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Abstract

K.M. Das [4], [5] has shown that the geometry of nondegenerate subspaces
of a symplectic space over a finite field is simply connected. The purpose
of the present article is to provide a short, direct and general proof of that
result for arbitrary fields. Some standard amalgam-theoretic consequences
for the groups Spa, (F) are given as well.

1 Introduction

Let F be a field and let V be a 2n-dimensional vector space over F endowed
with a nondegenerate alternating bilinear form. Let A(n,F) be the geometry of
rank n — 1 whose elements are the nondegenerate proper subspaces of V' with
natural incidence. Then the following holds.

Theorem 1. Let n > 4 and let F be a field. Then the geometry A(n,F) is
2-simply connected.

The rank of A(3,F) is two, whence it cannot be simply connected (the
incidence graph of A(3,F) is not a tree), so the above result is sharp.

The group Spa, (F) acts flag-transitively on A(n,F). Choose a canonical ba-

sis €1, fl: -5 En, fn of V. Then <617f1>7 <617f17627f2>7 LR <617f17 s 7en—1afn—1>
is a chamber (i.e., a maximal flag) of A(n,F). The maximal parabolics P,

1 <i < n—1 with respect to this chamber are of the form Sps;(F) x Spay,—2i (F).
A consequence of Theorem 1 is the following.

Theorem 2. Let n > 4 and let F be a field. Then Spa,(F) is the universal
completion of the amalgam of at least three mazimal parabolics P;.

*The author would like to express his gratitude to the organizers for the funding of his trip
to the USA and his stay at the conference.



Denote by A (n,F) the amalgam of 1- and 2-parabolics of Spa, (F) with re-
spect to the chamber (ey, f1), (e1, f1,€2, f2), .-+, {e1, f1,-+-,€n_1, fn—1). That
is, Ax(n,F) is the union of all intersections N;cyP; where J is a subset of
{1,...,n — 1} of co-cardinality at most two. Then we have the following.

Theorem 3. Let n > 4 and let F be a field. Then Spo,(F) is the universal
completion of the amalgam As(n,TF).

For finite fields Theorem 1 has been proved independently first by K.M. Das
([4] and [5], for all finite fields) and later by C. Hoffman, S. Shpectorov and the
author ([7], for all finite fields of size at least four). While Das achieved this
result as a consequence of his study of Quillen complexes of finite symplectic
groups based on work of Aschbacher [1] and Quillen [14], the proof by Hoffman,
Shpectorov and the author makes use of the simple connectedness of another
finite geometry that is closely related to A(n,F). The purpose of this paper is to
present a short, direct and general proof of the simple connectedness of A(n, F)
for an arbitrary field F. The investigation of geometries like A(n, F) is motivated
by the desire for a systematic approach to Phan-type theorems similar to the
results of [12] and [13]. For an outline of the idea, using chamber systems and
buildings, as well as precise definitions of flips and flipflop geometries refer to
[3]. (Note that those concepts are not relevant for the understanding of the
present article.) Example 1b and Example 2b of [3] give a description of similar
geometries. However one big difference remains: while the examples of [3] can
be described using flips and opposite chamber systems, one cannot obtain the
geometry A(n,F) in this way; for, a flip induced by a symplectic form does
not admit a chamber that is mapped onto its opposite, so the resulting flipflop
geometry is empty. The most remarkable property of A(n,F) is that the simple
connectedness holds and can be shown completely independent of the field.
Neither the geometry from Example 1b nor the geometry from Example 2b of
[3] have this property; they are not simply connected for low rank over the field
of two elements.

Theorem 2 and Theorem 3 dealing with the presentation of Spa,,(F) by cer-
tain amalgams nowadays are standard corollaries of Theorem 1. A classification
of those amalgams is not included in the present article. For a closely related
characterization of Spa,(F) refer to Theorem 4.4.25 of [6] or to the results of

[8].

2 Connectedness properties of A

Let F be a field and let V' be a 2n-dimensional vector space over F endowed
with a nondegenerate alternating bilinear form. Perpendicularity with respect
to that form is denoted by L. Let A = A(n,F) be the pregeometry of rank n—1
whose elements are the nondegenerate proper subspaces of V' with symmetrized
containment as incidence. The nondegenerate subspaces of V' of dimension two
are called points, those of dimension four lines and so on. Evidently, A is a
geometry (i.e., maximal flags are chambers, which means they have size n — 1).



Moreover, by induction on n using Witt’s theorem, the geometry A is flag-
transitive with the group Sp.,(F) as a flag-transitive group of automorphisms
of A; see Lemma, 7.3 of [7] for a proof.

Lemma 2.1. Let n > 2 and let [, m be nondegenerate two-dimensional sub-
spaces of V with IN'm = {0} and dim(I*- Nm) > 1. Then (I, m) is nondegener-
ate.

Proof. The statement is obvious, if m C I+. If m € I+, then m NI+ is a one-
dimensional subspace of V', say (p). Choose a canonical basis a, b of [ and choose
q € m, such that p, ¢ form a canonical basis of m. Then the Gram matrix of
the symplectic form restricted to (I, m) with respect to the basis a, b, p, ¢ has
the shape

0 1 0 =
-1 0 0 =x
o o0 0 1 )°
* x —1 0
which evidently has full rank, whence (I, m) is nondegenerate. O

Proposition 2.2. Let n > 3. Then the collinearity graph of A has diameter
two. In particular, A is connected.

Proof. Let I, m be nondegenerate two-dimensional subspaces of V. Let p be
an arbitrary one-dimensional subspace of (I,m)* and let ¢ be an arbitrary one-
dimensional subspace of V that intersects p* trivially. Then (p, ¢} is a point of
A (as ¢ € p*) which is collinear to [ and m (by Lemma 2.1). O

Corollary 2.3. Let n > 3. Then the geometry A is residually connected. O

Recall the definition of the fundamental group of a connected geometry I'.!
A path of length k in the geometry is a sequence of elements xg, ...,z of I’
such that x; and z;4; are incident, 0 <7 < k — 1. We do not allow repetitions;
hence x; # z;y1. A cycle based at an element z is a path in which zg =z =
z. Two paths are homotopically equivalent if one can be obtained from the
other via the following operations (called elementary homotopies): inserting or
deleting a return (i.e., a cycle of length 2) or a triangle (i.e., a cycle of length
3). The equivalence classes of cycles based at an element z form a group under
the operation induced by concatenation of cycles. This group is called the
fundamental group of T’ and denoted by 71 (I',z). A geometry is called simply
connected if its fundamental group is trivial.? Notice that in order to prove

INote that there are two concurrent notions of a fundamental group. One notion of a
fundamental group considers the (incidence graph of the) geometry I' as a one-dimensional
simplicial complex (triangles are not null-homotopic), the other notion considers the (incidence
graph of the) geometry as a two-dimensional simplicial complex (triangles are null-homotopic).
In the present paper we use the latter notion.

2Standard topology shows that a geometry is simply connected if and only if it does not
admit any proper simplicial cover. For combinatorial proofs see [9] or [10]; alternatively, see
[15].



that T' is simply connected it is enough to prove that any cycle based at x is
homotopically equivalent to the cycle of length 0. A cycle with this property is
called null-homotopic, or homotopically trivial.

Let us go back to the geometry A(n,F). We pick the base element x to be
a point of A.

Lemma 2.4. Letn > 4. Every cycle of A based at x is homotopically equivalent
to a cycle passing only through points and lines.

Proof. This follows immediately from the residual connectedness of A. See
Lemma 5.1 of [7] for a proof; alternatively, see [2]. |

We can therefore restrict our attention to the point-line incidence graph of A.
However, as A is not a partially linear geometry (there exist nondegenerate two-
dimensional subspaces of V' that are contained in more than one nondegenerate
four-dimensional subspace of V', so a pair of collinear points does not necessarily
admit a unique joining line), it is not immediately clear that we can restrict
ourselves to the collinearity graph of A. The following lemma takes care of that
problem.

Lemma 2.5. Let n > 4. Any digon p, l, q, m of A consisting of points p # q
and lines | # m is homotopically trivial.

Proof. The dimension of (I, m) equals five, because [ and m intersect in a three-
dimensional space. The space (x) = I N (I, m) is the radical of (I,m). Choosing
any vector y € [+\x", we obtain a nondegenerate six-dimensional space (I, m,y)
that contains the digon p, [, ¢, m. Therefore the digon is homotopically trivial.
O

The above lemma allows us to restrict our attention to the collinearity graph
of A, since the homotopy type of a path v passing through points and lines is
independent of the particular choice of the joining lines of the pairs of collinear
points occuring in y. In order to determine the fundamental group of I' we
have to distinguish between good and bad triangles, i.e., triangles a, b, ¢ whose
points span a nondegenerate subspace (a,b,c) of V and triangles a, b, ¢ whose
points do not span a nondegenerate subspace (a, b, c) of V. Obviously, a good
triangle is null-homotopic as it spans a line or a plane of the geometry A. For
bad triangles we have the following lemma.

Lemma 2.6. Let n > 4. Any triangle in the collinearity graph of A can be
decomposed into good triangles.

Proof. Let a, b, ¢ be the nondegenerate two-dimensional subspaces of V' that
constitute the three points of some triangle. Choose some line [ of A containing
a and b. The space [+ is nondegenerate and has dimension at least four. There-
fore, to any one-dimensional subspace p C (I, ¢)*, we can find a one-dimensional
subspace ¢ of I+ such that (p,q) =:d L I D (a,b) is nondegenerate and inter-
sects ¢ trivially. By Lemma 2.1, the space (¢, d) is nondegenerate, and we have



decomposed the triangle a, b, ¢ into triangles which admit two points that are
perpendicular.

So now assume we have a triangle a, b, ¢ with a L ¢. If and # @ and
bNc#(, then b C (a,c), and there is nothing to prove. Hence, by symmetry,
we can assume that bNc = 0. As above choose some line [ of A containing a
and b. The space [+ is nondegenerate and has dimension at least four. To any
one-dimensional subspace p C (I,c)*, we can find a one-dimensional subspace
q of I+ such that (p,q) =:d L [ D (a,b) is nondegenerate and intersects (b, c)
trivially. This is possible as the dimension of (b,c) NI+ is at most two (since
) = bnbt D bNIt). Notice that the triangles a, b, d and a, ¢, d are good
(indeed, d L I D a,b and a L ¢,d). Moreover, for hyperbolic bases zy, y, of
b and z., y. of ¢ and p, yg of d, we obtain the following Gram matrix for the
alternating form on (b, ¢, d) with respect to xp, ¥, ¢, Ye, D, Yd:

0 1 * 0 0
-1 0 = x 0 0
* x 0 1 0 =
* x —1 0 0 =
0 O 0 0 1
0 0 = x —1 0

Evidently, this matrix has full rank if and only if its submatrix consisting of
the first four rows and columns has full rank. But that submatrix is the Gram
matrix of the form restricted to the nondegenerate space (b,c). Therefore we
have decomposed the original triangle into good triangles. |

Lemma 2.7. Let n > 4. Any quadrangle in the collinearity graph of A can be
decomposed into triangles.

Proof. Let a, b, ¢, d be the nondegenerate two-dimensional subspaces of V' that
constitute the four points of some quadrangle in the collinearity graph of A.
Consider W := (a,b)* and U := (c,d)*. If W L U, then {c,d)* =U C W+ =
(a,b). Since the dimension of (c,d)* is at least four and the dimension of {a, b)
at most four, equality holds. But this implies that a L ¢ and b L d, yielding
an immediate decomposition of the quadrangle into triangles. If W L U, we
can find one-dimensional subspaces p C W, ¢ C U with p Y ¢q. The resulting

nondegenerate two-dimensional space e := (p,q) is collinear to a, b, ¢, d by
Lemma 2.1. (Notice that e cannot intersect a, b, ¢, or d nontrivially since
a,b Ll WCpande,dLUCgq butpfaq.) |

Lemma 2.8. Let n > 4. Any pentagon in the collinearity graph of A can be
decomposed into triangles and quadrangles.

Proof. Let a, b, ¢, d, e be the nondegenerate two-dimensional subspaces of V'
that constitute the five points of some pentagon in the collinearity graph of A.
Choose a line I of A passing through ¢ and d. Then [+ is nondegenerate and
has dimension at least four. Let p C (a,l)’ be an arbitrary one-dimensional
space. There exists a one-dimensional subspace of I+ that together with p



spans a nondegenerate space f that intersects a trivially. We have f 1 [ D
¢,d. Moreover, f also spans a nondegenerate space with a, by Lemma 2.1,
decomposing the pentagon. |

Any cycle of greater length decomposes by the bound on the diameter of the
collinearity graph of A from Lemma 2.2. Therefore A is simply connected. An
induction argument as in [7] implies that A is 2-simply connected, and Theorem
1 follows. The proof of Theorem 2 is identical to the proof of Theorem 4 of [7].
Theorem 3 follows by Tits’ lemma (Corollaire 1 of [16]) and a standard induction
argument as in the proof of Theorem 1 of [7].
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