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Abelian extensions of in�nite-dimensional Lie groups

Karl-Hermann Neeb

Abstra
t. In the present paper we study abelian extensions of 
onne
ted Lie groups G modeled on

lo
ally 
onvex spa
es by smooth G -modules A . We parametrize the extension 
lasses by a suitable


ohomology group H

2

s

(G;A) de�ned by lo
ally smooth 
o
hains and 
onstru
t an exa
t sequen
e that

des
ribes the di�eren
e between H

2

s

(G;A) and the 
orresponding 
ontinuous Lie algebra 
ohomology

spa
e H

2




(g;a) . The obstru
tions for the integrability of a Lie algebra extensions to a Lie group

extension are des
ribed in terms of period and 
ux homomorphisms. We also 
hara
terize the

extensions with global smooth se
tions resp. those given by global smooth 
o
y
les. Finally we

apply the general theory to extensions of several types of di�eomorphism groups.

Introdu
tion

The main point of the present paper is a detailed analysis of abelian extensions of Lie

groups G whi
h might be in�nite-dimensional, a main point being to derive 
riteria for abelian

extensions of Lie algebras to integrate to extensions of 
orresponding 
onne
ted groups. This is

of parti
ular interest for in�nite-dimensional Lie algebras be
ause not every in�nite-dimensional

Lie algebra 
an be `integrated' to a global Lie group.

The 
on
ept of a (not ne
essarily �nite-dimensional) Lie group used here is that a Lie group

G is a manifold modeled on a lo
ally 
onvex spa
e endowed with a group stru
ture for whi
h

the group operations are smooth (
f. [Mi83℄; see also [Gl01℄ for non-
omplete model spa
es). An

abelian extension is an exa
t sequen
e of Lie groups A ,!

b

G!! G whi
h de�nes a lo
ally trivial

smooth prin
ipal bundle with the abelian stru
ture group A over the Lie group G . Then A

inherits the stru
ture of a smooth G-module in the sense that the 
onjugation a
tion of

b

G on

A fa
tors through a smooth map G � A ! A . The extension is 
alled 
entral if this a
tion is

trivial.

The present paper is a sequel to [Ne02℄ whi
h deals with the 
ase of 
entral extensions.

Fortunately it was possible to use some of the 
onstru
tions from [Ne02℄ quite dire
tly in the

present paper, but a substantial part of the ma
hinery used for 
entral extensions had to be

generalized and adapted to deal with abelian extensions. In [Ne04℄ it is shown that the results

on abelian extensions 
an in turn be used to 
lassify general extensions.

A typi
al 
lass of examples that illustrate the di�eren
e between abelian and 
entral

extensions of Lie groups arises from abelian prin
ipal bundles. If q:P !M is a smooth prin
ipal

bundle with the abelian stru
ture group Z over the 
ompa
t 
onne
ted manifold M , then the

group Di�(P )

Z

of all di�eomorphisms of P 
ommuting with Z (the automorphism group of the

bundle) is an extension of an open subgroup of Di�(M) by the gauge group Gau(P )

�

=

C

1

(M;Z)

of the bundle. Here the 
onjugation a
tion of Di�(M) on Gau(P ) is given by 
omposing fun
tions

with di�eomorphisms. Central extensions 
orresponding to the bundle q:P !M are obtained by


hoosing a prin
ipal 
onne
tion 1-form � 2 


1

(P; z). Let ! 2 


2

(M; z) denote the 
orresponding


urvature form. Then the subgroup Di�(P )

Z

�

of those elements of Di�(P )

Z

preserving � is a


entral extension of an open subgroup of Di�(M)

!

, whi
h is substantially smaller that Di�(M).

This example shows that the passage from 
entral extensions to abelian extensions is similar to

the passage from symple
tomorphism groups to di�eomorphism groups.
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As the examples of prin
ipal bundles over 
ompa
t manifolds show, abelian extensions of

Lie groups o

ur naturally in geometri
 
ontexts and in parti
ular in symple
ti
 geometry, where

the prequantization problem is to �nd for a symple
ti
 manifold (M;!) a T-prin
ipal bundle

with 
urvature ! , whi
h leads to an abelian extension of Di�(M)

0

by the group C

1

(M;T).

Conversely, every abelian extension q:

b

G ! G of a Lie group G by an abelian Lie group A is

in parti
ular an A-prin
ipal bundle over G , so that there is a 
lose interplay between abelian

extensions of in�nite-dimensional groups and abelian prin
ipal bundles over (�nite-dimensional)

manifolds.

In the representation theory of in�nite-dimensional Lie groups abelian extensions o

ur

naturally if a 
onne
ted Lie group G a
ts on a smooth manifold M whi
h is endowed with a Z -

prin
ipal bundle q:P !M , ea
h element of G lifts to an automorphism of the bundle, but there

is no prin
ipal 
onne
tion 1-form preserved by the lifts of the elements of G to di�eomorphisms of

P . We refer to [Mi89℄ for a detailed dis
ussion of the 
ase where M is a restri
ted Gra�mannian

of a polarized Hilbert spa
e and the groups are restri
ted operator groups of S
hatten 
lass p > 2,

resp., mapping groups C

1

(M;K), where K is �nite-dimensional and M is a 
ompa
t manifold

of dimension � 2 (see also [PS86℄ for a dis
ussion of related points). Sin
e representations

of abelian extensions of ve
tor �eld Lie algebras o

ur naturally in mathemati
s physi
s (
f.

[La99℄ and also [AI95℄ for more general appli
ations of Lie group 
ohomology in physi
s), the

question arises whether this pi
ture has a global analog in terms of abelian extensions of the


orresponding di�eomorphism groups. Some �rst results in this dire
tion have been obtain by

Y. Billig in [Bi03℄, where he introdu
es natural analogs of the Virasoro group whi
h are abelian

extensions of Di�(M).

Another motivation for a general study of abelian extensions 
omes from the fa
t that for

the group G := Di�(M)

0

, where M is a 
ompa
t orientable manifold, one has natural modules

given by tensor densities and spa
es of tensors on M . The 
orresponding abelian extensions 
an

be used to interprete 
ertain partial di�erential equations as geodesi
 equations on a Lie group,

whi
h leads to important information on the behavior of their solutions ([Vi02℄, [AK98℄). An

important spe
ial 
ase dis
ussed in some detail in Se
tion X is the group of di�eomorphisms

of the 
ir
le and its modules of �-densities for real � . For the identity 
omponent D(M;�)

of the group Di�(M;�) of volume preserving di�eomorphisms (for a given volume form �)

one obtains a Lie algebra 
o
y
le from ea
h 
losed 2-form ! on M (Li
hnerowi
z 
o
y
le)

whi
h is obtained by 
omposing the integration map with ! , interpreted as a 2-
o
y
le for

V(M) with values in the smooth module C

1

(M;R) . The existen
e of 
orresponding 
entral

extensions is addressed for spe
ial 
ases in Se
tion XI, where we use relevant information on the

asso
iated abelian extensions of Di�(M)

0

obtained in Se
tion IX. For more referen
es dealing

spe
i�
ally with 
entral extensions we refer to [Ne02℄. See in parti
ular [CVLL98℄ whi
h is a

ni
e survey of 
entral T-extensions of Lie groups and their role in quantum physi
s. That paper

also 
ontains a des
ription of the universal 
entral extension for �nite-dimensional groups. For

in�nite-dimensional groups universal 
entral extensions are 
onstru
ted in [Ne03b℄ and for root

graded Lie algebras in [Ne03a℄.

As one would expe
t from general homologi
al algebra, the natural 
ontext to deal with

abelian extensions of Lie groups is provided by a suitable Lie group 
ohomology with values

in smooth modules: If G is a Lie group, then we 
all an abelian Lie group A a smooth G-

module if it is a G-module and the a
tion map G � A ! A is smooth. In Appendix B we

des
ribe a natural adaptation of the group 
ohomology 
omplex to the Lie group setting. Here

the spa
e of n-
o
hains C

n

s

(G;A) 
onsists of maps G

n

! A whi
h are smooth in an identity

neighborhood and vanish on all tuples of the form (g

1

; : : : ;1; : : : ; g

n

). We thus obtain a 
o
hain


omplex (C

n

s

(G;A); d

G

) with the 
ohomology groups H

n

s

(G;A). If G and A are dis
rete, these

groups 
oin
ide with the standard 
ohomology groups of G with values in A . We refer to [Mo64℄

and [Mo76℄ for an appropriate de�nition of topologi
al group 
ohomology whi
h �ts well for

lo
ally 
ompa
t groups. Sin
e the 
ohomology groups H

n

s

(G;A) 
an be 
onsidered as rather


ompli
ated obje
ts, it is desirable to relate them to the 
orresponding Lie algebra 
ohomology

groups H

n

s

(g; a). Passing to the derived representation, the Lie algebra a of A is a module of

the Lie algebra g of a whi
h is topologi
al in the sense that the module stru
ture is a 
ontinuous
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bilinear map g � a ! a . Then the 
ontinuous alternating maps g

n

! a form the (
ontinuous)

Lie algebra 
o
hain 
omplex (C

n




(g; a); d

g

), and its 
ohomology spa
es are denoted H

n




(g; a).

In Appendix B we show that for n � 2 there is a natural derivation map

D

n

:H

n

s

(G;A)! H

n




(g; a)

from lo
ally smooth Lie group 
ohomology to 
ontinuous Lie algebra 
ohomology. This map is

based on the isomorphism

H

n




(g; a)

�

=

H

n

dR;eq

(G; a)

between Lie algebra 
ohomology and the de Rham 
ohomology of the 
omplex of equivariant

a-valued di�erential forms on G (
f. [CE48℄ for �nite-dimensional groups). For n = 1 we only

have a map D

1

:Z

1

s

(G;A) ! Z

1




(g; a), and if A

�

=

a=�

A

holds for a dis
rete subgroup �

A

of a ,

then this map fa
tors to a map on the level of 
ohomology. Sin
e the Lie algebra 
ohomology

spa
es H

n




(g; a) are mu
h better a

essible by algebrai
 means than those of G , it is important

to understand the amount of information lost by the map D

n

. More 
on
retely, one is interested

in kernel and 
okernel of D

n

. A determination of the 
okernel 
an be 
onsidered as des
ribing

integrability 
onditions on 
ohomology 
lasses [!℄ 2 H

n




(g; a) whi
h have to be satis�ed to ensure

the existen
e of f 2 Z

n

s

(G;A) with D

n

f = ! .

In the present paper we 
ompletely solve this problem for the important 
ase n = 2, a


onne
ted Lie group G and 
onne
ted smooth modules A of the form a=�

A

, where �

A

is a

dis
rete subgroup of a . We also des
ribe the solution for n = 1 whi
h is mu
h simpler, but

already re
e
ts the spirit of the problem. We plan to return in a subsequent paper to this

problem for non-
onne
ted groups G , whi
h, in view of the present results, means to obtain

a

essible 
riteria for the extendibility of a 2-
o
y
le on the identity 
omponent G

0

of G to the

whole group G .

The spe
ial importan
e of the group H

2

s

(G;A) stems from the fa
t that for 
onne
ted

groups G it 
lassi�es all Lie group extensions q:

b

G ! G of G by A

�

=

ker q , where the a
tion

of G on A indu
ed by the 
onjugation a
tion of

b

G on the abelian normal subgroup A 
oin
ides

with the original G-module stru
ture. This was our original motivation to study the 
ohomology

groups H

2

s

(G;A). If G is not 
onne
ted, then we have to 
onsider an appropriate subgroup

H

2

ss

(G;A) � H

2

s

(G;A) whi
h then 
lassi�es the extensions of G by A .

The se
ond 
ohomology groups do not only 
lassify abelian extensions of G , they also play

an equally important role in the 
lassi�
ation of general extensions: Let N be a Lie group and

Z(N) its 
enter. Suppose further that Z(N) is a smooth G-module su
h that every smooth map

M ! N with values in Z(N) de�nes a smooth map M ! Z(N). Then the group H

2

s

(G;Z(N))

parameterizes the equivalen
e 
lasses of extensions of G by N 
orresponding to a given smooth

outer a
tion of G on N (see [Ne04℄ for the details and the de�nition of a smooth outer a
tion).

If N = Z(N) is abelian, then a smooth outer a
tion of G on N is the same as a smooth module

stru
ture.

Taking the derivation maps D

n

into a

ount, we obtain for 
onne
ted groups G and

A

�

=

a=�

A

the following 
ommutative diagram with an exa
t se
ond row (see Proposition D.8

and the subsequent dis
ussion) and exa
t 
olumns (Proposition III.4 and Theorem VII.2):

0 0 Hom(�

1

(G); A

G

) 0

?

?

y

?

?

y

?

?

y

Æ

?

?

y

H

1

s

(G;A)

I

��! H

1

s

(

e

G;A)

R

��! Hom(�

1

(G); A

G

)

Æ

��! H

2

s

(G;A)

I

��! H

2

s

(

e

G;A)

?

?

y

D

1

?

?

y

D

1

?

?

y

id

?

?

y

D

2

?

?

y

D

2

H

1




(g; a)

id

��! H

1




(g; a)

P

1

��!Hom(�

1

(G); A

G

) H

2




(g; a)

id

��! H

2




(g; a)

?

?

y

P

1

?

?

y

?

?

y

P

2

?

?

y

P

2

Hom(�

1

(G); A

G

) 0

Hom(�

2

(G);A

G

)�

Hom(�

1

(G);H

1




(g;a))

Hom(�

2

(G); A

G

)

Here I denotes natural in
ation maps, Æ assigns to 
:�

1

(G) ! A

G

the quotient of the

semi-dire
t produ
t Ao

e

G modulo the graph of 
 and. For a Lie algebra 
o
y
le � 2 Z

1




(g; a) the
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homomorphism P

1

([�℄):�

1

(G) ! A

G

is obtained by integrating the 
orresponding equivariant

1-form �

eq

2 


1

(G; a) over loops and then interpreting the result an element of the quotient

group A = a=�

A

. For a 2-
o
y
le ! 2 Z

2




(g; a) and the 
orresponding equivariant 2-form

!

eq

2 


2

(G; a) on G , the �rst 
omponent of P

2

([!℄) is the period homomorphism �

2

(G) !

A

G

obtained by integrating !

eq

over smooth maps S

2

! G and then interpreting the result

modulo �

A

as an element of A . The se
ond 
omponent of P

2

([!℄) is the 
ux homomorphism

F

!

:�

1

(G) ! H

1




(g; a) whi
h 
an be viewed, in a 
ertain sense, as P

1

([f

!

℄) for the Lie algebra


ux 
o
y
le

f

!

: g! C

1




(g; a)=d

g

a; x 7! [i

x

!℄

(in Se
tion VI we give a dire
t de�nition whi
h does not require to topologize the spa
e C

1




(g; a)

and its quotient spa
e module B

1




(g; a) = d

g

a).

If G is simply 
onne
ted, things be
ome mu
h simpler and the 
riterion for the integrability

of a Lie algebra 
o
y
le ! to a group 
o
y
le is that all periods of !

eq

are 
ontained in �

A

� a .

Similar 
onditions arise in the theory of abelian prin
ipal bundles on smoothly para
ompa
t

presymple
ti
 manifolds (M;
) (
 is a 
losed 2-form on M ). Here the integrality of the


ohomology 
lass [
℄ is equivalent to the existen
e of a so-
alled pre-quantum bundle, i.e., a

T-prin
ipal bundle T ,!




M !!M whose 
urvature 2-form is 
 (
f. [Bry90℄).

For �nite-dimensional Lie groups the integrability 
riteria also simplify signi�
antly be
ause

�

2

(G) vanishes ([Ca52℄). This in turn has been used by

�

E. Cartan to 
onstru
t 
entral extensions

and thus to prove Lie's Third Theorem that ea
h �nite-dimensional Lie algebra belongs to a global

Lie group. We generalize Cartan's 
onstru
tion in Se
tion VIII to 
hara
terize abelian extensions

with global smooth se
tions.

We emphasize that our results hold for Lie groups whi
h are not ne
essarily smoothly para-


ompa
t, so that one 
annot use smooth partitions of unity to 
onstru
t bundles for pres
ribed


urvature forms and de Rham's Theorem is not available (
f. [KM97, Th. 16.10℄). This point

is important be
ause many interesting Bana
h{Lie groups are not smoothly para
ompa
t whi
h


omes from the fa
t that their model spa
es do not permit smooth bump fun
tions (
f. [KM97℄).

The 
ontents of the present paper is as follows. In Se
tion I we brie
y dis
uss the re-

lation between abelian extensions of topologi
al Lie algebras and the 
ontinuous 
ohomology

spa
e H

2




(g; a) (see [CE48℄ for the 
ase of abstra
t Lie algebras). The parameterization of the


lass of all Lie group extensions of a 
onne
ted Lie group G by A via the 
ohomology group

H

2

s

(G;A) is obtained in Se
tion II. In Se
tion III we brie
y dis
uss the relation between lo
ally

smooth 1-
o
y
les on Lie groups and the 
orresponding 
ontinuous Lie algebra 
o
y
les. This

is instru
tive for the understanding of the 
ux 
o
y
le o

urring below as an obstru
tion to the

existen
e of global group extensions. In Se
tion IV we brie
y dis
uss the period homomorphism

per

!

:�

2

(G) ! a

G

asso
iated to a Lie algebra 
o
y
le ! 2 Z

2




(g; a). To integrate Lie algebra


o
y
les on simply 
onne
ted groups in Se
tion V we use a slight adaptation of the method used

in [Ne02℄ for 
entral extensions. In Se
tion VI we eventually turn to the re�nements needed for

non-simply 
onne
ted groups whi
h leads to the 
ux 
o
y
le. This part is 
onsiderably more


ompli
ated than for 
entral extensions where the 
ux 
o
y
le simpli�es to a homomorphism

with values in a spa
e of homomorphisms of Lie algebras and not only in a 
ohomology spa
e.

In Se
tion VII all pie
es are put together to obtain the exa
tness of rows and 
olumns in the big

diagram above. Abelian extensions with smooth global se
tions are 
hara
terized in Se
tion VIII.

The remaining Se
tions IX-XI 
ontain examples and some dis
ussion of spe
ial 
ases. In

Se
tion IX we turn to the spe
ial situation of di�eomorphism groups on 
ompa
t manifolds and

the spe
ial 
lass of 2-
o
y
les on the Lie algebra V(M) given by 
losed 2-forms on M . In this


ase we explain how interesting information on period map and 
ux 
o
y
le 
an be 
al
ulated in

geometri
al terms. In Se
tion X we 
onsider the situation where G is the di�eomorphism group

of the 
ir
le and a is the module of �-densities for some � 2 R . The 
orresponding 
o
y
les for

Di�(S

1

) have been dis
ussed by Ovsienko and Roger in [OR98℄. In parti
ular we des
ribe how

their results 
an be extended to Lie algebra 
o
y
les not integrable on Di�(S

1

)

0

whi
h integrate

to group 
o
y
les of the universal 
overing group

g

Di�(S

1

). As a byprodu
t of this 
onstru
tion,

we obtain a non-trivial abelian extension of the group

f

SL

2

(R) by an in�nite-dimensional Fr�e
het

spa
e. Se
tion XI 
ontains some information on the integration of Li
hnerowi
z 
o
y
les to
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entral group extensions. In parti
ular we show that for a 
ompa
t 
onne
ted Lie group G ea
h

Li
hnerowi
z 
o
y
le on D(G;�) 
an be integrated to a 
orresponding group 
o
y
le on the


overing group

e

D(G;�) a
ting as a group of di�eomorphisms on the universal 
overing group

e

G .

We 
on
lude this paper with several appendi
es dealing with the relation between di�eren-

tial forms and Alexander{Spanier 
ohomology (Appendix A), 
ohomology of Lie groups and Lie

algebras (Appendix B), 
onstru
ting global Lie groups from lo
al data (Appendix C), the exa
t

In
ation-Restri
tion Sequen
e for Lie group 
ohomology (Appendix D), the long exa
t sequen
e

in Lie group 
ohomology indu
ed from a topologi
ally split exa
t sequen
e of smooth modules

(Appendix E), and multipli
ation of Lie group and Lie algebra 
o
y
les (Appendix F).

We are grateful to S. Haller for providing a 
ru
ial argument 
on
erning the 
ux homo-

morphism for the group of volume preserving di�eomorphisms (
f. Se
tion XI). We also thank

C. Vizman for many inspiring dis
ussions on the subje
t, G. Segal for suggesting a di�erent type

of obstru
tions to the ingrability of abelian extensions in [Se02℄, and to A. Dzhumadildaev for

asking for global 
entral extensions of groups of volume preserving di�eomorphisms whi
h 
or-

respond to the 
o
y
les he studied on the Lie algebra level ([Dz92℄). This led us to the results in

Se
tion XI.

0. Preliminaries and notation

In this paper K 2 fR; C g denotes the �eld of real or 
omplex numbers. Let X and Y be

topologi
al K -ve
tor spa
es, U � X open and f :U ! Y a map. Then the derivative of f at x

in the dire
tion of h is de�ned as

df(x)(h) := lim

t!0

1

t

�

f(x+ th)� f(x)

�

whenever the limit exists. The fun
tion f is 
alled di�erentiable at x if df(x)(h) exists for all

h 2 X . It is 
alled 
ontinuously di�erentiable or C

1

if it is 
ontinuous and di�erentiable at all

points of U and

df :U �X ! Y; (x; h) 7! df(x)(h)

is a 
ontinuous map. It is 
alled a C

n

-map if f is C

1

and df is a C

n�1

-map, and C

1

(smooth)

if it is C

n

for all n 2 N . This is the notion of di�erentiability used in [Mil83℄, and [Gl01℄, where

the latter referen
e deals with the modi�
ations ne
essary for in
omplete spa
es.

Sin
e we have a 
hain rule for C

1

-maps between lo
ally 
onvex spa
es ([Gl01℄), we 
an

de�ne smooth manifolds M as in the �nite-dimensional 
ase. A Lie group G is a smooth manifold

modeled on a lo
ally 
onvex spa
e g for whi
h the group multipli
ation and the inversion are

smooth maps. We write 1 2 G for the identity element, �

g

(x) = gx for left multipli
ation,

�

g

(x) = xg for right multipli
ation, and 


g

(x) := gxg

�1

for 
onjugation. Then ea
h x 2 T

1

(G)


orresponds to a unique left invariant ve
tor �eld x

l

with x

l

(g) := d�

g

(1):x; g 2 G: The spa
e

of left invariant ve
tor �elds is 
losed under the Lie bra
ket of ve
tor �elds, hen
e inherits a

Lie algebra stru
ture. In this sense we obtain on g := T

1

(G) a 
ontinuous Lie bra
ket whi
h is

uniquely determined by [x; y℄

l

= [x

l

; y

l

℄ . We 
all a Lie algebra g whi
h is a topologi
al ve
tor

spa
e su
h that the Lie bra
ket is 
ontinuous a topologi
al Lie algebra g . In this sense the Lie

algebra g = L(G) of a Lie group G is a lo
ally 
onvex topologi
al Lie algebra. If G is a 
onne
ted

Lie group, then we write q

G

:

e

G! G for its universal 
overing Lie group and identify �

1

(G) with

the kernel of q

G

.

Throughout this paper we write abelian groups A additively with 0 as identity element.

If G is a Lie group, then a smooth G-module is an abelian Lie group A , endowed with a smooth

G-a
tion �

A

:G�A! A by group automorphisms. We sometimes write (A; �

A

) to in
lude the

notation �

A

for the a
tion map. If a is the Lie algebra of A , then the smooth a
tion indu
es a

smooth a
tion on a , so that a also is a smooth G-module, hen
e also a module of the Lie algebra

g of G . In the following we shall mostly assume that the identity 
omponent A

0

of A is of the

form A

0

�

=

a=�

A

, where �

A

� a is a dis
rete subgroup. Then the quotient map q

A

: a ! A

0

is

the universal 
overing map of A

0

and �

1

(A)

�

=

�

A

.



6 Abelian extensions of in�nite-dimensional Lie groups February 18, 2004

A linear subspa
e W of a topologi
al ve
tor spa
e V is 
alled (topologi
ally) split if it is


losed and there is a 
ontinuous linear map �:V=W ! V for whi
h the map

W � V=W ! V; (w; x) 7! w + �(x)

is an isomorphism of topologi
al ve
tor spa
es. Note that the 
losedness of W guarantees that

the quotient topology turns V=W into a Hausdor� spa
e whi
h is a topologi
al ve
tor spa
e

with respe
t to the indu
ed ve
tor spa
e stru
ture. A 
ontinuous linear map f :V !W between

topologi
al ve
tor spa
es is said to be (topologi
ally) split if the subspa
es ker(f) � V and

im(f) �W are topologi
ally split.

I. Abelian extensions of topologi
al Lie algebras

For the de�nition of the 
ohomology of a topologi
al Lie algebra g with values in a

topologi
al g-module a we refer to Appendix B.

De�nition I.1. Let g and n be topologi
al Lie algebras. A topologi
ally split short exa
t

sequen
e

n ,!

b

g!! g

is 
alled a (topologi
ally split) extension of g by n . We identify n with its image in

b

g , and write

b

g as a dire
t sum

b

g = n � g of topologi
al ve
tor spa
es. Then n is a topologi
ally split ideal

and the quotient map q:

b

g! g 
orresponds to (n; x) 7! x . If n is abelian, then the extension is


alled abelian.

Two extensions n ,!

b

g

1

!! g and n ,!

b

g

2

!! g are 
alled equivalent if there exists a

morphism ':

b

g

1

!

b

g

2

of topologi
al Lie algebras su
h that the diagram

n ,!

b

g

1

!! g

?

?

y

id

n

?

?

y

'

?

?

y

id

g

n ,!

b

g

2

!! g


ommutes. It is easy to see that this implies that ' is an isomorphism of topologi
al Lie algebras,

hen
e de�nes an equivalen
e relation. We write Ext(g; n) for the set of equivalen
e 
lasses of

extensions of g by n .

We 
all an extension q:

b

g ! g with ker q = n trivial, or say that the extension splits, if

there exists a 
ontinuous Lie algebra homomorphism �: g!

b

g with q Æ � = id

g

. In this 
ase the

map

no

S

g!

b

g; (n; x) 7! n+ �(x)

is an isomorphism, where the semi-dire
t sum is de�ned by the homomorphism

S: g! der(n); S(x)(n) := [�(x); n℄:

De�nition I.2. Let a be a topologi
al g-module. To ea
h 
ontinuous 2-
o
y
le ! 2 Z

2




(g; a)

we asso
iate a topologi
al Lie algebra a �

!

g as the topologi
al produ
t ve
tor spa
e a � g

endowed with the Lie bra
ket

[(a; x); (a

0

; x

0

)℄ := (x:a

0

� x

0

:a+ !(x; x

0

); [x; x

0

℄):

The quotient map q: a�

!

g! g; (a; x) 7! x is a 
ontinuous homomorphism of Lie algebras with

kernel a , hen
e de�nes an a-extension of g . The map �: g ! a�

!

g; x 7! (0; x) is a 
ontinuous

linear se
tion of q .
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Proposition I.3. Let (a; �

a

) be a topologi
al g-module and write Ext

�

a

(g; a) for the set of

all equivalen
e 
lasses of a-extensions

b

g of g for whi
h the adjoint a
tion of

b

g on a indu
es the

given g-module stru
ture on a . Then the map

Z

2




(g; a)! Ext

�

a

(g; a); ! 7! [a�

!

g℄

fa
tors through a bije
tion

H

2




(g; a)! Ext

�

a

(g; a); [!℄ 7! [a�

!

g℄:

Proof. Suppose that q:

b

g! g is an a-extension of g for whi
h the indu
ed g-module stru
ture

on a 
oin
ides with �

a

. Let �: g!

b

g be a 
ontinuous linear se
tion, so that q Æ � = id

g

. Then

!(x; y) := [�(x); �(y)℄ � �([x; y℄)

has values in the subspa
e a = ker q of

b

g and the map a� g !

b

g; (a; x) 7! a+ �(x) de�nes an

isomorphism of topologi
al Lie algebras a�

!

g!

b

g .

It is easy to verify that a �

!

g � a �

�

g if and only if ! � � 2 B

2




(g; a). Therefore the

quotient spa
e H

2




(g; a) 
lassi�es the equivalen
e 
lasses of a-extensions of g by the assignment

[!℄ 7! [a�

!

g℄ .

II. Abelian extensions of Lie groups

Let A be a smooth G-module. In this se
tion we explain how to assign to a 
o
y
le

f 2 Z

2

s

(G;A) (satisfying some additional smoothness 
ondition if G is not 
onne
ted) a Lie

group A �

f

G whi
h is an extension of A by G for whi
h the indu
ed a
tion of G on A


oin
ides with the original one. We shall see that this assignment leads to a bije
tion between

a 
ertain subgroup H

2

ss

(G;A) of H

2

s

(G;A) with the set of equivalen
e 
lasses of extensions of

G by the smooth G-module A . If G is 
onne
ted, then H

2

ss

(G;A) = H

2

s

(G;A). We also show

that the assingment f 7! A�

f

G is 
ompatible with the derivation map D:Z

2

s

(G;A)! Z

2




(g; a)

in the sense that a�

Df

g is the Lie algebra of A�

f

G (
f. Appendix B for de�nitions).

Lemma II.1. Let G be a group, A a G-module and f :G � G ! A a normalized 2-
o
y
le,

i.e.,

f(g;1) = f(1; g) = 0; f(g; g

0

) + f(gg

0

; gg

0

) = g:f(g

0

; g

00

) + f(g; g

0

g

00

); g; g

0

; g

00

2 G:

Then we obtain a group A�

f

G by endowing the produ
t set A�G with the multipli
ation

(2:1) (a; g)(a

0

; g

0

) := (a+ g:a

0

+ f(g; g

0

); gg

0

):

The unit element of this group is (0;1) , inversion is given by

(2:2) (a; g)

�1

= (�g

�1

:(a+ f(g; g

�1

)); g

�1

);

and 
onjugation by the formula

(2:3) (a; g)(a

0

; g

0

)(a; g)

�1

=

�

a+ g:a

0

� gg

0

g

�1

:a+ f(g; g

0

)� f(gg

0

g

�1

; g); gg

0

g

�1

�

:

The map q:A �

f

G ! G; (a; g) 7! g is a surje
tive homomorphism whose kernel A � f1g is

isomorphi
 to A . The 
onjugation a
tion of A�

f

G on the normal subgroup A fa
tors through

the original a
tion of G on A .
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Proof. The 
ondition f(1; g) = f(g;1) = 0 implies that (0;1) is an identity element in

A �

f

G , and the asso
iativity of the multipli
ation is equivalent to the 
o
y
le 
ondition. The

formula for the inversion is easily veri�ed. Conjugation in A�

f

G is given by

(a; g)(a

0

; g

0

)(a; g)

�1

=

�

a+ g:a

0

+ f(g; g

0

); gg

0

��

� g

�1

:(a+ f(g; g

�1

)); g

�1

�

=

�

a+ g:a

0

+ f(g; g

0

)� gg

0

g

�1

:(a+ f(g; g

�1

)) + f(gg

0

; g

�1

); gg

0

g

�1

�

:

To simplify this expression, we use

f(g; g

�1

) = f(g; g

�1

) + f(1; g) = f(g;1) + g:f(g

�1

; g) = g:f(g

�1

; g)

and

f(gg

0

; g

�1

) + f(gg

0

g

�1

; g) = f(gg

0

;1) + gg

0

:f(g

�1

; g) = gg

0

:f(g

�1

; g)

to obtain

(a; g)(a

0

; g

0

)(a; g)

�1

=

�

a+ g:a

0

+ f(g; g

0

)� gg

0

g

�1

:a� gg

0

g

�1

:f(g; g

�1

) + f(gg

0

; g

�1

); gg

0

g

�1

�

=

�

a+ g:a

0

+ f(g; g

0

)� gg

0

g

�1

:a� gg

0

:f(g

�1

:g) + f(gg

0

; g

�1

); gg

0

g

�1

�

=

�

a+ g:a

0

+ f(g; g

0

)� gg

0

g

�1

:a� f(gg

0

g

�1

; g); gg

0

g

�1

�

:

In parti
ular we obtain

(0; g)(a;1)(0; g)

�1

= (g:a;1):

This means that the a
tion of G on A given by q(g):a := gag

�1

for g 2 A�

f

G 
oin
ides with

the given a
tion of G on A .

De�nition II.2. An extension of Lie groups is a surje
tive morphism q:

b

G! G of Lie groups

with a smooth lo
al se
tion for whi
h N := ker q has a natural Lie group stru
ture su
h that the

map N �

b

G !

b

G; (n; g) 7! ng is smooth. Then the existen
e of a smooth lo
al se
tion implies

that

b

G is a smooth N -prin
ipal bundle, so that N is a split Lie subgroup of G in the sense of

De�nition C.4.

We 
all two extensions N ,!

b

G

1

!! G and N ,!

b

G

2

!! G of the Lie group G by the Lie

group N equivalent if there exists a Lie group morphism ':

b

G

1

!

b

G

2

su
h that the following

diagram 
ommutes:

N ,!

b

G

1

!! G

?

?

y

id

N

?

?

y

'

?

?

y

id

G

N ,!

b

G

2

!! G:

It is easy to see that any su
h ' is an isomorphism of group and that its inverse is smooth.

Thus ' is an isomorphism of Lie groups, and we obtain indeed an equivalen
e relation. We write

Ext(G;N) for the set of equivalen
e 
lasses of Lie groups extensions of G by N .

Lemma II.3. If A ,!

b

G

1

q

1

��!G and A ,!

b

G

2

q

2

��!G are equivalent abelian extensions of G by

the Lie group A , then the indu
ed a
tions of G on A 
oin
ide.

Proof. There exists a morphism of Lie groups ':

b

G

1

!

b

G

2

with ' j

A

= id

A

and q

2

Æ ' = q

1

.

For g 2 G and a 2 A the extension

b

G

1

de�nes an a
tion of G on A by g �

1

a := g

1

ag

�1

1

, where

q

1

(g

1

) = g . We likewise obtain from the extension

b

G

2

an a
tion of G on A by g �

2

a := g

2

ag

�1

2

for q

2

(g

2

) = g . We then have

g �

1

a = g

1

ag

�1

1

= '(g

1

ag

�1

1

) = '(g

1

)a'(g

1

)

�1

= q

2

('(g

1

)) �

2

a = q

1

(g

1

) �

2

a = g �

2

a:

De�nition II.4. If (A; �

A

) is a smooth G-module, then an extension of G by A is always

understood to be an abelian Lie group extension q:

b

G! G with kernel A for whi
h the natural

a
tion of G on A indu
ed by the 
onjugation a
tion (Lemma C.5) 
oin
ides with �

A

. In view

of Lemma II.3, it makes sense to write Ext

�

A

(G;A) � Ext(G;A) for the subset of equivalen
e


lasses of those extensions of G by A for whi
h the indu
ed a
tion of G on A 
oin
ides with �

A

.
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De�nition II.5. Let G be a Lie group and A a smooth G-module. For f 2 Z

2

s

(G;A) (
f.

De�nition B.2) and g 2 G we 
onsider the fun
tion

f

g

:G! A; f

g

(g

0

) := f(g; g

0

)� f(gg

0

g

�1

; g)

and write

Z

2

ss

(G;A) := ff 2 Z

2

s

(G;A): (8g 2 G)f

g

2 C

1

s

(G;A)g

for those lo
ally smooth normalized 2-
o
y
les f on G for whi
h all fun
tions f

g

are smooth in

an identity neighborhood of G .

If ` 2 C

1

s

(G;A) and f(g; g

0

) = (d

G

`)(g; g

0

) = `(g) + g:`(g

0

)� `(gg

0

), then

f

g

(g

0

) = `(g) + g:`(g

0

)� `(gg

0

)�

�

`(gg

0

g

�1

) + (gg

0

g

�1

):`(g)� `(gg

0

)

�

= `(g) + g:`(g

0

)� `(gg

0

g

�1

)� (gg

0

g

�1

):`(g)

is smooth in an identity neighborhood of G for ea
h g 2 G . Therefore B

2

s

(G;A) � Z

2

ss

(G;A)

and

H

2

ss

(G;A) := Z

2

ss

(G;A)=B

2

s

(G;A)

is a subgroup of H

2

s

(G;A).

Proposition II.6. Let G be a Lie group and (A; �

A

) a smooth G-module. Then for ea
h

f 2 Z

2

ss

(G;A) the group A �

f

G 
arries the stru
ture of a Lie group su
h that the map

q:A�

f

G! G; (a; g) 7! g is a Lie group extension of G by the smooth G-module A . Conversely,

every Lie group extension of G by the smooth G-module A is equivalent to one of this form.

The assignment

Z

2

ss

(G;A)! Ext

�

A

(G;A); f 7! [A�

f

G℄

fa
tors through a bije
tion

H

2

ss

(G;A)! Ext

�

A

(G;A):

If G is 
onne
ted, then Z

2

ss

(G;A) = Z

2

s

(G;A) and we obtain a bije
tion

H

2

s

(G;A)! Ext

�

A

(G;A):

Proof. (1) Let f 2 Z

2

ss

(G;A) and form the group

b

G := A �

f

G (Lemma II.1). First we


onstru
t the Lie group stru
ture on

b

G . Let U

G

� G be an open symmetri
 1-neighborhood

su
h that f is smooth on U

G

� U

G

, and 
onsider the subset

U := A� U

G

= q

�1

(U

G

) �

b

G = A�

f

G:

Then U = U

�1

. We endow U with the produ
t manifold stru
ture from A � U

G

. Sin
e

the multipli
ation m

G

j

U

G

�U

G

:U

G

� U

G

! G is 
ontinuous, there exists an open identity

neighborhood V

G

� U

G

with V

G

V

G

� U

G

. Then the set V := A � V

G

is an open subset

of U su
h that the multipli
ation map

V � V ! U;

�

(a; x); (a

0

; x

0

)

�

! (a+ x:a

0

+ f(x; x

0

); xx

0

)

is smooth. The inversion

U ! U; (a; x) 7!

�

� x

�1

:(a+ f(x; x

�1

)); x

�1

�

(Lemma II.1) is also smooth.

For (a; g) 2

b

G let V

g

� U

G

be an open identity neighborhood su
h that the 
onjugation

map 


g

(x) = gxg

�1

satis�es 


g

(V

g

) � U

G

. Then 


(a;g)

(q

�1

(V

g

)) � U and the 
onjugation map




(a;g)

: q

�1

(V

g

)! U; (a

0

; g

0

) 7! (a+ g:a

0

� gg

0

g

�1

:a+ f

g

(g

0

); gg

0

g

�1

)



10 Abelian extensions of in�nite-dimensional Lie groups February 18, 2004

(Lemma II.1) is smooth in an identity neighborhood be
ause f 2 Z

2

ss

(G;A).

Now Theorem C.2 implies that

b

G 
arries a unique Lie group stru
ture for whi
h the

in
lusion map U = A � U

G

,!

b

G is a lo
al di�eomorphism onto an identity neighborhood.

It is 
lear that with respe
t to this Lie group stru
ture on

b

G , the map q:

b

G ! G de�nes a

smooth A-prin
ipal bundle be
ause the map V

G

!

b

G; g 7! (0; g) de�nes a se
tion of q whi
h is

smooth on an identity neighborhood in G whi
h might be smaller than V

G

.

(2) Assume, 
onversely, that q:

b

G! G is an extension of G by the smooth G-module A . Then

there exists an open 1-neighborhood U

G

� G and a smooth se
tion �:U

G

!

b

G of the map

q:

b

G! G . We extend � to a global se
tion G!

b

G . Then

f(x; y) := �(x)�(y)�(xy)

�1

de�nes a 2-
o
y
le G�G! A whi
h is smooth in a neighborhood of (1;1), and the map

A�

f

G!

b

G; (a; g) 7! a�(g)

is an isomorphism of groups. The fun
tions f

g

:G! A are given by

f

g

(g

0

) = f(g; g

0

)� f(gg

0

g

�1

; g) = �(g)�(g

0

)�(gg

0

)

�1

� �(gg

0

g

�1

)�(g)�(gg

0

)

�1

= �(g)�(g

0

)�(gg

0

)

�1

�(gg

0

)�(g)

�1

�(gg

0

g

�1

)

�1

= �(g)�(g

0

)�(g)

�1

�(gg

0

g

�1

)

�1

;

hen
e smooth near 1 . This shows that f 2 Z

2

ss

(G;A). In view of (1), the group A�

f

G 
arries

a Lie group stru
ture for whi
h there exists an identity neighborhood V

G

� G for whi
h the

produ
t map

A� V

G

! A�

f

G; (a; v) 7! (a;1)(0; v) = (a; v)

is smooth. This implies that the group isomorphism A �

f

G !

b

G is a lo
al di�eomorphism,

hen
e an isomorphism of Lie groups.

(3) Steps (1) provides a map

Z

2

ss

(G;A)! Ext

�

A

(G;A); f 7! [A�

f

G℄;

and (2) shows that it is surje
tive. Assume that two extensions of the form A �

f

i

G for

f

1

; f

2

2 Z

2

ss

(G;A) are equivalent as Lie group extensions. An isomorphism A�

f

1

G! A�

f

2

G

indu
ing an equivalen
e of abelian extensions must be of the form

(2:4) (a; g) 7! (a+ h(g); g);

where h 2 C

1

s

(G;A). The 
ondition that (2.4) is a group homomorphism implies that

(h(gg

0

) + f

1

(g; g

0

); gg

0

) = (h(g); g)(h(g

0

); g

0

) = (h(g) + g:h(g

0

) + f

2

(g; g

0

); gg

0

);

whi
h means that

(2:5) (f

1

� f

2

)(g:g

0

) = g:h(g

0

)� h(gg

0

) + h(g) = (d

G

h)(g; g

0

);

so that f

1

� f

2

2 B

2

s

(G;A).

If, 
onversely, h 2 C

1

s

(G;A) and f

1

= f

2

= d

G

h , then it is easily veri�ed that (2.4)

de�nes a group isomorphism for whi
h there exists an open identity neighborhood mapped

di�eomorphi
ally onto its image. Hen
e (2.5) is an isomorphism of Lie groups. We 
on
lude

that the map Z

2

ss

(G;A)! Ext

�

A

(G;A) fa
tors through a bije
tion H

2

ss

(G;A)! Ext

�

A

(G;A).

(4) Assume now that G is 
onne
ted and that f 2 Z

2

s

(G;A). In the 
ontext of (1), the


onjugation map 


(a;g)

: q

�1

(V

g

) ! U is smooth in an identity neighborhood if and only if the

fun
tion f

g

is smooth in an identity neighborhood. As f 2 Z

2

s

(G;A), the set W of all g 2 G

for whi
h this 
ondition is satis�ed is an identity neighborhood. On the other hand, the set W

is 
losed under multipli
ation. In view of the 
onne
tedness of G , we have G =

S

n2N

W

n

=W .

This means that f 2 Z

2

ss

(G;A), and therefore that Z

2

s

(G;A) = Z

2

ss

(G;A).
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Problem II. Do the two spa
es Z

2

s

(G;A) and Z

2

ss

(G;A) also 
oin
ide if G is not 
onne
ted?

We do not know any 
o
y
le f 2 Z

2

s

(G;A) n Z

2

ss

(G;A).

The following lemma shows that the derivation map

D:Z

2

s

(G;A)! Z

2




(g; a); (Df)(x; y) = d

2

f(1;1)(x; y)� d

2

f(1;1)(y; x)

from Theorem B.6 and Lemma B.7 is 
ompatible with the 
onstru
tion in Proposition II.6. In

the following proof we use the notation d

2

f introdu
ed in Appendix A.

Lemma II.7. Let A

�

=

a=�

A

, where �

A

� a is a dis
rete subgroup, f 2 Z

2

ss

(G;A) and

b

G = A�

f

G the 
orresponding extension of G by A . Then the Lie algebra 
o
y
le Df satis�es

b

g

�

=

g�

Df

a .

Proof. Let U

a

� a be an open 0-neighborhood su
h that the restri
tion '

A

:U

a

! U

a

+�

A

�

A of the quotient map q

A

: a! A is a di�eomorphism onto an open identity neighborhood in A

and '

G

:U

g

! G a lo
al 
hart of G , where U

g

� g is an open 0-neighborhood, '

G

(0) = 1 and

d'

G

(0) = id

g

. After shrinking U

g

further, we obtain a 
hart of A�

f

G by the map

':U

a

� U

g

! A�

f

G; (a; x) 7! ('

A

(a); '

G

(x)):

Moreover, we may assume that U

g

is so small that f('

G

(U

g

) � '

G

(U

g

)) � '

A

(U

a

)), whi
h

implies that there exists a smooth fun
tion f

a

:U

g

� U

g

! U

a

with '

A

Æ f

a

= f Æ ('

G

� '

G

):

Writing x � x

0

:= '

�1

G

('

G

(x)'

G

(x

0

)) for x; x

0

2 U

g

with '

G

(x)'

G

(x

0

) 2 '

G

(U

g

), the

multipli
ation

(a; g)(a

0

; g

0

) = (a+ g:a

0

+ f(g; g

0

); gg

0

)

in A�

f

G 
an be expressed in lo
al 
oordinates for suÆ
iently small a; a

0

2 a; x; x

0

2 g by

'(a; x)'(a

0

; x

0

) = ('

A

(a) + '

G

(x):'

A

(a

0

) + f('

G

(x); '

G

(x

0

)); '

G

(x)'

G

(x

0

))

= ('

A

(a+ '

G

(x):a

0

+ f

a

(x; x

0

)); '

G

(x � x

0

))

= '(a+ '

G

(x):a

0

+ f

a

(x; x

0

); x � x

0

):

Here the identity element has the 
oordinates (0; 0) 2 a� g .

For the multipli
ation in G we have

x � x

0

= x+ x

0

+ b(x; x

0

) + � � �

where � � � stands for the terms of order at least three in the Taylor expansion of the produ
t map

and the quadrati
 term is bilinear. The Lie bra
ket in g is given by

[x; x

0

℄ = b(x; x

0

)� b(x

0

; x)

([Mil83, p.1036℄). Therefore the Lie bra
ket in the Lie algebra L(A �

f

G) of A �

f

G 
an be

obtained from

(a+ '

G

(x):a

0

+ f

a

(x; x

0

); x � x

0

)

= (a+ a

0

+ x:a

0

+ d

2

f

a

(0; 0)(x; x

0

) + � � � ; x+ x

0

+ b(x; x

0

) + � � �)

= (a+ a

0

+ x:a

0

+ d

2

f(1;1)(x; x

0

) + � � � ; x+ x

0

+ b(x; x

0

) + � � �);

as

[(a; x); (a

0

; x

0

)℄ = (x:a

0

� x

0

:a+Df(x; x

0

); [x; x

0

℄):
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III. Lo
ally smooth 1-
o
y
les

Let G be a Lie group and A a smooth G-module. In this se
tion we take a 
loser look at

the spa
e Z

1

s

(G;A) of lo
ally smooth A-valued 1-
o
y
les on G . We know from Appendix B

that there is a natural map

D

1

:Z

1

s

(G;A)! Z

1




(g; a); D

1

(f)(x) := df(1)(x):

If A

�

=

a=�

A

holds for a dis
rete subgroup �

A

of a and q

A

: a! A is the quotient map, then we

have for a 2 a the relation

D

1

(d

G

(q

A

(a))) = d

g

(a)

and hen
e D

1

(B

1

s

(G;A)) = B

1




(g; a). Hen
e D

1

indu
es a map

D

1

:H

1

s

(G;A)! H

1




(g; a);

and it is of fundamental interest to have a good des
ription of kernel and 
okernel of D

1

on the

level of 
o
y
les and 
ohomology 
lasses.

We shall see that the integration problem for Lie algebra 1-
o
y
les has a rather simple

solution, the only obstru
tion 
oming from �

1

(G).

Lemma III.1. Ea
h f 2 Z

1

s

(G;A) is a smooth fun
tion and its di�erential df 2 


1

(G; a) is

an equivariant 1-form.

Proof. Let g 2 G . The 
o
y
le 
ondition

(3:1) f(gh) = g:f(h) + f(g)

shows that the smoothness of f in an identity neighborhood implies the smoothness in a

neighborhood of g .

Formula (3.1) means that f Æ�

g

= �

A

(g) Æ f + f(g); so that df satis�es �

�

g

df = �

A

(g) Æ df;

i.e., df is equivariant.

Lemma III.2. Let G be a Lie group with identity 
omponent G

0

and A a smooth G-module.

Then for a smooth fun
tion f :G! A with f(1) = 0 the following are equivalent:

(1) df is an equivariant a-valued 1-form on G .

(2) f(gn) = f(g) + g:f(n) for g 2 G and n 2 G

0

.

If, in addition, G is 
onne
ted, then df is equivariant if and only if f is a 
o
y
le.

Proof. We write g:a = �

a

(g):a for the a
tion of G on a and g:a = �

A

(g):a for the a
tion of

G on A .

(1) ) (2): Let g 2 G . In view of d(�

A

(g) Æ f) = �

a

(g) Æ df; we have

d(f Æ �

g

� �

A

(g) Æ f � f(g)) = �

�

g

df � �

a

(g) Æ df:

Hen
e (1) means that all the fun
tions f Æ �

g

� �

A

(g) Æ f � f(g) are lo
ally 
onstant. Sin
e the

value of this fun
tion in 1 is 0, all these fun
tions are 
onstant 0 on G

0

, whi
h is (2).

(2) ) (1): If (2) is satis�ed, then df(g)d�

g

(1) = �

a

(g) Æ df(1) holds for ea
h g 2 G , and this

means that df is equivariant.
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De�nition III.3. Suppose that a is sequentially 
omplete. If � 2 Z

1




(g; a) and �

eq

is the


orresponding 
losed equivariant 1-form on G (
f. De�nition B.4), then we obtain a morphism

of abelian groups, 
alled the period map of � :

per

�

:�

1

(G)! a; [
℄ 7!

Z




�

eq

=

Z

1

0

�

eq


(t)

(


0

(t)) dt =

Z

1

0


(t):�(
(t)

�1

:


0

(t)) dt;

where 
: [0; 1℄! G is a pie
ewise smooth loop based in 1 . The map

C

1

(S

1

; G)! a; 
 7!

Z




�

eq

is lo
ally 
onstant, so that the 
onne
tedness of G implies in parti
ular that for g 2 G we have

Z




�

eq

=

Z

�

g

Æ


�

eq

=

Z




�

�

g

�

eq

= �

a

(g):

Z




�

eq

whi
h leads to

im(per

�

) � a

G

:

If �

A

� a

G

is a dis
rete subgroup, then A := a=�

A

is a smooth G-module with respe
t

to the indu
ed a
tion. Let q

A

: a ! A denote the quotient map. We then obtain a group

homomorphism

P :Z

1




(g; a)! Hom(�

1

(G); A

G

); P (�) := q

A

Æ per

�

:

The importan
e of the period map stems from the fa
t that the 1-form �

eq

is the di�erential of

a smooth fun
tion f :G! A if and only if P (�) = 0 ([Ne02, Prop. 3.9℄).

Proposition III.4. If G is a 
onne
ted Lie group and A

0

�

=

a=�

A

, where �

A

� a

G

is a

dis
rete subgroup and a is sequentially 
omplete, then the sequen
e

(3:2) 0! Z

1

s

(G;A)

D

1

��!Z

1




(g; a)

P

��!Hom(�

1

(G); A

G

)

is exa
t. If A

�

=

a=�

A

, then it indu
es an exa
t sequen
e

(3:3) 0! H

1

s

(G;A)

D

1

��!H

1




(g; a)

P

��!Hom(�

1

(G); A

G

):

Proof. If f 2 Z

1

s

(G;A) satis�es D

1

f = 0, then Lemma III.2 implies that df = 0 be
ause

df is equivariant, and hen
e that f is 
onstant, and we get f(g) = f(1) = 0 for ea
h g 2 G .

Therefore D

1

is inje
tive on Z

1

s

(G;A). The kernel of P :Z

1




(g; a) ! Hom(�

1

(G); A) 
onsists of

those 1-
o
y
les � for whi
h �

eq

is the di�erential of a smooth fun
tion f :G! A with f(1) = 0

([Ne02, Prop. 3.9℄), whi
h means that � = D

1

f for some f 2 Z

1

s

(G;A) (Lemma III.2). This

proves the exa
tness of the �rst sequen
e.

Now we assume that A

�

=

a=�

A

. If � 2 B

1




(g; a), then �

eq

is exa
t (Lemma B.5), so that

P (�) = 0. Therefore P fa
tors through a map H

1




(g; a) ! Hom(�

1

(G); a). The exa
tness of

(3.3) follows from the observation that D

1

(B

1

s

(G;A)) = B

1




(g; a) and the exa
tness of (3.2).

Remark III.5. For ea
h � 2 Z

1




(g; a) the 
orresponding equivariant 1-form �

eq

is 
losed and

it is exa
t if � 2 B

1




(g; a), so that we obtain a map

H

1




(g; a)! H

1

dR

(G; a); [�℄ 7! [�

eq

℄:

Proposition III.4, applied to the 
ase A = a now means that the sequen
e

0! H

1

s

(G; a)

D

1

��!H

1




(g; a)��!H

1

dR

(G; a)

is exa
t. Let �

A

� a be a dis
rete subgroup and 
onsider A := a=�

A

. For

H

1

dR

(G;�

A

) :=

n

[�℄ 2 H

1

dR

(G; a): (8
 2 C

1

(S

1

; G))

Z




� 2 �

A

o

;

we then have

H

1

dR

(G;�

A

) = dC

1

(G;A)=dC

1

(G; a)

([Ne02, Prop. 3.9℄), and we obtain an exa
t sequen
e

(3:4) 0! H

1

s

(G;A)

D

1

��!H

1




(g; a)��!


1

(G; a)=dC

1

(G;A);

be
ause for � 2 Z

1




(g; a) the 
ondition [�

eq

℄ 2 dC

1

(G;A) is equivalent to P ([�℄) = 0 (Proposi-

tion III.4).
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De�nition III.6. Let A be a smooth G-module for the 
onne
ted Lie group G and assume

that A

0

�

=

a=�

A

holds for the identity 
omponent of A . Then for ea
h a 2 A we obtain a

smooth 
o
y
le

d

0

G

(a) 2 Z

1

s

(G;A

0

); d

0

G

(a)(g) := g:a� a:

Taking derivatives in 1 leads to homomorphisms

�

A

:= D

1

Æ d

0

G

:A! Z

1




(g; a) and �

A

:�

0

(A)! H

1




(g; a):

The map �

A

is 
alled the 
hara
teristi
 homomorphism of the G-module A .

Lemma III.7. Let A and B be smooth modules of the 
onne
ted Lie group G and assume

that A

0

= B

0

�

=

a=�

A

as G-modules, where �

A

� a is a dis
rete subgroup. Then there

exists an isomorphism  :A ! B of G-modules with  j

A

0

= id

A

0

if and only if there exists a

homomorphism 
:�

0

(A)! �

0

(B) su
h that the 
hara
teristi
 homomorphisms of A and B are

related by

�

B

Æ 
 = �

A

:

Proof. If  :A! B is an isomorphism of G-modules restri
ting to the identity on A

0

, then  

indu
es an isomorphism 
 := �

0

( ):�

0

(A)! �

0

(B), and it follows dire
tly from the de�nitions

that �

B

Æ 
 = �

A

:

Suppose, 
onversely, that 
:�

0

(A) ! �

0

(B) is an isomorphism with �

B

Æ 
 = �

A

. Sin
e

A

0

is an open divisible subgroup of A , we have A

�

=

A

0

� �

0

(A) as abelian Lie groups and

likewise B

�

=

A

0

� �

0

(B). For ea
h homomorphism '

0

:�

0

(A)! A

0

we then obtain a Lie group

isomorphism

(3:5) ':A! B; (a

0

; a

1

) 7! (a

0

+ '

0

(a

1

); 
(a

1

)):

Sin
e G a
ts on A

�

=

A

0

� �

0

(A) by

g:(a

0

; a

1

) = (g:a

0

+ d

0

G

(a

1

)(g); a

1

);

the isomorphism ' is G-equivariant if and only if

(3:6) '

0

(a

1

) + d

0

G

(a

1

)(g) = g:'

0

(a

1

) + d

0

G

(
(a

1

))(g)

for g 2 G , a

1

2 �

0

(A), whi
h means that

d

G

('

0

(a

1

)) = d

0

G

(a

1

)� d

0

G

(
(a

1

)) =: �:

To see that a homomorphism '

0

with the required properties exists, we �rst observe that our

assumption implies that � is a homomorphism �

0

(A) ! Z

1

s

(G;A

0

) with im(D

1

Æ �) � d

g

a . In

view of the divisibility of a , there exists a homomorphism Æ:�

0

(A)! a with D

1

Æ � = d

g

Æ Æ =

D

1

Æ d

G

Æ q

A

Æ Æ . Sin
e D

1

is inje
tive on 
o
y
les (Proposition III.4), we obtain � = d

G

Æ q

A

Æ Æ .

We may therefore put '

0

:= q

A

Æ Æ to obtain an isomorphism ' of G-modules as in (3.5).

IV. Period homomorphisms for abelian groups

In this se
tion G denotes a 
onne
ted Lie group, a is a smooth sequentially 
omplete G-module,

and ! 2 Z

2




(g; a) is a 
ontinuous Lie algebra 
o
y
le. We shall de�ne a homomorphism of abelian

groups

per

!

:�

2

(G)! a;


alled the period map of ! .

Suppose that q:

b

G! G is an extension of G by the smooth G-module A whose Lie algebra

is isomorphi
 to a�

!

g and A

0

�

=

a=�

A

holds for a dis
rete subgroup �

A

�

=

�

1

(A) of a . Then

we show that the period map is, up to sign, the 
onne
ting map of the long exa
t homotopy

sequen
e of the prin
ipal A-bundle A ,!

b

G !! G , whose range is 
ontained in the subgroup

�

A

� a .
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De�nition IV.1. In the following �

p

= f(x

1

; : : : ; x

p

) 2 R

p

:x

i

� 0;

P

j

x

j

� 1g denotes

the p-dimensional standard simplex in R

p

. We also write hv

0

; : : : ; v

p

i for the aÆne simplex in

a ve
tor spa
e spanned by the points v

0

; : : : ; v

p

. In this sense �

p

= h0; e

1

; : : : ; e

p

i , where e

i

denotes the i-th 
anoni
al basis ve
tor in R

p

.

Let Y be a smooth manifold. A 
ontinuous map f : �

p

! Y is 
alled a C

1

-map if it

is di�erentiable in the interior int(�

p

) and in ea
h lo
al 
hart of Y all dire
tional derivatives

x 7! df(x)(v) of f extend 
ontinuously to the boundary ��

p

of �

p

. For k � 2 we 
all f a

C

k

-map if it is C

1

and all maps x 7! df(x)(v) are C

k�1

, and we say that f is smooth if f is

C

k

for every k 2 N . We write C

1

(�

p

; Y ) for the set of smooth maps �

p

! Y .

If � is a simpli
ial 
omplex, then we 
all a map f : � ! Y pie
ewise smooth if it is


ontinuous and its restri
tions to all simpli
es in � are smooth. We write C

1

pw

(�; Y ) for the

set of pie
ewise smooth maps �! Y . There is a natural topology on this spa
e inherited from

the natural embedding of C

1

pw

(�; Y ) into the spa
e

Q

S��

C

1

pw

(S; Y ), where S runs through all

simpli
es of � and the topology on C

1

pw

(S; Y ) is de�ned as in [Ne02, Def. A.3.5℄ as the topology

of uniform 
onvergen
e of all dire
tional derivatives of arbitrarily high order.

The equivariant form !

eq

is a 
losed 2-form on G , and we obtain with [Ne02, Lemma 5.7℄

a period map

per

!

:�

2

(G)! a

whi
h is given on pie
ewise smooth representatives �:S

2

! G of free homotopy 
lasses by the

integral

per

!

([�℄) =

Z

S

2

�

�

!

eq

=

Z

�

!

eq

:

If ! is a 
oboundary, then Lemma B.5 implies that !

eq

is exa
t, so that the period map is trivial

by Stoke's Theorem. We therefore obtain a homomorphism

H

2




(g; a)! Hom(�

2

(G); a); [!℄ 7! per

!

:

The image �

!

:= per

!

(�

2

(G)) is 
alled the period group of ! . Sin
e the group G is 
onne
ted,

the group �

0

(C

1

(S

2

; G)) of 
onne
ted 
omponents of the Lie group C

1

(S

2

; G) is isomorphi
 to

�

2

(G), and we may think of per

!

as the map on �

2

(G) obtained by fa
torization of the map

C

1

(S

2

; G)! a; � 7!

Z

�

!

eq

whi
h is lo
ally 
onstant ([Ne02, Lemma 5.7℄).

Lemma IV.2. The image of the period map is �xed pointwise by G , i.e., �

!

� a

G

.

Proof. In view of [Ne02, Th. A.3.7℄, ea
h homotopy 
lass in �

2

(G) has a smooth representative

�:S

2

! G . Sin
e G is 
onne
ted, and the map G ! C

1

(S

2

; G); g 7! �

g

Æ � is 
ontinuous, we

have for ea
h g 2 G :

per

!

([�℄) =

Z

S

2

�

�

!

eq

=

Z

S

2

�

�

�

�

g

!

eq

=

Z

S

2

�

�

(�

a

(g) Æ !

eq

) = �

a

(g): per

!

([�℄):

We 
on
lude that the image of per

!

is �xed pointwise by G .

Period maps as 
onne
ting homomorphisms

Let A ,!

b

G

q

��!G be an abelian Lie group extension of A . Then the Lie algebra

b

g of

b

G has the form a �

!

g be
ause the existen
e of a smooth lo
al se
tion implies that

b

g ! g

has a 
ontinuous linear se
tion (Proposition I.3). In this subse
tion we will relate the period

homomorphism per

!

to the 
onne
ting homomorphism Æ:�

2

(G) ! �

1

(A) from the long exa
t

homotopy sequen
e of the bundle A ,!

b

G

q

��!G .
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De�nition IV.3. We re
all the de�nition of relative homotopy groups. Let I

n

:= [0; 1℄

n

denote the n-dimensional 
ube. Then the boundary �I

n

of I

n


an be written as I

n�1

[ J

n�1

,

where I

n�1

is 
alled the initial fa
e and J

n�1

is the union of all other fa
es of I

n

.

Let X be a topologi
al spa
e, Y � X a subspa
e, and x

0

2 Y . A map

f : (I

n

; I

n�1

; J

n�1

)! (X;Y; x

0

)

of spa
e triples is a 
ontinuous map f : I

n

! X satisfying f(I

n�1

) � Y and f(J

n�1

) = fx

0

g .

We write F

n

(X;Y; x

0

) for the set of all su
h maps and �

n

(X;Y; x

0

) for the homotopy 
lasses

of su
h maps, i.e., the ar
-
omponents of the topologi
al spa
e F

n

(X;Y; x

0

) endowed with the


ompa
t open topology (
f. [Ste51℄). We de�ne F

n

(X; x

0

) := F

n

(X; fx

0

g; x

0

) and �

n

(X; x

0

) :=

�

n

(X; fx

0

g; x

0

) and observe that we have a 
anoni
al map

�:�

n

(X;Y; x

0

)! �

n�1

(Y; x

0

); [f ℄ 7! [f j

I

n�1
℄:

Example IV.4. Let q:P !M be a (lo
ally trivial) H -prin
ipal bundle, y

0

2 P a base point,

x

0

:= q(y

0

) and identity H with the �ber q

�1

(x

0

). Then the maps

q

�

:�

k

(P;H) := �

k

(P;H; y

0

)! �

k

(M) := �

k

(M;x

0

); [f ℄ 7! [q Æ f ℄

are isomorphisms ([Ste51, Cor. 17.2℄), so that we obtain 
onne
ting homomorphisms

Æ := � Æ (q

�

)

�1

:�

k

(M)! �

k�1

(H):

The so obtained sequen
e

! �

k

(P )! �

k

(M)! �

k�1

(H)! : : :! �

1

(P )! �

1

(M)! �

0

(H)! �

0

(P )!! �

0

(M)

is exa
t, where the last two maps 
annot be 
onsidered as group homomorphisms. This sequen
e

is 
alled the long exa
t homotopy sequen
e of the prin
ipal bundle P !M .

Proposition IV.5. Let q:

b

G ! G be an abelian extension of not ne
essarily 
onne
ted

Lie groups with kernel A satisfying A

0

�

=

a=�

A

, where a is a sequentially 
omplete lo
ally


onvex spa
e. Then q de�nes in parti
ular the stru
ture of an A-prin
ipal bundle on

b

G . If

! 2 Z

2




(g; a) is a Lie algebra 2-
o
y
le with

b

g

�

=

a�

!

g , then Æ:�

2

(G) ! �

1

(A) and the period

map per

!

:�

2

(G)! a are related by

Æ = � per

!

:�

2

(G)! �

1

(A) � a:

Proof. Let � 2 


1

(

b

G; a) be a 1-form with the property that for ea
h g 2

b

G the orbit map

�

g

:A ,!

b

G; a 7! ga satis�es �

�

g

� = �

A

, where �

A

2 


1

(A; a) is the invariant 1-form on A

with �

A;0

= id

a

, i.e., the Maurer-Cartan form on A . We have seen in [Ne02, Prop. 5.11℄ that if


 2 


2

(G; a) satis�es q

�


 = �d�, then Æ = � per




.

To apply this to our situation, we 
onsider the a
tion of

b

G on A given by g:a := q(g):a .

Then q

�

!

eq

is an equivariant 
losed 2-form on

b

G with (q

�

!

eq

)

1

= L(q)

�

!: Let p

a

:

b

g

�

=

a�

!

g!

a; (a; x) 7! x denote the proje
tion onto a . Then

dp

a

((a; x); (a

0

; x

0

)) = (a; x):p

a

(a

0

; x

0

)� (a

0

; x

0

):p

a

(a; x)� p

a

([(a; x); (a

0

; x

0

)℄)

= x:a

0

� x

0

:a� (x:a

0

� x

0

:a+ !(x; x

0

)) = �!(x; x

0

)

= �(L(q)

�

!)((a; x); (a

0

; x

0

)):

In view of Lemma B.5, this implies

d(p

eq

a

) = (d

g

p

a

)

eq

= �(L(q)

�

!)

eq

= �q

�

!

eq

:

Applying the pre
eding remarks with � = p

eq

a

, we obtain Æ = � per

!

:
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Remark IV.6. Let A ,!

b

G!! G be an abelian extension of 
onne
ted Lie groups and assume

that A

�

=

a=�

A

holds for a dis
rete subgroup �

A

� a , that we identify with �

1

(A). In view of

�

2

(A)

�

=

�

2

(a) = 1 , the long exa
t homotopy sequen
e of the bundle

b

G ! G leads to an exa
t

sequen
e

0! �

2

(

b

G) ,! �

2

(G)

per

!

����!�

1

(A)! �

1

(

b

G)!! �

1

(G)! 0:

This implies that

�

2

(

b

G)

�

=

kerper

!

� �

2

(G) and �

1

(G)

�

=

�

1

(

b

G)= 
okerper

!

:

These relations show how the period homomorphism 
ontrols how the �rst two homotopy groups

of G and

b

G are related.

V. From Lie algebra 
o
y
les to group 
o
y
les

In Se
tions V and VI we des
ribe the image of the map

D:H

2

s

(G;A) ! H

2




(g; a)

for a 
onne
ted Lie group G , and an abelian Lie group A of the form a=�

A

. In the present

se
tion we deal with the spe
ial 
ase where G is simply 
onne
ted.

Let G be a 
onne
ted simply 
onne
ted Lie group and a a sequentially 
omplete lo
ally


onvex smooth G-module. Further let �

A

� a

G

be a subgroup and write A := a=�

A

for the

quotient group, that 
arries a natural G-module stru
ture. We write q

A

: a! A for the quotient

map. If, in addition, �

A

is dis
rete, then A 
arries a natural Lie group stru
ture and the a
tion

of G on A is smooth.

Let ! 2 Z

2




(g; a) and �

!

� a

G

be the 
orresponding period group (Lemma IV.2). In the

following we shall assume that

�

!

� �

A

:

The main result of the present se
tion is the existen
e of a lo
ally smooth group 
o
y
le f 2

Z

2

s

(G;A) with Df = ! if �

A

is dis
rete (Corollary V.3).

A spe
ial 
ase of the following 
onstru
tion has also been used in [Ne02℄ in the 
ontext of


entral extensions. For g 2 G we 
hoose a smooth path �

1;g

: [0; 1℄! G from 1 to g . We thus

obtain a left invariant system of smooth ar
s �

g;h

:= �

g

Æ�

1;g

�1

h

from g to h , where �

g

(x) := gx

denotes left translation. For g; h; u 2 G we then obtain a singular smooth 
y
le

�

g;h;u

:= �

g;h

+ �

h;u

� �

g;u

;

that 
orresponds to the pie
ewise smooth map �

g;h;u

2 C

1

pw

(��

2

; G) with

�

g;h;u

(s; t) =

8

<

:

�

g;h

(s); for t = 0

�

h;u

(1� s); for s+ t = 1

�

g;u

(t); for s = 0.

For a simpli
ial 
omplex � we write �

(j)

for the j -th bary
entri
 subdivision of �.

A

ording to [Ne02, Prop. 5.6℄, ea
h map �

g;h;u


an be obtained as the restri
tion of a pie
ewise

smooth map �: (�

2

)

(1)

! G . Let �

0

: (�

2

)

(1)

! G be another pie
ewise smooth map with the

same boundary values as � . We 
laim that

R

�

!

eq

�

R

�

0

!

eq

2 �

!

. In fa
t, we 
onsider the

sphere S

2

as an oriented simpli
ial 
omplex � obtained by gluing two 
opies D and D

0

of �

2

along their boundary, where the in
lusion of D is orientation preserving and the in
lusion on

D

0

reverses orientation. Then � and �

0


ombine to a pie
ewise smooth map 
: � ! G with


 j

D

= � and 
 j

D

0

= �

0

, and we get with [Ne02, Lemma 5.7℄

Z

�

!

eq

�

Z

�

0

!

eq

=

Z




!

eq

2 �

!

� �

A

:

We thus obtain a well-de�ned map

F :G

3

! A; (g; h; u) 7! q

A

�

Z

�

!

eq

�

;

where � 2 C

1

pw

((�

2

)

(1)

; G) is a pie
ewise smooth map whose boundary values 
oin
ide with

�

g;h;u

.
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Lemma V.1. The fun
tion

f :G

2

! A; (g; h) 7! F (1; g; gh)

is a group 
o
y
le with respe
t to the a
tion of G on A .

Proof. First we show that for g; h 2 G we have

f(g;1) = F (1; g; g) = 0 and f(1; h) = F (1;1; h) = 0:

If g = h or h = u , then we 
an 
hoose the map �: �

2

! G extending �

g;h;u

in su
h a way that

rk(d�) � 1 in every point, so that �

�

!

eq

= 0. In parti
ular we obtain F (g; h; u) = 0 in these


ases.

From �

g;h;u

= �

g

Æ �

1;g

�1

h;g

�1

u

we see that for every extensions �: (�

2

)

(1)

! G of

�

1;g

�1

h;g

�1

u

the map �

g

Æ � is an extension of �

g;h;u

. In view of �

�

g

!

eq

= �

a

(g) Æ !

eq

, we

obtain

Z

S

2

(�

g

Æ �)

�

!

eq

=

Z

S

2

�

�

�

�

g

!

eq

= �

a

(g):

Z

S

2

�

�

!

eq

;

and therefore

(5:1) F (g; h; u) = �

A

(g):F (1; g

�1

h; g

�1

u):

Let �

3

� R

3

be the standard 3-simplex. Then we de�ne a pie
ewise smooth map 
 of its

1-skeleton to G by


(t; 0; 0) = �

1;g

(t); 
(0; t; 0) = �

1;gh

(t); 
(0; 0; t) = �

1;ghu

(t)

and


(1� t; t; 0) = �

g;gh

(t); 
(0; 1� t; t) = �

gh;ghu

(t); 
(1� t; 0; t) = �

g;ghu

(t):

As G is simply 
onne
ted, we obtain with [Ne02, Prop. 5.6℄ for ea
h fa
e �

j

3

, j = 0; : : : ; 3, of �

3

a pie
ewise smooth map 


j

of the �rst bary
entri
 subdivision to G , extending the given map

on the 1-skeleton. These maps 
ombine to a pie
ewise smooth map 
: (��

3

)

(1)

! G . Modulo

the period group �

!

we now have

Z




!

eq

=

Z

��

3




�

!

eq

=

3

X

i=0

Z




i

!

eq

= F (g; gh; ghu)� F (1; gh; ghu) + F (1; g; ghu)� F (1; g; gh)

= �

A

(g):f(h; u)� f(gh; u) + f(g; hu)� f(g; h):

Sin
e

R




!

eq

2 �

!

, this proves that f is a group 
o
y
le.

In the next lemma we will see that for an appropriate 
hoi
e of paths from 1 to group

elements 
lose to 1 the 
o
y
le f will be smooth in an identity neighborhood. The following

lemma is a slight generalization of Lemma 6.2 in [Ne02℄.

Lemma V.2. Let U � g be an open 
onvex 0-neighborhood and ':U ! G a 
hart of G with

'(0) = 1 and d'(0) = id

g

. We then de�ne the ar
s [1; '(x)℄ by �

'(x)

(t) := '(tx) . Let V � U

be an open 
onvex 0-neighborhood with '(V )'(V ) � '(U) and de�ne x � y := '

�1

('(x)'(y))

for x; y 2 V . If we de�ne �

x;y

:= ' Æ 


x;y

with




x;y

: �

2

! U; (t; s) 7! t(x � sy) + s(x � (1� t)y);

then for any 
losed 2-form 
 2 


2

(G; z) , z a sequentially 
omplete lo
ally 
onvex spa
e, the

fun
tion

f

V

:V � V ! z; (x; y) 7!

Z

�

x;y
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is smooth with d

2

f

V

(0; 0)(x; y) =

1

2




1

(x; y) (see the end of Appendix B for the notation).

Proof. First we note that the fun
tion V �V ! U; (x; y) 7! x � y is smooth. We 
onsider the


y
le

�

1;'(x);'(x)'(y)

= �

1;'(x);'(x�y)

= �

1;'(x)

+ �

'(x);'(x�y)

� �

1;'(x�y)

:

The ar
 
onne
ting x to x � y is given by s 7! x � sy , so that we may de�ne �

x;y

:= ' Æ 


x;y

with 


x;y

as above. Then

f

V

:V � V ! z; (x; y) 7!

Z

'Æ


x;y


 =

Z

�

2




�

x;y

'

�


;

and

(5:2) f

V

(x; y) =

Z

�

2

('

�


)

�

'(


x;y

(t; s))

�

�

�

�t




x;y

(t; s);

�

�s




x;y

(t; s)

�

dt ds

implies that f

V

is a smooth fun
tion in V � V .

The map 
: (x; y) 7! 


x;y

satis�es

(1) 


0;y

(t; s) = sy and 


x;0

(t; s) = (t+ s)x .

(2)

�

�t




x;y

^

�

�s




x;y

= 0 for x = 0 or y = 0.

In parti
ular we obtain f

V

(x; 0) = f

V

(0; y) = 0. Therefore the se
ond order Taylor polynomial

T

2

(f

V

)(x; y) = f

V

(0; 0) + df

V

(0; 0)(x; 0) + df

V

(0; 0)(0; y) +

1

2

d

[2℄

f

V

(0; 0)

�

(x; y); (x; y)

�

of f

V

in (0; 0) is bilinear and given by

T

2

(f

V

)(x; y) =

1

2

d

[2℄

f

V

(0; 0)

�

(x; 0); (0; y)

�

+

1

2

d

[2℄

f

V

(0; 0)

�

(0; y); (x; 0)

�

= d

2

f

V

(0; 0)(x; y)

(see the end of Appendix B).

Next we observe that (1) implies that

�

�t




x;y

and

�

�s




x;y

vanish in (0; 0). Therefore the


hain rule for Taylor expansions and (1) imply that for ea
h pair (t; s) the se
ond order term of

('

�


)(


x;y

(t; s))

�

�

�t




x;y

(t; s);

�

�s




x;y

(t; s)

�

is given by

('

�


)(


0;0

(t; s))(x; y) = (d'(0)

�




1

)(x; y) = 


1

(x; y);

and eventually

d

2

f

V

(0; 0)(x; y) = T

2

(f

V

)(x; y) =

Z

�

2

dt ds �


1

(x; y) =

1

2




1

(x; y):

Corollary V.3. Suppose that �

A

is dis
rete with �

!

� �

A

and 
onstru
t for ! 2 Z

2




(g; a)

the group 
o
y
le f 2 Z

2

(G;A) as above from the 
losed 2-form !

eq

2 


2

(G; a) . If the paths

�

1;g

for g 2 '(U) are 
hosen as in Lemma V.2, then f 2 Z

2

s

(G;A) with D(f) = ! .

Proof. In the notation of Lemma V.2 we have for x; y 2 V the relation

f('(x); '(y)) = q

A

(f

V

(x; y));

so that f is smooth on '(V )� '(V ), and further

Df(x; y) = d

2

f

V

(1;1)(x; y)� d

2

f

V

(1;1)(y; x) = !(x; y):

The out
ome of this se
tion is the following result:
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Theorem V.4. Let G be a 
onne
ted simply 
onne
ted Lie group and A a smooth G-module

of the form a=�

A

, where �

A

� a is a dis
rete subgroup. Let ! 2 Z

2




(g; a) be a 
ontinuous

2-
o
y
le and �

!

� a

G

its period group. Then the following assertions are equivalent:

(1) The Lie algebra extension a ,!

b

g := a�

!

g !! g 
an be integrated to a Lie group extension

A ,!

b

G!! G .

(2) [!℄ 2 im(D) .

(3) ! 2 im(D) .

(4) �

!

� �

A

.

(5) If q

A

: a! A is the quotient map and P ([!℄) := q

A

Æ per

!

:�

2

(G)! A; then P ([!℄) = 0 .

Proof. (1) ) (2): If

b

G is an extension of G by A 
orresponding to the Lie algebra extension

b

g = a �

!

g , then we 
an write

b

G as A �

f

G (Proposition II.6), and Lemma II.7 implies that

D[f ℄ = [Df ℄ = [!℄ .

(2) ) (3): If [!℄ = D[f ℄ = [Df ℄ for some f 2 Z

2

s

(G;A), then Df � ! 2 B

2




(g; a) and there

exists an � 2 C

1




(g; a) with Df � ! = d

g

� . Then the 2-form (d

g

�)

eq

= d�

eq

2 


2

(G; a) is

exa
t (Lemma B.5), so that its period group is trivial, and Corollary V.3 implies the existen
e of

h 2 Z

2

s

(G;A) with Dh = d

g

� . Then f

1

:= f�h 2 Z

2

s

(G;A) satis�es D(f �h) = Df �Dh = !:

(3) ) (1): If Df = ! , then the Lie group extension A�

f

G! G (Proposition II.6) 
orresponds

to the Lie algebra extension a�

Df

g = a�

!

g! g (Lemma II.7).

(1) ) (4) follows from Proposition IV.5 whi
h implies that if

b

G exists, then the period map


oin
ides up to sign with the 
onne
ting homomorphism Æ:�

2

(G)! �

1

(A)

�

=

�

A

� a in the long

exa
t homotopy sequen
e of the prin
ipal A-bundle

b

G .

(4) ) (3) follows from Corollary V.3.

(4) , (5) is a trivial 
onsequen
e of the de�nitions.

VI. Abelian extensions of non-simply 
onne
ted groups

We have seen in the pre
eding se
tion that for a simply 
onne
ted Lie group G and a smooth G-

module of the form A = a=�

A

the image of the map D:H

2

s

(G;A) ! H

2




(g; a) 
an be represented

by those 
o
y
les ! 2 Z

2




(g; a) for whi
h �

!

� �

A

�

=

�

1

(A).

In this se
tion we drop the assumption that G is simply 
onne
ted. We write q

G

:

e

G! G for

the simply 
onne
ted 
overing group of G and identify �

1

(G) with the dis
rete 
entral subgroup

ker q

G

of

e

G .

Let ! 2 Z

2




(g; a). In the following we write �

A

for the a
tion of G on A , �

a

for the a
tion

of G on a and _�

a

for the derived representation of g on a .

Remark VI.1. (a) To a 2-
o
y
le ! 2 Z

2




(g; a) we asso
iate the linear map

e!: g! C

1




(g; a) = Lin(g; a); x 7! i

x

!:

We 
onsider Lin(g; a) as a g-module with respe
t to the a
tion

(x:�)(y) := _�

a

(x):�(y) � �([x; y℄):

We do not 
onsider any topology on this spa
e of maps. The 
orresponding Lie algebra di�erential

d

g

:C

1

(g;Lin(g; a))! C

2

(g;Lin(g; a)) then satis�es

(d

g

e!)(x; y)(z) = (x:i

y

! � y:i

x

! � i

[x;y℄

!)(z)

= x:!(y; z)� !(y; [x; z℄)� y:!(x; z) + !(x; [y; z℄)� !([x; y℄; z)

= �z:!(x; y) = �d

g

(!(x; y))(z):

Sin
e the subspa
e B

1




(g; a) = d

g

a � C

1




(g; a) is g-invariant, we 
an also form the quotient

g-module

b

H

1




(g; a) := C

1




(g; a)=B

1




(g; a):
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We then obtain a linear map

f

!

: g!

b

H

1




(g; a); x 7! [i

x

!℄;

and the pre
eding 
al
ulation shows that this map is a 1-
o
y
le. We 
all f

!

the in�nitesimal


ux 
o
y
le. In the following we are 
on
erned with integrating this 
o
y
le to a group 
o
y
le

F

!

:

e

G!

b

H

1




(g; a):

This is problemati
 be
ause the right hand side does not have a natural topology, so that we


annot dire
tly apply Proposition III.4.

(b) A �rst step to globalize the situation is to translate matters from the Lie algebra to ve
tor

�elds on G . We shall see that on the level of ve
tor �elds the in�nitesimal 
ux 
o
y
le 
orresponds

to the map

g!

b

H

1

dR

(G; a) := 


1

(G; a)=dC

1

(G; a); x 7! [i

x

r

!

eq

℄;

where for x 2 g we write x

r

for the 
orresponding right invariant ve
tor �eld on G with

x

r

(1) = x . Note that for v 2 T

g

(G) we have

(i

x

r

!

eq

)(v) = g:!(Ad(g)

�1

:x; g

�1

:v):

Formally the linear map

e

f

!

: g! Lin(g; a); x 7! i

x

! de�nes an equivariant Lin(g; a)-valued

1-form

e

f

eq

!

on G as follows. For ea
h x 2 g evaluation in x is a linear map ev

x

: Lin(g; a) !

a; � 7! �(x) and ev

x

Æf

!

: g! a is a 
ontinuous linear map, hen
e de�nes an equivariant a-valued

1-form (ev

x

Æ

e

f

!

)

eq

on G . For any pie
ewise smooth path 
: [0; 1℄! G we then have

Z




(ev

x

Æ

e

f

!

)

eq

=

Z

1

0


(t):

�

e

f

!

(
(t)

�1




0

(t))

�

(x) dt =

Z

1

0


(t):!(
(t)

�1




0

(t);Ad(
(t))

�1

:x) dt

=

Z

1

0


(t):!(
(t)

�1




0

(t); 
(t)

�1

:x

r

(
(t))) dt = �

Z




i

x

r

:!

eq

:

Next we derive some formulas that will be useful in the following. We re
all the Lie

derivative L

x

r

= d Æ i

x

r

+ i

x

r

Æ d as an operator on di�erential forms. The equivarian
e of !

eq

leads to

L

x

r

:!

eq

= _�

a

(x) Æ !

eq

([Ne02, Lemma A.2.4℄). In view of the 
losedness of !

eq

, this leads to

(6:1) d(i

x

r

!

eq

) = L

x

r

:!

eq

� i

x

r

d!

eq

= _�

a

(x) Æ !

eq

:

Further the formula [L

x

r

; i

y

r

℄ = i

[x

r

;y

r

℄

= �i

[x;y℄

r

implies

i

[x;y℄

r

!

eq

= i

y

r

L

x

r

!

eq

�L

x

r

i

y

r

!

eq

= i

y

r

( _�

a

(x) Æ !

eq

)� (i

x

r

Æ d+ d Æ i

x

r

)i

y

r

!

eq

= _�

a

(x) Æ i

y

r

!

eq

� _�

a

(y) Æ i

x

r

!

eq

� d(i

x

r

i

y

r

!

eq

):

This means that the a-valued 1-form

(6:2) _�

a

(x) Æ i

y

r

!

eq

� _�

a

(y) Æ i

x

r

!

eq

� i

[x;y℄

r

!

eq

= d(i

x

r

i

y

r

!

eq

)

is exa
t, whi
h entails that

e

f

!

: g!

b

H

1

dR

(G; a); x 7! [i

x

r

!

eq

℄

is a 1-
o
y
le with respe
t to the representation of g on

b

H

1

dR

(G; a) given by x:[�℄ := [ _�

a

(x)Æ�℄ .

Sin
e the form !

eq

is 
losed, the map

e

f

!

also is a 
o
y
le with respe
t to the a
tion given by

x:[�℄ := [�L

x

r

:�℄ be
ause g ! V(G); x 7! �x

r

is a homomorphism of Lie algebras (
f. Lemma

IX.8).
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Lemma VI.2. Let 
: [0; 1℄ ! G be a pie
ewise smooth path. Then we obtain a 
ontinuous

linear map

e

F

!

(
): g! a; x 7! �

Z




i

x

r

!

eq

=

Z

1

0


(t):!(
(t)

�1




0

(t);Ad(
(t))

�1

:x) dt

with the following properties:

(1) If 
(1)

�1


(0) is 
ontained in Z(G) and a
ts trivially on a , then

e

F

!

(
) 2 Z

1




(g; a) .

(2) If 


1

and 


2

are homotopi
 with �xed endpoints, then

e

F

!

(


1

)�

e

F

!

(


2

) is a 
oboundary.

(3) For a pie
ewise smooth 
urve �: [0; 1℄! G we have

Z

�

e

F

!

(
)

eq

=

Z

H

!

eq

for the pie
ewise smooth map H : [0; 1℄

2

! G; (t; s) 7! �(s) � 
(t):

Proof. In view of formula (6.2) above, we �nd for x; y 2 g the relation

d

g

(

e

F

!

(
))(x; y) = x:

e

F

!

(
)(y)� y:

e

F

!

(
)(x) �

e

F

!

(
)([x; y℄)

= �

Z




_�

a

(x) Æ i

y

r

!

eq

� _�

a

(y) Æ i

x

r

!

eq

� i

[x;y℄

r

!

eq

= �

Z




d(i

x

r

i

y

r

!

eq

)

= !

eq

(
(0))

�

y

r

(
(0)); x

r

(
(0))

�

� !

eq

(
(1))

�

y

r

(
(1)); x

r

(
(1))

�

= 
(0):!(Ad(
(0))

�1

:y;Ad(
(0))

�1

:x)� 
(1):!(Ad(
(1))

�1

:y;Ad(
(1))

�1

:x):

(1) If 
(1)

�1


(0) 2 Z(G) = kerAd a
ts trivially on a , then the above formula implies that

d

g

�

e

F

!

(
)

�

= 0, i.e., that

e

F

!

(
) 2 Z

1




(g; a).

(2) For g 2 G we �rst observe that

e

F

!

(g � 
)(x) = �

Z

�

g

Æ


i

x

r

:!

eq

=

Z

1

0

g
(t):!(
(t)

�1

:


0

(t);Ad(g
(t))

�1

:x) dt

= g:

Z

1

0


(t):!(
(t)

�1

:


0

(t);Ad(
(t))

�1

Ad(g)

�1

:x) dt

= g:

e

F

!

(
)(Ad(g)

�1

:x) = (g:

e

F

!

(
))(x):

For the natural a
tion of G on Lin(g; a) by (g:')(x) := g:'(Ad(g)

�1

:x) and the left translation

a
tion on the spa
e C

1

pw

(I;G) of pie
ewise smooth maps I := [0; 1℄ ! G , the pre
eding


al
ulation shows that the map

e

F

!

:C

1

pw

(I;G)! Lin(g; a) = C

1




(g; a)

is equivariant.

For the 
omposition

(


1

℄


2

)(t) :=

�




1

(2t) for 0 � t �

1

2




1

(1)


2

(0)

�1




2

(2t� 1) for

1

2

� t � 1

of paths we thus obtain the 
omposition formula

(6:3)

e

F

!

(


1

℄


2

) =

e

F

!

(


1

) +

e

F

!

(


1

(1)


2

(0)

�1




2

) =

e

F

!

(


1

) + 


1

(1)


2

(0)

�1

:

e

F

!

(


2

):

For the inverse path 


�

(t) := 
(1�t) we trivially get

e

F

!

(


�

) = �

e

F

!

(
) from the transformation

formula for one-dimensional integrals. If the two paths 


1

and 


2

have the same start and

endpoints, then the path 


1

℄


�

2

is 
losed, and we derive with (1) that

e

F

!

(


1

)�

e

F

!

(


2

) =

e

F

!

(


1

) + 


1

(1)


�

2

(0)

�1

:

e

F

!

(


�

2

) =

e

F

!

(


1

℄


�

2

) 2 Z

1




(g; a):
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That two paths 


1

and 


2

with the same endpoints are homotopi
 with �xed endpoints

implies that the loop 
 := 


1

℄


�

2

is 
ontra
tible. It therefore has a 
losed pie
ewise smooth lift

e
: [0; 1℄

�

=

��

2

!

e

G with q

G

Æe
 = 
 . Using Proposition 4.6 in [Ne02℄, we �nd a pie
ewise smooth

map e�: �

2

!

e

G su
h that e� j

��

2

= e
 . Let � := q

G

Æ e� . Then � j

��

2

= 
 , so that Stoke's

Theorem and formula (6.1) lead to

�

e

F

!

(
)(x) =

Z




i

x

r

!

eq

=

Z

��

2

�

�

(i

x

r

!

eq

) =

Z

�

2

�

�

d(i

x

r

!

eq

)

=

Z

�

d(i

x

r

!

eq

) =

Z

�

_�

a

(x) Æ !

eq

= _�

a

(x):

Z

�

!

eq

:

Therefore

e

F

!

(
) 2 B

1




(g; a), and (2) follows.

(3) We have

Z

�

e

F

!

(
)

eq

=

Z

1

0

�(s):

e

F

!

(
)(�(s)

�1

:�

0

(s)) ds

=

Z

1

0

Z

1

0

�(s)
(t):!(
(t)

�1

:


0

(t);Ad(
(t)

�1

) Æ �(s)

�1

:�

0

(s)) dt ds

=

Z

1

0

Z

1

0

H(t; s):!(H(t; s)

�1

�(s):


0

(t); H(t; s)

�1

:(�

0

(s):
(t))) dt ds

=

Z

1

0

Z

1

0

H(t; s):!

�

H(t; s)

�1

:

�H(t; s)

�t

;H(t; s)

�1

:

�H(t; s)

�s

�

dt ds

=

Z

[0;1℄

2

H

�

!

eq

=

Z

H

!

eq

:

Proposition VI.3. We have a well-de�ned map

F

!

:

e

G!

b

H

1




(g; a) = Lin(g; a)=B

1




(g; a); g 7! [

e

F

!

(q

G

Æ 


g

)℄ :=

e

F

!

(q

G

Æ 


g

) +B

1




(g; a);

where 


g

: [0; 1℄ !

e

G is pie
ewise smooth with 


g

(0) = 1 and 


g

(1) = g . The map F

!

is a

1-
o
y
le with respe
t to the natural a
tion of

e

G on

b

H

1




(g; a) . Moreover, we obtain by restri
tion

a group homomorphism Z(

e

G) \ ker �

a

! H

1




(g; a); [
℄ 7! [

e

F

!

(
)℄ and further by restri
tion to

�

1

(G) a homomorphism

F

!

:�

1

(G)! H

1




(g; a):

Proof. That F

!

is well-de�ned follows from Lemma VI.1(2) be
ause two di�erent 
hoi
es

of paths 


g

and �

g

lead to paths q

G

Æ 


g

and q

G

Æ �

g

in G whi
h are homotopi
 with �xed

endpoints. Next we note that for paths 


g

i

, i = 1; 2, from 1 to g

i

in

e

G the 
omposed path




g

1

℄


g

2


onne
ts 1 to g

1

g

2

. Hen
e the 
omposition formula (6.3) leads to

F

!

(g

1

g

2

) =

e

F

!

(


g

1

℄


g

2

) =

e

F

!

(


g

1

) + g

1

:

e

F

!

(


g

2

) = F

!

(g

1

) + g

1

:F

!

(g

2

);

showing that the map F

!

is a 1-
o
y
le.

Sin
e Z(

e

G) \ ker �

a

a
ts trivially on g and a , hen
e on Lin(g; a), the restri
tion of F

!

to this subgroup is a group homomorphism, and Lemma VI.2(1) shows that its values lie in the

subspa
e H

1




(g; a).

The 
o
y
le F

!

:

e

G!

b

H

1




(g; a) is 
alled the 
ux 
o
y
le and its restri
tion to �

1

(G) the 
ux

homomorphism for reasons that will be
ome 
lear in De�nition IX.9 below. Next we relate the


ux homomorphism to group extensions. Although the following proposition is quite te
hni
al,

it 
ontains a lot of interesting information, even for the 
ase of non-
onne
ted groups A .
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Proposition VI.4. Let A be an abelian Lie group whose identity 
omponent satis�es A

0

�

=

a=�

A

, where �

A

� a is a dis
rete subgroup. Further let q:

b

G! G be a Lie group extension of G

by A 
orresponding to the Lie algebra 
o
y
le ! 2 Z

2




(g; a) , so that its Lie algebra is

b

g

�

=

a�

!

g .

In these terms we write the adjoint a
tion of

b

G on

b

g as

(6:4) Ad(g):(a; x) = (g:a� �(g)(g:x); g:x); g 2

b

G; a 2 a; x 2 g;

where g:x = Ad(q(g)):x and

�:

b

G! C

1




(g; a) = Lin(g; a)

is a 1-
o
y
le with respe
t to the a
tion of

b

G on Lin(g; a) by (g:�)(x) := g:�(g

�1

:x) . Its

restri
tion �

A

:= � j

A

is a homomorphism given by

�

A

(a) = D(d

G

(a)) with (d

G

a)(g) := g:a� a and D(d

G

a)(x) := x:a :=

�

d(d

G

a)(1)

�

(x):

This 1-
o
y
le maps A

0

to B

1




(g; a) and fa
tors through a 1-
o
y
le

�:

b

G=A

0

!

b

H

1




(g; a) = Lin(g; a)=B

1




(g; a); q(g) 7! [�(g)℄:

The map q:

b

G=A

0

! G; gA

0

7! q(g) is a 
overing of G , so that there is a unique 
overing

morphism bq

G

:

e

G!

b

G=A

0

with q Æ bq

G

= q

G

, and the following assertions hold:

(1) The 
oadjoint a
tion of

b

G on

b

g and the 
ux 
o
y
le are related by

F

!

= �� Æ bq

G

:

e

G!

b

H

1




(g; a):

(2) If Æ:�

1

(G)! �

0

(A) �

b

G=A

0

is the 
onne
ting homomorphism from the long exa
t homotopy

sequen
e of the prin
ipal A-bundle q:

b

G! G , then

F

!

= ��

A

Æ Æ:�

1

(G)! H

1




(g; a);

where �

A

:�

0

(A)! H

1




(g; a) is the 
hara
teristi
 homomorphism of the smooth G-module A .

(3) If A is 
onne
ted, then F

!

(�

1

(G)) = f0g .

Proof. From the des
ription of the Lie algebra

b

g as a �

!

g , it is 
lear that there exists a

fun
tion �:

b

G ! Lin(g; a) for whi
h the map (g; x) 7! �(g)(x) is smooth and the adjoint a
tion

of

b

G on g is given by (6.4). Sin
e Ad is a representation of G , we have �(1; x) = 0 and

(6:5) �(g

1

g

2

)(g

1

g

2

x) = g

1

:�(g

2

)(g

2

:x) + �(g

1

)(g

1

g

2

:x); g

1

; g

2

2

b

G; x 2 g;

whi
h means that

�(g

1

g

2

) = g

1

:�(g

2

) + �(g

1

);

i.e., � is a 1-
o
y
le. As A a
ts trivially on a and g , the restri
tion �

A

:= � j

A

is a homomorphism

�

A

:A! Z

1




(g; a) with Ad(b):(a; x) = (a� �

A

(b)(x); x); b 2 A; a 2 a; x 2 g:

The relation �(b) 2 Z

1




(g; a) follows dire
tly from Ad(b) 2 Aut(

b

g).

For bg 2

b

G with q(bg) = g and b 2 A we have

bbgb

�1

= (bbgb

�1

bg

�1

)bg = (b� g:b) � bg;

whi
h leads to

Ad(b):(a; x) = (a� x:b; x)

and therefore to �

A

(b)(x) = x:b . For a 2 a and b = q

A

(a) we have x:b = x:a , so that

�(A

0

) = B

1




(g; a). Hen
e � fa
tors through a 1-
o
y
le �:

b

G=A

0

!

b

H

1




(g; a) whose restri
tion

�

A

to �

0

(A) = A=A

0

is given by

�

A

:�

0

(A)

�

=

A=A

0

! H

1




(g; a); [a℄ 7! [�

A

(a)℄ = [D(d

G

a)℄:
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(1) For a �xed x 2 g the 
o
y
le 
ondition (6.5) implies for the smooth fun
tions �

x

:

b

G! a; g 7!

�(g)(x) the relation

�

x

(gh) = g:�

g

�1

:x

(h) + �

x

(g):

For the di�erentials we thus obtain

(6:6) d�

x

(g)d�

g

(1) = �

a

(g) Æ d�

g

�1

:x

(1):

From formula (6.4) for the adjoint a
tion, we get in view of �(1) = 0 the formula

(x

0

:a� x:a

0

+ !(x

0

; x); [x

0

; x℄) = ad(a

0

; x

0

)(a; x) = (x

0

:a� d�

x

(1)(a

0

; x

0

); [x

0

; x℄);

so that � and the 
orresponding Lie algebra 
o
y
le are related by

d�

x

(1)(a

0

; x

0

) = !(x; x

0

) + x:a

0

:

With (6.6) this further leads to

d�

x

(g)d�

g

(1)(a

0

; x

0

) = g:

�

!(g

�1

:x; x

0

) + (g

�1

:x):a

0

�

= !

eq

(x

r

(q(g)); d�

q(g)

(1):x

0

) + x:(g:a

0

):

In 


1

(

b

G; a) we therefore have the relation

d�

x

= _�

a

(x) Æ p

eq

a

+ q

�

(i

x

r

!

eq

);

where p

a

(a

0

; x

0

) = a

0

is the proje
tion of

b

g onto a and p

eq

a

the 
orresponding equivariant 1-form

on

b

G .

Let 
: [0; 1℄! G be any pie
ewise smooth loop based in 1 . Then there exists a pie
ewise

smooth map b
: [0; 1℄ !

b

G with q Æ b
 = 
 and b
(0) = 1 . Then e
 := bq

G

Æ b
: [0; 1℄ !

e

G is the

unique lift of 
 to a pie
ewise smooth path in

e

G starting in 1 . We now have

�

e

F

!

(
)(x) =

Z




i

x

r

!

eq

=

Z

[0;1℄




�

(i

x

r

!

eq

) =

Z

[0;1℄

b


�

q

�

(i

x

r

!

eq

)

=

Z

b


q

�

(i

x

r

!

eq

) =

Z

b


d�

x

� �

a

(x) Æ p

eq

a

= �

x

(b
(1))� �

x

(b
(0))� �

a

(x):

Z

b


p

eq

a

= �(b
(1))(x) � �

a

(x):

Z

b


p

eq

a

:

This means that

F

!

(e
(1)) = [

e

F

!

(
)℄ = �[�(b
(1))℄ = ��(bq

G

(e
(1)))

and therefore that F

!

= �� Æ bq

G

be
ause 
 was arbitrary.

(2) If 
: [0; 1℄ ! G is a pie
ewise smooth loop based in 1 , then b
(1) 2 ker q = A and

Æ([
℄) = [b
(1)℄ , as an element of �

0

(A). This means that Æ 
an be 
onsidered as the restri
tion

of bq

G

:

e

G!

b

G=A

0

to the subgroup �

1

(G) = ker q

G

. Therefore (2) follows from (1) by restri
tion.

(3) If A is 
onne
ted, then Æ = 0, so that (3) follows from (2).

Corollary VI.5. If, in addition to the assumptions of Proposition VI.4, the group G is simply


onne
ted, then A is 
onne
ted and

F

!

= ��:G!

b

H

1




(g; a):

On the subgroup A

℄

:= q

�1

(Z(G) \ ker �

A

) of

b

G the 
o
y
le � restri
ts to a homomorphism

(6:7) �

℄

:A

℄

! Z

1




(g; a); a 7! D(d

G

(a));
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where for ea
h a 2 A

℄

the smooth 
o
y
le d

G

(a) 2 Z

1

s

(G;A) is de�ned by d

G

(a)(q(g)) :=

gag

�1

a

�1

. For two pie
ewise smooth 
urves 
; �: [0; 1℄ ! G with 
(0) = �(0) = 1 and


(1); �(1) 2 A

℄

we have for H : I

2

! G;H(t; s) = 
(t)�(s) the formula

(6:8) 
(1)�(1)
(1)

�1

�(1)

�1

= �

Z




e

F

!

(�)

eq

+ �

A

=

Z

H

!

eq

+ �

A

:

Proof. To derive the �rst part from Propositions VI.3 and VI.4, we only have to observe

that for a 2 A

℄

the 
ondition �

A

(a) = id

A

implies that d

G

(a) is well-de�ned on G by

d

G

(a)(q(g)) = gag

�1

a

�1

, and that this is an element of A be
ause q(a) 2 Z(G) implies

d

G

(a) 2 ker q .

For (6.8) we �rst observe that for x 2 a and q

A

(x) = x+�

A

2 A the map d

G

q

A

(x):G ! A

satis�es

0 = �

A

(
(1))(q

A

(x)) � q

A

(x) = (d

G

q

A

(x))(
(1)) =

Z




d(d

G

(q

A

(x))) + �

A

=

Z




(D(d

G

q

A

(x)))

eq

+ �

A

=

Z




(d

g

x)

eq

+ �

A

;

so that the integration along 
 yields a well-de�ned map

b

H

1




(g; a)! a; [�℄ 7!

R




�

eq

: We therefore

get with Proposition VI.4, Lemma VI.2(3) (note the sign 
hange) and �� = F

!

:


(1)�(1)
(1)

�1

�(1)

�1

= d

G

(�(1))(
(1)) =

Z




d(d

G

(�(1))) + �

A

=

Z




D(d

G

(�(1)))

eq

+ �

A

=

Z




�

℄

(�(1))

eq

+ �

A

= �

Z




F

!

(�(1))

eq

+ �

A

= �

Z




e

F

!

(�)

eq

+ �

A

=

Z

H

!

eq

+ �

A

:

Corollary VI.6. Suppose that A

�

=

a=�

A

, that q

G

:

e

G ! G is a universal 
overing ho-

momorphism, let q:

b

G !

e

G be an A-extension of

e

G 
orresponding to ! 2 Z

2




(g; a) , and

b�

1

(G) := q

�1

(�

1

(G)) . Then the following are equivalent:

(1) F

!

(�

1

(G)) = 0 .

(2) �(b�

1

(G)) � B

1




(g; a) = �(A) .

(3) b�

1

(G) = A+ ker(� j

b�

1

(G)

) .

(4) q(ker(� j

b�

1

(G)

)) = �

1

(G) .

(5) There exists a group homomorphism �:�

1

(G) ! ker(� j

b�

1

(G)

) = b�

1

(G) \ Z(

b

G) with q Æ � =

id

�

1

(G)

.

Proof. The equivalen
e of (1) and (2) follows from Corollary VI.5, and (2) is 
learly equivalent

to (3), whi
h in turn is equivalent to (4) be
ause ker q = A .

That (5) implies (4) is trivial. If (4) is satis�ed, then we �rst observe that ker(� j

b�

1

(G)

) =

b�

1

(G)\Z(

b

G), so that (3) implies that b�

1

(G) is abelian. Further (6.7) in Corollary VI.5 leads to

ker(� j

b�

1

(G)

) \ ker q = ker(� j

A

) = q

A

(a

g

);

whi
h is a divisible group. Hen
e the extension q

A

(a

g

) ,! ker(� j

b�

1

(G)

) !! �

1

(G) splits, whi
h

is (5).

The following theorem is the 
entral result of the present paper.
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Theorem VI.7. (Integrability Criterion) Let G be a 
onne
ted Lie group and A be a smooth

G-module with A

0

�

=

a=�

A

, where �

A

is a dis
rete subgroup of the sequentially 
omplete lo
ally


onvex spa
e a . For ea
h ! 2 Z

2




(g; a) the abelian Lie algebra extension a ,!

b

g := a �

!

g !! g

integrates to a Lie group extension A ,!

b

G!! G with a 
onne
ted Lie group

b

G if and only if

(1) �

!

� �

A

, and

(2) there exists a surje
tive homomorphism 
:�

1

(G)! �

0

(A) su
h that the 
ux homomorphism

F

!

:�

1

(G) ! H

1




(g; a) is related to the 
hara
teristi
 homomorphism �

A

:�

0

(A) ! H

1




(g; a)

by

F

!

= �

A

Æ 
:

If A is 
onne
ted, then (2) is equivalent to F

!

= 0 .

Proof. Suppose �rst that a Lie group extension

b

G of G by A exists whi
h 
orresponds

to the Lie algebra 
o
y
le ! . A

ording to Proposition IV.5, up to sign the period map 
an

be interpreted as the 
onne
ting map �

2

(G) ! �

1

(A)

�

=

�

A

. This implies (1). That (2)

is satis�ed follows from Proposition VI.4(2) be
ause in view of the 
onne
tedness of

b

G , the

long exa
t homotopy sequen
e of the A-bundle

b

G implies that the 
onne
ting homomorphism

Æ:�

1

(G)! �

0

(A) is surje
tive.

Conversely, suppose that (1) and (2) hold. Let q

G

:

e

G ! G denote the simply 
onne
ted


overing group of G and re
all that �

2

(q

G

) is an isomorphism �

2

(

e

G)! �

2

(G). We may therefore

identify the period maps per

!

of G and

e

G and likewise for all quotients of

e

G by subgroups of

�

1

(G).

From the 
ase of simply 
onne
ted groups (Proposition V.3) we know that there exists

an A

0

-extension q

℄

:G

℄

!

e

G , where A 
arries the natural

e

G-module stru
ture indu
ed by the

G-module stru
ture. The Lie algebra of G

℄

is

b

g = a�

!

g . Let G

1

:=

e

G= ker
 and observe that

�

1

(G

1

)

�

=

ker 
 . Condition (2) implies �

1

(G

1

) = ker 
 � kerF

!

, so that Corollary VI.6 implies

that there exists a homomorphism

�:�

1

(G

1

)! ker(� j

b�

1

(G)

) � Z(G

℄

)

with q

℄

Æ � = id

�

1

(G

1

)

. Then the image of � is a dis
rete 
entral subgroup of G

℄

, and therefore

b

G := G

℄

=�(�

1

(G

1

))

de�nes an abelian extension A

0

,!

b

G

q

1

��!G

1


orresponding to the given Lie algebra extension

a�

!

g ! g . If q

1

:G

1

! G is the quotient map with kernel �

1

(G)= ker 


�

=

im 


�

=

�

0

(A), then

B := q

�1

1

(�

1

(G)= ker 
) is a subgroup of

b

G with B

0

= A

0

and �

0

(B) = B=B

0

�

=

�

0

(A), whi
h

implies that B

�

=

B

0

� �

0

(B)

�

=

A

0

� �

0

(A)

�

=

A as abelian Lie groups. As 
 fa
tors through

an isomomorphism 
:�

0

(B) ! �

0

(A) and the 
hara
teristi
 maps �

A

:�

0

(A) ! H

1




(g; a) and

�

B

:�

0

(B)! H

1




(g; a) satisfy

�

A

Æ 
 = �

B

(Proposition VI.4, Corollary VI.5), Lemma III.7 implies that A

�

=

B as smooth G-modules.

Therefore

b

G is an A-extension of G .

Remark VI.8. (a) Suppose that only (1) in Theorem VI.7 is satis�ed, and that A is 
onne
ted.

Consider the 
orresponding extension q

℄

:G

℄

!

e

G of

e

G by A

�

=

a=�

A

. Then G

�

=

G

℄

=b�

1

(G) ,

where b�

1

(G) := (q

℄

)

�1

(�

1

(G)) is a 
entral A-extension of �

1

(G), hen
e 2-step nilpotent.

We have seen in the proof of Theorem VI.7 that whenever an A-extension

b

G of G


orresponding to ! 2 Z

2




(g; a) exists, then it 
an be obtained as a quotient of G

℄

by a subgroup

�(�

1

(G)), where �:�

1

(G)! Z(G

℄

) \ b�

1

(G) a splitting homomorphism for b�

1

(G). This implies

in parti
ular that b�

1

(G) is abelian.

Let us take a 
loser look at the nilpotent group b�

1

(G). If this group is abelian, then

the divisibility of A

0

�

=

a=�

A

implies that b�

1

(G) splits as an A

0

-extension of �

1

(G). Clearly
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this 
ondition is weaker than the requirement that it splits by a homomorphism �:�

1

(G) !

b�

1

(G) \ Z(G

℄

).

That b�

1

(G) is abelian is equivalent to the triviality of the indu
ed 
ommutator map

C:�

1

(G) � �

1

(G)! A:

A

ording to Corollary VI.5,

(6:9) C([
℄; [�℄) = �

Z




e

F

!

(�)

eq

+ �

A

= �P (F

!

([�℄))([
℄) + �

A

;

where P :H

1




(g; a)! Hom(�

1

(G); a) is de�ned as in Proposition III.4. Therefore the 
ommutator

map vanishes if and only if

(6:10) P (F

!

(�

1

(G)))(�

1

(G)) � �

A

:

This means that for all smooth loops 
; �:S

1

! G and H :T

2

! G; (t; s) 7! 
(t)�(s) we have

Z

T

2

H

�

!

eq

= P (F

!

([�℄))([
℄) 2 �

A

:

In view of Proposition III.4, Condition (6.10) is equivalent to

(6:11) im(F

!

) � im(D

1

) � H

1




(g; a);

i.e., that the image of the 
ux homomorphism 
onsists of 
lasses of integrable 1-
o
y
les.

In Corollary VI.5 we have seen that we have a homomorphism

�

℄

= D

1

Æ d

e

G

: b�

1

(G)! Z

1




(g; a)

whi
h fa
tors through the (negative) 
ux homomorphism �F

!

:�

1

(G) ! H

1




(g; a): The group

b�

1

(G) is a smooth

e

G-module whi
h is abelian if and only �

1

(G) a
ts trivially, whi
h in turn is

(6.11). If this is the 
ase, then

�F

!

:�

0

(b�

1

(G))

�

=

�

1

(G)! H

1




(g; a)

is the 
hara
teristi
 homomorphism of the smooth G-module b�

1

(G). In view of Lemma III.7, it

vanishes if and only if the identity 
omponent b�

1

(G)

0

�

=

A has a G-invariant 
omplement.

In Example IX.17 below we will see 
ases where the 
ommutator map vanishes and the 
ux

homomorphism F

!

:�

1

(G)! H

1




(g; a) is non-zero.

(b) With similar arguments as in Se
tion IV, resp. Se
tion 5 of [Ne02℄, we 
an de�ne a toroidal

period map by observing that the integration map

fper

T

!

:C

1

(T

2

; G)! a

G

; [�℄ 7!

Z

�

!

eq

is 
onstant on the 
onne
ted 
omponents and de�nes a map

per

T

!

:�

0

(C

1

(T

2

; G))

�

=

�

1

(G)� �

1

(G)� �

2

(G)! a

(
f. [MN03, Remark I.11(b)℄, [Ne02, Th. A.3.7℄). The restri
tion to �

2

(G), whi
h 
orresponds to

homotopy 
lasses of maps vanishing on (T�f1g)[(f1g�T), is the period map per

!

:�

2

(G)! a .

The map

�

1

(G)� �

1

(G)! �

0

(C

1

(T

2

; G))

is indu
ed by the map

([
℄; [�℄) 7! [
 � �℄ with (
 � �)(t; s) = 
(t)�(s);

and we have seen in Corollary VI.5 that the 
ommutator map �

1

(G)� �

1

(G)! A is given by

([
℄; [�℄) 7! per

T

!

([
 � �℄) + �

A

:

Note that this map is biadditive and not a group homomorphism �

1

(G) � �

1

(G) ! A , whi
h

implies that per

T

!

is not a group homomorphism. The 
ondition

im(per

T

!

) � �

A

means at the same time that �

!

� �

A

and that the 
ommutator map C is trivial.
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Remark VI.9. If A

�

=

a=�

A

, then a

G

= a

g

is a 
losed subspa
e of a 
ontaining �

A

. Therefore

A=A

G

�

=

b := a=a

G

is a lo
ally 
onvex spa
e whi
h 
arries a natural smooth G-module stru
ture. Note that the

quotient spa
e b need not be sequentially 
omplete if a has this property. Nevertheless the


onstru
tion in Se
tion V leads to a group 
o
y
le f 2 Z

2

s

(G; a=�

!

) and sin
e �

!

is always


ontained in a

G

(Lemma IV.2), we obtain a group 
o
y
le

f

1

2 Z

2

s

(G; b) with Df

1

= !

b

:= q

b

Æ !;

where q

b

: a! b is the quotient map (Corollary V.3). This leads to a Lie group extension

b ,!

b

G!!

e

G

with

b

g

�

=

b�

!

b
g . Note that

b = a=a

G

�

=

B

1




(g; a) � Z

1




(g; a);

so that we may identify the quotient map q

b

with the 
oboundary map d

g

: a ! B

1




(g; a): This

makes it easier to identify the 
orresponding 
ux 
o
y
le.

In Proposition X.4 we shall en
ounter examples of modules a with a

g

= f0g for whi
h the


ux 
o
y
le is non-trivial (this is the 
ase for the module F

1

of Di�(S

1

)

0

). Therefore one 
annot

expe
t F

!

b

to vanish.

VII. An exa
t sequen
e for abelian Lie group extensions

Let G be a 
onne
ted Lie group and A a smooth G-module of the form A

�

=

a=�

A

, where

�

A

� a is a dis
rete subgroup. The main result of the present se
tion is an exa
t sequen
e

relating the group homomorphism

D:H

2

s

(G;A) ! H

2




(g; a)

to the exa
t In
ation-Restri
tion Sequen
e asso
iated to the normal subgroup �

1

(G)

�

=

ker q

G

of

e

G , where q

G

:

e

G! G is the universal 
overing map (
f. Appendix D). The 
ru
ial information

on im(D) has already been obtained in Theorem VI.7, so that it essentially remains to show

that kerD 
oin
ides with the image of the 
onne
ting homomorphism Æ: Hom(�

1

(G); A

G

) !

H

2

s

(G;A).

In the following we shall always 
onsider A as a

e

G -module, where g 2

e

G a
ts on A by

g:a := q

G

(g):a , so that �

1

(G) a
ts trivially.

Proposition VII.1. Let G be a 
onne
ted Lie group. For an abelian Lie group extension

A ,!

b

G

q

��!G the following 
onditions are equivalent:

(1) There exists an open identity neighborhood U � G and a smooth se
tion �

U

:U !

b

G of q

with �

U

(xy) = �

U

(x)�

U

(y) for x; y; xy 2 U .

(2)

b

G

�

=

A�

f

G , where f 2 Z

2

s

(G;A) is 
onstant 0 on an identity neighborhood in G�G .

(3) There exists a homomorphism 
:�

1

(G) ! A

G

and an isomorphism �: (A o

e

G)=�(
) !

b

G

with q

�

�([1; x℄)

�

= q

G

(x) , x 2

e

G , where �(
) = f(
(d); d): d 2 �

1

(G)g is the graph of 
 .

Proof. (1) , (2) follows dire
tly from the de�nitions and Proposition II.6.

(1) ) (3): We may w.l.o.g. assume that U is 
onne
ted, U = U

�1

, and that there exists a

smooth se
tion e�:U !

e

G of the universal 
overing map q

G

. Then

�

U

Æ q

G

j

e�(U)

: e�(U)!

b

G
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extends uniquely to a smooth homomorphism ':

e

G!

b

G with 'Æe� = �

U

and q Æ' = q

G

([Ne02,

Lemma 2.1℄; see also [HoMo98, Cor. A.2.26℄). We de�ne  :Ao

e

G!

b

G; (a; g) 7! a'(g). Then  

is a smooth group homomorphism whi
h is a lo
al di�eomorphism be
ause

 (a; e�(x)) = a'(e�(x)) = a�

U

(x) for x 2 U; a 2 A:

We 
on
lude that  is a 
overing homomorphism. Moreover,  is surje
tive be
ause its range is

a subgroup of

b

G 
ontaining A and mapped surje
tively by q onto G . This proves that

b

G

�

=

(Ao

e

G)= ker ; ker = f(�'(g); g): g 2 '

�1

(A)g:

On the other hand, '

�1

(A) = ker(q Æ ') = ker q

G

= �

1

(G), so that

ker = f(
(d); d): d 2 �

1

(G)g = �(
) for 
 := �' j

�

1

(G)

:

(3) ) (1) follows dire
tly from the fa
t that the map Ao

e

G!

b

G is a 
overing morphism.

For the following theorem we re
all the de�nition of the period map per

!

(Se
tion IV) and

the 
ux homomorphism F

!

:�

1

(G)! H

1




(g; a) asso
iated to ! 2 Z

2

s

(g; a) (Proposition VI.3).

Theorem VII.2. Let G be a 
onne
ted Lie group, A a smooth G-module of the form

A

�

=

a=�

A

, where �

A

� a is a dis
rete subgroup of the sequentially 
omplete lo
ally 
onvex

spa
e a and q

A

: a! A the quotient map. The map

e

P :Z

2




(g; a) ! Hom

�

�

2

(G); A

�

�Hom

�

�

1

(G); H

1




(g; a)

�

;

e

P (!) = (q

A

Æ per

!

; F

!

)

fa
tors through a homomorphism

P :H

2




(g; a) ! Hom

�

�

2

(G); A

�

�Hom

�

�

1

(G); H

1




(g; a)

�

; P ([!℄) = (q

A

Æ per

!

; F

!

)

and the following sequen
e is exa
t:

0! H

1

s

(G;A)

I

��!H

1

s

(

e

G;A)

R

��!H

1

�

�

1

(G); A

�

G

�

=

Hom

�

�

1

(G); A

G

�

Æ

����!

Æ

����!H

2

s

(G;A)

D

����!H

2




(g; a)

P

����!Hom

�

�

2

(G); A

�

�Hom

�

�

1

(G); H

1




(g; a)

�

:

Here the map Æ assigns to a group homomorphism 
:�

1

(G)! A

G

the quotient of the semi-dire
t

produ
t Ao

e

G by the graph f(
(d); d): d 2 �

1

(G)g of 
 whi
h is a dis
rete 
entral subgroup.

Proof. First we verify that

e

P vanishes on B

2




(g; a), so that the map P is well-de�ned. In

Theorem VI.7 we have seen that [!℄ 2 im(D) is equivalent to

e

P (!) = 0. If [!℄ = 0, then

a �

!

g

�

=

a o g and the semi-dire
t produ
t A o G is a 
orresponding extension of G by A ,

so that Theorem VI.7 leads to

e

P (!) = 0. As

e

P is a group homomorphism, it fa
tors to a

homomorphism P on H

2




(g; a).

The exa
tness of the sequen
e in H

1

s

(G;A), H

1

s

(

e

G;A) and Hom(�

1

(G); A

G

) follows from

Example D.11(b) and the exa
tness in H

2




(g; a) from Theorem VI.7. It therefore remains to

verify the exa
tness in H

2

s

(G;A).

First we need a more 
on
rete interpretation of the map Æ in terms of abelian extensions.

Let 
 2 Hom(�

1

(G); A

G

) and f 2 C

1

s

(

e

G;A) as in Lemma D.7 applied with N = �

1

(G) with

f(gd) = f(g) + 
(d) for g 2

e

G; d 2 �

1

(G). Then the arguments in Remark D.10 show that the

map

�:A�

d

eG

f

e

G! Ao

e

G; (a; g) 7! (a+ f(g); g)

is a bije
tive group homomorphism. Sin
e, in addition, � is a lo
al di�eomorphism, it also is an

isomorphism of Lie groups, and therefore the 
o
y
le Æ(f) := d

e

G

f 2 Z

2

s

(G;A) satis�es

A�

Æ(f)

G

�

=

(A�

d

eG

f

e

G)=(f0g��

1

(G))

�

=

(Ao

e

G)=�(f0g��

1

(G))

�

=

(Ao

e

G)=f(d; 
(d)): d 2 �

1

(G)g:
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Now the in
lusion im(Æ) � ker(D) follows from Proposition VII.1 be
ause for a 
o
y
le f 2

Z

2

s

(G;A) vanishing in an identity neighborhood we 
learly have Df = 0.

Conversely, let f 2 Z

2

s

(G;A) be a lo
ally smooth group 
o
y
le for whi
h ! := Df is a


oboundary and let q:

b

G = A�

f

G! G be a 
orresponding Lie group extension (Proposition II.6).

Then the Lie algebra extension

b

g

�

=

a�

!

g ! g splits, and there exists a 
ontinuous proje
tion

p

a

:

b

g! a whose kernel is a 
losed subalgebra isomorphi
 to g . Considering p

a

as an element of

C

1




(

b

g; a), we have

(d

g

p

a

)(x; y) = x:p

a

(y)� y:p

a

(x) � p

a

([x; y℄) = p

a

([x� p

a

(x); p

a

(y)� y℄) = 0;

for x; y 2

b

g , so that p

a

2 Z

1




(

b

g; a). Let q

b

G

:G

℄

!

b

G denote the universal 
overing group of

b

G .

Then the 
orresponding equivariant 1-form p

eq

a

on G

℄

is 
losed (Lemma B.5), so that we �nd a

smooth fun
tion

':G

℄

! a with '(1) = 0 and d' = p

eq

a

;

and Lemma III.2 implies that ' 2 Z

1

s

(

b

G; a) is a group 
o
y
le.

Using the lo
al des
ription of

b

G , resp., G

℄

by a 2-
o
y
le, we see that the in
lusion map

A

0

,!

b

G of the identity 
omponent of A lifts to a Lie group morphism �

a

: a ! G

℄

whose

di�erential is the in
lusion a ,!

b

g . Sin
e p

a

j

a

= id

a

and the image of �

a

a
ts trivially on a , the


omposition ' Æ �

a

: a ! a is a morphism of Lie groups whose di�erential is id

a

, whi
h implies

that ' Æ �

a

= id

a

: Moreover, the 
o
y
le 
ondition implies that

(7:1) '(ag) = '(a) + '(g); a 2 �

a

(a); g 2 G

℄

:

Let U � G be a 
onne
ted open identity neighborhood on whi
h there exists a smooth

se
tion �:U ! G

℄

of the quotient map q

℄

:= q Æ q

b

G

:G

℄

! G . We then obtain another smooth

map by

�

1

:U ! G

℄

; x 7! �

a

('(�(x))

�1

)�(x):

In view of (7.1), this map is also a se
tion of q

℄

. Moreover, im(�

1

) � '

�1

(0):

From the des
ription of

b

G with the 
o
y
le f it follows that there exists an open 1-

neighborhood in G

℄

of the form

U

℄

:= �

a

(U

a

)�

1

(U);

where U

a

� a is an open 0-neighborhood. Restri
ting ' to U

℄

, we see that �

1

(U) = '

�1

(0)\U

℄

:

Sin
e '

�1

(0) is a subgroup of G

℄

, we have

(�

1

(U)�

1

(U)) \ U

℄

� �

1

(U):

Let V � U be an open symmetri
 1-neighborhood in G su
h that there exists a smooth

se
tion �

V

:V !

e

G of the universal 
overing map q

G

:

e

G ! G and, in addition, V V � U

and �

1

(V )�

1

(V ) � U

℄

. For x; y 2 V we then have xy 2 U , and �

1

(x)�

1

(y) 2 U

℄

implies the

existen
e of z 2 U with �

1

(z) = �

1

(x)�

1

(y). Applying q

℄

to both sides leads to

z = q

℄

�

1

(z) = q

℄

(�

1

(x)�

1

(y)) = xy:

We therefore have

�

1

(xy) = �

1

(x)�

1

(y) for x; y 2 V:

Hen
e there exists a unique group homomorphism f :

e

G! G

℄

with f Æ �

V

= �

1

([HoMo98, Cor.

A.2.26℄). Composing f with the 
overing map q

b

G

:G

℄

!

b

G , we obtain a smooth homomorphism

b

f :

e

G!

b

G with q Æ

b

f = q

G

. In view of Proposition VII.1, this implies that

b

G is isomorphi
 to a

group of the type (Ao

e

G)=�(
); where 
:�

1

(G)! A

G

is a group homomorphism.

Sin
e the fundamental group �

1

(

e

G) vanishes, we obtain in parti
ular:
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Corollary VII.3. The map

e

D:H

2

s

(

e

G;A)! H

2

s

(g; a) is inje
tive.

In view of Corollary VII.3, we may identify H

2

s

(

e

G;A) with a subgroup of H

2




(g; a). The

in
ation map

I :H

2

s

(G;A)! H

2

s

(

e

G;A) satis�es

e

D Æ I = D:H

2

s

(G;A)! H

2




(g; a):

Remark VII.4. At �rst sight, the following argument seems to be more natural to prove that

kerD � im Æ : If the group

b

G is regular (
f. [Mil83℄), then the Lie algebra morphism �: g !

b

g

whose existen
e is guaranteed by [Df ℄ = 0 
an be integrated to a Lie group morphism

e

G!

b

G ,

and we 
an argue as above. Unfortunately this argument requires the regularity of the group

b

G ,

whi
h is not needed for the argument given above.

VIII. Abelian extensions with smooth global se
tions

In this subse
tion we dis
uss the existen
e of a smooth 
ross se
tion for an abelian Lie group

extension A ,!

b

G !! G whi
h is equivalent to the existen
e of a smooth global 
o
y
le

f :G� G ! A with

b

G

�

=

G�

f

A . Moreover, we will show that for simply 
onne
ted groups, it

is equivalent to the exa
tness of the equivariant 2-form !

eq

on G , where ! = Df .

The following lemma will be helpful in the proof of Proposition VIII.2.

Lemma VIII.1. Let G be a 
onne
ted Lie group, A a smooth G-module and f 2 Z

2

s

(G;A)

su
h that all fun
tions f

g

:G ! A; x 7! f(g; x) are smooth. Then f :G � G ! A is a smooth

fun
tion.

Proof. We write the 
o
y
le 
ondition as

f(xy; z) = f(x; yz) + �

A

(x):f(y; z)� f(x; y); x; y; z 2 G:

For x �xed, this fun
tion is smooth as a fun
tion of the pair (y; z) in a neighborhood of (1;1).

This implies that f is smooth on a neighborhood of the points (x;1), x 2 G . Fixing x and z

shows that there exists a 1-neighborhood V � G (independent of x) su
h that the fun
tions

f(�; z), z 2 V , are smooth in a neighborhood of x . Sin
e x 2 G was arbitrary, we 
on
lude that

the fun
tions f(�; z), z 2 V , are smooth. Now

f(�; yz) = f(�y; z)� �

A

(�):f(y; z) + f(�; y)

shows that the same holds for the fun
tions f(�; u), u 2 V

2

. Iterating this pro
ess, using

G =

S

n2N

V

n

, we derive that all fun
tions f(�; x), x 2 G , are smooth. Finally we see that the

fun
tion

(x; y) 7! f(x; yz) = f(xy; z)� �

A

(x):f(y; z) + f(x; y)

is smooth in a neighborhood of ea
h point (x

0

;1), hen
e that f is smooth in ea
h point (x

0

; z

0

),

and this proves that f is smooth on G�G .

Proposition VIII.2. Let G be a 
onne
ted Lie group, a a sequentially 
omplete lo
ally 
onvex

smooth G-module, ! 2 Z

2




(g; a) a 
ontinuous 2-
o
y
le, and !

eq

2 


2

(G; a) the 
orresponding

equivariant 2-form on G with !

eq

1

= ! . We assume that

(1) !

eq

= d� for some � 2 


1

(G; a) and

(2) for ea
h g 2 G the 
losed 1-form �

�

g

� � �

a

(g) Æ � is exa
t.

Then the produ
t manifold

b

G := a�G 
arries a Lie group stru
ture whi
h is given by a smooth

2-
o
y
le f 2 Z

2

s

(G; a) with D[f ℄ = [!℄ via

(a; g)(a

0

; g

0

) := (a+ g:a

0

+ f(g; g

0

); gg

0

):
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Proof. For ea
h g 2 G the relation �

a

(g) Æ !

eq

= �

�

g

!

eq

implies

d

�

�

a

(g) Æ � � �

�

g

�

�

= �

a

(g) Æ !

eq

� �

�

g

!

eq

= 0:

In view of (2), for ea
h g 2 G there exists a smooth fun
tion f

g

:G! a with f

g

(1) = 0 and

df

g

= �

�

g

� � �

a

(g) Æ �:

Observe that f

1

= 0. For g; h 2 G this leads to

df

gh

= �

�

gh

� � �

a

(gh) Æ � = �

�

h

(�

�

g

� � �

a

(g) Æ �) + �

�

h

(�

a

(g) Æ �)� �

a

(gh) Æ �

= �

�

h

df

g

+ �

a

(g)(�

�

h

� � �

a

(h) Æ �) = �

�

h

df

g

+ �

a

(g) Æ df

h

= d(f

g

Æ �

h

+ �

a

(g) Æ f

h

):

Comparing values of both fun
tions in 1 , we get

(8:1) f

gh

= f

g

Æ �

h

+ �

a

(g) Æ f

h

� f

g

(h):

Now we de�ne f :G�G! a by f(x; y) := f

x

(y). Then (8.1) means that

f(gh; u) = f(g; hu) + �

a

(g):f(h; u)� f(g; h); g; h; u 2 G;

i.e., f is a group 
o
y
le.

Moreover, the 
on
rete lo
al formula for f

x

in the Poin
ar�e Lemma ([Ne02, Lemma 3.3℄)

and the smooth dependen
e of the integral on x imply that f is smooth on a neighborhood of

(1;1), so that Lemma VIII.1 implies that f :G � G ! a is a smooth fun
tion. We therefore

obtain on the spa
e

b

G := a�G a Lie group stru
ture with the multipli
ation given by

(a; g)(a

0

; g

0

) := (a+ g:a

0

+ f(g; g

0

); gg

0

)

(Lemma II.1), and Lemma II.7 implies that the 
orresponding Lie bra
ket is given by

[(a; x); (a

0

; x

0

)℄ =

�

x:a

0

� x

0

:a+ d

2

f(1;1)(x; x

0

)� d

2

f(1;1)(x

0

; x); [x; x

0

℄

�

:

Now we relate this formula to the Lie algebra 
o
y
le ! . The relation df

g

= �

�

g

���

a

(g)Æ �

leads to

df(g;1)(0; y) = df

g

(1)y = (�

�

g

� � �

a

(g) Æ �)

1

(y) = h�; y

l

i(g)� �

a

(g):�

1

(y);

where y

l

denotes the left invariant ve
tor �eld with y

l

(1) = y . Taking se
ond derivatives, we

further obtain for x 2 g :

d

2

f(1;1)(x; y)

= x

l

(h�; y

l

i)(1)� x:�

1

(y) = (d�)(x

l

; y

l

)(1) + y

l

(h�; x

l

i)(1) + �([x

l

; y

l

℄)(1) � x:�

1

(y)

= !(x; y) + y

l

(h�; x

l

i)(1) + �

1

([x; y℄) � x:�

1

(y);

Subtra
ting d

2

f(1;1)(y; x) = y

l

(h�; x

l

i)(1)� y:�

1

(x); leads to

(Df)(x; y) = !(x; y) + �

1

([x; y℄)� x:�

1

(y) + y:�

1

(x) = !(x; y)� (d�

1

)(x; y):

Sin
e this 
o
y
le is equivalent to ! , the assertion follows.

Corollary VIII.3. If G is simply 
onne
ted and !

eq

is exa
t, then there exists a smooth


o
y
le f :G � G ! a with D[f ℄ = [!℄ , so that

b

G := a �

f

G is a Lie group with Lie algebra

b

g = a�

!

g .

Proof. Sin
e �

1

(G) is trivial, 
ondition (2) in Proposition VIII.2 is automati
ally satis�ed.

For 
entral extensions of �nite-dimensional groups, the 
onstru
tion des
ribed in Proposi-

tion VIII.2 is due to E. Cartan, who used it to 
onstru
t a 
entral extension of a simply 
onne
ted

�nite-dimensional Lie group G by the group a . Sin
e in this 
ase

H

2

dR

(G; a)

�

=

Hom(�

2

(G); a) = 0 and H

1

dR

(G; a)

�

=

Hom(�

1

(G); a) = 0;

(
f. [God71℄), the requirements of the 
onstru
tion are satis�ed for every Lie algebra 
o
y
le

! 2 Z

2




(g; a).
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Proposition VIII.4. If G is a 
onne
ted Lie group whi
h is smoothly para
ompa
t, then the


on
lusion of Proposition VIII.2 remains valid under the assumptions:

(1) !

eq

is an exa
t 2-form, and

(2) F

!

= 0 .

Proof. In view of (1), we 
an apply Proposition VIII.2 to the universal 
overing group

q

G

:

e

G! G of G , whi
h leads to an a-extension

q

℄

:G

℄

:= a�

f

e

G!

e

G; (a; g) 7! g;

where f 2 Z

2

s

(

e

G; a) is a smooth 
o
y
le with D[f ℄ = [!℄ . In view of Corollary VI.5, the vanishing

of F

!

implies the existen
e of a homomorphism 
:�

1

(G)! Z(G

℄

) with q

℄

Æ 
 = id

�

1

(G)

. Then

im(
) is a dis
rete 
entral subgroup of G

℄

, so that

b

G := G

℄

= im(
) is a Lie group, and we obtain

an a-extension of G by

q:

b

G! G; g im(
) 7! q

G

Æ q

℄

(g):

As

b

G is a prin
ipal a-bundle over G , its �bers are aÆne spa
es whose translation group is a .

If G is smoothly para
ompa
t, we 
an therefore use a smooth partition of unity subordinated

to a trivializing open 
over of the a-bundle

b

G! G to pat
h smooth lo
al se
tions together to a

global smooth se
tion �:G!

b

G . Then the map

a�

f

G

G!

b

G; (a; g) 7! a�(g)

is an isomorphism of Lie groups, where f

G

2 Z

2

s

(G; a); (g; g

0

) 7! �(g)�(g

0

)�(gg

0

)

�1

is a globally

smooth 
o
y
le.

Remark VIII.5. Let G be a 
onne
ted Lie group and A a smooth G-module of the form

a=�

A

. Let Z

2

gs

(G;A) denote the group of smooth 2-
o
y
les G � G ! A and B

2

gs

(G;A) �

Z

2

gs

(G;A) the 
o
y
les of the form d

G

h , where h 2 C

1

(G;A) is a smooth fun
tion with

h(1) = 0. Then one 
an show that we have an inje
tion

H

2

gs

(G;A) := Z

2

gs

(G;A)=B

2

gs

(G;A) ,! H

2

s

(G;A);

the spa
e H

2

gs

(G;A) 
lassi�es those A-extensions of G with a smooth global se
tion, and we

have an exa
t sequen
e

Hom(�

1

(G); a

G

)

Æ

��!H

2

gs

(G;A)

D

��!H

2




(g; a)

P

����!H

2

dR

(G; a)�Hom

�

�

1

(G); H

1




(g; a)

�

;

where P ([!℄) = ([!

eq

℄; F

!

): The proof is an easy adaptation from the 
orresponding arguments

for 
entral extensions in Se
tion 8 of [Ne02℄.

IX. Appli
ations to di�eomorphism groups

In the present se
tion we apply the general results of this paper to di�eomorphism groups of

a 
ompa
t manifold M . In this 
ase the Lie algebra is the Fr�e
ht{Lie algebra V(M) of smooth

ve
tor �elds on M and we obtain interesting Lie algebra 2-
o
y
les with values in the spa
e

C

1

(M;V ) of smooth V -valued fun
tions from 
losed V -valued 2-forms on M . In this 
ase the

period map and the 
ux 
o
y
le 
an be made more 
on
rete in geometri
 terms whi
h makes

it possible to evaluate the obstru
tions to the existen
e of abelian extensions in many 
on
rete

examples.
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De�nition IX.1. Let M be a 
ompa
t manifold.

(a) We write Di�(M) for the group of all di�eomorphisms of M and V(M) for the Lie algebra of

smooth ve
tor �elds on M , i.e., the set of all smooth maps X :M ! TM with �

TM

ÆX = id

M

,

where �

TM

:TM !M is the bundle proje
tion of the tangent bundle. We de�ne the Lie algebra

stru
ture on V(M) in su
h a way that [X;Y ℄:f = X:(Y:f) � Y:(X:f) holds for X;Y 2 V(M)

and f 2 C

1

(M;R).

Then Di�(M) is a Lie group whose Lie algebra is V(M)

op

(the same spa
e with the

apposite bra
ket (X;Y ) 7! �[X;Y ℄) and we have a smooth exponential fun
tion

exp:V(M)! Di�(M)

given by exp(X) = �

1

X

, where �

t

X

2 Di�(M) is the 
ow of the ve
tor �eld X at time t

([KM97℄).

The tangent bundle of Di�(M) 
an be identi�ed with the set

T (Di�(M)) := fX 2 C

1

(M;TM):�

TM

ÆX 2 Di�(M)g;

where the map

�:T (Di�(M))! Di�(M); X 7! �

TM

ÆX

is the bundle proje
tion. Then T

'

(Di�(M)) := �

�1

(') is the �ber over the di�eomorphism ' .

In view of the natural a
tion of Di�(M) on TM given by  :v := T ( ):v , we obtain natural

left and right a
tions of Di�(M) on T (Di�(M)) by

(':X)(x) = '(x):X(x); X:' := X Æ ':

Then

�

TM

Æ (':X) = ' Æ (�

TM

ÆX) and �

TM

Æ (X Æ ') = (�

TM

ÆX) Æ ';

so that the left, resp., right a
tion of Di�(M) on T (Di�(M)) 
overs the left, resp., right

multipli
ation a
tion of the group Di�(M) on itself. In the following we shall mostly 
onsider

the opposite group Di�(M)

op

whose Lie algebra is V(M). The adjoint a
tion of this group is

given by

Ad:Di�(M)

op

� V(M)! V(M); (';X) 7! '

�1

:(X Æ ') = '

�1

:(X:'):

(b) Let J � R be an interval and ': J ! Di�(M)

op

be a smooth 
urve. Then for ea
h t 2 J

we obtain a ve
tor �eld

Æ

r

(')(t) := '(t)

�1

:'

0

(t)


alled the right logarithmi
 derivative of ' in t . We likewise de�ne the left logarithmi
 derivative

by

Æ

l

(')(t) := '

0

(t) Æ '(t)

�1

:

De�nition IX.2. Let M be a 
ompa
t smooth manifold and g := V(M) the Lie algebra

of smooth ve
tor �elds on M . If V is Fr�e
het spa
e and a := C

1

(M;V ) the spa
e of smooth

V -valued fun
tions on M , then (X:f)(p) := df(p)X(p) turns C

1

(M;V ) into a topologi
al

V(M)-module. We observe that C

1

(M;V ) and V(M) are Fr�e
het modules of the Fr�e
het

algebra R := C

1

(M;R) .

In the Lie algebra 
omplex (C

p




(g; a); d

g

)

p2N

0

formed by the 
ontinuous alternating maps

g

p

! a , we have the sub
omplex given by the subspa
es C

p

R

(g; a) � C

p




(g; a) 
onsisting of R -

multilinear maps g

p

! a . Using partitions of unity, it is easy to see that the elements of C

p

R

(g; a)


an be identi�ed with smooth V -valued p-forms, so that C

p

R

(g; a)

�

=




p

(M;V ) ([Hel78℄), and

the de Rham di�erential 
oin
ides with the Lie algebra di�erential d

g

to C

p

R

(g; a).

We thus obtain natural maps Z

p

dR

(M;V )! Z

p




(g; a) and j

p

:H

p

dR

(M;V )! H

p




(g; a):

Lemma IX.3. If M is 
onne
ted, then V

�

=

C

1

(M;V )

V(M)

= a

g


onsists of the 
onstant

fun
tions M ! V .
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Lemma IX.4. The map j

1

:H

1

dR

(M;V )! H

1




(g; a) is inje
tive.

Proof. Let � 2 


1

(M;V ) be a 
losed V -valued 1-form on M . If j

1

([�℄) = 0, then there

exists an element f 2 a = C

1

(M;V ) with � = d

g

f , whi
h means that � = df . Hen
e � is

exa
t and therefore j

1

is inje
tive.

Lemma VI.1 in [MN03℄ implies that we have a smooth a
tion of the group G := Di�(M)

op

0

on a by ':f := f Æ ' . The derived a
tion of V(M) on this spa
e is given by

(X:f)(p) =

d

dt

t=0

(exp(tX):f)(p) =

d

dt

t=0

f(exp(tX):p) = df(p)X(p)

whi
h is 
ompatible with De�nition IX.2. We view ea
h smooth V -valued 2-form !

M

2




2

(M;V ) as an element !

g

2 C

2




(g; a). In the following we shall obtain some information

on the period map and the 
ux homomorphism

per

!

:�

2

(Di�(M))! a

g

�

=

V and F

!

:�

1

(Di�(M))! H

1




(g; a)

whi
h makes it possible to verify the integrability 
riteria from Se
tions VI and VII in many

spe
ial 
ases.

More on the period group

The following proposition is very helpful in verifying the dis
reteness of the image of the

period map for the group G := Di�(M)

op

0

. In the following we write (m; g) 7! g(m) for the


anoni
al right a
tion of G on M .

Proposition IX.5. Let !

M

2 Z

2

dR

(M;V ) be a 
losed V -valued 2-form on M , �:S

2

! G =

Di�(M)

op

0

smooth and m 2M . Then

per

!

g

([�℄)(m) =

Z

�

m

Æ�

!

M

2 V

�

=

C

1

(M;V )

V(M)

;

where �

m

:G ! M; g 7! g(m) . In parti
ular the period group �

!

g

= im(per

!

g

) is 
ontained in

the group

R

�

2

(M)

!

M

of spheri
al periods of !

M

.

Proof. Sin
e a

g


onsists of 
onstant fun
tions M ! V , it suÆ
es to 
al
ulate the value of

per

!

g

([�℄) 2 C

1

(M;V ) in the point m .

We 
laim that

(9:1) �

�

m

!

M

= ev

m

Æ!

eq

g

;

where ev

m

:C

1

(M;V ) ! V is the evaluation in m . First we note that for g 2 G we have

�

m

Æ �

g

= �

g(m)

: Further

d�

m

(1)(X) =

d

dt

t=0

exp(tX):m = X(m) for X 2 V(M):

For g 2 G and ve
tor �elds X;Y 2 g = V(M) this leads to

(�

�

m

!

M

)(g:X; g:Y )

= !

M

(g(m))(d�

m

(g)d�

g

(1):X; d�

m

(g)d�

g

(1):Y )

= !

M

(g(m))(d(�

m

Æ �

g

)(1):X; d(�

m

Æ �

g

)(1):Y )

= !

M

(g(m))(d�

g(m)

(1):X; d�

g(m)

(1):Y )

= !

M

(g(m))(X(g(m)); Y (g(m))) =

�

g:

�

!

g

(X;Y )

�

�

(m) = (ev

m

Æ!

eq

g

)(g:X; g:Y ):

This proves (9.1). We now obtain

per

!

g

([�℄)(m) = ev

m

Z

�

!

eq

g

=

Z

�

ev

m

Æ!

eq

g

=

Z

�

�

�

m

!

M

=

Z

�

m

Æ�

!

M

:

We immediately derive the following suÆ
ient 
riterion for the dis
reteness of im(per

!

g

).
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Corollary IX.6. If the subgroup

R

�

2

(M)

!

M

:= f

R

�

!

M

:� 2 C

1

(S

2

;M)g � V of spheri
al

periods of !

M

is dis
rete, then the image of per

!

g

is dis
rete.

Example IX.7. (1) The pre
eding 
orollary applies in parti
ular to all manifolds M for whi
h

�

2

(M)= tor(�

2

(M)) is a 
y
li
 group. In fa
t, for ea
h torsion element [�℄ 2 �

2

(M) we have

R

�

!

M

= 0, so that

R

�

2

(M)

!

M

is the image of the 
y
li
 group �

2

(M)= tor(�

2

(M)), hen
e 
y
li


and therefore dis
rete.

Examples of su
h manifolds are spheres and tori:

�

2

(S

d

)

�

=

n

f0g for d 6= 2

Z for d = 2

and �

2

(T

d

)

�

=

�

2

(R

d

) = f0g; d 2 N:

The only 
ompa
t 
onne
ted manifolds M with dimM � 2 and �

2

(M) non-trivial are

the 2-sphere S

2

and the real proje
tive plane P

2

(R). This follows from �

2

(M)

�

=

�

2

(

f

M) for

the universal 
overing

f

M !M and the fa
t that a simply 
onne
ted 2-dimensional manifold is

di�eomorphi
 to S

2

or R

2

. Further all orientable 3-manifolds whi
h are irredu
ible in the sense

of Kneser have trivial �

2

. In parti
ular the 
omplement of a knot K � S

3

has trivial �

2

(
f.

[Mil03, p.1228℄).

(2) For M = S

2

we have

�

2

(Di�(M))

�

=

�

2

(SO

3

(R)) = f1g and �

2

(S

2

)

�

=

Z:

If !

M

2 Z

2

dR

(M;R) is the 
losed 2-form with

R

M

!

M

= 1, we have

R

�

2

(M)

!

M

= Z whi
h is

larger than �

!

g

= im(per

!

g

) = f0g .

Problem IX. Find an example of a 
losed 2-form ! for whi
h the group �

!

g

= im(per

!

g

) is

dis
rete and

R

�

2

(M)

!

M

is not.

The 
ux 
o
y
le

We 
ontinue with the setting where M is a 
ompa
t manifold and G = Di�(M)

op

0

is the

identity 
omponent of its di�eomorphism group endowed with the opposite multipli
ation. For

any Fr�e
het spa
e V the spa
e 


1

(M;V ) is a smooth G-module with respe
t to ('; �) 7! '

�

� .

To verify the smoothness of this a
tion, we 
an think of 


1

(M;V ) as a 
losed subspa
e of

C

1

(TM; V ) and observe that Di�(M) a
ts smoothly on TM , so that Lemma VI.1 in [MN03℄

applies. The 
orresponding derived module of g = V(M) is given by (X; �) 7! L

X

:� , where

L

X

= d Æ i

X

+ i

X

Æ d denotes the Lie derivative. The subspa
e dC

1

(M;V ) of exa
t 1-forms is

a 
losed subspa
e be
ause

(9:2) dC

1

(M;V ) =

n

� 2 


1

(M;V ): (8
 2 C

1

(S

1

;M))

Z




� = 0

o

and the linear maps 


1

(M;V )! V; � 7!

R




� are 
ontinuous. We 
an therefore form the quotient

module

b

H

1

dR

(M;V ) := 


1

(M;V )=dC

1

(M;V )


ontaining H

1

dR

(M;V ) = Z

1

dR

(M;V )=dC

1

(M;V ) as a 
losed subspa
e.

Lemma IX.8. For ea
h 
losed V -valued 2-form ! 2 


2

(M;V ) the 
ontinuous linear map

f

!

:V(M)!

b

H

1

dR

(M;V ); X 7! [i

X

!℄

is a Lie algebra 1-
o
y
le.
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Proof. For X;Y 2 V(M) we use the formulas i

[X;Y ℄

= [L

X

; i

Y

℄ and L

X

= i

X

Æ d+ d Æ i

X

to

obtain

i

[X;Y ℄

! = L

X

i

Y

! � i

Y

L

X

! = di

X

i

Y

! + i

X

d(i

Y

!)� i

Y

(di

X

! + i

X

d!)

= di

X

i

Y

! + i

X

d(i

Y

!)� i

Y

(di

X

!):

In view of [L

X

i

Y

!℄ = [di

X

i

Y

! + i

X

di

Y

!℄ = [i

X

di

Y

!℄ in

b

H

1

dR

(M;V ), this means that

f

!

([X;Y ℄) = X:f

!

(Y )� Y:f

!

(X);

i.e., f

!

is a 
o
y
le.

De�nition IX.9. Let q

G

:

e

G! G denote the universal 
overing morphism of G = Di�(M)

op

0

and de�ne the

e

G-a
tion on C

1

(M;V ), 


1

(M;V ),

b

H

1

dR

(M;V ) et
. by pulling it ba
k with q

G

to

e

G . Then Proposition III.4 implies that there exists a smooth 1-
o
y
le

F

!

:

e

G!

b

H

1

dR

(M;V ) = 


1

(M;V )=dC

1

(M;V ) with dF

!

(1) = f

!

:

This 
o
y
le is 
alled the 
ux 
o
y
le 
orresponding to ! . Its di�erential dF

!


oin
ides with the

equivariant 1-form f

eq

!

.

Remark IX.10. (a) If g 2

e

G and e
: [0; 1℄ !

e

G is a pie
ewise smooth 
urve with e
(0) = 1

and e
(1) = g , then e
 is the unique lift of 
 := q

G

Æ e
: [0; 1℄! G . The value of the 
ux 
o
y
le

in g is determined by

F

!

(g) =

Z

1

0

dF

!

(e
(t))(e


0

(t)) dt =

Z

1

0

(f

eq

!

)(e
(t))(e


0

(t)) dt

=

Z

1

0


(t):f

!

(e
(t)

�1

:e


0

(t)) dt =

Z

1

0


(t):f

!

(
(t)

�1

:


0

(t)) dt

=

Z

1

0


(t):f

!

(Æ

l

(
)(t)) dt =

Z

1

0

[
(t)

�

:i

Æ

l

(
)(t)

!℄ dt

=

Z

1

0

[i

Æ

r

(
)(t)

(
(t)

�

!)℄ dt 2

b

H

1

dR

(M;V ):

Here we have used the relation '

�

(i

X

!) = i

Ad('):X

('

�

!) for ' 2 Di�(M)

op

.

(b) For the spe
ial 
ase when the 
urve 
: [0; 1℄! Di�(M) has values in the subgroup

Sp(M;!) := f' 2 Di�(M):'

�

! = !g;

all ve
tor �elds Æ

l

(
)(t) are 
ontained in the Lie algebra

sp(M;!) := fX 2 V(M):L

X

:! = 0g

([NV03, Lemma I.4℄). For L

X

! = 0 we have d(i

X

!) = L

X

! = 0, so that all 1-forms i

X

!

are 
losed. This in turn implies that for ea
h ' 2 Di�(M)

0

the 1-form '

�

i

X

! � i

X

! is exa
t

([NV03, Lemma 1.3℄). For the 
ux 
o
y
le this leads to the simpler formula

F

!

(g) =

Z

1

0

[i

Æ

l

(
)(t)

!℄ dt:

Hen
e F

!

(g) is the 
ux asso
iated to the 
urve 
: [0; 1℄! Sp(M;!) in the 
ontext of symple
ti


geometry [MDS98℄.

(
) If the 
losed form ! is exa
t, ! = d� , then

f

!

(X) = [i

X

!℄ = [i

X

d�℄ = [L

X

�℄ = X:[�℄

in

b

H

1

dR

(M;V ) implies that f

!

is a 
oboundary. Hen
e it integrates to a group 
o
y
le given by

F

!

: Di�(M)

op

!

b

H

1

dR

(M;V ); ' 7! ['

�

� � �℄:

On the spa
e

b

H

1

dR

(M;V ) the integration maps

b

H

1

dR

(M;V ) ! V; [�℄ 7!

R

�

� for � 2

C

1

(S

1

;M) separate points (
f. (9.2)), so that the element F

!

(g) 2

b

H

1

dR

(M;V ) is determined

by the integrals

R

�

F

!

(g) whi
h are evaluated in the proposition below.



39 abelext.tex February 18, 2004

Proposition IX.11. For � 2 C

1

(S

1

;M) and a smooth 
urve 
: [0; 1℄ ! G = Di�(M)

op

0

with 
(0) = id

M

we 
onsider the smooth map

H :S

1

� [0; 1℄!M; (t; s) 7! 
(t)(�(s)):

Let e
: [0; 1℄!

e

G be the smooth lift with e
(0) = 1 . Then the value of the 
ux 
o
y
le in e
(1) is

determined by the integrals

Z

�

F

!

(e
(1)) =

Z

H

!:

Proof. First we note that

�H

�t

(t; s) = 


0

(t)(�(s)) = 


0

(t) Æ 
(t)

�1

Æ 
(t)(�(s)) = Æ

l

(
)(t)(H(t; s))

and

�H

�s

(t; s) = 
(t):�

0

(s): We therefore obtain with Remark IX.10(a) the formula

Z

�

F

!

(e
(1)) =

Z

�

Z

1

0

[
(t)

�

:i

Æ

l

(
)(t)

!℄ dt

=

Z

1

0

Z

1

0

!


(t):�(s)

(Æ

l

(
)(t)(
(t):�(s)); 
(t):�

0

(s)) dt ds

=

Z

1

0

Z

1

0

!

H(t;s)

�

�H(t; s)

�t

(t; s);

�H(t; s)

�s

(t; s)

�

dt ds

=

Z

[0;1℄

2

H

�

! =

Z

H

!:

The pre
eding proposition justi�es the term `
ux 
o
y
le' be
ause it says that

R

�

F

!

(e
(1))

measures the `! -surfa
e area' of the surfa
e obtained by moving the loop � by the 
urve 
 in

Di�(M).

Corollary IX.12. If 
(1) = 
(0) = id

M

, then F

!

(e
(1)) 2 H

1

dR

(M;V ) , and we obtain a

homomorphism

F

!

j

�

1

(Di�(M))

:�

1

(Di�(M))! H

1

dR

(M;V ):

Proof. We keep the notation from Proposition IX.11. If the 
urve 
 in Di�(M) is 
losed

and e
 is the 
orresponding map S

1

! Di�(M), then H indu
es a 
ontinuous map

e

H :T

2

!

M; (t; s) 7! e
(t):�(s) and

Z

�

F

!

(e
(1)) =

Z

H

! =

Z

e

H

! =

e

H

�

[!℄ 2 H

2

(T

2

; V )

�

=

V:

As homotopi
 
urves �

1

and �

2

lead to homotopi
 maps

e

H

1

;

e

H

2

:T

2

!M , we obtain

Z

�

1

F

!

(e
(1)) =

Z

�

2

F

!

(e
(1))

whenever �

1

and �

2

are homotopi
, and this implies that F

!

(e
(1)) 2 H

1

dR

(M;V ).

That the restri
tion of F

!

to �

1

(Di�(M)) is a homomorphism follows from the 
o
y
le

property of F

!

and the fa
t that �

1

(Di�(M)) = ker q

G

a
ts trivially on

b

H

1

dR

(M;V ).

Let !

M

2 


2

(M;V ) be a 
losed 2-form and identify it with a Lie algebra 2-
o
y
le

!

g

2 Z

2




(g; a) for g = V(M) and a = C

1

(M;V ). Next we show that the 
ux 
o
y
le

F

!

g

:

e

G!

b

H

1




(g; a)


oin
ides with 
ux 
o
y
le F

!

M

from De�nition IX.9. For that we re
all from Lemma IX.4 that

we 
an view H

1

dR

(M;V ) as a subspa
e of H

1




(g; a) be
ause B

1




(g; a) = dC

1

(M;V ), whi
h leads

to an embedding

b

H

1

dR

(M;V ) ,!

b

H

1




(g; a) := C

1




(g; a)=B

1




(g; a):



40 Abelian extensions of in�nite-dimensional Lie groups February 18, 2004

Lemma IX.13. For a 
losed 2-form !

M

2 


2

(M;V ) we have

F

!

g

= F

!

M

:

e

G!

b

H

1

dR

(M;V ) �

b

H

1




(g; a):

Proof. We parametrize S

1

�

=

R=Z by the unit interval [0; 1℄. Then we have for any smooth


urve 
: [0; 1℄! G = Di�(M)

op

0

starting in 1 and X 2 g = V(M):

I




(X) :=

Z




i

X

r

!

eq

g

=

Z

1

0

!

eq

g

(X
(t); 


0

(t)) dt

=

Z

1

0


(t):!

g

(Ad(
(t))

�1

:X; 
(t)

�1




0

(t)) dt

=

Z

1

0


(t):!

M

(
(t):(X Æ 
(t)

�1

); Æ

l

(
)(t)) dt

=

Z

1

0

!

M

�


(t):(X Æ 
(t)

�1

); Æ

l

(
)(t)

�

Æ 
(t) dt:

From this formula it is easy to see that I




2 Lin(g; a) de�nes a 1-form on M whose value in

v 2 T

p

(M) is given by

I




(v) =

Z

1

0

(!

M

)


(t):p

(
(t):v; Æ

l

(
)(t)(
(t):p)) dt:

This means that

I




= �

Z

1

0


(t)

�

�

i

Æ

l

(
)(t)

!

M

�

dt;

whi
h, in view of Remark IX.10, implies that

F

!

g

(e
(1)) = [�I




℄ = F

!

M

(e
(1)) 2

b

H

1

dR

(M;V ) �

b

H

1




(g; a):

The remaining assertions now follow from Corollary IX.12.

Corollary IX.14. F

!

(�

1

(G)) vanishes if and only if for ea
h smooth loop �:S

1

!M and ea
h

smooth loop 
:S

1

! Di�(M) we have

R

H

! = 0 for the map H :T

2

!M;H(t; s) = 
(t):�(s):

The 
ondition in the pre
eding 
orollary is in parti
ular satis�ed if the set of homotopy


lasses of based maps T

2

! M or at least the 
orresponding homology 
lasses in H

2

(M) are

trivial.

Remark IX.15. It is interesting to observe that the dis
reteness of the period map for ! 2




2

(M;V ) leads to a 
ondition on the group of spheri
al 
y
les, i.e., the image of �

2

(M) in

H

2

(M), and the vanishing of F

!

(�

1

(G)) leads to a 
ondition on the larger subgroup of H

2

(M)

generated by the 
y
les 
oming from maps T

2

!M . That the latter group 
ontains the former

follows from the existen
e of a map T

2

! S

2

indu
ing an isomorphism H

2

(T

2

)! H

2

(S

2

).

Examples

Example IX.16. Let z be a Fr�e
het spa
e, �

Z

� z a dis
rete subgroup, Z := z=�

Z

and

q

Z

: z ! Z the quotient map, whi
h 
an also be 
onsidered as the exponential map of the Lie

group Z .

Further let q:P ! M be a smooth Z -prin
ipal bundle over the 
ompa
t manifold M ,

� 2 


1

(P; z) a prin
ipal 
onne
tion 1-form and ! 2 


2

(M; z) the 
orresponding 
urvature, i.e.,
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q

�

! = �d� . We 
all a ve
tor �eld X 2 V(P ) horizontal if �(X) = 0. Write V(P )

Z

for the Lie

algebra of Z -invariant ve
tor �elds on P . Then we have an isomorphism

�:V(M)! V(P )

Z

hor

:= fX 2 V(P )

Z

: �(X) = 0g

whi
h is uniquely determined by q

�

�(X) = X for X 2 V(M). For two horizontal ve
tor �elds

e

X;

e

Y on P we then have

(q

�

!)(

e

X;

e

Y ) = �d�(

e

X;

e

Y ) =

e

Y :�(

e

X)�

e

X:�(

e

Y )� �([

e

Y ;

e

X℄) = �([

e

X;

e

Y ℄):

This means that

(9:3) !(X;Y ) = (q

�

!)(�(X); �(Y )) = �([�(X); �(Y )℄) = �([�(X); �(Y )℄� �([X;Y ℄))


an be viewed as the 
o
y
le of the abelian extension

a := gau(P )

�

=

C

1

(M; z) ,!

b

g := V(P )

Z

!! g = V(M)

with respe
t to the se
tion �: g !

b

g .

On the group level we �nd that the inverse image

b

G of G = Di�(M)

op

0

in Aut(P )

op

is an

extension of G by the abelian gauge group A := Gau(P )

�

=

C

1

(M;Z) and we have already seen

above that its Lie algebra is

b

g

�

=

a�

!

g .

The exponential fun
tion of the abelian Lie group A is given by

exp

A

: a = C

1

(M; z)! C

1

(M;Z); � 7! q

Z

Æ �:

Its image is the identity 
omponent A

0

of A . The 
hara
teristi
 map

�

A

:�

0

(A)! H

1




(g; a); [f ℄ 7! [D(d

G

f)℄


onsidered in Proposition VI.4 
an be made more expli
it by observing that

(d

G

f)(g) = g:f � f = f Æ g � f;

so that

D(d

G

f)(X) = X:f = hdf;Xi

(
f. De�nition A.2). This means that D(d

G

f) 
an be identi�ed with the 1-form df 2 H

1

dR

(M; z) �

H

1




(g; a). Therefore the homomorphism �

A

:�

0

(A)! H

1




(g; a) from Proposition VI.4 is obtained

by fa
torization of the map

A = C

1

(M;Z)! H

1

dR

(M; z); f 7! [df ℄

whose kernel is the identity 
omponent A

0

= q

Z

ÆC

1

(M; z) of A to the inje
tive homomorphism

�

0

(A)

�

=

C

1

(M;Z)=q

Z

Æ C

1

(M; z)! H

1

dR

(M; z); [f ℄ 7! [df ℄:

A

ording to [Ne02, Prop. 3.9℄, its image 
onsists of the subspa
e

H

1

dR

(M;�

Z

) :=

n

[�℄ 2 H

1

dR

(M; z): (8
 2 C

1

(S

1

;M))

Z




� 2 �

Z

o

;

so that

�

A

:�

0

(A)! H

1

dR

(M;�

Z

); [f ℄ 7! [df ℄

is an isomorphism.

In view of Proposition VI.3, the 
ux homomorphism satis�es F

!

= ��

A

Æ Æ , where

Æ:�

1

(G) ! �

0

(A) is the 
onne
ting homomorphism 
orresponding to the long exa
t homotopy

sequen
e of the A-bundle

b

G ! G . As �

A

is an isomorphism, F

!

is essentially the same as Æ ,

and we 
an view it as a homomorphism

F

!

:�

1

(G)! H

1

dR

(M;�

Z

) � H

1

dR

(M; z):

Note that we 
annot expe
t F

!

(�

1

(G)) to vanish be
ause the abelian extension A ,!

b

G!

G is not an extension by a 
onne
ted group.
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Example IX.17. (a) We 
onsider the spe
ial 
ase where the manifold M is a torus: M = T =

t=�

T

, where t is a �nite-dimensional ve
tor spa
e and �

T

� t is a dis
rete subgroup for whi
h

t=�

T

is 
ompa
t.

Then the group T a
ts by multipli
ation maps on itself, and we obtain a homomorphism

T ,! G = Di�(M)

op

0

whi
h indu
es a homomorphism

�

T

:�

1

(T )! �

1

(G):

Let !

T

2 


2

(T; z) be an invariant z-valued 2-form on T and ! = 


1

2 Z

2




(t; z). Then !

T

is 
losed be
ause T is abelian. If e

1

; : : : ; e

n

is an integral basis of �

T

, then the maps

T

2

! T; (t; s) 7! te

i

+ se

j

+ �

T

; i < j

lead to an integral basis of H

2

(T )

�

=

Z

(

dimT

2

)

, so that the period group of !

T

is

�

!

:= span

Z

!(e

i

; e

j

) = span

Z

!(�

T

;�

T

) � z:

We assume that �

Z

� z is a dis
rete subgroup with

!(�

T

;�

T

) � �

Z

and put Z := z=�

Z

.

In view of �

2

(T ) = f0g , we have per

!

= 0 by Proposition IX.5. Next we are making the

map

F

!

Æ �

T

:�

1

(T ) = �

T

! H

1

dR

(T;�

Z

)

�

=

Hom(�

T

;�

Z

)

more expli
it. For x; y 2 �

T

and the 
orresponding loops 


x

(t) = tx+ �

T

and 


y

(t) = ty + �

T

in T we have for

H :T

2

! T; (t; s) 7! 


x

(t) + 


y

(s) = [tx+ sy℄

the formula

Z




y

F

!

([


x

℄) =

Z

H

! = !(x; y)

(Proposition IX.11, Lemma IX.13). This means that F

!

Æ �

T

:�

1

(T ) ! Hom(�

1

(T );�

Z

) 
an be

identi�ed with the map x 7! i

x

! .

If ! 6= 0, then F

!

(�

1

(G)) 6= f0g , whi
h means that there is no abelian extension A ,!

b

T !

! T with a 
onne
ted abelian group A of the form a=�

A

for a = C

1

(T; z). Another reason for

this is that any su
h extension would be 
entral, but all 
entral extensions of tori by 
onne
ted

Lie groups are 
at in the sense that their Lie algebra 
o
y
le vanishes (
f. [Ne02℄).

On the other hand, the existen
e of a Z -bundle over T with 
urvature ! implies the

existen
e of an abelian extension

A := C

1

(T; Z) ,!

b

T !! T;

where T a
ts on A by (t:f)(x) = f(x+ t) (
f. Example IX.16). The 
orresponding Lie algebra


o
y
le ! 2 Z

2




(t; C

1

(T; z)) is given by (x; y) 7! !(x; y) 2 z whose values lie in z

�

=

a

T

.

(b) Let t be a lo
ally 
onvex spa
e, �

T

� t a dis
rete subgroup and 
onsider the 
onne
ted

abelian Lie group T := t=�

T

. Let further z be a sequentially 
omplete lo
ally 
onvex spa
e,

�

Z

� z be a dis
rete subgroup and Z := z=�

Z

, 
onsidered as a trivial T -module. We �x an

alternating 
ontinuous map ! 2 Z

2




(t; z) and de�ne !

Z

2 Z

2

s

(t; Z) by f

Z

:= q

Z

Æ

1

2

! , where

q

Z

: z! Z is the quotient map.

Let H := Z �

f

Z

t denote the 
orresponding 
entral extension of t by Z . Then Z

℄

:=

Z�

f

Z

�

T

is a normal subgroup of H be
ause all 
ommutators lie in Z . Sin
e H=Z

℄

�

=

t=�

T

= T ,

we 
an think of H as an extension

Z

℄

,! H !! T:
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Sin
e Z is divisible and �

T

dis
rete, the 
entral extension Z ,! Z

℄

!! �

T

is trivial if and

only if it is an abelian group, whi
h means that its 
ommutator map �

T

� �

T

! Z vanishes.

The 
ommutator map is given by

(z; t)(z

0

; t

0

)(z; t)

�1

(z

0

; t

0

)

�1

= (f

Z

(t; t

0

); t+ t

0

)(f

Z

(t

0

; t); t+ t

0

)

�1

= (f

Z

(t; t

0

)� f

Z

(t

0

; t); 0) = (2f

Z

(t; t

0

); 0) = (q

Z

(!(t; t

0

)); 0):

Therefore Z

℄

is a trivial extension of �

T

if and only if

(9:4) !(�

T

;�

T

) � �

Z

:

The 
ondition for the extisten
e of a Z -bundle P ! T with 
urvature !

T

is also given by

(9.4). The ne
essity of this 
ondition in the in�nite-dimensional 
ase 
an be seen by restri
ting to

two-dimensional subtori. If (9.4) is satis�ed, then we 
an view �

T

as a subgroup of Z

℄

be
ause

there exists a homomorphism �: �

T

! Z

℄

splitting the extension Z

℄

!! �

T

. Now we form the

homogeneous spa
e P := H=�(�

T

) whi
h de�nes a Z -bundle

Z ,! P = H=�(�

T

)!! T

�

=

H=Z

℄

:

As Z is 
entral in H , the left a
tion of H on P indu
es a homomorphism

H ! Aut(P ) = Di�(P )

Z

restri
ting to a homomorphism

j

Z

:Z

℄

�

=

Z �

f

Z

�

T

! Gau(P )

�

=

C

1

(T; Z);

where the elements of Z 
orrespond to 
onstant fun
tions. The group �

T

a
ts on P by

x:(q

Z

(z); y) = (q

Z

(z +

1

2

!(x; y)); y) = (q

Z

(z); y):f

Z

(x; y);

so that

j

Z

(z; x)(y + �

T

) = z + f

Z

(x; y):

If !(�

T

; t) 6= f0g , then the map

F

!

:�

1

(T )

�

=

�

T

! H

1




(t; z) = Lin(t; z); F

!

(x)(y) = !(y; x)

does not vanish, but if !(�

T

;�

T

) � �

Z

, then the extension Z ,! Z

℄

!! �

T

is trivial. Therefore

the natural sequen
e

(9:5) H

2

s

(T; Z)! H

2

s

(

e

T ; Z)

�

=

H

2




(t; z)! H

2

(�

T

; Z)

is not exa
t in H

2

s

(

e

T ; Z) (
f. Theorem VII.2).

Identifying

H

1

dR

(T;�

Z

)

�

=

dC

1

(T; Z)=dC

1

(T; z) � H

1

dR

(T; z)

with a subspa
e of H

1




(t; a) (
f. Lemma IX.4), we 
an view F

!

as a map

�

1

(T )! H

1

dR

(T;�

Z

) ,! Hom(�

1

(T );�

Z

):
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X. The di�eomorphism group of the 
ir
le

In this se
tion we apply the general results from Se
tions VI and VII to the group of orientation

preserving di�eomorphisms of the 
ir
le S

1

and the modules F

�

of �-densities on S

1

whose


ohomology for the group Di�(S

1

)

0

has been determined in [OR98℄. We shall also point out how

the pi
ture 
hanges if Di�(S

1

)

0

is repla
ed by its universal 
overing group.

Let G := Di�(S

1

)

op

0

be the group of orientation preserving di�eomorphisms of the 
ir
le

S

1

�

=

R=Z . Then its universal 
overing group

e

G 
an be identi�ed with the group

e

G := ff 2 Di�(R)

op

: (8x 2 R) f(x + 1) = f(x) + 1g;

and the 
overing homomorphism q

G

:

e

G! G is given by q(f)([x℄) = [f(x)℄; where [x℄ = x+Z 2

S

1

�

=

R=Z . The kernel of q

G


onsists of all translations �

a

, a 2 Z , and sin
e

e

G is an open


onvex subset of a 
losed subspa
e of C

1

(R;R) , it is a 
ontra
tible manifold. In parti
ular, we

obtain

�

1

(G)

�

=

Z and �

k

(G) = f1g; k 6= 1:

The group G has an import series of representation F

�

, � 2 R , where F

�

is the spa
e of

�-densities on the 
ir
le S

1

. As the tangent bundle TS

1

is trivial, we may identify the spa
e F

�

with the spa
e C

1

(S

1

;R) of 1-periodi
 fun
tions on R with the representation

�

�

('):� = ('

0

)

�

� (� Æ ')

whi
h 
orresponds symboli
ally to '

�

(�(dx)

�

) = (� Æ') � ('

0

)

�

� (dx)

�

: Note that F

0

= C

1

(S

1

;R)

is a Fr�e
het algebra and that, as G-modules,

F

1

�

=




1

(S

1

;R) and F

�1

�

=

V(S

1

) = g:

For the Lie algebra g = V(S

1

) of G the derived representation is given on X = �

d

dx

by

(10:1) �

�

(�):f = �f

0

+ �f�

0

:

This follows dire
tly from �

�

(g):f = (g

0

)

�

� (f Æg) and the produ
t rule. In the following we shall

identify g with C

1

(S

1

;R) and denote elements of g by � , � et
.

Lemma X.1. On the Fr�e
het{Lie group A := C

1

(S

1

;R

�

) = F

�

0

we have a smooth G-a
tion

by g:f := f Æ g and the derivative �:G! A; f 7! f

0

is a smooth 1-
o
y
le.

Proof. For g; h 2 G we have �(gh) = (gh)

0

= (h Æ g)

0

= (h

0

Æ g) � g

0

= (g:�(h)) � �(g):

Remark X.2. The representation on F

�

has the form �

�

(g):f = �(g)

�

� (f Æ g) and the fa
t

that �

�

:G! A is a 
o
y
le implies that �

�

:G! GL(F

�

) is a group homomorphism.

The 
ohomology on the Lie algebra level

Proposition X.3. The 
ohomology in degrees 0; 1; 2 of the g-module F

�

has the following

stru
ture:

H

0




(g;F

�

) = F

g

�

=

�

f0g for � 6= 0

R1 for � = 0.

:

For n 2 N

0

let �

n

(�) = �

(n)

denote the n-fold derivative. Then

H

1




(g;F

0

) = spanf[�

0

℄; [�

1

℄g; H

1




(g;F

1

) = R[�

2

℄; H

1




(g;F

2

) = R[�

3

℄
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and H

1




(g;F

�

) vanishes for � 6= 0; 1; 2 . In degree 2 we have

H

2




(g;F

�

)

�

=

8

<

:

R

2

for � = 0; 1; 2

R for � = 5; 7

f0g otherwise.

For � = 0; 1; 2 the 
ohomology 
lasses of the following elements form a basis of H

2




(g;F

�

) :

!

0

(�; �) :=

�

�

�

�

� �

�

0

�

0

�

�

�

�

; !

0

(�; �) :=

Z

1

0

�

�

�

�

�

0

�

0

�

00

�

00

�

�

�

�

for � = 0;

!

1

(�; �) :=

�

�

�

�

� �

�

00

�

00

�

�

�

�

; !

1

(�; �) :=

�

�

�

�

�

0

�

0

�

00

�

00

�

�

�

�

for � = 1;

and

!

2

(�; �) :=

�

�

�

�

� �

�

000

�

000

�

�

�

�

; !

2

(�; �) :=

�

�

�

�

�

0

�

0

�

000

�

000

�

�

�

�

for � = 2:

Proof. (
f. [OR98℄) We have

F

g

�

�

=

ff 2 C

1

(S

1

;R): (8� 2 C

1

(S

1

;R))�f

0

+ ��

0

f = 0g:

For 
onstant fun
tions � the di�erential equation from above redu
es to f

0

� = 0, so that f

is 
onstant, and now ��

0

f = 0 for ea
h � implies �f = 0. This proves the assertion about

H

0




(g;F

�

).

A

ording to [Fu86, p.176℄, we have

H

q




(g;F

�

) = 0 for � 62

n

3r

2

� r

2

: r 2 N

0

o

= f0; 1; 2; 5; 7; 12; 15; : : :g:

If r 2 N

0

and � =

3r

2

�r

2

, then

H

q




(g;F

�

)

�

=

�

H

q�r

sing

(Y (S

1

);R) for q � r

f0g for q < r,

where Y (S

1

) = T

2

� 
S

3

and 
S

3

is the loop spa
e of S

3

. The 
ohomology algebra

H

�




(g;F

0

)

�

=

H

�

sing

(Y (S

1

);R)

�

=

H

�

sing

(S

1

;R) 
H

�

sing

(S

1

;R) 
H

�

sing

(
S

3

;R)

is a free anti
ommutative real algebra with generators a; b; 
 satisfying

deg(a) = deg(b) = 1; deg(
) = 2; a

2

= b

2

= 0:

It follows in parti
ular that

H

0




(g;F

0

) = R; H

1




(g;F

0

) = Ra + Rb

�

=

R

2

; H

2




(g;F

0

) = R
 + Rab

�

=

R

2

:

The stru
ture of H

�




(g;F

�

) is now determined by the fa
t that it is a free module of the algebra

H

�

(Y (S

1

);R)

�

=

H

�




(g;F

0

) with one generator in degree r . Here the algebra stru
ture on

H

�




(g;F

0

) is obtained from the multipli
ation on F

0

as in Appendix F, and the multipli
ation

F

0

�F

�

! F

�

yields the H

�




(g;F

0

)-module stru
ture ([�℄; [�℄) 7! [� ^ �℄ on H

�




(g;F

�

).

From [Fu86, Th. 2.4.12℄ we see that generators of H

�




(g;F

0

) are given by the 
lasses of

�

0

; �

1

and !

0

. Therefore a se
ond basis element of H

2




(g;F

0

) is represented by

(�

0

^ �

1

)(�; �) = �

0

(�)�

1

(�)� �

0

(�)�

1

(�) = ��

0

� �

0

� = !

0

(�; �):

The spa
e H

1

(g;F

�

) is non-zero for r = 0; 1 whi
h 
orresponds to � 2 f0; 1; 2g . For r = 0

it is two-dimensional and for r = 1 it is one-dimensional. For � = 1 a generator is given by [�

2

℄

([Fu86, Th. 2.4.12℄; there is a misprint in the formula!). From the H

�




(g;F

0

)-module stru
ture

of H

�




(g;F

1

) we obtain the generators of H

2




(g;F

1

):

(�

0

^ �

2

)(�; �) = ��

00

� ��

00

= !

1

; (�

1

^ �

2

)(�; �) = �

0

�

00

� �

0

�

00

= !

1

:

Averaging over the rotation group, we see that every 
o
y
le is equivalent to a rotation

invariant one. From that it is easy to verify that for � = 2 a generator of H

1




(g;F

2

) is given by

[�

3

℄ , and we obtain for the basis elements of H

2




(g;F

2

):

(�

0

^ �

3

)(�; �) = ��

000

� ��

000

= !

2

; (�

1

^ �

3

)(�; �) = �

0

�

000

� �

0

�

000

= !

2

:

For an expli
it des
ription of a basis of H

2




(g;F

�

) for � = 5; 7 we refer to [OR98℄.
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Integrating Lie algebra 
o
y
les to group 
o
y
les

Now we translate the information on the Lie algebra 
ohomology H

p




(g;F

�

) for p = 0; 1; 2

(Proposition X.3) to the group G . Sin
e the group G is 
onne
ted, we have

H

0

s

(G;F

�

) = F

G

�

= F

g

�

=

n

f0g for � 6= 0

R1 for � = 0.

In degree 1, we 
an use Proposition III.4 to see that we have an exa
t sequen
e

0! H

1

s

(G;F

�

)

D

��!H

1




(g;F

�

)

P

��!F

g

�

:

For � 6= 0 this implies that D:H

1

s

(G;F

�

) ! H

1




(g;F

�

) is an isomorphism. For � = 0 we have

to 
al
ulate the period map P . Let t := R1

�

=

R

d

dx

� g be the one-dimensional subalgebra


orresponding to the rotations of the 
ir
le S

1

and T

�

=

T � G the 
orresponding subgroup.

Then the in
lusion T ,! G indu
es an isomorphism �

1

(T ) ! �

1

(G), so that we 
an 
al
ulate

P by restri
ting to T . Sin
e t 
orresponds to 
onstant fun
tions, the 
o
y
le �

1

vanishes on t ,

and the 
o
y
le �

0

is non-trivial on t . Hen
e

H

1

s

(G;F

0

)

�

=

kerP = R[�

1

℄:

The group 
o
y
le 
orresponding to �

1

(�) = �

0

is �(') = log'

0

(
f. Lemma X.1) be
ause for

' = id

R

+� we have

�(id+�) = log(1 + �

0

) � �

0

+ : : : ;

whi
h implies D� = �

1

. Sin
e the map d:F

0

�

=

C

1

(S

1

;R) ! F

1

�

=




1

(S

1

;R) is equivariant, we

obtain a group 
o
y
le

d Æ � 2 Z

1

s

(G;F

1

); (d Æ �)(f) := log(f

0

)

0

=

f

00

f

0

;

and for ' = id+� the relation (d Æ �)(id+�) =

�

00

1+�

0

dire
tly leads to D(d Æ �) = �

2

: The

S
hwarzian derivative

S 2 Z

1

s

(G;F

2

); S(') :=

�

'

000

'

0

�

3

2

�

'

00

'

0

�

2

�

satis�es DS = �

3

. We thus have

H

1

s

(G;F

�

) =

8

>

<

>

:

f0g for � 6= 0; 1; 2

R[�℄ for � = 0

R[d Æ �℄ for � = 1

R[S℄ for � = 2.

On the simply 
onne
ted 
overing group q

G

:

e

G ! G we have H

1

s

(

e

G;F

�

)

�

=

H

1




(g;F

�

)

(Proposition III.4), so that we need an additional 1-
o
y
le for � = 0, whi
h is given by

L(') := '� id

R

:

In fa
t, L( ') = L(' Æ  ) := ' Æ  �  +  � id

R

=  

�

L(') + L( ): Sin
e DL = �

0

, we get

H

1

s

(

e

G;F

0

) = R[L℄ + R[�℄;

where �(') = log'

0

.

Now we turn to the group 
ohomology in degree 2: In view of �

1

(G)

�

=

Z and Theo-

rem VII.2, we have a map

Æ: Hom(�

1

(G);F

G

�

)

�

=

F

G

�

! H

2

s

(G;F

�

); Æ(
) = (F

�

o

e

G)=�(
):

The kernel of this map 
oin
ides with the image of the restri
tion map

R:H

1

s

(

e

G;F

�

)

�

=

H

1




(g;F

�

)! Hom(�

1

(G);F

G

�

)

�

=

F

G

�

and the image of D 
oin
ides with the kernel of the map

P :H

2




(g;F

�

)! Hom(�

1

(G); H

1




(g;F

�

))

�

=

H

1




(g;F

�

):

The following proposition 
lari�es the relation between se
ond Lie algebra and Lie group


ohomology for the modules F

�

. We refer to Appendix F for the de�nition of the \-produ
t of

Lie group 
o
y
les.
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Proposition X.4. For ea
h � 2 R the map D:H

2

s

(G;F

�

) ! H

2




(g;F

�

) is inje
tive. It is

bije
tive for � 62 f0; 1; 2g . For � 2 f0; 1; 2g we have

H

2

s

(G;F

0

) = R[B

0

℄; H

2

s

(G;F

1

) = R[B

1

℄; H

2

s

(G;F

2

) = R[B

2

℄

for

B

0

(';  ) := �

Z

1

0

log(( Æ ')

0

)d(log'

0

); B

1

:= � \ (d Æ �) and B

2

:= � \ S:

Proof. (
f. [OR98℄) First we show that D is inje
tive for ea
h � . As above, let T

�

=

T � G be

the subgroup 
orresponding to t = R1 in g . Sin
e the in
lusion T ,! G indu
es an isomorphism

�

1

(T )! �

1

(G), we 
an 
al
ulate R by using the fa
torization

H

1

s

(g;F

0

)! H

1

s

(t;F

0

)! Hom(�

1

(T );F

G

0

)

�

=

F

G

0

�

=

Hom(�

1

(G);F

G

0

):

It is 
lear that the 
o
y
le �

1

vanishes on t , but �

0

satis�es per

�

0

([id

T

℄) = 1 2 F

G

0

: Therefore

the restri
tion map R is surje
tive for � = 0, whi
h implies Æ = 0. For all other values of � the

map Æ vanishes be
ause F

G

�

is trivial. Therefore D is inje
tive for ea
h � .

For � 62 f0; 1; 2g the spa
e H

1




(g;F

�

) vanishes, so that P = 0 and im(D) = ker(P ) imply

that D is surje
tive.

For � = 0; 1; 2 the spa
e H

2




(g;F

�

) is two-dimensional (Proposition X.3). To 
al
ulate P

in these 
ases, let


: [0; 1℄! T � G; t 7! (x 7! x+ t+Z)

be the generator of �

1

(G). We have

I




(x) =

Z

1

0

(i

x

r

:!

eq

)(


0

(t)) dt =

Z

1

0


(t):!

�

Ad(
(t))

�1

:x; 1

�

dt:

This means that I




is the T -equivariant part of the linear map �i

1

!: g! F

�

:

For the 
o
y
le !

�

(�; �) := ��

(�+1)

� ��

(�+1)

we have

�

i

1

!

�

�

(�) = !

�

(1; �) = �

(�+1)

:

As 1 a
ts on ea
h F

�

by � 7! �

0

the linear map !

�

(1; �) is T -equivariant, hen
e equal to I




,

and we obtain

F

!

�

(1) = �[I




℄; I




(�) = ��

(�+1)

; for � = 0; 1; 2:

For !

0

(�; �) :=

R

S

1

�

0

�

00

� �

00

�

0

we have !

0

(1; �) = 0, so that F

!

0

= 0, and likewise !

�

(1; �) = 0

for � = 1; 2 leads to F

!

�

= 0 for � = 1; 2.

We 
on
lude that for � = 0; 1; 2 the kernel of P is one-dimensional, and that

im(D) = ker(P ) = R[!

�

℄:

For � = 0 the Thurston{Bott 
o
y
le (for Di�(S

1

)

op

)

B

0

2 Z

2

s

(G;R) � Z

2

s

(G;F

0

); B

0

(';  ) = �

Z

1

0

log(( Æ ')

0

)d(log'

0

)

satis�es DB

0

= !

0

(
f. [GF68℄). For � = 1; 2 we reall that !

�

= �

1

^ �

�+1

, so that Lemma F.3

implies that the 
o
y
les

B

1

:= � \ (d Æ �) and B

2

:= � \ S

satisfy DB

�

= !

�

. This 
ompletes the proof.

Proposition X.5. For the simply 
onne
ted 
overing group

e

G of G we have

H

2

s

(

e

G;F

�

) = R[B

�

℄� R[B

�

℄

�

=

R

2

for � = 0; 1; 2;

where

B

0

:= L \ �; B

1

:= L \ (d Æ �) and B

2

:= L \ S

and B

�

is the pull-ba
k of the 
orresponding 
o
y
le on G .

Proof. Sin
e the simply 
onne
ted 
overing group

e

G is 
ontra
tible, the derivation map

D:H

2

s

(

e

G;F

�

)! H

2




(g;F

�

)

is bije
tive, so that we obtain larger 
ohomology spa
es of

e

G than for G . For � = 0; 1; 2 we

have !

�

= �

0

^ �

�+1

; so that the 
o
y
les B

j

, j = 0; 1; 2, satisfy DB

�

= !

�

(Lemma F.3).

Combining this with the pull-ba
ks of the 
o
y
les B

�

from G , the assertion follows.
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A non-trivial abelian extension of SL

2

(R)

We 
onsider the right a
tion of SL

2

(R) on the proje
tive line P

1

(R) = R [ f1g by

x:

�

a b


 d

�

:=

�

a b


 d

�

�1

:x :=

dx� b

�
x+ a

:

In parti
ular the a
tion of the rotation group SO

2

(R) is given by

�


os�t � sin�t

sin�t 
os�t

�

:x =


os�t � x� sin�t

sin�t � x+ 
os�t

;

so that

�


os�t � sin�t

sin�t 
os�t

�

:0 = � tan�t

and the map t 7! tan�t indu
es a di�eomorphism R=Z ! P

1

(R) . We use this di�eomorphism

to identify S

1

= R=Z with P

1

(R) and to obtain a smooth right a
tion of SL

2

(R) on S

1

. Then

sl

2

(R) is isomorphi
 to a 3-dimensional subalgebra of V(S

1

) and so

2

(R) 
orresponds to R1 = t .

We put

U :=

�

0 �1

1 0

�

and observe that this element 
orresponds to the 
onstant fun
tion

1

�

. From adU((adU)

2

+4) =

0 on sl

2

(R) and the formula for 
ommutators in V(S

1

) we therefore derive

sl

2

(R) = spanf1; 
os(2�t); sin(2�t)g

as a subalgebra of V(S

1

)

�

=

C

1

(S

1

). We may therefore pi
k H;P 2 sl

2

(R) with [U;H ℄ = �2P

and [U; P ℄ = 2H su
h that H 
orresponds to the fun
tion 
os(2�t) and P to the fun
tion

sin(2�t).

The 
orresponding group homomorphism

�: SL

2

(R) ! Di�(S

1

)

op

0

is homotopy equivalent to the twofold 
overing of T

�

=

S

1

, hen
e indu
es an inje
tion

�

1

(�):�

1

(SL

2

(R))

�

=

Z! �

1

(Di�(S

1

))

�

=

Z

onto a subgroup of index 2.

From the a
tion of SL

2

(R) on S

1

, we obtain a smooth a
tion on the Fr�e
het spa
es

F

�

:= C

1

(S

1

;R); (g:f)(x) :=

�

�(g)

0

�

�

f(x:g):

By restri
tion to the subalgebra sl

2

(R) � V(S

1

), we obtain the 2-
o
y
le !(�; �) = �

0

�

00

� �

00

�

0

in Z

2




(sl

2

(R);F

1

). Let 
: I ! SL

2

(R); t 7! exp(2�tU) be the 
anoni
al generator of �

1

(SL

2

(R)) .

As in the proof of Proposition X.4, it then follows that

F

!

:�

1

(SL

2

(R)) ! H

1




(sl

2

(R);F

1

)

is given by F

!

([
℄) = �[I




℄ , where I




is the t-invariant part of �2i

1

! = 0, hen
e F

!

= 0.

Next we show that [!℄ 6= 0 in H

2




(sl

2

(R);F

1

). If this is not the 
ase, then there exists

a linear map �: sl

2

(R) ! F

1

with ! = d� . Sin
e ! is T -equivariant, we may assume, after

averaging over the 
ompa
t group T , that � is also T -invariant, i.e.,

�([U; x℄) = U:�(x); x 2 sl

2

(R):
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Now

0 = i

U

! = i

U

d� = L

U

:�� di

U

� = �di

U

�

implies

i

U

� = �(U) 2 Z

0

(sl

2

(R);F

1

) = F

sl

2

(R)

1

= f0g:

We now derive from [H;P ℄ 2 RU :

!(H;P ) = d�(H;P ) = H:�(P )� P:�(H) � �([H;P ℄) = H:�(P )� P:�(H):

Further the equivarian
e of � implies the existen
e of a; b 2 R with

�(P ) = a 
os(2�t)+b sin(2�t) and �(H) =

1

2

�([U; P ℄) =

1

2

U:�(P ) = �a sin(2�t)+b 
os(2�t):

We further have

H:�(P ) = 
os(2�t):(a 
os(2�t) + b sin(2�t)) = (a 
os

2

(2�t) + b sin(2�t) 
os(2�t))

0

and

P:�(H) = sin(2�t):(�a sin(2�t) + b 
os(2�t)) = (�a sin

2

(2�t) + b sin(2�t) 
os(2�t))

0

;

so that

!(H;P ) = H:�(P )� P:�(H) = a(
os

2

(2�t) + sin

2

(2�t))

0

= a1

0

= 0;


ontradi
ting

!(H;P ) = 
os(2�t)

0

sin(2�t)

00

� 
os(2�t)

00

sin(2�t)

0

= 8�

3

(sin

3

(2�t) + 
os

3

(2�t)) 6= 0:

Therefore [!℄ 6= 0. Sin
e F

!

and per

!

vanish, and

H

2

dR

(SL

2

(R);F

1

)

�

=

H

2

dR

(S

1

;F

1

) = f0g;

there exists a smooth 2-
o
y
le f 2 Z

2

s

(SL

2

(R);F

1

) with Df = ! (Proposition VII.4). Then

the group

F

1

�

f

SL

2

(R)

is a non-trivial abelian extension of SL

2

(R) . It is di�eomorphi
 to the dire
t produ
t ve
tor

spa
e C

1

(S

1

;R) � R

3

, hen
e 
ontra
tible.

If V is a trivial sl

2

(R)-module, then the range of ea
h 2-
o
y
le lies in a 3-dimensional

subspa
e, hen
e is a 
oboundary, be
ause the 
orresponding assertion holds for �nite-dimensional

modules. Therefore all 
entral extensions of SL

2

(R) by abelian Lie groups of the form A = a=�

A

are trivial (Theorem VII.2). The pre
eding example shows that H

2




(sl

2

(R);F

1

) 6= f0g , whi
h

provides the non-trivial extension of SL

2

(R) .

The 
hoi
e of the 
o
y
le ! above is most natural be
ause one 
an show that the 
ohomology

of the sl

2

(R)-modules F

�

satis�es

dimH

2




(sl

2

(R);F

�

) =

(

0 for � 6= 0; 1

1 for � = 0

2 for � = 1,

dimH

1




(sl

2

(R);F

�

) =

(

0 for � 6= 0; 1

2 for � = 0

1 for � = 1.

For � = 0 the 
ux homomorphism yields an inje
tive map

(10:2) H

2




(sl

2

(R);F

�

)! Hom(�

1

(SL

2

(R)); H

1




(sl

2

(R);F

�

)

�

=

H

1




(sl

2

(R);F

�

);

so that we only obtain non-trivial abelian extensions of the universal 
overing group

f

SL

2

(R) .

For � = 1 the kernel of (10.2) is one-dimensional and spanned by [!℄ , so that [!℄ is, up to

s
alar multiples, the only non-trivial 2-
ohomology 
lass asso
iated to the modules F

�

whi
h

integrates to a group 
o
y
le on SL

2

(R) .
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XI. Central extensions of groups of volume preserving di�eomorphisms

In the present se
tion we dis
uss 
ertain 
entral extensions of the group Di�(M;�) of

di�eomorphisms of a 
ompa
t 
onne
ted orientable manifold M preserving a volume form � ,

resp., its identity 
omponent D(M;�). Ea
h 
losed z-valued 2-form ! on M de�nes a 
entral

extension of the 
orresponding Lie algebra V(M;�) of �-divergen
e free ve
tor �elds be
ause


omposing integration over M with respe
t to � with the C

1

(M; z)-valued 
o
y
le de�ned by the

2-form (
f. Se
tio IX) leads to a z-valued 2-
o
y
le, the so-
alled Li
hnerowi
z 
o
y
le (
f. [Vi02℄,

[Li74℄). We shall see that if �

2

(M) vanishes, then the only obstru
tion to the integrability of the


orresponding 
entral extension is given by the 
ux homomorphism �

1

(D(M;�)) ! H

1

dR

(M; z).

If M = G is a 
ompa
t Lie group, we show that the 
ux be
omes trivial on the 
overing group

e

D(G;�) of D(G;�) a
ting on the universal 
overing manifold

e

G of G , whi
h leads to 
entral

Lie group extensions of this group.

Some fa
ts on the 
ux homomorphism for volume forms

In this short subse
tion we 
olle
t some fa
ts on the 
ux homomorphism of a volume form

on a 
ompa
t 
onne
ted manifold. These results will be used to show that ea
h 
losed 2-form on

a 
ompa
t Lie group G de�nes a 
entral extension of the 
overing

e

D(G;�) of identity 
omponent

D(G;�) of the group of volume preserving di�eomorphisms of G whi
h a
ts faithfully on the

universal 
overing group

e

G .

Let M be a smooth 
ompa
t manifold, z a sequentially 
omplete lo
ally 
onvex spa
e and

! 2 


p

(M; z) a 
losed z-valued p-form. For a pie
ewise smooth 
urve �: I ! Di�(M) we de�ne

the 
ux form

e

F

!

(�) :=

Z

1

0

�(t)

�

�

i

Æ

l

(�)(t)

!

�

dt =

Z

1

0

i

�(t)

�1

:�

0

(t)

(�(t)

�

!) dt 2 


p�1

(M; z):

Let �: I ! Di�(M) be a pie
ewise smooth path and �: �

p�1

! M a smooth singular

simplex. Further de�ne

�:�: I ��

p�1

!M; (t; x) 7! �(t):�(x):

Then

((�:�)

�

!)(t; x)

�

�

�t

; v

1

; : : : ; v

p�1

�

= !(�(t):�(x))

�

�

0

(t)(�(x)); �(t):d�(x)v

1

; : : : ; �(t):d�(x)v

p�1

)

= (�(t)

�

!)(�(x))

�

�(t)

�1

:�

0

(t)(�(x)); d�(x)v

1

; : : : ; d�(x)v

p�1

)

=

�

i

�(t)

�1

:�

0

(t)

�

�(t)

�

!

��

(�(x))

�

d�(x)v

1

; : : : ; d�(x)v

p�1

)

(
f. [NV03, Lemma 1.7℄) implies

Z

�:�

! =

Z

I��

p�1

(�:�)

�

! =

Z

�

e

F

!

(�):

We thus obtain

Z

�:�

! =

Z

�

e

F

!

(�)

for ea
h singular 
hain � if we extend the map � 7! �:� additively to the group of pie
ewise

smooth singular 
hains. If � is a boundary and � is 
losed, then �:� is a boundary, so that
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the integral vanishes by Stoke's Theorem, and therefore

R

�

e

F

!

(�) vanishes. We 
on
lude that

e

F

!

(�) is a 
losed (p� 1)-form, so that we obtain a group homomorphism

F

!

:�

1

(Di�(M))! H

p�1

dR

(M; z); [�℄ 7! [

e

F

!

(�)℄:

Lemma XI.1. If M is an oriented 
ompa
t manifold of dimension n , m

0

2 M , and � a

volume form on M with

R

M

� = 1 , then the 
orresponding 
ux homomorphism

F

�

:�

1

(Di�(M))! H

n�1

dR

(M;R); [�℄ 7! [

e

F

�

(�)℄

fa
tors through the kernel of the map

�

1

(ev

m

0

):�

1

(Di�(M))! �

1

(M;m

0

):

Proof. (We are grateful to Stephan Haller for 
ommuni
ating the idea of the following proof.)

To ea
h smooth loop �:S

1

! Di�(M) with �(1) = id

M

we asso
iate a lo
ally trivial �ber

bundle q

�

:P

�

! S

2

whose underlying topologi
al spa
e is obtained as follows. We think of S

2

as a union of two 
losed dis
s B

1

and B

2

with B

1

\ B

2

= S

1

. Then we put

P

�

:=

�

(B

1

�M)

_

[(B

2

�M)

�

= �;

where

(x;m) � (x

0

;m

0

):,

�

x = x

0

62 �B

1

[ �B

2

; m = m

0

x = x

0

2 �B

1

;m

0

= �(x)(m):

Then q

�

([x;m℄) := x de�nes the stru
ture of a lo
ally trivial �ber bundle with �ber M over S

2

.

A se
tion of P

�

is a pair of two 
ontinuous maps e�

j

:B

j

! M , j = 1; 2, su
h that the

restri
tions �

j

:= e�

j

j

�B

j

satisfy �

2

(x) = �(x)(�

1

(x)) for all x 2 �B

j

. This means that �

1

and

�

2

are 
ontra
tible loops in M with �:�

1

= �

2

. Conversely, every pair of 
ontra
tible loops �

1

and �

2

in M satisfying �:�

1

= �

2


an be extended to 
ontinuous maps B

j

!M and thus to a

se
tion of P

�

.

If �

1

is a 
ontra
tible loop based in m

0

, then �:�

1

is a loop based in m

0

homotopi
 to

the loop x 7! �(x)(m

0

). Therefore the existen
e of a 
ontinuous se
tion of P

�

is equivalent to

[�℄ 2 ker�

1

(ev

m

0

).

Suppose that [�℄ 2 ker�

1

(ev

m

0

) and that �:S

2

! P

�

is a 
orresponding se
tion. It

follows easily from the 
onstru
tion of P

�

that the manifold P

�

is orientable if M is orientable.

Hen
e the 2-
y
le [�℄ has a Poin
ar�e dual [�℄ 2 H

n

sing

(P

�

;Z) whose restri
tion to a �ber M

is the Poin
ar�e dual of the interse
tion of im(�) with a �ber, hen
e the fundamental 
lass

[�℄ 2 H

n

sing

(M;Z) ([Bre93, p.372℄). Therefore the fundamental 
lass of M extends to an n-

dimensional 
ohomology 
lass in P .

On the other hand we obtain from [Sp66, p.455℄ the exa
t Wang 
ohomology sequen
e

asso
iated to P

�

:

: : :! H

n

sing

(P

�

;Z)! H

n

sing

(M;Z)

�

�

��!H

n�1

sing

(M;Z)! H

n+1

sing

(P;Z)! : : : ;

where �

�

satis�es

h�

�

[�℄; [�℄i = h[�℄; [�:�℄i

for ea
h (n�1)-
y
le � in M , and the kernel of �

�


onsists of those 
ohomology 
lasses extending

to P

�

. As this is the 
ase for the fundamental 
lass of M , it follows that [�:�℄ = 0 holds for all

(n�1)-
y
les � on M . We 
on
lude that

e

F

�

(�) is an exa
t (n�1)-form if [�℄ 2 ker�

1

(ev

m

0

).
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Remark XI.2. Suppose that G is a 
ompa
t Lie group of dimension d . Then G is orientable

and we 
an identify G with the group �(G) of left translations in Di�(G). Then

Di�(G) = Di�(G)

1

�(G)

�

=

Di�(G)

1

�G

as smooth manifolds. In parti
ular we have

�

1

(Di�(G))

�

=

�

1

(Di�(G)

1

)� �

1

(G):

If � is a normalized biinvariant volume form on G , then Lemma IX.1 implies that the 
orre-

sponding 
ux homomorphism

F

�

:�

1

(Di�(G))! H

d�1

dR

(G;R)

fa
tors through a homomorphism

F

℄

�

:�

1

(G)! H

d�1

dR

(G;R):

Let q

G

:

e

G! G denote the universal 
overing homomorphism and

g

Di�(G) := fe' 2 Di�(

e

G): (9' 2 Di�(G)) ' Æ q

G

= q

G

Æ e'g:

Then we have a 
anoni
al homomorphism

Q

G

:

g

Di�(G)! Di�(G); e' 7! '

whose kernel 
oin
ides with the group of de
k transformations that is isomorphi
 to �

1

(G). We

endow

g

Di�(G) with the Lie group stru
ture turning Q

G

into a 
overing map. We then have

g

Di�(G) =

g

Di�(G)

1

e

G

�

=

g

Di�(G)

1

o

e

G

�

=

Di�(G)

1

o

e

G

as smooth manifolds, so that

�

1

(

g

Di�(G))

�

=

�

1

(Di�(G)

1

):

The identity 
omponent

g

Di�(G)

0

is a 
overing of Di�(G)

0

and sin
e the 
ux homomorphism

vanishes on its fundamental group (Lemma IX.1), the 
ux 
o
y
le

f

�

:V(G)!

b

H

d�1

dR

(G;R); X 7! [i

X

�℄

integrates to a group 
o
y
le

F

�

:

g

Di�(G)

0

!

b

H

d�1

dR

(G;R) = 


d�1

(G;R)=d


d�2

(G;R)

with DF

�

= f

�

.

Appli
ation to 
entral extensions

In this subse
tion we apply the tools developed in the present paper to 
entral extensions

of groups of volume preserving di�eomorphisms of 
ompa
t manifolds.

Let M denote an orientable 
onne
ted 
ompa
t manifold and � a volume form on M ,

normalized by

R

M

� = 1. We write

D(M;�) := f' 2 Di�(M)

op

:'

�

� = �g

0
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for the identity 
omponent of the group of volume preserving di�eomorphisms of (M;�) and

g

�

:= V(M;�) := fX 2 V(M):L

X

� = 0g

for its Lie algebra. Further let

e

D(M;�) � Di�(

f

M) denote the identity 
omponent of the inverse

image of D(M;�) in

g

Di�(M). Then we have a 
overing map

e

D(M;�) ! D(M;�) whi
h need

not be universal. We write

^

D(M;�) for the universal 
overing group of D(M;�) whi
h also is

a 
overing group of

e

D(M;�).

Let z be a Fr�e
het spa
e. On the spa
e C

1

(M; z) of smooth z-valued fun
tions on M we

then have the integration map

I :C

1

(M; z)! z; f 7!

Z

M

f�:

Then I is equivariant for the natural a
tion of D(M;�) on C

1

(M; z), where we 
onsider z as

a trivial module. On the in�nitesimal level this means that

Z

M

(X:f)� = 0 for f 2 C

1

(M;R); X 2 V(M;�):

Ea
h 
losed z-valued p-form ! 2 


p

(M; z) de�nes a C

1

(M; z)-valued p-
o
hain for the

a
tion of the Lie algebra g

�

on C

1

(M; z) and sin
e I is g

�

-equivariant, we obtain 
ontinuous

linear maps

�:


p

(M; z)! C

p




(g

�

; z); �(!)(X

1

; : : : ; X

p

) := I(!(X

1

; : : : ; X

p

)) =

Z

M

!(X

1

; : : : ; X

p

)�:

The equivarian
e of I implies that �(d!) = d

g

�

�(!), so that � indu
es maps

�:H

p

dR

(M; z)! H

p




(g

�

; z):

Remark XI.3. If �

2

(M) = f0g and

^

D(M;�) denotes the simply 
onne
ted 
overing group of

D(M;�), then for ea
h 
losed 2-form ! 2 Z

2

dR

(M; z) the period map of the 
orresponding Lie

algebra 
o
y
le vanishes (Proposition IX.5), so that, in view of Theorem VII.2, � indu
es a map

�:H

2

dR

(M; z)! H

2

s

(

^

D(M;�); z):

If, more generally, �

Z

� z is a dis
rete subgroup with

R

�

2

(M)

! � �

Z

and Z := z=�

Z

, then

Theorem VII.2 implies that the Lie algebra 
o
y
le ! integrates to a 
entral extension

Z ,!

b

D(M;�)!!

^

D(M;�):

Let

V(M;�)

ex

:= fX 2 V(M;�): i

X

� 2 d


p�2

(M;R)g

denote the Lie algebra of exa
t divergen
e free ve
tor �elds. It 
an be shown that this is the


ommutator algebra of V(M;�) (
f. [Li74℄), hen
e a perfe
t Lie algebra. It follows in parti
ular

that

H

1




(V(M;�)

ex

; z) = Hom

Lie alg

(V(M;�)

ex

; z) = f0g

vanishes for ea
h trivial module z . Therefore restri
ing the 
o
y
les from above to V(M;�)

ex

,

resp. the 
orresponding 
onne
ted subgroup D(M;�)

ex

of exa
t volume preserving di�eomor-

phisms leads to a trivial 
ux homomorphism. Hen
e

R

�

2

(M)

! � �

Z

implies the existen
e of a


entral Z -extension of D(M;�)

ex

. We refer to Ismagilov ([Is96℄) and Haller-Vizman ([HV04℄)

for geometri
 
onstru
tions of these 
entral extensions (for the 
ase z = R; Z = T = R=Z).
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Proposition XI.4. Let G be a 
ompa
t 
onne
ted Lie group and � an invariant normalized

volume form on G . Then the 
ux 
o
y
le restri
ts to a surje
tive Lie algebra homomorphism

f

�

:V(G;�)! H

d�1

dR

(G;R)

whose kernel is the 
ommutator algebra and whose restri
tion to z(g) � g � V(G;�) is bije
tive.

This Lie algebra homomorphism integrates to a homomorphism of 
onne
ted Lie groups

F

G

�

:

e

D(G;�)! H

d�1

dR

(G;R)

whose restri
tion to Z(

e

G)

0

�

e

G �

e

D(G;�) is an isomorphism. Moreover, ea
h Lie algebra

homomorphism '

g

:V(G;�) ! a to an abelian Lie algebra integrates to a group homomorphism

'

G

:

e

D(G;�)! a whi
h fa
tors through F

G

�

.

Proof. Sin
e f

�

de�nes a Lie algebra homomorphism V(G;�)! H

d�1

dR

(G;R) , the restri
tion

of the 
ux 
o
y
le F

�

:

g

Di�(G)

0

!

b

H

d�1

dR

(G;R) to the subgroup

e

D(G;�) is a group homomor-

phism

F

�

:

e

D(G;�)! H

d�1

dR

(G;R)

�

=

H

d�1

(g;R)

whi
h on the subgroup

e

G of

e

D(G;�) is the Lie group homomorphism obtained by integrating

the Lie algebra quotient homomorphism

g! H

d�1

(g;R); x 7! [i

x

�

g

℄;

where �

g

:= �(1) 2 C

d

(g;R) . Note that Poin
ar�e Duality implies that

H

d�1

dR

(G;R)

�

=

H

1

dR

(G;R)

�

=

Hom(g;R)

�

=

z(g)

�

so that H

d�1

dR

(G;R)

�

=

Z(

e

G)

0

�

=

z(g) and we 
an think of the 
ux homomorphism as a group

homomorphism

F

G

�

:

e

D(G;�)! z(g):

On the Lie algebra level we have g � V(G;�), [V(G;�);V(G;�)℄ � ker f

�

; and f

�

maps

z(g) isomorphi
ally onto H

d�1

dR

(G;R). This leads to

V(G;�) = [V(G;�);V(G;�)℄ o z(g)

with H

1

(V(G;�))

�

=

z(g) and we 
on
lude that the 
ux homomorphism F

G

�

:

e

D(G;�) ! z(g) is

universal in the sense that ea
h Lie algebra homomorphism V(G;�)! a , where a is an abelian

Lie algebra, integrates to a Lie group homomorphism

e

D(G;�)! a .

Theorem XI.5. Let G be a 
onne
ted 
ompa
t Lie group, � an invariant normalized volume

form, z a sequentially 
omplete lo
ally 
onvex spa
e and ! 2 


2

(G; z) a 
losed 2-form. Then the

Li
hnerowi
z 
o
y
le on V(G;�) given by

(X;Y ) 7!

Z

G

!(X;Y ) � �

integrates to a 
entral Lie group extension

z !

b

D(G;�)!

e

D(G;�):

Proof. First we re
all that �

2

(G) = f0g ([Ca52℄), so that Remark XI.3 implies that the period

map of

e

D(G;�) vanishes for ea
h 
losed 2-form ! 2 


2

(G; z) on G . Moreover, the 
ux 
o
y
le

is a Lie algebra homomorphism

f

!

: g

�

= V(G;�)! H

1




(g

�

; z)

�

=

Hom(g

�

; z)

�

=

Hom(z(g); z)

so that Proposition XI.4 implies that the 
orresponding 
ux homomorphism vanishes on the

fundamental group �

1

(

e

D(G;�)), so that Theorem VII.2 implies that ! de�nes a Lie algebra


o
y
le in Z

2




(V(G;�); z) 
orresponding to a global 
entral extension as required.
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Remark XI.6. In view of

H

2

dR

(G; z)

�

=

H

2




(g; z) = H

2




(z(g); z) = Alt

2

(z(g); z) = Lin(�

2

(z(g)); z);

we obtain a universal Li
hnerowi
z 
o
y
le with values in the spa
e z := �

2

(z(g)).

The pre
eding remark applies in parti
ular to the d-dimensional torus G = T

d

:= R

d

=Z

d

,

whi
h we 
onsider as the quotient of R

d

modulo the integral latti
e. We write x

1

; : : : ; x

d

for the


anoni
al 
oordinate fun
tions on R

d

and observe that their di�erential dx

j


an also be viewed

as 1-forms on T

d

. In this sense we have

H

2

dR

(T

d

;R)

�

=

M

i<j

R[dx

i

^ dx

j

℄

�

=

R

(

d

2

)

:

Therefore the 
entral extensions of

e

D(T

d

; �) des
ribed above 
orrespond to the 
entral extensions

of the 
orresponding Cartan type algebras dis
ussed in [Dz92℄. We 
on
lude in parti
ular that

these 
o
y
le do not integrate to 
entral extensions of D(T

d

; �), but that they integrate to 
entral

extensions of the 
overing group

e

D(T

d

; �) whi
h we 
an 
onsidered as a group of di�eomorphisms

of R

d

.

Appendix A. Di�erential forms and Alexander{Spanier 
ohomology

In this appendix we dis
uss a smooth version of Alexander{Spanier 
ohomology for smooth

manifolds and de�ne a homomorphism of 
hain 
omplexes from the smooth Alexander{Spanier


omplex (C

n

AS;s

(M;A); d

AS

); n � 1; with values in an abelian Lie group A with Lie algebra a

to the a-valued de Rham 
omplex (


n

(M; a); d). In Appendix B this map is used to relate Lie

group 
ohomology to Lie algebra 
ohomology. The main point is Proposition A.6 whi
h provides

an expli
it map from smooth Alexander{Spanier 
ohomology to de Rham 
ohomology.

De�nition A.1. (1) Let M be a smooth manifold and A an abelian Lie group. For n 2 N

0

let C

n

AS;s

(M;A) denote the set of germs of smooth A-valued fun
tions on the diagonal in M

n+1

.

For n = 0 this is the spa
e C

0

AS;s

(M;A)

�

=

C

1

(M;A) of smooth A-valued fun
tions on M . An

element [F ℄ of this spa
e is represented by a smooth fun
tion F :U ! A , where U is an open

neighborhood of the diagonal in M

n+1

, and two fun
tions F

i

:U

i

! A , i = 1; 2, de�ne the same

germ if and only of their di�eren
e vanishes on a neighborhood of the diagonal. The elements of

the spa
e C

n

AS;s

(M;A) are 
alled smooth A-valued Alexander{Spanier n-
o
hains on M .

We have a di�erential

d

AS

:C

n

AS;s

(M;A)! C

n+1

AS;s

(M;A)

given by

(d

AS

F )(m

0

; : : : ;m

n+1

) :=

n+1

X

j=0

(�1)

j

F (m

0

; : : : ; 
m

j

; : : : ;m

n+1

);

where 
m

j

indi
ates omission of the argument m

j

. To see that d

AS

F de�nes a smooth fun
tion

on an open neighborhood of the diagonal in M

n+2

, 
onsider for i = 0; : : : ; n+1 the proje
tions

p

i

:M

n+2

! M

n+1

obtained by omitting the i-th 
omponent. Then for ea
h open subset

U � M

n+1


ontaining the diagonal the subset

T

n+1

i=0

p

�1

i

(U) is an open neighborhood of the

diagonal in M

n+2

on whi
h d

AS

F is de�ned. It is easy to see that d

AS

is well-de�ned on germs

and that we thus obtain a di�erential 
omplex (C

�

AS;s

(M;A); d

AS

). Its 
ohomology groups are

denoted H

n

AS;s

(M;A).

(2) If M is a smooth manifold, then an atlas for the tangent bundle TM is obtained dire
tly from

an atlas of M , but we do not 
onsider the 
otangent bundle as a manifold be
ause this requires

to 
hoose a topology on the dual spa
es, for whi
h there are many possibilities. Nevertheless,
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there is a natural 
on
ept of a smooth p-form on M . If V is a lo
ally 
onvex spa
e, then a

V -valued p-form ! on M is a fun
tion ! whi
h asso
iates to ea
h x 2M a k -linear alternating

map T

x

(M)

p

! V su
h that in lo
al 
oordinates the map (x; v

1

; : : : ; v

p

) 7! !(x)(v

1

; : : : ; v

p

) is

smooth. We write 


p

(M;V ) for the spa
e of smooth p-forms on M with values in V .

The de Rham di�erential d: 


p

(M;V )! 


p+1

(M;V ) is de�ned by

(d!)(x)(v

0

; : : : ; v

p

) :=

p

X

i=0

(�1)

i

�

X

i

:!(X

0

; : : : ;

b

X

i

; : : : ; X

p

)

�

(x)

+

X

i<j

(�1)

i+j

!([X

i

; X

j

℄; X

0

; : : : ;

b

X

i

; : : : ;

b

X

j

; : : : ; X

p

)(x)

for v

0

; : : : ; v

p

2 T

x

(M), where X

0

; : : : ; X

p

are smooth ve
tor �elds on a neighborhood of x with

X

i

(x) = v

i

.

To see that d de�nes indeed a map 


p

(M;V ) ! 


p+1

(M;V ) one has to verify that the

right hand side of the above expression does not depend on the 
hoi
e of the ve
tor �elds X

i

with X

i

(x) = v

i

and that it de�nes an element of 


p+1

(M;V ), i.e., in lo
al 
oordinates the map

(x; v

0

; : : : ; v

p

) 7! (d!)(x)(v

0

; : : : ; v

p

)

is smooth, multilinear and alternating in v

0

; : : : ; v

p

. For the proof we refer to (
f. [KM97℄).

Extending d to a linear map on 
(M;V ) :=

L

p2N

0




p

(M;V ), we have the relation d

2

= 0.

The spa
e

Z

p

dR

(M;V ) := ker(d j




p

(M;V )

)

of 
losed forms therefore 
ontains the spa
e B

p

dR

(M;V ) := d(


p�1

(M;V )) of exa
t forms, and

H

p

dR

(M;V ) := Z

p

dR

(M;V )=B

p

dR

(M;V )

is the V -valued de Rham 
ohomology spa
e of M .

De�nition A.2. If M is a smooth manifold, A an abelian Lie group, a its Lie algebra,

f :M ! A a smooth fun
tion and Tf :TM ! TA its tangent map, then we de�ne the logarithmi


derivative of f as the a-valued 1-form

df :TM ! a; v 7! f(m)

�1

:T f(v); for v 2 T

m

(M):

In terms of the 
anoni
al trivialization �:TA ! A � a; v 7! a

�1

:v (for v 2 T

a

(A)) of the

tangent bundle of A , this means that

df = pr

2

Æ� Æ Tf :TM ! a:

De�nition A.3. Let M

1

; : : : ;M

n

be smooth manifolds, A an abelian Lie group, and

f :M

1

� : : :�M

n

! A

be a smooth fun
tion. For n 2 N we de�ne a fun
tion

d

n

f :TM

1

� : : :� TM

n

! a

as follows. Let q:TM !M be the 
anoni
al proje
tion. For v

1

; : : : ; v

n

2 TM with q(v

i

) = m

i

we 
onsider smooth 
urves 


i

: ℄� 1; 1[!M with 


i

(0) = m

i

and 


0

i

(0) = v

i

and de�ne

(d

n

f)(m

1

; : : : ;m

n

)(v

1

; : : : ; v

n

) :=

�

n

�t

1

� � ��t

n

t

i

=0

f(


1

(t

1

); : : : ; 


n

(t

n

));

where for n � 2 the iterated higher derivatives are derivatives of a-valued fun
tions in the sense

of De�nition A.2. One readily veri�es that the right hand side does not depend on the 
hoi
e
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of the 
urves 


i

and that it de�nes for ea
h tuple (m

1

; : : : ;m

n

) 2 M

1

� : : :�M

n

a 
ontinuous

n-linear map

(d

n

f)(m

1

; : : : ;m

n

):T

m

1

(M

1

)� : : :� T

m

n

(M

n

)! a:

If X is a smooth ve
tor �eld on M

i

, then we also de�ne a smooth fun
tion

�

i

(X)f :M

1

� : : :�M

n

! a; (m

1

; : : : ;m

n

) 7! df(m

1

; : : : ;m

n

)(0; : : : ; 0; X(m

i

); 0; : : : ; 0)

by the partial derivative of f in the dire
tion of the ve
tor �eld X . For ve
tor �elds X

i

on M

i

we then obtain by iteration of this pro
ess

�

�

1

(X

1

) � � ��

n

(X

n

)f

�

(m

1

; : : : ;m

n

) = (d

n

f)(m

1

; : : : ;m

n

)(X

1

(m

1

); : : : ; X

n

(m

n

))

and

�

1

(X

1

) � � � �

n

(X

n

)f :M

1

� : : :�M

n

! a

is a smooth fun
tion.

De�nition A.4. Let M be a smooth manifold and A an abelian Lie group. We write

�

n

:M !M

n+1

;m 7! (m; : : : ;m) for the diagonal map.

For [F ℄ 2 C

n

AS;s

(M;A), p 2M and v

1

; : : : ; v

n

2 T

p

(M) we de�ne

�(F )(p)(v

1

; : : : ; v

n

) :=

X

�2S

n

sgn(�) � (d

n

F )(p; : : : ; p)(0; v

�(1)

; : : : ; v

�(n)

)

and observe that �(F ) de�nes a smooth a-valued n-form on M depending only on the germ

[F ℄ of F . We thus obtain for n � 1 a group homomorphism

� :C

n

AS;s

(M;A)! 


n

(M; a):

If A = a , then we also de�ne � for n = 0 as the identi
al map

� :C

0

AS;s

(M;A)

�

=

C

1

(M;A)! 


0

(M; a)

�

=

C

1

(M; a):

If X

1

; : : : ; X

n

are smooth ve
tor �elds on an open subset V � M , we have on V the

relation

�(F )(X

1

; : : : ; X

n

) =

X

�2S

n

sgn(�) �

�

�

1

(X

�(1)

) � � � �

n

(X

�(n)

):F

�

Æ�

n

:

As the operators �

i

(X) and �

j

(Y ) 
ommute for i 6= j and ve
tor �elds X and Y on M , this


an also be written as

�(F )(X

1

; : : : ; X

n

) =

X

�2S

n

sgn(�) �

�

�

�(1)

(X

1

) � � � �

�(n)

(X

n

):F

�

Æ�

n

:

For small n we have in parti
ular the formulas

n = 0: �(F ) = F (if A = a).

n = 1: �(F )(X) = �

1

(X):F .

n = 2: �(F )(X;Y ) = �

1

(X)�

2

(Y ):F � �

1

(X)�

2

(Y ):F .

The following proposition builds on a 
onstru
tion one �nds in the appendix of [EK64℄.

First we need a 
ombinatorial lemma.
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Lemma A.5. Let � 2 S

n+1

be a permutation with k := �(1) < ` := �(i + 1) and su
h that

the restri
tion of � de�nes an in
reasing map f1; : : : ; ng n f1; i+1g ! f1; : : : ; ng n fk; `g: Then

sgn(�) = (�1)

i+k+l

:

Proof. Repla
ing � by �

1

:= � Æ � , where � = (i+ 1 i i� 1 : : : 3 2) is a 
y
le of length i ,

we obtain a permutation �

1

that restri
ts to an in
reasing map

f3; 4; : : : ; ng ! f1; : : : ; ng n fk; `g:

Next we put �

2

:= � Æ �

1

, where � = (1 2 3 : : : k � 1 k) is a 
y
le of length k to obtain an

in
reasing map

f3; 4; : : : ; ng ! f2; : : : ; ng n f`g:

Eventually we put �

3

:= 
 Æ �

2

, where 
 = (2 3 : : : `� 1 `) is a 
y
le of length `� 1 to obtain

an in
reasing map

f3; 4; : : : ; ng ! f3; 4; : : : ; ng;

whi
h implies that �

3

�xes all these elements. Further

�

3

(1) = 
���(1) = 
��(1) = 
�(k) = 
(1) = 1

implies that �

3

= id. This implies that

sgn(�) = sgn(�) sgn(�) sgn(
) = (�1)

i�1

(�1)

k�1

(�1)

`

= (�1)

i+k+`

:

The following proposition generalizes an observation of van Est and Korthagen in the

Appendix of [EK64℄:

Proposition A.6. (van Est{Korthagen) If M is smooth manifold, then the map

� :C

n

AS;s

(M;A)!

�

C

1

(M;A) for n = 0




n

(M; a) for n � 1

intertwines the Alexander{Spanier di�erential with the de Rham di�erential, hen
e indu
es a

map

� :H

n

AS;s

(M;A)! H

n

dR

(M; a):

Proof. We have to show that �(d

AS

F ) = d�(F ) holds for F 2 C

1

(U;A), where U is an

open neighborhood of the diagonal in M

n+1

.

From the 
hain rule we obtain for a ve
tor �eld Y on M the relation

Y:

��

�

1

(X

1

) � � � �

n

(X

n

):F

�

Æ�

n

�

=

�

�

0

(Y )�

1

(X

1

) � � � �

n

(X

n

):F

�

Æ�

n

+

n

X

i=1

�

�

1

(X

1

) � � ��

i

(Y )�

i

(X

i

) � � � �

n

(X

n

):F

�

Æ�

n

:(A:1)

Now let

F

i

(x

0

; : : : ; x

n+1

) := F (x

0

; : : : ; bx

i

; : : : ; x

n+1

):

Then

(A:2) F

i

Æ�

n+1

= F Æ�

n

and d

AS

F =

P

n+1

i=0

(�1)

i

F

i

. Sin
e the fun
tion F

i

is independent of x

i

, we have

(A:3) �

1

(X

1

) � � � �

n+1

(X

n+1

):F

i

= 0; i � 1:

Therefore

�

1

(X

1

) � � � �

n+1

(X

n+1

):(d

AS

F ) = �

1

(X

1

) � � � �

n+1

(X

n+1

)(F

0

) =

�

�

0

(X

1

) � � � �

n

(X

n+1

)F

�

0

:
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In view of (A.2) and (A.1), this leads to

�

�

1

(X

1

) � � ��

n+1

(X

n+1

):(d

AS

F )

�

Æ�

n+1

=

�

�

0

(X

1

) � � � �

n

(X

n+1

):F

�

Æ�

n

= X

1

:

�

��

�

1

(X

2

) � � � �

n

(X

n+1

):F

�

�

Æ�

n

�

n

X

i=1

�

�

1

(X

2

) � � � �

i

(X

1

)�

i

(X

i+1

) � � � �

n

(X

n+1

):F

�

Æ�

n

:

Alternating the �rst summand, we get an expression of the form

X

�2S

n+1

sgn(�)X

�(1)

:

�

�

1

(X

�(2)

) � � ��

n

(X

�(n+1)

):F

�

Æ�

n

=

n+1

X

i=1

X

�(1)=i

sgn(�)X

i

:

�

�

1

(X

�(2)

) � � � �

n

(X

�(n+1)

):F

�

Æ�

n

We write any permutation � 2 S

n+1

with �(1) = i as � = �

i

� , where �(1) = 1 and �

i

(1) = i

and �

i

is the 
y
le

�

i

= (i i� 1 i� 2 : : : 2 1):

We further identify S

n

with the stabilizer of 1 in S

n+1

. Then the above sum turns into

=

n+1

X

i=1

sgn(�

i

)

X

�2S

n

sgn(�)X

i

:

�

�

1

(X

�

i

�(2)

) � � � �

n

(X

�

i

�(n+1)

):F

�

Æ�

n

=

n+1

X

i=1

(�1)

i�1

X

i

:�(F )(X

�

i

(2)

; : : : ; X

�

i

(n+1)

)

=

n+1

X

i=1

(�1)

i�1

X

i

:�(F )(X

1

; : : : ;




X

i

; : : : ; X

n+1

):

In view of

d(�(F ))(X

1

; : : : ; X

n+1

) =

n+1

X

i=1

(�1)

i�1

X

i

:�(F )(X

1

; : : : ;

b

X

i

; : : : ; X

n+1

)

+

X

k<`

(�1)

k+`

�(F )([X

k

; X

`

℄; X

1

; : : : ;

b

X

k

; : : : ;

b

X

`

; : : : ; X

n+1

);

and

�

X

k<`

(�1)

k+`

�(F )([X

k

; X

`

℄; X

1

; : : : ;

b

X

k

; : : : ; : : : ;

b

X

`

; : : :X

n+1

)

=

X

k<`

(�1)

k+`+1

X

�2S

n

sgn(�)

�

�

�(1)

([X

k

; X

`

℄)�

�(2)

(X

1

) � � �

b

�(X

k

) � � �

b

�(X

`

) : : : �

�(n)

(X

n+1

):F

�

Æ�

n

;

it remains to show that, as operators on fun
tions on M

n+1

, alternation of

(A:3)

n

X

i=1

�

1

(X

2

) � � ��

i

(X

1

)�

i

(X

i+1

) � � � �

n

(X

n+1

)

leads to

X

k<`

(�1)

k+`+1

X

�2S

n

sgn(�)�

�(1)

([X

k

; X

`

℄)�

�(2)

(X

1

) � � �

b

�(X

k

) � � �

b

�(X

`

) : : : �

�(n)

(X

n+1

)

=

X

k<`

(�1)

k+`+1

h�

1

^ : : : ^ �

n

; [X

k

; X

`

℄ ^X

1

^ � � � ^

b

X

k

^ � � � ^

b

X

`

^ � � � ^X

n+1

i

=

X

k<`

(�1)

k+`+1

n

X

i=1

(�1)

i+1

�

i

([X

k

; X

`

℄) Æ h�

1

^ : : : ^

b

�

i

^ : : : ^ �

n

; X

1

^ � � � ^

b

X

k

^ � � � ^

b

X

`

^ � � � ^X

n+1

i:
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Alternating (A.3) leads to the expression

X

�2S

n+1

sgn(�)

n

X

i=1

�

1

(X

�(2)

) � � � �

i

(X

�(1)

)�

i

(X

�(i+1)

) � � � �

n

(X

�(n+1)

)

=

n

X

i=1

X

�(1)<�(i+1)

sgn(�)

n

X

i=1

�

1

(X

�(2)

) � � � �

i

([X

�(1)

; X

�(i+1)

℄) � � � �

n

(X

�(n+1)

)

=

n

X

i=1

X

k<`

X

�(1)=k

�(i+1)=`

sgn(�)

n

X

i=1

�

1

(X

�(2)

) � � � �

i

([X

k

; X

`

℄) � � � �

n

(X

�(n+1)

):

We 
an write ea
h permutation � 2 S

n+1

as � = �

0

� , where � �xes 1 and i + 1, so that we


an identify it with an element of S

n�1

, and

�

0

: f2; : : : ; n+ 1g n fi+ 1g ! f1; : : : ; n+ 1g n fk; `g

is in
reasing. In view of Lemma A.5, we then have sgn(�

0

) = (�1)

i+k+`

for k = �(1) and

` = �(i+ 1). Therefore alternating (A.3) gives

=

n

X

i=1

X

k<`

(�1)

i+k+`

X

�2S

n�1

sgn(�)

n

X

i=1

�

1

(X

�

0

�(2)

) � � ��

i

([X

k

; X

`

℄) � � � �

n

(X

�

0

�(n+1)

)

=

n

X

i=1

X

k<`

(�1)

i+k+`

�

i

([X

k

; X

`

℄) Æ h�

1

^ � � � ^

b

�

i

^ � � � ^ �

n

; X

�

0

(2)

^ � � � ^X

�

0

(n+1)

)i

=

X

k<`

n

X

i=1

(�1)

i+k+`

�

i

([X

k

; X

`

℄)h�

1

^ � � �

b

�

i

� � � ^ �

n

; X

2

^ � � � ^

b

X

k

^ � � � ^

b

X

`

^ � � � ^X

n+1

)i:

This 
ompletes the proof of Proposition A.6.

Appendix B. Cohomology of Lie groups and Lie algebras

In this appendix we show that for n � 2 there is a natural \derivation map"

D

n

:H

n

s

(G;A)! H

n




(g; a)

from lo
ally smooth Lie group 
ohomology to 
ontinuous Lie algebra 
ohomology. For n = 1

we have a map D

1

:Z

1

s

(G;A) ! Z

1




(g; a), and if, in addition, A

�

=

a=�

A

holds for a dis
rete

subgroup �

A

of a , then this map indu
es a map between the 
ohomology groups.

De�nition B.1. Let V be a topologi
al module of the topologi
al Lie algebra g . For p 2 N

0

,

let C

p




(g; V ) denote the spa
e of 
ontinuous alternating maps g

p

! V , i.e., the Lie algebra p-


o
hains with values in the module V . Note that C

1




(g; V ) = Lin(g; V ) is the spa
e of 
ontinuous

linear maps g ! V . We use the 
onvention C

0




(g; V ) = V . We then obtain a 
hain 
omplex

with the di�erential

d

g

:C

p




(g; V )! C

p+1




(g; V )

given on f 2 C

p




(g; V ) by

(d

g

f)(x

0

; : : : ; x

p

) :=

p

X

j=0

(�1)

j

x

j

:f(x

0

; : : : ; bx

j

; : : : ; x

p

)

+

X

i<j

(�1)

i+j

f([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

);
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where bx

j

indi
ates omission of x

j

. Note that the 
ontinuity of the bra
ket on g and the a
tion

on V imply that d

g

f is 
ontinuous.

We thus obtain a sub
omplex of the algebrai
 Lie algebra 
omplex asso
iated to g and V .

Hen
e d

2

g

= 0, and the spa
e Z

p




(g; V ) := ker(d

g

j

C

p




(g;V )

) of p-
o
y
les 
ontains the spa
e

B

p




(g; V ) := d

g

(C

p�1




(g; V )) of p-
oboundaries (
f. [We95, Cor. 7.7.3℄). The quotient

H

p




(g; V ) := Z

p




(g; V )=B

p




(g; V )

is the p-th 
ontinuous 
ohomology spa
e of g with values in the g-module V . We write [f ℄ :=

f +B

p




(g; V ) for the 
ohomology 
lass [f ℄ of the 
o
y
le f .

De�nition B.2. Let G be a Lie group and A an abelian Lie group. We 
all A a smooth

G-module if it is endowed with a G-module stru
ture de�ned by a smooth a
tion map G�A! A .

Let A be a smooth G-module. Then we de�ne

e

C

n

s

(G;A) to be the spa
e of all fun
tions

F :G

n+1

! A whi
h are smooth in a neighborhood of the diagonal, equivariant with respe
t to

the a
tion of G on G

n+1

given by

g:(g

0

; : : : ; g

n

) := (gg

0

; : : : ; gg

n

);

and vanish on all tuples of the form (g

0

; : : : ; g; g; : : : ; g

n

): As the G-a
tion preserves the diagonal,

it preserves the spa
e

e

C

n

s

(G;A). Moreover, the Alexander{Spanier di�erential d

AS

de�nes a

group homomorphism

d

AS

:

e

C

n

s

(G;A)!

e

C

n+1

s

(G;A);

and we thus obtain a di�erential 
omplex (

e

C

�

s

(G;A); d

AS

):

Let C

n

s

(G;A) denote the spa
e of all fun
tion f :G

n

! A whi
h are smooth in an identity

neighborhood and normalized in the sense that f(g

1

; : : : ; g

n

) vanishes if g

j

= 1 holds for some

j . We 
all these fun
tions normalized lo
ally smooth group 
o
hains. Then the map

�

n

:C

n

s

(G;A)!

e

C

n

s

(G;A); �

n

(f)(g

0

; : : : ; g

n

) := g

0

:f(g

�1

0

g

1

; g

�1

1

g

2

; : : : ; g

�1

n�1

g

n

)

is a linear bije
tion whose inverse is given by

�

�1

n

(F )(g

1

; : : : ; g

n

) := F (1; g

1

; g

1

g

2

; : : : ; g

1

� � � g

n

):

By

d

G

:= �

�1

n+1

Æ d

AS

Æ�

n

:C

n

s

(G;A) ! C

n+1

s

(G;A)

we obtain the di�erential d

G

:C

n

s

(G;A)! C

n+1

s

(G;A) turning (C

�

s

(G;A); d

G

) into a di�erential


omplex. We write Z

n

s

(G;A) for the 
orresponding group of 
o
y
les, B

n

s

(G;A) for the subgroup

of 
oboundaries and

H

n

s

(G;A) := Z

n

s

(G;A)=B

n

s

(G;A)

is 
alled the n-th Lie 
ohomology group with values in the smooth module A .

Lemma B.3. The group di�erential d

G

:C

n

s

(G;A)! C

n+1

s

(G;A) is given by

(d

G

f)(g

0

; : : : ; g

n

) = g

0

:f(g

1

; : : : ; g

n

)

+

n

X

j=1

(�1)

j

f(g

0

; : : : ; g

j�1

g

j

; : : : ; g

n

) + (�1)

n+1

f(g

0

; : : : ; g

n�1

):

Proof. In fa
t, d

AS

F =

P

n+1

i=0

(�1)

i

F

i

leads with F = �

n

(f) to d

G

f =

P

n+1

i=0

(�1)

i

�

�1

n+1

(F

i

)

and hen
e to

(d

G

f)(g

0

; : : : ; g

n

)

=

n+1

X

i=0

(�1)

i

F

i

(1; g

0

; g

0

g

1

; : : : ; g

0

� � � g

n

)

=

n+1

X

i=0

(�1)

i

F (1; g

0

; g

0

g

1

; : : : ; g

0

� � � g

i�1

; g

0

� � � g

i+1

; : : : ; g

0

� � � g

n

)

= g

0

:f(g

1

; : : : ; g

n

) +

n

X

i=1

(�1)

i

f(g

0

; g

1

; : : : ; g

i

g

i+1

; : : : ; g

n

) + (�1)

n+1

f(g

0

; : : : ; g

n�1

):
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For n = 0 we have in parti
ular

(d

G

f)(g

0

) = g

0

:f � f;

and for n = 1:

(d

G

f)(g

0

; g

1

) = g

0

:f(g

1

)� f(g

0

g

1

) + f(g

0

):

De�nition B.4. Let G be a Lie group and a a smooth lo
ally 
onvex G-module, i.e., a is

a lo
ally 
onvex spa
e and the a
tion map �

a

:G � a ! a; (g; a) 7! g:a is smooth. We write

�

a

(g): a! a; a 7! g:a for the 
orresponding 
ontinuous linear automorphisms of a .

We 
all a p-form 
 2 


p

(G; a) equivariant if we have for all g 2 G the relation

�

�

g


 = �

a

(g) Æ
:

The 
omplex of equivariant di�erential forms has been introdu
ed in the �nite-dimensional setting

by Chevalley and Eilenberg in [CE48℄.

If a is a trivial module, then an equivariant p-form is a left invariant a-valued p-form on

G . An equivariant p-form is uniquely determined by the 
orresponding element 


1

2 C

p




(g; a):

(B:1) 


g

(g:x

1

; : : : ; g:x

p

) = �

a

(g) Æ


1

(x

1

; : : : ; x

p

); for g 2 G; x

i

2 g

�

=

T

1

(G);

where G � T (G) ! T (G); (g; x) 7! g:x denotes the natural a
tion of G on its tangent bundle

T (G) obtained by restri
ting the tangent map of the group multipli
ation.

Conversely, (B.1) provides for ea
h ! 2 C

p




(g; a) a unique equivariant p-form !

eq

on G

with !

eq

1

= ! .

Lemma B.5. For ea
h ! 2 C

p




(g; a) we have d(!

eq

) = (d

g

!)

eq

. In parti
ular the evaluation

map

ev

1

: 


p

(G; a)

eq

! C

p




(g; a); ! 7! !

1

de�nes an isomorphism from the 
hain 
omplex of equivariant a-valued di�erential forms on G

to the 
ontinuous a-valued Lie algebra 
ohomology.

Proof. (
f. [CE48, Th. 10.1℄) For g 2 G we have

�

�

g

d!

eq

= d�

�

g

!

eq

= d(�

a

(g) Æ !

eq

) = �

a

(g) Æ (d!

eq

);

showing that d!

eq

is also equivariant.

For x 2 g we write x

l

for the 
orresponding left invariant ve
tor �eld on G , i.e., x

l

(g) =

g:x . It suÆ
es to 
al
ulate the value of d!

eq

on (p + 1)-tuples of left invariant ve
tor �elds in

the identity element.

In view of

!

eq

(x

1;l

; : : : ; x

p;l

)(g) = �

a

(g):!(x

1

; : : : ; x

p

);

we obtain

�

x

0;l

:!

eq

(x

1;l

; : : : ; x

p;l

)

�

(1) = x

0

:!(x

1

; : : : ; x

p

);

and therefore

�

d!

eq

(x

0;l

; : : : ; x

p;l

�

�

(1) =

p

X

i=0

(�1)

i

x

i;l

:!

eq

(x

0;l

; : : : ; 
x

i;l

; : : : ; x

p;l

)(1)

+

X

i<j

(�1)

i+j

!

eq

([x

i;l

; x

j;l

℄; x

0;l

; : : : ; 
x

i;l

; : : : ; 
x

j;l

; : : : ; x

p;l

)(1)

=

p

X

i=0

(�1)

i

x

i

:!(x

0

; : : : ; bx

i

; : : : ; x

p

)

+

X

i<j

(�1)

i+j

!([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

)

= (d

g

!)(x

0

; : : : ; x

p

):

This proves our assertion.



63 abelext.tex February 18, 2004

Theorem B.6. The maps

D

n

: ev

1

Æ� Æ�

n

:C

n

s

(G;A)! C

n




(g; a); n � 1;

indu
e a morphism of 
hain 
omplexes

D: (C

n

s

(G;A); d

G

)

n�1

! (C

n




(g; a); d

g

)

n�1

and in parti
ular homomorphisms

D

n

:H

n

s

(G;A) ! H

n




(g; a); n � 2:

For A = a these assertions hold for all n 2 N

0

and if A

�

=

a=�

A

for a dis
rete subgroup

�

A

of a , then D

1

also indu
es a homomorphism

D

1

:H

1

s

(G;A)! H

1




(g; a); [f ℄ 7! [df(1)℄:

Proof. In view of Proposition A.6 and the de�nition of the group di�erential d

G

, the


omposition

� Æ�

n

:C

n

s

(G;A)!

e

C

n

s

(G;A) � C

n

AS;s

(G;A)! 


n

(G; a); n � 1;

de�nes a homomorphism of 
hain 
omplexes. For A = a this relation also holds for n = 0.

For f 2 C

n

s

(G;A) the fun
tion F := �

n

(f):G

n+1

! A is G-equivariant with respe
t to

the diagonal a
tion. For g 2 G let

�

g

:G

n+1

! G

n+1

; (g

0

; : : : ; g

n

) 7! (gg

0

; : : : ; gg

n

)

and write �

A

(g)(a) := g:a for a 2 A . Then the equivarian
e of F means that �

�

g

F = F Æ �

g

=

�

A

(g) Æ F whi
h implies that

�

A

(g) Æ �(F ) = �(�

A

(g) Æ F ) = �(�

�

g

F ) = �

�

g

�(F ):

This shows that the image of � Æ�

n


onsists of equivariant a-valued n-forms on G . A

ording to

Lemma B.5, evaluating an equivariant n-form in the identity intertwines the de Rham di�erential

on 


p

(G; a) with the Lie algebra di�erential d

g

. This implies

d

g

ÆD

n

= D

n+1

Æ d

G

for ea
h n 2 N , i.e., the D

n

de�ne a morphism of 
hain 
omplexes (trun
ated to n � 1). For

A = a it also holds for n = 0.

If A

�

=

a=�

A

and n = 1, then D

1

(B

1

s

(G;A)) = B

1




(g; a) implies that D

1

indu
es a map

H

1

s

(G;A)! H

1




(g; a). If A is not of this form, then we 
annot 
on
lude that D

1

maps B

1

s

(G;A)

into B

1




(g; a).

To make D

n

, n � 2, better a

essible to 
al
ulations, we need a more 
on
rete formula

for the Lie algebra 
o
hain D

n

f for f 2 C

n

s

(G;A). As f vanishes on all tuples of the form

(g

1

; : : : ;1; : : : ; g

n

), its (n� 1)-jet in 1 vanishes and the term of order n is the n-linear map

(d

n

f)(1; : : : ;1): g

n

= T

1

(G)

n

! a

(
f. De�nition A.3). In fa
t, in lo
al 
oordinates the n-th order term of the Taylor expansion of

f in (1; : : : ;1) is given by a symmetri
 n-linear map

(d

[n℄

f)(1; : : : ;1): (g

n

)

n

! a



64 Abelian extensions of in�nite-dimensional Lie groups February 18, 2004

as

1

n!

(d

[n℄

f)(1; : : : ;1)(x; : : : ; x); x = (x

1

; : : : ; x

n

) 2 g

n

:

The normalization 
ondition on f implies that (d

[n℄

f)(1; : : : ;1) vanishes on all elements

(x

1

; : : : ; x

n

), x

i

= (x

i

l

) 2 g

n

, for whi
h the j -th 
omponent (in g) vanishes for some j , i.e.,

x

i

j

= 0 for all i . This implies that

(d

[n℄

f)(1; : : : ;1)(x; : : : ; x)

is a sum of n! terms of the form

(d

[n℄

f)(1; : : : ;1)((0; : : : ; x

�(1)

; : : : ; 0); (0; : : : ; x

�(2)

; : : : ; 0); : : : ; (0; : : : ; x

�(n)

; : : : ; 0));

sin
e all these terms are equal, we �nd

1

n!

(d

[n℄

f)(1; : : : ;1)(x; : : : ; x) = (d

[n℄

f)(1; : : : ;1)((x

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; x

n

))

= (d

n

f)(1; : : : ;1)(x

1

; : : : ; x

n

):

Lemma B.7. For f 2 C

n

s

(G;A) and x

1

; : : : ; x

n

2 g we have

(D

n

f)(x

1

; : : : ; x

n

) =

X

�2S

n

sgn(�)(d

n

f)(1; : : : ;1)(x

�(1)

; : : : ; x

�(n)

):

Proof. Re
all that on an n-tuple (x

1

; : : : ; x

n

) 2 g

n

the map d

n

f 
an be 
al
ulated by


hoosing smooth ve
tor �elds X

n

on an open identity neighborhood of G with X

i

(1) = x

i

via

(d

n

f)(1; : : : ;1)(x

1

; : : : ; x

n

) := (�

1

(X

1

) � � � �

n

(X

n

):f)(1; : : : ;1):

For F = �

n

(f) we now get

(D

n

f)(x

1

; : : : ; x

n

) = �(F )(x

1

; : : : ; x

n

) =

X

�2S

n

sgn(�)(d

n

F )(1; : : : ;1)(0; x

�(1)

; : : : ; x

�(n)

):

In view of

F (1; g

1

; : : : ; g

n

) = f(g

1

; g

�1

1

g

2

; : : : ; g

�1

n�1

g

n

)

and f(g

1

;1; : : :) = 0, we have

(�

1

(X

1

)F )(1;1; g

2

; : : : ; g

n

) = (�

1

(X

1

)f)(1; g

2

; g

�1

2

g

3

; : : : ; g

�1

n�1

g

n

);

and indu
tively we obtain

(�

1

(X

1

) � � ��

n

(X

n

)F )(1;1; : : : ;1) = (�

1

(X

1

) : : : �

n

(X

n

)f)(1; : : : ;1)

= (d

n

f)(1; : : : ;1)(x

1

; : : : ; x

n

):

This implies the assertion.

For n = 1 we obtain (D

1

f)(x) = df(1):x; and for n = 2 we have

(D

2

f)(x; y) = (d

2

f)(1;1)(x; y)� (d

2

f)(1;1)(y; x):

If (d

[n℄

f)(1;1) denotes the symmetri
 n-linear map (g

n

)

n

! a representing the n-jet of f , this

expression equals

(d

[2℄

f)(1;1)((x; 0)(0; y))� (d

[2℄

f)(1;1)((y; 0); (0; x)):
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Appendix C. Split Lie subgroups

In this appendix we 
olle
t some general material on Lie group stru
tures on groups, (normal) Lie

subgroups and quotient groups. In parti
ular Theorem C.2 provides a tool to 
onstru
t Lie group

stru
tures on groups for whi
h a subset 
ontaining the identity is an open 0-neighborhood of a

lo
ally 
onvex spa
e su
h that the group operations are lo
ally smooth in these 
oordinates. We

also give a 
ondition on a normal subgroup N E G for the quotient group G=N being a manifold

su
h that the quotient map q:G ! G=N de�nes on G the stru
ture of a smooth N -prin
ipal

bundle.

Lemma C.1. Let G be a group and F a �lter basis of subsets with

T

F = f1g satisfying:

(U1) (8U 2 F)(9V 2 F)V V � U:

(U2) (8U 2 F)(9V 2 F)V

�1

� U:

(U3) (8U 2 F)(8g 2 G)(9V 2 F)gV g

�1

� U:

Then there exists a unique group topology on G su
h that F is a basis of 1-neighborhoods in G .

This topology is given by fU � G: (8g 2 U)(9V 2 F)gV � Ug:

Proof. [Bou88, Ch. III, x1.2, Prop. 1℄

Theorem C.2. Let G be a group and U = U

�1

a symmetri
 subset. We further assume that

U is a smooth manifold su
h that

(L1) there exists an open 1-neighborhood V � U with V

2

= V � V � U su
h that the group

multipli
ation �

V

:V � V ! U is smooth,

(L2) the inversion map �

U

:U ! U; u 7! u

�1

is smooth, and

(L3) for ea
h g 2 G there exists an open 1-neighborhood U

g

� U with 


g

(U

g

) � U and su
h that

the 
onjugation map




g

:U

g

! U; x 7! gxg

�1

is smooth.

Then there exists a unique stru
ture of a Lie group on G for whi
h there exists an open

1-neighborhood U

1

� U su
h that the in
lusion map U

1

! G indu
es a di�eomorphism onto an

open subset of G .

Proof. (
f. [Ch46, x14, Prop. 2℄ or [Ti83, p.14℄ for the �nite-dimensional 
ase) First we 
onsider

the �lter basis

F := fW � G:W 2 U

U

(1)g

of all those subsets of U whi
h are 1-neighborhoods in U . Then (L1) implies (U1), (L2)

implies (U2), and (L3) implies (U3). Moreover, the assumption that U is Hausdor� implies that

T

F = f1g . Therefore Lemma C.1 implies that G 
arries a unique stru
ture of a (Hausdor�)

topologi
al group for whi
h F is a basis of 1-neighborhoods.

After shrinking V and U , we may assume that there exists a di�eomorphism ':U !

'(U) � E , where E is a topologi
al K -ve
tor spa
e, '(U) an open subset, that V satis�es

V = V

�1

, V

4

� U , and that m:V

2

� V

2

! U is smooth. For g 2 G we 
onsider the maps

'

g

: gV ! E; '

g

(x) = '(g

�1

x)

whi
h are homeomorphisms of gV onto '(V ). We 
laim that ('

g

; gV )

g2G

is an atlas of G .

Let g

1

; g

2

2 G and put W := g

1

V \ g

2

V . If W 6= �, then g

�1

2

g

1

2 V V

�1

= V

2

. The

smoothness of the map

 := '

g

2

Æ '

�1

g

1

j

'

g

1

(W )

:'

g

1

(W )! '

g

2

(W )

given by

 (x) = '

g

2

('

�1

g

1

(x)) = '

g

2

(g

1

'

�1

(x)) = '(g

�1

2

g

1

'

�1

(x))
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follows from the smoothness of the multipli
ation V

2

� V

2

! U . This proves that the 
harts

('

g

; gU)

g2G

form an atlas of G . Moreover, the 
onstru
tion implies that all left translations of

G are smooth maps.

The 
onstru
tion also shows that for ea
h g 2 G the 
onjugation 


g

:G ! G is smooth in

a neighborhood of 1 . Sin
e all left translations are smooth, and




g

Æ �

x

= �




g

(x)

Æ 


g

;

the smoothness of 


g

in a neighborhood of x 2 G follows. Therefore all 
onjugations and

hen
e also all right multipli
ations are smooth. The smoothness of the inversion follows from

its smoothness on V and the fa
t that left and right multipli
ations are smooth. Finally the

smoothness of the multipli
ation follows from the smoothness in 1� 1 be
ause of

�

G

(g

1

x; g

2

y) = g

1

xg

2

y = g

1

g

2




g

�1

2

(x)y = g

1

g

2

�

G

(


g

�1

2

(x); y):

The uniqueness of the Lie group stru
ture is 
lear be
ause ea
h lo
ally di�eomorphi
 bije
tive

homomorphism between Lie groups is a di�eomorphism.

Remark C.3. Suppose that the group G in Theorem C.2 is generated by ea
h 1-neighborhood

U � U . Then 
ondition (L3) 
an be omitted. Indeed, the 
onstru
tion of the Lie group stru
ture

shows that for ea
h g 2 V the 
onjugation 


g

:G! G is smooth in a neighborhood of 1 . Sin
e

the set of all these g is a submonoid of G 
ontaining V , it 
ontains V

n

for ea
h n 2 N , hen
e all

of G be
ause G is generated by V . Therefore all 
onjugations are smooth, and one 
an pro
eed

as in the proof of Theorem C.2.

De�nition C.4. (a) (Split Lie subgroups) Let G be a Lie group. A subgroup H is 
alled a

split Lie subgroup if it 
arries a Lie group stru
ture for whi
h the 
anoni
al right a
tion of H on

G de�ned by restri
ting the multipli
ation map of G to G�H ! G de�nes a smooth prin
ipal

bundle, i.e., the 
oset spa
e G=H is a smooth manifold and the quotient map �:G! G=H has

smooth lo
al se
tions.

(b) If G is a Bana
h{Lie group and exp: g! G its exponential fun
tion, then a 
losed subgroup

H � G is 
alled a Lie subgroup if there exists an open 0-neighborhood U � g su
h that

exp j

U

:U ! exp(U) is a di�eomorphism onto an open subset of G and the Lie algebra

h := fx 2 g: exp(Rx) � Hg

of H satis�es

H \ exp(U) = exp(U \ h):

Sin
e the Lie algebra h of a Lie subgroup H of a Bana
h Lie group G need not have

a 
losed 
omplement in g , not every Lie subgroup is split. A simple example is the subgroup

H := 


0

(N;R) in G := `

1

(N; C ).

Lemma C.5. If H is a split Lie subgroup of G or a Lie subgroup of the Bana
h{Lie group G ,

then for any smooth manifold X ea
h smooth map f :X ! G with f(X) � H is also smooth as

a map X ! H . If H is a normal split Lie subgroup, then the 
onjugation a
tion of G on H is

smooth.

Proof. The 
ondition that H is a split Lie subgroup implies that there exists an open subset

U of some lo
ally 
onvex spa
e V and a smooth map �:U ! G su
h that the map

U �H ! G; (x; h) 7! �(x)h

is a di�eomorphism onto an open subset of G . Let p:�(U)H ! U denote the smooth map given

by p(�(x)h) = x . If X is a manifold and f :X ! G is a smooth map with values in H , then f

is smooth as a map to �(U)H

�

=

U �H , hen
e smooth as a map X ! H .
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If H is a Lie subgroup of a Bana
h{Lie group and f :X ! G is a smooth map with

f(X) � H , then we have to see that f is smooth as a map X ! H . To verify smoothness in

a neighborhood of some x

0

2 X , it suÆ
es to 
onsider the map x 7! f(x)f(x

0

)

�1

, so that we

may w.l.o.g. assume that f(x

0

) = 1 . Then we 
an use the natural 
hart of H in 1 given by the

exponential fun
tion to see that f is smooth in a neighborhood of x

0

be
ause any smooth map

X ! g with values in h is smooth as a map X ! h .

Now suppose that H E G is normal. Then the 
onjugation map G � H ! G; (g; h) 7!

ghg

�1

, is smooth with values in H , hen
e smooth as a map G�H ! H .

Theorem C.6. Let G be a Lie group and N E G a split normal subgroup. Then the quotient

group G=N has a natural Lie group stru
ture su
h that the quotient map q:G ! G=N de�nes

on G the stru
ture of a prin
ipal N -bundle.

Proof. There exists an open subset U of a lo
ally 
onvex spa
e V and a smooth map �:U ! G

su
h that the map

U �N ! G; (u; n) 7! �(u)n

is a di�eomorphism onto an open subset W = �(U)N of G . As N is in parti
ular 
losed, the

quotient group G=N has a natural (Hausdor�) group topology.

Let q:G ! G=N denote the quotient map. Then q(W ) = q Æ �(U) is an open subset of

G=N and q(W )

�

=

W=N

�

=

(U � N)=N

�

=

U . Therefore the map ' := q Æ �:U ! q(W ) is a

homeomorphism.

Let K = K

�1

� q(W ) be a symmetri
 open subset, and U

K

:= '

�1

(K), and endow K

with the manifold stru
ture obtained from the homeomorphism ':U

K

! K .

(L1): Let V � K be an open 1-neighborhood with V

2

� K . We identify V with the


orresponding open subset U

V

� U . Then the group multipli
ation �

V

:V � V ! K is given by

'(x)'(y) = �(x)N � �(y)N = �(x)�(y)N = '('

�1

(�(x)�(y)N));

and sin
e the map p:W ! U; �(u)n! u is smooth, the map

(x; y) 7! '

�1

(�(x)�(y)N) = p(�(x)�(y))

is smooth.

(L2): We likewise see that the inversion map K ! K 
orresponds to the smooth map

x 7! '

�1

('(x)

�1

) = '

�1

(�(x)

�1

N) = p(�(x)

�1

):

(L3): For ea
h g 2 G we �nd an open 1-neighborhood K

g

� K with 


g

(K

g

) � K . Then

the 
onjugation map




g

:K

g

! K; x 7! gxg

�1

is written in '-
oordinates as

'(x) 7! '('

�1

(g�(x)g

�1

N)) = '(p(g�(x)g

�1

))

and therefore smooth.

Now Theorem C.2 applies and shows that there exists a unique stru
ture of a Lie group

on G=N for whi
h there exists an open 0-neighborhood in U su
h that the map ':U ! G=N

indu
es a di�eomorphism onto an open subset of G=N .
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Appendix D. The exa
t In
ation-Restri
tion Sequen
e

In this se
tion G denotes a Lie group, N E G a split normal Lie subgroup (
f. De�ni-

tion C.4) and A a smooth G-module. We write q:G! G=N for the quotient map.

De�nition D.1. (a) (In
ation and restri
tion) Restri
tion of 
o
hains leads for ea
h p 2 N

0

to a map

e

R:C

p

s

(G;A)! C

p

s

(N;A);

and sin
e R Æ d

G

= d

N

ÆR , it follows that

e

R(B

p

(G;A)) � B

p

(N;A),

e

R(Z

p

s

(G;A)) � Z

p

s

(N;A),

so that

e

R indu
es a homomorphism

R:H

p

s

(G;A)! H

p

s

(N;A):

(b) Sin
e N is a normal subgroup of G , the subgroup

A

N

:= fa 2 A: (8n 2 N) n:a = ag

is a G-submodule of A . If A

N

is a split Lie subgroup of A , it inherits a natural stru
ture of a

smooth G=N -module (Lemma C.2) but we do not want to make this restri
tive assumption. We

therefore de�ne the 
hain 
omplex (C

�

s

(G=N;A

N

); d

G=N

) as the 
omplex whose 
o
hain spa
e

C

p

s

(G=N;A

N

) 
onsists of those fun
tions f : (G=N)

p

! A

N

for whi
h the pull-ba
k

q

�

f :G

p

! A

N

; (q

�

f)(g

1

; : : : ; g

p

) := f(q(g

1

); : : : ; q(g

p

))

is an element of C

p

s

(G;A). With this de�nition we do not need a Lie group stru
ture on the

subgroup A

N

of A . For a 
o
hain f 2 C

p

s

(G=N;A

N

) we de�ne

e

I := q

�

:C

p

s

(G=N;A

N

)! C

p

s

(G;A):

Then (C

�

s

(G=N;A

N

); d

G=N

) be
omes a 
hain 
omplex with the group di�erential from

Lemma B.3. Moreover, q

�

Æ d

G=N

= d

G

Æ q

�

, so that q

�

(B

p

s

(G=N;A

N

)) � B

p

s

(G;A), and

q

�

(Z

p

s

(G=N;A

N

)) � Z

p

s

(G;A), showing that q

�

indu
es the so 
alled in
ation map

I :H

p

s

(G=N;A

N

)! H

p

s

(G;A); [f ℄ 7! [q

�

f ℄:

The restri
tion and in
ation maps

C

p

s

(G=N;A

N

)

I

��!C

p

s

(G;A)

R

��!C

p

s

(N;A)


learly satisfy R Æ I = 0, whi
h is inherited by the 
orresponding maps

H

p

s

(G=N;A

N

)

I

��!H

p

s

(G;A)

R

��!H

p

s

(N;A):

Lemma D.2. The restri
tion maps

e

R:C

p

s

(G;A)! C

p

s

(N;A) are surje
tive.

Proof. Sin
e N is a split Lie subgroup of G , there exists an open 0-neighborhood U in a

lo
ally 
onvex spa
e V and a smooth map ':U ! G with '(0) = 1 su
h that the map

�:N � U ! G; (n; x) 7! n'(x)

is a di�eomorphism onto an open subset N'(U) of G .

Let f 2 C

p

s

(N;A). We extend f to a fun
tion

e

f : (N'(U))

p

! A by

e

f((n

1

'(x

1

); : : : ; n

p

'(x

p

)) := f(n

1

; : : : ; n

p

):

Then 
learly

e

f is smooth in an identity neighborhood and vanishes if one argument n

i

'(x

i

) is

1 , be
ause this implies x

i

= 0 and n

i

= 1 . Now we extend

e

f to a fun
tion on G

p

vanishing in

all tuples (g

1

; : : : ;1; : : : ; g

p

). Then

e

f 2 C

p

s

(G;A) satis�es

e

R(

e

f) = f .
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Although the the in
ation map I is inje
tive on 
o
hains and R is surje
tive on 
o
hains,

in general there are many 
o
hains with trivial restri
tions on N whi
h are not in the image of

the in
ation map. Therefore we do not have a short exa
t sequen
e of 
hain 
omplexes, hen
e


annot expe
t a long exa
t sequen
e in 
ohomology. In this appendix we dis
uss what we still 
an

say on the 
orresponding maps in low degree. It would be interesting to see if these results 
an

also be obtained from a generalization of the Ho
hs
hild{Serre spe
tral sequen
e for Lie groups.

As we shall see below, it is 
lear that the 
onstru
tion in [HS53a℄ has to be modi�ed substantially

for the lo
ally smooth in�nite-dimensional setting.

Lemma D.3. (a) Ea
h 
ohomology 
lass in H

p

s

(G;A) annihilated by R 
an be represented by

a 
o
y
le in ker

e

R .

(b) We have B

p

s

(N;A) � im(

e

R) and therefore [f ℄ 2 im(R) is equivalent to f 2 im(

e

R) .

Proof. (a) We may w.l.o.g. assume that p � 1. If R[f ℄ = 0, then

e

R(f) = d

N

� for

some � 2 C

p�1

s

(N;A). Let e� 2 C

p�1

s

(G;A) be an extension of � to G (Lemma D.2). Then

f

0

:= f � d

G

e� restri
ts to

e

R(f)� d

N

� = 0 and [f

0

℄ = [f ℄ .

(b) For � 2 C

p�1

s

(G;A) we have

e

R(d

G

�) = d

N

e

R(�), so that C

p�1

s

(N;A) � im(

e

R) implies that

e

R(B

p

s

(G;A)) = B

p

s

(N;A).

For f 2 Z

p

s

(N;A) it follows that [f ℄ 2 im(R) is equivalent to the existen
e of � 2

B

p�1

s

(N;A) with f � d

N

� 2 im(

e

R), whi
h implies that f 2 im(

e

R).

Lemma D.4. The 
oboundary operator d

N

is equivariant with respe
t to the a
tion of G on

C

p

s

(N;A) , p 2 N

0

, given by

(g:f)(n

1

; : : : ; n

p

) := g:f(g

�1

n

1

g

�1

; : : : ; g

�1

n

p

g):

In parti
ular, this a
tion leaves the spa
e of 
o
hains invariant and indu
es a
tions on the


ohomology groups H

p

s

(N;A) .

The pre
eding lemma applies in parti
ular to the 
ase N = G , showing that the 
oboundary

operator d

G

is equivariant for the natural a
tion of G on the spa
es C

p

s

(G;A).

De�nition D.5. In the following we need a re�ned 
on
ept of invarian
e of 
ohomology 
lasses

in H

p

s

(N;A) under the a
tion of the group G . We 
all f 2 Z

p

s

(N;A) smoothly 
ohomologi
ally

invariant if there exists a map

�:G! C

p�1

s

(N;A) with d

N

(�(g)) = g:f � f for all g 2 G

for whi
h the map

G�N

p

! A; (g; n

1

; : : : ; n

p�1

)! �(g)(n

1

; : : : ; n

p�1

)

is smooth in an identity neighborhood of G�N

p�1

.

We write Z

p

s

(N;A)

[G℄

for the set of smoothly 
ohomologi
ally invariant 
o
y
les in the

group Z

p

s

(N;A). If f = d

N

h for some h 2 C

p�1

s

(N;A), then we may put �(g) := g:h�h to �nd

d

N

(�(g)) = d

N

(g:h� h) = g:d

N

(h)� d

N

(h) = g:f � f;

and the map

G�N

p�1

! A;

(g; n

1

; : : : ; n

p�1

) 7! (g:h� h)(n

1

; : : : ; n

p�1

) = g:h(g

�1

n

1

g; : : : ; g

�1

n

p�1

g)� h(n

1

; : : : ; n

p�1

)

is smooth in an identity neighborhood. This shows that B

p

s

(N;A) � Z

p

s

(N;A)

[G℄

, and we de�ne

the spa
e of smoothly invariant 
ohomology 
lasses by

H

p

s

(N;A)

[G℄

:= Z

p

s

(N;A)

[G℄

=B

p

s

(N;A):

For a generalization of the following fa
t to general p for dis
rete groups and modules we

refer to [HS53a℄.
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Proposition D.6. Let N E G be a split normal Lie subgroup and p 2 f0; 1; 2g . Then the

restri
tion map R maps H

p

s

(G;A) into H

p

s

(N;A)

[G℄

. In parti
ular

(D:1) H

p

s

(G;A) = H

p

s

(G;A)

[G℄

for p = 0; 1; 2:

Proof. In view of the G-equivarian
e of the restri
tion map C

p

s

(G;A)! C

p

s

(N;A), it suÆ
es

to prove the assertion in the 
ase N = G .

For p = 0 we have C

0

s

(G;A) = A , and Z

0

s

(G;A) = H

0

s

(G;A) = A

G

is the submodule of

G-invariants. Clearly G a
ts trivially on this spa
e, so that there is nothing to prove.

For p = 1 and a 
o
y
le f 2 Z

1

s

(G;A) we have for g; x 2 G :

(g:f � f)(x) = g:f(g

�1

xg)� f(x) = g:(g

�1

:f(xg) + f(g

�1

))� f(x) = f(xg) + g:f(g

�1

)� f(x)

= x:f(g) + f(x)� f(g)� f(x) = d

G

(f(g))(x):

This shows that

(D:2) g:f � f = d

G

(f(g));

so that f 2 Z

2

s

(G;A)

[G℄

follows from the lo
al smoothness of f .

For p = 2 and f 2 Z

2

s

(G;A) we have

(g:f � f)(x; x

0

)

= g:f(g

�1

xg; g

�1

x

0

g)� f(x; x

0

)

= �f(g; g

�1

xx

0

g) + f(g; g

�1

xg) + f(xg; g

�1

x

0

g)� f(x; x

0

)

= �f(g; g

�1

xx

0

g) + f(g; g

�1

xg)� f(x; g) + x:f(g; g

�1

x

0

g) + f(x; x

0

g)� f(x; x

0

)

= �f(g; g

�1

xx

0

g) + f(g; g

�1

xg)� f(x; g) + x:f(g; g

�1

x

0

g)� x:f(x

0

; g) + f(xx

0

; g)

and the fun
tion

�(g):G! A; �(g)(x) := f(g; g

�1

xg)� f(x; g)

satis�es

(d

G

�(g))(x; x

0

) = x:�(g)(x

0

) + �(g)(x) � �(g)(xx

0

)

= x:f(g; g

�1

x

0

g)� x:f(x

0

; g) + f(g; g

�1

xg)� f(x; g)� f(g; g

�1

xx

0

g) + f(xx

0

; g)

= (g:f � f)(x; x

0

):

Sin
e the fun
tion G

2

! A; (g; x) 7! �(g)(x) is smooth in an identity neighborhood of G

2

, the

assertion follows for p = 2.

Lemma D.7. For ea
h f 2 Z

1

s

(N;A)

[G℄

there exists a 2 C

1

s

(G;A) with

d

N

(a(g)) = g:f � f; a(gn) = a(g) + g:f(n); g 2 G;n 2 N:

Then d

G

a 2 B

2

s

(G;A) is A

N

-valued and 
onstant on (N �N)-
osets, hen
e fa
tors to a 
o
y
le

d

G

a 2 Z

2

s

(G=N;A

N

) . The 
ohomology 
lass [d

G

a℄ does not depend on the 
hoi
e of f in [f ℄

and the fun
tion a , and we thus obtain a group homomorphism

Æ:H

1

s

(N;A)

[G℄

! H

2

s

(G=N;A

N

); [f ℄ 7! [d

G

a℄:

Proof. Sin
e N is a split Lie subgroup, there exists an open 0-neighborhood of some lo
ally


onvex spa
e V and a smooth map ':U ! G with '(0) = 1 su
h that the multipli
ation map

N � U ! G; (x; n) 7! '(x)n



71 abelext.tex February 18, 2004

is a di�eomorphism onto an open subset of G . Let E � G be a set of representatives of the

N -
osets 
ontaining '(U), so that the multipli
ation map E �N ! G is bije
tive.

The requirement f 2 Z

1

s

(N;A)

[G℄

implies the existen
e of a fun
tion � 2 C

1

s

(G;A) with

d

N

(�(g)) = g:f � f . We now de�ne

a:G = EN ! A; x � n 7! �(x) + x:f(n):

Then a is smooth on an identity neighborhood be
ause E 
ontains '(U). Sin
e f is a 1-
o
y
le,

we have for x 2 E and n; n

0

2 N the relation

a(xnn

0

) = a(x) + x:f(nn

0

) = a(x) + x:f(n) + (xn):f(n

0

) = a(xn) + (xn):f(n

0

);

whi
h means that

a(gn) = a(g) + g:f(n); g 2 G;n 2 N:

In view of (D.2), we have for n 2 N the relation n:f � f = d

N

(f(n)), so that

(xn):f � f = x:(n:f � f) + x:f � f = x:d

N

(f(n)) + d

N

(a(x)) = d

N

(x:f(n) + a(x)) = d

N

(a(xn));

and hen
e d

N

(a(g)) = g:f � f for all g 2 G .

That the values of the fun
tion d

G

a lie in A

N

follows from

d

N

(a(g

1

g

2

)) = (g

1

g

2

):f � f = g

1

:(g

2

:f � f) + g

1

:f � f

= g

1

:d

N

(a(g

2

)) + d

N

(a(g

1

)) = d

N

(g

1

:a(g

2

) + a(g

1

))

in C

1

s

(N;A). The 
oboundary d

G

a is a 
o
y
le, hen
e an element of Z

2

s

(G;A

N

). We show that

d

G

a is 
onstant on the 
osets of N . We have

(d

G

a)(g

1

; g

2

n) = g

1

:a(g

2

n) + a(g

1

)� a(g

1

g

2

n)

= g

1

:a(g

2

) + g

1

g

2

:f(n) + a(g

1

)� a(g

1

g

2

)� g

1

g

2

:f(n) = (d

G

a)(g

1

; g

2

)

and

(d

G

a)(g

1

n; g

2

) = g

1

n:a(g

2

) + a(g

1

n)� a(g

1

ng

2

)

= g

1

n:a(g

2

) + a(g

1

) + g

1

:f(n)� a(g

1

g

2

(g

�1

2

ng

2

))

= g

1

n:a(g

2

) + a(g

1

) + g

1

:f(n)� a(g

1

g

2

)� (g

1

g

2

):f(g

�1

2

ng

2

)

= g

1

n:a(g

2

) + a(g

1

) + g

1

:f(n)� a(g

1

g

2

)� g

1

:((g

2

:f)(n))

= (d

G

a)(g

1

; g

2

) + g

1

:(na(g

2

)� a(g

2

)) + g

1

:f(n)� g

1

:f(n)� g

1

:(n:a(g

2

)� a(g

2

))

= (d

G

a)(g

1

; g

2

)

We now de�ne

d

G

a:G=N �G=N ! A

N

; (xN; yN) 7! (d

G

a)(x; y):

Sin
e d

G

a is a 
o
y
le on G , the fun
tion d

G

a is an element of Z

2

s

(G=N;A

N

). It remains to

show that the 
ohomology 
lass of d

G

a in H

2

s

(G=N;A

N

) does not depend on the 
hoi
es of a

and f . If a

0

2 C

1

s

(G;A) is another fun
tion with

d

N

(a

0

(g)) = g:f � f; a

0

(gn) = a

0

(g) + g:f(n); g 2 G;n 2 N;

then d

N

(a

0

(g)� a(g)) = 0 implies that

�(g) := a

0

(g)� a(g) 2 A

N

; g 2 G:

Moreover,

�(gn) = a

0

(gn)� a(gn) = a

0

(g) + g:f(n)� a(g)� g:f(n) = a

0

(g)� a(g) = �(g);
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so that � fa
tors through a fun
tion 
:G=N ! A

N

, and we have

(d

G=N


)(xN; yN) = x:�(y)� �(xy) + �(x) = (d

G

�)(x; y) = (d

G

a� d

G

a

0

)(x; y):

Moreover, the fa
t that the quotient map G! G=N de�nes on G the stru
ture of a smooth N -

prin
ipal bundle implies that 
 is smooth in an identity neighborhood of G=N . Hen
e the 
o
y
le

d

G

a

0

is an element of Z

2

s

(G=N;A

N

) and satis�es d

G

a

0

= d

G

a� d

G=N


 , so that [d

G

a℄ = [d

G

a

0

℄ .

Now suppose that f

0

2 Z

1

s

(N;A) satis�es f

0

= f + d

N


 for some 
 2 A . In view of the

G-equivarian
e of the di�erential d

N

, we have

g:(d

N


)� d

N


 = d

N

(g:
� 
) and (d

G


)(gn) = (d

G


)(g) + g:((d

G


)(n));

so that the fun
tion a

0

:= a+ d

G


 satis�es

d

N

(a

0

(g)) = d

N

(a(g)+g:
�
) = g:f�f+g:d

N

(
)�d

N

(
) = g:f

0

�f

0

; a

0

(gn) = a

0

(g)+g:f

0

(n):

As d

G


 is a 
o
y
le, we have d

G

a

0

= d

G

a , so that we obtain in parti
ular the same 
o
y
les on

G=N .

With the pre
eding lemma, we 
an prove the exa
tness of the In
ation-Restri
tion Se-

quen
e:

Proposition D.8. Let A be a smooth G-module and N E G a split normal Lie subgroup.

Then we have the following exa
t In
ation-Restri
tion Sequen
e:

0! H

1

s

(G=N;A

N

)

I

��!H

1

s

(G;A)

R

��!H

1

s

(N;A)

[G℄

Æ

��!H

2

s

(G=N;A

N

)

I

��!H

2

s

(G;A):

Proof. (see [We95, 6.8.3℄ or [Ma
L63, pp.347{354℄ for the 
ase of abstra
t groups)

Exa
tness in H

1

s

(G=N;A

N

): Let � 2 Z

1

s

(G=N;A

N

). We have [q

�

�℄ = 0 if and only if there

exists an a 2 A with �(gN) = g:a� a for all g 2 G . That this fun
tion is 
onstant on N -left


osets implies that a 2 A

N

, and hen
e that � = d

G=N

a 2 B

1

s

(G=N;A

N

). Therefore the in
ation

map I is inje
tive on H

1

s

(G=N;A

N

).

Exa
tness in H

1

s

(G;A): That the restri
tion map

e

R maps into smoothly G-invariant


ohomology 
lasses follows from Proposition D.6 and the G-equivarian
e of R . The relation

R Æ I = 0 is 
lear.

To see that kerR � im I , let f 2 Z

1

s

(G;A) vanishing on N (Lemma D.3). Then f is


onstant on the N -
osets be
ause

f(gn) = f(g) + g:f(n) = f(g); g 2 G;n 2 N:

Moreover,

n:f(g) = f(ng)� f(n) = f(ng) = f(gg

�1

ng) = f(g)

implies that im(f) � A

N

. Hen
e [f ℄ is 
ontained in the image of the in
ation map I .

Exa
tness in H

1

s

(N;A)

[G℄

: If f 2 Z

1

s

(N;A) is the restri
tion of a 1-
o
y
le � 2 Z

1

s

(G;A),

then (D.2) implies

(g:f � f)(n) = (d

N

(�(g)))(n);

so that we may take � as the fun
tion a in the de�nition of Æ . Then d

G

a = d

G

� = 0 be
ause

� is a 
o
y
le, and hen
e Æ([f ℄) = 0.

If, 
onversely, Æ([f ℄) = 0, then there exists b 2 C

1

s

(G=N;A

N

) with d

G

a = d

G=N

b , where

d

G

a(xN; yN) = (d

G

a)(x; y) is de�ned as in Lemma D.7. Then the fun
tion a

0

:= a � (b Æ q)

satis�es

a

0

(gn) = a

0

(g) + g:f(n); d

N

(a

0

(g)) = g:f � f; g 2 G;n 2 N;

and, in addition,

d

G

a

0

= d

G

a� d

G

(q

�

b) = d

G

a� q

�

(d

G=N

b) = q

�

(d

G

a� d

G=N

b) = 0:
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This means that a

0

2 Z

1

s

(G;A), so that a

0

j

N

= a j

N

= f implies that [f ℄ is in the image of the

restri
tion map R .

Exa
tness in H

2

s

(G=N;A

N

): If f 2 Z

1

s

(N;A) has a smoothly invariant 
ohomology 
lass

and [d

G

a℄ = Æ([f ℄) as in Lemma D.7, then the image of [d

G

a℄ in Z

2

s

(G;A) under I is given by

d

G

a = q

�

d

G

a , hen
e a 
oboundary.

Suppose, 
onversely, that for � 2 Z

2

s

(G=N;A

N

) the 
o
y
le q

�

� on G is a 
oboundary and

� 2 C

1

s

(G;A) satis�es q

�

� = d

G

� . Then d

G

� vanishes on N , so that f := � j

N

is a 
o
y
le.

We have

�(xN; yN) = x:�(y) � �(xy) + �(x); x; y 2 G:

For y 2 N we obtain from �(xN;N) = �(N; xN) = f0g the relation

�(gn) = �(g) + g:�(n) and �(ng) = �(n) + n:�(g):

For g 2 G and n 2 N we therefore have

(g:f � f)(n) = g:�(g

�1

ng)� �(n) = �(ng)� �(g)� �(n)

= �(n) + n:�(g)� �(g)� �(n) = n:�(g)� �(g) = d

N

(�(g))(n):

This means that [f ℄ is smoothly G-invariant and that Æ([f ℄) = [�℄:

Example D.9. The following example shows that the exa
t In
ation-Restri
tion sequen
e


annot be 
ontinued in an exa
t fashion by the restri
tion map R:H

2

s

(G;A)! H

2

s

(N;A)

[G℄

.

For that we 
onsider the group G := R

2

, N := Z

2

, G=N = T

2

and the trivial module

A = T = R=Z . Then

H

2

s

(G=N;A

N

) = H

2

s

(T

2

;T) = f0g; H

2

s

(G;A) = H

2

s

(R

2

;T)

�

=

H

2




(R

2

;R)

�

=

R;

and H

2

s

(N;A)

[G℄

= H

2

(Z

2

;T)

�

=

T . Now the assertion follows from the fa
t that the natural map

R:H

2

s

(R

2

;T)

�

=

R ! H

2

s

(Z

2

;R)

�

=

T is not inje
tive. It 
orresponds to restring an alternating

T-valued bilinear form to the latti
e Z

2

. If the form is integral on this latti
e, the 
orresponding

extension of Z

2

is abelian, hen
e trivial.

Remark D.10. If A is a trivial G-module, then the 
onne
ting map has a simpler des
ription.

Then we have H

1

s

(N;A) = Hom(N;A) = Z

1

s

(N;A), and the 
ondition that a homomorphism

f :N ! A is invariant under G means that it vanishes on the normal subgroup [G;N ℄ of N .

The only 
ondition on the fun
tion a:G! A that we need to des
ribe Æ is

a(gn) = a(g) + f(n); g 2 G;n 2 N:

Then the fun
tion (d

G

a)(x; y) = a(y)� a(xy) + a(x) is 
onstant on (N �N)-
osets and de�nes

a 2-
o
y
le in Z

2

s

(G=N;A).

Example D.11. (a) If G is a Lie group, then its identity 
omponent G

0

is a split normal

subgroup and the quotient group �

0

(G) is dis
rete. Therefore the In
ation-Restri
tion Sequen
e

yields an exa
t sequen
e

0! H

1

(�

0

(G); A

G

0

)

I

��!H

1

s

(G;A)

R

��!H

1

s

(G

0

; A)

[G℄

Æ

��!H

2

(�

0

(G); A

G

0

)

I

��!H

2

s

(G;A):

(b) Assume that A

�

=

a=�

A

for a dis
rete subgroup �

A

of the sequentially 
omplete lo
ally


onvex spa
e a . If G is a 
onne
ted Lie group, q

G

:

e

G ! G its universal 
overing and �

1

(G)

its kernel, then �

1

(G) is dis
rete, hen
e a split Lie subgroup, and we obtain for any smooth

G-module A the exa
t sequen
e

0! H

1

s

(G;A)

I

��!H

1

s

(

e

G;A)

R

��!H

1

s

(�

1

(G); A)

[G℄

Æ

��!H

2

s

(G;A)

I

��!H

2

s

(

e

G;A):
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As �

1

(G) a
ts trivially on A and �

1

(G) is 
entral in

e

G , we have

H

1

s

(�

1

(G); A) = Hom(�

1

(G); A); H

1

s

(�

1

(G); A)

[G℄

= H

1

s

(�

1

(G); A)

G

= Hom(�

1

(G); A

G

):

In view of Corollary VII.3, we may identify H

2

s

(

e

G;A) with the subgroup kerP

1

of H

2




(g; a). On

this subgroup the map [!℄ 7! F

!

given by the 
ux homomorphism de�nes a homomorphism

e

P

2

:H

2

s

(

e

G;A)! Hom(�

1

(G); H

1




(g; a))

�

=

Hom(�

1

(G); H

1

s

(

e

G;A))

whose kernel 
oin
ides with the image of I (Theorem VII.2). In Remark VI.8 we have seen that

the image of [!℄ 2 H

2

s

(

e

G;A) � H

2




(g; a) in H

2

s

(�

1

(G); A) is given by the 
ommutator map of

the 
orresponding 
entral extension

C([
℄; [�℄) = �P (F

!

([
℄))([�℄);

where P is de�ned in Proposition III.4. From Example D.9 we know that the vanishing of C

does not imply the vanishing of F

!

.

Another interesting aspe
t of this observation is that, a

ording to a result of H. Hopf,

there is an exa
t sequen
e

0! H

2

(�

1

(G); A)! H

2

sing

(G;A)

�

=

Hom(H

2

(G); A) ! Hom(�

2

(G); A)! 0

(
f. [ML78, p.5℄). If G is smoothly para
ompa
t, then de Rham's Theorem holds ([KM97℄) and

the 
losed 2-form !

eq

de�nes a singular 
ohomology 
lass in H

2

sing

(G; a)

�

=

Hom(H

2

(M); a) and

after 
omposition with the map q

A

: a ! A a singular 
ohomology 
lass 


!

2 H

2

sing

(G;A). The

in
lusion �

!

� �

A

means that this 
lass vanishes on the spheri
al 
y
les, i.e., the image of

�

2

(G) in H

2

(G). Hen
e it determines a 
entral extension of �

1

(G) by A whi
h is given by the


ommutator map C:�

1

(G)

2

! A . If this map vanishes, then 


!

= 0, but Example D.9 shows

that this does not imply the existen
e of a 
orresponding global group 
o
y
le. If G is simply


onne
ted, then 


!

vanishes if and only if ! integrates to a group 
o
y
le, but in general this

simple 
riterion fails.

Remark D.12. Let f

N

2 Z

1

s

(N;A)

[G℄

and f 2 C

1

s

(G;A) with

f(gn) = f(g) + g:f

N

(n); d

N

(f(g)) = g:f

N

� f

N

; g 2 G;n 2 N:

Then Æ(f

N

) = [d

G

f ℄ 2 Z

2

s

(G=N;A

N

) de�nes an abelian extension of G=N by A

N

. We now

des
ribe this abelian extension dire
tly in terms of f

N

. Here we assume that A

N

is a Lie group

and that any smooth map X ! A with values in A

N

de�nes a smooth map X ! A

N

(
f.

Appendix C).

Using the smooth a
tion of G on A , we 
an form the semi-dire
t produ
t Lie group AoG .

Then we 
onsider the map

�:G! AoG; g 7! (f(g); g):

In view of f j

N

= f

N

2 Z

1

s

(N;A), the restri
tion � j

N

is a homomorphism. Moreover, for

g; g

0

2 G we have

�(g)�(g

0

) = (f(g) + g:f(g

0

); gg

0

) and �(gg

0

) = (f(gg

0

); gg

0

);

whi
h implies that

Æ

�

(g; g

0

) := �(g)�(g

0

)�(gg

0

)

�1

= ((d

G

f)(g; g

0

);1) 2 A

N

� f1g:

Therefore the indu
ed map �:G ! (A=A

N

) o G is a group homomorphism, and the pull-ba
k

of the abelian extension

A

N

,! AoG!! (A=A

N

)oG

is isomorphi
 to the abelian extension

b

G := A

N

�

d

G

f

G de�ned by d

G

f 2 Z

2

s

(G;A

N

). Sin
e

f vanishes on N � G and G � N , the subset f0g � N is a normal subgroup of

b

G , and

b

G=N

�

=

A

N

�

d

G

f

G=N .
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Appendix E. A long exa
t sequen
e for Lie group 
ohomology

Let G be a Lie group and

0! A

1

q

1

��!A

2

q

2

��!A

3

! 0

be an extension of abelian Lie groups whi
h are smooth G-modules su
h that q

1

and q

2

are

G-equivariant. We assume that there exists a smooth se
tion �:A

3

! A

2

of q

2

. Then the map

A

1

�A

3

! A

2

; (a; b) 7! a+ �(b)

is a di�eomorphism (not ne
essarily a group homomorphism). This assumption implies that the

natural maps

C

p

s

(G;A

1

)! C

p

s

(G;A

2

)! C

p

s

(G;A

3

)

de�ne a short exa
t sequen
e of 
hain 
omplexes, hen
e indu
e a long exa
t sequen
e in 
oho-

mology

0! H

0

s

(G;A

1

)! H

0

s

(G;A

2

)! H

0

s

(G;A

3

)! H

1

s

(G;A

1

)! : : :

: : :! H

p�1

s

(G;A

3

)

Æ

��!H

p

s

(G;A

1

)! H

p

s

(G;A

2

)! H

p

s

(G;A

3

)

Æ

��!H

p+1

s

(G;A

1

)! : : :

The 
onne
ting map Æ:H

p

s

(G;A

3

)! H

p+1

s

(G;A

1

) is 
onstru
ted as follows. For f 2 Z

p

s

(G;A

3

)

we �rst �nd f

1

2 C

p

s

(G;A

2

) with f = q

2

Æ f

1

. Then 0 = d

G

f = q

2

Æ d

G

f

1

implies that d

G

f

1

is

A

1

-valued, hen
e an element of Z

p+1

s

(G;A

1

), and then Æ([f ℄) = [d

G

f

1

℄ .

For p = 0 we have H

0

s

(G;A) = A

G

, so that the exa
t sequen
e starts with

A

G

1

,! A

G

2

! A

G

3

! H

1

s

(G;A

1

)! H

1

s

(G;A

2

)! : : : :

Remark E.1. A parti
ularly interesting 
ase arises if A is a smooth G-module, A

0

its identity


omponent and �

0

(A) := A=A

0

. Then �

0

(A) is dis
rete. Let us assume, in addition, that G

is 
onne
ted. Then G a
ts trivially on the dis
rete group �

0

(A). We therefore have an exa
t

sequen
e

A

G

0

,! A

G

! �

0

(A)

�

A

��!H

1

s

(G;A

0

)! H

1

s

(G;A)! H

1

s

(G; �

0

(A)) = 0;

where we use Z

1

s

(G; �

0

(A)) � C

1

(G; �

0

(A)) = 0 (Lemma III.1) to see that H

1

s

(G; �

0

(A)) is

trivial. Note that �

A

is the 
hara
teristi
 homomorphism of the smooth G-module A , 
onsidered

as a map into H

1

s

(G;A

0

) whi
h we may 
onsider as a subspa
e of H

1




(g; a) (De�nition III.6). It

follows in parti
ular that the natural map H

1

s

(G;A

0

)! H

1

s

(G;A) is surje
tive.

Moreover, we obtain an exa
t sequen
e

0! H

2

s

(G;A

0

)! H

2

s

(G;A)! H

2

s

(G; �

0

(A))

Æ

��!H

3

s

(G;A

0

)! : : :

Sin
e G is 
onne
ted and �

0

(A) is a trivial module, the group H

2

s

(G; �

0

(A)) 
lassi�es the 
entral

extensions of G by �

0

(A), whi
h is parametrized by the abelian group Hom(�

1

(G); �

0

(A))

(Theorem VII.2). This leads to an exa
t sequen
e

(E:1) 0! H

2

s

(G;A

0

)! H

2

s

(G;A)




��!Hom(�

1

(G); �

0

(A))! H

3

(G;A

0

);

where 
 assigns to an extension of G by A the 
orresponding 
onne
ting homomorphism

�

1

(G) ! �

0

(A) in the long exa
t homotopy sequen
e. With the results of Se
tion VII we

have determined H

2

s

(G;A

0

) in terms of the topology of G and the Lie algebra 
ohomology spa
e

H

2




(g; a). To determine H

2

s

(G;A) in terms of H

s

(G;A

0

) and known data, one has to determine

the image of H

2

s

(G;A) in Hom(�

1

(G); �

0

(A)). Re
all that Proposition VI.4 shows that

F

Df

= ��

A

Æ 
([f ℄)

holds for ea
h f 2 Z

2

s

(G;A).

If A is a trivial G-module, then the divisibility of A

0

implies that A

�

=

A

0

� �

0

(A) as Lie

groups, and we thus obtain

H

2

s

(G;A)

�

=

H

2

s

(G;A

0

)�H

2

s

(G; �

0

(A))

�

=

H

2

s

(G;A

0

)�Hom(�

1

(G); �

0

(A)):

For the universal 
overing q

G

:

e

G! G we thus obtain an isomorphism

H

2

s

(

e

G;A

0

)! H

2

s

(

e

G;A)

be
ause �

1

(

e

G) is trivial.
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Appendix F. Multipli
ation in Lie algebra and Lie group 
ohomology

In this appendix we 
olle
t some information 
on
erning multipli
ation of Lie algebra and

Lie group 
o
y
les whi
h is used in Se
tion IX.

Multipli
ation of Lie algebra 
o
hains

Let U; V;W be topologi
al modules of the topologi
al Lie algebra g and m:U � V !

W; (u; v) 7! u � v a g-equivariant 
ontinuous bilinear map. Then we de�ne a produ
t

C

p




(g; U)� C

q




(g; V )! C

p+q




(g;W ); (�; �) 7! � ^ �

by

(� ^ �)(x

1

; : : : ; x

p+q

) :=

1

p!q!

X

�2S

p+q

sgn(�)�(x

�(1)

; : : : ; x

�(p)

)�(x

�(p+1)

; : : : ; x

�(p+q)

):

For p = q = 1 we have in parti
ular

(� ^ �)(x; y) = �(x) � �(y)� �(y) � �(x):

In the following we write for a p-linear map �: g

p

! V :

Alt(�)(x

1

; : : : ; x

p

) :=

X

�2S

p

sgn(�)�(x

�(1)

; : : : ; x

�(p)

):

In this sense we have

� ^ � =

1

p!q!

Alt(� � �);

where

(� � �)(x

1

; : : : ; x

p+q

) := �(x

1

; : : : ; x

p

) � �(x

p+1

; : : : ; x

p+q

):

Lemma F.1. For � 2 C

p




(g; U) and � 2 C

q




(g; V ) we have

(F:1) d

g

(� ^ �) = d

g

� ^ � + (�1)

p

� ^ d

g

�:

Proof. First we verify that for x 2 g the insertion map i

x

satis�es

(F:2) i

x

(� ^ �) = i

x

� ^ � + (�1)

p

� ^ i

x

�:

For p = 0 or q = 0 this formula is a trivial 
onsequen
e of the de�nitions. We may therefore

assume p; q � 1. We 
al
ulate for x

1

; : : : ; x

p+q

2 g :

i

x

1

(� ^ �)(x

2

; : : : ; x

p+q

) = (� ^ �)(x

1

; x

2

; : : : ; x

p+q

)

=

1

p!q!

X

�2S

p+q

sgn(�)�(x

�

�1

(1)

; : : : ; x

�

�1

(p)

)�(x

�

�1

(p+1)

; : : : ; x

�

�1

(p+q)

)

=

1

p!q!

X

�(1)�p

: : :+

1

p!q!

X

�(1)>p

: : : :
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For �(1) � p we get

�(x

�

�1

(1)

; : : : ; x

�

�1

(p)

) = (�1)

�(1)+1

�(x

1

; x

�

�1

(1)

; : : : ;
x

1

; : : : ; x

�

�1

(p)

)

= (�1)

�(1)+1

(i

x

1

�)(x

�

�1

(1)

; : : : ;
x

1

; : : : ; x

�

�1

(p)

);

whi
h leads to

1

p!q!

X

�(1)�p

: : :

=

1

p!q!

p

X

i=1

X

�(1)=i

sgn(�)(�1)

i+1

(i

x

1

�)(x

�

�1

(1)

; : : : ;
x

1

; : : : ; x

�

�1

(p)

)�(x

�

�1

(p+1)

; : : : ; x

�

�1

(p+q)

)

=

1

p!q!

p

X

i=1

Alt(i

x

1

� � �)(x

2

; : : : ; x

p+q

) =

1

(p� 1)!q!

Alt(i

x

1

� � �)(x

2

; : : : ; x

p+q

)

= (i

x

1

� ^ �)(x

2

; : : : ; x

p+q

):

We likewise obtain

1

p!q!

X

�(1)>p

: : : = (�1)

p

(� ^ (i

x

1

�))(x

2

; : : : ; x

p+q

):

This proves (F.2).

We now prove (F.1) by indu
tion on p and q . For p = 0 we have

(� ^ �)(x

1

; : : : ; x

q

) = � � �(x

1

; : : : ; x

q

)

and

d

g

(� ^ �)(x

0

; : : : ; x

q

) =

q

X

i=0

(�1)

i

x

i

:(� � �)(x

0

; : : : ; bx

i

; : : : ; x

q

)

+

X

i<j

(�1)

i+j

� � �([x

i

; x

j

℄; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

q

)

=

q

X

i=0

(�1)

i

(x

i

:�) � �(x

0

; : : : ; bx

i

; : : : ; x

q

) + � � (d�)(x

0

; : : : ; x

q

)

and

(d

g

� ^ �)(x

0

; : : : ; x

q

) =

1

q!

X

�2S

q+1

sgn(�)(d

g

�)(x

�(0)

) � �(x

�(1)

; : : : ; x

�(q)

)

=

1

q!

q

X

i=0

X

�(0)=i

sgn(�)(x

i

:�) � �(x

�(1)

; : : : ; x

�(q)

)

=

1

q!

q

X

i=0

(�1)

i

(x

i

:�) �Alt(�)(x

0

; : : : ; bx

i

; : : : ; x

q

)

=

q

X

i=0

(�1)

i

(x

i

:�) � �(x

0

; : : : ; bx

i

; : : : ; x

q

):

This proves (F.1) for p = 0. A similar argument works for q = 0. We now assume that p; q � 1

and that (F.1) hold for the pairs (p � 1; q) and (p; q � 1). Then we obtain with the Cartan

formulas and (F.2) for x 2 g :

i

x

(d

g

� ^ � + (�1)

p

� ^ d

g

�)

= (i

x

d

g

�) ^ � + (�1)

p+1

d

g

� ^ i

x

� + (�1)

p

i

x

� ^ d

g

� + � ^ i

x

d

g

�

= x:� ^ � � d

g

(i

x

�) ^ � + (�1)

p+1

d

g

� ^ i

x

� + (�1)

p

i

x

� ^ d

g

� + � ^ x:� � � ^ d

g

(i

x

�)

= x:(� ^ �)� d

g

(i

x

� ^ �) + (�1)

p+1

d

g

(� ^ i

x

�)

= x:(� ^ �)� d

g

(i

x

(� ^ �)) = i

x

(d

g

(� ^ �)):

Sin
e x was arbitrary, this proves (F.1).
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The pre
eding lemma implies that produ
ts of two 
o
y
les are 
o
y
les and that the

produ
t of a 
o
y
le with a 
oboundary is a 
oboundary, so that we obtain bilinear maps

H

p




(g; U)�H

q




(g; V )! H

p+q




(g;W ); ([�℄; [�℄) 7! [� ^ �℄

whi
h 
an be 
ombined to a produ
t

H

�




(g; U)�H

�




(g; V )! H

�




(g;W ):

Multipli
ation of group 
o
hains

Now let U; V;W be smooth modules of the Lie group G and m:U �V !W; (u; v) 7! u � v

a G-equivariant biadditive 
ontinuous map. Then we de�ne a produ
t

C

p

s

(G;U)� C

q

s

(G; V )! C

p+q

s

(G;W ); (�; �) 7! � [ �;

where

(� [ �)(g

1

; : : : ; g

p+q

) := �(g

1

; : : : ; g

p

) � (g

1

� � � g

p

):�(g

p+1

; : : : ; g

p+q

)

(
f. [Bro82, p.110℄ up to the di�erent signs whi
h are 
aused by di�erent signs for the group

di�erential).

Lemma F.2. For � 2 C

p

s

(G;U) and � 2 C

q

s

(G; V ) we have

d

G

(� [ �) = d

G

� [ � + (�1)

p

� [ d

G

�:

Proof. For g

0

; : : : ; g

p+q

2 G we have

d

G

(� [ �)(g

0

; : : : ; g

p+q

)

= g

0

:(� [ �)(g

1

; : : : ; g

p+q

) +

p+q

X

i=1

(�1)

i

(� [ �)(g

0

; : : : ; g

i�1

g

i

; : : : ; g

p+q

)

+ (�1)

p+q+1

(� [ �)(g

0

; : : : ; g

p+q�1

)

= (g

0

:�(g

1

; : : : ; g

p

)) � (g

0

� � � g

p

):�(g

p+1

; : : : ; g

p+q

)

+

p

X

i=1

(�1)

i

�(g

0

; : : : ; g

i�1

g

i

; : : : ; g

p

) � g

0

� � � g

p

:�(g

p+1

; : : : ; g

p+q

)

+

p+q

X

i=p+1

(�1)

i

�(g

0

; : : : ; g

p�1

) � g

0

� � � g

p�1

:�(g

p

; : : : ; g

i�1

g

i

; : : : ; g

p+q

)

+ (�1)

p+q+1

�(g

0

; : : : ; g

p�1

) � (g

0

� � � g

p�1

):�(g

p

; : : : ; g

p+q�1

)

= (d

G

�)(g

0

; : : : ; g

p

) � (g

0

� � � g

p

):�(g

p+1

; : : : ; g

p+q

)

+ (�1)

p

�(g

0

; : : : ; g

p�1

) � (g

0

� � � g

p

):�(g

p+1

; : : : ; g

p+q

)

+ �(g

0

; : : : ; g

p�1

)�

g

0

� � � g

p�1

:

�

p+q

X

i=p+1

(�1)

i

�(g

p

; : : : ; g

i�1

g

i

; : : : ; g

p+q

) + (�1)

p+q+1

�(g

p

; : : : ; g

p+q�1

)

�

= (d

G

� [ �)(g

0

; : : : ; g

p+q

) + (�1)

p

(� [ d

G

�)(g

0

; : : : ; g

p+q

):

Lemma F.2 implies that produ
ts of two 
o
y
les are 
o
y
les and that the produ
t of a


o
y
le with a 
oboundary is a 
oboundary, so that we obtain biadditive maps

H

p

s

(G;U)�H

q

s

(G; V )! H

p+q

s

(G;W ); ([�℄; [�℄) 7! [� [ �℄:

The following lemma shows that for Lie groups the multipli
ation of group and Lie algebra


o
hains is 
ompatible with the di�erentiation map D .
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Lemma F.3. If G is a Lie group, U , V and W are smooth modules and �:U � V ! W is


ontinuous bilinear and equivariant, then we have for � 2 C

p

(G;U) and � 2 C

q

(G; V ) we have

D(� [ �) = D� ^D�

in C

p+q




(g;W ) .

Proof. In view of D� = Alt(d

p

�(1; : : : ;1)); we get

D� ^D

�

=

1

p!q!

Alt(D� �D�) =

1

p!q!

Alt(Alt(d

p

�(1; : : : ;1)) � Alt(d

q

�(1; : : : ;1)))

= Alt(d

p

�(1; : : : ;1) � d

q

�(1; : : : ;1));

so that it remains to see that

d

p+q

(� [ �)(1; : : : ;1) = (d

p

�)(1; : : : ;1) � (d

q

�)(1; : : : ;1);

but this follows immediately from the normalization of the 
o
y
les and the 
hain rule for jets,

applied to the multipli
ation map � .
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