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Abstract

We consider the existence of stationary solutions to the Germano Model -
equations describing turbulent flow of fluids. The model comes from Large Eddy
Simulation techniques yielding modified Navier-Stokes Equations with an addi-
tional nonlocal term. On one hand this nonlocalness disturbs monotonicity, but
on the other hand it is helpful for compactness arguments. Thus we combine
the methods of monotone operators and smoothing properties of convolutions in
passing to the limit in the approximate problem.
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1 Introduction

We are interested in existence of stationary weak solutions to the system describing
turbulent flow in the three-dimensional torus T?

v- Vo —div (é(v)|V*v|V*v) —vAv + Vg = f,

dive =0, (1)

where v : T — R® is the velocity, V*u = 3(Vu + Vu?) denotes the symmetric part
of the gradient and ¢ : T — R is the pressure. The operator ¢ is a nonlocal operator
described in Section 2.3.

We briefly introduce the physical motivation for the above equations. The idea of Large
Eddy Simulation (LES) has its origin in numerics. Typical for turbulent flows are very
different scales, which lead to an increase of the number of numerical operations needed
to compute the solution. The LES technique bases on choosing the scales for which the
exact solution is computed directly (large scales, resolved) and the scales for which the
solution is modelled (small scales, subgrid). Therefore the velocity u is decomposed
into the mean part @ and turbulent fluctuations «’, i.e., v = u + u'. The fluctuations
are first smoothed out and then modelled. Selection of the scales is done by filtering,
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Filters
Different filters based on convolutions can be used. In general the convolution is done
with respect to the space variable

alt, z) = u * py(t, z) = / ult, y)es(x — y)dy,

where the index ¢ denotes the filter width (so-called cut-off length). In general a filter
is assumed to be a function of total mass one. In case of a bounded domain  C R?
the filtered value @ is defined by

alt,z) = / ultyy) sl — y)dy.

Q

Then the problem of filtering near the boundary and of boundary values of @ oc-
curs. In this paper we concentrate on the problem with periodic boundary conditions.
These nonphysical boundary conditions allow to ignore the problem of filtering near
the boundary. Nevertheless, they are interesting from the mathematical point of view,
because all other analytical difficulties remain unchanged.

Modelling
By convoluting the Navier Stokes equations with a filter one obtains

i +div(u®u) —vAa+Vp = f,
diva = 0.
Because of the nonlinearity in the equations the scales cannot be considered separately.
Furthermore, looking for solutions representing the resolved scales, the interactions
with the subgrid scales have to be taken into consideration. Therefore we express the
convoluted convective term as a difference of the convective term in terms of u and of
a so-called subgrid stress tensor 7 = u ® u — u ® u representing the contribution of
small scales into the system. There has to be added some constitutive relation closing

the system. In LES we find a wide range of closure models for the tensor 7. The most
classical and still often used one is the Smagorinsky model where

T = (c0)?|V*u|Via,
and ¢ > 0 is constant. This leads to the following initial boundary value problem
i, + div (@ ® ) — div (c6?|V*u|Va) — vAu+ Vp = f,
divu =0,
u(0,x) = up(x),

+ some boundary conditions.

Existence and uniqueness to (2) have been shown with use of Galerkin approximation
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The Smagorinsky model has a lot of disadvantages. In order to adapt it better to
local flow structures a dynamical procedure is applied - the Germano model. It bases
on applying a second filter (test filter) to the Navier-Stokes equations. Denoting the
width of the first filter (grid filter) as d1, the test filter 5, must have a different width
0o, with d9 > 9; usually chosen 6, = 26;. Applying this second filter extracts a test field
from the resolved scales. The idea is the following: The smallest resolved scales are
sampled to give information for modelling the subgrid scales (notation: @ = u * @g,).
The next step is to use the so-called Germano identity, (which in fact is quite obvious),
ie.

L=T -7, (3)

where 7 and T are the subgrid tensors

T = uQu—uu,
T = 1tQu—ulu

and

L=uQ@u—u®u

is a Leonard tensor. The L tensor can be computed from the resolved field since it
is associated with scales of motion between the grid and test scales. In the next step
both subgrid tensors are modelled in a similar way as in Smagorinsky’s model (the
coefficient ¢ is a square of the original quantity). The crucial simplification is that they
can be modelled with the same ¢ = ¢(t, x), i.e.,

T = 2c6?|Viu|Via,
T = 2c63|Viu|Via.

Substituting it into (3)

L:%@V%W%—(%mvwwm)

(the tilde sign applies to the whole term in brackets) and assuming the additional
simplification

(62| V5| V5a) = c (6%|Vsu|vsa>

(note: ¢ = c(t,x) !) the following equation is obtained

e~

L=2cM with M =6&|Vu|Viu — 62|Vsu|Vsa.

The above equation is in fact an overdetermined system of six equations for the coeffi-
cient ¢. Therefore the error @ = (L —2cM)? is minimized by the least squares method,
le., %—? = 0, yielding

L:M

1
2M : M’

(4)
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solution to the model equations

v + div (v @ v) — div (¢|V*v|V*v) —vAv + Vg = f,
dive = 0.

For more details on modelling we refer to [GPMC91, Lil92, Jim95, Sag01].
Modifications

There can easily be found examples of initial data such that the matrix L cannot be
estimated with help of the matrix M (see formula (4) for function ¢). Thus, if the
denominator equals zero, there is no possibility to extend the operator ¢ to a function
defined for these values. This motivates some necessary modifications of this coefficient.
We will not propose any new formula for ¢, only denote in general the mathematical
assumptions we put. They are clearly assembled in Section 2.3.

2 Notation, Function Spaces

2.1 Basic Notation

In the following the subset of symmetric matrices in R**" will be denoted by S™. Let
u,v € R*. We will use the following notation for scalar product of vectors, scalar
product of matrices and tensor product, respectively

n

n
J— — — n
u-v= E UV, A-B= E a;;bi; u®u = (uguj)i;_y
i=1

ij=1

where A = (a;;);_;, B = (bij)};—,. For the simplicity of notation the product sign will
often be omitted.

The set of smooth functions on the torus T® can be identified with the set of peri-
odic smooth functions with some period L € (0,00). Therefore in the whole paper
Q = (0,L)? is a cube of period L in R3.

Before we give the definition of the weak solution let us introduce the spaces of diver-
gence free periodic functions.

By C35.(R?) we denote the set of functions from C*°(R?), which are periodic in each
ith direction with a period L > 0, i.e., u(z + Le;) = u(z), i =1,2,3, for u € ngr(R3).
Then let

per

V={u:uelCsy (R3),divu:0,/ud:v:0},

Q

and let V be the closure of V with respect to norm ||ully = (/,, |Vu|3dx)%. Its dual
space will be denoted by V'. We will use the notation (-, ) for the scalar product in L?
and (-, -) x x for the dual pairing between the space X and its dual. In particular for the
dual pairing between V and V' the notation (-, -) will be used. All L?, W — functions
are meant to be periodic in each sth direction with period L and with vanishing mean
on . Note additionally that for divergence-free vector field u : Q — R? it holds

div(u®u) =u-Vu.

4
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further subsequence of a sequence (v") also by (v™).

2.2 Preliminary facts

It will be useful to introduce the trilinear form b and to establish its properties

b(u,v,w) == /(u -Vv) - wdx.

Q

Lemma 2.1 Let b be defined as above. Then
(a) bis a well-defined continuous trilinear form on V- x V x V' (in particular).
(b) b(u,v,v) =0 for all u,v,w € V.
(c) b is antisymmetric, i.e. b(u,v, w) = —b(u,w,v) for all u,v,w € V.

Showing these properties is analogous as for the nonlinearity in the Navier-Stokes equa-
tions (cf. [Tem77, MNRR96]). Therefore the lemma is left without proof.

As a filter we choose a C7%,(R?)- function ¢ such that [, pdz = 1. Then for v € L?

the following properties of the filtering of v, i.e. of 0(z) = [,v(y)p(z — y)dy, are
meaningful:

(@) Nollee < lollzellelle and ol <|lol[oflellwr,

T, 0Ty ° OTq

(i1) D0(x) = /Do‘gp(x —y)v(y) dy, where D% = % with multi-index
Q

a = (a1, az,03), |a] =a + as + as,

(117) 0 € C.(R?).

The proof of the above properties for filtered values is analogous to the case of the
classical convolution on the whole R? (cf. [Bre99]).

In order to work on the symmetric parts of a gradients we will recall a necessary tool

- the Korn’s inequality (cf. [Fu94)).

Lemma 2.2 (Korn’s inequality) Let 1 < p < oo and v € W'P(Q), where Q =
(0,L)*, L > 0. Then there exists a constant k = k(p, Q) such that

[ollwre < E[V0] 0.

2.3 Formulation of the Problem

We formulate exactly the problem and define the solutions. Let 2 C R?* be denoted as
above. We consider the initial-boundary value problem derived in the previous section
with periodic boundary conditions. It will allow to omit the problem of filtering near
the boundary, when the domain of the filter does not overlap with the set €2. For a given
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and a pressure ¢ : (0,7) x 2 — R solving the system
v+ v - Vo —div (é(v)|Vou|V*v) —vAv + Vg = f,

divo =0 (5)

v(0,2) = vy(x)
with periodic boundary conditions (i = 1,2, 3)

v(t, v+ Le;) i v(t, ), )
q(t,z + Le;) = q(t,x).

where {e;}2_; is the canonical basis of R®, L is the period in all directions and v is the
constant positive viscosity. We denote for brevity

e~

¢(v) == e(v,vv, V0, | Vv |Vsv).

The properties of the operator ¢ are the following

—_

(C1) ¢ is a function of 0,vv, V0, |V*v|V*v, continuous with respect to all four vari-
ables.

(C2) c satisfies the condition
0<a<é(v) <p<oo. (7)

We will look for stationary solutions to this problem. Then the velocity v is independent
of time, i.e.
v(t,x) =v(x) forall t>0.

Also the external forces f must be independent of time. Then the system (5) reduces

to
v- Vo —div (¢(v)|V*v|V*v) —vAv + Vg = f,

dive =0 (8)

with the boundary conditions (i = 1,2, 3)
v(x + Le;) = v(x),
q(z + Le;)) = q(x).

(9)

We define weak solutions and formulate the result on the existence of these solutions.

Definition 2.1 The function v € V is a weak solution to problem (8), (9) if the
equation
/ (006 + 6(0) V0|V 0V + VoV — f6)da = 0 (10)
Q
is satisfied for all ¢ € V.

Theorem 2.3 (Existence) Let f € V' and let ¢ satisfy conditions (C1)-(C2). Then
there exists a weak solution in the sense of Definition 2.1 to the stationary problem

(8),(9)-
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Let {w,} be the set of eigenvectors of the Stokes operator in €2, for the definition and
properties of the Stokes operator in €2 see [MNRR96]. We define for each fixed n € N
an approximate solution to (10) by

V() =) Nw,, M ER, (11)

r=1

where v" € V" = lin {w;, wo, ...,w, } solves the system of equations

b(v",v" w,) + /6(1}")|VSU”|VSU" -Viw,dr + v(Vo", Vw,) = (f,w,) (12)

Q

for r =1, ..., n. The existence of solutions to this approximate problem is a consequence
of the Brouwer fixed point theorem, and in particular of the following lemma (cf.
[Tem77, Eva98]), which follows from that theorem.

Lemma 3.1 Let X be a finite dimensional space with scalar product [-, -] and norm |- |
and let P : X — X be a continuous mapping such that

[P(z),z] >0 for |z|=K, K >0.
Then there ezists x € X with |r| < K such that P(x) = 0.

Now we will use this tool to prove the following theorem.

Theorem 3.2 For given f € V' there exists a solution 7, ..., A\ (and therefore v™ €
V™) to the approzimate problem (11), (12).

Proof
Note that V" is a finite dimensional Hilbert space. Let P be defined as

[P(v), ¢] = /E(U)WSUIVSUVSMZE +v(Vo, Vo) +b(v,0,0) = (f,¢) Yu,p V"

Q

The above mapping is continuous w.r.t v € V™. Let us check the last assumption of
Lemma 3.1. By Korn’s inequality and assumption (C2)

(C2)
[P(v),v] = VIIWII%2+/C(77)|VSU|36Z$—<f,v> > v|[Vollz

Q
Korn

+ Oé/levl3dfﬂ—||f||v'||v||v > VI[VllL: + Ellvllis = 1l llvllyv

Q
> vVl + lvllv (Elloll5 = 1 llv).

1
Thus for K big enough, i.e., K > (W) * we get [P(v),v] > 0 forallv e V™, ||v]| =

K. Therefore there exists a v™ such that the equation P(v™) = 0 is satisfied.
]
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We will show that the approximate solutions converge to a solution of the original
problem. Multiplying the equations (12) by A” and summing over r one obtains by
Lemma 2.1 (b)

/E(v”) (V50" V" V™ da + v||[ Vo™ |2, = (f,v"™). (13)
Q
Estimates done for the turbulent term in a proof of Theorem 3.2 yield that
[ etenive o> K
Q

Estimating the RHS with Young’s inequality

(o) < Wl < KNI + 51"y

with K = K (k) we obtain

k n n %
"y +vIIVer|Z: < KI5 (14)

Passing to the limit

A direct consequence of the boundedness of the sequence (v™) in V' is the existence of
a subsequence, such that for n — oo

" —wvin V. (15)

Passing to the limit in the trilinear form b does not produce any difficulties. Notice that
in the three-dimensional case W'3(Q) is compactly embedded in L?(2) for 1 < g < .
Therefore

v" — v in LY(Q) for 1 < ¢ < oo. (16)

Then the convergence
b(v", 0", ¢) — b(v,v,¢) forall p € V (17)

follows from

/ (V"Vo" —oVv) pdx

Q

= /(v” —0)Vo"odr + /U(Vv” — Vv)pdz,
Q Q

where both integrals in the sum converge to zero due to weak convergence (15) and
strong convergence (16). The biggest problems appear in passing to the limit in the
nonlinear turbulent term. From the equation we conclude that div {é(v™)| V20" |Vu™}
is bounded in V' and therefore there exists a (further) subsequence and a £ € V' such
that for n — oo

div {¢(v™)| V" [V} = ¢ in V. (18)

8
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monotone, then passing to the limit could easily be done. But in this case there appears
a product of a monotone operator and of ¢, which is a nonlocal operator dependent on

—_

filtered values 0, vv, V0, |[V5v|V*v. Therefore, there is no chance for the whole term
to be monotone. However the properties of convolutions improve the convergence of
¢, which will allow - with help of the Minty-Browder trick (cf. [Eva90]) and strong
convergence of gradients - to pass to the limit in the whole turbulent term. First we
formulate a lemma concerning the convergence of c.

Lemma 3.3 Let ¢ = c(-,-,-,-) be the function satisfying conditions (C1)-(C2). Then
for each sequence (v")nen such that v — v in V' there exists x € L and it holds:

(i) For n — oo the following sequences converge strongly in L ()

(A — 0,
vt — DD,

Vior —s V0.

We can extract a further subsequence (v ) of (v™) such that

|V v |Vsome — x.

(1) Moreover

—_

c(v, prune, Vo | Vs [Vsvme) —s o5, 00, V5, %) in L2(Q).  (19)

Proof
Let us start with showing the convergences from assertion (i). The filter ¢ is a smooth
function. From linearity of the convolution one can conclude

5% = bllwe < (lellie + IVl 10" = vlls

and also
[oro = vollpee < lpllzoe[[v™0™ = vo] 1.
Hence the strong convergence (16) implies the first three convergences in assertion (i).

The last step deals with the convergence of |Vsv"|Vsv™. Due to the a priori estimate

the term | V™| Vo™ and also |V*0"|V*0™ are bounded in L2. Therefore we can extract
a subsequence such that

V50" | V0™ — y in L2(S). (20)

However now it cannot be claimed yet that x = |V*v|V*v. This result will be obtained
after finishing all the steps of the proof. Note that in particular L cc Wt so

Voo™ | Voo™ — x  in W 13(Q). (21)



D e J’ EATE A AN

[ Voo | Voo — [z < flollwrs]| V0" V20" — ]|

w3

and therefore

e~

|Vsvm | Vsome — x in L2(€2).

Because ¢ is a continuous function of all its arguments, the assertion (ii) of the
lemma holds.
n

Coming back to the convergence (18) one notices that Lemma 3.3 brings some more
information on the limit £&. Then for a (further) subsequence (19) and (20) imply that

&™) |V Vo™ = (3,00, V5, %) x  in L2, (22)
For brevity we denote
¢(v, x) := c(v,vv, V0, X).
Passing to the limit in (12) we obtain the limit identity

b(v,v,¢) + /6(1},)() xVipdr +v(Vo, Vo) = (f,¢) forall p €V. (23)

Q

Again for the simplicity of notation we introduce a(§) := [£|£. Recall the following
useful properties of a:

e ¢ is strongly monotone, i.e. there exists a positive constant k£ such that
(a(€) —a(n).& —n) 3 ,, > HlIE—nll}s forall €ne L

e a is hemicontinuous, i.e., Vu,v,w € V the function t — (a(u + tv),w) is a
continuous function from R to R.
Munty-Browder trick
Let us analyze for z € V' the integral

1" = (o) a(V*") = ¢(v, x) a(V®z), VU™ = V*2) 5

’LS

= {[e(v") = é(v, x)]a(V™), Vo™ — V°z)

L33

+ {(¢(v, x)][a(VE0") — a(V*:2)], Vo™ — V*z) =17+ 17.

AN
The first integral can be estimated by
17| < Nle(v™) = é(v, )z I VO [[2a V0™ = V2] e,

Because of condition (C2) and the strong monotonicity of a the second integral can be
estimated by

I} > a(a(V") — a(V¥z2), V"™ — V¥2) 182 af|[Vu" — V22|35,

3
L2

10
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I" =",
where
7" = al|[ Vot = VoG — [le(v”) = e(v, x) || [ VOR [Z: [ Vo0 = V2| e,
The function 4™ does not have to be positive for all n. But the property

liminf+" >0 forall z € V,

n— 00

which is a consequence of Lemma 3.3, will be useful in the following.
From equation (13) we know that

(E(v")a(Vo0"), Vo) g = (fo0") = vV e,
Substituting it into I™ one obtains
"= (f,v") = v|IVo"|IL.

—(c(v™)a(V°u™), Viz) = (¢(v, x)a(V?’z), V" = V°2) 3

L%,L3 ,L3"

With use of the lower semicontinuity of the norm we conclude from (15) and (22) that

limsup I < (f,0) = v Vol — (&v, )X V°2), 5, — (60, )a(V*), Vio = V°2)

L3 L3

Using the equation (23) and that lim sup I"™ > lim inf 4" and lim inf~™ > 0 it follows
(¢(v, x)x — €(v,x)a(V?z), Viv — VSZ>L%,L3 >0 forall zeV.

Taking z = v — A¢ with A > 0 we obtain

AE(v, x)x — é(v, x)a(V?z2), Vs¢>L%7L3 > 0.
Dividing by A and then letting A ™\, 0, the hemicontinuity of the operator a yields

(v, X)x = (v, x)a(V*0), V°h) 3 |, >0
for all ¢ € V. Hence,
(v, )% VP9) g o = (v, x)a(VP0),V20) 4 |,

for all test functions ¢ € V. Since these test functions ¢ are divergence-free, the above

result only yields
div ¢(v, x)x = divé(v, x)| V0|V + Vg, (24)
where the scalar function ¢ will be interpreted as a pressure. This information already

allows to improve the limit identity (23) to

b(v, v, 8) + /E(v,x) VooV Vi dr + 1(Vo, Vo) = (f.6) forallpc V.  (25)
Q

11
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Strong convergence of gradients

In the last step we will show that
Vi — Vv in L*(9). (26)

In (25) let us use as a test function v™ € V™* C V to obtain

/e(v,x)wswsvvsv" dz + v(Vv, Vor) = (£, 0" — b(v, v, o"). (27)

Q

Choosing the same test function in the approximate equation (12) we get

/ ()| VM| V" V" do + v(Vo™, Vo') = (f,0"). (28)

Q
The above identities together with the fact that lim b(v,v,v"™) = 0 allow to conclude
n— 00
that
lim (e(v™)| V20" P + v|Vu" ) do = lim (f,v")
n—00

n—00

n— 00

= lim [ (é(v, x)|V0|ViuV*0" + vVoVu") de = / (&(v, \)|V0* + |Vu[?) dz
Q 0

Lemma 3.3 yields the estimate

lim sup ‘/ ) — (v, x))| V" da:‘ <11rnsup/‘ ) — &(v, X)) | V" ‘d:r

n— 00 n— 00

<limsup |E(e") — (v, )|~ lIV*0" 15 = 0.

n—00

Therefore

lim (e(™)| V" + V0" ) dx
n—00
Q

= lim /(E(v”) —&(v, X)) | V" Pdr + / (5(U,X)|V5Un|3 + |an|2) dx

n—00
Q Q

1 ~ s, .n|3 2
= lim (¢(v, X)|V°0" ]’ + |Vo]?) dz
0

Finally

n—o0

lim [ (¢(v, x)|V*0"P +v|Vo"|? / (v, X)|V°u]* + v|Vu]?) dz
Q Q

12
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liminf/|Vv"|2dx2/|Vv|2dx

n—00

Q Q
and
Vi = Vv in L2 (29)
(because of equivalence of norms || - [[zz and || - [[z2), which implies
liminf/é(v,x)|vsv"|3da; > /E(v,x)|st|3da;.
n—0o0
Q Q
then
lim /E(v,x)|st"|3d:r: /é(v,x)|vsv|3d:r. (30)
n—o0
Q Q

Let us now introduce a norm equivalent to the standard norm in L3, namely

3

fulls = | [ ev0)lufds

Q

The following fact will bring us to desired result.

Theorem 3.4 Let a Banach space X with norm || - || be uniformly convex (i.e. for
each ¢ with 0 < e < 2 there exists 6(g) such that ||ul| < 1, ||v|| < 1 and [ju —v|| > ¢
imply [lu+v|| < 2(1—=46(e)). If u™ = w in X and ||[u"||x — ||ul|x, then u" — u in X.

For the proof see [Bar76]. The space L* with norm || - ||,s is uniformly convex. We
show this in a similar way as the uniform convexity of the spéces L? for 1 < p < oo with
standard norm (cf. [Ada75, HS69]). We will consider the sequence of the symmetric
parts of the gradients. From (29) and the convergence of norms ||V*v" || 2 — ||V*v]| 13
shown in (30) due to Theorem 3.4 it holds ’ ’

V0" = Vo0l gz — 0
Therefore also (for a further subsequence)
V" — V*v  strongly in L? and a.e. in €.

Thus
V3" | V" — |V VP a.e in Q,
and the information
x = |V*u|V®v a.ein

allows to conclude that
c(v") — ¢(v) a.ein €.

Finally we are able to determine the limit of the turbulent term, namely
()| V" V" — ¢(v)|VPu|VPu  a.e in Q.

13
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is uniformly integrable, i.e., for every € > 0 there exists 6 > 0 such that

sup/ ‘5(v”)|vsv”|vsv” der <e VM CQ, |M| <},
M

neN
because
2 L
3 3
/ c(v™)| VA" | Vi |de < B/ (V50" |?dr < 8 /|st"|3da; (M/Ida;
M M Q

< Bllo" |} 1M]5 < k[M]5.
Then Vitali’s lemma (cf. [MNRR96]) yields

/E(v")|st”|st"Vs¢dx — /E(v)|V5v|stV5¢da; Vo e V.

Q Q

This finishes the proof of the theorem. ]
Remark

Note that showing the strong convergence of gradients without the step using the
Minty-Browder trick would not have been possible. The crucial fact to show conver-
gence of norms (30) was the information that ¢(v™)|V*v"|V*0™ converges weakly to
¢(v, x)|V*v|V*v, not only to ¢(v, x)x.
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