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Abstra
t

In this arti
le an initial-boundary value problem modeling the evolution

of a surfa
e of strain dis
ontinuity driven by 
on�gurational for
es is stud-

ied. Starting from a sharp interfa
e model the problem is transformed into

a problem with an evolution equation for the order parameter, whi
h has

similarities with a hyperboli
 balan
e law. It is proved that in one spa
e

dimension global solutions exist. The method of transformation suggests

that solutions of this evolution equation are approximated by solutions of

a vis
ous Hamilton-Ja
obi equation. If the approximation is valid then the

initial-boundary value problem to this Hamilton-Ja
obi eqution is a phase

�eld model regularizing the sharp interfa
e model.

1 Introdu
tion and statement of main results

Changes of the morphology of material stru
ture are often 
aused by 
on�gura-

tional for
es. In 
rystalline materials for example, dis
ontinuous 
hanges of the


rystal stru
ture generate 
on�gurational for
es, whi
h 
an move the dis
ontinuity

surfa
e. This is observed in superalloys, whi
h may exist in two di�erent phases.

In the two phases the latti
e 
onstants of the 
rystal latti
es di�er slightly, re-

sulting in a strain dis
ontinuity at the phase interfa
e. The 
on�gurational for
es

generated by this dis
ontinuity together with di�usion lead to the evolution of the

mi
rostru
ture generated by phase 
hanges, 
f. [14, 22, 27, 28, 19℄. Another exam-

ple for a 
on�gurational for
e moving dis
ontinuities of the material stru
ture is

the Pea
h-K�ohler for
e 
f. [18, 24℄, whi
h drives the glide of dislo
ations and leads

to plasti
 deformation.

In this arti
le we study an initial-boundary value problem whi
h models the

evolution of a surfa
e of strain dis
ontinuity driven by 
on�gurational for
es. This

problem has been thoroughly formulated in [1℄; other dis
ussions of this problem

and appli
ations in me
hani
s and material s
ien
es 
an be found in [14, 23, 25,
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26, 27℄, for example. The theory of 
on�gurational for
es and, more generally,


on�gurational me
hani
s is an intensively studied �eld with a large number of

publi
ations; we only mention here [4, 5, 12, 16, 20, 21℄.

The goal of our investigations is twofold. In the introdu
tion we set the initial-

boundary value problem into the general 
ontext of phase transformation models

and 
ompare it to other su
h models. In the main part of our investigations we

study the mathemati
al stru
ture and show that in one spa
e dimension the prob-

lem is well posed and has solutions. We explain this more pre
isely:

The model formulated in [1℄ is of sharp interfa
e type. In an attempt to avoid

the diÆ
ulties 
onne
ted with sharp interfa
e models it has been dis
overed in

[2℄ that this model 
an be transformed rigorously into an initial-boundary value

problem with a partial di�erential equation governing the evolution of an order

parameter 
hara
terising the di�erent phases. In the following we 
all this partial

di�erential equation the evolution equation for the order parameter. This is an

unusual equation, whi
h has similarities with a s
alar hyperboli
 balan
e law. In

fa
t, in [1℄ the surfa
es of strain dis
ontinuity are 
alled material sho
ks. Solutions

of the sharp interfa
e model are also solutions of the new initial-boundary value

problem, but the new problem allows for more general solutions with the order

parameter belonging to the spa
e BV of fun
tions with bounded variation.

The numeri
al solution of initial-boundary value problems, whi
h 
an have su
h

general dis
ontinuous solutions, presents diÆ
ulties. Be
ause of this one often

prefers phase �eld models with smooth solutions. The results in [2℄ suggest that

the initial-boundary value problem 
an be approximated by a problem with the

evolution equation repla
ed by a well known Hamilton-Ja
obi transport equation,

whi
h has smooth solutions. If this approximation is valid then the initial-boundary

value problem with the Hamilton-Ja
obi equation is a phase �eld model regularising

the sharp interfa
e model.

In this arti
le we study the initial-boundary value problem with the evolution

equation for the order parameter and show that solutions exist to several 
lasses of

initial data, however only in one spa
e dimension. Some of our methods used in the

proof are similar to methods used in the theory of hyperboli
 
onservation laws,

but in the �nal steps, where we use weak 
onvergen
e of measures to 
onstru
t

solutions, 
ompletely new ideas are needed.

We next state the initial-boundary value problem with the evolution equation

for the order parameter and dis
uss the 
onne
tion to the original sharp interfa
e

model. This motivates the form of the evolution equation and shows how the

Hamilton-Ja
obi equation arises. We also relate our model to the well known

models of Allen-Cahn and Cahn-Hilliard. Finally, our main mathemati
al existen
e

results proved in Se
tions 2 { 5 are stated at the end of the introdu
tion.

Let 
 be an open bounded set in IR

3

. It represents the material points of a

solid body. The material of this body 
an exist in two di�erent phases. We denote

by 
(t) the subset of 
, whi
h 
onsists of all points, at whi
h at time t the material

is in the matrix phase. 


0

(t) denotes the subset of all points, at whi
h at time t the

material is in the se
ond phase. For 
 =

S

t�0

(
(t)�ftg) and 


0

=

S

t�0

(


0

(t)�ftg)
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we thus have


 [ 


0

= 
� [0;1); 
 \ 


0

= ;:

We set

~
 = 
 \ 
 \ 


0

; ~
(t) = fx 2 
 j (x; t) 2 ~
g:

~
 is the interfa
e between the 
 and 


0

phases. Let S : 
� [0;1)! R denote the


hara
teristi
 fun
tion of the set 


0

, hen
e

S(x; t) =

�

0; (x; t) 2 


1; (x; t) 2 


0

:

S is the order parameter, whi
h 
hara
terizes the 


0

-phase.

We assume that the values whi
h the linear strain tensor would have if the

material would be unstressed di�er between the two phases. The di�eren
e is the

mis�t or transformation strain. ~
(t) is thus a surfa
e of strain dis
ontinuity. It is

assumed that the 
on�gurational for
e generated by the mis�t strain transforms by

some pro
ess the material along ~
(t) from one phase to the other. This leads to an

evolution of the phase interfa
e. The goal is to 
ompute this interfa
e evolution.

The initial-boundary value problem whi
h we use to model this material be-

havior is based on the assumption that only small strains o

ur. The unknowns

are the order parameter S(x; t) 2 R, the displa
ement u(x; t) 2 IR

3

of the material

point x 2 
 at time t, and the Cau
hy stress tensor T (x; t) 2 S

3

. Here S

3

denotes

the set of symmetri
 3� 3{matri
es. These unknowns must satisfy the quasi-stati


equations

�div

x

T (x; t) = b(x; t); (1.1)

T (x; t) = D ("(r

x

u(x; t))� �"S(x; t)) ; (1.2)

jS

t

(x; t)j = 
jdiv

x

C(r

x

u(x; t); S(x; t))� (r

x

u(x; t))

T

b(x; t)j (1.3)

in 
� (0;1) and the boundary and initial 
onditions

u(x; t) = f(x; t); (x; t) 2 �
 � [0;1); (1.4)

S(x; 0) = S

(0)

(x); x 2 
: (1.5)

Moreover, the Clausius-Duhem inequality

�

�t

 ("(r

x

u); S)� div

x

(Tu

t

)� b � u

t

� 0 (1.6)

must hold in 
 � (0;1). Here r

x

u(x; t) denotes the 3 � 3{matrix of �rst order

derivatives of u, the deformation gradient, (r

x

u(x; t))

T

denotes the transposed

matrix and

"(r

x

u(x; t)) =

1

2

�

r

x

u(x; t) + (r

x

u(x; t))

T

�

2 S

3

is the strain tensor. �" 2 S

3

is a given matrix, the mis�t strain, and D : S

3

! S

3

is a linear, symmetri
, positive de�nite matrix, the elasti
ity tensor. Given are the
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volume for
e b : 
� [0;1)! R

3

, the boundary displa
ement f : �
� [0;1)! R

3

and the initial data S

(0)

: 
! IR.

(1.3) is the evolution equation for the order parameter S. In this equation 


is a positive 
onstant and C = C(r

x

u(x; t); S(x; t)) denotes the Eshelby tensor

de�ned by

C(r

x

u(x; t); S(x; t)) =  

�

"(r

x

u(x; t)); S(x; t)

�

I �

�

r

x

u(x; t)

�

T

T (x; t): (1.7)

Here (r

x

u)

T

T denotes the matrix produ
t, I is the unit matrix in S

3

and

 ("; S) =

1

2

�

D("� �"S)

�

� ("� �"S) +  

1

(S) (1.8)

is the free energy. For the fun
tion S de�ned above only the values of  

1

at S = 0

and S = 1 matter. However, as explained next, we also 
onsider order parameters

whi
h vary smoothly between 0 and 1. For  

1

2 C

1

(R; [0;1)) we therefore 
hoose

a double well potential with minima at 0 and 1.

The evolution equation (1.3) must allow for solutions (u; T; S) with S being

the 
hara
teristi
 fun
tion of the set 


0

. For su
h S the derivatives S

t

and S

x

i

are measures. Therefore (1.3) is understood in the sense of measures: We seek

a solution (u; T; S) su
h that S 2 BV

lo


(
 � (0;1);R) and su
h that to the

distributional derivative div

x

C(r

x

u; S) there is a Radon measure � and a �{

measureable fun
tion � : 
� (0;1)! R

3

with j�(x; t)j = 1, � almost everywhere,

satisfying

�� = div

x

C(r

x

u; S)� (r

x

u(x; t))

T

b(x; t):

The measure � is denoted by jdiv

x

C � (r

x

u)

T

bj, and jS

t

j denotes the variation

measure of the measure S

t

. Of 
ourse, this de�nition allows for solutions with

S di�ering from a 
hara
teristi
 fun
tion. Pie
ewise smooth S are allowed, for

example. This 
ompletes the formulation of the initial-boundary value problem.

The sharp interfa
e model. Next we introdu
e the sharp interfa
e model and

explain how the initial-boundary value problem (1.1) { (1.6) is derived from it.

In the sharp interfa
e model the unknowns u; T; S satisfy the equation (1.1)

expressing 
onservation of momentum, the equation (1.2) stating the linear stress-

strain relation, and the boundary and initial 
onditions (1.4), (1.5). Equation

(1.3) is repla
ed by an equation for the normal speed of the phase interfa
e. To

formulate su
h an equation we �rst study the restri
tions imposed by the se
ond

law of thermodynami
s, i.e. by the Clausius-Duhem inequality (1.6).

It is shown in [1, 2℄ that (1.6) holds if and only if at every point x 2 ~
(t) the

dissipation inequality

s(x; t)

�

n(x; t) �

�

C

�

r

x

u(x; t); S(x; t)

��

n(x; t)

�

� 0 (1.9)

is satis�ed, where n(x; t) 2 R

3

denotes a unit normal ve
tor to the interfa
e ~
(t)

oriented su
h that the jump of S at ~
(t) in the dire
tion of n is positive, s(x; t)

is the normal speed of the interfa
e measured positive in the dire
tion of n, and
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[C(r

x

u; S)℄ denotes the jump of the Eshelby tensor a

ross ~
(t) in the dire
tion

of n. This inequality implies that s and n � [C℄n must have the same sign. This

suggests to 
onsider n � [C℄n as driving for
e for the interfa
e and to require s to

be a fun
tion of this 
on�gurational for
e su
h that (1.9) is satis�ed. The simplest

equation guaranteeing this is

s(x; t) [S(x; t)℄ = 
 n(x; t) �

�

C(r

x

u(x; t); S(x; t))

�

n(x; t); (1.10)

with a positive 
onstant 
. By the above de�nitions the jump of S satis�es [S℄ = 1;

this term 
ould thus be dropped. We in
luded it sin
e later we allow for jumps

smaller than one, in whi
h 
ase we need the term.

(1.10) is a 
onstitutive equation for the normal speed of the phase interfa
e.

It has been suggested in [1℄ that (1.1), (1.2), (1.10) and the boundary and initial


onditions (1.4), (1.5) form a 
losed system of equations, whi
h allows to 
ompute

the movement of this interfa
e. This is the sharp interfa
e model.

The derivation of the evolution equation (1.3) from the equation (1.10) for the

normal speed is based on a result proved in [2℄: Assume that (u; T; S) : 
�(0;1)!

R

3

� S

3

� R is a pie
ewise smooth solution of (1.1) and (1.2) with a jump along a

pie
ewise smooth manifold ~
. The fun
tion S 
an vary smoothly away from ~
 and

needs not to be pie
ewise 
onstant. Then if (1.3), (1.6) hold it follows that along

~
 the jump 
ondition (1.10) must be satis�ed, whereas in regions where (u; T; S)

is smooth (1.3), (1.6) redu
e to the Hamilton-Ja
obi transport equation

S

t

(x; t) = �
  

S

("(r

x

u(x; t)); S(x; t))jr

x

S(x; t)j: (1.11)

The ne
essity to 
ombine (1.3) with the Clausius-Duhem inequality (1.6) is seen

here, sin
e from (1.3) alone we 
an only dedu
e that the absolute values of both

sides of the equations (1.10) and (1.11) are equal. (1.6) is thus needed to �x the

signs.

In fa
t, if S is pie
ewise smooth and (u; T; S) solves (1.1) and (1.2), then (1.10)

and (1.11) hold if and only if (1.3) and (1.6) are satis�ed. This 
an be shown by a

slight extension of the investigations in [2℄; for one spa
e dimension it is proved in

Corollary 2.3 in the next se
tion.

It is 
lear that a pie
ewise 
onstant fun
tion S satis�es the transport equation

(1.11) away from the jumps. Consequently, a pie
ewise smooth fun
tion (u; T; S)

with pie
ewise 
onstant S is a solution of the sharp interfa
e model (1.1), (1.2),

(1.10), (1.4), (1.5) if and only if it satis�es the relations (1.1) { (1.6). Therefore,

sin
e (1.3) is well de�ned even if the order parameter S is not pie
ewise 
onstant,

the initial-boundary value problem (1.1) { (1.6) generalizes the sharp interfa
e

model. Moreover, if the order parameter S in the solution is smooth then the

evolution equation (1.3) redu
es to the simpler and well known Hamilton-Ja
obi

equation (1.11). The idea suggests itself to for
e the solution to stay smooth by

repla
ing (1.11) with the equation (1.13) derived below, whi
h is obtained from

the Hamilton-Ja
obi equation by adding a small vis
osity term. The hope is that

when the vis
osity term tends to zero, the order parameter 
onverges to a solution

5



of the initial-boundary value problem (1.1) { (1.6). In this 
ase the Hamilton-

Ja
obi equation with the small vis
osity term 
an be used as a phase �eld model

regularizing the sharp interfa
e model.

Our results on existen
e of solutions of the initial-boundary value problem (1.1)

{ (1.6) in one spa
e dimension 
ontribute to the problem of 
onvergen
e, sin
e one

expe
ts of 
ourse that this 
onvergen
e takes pla
e only when the limit problem

(1.1) { (1.6) has solutions. Still, the problem of 
onvergen
e of solutions of the

model with the Hamilton-Ja
obi equation when the vis
osity tends to zero remains

open.

Comparison to other phase �eld models and properties of the evolution

equation for the order parameter. To 
ompare the model dis
ussed in this

arti
le to other models for phase transformation problems we sket
h the usual

derivation of these phase �eld models, 
f. [8, 14, 10, 3℄: For � � 0 
onsider the

modi�ed free energy

^

 ("(r

x

u); S;r

x

S) =  ("(x; t); S(x; t)) + �

1

2

jr

x

S(x; t)j;

with  de�ned in (1.8). We assume that (u; T; S) is a smooth solution of the

equations (1.1), (1.2). The se
ond law of thermodynami
s requires that (1.6) is

satis�ed with  repla
ed by

^

 . We integrate (1.6) over 
 and employ the Divergen
e

Theorem to obtain

d

dt

Z




^

 ("; S;r

x

S) dx�

Z

�


(Tn) � u

t

d�

x

�

Z




b � u

t

dx � 0: (1.12)

(1.2) yields  

"

= T . From the symmetry of T we thus obtain

^

 

t

=  

"

� "

t

+  

S

S

t

+ �r

x

S � r

x

S

t

= T � r

x

u

t

+  

S

S

t

+ �r

x

S � r

x

S

t

:

We insert this equation into (1.12), use the Divergen
e Theorem, assume a suitable

boundary 
ondition for S and note (1.1) to dedu
e

Z




 

S

S

t

+ �r

x

S � r

x

S

t

dx =

Z




�

 

S

� ��

x

S

�

S

t

dx � 0:

The standard method to ensure that this inequality holds is to postulate

S

t

= �
( 

S

� ��

x

S);

whi
h is an evolution equation for S, the Allen-Cahn equation with terms 
oupling

to the equations (1.1) and (1.2). However, this inequality is as well satis�ed if we

instead postulate

S

t

= �
( 

S

� ��

x

S)jr

x

Sj; (1.13)

whi
h for � = 0 is the Hamilton-Ja
obi equation (1.11). The Allen-Cahn equa-

tion is used when di�usion playes an important role, whereas the Hamilton-Ja
obi

equation is the right equation when the interfa
es are driven by 
on�gurational
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for
es. This is seen from the above investigations. Thus, the indeterminateness in

the standard method allows to formulate phase �eld models for both situations.

The Cahn-Hilliard equation is used when di�usion is the dominating pro
ess

and the order parameter is 
onserved. It is derived in a similar, but slightly more


ompli
ated way than the Allen-Cahn equation. Just as above we 
an modify this

derivation and introdu
e the term jr

x

Sj in the evolution equation. This suggests

that the resulting equation is a model valid when the interfa
es are driven by


on�gurational for
es and the order parameter is 
onserved. We do not dwell on

this question here, but only mention for 
omparison that the model 
onsisting of

the Cahn-Hilliard equation 
oupled to the equations (1.1), (1.2) and related models

are formulated or investigated mathemati
ally in [19, 9, 14, 15, 7, 11℄, for example.

We surmise that solutions of the equations (1.1), (1.2), (1.13) with � > 0 are

smooth and approximate solutions of the system (1.1) { (1.3), (1.6) for � ! 0.

These three equations would thus form a phase �eld model regularizing the sharp

interfa
e model (1.1), (1.2), (1.10).

Of 
ourse, it is not immediately obvious whether it is really ne
essary to add

the term 
��

x

S jr

x

Sj to the Hamilton-Ja
obi equation for getting smooth so-

lutions. Namely, it is tempting to prove existen
e of smooth solutions for the

initial-boundary value problem (1.1), (1.2), (1.11), (1.4), (1.5) by using the method

of vis
osity solutions to solve (1.11), 
ombined with methods for ellipti
 systems

to solve the other equations. Yet, sin
e  

1

in (1.8) is a double well potential,

the fun
tion S 7!  

S

("; S) in (1.11) is not monotone; therefore the assumptions

needed to apply 
omparison arguments and to prove existen
e of 
ontinuous vis-


osity solutions of (1.11) are not satis�ed. Instead, simple examples show that

S develops dis
ontinuities even if the initial data are smooth. Consequently, the

theory of dis
ontinuous vis
osity solutions has to be used. It turns out, however,

that the standard de�nition of dis
ontinuous vis
osity solutions (
f. [17, 6℄) allows

too mu
h freedom for the propagation speed of the phase interfa
es modelled by

jump dis
ontinuities of S.

This 
an be seen best if we study jump dis
ontinuities for a problem in one

spa
e dimension. Note �rst that for a pie
ewise smooth solution (u; T; S) of (1.1)

{ (1.6) we have

[r

x

u(x; t)℄ �(x; t) = [T (x; t)℄n(x; t) = 0; (x; t) 2 ~
;

for all tangential ve
tors �(x; t) to ~
. With these equations the right hand side of

(1.10) 
an be simpli�ed by a short 
omputation to obtain

s[S℄ = 
 n � [C℄n =




2

�

[T ℄ � h"i � hT i � ["℄� [T � �"S℄

�

+ 
 [ 

1

(S)℄; (1.14)

with h"i =

1

2

("(r

x

u+) + "(r

x

u�)). Here w(x; t)+ = lim

y!x; y2


0

(t)

w(y; t) and

w(x; t)� = lim

y!x; y2
(t)

w(y; t) are the limit values on both sides of ~
(t). It 
an

be seen from Lemma 2.1 in Se
tion 2 that if we redu
e (1.1) { (1.6) to a problem

in one spa
e dimension with a s
alar fun
tion T then T is 
ontinuous a
ross the

phase interfa
e. This implies ["℄ = [u

x

℄ = �" [S℄. If we denote by s the speed of

7



propagation of dis
ontinuities measured in the positive x{dire
tion, we thus obtain

from (1.14)

s = 


�

[ 

1

℄

[S℄

� T � �"

�

S

+

� S

�

jS

+

� S

�

j

: (1.15)

Here S

+

and S

�

are the values of S to the right and to the left of the jump

dis
ontinuity. On the other hand, noting that in (1.11)


  

S

("; S) = 


�

 

0

1

(S)� T � �"

�

; (1.16)

the de�nition of dis
ontinuous vis
osity solutions implies that any jump dis
onti-

nuity is allowed whose normal speed s satis�es the two inequalities




�

 

0

1

(S

�

)� T � �"

�

S

+

� S

�

jS

+

� S

�

j

� s � 


�

 

0

1

(S

+

)� T � �"

�

S

+

� S

�

jS

+

� S

�

j

:

Sin
e 


�

 

0

1

(S)�T � �"

�

is the speed of 
hara
teristi
s of (1.11), these two inequalities

require that the 
hara
teristi
 
urves must end in the jump dis
ontinuity on both

sides, and thus allow for any normal speed of the dis
ontinuity between the two


harateristi
 speeds to the left and to the right of the dis
ontinuity. Therefore

dis
ontinuities in vis
osity solutions do not need to have the velo
ity given by

(1.15). Yet, if (1.15) is not satis�ed then phase interfa
es are not modeled 
orre
tly.

This implies that to 
onstru
t dis
ontinuous vis
osity solutions we must use a


onstru
tion pro
edure whi
h automati
ally sele
ts the right speed of propagation.

We surmise that the usual 
onstru
tion pro
edure based on Perron`s method does

not satisfy this requirement.

Therefore we use another method to prove existen
e of solutions of the initial-

boundary value problem in one spa
e dimension, whi
h is based on the similarity

of equation (1.3) to a hyperboli
 balan
e law. For the problem in one spa
e dimen-

sion the similarity be
omes even greater, 
f. (1.19) below. The main di�eren
e to a

hyperboli
 balan
e law lies in the absolute value signs on both sides of (1.19). The

mapping whi
h assigns to the measures S

t

and C

1

(u

x

; S)

x

�u

x

�b the variation mea-

sures is nonlinear, and thus is dis
ontinuous with respe
t to weak 
onvergen
e, in

general. Thus, while in the investigation of 
onservation laws the main diÆ
ulties

are 
onne
ted with the fun
tion S 7! C

1

(u

x

; S), whi
h is nonlinear, when
e dis
on-

tinuous with respe
t to weak 
onvergen
e, new diÆ
ulties arise in the investigation

of (1.19) due to the variation measures. In our existen
e proof we use ideas from

the sho
k tra
king method in hyperboli
 
onservation laws to 
onstru
t a sequen
e

of approximate solutions, but be
ause of this diÆ
ulty 
ompletely new ideas are

needed when going to the limit.

Statement of the main results. In the remainder of this arti
le we assume that

all fun
tions in the initial-boundary value problem (1.1) { (1.6) only depend on

the x

1

and t variables, but are independent of the x

2

and x

3

variables. To simplify

the notation we therefore write x instead of x

1

, and assume that 
 = (a; b) � R is

a bounded open interval. By T

e

we denote a positive number (time of existen
e),

and we set

Z

T

e

= (a; b)� (0; T

e

); Z = (a; b)� (0;1):

8



We still allow that the material points 
an be displa
ed in three spa
e dire
tions,

hen
e u(x; t) 2 R

3

, T (x; t) 2 S

3

, S 2 R. If we denote the �rst 
olumn of the matrix

T (x; t) by T

1

(x; t) and set

"(u

x

) =

1

2

�

(u

x

; 0; 0) + (u

x

; 0; 0)

T

�

2 S

3

;

C

1

(u

x

; S) =  ("(u

x

); S)� u

x

� T

1

;

then (1.1) { (1.6) 
an be written in the slightly simpli�ed form:

�T

1x

= b; (1.17)

T = D("(u

x

)� �"S); (1.18)

jS

t

j = 
 jC

1

(u

x

; S)

x

� u

x

� bj ; (1.19)

u(a; t) = f(a; t); u(b; t) = f(b; t); t � 0; (1.20)

S(x; 0) = S

(0)

(x); x 2 [a; b℄; (1.21)

�

�t

 ("(u

x

); S)� (T

1

� u

t

)

x

� b � u

t

� 0: (1.22)

For this initial-boundary value problem we prove existen
e of solutions to three

di�erent 
lasses of initial data. To formulate these existen
e results in the next two

lemmas and in Theorem 1.3 we need solutions of the boundary value problem of

linear elasti
ity theory in one spa
e dimension. This problem is

��

1x

(x) =

^

b(x); a < x < b; (1.23)

�(x) = D"(w

x

(x)); a < x < b; (1.24)

w(a) =

^

f(a); w(b) =

^

f(b): (1.25)

Let H

i

(W ) be the usual Sobolev spa
es of fun
tions with quadrati
ally integrable

weak derivatives up to order i, where W � R

n

is a Lebesgue measurable set. The

norms of these spa
es are denoted by kvk

i;W

. The L

2

{norm is kvk

0;W

= kvk

W

.

Lemma 1.1 (Pie
ewise 
onstant initial data) Let b; f : Z ! R

3

satisfy b 2

H

2

(Z

T

e

;R

3

) and f 2 H

2

(fa; bg � [0; T

e

℄;R

3

) for all T

e

> 0. Assume that S

(0)

:

[a; b℄ ! [0; 1℄ is pie
ewise 
onstant with �nitely many jumps, whi
h all lie in the

interior of [a; b℄.

Then there is a weak solution (u; T; S) : Z ! R

3

� S

3

� [0; 1℄ of (1.17) {

(1.22). The fun
tion S in this solution is pie
ewise 
onstant and belongs to the

spa
e BV (Z

T

e

). Moreover, (u; T ) satis�es

u(x; t) = u

�

�

Z

x

a

S(y; t)dy �

x� a

b� a

Z

b

a

S(y; t)dy

�

+ w(x; t);

T (x; t) = D("

�

� �")S(x; t)�D"

�

1

b� a

Z

b

a

S(y; t)dy + �(x; t);

9



where u

�

2 R

3

, "

�

2 S

3

only depend on the mis�t strain ", and where (w(t); �(t))

is the unique solution of the boundary value problem (1.23) { (1.25) to the data

^

b = b(t);

^

f = f(t) for every t > 0. This solution satis�es

(w; �) 2

2

\

i=0

H

2�i

�

(0; T

e

); H

2+i

((a; b);R

3

)�H

1+i

((a; b);S

3

)

�

:

for all T

e

> 0.

Lemma 1.2 (Monotoni
 initial data) Let b and f satisfy the assumptions of

the pre
eding lemma. Assume that S

(0)

: [a; b℄ ! [0; 1℄ is a 
ontinuous monotoni


fun
tion. Then there is a weak solution (u; T; S) : Z ! R

3

� S

3

� [0; 1℄ of (1.17)

{ (1.22), where (u; T ) is of the same form as in the pre
eding lemma, and where

S 2 BV (Z

T

e

). Moreover, the fun
tion S(t) : [a; b℄ ! [0; 1℄ de�ned by x 7! S(x; t)

is monotoni
 and satis�es

var(S(t)) � var(S

(0)

)

for almost all t 2 [0; T

e

℄.

Our main result is

Theorem 1.3 (Nonmonotone initial data) Assume that b 2 H

2

(Z

T

e

;R

3

) and

f 2 H

2

(fa; bg � [0; T

e

℄;R

3

) are given fun
tions. Let a < 
 < b and assume that

S

(0)

2 C([a; b℄; [0; 1℄) is in
reasing in [a; 
℄ and de
reasing in [
; b℄. For every t > 0

let (w(t); �(t)) be the solution of the boundary value problem (1.23) { (1.25) to the

data

^

b = b(t);

^

f = f(t). If there is a 
onstant M

1

> 0 su
h that this solution

satis�es

�" � �(x; t) �M

1

+ max

0�s�1

j 

0

1

(s)j (1.26)

for almost all (x; t), then there is a weak solution (u; T; S) of (1.17) { (1.22), for

whi
h S 2 BV (Z

T

e

) and for whi
h (u; T ) is of the same form as in Lemma 1.1.

Remark. We surmise that the result of Theorem 1.3 holds without 
ondition

(1.26), and that we need this 
ondition only for te
hni
al reasons. This 
ondition

guarantees that the 
hara
teristi
 speeds of (1.3) and the speeds of jump dis
onti-

nuities in solutions of (1.3) are bounded away from 0. Moreover, it guarantees that

these dis
ontinuities are dire
ted su
h that the embedded phase asymptoti
ally

vanishes for t!1, i.e. that S tends asymptoti
ally to the value min

a�x�b

S

(0)

(x).

If the �rst row of the matrix D�" does not vanish then the 
ondition 
an always be

guaranteed to hold by 
hoosing suitable data b and f .

If the s
alar produ
t " � �(x; t) is zero for all (x; t) and all boundary data

^

f and

right hand sides

^

b in (1.23) { (1.25), then the order parameter S in the solution

is independend of the boundary tra
tions and the volume for
e, hen
e the phase

evolution is independent of the exterior for
es. This is in a

ordan
e with the

experimental observation that the phase evolution depends on the mis�t strain "

in relation to the dire
tion of the exterior stress �eld. Note that by 
onsidering

a one dimensional problem we have intrinsi
ally �xed a dire
tion for the exterior

for
es.

10



2 Pie
ewise 
onstant initial data

Here we prove Lemma 1.1. The proof is based on the observation that the jump


ondition (1.10), whi
h must hold along any jump 
urve of S, yields a di�erential

equation in time for this jump 
urve. To determine the �nitely many jump 
urves

of S we must therefore solve a 
oupled system of di�erential equations. This system


ontains the unknown fun
tion T and is therefore not 
losed. To 
lose it we observe

that if the fun
tion S(t) is known for a �xed time t, then the equations (1.17), (1.18)

and (1.20) form a boundary value problem for the fun
tions u(t) and T (t), a slight

extension of the boundary value problem of linear elasti
ity theory, whi
h in one

spa
e dimension 
an be solved expli
itly. Insertion of the expli
it solution formulas

into the system of ordinary di�erential equations 
loses the system.

In the �rst step of the proof we thus derive the expli
it solution formulas for

(1.17), (1.18), (1.20). Subsequently we derive the system of ordinary di�erential

equations and dis
uss the 
onstru
tion of the jump 
urves. In the last step we

verify that the fun
tion (u; T; S) 
onstru
ted in this way satis�es all the equations

(1.17) { (1.22) and thus is a solution of this initial-boundary value problem.

We begin with some notations: Let

^

S

3

denote the subspa
e of all matri
es

A 2 S

3

with A

ij

= 0 for i; j = 2; 3. The orthogonal spa
e to

^

S

3

is denoted by

~

S

3

. It 
onsists of all A 2 S

3

satisfying A

i1

= A

1i

= 0 for i = 1; 2; 3. Note that

"(u

x

(x; t)) 2

^

S

3

. For the 
anoni
al proje
tion of S

3

onto

^

S

3

we write

^

P . Sin
e

D : S

3

! S

3

is a positive de�nite linear mapping, h�; �i = � �D� de�nes a s
alar

produ
t on S

3

. The proje
tion of S

3

onto

^

S

3

, whi
h is orthogonal with respe
t to

this s
alar produ
t is denoted by

^

Q. These de�nitions imply

ker

^

Q = D

�1

~

S

3

= D

�1

ker

^

P: (2.1)

Lemma 2.1 Let " 2 S

3

, b 2 H

2

(Z

T

e

;R

3

), f 2 H

2

(fa; bg � [0; T

e

℄;R

3

) and the

measurable fun
tion S : Z

T

e

! [0; 1℄ be given. De�ne the matrix "

�

2

^

S

3

and the

ve
tor u

�

2 R

3

by

"

�

=

^

Q"; u

�

= ("

�

11

; 2"

�

21

; 2"

�

31

): (2.2)

Then the boundary value problem

�T

1

(x; t)

x

= b(x; t); (2.3)

T (x; t) = D("(u

x

(x; t))� �"S(x; t)); (2.4)

u(a; t) = f(a; t); u(b; t) = f(b; t); (2.5)

11



has a unique solution (u; T ) in Z

T

e

given by

u(x; t) = u

�

�

Z

x

a

S(y; t)dy �

x� a

b� a

Z

b

a

S(y; t)dy

�

+ w(x; t); (2.6)

"(u

x

(x; t)) = "

�

�

S(x; t)�

1

b� a

Z

b

a

S(y; t)dy

�

+ "(w

x

(x; t)); (2.7)

T (x; t) = D("

�

� �")S(x; t)�D"

�

1

b� a

Z

b

a

S(y; t)dy + �(x; t); (2.8)

^

PT (x; t) =

^

P

�

�(x; t)�D"

�

1

b� a

Z

b

a

S(y; t)dy

�

: (2.9)

Here (w(t); �(t)) is the unique solution of the boundary value problem (1.23) {

(1.25) to the data

^

b = b(t);

^

f = f(t) for every t > 0. We have

(w; �) 2

2

\

i=0

H

2�i

�

(0; T

e

); H

2+i

((a; b);R

3

)�H

1+i

((a; b);S

3

)

�

:

Proof. We de�ne v and � by

v(x; t) = u

�

�

Z

x

a

S(y; t)dy �

x� a

b� a

Z

b

a

S(y; t)dy

�

; (2.10)

�(x; t) = D("(v

x

(x; t))� "S(x; t)): (2.11)

The de�nition of u

�

in (2.2) implies

"(v

x

(x; t)) = "

�

�

S(x; t)�

1

b� a

Z

b

a

S(y; t)dy

�

; (2.12)

when
e, from (2.11)

�(x; t) = D("

�

� �")S(x; t)�D"

�

1

b� a

Z

b

a

S(y; t)dy: (2.13)

(2.1) implies

^

PD(

^

Q � I)S

3

=

^

PD ker

^

Q = f0g, hen
e the de�nition of "

�

in (2.2)

yields

^

PD("

�

� ")S =

^

PD(

^

Q � I)"S = 0. Appli
ation of

^

P to (2.13) thus results

in

^

P�(x; t) = �

^

PD"

�

1

b� a

Z

b

a

S(y; t)dy ; (2.14)

whi
h is 
onstant with respe
t to x. Then
e �

1

(x; t) is 
onstant with respe
t to x.

Consequently, the fun
tion (v(t); �(t)) solves the system

��

1x

= 0;

� = D("(v

x

)� �"S);

v(a; t) = v(b; t) = 0:

12



It is immediately seen and well known that for

^

b = b(t) 2 H

2

([a; b℄;R

3

) and for

^

f =

f(t) the system (1.23) { (1.25) has a unique solution (w(t); �(t)) 2 H

4

([a; b℄;R

3

)�

H

3

([a; b℄;S

3

). Clearly, (u; T ) = (v + w; � + �) is the unique solution of (2.3) {

(2.5). Equations (2.6) { (2.8) follow from (2.10), (2.12) and (2.13), equation (2.9)

is implied by (2.14), noting that T = � + �. This proves the lemma.

The jump 
ondition in one spa
e dimension. In the jump 
ondition (1.10) the

speed of propagation s of the dis
ontinuity is measured positive in the dire
tion of

in
reasing S. Thus, if for a fun
tion w with a jump we write [w℄ = w

+

�w

�

, where

w

+

, w

�

are the values to the right and to the left of the jump, and if we denote by

s the velo
ity measured positive in positive x{dire
tion, we obtain [S℄s = j[S℄js.

Using this equation and the de�nition of C

1

we see that in one spa
e dimension

(1.10) be
omes

j[S℄js = 
 [C

1

(u

x

; S)℄: (2.15)

The fun
tion (u; T ) in this formula is the solution of the boundary value problem

(2.3) { (2.5) to the fun
tion S(t). Sin
e u

x

� T

1

= "(u

x

) � T , the 
omputation whi
h

leads to (1.14) remains valid in one spa
e dimension and 
an be used to evaluate

the jump [C

1

℄. To determine an expli
it formula for this jump we use (2.6) {

(2.9): Sin
e � 2 H

2

(Z

T

e

;S

3

), it follows from (2.9) and from the Sobolev embedding

theorem that

^

PT (t) is a 
ontinuous fun
tion of x, when
e [

^

PT ℄ = 0. From this

relation and from "(u

x

(x; t)) 2

^

S

3

, whi
h implies h"i =

1

2

("(u

+

x

) + "(u

�

x

)) 2

^

S

3

, we

obtain

[T ℄ � h"i = [T ℄ � h

^

P"i = [

^

PT ℄ � h"i = 0; hT i � ["℄ = hT i � [

^

P"℄ =

^

PT � ["℄:

Using these equations and ["℄ = "

�

[S℄, whi
h is implied by (2.7), we obtain from

(1.14) by insertion of (2.8) and (2.9) that

[C

1

℄ =

1

2

�

[T ℄ � h"i � hT i � ["℄� [T � "S℄

�

+ [ 

1

(S)℄

= �

1

2

�

[T � �"S℄ +

^

PT � "

�

[S℄

�

+ [ 

1

(S)℄

= �

1

2

�" �D("

�

� �")[S

2

℄ (2.16)

+

1

2

("

�

+ �") �

�

D"

�

1

b� a

Z

b

a

S(y; t)dy � �

�

[S℄ + [ 

1

(S)℄ = [	℄ :

Here 	 is a new potential, whi
h we 
an write in the form

	

�

x; t; S;

R

b

a

S(y; t)dy

�

=

1

2

(�"� "

�

) �D(�"� "

�

)S

2

+  

1

(S) (2.17)

+

�

"

�

�D"

�

1

b� a

Z

b

a

S(y; t)dy� " � �(x; t)

�

S :
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To see this note that "

�

=

^

Q", that the proje
tion

^

Q is orthogonal with respe
t to

the s
alar produ
t h�; ��i and that � = D"(w

x

), whi
h relations together imply

" �D("� "

�

) = h"; (I �

^

Q)"i = h(I �

^

Q)"; (I �

^

Q)"i = ("� "

�

) �D("� "

�

) ;

("+ "

�

) �D"

�

= h"+ "

�

;

^

Q"

�

i = h

^

Q("+ "

�

); "

�

i = 2"

�

�D"

�

;

"

�

� � = h

^

Q"; "(w

x

)i = h";

^

Q"(w

x

)i = h"; "(w

x

)i = " � � :

From (2.15) and (2.16) we �nally obtain for the speed of propagation

s(x; t) = 


h

	(x; t; S;

R

b

a

S(y; t)dy)

i

j[S℄j

: (2.18)

Constru
tion of the solution. Let S

(0)

be the pie
ewise 
onstant initial data

given in Lemma 1.1 and assume that S

(0)

has jumps at the points x

1

; � � � ; x

n

with

a < x

1

< � � � < x

n

< b. We set x

0

= a; x

n+1

= b. Let S

+

i

and S

�

i

be the 
onstant

values of S

(0)

to the right and to the left of x

i

for i = 1; 2; � � � ; n. Obviously we

have S

+

i

= S

�

i+1

for i = 1; 2; � � � ; n� 1. In the domain [a; b℄� [0; t

1

℄ with a suitable

time t

1

> 0 to be determined below the 
omponent S of the solution (u; T; S) will

be pie
ewise 
onstant with jumps along 
urves given by the graphs of 
ontinuously

di�erentiable fun
tions �

i

: [0; t

1

℄ ! [a; b℄, i = 1; 2; � � � ; n. The 
urve �

i

starts at

the dis
ontinuity (x

i

; 0) of S

(0)

and we have

a < �

i

(t) < �

i+1

(t) < b; 0 � t < t

1

; i = 1; 2; � � � ; n� 1:

The values of S are de�ned by

S(x; t) =

8

>

<

>

:

S

�

1

; a � x < �

1

(t);

S

+

i

; �

i

(t) � x < �

i+1

(t); i = 1; 2; � � � ; n� 1;

S

+

n

; �

n

(t) � x � b:

(2.19)

The dis
ontinuities �

i

have the speed of propagation given by (2.18). Thus,

d

dt

�

i

(t) = 


	

�

�

i

(t); t; S

+

i

;

R

b

a

S(y; t)dy

�

�	

�

�

i

(t); t; S

�

i

;

R

b

a

S(y; t)dy

�

jS

+

i

� S

�

i

j

; (2.20)

for i = 1; : : : ; n. If we note that by (2.19)

Z

b

a

S(y; t)dy =

n

X

i=0

�

�

i+1

(t)� �

i

(t)

�

S

+

i

;

where we use the notations �

0

(t) = a; �

n+1

(t) = b; S

+

0

= S

�

1

, we see that (2.20) is

a system of ordinary di�erential equations for the fun
tions �

1

; : : : ; �

n

. Lemma 2.1

implies that the fun
tion � in (2.17) satis�es �

x

2 H

2

(Z

T

e

;S

3

). The Sobolev

14



imbedding theorem thus yields that � 2 C(Z

T

e

). From this fa
t and from the

de�nition of 	 in (2.17) it follows that the right hand side of this system is de�ned

for a � �

1

; : : : ; �

n

� b, that it is 
ontinuous with respe
t to (t; �

1

; : : : ; �

n

) 2

[0;1)�[a; b℄

n

and that it satis�es a Lips
hitz 
ondition with respe
t to (�

1

; : : : ; �

n

).

By the Theorem of Pi
ard-Lindel�of it thus follows that there exists a unique solution

(�

1

(t); : : : ; �

n

(t)). The solution is 
ontinuously di�erentiable with respe
t to t. Let

t

1

= sup

�

t > 0 j a < �

1

(t) < �

2

(t) < : : : < �

n

(t) < b

	

and de�ne S in [a; b℄� [0; t

1

) by (2.19) and (2.20). If t

1

<1 let

S

(1)

(x) =

(

lim

y#x

S(y; t

1

); a � x < b;

lim

y"b

S(y; t

1

); x = b:

We de�ne S in the region [a; b℄ � [t

1

; t

2

) with a suitable time t

2

> t

1

by repeating

the above 
onstru
tion, using S

(1)

as initial data.

The number of 
urves in the domain [a; b℄ � [t

1

; t

2

), along whi
h S jumps, is

smaller than in the domain [a; b℄� [0; t

1

). Therefore, after further repetition of this

pro
ess we �nd that there is a largest time t

m

su
h that the next step yields the

solution in all of the domain [a; b℄� [t

m

;1), or that S

(m)

: [a; b℄! [0; 1℄ is 
onstant.

In this 
ase we set S equal to this 
onstant value in all of [t

m

;1). This 
ompletes

the 
onstru
tion of the fun
tion S : [a; b℄� [0;1)! [0; 1℄.

Let (u; T ) be the unique solution of the problem (2.3) { (2.5) to the fun
tion S.

In the remainder of this se
tion we show that the fun
tion (u; T; S) : [a; b℄�[0;1)!

R

3

�S

3

�[0; 1℄ thus de�ned is a solution of the initial-boundary value problem (1.17)

{ (1.22).

The measure valued derivatives. Sin
e S has jumps, the �rst distributional

derivatives of S and of other fun
tions depending on S are measures. To study

these measures we introdu
e some notations: Let � be one of the 
ontinuously

di�erentiable 
urves along whi
h S jumps. We identify this 
urve with the fun
tion

� : [t

i

; t

i+1

℄! (a; b) whi
h parametrizes �, and with the graph of �, a subset of Z.

Any su
h 
urve is 
alled a jump 
urve. By J we denote the �nite set of all jump


urves, and we de�ne

J =

[

�2J

� � Z:

The one-dimensional Hausdor� measure H

1

restri
ted to J is denoted by H

J

.

Hen
e,

H

J

(V ) = H

1

(J \ V )

for every measurable subset V � Z. If g : J ! R is lo
ally H

J

-summable and if

K is 
ompa
t we write

(gH

J

)(K) =

Z

K

g dH

J

:

For a fun
tion v : Z ! R, whi
h has jumps along the 
urves � 2 J and has weak

L

2

-derivatives in ZnJ , we denote by v

x

; v

t

the distributional derivatives and by

v

0

x

; v

0

t

the L

2

-derivatives away from the jump 
urves.

15



Finally, if (x; t) is a point of a jump 
urve di�erent from the starting point and

the endpoint we denote by n(x; t) = (n

0

(x; t); n

00

(x; t)) 2 R

2

the unit normal ve
tor

with n

0

(x; t) > 0.

Lemma 2.2 Let

~

S be a pie
ewise 
ontinuously di�erentiable fun
tion with jumps

along the 
urves in J , and let (~u;

~

T ) be the solution of the problem (2.3) { (2.5) to

the fun
tion

~

S and to b 2 H

2

(Z

T

e

;R

3

); f 2 H

2

(fa; bg � [0; T

e

℄;R

3

), for all T

e

> 0.

Then the distributional derivatives

~

S

t

, C

1

("(~u

x

);

~

S)

x

� ~u

x

� b and  ("(~u

x

);

~

S)

t

�

(

~

T

1

� ~u

t

)

x

� b � ~u

t

are measures on Z and satisfy

~

S

t

= n

00

[

~

S℄H

J

+

~

S

0

t

�; (2.21)

C

1x

� ~u

x

� b = n

0

[C

1

℄H

J

+  

S

~

S

0

x

�; (2.22)

 

t

� (

~

T

1

� ~u

t

)

x

� b � ~u

t

= �

d�

dt

n

0

[C

1

℄H

J

+  

S

~

S

0

t

�; (2.23)

where � is the Lebesgue measure.

Proof. (2.21) is immediately obtained by partial integration. To prove (2.22)

observe �rst that away from the jump 
urves of

~

S the fun
tion x 7! ~u(x; t) has two

weak L

2

-derivatives and x 7!

~

T (x; t) has one weak L

2

-derivative, by Lemma 2.1.

Thus, if

~

S is 
ontinuously di�erentiable in a neighborhood of (x; t), then

C

1

(~u

x

;

~

S)

0

x

=

�

 ("(~u

x

);

~

S)� ~u

x

� T

1

�

0

x

=  

"

� "(~u

xx

) +  

S

~

S

0

x

� ~u

xx

�

~

T

1

� ~u

x

�

~

T

1x

=

~

T � "(~u

xx

)� ~u

xx

�

~

T

1

+ ~u

x

� b +  

S

~

S

0

x

= ~u

x

� b+  

S

~

S

0

x

; (2.24)

where we used that  

"

=

~

T and that "(~u

xx

) �

~

T = ~u

xx

�

~

T

1

. We also applied (2.3).

Now let ' 2

Æ

C

1

(Z;R). Partial integration and appli
ation of (2.24) yields

Z

Z

�

�C

1

(~u

x

;

~

S)'

x

� ~u

x

� b '

�

d�

=

Z

Z

�

C

1

(~u

x

;

~

S)

0

x

� ~u

x

� b)'d�+

Z

Z

(C

+

1

� C

�

1

)n

0

'dH

J

=

Z

Z

 

S

~

S

0

x

'd�+

Z

Z

n

0

[C

1

℄'dH

J

:

This implies that C

1x

� ~u

x

� b is a measure given by the right hand side of (2.22).

To prove (2.23) note that Lemma 2.1 implies ~u

tx

= ~u

xt

away from the jumps of

~

S. We thus obtain

 

�

"(~u

x

);

~

S

�

0

t

� (

~

T

1

� ~u

t

)

0

x

� b � ~u

t

=  

"

� "(~u

xt

) +  

S

~

S

0

t

�

~

T

1x

� ~u

t

�

~

T

1

� ~u

tx

� b � ~u

t

(2.25)

=

~

T � "(~u

tx

)�

~

T

1

� ~u

tx

+  

S

~

S

0

t

=  

S

~

S

0

t

;
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where we again used that  

"

= T and that

~

T � "(~u

tx

) =

~

T

1

� ~u

tx

. We also used (2.3).

Sin
e n = (n

0

; n

00

) denotes the normal ve
tor to a jump 
urve � 2 J with n

0

> 0,

we 
on
lude from

d�

dt

= �

n

00

n

0

(2.26)

that signn

00

= �sign

d�

dt

: This implies for (x; t) 2 � that

lim

r%t

 (x; r) =

(

 

+

; n

00

< 0 ;

 

�

; n

00

> 0 :

(2.27)

Using this equation and (2.25) we obtain for ' 2

Æ

C

1

(Z;R) with ' � 0

Z

Z

�

� 

�

"(~u

x

);

~

S

�

'

t

+ (

~

T

1

� ~u

t

)'

x

� b � ~u

t

'

�

d�

=

Z

Z

�

 

0

t

� (

~

T

1

� ~u

t

)

0

x

� b � ~u

t

�

'd�+

Z

Z

�

[ ℄n

00

� [

~

T

1

� ~u

t

℄n

0

�

'dH

J

=

Z

Z

 

S

~

S

0

t

'd�+

Z

Z

�

[ ℄n

00

�

~

T

1

� [~u

t

℄n

0

�

dH

J

:

(2.28)

We used that as a 
onsequen
e of (2.9) we have [

^

P

~

T ℄ = 0, when
e [

~

T

1

℄ = 0. To

determine [~u

t

℄ in this equation we employ (2.6), whi
h shows that if

~

S is 
ontinu-

ously di�erentiable in a neighborhood of the point (x; t) 2 (a; b)� (0;1), then the

time derivative ~u

t

exists and is given by

~u

t

(x; t) = u

�

�

Z

x

a

~

S

0

t

(y; t)dy �

`

X

i=1

d

dt

�

i

(t) [

~

S℄

�

�

i

(t); t

�

�

(2.29)

�u

�

x� a

b� a

�

Z

b

a

~

S

0

t

(y; t)dt�

k

X

i=1

d

dt

�

i

(t) [

~

S℄

�

�

i

(t); t

�

�

+ w

t

(x; t) :

Here f�

i

g

k

i=1

is the set of jump 
urves interse
ting the line segment (a; b) � ftg,

and ` is 
hosen su
h that

�

1

(t) < : : : < �

`

(t) < x < �

`+1

(t) < : : : < �

k

(t) :

Thus, if � is a jump 
urve of

~

S we obtain from (2.29) by 
onsidering the limit

lim

x&�(t)

~u

t

(x; t)� lim

x%�(t)

~u

t

(x; t) that

[~u

t

℄

�

�(t); t

�

= �

d

dt

�(t) u

�

[

~

S℄

�

�(t); t

�

= �

d

dt

�(t) [~u

x

℄

�

�(t); t

�

;

hen
e, together with (2.26),

[ ℄n

00

�

~

T

1

� [~u

t

℄n

0

= �[ ℄

d�

dt

n

0

+

~

T

1

� [~u

x

℄

d�

dt

n

0

= �

�

[ ℄� [

~

T

1

� ~u

x

℄

�

d�

dt

n

0

= �[C

1

℄

d�

dt

n

0

:

(2.23) follows by insertion of this relation into (2.28). The proof of Lemma 2.2 is


omplete.
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Corollary 2.3 Let (~u;

~

T ;

~

S) satisfy the assumptions of the pre
eding lemma. Then

the evolution equation (1.19) and the Clausius-Duhem inequality (1.22) hold if and

only if

d�

dt

j[

~

S℄j H

J

= 
 [C

1

℄H

J

; (2.30)

~

S

0

t

= �
  

S

j

~

S

0

x

j : (2.31)

Proof: From (2.21), (2.22) and (2.26) we obtain for the variation measures

j

~

S

t

j = jn

00

[

~

S℄j H

J

+ j

~

S

0

t

j� = n

0

�

�

d�

dt

�

�

j[

~

S℄j H

J

+ j

~

S

0

t

j� ;

jC

1x

� u

x

� bj = n

0

j[C

1

℄j H

J

+ j 

S

~

S

0

x

j� :

Consequently, (1.19) holds if and only if the equations

�

�

d�

dt

�

�

j[

~

S℄j H

J

= 
 j[C

1

℄j H

J

and j

~

S

0

t

j = j
 

S

~

S

0

x

j (2.32)

are satis�ed. Moreover, sin
e by our 
onvention n

0

> 0, we see from (2.23) that

(1.22) holds if and only if the inequalities

�

d�

dt

[C

1

℄H

J

� 0 and  

S

~

S

0

t

� 0 (2.33)

are ful�lled. It is immediately seen that (2.32), (2.33) are equivalent to the pair of

equations (2.30), (2.31).

End of the proof of Lemma 1.1: We de�ned the fun
tion (u; T; S) su
h that

(2.3) { (2.5) are satis�ed, hen
e this fun
tion satis�es (1.17), (1.18) and (1.20).

Moreover, (1.21) is satis�ed by 
onstru
tion. Consequently it remains to show

that also (1.19) and (1.22) are ful�lled. By Corollary 2.3 these equations hold if

(u; T; S) satis�es (2.30) and (2.31). The se
ond equation is obviously satis�ed sin
e

S is pie
ewise 
onstant, hen
e S

0

t

= S

0

x

= 0. The �rst equation holds be
ause (2.20)

and (2.16) yield for the speed of any jump dis
ontinuity

d�

dt

= 


[	℄

j[S℄j

= 


[C

1

℄

j[S℄j

: (2.34)

3 Monotoni
ally in
reasing initial data

In the proof of Lemma 1.2 given in this se
tion we use Lemma 1.1 to 
onstru
t a

sequen
e (u

n

; T

n

; S

n

) of solutions to (1.17) { (1.22) to pie
ewise 
onstant monotoni


initial data S

(0)

n

su
h that S

(0)

n

! S

(0)

. The fun
tion S

n

is pie
ewise 
onstant

and x 7! S

n

(x; t) is monotoni
. As will be shown, this implies that (u

n

; T

n

; S

n

)

satis�es the evolution equation (1.19) without the absolute value signs. Thus, if

18



we sele
t a 
onverging subsequen
e for whi
h S

n

m

and C

1

(u

n

m

;x

; S

n

m

)

x

� u

n

m

;x

� b


onverge weakly, the limit fun
tion satis�es (1.19) without the absolute value signs.

Consequently, the limit fun
tion satis�es (1.19).

To sele
t a 
onverging subsequen
e we need bounds for the BV {norms of the

approximating sequen
es. We begin by deriving su
h bounds.

The geometry of the dis
ontinuities and the BV {norms. For de�niteness

assume that the fun
tion S

(0)

is monotoni
ally in
reasing. We 
hoose a sequen
e

fS

(0)

n

g

1

n=1

of monotoni
ally in
reasing, pie
ewise 
onstant fun
tions S

(0)

n

: [a; b℄ !

[0; 1℄ with �nitely many jumps in (a; b), su
h that S

(0)

n

(a) = S

(0)

(a); S

(0)

n

(b) =

S

(0)

(b); and

lim

n!1

sup

a�x�b

jS

(0)

(x)� S

(0)

n

(x)j = 0: (3.1)

De�ne (u

n

; T

n

; S

n

) : Z ! R

3

�S

3

� [0; 1℄ to be the solution of the initial-boundary

value problem (1.17) - (1.22) to the initial data S

(0)

n


onstru
ted as in the proof

of Lemma 1.1. We denote by J

n

the set of all jump 
urves of S

n

. For � 2 J

n

we

denote the 
onstant values of S

n

to the left and to the right of � by S

n

(��) and

S

n

(�+), respe
tively. We also write [S

n

℄(�) = S

n

(�+)� S

n

(��).

Lemma 3.1 (i) To � 2 J

n

there exist jump points x

�

and y

�

of S

(0)

n

with a <

x

�

� y

�

< b su
h that

S

n

(��) = S

(0)

n

(x

�

�); S

n

(�+) = S

(0)

n

(y

�

+): (3.2)

(ii) If � interse
ts the line segment (a; b)�ftg and if � 2 J

n

is the next dis
ontinuity

to the left of � whi
h interse
ts this line segment, then

x

�

� y

�

< x

�

� y

�

: (3.3)

(iii) There is no jump dis
ontinuity of S

(0)

n

between y

�

and x

�

.

Proof: (i) The dis
ontinuity � starts either at the initial line segment (a; b)�f0g,

or at the point of interse
tion of several dis
ontinuities �

1

; : : : ; �

m

2 J

n

. Let �

1

be the leftmost of these di
ontinuities and �

m

be the rightmost dis
ontinuity. By


onstru
tion S

n

satis�es

S

n

(��) = S

n

(�

1

�); S

n

(�+) = S

n

(�

m

+):

If �

1

does not start on the initial line segment, it starts at the point of interse
tion

of several dis
ontinuities. The value of S

n

to the left of the leftmost of these

dis
ontinuities is S

n

(��). We follow the leftmost dis
ontinuity ba
kwards in time

and repeat the pro
ess until we rea
h a point (x

�

; 0) 2 (a; b) � f0g. The fun
tion

S

(0)

n

has a jump at x

�

, and sin
e the value of S

n

to the left of the last dis
ontinuity

is S

n

(��), we dedu
e

S

n

(��) = S

(0)

n

(x

�

�):

Similarly, we start at � and follow ba
kwards in time at every point of interse
tion

the rightmost dis
ontinuity until we rea
h a point (y

�

; 0) 2 (a; b)� f0g with y

�

�
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x

�

. The fun
tion S

(0)

n

jumps at y

�

, and sin
e the value of S

n

to the right of the

dis
ontinuity is S

n

(�+), we obtain

S

n

(�+) = S

(0)

n

(y

�

+):

(ii) We start at � and follow ba
kwards in time at every interse
tion point the

rightmost dis
ontinuity until we rea
h the point (y

�

; 0) on the initial line segment.

As above we have

S

n

(�+) = S

(0)

n

(y

�

+):

The path from � to the point (y

�

; 0) does never interse
t the path from � to (x

�

; 0),

sin
e from every point of interse
tion of dis
ountinuities at most one dis
ontinuity

emerges forward in time. Therefore we have y

�

< x

�

.

(iii) There is no jump of S

(0)

n

between y

�

and x

�

. For, sin
e S

(0)

n

is in
reasing,

we would otherwise have S

(0)

n

(y

�

+) < S

(0)

n

(x

�

�), when
e

S

n

(�+) < S

n

(��) : (3.4)

Yet, by assumption no jump 
urve of S

n

interse
ts the line segment (a; b)�ftg be-

tween � and �, hen
e S

n

(�+) = S

n

(��). This 
ontradi
ts (3.4), when
e statement

(iii) must be true.

Corollary 3.2 For every n and for every jump 
urve � 2 J

n

we have

[S

n

℄(�) = S

(0)

n

(y

�

+)� S

(0)

n

(x

�

�) > 0 ;

when
e x 7! S

n

(x; t) is in
reasing. Moreover, S

n

satis�es for every t � 0

S

(0)

(a) � S

n

(a; t); S

n

(b; t) � S

(0)

(b) ; (3.5)

varS

n

(�; t) � varS

(0)

n

= varS

(0)

� 1 : (3.6)

Proof: Sin
e S

(0)

n

is in
reasing, we obtain from (3.2) for every jump 
urve � 2 J

n

[S

n

℄(�) = S

n

(�+)� S

n

(��) = S

(0)

n

(y

�

+)� S

(0)

n

(x

�

�) > 0 :

(3.5) results from (3.2) and from

S

(0)

n

(x

�

�) � S

(0)

n

(a) = S

(0)

(a); S

(0)

n

(y

�

+) � S

(0)

n

(b) = S

(0)

(b) :

To verify (3.6) we use that x 7! S

n

(x; t) is in
reasing and apply (3.5) to 
on
lude

varS

n

(�; t) = S

n

(b; t)� S

n

(a; t) � S

(0)

(b)� S

(0)

(a) � 1 :

The 
orollary is proven.

Now we 
an show that the variation measures of S

n

, of the Eshelby tensor and of
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the free energy are uniformly bounded over Z

T

e

for every T

e

> 0 with respe
t to n.

We use that for f 2 L

1

(Z

T

e

;R) the variation measures jf

x

j and jf

t

j satisfy

jf

x

j(Z

T

e

) = sup

n

Z

Z

T

e

f '

x

dx

�

�

' 2

Æ

C

1

(Z

T

e

;R); j'j � 1

o

;

jf

t

j(Z

T

e

) = sup

n

Z

Z

T

e

f '

t

dx

�

�

' 2

Æ

C

1

(Z

T

e

;R); j'j � 1

o

;


f. [13, p.170℄. By de�nition, the fun
tion f 2 L

1

(Z

T

e

;R) belongs to the spa
e

BV (Z

T

e

) if jf

x

j(Z

T

e

) + jf

t

j(Z

T

e

) <1. We also de�ne

jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj (Z

T

e

)

= sup

n

Z

Z

T

e

�

C

1

(u

n;x

; S

n

)'

x

+ u

n;x

� b '

�

d(x; t)

�

�

' 2

Æ

C

1

(Z

T

e

;R); j'j � 1

o

;

j 

�

"(u

n;x

); S

n

�

t

� (T

1;n

� u

n;t

)

x

� b � u

n;t

j (Z

T

e

)

= sup

n

Z

Z

T

e

�

�  

�

"(u

n;x

); S

n

�

'

t

+ T

1;n

� u

n;t

'

x

� b � u

n;t

'

�

d(x; t)

�

�

' 2

Æ

C

1

(Z

T

e

;R); j'j � 1

o

:

Lemma 3.3 For all n and for all T

e

> 0 we have S

n

2 BV (Z

T

e

). There is a


onstant A > 0, whi
h only depends on T

e

and is an in
reasing fun
tion of this

parameter, su
h that for the 
onstant 
 from (1.19)

jS

n;x

j(Z

T

e

) � T

e

varS

(0)

n

; jS

n;t

j(Z

T

e

) � 
AT

e

varS

(0)

n

; (3.7)

jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj (Z

T

e

) � AT

e

varS

(0)

n

; (3.8)

j 

�

"(u

n;x

); S

n

�

t

� (T

1;n

� u

n;t

)

x

� b � u

n;t

j (Z

T

e

) � 
A

2

T

e

varS

(0)

n

: (3.9)

Proof: For ' 2

Æ

C

1

(Z

T

e

;R) with j'j � 1 we obtain as in the proof of (2.22) for the

pie
ewise 
onstant fun
tion S

n

that

�

Z

Z

T

e

S

n

'

x

dx =

Z

Z

T

e

'n

0

[S

n

℄ dH

J

n

=

X

�2J

n

Z

�

' [S

n

℄(�)n

0

ds (3.10)

=

X

�2J

n

Z

T

e

0

�

�

(t)'

�

�(t); t

�

[S

n

℄(�) dt =

Z

T

e

0

X

�2J

n

�

�

(t) [S

n

℄(�)'

�

�(t); t

�

dt ;

where �

�

: R ! [0; 1℄ denotes the 
hara
teristi
 fun
tion of the domainD

�

� [0;1)

of the parametrization � : D

�

! [a; b℄ of the jump 
urve �. We also used that

n

0

ds = dt. Noting

X

�2J

n

�

�

(t) [S

n

℄(�) = varS

n

(�; t) ; (3.11)
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we 
on
lude from (3.10) and Corollary 3.2 that

jS

n;x

j(Z

T

e

) �

Z

T

e

0

varS

n

(�; t)dt � T

e

varS

(0)

n

: (3.12)

Similarly, sin
e S

0

n

t

= 0 we dedu
e from (2.21)

�

Z

Z

T

e

S

n

'

t

dt =

Z

Z

T

e

'n

00

[S

n

℄ dH

J

n

=

X

�2J

n

Z

�

[S

n

℄(�)'n

00

ds

=

Z

T

e

0

X

�2J

n

�

�

(t)[S

n

℄(�)

n

00

n

0

'(�(t); t) dt : (3.13)

To estimate the right hand side of this equation we infer from

n

00

n

0

= �

d�

dt

and from

(2.20) that

�

�

�

�

n

00

n

0

�

�

�

�

=

�

�

�

�

d�

dt

�

�

�

�

� 
A; (3.14)

where A = max

�

�

�

d

ds

	(y; t; s; r)

�

�

�

�

(y; t; s; r) 2 [a; b℄� [0; T

e

℄� [0; 1℄� [0; b� a℄

	

.

Sin
e � 2 H

2

(Z

T

e

) is 
ontinuous, it follows from the de�nition of 	 in (2.17) that

the maximum A exists. Of 
ourse, A depends on T

e

. We use (3.14) in (3.13) and

obtain together with (3.11) that

jS

n;t

j(Z

T

e

) �

Z

T

e

0

varS

n

(�; t)
A dt � 
AT

e

varS

(0)

n

:

This estimate and (3.12) together yield (3.7). To verify (3.8) we note that (2.22)

implies for ' 2

Æ

C

1

(Z

T

e

;R) with j'j � 1 that

�

Z

Z

T

e

C

1

(u

n;x

; S

n

)'

x

+ u

n;x

� b ' d(x; t) =

Z

Z

T

e

'n

0

[C

1

℄ dH

J

n

(3.15)

=

Z

T

e

0

X

�2J

n

�

�

(t)[C

1

℄(�)'

�

�(t); t

�

dt :

(2.16) yields j [C

1

℄ j = j [	℄ j � max j

d

ds

	(y; t; s; r)j j[S

n

℄j = A[S

n

℄ ; when
e

�

�

X

�2J

n

�

�

(t)[C

1

℄(�)

�

�

� A

X

�2J

n

�

�

(t)[S

n

℄(�) = A varS

n

(�; t):

Insertion of this inequality into (3.15) results in

jC

1;x

� u

n;x

� bj (Z

T

e

) �

Z

T

e

0

A varS

n

(�; t) dt � AT

e

varS

(0)

n

:

This is (3.8). Finally (2.23) yields

Z

Z

T

e

�

�  

�

"(u

n;x

); S

n

�

'

t

+ T

1;n

� u

n;t

'

x

� b � u

n;t

'

�

d(x; t)

= �

Z

Z

T

e

d�

dt

n

0

[C

1

℄'dH

J

n

� 
A

2

T

e

varS

(0)

n

;

where we used (3.14) again and pro
eeded as in (3.15). This proves (3.9).
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Lemma 3.4 The fun
tion (u

n

; T

n

; S

n

) satis�es

S

n;t

= �


�

C

1

(u

n;x

; S

n

)

x

� u

n;x

� b

�

(3.16)

on Z in the sense of measures.

Proof: Corollary 3.2 implies that [S

n

℄(�) > 0 for every jump 
urve � 2 J

n

. Thus,

if we apply Lemma 2.2 to the fun
tion (u

n

; T

n

; S

n

), use that S

0

n;t

= S

0

n;x

= 0 and

employ (2.26) and (2.34), we obtain

S

n;t

= n

00

[S

n

℄H

J

n

= �

d�

dt

n

0

[S

n

℄H

J

n

= �


[C

1

℄

j[S

n

℄j

n

0

j[S

n

℄j H

J

n

= �
n

0

[C

1

℄H

J

n

= �
(C

1;x

� u

n;x

� b) :

End of the proof of Lemma 1.2: The proof is in three steps:

Claim 1: The sequen
e f(u

n

; T

n

; S

n

)g

n

has a subsequen
e, again denoted by

f(u

n

; T

n

; S

n

)g

n

, whi
h 
onverges in L

2

(Z

T

e

;R

3

� S

3

) � L

p

(Z

T

e

;R) to a fun
tion

(u; T; S), whi
h satis�es (2.3) { (2.5), for every 1 � p < 1 and all T

e

> 0.

The fun
tion S belongs to BV (Z

T

e

), the fun
tion u belongs to H

1

(Z

T

e

;R

3

) and

u

n;x

! u

x

strongly in L

2

(Z

T

e

;R

3

), u

n;t

* u

t

weakly in L

2

(Z

T

e

;R

3

) for all T

e

> 0.

Proof: To see this, note that the inequality 0 � S

n

� 1 and Lemma 3.3 together

with varS

(0)

n

= varS

(0)

imply

kS

n

k

Z

T

e

+ jS

n;x

j(Z

T

e

) + jS

n;t

j(Z

T

e

) � T

e

�

(b� a) + (1 + 
A) varS

(0)

�

;

where kS

n

k

Z

T

e

denotes the L

1

-norm. Therefore, if we set T

e

= m 2 N , for every m

we 
an sele
t a subsequen
e of fS

n

g

1

n=1

, whi
h 
onverges in L

1

(Z

m

;R) to a limit

fun
tion S 2 BV (Z

m

), 
f. [13, p. 176℄. By the usual argument the diagonal

sequen
e, again denoted by fS

n

g

n

, 
onverges to S in L

1

(Z

T

e

;R) for every T

e

>

0. Noting that 0 � S

n

� 1 we infer that this sequen
e 
onverges to S even in

L

p

(Z

T

e

;R) for all 1 � p <1.

Let (u; t) be the solution of the problem (2.3) { (2.5) to the fun
tion S, for

every T

e

> 0. The di�eren
e (u

n

� u; T

n

� T ) is a solution of the boundary value

problem (2.3) { (2.5) to the data b = 0; f = 0 and to the fun
tion S

n

� S. From

(2.6) and (2.8) we thus obtain

(u

n

� u)(x; t) = u

�

�

Z

x

a

(S

n

� S)(y; t)dy �

x� a

b� a

Z

b

a

(S

n

� S)(y; t)dy

�

(T

n

� T )(x; t) = D("

�

� ")(S

n

� S)(x; t)�D"

�

1

b� a

Z

b

a

(S

n

� S)(y; t)dy :

it follows immediately from these formulas and from S

n

! S in L

2

(Z

T

e

;R) that

(u

n

; u

n;x

; T

n

) ! (u; u

x

; T ) in L

2

(Z

T

e

;R

3

� R

3

� S

3

). To verify that u

n;t

* u

t

we
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use (2.29), applied to ~u = u

n

and to the pie
ewise 
onstant fun
tion

~

S = S

n

, and

obtain for (x; t) 2 Z

T

e

that

ju

n;t

(x; t)j =

�

�

�

u

�

�

x� a

b� a

k

X

i=1

d�

i

dt

(t) [S

n

℄

�

�

i

(t); t

�

�

`

X

i=1

d�

i

dt

(t) [S

n

℄

�

�

i

(t); t

�

�

+ w

t

(x; t)

�

�

�

� 2ju

�

j 
A varS

n

(�; t) + jw

t

(x; t)j :

Here 
A is the bound for j

d�

dt

j in Z

T

e

from (3.14). Sin
e varS

n

(�; t) � 1, by Corollary

3.2, and w

t

2 L

2

(Z

T

e

;R

3

), by Lemma 2.1, we 
on
lude that fu

n;t

g

n

is bounded in

L

2

(Z

T

e

;R

3

). Hen
e it has a weakly 
onverging subsequen
e. By the usual argu-

ments we infer that the weak derivative u

t

exists in L

2

(Z

T

e

;R

3

) and that u

n;t

* u

t

for all T

e

> 0. Sin
e u

x

2 L

2

(Z

T

e

) we obtain u 2 H

1

(Z

T

e

;R

3

). This �nishes the

proof of the 
laim.

Claim 2: The limit fun
tion (u; T; S) satis�es the equation

S

t

= �


�

C

1

(u

x

; S)

x

� u

x

� b

�

(3.17)

on Z in the sense of measures.

Proof: The 
laim follows from Lemma 3.4 if we show that the measures S

n;t

and C

1

(u

n;x

; S

n

)

x

� u

n;x

� b on both sides of (3.16) weak{� 
onverge to S

t

and to

C

1

(u

x

; S)

x

� u

x

� b, respe
tively.

By de�nition, S

n;t

�

* S

t

if

R

Z

'dS

n;t

!

R

Z

'dS

t

for all ' 2

Æ

C

(Z). Sin
e

Æ

C

1

(Z)

is dense in

Æ

C

(Z), it follows that S

n;t

�

* S

t

if

sup

n2N

jS

n;t

j(Z

T

e

) <1 (3.18)

for all T

e

> 0 and if

Z

Z

'dS

n;t

= �

Z

Z

S

n

'

t

d(x; t)! �

Z

Z

S'

t

d(x; t) =

Z

Z

'dS

t

(3.19)

for all ' 2

Æ

C

1

(Z). Equation (3.18) is a 
onsequen
e of (3.7) sin
e varS

(0)

n

� 1, and

(3.19) immediately follows from the fa
t that S

n

! S in L

2

(Z

T

e

) for every T

e

> 0.

Also, we have C

1

(u

n;x

; S

n

)

x

� u

n;x

� b

�

* C

1

(u

x

; S)

x

� u

x

� b if

sup

n2N

jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj(Z

T

e

) <1 (3.20)

for all T

e

> 0 and

Z

Z

�

C

1

(u

n;x

; S

n

)'

x

+ u

n;x

� b'

�

d(x; t)!

Z

Z

�

C

1

(u

x

; S)'

x

+ u

x

� b'

�

d(x; t) (3.21)
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for all ' 2

Æ

C

1

(Z). Equation (3.20) is a 
onsequen
e of (3.8). To prove (3.21)

observe that

C

1

(u

n;x

; S

n

) =

1

2

T

n

�

�

"(u

n;x

)� "S

n

�

+  

1

(S

n

)� u

n;x

� T

1;n

: (3.22)

Sin
e T

n

! T in L

2

(Z

T

e

), u

n;x

! u

x

in L

2

(Z

T

e

) and S

n

! S in L

2

(Z

T

e

) we 
on
lude

that

1

2

T

n

� "(u

n;x

)'

x

!

1

2

T � "(u

x

)'

x

;

1

2

T

n

S

n

'

x

!

1

2

TS '

x

;

 

1

(S

n

)'

x

!  

1

(S)'

x

; u

n;x

� T

1;n

'

x

! u

x

� T

1

'

x

;

where the 
onvergen
e is in L

1

(Z;R), sin
e ' has 
ompa
t support. From (3.22)

we thus obtain

C

1

(u

n;x

; S

n

)'

x

! C

1

(u

x

; S)'

x

in L

1

(Z;R). Relation (3.21) is implied by this relation together with u

n;x

� b' !

u

x

� b' in L

1

(Z;R), whi
h again follows from the 
onvergen
e of u

n;x

to u

x

.

Claim 3: (u; T; S) satis�es the equations (1.17) { (1.22).

Proof: By Claim 1 the fun
tion (u; T; S) satis�es the equations (2.3) { (2.5), whi
h


oin
ide with (1.17), (1.18), (1.20). Equation (1.19) follows from (3.17) by taking

the variation measures on both sides. To show that the Clausius-Duhem inequality

(1.22) holds it suÆ
es to prove that in the sense of measures

 

�

"(u

n;x

); S

n

�

t

� (T

1;n

� u

n;t

)

x

� b � u

n;t

�

*  

�

"(u

x

); S

�

t

� (T

1

� u

t

)

x

� b � u

t

; (3.23)

sin
e (u

n

; T

n

; S

n

) satis�es (1.22). Be
ause the right hand side of (3.9) is uniformly

bounded by the 
onstant 
A

2

T

e

varS

(0)

, we infer just as in the proof of (3.17) that

(3.23) holds if

Z

Z

 

�

"(u

n;x

); S

n

�

'

t

d(x; t) !

Z

Z

 

�

"(u

x

); S

�

'

t

d(x; t) (3.24)

Z

Z

T

1;n

� u

n;t

'

x

d(x; t) !

Z

Z

T

1

� u

t

'

x

d(x; t) (3.25)

Z

Z

b � u

n;t

'd(x; t) !

Z

Z

b � u

t

'd(x; t) (3.26)

for all ' 2

Æ

C

1

(Z;R). Yet, the 
onvergen
e (3.24) follows exa
tly as in the proof

of (3.17) and (3.25), (3.26) are implied by the 
onvergen
e relations T

1;n

! T

1

in

L

2

(Z

T

e

;R

3

), u

n;t

* u

t

weakly in L

2

(Z

T

e

;R

3

), whi
h hold by Claim 1.

To verify the initial 
ondition (1.21) we �rst extend the signed measures S

n;t

and S

t

on Z

T

e

to measures on the set Z

�1;T

e

= (a; b) � (�1; T

e

) by de�ning for

B � Z

�1;T

e

S

n;t

(B) = S

n;t

(B \ Z

T

e

); S

t

(B) = S

t

(B \ Z

T

e

);
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provided B \ Z

T

e

is S

n;t

{measurable or S

t

{measurable. In the proof of Claim 2

we showed that fS

n;t

g

n


onverges weak{� to S

t

on Z

T

e

. Here we show that the

sequen
e of extended measures fS

n;t

g

n


onverges weak{� to S

t

on Z

�1;T

e

.

To this end note that if Æ is a 
onstant satisfying 0 < Æ � T

e

and if we apply

(3.7) with Z

T

e

repla
ed by Z

Æ

, then we obtain for the extended measure

jS

n;t

j(Z

�1;Æ

) = jS

n;t

j(Z

Æ

) � 
AÆ varS

(0)

n

� 
AÆ : (3.27)

A 
an be 
hosen independent of Æ � T

e

, sin
e it is an in
reasing fun
tion of this

parameter. From (3.27) we obtain in parti
ular that jS

n;t

j(Z

�1;T

e

) � 
AT

e

. Conse-

quently, there is a subsequen
e fS

n

j

;t

g

j

, whi
h 
onverges weak{� to a measure � on

Z

�1;T

e

. From the properties of weak{� 
onvergen
e we know that �(B) = S

t

(B)

for B � Z

T

e

. Thus, if we show that �(B) = 0 for all sets B �

�

(a; b)� (�1; 0℄

�

, it

follows that � is equal to the extended measure S

t

, and this implies for the extended

measures that S

n;t

�

* S

t

.

Thus, let B �

�

(a; b)� (�1; 0℄

�

. Then B is a subset of the open set Z

�1;Æ

for

any 0 < Æ � T

e

, hen
e (3.27) implies

j�j(B) � j�j(Z

�1;Æ

) � lim inf

j!1

jS

n

j

;t

j(Z

�1;Æ

) � 
AÆ ; (3.28)


f. [13, p. 54℄. This yields the desired result j�j(B) = 0.

In the se
ond step of the proof we use that S

n;t

�

* S

t

on Z

�1;T

e

implies for

' 2

Æ

C

(Z

�1;T

e

;R)

lim

n!1

Z

Z

'dS

n;t

= lim

n!1

Z

Z

�1;T

e

'dS

n;t

=

Z

T

�1;T

e

'dS

t

=

Z

Z

'dS

t

: (3.29)

Be
ause S

n

is pie
ewise 
onstant with �nitely many jumps we dedu
e by partial

integration for ' 2

Æ

C

1

(Z

�1;T

e

;R) that

Z

b

a

S

(0)

n

'(0) dx = �

Z

Z

S

n

'

t

d(x; t)�

Z

Z

'dS

n;t

: (3.30)

Sin
e S

n

! S in L

2

(Z

T

e

;R) and sin
e S

(0)

n

satis�es (3.1), we obtain by taking the

limits on both sides of (3.30), observing (3.29), that

Z

b

a

S

(0)

'(0)dx = �

Z

Z

S '

t

d(x; t)�

Z

Z

'dS

t

:

By the tra
e theorem for BV -fun
tions (
f. [13, p.177℄), this equation implies that

S

(0)


oin
ides with the uniquely de�ned tra
e of S 2 BV (Z

T

e

) on (a; b) � f0g.

Therefore the initial 
ondition (1.21) is satis�ed.

This 
ompletes the proof of Lemma 1.2 for in
reasing initial data S

(0)

. For

de
reasing S

(0)

the proof is almost the same. The only essential di�eren
e is that

in this 
ase [S

n

℄(�) < 0 for all jumps of the approximate solutions, whi
h implies

that instead of (3.17) the fun
tion S satis�es

S

t

= 


�

C

1

(u

x

; S)

x

� u

x

� b

�

:
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4 Nonmonotone initial data

This se
tion is devoted to the proof of Theorem 1.3. For initial data in
reasing in

the interval [a; 
℄ and de
reasing in [
; b℄ it is not possible to 
onstru
t a solution,

whi
h satis�es the equation (1.19) without the absolute value signs, as we 
ould

do this for monotone initial data. Instead, we have to deal with all the diÆ
ulties

arising from the variation measures in (1.19).

The existen
e proof uses a 
onvergent sequen
e f(u

n

; T

n

; S

n

)g

n

of solutions

to pie
ewise 
onstant initial data 
onstru
ted as in the proof of Lemma 1.2.

The arguments of the pre
eding se
tion 
an be repeated to show that the limit

fun
tion satis�es (1.17), (1.18), (1.20) { (1.22). The main diÆ
ulty in the

proof that the evolution equation (1.19) is satis�ed lies in the veri�
ation of

jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj

�

* jC

1

(u

x

; S)

x

� u

x

� bj. To prove this we de
ompose

�

n

= C

1

(u

n;x

; S

n

)

x

�u

n;x

� b into the positive and negative part �

�

n

. For the weak{�

limits we have lim

n!1

j�

n

j = lim

n!1

(�

+

n

+ �

�

n

) = �

+

+ �

�

. In general, �

+

+ �

�

is

di�erent from the variation measure of C

1

(u

x

; S)

x

� u

x

� b. However, we 
an show

that in our situation equality holds, whi
h proves the desired result. The 
entral

idea used to show this is 
ontained in the proof of Proposition 4.9, whi
h is given

in Se
t. 5.

Constru
tion of the solution. We 
hoose a sequen
e fS

(0)

n

g

n

of pie
ewise 
on-

stant fun
tions S

(0)

n

: [a; b℄ ! [0; 1℄ with �nitely many jumps in (a; 
) [ (
; b), su
h

that S

(0)

n

is in
reasing on (a; 
), de
reasing on (
; b), and su
h that

lim

n!1

sup

a�x�b

jS

(0)

(x)� S

(0)

n

(x)j = 0 : (4.1)

De�ne (u

n

; T

n

; S

n

) : Z ! R

3

�S

3

� [0; 1℄ to be the solution of the initial-boundary

value problem (1.17) { (1.22) to the initial data S

(0)

n


onstru
ted as in the proof of

Lemma 1.1. For the fun
tions S

n

the statements (i) and (ii) of Lemma 3.1 hold,

with the same proof. This allows to dedu
e the following uniform estimate:

Lemma 4.1 The fun
tion S

n

satis�es

varS

n

(�; t) � varS

(0)

n

� 2;

for every n and all t > 0.

Proof: From Lemma 3.1 (i) we obtain for every n and for every jump 
urve � 2 J

n

that

j[S

n

℄(�)j � jS

(0)

n

(y

�

+)� S

(0)

n

(x

�

�)j � var

�

S

(0)

n

�

�

[x

�

�; y

�

+℄

�

; (4.2)

where x

�

and y

�

are de�ned as in that lemma and where

var

�

S

(0)

n

�

�

[x

�

�; y

�

+℄

�

= lim

�&0

var

�

S

(0)

n

�

�

[x

�

� �; y

�

+ �℄

�

:

Moreover, if �

1

; : : : ; �

k

2 J

n

are the jump 
urves interse
ting the line segment

(a; b) � ftg, ordered su
h that �

1

(t) < �

2

(t) < : : : < �

k

(t), then Lemma 3.1 (ii)

implies

x

�

1

� y

�

1

< x

�

2

� y

�

2

< : : : < x

�

k

� y

�

k

:
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Noting these inequalities we infer from (4.2)

varS

n

(�; t) =

k

X

i=1

j[S

n

℄(�

i

)j =

k

X

i=1

jS

(0)

n

(y

�

i

+)� S

(0)

n

(x

�

i

�)j � varS

(0)

n

� 2 :

The proof is 
omplete.

Based on the estimate in this lemma we 
an repeat the proof of Lemma 3.3 for the

fun
tions (u

n

; T

n

; S

n

), with minor 
hanges. Consequently, the inequalities (3.7) {

(3.9) hold for (u

n

; T

n

; S

n

) . Exa
tly as in the proofs of Claim 1 and Claim 3 in the

pre
eding se
tion we thus obtain

Lemma 4.2 The sequen
e f(u

n

; T

n

; S

n

)g

n

has a subsequen
e, again denoted by

f(u

n

; T

n

; S

n

)g

n

, whi
h 
onverges in the norm of the spa
e L

2

(Z

T

e

;R

3

� S

3

) �

L

p

(Z

T

e

;R) to a fun
tion

(u; T; S) 2 H

1

(Z

T

e

;R

3

)� L

2

(Z

T

e

;S

3

)� BV (Z

T

e

;R) ;

for every T

e

> 0 and all 1 � p < 1. Moreover, u

n;x

! u

x

in L

2

(Z

T

e

;R

3

) and

u

n;t

* u

t

, weakly in L

2

(Z

T

e

;R

3

), for all T

e

> 0. The fun
tion (u; T; S) satis�es the

equations (1.17), (1.18), (1.20), the initial 
ondition (1.21) and the Clausius-Duhem

inequality (1.22).

Convergen
e of the variation measures jS

n;t

j . The remainder of this arti
le

is devoted to the proof that (u; T; S) satis�es the evolution equation (1.19). Sin
e

(u

n

; T

n

; S

n

) satis�es (1.19), it suÆ
es for the proof to show that jS

n;t

j

�

* jS

t

j and

jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj

�

* jC

1

(u

x

; S)

x

� u

x

� bj. To prove the �rst of these relations

we �rst study the jump 
urves of S

n

and state some estimates used in later parts

of our investigation.

Lemma 4.3 Assume that 
ondition (1.26) holds.

(i) The jump of C

1

along any jump 
urve � 2 J

n

satis�es

[C

1

℄(�) = f(�; S

n

; �) [S

n

℄(�); (4.3)

where the fun
tion

f(�; S

n

; �) = ("� "

�

) �D("� "

�

) hS

n

i(�)

+"

�

�D"

�

1

b� a

Z

b

a

S

n

(y; t)dy � " � �(x; t) +

[ 

1

℄(�)

[S

n

℄(�)


an be estimated by

M

1

� f(�; S

n

; �) �M

2

: (4.4)

Here M

1

> 0 is the 
onstant in (1.26) and

M

2

= ("� "

�

) �D("� "

�

) + "

�

�D"

�

+ k" � �k

L

1

(Z;R)

+ sup

0�s�1

j 

0

1

(s)j :
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(ii) With the 
onstant 
 > 0 from (1.19) let V

1

= 
M

1

and V

2

= 
M

2

. For every

jump 
urve � 2 J

n

the speed of propagation satis�es

0 < V

1

� �

d�

dt

(t) � V

2

; (4.5)

where the plus sign holds if [S

n

℄(�) > 0 and the minus sign is valid if [S

n

℄(�) < 0.

Proof: (4.3) follows from (2.16), (2.17) noting that

1

2

[S

2

℄ =

1

2

(S

+

� S

�

)(S

+

+

S

�

) = [S℄hSi and that 0 � S

n

� 1. The inequality (4.4) follows from (1.26) by a

dire
t 
omputation, and (4.5) is a 
onsequen
e of (4.4) and of (2.20), (2.16), whi
h

yield

d�

dt

= 


[C

1

℄(�)

j[S

n

℄(�)j

= 
 f(�; S

n

; �) sign[S

n

℄(�):

Corollary 4.4 If (1.26) holds then S

n;t

� 0 for every n. Therefore the varia-

tion measure satis�es jS

n;t

j = �S

n;t

: For the limit fun
tion S the distributional

derivative S

t

is a measure and, in the sense of measures, S

n;t

�

* S

t

. Thus,

S

t

� 0; jS

t

j = �S

t

; jS

n;t

j = �S

n;t

�

* �S

t

= jS

t

j:

Proof: Equation (2.21), applied to the pie
ewise 
onstant fun
tion S

n

, and (2.26)

together yield

S

n;t

= n

00

[S

n

℄H

J

= �n

0

d�

dt

[S

n

℄H

J

: (4.6)

Here n

0

> 0, by our 
hoi
e of the normal ve
tor (n

0

; n

00

). From (4.5) we thus infer

that �n

0

d�

dt

[S

n

℄(�) < 0 for all jump 
urves � 2 J

n

, when
e S

n;t

� 0, by (4.6). The

de�nition of the variation measure now immediately yields jS

n;t

j = �S

n;t

.

S

n;t

�

* S

t

follows as in the proof of Claim 2 in Se
tion 3. This 
onvergen
e

implies for ' 2

Æ

C

1

(Z;R) with ' � 0 that

�

Z

Z

S '

t

d(x; t) = � lim

n!1

Z

Z

S

n

'

t

d(x; t) = lim

n!1

Z

Z

'dS

n;t

� 0 :

Sin
e

Æ

C

1

(Z;R) is dense in

Æ

C

(Z;R), this equation yields S

t

� 0. The remaining

statements in the 
orollary are now obvious.

The positive and negative parts of the measure C

1

(u

n;x

; S

n

)

x

� u

n;x

� b. The

proof that jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj

�

* jC

1

(u

x

; S)

x

� u

x

� bj 
annot be based on the

simple idea used to verify jS

n;t

j

�

* jS

t

j. For, sin
e the initial data S

(0)

n

are in
reasing

on [a; 
℄ and de
reasing on [
; b℄ it follows that [S

n

℄(�) has negative and positive

values, depending on the jump 
urve �. Be
ause (4.3) and (4.4) together imply

sign[C

1

℄(�) = sign[S

n

℄(�); also [C

1

℄(�) has negative and positive values, hen
e the

measure

C

1

(u

n;x

; S

n

)

x

� u

n;x

� b = n

0

[C

1

℄H

J

does not have a sign. The last equation is obtained from (2.22), applied to the

pie
ewise 
onstant fun
tion S

n

. To prove 
onvergen
e also in this situation we

introdu
e the positive and negative parts of this measure:
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De�nition 4.5 Let � 2 J

n

be a jump 
urve. For C

1

= C

1

(u

n;x

; S

n

) we set

[C

1

℄

+

(�) =

1

2

�

j [C

1

℄(�) j+ [C

1

℄(�)

�

; [C

1

℄

�

(�) =

1

2

�

j [C

1

℄(�) j � [C

1

℄(�)

�

;

�

n

= n

0

[C

1

℄H

J

= C

1x

� u

n;x

� b ; �

�

n

= n

0

[C

1

℄

�

H

J

:

The measures �

�

n

are the positive and negative parts of the measure �, and we have

�

�

n

� 0 ; �

n

= �

+

n

� �

�

n

; j�

n

j = �

+

n

+ �

�

n

: (4.7)

Lemma 4.6 (i) For the limit fun
tion (u; T; S) the distributional derivative

C

1

(u

x

; S)

x

� u

x

� b is a measure, whi
h we denote by �. We have �

n

�

* �.

(ii) There is a subsequen
e of f(u

n

; T

n

; S

n

)g

n

, again denoted by f(u

n

; T

n

; S

n

)g

n

, su
h

that the 
orresponding subsequen
es f�

+

n

g

n

; f�

�

n

g

n


onverge weak{� to measures �

+

and �

�

, respe
tively. These measures satisfy �

+

; �

�

� 0.

Proof: Above we remarked that Lemma 3.3 holds for (u

n

; T

n

; S

n

). We therefore

obtain from (3.8) and from (4.7)

�

�

n

(Z

T

e

) � j�

n

j(Z

T

e

) � AT

e

varS

(0)

n

� 2AT

e

; (4.8)

for every T

e

> 0. The last inequality sign in this estimate follows from Lemma 4.1.

Using this estimate for �

n

we 
an show exa
tly as in the proof of Claim 2 in Se
tion 3

that � = C

1

(u

x

; S)

x

� u

x

� b is a measure and that �

n

�

* �. Also, sin
e by (4.8)

sup

n

�

�

n

(Z

T

e

) < 1, the sequen
es of Radon measures f�

�

n

g

n

have subsequen
es,

whi
h 
onverge weak{� to Radon measures �

�

, 
f. [13, p.55℄. This proves the

lemma.

(4.7) implies for the weak{� limits

�

+

� �

�

= lim

n!1

(�

+

n

� �

�

n

) = lim

n!1

�

n

= �; (4.9)

�

+

+ �

�

= lim

n!1

(�

+

n

+ �

�

n

) = lim

n!1

j�

n

j; (4.10)

but in a general situation the measures �

+

and �

�

are not ne
essarily equal to the

positive and negative part of �; hen
e �

+

+ �

�


an be di�erent from j�j. Therefore

in the remainder our goal is to prove that in the present situation we indeed have

j�j = �

+

+ �

�

. From (4.10) we then obtain j�

n

j

�

* j�j, whi
h is our desired result.

The limit measures �

+

and �

�

. To simplify the notation we extend �

n

to a

measure von R

2

by de�ning �

n

(V ) = �

n

(V \ Z) for V � R

2

. The same extension

is used for the other measures. By B(z) we denote an open ball in R

2

with 
enter

z = (x; t) and positive radius r � 1. To spe
ify the radius we write B

r

(z). The

numbers Æ and � are assumed to belong to the 
ountable set f

1

m

j m 2 Ng.
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De�nition 4.7 Let the sets

~

E;

~

F � R

2

be de�ned by

~

E =

�

z 2 Z j for all Æ > 0 there is a ball B(z) =

^

B(z; Æ) and (4.11)

a subsequen
e su
h that �

�

n

m

(B(z)) � Æ�

+

n

m

(B(z))

	

;

~

F =

�

z 2 Z j for all Æ > 0 there is a ball B(z) =

~

B(z; Æ) and (4.12)

a subsequen
e su
h that �

+

n

m

(B(z)) � Æ�

�

n

m

(B(z))

	

:

Also, for Æ > 0 let the sets

~

G

Æ

;

~

G � R

2

be given by

~

G

Æ

=

�

z 2 Z j there is R = R(z) su
h that to all 0 < r < R there is n

0

with

1

Æ

�

+

n

(B

r

(z)) > �

�

n

(B

r

(z)) > Æ�

+

n

(B

r

(z)); n � n

0

	

(4.13)

and by

~

G =

[

Æ>0

~

G

Æ

: (4.14)

The sets

~

E,

~

F and

~

G are not ne
essarily disjoint, but they satisfy

~

E [

~

F [

~

G = Z: (4.15)

For, if z =2

~

E [

~

F then there is Æ > 0 su
h that for all balls B(z) there is n

0

with

�

�

n

(B(z)) > Æ�

+

n

(B(z));

1

Æ

�

+

n

(B(z)) > �

�

n

(B(z)); n � n

0

:

This implies z 2

~

G

Æ

�

~

G, hen
e (4.15) holds.

Let Æ > 0 and � > 0. By the Besi
ovit
h Covering Theorem stated in the Appendix

there are a number N and 
ountable families E

Æ

; F

Æ

; G

Æ

�

;

E

Æ

� f

^

B(z; Æ) j z 2

~

Eg;

F

Æ

� f

~

B(z; Æ) j z 2

~

Fg;

G

Æ�

� fB

r

(z) j z 2

~

G

Æ

; r < min(�; R(z))g;

ea
h one 
onsisting of 
losure disjointed subfamilies E

(i)

Æ

;F

(i)

Æ

;G

(i)

Æ�

; i = 1; : : : ; N ,

su
h that

~

E � E

Æ

:=

[

B2E

Æ

B;

~

F � F

Æ

:=

[

B2F

Æ

B;

~

G

Æ

� G

Æ�

:=

[

B2G

Æ�

B: (4.16)

N depends only on the spa
e dimension, in this 
ase 2. We de�ne

E =

\

Æ>0

E

Æ

; F =

\

Æ>0

F

Æ

; G

Æ

=

\

�>0

G

Æ�

; G =

[

Æ>0

G

Æ

: (4.17)
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The sets E

Æ

; F

Æ

and G

Æ�

are open, when
e E; F and G

Æ

are Borel sets as 
ountable

interse
tions of open sets, and G is a Borel set as a 
ountable union of Borel sets.

(4.14), (4.16) and (4.17) imply

~

E � E;

~

F � F;

~

G

Æ

� G

Æ

;

~

G � G;

when
e, by (4.15),

E [ F [G = Z: (4.18)

Lemma 4.8 The limit measures �

�

; �

+

satisfy

�

�

(E) = �

+

(F ) = 0 and �

�

(G) = �

+

(G) = 0:

To prove this lemma we need the following result, whose proof is postponed to

Se
t. 5:

Proposition 4.9 To every Æ; # > 0 there is �

0

> 0 su
h that for all � � �

0

and

for every �nite 
olle
tion B

1

; : : : ; B

l

2 G

Æ�

with B

i

� Z

T

e

there is k

0

su
h that for

all n � k

0

�

�

n

�

l

[

i=1

B

i

�

� #; �

+

n

�

l

[

i=1

B

i

�

� #:

Proof of Lemma 4.8: To prove that �

�

(E) = 0 let Æ > 0 and let B 2 E

Æ

.

By de�nition of E

Æ

the open ball B =

^

B(z; Æ) satis�es the 
ondition in (4.11),

hen
e there is a subsequen
e su
h that �

�

n

m

(B) � Æ �

+

n

m

(B) holds for all m. Sin
e

�

�

n

m

�

* �

�

and �

+

n

m

�

* �

+

, it follows

�

�

(B) � lim inf

m!1

�

�

n

m

(B) (4.19)

� Æ lim inf

m!1

�

+

n

m

(B) � Æ lim sup

m!1

�

+

n

m

(B) � Æ �

+

(B);


f. [13, p. 54℄.

For r > 0 we set E(r) = fz 2 E j jzj < rg. Sin
e E(r) � E � E

Æ

=

S

B2E

Æ

B

and sin
e we assumed that the radii of all balls in E

Æ

are not greater than one we


an sele
t a subfamily E

0

Æ

of E

Æ

su
h that

E(r) �

[

B2E

0

Æ

B �

[

B2E

0

Æ

B � E(r + 2):

Sin
e E

Æ

is 
omposed of the subfamilies E

(i)

Æ

; i = 1; : : : ; N , we obtain from (4.19)

�

�

(E(r)) � �

�

�

[

B2E

0

Æ

B

�

�

X

B2E

0

Æ

�

�

(B) � Æ

X

B2E

0

Æ

�

+

(B) = Æ

N

X

i=1

X

B2E

0

Æ

\E

(i)

Æ

�

+

(B)

= Æ

N

X

i=1

�

+

�

[

B2E

0

Æ

\E

(i)

Æ

B

�

� Æ

N

X

i=1

�

+

(E(r + 2)) = Æ N�

+

(E(r + 2));
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where we used that the 
losed hulls of the balls in E

(i)

Æ

are pairwise disjoint. This

estimate holds for all Æ > 0, hen
e �

�

(E(r)) = 0 for all r > 0, and so �

�

(E) = 0.

The equation �

+

(F ) = 0 is veri�ed in the same way, inter
hanging the roles of

�

+

n

and �

�

n

.

To prove that �

�

(G) = �

+

(G) = 0 let Æ; # > 0 and let � = �

0

(Æ; #) > 0 be

the number whose existen
e is assured in Proposition 4.9. Assume that K � G

Æ

is a 
ompa
t subset. G

Æ�

is an open 
overing of K, sin
e (4.17) implies G

Æ

�

G

Æ�

=

S

B2G

Æ�

B. Therefore there exist �nitely many B

1

; : : : ; B

l

2 G

Æ�

su
h that

K �

S

l

i=1

B

i

. By Proposition 4.9 there is k

0

with

�

�

n

�

l

[

i=1

B

i

�

� #; �

+

n

�

l

[

i=1

B

i

�

� #

for all n � k

0

. Sin
e �

�

n

�

* �

�

; �

+

n

�

* �

+

and sin
e

S

l

i=1

B

i

is open, we obtain

�

�

(K) � �

�

�

l

[

i=1

B

i

�

� lim inf

n!1

�

�

n

�

l

[

i=1

B

i

�

� #:

Sin
e # was 
hosen arbitrarily, it follows that �

�

(K) = �

+

(K) = 0: This holds

for every 
ompa
t subset K of G

Æ

. Sin
e G

Æ

is a Borel set, we 
on
lude that

�

�

(G

Æ

) = �

+

(G

Æ

) = 0; 
f. [Evans, p. 6℄. Thus, G =

S

1

m=1

G

1

m

is a 
ountable union

of null sets, when
e �

�

(G) = �

+

(G) = 0:

Corollary 4.10 The measures �

�

and �

+

satisfy j�j = �

+

+ �

�

. Moreover,

jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj = j�

n

j

�

* j�j = jC

1

(u

x

; S)

x

� u

x

� bj:

Proof: From (4.18) we see that the 
omplement E

0

= ZnE of E is a subset of

F [G. Sin
e �

+

is a nonnegative measure we therefore obtain from Lemma 4.8 for

every �

+

-measurable set R that

�

+

(R) = �

+

((R \ E) [ (R \ E

0

)) � �

+

(R \ E) + �

+

(F [G) = �

+

(R \ E);

hen
e �

+

(R) = �

+

(R \ E). Similarly, �

�

(R) = �

�

(R \ E

0

). By de�nition of the

variation measure j�j we have

j�j(R) = sup

l

X

i=1

j�(R

i

)j;

where the supremum is taken over all �nite 
olle
tions fR

i

g of �-measurable, pair-

wise disjoint sets with R

i

� R. With fR

i

g also fR

i

\ Eg [ fR

i

\ E

0

g is su
h a


olle
tion. Thus,

j�j(R) = sup

l

X

i=1

j�(R

i

)j � sup

l

X

i=1

(j�(R

i

\ E)j+ j�(R

i

\ E

0

)j) � j�j(R):
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Using (4.9) we thus 
on
lude for any measurable subset R of Z that

j�j(R) = sup

l

X

i=1

�

j(�

+

� �

�

)(R

i

\ E)j+ j(�

+

� �

�

)(R

i

\ E

0

)j

�

= sup

l

X

i=1

�

j�

+

(R

i

)j+ j�

�

(R

i

)j

�

= sup

l

X

i=1

�

�

+

(R

i

) + �

�

(R

i

)

�

= sup

 

�

+

�

l

[

i=1

R

i

�

+ �

�

�

l

[

i=1

R

i

�

!

= �

+

(R) + �

�

(R):

This proves that j�j = �

+

+ �

�

. The relation j�

n

j

�

* j�j follows from this equation

and from (4.10). The proof is 
omplete.

End of the proof of Theorem 1.3: By Lemma 4.2 the fun
tion (u; T; S) satis�es

the equations and inequalities (1.17), (1.18), (1.20), (1.21) and (1.22). To see that

also equation (1.19) is satis�ed remember that by 
onstru
tion (u

n

; T

n

; S

n

) ful�lls

this equation. From Corollary 4.4 and Corollary 4.10 we thus obtain for the weak{�

limits

jS

t

j = lim

n!1

jS

n;t

j = lim

n!1


 jC

1

(u

n;x

; S

n

)

x

� u

n;x

� bj = 
 jC

1

(u

x

; S)

x

� u

x

� bj :

Consequently, (u; T; S) satis�es also the evolution equation (1.19).

5 Proof of Proposition 4.9

This se
tion is devoted to the proof of Proposition 4.9. We start by stating and

verifying several auxiliary lemmas. The idea of the proof of the proposition is

explained at the beginning of that proof, and we advi
e the reader to study that

part �rst.

De�nition 5.1 For a jump 
urve � 2 J

n

let

[S

n

℄

+

(�) =

1

2

�

j [S

n

℄(�) j+ [S

n

℄(�)

�

; [S

n

℄

�

(�) =

1

2

�

j [S

n

℄(�) j � [S

n

℄(�)

�

:

With the Hausdor� measure H

J

and with the �rst 
omponent n

0

> 0 of the unit

normal ve
tor (n

0

; n

00

) to the jump 
urve � de�ne

�

n

= n

0

[S

n

℄H

J

; �

�

n

= n

0

[S

n

℄

�

H

J

:

�

n

is a signed measure and �

�

n

are Radon measures, the positive and negative part

of �

n

. Lemma 4.3 yields

�

n

= n

0

[C

1

℄H

J

= n

0

f [S

n

℄H

J

and �

�

n

= n

0

[C

1

℄

�

H

J

= n

0

f [S

n

℄

�

H

J

; :

From (4.4) we therefore obtain for any measurable subset V

M

1

�

�

n

(V ) � �

�

n

(V ) �M

2

�

�

n

(V ): (5.1)
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This shows that the measures �

�

n


an be estimated above and below by the measures

�

�

n

. We use this to derive the inequalities for �

�

n

in Proposition 4.9 from analogous

inequalities for �

�

n

.

For a jump 
urve � 2 J

n

satisfying � \ Z

T

e

6= ; we 
all the 
urve with graph

� \ Z

T

e

a jump 
urve in Z

T

e

. If �

1

; : : : ; �

l

2 J

k

are jump 
urves in Z

T

e

su
h that

the endpoint of �

i


oin
ides with the starting point of �

i+1

for every i = 1; : : : ; l�1,

we say that the 
urve with graph �

1

[: : :[�

l

� Z

T

e

is the 
omposition of �

1

; : : : ; �

l

.

The 
omposed 
urve is said to pass over the jump 
urve �

j

for all j = 1; : : : ; l: The


omposition is 
alled of maximal length if there is no proper extension in Z

T

e

:

De�nition 5.2 A 
omposition of jump 
urves in Z

T

e

of maximal length is 
alled

a 
hain. The set of 
hains is denoted by �

n

. The subset of all 
hains with starting

point on the line segment (a; 
)� f0g is denoted by �

+

n

, the subset of 
hains with

starting point on (
; b)� f0g is �

�

n

.

Note that every 
hain � starts at the line segment (a; b)�f0g and ends at a point

(x

�

; t

�

) 2 �Z

T

e

with t

�

> 0 , when
e �

n

= �

+

n

[ �

�

n

. We always identify the


hain � with its parametrization � : [0; t

�

℄ ! [a; b℄ and with the graph of this

parametrization, a subset of Z

T

e

. Note that several di�erent 
hains 
an pass over

one and the same jump 
urve � 2 J

n

.

For 
hains � and � we write � � � if the starting points (x; 0) of � and (y; 0)

of � satisfy x � y. If the graphs � and � are not disjoint, we 
all the point

(x

0

; t

0

) 2 � \ � with

t

0

= minft j (x; t) 2 � \ �g

the point of interse
tion of � and �. The 
onstru
tion of S

n

in Se
t. 2 implies that

two 
hains 
oin
ide for t � t

0

, hen
e they have at most one point of interse
tion.

De�nition 5.3 For a 
hain � we de�ne the strength j�j : [0; t

�

℄ ! [0;1) as

follows: Let 0 < t

1

< : : : t

m�1

< T

e

with m � 1 be the times, where interse
tions of


hains o

ur, and let t

m

= T

e

. For every 
hain � 2 �

n

we set

j�j(t) = j[S

(0)

n

℄(�(0))j; 0 � t < t

1

: (5.2)

Let 1 � i � m � 1 and assume that j�j(t) is de�ned for every 
hain � and for

every 0 � t < min(t

�

; t

i

). Assume that the point (x; t

i

) belongs to the graphs of the


hains �

1

; : : : ; �

k

2 �

+

n

and �

1

; : : : ; �

l

2 �

�

n

, and let

h =

k

X

j=1

j�

j

j(t

i

�)�

l

X

j=1

j�

j

j(t

i

�) : (5.3)

If h � 0 
hoose h

j

satisfying

0 � h

j

� j�

j

j(t

i

�);

k

X

j=1

h

j

= h (5.4)
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and de�ne

j�

j

j(t) = h

j

for t

i

� t < min(t

i+1

; t

�

j

); j = 1; : : : ; k;

j�

j

j(t) = 0 for t

i

� t < min(t

i+1

; t

�

j

); j = 1; : : : ; l:

If h < 0 
hoose h

j

satisfying

0 � h

j

� j�

j

j(t

i

�);

k

X

j=1

h

j

= jhj (5.5)

and de�ne

j�

j

j(t) = 0 for t

i

� t < min(t

i+1

; t

�

j

); j = 1; : : : ; k;

j�

j

j(t) = h

j

for t

i

� t < min(t

i+1

; t

�

j

); j = 1; : : : ; l:

Lemma 5.4 (i) The strength is a de
reasing fun
tion satisfying

0 � j�j(t) � j�j(0) = j[S

(0)

n

℄(�(0))j :

(ii) Let (x; t) belong to the graphs of the 
hains �

1

; : : : ; �

k

2 �

+

n

and �

1

; : : : ; �

l

2

�

�

n

. Then

[S

n

℄(x; t) =

k

X

j=1

j�

j

j(t)�

l

X

j=1

j�

j

j(t): (5.6)

(iii) Moreover, either j�

j

j(t) = 0 for j = 1; : : : ; k or j�

j

j(t) = 0 for j = 1; : : : ; l.

Proof: (i) follows immediately from De�nition 5.3. To verify (ii) let 0 < t

1

< : : : <

t

m�1

be the interse
tion times of 
hains. Let (x; t) with t > 0 belong to the graph

of a jump 
urve � 2 J

n

. If t < t

1

then � starts at the line segment (a; b) � f0g,

and exa
tly one 
hain � passes over �. The jump 
urve � belongs to �

+

n

or to �

�

n

,

respe
tively, if a < �(0) = �(0) < 
 or if 
 < �(0) < b, respe
tively. Sin
e S

(0)

n

is

in
reasing on (a; 
) and de
reasing on (
; b), we thus obtain from (5.2)

[S

n

℄(x; t) = [S

(0)

n

℄(�(0)) =

(

j�(t)j; if � 2 �

+

n

;

�j�(t)j; if � 2 �

�

n

:

This proves (5.6) for t < t

1

. Assume next that t

i+1

> t > t

i

and that (5.6) holds in

Z

t

i

. It follows that the point (�(t

i

); t

i

) belongs to the graph of �. If it is the starting

point of � then there are jump 
urves �

1

� �

2

� : : : � �

m

2 J

n

whi
h all end at

(�(t

i

); t

i

). If (�(t

i

); t

i

) is not the starting point of � we 
an still 
onsider it as the

end point of the part of � in the set Z

t

i

. We denote this part by �

1

. In this 
ase

we have m = 1. The sets of 
hains �

1

; : : : ; �

k

2 �

+

n

and �

1

; : : : ; �

l

2 �

�

n

passing

over (x; t) 
an be partitioned into subsets of 
hains passing over �

1

; : : : ; �

m

, and

every 
hain passing over one of �

1

; : : : ; �

m

also passes over (x; t). On the one hand,
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if �

1

is the leftmost of the jump 
urves �

1

; : : : ; �

m

and �

m

the rightmost, then our


onstru
tion of S

n

in Se
t. 2 implies

[S

n

℄(x; t) = [S

n

℄(�) = S

n

(�

m

+)� S

n

(�

1

�) =

m

X

j=1

[S

n

℄(�

j

): (5.7)

On the other hand, by our assumption we have

m

X

j=1

[S

n

℄(�

j

) =

k

X

p=1

j�

p

j(t

i

�)�

l

X

q=1

j�

q

j(t

i

�) =

k

X

p=1

j�

p

j(t)�

l

X

q=1

j�

q

j(t);

where we used (5.3) { (5.5) to get the last equality sign. This equation and (5.7)

together imply (5.6).

(iii) is an immediate 
onsequen
e of De�nition 5.3. This 
ompletes the proof of

the lemma.

It follows from statements (i) and (ii) of this lemma that

[S

n

℄

�

(x; t) =

X

�2�

�

n

�(t)=x

j�j(t): (5.8)

Thus, De�nition 5.1 yields for every measurable set V � Z

T

e

with 
hara
teristi


fun
tion �

V

that

�

�

n

(V ) =

X

�2�

�

n

Z

�

�

V

(�(t); t)j�j(t)n

0

ds =

X

�2�

�

n

Z

T

e

0

�

V

(�(t); t)j�j(t)dt ; (5.9)

where we used that n

0

ds = dt, and extended the fun
tion j�j from the domain

[0; t

�

℄ to [0; T

e

℄ by zero. Consequently, the measure �

+

n

vanishes on any set, whi
h

is not interse
ted by 
hains from �

+

n

, and �

�

n

vanishes on any set not interse
ted

by 
hains from �

�

n

. (4.5) and (5.6) imply that the jump 
urve � 2 J

n

has positive

slope if only 
hains from �

+

n

pass over �, and negative slope if only 
hains from �

�

n

pass over �. In parti
ular, 
hains from �

+

n

have positive slope until they interse
t

a 
hain from �

�

n

, and vi
e versa.

There is at most one 
urve over whi
h 
hains both from �

+

n

and �

�

n

pass.

Namely, let �

n

be the maximal 
hain from �

+

n

, i.e. the 
hain �

n

2 �

+

n

satisfying

� � �

n

for all � 2 �

+

n

, and let

^

�

n

be the minimal 
hain from �

�

n

. For all � 2 �

+

n

,

all � 2 �

�

n

and all t from the 
ommon domain of de�nition we then have

�(t) � �

n

(t) �

^

�

n

(t) � �(t);

hen
e to the left of �

n

there are only 
hains from �

+

n

, and to the right of

^

�

n

there

are only 
hains from �

�

n

. Let (x

0

; t

0

) be the point of interse
tion of �

n

and

^

�

n

.

Both 
hains 
oin
ide from the point of interse
tion on. The jump 
urves, whi
h
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ompose the 
ommon part of �

n

and

^

�

n

are the only ones over whi
h 
hains both

from �

+

n

and �

�

n

pass.

In the following the separation 
urve given by the graph of a Lips
hitz 
on-

tinuous fun
tion

! : [0; t

!

℄! [a; b℄:

plays an important role. To de�ne this fun
tion note that (4.5) implies that the

sequen
e f�

n

: [0; t

�

n

℄! [a; b℄g

n

of parametrizations is uniformly Lips
hitz 
ontin-

uous. Therefore we 
an sele
t a subsequen
e of f�

n

g

n

; again denoted by f�

n

g

n

,

whi
h 
onverges uniformly to a Lips
hitz 
ontinuous fun
tion, whi
h we take to be

!.

Hen
eforth we go over to this subsequen
e and, for example, instead of using the

original sequen
es we always work with the 
orresponding subsequen
es of f�

n

g

n

,

f�

�

n

g

n

, whi
h we again denote by the same symbols.

Lemma 5.5 The set

~

G satis�es

~

G � !.

Proof: Let 


1

be the set of all points of Z

T

e

to the left of !, let 


2

� Z

T

e

be the

set of all points to the right of ! and let (x; t) 2 


1

. Sin
e 


1

is open, (x; t) has

distan
e R > 0 to !. Therefore, be
ause �

n


onverges uniformly to !, there is n

0

su
h that (x; t) lies to the left of �

n

and has distan
e � R=2 to �

n

for all n � n

0

.

Consequently, for all r < R=2 and n � n

0

the ball B

r

(x; t) is not interse
ted by


hains from �

�

n

, hen
e by (5.1)

�

�

n

(B

r

(x; t)) �M

2

�

�

n

(B

r

(x; t)) = 0:

This 
ontradi
ts (4.13) for every Æ > 0, hen
e (x; t) =2

~

G

Æ

, then
e 


1

\

~

G

Æ

= ; for

all Æ > 0. This implies that 


1

\

~

G = 


1

\

S

Æ>0

~

G

Æ

= ;. In the same way it is

shown that 


2

\

~

G = ;. Sin
e Z

T

e

= 


1

[ ! [ 


2

it follows

~

G � !. The lemma is

proven.

In the proof of Proposition 4.9 we need some auxiliary lemmas, whi
h we state and

prove now. To this end we need some more de�nitions and notations:

For a 
hain � 2 �

n

the strength j�j is a de
reasing fun
tion. The fun
tion �

�

is obtained from � by 
utting the \tail" where j�j is small: If � is a given number

with 0 < � � 1 let �

�

be the restri
tion

�

�

= �

j

[0;t

�

�
)

;

where t

�

�

= supft j j�j(t) � �j�j(0)g. Clearly, this de�nition implies for all t from

the domain of de�nition of �

�

that

j�

�

j(t) � �j�

�

j(0) = �j[S

(0)

n

℄(�(0))j : (5.10)

The measure �

+

n

is \generated" by the 
hains in �

+

n

. We next de�ne measures

generated by subsets of �

+

n

. To this end let

P : R

2

! R; P (x; t) = t
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be the proje
tion to the t{axis, let � � �

+

n

and let V � Z

T

e

be a �

+

n

{measurable

set. The Radon measure �

+

�;�

is de�ned by

�

+

�;�

(V ) =

X

�2�

Z

P (�

�

\V )

j�

�

j(t) dt : (5.11)

Of 
ourse, this measure satis�es 0 � �

+

�;�

� �

+

n

.

Finally, we denote the Lebesgue measure of the one-dimensional set P (�

�

\ V )

by measP (�

�

\ V ).

The �rst auxiliary lemma is

Lemma 5.6 Let L > 0, let � � �

+

n

and let V be a �nite union of balls su
h that

measP (�

�

\ V ) � L for all � 2 � . Then

�

+

�;�

(Z

T

e

) �

T

e

L�

�

+

�;�

(V ):

Proof:

�

+

�;�

(Z

T

e

) =

X

�2�

Z

P (�

�

)

j�

�

j(t)dt �

X

�2�

T

e

j�

�

j(0) �

X

�2�

T

e

L

Z

P (�

�

\V )

j�

�

j(0)dt

�

T

e

L�

X

�2�

Z

P (�

�

\V )

j�

�

j(t)dt =

T

e

L�

�

+

�;�

(V ):

Lemma 5.7 Let V be a �nite union of balls and assume that

�

+

n

(V ) � 3#

with # > 0. Let L =

#

2

, � =

#

2T

e

, and let � be the set of all � 2 �

+

n

su
h that

measP (�

�

\ V ) � L. Then

�

+

�;�

(V ) � #:

Proof: Every � 2 �

+

n

is a 
omposition of �

�

and of a 
urve �̂, where �̂ satis�es

j�̂j(t) � �j�j(0) for all t from the domain of �̂. Thus, with the de�nition of �

+

�;�

(V )

in (5.11),

�

+

n

(V ) =

X

�2�

+

n

Z

P (�\V )

j�j(t)dt (5.12)

= �

+

�;�

(V ) +

X

�2�

+

n

n�

Z

P (�

�

\V )

j�

�

j(t)dt+

X

�2�

+

n

Z

P (�̂\V )

j�̂j(t)dt

Now

X

�2�

+

n

n�

Z

P (�

�

\V )

j�

�

j(t)dt �

X

�2�

+

n

n�

Z

P (�

�

\V )

j�j(0)dt (5.13)

� L

X

�2�

+

n

j[S

(0)

n

℄(�(0))j � L varS

(0)

n

� 2L = # ;
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where we used that P (�

�

\ V ) < L for all � 2 �

+

n

n�. Also,

X

�2�

+

n

Z

P (�̂\V )

j�̂j(t)dt �

X

�2�

+

n

Z

P (�̂\V )

�j�j(0)dt (5.14)

� T

e

�

X

�2�

+

n

j[S

(0)

n

℄(�(0))j � T

e

� varS

(0)

n

� 2T

e

� = # ;

The statement of the lemma follows from (5.12) { (5.14).

Lemma 5.8 For every ball B(z) with 
enter z 2 ! there is a number n

0

su
h that

for all n � n

0

the following holds: Let �; � 2 �

+

n

with � � �, let [0; t

�

�

℄ be the

domain of �

�

and assume that B(z) � Z

t

�

�

. Then

measP (�

�

\ B(z)) �

q

1 + 4V

2

2

measP (�

�

\ B(z)): (5.15)

V

2

is the 
onstant from (4.5).

Proof: I.) First we show that for n

0

suÆ
iently large we 
an assume that the 
hain

� 2 �

+

n

and the 
enter z = (~x;

~

t) 2 ! of B(z) satisfy

�(

~

t) < ~x : (5.16)

For, ! is the uniform limit of a sequen
e of 
hains f�

n

g

n

satisfying � � �

n

for all

� 2 �

+

n

. It thus follows that to � > 0 there is n

0

su
h that for all n � n

0

and all

(x; t) 2 !

�(t) � �

n

(t) < x + �:

If (5.16) does not hold we therefore have

~x � �(

~

t) < ~x + �:

Using that j

d�

dt

j � V

2

, by (4.5), we 
on
lude from this inequality by a simple

geometri
al 
onsideration that if � is less than the radius r of the ball B(z) then

(�(t); t) 2 B(z) for all t 2 U = (

~

t� h;

~

t+ h) with h = V

2

(1 + V

2

2

)

�1

(r � �). Thus,

U � P (� \ B(z)). Now we deform the 
urve � in this neighborhood U of

~

t su
h

that (5.16) is satis�ed by the deformed 
urve. From the value of h given above

we immediately see that if we 
hoose � <

V

2

2

1+2V

2

2

r this 
an be done su
h that the

deformed 
urve satis�es

1: �(

~

t) < ~x;

2: j

d�

dt

j � 2V

2

;

3: (�(t); t) 2 B(z) for all t 2 U:

(5.17)

The third property implies that P (� \ B(z)) is not 
hanged by the deformation.

The same argument also shows that we 
an deform �, if ne
essary, su
h that the

40



deformed 
urves � and � satisfy � � �, with P (� \ B(z)) un
hanged. Therefore,

sin
e both sides of (5.15) are not 
hanged by the deformation, it suÆ
es to prove

this inequality for the deformed 
urves satisfying (5.16) and (5.17). The number

n

0

only depends on V

2

2

(1+2V

2

2

)

�1

r, hen
e it only depends on the radius r of B(z).

II.) We assume that (5.16) holds. Let K be a 
onne
ted 
omponent of �

�

\ B(z),

and let �

K

be the subset of all z

�

= (x

�

; t

�

) 2 �

�

\B(z) with the property that the

radius ve
tor from the 
enter z to z

�

interse
ts K. The requirement B(z) � Z

t

�

�

implies that every 
onne
ted 
omponent K is an ar
 whi
h starts and ends at the

boundary �B(z). This fa
t, (5.16) and � � � together imply that every radius

ve
tor ending at a point of �

�

\ B(z) interse
ts �

�

, hen
e

[

K

�

K

= �

�

\ B(z) ; (5.18)

where the union is over all 
onne
ted 
omponents of �

�

\ B(z). For every K the

set P (K) is an open interval and we have

X

K

measP (K) = measP (�

�

\ B(z)): (5.19)

Claim: We have

measP (�

K

) �

q

1 + 4V

2

2

measP (K): (5.20)

To prove this 
laim �x K and assume that P (K) = (t

1

; t

2

). Sin
e (5.20) is obvious

if �

K

is empty, we also assume that �

K

6= ;. Sin
e the endpoints z

1

= (�(t

1

); t

1

)

and z

2

= (�(t

2

); t

2

) of the ar
 K are boundary points of B(z), it follows that the

line segment d 
onne
ting z

1

to z

2

is a se
ant to the 
ir
le �B(z). We denote by

B

l

(z) that part of B(z), whi
h lies to the left of d. From (5.17) we infer that the

ar
 K is 
ontained in the parallelogram

Q = f(x; t) 2 Z

t

�

�

j jx� �(t

1

)j � 2V

2

(t� t

1

); jx� �(t

2

)j � 2V

2

(t

2

� t)g;

whose diagonal is d. We denote by Q

r

the triangular region of Q whi
h lies to the

right of d.

The nonempty set �

K


onsists of all points of �

�

\ B(z), whose straight 
on-

ne
tion to z interse
ts K. Therefore �

K

must be separated from z by the ar
 K.

Sin
e z satis�es (5.16) and K is a subar
 of �, this 
an only be if �

K

is 
ontained

in the part of B(z) to the left of K and z is 
ontained in the part of B(z) to the

right. This implies

�

K

� B

l

(z) [Q

r

;

when
e

P (�

K

) � P (B

l

(z)) [ P (Q

r

) = P (B

l

(z)): (5.21)

To obtain the last equality we used that P (Q

r

) = (t

1

; t

2

) � P (B

l

(z)).

Thus, to estimate measP (�

K

) it suÆ
es to estimate measP (B

l

(z)). To this

end we observe that the 
enter z of B(z) lies on the line g, whi
h is orthogonal to
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the se
ant d of �B(z) and interse
ts d in the middle. Sin
e z is 
ontained in the

part of B(z) to the right of K, it follows that z belongs to that half line of g whi
h

is bounded at the left by the interse
tion of g with the ar
 K. From K � Q we

thus 
on
lude that z also belongs to the half line g

r

of g, whose left endpoint is

the point of interse
tion z

g

of g with the left boundary of the parallelogram Q. By

B(z

g

) we denote the ball, whose boundary �B(z

g

) passes through the endpoints z

1

and z

2

of K and thus has se
ant d. It is immediately seen that z 2 g

r

implies

B

l

(z) � B

l

(z

g

):

From this relation and from (5.21) we 
on
lude

measP (�

K

) � measP (B

l

(z

g

)) � measP (B(z

g

)) = 2r

g

; (5.22)

where r

g

is the radius of B(z

g

). To estimate this radius we use that z

g

= (x

g

; t

g

) 2

�Q. This implies that if t

0

denotes that one of the numbers t

1

; t

2

, whi
h is 
loser

to t

g

, then

jt

g

� t

0

j �

1

2

(t

2

� t

1

);

jx

g

� �(t

0

)j � 2V

2

jt

g

� t

0

j � V

2

(t

2

� t

1

):

Thus,

r

g

= j(x

g

; t

g

)� (�(t

0

); t

0

)j �

1

2

q

1 + 4V

2

2

(t

2

� t

1

) =

1

2

q

1 + 4V

2

2

measP (K);

where we used that P (K) = (t

1

; t

2

). This estimate and (5.22) together yield (5.20)

and prove the 
laim.

To �nish the proof of the lemma we observe that (5.18) yields P (�

�

\B(z)) =

S

K

P (�

K

). Together with (5.20) and (5.19) we thus infer

measP (�

�

\ B(z)) �

X

K

measP (�

K

) �

q

1 + 4V

2

2

X

K

measP (K)

=

q

1 + 4V

2

2

measP (�

�

\ B(z)):

The proof is 
omplete.

Corollary 5.9 For every �nite union V =

S

k

i=1

B(z

i

) of balls B(z

i

) 2 G

Æ�

there

is a number n

0

su
h that for all n � n

0

the following holds: Let �; � 2 �

+

n

with

� � �, let [0; t

�

�

℄ be the domain of �

�

and assume that V � Z

t

�

�

. Then

measP (�

�

\ V ) � N

q

1 + 4V

2

2

measP (�

�

\ V );

where N is the number of 
losure disjointed subfamilies G

(1)

Æ�

; : : : ;G

(N)

Æ�

of G

Æ�

.
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Proof: G

Æ�


onsists of balls with 
enter in

~

G. Sin
e

~

G � !, by Lemma 5.5, all

balls in G

Æ�

have 
enter on !. Therefore we 
an apply Lemma 5.8 and 
hoose n

0

large enough su
h that the estimate (5.15) holds for all balls B(z

i

), i = 1; : : : ; k.

We group the balls B(z

1

); : : : ; B(z

k

) into N subfamilies fB

ij

g

i

� G

(j)

Æ�

of disjoint

balls and remark that if B

ij

\B

lj

= ; then also P (�

�

\B

ij

)\P (�

�

\B

lj

) = ;, sin
e

P is a bije
tive mapping from the graph of the 
urve �

�

to [0;1). From (5.15) we

thus 
on
lude

measP (�

�

\ V ) �

k

X

i=1

measP (�

�

\B(z

i

))

�

q

1 + 4V

2

2

k

X

i=1

measP (�

�

\B(z

i

)) =

q

1 + 4V

2

2

X

j

X

i

measP (�

�

\B

ij

)

�

q

1 + 4V

2

2

X

j

measP (�

�

\ V ) = N

q

1 + 4V

2

2

measP (�

�

\ V ):

Lemma 5.10 Let � 2 �

+

n

and let � > 0. Assume that V =

S

k

i=1

B

i

is a union of

balls whose radii are all bounded by � and whi
h satisfy �

�

\B

i

6= ; for i = 1; : : : ; k.

Then

�

�

n

(V ) � 2

s

1 +

1

V

2

1

�; (5.23)

where V

1

is the 
onstant from (4.5).

Proof: For � 2 �

�

n

let t

�

= maxf0 � t � T

e

j j�j(t) > 0g, and let �

�

= �

j

[0;t

�

℄

.

Then (5.9) implies

�

�

n

(V ) =

X

�2�

�

n

Z

P (�

�

\V )

j�

�

j(t)dt �

X

�2�

�

n

measP (�

�

\ V )j�j(0) (5.24)

� max

�2�

�

n

measP (�

�

\ V )

X

�2�

�

n

j[S

(0)

n

℄(�(0))j � max

�2�

�

n

measP (�

�

\ V ):

Here we used

P

�2�

�

n

j[S

(0)

n

℄(�(0))j = jS

(0)

n

(b)� S

(0)

n

(
)j � 1.

It remains to estimate measP (�

�

\V ). To this end note that relation (5.10) implies

j�

�

j(t) � �j�j(0) > 0 for all t from the domain of �

�

. By Lemma 5.4 (iii) and (5.8)

we thus have [S

n

℄ = [S

n

℄

+

> 0 along �

�

. Equation (4.5) therefore yields

d�

�

dt

(t) � V

1

> 0 (5.25)

for all t from the domain of �

�

. By the same reasoning we obtain

d�

�

dt

(t) � �V

1

< 0 (5.26)
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for all t from the domain of �

�

. Finally, observe that �

�

\ B

i

6= ;, i = 1; : : : ; k

implies

V � W

�

= fz 2 Z

T

e

j dist(z; �

�

) < 2�g;

hen
e

measP (�

�

\ V ) � measP (�

�

\W

�

) � t

2

� t

1

; (5.27)

with t

2

= supP (�

�

\W

�

), t

1

= inf P (�

�

\W

�

). Using (5.25) and (5.26) we see by

some geometri
al 
onsiderations, whi
h we leave to the reader, that

t

2

� t

1

� 2

s

1 +

1

V

2

1

�:

Combining this inequality with (5.24) and (5.27) yields (5.23).

Proof of Proposition 4.9: We assume that the statement of this proposition for

the measure �

+

n

does not hold. Then there are numbers Æ; # > 0 su
h that for all

�

0

> 0 there is � � �

0

and a �nite 
olle
tion B

1

; : : : ; B

k

2 G

Æ�

su
h that for every

positive integer k

0

there is n � k

0

with

�

+

n

�

k

[

i=1

B

i

�

> #: (5.28)

In the following we write V =

S

k

i=1

B

i

. We aim to prove an estimate of the form

�

�

n

(V ) < K�, whi
h together with the de�nition of G

Æ�

would 
ontradi
t (5.28)

when � is small. However, be
ause of the unknown lo
ation of the balls B

i

the

proof of su
h an estimate seems to be diÆ
ult. Our strategy for the proof therefore

is to 
onstru
t a 
hain �̂ 2 �

+

n

and a subfamily of the balls from B

1

; : : : ; B

k

for

whi
h an estimate analogous to (5.28) holds and for whi
h every ball interse
ts �̂.

For su
h a subfamily of balls lined up along a 
urve �̂ with positive slope we have

already proved an estimate for �

�

n

in Lemma 5.10. The desired estimate for �

�

n

is

immediately obtained from that estimate via (5.1).

Therefore our �rst goal is to verify the following

Claim 1: If (5.28) holds there is a 
onstant � > 0 with the following property: For

every � there is n

0

su
h that for all n � max(k

0

; n

0

) there is a subfamily B

0

1

; : : : ; B

0

m

of B

1

; : : : ; B

k

and a 
hain �̂ 2 �

+

n

with B

0

j

\ �̂

�

6= ;, j = 1; : : : ; m, and with

�

+

n

�

m

[

j=1

B

0

j

�

� � > 0: (5.29)

To prove this 
laim we �rst remember (5.1) and 
on
lude from (5.28)

�

+

n

(V ) �

#

M

2

:

Let

L =

#

6M

2

; � =

#

6M

2

T

e

; (5.30)
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and let � be the set of all � 2 �

+

n

su
h that measP (�

�

\V ) � L. With Lemma 5.7

we obtain

�

+

�;�

(V ) �

#

3M

2

: (5.31)

Let p be the smallest integer with

L

2

p � T

e

and set h = T

e

=p. Then

0 = t

0

< t

1

< : : : < t

p

= T

e

with t

i

= ih is a partition of the interval [0; T

e

℄ into p subintervals of length

h �

L

2

: (5.32)

For � 2 � let [0; t

�

�

) be the domain of �

�

and for q = 1; : : : ; p let

�

q

= f� 2 � j t

q�1

< t

�

�

� t

q

g:

Then � =

S

p

q=1

�

q

, hen
e (5.31) yields

�

+

�

1

;�

(V ) + : : :+ �

+

�

p

;�

(V ) = �

+

�;�

(V ) �

#

3M

2

:

Thus, there is at least one q with

�

+

�

q

;�

(V ) �

#

3pM

2

: (5.33)

For every � and n we �x su
h a q. Let �̂ be the minimal element from �

q

, i.e.

�̂ � � for all � 2 �

q

. Also, let B

0

1

; : : : ; B

0

m

be the subfamily of those balls from

B

1

; : : : ; B

k

whi
h are 
ontained in the set Z

t

q�1

and whi
h are interse
ted by �̂

�

. We

set V

0

=

S

m

j=1

B

0

j

. Finally, let V

q

be the union of those balls from B

1

; : : : ; B

k

whi
h

are not 
ontained in Z

t

q�1

. Sin
e all balls belong to G

Æ�

their radii are bounded by

�. Therefore

V

q

� f(x; t) 2 Z

T

e

j t � t

q�1

� 2�g:

From P (�̂

�

) = [0; t

�̂

�

℄ � [0; t

q

℄ we thus obtain

P (�̂

�

\ V

q

) = P (�̂

�

) \ P (V

q

) � (t

q�1

� 2�; t

q

);

hen
e, together with (5.32)

measP (�̂

�

\ V

q

) � h+ 2� �

L

2

+ 2�: (5.34)

We 
an assume that

� <

L

8

: (5.35)
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Sin
e �̂ 2 �, we have measP (�̂

�

\ V ) � L. Moreover, �̂

�

\ V = �̂

�

\ (V

0

[ V

q

),

sin
e V

0

[ V

q

di�ers from V at most by a union of balls whi
h are not interse
ted

by �̂

�

. Together with (5.34) and (5.35) we thus obtain

L � measP (�̂

�

\ V ) = measP (�̂

�

\ (V

0

[ V

q

))

� measP (�̂

�

\ V

0

) + measP (�̂

�

\ V

q

) � measP (�̂

�

\ V

0

) +

3

4

L;

hen
e

measP (�̂

�

\ V

0

) �

1

4

L:

We 
an now apply Corollary 5.9. Sin
e V

0

is a union of balls in G

Æ�

and satis�es

V

0

� Z

t

q�1

, sin
e the interval [0; t

q�1

℄ belongs to the domains of all � 2 �

q

and

sin
e �̂ is the minimal element in �

q

it follows from this 
orollary that there is

n

0

= n

0

(�) su
h that for all n � n

0

and all � 2 �

q

L

4

� measP (�̂

�

\ V

0

) � N

q

1 + 4V

2

2

measP (�

�

\ V

0

):

This inequality shows that all � 2 �

q

satisfy the assumptions of Lemma 5.6. To-

gether with (5.33) we thus 
on
lude from this lemma that

#

3pM

2

� �

+

�

q

;�

(V ) � �

+

�

q

;�

(Z

T

e

) �

T

e

L

0

�

�

+

�

q

;�

(V

0

); (5.36)

where L

0

= L(4N

p

1 + 4V

2

2

)

�1

. Relation (5.1) implies

�

+

�

q

;�

(V

0

) � �

+

n

(V

0

) �

1

M

1

�

+

n

(V

0

):

This estimate and (5.36) together yield (5.29), where the 
onstant � has the value

� =

1

12

�M

1

#L

M

2

p

1 + 4V

2

2

NT

e

p

> 0:

� and L are given in (5.30). This proves Claim 1.

Claim 2: For all � > 0 there is n

1

su
h that for all n � n

1

�

+

n

�

m

[

j=1

B

0

j

�

� 2M

2

N

1

Æ

s

1 +

1

V

2

1

�: (5.37)

To verify this 
laim note that all balls B

0

j

belong to the family G

Æ�

and thus satisfy

(4.13), by de�nition of this family. Hen
e, there is n

1

with

�

+

n

(B

0

j

) �

1

Æ

�

�

n

(B

0

j

); (5.38)
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for all n � n

1

and all j = 1; : : : ; m. As in the proof of Corollary 5.9 we group the

balls B

0

1

; : : : ; B

0

m

into N subfamilies fB

0

ij

g

i

� G

(j)

Æ�

of disjoint balls, and obtain from

(5.38) for n � n

1

that

�

+

n

�

m

[

j=1

B

0

j

�

�

m

X

j=1

�

+

n

(B

0

j

) �

1

Æ

m

X

j=1

�

�

n

(B

0

j

) (5.39)

=

1

Æ

X

j

X

i

�

�

n

(B

0

ij

) �

1

Æ

X

j

�

�

n

(V

0

) =

N

Æ

�

�

n

(V

0

):

Sin
e V

0

=

S

m

j=1

B

0

j

is a union of balls whose radii are all bounded by � and whi
h

satisfy �̂

�

\ B

0

j

6= ; for j = 1; : : : ; m, we 
an apply Lemma 5.10. Together with

(5.1) we dis
over that

�

�

n

(V

0

) � M

2

�

�

n

(V

0

) � 2M

2

s

1 +

1

V

2

1

�:

Claim 2 follows by insertion of this estimate into (5.39).

End of the proof of Proposition 4.9: Choose � small enough su
h that the right hand

side of (5.37) is less than the 
onstant � in (5.29). Then for n � max(n

0

; k

0

; n

1

)

the inequalities (5.29) and (5.37) are in obvious 
ontradi
tion. Consequently, our

hypotheses must be false and the inequality stated in Proposition 4.9 for �

+

n

must

hold. The inequality for �

�

n

is proved in the same way by inter
hanging the roles

of �

+

n

and �

�

n

and by applying the se
ond inequality in (4.13), whi
h has not yet

been used. The proof is 
omplete.

A Appendix

Here we state the version of the Besi
ovit
h Covering Theorem whi
h we use in

Se
t. 4 to de�ne the families E

Æ

, F

Æ

, G

Æ�

and the sets E, F , G.

De�nition A.1 Let B be a family of open sets. B is 
alled 
losure disjointed if

every pair of sets V

1

; V

2

2 B with V

1

6= V

2

satis�es V

1

\ V

2

= ;.

The following theorem is proved in exa
tly the same way as the version of the

Besi
ovit
h Covering Theorem for 
losed balls given in [13, pp. 30{35℄, [29, pp.

9{12℄.

Theorem A.2 (Besi
ovit
h Covering Theorem) Let B be a family of open

balls in R

n

with uniformly bounded radii. There are 
losure disjointed, 
ountable

subfamilies B

(1)

; : : : ;B

(N)

of B, with N > 1 only depending on the dimension n,

su
h that if A is the set of 
enters of balls in B then

A �

N

[

i=1

[

B2B

(i)

B:
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