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Abstra
t

We explain how to optimize portfolios of bonds and sto
ks with re-

spe
t to the Expe
ted Shortfall (ES), respe
tively RORC or RORAC

based on ES. In a pragmati
 approa
h we 
ombine and 
orrelate a

sto
k market model with geometri
 brownian motions with a two-fa
tor

Cox-Ingersoll-Ross (CIR-2) model for the interest rates/bonds. We use

re
ent results from the theory of risk 
apital allo
ation, performan
e

measurement and Swarm Intelligen
e for optimization. Examples for

German market data as well as an analysis of the s
alability of the solu-

tion to assure fast run-times on 
lusters of 
omputers for large real-life

portfolios are given.
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1 Introdu
tion

In the �rst part of this paper we introdu
e a general 
on
ept of portfolio op-

timization with respe
t to the risk measure Expe
ted Shortfall (ES) and also
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(but not at the same time) with respe
t to the performan
e measures RORC

and RORAC (Return On Risk/Risk-Adjusted Capital) due to ES. Later, a

spe
i�
 �nan
ial market model that enables optimization of portfolios 
onsist-

ing of bonds and sto
ks is proposed. This model 
ombines and 
orrelates a

sto
k market model of geometri
 brownian motions with a two-fa
tor Cox-

Ingersoll-Ross (CIR-2) model for the interest rates, respe
tively bonds. Nu-

meri
 optimization is done using re
ent results from the theory of risk 
apital

allo
ation, performan
e measurement and (Parti
le) Swarm Intelligen
e (SI).

Expli
it formulas and methods for the model and algorithms like Gradient

Sear
h (GS) and SI optimization are provided. Examples of optimized portfo-

lios for German market data are given. Furthermore, we analyze the s
alability

of the solution (with respe
t to multi-pro
essor ma
hines, 
lusters or Global

Grid environments) to assure fast run-times for large real-life portfolios.

The idea of portfolio optimization with respe
t to modern risk and per-

forman
e measures like ES, RORC or RORAC and also taking 
orrelations

between interest rates and sto
ks using an enhan
ed interest rate model into

a

ount seems to be new. Fast developing 
omputer te
hnology enables to

solve optimization problems numeri
ally even for 
omplex market models and

big portfolios.

Our approa
h is pragmati
 in the sense that some of the theoreti
al

problems whi
h 
an emerge are (although not 
onsidered in depth) solved by

unorthodox methods that seem to work well with real-life portfolios. The

fo
us of the paper lies on the presented methods and not on the testing of

these methods. From an a
ademi
 point of view, this might be unsatisfying,

but the mentioned models have (separately and sometimes in unfortunately

simpli�ed forms) been 
onsidered in some of the biggest German insuran
e


ompanies. Pra
titioners should keep in mind that the paper shows what is

a
tually possible in optimizing portfolios, but not how good the presented

methods are from the histori
al point of view or 
ompared to other market

models. Su
h questions are not part of this paper.

The paper is organized as follows. Se
tion 2 introdu
es the 
onsidered

risk and performan
e measures. Se
tion 3 explains the general approa
h to

the optimization problem. Furthermore, the Gradient Sear
h, the Swarm

Intelligen
e optimization method and the role of sto
hasti
 simulation in these

approa
hes are des
ribed. After this general introdu
tion to optimization
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methods, Se
tion 4 introdu
es and dis
usses the proposed �nan
ial market

model. Se
tion 5 is dedi
ated to the sto
hasti
 simulation part, i.e. the

generation of market s
enarios. In Se
tion 6, information on parameter

estimation 
an be found. Se
tion 7 gives a brief 
hronologi
al overview of all

steps 
on
erning our proposed optimization methodology. In Se
tion 8 we

present �rst results for German market data. Se
tion 9 shows the s
alability

of our solution. In Se
tion 10 we 
on
lude. Finally in the Appendix we give

two results on the form of the derivatives of Value-at-Risk and Expe
ted

Shortfall expressions.

We introdu
e some notation. Let us de�ne the total payo�

X = X(u) :=

n

X

i=1

u

i

X

i

(1)

of a portfolio

u = (u

i

)

1�i�n

2 R

n

(2)

whi
h represents n 2 N

+

= N n f0g di�erent payo�s X

i

(1 � i � n) with

weights u

i

2 R. The X

i

are assumed to be one-dimensional real-valued random

variables. We 
all B = (X

1

; : : : ; X

n

) a portfolio base (
f. Fis
her, 2003) as any


onsidered portfolio will be des
ribed with (2) and (1). As random variables,

the 
omponents of B do not have to be linearly independent.

As an example, 
onsider a �nan
ial market with n numbered se
urities.

Let us assume that the pri
es of these se
urities at some time s 2 R

+

0

(the

positive real numbers in
luding 0) are given by random variables

V

1

(s); V

2

(s); : : : ; V

n

(s): (3)

We assume to have 
onstants for s = 0, whi
h is the present time. We will

also use the notation

V

i

= V

i

(0) (4)

and

V = V (u) :=

n

X

i=1

u

i

V

i

(0) (5)

for the value of the portfolio u at time 0 in the following, and de�ne

X

i

= V

i

(t)� V

i

(0); (6)

where the variable t > 0 is the 
onsidered time horizon for whi
h risk man-

agement is performed. Hen
e, the X

i

are wins or losses due to the i-th asset
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during the time interval [0; t℄. Now, the portfolio u of the di�erent assets has a

di�eren
e in value from time 0 to t whi
h is exa
tly X(u), and X > 0 (X < 0)

is an in
rease (de
rease) of the portfolio value from time 0 to t and therefore

a win (loss) for the portfolio holder.

2 Risk and performan
e measures

2.1 General de�nition

A risk measure � is usually de�ned as a mapping from a set of random variables

(i.e. payo�s) X to the real numbers, that means

� : X �! R (7)

X 7�! �(X):

The amount �(X) is 
ommonly interpreted as the minimum 
ash su
h that the

\risk" of X is \a

eptable" to the holder of the payo� or portfolio whenever

he/she has the additional amount �(X) stored as risk 
apital (
f. Artzner et

al., 1999).

Working with a portfolio base B = (X

1

; : : : ; X

n

), a risk measure � on the

payo�s X implies a risk measure �

B

on the portfolios u 2 R

n

for whi
h we

have X(u) 2 X . In parti
ular, if X(R

n

) = X we 
an de�ne

�

B

: R

n

�! R (8)

u 7�! �(X(u)):

We also write �(u) for �

B

(u). Based on the 
ontext, no 
onfusion 
an arise.

A performan
e measure 
an also be represented by fun
tions as 
onsidered

in (7) and (8). In 
ontrast to risk measures, performan
e measures are ususally

intended to des
ribe ratios like the relation of the expe
ted return to the risk


apital or invested risk-adjusted 
apital. However, the 
on
rete interpreta-

tion of su
h measures is postponed until we look at 
onrete examples, namely

RORC and RORAC (
f. Se
tion 2.3).

2.2 Expe
ted Shortfall

For 0 < � < 1, we de�ne Value-at-Risk as

VaR

�

(X) := � inffx : P (X � x) � �g: (9)
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Hen
e, VaR is a negative �-quantile of the distribution of the random variable

X. Expe
ted Shortfall (ES) is de�ned by

ES

�

(X) := �E[XjX � �VaR

�

(X)℄: (10)

The meanings of these risk measures are obvious: -VaR is a treshold whi
h is

fallen short of in � � 100% of all 
ases, -ES is the expe
tation (i.e. the mean) of

the losses under the 
ondition that this treshold has already been fallen short

of. The 
hange of the sign is a matter of interpretation { to neutralize losses

(negative wins), risk 
apital has to be positive.

There are good reasons to only 
onsider the ES risk measure. Ongoing

from the widely known Value-at-Risk methodology, ES is easy to understand

and always more 
onservative than VaR. Furthermore, ES is in most relevant


ases a 
oherent risk measure (
f. A
erbi and Tas
he, 2002) and features (when

di�erentiable) expli
it expressions for partial derivatives whi
h is 
ru
ial in the


ontext of risk 
apital allo
ation problems, but also for portfolio optimization

whi
h will soon be
ome 
lear. We 
ite a risk management expert from the

German Federal Reserve (Deuts
he Bundesbank): \In my opinion, ES is still

the best risk measure of all."

2.3 RORC and RORAC

We de�ne a performan
e measure

'(X) :=

E[X℄

�(X)

: (11)

' is 
alled the RORC, i.e. the Return On Risk Capital. In 
ontrast to a risk

measure, this performan
e measure does not 
are about the absolute value of

the risk 
apital, but of its proportion to the mean return whi
h is gained on

it. For � = ES

�

, i.e.

'

�

(X) :=

E[X℄

ES

�

(X)

; (12)

we talk of the ES-RORC. Some authors (
f. Tas
he, 2000) 
all (11) the RO-

RAC. We think that the \Return On Risk-Adjusted Capital" should be de�ned

as in (14).

Working on RORC optimization, one might fa
e the problem that the opti-

mal portfolio (although the portfolio value is 
onstant) implies a huge amount

of risk 
apital together with a huge expe
ted return. However, pra
ti
al rea-

sons might imply an upper bound for the risk 
apital. So we need a 
onstraint
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�(u) � �

max

, i.e. in 
ase of the ES-RORC

ES

�

(u) � ES

max

; (13)

might be imposed.

The performan
e measure

 (X) :=

E[X℄

V + �(X)

(14)

is 
alled the RORAC, i.e. the Return On Risk-Adjusted Capital. Indeed,  

measures the mean (or expe
ted) return per unit engaged 
apital, sin
e V + �

is the value of the invested 
apital plus the 
osts of risk (
f. (5)). Hen
e, in


ontrast to RORC (11), RORAC 
onsiders not only the risk 
apital but the

risk-adjusted investment 
apital and therefore seems to be a more sophisti
ated

performan
e measure. For � = ES

�

, i.e.

 

�

(X) :=

E[X℄

V + ES

�

(X)

; (15)

we talk of the ES-RORAC.

As in the 
ase of ES-RORC, the additional 
onstraint (13) might be im-

posed in the 
ase of ES-RORAC optimization.

3 Portfolio optimization

3.1 The problem

In this se
tion we explain from a general point of view how to optimize a

portfolio with respe
t to ES or with respe
t to the performan
e measures ES-

RORC or respe
tively ES-RORAC.

We assume a �xed budget/portfolio value of V (u) whi
h must be fully

invested at the present time t = 0. Otherwise, the 
onsidered problems be
ome

trivial or unsolvable as the ES is s
alable (positive homogeneous of degree 1)

and the 
onsidered performan
e measures are invariant due to s
aling.

Let us assume that a portfolio u 2 R

n

is given. Furthermore, this portfolio

has to be optimized with respe
t to a risk or performan
e measure � on R

n

. For


onvenien
e, we assume that the risk � has to be minimized. As mentioned,

exa
tly the �xed amount V has to be invested in the market at time 0. As V

i

is the pri
e of asset i at time 0, this implies the following 
onstraint for the
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portfolios u whi
h must be satis�ed:

V =

n

X

i=1

u

i

V

i

: (16)

A possible solution of the optimization problem is given by a portfolio u

�

2 R

n

,

su
h that �(u

�

) is minimal (on R

n

) under the 
onstraint (16). De�ning

u

0

n

:= (V �

X

i<n

u

i

V

i

)=V

n

; (17)

and �

0

as

�

0

(u

1

; : : : ; u

n�1

) := �(u

1

; : : : ; u

n�1

; u

0

n

) (18)

it follows from (16) that we 
an express the solution u

�

by

(u

�

1

; : : : ; u

�

n�1

) = argmin �

0

(u

1

; : : : ; u

n�1

); (19)

together with u

�

n

= (V �

P

i<n

u

�

i

V

i

)=V

n

.

Working with real data, we dis
overed that portfolios whi
h are 
andidates

for extremal points due to the 
onsidered risk or performan
e measures 
an


ontain tremendous amounts of short-sold assets, i.e. the portfolio as a ve
tor of

real numbers 
ontains huge negative 
omponents. For this reason we introdu
e

a further 
onstraint: For a; b � 0 we require

�b

V

V

i

� u

i

� a

V

V

i

for all 1 � i � n: (20)

For instan
e, b = 0 implies portfolios whi
h allow no short-selling. The values

a = b = 1 guarantee that the amount of 
apital or debts in no asset is bigger

than the total value V of the portfolio.

As an optimization (e.g. for a 1-year horizon) 
an be driven daily or hourly,

one 
ould also think of self-�nan
ing ES-, ES-RORC or ES-RORAC-optimal

strategies in this 
ontext.

3.2 Gradient Sear
h

Let the risk measure (fun
tion) � be di�erentiable on R

n

. From standard

analysis we obtain for 1 � i � n� 1

��

0

�u

i

(u

1

; : : : ; u

n�1

) =

��

�u

i

(u

1

; : : : ; u

n�1

; u

0

n

)�

V

i

V

n

��

�u

0

n

(u

1

; : : : ; u

n�1

; u

0

n

): (21)
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maxits=bigNumber

its=0

while its < maxits # fixed number of iterations

# or grid-based sear
h

ptf=RandomPortfolio # satisfying 
onstraints

loop

if Rho(ptf)<Rho(bestPtf) # small Rho wanted

bestPtf=ptf

end

grd=gradient(ptf)

ptfnew=ptf-grd*stepsize # if 
onstraints, adapt this step

until Rho(ptfnew)>Rho(ptf)

its+=1

end

Figure 1: Slow and simple Ruby-Pseudo
ode for portfolio optimization using

brute-for
e gradient sear
h. Clever varying 
hoi
e of epsilon to 
al
ulate the

gradient and the step-size 
an give further speed-up. Instead of 
hosing random

portfolios, one 
an use a grid-based sear
h.

Using the partial derivates (21), one 
an start looking for the (lo
al) extreme

points of �

0

in R

n�1

by applying Gradient Sear
h (GS) methods. This might be

a 
omfortable approa
h to solve the optimization problem (19) as long as the


onsidered measures have suÆ
ient di�erentiability properties. However, the

proof of su
h di�erentiability properties 
an be rather diÆ
ult (
f. Appendix

A or Tas
he (2000)). This is one reason for our proposal of Swarm Intelligen
e

optimization methods (see Subse
tion 3.3).

Outline of a gradient minimum-sear
h (Figure 1):

1. Evaluate the gradient for the 
urrent portfolio.

2. If the gradient is zero, exit. We have found a (lo
al or global) minimum.

3. Follow the negative gradient (negative slope) of the 
urrent portfolio one

small step. Modify the portfolio to satify the 
onstraints. Then 
ontinue

with step 1.

On a one-pro
essor ma
hine this gradient algorithm has to be started many

times with di�erent portfolios (\brute-for
e"), as one might be stu
k in a

lo
al minimum. This takes a long time for real-life portfolios.
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The following three paragraphs derive the respe
tive partial derivatives (21)

for Expe
ted Shortfall, ES-RORC and ES-RORAC.

Expe
ted Shortfall

Assuming suÆ
ient di�erentiability properties, results of Tas
he (2000) show

that

�ES

�

�u

i

(u

1

; : : : ; u

n

) = �E[X

i

jX � �VaR

�

(X)℄: (22)

We refer to Tas
he (2000) but also Lemma A.1 and A.2 in Appendix A for fur-

ther information on the di�erentiation of ES. For �(u) = ES

�

(X(u)), equation

(21) 
an be written as

�ES

0

�

�u

i

(u

1

; : : : ; u

n�1

) = �E[X

i

jX � �VaR

�

(X)℄ (23)

+

V

i

V

n

E[X

n

jX � �VaR

�

(X)℄:

In fa
t, this simple expression of expe
tations is very suitable for numeri
al


omputations by Monte-Carlo methods.

RORC

The partial derivatives (21) of the ES-RORC under the portfolio 
onstraint

(16) are obtained using standard rules of di�erentiation:

�'

0

�

�u

i

= �E[X℄ �

E[X

i

jX � �VaR

�

(X)℄

ES

�

(X)

2

+

E[X

i

℄

ES

�

(X)

(24)

�

V

i

V

n

�

�E[X℄ �

E[X

n

jX � �VaR

�

(X)℄

ES

�

(X)

2

+

E[X

n

℄

ES

�

(X)

�

:

As in the 
ase of (23), we see from the de�nition (10) of ES that (24) is a

relatively simple expression of expe
tations.

RORAC

As V is a 
onstant, the partial derivatives (21) of the ES-RORAC under the

portfolio 
onstraint (16) are similar to those of RORC (24):

� 

0

�

�u

i

= �E[X℄ �

E[X

i

jX � �VaR

�

(X)℄

(V + ES

�

(X))

2

+

E[X

i

℄

V + ES

�

(X)

(25)

�

V

i

V

n

�

�E[X℄ �

E[X

n

jX � �VaR

�

(X)℄

(V + ES

�

(X))

2

+

E[X

n

℄

V + ES

�

(X)

�

:
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3.3 Swarm Intelligen
e

Swarm Intelligen
e (SI) is a property of a system where the 
olle
tive be-

haviours of (unsophisti
ated) agents intera
ting lo
ally with their environment


ause 
oherent fun
tional global patterns to emerge. SI provides a basis with

whi
h it is possible to explore 
olle
tive (or distributed) problem solving with-

out 
entralized 
ontrol or the provision of a global model (
f. Kennedy et al.,

2001).

The three underlying prin
iples of SI are: evaluate, 
ompare and imitate.

Living organisms 
an learn by evaluating stimuli and rate them as positive

or negative. In our 
ase this is the metri
 (i.e. risk or performan
e measure)

we want to minimize/maximize. As pra
ti
ed in the Adaptive Culture Model

(
f. Shibanai, Yasuno and Ishiguro, 2001) and in real life, people 
ompare

themselves to others and imitate only those neighbours that are superior to

themselves. Imitation is 
entral to human so
iality and important for the

aquisition and maintenan
e of mental abilities (
f. Kennedy et al., 2001). SI

o�ers a tradeo� between individual and group learning.

We give a brief outline of the algorithm (
f. Kennedy et al. (2001), Kennedy

and Eberhart (1995)) and use standard notation. Let y

i

be the position of

parti
le i. In our 
ase the position represents a spe
i�
 portfolio (y

i

2 R

n

).

The 
hange of portfolio is 
alled v. v traditionally stands for velo
ity. Ea
h


lo
kstep t parti
les move from one stop to another by y

i

(t) = y

i

(t� 1) + v

i

(t)

and sample the sear
h spa
e by modifying the velo
ity term. The dire
tion of

movement is a fun
tion of the 
urrent position (y

i

), velo
ity (v

i

), the lo
ation

of the individual's previous best su

ess (p

i

), and the best position found by

any member of the neighborhood (p

g

):

y

i

(t) = f(y

i

(t� 1); v

i

(t� 1); p

i

; p

g

): (26)

One possible implementation is

v

i

(t) = v

i

(t� 1) + n

1

(p

i

� y

i

(t� 1)) + n

2

(p

g

� y

i

(t� 1)) (27)

with

y

i

(t) = y

i

(t� 1) + v

i

(t): (28)

The n variables are random variables de�ned by an upper limit, so that the

parti
les 
y
le around the two best bets: p

i

and p

g

. The random numbers (n

1

and n

2

) are updated in every iteration. With real-life data the velo
ity v very

qui
kly be
omes too large and one has to set limits.



3 PORTFOLIO OPTIMIZATION 11

ys=generateInitialPortfolios #satisfying the 
onstraint

p=ys

loop

# best portfolios's fitness so far

ys.ea
h_with_index{ |y,i|

p[i℄=y, if Rho(y)<Rho(p[i℄) # small Rho wanted

}

i=rand size # arbitrary Rho

g=i

for j=indexes of neighbors

g=j if Rho(p[j℄)<Rho(p[g℄) # g: index of best performer

# in the neighborhood

end

#assuming delta t=1

v[i℄=[i℄+n1*(p[i℄-ys[i℄)+n2*(p[g℄-ys[i℄)

v[i℄=Vmax if v_id>Vmax

v[i℄=Vmin if v_id<Vmin

ys[i℄=ys[i℄+v[i℄

fixPortfolio # 
onstraint

if loopCount mod 10000==0 # big number here

removeWorstPortfolio # remove 10% worst portfolios

inje
tNewPortfolios # inje
t 10% new portfolios

end

until some 
riterion

Figure 2: Extended and slow but simple Ruby-Pseudo
ode for portfolio op-

timization using swarm parti
les based on Kennedy et al. (2001). This basi


algorithm is implemented more eÆ
iently.

As the present value of a portfolio has to remain 
onstant, two minor

modi�
ations in the 
hoi
e of v are required.

In simulation studies on typi
al portfolios it proves su

essful to inje
t

about 10% of new parti
les with random speeds and lo
ations from time to

time and to remove the 10% worst performing parti
les. The exa
t population

size is an open resear
h problem with experts having di�erent opinions. A

rule of thumb is to keep the population size small, but to rely on a high

number of iterations. As this 
an take a long time for higher dimensional

problems, parallel solutions are an easy way out of the dilemma, following

Kent Thompson's (
o-inventor of Unix) famous quote: "When in doubt, use

brute for
e".
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3.4 How sto
hasti
 simulation �ts in

Independent from the question whether GS or SI methods are used to solve

the portfolio optimization problem, it is 
lear that a way must be found to

determine the distributions of the 
onsidered payo� fun
tions X

i

(
f. Se
tion

1, Equation (1)) as �nally in any optimization routine the risk or performan
e

measures (10), (12) and (15) must be 
omputed. The X

i

(
f. (6)) were inter-

preted as wins or losses due to the i-th asset in the market where we assumed

to have n numbered assets. It is 
lear that many of our thoughts so far, es-

pe
ially the fun
tions ES, ES-RORC, ES-RORAC, but also their derivatives,


ru
ially depend on the model for future pri
es V

i

(t). The parti
ular sto
hasti


model we use is introdu
ed in Se
tion 4.

On
e the model for the pri
e pro
esses V

i

(
f. (3)) is 
hosen and a way to

get possible parameters is found, one 
an theoreti
ally 
ompute the risk and

performan
e measures (10), (12) and (15) and their partial derivatives under

budget 
onstraint (23), (24) and (25). However, one often en
ounters models

(also in our 
ase) where it is not possible or quite diÆ
ult to 
ompute these

values dire
tly. The more realisti
 assumption is that one su

eeds in doing

a sto
hasti
 simulation of the model whi
h 
omputes m 2 N

+

(e.g. m = 10

3

)

market s
enarios, i.e. �nally one has for ea
h i the numeri
al realizations (in

in
reasing order)

x

1

i

; x

2

i

; : : : ; x

m

i

(29)

of the random variable X

i

de�ned by (6). The realizations (also in in
reasing

order)

x

1

; x

2

; : : : ; x

m

(30)

for any X = X(u) follow immediately.

Having these realizations, estimates for the sto
hasti
 expressions in the

fun
tions mentioned above 
an be used. In parti
ular, we 
ompute estimates

using the \empiri
al" distribution given by the simulation output, e.g.

b

E[X℄ =

1

m

m

X

j=1

x

j

; (31)

d

VaR

�

(X) = �x

d�me

(32)

or




ES

�

[X℄ =

�

P

x

j

��

d

VaR

�

(X)

x

j


ardfj : x

j

� �

d

VaR

�

(X)g

; (33)
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where dre denotes the smallest integer whi
h is greater or equal the real num-

ber r. Of 
ourse, one 
an use other perhaps more sophisti
ated estimators.

Nonetheless, repla
ing all sto
hasti
 expressions in (10), (12), (15), (23), (24)

and (25) as suggested by (31) to (33), one obtains approximations of the re-

spe
tive measures and their gradients whi
h are easy to implement in any

suitable programming language.

Gradient Sear
h methods or Swarm Intelligen
e optimization methods 
an

now be exe
uted using the obtained approximations.

4 The proposed market model

Until now, the presented theory has not been �xed to a parti
ular �nan
ial

market model and was intended to give a general introdu
tion to the portfolio

optimization problem. In the following se
tions we apply the above ideas to a


on
rete model and data setup.

We model sto
ks and non-defaultable bonds. All sto
hasti
s evolves from a

(d+2)-dimensional brownian motion (Wiener pro
ess) (W

i

)

i=1;:::;d+2

, where the

�rst two 
omponents drive the dynami
s of the two-fa
tor interest rate model

for the bonds and the last d drive the dynami
s of d sto
ks. The brownian

motions W

i

are 
orrelated by a 
ovarian
e matrix � (see also Se
tion 5). We

assume

�

i;i

= 1 (34)

for i = 1; : : : ; d+ 2 and

�

1;0

= �

0;1

= 0; (35)

i.e. ea
h W

i

is a one-dimensional standard brownian motion and W

1

and W

2

are un
orrelated.

4.1 Interest rates and bonds

We use

e

R(t;�)��

=

1

p(t; �)

(36)

as the de�ning equation of the relation between the pri
e p(t; �) of a zero-


oupon bond with maturity � at time t, i.e. the pri
e at time t of the guaranteed

payo� 1 at time t+� , and the 
orresponding spot (interest) rate R(t; �). Hen
e,

R(t; �) is the at t guaranteed 
ontinuous interest rate during the time interval

[t; t + � ℄. For future points of time (t > 0), p(t; �), respe
tively R(t; �), are
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assumed to be random variables. We now turn to the 
onsidered interest rate

model of Chen and S
ott (1992) with two sto
hasti
 fa
tors.

The model is usually 
alled Cox-Ingersoll-Ross-2 (CIR-2) as it relies heavily

on the work of Cox, Ingersoll and Ross (1985) whi
h is a so-
alled short rate

model with only one (e
onomi
ally interpretable) sto
hasti
 fa
tor (modelled

by a square-root pro
ess). However, the authors also formulated the main

ideas for a theory with multiple sto
hasti
 fa
tors. In our des
ription of the

model, we 
losely follow Fis
her, May and Walther (2003), whi
h also in
ludes


omments on the model 
hoi
e whi
h we want to adopt for our purposes (see

also Subse
tion 4.3).

The 
on
rete model setup is given by the two sto
hasti
 fa
tors x = (x

1

; x

2

)

ful�lling the sto
hasti
 di�erential equations

dx

i

= (b

i

� a

i

� x

i

)dt+ �

i

p

x

i

dW

i

(i = 1; 2) (37)

where b

i

, a

i

and �

i

are positive 
onstants. One has x

i

> 0 if 2b

i

> �

2

i

. W

i

(t)

is the i-th brownian motion at time t, W

1

and W

2

are independent (not 
orre-

lated). Equation (37) de�nes a so-
alled mean reversion pro
ess. The param-

eter a is 
alled the strength of the mean reversion and b=a the mean reversion

level, i.e. the long-term mean of the pro
ess x

i

. The implied spot interest rate

at time t for a maturity � is

R(t; �) =

2

X

i=1

�

�

logA

i

(�)

�

+

B

i

(�)

�

x

i

(t)

�

; (38)

the implied zero-
oupon bond pri
e at time t for the maturity �

p(t; �; x(t)) =

2

Y

i=1

A

i

(�)e

�B

i

(�)x

i

(t)

: (39)

The respe
tive fun
tions A

i

and B

i

are given by

A

i

(�) =

�

2h

i

e

(a

i

+�

i

+h

i

)�=2

2h

i

+ (a

i

+ �

i

+ h

i

)(e

�h

i

� 1)

�

2b

i

=�

2

i

(40)

and

B

i

(�) =

�

2(e

�h

i

� 1)

2h

i

+ (a

i

+ �

i

+ h

i

)(e

�h

i

� 1)

�

; (41)

with

h

i

=

q

(a

i

+ �

i

)

2

+ 2�

2

i

: (42)
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The parameter �

i


on
erns the 
hange of measure (physi
al to martingale mea-

sure) and 
an together with all other parameters be estimated from histori
al

interest rates. In the one-fa
tor 
ase, a parti
ular fun
tion of � is interpreted

as the so-
alled market pri
e of risk (Cox, Ingersoll and Ross (1985); see also

Fis
her, May and Walther (2002)). For more than one fa
tor, an e
onomi


interpretation is not possible or at least not obvious.

It is 
lear that the pri
e of any 
oupon bond 
an be 
omputed as the sum

of the pri
es of the respe
tive set of zero-
oupon bonds.

4.2 Sto
ks

The d sto
ks of the 
onsidered �nan
ial market are modelled by geometri


brownian motions, i.e. pri
e pro
esses S

j

(j = 1; : : : ; d) with

S

j

(t) = S

j

(0)e

�

j

t+�

j

W

j+2

(t)

; (43)

where �

j

2 R is the drift and �

j

2 R

+

the di�usion 
oeÆ
ient of the brownian

motion in the exponent, i.e. the pi
e pro
ess has the \trend"

E[S

j

(t)℄ = S

j

(0)e

(�

j

+�

2

j

=2)t

: (44)

In terms of sto
hasti
 di�erential equations (SDE) we have

d lnS

j

= �

j

dt+ �

j

dW

j+2

: (45)

W

i

(t) is the i-th brownian motion at time t.

4.3 Comments

The model 
hoi
e is based on our experien
e with pra
titioners. We know

that at least in three major German life insuran
e 
ompanies one-fa
tor Cox-

Ingersoll-Ross models together with geometri
 brownian motions have been


onsidered in the 
ontext of Asset Liability Management. CIR-1 is used to

model the debt se
urities market and interest rates whereas the geometri


brownian motions (in reminis
en
e of the Bla
k-S
holes model) are used to

model \sto
ks". The mentioned insuran
e 
ompanies are interested in multi-

fa
tor models although not yet using them. The 
ombination and 
orrelation

of the models as proposed in this paper seems to be new.

For insuran
e 
ompanies (known to be 
onservative), an important aspe
t

of su
h models is the a

eptan
e by the s
ienti�
 publi
. This enlightens the
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de
ision for standard models like geometri
 brownian motions or the CIR-1

model.

As mentioned in Fis
her, May and Walther (2003), for instan
e the Vasi
ek-

2 (Gaussian) model behaves in some way better than CIR-2 (
on
erning pa-

rameter estimation or the values of the likelihood fun
tion; see also Babbs and

Nowman (1998)). Nonetheless, insuran
e 
ompanies seem to prefer CIR, as

under the respe
tive parameter 
onstraints CIR assures positive interest rates.

Fa
ing a possible de
ation in the Eurozone (espe
ially in Germany), one might

want to re
onsider this philosophy.

From the a
ademi
 point of view it is 
lear that alternative models like the

Vasi
ek model should also be examined with respe
t to the optimization prob-

lem. However, for several reasons whi
h will be
ome 
lear later we re
ommend

to stay inside the 
lass of so-
alled aÆne term stru
ture models.

Another more theoreti
al problem is whether the probably for optimization

purposes used derivatives (23), (24) and (25) really exist. Depending on the


onsidered model, this might not be trivial, see also Appendix A for some


omments on the di�erentiability problem. We have not proven the existen
e

of the derivatives for the proposed model (in this 
ase, the Vasi
ek model may

be easier to handle, too). However, for our purposes, this unsolved theoreti
al

problem (whi
h relies on the used model) is no drawba
k as our optimization

routines are subje
t to \ba
k-testing" by the SI methods. Nonetheless, the GS

methods work very well in the sear
h of lo
al extrema.

The problems 
oming in line with di�erentiation of quantile expressions


ould be avoided by using risk measures whi
h have more suitable di�eren-

tiability properties as e.g. the risk measures depending on one-sided moments

whi
h are proposed in Fis
her (2003).

The authors admit that the proposed model has not been examined for

absen
e of arbitrage. This is postponed to further resear
h. A
tually, the

model is used like an e
onometri
 framework. In this sense, the philosophy of

our approa
h is pragmati
.

5 Market s
enario generation

As des
ribed in Subse
tion 3.4, we 
arry out a sto
hasti
 simulation to obtain

an \empiri
al" distribution of the 
onsidered random payo�s.

A simulation requires dis
retization. We 
onsider points of time t

m

(m 2
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N). The width of the time step is the 
onstant �, e.g. one day, one month

et
., i.e. t

m+1

= t

m

+� and t

0

= 0. In
rements

ÆW

i;m

:=W

i

(t

m

)�W

i

(t

m�1

) (46)

of the (d+ 2) brownian motions have to be simulated. For �xed m, the ÆW

i;m

are 
orrelated by the 
ovarian
e matrix �� (
f. (34) and (35)). For �xed i,

the in
rements ÆW

i;m

are independent normally distributed random variables

with varian
e � and expe
tation 0.

Hen
e, all dis
retized dynami
s is driven by a series of standard normally

distributed random variables N

i;m

(i = 1; : : : ; d + 2;m 2 N

+

), where for ea
h

m the random variables (N

i;m

)

i=1;:::;d+2

are 
orrelated by the 
ovarian
e matrix

� whi
h will later be estimated from real data.

5.1 Simulation of 
orrelated normal random variables

Simulation of i.i.d. normal random variables is standard. Let us 
onsider the

Cholesky de
omposition

� = CC

t

(47)

of the 
ovarian
e matrix �. If Z = (Z

i

)

i=1;:::;d+2

are d+2 i.i.d. normal random

variables, then

(N

i

)

i=1;:::;d+2

= N = C � Z (48)


ontains d+ 2 normally distributed random variables with 
ovarian
es �.

5.2 Interest rates and bonds

From (37) an Euler-approximation gives the re
ursion

x

i;m

= x

i;m�1

+ (b

i

� a

i

� x

i;m�1

)� + �

i

p

x

i;m�1

p

�N

i;m

(i = 1; 2) (49)

where the N

i;m

(�xed i or alternatively �xed m) are i.i.d. N(0; 1) (
f. Fis
her,

May and Walther, 2003). For a general introdu
tion into the numeri
s of

sto
hasti
 di�erential equations we refer to Kloeden and Platen (1992).

Plugging the 
omputed values into (38), resp. (39), returns the desired

interest rates, resp. bond pri
es.

5.3 Sto
ks

From (45) we get the Euler-approximation

lnS

j;m

� lnS

j;m�1

= �

j

��+ �

j

�

p

� �N

j+2;m

(1 � j � d) (50)
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where the N

j+2;m

(�xed j) are i.i.d. N(0; 1). This implies for M 2 N

+

S

j;M

= S

j;0

exp

 

�

j

M�+ �

j

M

X

m=1

p

�N

j+2;m

!

: (51)

6 Estimation of parameters

6.1 Interest rates and bonds

The estimation of the parameters of the CIR-2 model and detailed des
ription

of the used methods are subje
t of several existing arti
les, e.g. Chen and S
ott

(1993), Duan and Simonato (1999), Bolder (2001), Beletsky and Szimayer

(2002) and Fis
her, May and Walther (2003). The problem is not trivial.

The most eÆ
ient method seems to be maximum-likelihood estimation with

Kalman-�ltering. In parti
ular, we used the ma
hinery as explained in Fis
her,

May and Walther (2003). The interested reader 
an �nd further information

in this paper and the referen
es therein.

A 
omment on the data: We use the histori
al yield stru
ture of the Ger-

man debt se
urities market (monthly, taken at the end of ea
h month). The

values for spot rates with maturities � > 0 up to 28 years 
an be 
omputed

via a parametri
 presentation of yield 
urves (the so-
alled Svensson-method;


f. Svensson (1994) and S
hi
h (1997)) for whi
h the histori
al parameters 
an

be taken from the homepage of the German Federal Reserve (Deuts
he Bun-

desbank; http://www.bundesbank.de). The implied Bundesbank values R

0

are estimates of dis
rete interest rates on notional zero-
oupon bonds based

on German Federal bonds and treasuries (
f. S
hi
h, 1997) and have to be


onverted into 
ontinuous interest rates by R = ln(1 +R

0

).

6.2 Sto
ks

Given the market data S

j;m

(j = 1; : : : ; d; m = �M; : : : ; 0; time step = �;

t = 0 is the present), dis
retization (50) is used to 
ompute the estimators

�̂

j

=

1

M�

ln(S

j;0

=S

j;�M

) (52)

and

�̂

j

=

v

u

u

t

1

M�

0

X

i=1�M

(ln(S

j;m

=S

j;m�1

)���̂

j

)

2

(53)

for the parameters of the sto
k pri
e dynami
s.
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6.3 The 
ovarian
e matrix

After having plugged in histori
al data, solving equations (49) and (50) for the

values N

i;m

gives us a time series (N

i;m

) (i = 1; : : : ; d+2; m = 1�M; : : : ; 0) of

hypotheti
al histori
al realizations of the normal random variables (48). Now,

the values

b

�

i;j

=

1

M

0

X

m=1�M

N

i;m

N

j;m

(54)


an be used as estimates for the entries of the 
ovarian
e matrix �. However,

there is still something missing sin
e we 
an not get the histori
al realizations

x

i;m

of the sto
hasti
 fa
tors of the interest rate model (49) dire
tly from the

market. Instead, we use the aÆne term stru
ture (38) to derive them from the

interest data distributed by the German Federal Reserve (
f. Subse
tion 6.1).

One has

�

R(t; �

1

)

R(t; �

2

)

�

| {z }

=

 

�

logA

1

(�

1

)

�

1

�

logA

2

(�

1

)

�

1

�

logA

1

(�

2

)

�

2

�

logA

2

(�

2

)

�

2

!

| {z }

+

 

B

1

(�

1

)

�

1

B

2

(�

1

)

�

1

B

1

(�

2

)

�

2

B

2

(�

2

)

�

2

!

| {z }

�

�

x

1

(t)

x

2

(t)

�

| {z }

(55)

R

t

= M

A

+ M

B

� x(t): (56)

Hen
e, we obtain by

x(t) =M

�1

B

(R

t

�M

A

) (57)

a time series x

i;m

(i = 1; 2; m = �M; : : : ; 0) by inserting the time series of

the respe
tive spot rates into (57). Slightly di�erent from Fis
her, May and

Walther (2003), our suggestion is

�

1

= 0:5 years; �

2

= 10:0 years: (58)

Equation (57) also returns the starting values x(0) = (x

1

(0); x

2

(0)) for the

simulation of the fa
tors x

1

and x

2

. The 
omputation of the values x(0) im-

plies a mathemati
ally 
ontinuous 
ontinuation of the history of the spot rates

R(:; �

1

) and R(:; �

2

) by the CIR-2 model. For other maturities than �

1

and �

2

there might be jumps in the dynami
s of the respe
tive sport rate (
f. Fis
her,

May and Walther, 2003). A simulation study of the same authors showed that

for realisti
 time horizons the starting values have signi�
ant in
uen
e on the

means of the simulated interest rates. Hen
e, a proper 
al
ulation of starting

values is important.

Having exe
uted the explained pro
edure, one 
an 
ompute the empiri
al


ovarian
e matrix

b

� by (54). At this point, a further problem arises. The
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CIR-2 model works with un
orrelated brownian motions (
f. subse
tion 4.1).

Nonetheless, the upper left 2� 2-submatrix of

b

�, whi
h theoreti
ally should

be the two-dimensional identity, may di�er from the theoreti
al values. To

stay in the proposed model, one 
an adjust the estimate

b

� by setting the

upper left 2� 2-submatrix to the identity matrix. Doing this, it is important

to 
he
k whether the new matrix is still positively de�nite as we afterwards

have to 
arry out the Cholesky de
omposition. In 
ases where positive

de�niteness gets lost, one should 
hoose a symmetri
 positively de�nite matrix


lose to the proposed matrix with the identity in the upper left 
orner.

The proposed te
hnique for the 
omputation of the 
ovarian
e matrix and

the starting values should be suitable for any sto
hasti
 interest rate model

with an aÆne term stru
ture as in (38) (e.g. Vasi
ek-2).

7 Chronologi
al overview

I. Estimation

� Get data.

� Estimate parameters of sto
k pri
es; (52) and (53).

� Estimate parameters of interest rate dynami
s (
f. Subse
tion 4.1).

� Compute the histori
al time series x

i;m

(m � 0) by (57).

� Solve equations (50) and (49) for the histori
al N

j;m

(m � 0).

� Compute the 
ovarian
e matrix

b

�; (54).

� Compute the Cholesky de
omposition of

b

�; (47).

II. Simulation

� Simulate future i.i.d. normal random variables and plug them into (48)

to get the simulated N

i;m

(m > 0).

� Plug the N

i;m

into (50) and (49) to get the simulated s
enario of sto
k

pri
es and interest rate model fa
tors x

i;m

(m > 0).

� Plug the fa
tors x

i;m

into (38) or (39) to get spot rates or bond pri
es.
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� Reiterate the above three steps to get a large set of market s
enarios.

III. Evaluation

� Choose (or assume to be given) a 
ertain portfolio.

� Compute portfolio values (e.g. by (1)) using the s
enarios generated in

step II.

� Compute the risk and performan
e measures (10), (12) and (15) by the

empiri
al portfolio distributions obtained; 
f. (31) to (33).

� If ne
essary, 
ompute the partial derivatives (23), (24) and (25).

IV. Optimization

� Use a GS or SI method repeating step III for ea
h new portfolio.

Note that the simulation pro
edure (=s
enario generation; step II) must

only be done on
e. The optimization loops use the same set of s
enarios for

alternating portfolios.

8 First results

8.1 Gradient Sear
h vs. Swarm Intelligen
e

(Parti
le) Swarm Intelligen
e is a powerful tool to solve optimization problems

in a �xed sear
h-spa
e. SI is 
omputationally appealing as simple to implement

and 
omputationally robust with respe
t to lo
al minima and maxima, pro-

vided enough iterations (generations) are performed. As an additional bonus,

SI is inherently parallel and 
an be implemented in a massively parallel way

(
f. Auslander et al. (1995), Fabiunke (2002)).

Gradient (Grid) Sear
h methods like hill-
limbing are superior to random-

guessing algorithms like SI if the sear
h-spa
e is e.g. a sphere, but on highly

multi-dimensional surfa
es, the gradient method gets stu
k too often in lo
al

extreme points and therefore be
omes 
omputationally expensive, as one has

to start from many di�erent starting points.

In higher-dimensional problems, SI seem �tter than GS methods. How-

ever, one has to be 
areful with su
h statements, as a

ording to the No Free

Lun
h (NFL) theorem (
f. Wolpert and Ma
ready, 1996), when performan
e is
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averaged over all possible sear
h spa
es, all sear
h algorithms perform equally

well.

Ultimately we de
ided to sti
k with SI algorithms, whi
h seem to 
on-

verge faster for large real-life size portfolios. Combining these evolutionary

algorithms with a sele
ted Gradient Sear
h for sele
ted good intermediate so-

lutions provides further speed-up.

One 
aveat with all numeri
al solutions, without further assumptions about

the sear
h-spa
e is that there is no guarantee that the optimal solution is found.

In pra
ti
e one monitors the rate of 
onvergen
e and dedi
ates enough sear
h-

time. Looking at the number of idle PCs and workstations in the typi
al

investment bank or insuran
e 
ompany one 
an be on the save side and farm

out the work in fra
tions of a se
ond to a large number of pro
essors or a

dedi
ated 
luster or Global Grid.

8.2 Examples

The general setup for our numeri
 examples is a time horizon of one month

where the simulation takes 20 steps per month. The number of loops is 1000.

We 
onsider portfolios whi
h have a present value of exa
tly 1000 EUR. We

optimize using a lo
al GS method and a 
ombined GS-SI method. The se
ond

one is run with and without 
onstraint b = 0, i.e. with and without short-

selling in the portfolio (
f. (20)). The 
onsidered 
on�den
e level is 5%. Two

types of portfolios are examined. The smaller one 
ontains two bonds and two

sto
ks, the bigger one 10 bonds and 10 sto
ks. In parti
ular, we 
onsidered

the following bonds and sto
ks (whi
h are here listed in the same order as in

the portfolio ve
tors):

� 2 zero-
oupon bonds: Maturity 1 year and 10 years.

2 \sto
ks": Xetra DAX and Allianz

� 10 zero-
oupon bonds: Maturity 1 year up to 10 years.

10 sto
ks: Allianz, BASF, BMW, Bayer, Commerzbank, Daimler-

Chrysler, Deuts
he Bank, Lufthansa, E.ON, Hypovereinsbank

All sto
ks are elements of the Xetra DAX and had their IPO (Ini-

tial Publi
 O�ering) at least 10 years ago. Data was taken from

http://de.finan
e.yahoo.
om. The estimates are 
al
ulated from monthly

data from May 2002 to April 2003. We obtain the model parameters listed in
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Table 1. The same time interval and dis
retization was taken for the estima-

tion of the term stru
ture model parameters (
f. Subse
tion 6.1). Maturities

from 1 to 10 years were taken into 
onsideration. Results are in Table 2.

The values of the (adjusted) 
ovarian
e matrix in Table 3 
on�rm the use

of 
orrelations between the interest rate model fa
tors and the sto
k market

dynami
s to obtain a more realisti
 
ombined model.

For ea
h of our setups we 
omputed the ES-, ES-RORC- and ES-RORAC-

optimal portfolio. The mean, VaR, ES, ES-RORC and ES-RORAC for these

portfolios are listed in the Tables 4-9 in Appendix B (and the portfolios them-

selves in the four assets 
ase). The optimized portfolios are 
ompared with

\normed" portfolios where the same 
apital is invested in ea
h of the four, re-

spe
tively 20 assets. As expe
ted, all optimized measures have been improved

signi�
antly (see also Figures 3 and 4) and the 
ombined GS-SI method is su-

perior to the lo
al GS method starting at the normed portfolio. Lo
al extreme

points seem to exist in the most 
onsidered 
ases. A situation as in Table 6

where the ES of the ES-optimized portfolio is lower than (but 
lose to) the ES

of the RORC-optimized portfolio 
ould be a symptom for the need of more (or

�ner) iterations.

Due to our pragmati
 approa
h we did not invest any time in proofs for the

existen
e or absen
e of global, respe
tively lo
al extreme points in our model.

Real �nan
ial 
ompanies are not interested in su
h questions, espe
ially as

portfolios are often optimized in small steps and not a 
omplete restru
turing.

An interesting (and reasonable) model output is that the lo
al GS results

imply that bonds of longer maturities bear more �nan
ial risks. This 
an be

seen in de
reasing weights of bonds with higher maturities in the optimized

portfolios (this is also true for the portfolios whith 20 assets whi
h are not

listed in detail).

Massive short-selling and probable absen
e of global extreme points (e.g. in

the RORAC 
ase, 
f. Table 4) motivate the use of 
onstraint b = 0 (no short-

selling). Roughly speaking, the impli
ation seems to be that optimized port-

folios under the 
onstraint 
ontain almost no sto
ks. Optimization under the

no-shortselling 
onstraint seems to imply rather similar optimized portfolios

for all measures (
f. Tables 6 and 9).

In summary, all obtained results seem to be reasonable from the e
onomi


point of view and 
on�rm the proposed methods. We 
annot really judge the

impa
t of other models at this stage of our resear
h. However, we guess that
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reasonable models (e.g. su
h using Vasi
ek-2) will imply results 
lose to ours.

9 Parallel programming and s
alability

9.1 Bulk syn
hronous parallel 
omputing

Sin
e 1944 von Neumann's model for sequential 
omputing has been widely

a

epted, but there is no standard model for parallel 
omputing. Most ap-

proa
hes nowadays are based on message-passing, but they are often inade-

quate, sin
e the potential danger of deadlo
k, in whi
h ea
h possible a
tivity

is blo
ked, waiting on some other a
tivity that is also blo
ked, in
reases dra-

mati
ally with the 
omplexity of software.

Furthermore, models based on message-passing, e.g. MPI (Message passing

interfa
e), do not easily allow performan
e predi
tion. The Bulk syn
hronous

parallel 
omputing model (BSP) however abstra
ts low-level program stru
ture

in favour of so-
alled supersteps. This allows easy debugging, removes the

problem of deadlo
k and allows a reasoning of the 
orre
tness of the 
ode

nearly as easily as in sequential 
ode.

BSP 
omputers

A BSP 
omputer 
onsists of a set of pro
essor/memory pairs, a global 
om-

muni
ation network and a me
hanism for the eÆ
ient barrier syn
hronisation

of the pro
essors. In real life, this 
ould be anything: a single/multi-pro
essor

PC, a 
luster of workstations or a real parallel ma
hine like the Cray T3D.

Supersteps

The fundamental idea of BSP is the notion of a superstep. In a superstep,


omputation and 
ommuni
ation are de
oupled. This avoids deadlo
k.

First the pro
esses perform as many 
al
ulations as possible using their

lo
al data. If one pro
essor needs data from another, 
ommuni
ation starts

only after all the 
omputation has stopped. When 
ommuni
ation is �nished,

barrier syn
hronisation is 
alled and the next superstep begins.

9.2 Cost modelling and performan
e predi
tion

A 
ost model helps to guide the 
hoi
e of programming algorithm.
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The separation of 
ommuni
ation from syn
hronisation and the inherent

simpli
ity of the superstep stru
ture make it relatively easy to �nd a suitable


ost-model. The 
ost is expressed in terms of steps or 
oating point opera-

tions (FlOps) for ea
h portion of the program. The 
ost parameters are the

BSP parameters for the ma
hine and parameters determined by the 
hoi
e of

algorithm and their implementation.

As a BSP program 
onsists of a sequen
e of supersteps, the \
ost" of an

entire program is the sum of the 
ontributions from its supersteps.

What are the key parameters that determine performan
e? Extensive re-

sear
h by the originators of the BSPlib showed that the following four key

parameters are suÆ
ient (
f. Hill and M
Coll, 1996):

� the number of pro
essors, p;

� pro
essor speed, s (number of steps per se
ond);

� the 
ost l (steps), of a
hieving barrier syn
hronisation (whi
h depends

on network laten
y, whi
h is a measurement of delay from one end of a

network to another). Basi
ally l is the 
ost of telling all pro
essors to

wait till all 
ommuni
ation has been performed; and

� the 
ost g (steps per word), of delivering message data. This 
aptures

the interpro
ess 
ommuni
ation speed.

Sin
e the pro
essor speed s is essentially a normalising fa
tor, there are only

three independent parameters: p, l and g.

The 
ost of one superstep is

max(w

i

) + g �max(h

i

) + l (59)

where i ranges over pro
essors (i = 1; : : : ; p), w

i

is the time for the lo
al 
ompu-

tation in pro
essor i and h

i

is the number of in
oming or out
oming messages

per pro
essor. The values of the parameters are determined by measurement

using suitable ben
hmarks that mimi
 average 
omputation and 
ommuni
a-

tion loads (
f. Hill, 1996).

The dependen
e on a spe
i�
 platform enters the 
ost fun
tion only through

the parameters p, l and g.

We follow 
onvention and 
ount every 
oating point operation as 1.

The BSP approa
h o�ers a simple 
ost model. In general, 
ost-modeling

appli
ations give a rough ball-park �gure of the 
ost on any parallel ma
hine
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and 
on�guration size. The role of pro�ling tools like bsprof aids simplis-

ti
 pen
il and paper 
ost modeling, and it e�e
tively predi
ts the 
ost of an

algorithm on any parallel ma
hine (
f. Hill, Crumpton and Burgess, 1996).

9.3 S
alability

Programmers take the burden of writing parallel programs to in
rease speed

and memory. The aim of every parallel algorithm designer is to write 
ode

that s
ales linearly, i.e. runs p times as fast on a p-pro
essor ma
hine. This


learly 
onstitutes an upper bound, if the sequential algorithm is already op-

timal. Linear s
alability is a
hieved by using good load-balan
ing, keeping all

pro
essors busy all the time and 
ommuni
ation 
osts are minimized.

Data dependen
y 
an make optimal speed-up impossible. It determines

parallel 
omplexity, the minimum number of steps an algorithm would need to

run on a PRAM-
omputer. This 
onstitutes an upper bound on the maximal

speed-up that 
an be a
hieved.

There are many di�erent and more sophisti
ated layouts of parallel imple-

mentations possible. The right 
hoi
e depends on the size of the portfolio and

available hardware. For the sake of simpli
ity in this arti
le we have 
hosen

the brute for
e approa
h.

Sket
h of the s
alability for a parallel brute-for
e GS: To avoid lo
al extrema,

one has to start many times from di�erent grid-points:

1. Superstep: Broad
ast the initial portfolio stru
ture and sear
h-areas,

or only the portfolio stru
ture and use random startpoints. Depend-

ing on the network ar
hite
ture (re
e
ted in the value of g), one might

use several supersteps and use e.g. a tree-shaped 
ommuni
ation form.

Asymptoti
 
ost for a 1 phase broad
ast: l + npg, where n is the size of

the initial portfolio stru
ture.

2. Superstep: Now work out gradient sear
hes on all pro
essors for a given

time. E.g. every pro
essors performs a set-number of sear
hes. On av-

erage this will balan
e out. Asymptoti
 
ost: 1=p� sequential time, as

if p pro
essors work out k=p sear
hes, k sear
hes are performed in total.

The sequential time is the all dominating fa
tor.

3. Superstep: Ea
h pro
essor sends its best grid point ba
k to pro
essor 1,
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whi
h sorts them and gives the �nal result. Asymptoti
 
ost: l+ng+ p.

The extra p arise from 
hosing the point with best �tness.

As the 
ommuni
ation 
ost, sorting, et
. is negligible for any reasonable

number of sear
hes, this algorithm 
learly s
ales linearly with the number of

pro
essors used.

Sket
h of the s
alability for SI:

Superstep: As in the 1-pro
essor mode (see Figure 2), but now per-

formed on all p pro
essors. Every 1000 or 10000 iterations �t values are

ex
hanged, then the next superstep starts.

Sin
e the 
ost of data inter
hange is negligible 
ompared to the 
ost of the

iterations in ea
h superstep, we have s
alability as in the GS 
ase.

One typi
al s
hoolbook error in this 
ontext is not to use a high quality

random number generator, assuring independent random number streams on

all pro
essors (
f. Mas
agni, Ceperley and Srinivasan (1998, 1999)).

Large 
lusters as well as the rise of grid-
omputing requires analyti
 fore-


astig of run-times to 
hose the appropriate hardware for the task. There are

many potential trade-o�s (
f. Jarvis et al. (2002, 2003) and Roehrl (1998)):

time versus money, et
. Our paper has shown that a pragmati
 approa
h 
an

take advantage of developments in 
omputers
ien
e to enable the exploration

of new portfolio optimization te
hniques using parallel 
omputing te
hniques.

10 Con
lusion

The purpose of this paper is twofold. First, we des
ribe in Se
tion 1 to 3 a

general methodology of ES-, ES-RORC- and ES-RORAC-optimization whi
h

seems to be suitable independently from the 
onsidered market model. Se
ond,

we propose a parti
ular market model whi
h seems to be suitable to des
ribe

at the same time bonds and sto
ks as well as dependen
ies between them and

whi
h is used for our numeri
al examples. We thoroughly explain the proposed

model and the respe
tive simulation and optimization pro
edures. Con
rete

examples and a s
alability analysis show the suitability and pra
ti
ability of

the methodology. Alternative models, model tests and the examination of

some more theoreti
al questions have to be postponed to future resear
h.
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A Derivatives of VaR and ES

This se
tion derives expressions for the derivatives of Value-at-Risk and Ex-

pe
ted Shortfall. Equation (22) is dire
tly implied by Lemma A.2.

We 
onsider a bivariate random variable (X; Y ) with 
ontinuous density

f(x; y) su
h that X + �Y has for any � 2 R a 
ontinuous density, too. De�ne

VaR

�

(�) for 0 < � < 1 as

VaR

�

(�) := VaR

�

(X + �Y ): (60)

Sin
e X + �Y is a 
ontinuous random variable, the in�mum in (9) is a
tually

rea
hed (i.e. is a minimum) and the respe
tive probability is exa
tly �.

LEMMA A.1. Under 
ertain strong assumptions on the density f , the Value-

at-Risk VaR

�

(�) 
an be di�erentiable in � and

�VaR

�

(�)

��

= �E[Y jX + �Y = �VaR

�

(�)℄: (61)

The following proof is analogous to Gouri�eroux, Laurent and S
aillet

(2000). The mentioned authors have derived the expression for the deriva-

tive if existing, but have not proven the existen
e (of the derivative).

Proof (Gouri�eroux, Laurent and S
aillet, 2000). If �VaR

�

(�)=�� exists, we

have

Z Z

�VaR

�

(�)��y

�1

f(x; y)dxdy = �; (62)

and hen
e by di�erentiation with respe
t to �

Z

[��VaR

�

(�)=�� � y℄f(�VaR

�

(�)� �y; y)dy = 0: (63)

This implies

�VaR

�

(�)

��

= �

R

yf(�VaR

�

(�)� �y; y)dy

R

f(�VaR

�

(�)� �y; y)dy

(64)

and therefore (61).

As already mentioned, the main problem in this reasoning is the missing

proof of the di�erentiability of VaR. Also the stri
t positivity of the integral

R

f(�VaR

�

(�)��y; y)dy should be an important ingredient in a proper proof of

the lemma. In the paper of Tas
he (2000), there is given a suÆ
ient 
ondition,

named (S), for VaR-di�erentiation. However, 
ondition (S) is in the most 
ases

not easy to prove (the normal distribution ex
luded) and di�erentiation may

be possible even if (S) is not ful�lled.
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LEMMA A.2. Under 
ertain strong assumptions on the density f , the Ex-

pe
ted Shortfall ES

�

(�) := ES

�

(X + �Y ) 
an be di�erentiable in � and

�ES

�

(�)

��

= �E[Y jX + �Y � �VaR

�

(�)℄: (65)

Proof. We have

ES

�

(�) = �

1

�

Z Z

�VaR

�

(�)��y

�1

(x+ �y)f(x; y)dxdy: (66)

Di�erentiation with respe
t to � leads to

�ES

�

(�)

��

= �

1

�

Z Z

�VaR

�

(�)��y

�1

yf(x; y)dy (67)

+

1

�

Z

VaR

�

(�)[��VaR

�

(�)=�� � y℄f(�VaR

�

(�)� �y; y)dy:

Due to (64), the se
ond summand is 0.

In a more general 
ontext, Tas
he (2000) also derives (65). Again, the most

important parts of an existen
e proof would be the existen
e of the respe
tive

integrals and the proof of the 
orre
t appli
ation of all used di�erentiation

rules.

B Tables and �gures
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Share V

i

(0) �̂

i

�̂

i

Xetra DAX 2942.04 -0.54 0.45

Allianz 56.17 -1.46 0.78

BASF 38.16 -0.29 0.31

BMW 29.06 -0.50 0.32

Bayer 16.75 -0.80 0.66

Commerzbank 8.32 -0.92 0.79

DaimlerChrysler 28.90 -0.65 0.36

Deuts
he Bank 44.86 -0.59 0.47

Lufthansa 8.79 -0.56 0.48

E.ON 41.80 -0.31 0.29

Hypovereinsbank 10.20 -1.41 0.92

Table 1: Sto
k market parameters (1 year history). In the portfolio with 4

assets the Xetra DAX is treated like a single sto
k.

â

1

^

b

1

�̂

1

^

�

1

0.2648 0.0120 0.1236 -0.0647

â

2

^

b

2

�̂

2

^

�

2

1.7563 0.0145 0.1704 0.4968

Table 2: Estimates for the CIR-2-model (1 year history)

0

B

B

B

B

B

�

1 0 0:7333 0:5860

0 1 �0:4180 �0:3799

0:7333 �0:4180 1 0:9062

0:5860 �0:3799 0:9062 1

1

C

C

C

C

C

A

Table 3: Adjusted 
ovarian
e matrix

^

� (4 assets)
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Figure 3: Histogram of returns; normed portfolio with 4 assets, 10

4

loops

Figure 4: Histogram of returns; ES-optimized portfolio with 4 assets (lo
al

GS), 10

4

loops. Compared to the original portfolio in Figure 3, all values have

signi�
antly been improved (please note the di�erent s
ales).
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Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -29.21 148.56 169.90 -0.1719 -0.0250

Units (256.03, 382.88, 0.0850, 4.4508)

Capital (250.0, 250.0, 250.0, 250.0)

ES-opt. 2.20 8.02 11.67 0.1888 0.0022

Units (575.22, 595.47, 0.0284, -0.6059)

Capital (561.67, 388.81, 83.54, -34.03)

RORC-opt. 8.73 18.61 28.39 0.3071 0.0085

Units (506.74, 650.08, 0.0856, -3.0470)

Capital (494.81, 424.47, 251.87, -171.15)

RORAC-opt. 14535.32 34795.68 56428.72 0.2576 0.2531

Units (89585.98, -170200.78, 102.93, -4952.51)

Capital (87476.85, -111132.65, 302838.23, -278182.42)

Table 4: 4 assets; � = 0:05; no 
onstraints; lo
ally GS-optimized portfolios;

GS started at normed portfolio

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -29.21 148.56 169.90 -0.1719 -0.0250

Units (256.03, 382.88, 0.0850, 4.4508

Capital (250.0, 250.0, 250.0, 250.0)

ES-opt. 2.75 1.11 2.19 1.2555 0.0027

Units (1758.10, -1049.55, -0.0115, 0.0413)

Capital (1716.71, -685.31, -33.73, 2.32)

RORC-opt. 3.07 0.84 1.96 1.5643 0.0031

Units (1533.04, -730.19, -0.0036, -0.1729)

Capital (1496.95, -476.78, -10.46, -9.71)

RORAC-opt. 29454.12 70484.98 114339.65 0.2576 0.2554

Units (186074.79, -353548.05, 208.71, -10038.90)

Capital (181693.00, -230849.31, 614040.41, -563885.10)

Table 5: 4 assets; � = 0:05; no 
onstraints; SI-GS-optimized portfolios
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Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -29.21 148.56 169.90 -0.1719 -0.0250

Units (256.03, 382.88, 0.0850, 4.4508)

Capital (250.0, 250.0, 250.0, 250.0)

ES-opt. 1.81 4.19 6.26 0.2894 0.0018

Units (1020.03, 0.22, 0.0013, 0.0001)

Capital (996.01, 0.14, 3.84, 0.01)

RORC-opt. 1.88 4.29 6.37 0.2957 0.0019

Units (1020.60, 4.22, 0.0000, 0.0119)

Capital (996.57, 2.76, 0.01, 0.67)

RORAC-opt. 2.13 19.43 25.32 0.0843 0.0021

Units (84.47, 1404.48, 0.0001, 0.0027)

Capital (82.48, 917.06, 0.31, 0.15)

Table 6: 4 assets; � = 0:05; 
onstraint b = 0; SI-GS-optimized portfolios

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -19.29 115.36 134.59 -0.1433 -0.0170

ES-opt. 0.32 6.93 8.87 0.0361 0.0003

RORC-opt. 7.13 8.28 13.79 0.5172 0.0070

RORAC-opt. 653.55 884.70 1369.21 0.4773 0.2759

Table 7: 20 assets; � = 0:05; no 
onstraints; lo
ally GS-optimized portfolios;

GS started at normed portfolio

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -19.29 115.36 134.59 -0.1433 -0.0170

ES-opt. 2.52 2.23 3.56 0.7064 0.0025

RORC-opt. 4.40 2.92 4.82 0.9129 0.0044

RORAC-opt. 651.75 842.94 1357.35 0.4802 0.2765

Table 8: 20 assets; � = 0:05; no 
onstraints; SI-GS-optimized portfolios

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -19.29 115.36 134.59 -0.1433 -0.0170

ES-opt. -2.10 18.59 22.75 -0.0922 -0.0021

RORC-opt. -2.22 23.76 27.84 -0.0799 -0.0021

RORAC-opt. -2.1723 19.01 23.17 -0.0937 -0.0021

Table 9: 20 assets; � = 0:05; 
onstraint b = 0; SI-GS-optimized portfolios
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