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Abelian extensions of in�nite-dimensional Lie groups

Karl-Hermann Neeb

Abstrat. In the present paper we study abelian extensions of onneted Lie groups G modeled on

loally onvex spaes by smooth G -modules A . We parametrize the extension lasses by a suitable

ohomology group H

2

s

(G;A) de�ned by loally smooth ohains and onstrut an exat sequene that

desribes the di�erene between H

2

s

(G;A) and the orresponding ontinuous Lie algebra ohomology

spae H

2



(g;a) . The obstrutions for the integrability of a Lie algebra extensions to a Lie group

extension are desribed in terms of period and ux homomorphisms. We also haraterize the

extensions with global smooth setions resp. those given by global smooth oyles. Finally we

apply the general theory to extensions of several types of di�eomorphism groups.

Introdution

The main point of the present paper is a detailed analysis of abelian extensions of Lie

groups G whih might be in�nite-dimensional, a main point being to derive riteria for abelian

extensions of Lie algebras to integrate to extensions of orresponding onneted groups. This is

of partiular interest for in�nite-dimensional Lie algebras beause not every in�nite-dimensional

Lie algebra an be `integrated' to a global Lie group.

The onept of a (not neessarily �nite-dimensional) Lie group used here is that a Lie group

G is a manifold modeled on a loally onvex spae endowed with a group struture for whih

the group operations are smooth (f. [Mi83℄; see also [Gl01℄ for non-omplete model spaes). An

abelian extension is an exat sequene of Lie groups A ,!

b

G!! G whih de�nes a loally trivial

smooth prinipal bundle with the abelian struture group A over the Lie group G . Then A

inherits the struture of a smooth G-module in the sense that the onjugation ation of

b

G on

A fators through a smooth map G � A ! A . The extension is alled entral if this ation is

trivial.

The present paper is a sequel to [Ne02℄ whih deals with the ase of entral extensions.

Fortunately it was possible to use some of the onstrutions from [Ne02℄ quite diretly in the

present paper, but a substantial part of the mahinery used for entral extensions had to be

generalized and adapted to deal with abelian extensions. In [Ne04℄ it is shown that the results

on abelian extensions an in turn be used to lassify general extensions.

A typial lass of examples that illustrate the di�erene between abelian and entral

extensions of Lie groups arises from abelian prinipal bundles. If q:P !M is a smooth prinipal

bundle with the abelian struture group Z over the ompat onneted manifold M , then the

group Di�(P )

Z

of all di�eomorphisms of P ommuting with Z (the automorphism group of the

bundle) is an extension of an open subgroup of Di�(M) by the gauge group Gau(P )

�

=

C

1

(M;Z)

of the bundle. Here the onjugation ation of Di�(M) on Gau(P ) is given by omposing funtions

with di�eomorphisms. Central extensions orresponding to the bundle q:P !M are obtained by

hoosing a prinipal onnetion 1-form � 2 


1

(P; z). Let ! 2 


2

(M; z) denote the orresponding

urvature form. Then the subgroup Di�(P )

Z

�

of those elements of Di�(P )

Z

preserving � is a

entral extension of an open subgroup of Di�(M)

!

, whih is substantially smaller that Di�(M).

This example shows that the passage from entral extensions to abelian extensions is similar to

the passage from sympletomorphism groups to di�eomorphism groups.
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As the examples of prinipal bundles over ompat manifolds show, abelian extensions of

Lie groups our naturally in geometri ontexts and in partiular in sympleti geometry, where

the prequantization problem is to �nd for a sympleti manifold (M;!) a T-prinipal bundle

with urvature ! , whih leads to an abelian extension of Di�(M)

0

by the group C

1

(M;T).

Conversely, every abelian extension q:

b

G ! G of a Lie group G by an abelian Lie group A is

in partiular an A-prinipal bundle over G , so that there is a lose interplay between abelian

extensions of in�nite-dimensional groups and abelian prinipal bundles over (�nite-dimensional)

manifolds.

In the representation theory of in�nite-dimensional Lie groups abelian extensions our

naturally if a onneted Lie group G ats on a smooth manifold M whih is endowed with a Z -

prinipal bundle q:P !M , eah element of G lifts to an automorphism of the bundle, but there

is no prinipal onnetion 1-form preserved by the lifts of the elements of G to di�eomorphisms of

P . We refer to [Mi89℄ for a detailed disussion of the ase where M is a restrited Gra�mannian

of a polarized Hilbert spae and the groups are restrited operator groups of Shatten lass p > 2,

resp., mapping groups C

1

(M;K), where K is �nite-dimensional and M is a ompat manifold

of dimension � 2 (see also [PS86℄ for a disussion of related points). Sine representations

of abelian extensions of vetor �eld Lie algebras our naturally in mathematis physis (f.

[La99℄ and also [AI95℄ for more general appliations of Lie group ohomology in physis), the

question arises whether this piture has a global analog in terms of abelian extensions of the

orresponding di�eomorphism groups. Some �rst results in this diretion have been obtain by

Y. Billig in [Bi03℄, where he introdues natural analogs of the Virasoro group whih are abelian

extensions of Di�(M).

Another motivation for a general study of abelian extensions omes from the fat that for

the group G := Di�(M)

0

, where M is a ompat orientable manifold, one has natural modules

given by tensor densities and spaes of tensors on M . The orresponding abelian extensions an

be used to interprete ertain partial di�erential equations as geodesi equations on a Lie group,

whih leads to important information on the behavior of their solutions ([Vi02℄, [AK98℄). An

important speial ase disussed in some detail in Setion X is the group of di�eomorphisms

of the irle and its modules of �-densities for real � . For the identity omponent D(M;�)

of the group Di�(M;�) of volume preserving di�eomorphisms (for a given volume form �)

one obtains a Lie algebra oyle from eah losed 2-form ! on M (Lihnerowiz oyle)

whih is obtained by omposing the integration map with ! , interpreted as a 2-oyle for

V(M) with values in the smooth module C

1

(M;R) . The existene of orresponding entral

extensions is addressed for speial ases in Setion XI, where we use relevant information on the

assoiated abelian extensions of Di�(M)

0

obtained in Setion IX. For more referenes dealing

spei�ally with entral extensions we refer to [Ne02℄. See in partiular [CVLL98℄ whih is a

nie survey of entral T-extensions of Lie groups and their role in quantum physis. That paper

also ontains a desription of the universal entral extension for �nite-dimensional groups. For

in�nite-dimensional groups universal entral extensions are onstruted in [Ne03b℄ and for root

graded Lie algebras in [Ne03a℄.

As one would expet from general homologial algebra, the natural ontext to deal with

abelian extensions of Lie groups is provided by a suitable Lie group ohomology with values

in smooth modules: If G is a Lie group, then we all an abelian Lie group A a smooth G-

module if it is a G-module and the ation map G � A ! A is smooth. In Appendix B we

desribe a natural adaptation of the group ohomology omplex to the Lie group setting. Here

the spae of n-ohains C

n

s

(G;A) onsists of maps G

n

! A whih are smooth in an identity

neighborhood and vanish on all tuples of the form (g

1

; : : : ;1; : : : ; g

n

). We thus obtain a ohain

omplex (C

n

s

(G;A); d

G

) with the ohomology groups H

n

s

(G;A). If G and A are disrete, these

groups oinide with the standard ohomology groups of G with values in A . We refer to [Mo64℄

and [Mo76℄ for an appropriate de�nition of topologial group ohomology whih �ts well for

loally ompat groups. Sine the ohomology groups H

n

s

(G;A) an be onsidered as rather

ompliated objets, it is desirable to relate them to the orresponding Lie algebra ohomology

groups H

n

s

(g; a). Passing to the derived representation, the Lie algebra a of A is a module of

the Lie algebra g of a whih is topologial in the sense that the module struture is a ontinuous
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bilinear map g � a ! a . Then the ontinuous alternating maps g

n

! a form the (ontinuous)

Lie algebra ohain omplex (C

n



(g; a); d

g

), and its ohomology spaes are denoted H

n



(g; a).

In Appendix B we show that for n � 2 there is a natural derivation map

D

n

:H

n

s

(G;A)! H

n



(g; a)

from loally smooth Lie group ohomology to ontinuous Lie algebra ohomology. This map is

based on the isomorphism

H

n



(g; a)

�

=

H

n

dR;eq

(G; a)

between Lie algebra ohomology and the de Rham ohomology of the omplex of equivariant

a-valued di�erential forms on G (f. [CE48℄ for �nite-dimensional groups). For n = 1 we only

have a map D

1

:Z

1

s

(G;A) ! Z

1



(g; a), and if A

�

=

a=�

A

holds for a disrete subgroup �

A

of a ,

then this map fators to a map on the level of ohomology. Sine the Lie algebra ohomology

spaes H

n



(g; a) are muh better aessible by algebrai means than those of G , it is important

to understand the amount of information lost by the map D

n

. More onretely, one is interested

in kernel and okernel of D

n

. A determination of the okernel an be onsidered as desribing

integrability onditions on ohomology lasses [!℄ 2 H

n



(g; a) whih have to be satis�ed to ensure

the existene of f 2 Z

n

s

(G;A) with D

n

f = ! .

In the present paper we ompletely solve this problem for the important ase n = 2, a

onneted Lie group G and onneted smooth modules A of the form a=�

A

, where �

A

is a

disrete subgroup of a . We also desribe the solution for n = 1 whih is muh simpler, but

already reets the spirit of the problem. We plan to return in a subsequent paper to this

problem for non-onneted groups G , whih, in view of the present results, means to obtain

aessible riteria for the extendibility of a 2-oyle on the identity omponent G

0

of G to the

whole group G .

The speial importane of the group H

2

s

(G;A) stems from the fat that for onneted

groups G it lassi�es all Lie group extensions q:

b

G ! G of G by A

�

=

ker q , where the ation

of G on A indued by the onjugation ation of

b

G on the abelian normal subgroup A oinides

with the original G-module struture. This was our original motivation to study the ohomology

groups H

2

s

(G;A). If G is not onneted, then we have to onsider an appropriate subgroup

H

2

ss

(G;A) � H

2

s

(G;A) whih then lassi�es the extensions of G by A .

The seond ohomology groups do not only lassify abelian extensions of G , they also play

an equally important role in the lassi�ation of general extensions: Let N be a Lie group and

Z(N) its enter. Suppose further that Z(N) is a smooth G-module suh that every smooth map

M ! N with values in Z(N) de�nes a smooth map M ! Z(N). Then the group H

2

s

(G;Z(N))

parameterizes the equivalene lasses of extensions of G by N orresponding to a given smooth

outer ation of G on N (see [Ne04℄ for the details and the de�nition of a smooth outer ation).

If N = Z(N) is abelian, then a smooth outer ation of G on N is the same as a smooth module

struture.

Taking the derivation maps D

n

into aount, we obtain for onneted groups G and

A

�

=

a=�

A

the following ommutative diagram with an exat seond row (see Proposition D.8

and the subsequent disussion) and exat olumns (Proposition III.4 and Theorem VII.2):

0 0 Hom(�

1

(G); A

G

) 0

?

?

y

?

?

y

?

?

y

Æ

?

?

y

H

1

s

(G;A)

I

��! H

1

s

(

e

G;A)

R

��! Hom(�

1

(G); A

G

)

Æ

��! H

2

s

(G;A)

I

��! H

2

s

(

e

G;A)

?

?

y

D

1

?

?

y

D

1

?

?

y

id

?

?

y

D

2

?

?

y

D

2

H

1



(g; a)

id

��! H

1



(g; a)

P

1

��!Hom(�

1

(G); A

G

) H

2



(g; a)

id

��! H

2



(g; a)

?

?

y

P

1

?

?

y

?

?

y

P

2

?

?

y

P

2

Hom(�

1

(G); A

G

) 0

Hom(�

2

(G);A

G

)�

Hom(�

1

(G);H

1



(g;a))

Hom(�

2

(G); A

G

)

Here I denotes natural ination maps, Æ assigns to :�

1

(G) ! A

G

the quotient of the

semi-diret produt Ao

e

G modulo the graph of  and. For a Lie algebra oyle � 2 Z

1



(g; a) the
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homomorphism P

1

([�℄):�

1

(G) ! A

G

is obtained by integrating the orresponding equivariant

1-form �

eq

2 


1

(G; a) over loops and then interpreting the result an element of the quotient

group A = a=�

A

. For a 2-oyle ! 2 Z

2



(g; a) and the orresponding equivariant 2-form

!

eq

2 


2

(G; a) on G , the �rst omponent of P

2

([!℄) is the period homomorphism �

2

(G) !

A

G

obtained by integrating !

eq

over smooth maps S

2

! G and then interpreting the result

modulo �

A

as an element of A . The seond omponent of P

2

([!℄) is the ux homomorphism

F

!

:�

1

(G) ! H

1



(g; a) whih an be viewed, in a ertain sense, as P

1

([f

!

℄) for the Lie algebra

ux oyle

f

!

: g! C

1



(g; a)=d

g

a; x 7! [i

x

!℄

(in Setion VI we give a diret de�nition whih does not require to topologize the spae C

1



(g; a)

and its quotient spae module B

1



(g; a) = d

g

a).

If G is simply onneted, things beome muh simpler and the riterion for the integrability

of a Lie algebra oyle ! to a group oyle is that all periods of !

eq

are ontained in �

A

� a .

Similar onditions arise in the theory of abelian prinipal bundles on smoothly paraompat

presympleti manifolds (M;
) (
 is a losed 2-form on M ). Here the integrality of the

ohomology lass [
℄ is equivalent to the existene of a so-alled pre-quantum bundle, i.e., a

T-prinipal bundle T ,!



M !!M whose urvature 2-form is 
 (f. [Bry90℄).

For �nite-dimensional Lie groups the integrability riteria also simplify signi�antly beause

�

2

(G) vanishes ([Ca52℄). This in turn has been used by

�

E. Cartan to onstrut entral extensions

and thus to prove Lie's Third Theorem that eah �nite-dimensional Lie algebra belongs to a global

Lie group. We generalize Cartan's onstrution in Setion VIII to haraterize abelian extensions

with global smooth setions.

We emphasize that our results hold for Lie groups whih are not neessarily smoothly para-

ompat, so that one annot use smooth partitions of unity to onstrut bundles for presribed

urvature forms and de Rham's Theorem is not available (f. [KM97, Th. 16.10℄). This point

is important beause many interesting Banah{Lie groups are not smoothly paraompat whih

omes from the fat that their model spaes do not permit smooth bump funtions (f. [KM97℄).

The ontents of the present paper is as follows. In Setion I we briey disuss the re-

lation between abelian extensions of topologial Lie algebras and the ontinuous ohomology

spae H

2



(g; a) (see [CE48℄ for the ase of abstrat Lie algebras). The parameterization of the

lass of all Lie group extensions of a onneted Lie group G by A via the ohomology group

H

2

s

(G;A) is obtained in Setion II. In Setion III we briey disuss the relation between loally

smooth 1-oyles on Lie groups and the orresponding ontinuous Lie algebra oyles. This

is instrutive for the understanding of the ux oyle ourring below as an obstrution to the

existene of global group extensions. In Setion IV we briey disuss the period homomorphism

per

!

:�

2

(G) ! a

G

assoiated to a Lie algebra oyle ! 2 Z

2



(g; a). To integrate Lie algebra

oyles on simply onneted groups in Setion V we use a slight adaptation of the method used

in [Ne02℄ for entral extensions. In Setion VI we eventually turn to the re�nements needed for

non-simply onneted groups whih leads to the ux oyle. This part is onsiderably more

ompliated than for entral extensions where the ux oyle simpli�es to a homomorphism

with values in a spae of homomorphisms of Lie algebras and not only in a ohomology spae.

In Setion VII all piees are put together to obtain the exatness of rows and olumns in the big

diagram above. Abelian extensions with smooth global setions are haraterized in Setion VIII.

The remaining Setions IX-XI ontain examples and some disussion of speial ases. In

Setion IX we turn to the speial situation of di�eomorphism groups on ompat manifolds and

the speial lass of 2-oyles on the Lie algebra V(M) given by losed 2-forms on M . In this

ase we explain how interesting information on period map and ux oyle an be alulated in

geometrial terms. In Setion X we onsider the situation where G is the di�eomorphism group

of the irle and a is the module of �-densities for some � 2 R . The orresponding oyles for

Di�(S

1

) have been disussed by Ovsienko and Roger in [OR98℄. In partiular we desribe how

their results an be extended to Lie algebra oyles not integrable on Di�(S

1

)

0

whih integrate

to group oyles of the universal overing group

g

Di�(S

1

). As a byprodut of this onstrution,

we obtain a non-trivial abelian extension of the group

f

SL

2

(R) by an in�nite-dimensional Fr�ehet

spae. Setion XI ontains some information on the integration of Lihnerowiz oyles to



5 abelext.tex February 18, 2004

entral group extensions. In partiular we show that for a ompat onneted Lie group G eah

Lihnerowiz oyle on D(G;�) an be integrated to a orresponding group oyle on the

overing group

e

D(G;�) ating as a group of di�eomorphisms on the universal overing group

e

G .

We onlude this paper with several appendies dealing with the relation between di�eren-

tial forms and Alexander{Spanier ohomology (Appendix A), ohomology of Lie groups and Lie

algebras (Appendix B), onstruting global Lie groups from loal data (Appendix C), the exat

Ination-Restrition Sequene for Lie group ohomology (Appendix D), the long exat sequene

in Lie group ohomology indued from a topologially split exat sequene of smooth modules

(Appendix E), and multipliation of Lie group and Lie algebra oyles (Appendix F).

We are grateful to S. Haller for providing a ruial argument onerning the ux homo-

morphism for the group of volume preserving di�eomorphisms (f. Setion XI). We also thank

C. Vizman for many inspiring disussions on the subjet, G. Segal for suggesting a di�erent type

of obstrutions to the ingrability of abelian extensions in [Se02℄, and to A. Dzhumadildaev for

asking for global entral extensions of groups of volume preserving di�eomorphisms whih or-

respond to the oyles he studied on the Lie algebra level ([Dz92℄). This led us to the results in

Setion XI.

0. Preliminaries and notation

In this paper K 2 fR; C g denotes the �eld of real or omplex numbers. Let X and Y be

topologial K -vetor spaes, U � X open and f :U ! Y a map. Then the derivative of f at x

in the diretion of h is de�ned as

df(x)(h) := lim

t!0

1

t

�

f(x+ th)� f(x)

�

whenever the limit exists. The funtion f is alled di�erentiable at x if df(x)(h) exists for all

h 2 X . It is alled ontinuously di�erentiable or C

1

if it is ontinuous and di�erentiable at all

points of U and

df :U �X ! Y; (x; h) 7! df(x)(h)

is a ontinuous map. It is alled a C

n

-map if f is C

1

and df is a C

n�1

-map, and C

1

(smooth)

if it is C

n

for all n 2 N . This is the notion of di�erentiability used in [Mil83℄, and [Gl01℄, where

the latter referene deals with the modi�ations neessary for inomplete spaes.

Sine we have a hain rule for C

1

-maps between loally onvex spaes ([Gl01℄), we an

de�ne smooth manifolds M as in the �nite-dimensional ase. A Lie group G is a smooth manifold

modeled on a loally onvex spae g for whih the group multipliation and the inversion are

smooth maps. We write 1 2 G for the identity element, �

g

(x) = gx for left multipliation,

�

g

(x) = xg for right multipliation, and 

g

(x) := gxg

�1

for onjugation. Then eah x 2 T

1

(G)

orresponds to a unique left invariant vetor �eld x

l

with x

l

(g) := d�

g

(1):x; g 2 G: The spae

of left invariant vetor �elds is losed under the Lie braket of vetor �elds, hene inherits a

Lie algebra struture. In this sense we obtain on g := T

1

(G) a ontinuous Lie braket whih is

uniquely determined by [x; y℄

l

= [x

l

; y

l

℄ . We all a Lie algebra g whih is a topologial vetor

spae suh that the Lie braket is ontinuous a topologial Lie algebra g . In this sense the Lie

algebra g = L(G) of a Lie group G is a loally onvex topologial Lie algebra. If G is a onneted

Lie group, then we write q

G

:

e

G! G for its universal overing Lie group and identify �

1

(G) with

the kernel of q

G

.

Throughout this paper we write abelian groups A additively with 0 as identity element.

If G is a Lie group, then a smooth G-module is an abelian Lie group A , endowed with a smooth

G-ation �

A

:G�A! A by group automorphisms. We sometimes write (A; �

A

) to inlude the

notation �

A

for the ation map. If a is the Lie algebra of A , then the smooth ation indues a

smooth ation on a , so that a also is a smooth G-module, hene also a module of the Lie algebra

g of G . In the following we shall mostly assume that the identity omponent A

0

of A is of the

form A

0

�

=

a=�

A

, where �

A

� a is a disrete subgroup. Then the quotient map q

A

: a ! A

0

is

the universal overing map of A

0

and �

1

(A)

�

=

�

A

.
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A linear subspae W of a topologial vetor spae V is alled (topologially) split if it is

losed and there is a ontinuous linear map �:V=W ! V for whih the map

W � V=W ! V; (w; x) 7! w + �(x)

is an isomorphism of topologial vetor spaes. Note that the losedness of W guarantees that

the quotient topology turns V=W into a Hausdor� spae whih is a topologial vetor spae

with respet to the indued vetor spae struture. A ontinuous linear map f :V !W between

topologial vetor spaes is said to be (topologially) split if the subspaes ker(f) � V and

im(f) �W are topologially split.

I. Abelian extensions of topologial Lie algebras

For the de�nition of the ohomology of a topologial Lie algebra g with values in a

topologial g-module a we refer to Appendix B.

De�nition I.1. Let g and n be topologial Lie algebras. A topologially split short exat

sequene

n ,!

b

g!! g

is alled a (topologially split) extension of g by n . We identify n with its image in

b

g , and write

b

g as a diret sum

b

g = n � g of topologial vetor spaes. Then n is a topologially split ideal

and the quotient map q:

b

g! g orresponds to (n; x) 7! x . If n is abelian, then the extension is

alled abelian.

Two extensions n ,!

b

g

1

!! g and n ,!

b

g

2

!! g are alled equivalent if there exists a

morphism ':

b

g

1

!

b

g

2

of topologial Lie algebras suh that the diagram

n ,!

b

g

1

!! g

?

?

y

id

n

?

?

y

'

?

?

y

id

g

n ,!

b

g

2

!! g

ommutes. It is easy to see that this implies that ' is an isomorphism of topologial Lie algebras,

hene de�nes an equivalene relation. We write Ext(g; n) for the set of equivalene lasses of

extensions of g by n .

We all an extension q:

b

g ! g with ker q = n trivial, or say that the extension splits, if

there exists a ontinuous Lie algebra homomorphism �: g!

b

g with q Æ � = id

g

. In this ase the

map

no

S

g!

b

g; (n; x) 7! n+ �(x)

is an isomorphism, where the semi-diret sum is de�ned by the homomorphism

S: g! der(n); S(x)(n) := [�(x); n℄:

De�nition I.2. Let a be a topologial g-module. To eah ontinuous 2-oyle ! 2 Z

2



(g; a)

we assoiate a topologial Lie algebra a �

!

g as the topologial produt vetor spae a � g

endowed with the Lie braket

[(a; x); (a

0

; x

0

)℄ := (x:a

0

� x

0

:a+ !(x; x

0

); [x; x

0

℄):

The quotient map q: a�

!

g! g; (a; x) 7! x is a ontinuous homomorphism of Lie algebras with

kernel a , hene de�nes an a-extension of g . The map �: g ! a�

!

g; x 7! (0; x) is a ontinuous

linear setion of q .
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Proposition I.3. Let (a; �

a

) be a topologial g-module and write Ext

�

a

(g; a) for the set of

all equivalene lasses of a-extensions

b

g of g for whih the adjoint ation of

b

g on a indues the

given g-module struture on a . Then the map

Z

2



(g; a)! Ext

�

a

(g; a); ! 7! [a�

!

g℄

fators through a bijetion

H

2



(g; a)! Ext

�

a

(g; a); [!℄ 7! [a�

!

g℄:

Proof. Suppose that q:

b

g! g is an a-extension of g for whih the indued g-module struture

on a oinides with �

a

. Let �: g!

b

g be a ontinuous linear setion, so that q Æ � = id

g

. Then

!(x; y) := [�(x); �(y)℄ � �([x; y℄)

has values in the subspae a = ker q of

b

g and the map a� g !

b

g; (a; x) 7! a+ �(x) de�nes an

isomorphism of topologial Lie algebras a�

!

g!

b

g .

It is easy to verify that a �

!

g � a �

�

g if and only if ! � � 2 B

2



(g; a). Therefore the

quotient spae H

2



(g; a) lassi�es the equivalene lasses of a-extensions of g by the assignment

[!℄ 7! [a�

!

g℄ .

II. Abelian extensions of Lie groups

Let A be a smooth G-module. In this setion we explain how to assign to a oyle

f 2 Z

2

s

(G;A) (satisfying some additional smoothness ondition if G is not onneted) a Lie

group A �

f

G whih is an extension of A by G for whih the indued ation of G on A

oinides with the original one. We shall see that this assignment leads to a bijetion between

a ertain subgroup H

2

ss

(G;A) of H

2

s

(G;A) with the set of equivalene lasses of extensions of

G by the smooth G-module A . If G is onneted, then H

2

ss

(G;A) = H

2

s

(G;A). We also show

that the assingment f 7! A�

f

G is ompatible with the derivation map D:Z

2

s

(G;A)! Z

2



(g; a)

in the sense that a�

Df

g is the Lie algebra of A�

f

G (f. Appendix B for de�nitions).

Lemma II.1. Let G be a group, A a G-module and f :G � G ! A a normalized 2-oyle,

i.e.,

f(g;1) = f(1; g) = 0; f(g; g

0

) + f(gg

0

; gg

0

) = g:f(g

0

; g

00

) + f(g; g

0

g

00

); g; g

0

; g

00

2 G:

Then we obtain a group A�

f

G by endowing the produt set A�G with the multipliation

(2:1) (a; g)(a

0

; g

0

) := (a+ g:a

0

+ f(g; g

0

); gg

0

):

The unit element of this group is (0;1) , inversion is given by

(2:2) (a; g)

�1

= (�g

�1

:(a+ f(g; g

�1

)); g

�1

);

and onjugation by the formula

(2:3) (a; g)(a

0

; g

0

)(a; g)

�1

=

�

a+ g:a

0

� gg

0

g

�1

:a+ f(g; g

0

)� f(gg

0

g

�1

; g); gg

0

g

�1

�

:

The map q:A �

f

G ! G; (a; g) 7! g is a surjetive homomorphism whose kernel A � f1g is

isomorphi to A . The onjugation ation of A�

f

G on the normal subgroup A fators through

the original ation of G on A .
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Proof. The ondition f(1; g) = f(g;1) = 0 implies that (0;1) is an identity element in

A �

f

G , and the assoiativity of the multipliation is equivalent to the oyle ondition. The

formula for the inversion is easily veri�ed. Conjugation in A�

f

G is given by

(a; g)(a

0

; g

0

)(a; g)

�1

=

�

a+ g:a

0

+ f(g; g

0

); gg

0

��

� g

�1

:(a+ f(g; g

�1

)); g

�1

�

=

�

a+ g:a

0

+ f(g; g

0

)� gg

0

g

�1

:(a+ f(g; g

�1

)) + f(gg

0

; g

�1

); gg

0

g

�1

�

:

To simplify this expression, we use

f(g; g

�1

) = f(g; g

�1

) + f(1; g) = f(g;1) + g:f(g

�1

; g) = g:f(g

�1

; g)

and

f(gg

0

; g

�1

) + f(gg

0

g

�1

; g) = f(gg

0

;1) + gg

0

:f(g

�1

; g) = gg

0

:f(g

�1

; g)

to obtain

(a; g)(a

0

; g

0

)(a; g)

�1

=

�

a+ g:a

0

+ f(g; g

0

)� gg

0

g

�1

:a� gg

0

g

�1

:f(g; g

�1

) + f(gg

0

; g

�1

); gg

0

g

�1

�

=

�

a+ g:a

0

+ f(g; g

0

)� gg

0

g

�1

:a� gg

0

:f(g

�1

:g) + f(gg

0

; g

�1

); gg

0

g

�1

�

=

�

a+ g:a

0

+ f(g; g

0

)� gg

0

g

�1

:a� f(gg

0

g

�1

; g); gg

0

g

�1

�

:

In partiular we obtain

(0; g)(a;1)(0; g)

�1

= (g:a;1):

This means that the ation of G on A given by q(g):a := gag

�1

for g 2 A�

f

G oinides with

the given ation of G on A .

De�nition II.2. An extension of Lie groups is a surjetive morphism q:

b

G! G of Lie groups

with a smooth loal setion for whih N := ker q has a natural Lie group struture suh that the

map N �

b

G !

b

G; (n; g) 7! ng is smooth. Then the existene of a smooth loal setion implies

that

b

G is a smooth N -prinipal bundle, so that N is a split Lie subgroup of G in the sense of

De�nition C.4.

We all two extensions N ,!

b

G

1

!! G and N ,!

b

G

2

!! G of the Lie group G by the Lie

group N equivalent if there exists a Lie group morphism ':

b

G

1

!

b

G

2

suh that the following

diagram ommutes:

N ,!

b

G

1

!! G

?

?

y

id

N

?

?

y

'

?

?

y

id

G

N ,!

b

G

2

!! G:

It is easy to see that any suh ' is an isomorphism of group and that its inverse is smooth.

Thus ' is an isomorphism of Lie groups, and we obtain indeed an equivalene relation. We write

Ext(G;N) for the set of equivalene lasses of Lie groups extensions of G by N .

Lemma II.3. If A ,!

b

G

1

q

1

��!G and A ,!

b

G

2

q

2

��!G are equivalent abelian extensions of G by

the Lie group A , then the indued ations of G on A oinide.

Proof. There exists a morphism of Lie groups ':

b

G

1

!

b

G

2

with ' j

A

= id

A

and q

2

Æ ' = q

1

.

For g 2 G and a 2 A the extension

b

G

1

de�nes an ation of G on A by g �

1

a := g

1

ag

�1

1

, where

q

1

(g

1

) = g . We likewise obtain from the extension

b

G

2

an ation of G on A by g �

2

a := g

2

ag

�1

2

for q

2

(g

2

) = g . We then have

g �

1

a = g

1

ag

�1

1

= '(g

1

ag

�1

1

) = '(g

1

)a'(g

1

)

�1

= q

2

('(g

1

)) �

2

a = q

1

(g

1

) �

2

a = g �

2

a:

De�nition II.4. If (A; �

A

) is a smooth G-module, then an extension of G by A is always

understood to be an abelian Lie group extension q:

b

G! G with kernel A for whih the natural

ation of G on A indued by the onjugation ation (Lemma C.5) oinides with �

A

. In view

of Lemma II.3, it makes sense to write Ext

�

A

(G;A) � Ext(G;A) for the subset of equivalene

lasses of those extensions of G by A for whih the indued ation of G on A oinides with �

A

.



9 abelext.tex February 18, 2004

De�nition II.5. Let G be a Lie group and A a smooth G-module. For f 2 Z

2

s

(G;A) (f.

De�nition B.2) and g 2 G we onsider the funtion

f

g

:G! A; f

g

(g

0

) := f(g; g

0

)� f(gg

0

g

�1

; g)

and write

Z

2

ss

(G;A) := ff 2 Z

2

s

(G;A): (8g 2 G)f

g

2 C

1

s

(G;A)g

for those loally smooth normalized 2-oyles f on G for whih all funtions f

g

are smooth in

an identity neighborhood of G .

If ` 2 C

1

s

(G;A) and f(g; g

0

) = (d

G

`)(g; g

0

) = `(g) + g:`(g

0

)� `(gg

0

), then

f

g

(g

0

) = `(g) + g:`(g

0

)� `(gg

0

)�

�

`(gg

0

g

�1

) + (gg

0

g

�1

):`(g)� `(gg

0

)

�

= `(g) + g:`(g

0

)� `(gg

0

g

�1

)� (gg

0

g

�1

):`(g)

is smooth in an identity neighborhood of G for eah g 2 G . Therefore B

2

s

(G;A) � Z

2

ss

(G;A)

and

H

2

ss

(G;A) := Z

2

ss

(G;A)=B

2

s

(G;A)

is a subgroup of H

2

s

(G;A).

Proposition II.6. Let G be a Lie group and (A; �

A

) a smooth G-module. Then for eah

f 2 Z

2

ss

(G;A) the group A �

f

G arries the struture of a Lie group suh that the map

q:A�

f

G! G; (a; g) 7! g is a Lie group extension of G by the smooth G-module A . Conversely,

every Lie group extension of G by the smooth G-module A is equivalent to one of this form.

The assignment

Z

2

ss

(G;A)! Ext

�

A

(G;A); f 7! [A�

f

G℄

fators through a bijetion

H

2

ss

(G;A)! Ext

�

A

(G;A):

If G is onneted, then Z

2

ss

(G;A) = Z

2

s

(G;A) and we obtain a bijetion

H

2

s

(G;A)! Ext

�

A

(G;A):

Proof. (1) Let f 2 Z

2

ss

(G;A) and form the group

b

G := A �

f

G (Lemma II.1). First we

onstrut the Lie group struture on

b

G . Let U

G

� G be an open symmetri 1-neighborhood

suh that f is smooth on U

G

� U

G

, and onsider the subset

U := A� U

G

= q

�1

(U

G

) �

b

G = A�

f

G:

Then U = U

�1

. We endow U with the produt manifold struture from A � U

G

. Sine

the multipliation m

G

j

U

G

�U

G

:U

G

� U

G

! G is ontinuous, there exists an open identity

neighborhood V

G

� U

G

with V

G

V

G

� U

G

. Then the set V := A � V

G

is an open subset

of U suh that the multipliation map

V � V ! U;

�

(a; x); (a

0

; x

0

)

�

! (a+ x:a

0

+ f(x; x

0

); xx

0

)

is smooth. The inversion

U ! U; (a; x) 7!

�

� x

�1

:(a+ f(x; x

�1

)); x

�1

�

(Lemma II.1) is also smooth.

For (a; g) 2

b

G let V

g

� U

G

be an open identity neighborhood suh that the onjugation

map 

g

(x) = gxg

�1

satis�es 

g

(V

g

) � U

G

. Then 

(a;g)

(q

�1

(V

g

)) � U and the onjugation map



(a;g)

: q

�1

(V

g

)! U; (a

0

; g

0

) 7! (a+ g:a

0

� gg

0

g

�1

:a+ f

g

(g

0

); gg

0

g

�1

)
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(Lemma II.1) is smooth in an identity neighborhood beause f 2 Z

2

ss

(G;A).

Now Theorem C.2 implies that

b

G arries a unique Lie group struture for whih the

inlusion map U = A � U

G

,!

b

G is a loal di�eomorphism onto an identity neighborhood.

It is lear that with respet to this Lie group struture on

b

G , the map q:

b

G ! G de�nes a

smooth A-prinipal bundle beause the map V

G

!

b

G; g 7! (0; g) de�nes a setion of q whih is

smooth on an identity neighborhood in G whih might be smaller than V

G

.

(2) Assume, onversely, that q:

b

G! G is an extension of G by the smooth G-module A . Then

there exists an open 1-neighborhood U

G

� G and a smooth setion �:U

G

!

b

G of the map

q:

b

G! G . We extend � to a global setion G!

b

G . Then

f(x; y) := �(x)�(y)�(xy)

�1

de�nes a 2-oyle G�G! A whih is smooth in a neighborhood of (1;1), and the map

A�

f

G!

b

G; (a; g) 7! a�(g)

is an isomorphism of groups. The funtions f

g

:G! A are given by

f

g

(g

0

) = f(g; g

0

)� f(gg

0

g

�1

; g) = �(g)�(g

0

)�(gg

0

)

�1

� �(gg

0

g

�1

)�(g)�(gg

0

)

�1

= �(g)�(g

0

)�(gg

0

)

�1

�(gg

0

)�(g)

�1

�(gg

0

g

�1

)

�1

= �(g)�(g

0

)�(g)

�1

�(gg

0

g

�1

)

�1

;

hene smooth near 1 . This shows that f 2 Z

2

ss

(G;A). In view of (1), the group A�

f

G arries

a Lie group struture for whih there exists an identity neighborhood V

G

� G for whih the

produt map

A� V

G

! A�

f

G; (a; v) 7! (a;1)(0; v) = (a; v)

is smooth. This implies that the group isomorphism A �

f

G !

b

G is a loal di�eomorphism,

hene an isomorphism of Lie groups.

(3) Steps (1) provides a map

Z

2

ss

(G;A)! Ext

�

A

(G;A); f 7! [A�

f

G℄;

and (2) shows that it is surjetive. Assume that two extensions of the form A �

f

i

G for

f

1

; f

2

2 Z

2

ss

(G;A) are equivalent as Lie group extensions. An isomorphism A�

f

1

G! A�

f

2

G

induing an equivalene of abelian extensions must be of the form

(2:4) (a; g) 7! (a+ h(g); g);

where h 2 C

1

s

(G;A). The ondition that (2.4) is a group homomorphism implies that

(h(gg

0

) + f

1

(g; g

0

); gg

0

) = (h(g); g)(h(g

0

); g

0

) = (h(g) + g:h(g

0

) + f

2

(g; g

0

); gg

0

);

whih means that

(2:5) (f

1

� f

2

)(g:g

0

) = g:h(g

0

)� h(gg

0

) + h(g) = (d

G

h)(g; g

0

);

so that f

1

� f

2

2 B

2

s

(G;A).

If, onversely, h 2 C

1

s

(G;A) and f

1

= f

2

= d

G

h , then it is easily veri�ed that (2.4)

de�nes a group isomorphism for whih there exists an open identity neighborhood mapped

di�eomorphially onto its image. Hene (2.5) is an isomorphism of Lie groups. We onlude

that the map Z

2

ss

(G;A)! Ext

�

A

(G;A) fators through a bijetion H

2

ss

(G;A)! Ext

�

A

(G;A).

(4) Assume now that G is onneted and that f 2 Z

2

s

(G;A). In the ontext of (1), the

onjugation map 

(a;g)

: q

�1

(V

g

) ! U is smooth in an identity neighborhood if and only if the

funtion f

g

is smooth in an identity neighborhood. As f 2 Z

2

s

(G;A), the set W of all g 2 G

for whih this ondition is satis�ed is an identity neighborhood. On the other hand, the set W

is losed under multipliation. In view of the onnetedness of G , we have G =

S

n2N

W

n

=W .

This means that f 2 Z

2

ss

(G;A), and therefore that Z

2

s

(G;A) = Z

2

ss

(G;A).
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Problem II. Do the two spaes Z

2

s

(G;A) and Z

2

ss

(G;A) also oinide if G is not onneted?

We do not know any oyle f 2 Z

2

s

(G;A) n Z

2

ss

(G;A).

The following lemma shows that the derivation map

D:Z

2

s

(G;A)! Z

2



(g; a); (Df)(x; y) = d

2

f(1;1)(x; y)� d

2

f(1;1)(y; x)

from Theorem B.6 and Lemma B.7 is ompatible with the onstrution in Proposition II.6. In

the following proof we use the notation d

2

f introdued in Appendix A.

Lemma II.7. Let A

�

=

a=�

A

, where �

A

� a is a disrete subgroup, f 2 Z

2

ss

(G;A) and

b

G = A�

f

G the orresponding extension of G by A . Then the Lie algebra oyle Df satis�es

b

g

�

=

g�

Df

a .

Proof. Let U

a

� a be an open 0-neighborhood suh that the restrition '

A

:U

a

! U

a

+�

A

�

A of the quotient map q

A

: a! A is a di�eomorphism onto an open identity neighborhood in A

and '

G

:U

g

! G a loal hart of G , where U

g

� g is an open 0-neighborhood, '

G

(0) = 1 and

d'

G

(0) = id

g

. After shrinking U

g

further, we obtain a hart of A�

f

G by the map

':U

a

� U

g

! A�

f

G; (a; x) 7! ('

A

(a); '

G

(x)):

Moreover, we may assume that U

g

is so small that f('

G

(U

g

) � '

G

(U

g

)) � '

A

(U

a

)), whih

implies that there exists a smooth funtion f

a

:U

g

� U

g

! U

a

with '

A

Æ f

a

= f Æ ('

G

� '

G

):

Writing x � x

0

:= '

�1

G

('

G

(x)'

G

(x

0

)) for x; x

0

2 U

g

with '

G

(x)'

G

(x

0

) 2 '

G

(U

g

), the

multipliation

(a; g)(a

0

; g

0

) = (a+ g:a

0

+ f(g; g

0

); gg

0

)

in A�

f

G an be expressed in loal oordinates for suÆiently small a; a

0

2 a; x; x

0

2 g by

'(a; x)'(a

0

; x

0

) = ('

A

(a) + '

G

(x):'

A

(a

0

) + f('

G

(x); '

G

(x

0

)); '

G

(x)'

G

(x

0

))

= ('

A

(a+ '

G

(x):a

0

+ f

a

(x; x

0

)); '

G

(x � x

0

))

= '(a+ '

G

(x):a

0

+ f

a

(x; x

0

); x � x

0

):

Here the identity element has the oordinates (0; 0) 2 a� g .

For the multipliation in G we have

x � x

0

= x+ x

0

+ b(x; x

0

) + � � �

where � � � stands for the terms of order at least three in the Taylor expansion of the produt map

and the quadrati term is bilinear. The Lie braket in g is given by

[x; x

0

℄ = b(x; x

0

)� b(x

0

; x)

([Mil83, p.1036℄). Therefore the Lie braket in the Lie algebra L(A �

f

G) of A �

f

G an be

obtained from

(a+ '

G

(x):a

0

+ f

a

(x; x

0

); x � x

0

)

= (a+ a

0

+ x:a

0

+ d

2

f

a

(0; 0)(x; x

0

) + � � � ; x+ x

0

+ b(x; x

0

) + � � �)

= (a+ a

0

+ x:a

0

+ d

2

f(1;1)(x; x

0

) + � � � ; x+ x

0

+ b(x; x

0

) + � � �);

as

[(a; x); (a

0

; x

0

)℄ = (x:a

0

� x

0

:a+Df(x; x

0

); [x; x

0

℄):
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III. Loally smooth 1-oyles

Let G be a Lie group and A a smooth G-module. In this setion we take a loser look at

the spae Z

1

s

(G;A) of loally smooth A-valued 1-oyles on G . We know from Appendix B

that there is a natural map

D

1

:Z

1

s

(G;A)! Z

1



(g; a); D

1

(f)(x) := df(1)(x):

If A

�

=

a=�

A

holds for a disrete subgroup �

A

of a and q

A

: a! A is the quotient map, then we

have for a 2 a the relation

D

1

(d

G

(q

A

(a))) = d

g

(a)

and hene D

1

(B

1

s

(G;A)) = B

1



(g; a). Hene D

1

indues a map

D

1

:H

1

s

(G;A)! H

1



(g; a);

and it is of fundamental interest to have a good desription of kernel and okernel of D

1

on the

level of oyles and ohomology lasses.

We shall see that the integration problem for Lie algebra 1-oyles has a rather simple

solution, the only obstrution oming from �

1

(G).

Lemma III.1. Eah f 2 Z

1

s

(G;A) is a smooth funtion and its di�erential df 2 


1

(G; a) is

an equivariant 1-form.

Proof. Let g 2 G . The oyle ondition

(3:1) f(gh) = g:f(h) + f(g)

shows that the smoothness of f in an identity neighborhood implies the smoothness in a

neighborhood of g .

Formula (3.1) means that f Æ�

g

= �

A

(g) Æ f + f(g); so that df satis�es �

�

g

df = �

A

(g) Æ df;

i.e., df is equivariant.

Lemma III.2. Let G be a Lie group with identity omponent G

0

and A a smooth G-module.

Then for a smooth funtion f :G! A with f(1) = 0 the following are equivalent:

(1) df is an equivariant a-valued 1-form on G .

(2) f(gn) = f(g) + g:f(n) for g 2 G and n 2 G

0

.

If, in addition, G is onneted, then df is equivariant if and only if f is a oyle.

Proof. We write g:a = �

a

(g):a for the ation of G on a and g:a = �

A

(g):a for the ation of

G on A .

(1) ) (2): Let g 2 G . In view of d(�

A

(g) Æ f) = �

a

(g) Æ df; we have

d(f Æ �

g

� �

A

(g) Æ f � f(g)) = �

�

g

df � �

a

(g) Æ df:

Hene (1) means that all the funtions f Æ �

g

� �

A

(g) Æ f � f(g) are loally onstant. Sine the

value of this funtion in 1 is 0, all these funtions are onstant 0 on G

0

, whih is (2).

(2) ) (1): If (2) is satis�ed, then df(g)d�

g

(1) = �

a

(g) Æ df(1) holds for eah g 2 G , and this

means that df is equivariant.
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De�nition III.3. Suppose that a is sequentially omplete. If � 2 Z

1



(g; a) and �

eq

is the

orresponding losed equivariant 1-form on G (f. De�nition B.4), then we obtain a morphism

of abelian groups, alled the period map of � :

per

�

:�

1

(G)! a; [℄ 7!

Z



�

eq

=

Z

1

0

�

eq

(t)

(

0

(t)) dt =

Z

1

0

(t):�((t)

�1

:

0

(t)) dt;

where : [0; 1℄! G is a pieewise smooth loop based in 1 . The map

C

1

(S

1

; G)! a;  7!

Z



�

eq

is loally onstant, so that the onnetedness of G implies in partiular that for g 2 G we have

Z



�

eq

=

Z

�

g

Æ

�

eq

=

Z



�

�

g

�

eq

= �

a

(g):

Z



�

eq

whih leads to

im(per

�

) � a

G

:

If �

A

� a

G

is a disrete subgroup, then A := a=�

A

is a smooth G-module with respet

to the indued ation. Let q

A

: a ! A denote the quotient map. We then obtain a group

homomorphism

P :Z

1



(g; a)! Hom(�

1

(G); A

G

); P (�) := q

A

Æ per

�

:

The importane of the period map stems from the fat that the 1-form �

eq

is the di�erential of

a smooth funtion f :G! A if and only if P (�) = 0 ([Ne02, Prop. 3.9℄).

Proposition III.4. If G is a onneted Lie group and A

0

�

=

a=�

A

, where �

A

� a

G

is a

disrete subgroup and a is sequentially omplete, then the sequene

(3:2) 0! Z

1

s

(G;A)

D

1

��!Z

1



(g; a)

P

��!Hom(�

1

(G); A

G

)

is exat. If A

�

=

a=�

A

, then it indues an exat sequene

(3:3) 0! H

1

s

(G;A)

D

1

��!H

1



(g; a)

P

��!Hom(�

1

(G); A

G

):

Proof. If f 2 Z

1

s

(G;A) satis�es D

1

f = 0, then Lemma III.2 implies that df = 0 beause

df is equivariant, and hene that f is onstant, and we get f(g) = f(1) = 0 for eah g 2 G .

Therefore D

1

is injetive on Z

1

s

(G;A). The kernel of P :Z

1



(g; a) ! Hom(�

1

(G); A) onsists of

those 1-oyles � for whih �

eq

is the di�erential of a smooth funtion f :G! A with f(1) = 0

([Ne02, Prop. 3.9℄), whih means that � = D

1

f for some f 2 Z

1

s

(G;A) (Lemma III.2). This

proves the exatness of the �rst sequene.

Now we assume that A

�

=

a=�

A

. If � 2 B

1



(g; a), then �

eq

is exat (Lemma B.5), so that

P (�) = 0. Therefore P fators through a map H

1



(g; a) ! Hom(�

1

(G); a). The exatness of

(3.3) follows from the observation that D

1

(B

1

s

(G;A)) = B

1



(g; a) and the exatness of (3.2).

Remark III.5. For eah � 2 Z

1



(g; a) the orresponding equivariant 1-form �

eq

is losed and

it is exat if � 2 B

1



(g; a), so that we obtain a map

H

1



(g; a)! H

1

dR

(G; a); [�℄ 7! [�

eq

℄:

Proposition III.4, applied to the ase A = a now means that the sequene

0! H

1

s

(G; a)

D

1

��!H

1



(g; a)��!H

1

dR

(G; a)

is exat. Let �

A

� a be a disrete subgroup and onsider A := a=�

A

. For

H

1

dR

(G;�

A

) :=

n

[�℄ 2 H

1

dR

(G; a): (8 2 C

1

(S

1

; G))

Z



� 2 �

A

o

;

we then have

H

1

dR

(G;�

A

) = dC

1

(G;A)=dC

1

(G; a)

([Ne02, Prop. 3.9℄), and we obtain an exat sequene

(3:4) 0! H

1

s

(G;A)

D

1

��!H

1



(g; a)��!


1

(G; a)=dC

1

(G;A);

beause for � 2 Z

1



(g; a) the ondition [�

eq

℄ 2 dC

1

(G;A) is equivalent to P ([�℄) = 0 (Proposi-

tion III.4).
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De�nition III.6. Let A be a smooth G-module for the onneted Lie group G and assume

that A

0

�

=

a=�

A

holds for the identity omponent of A . Then for eah a 2 A we obtain a

smooth oyle

d

0

G

(a) 2 Z

1

s

(G;A

0

); d

0

G

(a)(g) := g:a� a:

Taking derivatives in 1 leads to homomorphisms

�

A

:= D

1

Æ d

0

G

:A! Z

1



(g; a) and �

A

:�

0

(A)! H

1



(g; a):

The map �

A

is alled the harateristi homomorphism of the G-module A .

Lemma III.7. Let A and B be smooth modules of the onneted Lie group G and assume

that A

0

= B

0

�

=

a=�

A

as G-modules, where �

A

� a is a disrete subgroup. Then there

exists an isomorphism  :A ! B of G-modules with  j

A

0

= id

A

0

if and only if there exists a

homomorphism :�

0

(A)! �

0

(B) suh that the harateristi homomorphisms of A and B are

related by

�

B

Æ  = �

A

:

Proof. If  :A! B is an isomorphism of G-modules restriting to the identity on A

0

, then  

indues an isomorphism  := �

0

( ):�

0

(A)! �

0

(B), and it follows diretly from the de�nitions

that �

B

Æ  = �

A

:

Suppose, onversely, that :�

0

(A) ! �

0

(B) is an isomorphism with �

B

Æ  = �

A

. Sine

A

0

is an open divisible subgroup of A , we have A

�

=

A

0

� �

0

(A) as abelian Lie groups and

likewise B

�

=

A

0

� �

0

(B). For eah homomorphism '

0

:�

0

(A)! A

0

we then obtain a Lie group

isomorphism

(3:5) ':A! B; (a

0

; a

1

) 7! (a

0

+ '

0

(a

1

); (a

1

)):

Sine G ats on A

�

=

A

0

� �

0

(A) by

g:(a

0

; a

1

) = (g:a

0

+ d

0

G

(a

1

)(g); a

1

);

the isomorphism ' is G-equivariant if and only if

(3:6) '

0

(a

1

) + d

0

G

(a

1

)(g) = g:'

0

(a

1

) + d

0

G

((a

1

))(g)

for g 2 G , a

1

2 �

0

(A), whih means that

d

G

('

0

(a

1

)) = d

0

G

(a

1

)� d

0

G

((a

1

)) =: �:

To see that a homomorphism '

0

with the required properties exists, we �rst observe that our

assumption implies that � is a homomorphism �

0

(A) ! Z

1

s

(G;A

0

) with im(D

1

Æ �) � d

g

a . In

view of the divisibility of a , there exists a homomorphism Æ:�

0

(A)! a with D

1

Æ � = d

g

Æ Æ =

D

1

Æ d

G

Æ q

A

Æ Æ . Sine D

1

is injetive on oyles (Proposition III.4), we obtain � = d

G

Æ q

A

Æ Æ .

We may therefore put '

0

:= q

A

Æ Æ to obtain an isomorphism ' of G-modules as in (3.5).

IV. Period homomorphisms for abelian groups

In this setion G denotes a onneted Lie group, a is a smooth sequentially omplete G-module,

and ! 2 Z

2



(g; a) is a ontinuous Lie algebra oyle. We shall de�ne a homomorphism of abelian

groups

per

!

:�

2

(G)! a;

alled the period map of ! .

Suppose that q:

b

G! G is an extension of G by the smooth G-module A whose Lie algebra

is isomorphi to a�

!

g and A

0

�

=

a=�

A

holds for a disrete subgroup �

A

�

=

�

1

(A) of a . Then

we show that the period map is, up to sign, the onneting map of the long exat homotopy

sequene of the prinipal A-bundle A ,!

b

G !! G , whose range is ontained in the subgroup

�

A

� a .



15 abelext.tex February 18, 2004

De�nition IV.1. In the following �

p

= f(x

1

; : : : ; x

p

) 2 R

p

:x

i

� 0;

P

j

x

j

� 1g denotes

the p-dimensional standard simplex in R

p

. We also write hv

0

; : : : ; v

p

i for the aÆne simplex in

a vetor spae spanned by the points v

0

; : : : ; v

p

. In this sense �

p

= h0; e

1

; : : : ; e

p

i , where e

i

denotes the i-th anonial basis vetor in R

p

.

Let Y be a smooth manifold. A ontinuous map f : �

p

! Y is alled a C

1

-map if it

is di�erentiable in the interior int(�

p

) and in eah loal hart of Y all diretional derivatives

x 7! df(x)(v) of f extend ontinuously to the boundary ��

p

of �

p

. For k � 2 we all f a

C

k

-map if it is C

1

and all maps x 7! df(x)(v) are C

k�1

, and we say that f is smooth if f is

C

k

for every k 2 N . We write C

1

(�

p

; Y ) for the set of smooth maps �

p

! Y .

If � is a simpliial omplex, then we all a map f : � ! Y pieewise smooth if it is

ontinuous and its restritions to all simplies in � are smooth. We write C

1

pw

(�; Y ) for the

set of pieewise smooth maps �! Y . There is a natural topology on this spae inherited from

the natural embedding of C

1

pw

(�; Y ) into the spae

Q

S��

C

1

pw

(S; Y ), where S runs through all

simplies of � and the topology on C

1

pw

(S; Y ) is de�ned as in [Ne02, Def. A.3.5℄ as the topology

of uniform onvergene of all diretional derivatives of arbitrarily high order.

The equivariant form !

eq

is a losed 2-form on G , and we obtain with [Ne02, Lemma 5.7℄

a period map

per

!

:�

2

(G)! a

whih is given on pieewise smooth representatives �:S

2

! G of free homotopy lasses by the

integral

per

!

([�℄) =

Z

S

2

�

�

!

eq

=

Z

�

!

eq

:

If ! is a oboundary, then Lemma B.5 implies that !

eq

is exat, so that the period map is trivial

by Stoke's Theorem. We therefore obtain a homomorphism

H

2



(g; a)! Hom(�

2

(G); a); [!℄ 7! per

!

:

The image �

!

:= per

!

(�

2

(G)) is alled the period group of ! . Sine the group G is onneted,

the group �

0

(C

1

(S

2

; G)) of onneted omponents of the Lie group C

1

(S

2

; G) is isomorphi to

�

2

(G), and we may think of per

!

as the map on �

2

(G) obtained by fatorization of the map

C

1

(S

2

; G)! a; � 7!

Z

�

!

eq

whih is loally onstant ([Ne02, Lemma 5.7℄).

Lemma IV.2. The image of the period map is �xed pointwise by G , i.e., �

!

� a

G

.

Proof. In view of [Ne02, Th. A.3.7℄, eah homotopy lass in �

2

(G) has a smooth representative

�:S

2

! G . Sine G is onneted, and the map G ! C

1

(S

2

; G); g 7! �

g

Æ � is ontinuous, we

have for eah g 2 G :

per

!

([�℄) =

Z

S

2

�

�

!

eq

=

Z

S

2

�

�

�

�

g

!

eq

=

Z

S

2

�

�

(�

a

(g) Æ !

eq

) = �

a

(g): per

!

([�℄):

We onlude that the image of per

!

is �xed pointwise by G .

Period maps as onneting homomorphisms

Let A ,!

b

G

q

��!G be an abelian Lie group extension of A . Then the Lie algebra

b

g of

b

G has the form a �

!

g beause the existene of a smooth loal setion implies that

b

g ! g

has a ontinuous linear setion (Proposition I.3). In this subsetion we will relate the period

homomorphism per

!

to the onneting homomorphism Æ:�

2

(G) ! �

1

(A) from the long exat

homotopy sequene of the bundle A ,!

b

G

q

��!G .
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De�nition IV.3. We reall the de�nition of relative homotopy groups. Let I

n

:= [0; 1℄

n

denote the n-dimensional ube. Then the boundary �I

n

of I

n

an be written as I

n�1

[ J

n�1

,

where I

n�1

is alled the initial fae and J

n�1

is the union of all other faes of I

n

.

Let X be a topologial spae, Y � X a subspae, and x

0

2 Y . A map

f : (I

n

; I

n�1

; J

n�1

)! (X;Y; x

0

)

of spae triples is a ontinuous map f : I

n

! X satisfying f(I

n�1

) � Y and f(J

n�1

) = fx

0

g .

We write F

n

(X;Y; x

0

) for the set of all suh maps and �

n

(X;Y; x

0

) for the homotopy lasses

of suh maps, i.e., the ar-omponents of the topologial spae F

n

(X;Y; x

0

) endowed with the

ompat open topology (f. [Ste51℄). We de�ne F

n

(X; x

0

) := F

n

(X; fx

0

g; x

0

) and �

n

(X; x

0

) :=

�

n

(X; fx

0

g; x

0

) and observe that we have a anonial map

�:�

n

(X;Y; x

0

)! �

n�1

(Y; x

0

); [f ℄ 7! [f j

I

n�1
℄:

Example IV.4. Let q:P !M be a (loally trivial) H -prinipal bundle, y

0

2 P a base point,

x

0

:= q(y

0

) and identity H with the �ber q

�1

(x

0

). Then the maps

q

�

:�

k

(P;H) := �

k

(P;H; y

0

)! �

k

(M) := �

k

(M;x

0

); [f ℄ 7! [q Æ f ℄

are isomorphisms ([Ste51, Cor. 17.2℄), so that we obtain onneting homomorphisms

Æ := � Æ (q

�

)

�1

:�

k

(M)! �

k�1

(H):

The so obtained sequene

! �

k

(P )! �

k

(M)! �

k�1

(H)! : : :! �

1

(P )! �

1

(M)! �

0

(H)! �

0

(P )!! �

0

(M)

is exat, where the last two maps annot be onsidered as group homomorphisms. This sequene

is alled the long exat homotopy sequene of the prinipal bundle P !M .

Proposition IV.5. Let q:

b

G ! G be an abelian extension of not neessarily onneted

Lie groups with kernel A satisfying A

0

�

=

a=�

A

, where a is a sequentially omplete loally

onvex spae. Then q de�nes in partiular the struture of an A-prinipal bundle on

b

G . If

! 2 Z

2



(g; a) is a Lie algebra 2-oyle with

b

g

�

=

a�

!

g , then Æ:�

2

(G) ! �

1

(A) and the period

map per

!

:�

2

(G)! a are related by

Æ = � per

!

:�

2

(G)! �

1

(A) � a:

Proof. Let � 2 


1

(

b

G; a) be a 1-form with the property that for eah g 2

b

G the orbit map

�

g

:A ,!

b

G; a 7! ga satis�es �

�

g

� = �

A

, where �

A

2 


1

(A; a) is the invariant 1-form on A

with �

A;0

= id

a

, i.e., the Maurer-Cartan form on A . We have seen in [Ne02, Prop. 5.11℄ that if


 2 


2

(G; a) satis�es q

�


 = �d�, then Æ = � per




.

To apply this to our situation, we onsider the ation of

b

G on A given by g:a := q(g):a .

Then q

�

!

eq

is an equivariant losed 2-form on

b

G with (q

�

!

eq

)

1

= L(q)

�

!: Let p

a

:

b

g

�

=

a�

!

g!

a; (a; x) 7! x denote the projetion onto a . Then

dp

a

((a; x); (a

0

; x

0

)) = (a; x):p

a

(a

0

; x

0

)� (a

0

; x

0

):p

a

(a; x)� p

a

([(a; x); (a

0

; x

0

)℄)

= x:a

0

� x

0

:a� (x:a

0

� x

0

:a+ !(x; x

0

)) = �!(x; x

0

)

= �(L(q)

�

!)((a; x); (a

0

; x

0

)):

In view of Lemma B.5, this implies

d(p

eq

a

) = (d

g

p

a

)

eq

= �(L(q)

�

!)

eq

= �q

�

!

eq

:

Applying the preeding remarks with � = p

eq

a

, we obtain Æ = � per

!

:
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Remark IV.6. Let A ,!

b

G!! G be an abelian extension of onneted Lie groups and assume

that A

�

=

a=�

A

holds for a disrete subgroup �

A

� a , that we identify with �

1

(A). In view of

�

2

(A)

�

=

�

2

(a) = 1 , the long exat homotopy sequene of the bundle

b

G ! G leads to an exat

sequene

0! �

2

(

b

G) ,! �

2

(G)

per

!

����!�

1

(A)! �

1

(

b

G)!! �

1

(G)! 0:

This implies that

�

2

(

b

G)

�

=

kerper

!

� �

2

(G) and �

1

(G)

�

=

�

1

(

b

G)= okerper

!

:

These relations show how the period homomorphism ontrols how the �rst two homotopy groups

of G and

b

G are related.

V. From Lie algebra oyles to group oyles

In Setions V and VI we desribe the image of the map

D:H

2

s

(G;A) ! H

2



(g; a)

for a onneted Lie group G , and an abelian Lie group A of the form a=�

A

. In the present

setion we deal with the speial ase where G is simply onneted.

Let G be a onneted simply onneted Lie group and a a sequentially omplete loally

onvex smooth G-module. Further let �

A

� a

G

be a subgroup and write A := a=�

A

for the

quotient group, that arries a natural G-module struture. We write q

A

: a! A for the quotient

map. If, in addition, �

A

is disrete, then A arries a natural Lie group struture and the ation

of G on A is smooth.

Let ! 2 Z

2



(g; a) and �

!

� a

G

be the orresponding period group (Lemma IV.2). In the

following we shall assume that

�

!

� �

A

:

The main result of the present setion is the existene of a loally smooth group oyle f 2

Z

2

s

(G;A) with Df = ! if �

A

is disrete (Corollary V.3).

A speial ase of the following onstrution has also been used in [Ne02℄ in the ontext of

entral extensions. For g 2 G we hoose a smooth path �

1;g

: [0; 1℄! G from 1 to g . We thus

obtain a left invariant system of smooth ars �

g;h

:= �

g

Æ�

1;g

�1

h

from g to h , where �

g

(x) := gx

denotes left translation. For g; h; u 2 G we then obtain a singular smooth yle

�

g;h;u

:= �

g;h

+ �

h;u

� �

g;u

;

that orresponds to the pieewise smooth map �

g;h;u

2 C

1

pw

(��

2

; G) with

�

g;h;u

(s; t) =

8

<

:

�

g;h

(s); for t = 0

�

h;u

(1� s); for s+ t = 1

�

g;u

(t); for s = 0.

For a simpliial omplex � we write �

(j)

for the j -th baryentri subdivision of �.

Aording to [Ne02, Prop. 5.6℄, eah map �

g;h;u

an be obtained as the restrition of a pieewise

smooth map �: (�

2

)

(1)

! G . Let �

0

: (�

2

)

(1)

! G be another pieewise smooth map with the

same boundary values as � . We laim that

R

�

!

eq

�

R

�

0

!

eq

2 �

!

. In fat, we onsider the

sphere S

2

as an oriented simpliial omplex � obtained by gluing two opies D and D

0

of �

2

along their boundary, where the inlusion of D is orientation preserving and the inlusion on

D

0

reverses orientation. Then � and �

0

ombine to a pieewise smooth map : � ! G with

 j

D

= � and  j

D

0

= �

0

, and we get with [Ne02, Lemma 5.7℄

Z

�

!

eq

�

Z

�

0

!

eq

=

Z



!

eq

2 �

!

� �

A

:

We thus obtain a well-de�ned map

F :G

3

! A; (g; h; u) 7! q

A

�

Z

�

!

eq

�

;

where � 2 C

1

pw

((�

2

)

(1)

; G) is a pieewise smooth map whose boundary values oinide with

�

g;h;u

.
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Lemma V.1. The funtion

f :G

2

! A; (g; h) 7! F (1; g; gh)

is a group oyle with respet to the ation of G on A .

Proof. First we show that for g; h 2 G we have

f(g;1) = F (1; g; g) = 0 and f(1; h) = F (1;1; h) = 0:

If g = h or h = u , then we an hoose the map �: �

2

! G extending �

g;h;u

in suh a way that

rk(d�) � 1 in every point, so that �

�

!

eq

= 0. In partiular we obtain F (g; h; u) = 0 in these

ases.

From �

g;h;u

= �

g

Æ �

1;g

�1

h;g

�1

u

we see that for every extensions �: (�

2

)

(1)

! G of

�

1;g

�1

h;g

�1

u

the map �

g

Æ � is an extension of �

g;h;u

. In view of �

�

g

!

eq

= �

a

(g) Æ !

eq

, we

obtain

Z

S

2

(�

g

Æ �)

�

!

eq

=

Z

S

2

�

�

�

�

g

!

eq

= �

a

(g):

Z

S

2

�

�

!

eq

;

and therefore

(5:1) F (g; h; u) = �

A

(g):F (1; g

�1

h; g

�1

u):

Let �

3

� R

3

be the standard 3-simplex. Then we de�ne a pieewise smooth map  of its

1-skeleton to G by

(t; 0; 0) = �

1;g

(t); (0; t; 0) = �

1;gh

(t); (0; 0; t) = �

1;ghu

(t)

and

(1� t; t; 0) = �

g;gh

(t); (0; 1� t; t) = �

gh;ghu

(t); (1� t; 0; t) = �

g;ghu

(t):

As G is simply onneted, we obtain with [Ne02, Prop. 5.6℄ for eah fae �

j

3

, j = 0; : : : ; 3, of �

3

a pieewise smooth map 

j

of the �rst baryentri subdivision to G , extending the given map

on the 1-skeleton. These maps ombine to a pieewise smooth map : (��

3

)

(1)

! G . Modulo

the period group �

!

we now have

Z



!

eq

=

Z

��

3



�

!

eq

=

3

X

i=0

Z



i

!

eq

= F (g; gh; ghu)� F (1; gh; ghu) + F (1; g; ghu)� F (1; g; gh)

= �

A

(g):f(h; u)� f(gh; u) + f(g; hu)� f(g; h):

Sine

R



!

eq

2 �

!

, this proves that f is a group oyle.

In the next lemma we will see that for an appropriate hoie of paths from 1 to group

elements lose to 1 the oyle f will be smooth in an identity neighborhood. The following

lemma is a slight generalization of Lemma 6.2 in [Ne02℄.

Lemma V.2. Let U � g be an open onvex 0-neighborhood and ':U ! G a hart of G with

'(0) = 1 and d'(0) = id

g

. We then de�ne the ars [1; '(x)℄ by �

'(x)

(t) := '(tx) . Let V � U

be an open onvex 0-neighborhood with '(V )'(V ) � '(U) and de�ne x � y := '

�1

('(x)'(y))

for x; y 2 V . If we de�ne �

x;y

:= ' Æ 

x;y

with



x;y

: �

2

! U; (t; s) 7! t(x � sy) + s(x � (1� t)y);

then for any losed 2-form 
 2 


2

(G; z) , z a sequentially omplete loally onvex spae, the

funtion

f

V

:V � V ! z; (x; y) 7!

Z

�

x;y
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is smooth with d

2

f

V

(0; 0)(x; y) =

1

2




1

(x; y) (see the end of Appendix B for the notation).

Proof. First we note that the funtion V �V ! U; (x; y) 7! x � y is smooth. We onsider the

yle

�

1;'(x);'(x)'(y)

= �

1;'(x);'(x�y)

= �

1;'(x)

+ �

'(x);'(x�y)

� �

1;'(x�y)

:

The ar onneting x to x � y is given by s 7! x � sy , so that we may de�ne �

x;y

:= ' Æ 

x;y

with 

x;y

as above. Then

f

V

:V � V ! z; (x; y) 7!

Z

'Æ

x;y


 =

Z

�

2



�

x;y

'

�


;

and

(5:2) f

V

(x; y) =

Z

�

2

('

�


)

�

'(

x;y

(t; s))

�

�

�

�t



x;y

(t; s);

�

�s



x;y

(t; s)

�

dt ds

implies that f

V

is a smooth funtion in V � V .

The map : (x; y) 7! 

x;y

satis�es

(1) 

0;y

(t; s) = sy and 

x;0

(t; s) = (t+ s)x .

(2)

�

�t



x;y

^

�

�s



x;y

= 0 for x = 0 or y = 0.

In partiular we obtain f

V

(x; 0) = f

V

(0; y) = 0. Therefore the seond order Taylor polynomial

T

2

(f

V

)(x; y) = f

V

(0; 0) + df

V

(0; 0)(x; 0) + df

V

(0; 0)(0; y) +

1

2

d

[2℄

f

V

(0; 0)

�

(x; y); (x; y)

�

of f

V

in (0; 0) is bilinear and given by

T

2

(f

V

)(x; y) =

1

2

d

[2℄

f

V

(0; 0)

�

(x; 0); (0; y)

�

+

1

2

d

[2℄

f

V

(0; 0)

�

(0; y); (x; 0)

�

= d

2

f

V

(0; 0)(x; y)

(see the end of Appendix B).

Next we observe that (1) implies that

�

�t



x;y

and

�

�s



x;y

vanish in (0; 0). Therefore the

hain rule for Taylor expansions and (1) imply that for eah pair (t; s) the seond order term of

('

�


)(

x;y

(t; s))

�

�

�t



x;y

(t; s);

�

�s



x;y

(t; s)

�

is given by

('

�


)(

0;0

(t; s))(x; y) = (d'(0)

�




1

)(x; y) = 


1

(x; y);

and eventually

d

2

f

V

(0; 0)(x; y) = T

2

(f

V

)(x; y) =

Z

�

2

dt ds �


1

(x; y) =

1

2




1

(x; y):

Corollary V.3. Suppose that �

A

is disrete with �

!

� �

A

and onstrut for ! 2 Z

2



(g; a)

the group oyle f 2 Z

2

(G;A) as above from the losed 2-form !

eq

2 


2

(G; a) . If the paths

�

1;g

for g 2 '(U) are hosen as in Lemma V.2, then f 2 Z

2

s

(G;A) with D(f) = ! .

Proof. In the notation of Lemma V.2 we have for x; y 2 V the relation

f('(x); '(y)) = q

A

(f

V

(x; y));

so that f is smooth on '(V )� '(V ), and further

Df(x; y) = d

2

f

V

(1;1)(x; y)� d

2

f

V

(1;1)(y; x) = !(x; y):

The outome of this setion is the following result:
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Theorem V.4. Let G be a onneted simply onneted Lie group and A a smooth G-module

of the form a=�

A

, where �

A

� a is a disrete subgroup. Let ! 2 Z

2



(g; a) be a ontinuous

2-oyle and �

!

� a

G

its period group. Then the following assertions are equivalent:

(1) The Lie algebra extension a ,!

b

g := a�

!

g !! g an be integrated to a Lie group extension

A ,!

b

G!! G .

(2) [!℄ 2 im(D) .

(3) ! 2 im(D) .

(4) �

!

� �

A

.

(5) If q

A

: a! A is the quotient map and P ([!℄) := q

A

Æ per

!

:�

2

(G)! A; then P ([!℄) = 0 .

Proof. (1) ) (2): If

b

G is an extension of G by A orresponding to the Lie algebra extension

b

g = a �

!

g , then we an write

b

G as A �

f

G (Proposition II.6), and Lemma II.7 implies that

D[f ℄ = [Df ℄ = [!℄ .

(2) ) (3): If [!℄ = D[f ℄ = [Df ℄ for some f 2 Z

2

s

(G;A), then Df � ! 2 B

2



(g; a) and there

exists an � 2 C

1



(g; a) with Df � ! = d

g

� . Then the 2-form (d

g

�)

eq

= d�

eq

2 


2

(G; a) is

exat (Lemma B.5), so that its period group is trivial, and Corollary V.3 implies the existene of

h 2 Z

2

s

(G;A) with Dh = d

g

� . Then f

1

:= f�h 2 Z

2

s

(G;A) satis�es D(f �h) = Df �Dh = !:

(3) ) (1): If Df = ! , then the Lie group extension A�

f

G! G (Proposition II.6) orresponds

to the Lie algebra extension a�

Df

g = a�

!

g! g (Lemma II.7).

(1) ) (4) follows from Proposition IV.5 whih implies that if

b

G exists, then the period map

oinides up to sign with the onneting homomorphism Æ:�

2

(G)! �

1

(A)

�

=

�

A

� a in the long

exat homotopy sequene of the prinipal A-bundle

b

G .

(4) ) (3) follows from Corollary V.3.

(4) , (5) is a trivial onsequene of the de�nitions.

VI. Abelian extensions of non-simply onneted groups

We have seen in the preeding setion that for a simply onneted Lie group G and a smooth G-

module of the form A = a=�

A

the image of the map D:H

2

s

(G;A) ! H

2



(g; a) an be represented

by those oyles ! 2 Z

2



(g; a) for whih �

!

� �

A

�

=

�

1

(A).

In this setion we drop the assumption that G is simply onneted. We write q

G

:

e

G! G for

the simply onneted overing group of G and identify �

1

(G) with the disrete entral subgroup

ker q

G

of

e

G .

Let ! 2 Z

2



(g; a). In the following we write �

A

for the ation of G on A , �

a

for the ation

of G on a and _�

a

for the derived representation of g on a .

Remark VI.1. (a) To a 2-oyle ! 2 Z

2



(g; a) we assoiate the linear map

e!: g! C

1



(g; a) = Lin(g; a); x 7! i

x

!:

We onsider Lin(g; a) as a g-module with respet to the ation

(x:�)(y) := _�

a

(x):�(y) � �([x; y℄):

We do not onsider any topology on this spae of maps. The orresponding Lie algebra di�erential

d

g

:C

1

(g;Lin(g; a))! C

2

(g;Lin(g; a)) then satis�es

(d

g

e!)(x; y)(z) = (x:i

y

! � y:i

x

! � i

[x;y℄

!)(z)

= x:!(y; z)� !(y; [x; z℄)� y:!(x; z) + !(x; [y; z℄)� !([x; y℄; z)

= �z:!(x; y) = �d

g

(!(x; y))(z):

Sine the subspae B

1



(g; a) = d

g

a � C

1



(g; a) is g-invariant, we an also form the quotient

g-module

b

H

1



(g; a) := C

1



(g; a)=B

1



(g; a):
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We then obtain a linear map

f

!

: g!

b

H

1



(g; a); x 7! [i

x

!℄;

and the preeding alulation shows that this map is a 1-oyle. We all f

!

the in�nitesimal

ux oyle. In the following we are onerned with integrating this oyle to a group oyle

F

!

:

e

G!

b

H

1



(g; a):

This is problemati beause the right hand side does not have a natural topology, so that we

annot diretly apply Proposition III.4.

(b) A �rst step to globalize the situation is to translate matters from the Lie algebra to vetor

�elds on G . We shall see that on the level of vetor �elds the in�nitesimal ux oyle orresponds

to the map

g!

b

H

1

dR

(G; a) := 


1

(G; a)=dC

1

(G; a); x 7! [i

x

r

!

eq

℄;

where for x 2 g we write x

r

for the orresponding right invariant vetor �eld on G with

x

r

(1) = x . Note that for v 2 T

g

(G) we have

(i

x

r

!

eq

)(v) = g:!(Ad(g)

�1

:x; g

�1

:v):

Formally the linear map

e

f

!

: g! Lin(g; a); x 7! i

x

! de�nes an equivariant Lin(g; a)-valued

1-form

e

f

eq

!

on G as follows. For eah x 2 g evaluation in x is a linear map ev

x

: Lin(g; a) !

a; � 7! �(x) and ev

x

Æf

!

: g! a is a ontinuous linear map, hene de�nes an equivariant a-valued

1-form (ev

x

Æ

e

f

!

)

eq

on G . For any pieewise smooth path : [0; 1℄! G we then have

Z



(ev

x

Æ

e

f

!

)

eq

=

Z

1

0

(t):

�

e

f

!

((t)

�1



0

(t))

�

(x) dt =

Z

1

0

(t):!((t)

�1



0

(t);Ad((t))

�1

:x) dt

=

Z

1

0

(t):!((t)

�1



0

(t); (t)

�1

:x

r

((t))) dt = �

Z



i

x

r

:!

eq

:

Next we derive some formulas that will be useful in the following. We reall the Lie

derivative L

x

r

= d Æ i

x

r

+ i

x

r

Æ d as an operator on di�erential forms. The equivariane of !

eq

leads to

L

x

r

:!

eq

= _�

a

(x) Æ !

eq

([Ne02, Lemma A.2.4℄). In view of the losedness of !

eq

, this leads to

(6:1) d(i

x

r

!

eq

) = L

x

r

:!

eq

� i

x

r

d!

eq

= _�

a

(x) Æ !

eq

:

Further the formula [L

x

r

; i

y

r

℄ = i

[x

r

;y

r

℄

= �i

[x;y℄

r

implies

i

[x;y℄

r

!

eq

= i

y

r

L

x

r

!

eq

�L

x

r

i

y

r

!

eq

= i

y

r

( _�

a

(x) Æ !

eq

)� (i

x

r

Æ d+ d Æ i

x

r

)i

y

r

!

eq

= _�

a

(x) Æ i

y

r

!

eq

� _�

a

(y) Æ i

x

r

!

eq

� d(i

x

r

i

y

r

!

eq

):

This means that the a-valued 1-form

(6:2) _�

a

(x) Æ i

y

r

!

eq

� _�

a

(y) Æ i

x

r

!

eq

� i

[x;y℄

r

!

eq

= d(i

x

r

i

y

r

!

eq

)

is exat, whih entails that

e

f

!

: g!

b

H

1

dR

(G; a); x 7! [i

x

r

!

eq

℄

is a 1-oyle with respet to the representation of g on

b

H

1

dR

(G; a) given by x:[�℄ := [ _�

a

(x)Æ�℄ .

Sine the form !

eq

is losed, the map

e

f

!

also is a oyle with respet to the ation given by

x:[�℄ := [�L

x

r

:�℄ beause g ! V(G); x 7! �x

r

is a homomorphism of Lie algebras (f. Lemma

IX.8).
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Lemma VI.2. Let : [0; 1℄ ! G be a pieewise smooth path. Then we obtain a ontinuous

linear map

e

F

!

(): g! a; x 7! �

Z



i

x

r

!

eq

=

Z

1

0

(t):!((t)

�1



0

(t);Ad((t))

�1

:x) dt

with the following properties:

(1) If (1)

�1

(0) is ontained in Z(G) and ats trivially on a , then

e

F

!

() 2 Z

1



(g; a) .

(2) If 

1

and 

2

are homotopi with �xed endpoints, then

e

F

!

(

1

)�

e

F

!

(

2

) is a oboundary.

(3) For a pieewise smooth urve �: [0; 1℄! G we have

Z

�

e

F

!

()

eq

=

Z

H

!

eq

for the pieewise smooth map H : [0; 1℄

2

! G; (t; s) 7! �(s) � (t):

Proof. In view of formula (6.2) above, we �nd for x; y 2 g the relation

d

g

(

e

F

!

())(x; y) = x:

e

F

!

()(y)� y:

e

F

!

()(x) �

e

F

!

()([x; y℄)

= �

Z



_�

a

(x) Æ i

y

r

!

eq

� _�

a

(y) Æ i

x

r

!

eq

� i

[x;y℄

r

!

eq

= �

Z



d(i

x

r

i

y

r

!

eq

)

= !

eq

((0))

�

y

r

((0)); x

r

((0))

�

� !

eq

((1))

�

y

r

((1)); x

r

((1))

�

= (0):!(Ad((0))

�1

:y;Ad((0))

�1

:x)� (1):!(Ad((1))

�1

:y;Ad((1))

�1

:x):

(1) If (1)

�1

(0) 2 Z(G) = kerAd ats trivially on a , then the above formula implies that

d

g

�

e

F

!

()

�

= 0, i.e., that

e

F

!

() 2 Z

1



(g; a).

(2) For g 2 G we �rst observe that

e

F

!

(g � )(x) = �

Z

�

g

Æ

i

x

r

:!

eq

=

Z

1

0

g(t):!((t)

�1

:

0

(t);Ad(g(t))

�1

:x) dt

= g:

Z

1

0

(t):!((t)

�1

:

0

(t);Ad((t))

�1

Ad(g)

�1

:x) dt

= g:

e

F

!

()(Ad(g)

�1

:x) = (g:

e

F

!

())(x):

For the natural ation of G on Lin(g; a) by (g:')(x) := g:'(Ad(g)

�1

:x) and the left translation

ation on the spae C

1

pw

(I;G) of pieewise smooth maps I := [0; 1℄ ! G , the preeding

alulation shows that the map

e

F

!

:C

1

pw

(I;G)! Lin(g; a) = C

1



(g; a)

is equivariant.

For the omposition

(

1

℄

2

)(t) :=

�



1

(2t) for 0 � t �

1

2



1

(1)

2

(0)

�1



2

(2t� 1) for

1

2

� t � 1

of paths we thus obtain the omposition formula

(6:3)

e

F

!

(

1

℄

2

) =

e

F

!

(

1

) +

e

F

!

(

1

(1)

2

(0)

�1



2

) =

e

F

!

(

1

) + 

1

(1)

2

(0)

�1

:

e

F

!

(

2

):

For the inverse path 

�

(t) := (1�t) we trivially get

e

F

!

(

�

) = �

e

F

!

() from the transformation

formula for one-dimensional integrals. If the two paths 

1

and 

2

have the same start and

endpoints, then the path 

1

℄

�

2

is losed, and we derive with (1) that

e

F

!

(

1

)�

e

F

!

(

2

) =

e

F

!

(

1

) + 

1

(1)

�

2

(0)

�1

:

e

F

!

(

�

2

) =

e

F

!

(

1

℄

�

2

) 2 Z

1



(g; a):
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That two paths 

1

and 

2

with the same endpoints are homotopi with �xed endpoints

implies that the loop  := 

1

℄

�

2

is ontratible. It therefore has a losed pieewise smooth lift

e: [0; 1℄

�

=

��

2

!

e

G with q

G

Æe =  . Using Proposition 4.6 in [Ne02℄, we �nd a pieewise smooth

map e�: �

2

!

e

G suh that e� j

��

2

= e . Let � := q

G

Æ e� . Then � j

��

2

=  , so that Stoke's

Theorem and formula (6.1) lead to

�

e

F

!

()(x) =

Z



i

x

r

!

eq

=

Z

��

2

�

�

(i

x

r

!

eq

) =

Z

�

2

�

�

d(i

x

r

!

eq

)

=

Z

�

d(i

x

r

!

eq

) =

Z

�

_�

a

(x) Æ !

eq

= _�

a

(x):

Z

�

!

eq

:

Therefore

e

F

!

() 2 B

1



(g; a), and (2) follows.

(3) We have

Z

�

e

F

!

()

eq

=

Z

1

0

�(s):

e

F

!

()(�(s)

�1

:�

0

(s)) ds

=

Z

1

0

Z

1

0

�(s)(t):!((t)

�1

:

0

(t);Ad((t)

�1

) Æ �(s)

�1

:�

0

(s)) dt ds

=

Z

1

0

Z

1

0

H(t; s):!(H(t; s)

�1

�(s):

0

(t); H(t; s)

�1

:(�

0

(s):(t))) dt ds

=

Z

1

0

Z

1

0

H(t; s):!

�

H(t; s)

�1

:

�H(t; s)

�t

;H(t; s)

�1

:

�H(t; s)

�s

�

dt ds

=

Z

[0;1℄

2

H

�

!

eq

=

Z

H

!

eq

:

Proposition VI.3. We have a well-de�ned map

F

!

:

e

G!

b

H

1



(g; a) = Lin(g; a)=B

1



(g; a); g 7! [

e

F

!

(q

G

Æ 

g

)℄ :=

e

F

!

(q

G

Æ 

g

) +B

1



(g; a);

where 

g

: [0; 1℄ !

e

G is pieewise smooth with 

g

(0) = 1 and 

g

(1) = g . The map F

!

is a

1-oyle with respet to the natural ation of

e

G on

b

H

1



(g; a) . Moreover, we obtain by restrition

a group homomorphism Z(

e

G) \ ker �

a

! H

1



(g; a); [℄ 7! [

e

F

!

()℄ and further by restrition to

�

1

(G) a homomorphism

F

!

:�

1

(G)! H

1



(g; a):

Proof. That F

!

is well-de�ned follows from Lemma VI.1(2) beause two di�erent hoies

of paths 

g

and �

g

lead to paths q

G

Æ 

g

and q

G

Æ �

g

in G whih are homotopi with �xed

endpoints. Next we note that for paths 

g

i

, i = 1; 2, from 1 to g

i

in

e

G the omposed path



g

1

℄

g

2

onnets 1 to g

1

g

2

. Hene the omposition formula (6.3) leads to

F

!

(g

1

g

2

) =

e

F

!

(

g

1

℄

g

2

) =

e

F

!

(

g

1

) + g

1

:

e

F

!

(

g

2

) = F

!

(g

1

) + g

1

:F

!

(g

2

);

showing that the map F

!

is a 1-oyle.

Sine Z(

e

G) \ ker �

a

ats trivially on g and a , hene on Lin(g; a), the restrition of F

!

to this subgroup is a group homomorphism, and Lemma VI.2(1) shows that its values lie in the

subspae H

1



(g; a).

The oyle F

!

:

e

G!

b

H

1



(g; a) is alled the ux oyle and its restrition to �

1

(G) the ux

homomorphism for reasons that will beome lear in De�nition IX.9 below. Next we relate the

ux homomorphism to group extensions. Although the following proposition is quite tehnial,

it ontains a lot of interesting information, even for the ase of non-onneted groups A .
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Proposition VI.4. Let A be an abelian Lie group whose identity omponent satis�es A

0

�

=

a=�

A

, where �

A

� a is a disrete subgroup. Further let q:

b

G! G be a Lie group extension of G

by A orresponding to the Lie algebra oyle ! 2 Z

2



(g; a) , so that its Lie algebra is

b

g

�

=

a�

!

g .

In these terms we write the adjoint ation of

b

G on

b

g as

(6:4) Ad(g):(a; x) = (g:a� �(g)(g:x); g:x); g 2

b

G; a 2 a; x 2 g;

where g:x = Ad(q(g)):x and

�:

b

G! C

1



(g; a) = Lin(g; a)

is a 1-oyle with respet to the ation of

b

G on Lin(g; a) by (g:�)(x) := g:�(g

�1

:x) . Its

restrition �

A

:= � j

A

is a homomorphism given by

�

A

(a) = D(d

G

(a)) with (d

G

a)(g) := g:a� a and D(d

G

a)(x) := x:a :=

�

d(d

G

a)(1)

�

(x):

This 1-oyle maps A

0

to B

1



(g; a) and fators through a 1-oyle

�:

b

G=A

0

!

b

H

1



(g; a) = Lin(g; a)=B

1



(g; a); q(g) 7! [�(g)℄:

The map q:

b

G=A

0

! G; gA

0

7! q(g) is a overing of G , so that there is a unique overing

morphism bq

G

:

e

G!

b

G=A

0

with q Æ bq

G

= q

G

, and the following assertions hold:

(1) The oadjoint ation of

b

G on

b

g and the ux oyle are related by

F

!

= �� Æ bq

G

:

e

G!

b

H

1



(g; a):

(2) If Æ:�

1

(G)! �

0

(A) �

b

G=A

0

is the onneting homomorphism from the long exat homotopy

sequene of the prinipal A-bundle q:

b

G! G , then

F

!

= ��

A

Æ Æ:�

1

(G)! H

1



(g; a);

where �

A

:�

0

(A)! H

1



(g; a) is the harateristi homomorphism of the smooth G-module A .

(3) If A is onneted, then F

!

(�

1

(G)) = f0g .

Proof. From the desription of the Lie algebra

b

g as a �

!

g , it is lear that there exists a

funtion �:

b

G ! Lin(g; a) for whih the map (g; x) 7! �(g)(x) is smooth and the adjoint ation

of

b

G on g is given by (6.4). Sine Ad is a representation of G , we have �(1; x) = 0 and

(6:5) �(g

1

g

2

)(g

1

g

2

x) = g

1

:�(g

2

)(g

2

:x) + �(g

1

)(g

1

g

2

:x); g

1

; g

2

2

b

G; x 2 g;

whih means that

�(g

1

g

2

) = g

1

:�(g

2

) + �(g

1

);

i.e., � is a 1-oyle. As A ats trivially on a and g , the restrition �

A

:= � j

A

is a homomorphism

�

A

:A! Z

1



(g; a) with Ad(b):(a; x) = (a� �

A

(b)(x); x); b 2 A; a 2 a; x 2 g:

The relation �(b) 2 Z

1



(g; a) follows diretly from Ad(b) 2 Aut(

b

g).

For bg 2

b

G with q(bg) = g and b 2 A we have

bbgb

�1

= (bbgb

�1

bg

�1

)bg = (b� g:b) � bg;

whih leads to

Ad(b):(a; x) = (a� x:b; x)

and therefore to �

A

(b)(x) = x:b . For a 2 a and b = q

A

(a) we have x:b = x:a , so that

�(A

0

) = B

1



(g; a). Hene � fators through a 1-oyle �:

b

G=A

0

!

b

H

1



(g; a) whose restrition

�

A

to �

0

(A) = A=A

0

is given by

�

A

:�

0

(A)

�

=

A=A

0

! H

1



(g; a); [a℄ 7! [�

A

(a)℄ = [D(d

G

a)℄:



25 abelext.tex February 18, 2004

(1) For a �xed x 2 g the oyle ondition (6.5) implies for the smooth funtions �

x

:

b

G! a; g 7!

�(g)(x) the relation

�

x

(gh) = g:�

g

�1

:x

(h) + �

x

(g):

For the di�erentials we thus obtain

(6:6) d�

x

(g)d�

g

(1) = �

a

(g) Æ d�

g

�1

:x

(1):

From formula (6.4) for the adjoint ation, we get in view of �(1) = 0 the formula

(x

0

:a� x:a

0

+ !(x

0

; x); [x

0

; x℄) = ad(a

0

; x

0

)(a; x) = (x

0

:a� d�

x

(1)(a

0

; x

0

); [x

0

; x℄);

so that � and the orresponding Lie algebra oyle are related by

d�

x

(1)(a

0

; x

0

) = !(x; x

0

) + x:a

0

:

With (6.6) this further leads to

d�

x

(g)d�

g

(1)(a

0

; x

0

) = g:

�

!(g

�1

:x; x

0

) + (g

�1

:x):a

0

�

= !

eq

(x

r

(q(g)); d�

q(g)

(1):x

0

) + x:(g:a

0

):

In 


1

(

b

G; a) we therefore have the relation

d�

x

= _�

a

(x) Æ p

eq

a

+ q

�

(i

x

r

!

eq

);

where p

a

(a

0

; x

0

) = a

0

is the projetion of

b

g onto a and p

eq

a

the orresponding equivariant 1-form

on

b

G .

Let : [0; 1℄! G be any pieewise smooth loop based in 1 . Then there exists a pieewise

smooth map b: [0; 1℄ !

b

G with q Æ b =  and b(0) = 1 . Then e := bq

G

Æ b: [0; 1℄ !

e

G is the

unique lift of  to a pieewise smooth path in

e

G starting in 1 . We now have

�

e

F

!

()(x) =

Z



i

x

r

!

eq

=

Z

[0;1℄



�

(i

x

r

!

eq

) =

Z

[0;1℄

b

�

q

�

(i

x

r

!

eq

)

=

Z

b

q

�

(i

x

r

!

eq

) =

Z

b

d�

x

� �

a

(x) Æ p

eq

a

= �

x

(b(1))� �

x

(b(0))� �

a

(x):

Z

b

p

eq

a

= �(b(1))(x) � �

a

(x):

Z

b

p

eq

a

:

This means that

F

!

(e(1)) = [

e

F

!

()℄ = �[�(b(1))℄ = ��(bq

G

(e(1)))

and therefore that F

!

= �� Æ bq

G

beause  was arbitrary.

(2) If : [0; 1℄ ! G is a pieewise smooth loop based in 1 , then b(1) 2 ker q = A and

Æ([℄) = [b(1)℄ , as an element of �

0

(A). This means that Æ an be onsidered as the restrition

of bq

G

:

e

G!

b

G=A

0

to the subgroup �

1

(G) = ker q

G

. Therefore (2) follows from (1) by restrition.

(3) If A is onneted, then Æ = 0, so that (3) follows from (2).

Corollary VI.5. If, in addition to the assumptions of Proposition VI.4, the group G is simply

onneted, then A is onneted and

F

!

= ��:G!

b

H

1



(g; a):

On the subgroup A

℄

:= q

�1

(Z(G) \ ker �

A

) of

b

G the oyle � restrits to a homomorphism

(6:7) �

℄

:A

℄

! Z

1



(g; a); a 7! D(d

G

(a));
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where for eah a 2 A

℄

the smooth oyle d

G

(a) 2 Z

1

s

(G;A) is de�ned by d

G

(a)(q(g)) :=

gag

�1

a

�1

. For two pieewise smooth urves ; �: [0; 1℄ ! G with (0) = �(0) = 1 and

(1); �(1) 2 A

℄

we have for H : I

2

! G;H(t; s) = (t)�(s) the formula

(6:8) (1)�(1)(1)

�1

�(1)

�1

= �

Z



e

F

!

(�)

eq

+ �

A

=

Z

H

!

eq

+ �

A

:

Proof. To derive the �rst part from Propositions VI.3 and VI.4, we only have to observe

that for a 2 A

℄

the ondition �

A

(a) = id

A

implies that d

G

(a) is well-de�ned on G by

d

G

(a)(q(g)) = gag

�1

a

�1

, and that this is an element of A beause q(a) 2 Z(G) implies

d

G

(a) 2 ker q .

For (6.8) we �rst observe that for x 2 a and q

A

(x) = x+�

A

2 A the map d

G

q

A

(x):G ! A

satis�es

0 = �

A

((1))(q

A

(x)) � q

A

(x) = (d

G

q

A

(x))((1)) =

Z



d(d

G

(q

A

(x))) + �

A

=

Z



(D(d

G

q

A

(x)))

eq

+ �

A

=

Z



(d

g

x)

eq

+ �

A

;

so that the integration along  yields a well-de�ned map

b

H

1



(g; a)! a; [�℄ 7!

R



�

eq

: We therefore

get with Proposition VI.4, Lemma VI.2(3) (note the sign hange) and �� = F

!

:

(1)�(1)(1)

�1

�(1)

�1

= d

G

(�(1))((1)) =

Z



d(d

G

(�(1))) + �

A

=

Z



D(d

G

(�(1)))

eq

+ �

A

=

Z



�

℄

(�(1))

eq

+ �

A

= �

Z



F

!

(�(1))

eq

+ �

A

= �

Z



e

F

!

(�)

eq

+ �

A

=

Z

H

!

eq

+ �

A

:

Corollary VI.6. Suppose that A

�

=

a=�

A

, that q

G

:

e

G ! G is a universal overing ho-

momorphism, let q:

b

G !

e

G be an A-extension of

e

G orresponding to ! 2 Z

2



(g; a) , and

b�

1

(G) := q

�1

(�

1

(G)) . Then the following are equivalent:

(1) F

!

(�

1

(G)) = 0 .

(2) �(b�

1

(G)) � B

1



(g; a) = �(A) .

(3) b�

1

(G) = A+ ker(� j

b�

1

(G)

) .

(4) q(ker(� j

b�

1

(G)

)) = �

1

(G) .

(5) There exists a group homomorphism �:�

1

(G) ! ker(� j

b�

1

(G)

) = b�

1

(G) \ Z(

b

G) with q Æ � =

id

�

1

(G)

.

Proof. The equivalene of (1) and (2) follows from Corollary VI.5, and (2) is learly equivalent

to (3), whih in turn is equivalent to (4) beause ker q = A .

That (5) implies (4) is trivial. If (4) is satis�ed, then we �rst observe that ker(� j

b�

1

(G)

) =

b�

1

(G)\Z(

b

G), so that (3) implies that b�

1

(G) is abelian. Further (6.7) in Corollary VI.5 leads to

ker(� j

b�

1

(G)

) \ ker q = ker(� j

A

) = q

A

(a

g

);

whih is a divisible group. Hene the extension q

A

(a

g

) ,! ker(� j

b�

1

(G)

) !! �

1

(G) splits, whih

is (5).

The following theorem is the entral result of the present paper.
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Theorem VI.7. (Integrability Criterion) Let G be a onneted Lie group and A be a smooth

G-module with A

0

�

=

a=�

A

, where �

A

is a disrete subgroup of the sequentially omplete loally

onvex spae a . For eah ! 2 Z

2



(g; a) the abelian Lie algebra extension a ,!

b

g := a �

!

g !! g

integrates to a Lie group extension A ,!

b

G!! G with a onneted Lie group

b

G if and only if

(1) �

!

� �

A

, and

(2) there exists a surjetive homomorphism :�

1

(G)! �

0

(A) suh that the ux homomorphism

F

!

:�

1

(G) ! H

1



(g; a) is related to the harateristi homomorphism �

A

:�

0

(A) ! H

1



(g; a)

by

F

!

= �

A

Æ :

If A is onneted, then (2) is equivalent to F

!

= 0 .

Proof. Suppose �rst that a Lie group extension

b

G of G by A exists whih orresponds

to the Lie algebra oyle ! . Aording to Proposition IV.5, up to sign the period map an

be interpreted as the onneting map �

2

(G) ! �

1

(A)

�

=

�

A

. This implies (1). That (2)

is satis�ed follows from Proposition VI.4(2) beause in view of the onnetedness of

b

G , the

long exat homotopy sequene of the A-bundle

b

G implies that the onneting homomorphism

Æ:�

1

(G)! �

0

(A) is surjetive.

Conversely, suppose that (1) and (2) hold. Let q

G

:

e

G ! G denote the simply onneted

overing group of G and reall that �

2

(q

G

) is an isomorphism �

2

(

e

G)! �

2

(G). We may therefore

identify the period maps per

!

of G and

e

G and likewise for all quotients of

e

G by subgroups of

�

1

(G).

From the ase of simply onneted groups (Proposition V.3) we know that there exists

an A

0

-extension q

℄

:G

℄

!

e

G , where A arries the natural

e

G-module struture indued by the

G-module struture. The Lie algebra of G

℄

is

b

g = a�

!

g . Let G

1

:=

e

G= ker and observe that

�

1

(G

1

)

�

=

ker  . Condition (2) implies �

1

(G

1

) = ker  � kerF

!

, so that Corollary VI.6 implies

that there exists a homomorphism

�:�

1

(G

1

)! ker(� j

b�

1

(G)

) � Z(G

℄

)

with q

℄

Æ � = id

�

1

(G

1

)

. Then the image of � is a disrete entral subgroup of G

℄

, and therefore

b

G := G

℄

=�(�

1

(G

1

))

de�nes an abelian extension A

0

,!

b

G

q

1

��!G

1

orresponding to the given Lie algebra extension

a�

!

g ! g . If q

1

:G

1

! G is the quotient map with kernel �

1

(G)= ker 

�

=

im 

�

=

�

0

(A), then

B := q

�1

1

(�

1

(G)= ker ) is a subgroup of

b

G with B

0

= A

0

and �

0

(B) = B=B

0

�

=

�

0

(A), whih

implies that B

�

=

B

0

� �

0

(B)

�

=

A

0

� �

0

(A)

�

=

A as abelian Lie groups. As  fators through

an isomomorphism :�

0

(B) ! �

0

(A) and the harateristi maps �

A

:�

0

(A) ! H

1



(g; a) and

�

B

:�

0

(B)! H

1



(g; a) satisfy

�

A

Æ  = �

B

(Proposition VI.4, Corollary VI.5), Lemma III.7 implies that A

�

=

B as smooth G-modules.

Therefore

b

G is an A-extension of G .

Remark VI.8. (a) Suppose that only (1) in Theorem VI.7 is satis�ed, and that A is onneted.

Consider the orresponding extension q

℄

:G

℄

!

e

G of

e

G by A

�

=

a=�

A

. Then G

�

=

G

℄

=b�

1

(G) ,

where b�

1

(G) := (q

℄

)

�1

(�

1

(G)) is a entral A-extension of �

1

(G), hene 2-step nilpotent.

We have seen in the proof of Theorem VI.7 that whenever an A-extension

b

G of G

orresponding to ! 2 Z

2



(g; a) exists, then it an be obtained as a quotient of G

℄

by a subgroup

�(�

1

(G)), where �:�

1

(G)! Z(G

℄

) \ b�

1

(G) a splitting homomorphism for b�

1

(G). This implies

in partiular that b�

1

(G) is abelian.

Let us take a loser look at the nilpotent group b�

1

(G). If this group is abelian, then

the divisibility of A

0

�

=

a=�

A

implies that b�

1

(G) splits as an A

0

-extension of �

1

(G). Clearly
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this ondition is weaker than the requirement that it splits by a homomorphism �:�

1

(G) !

b�

1

(G) \ Z(G

℄

).

That b�

1

(G) is abelian is equivalent to the triviality of the indued ommutator map

C:�

1

(G) � �

1

(G)! A:

Aording to Corollary VI.5,

(6:9) C([℄; [�℄) = �

Z



e

F

!

(�)

eq

+ �

A

= �P (F

!

([�℄))([℄) + �

A

;

where P :H

1



(g; a)! Hom(�

1

(G); a) is de�ned as in Proposition III.4. Therefore the ommutator

map vanishes if and only if

(6:10) P (F

!

(�

1

(G)))(�

1

(G)) � �

A

:

This means that for all smooth loops ; �:S

1

! G and H :T

2

! G; (t; s) 7! (t)�(s) we have

Z

T

2

H

�

!

eq

= P (F

!

([�℄))([℄) 2 �

A

:

In view of Proposition III.4, Condition (6.10) is equivalent to

(6:11) im(F

!

) � im(D

1

) � H

1



(g; a);

i.e., that the image of the ux homomorphism onsists of lasses of integrable 1-oyles.

In Corollary VI.5 we have seen that we have a homomorphism

�

℄

= D

1

Æ d

e

G

: b�

1

(G)! Z

1



(g; a)

whih fators through the (negative) ux homomorphism �F

!

:�

1

(G) ! H

1



(g; a): The group

b�

1

(G) is a smooth

e

G-module whih is abelian if and only �

1

(G) ats trivially, whih in turn is

(6.11). If this is the ase, then

�F

!

:�

0

(b�

1

(G))

�

=

�

1

(G)! H

1



(g; a)

is the harateristi homomorphism of the smooth G-module b�

1

(G). In view of Lemma III.7, it

vanishes if and only if the identity omponent b�

1

(G)

0

�

=

A has a G-invariant omplement.

In Example IX.17 below we will see ases where the ommutator map vanishes and the ux

homomorphism F

!

:�

1

(G)! H

1



(g; a) is non-zero.

(b) With similar arguments as in Setion IV, resp. Setion 5 of [Ne02℄, we an de�ne a toroidal

period map by observing that the integration map

fper

T

!

:C

1

(T

2

; G)! a

G

; [�℄ 7!

Z

�

!

eq

is onstant on the onneted omponents and de�nes a map

per

T

!

:�

0

(C

1

(T

2

; G))

�

=

�

1

(G)� �

1

(G)� �

2

(G)! a

(f. [MN03, Remark I.11(b)℄, [Ne02, Th. A.3.7℄). The restrition to �

2

(G), whih orresponds to

homotopy lasses of maps vanishing on (T�f1g)[(f1g�T), is the period map per

!

:�

2

(G)! a .

The map

�

1

(G)� �

1

(G)! �

0

(C

1

(T

2

; G))

is indued by the map

([℄; [�℄) 7! [ � �℄ with ( � �)(t; s) = (t)�(s);

and we have seen in Corollary VI.5 that the ommutator map �

1

(G)� �

1

(G)! A is given by

([℄; [�℄) 7! per

T

!

([ � �℄) + �

A

:

Note that this map is biadditive and not a group homomorphism �

1

(G) � �

1

(G) ! A , whih

implies that per

T

!

is not a group homomorphism. The ondition

im(per

T

!

) � �

A

means at the same time that �

!

� �

A

and that the ommutator map C is trivial.
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Remark VI.9. If A

�

=

a=�

A

, then a

G

= a

g

is a losed subspae of a ontaining �

A

. Therefore

A=A

G

�

=

b := a=a

G

is a loally onvex spae whih arries a natural smooth G-module struture. Note that the

quotient spae b need not be sequentially omplete if a has this property. Nevertheless the

onstrution in Setion V leads to a group oyle f 2 Z

2

s

(G; a=�

!

) and sine �

!

is always

ontained in a

G

(Lemma IV.2), we obtain a group oyle

f

1

2 Z

2

s

(G; b) with Df

1

= !

b

:= q

b

Æ !;

where q

b

: a! b is the quotient map (Corollary V.3). This leads to a Lie group extension

b ,!

b

G!!

e

G

with

b

g

�

=

b�

!

b
g . Note that

b = a=a

G

�

=

B

1



(g; a) � Z

1



(g; a);

so that we may identify the quotient map q

b

with the oboundary map d

g

: a ! B

1



(g; a): This

makes it easier to identify the orresponding ux oyle.

In Proposition X.4 we shall enounter examples of modules a with a

g

= f0g for whih the

ux oyle is non-trivial (this is the ase for the module F

1

of Di�(S

1

)

0

). Therefore one annot

expet F

!

b

to vanish.

VII. An exat sequene for abelian Lie group extensions

Let G be a onneted Lie group and A a smooth G-module of the form A

�

=

a=�

A

, where

�

A

� a is a disrete subgroup. The main result of the present setion is an exat sequene

relating the group homomorphism

D:H

2

s

(G;A) ! H

2



(g; a)

to the exat Ination-Restrition Sequene assoiated to the normal subgroup �

1

(G)

�

=

ker q

G

of

e

G , where q

G

:

e

G! G is the universal overing map (f. Appendix D). The ruial information

on im(D) has already been obtained in Theorem VI.7, so that it essentially remains to show

that kerD oinides with the image of the onneting homomorphism Æ: Hom(�

1

(G); A

G

) !

H

2

s

(G;A).

In the following we shall always onsider A as a

e

G -module, where g 2

e

G ats on A by

g:a := q

G

(g):a , so that �

1

(G) ats trivially.

Proposition VII.1. Let G be a onneted Lie group. For an abelian Lie group extension

A ,!

b

G

q

��!G the following onditions are equivalent:

(1) There exists an open identity neighborhood U � G and a smooth setion �

U

:U !

b

G of q

with �

U

(xy) = �

U

(x)�

U

(y) for x; y; xy 2 U .

(2)

b

G

�

=

A�

f

G , where f 2 Z

2

s

(G;A) is onstant 0 on an identity neighborhood in G�G .

(3) There exists a homomorphism :�

1

(G) ! A

G

and an isomorphism �: (A o

e

G)=�() !

b

G

with q

�

�([1; x℄)

�

= q

G

(x) , x 2

e

G , where �() = f((d); d): d 2 �

1

(G)g is the graph of  .

Proof. (1) , (2) follows diretly from the de�nitions and Proposition II.6.

(1) ) (3): We may w.l.o.g. assume that U is onneted, U = U

�1

, and that there exists a

smooth setion e�:U !

e

G of the universal overing map q

G

. Then

�

U

Æ q

G

j

e�(U)

: e�(U)!

b

G
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extends uniquely to a smooth homomorphism ':

e

G!

b

G with 'Æe� = �

U

and q Æ' = q

G

([Ne02,

Lemma 2.1℄; see also [HoMo98, Cor. A.2.26℄). We de�ne  :Ao

e

G!

b

G; (a; g) 7! a'(g). Then  

is a smooth group homomorphism whih is a loal di�eomorphism beause

 (a; e�(x)) = a'(e�(x)) = a�

U

(x) for x 2 U; a 2 A:

We onlude that  is a overing homomorphism. Moreover,  is surjetive beause its range is

a subgroup of

b

G ontaining A and mapped surjetively by q onto G . This proves that

b

G

�

=

(Ao

e

G)= ker ; ker = f(�'(g); g): g 2 '

�1

(A)g:

On the other hand, '

�1

(A) = ker(q Æ ') = ker q

G

= �

1

(G), so that

ker = f((d); d): d 2 �

1

(G)g = �() for  := �' j

�

1

(G)

:

(3) ) (1) follows diretly from the fat that the map Ao

e

G!

b

G is a overing morphism.

For the following theorem we reall the de�nition of the period map per

!

(Setion IV) and

the ux homomorphism F

!

:�

1

(G)! H

1



(g; a) assoiated to ! 2 Z

2

s

(g; a) (Proposition VI.3).

Theorem VII.2. Let G be a onneted Lie group, A a smooth G-module of the form

A

�

=

a=�

A

, where �

A

� a is a disrete subgroup of the sequentially omplete loally onvex

spae a and q

A

: a! A the quotient map. The map

e

P :Z

2



(g; a) ! Hom

�

�

2

(G); A

�

�Hom

�

�

1

(G); H

1



(g; a)

�

;

e

P (!) = (q

A

Æ per

!

; F

!

)

fators through a homomorphism

P :H

2



(g; a) ! Hom

�

�

2

(G); A

�

�Hom

�

�

1

(G); H

1



(g; a)

�

; P ([!℄) = (q

A

Æ per

!

; F

!

)

and the following sequene is exat:

0! H

1

s

(G;A)

I

��!H

1

s

(

e

G;A)

R

��!H

1

�

�

1

(G); A

�

G

�

=

Hom

�

�

1

(G); A

G

�

Æ

����!

Æ

����!H

2

s

(G;A)

D

����!H

2



(g; a)

P

����!Hom

�

�

2

(G); A

�

�Hom

�

�

1

(G); H

1



(g; a)

�

:

Here the map Æ assigns to a group homomorphism :�

1

(G)! A

G

the quotient of the semi-diret

produt Ao

e

G by the graph f((d); d): d 2 �

1

(G)g of  whih is a disrete entral subgroup.

Proof. First we verify that

e

P vanishes on B

2



(g; a), so that the map P is well-de�ned. In

Theorem VI.7 we have seen that [!℄ 2 im(D) is equivalent to

e

P (!) = 0. If [!℄ = 0, then

a �

!

g

�

=

a o g and the semi-diret produt A o G is a orresponding extension of G by A ,

so that Theorem VI.7 leads to

e

P (!) = 0. As

e

P is a group homomorphism, it fators to a

homomorphism P on H

2



(g; a).

The exatness of the sequene in H

1

s

(G;A), H

1

s

(

e

G;A) and Hom(�

1

(G); A

G

) follows from

Example D.11(b) and the exatness in H

2



(g; a) from Theorem VI.7. It therefore remains to

verify the exatness in H

2

s

(G;A).

First we need a more onrete interpretation of the map Æ in terms of abelian extensions.

Let  2 Hom(�

1

(G); A

G

) and f 2 C

1

s

(

e

G;A) as in Lemma D.7 applied with N = �

1

(G) with

f(gd) = f(g) + (d) for g 2

e

G; d 2 �

1

(G). Then the arguments in Remark D.10 show that the

map

�:A�

d

eG

f

e

G! Ao

e

G; (a; g) 7! (a+ f(g); g)

is a bijetive group homomorphism. Sine, in addition, � is a loal di�eomorphism, it also is an

isomorphism of Lie groups, and therefore the oyle Æ(f) := d

e

G

f 2 Z

2

s

(G;A) satis�es

A�

Æ(f)

G

�

=

(A�

d

eG

f

e

G)=(f0g��

1

(G))

�

=

(Ao

e

G)=�(f0g��

1

(G))

�

=

(Ao

e

G)=f(d; (d)): d 2 �

1

(G)g:
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Now the inlusion im(Æ) � ker(D) follows from Proposition VII.1 beause for a oyle f 2

Z

2

s

(G;A) vanishing in an identity neighborhood we learly have Df = 0.

Conversely, let f 2 Z

2

s

(G;A) be a loally smooth group oyle for whih ! := Df is a

oboundary and let q:

b

G = A�

f

G! G be a orresponding Lie group extension (Proposition II.6).

Then the Lie algebra extension

b

g

�

=

a�

!

g ! g splits, and there exists a ontinuous projetion

p

a

:

b

g! a whose kernel is a losed subalgebra isomorphi to g . Considering p

a

as an element of

C

1



(

b

g; a), we have

(d

g

p

a

)(x; y) = x:p

a

(y)� y:p

a

(x) � p

a

([x; y℄) = p

a

([x� p

a

(x); p

a

(y)� y℄) = 0;

for x; y 2

b

g , so that p

a

2 Z

1



(

b

g; a). Let q

b

G

:G

℄

!

b

G denote the universal overing group of

b

G .

Then the orresponding equivariant 1-form p

eq

a

on G

℄

is losed (Lemma B.5), so that we �nd a

smooth funtion

':G

℄

! a with '(1) = 0 and d' = p

eq

a

;

and Lemma III.2 implies that ' 2 Z

1

s

(

b

G; a) is a group oyle.

Using the loal desription of

b

G , resp., G

℄

by a 2-oyle, we see that the inlusion map

A

0

,!

b

G of the identity omponent of A lifts to a Lie group morphism �

a

: a ! G

℄

whose

di�erential is the inlusion a ,!

b

g . Sine p

a

j

a

= id

a

and the image of �

a

ats trivially on a , the

omposition ' Æ �

a

: a ! a is a morphism of Lie groups whose di�erential is id

a

, whih implies

that ' Æ �

a

= id

a

: Moreover, the oyle ondition implies that

(7:1) '(ag) = '(a) + '(g); a 2 �

a

(a); g 2 G

℄

:

Let U � G be a onneted open identity neighborhood on whih there exists a smooth

setion �:U ! G

℄

of the quotient map q

℄

:= q Æ q

b

G

:G

℄

! G . We then obtain another smooth

map by

�

1

:U ! G

℄

; x 7! �

a

('(�(x))

�1

)�(x):

In view of (7.1), this map is also a setion of q

℄

. Moreover, im(�

1

) � '

�1

(0):

From the desription of

b

G with the oyle f it follows that there exists an open 1-

neighborhood in G

℄

of the form

U

℄

:= �

a

(U

a

)�

1

(U);

where U

a

� a is an open 0-neighborhood. Restriting ' to U

℄

, we see that �

1

(U) = '

�1

(0)\U

℄

:

Sine '

�1

(0) is a subgroup of G

℄

, we have

(�

1

(U)�

1

(U)) \ U

℄

� �

1

(U):

Let V � U be an open symmetri 1-neighborhood in G suh that there exists a smooth

setion �

V

:V !

e

G of the universal overing map q

G

:

e

G ! G and, in addition, V V � U

and �

1

(V )�

1

(V ) � U

℄

. For x; y 2 V we then have xy 2 U , and �

1

(x)�

1

(y) 2 U

℄

implies the

existene of z 2 U with �

1

(z) = �

1

(x)�

1

(y). Applying q

℄

to both sides leads to

z = q

℄

�

1

(z) = q

℄

(�

1

(x)�

1

(y)) = xy:

We therefore have

�

1

(xy) = �

1

(x)�

1

(y) for x; y 2 V:

Hene there exists a unique group homomorphism f :

e

G! G

℄

with f Æ �

V

= �

1

([HoMo98, Cor.

A.2.26℄). Composing f with the overing map q

b

G

:G

℄

!

b

G , we obtain a smooth homomorphism

b

f :

e

G!

b

G with q Æ

b

f = q

G

. In view of Proposition VII.1, this implies that

b

G is isomorphi to a

group of the type (Ao

e

G)=�(); where :�

1

(G)! A

G

is a group homomorphism.

Sine the fundamental group �

1

(

e

G) vanishes, we obtain in partiular:
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Corollary VII.3. The map

e

D:H

2

s

(

e

G;A)! H

2

s

(g; a) is injetive.

In view of Corollary VII.3, we may identify H

2

s

(

e

G;A) with a subgroup of H

2



(g; a). The

ination map

I :H

2

s

(G;A)! H

2

s

(

e

G;A) satis�es

e

D Æ I = D:H

2

s

(G;A)! H

2



(g; a):

Remark VII.4. At �rst sight, the following argument seems to be more natural to prove that

kerD � im Æ : If the group

b

G is regular (f. [Mil83℄), then the Lie algebra morphism �: g !

b

g

whose existene is guaranteed by [Df ℄ = 0 an be integrated to a Lie group morphism

e

G!

b

G ,

and we an argue as above. Unfortunately this argument requires the regularity of the group

b

G ,

whih is not needed for the argument given above.

VIII. Abelian extensions with smooth global setions

In this subsetion we disuss the existene of a smooth ross setion for an abelian Lie group

extension A ,!

b

G !! G whih is equivalent to the existene of a smooth global oyle

f :G� G ! A with

b

G

�

=

G�

f

A . Moreover, we will show that for simply onneted groups, it

is equivalent to the exatness of the equivariant 2-form !

eq

on G , where ! = Df .

The following lemma will be helpful in the proof of Proposition VIII.2.

Lemma VIII.1. Let G be a onneted Lie group, A a smooth G-module and f 2 Z

2

s

(G;A)

suh that all funtions f

g

:G ! A; x 7! f(g; x) are smooth. Then f :G � G ! A is a smooth

funtion.

Proof. We write the oyle ondition as

f(xy; z) = f(x; yz) + �

A

(x):f(y; z)� f(x; y); x; y; z 2 G:

For x �xed, this funtion is smooth as a funtion of the pair (y; z) in a neighborhood of (1;1).

This implies that f is smooth on a neighborhood of the points (x;1), x 2 G . Fixing x and z

shows that there exists a 1-neighborhood V � G (independent of x) suh that the funtions

f(�; z), z 2 V , are smooth in a neighborhood of x . Sine x 2 G was arbitrary, we onlude that

the funtions f(�; z), z 2 V , are smooth. Now

f(�; yz) = f(�y; z)� �

A

(�):f(y; z) + f(�; y)

shows that the same holds for the funtions f(�; u), u 2 V

2

. Iterating this proess, using

G =

S

n2N

V

n

, we derive that all funtions f(�; x), x 2 G , are smooth. Finally we see that the

funtion

(x; y) 7! f(x; yz) = f(xy; z)� �

A

(x):f(y; z) + f(x; y)

is smooth in a neighborhood of eah point (x

0

;1), hene that f is smooth in eah point (x

0

; z

0

),

and this proves that f is smooth on G�G .

Proposition VIII.2. Let G be a onneted Lie group, a a sequentially omplete loally onvex

smooth G-module, ! 2 Z

2



(g; a) a ontinuous 2-oyle, and !

eq

2 


2

(G; a) the orresponding

equivariant 2-form on G with !

eq

1

= ! . We assume that

(1) !

eq

= d� for some � 2 


1

(G; a) and

(2) for eah g 2 G the losed 1-form �

�

g

� � �

a

(g) Æ � is exat.

Then the produt manifold

b

G := a�G arries a Lie group struture whih is given by a smooth

2-oyle f 2 Z

2

s

(G; a) with D[f ℄ = [!℄ via

(a; g)(a

0

; g

0

) := (a+ g:a

0

+ f(g; g

0

); gg

0

):
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Proof. For eah g 2 G the relation �

a

(g) Æ !

eq

= �

�

g

!

eq

implies

d

�

�

a

(g) Æ � � �

�

g

�

�

= �

a

(g) Æ !

eq

� �

�

g

!

eq

= 0:

In view of (2), for eah g 2 G there exists a smooth funtion f

g

:G! a with f

g

(1) = 0 and

df

g

= �

�

g

� � �

a

(g) Æ �:

Observe that f

1

= 0. For g; h 2 G this leads to

df

gh

= �

�

gh

� � �

a

(gh) Æ � = �

�

h

(�

�

g

� � �

a

(g) Æ �) + �

�

h

(�

a

(g) Æ �)� �

a

(gh) Æ �

= �

�

h

df

g

+ �

a

(g)(�

�

h

� � �

a

(h) Æ �) = �

�

h

df

g

+ �

a

(g) Æ df

h

= d(f

g

Æ �

h

+ �

a

(g) Æ f

h

):

Comparing values of both funtions in 1 , we get

(8:1) f

gh

= f

g

Æ �

h

+ �

a

(g) Æ f

h

� f

g

(h):

Now we de�ne f :G�G! a by f(x; y) := f

x

(y). Then (8.1) means that

f(gh; u) = f(g; hu) + �

a

(g):f(h; u)� f(g; h); g; h; u 2 G;

i.e., f is a group oyle.

Moreover, the onrete loal formula for f

x

in the Poinar�e Lemma ([Ne02, Lemma 3.3℄)

and the smooth dependene of the integral on x imply that f is smooth on a neighborhood of

(1;1), so that Lemma VIII.1 implies that f :G � G ! a is a smooth funtion. We therefore

obtain on the spae

b

G := a�G a Lie group struture with the multipliation given by

(a; g)(a

0

; g

0

) := (a+ g:a

0

+ f(g; g

0

); gg

0

)

(Lemma II.1), and Lemma II.7 implies that the orresponding Lie braket is given by

[(a; x); (a

0

; x

0

)℄ =

�

x:a

0

� x

0

:a+ d

2

f(1;1)(x; x

0

)� d

2

f(1;1)(x

0

; x); [x; x

0

℄

�

:

Now we relate this formula to the Lie algebra oyle ! . The relation df

g

= �

�

g

���

a

(g)Æ �

leads to

df(g;1)(0; y) = df

g

(1)y = (�

�

g

� � �

a

(g) Æ �)

1

(y) = h�; y

l

i(g)� �

a

(g):�

1

(y);

where y

l

denotes the left invariant vetor �eld with y

l

(1) = y . Taking seond derivatives, we

further obtain for x 2 g :

d

2

f(1;1)(x; y)

= x

l

(h�; y

l

i)(1)� x:�

1

(y) = (d�)(x

l

; y

l

)(1) + y

l

(h�; x

l

i)(1) + �([x

l

; y

l

℄)(1) � x:�

1

(y)

= !(x; y) + y

l

(h�; x

l

i)(1) + �

1

([x; y℄) � x:�

1

(y);

Subtrating d

2

f(1;1)(y; x) = y

l

(h�; x

l

i)(1)� y:�

1

(x); leads to

(Df)(x; y) = !(x; y) + �

1

([x; y℄)� x:�

1

(y) + y:�

1

(x) = !(x; y)� (d�

1

)(x; y):

Sine this oyle is equivalent to ! , the assertion follows.

Corollary VIII.3. If G is simply onneted and !

eq

is exat, then there exists a smooth

oyle f :G � G ! a with D[f ℄ = [!℄ , so that

b

G := a �

f

G is a Lie group with Lie algebra

b

g = a�

!

g .

Proof. Sine �

1

(G) is trivial, ondition (2) in Proposition VIII.2 is automatially satis�ed.

For entral extensions of �nite-dimensional groups, the onstrution desribed in Proposi-

tion VIII.2 is due to E. Cartan, who used it to onstrut a entral extension of a simply onneted

�nite-dimensional Lie group G by the group a . Sine in this ase

H

2

dR

(G; a)

�

=

Hom(�

2

(G); a) = 0 and H

1

dR

(G; a)

�

=

Hom(�

1

(G); a) = 0;

(f. [God71℄), the requirements of the onstrution are satis�ed for every Lie algebra oyle

! 2 Z

2



(g; a).
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Proposition VIII.4. If G is a onneted Lie group whih is smoothly paraompat, then the

onlusion of Proposition VIII.2 remains valid under the assumptions:

(1) !

eq

is an exat 2-form, and

(2) F

!

= 0 .

Proof. In view of (1), we an apply Proposition VIII.2 to the universal overing group

q

G

:

e

G! G of G , whih leads to an a-extension

q

℄

:G

℄

:= a�

f

e

G!

e

G; (a; g) 7! g;

where f 2 Z

2

s

(

e

G; a) is a smooth oyle with D[f ℄ = [!℄ . In view of Corollary VI.5, the vanishing

of F

!

implies the existene of a homomorphism :�

1

(G)! Z(G

℄

) with q

℄

Æ  = id

�

1

(G)

. Then

im() is a disrete entral subgroup of G

℄

, so that

b

G := G

℄

= im() is a Lie group, and we obtain

an a-extension of G by

q:

b

G! G; g im() 7! q

G

Æ q

℄

(g):

As

b

G is a prinipal a-bundle over G , its �bers are aÆne spaes whose translation group is a .

If G is smoothly paraompat, we an therefore use a smooth partition of unity subordinated

to a trivializing open over of the a-bundle

b

G! G to path smooth loal setions together to a

global smooth setion �:G!

b

G . Then the map

a�

f

G

G!

b

G; (a; g) 7! a�(g)

is an isomorphism of Lie groups, where f

G

2 Z

2

s

(G; a); (g; g

0

) 7! �(g)�(g

0

)�(gg

0

)

�1

is a globally

smooth oyle.

Remark VIII.5. Let G be a onneted Lie group and A a smooth G-module of the form

a=�

A

. Let Z

2

gs

(G;A) denote the group of smooth 2-oyles G � G ! A and B

2

gs

(G;A) �

Z

2

gs

(G;A) the oyles of the form d

G

h , where h 2 C

1

(G;A) is a smooth funtion with

h(1) = 0. Then one an show that we have an injetion

H

2

gs

(G;A) := Z

2

gs

(G;A)=B

2

gs

(G;A) ,! H

2

s

(G;A);

the spae H

2

gs

(G;A) lassi�es those A-extensions of G with a smooth global setion, and we

have an exat sequene

Hom(�

1

(G); a

G

)

Æ

��!H

2

gs

(G;A)

D

��!H

2



(g; a)

P

����!H

2

dR

(G; a)�Hom

�

�

1

(G); H

1



(g; a)

�

;

where P ([!℄) = ([!

eq

℄; F

!

): The proof is an easy adaptation from the orresponding arguments

for entral extensions in Setion 8 of [Ne02℄.

IX. Appliations to di�eomorphism groups

In the present setion we apply the general results of this paper to di�eomorphism groups of

a ompat manifold M . In this ase the Lie algebra is the Fr�eht{Lie algebra V(M) of smooth

vetor �elds on M and we obtain interesting Lie algebra 2-oyles with values in the spae

C

1

(M;V ) of smooth V -valued funtions from losed V -valued 2-forms on M . In this ase the

period map and the ux oyle an be made more onrete in geometri terms whih makes

it possible to evaluate the obstrutions to the existene of abelian extensions in many onrete

examples.
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De�nition IX.1. Let M be a ompat manifold.

(a) We write Di�(M) for the group of all di�eomorphisms of M and V(M) for the Lie algebra of

smooth vetor �elds on M , i.e., the set of all smooth maps X :M ! TM with �

TM

ÆX = id

M

,

where �

TM

:TM !M is the bundle projetion of the tangent bundle. We de�ne the Lie algebra

struture on V(M) in suh a way that [X;Y ℄:f = X:(Y:f) � Y:(X:f) holds for X;Y 2 V(M)

and f 2 C

1

(M;R).

Then Di�(M) is a Lie group whose Lie algebra is V(M)

op

(the same spae with the

apposite braket (X;Y ) 7! �[X;Y ℄) and we have a smooth exponential funtion

exp:V(M)! Di�(M)

given by exp(X) = �

1

X

, where �

t

X

2 Di�(M) is the ow of the vetor �eld X at time t

([KM97℄).

The tangent bundle of Di�(M) an be identi�ed with the set

T (Di�(M)) := fX 2 C

1

(M;TM):�

TM

ÆX 2 Di�(M)g;

where the map

�:T (Di�(M))! Di�(M); X 7! �

TM

ÆX

is the bundle projetion. Then T

'

(Di�(M)) := �

�1

(') is the �ber over the di�eomorphism ' .

In view of the natural ation of Di�(M) on TM given by  :v := T ( ):v , we obtain natural

left and right ations of Di�(M) on T (Di�(M)) by

(':X)(x) = '(x):X(x); X:' := X Æ ':

Then

�

TM

Æ (':X) = ' Æ (�

TM

ÆX) and �

TM

Æ (X Æ ') = (�

TM

ÆX) Æ ';

so that the left, resp., right ation of Di�(M) on T (Di�(M)) overs the left, resp., right

multipliation ation of the group Di�(M) on itself. In the following we shall mostly onsider

the opposite group Di�(M)

op

whose Lie algebra is V(M). The adjoint ation of this group is

given by

Ad:Di�(M)

op

� V(M)! V(M); (';X) 7! '

�1

:(X Æ ') = '

�1

:(X:'):

(b) Let J � R be an interval and ': J ! Di�(M)

op

be a smooth urve. Then for eah t 2 J

we obtain a vetor �eld

Æ

r

(')(t) := '(t)

�1

:'

0

(t)

alled the right logarithmi derivative of ' in t . We likewise de�ne the left logarithmi derivative

by

Æ

l

(')(t) := '

0

(t) Æ '(t)

�1

:

De�nition IX.2. Let M be a ompat smooth manifold and g := V(M) the Lie algebra

of smooth vetor �elds on M . If V is Fr�ehet spae and a := C

1

(M;V ) the spae of smooth

V -valued funtions on M , then (X:f)(p) := df(p)X(p) turns C

1

(M;V ) into a topologial

V(M)-module. We observe that C

1

(M;V ) and V(M) are Fr�ehet modules of the Fr�ehet

algebra R := C

1

(M;R) .

In the Lie algebra omplex (C

p



(g; a); d

g

)

p2N

0

formed by the ontinuous alternating maps

g

p

! a , we have the subomplex given by the subspaes C

p

R

(g; a) � C

p



(g; a) onsisting of R -

multilinear maps g

p

! a . Using partitions of unity, it is easy to see that the elements of C

p

R

(g; a)

an be identi�ed with smooth V -valued p-forms, so that C

p

R

(g; a)

�

=




p

(M;V ) ([Hel78℄), and

the de Rham di�erential oinides with the Lie algebra di�erential d

g

to C

p

R

(g; a).

We thus obtain natural maps Z

p

dR

(M;V )! Z

p



(g; a) and j

p

:H

p

dR

(M;V )! H

p



(g; a):

Lemma IX.3. If M is onneted, then V

�

=

C

1

(M;V )

V(M)

= a

g

onsists of the onstant

funtions M ! V .



36 Abelian extensions of in�nite-dimensional Lie groups February 18, 2004

Lemma IX.4. The map j

1

:H

1

dR

(M;V )! H

1



(g; a) is injetive.

Proof. Let � 2 


1

(M;V ) be a losed V -valued 1-form on M . If j

1

([�℄) = 0, then there

exists an element f 2 a = C

1

(M;V ) with � = d

g

f , whih means that � = df . Hene � is

exat and therefore j

1

is injetive.

Lemma VI.1 in [MN03℄ implies that we have a smooth ation of the group G := Di�(M)

op

0

on a by ':f := f Æ ' . The derived ation of V(M) on this spae is given by

(X:f)(p) =

d

dt

t=0

(exp(tX):f)(p) =

d

dt

t=0

f(exp(tX):p) = df(p)X(p)

whih is ompatible with De�nition IX.2. We view eah smooth V -valued 2-form !

M

2




2

(M;V ) as an element !

g

2 C

2



(g; a). In the following we shall obtain some information

on the period map and the ux homomorphism

per

!

:�

2

(Di�(M))! a

g

�

=

V and F

!

:�

1

(Di�(M))! H

1



(g; a)

whih makes it possible to verify the integrability riteria from Setions VI and VII in many

speial ases.

More on the period group

The following proposition is very helpful in verifying the disreteness of the image of the

period map for the group G := Di�(M)

op

0

. In the following we write (m; g) 7! g(m) for the

anonial right ation of G on M .

Proposition IX.5. Let !

M

2 Z

2

dR

(M;V ) be a losed V -valued 2-form on M , �:S

2

! G =

Di�(M)

op

0

smooth and m 2M . Then

per

!

g

([�℄)(m) =

Z

�

m

Æ�

!

M

2 V

�

=

C

1

(M;V )

V(M)

;

where �

m

:G ! M; g 7! g(m) . In partiular the period group �

!

g

= im(per

!

g

) is ontained in

the group

R

�

2

(M)

!

M

of spherial periods of !

M

.

Proof. Sine a

g

onsists of onstant funtions M ! V , it suÆes to alulate the value of

per

!

g

([�℄) 2 C

1

(M;V ) in the point m .

We laim that

(9:1) �

�

m

!

M

= ev

m

Æ!

eq

g

;

where ev

m

:C

1

(M;V ) ! V is the evaluation in m . First we note that for g 2 G we have

�

m

Æ �

g

= �

g(m)

: Further

d�

m

(1)(X) =

d

dt

t=0

exp(tX):m = X(m) for X 2 V(M):

For g 2 G and vetor �elds X;Y 2 g = V(M) this leads to

(�

�

m

!

M

)(g:X; g:Y )

= !

M

(g(m))(d�

m

(g)d�

g

(1):X; d�

m

(g)d�

g

(1):Y )

= !

M

(g(m))(d(�

m

Æ �

g

)(1):X; d(�

m

Æ �

g

)(1):Y )

= !

M

(g(m))(d�

g(m)

(1):X; d�

g(m)

(1):Y )

= !

M

(g(m))(X(g(m)); Y (g(m))) =

�

g:

�

!

g

(X;Y )

�

�

(m) = (ev

m

Æ!

eq

g

)(g:X; g:Y ):

This proves (9.1). We now obtain

per

!

g

([�℄)(m) = ev

m

Z

�

!

eq

g

=

Z

�

ev

m

Æ!

eq

g

=

Z

�

�

�

m

!

M

=

Z

�

m

Æ�

!

M

:

We immediately derive the following suÆient riterion for the disreteness of im(per

!

g

).
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Corollary IX.6. If the subgroup

R

�

2

(M)

!

M

:= f

R

�

!

M

:� 2 C

1

(S

2

;M)g � V of spherial

periods of !

M

is disrete, then the image of per

!

g

is disrete.

Example IX.7. (1) The preeding orollary applies in partiular to all manifolds M for whih

�

2

(M)= tor(�

2

(M)) is a yli group. In fat, for eah torsion element [�℄ 2 �

2

(M) we have

R

�

!

M

= 0, so that

R

�

2

(M)

!

M

is the image of the yli group �

2

(M)= tor(�

2

(M)), hene yli

and therefore disrete.

Examples of suh manifolds are spheres and tori:

�

2

(S

d

)

�

=

n

f0g for d 6= 2

Z for d = 2

and �

2

(T

d

)

�

=

�

2

(R

d

) = f0g; d 2 N:

The only ompat onneted manifolds M with dimM � 2 and �

2

(M) non-trivial are

the 2-sphere S

2

and the real projetive plane P

2

(R). This follows from �

2

(M)

�

=

�

2

(

f

M) for

the universal overing

f

M !M and the fat that a simply onneted 2-dimensional manifold is

di�eomorphi to S

2

or R

2

. Further all orientable 3-manifolds whih are irreduible in the sense

of Kneser have trivial �

2

. In partiular the omplement of a knot K � S

3

has trivial �

2

(f.

[Mil03, p.1228℄).

(2) For M = S

2

we have

�

2

(Di�(M))

�

=

�

2

(SO

3

(R)) = f1g and �

2

(S

2

)

�

=

Z:

If !

M

2 Z

2

dR

(M;R) is the losed 2-form with

R

M

!

M

= 1, we have

R

�

2

(M)

!

M

= Z whih is

larger than �

!

g

= im(per

!

g

) = f0g .

Problem IX. Find an example of a losed 2-form ! for whih the group �

!

g

= im(per

!

g

) is

disrete and

R

�

2

(M)

!

M

is not.

The ux oyle

We ontinue with the setting where M is a ompat manifold and G = Di�(M)

op

0

is the

identity omponent of its di�eomorphism group endowed with the opposite multipliation. For

any Fr�ehet spae V the spae 


1

(M;V ) is a smooth G-module with respet to ('; �) 7! '

�

� .

To verify the smoothness of this ation, we an think of 


1

(M;V ) as a losed subspae of

C

1

(TM; V ) and observe that Di�(M) ats smoothly on TM , so that Lemma VI.1 in [MN03℄

applies. The orresponding derived module of g = V(M) is given by (X; �) 7! L

X

:� , where

L

X

= d Æ i

X

+ i

X

Æ d denotes the Lie derivative. The subspae dC

1

(M;V ) of exat 1-forms is

a losed subspae beause

(9:2) dC

1

(M;V ) =

n

� 2 


1

(M;V ): (8 2 C

1

(S

1

;M))

Z



� = 0

o

and the linear maps 


1

(M;V )! V; � 7!

R



� are ontinuous. We an therefore form the quotient

module

b

H

1

dR

(M;V ) := 


1

(M;V )=dC

1

(M;V )

ontaining H

1

dR

(M;V ) = Z

1

dR

(M;V )=dC

1

(M;V ) as a losed subspae.

Lemma IX.8. For eah losed V -valued 2-form ! 2 


2

(M;V ) the ontinuous linear map

f

!

:V(M)!

b

H

1

dR

(M;V ); X 7! [i

X

!℄

is a Lie algebra 1-oyle.
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Proof. For X;Y 2 V(M) we use the formulas i

[X;Y ℄

= [L

X

; i

Y

℄ and L

X

= i

X

Æ d+ d Æ i

X

to

obtain

i

[X;Y ℄

! = L

X

i

Y

! � i

Y

L

X

! = di

X

i

Y

! + i

X

d(i

Y

!)� i

Y

(di

X

! + i

X

d!)

= di

X

i

Y

! + i

X

d(i

Y

!)� i

Y

(di

X

!):

In view of [L

X

i

Y

!℄ = [di

X

i

Y

! + i

X

di

Y

!℄ = [i

X

di

Y

!℄ in

b

H

1

dR

(M;V ), this means that

f

!

([X;Y ℄) = X:f

!

(Y )� Y:f

!

(X);

i.e., f

!

is a oyle.

De�nition IX.9. Let q

G

:

e

G! G denote the universal overing morphism of G = Di�(M)

op

0

and de�ne the

e

G-ation on C

1

(M;V ), 


1

(M;V ),

b

H

1

dR

(M;V ) et. by pulling it bak with q

G

to

e

G . Then Proposition III.4 implies that there exists a smooth 1-oyle

F

!

:

e

G!

b

H

1

dR

(M;V ) = 


1

(M;V )=dC

1

(M;V ) with dF

!

(1) = f

!

:

This oyle is alled the ux oyle orresponding to ! . Its di�erential dF

!

oinides with the

equivariant 1-form f

eq

!

.

Remark IX.10. (a) If g 2

e

G and e: [0; 1℄ !

e

G is a pieewise smooth urve with e(0) = 1

and e(1) = g , then e is the unique lift of  := q

G

Æ e: [0; 1℄! G . The value of the ux oyle

in g is determined by

F

!

(g) =

Z

1

0

dF

!

(e(t))(e

0

(t)) dt =

Z

1

0

(f

eq

!

)(e(t))(e

0

(t)) dt

=

Z

1

0

(t):f

!

(e(t)

�1

:e

0

(t)) dt =

Z

1

0

(t):f

!

((t)

�1

:

0

(t)) dt

=

Z

1

0

(t):f

!

(Æ

l

()(t)) dt =

Z

1

0

[(t)

�

:i

Æ

l

()(t)

!℄ dt

=

Z

1

0

[i

Æ

r

()(t)

((t)

�

!)℄ dt 2

b

H

1

dR

(M;V ):

Here we have used the relation '

�

(i

X

!) = i

Ad('):X

('

�

!) for ' 2 Di�(M)

op

.

(b) For the speial ase when the urve : [0; 1℄! Di�(M) has values in the subgroup

Sp(M;!) := f' 2 Di�(M):'

�

! = !g;

all vetor �elds Æ

l

()(t) are ontained in the Lie algebra

sp(M;!) := fX 2 V(M):L

X

:! = 0g

([NV03, Lemma I.4℄). For L

X

! = 0 we have d(i

X

!) = L

X

! = 0, so that all 1-forms i

X

!

are losed. This in turn implies that for eah ' 2 Di�(M)

0

the 1-form '

�

i

X

! � i

X

! is exat

([NV03, Lemma 1.3℄). For the ux oyle this leads to the simpler formula

F

!

(g) =

Z

1

0

[i

Æ

l

()(t)

!℄ dt:

Hene F

!

(g) is the ux assoiated to the urve : [0; 1℄! Sp(M;!) in the ontext of sympleti

geometry [MDS98℄.

() If the losed form ! is exat, ! = d� , then

f

!

(X) = [i

X

!℄ = [i

X

d�℄ = [L

X

�℄ = X:[�℄

in

b

H

1

dR

(M;V ) implies that f

!

is a oboundary. Hene it integrates to a group oyle given by

F

!

: Di�(M)

op

!

b

H

1

dR

(M;V ); ' 7! ['

�

� � �℄:

On the spae

b

H

1

dR

(M;V ) the integration maps

b

H

1

dR

(M;V ) ! V; [�℄ 7!

R

�

� for � 2

C

1

(S

1

;M) separate points (f. (9.2)), so that the element F

!

(g) 2

b

H

1

dR

(M;V ) is determined

by the integrals

R

�

F

!

(g) whih are evaluated in the proposition below.
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Proposition IX.11. For � 2 C

1

(S

1

;M) and a smooth urve : [0; 1℄ ! G = Di�(M)

op

0

with (0) = id

M

we onsider the smooth map

H :S

1

� [0; 1℄!M; (t; s) 7! (t)(�(s)):

Let e: [0; 1℄!

e

G be the smooth lift with e(0) = 1 . Then the value of the ux oyle in e(1) is

determined by the integrals

Z

�

F

!

(e(1)) =

Z

H

!:

Proof. First we note that

�H

�t

(t; s) = 

0

(t)(�(s)) = 

0

(t) Æ (t)

�1

Æ (t)(�(s)) = Æ

l

()(t)(H(t; s))

and

�H

�s

(t; s) = (t):�

0

(s): We therefore obtain with Remark IX.10(a) the formula

Z

�

F

!

(e(1)) =

Z

�

Z

1

0

[(t)

�

:i

Æ

l

()(t)

!℄ dt

=

Z

1

0

Z

1

0

!

(t):�(s)

(Æ

l

()(t)((t):�(s)); (t):�

0

(s)) dt ds

=

Z

1

0

Z

1

0

!

H(t;s)

�

�H(t; s)

�t

(t; s);

�H(t; s)

�s

(t; s)

�

dt ds

=

Z

[0;1℄

2

H

�

! =

Z

H

!:

The preeding proposition justi�es the term `ux oyle' beause it says that

R

�

F

!

(e(1))

measures the `! -surfae area' of the surfae obtained by moving the loop � by the urve  in

Di�(M).

Corollary IX.12. If (1) = (0) = id

M

, then F

!

(e(1)) 2 H

1

dR

(M;V ) , and we obtain a

homomorphism

F

!

j

�

1

(Di�(M))

:�

1

(Di�(M))! H

1

dR

(M;V ):

Proof. We keep the notation from Proposition IX.11. If the urve  in Di�(M) is losed

and e is the orresponding map S

1

! Di�(M), then H indues a ontinuous map

e

H :T

2

!

M; (t; s) 7! e(t):�(s) and

Z

�

F

!

(e(1)) =

Z

H

! =

Z

e

H

! =

e

H

�

[!℄ 2 H

2

(T

2

; V )

�

=

V:

As homotopi urves �

1

and �

2

lead to homotopi maps

e

H

1

;

e

H

2

:T

2

!M , we obtain

Z

�

1

F

!

(e(1)) =

Z

�

2

F

!

(e(1))

whenever �

1

and �

2

are homotopi, and this implies that F

!

(e(1)) 2 H

1

dR

(M;V ).

That the restrition of F

!

to �

1

(Di�(M)) is a homomorphism follows from the oyle

property of F

!

and the fat that �

1

(Di�(M)) = ker q

G

ats trivially on

b

H

1

dR

(M;V ).

Let !

M

2 


2

(M;V ) be a losed 2-form and identify it with a Lie algebra 2-oyle

!

g

2 Z

2



(g; a) for g = V(M) and a = C

1

(M;V ). Next we show that the ux oyle

F

!

g

:

e

G!

b

H

1



(g; a)

oinides with ux oyle F

!

M

from De�nition IX.9. For that we reall from Lemma IX.4 that

we an view H

1

dR

(M;V ) as a subspae of H

1



(g; a) beause B

1



(g; a) = dC

1

(M;V ), whih leads

to an embedding

b

H

1

dR

(M;V ) ,!

b

H

1



(g; a) := C

1



(g; a)=B

1



(g; a):
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Lemma IX.13. For a losed 2-form !

M

2 


2

(M;V ) we have

F

!

g

= F

!

M

:

e

G!

b

H

1

dR

(M;V ) �

b

H

1



(g; a):

Proof. We parametrize S

1

�

=

R=Z by the unit interval [0; 1℄. Then we have for any smooth

urve : [0; 1℄! G = Di�(M)

op

0

starting in 1 and X 2 g = V(M):

I



(X) :=

Z



i

X

r

!

eq

g

=

Z

1

0

!

eq

g

(X(t); 

0

(t)) dt

=

Z

1

0

(t):!

g

(Ad((t))

�1

:X; (t)

�1



0

(t)) dt

=

Z

1

0

(t):!

M

((t):(X Æ (t)

�1

); Æ

l

()(t)) dt

=

Z

1

0

!

M

�

(t):(X Æ (t)

�1

); Æ

l

()(t)

�

Æ (t) dt:

From this formula it is easy to see that I



2 Lin(g; a) de�nes a 1-form on M whose value in

v 2 T

p

(M) is given by

I



(v) =

Z

1

0

(!

M

)

(t):p

((t):v; Æ

l

()(t)((t):p)) dt:

This means that

I



= �

Z

1

0

(t)

�

�

i

Æ

l

()(t)

!

M

�

dt;

whih, in view of Remark IX.10, implies that

F

!

g

(e(1)) = [�I



℄ = F

!

M

(e(1)) 2

b

H

1

dR

(M;V ) �

b

H

1



(g; a):

The remaining assertions now follow from Corollary IX.12.

Corollary IX.14. F

!

(�

1

(G)) vanishes if and only if for eah smooth loop �:S

1

!M and eah

smooth loop :S

1

! Di�(M) we have

R

H

! = 0 for the map H :T

2

!M;H(t; s) = (t):�(s):

The ondition in the preeding orollary is in partiular satis�ed if the set of homotopy

lasses of based maps T

2

! M or at least the orresponding homology lasses in H

2

(M) are

trivial.

Remark IX.15. It is interesting to observe that the disreteness of the period map for ! 2




2

(M;V ) leads to a ondition on the group of spherial yles, i.e., the image of �

2

(M) in

H

2

(M), and the vanishing of F

!

(�

1

(G)) leads to a ondition on the larger subgroup of H

2

(M)

generated by the yles oming from maps T

2

!M . That the latter group ontains the former

follows from the existene of a map T

2

! S

2

induing an isomorphism H

2

(T

2

)! H

2

(S

2

).

Examples

Example IX.16. Let z be a Fr�ehet spae, �

Z

� z a disrete subgroup, Z := z=�

Z

and

q

Z

: z ! Z the quotient map, whih an also be onsidered as the exponential map of the Lie

group Z .

Further let q:P ! M be a smooth Z -prinipal bundle over the ompat manifold M ,

� 2 


1

(P; z) a prinipal onnetion 1-form and ! 2 


2

(M; z) the orresponding urvature, i.e.,
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q

�

! = �d� . We all a vetor �eld X 2 V(P ) horizontal if �(X) = 0. Write V(P )

Z

for the Lie

algebra of Z -invariant vetor �elds on P . Then we have an isomorphism

�:V(M)! V(P )

Z

hor

:= fX 2 V(P )

Z

: �(X) = 0g

whih is uniquely determined by q

�

�(X) = X for X 2 V(M). For two horizontal vetor �elds

e

X;

e

Y on P we then have

(q

�

!)(

e

X;

e

Y ) = �d�(

e

X;

e

Y ) =

e

Y :�(

e

X)�

e

X:�(

e

Y )� �([

e

Y ;

e

X℄) = �([

e

X;

e

Y ℄):

This means that

(9:3) !(X;Y ) = (q

�

!)(�(X); �(Y )) = �([�(X); �(Y )℄) = �([�(X); �(Y )℄� �([X;Y ℄))

an be viewed as the oyle of the abelian extension

a := gau(P )

�

=

C

1

(M; z) ,!

b

g := V(P )

Z

!! g = V(M)

with respet to the setion �: g !

b

g .

On the group level we �nd that the inverse image

b

G of G = Di�(M)

op

0

in Aut(P )

op

is an

extension of G by the abelian gauge group A := Gau(P )

�

=

C

1

(M;Z) and we have already seen

above that its Lie algebra is

b

g

�

=

a�

!

g .

The exponential funtion of the abelian Lie group A is given by

exp

A

: a = C

1

(M; z)! C

1

(M;Z); � 7! q

Z

Æ �:

Its image is the identity omponent A

0

of A . The harateristi map

�

A

:�

0

(A)! H

1



(g; a); [f ℄ 7! [D(d

G

f)℄

onsidered in Proposition VI.4 an be made more expliit by observing that

(d

G

f)(g) = g:f � f = f Æ g � f;

so that

D(d

G

f)(X) = X:f = hdf;Xi

(f. De�nition A.2). This means that D(d

G

f) an be identi�ed with the 1-form df 2 H

1

dR

(M; z) �

H

1



(g; a). Therefore the homomorphism �

A

:�

0

(A)! H

1



(g; a) from Proposition VI.4 is obtained

by fatorization of the map

A = C

1

(M;Z)! H

1

dR

(M; z); f 7! [df ℄

whose kernel is the identity omponent A

0

= q

Z

ÆC

1

(M; z) of A to the injetive homomorphism

�

0

(A)

�

=

C

1

(M;Z)=q

Z

Æ C

1

(M; z)! H

1

dR

(M; z); [f ℄ 7! [df ℄:

Aording to [Ne02, Prop. 3.9℄, its image onsists of the subspae

H

1

dR

(M;�

Z

) :=

n

[�℄ 2 H

1

dR

(M; z): (8 2 C

1

(S

1

;M))

Z



� 2 �

Z

o

;

so that

�

A

:�

0

(A)! H

1

dR

(M;�

Z

); [f ℄ 7! [df ℄

is an isomorphism.

In view of Proposition VI.3, the ux homomorphism satis�es F

!

= ��

A

Æ Æ , where

Æ:�

1

(G) ! �

0

(A) is the onneting homomorphism orresponding to the long exat homotopy

sequene of the A-bundle

b

G ! G . As �

A

is an isomorphism, F

!

is essentially the same as Æ ,

and we an view it as a homomorphism

F

!

:�

1

(G)! H

1

dR

(M;�

Z

) � H

1

dR

(M; z):

Note that we annot expet F

!

(�

1

(G)) to vanish beause the abelian extension A ,!

b

G!

G is not an extension by a onneted group.
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Example IX.17. (a) We onsider the speial ase where the manifold M is a torus: M = T =

t=�

T

, where t is a �nite-dimensional vetor spae and �

T

� t is a disrete subgroup for whih

t=�

T

is ompat.

Then the group T ats by multipliation maps on itself, and we obtain a homomorphism

T ,! G = Di�(M)

op

0

whih indues a homomorphism

�

T

:�

1

(T )! �

1

(G):

Let !

T

2 


2

(T; z) be an invariant z-valued 2-form on T and ! = 


1

2 Z

2



(t; z). Then !

T

is losed beause T is abelian. If e

1

; : : : ; e

n

is an integral basis of �

T

, then the maps

T

2

! T; (t; s) 7! te

i

+ se

j

+ �

T

; i < j

lead to an integral basis of H

2

(T )

�

=

Z

(

dimT

2

)

, so that the period group of !

T

is

�

!

:= span

Z

!(e

i

; e

j

) = span

Z

!(�

T

;�

T

) � z:

We assume that �

Z

� z is a disrete subgroup with

!(�

T

;�

T

) � �

Z

and put Z := z=�

Z

.

In view of �

2

(T ) = f0g , we have per

!

= 0 by Proposition IX.5. Next we are making the

map

F

!

Æ �

T

:�

1

(T ) = �

T

! H

1

dR

(T;�

Z

)

�

=

Hom(�

T

;�

Z

)

more expliit. For x; y 2 �

T

and the orresponding loops 

x

(t) = tx+ �

T

and 

y

(t) = ty + �

T

in T we have for

H :T

2

! T; (t; s) 7! 

x

(t) + 

y

(s) = [tx+ sy℄

the formula

Z



y

F

!

([

x

℄) =

Z

H

! = !(x; y)

(Proposition IX.11, Lemma IX.13). This means that F

!

Æ �

T

:�

1

(T ) ! Hom(�

1

(T );�

Z

) an be

identi�ed with the map x 7! i

x

! .

If ! 6= 0, then F

!

(�

1

(G)) 6= f0g , whih means that there is no abelian extension A ,!

b

T !

! T with a onneted abelian group A of the form a=�

A

for a = C

1

(T; z). Another reason for

this is that any suh extension would be entral, but all entral extensions of tori by onneted

Lie groups are at in the sense that their Lie algebra oyle vanishes (f. [Ne02℄).

On the other hand, the existene of a Z -bundle over T with urvature ! implies the

existene of an abelian extension

A := C

1

(T; Z) ,!

b

T !! T;

where T ats on A by (t:f)(x) = f(x+ t) (f. Example IX.16). The orresponding Lie algebra

oyle ! 2 Z

2



(t; C

1

(T; z)) is given by (x; y) 7! !(x; y) 2 z whose values lie in z

�

=

a

T

.

(b) Let t be a loally onvex spae, �

T

� t a disrete subgroup and onsider the onneted

abelian Lie group T := t=�

T

. Let further z be a sequentially omplete loally onvex spae,

�

Z

� z be a disrete subgroup and Z := z=�

Z

, onsidered as a trivial T -module. We �x an

alternating ontinuous map ! 2 Z

2



(t; z) and de�ne !

Z

2 Z

2

s

(t; Z) by f

Z

:= q

Z

Æ

1

2

! , where

q

Z

: z! Z is the quotient map.

Let H := Z �

f

Z

t denote the orresponding entral extension of t by Z . Then Z

℄

:=

Z�

f

Z

�

T

is a normal subgroup of H beause all ommutators lie in Z . Sine H=Z

℄

�

=

t=�

T

= T ,

we an think of H as an extension

Z

℄

,! H !! T:
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Sine Z is divisible and �

T

disrete, the entral extension Z ,! Z

℄

!! �

T

is trivial if and

only if it is an abelian group, whih means that its ommutator map �

T

� �

T

! Z vanishes.

The ommutator map is given by

(z; t)(z

0

; t

0

)(z; t)

�1

(z

0

; t

0

)

�1

= (f

Z

(t; t

0

); t+ t

0

)(f

Z

(t

0

; t); t+ t

0

)

�1

= (f

Z

(t; t

0

)� f

Z

(t

0

; t); 0) = (2f

Z

(t; t

0

); 0) = (q

Z

(!(t; t

0

)); 0):

Therefore Z

℄

is a trivial extension of �

T

if and only if

(9:4) !(�

T

;�

T

) � �

Z

:

The ondition for the extistene of a Z -bundle P ! T with urvature !

T

is also given by

(9.4). The neessity of this ondition in the in�nite-dimensional ase an be seen by restriting to

two-dimensional subtori. If (9.4) is satis�ed, then we an view �

T

as a subgroup of Z

℄

beause

there exists a homomorphism �: �

T

! Z

℄

splitting the extension Z

℄

!! �

T

. Now we form the

homogeneous spae P := H=�(�

T

) whih de�nes a Z -bundle

Z ,! P = H=�(�

T

)!! T

�

=

H=Z

℄

:

As Z is entral in H , the left ation of H on P indues a homomorphism

H ! Aut(P ) = Di�(P )

Z

restriting to a homomorphism

j

Z

:Z

℄

�

=

Z �

f

Z

�

T

! Gau(P )

�

=

C

1

(T; Z);

where the elements of Z orrespond to onstant funtions. The group �

T

ats on P by

x:(q

Z

(z); y) = (q

Z

(z +

1

2

!(x; y)); y) = (q

Z

(z); y):f

Z

(x; y);

so that

j

Z

(z; x)(y + �

T

) = z + f

Z

(x; y):

If !(�

T

; t) 6= f0g , then the map

F

!

:�

1

(T )

�

=

�

T

! H

1



(t; z) = Lin(t; z); F

!

(x)(y) = !(y; x)

does not vanish, but if !(�

T

;�

T

) � �

Z

, then the extension Z ,! Z

℄

!! �

T

is trivial. Therefore

the natural sequene

(9:5) H

2

s

(T; Z)! H

2

s

(

e

T ; Z)

�

=

H

2



(t; z)! H

2

(�

T

; Z)

is not exat in H

2

s

(

e

T ; Z) (f. Theorem VII.2).

Identifying

H

1

dR

(T;�

Z

)

�

=

dC

1

(T; Z)=dC

1

(T; z) � H

1

dR

(T; z)

with a subspae of H

1



(t; a) (f. Lemma IX.4), we an view F

!

as a map

�

1

(T )! H

1

dR

(T;�

Z

) ,! Hom(�

1

(T );�

Z

):
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X. The di�eomorphism group of the irle

In this setion we apply the general results from Setions VI and VII to the group of orientation

preserving di�eomorphisms of the irle S

1

and the modules F

�

of �-densities on S

1

whose

ohomology for the group Di�(S

1

)

0

has been determined in [OR98℄. We shall also point out how

the piture hanges if Di�(S

1

)

0

is replaed by its universal overing group.

Let G := Di�(S

1

)

op

0

be the group of orientation preserving di�eomorphisms of the irle

S

1

�

=

R=Z . Then its universal overing group

e

G an be identi�ed with the group

e

G := ff 2 Di�(R)

op

: (8x 2 R) f(x + 1) = f(x) + 1g;

and the overing homomorphism q

G

:

e

G! G is given by q(f)([x℄) = [f(x)℄; where [x℄ = x+Z 2

S

1

�

=

R=Z . The kernel of q

G

onsists of all translations �

a

, a 2 Z , and sine

e

G is an open

onvex subset of a losed subspae of C

1

(R;R) , it is a ontratible manifold. In partiular, we

obtain

�

1

(G)

�

=

Z and �

k

(G) = f1g; k 6= 1:

The group G has an import series of representation F

�

, � 2 R , where F

�

is the spae of

�-densities on the irle S

1

. As the tangent bundle TS

1

is trivial, we may identify the spae F

�

with the spae C

1

(S

1

;R) of 1-periodi funtions on R with the representation

�

�

('):� = ('

0

)

�

� (� Æ ')

whih orresponds symbolially to '

�

(�(dx)

�

) = (� Æ') � ('

0

)

�

� (dx)

�

: Note that F

0

= C

1

(S

1

;R)

is a Fr�ehet algebra and that, as G-modules,

F

1

�

=




1

(S

1

;R) and F

�1

�

=

V(S

1

) = g:

For the Lie algebra g = V(S

1

) of G the derived representation is given on X = �

d

dx

by

(10:1) �

�

(�):f = �f

0

+ �f�

0

:

This follows diretly from �

�

(g):f = (g

0

)

�

� (f Æg) and the produt rule. In the following we shall

identify g with C

1

(S

1

;R) and denote elements of g by � , � et.

Lemma X.1. On the Fr�ehet{Lie group A := C

1

(S

1

;R

�

) = F

�

0

we have a smooth G-ation

by g:f := f Æ g and the derivative �:G! A; f 7! f

0

is a smooth 1-oyle.

Proof. For g; h 2 G we have �(gh) = (gh)

0

= (h Æ g)

0

= (h

0

Æ g) � g

0

= (g:�(h)) � �(g):

Remark X.2. The representation on F

�

has the form �

�

(g):f = �(g)

�

� (f Æ g) and the fat

that �

�

:G! A is a oyle implies that �

�

:G! GL(F

�

) is a group homomorphism.

The ohomology on the Lie algebra level

Proposition X.3. The ohomology in degrees 0; 1; 2 of the g-module F

�

has the following

struture:

H

0



(g;F

�

) = F

g

�

=

�

f0g for � 6= 0

R1 for � = 0.

:

For n 2 N

0

let �

n

(�) = �

(n)

denote the n-fold derivative. Then

H

1



(g;F

0

) = spanf[�

0

℄; [�

1

℄g; H

1



(g;F

1

) = R[�

2

℄; H

1



(g;F

2

) = R[�

3

℄
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and H

1



(g;F

�

) vanishes for � 6= 0; 1; 2 . In degree 2 we have

H

2



(g;F

�

)

�

=

8

<

:

R

2

for � = 0; 1; 2

R for � = 5; 7

f0g otherwise.

For � = 0; 1; 2 the ohomology lasses of the following elements form a basis of H

2



(g;F

�

) :

!

0

(�; �) :=

�

�

�

�

� �

�

0

�

0

�

�

�

�

; !

0

(�; �) :=

Z

1

0

�

�

�

�

�

0

�

0

�

00

�

00

�

�

�

�

for � = 0;

!

1

(�; �) :=

�

�

�

�

� �

�

00

�

00

�

�

�

�

; !

1

(�; �) :=

�

�

�

�

�

0

�

0

�

00

�

00

�

�

�

�

for � = 1;

and

!

2

(�; �) :=

�

�

�

�

� �

�

000

�

000

�

�

�

�

; !

2

(�; �) :=

�

�

�

�

�

0

�

0

�

000

�

000

�

�

�

�

for � = 2:

Proof. (f. [OR98℄) We have

F

g

�

�

=

ff 2 C

1

(S

1

;R): (8� 2 C

1

(S

1

;R))�f

0

+ ��

0

f = 0g:

For onstant funtions � the di�erential equation from above redues to f

0

� = 0, so that f

is onstant, and now ��

0

f = 0 for eah � implies �f = 0. This proves the assertion about

H

0



(g;F

�

).

Aording to [Fu86, p.176℄, we have

H

q



(g;F

�

) = 0 for � 62

n

3r

2

� r

2

: r 2 N

0

o

= f0; 1; 2; 5; 7; 12; 15; : : :g:

If r 2 N

0

and � =

3r

2

�r

2

, then

H

q



(g;F

�

)

�

=

�

H

q�r

sing

(Y (S

1

);R) for q � r

f0g for q < r,

where Y (S

1

) = T

2

� 
S

3

and 
S

3

is the loop spae of S

3

. The ohomology algebra

H

�



(g;F

0

)

�

=

H

�

sing

(Y (S

1

);R)

�

=

H

�

sing

(S

1

;R) 
H

�

sing

(S

1

;R) 
H

�

sing

(
S

3

;R)

is a free antiommutative real algebra with generators a; b;  satisfying

deg(a) = deg(b) = 1; deg() = 2; a

2

= b

2

= 0:

It follows in partiular that

H

0



(g;F

0

) = R; H

1



(g;F

0

) = Ra + Rb

�

=

R

2

; H

2



(g;F

0

) = R + Rab

�

=

R

2

:

The struture of H

�



(g;F

�

) is now determined by the fat that it is a free module of the algebra

H

�

(Y (S

1

);R)

�

=

H

�



(g;F

0

) with one generator in degree r . Here the algebra struture on

H

�



(g;F

0

) is obtained from the multipliation on F

0

as in Appendix F, and the multipliation

F

0

�F

�

! F

�

yields the H

�



(g;F

0

)-module struture ([�℄; [�℄) 7! [� ^ �℄ on H

�



(g;F

�

).

From [Fu86, Th. 2.4.12℄ we see that generators of H

�



(g;F

0

) are given by the lasses of

�

0

; �

1

and !

0

. Therefore a seond basis element of H

2



(g;F

0

) is represented by

(�

0

^ �

1

)(�; �) = �

0

(�)�

1

(�)� �

0

(�)�

1

(�) = ��

0

� �

0

� = !

0

(�; �):

The spae H

1

(g;F

�

) is non-zero for r = 0; 1 whih orresponds to � 2 f0; 1; 2g . For r = 0

it is two-dimensional and for r = 1 it is one-dimensional. For � = 1 a generator is given by [�

2

℄

([Fu86, Th. 2.4.12℄; there is a misprint in the formula!). From the H

�



(g;F

0

)-module struture

of H

�



(g;F

1

) we obtain the generators of H

2



(g;F

1

):

(�

0

^ �

2

)(�; �) = ��

00

� ��

00

= !

1

; (�

1

^ �

2

)(�; �) = �

0

�

00

� �

0

�

00

= !

1

:

Averaging over the rotation group, we see that every oyle is equivalent to a rotation

invariant one. From that it is easy to verify that for � = 2 a generator of H

1



(g;F

2

) is given by

[�

3

℄ , and we obtain for the basis elements of H

2



(g;F

2

):

(�

0

^ �

3

)(�; �) = ��

000

� ��

000

= !

2

; (�

1

^ �

3

)(�; �) = �

0

�

000

� �

0

�

000

= !

2

:

For an expliit desription of a basis of H

2



(g;F

�

) for � = 5; 7 we refer to [OR98℄.
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Integrating Lie algebra oyles to group oyles

Now we translate the information on the Lie algebra ohomology H

p



(g;F

�

) for p = 0; 1; 2

(Proposition X.3) to the group G . Sine the group G is onneted, we have

H

0

s

(G;F

�

) = F

G

�

= F

g

�

=

n

f0g for � 6= 0

R1 for � = 0.

In degree 1, we an use Proposition III.4 to see that we have an exat sequene

0! H

1

s

(G;F

�

)

D

��!H

1



(g;F

�

)

P

��!F

g

�

:

For � 6= 0 this implies that D:H

1

s

(G;F

�

) ! H

1



(g;F

�

) is an isomorphism. For � = 0 we have

to alulate the period map P . Let t := R1

�

=

R

d

dx

� g be the one-dimensional subalgebra

orresponding to the rotations of the irle S

1

and T

�

=

T � G the orresponding subgroup.

Then the inlusion T ,! G indues an isomorphism �

1

(T ) ! �

1

(G), so that we an alulate

P by restriting to T . Sine t orresponds to onstant funtions, the oyle �

1

vanishes on t ,

and the oyle �

0

is non-trivial on t . Hene

H

1

s

(G;F

0

)

�

=

kerP = R[�

1

℄:

The group oyle orresponding to �

1

(�) = �

0

is �(') = log'

0

(f. Lemma X.1) beause for

' = id

R

+� we have

�(id+�) = log(1 + �

0

) � �

0

+ : : : ;

whih implies D� = �

1

. Sine the map d:F

0

�

=

C

1

(S

1

;R) ! F

1

�

=




1

(S

1

;R) is equivariant, we

obtain a group oyle

d Æ � 2 Z

1

s

(G;F

1

); (d Æ �)(f) := log(f

0

)

0

=

f

00

f

0

;

and for ' = id+� the relation (d Æ �)(id+�) =

�

00

1+�

0

diretly leads to D(d Æ �) = �

2

: The

Shwarzian derivative

S 2 Z

1

s

(G;F

2

); S(') :=

�

'

000

'

0

�

3

2

�

'

00

'

0

�

2

�

satis�es DS = �

3

. We thus have

H

1

s

(G;F

�

) =

8

>

<

>

:

f0g for � 6= 0; 1; 2

R[�℄ for � = 0

R[d Æ �℄ for � = 1

R[S℄ for � = 2.

On the simply onneted overing group q

G

:

e

G ! G we have H

1

s

(

e

G;F

�

)

�

=

H

1



(g;F

�

)

(Proposition III.4), so that we need an additional 1-oyle for � = 0, whih is given by

L(') := '� id

R

:

In fat, L( ') = L(' Æ  ) := ' Æ  �  +  � id

R

=  

�

L(') + L( ): Sine DL = �

0

, we get

H

1

s

(

e

G;F

0

) = R[L℄ + R[�℄;

where �(') = log'

0

.

Now we turn to the group ohomology in degree 2: In view of �

1

(G)

�

=

Z and Theo-

rem VII.2, we have a map

Æ: Hom(�

1

(G);F

G

�

)

�

=

F

G

�

! H

2

s

(G;F

�

); Æ() = (F

�

o

e

G)=�():

The kernel of this map oinides with the image of the restrition map

R:H

1

s

(

e

G;F

�

)

�

=

H

1



(g;F

�

)! Hom(�

1

(G);F

G

�

)

�

=

F

G

�

and the image of D oinides with the kernel of the map

P :H

2



(g;F

�

)! Hom(�

1

(G); H

1



(g;F

�

))

�

=

H

1



(g;F

�

):

The following proposition lari�es the relation between seond Lie algebra and Lie group

ohomology for the modules F

�

. We refer to Appendix F for the de�nition of the \-produt of

Lie group oyles.
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Proposition X.4. For eah � 2 R the map D:H

2

s

(G;F

�

) ! H

2



(g;F

�

) is injetive. It is

bijetive for � 62 f0; 1; 2g . For � 2 f0; 1; 2g we have

H

2

s

(G;F

0

) = R[B

0

℄; H

2

s

(G;F

1

) = R[B

1

℄; H

2

s

(G;F

2

) = R[B

2

℄

for

B

0

(';  ) := �

Z

1

0

log(( Æ ')

0

)d(log'

0

); B

1

:= � \ (d Æ �) and B

2

:= � \ S:

Proof. (f. [OR98℄) First we show that D is injetive for eah � . As above, let T

�

=

T � G be

the subgroup orresponding to t = R1 in g . Sine the inlusion T ,! G indues an isomorphism

�

1

(T )! �

1

(G), we an alulate R by using the fatorization

H

1

s

(g;F

0

)! H

1

s

(t;F

0

)! Hom(�

1

(T );F

G

0

)

�

=

F

G

0

�

=

Hom(�

1

(G);F

G

0

):

It is lear that the oyle �

1

vanishes on t , but �

0

satis�es per

�

0

([id

T

℄) = 1 2 F

G

0

: Therefore

the restrition map R is surjetive for � = 0, whih implies Æ = 0. For all other values of � the

map Æ vanishes beause F

G

�

is trivial. Therefore D is injetive for eah � .

For � 62 f0; 1; 2g the spae H

1



(g;F

�

) vanishes, so that P = 0 and im(D) = ker(P ) imply

that D is surjetive.

For � = 0; 1; 2 the spae H

2



(g;F

�

) is two-dimensional (Proposition X.3). To alulate P

in these ases, let

: [0; 1℄! T � G; t 7! (x 7! x+ t+Z)

be the generator of �

1

(G). We have

I



(x) =

Z

1

0

(i

x

r

:!

eq

)(

0

(t)) dt =

Z

1

0

(t):!

�

Ad((t))

�1

:x; 1

�

dt:

This means that I



is the T -equivariant part of the linear map �i

1

!: g! F

�

:

For the oyle !

�

(�; �) := ��

(�+1)

� ��

(�+1)

we have

�

i

1

!

�

�

(�) = !

�

(1; �) = �

(�+1)

:

As 1 ats on eah F

�

by � 7! �

0

the linear map !

�

(1; �) is T -equivariant, hene equal to I



,

and we obtain

F

!

�

(1) = �[I



℄; I



(�) = ��

(�+1)

; for � = 0; 1; 2:

For !

0

(�; �) :=

R

S

1

�

0

�

00

� �

00

�

0

we have !

0

(1; �) = 0, so that F

!

0

= 0, and likewise !

�

(1; �) = 0

for � = 1; 2 leads to F

!

�

= 0 for � = 1; 2.

We onlude that for � = 0; 1; 2 the kernel of P is one-dimensional, and that

im(D) = ker(P ) = R[!

�

℄:

For � = 0 the Thurston{Bott oyle (for Di�(S

1

)

op

)

B

0

2 Z

2

s

(G;R) � Z

2

s

(G;F

0

); B

0

(';  ) = �

Z

1

0

log(( Æ ')

0

)d(log'

0

)

satis�es DB

0

= !

0

(f. [GF68℄). For � = 1; 2 we reall that !

�

= �

1

^ �

�+1

, so that Lemma F.3

implies that the oyles

B

1

:= � \ (d Æ �) and B

2

:= � \ S

satisfy DB

�

= !

�

. This ompletes the proof.

Proposition X.5. For the simply onneted overing group

e

G of G we have

H

2

s

(

e

G;F

�

) = R[B

�

℄� R[B

�

℄

�

=

R

2

for � = 0; 1; 2;

where

B

0

:= L \ �; B

1

:= L \ (d Æ �) and B

2

:= L \ S

and B

�

is the pull-bak of the orresponding oyle on G .

Proof. Sine the simply onneted overing group

e

G is ontratible, the derivation map

D:H

2

s

(

e

G;F

�

)! H

2



(g;F

�

)

is bijetive, so that we obtain larger ohomology spaes of

e

G than for G . For � = 0; 1; 2 we

have !

�

= �

0

^ �

�+1

; so that the oyles B

j

, j = 0; 1; 2, satisfy DB

�

= !

�

(Lemma F.3).

Combining this with the pull-baks of the oyles B

�

from G , the assertion follows.
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A non-trivial abelian extension of SL

2

(R)

We onsider the right ation of SL

2

(R) on the projetive line P

1

(R) = R [ f1g by

x:

�

a b

 d

�

:=

�

a b

 d

�

�1

:x :=

dx� b

�x+ a

:

In partiular the ation of the rotation group SO

2

(R) is given by

�

os�t � sin�t

sin�t os�t

�

:x =

os�t � x� sin�t

sin�t � x+ os�t

;

so that

�

os�t � sin�t

sin�t os�t

�

:0 = � tan�t

and the map t 7! tan�t indues a di�eomorphism R=Z ! P

1

(R) . We use this di�eomorphism

to identify S

1

= R=Z with P

1

(R) and to obtain a smooth right ation of SL

2

(R) on S

1

. Then

sl

2

(R) is isomorphi to a 3-dimensional subalgebra of V(S

1

) and so

2

(R) orresponds to R1 = t .

We put

U :=

�

0 �1

1 0

�

and observe that this element orresponds to the onstant funtion

1

�

. From adU((adU)

2

+4) =

0 on sl

2

(R) and the formula for ommutators in V(S

1

) we therefore derive

sl

2

(R) = spanf1; os(2�t); sin(2�t)g

as a subalgebra of V(S

1

)

�

=

C

1

(S

1

). We may therefore pik H;P 2 sl

2

(R) with [U;H ℄ = �2P

and [U; P ℄ = 2H suh that H orresponds to the funtion os(2�t) and P to the funtion

sin(2�t).

The orresponding group homomorphism

�: SL

2

(R) ! Di�(S

1

)

op

0

is homotopy equivalent to the twofold overing of T

�

=

S

1

, hene indues an injetion

�

1

(�):�

1

(SL

2

(R))

�

=

Z! �

1

(Di�(S

1

))

�

=

Z

onto a subgroup of index 2.

From the ation of SL

2

(R) on S

1

, we obtain a smooth ation on the Fr�ehet spaes

F

�

:= C

1

(S

1

;R); (g:f)(x) :=

�

�(g)

0

�

�

f(x:g):

By restrition to the subalgebra sl

2

(R) � V(S

1

), we obtain the 2-oyle !(�; �) = �

0

�

00

� �

00

�

0

in Z

2



(sl

2

(R);F

1

). Let : I ! SL

2

(R); t 7! exp(2�tU) be the anonial generator of �

1

(SL

2

(R)) .

As in the proof of Proposition X.4, it then follows that

F

!

:�

1

(SL

2

(R)) ! H

1



(sl

2

(R);F

1

)

is given by F

!

([℄) = �[I



℄ , where I



is the t-invariant part of �2i

1

! = 0, hene F

!

= 0.

Next we show that [!℄ 6= 0 in H

2



(sl

2

(R);F

1

). If this is not the ase, then there exists

a linear map �: sl

2

(R) ! F

1

with ! = d� . Sine ! is T -equivariant, we may assume, after

averaging over the ompat group T , that � is also T -invariant, i.e.,

�([U; x℄) = U:�(x); x 2 sl

2

(R):
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Now

0 = i

U

! = i

U

d� = L

U

:�� di

U

� = �di

U

�

implies

i

U

� = �(U) 2 Z

0

(sl

2

(R);F

1

) = F

sl

2

(R)

1

= f0g:

We now derive from [H;P ℄ 2 RU :

!(H;P ) = d�(H;P ) = H:�(P )� P:�(H) � �([H;P ℄) = H:�(P )� P:�(H):

Further the equivariane of � implies the existene of a; b 2 R with

�(P ) = a os(2�t)+b sin(2�t) and �(H) =

1

2

�([U; P ℄) =

1

2

U:�(P ) = �a sin(2�t)+b os(2�t):

We further have

H:�(P ) = os(2�t):(a os(2�t) + b sin(2�t)) = (a os

2

(2�t) + b sin(2�t) os(2�t))

0

and

P:�(H) = sin(2�t):(�a sin(2�t) + b os(2�t)) = (�a sin

2

(2�t) + b sin(2�t) os(2�t))

0

;

so that

!(H;P ) = H:�(P )� P:�(H) = a(os

2

(2�t) + sin

2

(2�t))

0

= a1

0

= 0;

ontraditing

!(H;P ) = os(2�t)

0

sin(2�t)

00

� os(2�t)

00

sin(2�t)

0

= 8�

3

(sin

3

(2�t) + os

3

(2�t)) 6= 0:

Therefore [!℄ 6= 0. Sine F

!

and per

!

vanish, and

H

2

dR

(SL

2

(R);F

1

)

�

=

H

2

dR

(S

1

;F

1

) = f0g;

there exists a smooth 2-oyle f 2 Z

2

s

(SL

2

(R);F

1

) with Df = ! (Proposition VII.4). Then

the group

F

1

�

f

SL

2

(R)

is a non-trivial abelian extension of SL

2

(R) . It is di�eomorphi to the diret produt vetor

spae C

1

(S

1

;R) � R

3

, hene ontratible.

If V is a trivial sl

2

(R)-module, then the range of eah 2-oyle lies in a 3-dimensional

subspae, hene is a oboundary, beause the orresponding assertion holds for �nite-dimensional

modules. Therefore all entral extensions of SL

2

(R) by abelian Lie groups of the form A = a=�

A

are trivial (Theorem VII.2). The preeding example shows that H

2



(sl

2

(R);F

1

) 6= f0g , whih

provides the non-trivial extension of SL

2

(R) .

The hoie of the oyle ! above is most natural beause one an show that the ohomology

of the sl

2

(R)-modules F

�

satis�es

dimH

2



(sl

2

(R);F

�

) =

(

0 for � 6= 0; 1

1 for � = 0

2 for � = 1,

dimH

1



(sl

2

(R);F

�

) =

(

0 for � 6= 0; 1

2 for � = 0

1 for � = 1.

For � = 0 the ux homomorphism yields an injetive map

(10:2) H

2



(sl

2

(R);F

�

)! Hom(�

1

(SL

2

(R)); H

1



(sl

2

(R);F

�

)

�

=

H

1



(sl

2

(R);F

�

);

so that we only obtain non-trivial abelian extensions of the universal overing group

f

SL

2

(R) .

For � = 1 the kernel of (10.2) is one-dimensional and spanned by [!℄ , so that [!℄ is, up to

salar multiples, the only non-trivial 2-ohomology lass assoiated to the modules F

�

whih

integrates to a group oyle on SL

2

(R) .
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XI. Central extensions of groups of volume preserving di�eomorphisms

In the present setion we disuss ertain entral extensions of the group Di�(M;�) of

di�eomorphisms of a ompat onneted orientable manifold M preserving a volume form � ,

resp., its identity omponent D(M;�). Eah losed z-valued 2-form ! on M de�nes a entral

extension of the orresponding Lie algebra V(M;�) of �-divergene free vetor �elds beause

omposing integration over M with respet to � with the C

1

(M; z)-valued oyle de�ned by the

2-form (f. Setio IX) leads to a z-valued 2-oyle, the so-alled Lihnerowiz oyle (f. [Vi02℄,

[Li74℄). We shall see that if �

2

(M) vanishes, then the only obstrution to the integrability of the

orresponding entral extension is given by the ux homomorphism �

1

(D(M;�)) ! H

1

dR

(M; z).

If M = G is a ompat Lie group, we show that the ux beomes trivial on the overing group

e

D(G;�) of D(G;�) ating on the universal overing manifold

e

G of G , whih leads to entral

Lie group extensions of this group.

Some fats on the ux homomorphism for volume forms

In this short subsetion we ollet some fats on the ux homomorphism of a volume form

on a ompat onneted manifold. These results will be used to show that eah losed 2-form on

a ompat Lie group G de�nes a entral extension of the overing

e

D(G;�) of identity omponent

D(G;�) of the group of volume preserving di�eomorphisms of G whih ats faithfully on the

universal overing group

e

G .

Let M be a smooth ompat manifold, z a sequentially omplete loally onvex spae and

! 2 


p

(M; z) a losed z-valued p-form. For a pieewise smooth urve �: I ! Di�(M) we de�ne

the ux form

e

F

!

(�) :=

Z

1

0

�(t)

�

�

i

Æ

l

(�)(t)

!

�

dt =

Z

1

0

i

�(t)

�1

:�

0

(t)

(�(t)

�

!) dt 2 


p�1

(M; z):

Let �: I ! Di�(M) be a pieewise smooth path and �: �

p�1

! M a smooth singular

simplex. Further de�ne

�:�: I ��

p�1

!M; (t; x) 7! �(t):�(x):

Then

((�:�)

�

!)(t; x)

�

�

�t

; v

1

; : : : ; v

p�1

�

= !(�(t):�(x))

�

�

0

(t)(�(x)); �(t):d�(x)v

1

; : : : ; �(t):d�(x)v

p�1

)

= (�(t)

�

!)(�(x))

�

�(t)

�1

:�

0

(t)(�(x)); d�(x)v

1

; : : : ; d�(x)v

p�1

)

=

�

i

�(t)

�1

:�

0

(t)

�

�(t)

�

!

��

(�(x))

�

d�(x)v

1

; : : : ; d�(x)v

p�1

)

(f. [NV03, Lemma 1.7℄) implies

Z

�:�

! =

Z

I��

p�1

(�:�)

�

! =

Z

�

e

F

!

(�):

We thus obtain

Z

�:�

! =

Z

�

e

F

!

(�)

for eah singular hain � if we extend the map � 7! �:� additively to the group of pieewise

smooth singular hains. If � is a boundary and � is losed, then �:� is a boundary, so that
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the integral vanishes by Stoke's Theorem, and therefore

R

�

e

F

!

(�) vanishes. We onlude that

e

F

!

(�) is a losed (p� 1)-form, so that we obtain a group homomorphism

F

!

:�

1

(Di�(M))! H

p�1

dR

(M; z); [�℄ 7! [

e

F

!

(�)℄:

Lemma XI.1. If M is an oriented ompat manifold of dimension n , m

0

2 M , and � a

volume form on M with

R

M

� = 1 , then the orresponding ux homomorphism

F

�

:�

1

(Di�(M))! H

n�1

dR

(M;R); [�℄ 7! [

e

F

�

(�)℄

fators through the kernel of the map

�

1

(ev

m

0

):�

1

(Di�(M))! �

1

(M;m

0

):

Proof. (We are grateful to Stephan Haller for ommuniating the idea of the following proof.)

To eah smooth loop �:S

1

! Di�(M) with �(1) = id

M

we assoiate a loally trivial �ber

bundle q

�

:P

�

! S

2

whose underlying topologial spae is obtained as follows. We think of S

2

as a union of two losed diss B

1

and B

2

with B

1

\ B

2

= S

1

. Then we put

P

�

:=

�

(B

1

�M)

_

[(B

2

�M)

�

= �;

where

(x;m) � (x

0

;m

0

):,

�

x = x

0

62 �B

1

[ �B

2

; m = m

0

x = x

0

2 �B

1

;m

0

= �(x)(m):

Then q

�

([x;m℄) := x de�nes the struture of a loally trivial �ber bundle with �ber M over S

2

.

A setion of P

�

is a pair of two ontinuous maps e�

j

:B

j

! M , j = 1; 2, suh that the

restritions �

j

:= e�

j

j

�B

j

satisfy �

2

(x) = �(x)(�

1

(x)) for all x 2 �B

j

. This means that �

1

and

�

2

are ontratible loops in M with �:�

1

= �

2

. Conversely, every pair of ontratible loops �

1

and �

2

in M satisfying �:�

1

= �

2

an be extended to ontinuous maps B

j

!M and thus to a

setion of P

�

.

If �

1

is a ontratible loop based in m

0

, then �:�

1

is a loop based in m

0

homotopi to

the loop x 7! �(x)(m

0

). Therefore the existene of a ontinuous setion of P

�

is equivalent to

[�℄ 2 ker�

1

(ev

m

0

).

Suppose that [�℄ 2 ker�

1

(ev

m

0

) and that �:S

2

! P

�

is a orresponding setion. It

follows easily from the onstrution of P

�

that the manifold P

�

is orientable if M is orientable.

Hene the 2-yle [�℄ has a Poinar�e dual [�℄ 2 H

n

sing

(P

�

;Z) whose restrition to a �ber M

is the Poinar�e dual of the intersetion of im(�) with a �ber, hene the fundamental lass

[�℄ 2 H

n

sing

(M;Z) ([Bre93, p.372℄). Therefore the fundamental lass of M extends to an n-

dimensional ohomology lass in P .

On the other hand we obtain from [Sp66, p.455℄ the exat Wang ohomology sequene

assoiated to P

�

:

: : :! H

n

sing

(P

�

;Z)! H

n

sing

(M;Z)

�

�

��!H

n�1

sing

(M;Z)! H

n+1

sing

(P;Z)! : : : ;

where �

�

satis�es

h�

�

[�℄; [�℄i = h[�℄; [�:�℄i

for eah (n�1)-yle � in M , and the kernel of �

�

onsists of those ohomology lasses extending

to P

�

. As this is the ase for the fundamental lass of M , it follows that [�:�℄ = 0 holds for all

(n�1)-yles � on M . We onlude that

e

F

�

(�) is an exat (n�1)-form if [�℄ 2 ker�

1

(ev

m

0

).
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Remark XI.2. Suppose that G is a ompat Lie group of dimension d . Then G is orientable

and we an identify G with the group �(G) of left translations in Di�(G). Then

Di�(G) = Di�(G)

1

�(G)

�

=

Di�(G)

1

�G

as smooth manifolds. In partiular we have

�

1

(Di�(G))

�

=

�

1

(Di�(G)

1

)� �

1

(G):

If � is a normalized biinvariant volume form on G , then Lemma IX.1 implies that the orre-

sponding ux homomorphism

F

�

:�

1

(Di�(G))! H

d�1

dR

(G;R)

fators through a homomorphism

F

℄

�

:�

1

(G)! H

d�1

dR

(G;R):

Let q

G

:

e

G! G denote the universal overing homomorphism and

g

Di�(G) := fe' 2 Di�(

e

G): (9' 2 Di�(G)) ' Æ q

G

= q

G

Æ e'g:

Then we have a anonial homomorphism

Q

G

:

g

Di�(G)! Di�(G); e' 7! '

whose kernel oinides with the group of dek transformations that is isomorphi to �

1

(G). We

endow

g

Di�(G) with the Lie group struture turning Q

G

into a overing map. We then have

g

Di�(G) =

g

Di�(G)

1

e

G

�

=

g

Di�(G)

1

o

e

G

�

=

Di�(G)

1

o

e

G

as smooth manifolds, so that

�

1

(

g

Di�(G))

�

=

�

1

(Di�(G)

1

):

The identity omponent

g

Di�(G)

0

is a overing of Di�(G)

0

and sine the ux homomorphism

vanishes on its fundamental group (Lemma IX.1), the ux oyle

f

�

:V(G)!

b

H

d�1

dR

(G;R); X 7! [i

X

�℄

integrates to a group oyle

F

�

:

g

Di�(G)

0

!

b

H

d�1

dR

(G;R) = 


d�1

(G;R)=d


d�2

(G;R)

with DF

�

= f

�

.

Appliation to entral extensions

In this subsetion we apply the tools developed in the present paper to entral extensions

of groups of volume preserving di�eomorphisms of ompat manifolds.

Let M denote an orientable onneted ompat manifold and � a volume form on M ,

normalized by

R

M

� = 1. We write

D(M;�) := f' 2 Di�(M)

op

:'

�

� = �g

0
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for the identity omponent of the group of volume preserving di�eomorphisms of (M;�) and

g

�

:= V(M;�) := fX 2 V(M):L

X

� = 0g

for its Lie algebra. Further let

e

D(M;�) � Di�(

f

M) denote the identity omponent of the inverse

image of D(M;�) in

g

Di�(M). Then we have a overing map

e

D(M;�) ! D(M;�) whih need

not be universal. We write

^

D(M;�) for the universal overing group of D(M;�) whih also is

a overing group of

e

D(M;�).

Let z be a Fr�ehet spae. On the spae C

1

(M; z) of smooth z-valued funtions on M we

then have the integration map

I :C

1

(M; z)! z; f 7!

Z

M

f�:

Then I is equivariant for the natural ation of D(M;�) on C

1

(M; z), where we onsider z as

a trivial module. On the in�nitesimal level this means that

Z

M

(X:f)� = 0 for f 2 C

1

(M;R); X 2 V(M;�):

Eah losed z-valued p-form ! 2 


p

(M; z) de�nes a C

1

(M; z)-valued p-ohain for the

ation of the Lie algebra g

�

on C

1

(M; z) and sine I is g

�

-equivariant, we obtain ontinuous

linear maps

�:


p

(M; z)! C

p



(g

�

; z); �(!)(X

1

; : : : ; X

p

) := I(!(X

1

; : : : ; X

p

)) =

Z

M

!(X

1

; : : : ; X

p

)�:

The equivariane of I implies that �(d!) = d

g

�

�(!), so that � indues maps

�:H

p

dR

(M; z)! H

p



(g

�

; z):

Remark XI.3. If �

2

(M) = f0g and

^

D(M;�) denotes the simply onneted overing group of

D(M;�), then for eah losed 2-form ! 2 Z

2

dR

(M; z) the period map of the orresponding Lie

algebra oyle vanishes (Proposition IX.5), so that, in view of Theorem VII.2, � indues a map

�:H

2

dR

(M; z)! H

2

s

(

^

D(M;�); z):

If, more generally, �

Z

� z is a disrete subgroup with

R

�

2

(M)

! � �

Z

and Z := z=�

Z

, then

Theorem VII.2 implies that the Lie algebra oyle ! integrates to a entral extension

Z ,!

b

D(M;�)!!

^

D(M;�):

Let

V(M;�)

ex

:= fX 2 V(M;�): i

X

� 2 d


p�2

(M;R)g

denote the Lie algebra of exat divergene free vetor �elds. It an be shown that this is the

ommutator algebra of V(M;�) (f. [Li74℄), hene a perfet Lie algebra. It follows in partiular

that

H

1



(V(M;�)

ex

; z) = Hom

Lie alg

(V(M;�)

ex

; z) = f0g

vanishes for eah trivial module z . Therefore restriing the oyles from above to V(M;�)

ex

,

resp. the orresponding onneted subgroup D(M;�)

ex

of exat volume preserving di�eomor-

phisms leads to a trivial ux homomorphism. Hene

R

�

2

(M)

! � �

Z

implies the existene of a

entral Z -extension of D(M;�)

ex

. We refer to Ismagilov ([Is96℄) and Haller-Vizman ([HV04℄)

for geometri onstrutions of these entral extensions (for the ase z = R; Z = T = R=Z).
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Proposition XI.4. Let G be a ompat onneted Lie group and � an invariant normalized

volume form on G . Then the ux oyle restrits to a surjetive Lie algebra homomorphism

f

�

:V(G;�)! H

d�1

dR

(G;R)

whose kernel is the ommutator algebra and whose restrition to z(g) � g � V(G;�) is bijetive.

This Lie algebra homomorphism integrates to a homomorphism of onneted Lie groups

F

G

�

:

e

D(G;�)! H

d�1

dR

(G;R)

whose restrition to Z(

e

G)

0

�

e

G �

e

D(G;�) is an isomorphism. Moreover, eah Lie algebra

homomorphism '

g

:V(G;�) ! a to an abelian Lie algebra integrates to a group homomorphism

'

G

:

e

D(G;�)! a whih fators through F

G

�

.

Proof. Sine f

�

de�nes a Lie algebra homomorphism V(G;�)! H

d�1

dR

(G;R) , the restrition

of the ux oyle F

�

:

g

Di�(G)

0

!

b

H

d�1

dR

(G;R) to the subgroup

e

D(G;�) is a group homomor-

phism

F

�

:

e

D(G;�)! H

d�1

dR

(G;R)

�

=

H

d�1

(g;R)

whih on the subgroup

e

G of

e

D(G;�) is the Lie group homomorphism obtained by integrating

the Lie algebra quotient homomorphism

g! H

d�1

(g;R); x 7! [i

x

�

g

℄;

where �

g

:= �(1) 2 C

d

(g;R) . Note that Poinar�e Duality implies that

H

d�1

dR

(G;R)

�

=

H

1

dR

(G;R)

�

=

Hom(g;R)

�

=

z(g)

�

so that H

d�1

dR

(G;R)

�

=

Z(

e

G)

0

�

=

z(g) and we an think of the ux homomorphism as a group

homomorphism

F

G

�

:

e

D(G;�)! z(g):

On the Lie algebra level we have g � V(G;�), [V(G;�);V(G;�)℄ � ker f

�

; and f

�

maps

z(g) isomorphially onto H

d�1

dR

(G;R). This leads to

V(G;�) = [V(G;�);V(G;�)℄ o z(g)

with H

1

(V(G;�))

�

=

z(g) and we onlude that the ux homomorphism F

G

�

:

e

D(G;�) ! z(g) is

universal in the sense that eah Lie algebra homomorphism V(G;�)! a , where a is an abelian

Lie algebra, integrates to a Lie group homomorphism

e

D(G;�)! a .

Theorem XI.5. Let G be a onneted ompat Lie group, � an invariant normalized volume

form, z a sequentially omplete loally onvex spae and ! 2 


2

(G; z) a losed 2-form. Then the

Lihnerowiz oyle on V(G;�) given by

(X;Y ) 7!

Z

G

!(X;Y ) � �

integrates to a entral Lie group extension

z !

b

D(G;�)!

e

D(G;�):

Proof. First we reall that �

2

(G) = f0g ([Ca52℄), so that Remark XI.3 implies that the period

map of

e

D(G;�) vanishes for eah losed 2-form ! 2 


2

(G; z) on G . Moreover, the ux oyle

is a Lie algebra homomorphism

f

!

: g

�

= V(G;�)! H

1



(g

�

; z)

�

=

Hom(g

�

; z)

�

=

Hom(z(g); z)

so that Proposition XI.4 implies that the orresponding ux homomorphism vanishes on the

fundamental group �

1

(

e

D(G;�)), so that Theorem VII.2 implies that ! de�nes a Lie algebra

oyle in Z

2



(V(G;�); z) orresponding to a global entral extension as required.
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Remark XI.6. In view of

H

2

dR

(G; z)

�

=

H

2



(g; z) = H

2



(z(g); z) = Alt

2

(z(g); z) = Lin(�

2

(z(g)); z);

we obtain a universal Lihnerowiz oyle with values in the spae z := �

2

(z(g)).

The preeding remark applies in partiular to the d-dimensional torus G = T

d

:= R

d

=Z

d

,

whih we onsider as the quotient of R

d

modulo the integral lattie. We write x

1

; : : : ; x

d

for the

anonial oordinate funtions on R

d

and observe that their di�erential dx

j

an also be viewed

as 1-forms on T

d

. In this sense we have

H

2

dR

(T

d

;R)

�

=

M

i<j

R[dx

i

^ dx

j

℄

�

=

R

(

d

2

)

:

Therefore the entral extensions of

e

D(T

d

; �) desribed above orrespond to the entral extensions

of the orresponding Cartan type algebras disussed in [Dz92℄. We onlude in partiular that

these oyle do not integrate to entral extensions of D(T

d

; �), but that they integrate to entral

extensions of the overing group

e

D(T

d

; �) whih we an onsidered as a group of di�eomorphisms

of R

d

.

Appendix A. Di�erential forms and Alexander{Spanier ohomology

In this appendix we disuss a smooth version of Alexander{Spanier ohomology for smooth

manifolds and de�ne a homomorphism of hain omplexes from the smooth Alexander{Spanier

omplex (C

n

AS;s

(M;A); d

AS

); n � 1; with values in an abelian Lie group A with Lie algebra a

to the a-valued de Rham omplex (


n

(M; a); d). In Appendix B this map is used to relate Lie

group ohomology to Lie algebra ohomology. The main point is Proposition A.6 whih provides

an expliit map from smooth Alexander{Spanier ohomology to de Rham ohomology.

De�nition A.1. (1) Let M be a smooth manifold and A an abelian Lie group. For n 2 N

0

let C

n

AS;s

(M;A) denote the set of germs of smooth A-valued funtions on the diagonal in M

n+1

.

For n = 0 this is the spae C

0

AS;s

(M;A)

�

=

C

1

(M;A) of smooth A-valued funtions on M . An

element [F ℄ of this spae is represented by a smooth funtion F :U ! A , where U is an open

neighborhood of the diagonal in M

n+1

, and two funtions F

i

:U

i

! A , i = 1; 2, de�ne the same

germ if and only of their di�erene vanishes on a neighborhood of the diagonal. The elements of

the spae C

n

AS;s

(M;A) are alled smooth A-valued Alexander{Spanier n-ohains on M .

We have a di�erential

d

AS

:C

n

AS;s

(M;A)! C

n+1

AS;s

(M;A)

given by

(d

AS

F )(m

0

; : : : ;m

n+1

) :=

n+1

X

j=0

(�1)

j

F (m

0

; : : : ; m

j

; : : : ;m

n+1

);

where m

j

indiates omission of the argument m

j

. To see that d

AS

F de�nes a smooth funtion

on an open neighborhood of the diagonal in M

n+2

, onsider for i = 0; : : : ; n+1 the projetions

p

i

:M

n+2

! M

n+1

obtained by omitting the i-th omponent. Then for eah open subset

U � M

n+1

ontaining the diagonal the subset

T

n+1

i=0

p

�1

i

(U) is an open neighborhood of the

diagonal in M

n+2

on whih d

AS

F is de�ned. It is easy to see that d

AS

is well-de�ned on germs

and that we thus obtain a di�erential omplex (C

�

AS;s

(M;A); d

AS

). Its ohomology groups are

denoted H

n

AS;s

(M;A).

(2) If M is a smooth manifold, then an atlas for the tangent bundle TM is obtained diretly from

an atlas of M , but we do not onsider the otangent bundle as a manifold beause this requires

to hoose a topology on the dual spaes, for whih there are many possibilities. Nevertheless,
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there is a natural onept of a smooth p-form on M . If V is a loally onvex spae, then a

V -valued p-form ! on M is a funtion ! whih assoiates to eah x 2M a k -linear alternating

map T

x

(M)

p

! V suh that in loal oordinates the map (x; v

1

; : : : ; v

p

) 7! !(x)(v

1

; : : : ; v

p

) is

smooth. We write 


p

(M;V ) for the spae of smooth p-forms on M with values in V .

The de Rham di�erential d: 


p

(M;V )! 


p+1

(M;V ) is de�ned by

(d!)(x)(v

0

; : : : ; v

p

) :=

p

X

i=0

(�1)

i

�

X

i

:!(X

0

; : : : ;

b

X

i

; : : : ; X

p

)

�

(x)

+

X

i<j

(�1)

i+j

!([X

i

; X

j

℄; X

0

; : : : ;

b

X

i

; : : : ;

b

X

j

; : : : ; X

p

)(x)

for v

0

; : : : ; v

p

2 T

x

(M), where X

0

; : : : ; X

p

are smooth vetor �elds on a neighborhood of x with

X

i

(x) = v

i

.

To see that d de�nes indeed a map 


p

(M;V ) ! 


p+1

(M;V ) one has to verify that the

right hand side of the above expression does not depend on the hoie of the vetor �elds X

i

with X

i

(x) = v

i

and that it de�nes an element of 


p+1

(M;V ), i.e., in loal oordinates the map

(x; v

0

; : : : ; v

p

) 7! (d!)(x)(v

0

; : : : ; v

p

)

is smooth, multilinear and alternating in v

0

; : : : ; v

p

. For the proof we refer to (f. [KM97℄).

Extending d to a linear map on 
(M;V ) :=

L

p2N

0




p

(M;V ), we have the relation d

2

= 0.

The spae

Z

p

dR

(M;V ) := ker(d j




p

(M;V )

)

of losed forms therefore ontains the spae B

p

dR

(M;V ) := d(


p�1

(M;V )) of exat forms, and

H

p

dR

(M;V ) := Z

p

dR

(M;V )=B

p

dR

(M;V )

is the V -valued de Rham ohomology spae of M .

De�nition A.2. If M is a smooth manifold, A an abelian Lie group, a its Lie algebra,

f :M ! A a smooth funtion and Tf :TM ! TA its tangent map, then we de�ne the logarithmi

derivative of f as the a-valued 1-form

df :TM ! a; v 7! f(m)

�1

:T f(v); for v 2 T

m

(M):

In terms of the anonial trivialization �:TA ! A � a; v 7! a

�1

:v (for v 2 T

a

(A)) of the

tangent bundle of A , this means that

df = pr

2

Æ� Æ Tf :TM ! a:

De�nition A.3. Let M

1

; : : : ;M

n

be smooth manifolds, A an abelian Lie group, and

f :M

1

� : : :�M

n

! A

be a smooth funtion. For n 2 N we de�ne a funtion

d

n

f :TM

1

� : : :� TM

n

! a

as follows. Let q:TM !M be the anonial projetion. For v

1

; : : : ; v

n

2 TM with q(v

i

) = m

i

we onsider smooth urves 

i

: ℄� 1; 1[!M with 

i

(0) = m

i

and 

0

i

(0) = v

i

and de�ne

(d

n

f)(m

1

; : : : ;m

n

)(v

1

; : : : ; v

n

) :=

�

n

�t

1

� � ��t

n

t

i

=0

f(

1

(t

1

); : : : ; 

n

(t

n

));

where for n � 2 the iterated higher derivatives are derivatives of a-valued funtions in the sense

of De�nition A.2. One readily veri�es that the right hand side does not depend on the hoie
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of the urves 

i

and that it de�nes for eah tuple (m

1

; : : : ;m

n

) 2 M

1

� : : :�M

n

a ontinuous

n-linear map

(d

n

f)(m

1

; : : : ;m

n

):T

m

1

(M

1

)� : : :� T

m

n

(M

n

)! a:

If X is a smooth vetor �eld on M

i

, then we also de�ne a smooth funtion

�

i

(X)f :M

1

� : : :�M

n

! a; (m

1

; : : : ;m

n

) 7! df(m

1

; : : : ;m

n

)(0; : : : ; 0; X(m

i

); 0; : : : ; 0)

by the partial derivative of f in the diretion of the vetor �eld X . For vetor �elds X

i

on M

i

we then obtain by iteration of this proess

�

�

1

(X

1

) � � ��

n

(X

n

)f

�

(m

1

; : : : ;m

n

) = (d

n

f)(m

1

; : : : ;m

n

)(X

1

(m

1

); : : : ; X

n

(m

n

))

and

�

1

(X

1

) � � � �

n

(X

n

)f :M

1

� : : :�M

n

! a

is a smooth funtion.

De�nition A.4. Let M be a smooth manifold and A an abelian Lie group. We write

�

n

:M !M

n+1

;m 7! (m; : : : ;m) for the diagonal map.

For [F ℄ 2 C

n

AS;s

(M;A), p 2M and v

1

; : : : ; v

n

2 T

p

(M) we de�ne

�(F )(p)(v

1

; : : : ; v

n

) :=

X

�2S

n

sgn(�) � (d

n

F )(p; : : : ; p)(0; v

�(1)

; : : : ; v

�(n)

)

and observe that �(F ) de�nes a smooth a-valued n-form on M depending only on the germ

[F ℄ of F . We thus obtain for n � 1 a group homomorphism

� :C

n

AS;s

(M;A)! 


n

(M; a):

If A = a , then we also de�ne � for n = 0 as the idential map

� :C

0

AS;s

(M;A)

�

=

C

1

(M;A)! 


0

(M; a)

�

=

C

1

(M; a):

If X

1

; : : : ; X

n

are smooth vetor �elds on an open subset V � M , we have on V the

relation

�(F )(X

1

; : : : ; X

n

) =

X

�2S

n

sgn(�) �

�

�

1

(X

�(1)

) � � � �

n

(X

�(n)

):F

�

Æ�

n

:

As the operators �

i

(X) and �

j

(Y ) ommute for i 6= j and vetor �elds X and Y on M , this

an also be written as

�(F )(X

1

; : : : ; X

n

) =

X

�2S

n

sgn(�) �

�

�

�(1)

(X

1

) � � � �

�(n)

(X

n

):F

�

Æ�

n

:

For small n we have in partiular the formulas

n = 0: �(F ) = F (if A = a).

n = 1: �(F )(X) = �

1

(X):F .

n = 2: �(F )(X;Y ) = �

1

(X)�

2

(Y ):F � �

1

(X)�

2

(Y ):F .

The following proposition builds on a onstrution one �nds in the appendix of [EK64℄.

First we need a ombinatorial lemma.
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Lemma A.5. Let � 2 S

n+1

be a permutation with k := �(1) < ` := �(i + 1) and suh that

the restrition of � de�nes an inreasing map f1; : : : ; ng n f1; i+1g ! f1; : : : ; ng n fk; `g: Then

sgn(�) = (�1)

i+k+l

:

Proof. Replaing � by �

1

:= � Æ � , where � = (i+ 1 i i� 1 : : : 3 2) is a yle of length i ,

we obtain a permutation �

1

that restrits to an inreasing map

f3; 4; : : : ; ng ! f1; : : : ; ng n fk; `g:

Next we put �

2

:= � Æ �

1

, where � = (1 2 3 : : : k � 1 k) is a yle of length k to obtain an

inreasing map

f3; 4; : : : ; ng ! f2; : : : ; ng n f`g:

Eventually we put �

3

:=  Æ �

2

, where  = (2 3 : : : `� 1 `) is a yle of length `� 1 to obtain

an inreasing map

f3; 4; : : : ; ng ! f3; 4; : : : ; ng;

whih implies that �

3

�xes all these elements. Further

�

3

(1) = ���(1) = ��(1) = �(k) = (1) = 1

implies that �

3

= id. This implies that

sgn(�) = sgn(�) sgn(�) sgn() = (�1)

i�1

(�1)

k�1

(�1)

`

= (�1)

i+k+`

:

The following proposition generalizes an observation of van Est and Korthagen in the

Appendix of [EK64℄:

Proposition A.6. (van Est{Korthagen) If M is smooth manifold, then the map

� :C

n

AS;s

(M;A)!

�

C

1

(M;A) for n = 0




n

(M; a) for n � 1

intertwines the Alexander{Spanier di�erential with the de Rham di�erential, hene indues a

map

� :H

n

AS;s

(M;A)! H

n

dR

(M; a):

Proof. We have to show that �(d

AS

F ) = d�(F ) holds for F 2 C

1

(U;A), where U is an

open neighborhood of the diagonal in M

n+1

.

From the hain rule we obtain for a vetor �eld Y on M the relation

Y:

��

�

1

(X

1

) � � � �

n

(X

n

):F

�

Æ�

n

�

=

�

�

0

(Y )�

1

(X

1

) � � � �

n

(X

n

):F

�

Æ�

n

+

n

X

i=1

�

�

1

(X

1

) � � ��

i

(Y )�

i

(X

i

) � � � �

n

(X

n

):F

�

Æ�

n

:(A:1)

Now let

F

i

(x

0

; : : : ; x

n+1

) := F (x

0

; : : : ; bx

i

; : : : ; x

n+1

):

Then

(A:2) F

i

Æ�

n+1

= F Æ�

n

and d

AS

F =

P

n+1

i=0

(�1)

i

F

i

. Sine the funtion F

i

is independent of x

i

, we have

(A:3) �

1

(X

1

) � � � �

n+1

(X

n+1

):F

i

= 0; i � 1:

Therefore

�

1

(X

1

) � � � �

n+1

(X

n+1

):(d

AS

F ) = �

1

(X

1

) � � � �

n+1

(X

n+1

)(F

0

) =

�

�

0

(X

1

) � � � �

n

(X

n+1

)F

�

0

:
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In view of (A.2) and (A.1), this leads to

�

�

1

(X

1

) � � ��

n+1

(X

n+1

):(d

AS

F )

�

Æ�

n+1

=

�

�

0

(X

1

) � � � �

n

(X

n+1

):F

�

Æ�

n

= X

1

:

�

��

�

1

(X

2

) � � � �

n

(X

n+1

):F

�

�

Æ�

n

�

n

X

i=1

�

�

1

(X

2

) � � � �

i

(X

1

)�

i

(X

i+1

) � � � �

n

(X

n+1

):F

�

Æ�

n

:

Alternating the �rst summand, we get an expression of the form

X

�2S

n+1

sgn(�)X

�(1)

:

�

�

1

(X

�(2)

) � � ��

n

(X

�(n+1)

):F

�

Æ�

n

=

n+1

X

i=1

X

�(1)=i

sgn(�)X

i

:

�

�

1

(X

�(2)

) � � � �

n

(X

�(n+1)

):F

�

Æ�

n

We write any permutation � 2 S

n+1

with �(1) = i as � = �

i

� , where �(1) = 1 and �

i

(1) = i

and �

i

is the yle

�

i

= (i i� 1 i� 2 : : : 2 1):

We further identify S

n

with the stabilizer of 1 in S

n+1

. Then the above sum turns into

=

n+1

X

i=1

sgn(�

i

)

X

�2S

n

sgn(�)X

i

:

�

�

1

(X

�

i

�(2)

) � � � �

n

(X

�

i

�(n+1)

):F

�

Æ�

n

=

n+1

X

i=1

(�1)

i�1

X

i

:�(F )(X

�

i

(2)

; : : : ; X

�

i

(n+1)

)

=

n+1

X

i=1

(�1)

i�1

X

i

:�(F )(X

1

; : : : ;



X

i

; : : : ; X

n+1

):

In view of

d(�(F ))(X

1

; : : : ; X

n+1

) =

n+1

X

i=1

(�1)

i�1

X

i

:�(F )(X

1

; : : : ;

b

X

i

; : : : ; X

n+1

)

+

X

k<`

(�1)

k+`

�(F )([X

k

; X

`

℄; X

1

; : : : ;

b

X

k

; : : : ;

b

X

`

; : : : ; X

n+1

);

and

�

X

k<`

(�1)

k+`

�(F )([X

k

; X

`

℄; X

1

; : : : ;

b

X

k

; : : : ; : : : ;

b

X

`

; : : :X

n+1

)

=

X

k<`

(�1)

k+`+1

X

�2S

n

sgn(�)

�

�

�(1)

([X

k

; X

`

℄)�

�(2)

(X

1

) � � �

b

�(X

k

) � � �

b

�(X

`

) : : : �

�(n)

(X

n+1

):F

�

Æ�

n

;

it remains to show that, as operators on funtions on M

n+1

, alternation of

(A:3)

n

X

i=1

�

1

(X

2

) � � ��

i

(X

1

)�

i

(X

i+1

) � � � �

n

(X

n+1

)

leads to

X

k<`

(�1)

k+`+1

X

�2S

n

sgn(�)�

�(1)

([X

k

; X

`

℄)�

�(2)

(X

1

) � � �

b

�(X

k

) � � �

b

�(X

`

) : : : �

�(n)

(X

n+1

)

=

X

k<`

(�1)

k+`+1

h�

1

^ : : : ^ �

n

; [X

k

; X

`

℄ ^X

1

^ � � � ^

b

X

k

^ � � � ^

b

X

`

^ � � � ^X

n+1

i

=

X

k<`

(�1)

k+`+1

n

X

i=1

(�1)

i+1

�

i

([X

k

; X

`

℄) Æ h�

1

^ : : : ^

b

�

i

^ : : : ^ �

n

; X

1

^ � � � ^

b

X

k

^ � � � ^

b

X

`

^ � � � ^X

n+1

i:
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Alternating (A.3) leads to the expression

X

�2S

n+1

sgn(�)

n

X

i=1

�

1

(X

�(2)

) � � � �

i

(X

�(1)

)�

i

(X

�(i+1)

) � � � �

n

(X

�(n+1)

)

=

n

X

i=1

X

�(1)<�(i+1)

sgn(�)

n

X

i=1

�

1

(X

�(2)

) � � � �

i

([X

�(1)

; X

�(i+1)

℄) � � � �

n

(X

�(n+1)

)

=

n

X

i=1

X

k<`

X

�(1)=k

�(i+1)=`

sgn(�)

n

X

i=1

�

1

(X

�(2)

) � � � �

i

([X

k

; X

`

℄) � � � �

n

(X

�(n+1)

):

We an write eah permutation � 2 S

n+1

as � = �

0

� , where � �xes 1 and i + 1, so that we

an identify it with an element of S

n�1

, and

�

0

: f2; : : : ; n+ 1g n fi+ 1g ! f1; : : : ; n+ 1g n fk; `g

is inreasing. In view of Lemma A.5, we then have sgn(�

0

) = (�1)

i+k+`

for k = �(1) and

` = �(i+ 1). Therefore alternating (A.3) gives

=

n

X

i=1

X

k<`

(�1)

i+k+`

X

�2S

n�1

sgn(�)

n

X

i=1

�

1

(X

�

0

�(2)

) � � ��

i

([X

k

; X

`

℄) � � � �

n

(X

�

0

�(n+1)

)

=

n

X

i=1

X

k<`

(�1)

i+k+`

�

i

([X

k

; X

`

℄) Æ h�

1

^ � � � ^

b

�

i

^ � � � ^ �

n

; X

�

0

(2)

^ � � � ^X

�

0

(n+1)

)i

=

X

k<`

n

X

i=1

(�1)

i+k+`

�

i

([X

k

; X

`

℄)h�

1

^ � � �

b

�

i

� � � ^ �

n

; X

2

^ � � � ^

b

X

k

^ � � � ^

b

X

`

^ � � � ^X

n+1

)i:

This ompletes the proof of Proposition A.6.

Appendix B. Cohomology of Lie groups and Lie algebras

In this appendix we show that for n � 2 there is a natural \derivation map"

D

n

:H

n

s

(G;A)! H

n



(g; a)

from loally smooth Lie group ohomology to ontinuous Lie algebra ohomology. For n = 1

we have a map D

1

:Z

1

s

(G;A) ! Z

1



(g; a), and if, in addition, A

�

=

a=�

A

holds for a disrete

subgroup �

A

of a , then this map indues a map between the ohomology groups.

De�nition B.1. Let V be a topologial module of the topologial Lie algebra g . For p 2 N

0

,

let C

p



(g; V ) denote the spae of ontinuous alternating maps g

p

! V , i.e., the Lie algebra p-

ohains with values in the module V . Note that C

1



(g; V ) = Lin(g; V ) is the spae of ontinuous

linear maps g ! V . We use the onvention C

0



(g; V ) = V . We then obtain a hain omplex

with the di�erential

d

g

:C

p



(g; V )! C

p+1



(g; V )

given on f 2 C

p



(g; V ) by

(d

g

f)(x

0

; : : : ; x

p

) :=

p

X

j=0

(�1)

j

x

j

:f(x

0

; : : : ; bx

j

; : : : ; x

p

)

+

X

i<j

(�1)

i+j

f([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

);
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where bx

j

indiates omission of x

j

. Note that the ontinuity of the braket on g and the ation

on V imply that d

g

f is ontinuous.

We thus obtain a subomplex of the algebrai Lie algebra omplex assoiated to g and V .

Hene d

2

g

= 0, and the spae Z

p



(g; V ) := ker(d

g

j

C

p



(g;V )

) of p-oyles ontains the spae

B

p



(g; V ) := d

g

(C

p�1



(g; V )) of p-oboundaries (f. [We95, Cor. 7.7.3℄). The quotient

H

p



(g; V ) := Z

p



(g; V )=B

p



(g; V )

is the p-th ontinuous ohomology spae of g with values in the g-module V . We write [f ℄ :=

f +B

p



(g; V ) for the ohomology lass [f ℄ of the oyle f .

De�nition B.2. Let G be a Lie group and A an abelian Lie group. We all A a smooth

G-module if it is endowed with a G-module struture de�ned by a smooth ation map G�A! A .

Let A be a smooth G-module. Then we de�ne

e

C

n

s

(G;A) to be the spae of all funtions

F :G

n+1

! A whih are smooth in a neighborhood of the diagonal, equivariant with respet to

the ation of G on G

n+1

given by

g:(g

0

; : : : ; g

n

) := (gg

0

; : : : ; gg

n

);

and vanish on all tuples of the form (g

0

; : : : ; g; g; : : : ; g

n

): As the G-ation preserves the diagonal,

it preserves the spae

e

C

n

s

(G;A). Moreover, the Alexander{Spanier di�erential d

AS

de�nes a

group homomorphism

d

AS

:

e

C

n

s

(G;A)!

e

C

n+1

s

(G;A);

and we thus obtain a di�erential omplex (

e

C

�

s

(G;A); d

AS

):

Let C

n

s

(G;A) denote the spae of all funtion f :G

n

! A whih are smooth in an identity

neighborhood and normalized in the sense that f(g

1

; : : : ; g

n

) vanishes if g

j

= 1 holds for some

j . We all these funtions normalized loally smooth group ohains. Then the map

�

n

:C

n

s

(G;A)!

e

C

n

s

(G;A); �

n

(f)(g

0

; : : : ; g

n

) := g

0

:f(g

�1

0

g

1

; g

�1

1

g

2

; : : : ; g

�1

n�1

g

n

)

is a linear bijetion whose inverse is given by

�

�1

n

(F )(g

1

; : : : ; g

n

) := F (1; g

1

; g

1

g

2

; : : : ; g

1

� � � g

n

):

By

d

G

:= �

�1

n+1

Æ d

AS

Æ�

n

:C

n

s

(G;A) ! C

n+1

s

(G;A)

we obtain the di�erential d

G

:C

n

s

(G;A)! C

n+1

s

(G;A) turning (C

�

s

(G;A); d

G

) into a di�erential

omplex. We write Z

n

s

(G;A) for the orresponding group of oyles, B

n

s

(G;A) for the subgroup

of oboundaries and

H

n

s

(G;A) := Z

n

s

(G;A)=B

n

s

(G;A)

is alled the n-th Lie ohomology group with values in the smooth module A .

Lemma B.3. The group di�erential d

G

:C

n

s

(G;A)! C

n+1

s

(G;A) is given by

(d

G

f)(g

0

; : : : ; g

n

) = g

0

:f(g

1

; : : : ; g

n

)

+

n

X

j=1

(�1)

j

f(g

0

; : : : ; g

j�1

g

j

; : : : ; g

n

) + (�1)

n+1

f(g

0

; : : : ; g

n�1

):

Proof. In fat, d

AS

F =

P

n+1

i=0

(�1)

i

F

i

leads with F = �

n

(f) to d

G

f =

P

n+1

i=0

(�1)

i

�

�1

n+1

(F

i

)

and hene to

(d

G

f)(g

0

; : : : ; g

n

)

=

n+1

X

i=0

(�1)

i

F

i

(1; g

0

; g

0

g

1

; : : : ; g

0

� � � g

n

)

=

n+1

X

i=0

(�1)

i

F (1; g

0

; g

0

g

1

; : : : ; g

0

� � � g

i�1

; g

0

� � � g

i+1

; : : : ; g

0

� � � g

n

)

= g

0

:f(g

1

; : : : ; g

n

) +

n

X

i=1

(�1)

i

f(g

0

; g

1

; : : : ; g

i

g

i+1

; : : : ; g

n

) + (�1)

n+1

f(g

0

; : : : ; g

n�1

):
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For n = 0 we have in partiular

(d

G

f)(g

0

) = g

0

:f � f;

and for n = 1:

(d

G

f)(g

0

; g

1

) = g

0

:f(g

1

)� f(g

0

g

1

) + f(g

0

):

De�nition B.4. Let G be a Lie group and a a smooth loally onvex G-module, i.e., a is

a loally onvex spae and the ation map �

a

:G � a ! a; (g; a) 7! g:a is smooth. We write

�

a

(g): a! a; a 7! g:a for the orresponding ontinuous linear automorphisms of a .

We all a p-form 
 2 


p

(G; a) equivariant if we have for all g 2 G the relation

�

�

g


 = �

a

(g) Æ
:

The omplex of equivariant di�erential forms has been introdued in the �nite-dimensional setting

by Chevalley and Eilenberg in [CE48℄.

If a is a trivial module, then an equivariant p-form is a left invariant a-valued p-form on

G . An equivariant p-form is uniquely determined by the orresponding element 


1

2 C

p



(g; a):

(B:1) 


g

(g:x

1

; : : : ; g:x

p

) = �

a

(g) Æ


1

(x

1

; : : : ; x

p

); for g 2 G; x

i

2 g

�

=

T

1

(G);

where G � T (G) ! T (G); (g; x) 7! g:x denotes the natural ation of G on its tangent bundle

T (G) obtained by restriting the tangent map of the group multipliation.

Conversely, (B.1) provides for eah ! 2 C

p



(g; a) a unique equivariant p-form !

eq

on G

with !

eq

1

= ! .

Lemma B.5. For eah ! 2 C

p



(g; a) we have d(!

eq

) = (d

g

!)

eq

. In partiular the evaluation

map

ev

1

: 


p

(G; a)

eq

! C

p



(g; a); ! 7! !

1

de�nes an isomorphism from the hain omplex of equivariant a-valued di�erential forms on G

to the ontinuous a-valued Lie algebra ohomology.

Proof. (f. [CE48, Th. 10.1℄) For g 2 G we have

�

�

g

d!

eq

= d�

�

g

!

eq

= d(�

a

(g) Æ !

eq

) = �

a

(g) Æ (d!

eq

);

showing that d!

eq

is also equivariant.

For x 2 g we write x

l

for the orresponding left invariant vetor �eld on G , i.e., x

l

(g) =

g:x . It suÆes to alulate the value of d!

eq

on (p + 1)-tuples of left invariant vetor �elds in

the identity element.

In view of

!

eq

(x

1;l

; : : : ; x

p;l

)(g) = �

a

(g):!(x

1

; : : : ; x

p

);

we obtain

�

x

0;l

:!

eq

(x

1;l

; : : : ; x

p;l

)

�

(1) = x

0

:!(x

1

; : : : ; x

p

);

and therefore

�

d!

eq

(x

0;l

; : : : ; x

p;l

�

�

(1) =

p

X

i=0

(�1)

i

x

i;l

:!

eq

(x

0;l

; : : : ; x

i;l

; : : : ; x

p;l

)(1)

+

X

i<j

(�1)

i+j

!

eq

([x

i;l

; x

j;l

℄; x

0;l

; : : : ; x

i;l

; : : : ; x

j;l

; : : : ; x

p;l

)(1)

=

p

X

i=0

(�1)

i

x

i

:!(x

0

; : : : ; bx

i

; : : : ; x

p

)

+

X

i<j

(�1)

i+j

!([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

)

= (d

g

!)(x

0

; : : : ; x

p

):

This proves our assertion.
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Theorem B.6. The maps

D

n

: ev

1

Æ� Æ�

n

:C

n

s

(G;A)! C

n



(g; a); n � 1;

indue a morphism of hain omplexes

D: (C

n

s

(G;A); d

G

)

n�1

! (C

n



(g; a); d

g

)

n�1

and in partiular homomorphisms

D

n

:H

n

s

(G;A) ! H

n



(g; a); n � 2:

For A = a these assertions hold for all n 2 N

0

and if A

�

=

a=�

A

for a disrete subgroup

�

A

of a , then D

1

also indues a homomorphism

D

1

:H

1

s

(G;A)! H

1



(g; a); [f ℄ 7! [df(1)℄:

Proof. In view of Proposition A.6 and the de�nition of the group di�erential d

G

, the

omposition

� Æ�

n

:C

n

s

(G;A)!

e

C

n

s

(G;A) � C

n

AS;s

(G;A)! 


n

(G; a); n � 1;

de�nes a homomorphism of hain omplexes. For A = a this relation also holds for n = 0.

For f 2 C

n

s

(G;A) the funtion F := �

n

(f):G

n+1

! A is G-equivariant with respet to

the diagonal ation. For g 2 G let

�

g

:G

n+1

! G

n+1

; (g

0

; : : : ; g

n

) 7! (gg

0

; : : : ; gg

n

)

and write �

A

(g)(a) := g:a for a 2 A . Then the equivariane of F means that �

�

g

F = F Æ �

g

=

�

A

(g) Æ F whih implies that

�

A

(g) Æ �(F ) = �(�

A

(g) Æ F ) = �(�

�

g

F ) = �

�

g

�(F ):

This shows that the image of � Æ�

n

onsists of equivariant a-valued n-forms on G . Aording to

Lemma B.5, evaluating an equivariant n-form in the identity intertwines the de Rham di�erential

on 


p

(G; a) with the Lie algebra di�erential d

g

. This implies

d

g

ÆD

n

= D

n+1

Æ d

G

for eah n 2 N , i.e., the D

n

de�ne a morphism of hain omplexes (trunated to n � 1). For

A = a it also holds for n = 0.

If A

�

=

a=�

A

and n = 1, then D

1

(B

1

s

(G;A)) = B

1



(g; a) implies that D

1

indues a map

H

1

s

(G;A)! H

1



(g; a). If A is not of this form, then we annot onlude that D

1

maps B

1

s

(G;A)

into B

1



(g; a).

To make D

n

, n � 2, better aessible to alulations, we need a more onrete formula

for the Lie algebra ohain D

n

f for f 2 C

n

s

(G;A). As f vanishes on all tuples of the form

(g

1

; : : : ;1; : : : ; g

n

), its (n� 1)-jet in 1 vanishes and the term of order n is the n-linear map

(d

n

f)(1; : : : ;1): g

n

= T

1

(G)

n

! a

(f. De�nition A.3). In fat, in loal oordinates the n-th order term of the Taylor expansion of

f in (1; : : : ;1) is given by a symmetri n-linear map

(d

[n℄

f)(1; : : : ;1): (g

n

)

n

! a



64 Abelian extensions of in�nite-dimensional Lie groups February 18, 2004

as

1

n!

(d

[n℄

f)(1; : : : ;1)(x; : : : ; x); x = (x

1

; : : : ; x

n

) 2 g

n

:

The normalization ondition on f implies that (d

[n℄

f)(1; : : : ;1) vanishes on all elements

(x

1

; : : : ; x

n

), x

i

= (x

i

l

) 2 g

n

, for whih the j -th omponent (in g) vanishes for some j , i.e.,

x

i

j

= 0 for all i . This implies that

(d

[n℄

f)(1; : : : ;1)(x; : : : ; x)

is a sum of n! terms of the form

(d

[n℄

f)(1; : : : ;1)((0; : : : ; x

�(1)

; : : : ; 0); (0; : : : ; x

�(2)

; : : : ; 0); : : : ; (0; : : : ; x

�(n)

; : : : ; 0));

sine all these terms are equal, we �nd

1

n!

(d

[n℄

f)(1; : : : ;1)(x; : : : ; x) = (d

[n℄

f)(1; : : : ;1)((x

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; x

n

))

= (d

n

f)(1; : : : ;1)(x

1

; : : : ; x

n

):

Lemma B.7. For f 2 C

n

s

(G;A) and x

1

; : : : ; x

n

2 g we have

(D

n

f)(x

1

; : : : ; x

n

) =

X

�2S

n

sgn(�)(d

n

f)(1; : : : ;1)(x

�(1)

; : : : ; x

�(n)

):

Proof. Reall that on an n-tuple (x

1

; : : : ; x

n

) 2 g

n

the map d

n

f an be alulated by

hoosing smooth vetor �elds X

n

on an open identity neighborhood of G with X

i

(1) = x

i

via

(d

n

f)(1; : : : ;1)(x

1

; : : : ; x

n

) := (�

1

(X

1

) � � � �

n

(X

n

):f)(1; : : : ;1):

For F = �

n

(f) we now get

(D

n

f)(x

1

; : : : ; x

n

) = �(F )(x

1

; : : : ; x

n

) =

X

�2S

n

sgn(�)(d

n

F )(1; : : : ;1)(0; x

�(1)

; : : : ; x

�(n)

):

In view of

F (1; g

1

; : : : ; g

n

) = f(g

1

; g

�1

1

g

2

; : : : ; g

�1

n�1

g

n

)

and f(g

1

;1; : : :) = 0, we have

(�

1

(X

1

)F )(1;1; g

2

; : : : ; g

n

) = (�

1

(X

1

)f)(1; g

2

; g

�1

2

g

3

; : : : ; g

�1

n�1

g

n

);

and indutively we obtain

(�

1

(X

1

) � � ��

n

(X

n

)F )(1;1; : : : ;1) = (�

1

(X

1

) : : : �

n

(X

n

)f)(1; : : : ;1)

= (d

n

f)(1; : : : ;1)(x

1

; : : : ; x

n

):

This implies the assertion.

For n = 1 we obtain (D

1

f)(x) = df(1):x; and for n = 2 we have

(D

2

f)(x; y) = (d

2

f)(1;1)(x; y)� (d

2

f)(1;1)(y; x):

If (d

[n℄

f)(1;1) denotes the symmetri n-linear map (g

n

)

n

! a representing the n-jet of f , this

expression equals

(d

[2℄

f)(1;1)((x; 0)(0; y))� (d

[2℄

f)(1;1)((y; 0); (0; x)):
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Appendix C. Split Lie subgroups

In this appendix we ollet some general material on Lie group strutures on groups, (normal) Lie

subgroups and quotient groups. In partiular Theorem C.2 provides a tool to onstrut Lie group

strutures on groups for whih a subset ontaining the identity is an open 0-neighborhood of a

loally onvex spae suh that the group operations are loally smooth in these oordinates. We

also give a ondition on a normal subgroup N E G for the quotient group G=N being a manifold

suh that the quotient map q:G ! G=N de�nes on G the struture of a smooth N -prinipal

bundle.

Lemma C.1. Let G be a group and F a �lter basis of subsets with

T

F = f1g satisfying:

(U1) (8U 2 F)(9V 2 F)V V � U:

(U2) (8U 2 F)(9V 2 F)V

�1

� U:

(U3) (8U 2 F)(8g 2 G)(9V 2 F)gV g

�1

� U:

Then there exists a unique group topology on G suh that F is a basis of 1-neighborhoods in G .

This topology is given by fU � G: (8g 2 U)(9V 2 F)gV � Ug:

Proof. [Bou88, Ch. III, x1.2, Prop. 1℄

Theorem C.2. Let G be a group and U = U

�1

a symmetri subset. We further assume that

U is a smooth manifold suh that

(L1) there exists an open 1-neighborhood V � U with V

2

= V � V � U suh that the group

multipliation �

V

:V � V ! U is smooth,

(L2) the inversion map �

U

:U ! U; u 7! u

�1

is smooth, and

(L3) for eah g 2 G there exists an open 1-neighborhood U

g

� U with 

g

(U

g

) � U and suh that

the onjugation map



g

:U

g

! U; x 7! gxg

�1

is smooth.

Then there exists a unique struture of a Lie group on G for whih there exists an open

1-neighborhood U

1

� U suh that the inlusion map U

1

! G indues a di�eomorphism onto an

open subset of G .

Proof. (f. [Ch46, x14, Prop. 2℄ or [Ti83, p.14℄ for the �nite-dimensional ase) First we onsider

the �lter basis

F := fW � G:W 2 U

U

(1)g

of all those subsets of U whih are 1-neighborhoods in U . Then (L1) implies (U1), (L2)

implies (U2), and (L3) implies (U3). Moreover, the assumption that U is Hausdor� implies that

T

F = f1g . Therefore Lemma C.1 implies that G arries a unique struture of a (Hausdor�)

topologial group for whih F is a basis of 1-neighborhoods.

After shrinking V and U , we may assume that there exists a di�eomorphism ':U !

'(U) � E , where E is a topologial K -vetor spae, '(U) an open subset, that V satis�es

V = V

�1

, V

4

� U , and that m:V

2

� V

2

! U is smooth. For g 2 G we onsider the maps

'

g

: gV ! E; '

g

(x) = '(g

�1

x)

whih are homeomorphisms of gV onto '(V ). We laim that ('

g

; gV )

g2G

is an atlas of G .

Let g

1

; g

2

2 G and put W := g

1

V \ g

2

V . If W 6= �, then g

�1

2

g

1

2 V V

�1

= V

2

. The

smoothness of the map

 := '

g

2

Æ '

�1

g

1

j

'

g

1

(W )

:'

g

1

(W )! '

g

2

(W )

given by

 (x) = '

g

2

('

�1

g

1

(x)) = '

g

2

(g

1

'

�1

(x)) = '(g

�1

2

g

1

'

�1

(x))
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follows from the smoothness of the multipliation V

2

� V

2

! U . This proves that the harts

('

g

; gU)

g2G

form an atlas of G . Moreover, the onstrution implies that all left translations of

G are smooth maps.

The onstrution also shows that for eah g 2 G the onjugation 

g

:G ! G is smooth in

a neighborhood of 1 . Sine all left translations are smooth, and



g

Æ �

x

= �



g

(x)

Æ 

g

;

the smoothness of 

g

in a neighborhood of x 2 G follows. Therefore all onjugations and

hene also all right multipliations are smooth. The smoothness of the inversion follows from

its smoothness on V and the fat that left and right multipliations are smooth. Finally the

smoothness of the multipliation follows from the smoothness in 1� 1 beause of

�

G

(g

1

x; g

2

y) = g

1

xg

2

y = g

1

g

2



g

�1

2

(x)y = g

1

g

2

�

G

(

g

�1

2

(x); y):

The uniqueness of the Lie group struture is lear beause eah loally di�eomorphi bijetive

homomorphism between Lie groups is a di�eomorphism.

Remark C.3. Suppose that the group G in Theorem C.2 is generated by eah 1-neighborhood

U � U . Then ondition (L3) an be omitted. Indeed, the onstrution of the Lie group struture

shows that for eah g 2 V the onjugation 

g

:G! G is smooth in a neighborhood of 1 . Sine

the set of all these g is a submonoid of G ontaining V , it ontains V

n

for eah n 2 N , hene all

of G beause G is generated by V . Therefore all onjugations are smooth, and one an proeed

as in the proof of Theorem C.2.

De�nition C.4. (a) (Split Lie subgroups) Let G be a Lie group. A subgroup H is alled a

split Lie subgroup if it arries a Lie group struture for whih the anonial right ation of H on

G de�ned by restriting the multipliation map of G to G�H ! G de�nes a smooth prinipal

bundle, i.e., the oset spae G=H is a smooth manifold and the quotient map �:G! G=H has

smooth loal setions.

(b) If G is a Banah{Lie group and exp: g! G its exponential funtion, then a losed subgroup

H � G is alled a Lie subgroup if there exists an open 0-neighborhood U � g suh that

exp j

U

:U ! exp(U) is a di�eomorphism onto an open subset of G and the Lie algebra

h := fx 2 g: exp(Rx) � Hg

of H satis�es

H \ exp(U) = exp(U \ h):

Sine the Lie algebra h of a Lie subgroup H of a Banah Lie group G need not have

a losed omplement in g , not every Lie subgroup is split. A simple example is the subgroup

H := 

0

(N;R) in G := `

1

(N; C ).

Lemma C.5. If H is a split Lie subgroup of G or a Lie subgroup of the Banah{Lie group G ,

then for any smooth manifold X eah smooth map f :X ! G with f(X) � H is also smooth as

a map X ! H . If H is a normal split Lie subgroup, then the onjugation ation of G on H is

smooth.

Proof. The ondition that H is a split Lie subgroup implies that there exists an open subset

U of some loally onvex spae V and a smooth map �:U ! G suh that the map

U �H ! G; (x; h) 7! �(x)h

is a di�eomorphism onto an open subset of G . Let p:�(U)H ! U denote the smooth map given

by p(�(x)h) = x . If X is a manifold and f :X ! G is a smooth map with values in H , then f

is smooth as a map to �(U)H

�

=

U �H , hene smooth as a map X ! H .
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If H is a Lie subgroup of a Banah{Lie group and f :X ! G is a smooth map with

f(X) � H , then we have to see that f is smooth as a map X ! H . To verify smoothness in

a neighborhood of some x

0

2 X , it suÆes to onsider the map x 7! f(x)f(x

0

)

�1

, so that we

may w.l.o.g. assume that f(x

0

) = 1 . Then we an use the natural hart of H in 1 given by the

exponential funtion to see that f is smooth in a neighborhood of x

0

beause any smooth map

X ! g with values in h is smooth as a map X ! h .

Now suppose that H E G is normal. Then the onjugation map G � H ! G; (g; h) 7!

ghg

�1

, is smooth with values in H , hene smooth as a map G�H ! H .

Theorem C.6. Let G be a Lie group and N E G a split normal subgroup. Then the quotient

group G=N has a natural Lie group struture suh that the quotient map q:G ! G=N de�nes

on G the struture of a prinipal N -bundle.

Proof. There exists an open subset U of a loally onvex spae V and a smooth map �:U ! G

suh that the map

U �N ! G; (u; n) 7! �(u)n

is a di�eomorphism onto an open subset W = �(U)N of G . As N is in partiular losed, the

quotient group G=N has a natural (Hausdor�) group topology.

Let q:G ! G=N denote the quotient map. Then q(W ) = q Æ �(U) is an open subset of

G=N and q(W )

�

=

W=N

�

=

(U � N)=N

�

=

U . Therefore the map ' := q Æ �:U ! q(W ) is a

homeomorphism.

Let K = K

�1

� q(W ) be a symmetri open subset, and U

K

:= '

�1

(K), and endow K

with the manifold struture obtained from the homeomorphism ':U

K

! K .

(L1): Let V � K be an open 1-neighborhood with V

2

� K . We identify V with the

orresponding open subset U

V

� U . Then the group multipliation �

V

:V � V ! K is given by

'(x)'(y) = �(x)N � �(y)N = �(x)�(y)N = '('

�1

(�(x)�(y)N));

and sine the map p:W ! U; �(u)n! u is smooth, the map

(x; y) 7! '

�1

(�(x)�(y)N) = p(�(x)�(y))

is smooth.

(L2): We likewise see that the inversion map K ! K orresponds to the smooth map

x 7! '

�1

('(x)

�1

) = '

�1

(�(x)

�1

N) = p(�(x)

�1

):

(L3): For eah g 2 G we �nd an open 1-neighborhood K

g

� K with 

g

(K

g

) � K . Then

the onjugation map



g

:K

g

! K; x 7! gxg

�1

is written in '-oordinates as

'(x) 7! '('

�1

(g�(x)g

�1

N)) = '(p(g�(x)g

�1

))

and therefore smooth.

Now Theorem C.2 applies and shows that there exists a unique struture of a Lie group

on G=N for whih there exists an open 0-neighborhood in U suh that the map ':U ! G=N

indues a di�eomorphism onto an open subset of G=N .
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Appendix D. The exat Ination-Restrition Sequene

In this setion G denotes a Lie group, N E G a split normal Lie subgroup (f. De�ni-

tion C.4) and A a smooth G-module. We write q:G! G=N for the quotient map.

De�nition D.1. (a) (Ination and restrition) Restrition of ohains leads for eah p 2 N

0

to a map

e

R:C

p

s

(G;A)! C

p

s

(N;A);

and sine R Æ d

G

= d

N

ÆR , it follows that

e

R(B

p

(G;A)) � B

p

(N;A),

e

R(Z

p

s

(G;A)) � Z

p

s

(N;A),

so that

e

R indues a homomorphism

R:H

p

s

(G;A)! H

p

s

(N;A):

(b) Sine N is a normal subgroup of G , the subgroup

A

N

:= fa 2 A: (8n 2 N) n:a = ag

is a G-submodule of A . If A

N

is a split Lie subgroup of A , it inherits a natural struture of a

smooth G=N -module (Lemma C.2) but we do not want to make this restritive assumption. We

therefore de�ne the hain omplex (C

�

s

(G=N;A

N

); d

G=N

) as the omplex whose ohain spae

C

p

s

(G=N;A

N

) onsists of those funtions f : (G=N)

p

! A

N

for whih the pull-bak

q

�

f :G

p

! A

N

; (q

�

f)(g

1

; : : : ; g

p

) := f(q(g

1

); : : : ; q(g

p

))

is an element of C

p

s

(G;A). With this de�nition we do not need a Lie group struture on the

subgroup A

N

of A . For a ohain f 2 C

p

s

(G=N;A

N

) we de�ne

e

I := q

�

:C

p

s

(G=N;A

N

)! C

p

s

(G;A):

Then (C

�

s

(G=N;A

N

); d

G=N

) beomes a hain omplex with the group di�erential from

Lemma B.3. Moreover, q

�

Æ d

G=N

= d

G

Æ q

�

, so that q

�

(B

p

s

(G=N;A

N

)) � B

p

s

(G;A), and

q

�

(Z

p

s

(G=N;A

N

)) � Z

p

s

(G;A), showing that q

�

indues the so alled ination map

I :H

p

s

(G=N;A

N

)! H

p

s

(G;A); [f ℄ 7! [q

�

f ℄:

The restrition and ination maps

C

p

s

(G=N;A

N

)

I

��!C

p

s

(G;A)

R

��!C

p

s

(N;A)

learly satisfy R Æ I = 0, whih is inherited by the orresponding maps

H

p

s

(G=N;A

N

)

I

��!H

p

s

(G;A)

R

��!H

p

s

(N;A):

Lemma D.2. The restrition maps

e

R:C

p

s

(G;A)! C

p

s

(N;A) are surjetive.

Proof. Sine N is a split Lie subgroup of G , there exists an open 0-neighborhood U in a

loally onvex spae V and a smooth map ':U ! G with '(0) = 1 suh that the map

�:N � U ! G; (n; x) 7! n'(x)

is a di�eomorphism onto an open subset N'(U) of G .

Let f 2 C

p

s

(N;A). We extend f to a funtion

e

f : (N'(U))

p

! A by

e

f((n

1

'(x

1

); : : : ; n

p

'(x

p

)) := f(n

1

; : : : ; n

p

):

Then learly

e

f is smooth in an identity neighborhood and vanishes if one argument n

i

'(x

i

) is

1 , beause this implies x

i

= 0 and n

i

= 1 . Now we extend

e

f to a funtion on G

p

vanishing in

all tuples (g

1

; : : : ;1; : : : ; g

p

). Then

e

f 2 C

p

s

(G;A) satis�es

e

R(

e

f) = f .
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Although the the ination map I is injetive on ohains and R is surjetive on ohains,

in general there are many ohains with trivial restritions on N whih are not in the image of

the ination map. Therefore we do not have a short exat sequene of hain omplexes, hene

annot expet a long exat sequene in ohomology. In this appendix we disuss what we still an

say on the orresponding maps in low degree. It would be interesting to see if these results an

also be obtained from a generalization of the Hohshild{Serre spetral sequene for Lie groups.

As we shall see below, it is lear that the onstrution in [HS53a℄ has to be modi�ed substantially

for the loally smooth in�nite-dimensional setting.

Lemma D.3. (a) Eah ohomology lass in H

p

s

(G;A) annihilated by R an be represented by

a oyle in ker

e

R .

(b) We have B

p

s

(N;A) � im(

e

R) and therefore [f ℄ 2 im(R) is equivalent to f 2 im(

e

R) .

Proof. (a) We may w.l.o.g. assume that p � 1. If R[f ℄ = 0, then

e

R(f) = d

N

� for

some � 2 C

p�1

s

(N;A). Let e� 2 C

p�1

s

(G;A) be an extension of � to G (Lemma D.2). Then

f

0

:= f � d

G

e� restrits to

e

R(f)� d

N

� = 0 and [f

0

℄ = [f ℄ .

(b) For � 2 C

p�1

s

(G;A) we have

e

R(d

G

�) = d

N

e

R(�), so that C

p�1

s

(N;A) � im(

e

R) implies that

e

R(B

p

s

(G;A)) = B

p

s

(N;A).

For f 2 Z

p

s

(N;A) it follows that [f ℄ 2 im(R) is equivalent to the existene of � 2

B

p�1

s

(N;A) with f � d

N

� 2 im(

e

R), whih implies that f 2 im(

e

R).

Lemma D.4. The oboundary operator d

N

is equivariant with respet to the ation of G on

C

p

s

(N;A) , p 2 N

0

, given by

(g:f)(n

1

; : : : ; n

p

) := g:f(g

�1

n

1

g

�1

; : : : ; g

�1

n

p

g):

In partiular, this ation leaves the spae of ohains invariant and indues ations on the

ohomology groups H

p

s

(N;A) .

The preeding lemma applies in partiular to the ase N = G , showing that the oboundary

operator d

G

is equivariant for the natural ation of G on the spaes C

p

s

(G;A).

De�nition D.5. In the following we need a re�ned onept of invariane of ohomology lasses

in H

p

s

(N;A) under the ation of the group G . We all f 2 Z

p

s

(N;A) smoothly ohomologially

invariant if there exists a map

�:G! C

p�1

s

(N;A) with d

N

(�(g)) = g:f � f for all g 2 G

for whih the map

G�N

p

! A; (g; n

1

; : : : ; n

p�1

)! �(g)(n

1

; : : : ; n

p�1

)

is smooth in an identity neighborhood of G�N

p�1

.

We write Z

p

s

(N;A)

[G℄

for the set of smoothly ohomologially invariant oyles in the

group Z

p

s

(N;A). If f = d

N

h for some h 2 C

p�1

s

(N;A), then we may put �(g) := g:h�h to �nd

d

N

(�(g)) = d

N

(g:h� h) = g:d

N

(h)� d

N

(h) = g:f � f;

and the map

G�N

p�1

! A;

(g; n

1

; : : : ; n

p�1

) 7! (g:h� h)(n

1

; : : : ; n

p�1

) = g:h(g

�1

n

1

g; : : : ; g

�1

n

p�1

g)� h(n

1

; : : : ; n

p�1

)

is smooth in an identity neighborhood. This shows that B

p

s

(N;A) � Z

p

s

(N;A)

[G℄

, and we de�ne

the spae of smoothly invariant ohomology lasses by

H

p

s

(N;A)

[G℄

:= Z

p

s

(N;A)

[G℄

=B

p

s

(N;A):

For a generalization of the following fat to general p for disrete groups and modules we

refer to [HS53a℄.
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Proposition D.6. Let N E G be a split normal Lie subgroup and p 2 f0; 1; 2g . Then the

restrition map R maps H

p

s

(G;A) into H

p

s

(N;A)

[G℄

. In partiular

(D:1) H

p

s

(G;A) = H

p

s

(G;A)

[G℄

for p = 0; 1; 2:

Proof. In view of the G-equivariane of the restrition map C

p

s

(G;A)! C

p

s

(N;A), it suÆes

to prove the assertion in the ase N = G .

For p = 0 we have C

0

s

(G;A) = A , and Z

0

s

(G;A) = H

0

s

(G;A) = A

G

is the submodule of

G-invariants. Clearly G ats trivially on this spae, so that there is nothing to prove.

For p = 1 and a oyle f 2 Z

1

s

(G;A) we have for g; x 2 G :

(g:f � f)(x) = g:f(g

�1

xg)� f(x) = g:(g

�1

:f(xg) + f(g

�1

))� f(x) = f(xg) + g:f(g

�1

)� f(x)

= x:f(g) + f(x)� f(g)� f(x) = d

G

(f(g))(x):

This shows that

(D:2) g:f � f = d

G

(f(g));

so that f 2 Z

2

s

(G;A)

[G℄

follows from the loal smoothness of f .

For p = 2 and f 2 Z

2

s

(G;A) we have

(g:f � f)(x; x

0

)

= g:f(g

�1

xg; g

�1

x

0

g)� f(x; x

0

)

= �f(g; g

�1

xx

0

g) + f(g; g

�1

xg) + f(xg; g

�1

x

0

g)� f(x; x

0

)

= �f(g; g

�1

xx

0

g) + f(g; g

�1

xg)� f(x; g) + x:f(g; g

�1

x

0

g) + f(x; x

0

g)� f(x; x

0

)

= �f(g; g

�1

xx

0

g) + f(g; g

�1

xg)� f(x; g) + x:f(g; g

�1

x

0

g)� x:f(x

0

; g) + f(xx

0

; g)

and the funtion

�(g):G! A; �(g)(x) := f(g; g

�1

xg)� f(x; g)

satis�es

(d

G

�(g))(x; x

0

) = x:�(g)(x

0

) + �(g)(x) � �(g)(xx

0

)

= x:f(g; g

�1

x

0

g)� x:f(x

0

; g) + f(g; g

�1

xg)� f(x; g)� f(g; g

�1

xx

0

g) + f(xx

0

; g)

= (g:f � f)(x; x

0

):

Sine the funtion G

2

! A; (g; x) 7! �(g)(x) is smooth in an identity neighborhood of G

2

, the

assertion follows for p = 2.

Lemma D.7. For eah f 2 Z

1

s

(N;A)

[G℄

there exists a 2 C

1

s

(G;A) with

d

N

(a(g)) = g:f � f; a(gn) = a(g) + g:f(n); g 2 G;n 2 N:

Then d

G

a 2 B

2

s

(G;A) is A

N

-valued and onstant on (N �N)-osets, hene fators to a oyle

d

G

a 2 Z

2

s

(G=N;A

N

) . The ohomology lass [d

G

a℄ does not depend on the hoie of f in [f ℄

and the funtion a , and we thus obtain a group homomorphism

Æ:H

1

s

(N;A)

[G℄

! H

2

s

(G=N;A

N

); [f ℄ 7! [d

G

a℄:

Proof. Sine N is a split Lie subgroup, there exists an open 0-neighborhood of some loally

onvex spae V and a smooth map ':U ! G with '(0) = 1 suh that the multipliation map

N � U ! G; (x; n) 7! '(x)n
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is a di�eomorphism onto an open subset of G . Let E � G be a set of representatives of the

N -osets ontaining '(U), so that the multipliation map E �N ! G is bijetive.

The requirement f 2 Z

1

s

(N;A)

[G℄

implies the existene of a funtion � 2 C

1

s

(G;A) with

d

N

(�(g)) = g:f � f . We now de�ne

a:G = EN ! A; x � n 7! �(x) + x:f(n):

Then a is smooth on an identity neighborhood beause E ontains '(U). Sine f is a 1-oyle,

we have for x 2 E and n; n

0

2 N the relation

a(xnn

0

) = a(x) + x:f(nn

0

) = a(x) + x:f(n) + (xn):f(n

0

) = a(xn) + (xn):f(n

0

);

whih means that

a(gn) = a(g) + g:f(n); g 2 G;n 2 N:

In view of (D.2), we have for n 2 N the relation n:f � f = d

N

(f(n)), so that

(xn):f � f = x:(n:f � f) + x:f � f = x:d

N

(f(n)) + d

N

(a(x)) = d

N

(x:f(n) + a(x)) = d

N

(a(xn));

and hene d

N

(a(g)) = g:f � f for all g 2 G .

That the values of the funtion d

G

a lie in A

N

follows from

d

N

(a(g

1

g

2

)) = (g

1

g

2

):f � f = g

1

:(g

2

:f � f) + g

1

:f � f

= g

1

:d

N

(a(g

2

)) + d

N

(a(g

1

)) = d

N

(g

1

:a(g

2

) + a(g

1

))

in C

1

s

(N;A). The oboundary d

G

a is a oyle, hene an element of Z

2

s

(G;A

N

). We show that

d

G

a is onstant on the osets of N . We have

(d

G

a)(g

1

; g

2

n) = g

1

:a(g

2

n) + a(g

1

)� a(g

1

g

2

n)

= g

1

:a(g

2

) + g

1

g

2

:f(n) + a(g

1

)� a(g

1

g

2

)� g

1

g

2

:f(n) = (d

G

a)(g

1

; g

2

)

and

(d

G

a)(g

1

n; g

2

) = g

1

n:a(g

2

) + a(g

1

n)� a(g

1

ng

2

)

= g

1

n:a(g

2

) + a(g

1

) + g

1

:f(n)� a(g

1

g

2

(g

�1

2

ng

2

))

= g

1

n:a(g

2

) + a(g

1

) + g

1

:f(n)� a(g

1

g

2

)� (g

1

g

2

):f(g

�1

2

ng

2

)

= g

1

n:a(g

2

) + a(g

1

) + g

1

:f(n)� a(g

1

g

2

)� g

1

:((g

2

:f)(n))

= (d

G

a)(g

1

; g

2

) + g

1

:(na(g

2

)� a(g

2

)) + g

1

:f(n)� g

1

:f(n)� g

1

:(n:a(g

2

)� a(g

2

))

= (d

G

a)(g

1

; g

2

)

We now de�ne

d

G

a:G=N �G=N ! A

N

; (xN; yN) 7! (d

G

a)(x; y):

Sine d

G

a is a oyle on G , the funtion d

G

a is an element of Z

2

s

(G=N;A

N

). It remains to

show that the ohomology lass of d

G

a in H

2

s

(G=N;A

N

) does not depend on the hoies of a

and f . If a

0

2 C

1

s

(G;A) is another funtion with

d

N

(a

0

(g)) = g:f � f; a

0

(gn) = a

0

(g) + g:f(n); g 2 G;n 2 N;

then d

N

(a

0

(g)� a(g)) = 0 implies that

�(g) := a

0

(g)� a(g) 2 A

N

; g 2 G:

Moreover,

�(gn) = a

0

(gn)� a(gn) = a

0

(g) + g:f(n)� a(g)� g:f(n) = a

0

(g)� a(g) = �(g);
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so that � fators through a funtion :G=N ! A

N

, and we have

(d

G=N

)(xN; yN) = x:�(y)� �(xy) + �(x) = (d

G

�)(x; y) = (d

G

a� d

G

a

0

)(x; y):

Moreover, the fat that the quotient map G! G=N de�nes on G the struture of a smooth N -

prinipal bundle implies that  is smooth in an identity neighborhood of G=N . Hene the oyle

d

G

a

0

is an element of Z

2

s

(G=N;A

N

) and satis�es d

G

a

0

= d

G

a� d

G=N

 , so that [d

G

a℄ = [d

G

a

0

℄ .

Now suppose that f

0

2 Z

1

s

(N;A) satis�es f

0

= f + d

N

 for some  2 A . In view of the

G-equivariane of the di�erential d

N

, we have

g:(d

N

)� d

N

 = d

N

(g:� ) and (d

G

)(gn) = (d

G

)(g) + g:((d

G

)(n));

so that the funtion a

0

:= a+ d

G

 satis�es

d

N

(a

0

(g)) = d

N

(a(g)+g:�) = g:f�f+g:d

N

()�d

N

() = g:f

0

�f

0

; a

0

(gn) = a

0

(g)+g:f

0

(n):

As d

G

 is a oyle, we have d

G

a

0

= d

G

a , so that we obtain in partiular the same oyles on

G=N .

With the preeding lemma, we an prove the exatness of the Ination-Restrition Se-

quene:

Proposition D.8. Let A be a smooth G-module and N E G a split normal Lie subgroup.

Then we have the following exat Ination-Restrition Sequene:

0! H

1

s

(G=N;A

N

)

I

��!H

1

s

(G;A)

R

��!H

1

s

(N;A)

[G℄

Æ

��!H

2

s

(G=N;A

N

)

I

��!H

2

s

(G;A):

Proof. (see [We95, 6.8.3℄ or [MaL63, pp.347{354℄ for the ase of abstrat groups)

Exatness in H

1

s

(G=N;A

N

): Let � 2 Z

1

s

(G=N;A

N

). We have [q

�

�℄ = 0 if and only if there

exists an a 2 A with �(gN) = g:a� a for all g 2 G . That this funtion is onstant on N -left

osets implies that a 2 A

N

, and hene that � = d

G=N

a 2 B

1

s

(G=N;A

N

). Therefore the ination

map I is injetive on H

1

s

(G=N;A

N

).

Exatness in H

1

s

(G;A): That the restrition map

e

R maps into smoothly G-invariant

ohomology lasses follows from Proposition D.6 and the G-equivariane of R . The relation

R Æ I = 0 is lear.

To see that kerR � im I , let f 2 Z

1

s

(G;A) vanishing on N (Lemma D.3). Then f is

onstant on the N -osets beause

f(gn) = f(g) + g:f(n) = f(g); g 2 G;n 2 N:

Moreover,

n:f(g) = f(ng)� f(n) = f(ng) = f(gg

�1

ng) = f(g)

implies that im(f) � A

N

. Hene [f ℄ is ontained in the image of the ination map I .

Exatness in H

1

s

(N;A)

[G℄

: If f 2 Z

1

s

(N;A) is the restrition of a 1-oyle � 2 Z

1

s

(G;A),

then (D.2) implies

(g:f � f)(n) = (d

N

(�(g)))(n);

so that we may take � as the funtion a in the de�nition of Æ . Then d

G

a = d

G

� = 0 beause

� is a oyle, and hene Æ([f ℄) = 0.

If, onversely, Æ([f ℄) = 0, then there exists b 2 C

1

s

(G=N;A

N

) with d

G

a = d

G=N

b , where

d

G

a(xN; yN) = (d

G

a)(x; y) is de�ned as in Lemma D.7. Then the funtion a

0

:= a � (b Æ q)

satis�es

a

0

(gn) = a

0

(g) + g:f(n); d

N

(a

0

(g)) = g:f � f; g 2 G;n 2 N;

and, in addition,

d

G

a

0

= d

G

a� d

G

(q

�

b) = d

G

a� q

�

(d

G=N

b) = q

�

(d

G

a� d

G=N

b) = 0:
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This means that a

0

2 Z

1

s

(G;A), so that a

0

j

N

= a j

N

= f implies that [f ℄ is in the image of the

restrition map R .

Exatness in H

2

s

(G=N;A

N

): If f 2 Z

1

s

(N;A) has a smoothly invariant ohomology lass

and [d

G

a℄ = Æ([f ℄) as in Lemma D.7, then the image of [d

G

a℄ in Z

2

s

(G;A) under I is given by

d

G

a = q

�

d

G

a , hene a oboundary.

Suppose, onversely, that for � 2 Z

2

s

(G=N;A

N

) the oyle q

�

� on G is a oboundary and

� 2 C

1

s

(G;A) satis�es q

�

� = d

G

� . Then d

G

� vanishes on N , so that f := � j

N

is a oyle.

We have

�(xN; yN) = x:�(y) � �(xy) + �(x); x; y 2 G:

For y 2 N we obtain from �(xN;N) = �(N; xN) = f0g the relation

�(gn) = �(g) + g:�(n) and �(ng) = �(n) + n:�(g):

For g 2 G and n 2 N we therefore have

(g:f � f)(n) = g:�(g

�1

ng)� �(n) = �(ng)� �(g)� �(n)

= �(n) + n:�(g)� �(g)� �(n) = n:�(g)� �(g) = d

N

(�(g))(n):

This means that [f ℄ is smoothly G-invariant and that Æ([f ℄) = [�℄:

Example D.9. The following example shows that the exat Ination-Restrition sequene

annot be ontinued in an exat fashion by the restrition map R:H

2

s

(G;A)! H

2

s

(N;A)

[G℄

.

For that we onsider the group G := R

2

, N := Z

2

, G=N = T

2

and the trivial module

A = T = R=Z . Then

H

2

s

(G=N;A

N

) = H

2

s

(T

2

;T) = f0g; H

2

s

(G;A) = H

2

s

(R

2

;T)

�

=

H

2



(R

2

;R)

�

=

R;

and H

2

s

(N;A)

[G℄

= H

2

(Z

2

;T)

�

=

T . Now the assertion follows from the fat that the natural map

R:H

2

s

(R

2

;T)

�

=

R ! H

2

s

(Z

2

;R)

�

=

T is not injetive. It orresponds to restring an alternating

T-valued bilinear form to the lattie Z

2

. If the form is integral on this lattie, the orresponding

extension of Z

2

is abelian, hene trivial.

Remark D.10. If A is a trivial G-module, then the onneting map has a simpler desription.

Then we have H

1

s

(N;A) = Hom(N;A) = Z

1

s

(N;A), and the ondition that a homomorphism

f :N ! A is invariant under G means that it vanishes on the normal subgroup [G;N ℄ of N .

The only ondition on the funtion a:G! A that we need to desribe Æ is

a(gn) = a(g) + f(n); g 2 G;n 2 N:

Then the funtion (d

G

a)(x; y) = a(y)� a(xy) + a(x) is onstant on (N �N)-osets and de�nes

a 2-oyle in Z

2

s

(G=N;A).

Example D.11. (a) If G is a Lie group, then its identity omponent G

0

is a split normal

subgroup and the quotient group �

0

(G) is disrete. Therefore the Ination-Restrition Sequene

yields an exat sequene

0! H

1

(�

0

(G); A

G

0

)

I

��!H

1

s

(G;A)

R

��!H

1

s

(G

0

; A)

[G℄

Æ

��!H

2

(�

0

(G); A

G

0

)

I

��!H

2

s

(G;A):

(b) Assume that A

�

=

a=�

A

for a disrete subgroup �

A

of the sequentially omplete loally

onvex spae a . If G is a onneted Lie group, q

G

:

e

G ! G its universal overing and �

1

(G)

its kernel, then �

1

(G) is disrete, hene a split Lie subgroup, and we obtain for any smooth

G-module A the exat sequene

0! H

1

s

(G;A)

I

��!H

1

s

(

e

G;A)

R

��!H

1

s

(�

1

(G); A)

[G℄

Æ

��!H

2

s

(G;A)

I

��!H

2

s

(

e

G;A):
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As �

1

(G) ats trivially on A and �

1

(G) is entral in

e

G , we have

H

1

s

(�

1

(G); A) = Hom(�

1

(G); A); H

1

s

(�

1

(G); A)

[G℄

= H

1

s

(�

1

(G); A)

G

= Hom(�

1

(G); A

G

):

In view of Corollary VII.3, we may identify H

2

s

(

e

G;A) with the subgroup kerP

1

of H

2



(g; a). On

this subgroup the map [!℄ 7! F

!

given by the ux homomorphism de�nes a homomorphism

e

P

2

:H

2

s

(

e

G;A)! Hom(�

1

(G); H

1



(g; a))

�

=

Hom(�

1

(G); H

1

s

(

e

G;A))

whose kernel oinides with the image of I (Theorem VII.2). In Remark VI.8 we have seen that

the image of [!℄ 2 H

2

s

(

e

G;A) � H

2



(g; a) in H

2

s

(�

1

(G); A) is given by the ommutator map of

the orresponding entral extension

C([℄; [�℄) = �P (F

!

([℄))([�℄);

where P is de�ned in Proposition III.4. From Example D.9 we know that the vanishing of C

does not imply the vanishing of F

!

.

Another interesting aspet of this observation is that, aording to a result of H. Hopf,

there is an exat sequene

0! H

2

(�

1

(G); A)! H

2

sing

(G;A)

�

=

Hom(H

2

(G); A) ! Hom(�

2

(G); A)! 0

(f. [ML78, p.5℄). If G is smoothly paraompat, then de Rham's Theorem holds ([KM97℄) and

the losed 2-form !

eq

de�nes a singular ohomology lass in H

2

sing

(G; a)

�

=

Hom(H

2

(M); a) and

after omposition with the map q

A

: a ! A a singular ohomology lass 

!

2 H

2

sing

(G;A). The

inlusion �

!

� �

A

means that this lass vanishes on the spherial yles, i.e., the image of

�

2

(G) in H

2

(G). Hene it determines a entral extension of �

1

(G) by A whih is given by the

ommutator map C:�

1

(G)

2

! A . If this map vanishes, then 

!

= 0, but Example D.9 shows

that this does not imply the existene of a orresponding global group oyle. If G is simply

onneted, then 

!

vanishes if and only if ! integrates to a group oyle, but in general this

simple riterion fails.

Remark D.12. Let f

N

2 Z

1

s

(N;A)

[G℄

and f 2 C

1

s

(G;A) with

f(gn) = f(g) + g:f

N

(n); d

N

(f(g)) = g:f

N

� f

N

; g 2 G;n 2 N:

Then Æ(f

N

) = [d

G

f ℄ 2 Z

2

s

(G=N;A

N

) de�nes an abelian extension of G=N by A

N

. We now

desribe this abelian extension diretly in terms of f

N

. Here we assume that A

N

is a Lie group

and that any smooth map X ! A with values in A

N

de�nes a smooth map X ! A

N

(f.

Appendix C).

Using the smooth ation of G on A , we an form the semi-diret produt Lie group AoG .

Then we onsider the map

�:G! AoG; g 7! (f(g); g):

In view of f j

N

= f

N

2 Z

1

s

(N;A), the restrition � j

N

is a homomorphism. Moreover, for

g; g

0

2 G we have

�(g)�(g

0

) = (f(g) + g:f(g

0

); gg

0

) and �(gg

0

) = (f(gg

0

); gg

0

);

whih implies that

Æ

�

(g; g

0

) := �(g)�(g

0

)�(gg

0

)

�1

= ((d

G

f)(g; g

0

);1) 2 A

N

� f1g:

Therefore the indued map �:G ! (A=A

N

) o G is a group homomorphism, and the pull-bak

of the abelian extension

A

N

,! AoG!! (A=A

N

)oG

is isomorphi to the abelian extension

b

G := A

N

�

d

G

f

G de�ned by d

G

f 2 Z

2

s

(G;A

N

). Sine

f vanishes on N � G and G � N , the subset f0g � N is a normal subgroup of

b

G , and

b

G=N

�

=

A

N

�

d

G

f

G=N .
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Appendix E. A long exat sequene for Lie group ohomology

Let G be a Lie group and

0! A

1

q

1

��!A

2

q

2

��!A

3

! 0

be an extension of abelian Lie groups whih are smooth G-modules suh that q

1

and q

2

are

G-equivariant. We assume that there exists a smooth setion �:A

3

! A

2

of q

2

. Then the map

A

1

�A

3

! A

2

; (a; b) 7! a+ �(b)

is a di�eomorphism (not neessarily a group homomorphism). This assumption implies that the

natural maps

C

p

s

(G;A

1

)! C

p

s

(G;A

2

)! C

p

s

(G;A

3

)

de�ne a short exat sequene of hain omplexes, hene indue a long exat sequene in oho-

mology

0! H

0

s

(G;A

1

)! H

0

s

(G;A

2

)! H

0

s

(G;A

3

)! H

1

s

(G;A

1

)! : : :

: : :! H

p�1

s

(G;A

3

)

Æ

��!H

p

s

(G;A

1

)! H

p

s

(G;A

2

)! H

p

s

(G;A

3

)

Æ

��!H

p+1

s

(G;A

1

)! : : :

The onneting map Æ:H

p

s

(G;A

3

)! H

p+1

s

(G;A

1

) is onstruted as follows. For f 2 Z

p

s

(G;A

3

)

we �rst �nd f

1

2 C

p

s

(G;A

2

) with f = q

2

Æ f

1

. Then 0 = d

G

f = q

2

Æ d

G

f

1

implies that d

G

f

1

is

A

1

-valued, hene an element of Z

p+1

s

(G;A

1

), and then Æ([f ℄) = [d

G

f

1

℄ .

For p = 0 we have H

0

s

(G;A) = A

G

, so that the exat sequene starts with

A

G

1

,! A

G

2

! A

G

3

! H

1

s

(G;A

1

)! H

1

s

(G;A

2

)! : : : :

Remark E.1. A partiularly interesting ase arises if A is a smooth G-module, A

0

its identity

omponent and �

0

(A) := A=A

0

. Then �

0

(A) is disrete. Let us assume, in addition, that G

is onneted. Then G ats trivially on the disrete group �

0

(A). We therefore have an exat

sequene

A

G

0

,! A

G

! �

0

(A)

�

A

��!H

1

s

(G;A

0

)! H

1

s

(G;A)! H

1

s

(G; �

0

(A)) = 0;

where we use Z

1

s

(G; �

0

(A)) � C

1

(G; �

0

(A)) = 0 (Lemma III.1) to see that H

1

s

(G; �

0

(A)) is

trivial. Note that �

A

is the harateristi homomorphism of the smooth G-module A , onsidered

as a map into H

1

s

(G;A

0

) whih we may onsider as a subspae of H

1



(g; a) (De�nition III.6). It

follows in partiular that the natural map H

1

s

(G;A

0

)! H

1

s

(G;A) is surjetive.

Moreover, we obtain an exat sequene

0! H

2

s

(G;A

0

)! H

2

s

(G;A)! H

2

s

(G; �

0

(A))

Æ

��!H

3

s

(G;A

0

)! : : :

Sine G is onneted and �

0

(A) is a trivial module, the group H

2

s

(G; �

0

(A)) lassi�es the entral

extensions of G by �

0

(A), whih is parametrized by the abelian group Hom(�

1

(G); �

0

(A))

(Theorem VII.2). This leads to an exat sequene

(E:1) 0! H

2

s

(G;A

0

)! H

2

s

(G;A)



��!Hom(�

1

(G); �

0

(A))! H

3

(G;A

0

);

where  assigns to an extension of G by A the orresponding onneting homomorphism

�

1

(G) ! �

0

(A) in the long exat homotopy sequene. With the results of Setion VII we

have determined H

2

s

(G;A

0

) in terms of the topology of G and the Lie algebra ohomology spae

H

2



(g; a). To determine H

2

s

(G;A) in terms of H

s

(G;A

0

) and known data, one has to determine

the image of H

2

s

(G;A) in Hom(�

1

(G); �

0

(A)). Reall that Proposition VI.4 shows that

F

Df

= ��

A

Æ ([f ℄)

holds for eah f 2 Z

2

s

(G;A).

If A is a trivial G-module, then the divisibility of A

0

implies that A

�

=

A

0

� �

0

(A) as Lie

groups, and we thus obtain

H

2

s

(G;A)

�

=

H

2

s

(G;A

0

)�H

2

s

(G; �

0

(A))

�

=

H

2

s

(G;A

0

)�Hom(�

1

(G); �

0

(A)):

For the universal overing q

G

:

e

G! G we thus obtain an isomorphism

H

2

s

(

e

G;A

0

)! H

2

s

(

e

G;A)

beause �

1

(

e

G) is trivial.
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Appendix F. Multipliation in Lie algebra and Lie group ohomology

In this appendix we ollet some information onerning multipliation of Lie algebra and

Lie group oyles whih is used in Setion IX.

Multipliation of Lie algebra ohains

Let U; V;W be topologial modules of the topologial Lie algebra g and m:U � V !

W; (u; v) 7! u � v a g-equivariant ontinuous bilinear map. Then we de�ne a produt

C

p



(g; U)� C

q



(g; V )! C

p+q



(g;W ); (�; �) 7! � ^ �

by

(� ^ �)(x

1

; : : : ; x

p+q

) :=

1

p!q!

X

�2S

p+q

sgn(�)�(x

�(1)

; : : : ; x

�(p)

)�(x

�(p+1)

; : : : ; x

�(p+q)

):

For p = q = 1 we have in partiular

(� ^ �)(x; y) = �(x) � �(y)� �(y) � �(x):

In the following we write for a p-linear map �: g

p

! V :

Alt(�)(x

1

; : : : ; x

p

) :=

X

�2S

p

sgn(�)�(x

�(1)

; : : : ; x

�(p)

):

In this sense we have

� ^ � =

1

p!q!

Alt(� � �);

where

(� � �)(x

1

; : : : ; x

p+q

) := �(x

1

; : : : ; x

p

) � �(x

p+1

; : : : ; x

p+q

):

Lemma F.1. For � 2 C

p



(g; U) and � 2 C

q



(g; V ) we have

(F:1) d

g

(� ^ �) = d

g

� ^ � + (�1)

p

� ^ d

g

�:

Proof. First we verify that for x 2 g the insertion map i

x

satis�es

(F:2) i

x

(� ^ �) = i

x

� ^ � + (�1)

p

� ^ i

x

�:

For p = 0 or q = 0 this formula is a trivial onsequene of the de�nitions. We may therefore

assume p; q � 1. We alulate for x

1

; : : : ; x

p+q

2 g :

i

x

1

(� ^ �)(x

2

; : : : ; x

p+q

) = (� ^ �)(x

1

; x

2

; : : : ; x

p+q

)

=

1

p!q!

X

�2S

p+q

sgn(�)�(x

�

�1

(1)

; : : : ; x

�

�1

(p)

)�(x

�

�1

(p+1)

; : : : ; x

�

�1

(p+q)

)

=

1

p!q!

X

�(1)�p

: : :+

1

p!q!

X

�(1)>p

: : : :
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For �(1) � p we get

�(x

�

�1

(1)

; : : : ; x

�

�1

(p)

) = (�1)

�(1)+1

�(x

1

; x

�

�1

(1)

; : : : ;x

1

; : : : ; x

�

�1

(p)

)

= (�1)

�(1)+1

(i

x

1

�)(x

�

�1

(1)

; : : : ;x

1

; : : : ; x

�

�1

(p)

);

whih leads to

1

p!q!

X

�(1)�p

: : :

=

1

p!q!

p

X

i=1

X

�(1)=i

sgn(�)(�1)

i+1

(i

x

1

�)(x

�

�1

(1)

; : : : ;x

1

; : : : ; x

�

�1

(p)

)�(x

�

�1

(p+1)

; : : : ; x

�

�1

(p+q)

)

=

1

p!q!

p

X

i=1

Alt(i

x

1

� � �)(x

2

; : : : ; x

p+q

) =

1

(p� 1)!q!

Alt(i

x

1

� � �)(x

2

; : : : ; x

p+q

)

= (i

x

1

� ^ �)(x

2

; : : : ; x

p+q

):

We likewise obtain

1

p!q!

X

�(1)>p

: : : = (�1)

p

(� ^ (i

x

1

�))(x

2

; : : : ; x

p+q

):

This proves (F.2).

We now prove (F.1) by indution on p and q . For p = 0 we have

(� ^ �)(x

1

; : : : ; x

q

) = � � �(x

1

; : : : ; x

q

)

and

d

g

(� ^ �)(x

0

; : : : ; x

q

) =

q

X

i=0

(�1)

i

x

i

:(� � �)(x

0

; : : : ; bx

i

; : : : ; x

q

)

+

X

i<j

(�1)

i+j

� � �([x

i

; x

j

℄; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

q

)

=

q

X

i=0

(�1)

i

(x

i

:�) � �(x

0

; : : : ; bx

i

; : : : ; x

q

) + � � (d�)(x

0

; : : : ; x

q

)

and

(d

g

� ^ �)(x

0

; : : : ; x

q

) =

1

q!

X

�2S

q+1

sgn(�)(d

g

�)(x

�(0)

) � �(x

�(1)

; : : : ; x

�(q)

)

=

1

q!

q

X

i=0

X

�(0)=i

sgn(�)(x

i

:�) � �(x

�(1)

; : : : ; x

�(q)

)

=

1

q!

q

X

i=0

(�1)

i

(x

i

:�) �Alt(�)(x

0

; : : : ; bx

i

; : : : ; x

q

)

=

q

X

i=0

(�1)

i

(x

i

:�) � �(x

0

; : : : ; bx

i

; : : : ; x

q

):

This proves (F.1) for p = 0. A similar argument works for q = 0. We now assume that p; q � 1

and that (F.1) hold for the pairs (p � 1; q) and (p; q � 1). Then we obtain with the Cartan

formulas and (F.2) for x 2 g :

i

x

(d

g

� ^ � + (�1)

p

� ^ d

g

�)

= (i

x

d

g

�) ^ � + (�1)

p+1

d

g

� ^ i

x

� + (�1)

p

i

x

� ^ d

g

� + � ^ i

x

d

g

�

= x:� ^ � � d

g

(i

x

�) ^ � + (�1)

p+1

d

g

� ^ i

x

� + (�1)

p

i

x

� ^ d

g

� + � ^ x:� � � ^ d

g

(i

x

�)

= x:(� ^ �)� d

g

(i

x

� ^ �) + (�1)

p+1

d

g

(� ^ i

x

�)

= x:(� ^ �)� d

g

(i

x

(� ^ �)) = i

x

(d

g

(� ^ �)):

Sine x was arbitrary, this proves (F.1).
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The preeding lemma implies that produts of two oyles are oyles and that the

produt of a oyle with a oboundary is a oboundary, so that we obtain bilinear maps

H

p



(g; U)�H

q



(g; V )! H

p+q



(g;W ); ([�℄; [�℄) 7! [� ^ �℄

whih an be ombined to a produt

H

�



(g; U)�H

�



(g; V )! H

�



(g;W ):

Multipliation of group ohains

Now let U; V;W be smooth modules of the Lie group G and m:U �V !W; (u; v) 7! u � v

a G-equivariant biadditive ontinuous map. Then we de�ne a produt

C

p

s

(G;U)� C

q

s

(G; V )! C

p+q

s

(G;W ); (�; �) 7! � [ �;

where

(� [ �)(g

1

; : : : ; g

p+q

) := �(g

1

; : : : ; g

p

) � (g

1

� � � g

p

):�(g

p+1

; : : : ; g

p+q

)

(f. [Bro82, p.110℄ up to the di�erent signs whih are aused by di�erent signs for the group

di�erential).

Lemma F.2. For � 2 C

p

s

(G;U) and � 2 C

q

s

(G; V ) we have

d

G

(� [ �) = d

G

� [ � + (�1)

p

� [ d

G

�:

Proof. For g

0

; : : : ; g

p+q

2 G we have

d

G

(� [ �)(g

0

; : : : ; g

p+q

)

= g

0

:(� [ �)(g

1

; : : : ; g

p+q

) +

p+q

X

i=1

(�1)

i

(� [ �)(g

0

; : : : ; g

i�1

g

i

; : : : ; g

p+q

)

+ (�1)

p+q+1

(� [ �)(g

0

; : : : ; g

p+q�1

)

= (g

0

:�(g

1

; : : : ; g

p

)) � (g

0

� � � g

p

):�(g

p+1

; : : : ; g

p+q

)

+

p

X

i=1

(�1)

i

�(g

0

; : : : ; g

i�1

g

i

; : : : ; g

p

) � g

0

� � � g

p

:�(g

p+1

; : : : ; g

p+q

)

+

p+q

X

i=p+1

(�1)

i

�(g

0

; : : : ; g

p�1

) � g

0

� � � g

p�1

:�(g

p

; : : : ; g

i�1

g

i

; : : : ; g

p+q

)

+ (�1)

p+q+1

�(g

0

; : : : ; g

p�1

) � (g

0

� � � g

p�1

):�(g

p

; : : : ; g

p+q�1

)

= (d

G

�)(g

0

; : : : ; g

p

) � (g

0

� � � g

p

):�(g

p+1

; : : : ; g

p+q

)

+ (�1)

p

�(g

0

; : : : ; g

p�1

) � (g

0

� � � g

p

):�(g

p+1

; : : : ; g

p+q

)

+ �(g

0

; : : : ; g

p�1

)�

g

0

� � � g

p�1

:

�

p+q

X

i=p+1

(�1)

i

�(g

p

; : : : ; g

i�1

g

i

; : : : ; g

p+q

) + (�1)

p+q+1

�(g

p

; : : : ; g

p+q�1

)

�

= (d

G

� [ �)(g

0

; : : : ; g

p+q

) + (�1)

p

(� [ d

G

�)(g

0

; : : : ; g

p+q

):

Lemma F.2 implies that produts of two oyles are oyles and that the produt of a

oyle with a oboundary is a oboundary, so that we obtain biadditive maps

H

p

s

(G;U)�H

q

s

(G; V )! H

p+q

s

(G;W ); ([�℄; [�℄) 7! [� [ �℄:

The following lemma shows that for Lie groups the multipliation of group and Lie algebra

ohains is ompatible with the di�erentiation map D .
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Lemma F.3. If G is a Lie group, U , V and W are smooth modules and �:U � V ! W is

ontinuous bilinear and equivariant, then we have for � 2 C

p

(G;U) and � 2 C

q

(G; V ) we have

D(� [ �) = D� ^D�

in C

p+q



(g;W ) .

Proof. In view of D� = Alt(d

p

�(1; : : : ;1)); we get

D� ^D

�

=

1

p!q!

Alt(D� �D�) =

1

p!q!

Alt(Alt(d

p

�(1; : : : ;1)) � Alt(d

q

�(1; : : : ;1)))

= Alt(d

p

�(1; : : : ;1) � d

q

�(1; : : : ;1));

so that it remains to see that

d

p+q

(� [ �)(1; : : : ;1) = (d

p

�)(1; : : : ;1) � (d

q

�)(1; : : : ;1);

but this follows immediately from the normalization of the oyles and the hain rule for jets,

applied to the multipliation map � .
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