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Abstrat

K.M. Das [4℄, [5℄ has shown that the geometry of nondegenerate subspaes

of a sympleti spae over a �nite �eld is simply onneted. The purpose

of the present artile is to provide a short, diret and general proof of that

result for arbitrary �elds. Some standard amalgam-theoreti onsequenes

for the groups Sp

2n

(F) are given as well.

1 Introdution

Let F be a �eld and let V be a 2n-dimensional vetor spae over F endowed

with a nondegenerate alternating bilinear form. Let �(n; F) be the geometry of

rank n � 1 whose elements are the nondegenerate proper subspaes of V with

natural inidene. Then the following holds.

Theorem 1. Let n � 4 and let F be a �eld. Then the geometry �(n; F) is

2-simply onneted.

The rank of �(3; F) is two, whene it annot be simply onneted (the

inidene graph of �(3; F) is not a tree), so the above result is sharp.

The group Sp

2n

(F) ats ag-transitively on �(n; F). Choose a anonial ba-

sis e

1

, f

1

, . . . , e

n

, f

n

of V . Then he

1

; f

1

i, he

1

; f

1

; e

2

; f

2

i, . . . , he

1

; f

1

; : : : ; e

n�1

; f

n�1

i

is a hamber (i.e., a maximal ag) of �(n; F). The maximal parabolis P

i

,

1 � i � n�1 with respet to this hamber are of the form Sp

2i

(F)�Sp

2n�2i

(F).

A onsequene of Theorem 1 is the following.

Theorem 2. Let n � 4 and let F be a �eld. Then Sp

2n

(F) is the universal

ompletion of the amalgam of at least three maximal parabolis P

i

.

�
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Denote by A

2

(n; F) the amalgam of 1- and 2-parabolis of Sp

2n

(F) with re-

spet to the hamber he

1

; f

1

i, he

1

; f

1

; e

2

; f

2

i, . . . , he

1

; f

1

; : : : ; e

n�1

; f

n�1

i. That

is, A

2

(n; F) is the union of all intersetions \

i2J

P

i

where J is a subset of

f1; : : : ; n� 1g of o-ardinality at most two. Then we have the following.

Theorem 3. Let n � 4 and let F be a �eld. Then Sp

2n

(F) is the universal

ompletion of the amalgam A

2

(n; F).

For �nite �elds Theorem 1 has been proved independently �rst by K.M. Das

([4℄ and [5℄, for all �nite �elds) and later by C. Ho�man, S. Shpetorov and the

author ([7℄, for all �nite �elds of size at least four). While Das ahieved this

result as a onsequene of his study of Quillen omplexes of �nite sympleti

groups based on work of Ashbaher [1℄ and Quillen [14℄, the proof by Ho�man,

Shpetorov and the author makes use of the simple onnetedness of another

�nite geometry that is losely related to �(n; F). The purpose of this paper is to

present a short, diret and general proof of the simple onnetedness of �(n; F)

for an arbitrary �eld F. The investigation of geometries like �(n; F) is motivated

by the desire for a systemati approah to Phan-type theorems similar to the

results of [12℄ and [13℄. For an outline of the idea, using hamber systems and

buildings, as well as preise de�nitions of ips and ipop geometries refer to

[3℄. (Note that those onepts are not relevant for the understanding of the

present artile.) Example 1b and Example 2b of [3℄ give a desription of similar

geometries. However one big di�erene remains: while the examples of [3℄ an

be desribed using ips and opposite hamber systems, one annot obtain the

geometry �(n; F) in this way; for, a ip indued by a sympleti form does

not admit a hamber that is mapped onto its opposite, so the resulting ipop

geometry is empty. The most remarkable property of �(n; F) is that the simple

onnetedness holds and an be shown ompletely independent of the �eld.

Neither the geometry from Example 1b nor the geometry from Example 2b of

[3℄ have this property; they are not simply onneted for low rank over the �eld

of two elements.

Theorem 2 and Theorem 3 dealing with the presentation of Sp

2n

(F) by er-

tain amalgams nowadays are standard orollaries of Theorem 1. A lassi�ation

of those amalgams is not inluded in the present artile. For a losely related

haraterization of Sp

2n

(F) refer to Theorem 4.4.25 of [6℄ or to the results of

[8℄.

2 Connetedness properties of �

Let F be a �eld and let V be a 2n-dimensional vetor spae over F endowed

with a nondegenerate alternating bilinear form. Perpendiularity with respet

to that form is denoted by ?. Let � = �(n; F) be the pregeometry of rank n�1

whose elements are the nondegenerate proper subspaes of V with symmetrized

ontainment as inidene. The nondegenerate subspaes of V of dimension two

are alled points, those of dimension four lines and so on. Evidently, � is a

geometry (i.e., maximal ags are hambers, whih means they have size n� 1).
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Moreover, by indution on n using Witt's theorem, the geometry � is ag-

transitive with the group Sp

2n

(F) as a ag-transitive group of automorphisms

of �; see Lemma 7.3 of [7℄ for a proof.

Lemma 2.1. Let n � 2 and let l, m be nondegenerate two-dimensional sub-

spaes of V with l \m = f0g and dim(l

?

\m) � 1. Then hl;mi is nondegener-

ate.

Proof. The statement is obvious, if m � l

?

. If m 6� l

?

, then m \ l

?

is a one-

dimensional subspae of V , say hpi. Choose a anonial basis a, b of l and hoose

q 2 m, suh that p, q form a anonial basis of m. Then the Gram matrix of

the sympleti form restrited to hl;mi with respet to the basis a, b, p, q has

the shape

0

B

B

�

0 1 0 �

�1 0 0 �

0 0 0 1

� � �1 0

1

C

C

A

;

whih evidently has full rank, whene hl;mi is nondegenerate. 2

Proposition 2.2. Let n � 3. Then the ollinearity graph of � has diameter

two. In partiular, � is onneted.

Proof. Let l, m be nondegenerate two-dimensional subspaes of V . Let p be

an arbitrary one-dimensional subspae of hl;mi

?

and let q be an arbitrary one-

dimensional subspae of V that intersets p

?

trivially. Then hp; qi is a point of

� (as q 6� p

?

) whih is ollinear to l and m (by Lemma 2.1). 2

Corollary 2.3. Let n � 3. Then the geometry � is residually onneted. 2

Reall the de�nition of the fundamental group of a onneted geometry �.

1

A path of length k in the geometry is a sequene of elements x

0

; : : : ; x

k

of �

suh that x

i

and x

i+1

are inident, 0 � i � k � 1. We do not allow repetitions;

hene x

i

6= x

i+1

. A yle based at an element x is a path in whih x

0

= x

k

=

x. Two paths are homotopially equivalent if one an be obtained from the

other via the following operations (alled elementary homotopies): inserting or

deleting a return (i.e., a yle of length 2) or a triangle (i.e., a yle of length

3). The equivalene lasses of yles based at an element x form a group under

the operation indued by onatenation of yles. This group is alled the

fundamental group of � and denoted by �

1

(�; x). A geometry is alled simply

onneted if its fundamental group is trivial.

2

Notie that in order to prove

1

Note that there are two onurrent notions of a fundamental group. One notion of a

fundamental group onsiders the (inidene graph of the) geometry � as a one-dimensional

simpliial omplex (triangles are not null-homotopi), the other notion onsiders the (inidene

graph of the) geometry as a two-dimensional simpliial omplex (triangles are null-homotopi).

In the present paper we use the latter notion.

2

Standard topology shows that a geometry is simply onneted if and only if it does not

admit any proper simpliial over. For ombinatorial proofs see [9℄ or [10℄; alternatively, see

[15℄.
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that � is simply onneted it is enough to prove that any yle based at x is

homotopially equivalent to the yle of length 0. A yle with this property is

alled null-homotopi, or homotopially trivial.

Let us go bak to the geometry �(n; F). We pik the base element x to be

a point of �.

Lemma 2.4. Let n � 4. Every yle of � based at x is homotopially equivalent

to a yle passing only through points and lines.

Proof. This follows immediately from the residual onnetedness of �. See

Lemma 5.1 of [7℄ for a proof; alternatively, see [2℄. 2

We an therefore restrit our attention to the point-line inidene graph of �.

However, as � is not a partially linear geometry (there exist nondegenerate two-

dimensional subspaes of V that are ontained in more than one nondegenerate

four-dimensional subspae of V , so a pair of ollinear points does not neessarily

admit a unique joining line), it is not immediately lear that we an restrit

ourselves to the ollinearity graph of �. The following lemma takes are of that

problem.

Lemma 2.5. Let n � 4. Any digon p, l, q, m of � onsisting of points p 6= q

and lines l 6= m is homotopially trivial.

Proof. The dimension of hl;mi equals �ve, beause l and m interset in a three-

dimensional spae. The spae hxi = l

?

\hl;mi is the radial of hl;mi. Choosing

any vetor y 2 l

?

nx

?

, we obtain a nondegenerate six-dimensional spae hl;m; yi

that ontains the digon p, l, q, m. Therefore the digon is homotopially trivial.

2

The above lemma allows us to restrit our attention to the ollinearity graph

of �, sine the homotopy type of a path  passing through points and lines is

independent of the partiular hoie of the joining lines of the pairs of ollinear

points ouring in . In order to determine the fundamental group of � we

have to distinguish between good and bad triangles, i.e., triangles a, b,  whose

points span a nondegenerate subspae ha; b; i of V and triangles a, b,  whose

points do not span a nondegenerate subspae ha; b; i of V . Obviously, a good

triangle is null-homotopi as it spans a line or a plane of the geometry �. For

bad triangles we have the following lemma.

Lemma 2.6. Let n � 4. Any triangle in the ollinearity graph of � an be

deomposed into good triangles.

Proof. Let a, b,  be the nondegenerate two-dimensional subspaes of V that

onstitute the three points of some triangle. Choose some line l of � ontaining

a and b. The spae l

?

is nondegenerate and has dimension at least four. There-

fore, to any one-dimensional subspae p � hl; i

?

, we an �nd a one-dimensional

subspae q of l

?

suh that hp; qi =: d ? l � ha; bi is nondegenerate and inter-

sets  trivially. By Lemma 2.1, the spae h; di is nondegenerate, and we have
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deomposed the triangle a, b,  into triangles whih admit two points that are

perpendiular.

So now assume we have a triangle a, b,  with a ? . If a \ b 6= ; and

b \  6= ;, then b � ha; i, and there is nothing to prove. Hene, by symmetry,

we an assume that b \  = ;. As above hoose some line l of � ontaining a

and b. The spae l

?

is nondegenerate and has dimension at least four. To any

one-dimensional subspae p � hl; i

?

, we an �nd a one-dimensional subspae

q of l

?

suh that hp; qi =: d ? l � ha; bi is nondegenerate and intersets hb; i

trivially. This is possible as the dimension of hb; i \ l

?

is at most two (sine

; = b \ b

?

� b \ l

?

). Notie that the triangles a, b, d and a, , d are good

(indeed, d ? l � a; b and a ? ; d). Moreover, for hyperboli bases x

b

, y

b

of

b and x



, y



of  and p, y

d

of d, we obtain the following Gram matrix for the

alternating form on hb; ; di with respet to x

b

, y

b

, x



, y



, p, y

d

:

0

B

B

B

B

B

B

�

0 1 � � 0 0

�1 0 � � 0 0

� � 0 1 0 �

� � �1 0 0 �

0 0 0 0 0 1

0 0 � � �1 0

1

C

C

C

C

C

C

A

:

Evidently, this matrix has full rank if and only if its submatrix onsisting of

the �rst four rows and olumns has full rank. But that submatrix is the Gram

matrix of the form restrited to the nondegenerate spae hb; i. Therefore we

have deomposed the original triangle into good triangles. 2

Lemma 2.7. Let n � 4. Any quadrangle in the ollinearity graph of � an be

deomposed into triangles.

Proof. Let a, b, , d be the nondegenerate two-dimensional subspaes of V that

onstitute the four points of some quadrangle in the ollinearity graph of �.

Consider W := ha; bi

?

and U := h; di

?

. If W ? U , then h; di

?

= U � W

?

=

ha; bi. Sine the dimension of h; di

?

is at least four and the dimension of ha; bi

at most four, equality holds. But this implies that a ?  and b ? d, yielding

an immediate deomposition of the quadrangle into triangles. If W 6? U , we

an �nd one-dimensional subspaes p � W , q � U with p 6? q. The resulting

nondegenerate two-dimensional spae e := hp; qi is ollinear to a, b, , d by

Lemma 2.1. (Notie that e annot interset a, b, , or d nontrivially sine

a; b ?W � p and ; d ? U � q, but p 6? q.) 2

Lemma 2.8. Let n � 4. Any pentagon in the ollinearity graph of � an be

deomposed into triangles and quadrangles.

Proof. Let a, b, , d, e be the nondegenerate two-dimensional subspaes of V

that onstitute the �ve points of some pentagon in the ollinearity graph of �.

Choose a line l of � passing through  and d. Then l

?

is nondegenerate and

has dimension at least four. Let p � ha; li

?

be an arbitrary one-dimensional

spae. There exists a one-dimensional subspae of l

?

that together with p
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spans a nondegenerate spae f that intersets a trivially. We have f ? l �

; d. Moreover, f also spans a nondegenerate spae with a, by Lemma 2.1,

deomposing the pentagon. 2

Any yle of greater length deomposes by the bound on the diameter of the

ollinearity graph of � from Lemma 2.2. Therefore � is simply onneted. An

indution argument as in [7℄ implies that � is 2-simply onneted, and Theorem

1 follows. The proof of Theorem 2 is idential to the proof of Theorem 4 of [7℄.

Theorem 3 follows by Tits' lemma (Corollaire 1 of [16℄) and a standard indution

argument as in the proof of Theorem 1 of [7℄.

Referenes

[1℄ M. Ashbaher, Simple onnetivity of p-group omplexes, Israel J. Math.

82 (1993), 1{43.

[2℄ C.D. Bennett and S. Shpetorov, A new proof of Phan's theorem, J. Group

Theory, to appear.

[3℄ C.D. Bennett, R. Gramlih, C. Ho�man and S. Shpetorov, Curtis-Phan-

Tits theory, Proeedings of the Durham Conferene on Groups and Geome-

tries, July 2001, to appear.

[4℄ K.M. Das, Some results about the Quillen omplex of Sp

2n

(q), J. Algebra

209 (1998), 427{445.

[5℄ K.M. Das, The Quillen omplex of groups of sympleti type: the hara-

teristi 2 ase, J. Algebra 223 (2000), 556{561.

[6℄ R. Gramlih, On graphs, geometries, and groups of Lie type, PhD thesis,

TU Eindhoven 2002.

[7℄ R. Gramlih, C. Ho�man and S. Shpetorov, A Phan-type theorem for

Sp(2n; q), J. Algebra 264 (2003), 358{384.

[8℄ R. Gramlih, On the hyperboli sympleti geometry, J. Combin. Theory

Ser. A, to appear.

[9℄ R. Gramlih, G.W. Hofmann, K.-H. Neeb, Semi-edges, reetions, and Cox-

eter groups, preprint.

[10℄ R. Gramlih, Phan theory, Habilitationsshrift, TU Darmstadt, in prepa-

ration.

[11℄ B. M�uhlherr, On the simple onnetedness of a hamber system assoiated

to a twin building, preprint.

[12℄ K.W. Phan, On groups generated by three-dimensional speial unitary

groups, I. J. Austral. Math. So. Ser. A 23 (1977), 67{77.

6



[13℄ K.W. Phan, On groups generated by three-dimensional speial unitary

groups. II, J. Austral. Math. So. Ser. A 23 (1977), 129{146.

[14℄ D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of

a group, Adv. Math. 28 (1978), 101{128.

[15℄ David B. Surowski, Covers of simpliial omplexes and appliations to ge-

ometry, Geom. Dediata 16 (1984), 35{62.

[16℄ J. Tits, Ensembles Ordonn�es, immeubles et sommes amalgam�ees, Bull. So.

Math. Belg. S�er. A 38 (1986), 367{387.

7


