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Abstra
t

We 
onsider the existen
e of stationary solutions to the Germano Model -

equations des
ribing turbulent 
ow of 
uids. The model 
omes from Large Eddy

Simulation te
hniques yielding modi�ed Navier-Stokes Equations with an addi-

tional nonlo
al term. On one hand this nonlo
alness disturbs monotoni
ity, but

on the other hand it is helpful for 
ompa
tness arguments. Thus we 
ombine

the methods of monotone operators and smoothing properties of 
onvolutions in

passing to the limit in the approximate problem.
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1 Introdu
tion

We are interested in existen
e of stationary weak solutions to the system des
ribing

turbulent 
ow in the three-dimensional torus T

3

v � rv � div (~
(v)jr

s

vjr

s

v)� ��v +rq = f;

div v = 0;

(1)

where v : T

3

�! R

3

is the velo
ity, r

s

u =

1

2

(ru +ru

T

) denotes the symmetri
 part

of the gradient and q : T

3

�! R is the pressure. The operator ~
 is a nonlo
al operator

des
ribed in Se
tion 2.3.

We brie
y introdu
e the physi
al motivation for the above equations. The idea of Large

Eddy Simulation (LES) has its origin in numeri
s. Typi
al for turbulent 
ows are very

di�erent s
ales, whi
h lead to an in
rease of the number of numeri
al operations needed

to 
ompute the solution. The LES te
hnique bases on 
hoosing the s
ales for whi
h the

exa
t solution is 
omputed dire
tly (large s
ales, resolved) and the s
ales for whi
h the

solution is modelled (small s
ales, subgrid). Therefore the velo
ity u is de
omposed

into the mean part �u and turbulent 
u
tuations u

0

, i.e., u = �u + u

0

. The 
u
tuations

are �rst smoothed out and then modelled. Sele
tion of the s
ales is done by �ltering,
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i.e. mollifying the velo
ity with some fun
tion (�lter).

Filters

Di�erent �lters based on 
onvolutions 
an be used. In general the 
onvolution is done

with respe
t to the spa
e variable

�u(t; x) = u � '

Æ

(t; x) =

Z

R

3

u(t; y)'

Æ

(x� y)dy;

where the index Æ denotes the �lter width (so-
alled 
ut-o� length). In general a �lter

is assumed to be a fun
tion of total mass one. In 
ase of a bounded domain 
 � R

3

the �ltered value �u is de�ned by

�u(t; x) =

Z




u(t; y)'

Æ

(x� y)dy:

Then the problem of �ltering near the boundary and of boundary values of �u o
-


urs. In this paper we 
on
entrate on the problem with periodi
 boundary 
onditions.

These nonphysi
al boundary 
onditions allow to ignore the problem of �ltering near

the boundary. Nevertheless, they are interesting from the mathemati
al point of view,

be
ause all other analyti
al diÆ
ulties remain un
hanged.

Modelling

By 
onvoluting the Navier Stokes equations with a �lter one obtains

�u

t

+ div (u
 u)� ���u +r�p =

�

f;

div �u = 0:

Be
ause of the nonlinearity in the equations the s
ales 
annot be 
onsidered separately.

Furthermore, looking for solutions representing the resolved s
ales, the intera
tions

with the subgrid s
ales have to be taken into 
onsideration. Therefore we express the


onvoluted 
onve
tive term as a di�eren
e of the 
onve
tive term in terms of �u and of

a so-
alled subgrid stress tensor � = �u 
 �u � u
 u representing the 
ontribution of

small s
ales into the system. There has to be added some 
onstitutive relation 
losing

the system. In LES we �nd a wide range of 
losure models for the tensor � . The most


lassi
al and still often used one is the Smagorinsky model where

� = (
Æ)

2

jr

s

�ujr

s

�u;

and 
 > 0 is 
onstant. This leads to the following initial boundary value problem

�u

t

+ div (�u
 �u)� div (
Æ

2

jr

s

�ujr

s

�u)� ���u+r�p =

�

f;

div �u = 0;

�u(0; x) = �u

0

(x);

+ some boundary 
onditions:

(2)

Existen
e and uniqueness to (2) have been shown with use of Galerkin approximation
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and monotone operator methods. For 
lassi
al results in this �eld we refer to [Lio69,

Lad70℄.

The Smagorinsky model has a lot of disadvantages. In order to adapt it better to

lo
al 
ow stru
tures a dynami
al pro
edure is applied - the Germano model. It bases

on applying a se
ond �lter (test �lter) to the Navier-Stokes equations. Denoting the

width of the �rst �lter (grid �lter) as Æ

1

, the test �lter '

Æ

2

must have a di�erent width

Æ

2

, with Æ

2

> Æ

1

usually 
hosen Æ

2

= 2Æ

1

. Applying this se
ond �lter extra
ts a test �eld

from the resolved s
ales. The idea is the following: The smallest resolved s
ales are

sampled to give information for modelling the subgrid s
ales (notation: ~u = u � '

Æ

2

).

The next step is to use the so-
alled Germano identity, (whi
h in fa
t is quite obvious),

i.e.

L = T � ~� ; (3)

where � and T are the subgrid tensors

� = �u
 �u� u
 u;

T =

~

�u


~

�u�

^

u
 u

and

L =

~

�u


~

�u�

^

�u
 �u

is a Leonard tensor. The L tensor 
an be 
omputed from the resolved �eld sin
e it

is asso
iated with s
ales of motion between the grid and test s
ales. In the next step

both subgrid tensors are modelled in a similar way as in Smagorinsky's model (the


oeÆ
ient 
 is a square of the original quantity). The 
ru
ial simpli�
ation is that they


an be modelled with the same 
 = 
(t; x), i.e.,

� = 2
Æ

2

1

jr

s

�ujr

s

�u;

T = 2
Æ

2

2

jr

s

~

�ujr

s

~

�u:

Substituting it into (3)

L = 2
Æ

2

2

jr

s

~

�ujr

s

~

�u�

�

^

2
Æ

2

1

jr

s

�ujr

s

�u

�

(the tilde sign applies to the whole term in bra
kets) and assuming the additional

simpli�
ation

^

(
Æ

2

1

jr

s

�ujr

s

�u) = 


�

^

Æ

2

1

jr

s

�ujr

s

�u

�

(note: 
 = 
(t; x) !) the following equation is obtained

L = 2
M with M = Æ

2

2

jr

s

~

�ujr

s

~

�u�

^

Æ

2

1

jr

s

�ujr

s

�u:

The above equation is in fa
t an overdetermined system of six equations for the 
oeÆ-


ient 
. Therefore the error Q = (L�2
M)

2

is minimized by the least squares method,

i.e.,

�Q

�


= 0, yielding


 =

1

2

L : M

M : M

: (4)
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This 
 is substituted into the Smagorinsky system (2). Then v = �u and q = �p de�ne a

solution to the model equations

v

t

+ div (v 
 v)� div (
jr

s

vjr

s

v)� ��v +rq =

�

f;

div v = 0:

For more details on modelling we refer to [GPMC91, Lil92, Jim95, Sag01℄.

Modi�
ations

There 
an easily be found examples of initial data su
h that the matrix L 
annot be

estimated with help of the matrix M (see formula (4) for fun
tion 
). Thus, if the

denominator equals zero, there is no possibility to extend the operator 
 to a fun
tion

de�ned for these values. This motivates some ne
essary modi�
ations of this 
oeÆ
ient.

We will not propose any new formula for 
, only denote in general the mathemati
al

assumptions we put. They are 
learly assembled in Se
tion 2.3.

2 Notation, Fun
tion Spa
es

2.1 Basi
 Notation

In the following the subset of symmetri
 matri
es in R

n�n

will be denoted by S

n

: Let

u; v 2 R

n

: We will use the following notation for s
alar produ
t of ve
tors, s
alar

produ
t of matri
es and tensor produ
t, respe
tively

u � v =

n

X

i=1

u

i

v

i

A �B =

n

X

i;j=1

a

ij

b

ij

u
 u = (u

i

u

j

)

n

i;j=1

where A = (a

ij

)

n

i;j=1

; B = (b

ij

)

n

i;j=1

: For the simpli
ity of notation the produ
t sign will

often be omitted.

The set of smooth fun
tions on the torus T

3


an be identi�ed with the set of peri-

odi
 smooth fun
tions with some period L 2 (0;1): Therefore in the whole paper


 = (0; L)

3

is a 
ube of period L in R

3

:

Before we give the de�nition of the weak solution let us introdu
e the spa
es of diver-

gen
e free periodi
 fun
tions.

By C

1

per

(R

3

) we denote the set of fun
tions from C

1

(R

3

), whi
h are periodi
 in ea
h

ith dire
tion with a period L > 0, i.e., u(x+ Le

i

) = u(x); i = 1; 2; 3; for u 2 C

1

per

(R

3

):

Then let

V � fu : u 2 C

1

per

(R

3

); div u = 0;

Z




u dx = 0g;

and let V be the 
losure of V with respe
t to norm kuk

V

=

�
R




jruj

3

dx

�

1

3

. Its dual

spa
e will be denoted by V

0

: We will use the notation (�; �) for the s
alar produ
t in L

2

and h�; �i

X;X

0

for the dual pairing between the spa
e X and its dual. In parti
ular for the

dual pairing between V and V

0

the notation h�; �i will be used. All L

p

;W

1;p

� fun
tions

are meant to be periodi
 in ea
h ith dire
tion with period L and with vanishing mean

on 
. Note additionally that for divergen
e-free ve
tor �eld u : 
 �! R

3

it holds

div (u
 u) = u � ru:
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In the whole paper (ex
ept for Lemma 3.3) we will denote a subsequen
e (v

n

k

) or the

further subsequen
e of a sequen
e (v

n

) also by (v

n

).

2.2 Preliminary fa
ts

It will be useful to introdu
e the trilinear form b and to establish its properties

b(u; v; w) :=

Z




(u � rv) � w dx:

Lemma 2.1 Let b be de�ned as above. Then

(a) b is a well-de�ned 
ontinuous trilinear form on V � V � V (in parti
ular).

(b) b(u; v; v) = 0 for all u; v; w 2 V:

(
) b is antisymmetri
, i.e. b(u; v; w) = �b(u; w; v) for all u; v; w 2 V:

Showing these properties is analogous as for the nonlinearity in the Navier-Stokes equa-

tions (
f. [Tem77, MNRR96℄). Therefore the lemma is left without proof.

As a �lter we 
hoose a C

1

per

(R

3

)- fun
tion ' su
h that

R




'dx = 1: Then for v 2 L

p

the following properties of the �ltering of v, i.e. of ~v(x) =

R




v(y)'(x � y) dy; are

meaningful:

(i) k~vk

L

p

� kvk

L

p

k'k

L

1

and k~vk

L

p

� kvk

L

1

k'k

L

p

;

(ii) D

�

~v(x) =

Z




D

�

'(x� y)v(y) dy, where D

�

v =

�

j�j

v

�x

�

1

1

�x

�

2

2

�x

�

3

3

with multi-index

� = (�

1

; �

2

; �

3

); j�j = �

1

+ �

2

+ �

3

;

(iii) ~v 2 C

1

per

(R

3

):

The proof of the above properties for �ltered values is analogous to the 
ase of the


lassi
al 
onvolution on the whole R

3

(
f. [Bre99℄).

In order to work on the symmetri
 parts of a gradients we will re
all a ne
essary tool

- the Korn's inequality (
f. [Fu94℄).

Lemma 2.2 (Korn's inequality) Let 1 < p < 1 and v 2 W

1;p

(
), where 
 =

(0; L)

3

; L > 0: Then there exists a 
onstant k = k(p;
) su
h that

kvk

W

1;p

� kkr

s

vk

L

p

:

2.3 Formulation of the Problem

We formulate exa
tly the problem and de�ne the solutions. Let 
 � R

3

be denoted as

above. We 
onsider the initial-boundary value problem derived in the previous se
tion

with periodi
 boundary 
onditions. It will allow to omit the problem of �ltering near

the boundary, when the domain of the �lter does not overlap with the set 
. For a given
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external for
e f and initial value v

0

we are looking for a velo
ity v : (0; T )� 
 �! R

3

and a pressure q : (0; T )� 
 �! R solving the system

v

t

+ v � rv � div (~
(v)jr

s

vjr

s

v)� ��v +rq = f;

div v = 0

v(0; x) = v

0

(x)

(5)

with periodi
 boundary 
onditions (i = 1; 2; 3)

v(t; x+ Le

i

) = v(t; x);

q(t; x+ Le

i

) = q(t; x):

(6)

where fe

i

g

3

i=1

is the 
anoni
al basis of R

3

, L is the period in all dire
tions and � is the


onstant positive vis
osity. We denote for brevity

~
(v) := 
(~v;fvv;r

s

~v;

^

jr

s

vjr

s

v):

The properties of the operator 
 are the following

(C1) 
 is a fun
tion of ~v;fvv;r

s

~v;

^

jr

s

vjr

s

v, 
ontinuous with respe
t to all four vari-

ables.

(C2) 
 satis�es the 
ondition

0 < � � ~
(v) � � <1: (7)

We will look for stationary solutions to this problem. Then the velo
ity v is independent

of time, i.e.

v(t; x) = v(x) for all t � 0:

Also the external for
es f must be independent of time. Then the system (5) redu
es

to

v � rv � div (~
(v)jr

s

vjr

s

v)� ��v +rq = f;

div v = 0

(8)

with the boundary 
onditions (i = 1; 2; 3)

v(x+ Le

i

) = v(x);

q(x+ Le

i

) = q(x):

(9)

We de�ne weak solutions and formulate the result on the existen
e of these solutions.

De�nition 2.1 The fun
tion v 2 V is a weak solution to problem (8), (9) if the

equation

Z




(vrv�+ ~
(v)jr

s

vjr

s

vr

s

�+rvr�� f�) dx = 0 (10)

is satis�ed for all � 2 V:

Theorem 2.3 (Existen
e) Let f 2 V

0

and let 
 satisfy 
onditions (C1)-(C2). Then

there exists a weak solution in the sense of De�nition 2.1 to the stationary problem

(8),(9).
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3 Proof of Theorem 2.3

Let f!

r

g be the set of eigenve
tors of the Stokes operator in 
, for the de�nition and

properties of the Stokes operator in 
 see [MNRR96℄. We de�ne for ea
h �xed n 2 N

an approximate solution to (10) by

v

n

(x) =

n

X

r=1

�

n

r

!

r

; �

n

r

2 R; (11)

where v

n

2 V

n

= linf!

1

; !

2

; :::; !

n

g solves the system of equations

b(v

n

; v

n

; !

r

) +

Z




~
(v

n

)jr

s

v

n

jr

s

v

n

� r

s

!

r

dx + �(rv

n

;r!

r

) = hf; !

r

i (12)

for r = 1; :::; n. The existen
e of solutions to this approximate problem is a 
onsequen
e

of the Brouwer �xed point theorem, and in parti
ular of the following lemma (
f.

[Tem77, Eva98℄), whi
h follows from that theorem.

Lemma 3.1 Let X be a �nite dimensional spa
e with s
alar produ
t [�; �℄ and norm j � j

and let P : X �! X be a 
ontinuous mapping su
h that

[P (x); x℄ > 0 for jxj = K; K > 0:

Then there exists x 2 X with jxj � K su
h that P (x) = 0.

Now we will use this tool to prove the following theorem.

Theorem 3.2 For given f 2 V

0

there exists a solution �

n

1

; :::; �

n

n

(and therefore v

n

2

V

n

) to the approximate problem (11), (12).

Proof

Note that V

n

is a �nite dimensional Hilbert spa
e. Let P be de�ned as

[P (v); �℄ =

Z




~
(v)jr

s

vjr

s

vr

s

�dx+ �(rv;r�) + b(v; v; �)� hf; �i 8 v; � 2 V

n

:

The above mapping is 
ontinuous w.r.t v 2 V

n

. Let us 
he
k the last assumption of

Lemma 3.1. By Korn's inequality and assumption (C2)

[P (v); v℄ = �krvk

2

L

2

+

Z





(~v)jr

s

vj

3

dx� hf; vi

(C2)

� �krvk

2

L

2

+ �

Z




jr

s

vj

3

dx� kfk

V

0

kvk

V

Korn

� �krvk

2

L

2

+ kkvk

3

W

1;3

� kfk

V

0

kvk

V

� �krvk

2

L

2

+ kvk

V

(kkvk

2

V

� kfk

V

0

):

Thus for K big enough, i.e., K >

�

kfk

V

0

k

�

1

2

; we get [P (v); v℄ > 0 for all v 2 V

n

; kvk =

K: Therefore there exists a v

n

su
h that the equation P (v

n

) = 0 is satis�ed.
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Energy estimate

We will show that the approximate solutions 
onverge to a solution of the original

problem. Multiplying the equations (12) by �

n

r

and summing over r one obtains by

Lemma 2.1 (b)

Z




~
(v

n

)jr

s

v

n

jr

s

v

n

r

s

v

n

dx+ �krv

n

k

2

L

2

= hf; v

n

i: (13)

Estimates done for the turbulent term in a proof of Theorem 3.2 yield that

Z




~
(v

n

)jr

s

v

n

j

3

dx � kkv

n

k

3

V

Estimating the RHS with Young's inequality

hf; v

n

i � kfk

V

0

kv

n

k

V

� Kkfk

3

2

V

0

+

k

2

kv

n

k

3

V

with K = K(k) we obtain

k

2

kv

n

k

3

V

+ �krv

n

k

2

L

2

� Kkfk

3

2

V

0

: (14)

Passing to the limit

A dire
t 
onsequen
e of the boundedness of the sequen
e (v

n

) in V is the existen
e of

a subsequen
e, su
h that for n!1

v

n

* v in V: (15)

Passing to the limit in the trilinear form b does not produ
e any diÆ
ulties. Noti
e that

in the three-dimensional 
ase W

1;3

(
) is 
ompa
tly embedded in L

q

(
) for 1 � q <1:

Therefore

v

n

�! v in L

q

(
) for 1 � q <1: (16)

Then the 
onvergen
e

b(v

n

; v

n

; �) �! b(v; v; �) for all � 2 V (17)

follows from

Z




(v

n

rv

n

� vrv)�dx

=

Z




(v

n

� v)rv

n

�dx+

Z




v(rv

n

�rv)�dx;

where both integrals in the sum 
onverge to zero due to weak 
onvergen
e (15) and

strong 
onvergen
e (16). The biggest problems appear in passing to the limit in the

nonlinear turbulent term. From the equation we 
on
lude that div f~
(v

n

)jr

s

v

n

jr

s

v

n

g

is bounded in V

0

and therefore there exists a (further) subsequen
e and a � 2 V

0

su
h

that for n!1

div f~
(v

n

)jr

s

v

n

jr

s

v

n

g* � in V

0

: (18)
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If instead of the turbulent term in this form we had the term div (jr

s

vjr

s

v), whi
h is

monotone, then passing to the limit 
ould easily be done. But in this 
ase there appears

a produ
t of a monotone operator and of 
, whi
h is a nonlo
al operator dependent on

�ltered values ~v;fvv;r

s

~v;

^

jr

s

vjr

s

v. Therefore, there is no 
han
e for the whole term

to be monotone. However the properties of 
onvolutions improve the 
onvergen
e of


, whi
h will allow - with help of the Minty-Browder tri
k (
f. [Eva90℄) and strong


onvergen
e of gradients - to pass to the limit in the whole turbulent term. First we

formulate a lemma 
on
erning the 
onvergen
e of 
.

Lemma 3.3 Let 
 = 
(�; �; �; �) be the fun
tion satisfying 
onditions (C1)-(C2). Then

for ea
h sequen
e (v

n

)

n2N

su
h that v

n

* v in V there exists � 2 L

3

2

and it holds:

(i) For n �!1 the following sequen
es 
onverge strongly in L

1

(
)

e

v

n

�! ev;

g

v

n

v

n

�! fvv;

r

s

e

v

n

�! r

s

ev:

We 
an extra
t a further subsequen
e (v

n

k

) of (v

n

) su
h that

^

jr

s

v

n

k

jr

s

v

n

k

�! e�:

(ii) Moreover


(

f

v

n

k

;

^

v

n

k

v

n

k

;r

f

v

n

k

;

^

jr

s

v

n

k

jr

s

v

n

k

) �! 
(~v;fvv;r~v; e�) in L

1

(
): (19)

Proof

Let us start with showing the 
onvergen
es from assertion (i): The �lter ' is a smooth

fun
tion. From linearity of the 
onvolution one 
an 
on
lude

k

e

v

n

� ~vk

W

1;1

� (k'k

L

1

+ kr'k

L

1

) kv

n

� vk

L

1

and also

k

℄

v

n

v

n

�fvvk

L

1

� k'k

L

1

kv

n

v

n

� vvk

L

1

:

Hen
e the strong 
onvergen
e (16) implies the �rst three 
onvergen
es in assertion (i).

The last step deals with the 
onvergen
e of

^

jr

s

v

n

jr

s

v

n

: Due to the a priori estimate

the term jrv

n

jrv

n

and also jr

s

v

n

jr

s

v

n

are bounded in L

3

2

: Therefore we 
an extra
t

a subsequen
e su
h that

jr

s

v

n

k

jr

s

v

n

k

* � in L

3

2

(
): (20)

However now it 
annot be 
laimed yet that � = jr

s

vjr

s

v. This result will be obtained

after �nishing all the steps of the proof. Note that in parti
ular L

3

2

�� W

�1;

3

2

so

jr

s

v

n

k

jr

s

v

n

k

�! � in W

�1;

3

2

(
): (21)
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This yields

k

^

jr

s

v

n

k

jr

s

v

n

k

� ~�k

L

1

� k'k

W

1;3

k jr

s

v

n

k

jr

s

v

n

k

� �k

W

�1;

3

2

;

and therefore

^

jr

s

v

n

k

jr

s

v

n

k

�! e� in L

1

(
):

Be
ause 
 is a 
ontinuous fun
tion of all its arguments, the assertion (ii) of the

lemma holds.

Coming ba
k to the 
onvergen
e (18) one noti
es that Lemma 3.3 brings some more

information on the limit �. Then for a (further) subsequen
e (19) and (20) imply that

~
(v

n

)jr

s

v

n

jr

s

v

n

* 
(~v;fvv;r

s

~v; ~�)� in L

3

2

: (22)

For brevity we denote

~
(v; �) := 
(~v;fvv;r

s

~v; ~�):

Passing to the limit in (12) we obtain the limit identity

b(v; v; �) +

Z




~
(v; �)�r

s

� dx+ �(rv;r�) = hf; �i for all � 2 V: (23)

Again for the simpli
ity of notation we introdu
e a(�) := j�j �. Re
all the following

useful properties of a:

� a is strongly monotone, i.e. there exists a positive 
onstant k su
h that

ha(�)� a(�); � � �i

L

3

2

;L

3

� kk� � �k

3

L

3

for all �; � 2 L

3

:

� a is hemi
ontinuous, i.e., 8 u; v; w 2 V the fun
tion t 7! (a(u + tv); w) is a


ontinuous fun
tion from R to R.

Minty-Browder tri
k

Let us analyze for z 2 V the integral

I

n

= h~
(v

n

) a(r

s

v

n

)� ~
(v; �) a(r

s

z);r

s

v

n

�r

s

zi

L

3

2

;L

3

= h[~
(v

n

)� ~
(v; �)℄a(r

s

v

n

);r

s

v

n

�r

s

zi

L

3

2

;L

3

+ h~
(v; �)[a(r

s

v

n

)� a(r

s

z)℄;r

s

v

n

�r

s

zi

L

3

2

;L

3

= I

n

1

+ I

n

2

:

The �rst integral 
an be estimated by

jI

n

1

j � k~
(v

n

)� ~
(v; �)k

L

1

krv

n

k

2

L

3

kr

s

v

n

�r

s

zk

L

3

:

Be
ause of 
ondition (C2) and the strong monotoni
ity of a the se
ond integral 
an be

estimated by

I

n

2

� �ha(r

s

v

n

)� a(r

s

z);r

s

v

n

�r

s

zi

L

3

2

;L

3

� �kr

s

v

n

�r

s

zk

3

L

3

:
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This allows to 
on
lude that

I

n

� 


n

;

where




n

= �kr

s

v

n

�r

s

zk

3

L

3

� k~
(v

n

)� ~
(v; �)k

L

1

krv

n

k

2

L

3

kr

s

v

n

�r

s

zk

L

3

:

The fun
tion 


n

does not have to be positive for all n. But the property

lim inf

n!1




n

� 0 for all z 2 V;

whi
h is a 
onsequen
e of Lemma 3.3, will be useful in the following.

From equation (13) we know that

h~
(v

n

)a(r

s

v

n

);r

s

v

n

i

L

3

2

;L

3

= hf; v

n

i � �krv

n

k

2

L

2

:

Substituting it into I

n

one obtains

I

n

= hf; v

n

i � �krv

n

k

2

L

2

�h~
(v

n

)a(r

s

v

n

);r

s

zi

L

3

2

;L

3

� h~
(v; �)a(r

s

z);r

s

v

n

�r

s

zi

L

3

2

;L

3

:

With use of the lower semi
ontinuity of the norm we 
on
lude from (15) and (22) that

lim sup I

n

� hf; vi � �krvk

2

L

2

� h~
(v; �)�;r

s

zi

L

3

2

;L

3

� h~
(v; �)a(r

s

v);r

s

v �r

s

zi

L

3

2

;L

3

:

Using the equation (23) and that lim sup I

n

� lim inf 


n

and lim inf 


n

� 0 it follows

h~
(v; �)�� ~
(v; �)a(r

s

z);r

s

v �r

s

zi

L

3

2

;L

3

� 0 for all z 2 V:

Taking z = v � �� with � > 0 we obtain

�h~
(v; �)�� ~
(v; �)a(r

s

z);r

s

�i

L

3

2

;L

3

� 0:

Dividing by � and then letting �& 0, the hemi
ontinuity of the operator a yields

h~
(v; �)�� ~
(v; �)a(r

s

v);r

s

�i

L

3

2

;L

3

� 0

for all � 2 V . Hen
e,

h~
(v; �)�;r

s

�i

L

3

2

;L

3

= h~
(v; �)a(r

s

v);r

s

�i

L

3

2

;L

3

for all test fun
tions � 2 V . Sin
e these test fun
tions � are divergen
e-free, the above

result only yields

div ~
(v; �)� = div ~
(v; �)jr

s

vjr

s

v +rq; (24)

where the s
alar fun
tion q will be interpreted as a pressure. This information already

allows to improve the limit identity (23) to

b(v; v; �) +

Z




~
(v; �) jr

s

vjr

s

vr

s

� dx+ �(rv;r�) = hf; �i for all � 2 V: (25)

11



Nevertheless, it still has to be proved that � = jr

s

vjr

s

v in order to get (10).

Strong 
onvergen
e of gradients

In the last step we will show that

r

s

v

n

�! r

s

v in L

3

(
): (26)

In (25) let us use as a test fun
tion v

n

2 V

n

� V to obtain

Z




~
(v; �)jr

s

vjr

s

vr

s

v

n

dx+ �(rv;rv

n

) = hf; v

n

i � b(v; v; v

n

): (27)

Choosing the same test fun
tion in the approximate equation (12) we get

Z




~
(v

n

)jr

s

v

n

jr

s

v

n

r

s

v

n

dx+ �(rv

n

;rv

n

) = hf; v

n

i: (28)

The above identities together with the fa
t that lim

n!1

b(v; v; v

n

) = 0 allow to 
on
lude

that

lim

n!1

Z




�

~
(v

n

)jr

s

v

n

j

3

+ �jrv

n

j

2

�

dx = lim

n!1

hf; v

n

i

= lim

n!1

Z




(~
(v; �)jr

s

vjr

s

vr

s

v

n

+ �rvrv

n

) dx =

Z




�

~
(v; �)jr

s

vj

3

+ jrvj

2

�

dx:

Lemma 3.3 yields the estimate

lim sup

n!1

�

�

�

Z




(~
(v

n

)� ~
(v; �))jr

s

v

n

j

3

dx

�

�

�

� lim sup

n!1

Z




�

�

�

(~
(v

n

)� ~
(v; �))jr

s

v

n

j

3

�

�

�

dx

� lim sup

n!1

k~
(v

n

)� ~
(v; �)k

L

1

kr

s

v

n

k

L

3

= 0:

Therefore

lim

n!1

Z




�

~
(v

n

)jr

s

v

n

j

3

+ jrv

n

j

2

�

dx

= lim

n!1

8

<

:

Z




(~
(v

n

)� ~
(v; �))jr

s

v

n

j

3

dx+

Z




�

~
(v; �)jr

s

v

n

j

3

+ jrv

n

j

2

�

dx

9

=

;

= lim

n!1

Z




�

~
(v; �)jr

s

v

n

j

3

+ jrvj

2

�

dx:

Finally

lim

n!1

Z




�

~
(v; �)jr

s

v

n

j

3

+ �jrv

n

j

2

�

dx =

Z




�

~
(v; �)jr

s

vj

3

+ �jrvj

2

�

dx:
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Note that by (15)

lim inf

n!1

Z




jrv

n

j

2

dx �

Z




jrvj

2

dx

and

r

s

v

n

* r

s

v in L

3

~


(29)

(be
ause of equivalen
e of norms k � k

L

3

~


and k � k

L

3

), whi
h implies

lim inf

n!1

Z




~
(v; �)jr

s

v

n

j

3

dx �

Z




~
(v; �)jr

s

vj

3

dx:

then

lim

n!1

Z




~
(v; �)jr

s

v

n

j

3

dx =

Z




~
(v; �)jr

s

vj

3

dx: (30)

Let us now introdu
e a norm equivalent to the standard norm in L

3

, namely

kuk

L

3

~


=

0

�

Z




~
(v; �)juj

3

dx

1

A

1

3

:

The following fa
t will bring us to desired result.

Theorem 3.4 Let a Bana
h spa
e X with norm k � k be uniformly 
onvex (i.e. for

ea
h " with 0 < " � 2 there exists Æ(") su
h that kuk � 1; kvk � 1 and ku � vk � "

imply ku+ vk < 2(1� Æ(")): If u

n

* u in X and ku

n

k

X

! kuk

X

, then u

n

! u in X.

For the proof see [Bar76℄. The spa
e L

3

with norm k � k

L

3

~


is uniformly 
onvex. We

show this in a similar way as the uniform 
onvexity of the spa
es L

p

for 1 < p <1 with

standard norm (
f. [Ada75, HS69℄). We will 
onsider the sequen
e of the symmetri


parts of the gradients. From (29) and the 
onvergen
e of norms kr

s

v

n

k

L

3

~


�! kr

s

vk

L

3

~


shown in (30) due to Theorem 3.4 it holds

kr

s

v

n

�r

s

vk

L

3

~


�! 0

Therefore also (for a further subsequen
e)

r

s

v

n

�! r

s

v strongly in L

3

and a:e: in 
:

Thus

jr

s

v

n

jr

s

v

n

�! jr

s

vjr

s

v a:e in 
;

and the information

� = jr

s

vjr

s

v a:e in 


allows to 
on
lude that

~
(v

n

) �! ~
(v) a:e in 
:

Finally we are able to determine the limit of the turbulent term, namely

~
(v

n

)jr

s

v

n

jr

s

v

n

�! ~
(v)jr

s

vjr

s

v a:e in 
:
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This limit exists, it is �nite a.e. in 
 and additionally the sequen
e ~
(v

n

)jr

s

v

n

jr

s

v

n

is uniformly integrable, i.e., for every " > 0 there exists Æ > 0 su
h that

sup

n2N

Z

M

�

�

�

~
(v

n

)jr

s

v

n

jr

s

v

n

�

�

�

dx < " 8M � 
; jM j < Æ;

be
ause

Z

M

�

�

�

~
(v

n

)jr

s

v

n

jr

s

v

n

�

�

�

dx � �

Z

M

jr

s

v

n

j

2

dx � �

0

�

Z




jr

s

v

n

j

3

dx

1

A

2

3

0

�

Z

M

1dx

1

A

1

3

� �kv

n

k

2

V

jM j

1

3

� kjM j

1

3

:

Then Vitali's lemma (
f. [MNRR96℄) yields

Z




~
(v

n

)jr

s

v

n

jr

s

v

n

r

s

�dx �!

Z




~
(v)jr

s

vjr

s

vr

s

�dx 8� 2 V:

This �nishes the proof of the theorem.

Remark

Note that showing the strong 
onvergen
e of gradients without the step using the

Minty-Browder tri
k would not have been possible. The 
ru
ial fa
t to show 
onver-

gen
e of norms (30) was the information that ~
(v

n

)jr

s

v

n

jr

s

v

n


onverges weakly to

~
(v; �)jr

s

vjr

s

v, not only to ~
(v; �)�.
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