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Abstract

A description of the computable principles on Z—minimal admissib-
le sets is given. It is shown that the reduction and total extension
properties do not hold and the properties of separation and existence
of a universal function are preserved from ideals.

1 Introduction

1.1 On computability and e—reducibility

The main results in the computability theory can be found e.g. in [1]. Here
we give the notions which are applied in this paper.
An equality by definition is denoted by =. We write the set containing

all natural numbers by w.
As usual, the join A @ B of subsets A, B C w is defined by

{20 |z € A}U{2z+ 1|z € B}.

Let Ao, Ay, ..., Ak, k > 0, be subsets of naturals. Then P, , A; = A
if k=0; and @, , Ai = (B,;c;_; Ai) ® Ay, otherwise. b

Given a set X, we denote the power set of X by P(X).

For any n—ary predicate R, Pry(R), k < n, are the projections on the
corresponding coordinates.
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Functions are often identified with their graphs. If ¢ is a partial function
then we write its domain and range as dp and py respectively. We will denote
the graph of ¢ by I',,.

By W, we denote the n—th computably enumerable (c.e.) set in the
Post numbering. Recall that this numbering is principal, that is, for any
computable sequence { A, },e., of c.e. sets there is a computable function such
that A, = Wy, for every n € w. Given A C w, by WA we denote the n—th
set, which is computably enumerable with the oracle set A. The numbering
n — WA is principal for the class of all the A—computable numberings. By
D,, we denote the n—th finite set defined as follows: D, = {a; < ... < a;}
for n = Zle 2% > 0; and Dy = @. Notice that the relation € D,, and
the function m — |D,,| are computable. A sequence {A,},c, of finite sets is
called strongly computable if the relation = € A,, and the function m — |A,,|
are computable.

Let A, B be sets of naturals. We say that A is enumerably reducible (in
symbols, A <, B) if

InVt(t € A< Im((t,m) e W,, & D,, C B)).
Define enumeration operators ®,, n € w, as
®,(S) = {z|3Im{z,m)eW, & D,, CS)}.
Then we can give another definition of e-reducibility:
A<, B< In(P,(B) = A).
In this case, we say ®,, is given by W,,. The following properties of enumera-
tion operators play an important role:
monotonicity: A C B = ¢,(A) C ¢,(B);
continuity: z € ¢,(4) = IX C A(card (X) <w & z € ¢,(X)).

We say that a collection ©,, of enumeration operators satisfies a property
P, if a collection A, of c.e. sets giving ©,, does. E.g., ©, is a computable
sequence if A, is.

One can also consider enumeration operators having several arguments.
Likewise we define enumeration operators ®,,, n € w, with [ set variables:

(I)n(SOJ Sla ceey Slfl) =
-1
{z | 3meImy ... Imy_ {2, mo,ma, ..., my_1) € Wp& A D, € S;)}.
=0
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This operator also satisfies the continuity and monotonicity properties for all
the arguments. Furthermore, given a number n of such an operator it can be
effectively found n' such that @,,(Sp, S1,...,S1-1) = P (Se P S1D...DS;_1).

<, is a preorder on P(w) which induces an order on the set of e—degrees
P)/_ where A=, B < A <, B&B <. A. An associated order is denoted
so as e-reducibility. Given A C w, we denote the e-degree containing A
by d.(A). Notice that the set of all e-degrees with the order <, is an upper
semilattice with a least element (we write it as L,). Moreover, d.(A)Ud.(B) =
d.(A ® B) where allb is the sup of a and b. 0 is the e-degree consisting of
all c.e. sets.

A non-empty collection Z of e-degrees is called an e—ideal (or, simply, an
ideal) if the following conditions hold:

l.a<b&beZ=acl
2.abeZ=albel.

The collection of all the ideals of L, is denoted by J(L.). Given an ideal
I,welet It ={SCw|S#9,d.(S) eI}, T" =T U{a}.

1.2 On admissible sets theory

We use the theory developed in in [2]. Here we will give only definitions and
propositions from [3].

A KPU-model A in a finite signature o O {U', €, &} is called an admis-
sible set if it is well-ordered by €. The relations U, € are interpreted as
collection of all urelements, membership—relation respectively; and & as the
empty set. Admissible sets are denoted by A, B, C. If 9t is an arbitrary
model then its domain is denoted by dom(9t). We define computably enu-
merable (computable) sets on admissible sets as subsets being definable by
formulas of a special kind, — 3 formulas (X and IT formulas simultaneously).
Computably enumerable and computable subsets are called ¥ and A subsets
respectively. Collections of all ¥ and A subsets on an admissible structure
A are denoted by X(A) and A(A) respectively.

Now we give two important reducibilities on admissible sets.

(Yu.L. Ershov) A model 9t in some finite relation signature {P/", ..., P'*}
is said X —definable in an admissible set A (in symbols, M <5 A) if there exists
a map v : dom(A) 2% dom(9M) such that v~ (=), v~ (P™), ..., v~ (P™)

are A predicates on A.



(A.S. Morozov) We say that an admissible set B is X -reducible in an admissib-
onto

le set A (in symbols, B Ty, A) if there exists a map v : dom(A) = dom(9N)
such that v~ 1(Z(B)) C L(A).

It follows immediately from definitions that B Cyx, A implies B <y A.
However, the converse proposition doesn’t hold.

An important subclass of admissible sets is ones of hereditarily finite
sets. A hereditarily finite set over M can be defined as follows: HFy(M) =
MU {@}; HFn-l—l(M) = HFn(M) Upw(HFn(M)); HF(M) = U HFn(M)a

n<w

where P, (X) is collection of all the finite subsets of X. If 9t is a model
in some finite relation signature o and o N {@,€? U'} = & then it can
be defined a model HF (9) in the signature o* = o U {@, €2, U'} with the
domain HF (M) and U™ ™) = M. The model is called the hereditarily finite
set over 9.

Notice that w C Ord A and w is a A subset of A, for any admissible set
A. All the collections having form {B C w | B € ¥(A)} for some admissible
set A were described in [3].

Theorem 1.1 1. Given an arbitrary admissible set A, collection of all
subsets of w C A is represented as IT* for some e—ideal T.

2. For every e—ideal T there exists a model MM in some finite signature
such that T* coincides with collection of all ¥ subsets of w on HF (9N).
Moreover, this model can be chosen so that card (9) = card (Z%).

Let A be an admissible set. By Z.(A) we denote {d.(B) | B C w, B € ¥(A)}.
A collection S C P(dom(A)) is called computable on A if S U {@} =
{®*a,z] | a € A} for some X formula ®(xg, ), possibly with parameters.
We will consider computable families of subsets of naturals. By S,(A) we
denote class of all the computable on A collections of subsets of w.
These classes preserve under the reducibilities on admissible sets mentio-
ned above.

Proposition 1.1 1. (A.S. Morozov) If A Cx. B then S,(A) C S,(B). In
particular, T,(A) C Z.(B).

2. (Yu.L. Ershov; [2]) M <x A & HF (M) Cy, A.

To prove the proposition 2 of theorem 1.1 several classes of models were
constructed. We give only ones constructed by author.
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Let (U, A) be a pair consisting of some non—empty collection U of non—
empty subsets of w and some sequence of non—zero cardinals A = (ag | S €
U). We define a model 94y in a signature {Q?, s*,0} as follows:

dom(May) = wU{(S,7) | ¥ < as, S € UU{(S,7,n) | n€S,v<
ag, S € U},

0w = g € w; sTom = {{n,n+1)|new)

QMwn = {{(S,7,n),(S,7),n) [n €S,y <as, S €U}

Notice that the natural correspondence § between w and Ord HIF (9%y/,5y)
is ¥ function. It allows to identify the corresponding elements of these sets.

Let Code(Ma)) = {(S,7) | S € U, v < as} and A, ,, a map from
Code(My7,ny) to the power of w defined by (S, v) — S. Then X function

z, ifz e COde(i)ﬁ<U,A>);

o(n 3 2], if r,z,n) € QED?(U,A);
o) = (0(n), z) ! { )

(), if v € w;

(2,{7(2) | z € #}), otherwise;

is embedding of HF(dom (9 y,ay)) into HF(Code(My2y)). By 75 we denote
the inverse of ~q.

A sequence A = (a4 | S € U) will be called apposite if o > w for any
S € U. It is showed in [?] that Z,(HF (9% z+y)) = T for any ideal Z and
every apposite sequence A. Given any ideal Z, class of models {97+ ) |
A is apposite} corresponding to the e-ideal Z will be denoted by Kr.

Theorem 1.2 [3] Given any admissible set A, there exists a model M, €
Kz.(ny such that My < A,

Theorem 1.3 [3] Let Z be an e—ideal and My € Kz. Then S C P(w) is
computable on HF (9My) iff SU{2} = {O,(R,A) | n € w, R € I*} for some
A € T* and a computable sequence {On}new of enumeration operators.

A class R of admissible sets will be called Z-minimal if it satisfies the
following conditions:

e for any admissible set A with Z,(A) = Z there exists an admissible set
B € R such that B Cyx, A,

e By = Ay for any admissible sets By, B; € R.



A sequence {Rz}zez(r.) of Z-minimal classes will be called uniform if it
satisfies the following conditions:

e all the classes of the sequence contain models in the same signature;

o if 7y, 7, € J(L.) satisfy Zy < Z; then for every model Ay € Rz, there
exists Ay € Rz, such that Ay < Ay;

o if 7y, 7; € J(L.) satisfy Z, < Z; then for every model A; € Rz, there
exists Ay € Rz, such that Ay < A;.

Notice that the sequence {{HF(9M) | M € Kz}}zes(r.) is uniform.

2 A description of >—subsets

First we give some description of ¥—subsets on hereditarily finite sets over
models from Kz. Notice that it coincides with the Rice—Shapiro description
of index sets.

Let X, Y be sets. We say that X is approzimately equal toY (in symbols,
X=xY)if (X\Y)U (Y \ X) is finite. Recall that gy, is the natural map
from Code(9My) to the power of w.

Proposition 2.1 Let T be an e—ideal, My € Kz and k > 0. Then the
following conditions are equivalent:

1. X C Code(My) is definable in HF (My) by some S—formula P(xy) with
parameters s, ..., S_1 € Code(9My);

2. X U{so,...,s6-1} = {x € Code(My) | Ju € OAmy(s0) B ... @
Ao (Sk—=1))(Dy € A, (2)) U {0, - .-, Sk—1} for some enumeration ope-
rator ©.

Moreover, a number of some formula ® (some enumeration operator ©) can
be effectively found by the number of enumeration operator © (formula ®).

Proof. Let Z and 91 be objects from the proposition. For any A € Z*, we
let Yy = {z € Code(My) | Fu € A(Dy C Ay, (7))}

(2 = 1) Notice that if Y is ¥-subset on HF (90%,) and X ~ Y then X is
too. Let A € 7* and X = Y. Then it follows from Z,(HF (9%,)) = Z and

r €Yy Jufu e ANVE € D,z Q(z, x,1)]
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that Y is ¥ subset on HF (%)) and hence X is ¥ too.

(1 = 2) Let X be definable by some ¥ formula ®(z, so, ..., Sg_1) with
parameters Sy, ..., Sg_1, k > 0, from dom(My) (we assume this list is empty
for k& = 0). We can suppose that all the parameters are from Code ().
First we prove two lemmas.

Lemma 2.1 Let z,y € Code(My) be such that x € X, Aomy(z) C Aoy (v)
and {z,y} N {so,...,sk—1} = . Theny € X.

To prove the lemma we construct an auxiliary model 9, in the signature
{0, 5%, Q%} as follows: given n € Agn, (y) \ Ao, (7) we take 2z, ¢ dom (D) so
that z,, # z,, for n; # ny. Now we let dom(9t;) = dom (M) U {2z, | n €
Ao (U) \ Ao (1)}, 8™ = s 0P = oMo QT = Q™0 U {(z,,7,n) | n €
Ao (¥) \ Ao ()} Tt can be easily verified that HF (90t) <enq HF (9%;) and
hence HF (90%) = ®(x, So, ..., Sk—1). Furthermore, there is an isomorphism
[ HF(9,) — HF(9M,) satisfying f(x) = y and f(s;) = s; for any i < k.
Hence, HF (9) = ®(y, so, ..., 8k-1). Thus y € X. O

Lemma 2.2 Let x € X be such that © & {so,...,sk—1}. Then there is
y € X\ {so,...,Sk-1} such that Aoy, (y) is finite and Ao, (y) C A, ().

Since ® is ¥ formula and HF (90t)) = ®(z, s, ..., 1) there exists a finitely
generated (in this case, a finite) model My < My such that HF (M) =
®(z, sg,...,5—1). We can suppose that w N |9| is an initial segment of
w. Let y € Code(My) \ Code(My) be such that Agp,(y) = Agu (). Then
there exists an embedding f' : HF (9t),) — HF (91,) satisfying f'(z) = y and
1o\ {z}) = id(‘gﬁ“\{x}). It is obvious that f/(HF (9%)) <ena HF (90%)
and hence HF (90) = ®(y, So,---,Sk—1)- Thus y € X. O

Return to proof of the proposition 2.1. Consider collection of all the finite
models 9° in the signature {Q3, s?,0} satisfying the following conditions:

- wN|MP is a proper initial segment of w;

the symbols 0 and s are interpreted as above;

- Vz(r € w < F23nQ(z,n, 7));
- V(e ¢ w o 3z3n € w(Q(z,2,n) V Q(x, 2,n)));
- V(32 3nQ(z, z,n) — (323NQ(x, 2, n) AV Q(z, z,n))).
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It is evident that the collection is strongly computable, that is, there is a
strongly computable sequence of domains of models with uniformly compu-
table signature relations.

By S we denote the collection of models with the effective structure given
on them. Then a relation HF (9M°) &= ®(z, ag, .. .,a,_1) will be computably
enumerable in respect to 9M° € S, ¥ formula ® and elements z, ay, ..., ar_;
of dom(9M°). Now we introduce one more auxiliary notion. Let 90T, 9" be
models in a signature ¢ and ¢’ C 0. A homomorphism ¢ : 9t — 9’ will be
called o' —embedding if ¢ : M | o' — M’ | ¢’ is embedding. We say that I is
o' —embeddable into M’ (in symbols, M <, M') if there exists o'—embedding
¢ :M— M. Let A be

{u:3IM° € SFz € |M°|[HF (M°) &= &(x, ug, - - -, up—_1)A
k—1
A ./_\0 (2 =u) AN ug, - up—1) ey (Mo, Sos- -+, S6-1))A (1)
CA(YEE INO)((32 € [9MO|(z, 2, 1) € Q) 45 t € D))

It can be easily established that (9, ug, ..., uk_1) <53 (Mo, So, - -+, Sp—1) iff
Vi < k[Dy, € Ao, (s4)], so, by (1), we obtain A <, Ao, (S0) @ .. B Ao, (Sk—1)-
To prove X ~ Y, it suffices for every 3—formula ¢ in the signature {@, s,0}
to find some F—formula v with positive occurence of ) which is equivalent
to ¢ in respect of My and models from S. But it can be made, by induction
on complexity of formulas, from the following relation:

"Q(xo, 1, o) = Tz Ty (Q(x3, 2o, 4) V (Q(23, T4, T0) V (Q(21, T3, T4)V
(Q(xs, x4, 21) V (Q(22, 23, 4) V (Q(23, T2, 24)V
(Q(zo, x5, 1) A (T(1 = 73) V " (22 = 24)))))))))-

OJ

Corollary 2.1 Let X be definable in HF (0y) by some ¥ formula with pa-
rameters Sy, ...,Sg_1 from Code(My) (ag,a1,...,a11) € X, | > 1 where
a; € Code(My), 0 < i<l;a;#a; for0<i<j<l;s;#ar,0<qg<k,
0 < r <. Then there is a finite F C w such that {by,by,...,b_1) € X for
every b; € Code(IMy), 0 < i < [, with the following properties: F C Aoy, (b;),
0<i<l;bi#bj for0<i<j<l;s,7#0b,0<qg<k, 0<r<lL.



3 On principles on Z—minimal admissible sets

We say that an admissible set A satisfies the reduction property if for any
B,C € X(A) there are distinct By,Cy € L(A) with B, C B, Cy C C,
ByUCy = BUC. The results concerning this property can be seen in [2, 4].

Proposition 3.1 Let Z be an e—ideal and My € Kz. Then the reduction
principle doesn’t hold on HF (9).

Proof. Let X, = {z € Code(My) | 0 € Ay (7)} and Xy = {x € Code(IMy) |
1 € A\gn,(2)}. These sets are ¥ definable. Let Y; C X;, i =0, 1, be ¥ subsets
and satisfy XoU X; = Yy UY]. Then, by proposition 2.1, there is a € YyNY)
such that Agn,(a) = {0,1}. O

We say that an admissible set A satisfies the total extension property if
for every partial X function ¢ there is a total X function f extending ¢, that
is, ', C T'y.

Proposition 3.2 Let Z be an e—ideal and My € Kz. Then HF (M) doesn’t
satisfy the total extension property.

Proof. Suppose that this proposition doesn’t hold for some e—ideal Z. Take
My € Kz for such an ideal Z; consider a partial Y—function ¢(z,y) such
that p(z,y) = z & Q(z,y,x). Let f(z,y) be a total X—function extending
¢. Notice that if Agn,(a) = A then n € A < 32["Q(2,a,n) A (f(n,a) = 2)]
so it is necessary that Z would closed under the jump operation. Now let
So, S1,- - -, Sk—1 be parameters from Code(9y) being used in a definition I'y.
Then we take any b € Code(9My) such that gy, (b) # w and b is not a
parameter. By corollary 2.1, we have n ¢ w for n & Mgy, (b), contradictory.
O

To prove further propositions we introduce effective encoding of elements
of a hereditarily finite set HIF (90t) by ordered pairs of form (n,g) where
n range natural ordinals and ¢ is a finite injective function with dg € w
(this value will be effectively defined by n; see below) and pg C dom(9%). A
number n is a code in some bijective computation representation of construc-
tions of elements of hereditarily finite sets. By construction we mean an
arbitrary term in a signature {@,U? {}'} without fictitious variables; its
variables range dom(90t) only. Notice that the construction is independent of



a choise of a hereditarily finite set. We say that constructions t; (ug, uq, . ..,

ur-1), k >0, and t3(vo,vq,...,v1), [ = 0, are equivalent if k = [ and
tgHF(dom(im)),@,U,{})(aO, o ae) = téHF(dom(im)),@,U,{ }>(aw(0), e anen)
for some permutation 7 of {0,1,...,k — 1} and a tuple (ag,as,...,ar 1)

of pairwise distinct elements being from dom(9) (if £ = 0 then assume
that the tuple of elements and the permutation are empty). Notice that the
equivalence of constructions doesn’t imply the equality of them as terms.
We define dg as a number of variables of the construction (obviously, it is
equal to a cardinal number of some term value support). Now we corre-
spond a pair (n, g) to x if z = ¢JTFAmINLZLAD (40) ¢(1),..., g(6g — 1)).
The above reasoning allow to conclude that the function Term(n,g) =
g{IrAem@LZ080 (0(0), g(1),. .., g(5g — 1)) is S definable. Furthermore, we
can provide that for the code (n, g) of x it can be effectively found collection of
all the pair coding elements of a “set” x. To make this, it suffices to consider
a hereditarily finite set HF (M) over M = (w, 0, s) where s is the successor
function on naturals. The main sense of construction is that given a num-
ber it can be effectively found the structure of the corresponding elements.
It is important that this encoding is independent of a choise of hereditarily
finite set, that is, it can be defined by the same formula in all the heredi-
tarily finite set. The coding is one—to—one under the first coordinate and,
in general, isn’t one—to—one under the second ones. E.g., {ag, a1} = {a1, a0}

has two codes. However, there is a bijective correspondence between col-
(HF(dom(9)),2,0,{ })

lection of all permutations 7 such that ¢, (ag, a1, ... a5 1) =
fHE(dom(I0),&,0{}) (@r(0)s Qx(1)s - - -+ Ax(k—1)) and collection of all codes for every

construction having a number n. Collection of all the permutations corres-
ponding to n (we will denote it by S,,) is a group. Obviously, the sequence
{Sn }new is strongly computable.

Let My € Kz for some e-ideal Z and 7y, 75 functions defined in section
1.2. Now we introduce encoding of triples (n, go, g1) satisfying the following
conditions:

e gy U g is a finite permutation with §(go U g1) € w and gy € w;
® goN g1 = I

e 0gy < card, where card,, is a cardinal number of the support of a “set”
having a number of construction n.
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Here range of g; is a set of parameters; given a triple (n,go, g1) we will
construct an element Term(n, g) for some g satisfying ¢~ ({so,...,sx1}) C
pg1 where s;, i < k, are parameters; ¢ '(sp(g) \ {50, 51, ..., 8k_1}) = pgo. A
code of (n, go, g1) is denoted by {n, go, g1).

Let Z be an e-ideal. We say that Z has an universal function (and we
write Uf(Z)) if there is a computable sequence {O,},c, and a set A with
d.(A) € T such that {0,(R® A) | n € w, d.(R) € T} contains exactly all
the graphs of partial functions f with d.(I'f) € Z.

Let A be an admissible set. A partial ¥ function f(x,y) is called universal
if {f(a,y)|a € dom(A)} contains exactly all the partial ¥ functions.

Examples of admissible sets with universal 3 functions and without ones
were constructed in [2, 5].

Proposition 3.3 Let an e—ideal T is that there is an universal in I function.
Then HIF (9) has an universal ¥ function for any My € Kr.

Proof. Let f(z) be a partial ¥ function on HIF (90%); then g0 foryg is a partial
¥ function on HF (9%) mapping from HF(Code(9My)) to HF(Code(My)).
Furthermore, we can assume that the last function is definable by some ¥
formula with parameters being from Code(9t,) (via 7). First we construct
a Y function, which is universal for class of all the partial ¥ functions f with
Field(f) C HF (Code(9My)).

(1) Let f be a partial function with Field(f) C HF(Code(9My)), which is
definable by some X formula with parameters sg, ..., S,_1 being from
Code(My), and f(Term(n,g)) = Term(m, g'). Then the following hold:

1. pgl g P9 U {807 ) Skfl};

2. Term(m,m o g') = Term(m,g') for any permutation © of the set pg U

{s0,...,sk1} satisfying © | (pg \ (pg" U {so,...,sk1})) = id and
Term(n, o g) = Term(n, g).

This follows immediately from corollary 2.1.

Now we correspond to every partial ¥ function f considered in (1) some
Y predicate R; as follows: for every x € df take the least number {(n, gy, g1}
such that x = Term(n, (6 U 6;) o (g0 U g1)~" | |sp(x)]) for 61 : i + |sp(z) \
{S0,---,Sk_1}| = 8, i < k, and some injective function

0o : sp(z) \ {s0,---,Sk—1}| —=sp(x) \ {so,---,Sk_1};
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further, if f(x) = y and x is given by {n, go, 1) then for y take the least num-
ber (m, @, g7} such that y = Term(m, (6,U61)ogi ™" | [sp(y)]), 5(g0Ug1) = 04
for 6y, 6, from definition of {n, gy, ¢1). In this case, ({n, go, ¢:1},{m, @, g})) €
R;. Notice that z,z" € § f have the same code iff their constructions over the
parameters so, ..., Sg—1 coinside. Furthermore, (x,y), (z',y’) € 'y have the
same pair of codes iff their constructions over the parameters sg,...,Sp 1
coinside. It follows from properties of the constructions that Ry is a Y-
predicate.

(2) Ry is graph of some number ¥—function. Assume that it doesn’t hold.
Then it follows from the description that there are found (z,y), (z',y') € I's
such that x, 2’ have the same construction over parameters sg, ..., Sy_1 but
the constructions (z, y), (z', y') over parameters so, . . ., s, are different. Let
a be that the constructions of a, x over parameters s, ..., s;_1 coinside and
Ao, (1) = w for every u € sp(a)\ {so,. .., sk—1}. Then it follows from 2.1 that
there exist b, O’ such that (a,b), (a,b') € I'y and the constructions of (a, b),
(z,y) and (a,b'), (x,y') over parameters so,..., S, 1 coinside respectively,
but this contradicts to f being a function.

Further, let R C Ord HFF (90ty) be a X-subset on HF (90t,). By Gr|so,
S1y-..,8k_1] where sq, $1,...,8,_1 are from Code(9My) (they will play a role
of parameters) we denote a Y—predicate defined as follows:

let ({n, go, g1),{m, @, g1)) € R, satisfy the following conditions:

L |6g1| =k, (g0 U g1) = dg1;

2. Term(m, (¢})~* | card,,) = Term(m, ((¢}) ' om) | card,,) for every
permutation 7 : dg; — dg} satisfying the conditions 7 [ ((dgo \ {m |
g1(m) < card,,}) U dgy) = id (here card,, is the cardinal number of
support of element with construction number m) and Term(n, (go U
g1)~" | card,) = Term(n, ((go U g1)~' o) | card,);

3. {n, 90, 91), {m, 2, ¢}) are the least numbers among giving Term(n, (goU
g1)~"' | card,) and Term(n, (g})~" | card,,) respectively;

then we put to Gr[so, 1, . .., Sg_1] all pairs (x, y) such that z = Term(n, (fyU
1) o (go U g1)™"), y = Term(m, (6 U ;) o (g})~") where 0, : dgo + i — s;,
i <k;0(6pUby) =0dg; and 6y U B, is injective.

(3) If a partial function f : HF(Code(9My)) — HF(Code(My)) is defi-
nable by some ¥ formula with parameters sg, s1,...,Sk_1 being from
Code(My), then T'y C Gr,[s0,51,---, 5% 1]- It follows immediately from the
descriptions.
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(4) If R C Ord HIF (9%) is graph of some X function, then so Ggl[so, ...,
Sk_1] is for any s, ..., Sk_1 being from Code(9My). First notice that if R is
graph of some ¥ function, then the set of pairs of R satisfying 1 — 3, is too,
so assume that all elements of R satisfy 1 — 3. However, these conditions
provide the desired property.

Further, by Uf(Z), there exists a ¥ predicate ), which is universal for
class of graphs of all number ¥ functions. Let ), be a set with a code a
in . By S we denote a ¥ predicate, which is universal for class of all ¥
subsets on HF (90%) and by S, a set with a code b in S. Then a ¥ predicate
T = {({a,b,s),c) | s € Code(My)<¥, a,b € HF (My), c € S, N Gg,[s]} is
universal for class of graphs of all partial ¥ functions f with Field(f) C
HF(Code(My)).

Finally, if g(x, y) is a ¥ function, which is universal for class of all unary 3
functions f with Field(f) C HF(Code(9My)), then ¢*(x,y) = vg(x, % (y))
is an universal ¥ function. [

Let Z be an e—ideal. We say that Z satisfies the separation property
(in symbols, Separation(Z)) if for all distinct sets B, C' with d.(B) € Z,
d(C) € T there exists D with d.(D & D) € Z such that BC D Cw )\ C.

Let A be an admissible set. We say that A satisfies the separation property
if for all distinct sets B, C' € X(A) there exists D € A(A) such that B C
D C dom(A) \ C.

First examples of admissible sets with the separation property were con-
structed by V.Rudnev [6].

Proposition 3.4 Let 7 be an e—ideal satisfying the separation property.
Then the separation principle holds in HF (9,) for any M, € Kz.

Proof. Let Z and HF (90%) be from the proposition. Take distinct ¥ subsets
A and B and construct a A subset C' such that A C C' C HF(M,) \ B.

We set Ay = 70(A), By = 70(B). Notice that Ay N By = &. First we
construct a A subset Co C HF(Code(9My)) such that Ay C Cy C HF (M) \
By. To obtain it we introduce two set operators.

Given a subset D C HF(Code(9My)), which is definable by some ¥ for-
mula with parameters s, s1, ..., s,_1 being from Code(9), we find a 3 sub-
set Sp C Ord HF (9,) by the following rules: for every x € D take the least
number {n, go, g1) such that z = Term(n, (foUB0;)o(goUgi)™" | |sp(x)|) where
Oy c i+ |sp(x) \ {so,. -y Sk—1}| > si, 0 <k, and 0y : |sp(x) \ {so,- .., Sk—1}| —
sp(7) \ {50, - - -, Sk_1} is some injective function; then we put {n, go, g1} to Sp.
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Further, given a ¥ subset H C Ord HF (9%;) we construct some ¥ subset
Vilso, ..., sk-1] € HF(Code(9My)) where sg,...,s, 1 are from Code(9M)
and play a role of parameters: let {n, go, g1} € H satisfy the following conditi-
ons:

L. |0g1] = k;
2. {n, go, g1) is the least number giving Term(n, (go U g;) ' | card,);

then we put Term(n, (6 U 0;) o (9o U g1)™") to Vi[se,-- -, sk 1] where 6; :
dgo+i— 8, 1 <k, 0(0pUb) =0d(goUgr) and 0y U 6y is injective.

Return to proof of the proposition. We can assume that Ag, By are defin-
able by some ¥ formulas with the same parameters sg, s1, ..., Sx_1 being from
Code(My). By corollary 2.1, Sy, N Sp, = @. Then there exists a A subset
R C Ord HFF (97t) such that Sy, C R C w\ Sp,, because of Separation(Z).

Therefore,

AU g VSAO [80, RN Skfl] g VR[SO; ceey Skfl]

and
BO Q VSBO [So, Ceey Sk—l] Q VE[So, Ceey Sk—l]-

Furthermore, it follows from the description that
VR[SU, Cey Skfl] N VE[SO; Caey Skfl] = @,

VR[S(), Cay Skfl] U VE[S(), Caey Skfl] = HF(COde(mtg)) 2 VO(HF(MU))
To complete proof we set Co = Vg[so, ..., sk_1], C = v5(Co). O
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