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Introdu
tion

Let G be a 
onne
ted 
omplex algebrai
 group and A an abelian 
onne
ted

algebrai
 group, together with an algebrai
 a
tion of G on A via group auto-

morphisms. The aim of this note is to study the set of isomorphism 
lasses

Ext

alg

(G;A) of extensions of G by A in the algebrai
 group 
ategory. The

following is our main result (
f. Theorem 1.8).

0.1 Theorem. For G and A as above, there exists an exa
t sequen
e of abelian

groups:

0! Hom(�

1

([G;G℄); A) ! Ext

alg

(G;A)

�

�! H

2

(g; g

red

; a

u

)! 0 ;

where A

u

is the unipotent radi
al of A, G

red

is a Levi subgroup of G, g

red

; g; a

u

are the Lie algebras of G

red

; G;A

u

respe
tively, and H

�

(g; g

red

; a

u

) is the Lie

algebra 
ohomology of the pair (g; g

red

) with 
oeÆ
ients in the g-module a

u

.

Our next main result is the following analogue of the Van-Est Theorem for

the algebrai
 group 
ohomology (
f. Theorem 2.2).

0.2 Theorem. Let G be a 
onne
ted algebrai
 group and let a be a �nite-

dimensional algebrai
 G-module. Then, for any p � 0,

H

p

alg

(G; a) ' H

p

(g; g

red

; a):
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By an algebrai
 group G we mean an aÆne algebrai
 group over the �eld of


omplex numbers C and the varieties are 
onsidered over C . The Lie algebra of

G is denoted by L(G).

1 Extensions of Algebrai
 Groups

1.1 De�nition. Let G be an algebrai
 group and A an abelian algebrai
 group,

together with an algebrai
 a
tion of G on A via group automorphisms, i.e., a
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morphism of varieties � : G�A! A su
h that the indu
ed map G! AutA is

a group homomorphism. Su
h an A is 
alled an algebrai
 group with G-a
tion.

By Ext

alg

(G;A) we mean the set of isomorphism 
lasses of extensions of

G by A in the algebrai
 group 
ategory, i.e., quotient morphisms q :

b

G ! G

with kernel isomorphi
 to A as an algebrai
 group with G-a
tion. We obtain on

Ext

alg

(G;A) the stru
ture of an abelian group by assigning to two extensions

q

i

:

b

G

i

! G of G by A the �ber produ
t extension

b

G

1

�

G

b

G

2

of G by A � A

and then applying the group morphism m

A

: A � A ! A �berwise to obtain

an A-extension of G (this is the Baer sum of two extensions). Then Ext

alg

assigns to a pair of an algebrai
 group G and an abelian algebrai
 group A

with G-a
tion, an abelian group, and this assignment is 
ontravariant in G (via

pulling ba
k the a
tion of G and the extension) and if G is �xed, Ext

alg

(G; �) is

a 
ovariant fun
tor from the 
ategory of abelian algebrai
 groups with G-a
tions

to the 
ategory of abelian groups. Here we assign to a G-equivariant morphism


 : A

1

! A

2

of abelian algebrai
 groups and an extension q :

b

G ! G of G by

A

1

the extension




�

b

G := (A

2

o

b

G)=�(
)! G; [(a; g)℄ 7! q(g);

where �(
) is the graph of 
 in A

2

�A

1

and the semidire
t produ
t refers to the

a
tion of

b

G on A

2

obtained by pulling ba
k the a
tion of G on A

2

to

b

G. In view

of the equivarian
e of 
, its graph is a normal algebrai
 subgroup of A

2

o

b

G, so

that we 
an form the quotient 


�

b

G.

We de�ne a map

D : Ext

alg

(G;A)! Ext(L(G); L(A))

by assigning to an extension

1! A

i

�!

b

G

q

�! G! 1

of algebrai
 groups the 
orresponding extension

0! L(A)

di

�! L(

b

G)

dq

�! L(G)! 0

of Lie algebras. Sin
e i is inje
tive, di is inje
tive. Similarly, dq is surje
tive.

Moreover, dimG = dimL(G) and hen
e the above sequen
e of Lie algebras is

indeed exa
t.

It is 
lear from the de�nition of D that it is a homomorphism of abelian

groups. If g is the Lie algebra of G and a the Lie algebra of A, then the group

Ext(g; a) is isomorphi
 to the se
ond Lie algebra 
ohomology spa
e H

2

(g; a)

of g with 
oeÆ
ients in the g-module a (with respe
t to the derived a
tion)

([CE℄). Therefore the des
ription of the group Ext

alg

(G;A) depends on a good

des
ription of kernel and 
okernel of D whi
h will be obtained below in terms

of an exa
t sequen
e involving D.

In the following G is always assumed to be 
onne
ted. The following lemma

redu
es the extension theory for 
onne
ted algebrai
 groups A with G-a
tions

to the two 
ases of a torus A

s

and the 
ase of a unipotent group A

u

.
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1.2 Lemma. Let G be 
onne
ted and A be a 
onne
ted algebrai
 group with G-

a
tion. Further, let A = A

u

A

s

denote the de
omposition of A into its unipotent

and redu
tive fa
tors. Then A

�

=

A

u

�A

s

as a G-module, where G a
ts trivially

on A

s

and G a
ts on A

u

as a G-stable subgroup of A. Thus, we have

(1) Ext

alg

(G;A)

�

=

Ext

alg

(G;A

u

)� Ext

alg

(G;A

s

):

Proof. De
ompose

(2) A = A

u

A

s

;

where A

s

is the set of semisimple elements of A and A

u

is the set of unipotent

elements of A. Then A

s

and A

u

are 
losed subgroups of A and (2) is a dire
t

produ
t de
omposition (see [H, Theorem 15.5℄). The a
tion of G on A 
learly

keeps A

s

and A

u

stable separately. Also, G a
ts trivially on A

s

sin
e Aut(A

s

)

is dis
rete and G is 
onne
ted (by assumption). Thus the a
tion of G on A

de
omposes as the produ
t of a
tions on A

s

and A

u

with the trivial a
tion on

A

s

. Hen
e the isomorphism (1) follows from the fun
toriality of Ext

alg

(G; �).

If G = G

u

o G

red

is a Levi de
omposition of G, then G

u

being simply-


onne
ted,

�

1

(G)

�

=

�

1

(G

red

);

where G

u

is the unipotent radi
al of G, G

red

is a Levi subgroup of G and

�

1

denotes the fundamental group. The 
onne
ted redu
tive group G

red

is

a produ
t of its 
onne
ted 
enter Z := Z(G

red

)

0

and its 
ommutator group

G

0

red

:= [G

red

; G

red

℄ whi
h is a 
onne
ted semisimple group. Thus, G

0

red

has an

algebrai
 universal 
overing group

~

G

0

red

, with the �nite abelian group �

1

(G

0

red

)

as its �ber. We write

~

G

red

:= Z �

~

G

0

red

whi
h is an algebrai
 
overing group of

G

red

; denote its kernel by �

G

and observe that

~

G := G

u

o

~

G

red

is a 
overing of G with �

G

as its �ber. We write q

G

:

~

G ! G for the 
orre-

sponding 
overing map.

1.3 Lemma. If G and A are tori, then Ext

alg

(G;A) = 0.

Proof. Let q :

b

G ! G be an extension of the torus G by A. Then, as is well

known,

b

G is again a torus (
f. [B, x11.5℄). Sin
e any 
hara
ter of a subtorus

of a torus extends to a 
hara
ter of the whole groups ([B, x8.2℄), the identity

I

A

: A ! A extends to a morphism f :

b

G ! A. Now ker f yields a splitting of

the above extension.

The following proposition deals with the 
ase A = A

s

.

1.4 Proposition. If A = A

s

, then D = 0 and we obtain an exa
t sequen
e

Hom(

~

G;A

s

)

res

�! Hom(�

G

; A

s

)

�

�! Ext

alg

(G;A

s

);
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where � assigns to any 
 2 Hom(�

G

; A

s

) the extension 


�

~

G. The kernel of �


onsists of those homomorphisms vanishing on the fundamental group �

1

(G

0

red

)

of G

0

red

and � fa
tors through an isomorphism

�

0

: Hom(�

1

(G

0

red

); A

s

) ' Ext

alg

(G;A

s

):

Proof. Consider an extension

1! A

s

!

b

G! G! 1:

Sin
e A

s

is a 
entral torus in

b

G, the unipotent radi
al

b

G

u

of

b

G maps isomor-

phi
ally on G

u

. Also

1! A

s

!

b

G

red

! G

red

! 1

is an extension whose restri
tion to Z splits by the pre
eding lemma. On the

other hand the 
ommutator group of

b

G

red

has the same Lie algebra as G

0

red

,

hen
e is a quotient of

~

G

0

red

. Thus

b

G

red

is a quotient of A

s

� Z �

~

G

0

red

, whi
h

implies that

b

G is a quotient of A

s

�

~

G. Hen
e

b

G is obtained from A

s

�

~

G via

taking its quotient by the graph of a homomorphism �

G

! A

s

. Conversely, any

su
h extension

b

G of G is obtained this way. This proves that � is surje
tive. In

parti
ular, the pullba
k q

�

G

b

G of

b

G to

~

G always splits.

We next show that ker� 
oin
ides with the image of the restri
tion map from

Hom(

~

G;A

s

) to Hom(�

G

; A

s

). Assume that the extension

b

G




= 


�

~

G de�ned by


 2 Hom(�

G

; A

s

) splits. Let � : G !

b

G




be a splitting morphism. Pulling �

ba
k via q

G

, we obtain a splitting morphism

~� :

~

G! q

�

G

b

G




�

=

A

s

�

~

G:

Thus, there exists a morphism Æ :

~

G ! A

s

of algebrai
 groups su
h that �

satis�es �(q

G

(g)) = �(Æ(g); g) for all g 2

~

G, where � : A

s

�

~

G !

b

G




=

(A

s

�

~

G)=�(
) is the standard quotient map. For g 2 �

G

= ker q

G

we have

�(Æ(g); g) = 1, and therefore Æ(g) = 
(g) for all g 2 �

G

. This shows that Æ is

an extension of 
 to

~

G. Conversely, if 
 extends to

~

G,

b

G




is a trivial extension

of G.

ThatD = 0 follows from the fa
t that

b

G and q

�

G

b

G have the same Lie algebras,

whi
h is a split extension of g by a

s

.

We re
all that

~

G = G

u

o (Z �

~

G

0

red

). If a homomorphism 
 : �

G

! A

s

ex-

tends to

~

G, then it must vanish on the subgroup �

1

(G

0

red

) of �

G

sin
e,

~

G

0

red

being

a semisimple group, there are no non
onstant homomorphisms from

~

G

0

red

! A

s

.

Conversely, if a homomorphism 
 : �

G

! A

s

vanishes on �

1

(G

0

red

), then 
 de-

�nes a homomorphism

Z \G

0

red

�

=

�

G

=�

1

(G

0

red

)! A

s

:

But A

s

being a torus, this extends to a morphism f : Z ! A

s

([B, x8.2℄) whi
h

in turn 
an be pulled ba
k via Z

�

=

~

G=(G

u

o

~

G

0

red

) to a morphism

~

f :

~

G ! A

s
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extending 
. This proves that the image of Hom(

~

G;A

s

) under the restri
tion

map in Hom(�

G

; A

s

) is the annihilator of �

1

(G

0

red

), so that

� : Hom(�

G

; A

s

)! Ext

alg

(G;A

s

)

fa
tors through an isomorphism

�

0

: Hom(�

1

(G

0

red

); A

s

) ' Ext

alg

(G;A

s

):

1.5 Remark. A unipotent group A

u

over C has no non-trivial �nite subgroups,

so that

Hom(�

1

(G

0

red

); A

s

)

�

=

Hom(�

1

(G

0

red

); A):

Now we turn to the study of extensions by unipotent groups. In 
ontrast to

the situation for tori, we shall see that these extensions are faithfully represented

by the 
orresponding Lie algebra extensions.

1.6 Lemma. The 
anoni
al restri
tion map

H

2

(g; g

red

; a

u

) �! H

2

(g; a

u

)

is inje
tive.

Proof. Let ! 2 Z

2

(g; a

u

) be a Lie algebra 
o
y
le representing an element of

H

2

(g; g

red

; a

u

) and suppose that the 
lass [!℄ 2 H

2

(g; a

u

) vanishes, so that the

extension

b

g := a

u

�

!

g! g; (a; x) 7! x

with the bra
ket [(a; x); (a

0

; x

0

)℄ = (x:a

0

�x

0

:a+!(x; x

0

); [x; x

0

℄) splits. We have

to �nd a g

red

-module map f : g! a

u

vanishing on g

red

with

!(x; x

0

) = (d

g

f)(x; x

0

) := x:f(x

0

)� x

0

:f(x)� f([x; x

0

℄); x; x

0

2 g:

Sin
e the spa
e C

1

(g; a

u

) of linear maps g! a

u

is a semisimple g

red

-module (a

u

being a G-module, in parti
ular, a G

red

-module), we have

C

1

(g; a

u

) = C

1

(g; a

u

)

g

red

� g

red

:C

1

(g; a

u

)

and similarly for the spa
e Z

2

(g; a

u

) of 2-
o
y
les. As the Lie algebra di�erential

d

g

: C

1

(g; a

u

)! Z

2

(g; a

u

) is a g

red

-module map, ea
h g

red

-invariant 
oboundary

is the image of a g

red

-invariant 
o
hain in C

1

(g; a

u

). We 
on
lude, in parti
ular,

that ! = d

g

h for some g

red

-module map h : g ! a

u

. For x 2 g

red

and x

0

2 g it

follows that

0 = !(x; x

0

) = x:h(x

0

)� x

0

:h(x)� h([x; x

0

℄)

= h([x; x

0

℄)� x

0

:h(x)� h([x; x

0

℄) = �x

0

:h(x);
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showing that h(g

red

) � a

g

u

, whi
h in turn leads to [g

red

; g

red

℄ � kerh. As

z(g

red

) \ [g; g℄ = f0g, the map hj

z(g

red

)

extends to a linear map f : g ! a

g

u

vanishing on [g; g℄. Moreover, sin
e f vanishes on [g; g℄, f is 
learly a g-module

map, in parti
ular, a g

red

-module map. Then d

g

f = 0, so that d

g

(h � f) = !,

and h� f vanishes on g

red

.

1.7 Proposition. For A = A

u

the map D : Ext

alg

(G;A

u

)! H

2

(g; a

u

) indu
es

a bije
tion

D : Ext

alg

(G;A

u

)! H

2

(g; g

red

; a

u

):

Proof. In view of the pre
eding lemma, we may identify H

2

(g; g

red

; a

u

) with a

subspa
e of H

2

(g; a

u

). First we 
laim that im(D) is 
ontained in this subspa
e.

For any extension

(3) 1! A

u

!

b

G! G! 1;

we 
hoose a Levi subgroup

b

G

red

�

b

G mapping to G

red

under the above map

b

G! G. Then

b

G

red

\ A

u

= f1g:

Moreover,

b

G

red

! G

red

is surje
tive and hen
e an isomorphism. This shows that

the extension (3) restri
ted toG

red

is trivial and that

b

g

u


ontains a

b

g

red

-invariant


omplement to a

u

. Therefore

b

g 
an be des
ribed by a 
o
y
le ! 2 Z

2

(g; g

red

; a

u

),

in parti
ular, ! vanishes on g� g

red

. This shows that Im D � H

2

(g; g

red

; a

u

).

If the image of the extension (3) under D vanishes, then the extension a

u

,!

b

g

u

!! g

u

splits, whi
h implies that the 
orresponding extension of unipotent

groups A

u

,!

b

G

u

!! G

u

splits. Moreover, the splitting map 
an be 
hosen

to be G

red

-equivariant, sin
e ! is G

red

-invariant. This means that we have a

morphism G

u

oG

red

!

b

G

�

=

b

G

u

oG

red

splitting the extension (3). This proves

that D is inje
tive.

To see that D is surje
tive, let ! 2 Z

2

(g; g

red

; a

u

). Let q :

b

g := a

u

�

!

g ! g

denote the 
orresponding Lie algebra extension. Sin
e a

u

is a nilpotent module

of g

u

, the subalgebra

b

g

u

:= a

u

�

!

g

u

of

b

g is nilpotent, hen
e 
orresponds to

a unipotent algebrai
 group

b

G

u

whi
h is an extension of G

u

by A

u

. Further,

the G

red

-invarian
e of the de
omposition

b

g = a

u

� g implies that G

red

a
ts

algebrai
ally on

b

g

u

and hen
e on

b

G

u

, so that we 
an form the semidire
t produ
t

b

G :=

b

G

u

oG

red

whi
h is an extension of G by A

u

mapped by D onto

b

g.

1.8 Theorem. For a 
onne
ted algebrai
 group G and a 
onne
ted abelian

algebrai
 group A with G-a
tion, there exists an exa
t sequen
e of abelian groups:

0! Hom(�

1

([G;G℄); A) ! Ext

alg

(G;A)

�

�! H

2

(g; g

red

; a

u

)! 0 ;

where a = L(A), G

red

is a Levi subgroup of G, g

red

= L(G

red

), g = L(G) and

a

u

= L(A

u

).

(Observe that, by the following proof, the fundamental group �

1

([G;G℄) is a

�nite group.)
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Proof. In view of the Levi de
omposition of the 
ommutator [G;G℄ = [G;G℄

u

o

G

0

red

, we have �

1

([G;G℄) = �

1

(G

0

red

). Now we only have to use Lemma 1.2 to


ombine the pre
eding results Propositions 1.4 and 1.7 on extensions by A

s

and

A

u

to 
omplete the proof.

2 Analogue of Van-Est Theorem for algebrai


group 
ohomology

2.1 De�nition. Let G be an algebrai
 group and A an abelian algebrai
 group

with G-a
tion. For any n � 0, let C

n

alg

(G;A) be the abelian group 
onsisting of

all the variety morphisms f : G

n

! A under the pointwise addition. De�ne the

di�erential

Æ : C

n

alg

(G;A) ! C

n+1

alg

(G;A) by

(Æf)(g

0

; � � � ; g

n

) = g

0

� f(g

1

; � � � ; g

n

) + (�1)

n+1

f(g

0

; � � � ; g

n�1

)

+

n�1

X

i=0

(�1)

i+1

f(g

0

; g

1

; � � � ; g

i

g

i+1

; � � � ; g

n

):

Then, as is well known (and easy to see),

(4) Æ

2

= 0:

The algebrai
 group 
ohomology H

�

alg

(G;A) of G with 
oeÆ
ients in A is

de�ned as the 
ohomology of the 
omplex

0! C

0

alg

(G;A)

Æ

�! C

1

alg

(G;A)

Æ

�! � � � :

We have the following analogue of the Van-Est Theorem [V℄ for the algebrai


group 
ohomology.

2.2 Theorem. Let G be a 
onne
ted algebrai
 group and let a be a �nite-

dimensional algebrai
 G-module. Then, for any p � 0,

H

p

alg

(G; a) ' H

p

(g; g

red

; a);

where g is the Lie algebra of G and g

red

is the Lie algebra of a Levi subgroup

G

red

of G as in Se
tion 1.

Proof. Consider the homogeneous aÆne variety X := G=G

red

and let 


q

(X; a)

denote the 
omplex ve
tor spa
e of algebrai
 de Rham forms onX with values in

the ve
tor spa
e a. Sin
e X is a G-variety under the left multipli
ation of G and

a is a G-module, 


q

has a natural lo
ally-�nite algebrai
 G-module stru
ture.

De�ne a double 
o
hain 
omplex A =

L

p;q�0

A

p;q

, where

A

p;q

:= C

p

alg

(G;


q

(X; a))
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and C

p

alg

(G;


q

(X; a)) 
onsists of all the maps f : G

p

! 


q

(X; a) su
h that

im f �M

f

, for some �nite-dimensional G-stable subspa
e M

f

� 


q

(X; a) and,

moreover, the map f : G

p

! M

f

is algebrai
. Let Æ : A

p;q

! A

p+1;q

be

the group 
ohomology di�erential as in Se
tion 2.1 and let d : A

p;q

! A

p;q+1

be indu
ed from the standard de Rham di�erential 


q

(X; a) ! 


q+1

(X; a),

whi
h is a G-module map. It is easy to see that dÆ � Æd = 0 and, of 
ourse,

d

2

= Æ

2

= 0. Thus, (A; Æ; d) is a double 
o
hain 
omplex. This gives rise to two

spe
tral sequen
es both 
onverging to the 
ohomology of the asso
iated single


omplex (C; Æ + d) with their E

1

-terms given as follows:

n

E

p;q

1

= H

q

d

(A

p;�

); and(5)

nn

E

p;q

1

= H

q

Æ

(A

�;p

):(6)

We now determine

n

E

1

and

nn

E

1

more expli
itly in our 
ase.

Sin
e X is a 
ontra
tible variety, by the algebrai
 de Rham theorem [GH,

Chap. 3, x5℄, the algebrai
 deRham 
ohomology

H

q

dR

(X; a)

(

' a; if q = 0

= 0; otherwise:

Thus,

n

E

p;q

1

(

' C

p

alg

(G; a); if q = 0

= 0; otherwise:

Therefore,

(7)

n

E

p;q

2

= H

p

Æ

(H

q

d

(A)) =

(

H

p

alg

(G; a); if q = 0

0; otherwise:

In parti
ular, the spe
tral sequen
e

n

E

�


ollapses at

n

E

2

. From this we see that

there is a 
anoni
al isomorphism

(8) H

p

alg

(G; a) ' H

p

(C; Æ + d):

We next determine

nn

E

1

and

nn

E

2

. But �rst we need the following two lem-

mas.

2.3 Lemma. For any p � 0,

H

q

alg

(G;


p

(X; a)) =

(




p

(X; a)

G

; if q = 0

0; otherwise;

where 


p

(X; a)

G

denotes the subspa
e of G-invariants in 


p

(X; a).
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Proof. The assertion for q = 0 follows from the general properties of group


ohomology. So we need to 
onsider the 
ase q > 0 now.

Sin
e L := G

red

is redu
tive, any algebrai
 L-module M is 
ompletely re-

du
ible. Let

�

M

:M !M

L

be the unique L-module proje
tion onto the spa
e of L-module invariants M

L

of M . Taking M to be the ring of regular fun
tions C [L℄ on L under the left

regular representation, i.e., under the a
tion

(k � f)(k

0

) = f(k

�1

k

1

); for f 2 C [L℄; k; k

0

2 L;

we get the L-module proje
tion � = �

C[L℄

: C [L℄ ! C . Thus, for any 
omplex

vextor spa
e V , we get the proje
tion � 
 I

V

: C [L℄ 
 V ! V , whi
h we abbre-

viate simply by �, where I

V

is the identity map of V . We de�ne a `homotopy

operator' H , for any q � 0,

H : C

q+1

alg

(G;


p

(X; a))! C

q

alg

(G;


p

(X; a))

by

�

(Hf)(g

1

; � � � ; g

q

)

�

g

0

L

= �

�

�

f

(g

0

;��� ;g

q

)

�

;

for f 2 C

q+1

alg

(G;


p

(X; a)) and g

0

; � � � ; g

q

2 G, where �

f

(g

0

;��� ;g

q

)

: L! 


p

(X; a)

g

0

L

is de�ned by

�

f

(g

0

;��� ;g

q

)

(k) =

�

(g

0

k) � f(k

�1

g

�1

0

; g

1

; g

2

; � � � ; g

q

)

�

g

0

L

;

for k 2 L. (Here 


p

(X; a)

g

0

L

denotes the �ber at g

0

L of the ve
tor bundle of

p-forms in X with values in a and, for a form !, !

g

0

L

denotes the value of the

form ! at g

0

L.) It is easy to see that on C

q

alg

(G;


p

(X; a)), for any q � 1,

(9) HÆ + ÆH = I:

To prove this, take any f 2 C

q

alg

(G;


p

(X; a)) and g

0

; � � � ; g

q

2 G. Then,

�

(HÆf)(g

1

; � � � ; g

q

)

�

g

0

L

= �

�

�

Æf

(g

0

;��� ;g

q

)

�

=

�

f(g

1

; � � � ; g

q

)

�

g

0

L

+ (�1)

q+1

�

�

�

(g

0

k) � f(k

�1

g

�1

0

; g

1

; � � � ; g

q�1

)

�

g

0

L

�

+

q�1

X

i=1

(�1)

i+1

�

�

�

(g

0

k) � f(k

�1

g

�1

0

; g

1

; � � � ; g

i

g

i+1

; � � � ; g

q

)

�

g

0

L

�

� �

�

�

(g

0

k) � f(k

�1

g

�1

0

g

1

; g

2

; � � � ; g

q

)

�

g

0

L

�

;(10)
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where

�

(g

0

k)�f(k

�1

g

�1

0

; g

1

; � � � ; g

q�1

)

�

g

0

L

means the fun
tion from L to 


p

(X; a)

g

0

L

de�ned as k 7!

�

(g

0

k) � f(k

�1

g

�1

0

; g

1

; � � � ; g

q�1

)

�

g

0

L

. Similarly,

�

(ÆHf)(g

1

; � � � ; g

q

)

�

g

0

L

=

�

g

1

�

�

(Hf)(g

2

; � � � ; g

q

)

�

�

g

0

L

+ (�1)

q

�

(Hf)(g

1

; � � � ; g

q�1

)

�

g

0

L

+

q�1

X

i=1

(�1)

i

�

(Hf)(g

1

; � � � ; g

i

g

i+1

; � � � ; g

q

)

�

g

0

L

=

�

g

1

�

�

(Hf)(g

2

; � � � ; g

q

)

�

�

g

0

L

+ (�1)

q

�

�

�

(g

0

k) � f(k

�1

g

�1

0

; g

1

; � � � ; g

q�1

)

�

g

0

L

�

+

q�1

X

i=1

(�1)

i

�

�

�

(g

0

k) � f(k

�1

g

�1

0

; g

1

; � � � ; g

i

g

i+1

; � � � ; g

q

)

�

g

0

L

�

:(11)

From the de�nition of the G-a
tion on 


p

(X; a), it is easy to see that

(12) �

�

�

(g

0

k) � f(k

�1

g

�1

0

g

1

; g

2

; � � � ; g

q

)

�

g

0

L

�

=

�

g

1

�

�

(Hf)(g

2

; � � � ; g

q

)

�

�

g

0

L

:

Combining (10)-(12), we 
learly get (9).

From the above identity (9), we see, of 
ourse, that any 
o
y
le in C

q

alg

(G;


p

(X; a))

(for any q � 1) is a 
oboundary, proving the lemma.

2.4 Lemma. The restri
tion map 
 : 


p

(X; a)

G

! C

p

(g; g

red

; a) (de�ned be-

low in the proof) is an isomorphism for all p � 0, where C

�

(g; g

red

; a) is the

standard 
o
hain 
omplex for the Lie algebra pair (g; g

red

) with 
oeÆ
ient in

the g-module a. Moreover, 
 
ommutes with di�erentials. Thus, 
 indu
es an

isomorphism in 
ohomology

H

�

(
(X; a)

G

)

�

�! H

�

(g; g

red

; a):

Proof. For any ! 2 


p

(X; a)

G

, de�ne 
(!) as the value of ! at eL. Sin
e G

a
ts transitively on X , and ! is G-invariant, 
 is inje
tive.

Sin
e any !

o

2 C

p

(g; g

red

; a) 
an be extended (uniquely) to a G-invariant

form on X with values in a, 
 is surje
tive. Further, from the de�nition of

di�erentials on the two sides, it is easy to see that 
 
ommutes with di�erentials.

2.5 Continuation of the proof of Theorem 2.2.

We now determine

nn

E. First of all, by (6) of (2.2),

nn

E

p;q

1

= H

q

Æ

(A

�;p

) = H

q

alg

(G;


p

(X; a)):

Thus, by Lemma 2.3,

nn

E

p;0

1

= H

0

alg

(G;


p

(X; a)) = 


p

(X; a)

G

;
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and

nn

E

p;q

1

= 0; if q > 0:

Moreover, under the above equality, the di�erential of the spe
tral sequen
e

d

1

:

nn

E

p;0

1

!

nn

E

p+1;0

1


an be identi�ed with the restri
tion of the deRham

di�erential




p

(X; a)

G

! 


p+1

(X; a)

G

:

Thus, by Lemma 2.4,

(13)

nn

E

p;q

2

=

(

H

p

(g; g

red

; a); if q = 0

0; otherwise:

In parti
ular, the spe
tral sequen
e

nn

E as well degenerates at the

nn

E

2

-term.

Moreover, we have a 
anoni
al isomorphism

(14) H

p

(g; g

red

; a) ' H

p

(C; Æ + d):

Comparing the above isomorphism with the isomorphism (8) of x2.2, we get a


anoni
al isomorphism:

H

p

alg

(G; a) ' H

p

(g; g

red

; a):

This proves Theorem 2.2.

2.5 Remark. Even though we took the �eld C as our base �eld, all the results

of this paper hold (by the same proofs) over any algebrai
ally 
losed �eld of


har. 0, if we repla
e the fundamental group �

1

by the algebrai
 fundamental

group.
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