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Abstrat. We de�ne symmetri spaes in arbitrary dimension and over arbitrary non-disrete

topologial �elds K , and we onstrut manifolds and symmetri spaes assoiated to topologial

ontinuous quasi-inverse Jordan pairs and -triple systems. This lass of spaes, alled smooth gen-

eralized projetive geometries, generalizes the well-known (�nite or in�nite-dimensional) bounded

symmetri domains as well as their \ompat-like" duals. An interpretation of suh geometries

as models of Quantum Mehanis is proposed, and partiular attention is paid to geometries that

might be onsidered as \standard models" { they are assoiated to assoiative ontinuous inverse

algebras and to Jordan algebras of hermitian elements in suh an algebra.

Contents.

1. Calulus and manifolds

2. Lie groups and symmetri spaes

3. Symmetri spaes assoiated to ontinuous inverse Jordan algebras

4. Geometries assoiated to Jordan pairs

5. Smooth generalized projetive geometries

6. Smooth polar geometries and assoiated symmetri spaes

7. The projetive line over an assoiative algebra

8. The hermitian projetive line

9. Quantum mehanial interpretation

10. Prospets

MSC 2000: Prim.: 17C36, 46H70, 17C65, Se.: 17C30, 17C90

Key words: Jordan algebra, Jordan pair, Jordan triple, symmetri spae, onformal ompletion,

projetive ompletion, Lie group

Introdution

In �nite dimensions, the theory of Lie groups is losely related to the theory of symmetri

spaes. In in�nite dimensions, the theory of Lie groups is by now developed in great generality,

whereas for symmetri spaes there is not even a ommonly aepted de�nition. Nevertheless,

there is an interesting lass of spaes, alled (in�nite-dimensional) bounded symmetri domains,

for whih one an develop a nie struture theory and whih, without doubt, are honest sym-

metri spaes. Remarkably enough, the framework of their theory (developed by W. Kaup and

H. Upmeier, f. the monograph [Up85℄ and the literature given there) is not so muh Lie but

rather Jordan theoreti. Reently, also their \ompat-like" dual symmetri spaes (the analog

of the ompat dual of a non-ompat symmetri spae in �nite dimension) have attrated atten-

tion, the most important examples being in�nite-dimensional Gra�mannians of many kinds (f.

[PS86℄, [DNS89℄, [DNS90℄, [KA01℄, [MM01℄, [IM02℄). These ompat-like in�nite-dimensional
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manifolds an be seen as a \projetive ompletion" of the underlying Jordan triple system, in a

similar way as an ordinary projetive spae RP

n

an be seen as the projetive ompletion of the

aÆne spae R

n

.

In the present work, whih is the seond part in a series of two papers started by [BN03℄,

we will give a far-reahing generalization of the above mentioned theories. We will not only

free the real theory from the Banah spae set-up present in [Up85℄, but develop the theory

in the ontext of any Hausdor� topologial vetor spae as model spae, over any non-disrete

topologial �eld. In fat, we even work over any topologial ring having dense unit group.

Compared with the approah from [Up85℄, our approah is more algebrai and less analyti,

whih makes it onsiderably simpler and more elementary. The algebrai results from Part I

of this work ([BN03℄) whih we need are summarized in Chapter 4, and the basi notions of

di�erential alulus and manifolds over general topologial �elds and rings from [BGN03℄ are

realled in Chapter 1. The reader who is only interested in the real or omplex theory may

everywhere replae K by R or C , and he will see that all notions from alulus we use are the

ones whih he is used to.

We now give a more detailed desription of the ontents. In Chapter 2 the basi theory

of symmetri spaes, in arbitrary dimension and over general base �elds or rings (in whih 2

is invertible), is developed. For several reasons, we believe that the orret starting point for

the general theory is the approah to symmetri spaes by O. Loos ([Lo69℄) { the main idea

being to inorporate all symmetries �

x

with respets to points x in the symmetri spae M

into a smooth binary \multipliation map" m : M �M ! M , (x; y) 7! �

x

(y) whih is non-

assoiative, but has other nie algebrai properties. The analogy with the theory of Lie groups

then beomes very lose, and we get a good analog of the funtor assigning to a Lie group its

Lie algebra (Theorem 2.10). For further results on the di�erential geometry of symmetri spaes

(inluding the anonial onnetion and its urvature) we refer to [Be03b℄. One should not think

of symmetri spaes as homogeneous spaes G=H { homogeneity is a rather speial phenomenon,

and the same holds for the existene of a loally di�eomorphi exponential map whih annot be

guaranteed in general (see examples and disussion of exponential maps in Remarks 2.11, 3.5,

6.5).

In Chapter 3 we onstrut a lass of symmetri spaes related to ontinuous inverse Jordan

algebras; by de�nition, these are topologial Jordan algebras over K having an open set of

invertible elements and for whih the Jordan inverse map is ontinuous. One more, we losely

follow the presentation from [Lo69℄ (f. lo. it. Setion II.1.2.5); however, our general framework

permits to treat ompletely new examples suh as the spae of non-degenerate quadrati forms

on K

n

whih, for �elds suh as K = Q , is the prime example of a non-homogeneous symmetri

spae. For the ase of Banah{Jordan algebras the symmetri spae struture of the set of units

has been studied by O. Loos in [Lo96℄.

Having realled in Chapter 4 the algebrai onstrution and main properties of \gener-

alized projetive geometries" assoiated to 3-graded Lie algebras (whih are the Lie theoreti

ounterpart of Jordan pairs), we are ready to state and to prove our �rst main result (The-

orem 5.3): the generalized projetive geometry is atually a smooth manifold (on whih the

so-alled projetive group ats by di�eomorphisms) if some natural onditions on the Jordan pair

are ful�lled. Namely, the Jordan pair (V

+

; V

�

) shall be a topologial Jordan pair over K , the

set (V

+

� V

�

)

�

of quasi-invertible pairs shall be open in V

+

� V

�

, and the Bergman-inverse

mapping (V

+

� V

�

)

�

� V

+

� V

�

! V

+

� V

�

shall be ontinuous; then we say that (V

+

; V

�

)

is a ontinuous quasi-inverse Jordan pair (Setion 5.1). If this is the ase, a \generalized quo-

tient rule" (Setion 1.7) permits to onlude that the quasi-inverse mapping atually is smooth

(Proposition 5.2), whih is a major step in the proof of Theorem 5.3. Our ontinuous quasi-

inverse ondition on the Jordan pair is not only suÆient, but also neessary for the assoiated

generalized projetive geometry to be a smooth manifold; thus Theorem 5.3 is the most general

result that one might expet in this ontext. Of ourse, it ontains the previously mentioned

results in the Banah situation as speial ases.

In Chapter 6, we return to symmetri spaes: a symmetri spae struture on a generalized

projetive geometry (X

+

; X

�

) depends on an additional struture, namely on a �xed bijetion
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X

+

! X

�

whih is a polarity { in fat, this is familiar already from the lassial projetive spaes

X

+

= RP

n

or X

+

= C P

n

: they are turned into symmetri spaes only after the hoie of a

salar produt whih distinguishes an identi�ation of X

+

with the dual projetive spae X

�

and

thus determines isometry subgroups PO

n+1

, resp. PU

n+1

, of the projetive group PGL

n+1

(K ) ,

K = R; C . We prove that, under the general assumptions of Theorem 5.3, a ontinuous polarity

p : X

+

! X

�

is automatially smooth and gives rise to a symmetri spae struture on the

open set M

(p)

of non-isotropi points in X

+

(Theorem 6.2 (i)). We also alulate the assoiated

Lie triple system (i.e., the urvature of the anonial onnetion; f. [Be03b℄): it is given by

anti-symmetrising the orresponding Jordan triple produt (Theorem 6.2 (ii)). This generalizes

the geometri Jordan-Lie funtor whih has been de�ned in [Be00℄ for the �nite-dimensional real

ase.

In Chapters 7, 8 and 9, we give appliations and examples of the preeding results and

explain some links with the (abundant) related work in mathematis and physis. On the one

hand, Jordan algebras have been introdued by P. Jordan (f. [JNW34℄) in an attempt to lay

algebrai foundations of quantum mehanis. On the other hand, researh on the foundations

of quantum mehanis lead by quite di�erent arguments to the onlusion that \... quantum

mehanial systems are those whose logis form some sort of projetive geometries" ([Va85, p.

6℄). In the hope to bring these two lines of thought together, the onept of \generalized projetive

geometry" has been introdued by the �rst named author in [Be02℄. More reently, onepts of

delinearization of quantum mehanis have been proposed in the ontext of (Banah) hermitian

symmetri spaes, see [CGM03℄, where this program is motivated in the following way: \The true

aim of the delinearization program is to free the mathematial foundations of quantum mehanis

from any referene to linear struture and to linear operators. It appears very gratifying to

be aware of how naturally geometri onepts desribe the more relevant aspets of ordinary

quantum mehanis, suggesting that the geometri approah ould be very useful also in solving

open problems in Quantum Theories." The lose relation of the delinearization approah via

hermitian symmetri spaes to Jordan theory has not been notied in [CGM03℄ nor in the losely

related paper [AS97℄. In Chapter 9 we propose a \ditionary" between the language of generalized

projetive geometries (whih is equivalent to the language of Jordan theory) and the language of

quantum mehanis. We do not laim anything about the appliability of this ditionary to the

\physial world"; all that we aim at is to propose a terminology that makes evident the strutural

analogy between quantum mehanis and the theory of generalized projetive geometries.

Chapters 7 and 8 are devoted to what one might all \standard models of quantum me-

hanis" { these are the geometries orresponding to assoiative ontinuous inverse algebras, resp.

to their Jordan sub-algebras of hermitian elements. These are (in general) in�nite-dimensional

geometries whih, however, geometrially behave very muh like a projetive line (over a non-

ommutative base ring). A speial feature of these geometries is that some of their assoiated

symmetri spaes are \of group type", i.e. they are Lie groups, onsidered as symmetri spaes:

all orthogonal and unitary groups assoiated to involutive ontinuous inverse algebras an be

realized in this way.

In the �nal Chapter 10 we mention some further topis and open problems related to this

work.

Notation. Throughout this paper, K denotes a ommutative topologial ring with unit 1

(i.e. K arries a topology suh that the ring operations are ontinuous, the group K

�

of invertible

elements is open and inversion i:K

�

! K is ontinuous) suh that the group of units K

�

is

dense in K . We assume that 2 is invertible in K . In partiular, K may be any non-disrete

topologial �eld of harateristi di�erent from 2 suh as R , C , Q , Q

p

, C

p

,

�

R; : : :

If K is a topologial ring, all K -modules V are assumed to be topologial modules, i.e.

they arry a topology suh that the struture maps V �V ! V and K �V ! V are ontinuous.

Moreover, we assume that all topologial K -modules are Hausdor�. The lass of ontinuous

mappings is denoted by C

0

.



4 Wolfgang Bertram, Karl-Hermann Neeb

1. Calulus and manifolds

1.1. Di�erentiability in loally onvex spaes. In order to motivate our general onept of

di�erentiability, we reall the de�nition of di�erentiable mappings on loally onvex spaes (f.

[Gl01a℄, [Ke74℄, [Ha82℄): suppose E;F are real loally onvex spaes (not neessarily omplete),

U � E open and f : U ! F ontinuous. Then f is alled of lass C

1

if, for all x 2 U and

h 2 E , the diretional derivative

df(x;h) := lim

t!0

f(x+ th)� f(x)

t

exists and df : U � E ! F is ontinuous. Indutively, one de�nes f to be of lass C

k+1

if df

is of lass C

k

(f. [Gl01a, Lemma 1.14℄ for this de�nition), and we denote by C

0

the lass of

ontinuous maps. For our purposes, the following equivalent haraterization of the lass C

1

will

be useful:

Proposition 1.2. The map f : U ! F is of lass C

1

if and only if there exists a map

f

[1℄

: U �E � R � U

[1℄

:= f(x; h; t) : x+ th 2 Ug ! F

of lass C

0

suh that for all (x; h; t) 2 U

[1℄

,

f(x+ th)� f(x) = t � f

[1℄

(x; h; t):

Proof. Given f

[1℄

as in the proposition, we get df(x;h) = f

[1℄

(x; h; 0), and df will be of lass

C

0

sine so is f

[1℄

. Conversely, assume that f is C

1

and de�ne f

[1℄

by

f

[1℄

(x; h; t) :=

n

f(x+th)�f(x)

t

; t 2 R

�

df(x)h; t = 0:

Then f

[1℄

is of lass C

0

: this is seen by using, loally, the integral representation

f

[1℄

(x; h; t) =

Z

1

0

df(x+ sth)h ds

(Fundamental Theorem of Calulus, f. [Gl01a, Th. 15℄; note that no ompleteness assumption is

neessary here: a priori, the integral from the right-hand side has to be taken in the ompletion

of F , but as it atually equals f

[1℄

(x; h; t), it belongs to F itself.) Now the ontinuity of f

[1℄

follows by standard estimates (f. [BGN03, Prop. 7.4℄ for the details).

1.3. General de�nition of the lass C

1

over topologial �elds and rings. Now let K

be a general topologial ring having dense group of units K

�

, let V;W be Hausdor� topologial

K -modules and U � V open. We say that a map f : V � U ! W is C

1

(U;W ) or just of lass

C

1

if there exists a C

0

-map

f

[1℄

: U � V � K � f

[1℄

:= f(x; v; t)jx 2 U; x+ tv 2 Ug !W;

suh that

f(x+ tv)� f(x) = t � f

[1℄

(x; v; t)

whenever (x; v; t) 2 U

[1℄

. The di�erential of f at x is de�ned by

df(x) : V !W; v 7! df(x)v := f

[1℄

(x; v; 0):
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By density of K

�

in K , the map f

[1℄

is uniquely determined by f and hene df(x) is well-de�ned.

1.4. De�nition of the lasses C

k

and C

1

. Let f : V � U ! F be of lass C

1

. We say that

f is C

2

(U; F ) or of lass C

2

if f

[1℄

is C

1

, in whih ase we de�ne f

[2℄

:= (f

[1℄

)

[1℄

: U

[2℄

! F ,

where U

[2℄

:= (U

[1℄

)

[1℄

. Indutively, we say that f is C

k+1

(U; F ) or of lass C

k+1

if f is of lass

C

k

and f

[k℄

: U

[k℄

! F is of lass C

1

, in whih ase we de�ne f

[k+1℄

:= (f

[k℄

)

[1℄

: U

[k+1℄

! F

with U

[k+1℄

:= (U

[k℄

)

[1℄

. The map f is alled smooth or of lass C

1

if it is of lass C

k

for eah

k 2 N

0

. { Note that U

[k+1℄

= (U

[1℄

)

[k℄

for eah k 2 N

0

, and that f is of lass C

k+1

if and only

if f is of lass C

1

and f

[1℄

is of lass C

k

; in this ase, f

[k+1℄

= (f

[1℄

)

[k℄

.

1.5. Di�erentiation rules. We assume that f : U ! W is of lass C

k

. Its di�erential is the

C

0

-map

df : U � V ! W; (x; v) 7! df(x)v = f

[1℄

(x; v; 0);

the diretional derivative in diretion v is

�

v

f : U !W; x 7! �

v

f(x) := df(x)v:

We de�ne also

Tf : U � V !W �W; (x; v) 7! (f(x); df(x)v):

Then the following holds (f. [BGN03℄):

(1) For all x 2 U , df(x) : V !W is a K -linear C

0

-map.

(2) If f and g are omposable and of lass C

k

, then gÆf is of lass C

k

, and T (gÆf) = TgÆTf .

(3) Multilinear maps of lass C

0

are C

k

and are di�erentiated as usual. In partiular, if

f; g : U ! K are C

1

, then the produt f � g is C

1

, and �

v

(fg) = (�

v

f)g + f�

v

g .

Polynomial maps K

n

! K

m

are always C

1

and are di�erentiated as usual.

(4) Inversion i : K

�

! K is C

1

, and (di)(x)v = �x

�2

v . It follows that rational maps

K

n

� U ! K

m

are always C

1

and are di�erentiated as usual.

(5) The artesian produt of two C

k

-maps is C

k

.

(6) If f : V

1

� V

2

� U !W is C

1

, and for (x

1

; x

2

) 2 U we let

l

x

1

(x

2

) := r

x

2

(x

1

) := f(x

1

; x

2

);

then the rule on partial derivatives holds:

df(x

1

; x

2

)(v

1

; v

2

) = d(l

x

1

)(x

2

)v

1

+ d(r

x

2

)(x

1

)v

2

:

(7) (\Shwarz' Lemma") If f is of lass C

2

, then for all x 2 U , v; w 2 V ,

�

v

�

w

f(x) = �

w

�

v

f(x):

Hene, if f is of lass C

k

and x 2 U , then the map

d

k

f(x) : V

k

!W; (v

1

; : : : ; v

k

) 7! �

v

1

: : : �

v

k

f(x)

is a symmetri multilinear C

0

-map.

(8) There are several versions of Taylor's formula (see [BGN03℄), but none of them will be used

in this work.

1.6. Continuous inverse algebras. We will need various generalizations of the quotient rule

(4). An assoiative K -algebra A with unit 1 is alled a ontinuous inverse algebra (.i.a.) if the

produt A � A ! A is ontinuous, the unit group A

�

is open in A and inversion i : A

�

! A

is ontinuous. Writing

i(x+ th)� i(x) = �x

�1

(th)(x+ th)

�1

= t(�x

�1

h(x+ th)

�1

);
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we see that i atually is C

1

and i

[1℄

(x; h; t) = �x

�1

h(x + th)

�1

, whene di(x)h = �x

�1

hx

�1

.

Iterating this argument, we see that i is C

1

.

1.7. The generalized quotient rule. For the seond generalization of the quotient rule,

assume f : E � U ! End(F ) takes, on the open set U � E , values in the group GL(F ) of

(ontinuous) invertible linear self-maps of E . We do not want to �x a topology on End(F ), and

hene it makes no sense to assume f or the inversion map j : GL(F )! GL(F ) to be ontinuous

or di�erentiable. Instead, we assume that

e

f : U � F ! F , (x; v) 7! f(x)v is of lass C

k

and

that

f

jf : U � F ! F; (x; v) 7! f(x)

�1

v

is of lass C

0

. We laim that then

f

jf also is of lass C

k

. Indeed, for k = 1 we have:

f

jf((x; v) + s(h

1

; h

2

))�

f

jf(x; v)

=

f

jf((x; v) + s(h

1

; h

2

))�

f

jf((x; v) + s(h

1

; 0)) +

f

jf((x; v) + s(h

1

; 0))�

f

jf(x; v)

= f(x+ sh

1

)

�1

(v + sh

2

)� f(x+ sh

1

)

�1

v + f(x+ sh

1

)

�1

v � f(x)

�1

v

= sf(x+ sh

1

)

�1

h

2

+ (f(x+ sh

1

)

�1

� f(x)

�1

)v

= sf(x+ sh

1

)

�1

h

2

+ f(x)

�1

(f(x)� f(x+ sh

1

))f(x+ sh

1

)

�1

v

= sf(x+ sh

1

)

�1

h

2

+ f(x)

�1

(

e

f(x; f(x+ sh

1

)

�1

v)�

e

f(x+ sh

1

; f(x+ sh

1

)

�1

v))

= sf(x+ sh

1

)

�1

h

2

+ sf(x)

�1

(

e

f)

[1℄

((x; f(x+ sh

1

)

�1

v); (h

1

; 0); s)

whih is the same as the produt of s with

(

f

jf)

[1℄

((x; v); (h

1

; h

2

); s) = f(x+ sh

1

)

�1

h

2

+ f(x)

�1

(

e

f)

[1℄

((x; f(x + sh

1

)

�1

v); (h

1

; 0); s)

=

f

jf(x+ sh

1

; h

2

) +

f

jf(x; (

e

f )

[1℄

((x;

f

jf(x + sh

1

; v)); (h

1

; 0); s));

(1:1)

whih, aording to our assumptions, is a C

0

-map. It follows that

f

jf is C

1

, and letting s = 0,

we get

d(

f

jf)(x; v)(h

1

; h

2

) = f(x)

�1

h

2

� f(x)

�1

d

e

f(x; f(x)

�1

v)(h

1

; 0):

Moreover, using Equation (1.1) together with the hain rule, we an iterate this argument, and

it follows that

f

jf is C

k

if so is

e

f .

1.8. Manifolds. A C

k

-manifold with atlas (modeled on the topologial K -module E ) (where

k 2 N

0

[ f1g) is a topologial spae M together with an E -atlas A = f('

i

; U

i

) : i 2 Ig . This

means that U

i

, i 2 I , is a overing of M by open sets, and '

i

: M � U

i

! '

i

(U

i

) � E is a

hart , i.e. a homeomorphism of the open set U

i

�M onto an open set '

i

(U

i

) � E , and any two

harts ('

i

; U

i

); ('

j

; U

j

) are C

k

-ompatible in the sense that

'

ij

:= '

i

Æ '

�1

j

j

'

j

(U

i

\U

j

)

: '

j

(U

i

\ U

j

)! '

i

(U

i

\ U

j

)

and its inverse '

ji

are of lass C

k

.

If the atlas A is maximal in the sense that it ontains all ompatible harts, then M is

alled a C

k

-manifold (modeled on E ).

Smooth maps between manifolds (with or without atlas) are now de�ned as usual, and it

is seen that C

k

-manifolds (with or without atlas) form a ategory.

1.9. The tangent funtor. Set-theoretially, M an be seen as the quotient of the following

equivalene relation S= � , where

S := f(i; x)jx 2 '

i

(U

i

)g � I �E;

and (i; x) � (j; y) if '

�1

i

(x) = '

�1

j

(y). We write p = [i; x℄ 2 M = S= � . Then the tangent

bundle is de�ned to be the quotient of the equivalene relation on the set

TS := S �E � I �E �E
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given by:

(i; x; v) � (j; y; w) :() '

j

Æ '

�1

i

(x) = y; d('

j

Æ '

�1

i

)(x)v = w:

All usual properties of the tangent bundle are now easily proved (f. [BGN03℄); in partiular,

there is a natural manifold struture (with atlas TA) on TM suh that the natural projetion

� : TM !M is smooth; the tangent spae T

p

M is de�ned to be the �ber �

�1

(p). If f : M ! N

is C

k

, there is a well-de�ned tangent map Tf : TM ! TN , and we have the usual funtorial

properties (inluding ompatibility with diret produts: T (M �N)

�

=

TM � TN ); thus T will

be alled the tangent funtor.

1.10. The Lie braket. Smooth setions of TM are alled vetor �elds. There is a Lie braket

on the K -module X(M) of vetor �elds on M , given in a hart by

[X;Y ℄(x) = dY (x)X(x) � dX(x)Y (x) (1:2)

([BGN03, Th. 8.4℄; note that the sign is a matter of onvention). The Lie braket is natural

in the sense that, if (X;X

0

) and (Y; Y

0

) are '-related under some smooth map ' , then so is

([X;Y ℄; [X

0

; Y

0

℄) ([BGN03, Lemma 8.5℄). See [Be03b℄ for a oneptual de�nition of the Lie braket

and for a systemati exposition of di�erential geometry (espeially, the theory of onnetions) in

this framework.

2. Lie groups and symmetri spaes

2.1. Manifolds with multipliation. A produt or multipliation map on a manifold M is

a smooth binary map m : M �M ! M , and homomorphisms of manifolds with multipliation

are smooth maps that are ompatible with the respetive multipliation maps. Left and right

multipliation operators, de�ned by l

x

(y) = m(x; y) = r

y

(x), are partial maps of m and hene

smooth self maps of M . Applying the tangent funtor to this situation, we see that (TM; Tm) is

again a manifold with multipliation, and tangent maps of homomorphisms are homomorphisms

of the respetive tangent spaes. The tangent map Tm is given by the formula

T

(x;y)

m(Æ

x

; Æ

y

) = T

(x;y)

m((Æ

x

; 0

y

) + (0

x

; Æ

y

)) = T

x

(r

y

)Æ

x

+ T

y

(l

x

)Æ

y

: (2:1)

Formula (2.1) is nothing but the rule on partial derivatives (1.5.(6)) written in the language of

manifolds. In partiular, (2.1) shows that the anonial projetion and the zero setion,

� : TM !M; Æ

p

! p; z :M ! TM; p 7! 0

p

(2:2)

are homomorphisms of manifolds with multipliation. We will always identify M with the

subspae z(M) of TM . Then (2.1) implies that the operator of left multipliation by p = 0

p

in

TM is nothing but T (l

p

) : TM ! TM , and similarly for right multipliations.

2.2. Lie groups. A Lie group over K is a smooth K -manifold G arrying a group struture

suh that the multipliation map m : G�G! G and the inversion map i : G! G are smooth.

Homomorphisms of Lie groups are smooth group homomorphisms. Clearly, Lie groups and their

homomorphisms form a ategory in whih diret produts exist.

Applying the tangent funtor to the de�ning identities of the group struture (G;m; i; e),

it is immediately seen that then (TG; Tm; T i; 0

T

e

G

) is again a Lie group suh that � : TG! G

beomes a homomorphism of Lie groups and suh that the zero setion z : G ! TG also is a

homomorphism of Lie groups.

2.3. The Lie algebra of a Lie group. A vetor �eld X 2 X(G) is alled left invariant if, for

all g 2 G , X Æ l

g

= T l

g

ÆX . In partiular, X(g) = X(l

g

(e)) = T

e

l

g

X(e); thus X is uniquely

determined by the value X(e), and thus the map

X(G)

l

G

! T

e

G; X 7! X(e) (2:3)
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from the spae of left invariant vetor �elds into T

e

G is injetive. It is also surjetive: if v 2 T

e

G ,

then right multipliation with v in TG , Tr

v

: TG ! TG preserves �bers and hene de�nes a

vetor �eld

v

l

: G! TG; g 7! T

g

r

v

(0

g

) = Tm(g; v) = T

e

l

g

(v)

whih is left invariant sine right multipliations ommute with left multipliations. Now, the

spae X(G)

l

G

is a Lie subalgebra of X(M); this follows immediately from the naturality of the

Lie braket beause X is left invariant if and only if the pair (X;X) is l

g

-related for all g 2 G .

The spae g := T

e

G with the Lie braket de�ned by [v; w℄ := [v

l

; w

l

℄

e

is alled the Lie algebra

of G .

Theorem 2.4.

(i) The Lie braket g� g! g is C

0

.

(ii) For every homomorphism f : G ! H , the tangent map

_

f := T

e

f : g ! h is a homomor-

phism of Lie algebras.

Proof. (i) Pik a hart ' : U ! V of G suh that '(e) = 0. Sine w

l

(x) = Tm(x;w)

depends smoothly on (x;w), it is represented in the hart by a smooth map (whih again will

be denoted by w

l

(x)). But this implies that [v

l

; w

l

℄(x) = d(w

l

)(x)v

l

(x)� d(v

l

)(x)w

l

(x) depends

smoothly on v; w and x and hene [v; w℄ depends smoothly on v; w .

(ii) First one has to hek that the pair of vetor �elds (v

l

; ( _'v)

l

) is f -related, and then

the naturality of the Lie braket implies that

_

f [v; w℄ = [

_

fv;

_

fw℄ .

The funtor from Lie groups over K into C

0

-Lie algebras over K will be alled the Lie

funtor over K .

2.5. Symmetri spaes. A symmetri spae over K is a smooth manifold with a multipliation

map m : M�M !M suh that, for all x; y; z 2M , writing also �

x

for the left multipliation l

x

,

(M1) m(x; x) = x ,

(M2) m(x;m(x; y)) = y , i.e. �

2

x

= id

M

,

(M3) m(x;m(y; z)) = m(m(x; y);m(x; z)), i.e. �

x

2 Aut(M;m),

(M4) T

x

(�

x

) = � id

T

x

M

.

Homomorphisms of symmetri spaes are the orresponding homomorphisms of manifolds with

multipliation. The left multipliation operator �

x

is, by (M1){(M3), an automorphism of order

two �xing x ; it is alled the symmetry around x . Sine 2 is invertible in K , Property (M4)

says that, \in�nitesimally", x is an isolated �xed point of the symmetry �

x

. If we have an

impliit funtion theorem at our disposition, then this holds also loally (see [Ne02, Lemma 3.2℄

for the Banah ase). In partiular, in the �nite-dimensional ase over K = R , our de�nition is

equivalent to the one by O. Loos in [Lo69℄.

Remark. It would be interesting to know whether there are real in�nite-dimensional symmetri

spaes for whih x is not isolated in the set of �xed points of the symmetry �

x

. If there were a

(in�nite-dimensional real) Lie group G for whih the unit element is not isolated in the spae of

elements of order 2, then we ould take M = G with m(g; h) = gh

�1

g .

The group G(M) generated by all produts �

x

�

y

, x; y 2 M , is a (normal) subgroup of

Aut(M;m), alled the group of displaements. A distinguished point o 2 M is alled a base

point. With respet to a base point, one de�nes the quadrati representation

Q :M ! G(M); x 7! �

x

�

o

: (2:4)

Proposition 2.6. The tangent bundle (TM; Tm) of a symmetri spae is again a symmetri

spae.

Proof. We express the identities (M1){(M3) by ommutative diagrams to whih we apply

the tangent funtor T . Sine T ommutes with diret produts, we get the same diagrams and

hene the laws (M1){(M3) for Tm (f. [Lo69, II.2℄ for the expliit form of the diagrams).
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Next we prove (M4): �rst of all, note that the �bers of � : TM ! M (i.e. the tangent

spaes) are stable under Tm beause � is a homomorphism. We laim that for v; w 2 T

p

M

the expliit formula Tm(v; w) = 2v � w holds (i.e. the struture indued on tangent spaes is

the anonial \at" symmetri struture of an aÆne spae). In fat, from (M3) for Tm we get

v = Tm(v; v) = T

p

(�

p

)v + T

p

(r

p

)v = �v + T

p

(r

p

)v , whene T

p

(r

p

)v = 2v and

Tm(v; w) = T

p

(�

p

)w + T

p

(r

p

)v = 2v � w:

Now �x p 2 M and v 2 T

p

M . We hoose 0

p

as base point in TM . Then Q(v) = �

v

�

0

p

is, by

(M3), an automorphism of (TM; Tm) suh that Q(v)0

p

= �

v

(0

p

) = 2v . But

1

2

: TM ! TM; Æ

x

7!

1

2

Æ

x

also is an automorphism of (TM; Tm), as shows Formula (2.1). Therefore the automorphism

group of TM ats transitively on �bers, and after onjugation of �

v

with (

1

2

Q(v))

�1

we may

assume that v = 0

p

. But in this ase the proof of our laim is easy: we have �

0

p

= T�

p

, and

sine T

p

�

p

= � id

T

p

M

, the anonial identi�ation T

0

p

(TM)

�

=

T

p

M � T

p

M yields T

0

p

(�

0

p

) =

(� id

T

p

M

)� (� id

T

p

M

) = � id

T

0

p

TM

, whene (M4).

2.7. The algebra of derivations of M . A vetor �eld X : M ! TM on a symmetri

spae M is alled a derivation if X is also a homomorphism of symmetri spaes. This an be

rephrased by saying that (X �X;X) is m-related. The naturality of the Lie braket therefore

implies that the spae g of derivations is stable under the Lie braket. It is also easily heked

that it is a K -submodule of X(M), and hene g � X(M) is a Lie-subalgebra.

Let us �x a base point o 2M . The map X 7! T�

o

ÆX Æ � is a Lie algebra automorphism

of X(M) of order 2 whih stabilizes g . We let

g = g

+

� g

�

; g

�

= fX 2 gjT�

o

ÆX Æ �

o

= �Xg

be its assoiated eigenspae deomposition (reall that 2 is assumed to be invertible in K ). The

spae g

+

is a Lie subalgebra of X(M), whereas g

�

is only losed under the triple braket

(X;Y; Z) 7! [X;Y; Z℄ := [[X;Y ℄; Z℄:

Proposition 2.8.

(i) The spae g

+

(M) is the kernel of the evaluation map ev

o

: g! T

o

M , X 7! X(o) .

(ii) Restrition of ev

o

yields a bijetion g

�

! T

o

M , X 7! X(o) .

Proof. (i) Assume X 2 g

+

. Then T

o

�X(o) = X(�

o

(o)) = X(o) implies �X(o) = X(o)

and hene X(o) = 0. On the other hand, if X(o) = 0, then X(�

o

(p)) = X(m(o; p)) =

Tm(X(o); X(p)) = Tm(0

o

; X(p)) = T�

o

X(p), whene X 2 g

+

.

(ii) By (i), g

�

\ ker(ev

o

) = g

�

\ g

+

= 0, and hene ev

o

: g

�

! T

o

M is injetive. It is also

surjetive: let v 2 T

o

M . Consider the map

ev =

1

2

Q(v) Æ z :M ! TM; p 7!

1

2

Q(v)0

p

=

1

2

Tm(v; Tm(0

o

; 0

p

)):

It is a omposition of homomorphisms and hene is itself a homomorphism from M into TM .

Moreover, as we have seen in the proof of Proposition 2.6, ev(o) = v . Thus we will be done if we

an show that ev 2 g

�

. First of all, ev is a vetor �eld sine Q(v)Æ

p

2 T

m(o;m(o;p))

M = T

p

M for

all p 2M . Finally,

T�

o

Æ ev Æ �

o

=

1

2

T�

o

ÆQ(v) Æ z Æ �

o

=

1

2

Q(T�

o

v) Æ z =

1

2

Q(�v) Æ z = �ev:

2.9. The Lie triple system of a symmetri spae with base point. The spae m := T

o

M

with triple braket given by

[u; v; w℄ := �R

o

(u; v)w := [[eu; ev℄; ew℄(o)

is alled the Lie triple system (Lts) assoiated to (M; o). It satis�es the identities of an abstrat

Lie triple system over K (f. [Lo69, p. 78/79℄). The notation R

o

(u; v)w alludes to the fat that

the triple Lie braket indeed is the urvature tensor of a anonial onnetion on M (f. [Lo69℄

for the �nite-dimensional real ase and [Be03b℄ for the general ase). Sine the base point o is

arbitrary, we have indeed de�ned a tensor �eld R on M (in a hart it is easily seen that the

dependene of R

o

on o is smooth).
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Theorem 2.10. Let M be a symmetri spae over K with base point o .

(i) The Lie triple braket of the Lts m assoiated to (M; o) is C

0

.

(ii) If ' : M ! M

0

is a homomorphism of symmetri spaes suh that '(o) = o

0

, then

_' := T

o

' : m! m

0

is an Lts homomorphism.

Proof. One uses the same arguments as in the proof of Theorem 2.4.

The funtor from symmetri spaes with base point to C

0

-Lie triple systems will be alled the

Lie funtor for symmetri spaes. It ontains the Lie funtor for Lie groups in the following

sense: if G is a Lie group, then m(x; y) = xy

�1

x de�nes on G the struture of a symmetri

spae (the ondition (M4) here is equivalent to T i(e) = � id

T

e

G

whih is proved in the same way

as usual), and as in [Lo69℄ it is seen that the Lts of G is given in terms of the Lie algebra of G

by

1

4

[[X;Y ℄; Z℄ .

2.11. On geodesis and exponential maps. If M is a �nite-dimensional real or omplex

symmetri spae and M

1

is a onneted omponent of M , then the subgroup G(M

1

) of G(M)

generated by all produts �

x

�

y

, x; y 2 M

1

, ats transitively on M

1

. This follows from the

existene of an exponential map in this ase (f. [Lo69℄). In the general ase, even for K = R ,

there is no exponential map, and the onneted omponents need no longer be homogeneous. In

the following, we give a brief aount of the relevant de�nitions and explain the main arguments.

If M is a symmetri spae over K , we de�ne a geodesi to be a non-onstant homomorphism

 : K ! M , where K arries the \anonial at symmetri spae struture" m(v; w) = 2v � w

whih exists on any topologial K -module. We say that M is geodesially onneted if any two

points p; q 2 M an be joined by a broken geodesi, i.e. there exist points p = p

0

; : : : ; p

n

= q

suh that p

i

and p

i+1

an be joined by a geodesi.

Proposition 2.12. If M is geodesially onneted, then the transvetion group G(M) ats

transitively on M .

Proof. We use the same arguments as in the real �nite-dimensional ase ([Lo69℄): if  : K !

M is a geodesi suh that (0) = p

i

and (1) = p

i+1

, we let y := (

1

2

) and g := �

y

Æ�

p

i

2 G(M);

then

g(p

i

) = �

y

(p

i

) = m((

1

2

); (0)) = (m(

1

2

; 0)) = (1) = p

i+1

:

Now the laim follows by a trivial indution on n .

The ruial property used in the proof is that for two points, suÆiently lose to eah other, we

an �nd a midpoint. The midpoint should be seen as a \square root" of one point with respet

to the other; thus the lak of square roots in K is one obstrution for homogeneity of symmetri

spaes, as is illustrated by the example of the projetive spae QP

n

over K = Q . Note also that

geodesi onnetedness does not imply onnetedness in the topologial sense sine already K

may be totally disonneted as the example of the p-adi numbers Q

p

shows.

We say that M has an exponential map if, for every p 2 M and v 2 T

p

M , there exists a

unique geodesi '

v

: K !M suh that '

v

(0) = p and T

0

'

v

(1) = v and suh that the map

Exp := Exp

p

: T

p

M !M; v 7! '

v

(1)

is smooth. We say that M is loally exponential if M has an exponential map, and for all p 2M ,

Exp

p

is a di�eomorphism of some neighborhood of 0 in T

p

M onto some neighborhood of p in

M . Then the set of all points that an be joined to a given point by a broken geodesi is open,

and hene M is geodesially onneted if M is topologially onneted. It an be shown that,

if K = R and the model spae of V is a Banah spae, then M is loally exponential (one an

use the same arguments as in [Lo69℄) and hene G(M) ats transitively on topologial onneted

omponents. However, already for Fr�ehet symmetri spaes this is no longer true in general.
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3. Symmetri spaes assoiated to ontinuous inverse Jordan algebras

3.1. Unit groups of ontinuous inverse algebras. It is lear that the unit group A

�

of a

ontinuous inverse algebra A (f. Setion 1.6) is a Lie group. The assoiated Lie algebra is A

with the ommutator braket. We are going to explain a similar onstrution whih arises when

one tries to replae the ommutator by the anti-ommutator.

3.2. Continuous inverse Jordan algebras. A Jordan algebra is a ommutative K -algebra V

suh that the produt x � y satis�es the identity x � (x

2

� y) = x

2

� (x � y). Our basi referene

for Jordan algebras is [MC03℄; see also [FK94℄. We assume that V has a unit 1 . Any assoiative

algebra A with the anti-ommutator x � y =

xy+yx

2

is a Jordan algebra; subalgebras of suh

Jordan algebras are alled speial. For x; y belonging to a Jordan algebra V one de�nes

L(x)y := x � y; Q(x) := 2L(x)

2

� L(x

2

);

and

Q(x; y) := Q(x+ y)�Q(x)�Q(y) = 2(L(x)L(y) + L(y)L(x)� L(xy)): (3:1)

Then the fundamental formula holds:

Q(Q(x)y) = Q(x)Q(y)Q(x): (3:2)

One de�nes the Jordan inverse j by

j : V

�

:= fx 2 V jQ(x) invertible g ! V; x 7! j(x) := x

�1

:= Q(x)

�1

x: (3:3)

We say that V is a ontinuous inverse Jordan algebra (.i.J.a.) if V is a topologial Jordan

algebra suh that V

�

is open in V and j : V

�

! V is C

0

.

Proposition 3.3. The Jordan inverse of a ontinuous inverse Jordan algebra is smooth, and

its di�erential is given by

dj(x)v = �Q(x)

�1

v:

Proof. The fat that j is smooth follows from the generalized quotient rule (1.7) with

f : V ! End(V ), x 7! Q(x) beause the assoiated map

e

f : (x; v) 7! Q(x)v is C

0

and

polynomial, hene C

1

. However, in order to �nd the orret expression for the di�erential, we

repeat the main steps of the alulation: for (x; h; t) 2 (V

�

)

[1℄

,

j(x+ th)� j(x) = Q(x+ th)

�1

(x+ th)�Q(x)

�1

x

= tQ(x+ th)

�1

h+ (Q(x + th)

�1

�Q(x)

�1

)x

= tQ(x+ th)

�1

h�Q(x)

�1

(Q(x+ th)�Q(x))Q(x + th)

�1

x

= tQ(x+ th)

�1

h�Q(x)

�1

(Q(th) +Q(x; th))Q(x + th)

�1

x

= t

�

Q(x+ th)

�1

h�Q(x)

�1

(tQ(h) +Q(x; h))Q(x+ th)

�1

x

�

:

The expression following the salar t is j

[1℄

(x; h; t). Letting t = 0, we get

dj(x)h = Q(x)

�1

h�Q(x)

�1

Q(x; h)Q(x)

�1

x:

Now,

Q(x; h)Q(x)

�1

x = Q(x; h)x

�1

= 2([L

x

; L

x

�1
℄ + L

xx

�1
)h = 2h

sine L

x

and L

x

�1
= Q(x)

�1

L

x

ommute (f. the \L-inverse formula" [MC03, III.6.1℄) and

x

�1

� x = Q(x)

�1

x

2

= Q(x)

�1

Q(x)1 = 1 . It follows that dj(x)h = �Q(x)

�1

h .
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Theorem 3.4. If V is a ontinuous inverse Jordan algebra, then the set M := V

�

of

invertible elements of V is a symmetri spae with produt map

m : M �M !M; (x; y) 7! Q(x)y

�1

= Q(x)Q(y)

�1

y:

The quadrati map Q : V ! End(V ) is a polynomial extension of the quadrati representation

Q : M ! G(M) assoiated to the symmetri spae with base point 1 . The Lie triple system on

the tangent spae T

1

M

�

=

V at the base point 1 2M is given by

�R(x; y)z = [[L(x); L(y)℄; L(z)℄1 = [L(x); L(y)℄z = x � (y � z)� y � (x � z):

Proof. (f. [Lo96℄ for the Banah ase) Using the fundamental formula (3.2), it is easily

heked that m(x; y) belongs to V

�

if x; y belong to V

�

. Thus m is well-de�ned, and it is

smooth sine the Jordan inversion is smooth (Prop. 3.3).

Property (M1) follows trivially from the de�nition of j , (M2) and (M3) follow by straightfor-

ward alulations from the fundamental formula (f. also [Lo69, II.1.2.5℄), and sine �

1

(y) = y

�1

,

we have �

x

�

1

(y) = Q(x)((y

�1

)

�1

) = Q(x)y , proving that the quadrati representation of M and

the quadrati representation of the Jordan algebra oinide on V

�

. Next we prove (M4) (using

Prop. 3.3):

T

x

(�

x

) = T

x

(�

x

�

1

�

1

) = T

x

(Q(x) Æ j) = Q(x) Æ T

x

j = �Q(x)Q(x)

�1

= � id :

In order to alulate the Lie triple system, we remark �rst that TM = T (V

�

) is realized by

the same onstrution as V , but with respet to the Jordan algebra TV

�

=

V � V with produt

being the tangent map of the Jordan produt of V , i.e. (x; x

0

) � (y; y

0

) = (x � y; x � y

0

+ x

0

� y)

{ seen algebraially, this is the salar extension of V by the ring of dual numbers over K ,

K ["℄ := K [x℄=(x

2

)

�

=

K � "K , "

2

= 0. Taking the unit element 1 as base point, the tangent

vetor v 2 T

1

M orresponds to the element 1+ "v 2 TV . Reall from the proof of Proposition

2.8 the vetor �eld

ev(p) =

1

2

Tm(v; Tm(0

1

; 0

p

)) = Tm(

v

2

; Tm(0

1

; 0

p

)) = Q(

v

2

)0

p

:

With the preeding notation, 0

p

= p+ "0, v = 1+ "v , and ev is in the hart V desribed by

ev(p) = Q(1+ "

v

2

):0

p

= (2L(1+ "

v

2

)

2

� L((1+ "

v

2

)

2

))0

p

= (L(1) + "L(v))p = p+ "v � p:

In other words, in the hart V , ev is the linear vetor �eld given by the operator L(v) : V ! V .

But then Formula (1.2) shows that the ommutator of two linear vetor �elds L(x) and L(y) is

simply the (negative of) the usual braket [L(x); L(y)℄ of endomorphisms and hene the triple

ommutator is given by [[L(x); L(y)℄; L(z)℄ , proving that [x; y; z℄ = [[L(x); L(y)℄; L(z)℄1 . From

this the other formulas follow beause [L(x); L(y)℄1 = x � y � y � x = 0.

One an prove a onverse of Theorem 3.4: a symmetri spae M whih is open in a K -

module V and suh that the quadrati map extends to a homogeneous quadrati polynomial, is

essentially given by the preeding onstrution; in [Be00, Ch. II℄ (in the �nite-dimensional real

ase) suh spaes have been alled quadrati prehomogeneous symmetri spaes.

3.5. Remark on the orbit struture for the ation of G(M). In general, M = V

�

is far

from being homogeneous under the ation of the group G(M): for instane, if V = Sym(n;K ) is

the Jordan algebra of symmetri n�n-matries over K , then V

�

is the spae of non-degenerate

quadrati forms on K

n

. The group G(M) is ontained in GL(V ), ating in the usual way on

the spae of forms. It follows that the G(M)-orbits are inluded in ongruene lasses of forms,

and hene the orbit struture is at least as ompliated as the lassi�ation of (non-degenerate)

quadrati forms over K .

If V is a Banah Jordan algebra over K 2 fR; C g , then V

�

is a Banah symmetri spae,

hene is loally exponential (Setion 2.11). The exponential map at the base point 1 is given

by the usual exponential series e

v

=

P

1

k=0

v

k

k!

(where the power v

k

is taken with respet to the

Jordan produt), and the topologial onneted omponents of V

�

are homogeneous under the

transvetion group. It would be very interesting to understand the orresponding situation for

p-adi Banah Jordan algebras (where the exponential series does not onverge everywhere).
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4. Geometries assoiated to Jordan pairs

In this hapter we review the algebrai theory from [BN03℄; results quoted without further

omment an be found there. Our basi referene for Jordan pairs is [Lo75℄.

4.1. Three-graded Lie algebras and Jordan pairs. A 3-graded Lie algebra (over K ) is

a Lie algebra over K of the form g = g

1

� g

0

� g

�1

suh that [g

k

; g

l

℄ � g

k+l

, i.e., g

�1

are

abelian subalgebras whih are g

0

-modules, in the following often denoted by V

�

or g

�

, and

[g

1

; g

�1

℄ � g

0

. Then the linear map D : g! g with DX = iX (X 2 g

i

) is a derivation, alled

the grading element, and if D is inner, D = ad(E), then the grading is alled an inner 3-grading,

and E is alled an Euler operator. The pair (V

+

; V

�

) together with the trilinear maps

T

�

: V

�

� V

�

� V

�

! V

�

; (x; y; z) 7! �[[x; y℄; z℄ (4:1)

is a (linear) Jordan pair over K , i.e. it satis�es the identities, where we use the notation

T

�

(X;Y )Z := T

�

(X;Y; Z):

T

�

(X;Y; Z) = T

�

(Z; Y;X);

T

�

(X;Y )T

�

(U; V;W ) = T

�

(T

�

(X;Y; U); V;W )�

T

�

(U; T

�

(Y;X; V );W ) + T

�

(U; V; T

�

(X;Y;W )):

(4:2)

Conversely, every linear Jordan pair arises in this way.

4.2. The projetive elementary group. Let (g; D) be a 3-graded Lie algebra over K . For

x 2 g

�1

, the operator e

adx

= 1 + adx +

1

2

(adx)

2

is a well de�ned automorphism of g . The

group generated by these operators,

G := G(D) := PE(g; D) := he

adx

:x 2 g

�1

i � Aut(g); (4:3)

is alled the projetive elementary group of (g; D). With respet to the �xed 3-grading, auto-

morphisms g of g will often be written in \matrix form"

g =

0

�

g

11

g

10

g

1;�1

g

01

g

00

g

0;�1

g

�1;1

g

�1;0

g

�1;�1

1

A

: (4:4)

In partiular, the generators of G are represented by the following matries (where x 2 g

1

,

y 2 g

�1

, h 2 H ):

e

adx

=

0

�

1 adx

1

2

ad(x)

2

0 1 adx

0 0 1

1

A

; e

ad y

=

0

�

1 0 0

ad y 1 0

1

2

ad(y)

2

ad y 1

1

A

h =

0

�

h

11

h

00

h

�1;�1

1

A

:

(4:5)

The subgroups U

�

:= U

�

(D) := e

adg

�

of G are abelian and generate G . We de�ne the

automorphism group of (g; D) to be Aut(g; D) = fg 2 Aut(g) : g ÆD = D Æ gg , and we further

de�ne subgroups H := H(D) and P

�

:= P

�

(D) of G via

H := G(D) \ Aut(g; D) and P

�

:= HU

�

= U

�

H: (4:6)

4.3. The projetive ompletion. From now on we assume that the grading derivation D is

inner, D = ad(E). We denote by

G := fad(F ) : F 2 g; ad(F )

3

= ad(F )g � der(g) (4:7)
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the spae of all inner 3-gradings. By de�nition, the group H is the stabilizer of D in G(D), and

hene the homogeneous spae M := G(D)=H is just the orbit of D under the ation of G(D)

on G . One shows that P

�

is preisely the stabilizer group of the ag

f

�

(ad(E)) : 0 � f

�

1

:= g

�1

� f

�

0

:= g

�1

� g

0

� g: (4:8)

Flags of this type are alled inner 3-�ltrations of g , and the spae of inner 3-�ltrations is denoted

by F . The ags o

�

:= f

�

(ad(E)) are (for �xed E ) alled the anonial base points in F , and

we denote by

X

�

:= G(D):o

�

�

=

G(D)=P

�

� F (4:9)

their G(D)-orbits. The maps

V

�

! X

�

; x 7! e

ad(x)

:o

�

(4:10)

are injetive, alled the projetive ompletion of V

�

. The reader may think of X

�

as a kind of

\manifold" modeled on the K -modules V

�

: we will say that

A := f(g(V

+

); g) : g 2 Gg; '

g

: g(V

+

)! V

+

; g:x 7! x (4:11)

is the natural atlas of X

+

. The hart domains g(V

+

) arry a natural struture of an aÆne spae

over K , depending only on the point y := g:o

�

2 X

�

. We then write V

y

:= g(V

+

) and denote

for x; z 2 V

y

by

�

r

(x; y; z) := rz (4:12)

the produt rz in the K -module V

y

with zero vetor x .

4.4. Transversality. The natural map from gradings to �ltrations G ! F � F and the

orresponding map M ! X

+

�X

�

, gH 7! (gP

�

; gP

+

) are injetive. Two �ltrations (f; e) are

obtained from an inner grading ad(E) if and only if they are transversal or omplementary in

the sense that

g = f

1

� e

0

; g = e

1

� f

0

([BN03, Th. 3.6℄); we write then e>f .

4.5. Denominators and nominators. For x 2 V

+

and g 2 Aut(g), we de�ne

d

g

(x) := (e

� ad(x)

g

�1

)

11

; 

g

(x) := (ge

ad(x)

)

�1;�1

; (4:13)

where the \matrix oeÆients" h

ij

are as in Equation (4.4). Then

d

+

g

:= d

g

: V

+

! End(V

+

); 

+

g

:= 

g

: V

+

! End(V

�

) (4:14)

are quadrati polynomial maps, alled the denominator and o-denominator of g (w.r.t. the

�xed inner grading ad(E)). In partiular, if g = e

ad(w)

, w 2 V

�

, x 2 V

+

,

d

g

(x) = B

+

(x;w) := id

V

+
+ad(x) ad(w) +

1

4

ad(x)

2

ad(w)

2

2 End(V

+

)



g

(x) = B

�

(w; x) := id

V

�
+ad(w) ad(x) +

1

4

ad(w)

2

ad(x)

2

2 End(V

�

)

(4:15)

are alled the Bergman operators. For x 2 V

+

and g 2 Aut(g), we de�ne the nominator of g

to be

n

g

(x) := pr

1

(e

� ad(x)

g

�1

E) = (e

� ad(x)

g

�1

)

10

:E: (4:16)

Then n

g

: V

+

! V

+

is a quadrati polynomial. In partiular, for g = e

ad(w)

, w 2 V

�

,

n

g

(x) = x�

1

2

ad(w)

2

x = x�Q

+

(x)w: (4:17)
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Theorem 4.6. Let g 2 Aut(g) and x 2 V

+

. Then g:x 2 V

+

if and only if d

g

(x) and 

g

(x)

are invertible, and then the value g:x 2 V

+

is given by

g:x = d

g

(x)

�1

n

g

(x):

In partiular, for g = e

ad(w)

, w 2 V

�

, we get from Theorem 4.6

g(x) = B

+

(x;w)

�1

(x�Q

+

(x)w): (4:18)

In axiomati Jordan theory, the last expression is denoted by x

w

and is alled the quasi-inverse

(f. [Lo75℄). A pair (x; y) 2 V

+

�V

�

is alled quasi-invertible if the Bergman operators B

+

(x; y)

and B

�

(y; x) are invertible.

4.7. Jordan frational quadrati maps. An End(V

+

)-valued Jordan matrix oeÆient (of

type (1; 1) , resp. of type (1; 0)) is a map of the type

q : V

�

� V

�

! End(V

+

); (x; y) 7! (e

ad(x)

ge

ad(y)

h)

11

; (4:19)

where �; � 2 f�g and g; h 2 G , resp.

p : V

�

� V

�

! V

+

; (x; y) 7! (e

ad(x)

ge

ad(y)

h)

10

E:

These maps are quadrati polynomials in x and in y , and nominators and denominators are

partial maps of p and q by �xing one of the arguments to be zero. A Jordan frational quadrati

map is a map of the form

f : V

�

� V

�

� U ! V

+

; (x; y) 7! q(x; y)

�1

p(x; y);

where q; p are Jordan matrix oeÆients of type (1,1), resp. (1,0), and U = f(x; y) 2 V

�

� V

�

:

q(x; y) 2 GL(V

+

)g .

Theorem 4.8. The ations

V

+

�X

+

! X

+

and V

�

�X

+

! X

+

are given, with respet to all harts from the atlas A (f. Eqn. (2.6)), by Jordan frational

quadrati maps. In other words, for all g; h 2 G , the maps

(v; y) 7! (h Æ exp(v) Æ g):y; (w; y) 7! (h Æ exp(w) Æ g):y

are Jordan frational quadrati, and the maps �

r

are, in all harts, given by Jordan frational

quadrati maps.

5. Smooth generalized projetive geometries

5.1 Continuous quasi inverse Jordan pairs. Let (V

+

; V

�

) be a topologial Jordan pair over

the topologial ring K (i.e. V

+

, V

�

are topologial K -modules suh that the trilinear struture

maps T

+

; T

�

are C

0

). If K = R or C and the underlying loally onvex spaes are Banah or

Fr�ehet, then we speak of Banah{, resp., Fr�ehet{Jordan pairs. For topologial Jordan pairs we

introdue the following two onditions:

(C1) A topologial Jordan pair is alled a ontinuous quasi-inverse Jordan pair or a (C1)-Jordan

pair if the set of quasi-invertible pairs,

(V

+

� V

�

)

�

= f(x; y) 2 V

+

� V

�

: B

+

(x; y); B

�

(y; x) invertible g;
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is open in V

+

� V

�

, and the \Bergman inverse map"

(V

+

� V

�

)

�

� V

+

� V

�

! V

+

� V

�

; (x; a; v; b) 7! (B

+

(x; a)

�1

v;B

�

(a; x)

�1

b)

is of lass C

0

.

(C2) We say that a topologial Jordan pair (V

+

; V

�

) is a (C2)-Jordan pair or a weak ontinuous

quasi-inverse Jordan pair if, for any a 2 V

�

, the set

U

a

:= fx 2 V

+

: B

+

(x; a); B

�

(a; x) invertibleg

is open in V

+

, and the \partial Bergman inverse map"

U

a

� V

+

! V

+

; (x; v) 7! B

+

(x; a)

�1

v

is of lass C

0

, and if the dual ondition, with V

+

and V

�

interhanged, also holds.

It is lear that ondition (C1) implies (C2). For instane, Banah{Jordan pairs are automatially

(C1) sine in this ase the operators B(x; a) belong to the Banah algebra L(V ) of ontinuous

linear operators on V , and inversion in the Banah algebra L(V ) is smooth (Banah algebras

are speial ases of ontinuous inverse algebras, f. 1.6).

Proposition 5.2. In a (C1)-Jordan pair, the quasi-inversion map

(V

+

� V

�

)

�

! V

+

� V

�

; (x; a) 7! (x

a

; a

x

) := (e

ad(a)

:x; e

ad(x)

:a) (5:1)

is smooth, and in a (C2)-Jordan pair, the partial maps

U

a

! V

+

; x 7! e

ad(a)

:x; U

x

! V

�

; a 7! e

ad(x)

:a

are smooth.

Proof. Assume (V

+

; V

�

) satis�es Condition (C1). Following the notation from Setion 1.8,

we let

f : V

+

� V

�

! End(V

+

)� End(V

�

); (x; a) 7! (B

+

(x; a); B

�

(a; x));

e

f : V

+

� V

�

� V

+

� V

�

! V

+

� V

�

; ((x; a); (x

0

; a

0

)) 7! f(x; a):(x

0

; a

0

);

jf : (V

+

� V

�

)

�

! GL(V

+

)�GL(V

�

); (x; a) 7! (B

+

(x; a)

�1

; B

�

(a; x)

�1

);

f

jf : (V

+

� V

�

)

�

� V

+

� V

�

! V

+

� V

�

; ((x; a); (x

0

; a

0

)) 7! (jf(x; a))(x

0

; a

0

)

= (B

+

(x; a)

�1

x

0

; B

�

(a; x)

�1

a

0

):

Then

e

f is a ontinuous polynomial, hene C

1

, and by (C1),

f

jf is C

0

. The generalized quotient

rule (Setion 1.8) implies then that

f

jf is C

1

. We reall from Theorem 4.6 that for x 2 U

a

we

have

e

ad(a)

:x = B

+

(x; a)

�1

(x�Q

+

(x)a) 2 V

+

:

We therefore see that the map

(x; a) 7! e

ad(a)

:x = B

+

(x; a)

�1

(x�Q

+

(x)a) =

f

jf(x; a; x�Q

+

(x)a; 0)

is C

1

, and that the quasi-inversionmap is C

1

. The seond laim is proved by similar arguments.
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Theorem 5.3. (Manifold struture on X

�

) Let (V

+

; V

�

) be a topologial (C2)-Jordan pair

over the topologial ring K and (X

+

; X

�

) its projetive ompletion.

(i) There exist on X

�

strutures of a smooth manifolds, modeled on the topologial K -modules

V

+

, resp., V

�

, uniquely de�ned by the ondition that the olletion of harts A

�

=

(g(V

�

); g 2 G) de�ned in Equation (4.11) beomes an atlas of X

�

.

(ii) The projetive group G ats by di�eomorphisms of X

+

and of X

�

. If g 2 G is suh that

d

g

(x) is invertible for some x 2 V

+

, then the set

V

(g)

:= fx 2 V

+

: d

g

(x) 2 GL(V

+

); 

g

(x) 2 GL(V

�

)g = fx 2 V

+

: g:x 2 V

+

g

is open in V

+

, and g:V

(g)

! V; x 7! d

g

(x)

�1

n

g

(x) is a smooth map whose di�erential at

the point x is given by

dg(x) = d

g

(x)

�1

:

If, in addition, (V

+

; V

�

) satis�es (C1), then we have with respet to the manifold struture

de�ned in Part (i):

(iii) The ations V

+

�X

+

! X

+

and V

�

�X

+

! X

+

are smooth.

(iv) The set M � (X

+

�X

�

) of transversal pairs is open in X

+

�X

�

.

(v) For r 2 K

�

, the multipliation map

�

r

: (X

+

�X

�

�X

+

)

>

:= f(x; y; z): (x; y); (z; x) 2Mg ! X

+

(f. Equation (4.12)) is de�ned on an open set and is smooth.

Proof. We prove (i) for X := X

+

. Uniqueness of the di�erentiable struture is lear sine the

sets g(V

+

), g 2 G , over X . In order to prove existene, we equip X with the �nal topology

with respet to the maps (the �nest topology for whih all these maps are ontinuous)

'

g

:V

+

! X; v 7! g:v;

for g 2 G , where '

e

is the inlusion V

+

� X . In other words, a subset O � X is open if and

only if all inverse images '

�1

g

(O) = g

�1

(O) \ V

+

, g 2 G , are open in V

+

.

Step 1. G ats by homeomorphisms on X . This is immediate from the de�nition of the

topology on X .

Step 2. Let us show that the indued topology on V

+

� X is the original topology

on V

+

. Clearly, the intersetion of an open set O of X with V

+

is open in V

+

beause

O \ V

+

= id

�1

(O) \ V

+

. Conversely, assume that U � V

+

is open in V

+

. We have to show

that, for all g 2 G , g

�1

(U) \ V

+

is open in V

+

. If this set is empty, we are done; if not, pik

x 2 g

�1

(U) \ V

+

. Then g Æ e

ad(x)

:0 = g:x 2 U , and replaing g by g Æ e

ad(x)

we may assume

that x = 0. Now, every g 2 G suh that g:0 2 V

+

admits a unique deomposition

g = e

ad(v)

he

ad(w)

; v 2 V

+

; h 2 H;w 2 V

�

;

(f. [BN03, Th. 1.12 (4)℄). Hene

g

�1

(U) \ V

+

=

�

e

� ad(w)

h

�1

e

� ad(v)

(U)

�

\ V

+

=

�

e

� ad(w)

h

�1

(U � v)

�

\ V

+

:

Now it suÆes to show that h

�1

(U � v) is open in V

+

beause e

ad(w)

, on its open domain of

de�nition, is smooth, hene in partiular ontinuous (Proposition 5.2). For this, we will use the

following lemma:

Lemma 5.4. Assume (V

+

; V

�

) is a topologial (C2)-Jordan pair and let B

+

� End

K

(V

+

) be

the assoiative subalgebra generated by all Bergman operators B

+

(x; y) , x 2 V

+

; y 2 V

�

. Then,

for all g 2 G and for all x 2 V

+

, the denominator d

g

(x) belongs to B

+

.
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Proof. We prove the lemma by indution on the \word length of g" whih is, by de�nition,

the smallest k 2 N suh that g has an expression of the form

g = e

ad(w

1

)

e

ad(v

1

)

� � � e

ad(w

k

)

e

ad(v

k

)

; v

i

2 V

+

; w

i

2 V

�

:

If k = 1, then, using the oyle relation d

fh

(x) = d

h

(x)d

f

(h:x) whih holds whenever h:x 2 V

+

(f. [BN03, Prop. 2.6℄), we see that

d

g

(x) = d

e

ad(v

1

)

(x)d

e

ad(w

1

)

(x+ v

1

) = B(x+ v

1

; w

1

)

belongs to B

+

whenever (x+ v

1

; w

1

) is quasi-invertible. The set of suh x is open in V

+

sine

our Jordan pair is (C2), and hene generates V

+

as a K -module. Therefore the denominator

d

g

: V

+

! End(V

+

), being quadrati polynomial by 4.5, oinides with the quadrati polynomial

x 7! B(x+ v

1

; w

1

), whene d

g

(x) 2 B

+

for all x 2 V

+

.

Now let g 2 G be arbitrary and assume that the laim holds for all elements of G of smaller

word length than g . We write g = eg Æ e

ad(w

k

)

e

ad(v

k

)

with eg of word length smaller than the one

of g . Then, again using the oyle relations, we have

d

g

(x) = d

ege

ad(w

k

)

(x+ v

k

) = B(x + v

k

; w

k

) Æ d

eg

(e

ad(w

k

)

(x+ v

k

))

whenever (x + v

k

; w

k

) is quasi-invertible. By indution, the seond fator d

eg

(e

ad(w

k

)

(x + v

k

))

belongs to B

+

whenever (x+ v

k

; w

k

) is quasi-invertible. Hene d

g

(x) belongs to B

+

whenever

(x + v

k

; w

k

) is quasi-invertible. As above, note that the set of suh x is open in V

+

. Thus the

denominator d

g

: V

+

! End(V

+

) is a quadrati polynomial map taking, on a non-empty open

set, values in the K -module B

+

; hene the whole image is in B

+

, and the lemma is proved.

Note that the proof of the lemma immediately arries over to any Jordan pair suh that

eah set U

a

, a 2 V

�

, generates V

+

as a K -module. However, for general Jordan pairs this

property does not always hold { take e.g. the ring K [x℄ , seen as a Jordan algebra over K , where

the unit group is far from generating K [x℄ as a K -module.

Now, returning to the proof of the theorem, note that elements of B

+

are ontinuous linear

operators on V

+

sine so are all B(x; y), x 2 V

+

, y 2 V

�

. Therefore, by Lemma 5.4, for all

h 2 H , h

11

= d

h

(0) is ontinuous on V

+

. But the ation of h on V

+

is given by h:x = h

11

x , and

hene h ats ontinuously on V

+

. This ahieves the proof of Step 2. (Note that, in partiular,

we have shown that V

+

is open in X .)

Step 3. The transition funtions are smooth. In fat, the transition funtions are

'

b

= 

�1

b : V

+

\ b

�1

(V

+

)! V

+

\ 

�1

b(V

+

)

for b;  2 G . We have already seen that they are homeomorphisms. If the intersetions are

non-empty, we may as above deompose g := 

�1

b as a produt g = e

ad(v)

he

ad(w)

; the element

e

ad(v)

with v 2 V ats as a translation, hene smoothly, the element e

ad(w)

with w 2 V

�

ats

smoothly aording to Proposition 5.2, and the element h 2 H is a ontinuous linear map by

Lemma 5.4 and hene also ats smoothly. Taken together, Step 2 and Step 3 show that X is a

smooth manifold.

(ii) The proof of Step 3 above shows that elements g 2 G at smoothly on X . It only

remains to show that the di�erential of g is related to the denominator via dg(x) = d

g

(x)

�1

.

As above, we �rst redue to the ase g 2 P

�

and x = o . Then we deompose g = he

ad(a)

,

a 2 V

�

, h 2 H . By the hain rule and the oyle rule for the denominators [BN03, Th. 2.10℄,

it now suÆes to prove the laim for h and exp(a) separately. Sine h ats linearly on V

+

and

d

h

(o) = h

�1

, we are done with the �rst ase. As to exp(a), we have d

exp(a)

(o) = B(o; a) = id

V

+
.

Hene we have to show that d exp(a)(o) = id. This follows from

e

ad(a)

:tv � e

ad(a)

:o = B(tv; a)

�1

(tv �Q(tv)a)� 0 = t (B(tv; a)

�1

(v � tQ(v)a));

where the last term, divided by t , is a C

0

-map of t and v taking value v for t = 0.
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(iii) Reall that, aording to [BN03, Th. 3.7℄, both ations are desribed in harts by

Jordan frational quadrati maps as de�ned in Setion 4. Therefore it suÆes to show that

Jordan frational quadrati maps are smooth: �rst of all, if the elements g; h 2 G appearing

in the de�nition from 4.7 are trivial, then our laim amounts to saying that the quasi-inversion

map is smooth, whih is true in a (C1)-Jordan pair, aording to Proposition 5.2. If g and h are

not trivial, then they an be written as a omposition of translations and quasi inverses whih,

aording to step (i), at as di�eomorphisms. Hene all Jordan frational quadrati maps are

smooth.

(iv) M \ (V

+

� V

�

) = (V

+

� V

�

)

�

is open by Property (C1).

(v) The argument proving this laim is the same as for part (iii), using that also �

r

is given

by Jordan frational quadrati maps [BN03, Th. 4.3℄.

Theorem 5.5. Assume (V

+

; V

�

) is a (C2)-Jordan pair. Then there are anonial G-

equivariant bijetions between the tangent bundle TX

+

of X

+

as a smooth manifold, the tangent

bundle of X

+

as de�ned in [BN03, Th. 2.1℄ and the tangent bundle as de�ned in [Be02℄ via salar

extension by dual numbers.

Proof. For all three models of the tangent bundle, the tangent spae T

o

X

+

, as a K -module, is

isomorphi to V

+

. Therefore in all models we get a homogeneous bundle of the kind G�

P

�
V

+

,

and we only have to show that the ations of the stabilizer group P

�

on V

+

oinide in

these three pitures. In the ontext of smooth manifolds, the group P

�

ats on V

+

via the

linear isotropy representation �(p) = T

o

(p). In the hart V

+

, using Theorem 5.3(ii), we get

T

o

p = dp(0) = d

p

(0)

�1

= p

11

. This is the representation of P

�

used in the model for the tangent

bundle in [BN03℄, and hene these two models oinide. Finally, for the model used in [Be02℄,

as shown in [Be02, (7.3)℄, the ation of U

�

on V

+

is trivial, and the ation of H ommutes

with "

o;o

0

, so H ats on V

+

as group of automorphisms of the Jordan pair (V

+

; V

�

). This

haraterizes the representation of P

�

used in the other two models, and hene all three models

are isomorphi as G-bundles.

6. Smooth polar geometries and assoiated symmetri spaes

6.1. Continuous inverse Jordan triple systems. Assume (g; D) is a 3-graded Lie algebra

with an involution � (automorphism of order 2 reversing the grading). Then V := g

1

together

with the trilinear map T : V � V � V ! V de�ned by

T (x; y; z) := [[x; �(y)℄; z℄ (6:1)

is a Jordan triple system (Jts) whih, by de�nition, is a K -module V with a trilinear map

T : V �V �V ! V satisfying the identities (4.2) with supersripts omitted. The map V

+

! V

�

indued by � is an involution of the \underlying Jordan pair" (V

+

; V

�

)

�

=

(V; V ), and in this

way Jordan triple systems are equivalent to Jordan pairs with involution (f. [Lo75℄). (Note that

T de�nes a Jts if and only if �T de�nes a Jts; thus the sign in (6.1) is a matter of onvention.

Here we follow, as in [Be00℄, the onvention that, in the real �nite-dimensional ase, negative

triple systems shall orrespond to ompat symmetri spaes, see below.) A topologial Jordan

triple system is alled (C1) or a ontinuous quasi inverse Jts if the underlying Jordan pair (V; V )

is (C1) and the involution is ontinuous. (For Jordan triple systems, Condition (C2) is not very

interesting.) Equivalently, (C1) means that the set (V �V )

�

is open in V �V and the Bergman

inverse map (V � V )

�

� V ! V is ontinuous.

6.2. Polarities. Every involution � of a given inner 3-graded Lie algebra (g; D) indues a

bijetion

p : X

+

! X

�

; gP

�

! �(g)P

+

:

We say that p is a polarity beause it is an anti-automorphism of the generalized projetive

geometry (X

+

; X

�

) (in the sense of [Be02, Ch. 3℄) and the orresponding spae of non-isotropi
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points

M

(p)

= fx 2 X

+

: (x; p(x)) 2Mg (6:2)

ontains the base point o

+

and hene is non-empty. The multipliation map

m :M

(p)

�M

(p)

!M

(p)

; (x; y) 7! �

�1

(x; p(x); y) (6:3)

is well-de�ned and satis�es the algebrai identities (M1){(M3) of a symmetri spae (f. [Be02,

4.1℄, [BN03, 4.2℄). Note that, if we identify X := X

+

with X

�

via the polarity p , then by

de�nition of M

(p)

,

M

(p)

! (X �X)

>

\ diag(X �X); x 7! (x; x) (6:4)

is a bijetion, and hene in the hart V = V

+

� X

+

= X ,

M

(p)

\ V = fx 2 V : B(x; x) invertible g: (6:5)

This set is open in V if (V; T ) is (C1).

Theorem 6.3. Assume that (V; T ) is a (C1)-Jordan triple system.

(i) The assoiated set M

(p)

of non-isotropi points is an open submanifold of X ontaining

the base point o , and together with the multipliation map de�ned by Equation (6.3) it is a

symmetri spae. Moreover, for all x 2M

(p)

, x is an isolated �xed point of the symmetry

�

x

= m(x; �) .

(ii) The Lie triple system assoiated to (M

(p)

; o) is the vetor spae V = V

+

together with the

braket given by

[X;Y; Z℄ = T (X;Y; Z)� T (Y;X;Z):

Proof. (i) Aording to Theorem 5.3 (iv), M is open in X

+

� X

�

. Sine p is C

0

,

M

(p)

= fx 2 X

+

: (x; p(x)) 2Mg is open in X

+

.

As mentioned above, the identities (M1), (M2), (M3) hold already in the purely algebrai

ontext of any generalized projetive geometry (topologial or not) with polarity. Let us prove

(M4): the involution �

x

is given by the element (�1)

x;p(x)

of the group G and hene ats as a

di�eomorphism. W.l.o.g. we may assume that x = o ; then in the hart V this di�eomorphism

is given by � id

V

, and hene (M4) holds. Moreover, 0 is the only �xed point of �

o

= � id

V

in

the open neighborhood M \ V of o in M .

It only remains to show that � is smooth. This follows from the fat that �(x; y) =

�

�1

(x; x; y) (when identifying X

+

with X

�

), and �

�1

is smooth by Theorem 5.3 (v).

(ii) Theorem 5.5 allows us to use the realization of TX

�

from [BN03, 2.4℄; in partiular,

we see that in the hart V = V

+

, vetor �elds Y 2 g are realized by quadrati polynomial maps

e

Y

+

: V

+

! V

+

. We identify v 2 g

1

with the onstant vetor �eld on V

+

taking value v . Then

�(v) is a homogeneous quadrati vetor �eld on V

+

, and hene ev = v+�(v) is the unique vetor

�eld in g

�

anti-�xed by (� id)

�

suh that ev(o) = v (here o = o

+

). Hene the Lie triple produt

is given by

[u; v; w℄ = [[eu; ev℄; ew℄

o

= [[u+ �(u); v + �(v)℄; w + �(w)℄

o

= [[u; �(v)℄; w℄

o

+ [[�(u); v℄; w℄

o

= T (u; v; w)� T (v; u; w):

6.4. Remark on the orbit struture of M

(p)

. The spae M = (X

+

� X

�

)

>

is always a

homogeneous symmetri spae M

�

=

G=H with G and H as in 4.2, but M

(p)

, whih an be

seen as the intersetion of M with the diagonal in X �X (f. Equation (6.4)), is in general not

homogeneous under its transvetion group. A typial example for this situation is given by the

projetive spaes over K = Q or K = Q

p

: here G=H

�

=

GL

n+1

(K )=GL

n

(K )�GL

1

(K ), but KP

n

is not homogeneous under O(n+ 1;K ).

6.5. Remark on the exponential mapping. Assume V is a Banah Jts over K 2 fR; C g .

Then V is (C1), and the symmetri spae M

(p)

is a Banah symmetri spae and hene is loally
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exponential with Exp = Exp

o

. The expliit formula for Exp is obtained as in [Be00, Ch. X.4℄:

for all x; y 2 V , the series

osh(x)y :=

1

X

k=0

Q(x)

k

(2k)!

y; sinh(x) :=

1

X

k=0

Q(x)

k

x

(2k + 1)!

onverge absolutely and de�ne analyti mappings osh : V ! End(V ), sinh : V ! V . The

domain D := osh

�1

(GL(V )) is open in V and non-empty sine osh(0) = id

V

. Then, for

x 2 V , the exponential image exp(x) belongs to M \ V if and only if x 2 D , and we have

exp(x) = tanh(x) := osh(x)

�1

sinh(x)

(f. [Be00, Th. X.4.1℄; the proof arries over to the Banah ase without any hanges). As for

the ase of prehomogeneous symmetri spaes (Setion 3.5), it would be very interesting to have

analogous results in the p-adi Banah ase (where the series osh and sinh do no longer onverge

everywhere).

6.6. Remark on lassi�ation. It goes without saying that a lassi�ation of ontinuous

quasi inverse Jordan pairs or -triple systems is out of reah. In the �nite-dimensional omplex

or real ase, simple objets an be lassi�ed (work of O. Loos, E. Neher and others; f. [Be00,

Ch. IV and XII℄ for preise referenes). On �nds that in fat essentially all lassial and about

half of the exeptional real and omplex simple symmetri spaes are obtained in the form M

(p)

;

this list is far too long to be given here (see [Be00, Ch. XII℄). For other base �elds, so far

very little is known. In in�nite dimensions over K 2 fC ;Rg , various lassi�ations of ertain

simple objets are known (f. [MC03℄, [Up85℄, [Ka83℄ (simple JH

�

-triples) , [dlH72℄ (irreduible

Riemannian symmetri spaes)). { In the following two hapters we will speialize our theory to

two important types of Jordan algebras, namely to assoiative algebras and to Jordan algebras

of hermitian elements.

7. The projetive line over an assoiative algebra

7.1. Assoiative algebras as Jordan pairs. In this hapter, A is an assoiative algebra with

unit 1 over a ommutative ring K having

1

2

2 K . Then A is a Jordan algebra with Jordan

produt a � b =

ab+ba

2

and a Jordan triple system with triple produt T (x; y; z) = xyz+ zyx . It

follows that the Bergman operator is given by

B(x; y)z = (1� xy)z(1� yx) = l(1� xy)r(1� yx)z (7:1)

where l(a) and r(a) are left-, resp. right multipliation by a in A . Thus (x; y) is quasi-invertible

if and only if 1� xy and 1� yx are invertible, and then B(x; y)

�1

z = (1� xy)

�1

z(1� yx)

�1

.

If K is a topologial ring and A is a ontinuous inverse algebra (.i.a.), then the set of quasi-

invertible pairs is open in A � A , and the Bergman-inverse map is ontinuous. Therefore A is

then a (C1)-Jordan triple system and hene (A;A) is a (C1)-Jordan pair.

7.2. The three-graded piture. The K -Lie algebra g := gl

2

(A) of 2 � 2-matries with

oeÆients in A has a natural 3-grading

g = g

1

� g

0

� g

�1

=

�

0 A

0 0

�

�

�

A 0

0 A

�

�

�

0 0

A 0

�

whih is given by the Euler operator

E :=

1

2

I

1;1

:=

1

2

�

1 0

0 �1

�

: (7:2)
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This 3-grading has a natural involution given by

�(X) = FXF; F :=

�

0 1

1 0

�

; �

�

a b

 d

�

=

�

d 

b a

�

: (7:3)

From the ommutator relation

��

�

0 x

0 0

�

;

�

0 0

y 0

�

�

;

�

0 z

0 0

�

�

=

�

0 xyz + zyx

0 0

�

it follows that the Jordan triple system assoiated to these data is A with T (x; y; z) = xyz+zyx .

Next we are going to desribe another model of the geometry assoiated to this Jordan triple

system.

7.3. The projetive line. If A is an assoiative K -algebra, we onsider W := A � A as a

right A-module; elements of W are written as olumn vetors. The projetive line over A is, by

de�nition, the spae

P := AP := fE � A�AjE

�

=

A; 9F

�

=

A :W = E � Fg

of A-submodules E that are isomorphi to A and admit a omplement whih is also isomorphi

to A (f. [BN03, Setion 8.7℄, [BlHa01℄ or [H95℄). Elements of P an be written in the form

E =

h

�

x

y

�

i

:=

n

�

xa

ya

�

j a 2 A

o

where

�

x

y

�

is a base vetor of E over A . For (E;F ) 2

P

�

P

we write E>F if W = E�F , and

we let (P� P)

>

= f(E;F ) 2 P� PjE>Fg . Then the map

P := fp 2 End

A

(W )j p

2

= p; im(p)

�

=

A; ker(p)

�

=

Ag ! (P� P)

>

; p 7! (ker(p); im(p))

is a bijetion. As \anonial" base point in (P � P)

>

we hoose (o

+

; o

�

) = (A � 0; 0 � A) =

([

�

1

0

�

℄; [

�

0

1

�

℄) whih orresponds to the projetion p =

�

1

0

0

0

�

. The group GL

2

(A) ats transitively

on the projetive line P and on the set (P� P)

>

. Another base point is given by [

�

1

1

�

℄; [

�

1

�1

�

℄ .

The matrix transforming the anonial base point into the new one is the Cayley transform

C =

�

1 1

1 �1

�

: (7:4)

7.4. AÆne harts of the projetive line. Every pair (E;F ) 2 (P�P)

>

de�nes a linearization

of P : the set F

>

of elements that are transversal to F is an aÆne spae over K (not over A

in general), and taking E as origin, F

>

is turned into a K -module. This module is (non-

anonially) isomorphi to A . For the anonial base point (o

+

; o

�

) we �x suh an imbedding

of A into P :

� : A! P; z 7! �

z

:=

h

�

z

1

�

i

:

Note that �

z

is the graph of the left translation l

z

: A! A , a 7! za . In this piture, the ation

of GL

2

(A) is desribed by usual frational linear transformations,

�

a b

 d

�

�

z

= �

(az+b)(z+d)

�1
(7:5)

if z + d is invertible. In partiular, the matrix F from Equation (7.3) represents inversion

in A , and I

1;1

(Equation (7.2)) represents multipliation by the salar �1. The imbedding

� : A! P does not only depend on the base point (o

+

; o

�

) but also on the �xed normalization
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of its representatives; however, the sets �(A) and �(A

�

) depend only on (o

+

; o

�

). For �(A

�

)

a more intrinsi desription is given by

�(A

�

) = �(A) \ fE 2 PjE>I

1;1

(E)g; (7:6)

and the projetive transformation indued by I

1;1

indeed depends only on (o

+

; o

�

) (in fat,

we have seen above that I

1;1

is indued by multipliation by the salar �1 in the K -module

de�ned by the pair (o

+

; o

�

) and hene its e�et on P depends only on (o

+

; o

�

)). Moreover, the

symmetri spae struture on �(A

�

) also depends only on the pair (o

+

; o

�

), whereas the group

struture annot be de�ned in terms of (o

+

; o

�

) alone.

7.5. Imbedding of the projetive line into the three-graded model. For every projetion

p : W ! W , ad(p) : g ! g is an inner 3-grading, and for every E = im(p) 2 P , we get the

orresponding ag (f

1

� f

0

� g) 2 F whih only depends on E . This de�nes a ommutative

diagram of maps

P

�

=

(P� P)

>

� P� P

# #

G

�

=

(F �F)

>

� F � F

(7:7)

whih are all GL

2

(A)-equivariant, and the vertial arrows are injetive ([BN03, Theorem 8.4℄).

In partiular, the natural map P ! F is an injetion, and it is a bijetion when restrited to

the \(geometri) onneted omponents of the base point" whih are the orbits of the respetive

base points under the elementary projetive group G = PE

2

(A), where

E

2

(A) = hP

+

; P

�

i � GL

2

(A);

P

+

=

n

�

1 x

0 1

�

jx 2 A

o

; P

�

=

n

�

1 0

y 1

�

j y 2 A

o

:

(7:8)

Note that the matrix

J :=

�

0 1

�1 0

�

=

�

1 1

0 1

��

1 0

�1 1

��

1 1

0 1

�

(7:9)

belongs to E

2

(A) and satis�es J:o

+

= o

�

. It follows that in both models we have X

+

= X

�

as

sets. Moreover, sine all base points in (P� P)

>

are onjugate under GL

2

(A), the same results

hold also for all other geometri onneted omponents of P .

7.6. Manifold strutures. Now assume that K is a topologial ring and A is a .i.a. over K .

As we have seen in Setion 7.1, A is then a (C1)-Jordan triple system, and hene the projetive

ompletion X

+

�

=

G=P

�

of A arries a natural manifold struture satisfying all properties from

Theorem 5.3. Using the imbedding from Setion 7.5, by transport of struture, the omponent

G:o

�

� P an be equipped with the same struture, and sine P is a disjoint union of geometri

onneted omponents whih are onjugate under GL

2

(A), we get a natural manifold struture

on all of P . This manifold struture agrees with the one that is obtained by taking �(A) � P

as \base hart" and then onstruting diretly, via the ation of GL

2

(A), an atlas on P in the

same way as we did for X

+

in Chapter 5. This is an immediate onsequene of the GL

2

(A)-

equivariane of the diagram (7.7).

7.7. Symmetri spae strutures. Assoiated to the given base point (o

+

; o

�

) 2 P�P , there

are three natural involutions of G , given by onjugation with the matries I

1;1

; F; J , respetively.

The �rst two are related to eah other via the Cayley transform C and give rise to the symmeri

spae A

�

�

=

�(A

�

) � P . The third one gives rise the \-dual symmetri spae of A

�

" whih is

isomorphi to A[i℄

�

=A

�

, where A[i℄ := A


K

(K [x℄=(x

2

+1)) is the \omplexi�ation" of A (f.

[Be00℄).
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8. The hermitian projetive line

8.1. The spae of hermitian elements. Assume A is as in Setion 7.1 and � : A ! A is

an involution (K -linear antiautomorphism of order 2). We de�ne the spaes of hermitian, resp.

anti-hermitian elements by

Herm(A; �) := fa 2 Aj a

�

= ag; Aherm(A; �) := fa 2 Aj a

�

= �ag:

Then Herm(A; �) is a Jordan-subalgebra of A , and Aherm(A; �) is a Jordan-sub triple system of

A . Reall that 2 is assumed to be invertible in K , so A = Herm(A)�Aherm(A). (If K = R and

A is an algebra over C suh that � is C -anti-linear, then iAherm(A; �) = Herm(A; �); more

generally, this holds whenever there is an element j 2 Z(A) suh that j

2

= �1 and j

�

= �j .)

We are going to desribe Linear Algebra models for the geometries assoiated to the Jordan pairs

(Herm(A; �);Herm(A; �)) and (Aherm(A; �);Aherm(A; �)). They will be losely related to the

�-unitary group

U(A; �) := fa 2 A

�

j a

�1

= a

�

g:

8.2. The �-sympleti and the �-pseudo unitary group. If � is an involution of A , then

by a diret alulation one heks that the K -linear map

�

1

:M

2

(A)!M

2

(A);

�

a b

 d

�

7!

�

d

�

�b

�

�

�

a

�

�

(8:1)

is an involutive anti-automorphism of the assoiative algebra M

2

(A). If A is ommutative and

� = id, then �

1

(A) is the matrix

e

A adjoint to A via the relation A

e

A =

e

AA = det(A)1 , and

then the map �

1

appears also as \sympleti involution" in the ontext of the Cayley{Dikson

proess, f. [MC03, II.2.9℄. We an de�ne three other involutions of M

2

(A) by

�

2

(X) := I

1;1

�

1

(X)I

1;1

; �

3

(X) := F�

1

(X)F; �

4

(X) := J�

1

(X)J

�1

: (8:2)

With X =

�

a



b

d

�

, the expliit formulas are:

�

2

(X) =

�

d

�

b

�



�

a

�

�

; �

3

(X) =

�

a

�

�

�

�b

�

d

�

�

; �

4

(X) =

�

a

�



�

b

�

d

�

�

: (8:3)

If � = �

j

, j = 1; 2; 3; 4, is any of these involutions, we obtain an involutive automorphism of

GL

2

(A) by

e

�

j

: GL

2

(A)! GL

2

(A); g 7! �

j

(g)

�1

and an involutive Lie algebra automorphism

_

�

j

: gl

2

(A)! gl

2

(A); X 7! ��

j

(X):

We de�ne the �-sympleti and the �-pseudo unitary group via

Sp(A; �) := U(A�A;�

1

) = fg 2 GL

2

(A) : �

1

(g) = g

�1

g;

U(A;A; �) := U(A�A;�

2

) = fg 2 GL

2

(A) : �

2

(g) = g

�1

g;

and the orresponding Lie algebras

sp(A; �) := fX 2 gl

2

(A) : �

1

(X) = �Xg;

u(A;A; �) := fX 2 gl

2

(A) : �

2

(X) = �Xg:
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Sine ��

j

(I

1;1

) = I

1;1

for j = 1; 2, these two Lie algebras are stable under the grading derivation

ad(I

1;1

) of gl

2

(A) and hene are themselves 3-graded Lie algebras whih, moreover, are stable

under onjugation by the matrix F . It follows that the Jordan triple system orresponding

to these involutive 3-graded Lie algebras is given by restriting the one from gl

2

(A) to ��

j

-

invariants. Now,

��

1

�

0 x

0 0

�

=

�

0 x

�

0 0

�

; ��

2

�

0 x

0 0

�

=

�

0 �x

�

0 0

�

;

and hene the Jts assoiated to sp(A; �) is Herm(A; �) and the Jts assoiated to u(A;A; �) is

Aherm(A; �).

8.3. The (anti-) hermitian projetive line. Next we are going to desribe the geometries

assoiated to Herm(A; �) and to Aherm(A; �). We have to extend the involutions � and �� of

A to globally de�ned maps P ! P . The idea is simply to send an element im(p) 2 P , where

p 2 P , to the element ker(�

j

(p)), j = 1; 2. This is well-de�ned:

Lemma 8.4. Let V be a right A-module and R be the set of all omplemented right A-

submodules of V and assume ' : End

A

(V )! End

A

(V ) is a K -linear anti-automorphism. Then

the map

e' : R ! R; im(p) 7! ker('(p))

(where p is a projetion onto im(p)) is a well-de�ned bijetion satisfying

e'(g:E) = '(g)

�1

:e'(E); g 2 GL

A

(V ) = End

A

(V )

�

:

Moreover, if V = A�A and ' = �

j

, j = 1; 2; 3 , then P is stable under e' .

Proof. First of all, if p

2

= p , then also ('(p))

2

= '(p), hene '(p) is a projetion. If p and

q are projetions suh that im(p) = im(q), then there exists g 2 GL

A

(V ) suh that q = p Æ g .

Hene ker('(q)) = ker('(g) Æ '(p)) = ker('(p)) sine '(g) is bijetive. Thus e' is well-de�ned.

Clearly, e' is bijetive with inverse

g

'

�1

.

The transformation property under g follows from

'(g)

�1

: ker('(p)) = ker('(g)

�1

'(p)'(g)) = ker('(gpg

�1

)) = e'(im(gpg

�1

)) = e'(g: im(p)):

Now let ' = �

j

, j = 1; 2, and im(p) 2 P . Then there exists g 2 GL

2

(A) with gpg

�1

=

�

1

0

0

0

�

, whene '(p) = '(g)'

�

1

0

0

0

�

'(g)

�1

= '(g)

�

0

0

0

1

�

'(g)

�1

, whih has kernel '(g)(A�0)

�

=

A .

For j = 3, it suÆes to note that the matries F and I

1;1

are onjugate to eah other (f. Setion

8.5), and hene also

e

�

2

and

e

�

3

are onjugate to eah other.

The Lemma shows that

e

�

j

for j = 1; 2 is indued by the automorphism

e

�

j

: E

2

(A) ! E

2

(A)

(whih is well-de�ned sine, by (8.1), the unipotent groups P

�

de�ned in (7.8) are stable under

e

�

j

, j = 1; 2), i.e.

e

�

j

is given by

e

�

j

: P! P; g:o

+

!

e

�

j

(g):o

+

: (8:4)

We say that an element E 2 P is

{ hermitian if

e

�

1

(E) = E ,

{ anti-hermitian if

e

�

2

(E) = E ,

{ unitary if

e

�

3

(E) = E .

Assume E = �

z

= [

�

z

1

�

℄ = im(p) with p =

�

0

0

z

1

�

. Then �

1

(p) =

�

1

0

�z

�

0

�

has kernel [

�

z

�

1

�

℄ .

Thus the restrition of

e

�

1

to A = �(A) is the involution � , and E is hermitian if and only if z is

hermitian. Similarly, we see that E is anti-hermitian if and only if z is anti-hermitian. Finally,

E is unitary if and only if [

�

z

1

�

℄ = [

�

1

z

�

�

℄ . First of all, this implies that z must be invertible in
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A , and then the ondition [

�

z

1

�

℄ = [

�

(z

�

)

�1

1

�

℄ is equivalent to z

�1

= z

�

, i.e. to the unitarity of

z .

The sets P

h

, resp. P

ah

of hermitian, resp., (anti-)hermitian elements in P is alled the

(anti-)hermitian projetive line; the set P

u

of unitary elements is alled the unitary projetive

line. The projetive ompletion of Herm(A; �), resp. of Aherm(A; �) are the imbeddings

� : Herm(A; �)! P

h

; � : Aherm(A; �)! P

ah

:

This geometri piture an be imbedded into the three-graded piture simply by restriting the

imbedding (7.7) to

e

�

j

-invariants.

8.5. The Cayley transform. The matries F and I

1;1

are onjugate in GL

2

(A) via C :

F = C

�1

I

1;1

C . It follows that C

�1

(P

ah

) = P

u

, i.e. the anti-hermitian and the unitary projetive

line are isomorphi. In partiular, the unitary group U(A; �) is injeted into P

ah

via

U(A; �)! P

ah

; z 7! C(�

z

)

If z � e is invertible, then the last term equals �

(z+e)(z�e)

�1
and it belongs to �

Aherm(A)

.

8.6. Manifold strutures and symmetri spaes. If A is a .i.a. over a topologial ring

K and � is ontinuous, then Herm(A; �) and Aherm(A; �) are (C1)-Jordan triple systems. The

orresponding manifold struture on the geometri models is again simply obtained by seeing

everything as submanifolds �xed under

e

�

j

in the models orresponding to A . The natural

polarities given by the matrix I

1;1

, resp. by F , de�ne symmetri spaes: as explained in the

preeding setion, the unitary group arises as the spae of non-isotropi points in the anti-

hermitian projetive line P

ah

; in partiular, U(A; �) is a symmetri spae. Moreover, with

respet to the underlying manifold struture, also the group multipliation in U(A; �) is smooth

(the alulation is exatly the same as the one for the orthogonal group O

n

(R) in the Cayley

hart), and hene U(A; �) is a Lie group. The natural symmetri spae realized in the hermitian

projetive line is the spae of invertible elements in the Jordan algebra Herm(A; �) (already

enountered in Chapter 3), resp. its -dual symmetri spae. Sine the set-up is almost the same

as the one in [Be96℄ (where the speial ase A = End(V ), � = adjoint, was onsidered; f.

Example 8.7), we an refer to [Be96℄ and to [Be00℄ for further details of the alulations.

In general, there are many other polarities whih are not isomorphi to the natural ones,

and hene there are other symmetri spaes that an be realized inside P

h

or P

ah

. In [Be00,

XI.5℄ they have been alled onformally equivalent, and for the lassial series in �nite dimension

over K = R a lassi�ation has been given. Roughly, one onsiders the set of all � 2 Aut(g)

suh that F

�

Æ � is a grading-reversing involution (where F

�

is onjugation by F ); it is alled

the struture variety of Herm(A; �) , resp. of Aherm(A; �) (f. [Be00, Setion IV.2℄). It ontains,

for instane, all \modi�ations" or \isotopes" given by

� =

�

0 H

H

�1

0

�

; (8:5)

where H is an invertible element in Herm(A; �). Then one has to lassify G-orbits in the

struture variety. In �nite dimension over the reals, topologial onneted omponents of the

struture variety are homogeneous under G , and thus the task is relatively easy. In in�nite

dimension, or over other base �elds or -rings, it seems possible that ontinuous families of non-

isomorphi modi�ations may exist. This is an interesting topi for future researh.

8.7. Example: algebras of endomorphisms. Let V be a K -module equipped with a bilinear

symmetri or skew-symmetri form b : V � V ! K whih is non-degenerate in the sense that

the map �:V ! V

�

:= Hom(V;K ); v 7! b(v; �) is bijetive. Let A = End(V ) and de�ne for

X 2 End(V ) the adjoint X

�

2 End(V ) by X

�

:v := �

�1

(�(v) ÆX). Of ourse, in a topologial

ontext one has to add further assumptions in order to ensure that A is a .i.a. and that the
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adjoint map is ontinuous; e.g., one may assume that K is a topologial �eld and V �nite-

dimensional over K , or that we are in a Hilbert-spae setting. Then �

1

(X) is the adjoint of

X 2 End(V � V ) w.r.t. the bilinear form on V � V given by

�

0 �b

b 0

�

: (8:6)

In partiular, if b is a salar produt over K = R , then sp(A; �) really is the sympleti Lie algebra

sp(V � V;R) . This is essentially the ontext onsidered in [Be96℄ (see also [Be00, Ch. VIII.4℄).

As is seen by elementary Linear Algebra (f. lo. it.),

e

�

1

: P! P is then the \orthoomplement

map" with respet to (8.6) (where P is the Grassmannian of subspaes of type V in V �V having

omplement of type V ), and hene the hermitian projetive line orresponds to the \Lagrangian

variety with respet to the sympleti form", and the anti-hermitian projetive line orresponds

to \Lagrangians with respet to the quadrati neutral form" into whih the orthogonal group

O(V; b) an be imbedded.

9. A quantum mehanial interpretation

As explained in the introdution, there is a strong strutural analogy between the mathe-

matis onsidered in this work and the axiomatis of quantum mehanis. In the following, we

give some examples for this strutural analogy by proposing a \ditionary" between the language

of generalized projetive geometries and the language of quantum mehanis. This ditionary is

by no means omplete { we do not attak topis suh as spetral theory of our observables or

the use of unbounded operators. However, it seems that the theory of Jordan pairs and -triple

systems is rih and exible enough to inorporate suh aspets; we intend to investigate these

questions in future work. Our referenes for lassial, linear Quantum Theory are [Th81℄ and

[Va85℄. Aording to [Th81, p. 33℄, the \Basi Assumption of Quantum Theory" is formulated

as follows: \The observables and states of a system are desribed by hermitian elements a of

a C

�

-algebra A and by states on A ." Let us see what this assumption implies if one tries

to interprete it on the level of the projetive ompletion of the algebra of hermitian elements.

Consequently, we will start with the observables and not with the states.

9.1. Observables. The spae of observables is the spae X

+

of a generalized projetive

geometry (X

+

; X

�

). The spae X

�

may be alled the \spae of non-observables" or the \spae

of observers". As standard model we may take the hermitian projetive line X

+

= P

h

over an

(in�nite-dimensional) assoiative involutive .i.a (A; �). In this ase, X

+

and X

�

are anonially

isomorphi (the isomorphism is a anonial null-system in the sense of [Be03a℄). For a general

approah, it seems not neessary to assume that K = C .

9.2. States and pure states. A state is an intrinsi subspae of X

+

, i.e. a subset Y � X

+

whih appears linearly (i.e. as an aÆne subspae) with respet to any aÆnization y 2 X

�

. Suh

subspaes orrespond to inner ideals of V

+

in Jordan theory (f. [Be02, 2.7.(4)℄, [BL04℄). A

pure state is an intrinsi line, i.e. a proper intrinsi subspae whih is minimal for inlusion. The

superposition of two pure states is the intrinsi subspae generated by the two lines. Under some

additional assumptions, pure states orrespond to division idempotents of the Jordan pair, and

spaes of ertain states form again a generalized projetive geometry (f. [Ka01℄ for results that

point into this diretion). Pure states orrespond to rank-one elements (f. [Lo94℄ for the notion

of \rank"), and they are losely related to hains in the sense of Chain Geometry (f. [H95℄).

9.3. The Hamilton operator. A Hamilton operator is a polarity p : X

+

! X

�

(f. Setion

6.1). A Hamilton operator is alled free if the polarity p is an inner polarity in the sense of

[Be03a℄. In the standard model, there exists a free Hamilton operator p

0

, given by the matrix

F (alled the \natural polarity" in Setion 8.6). Then a general Hamilton operator an be seen

as a deformation or modi�ation of the free one as explained in Setion 8.6; in partiular, via

Equation (8.5) every invertible hermitian element H leads to new Hamilton operator that needs
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not be onjugate to p

0

. Note that the anonial identi�ation X

+

= X

�

(= P

h

) in the standard

model is not a Hamilton operator beause it is a null-system.

9.4. The time dependent Shr�odinger equation. The time dependent Shr�odinger equation

is a dynamial di�erential equation anonially assoiated to the Hamilton operator p . Of

ourse, here one thinks �rst of the geodesi di�erential equation in the symmetri spae M :=

M

(p)

� X

+

assoiated to the Hamilton operator p . (Every symmetri spae arries a anonial

torsionfree onnetion r (f. [Be03b℄), and a geodesi is simply a smooth map � : K � I !M

whih is ompatible with onnetions. In a hart, the geodesi equation is as usual �

00

(t) =

C

�(t)

(�

0

(t); �

0

(t)) where C is the Christo�el tensor of r in the hart.) However, as pointed

out in [AS97℄, the Shr�odinger evolution should rather be seen as a Hamiltonian ow and not

as a solution of a seond order di�erential equation. But it is possible to reonile these two

aspets inside the ategory of generalized projetive geometries beause the tangent geometry

(TX

+

; TX

�

; T p) is again of the same type, and here the geodesi ow of M

(p)

appears as ow

of a vetor �eld, namely of the spray assoiated to the anonial onnetion of M

(p)

(f. [Be03b℄).

9.5. The time independent Shr�odinger equation. An eigenstate of the Hamilton operator

p is an intrinsi line whih at the same time is a geodesi on M

(p)

. They orrespond to

division tripotents of the Jordan triple system assoiated to p . A omplete system of eigenstates

orresponds to a frame of the Jordan triple system. The time independent Shr�odinger equation

onsists in deomposing a given tripotent with respet to a frame.

9.6. Quantization. Note that some models of speial and general relativity suh as Minkowski

spae and the de Sitter- and anti-de Sitter model (and more general ausal symmetri spaes)

an be realized via generalized projetive geometries ([Be96℄, [Be00℄). It would be tempting to

interprete a quantization of suh spaes as a sort of representation of these �nite-dimensional

geometries in an in�nite-dimensional geometry.

10. Prospets

10.1. Generalizations. The di�erential alulus developed in [BGN03℄ works in more general

ontexts, alled \C

0

-onepts", than the one of topologial rings and modules. For instane, we

may onsider the lass of rational mappings de�ned on Zariski-open sets in �nite-dimensional

vetor spaes over an arbitrary in�nite �eld K and de�ne the lass C

1

as in Setion 1.3, where

now C

0

means \rational". Essentially all results of the present work arry over to this more

general framework (details are left to the reader). In partiular, all �nite-dimensional Jordan

algebras, -triple systems and -pairs over arbitrary in�nite �elds are automatially \ontinuos

(quasi-) inverse" sine the formulas for (Bergman-) inversion learly are rational. Thus, in �nite

dimensions over in�nite �elds, the projetive ompletion is always a \smooth rational manifold"

in the sense of [BGN03℄, and our onstrution yields \smooth rational symmetri spaes". All

notions of di�erential geometry from [Be03b℄ ontinue to make sense in this setting.

10.2. Lie group ations. In the ontext of Theorem 5.3, one would like the projetive group

G to be a Lie group ating smoothly on the projetive ompletion X

�

. However, in general it

seems impossible to de�ne a Lie group struture on G beause G is de�ned by generators, and it

is very hard to �nd a good atlas for the subgroup H . In the real or omplex Banah set-up, this

problem an be avoided by taking instead of G and H the \muh bigger" groups Aut(g) and

Aut(g; D) whih are Banah Lie groups, and then realizing X

+

as a quotient manifold under

the ation of Aut(g)

0

. This is the strategy used in [Up85℄; it needs a fair amount of non-trivial

funtional analysis and does not arry over to more general situations.

Nevertheless, the problem remains wether in our general set-up it is possible to �nd some

extension of G to a Lie group

e

G ating smoothly on X

�

. For instane, in the ase of the

standard models (Setions 7 and 8) this is the ase: in ase of the projetive line we may take

e

G = GL

2

(A) whih is indeed a Lie group (if A is a .i.a., then the algebra M

n

(A) of n � n-

matries with entries in A is a .i.a (f. [Bos90℄, [Gl02℄), and hene GL

n

(A) is a Lie group), and
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in ase of the (anti-) hermitian projetive line we may take

e

G = Sp(A; �), resp.

e

G = U(A;A; �)

whih are unitary groups assoiated to an involutive .i.a. and hene, as we have seen in Setion

8.6, are Lie groups. We intend to investigate the problem of Lie group extensions of general

projetive groups in future work.
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