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Abstract

In this article an initial-boundary value problem modeling the evolution
of a surface of strain discontinuity driven by configurational forces is stud-
ied. Starting from a sharp interface model the problem is transformed into
a problem with an evolution equation for the order parameter, which has
similarities with a hyperbolic balance law. It is proved that in one space
dimension global solutions exist. The method of transformation suggests
that solutions of this evolution equation are approximated by solutions of
a viscous Hamilton-Jacobi equation. If the approximation is valid then the
initial-boundary value problem to this Hamilton-Jacobi eqution is a phase
field model regularizing the sharp interface model.

1 Introduction and statement of main results

Changes of the morphology of material structure are often caused by configura-
tional forces. In crystalline materials for example, discontinuous changes of the
crystal structure generate configurational forces, which can move the discontinuity
surface. This is observed in superalloys, which may exist in two different phases.
In the two phases the lattice constants of the crystal lattices differ slightly, re-
sulting in a strain discontinuity at the phase interface. The configurational forces
generated by this discontinuity together with diffusion lead to the evolution of the
microstructure generated by phase changes, cf. [14, 22, 27, 28, 19]. Another exam-
ple for a configurational force moving discontinuities of the material structure is
the Peach-Kohler force cf. [18, 24], which drives the glide of dislocations and leads
to plastic deformation.

In this article we study an initial-boundary value problem which models the
evolution of a surface of strain discontinuity driven by configurational forces. This
problem has been thoroughly formulated in [1]; other discussions of this problem
and applications in mechanics and material sciences can be found in [14, 23, 25,



26, 27|, for example. The theory of configurational forces and, more generally,
configurational mechanics is an intensively studied field with a large number of
publications; we only mention here [4, 5, 12, 16, 20, 21].

The goal of our investigations is twofold. In the introduction we set the initial-
boundary value problem into the general context of phase transformation models
and compare it to other such models. In the main part of our investigations we
study the mathematical structure and show that in one space dimension the prob-
lem is well posed and has solutions. We explain this more precisely:

The model formulated in [1] is of sharp interface type. In an attempt to avoid
the difficulties connected with sharp interface models it has been discovered in
[2] that this model can be transformed rigorously into an initial-boundary value
problem with a partial differential equation governing the evolution of an order
parameter characterising the different phases. In the following we call this partial
differential equation the evolution equation for the order parameter. This is an
unusual equation, which has similarities with a scalar hyperbolic balance law. In
fact, in [1] the surfaces of strain discontinuity are called material shocks. Solutions
of the sharp interface model are also solutions of the new initial-boundary value
problem, but the new problem allows for more general solutions with the order
parameter belonging to the space BV of functions with bounded variation.

The numerical solution of initial-boundary value problems, which can have such
general discontinuous solutions, presents difficulties. Because of this one often
prefers phase field models with smooth solutions. The results in [2] suggest that
the initial-boundary value problem can be approximated by a problem with the
evolution equation replaced by a well known Hamilton-Jacobi transport equation,
which has smooth solutions. If this approximation is valid then the initial-boundary
value problem with the Hamilton-Jacobi equation is a phase field model regularising
the sharp interface model.

In this article we study the initial-boundary value problem with the evolution
equation for the order parameter and show that solutions exist to several classes of
initial data, however only in one space dimension. Some of our methods used in the
proof are similar to methods used in the theory of hyperbolic conservation laws,
but in the final steps, where we use weak convergence of measures to construct
solutions, completely new ideas are needed.

We next state the initial-boundary value problem with the evolution equation
for the order parameter and discuss the connection to the original sharp interface
model. This motivates the form of the evolution equation and shows how the
Hamilton-Jacobi equation arises. We also relate our model to the well known
models of Allen-Cahn and Cahn-Hilliard. Finally, our main mathematical existence
results proved in Sections 2 — 5 are stated at the end of the introduction.

Let © be an open bounded set in IR®. It represents the material points of a
solid body. The material of this body can exist in two different phases. We denote
by v(t) the subset of €2, which consists of all points, at which at time ¢ the material
is in the matrix phase. 7/(¢) denotes the subset of all points, at which at time ¢ the
material is in the second phase. For v = 5o (7(t) x {t}) and v = U, (7'(¢t) x {t})



we thus have
YU~ = x[0,00), yN~ =0.
We set
y=anyny,  At)={z €| (z,t) €7}.
7 is the interface between the v and 7/ phases. Let S : Q2 x [0,00) — R denote the
characteristic function of the set 4/, hence

_J 0, (zt)ey
S(a.t) = { 1, (xz,t) €.

S is the order parameter, which characterizes the 7'-phase.

We assume that the values which the linear strain tensor would have if the
material would be unstressed differ between the two phases. The difference is the
misfit or transformation strain. () is thus a surface of strain discontinuity. It is
assumed that the configurational force generated by the misfit strain transforms by
some process the material along ¥(¢) from one phase to the other. This leads to an
evolution of the phase interface. The goal is to compute this interface evolution.

The initial-boundary value problem which we use to model this material be-
havior is based on the assumption that only small strains occur. The unknowns
are the order parameter S(z,t) € R, the displacement u(xz,t) € IR? of the material
point z €  at time ¢, and the Cauchy stress tensor T'(z,t) € S3. Here S* denotes
the set of symmetric 3 x 3-matrices. These unknowns must satisfy the quasi-static
equations

—div,T(xz,t) = b(x,t), (1.1)
T(x,t) = D(e(Vyu(z,t)) —eS(x,t)), (1.2
1S(z,t)| = ¢|div,C(Vyu(x,t),S(x,t)) — (Veu(r,t) bz, t)| (1.3)

[u—

in © x (0,00) and the boundary and initial conditions

u(z,t) = f(z,t), (z,t) € 0N x[0,00), (1.4)
S(z,0) = SO9), zeq. (1.5)

Moreover, the Clausius-Duhem inequality
% (e(Vyu),S) —divy(Tuy) —b-uy <0 (1.6)

must hold in © x (0,00). Here V, u(z,t) denotes the 3 x 3—matrix of first order
derivatives of u, the deformation gradient, (V,u(z,?))T denotes the transposed
matrix and

e(Veu(z,t)) = % (Vou(z,t) + (Vou(z,t)") € S°

is the strain tensor. £ € 8% is a given matrix, the misfit strain, and D : §* — &3
is a linear, symmetric, positive definite matrix, the elasticity tensor. Given are the
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volume force b : 2 x [0,00) — R?, the boundary displacement f : 9Q x [0, 00) — R®
and the initial data S© : Q — RR.

(1.3) is the evolution equation for the order parameter S. In this equation ¢
is a positive constant and C' = C(V, u(x,t),S(x,t)) denotes the Eshelby tensor
defined by

C(Vyu(z,t),S(x,t) = ¥ (e(Vpu(z, t), S(z, 1)) = (V, u(x,t))TT(x,t). (1.7)

Here (V, u)"'T denotes the matrix product, I is the unit matrix in §* and

(e, S) = %(D(e _28)) - (£ — 25) + () (1.8)
is the free energy. For the function S defined above only the values of ¢; at S =0
and S = 1 matter. However, as explained next, we also consider order parameters
which vary smoothly between 0 and 1. For ¢, € C'(R,[0,00)) we therefore choose
a double well potential with minima at 0 and 1.

The evolution equation (1.3) must allow for solutions (u,7’,S) with S being
the characteristic function of the set '. For such S the derivatives S; and S,
are measures. Therefore (1.3) is understood in the sense of measures: We seek
a solution (u,T,S) such that S € BV'(Q x (0,00),R) and such that to the
distributional derivative div, C'(V,u,S) there is a Radon measure p and a p—
measureable function o : Q x (0,00) — R? with |o(x,t)| = 1, u almost everywhere,
satisfying

op=div, C(Vyu,S) — (Veu(z,t) bz, t).

The measure p is denoted by |div, C' — (V, u)Tb|, and |S;| denotes the variation
measure of the measure S;. Of course, this definition allows for solutions with
S differing from a characteristic function. Piecewise smooth S are allowed, for
example. This completes the formulation of the initial-boundary value problem.

The sharp interface model. Next we introduce the sharp interface model and
explain how the initial-boundary value problem (1.1) — (1.6) is derived from it.

In the sharp interface model the unknowns u, TS satisfy the equation (1.1)
expressing conservation of momentum, the equation (1.2) stating the linear stress-
strain relation, and the boundary and initial conditions (1.4), (1.5). Equation
(1.3) is replaced by an equation for the normal speed of the phase interface. To
formulate such an equation we first study the restrictions imposed by the second
law of thermodynamics, i.e. by the Clausius-Duhem inequality (1.6).

It is shown in [1, 2] that (1.6) holds if and only if at every point z € F(¢) the
dissipation inequality

s(z, 1) (n(x,t) : [C(Vmu(x,t),S(x,t))]n(a;,t)) >0 (1.9)
is satisfied, where n(z,t) € R® denotes a unit normal vector to the interface ()

oriented such that the jump of S at 4(¢) in the direction of n is positive, s(z,t)
is the normal speed of the interface measured positive in the direction of n, and
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[C(V,u,S)] denotes the jump of the Eshelby tensor accross ¥(t) in the direction
of n. This inequality implies that s and n - [C]n must have the same sign. This
suggests to consider n - [C]n as driving force for the interface and to require s to
be a function of this configurational force such that (1.9) is satisfied. The simplest
equation guaranteeing this is

s(z,t) [S(z,t)] = en(z,t) - [C(Vu(z,t), S(z,t)|n(z, 1), (1.10)

with a positive constant ¢. By the above definitions the jump of S satisfies [S] = 1;
this term could thus be dropped. We included it since later we allow for jumps
smaller than one, in which case we need the term.

(1.10) is a constitutive equation for the normal speed of the phase interface.
It has been suggested in [1] that (1.1), (1.2), (1.10) and the boundary and initial
conditions (1.4), (1.5) form a closed system of equations, which allows to compute
the movement of this interface. This is the sharp interface model.

The derivation of the evolution equation (1.3) from the equation (1.10) for the
normal speed is based on a result proved in [2]: Assume that (u,7,.5) : 2x(0,00) —
R* x 8% x R is a piecewise smooth solution of (1.1) and (1.2) with a jump along a
piecewise smooth manifold 4. The function S can vary smoothly away from 7 and
needs not to be piecewise constant. Then if (1.3), (1.6) hold it follows that along
7 the jump condition (1.10) must be satisfied, whereas in regions where (u,T’,S)
is smooth (1.3), (1.6) reduce to the Hamilton-Jacobi transport equation

Sy(1,1) = —c s (e(Vy ulz, 1)), S(z,1))|Va S(z, ). (1.11)

The necessity to combine (1.3) with the Clausius-Duhem inequality (1.6) is seen
here, since from (1.3) alone we can only deduce that the absolute values of both
sides of the equations (1.10) and (1.11) are equal. (1.6) is thus needed to fix the
signs.

In fact, if S is piecewise smooth and (u, T, S) solves (1.1) and (1.2), then (1.10)
and (1.11) hold if and only if (1.3) and (1.6) are satisfied. This can be shown by a
slight extension of the investigations in [2]; for one space dimension it is proved in
Corollary 2.3 in the next section.

It is clear that a piecewise constant function S satisfies the transport equation
(1.11) away from the jumps. Consequently, a piecewise smooth function (u, T, S)
with piecewise constant S is a solution of the sharp interface model (1.1), (1.2),
(1.10), (1.4), (1.5) if and only if it satisfies the relations (1.1) — (1.6). Therefore,
since (1.3) is well defined even if the order parameter S is not piecewise constant,
the initial-boundary value problem (1.1) — (1.6) generalizes the sharp interface
model. Moreover, if the order parameter S in the solution is smooth then the
evolution equation (1.3) reduces to the simpler and well known Hamilton-Jacobi
equation (1.11). The idea suggests itself to force the solution to stay smooth by
replacing (1.11) with the equation (1.13) derived below, which is obtained from
the Hamilton-Jacobi equation by adding a small viscosity term. The hope is that
when the viscosity term tends to zero, the order parameter converges to a solution
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of the initial-boundary value problem (1.1) — (1.6). In this case the Hamilton-
Jacobi equation with the small viscosity term can be used as a phase field model
regularizing the sharp interface model.

Our results on existence of solutions of the initial-boundary value problem (1.1)
— (1.6) in one space dimension contribute to the problem of convergence, since one
expects of course that this convergence takes place only when the limit problem
(1.1) — (1.6) has solutions. Still, the problem of convergence of solutions of the
model with the Hamilton-Jacobi equation when the viscosity tends to zero remains
open.

Comparison to other phase field models and properties of the evolution
equation for the order parameter. To compare the model discussed in this
article to other models for phase transformation problems we sketch the usual
derivation of these phase field models, cf. [8, 14, 10, 3]: For v > 0 consider the
modified free energy

~

DV 1), 5, V2 8) = 0((e,1), S(5,0) +v 5|V, S(w 1),

with ¢ defined in (1.8). We assume that (u,7,S) is a smooth solution of the
equations (1.1), (1.2). The second law of thermodynamics requires that (1.6) is
satisfied with 1 replaced by ©. We integrate (1.6) over €2 and employ the Divergence
Theorem to obtain

i/z/;(s,S,VxS)dx—/ (Tn)-utdax—/b-utd:rgo. (1.12)
dt Jo )

Q

(1.2) yields ¢ = T. From the symmetry of 7" we thus obtain
U=t e+ UsSi+ vV, S VS =T - Vou + $sSi+ vV, SV, 5.

We insert this equation into (1.12), use the Divergence Theorem, assume a suitable
boundary condition for S and note (1.1) to deduce

/wSSt+l/VxS-VxStdx:/(wg—l/AxS)Stdxg().
Q Q

The standard method to ensure that this inequality holds is to postulate
St = _C("/)S - VAI S))

which is an evolution equation for S, the Allen-Cahn equation with terms coupling
to the equations (1.1) and (1.2). However, this inequality is as well satisfied if we
instead postulate

Sy = —c(ps —v A, S)|V, S, (1.13)

which for v = 0 is the Hamilton-Jacobi equation (1.11). The Allen-Cahn equa-
tion is used when diffusion playes an important role, whereas the Hamilton-Jacobi
equation is the right equation when the interfaces are driven by configurational
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forces. This is seen from the above investigations. Thus, the indeterminateness in
the standard method allows to formulate phase field models for both situations.

The Cahn-Hilliard equation is used when diffusion is the dominating process
and the order parameter is conserved. It is derived in a similar, but slightly more
complicated way than the Allen-Cahn equation. Just as above we can modify this
derivation and introduce the term |V, S| in the evolution equation. This suggests
that the resulting equation is a model valid when the interfaces are driven by
configurational forces and the order parameter is conserved. We do not dwell on
this question here, but only mention for comparison that the model consisting of
the Cahn-Hilliard equation coupled to the equations (1.1), (1.2) and related models
are formulated or investigated mathematically in [19, 9, 14, 15, 7, 11], for example.

We surmise that solutions of the equations (1.1), (1.2), (1.13) with v > 0 are
smooth and approximate solutions of the system (1.1) — (1.3), (1.6) for v — 0.
These three equations would thus form a phase field model regularizing the sharp
interface model (1.1), (1.2), (1.10).

Of course, it is not immediately obvious whether it is really necessary to add
the term cv A, S|V,S| to the Hamilton-Jacobi equation for getting smooth so-
lutions. Namely, it is tempting to prove existence of smooth solutions for the
initial-boundary value problem (1.1), (1.2), (1.11), (1.4), (1.5) by using the method
of viscosity solutions to solve (1.11), combined with methods for elliptic systems
to solve the other equations. Yet, since 1; in (1.8) is a double well potential,
the function S — 1g(e,5) in (1.11) is not monotone; therefore the assumptions
needed to apply comparison arguments and to prove existence of continuous vis-
cosity solutions of (1.11) are not satisfied. Instead, simple examples show that
S develops discontinuities even if the initial data are smooth. Consequently, the
theory of discontinuous viscosity solutions has to be used. It turns out, however,
that the standard definition of discontinuous viscosity solutions (cf. [17, 6]) allows
too much freedom for the propagation speed of the phase interfaces modelled by
jump discontinuities of S.

This can be seen best if we study jump discontinuities for a problem in one
space dimension. Note first that for a piecewise smooth solution (u, T, S) of (1.1)
~ (1.6) we have

[Veu(z,t)]7(x,t) = [T(z,t)]n(x,t) =0, (x,t) €7,

for all tangential vectors 7(x,t) to 4. With these equations the right hand side of
(1.10) can be simplified by a short computation to obtain

s8] = en-[Cln = S(IT]- (&) = (1) - [e] = [T -28]) +e[a($)),  (1.14)

with (¢) = $(e(Vyu+) + &(Vou—)). Here w(z, t)+ = limy ., yey ) w(y,t) and
w(z,t)— = limy_,4, yeyry w(y,t) are the limit values on both sides of ¥(¢). It can
be seen from Lemma 2.1 in Section 2 that if we reduce (1.1) — (1.6) to a problem
in one space dimension with a scalar function 7" then 7' is continuous across the
phase interface. This implies [e] = [u,] = £[S]. If we denote by 5 the speed of
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propagation of discontinuities measured in the positive x—direction, we thus obtain

from (1.14)
_ [¢1] 0\ ST —S7
=c|—-T- >7 1.15
=i T s 1
Here St and S~ are the values of S to the right and to the left of the jump
discontinuity. On the other hand, noting that in (1.11)

cs(e,S) =c (Y (S) =T -¢), (1.16)
the definition of discontinuous viscosity solutions implies that any jump disconti-
nuity is allowed whose normal speed s satisfies the two inequalities

e N St=-S5" _ _ , N ST -85
6(1/)1(5 )—T€>m2820<¢1(5+)—]—'5)m

Since ¢ (¢1(S) —T'-£) is the speed of characteristics of (1.11), these two inequalities
require that the characteristic curves must end in the jump discontinuity on both
sides, and thus allow for any normal speed of the discontinuity between the two
charateristic speeds to the left and to the right of the discontinuity. Therefore
discontinuities in viscosity solutions do not need to have the velocity given by
(1.15). Yet, if (1.15) is not satisfied then phase interfaces are not modeled correctly.
This implies that to construct discontinuous viscosity solutions we must use a
construction procedure which automatically selects the right speed of propagation.
We surmise that the usual construction procedure based on Perron‘s method does
not satisfy this requirement.

Therefore we use another method to prove existence of solutions of the initial-
boundary value problem in one space dimension, which is based on the similarity
of equation (1.3) to a hyperbolic balance law. For the problem in one space dimen-
sion the similarity becomes even greater, cf. (1.19) below. The main difference to a
hyperbolic balance law lies in the absolute value signs on both sides of (1.19). The
mapping which assigns to the measures S; and C4 (ug, S); — u, - b the variation mea-
sures is nonlinear, and thus is discontinuous with respect to weak convergence, in
general. Thus, while in the investigation of conservation laws the main difficulties
are connected with the function S — C(u,, S), which is nonlinear, whence discon-
tinuous with respect to weak convergence, new difficulties arise in the investigation
of (1.19) due to the variation measures. In our existence proof we use ideas from
the shock tracking method in hyperbolic conservation laws to construct a sequence
of approximate solutions, but because of this difficulty completely new ideas are
needed when going to the limit.

Statement of the main results. In the remainder of this article we assume that
all functions in the initial-boundary value problem (1.1) — (1.6) only depend on
the x; and t variables, but are independent of the x5 and x5 variables. To simplify
the notation we therefore write x instead of x1, and assume that = (a,b) C R is
a bounded open interval. By T, we denote a positive number (time of existence),

and we set
Zr, = (a,b) x (0,T,), Z = (a,b) x (0,00).



We still allow that the material points can be displaced in three space directions,
hence u(z,t) € R*, T'(z,t) € §*, S € R. If we denote the first column of the matrix
T(x,t) by Ti(x,t) and set

c(uy) = %((UI,O,O)ﬂL(uw,O,O)T)683,

Ci(ug, S) = Y(e(ug),S) —u, - 11,
then (1.1) — (1.6) can be written in the slightly simplified form:

T = D, (1.17)
T = D(e(us) - £5), (1.18)
1S = ¢|Ci(ug, S)e — us - b, (1.19)

u(a,t) fla,t), u(b,t)= f(b,t), t>0, (1.20)

(1.21)
(1.22)

S(z,0) = SO%), xz¢€la,b,
%w(e(um), S)—(T1 - up)y — b-uy <O0.

For this initial-boundary value problem we prove existence of solutions to three
different classes of initial data. To formulate these existence results in the next two
lemmas and in Theorem 1.3 we need solutions of the boundary value problem of
linear elasticity theory in one space dimension. This problem is

~

—o1(z) = b(z), a<z<b, (1.23)
o(z) = 1?6(w$(x)), a<w< b, (1.24)
w(a) = fla), w(b)= f(b). (1.25)

Let H;(W) be the usual Sobolev spaces of functions with quadratically integrable
weak derivatives up to order ¢, where W C R" is a Lebesgue measurable set. The
norms of these spaces are denoted by ||v||;w. The L*-norm is ||v|lo.w = ||v||w-

Lemma 1.1 (Piecewise constant initial data) Let b, f : Z — R® satisfy b €
Hy(Zr,,R®%) and f € Hy({a,b} x [0,T,),R®) for all T, > 0. Assume that SO :
[a,b] — [0, 1] is piecewise constant with finitely many jumps, which all lie in the
interior of |a, b].

Then there is a weak solution (u,T,S) : Z — R* x 8 x [0,1] of (1.17) -
(1.22). The function S in this solution is piecewise constant and belongs to the
space BV (Zr.). Moreover, (u,T) satisfies

u(z,t) = u* (/j S(y,t)dy — %/@b S(y,t)dy) + w(zx, t),

T(e,f) = D" ~2)S(r,t) ~ De' !

/ S(y,t)dy + o(z,1),



where u* € R, ¢* € 8§ only depend on the misfit strain g, and where (w(t),o(t))
is the unique solution of the boundary value problem (1.23) - (1.25) to the data
b=">0(t), f= f(t) for every t > 0. This solution satisfies
2
(w,0) € (| Ha-i((0, T.), Hayi((a, ), R®) x Hiyi((a,b), S%)).
i=0
for all' T, > 0.

Lemma 1.2 (Monotonic initial data) Let b and f satisfy the assumptions of
the preceding lemma. Assume that S© : [a,b] — [0,1] is a continuous monotonic
function. Then there is a weak solution (u,T,S): Z — R3 x 8 x [0,1] of (1.17)
- (1.22), where (u,T) is of the same form as in the preceding lemma, and where
S € BV(Zy,). Moreover, the function S(t) : [a,b] — [0,1] defined by x — S(z,1)

15 monotonic and satisfies
var(S(t)) < var(S®)
for almost all t € [0,T,].

Our main result is

Theorem 1.3 (Nonmonotone initial data) Assume that b € Ho(Z7,,R?®) and
f € Hy({a,b} x [0,T.],R®) are given functions. Let a < ¢ < b and assume that
SO e C([a,b],[0,1)]) is increasing in [a, c] and decreasing in [c,b]. For everyt >0
let (w(t),o(t)) be the solution of the boundary value problem (1.23) — (1.25) to the
data b = b(t), f = f(t). If there is a constant My > 0 such that this solution
satisfies

—€-o(z,t) > M, + max |41 (9)] (1.26)

for almost all (x,t), then there is a weak solution (u,T,S) of (1.17) - (1.22), for
which S € BV (Zr.) and for which (u,T') is of the same form as in Lemma 1.1.

Remark. We surmise that the result of Theorem 1.3 holds without condition
(1.26), and that we need this condition only for technical reasons. This condition
guarantees that the characteristic speeds of (1.3) and the speeds of jump disconti-
nuities in solutions of (1.3) are bounded away from 0. Moreover, it guarantees that
these discontinuities are directed such that the embedded phase asymptotically
vanishes for ¢ — 00, i.e. that S tends asymptotically to the value min,<, < SO ().
If the first row of the matrix D& does not vanish then the condition can always be
guaranteed to hold by choosing suitable data b and f.

If the scalar product - o (x, ) is zero for all (z,t) and all boundary data f and
right hand sides b in (1.23) — (1.25), then the order parameter S in the solution
is independend of the boundary tractions and the volume force, hence the phase
evolution is independent of the exterior forces. This is in accordance with the
experimental observation that the phase evolution depends on the misfit strain
in relation to the direction of the exterior stress field. Note that by considering
a one dimensional problem we have intrinsically fixed a direction for the exterior
forces.
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2 Piecewise constant initial data

Here we prove Lemma 1.1. The proof is based on the observation that the jump
condition (1.10), which must hold along any jump curve of S, yields a differential
equation in time for this jump curve. To determine the finitely many jump curves
of S we must therefore solve a coupled system of differential equations. This system
contains the unknown function 7" and is therefore not closed. To close it we observe
that if the function S(t) is known for a fixed time ¢, then the equations (1.17), (1.18)
and (1.20) form a boundary value problem for the functions u(t) and 7'(t), a slight
extension of the boundary value problem of linear elasticity theory, which in one
space dimension can be solved explicitly. Insertion of the explicit solution formulas
into the system of ordinary differential equations closes the system.

In the first step of the proof we thus derive the explicit solution formulas for
(1.17), (1.18), (1.20). Subsequently we derive the system of ordinary differential
equations and discuss the construction of the jump curves. In the last step we
verify that the function (u, T, S) constructed in this way satisfies all the equations
(1.17) — (1.22) and thus is a solution of this initial-boundary value problem.

We begin with some notations: Let S? denote the subspace of all matrices
A € 8 with A;; = 0 for i,j = 2,3. The orthogonal space to S* is denoted by
S3. Tt consists of all A € 53 satlsfylng Ajp = Ay =0 for i = 1,2,3. Note that
e(ug(z,t)) € 8*. For the canonical projection of §* onto S we write P. Since
D : 8 — 8% is a positive definite linear mapping, (o, 7) = o - D7 defines a scalar
product on 8. The projection of §* onto 33, which is orthogonal with respect to
this scalar product is denoted by Q These definitions imply

ker @ = D7*S8% = D ' ker P. (2.1)

Lemma 2.1 Let € € 8%, b € Hy(Z7,,R®), f € Hy({a,b} x [0,T.],R®) and the
measurable function S : Zy. — [0,1] be given. Define the matriz ¢* € 8* and the
vector u* € R by

e" = an ut = (‘gila 25;17 26;1)‘ (22)

Then the boundary value problem

-Ti(x,t), = b(z,1), (2.3)
T(x,t) = D(e(ug(z,t)) —&S(x,t)), (2.4)
u(a,t) fla,t), u(b,t) = f(b,1), (2.5)
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has a unique solution (u,T) in Zy, given by

u(z,t) = </ S(y,t) y——/ S(y,t dy>+w(x t), (2.6)

() = & <S(a;,t)—ﬁ/ S(y,t)dy>+5(ww(a;,t)), (2.7)

T(x,t) = D(s* —&)S(w,t) — De*

b—a/a S(y,t)dy +o(z,t), (2.8)

~

PT(z,t) = P <a(x,t) —De*bia/abS(y,t)dy> | (2.9)

Here (w(t),o(t)) is the unique solution of the boundary value problem (1.23) —
(1.25) to the data b=b(t), f = f(t) for everyt > 0. We have

(w,0) € QH2,Z~((0,T8),H2H((@, b),R®) x Hi1:((a,b),8?)).

Proof. We define v and 7 by

o(z,t) = u' </:5(y,t)dy—%/ab5(y,t)dy>, (2.10)

T7(x,t) = D(e(vg(z,t)) —ES(z,1)). (2.11)

The definition of u* in (2.2) implies

(o (1 1)) = (S(x,t) - 1 - /abS(y,t)dy> | (2.12)

whence, from (2.11)

r(w,t) = D(e* — &)S(w, 1) — (2.13)

(2.1) implies PD(Q — NS* = PDker Q = {0}, hence the definition of £* in (2.2)
yields PD(¢* — )S = PD(Q — I)gS = 0. Application of P to (2.13) thus results
in

Pr(r,t) = ~PDe' 2 / Sy, t)dy, (2.14)

which is constant with respect to x. Thence 71 (x,t) is constant with respect to x.
Consequently, the function (v(t),7(¢)) solves the system

T = 0,
T = D(e(v,) —E9),
v(a,t) = w(b,t) =0.

12



It is immediately seen and well known that for b = b(t) € H([a, b], R?) and for f =
f(t) the system (1.23) — (1.25) has a unique solution (w(t),o(t)) € Hy([a,b], R?) x
Hj([a,b],8?). Clearly, (u,T) = (v + w,7 + o) is the unique solution of (2.3) —
(2.5). Equations (2.6) — (2.8) follow from (2.10), (2.12) and (2.13), equation (2.9)
is implied by (2.14), noting that T'= 7 + 0. This proves the lemma.

The jump condition in one space dimension. In the jump condition (1.10) the
speed of propagation s of the discontinuity is measured positive in the direction of
increasing S. Thus, if for a function w with a jump we write [w] = w™ —w™, where
wt, w™ are the values to the right and to the left of the jump, and if we denote by
5 the velocity measured positive in positive z—direction, we obtain [S]s = [[S]]s.
Using this equation and the definition of C| we see that in one space dimension
(1.10) becomes

|[S][5 = ¢[Ci(uq, S)]. (2.15)

The function (u,T’) in this formula is the solution of the boundary value problem
(2.3) — (2.5) to the function S(t). Since u, - T = &(u,) - T, the computation which
leads to (1.14) remains valid in one space dimension and can be used to evaluate
the jump [C]. To determine an explicit formula for this jump we use (2.6) —
(2.9): Since o € Hy(Z1,,8%), it follows from (2.9) and from the Sobolev embedding
theorem that PT(t) is a continuous function of x, whence [PT] = 0. From this
relation and from e(ug(z,t)) € §*, which implies (¢) = s(e(uf) +e(uy)) € S3, we
obtain

(1] (e) = [T]-(Pe) = [PT] - () =0, (T)-[e] =(T)-[Pe] = PT-[e].

Using these equations and [¢] = ¢*[S], which is implied by (2.7), we obtain from
(1.14) by insertion of (2.8) and (2.9) that

] = (7] ) —{T) [~ [T -2S]) + [a(S)]
= 5 (IT-28]+ PT£'[S]) + [a(S)]
= 3¢ D ) (2.16)

by +a) (Do [ stnar o) )+ o) =),

Here W is a new potential, which we can write in the form

U (z,t, 5, fab Sy, t)dy) = %(5 — &) D(E— ") S* + 1 (5) (2.17)

b
+ (5*-D6*%/ S(y,t)dy—?-a(a;,t)) S.
—a,
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To see this note that ¢* = QE, that the projection Q is orthogonal with respect to
the scalar product (-,--) and that 0 = De(w,), which relations together imply

£ DE-)=(E-QE) =(I-QF (U -QF) =(E-c)DE-<),
(E4+¢e")-De*=(EFE+e",Qe") = (QE+¢e"),e") =2 - De* |
e o = (QF e(wn) = (5, Qe(wy)) = (B e(wy)) =70

From (2.15) and (2.16) we finally obtain for the speed of propagation

[\If(x,t, S, [} s(y,t)dy)]
|1ST]

S(z,t)=c (2.18)

Construction of the solution. Let S(¥ be the piecewise constant initial data
given in Lemma 1.1 and assume that S has jumps at the points 1, - - - , z, with
a <z <---<x, <b Weset rg =a,r,,; =b. Let Si+ and S, be the constant
values of S to the right and to the left of z; for i = 1,2,---,n. Obviously we
have S;" = S, for i =1,2,--- ,n— 1. In the domain [a, b] X [0,¢;] with a suitable
time ¢; > 0 to be determined below the component S of the solution (u, T, S) will
be piecewise constant with jumps along curves given by the graphs of continuously
differentiable functions «; : [0,¢;] — [a,b], i = 1,2,--- ,n. The curve q; starts at

the discontinuity (z;,0) of S® and we have
a<at) <ap(t)<b 0<t<ty, i=12---,n—1
The values of S are defined by
Si, a<z<o(t),

S(x,t) =< St ot) <z <apq(t), i=1,2,--- ,n—1, (2.19)

10

Stoa,(t) <z <b.

The discontinuities «; have the speed of propagation given by (2.18). Thus,

%az(t) ) Cm( i), 1, S5, [ S(y, t ng - \If'<|ai(t),t, S [ S(y,t)dy), )

fori=1,...,n. If we note that by (2.19)

/Sy, dy— (az+1()_ai(t))si+7

where we use the notations ag(t) = a, o, 1(t) =b, Sy = Sy, we see that (2.20) is
a system of ordinary differential equations for the functions a4, ..., a,. Lemma 2.1
implies that the function o in (2.17) satisfies 0, € Hy(Zr1,,S8%). The Sobolev
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imbedding theorem thus yields that 0 € C(Z7,). From this fact and from the
definition of ¥ in (2.17) it follows that the right hand side of this system is defined
for a < ay,...,0p, < b, that it is continuous with respect to (¢, cq,...,ay) €
[0,00) X [a, b]" and that it satisfies a Lipschitz condition with respect to (o, ..., ay).
By the Theorem of Picard-Lindelof it thus follows that there exists a unique solution
(aq(t), ..., a,(t)). The solution is continuously differentiable with respect to t. Let

ti=sup{t>0]a<o(t) <at) <...<a(t) <b}
and define S in [a,b] X [0,¢;) by (2.19) and (2.20). If ¢; < oo let

SW(z) = { limy, S(y,t1), a <z <b,

limyy, S(y, t1), = =0.

We define S in the region [a, b] X [t1,ts) with a suitable time ¢, > ¢; by repeating
the above construction, using S™ as initial data.

The number of curves in the domain [a,b] X [t1,t3), along which S jumps, is
smaller than in the domain [a, b] x [0,¢;). Therefore, after further repetition of this
process we find that there is a largest time %,, such that the next step yields the
solution in all of the domain [a, b] X [t,,, 00), or that S™ : [a, b] — [0, 1] is constant.
In this case we set S equal to this constant value in all of [t,,,c0). This completes
the construction of the function S : [a, b] x [0,00) — [0, 1].

Let (u,T') be the unique solution of the problem (2.3) — (2.5) to the function S.
In the remainder of this section we show that the function (u, 7', S) : [a, b]x [0, 00) —
R? x8? x [0, 1] thus defined is a solution of the initial-boundary value problem (1.17)
— (1.22).

The measure valued derivatives. Since S has jumps, the first distributional
derivatives of S and of other functions depending on S are measures. To study
these measures we introduce some notations: Let a be one of the continuously
differentiable curves along which S jumps. We identify this curve with the function
«: [t;, tiv1] — (a,b) which parametrizes «, and with the graph of «, a subset of Z.
Any such curve is called a jump curve. By J we denote the finite set of all jump
curves, and we define
J = U aC Z.
acd
The one-dimensional Hausdorff measure H!' restricted to .J is denoted by H;.

Hence,
H,(V)=H(INV)

for every measurable subset V' C Z. If g : J — R is locally H j-summable and if
K is compact we write

(9H) () = /K gdH,.

For a function v : Z — R, which has jumps along the curves v € J and has weak
L?-derivatives in Z\J, we denote by v,,v; the distributional derivatives and by
v!, v} the L?-derivatives away from the jump curves.
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Finally, if (z,t) is a point of a jump curve different from the starting point and
the endpoint we denote by n(x,t) = (n'(z,t), n"(z,t)) € R? the unit normal vector
with n/(z,t) > 0.

Lemma 2.2 Let S be a piecewise continuously differentiable function with jumps
along the curves in J, and let (4, T) be the solution of the problem (2.3) — (2.5) to
the function S and to b € Hy(Z7,,R?), f € Hy({a,b} x [0,T.],R?), for all T, > 0.
Then the distributional derivatives Sy, C1(e(iiy),S), — Uy - b and ¥(e(is), S), —
(Tl - U), — b - Uy are measures on Z and satisfy

S, = n"[S|H; + S\ (2.21)
Cro — iy -b = n'[Cy]Hs+ 1sSh A, (2.22)
- B d =
Yo — (Ty i), — bty = —d—z‘ W[Ch Hy + s SIA, (2.23)

where X\ is the Lebesque measure.

Proof. (2.21) is immediately obtained by partial integration. To prove (2.22)
observe first that away from the jump curves of S the function  — (z,t) has two
weak L2-derivatives and x + T(x,t) has one weak L?-derivative, by Lemma 2.1.
Thus, if S is continuously differentiable in a neighborhood of (x,t), then

=T - &(ligg) — ligg - Ty + g - b+ 10gS". = g - b+ 1hsS",, (2.24)

where we used that 1), = T and that £ (tyy) T = 1y - Ty. We also applied (2.3).
Now let ¢ € CO'I(Z, R). Partial integration and application of (2.24) yields

/ (_Cl(axag) Pz — ﬂ'x b So)d)‘
Z

/(Cl(uw,S) —um-b)cpd)\+/(01+—01)n'cpd7-lj

Z

/ws gde/ MOy dH, .

This implies that C1, — @, - b is a measure given by the right hand side of (2.22).
~ To prove (2.23) note that Lemma 2.1 implies @, = ti,; away from the jumps of
S. We thus obtain

U(e(tis), S), — (T1 - i)y — b~
= ). - e(ligy) + VgS) — Tig -ty — Tt - liyg — b - Uy (2.25)
= T : s(ﬂ'ta:) - TI * Upy +w5‘§£ = 1[)5512,
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where we again used that 1), = T and that T - () = T, - gz We also used (2.3).
Since n = (n',n”) denotes the normal vector to a jump curve o € J with n’ > 0,
we conclude from

do n”
— = —— 2.26
dt n' (2.26)
that sign n” = —sign % . This implies for (z,t) € a that
+ " < 0
lim (e, r) =00 " <0 (2.27)
r/'t Zb_, n" >0.

Using this equation and (2.25) we obtain for ¢ € Co’l(Z, R) with ¢ >0
/ (=¥ (=(@), )i+ (Ti - @)ps — b- o) dA
z
z

Z

= [ wsSipdr+ [ (il ~ Tyl ) .
Z Z

We used that as a consequence of (2.9) we have [PT] = 0, whence [T}] = 0. To
determine [@;] in this equation we employ (2.6), which shows that if S is continu-
ously differentiable in a neighborhood of the point (x,t) € (a,b) X (0,00), then the
time derivative u; exists and is given by

ﬂ't(xat) = u*(/gC g;(yat)dy_ Z%az(t) [g](az(t)Jt)) (229)

—ut z:;(/@ S;(y,t)dt—Z%ai(t) 5] (ai(t),t)> + wi(w, t) .

=1

Here {a;}% | is the set of jump curves intersecting the line segment (a,b) x {t},
and ¢ is chosen such that

ar(t) < ... <apt) <z <oap(t) <...<at).

Thus, if « is a jump curve of S we obtain from (2.29) by considering the limit
limx\a(t) ’[Lt(.’lf, t) — limx/a(t) ’[Lt(.’lf, t) that

(o), 1) = 5 () w] (a(0), 1) = —% @) [ (a(0) 1),
hence, together with (2.26),
" 7 ~ 1 do ’ ~ . da ,
[Wn" = T1 - [wn” = —[¢] " + T - [ty "
- N da da
= —([T/)] — [ Ua:]) %” = —[C1] —n".

dt

(2.23) follows by insertion of this relation into (2.28). The proof of Lemma 2.2 is
complete.
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Corollary 2.3 Let (a, T, S‘) satisfy the assumptions of the preceding lemma. Then
the evolution equation (1.19) and the Clausius-Duhem inequality (1.22) hold if and

only if

do -
—8IHs = clCi]Hy, (2.30)
St = —cs S (2.31)

Proof: From (2.21), (2.22) and (2.26) we obtain for the variation measures
& nrg Q! ! do Q Q!
(Sl = [n"[SHs + 1A = /[ ] [[S]I7s + S} A,
Cro = ug - b = n/|[C]| Hy + [bs Sy A

Consequently, (1.19) holds if and only if the equations
do & Q! U
‘E‘ S Hs =cl[Ci]|H,  and  [Sif = |cvbsS,] (2.32)

are satisfied. Moreover, since by our convention n’ > 0, we see from (2.23) that
(1.22) holds if and only if the inequalities

d -
—d—? [C]H, <0 and 958 <0 (2.33)
are fulfilled. It is immediately seen that (2.32), (2.33) are equivalent to the pair of

equations (2.30), (2.31).

End of the proof of Lemma 1.1: We defined the function (u, T, S) such that
(2.3) — (2.5) are satisfied, hence this function satisfies (1.17), (1.18) and (1.20).
Moreover, (1.21) is satisfied by construction. Consequently it remains to show
that also (1.19) and (1.22) are fulfilled. By Corollary 2.3 these equations hold if
(u, T, S) satisfies (2.30) and (2.31). The second equation is obviously satisfied since
S is piecewise constant, hence S; = S! = 0. The first equation holds because (2.20)
and (2.16) yield for the speed of any jump discontinuity
da _ [] _ [CY]

%_cm:cm. (2.34)

3 Monotonically increasing initial data

In the proof of Lemma 1.2 given in this section we use Lemma 1.1 to construct a
sequence (up, Iy, Sy) of solutions to (1.17) — (1.22) to piecewise constant monotonic
initial data S,(lo) such that S,(lo) — SO The function S, is piecewise constant
and x +— S,(x,t) is monotonic. As will be shown, this implies that (u,,T,,S,)
satisfies the evolution equation (1.19) without the absolute value signs. Thus, if
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we select a converging subsequence for which S, and Ci(un,, 2, S, )z — Unp,e * 0
converge weakly, the limit function satisfies (1.19) without the absolute value signs.
Consequently, the limit function satisfies (1.19).

To select a converging subsequence we need bounds for the BV -norms of the
approximating sequences. We begin by deriving such bounds.

The geometry of the discontinuities and the BV -—norms. For definiteness
assume that the function S is monotonically increasing. We choose a sequence
{57(10)},010:1 of monotonically increasing, piecewise constant functions St la,b] —
[0,1] with finitely many jumps in (a,b), such that S,(zo)(a) = SO(q), Sﬁo)(b) =
SO (b), and
lim sup |S©(z) — SO (z)| = 0. (3.1)
n—=00 q<x<b
Define (uy,, T}, Sn) @ Z — R3 x 8% x [0, 1] to be the solution of the initial-boundary
value problem (1.17) - (1.22) to the initial data St constructed as in the proof
of Lemma 1.1. We denote by 7, the set of all jump curves of S,,. For a € J,, we
denote the constant values of S, to the left and to the right of a by S, (a—) and
Sn(a+), respectively. We also write [S,](a) = S, (a+) — S, (a—).

Lemma 3.1 (i) To a € J, there exist jump points x, and y, of S with a <
To < Yo < b such that

Sp(a—) = SO (z4—), Sp(a+) = SO (yo+). (3.2)

(ii) If v intersects the line segment (a,b) x{t} and if 5 € T, is the next discontinuity
to the left of o which intersects this line segment, then

5 < ys < To < Yo (3.3)

iii) There is no jump discontinuity o SO between Yg and T.
B

Proof: (i) The discontinuity « starts either at the initial line segment (a, b) x {0},
or at the point of intersection of several discontinuities 51, ..., 8, € J,.. Let 51
be the leftmost of these dicontinuities and [, be the rightmost discontinuity. By
construction S,, satisfies

Sn(a_) = Sn(ﬁl_)a Sn(a+) = Sn(ﬂm+)

If 5, does not start on the initial line segment, it starts at the point of intersection
of several discontinuities. The value of S,, to the left of the leftmost of these
discontinuities is S, (a—). We follow the leftmost discontinuity backwards in time
and repeat the process until we reach a point (z4,0) € (a,b) x {0}. The function
S has a jump at z,, and since the value of S, to the left of the last discontinuity
is S, (a—), we deduce

Sp(a—) = SO (z,—).

n

Similarly, we start at a and follow backwards in time at every point of intersection
the rightmost discontinuity until we reach a point (y,,0) € (a,b) x {0} with y, >
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Zo. The function S jumps at y,, and since the value of S,, to the right of the
discontinuity is S, (a+), we obtain

Sula+) = SO (yo+).

(ii) We start at § and follow backwards in time at every intersection point the
rightmost discontinuity until we reach the point (yg,0) on the initial line segment.
As above we have

Su(B+) = SO (ys+).

The path from £ to the point (ys,0) does never intersect the path from « to (z,,0),
since from every point of intersection of discountinuities at most one discontinuity
emerges forward in time. Therefore we have yz < z,.

(iii) There is no jump of S between yp and z,. For, since SO s increasing,
we would otherwise have S\’ (ys+) < S (xq—), whence

Su(B+) < Sp(a—). (3.4)

Yet, by assumption no jump curve of S, intersects the line segment (a,b) x {t} be-
tween « and S, hence S,,(f+) = S,,(a—). This contradicts (3.4), whence statement
(iii) must be true.

Corollary 3.2 For every n and for every jump curve a € [J, we have

[Sul(c) = S (yat) = S (za—) > 0,

whence x +— S, (z,t) is increasing. Moreover, S, satisfies for every t > 0
SO(a) < Su(a,t),  Su(b,t) < SO), (3.5)
var Sy (-, 1) < var S© = var S < 1. (3.6)

Proof: Since S is increasing, we obtain from (3.2) for every jump curve a € 7,

[Sul(@) = Su(at) = Su(a—=) = SV (yat) — S (xa—) > 0.

n

(3.5) results from (3.2) and from

SO (@a=) 2 S (a) = SP(a), S (yat) < SP(b) = SV (b).

n

To verify (3.6) we use that x — S, (z,t) is increasing and apply (3.5) to conclude

var Sy (-, 1) = S, (b,t) — S,(a,t) < SV (B) - SV) <1.

The corollary is proven.

Now we can show that the variation measures of S, , of the Eshelby tensor and of
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the free energy are uniformly bounded over Z;. for every 7, > 0 with respect to n.
We use that for f € L'(Z7,,R) the variation measures |f,| and |f;| satisfy

ol(Zn) = swi | feedr| o€ CiZR), el <1},
Te

lz) = sw{ | fede|peli(Zn®, lpl<1},
Zr,

cf. [13, p.170]. By definition, the function f € L'(Zr,R) belongs to the space
BV (Zy,) if | fo|(Zr,) + | ftl(Z1,) < co. We also define

|Ol (un,a:; Sn)a: - un,a: : b| (ZTe)
= Sup { / (Cl(un,wa Sn) P + un,z ) b@)d(fv;t) ‘ @ S CI(ZTea R)) |Q0| S 1} )
2T,
|1/)( (Un :1:) ”)t - (Tl,n : Un,t)a: - b ) Un,t| (ZTe)
= sup { / ( — 1b( (Ung), S )QOt + T Ung Qo — b Upy 80) d(x,t)
ZTe
| €Ci(Zn,R), el <1
Lemma 3.3 For all n and for all T, > 0 we have S,, € BV (Zy,). There is a

constant A > 0, which only depends on T, and is an increasing function of this
parameter, such that for the constant ¢ from (1.19)

|Sn.|(Z1,) < Tevar 57(10), |Snt|(Z1,) < cAT,var 57(10) , (3.7)
1C (Unzy Sn)e — Ung - b| (Z1,) < AT, var S (3.8)

|¢(6(un@), S”)t — Ty Ung)e — b unygl (Z1) < cA’T, var 57(10) . (3.9)

Proof: For ¢ € (i‘l(ZTe, R) with || <1 we obtain as in the proof of (2.22) for the
piecewise constant function .S, that

—/ Sngowdx:/ Sp)dH, = Z/ a)n'ds (3.10)
ZTe ZTe

a€Jn

-5 [ e elatn) sy /Tezm Sl (el

a€ETn a€Jn

where x, : R — [0, 1] denotes the characteristic function of the domain D, C [0, c0)
of the parametrization « : D, — [a,b] of the jump curve a. We also used that
n'ds = dt. Noting

S Xa(®)[Sa)(@) = var S, (- 1), (3.11)

OéEjn
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we conclude from (3.10) and Corollary 3.2 that
Te
(Sl (Z2,) < / var Sy (-, t)dt < T, var SO (3.12)
0

Similarly, since S;,, = 0 we deduce from (2.21)

/ Sy, ppdt = / on"[S,]dH;, = Z / a)en'ds
ZT ZT

ac€Jn
Te
- [ E w0 ee.0w. 313
a€Jn

To estimate the right hand side of this equation we infer from ’:1—,,, = ‘3@‘ and from
(2.20) that

n' do

- < )

- | = cA, (3.14)
where A = max {|LU(y,t,s,7)| | (y,t,5,7) € [a,b] x [0,T.] x [0,1] x [0,b —a]} .

Since 0 € Hy(Zr,) is continuous, it follows from the definition of ¥ in (2 17) that
the maximum A exists. Of course, A depends on 7,. We use (3.14) in (3.13) and
obtain together with (3.11) that

Te
|Sn.t|(Z7,) < / var Sy (-, t)cAdt < cAT, var S\
0

This estimate and (3.12) together yield (3.7). To verify (3.8) we note that (2.22)
implies for ¢ € 5’1(ZT6,]R) with |¢| <1 that

_ / Co(ttna Sn) o+ s - bip d(z, 1) = / o [Ci]dHy,  (3.15)
Z, Zr,

- [ X il o

acdn
(2.16) yields | [C4] | = | [\If] | < max |[LW(y,t,s r)| |[Sn]| = A[S,], whence
‘ZX‘J‘ <AZXa = Avar S, (-, t).
acJn a€Jn

Insertion of this inequality into (3.15) results in
Te
|C1 — Ung - b (Z1,) < / Avar S, (-, t)dt < AT, var 57(10)
0
This is (3.8). Finally (2.23) yields

/ ( - w(g(un,x)a Sn) Y + Tl,n *Un,t Py — b- Un,t 90) d(:l,‘, t)
Zr,

d
:—/ —an[Cl]god’HJ < cA*T, var S|
2y

where we used (3.14) again and proceeded as in (3.15). This proves (3.9).
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Lemma 3.4 The function (up, Ty, Sy,) satisfies
Snp = —¢(Ci(tng, Sn)z — Ung - b) (3.16)
on Z in the sense of measures.

Proof: Corollary 3.2 implies that [S,](«) > 0 for every jump curve « € J,,. Thus,
if we apply Lemma 2.2 to the function (u,,T,,S,), use that S , = 5] = 0 and
employ (2.26) and (2.34), we obtain

n d / O /
S0a = 1S,] M, = =S 0 18,1 M, = e C e [,

= —cn' [Ch]Hy, = —c(Crgp — tupg - D).

End of the proof of Lemma 1.2: The proof is in three steps:

Claim 1: The sequence {(un,Ty,Sy)}, has a subsequence, again denoted by
{(un, Ty, Su) }n, which converges in L*(Zr,,R® x 8%) x LF(Zr,,R) to a function
(u,T,S), which satisfies (2.3) — (2.5), for every 1 < p < oo and all T, > 0.
The function S belongs to BV (Zr,), the function u belongs to Hi(Zr,,R®) and
U, — Uy strongly in L*(Zr, ,R?), up, — u, weakly in L*(Zr,,R?) for all T, > 0.

Proof: To see this, note that the inequality 0 < S, < 1 and Lemma 3.3 together
with var 57(10) = var S(© imply

1Sl zs, + 1Snal(Zz) + 1S0l(Zr,) < T((b = a) + (1 + cA) var SO,

where ||Sy||z,, denotes the L'-norm. Therefore, if we set T, = m € N, for every m
we can select a subsequence of {S,}°° , which converges in L'(Z,,,R) to a limit
function S € BV(Z,,), c¢f. [13, p. 176]. By the usual argument the diagonal
sequence, again denoted by {S,},, converges to S in L'(Zr,,R) for every T, >
0. Noting that 0 < S;, < 1 we infer that this sequence converges to S even in
LP(Zr,,R) for all 1 <p < oc.

Let (u,t) be the solution of the problem (2.3) — (2.5) to the function S, for
every T, > 0. The difference (u,, — u,T,, — T') is a solution of the boundary value
problem (2.3) - (2.5) to the data b =0, f = 0 and to the function S,, — S. From
(2.6) and (2.8) we thus obtain

r—a

=) = ([ S 00— T2 [ (50 $)0.0a)

(T, = T)(z,t) = D("—=2)(S, — S)(z,t) — De*

= | S-S0y,

it follows immediately from these formulas and from S, — S in L?(Zr,,R) that
(tn, Unzy T) = (uyug, T) in L*(Z7,,R® x R* x §%). To verify that wu,; — u; we
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use (2.29), applied to @ = u,, and to the piecewise constant function S = S,, and
obtain for (z,t) € Zr, that

=

Q

|un, (2, 1) =

b daZ - daZ
Z dt [Snl (ot Z dt (t)’t))

=1 1=1

@

+ wt(a;,t)‘ < 2lu*| cAvar Sp(-, 1) + |wi(z, 1)) .

Here cA is the bound for [9¢| in Zy, from (3.14). Since var Sy(,t) < 1, by Corollary
3.2, and wy € L*(Z7,,R?), by Lemma 2.1, we conclude that {u,;}, is bounded in
L2(ZTS,R3). Hence it has a weakly converging subsequence. By the usual argu-
ments we infer that the weak derivative v, exists in LQ(ZTe, R3) and that u,; — u;
for all T, > 0. Since u, € L?*(Zz,) we obtain v € H,(Zr,,R®). This finishes the
proof of the claim.

Claim 2: The limit function (u, T, S) satisfies the equation
Sy = —c(Ci(ug, S)e — uy - b) (3.17)
on Z in the sense of measures.

Proof: The claim follows from Lemma 3.4 if we show that the measures S,
and C(up g, Sp)g — Ung - b on both sides of (3.16) weak—* converge to S; and to
Ci(ug, S)z — ug - b, respectively.

By definition, S, ; — S; if [,0dSn:— [, pdS, forall p € 5’(2) Since Co’l(Z)
is dense in CO’(Z), it follows that S,, A6, if

sup | S| (Zr,) < o0 (3.18)
neN

for all 7, > 0 and if

/cpdSn,t: —/ Snprd(z,t) — —/Scptd(az,t) :/godSt (3.19)
z Z z Z

for all p € Co’l(Z). Equation (3.18) is a consequence of (3.7) since var S <1, and
(3.19) immediately follows from the fact that S, — S in L*(Z7z,) for every T, > 0.

Also, we have Cy (w4, Sn)e — Ung - b 5O (ug, S)y — Uy - b if

sup |C1(Unz, Sn)z — Un gz - b|(Zr,) < 00 (3.20)
neN

for all 7, > 0 and

/z (C1(tn,zs Sn)Ps + Ung - bp)d(z,t) — /z (Ci(ug, S)ps + ug - bp)d(x,t) (3.21)
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for all ¢ € 51(2). Equation (3.20) is a consequence of (3.8). To prove (3.21)
observe that

Ci(tng, Sn) = = T - (e(tng) —ESn) + ¥1(Sn) — tng - T - (3.22)

’

1
2
Since T,, — T in L*(Z71,), une — u, in L*(Z7,) and S,, — S in L*(Zr.) we conclude
that

1 1 1 1
5 n'g(un,x)@x%ET'g(ua:)S@xa ETnSnQOx_)ETS(an
(U (Sn) Pz — ¢1(S) P Up,g Tl,n Oy — Uy - 11 Qg

where the convergence is in L'(Z,R), since ¢ has compact support. From (3.22)
we thus obtain

Cl (un,:ra Sn)gpw — Cl (Uwa S)SO:IJ
in L'(Z,R). Relation (3.21) is implied by this relation together with wu,, , - bp —
ug - by in L*(Z,R), which again follows from the convergence of u,, , to u,.

Claim 3: (u,T,S) satisfies the equations (1.17) — (1.22).

Proof: By Claim 1 the function (u, T, S) satisfies the equations (2.3) — (2.5), which
coincide with (1.17), (1.18), (1.20). Equation (1.19) follows from (3.17) by taking
the variation measures on both sides. To show that the Clausius-Duhem inequality
(1.22) holds it suffices to prove that in the sense of measures

77b(5(7~5n,:1:)7 Sn)t - (Tl,n ’ un,t)a: —b- Ut = Zb(E(Uz), S)t - (Tl ’ ut):z: —b- Ug , (323)

since (up, T, Sy) satisfies (1.22). Because the right hand side of (3.9) is uniformly
bounded by the constant cA? T,var S©) we infer just as in the proof of (3.17) that
(3.23) holds if

/Z (e(uns), Su) prd(z, ) — /Z b(=(ua), S)r d(z, ) (3.24)
/len-unytgowd(x,t) — /Tl-utgowd(x,t) (3.25)

/b-un,tgod(x,t) — /b-utgpd(x,t) (3.26)
z z

for all ¢ € Co’l(Z, R). Yet, the convergence (3.24) follows exactly as in the proof
of (3.17) and (3.25), (3.26) are implied by the convergence relations 7}, — 77 in
L*(Z1,,R?), upy — u, weakly in L*(Zr,,R?*), which hold by Claim 1.

To verify the initial condition (1.21) we first extend the signed measures S, ,
and S; on Zr, to measures on the set Z_o 1, = (a,b) x (—00,T;) by defining for
B g Z—oo,Te

Sn,t(B) — Sn,t(B N ZTe), St(B) — St(B N ZTe)a
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provided B N Zr, is S, measurable or S;—measurable. In the proof of Claim 2
we showed that {S,,}, converges weak—* to S, on Zr, . Here we show that the
sequence of extended measures {5}, converges weak—* to S, on Z_ 1, .

To this end note that if ¢ is a constant satisfying 0 < 0 < T, and if we apply
(3.7) with Zr, replaced by Zs, then we obtain for the extended measure

15001(Z - 00.5) = |Snsl(Zs) < cASvar S© < cAS§. (3.27)

A can be chosen independent of § < T,, since it is an increasing function of this
parameter. From (3.27) we obtain in particular that |S, ;|(Z_c1.) < cAT,.. Conse-
quently, there is a subsequence {Snj7t}j, which converges weak—« to a measure . on
Z_oo1,. From the properties of weak—* convergence we know that u(B) = S,(B)
for B C Zy,. Thus, if we show that u(B) = 0 for all sets B C ((a,b) x (—00,0]), it
follows that p is equal to the extended measure Sy, and this implies for the extended
measures that Sy, =08,

Thus, let B C ((a,b) x (—o0,0]). Then B is a subset of the open set Z_,; for
any 0 < § < T, hence (3.27) implies

|/1'|(B) S |/1'|(Z—oo,6) S hm inf |Snj,t|(Z—oo,6) S CA57 (328)
j—o0

cf. [13, p. 54]. This yields the desired result |u|(B) =
In the second step of the proof we use that S, ;

@ € C(Z—OO,TeJ R)

lim [ ¢dS,; = lim ©dSy, = / pdS; = / v dS;. (3.29)
T Z

n— oo n— oo
4 Zfoo,Te —o00,Te

0.
=S, on Z_o 1. implies for

Because S,, is piecewise constant with finitely many jumps we deduce by partial
integration for ¢ € C1(Z_wo,1,,R) that

b
/ SO p(0) da = —/ Snipr d(x, 1) _/(;Odsn,t- (3.30)
a Z Z

Since S, — S in L*(Zr,,R) and since Si satisfies (3.1), we obtain by taking the
limits on both sides of (3.30), observing (3.29), that

b
/ S(O)cp(())dx:—/Sgotd(x,t)—/gpdst.
a Z Z

By the trace theorem for BV -functions (cf. [13, p.177]), this equation implies that
SO coincides with the uniquely defined trace of S € BV (Zg) on (a,b) x {0}.
Therefore the initial condition (1.21) is satisfied.

This completes the proof of Lemma 1.2 for increasing initial data S®. For
decreasing S(©) the proof is almost the same. The only essential difference is that
in this case [S,](a) < 0 for all jumps of the approximate solutions, which implies
that instead of (3.17) the function S satisfies

Sy = ¢(Ci(ug, S)z — ug - b) .
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4 Nonmonotone initial data

This section is devoted to the proof of Theorem 1.3. For initial data increasing in
the interval [a, ¢] and decreasing in [c, ] it is not possible to construct a solution,
which satisfies the equation (1.19) without the absolute value signs, as we could
do this for monotone initial data. Instead, we have to deal with all the difficulties
arising from the variation measures in (1.19).

The existence proof uses a convergent sequence {(un,1,,S,)}, of solutions
to piecewise constant initial data constructed as in the proof of Lemma 1.2.
The arguments of the preceding section can be repeated to show that the limit
function satisfies (1.17), (1.18), (1.20) — (1.22). The main difficulty in the
proof that the evolution equation (1.19) is satisfied lies in the verification of
|C1 (s Sn)z — Ung + b = |C1(ug, S)y — uy - b]. To prove this we decompose
Vp, = C1(Un,zy Sn)z — Un, - b into the positive and negative part v;F. For the weak—
limits we have lim,, . |v,,| = lim,, o (v;f + 1v,) = v + v~ In general, v+ + v~ is
different from the variation measure of C}(uy, S), — u, - b. However, we can show
that in our situation equality holds, which proves the desired result. The central
idea used to show this is contained in the proof of Proposition 4.9, which is given
in Sect. 5.

Construction of the solution. We choose a sequence {S,(lo)}n of piecewise con-
stant functions S : [a,b] — [0, 1] with finitely many jumps in (a,c¢) U (¢, b), such
that S\ is increasing on (a, c), decreasing on (¢, b), and such that
lim sup [S©(z) — SV(z)|=0. (4.1)
n—oo a<z<b
Define (uy,, Ty, S,) 1 Z — R3 x 83 x [0,1] to be the solution of the initial-boundary

value problem (1.17) — (1.22) to the initial data St constructed as in the proof of
Lemma 1.1. For the functions S, the statements (i) and (ii) of Lemma 3.1 hold,
with the same proof. This allows to deduce the following uniform estimate:

Lemma 4.1 The function S,, satisfies
var Sy, (-, t) < var S© < 2,
for every n and all t > 0.

Proof: From Lemma 3.1 (i) we obtain for every n and for every jump curve a € 7,
that
[S)(@)] <SP (yat) = S (xa—)| < var (SO | [ra—, yat]) | (4.2)

n

where x, and y, are defined as in that lemma and where
var (S,(lo) ‘ [Ta—, ya+]) = li\I‘I[l] var (S,(lo) ‘ [Ta — 1, Yo + 77]) )
n
Moreover, if ay,...,a,r € J, are the jump curves intersecting the line segment
(a,b) x {t}, ordered such that a;(t) < as(t) < ... < ag(t), then Lemma 3.1 (ii)
implies
xal Syal <xa2 Syaz <"'<xak Syak-
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Noting these inequalities we infer from (4.2)

k k
var () = S 11Su](00)] = 32180 (e +) — SO (0, )| < var SO < 2.

i=1 i=1
The proof is complete.

Based on the estimate in this lemma we can repeat the proof of Lemma 3.3 for the
functions (uy, Ty, Sp), with minor changes. Consequently, the inequalities (3.7) —
(3.9) hold for (uy,,T,,S,). Exactly as in the proofs of Claim 1 and Claim 3 in the
preceding section we thus obtain

Lemma 4.2 The sequence {(uy, Ty, Sn)}n has a subsequence, again denoted by
{(tn, Ty, Sn) }n, which converges in the norm of the space L*(Zr,,R® x 8%) x
LP(Z7,,R) to a function

(u,T,S) € H\(Zy,,R®) x L*(Zy,,8%) x BV(Z,,R),

for every T, > 0 and all 1 < p < co. Moreover, u,, — u, in L*(Zr,,R®) and
Uy — uy, weakly in L*(Zg, ,R*), for all T, > 0. The function (u,T,S) satisfies the
equations (1.17), (1.18), (1.20), the initial condition (1.21) and the Clausius-Duhem
inequality (1.22).

Convergence of the variation measures |S,;|. The remainder of this article
is devoted to the proof that (u,T,S) satisfies the evolution equation (1.19). Since
(un, T}, Syp) satisties (1.19), it suffices for the proof to show that |S, | — |S| and
|Cy (U Sn), — Unya - bl 5O (ug, S), — ug - b|l. To prove the first of these relations
we first study the jump curves of S,, and state some estimates used in later parts
of our investigation.

Lemma 4.3 Assume that condition (1.26) holds.
(i) The jump of Cy along any jump curve o € J,, satisfies

[CI](a) = f(aa S U) [Sn](a)a (43)

where the function

fla,Sn,0) = (E—¢")-D(E—€") (Sn)(e)

1 b

can be estimated by
M, < f(a,Sp,0) < M,. (4.4)

Here M, > 0 is the constant in (1.26) and

My=(e~2") - D(E—<*) + - De' +[[E 0llumizm + sup [4](s)].
0<s<1
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(ii) With the constant ¢ > 0 from (1.19) let Vi = cMy and Vo = cMy. For every
Jump curve o € J,, the speed of propagation satisfies

d
0<W < id—i‘(t) <V, (4.5)

where the plus sign holds if [Sy](«) > 0 and the minus sign is valid if [S,](a) < 0.
Proof: (4.3) follows from (2.16), (2.17) noting that % [S?] = (ST — S7)(S* +
S7) = [S](S) and that 0 < S,, < 1. The inequality (4.4) follows from (1.26) by a

direct computation, and (4.5) is a consequence of (4.4) and of (2.20), (2.16), which
yield

do [C1](a) )

— =c—— =c f(a, Sy, 0)sign[S,](x).

dt—|[Sp](@)]
Corollary 4.4 If (1.26) holds then S,; < 0 for every n. Therefore the varia-
tion measure satisfies |Sp| = —Sp. For the limit function S the distributional

. . . . *
derivative Sy is a measure and, in the sense of measures, Sy, — S;. Thus,

St <0, |St| = _St; |Sn,t = —Pn,t = —St - |St|-

Proof: Equation (2.21), applied to the piecewise constant function S,,, and (2.26)

together yield
do
Sn,t = TL”[S”] HJ = —n/ E [Sn] HJ- (46)
Here n' > 0, by our choice of the normal vector (n',n"). From (4.5) we thus infer
that —n/9[S,](«) < 0 for all jump curves o € 7, whence S,, <0, by (4.6). The
definition of the variation measure now immediately yields |S, ;| = —S,, ;.

St A8, follows as in the proof of Claim 2 in Section 3. This convergence

implies for ¢ € Co’l(Z, R) with ¢ > 0 that

—/ Seid(z,t)=—lim [ S,¢id(z,t)=lim [ ¢dS,; <0.
Since Co’l(Z, R) is dense in (i‘(Z, R), this equation yields S; < 0. The remaining
statements in the corollary are now obvious.

The positive and negative parts of the measure C'(u, 4, Sy), — Une - b. The
proof that |Cy (e, Sn), — Ung - b = |Ci(ug, S), — ug - b| cannot be based on the
simple idea used to verify |S,, ;| = |S|. For, since the initial data S\ are increasing
on [a,c] and decreasing on [c,b] it follows that [S,](«) has negative and positive
values, depending on the jump curve a. Because (4.3) and (4.4) together imply
sign[C](«) = sign[S,](«), also [C1](«r) has negative and positive values, hence the
measure

Cl (Un,:lza Sn)x — Up,g * b= n,[CI] %J

does not have a sign. The last equation is obtained from (2.22), applied to the
piecewise constant function S,. To prove convergence also in this situation we
introduce the positive and negative parts of this measure:
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Definition 4.5 Let o € 7, be a jump curve. For Cy = Ci(up4, Sp) we set

i) = 3G+ @) . (O] (@) = 5 (1G] - [C1](@),

Vp = nl[Cl] H;=Cle —Ung b, Vﬁ: = nl[cl]i Hi.

The measures v=

- are the positive and negative parts of the measure v, and we have

vE >0, Vp =V — 1, vl = v + v, (4.7)
Lemma 4.6 (i) For the limit function (u,T,S) the distributional derivative
Ci(ug, S), — uy - b is a measure, which we denote by v. We have v, oy,

(ii) There is a subsequence of {(uy, T, Sn) }n, again denoted by {(u,,, T,,, Sn) }n, such
that the corresponding subsequences {v;" },, , {v; }, converge weak— to measures v*
and v, respectively. These measures satisfy v, v~ > 0.

Proof: Above we remarked that Lemma 3.3 holds for (u,,T,,S,). We therefore
obtain from (3.8) and from (4.7)

vE(Zr) < lva|(Zy,) < AT, var S© < 24T, , (4.8)

for every T, > 0. The last inequality sign in this estimate follows from Lemma 4.1.
Using this estimate for v, we can show exactly as in the proof of Claim 2 in Section 3
that v = Cy(uy, S), — u, - b is a measure and that v, — v. Also, since by (4.8)
sup,, v (Zr,) < oo, the sequences of Radon measures {v:}, have subsequences,
which converge weak— to Radon measures v, cf. [13, p.55]. This proves the
lemma.

(4.7) implies for the weak— limits

vt—v™ = lim (v) —y;) = lim v, = v, (4.9)
n—o0 n—o0
v = dim (g ) = lim [, (1.10)

but in a general situation the measures v and v~ are not necessarily equal to the
positive and negative part of v; hence v* + v~ can be different from |v|. Therefore
in the remainder our goal is to prove that in the present situation we indeed have
lv| = v +v. From (4.10) we then obtain |v,| = |v|, which is our desired result.

The limit measures vt and v~ . To simplify the notation we extend v, to a
measure von R? by defining v, (V) = v,(V N Z) for V. C R%. The same extension
is used for the other measures. By B(z) we denote an open ball in R? with center
z = (z,t) and positive radius r < 1. To specify the radius we write B,(z). The
numbers § and 7 are assumed to belong to the countable set {= | m € N}.
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Definition 4.7 Let the sets E,F C R? be defined by

E = {z € Z| for all § > 0 there is a ball B(z) = B(z,6) and (4.11)
a subsequence such that v, (B(z)) < év,; (B(z))},

F = {z € Z| for all § > 0 there is a ball B(z) = B(z,0) and (4.12)
a subsequence such that v} (B(z)) < év, (B(2))}.

Also, for § > 0 let the sets Gs,G C R? be given by

Gs = {z € Z | there is R = R(2) such that to all 0 < r < R there is ny with

%V;(Br(z)) > v, (B.(2)) > év(B.(z)), n> no} (4.13)
and by
¢=JGs. (4.14)

The sets E, F and G are not necessarily disjoint, but they satisfy
EUFUG=2Z. (4.15)

For, if 2 ¢ E U F then there is § > 0 such that for all balls B(z) there is ng with

vy (B(2)) > v, (B(2)), n=mny.

Sl

v, (B(2)) > dv, (B(2)),

This implies z € G5 C G, hence (4.15) holds.

Let 6 > 0 and > 0. By the Besicovitch Covering Theorem stated in the Appendix
there are a number N and countable families &, F5, Gs, ,

& C {B(z0) |z e E},
Fs C {B(z,0)]|z¢€F},
Gsy C {Br(2) | 2 € Gy, r <min(n, R(2))},
each one consisting of closure disjointed subfamilies Séi),féi),g(g;),i =1,...,N,
such that
ECE:=|JB FCF:=|])B GCGy= ] B (4.16)
Beés BeFs Begs,

N depends only on the space dimension, in this case 2. We define

E=()Es, F=(F5 Gs=()Gwn G=JGs (4.17)

0>0 0>0 n>0 >0
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The sets Ej, Fs and Gy, are open, whence E, F' and G5 are Borel sets as countable

intersections of open sets, and G is a Borel set as a countable union of Borel sets.
(4.14), (4.16) and (4.17) imply

EgEa FQF, é(ngﬁa GQG,

whence, by (4.15),
FUFUG="Z. (4.18)

Lemma 4.8 The limit measures v—, v satisfy
v (E)=vT(F)=0 and v (G)=v"(G)=0.

To prove this lemma we need the following result, whose proof is postponed to
Sect. 5:

Proposition 4.9 To every 6,9 > 0 there is 9 > 0 such that for all n < ny and
for every finite collection By, ..., B; € Gs, with B; C Zy, there is ko such that for
all n > kg

i(UB) <o wi(Un)<o

Proof of Lemma 4.8: To prove that v (E) = 0 let § > 0 and let B € &;.
By definition of & the open ball B = B(z,0) satisfies the condition in (4.11),
hence there is a subsequence such that v, (B) < dv," (B) holds for all m. Since

_ * _ * .
v, —v~and vl — vt it follows

v~ (B) < liminfyv, (B) (4.19)
m—00
< ¢ liminfy! (B) <4 limsupy, (B) <§v"(B),
m—+00 m—00
cf. [13, p. 54].

For r > 0 we set E(r) = {z € E [ |2| <r}. Since E(r) C E C E5 = Upee, B
and since we assumed that the radii of all balls in £ are not greater than one we
can select a subfamily & of &5 such that

Eryc |J BC |J BCE(r+2).

Be&y Be&s

Since &5 is composed of the subfamilies Eéi),i =1,...,N, we obtain from (4.19)

vEr) < v (U B) <Y vB)<s Yy viB)=6), > vi(B)

BEE(’; BEE(’; BEE,‘(’S i=1 Beg(lsﬁgtgi)

=9

N
=1

vH( U B) <4 Zu*(E(r+ 2)) =0 Nvt(E(r +2)),

Begjned
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where we used that the closed hulls of the balls in Séz) are pairwise disjoint. This
estimate holds for all 6 > 0, hence v~ (E(r)) =0 for all » > 0, and so v~ (F) = 0.

The equation v (F) = 0 is verified in the same way, interchanging the roles of
v, and v, .

To prove that v~ (G) = v (G) = 0 let 6,9 > 0 and let n = 19(6,9) > 0 be
the number whose existence is assured in Proposition 4.9. Assume that K C G
is a compact subset. G4, is an open covering of K, since (4.17) implies G5 C
Gy = UBEQ(;,, B. Therefore there exist finitely many By,..., B, € Gj, such that

K C Ui.:l B;. By Proposition 4.9 there is kg with

for all n > kq. Since v, — v, v > " and since Uézl B; is open, we obtain
I I
vE(K) < I/i(UBZ-) < liminfl/f(UBi) < 9.

A n—00 A
=1 1=1

Since ¥ was chosen arbitrarily, it follows that v~ (K) = v*(K) = 0. This holds
for every compact subset K of G5. Since Gy is a Borel set, we conclude that
v~ (Gs) = vt (Gs) =0, cf. [Evans, p. 6]. Thus, G =J°_, G is a countable union
of null sets, whence v~ (G) = v (G) = 0. K

Corollary 4.10 The measures v~ and v* satisfy |v| = v +v~. Moreover,
1C1 (n s Sn)y — Unyg - b = || = |v| = |C1(ug, S), — ug - b

Proof: From (4.18) we see that the complement E' = Z\E of E is a subset of
FUG. Since v is a nonnegative measure we therefore obtain from Lemma 4.8 for
every vT-measurable set R that

vI(R)=vT(RNE)U(RNE")) <vT(RNE)+v (FUG)=vT(RNE),

hence v*(R) = v*(RN E). Similarly, v~ (R) = v~ (RN E'). By definition of the
variation measure |v| we have

VI(R) = supz V(R

where the supremum is taken over all finite collections {R;} of v-measurable, pair-
wise disjoint sets with R; C R. With {R;} also {R;, N E} U{R; N E'} is such a
collection. Thus,

v|(R —supZ|l/ |<supz (R;NE)| + |v(R: N E"|) < |v|(R).
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Using (4.9) we thus conclude for any measurable subset R of Z that

vI(R) = SHPZ (R NE)| +|(v* —v7)(R; N E))
= supz Wt (R)| + v (R)]) = SUPZ v (R;))
= sup( (U )+ v UR ) (R) + v~ (R).

=1

This proves that |v| = v + v~. The relation |v,,| = |v| follows from this equation
and from (4.10). The proof is complete.

End of the proof of Theorem 1.3: By Lemma 4.2 the function (u, T, S) satisfies
the equations and inequalities (1.17), (1.18), (1.20), (1.21) and (1.22). To see that
also equation (1.19) is satisfied remember that by construction (uy,T,,S,) fulfills
this equation. From Corollary 4.4 and Corollary 4.10 we thus obtain for the weak—x
limits

S| = lim |S,, ;| = lim ¢|C\(up ey Sn), — Ung - 0] = c|C1(Us, S), — us - b] .
n—oo n—oo

Consequently, (u,T,S) satisfies also the evolution equation (1.19).

5 Proof of Proposition 4.9

This section is devoted to the proof of Proposition 4.9. We start by stating and
verifying several auxiliary lemmas. The idea of the proof of the proposition is
explained at the beginning of that proof, and we advice the reader to study that
part first.

Definition 5.1 For a jump curve o € J, let

Suli (@) = 5 (1S +1S(@) (8] (0) = 3(1[5:](0) | - [S,](@).

With the Hausdorff measure Hy and with the first component n' > 0 of the unit
normal vector (n',n") to the jump curve o define

Mn — n,[Sn] Hy, /1'7:5 = n,[Sn]:l: Hy.

[t is a signed measure and p are Radon measures, the positive and negative part
of p, . Lemma 4.3 yields

vp = [C1]Hy =n'f[S,]H; and V,f =n'[Ci]e Hy = n'f[Su]x M, -
From (4.4) we therefore obtain for any measurable subset V/

M, Mf(v) < Vni(v) < M, Mf(v)- (5.1)
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This shows that the measures = can be estimated above and below by the measures

. We use this to derive the inequalities for v/ in Proposition 4.9 from analogous
1nequal1t1es for put.

For a jump curve a € J, satisfying a N Z7, # () we call the curve with graph
a N Zyp, ajump curve in Zrp,. If oy, ..., ¢ € Ji are jump curves in Zp, such that
the endpoint of «; coincides with the starting point of ;1 forevery i =1,...,1—1,
we say that the curve with graph oy U...Uay C Z7, is the composition of a, ..., ay.
The composed curve is said to pass over the jump curve o for all j =1,...,[. The
composition is called of maximal length if there is no proper extension in Z;; .

Definition 5.2 A composition of jump curves in Zr, of maximal length is called
a chain. The set of chains is denoted by A,,. The subset of all chains with starting
point on the line segment (a,c) x {0} is denoted by A}, the subset of chains with
starting point on (c,b) x {0} is A

Note that every chain « starts at the line segment (a,b) x {0} and ends at a point
(Tayta) € 0Zy, with t, > 0, whence A, = AT UA . We always identify the
chain « with its parametrization « : [0,t,] — [a,b] and with the graph of this
parametrization, a subset of Z7,. Note that several different chains can pass over
one and the same jump curve a € 7, .

For chains a and  we write a < § if the starting points (z,0) of a and (y, 0)
of B satisfy x < y. If the graphs a and g are not disjoint, we call the point
(o, tp) € N f with

to = min{t | (z,t) € N f}

the point of intersection of o and . The construction of S,, in Sect. 2 implies that
two chains coincide for ¢ > %, hence they have at most one point of intersection.

Definition 5.3 For a chain o we define the strength || : [0,t,] — [0,00) as
follows: Let 0 < t; < ...t,,_1 <T, with m > 1 be the times, where intersections of
chains occur, and let t,,, =T, . For every chain o € A,, we set

lal(t) = [[SP)(@(0)], 0<t<t. (5:2)

n

Let 1 < i < m — 1 and assume that |a|(t) is defined for every chain « and for
every 0 <t < min(tq,t;). Assume that the point (x,t;) belongs to the graphs of the
chains oy, ..., € A} and By,..., 0, € A, , and let

Z|aj| (ti—) ij |(ti—) . (5.3)

If h > 0 choose h; satisfying
0 < hj < |Oéj|(tz'—), Zh] =h (54)
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and define

|Oéj|(t):hj for ti§t<min(ti+1,taj), j=1,...,k,
|BJ|(t):0 for ti§t<min(ti+1,tgj), jg=1,...,1

If h <0 choose h; satisfying

0 <hy <IB|(ti=), D _hy=Ih] (5.5)

7=1
and define

|O[j|(t) =0 fOT t; <t < min(tiﬂ,taj), j=1,.. .,k,
|BJ|(t):h,] for ti§t<min(ti+1,tgj), j=1,...,L

Lemma 5.4 (i) The strength is a decreasing function satisfying
0 < |a|(t) < [al(0) = |[SP)((0))].

(i) Let (z,t) belong to the graphs of the chains oy, ..., € AF and fy,...,05 €
A~ . Then

n

k !
[Salla,t) = Y lagl() = D 16i1(0). (5.6)
j=1 j=1
(iii) Moreover, either |a;|(t) =0 for j=1,...,k or |B;|(t) =0 for j=1,...,L

Proof: (i) follows immediately from Definition 5.3. To verify (ii) let 0 < ¢; < ... <
tm—1 be the intersection times of chains. Let (x,t) with ¢ > 0 belong to the graph
of a jump curve x € J,. If t < ¢; then x starts at the line segment (a,b) x {0},
and exactly one chain « passes over x. The jump curve «a belongs to At or to A,
respectively, if a < x(0) = a(0) < c or if ¢ < x(0) < b, respectively. Since St s
increasing on (a, c¢) and decreasing on (¢, b), we thus obtain from (5.2)

{ a(t)], if aeAr,

z.1) = [SO(q —
S =SPO) = ¢ A

n

This proves (5.6) for ¢t < t;. Assume next that ¢;;, > ¢t > ¢; and that (5.6) holds in
Zy,. 1t follows that the point (x(¢;),¢;) belongs to the graph of x. If it is the starting
point of x then there are jump curves x; < x2 < ... < xm € J, which all end at
(x(t:),t;). If (x(t;), ;) is not the starting point of x we can still consider it as the
end point of the part of x in the set Z; . We denote this part by x;. In this case
we have m = 1. The sets of chains «ay,..., o € A} and fy,...,06 € A, passing
over (z,t) can be partitioned into subsets of chains passing over xi,..., xm, and
every chain passing over one of x1, ..., X, also passes over (z,t). On the one hand,
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if x; is the leftmost of the jump curves xi,..., Xm and Y, the rightmost, then our
construction of S, in Sect. 2 implies

[Sn](xv t) = [Sn](X) - Sn(Xm+) - Sn(Xl_) = Z[Sn](XJ) (57)
On the other hand, by our assumption we have
Z[Sn](Xj) = Z|ap| ZW!] _Z|ap| Zlﬁq

where we used (5.3) — (5.5) to get the last equality sign. This equation and (5.7)
together imply (5.6).

(iii) is an immediate consequence of Definition 5.3. This completes the proof of
the lemma.

It follows from statements (i) and (ii) of this lemma that

[Sale(,t) = Y lal(®). (5.8)

ozEA%
a(t)=z

Thus, Definition 5.1 yields for every measurable set V' C Z;. with characteristic
function yy that

V)= 3 [ avlatolelonds - Z/Tew Dlolde,  (59)

aEAE acAE

where we used that n'ds = dt, and extended the function || from the domain
[0,t.] to [0,T,.] by zero. Consequently, the measure p vanishes on any set, which
is not intersected by chains from A | and p;, vanishes on any set not intersected
by chains from A . (4.5) and (5.6) imply that the jump curve x € J, has positive
slope if only chains from A} pass over x, and negative slope if only chains from A
pass over x. In particular, chains from A} have positive slope until they intersect
a chain from A7, and vice versa.

There is at most one curve over which chains both from A} and A, pass.
Namely, let @, be the maximal chain from A} | i.e. the chain @, € A} satisfying
a < @, for all & € A}, and let 3, be the minimal chain from A, . For all & € A}
all 3 € A, and all £ from the common domain of definition we then have

alt) < a@(t) < Balt) < B(1),

hence to the left of @, there are only chains from A | and to the right of B, there
are only chains from A . Let (xg,%p) be the point of intersection of @, and 3, .
Both chains coincide from the point of intersection on. The jump curves, which
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compose the common part of @, and Bn are the only ones over which chains both
from A} and A, pass.
In the following the separation curve given by the graph of a Lipschitz con-
tinuous function
w: [0,t,] — [a,b].

plays an important role. To define this function note that (4.5) implies that the
sequence {@,, : [0,tq,] — [a,b]}, of parametrizations is uniformly Lipschitz contin-
uous. Therefore we can select a subsequence of {@,}, , again denoted by {@,},,
which converges uniformly to a Lipschitz continuous function, which we take to be
w.

Henceforth we go over to this subsequence and, for example, instead of using the
original sequences we always work with the corresponding subsequences of {1, }n,
{ut}, , which we again denote by the same symbols.

Lemma 5.5 The set G satisfies G C w.

Proof: Let (2; be the set of all points of Z;, to the left of w, let {2y C Z;. be the
set of all points to the right of w and let (z,¢) € €. Since £y is open, (x,t) has
distance R > 0 to w. Therefore, because @, converges uniformly to w, there is ng
such that (z,t) lies to the left of @, and has distance > R/2 to @, for all n > ny.
Consequently, for all » < R/2 and n > ng the ball B,(x,t) is not intersected by
chains from A, , hence by (5.1)

vz (By(,1)) < My iy (By(x,1)) = 0.

This contradicts (4.13) for every ¢ > 0, hence (z,t) ¢ Gy, thence Q; N Gy = 0 for
all 0 > 0. This implies that €, N G=Q,n U5>0 Gs = (0. In the same way it is
shown that Q2 NG = (). Since Zp, = Q1 UwUQy it follows G C w. The lemma is
proven.

In the proof of Proposition 4.9 we need some auxiliary lemmas, which we state and
prove now. To this end we need some more definitions and notations:

For a chain o € A,, the strength || is a decreasing function. The function o
is obtained from « by cutting the “tail” where || is small: If  is a given number
with 0 < k <1 let & be the restriction

o =«

[Oatoz"") ’

where to« = sup{t | |o|(t) > k|c|(0)}. Clearly, this definition implies for all ¢ from
the domain of definition of o that

[@¥](t) > Ka”](0) = [[S]((0))] - (5.10)

The measure p, is “generated” by the chains in A} . We next define measures
generated by subsets of At . To this end let

P:R* =R, Pa,t)=t
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be the projection to the t-axis, let I' C AT and let V' C Z7. be a u—measurable
set. The Radon measure i is defined by

Z/ . || (t) dt . (5.11)

acl

Of course, this measure satisfies 0 < /JT,H < ut.

Finally, we denote the Lebesgue measure of the one-dimensional set P(a” N V)
by meas P(a®*N V).

The first auxiliary lemma is

Lemma 5.6 Let L > 0, let ' C A} and let V be a finite union of balls such that
meas P(a"NV) > L for all o € I'. Then

T.
R ) < 25 (V).
Proof:
iz = X[ letitar < S0 < S [ i

acr 7 Pler) a€el a€el P(arnV)
T, / T.

< — a|(t)dt = —= " (V
T2 2 [, 10 = 250

Lemma 5.7 Let V' be a finite union of balls and assume that
po (V) 2 39

with ¥ > 0. Let L = g, Kk = and let T be the set of all o € A} such that

meas P(a"NV) > L. Then

2T’

pr (V) > 0.

Proof: Every a € A} is a composition of o and of a curve &, where & satisfies
||(t) < kla(0) for all t from the domain of &. Thus, with the definition of p;f (V)
n (5.11),

TS / a0 (5.12)

aEA+

B Z /aﬂV |aﬁ| dt+z/aﬂ\/

acA\D aEAT

Z/ ol < Z/ el (5.3

aeAT\D

IN

LY [[SP)e(0)] < Lvar S < 2L =19,

acAY
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where we used that P(a®*NV) < L for all @ € AF\I'. Also,

Z/W tdt < Z/W k]| (0 (5.14)

acAS acAF

< Tor > ISO)(a(0))] < Tervar SO < 2T,k =1,

The statement of the lemma follows from (5.12) — (5.14).

Lemma 5.8 For every ball B(z) with center z € w there is a number ny such that
for all n > ng the following holds: Let o, 3 € A} with 8 < «, let [0,t*] be the
domain of o and assume that B(z) C Zx . Then

meas P(5" N B(z)) < \/1+ 4V2 meas P(a” N B(2)). (5.15)
Vy is the constant from (4.5).

Proof: 1.) First we show that for n, sufficiently large we can assume that the chain
a € Al and the center z = (Z,t) € w of B(z) satisfy

alf) < 7. (5.16)

For, w is the uniform limit of a sequence of chains {@,}, satisfying x < @, for all
X € A} . It thus follows that to p > 0 there is ny such that for all n > ny and all

(x,t) €Ew

a(t) <a,(t) <z +p.
If (5.16) does not hold we therefore have

T <at)<i+p.

Using that | < < V,, by (4.5), we conclude from this inequality by a simple
geometrical con51derat10n that if p is less than the radius r of the ball B(z) then
(a(t),t) € B(z) for all t € U = (t — h,t + h) with h = V(1 + V2) }(r — p). Thus,
U C P(an B(z)). Now we deform the curve « in this neighborhood U of ¢ such
that (5.16) is satisfied by the deformed curve. From the value of h given above

1% r this can be done such that the

we immediately see that if we choose p <

1+2v2
deformed curve satisfies
1. (f) < 7,
2. | | <2V, (5.17)

3. (a( ),t) € B(z) for all t € U.

The third property implies that P(« N B(z)) is not changed by the deformation.
The same argument also shows that we can deform g, if necessary, such that the
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deformed curves v and f satisty 5 < «, with P(8 N B(z)) unchanged. Therefore,
since both sides of (5.15) are not changed by the deformation, it suffices to prove
this inequality for the deformed curves satisfying (5.16) and (5.17). The number
no only depends on V3 (1 +2V%)~'r, hence it only depends on the radius r of B(z).

II.) We assume that (5.16) holds. Let K be a connected component of o N B(z),
and let S be the subset of all z5 = (xg,t3) € %N B(z) with the property that the
radius vector from the center z to zg intersects K. The requirement B(z) C Zjax
implies that every connected component K is an arc which starts and ends at the
boundary 0B(z). This fact, (5.16) and f < « together imply that every radius
vector ending at a point of 5 N B(z) intersects o, hence

Bk =8"nB(2), (5.18)

where the union is over all connected components of o N B(z). For every K the
set P(K) is an open interval and we have

Z meas P(K) = meas P(a" N B(2)). (5.19)

Claim: We have
meas P(fx) < /1 + 4V2 meas P(K). (5.20)

To prove this claim fix I and assume that P(K) = (¢1,t3). Since (5.20) is obvious
if Bx is empty, we also assume that S # (). Since the endpoints z; = (a(t1), 1)
and zo = («a(t2),t2) of the arc I are boundary points of B(z), it follows that the
line segment d connecting z; to zo is a secant to the circle 9B(z). We denote by
B!(z) that part of B(z), which lies to the left of d. From (5.17) we infer that the
arc IC is contained in the parallelogram

Q={(z,1) € Zpar | & —a(tr)] < 2N%(t = 1), |o = a(tz)] < 2Va(t2 — 1)},

whose diagonal is d. We denote by Q" the triangular region of ) which lies to the
right of d.

The nonempty set Sx consists of all points of 5 N B(z), whose straight con-
nection to z intersects K. Therefore S must be separated from z by the arc K.
Since z satisfies (5.16) and K is a subarc of «, this can only be if Sx is contained
in the part of B(z) to the left of K and z is contained in the part of B(z) to the
right. This implies

Bx C B(z)UuQ",
whence

P(Bx) € P(B'(2)) U P(Q") = P(B'(2)). (5.21)

To obtain the last equality we used that P(Q") = (t1,t,) C P(B'(2)).
Thus, to estimate meas P(Sx) it suffices to estimate meas P(B'(z)). To this
end we observe that the center z of B(z) lies on the line g, which is orthogonal to
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the secant d of 0B(z) and intersects d in the middle. Since z is contained in the
part of B(z) to the right of I, it follows that z belongs to that half line of g which
is bounded at the left by the intersection of g with the arc K. From K C () we
thus conclude that z also belongs to the half line ¢g" of g, whose left endpoint is
the point of intersection z, of g with the left boundary of the parallelogram (). By
B(z,) we denote the ball, whose boundary 0B(z,) passes through the endpoints 2
and zy of K and thus has secant d. It is immediately seen that z € ¢g" implies

B'(z) C B'(z,).
From this relation and from (5.21) we conclude
meas P(Bx) < meas P(B'(z,)) < meas P(B(z,)) = 2r,, (5.22)

where 7, is the radius of B(z,). To estimate this radius we use that z, = (x,,t,) €
0@). This implies that if ¢y denotes that one of the numbers t,, %, , which is closer
to t,, then

1
—(ta— 1t
2(2 1)7

lzg — alto)] < 2Walty — to] < Valte — th).

|tg - t0|

IN

Thus,

1+ 4V2 (ty — ;) = =1/ 1 + 4V? meas P(K),

where we used that P(K) = (¢1,t2). This estimate and (5.22) together yield (5.20)
and prove the claim.

To finish the proof of the lemma we observe that (5.18) yields P(5" N B(z)) =
Uk P(Bx). Together with (5.20) and (5.19) we thus infer

meas P("N B(z)) < ZmeasP Brc) < \/1+4V3 ZmeasP
= y/1+4V2meas P(a” N B(z)).

N | —
[\.'Jl'—‘

rg = |(xg,ty) — (a(to), )| <

The proof is complete.

Corollary 5.9 For every finite union V = \J'_, B(z) of balls B(z;) € Gs, there
is a number ng such that for all n > ny the following holds: Let o, B € A with
B < a, let [0,t%"] be the domain of a® and assume that V C Zy~ . Then

meas P(f"NV) < Ny/1+ 4VZ meas P(a*NV),

where N is the number of closure disjointed subfamilies g§}7), ceey ggf;’) of Gy -
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Proof: G, consists of balls with center in G. Since G C w, by Lemma 5.5, all
balls in Gs, have center on w. Therefore we can apply Lemma 5.8 and choose ng
large enough such that the estimate (5.15) holds for all balls B(z;), z =1,...,k

We group the balls B(z;),..., B(z) into N subfamilies {B;;};, C 96 of d1SJ01nt
balls and remark that if B;; N B;; = () then also P(a*NB;;) N P(a” ﬂBlJ) (), since
P is a bijective mapping from the graph of the curve o to [0, 00). From (5.15) we
thus conclude

k
meas P(f"NV) < Zmeas P(p"N B(z))

=1

<\ /1+4V2 ZmeasP(a N B(z)) \/1+4V222meas]3a N B;j;)
< \/1+4V22ZmeasP(a”ﬂV):N\/1+4V22measP(a”ﬂV).

J

Lemma 5.10 Let o € A} and let n > 0. Assume that V = Ule B; is a union of
balls whose radii are all bounded by n and which satisfy a"NB; # (0 fori=1,... k.

Then
1
V) €214 5 (5.23)

where Vy is the constant from (4.5).

Proof: For g € A, let t* = max{0 <t < T, | |B](t) > 0}, and let 5* = ﬁ|[0 o
Then (5.9) implies ’

) = 30 [ i< 3 mes P V)10 (5.24)
peay *PEV) Bean
< maxmeas P(f*NV) Z I[S,”](5(0))] < max meas P(5*NV).
BEAL Bens BEAL,

Here we used Y- [[S3V](8(0))] = [SY(B) — S”(¢)| < 1.

It remains to estimate meas P(5*NV"). To this end note that relation (5.10) implies
|a®|(t) > k|a|(0) > 0 for all ¢ from the domain of @*. By Lemma 5.4 (iii) and (5.8)
we thus have [S,| = [S,]+ > 0 along . Equation (4.5) therefore yields

da”
)y >V >0 5.25
OERY (525)
for all ¢ from the domain of o. By the same reasoning we obtain
d *
jt (t) <=V <0 (5.26)
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for all ¢ from the domain of 8*. Finally, observe that a* N B; # 0, i = 1,...,k
implies
V CW, ={z¢€ Zp, | dist(z,a") < 2n},
hence
meas P(*NV) <meas P(f*NW,) <ty —1t, (5.27)

with to = sup P(B* NW,), t; = inf P(5* N W,). Using (5.25) and (5.26) we see by
some geometrical considerations, which we leave to the reader, that

/ 1
to—t <241+ —n.
2 1S Vlgn

Combining this inequality with (5.24) and (5.27) yields (5.23).

Proof of Proposition 4.9: We assume that the statement of this proposition for
the measure v;" does not hold. Then there are numbers §,9 > 0 such that for all
no > 0 there is n < 1y and a finite collection By, ..., By € G5, such that for every
positive integer ky there is n > kg with

vi(JB) > 0. (5.28)

=1

In the following we write V' = Ule B;. We aim to prove an estimate of the form
v, (V) < Kn, which together with the definition of Gj, would contradict (5.28)
when 7 is small. However, because of the unknown location of the balls B; the
proof of such an estimate seems to be difficult. Our strategy for the proof therefore
is to construct a chain & € A and a subfamily of the balls from By, ..., By for
which an estimate analogous to (5.28) holds and for which every ball intersects d.
For such a subfamily of balls lined up along a curve & with positive slope we have
already proved an estimate for p,, in Lemma 5.10. The desired estimate for v, is
immediately obtained from that estimate via (5.1).

Therefore our first goal is to verify the following

Claim 1: If (5.28) holds there is a constant © > 0 with the following property: For
every 7 there is ng such that for all n > max(ky, ng) there is a subfamily Bf, ..., B!,
of By, ..., By, and a chain & € A} with BiNa" #0, j =1,...,m, and with

vi(lJB)) =e>o. (5.29)
7=1
To prove this claim we first remember (5.1) and conclude from (5.28)
v
V)= —.
mn V)= 5p
Let 9 9
L=—-— = 5.30
61, " 6M,T, (5:30)



and let " be the set of all & € A} such that meas P(«*NV) > L. With Lemma 5.7
we obtain p

FV)>—. 5.31
V) 2 3 (5:31)
Let p be the smallest integer with gp > T, and set h =T,/p. Then
O=to<ti<...<t, =1,

with ¢; = ih is a partition of the interval [0, T,] into p subintervals of length

L
h< . (5.32)
2
For a € T let [0,¢*") be the domain of o and for ¢ =1,...,p let
T, ={aecl |t, 1 <t* <t}
Then I' = (J;_, ['y, hence (5.31) yields
pt (V) + .o+ pt (V)= pt (V) > i
i,k I'p.k Ik = 3M2
Thus, there is at least one ¢ with
vy (5.33)
o ~ 3pMy

For every n and n we fix such a ¢. Let & be the minimal element from I'y, i.e.
& < aforall o € T'y. Also, let Bf,..., B/, be the subfamily of those balls from
By, ..., By which are contained in the set Z; _, and which are intersected by a". We
set V' = U;nzl Bj . Finally, let V; be the union of those balls from By, ..., By which
are not contained in i, - Since all balls belong to Gs, their radii are bounded by
1. Therefore

Vy C {(at) € Za, |12 ty1 — 20},

From P(a%) = [0,t%"] C [0,¢,] we thus obtain
Pa"nVy) = P@") 0PV, C (ty-1 = 2n,ty),
hence, together with (5.32)
meas P(&"NV,) < h+2n< g + 2. (5.34)

We can assume that

n < (5.35)
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Since & € I', we have meas P(&" N'V) > L. Moreover, "NV = a"nN (V' U V),
since V' UV differs from V' at most by a union of balls which are not intersected
by @". Together with (5.34) and (5.35) we thus obtain

L < measP(&"NV)=measP(a"N(V'UV,))
3
< meas P(@"N V') +meas P(a"NV,) < meas P(a"NV') + ZL’

hence

meas P(a"NV') > = L.

o | =

We can now apply Corollary 5.9. Since V' is a union of balls in G, and satisfies
V! C Z,,_,, since the interval [0,%,_;] belongs to the domains of all o € I'; and
since & is the minimal element in I'; it follows from this corollary that there is
no = ng(n) such that for all n > ny and all « € I,

L
1 < meas P(a"NV') < Ny/1+ 4V2meas P(a"NV’).

This inequality shows that all o € I'; satisfy the assumptions of Lemma 5.6. To-
gether with (5.33) we thus conclude from this lemma that

e

S luli_q,n(v) S /ul-'l‘_q,n(ZTe) S L,K H?‘_q,n(v’% (536)

3pM2

where L' = L(4N /1 + 4V3%)~!. Relation (5.1) implies

pr, (V') < gy (V1) < v (V7).

1
1
This estimate and (5.36) together yield (5.29), where the constant O has the value

o 1 KM119L >0
12 M, /1 + 4VZ NT.p

k and L are given in (5.30). This proves Claim 1.
Claim 2: For all n > 0 there is n; such that for all n > n;

" 1 1
u;(jLJlB;) < 2MpN < 1+ ya (5.37)

To verify this claim note that all balls B} belong to the family G5, and thus satisfy
(4.13), by definition of this family. Hence, there is n; with

L _ !
5 (B?), (5.38)

va (Bj) < j
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for all n > n; and all j = 1,...,m. As in the proof of Corollary 5.9 we group the
balls By, ..., B;, into N subfamilies { B};}; C ggf} of disjoint balls, and obtain from
(5.38) for n > n, that

d(UB) < v <> n ) (5.39)
= %ZZVH(B;-) < %ZVH(V’) — ]:vn(w

Since V' = U;n:l Bj is a union of balls whose radii are all bounded by 7 and which
satisfy &* N B} # ) for j = 1,...,m, we can apply Lemma 5.10. Together with
(5.1) we discover that

/ 1
1

Claim 2 follows by insertion of this estimate into (5.39).

End of the proof of Proposition 4.9: Choose 1 small enough such that the right hand
side of (5.37) is less than the constant © in (5.29). Then for n > max(ng, ko, n;)
the inequalities (5.29) and (5.37) are in obvious contradiction. Consequently, our
hypotheses must be false and the inequality stated in Proposition 4.9 for v~ must
hold. The inequality for v, is proved in the same way by interchanging the roles
of v;7 and v, and by applying the second inequality in (4.13), which has not yet
been used. The proof is complete.

A Appendix

Here we state the version of the Besicovitch Covering Theorem which we use in
Sect. 4 to define the families &, Fs, Gs, and the sets E, F, G.

Definition A.1 Let B be a family of open sets. B is called closure disjointed if
every pair of sets Vi, Vy € B with Vy # V, satisfies Vi N'Vy = ().

The following theorem is proved in exactly the same way as the version of the
Besicovitch Covering Theorem for closed balls given in [13, pp. 30-35], [29, pp.
9-12).

Theorem A.2 (Besicovitch Covering Theorem) Let B be a family of open
balls in R™ with uniformly bounded radii. There are closure disjointed, countable
subfamilies BY, ... . BMN) of B, with N > 1 only depending on the dimension n,
such that if A is the set of centers of balls in B then

Ag& U B

1=1 BeRB()
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