions �

1

; : : : ; �

n

. Lemma 2.1

implies that the funtion � in (2.17) satis�es �

x

2 H

2

(Z

T

e

;S

3

). The Sobolev

14



imbedding theorem thus yields that � 2 C(Z

T

e

). From this fat and from the

de�nition of 	 in (2.17) it follows that the right hand side of this system is de�ned

for a � �

1

; : : : ; �

n

� b, that it is ontinuous with respet to (t; �

1

; : : : ; �

n

) 2

[0;1)�[a; b℄

n

and that it satis�es a Lipshitz ondition with respet to (�

1

; : : : ; �

n

).

By the Theorem of Piard-Lindel�of it thus follows that there exists a unique solution

(�

1

(t); : : : ; �

n

(t)). The solution is ontinuously di�erentiable with respet to t. Let

t

1

= sup

�

t > 0 j a < �

1

(t) < �

2

(t) < : : : < �

n

(t) < b

	

and de�ne S in [a; b℄� [0; t

1

) by (2.19) and (2.20). If t

1

<1 let

S

(1)

(x) =

(

lim

y#x

S(y; t

1

); a � x < b;

lim

y"b

S(y; t

1

); x = b:

We de�ne S in the region [a; b℄ � [t

1

; t

2

) with a suitable time t

2

> t

1

by repeating

the above onstrution, using S

(1)

as initial data.

The number of urves in the domain [a; b℄ � [t

1

; t

2

), along whih S jumps, is

smaller than in the domain [a; b℄� [0; t

1

). Therefore, after further repetition of this

proess we �nd that there is a largest time t

m

suh that the next step yields the

solution in all of the domain [a; b℄� [t

m

;1), or that S

(m)

: [a; b℄! [0; 1℄ is onstant.

In this ase we set S equal to this onstant value in all of [t

m

;1). This ompletes

the onstrution of the funtion S : [a; b℄� [0;1)! [0; 1℄.

Let (u; T ) be the unique solution of the problem (2.3) { (2.5) to the funtion S.

In the remainder of this setion we show that the funtion (u; T; S) : [a; b℄�[0;1)!

R

3

�S

3

�[0; 1℄ thus de�ned is a solution of the initial-boundary value problem (1.17)

{ (1.22).

The measure valued derivatives. Sine S has jumps, the �rst distributional

derivatives of S and of other funtions depending on S are measures. To study

these measures we introdue some notations: Let � be one of the ontinuously

di�erentiable urves along whih S jumps. We identify this urve with the funtion

� : [t

i

; t

i+1

℄! (a; b) whih parametrizes �, and with the graph of �, a subset of Z.

Any suh urve is alled a jump urve. By J we denote the �nite set of all jump

urves, and we de�ne

J =

[

�2J

� � Z:

The one-dimensional Hausdor� measure H

1

restrited to J is denoted by H

J

.

Hene,

H

J

(V ) = H

1

(J \ V )

for every measurable subset V � Z. If g : J ! R is loally H

J

-summable and if

K is ompat we write

(gH

J

)(K) =

Z

K

g dH

J

:

For a funtion v : Z ! R, whih has jumps along the urves � 2 J and has weak

L

2

-derivatives in ZnJ , we denote by v

x

; v

t

the distributional derivatives and by

v

0

x

; v

0

t

the L

2

-derivatives away from the jump urves.
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Finally, if (x; t) is a point of a jump urve di�erent from the starting point and

the endpoint we denote by n(x; t) = (n

0

(x; t); n

00

(x; t)) 2 R

2

the unit normal vetor

with n

0

(x; t) > 0.

Lemma 2.2 Let

~

S be a pieewise ontinuously di�erentiable funtion with jumps

along the urves in J , and let (~u;

~

T ) be the solution of the problem (2.3) { (2.5) to

the funtion

~

S and to b 2 H

2

(Z

T

e

;R

3

); f 2 H

2

(fa; bg � [0; T

e

℄;R

3

), for all T

e

> 0.

Then the distributional derivatives

~

S

t

, C

1

("(~u

x

);

~

S)

x

� ~u

x

� b and  ("(~u

x

);

~

S)

t

�

(

~

T

1

� ~u

t

)

x

� b � ~u

t

are measures on Z and satisfy

~

S

t

= n

00

[

~

S℄H

J

+

~

S

0

t

�; (2.21)

C

1x

� ~u

x

� b = n

0

[C

1

℄H

J

+  

S

~

S

0

x

�; (2.22)

 

t

� (

~

T

1

� ~u

t

)

x

� b � ~u

t

= �

d�

dt

n

0

[C

1

℄H

J

+  

S

~

S

0

t

�; (2.23)

where � is the Lebesgue measure.

Proof. (2.21) is immediately obtained by partial integration. To prove (2.22)

observe �rst that away from the jump urves of

~

S the funtion x 7! ~u(x; t) has two

weak L

2

-derivatives and x 7!

~

T (x; t) has one weak L

2

-derivative, by Lemma 2.1.

Thus, if

~

S is ontinuously di�erentiable in a neighborhood of (x; t), then

C

1

(~u

x

;

~

S)

0

x

=

�

 ("(~u

x

);

~

S)� ~u

x

� T

1

�

0

x

=  

"

� "(~u

xx

) +  

S

~

S

0

x

� ~u

xx

�

~

T

1

� ~u

x

�

~

T

1x

=

~

T � "(~u

xx

)� ~u

xx

�

~

T

1

+ ~u

x

� b +  

S

~

S

0

x

= ~u

x

� b+  

S

~

S

0

x

; (2.24)

where we used that  

"

=

~

T and that "(~u

xx

) �

~

T = ~u

xx

�

~

T

1

. We also applied (2.3).

Now let ' 2

Æ

C

1

(Z;R). Partial integration and appliation of (2.24) yields

Z

Z

�

�C

1

(~u

x

;

~

S)'

x

� ~u

x

� b '

�

d�

=

Z

Z

�

C

1

(~u

x

;

~

S)

0

x

� ~u

x

� b)'d�+

Z

Z

(C

+

1

� C

�

1

)n

0

'dH

J

=

Z

Z

 

S

~

S

0

x

'd�+

Z

Z

n

0

[C

1

℄'dH

J

:

This implies that C

1x

� ~u

x

� b is a measure given by the right hand side of (2.22).

To prove (2.23) note that Lemma 2.1 implies ~u

tx

= ~u

xt

away from the jumps of

~

S. We thus obtain

 

�

"(~u

x

);

~

S

�

0

t

� (

~

T

1

� ~u

t

)

0

x

� b � ~u

t

=  

"

� "(~u

xt

) +  

S

~

S

0

t

�

~

T

1x

� ~u

t

�

~

T

1

� ~u

tx

� b � ~u

t

(2.25)

=

~

T � "(~u

tx

)�

~

T

1

� ~u

tx

+  

S

~

S

0

t

=  

S

~

S

0

t

;
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where we again used that  

"

= T and that

~

T � "(~u

tx

) =

~

T

1

� ~u

tx

. We also used (2.3).

Sine n = (n

0

; n

00

) denotes the normal vetor to a jump urve � 2 J with n

0

> 0,

we onlude from

d�

dt

= �

n

00

n

0

(2.26)

that signn

00

= �sign

d�

dt

: This implies for (x; t) 2 � that

lim

r%t

 (x; r) =

(

 

+

; n

00

< 0 ;

 

�

; n

00

> 0 :

(2.27)

Using this equation and (2.25) we obtain for ' 2

Æ

C

1

(Z;R) with ' � 0

Z

Z

�

� 

�

"(~u

x

);

~

S

�

'

t

+ (

~

T

1

� ~u

t

)'

x

� b � ~u

t

'

�

d�

=

Z

Z

�

 

0

t

� (

~

T

1

� ~u

t

)

0

x

� b � ~u

t

�

'd�+

Z

Z

�

[ ℄n

00

� [

~

T

1

� ~u

t

℄n

0

�

'dH

J

=

Z

Z

 

S

~

S

0

t

'd�+

Z

Z

�

[ ℄n

00

�

~

T

1

� [~u

t

℄n

0

�

dH

J

:

(2.28)

We used that as a onsequene of (2.9) we have [

^

P

~

T ℄ = 0, whene [

~

T

1

℄ = 0. To

determine [~u

t

℄ in this equation we employ (2.6), whih shows that if

~

S is ontinu-

ously di�erentiable in a neighborhood of the point (x; t) 2 (a; b)� (0;1), then the

time derivative ~u

t

exists and is given by

~u

t

(x; t) = u

�

�

Z

x

a

~

S

0

t

(y; t)dy �

`

X

i=1

d

dt

�

i

(t) [

~

S℄

�

�

i

(t); t

�

�

(2.29)

�u

�

x� a

b� a

�

Z

b

a

~

S

0

t

(y; t)dt�

k

X

i=1

d

dt

�

i

(t) [

~

S℄

�

�

i

(t); t

�

�

+ w

t

(x; t) :

Here f�

i

g

k

i=1

is the set of jump urves interseting the line segment (a; b) � ftg,

and ` is hosen suh that

�

1

(t) < : : : < �

`

(t) < x < �

`+1

(t) < : : : < �

k

(t) :

Thus, if � is a jump urve of

~

S we obtain from (2.29) by onsidering the limit

lim

x&�(t)

~u

t

(x; t)� lim

x%�(t)

~u

t

(x; t) that

[~u

t

℄

�

�(t); t

�

= �

d

dt

�(t) u

�

[

~

S℄

�

�(t); t

�

= �

d

dt

�(t) [~u

x

℄

�

�(t); t

�

;

hene, together with (2.26),

[ ℄n

00

�

~

T

1

� [~u

t

℄n

0

= �[ ℄

d�

dt

n

0

+

~

T

1

� [~u

x

℄

d�

dt

n

0

= �

�

[ ℄� [

~

T

1

� ~u

x

℄

�

d�

dt

n

0

= �[C

1

℄

d�

dt

n

0

:

(2.23) follows by insertion of this relation into (2.28). The proof of Lemma 2.2 is

omplete.
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Corollary 2.3 Let (~u;

~

T ;

~

S) satisfy the assumptions of the preeding lemma. Then

the evolution equation (1.19) and the Clausius-Duhem inequality (1.22) hold if and

only if

d�

dt

j[

~

S℄j H

J

=  [C

1

℄H

J

; (2.30)

~

S

0

t

= �  

S

j

~

S

0

x

j : (2.31)

Proof: From (2.21), (2.22) and (2.26) we obtain for the variation measures

j

~

S

t

j = jn

00

[

~

S℄j H

J

+ j

~

S

0

t

j� = n

0

�

�

d�

dt

�

�

j[

~

S℄j H

J

+ j

~

S

0

t

j� ;

jC

1x

� u

x

� bj = n

0

j[C

1

℄j H

J

+ j 

S

~

S

0

x

j� :

Consequently, (1.19) holds if and only if the equations

�

�

d�

dt

�

�

j[

~

S℄j H

J

=  j[C

1

℄j H

J

and j

~

S

0

t

j = j 

S

~

S

0

x

j (2.32)

are satis�ed. Moreover, sine by our onvention n

0

> 0, we see from (2.23) that

(1.22) holds if and only if the inequalities

�

d�

dt

[C

1

℄H

J

� 0 and  

S

~

S

0

t

� 0 (2.33)

are ful�lled. It is immediately seen that (2.32), (2.33) are equivalent to the pair of

equations (2.30), (2.31).

End of the proof of Lemma 1.1: We de�ned the funtion (u; T; S) suh that

(2.3) { (2.5) are satis�ed, hene this funtion satis�es (1.17), (1.18) and (1.20).

Moreover, (1.21) is satis�ed by onstrution. Consequently it remains to show

that also (1.19) and (1.22) are ful�lled. By Corollary 2.3 these equations hold if

(u; T; S) satis�es (2.30) and (2.31). The seond equation is obviously satis�ed sine

S is pieewise onstant, hene S

0

t

= S

0

x

= 0. The �rst equation holds beause (2.20)

and (2.16) yield for the speed of any jump disontinuity

d�

dt

= 

[	℄

j[S℄j

= 

[C

1

℄

j[S℄j

: (2.34)

3 Monotonially inreasing initial data

In the proof of Lemma 1.2 given in this setion we use Lemma 1.1 to onstrut a

sequene (u

n

; T

n

; S

n

) of solutions to (1.17) { (1.22) to pieewise onstant monotoni

initial data S

(0)

n

suh that S

(0)

n

! S

(0)

. The funtion S

n

is pieewise onstant

and x 7! S

n

(x; t) is monotoni. As will be shown, this implies that (u

n

; T

n

; S

n

)

satis�es the evolution equation (1.19) without the absolute value signs. Thus, if

18



we selet a onverging subsequene for whih S

n

m

and C

1

(u

n

m

;x

; S

n

m

)

x

� u

n

m

;x

� b

onverge weakly, the limit funtion satis�es (1.19) without the absolute value signs.

Consequently, the limit funtion satis�es (1.19).

To selet a onverging subsequene we need bounds for the BV {norms of the

approximating sequenes. We begin by deriving suh bounds.

The geometry of the disontinuities and the BV {norms. For de�niteness

assume that the funtion S

(0)

is monotonially inreasing. We hoose a sequene

fS

(0)

n

g

1

n=1

of monotonially inreasing, pieewise onstant funtions S

(0)

n

: [a; b℄ !

[0; 1℄ with �nitely many jumps in (a; b), suh that S

(0)

n

(a) = S

(0)

(a); S

(0)

n

(b) =

S

(0)

(b); and

lim

n!1

sup

a�x�b

jS

(0)

(x)� S

(0)

n

(x)j = 0: (3.1)

De�ne (u

n

; T

n

; S

n

) : Z ! R

3

�S

3

� [0; 1℄ to be the solution of the initial-boundary

value problem (1.17) - (1.22) to the initial data S

(0)

n

onstruted as in the proof

of Lemma 1.1. We denote by J

n

the set of all jump urves of S

n

. For � 2 J

n

we

denote the onstant values of S

n

to the left and to the right of � by S

n

(��) and

S

n

(�+), respetively. We also write [S

n

℄(�) = S

n

(�+)� S

n

(��).

Lemma 3.1 (i) To � 2 J

n

there exist jump points x

�

and y

�

of S

(0)

n

with a <

x

�

� y

�

< b suh that

S

n

(��) = S

(0)

n

(x

�

�); S

n

(�+) = S

(0)

n

(y

�

+): (3.2)

(ii) If � intersets the line segment (a; b)�ftg and if � 2 J

n

is the next disontinuity

to the left of � whih intersets this line segment, then

x

�

� y

�

< x

�

� y

�

: (3.3)

(iii) There is no jump disontinuity of S

(0)

n

between y

�

and x

�

.

Proof: (i) The disontinuity � starts either at the initial line segment (a; b)�f0g,

or at the point of intersetion of several disontinuities �

1

; : : : ; �

m

2 J

n

. Let �

1

be the leftmost of these diontinuities and �

m

be the rightmost disontinuity. By

onstrution S

n

satis�es

S

n

(��) = S

n

(�

1

�); S

n

(�+) = S

n

(�

m

+):

If �

1

does not start on the initial line segment, it starts at the point of intersetion

of several disontinuities. The value of S

n

to the left of the leftmost of these

disontinuities is S

n

(��). We follow the leftmost disontinuity bakwards in time

and repeat the proess until we reah a point (x

�

; 0) 2 (a; b) � f0g. The funtion

S

(0)

n

has a jump at x

�

, and sine the value of S

n

to the left of the last disontinuity

is S

n

(��), we dedue

S

n

(��) = S

(0)

n

(x

�

�):

Similarly, we start at � and follow bakwards in time at every point of intersetion

the rightmost disontinuity until we reah a point (y

�

; 0) 2 (a; b)� f0g with y

�

�
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x

�

. The funtion S

(0)

n

jumps at y

�

, and sine the value of S

n

to the right of the

disontinuity is S

n

(�+), we obtain

S

n

(�+) = S

(0)

n

(y

�

+):

(ii) We start at � and follow bakwards in time at every intersetion point the

rightmost disontinuity until we reah the point (y

�

; 0) on the initial line segment.

As above we have

S

n

(�+) = S

(0)

n

(y

�

+):

The path from � to the point (y

�

; 0) does never interset the path from � to (x

�

; 0),

sine from every point of intersetion of disountinuities at most one disontinuity

emerges forward in time. Therefore we have y

�

< x

�

.

(iii) There is no jump of S

(0)

n

between y

�

and x

�

. For, sine S

(0)

n

is inreasing,

we would otherwise have S

(0)

n

(y

�

+) < S

(0)

n

(x

�

�), whene

S

n

(�+) < S

n

(��) : (3.4)

Yet, by assumption no jump urve of S

n

intersets the line segment (a; b)�ftg be-

tween � and �, hene S

n

(�+) = S

n

(��). This ontradits (3.4), whene statement

(iii) must be true.

Corollary 3.2 For every n and for every jump urve � 2 J

n

we have

[S

n

℄(�) = S

(0)

n

(y

�

+)� S

(0)

n

(x

�

�) > 0 ;

whene x 7! S

n

(x; t) is inreasing. Moreover, S

n

satis�es for every t � 0

S

(0)

(a) � S

n

(a; t); S

n

(b; t) � S

(0)

(b) ; (3.5)

varS

n

(�; t) � varS

(0)

n

= varS

(0)

� 1 : (3.6)

Proof: Sine S

(0)

n

is inreasing, we obtain from (3.2) for every jump urve � 2 J

n

[S

n

℄(�) = S

n

(�+)� S

n

(��) = S

(0)

n

(y

�

+)� S

(0)

n

(x

�

�) > 0 :

(3.5) results from (3.2) and from

S

(0)

n

(x

�

�) � S

(0)

n

(a) = S

(0)

(a); S

(0)

n

(y

�

+) � S

(0)

n

(b) = S

(0)

(b) :

To verify (3.6) we use that x 7! S

n

(x; t) is inreasing and apply (3.5) to onlude

varS

n

(�; t) = S

n

(b; t)� S

n

(a; t) � S

(0)

(b)� S

(0)

(a) � 1 :

The orollary is proven.

Now we an show that the variation measures of S

n

, of the Eshelby tensor and of
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the free energy are uniformly bounded over Z

T

e

for every T

e

> 0 with respet to n.

We use that for f 2 L

1

(Z

T

e

;R) the variation measures jf

x

j and jf

t

j satisfy

jf

x

j(Z

T

e

) = sup

n

Z

Z

T

e

f '

x

dx

�

�

' 2

Æ

C

1

(Z

T

e

;R); j'j � 1

o

;

jf

t

j(Z

T

e

) = sup

n

Z

Z

T

e

f '

t

dx

�

�

' 2

Æ

C

1

(Z

T

e

;R); j'j � 1

o

;

f. [13, p.170℄. By de�nition, the funtion f 2 L

1

(Z

T

e

;R) belongs to the spae

BV (Z

T

e

) if jf

x

j(Z

T

e

) + jf

t

j(Z

T

e

) <1. We also de�ne

jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj (Z

T

e

)

= sup

n

Z

Z

T

e

�

C

1

(u

n;x

; S

n

)'

x

+ u

n;x

� b '

�

d(x; t)

�

�

' 2

Æ

C

1

(Z

T

e

;R); j'j � 1

o

;

j 

�

"(u

n;x

); S

n

�

t

� (T

1;n

� u

n;t

)

x

� b � u

n;t

j (Z

T

e

)

= sup

n

Z

Z

T

e

�

�  

�

"(u

n;x

); S

n

�

'

t

+ T

1;n

� u

n;t

'

x

� b � u

n;t

'

�

d(x; t)

�

�

' 2

Æ

C

1

(Z

T

e

;R); j'j � 1

o

:

Lemma 3.3 For all n and for all T

e

> 0 we have S

n

2 BV (Z

T

e

). There is a

onstant A > 0, whih only depends on T

e

and is an inreasing funtion of this

parameter, suh that for the onstant  from (1.19)

jS

n;x

j(Z

T

e

) � T

e

varS

(0)

n

; jS

n;t

j(Z

T

e

) � AT

e

varS

(0)

n

; (3.7)

jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj (Z

T

e

) � AT

e

varS

(0)

n

; (3.8)

j 

�

"(u

n;x

); S

n

�

t

� (T

1;n

� u

n;t

)

x

� b � u

n;t

j (Z

T

e

) � A

2

T

e

varS

(0)

n

: (3.9)

Proof: For ' 2

Æ

C

1

(Z

T

e

;R) with j'j � 1 we obtain as in the proof of (2.22) for the

pieewise onstant funtion S

n

that

�

Z

Z

T

e

S

n

'

x

dx =

Z

Z

T

e

'n

0

[S

n

℄ dH

J

n

=

X

�2J

n

Z

�

' [S

n

℄(�)n

0

ds (3.10)

=

X

�2J

n

Z

T

e

0

�

�

(t)'

�

�(t); t

�

[S

n

℄(�) dt =

Z

T

e

0

X

�2J

n

�

�

(t) [S

n

℄(�)'

�

�(t); t

�

dt ;

where �

�

: R ! [0; 1℄ denotes the harateristi funtion of the domainD

�

� [0;1)

of the parametrization � : D

�

! [a; b℄ of the jump urve �. We also used that

n

0

ds = dt. Noting

X

�2J

n

�

�

(t) [S

n

℄(�) = varS

n

(�; t) ; (3.11)
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we onlude from (3.10) and Corollary 3.2 that

jS

n;x

j(Z

T

e

) �

Z

T

e

0

varS

n

(�; t)dt � T

e

varS

(0)

n

: (3.12)

Similarly, sine S

0

n

t

= 0 we dedue from (2.21)

�

Z

Z

T

e

S

n

'

t

dt =

Z

Z

T

e

'n

00

[S

n

℄ dH

J

n

=

X

�2J

n

Z

�

[S

n

℄(�)'n

00

ds

=

Z

T

e

0

X

�2J

n

�

�

(t)[S

n

℄(�)

n

00

n

0

'(�(t); t) dt : (3.13)

To estimate the right hand side of this equation we infer from

n

00

n

0

= �

d�

dt

and from

(2.20) that

�

�

�

�

n

00

n

0

�

�

�

�

=

�

�

�

�

d�

dt

�

�

�

�

� A; (3.14)

where A = max

�

�

�

d

ds

	(y; t; s; r)

�

�

�

�

(y; t; s; r) 2 [a; b℄� [0; T

e

℄� [0; 1℄� [0; b� a℄

	

.

Sine � 2 H

2

(Z

T

e

) is ontinuous, it follows from the de�nition of 	 in (2.17) that

the maximum A exists. Of ourse, A depends on T

e

. We use (3.14) in (3.13) and

obtain together with (3.11) that

jS

n;t

j(Z

T

e

) �

Z

T

e

0

varS

n

(�; t)A dt � AT

e

varS

(0)

n

:

This estimate and (3.12) together yield (3.7). To verify (3.8) we note that (2.22)

implies for ' 2

Æ

C

1

(Z

T

e

;R) with j'j � 1 that

�

Z

Z

T

e

C

1

(u

n;x

; S

n

)'

x

+ u

n;x

� b ' d(x; t) =

Z

Z

T

e

'n

0

[C

1

℄ dH

J

n

(3.15)

=

Z

T

e

0

X

�2J

n

�

�

(t)[C

1

℄(�)'

�

�(t); t

�

dt :

(2.16) yields j [C

1

℄ j = j [	℄ j � max j

d

ds

	(y; t; s; r)j j[S

n

℄j = A[S

n

℄ ; whene

�

�

X

�2J

n

�

�

(t)[C

1

℄(�)

�

�

� A

X

�2J

n

�

�

(t)[S

n

℄(�) = A varS

n

(�; t):

Insertion of this inequality into (3.15) results in

jC

1;x

� u

n;x

� bj (Z

T

e

) �

Z

T

e

0

A varS

n

(�; t) dt � AT

e

varS

(0)

n

:

This is (3.8). Finally (2.23) yields

Z

Z

T

e

�

�  

�

"(u

n;x

); S

n

�

'

t

+ T

1;n

� u

n;t

'

x

� b � u

n;t

'

�

d(x; t)

= �

Z

Z

T

e

d�

dt

n

0

[C

1

℄'dH

J

n

� A

2

T

e

varS

(0)

n

;

where we used (3.14) again and proeeded as in (3.15). This proves (3.9).
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Lemma 3.4 The funtion (u

n

; T

n

; S

n

) satis�es

S

n;t

= �

�

C

1

(u

n;x

; S

n

)

x

� u

n;x

� b

�

(3.16)

on Z in the sense of measures.

Proof: Corollary 3.2 implies that [S

n

℄(�) > 0 for every jump urve � 2 J

n

. Thus,

if we apply Lemma 2.2 to the funtion (u

n

; T

n

; S

n

), use that S

0

n;t

= S

0

n;x

= 0 and

employ (2.26) and (2.34), we obtain

S

n;t

= n

00

[S

n

℄H

J

n

= �

d�

dt

n

0

[S

n

℄H

J

n

= �

[C

1

℄

j[S

n

℄j

n

0

j[S

n

℄j H

J

n

= �n

0

[C

1

℄H

J

n

= �(C

1;x

� u

n;x

� b) :

End of the proof of Lemma 1.2: The proof is in three steps:

Claim 1: The sequene f(u

n

; T

n

; S

n

)g

n

has a subsequene, again denoted by

f(u

n

; T

n

; S

n

)g

n

, whih onverges in L

2

(Z

T

e

;R

3

� S

3

) � L

p

(Z

T

e

;R) to a funtion

(u; T; S), whih satis�es (2.3) { (2.5), for every 1 � p < 1 and all T

e

> 0.

The funtion S belongs to BV (Z

T

e

), the funtion u belongs to H

1

(Z

T

e

;R

3

) and

u

n;x

! u

x

strongly in L

2

(Z

T

e

;R

3

), u

n;t

* u

t

weakly in L

2

(Z

T

e

;R

3

) for all T

e

> 0.

Proof: To see this, note that the inequality 0 � S

n

� 1 and Lemma 3.3 together

with varS

(0)

n

= varS

(0)

imply

kS

n

k

Z

T

e

+ jS

n;x

j(Z

T

e

) + jS

n;t

j(Z

T

e

) � T

e

�

(b� a) + (1 + A) varS

(0)

�

;

where kS

n

k

Z

T

e

denotes the L

1

-norm. Therefore, if we set T

e

= m 2 N , for every m

we an selet a subsequene of fS

n

g

1

n=1

, whih onverges in L

1

(Z

m

;R) to a limit

funtion S 2 BV (Z

m

), f. [13, p. 176℄. By the usual argument the diagonal

sequene, again denoted by fS

n

g

n

, onverges to S in L

1

(Z

T

e

;R) for every T

e

>

0. Noting that 0 � S

n

� 1 we infer that this sequene onverges to S even in

L

p

(Z

T

e

;R) for all 1 � p <1.

Let (u; t) be the solution of the problem (2.3) { (2.5) to the funtion S, for

every T

e

> 0. The di�erene (u

n

� u; T

n

� T ) is a solution of the boundary value

problem (2.3) { (2.5) to the data b = 0; f = 0 and to the funtion S

n

� S. From

(2.6) and (2.8) we thus obtain

(u

n

� u)(x; t) = u

�

�

Z

x

a

(S

n

� S)(y; t)dy �

x� a

b� a

Z

b

a

(S

n

� S)(y; t)dy

�

(T

n

� T )(x; t) = D("

�

� ")(S

n

� S)(x; t)�D"

�

1

b� a

Z

b

a

(S

n

� S)(y; t)dy :

it follows immediately from these formulas and from S

n

! S in L

2

(Z

T

e

;R) that

(u

n

; u

n;x

; T

n

) ! (u; u

x

; T ) in L

2

(Z

T

e

;R

3

� R

3

� S

3

). To verify that u

n;t

* u

t

we
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use (2.29), applied to ~u = u

n

and to the pieewise onstant funtion

~

S = S

n

, and

obtain for (x; t) 2 Z

T

e

that

ju

n;t

(x; t)j =

�

�

�

u

�

�

x� a

b� a

k

X

i=1

d�

i

dt

(t) [S

n

℄

�

�

i

(t); t

�

�

`

X

i=1

d�

i

dt

(t) [S

n

℄

�

�

i

(t); t

�

�

+ w

t

(x; t)

�

�

�

� 2ju

�

j A varS

n

(�; t) + jw

t

(x; t)j :

Here A is the bound for j

d�

dt

j in Z

T

e

from (3.14). Sine varS

n

(�; t) � 1, by Corollary

3.2, and w

t

2 L

2

(Z

T

e

;R

3

), by Lemma 2.1, we onlude that fu

n;t

g

n

is bounded in

L

2

(Z

T

e

;R

3

). Hene it has a weakly onverging subsequene. By the usual argu-

ments we infer that the weak derivative u

t

exists in L

2

(Z

T

e

;R

3

) and that u

n;t

* u

t

for all T

e

> 0. Sine u

x

2 L

2

(Z

T

e

) we obtain u 2 H

1

(Z

T

e

;R

3

). This �nishes the

proof of the laim.

Claim 2: The limit funtion (u; T; S) satis�es the equation

S

t

= �

�

C

1

(u

x

; S)

x

� u

x

� b

�

(3.17)

on Z in the sense of measures.

Proof: The laim follows from Lemma 3.4 if we show that the measures S

n;t

and C

1

(u

n;x

; S

n

)

x

� u

n;x

� b on both sides of (3.16) weak{� onverge to S

t

and to

C

1

(u

x

; S)

x

� u

x

� b, respetively.

By de�nition, S

n;t

�

* S

t

if

R

Z

'dS

n;t

!

R

Z

'dS

t

for all ' 2

Æ

C

(Z). Sine

Æ

C

1

(Z)

is dense in

Æ

C

(Z), it follows that S

n;t

�

* S

t

if

sup

n2N

jS

n;t

j(Z

T

e

) <1 (3.18)

for all T

e

> 0 and if

Z

Z

'dS

n;t

= �

Z

Z

S

n

'

t

d(x; t)! �

Z

Z

S'

t

d(x; t) =

Z

Z

'dS

t

(3.19)

for all ' 2

Æ

C

1

(Z). Equation (3.18) is a onsequene of (3.7) sine varS

(0)

n

� 1, and

(3.19) immediately follows from the fat that S

n

! S in L

2

(Z

T

e

) for every T

e

> 0.

Also, we have C

1

(u

n;x

; S

n

)

x

� u

n;x

� b

�

* C

1

(u

x

; S)

x

� u

x

� b if

sup

n2N

jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj(Z

T

e

) <1 (3.20)

for all T

e

> 0 and

Z

Z

�

C

1

(u

n;x

; S

n

)'

x

+ u

n;x

� b'

�

d(x; t)!

Z

Z

�

C

1

(u

x

; S)'

x

+ u

x

� b'

�

d(x; t) (3.21)
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for all ' 2

Æ

C

1

(Z). Equation (3.20) is a onsequene of (3.8). To prove (3.21)

observe that

C

1

(u

n;x

; S

n

) =

1

2

T

n

�

�

"(u

n;x

)� "S

n

�

+  

1

(S

n

)� u

n;x

� T

1;n

: (3.22)

Sine T

n

! T in L

2

(Z

T

e

), u

n;x

! u

x

in L

2

(Z

T

e

) and S

n

! S in L

2

(Z

T

e

) we onlude

that

1

2

T

n

� "(u

n;x

)'

x

!

1

2

T � "(u

x

)'

x

;

1

2

T

n

S

n

'

x

!

1

2

TS '

x

;

 

1

(S

n

)'

x

!  

1

(S)'

x

; u

n;x

� T

1;n

'

x

! u

x

� T

1

'

x

;

where the onvergene is in L

1

(Z;R), sine ' has ompat support. From (3.22)

we thus obtain

C

1

(u

n;x

; S

n

)'

x

! C

1

(u

x

; S)'

x

in L

1

(Z;R). Relation (3.21) is implied by this relation together with u

n;x

� b' !

u

x

� b' in L

1

(Z;R), whih again follows from the onvergene of u

n;x

to u

x

.

Claim 3: (u; T; S) satis�es the equations (1.17) { (1.22).

Proof: By Claim 1 the funtion (u; T; S) satis�es the equations (2.3) { (2.5), whih

oinide with (1.17), (1.18), (1.20). Equation (1.19) follows from (3.17) by taking

the variation measures on both sides. To show that the Clausius-Duhem inequality

(1.22) holds it suÆes to prove that in the sense of measures

 

�

"(u

n;x

); S

n

�

t

� (T

1;n

� u

n;t

)

x

� b � u

n;t

�

*  

�

"(u

x

); S

�

t

� (T

1

� u

t

)

x

� b � u

t

; (3.23)

sine (u

n

; T

n

; S

n

) satis�es (1.22). Beause the right hand side of (3.9) is uniformly

bounded by the onstant A

2

T

e

varS

(0)

, we infer just as in the proof of (3.17) that

(3.23) holds if

Z

Z

 

�

"(u

n;x

); S

n

�

'

t

d(x; t) !

Z

Z

 

�

"(u

x

); S

�

'

t

d(x; t) (3.24)

Z

Z

T

1;n

� u

n;t

'

x

d(x; t) !

Z

Z

T

1

� u

t

'

x

d(x; t) (3.25)

Z

Z

b � u

n;t

'd(x; t) !

Z

Z

b � u

t

'd(x; t) (3.26)

for all ' 2

Æ

C

1

(Z;R). Yet, the onvergene (3.24) follows exatly as in the proof

of (3.17) and (3.25), (3.26) are implied by the onvergene relations T

1;n

! T

1

in

L

2

(Z

T

e

;R

3

), u

n;t

* u

t

weakly in L

2

(Z

T

e

;R

3

), whih hold by Claim 1.

To verify the initial ondition (1.21) we �rst extend the signed measures S

n;t

and S

t

on Z

T

e

to measures on the set Z

�1;T

e

= (a; b) � (�1; T

e

) by de�ning for

B � Z

�1;T

e

S

n;t

(B) = S

n;t

(B \ Z

T

e

); S

t

(B) = S

t

(B \ Z

T

e

);
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provided B \ Z

T

e

is S

n;t

{measurable or S

t

{measurable. In the proof of Claim 2

we showed that fS

n;t

g

n

onverges weak{� to S

t

on Z

T

e

. Here we show that the

sequene of extended measures fS

n;t

g

n

onverges weak{� to S

t

on Z

�1;T

e

.

To this end note that if Æ is a onstant satisfying 0 < Æ � T

e

and if we apply

(3.7) with Z

T

e

replaed by Z

Æ

, then we obtain for the extended measure

jS

n;t

j(Z

�1;Æ

) = jS

n;t

j(Z

Æ

) � AÆ varS

(0)

n

� AÆ : (3.27)

A an be hosen independent of Æ � T

e

, sine it is an inreasing funtion of this

parameter. From (3.27) we obtain in partiular that jS

n;t

j(Z

�1;T

e

) � AT

e

. Conse-

quently, there is a subsequene fS

n

j

;t

g

j

, whih onverges weak{� to a measure � on

Z

�1;T

e

. From the properties of weak{� onvergene we know that �(B) = S

t

(B)

for B � Z

T

e

. Thus, if we show that �(B) = 0 for all sets B �

�

(a; b)� (�1; 0℄

�

, it

follows that � is equal to the extended measure S

t

, and this implies for the extended

measures that S

n;t

�

* S

t

.

Thus, let B �

�

(a; b)� (�1; 0℄

�

. Then B is a subset of the open set Z

�1;Æ

for

any 0 < Æ � T

e

, hene (3.27) implies

j�j(B) � j�j(Z

�1;Æ

) � lim inf

j!1

jS

n

j

;t

j(Z

�1;Æ

) � AÆ ; (3.28)

f. [13, p. 54℄. This yields the desired result j�j(B) = 0.

In the seond step of the proof we use that S

n;t

�

* S

t

on Z

�1;T

e

implies for

' 2

Æ

C

(Z

�1;T

e

;R)

lim

n!1

Z

Z

'dS

n;t

= lim

n!1

Z

Z

�1;T

e

'dS

n;t

=

Z

T

�1;T

e

'dS

t

=

Z

Z

'dS

t

: (3.29)

Beause S

n

is pieewise onstant with �nitely many jumps we dedue by partial

integration for ' 2

Æ

C

1

(Z

�1;T

e

;R) that

Z

b

a

S

(0)

n

'(0) dx = �

Z

Z

S

n

'

t

d(x; t)�

Z

Z

'dS

n;t

: (3.30)

Sine S

n

! S in L

2

(Z

T

e

;R) and sine S

(0)

n

satis�es (3.1), we obtain by taking the

limits on both sides of (3.30), observing (3.29), that

Z

b

a

S

(0)

'(0)dx = �

Z

Z

S '

t

d(x; t)�

Z

Z

'dS

t

:

By the trae theorem for BV -funtions (f. [13, p.177℄), this equation implies that

S

(0)

oinides with the uniquely de�ned trae of S 2 BV (Z

T

e

) on (a; b) � f0g.

Therefore the initial ondition (1.21) is satis�ed.

This ompletes the proof of Lemma 1.2 for inreasing initial data S

(0)

. For

dereasing S

(0)

the proof is almost the same. The only essential di�erene is that

in this ase [S

n

℄(�) < 0 for all jumps of the approximate solutions, whih implies

that instead of (3.17) the funtion S satis�es

S

t

= 

�

C

1

(u

x

; S)

x

� u

x

� b

�

:
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4 Nonmonotone initial data

This setion is devoted to the proof of Theorem 1.3. For initial data inreasing in

the interval [a; ℄ and dereasing in [; b℄ it is not possible to onstrut a solution,

whih satis�es the equation (1.19) without the absolute value signs, as we ould

do this for monotone initial data. Instead, we have to deal with all the diÆulties

arising from the variation measures in (1.19).

The existene proof uses a onvergent sequene f(u

n

; T

n

; S

n

)g

n

of solutions

to pieewise onstant initial data onstruted as in the proof of Lemma 1.2.

The arguments of the preeding setion an be repeated to show that the limit

funtion satis�es (1.17), (1.18), (1.20) { (1.22). The main diÆulty in the

proof that the evolution equation (1.19) is satis�ed lies in the veri�ation of

jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj

�

* jC

1

(u

x

; S)

x

� u

x

� bj. To prove this we deompose

�

n

= C

1

(u

n;x

; S

n

)

x

�u

n;x

� b into the positive and negative part �

�

n

. For the weak{�

limits we have lim

n!1

j�

n

j = lim

n!1

(�

+

n

+ �

�

n

) = �

+

+ �

�

. In general, �

+

+ �

�

is

di�erent from the variation measure of C

1

(u

x

; S)

x

� u

x

� b. However, we an show

that in our situation equality holds, whih proves the desired result. The entral

idea used to show this is ontained in the proof of Proposition 4.9, whih is given

in Set. 5.

Constrution of the solution. We hoose a sequene fS

(0)

n

g

n

of pieewise on-

stant funtions S

(0)

n

: [a; b℄ ! [0; 1℄ with �nitely many jumps in (a; ) [ (; b), suh

that S

(0)

n

is inreasing on (a; ), dereasing on (; b), and suh that

lim

n!1

sup

a�x�b

jS

(0)

(x)� S

(0)

n

(x)j = 0 : (4.1)

De�ne (u

n

; T

n

; S

n

) : Z ! R

3

�S

3

� [0; 1℄ to be the solution of the initial-boundary

value problem (1.17) { (1.22) to the initial data S

(0)

n

onstruted as in the proof of

Lemma 1.1. For the funtions S

n

the statements (i) and (ii) of Lemma 3.1 hold,

with the same proof. This allows to dedue the following uniform estimate:

Lemma 4.1 The funtion S

n

satis�es

varS

n

(�; t) � varS

(0)

n

� 2;

for every n and all t > 0.

Proof: From Lemma 3.1 (i) we obtain for every n and for every jump urve � 2 J

n

that

j[S

n

℄(�)j � jS

(0)

n

(y

�

+)� S

(0)

n

(x

�

�)j � var

�

S

(0)

n

�

�

[x

�

�; y

�

+℄

�

; (4.2)

where x

�

and y

�

are de�ned as in that lemma and where

var

�

S

(0)

n

�

�

[x

�

�; y

�

+℄

�

= lim

�&0

var

�

S

(0)

n

�

�

[x

�

� �; y

�

+ �℄

�

:

Moreover, if �

1

; : : : ; �

k

2 J

n

are the jump urves interseting the line segment

(a; b) � ftg, ordered suh that �

1

(t) < �

2

(t) < : : : < �

k

(t), then Lemma 3.1 (ii)

implies

x

�

1

� y

�

1

< x

�

2

� y

�

2

< : : : < x

�

k

� y

�

k

:
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Noting these inequalities we infer from (4.2)

varS

n

(�; t) =

k

X

i=1

j[S

n

℄(�

i

)j =

k

X

i=1

jS

(0)

n

(y

�

i

+)� S

(0)

n

(x

�

i

�)j � varS

(0)

n

� 2 :

The proof is omplete.

Based on the estimate in this lemma we an repeat the proof of Lemma 3.3 for the

funtions (u

n

; T

n

; S

n

), with minor hanges. Consequently, the inequalities (3.7) {

(3.9) hold for (u

n

; T

n

; S

n

) . Exatly as in the proofs of Claim 1 and Claim 3 in the

preeding setion we thus obtain

Lemma 4.2 The sequene f(u

n

; T

n

; S

n

)g

n

has a subsequene, again denoted by

f(u

n

; T

n

; S

n

)g

n

, whih onverges in the norm of the spae L

2

(Z

T

e

;R

3

� S

3

) �

L

p

(Z

T

e

;R) to a funtion

(u; T; S) 2 H

1

(Z

T

e

;R

3

)� L

2

(Z

T

e

;S

3

)� BV (Z

T

e

;R) ;

for every T

e

> 0 and all 1 � p < 1. Moreover, u

n;x

! u

x

in L

2

(Z

T

e

;R

3

) and

u

n;t

* u

t

, weakly in L

2

(Z

T

e

;R

3

), for all T

e

> 0. The funtion (u; T; S) satis�es the

equations (1.17), (1.18), (1.20), the initial ondition (1.21) and the Clausius-Duhem

inequality (1.22).

Convergene of the variation measures jS

n;t

j . The remainder of this artile

is devoted to the proof that (u; T; S) satis�es the evolution equation (1.19). Sine

(u

n

; T

n

; S

n

) satis�es (1.19), it suÆes for the proof to show that jS

n;t

j

�

* jS

t

j and

jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj

�

* jC

1

(u

x

; S)

x

� u

x

� bj. To prove the �rst of these relations

we �rst study the jump urves of S

n

and state some estimates used in later parts

of our investigation.

Lemma 4.3 Assume that ondition (1.26) holds.

(i) The jump of C

1

along any jump urve � 2 J

n

satis�es

[C

1

℄(�) = f(�; S

n

; �) [S

n

℄(�); (4.3)

where the funtion

f(�; S

n

; �) = ("� "

�

) �D("� "

�

) hS

n

i(�)

+"

�

�D"

�

1

b� a

Z

b

a

S

n

(y; t)dy � " � �(x; t) +

[ 

1

℄(�)

[S

n

℄(�)

an be estimated by

M

1

� f(�; S

n

; �) �M

2

: (4.4)

Here M

1

> 0 is the onstant in (1.26) and

M

2

= ("� "

�

) �D("� "

�

) + "

�

�D"

�

+ k" � �k

L

1

(Z;R)

+ sup

0�s�1

j 

0

1

(s)j :
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(ii) With the onstant  > 0 from (1.19) let V

1

= M

1

and V

2

= M

2

. For every

jump urve � 2 J

n

the speed of propagation satis�es

0 < V

1

� �

d�

dt

(t) � V

2

; (4.5)

where the plus sign holds if [S

n

℄(�) > 0 and the minus sign is valid if [S

n

℄(�) < 0.

Proof: (4.3) follows from (2.16), (2.17) noting that

1

2

[S

2

℄ =

1

2

(S

+

� S

�

)(S

+

+

S

�

) = [S℄hSi and that 0 � S

n

� 1. The inequality (4.4) follows from (1.26) by a

diret omputation, and (4.5) is a onsequene of (4.4) and of (2.20), (2.16), whih

yield

d�

dt

= 

[C

1

℄(�)

j[S

n

℄(�)j

=  f(�; S

n

; �) sign[S

n

℄(�):

Corollary 4.4 If (1.26) holds then S

n;t

� 0 for every n. Therefore the varia-

tion measure satis�es jS

n;t

j = �S

n;t

: For the limit funtion S the distributional

derivative S

t

is a measure and, in the sense of measures, S

n;t

�

* S

t

. Thus,

S

t

� 0; jS

t

j = �S

t

; jS

n;t

j = �S

n;t

�

* �S

t

= jS

t

j:

Proof: Equation (2.21), applied to the pieewise onstant funtion S

n

, and (2.26)

together yield

S

n;t

= n

00

[S

n

℄H

J

= �n

0

d�

dt

[S

n

℄H

J

: (4.6)

Here n

0

> 0, by our hoie of the normal vetor (n

0

; n

00

). From (4.5) we thus infer

that �n

0

d�

dt

[S

n

℄(�) < 0 for all jump urves � 2 J

n

, whene S

n;t

� 0, by (4.6). The

de�nition of the variation measure now immediately yields jS

n;t

j = �S

n;t

.

S

n;t

�

* S

t

follows as in the proof of Claim 2 in Setion 3. This onvergene

implies for ' 2

Æ

C

1

(Z;R) with ' � 0 that

�

Z

Z

S '

t

d(x; t) = � lim

n!1

Z

Z

S

n

'

t

d(x; t) = lim

n!1

Z

Z

'dS

n;t

� 0 :

Sine

Æ

C

1

(Z;R) is dense in

Æ

C

(Z;R), this equation yields S

t

� 0. The remaining

statements in the orollary are now obvious.

The positive and negative parts of the measure C

1

(u

n;x

; S

n

)

x

� u

n;x

� b. The

proof that jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj

�

* jC

1

(u

x

; S)

x

� u

x

� bj annot be based on the

simple idea used to verify jS

n;t

j

�

* jS

t

j. For, sine the initial data S

(0)

n

are inreasing

on [a; ℄ and dereasing on [; b℄ it follows that [S

n

℄(�) has negative and positive

values, depending on the jump urve �. Beause (4.3) and (4.4) together imply

sign[C

1

℄(�) = sign[S

n

℄(�); also [C

1

℄(�) has negative and positive values, hene the

measure

C

1

(u

n;x

; S

n

)

x

� u

n;x

� b = n

0

[C

1

℄H

J

does not have a sign. The last equation is obtained from (2.22), applied to the

pieewise onstant funtion S

n

. To prove onvergene also in this situation we

introdue the positive and negative parts of this measure:
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De�nition 4.5 Let � 2 J

n

be a jump urve. For C

1

= C

1

(u

n;x

; S

n

) we set

[C

1

℄

+

(�) =

1

2

�

j [C

1

℄(�) j+ [C

1

℄(�)

�

; [C

1

℄

�

(�) =

1

2

�

j [C

1

℄(�) j � [C

1

℄(�)

�

;

�

n

= n

0

[C

1

℄H

J

= C

1x

� u

n;x

� b ; �

�

n

= n

0

[C

1

℄

�

H

J

:

The measures �

�

n

are the positive and negative parts of the measure �, and we have

�

�

n

� 0 ; �

n

= �

+

n

� �

�

n

; j�

n

j = �

+

n

+ �

�

n

: (4.7)

Lemma 4.6 (i) For the limit funtion (u; T; S) the distributional derivative

C

1

(u

x

; S)

x

� u

x

� b is a measure, whih we denote by �. We have �

n

�

* �.

(ii) There is a subsequene of f(u

n

; T

n

; S

n

)g

n

, again denoted by f(u

n

; T

n

; S

n

)g

n

, suh

that the orresponding subsequenes f�

+

n

g

n

; f�

�

n

g

n

onverge weak{� to measures �

+

and �

�

, respetively. These measures satisfy �

+

; �

�

� 0.

Proof: Above we remarked that Lemma 3.3 holds for (u

n

; T

n

; S

n

). We therefore

obtain from (3.8) and from (4.7)

�

�

n

(Z

T

e

) � j�

n

j(Z

T

e

) � AT

e

varS

(0)

n

� 2AT

e

; (4.8)

for every T

e

> 0. The last inequality sign in this estimate follows from Lemma 4.1.

Using this estimate for �

n

we an show exatly as in the proof of Claim 2 in Setion 3

that � = C

1

(u

x

; S)

x

� u

x

� b is a measure and that �

n

�

* �. Also, sine by (4.8)

sup

n

�

�

n

(Z

T

e

) < 1, the sequenes of Radon measures f�

�

n

g

n

have subsequenes,

whih onverge weak{� to Radon measures �

�

, f. [13, p.55℄. This proves the

lemma.

(4.7) implies for the weak{� limits

�

+

� �

�

= lim

n!1

(�

+

n

� �

�

n

) = lim

n!1

�

n

= �; (4.9)

�

+

+ �

�

= lim

n!1

(�

+

n

+ �

�

n

) = lim

n!1

j�

n

j; (4.10)

but in a general situation the measures �

+

and �

�

are not neessarily equal to the

positive and negative part of �; hene �

+

+ �

�

an be di�erent from j�j. Therefore

in the remainder our goal is to prove that in the present situation we indeed have

j�j = �

+

+ �

�

. From (4.10) we then obtain j�

n

j

�

* j�j, whih is our desired result.

The limit measures �

+

and �

�

. To simplify the notation we extend �

n

to a

measure von R

2

by de�ning �

n

(V ) = �

n

(V \ Z) for V � R

2

. The same extension

is used for the other measures. By B(z) we denote an open ball in R

2

with enter

z = (x; t) and positive radius r � 1. To speify the radius we write B

r

(z). The

numbers Æ and � are assumed to belong to the ountable set f

1

m

j m 2 Ng.
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De�nition 4.7 Let the sets

~

E;

~

F � R

2

be de�ned by

~

E =

�

z 2 Z j for all Æ > 0 there is a ball B(z) =

^

B(z; Æ) and (4.11)

a subsequene suh that �

�

n

m

(B(z)) � Æ�

+

n

m

(B(z))

	

;

~

F =

�

z 2 Z j for all Æ > 0 there is a ball B(z) =

~

B(z; Æ) and (4.12)

a subsequene suh that �

+

n

m

(B(z)) � Æ�

�

n

m

(B(z))

	

:

Also, for Æ > 0 let the sets

~

G

Æ

;

~

G � R

2

be given by

~

G

Æ

=

�

z 2 Z j there is R = R(z) suh that to all 0 < r < R there is n

0

with

1

Æ

�

+

n

(B

r

(z)) > �

�

n

(B

r

(z)) > Æ�

+

n

(B

r

(z)); n � n

0

	

(4.13)

and by

~

G =

[

Æ>0

~

G

Æ

: (4.14)

The sets

~

E,

~

F and

~

G are not neessarily disjoint, but they satisfy

~

E [

~

F [

~

G = Z: (4.15)

For, if z =2

~

E [

~

F then there is Æ > 0 suh that for all balls B(z) there is n

0

with

�

�

n

(B(z)) > Æ�

+

n

(B(z));

1

Æ

�

+

n

(B(z)) > �

�

n

(B(z)); n � n

0

:

This implies z 2

~

G

Æ

�

~

G, hene (4.15) holds.

Let Æ > 0 and � > 0. By the Besiovith Covering Theorem stated in the Appendix

there are a number N and ountable families E

Æ

; F

Æ

; G

Æ

�

;

E

Æ

� f

^

B(z; Æ) j z 2

~

Eg;

F

Æ

� f

~

B(z; Æ) j z 2

~

Fg;

G

Æ�

� fB

r

(z) j z 2

~

G

Æ

; r < min(�; R(z))g;

eah one onsisting of losure disjointed subfamilies E

(i)

Æ

;F

(i)

Æ

;G

(i)

Æ�

; i = 1; : : : ; N ,

suh that

~

E � E

Æ

:=

[

B2E

Æ

B;

~

F � F

Æ

:=

[

B2F

Æ

B;

~

G

Æ

� G

Æ�

:=

[

B2G

Æ�

B: (4.16)

N depends only on the spae dimension, in this ase 2. We de�ne

E =

\

Æ>0

E

Æ

; F =

\

Æ>0

F

Æ

; G

Æ

=

\

�>0

G

Æ�

; G =

[

Æ>0

G

Æ

: (4.17)
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The sets E

Æ

; F

Æ

and G

Æ�

are open, whene E; F and G

Æ

are Borel sets as ountable

intersetions of open sets, and G is a Borel set as a ountable union of Borel sets.

(4.14), (4.16) and (4.17) imply

~

E � E;

~

F � F;

~

G

Æ

� G

Æ

;

~

G � G;

whene, by (4.15),

E [ F [G = Z: (4.18)

Lemma 4.8 The limit measures �

�

; �

+

satisfy

�

�

(E) = �

+

(F ) = 0 and �

�

(G) = �

+

(G) = 0:

To prove this lemma we need the following result, whose proof is postponed to

Set. 5:

Proposition 4.9 To every Æ; # > 0 there is �

0

> 0 suh that for all � � �

0

and

for every �nite olletion B

1

; : : : ; B

l

2 G

Æ�

with B

i

� Z

T

e

there is k

0

suh that for

all n � k

0

�

�

n

�

l

[

i=1

B

i

�

� #; �

+

n

�

l

[

i=1

B

i

�

� #:

Proof of Lemma 4.8: To prove that �

�

(E) = 0 let Æ > 0 and let B 2 E

Æ

.

By de�nition of E

Æ

the open ball B =

^

B(z; Æ) satis�es the ondition in (4.11),

hene there is a subsequene suh that �

�

n

m

(B) � Æ �

+

n

m

(B) holds for all m. Sine

�

�

n

m

�

* �

�

and �

+

n

m

�

* �

+

, it follows

�

�

(B) � lim inf

m!1

�

�

n

m

(B) (4.19)

� Æ lim inf

m!1

�

+

n

m

(B) � Æ lim sup

m!1

�

+

n

m

(B) � Æ �

+

(B);

f. [13, p. 54℄.

For r > 0 we set E(r) = fz 2 E j jzj < rg. Sine E(r) � E � E

Æ

=

S

B2E

Æ

B

and sine we assumed that the radii of all balls in E

Æ

are not greater than one we

an selet a subfamily E

0

Æ

of E

Æ

suh that

E(r) �

[

B2E

0

Æ

B �

[

B2E

0

Æ

B � E(r + 2):

Sine E

Æ

is omposed of the subfamilies E

(i)

Æ

; i = 1; : : : ; N , we obtain from (4.19)

�

�

(E(r)) � �

�

�

[

B2E

0

Æ

B

�

�

X

B2E

0

Æ

�

�

(B) � Æ

X

B2E

0

Æ

�

+

(B) = Æ

N

X

i=1

X

B2E

0

Æ

\E

(i)

Æ

�

+

(B)

= Æ

N

X

i=1

�

+

�

[

B2E

0

Æ

\E

(i)

Æ

B

�

� Æ

N

X

i=1

�

+

(E(r + 2)) = Æ N�

+

(E(r + 2));
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where we used that the losed hulls of the balls in E

(i)

Æ

are pairwise disjoint. This

estimate holds for all Æ > 0, hene �

�

(E(r)) = 0 for all r > 0, and so �

�

(E) = 0.

The equation �

+

(F ) = 0 is veri�ed in the same way, interhanging the roles of

�

+

n

and �

�

n

.

To prove that �

�

(G) = �

+

(G) = 0 let Æ; # > 0 and let � = �

0

(Æ; #) > 0 be

the number whose existene is assured in Proposition 4.9. Assume that K � G

Æ

is a ompat subset. G

Æ�

is an open overing of K, sine (4.17) implies G

Æ

�

G

Æ�

=

S

B2G

Æ�

B. Therefore there exist �nitely many B

1

; : : : ; B

l

2 G

Æ�

suh that

K �

S

l

i=1

B

i

. By Proposition 4.9 there is k

0

with

�

�

n

�

l

[

i=1

B

i

�

� #; �

+

n

�

l

[

i=1

B

i

�

� #

for all n � k

0

. Sine �

�

n

�

* �

�

; �

+

n

�

* �

+

and sine

S

l

i=1

B

i

is open, we obtain

�

�

(K) � �

�

�

l

[

i=1

B

i

�

� lim inf

n!1

�

�

n

�

l

[

i=1

B

i

�

� #:

Sine # was hosen arbitrarily, it follows that �

�

(K) = �

+

(K) = 0: This holds

for every ompat subset K of G

Æ

. Sine G

Æ

is a Borel set, we onlude that

�

�

(G

Æ

) = �

+

(G

Æ

) = 0; f. [Evans, p. 6℄. Thus, G =

S

1

m=1

G

1

m

is a ountable union

of null sets, whene �

�

(G) = �

+

(G) = 0:

Corollary 4.10 The measures �

�

and �

+

satisfy j�j = �

+

+ �

�

. Moreover,

jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj = j�

n

j

�

* j�j = jC

1

(u

x

; S)

x

� u

x

� bj:

Proof: From (4.18) we see that the omplement E

0

= ZnE of E is a subset of

F [G. Sine �

+

is a nonnegative measure we therefore obtain from Lemma 4.8 for

every �

+

-measurable set R that

�

+

(R) = �

+

((R \ E) [ (R \ E

0

)) � �

+

(R \ E) + �

+

(F [G) = �

+

(R \ E);

hene �

+

(R) = �

+

(R \ E). Similarly, �

�

(R) = �

�

(R \ E

0

). By de�nition of the

variation measure j�j we have

j�j(R) = sup

l

X

i=1

j�(R

i

)j;

where the supremum is taken over all �nite olletions fR

i

g of �-measurable, pair-

wise disjoint sets with R

i

� R. With fR

i

g also fR

i

\ Eg [ fR

i

\ E

0

g is suh a

olletion. Thus,

j�j(R) = sup

l

X

i=1

j�(R

i

)j � sup

l

X

i=1

(j�(R

i

\ E)j+ j�(R

i

\ E

0

)j) � j�j(R):
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Using (4.9) we thus onlude for any measurable subset R of Z that

j�j(R) = sup

l

X

i=1

�

j(�

+

� �

�

)(R

i

\ E)j+ j(�

+

� �

�

)(R

i

\ E

0

)j

�

= sup

l

X

i=1

�

j�

+

(R

i

)j+ j�

�

(R

i

)j

�

= sup

l

X

i=1

�

�

+

(R

i

) + �

�

(R

i

)

�

= sup

 

�

+

�

l

[

i=1

R

i

�

+ �

�

�

l

[

i=1

R

i

�

!

= �

+

(R) + �

�

(R):

This proves that j�j = �

+

+ �

�

. The relation j�

n

j

�

* j�j follows from this equation

and from (4.10). The proof is omplete.

End of the proof of Theorem 1.3: By Lemma 4.2 the funtion (u; T; S) satis�es

the equations and inequalities (1.17), (1.18), (1.20), (1.21) and (1.22). To see that

also equation (1.19) is satis�ed remember that by onstrution (u

n

; T

n

; S

n

) ful�lls

this equation. From Corollary 4.4 and Corollary 4.10 we thus obtain for the weak{�

limits

jS

t

j = lim

n!1

jS

n;t

j = lim

n!1

 jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj =  jC

1

(u

x

; S)

x

� u

x

� bj :

Consequently, (u; T; S) satis�es also the evolution equation (1.19).

5 Proof of Proposition 4.9

This setion is devoted to the proof of Proposition 4.9. We start by stating and

verifying several auxiliary lemmas. The idea of the proof of the proposition is

explained at the beginning of that proof, and we advie the reader to study that

part �rst.

De�nition 5.1 For a jump urve � 2 J

n

let

[S

n

℄

+

(�) =

1

2

�

j [S

n

℄(�) j+ [S

n

℄(�)

�

; [S

n

℄

�

(�) =

1

2

�

j [S

n

℄(�) j � [S

n

℄(�)

�

:

With the Hausdor� measure H

J

and with the �rst omponent n

0

> 0 of the unit

normal vetor (n

0

; n

00

) to the jump urve � de�ne

�

n

= n

0

[S

n

℄H

J

; �

�

n

= n

0

[S

n

℄

�

H

J

:

�

n

is a signed measure and �

�

n

are Radon measures, the positive and negative part

of �

n

. Lemma 4.3 yields

�

n

= n

0

[C

1

℄H

J

= n

0

f [S

n

℄H

J

and �

�

n

= n

0

[C

1

℄

�

H

J

= n

0

f [S

n

℄

�

H

J

; :

From (4.4) we therefore obtain for any measurable subset V

M

1

�

�

n

(V ) � �

�

n

(V ) �M

2

�

�

n

(V ): (5.1)
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This shows that the measures �

�

n

an be estimated above and below by the measures

�

�

n

. We use this to derive the inequalities for �

�

n

in Proposition 4.9 from analogous

inequalities for �

�

n

.

For a jump urve � 2 J

n

satisfying � \ Z

T

e

6= ; we all the urve with graph

� \ Z

T

e

a jump urve in Z

T

e

. If �

1

; : : : ; �

l

2 J

k

are jump urves in Z

T

e

suh that

the endpoint of �

i

oinides with the starting point of �

i+1

for every i = 1; : : : ; l�1,

we say that the urve with graph �

1

[: : :[�

l

� Z

T

e

is the omposition of �

1

; : : : ; �

l

.

The omposed urve is said to pass over the jump urve �

j

for all j = 1; : : : ; l: The

omposition is alled of maximal length if there is no proper extension in Z

T

e

:

De�nition 5.2 A omposition of jump urves in Z

T

e

of maximal length is alled

a hain. The set of hains is denoted by �

n

. The subset of all hains with starting

point on the line segment (a; )� f0g is denoted by �

+

n

, the subset of hains with

starting point on (; b)� f0g is �

�

n

.

Note that every hain � starts at the line segment (a; b)�f0g and ends at a point

(x

�

; t

�

) 2 �Z

T

e

with t

�

> 0 , whene �

n

= �

+

n

[ �

�

n

. We always identify the

hain � with its parametrization � : [0; t

�

℄ ! [a; b℄ and with the graph of this

parametrization, a subset of Z

T

e

. Note that several di�erent hains an pass over

one and the same jump urve � 2 J

n

.

For hains � and � we write � � � if the starting points (x; 0) of � and (y; 0)

of � satisfy x � y. If the graphs � and � are not disjoint, we all the point

(x

0

; t

0

) 2 � \ � with

t

0

= minft j (x; t) 2 � \ �g

the point of intersetion of � and �. The onstrution of S

n

in Set. 2 implies that

two hains oinide for t � t

0

, hene they have at most one point of intersetion.

De�nition 5.3 For a hain � we de�ne the strength j�j : [0; t

�

℄ ! [0;1) as

follows: Let 0 < t

1

< : : : t

m�1

< T

e

with m � 1 be the times, where intersetions of

hains our, and let t

m

= T

e

. For every hain � 2 �

n

we set

j�j(t) = j[S

(0)

n

℄(�(0))j; 0 � t < t

1

: (5.2)

Let 1 � i � m � 1 and assume that j�j(t) is de�ned for every hain � and for

every 0 � t < min(t

�

; t

i

). Assume that the point (x; t

i

) belongs to the graphs of the

hains �

1

; : : : ; �

k

2 �

+

n

and �

1

; : : : ; �

l

2 �

�

n

, and let

h =

k

X

j=1

j�

j

j(t

i

�)�

l

X

j=1

j�

j

j(t

i

�) : (5.3)

If h � 0 hoose h

j

satisfying

0 � h

j

� j�

j

j(t

i

�);

k

X

j=1

h

j

= h (5.4)
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and de�ne

j�

j

j(t) = h

j

for t

i

� t < min(t

i+1

; t

�

j

); j = 1; : : : ; k;

j�

j

j(t) = 0 for t

i

� t < min(t

i+1

; t

�

j

); j = 1; : : : ; l:

If h < 0 hoose h

j

satisfying

0 � h

j

� j�

j

j(t

i

�);

k

X

j=1

h

j

= jhj (5.5)

and de�ne

j�

j

j(t) = 0 for t

i

� t < min(t

i+1

; t

�

j

); j = 1; : : : ; k;

j�

j

j(t) = h

j

for t

i

� t < min(t

i+1

; t

�

j

); j = 1; : : : ; l:

Lemma 5.4 (i) The strength is a dereasing funtion satisfying

0 � j�j(t) � j�j(0) = j[S

(0)

n

℄(�(0))j :

(ii) Let (x; t) belong to the graphs of the hains �

1

; : : : ; �

k

2 �

+

n

and �

1

; : : : ; �

l

2

�

�

n

. Then

[S

n

℄(x; t) =

k

X

j=1

j�

j

j(t)�

l

X

j=1

j�

j

j(t): (5.6)

(iii) Moreover, either j�

j

j(t) = 0 for j = 1; : : : ; k or j�

j

j(t) = 0 for j = 1; : : : ; l.

Proof: (i) follows immediately from De�nition 5.3. To verify (ii) let 0 < t

1

< : : : <

t

m�1

be the intersetion times of hains. Let (x; t) with t > 0 belong to the graph

of a jump urve � 2 J

n

. If t < t

1

then � starts at the line segment (a; b) � f0g,

and exatly one hain � passes over �. The jump urve � belongs to �

+

n

or to �

�

n

,

respetively, if a < �(0) = �(0) <  or if  < �(0) < b, respetively. Sine S

(0)

n

is

inreasing on (a; ) and dereasing on (; b), we thus obtain from (5.2)

[S

n

℄(x; t) = [S

(0)

n

℄(�(0)) =

(

j�(t)j; if � 2 �

+

n

;

�j�(t)j; if � 2 �

�

n

:

This proves (5.6) for t < t

1

. Assume next that t

i+1

> t > t

i

and that (5.6) holds in

Z

t

i

. It follows that the point (�(t

i

); t

i

) belongs to the graph of �. If it is the starting

point of � then there are jump urves �

1

� �

2

� : : : � �

m

2 J

n

whih all end at

(�(t

i

); t

i

). If (�(t

i

); t

i

) is not the starting point of � we an still onsider it as the

end point of the part of � in the set Z

t

i

. We denote this part by �

1

. In this ase

we have m = 1. The sets of hains �

1

; : : : ; �

k

2 �

+

n

and �

1

; : : : ; �

l

2 �

�

n

passing

over (x; t) an be partitioned into subsets of hains passing over �

1

; : : : ; �

m

, and

every hain passing over one of �

1

; : : : ; �

m

also passes over (x; t). On the one hand,
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if �

1

is the leftmost of the jump urves �

1

; : : : ; �

m

and �

m

the rightmost, then our

onstrution of S

n

in Set. 2 implies

[S

n

℄(x; t) = [S

n

℄(�) = S

n

(�

m

+)� S

n

(�

1

�) =

m

X

j=1

[S

n

℄(�

j

): (5.7)

On the other hand, by our assumption we have

m

X

j=1

[S

n

℄(�

j

) =

k

X

p=1

j�

p

j(t

i

�)�

l

X

q=1

j�

q

j(t

i

�) =

k

X

p=1

j�

p

j(t)�

l

X

q=1

j�

q

j(t);

where we used (5.3) { (5.5) to get the last equality sign. This equation and (5.7)

together imply (5.6).

(iii) is an immediate onsequene of De�nition 5.3. This ompletes the proof of

the lemma.

It follows from statements (i) and (ii) of this lemma that

[S

n

℄

�

(x; t) =

X

�2�

�

n

�(t)=x

j�j(t): (5.8)

Thus, De�nition 5.1 yields for every measurable set V � Z

T

e

with harateristi

funtion �

V

that

�

�

n

(V ) =

X

�2�

�

n

Z

�

�

V

(�(t); t)j�j(t)n

0

ds =

X

�2�

�

n

Z

T

e

0

�

V

(�(t); t)j�j(t)dt ; (5.9)

where we used that n

0

ds = dt, and extended the funtion j�j from the domain

[0; t

�

℄ to [0; T

e

℄ by zero. Consequently, the measure �

+

n

vanishes on any set, whih

is not interseted by hains from �

+

n

, and �

�

n

vanishes on any set not interseted

by hains from �

�

n

. (4.5) and (5.6) imply that the jump urve � 2 J

n

has positive

slope if only hains from �

+

n

pass over �, and negative slope if only hains from �

�

n

pass over �. In partiular, hains from �

+

n

have positive slope until they interset

a hain from �

�

n

, and vie versa.

There is at most one urve over whih hains both from �

+

n

and �

�

n

pass.

Namely, let �

n

be the maximal hain from �

+

n

, i.e. the hain �

n

2 �

+

n

satisfying

� � �

n

for all � 2 �

+

n

, and let

^

�

n

be the minimal hain from �

�

n

. For all � 2 �

+

n

,

all � 2 �

�

n

and all t from the ommon domain of de�nition we then have

�(t) � �

n

(t) �

^

�

n

(t) � �(t);

hene to the left of �

n

there are only hains from �

+

n

, and to the right of

^

�

n

there

are only hains from �

�

n

. Let (x

0

; t

0

) be the point of intersetion of �

n

and

^

�

n

.

Both hains oinide from the point of intersetion on. The jump urves, whih
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ompose the ommon part of �

n

and

^

�

n

are the only ones over whih hains both

from �

+

n

and �

�

n

pass.

In the following the separation urve given by the graph of a Lipshitz on-

tinuous funtion

! : [0; t

!

℄! [a; b℄:

plays an important role. To de�ne this funtion note that (4.5) implies that the

sequene f�

n

: [0; t

�

n

℄! [a; b℄g

n

of parametrizations is uniformly Lipshitz ontin-

uous. Therefore we an selet a subsequene of f�

n

g

n

; again denoted by f�

n

g

n

,

whih onverges uniformly to a Lipshitz ontinuous funtion, whih we take to be

!.

Heneforth we go over to this subsequene and, for example, instead of using the

original sequenes we always work with the orresponding subsequenes of f�

n

g

n

,

f�

�

n

g

n

, whih we again denote by the same symbols.

Lemma 5.5 The set

~

G satis�es

~

G � !.

Proof: Let 


1

be the set of all points of Z

T

e

to the left of !, let 


2

� Z

T

e

be the

set of all points to the right of ! and let (x; t) 2 


1

. Sine 


1

is open, (x; t) has

distane R > 0 to !. Therefore, beause �

n

onverges uniformly to !, there is n

0

suh that (x; t) lies to the left of �

n

and has distane � R=2 to �

n

for all n � n

0

.

Consequently, for all r < R=2 and n � n

0

the ball B

r

(x; t) is not interseted by

hains from �

�

n

, hene by (5.1)

�

�

n

(B

r

(x; t)) �M

2

�

�

n

(B

r

(x; t)) = 0:

This ontradits (4.13) for every Æ > 0, hene (x; t) =2

~

G

Æ

, thene 


1

\

~

G

Æ

= ; for

all Æ > 0. This implies that 


1

\

~

G = 


1

\

S

Æ>0

~

G

Æ

= ;. In the same way it is

shown that 


2

\

~

G = ;. Sine Z

T

e

= 


1

[ ! [ 


2

it follows

~

G � !. The lemma is

proven.

In the proof of Proposition 4.9 we need some auxiliary lemmas, whih we state and

prove now. To this end we need some more de�nitions and notations:

For a hain � 2 �

n

the strength j�j is a dereasing funtion. The funtion �

�

is obtained from � by utting the \tail" where j�j is small: If � is a given number

with 0 < � � 1 let �

�

be the restrition

�

�

= �

j

[0;t

�

�
)

;

where t

�

�

= supft j j�j(t) � �j�j(0)g. Clearly, this de�nition implies for all t from

the domain of de�nition of �

�

that

j�

�

j(t) � �j�

�

j(0) = �j[S

(0)

n

℄(�(0))j : (5.10)

The measure �

+

n

is \generated" by the hains in �

+

n

. We next de�ne measures

generated by subsets of �

+

n

. To this end let

P : R

2

! R; P (x; t) = t
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be the projetion to the t{axis, let � � �

+

n

and let V � Z

T

e

be a �

+

n

{measurable

set. The Radon measure �

+

�;�

is de�ned by

�

+

�;�

(V ) =

X

�2�

Z

P (�

�

\V )

j�

�

j(t) dt : (5.11)

Of ourse, this measure satis�es 0 � �

+

�;�

� �

+

n

.

Finally, we denote the Lebesgue measure of the one-dimensional set P (�

�

\ V )

by measP (�

�

\ V ).

The �rst auxiliary lemma is

Lemma 5.6 Let L > 0, let � � �

+

n

and let V be a �nite union of balls suh that

measP (�

�

\ V ) � L for all � 2 � . Then

�

+

�;�

(Z

T

e

) �

T

e

L�

�

+

�;�

(V ):

Proof:

�

+

�;�

(Z

T

e

) =

X

�2�

Z

P (�

�

)

j�

�

j(t)dt �

X

�2�

T

e

j�

�

j(0) �

X

�2�

T

e

L

Z

P (�

�

\V )

j�

�

j(0)dt

�

T

e

L�

X

�2�

Z

P (�

�

\V )

j�

�

j(t)dt =

T

e

L�

�

+

�;�

(V ):

Lemma 5.7 Let V be a �nite union of balls and assume that

�

+

n

(V ) � 3#

with # > 0. Let L =

#

2

, � =

#

2T

e

, and let � be the set of all � 2 �

+

n

suh that

measP (�

�

\ V ) � L. Then

�

+

�;�

(V ) � #:

Proof: Every � 2 �

+

n

is a omposition of �

�

and of a urve �̂, where �̂ satis�es

j�̂j(t) � �j�j(0) for all t from the domain of �̂. Thus, with the de�nition of �

+

�;�

(V )

in (5.11),

�

+

n

(V ) =

X

�2�

+

n

Z

P (�\V )

j�j(t)dt (5.12)

= �

+

�;�

(V ) +

X

�2�

+

n

n�

Z

P (�

�

\V )

j�

�

j(t)dt+

X

�2�

+

n

Z

P (�̂\V )

j�̂j(t)dt

Now

X

�2�

+

n

n�

Z

P (�

�

\V )

j�

�

j(t)dt �

X

�2�

+

n

n�

Z

P (�

�

\V )

j�j(0)dt (5.13)

� L

X

�2�

+

n

j[S

(0)

n

℄(�(0))j � L varS

(0)

n

� 2L = # ;
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where we used that P (�

�

\ V ) < L for all � 2 �

+

n

n�. Also,

X

�2�

+

n

Z

P (�̂\V )

j�̂j(t)dt �

X

�2�

+

n

Z

P (�̂\V )

�j�j(0)dt (5.14)

� T

e

�

X

�2�

+

n

j[S

(0)

n

℄(�(0))j � T

e

� varS

(0)

n

� 2T

e

� = # ;

The statement of the lemma follows from (5.12) { (5.14).

Lemma 5.8 For every ball B(z) with enter z 2 ! there is a number n

0

suh that

for all n � n

0

the following holds: Let �; � 2 �

+

n

with � � �, let [0; t

�

�

℄ be the

domain of �

�

and assume that B(z) � Z

t

�

�

. Then

measP (�

�

\ B(z)) �

q

1 + 4V

2

2

measP (�

�

\ B(z)): (5.15)

V

2

is the onstant from (4.5).

Proof: I.) First we show that for n

0

suÆiently large we an assume that the hain

� 2 �

+

n

and the enter z = (~x;

~

t) 2 ! of B(z) satisfy

�(

~

t) < ~x : (5.16)

For, ! is the uniform limit of a sequene of hains f�

n

g

n

satisfying � � �

n

for all

� 2 �

+

n

. It thus follows that to � > 0 there is n

0

suh that for all n � n

0

and all

(x; t) 2 !

�(t) � �

n

(t) < x + �:

If (5.16) does not hold we therefore have

~x � �(

~

t) < ~x + �:

Using that j

d�

dt

j � V

2

, by (4.5), we onlude from this inequality by a simple

geometrial onsideration that if � is less than the radius r of the ball B(z) then

(�(t); t) 2 B(z) for all t 2 U = (

~

t� h;

~

t+ h) with h = V

2

(1 + V

2

2

)

�1

(r � �). Thus,

U � P (� \ B(z)). Now we deform the urve � in this neighborhood U of

~

t suh

that (5.16) is satis�ed by the deformed urve. From the value of h given above

we immediately see that if we hoose � <

V

2

2

1+2V

2

2

r this an be done suh that the

deformed urve satis�es

1: �(

~

t) < ~x;

2: j

d�

dt

j � 2V

2

;

3: (�(t); t) 2 B(z) for all t 2 U:

(5.17)

The third property implies that P (� \ B(z)) is not hanged by the deformation.

The same argument also shows that we an deform �, if neessary, suh that the
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deformed urves � and � satisfy � � �, with P (� \ B(z)) unhanged. Therefore,

sine both sides of (5.15) are not hanged by the deformation, it suÆes to prove

this inequality for the deformed urves satisfying (5.16) and (5.17). The number

n

0

only depends on V

2

2

(1+2V

2

2

)

�1

r, hene it only depends on the radius r of B(z).

II.) We assume that (5.16) holds. Let K be a onneted omponent of �

�

\ B(z),

and let �

K

be the subset of all z

�

= (x

�

; t

�

) 2 �

�

\B(z) with the property that the

radius vetor from the enter z to z

�

intersets K. The requirement B(z) � Z

t

�

�

implies that every onneted omponent K is an ar whih starts and ends at the

boundary �B(z). This fat, (5.16) and � � � together imply that every radius

vetor ending at a point of �

�

\ B(z) intersets �

�

, hene

[

K

�

K

= �

�

\ B(z) ; (5.18)

where the union is over all onneted omponents of �

�

\ B(z). For every K the

set P (K) is an open interval and we have

X

K

measP (K) = measP (�

�

\ B(z)): (5.19)

Claim: We have

measP (�

K

) �

q

1 + 4V

2

2

measP (K): (5.20)

To prove this laim �x K and assume that P (K) = (t

1

; t

2

). Sine (5.20) is obvious

if �

K

is empty, we also assume that �

K

6= ;. Sine the endpoints z

1

= (�(t

1

); t

1

)

and z

2

= (�(t

2

); t

2

) of the ar K are boundary points of B(z), it follows that the

line segment d onneting z

1

to z

2

is a seant to the irle �B(z). We denote by

B

l

(z) that part of B(z), whih lies to the left of d. From (5.17) we infer that the

ar K is ontained in the parallelogram

Q = f(x; t) 2 Z

t

�

�

j jx� �(t

1

)j � 2V

2

(t� t

1

); jx� �(t

2

)j � 2V

2

(t

2

� t)g;

whose diagonal is d. We denote by Q

r

the triangular region of Q whih lies to the

right of d.

The nonempty set �

K

onsists of all points of �

�

\ B(z), whose straight on-

netion to z intersets K. Therefore �

K

must be separated from z by the ar K.

Sine z satis�es (5.16) and K is a subar of �, this an only be if �

K

is ontained

in the part of B(z) to the left of K and z is ontained in the part of B(z) to the

right. This implies

�

K

� B

l

(z) [Q

r

;

whene

P (�

K

) � P (B

l

(z)) [ P (Q

r

) = P (B

l

(z)): (5.21)

To obtain the last equality we used that P (Q

r

) = (t

1

; t

2

) � P (B

l

(z)).

Thus, to estimate measP (�

K

) it suÆes to estimate measP (B

l

(z)). To this

end we observe that the enter z of B(z) lies on the line g, whih is orthogonal to
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the seant d of �B(z) and intersets d in the middle. Sine z is ontained in the

part of B(z) to the right of K, it follows that z belongs to that half line of g whih

is bounded at the left by the intersetion of g with the ar K. From K � Q we

thus onlude that z also belongs to the half line g

r

of g, whose left endpoint is

the point of intersetion z

g

of g with the left boundary of the parallelogram Q. By

B(z

g

) we denote the ball, whose boundary �B(z

g

) passes through the endpoints z

1

and z

2

of K and thus has seant d. It is immediately seen that z 2 g

r

implies

B

l

(z) � B

l

(z

g

):

From this relation and from (5.21) we onlude

measP (�

K

) � measP (B

l

(z

g

)) � measP (B(z

g

)) = 2r

g

; (5.22)

where r

g

is the radius of B(z

g

). To estimate this radius we use that z

g

= (x

g

; t

g

) 2

�Q. This implies that if t

0

denotes that one of the numbers t

1

; t

2

, whih is loser

to t

g

, then

jt

g

� t

0

j �

1

2

(t

2

� t

1

);

jx

g

� �(t

0

)j � 2V

2

jt

g

� t

0

j � V

2

(t

2

� t

1

):

Thus,

r

g

= j(x

g

; t

g

)� (�(t

0

); t

0

)j �

1

2

q

1 + 4V

2

2

(t

2

� t

1

) =

1

2

q

1 + 4V

2

2

measP (K);

where we used that P (K) = (t

1

; t

2

). This estimate and (5.22) together yield (5.20)

and prove the laim.

To �nish the proof of the lemma we observe that (5.18) yields P (�

�

\B(z)) =

S

K

P (�

K

). Together with (5.20) and (5.19) we thus infer

measP (�

�

\ B(z)) �

X

K

measP (�

K

) �

q

1 + 4V

2

2

X

K

measP (K)

=

q

1 + 4V

2

2

measP (�

�

\ B(z)):

The proof is omplete.

Corollary 5.9 For every �nite union V =

S

k

i=1

B(z

i

) of balls B(z

i

) 2 G

Æ�

there

is a number n

0

suh that for all n � n

0

the following holds: Let �; � 2 �

+

n

with

� � �, let [0; t

�

�

℄ be the domain of �

�

and assume that V � Z

t

�

�

. Then

measP (�

�

\ V ) � N

q

1 + 4V

2

2

measP (�

�

\ V );

where N is the number of losure disjointed subfamilies G

(1)

Æ�

; : : : ;G

(N)

Æ�

of G

Æ�

.
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Proof: G

Æ�

onsists of balls with enter in

~

G. Sine

~

G � !, by Lemma 5.5, all

balls in G

Æ�

have enter on !. Therefore we an apply Lemma 5.8 and hoose n

0

large enough suh that the estimate (5.15) holds for all balls B(z

i

), i = 1; : : : ; k.

We group the balls B(z

1

); : : : ; B(z

k

) into N subfamilies fB

ij

g

i

� G

(j)

Æ�

of disjoint

balls and remark that if B

ij

\B

lj

= ; then also P (�

�

\B

ij

)\P (�

�

\B

lj

) = ;, sine

P is a bijetive mapping from the graph of the urve �

�

to [0;1). From (5.15) we

thus onlude

measP (�

�

\ V ) �

k

X

i=1

measP (�

�

\B(z

i

))

�

q

1 + 4V

2

2

k

X

i=1

measP (�

�

\B(z

i

)) =

q

1 + 4V

2

2

X

j

X

i

measP (�

�

\B

ij

)

�

q

1 + 4V

2

2

X

j

measP (�

�

\ V ) = N

q

1 + 4V

2

2

measP (�

�

\ V ):

Lemma 5.10 Let � 2 �

+

n

and let � > 0. Assume that V =

S

k

i=1

B

i

is a union of

balls whose radii are all bounded by � and whih satisfy �

�

\B

i

6= ; for i = 1; : : : ; k.

Then

�

�

n

(V ) � 2

s

1 +

1

V

2

1

�; (5.23)

where V

1

is the onstant from (4.5).

Proof: For � 2 �

�

n

let t

�

= maxf0 � t � T

e

j j�j(t) > 0g, and let �

�

= �

j

[0;t

�

℄

.

Then (5.9) implies

�

�

n

(V ) =

X

�2�

�

n

Z

P (�

�

\V )

j�

�

j(t)dt �

X

�2�

�

n

measP (�

�

\ V )j�j(0) (5.24)

� max

�2�

�

n

measP (�

�

\ V )

X

�2�

�

n

j[S

(0)

n

℄(�(0))j � max

�2�

�

n

measP (�

�

\ V ):

Here we used

P

�2�

�

n

j[S

(0)

n

℄(�(0))j = jS

(0)

n

(b)� S

(0)

n

()j � 1.

It remains to estimate measP (�

�

\V ). To this end note that relation (5.10) implies

j�

�

j(t) � �j�j(0) > 0 for all t from the domain of �

�

. By Lemma 5.4 (iii) and (5.8)

we thus have [S

n

℄ = [S

n

℄

+

> 0 along �

�

. Equation (4.5) therefore yields

d�

�

dt

(t) � V

1

> 0 (5.25)

for all t from the domain of �

�

. By the same reasoning we obtain

d�

�

dt

(t) � �V

1

< 0 (5.26)
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for all t from the domain of �

�

. Finally, observe that �

�

\ B

i

6= ;, i = 1; : : : ; k

implies

V � W

�

= fz 2 Z

T

e

j dist(z; �

�

) < 2�g;

hene

measP (�

�

\ V ) � measP (�

�

\W

�

) � t

2

� t

1

; (5.27)

with t

2

= supP (�

�

\W

�

), t

1

= inf P (�

�

\W

�

). Using (5.25) and (5.26) we see by

some geometrial onsiderations, whih we leave to the reader, that

t

2

� t

1

� 2

s

1 +

1

V

2

1

�:

Combining this inequality with (5.24) and (5.27) yields (5.23).

Proof of Proposition 4.9: We assume that the statement of this proposition for

the measure �

+

n

does not hold. Then there are numbers Æ; # > 0 suh that for all

�

0

> 0 there is � � �

0

and a �nite olletion B

1

; : : : ; B

k

2 G

Æ�

suh that for every

positive integer k

0

there is n � k

0

with

�

+

n

�

k

[

i=1

B

i

�

> #: (5.28)

In the following we write V =

S

k

i=1

B

i

. We aim to prove an estimate of the form

�

�

n

(V ) < K�, whih together with the de�nition of G

Æ�

would ontradit (5.28)

when � is small. However, beause of the unknown loation of the balls B

i

the

proof of suh an estimate seems to be diÆult. Our strategy for the proof therefore

is to onstrut a hain �̂ 2 �

+

n

and a subfamily of the balls from B

1

; : : : ; B

k

for

whih an estimate analogous to (5.28) holds and for whih every ball intersets �̂.

For suh a subfamily of balls lined up along a urve �̂ with positive slope we have

already proved an estimate for �

�

n

in Lemma 5.10. The desired estimate for �

�

n

is

immediately obtained from that estimate via (5.1).

Therefore our �rst goal is to verify the following

Claim 1: If (5.28) holds there is a onstant � > 0 with the following property: For

every � there is n

0

suh that for all n � max(k

0

; n

0

) there is a subfamily B

0

1

; : : : ; B

0

m

of B

1

; : : : ; B

k

and a hain �̂ 2 �

+

n

with B

0

j

\ �̂

�

6= ;, j = 1; : : : ; m, and with

�

+

n

�

m

[

j=1

B

0

j

�

� � > 0: (5.29)

To prove this laim we �rst remember (5.1) and onlude from (5.28)

�

+

n

(V ) �

#

M

2

:

Let

L =

#

6M

2

; � =

#

6M

2

T

e

; (5.30)
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and let � be the set of all � 2 �

+

n

suh that measP (�

�

\V ) � L. With Lemma 5.7

we obtain

�

+

�;�

(V ) �

#

3M

2

: (5.31)

Let p be the smallest integer with

L

2

p � T

e

and set h = T

e

=p. Then

0 = t

0

< t

1

< : : : < t

p

= T

e

with t

i

= ih is a partition of the interval [0; T

e

℄ into p subintervals of length

h �

L

2

: (5.32)

For � 2 � let [0; t

�

�

) be the domain of �

�

and for q = 1; : : : ; p let

�

q

= f� 2 � j t

q�1

< t

�

�

� t

q

g:

Then � =

S

p

q=1

�

q

, hene (5.31) yields

�

+

�

1

;�

(V ) + : : :+ �

+

�

p

;�

(V ) = �

+

�;�

(V ) �

#

3M

2

:

Thus, there is at least one q with

�

+

�

q

;�

(V ) �

#

3pM

2

: (5.33)

For every � and n we �x suh a q. Let �̂ be the minimal element from �

q

, i.e.

�̂ � � for all � 2 �

q

. Also, let B

0

1

; : : : ; B

0

m

be the subfamily of those balls from

B

1

; : : : ; B

k

whih are ontained in the set Z

t

q�1

and whih are interseted by �̂

�

. We

set V

0

=

S

m

j=1

B

0

j

. Finally, let V

q

be the union of those balls from B

1

; : : : ; B

k

whih

are not ontained in Z

t

q�1

. Sine all balls belong to G

Æ�

their radii are bounded by

�. Therefore

V

q

� f(x; t) 2 Z

T

e

j t � t

q�1

� 2�g:

From P (�̂

�

) = [0; t

�̂

�

℄ � [0; t

q

℄ we thus obtain

P (�̂

�

\ V

q

) = P (�̂

�

) \ P (V

q

) � (t

q�1

� 2�; t

q

);

hene, together with (5.32)

measP (�̂

�

\ V

q

) � h+ 2� �

L

2

+ 2�: (5.34)

We an assume that

� <

L

8

: (5.35)
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Sine �̂ 2 �, we have measP (�̂

�

\ V ) � L. Moreover, �̂

�

\ V = �̂

�

\ (V

0

[ V

q

),

sine V

0

[ V

q

di�ers from V at most by a union of balls whih are not interseted

by �̂

�

. Together with (5.34) and (5.35) we thus obtain

L � measP (�̂

�

\ V ) = measP (�̂

�

\ (V

0

[ V

q

))

� measP (�̂

�

\ V

0

) + measP (�̂

�

\ V

q

) � measP (�̂

�

\ V

0

) +

3

4

L;

hene

measP (�̂

�

\ V

0

) �

1

4

L:

We an now apply Corollary 5.9. Sine V

0

is a union of balls in G

Æ�

and satis�es

V

0

� Z

t

q�1

, sine the interval [0; t

q�1

℄ belongs to the domains of all � 2 �

q

and

sine �̂ is the minimal element in �

q

it follows from this orollary that there is

n

0

= n

0

(�) suh that for all n � n

0

and all � 2 �

q

L

4

� measP (�̂

�

\ V

0

) � N

q

1 + 4V

2

2

measP (�

�

\ V

0

):

This inequality shows that all � 2 �

q

satisfy the assumptions of Lemma 5.6. To-

gether with (5.33) we thus onlude from this lemma that

#

3pM

2

� �

+

�

q

;�

(V ) � �

+

�

q

;�

(Z

T

e

) �

T

e

L

0

�

�

+

�

q

;�

(V

0

); (5.36)

where L

0

= L(4N

p

1 + 4V

2

2

)

�1

. Relation (5.1) implies

�

+

�

q

;�

(V

0

) � �

+

n

(V

0

) �

1

M

1

�

+

n

(V

0

):

This estimate and (5.36) together yield (5.29), where the onstant � has the value

� =

1

12

�M

1

#L

M

2

p

1 + 4V

2

2

NT

e

p

> 0:

� and L are given in (5.30). This proves Claim 1.

Claim 2: For all � > 0 there is n

1

suh that for all n � n

1

�

+

n

�

m

[

j=1

B

0

j

�

� 2M

2

N

1

Æ

s

1 +

1

V

2

1

�: (5.37)

To verify this laim note that all balls B

0

j

belong to the family G

Æ�

and thus satisfy

(4.13), by de�nition of this family. Hene, there is n

1

with

�

+

n

(B

0

j

) �

1

Æ

�

�

n

(B

0

j

); (5.38)
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for all n � n

1

and all j = 1; : : : ; m. As in the proof of Corollary 5.9 we group the

balls B

0

1

; : : : ; B

0

m

into N subfamilies fB

0

ij

g

i

� G

(j)

Æ�

of disjoint balls, and obtain from

(5.38) for n � n

1

that

�

+

n

�

m

[

j=1

B

0

j

�

�

m

X

j=1

�

+

n

(B

0

j

) �

1

Æ

m

X

j=1

�

�

n

(B

0

j

) (5.39)

=

1

Æ

X

j

X

i

�

�

n

(B

0

ij

) �

1

Æ

X

j

�

�

n

(V

0

) =

N

Æ

�

�

n

(V

0

):

Sine V

0

=

S

m

j=1

B

0

j

is a union of balls whose radii are all bounded by � and whih

satisfy �̂

�

\ B

0

j

6= ; for j = 1; : : : ; m, we an apply Lemma 5.10. Together with

(5.1) we disover that

�

�

n

(V

0

) � M

2

�

�

n

(V

0

) � 2M

2

s

1 +

1

V

2

1

�:

Claim 2 follows by insertion of this estimate into (5.39).

End of the proof of Proposition 4.9: Choose � small enough suh that the right hand

side of (5.37) is less than the onstant � in (5.29). Then for n � max(n

0

; k

0

; n

1

)

the inequalities (5.29) and (5.37) are in obvious ontradition. Consequently, our

hypotheses must be false and the inequality stated in Proposition 4.9 for �

+

n

must

hold. The inequality for �

�

n

is proved in the same way by interhanging the roles

of �

+

n

and �

�

n

and by applying the seond inequality in (4.13), whih has not yet

been used. The proof is omplete.

A Appendix

Here we state the version of the Besiovith Covering Theorem whih we use in

Set. 4 to de�ne the families E

Æ

, F

Æ

, G

Æ�

and the sets E, F , G.

De�nition A.1 Let B be a family of open sets. B is alled losure disjointed if

every pair of sets V

1

; V

2

2 B with V

1

6= V

2

satis�es V

1

\ V

2

= ;.

The following theorem is proved in exatly the same way as the version of the

Besiovith Covering Theorem for losed balls given in [13, pp. 30{35℄, [29, pp.

9{12℄.

Theorem A.2 (Besiovith Covering Theorem) Let B be a family of open

balls in R

n

with uniformly bounded radii. There are losure disjointed, ountable

subfamilies B

(1)

; : : : ;B

(N)

of B, with N > 1 only depending on the dimension n,

suh that if A is the set of enters of balls in B then

A �

N

[

i=1

[

B2B

(i)

B:
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