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Abstra
t

K.M. Das [4℄, [5℄ has shown that the geometry of nondegenerate subspa
es

of a symple
ti
 spa
e over a �nite �eld is simply 
onne
ted. The purpose

of the present arti
le is to provide a short, dire
t and general proof of that

result for arbitrary �elds. Some standard amalgam-theoreti
 
onsequen
es

for the groups Sp

2n

(F) are given as well.

1 Introdu
tion

Let F be a �eld and let V be a 2n-dimensional ve
tor spa
e over F endowed

with a nondegenerate alternating bilinear form. Let �(n; F) be the geometry of

rank n � 1 whose elements are the nondegenerate proper subspa
es of V with

natural in
iden
e. Then the following holds.

Theorem 1. Let n � 4 and let F be a �eld. Then the geometry �(n; F) is

2-simply 
onne
ted.

The rank of �(3; F) is two, when
e it 
annot be simply 
onne
ted (the

in
iden
e graph of �(3; F) is not a tree), so the above result is sharp.

The group Sp

2n

(F) a
ts 
ag-transitively on �(n; F). Choose a 
anoni
al ba-

sis e

1

, f

1

, . . . , e

n

, f

n

of V . Then he

1

; f

1

i, he

1

; f

1

; e

2

; f

2

i, . . . , he

1

; f

1

; : : : ; e

n�1

; f

n�1

i

is a 
hamber (i.e., a maximal 
ag) of �(n; F). The maximal paraboli
s P

i

,

1 � i � n�1 with respe
t to this 
hamber are of the form Sp

2i

(F)�Sp

2n�2i

(F).

A 
onsequen
e of Theorem 1 is the following.

Theorem 2. Let n � 4 and let F be a �eld. Then Sp

2n

(F) is the universal


ompletion of the amalgam of at least three maximal paraboli
s P

i

.

�
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Denote by A

2

(n; F) the amalgam of 1- and 2-paraboli
s of Sp

2n

(F) with re-

spe
t to the 
hamber he

1

; f

1

i, he

1

; f

1

; e

2

; f

2

i, . . . , he

1

; f

1

; : : : ; e

n�1

; f

n�1

i. That

is, A

2

(n; F) is the union of all interse
tions \

i2J

P

i

where J is a subset of

f1; : : : ; n� 1g of 
o-
ardinality at most two. Then we have the following.

Theorem 3. Let n � 4 and let F be a �eld. Then Sp

2n

(F) is the universal


ompletion of the amalgam A

2

(n; F).

For �nite �elds Theorem 1 has been proved independently �rst by K.M. Das

([4℄ and [5℄, for all �nite �elds) and later by C. Ho�man, S. Shpe
torov and the

author ([7℄, for all �nite �elds of size at least four). While Das a
hieved this

result as a 
onsequen
e of his study of Quillen 
omplexes of �nite symple
ti


groups based on work of As
hba
her [1℄ and Quillen [14℄, the proof by Ho�man,

Shpe
torov and the author makes use of the simple 
onne
tedness of another

�nite geometry that is 
losely related to �(n; F). The purpose of this paper is to

present a short, dire
t and general proof of the simple 
onne
tedness of �(n; F)

for an arbitrary �eld F. The investigation of geometries like �(n; F) is motivated

by the desire for a systemati
 approa
h to Phan-type theorems similar to the

results of [12℄ and [13℄. For an outline of the idea, using 
hamber systems and

buildings, as well as pre
ise de�nitions of 
ips and 
ip
op geometries refer to

[3℄. (Note that those 
on
epts are not relevant for the understanding of the

present arti
le.) Example 1b and Example 2b of [3℄ give a des
ription of similar

geometries. However one big di�eren
e remains: while the examples of [3℄ 
an

be des
ribed using 
ips and opposite 
hamber systems, one 
annot obtain the

geometry �(n; F) in this way; for, a 
ip indu
ed by a symple
ti
 form does

not admit a 
hamber that is mapped onto its opposite, so the resulting 
ip
op

geometry is empty. The most remarkable property of �(n; F) is that the simple


onne
tedness holds and 
an be shown 
ompletely independent of the �eld.

Neither the geometry from Example 1b nor the geometry from Example 2b of

[3℄ have this property; they are not simply 
onne
ted for low rank over the �eld

of two elements.

Theorem 2 and Theorem 3 dealing with the presentation of Sp

2n

(F) by 
er-

tain amalgams nowadays are standard 
orollaries of Theorem 1. A 
lassi�
ation

of those amalgams is not in
luded in the present arti
le. For a 
losely related


hara
terization of Sp

2n

(F) refer to Theorem 4.4.25 of [6℄ or to the results of

[8℄.

2 Conne
tedness properties of �

Let F be a �eld and let V be a 2n-dimensional ve
tor spa
e over F endowed

with a nondegenerate alternating bilinear form. Perpendi
ularity with respe
t

to that form is denoted by ?. Let � = �(n; F) be the pregeometry of rank n�1

whose elements are the nondegenerate proper subspa
es of V with symmetrized


ontainment as in
iden
e. The nondegenerate subspa
es of V of dimension two

are 
alled points, those of dimension four lines and so on. Evidently, � is a

geometry (i.e., maximal 
ags are 
hambers, whi
h means they have size n� 1).
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Moreover, by indu
tion on n using Witt's theorem, the geometry � is 
ag-

transitive with the group Sp

2n

(F) as a 
ag-transitive group of automorphisms

of �; see Lemma 7.3 of [7℄ for a proof.

Lemma 2.1. Let n � 2 and let l, m be nondegenerate two-dimensional sub-

spa
es of V with l \m = f0g and dim(l

?

\m) � 1. Then hl;mi is nondegener-

ate.

Proof. The statement is obvious, if m � l

?

. If m 6� l

?

, then m \ l

?

is a one-

dimensional subspa
e of V , say hpi. Choose a 
anoni
al basis a, b of l and 
hoose

q 2 m, su
h that p, q form a 
anoni
al basis of m. Then the Gram matrix of

the symple
ti
 form restri
ted to hl;mi with respe
t to the basis a, b, p, q has

the shape

0

B

B

�

0 1 0 �

�1 0 0 �

0 0 0 1

� � �1 0

1

C

C

A

;

whi
h evidently has full rank, when
e hl;mi is nondegenerate. 2

Proposition 2.2. Let n � 3. Then the 
ollinearity graph of � has diameter

two. In parti
ular, � is 
onne
ted.

Proof. Let l, m be nondegenerate two-dimensional subspa
es of V . Let p be

an arbitrary one-dimensional subspa
e of hl;mi

?

and let q be an arbitrary one-

dimensional subspa
e of V that interse
ts p

?

trivially. Then hp; qi is a point of

� (as q 6� p

?

) whi
h is 
ollinear to l and m (by Lemma 2.1). 2

Corollary 2.3. Let n � 3. Then the geometry � is residually 
onne
ted. 2

Re
all the de�nition of the fundamental group of a 
onne
ted geometry �.

1

A path of length k in the geometry is a sequen
e of elements x

0

; : : : ; x

k

of �

su
h that x

i

and x

i+1

are in
ident, 0 � i � k � 1. We do not allow repetitions;

hen
e x

i

6= x

i+1

. A 
y
le based at an element x is a path in whi
h x

0

= x

k

=

x. Two paths are homotopi
ally equivalent if one 
an be obtained from the

other via the following operations (
alled elementary homotopies): inserting or

deleting a return (i.e., a 
y
le of length 2) or a triangle (i.e., a 
y
le of length

3). The equivalen
e 
lasses of 
y
les based at an element x form a group under

the operation indu
ed by 
on
atenation of 
y
les. This group is 
alled the

fundamental group of � and denoted by �

1

(�; x). A geometry is 
alled simply


onne
ted if its fundamental group is trivial.

2

Noti
e that in order to prove

1

Note that there are two 
on
urrent notions of a fundamental group. One notion of a

fundamental group 
onsiders the (in
iden
e graph of the) geometry � as a one-dimensional

simpli
ial 
omplex (triangles are not null-homotopi
), the other notion 
onsiders the (in
iden
e

graph of the) geometry as a two-dimensional simpli
ial 
omplex (triangles are null-homotopi
).

In the present paper we use the latter notion.

2

Standard topology shows that a geometry is simply 
onne
ted if and only if it does not

admit any proper simpli
ial 
over. For 
ombinatorial proofs see [9℄ or [10℄; alternatively, see

[15℄.
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that � is simply 
onne
ted it is enough to prove that any 
y
le based at x is

homotopi
ally equivalent to the 
y
le of length 0. A 
y
le with this property is


alled null-homotopi
, or homotopi
ally trivial.

Let us go ba
k to the geometry �(n; F). We pi
k the base element x to be

a point of �.

Lemma 2.4. Let n � 4. Every 
y
le of � based at x is homotopi
ally equivalent

to a 
y
le passing only through points and lines.

Proof. This follows immediately from the residual 
onne
tedness of �. See

Lemma 5.1 of [7℄ for a proof; alternatively, see [2℄. 2

We 
an therefore restri
t our attention to the point-line in
iden
e graph of �.

However, as � is not a partially linear geometry (there exist nondegenerate two-

dimensional subspa
es of V that are 
ontained in more than one nondegenerate

four-dimensional subspa
e of V , so a pair of 
ollinear points does not ne
essarily

admit a unique joining line), it is not immediately 
lear that we 
an restri
t

ourselves to the 
ollinearity graph of �. The following lemma takes 
are of that

problem.

Lemma 2.5. Let n � 4. Any digon p, l, q, m of � 
onsisting of points p 6= q

and lines l 6= m is homotopi
ally trivial.

Proof. The dimension of hl;mi equals �ve, be
ause l and m interse
t in a three-

dimensional spa
e. The spa
e hxi = l

?

\hl;mi is the radi
al of hl;mi. Choosing

any ve
tor y 2 l

?

nx

?

, we obtain a nondegenerate six-dimensional spa
e hl;m; yi

that 
ontains the digon p, l, q, m. Therefore the digon is homotopi
ally trivial.

2

The above lemma allows us to restri
t our attention to the 
ollinearity graph

of �, sin
e the homotopy type of a path 
 passing through points and lines is

independent of the parti
ular 
hoi
e of the joining lines of the pairs of 
ollinear

points o

uring in 
. In order to determine the fundamental group of � we

have to distinguish between good and bad triangles, i.e., triangles a, b, 
 whose

points span a nondegenerate subspa
e ha; b; 
i of V and triangles a, b, 
 whose

points do not span a nondegenerate subspa
e ha; b; 
i of V . Obviously, a good

triangle is null-homotopi
 as it spans a line or a plane of the geometry �. For

bad triangles we have the following lemma.

Lemma 2.6. Let n � 4. Any triangle in the 
ollinearity graph of � 
an be

de
omposed into good triangles.

Proof. Let a, b, 
 be the nondegenerate two-dimensional subspa
es of V that


onstitute the three points of some triangle. Choose some line l of � 
ontaining

a and b. The spa
e l

?

is nondegenerate and has dimension at least four. There-

fore, to any one-dimensional subspa
e p � hl; 
i

?

, we 
an �nd a one-dimensional

subspa
e q of l

?

su
h that hp; qi =: d ? l � ha; bi is nondegenerate and inter-

se
ts 
 trivially. By Lemma 2.1, the spa
e h
; di is nondegenerate, and we have

4



de
omposed the triangle a, b, 
 into triangles whi
h admit two points that are

perpendi
ular.

So now assume we have a triangle a, b, 
 with a ? 
. If a \ b 6= ; and

b \ 
 6= ;, then b � ha; 
i, and there is nothing to prove. Hen
e, by symmetry,

we 
an assume that b \ 
 = ;. As above 
hoose some line l of � 
ontaining a

and b. The spa
e l

?

is nondegenerate and has dimension at least four. To any

one-dimensional subspa
e p � hl; 
i

?

, we 
an �nd a one-dimensional subspa
e

q of l

?

su
h that hp; qi =: d ? l � ha; bi is nondegenerate and interse
ts hb; 
i

trivially. This is possible as the dimension of hb; 
i \ l

?

is at most two (sin
e

; = b \ b

?

� b \ l

?

). Noti
e that the triangles a, b, d and a, 
, d are good

(indeed, d ? l � a; b and a ? 
; d). Moreover, for hyperboli
 bases x

b

, y

b

of

b and x




, y




of 
 and p, y

d

of d, we obtain the following Gram matrix for the

alternating form on hb; 
; di with respe
t to x

b

, y

b

, x




, y




, p, y

d

:

0

B

B

B

B

B

B

�

0 1 � � 0 0

�1 0 � � 0 0

� � 0 1 0 �

� � �1 0 0 �

0 0 0 0 0 1

0 0 � � �1 0

1

C

C

C

C

C

C

A

:

Evidently, this matrix has full rank if and only if its submatrix 
onsisting of

the �rst four rows and 
olumns has full rank. But that submatrix is the Gram

matrix of the form restri
ted to the nondegenerate spa
e hb; 
i. Therefore we

have de
omposed the original triangle into good triangles. 2

Lemma 2.7. Let n � 4. Any quadrangle in the 
ollinearity graph of � 
an be

de
omposed into triangles.

Proof. Let a, b, 
, d be the nondegenerate two-dimensional subspa
es of V that


onstitute the four points of some quadrangle in the 
ollinearity graph of �.

Consider W := ha; bi

?

and U := h
; di

?

. If W ? U , then h
; di

?

= U � W

?

=

ha; bi. Sin
e the dimension of h
; di

?

is at least four and the dimension of ha; bi

at most four, equality holds. But this implies that a ? 
 and b ? d, yielding

an immediate de
omposition of the quadrangle into triangles. If W 6? U , we


an �nd one-dimensional subspa
es p � W , q � U with p 6? q. The resulting

nondegenerate two-dimensional spa
e e := hp; qi is 
ollinear to a, b, 
, d by

Lemma 2.1. (Noti
e that e 
annot interse
t a, b, 
, or d nontrivially sin
e

a; b ?W � p and 
; d ? U � q, but p 6? q.) 2

Lemma 2.8. Let n � 4. Any pentagon in the 
ollinearity graph of � 
an be

de
omposed into triangles and quadrangles.

Proof. Let a, b, 
, d, e be the nondegenerate two-dimensional subspa
es of V

that 
onstitute the �ve points of some pentagon in the 
ollinearity graph of �.

Choose a line l of � passing through 
 and d. Then l

?

is nondegenerate and

has dimension at least four. Let p � ha; li

?

be an arbitrary one-dimensional

spa
e. There exists a one-dimensional subspa
e of l

?

that together with p

5



spans a nondegenerate spa
e f that interse
ts a trivially. We have f ? l �


; d. Moreover, f also spans a nondegenerate spa
e with a, by Lemma 2.1,

de
omposing the pentagon. 2

Any 
y
le of greater length de
omposes by the bound on the diameter of the


ollinearity graph of � from Lemma 2.2. Therefore � is simply 
onne
ted. An

indu
tion argument as in [7℄ implies that � is 2-simply 
onne
ted, and Theorem

1 follows. The proof of Theorem 2 is identi
al to the proof of Theorem 4 of [7℄.

Theorem 3 follows by Tits' lemma (Corollaire 1 of [16℄) and a standard indu
tion

argument as in the proof of Theorem 1 of [7℄.
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