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Abstra
t. We de�ne symmetri
 spa
es in arbitrary dimension and over arbitrary non-dis
rete

topologi
al �elds K , and we 
onstru
t manifolds and symmetri
 spa
es asso
iated to topologi
al


ontinuous quasi-inverse Jordan pairs and -triple systems. This 
lass of spa
es, 
alled smooth gen-

eralized proje
tive geometries, generalizes the well-known (�nite or in�nite-dimensional) bounded

symmetri
 domains as well as their \
ompa
t-like" duals. An interpretation of su
h geometries

as models of Quantum Me
hani
s is proposed, and parti
ular attention is paid to geometries that

might be 
onsidered as \standard models" { they are asso
iated to asso
iative 
ontinuous inverse

algebras and to Jordan algebras of hermitian elements in su
h an algebra.
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Introdu
tion

In �nite dimensions, the theory of Lie groups is 
losely related to the theory of symmetri


spa
es. In in�nite dimensions, the theory of Lie groups is by now developed in great generality,

whereas for symmetri
 spa
es there is not even a 
ommonly a

epted de�nition. Nevertheless,

there is an interesting 
lass of spa
es, 
alled (in�nite-dimensional) bounded symmetri
 domains,

for whi
h one 
an develop a ni
e stru
ture theory and whi
h, without doubt, are honest sym-

metri
 spa
es. Remarkably enough, the framework of their theory (developed by W. Kaup and

H. Upmeier, 
f. the monograph [Up85℄ and the literature given there) is not so mu
h Lie but

rather Jordan theoreti
. Re
ently, also their \
ompa
t-like" dual symmetri
 spa
es (the analog

of the 
ompa
t dual of a non-
ompa
t symmetri
 spa
e in �nite dimension) have attra
ted atten-

tion, the most important examples being in�nite-dimensional Gra�mannians of many kinds (
f.

[PS86℄, [DNS89℄, [DNS90℄, [KA01℄, [MM01℄, [IM02℄). These 
ompa
t-like in�nite-dimensional
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manifolds 
an be seen as a \proje
tive 
ompletion" of the underlying Jordan triple system, in a

similar way as an ordinary proje
tive spa
e RP

n


an be seen as the proje
tive 
ompletion of the

aÆne spa
e R

n

.

In the present work, whi
h is the se
ond part in a series of two papers started by [BN03℄,

we will give a far-rea
hing generalization of the above mentioned theories. We will not only

free the real theory from the Bana
h spa
e set-up present in [Up85℄, but develop the theory

in the 
ontext of any Hausdor� topologi
al ve
tor spa
e as model spa
e, over any non-dis
rete

topologi
al �eld. In fa
t, we even work over any topologi
al ring having dense unit group.

Compared with the approa
h from [Up85℄, our approa
h is more algebrai
 and less analyti
,

whi
h makes it 
onsiderably simpler and more elementary. The algebrai
 results from Part I

of this work ([BN03℄) whi
h we need are summarized in Chapter 4, and the basi
 notions of

di�erential 
al
ulus and manifolds over general topologi
al �elds and rings from [BGN03℄ are

re
alled in Chapter 1. The reader who is only interested in the real or 
omplex theory may

everywhere repla
e K by R or C , and he will see that all notions from 
al
ulus we use are the

ones whi
h he is used to.

We now give a more detailed des
ription of the 
ontents. In Chapter 2 the basi
 theory

of symmetri
 spa
es, in arbitrary dimension and over general base �elds or rings (in whi
h 2

is invertible), is developed. For several reasons, we believe that the 
orre
t starting point for

the general theory is the approa
h to symmetri
 spa
es by O. Loos ([Lo69℄) { the main idea

being to in
orporate all symmetries �

x

with respe
ts to points x in the symmetri
 spa
e M

into a smooth binary \multipli
ation map" m : M �M ! M , (x; y) 7! �

x

(y) whi
h is non-

asso
iative, but has other ni
e algebrai
 properties. The analogy with the theory of Lie groups

then be
omes very 
lose, and we get a good analog of the fun
tor assigning to a Lie group its

Lie algebra (Theorem 2.10). For further results on the di�erential geometry of symmetri
 spa
es

(in
luding the 
anoni
al 
onne
tion and its 
urvature) we refer to [Be03b℄. One should not think

of symmetri
 spa
es as homogeneous spa
es G=H { homogeneity is a rather spe
ial phenomenon,

and the same holds for the existen
e of a lo
ally di�eomorphi
 exponential map whi
h 
annot be

guaranteed in general (see examples and dis
ussion of exponential maps in Remarks 2.11, 3.5,

6.5).

In Chapter 3 we 
onstru
t a 
lass of symmetri
 spa
es related to 
ontinuous inverse Jordan

algebras; by de�nition, these are topologi
al Jordan algebras over K having an open set of

invertible elements and for whi
h the Jordan inverse map is 
ontinuous. On
e more, we 
losely

follow the presentation from [Lo69℄ (
f. lo
. 
it. Se
tion II.1.2.5); however, our general framework

permits to treat 
ompletely new examples su
h as the spa
e of non-degenerate quadrati
 forms

on K

n

whi
h, for �elds su
h as K = Q , is the prime example of a non-homogeneous symmetri


spa
e. For the 
ase of Bana
h{Jordan algebras the symmetri
 spa
e stru
ture of the set of units

has been studied by O. Loos in [Lo96℄.

Having re
alled in Chapter 4 the algebrai
 
onstru
tion and main properties of \gener-

alized proje
tive geometries" asso
iated to 3-graded Lie algebras (whi
h are the Lie theoreti



ounterpart of Jordan pairs), we are ready to state and to prove our �rst main result (The-

orem 5.3): the generalized proje
tive geometry is a
tually a smooth manifold (on whi
h the

so-
alled proje
tive group a
ts by di�eomorphisms) if some natural 
onditions on the Jordan pair

are ful�lled. Namely, the Jordan pair (V

+

; V

�

) shall be a topologi
al Jordan pair over K , the

set (V

+

� V

�

)

�

of quasi-invertible pairs shall be open in V

+

� V

�

, and the Bergman-inverse

mapping (V

+

� V

�

)

�

� V

+

� V

�

! V

+

� V

�

shall be 
ontinuous; then we say that (V

+

; V

�

)

is a 
ontinuous quasi-inverse Jordan pair (Se
tion 5.1). If this is the 
ase, a \generalized quo-

tient rule" (Se
tion 1.7) permits to 
on
lude that the quasi-inverse mapping a
tually is smooth

(Proposition 5.2), whi
h is a major step in the proof of Theorem 5.3. Our 
ontinuous quasi-

inverse 
ondition on the Jordan pair is not only suÆ
ient, but also ne
essary for the asso
iated

generalized proje
tive geometry to be a smooth manifold; thus Theorem 5.3 is the most general

result that one might expe
t in this 
ontext. Of 
ourse, it 
ontains the previously mentioned

results in the Bana
h situation as spe
ial 
ases.

In Chapter 6, we return to symmetri
 spa
es: a symmetri
 spa
e stru
ture on a generalized

proje
tive geometry (X

+

; X

�

) depends on an additional stru
ture, namely on a �xed bije
tion
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X

+

! X

�

whi
h is a polarity { in fa
t, this is familiar already from the 
lassi
al proje
tive spa
es

X

+

= RP

n

or X

+

= C P

n

: they are turned into symmetri
 spa
es only after the 
hoi
e of a

s
alar produ
t whi
h distinguishes an identi�
ation of X

+

with the dual proje
tive spa
e X

�

and

thus determines isometry subgroups PO

n+1

, resp. PU

n+1

, of the proje
tive group PGL

n+1

(K ) ,

K = R; C . We prove that, under the general assumptions of Theorem 5.3, a 
ontinuous polarity

p : X

+

! X

�

is automati
ally smooth and gives rise to a symmetri
 spa
e stru
ture on the

open set M

(p)

of non-isotropi
 points in X

+

(Theorem 6.2 (i)). We also 
al
ulate the asso
iated

Lie triple system (i.e., the 
urvature of the 
anoni
al 
onne
tion; 
f. [Be03b℄): it is given by

anti-symmetrising the 
orresponding Jordan triple produ
t (Theorem 6.2 (ii)). This generalizes

the geometri
 Jordan-Lie fun
tor whi
h has been de�ned in [Be00℄ for the �nite-dimensional real


ase.

In Chapters 7, 8 and 9, we give appli
ations and examples of the pre
eding results and

explain some links with the (abundant) related work in mathemati
s and physi
s. On the one

hand, Jordan algebras have been introdu
ed by P. Jordan (
f. [JNW34℄) in an attempt to lay

algebrai
 foundations of quantum me
hani
s. On the other hand, resear
h on the foundations

of quantum me
hani
s lead by quite di�erent arguments to the 
on
lusion that \... quantum

me
hani
al systems are those whose logi
s form some sort of proje
tive geometries" ([Va85, p.

6℄). In the hope to bring these two lines of thought together, the 
on
ept of \generalized proje
tive

geometry" has been introdu
ed by the �rst named author in [Be02℄. More re
ently, 
on
epts of

delinearization of quantum me
hani
s have been proposed in the 
ontext of (Bana
h) hermitian

symmetri
 spa
es, see [CGM03℄, where this program is motivated in the following way: \The true

aim of the delinearization program is to free the mathemati
al foundations of quantum me
hani
s

from any referen
e to linear stru
ture and to linear operators. It appears very gratifying to

be aware of how naturally geometri
 
on
epts des
ribe the more relevant aspe
ts of ordinary

quantum me
hani
s, suggesting that the geometri
 approa
h 
ould be very useful also in solving

open problems in Quantum Theories." The 
lose relation of the delinearization approa
h via

hermitian symmetri
 spa
es to Jordan theory has not been noti
ed in [CGM03℄ nor in the 
losely

related paper [AS97℄. In Chapter 9 we propose a \di
tionary" between the language of generalized

proje
tive geometries (whi
h is equivalent to the language of Jordan theory) and the language of

quantum me
hani
s. We do not 
laim anything about the appli
ability of this di
tionary to the

\physi
al world"; all that we aim at is to propose a terminology that makes evident the stru
tural

analogy between quantum me
hani
s and the theory of generalized proje
tive geometries.

Chapters 7 and 8 are devoted to what one might 
all \standard models of quantum me-


hani
s" { these are the geometries 
orresponding to asso
iative 
ontinuous inverse algebras, resp.

to their Jordan sub-algebras of hermitian elements. These are (in general) in�nite-dimensional

geometries whi
h, however, geometri
ally behave very mu
h like a proje
tive line (over a non-


ommutative base ring). A spe
ial feature of these geometries is that some of their asso
iated

symmetri
 spa
es are \of group type", i.e. they are Lie groups, 
onsidered as symmetri
 spa
es:

all orthogonal and unitary groups asso
iated to involutive 
ontinuous inverse algebras 
an be

realized in this way.

In the �nal Chapter 10 we mention some further topi
s and open problems related to this

work.

Notation. Throughout this paper, K denotes a 
ommutative topologi
al ring with unit 1

(i.e. K 
arries a topology su
h that the ring operations are 
ontinuous, the group K

�

of invertible

elements is open and inversion i:K

�

! K is 
ontinuous) su
h that the group of units K

�

is

dense in K . We assume that 2 is invertible in K . In parti
ular, K may be any non-dis
rete

topologi
al �eld of 
hara
teristi
 di�erent from 2 su
h as R , C , Q , Q

p

, C

p

,

�

R; : : :

If K is a topologi
al ring, all K -modules V are assumed to be topologi
al modules, i.e.

they 
arry a topology su
h that the stru
ture maps V �V ! V and K �V ! V are 
ontinuous.

Moreover, we assume that all topologi
al K -modules are Hausdor�. The 
lass of 
ontinuous

mappings is denoted by C

0

.
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1. Cal
ulus and manifolds

1.1. Di�erentiability in lo
ally 
onvex spa
es. In order to motivate our general 
on
ept of

di�erentiability, we re
all the de�nition of di�erentiable mappings on lo
ally 
onvex spa
es (
f.

[Gl01a℄, [Ke74℄, [Ha82℄): suppose E;F are real lo
ally 
onvex spa
es (not ne
essarily 
omplete),

U � E open and f : U ! F 
ontinuous. Then f is 
alled of 
lass C

1

if, for all x 2 U and

h 2 E , the dire
tional derivative

df(x;h) := lim

t!0

f(x+ th)� f(x)

t

exists and df : U � E ! F is 
ontinuous. Indu
tively, one de�nes f to be of 
lass C

k+1

if df

is of 
lass C

k

(
f. [Gl01a, Lemma 1.14℄ for this de�nition), and we denote by C

0

the 
lass of


ontinuous maps. For our purposes, the following equivalent 
hara
terization of the 
lass C

1

will

be useful:

Proposition 1.2. The map f : U ! F is of 
lass C

1

if and only if there exists a map

f

[1℄

: U �E � R � U

[1℄

:= f(x; h; t) : x+ th 2 Ug ! F

of 
lass C

0

su
h that for all (x; h; t) 2 U

[1℄

,

f(x+ th)� f(x) = t � f

[1℄

(x; h; t):

Proof. Given f

[1℄

as in the proposition, we get df(x;h) = f

[1℄

(x; h; 0), and df will be of 
lass

C

0

sin
e so is f

[1℄

. Conversely, assume that f is C

1

and de�ne f

[1℄

by

f

[1℄

(x; h; t) :=

n

f(x+th)�f(x)

t

; t 2 R

�

df(x)h; t = 0:

Then f

[1℄

is of 
lass C

0

: this is seen by using, lo
ally, the integral representation

f

[1℄

(x; h; t) =

Z

1

0

df(x+ sth)h ds

(Fundamental Theorem of Cal
ulus, 
f. [Gl01a, Th. 15℄; note that no 
ompleteness assumption is

ne
essary here: a priori, the integral from the right-hand side has to be taken in the 
ompletion

of F , but as it a
tually equals f

[1℄

(x; h; t), it belongs to F itself.) Now the 
ontinuity of f

[1℄

follows by standard estimates (
f. [BGN03, Prop. 7.4℄ for the details).

1.3. General de�nition of the 
lass C

1

over topologi
al �elds and rings. Now let K

be a general topologi
al ring having dense group of units K

�

, let V;W be Hausdor� topologi
al

K -modules and U � V open. We say that a map f : V � U ! W is C

1

(U;W ) or just of 
lass

C

1

if there exists a C

0

-map

f

[1℄

: U � V � K � f

[1℄

:= f(x; v; t)jx 2 U; x+ tv 2 Ug !W;

su
h that

f(x+ tv)� f(x) = t � f

[1℄

(x; v; t)

whenever (x; v; t) 2 U

[1℄

. The di�erential of f at x is de�ned by

df(x) : V !W; v 7! df(x)v := f

[1℄

(x; v; 0):
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By density of K

�

in K , the map f

[1℄

is uniquely determined by f and hen
e df(x) is well-de�ned.

1.4. De�nition of the 
lasses C

k

and C

1

. Let f : V � U ! F be of 
lass C

1

. We say that

f is C

2

(U; F ) or of 
lass C

2

if f

[1℄

is C

1

, in whi
h 
ase we de�ne f

[2℄

:= (f

[1℄

)

[1℄

: U

[2℄

! F ,

where U

[2℄

:= (U

[1℄

)

[1℄

. Indu
tively, we say that f is C

k+1

(U; F ) or of 
lass C

k+1

if f is of 
lass

C

k

and f

[k℄

: U

[k℄

! F is of 
lass C

1

, in whi
h 
ase we de�ne f

[k+1℄

:= (f

[k℄

)

[1℄

: U

[k+1℄

! F

with U

[k+1℄

:= (U

[k℄

)

[1℄

. The map f is 
alled smooth or of 
lass C

1

if it is of 
lass C

k

for ea
h

k 2 N

0

. { Note that U

[k+1℄

= (U

[1℄

)

[k℄

for ea
h k 2 N

0

, and that f is of 
lass C

k+1

if and only

if f is of 
lass C

1

and f

[1℄

is of 
lass C

k

; in this 
ase, f

[k+1℄

= (f

[1℄

)

[k℄

.

1.5. Di�erentiation rules. We assume that f : U ! W is of 
lass C

k

. Its di�erential is the

C

0

-map

df : U � V ! W; (x; v) 7! df(x)v = f

[1℄

(x; v; 0);

the dire
tional derivative in dire
tion v is

�

v

f : U !W; x 7! �

v

f(x) := df(x)v:

We de�ne also

Tf : U � V !W �W; (x; v) 7! (f(x); df(x)v):

Then the following holds (
f. [BGN03℄):

(1) For all x 2 U , df(x) : V !W is a K -linear C

0

-map.

(2) If f and g are 
omposable and of 
lass C

k

, then gÆf is of 
lass C

k

, and T (gÆf) = TgÆTf .

(3) Multilinear maps of 
lass C

0

are C

k

and are di�erentiated as usual. In parti
ular, if

f; g : U ! K are C

1

, then the produ
t f � g is C

1

, and �

v

(fg) = (�

v

f)g + f�

v

g .

Polynomial maps K

n

! K

m

are always C

1

and are di�erentiated as usual.

(4) Inversion i : K

�

! K is C

1

, and (di)(x)v = �x

�2

v . It follows that rational maps

K

n

� U ! K

m

are always C

1

and are di�erentiated as usual.

(5) The 
artesian produ
t of two C

k

-maps is C

k

.

(6) If f : V

1

� V

2

� U !W is C

1

, and for (x

1

; x

2

) 2 U we let

l

x

1

(x

2

) := r

x

2

(x

1

) := f(x

1

; x

2

);

then the rule on partial derivatives holds:

df(x

1

; x

2

)(v

1

; v

2

) = d(l

x

1

)(x

2

)v

1

+ d(r

x

2

)(x

1

)v

2

:

(7) (\S
hwarz' Lemma") If f is of 
lass C

2

, then for all x 2 U , v; w 2 V ,

�

v

�

w

f(x) = �

w

�

v

f(x):

Hen
e, if f is of 
lass C

k

and x 2 U , then the map

d

k

f(x) : V

k

!W; (v

1

; : : : ; v

k

) 7! �

v

1

: : : �

v

k

f(x)

is a symmetri
 multilinear C

0

-map.

(8) There are several versions of Taylor's formula (see [BGN03℄), but none of them will be used

in this work.

1.6. Continuous inverse algebras. We will need various generalizations of the quotient rule

(4). An asso
iative K -algebra A with unit 1 is 
alled a 
ontinuous inverse algebra (
.i.a.) if the

produ
t A � A ! A is 
ontinuous, the unit group A

�

is open in A and inversion i : A

�

! A

is 
ontinuous. Writing

i(x+ th)� i(x) = �x

�1

(th)(x+ th)

�1

= t(�x

�1

h(x+ th)

�1

);
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we see that i a
tually is C

1

and i

[1℄

(x; h; t) = �x

�1

h(x + th)

�1

, when
e di(x)h = �x

�1

hx

�1

.

Iterating this argument, we see that i is C

1

.

1.7. The generalized quotient rule. For the se
ond generalization of the quotient rule,

assume f : E � U ! End(F ) takes, on the open set U � E , values in the group GL(F ) of

(
ontinuous) invertible linear self-maps of E . We do not want to �x a topology on End(F ), and

hen
e it makes no sense to assume f or the inversion map j : GL(F )! GL(F ) to be 
ontinuous

or di�erentiable. Instead, we assume that

e

f : U � F ! F , (x; v) 7! f(x)v is of 
lass C

k

and

that

f

jf : U � F ! F; (x; v) 7! f(x)

�1

v

is of 
lass C

0

. We 
laim that then

f

jf also is of 
lass C

k

. Indeed, for k = 1 we have:

f

jf((x; v) + s(h

1

; h

2

))�

f

jf(x; v)

=

f

jf((x; v) + s(h

1

; h

2

))�

f

jf((x; v) + s(h

1

; 0)) +

f

jf((x; v) + s(h

1

; 0))�

f

jf(x; v)

= f(x+ sh

1

)

�1

(v + sh

2

)� f(x+ sh

1

)

�1

v + f(x+ sh

1

)

�1

v � f(x)

�1

v

= sf(x+ sh

1

)

�1

h

2

+ (f(x+ sh

1

)

�1

� f(x)

�1

)v

= sf(x+ sh

1

)

�1

h

2

+ f(x)

�1

(f(x)� f(x+ sh

1

))f(x+ sh

1

)

�1

v

= sf(x+ sh

1

)

�1

h

2

+ f(x)

�1

(

e

f(x; f(x+ sh

1

)

�1

v)�

e

f(x+ sh

1

; f(x+ sh

1

)

�1

v))

= sf(x+ sh

1

)

�1

h

2

+ sf(x)

�1

(

e

f)

[1℄

((x; f(x+ sh

1

)

�1

v); (h

1

; 0); s)

whi
h is the same as the produ
t of s with

(

f

jf)

[1℄

((x; v); (h

1

; h

2

); s) = f(x+ sh

1

)

�1

h

2

+ f(x)

�1

(

e

f)

[1℄

((x; f(x + sh

1

)

�1

v); (h

1

; 0); s)

=

f

jf(x+ sh

1

; h

2

) +

f

jf(x; (

e

f )

[1℄

((x;

f

jf(x + sh

1

; v)); (h

1

; 0); s));

(1:1)

whi
h, a

ording to our assumptions, is a C

0

-map. It follows that

f

jf is C

1

, and letting s = 0,

we get

d(

f

jf)(x; v)(h

1

; h

2

) = f(x)

�1

h

2

� f(x)

�1

d

e

f(x; f(x)

�1

v)(h

1

; 0):

Moreover, using Equation (1.1) together with the 
hain rule, we 
an iterate this argument, and

it follows that

f

jf is C

k

if so is

e

f .

1.8. Manifolds. A C

k

-manifold with atlas (modeled on the topologi
al K -module E ) (where

k 2 N

0

[ f1g) is a topologi
al spa
e M together with an E -atlas A = f('

i

; U

i

) : i 2 Ig . This

means that U

i

, i 2 I , is a 
overing of M by open sets, and '

i

: M � U

i

! '

i

(U

i

) � E is a


hart , i.e. a homeomorphism of the open set U

i

�M onto an open set '

i

(U

i

) � E , and any two


harts ('

i

; U

i

); ('

j

; U

j

) are C

k

-
ompatible in the sense that

'

ij

:= '

i

Æ '

�1

j

j

'

j

(U

i

\U

j

)

: '

j

(U

i

\ U

j

)! '

i

(U

i

\ U

j

)

and its inverse '

ji

are of 
lass C

k

.

If the atlas A is maximal in the sense that it 
ontains all 
ompatible 
harts, then M is


alled a C

k

-manifold (modeled on E ).

Smooth maps between manifolds (with or without atlas) are now de�ned as usual, and it

is seen that C

k

-manifolds (with or without atlas) form a 
ategory.

1.9. The tangent fun
tor. Set-theoreti
ally, M 
an be seen as the quotient of the following

equivalen
e relation S= � , where

S := f(i; x)jx 2 '

i

(U

i

)g � I �E;

and (i; x) � (j; y) if '

�1

i

(x) = '

�1

j

(y). We write p = [i; x℄ 2 M = S= � . Then the tangent

bundle is de�ned to be the quotient of the equivalen
e relation on the set

TS := S �E � I �E �E
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given by:

(i; x; v) � (j; y; w) :() '

j

Æ '

�1

i

(x) = y; d('

j

Æ '

�1

i

)(x)v = w:

All usual properties of the tangent bundle are now easily proved (
f. [BGN03℄); in parti
ular,

there is a natural manifold stru
ture (with atlas TA) on TM su
h that the natural proje
tion

� : TM !M is smooth; the tangent spa
e T

p

M is de�ned to be the �ber �

�1

(p). If f : M ! N

is C

k

, there is a well-de�ned tangent map Tf : TM ! TN , and we have the usual fun
torial

properties (in
luding 
ompatibility with dire
t produ
ts: T (M �N)

�

=

TM � TN ); thus T will

be 
alled the tangent fun
tor.

1.10. The Lie bra
ket. Smooth se
tions of TM are 
alled ve
tor �elds. There is a Lie bra
ket

on the K -module X(M) of ve
tor �elds on M , given in a 
hart by

[X;Y ℄(x) = dY (x)X(x) � dX(x)Y (x) (1:2)

([BGN03, Th. 8.4℄; note that the sign is a matter of 
onvention). The Lie bra
ket is natural

in the sense that, if (X;X

0

) and (Y; Y

0

) are '-related under some smooth map ' , then so is

([X;Y ℄; [X

0

; Y

0

℄) ([BGN03, Lemma 8.5℄). See [Be03b℄ for a 
on
eptual de�nition of the Lie bra
ket

and for a systemati
 exposition of di�erential geometry (espe
ially, the theory of 
onne
tions) in

this framework.

2. Lie groups and symmetri
 spa
es

2.1. Manifolds with multipli
ation. A produ
t or multipli
ation map on a manifold M is

a smooth binary map m : M �M ! M , and homomorphisms of manifolds with multipli
ation

are smooth maps that are 
ompatible with the respe
tive multipli
ation maps. Left and right

multipli
ation operators, de�ned by l

x

(y) = m(x; y) = r

y

(x), are partial maps of m and hen
e

smooth self maps of M . Applying the tangent fun
tor to this situation, we see that (TM; Tm) is

again a manifold with multipli
ation, and tangent maps of homomorphisms are homomorphisms

of the respe
tive tangent spa
es. The tangent map Tm is given by the formula

T

(x;y)

m(Æ

x

; Æ

y

) = T

(x;y)

m((Æ

x

; 0

y

) + (0

x

; Æ

y

)) = T

x

(r

y

)Æ

x

+ T

y

(l

x

)Æ

y

: (2:1)

Formula (2.1) is nothing but the rule on partial derivatives (1.5.(6)) written in the language of

manifolds. In parti
ular, (2.1) shows that the 
anoni
al proje
tion and the zero se
tion,

� : TM !M; Æ

p

! p; z :M ! TM; p 7! 0

p

(2:2)

are homomorphisms of manifolds with multipli
ation. We will always identify M with the

subspa
e z(M) of TM . Then (2.1) implies that the operator of left multipli
ation by p = 0

p

in

TM is nothing but T (l

p

) : TM ! TM , and similarly for right multipli
ations.

2.2. Lie groups. A Lie group over K is a smooth K -manifold G 
arrying a group stru
ture

su
h that the multipli
ation map m : G�G! G and the inversion map i : G! G are smooth.

Homomorphisms of Lie groups are smooth group homomorphisms. Clearly, Lie groups and their

homomorphisms form a 
ategory in whi
h dire
t produ
ts exist.

Applying the tangent fun
tor to the de�ning identities of the group stru
ture (G;m; i; e),

it is immediately seen that then (TG; Tm; T i; 0

T

e

G

) is again a Lie group su
h that � : TG! G

be
omes a homomorphism of Lie groups and su
h that the zero se
tion z : G ! TG also is a

homomorphism of Lie groups.

2.3. The Lie algebra of a Lie group. A ve
tor �eld X 2 X(G) is 
alled left invariant if, for

all g 2 G , X Æ l

g

= T l

g

ÆX . In parti
ular, X(g) = X(l

g

(e)) = T

e

l

g

X(e); thus X is uniquely

determined by the value X(e), and thus the map

X(G)

l

G

! T

e

G; X 7! X(e) (2:3)
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from the spa
e of left invariant ve
tor �elds into T

e

G is inje
tive. It is also surje
tive: if v 2 T

e

G ,

then right multipli
ation with v in TG , Tr

v

: TG ! TG preserves �bers and hen
e de�nes a

ve
tor �eld

v

l

: G! TG; g 7! T

g

r

v

(0

g

) = Tm(g; v) = T

e

l

g

(v)

whi
h is left invariant sin
e right multipli
ations 
ommute with left multipli
ations. Now, the

spa
e X(G)

l

G

is a Lie subalgebra of X(M); this follows immediately from the naturality of the

Lie bra
ket be
ause X is left invariant if and only if the pair (X;X) is l

g

-related for all g 2 G .

The spa
e g := T

e

G with the Lie bra
ket de�ned by [v; w℄ := [v

l

; w

l

℄

e

is 
alled the Lie algebra

of G .

Theorem 2.4.

(i) The Lie bra
ket g� g! g is C

0

.

(ii) For every homomorphism f : G ! H , the tangent map

_

f := T

e

f : g ! h is a homomor-

phism of Lie algebras.

Proof. (i) Pi
k a 
hart ' : U ! V of G su
h that '(e) = 0. Sin
e w

l

(x) = Tm(x;w)

depends smoothly on (x;w), it is represented in the 
hart by a smooth map (whi
h again will

be denoted by w

l

(x)). But this implies that [v

l

; w

l

℄(x) = d(w

l

)(x)v

l

(x)� d(v

l

)(x)w

l

(x) depends

smoothly on v; w and x and hen
e [v; w℄ depends smoothly on v; w .

(ii) First one has to 
he
k that the pair of ve
tor �elds (v

l

; ( _'v)

l

) is f -related, and then

the naturality of the Lie bra
ket implies that

_

f [v; w℄ = [

_

fv;

_

fw℄ .

The fun
tor from Lie groups over K into C

0

-Lie algebras over K will be 
alled the Lie

fun
tor over K .

2.5. Symmetri
 spa
es. A symmetri
 spa
e over K is a smooth manifold with a multipli
ation

map m : M�M !M su
h that, for all x; y; z 2M , writing also �

x

for the left multipli
ation l

x

,

(M1) m(x; x) = x ,

(M2) m(x;m(x; y)) = y , i.e. �

2

x

= id

M

,

(M3) m(x;m(y; z)) = m(m(x; y);m(x; z)), i.e. �

x

2 Aut(M;m),

(M4) T

x

(�

x

) = � id

T

x

M

.

Homomorphisms of symmetri
 spa
es are the 
orresponding homomorphisms of manifolds with

multipli
ation. The left multipli
ation operator �

x

is, by (M1){(M3), an automorphism of order

two �xing x ; it is 
alled the symmetry around x . Sin
e 2 is invertible in K , Property (M4)

says that, \in�nitesimally", x is an isolated �xed point of the symmetry �

x

. If we have an

impli
it fun
tion theorem at our disposition, then this holds also lo
ally (see [Ne02, Lemma 3.2℄

for the Bana
h 
ase). In parti
ular, in the �nite-dimensional 
ase over K = R , our de�nition is

equivalent to the one by O. Loos in [Lo69℄.

Remark. It would be interesting to know whether there are real in�nite-dimensional symmetri


spa
es for whi
h x is not isolated in the set of �xed points of the symmetry �

x

. If there were a

(in�nite-dimensional real) Lie group G for whi
h the unit element is not isolated in the spa
e of

elements of order 2, then we 
ould take M = G with m(g; h) = gh

�1

g .

The group G(M) generated by all produ
ts �

x

�

y

, x; y 2 M , is a (normal) subgroup of

Aut(M;m), 
alled the group of displa
ements. A distinguished point o 2 M is 
alled a base

point. With respe
t to a base point, one de�nes the quadrati
 representation

Q :M ! G(M); x 7! �

x

�

o

: (2:4)

Proposition 2.6. The tangent bundle (TM; Tm) of a symmetri
 spa
e is again a symmetri


spa
e.

Proof. We express the identities (M1){(M3) by 
ommutative diagrams to whi
h we apply

the tangent fun
tor T . Sin
e T 
ommutes with dire
t produ
ts, we get the same diagrams and

hen
e the laws (M1){(M3) for Tm (
f. [Lo69, II.2℄ for the expli
it form of the diagrams).
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Next we prove (M4): �rst of all, note that the �bers of � : TM ! M (i.e. the tangent

spa
es) are stable under Tm be
ause � is a homomorphism. We 
laim that for v; w 2 T

p

M

the expli
it formula Tm(v; w) = 2v � w holds (i.e. the stru
ture indu
ed on tangent spa
es is

the 
anoni
al \
at" symmetri
 stru
ture of an aÆne spa
e). In fa
t, from (M3) for Tm we get

v = Tm(v; v) = T

p

(�

p

)v + T

p

(r

p

)v = �v + T

p

(r

p

)v , when
e T

p

(r

p

)v = 2v and

Tm(v; w) = T

p

(�

p

)w + T

p

(r

p

)v = 2v � w:

Now �x p 2 M and v 2 T

p

M . We 
hoose 0

p

as base point in TM . Then Q(v) = �

v

�

0

p

is, by

(M3), an automorphism of (TM; Tm) su
h that Q(v)0

p

= �

v

(0

p

) = 2v . But

1

2

: TM ! TM; Æ

x

7!

1

2

Æ

x

also is an automorphism of (TM; Tm), as shows Formula (2.1). Therefore the automorphism

group of TM a
ts transitively on �bers, and after 
onjugation of �

v

with (

1

2

Q(v))

�1

we may

assume that v = 0

p

. But in this 
ase the proof of our 
laim is easy: we have �

0

p

= T�

p

, and

sin
e T

p

�

p

= � id

T

p

M

, the 
anoni
al identi�
ation T

0

p

(TM)

�

=

T

p

M � T

p

M yields T

0

p

(�

0

p

) =

(� id

T

p

M

)� (� id

T

p

M

) = � id

T

0

p

TM

, when
e (M4).

2.7. The algebra of derivations of M . A ve
tor �eld X : M ! TM on a symmetri


spa
e M is 
alled a derivation if X is also a homomorphism of symmetri
 spa
es. This 
an be

rephrased by saying that (X �X;X) is m-related. The naturality of the Lie bra
ket therefore

implies that the spa
e g of derivations is stable under the Lie bra
ket. It is also easily 
he
ked

that it is a K -submodule of X(M), and hen
e g � X(M) is a Lie-subalgebra.

Let us �x a base point o 2M . The map X 7! T�

o

ÆX Æ � is a Lie algebra automorphism

of X(M) of order 2 whi
h stabilizes g . We let

g = g

+

� g

�

; g

�

= fX 2 gjT�

o

ÆX Æ �

o

= �Xg

be its asso
iated eigenspa
e de
omposition (re
all that 2 is assumed to be invertible in K ). The

spa
e g

+

is a Lie subalgebra of X(M), whereas g

�

is only 
losed under the triple bra
ket

(X;Y; Z) 7! [X;Y; Z℄ := [[X;Y ℄; Z℄:

Proposition 2.8.

(i) The spa
e g

+

(M) is the kernel of the evaluation map ev

o

: g! T

o

M , X 7! X(o) .

(ii) Restri
tion of ev

o

yields a bije
tion g

�

! T

o

M , X 7! X(o) .

Proof. (i) Assume X 2 g

+

. Then T

o

�X(o) = X(�

o

(o)) = X(o) implies �X(o) = X(o)

and hen
e X(o) = 0. On the other hand, if X(o) = 0, then X(�

o

(p)) = X(m(o; p)) =

Tm(X(o); X(p)) = Tm(0

o

; X(p)) = T�

o

X(p), when
e X 2 g

+

.

(ii) By (i), g

�

\ ker(ev

o

) = g

�

\ g

+

= 0, and hen
e ev

o

: g

�

! T

o

M is inje
tive. It is also

surje
tive: let v 2 T

o

M . Consider the map

ev =

1

2

Q(v) Æ z :M ! TM; p 7!

1

2

Q(v)0

p

=

1

2

Tm(v; Tm(0

o

; 0

p

)):

It is a 
omposition of homomorphisms and hen
e is itself a homomorphism from M into TM .

Moreover, as we have seen in the proof of Proposition 2.6, ev(o) = v . Thus we will be done if we


an show that ev 2 g

�

. First of all, ev is a ve
tor �eld sin
e Q(v)Æ

p

2 T

m(o;m(o;p))

M = T

p

M for

all p 2M . Finally,

T�

o

Æ ev Æ �

o

=

1

2

T�

o

ÆQ(v) Æ z Æ �

o

=

1

2

Q(T�

o

v) Æ z =

1

2

Q(�v) Æ z = �ev:

2.9. The Lie triple system of a symmetri
 spa
e with base point. The spa
e m := T

o

M

with triple bra
ket given by

[u; v; w℄ := �R

o

(u; v)w := [[eu; ev℄; ew℄(o)

is 
alled the Lie triple system (Lts) asso
iated to (M; o). It satis�es the identities of an abstra
t

Lie triple system over K (
f. [Lo69, p. 78/79℄). The notation R

o

(u; v)w alludes to the fa
t that

the triple Lie bra
ket indeed is the 
urvature tensor of a 
anoni
al 
onne
tion on M (
f. [Lo69℄

for the �nite-dimensional real 
ase and [Be03b℄ for the general 
ase). Sin
e the base point o is

arbitrary, we have indeed de�ned a tensor �eld R on M (in a 
hart it is easily seen that the

dependen
e of R

o

on o is smooth).
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Theorem 2.10. Let M be a symmetri
 spa
e over K with base point o .

(i) The Lie triple bra
ket of the Lts m asso
iated to (M; o) is C

0

.

(ii) If ' : M ! M

0

is a homomorphism of symmetri
 spa
es su
h that '(o) = o

0

, then

_' := T

o

' : m! m

0

is an Lts homomorphism.

Proof. One uses the same arguments as in the proof of Theorem 2.4.

The fun
tor from symmetri
 spa
es with base point to C

0

-Lie triple systems will be 
alled the

Lie fun
tor for symmetri
 spa
es. It 
ontains the Lie fun
tor for Lie groups in the following

sense: if G is a Lie group, then m(x; y) = xy

�1

x de�nes on G the stru
ture of a symmetri


spa
e (the 
ondition (M4) here is equivalent to T i(e) = � id

T

e

G

whi
h is proved in the same way

as usual), and as in [Lo69℄ it is seen that the Lts of G is given in terms of the Lie algebra of G

by

1

4

[[X;Y ℄; Z℄ .

2.11. On geodesi
s and exponential maps. If M is a �nite-dimensional real or 
omplex

symmetri
 spa
e and M

1

is a 
onne
ted 
omponent of M , then the subgroup G(M

1

) of G(M)

generated by all produ
ts �

x

�

y

, x; y 2 M

1

, a
ts transitively on M

1

. This follows from the

existen
e of an exponential map in this 
ase (
f. [Lo69℄). In the general 
ase, even for K = R ,

there is no exponential map, and the 
onne
ted 
omponents need no longer be homogeneous. In

the following, we give a brief a

ount of the relevant de�nitions and explain the main arguments.

If M is a symmetri
 spa
e over K , we de�ne a geodesi
 to be a non-
onstant homomorphism


 : K ! M , where K 
arries the \
anoni
al 
at symmetri
 spa
e stru
ture" m(v; w) = 2v � w

whi
h exists on any topologi
al K -module. We say that M is geodesi
ally 
onne
ted if any two

points p; q 2 M 
an be joined by a broken geodesi
, i.e. there exist points p = p

0

; : : : ; p

n

= q

su
h that p

i

and p

i+1


an be joined by a geodesi
.

Proposition 2.12. If M is geodesi
ally 
onne
ted, then the transve
tion group G(M) a
ts

transitively on M .

Proof. We use the same arguments as in the real �nite-dimensional 
ase ([Lo69℄): if 
 : K !

M is a geodesi
 su
h that 
(0) = p

i

and 
(1) = p

i+1

, we let y := 
(

1

2

) and g := �

y

Æ�

p

i

2 G(M);

then

g(p

i

) = �

y

(p

i

) = m(
(

1

2

); 
(0)) = 
(m(

1

2

; 0)) = 
(1) = p

i+1

:

Now the 
laim follows by a trivial indu
tion on n .

The 
ru
ial property used in the proof is that for two points, suÆ
iently 
lose to ea
h other, we


an �nd a midpoint. The midpoint should be seen as a \square root" of one point with respe
t

to the other; thus the la
k of square roots in K is one obstru
tion for homogeneity of symmetri


spa
es, as is illustrated by the example of the proje
tive spa
e QP

n

over K = Q . Note also that

geodesi
 
onne
tedness does not imply 
onne
tedness in the topologi
al sense sin
e already K

may be totally dis
onne
ted as the example of the p-adi
 numbers Q

p

shows.

We say that M has an exponential map if, for every p 2 M and v 2 T

p

M , there exists a

unique geodesi
 '

v

: K !M su
h that '

v

(0) = p and T

0

'

v

(1) = v and su
h that the map

Exp := Exp

p

: T

p

M !M; v 7! '

v

(1)

is smooth. We say that M is lo
ally exponential if M has an exponential map, and for all p 2M ,

Exp

p

is a di�eomorphism of some neighborhood of 0 in T

p

M onto some neighborhood of p in

M . Then the set of all points that 
an be joined to a given point by a broken geodesi
 is open,

and hen
e M is geodesi
ally 
onne
ted if M is topologi
ally 
onne
ted. It 
an be shown that,

if K = R and the model spa
e of V is a Bana
h spa
e, then M is lo
ally exponential (one 
an

use the same arguments as in [Lo69℄) and hen
e G(M) a
ts transitively on topologi
al 
onne
ted


omponents. However, already for Fr�e
het symmetri
 spa
es this is no longer true in general.
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3. Symmetri
 spa
es asso
iated to 
ontinuous inverse Jordan algebras

3.1. Unit groups of 
ontinuous inverse algebras. It is 
lear that the unit group A

�

of a


ontinuous inverse algebra A (
f. Se
tion 1.6) is a Lie group. The asso
iated Lie algebra is A

with the 
ommutator bra
ket. We are going to explain a similar 
onstru
tion whi
h arises when

one tries to repla
e the 
ommutator by the anti-
ommutator.

3.2. Continuous inverse Jordan algebras. A Jordan algebra is a 
ommutative K -algebra V

su
h that the produ
t x � y satis�es the identity x � (x

2

� y) = x

2

� (x � y). Our basi
 referen
e

for Jordan algebras is [MC03℄; see also [FK94℄. We assume that V has a unit 1 . Any asso
iative

algebra A with the anti-
ommutator x � y =

xy+yx

2

is a Jordan algebra; subalgebras of su
h

Jordan algebras are 
alled spe
ial. For x; y belonging to a Jordan algebra V one de�nes

L(x)y := x � y; Q(x) := 2L(x)

2

� L(x

2

);

and

Q(x; y) := Q(x+ y)�Q(x)�Q(y) = 2(L(x)L(y) + L(y)L(x)� L(xy)): (3:1)

Then the fundamental formula holds:

Q(Q(x)y) = Q(x)Q(y)Q(x): (3:2)

One de�nes the Jordan inverse j by

j : V

�

:= fx 2 V jQ(x) invertible g ! V; x 7! j(x) := x

�1

:= Q(x)

�1

x: (3:3)

We say that V is a 
ontinuous inverse Jordan algebra (
.i.J.a.) if V is a topologi
al Jordan

algebra su
h that V

�

is open in V and j : V

�

! V is C

0

.

Proposition 3.3. The Jordan inverse of a 
ontinuous inverse Jordan algebra is smooth, and

its di�erential is given by

dj(x)v = �Q(x)

�1

v:

Proof. The fa
t that j is smooth follows from the generalized quotient rule (1.7) with

f : V ! End(V ), x 7! Q(x) be
ause the asso
iated map

e

f : (x; v) 7! Q(x)v is C

0

and

polynomial, hen
e C

1

. However, in order to �nd the 
orre
t expression for the di�erential, we

repeat the main steps of the 
al
ulation: for (x; h; t) 2 (V

�

)

[1℄

,

j(x+ th)� j(x) = Q(x+ th)

�1

(x+ th)�Q(x)

�1

x

= tQ(x+ th)

�1

h+ (Q(x + th)

�1

�Q(x)

�1

)x

= tQ(x+ th)

�1

h�Q(x)

�1

(Q(x+ th)�Q(x))Q(x + th)

�1

x

= tQ(x+ th)

�1

h�Q(x)

�1

(Q(th) +Q(x; th))Q(x + th)

�1

x

= t

�

Q(x+ th)

�1

h�Q(x)

�1

(tQ(h) +Q(x; h))Q(x+ th)

�1

x

�

:

The expression following the s
alar t is j

[1℄

(x; h; t). Letting t = 0, we get

dj(x)h = Q(x)

�1

h�Q(x)

�1

Q(x; h)Q(x)

�1

x:

Now,

Q(x; h)Q(x)

�1

x = Q(x; h)x

�1

= 2([L

x

; L

x

�1
℄ + L

xx

�1
)h = 2h

sin
e L

x

and L

x

�1
= Q(x)

�1

L

x


ommute (
f. the \L-inverse formula" [MC03, III.6.1℄) and

x

�1

� x = Q(x)

�1

x

2

= Q(x)

�1

Q(x)1 = 1 . It follows that dj(x)h = �Q(x)

�1

h .
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Theorem 3.4. If V is a 
ontinuous inverse Jordan algebra, then the set M := V

�

of

invertible elements of V is a symmetri
 spa
e with produ
t map

m : M �M !M; (x; y) 7! Q(x)y

�1

= Q(x)Q(y)

�1

y:

The quadrati
 map Q : V ! End(V ) is a polynomial extension of the quadrati
 representation

Q : M ! G(M) asso
iated to the symmetri
 spa
e with base point 1 . The Lie triple system on

the tangent spa
e T

1

M

�

=

V at the base point 1 2M is given by

�R(x; y)z = [[L(x); L(y)℄; L(z)℄1 = [L(x); L(y)℄z = x � (y � z)� y � (x � z):

Proof. (
f. [Lo96℄ for the Bana
h 
ase) Using the fundamental formula (3.2), it is easily


he
ked that m(x; y) belongs to V

�

if x; y belong to V

�

. Thus m is well-de�ned, and it is

smooth sin
e the Jordan inversion is smooth (Prop. 3.3).

Property (M1) follows trivially from the de�nition of j , (M2) and (M3) follow by straightfor-

ward 
al
ulations from the fundamental formula (
f. also [Lo69, II.1.2.5℄), and sin
e �

1

(y) = y

�1

,

we have �

x

�

1

(y) = Q(x)((y

�1

)

�1

) = Q(x)y , proving that the quadrati
 representation of M and

the quadrati
 representation of the Jordan algebra 
oin
ide on V

�

. Next we prove (M4) (using

Prop. 3.3):

T

x

(�

x

) = T

x

(�

x

�

1

�

1

) = T

x

(Q(x) Æ j) = Q(x) Æ T

x

j = �Q(x)Q(x)

�1

= � id :

In order to 
al
ulate the Lie triple system, we remark �rst that TM = T (V

�

) is realized by

the same 
onstru
tion as V , but with respe
t to the Jordan algebra TV

�

=

V � V with produ
t

being the tangent map of the Jordan produ
t of V , i.e. (x; x

0

) � (y; y

0

) = (x � y; x � y

0

+ x

0

� y)

{ seen algebrai
ally, this is the s
alar extension of V by the ring of dual numbers over K ,

K ["℄ := K [x℄=(x

2

)

�

=

K � "K , "

2

= 0. Taking the unit element 1 as base point, the tangent

ve
tor v 2 T

1

M 
orresponds to the element 1+ "v 2 TV . Re
all from the proof of Proposition

2.8 the ve
tor �eld

ev(p) =

1

2

Tm(v; Tm(0

1

; 0

p

)) = Tm(

v

2

; Tm(0

1

; 0

p

)) = Q(

v

2

)0

p

:

With the pre
eding notation, 0

p

= p+ "0, v = 1+ "v , and ev is in the 
hart V des
ribed by

ev(p) = Q(1+ "

v

2

):0

p

= (2L(1+ "

v

2

)

2

� L((1+ "

v

2

)

2

))0

p

= (L(1) + "L(v))p = p+ "v � p:

In other words, in the 
hart V , ev is the linear ve
tor �eld given by the operator L(v) : V ! V .

But then Formula (1.2) shows that the 
ommutator of two linear ve
tor �elds L(x) and L(y) is

simply the (negative of) the usual bra
ket [L(x); L(y)℄ of endomorphisms and hen
e the triple


ommutator is given by [[L(x); L(y)℄; L(z)℄ , proving that [x; y; z℄ = [[L(x); L(y)℄; L(z)℄1 . From

this the other formulas follow be
ause [L(x); L(y)℄1 = x � y � y � x = 0.

One 
an prove a 
onverse of Theorem 3.4: a symmetri
 spa
e M whi
h is open in a K -

module V and su
h that the quadrati
 map extends to a homogeneous quadrati
 polynomial, is

essentially given by the pre
eding 
onstru
tion; in [Be00, Ch. II℄ (in the �nite-dimensional real


ase) su
h spa
es have been 
alled quadrati
 prehomogeneous symmetri
 spa
es.

3.5. Remark on the orbit stru
ture for the a
tion of G(M). In general, M = V

�

is far

from being homogeneous under the a
tion of the group G(M): for instan
e, if V = Sym(n;K ) is

the Jordan algebra of symmetri
 n�n-matri
es over K , then V

�

is the spa
e of non-degenerate

quadrati
 forms on K

n

. The group G(M) is 
ontained in GL(V ), a
ting in the usual way on

the spa
e of forms. It follows that the G(M)-orbits are in
luded in 
ongruen
e 
lasses of forms,

and hen
e the orbit stru
ture is at least as 
ompli
ated as the 
lassi�
ation of (non-degenerate)

quadrati
 forms over K .

If V is a Bana
h Jordan algebra over K 2 fR; C g , then V

�

is a Bana
h symmetri
 spa
e,

hen
e is lo
ally exponential (Se
tion 2.11). The exponential map at the base point 1 is given

by the usual exponential series e

v

=

P

1

k=0

v

k

k!

(where the power v

k

is taken with respe
t to the

Jordan produ
t), and the topologi
al 
onne
ted 
omponents of V

�

are homogeneous under the

transve
tion group. It would be very interesting to understand the 
orresponding situation for

p-adi
 Bana
h Jordan algebras (where the exponential series does not 
onverge everywhere).
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4. Geometries asso
iated to Jordan pairs

In this 
hapter we review the algebrai
 theory from [BN03℄; results quoted without further


omment 
an be found there. Our basi
 referen
e for Jordan pairs is [Lo75℄.

4.1. Three-graded Lie algebras and Jordan pairs. A 3-graded Lie algebra (over K ) is

a Lie algebra over K of the form g = g

1

� g

0

� g

�1

su
h that [g

k

; g

l

℄ � g

k+l

, i.e., g

�1

are

abelian subalgebras whi
h are g

0

-modules, in the following often denoted by V

�

or g

�

, and

[g

1

; g

�1

℄ � g

0

. Then the linear map D : g! g with DX = iX (X 2 g

i

) is a derivation, 
alled

the grading element, and if D is inner, D = ad(E), then the grading is 
alled an inner 3-grading,

and E is 
alled an Euler operator. The pair (V

+

; V

�

) together with the trilinear maps

T

�

: V

�

� V

�

� V

�

! V

�

; (x; y; z) 7! �[[x; y℄; z℄ (4:1)

is a (linear) Jordan pair over K , i.e. it satis�es the identities, where we use the notation

T

�

(X;Y )Z := T

�

(X;Y; Z):

T

�

(X;Y; Z) = T

�

(Z; Y;X);

T

�

(X;Y )T

�

(U; V;W ) = T

�

(T

�

(X;Y; U); V;W )�

T

�

(U; T

�

(Y;X; V );W ) + T

�

(U; V; T

�

(X;Y;W )):

(4:2)

Conversely, every linear Jordan pair arises in this way.

4.2. The proje
tive elementary group. Let (g; D) be a 3-graded Lie algebra over K . For

x 2 g

�1

, the operator e

adx

= 1 + adx +

1

2

(adx)

2

is a well de�ned automorphism of g . The

group generated by these operators,

G := G(D) := PE(g; D) := he

adx

:x 2 g

�1

i � Aut(g); (4:3)

is 
alled the proje
tive elementary group of (g; D). With respe
t to the �xed 3-grading, auto-

morphisms g of g will often be written in \matrix form"

g =

0

�

g

11

g

10

g

1;�1

g

01

g

00

g

0;�1

g

�1;1

g

�1;0

g

�1;�1

1

A

: (4:4)

In parti
ular, the generators of G are represented by the following matri
es (where x 2 g

1

,

y 2 g

�1

, h 2 H ):

e

adx

=

0

�

1 adx

1

2

ad(x)

2

0 1 adx

0 0 1

1

A

; e

ad y

=

0

�

1 0 0

ad y 1 0

1

2

ad(y)

2

ad y 1

1

A

h =

0

�

h

11

h

00

h

�1;�1

1

A

:

(4:5)

The subgroups U

�

:= U

�

(D) := e

adg

�

of G are abelian and generate G . We de�ne the

automorphism group of (g; D) to be Aut(g; D) = fg 2 Aut(g) : g ÆD = D Æ gg , and we further

de�ne subgroups H := H(D) and P

�

:= P

�

(D) of G via

H := G(D) \ Aut(g; D) and P

�

:= HU

�

= U

�

H: (4:6)

4.3. The proje
tive 
ompletion. From now on we assume that the grading derivation D is

inner, D = ad(E). We denote by

G := fad(F ) : F 2 g; ad(F )

3

= ad(F )g � der(g) (4:7)
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the spa
e of all inner 3-gradings. By de�nition, the group H is the stabilizer of D in G(D), and

hen
e the homogeneous spa
e M := G(D)=H is just the orbit of D under the a
tion of G(D)

on G . One shows that P

�

is pre
isely the stabilizer group of the 
ag

f

�

(ad(E)) : 0 � f

�

1

:= g

�1

� f

�

0

:= g

�1

� g

0

� g: (4:8)

Flags of this type are 
alled inner 3-�ltrations of g , and the spa
e of inner 3-�ltrations is denoted

by F . The 
ags o

�

:= f

�

(ad(E)) are (for �xed E ) 
alled the 
anoni
al base points in F , and

we denote by

X

�

:= G(D):o

�

�

=

G(D)=P

�

� F (4:9)

their G(D)-orbits. The maps

V

�

! X

�

; x 7! e

ad(x)

:o

�

(4:10)

are inje
tive, 
alled the proje
tive 
ompletion of V

�

. The reader may think of X

�

as a kind of

\manifold" modeled on the K -modules V

�

: we will say that

A := f(g(V

+

); g) : g 2 Gg; '

g

: g(V

+

)! V

+

; g:x 7! x (4:11)

is the natural atlas of X

+

. The 
hart domains g(V

+

) 
arry a natural stru
ture of an aÆne spa
e

over K , depending only on the point y := g:o

�

2 X

�

. We then write V

y

:= g(V

+

) and denote

for x; z 2 V

y

by

�

r

(x; y; z) := rz (4:12)

the produ
t rz in the K -module V

y

with zero ve
tor x .

4.4. Transversality. The natural map from gradings to �ltrations G ! F � F and the


orresponding map M ! X

+

�X

�

, gH 7! (gP

�

; gP

+

) are inje
tive. Two �ltrations (f; e) are

obtained from an inner grading ad(E) if and only if they are transversal or 
omplementary in

the sense that

g = f

1

� e

0

; g = e

1

� f

0

([BN03, Th. 3.6℄); we write then e>f .

4.5. Denominators and nominators. For x 2 V

+

and g 2 Aut(g), we de�ne

d

g

(x) := (e

� ad(x)

g

�1

)

11

; 


g

(x) := (ge

ad(x)

)

�1;�1

; (4:13)

where the \matrix 
oeÆ
ients" h

ij

are as in Equation (4.4). Then

d

+

g

:= d

g

: V

+

! End(V

+

); 


+

g

:= 


g

: V

+

! End(V

�

) (4:14)

are quadrati
 polynomial maps, 
alled the denominator and 
o-denominator of g (w.r.t. the

�xed inner grading ad(E)). In parti
ular, if g = e

ad(w)

, w 2 V

�

, x 2 V

+

,

d

g

(x) = B

+

(x;w) := id

V

+
+ad(x) ad(w) +

1

4

ad(x)

2

ad(w)

2

2 End(V

+

)




g

(x) = B

�

(w; x) := id

V

�
+ad(w) ad(x) +

1

4

ad(w)

2

ad(x)

2

2 End(V

�

)

(4:15)

are 
alled the Bergman operators. For x 2 V

+

and g 2 Aut(g), we de�ne the nominator of g

to be

n

g

(x) := pr

1

(e

� ad(x)

g

�1

E) = (e

� ad(x)

g

�1

)

10

:E: (4:16)

Then n

g

: V

+

! V

+

is a quadrati
 polynomial. In parti
ular, for g = e

ad(w)

, w 2 V

�

,

n

g

(x) = x�

1

2

ad(w)

2

x = x�Q

+

(x)w: (4:17)
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Theorem 4.6. Let g 2 Aut(g) and x 2 V

+

. Then g:x 2 V

+

if and only if d

g

(x) and 


g

(x)

are invertible, and then the value g:x 2 V

+

is given by

g:x = d

g

(x)

�1

n

g

(x):

In parti
ular, for g = e

ad(w)

, w 2 V

�

, we get from Theorem 4.6

g(x) = B

+

(x;w)

�1

(x�Q

+

(x)w): (4:18)

In axiomati
 Jordan theory, the last expression is denoted by x

w

and is 
alled the quasi-inverse

(
f. [Lo75℄). A pair (x; y) 2 V

+

�V

�

is 
alled quasi-invertible if the Bergman operators B

+

(x; y)

and B

�

(y; x) are invertible.

4.7. Jordan fra
tional quadrati
 maps. An End(V

+

)-valued Jordan matrix 
oeÆ
ient (of

type (1; 1) , resp. of type (1; 0)) is a map of the type

q : V

�

� V

�

! End(V

+

); (x; y) 7! (e

ad(x)

ge

ad(y)

h)

11

; (4:19)

where �; � 2 f�g and g; h 2 G , resp.

p : V

�

� V

�

! V

+

; (x; y) 7! (e

ad(x)

ge

ad(y)

h)

10

E:

These maps are quadrati
 polynomials in x and in y , and nominators and denominators are

partial maps of p and q by �xing one of the arguments to be zero. A Jordan fra
tional quadrati


map is a map of the form

f : V

�

� V

�

� U ! V

+

; (x; y) 7! q(x; y)

�1

p(x; y);

where q; p are Jordan matrix 
oeÆ
ients of type (1,1), resp. (1,0), and U = f(x; y) 2 V

�

� V

�

:

q(x; y) 2 GL(V

+

)g .

Theorem 4.8. The a
tions

V

+

�X

+

! X

+

and V

�

�X

+

! X

+

are given, with respe
t to all 
harts from the atlas A (
f. Eqn. (2.6)), by Jordan fra
tional

quadrati
 maps. In other words, for all g; h 2 G , the maps

(v; y) 7! (h Æ exp(v) Æ g):y; (w; y) 7! (h Æ exp(w) Æ g):y

are Jordan fra
tional quadrati
, and the maps �

r

are, in all 
harts, given by Jordan fra
tional

quadrati
 maps.

5. Smooth generalized proje
tive geometries

5.1 Continuous quasi inverse Jordan pairs. Let (V

+

; V

�

) be a topologi
al Jordan pair over

the topologi
al ring K (i.e. V

+

, V

�

are topologi
al K -modules su
h that the trilinear stru
ture

maps T

+

; T

�

are C

0

). If K = R or C and the underlying lo
ally 
onvex spa
es are Bana
h or

Fr�e
het, then we speak of Bana
h{, resp., Fr�e
het{Jordan pairs. For topologi
al Jordan pairs we

introdu
e the following two 
onditions:

(C1) A topologi
al Jordan pair is 
alled a 
ontinuous quasi-inverse Jordan pair or a (C1)-Jordan

pair if the set of quasi-invertible pairs,

(V

+

� V

�

)

�

= f(x; y) 2 V

+

� V

�

: B

+

(x; y); B

�

(y; x) invertible g;
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is open in V

+

� V

�

, and the \Bergman inverse map"

(V

+

� V

�

)

�

� V

+

� V

�

! V

+

� V

�

; (x; a; v; b) 7! (B

+

(x; a)

�1

v;B

�

(a; x)

�1

b)

is of 
lass C

0

.

(C2) We say that a topologi
al Jordan pair (V

+

; V

�

) is a (C2)-Jordan pair or a weak 
ontinuous

quasi-inverse Jordan pair if, for any a 2 V

�

, the set

U

a

:= fx 2 V

+

: B

+

(x; a); B

�

(a; x) invertibleg

is open in V

+

, and the \partial Bergman inverse map"

U

a

� V

+

! V

+

; (x; v) 7! B

+

(x; a)

�1

v

is of 
lass C

0

, and if the dual 
ondition, with V

+

and V

�

inter
hanged, also holds.

It is 
lear that 
ondition (C1) implies (C2). For instan
e, Bana
h{Jordan pairs are automati
ally

(C1) sin
e in this 
ase the operators B(x; a) belong to the Bana
h algebra L(V ) of 
ontinuous

linear operators on V , and inversion in the Bana
h algebra L(V ) is smooth (Bana
h algebras

are spe
ial 
ases of 
ontinuous inverse algebras, 
f. 1.6).

Proposition 5.2. In a (C1)-Jordan pair, the quasi-inversion map

(V

+

� V

�

)

�

! V

+

� V

�

; (x; a) 7! (x

a

; a

x

) := (e

ad(a)

:x; e

ad(x)

:a) (5:1)

is smooth, and in a (C2)-Jordan pair, the partial maps

U

a

! V

+

; x 7! e

ad(a)

:x; U

x

! V

�

; a 7! e

ad(x)

:a

are smooth.

Proof. Assume (V

+

; V

�

) satis�es Condition (C1). Following the notation from Se
tion 1.8,

we let

f : V

+

� V

�

! End(V

+

)� End(V

�

); (x; a) 7! (B

+

(x; a); B

�

(a; x));

e

f : V

+

� V

�

� V

+

� V

�

! V

+

� V

�

; ((x; a); (x

0

; a

0

)) 7! f(x; a):(x

0

; a

0

);

jf : (V

+

� V

�

)

�

! GL(V

+

)�GL(V

�

); (x; a) 7! (B

+

(x; a)

�1

; B

�

(a; x)

�1

);

f

jf : (V

+

� V

�

)

�

� V

+

� V

�

! V

+

� V

�

; ((x; a); (x

0

; a

0

)) 7! (jf(x; a))(x

0

; a

0

)

= (B

+

(x; a)

�1

x

0

; B

�

(a; x)

�1

a

0

):

Then

e

f is a 
ontinuous polynomial, hen
e C

1

, and by (C1),

f

jf is C

0

. The generalized quotient

rule (Se
tion 1.8) implies then that

f

jf is C

1

. We re
all from Theorem 4.6 that for x 2 U

a

we

have

e

ad(a)

:x = B

+

(x; a)

�1

(x�Q

+

(x)a) 2 V

+

:

We therefore see that the map

(x; a) 7! e

ad(a)

:x = B

+

(x; a)

�1

(x�Q

+

(x)a) =

f

jf(x; a; x�Q

+

(x)a; 0)

is C

1

, and that the quasi-inversionmap is C

1

. The se
ond 
laim is proved by similar arguments.
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Theorem 5.3. (Manifold stru
ture on X

�

) Let (V

+

; V

�

) be a topologi
al (C2)-Jordan pair

over the topologi
al ring K and (X

+

; X

�

) its proje
tive 
ompletion.

(i) There exist on X

�

stru
tures of a smooth manifolds, modeled on the topologi
al K -modules

V

+

, resp., V

�

, uniquely de�ned by the 
ondition that the 
olle
tion of 
harts A

�

=

(g(V

�

); g 2 G) de�ned in Equation (4.11) be
omes an atlas of X

�

.

(ii) The proje
tive group G a
ts by di�eomorphisms of X

+

and of X

�

. If g 2 G is su
h that

d

g

(x) is invertible for some x 2 V

+

, then the set

V

(g)

:= fx 2 V

+

: d

g

(x) 2 GL(V

+

); 


g

(x) 2 GL(V

�

)g = fx 2 V

+

: g:x 2 V

+

g

is open in V

+

, and g:V

(g)

! V; x 7! d

g

(x)

�1

n

g

(x) is a smooth map whose di�erential at

the point x is given by

dg(x) = d

g

(x)

�1

:

If, in addition, (V

+

; V

�

) satis�es (C1), then we have with respe
t to the manifold stru
ture

de�ned in Part (i):

(iii) The a
tions V

+

�X

+

! X

+

and V

�

�X

+

! X

+

are smooth.

(iv) The set M � (X

+

�X

�

) of transversal pairs is open in X

+

�X

�

.

(v) For r 2 K

�

, the multipli
ation map

�

r

: (X

+

�X

�

�X

+

)

>

:= f(x; y; z): (x; y); (z; x) 2Mg ! X

+

(
f. Equation (4.12)) is de�ned on an open set and is smooth.

Proof. We prove (i) for X := X

+

. Uniqueness of the di�erentiable stru
ture is 
lear sin
e the

sets g(V

+

), g 2 G , 
over X . In order to prove existen
e, we equip X with the �nal topology

with respe
t to the maps (the �nest topology for whi
h all these maps are 
ontinuous)

'

g

:V

+

! X; v 7! g:v;

for g 2 G , where '

e

is the in
lusion V

+

� X . In other words, a subset O � X is open if and

only if all inverse images '

�1

g

(O) = g

�1

(O) \ V

+

, g 2 G , are open in V

+

.

Step 1. G a
ts by homeomorphisms on X . This is immediate from the de�nition of the

topology on X .

Step 2. Let us show that the indu
ed topology on V

+

� X is the original topology

on V

+

. Clearly, the interse
tion of an open set O of X with V

+

is open in V

+

be
ause

O \ V

+

= id

�1

(O) \ V

+

. Conversely, assume that U � V

+

is open in V

+

. We have to show

that, for all g 2 G , g

�1

(U) \ V

+

is open in V

+

. If this set is empty, we are done; if not, pi
k

x 2 g

�1

(U) \ V

+

. Then g Æ e

ad(x)

:0 = g:x 2 U , and repla
ing g by g Æ e

ad(x)

we may assume

that x = 0. Now, every g 2 G su
h that g:0 2 V

+

admits a unique de
omposition

g = e

ad(v)

he

ad(w)

; v 2 V

+

; h 2 H;w 2 V

�

;

(
f. [BN03, Th. 1.12 (4)℄). Hen
e

g

�1

(U) \ V

+

=

�

e

� ad(w)

h

�1

e

� ad(v)

(U)

�

\ V

+

=

�

e

� ad(w)

h

�1

(U � v)

�

\ V

+

:

Now it suÆ
es to show that h

�1

(U � v) is open in V

+

be
ause e

ad(w)

, on its open domain of

de�nition, is smooth, hen
e in parti
ular 
ontinuous (Proposition 5.2). For this, we will use the

following lemma:

Lemma 5.4. Assume (V

+

; V

�

) is a topologi
al (C2)-Jordan pair and let B

+

� End

K

(V

+

) be

the asso
iative subalgebra generated by all Bergman operators B

+

(x; y) , x 2 V

+

; y 2 V

�

. Then,

for all g 2 G and for all x 2 V

+

, the denominator d

g

(x) belongs to B

+

.
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Proof. We prove the lemma by indu
tion on the \word length of g" whi
h is, by de�nition,

the smallest k 2 N su
h that g has an expression of the form

g = e

ad(w

1

)

e

ad(v

1

)

� � � e

ad(w

k

)

e

ad(v

k

)

; v

i

2 V

+

; w

i

2 V

�

:

If k = 1, then, using the 
o
y
le relation d

fh

(x) = d

h

(x)d

f

(h:x) whi
h holds whenever h:x 2 V

+

(
f. [BN03, Prop. 2.6℄), we see that

d

g

(x) = d

e

ad(v

1

)

(x)d

e

ad(w

1

)

(x+ v

1

) = B(x+ v

1

; w

1

)

belongs to B

+

whenever (x+ v

1

; w

1

) is quasi-invertible. The set of su
h x is open in V

+

sin
e

our Jordan pair is (C2), and hen
e generates V

+

as a K -module. Therefore the denominator

d

g

: V

+

! End(V

+

), being quadrati
 polynomial by 4.5, 
oin
ides with the quadrati
 polynomial

x 7! B(x+ v

1

; w

1

), when
e d

g

(x) 2 B

+

for all x 2 V

+

.

Now let g 2 G be arbitrary and assume that the 
laim holds for all elements of G of smaller

word length than g . We write g = eg Æ e

ad(w

k

)

e

ad(v

k

)

with eg of word length smaller than the one

of g . Then, again using the 
o
y
le relations, we have

d

g

(x) = d

ege

ad(w

k

)

(x+ v

k

) = B(x + v

k

; w

k

) Æ d

eg

(e

ad(w

k

)

(x+ v

k

))

whenever (x + v

k

; w

k

) is quasi-invertible. By indu
tion, the se
ond fa
tor d

eg

(e

ad(w

k

)

(x + v

k

))

belongs to B

+

whenever (x+ v

k

; w

k

) is quasi-invertible. Hen
e d

g

(x) belongs to B

+

whenever

(x + v

k

; w

k

) is quasi-invertible. As above, note that the set of su
h x is open in V

+

. Thus the

denominator d

g

: V

+

! End(V

+

) is a quadrati
 polynomial map taking, on a non-empty open

set, values in the K -module B

+

; hen
e the whole image is in B

+

, and the lemma is proved.

Note that the proof of the lemma immediately 
arries over to any Jordan pair su
h that

ea
h set U

a

, a 2 V

�

, generates V

+

as a K -module. However, for general Jordan pairs this

property does not always hold { take e.g. the ring K [x℄ , seen as a Jordan algebra over K , where

the unit group is far from generating K [x℄ as a K -module.

Now, returning to the proof of the theorem, note that elements of B

+

are 
ontinuous linear

operators on V

+

sin
e so are all B(x; y), x 2 V

+

, y 2 V

�

. Therefore, by Lemma 5.4, for all

h 2 H , h

11

= d

h

(0) is 
ontinuous on V

+

. But the a
tion of h on V

+

is given by h:x = h

11

x , and

hen
e h a
ts 
ontinuously on V

+

. This a
hieves the proof of Step 2. (Note that, in parti
ular,

we have shown that V

+

is open in X .)

Step 3. The transition fun
tions are smooth. In fa
t, the transition fun
tions are

'

b


= 


�1

b : V

+

\ b

�1


(V

+

)! V

+

\ 


�1

b(V

+

)

for b; 
 2 G . We have already seen that they are homeomorphisms. If the interse
tions are

non-empty, we may as above de
ompose g := 


�1

b as a produ
t g = e

ad(v)

he

ad(w)

; the element

e

ad(v)

with v 2 V a
ts as a translation, hen
e smoothly, the element e

ad(w)

with w 2 V

�

a
ts

smoothly a

ording to Proposition 5.2, and the element h 2 H is a 
ontinuous linear map by

Lemma 5.4 and hen
e also a
ts smoothly. Taken together, Step 2 and Step 3 show that X is a

smooth manifold.

(ii) The proof of Step 3 above shows that elements g 2 G a
t smoothly on X . It only

remains to show that the di�erential of g is related to the denominator via dg(x) = d

g

(x)

�1

.

As above, we �rst redu
e to the 
ase g 2 P

�

and x = o . Then we de
ompose g = he

ad(a)

,

a 2 V

�

, h 2 H . By the 
hain rule and the 
o
y
le rule for the denominators [BN03, Th. 2.10℄,

it now suÆ
es to prove the 
laim for h and exp(a) separately. Sin
e h a
ts linearly on V

+

and

d

h

(o) = h

�1

, we are done with the �rst 
ase. As to exp(a), we have d

exp(a)

(o) = B(o; a) = id

V

+
.

Hen
e we have to show that d exp(a)(o) = id. This follows from

e

ad(a)

:tv � e

ad(a)

:o = B(tv; a)

�1

(tv �Q(tv)a)� 0 = t (B(tv; a)

�1

(v � tQ(v)a));

where the last term, divided by t , is a C

0

-map of t and v taking value v for t = 0.
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(iii) Re
all that, a

ording to [BN03, Th. 3.7℄, both a
tions are des
ribed in 
harts by

Jordan fra
tional quadrati
 maps as de�ned in Se
tion 4. Therefore it suÆ
es to show that

Jordan fra
tional quadrati
 maps are smooth: �rst of all, if the elements g; h 2 G appearing

in the de�nition from 4.7 are trivial, then our 
laim amounts to saying that the quasi-inversion

map is smooth, whi
h is true in a (C1)-Jordan pair, a

ording to Proposition 5.2. If g and h are

not trivial, then they 
an be written as a 
omposition of translations and quasi inverses whi
h,

a

ording to step (i), a
t as di�eomorphisms. Hen
e all Jordan fra
tional quadrati
 maps are

smooth.

(iv) M \ (V

+

� V

�

) = (V

+

� V

�

)

�

is open by Property (C1).

(v) The argument proving this 
laim is the same as for part (iii), using that also �

r

is given

by Jordan fra
tional quadrati
 maps [BN03, Th. 4.3℄.

Theorem 5.5. Assume (V

+

; V

�

) is a (C2)-Jordan pair. Then there are 
anoni
al G-

equivariant bije
tions between the tangent bundle TX

+

of X

+

as a smooth manifold, the tangent

bundle of X

+

as de�ned in [BN03, Th. 2.1℄ and the tangent bundle as de�ned in [Be02℄ via s
alar

extension by dual numbers.

Proof. For all three models of the tangent bundle, the tangent spa
e T

o

X

+

, as a K -module, is

isomorphi
 to V

+

. Therefore in all models we get a homogeneous bundle of the kind G�

P

�
V

+

,

and we only have to show that the a
tions of the stabilizer group P

�

on V

+


oin
ide in

these three pi
tures. In the 
ontext of smooth manifolds, the group P

�

a
ts on V

+

via the

linear isotropy representation �(p) = T

o

(p). In the 
hart V

+

, using Theorem 5.3(ii), we get

T

o

p = dp(0) = d

p

(0)

�1

= p

11

. This is the representation of P

�

used in the model for the tangent

bundle in [BN03℄, and hen
e these two models 
oin
ide. Finally, for the model used in [Be02℄,

as shown in [Be02, (7.3)℄, the a
tion of U

�

on V

+

is trivial, and the a
tion of H 
ommutes

with "

o;o

0

, so H a
ts on V

+

as group of automorphisms of the Jordan pair (V

+

; V

�

). This


hara
terizes the representation of P

�

used in the other two models, and hen
e all three models

are isomorphi
 as G-bundles.

6. Smooth polar geometries and asso
iated symmetri
 spa
es

6.1. Continuous inverse Jordan triple systems. Assume (g; D) is a 3-graded Lie algebra

with an involution � (automorphism of order 2 reversing the grading). Then V := g

1

together

with the trilinear map T : V � V � V ! V de�ned by

T (x; y; z) := [[x; �(y)℄; z℄ (6:1)

is a Jordan triple system (Jts) whi
h, by de�nition, is a K -module V with a trilinear map

T : V �V �V ! V satisfying the identities (4.2) with supers
ripts omitted. The map V

+

! V

�

indu
ed by � is an involution of the \underlying Jordan pair" (V

+

; V

�

)

�

=

(V; V ), and in this

way Jordan triple systems are equivalent to Jordan pairs with involution (
f. [Lo75℄). (Note that

T de�nes a Jts if and only if �T de�nes a Jts; thus the sign in (6.1) is a matter of 
onvention.

Here we follow, as in [Be00℄, the 
onvention that, in the real �nite-dimensional 
ase, negative

triple systems shall 
orrespond to 
ompa
t symmetri
 spa
es, see below.) A topologi
al Jordan

triple system is 
alled (C1) or a 
ontinuous quasi inverse Jts if the underlying Jordan pair (V; V )

is (C1) and the involution is 
ontinuous. (For Jordan triple systems, Condition (C2) is not very

interesting.) Equivalently, (C1) means that the set (V �V )

�

is open in V �V and the Bergman

inverse map (V � V )

�

� V ! V is 
ontinuous.

6.2. Polarities. Every involution � of a given inner 3-graded Lie algebra (g; D) indu
es a

bije
tion

p : X

+

! X

�

; gP

�

! �(g)P

+

:

We say that p is a polarity be
ause it is an anti-automorphism of the generalized proje
tive

geometry (X

+

; X

�

) (in the sense of [Be02, Ch. 3℄) and the 
orresponding spa
e of non-isotropi
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points

M

(p)

= fx 2 X

+

: (x; p(x)) 2Mg (6:2)


ontains the base point o

+

and hen
e is non-empty. The multipli
ation map

m :M

(p)

�M

(p)

!M

(p)

; (x; y) 7! �

�1

(x; p(x); y) (6:3)

is well-de�ned and satis�es the algebrai
 identities (M1){(M3) of a symmetri
 spa
e (
f. [Be02,

4.1℄, [BN03, 4.2℄). Note that, if we identify X := X

+

with X

�

via the polarity p , then by

de�nition of M

(p)

,

M

(p)

! (X �X)

>

\ diag(X �X); x 7! (x; x) (6:4)

is a bije
tion, and hen
e in the 
hart V = V

+

� X

+

= X ,

M

(p)

\ V = fx 2 V : B(x; x) invertible g: (6:5)

This set is open in V if (V; T ) is (C1).

Theorem 6.3. Assume that (V; T ) is a (C1)-Jordan triple system.

(i) The asso
iated set M

(p)

of non-isotropi
 points is an open submanifold of X 
ontaining

the base point o , and together with the multipli
ation map de�ned by Equation (6.3) it is a

symmetri
 spa
e. Moreover, for all x 2M

(p)

, x is an isolated �xed point of the symmetry

�

x

= m(x; �) .

(ii) The Lie triple system asso
iated to (M

(p)

; o) is the ve
tor spa
e V = V

+

together with the

bra
ket given by

[X;Y; Z℄ = T (X;Y; Z)� T (Y;X;Z):

Proof. (i) A

ording to Theorem 5.3 (iv), M is open in X

+

� X

�

. Sin
e p is C

0

,

M

(p)

= fx 2 X

+

: (x; p(x)) 2Mg is open in X

+

.

As mentioned above, the identities (M1), (M2), (M3) hold already in the purely algebrai



ontext of any generalized proje
tive geometry (topologi
al or not) with polarity. Let us prove

(M4): the involution �

x

is given by the element (�1)

x;p(x)

of the group G and hen
e a
ts as a

di�eomorphism. W.l.o.g. we may assume that x = o ; then in the 
hart V this di�eomorphism

is given by � id

V

, and hen
e (M4) holds. Moreover, 0 is the only �xed point of �

o

= � id

V

in

the open neighborhood M \ V of o in M .

It only remains to show that � is smooth. This follows from the fa
t that �(x; y) =

�

�1

(x; x; y) (when identifying X

+

with X

�

), and �

�1

is smooth by Theorem 5.3 (v).

(ii) Theorem 5.5 allows us to use the realization of TX

�

from [BN03, 2.4℄; in parti
ular,

we see that in the 
hart V = V

+

, ve
tor �elds Y 2 g are realized by quadrati
 polynomial maps

e

Y

+

: V

+

! V

+

. We identify v 2 g

1

with the 
onstant ve
tor �eld on V

+

taking value v . Then

�(v) is a homogeneous quadrati
 ve
tor �eld on V

+

, and hen
e ev = v+�(v) is the unique ve
tor

�eld in g

�

anti-�xed by (� id)

�

su
h that ev(o) = v (here o = o

+

). Hen
e the Lie triple produ
t

is given by

[u; v; w℄ = [[eu; ev℄; ew℄

o

= [[u+ �(u); v + �(v)℄; w + �(w)℄

o

= [[u; �(v)℄; w℄

o

+ [[�(u); v℄; w℄

o

= T (u; v; w)� T (v; u; w):

6.4. Remark on the orbit stru
ture of M

(p)

. The spa
e M = (X

+

� X

�

)

>

is always a

homogeneous symmetri
 spa
e M

�

=

G=H with G and H as in 4.2, but M

(p)

, whi
h 
an be

seen as the interse
tion of M with the diagonal in X �X (
f. Equation (6.4)), is in general not

homogeneous under its transve
tion group. A typi
al example for this situation is given by the

proje
tive spa
es over K = Q or K = Q

p

: here G=H

�

=

GL

n+1

(K )=GL

n

(K )�GL

1

(K ), but KP

n

is not homogeneous under O(n+ 1;K ).

6.5. Remark on the exponential mapping. Assume V is a Bana
h Jts over K 2 fR; C g .

Then V is (C1), and the symmetri
 spa
e M

(p)

is a Bana
h symmetri
 spa
e and hen
e is lo
ally
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exponential with Exp = Exp

o

. The expli
it formula for Exp is obtained as in [Be00, Ch. X.4℄:

for all x; y 2 V , the series


osh(x)y :=

1

X

k=0

Q(x)

k

(2k)!

y; sinh(x) :=

1

X

k=0

Q(x)

k

x

(2k + 1)!


onverge absolutely and de�ne analyti
 mappings 
osh : V ! End(V ), sinh : V ! V . The

domain D := 
osh

�1

(GL(V )) is open in V and non-empty sin
e 
osh(0) = id

V

. Then, for

x 2 V , the exponential image exp(x) belongs to M \ V if and only if x 2 D , and we have

exp(x) = tanh(x) := 
osh(x)

�1

sinh(x)

(
f. [Be00, Th. X.4.1℄; the proof 
arries over to the Bana
h 
ase without any 
hanges). As for

the 
ase of prehomogeneous symmetri
 spa
es (Se
tion 3.5), it would be very interesting to have

analogous results in the p-adi
 Bana
h 
ase (where the series 
osh and sinh do no longer 
onverge

everywhere).

6.6. Remark on 
lassi�
ation. It goes without saying that a 
lassi�
ation of 
ontinuous

quasi inverse Jordan pairs or -triple systems is out of rea
h. In the �nite-dimensional 
omplex

or real 
ase, simple obje
ts 
an be 
lassi�ed (work of O. Loos, E. Neher and others; 
f. [Be00,

Ch. IV and XII℄ for pre
ise referen
es). On �nds that in fa
t essentially all 
lassi
al and about

half of the ex
eptional real and 
omplex simple symmetri
 spa
es are obtained in the form M

(p)

;

this list is far too long to be given here (see [Be00, Ch. XII℄). For other base �elds, so far

very little is known. In in�nite dimensions over K 2 fC ;Rg , various 
lassi�
ations of 
ertain

simple obje
ts are known (
f. [MC03℄, [Up85℄, [Ka83℄ (simple JH

�

-triples) , [dlH72℄ (irredu
ible

Riemannian symmetri
 spa
es)). { In the following two 
hapters we will spe
ialize our theory to

two important types of Jordan algebras, namely to asso
iative algebras and to Jordan algebras

of hermitian elements.

7. The proje
tive line over an asso
iative algebra

7.1. Asso
iative algebras as Jordan pairs. In this 
hapter, A is an asso
iative algebra with

unit 1 over a 
ommutative ring K having

1

2

2 K . Then A is a Jordan algebra with Jordan

produ
t a � b =

ab+ba

2

and a Jordan triple system with triple produ
t T (x; y; z) = xyz+ zyx . It

follows that the Bergman operator is given by

B(x; y)z = (1� xy)z(1� yx) = l(1� xy)r(1� yx)z (7:1)

where l(a) and r(a) are left-, resp. right multipli
ation by a in A . Thus (x; y) is quasi-invertible

if and only if 1� xy and 1� yx are invertible, and then B(x; y)

�1

z = (1� xy)

�1

z(1� yx)

�1

.

If K is a topologi
al ring and A is a 
ontinuous inverse algebra (
.i.a.), then the set of quasi-

invertible pairs is open in A � A , and the Bergman-inverse map is 
ontinuous. Therefore A is

then a (C1)-Jordan triple system and hen
e (A;A) is a (C1)-Jordan pair.

7.2. The three-graded pi
ture. The K -Lie algebra g := gl

2

(A) of 2 � 2-matri
es with


oeÆ
ients in A has a natural 3-grading

g = g

1

� g

0

� g

�1

=

�

0 A

0 0

�

�

�

A 0

0 A

�

�

�

0 0

A 0

�

whi
h is given by the Euler operator

E :=

1

2

I

1;1

:=

1

2

�

1 0

0 �1

�

: (7:2)
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This 3-grading has a natural involution given by

�(X) = FXF; F :=

�

0 1

1 0

�

; �

�

a b


 d

�

=

�

d 


b a

�

: (7:3)

From the 
ommutator relation

��

�

0 x

0 0

�

;

�

0 0

y 0

�

�

;

�

0 z

0 0

�

�

=

�

0 xyz + zyx

0 0

�

it follows that the Jordan triple system asso
iated to these data is A with T (x; y; z) = xyz+zyx .

Next we are going to des
ribe another model of the geometry asso
iated to this Jordan triple

system.

7.3. The proje
tive line. If A is an asso
iative K -algebra, we 
onsider W := A � A as a

right A-module; elements of W are written as 
olumn ve
tors. The proje
tive line over A is, by

de�nition, the spa
e

P := AP := fE � A�AjE

�

=

A; 9F

�

=

A :W = E � Fg

of A-submodules E that are isomorphi
 to A and admit a 
omplement whi
h is also isomorphi


to A (
f. [BN03, Se
tion 8.7℄, [BlHa01℄ or [H95℄). Elements of P 
an be written in the form

E =

h

�

x

y

�

i

:=

n

�

xa

ya

�

j a 2 A

o

where

�

x

y

�

is a base ve
tor of E over A . For (E;F ) 2

P

�

P

we write E>F if W = E�F , and

we let (P� P)

>

= f(E;F ) 2 P� PjE>Fg . Then the map

P := fp 2 End

A

(W )j p

2

= p; im(p)

�

=

A; ker(p)

�

=

Ag ! (P� P)

>

; p 7! (ker(p); im(p))

is a bije
tion. As \
anoni
al" base point in (P � P)

>

we 
hoose (o

+

; o

�

) = (A � 0; 0 � A) =

([

�

1

0

�

℄; [

�

0

1

�

℄) whi
h 
orresponds to the proje
tion p =

�

1

0

0

0

�

. The group GL

2

(A) a
ts transitively

on the proje
tive line P and on the set (P� P)

>

. Another base point is given by [

�

1

1

�

℄; [

�

1

�1

�

℄ .

The matrix transforming the 
anoni
al base point into the new one is the Cayley transform

C =

�

1 1

1 �1

�

: (7:4)

7.4. AÆne 
harts of the proje
tive line. Every pair (E;F ) 2 (P�P)

>

de�nes a linearization

of P : the set F

>

of elements that are transversal to F is an aÆne spa
e over K (not over A

in general), and taking E as origin, F

>

is turned into a K -module. This module is (non-


anoni
ally) isomorphi
 to A . For the 
anoni
al base point (o

+

; o

�

) we �x su
h an imbedding

of A into P :

� : A! P; z 7! �

z

:=

h

�

z

1

�

i

:

Note that �

z

is the graph of the left translation l

z

: A! A , a 7! za . In this pi
ture, the a
tion

of GL

2

(A) is des
ribed by usual fra
tional linear transformations,

�

a b


 d

�

�

z

= �

(az+b)(
z+d)

�1
(7:5)

if 
z + d is invertible. In parti
ular, the matrix F from Equation (7.3) represents inversion

in A , and I

1;1

(Equation (7.2)) represents multipli
ation by the s
alar �1. The imbedding

� : A! P does not only depend on the base point (o

+

; o

�

) but also on the �xed normalization
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of its representatives; however, the sets �(A) and �(A

�

) depend only on (o

+

; o

�

). For �(A

�

)

a more intrinsi
 des
ription is given by

�(A

�

) = �(A) \ fE 2 PjE>I

1;1

(E)g; (7:6)

and the proje
tive transformation indu
ed by I

1;1

indeed depends only on (o

+

; o

�

) (in fa
t,

we have seen above that I

1;1

is indu
ed by multipli
ation by the s
alar �1 in the K -module

de�ned by the pair (o

+

; o

�

) and hen
e its e�e
t on P depends only on (o

+

; o

�

)). Moreover, the

symmetri
 spa
e stru
ture on �(A

�

) also depends only on the pair (o

+

; o

�

), whereas the group

stru
ture 
annot be de�ned in terms of (o

+

; o

�

) alone.

7.5. Imbedding of the proje
tive line into the three-graded model. For every proje
tion

p : W ! W , ad(p) : g ! g is an inner 3-grading, and for every E = im(p) 2 P , we get the


orresponding 
ag (f

1

� f

0

� g) 2 F whi
h only depends on E . This de�nes a 
ommutative

diagram of maps

P

�

=

(P� P)

>

� P� P

# #

G

�

=

(F �F)

>

� F � F

(7:7)

whi
h are all GL

2

(A)-equivariant, and the verti
al arrows are inje
tive ([BN03, Theorem 8.4℄).

In parti
ular, the natural map P ! F is an inje
tion, and it is a bije
tion when restri
ted to

the \(geometri
) 
onne
ted 
omponents of the base point" whi
h are the orbits of the respe
tive

base points under the elementary proje
tive group G = PE

2

(A), where

E

2

(A) = hP

+

; P

�

i � GL

2

(A);

P

+

=

n

�

1 x

0 1

�

jx 2 A

o

; P

�

=

n

�

1 0

y 1

�

j y 2 A

o

:

(7:8)

Note that the matrix

J :=

�

0 1

�1 0

�

=

�

1 1

0 1

��

1 0

�1 1

��

1 1

0 1

�

(7:9)

belongs to E

2

(A) and satis�es J:o

+

= o

�

. It follows that in both models we have X

+

= X

�

as

sets. Moreover, sin
e all base points in (P� P)

>

are 
onjugate under GL

2

(A), the same results

hold also for all other geometri
 
onne
ted 
omponents of P .

7.6. Manifold stru
tures. Now assume that K is a topologi
al ring and A is a 
.i.a. over K .

As we have seen in Se
tion 7.1, A is then a (C1)-Jordan triple system, and hen
e the proje
tive


ompletion X

+

�

=

G=P

�

of A 
arries a natural manifold stru
ture satisfying all properties from

Theorem 5.3. Using the imbedding from Se
tion 7.5, by transport of stru
ture, the 
omponent

G:o

�

� P 
an be equipped with the same stru
ture, and sin
e P is a disjoint union of geometri



onne
ted 
omponents whi
h are 
onjugate under GL

2

(A), we get a natural manifold stru
ture

on all of P . This manifold stru
ture agrees with the one that is obtained by taking �(A) � P

as \base 
hart" and then 
onstru
ting dire
tly, via the a
tion of GL

2

(A), an atlas on P in the

same way as we did for X

+

in Chapter 5. This is an immediate 
onsequen
e of the GL

2

(A)-

equivarian
e of the diagram (7.7).

7.7. Symmetri
 spa
e stru
tures. Asso
iated to the given base point (o

+

; o

�

) 2 P�P , there

are three natural involutions of G , given by 
onjugation with the matri
es I

1;1

; F; J , respe
tively.

The �rst two are related to ea
h other via the Cayley transform C and give rise to the symmeri


spa
e A

�

�

=

�(A

�

) � P . The third one gives rise the \
-dual symmetri
 spa
e of A

�

" whi
h is

isomorphi
 to A[i℄

�

=A

�

, where A[i℄ := A


K

(K [x℄=(x

2

+1)) is the \
omplexi�
ation" of A (
f.

[Be00℄).
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8. The hermitian proje
tive line

8.1. The spa
e of hermitian elements. Assume A is as in Se
tion 7.1 and � : A ! A is

an involution (K -linear antiautomorphism of order 2). We de�ne the spa
es of hermitian, resp.

anti-hermitian elements by

Herm(A; �) := fa 2 Aj a

�

= ag; Aherm(A; �) := fa 2 Aj a

�

= �ag:

Then Herm(A; �) is a Jordan-subalgebra of A , and Aherm(A; �) is a Jordan-sub triple system of

A . Re
all that 2 is assumed to be invertible in K , so A = Herm(A)�Aherm(A). (If K = R and

A is an algebra over C su
h that � is C -anti-linear, then iAherm(A; �) = Herm(A; �); more

generally, this holds whenever there is an element j 2 Z(A) su
h that j

2

= �1 and j

�

= �j .)

We are going to des
ribe Linear Algebra models for the geometries asso
iated to the Jordan pairs

(Herm(A; �);Herm(A; �)) and (Aherm(A; �);Aherm(A; �)). They will be 
losely related to the

�-unitary group

U(A; �) := fa 2 A

�

j a

�1

= a

�

g:

8.2. The �-symple
ti
 and the �-pseudo unitary group. If � is an involution of A , then

by a dire
t 
al
ulation one 
he
ks that the K -linear map

�

1

:M

2

(A)!M

2

(A);

�

a b


 d

�

7!

�

d

�

�b

�

�


�

a

�

�

(8:1)

is an involutive anti-automorphism of the asso
iative algebra M

2

(A). If A is 
ommutative and

� = id, then �

1

(A) is the matrix

e

A adjoint to A via the relation A

e

A =

e

AA = det(A)1 , and

then the map �

1

appears also as \symple
ti
 involution" in the 
ontext of the Cayley{Di
kson

pro
ess, 
f. [MC03, II.2.9℄. We 
an de�ne three other involutions of M

2

(A) by

�

2

(X) := I

1;1

�

1

(X)I

1;1

; �

3

(X) := F�

1

(X)F; �

4

(X) := J�

1

(X)J

�1

: (8:2)

With X =

�

a




b

d

�

, the expli
it formulas are:

�

2

(X) =

�

d

�

b

�




�

a

�

�

; �

3

(X) =

�

a

�

�


�

�b

�

d

�

�

; �

4

(X) =

�

a

�




�

b

�

d

�

�

: (8:3)

If � = �

j

, j = 1; 2; 3; 4, is any of these involutions, we obtain an involutive automorphism of

GL

2

(A) by

e

�

j

: GL

2

(A)! GL

2

(A); g 7! �

j

(g)

�1

and an involutive Lie algebra automorphism

_

�

j

: gl

2

(A)! gl

2

(A); X 7! ��

j

(X):

We de�ne the �-symple
ti
 and the �-pseudo unitary group via

Sp(A; �) := U(A�A;�

1

) = fg 2 GL

2

(A) : �

1

(g) = g

�1

g;

U(A;A; �) := U(A�A;�

2

) = fg 2 GL

2

(A) : �

2

(g) = g

�1

g;

and the 
orresponding Lie algebras

sp(A; �) := fX 2 gl

2

(A) : �

1

(X) = �Xg;

u(A;A; �) := fX 2 gl

2

(A) : �

2

(X) = �Xg:
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Sin
e ��

j

(I

1;1

) = I

1;1

for j = 1; 2, these two Lie algebras are stable under the grading derivation

ad(I

1;1

) of gl

2

(A) and hen
e are themselves 3-graded Lie algebras whi
h, moreover, are stable

under 
onjugation by the matrix F . It follows that the Jordan triple system 
orresponding

to these involutive 3-graded Lie algebras is given by restri
ting the one from gl

2

(A) to ��

j

-

invariants. Now,

��

1

�

0 x

0 0

�

=

�

0 x

�

0 0

�

; ��

2

�

0 x

0 0

�

=

�

0 �x

�

0 0

�

;

and hen
e the Jts asso
iated to sp(A; �) is Herm(A; �) and the Jts asso
iated to u(A;A; �) is

Aherm(A; �).

8.3. The (anti-) hermitian proje
tive line. Next we are going to des
ribe the geometries

asso
iated to Herm(A; �) and to Aherm(A; �). We have to extend the involutions � and �� of

A to globally de�ned maps P ! P . The idea is simply to send an element im(p) 2 P , where

p 2 P , to the element ker(�

j

(p)), j = 1; 2. This is well-de�ned:

Lemma 8.4. Let V be a right A-module and R be the set of all 
omplemented right A-

submodules of V and assume ' : End

A

(V )! End

A

(V ) is a K -linear anti-automorphism. Then

the map

e' : R ! R; im(p) 7! ker('(p))

(where p is a proje
tion onto im(p)) is a well-de�ned bije
tion satisfying

e'(g:E) = '(g)

�1

:e'(E); g 2 GL

A

(V ) = End

A

(V )

�

:

Moreover, if V = A�A and ' = �

j

, j = 1; 2; 3 , then P is stable under e' .

Proof. First of all, if p

2

= p , then also ('(p))

2

= '(p), hen
e '(p) is a proje
tion. If p and

q are proje
tions su
h that im(p) = im(q), then there exists g 2 GL

A

(V ) su
h that q = p Æ g .

Hen
e ker('(q)) = ker('(g) Æ '(p)) = ker('(p)) sin
e '(g) is bije
tive. Thus e' is well-de�ned.

Clearly, e' is bije
tive with inverse

g

'

�1

.

The transformation property under g follows from

'(g)

�1

: ker('(p)) = ker('(g)

�1

'(p)'(g)) = ker('(gpg

�1

)) = e'(im(gpg

�1

)) = e'(g: im(p)):

Now let ' = �

j

, j = 1; 2, and im(p) 2 P . Then there exists g 2 GL

2

(A) with gpg

�1

=

�

1

0

0

0

�

, when
e '(p) = '(g)'

�

1

0

0

0

�

'(g)

�1

= '(g)

�

0

0

0

1

�

'(g)

�1

, whi
h has kernel '(g)(A�0)

�

=

A .

For j = 3, it suÆ
es to note that the matri
es F and I

1;1

are 
onjugate to ea
h other (
f. Se
tion

8.5), and hen
e also

e

�

2

and

e

�

3

are 
onjugate to ea
h other.

The Lemma shows that

e

�

j

for j = 1; 2 is indu
ed by the automorphism

e

�

j

: E

2

(A) ! E

2

(A)

(whi
h is well-de�ned sin
e, by (8.1), the unipotent groups P

�

de�ned in (7.8) are stable under

e

�

j

, j = 1; 2), i.e.

e

�

j

is given by

e

�

j

: P! P; g:o

+

!

e

�

j

(g):o

+

: (8:4)

We say that an element E 2 P is

{ hermitian if

e

�

1

(E) = E ,

{ anti-hermitian if

e

�

2

(E) = E ,

{ unitary if

e

�

3

(E) = E .

Assume E = �

z

= [

�

z

1

�

℄ = im(p) with p =

�

0

0

z

1

�

. Then �

1

(p) =

�

1

0

�z

�

0

�

has kernel [

�

z

�

1

�

℄ .

Thus the restri
tion of

e

�

1

to A = �(A) is the involution � , and E is hermitian if and only if z is

hermitian. Similarly, we see that E is anti-hermitian if and only if z is anti-hermitian. Finally,

E is unitary if and only if [

�

z

1

�

℄ = [

�

1

z

�

�

℄ . First of all, this implies that z must be invertible in
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A , and then the 
ondition [

�

z

1

�

℄ = [

�

(z

�

)

�1

1

�

℄ is equivalent to z

�1

= z

�

, i.e. to the unitarity of

z .

The sets P

h

, resp. P

ah

of hermitian, resp., (anti-)hermitian elements in P is 
alled the

(anti-)hermitian proje
tive line; the set P

u

of unitary elements is 
alled the unitary proje
tive

line. The proje
tive 
ompletion of Herm(A; �), resp. of Aherm(A; �) are the imbeddings

� : Herm(A; �)! P

h

; � : Aherm(A; �)! P

ah

:

This geometri
 pi
ture 
an be imbedded into the three-graded pi
ture simply by restri
ting the

imbedding (7.7) to

e

�

j

-invariants.

8.5. The Cayley transform. The matri
es F and I

1;1

are 
onjugate in GL

2

(A) via C :

F = C

�1

I

1;1

C . It follows that C

�1

(P

ah

) = P

u

, i.e. the anti-hermitian and the unitary proje
tive

line are isomorphi
. In parti
ular, the unitary group U(A; �) is inje
ted into P

ah

via

U(A; �)! P

ah

; z 7! C(�

z

)

If z � e is invertible, then the last term equals �

(z+e)(z�e)

�1
and it belongs to �

Aherm(A)

.

8.6. Manifold stru
tures and symmetri
 spa
es. If A is a 
.i.a. over a topologi
al ring

K and � is 
ontinuous, then Herm(A; �) and Aherm(A; �) are (C1)-Jordan triple systems. The


orresponding manifold stru
ture on the geometri
 models is again simply obtained by seeing

everything as submanifolds �xed under

e

�

j

in the models 
orresponding to A . The natural

polarities given by the matrix I

1;1

, resp. by F , de�ne symmetri
 spa
es: as explained in the

pre
eding se
tion, the unitary group arises as the spa
e of non-isotropi
 points in the anti-

hermitian proje
tive line P

ah

; in parti
ular, U(A; �) is a symmetri
 spa
e. Moreover, with

respe
t to the underlying manifold stru
ture, also the group multipli
ation in U(A; �) is smooth

(the 
al
ulation is exa
tly the same as the one for the orthogonal group O

n

(R) in the Cayley


hart), and hen
e U(A; �) is a Lie group. The natural symmetri
 spa
e realized in the hermitian

proje
tive line is the spa
e of invertible elements in the Jordan algebra Herm(A; �) (already

en
ountered in Chapter 3), resp. its 
-dual symmetri
 spa
e. Sin
e the set-up is almost the same

as the one in [Be96℄ (where the spe
ial 
ase A = End(V ), � = adjoint, was 
onsidered; 
f.

Example 8.7), we 
an refer to [Be96℄ and to [Be00℄ for further details of the 
al
ulations.

In general, there are many other polarities whi
h are not isomorphi
 to the natural ones,

and hen
e there are other symmetri
 spa
es that 
an be realized inside P

h

or P

ah

. In [Be00,

XI.5℄ they have been 
alled 
onformally equivalent, and for the 
lassi
al series in �nite dimension

over K = R a 
lassi�
ation has been given. Roughly, one 
onsiders the set of all � 2 Aut(g)

su
h that F

�

Æ � is a grading-reversing involution (where F

�

is 
onjugation by F ); it is 
alled

the stru
ture variety of Herm(A; �) , resp. of Aherm(A; �) (
f. [Be00, Se
tion IV.2℄). It 
ontains,

for instan
e, all \modi�
ations" or \isotopes" given by

� =

�

0 H

H

�1

0

�

; (8:5)

where H is an invertible element in Herm(A; �). Then one has to 
lassify G-orbits in the

stru
ture variety. In �nite dimension over the reals, topologi
al 
onne
ted 
omponents of the

stru
ture variety are homogeneous under G , and thus the task is relatively easy. In in�nite

dimension, or over other base �elds or -rings, it seems possible that 
ontinuous families of non-

isomorphi
 modi�
ations may exist. This is an interesting topi
 for future resear
h.

8.7. Example: algebras of endomorphisms. Let V be a K -module equipped with a bilinear

symmetri
 or skew-symmetri
 form b : V � V ! K whi
h is non-degenerate in the sense that

the map �:V ! V

�

:= Hom(V;K ); v 7! b(v; �) is bije
tive. Let A = End(V ) and de�ne for

X 2 End(V ) the adjoint X

�

2 End(V ) by X

�

:v := �

�1

(�(v) ÆX). Of 
ourse, in a topologi
al


ontext one has to add further assumptions in order to ensure that A is a 
.i.a. and that the
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adjoint map is 
ontinuous; e.g., one may assume that K is a topologi
al �eld and V �nite-

dimensional over K , or that we are in a Hilbert-spa
e setting. Then �

1

(X) is the adjoint of

X 2 End(V � V ) w.r.t. the bilinear form on V � V given by

�

0 �b

b 0

�

: (8:6)

In parti
ular, if b is a s
alar produ
t over K = R , then sp(A; �) really is the symple
ti
 Lie algebra

sp(V � V;R) . This is essentially the 
ontext 
onsidered in [Be96℄ (see also [Be00, Ch. VIII.4℄).

As is seen by elementary Linear Algebra (
f. lo
. 
it.),

e

�

1

: P! P is then the \ortho
omplement

map" with respe
t to (8.6) (where P is the Grassmannian of subspa
es of type V in V �V having


omplement of type V ), and hen
e the hermitian proje
tive line 
orresponds to the \Lagrangian

variety with respe
t to the symple
ti
 form", and the anti-hermitian proje
tive line 
orresponds

to \Lagrangians with respe
t to the quadrati
 neutral form" into whi
h the orthogonal group

O(V; b) 
an be imbedded.

9. A quantum me
hani
al interpretation

As explained in the introdu
tion, there is a strong stru
tural analogy between the mathe-

mati
s 
onsidered in this work and the axiomati
s of quantum me
hani
s. In the following, we

give some examples for this stru
tural analogy by proposing a \di
tionary" between the language

of generalized proje
tive geometries and the language of quantum me
hani
s. This di
tionary is

by no means 
omplete { we do not atta
k topi
s su
h as spe
tral theory of our observables or

the use of unbounded operators. However, it seems that the theory of Jordan pairs and -triple

systems is ri
h and 
exible enough to in
orporate su
h aspe
ts; we intend to investigate these

questions in future work. Our referen
es for 
lassi
al, linear Quantum Theory are [Th81℄ and

[Va85℄. A

ording to [Th81, p. 33℄, the \Basi
 Assumption of Quantum Theory" is formulated

as follows: \The observables and states of a system are des
ribed by hermitian elements a of

a C

�

-algebra A and by states on A ." Let us see what this assumption implies if one tries

to interprete it on the level of the proje
tive 
ompletion of the algebra of hermitian elements.

Consequently, we will start with the observables and not with the states.

9.1. Observables. The spa
e of observables is the spa
e X

+

of a generalized proje
tive

geometry (X

+

; X

�

). The spa
e X

�

may be 
alled the \spa
e of non-observables" or the \spa
e

of observers". As standard model we may take the hermitian proje
tive line X

+

= P

h

over an

(in�nite-dimensional) asso
iative involutive 
.i.a (A; �). In this 
ase, X

+

and X

�

are 
anoni
ally

isomorphi
 (the isomorphism is a 
anoni
al null-system in the sense of [Be03a℄). For a general

approa
h, it seems not ne
essary to assume that K = C .

9.2. States and pure states. A state is an intrinsi
 subspa
e of X

+

, i.e. a subset Y � X

+

whi
h appears linearly (i.e. as an aÆne subspa
e) with respe
t to any aÆnization y 2 X

�

. Su
h

subspa
es 
orrespond to inner ideals of V

+

in Jordan theory (
f. [Be02, 2.7.(4)℄, [BL04℄). A

pure state is an intrinsi
 line, i.e. a proper intrinsi
 subspa
e whi
h is minimal for in
lusion. The

superposition of two pure states is the intrinsi
 subspa
e generated by the two lines. Under some

additional assumptions, pure states 
orrespond to division idempotents of the Jordan pair, and

spa
es of 
ertain states form again a generalized proje
tive geometry (
f. [Ka01℄ for results that

point into this dire
tion). Pure states 
orrespond to rank-one elements (
f. [Lo94℄ for the notion

of \rank"), and they are 
losely related to 
hains in the sense of Chain Geometry (
f. [H95℄).

9.3. The Hamilton operator. A Hamilton operator is a polarity p : X

+

! X

�

(
f. Se
tion

6.1). A Hamilton operator is 
alled free if the polarity p is an inner polarity in the sense of

[Be03a℄. In the standard model, there exists a free Hamilton operator p

0

, given by the matrix

F (
alled the \natural polarity" in Se
tion 8.6). Then a general Hamilton operator 
an be seen

as a deformation or modi�
ation of the free one as explained in Se
tion 8.6; in parti
ular, via

Equation (8.5) every invertible hermitian element H leads to new Hamilton operator that needs
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not be 
onjugate to p

0

. Note that the 
anoni
al identi�
ation X

+

= X

�

(= P

h

) in the standard

model is not a Hamilton operator be
ause it is a null-system.

9.4. The time dependent S
hr�odinger equation. The time dependent S
hr�odinger equation

is a dynami
al di�erential equation 
anoni
ally asso
iated to the Hamilton operator p . Of


ourse, here one thinks �rst of the geodesi
 di�erential equation in the symmetri
 spa
e M :=

M

(p)

� X

+

asso
iated to the Hamilton operator p . (Every symmetri
 spa
e 
arries a 
anoni
al

torsionfree 
onne
tion r (
f. [Be03b℄), and a geodesi
 is simply a smooth map � : K � I !M

whi
h is 
ompatible with 
onne
tions. In a 
hart, the geodesi
 equation is as usual �

00

(t) =

C

�(t)

(�

0

(t); �

0

(t)) where C is the Christo�el tensor of r in the 
hart.) However, as pointed

out in [AS97℄, the S
hr�odinger evolution should rather be seen as a Hamiltonian 
ow and not

as a solution of a se
ond order di�erential equation. But it is possible to re
on
ile these two

aspe
ts inside the 
ategory of generalized proje
tive geometries be
ause the tangent geometry

(TX

+

; TX

�

; T p) is again of the same type, and here the geodesi
 
ow of M

(p)

appears as 
ow

of a ve
tor �eld, namely of the spray asso
iated to the 
anoni
al 
onne
tion of M

(p)

(
f. [Be03b℄).

9.5. The time independent S
hr�odinger equation. An eigenstate of the Hamilton operator

p is an intrinsi
 line whi
h at the same time is a geodesi
 on M

(p)

. They 
orrespond to

division tripotents of the Jordan triple system asso
iated to p . A 
omplete system of eigenstates


orresponds to a frame of the Jordan triple system. The time independent S
hr�odinger equation


onsists in de
omposing a given tripotent with respe
t to a frame.

9.6. Quantization. Note that some models of spe
ial and general relativity su
h as Minkowski

spa
e and the de Sitter- and anti-de Sitter model (and more general 
ausal symmetri
 spa
es)


an be realized via generalized proje
tive geometries ([Be96℄, [Be00℄). It would be tempting to

interprete a quantization of su
h spa
es as a sort of representation of these �nite-dimensional

geometries in an in�nite-dimensional geometry.

10. Prospe
ts

10.1. Generalizations. The di�erential 
al
ulus developed in [BGN03℄ works in more general


ontexts, 
alled \C

0

-
on
epts", than the one of topologi
al rings and modules. For instan
e, we

may 
onsider the 
lass of rational mappings de�ned on Zariski-open sets in �nite-dimensional

ve
tor spa
es over an arbitrary in�nite �eld K and de�ne the 
lass C

1

as in Se
tion 1.3, where

now C

0

means \rational". Essentially all results of the present work 
arry over to this more

general framework (details are left to the reader). In parti
ular, all �nite-dimensional Jordan

algebras, -triple systems and -pairs over arbitrary in�nite �elds are automati
ally \
ontinuos

(quasi-) inverse" sin
e the formulas for (Bergman-) inversion 
learly are rational. Thus, in �nite

dimensions over in�nite �elds, the proje
tive 
ompletion is always a \smooth rational manifold"

in the sense of [BGN03℄, and our 
onstru
tion yields \smooth rational symmetri
 spa
es". All

notions of di�erential geometry from [Be03b℄ 
ontinue to make sense in this setting.

10.2. Lie group a
tions. In the 
ontext of Theorem 5.3, one would like the proje
tive group

G to be a Lie group a
ting smoothly on the proje
tive 
ompletion X

�

. However, in general it

seems impossible to de�ne a Lie group stru
ture on G be
ause G is de�ned by generators, and it

is very hard to �nd a good atlas for the subgroup H . In the real or 
omplex Bana
h set-up, this

problem 
an be avoided by taking instead of G and H the \mu
h bigger" groups Aut(g) and

Aut(g; D) whi
h are Bana
h Lie groups, and then realizing X

+

as a quotient manifold under

the a
tion of Aut(g)

0

. This is the strategy used in [Up85℄; it needs a fair amount of non-trivial

fun
tional analysis and does not 
arry over to more general situations.

Nevertheless, the problem remains wether in our general set-up it is possible to �nd some

extension of G to a Lie group

e

G a
ting smoothly on X

�

. For instan
e, in the 
ase of the

standard models (Se
tions 7 and 8) this is the 
ase: in 
ase of the proje
tive line we may take

e

G = GL

2

(A) whi
h is indeed a Lie group (if A is a 
.i.a., then the algebra M

n

(A) of n � n-

matri
es with entries in A is a 
.i.a (
f. [Bos90℄, [Gl02℄), and hen
e GL

n

(A) is a Lie group), and
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in 
ase of the (anti-) hermitian proje
tive line we may take

e

G = Sp(A; �), resp.

e

G = U(A;A; �)

whi
h are unitary groups asso
iated to an involutive 
.i.a. and hen
e, as we have seen in Se
tion

8.6, are Lie groups. We intend to investigate the problem of Lie group extensions of general

proje
tive groups in future work.
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