On computability on \mathcal{I} -minimal models. V. PUZARENKO*

November 25, 2003

Abstract

A description of the computable principles on \mathcal{I} -minimal admissible sets is given. It is shown that the reduction and total extension properties do not hold and the properties of separation and existence of a universal function are preserved from ideals.

1 Introduction

1.1 On computability and *e*-reducibility

The main results in the computability theory can be found e.g. in [1]. Here we give the notions which are applied in this paper.

An equality by definition is denoted by \rightleftharpoons . We write the set containing all natural numbers by ω .

As usual, the join $A \oplus B$ of subsets $A, B \subseteq \omega$ is defined by

$$\{2x \mid x \in A\} \cup \{2x + 1 \mid x \in B\}.$$

Let $A_0, A_1, \ldots, A_k, k \ge 0$, be subsets of naturals. Then $\bigoplus_{i \le k} A_i \rightleftharpoons A_0$ if k = 0; and $\bigoplus_{i \le k} A_i \rightleftharpoons (\bigoplus_{i \le k-1} A_i) \oplus A_k$, otherwise.

Given a set X, we denote the power set of X by $\mathcal{P}(X)$.

For any *n*-ary predicate R, $\Pr_k(R)$, $k \leq n$, are the projections on the corresponding coordinates.

^{*}Supported by international grant DFG-RFBR 01-01-04003.

Functions are often identified with their graphs. If φ is a partial function then we write its domain and range as $\delta \varphi$ and $\rho \varphi$ respectively. We will denote the graph of φ by Γ_{φ} .

By W_n we denote the *n*-th computably enumerable (c.e.) set in the Post numbering. Recall that this numbering is principal, that is, for any computable sequence $\{A_n\}_{n\in\omega}$ of c.e. sets there is a computable function such that $A_n = W_{f(n)}$ for every $n \in \omega$. Given $A \subseteq \omega$, by W_n^A we denote the *n*-th set which is computably enumerable with the oracle set A. The numbering $n \mapsto W_n^A$ is principal for the class of all the A-computable numberings. By D_n we denote the *n*-th finite set defined as follows: $D_n \rightleftharpoons \{a_1 < \ldots < a_k\}$ for $n = \sum_{i=1}^k 2^{a_i} > 0$; and $D_0 \rightleftharpoons \emptyset$. Notice that the relation $x \in D_m$ and the function $m \mapsto |D_m|$ are computable. A sequence $\{A_n\}_{n\in\omega}$ of finite sets is called *strongly computable* if the relation $x \in A_m$ and the function $m \mapsto |A_m|$ are computable.

Let A, B be sets of naturals. We say that A is enumerably reducible (in symbols, $A \leq_e B$) if

$$\exists n \forall t \ (t \in A \Leftrightarrow \exists m \ (\langle t, m \rangle \in W_n \ \& \ D_m \subseteq B)).$$

Define enumeration operators Φ_n , $n \in \omega$, as

 $\Phi_n(S) = \{ x \mid \exists m (\langle x, m \rangle \in W_n \& D_m \subseteq S) \}.$

Then we can give another definition of e-reducibility:

$$A \leqslant_e B \Leftrightarrow \exists n(\Phi_n(B) = A).$$

In this case, we say Φ_n is given by W_n . The following properties of enumeration operators play an important role:

monotonicity: $A \subseteq B \Rightarrow \Phi_n(A) \subseteq \Phi_n(B);$

continuity: $x \in \Phi_n(A) \Rightarrow \exists X \subseteq A (card(X) < \omega \& x \in \Phi_n(X)).$

We say that a collection Θ_n of enumeration operators satisfies a property P, if a collection A_n of c.e. sets giving Θ_n does. E.g., Θ_n is a computable sequence if A_n is.

One can also consider enumeration operators having several arguments. Likewise we define enumeration operators Φ_n , $n \in \omega$, with l set variables:

$$\Phi_n(S_0, S_1, \dots, S_{l-1}) = \{x \mid \exists m_0 \exists m_1 \dots \exists m_{l-1} (\langle x, m_0, m_1, \dots, m_{l-1} \rangle \in W_n \& \bigwedge_{i=0}^{l-1} D_{m_i} \subseteq S_i) \}.$$

This operator also satisfies the continuity and monotonicity properties for all the arguments. Furthermore, given a number n of such an operator it can be effectively found n' such that $\Phi_n(S_0, S_1, \ldots, S_{l-1}) = \Phi_{n'}(S_0 \oplus S_1 \oplus \ldots \oplus S_{l-1})$.

 \leq_e is a preorder on $\mathcal{P}(\omega)$ which induces an order on the set of *e*-degrees $\mathcal{P}^{(\omega)}/_{\equiv_e}$ where $A \equiv_e B \Leftrightarrow A \leq_e B \& B \leq_e A$. An associated order is denoted so as *e*-reducibility. Given $A \subseteq \omega$, we denote the *e*-degree containing A by $d_e(A)$. Notice that the set of all *e*-degrees with the order \leq_e is an upper semilattice with a least element (we write it as L_e). Moreover, $d_e(A) \sqcup d_e(B) = d_e(A \oplus B)$ where $\mathbf{a} \sqcup \mathbf{b}$ is the sup of \mathbf{a} and \mathbf{b} . $\mathbf{0}$ is the *e*-degree consisting of all c.e. sets.

A non-empty collection \mathcal{I} of *e*-degrees is called an *e*-*ideal* (or, simply, an *ideal*) if the following conditions hold:

- 1. $\mathbf{a} \leq \mathbf{b} \& \mathbf{b} \in \mathcal{I} \Rightarrow \mathbf{a} \in \mathcal{I};$
- 2. $\mathbf{a}, \mathbf{b} \in \mathcal{I} \Rightarrow \mathbf{a} \sqcup \mathbf{b} \in \mathcal{I}$.

The collection of all the ideals of L_e is denoted by $\mathcal{J}(L_e)$. Given an ideal \mathcal{I} , we let $\mathcal{I}^+ = \{S \subseteq \omega \mid S \neq \emptyset, d_e(S) \in \mathcal{I}\}, \mathcal{I}^* = \mathcal{I}^+ \cup \{\emptyset\}.$

1.2 On admissible sets theory

We use the theory developed in in [2]. Here we will give only definitions and propositions from [3].

A KPU-model \mathbb{A} in a finite signature $\sigma \supseteq \{\mathbb{U}^1, \in^2, \emptyset\}$ is called an *admissible set* if it is well-ordered by \in . The relations \mathbb{U}, \in are interpreted as collection of all urelements, membership-relation respectively; and \emptyset as the empty set. Admissible sets are denoted by \mathbb{A} , \mathbb{B} , \mathbb{C} . If \mathfrak{M} is an arbitrary model then its domain is denoted by dom(\mathfrak{M}). We define computably enumerable (computable) sets on admissible sets as subsets being definable by formulas of a special kind, — Σ formulas (Σ and Π formulas simultaneously). Computably enumerable and computable subsets are called Σ and Δ subsets respectively. Collections of all Σ and Δ subsets on an admissible structure \mathbb{A} are denoted by $\Sigma(\mathbb{A})$ and $\Delta(\mathbb{A})$ respectively.

Now we give two important reducibilities on admissible sets.

(Yu.L. Ershov) A model \mathfrak{M} in some finite relation signature $\{P_1^{n_1}, \ldots, P_k^{n_k}\}$ is said Σ -definable in an admissible set \mathbb{A} (in symbols, $\mathfrak{M} \leq_{\Sigma} \mathbb{A}$) if there exists a map ν : dom(\mathbb{A}) \xrightarrow{onto} dom(\mathfrak{M}) such that $\nu^{-1}(=), \nu^{-1}(P_1^{\mathfrak{M}}), \ldots, \nu^{-1}(P_k^{\mathfrak{M}})$ are Δ predicates on \mathbb{A} .

(A.S. Morozov) We say that an admissible set \mathbb{B} is Σ -reducible in an admissible set \mathbb{A} (in symbols, $\mathbb{B} \sqsubseteq_{\Sigma} \mathbb{A}$) if there exists a map $\nu : \operatorname{dom}(\mathbb{A}) \xrightarrow{onto} \operatorname{dom}(\mathfrak{M})$ such that $\nu^{-1}(\Sigma(\mathbb{B})) \subseteq \Sigma(\mathbb{A})$.

It follows immediately from definitions that $\mathbb{B} \sqsubseteq_{\Sigma} \mathbb{A}$ implies $\mathbb{B} \leq_{\Sigma} \mathbb{A}$. However, the converse proposition doesn't hold.

An important subclass of admissible sets is ones of hereditarily finite sets. A hereditarily finite set over M can be defined as follows: $HF_0(M) = M \cup \{\emptyset\}$; $HF_{n+1}(M) = HF_n(M) \cup \mathcal{P}_{\omega}(HF_n(M))$; $HF(M) = \bigcup_{n < \omega} HF_n(M)$; where $\mathcal{P}_{\omega}(X)$ is collection of all the finite subsets of X. If \mathfrak{M} is a model in some finite relation signature σ and $\sigma \cap \{\emptyset, \in^2, U^1\} = \emptyset$ then it can be defined a model $\mathbb{HF}(\mathfrak{M})$ in the signature $\sigma^* = \sigma \cup \{\emptyset, \in^2, U^1\}$ with the domain HF(M) and $U^{\mathbb{HF}(\mathfrak{M})} = M$. The model is called the *hereditarily finite* set over \mathfrak{M} .

Notice that $\omega \subseteq \operatorname{Ord} \mathbb{A}$ and ω is a Δ subset of \mathbb{A} , for any admissible set \mathbb{A} . All the collections having form $\{B \subseteq \omega \mid B \in \Sigma(\mathbb{A})\}$ for some admissible set \mathbb{A} were described in [3].

Theorem 1.1 1. Given an arbitrary admissible set \mathbb{A} , collection of all Σ subsets of $\omega \subseteq A$ is represented as \mathcal{I}^* for some e-ideal \mathcal{I} .

2. For every e-ideal \mathcal{I} there exists a model \mathfrak{M} in some finite signature such that \mathcal{I}^* coincides with collection of all Σ subsets of ω on $\mathbb{HF}(\mathfrak{M})$. Moreover, this model can be chosen so that $\mathsf{card}(\mathfrak{M}) = \mathsf{card}(\mathcal{I}^*)$.

Let \mathbb{A} be an admissible set. By $\mathcal{I}_e(\mathbb{A})$ we denote $\{d_e(B) \mid B \subseteq \omega, B \in \Sigma(\mathbb{A})\}$. A collection $S \subseteq \mathcal{P}(\operatorname{dom}(\mathbb{A}))$ is called *computable on* \mathbb{A} if $S \cup \{\emptyset\} = \{\Phi^{\mathbb{A}}[a, x] \mid a \in A\}$ for some Σ formula $\Phi(x_0, x_1)$, possibly with parameters. We will consider computable families of subsets of naturals. By $S_{\omega}(\mathbb{A})$ we denote class of all the computable on \mathbb{A} collections of subsets of ω .

These classes preserve under the reducibilities on admissible sets mentioned above.

Proposition 1.1 1. (A.S. Morozov) If $\mathbb{A} \sqsubseteq_{\Sigma} \mathbb{B}$ then $S_{\omega}(\mathbb{A}) \subseteq S_{\omega}(\mathbb{B})$. In particular, $\mathcal{I}_{e}(\mathbb{A}) \subseteq \mathcal{I}_{e}(\mathbb{B})$.

2. (Yu.L. Ershov; [2]) $\mathfrak{M} \leq_{\Sigma} \mathbb{A} \Leftrightarrow \mathbb{HF}(\mathfrak{M}) \sqsubseteq_{\Sigma} \mathbb{A}$.

To prove the proposition 2 of theorem 1.1 several classes of models were constructed. We give only ones constructed by author. Let $\langle U, \Lambda \rangle$ be a pair consisting of some non-empty collection U of nonempty subsets of ω and some sequence of non-zero cardinals $\Lambda = \langle \alpha_S | S \in U \rangle$. We define a model $\mathfrak{M}_{\langle U,\Lambda \rangle}$ in a signature $\{Q^3, s^2, 0\}$ as follows:

 $\dim(\mathfrak{M}_{\langle U,\Lambda\rangle}) \coloneqq \omega \cup \{\langle S,\gamma\rangle \mid \gamma < \alpha_S, S \in U\} \cup \{\langle S,\gamma,n\rangle \mid n \in S, \gamma < \alpha_S, S \in U\};$

 $0^{\mathfrak{M}_{\langle U,\Lambda\rangle}} \stackrel{\leftarrow}{=} \varnothing \in \omega; s^{\mathfrak{M}_{\langle U,\Lambda\rangle}} \leftrightarrows \{\langle n, n+1 \rangle \mid n \in \omega\};$ $Q^{\mathfrak{M}_{\langle U,\Lambda\rangle}} \leftrightarrows \{\langle \langle S, \gamma, n \rangle, \langle S, \gamma \rangle, n \rangle \mid n \in S, \gamma < \alpha_S, S \in U\}.$

Notice that the natural correspondence δ between ω and $\operatorname{Ord} \operatorname{HF}(\mathfrak{M}_{\langle U,\Lambda\rangle})$ is Σ function. It allows to identify the corresponding elements of these sets.

Let $\operatorname{Code}(\mathfrak{M}_{\langle U,\Lambda\rangle}) \rightleftharpoons \{\langle S,\gamma\rangle \mid S \in U, \gamma < \alpha_S\}$ and $\lambda_{\mathfrak{M}_{\langle U,\Lambda\rangle}}$ a map from $\operatorname{Code}(\mathfrak{M}_{\langle U,\Lambda\rangle})$ to the power of ω defined by $\langle S,\gamma\rangle \mapsto S$. Then Σ function

$$\gamma_{0}(x) = \begin{cases} x, & \text{if } x \in \operatorname{Code}(\mathfrak{M}_{\langle U, \Lambda \rangle});\\ \langle \delta(n), z \rangle, & \text{if } \langle x, z, n \rangle \in Q^{\mathfrak{M}_{\langle U, \Lambda \rangle}};\\ \delta(x), & \text{if } x \in \omega;\\ \langle \varnothing, \{\gamma_{0}(z) \mid z \in x\} \rangle, & \text{otherwise}; \end{cases}$$

is embedding of $HF(\operatorname{dom}(\mathfrak{M}_{\langle U,\Lambda\rangle}))$ into $HF(\operatorname{Code}(\mathfrak{M}_{\langle U,\Lambda\rangle}))$. By γ_0^* we denote the inverse of γ_0 .

A sequence $\Lambda = \langle \alpha_S^{\Lambda} | S \in U \rangle$ will be called *apposite* if $\alpha_S^{\Lambda} \ge \omega$ for any $S \in U$. It is showed in [?] that $\mathcal{I}_e(\mathbb{HF}(\mathfrak{M}_{\langle \mathcal{I}^+,\Lambda\rangle})) = \mathcal{I}$ for any ideal \mathcal{I} and every apposite sequence Λ . Given any ideal \mathcal{I} , class of models $\{\mathfrak{M}_{\langle \mathcal{I}^+,\Lambda\rangle} | \Lambda \text{ is apposite}\}$ corresponding to the *e*-ideal \mathcal{I} will be denoted by $\mathcal{K}_{\mathcal{I}}$.

Theorem 1.2 [3] Given any admissible set \mathbb{A} , there exists a model $\mathfrak{M}_0 \in \mathcal{K}_{\mathcal{I}_e(\mathbb{A})}$ such that $\mathfrak{M}_0 \leq_{\Sigma} \mathbb{A}$.

Theorem 1.3 [3] Let \mathcal{I} be an *e*-ideal and $\mathfrak{M}_0 \in \mathcal{K}_{\mathcal{I}}$. Then $S \subseteq \mathcal{P}(\omega)$ is computable on $\mathbb{HF}(\mathfrak{M}_0)$ iff $S \cup \{\emptyset\} = \{\Theta_n(R, A) \mid n \in \omega, R \in \mathcal{I}^*\}$ for some $A \in \mathcal{I}^*$ and a computable sequence $\{\Theta_n\}_{n \in \omega}$ of enumeration operators.

A class \mathcal{R} of admissible sets will be called \mathcal{I} -minimal if it satisfies the following conditions:

- for any admissible set \mathbb{A} with $\mathcal{I}_e(\mathbb{A}) = \mathcal{I}$ there exists an admissible set $\mathbb{B} \in \mathcal{R}$ such that $\mathbb{B} \sqsubseteq_{\Sigma} \mathbb{A}$;
- $\mathbb{B}_0 \equiv \mathbb{A}_0$ for any admissible sets \mathbb{B}_0 , $\mathbb{B}_1 \in \mathcal{R}$.

A sequence $\{\mathcal{R}_{\mathcal{I}}\}_{\mathcal{I}\in\mathcal{J}(L_e)}$ of \mathcal{I} -minimal classes will be called *uniform* if it satisfies the following conditions:

- all the classes of the sequence contain models in the same signature;
- if $\mathcal{I}_0, \mathcal{I}_1 \in \mathcal{J}(L_e)$ satisfy $\mathcal{I}_0 \leq \mathcal{I}_1$ then for every model $\mathbb{A}_0 \in \mathcal{R}_{\mathcal{I}_0}$ there exists $\mathbb{A}_1 \in \mathcal{R}_{\mathcal{I}_1}$ such that $\mathbb{A}_0 \leq \mathbb{A}_1$;
- if $\mathcal{I}_0, \mathcal{I}_1 \in \mathcal{J}(L_e)$ satisfy $\mathcal{I}_0 \leq \mathcal{I}_1$ then for every model $\mathbb{A}_1 \in \mathcal{R}_{\mathcal{I}_1}$ there exists $\mathbb{A}_0 \in \mathcal{R}_{\mathcal{I}_0}$ such that $\mathbb{A}_0 \leq \mathbb{A}_1$.

Notice that the sequence $\{\{\mathbb{HF}(\mathfrak{M}) \mid \mathfrak{M} \in \mathcal{K}_{\mathcal{I}}\}\}_{\mathcal{I} \in \mathcal{J}(L_e)}$ is uniform.

2 A description of Σ -subsets

First we give some description of Σ -subsets on hereditarily finite sets over models from $\mathcal{K}_{\mathcal{I}}$. Notice that it coincides with the Rice-Shapiro description of index sets.

Let X, Y be sets. We say that X is approximately equal to Y (in symbols, $X \approx Y$) if $(X \setminus Y) \cup (Y \setminus X)$ is finite. Recall that $\lambda_{\mathfrak{M}_0}$ is the natural map from $\operatorname{Code}(\mathfrak{M}_0)$ to the power of ω .

Proposition 2.1 Let \mathcal{I} be an *e*-ideal, $\mathfrak{M}_0 \in \mathcal{K}_{\mathcal{I}}$ and $k \ge 0$. Then the following conditions are equivalent:

- 1. $X \subseteq \text{Code}(\mathfrak{M}_0)$ is definable in $\mathbb{HF}(\mathfrak{M}_0)$ by some Σ -formula $\Phi(x_0)$ with parameters $s_0, \ldots, s_{k-1} \in \text{Code}(\mathfrak{M}_0)$;
- 2. $X \cup \{s_0, \ldots, s_{k-1}\} = \{x \in \operatorname{Code}(\mathfrak{M}_0) \mid \exists u \in \Theta(\lambda_{\mathfrak{M}_0}(s_0) \oplus \ldots \oplus \lambda_{\mathfrak{M}_0}(s_{k-1}))(D_u \subseteq \lambda_{\mathfrak{M}_0}(x))\} \cup \{s_0, \ldots, s_{k-1}\}$ for some enumeration operator Θ .

Moreover, a number of some formula Φ (some enumeration operator Θ) can be effectively found by the number of enumeration operator Θ (formula Φ).

Proof. Let \mathcal{I} and \mathfrak{M}_0 be objects from the proposition. For any $A \in \mathcal{I}^*$, we let $Y_A = \{x \in \operatorname{Code}(\mathfrak{M}_0) \mid \exists u \in A(D_u \subseteq \lambda_{\mathfrak{M}_0}(x))\}.$

 $(2 \Rightarrow 1)$ Notice that if Y is Σ -subset on $\mathbb{HF}(\mathfrak{M}_0)$ and $X \approx Y$ then X is too. Let $A \in \mathcal{I}^*$ and $X \approx Y_A$. Then it follows from $\mathcal{I}_e(\mathbb{HF}(\mathfrak{M}_0)) = \mathcal{I}$ and

$$x \in Y_A \Leftrightarrow \exists u [u \in A \land \forall t \in D_u \exists z Q(z, x, t)]$$

that Y_A is Σ subset on $\mathbb{H}\mathbb{F}(\mathfrak{M}_0)$ and hence X is Σ too.

 $(1 \Rightarrow 2)$ Let X be definable by some Σ formula $\Phi(x_0, s_0, \ldots, s_{k-1})$ with parameters $s_0, \ldots, s_{k-1}, k \ge 0$, from dom (\mathfrak{M}_0) (we assume this list is empty for k = 0). We can suppose that all the parameters are from $\operatorname{Code}(\mathfrak{M}_0)$. First we prove two lemmas.

Lemma 2.1 Let $x, y \in \text{Code}(\mathfrak{M}_0)$ be such that $x \in X$, $\lambda_{\mathfrak{M}_0}(x) \subseteq \lambda_{\mathfrak{M}_0}(y)$ and $\{x, y\} \cap \{s_0, \ldots, s_{k-1}\} = \emptyset$. Then $y \in X$.

To prove the lemma we construct an auxiliary model \mathfrak{M}_1 in the signature $\{0, s^2, Q^3\}$ as follows: given $n \in \lambda_{\mathfrak{M}_0}(y) \setminus \lambda_{\mathfrak{M}_0}(x)$ we take $z_n \notin \operatorname{dom}(\mathfrak{M}_0)$ so that $z_{n_1} \neq z_{n_2}$ for $n_1 \neq n_2$. Now we let $\operatorname{dom}(\mathfrak{M}_1) = \operatorname{dom}(\mathfrak{M}_0) \cup \{z_n \mid n \in \lambda_{\mathfrak{M}_0}(y) \setminus \lambda_{\mathfrak{M}_0}(x)\}$, $s^{\mathfrak{M}_1} = s^{\mathfrak{M}_0}, 0^{\mathfrak{M}_1} = 0^{\mathfrak{M}_0}, Q^{\mathfrak{M}_1} = Q^{\mathfrak{M}_0} \cup \{\langle z_n, x, n \rangle \mid n \in \lambda_{\mathfrak{M}_0}(y) \setminus \lambda_{\mathfrak{M}_0}(x)\}$. It can be easily verified that $\operatorname{H\!F}(\mathfrak{M}_0) \leq_{\operatorname{end}} \operatorname{H\!F}(\mathfrak{M}_1)$ and hence $\operatorname{H\!F}(\mathfrak{M}_1) \models \Phi(x, s_0, \ldots, s_{k-1})$. Furthermore, there is an isomorphism $f : \operatorname{H\!F}(\mathfrak{M}_1) \to \operatorname{H\!F}(\mathfrak{M}_0)$ satisfying f(x) = y and $f(s_i) = s_i$ for any i < k. Hence, $\operatorname{H\!F}(\mathfrak{M}_0) \models \Phi(y, s_0, \ldots, s_{k-1})$. Thus $y \in X$. \Box

Lemma 2.2 Let $x \in X$ be such that $x \notin \{s_0, \ldots, s_{k-1}\}$. Then there is $y \in X \setminus \{s_0, \ldots, s_{k-1}\}$ such that $\lambda_{\mathfrak{M}_0}(y)$ is finite and $\lambda_{\mathfrak{M}_0}(y) \subseteq \lambda_{\mathfrak{M}_0}(x)$.

Since Φ is Σ formula and $\mathbb{HF}(\mathfrak{M}_0) \models \Phi(x, s_0, \ldots, s_{k-1})$ there exists a finitely generated (in this case, a finite) model $\mathfrak{M}'_0 \leq \mathfrak{M}_0$ such that $\mathbb{HF}(\mathfrak{M}'_0) \models \Phi(x, s_0, \ldots, s_{k-1})$. We can suppose that $\omega \cap |\mathfrak{M}'_0|$ is an initial segment of ω . Let $y \in \operatorname{Code}(\mathfrak{M}_0) \setminus \operatorname{Code}(\mathfrak{M}'_0)$ be such that $\lambda_{\mathfrak{M}_0}(y) = \lambda_{\mathfrak{M}'_0}(x)$. Then there exists an embedding $f' : \mathbb{HF}(\mathfrak{M}'_0) \to \mathbb{HF}(\mathfrak{M}_0)$ satisfying f'(x) = y and $f' \upharpoonright (|\mathfrak{M}'_0| \setminus \{x\}) = id_{(|\mathfrak{M}'_0| \setminus \{x\})}$. It is obvious that $f'(\mathbb{HF}(\mathfrak{M}'_0)) \leq_{\mathrm{end}} \mathbb{HF}(\mathfrak{M}_0)$ and hence $\mathbb{HF}(\mathfrak{M}_0) \models \Phi(y, s_0, \ldots, s_{k-1})$. Thus $y \in X$. \Box

Return to proof of the proposition 2.1. Consider collection of all the finite models \mathfrak{M}^0 in the signature $\{Q^3, s^2, 0\}$ satisfying the following conditions:

- $\omega \cap |\mathfrak{M}^0|$ is a proper initial segment of ω ;
- the symbols 0 and s are interpreted as above;
- $\forall x (x \in \omega \leftrightarrow \exists z \exists n Q(z, n, x));$
- $\forall x (x \notin \omega \leftrightarrow \exists z \exists n \in \omega(Q(z, x, n) \lor Q(x, z, n)));$
- $\forall x (\exists z \exists n Q(x, z, n) \to (\exists z \exists n Q(x, z, n) \land \forall z \forall n \neg Q(z, x, n))).$

It is evident that the collection is strongly computable, that is, there is a strongly computable sequence of domains of models with uniformly computable signature relations.

By \mathcal{S} we denote the collection of models with the effective structure given on them. Then a relation $\mathbb{HF}(\mathfrak{M}^0) \models \Phi(x, a_0, \ldots, a_{k-1})$ will be computably enumerable in respect to $\mathfrak{M}^0 \in \mathcal{S}$, Σ formula Φ and elements x, a_0, \ldots, a_{k-1} of dom(\mathfrak{M}^0). Now we introduce one more auxiliary notion. Let $\mathfrak{M}, \mathfrak{M}'$ be models in a signature σ and $\sigma' \subseteq \sigma$. A homomorphism $\phi : \mathfrak{M} \to \mathfrak{M}'$ will be called σ' -embedding if $\phi : \mathfrak{M} \upharpoonright \sigma' \to \mathfrak{M}' \upharpoonright \sigma'$ is embedding. We say that \mathfrak{M} is σ' -embeddable into \mathfrak{M}' (in symbols, $\mathfrak{M} \hookrightarrow_{\sigma'} \mathfrak{M}'$) if there exists σ' -embedding $\phi : \mathfrak{M} \to \mathfrak{M}'$. Let A be

$$\{ u : \exists \mathfrak{M}^{0} \in \mathcal{S} \exists x \in |\mathfrak{M}^{0}| [\mathbb{HF}(\mathfrak{M}^{0}) \models \Phi(x, u_{0}, \dots, u_{k-1}) \land \land \bigwedge_{i=0}^{k-1} \neg (x = u_{i}) \land ((\mathfrak{M}^{0}, u_{0}, \dots, u_{k-1}) \hookrightarrow_{\{s\}} (\mathfrak{M}_{0}, s_{0}, \dots, s_{k-1})) \land (1) \land (\forall t \in |\mathfrak{M}^{0}| ((\exists z \in |\mathfrak{M}^{0}| \langle z, x, t \rangle \in Q^{\mathfrak{M}^{0}}) \leftrightarrow t \in D_{u}))] \}.$$

It can be easily established that $(\mathfrak{M}^0, u_0, \ldots, u_{k-1}) \hookrightarrow_{\{s\}} (\mathfrak{M}_0, s_0, \ldots, s_{k-1})$ iff $\forall i < k[D_{u_i} \subseteq \lambda_{\mathfrak{M}_0}(s_i)]$, so, by (1), we obtain $A \leq_e \lambda_{\mathfrak{M}_0}(s_0) \oplus \ldots \oplus \lambda_{\mathfrak{M}_0}(s_{k-1})$. To prove $X \approx Y_A$ it suffices for every \exists -formula φ in the signature $\{Q, s, 0\}$ to find some \exists -formula ψ with positive occurence of Q which is equivalent to φ in respect of \mathfrak{M}_0 and models from \mathcal{S} . But it can be made, by induction on complexity of formulas, from the following relation:

$$\neg Q(x_0, x_1, x_2) \equiv \exists x_3 \exists x_4 (Q(x_3, x_0, x_4) \lor (Q(x_3, x_4, x_0) \lor (Q(x_1, x_3, x_4) \lor (Q(x_3, x_4, x_1) \lor (Q(x_2, x_3, x_4) \lor (Q(x_3, x_2, x_4) \lor (Q(x_3, x_3, x_4) \land (\neg (x_1 = x_3) \lor \neg (x_2 = x_4)))))))))))$$

Corollary 2.1 Let X be definable in $\mathbb{HF}(\mathfrak{M}_0)$ by some Σ formula with parameters s_0, \ldots, s_{k-1} from $\operatorname{Code}(\mathfrak{M}_0) \quad \langle a_0, a_1, \ldots, a_{l-1} \rangle \in X$, $l \ge 1$ where $a_i \in \operatorname{Code}(\mathfrak{M}_0)$, $0 \le i < l$; $a_i \ne a_j$ for $0 \le i < j < l$; $s_q \ne a_r$, $0 \le q < k$, $0 \le r < l$. Then there is a finite $F \subseteq \omega$ such that $\langle b_0, b_1, \ldots, b_{l-1} \rangle \in X$ for every $b_i \in \operatorname{Code}(\mathfrak{M}_0)$, $0 \le i < l$, with the following properties: $F \subseteq \lambda_{\mathfrak{M}_0}(b_i)$, $0 \le i < l$; $b_i \ne b_j$ for $0 \le i < j < l$; $s_q \ne b_r$, $0 \le q < k$, $0 \le r < l$.

3 On principles on \mathcal{I} -minimal admissible sets

We say that an admissible set \mathbb{A} satisfies the *reduction property* if for any $B, C \in \Sigma(\mathbb{A})$ there are distinct $B_0, C_0 \in \Sigma(\mathbb{A})$ with $B_0 \subseteq B, C_0 \subseteq C$, $B_0 \cup C_0 = B \cup C$. The results concerning this property can be seen in [2, 4].

Proposition 3.1 Let \mathcal{I} be an *e*-ideal and $\mathfrak{M}_0 \in \mathcal{K}_{\mathcal{I}}$. Then the reduction principle doesn't hold on $\mathbb{HF}(\mathfrak{M}_0)$.

Proof. Let $X_0 = \{x \in \text{Code}(\mathfrak{M}_0) \mid 0 \in \lambda_{\mathfrak{M}_0}(x)\}$ and $X_1 = \{x \in \text{Code}(\mathfrak{M}_0) \mid 1 \in \lambda_{\mathfrak{M}_0}(x)\}$. These sets are Σ definable. Let $Y_i \subseteq X_i$, i = 0, 1, be Σ subsets and satisfy $X_0 \cup X_1 = Y_0 \cup Y_1$. Then, by proposition 2.1, there is $a \in Y_0 \cap Y_1$ such that $\lambda_{\mathfrak{M}_0}(a) = \{0, 1\}$. \Box

We say that an admissible set A satisfies the *total extension property* if for every partial Σ function φ there is a total Σ function f extending φ , that is, $\Gamma_{\varphi} \subseteq \Gamma_f$.

Proposition 3.2 Let \mathcal{I} be an *e*-ideal and $\mathfrak{M}_0 \in \mathcal{K}_{\mathcal{I}}$. Then $\mathbb{HF}(\mathfrak{M}_0)$ doesn't satisfy the total extension property.

Proof. Suppose that this proposition doesn't hold for some e-ideal \mathcal{I} . Take $\mathfrak{M}_0 \in \mathcal{K}_{\mathcal{I}}$ for such an ideal \mathcal{I} ; consider a partial Σ -function $\varphi(x, y)$ such that $\varphi(x, y) = z \Leftrightarrow Q(z, y, x)$. Let f(x, y) be a total Σ -function extending φ . Notice that if $\lambda_{\mathfrak{M}_0}(a) = A$ then $n \notin A \Leftrightarrow \exists z [\neg Q(z, a, n) \land (f(n, a) = z)]$ so it is necessary that \mathcal{I} would closed under the jump operation. Now let $s_0, s_1, \ldots, s_{k-1}$ be parameters from $\operatorname{Code}(\mathfrak{M}_0)$ being used in a definition Γ_f . Then we take any $b \in \operatorname{Code}(\mathfrak{M}_0)$ such that $\lambda_{\mathfrak{M}_0}(b) \neq \omega$ and b is not a parameter. By corollary 2.1, we have $n \notin \omega$ for $n \notin \lambda_{\mathfrak{M}_0}(b)$, contradictory. \Box

To prove further propositions we introduce effective encoding of elements of a hereditarily finite set $\mathbb{HF}(\mathfrak{M})$ by ordered pairs of form $\langle n, g \rangle$ where n range natural ordinals and g is a finite injective function with $\delta g \in \omega$ (this value will be effectively defined by n; see below) and $\rho g \subseteq \operatorname{dom}(\mathfrak{M})$. A number n is a code in some bijective computation representation of constructions of elements of hereditarily finite sets. By *construction* we mean an arbitrary term in a signature $\{\emptyset, \bigcup^2, \{\}^1\}$ without fictitious variables; its variables range dom (\mathfrak{M}) only. Notice that the construction is independent of a choise of a hereditarily finite set. We say that constructions $t_1(u_0, u_1, \ldots, u_{k-1})$, $k \ge 0$, and $t_2(v_0, v_1, \ldots, v_{l-1})$, $l \ge 0$, are equivalent if k = l and

$$t_1^{\langle HF(\operatorname{dom}(\mathfrak{M})), \emptyset, \cup, \{ \} \rangle}(a_0, \dots, a_{k-1}) = t_2^{\langle HF(\operatorname{dom}(\mathfrak{M})), \emptyset, \cup, \{ \} \rangle}(a_{\pi(0)}, \dots, a_{\pi(k-1)})$$

for some permutation π of $\{0, 1, \ldots, k - 1\}$ and a tuple $\langle a_0, a_1, \ldots, a_{k-1} \rangle$ of pairwise distinct elements being from dom(\mathfrak{M}) (if k = 0 then assume that the tuple of elements and the permutation are empty). Notice that the equivalence of constructions doesn't imply the equality of them as terms. We define δg as a number of variables of the construction (obviously, it is equal to a cardinal number of some term value support). Now we correspond a pair $\langle n, g \rangle$ to x if $x = t_n^{\langle HF(\operatorname{dom}(\mathfrak{M})), \emptyset, \cup, \{ \} \rangle}(g(0), g(1), \dots, g(\delta g - 1)).$ The above reasoning allow to conclude that the function $\operatorname{Term}(n,g)$ $t_n^{\langle HF(\operatorname{dom}(\mathfrak{M})), \varnothing, \cup, \{\}\rangle}(g(0), g(1), \ldots, g(\delta g - 1))$ is Σ definable. Furthermore, we can provide that for the code $\langle n, q \rangle$ of x it can be effectively found collection of all the pair coding elements of a "set" x. To make this, it suffices to consider a hereditarily finite set $\mathbb{HF}(\mathfrak{N})$ over $\mathfrak{N} = \langle \omega, 0, s \rangle$ where s is the successor function on naturals. The main sense of construction is that given a number it can be effectively found the structure of the corresponding elements. It is important that this encoding is independent of a choise of hereditarily finite set, that is, it can be defined by the same formula in all the hereditarily finite set. The coding is one-to-one under the first coordinate and, in general, isn't one-to-one under the second ones. E.g., $\{a_0, a_1\} = \{a_1, a_0\}$ has two codes. However, there is a bijective correspondence between collection of all permutations π such that $t_n^{\langle HF(\operatorname{dom}(\mathfrak{M})), \varnothing, \cup, \{\} \rangle}(a_0, a_1, \ldots, a_{k-1}) = t_n^{\langle HF(\operatorname{dom}(\mathfrak{M})), \varnothing, \cup, \{\} \rangle}(a_{\pi(0)}, a_{\pi(1)}, \ldots, a_{\pi(k-1)})$ and collection of all codes for every construction having a number n. Collection of all the permutations corresponding to n (we will denote it by S_n) is a group. Obviously, the sequence $\{S_n\}_{n\in\omega}$ is strongly computable.

Let $\mathfrak{M}_0 \in \mathcal{K}_{\mathcal{I}}$ for some *e*-ideal \mathcal{I} and γ_0 , γ_0^* functions defined in section 1.2. Now we introduce encoding of triples $\langle n, g_0, g_1 \rangle$ satisfying the following conditions:

- $g_0 \cup g_1$ is a finite permutation with $\delta(g_0 \cup g_1) \in \omega$ and $\delta g_0 \in \omega$;
- $g_0 \cap g_1 = \emptyset;$
- $\delta g_0 < \operatorname{card}_n$ where card_n is a cardinal number of the support of a "set" having a number of construction n.

Here range of g_1 is a set of parameters; given a triple $\langle n, g_0, g_1 \rangle$ we will construct an element Term(n, g) for some g satisfying $g^{-1}(\{s_0, \ldots, s_{k-1}\}) \subseteq \rho g_1$ where $s_i, i < k$, are parameters; $g^{-1}(\operatorname{sp}(g) \setminus \{s_0, s_1, \ldots, s_{k-1}\}) = \rho g_0$. A code of $\langle n, g_0, g_1 \rangle$ is denoted by $\langle n, g_0, g_1 \rangle$.

Let \mathcal{I} be an *e*-ideal. We say that \mathcal{I} has an *universal function* (and we write $\mathbf{Uf}(\mathcal{I})$) if there is a computable sequence $\{\Theta_n\}_{n\in\omega}$ and a set A with $d_e(A) \in \mathcal{I}$ such that $\{\Theta_n(R \oplus A) \mid n \in \omega, d_e(R) \in \mathcal{I}\}$ contains exactly all the graphs of partial functions f with $d_e(\Gamma_f) \in \mathcal{I}$.

Let \mathbb{A} be an admissible set. A partial Σ function f(x, y) is called *universal* if $\{f(a, y) \mid a \in \operatorname{dom}(\mathbb{A})\}$ contains exactly all the partial Σ functions.

Examples of admissible sets with universal Σ functions and without ones were constructed in [2, 5].

Proposition 3.3 Let an *e*-ideal \mathcal{I} is that there is an universal in \mathcal{I} function. Then $\mathbb{HF}(\mathfrak{M}_0)$ has an universal Σ function for any $\mathfrak{M}_0 \in \mathcal{K}_{\mathcal{I}}$.

Proof. Let f(x) be a partial Σ function on $\mathbb{HF}(\mathfrak{M}_0)$; then $\gamma_0 \circ f \circ \gamma_0^*$ is a partial Σ function on $\mathbb{HF}(\mathfrak{M}_0)$ mapping from $HF(\operatorname{Code}(\mathfrak{M}_0))$ to $HF(\operatorname{Code}(\mathfrak{M}_0))$. Furthermore, we can assume that the last function is definable by some Σ formula with parameters being from $\operatorname{Code}(\mathfrak{M}_0)$ (via γ_0^*). First we construct a Σ function, which is universal for class of all the partial Σ functions f with $\operatorname{Field}(f) \subseteq HF(\operatorname{Code}(\mathfrak{M}_0))$.

 $\langle 1 \rangle$ Let f be a partial function with $\operatorname{Field}(f) \subseteq HF(\operatorname{Code}(\mathfrak{M}_0))$, which is definable by some Σ formula with parameters s_0, \ldots, s_{k-1} being from $\operatorname{Code}(\mathfrak{M}_0)$, and $f(\operatorname{Term}(n,g)) = \operatorname{Term}(m,g')$. Then the following hold:

- 1. $\rho g' \subseteq \rho g \cup \{s_0, \dots, s_{k-1}\};$
- 2. Term $(m, \pi \circ g')$ = Term(m, g') for any permutation π of the set $\rho g \cup \{s_0, \ldots, s_{k-1}\}$ satisfying $\pi \upharpoonright (\rho g \setminus (\rho g' \cup \{s_0, \ldots, s_{k-1}\})) = id$ and Term $(n, \pi \circ g)$ = Term(n, g).

This follows immediately from corollary 2.1.

Now we correspond to every partial Σ function f considered in $\langle 1 \rangle$ some Σ predicate R_f as follows: for every $x \in \delta f$ take the least number $\langle n, g_0, g_1 \rangle$ such that $x = \text{Term}(n, (\theta_0 \cup \theta_1) \circ (g_0 \cup g_1)^{-1} \upharpoonright |\operatorname{sp}(x)|)$ for $\theta_1 : i + |\operatorname{sp}(x) \setminus \{s_0, \ldots, s_{k-1}\}| \mapsto s_i, i < k$, and some injective function

$$\theta_0: |\mathrm{sp}(x) \setminus \{s_0, \ldots, s_{k-1}\}| \mapsto \mathrm{sp}(x) \setminus \{s_0, \ldots, s_{k-1}\};$$

further, if f(x) = y and x is given by $\langle n, g_0, g_1 \rangle$ then for y take the least number $\langle m, \emptyset, g'_1 \rangle$ such that $y = \operatorname{Term}(m, (\theta_0 \cup \theta_1) \circ g'_1^{-1} \upharpoonright |\operatorname{sp}(y)|), \ \delta(g_0 \cup g_1) = \delta g'_1$ for θ_0, θ_1 from definition of $\langle n, g_0, g_1 \rangle$. In this case, $\langle \langle n, g_0, g_1 \rangle, \langle m, \emptyset, g'_1 \rangle \rangle \in R_f$. Notice that $x, x' \in \delta f$ have the same code iff their constructions over the parameters s_0, \ldots, s_{k-1} coinside. Furthermore, $\langle x, y \rangle, \langle x', y' \rangle \in \Gamma_f$ have the same pair of codes iff their constructions over the parameters s_0, \ldots, s_{k-1} coinside. It follows from properties of the constructions that R_f is a Σ predicate.

 $\langle 2 \rangle R_f$ is graph of some number Σ -function. Assume that it doesn't hold. Then it follows from the description that there are found $\langle x, y \rangle, \langle x', y' \rangle \in \Gamma_f$ such that x, x' have the same construction over parameters s_0, \ldots, s_{k-1} but the constructions $\langle x, y \rangle, \langle x', y' \rangle$ over parameters s_0, \ldots, s_{k-1} are different. Let a be that the constructions of a, x over parameters s_0, \ldots, s_{k-1} coinside and $\lambda_{\mathfrak{M}_0}(u) = \omega$ for every $u \in \operatorname{sp}(a) \setminus \{s_0, \ldots, s_{k-1}\}$. Then it follows from 2.1 that there exist b, b' such that $\langle a, b \rangle, \langle a, b' \rangle \in \Gamma_f$ and the constructions of $\langle a, b \rangle$, $\langle x, y \rangle$ and $\langle a, b' \rangle, \langle x, y' \rangle$ over parameters s_0, \ldots, s_{k-1} coinside respectively, but this contradicts to f being a function.

Further, let $R \subseteq \text{Ord} \mathbb{H}\mathbb{F}(\mathfrak{M}_0)$ be a Σ -subset on $\mathbb{H}\mathbb{F}(\mathfrak{M}_0)$. By $G_R[s_0, s_1, \ldots, s_{k-1}]$ where $s_0, s_1, \ldots, s_{k-1}$ are from $\text{Code}(\mathfrak{M}_0)$ (they will play a role of parameters) we denote a Σ -predicate defined as follows:

let $\langle \langle n, g_0, g_1 \rangle, \langle m, \emptyset, g'_1 \rangle \rangle \in R$, satisfy the following conditions:

- 1. $|\delta g_1| = k, \, \delta(g_0 \cup g_1) = \delta g'_1;$
- 2. Term $(m, (g'_1)^{-1} \upharpoonright \operatorname{card}_m) = \operatorname{Term}(m, ((g'_1)^{-1} \circ \pi) \upharpoonright \operatorname{card}_m)$ for every permutation $\pi : \delta g'_1 \to \delta g'_1$ satisfying the conditions $\pi \upharpoonright ((\delta g_0 \setminus \{m \mid g'_1(m) < \operatorname{card}_m\}) \cup \delta g_1) = id$ (here card_m is the cardinal number of support of element with construction number m) and $\operatorname{Term}(n, (g_0 \cup g_1)^{-1} \upharpoonright \operatorname{card}_n) = \operatorname{Term}(n, ((g_0 \cup g_1)^{-1} \circ \pi) \upharpoonright \operatorname{card}_n);$
- 3. $\langle n, g_0, g_1 \rangle$, $\langle m, \emptyset, g'_1 \rangle$ are the least numbers among giving Term $(n, (g_0 \cup g_1)^{-1} \upharpoonright \operatorname{card}_n)$ and Term $(n, (g'_1)^{-1} \upharpoonright \operatorname{card}_m)$ respectively;

then we put to $G_R[s_0, s_1, \ldots, s_{k-1}]$ all pairs $\langle x, y \rangle$ such that $x = \operatorname{Term}(n, (\theta_0 \cup \theta_1) \circ (g_0 \cup g_1)^{-1}), y = \operatorname{Term}(m, (\theta_0 \cup \theta_1) \circ (g'_1)^{-1})$ where $\theta_1 : \delta g_0 + i \mapsto s_i, i < k; \delta(\theta_0 \cup \theta_1) = \delta g'_1$ and $\theta_0 \cup \theta_1$ is injective.

 $\langle 3 \rangle$ If a partial function $f : HF(\text{Code}(\mathfrak{M}_0)) \to HF(\text{Code}(\mathfrak{M}_0))$ is definable by some Σ formula with parameters $s_0, s_1, \ldots, s_{k-1}$ being from $\text{Code}(\mathfrak{M}_0)$, then $\Gamma_f \subseteq G_{R_f}[s_0, s_1, \ldots, s_{k-1}]$. It follows immediately from the descriptions. $\langle 4 \rangle$ If $R \subseteq \text{Ord } \mathbb{HF}(\mathfrak{M}_0)$ is graph of some Σ function, then so $G_R[s_0, \ldots, s_{k-1}]$ is for any s_0, \ldots, s_{k-1} being from $\text{Code}(\mathfrak{M}_0)$. First notice that if R is graph of some Σ function, then the set of pairs of R satisfying 1-3, is too, so assume that all elements of R satisfy 1-3. However, these conditions provide the desired property.

Further, by $\mathbf{Uf}(\mathcal{I})$, there exists a Σ predicate Q, which is universal for class of graphs of all number Σ functions. Let Q_a be a set with a code ain Q. By S we denote a Σ predicate, which is universal for class of all Σ subsets on $\mathbb{HF}(\mathfrak{M}_0)$ and by S_b a set with a code b in S. Then a Σ predicate $T \rightleftharpoons \{\langle \langle a, b, s \rangle, c \rangle \mid s \in \operatorname{Code}(\mathfrak{M}_0)^{<\omega}, a, b \in HF(M_0), c \in S_b \cap G_{Q_a}[s]\}$ is universal for class of graphs of all partial Σ functions f with $\operatorname{Field}(f) \subseteq$ $HF(\operatorname{Code}(\mathfrak{M}_0)).$

Finally, if g(x, y) is a Σ function, which is universal for class of all unary Σ functions f with Field $(f) \subseteq HF(\text{Code}(\mathfrak{M}_0))$, then $g^*(x, y) \rightleftharpoons \gamma_0^*g(x, \gamma_0(y))$ is an universal Σ function. \Box

Let \mathcal{I} be an *e*-ideal. We say that \mathcal{I} satisfies the *separation* property (in symbols, **Separation**(\mathcal{I})) if for all distinct sets B, C with $d_e(B) \in \mathcal{I}$, $d_e(C) \in \mathcal{I}$ there exists D with $d_e(D \oplus \overline{D}) \in \mathcal{I}$ such that $B \subseteq D \subseteq \omega \setminus C$.

Let \mathbb{A} be an admissible set. We say that \mathbb{A} satisfies the *separation* property if for all distinct sets $B, C \in \Sigma(\mathbb{A})$ there exists $D \in \Delta(\mathbb{A})$ such that $B \subseteq D \subseteq \operatorname{dom}(\mathbb{A}) \setminus C$.

First examples of admissible sets with the separation property were constructed by V.Rudnev [6].

Proposition 3.4 Let \mathcal{I} be an *e*-ideal satisfying the separation property. Then the separation principle holds in $\mathbb{H}\mathbb{F}(\mathfrak{M}_0)$ for any $\mathfrak{M}_0 \in \mathcal{K}_{\mathcal{I}}$.

Proof. Let \mathcal{I} and $\mathbb{HF}(\mathfrak{M}_0)$ be from the proposition. Take distinct Σ subsets A and B and construct a Δ subset C such that $A \subseteq C \subseteq HF(M_0) \setminus B$.

We set $A_0 = \gamma_0(A)$, $B_0 = \gamma_0(B)$. Notice that $A_0 \cap B_0 = \emptyset$. First we construct a Δ subset $C_0 \subseteq HF(\text{Code}(\mathfrak{M}_0))$ such that $A_0 \subseteq C_0 \subseteq HF(M_0) \setminus B_0$. To obtain it we introduce two set operators.

Given a subset $D \subseteq HF(\operatorname{Code}(\mathfrak{M}_0))$, which is definable by some Σ formula with parameters $s_0, s_1, \ldots, s_{k-1}$ being from $\operatorname{Code}(\mathfrak{M}_0)$, we find a Σ subset $S_D \subseteq \operatorname{Ord} \mathbb{HF}(\mathfrak{M}_0)$ by the following rules: for every $x \in D$ take the least number $\langle n, g_0, g_1 \rangle$ such that $x = \operatorname{Term}(n, (\theta_0 \cup \theta_1) \circ (g_0 \cup g_1)^{-1} \upharpoonright |\operatorname{sp}(x)|)$ where $\theta_1 : i + |\operatorname{sp}(x) \setminus \{s_0, \ldots, s_{k-1}\}| \mapsto s_i, i < k$, and $\theta_0 : |\operatorname{sp}(x) \setminus \{s_0, \ldots, s_{k-1}\}| \mapsto s_p(x) \setminus \{s_0, \ldots, s_{k-1}\}|$ is some injective function; then we put $\langle n, g_0, g_1 \rangle$ to S_D .

Further, given a Σ subset $H \subseteq \operatorname{Ord} \operatorname{H\!F}(\mathfrak{M}_0)$ we construct some Σ subset $V_H[s_0, \ldots, s_{k-1}] \subseteq HF(\operatorname{Code}(\mathfrak{M}_0))$ where s_0, \ldots, s_{k-1} are from $\operatorname{Code}(\mathfrak{M}_0)$ and play a role of parameters: let $\langle n, g_0, g_1 \rangle \in H$ satisfy the following conditions:

- 1. $|\delta g_1| = k;$
- 2. (n, g_0, g_1) is the least number giving $\operatorname{Term}(n, (g_0 \cup g_1)^{-1} \upharpoonright \operatorname{card}_n);$

then we put $\operatorname{Term}(n, (\theta_0 \cup \theta_1) \circ (g_0 \cup g_1)^{-1})$ to $V_H[s_0, \ldots, s_{k-1}]$ where θ_1 : $\delta g_0 + i \mapsto s_i, i < k, \, \delta(\theta_0 \cup \theta_1) = \delta(g_0 \cup g_1)$ and $\theta_0 \cup \theta_1$ is injective.

Return to proof of the proposition. We can assume that A_0 , B_0 are definable by some Σ formulas with the same parameters $s_0, s_1, \ldots, s_{k-1}$ being from $\operatorname{Code}(\mathfrak{M}_0)$. By corollary 2.1, $S_{A_0} \cap S_{B_0} = \emptyset$. Then there exists a Δ subset $R \subseteq \operatorname{Ord} \operatorname{H\!F}(\mathfrak{M}_0)$ such that $S_{A_0} \subseteq R \subseteq \omega \setminus S_{B_0}$, because of **Separation**(\mathcal{I}). Therefore

Therefore,

$$A_0 \subseteq V_{S_{A_0}}[s_0, \dots, s_{k-1}] \subseteq V_R[s_0, \dots, s_{k-1}]$$

and

$$B_0 \subseteq V_{S_{B_0}}[s_0, \ldots, s_{k-1}] \subseteq V_{\overline{R}}[s_0, \ldots, s_{k-1}].$$

Furthermore, it follows from the description that

$$V_R[s_0,\ldots,s_{k-1}] \cap V_{\overline{R}}[s_0,\ldots,s_{k-1}] = \emptyset,$$

 $V_R[s_0, \ldots, s_{k-1}] \cup V_{\overline{R}}[s_0, \ldots, s_{k-1}] = HF(\text{Code}(\mathfrak{M}_0)) \supseteq \gamma_0(HF(M_0)).$ To complete proof we set $C_0 = V_R[s_0, \ldots, s_{k-1}], C = \gamma_0^*(C_0).$

References

- H.Jr. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill Book Company, New York, St. LOuis, San Francisko, Toronto, London, Sydney, 1967.
- [2] Yu.L. Ershov. *Definability and computability*. Nauchnaya kniga, Novosibirsk, Ekonomika, Moscow, 2000 (in russian).
- [3] A.S. Morozov, V.G. Puzarenko. On Σ subsets of naturals. Algebra and logic, to appear. Siberian mathematical journal, to appear.

- [4] V.G. Puzarenko. On computability over models of decidable theories. Algebra and logic, **39**, 2(2000), 98 - 113.
- [5] V.A. Rudnev. A universal recursive function on admissible sets, Algebra and logic, 25, 4(1986), 267 – 273.
- [6] V.A. Rudnev. On the existence of an inseparate pair in the recursive theory of admissible sets. *Algebra and logic*, **27**, 1(1988), 48 56 (in russian).