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Abstrat

We onsider the existene of stationary solutions to the Germano Model -

equations desribing turbulent ow of uids. The model omes from Large Eddy

Simulation tehniques yielding modi�ed Navier-Stokes Equations with an addi-

tional nonloal term. On one hand this nonloalness disturbs monotoniity, but

on the other hand it is helpful for ompatness arguments. Thus we ombine

the methods of monotone operators and smoothing properties of onvolutions in

passing to the limit in the approximate problem.
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1 Introdution

We are interested in existene of stationary weak solutions to the system desribing

turbulent ow in the three-dimensional torus T

3

v � rv � div (~(v)jr

s

vjr

s

v)� ��v +rq = f;

div v = 0;

(1)

where v : T

3

�! R

3

is the veloity, r

s

u =

1

2

(ru +ru

T

) denotes the symmetri part

of the gradient and q : T

3

�! R is the pressure. The operator ~ is a nonloal operator

desribed in Setion 2.3.

We briey introdue the physial motivation for the above equations. The idea of Large

Eddy Simulation (LES) has its origin in numeris. Typial for turbulent ows are very

di�erent sales, whih lead to an inrease of the number of numerial operations needed

to ompute the solution. The LES tehnique bases on hoosing the sales for whih the

exat solution is omputed diretly (large sales, resolved) and the sales for whih the

solution is modelled (small sales, subgrid). Therefore the veloity u is deomposed

into the mean part �u and turbulent utuations u

0

, i.e., u = �u + u

0

. The utuations

are �rst smoothed out and then modelled. Seletion of the sales is done by �ltering,
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i.e. mollifying the veloity with some funtion (�lter).

Filters

Di�erent �lters based on onvolutions an be used. In general the onvolution is done

with respet to the spae variable

�u(t; x) = u � '

Æ

(t; x) =

Z

R

3

u(t; y)'

Æ

(x� y)dy;

where the index Æ denotes the �lter width (so-alled ut-o� length). In general a �lter

is assumed to be a funtion of total mass one. In ase of a bounded domain 
 � R

3

the �ltered value �u is de�ned by

�u(t; x) =

Z




u(t; y)'

Æ

(x� y)dy:

Then the problem of �ltering near the boundary and of boundary values of �u o-

urs. In this paper we onentrate on the problem with periodi boundary onditions.

These nonphysial boundary onditions allow to ignore the problem of �ltering near

the boundary. Nevertheless, they are interesting from the mathematial point of view,

beause all other analytial diÆulties remain unhanged.

Modelling

By onvoluting the Navier Stokes equations with a �lter one obtains

�u

t

+ div (u
 u)� ���u +r�p =

�

f;

div �u = 0:

Beause of the nonlinearity in the equations the sales annot be onsidered separately.

Furthermore, looking for solutions representing the resolved sales, the interations

with the subgrid sales have to be taken into onsideration. Therefore we express the

onvoluted onvetive term as a di�erene of the onvetive term in terms of �u and of

a so-alled subgrid stress tensor � = �u 
 �u � u
 u representing the ontribution of

small sales into the system. There has to be added some onstitutive relation losing

the system. In LES we �nd a wide range of losure models for the tensor � . The most

lassial and still often used one is the Smagorinsky model where

� = (Æ)

2

jr

s

�ujr

s

�u;

and  > 0 is onstant. This leads to the following initial boundary value problem

�u

t

+ div (�u
 �u)� div (Æ

2

jr

s

�ujr

s

�u)� ���u+r�p =

�

f;

div �u = 0;

�u(0; x) = �u

0

(x);

+ some boundary onditions:

(2)

Existene and uniqueness to (2) have been shown with use of Galerkin approximation
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and monotone operator methods. For lassial results in this �eld we refer to [Lio69,

Lad70℄.

The Smagorinsky model has a lot of disadvantages. In order to adapt it better to

loal ow strutures a dynamial proedure is applied - the Germano model. It bases

on applying a seond �lter (test �lter) to the Navier-Stokes equations. Denoting the

width of the �rst �lter (grid �lter) as Æ

1

, the test �lter '

Æ

2

must have a di�erent width

Æ

2

, with Æ

2

> Æ

1

usually hosen Æ

2

= 2Æ

1

. Applying this seond �lter extrats a test �eld

from the resolved sales. The idea is the following: The smallest resolved sales are

sampled to give information for modelling the subgrid sales (notation: ~u = u � '

Æ

2

).

The next step is to use the so-alled Germano identity, (whih in fat is quite obvious),

i.e.

L = T � ~� ; (3)

where � and T are the subgrid tensors

� = �u
 �u� u
 u;

T =

~

�u


~

�u�

^

u
 u

and

L =

~

�u


~

�u�

^

�u
 �u

is a Leonard tensor. The L tensor an be omputed from the resolved �eld sine it

is assoiated with sales of motion between the grid and test sales. In the next step

both subgrid tensors are modelled in a similar way as in Smagorinsky's model (the

oeÆient  is a square of the original quantity). The ruial simpli�ation is that they

an be modelled with the same  = (t; x), i.e.,

� = 2Æ

2

1

jr

s

�ujr

s

�u;

T = 2Æ

2

2

jr

s

~

�ujr

s

~

�u:

Substituting it into (3)

L = 2Æ

2

2

jr

s

~

�ujr

s

~

�u�

�

^

2Æ

2

1

jr

s

�ujr

s

�u

�

(the tilde sign applies to the whole term in brakets) and assuming the additional

simpli�ation

^

(Æ

2

1

jr

s

�ujr

s

�u) = 

�

^

Æ

2

1

jr

s

�ujr

s

�u

�

(note:  = (t; x) !) the following equation is obtained

L = 2M with M = Æ

2

2

jr

s

~

�ujr

s

~

�u�

^

Æ

2

1

jr

s

�ujr

s

�u:

The above equation is in fat an overdetermined system of six equations for the oeÆ-

ient . Therefore the error Q = (L�2M)

2

is minimized by the least squares method,

i.e.,

�Q

�

= 0, yielding

 =

1

2

L : M

M : M

: (4)
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This  is substituted into the Smagorinsky system (2). Then v = �u and q = �p de�ne a

solution to the model equations

v

t

+ div (v 
 v)� div (jr

s

vjr

s

v)� ��v +rq =

�

f;

div v = 0:

For more details on modelling we refer to [GPMC91, Lil92, Jim95, Sag01℄.

Modi�ations

There an easily be found examples of initial data suh that the matrix L annot be

estimated with help of the matrix M (see formula (4) for funtion ). Thus, if the

denominator equals zero, there is no possibility to extend the operator  to a funtion

de�ned for these values. This motivates some neessary modi�ations of this oeÆient.

We will not propose any new formula for , only denote in general the mathematial

assumptions we put. They are learly assembled in Setion 2.3.

2 Notation, Funtion Spaes

2.1 Basi Notation

In the following the subset of symmetri matries in R

n�n

will be denoted by S

n

: Let

u; v 2 R

n

: We will use the following notation for salar produt of vetors, salar

produt of matries and tensor produt, respetively

u � v =

n

X

i=1

u

i

v

i

A �B =

n

X

i;j=1

a

ij

b

ij

u
 u = (u

i

u

j

)

n

i;j=1

where A = (a

ij

)

n

i;j=1

; B = (b

ij

)

n

i;j=1

: For the simpliity of notation the produt sign will

often be omitted.

The set of smooth funtions on the torus T

3

an be identi�ed with the set of peri-

odi smooth funtions with some period L 2 (0;1): Therefore in the whole paper


 = (0; L)

3

is a ube of period L in R

3

:

Before we give the de�nition of the weak solution let us introdue the spaes of diver-

gene free periodi funtions.

By C

1

per

(R

3

) we denote the set of funtions from C

1

(R

3

), whih are periodi in eah

ith diretion with a period L > 0, i.e., u(x+ Le

i

) = u(x); i = 1; 2; 3; for u 2 C

1

per

(R

3

):

Then let

V � fu : u 2 C

1

per

(R

3

); div u = 0;

Z




u dx = 0g;

and let V be the losure of V with respet to norm kuk

V

=

�
R




jruj

3

dx

�

1

3

. Its dual

spae will be denoted by V

0

: We will use the notation (�; �) for the salar produt in L

2

and h�; �i

X;X

0

for the dual pairing between the spae X and its dual. In partiular for the

dual pairing between V and V

0

the notation h�; �i will be used. All L

p

;W

1;p

� funtions

are meant to be periodi in eah ith diretion with period L and with vanishing mean

on 
. Note additionally that for divergene-free vetor �eld u : 
 �! R

3

it holds

div (u
 u) = u � ru:
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In the whole paper (exept for Lemma 3.3) we will denote a subsequene (v

n

k

) or the

further subsequene of a sequene (v

n

) also by (v

n

).

2.2 Preliminary fats

It will be useful to introdue the trilinear form b and to establish its properties

b(u; v; w) :=

Z




(u � rv) � w dx:

Lemma 2.1 Let b be de�ned as above. Then

(a) b is a well-de�ned ontinuous trilinear form on V � V � V (in partiular).

(b) b(u; v; v) = 0 for all u; v; w 2 V:

() b is antisymmetri, i.e. b(u; v; w) = �b(u; w; v) for all u; v; w 2 V:

Showing these properties is analogous as for the nonlinearity in the Navier-Stokes equa-

tions (f. [Tem77, MNRR96℄). Therefore the lemma is left without proof.

As a �lter we hoose a C

1

per

(R

3

)- funtion ' suh that

R




'dx = 1: Then for v 2 L

p

the following properties of the �ltering of v, i.e. of ~v(x) =

R




v(y)'(x � y) dy; are

meaningful:

(i) k~vk

L

p

� kvk

L

p

k'k

L

1

and k~vk

L

p

� kvk

L

1

k'k

L

p

;

(ii) D

�

~v(x) =

Z




D

�

'(x� y)v(y) dy, where D

�

v =

�

j�j

v

�x

�

1

1

�x

�

2

2

�x

�

3

3

with multi-index

� = (�

1

; �

2

; �

3

); j�j = �

1

+ �

2

+ �

3

;

(iii) ~v 2 C

1

per

(R

3

):

The proof of the above properties for �ltered values is analogous to the ase of the

lassial onvolution on the whole R

3

(f. [Bre99℄).

In order to work on the symmetri parts of a gradients we will reall a neessary tool

- the Korn's inequality (f. [Fu94℄).

Lemma 2.2 (Korn's inequality) Let 1 < p < 1 and v 2 W

1;p

(
), where 
 =

(0; L)

3

; L > 0: Then there exists a onstant k = k(p;
) suh that

kvk

W

1;p

� kkr

s

vk

L

p

:

2.3 Formulation of the Problem

We formulate exatly the problem and de�ne the solutions. Let 
 � R

3

be denoted as

above. We onsider the initial-boundary value problem derived in the previous setion

with periodi boundary onditions. It will allow to omit the problem of �ltering near

the boundary, when the domain of the �lter does not overlap with the set 
. For a given
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external fore f and initial value v

0

we are looking for a veloity v : (0; T )� 
 �! R

3

and a pressure q : (0; T )� 
 �! R solving the system

v

t

+ v � rv � div (~(v)jr

s

vjr

s

v)� ��v +rq = f;

div v = 0

v(0; x) = v

0

(x)

(5)

with periodi boundary onditions (i = 1; 2; 3)

v(t; x+ Le

i

) = v(t; x);

q(t; x+ Le

i

) = q(t; x):

(6)

where fe

i

g

3

i=1

is the anonial basis of R

3

, L is the period in all diretions and � is the

onstant positive visosity. We denote for brevity

~(v) := (~v;fvv;r

s

~v;

^

jr

s

vjr

s

v):

The properties of the operator  are the following

(C1)  is a funtion of ~v;fvv;r

s

~v;

^

jr

s

vjr

s

v, ontinuous with respet to all four vari-

ables.

(C2)  satis�es the ondition

0 < � � ~(v) � � <1: (7)

We will look for stationary solutions to this problem. Then the veloity v is independent

of time, i.e.

v(t; x) = v(x) for all t � 0:

Also the external fores f must be independent of time. Then the system (5) redues

to

v � rv � div (~(v)jr

s

vjr

s

v)� ��v +rq = f;

div v = 0

(8)

with the boundary onditions (i = 1; 2; 3)

v(x+ Le

i

) = v(x);

q(x+ Le

i

) = q(x):

(9)

We de�ne weak solutions and formulate the result on the existene of these solutions.

De�nition 2.1 The funtion v 2 V is a weak solution to problem (8), (9) if the

equation

Z




(vrv�+ ~(v)jr

s

vjr

s

vr

s

�+rvr�� f�) dx = 0 (10)

is satis�ed for all � 2 V:

Theorem 2.3 (Existene) Let f 2 V

0

and let  satisfy onditions (C1)-(C2). Then

there exists a weak solution in the sense of De�nition 2.1 to the stationary problem

(8),(9).
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3 Proof of Theorem 2.3

Let f!

r

g be the set of eigenvetors of the Stokes operator in 
, for the de�nition and

properties of the Stokes operator in 
 see [MNRR96℄. We de�ne for eah �xed n 2 N

an approximate solution to (10) by

v

n

(x) =

n

X

r=1

�

n

r

!

r

; �

n

r

2 R; (11)

where v

n

2 V

n

= linf!

1

; !

2

; :::; !

n

g solves the system of equations

b(v

n

; v

n

; !

r

) +

Z




~(v

n

)jr

s

v

n

jr

s

v

n

� r

s

!

r

dx + �(rv

n

;r!

r

) = hf; !

r

i (12)

for r = 1; :::; n. The existene of solutions to this approximate problem is a onsequene

of the Brouwer �xed point theorem, and in partiular of the following lemma (f.

[Tem77, Eva98℄), whih follows from that theorem.

Lemma 3.1 Let X be a �nite dimensional spae with salar produt [�; �℄ and norm j � j

and let P : X �! X be a ontinuous mapping suh that

[P (x); x℄ > 0 for jxj = K; K > 0:

Then there exists x 2 X with jxj � K suh that P (x) = 0.

Now we will use this tool to prove the following theorem.

Theorem 3.2 For given f 2 V

0

there exists a solution �

n

1

; :::; �

n

n

(and therefore v

n

2

V

n

) to the approximate problem (11), (12).

Proof

Note that V

n

is a �nite dimensional Hilbert spae. Let P be de�ned as

[P (v); �℄ =

Z




~(v)jr

s

vjr

s

vr

s

�dx+ �(rv;r�) + b(v; v; �)� hf; �i 8 v; � 2 V

n

:

The above mapping is ontinuous w.r.t v 2 V

n

. Let us hek the last assumption of

Lemma 3.1. By Korn's inequality and assumption (C2)

[P (v); v℄ = �krvk

2

L

2

+

Z




(~v)jr

s

vj

3

dx� hf; vi

(C2)

� �krvk

2

L

2

+ �

Z




jr

s

vj

3

dx� kfk

V

0

kvk

V

Korn

� �krvk

2

L

2

+ kkvk

3

W

1;3

� kfk

V

0

kvk

V

� �krvk

2

L

2

+ kvk

V

(kkvk

2

V

� kfk

V

0

):

Thus for K big enough, i.e., K >

�

kfk

V

0

k

�

1

2

; we get [P (v); v℄ > 0 for all v 2 V

n

; kvk =

K: Therefore there exists a v

n

suh that the equation P (v

n

) = 0 is satis�ed.
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Energy estimate

We will show that the approximate solutions onverge to a solution of the original

problem. Multiplying the equations (12) by �

n

r

and summing over r one obtains by

Lemma 2.1 (b)

Z




~(v

n

)jr

s

v

n

jr

s

v

n

r

s

v

n

dx+ �krv

n

k

2

L

2

= hf; v

n

i: (13)

Estimates done for the turbulent term in a proof of Theorem 3.2 yield that

Z




~(v

n

)jr

s

v

n

j

3

dx � kkv

n

k

3

V

Estimating the RHS with Young's inequality

hf; v

n

i � kfk

V

0

kv

n

k

V

� Kkfk

3

2

V

0

+

k

2

kv

n

k

3

V

with K = K(k) we obtain

k

2

kv

n

k

3

V

+ �krv

n

k

2

L

2

� Kkfk

3

2

V

0

: (14)

Passing to the limit

A diret onsequene of the boundedness of the sequene (v

n

) in V is the existene of

a subsequene, suh that for n!1

v

n

* v in V: (15)

Passing to the limit in the trilinear form b does not produe any diÆulties. Notie that

in the three-dimensional ase W

1;3

(
) is ompatly embedded in L

q

(
) for 1 � q <1:

Therefore

v

n

�! v in L

q

(
) for 1 � q <1: (16)

Then the onvergene

b(v

n

; v

n

; �) �! b(v; v; �) for all � 2 V (17)

follows from

Z




(v

n

rv

n

� vrv)�dx

=

Z




(v

n

� v)rv

n

�dx+

Z




v(rv

n

�rv)�dx;

where both integrals in the sum onverge to zero due to weak onvergene (15) and

strong onvergene (16). The biggest problems appear in passing to the limit in the

nonlinear turbulent term. From the equation we onlude that div f~(v

n

)jr

s

v

n

jr

s

v

n

g

is bounded in V

0

and therefore there exists a (further) subsequene and a � 2 V

0

suh

that for n!1

div f~(v

n

)jr

s

v

n

jr

s

v

n

g* � in V

0

: (18)
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If instead of the turbulent term in this form we had the term div (jr

s

vjr

s

v), whih is

monotone, then passing to the limit ould easily be done. But in this ase there appears

a produt of a monotone operator and of , whih is a nonloal operator dependent on

�ltered values ~v;fvv;r

s

~v;

^

jr

s

vjr

s

v. Therefore, there is no hane for the whole term

to be monotone. However the properties of onvolutions improve the onvergene of

, whih will allow - with help of the Minty-Browder trik (f. [Eva90℄) and strong

onvergene of gradients - to pass to the limit in the whole turbulent term. First we

formulate a lemma onerning the onvergene of .

Lemma 3.3 Let  = (�; �; �; �) be the funtion satisfying onditions (C1)-(C2). Then

for eah sequene (v

n

)

n2N

suh that v

n

* v in V there exists � 2 L

3

2

and it holds:

(i) For n �!1 the following sequenes onverge strongly in L

1

(
)

e

v

n

�! ev;

g

v

n

v

n

�! fvv;

r

s

e

v

n

�! r

s

ev:

We an extrat a further subsequene (v

n

k

) of (v

n

) suh that

^

jr

s

v

n

k

jr

s

v

n

k

�! e�:

(ii) Moreover

(

f

v

n

k

;

^

v

n

k

v

n

k

;r

f

v

n

k

;

^

jr

s

v

n

k

jr

s

v

n

k

) �! (~v;fvv;r~v; e�) in L

1

(
): (19)

Proof

Let us start with showing the onvergenes from assertion (i): The �lter ' is a smooth

funtion. From linearity of the onvolution one an onlude

k

e

v

n

� ~vk

W

1;1

� (k'k

L

1

+ kr'k

L

1

) kv

n

� vk

L

1

and also

k

℄

v

n

v

n

�fvvk

L

1

� k'k

L

1

kv

n

v

n

� vvk

L

1

:

Hene the strong onvergene (16) implies the �rst three onvergenes in assertion (i).

The last step deals with the onvergene of

^

jr

s

v

n

jr

s

v

n

: Due to the a priori estimate

the term jrv

n

jrv

n

and also jr

s

v

n

jr

s

v

n

are bounded in L

3

2

: Therefore we an extrat

a subsequene suh that

jr

s

v

n

k

jr

s

v

n

k

* � in L

3

2

(
): (20)

However now it annot be laimed yet that � = jr

s

vjr

s

v. This result will be obtained

after �nishing all the steps of the proof. Note that in partiular L

3

2

�� W

�1;

3

2

so

jr

s

v

n

k

jr

s

v

n

k

�! � in W

�1;

3

2

(
): (21)
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This yields

k

^

jr

s

v

n

k

jr

s

v

n

k

� ~�k

L

1

� k'k

W

1;3

k jr

s

v

n

k

jr

s

v

n

k

� �k

W

�1;

3

2

;

and therefore

^

jr

s

v

n

k

jr

s

v

n

k

�! e� in L

1

(
):

Beause  is a ontinuous funtion of all its arguments, the assertion (ii) of the

lemma holds.

Coming bak to the onvergene (18) one noties that Lemma 3.3 brings some more

information on the limit �. Then for a (further) subsequene (19) and (20) imply that

~(v

n

)jr

s

v

n

jr

s

v

n

* (~v;fvv;r

s

~v; ~�)� in L

3

2

: (22)

For brevity we denote

~(v; �) := (~v;fvv;r

s

~v; ~�):

Passing to the limit in (12) we obtain the limit identity

b(v; v; �) +

Z




~(v; �)�r

s

� dx+ �(rv;r�) = hf; �i for all � 2 V: (23)

Again for the simpliity of notation we introdue a(�) := j�j �. Reall the following

useful properties of a:

� a is strongly monotone, i.e. there exists a positive onstant k suh that

ha(�)� a(�); � � �i

L

3

2

;L

3

� kk� � �k

3

L

3

for all �; � 2 L

3

:

� a is hemiontinuous, i.e., 8 u; v; w 2 V the funtion t 7! (a(u + tv); w) is a

ontinuous funtion from R to R.

Minty-Browder trik

Let us analyze for z 2 V the integral

I

n

= h~(v

n

) a(r

s

v

n

)� ~(v; �) a(r

s

z);r

s

v

n

�r

s

zi

L

3

2

;L

3

= h[~(v

n

)� ~(v; �)℄a(r

s

v

n

);r

s

v

n

�r

s

zi

L

3

2

;L

3

+ h~(v; �)[a(r

s

v

n

)� a(r

s

z)℄;r

s

v

n

�r

s

zi

L

3

2

;L

3

= I

n

1

+ I

n

2

:

The �rst integral an be estimated by

jI

n

1

j � k~(v

n

)� ~(v; �)k

L

1

krv

n

k

2

L

3

kr

s

v

n

�r

s

zk

L

3

:

Beause of ondition (C2) and the strong monotoniity of a the seond integral an be

estimated by

I

n

2

� �ha(r

s

v

n

)� a(r

s

z);r

s

v

n

�r

s

zi

L

3

2

;L

3

� �kr

s

v

n

�r

s

zk

3

L

3

:
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This allows to onlude that

I

n

� 

n

;

where



n

= �kr

s

v

n

�r

s

zk

3

L

3

� k~(v

n

)� ~(v; �)k

L

1

krv

n

k

2

L

3

kr

s

v

n

�r

s

zk

L

3

:

The funtion 

n

does not have to be positive for all n. But the property

lim inf

n!1



n

� 0 for all z 2 V;

whih is a onsequene of Lemma 3.3, will be useful in the following.

From equation (13) we know that

h~(v

n

)a(r

s

v

n

);r

s

v

n

i

L

3

2

;L

3

= hf; v

n

i � �krv

n

k

2

L

2

:

Substituting it into I

n

one obtains

I

n

= hf; v

n

i � �krv

n

k

2

L

2

�h~(v

n

)a(r

s

v

n

);r

s

zi

L

3

2

;L

3

� h~(v; �)a(r

s

z);r

s

v

n

�r

s

zi

L

3

2

;L

3

:

With use of the lower semiontinuity of the norm we onlude from (15) and (22) that

lim sup I

n

� hf; vi � �krvk

2

L

2

� h~(v; �)�;r

s

zi

L

3

2

;L

3

� h~(v; �)a(r

s

v);r

s

v �r

s

zi

L

3

2

;L

3

:

Using the equation (23) and that lim sup I

n

� lim inf 

n

and lim inf 

n

� 0 it follows

h~(v; �)�� ~(v; �)a(r

s

z);r

s

v �r

s

zi

L

3

2

;L

3

� 0 for all z 2 V:

Taking z = v � �� with � > 0 we obtain

�h~(v; �)�� ~(v; �)a(r

s

z);r

s

�i

L

3

2

;L

3

� 0:

Dividing by � and then letting �& 0, the hemiontinuity of the operator a yields

h~(v; �)�� ~(v; �)a(r

s

v);r

s

�i

L

3

2

;L

3

� 0

for all � 2 V . Hene,

h~(v; �)�;r

s

�i

L

3

2

;L

3

= h~(v; �)a(r

s

v);r

s

�i

L

3

2

;L

3

for all test funtions � 2 V . Sine these test funtions � are divergene-free, the above

result only yields

div ~(v; �)� = div ~(v; �)jr

s

vjr

s

v +rq; (24)

where the salar funtion q will be interpreted as a pressure. This information already

allows to improve the limit identity (23) to

b(v; v; �) +

Z




~(v; �) jr

s

vjr

s

vr

s

� dx+ �(rv;r�) = hf; �i for all � 2 V: (25)

11



Nevertheless, it still has to be proved that � = jr

s

vjr

s

v in order to get (10).

Strong onvergene of gradients

In the last step we will show that

r

s

v

n

�! r

s

v in L

3

(
): (26)

In (25) let us use as a test funtion v

n

2 V

n

� V to obtain

Z




~(v; �)jr

s

vjr

s

vr

s

v

n

dx+ �(rv;rv

n

) = hf; v

n

i � b(v; v; v

n

): (27)

Choosing the same test funtion in the approximate equation (12) we get

Z




~(v

n

)jr

s

v

n

jr

s

v

n

r

s

v

n

dx+ �(rv

n

;rv

n

) = hf; v

n

i: (28)

The above identities together with the fat that lim

n!1

b(v; v; v

n

) = 0 allow to onlude

that

lim

n!1

Z




�

~(v

n

)jr

s

v

n

j

3

+ �jrv

n

j

2

�

dx = lim

n!1

hf; v

n

i

= lim

n!1

Z




(~(v; �)jr

s

vjr

s

vr

s

v

n

+ �rvrv

n

) dx =

Z




�

~(v; �)jr

s

vj

3

+ jrvj

2

�

dx:

Lemma 3.3 yields the estimate

lim sup

n!1

�

�

�

Z




(~(v

n

)� ~(v; �))jr

s

v

n

j

3

dx

�

�

�

� lim sup

n!1

Z




�

�

�

(~(v

n

)� ~(v; �))jr

s

v

n

j

3

�

�

�

dx

� lim sup

n!1

k~(v

n

)� ~(v; �)k

L

1

kr

s

v

n

k

L

3

= 0:

Therefore

lim

n!1

Z




�

~(v

n

)jr

s

v

n

j

3

+ jrv

n

j

2

�

dx

= lim

n!1

8

<

:

Z




(~(v

n

)� ~(v; �))jr

s

v

n

j

3

dx+

Z




�

~(v; �)jr

s

v

n

j

3

+ jrv

n

j

2

�

dx

9

=

;

= lim

n!1

Z




�

~(v; �)jr

s

v

n

j

3

+ jrvj

2

�

dx:

Finally

lim

n!1

Z




�

~(v; �)jr

s

v

n

j

3

+ �jrv

n

j

2

�

dx =

Z




�

~(v; �)jr

s

vj

3

+ �jrvj

2

�

dx:
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Note that by (15)

lim inf

n!1

Z




jrv

n

j

2

dx �

Z




jrvj

2

dx

and

r

s

v

n

* r

s

v in L

3

~

(29)

(beause of equivalene of norms k � k

L

3

~

and k � k

L

3

), whih implies

lim inf

n!1

Z




~(v; �)jr

s

v

n

j

3

dx �

Z




~(v; �)jr

s

vj

3

dx:

then

lim

n!1

Z




~(v; �)jr

s

v

n

j

3

dx =

Z




~(v; �)jr

s

vj

3

dx: (30)

Let us now introdue a norm equivalent to the standard norm in L

3

, namely

kuk

L

3

~

=

0

�

Z




~(v; �)juj

3

dx

1

A

1

3

:

The following fat will bring us to desired result.

Theorem 3.4 Let a Banah spae X with norm k � k be uniformly onvex (i.e. for

eah " with 0 < " � 2 there exists Æ(") suh that kuk � 1; kvk � 1 and ku � vk � "

imply ku+ vk < 2(1� Æ(")): If u

n

* u in X and ku

n

k

X

! kuk

X

, then u

n

! u in X.

For the proof see [Bar76℄. The spae L

3

with norm k � k

L

3

~

is uniformly onvex. We

show this in a similar way as the uniform onvexity of the spaes L

p

for 1 < p <1 with

standard norm (f. [Ada75, HS69℄). We will onsider the sequene of the symmetri

parts of the gradients. From (29) and the onvergene of norms kr

s

v

n

k

L

3

~

�! kr

s

vk

L

3

~

shown in (30) due to Theorem 3.4 it holds

kr

s

v

n

�r

s

vk

L

3

~

�! 0

Therefore also (for a further subsequene)

r

s

v

n

�! r

s

v strongly in L

3

and a:e: in 
:

Thus

jr

s

v

n

jr

s

v

n

�! jr

s

vjr

s

v a:e in 
;

and the information

� = jr

s

vjr

s

v a:e in 


allows to onlude that

~(v

n

) �! ~(v) a:e in 
:

Finally we are able to determine the limit of the turbulent term, namely

~(v

n

)jr

s

v

n

jr

s

v

n

�! ~(v)jr

s

vjr

s

v a:e in 
:
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This limit exists, it is �nite a.e. in 
 and additionally the sequene ~(v

n

)jr

s

v

n

jr

s

v

n

is uniformly integrable, i.e., for every " > 0 there exists Æ > 0 suh that

sup

n2N

Z

M

�

�

�

~(v

n

)jr

s

v

n

jr

s

v

n

�

�

�

dx < " 8M � 
; jM j < Æ;

beause

Z

M

�

�

�

~(v

n

)jr

s

v

n

jr

s

v

n

�

�

�

dx � �

Z

M

jr

s

v

n

j

2

dx � �

0

�

Z




jr

s

v

n

j

3

dx

1

A

2

3

0

�

Z

M

1dx

1

A

1

3

� �kv

n

k

2

V

jM j

1

3

� kjM j

1

3

:

Then Vitali's lemma (f. [MNRR96℄) yields

Z




~(v

n

)jr

s

v

n

jr

s

v

n

r

s

�dx �!

Z




~(v)jr

s

vjr

s

vr

s

�dx 8� 2 V:

This �nishes the proof of the theorem.

Remark

Note that showing the strong onvergene of gradients without the step using the

Minty-Browder trik would not have been possible. The ruial fat to show onver-

gene of norms (30) was the information that ~(v

n

)jr

s

v

n

jr

s

v

n

onverges weakly to

~(v; �)jr

s

vjr

s

v, not only to ~(v; �)�.
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