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Introdution

Let G be a onneted omplex algebrai group and A an abelian onneted

algebrai group, together with an algebrai ation of G on A via group auto-

morphisms. The aim of this note is to study the set of isomorphism lasses

Ext

alg

(G;A) of extensions of G by A in the algebrai group ategory. The

following is our main result (f. Theorem 1.8).

0.1 Theorem. For G and A as above, there exists an exat sequene of abelian

groups:

0! Hom(�

1

([G;G℄); A) ! Ext

alg

(G;A)

�

�! H

2

(g; g

red

; a

u

)! 0 ;

where A

u

is the unipotent radial of A, G

red

is a Levi subgroup of G, g

red

; g; a

u

are the Lie algebras of G

red

; G;A

u

respetively, and H

�

(g; g

red

; a

u

) is the Lie

algebra ohomology of the pair (g; g

red

) with oeÆients in the g-module a

u

.

Our next main result is the following analogue of the Van-Est Theorem for

the algebrai group ohomology (f. Theorem 2.2).

0.2 Theorem. Let G be a onneted algebrai group and let a be a �nite-

dimensional algebrai G-module. Then, for any p � 0,

H

p

alg

(G; a) ' H

p

(g; g

red

; a):

This work was done while the authors were visiting the Fields Institute,

Toronto (Canada) in July, 2003, hospitality of whih is gratefully aknowledged.

The �rst author was partially supported from NSF.

By an algebrai group G we mean an aÆne algebrai group over the �eld of

omplex numbers C and the varieties are onsidered over C . The Lie algebra of

G is denoted by L(G).

1 Extensions of Algebrai Groups

1.1 De�nition. Let G be an algebrai group and A an abelian algebrai group,

together with an algebrai ation of G on A via group automorphisms, i.e., a
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morphism of varieties � : G�A! A suh that the indued map G! AutA is

a group homomorphism. Suh an A is alled an algebrai group with G-ation.

By Ext

alg

(G;A) we mean the set of isomorphism lasses of extensions of

G by A in the algebrai group ategory, i.e., quotient morphisms q :

b

G ! G

with kernel isomorphi to A as an algebrai group with G-ation. We obtain on

Ext

alg

(G;A) the struture of an abelian group by assigning to two extensions

q

i

:

b

G

i

! G of G by A the �ber produt extension

b

G

1

�

G

b

G

2

of G by A � A

and then applying the group morphism m

A

: A � A ! A �berwise to obtain

an A-extension of G (this is the Baer sum of two extensions). Then Ext

alg

assigns to a pair of an algebrai group G and an abelian algebrai group A

with G-ation, an abelian group, and this assignment is ontravariant in G (via

pulling bak the ation of G and the extension) and if G is �xed, Ext

alg

(G; �) is

a ovariant funtor from the ategory of abelian algebrai groups with G-ations

to the ategory of abelian groups. Here we assign to a G-equivariant morphism

 : A

1

! A

2

of abelian algebrai groups and an extension q :

b

G ! G of G by

A

1

the extension



�

b

G := (A

2

o

b

G)=�()! G; [(a; g)℄ 7! q(g);

where �() is the graph of  in A

2

�A

1

and the semidiret produt refers to the

ation of

b

G on A

2

obtained by pulling bak the ation of G on A

2

to

b

G. In view

of the equivariane of , its graph is a normal algebrai subgroup of A

2

o

b

G, so

that we an form the quotient 

�

b

G.

We de�ne a map

D : Ext

alg

(G;A)! Ext(L(G); L(A))

by assigning to an extension

1! A

i

�!

b

G

q

�! G! 1

of algebrai groups the orresponding extension

0! L(A)

di

�! L(

b

G)

dq

�! L(G)! 0

of Lie algebras. Sine i is injetive, di is injetive. Similarly, dq is surjetive.

Moreover, dimG = dimL(G) and hene the above sequene of Lie algebras is

indeed exat.

It is lear from the de�nition of D that it is a homomorphism of abelian

groups. If g is the Lie algebra of G and a the Lie algebra of A, then the group

Ext(g; a) is isomorphi to the seond Lie algebra ohomology spae H

2

(g; a)

of g with oeÆients in the g-module a (with respet to the derived ation)

([CE℄). Therefore the desription of the group Ext

alg

(G;A) depends on a good

desription of kernel and okernel of D whih will be obtained below in terms

of an exat sequene involving D.

In the following G is always assumed to be onneted. The following lemma

redues the extension theory for onneted algebrai groups A with G-ations

to the two ases of a torus A

s

and the ase of a unipotent group A

u

.
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1.2 Lemma. Let G be onneted and A be a onneted algebrai group with G-

ation. Further, let A = A

u

A

s

denote the deomposition of A into its unipotent

and redutive fators. Then A

�

=

A

u

�A

s

as a G-module, where G ats trivially

on A

s

and G ats on A

u

as a G-stable subgroup of A. Thus, we have

(1) Ext

alg

(G;A)

�

=

Ext

alg

(G;A

u

)� Ext

alg

(G;A

s

):

Proof. Deompose

(2) A = A

u

A

s

;

where A

s

is the set of semisimple elements of A and A

u

is the set of unipotent

elements of A. Then A

s

and A

u

are losed subgroups of A and (2) is a diret

produt deomposition (see [H, Theorem 15.5℄). The ation of G on A learly

keeps A

s

and A

u

stable separately. Also, G ats trivially on A

s

sine Aut(A

s

)

is disrete and G is onneted (by assumption). Thus the ation of G on A

deomposes as the produt of ations on A

s

and A

u

with the trivial ation on

A

s

. Hene the isomorphism (1) follows from the funtoriality of Ext

alg

(G; �).

If G = G

u

o G

red

is a Levi deomposition of G, then G

u

being simply-

onneted,

�

1

(G)

�

=

�

1

(G

red

);

where G

u

is the unipotent radial of G, G

red

is a Levi subgroup of G and

�

1

denotes the fundamental group. The onneted redutive group G

red

is

a produt of its onneted enter Z := Z(G

red

)

0

and its ommutator group

G

0

red

:= [G

red

; G

red

℄ whih is a onneted semisimple group. Thus, G

0

red

has an

algebrai universal overing group

~

G

0

red

, with the �nite abelian group �

1

(G

0

red

)

as its �ber. We write

~

G

red

:= Z �

~

G

0

red

whih is an algebrai overing group of

G

red

; denote its kernel by �

G

and observe that

~

G := G

u

o

~

G

red

is a overing of G with �

G

as its �ber. We write q

G

:

~

G ! G for the orre-

sponding overing map.

1.3 Lemma. If G and A are tori, then Ext

alg

(G;A) = 0.

Proof. Let q :

b

G ! G be an extension of the torus G by A. Then, as is well

known,

b

G is again a torus (f. [B, x11.5℄). Sine any harater of a subtorus

of a torus extends to a harater of the whole groups ([B, x8.2℄), the identity

I

A

: A ! A extends to a morphism f :

b

G ! A. Now ker f yields a splitting of

the above extension.

The following proposition deals with the ase A = A

s

.

1.4 Proposition. If A = A

s

, then D = 0 and we obtain an exat sequene

Hom(

~

G;A

s

)

res

�! Hom(�

G

; A

s

)

�

�! Ext

alg

(G;A

s

);
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where � assigns to any  2 Hom(�

G

; A

s

) the extension 

�

~

G. The kernel of �

onsists of those homomorphisms vanishing on the fundamental group �

1

(G

0

red

)

of G

0

red

and � fators through an isomorphism

�

0

: Hom(�

1

(G

0

red

); A

s

) ' Ext

alg

(G;A

s

):

Proof. Consider an extension

1! A

s

!

b

G! G! 1:

Sine A

s

is a entral torus in

b

G, the unipotent radial

b

G

u

of

b

G maps isomor-

phially on G

u

. Also

1! A

s

!

b

G

red

! G

red

! 1

is an extension whose restrition to Z splits by the preeding lemma. On the

other hand the ommutator group of

b

G

red

has the same Lie algebra as G

0

red

,

hene is a quotient of

~

G

0

red

. Thus

b

G

red

is a quotient of A

s

� Z �

~

G

0

red

, whih

implies that

b

G is a quotient of A

s

�

~

G. Hene

b

G is obtained from A

s

�

~

G via

taking its quotient by the graph of a homomorphism �

G

! A

s

. Conversely, any

suh extension

b

G of G is obtained this way. This proves that � is surjetive. In

partiular, the pullbak q

�

G

b

G of

b

G to

~

G always splits.

We next show that ker� oinides with the image of the restrition map from

Hom(

~

G;A

s

) to Hom(�

G

; A

s

). Assume that the extension

b

G



= 

�

~

G de�ned by

 2 Hom(�

G

; A

s

) splits. Let � : G !

b

G



be a splitting morphism. Pulling �

bak via q

G

, we obtain a splitting morphism

~� :

~

G! q

�

G

b

G



�

=

A

s

�

~

G:

Thus, there exists a morphism Æ :

~

G ! A

s

of algebrai groups suh that �

satis�es �(q

G

(g)) = �(Æ(g); g) for all g 2

~

G, where � : A

s

�

~

G !

b

G



=

(A

s

�

~

G)=�() is the standard quotient map. For g 2 �

G

= ker q

G

we have

�(Æ(g); g) = 1, and therefore Æ(g) = (g) for all g 2 �

G

. This shows that Æ is

an extension of  to

~

G. Conversely, if  extends to

~

G,

b

G



is a trivial extension

of G.

ThatD = 0 follows from the fat that

b

G and q

�

G

b

G have the same Lie algebras,

whih is a split extension of g by a

s

.

We reall that

~

G = G

u

o (Z �

~

G

0

red

). If a homomorphism  : �

G

! A

s

ex-

tends to

~

G, then it must vanish on the subgroup �

1

(G

0

red

) of �

G

sine,

~

G

0

red

being

a semisimple group, there are no nononstant homomorphisms from

~

G

0

red

! A

s

.

Conversely, if a homomorphism  : �

G

! A

s

vanishes on �

1

(G

0

red

), then  de-

�nes a homomorphism

Z \G

0

red

�

=

�

G

=�

1

(G

0

red

)! A

s

:

But A

s

being a torus, this extends to a morphism f : Z ! A

s

([B, x8.2℄) whih

in turn an be pulled bak via Z

�

=

~

G=(G

u

o

~

G

0

red

) to a morphism

~

f :

~

G ! A

s
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extending . This proves that the image of Hom(

~

G;A

s

) under the restrition

map in Hom(�

G

; A

s

) is the annihilator of �

1

(G

0

red

), so that

� : Hom(�

G

; A

s

)! Ext

alg

(G;A

s

)

fators through an isomorphism

�

0

: Hom(�

1

(G

0

red

); A

s

) ' Ext

alg

(G;A

s

):

1.5 Remark. A unipotent group A

u

over C has no non-trivial �nite subgroups,

so that

Hom(�

1

(G

0

red

); A

s

)

�

=

Hom(�

1

(G

0

red

); A):

Now we turn to the study of extensions by unipotent groups. In ontrast to

the situation for tori, we shall see that these extensions are faithfully represented

by the orresponding Lie algebra extensions.

1.6 Lemma. The anonial restrition map

H

2

(g; g

red

; a

u

) �! H

2

(g; a

u

)

is injetive.

Proof. Let ! 2 Z

2

(g; a

u

) be a Lie algebra oyle representing an element of

H

2

(g; g

red

; a

u

) and suppose that the lass [!℄ 2 H

2

(g; a

u

) vanishes, so that the

extension

b

g := a

u

�

!

g! g; (a; x) 7! x

with the braket [(a; x); (a

0

; x

0

)℄ = (x:a

0

�x

0

:a+!(x; x

0

); [x; x

0

℄) splits. We have

to �nd a g

red

-module map f : g! a

u

vanishing on g

red

with

!(x; x

0

) = (d

g

f)(x; x

0

) := x:f(x

0

)� x

0

:f(x)� f([x; x

0

℄); x; x

0

2 g:

Sine the spae C

1

(g; a

u

) of linear maps g! a

u

is a semisimple g

red

-module (a

u

being a G-module, in partiular, a G

red

-module), we have

C

1

(g; a

u

) = C

1

(g; a

u

)

g

red

� g

red

:C

1

(g; a

u

)

and similarly for the spae Z

2

(g; a

u

) of 2-oyles. As the Lie algebra di�erential

d

g

: C

1

(g; a

u

)! Z

2

(g; a

u

) is a g

red

-module map, eah g

red

-invariant oboundary

is the image of a g

red

-invariant ohain in C

1

(g; a

u

). We onlude, in partiular,

that ! = d

g

h for some g

red

-module map h : g ! a

u

. For x 2 g

red

and x

0

2 g it

follows that

0 = !(x; x

0

) = x:h(x

0

)� x

0

:h(x)� h([x; x

0

℄)

= h([x; x

0

℄)� x

0

:h(x)� h([x; x

0

℄) = �x

0

:h(x);
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showing that h(g

red

) � a

g

u

, whih in turn leads to [g

red

; g

red

℄ � kerh. As

z(g

red

) \ [g; g℄ = f0g, the map hj

z(g

red

)

extends to a linear map f : g ! a

g

u

vanishing on [g; g℄. Moreover, sine f vanishes on [g; g℄, f is learly a g-module

map, in partiular, a g

red

-module map. Then d

g

f = 0, so that d

g

(h � f) = !,

and h� f vanishes on g

red

.

1.7 Proposition. For A = A

u

the map D : Ext

alg

(G;A

u

)! H

2

(g; a

u

) indues

a bijetion

D : Ext

alg

(G;A

u

)! H

2

(g; g

red

; a

u

):

Proof. In view of the preeding lemma, we may identify H

2

(g; g

red

; a

u

) with a

subspae of H

2

(g; a

u

). First we laim that im(D) is ontained in this subspae.

For any extension

(3) 1! A

u

!

b

G! G! 1;

we hoose a Levi subgroup

b

G

red

�

b

G mapping to G

red

under the above map

b

G! G. Then

b

G

red

\ A

u

= f1g:

Moreover,

b

G

red

! G

red

is surjetive and hene an isomorphism. This shows that

the extension (3) restrited toG

red

is trivial and that

b

g

u

ontains a

b

g

red

-invariant

omplement to a

u

. Therefore

b

g an be desribed by a oyle ! 2 Z

2

(g; g

red

; a

u

),

in partiular, ! vanishes on g� g

red

. This shows that Im D � H

2

(g; g

red

; a

u

).

If the image of the extension (3) under D vanishes, then the extension a

u

,!

b

g

u

!! g

u

splits, whih implies that the orresponding extension of unipotent

groups A

u

,!

b

G

u

!! G

u

splits. Moreover, the splitting map an be hosen

to be G

red

-equivariant, sine ! is G

red

-invariant. This means that we have a

morphism G

u

oG

red

!

b

G

�

=

b

G

u

oG

red

splitting the extension (3). This proves

that D is injetive.

To see that D is surjetive, let ! 2 Z

2

(g; g

red

; a

u

). Let q :

b

g := a

u

�

!

g ! g

denote the orresponding Lie algebra extension. Sine a

u

is a nilpotent module

of g

u

, the subalgebra

b

g

u

:= a

u

�

!

g

u

of

b

g is nilpotent, hene orresponds to

a unipotent algebrai group

b

G

u

whih is an extension of G

u

by A

u

. Further,

the G

red

-invariane of the deomposition

b

g = a

u

� g implies that G

red

ats

algebraially on

b

g

u

and hene on

b

G

u

, so that we an form the semidiret produt

b

G :=

b

G

u

oG

red

whih is an extension of G by A

u

mapped by D onto

b

g.

1.8 Theorem. For a onneted algebrai group G and a onneted abelian

algebrai group A with G-ation, there exists an exat sequene of abelian groups:

0! Hom(�

1

([G;G℄); A) ! Ext

alg

(G;A)

�

�! H

2

(g; g

red

; a

u

)! 0 ;

where a = L(A), G

red

is a Levi subgroup of G, g

red

= L(G

red

), g = L(G) and

a

u

= L(A

u

).

(Observe that, by the following proof, the fundamental group �

1

([G;G℄) is a

�nite group.)
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Proof. In view of the Levi deomposition of the ommutator [G;G℄ = [G;G℄

u

o

G

0

red

, we have �

1

([G;G℄) = �

1

(G

0

red

). Now we only have to use Lemma 1.2 to

ombine the preeding results Propositions 1.4 and 1.7 on extensions by A

s

and

A

u

to omplete the proof.

2 Analogue of Van-Est Theorem for algebrai

group ohomology

2.1 De�nition. Let G be an algebrai group and A an abelian algebrai group

with G-ation. For any n � 0, let C

n

alg

(G;A) be the abelian group onsisting of

all the variety morphisms f : G

n

! A under the pointwise addition. De�ne the

di�erential

Æ : C

n

alg

(G;A) ! C

n+1

alg

(G;A) by

(Æf)(g

0

; � � � ; g

n

) = g

0

� f(g

1

; � � � ; g

n

) + (�1)

n+1

f(g

0

; � � � ; g

n�1

)

+

n�1

X

i=0

(�1)

i+1

f(g

0

; g

1

; � � � ; g

i

g

i+1

; � � � ; g

n

):

Then, as is well known (and easy to see),

(4) Æ

2

= 0:

The algebrai group ohomology H

�

alg

(G;A) of G with oeÆients in A is

de�ned as the ohomology of the omplex

0! C

0

alg

(G;A)

Æ

�! C

1

alg

(G;A)

Æ

�! � � � :

We have the following analogue of the Van-Est Theorem [V℄ for the algebrai

group ohomology.

2.2 Theorem. Let G be a onneted algebrai group and let a be a �nite-

dimensional algebrai G-module. Then, for any p � 0,

H

p

alg

(G; a) ' H

p

(g; g

red

; a);

where g is the Lie algebra of G and g

red

is the Lie algebra of a Levi subgroup

G

red

of G as in Setion 1.

Proof. Consider the homogeneous aÆne variety X := G=G

red

and let 


q

(X; a)

denote the omplex vetor spae of algebrai de Rham forms onX with values in

the vetor spae a. Sine X is a G-variety under the left multipliation of G and

a is a G-module, 


q

has a natural loally-�nite algebrai G-module struture.

De�ne a double ohain omplex A =

L

p;q�0

A

p;q

, where

A

p;q

:= C

p

alg

(G;


q

(X; a))
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and C

p

alg

(G;


q

(X; a)) onsists of all the maps f : G

p

! 


q

(X; a) suh that

im f �M

f

, for some �nite-dimensional G-stable subspae M

f

� 


q

(X; a) and,

moreover, the map f : G

p

! M

f

is algebrai. Let Æ : A

p;q

! A

p+1;q

be

the group ohomology di�erential as in Setion 2.1 and let d : A

p;q

! A

p;q+1

be indued from the standard de Rham di�erential 


q

(X; a) ! 


q+1

(X; a),

whih is a G-module map. It is easy to see that dÆ � Æd = 0 and, of ourse,

d

2

= Æ

2

= 0. Thus, (A; Æ; d) is a double ohain omplex. This gives rise to two

spetral sequenes both onverging to the ohomology of the assoiated single

omplex (C; Æ + d) with their E

1

-terms given as follows:

n

E

p;q

1

= H

q

d

(A

p;�

); and(5)

nn

E

p;q

1

= H

q

Æ

(A

�;p

):(6)

We now determine

n

E

1

and

nn

E

1

more expliitly in our ase.

Sine X is a ontratible variety, by the algebrai de Rham theorem [GH,

Chap. 3, x5℄, the algebrai deRham ohomology

H

q

dR

(X; a)

(

' a; if q = 0

= 0; otherwise:

Thus,

n

E

p;q

1

(

' C

p

alg

(G; a); if q = 0

= 0; otherwise:

Therefore,

(7)

n

E

p;q

2

= H

p

Æ

(H

q

d

(A)) =

(

H

p

alg

(G; a); if q = 0

0; otherwise:

In partiular, the spetral sequene

n

E

�

ollapses at

n

E

2

. From this we see that

there is a anonial isomorphism

(8) H

p

alg

(G; a) ' H

p

(C; Æ + d):

We next determine

nn

E

1

and

nn

E

2

. But �rst we need the following two lem-

mas.

2.3 Lemma. For any p � 0,

H

q

alg

(G;


p

(X; a)) =

(




p

(X; a)

G

; if q = 0

0; otherwise;

where 


p

(X; a)

G

denotes the subspae of G-invariants in 


p

(X; a).
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Proof. The assertion for q = 0 follows from the general properties of group

ohomology. So we need to onsider the ase q > 0 now.

Sine L := G

red

is redutive, any algebrai L-module M is ompletely re-

duible. Let

�

M

:M !M

L

be the unique L-module projetion onto the spae of L-module invariants M

L

of M . Taking M to be the ring of regular funtions C [L℄ on L under the left

regular representation, i.e., under the ation

(k � f)(k

0

) = f(k

�1

k

1

); for f 2 C [L℄; k; k

0

2 L;

we get the L-module projetion � = �

C[L℄

: C [L℄ ! C . Thus, for any omplex

vextor spae V , we get the projetion � 
 I

V

: C [L℄ 
 V ! V , whih we abbre-

viate simply by �, where I

V

is the identity map of V . We de�ne a `homotopy

operator' H , for any q � 0,

H : C

q+1

alg

(G;


p

(X; a))! C

q

alg

(G;


p

(X; a))

by

�

(Hf)(g

1

; � � � ; g

q

)

�

g

0

L

= �

�

�

f

(g

0

;��� ;g

q

)

�

;

for f 2 C

q+1

alg

(G;


p

(X; a)) and g

0

; � � � ; g

q

2 G, where �

f

(g

0

;��� ;g

q

)

: L! 


p

(X; a)

g

0

L

is de�ned by

�

f

(g

0

;��� ;g

q

)

(k) =

�

(g

0

k) � f(k

�1

g

�1

0

; g

1

; g

2

; � � � ; g

q

)

�

g

0

L

;

for k 2 L. (Here 


p

(X; a)

g

0

L

denotes the �ber at g

0

L of the vetor bundle of

p-forms in X with values in a and, for a form !, !

g

0

L

denotes the value of the

form ! at g

0

L.) It is easy to see that on C

q

alg

(G;


p

(X; a)), for any q � 1,

(9) HÆ + ÆH = I:

To prove this, take any f 2 C

q

alg

(G;


p

(X; a)) and g

0

; � � � ; g

q

2 G. Then,

�

(HÆf)(g

1

; � � � ; g

q

)

�

g

0

L

= �

�

�

Æf

(g

0

;��� ;g

q

)

�

=

�

f(g

1

; � � � ; g

q

)

�

g

0

L

+ (�1)

q+1

�

�

�

(g

0

k) � f(k

�1

g

�1

0

; g

1

; � � � ; g

q�1

)

�

g

0

L

�

+

q�1

X

i=1

(�1)

i+1

�

�

�

(g

0

k) � f(k

�1

g

�1

0

; g

1

; � � � ; g

i

g

i+1

; � � � ; g

q

)

�

g

0

L

�

� �

�

�

(g

0

k) � f(k

�1

g

�1

0

g

1

; g

2

; � � � ; g

q

)

�

g

0

L

�

;(10)
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where

�

(g

0

k)�f(k

�1

g

�1

0

; g

1

; � � � ; g

q�1

)

�

g

0

L

means the funtion from L to 


p

(X; a)

g

0

L

de�ned as k 7!

�

(g

0

k) � f(k

�1

g

�1

0

; g

1

; � � � ; g

q�1

)

�

g

0

L

. Similarly,

�

(ÆHf)(g

1

; � � � ; g

q

)

�

g

0

L

=

�

g

1

�

�

(Hf)(g

2

; � � � ; g

q

)

�

�

g

0

L

+ (�1)

q

�

(Hf)(g

1

; � � � ; g

q�1

)

�

g

0

L

+

q�1

X

i=1

(�1)

i

�

(Hf)(g

1

; � � � ; g

i

g

i+1

; � � � ; g

q

)

�

g

0

L

=

�

g

1

�

�

(Hf)(g

2

; � � � ; g

q

)

�

�

g

0

L

+ (�1)

q

�

�

�

(g

0

k) � f(k

�1

g

�1

0

; g

1

; � � � ; g

q�1

)

�

g

0

L

�

+

q�1

X

i=1

(�1)

i

�

�

�

(g

0

k) � f(k

�1

g

�1

0

; g

1

; � � � ; g

i

g

i+1

; � � � ; g

q

)

�

g

0

L

�

:(11)

From the de�nition of the G-ation on 


p

(X; a), it is easy to see that

(12) �

�

�

(g

0

k) � f(k

�1

g

�1

0

g

1

; g

2

; � � � ; g

q

)

�

g

0

L

�

=

�

g

1

�

�

(Hf)(g

2

; � � � ; g

q

)

�

�

g

0

L

:

Combining (10)-(12), we learly get (9).

From the above identity (9), we see, of ourse, that any oyle in C

q

alg

(G;


p

(X; a))

(for any q � 1) is a oboundary, proving the lemma.

2.4 Lemma. The restrition map  : 


p

(X; a)

G

! C

p

(g; g

red

; a) (de�ned be-

low in the proof) is an isomorphism for all p � 0, where C

�

(g; g

red

; a) is the

standard ohain omplex for the Lie algebra pair (g; g

red

) with oeÆient in

the g-module a. Moreover,  ommutes with di�erentials. Thus,  indues an

isomorphism in ohomology

H

�

(
(X; a)

G

)

�

�! H

�

(g; g

red

; a):

Proof. For any ! 2 


p

(X; a)

G

, de�ne (!) as the value of ! at eL. Sine G

ats transitively on X , and ! is G-invariant,  is injetive.

Sine any !

o

2 C

p

(g; g

red

; a) an be extended (uniquely) to a G-invariant

form on X with values in a,  is surjetive. Further, from the de�nition of

di�erentials on the two sides, it is easy to see that  ommutes with di�erentials.

2.5 Continuation of the proof of Theorem 2.2.

We now determine

nn

E. First of all, by (6) of (2.2),

nn

E

p;q

1

= H

q

Æ

(A

�;p

) = H

q

alg

(G;


p

(X; a)):

Thus, by Lemma 2.3,

nn

E

p;0

1

= H

0

alg

(G;


p

(X; a)) = 


p

(X; a)

G

;
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and

nn

E

p;q

1

= 0; if q > 0:

Moreover, under the above equality, the di�erential of the spetral sequene

d

1

:

nn

E

p;0

1

!

nn

E

p+1;0

1

an be identi�ed with the restrition of the deRham

di�erential




p

(X; a)

G

! 


p+1

(X; a)

G

:

Thus, by Lemma 2.4,

(13)

nn

E

p;q

2

=

(

H

p

(g; g

red

; a); if q = 0

0; otherwise:

In partiular, the spetral sequene

nn

E as well degenerates at the

nn

E

2

-term.

Moreover, we have a anonial isomorphism

(14) H

p

(g; g

red

; a) ' H

p

(C; Æ + d):

Comparing the above isomorphism with the isomorphism (8) of x2.2, we get a

anonial isomorphism:

H

p

alg

(G; a) ' H

p

(g; g

red

; a):

This proves Theorem 2.2.

2.5 Remark. Even though we took the �eld C as our base �eld, all the results

of this paper hold (by the same proofs) over any algebraially losed �eld of

har. 0, if we replae the fundamental group �

1

by the algebrai fundamental

group.
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