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Abstrat

We explain how to optimize portfolios of bonds and stoks with re-

spet to the Expeted Shortfall (ES), respetively RORC or RORAC

based on ES. In a pragmati approah we ombine and orrelate a

stok market model with geometri brownian motions with a two-fator

Cox-Ingersoll-Ross (CIR-2) model for the interest rates/bonds. We use

reent results from the theory of risk apital alloation, performane

measurement and Swarm Intelligene for optimization. Examples for

German market data as well as an analysis of the salability of the solu-

tion to assure fast run-times on lusters of omputers for large real-life

portfolios are given.
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1 Introdution

In the �rst part of this paper we introdue a general onept of portfolio op-

timization with respet to the risk measure Expeted Shortfall (ES) and also
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1 INTRODUCTION 2

(but not at the same time) with respet to the performane measures RORC

and RORAC (Return On Risk/Risk-Adjusted Capital) due to ES. Later, a

spei� �nanial market model that enables optimization of portfolios onsist-

ing of bonds and stoks is proposed. This model ombines and orrelates a

stok market model of geometri brownian motions with a two-fator Cox-

Ingersoll-Ross (CIR-2) model for the interest rates, respetively bonds. Nu-

meri optimization is done using reent results from the theory of risk apital

alloation, performane measurement and (Partile) Swarm Intelligene (SI).

Expliit formulas and methods for the model and algorithms like Gradient

Searh (GS) and SI optimization are provided. Examples of optimized portfo-

lios for German market data are given. Furthermore, we analyze the salability

of the solution (with respet to multi-proessor mahines, lusters or Global

Grid environments) to assure fast run-times for large real-life portfolios.

The idea of portfolio optimization with respet to modern risk and per-

formane measures like ES, RORC or RORAC and also taking orrelations

between interest rates and stoks using an enhaned interest rate model into

aount seems to be new. Fast developing omputer tehnology enables to

solve optimization problems numerially even for omplex market models and

big portfolios.

Our approah is pragmati in the sense that some of the theoretial

problems whih an emerge are (although not onsidered in depth) solved by

unorthodox methods that seem to work well with real-life portfolios. The

fous of the paper lies on the presented methods and not on the testing of

these methods. From an aademi point of view, this might be unsatisfying,

but the mentioned models have (separately and sometimes in unfortunately

simpli�ed forms) been onsidered in some of the biggest German insurane

ompanies. Pratitioners should keep in mind that the paper shows what is

atually possible in optimizing portfolios, but not how good the presented

methods are from the historial point of view or ompared to other market

models. Suh questions are not part of this paper.

The paper is organized as follows. Setion 2 introdues the onsidered

risk and performane measures. Setion 3 explains the general approah to

the optimization problem. Furthermore, the Gradient Searh, the Swarm

Intelligene optimization method and the role of stohasti simulation in these

approahes are desribed. After this general introdution to optimization
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methods, Setion 4 introdues and disusses the proposed �nanial market

model. Setion 5 is dediated to the stohasti simulation part, i.e. the

generation of market senarios. In Setion 6, information on parameter

estimation an be found. Setion 7 gives a brief hronologial overview of all

steps onerning our proposed optimization methodology. In Setion 8 we

present �rst results for German market data. Setion 9 shows the salability

of our solution. In Setion 10 we onlude. Finally in the Appendix we give

two results on the form of the derivatives of Value-at-Risk and Expeted

Shortfall expressions.

We introdue some notation. Let us de�ne the total payo�

X = X(u) :=

n

X

i=1

u

i

X

i

(1)

of a portfolio

u = (u

i

)

1�i�n

2 R

n

(2)

whih represents n 2 N

+

= N n f0g di�erent payo�s X

i

(1 � i � n) with

weights u

i

2 R. The X

i

are assumed to be one-dimensional real-valued random

variables. We all B = (X

1

; : : : ; X

n

) a portfolio base (f. Fisher, 2003) as any

onsidered portfolio will be desribed with (2) and (1). As random variables,

the omponents of B do not have to be linearly independent.

As an example, onsider a �nanial market with n numbered seurities.

Let us assume that the pries of these seurities at some time s 2 R

+

0

(the

positive real numbers inluding 0) are given by random variables

V

1

(s); V

2

(s); : : : ; V

n

(s): (3)

We assume to have onstants for s = 0, whih is the present time. We will

also use the notation

V

i

= V

i

(0) (4)

and

V = V (u) :=

n

X

i=1

u

i

V

i

(0) (5)

for the value of the portfolio u at time 0 in the following, and de�ne

X

i

= V

i

(t)� V

i

(0); (6)

where the variable t > 0 is the onsidered time horizon for whih risk man-

agement is performed. Hene, the X

i

are wins or losses due to the i-th asset
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during the time interval [0; t℄. Now, the portfolio u of the di�erent assets has a

di�erene in value from time 0 to t whih is exatly X(u), and X > 0 (X < 0)

is an inrease (derease) of the portfolio value from time 0 to t and therefore

a win (loss) for the portfolio holder.

2 Risk and performane measures

2.1 General de�nition

A risk measure � is usually de�ned as a mapping from a set of random variables

(i.e. payo�s) X to the real numbers, that means

� : X �! R (7)

X 7�! �(X):

The amount �(X) is ommonly interpreted as the minimum ash suh that the

\risk" of X is \aeptable" to the holder of the payo� or portfolio whenever

he/she has the additional amount �(X) stored as risk apital (f. Artzner et

al., 1999).

Working with a portfolio base B = (X

1

; : : : ; X

n

), a risk measure � on the

payo�s X implies a risk measure �

B

on the portfolios u 2 R

n

for whih we

have X(u) 2 X . In partiular, if X(R

n

) = X we an de�ne

�

B

: R

n

�! R (8)

u 7�! �(X(u)):

We also write �(u) for �

B

(u). Based on the ontext, no onfusion an arise.

A performane measure an also be represented by funtions as onsidered

in (7) and (8). In ontrast to risk measures, performane measures are ususally

intended to desribe ratios like the relation of the expeted return to the risk

apital or invested risk-adjusted apital. However, the onrete interpreta-

tion of suh measures is postponed until we look at onrete examples, namely

RORC and RORAC (f. Setion 2.3).

2.2 Expeted Shortfall

For 0 < � < 1, we de�ne Value-at-Risk as

VaR

�

(X) := � inffx : P (X � x) � �g: (9)
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Hene, VaR is a negative �-quantile of the distribution of the random variable

X. Expeted Shortfall (ES) is de�ned by

ES

�

(X) := �E[XjX � �VaR

�

(X)℄: (10)

The meanings of these risk measures are obvious: -VaR is a treshold whih is

fallen short of in � � 100% of all ases, -ES is the expetation (i.e. the mean) of

the losses under the ondition that this treshold has already been fallen short

of. The hange of the sign is a matter of interpretation { to neutralize losses

(negative wins), risk apital has to be positive.

There are good reasons to only onsider the ES risk measure. Ongoing

from the widely known Value-at-Risk methodology, ES is easy to understand

and always more onservative than VaR. Furthermore, ES is in most relevant

ases a oherent risk measure (f. Aerbi and Tashe, 2002) and features (when

di�erentiable) expliit expressions for partial derivatives whih is ruial in the

ontext of risk apital alloation problems, but also for portfolio optimization

whih will soon beome lear. We ite a risk management expert from the

German Federal Reserve (Deutshe Bundesbank): \In my opinion, ES is still

the best risk measure of all."

2.3 RORC and RORAC

We de�ne a performane measure

'(X) :=

E[X℄

�(X)

: (11)

' is alled the RORC, i.e. the Return On Risk Capital. In ontrast to a risk

measure, this performane measure does not are about the absolute value of

the risk apital, but of its proportion to the mean return whih is gained on

it. For � = ES

�

, i.e.

'

�

(X) :=

E[X℄

ES

�

(X)

; (12)

we talk of the ES-RORC. Some authors (f. Tashe, 2000) all (11) the RO-

RAC. We think that the \Return On Risk-Adjusted Capital" should be de�ned

as in (14).

Working on RORC optimization, one might fae the problem that the opti-

mal portfolio (although the portfolio value is onstant) implies a huge amount

of risk apital together with a huge expeted return. However, pratial rea-

sons might imply an upper bound for the risk apital. So we need a onstraint
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�(u) � �

max

, i.e. in ase of the ES-RORC

ES

�

(u) � ES

max

; (13)

might be imposed.

The performane measure

 (X) :=

E[X℄

V + �(X)

(14)

is alled the RORAC, i.e. the Return On Risk-Adjusted Capital. Indeed,  

measures the mean (or expeted) return per unit engaged apital, sine V + �

is the value of the invested apital plus the osts of risk (f. (5)). Hene, in

ontrast to RORC (11), RORAC onsiders not only the risk apital but the

risk-adjusted investment apital and therefore seems to be a more sophistiated

performane measure. For � = ES

�

, i.e.

 

�

(X) :=

E[X℄

V + ES

�

(X)

; (15)

we talk of the ES-RORAC.

As in the ase of ES-RORC, the additional onstraint (13) might be im-

posed in the ase of ES-RORAC optimization.

3 Portfolio optimization

3.1 The problem

In this setion we explain from a general point of view how to optimize a

portfolio with respet to ES or with respet to the performane measures ES-

RORC or respetively ES-RORAC.

We assume a �xed budget/portfolio value of V (u) whih must be fully

invested at the present time t = 0. Otherwise, the onsidered problems beome

trivial or unsolvable as the ES is salable (positive homogeneous of degree 1)

and the onsidered performane measures are invariant due to saling.

Let us assume that a portfolio u 2 R

n

is given. Furthermore, this portfolio

has to be optimized with respet to a risk or performane measure � on R

n

. For

onveniene, we assume that the risk � has to be minimized. As mentioned,

exatly the �xed amount V has to be invested in the market at time 0. As V

i

is the prie of asset i at time 0, this implies the following onstraint for the
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portfolios u whih must be satis�ed:

V =

n

X

i=1

u

i

V

i

: (16)

A possible solution of the optimization problem is given by a portfolio u

�

2 R

n

,

suh that �(u

�

) is minimal (on R

n

) under the onstraint (16). De�ning

u

0

n

:= (V �

X

i<n

u

i

V

i

)=V

n

; (17)

and �

0

as

�

0

(u

1

; : : : ; u

n�1

) := �(u

1

; : : : ; u

n�1

; u

0

n

) (18)

it follows from (16) that we an express the solution u

�

by

(u

�

1

; : : : ; u

�

n�1

) = argmin �

0

(u

1

; : : : ; u

n�1

); (19)

together with u

�

n

= (V �

P

i<n

u

�

i

V

i

)=V

n

.

Working with real data, we disovered that portfolios whih are andidates

for extremal points due to the onsidered risk or performane measures an

ontain tremendous amounts of short-sold assets, i.e. the portfolio as a vetor of

real numbers ontains huge negative omponents. For this reason we introdue

a further onstraint: For a; b � 0 we require

�b

V

V

i

� u

i

� a

V

V

i

for all 1 � i � n: (20)

For instane, b = 0 implies portfolios whih allow no short-selling. The values

a = b = 1 guarantee that the amount of apital or debts in no asset is bigger

than the total value V of the portfolio.

As an optimization (e.g. for a 1-year horizon) an be driven daily or hourly,

one ould also think of self-�naning ES-, ES-RORC or ES-RORAC-optimal

strategies in this ontext.

3.2 Gradient Searh

Let the risk measure (funtion) � be di�erentiable on R

n

. From standard

analysis we obtain for 1 � i � n� 1

��

0

�u

i

(u

1

; : : : ; u

n�1

) =

��

�u

i

(u

1

; : : : ; u

n�1

; u

0

n

)�

V

i

V

n

��

�u

0

n

(u

1

; : : : ; u

n�1

; u

0

n

): (21)
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maxits=bigNumber

its=0

while its < maxits # fixed number of iterations

# or grid-based searh

ptf=RandomPortfolio # satisfying onstraints

loop

if Rho(ptf)<Rho(bestPtf) # small Rho wanted

bestPtf=ptf

end

grd=gradient(ptf)

ptfnew=ptf-grd*stepsize # if onstraints, adapt this step

until Rho(ptfnew)>Rho(ptf)

its+=1

end

Figure 1: Slow and simple Ruby-Pseudoode for portfolio optimization using

brute-fore gradient searh. Clever varying hoie of epsilon to alulate the

gradient and the step-size an give further speed-up. Instead of hosing random

portfolios, one an use a grid-based searh.

Using the partial derivates (21), one an start looking for the (loal) extreme

points of �

0

in R

n�1

by applying Gradient Searh (GS) methods. This might be

a omfortable approah to solve the optimization problem (19) as long as the

onsidered measures have suÆient di�erentiability properties. However, the

proof of suh di�erentiability properties an be rather diÆult (f. Appendix

A or Tashe (2000)). This is one reason for our proposal of Swarm Intelligene

optimization methods (see Subsetion 3.3).

Outline of a gradient minimum-searh (Figure 1):

1. Evaluate the gradient for the urrent portfolio.

2. If the gradient is zero, exit. We have found a (loal or global) minimum.

3. Follow the negative gradient (negative slope) of the urrent portfolio one

small step. Modify the portfolio to satify the onstraints. Then ontinue

with step 1.

On a one-proessor mahine this gradient algorithm has to be started many

times with di�erent portfolios (\brute-fore"), as one might be stuk in a

loal minimum. This takes a long time for real-life portfolios.
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The following three paragraphs derive the respetive partial derivatives (21)

for Expeted Shortfall, ES-RORC and ES-RORAC.

Expeted Shortfall

Assuming suÆient di�erentiability properties, results of Tashe (2000) show

that

�ES

�

�u

i

(u

1

; : : : ; u

n

) = �E[X

i

jX � �VaR

�

(X)℄: (22)

We refer to Tashe (2000) but also Lemma A.1 and A.2 in Appendix A for fur-

ther information on the di�erentiation of ES. For �(u) = ES

�

(X(u)), equation

(21) an be written as

�ES

0

�

�u

i

(u

1

; : : : ; u

n�1

) = �E[X

i

jX � �VaR

�

(X)℄ (23)

+

V

i

V

n

E[X

n

jX � �VaR

�

(X)℄:

In fat, this simple expression of expetations is very suitable for numerial

omputations by Monte-Carlo methods.

RORC

The partial derivatives (21) of the ES-RORC under the portfolio onstraint

(16) are obtained using standard rules of di�erentiation:

�'

0

�

�u

i

= �E[X℄ �

E[X

i

jX � �VaR

�

(X)℄

ES

�

(X)

2

+

E[X

i

℄

ES

�

(X)

(24)

�

V

i

V

n

�

�E[X℄ �

E[X

n

jX � �VaR

�

(X)℄

ES

�

(X)

2

+

E[X

n

℄

ES

�

(X)

�

:

As in the ase of (23), we see from the de�nition (10) of ES that (24) is a

relatively simple expression of expetations.

RORAC

As V is a onstant, the partial derivatives (21) of the ES-RORAC under the

portfolio onstraint (16) are similar to those of RORC (24):

� 

0

�

�u

i

= �E[X℄ �

E[X

i

jX � �VaR

�

(X)℄

(V + ES

�

(X))

2

+

E[X

i

℄

V + ES

�

(X)

(25)

�

V

i

V

n

�

�E[X℄ �

E[X

n

jX � �VaR

�

(X)℄

(V + ES

�

(X))

2

+

E[X

n

℄

V + ES

�

(X)

�

:
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3.3 Swarm Intelligene

Swarm Intelligene (SI) is a property of a system where the olletive be-

haviours of (unsophistiated) agents interating loally with their environment

ause oherent funtional global patterns to emerge. SI provides a basis with

whih it is possible to explore olletive (or distributed) problem solving with-

out entralized ontrol or the provision of a global model (f. Kennedy et al.,

2001).

The three underlying priniples of SI are: evaluate, ompare and imitate.

Living organisms an learn by evaluating stimuli and rate them as positive

or negative. In our ase this is the metri (i.e. risk or performane measure)

we want to minimize/maximize. As pratied in the Adaptive Culture Model

(f. Shibanai, Yasuno and Ishiguro, 2001) and in real life, people ompare

themselves to others and imitate only those neighbours that are superior to

themselves. Imitation is entral to human soiality and important for the

aquisition and maintenane of mental abilities (f. Kennedy et al., 2001). SI

o�ers a tradeo� between individual and group learning.

We give a brief outline of the algorithm (f. Kennedy et al. (2001), Kennedy

and Eberhart (1995)) and use standard notation. Let y

i

be the position of

partile i. In our ase the position represents a spei� portfolio (y

i

2 R

n

).

The hange of portfolio is alled v. v traditionally stands for veloity. Eah

lokstep t partiles move from one stop to another by y

i

(t) = y

i

(t� 1) + v

i

(t)

and sample the searh spae by modifying the veloity term. The diretion of

movement is a funtion of the urrent position (y

i

), veloity (v

i

), the loation

of the individual's previous best suess (p

i

), and the best position found by

any member of the neighborhood (p

g

):

y

i

(t) = f(y

i

(t� 1); v

i

(t� 1); p

i

; p

g

): (26)

One possible implementation is

v

i

(t) = v

i

(t� 1) + n

1

(p

i

� y

i

(t� 1)) + n

2

(p

g

� y

i

(t� 1)) (27)

with

y

i

(t) = y

i

(t� 1) + v

i

(t): (28)

The n variables are random variables de�ned by an upper limit, so that the

partiles yle around the two best bets: p

i

and p

g

. The random numbers (n

1

and n

2

) are updated in every iteration. With real-life data the veloity v very

quikly beomes too large and one has to set limits.
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ys=generateInitialPortfolios #satisfying the onstraint

p=ys

loop

# best portfolios's fitness so far

ys.eah_with_index{ |y,i|

p[i℄=y, if Rho(y)<Rho(p[i℄) # small Rho wanted

}

i=rand size # arbitrary Rho

g=i

for j=indexes of neighbors

g=j if Rho(p[j℄)<Rho(p[g℄) # g: index of best performer

# in the neighborhood

end

#assuming delta t=1

v[i℄=[i℄+n1*(p[i℄-ys[i℄)+n2*(p[g℄-ys[i℄)

v[i℄=Vmax if v_id>Vmax

v[i℄=Vmin if v_id<Vmin

ys[i℄=ys[i℄+v[i℄

fixPortfolio # onstraint

if loopCount mod 10000==0 # big number here

removeWorstPortfolio # remove 10% worst portfolios

injetNewPortfolios # injet 10% new portfolios

end

until some riterion

Figure 2: Extended and slow but simple Ruby-Pseudoode for portfolio op-

timization using swarm partiles based on Kennedy et al. (2001). This basi

algorithm is implemented more eÆiently.

As the present value of a portfolio has to remain onstant, two minor

modi�ations in the hoie of v are required.

In simulation studies on typial portfolios it proves suessful to injet

about 10% of new partiles with random speeds and loations from time to

time and to remove the 10% worst performing partiles. The exat population

size is an open researh problem with experts having di�erent opinions. A

rule of thumb is to keep the population size small, but to rely on a high

number of iterations. As this an take a long time for higher dimensional

problems, parallel solutions are an easy way out of the dilemma, following

Kent Thompson's (o-inventor of Unix) famous quote: "When in doubt, use

brute fore".
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3.4 How stohasti simulation �ts in

Independent from the question whether GS or SI methods are used to solve

the portfolio optimization problem, it is lear that a way must be found to

determine the distributions of the onsidered payo� funtions X

i

(f. Setion

1, Equation (1)) as �nally in any optimization routine the risk or performane

measures (10), (12) and (15) must be omputed. The X

i

(f. (6)) were inter-

preted as wins or losses due to the i-th asset in the market where we assumed

to have n numbered assets. It is lear that many of our thoughts so far, es-

peially the funtions ES, ES-RORC, ES-RORAC, but also their derivatives,

ruially depend on the model for future pries V

i

(t). The partiular stohasti

model we use is introdued in Setion 4.

One the model for the prie proesses V

i

(f. (3)) is hosen and a way to

get possible parameters is found, one an theoretially ompute the risk and

performane measures (10), (12) and (15) and their partial derivatives under

budget onstraint (23), (24) and (25). However, one often enounters models

(also in our ase) where it is not possible or quite diÆult to ompute these

values diretly. The more realisti assumption is that one sueeds in doing

a stohasti simulation of the model whih omputes m 2 N

+

(e.g. m = 10

3

)

market senarios, i.e. �nally one has for eah i the numerial realizations (in

inreasing order)

x

1

i

; x

2

i

; : : : ; x

m

i

(29)

of the random variable X

i

de�ned by (6). The realizations (also in inreasing

order)

x

1

; x

2

; : : : ; x

m

(30)

for any X = X(u) follow immediately.

Having these realizations, estimates for the stohasti expressions in the

funtions mentioned above an be used. In partiular, we ompute estimates

using the \empirial" distribution given by the simulation output, e.g.

b

E[X℄ =

1

m

m

X

j=1

x

j

; (31)

d

VaR

�

(X) = �x

d�me

(32)

or



ES

�

[X℄ =

�

P

x

j

��

d

VaR

�

(X)

x

j

ardfj : x

j

� �

d

VaR

�

(X)g

; (33)
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where dre denotes the smallest integer whih is greater or equal the real num-

ber r. Of ourse, one an use other perhaps more sophistiated estimators.

Nonetheless, replaing all stohasti expressions in (10), (12), (15), (23), (24)

and (25) as suggested by (31) to (33), one obtains approximations of the re-

spetive measures and their gradients whih are easy to implement in any

suitable programming language.

Gradient Searh methods or Swarm Intelligene optimization methods an

now be exeuted using the obtained approximations.

4 The proposed market model

Until now, the presented theory has not been �xed to a partiular �nanial

market model and was intended to give a general introdution to the portfolio

optimization problem. In the following setions we apply the above ideas to a

onrete model and data setup.

We model stoks and non-defaultable bonds. All stohastis evolves from a

(d+2)-dimensional brownian motion (Wiener proess) (W

i

)

i=1;:::;d+2

, where the

�rst two omponents drive the dynamis of the two-fator interest rate model

for the bonds and the last d drive the dynamis of d stoks. The brownian

motions W

i

are orrelated by a ovariane matrix � (see also Setion 5). We

assume

�

i;i

= 1 (34)

for i = 1; : : : ; d+ 2 and

�

1;0

= �

0;1

= 0; (35)

i.e. eah W

i

is a one-dimensional standard brownian motion and W

1

and W

2

are unorrelated.

4.1 Interest rates and bonds

We use

e

R(t;�)��

=

1

p(t; �)

(36)

as the de�ning equation of the relation between the prie p(t; �) of a zero-

oupon bond with maturity � at time t, i.e. the prie at time t of the guaranteed

payo� 1 at time t+� , and the orresponding spot (interest) rate R(t; �). Hene,

R(t; �) is the at t guaranteed ontinuous interest rate during the time interval

[t; t + � ℄. For future points of time (t > 0), p(t; �), respetively R(t; �), are
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assumed to be random variables. We now turn to the onsidered interest rate

model of Chen and Sott (1992) with two stohasti fators.

The model is usually alled Cox-Ingersoll-Ross-2 (CIR-2) as it relies heavily

on the work of Cox, Ingersoll and Ross (1985) whih is a so-alled short rate

model with only one (eonomially interpretable) stohasti fator (modelled

by a square-root proess). However, the authors also formulated the main

ideas for a theory with multiple stohasti fators. In our desription of the

model, we losely follow Fisher, May and Walther (2003), whih also inludes

omments on the model hoie whih we want to adopt for our purposes (see

also Subsetion 4.3).

The onrete model setup is given by the two stohasti fators x = (x

1

; x

2

)

ful�lling the stohasti di�erential equations

dx

i

= (b

i

� a

i

� x

i

)dt+ �

i

p

x

i

dW

i

(i = 1; 2) (37)

where b

i

, a

i

and �

i

are positive onstants. One has x

i

> 0 if 2b

i

> �

2

i

. W

i

(t)

is the i-th brownian motion at time t, W

1

and W

2

are independent (not orre-

lated). Equation (37) de�nes a so-alled mean reversion proess. The param-

eter a is alled the strength of the mean reversion and b=a the mean reversion

level, i.e. the long-term mean of the proess x

i

. The implied spot interest rate

at time t for a maturity � is

R(t; �) =

2

X

i=1

�

�

logA

i

(�)

�

+

B

i

(�)

�

x

i

(t)

�

; (38)

the implied zero-oupon bond prie at time t for the maturity �

p(t; �; x(t)) =

2

Y

i=1

A

i

(�)e

�B

i

(�)x

i

(t)

: (39)

The respetive funtions A

i

and B

i

are given by

A

i

(�) =

�

2h

i

e

(a

i

+�

i

+h

i

)�=2

2h

i

+ (a

i

+ �

i

+ h

i

)(e

�h

i

� 1)

�

2b

i

=�

2

i

(40)

and

B

i

(�) =

�

2(e

�h

i

� 1)

2h

i

+ (a

i

+ �

i

+ h

i

)(e

�h

i

� 1)

�

; (41)

with

h

i

=

q

(a

i

+ �

i

)

2

+ 2�

2

i

: (42)
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The parameter �

i

onerns the hange of measure (physial to martingale mea-

sure) and an together with all other parameters be estimated from historial

interest rates. In the one-fator ase, a partiular funtion of � is interpreted

as the so-alled market prie of risk (Cox, Ingersoll and Ross (1985); see also

Fisher, May and Walther (2002)). For more than one fator, an eonomi

interpretation is not possible or at least not obvious.

It is lear that the prie of any oupon bond an be omputed as the sum

of the pries of the respetive set of zero-oupon bonds.

4.2 Stoks

The d stoks of the onsidered �nanial market are modelled by geometri

brownian motions, i.e. prie proesses S

j

(j = 1; : : : ; d) with

S

j

(t) = S

j

(0)e

�

j

t+�

j

W

j+2

(t)

; (43)

where �

j

2 R is the drift and �

j

2 R

+

the di�usion oeÆient of the brownian

motion in the exponent, i.e. the pie proess has the \trend"

E[S

j

(t)℄ = S

j

(0)e

(�

j

+�

2

j

=2)t

: (44)

In terms of stohasti di�erential equations (SDE) we have

d lnS

j

= �

j

dt+ �

j

dW

j+2

: (45)

W

i

(t) is the i-th brownian motion at time t.

4.3 Comments

The model hoie is based on our experiene with pratitioners. We know

that at least in three major German life insurane ompanies one-fator Cox-

Ingersoll-Ross models together with geometri brownian motions have been

onsidered in the ontext of Asset Liability Management. CIR-1 is used to

model the debt seurities market and interest rates whereas the geometri

brownian motions (in reminisene of the Blak-Sholes model) are used to

model \stoks". The mentioned insurane ompanies are interested in multi-

fator models although not yet using them. The ombination and orrelation

of the models as proposed in this paper seems to be new.

For insurane ompanies (known to be onservative), an important aspet

of suh models is the aeptane by the sienti� publi. This enlightens the
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deision for standard models like geometri brownian motions or the CIR-1

model.

As mentioned in Fisher, May and Walther (2003), for instane the Vasiek-

2 (Gaussian) model behaves in some way better than CIR-2 (onerning pa-

rameter estimation or the values of the likelihood funtion; see also Babbs and

Nowman (1998)). Nonetheless, insurane ompanies seem to prefer CIR, as

under the respetive parameter onstraints CIR assures positive interest rates.

Faing a possible deation in the Eurozone (espeially in Germany), one might

want to reonsider this philosophy.

From the aademi point of view it is lear that alternative models like the

Vasiek model should also be examined with respet to the optimization prob-

lem. However, for several reasons whih will beome lear later we reommend

to stay inside the lass of so-alled aÆne term struture models.

Another more theoretial problem is whether the probably for optimization

purposes used derivatives (23), (24) and (25) really exist. Depending on the

onsidered model, this might not be trivial, see also Appendix A for some

omments on the di�erentiability problem. We have not proven the existene

of the derivatives for the proposed model (in this ase, the Vasiek model may

be easier to handle, too). However, for our purposes, this unsolved theoretial

problem (whih relies on the used model) is no drawbak as our optimization

routines are subjet to \bak-testing" by the SI methods. Nonetheless, the GS

methods work very well in the searh of loal extrema.

The problems oming in line with di�erentiation of quantile expressions

ould be avoided by using risk measures whih have more suitable di�eren-

tiability properties as e.g. the risk measures depending on one-sided moments

whih are proposed in Fisher (2003).

The authors admit that the proposed model has not been examined for

absene of arbitrage. This is postponed to further researh. Atually, the

model is used like an eonometri framework. In this sense, the philosophy of

our approah is pragmati.

5 Market senario generation

As desribed in Subsetion 3.4, we arry out a stohasti simulation to obtain

an \empirial" distribution of the onsidered random payo�s.

A simulation requires disretization. We onsider points of time t

m

(m 2
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N). The width of the time step is the onstant �, e.g. one day, one month

et., i.e. t

m+1

= t

m

+� and t

0

= 0. Inrements

ÆW

i;m

:=W

i

(t

m

)�W

i

(t

m�1

) (46)

of the (d+ 2) brownian motions have to be simulated. For �xed m, the ÆW

i;m

are orrelated by the ovariane matrix �� (f. (34) and (35)). For �xed i,

the inrements ÆW

i;m

are independent normally distributed random variables

with variane � and expetation 0.

Hene, all disretized dynamis is driven by a series of standard normally

distributed random variables N

i;m

(i = 1; : : : ; d + 2;m 2 N

+

), where for eah

m the random variables (N

i;m

)

i=1;:::;d+2

are orrelated by the ovariane matrix

� whih will later be estimated from real data.

5.1 Simulation of orrelated normal random variables

Simulation of i.i.d. normal random variables is standard. Let us onsider the

Cholesky deomposition

� = CC

t

(47)

of the ovariane matrix �. If Z = (Z

i

)

i=1;:::;d+2

are d+2 i.i.d. normal random

variables, then

(N

i

)

i=1;:::;d+2

= N = C � Z (48)

ontains d+ 2 normally distributed random variables with ovarianes �.

5.2 Interest rates and bonds

From (37) an Euler-approximation gives the reursion

x

i;m

= x

i;m�1

+ (b

i

� a

i

� x

i;m�1

)� + �

i

p

x

i;m�1

p

�N

i;m

(i = 1; 2) (49)

where the N

i;m

(�xed i or alternatively �xed m) are i.i.d. N(0; 1) (f. Fisher,

May and Walther, 2003). For a general introdution into the numeris of

stohasti di�erential equations we refer to Kloeden and Platen (1992).

Plugging the omputed values into (38), resp. (39), returns the desired

interest rates, resp. bond pries.

5.3 Stoks

From (45) we get the Euler-approximation

lnS

j;m

� lnS

j;m�1

= �

j

��+ �

j

�

p

� �N

j+2;m

(1 � j � d) (50)
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where the N

j+2;m

(�xed j) are i.i.d. N(0; 1). This implies for M 2 N

+

S

j;M

= S

j;0

exp

 

�

j

M�+ �

j

M

X

m=1

p

�N

j+2;m

!

: (51)

6 Estimation of parameters

6.1 Interest rates and bonds

The estimation of the parameters of the CIR-2 model and detailed desription

of the used methods are subjet of several existing artiles, e.g. Chen and Sott

(1993), Duan and Simonato (1999), Bolder (2001), Beletsky and Szimayer

(2002) and Fisher, May and Walther (2003). The problem is not trivial.

The most eÆient method seems to be maximum-likelihood estimation with

Kalman-�ltering. In partiular, we used the mahinery as explained in Fisher,

May and Walther (2003). The interested reader an �nd further information

in this paper and the referenes therein.

A omment on the data: We use the historial yield struture of the Ger-

man debt seurities market (monthly, taken at the end of eah month). The

values for spot rates with maturities � > 0 up to 28 years an be omputed

via a parametri presentation of yield urves (the so-alled Svensson-method;

f. Svensson (1994) and Shih (1997)) for whih the historial parameters an

be taken from the homepage of the German Federal Reserve (Deutshe Bun-

desbank; http://www.bundesbank.de). The implied Bundesbank values R

0

are estimates of disrete interest rates on notional zero-oupon bonds based

on German Federal bonds and treasuries (f. Shih, 1997) and have to be

onverted into ontinuous interest rates by R = ln(1 +R

0

).

6.2 Stoks

Given the market data S

j;m

(j = 1; : : : ; d; m = �M; : : : ; 0; time step = �;

t = 0 is the present), disretization (50) is used to ompute the estimators

�̂

j

=

1

M�

ln(S

j;0

=S

j;�M

) (52)

and

�̂

j

=

v

u

u

t

1

M�

0

X

i=1�M

(ln(S

j;m

=S

j;m�1

)���̂

j

)

2

(53)

for the parameters of the stok prie dynamis.
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6.3 The ovariane matrix

After having plugged in historial data, solving equations (49) and (50) for the

values N

i;m

gives us a time series (N

i;m

) (i = 1; : : : ; d+2; m = 1�M; : : : ; 0) of

hypothetial historial realizations of the normal random variables (48). Now,

the values

b

�

i;j

=

1

M

0

X

m=1�M

N

i;m

N

j;m

(54)

an be used as estimates for the entries of the ovariane matrix �. However,

there is still something missing sine we an not get the historial realizations

x

i;m

of the stohasti fators of the interest rate model (49) diretly from the

market. Instead, we use the aÆne term struture (38) to derive them from the

interest data distributed by the German Federal Reserve (f. Subsetion 6.1).

One has

�

R(t; �

1

)

R(t; �

2

)

�

| {z }

=

 

�

logA

1

(�

1

)

�

1

�

logA

2

(�

1

)

�

1

�

logA

1

(�

2

)

�

2

�

logA

2

(�

2

)

�

2

!

| {z }

+

 

B

1

(�

1

)

�

1

B

2

(�

1

)

�

1

B

1

(�

2

)

�

2

B

2

(�

2

)

�

2

!

| {z }

�

�

x

1

(t)

x

2

(t)

�

| {z }

(55)

R

t

= M

A

+ M

B

� x(t): (56)

Hene, we obtain by

x(t) =M

�1

B

(R

t

�M

A

) (57)

a time series x

i;m

(i = 1; 2; m = �M; : : : ; 0) by inserting the time series of

the respetive spot rates into (57). Slightly di�erent from Fisher, May and

Walther (2003), our suggestion is

�

1

= 0:5 years; �

2

= 10:0 years: (58)

Equation (57) also returns the starting values x(0) = (x

1

(0); x

2

(0)) for the

simulation of the fators x

1

and x

2

. The omputation of the values x(0) im-

plies a mathematially ontinuous ontinuation of the history of the spot rates

R(:; �

1

) and R(:; �

2

) by the CIR-2 model. For other maturities than �

1

and �

2

there might be jumps in the dynamis of the respetive sport rate (f. Fisher,

May and Walther, 2003). A simulation study of the same authors showed that

for realisti time horizons the starting values have signi�ant inuene on the

means of the simulated interest rates. Hene, a proper alulation of starting

values is important.

Having exeuted the explained proedure, one an ompute the empirial

ovariane matrix

b

� by (54). At this point, a further problem arises. The
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CIR-2 model works with unorrelated brownian motions (f. subsetion 4.1).

Nonetheless, the upper left 2� 2-submatrix of

b

�, whih theoretially should

be the two-dimensional identity, may di�er from the theoretial values. To

stay in the proposed model, one an adjust the estimate

b

� by setting the

upper left 2� 2-submatrix to the identity matrix. Doing this, it is important

to hek whether the new matrix is still positively de�nite as we afterwards

have to arry out the Cholesky deomposition. In ases where positive

de�niteness gets lost, one should hoose a symmetri positively de�nite matrix

lose to the proposed matrix with the identity in the upper left orner.

The proposed tehnique for the omputation of the ovariane matrix and

the starting values should be suitable for any stohasti interest rate model

with an aÆne term struture as in (38) (e.g. Vasiek-2).

7 Chronologial overview

I. Estimation

� Get data.

� Estimate parameters of stok pries; (52) and (53).

� Estimate parameters of interest rate dynamis (f. Subsetion 4.1).

� Compute the historial time series x

i;m

(m � 0) by (57).

� Solve equations (50) and (49) for the historial N

j;m

(m � 0).

� Compute the ovariane matrix

b

�; (54).

� Compute the Cholesky deomposition of

b

�; (47).

II. Simulation

� Simulate future i.i.d. normal random variables and plug them into (48)

to get the simulated N

i;m

(m > 0).

� Plug the N

i;m

into (50) and (49) to get the simulated senario of stok

pries and interest rate model fators x

i;m

(m > 0).

� Plug the fators x

i;m

into (38) or (39) to get spot rates or bond pries.
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� Reiterate the above three steps to get a large set of market senarios.

III. Evaluation

� Choose (or assume to be given) a ertain portfolio.

� Compute portfolio values (e.g. by (1)) using the senarios generated in

step II.

� Compute the risk and performane measures (10), (12) and (15) by the

empirial portfolio distributions obtained; f. (31) to (33).

� If neessary, ompute the partial derivatives (23), (24) and (25).

IV. Optimization

� Use a GS or SI method repeating step III for eah new portfolio.

Note that the simulation proedure (=senario generation; step II) must

only be done one. The optimization loops use the same set of senarios for

alternating portfolios.

8 First results

8.1 Gradient Searh vs. Swarm Intelligene

(Partile) Swarm Intelligene is a powerful tool to solve optimization problems

in a �xed searh-spae. SI is omputationally appealing as simple to implement

and omputationally robust with respet to loal minima and maxima, pro-

vided enough iterations (generations) are performed. As an additional bonus,

SI is inherently parallel and an be implemented in a massively parallel way

(f. Auslander et al. (1995), Fabiunke (2002)).

Gradient (Grid) Searh methods like hill-limbing are superior to random-

guessing algorithms like SI if the searh-spae is e.g. a sphere, but on highly

multi-dimensional surfaes, the gradient method gets stuk too often in loal

extreme points and therefore beomes omputationally expensive, as one has

to start from many di�erent starting points.

In higher-dimensional problems, SI seem �tter than GS methods. How-

ever, one has to be areful with suh statements, as aording to the No Free

Lunh (NFL) theorem (f. Wolpert and Maready, 1996), when performane is
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averaged over all possible searh spaes, all searh algorithms perform equally

well.

Ultimately we deided to stik with SI algorithms, whih seem to on-

verge faster for large real-life size portfolios. Combining these evolutionary

algorithms with a seleted Gradient Searh for seleted good intermediate so-

lutions provides further speed-up.

One aveat with all numerial solutions, without further assumptions about

the searh-spae is that there is no guarantee that the optimal solution is found.

In pratie one monitors the rate of onvergene and dediates enough searh-

time. Looking at the number of idle PCs and workstations in the typial

investment bank or insurane ompany one an be on the save side and farm

out the work in frations of a seond to a large number of proessors or a

dediated luster or Global Grid.

8.2 Examples

The general setup for our numeri examples is a time horizon of one month

where the simulation takes 20 steps per month. The number of loops is 1000.

We onsider portfolios whih have a present value of exatly 1000 EUR. We

optimize using a loal GS method and a ombined GS-SI method. The seond

one is run with and without onstraint b = 0, i.e. with and without short-

selling in the portfolio (f. (20)). The onsidered on�dene level is 5%. Two

types of portfolios are examined. The smaller one ontains two bonds and two

stoks, the bigger one 10 bonds and 10 stoks. In partiular, we onsidered

the following bonds and stoks (whih are here listed in the same order as in

the portfolio vetors):

� 2 zero-oupon bonds: Maturity 1 year and 10 years.

2 \stoks": Xetra DAX and Allianz

� 10 zero-oupon bonds: Maturity 1 year up to 10 years.

10 stoks: Allianz, BASF, BMW, Bayer, Commerzbank, Daimler-

Chrysler, Deutshe Bank, Lufthansa, E.ON, Hypovereinsbank

All stoks are elements of the Xetra DAX and had their IPO (Ini-

tial Publi O�ering) at least 10 years ago. Data was taken from

http://de.finane.yahoo.om. The estimates are alulated from monthly

data from May 2002 to April 2003. We obtain the model parameters listed in
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Table 1. The same time interval and disretization was taken for the estima-

tion of the term struture model parameters (f. Subsetion 6.1). Maturities

from 1 to 10 years were taken into onsideration. Results are in Table 2.

The values of the (adjusted) ovariane matrix in Table 3 on�rm the use

of orrelations between the interest rate model fators and the stok market

dynamis to obtain a more realisti ombined model.

For eah of our setups we omputed the ES-, ES-RORC- and ES-RORAC-

optimal portfolio. The mean, VaR, ES, ES-RORC and ES-RORAC for these

portfolios are listed in the Tables 4-9 in Appendix B (and the portfolios them-

selves in the four assets ase). The optimized portfolios are ompared with

\normed" portfolios where the same apital is invested in eah of the four, re-

spetively 20 assets. As expeted, all optimized measures have been improved

signi�antly (see also Figures 3 and 4) and the ombined GS-SI method is su-

perior to the loal GS method starting at the normed portfolio. Loal extreme

points seem to exist in the most onsidered ases. A situation as in Table 6

where the ES of the ES-optimized portfolio is lower than (but lose to) the ES

of the RORC-optimized portfolio ould be a symptom for the need of more (or

�ner) iterations.

Due to our pragmati approah we did not invest any time in proofs for the

existene or absene of global, respetively loal extreme points in our model.

Real �nanial ompanies are not interested in suh questions, espeially as

portfolios are often optimized in small steps and not a omplete restruturing.

An interesting (and reasonable) model output is that the loal GS results

imply that bonds of longer maturities bear more �nanial risks. This an be

seen in dereasing weights of bonds with higher maturities in the optimized

portfolios (this is also true for the portfolios whith 20 assets whih are not

listed in detail).

Massive short-selling and probable absene of global extreme points (e.g. in

the RORAC ase, f. Table 4) motivate the use of onstraint b = 0 (no short-

selling). Roughly speaking, the impliation seems to be that optimized port-

folios under the onstraint ontain almost no stoks. Optimization under the

no-shortselling onstraint seems to imply rather similar optimized portfolios

for all measures (f. Tables 6 and 9).

In summary, all obtained results seem to be reasonable from the eonomi

point of view and on�rm the proposed methods. We annot really judge the

impat of other models at this stage of our researh. However, we guess that
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reasonable models (e.g. suh using Vasiek-2) will imply results lose to ours.

9 Parallel programming and salability

9.1 Bulk synhronous parallel omputing

Sine 1944 von Neumann's model for sequential omputing has been widely

aepted, but there is no standard model for parallel omputing. Most ap-

proahes nowadays are based on message-passing, but they are often inade-

quate, sine the potential danger of deadlok, in whih eah possible ativity

is bloked, waiting on some other ativity that is also bloked, inreases dra-

matially with the omplexity of software.

Furthermore, models based on message-passing, e.g. MPI (Message passing

interfae), do not easily allow performane predition. The Bulk synhronous

parallel omputing model (BSP) however abstrats low-level program struture

in favour of so-alled supersteps. This allows easy debugging, removes the

problem of deadlok and allows a reasoning of the orretness of the ode

nearly as easily as in sequential ode.

BSP omputers

A BSP omputer onsists of a set of proessor/memory pairs, a global om-

muniation network and a mehanism for the eÆient barrier synhronisation

of the proessors. In real life, this ould be anything: a single/multi-proessor

PC, a luster of workstations or a real parallel mahine like the Cray T3D.

Supersteps

The fundamental idea of BSP is the notion of a superstep. In a superstep,

omputation and ommuniation are deoupled. This avoids deadlok.

First the proesses perform as many alulations as possible using their

loal data. If one proessor needs data from another, ommuniation starts

only after all the omputation has stopped. When ommuniation is �nished,

barrier synhronisation is alled and the next superstep begins.

9.2 Cost modelling and performane predition

A ost model helps to guide the hoie of programming algorithm.
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The separation of ommuniation from synhronisation and the inherent

simpliity of the superstep struture make it relatively easy to �nd a suitable

ost-model. The ost is expressed in terms of steps or oating point opera-

tions (FlOps) for eah portion of the program. The ost parameters are the

BSP parameters for the mahine and parameters determined by the hoie of

algorithm and their implementation.

As a BSP program onsists of a sequene of supersteps, the \ost" of an

entire program is the sum of the ontributions from its supersteps.

What are the key parameters that determine performane? Extensive re-

searh by the originators of the BSPlib showed that the following four key

parameters are suÆient (f. Hill and MColl, 1996):

� the number of proessors, p;

� proessor speed, s (number of steps per seond);

� the ost l (steps), of ahieving barrier synhronisation (whih depends

on network lateny, whih is a measurement of delay from one end of a

network to another). Basially l is the ost of telling all proessors to

wait till all ommuniation has been performed; and

� the ost g (steps per word), of delivering message data. This aptures

the interproess ommuniation speed.

Sine the proessor speed s is essentially a normalising fator, there are only

three independent parameters: p, l and g.

The ost of one superstep is

max(w

i

) + g �max(h

i

) + l (59)

where i ranges over proessors (i = 1; : : : ; p), w

i

is the time for the loal ompu-

tation in proessor i and h

i

is the number of inoming or outoming messages

per proessor. The values of the parameters are determined by measurement

using suitable benhmarks that mimi average omputation and ommunia-

tion loads (f. Hill, 1996).

The dependene on a spei� platform enters the ost funtion only through

the parameters p, l and g.

We follow onvention and ount every oating point operation as 1.

The BSP approah o�ers a simple ost model. In general, ost-modeling

appliations give a rough ball-park �gure of the ost on any parallel mahine
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and on�guration size. The role of pro�ling tools like bsprof aids simplis-

ti penil and paper ost modeling, and it e�etively predits the ost of an

algorithm on any parallel mahine (f. Hill, Crumpton and Burgess, 1996).

9.3 Salability

Programmers take the burden of writing parallel programs to inrease speed

and memory. The aim of every parallel algorithm designer is to write ode

that sales linearly, i.e. runs p times as fast on a p-proessor mahine. This

learly onstitutes an upper bound, if the sequential algorithm is already op-

timal. Linear salability is ahieved by using good load-balaning, keeping all

proessors busy all the time and ommuniation osts are minimized.

Data dependeny an make optimal speed-up impossible. It determines

parallel omplexity, the minimum number of steps an algorithm would need to

run on a PRAM-omputer. This onstitutes an upper bound on the maximal

speed-up that an be ahieved.

There are many di�erent and more sophistiated layouts of parallel imple-

mentations possible. The right hoie depends on the size of the portfolio and

available hardware. For the sake of simpliity in this artile we have hosen

the brute fore approah.

Sketh of the salability for a parallel brute-fore GS: To avoid loal extrema,

one has to start many times from di�erent grid-points:

1. Superstep: Broadast the initial portfolio struture and searh-areas,

or only the portfolio struture and use random startpoints. Depend-

ing on the network arhiteture (reeted in the value of g), one might

use several supersteps and use e.g. a tree-shaped ommuniation form.

Asymptoti ost for a 1 phase broadast: l + npg, where n is the size of

the initial portfolio struture.

2. Superstep: Now work out gradient searhes on all proessors for a given

time. E.g. every proessors performs a set-number of searhes. On av-

erage this will balane out. Asymptoti ost: 1=p� sequential time, as

if p proessors work out k=p searhes, k searhes are performed in total.

The sequential time is the all dominating fator.

3. Superstep: Eah proessor sends its best grid point bak to proessor 1,
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whih sorts them and gives the �nal result. Asymptoti ost: l+ng+ p.

The extra p arise from hosing the point with best �tness.

As the ommuniation ost, sorting, et. is negligible for any reasonable

number of searhes, this algorithm learly sales linearly with the number of

proessors used.

Sketh of the salability for SI:

Superstep: As in the 1-proessor mode (see Figure 2), but now per-

formed on all p proessors. Every 1000 or 10000 iterations �t values are

exhanged, then the next superstep starts.

Sine the ost of data interhange is negligible ompared to the ost of the

iterations in eah superstep, we have salability as in the GS ase.

One typial shoolbook error in this ontext is not to use a high quality

random number generator, assuring independent random number streams on

all proessors (f. Masagni, Ceperley and Srinivasan (1998, 1999)).

Large lusters as well as the rise of grid-omputing requires analyti fore-

astig of run-times to hose the appropriate hardware for the task. There are

many potential trade-o�s (f. Jarvis et al. (2002, 2003) and Roehrl (1998)):

time versus money, et. Our paper has shown that a pragmati approah an

take advantage of developments in omputersiene to enable the exploration

of new portfolio optimization tehniques using parallel omputing tehniques.

10 Conlusion

The purpose of this paper is twofold. First, we desribe in Setion 1 to 3 a

general methodology of ES-, ES-RORC- and ES-RORAC-optimization whih

seems to be suitable independently from the onsidered market model. Seond,

we propose a partiular market model whih seems to be suitable to desribe

at the same time bonds and stoks as well as dependenies between them and

whih is used for our numerial examples. We thoroughly explain the proposed

model and the respetive simulation and optimization proedures. Conrete

examples and a salability analysis show the suitability and pratiability of

the methodology. Alternative models, model tests and the examination of

some more theoretial questions have to be postponed to future researh.
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A Derivatives of VaR and ES

This setion derives expressions for the derivatives of Value-at-Risk and Ex-

peted Shortfall. Equation (22) is diretly implied by Lemma A.2.

We onsider a bivariate random variable (X; Y ) with ontinuous density

f(x; y) suh that X + �Y has for any � 2 R a ontinuous density, too. De�ne

VaR

�

(�) for 0 < � < 1 as

VaR

�

(�) := VaR

�

(X + �Y ): (60)

Sine X + �Y is a ontinuous random variable, the in�mum in (9) is atually

reahed (i.e. is a minimum) and the respetive probability is exatly �.

LEMMA A.1. Under ertain strong assumptions on the density f , the Value-

at-Risk VaR

�

(�) an be di�erentiable in � and

�VaR

�

(�)

��

= �E[Y jX + �Y = �VaR

�

(�)℄: (61)

The following proof is analogous to Gouri�eroux, Laurent and Saillet

(2000). The mentioned authors have derived the expression for the deriva-

tive if existing, but have not proven the existene (of the derivative).

Proof (Gouri�eroux, Laurent and Saillet, 2000). If �VaR

�

(�)=�� exists, we

have

Z Z

�VaR

�

(�)��y

�1

f(x; y)dxdy = �; (62)

and hene by di�erentiation with respet to �

Z

[��VaR

�

(�)=�� � y℄f(�VaR

�

(�)� �y; y)dy = 0: (63)

This implies

�VaR

�

(�)

��

= �

R

yf(�VaR

�

(�)� �y; y)dy

R

f(�VaR

�

(�)� �y; y)dy

(64)

and therefore (61).

As already mentioned, the main problem in this reasoning is the missing

proof of the di�erentiability of VaR. Also the strit positivity of the integral

R

f(�VaR

�

(�)��y; y)dy should be an important ingredient in a proper proof of

the lemma. In the paper of Tashe (2000), there is given a suÆient ondition,

named (S), for VaR-di�erentiation. However, ondition (S) is in the most ases

not easy to prove (the normal distribution exluded) and di�erentiation may

be possible even if (S) is not ful�lled.
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LEMMA A.2. Under ertain strong assumptions on the density f , the Ex-

peted Shortfall ES

�

(�) := ES

�

(X + �Y ) an be di�erentiable in � and

�ES

�

(�)

��

= �E[Y jX + �Y � �VaR

�

(�)℄: (65)

Proof. We have

ES

�

(�) = �

1

�

Z Z

�VaR

�

(�)��y

�1

(x+ �y)f(x; y)dxdy: (66)

Di�erentiation with respet to � leads to

�ES

�

(�)

��

= �

1

�

Z Z

�VaR

�

(�)��y

�1

yf(x; y)dy (67)

+

1

�

Z

VaR

�

(�)[��VaR

�

(�)=�� � y℄f(�VaR

�

(�)� �y; y)dy:

Due to (64), the seond summand is 0.

In a more general ontext, Tashe (2000) also derives (65). Again, the most

important parts of an existene proof would be the existene of the respetive

integrals and the proof of the orret appliation of all used di�erentiation

rules.

B Tables and �gures
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Share V

i

(0) �̂

i

�̂

i

Xetra DAX 2942.04 -0.54 0.45

Allianz 56.17 -1.46 0.78

BASF 38.16 -0.29 0.31

BMW 29.06 -0.50 0.32

Bayer 16.75 -0.80 0.66

Commerzbank 8.32 -0.92 0.79

DaimlerChrysler 28.90 -0.65 0.36

Deutshe Bank 44.86 -0.59 0.47

Lufthansa 8.79 -0.56 0.48

E.ON 41.80 -0.31 0.29

Hypovereinsbank 10.20 -1.41 0.92

Table 1: Stok market parameters (1 year history). In the portfolio with 4

assets the Xetra DAX is treated like a single stok.

â

1

^

b

1

�̂

1

^

�

1

0.2648 0.0120 0.1236 -0.0647

â

2

^

b

2

�̂

2

^

�

2

1.7563 0.0145 0.1704 0.4968

Table 2: Estimates for the CIR-2-model (1 year history)

0

B

B

B

B

B

�

1 0 0:7333 0:5860

0 1 �0:4180 �0:3799

0:7333 �0:4180 1 0:9062

0:5860 �0:3799 0:9062 1

1

C

C

C

C

C

A

Table 3: Adjusted ovariane matrix

^

� (4 assets)
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Figure 3: Histogram of returns; normed portfolio with 4 assets, 10

4

loops

Figure 4: Histogram of returns; ES-optimized portfolio with 4 assets (loal

GS), 10

4

loops. Compared to the original portfolio in Figure 3, all values have

signi�antly been improved (please note the di�erent sales).
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Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -29.21 148.56 169.90 -0.1719 -0.0250

Units (256.03, 382.88, 0.0850, 4.4508)

Capital (250.0, 250.0, 250.0, 250.0)

ES-opt. 2.20 8.02 11.67 0.1888 0.0022

Units (575.22, 595.47, 0.0284, -0.6059)

Capital (561.67, 388.81, 83.54, -34.03)

RORC-opt. 8.73 18.61 28.39 0.3071 0.0085

Units (506.74, 650.08, 0.0856, -3.0470)

Capital (494.81, 424.47, 251.87, -171.15)

RORAC-opt. 14535.32 34795.68 56428.72 0.2576 0.2531

Units (89585.98, -170200.78, 102.93, -4952.51)

Capital (87476.85, -111132.65, 302838.23, -278182.42)

Table 4: 4 assets; � = 0:05; no onstraints; loally GS-optimized portfolios;

GS started at normed portfolio

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -29.21 148.56 169.90 -0.1719 -0.0250

Units (256.03, 382.88, 0.0850, 4.4508

Capital (250.0, 250.0, 250.0, 250.0)

ES-opt. 2.75 1.11 2.19 1.2555 0.0027

Units (1758.10, -1049.55, -0.0115, 0.0413)

Capital (1716.71, -685.31, -33.73, 2.32)

RORC-opt. 3.07 0.84 1.96 1.5643 0.0031

Units (1533.04, -730.19, -0.0036, -0.1729)

Capital (1496.95, -476.78, -10.46, -9.71)

RORAC-opt. 29454.12 70484.98 114339.65 0.2576 0.2554

Units (186074.79, -353548.05, 208.71, -10038.90)

Capital (181693.00, -230849.31, 614040.41, -563885.10)

Table 5: 4 assets; � = 0:05; no onstraints; SI-GS-optimized portfolios
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Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -29.21 148.56 169.90 -0.1719 -0.0250

Units (256.03, 382.88, 0.0850, 4.4508)

Capital (250.0, 250.0, 250.0, 250.0)

ES-opt. 1.81 4.19 6.26 0.2894 0.0018

Units (1020.03, 0.22, 0.0013, 0.0001)

Capital (996.01, 0.14, 3.84, 0.01)

RORC-opt. 1.88 4.29 6.37 0.2957 0.0019

Units (1020.60, 4.22, 0.0000, 0.0119)

Capital (996.57, 2.76, 0.01, 0.67)

RORAC-opt. 2.13 19.43 25.32 0.0843 0.0021

Units (84.47, 1404.48, 0.0001, 0.0027)

Capital (82.48, 917.06, 0.31, 0.15)

Table 6: 4 assets; � = 0:05; onstraint b = 0; SI-GS-optimized portfolios

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -19.29 115.36 134.59 -0.1433 -0.0170

ES-opt. 0.32 6.93 8.87 0.0361 0.0003

RORC-opt. 7.13 8.28 13.79 0.5172 0.0070

RORAC-opt. 653.55 884.70 1369.21 0.4773 0.2759

Table 7: 20 assets; � = 0:05; no onstraints; loally GS-optimized portfolios;

GS started at normed portfolio

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -19.29 115.36 134.59 -0.1433 -0.0170

ES-opt. 2.52 2.23 3.56 0.7064 0.0025

RORC-opt. 4.40 2.92 4.82 0.9129 0.0044

RORAC-opt. 651.75 842.94 1357.35 0.4802 0.2765

Table 8: 20 assets; � = 0:05; no onstraints; SI-GS-optimized portfolios

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -19.29 115.36 134.59 -0.1433 -0.0170

ES-opt. -2.10 18.59 22.75 -0.0922 -0.0021

RORC-opt. -2.22 23.76 27.84 -0.0799 -0.0021

RORAC-opt. -2.1723 19.01 23.17 -0.0937 -0.0021

Table 9: 20 assets; � = 0:05; onstraint b = 0; SI-GS-optimized portfolios
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