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Abstrat

We introdue a Wiener algebra of operators on L

2

(R

N

) whih on-

tains, for example, all pseudodi�erential operators in the H�ormander lass

OPS

0

0;0

. A disretization based on the ation of the disrete Heisenberg

group assoiates to eah operator in this algebra a band-dominated oper-

ator in a Wiener algebra of operators on l

2

(Z

2N

; L

2

(R

N

)). The (general-

ized) Fredholmness of these disretized operators an be expressed by the

invertibility of their limit operators. This implies a riterion for the Fred-

holmness on L

2

(R

N

) of pseudodi�erential operators in OPS

0

0;0

in terms of

their limit operators. Appliations to Shr�odinger operators with ontinu-

ous potential and other partial di�erential operators are given.

1 Introdution

In this paper, we onsider pseudodi�erential operators on L

2

(R

N

) with symbols

in S

0

0;0

. For m � 0, the H�ormander lass S

m

0;0

onsists of all funtions a 2

C

1

(R

N

� R

N

) satisfying

jaj

r; t

:=

X

j�j�r; j�j�t

sup

(x; �)2R

N

�R

N

j�

�

�

�

�

x

a(x; �)j h�i

�m

<1

for eah hoie of r; t 2 N . Here, � = (�

1

; : : : ; �

N

) 2 N

N

is a multi-index, and

we write �

�

x

and �

�

�

for the operator �

�

, applied to the funtions x 7! a(x; �) and

� 7! a(x; �), respetively.

Let a 2 S

m

0;0

. The operator Op(a) de�ned on the Shwartz spae S(R

N

) by

(Op(a)u)(x) := (2�)

�N

Z

R

N

a(x; �)û(�)e

ihx; �i

d�; x 2 R

N

(1)

�
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is alled the pseudodi�erential operator with symbol a. The lass of all pseudod-

i�erential operators with symbol in S

m

0;0

is denoted by OPS

m

0;0

.

The basi boundedness and ompatness results for pseudodi�erential opera-

tors are as follows.

Theorem 1.1 Let a 2 S

0

0;0

.

(a) The operator Op(a) is bounded on L

2

(R

N

), and

kOp(a)k

L

2

� Cjaj

2k

1

; 2k

2

whenever 2k

1

> N and 2k

2

> N;

where C is a onstant independent of a (but depending on k

1

and k

2

).

(b) The operator Op(a) is ompat on L

2

(R

N

) if and only if

lim

(x; �)!1

a(x; �) = 0:

Assertion (a) is known as the Calderon-Vaillanourt theorem. Its proof an be

found in [16℄, for example. More omprehensive introdutions into the world of

pseudodi�erential operators are [10, 12, 25, 26℄.

In this paper we are going to study the Fredholm properties of pseudodi�eren-

tial operators in OPS

0

0;0

. By de�nition, a linear bounded operator A on a Banah

spae X if Fredholm if both its kernel kerA and its okernel okerA := X=(AX)

have �nite dimension. The standard approah to Fredholmness of pseudodi�er-

ential operators, whih makes use of the omposition formulas (see, for instane,

[22, 25, 10, 16℄), does not work for operators in OPS

m

0;0

. So, new tools are needed,

and we would like to onvine the reader that the limit operators method is very

promising among these tools.

Here is a short desription of that method and of its results. We write eah

vetor  2 Z

2N

as (

1

; 

2

) 2 Z

N

� Z

N

and set U



:= V



1

E



2

2 L

2

(R

N

), where

(E

�

u)(x) := e

ih�; xi

u(x) and (V

�

u)(x) := u(x� �):

The operators U



are unitary. Note that these operators, together with the

salar unitary operators e

ir

I with r running through the integers, form a non-

ommutative group, the so-alled disrete Heisenberg group. In partiular,

U

�

�

= e

ih�

2

; �

1

i

U

��

; U

�

U

�

= e

ih�

2

; �

1

i

U

�+�

; (2)

U

�

�

U

�

= e

ih�

2

; �

1

��

1

i

U

���

= e

ih�

2

; �

1

��

1

i

U

�

���

(3)

where � := (�

1

; �

2

); � := (�

1

; �

2

) 2 Z

N

� Z

N

.

Further we denote the set of all sequenes in Z

2N

whih tend to in�nity by

H. In aordane with the notations from [18, 19℄, we all an operator A

h

2

L(L

2

(R

N

)) the limit operator of A 2 L(L

2

(R

N

)) with respet to the sequene

h 2 H if

s-lim

m!1

(U

�

h(m)

AU

h(m)

= A

h

and s-lim

m!1

(U

�

h(m)

A

�

U

h(m)

= A

�

h

: (4)

The set �

op

(A) of all limit operators of A will be alled the operator spetrum of

A. With these notions, we will prove the following.

2



Theorem 1.2 A pseudodi�erential operator A in OPS

0

0;0

is Fredholm if and only

if eah of its limit operators is invertible. In partiular, the essential spetrum

�

ess

(A) := �(A+K(L

2

(R

N

))) of A is given by

�

ess

(A) = [

A

h

2�

op

(A)

�(A

h

)

where �(A

h

) refers to the usual spetrum of the operator A

h

.

In many important instanes, the struture of the limit operators is muh simpler

than the struture of the operator itself, whih allows one to obtain expliit and

e�etive Fredholm onditions.

Our strategy to prove Theorem 1.2 is as follows. We introdue an algebra

W(L

2

(R

N

)) of Wiener type, whih onsists of ertain linear and bounded opera-

tors on L

2

(R

N

). This algebra ontains OPS

0

0;0

as its subalgebra. Similar algebras

of Wiener type were onsidered by Sj�ostrand [23, 24℄ and Boulkhemair [4℄.

A suitable disretization assoiates to every operator in W(L

2

(R

N

)) a band-

dominated operator ating on an appropriate l

2

(Z

2N

)-spae. Moreover, these dis-

retizations belong to an algebraW(l

2

(Z

2N

)) of Wiener type again, the elements

of whih are band-dominated operators on l

2

(Z

2N

). Here we all an operator

band-dominated if it is the norm limit of a sequene of band operators.

It turns out that an operator in W(L

2

(R

N

)) is Fredholm if and only if its

disretization satis�es a generalized Fredholm ondition alled P-Fredholmness.

The P-Fredholmness of band-dominated operators has been studied in [18, 19℄

by means of the limit operators method. Basially, the result is as follows: A

band-dominated operator is P-Fredholm if and only if eah of its (appropriately

de�ned) limit operators is invertible, and if the norms of their inverses are uni-

formly bounded.

In pratie, it proves to be hard to verify the ondition of uniform bounded-

ness of the inverses of the limit operators. It is one of the main results of the

present paper that this ondition is redundant for band-dominated operators in

the disrete Wiener algebra W(l

2

(Z

2N

)). That is, an operator in this algebra is

P-Fredholm if and only if eah of its limit operators is invertible. Combining

these devies, we obtain the Fredholm riterion for pseudodi�erential operators

stated in Theorem 1.2.

A similar strategy has been pursued for operators of onvolution type on

L

p

(R

N

) in [17℄. The disretization used in [17℄ is based on the ation of the

ommutative group Z

N

. It yields that the P-Fredholmness of the disretized

operator is equivalent to some kind of generalized Fredholmness of the opera-

tor itself. Thus, one needs a further property of the operator (for example, its

loal ompatness) in order to guarantee that its generalized Fredholmness im-

plies its ommon Fredholmness. In ontrast to this situation, the disretization

employed in this paper is muh �ner. It is based on the ation of a disrete

Heisenberg group, and it leads to a simultaneous disretization with respet to

3



the variable in L

2

(R

N

) and to the o-variable in the Fourier image, whih we all

bi-disretization.

The paper is organized as follows. We start with the introdution of the

disrete Wiener algebra W(l

2

(Z

2N

)) in Setion 2. In partiular, we will derive

the announed riterion for operators in W(l

2

(Z

2N

)) to be P-Fredholm. The bi-

disretization is desribed in Setion 3. It is applied to the study of the Fredholm

properties of pseudodi�erential operators in Setion 4 (with the main result being

Theorem 4.15), and several appliations to more onrete lasses of pseudodif-

ferential operators are given in Setion 5. Let us mention some of these lasses

expliitely. In Setion 5.1, we onsider operators in OPS

0

0;0

with slowly osillating

symbols. For operators in this lass, all limit operators are either operators of

multipliation by a bounded funtion, or operators of onvolution. Thus, the in-

vertibility of these operators an be e�etively heked, and this yields an expliit

desription of the essential spetrum. The Fredholm theory of pseudodi�erential

operators in OPS

m

1;0

with symbols whih are slowly osillating with respet to the

spatial variable x has been onsidered by Grushin [9℄.

In 5.2, we onsider operators in OPS

0

0;0

the symbols of whih are almost-

periodi with respet to x. Here we use the limit operators method to get a simple

proof of the following results: The lass of these operators does not ontain non-

trivial ompat operators, and an operator in this lass is Fredholm if and only if

it is invertible. For ellipti operators in this lass, onditions for the invertibility

are given in Shubin [20, 21℄, Fedosov and Shubin [8℄ and Coburn, Moyer and

Singer [5℄. These onditions are based upon the onept of the almost periodi

index.

In 5.3, we will deal with operators with semi-almost periodi symbols, and in

Setions 5.4 and 5.5 we onsider operators of nonzero order. Finally, in 5.6, we

are going to apply the results of Setion 5.5 to desribe the essential spetrum of

some eletromagneti Shr�odinger operators.

2 Operators in the disrete Wiener algebra

2.1 Band-dominated operators and their

^

P-Fredholmness

We start this setion with realling the notions of rih band and band-dominated

operators and the riterion for

^

P-Fredholmness from [19℄. The reader should

take into aount that we used the notion invertibility at in�nity instead of

^

P-

Fredholmness in [19℄.

Given a Banah spae X, a positive integer N and a real number p � 1, we

let l

p

(Z

N

; X) stand for the Banah spae of all sequenes x on Z

N

with values

in X suh that

kfk

p

p

:=

X

�2Z

N

kx

�

k

X

<1;
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and we write l

1

(Z

N

; X) for the Banah spae of all sequenes x : Z

N

! X with

kfk

1

:= sup

�2Z

N

kx

�

k

X

<1:

Further, E

1

stands for one of the Banah spaes l

p

(Z

N

; X) with 1 � p � 1,

whereas E refers to one of the spaes l

p

(Z

N

; X) with 1 < p <1.

Every funtion a 2 l

1

(Z

N

; L(X)) gives rise to a multipliation operator on

E

1

on de�ning

(ax)



:= a



x



;  2 Z

N

:

We denote this operator by aI. Evidently, aI 2 L(E

1

) and kaIk = kak

1

.

A band operator on E

1

is a �nite sum of the form

P

�

a

�

^

V

�

where � 2 Z

2N

,

a

�

2 l

1

(Z

N

; L(X)), and where

^

V



is the shift operator

(

^

V



u)

�

:= u

��

; � 2 Z

N

:

A band-dominated operator is the norm limit of a sequene of band operators. The

band-dominated operators form a losed and symmetri subalgebra of L(E

1

)

whih we denote by A.

Given  2 Z

N

, let S



stand for the operator on E

1

whih sends a sequene

f to the sequene g with g



= f



and g

�

= 0 for � 6= . For n � 0, de�ne

^

P

n

as

the sum

P

jj

1

�n

S



, and let

^

P stand for the family (

^

P

n

)

n�0

. The operators

^

P

n

are projetions whih onverge strongly to the identity operator if p <1.

Let A 2 L(E

1

), and let h : N ! Z

N

be a sequene whih tends to in�nity. We

say that the operator A

h

is the limit operator of A with respet to the sequene

h if

lim

n!1

k

^

P

k

(

^

V

�h(n)

A

^

V

h(n)

� A

h

)k = lim

n!1

k(

^

V

�h(n)

A

^

V

h(n)

� A

h

)

^

P

k

k = 0

for every k 2 N . Let further H denote the set of all sequenes h : Z

N

! N whih

tend to in�nity, and let A

$

refer to the set of all operators A 2 A enjoying the

following property: Every sequene h 2 H possesses a subsequene g for whih the

limit operator A

g

exists. We refer to the operators in A

$

as rih band-dominated

operators.

Further, we have to mention the notions of generalized ompatness and gen-

eralized Fredholmness. We did not use these notions expliitely in [19℄, but a

loser look will onvine the reader that the de�nitions given in [19℄ are in full

oinidene with these notions. An operator K 2 L(E

1

) is alled

^

P-ompat if

kK

^

P

n

�Kk ! 0 and k

^

P

n

K �Kk ! 0 as n!1:

By K(E

1

;

^

P) we denote the set of all

^

P-ompat operators on E

1

, and by

L(E

1

;

^

P) the set of all operators A 2 L(E

1

) for whih both AK and KA are

^

P-ompat whenever K is

^

P-ompat. Then L(E

1

;P) is a losed subalgebra

5



of L(E

1

) whih ontains K(E

1

;

^

P) as its losed ideal. Moreover, K(E

1

;

^

P)

ontains all ompat operators if 1 < p < 1. An operator A 2 L(E

1

;

^

P) is

alled

^

P-Fredholm if it is invertible modulo operators in K(E

1

;

^

P). In ase X

has �nite dimension, this is just the usual notion of a Fredholm operator. Now

the main result of [19℄ an be stated as follows.

Theorem 2.1 An operator A 2 A

$

is

^

P-Fredholm if and only if eah of its limit

operators is invertible and if

supfk(A

h

)

�1

k : A

h

2 �

op

(A)g <1: (5)

2.2 The Wiener algebra

The result of Theorem 2.1 takes a more satisfatory form for band-dominated

operators whih belong to the Wiener algebra, in whih ase the uniform bound-

edness of the inverses of the limit operators is not required.

Let (a

�

)

�2Z

N be a sequene of funtions in l

1

(Z

N

; L(X)) satisfying

X

�2Z

N

ka

�

k

1

<1: (6)

Then the series

P

�2Z

n

a

�

^

V

�

onverges in the norm of L(E

1

), and











X

�2Z

N

a

�

^

V

�











L(E

1

)

�

X

�2Z

N

ka

�

k

1

: (7)

Let W stand for the set of all operators A =

P

�2Z

N

a

�

^

V

�

with oeÆient fun-

tions a

�

satisfying (6). Provided with the usual operations and the norm

kAk

W

:=

X

�2Z

N

ka

�

k

1

;

the set W beomes a Banah algebra, the so-alled Wiener algebra. By (7), the

Wiener algebra is ontinuously embedded into L(E

1

;

^

P) and, hene, into A for

all hoies of E

1

.

Later on, we will also have to deal with Wiener algebras of operators on

L

2

(R

N

). In this setting, we will refer to the Wiener algebra W on the sequene

spaes as the disrete Wiener algebra.

A basi basi property of the Wiener algebra is desribed in the following

theorem the proof of whih an be found in [13℄.

Theorem 2.2 The Wiener algebra W is inverse losed in L(E

1

).

This means that, if A 2 W is invertible in L(E

1

), then A

�1

2 W.

6



Corollary 2.3 Let A 2 W be invertible on one of the spaes E

1

. Then A is

invertible on all of these spaes, and the norms of the orresponding inverses are

uniformly bounded.

Indeed, if A is invertible on one of the spaes E

1

, then A

�1

2 W by Theorem

2.2, and from kA

�1

k

L(E

1

)

� kA

�1

k

W

we onlude that A

�1

is the inverse for A

on every of the spaes E

1

, and that the norm of A

�1

in L(E

1

) is bounded by

kA

�1

k

W

.

2.3 Fredholmness of operators in the Wiener algebra

The intersetion W \ A

$

is alled the rih Wiener algebra and will be denoted

by W

$

. It is not hard to see and will used in the following proposition that

the multipliation operators forming the diagonals of an operator A in the rih

Wiener algebra are rih operators themselves.

Here is what an be said about limit operators of rih operators in the Wiener

algebra.

Proposition 2.4 Let A 2 W

$

and let h � Z

N

be a sequene tending to in�nity.

Then there is a subsequene g of h suh that the limit operator A

g

exists with

respet to all spaes E

1

. This limit operator belongs to W, and kA

g

k

W

� kAk

W

.

Proof. Let A =

P

�2Z

N

a

�

^

V

�

with

P

�2Z

N

ka

�

k <1. Sine all diagonals a

�

are

rih multipliation operators, a Cantor diagonal argument yields the existene

of a subsequene g of h suh that the limit operators (a

�

I)

g

exist with respet

to E

1

for all �. These limit operators are again operators of multipliation by

ertain funtions a

�;g

, and

ka

�;g

k

1

= k(a

�

I)

g

k

L(E

1

)

� ka

�

k

1

;

whih follows immediately from the de�nition of limit operators. Thus,

X

�2Z

N

ka

�;g

k

1

<1;

and the operator A

g

:=

P

�2Z

N

a

�;g

^

V

�

is orretly de�ned. This operator belongs

to the Wiener algebra W, and kA

g

k

W

� kAk

W

. Now it is evident that A

g

is

indeed the limit operator of A with respet to the sequene g in eah of the

spaes E

1

.

The main result of this setion is the following theorem whih states that, for

rih operators A in the Wiener algebra, the uniform boundedness ondition from

Theorem 2.1,

supfk(A

h

)

�1

k; A

h

2 �(A)g <1;

is automatially satis�ed if all limit operators of A are invertible.
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Theorem 2.5 Let X be a reexive Banah spae. Then the following assertions

are equivalent for every operator A 2 W

$

:

(a) There is a spae E suh that A is

^

P-Fredholm on E.

(b) There is a spae E suh that all limit operators of A are invertible on E.

() All limit operators of A are invertible on l

1

(Z

N

; X).

(d) All limit operators of A are invertible on l

1

(Z

N

; X), and the norms of their

inverses are uniformly bounded.

(e) All limit operators of A are invertible on E

1

for all spaes E

1

, and the norms

of their inverses are uniformly bounded.

(f) The operator A is

^

P-Fredholm on all spaes E.

Proof. (a)) (b): This impliation an be easily heked. See, for example, the

simpler part of the proof of Theorem 2.16 in [19℄.

(b) ) (): Let A

h

be a limit operator of A with respet to the Banah spae E.

If A

h

is invertible on E, then A

�1

h

is in the Wiener algebraW by Proposition 2.4

and Theorem 2.2, and A

�1

h

2 L(l

1

(Z

N

; X)) by Corollary 2.3.

() ) (d): Let � : R

N

! [0; 1℄ be a ontinuous funtion whih is identially

1 in a ertain neighborhood of 0 and whih vanishes outside the ube [�1; 1℄

N

.

Further, given a positive integer k, de�ne the funtion �

k

by �

k

(x) := �(x=k),

and let T

k

refer to the operator of multipliation by the restrition of the funtion

�

k

onto Z

N

. We laim that there are onstants C > 0 and k 2 N suh that

kuk

1

� C (kAuk

1

+ kT

k

uk

1

) for all u 2 l

1

(Z

N

; X): (8)

The laim is evidently equivalent to the existene of onstants C; k suh that

1=C � kAuk

1

+ kT

k

uk

1

for all unit vetors u 2 l

1

(Z

N

; X):

Assume, suh onstants do not exist. Then, for all C > 0 and k 2 N , there exists

a vetor u

k;C

2 l

1

(Z

N

; X) with ku

k;C

k

1

= 1 suh that

1=C > kAu

k;C

k

1

+ kT

k

u

k;C

k

1

In partiular, we an hoose C = k, i.e. for eah k 2 N , there is a u

k

2 l

1

(Z

N

; X)

with ku

k

k

1

= 1 suh that

1=k > kAu

k

k

1

+ kT

k

u

k

k

1

: (9)

From ku

k

k

1

= 1 and kT

k

u

k

k

1

< 1=k we onlude the existene of points x

k

2 Z

N

suh that

ku

k

(x

k

)k

L(X)

� 1=2 and jx

k

j ! 1:

Let h be the sequene h(m) := x

m

. Sine A is rih, there is a subsequene g

of h for whih the limit operator A

g

exists. Let v

m

:=

^

V

�g(m)

u

g(m)

. Then, for

8



arbitrary k; m 2 N ,

kA

g

T

k

v

m

k � k(A

g

�

^

V

�g(m)

A

^

V

g(m)

)T

k

k kv

m

k+ k

^

V V

�g(m)

A

^

V

g(m)

T

k

v

m

k

� k(A

g

�

^

V

�g(m)

A

^

V

g(m)

)T

k

k

+ k(

^

V

�g(m)

A

^

V

g(m)

T

k

� T

k

^

V

�g(m)

A

^

V

g(m)

)v

m

k

+ kT

k

^

V

�g(m)

A

^

V

g(m)

v

m

k

� k(A

g

�

^

V

�g(m)

A

^

V

g(m)

)T

k

k (10)

+ k

^

V

�g(m)

A

^

V

g(m)

T

k

� T

k

^

V

�g(m)

A

^

V

g(m)

k+ kAu

g(m)

k:

Let " > 0 be arbitrary. Then hoose and �x k suh that the seond term on the

right hand side of estimate (10) beomes less than " for all m, whih an be done

due to Proposition 2.2 in [19℄. Now hoose m > 1=" so large that the �rst term

in (10) also beomes less than ". Sine kAu

m

k < 1=m by (9), then the third term

in (10) is less than ", too. Thus,

8 " > 0 9 k; m 2 N : kA

g

T

k

v

m

k

1

� 3 ": (11)

On the other hand, kv

m

(0)k = ku

g(m)

(g(m))k � 1=2, whene kT

k

v

m

k

1

� 1=2.

Thus, by (11), and sine all limit operators of A are invertible by hypothesis,

1=2 � kT

k

v

m

k

1

� kA

�1

g

k kA

g

T

k

v

m

k

1

� 3 " kA

�1

g

k

whene

kA

�1

g

k � 1=(6 ") for all " > 0:

This is learly impossible, and our laim (8) is proved. We will now employ (8)

to prove the uniform boundedness of the inverses of the limit operators of A on

l

1

(Z

N

; X).

From (8) we onlude that, for all u 2 l

1

(Z

N

; X), r 2 N and l 2 Z

N

,

k

^

V

l

T

r

uk

1

� C(kA

^

V

l

T

r

uk

1

+ kT

k

^

V

l

T

r

uk

1

):

Let h 2 H be a sequene for whih the limit operator A

h

exists. Sine every

^

V

l

is an isometry, we get

kT

r

uk

1

� C(k

^

V

�h(m)

A

^

V

h(m)

T

r

uk

1

+ k

^

V

�h(m)

T

k

^

V

h(m)

T

r

uk

1

): (12)

Further, sine T

r

u 2 

0

(Z

N

; X) and

^

V

�h(m)

T

k

^

V

h(m)

! 0 strongly on 

0

(Z

N

; X),

we an pass to the limit as m!1 in (12) to obtain

kT

r

uk

1

� CkA

h

T

r

uk

1

(13)

for all u 2 l

1

(Z

N

; X) and r 2 N . For r ! 1, the left hand side of (13) goes

to kuk

1

. For the right hand side, some more are is in order. Again from

Proposition 2.2 in [19℄, we onlude that the right hand side of

j kA

h

T

r

uk � kT

r

A

h

uk j � kA

h

T

r

� T

r

A

h

k kuk

9



tends to zero as r ! 1 (note that A

h

is band dominated if A is so). Sine

kT

r

A

h

uk ! kA

h

uk as r ! 1, this estimate implies that kA

h

T

r

uk ! kA

h

uk as

r !1. Thus, passage to the limit r !1 in (13) gives

kuk

1

� CkA

h

uk

1

for all u 2 l

1

(Z

N

; X)

whene kA

�1

h

k � C, i.e. the uniform boundedness of the inverses of the limit

operators.

(d) ) (e): The proof of this impliation is based on the possibility to assoiate

with every operator in the Wiener algebra a naturally de�ned adjoint operator.

To make this point lear we will indiate the dependene of the Wiener algebra

from the underlying Banah spae X by writing W

X

in plae of W. For A =

P

�2Z

N

a

�

V

�

2 W

X

, we de�ne its Wiener adjoint A

?

as

P

�2Z

N

V

��

a

�

�

I, where

a

�

�

(x) is the usual Banah dual operator of a

�

(x), ating on X

�

. Clearly, we have

A

?

=

P

�2Z

N

b

�

V

��

where b

�

(x) = a

�

�

(x + �). This shows that A

?

belongs to

the Wiener algebra W

X

�

, and it is easy to hek that the mapping A 7! A

?

is

an anti-linear isometry from W

X

into W

X

�

whih satis�es (AB)

?

= B

?

A

?

for all

A; B 2 W

X

. In partiular, I

?

= I and, if A is invertible in W

X

, then A

?

is

invertible in W

X

�

and (A

?

)

�1

= (A

�1

)

?

.

For the proof of the impliation (d) ) (e), let now A 2 W

$

X

be an operator

with

C

1

(A) := sup fkA

�1

h

k

L(l

1

(Z

N

;X))

: A

h

2 �

op

(A)g <1: (14)

The limit operators of A

?

are just the Wiener adjoints of the limit operators of

A. Thus, the invertibility of all limit operators of A implies the invertibility of all

limit operators of A

?

. So we onlude from the already established impliation

()) (d) that

C

1

(A

?

) := sup fk(A

?

h

)

�1

k

L(l

1

(Z

N

;X

�

))

: A

h

2 �

op

(A)g <1:

Sine the limit operators of A

?

as well as their inverses belong to the Wiener

algebraW

X

�

(due to Proposition 2.4 and Theorem 2.2), the operators A

?

h

also at

as bounded and invertible operators on 

0

(Z

N

; X

�

), and k(A

?

h

)

�1

k

L(

0

(Z

N

;X

�

))

�

k(A

?

h

)

�1

k

L(l

1

(Z

N

;X

�

))

. This shows that

C

0

(A

?

) := sup fk(A

?

h

)

�1

k

L(

0

(Z

N

;X

�

))

: A

h

2 �

op

(A)g <1: (15)

The operator A, thought of as ating on l

1

(Z

N

; X), an be identi�ed with the

usual Banah dual operator of A

?

2 L(

0

(Z

N

; X

�

)) (this is the plae where we

need the reexivity of X). Hene,

C

1

(A) := sup fkA

�1

h

k

L(l

1

(Z

N

;X))

: A

h

2 �

op

(A)g = C

0

(A

?

) <1:

Consequently, by the Riess-Thorin interpolation theorem (Theorem 1 and Re-

mark 4 in Setion 1.18.3 of [27℄), we have for every 1 < p <1 and A

h

2 �(A),

kA

�1

h

k

p

L(l

p

(Z

N

;X))

� kA

�1

h

k

p�1

L(l

1

(Z

N

;X))

kA

�1

h

k

L(l

1

(Z

N

;X))

� C

1

(A)

p�1

C

1

(A);

10



whih veri�es the uniform boundedness of the norms of the inverses of the limit

operators of A on all spaes l

p

(Z

N

; X) with 1 � p � 1. For E

1

= 

0

(Z

N

; X),

this result follows in the same way as we derived (15).

Finally, the impliation (e)) (f) is Theorem 2.1, and the impliation (f))

(a) is evident.

Observe that the impliation ()) (d) holds for arbitrary rih operators A and

arbitrary (not neessarily reexive) Banah spaes X.

Corollary 2.6 Let X be a reexive Banah spae. Then the P-essential spe-

trum of an operator A 2 W

$

in the spae E

1

does not depend on E

1

, and

�

^

P�ess

(A) = [�

E

(A

h

)

where the union is taken over all limit operators A

h

of A and where the

^

P-essential

spetrum �

^

P�ess

(A) onsists of all � 2 C for whih the operator A � �I is not

^

P-Fredholm.

If the spae X is �nite dimensional, then the P-essential spetrum is the usual

essential spetrum. The proof of the independene of the P-essential spetrum

of the underlying spae follows from Theorem 2.2 and from the fat that limit

operators of operators in the Wiener algebra belong to the Wiener algebra again.

3 Bi-disretization of operators on L

2

(R

N

)

3.1 Bi-disretization

Let f 2 C

1

0

(R

N

) be a non-negative funtion suh f(x) = f(�x) for all x, f(x) = 1

if jx

i

j � 2=3 for all i = 1; : : : ; N and that f(x) = 0 if jx

i

j � 3=4 for at least one

i. De�ne a non-negative funtion ' by

'

2

(x) :=

f(x)

P

�2Z

N

f(x� �)

; x 2 R

N

;

and set '

�

(x) := '(x��) for � 2 Z

N

. The family ('

�

) forms a partition of unit

on R

N

in the sense that

X

�2Z

N

'

2

�

(x) = 1 for all x 2 R

N

: (16)

For  := (�; �) 2 Z

N

� Z

N

, we set �



(x; �) := '

�

(x)'

�

(�) and �



:= Op(�



).

These operators are ompat by Theorem 1.1 (b), and (16) implies that

X

2Z

2N

�

�



�



u =

X

�2Z

N

Op('

�

)

X

�2Z

N

'

2

�

Op('

�

)u

=

X

�2Z

N

Op('

�

)

2

u = F

�1

X

�2Z

N

'

2

�

Fu = u

11



for all u 2 L

2

(R

N

). Thus, the operator family (�



)

2Z

2N forms a partition of unit

in the sense that

X

2Z

2N

�

�



�



= I (17)

where the series onverges strongly on L

2

(R

N

). Analogously, one heks that

P



�



�

�



= I. Moreover,

kuk

2

L

2

=

X

2Z

2N

k�



uk

2

L

2

=

X

2Z

2N

k�

�



uk

2

L

2

(18)

for every u 2 L

2

(R

N

) whih follows easily from (17):

kuk

2

L

2

=

X

2Z

2N

h�

�



�



u; ui =

X

2Z

2N

h�



u; �



ui =

X

2Z

2N

k�



uk

2

L

2

:

One also easily heks that �



= U



�

0

U

�



with the unitary operators U



intro-

dued in the introdution.

We de�ne the bi-disretization Gu of a funtion u 2 L

2

(R

N

) by

(Gu)



:= �

0

U

�



u;  2 Z

2N

;

i.e. we onsider Gu as a vetor-valued funtion on Z

2N

with values in L

2

(R

N

).

These funtions form a Hilbert spae l

2

(Z

2N

; L

2

(R

N

)) with salar produt

hf; gi :=

X

2Z

2N

hf



; g



i

L

2

(R

N

)

:

Proposition 3.1 The operator G : L

2

(R

N

) ! l

2

(Z

2N

; L

2

(R

N

)) is an isometry.

Its adjoint is given by

G

�

f =

X

2Z

2N

U



�

�

0

f



where the series onverges in L

2

(R

N

).

Proof. The isometry of G follows from (18) sine

kGuk

2

l

2

=

X

2Z

2N

k�

0

U

�



uk

2

L

2

=

X

2Z

2N

kU



�

0

U

�



uk

2

L

2

=

X

2Z

2N

k�



uk

2

L

2

= kuk

2

L

2

:

Further, one has

hGu; fi

l

2

=

X

2Z

2N

h(Gu)



; f



i

L

2

=

X

2Z

2N

h�

0

U

�



u; f



i

L

2

=

X

2Z

2N

hu; U



�

�

0

fi

L

2

= hu; G

�

fi

L

2
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for every u 2 L

2

(R

N

) and f 2 l

2

(Z

2N

; L

2

(R

N

)).

Thus, G

�

G = I, and the operator Q := GG

�

is an orthogonal projetion on

l

2

(Z

2N

; L

2

(R

N

)). We denote its range by ImQ. Then

G : L

2

(R

N

)! ImQ

is a unitary operator, and every operator A 2 L(L

2

(R

N

)) is unitarily equivalent

to the operator

A

G

:= GAG

�

j

ImQ

:

We extend A

G

to an operator �(A) ating on all of l

2

(Z

2N

; L

2

(R

N

)) by setting

�(A) := A

G

Q + I �Q = GAG

�

+ I �Q:

Clearly,

G

�

�(A)G = G

�

(GAG

�

+ I �GG

�

)G = A:

3.2 Bi-disretization and Fredholmness

We will now examine the relation between the Fredholmness of an operator on

L

2

(R

N

) and the

^

P-Fredholmness of its disretization.

Proposition 3.2 (a) The operators

^

P

n

Q and Q

^

P

n

are ompat for every k 2 N.

(b) The projetion Q belongs to L(l

2

;

^

P).

() For every A 2 L(L

2

(R

N

)), the operator �(A) belongs to L(l

2

;

^

P).

(d) Let K 2 L(l

2

(Z

2N

; L

2

(R

N

))) be a

^

P-ompat operator of the form K = QKQ.

Then G

�

KG is ompat.

(e) The operator A 2 L(L

2

(R

N

)) is invertible (Fredholm) if and only if the oper-

ator �(A) 2 L(l

2

(Z

2N

; L

2

(R

N

))) is invertible (

^

P-Fredholm).

Proof. (a) It is suÆient to verify the ompatness of all operators S



Q and

QS



. A straightforward alulation yields

S



Q =

X

�2Z

2N

T



�

0

U

�



U

�

�

�

0

R

�

(19)

where we wrote

R

�

: ImS

�

! L

2

(R

N

); (: : : ; 0; f

�

; 0; : : :) 7! f

�

and

T



: L

2

(R

N

)! ImS



; f



7! (: : : ; 0; f



; 0; : : :);

for a moment. Sine, with ertain onstants 

�

,

�

0

U

�



U

�

�

�

0

= 

�

�

0

U

�

��

�

�

0

= 

�

U

�

��

�

��

�

�

0

= 0
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if � is suÆiently large, the sum (19) has only a �nite number of non-vanishing

items. Eah of these items is ompat beause �

0

is ompat. Thus, S



Q and

QS



= (S



Q)

�

are ompat.

(b) It is easy to hek that the operator Q belongs to L(l

2

;

^

P) if and only if, for

every k 2 N ,

k

^

P

k

Q(I �

^

P

n

)k ! 0 and k(I �

^

P

n

)Q

^

P

k

k ! 0

as n ! 1. These onditions follow immediately from the ompatness of

^

P

k

Q

and Q

^

P

k

and from the

�

-strong onvergene of the

^

P

n

to the identity.

() As in the previous step, we have to show that, for every k 2 N ,

k

^

P

k

�(A)(I �

^

P

n

)k ! 0 and k(I �

^

P

n

)�(A)

^

P

k

k ! 0

as n!1. Let us hek the �rst ondition. We have

^

P

k

�(A)(I �

^

P

n

) =

^

P

k

QGAG

�

(I �

^

P

n

) +

^

P

k

(I �

^

P

n

)�

^

P

k

Q(I �

^

P

n

):

The �rst and the third term in this sum tend to zero in the norm sine

^

P

k

Q is

ompat and sine the I �

^

P

n

onverge strongly to 0. The seond term is zero

whenever n > k.

(d) If K is

^

P-ompat, then kK(I �

^

P

n

)k ! 0. Consequently,

kG

�

K(I �

^

P

n

)Gk = kG

�

KGG

�

(I �

^

P

n

)Gk = kG

�

KG(I �G

�

^

P

n

G)k ! 0:

Sine

G

�

^

P

n

G =

X

�2[�n;n℄

2N

\Z

2N

�

�

�

�

�

and �

�

�

�

�

is ompat, the operator G

�

KG is the norm limit of ompat operators

and, hene, ompat.

(e) Sine A and A

G

are unitarily equivalent, the operator A is invertible (Fred-

holm) if and only if A

G

is invertible (Fredholm). We laim that the latter happens

if and only if the operator �(A) is invertible (

^

P -Fredholm).

Let A

G

be invertible on ImQ, and let B be its inverse. Then, learly, QBQ+

I �Q is the inverse of �(A). Conversely, if C is the inverse of �(A), then QCQ

is the inverse of A

G

, sine �(A)Q = Q�(A)Q = Q�(A).

Let now A

G

be Fredholm, and let B be a regularizer of A

G

, i.e. the operators

A

G

B � I and BA

G

� I are ompat. Then the operators

�(A)(QBQ + I �Q)� I

= (QA

G

Q+ I �Q)(QBQ + I �Q)� I = QA

G

BQ�Q = Q(A

G

B � I)Q

and (QBQ + I � Q)�(A) � I are ompat and, hene, also

^

P-ompat, whene

the

^

P-Fredholmness of �(A). Let, onversely, �(A) be a

^

P-Fredholm operator.

14



Thus, there are an operator B 2 L(l

2

;

^

P) and

^

P-ompat operators K; L suh

that

�(A)B = I +K and B�(A) = I + L:

We multiply both equalities from both sides by Q. Sine �(A) ommutes with

Q, we get

Q�(A)QBQ = Q+K

0

and QBQ�(A)Q = Q + L

0

(20)

with

^

P-ompat operators K

0

and L

0

satisfying

K

0

= QK

0

Q and L

0

= QL

0

Q:

Multiplying (20) by G

�

from the left band by G from the right hand side we �nd

AG

�

BG = I +G

�

K

0

G and G

�

BGA = I +G

�

L

0

G:

The operators G

�

K

0

G and G

�

L

0

G are ompat by assertion (d).

3.3 Bi-disretization and limit operators

Our next goal is to relate the limit operators of operators A on L

2

(R

N

) with the

limit operators of its disretization �(A) on L(l

2

(Z

2N

; L

2

(R

N

))). The latter ones

are de�ned as in Setion 2.1 (with p; N and X replaed by 2; 2n and L

2

(R

N

)).

Given  = (

1

; 

2

) 2 Z

2N

= Z

N

� Z

N

, we de�ne a unitary operator

^

T



on

l

2

(Z

2N

; L

2

(R

N

)) by (

^

T



u)

�

:= e

ih

2

;�

1

i

u

�

.

Lemma 3.3 Let  2 Z

2N

. Then

^

V

�

G =

^

T



GU

�



and G

�

^

V



= U



G

�

^

T

�



on L

2

(R

N

) and on l

2

(Z

2N

; L

2

(R

N

)), respetively.

Proof. Let f 2 L

2

(R

N

) and � 2 Z

N

� Z

N

. Then

(

^

V

�

GU



f)

�

= (GU



f)

�+

= �

0

U

�

�+

U



f

= e

ih

2

;�

1

i

�

0

U



f = e

ih

2

;�

1

i

(Gf)

�

= (

^

T



Gf)

�

where we used (3). Hene,

^

V

�

GU



=

^

T



G on L

2

(R

N

), whih implies the asser-

tions.

Lemma 3.4 Every sequene h 2 H possesses a subsequene g suh that the

funtions

f

m

: Z

N

! T; � 7! e

ihg(m); �i

(21)

onverge uniformly on Z

N

as m!1.

15



Proof. Set r

�1

:= h, and let  : N ! Z

N

be an enumeration of Z

N

. By the

ompatness of the unit irle T, there is a subsequene r

0

of r

�1

suh that

e

ihr

0

(m); 

0

i

! f(

0

) 2 T as m!1

and

je

ihr

0

(m); 

0

i

� f(

0

)j < 2 for all m 2 Z

N

:

We proeed in this way and get, for every positive integer n, a subsequene r

n

of

r

n�1

suh that

e

ihr

n

(m); 

n

i

! f(

n

) 2 T as m!1

and

je

ihr

n

(m); 

n

i

� f(

n

)j < 2

�n

for allm 2 Z

N

:

Set g(n) := r

n

(n). Sine g is (with exeption of a �nite number of entries) a

subsequene of eah sequene r

n

, we have g 2 H,

e

ihg(m); 

n

i

! f(

n

) as m!1

and

je

ihg(m); 

n

i

� f(

n

)j < 2

�n

for all m 2 Z

N

and n 2 N :

We laim that the funtions f

m

onverge uniformly to the funtion f : Z

N

! T

de�ned in this way. Given " > 0, hoose K 2 N suh that 2

�K

< ", and then

hoose M 2 N suh that

je

ihg(m); 

n

i

� f(

n

)j < " for allm � M and n � K:

Then je

ihg(m); �i

� f(�)j < " for all m �M and � 2 Z

N

.

Proposition 3.5 Let A 2 L(L

2

(R

N

)) be suh that the limit operator A

h

with

respet to the sequene h 2 H exists. Then there is a subsequene g of h suh

that the limit operator �(A)

g

of �(A) exists and that the operators �(A)

g

and

�(A

h

) are unitarily equivalent.

Proof. Let h 2 H be a sequene suh that the limit operator A

h

exists. By

the preeding lemma, there is a subsequene g of h suh that the funtions (21)

onverge uniformly on Z

2N

to a ertain funtion f

g

: Z

2N

! T. Let the operator

T

g

: l

2

(Z

2N

; L

2

(R

N

))! l

2

(Z

2N

; L

2

(R

N

)) be de�ned by (T

g

u)

�

:= f

g

(�

1

)u

�

. Sine

all values of f

g

are unimodular, the operator T

g

is unitary. Moreover, from the

uniform onvergene of the funtions (21) to f

g

we onlude that

k

^

T

g(m)

� T

g

k = sup

�2Z

2N

je

ihg(m); �i

� f

g

(�)j ! 0 as m!1:

Now we have, by Lemma 3.3,

^

V

�g(m)

GAG

�

^

V

g(m)

=

^

T

g(m)

GU

�

g(m)

AU

g(m)

G

�

^

T

g(m)

;
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and the right hand side of this equality onverges

�

-strongly to T

g

GA

h

G

�

T

�

g

.

Hene, the limit operator (GAG

�

)

g

exists, and

(GAG

�

)

g

= T

g

GA

h

G

�

T

�

g

: (22)

Choosing A = I, we see in partiular that every sequene h whih tends to

in�nity possesses a subsequene g suh that the limit operator Q

g

of Q = GG

�

exists and that this limit operator is equal to T

g

QT

�

g

. Of ourse, one an hoose

the same subsequene g as in (22). Consequently, the limit operator of �(A) =

GAG

�

+ I �Q with respet to g also exists, and

�(A)

g

= (GAG

�

)

g

+ (I �Q)

g

= T

g

GA

h

G

�

T

�

g

+ T

g

(I �Q)T

�

g

= T

g

�(A

h

)T

�

g

: (23)

This proves the assertion.

4 Fredholmness of pseudodi�erential operators

We are now going to single out a lass of operators on L

2

(R

N

) whih beome band-

dominated operators in the rih Wiener algebra after bi-disretization. This will

enable us to derive Fredholm riteria for these operators. Partiular examples

of operators whih belong to this lass are provided by the pseudodi�erential

operators with symbol in S

0

0; 0

.

4.1 A Wiener algebra on L

2

(R

N

)

We de�ne a Wiener algebra of operators on L

2

(R

N

) by imposing onditions on

the deay of the norms k�

�

A�

�

��

k.

De�nition 4.1 Let A be a linear (at this moment not neessarily bounded) op-

erator on L

2

(R

N

). We say that A belongs to W(L

2

(R

N

)) if

kAk

W(L

2

(R

N

))

:=

X

2Z

2N

sup

�2Z

2N

k�

�

A�

�

��

k

L(L

2

(R

N

))

<1:

The lass W(L

2

(R

N

)) ontains suÆiently many interesting operators. Atu-

ally we will see that all pseudodi�erential operators with symbol in S

0

0;0

belong

to W(L

2

(R

N

)). To hek this, we need some auxiliary results. The following

proposition is proved in [16℄, Proposition 5.5.2.

Proposition 4.2 Let A = Op(a) 2 OPS

0

0;0

, and let ('

�

) be a partition of unit

satisfying (16). Then, for all �; � 2 Z

N

and k

1

; k

2

> N=2,

k'

�

A'

�

Ik

L(L

2

(R

N

))

� Ch� � �i

�2k

1

jaj

2k

1

; 2k

2

(24)

with a onstant C > 0 independent of �; � and a (but depending on k

1

and k

2

).
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Proposition 4.3 Let A = Op(a) 2 OPS

0

0;0

and � = (�

1

; �

2

); � = (�

1

; �

2

) 2

Z

N

� Z

N

. Then

k�

�

A�

�

�

k

L(L

2

(R

N

))

� Cjaj

2k+2m; 2k+2m

h�

1

� �

1

i

�k

h�

2

� �

2

i

�k

whenever 2k > N , m 2 N is large enough, and with a onstant C > 0 independent

of a and of � and � (but depending on k and m).

Proof. Applying Proposition 4.2 to the operator B := Op('

�

2

)AOp('

�

2

), we

get

k�

�

A�

�

�

k

L(L

2

(R

N

))

= k'

�

1

Op('

�

2

)AOp('

�

2

)'

�

1

Ik

L(L

2

(R

N

))

� Ch�

1

� �

1

i

�2k

jsym

B

j

2k; 2k

for all 2k > N . By Theorem 4.2.1 from [16℄, jsym

B

j

2k; 2k

� Cjaj

2k+2m; 2k+2m

whenever 2m > N . Thus,

k�

�

A�

�

�

k

L(L

2

(R

N

))

� Ch�

1

� �

1

i

�2k

jaj

2k+2m; 2k+2m

: (25)

Similarly, writing FOp(a)F

�1

(with F denoting the Fourier transform on L

2

(R

N

))

as the pseudodi�erential operator with double symbol ~a(x; y; �) := a(��; y), and

estimating the right hand side of the estimate

k�

�

A�

�

�

k

L(L

2

(R

N

))

= kF�

�

A�

�

�

F

�1

k

L(L

2

(R

N

))

= kOp('

�

1

)'

�

2

FAF

�1

'

�

2

Op('

�

2

)k

L(L

2

(R

N

))

� k'

�

2

FAF

�1

'

�

2

Ik

L(L

2

(R

N

))

by using Theorem 4.3.2 from [16℄ and the Calderon-Vaillanourt theorem, we

obtain

k�

�

A�

�

�

k

L(L

2

(R

N

))

� Ch�

2

� �

2

i

�2k

jaj

2k+2m; 2k+2m

: (26)

for every 2k > N and for every m whih is suÆiently large (reall that ' is an

even funtion by hypothesis). Multiplying (25) by (26) and taking square roots,

we get the assertion.

Corollary 4.4 OPS

0

0;0

� W(L

2

(R

N

)).

Indeed, for A 2 OPS

0

0;0

, and with  := (

1

; 

2

) and � := (�

1

; �

2

), the preeding

proposition implies

X

2Z

2N

sup

�2Z

2N

k�

�

A�

�

��

k

L(L

2

(R

N

))

� Cjaj

2k+2m; 2k+2m

X

2Z

2N

h

1

i

�k

h

2

i

�k

;

whih is �nite if k is hosen large enough.

Here are some basi properties of W(L

2

(R

N

)).
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Proposition 4.5 (a) W(L

2

(R

N

)) � L(L

2

(R

N

)), and

kAk

L(L

2

(R

N

))

� kAk

W(L

2

(R

N

))

for all A 2 W(L

2

(R

N

)):

(b) When provided with the norm A 7! kAk

W(L

2

(R

N

))

and with the involution

A 7! A

�

(= the Hilbert spae adjoint of A), the set W(L

2

(R

N

)) beomes a unital

involutive Banah algebra.

Proof. (a) The boundedness of A 2 W(L

2

(R

N

)) as well as the norm estimate

an be obtained as follows, where we employ (17) and (18) several times:

kAuk

2

=

X

2Z

2N

k�



Auk

2

=

X

2Z

2N











�



A

X

Æ2Z

2N

�

�

Æ

�

Æ

u











2

�

X

2Z

2N

 

X

�2Z

2N

k�



A�

�

��

k k�

��

uk

!

2

�

X

2Z

2N

 

X

�2Z

2N

k

A

(�)k�

��

uk

!

2

�

X

2Z

2N

 

X

�2Z

2N

k

A

( � �)k�

�

uk

!

2

with k

A

(�) := sup

2Z

N

k�



A�

�

��

k. Sine k

A

is in l

1

(Z

N

),

kAuk

2

�

0

�

X

2Z

2N

k

A

()

1

A

2

X

�2Z

2N

k�

�

uk

2

= kAk

2

W(L

2

(R

N

))

kuk

2

;

whene assertion (a).

(b) Let A; B 2 W(L

2

(R

N

)). Then, learly,

k�Ak

W(L

2

(R

N

))

= j�j kAk

W(L

2

(R

N

))

and

kA+Bk

W(L

2

(R

N

))

� kAk

W(L

2

(R

N

))

+ kBk

W(L

2

(R

N

))

:

For the produt AB, one �nds

kABk

W(L

2

(R

N

))

=

X

2Z

2N

sup

�2Z

2N

k�

�

AB�

�

��

k
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=

X

2Z

2N

sup

�2Z

2N











X

�2Z

2N

�

�

A�

�

���

�

���

B�

�

��











�

X

2Z

2N

X

�2Z

2N

k

A

(�)k

B

( � �)

� kAk

W(L

2

(R

N

))

kBk

W(L

2

(R

N

))

:

Further, sine k�



A�

�

Æ

k = k�



A

�

�

�

Æ

k, the operators A and A

�

belong to the

Wiener algebra W(L

2

(R

N

)) only simultaneously, and one has

kAk

W(L

2

(R

N

))

= kA

�

k

W(L

2

(R

N

))

:

That the identity operator belongs to W(L

2

(R

N

)) follows from Corollary 4.4.

Finally, if (A

n

) is a Cauhy sequene inW(L

2

(R

N

)) then, by part (a), it is also a

Cauhy sequene in L(L

2

(R

N

)), hene onvergent. Let A 2 L(L

2

(R

N

)) denote the

limit of this sequene. Given " > 0, hoose M suh that kA

n

�A

m

k

W(L

2

(R

N

))

< "

for all m; n � M . Letting m go to in�nity in this inequality, we get the onver-

gene of the A

m

to A with respet to the norm in the Wiener algebra.

Next we onsider bi-disretizations of operators in the Wiener algebra. For nota-

tional onveniene, we denote the disrete Wiener algebraW on l

2

(Z

2N

; L

2

(R

N

))

introdued in Setion 2.2 by W(l

2

(Z

2N

)) in what follows.

Proposition 4.6 (a) Let A 2 W(L

2

(R

N

)). Then the operators GAG

�

and �(A)

belong to the Wiener algebra W(l

2

(Z

2N

)).

(b) Let B 2 W(l

2

(Z

2N

)). Then the operator G

�

BG belongs to the Wiener algebra

W(L

2

(R

N

)).

Proof. (a) Let u 2 l

2

(Z

2N

; L

2

(R

N

)) and � 2 Z

2N

. Then

(GAG

�

u)

�

= (GA

X

2Z

2N

U



�

�

0

u



)

�

= �

0

U

�

�

A

X

2Z

2N

U



�

�

0

u



=

X

2Z

2N

�

0

U

�

�

AU

��

�

�

0

u

��

=

X

2Z

2N

�

0

U

�

�

AU

��

�

�

0

(

^

V



u)

�

;

whih shows that GAG

�

2 W(l

2

(Z

2N

)). When applied to the operator A = I

(whih is in W(L

2

(R

N

)) by Proposition 4.5), this inlusion implies in partiular

that Q = GG

�

2 W(l

2

(Z

2N

)). Clearly, the disrete Wiener algebra W(l

2

(Z

2N

))

also ontains the identity operator, whene the �rst assertion.

(b) Let B 2 W(l

2

(Z

2N

)) be given by

B =

X

�2Z

2N

b

�

^

V

�

with kBk

W(l

2

(Z

2N

))

=

X

�2Z

2N

kb

�

k <1
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with multipliation operators b

�

. Further, let �;  2 Z

2N

and u 2 L

2

(R

N

). Then

�

�

G

�

BG�

�

��

u =

X

Æ2Z

2N

�

�

U

Æ

�

�

0

(BG�

�

��

u)

Æ

=

X

Æ2Z

2N

�

�

U

Æ

�

�

0

X

�2Z

2N

b

�

(Æ)(G�

�

��

u)

Æ��

=

X

Æ2Z

2N

�

�

U

Æ

�

�

0

X

�2Z

2N

b

�

(Æ)�

0

U

�

Æ��

�

�

alpha�

u

=

X

Æ2Z

2N

�

�

�

�

Æ

X

�2Z

2N

U

Æ

b

�

(Æ)U

�

Æ��

�

Æ��

�

�

��

u

whene

k�

�

G

�

BG�

�

��

k �

X

Æ2Z

2N

k�

�

�

�

Æ

k

X

�2Z

2N

kb

�

k k�

Æ��

�

�

��

k

=

X

�2Z

2N

kb

�

k

X

Æ2Z

2N

k�

�

�

�

Æ

k k�

Æ��

�

�

��

k:

We write all indies as � = (�

1

; �

2

) 2 Z

N

� Z

N

and use Proposition 4.3 to get

X

Æ2Z

2N

k�

�

�

�

Æ

k k�

Æ��

�

�

��

k

� C

X

Æ2Z

2N

h�

1

� Æ

1

i

�k

h�

2

� Æ

2

i

�k

h

1

+ Æ

1

� �

1

� �

1

i

�k

h

2

+ Æ

2

� �

2

� �

2

i

�k

= C

X

Æ

1

2Z

N

h�

1

� Æ

1

i

�k

h

1

+ Æ

1

� �

1

� �

1

i

�k

�

�

X

Æ

2

2Z

N

h�

2

� Æ

2

i

�k

h

2

+ Æ

2

� �

2

� �

2

i

�k

:

If k is large enough, then the sequene x 7! hxi

�k

belongs to l

1

(Z

N

). Sine l

1

(Z

N

)

is losed under onvolution, there is a sequene f 2 l

1

(Z

N

) suh that

k�

�

G

�

BG�

�

��

k � C

X

�2Z

2N

kb

�

kf(

1

� �

1

) f(

2

� �

2

):

The sequene g : (x

1

; x

2

) 7! f(x

1

)f(x

2

) belongs to l

1

(Z

2N

). Hene, by the

onvolution theorem,

k�

�

G

�

BG�

�

��

k � C

X

�2Z

2N

kb

�

k g( � �) = h()

with a ertain funtion h 2 l

1

(Z

2N

) independent of � and . This estimate implies

the assertion (b).
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Proposition 4.7 The algebra W(L

2

(R

N

)) is inverse losed in L(L

2

(R

N

)), i.e.

if A 2 W(L

2

(R

N

)) is invertible in L(L

2

(R

N

)), then A

�1

2 W(L

2

(R

N

)).

Proof. Let A 2 W(L

2

(R

N

)) be invertible on L

2

(R

N

). Then �(A) belongs to

W(l

2

(Z

2N

)) by Proposition 4.6 (a), and it is invertible in L(l

2

(Z

2N

; L

2

(R

N

))) by

Proposition 3.2. The well known inverse losedness of the disrete Wiener algebra

([13℄) implies that �(A)

�1

2 W(l

2

(Z

2N

)). Sine

G

�

�(A)

�1

GA = G

�

�(A)

�1

GAG

�

G = G

�

�(A)

�1

�(A)QG = I;

one has G

�

�(A)

�1

G = A

�1

2 W(L

2

(R

N

)) by Proposition 4.6 (b).

4.2 Fredholmness of operators in W(L

2

(R

N

))

Operators on L

2

(R

N

) whih possess a rih operator spetrum are de�ned in om-

plete analogy to the disrete setting. More preisely: We let W

$

(L

2

(R

N

)) stand

for the set of all operators A in the Wiener algebraW(L

2

(R

N

)) with the following

property: every sequene h 2 H possesses a subsequene g suh that the limit

operator A

g

with respet to this sequene exists. It an be easily heked that

W

$

(L

2

(R

N

)) is a losed and unital subalgebra of W(L

2

(R

N

)).

Proposition 4.8 Let A 2 W

$

(L

2

(R

N

)). Then GAG

�

and �(A) belong to the

algebra W

$

(l

2

(Z

2N

)), and

�

op

(GAG

�

) = fT

g

GA

h

G

�

T

�

g

: A

h

2 �

op

(A)g;

�

op

(�(A)) = fT

g

�(A

h

)T

�

g

: A

h

2 �

op

(A)g:

Proof. Let k 2 H. Sine A has a rih operator spetrum, there is a subsequene

h of k suh that A

h

exists. By the Proposition 3.5, there is a subsequene g of

h suh that the limit operators (GAG

�

)

g

and �(A)

g

exist. Hene, GAG

�

and

�(A) are rih, too. The desription of the orresponding operator spetra follows

immediately from (22) and (23).

Theorem 4.9 Let A 2 W

$

(L

2

(R

N

)). Then A is a Fredholm operator if and only

if all limit operators of A are invertible, and the essential spetrum of A is the

union of all spetra of its limit operators.

Proof. It is easy to see that, if A is a Fredholm operator, then all limit oper-

ators of A are invertible. Let, onversely, all limit operators of A be invertible.

Then, by Propositions 4.8 and 3.2 (e), all limit operators of �(A) are invertible.

Consequently, �(A) is a P-Fredholm operator by Theorem 2.5. By Proposition

3.2 (e) again, A is a Fredholm operator.

Let A

$

(L

2

(R

N

)) denote the losure in L(L

2

(R

N

)) of the rih Wiener algebra

W

$

(L

2

(R

N

)). Further we agree upon alling a family of operators uniformly in-

vertible if eah member of the family is invertible and if the norms of their inverses

are uniformly bounded.
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Theorem 4.10 An operator A 2 A

$

(L

2

(R

N

)) is Fredholm on L

2

(R

N

) if and

only if all limit operators of A are uniformly invertible on L

2

(R

N

).

Proof. Let (A

n

) be a sequene of operators in W

$

(L

2

(R

N

)) whih onverges to

A in the norm. By B we denote the smallest C

�

-subalgebra of L(L

2

(R

N

)) whih

ontains all operators A

n

and the idealK(L

2

(R

N

)) of the ompat operators, and

we write H

B

for the set of all sequenes h in H suh that the limit operator B

h

exists for every operator B 2 B. Then the mappings

W

h

: A=K(L

2

(R

N

))! L(L

2

(R

N

)); A +K(L

2

(R

N

)) 7! A

h

are orretly de�ned C

�

-algebra homomorphisms for h 2 H

B

. Employing a Can-

tor diagonal argument is is also not hard to verify that

�

op

(B) = fW

h

(B) : h 2 H

B

g for every B 2 B:

Let now the limit operators of A be uniformly invertible. Then, by Neumann

series, all limit operators of all operators A

n

are uniformly invertible if only n is

large enough. By Theorem 4.9, this implies that all operators A

n

with n large

enough are Fredholm or, equivalently, their osets modulo the ompat operators

are invertible. Moreover, these osets are even uniformly invertible whih follows

easily from the seond assertion of 4.9 (or, likewise, from the symbol alulus

developed in [18℄). Sine the osets of A

n

onverge to the oset of A, and sine

these osets are uniformly invertible, we obtain the invertibility of the oset of A

modulo the ompat operators, i.e. the Fredholmness of A.

Corollary 4.11 Let A 2 A

$

(L

2

(R

N

)). Then

kAk

ess

:= kA+K(L

2

(R

N

))k = supfkA

h

k : A

h

2 �

op

(A)g:

There is also a loal version of the latter result. Given a radius R > 0, a diretion

� 2 S

N�1

with S

N�1

referring to the unit sphere in R

N

, and a neighborhood

U � S

N�1

of �, de�ne

W

R;U

:= fz 2 R

N

: jzj > R and z=jzj 2 Ug: (27)

We all W

R;U

a neighborhood at in�nity of �. If h is a sequene whih tends to

in�nity, then we say that h tends into the diretion of � 2 S

N�1

if, for every

neighborhood at in�nity W

R;U

of �, there is an m

0

suh that

h(m) 2 W

R;U

for allm � m

0

:

Finally, we all an operator A 2 L(L

2

(R

N

)) loally invertible at the in�nitely

distant point � 2 S

N�1

if there exist a neighborhood at in�nity W of � as well as

operators R; L 2 L(L

2

(R

N

)) suh that

LA�

W

I = �

W

AR = �

W

I:

We denote by �

op;�

(A) the set of all limit operators of A 2 B(L

2

(R

N

)) whih are

de�ned by sequenes h = (h

1

; h

2

) : N ! Z

N

� Z

N

for whih h

1

tends to in�nity

into the diretion of �.
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Theorem 4.12 Let A 2 W

$

(L

2

(R

N

)). Then A is loally invertible at the in-

�nitely distant point � 2 S

N�1

if and only if all limit operators A

h

2 �

op;�

(A) are

invertible.

The proof is similar to the proof of Theorem 4.9. An analogous result (with the

invertibility of all limit operators in the loal operator spetrum replaed by their

uniform invertibility) holds for operators in A

$

(L

2

(R

N

)).

Finally, we say that � 2 C belongs to the loal spetrum �

�

(A) of the operator

A at � if A� �I is not loally invertible at the in�nitely distant point � 2 S

N�1

.

The following is a orollary of Theorem 4.12.

Theorem 4.13 Let A 2 W

$

(L

2

(R

N

)). Then

�

�

(A) =

[

A

h

2�

op;�

(A)

�(A

h

):

4.3 Fredholmness of pseudodi�erential operators in the

lass OPS

0

0;0

We have seen in Corollary 4.4, that every pseudodi�erential operator with symbol

in S

0

0;0

belongs to the Wiener algebra. Now we will show, moreover, that these

pseudodi�erential operators possess a rih operator spetrum. Thus, they beome

subjet to Theorem 4.9.

Theorem 4.14 OPS

0

0;0

� W

$

(L

2

(R

N

)).

Proof. Let a 2 S

0

0;0

and A := Op(a), and let h 2 H. For k = (k

1

; k

2

) 2 Z

N

�Z

N

,

we onsider the funtions

a

(k)

: R

N

� R

N

! R; (x

1

; x

2

) 7! a(x

1

+ k

1

; x

2

+ k

2

):

Clearly, U

�

h(m)

AU

h(m)

= Op(a

(h(m))

). The sequene (a

(h(m))

)

m2N

� C

1

(R

N

� R

N

)

is bounded with respet to the supremum norm. Hene, by the Arzel�a-Asoli

theorem, there exists a subsequene g of h suh that the funtions a

(g(m))

onverge

in the topology of C

1

(R

N

�R

N

) to a funtion a

g

. It is easy to see that the limit

funtion a

g

belongs to S

0

0;0

and that

ja

g

j

k;l

� jaj

k;l

for all k; l 2 N :

We set A

g

:= Op(a

g

) and laim that A

g

is the limit operator of A with respet

to the sequene g, i.e., we laim that

s-lim

m!1

U

�

g(m)

AU

g(m)

= A

g

and s-lim

m!1

U

�

g(m)

A

�

U

g(m)

= A

�

g

: (28)

For the �rst assertion of (28), hoose a funtion ' 2 C

1

0

(R

N

) whih is equal to

1 in a neighborhood of the origin. Further, for R > 0, set '

R

(x) := '(x=R), and

onsider the ut-o� funtions  

R

(x; �) := '

R

(x)'

R

(�) on R

N

� R

N

. Evidently,

s-lim

R!1

Op( 

R

) = I: (29)
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The operatorOp(a)Op( 

R

) is a pseudodi�erential operator with symbol 

R

2 S

0

0;0

,

given by the osillatory integral



R

(x; �) = os (2�)

�N

Z Z

R

N

a(x; � + �) 

R

(x + y; �)e

�ihy; �i

dy d� (30)

(see, e.g. [16℄, Theorem 4.2.1). By means of the Lagrange formula, we write

 

R

(x+ y; �) =  

R

(x; �) + q

R

(x; y; �)

where q

R

(x; y; �) :=

P

N

j=1

l

j;R

(x; y; �)y

j

and

l

j;R

(x; y; �) :=

Z

1

0

(�

x

j

 

R

)(x + �y; �) d�:

Then we obtain (f. [16℄, Corollary 2.2.2)

os (2�)

�N

Z Z

R

N

a(x; � + �)e

�ihy; �i

dy d� = p(x; �);

suh that (30) an be written as



R

(x; �) = a(x; �) 

R

(x; �) + t

R

(x; �)

where

t

R

(x; �) = (2�)

�N

N

X

j=1

Z

R

N

Z

R

N

l

j;R

(x; y; �)(i�

y

j

)a(x; � + �)e

�ihy; �i

dy d�:

Simple manipulations yield the estimates

�

�

�

�

�

x

�

�

�

t

R

(x+ g

1

(m); � + g

2

(m))

�

�

�

� C

�;�

jaj

2k

1

+j�j;2k

2

+j�j

(1 +R)

�1

for all 2k

1

> N and 2k

2

> N , and with a onstant C

�; �

independent of a. By

the Calderon-Vaillanourt Theorem,

Op(t

(g(m))

R

) � Cjaj

N

1

;N

2

(1 +R)

�1

(31)

whenever N

1

and N

2

are suÆiently large. Here we used the onvention

t

(g(m))

R

(x; �) := t

R

(x + g

1

(m); � + g

2

(m)):

Let now u 2 L

2

(R

N

) and " > 0. Due to (29) and (31), we an hoose R

0

> 0

suh that, for all R > R

0

,

ku� Op( 

R

)uk �

"

6kuk

and sup

m2N

kOp(t

(g(m))

R

)k �

"

3kuk

:
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Thus, for all m 2 N ,

k(U

�

g(m)

AU

g(m)

� A

g

)uk � k(U

�

g(m)

AU

g(m)

� A

g

)Op( 

R

)uk+ "=3

� kOp((a

(g(m))

� a

g

) 

R

)uk+ 2"=3: (32)

Sine the funtions a

(g(m))

�a

g

tend to zero in the topology of C

1

(R

N

�R

N

), the

sequene of the funtions (a

(g(m))

� a

g

) 

R

tends uniformly to zero together with

their derivatives. Hene, by the Calderon-Vaillanourt Theorem, there exist an

m

0

suh that, for all m > m

0

kOp((a

(g(m))

� a

g

) 

R

)k �

"

3kuk

: (33)

Estimates (32) and (33) imply that, for arbitrary u 2 L

2

(R

N

) and " > 0, there

exists an m

0

suh that

k(U

�

g(m)

AU

g(m)

� A

g

)uk < " for all m > m

0

:

This settles the �rst assertion of (28). For the seond one, notie that the symbol

of the adjoint operator is given by the osillatory integral

sym

A

�

(x; �) = os (2�)

�N

Z Z

R

N

�a(x + y; � + �)e

�ihy; �i

dy d�

(Theorem 4.4.2 in [16℄). Sine a

(g(m))

! a

g

in the topology of C

1

(R

N

� R

N

),

this implies that

sym

A

�

(x + g

1

(m); � + g

2

(m))

= os (2�)

�N

Z Z

R

N

�a(x + g

1

(m) + y; � + g

2

(m) + �)e

�ihy; �i

dy d�

! os (2�)

�N

Z Z

R

N

�a

g

(x+ y; � + �)e

�ihy; �i

dy d�:

Hene, the symbols sym

(g(m))

A

onverge to sym

A

�

g

in the topology of C

1

(R

N

�R

N

)

as m ! 1. Repeating the above arguments, we obtain the seond assertion of

(28).

Due to Theorem 4.14, the following results are straightforward onsequenes of

Theorems 4.10 and 4.13 and of Corollary 4.11.

Theorem 4.15 An operator A 2 OPS

0

0;0

is Fredholm on L

2

(R

N

) if and only if

all limit operators of A are invertible on L

2

(R

N

). Thus,

�

ess

(A) := �(A +K(L

2

(R

N

))) = [

A

h

2�

op

(A)

�(A

h

)

and, moreover,

kAk

ess

:= kA+K(L

2

(R

N

))k = inf

K2K(L

2

(R

N

))

kA�Kk = sup

A

h

2�

op

(A)

kA

h

k: (34)
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Theorem 4.16 An operator A 2 OPS

0

0;0

is loally invertible at the in�nitely

distant point � 2 S

N�1

if and only if all limit operators of A in �

op;�

(A) are

invertible. In partiular,

�

�

(A) = [

A

h

2�

op;�

(A)

�(A

h

):

Remark. One also onsiders pseudodi�erential operators with double symbols

a 2 S

0

0;0;0

. The lass S

m

0;0;0

onsists of all funtions a 2 C

1

(R

N

� R

N

� R

N

) suh

that

jaj

r; s; t

:= sup

R

N

�R

N

�R

N

X

j�j�r; j�j�s; jj�t

j�

�

�

�

�

x

�



y

a(x; y; �)jh�i

�m

<1

for eah hoie of r; s; t 2 N . For eah a 2 S

m

0;0;0

, the pseudodi�erential operator

Op

d

(a) with double symbol a is de�ned by

(Op

d

(a)u)(x) :=

Z

R

N

Z

R

N

a(x; y; �)u(y)e

ihx�y; �i

dy d�; u 2 S(R

N

):

The lass of all operators Op

d

(a) with a 2 S

m

0;0;0

is denoted by OPS

m

0;0;0

. This

lass seems to be muh larger than the lass OPS

m

0;0

, but atually, both lasses

oinide (Theorem 4.3.2 in [16℄). Thus, the results of the previous theorems apply

to pseudodi�erential operators with double symbol a 2 S

0

0;0;0

, and what they yield

is the following. For k = (k

1

; k

2

) 2 Z

N

� Z

N

, we set

a

(k)

(x; y; �) := a(x + k

1

; y + k

1

; � + k

2

):

Then U

�

h(m)

AU

h(m)

= Op(a

(h(m))

), and the sequene h has a subsequene g suh

that the funtions a

(g(m))

onverge to a funtion a

g

in the topology of C

1

(R

N

�

R

N

� R

N

) as m ! 1. The limit funtion a

g

belongs to S

0

0;0;0

, and the limit

operator of A with respet to the sequene g exists and is equal to Op(a

g

). So,

these operators possess a rih operator spetrum, and Theorems 4.15 and 4.16

remain valid without hanges.

5 Appliations

5.1 Operators with slowly osillating symbols

A symbol a 2 S

0

0;0

is alled slowly osillating with respet to x if

lim

x!1

sup

�2R

N

j�

x

j

a(x; �)j = 0 for all j = 1; : : : ; N;

and a is slowly osillating with respet to � if

lim

�!1

sup

x2R

N

j�

�

j

a(x; �)j = 0 for all j = 1; : : : ; N:
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Proposition 5.1 Let the funtion a 2 S

0

0;0

be slowly osillating with respet to

x. Then every limit operator of A := Op(a), whih is de�ned with respet to

a sequene h = (h

1

; h

2

) : N ! Z

N

� Z

N

with h

1

(m) ! 1 as m ! 1, is a

pseudodi�erential operator Op(a

h

) with a symbol independent of x. In partiular,

Op(a

h

) is shift invariant and, thus, a onvolution operator. Similarly, if a is

slowly osillating with respet to �, and if h

2

(m)!1 as m!1, then the limit

operator Op(a

h

) has a symbol independent of � and is, thus, a multipliation

operator.

Proof. We will prove the �rst assertion only. Let a be slowly osillating with

respet to x. As we have seen in the proof of Theorem 4.14, the symbol a

h

of the

limit operator is the C

1

(R

N

� R

N

)-limit of the funtions

a

(h(m))

: R

N

� R

N

! R; (x; �) 7! a(x + h

1

(m); � + h

2

(m)):

Sine, for �xed x

0

; x

00

2 R

N

,

ja

(h(m))

(x

0

; �)� a

(h(m))

(x

00

; �)j

�

N

X

j=1

jx

0

j

� x

00

j

j

Z

1

0

j�

x

j

(a

(h(m))

((1� t)x

0

+ tx

00

; �)j dt! 0

as m!1, the funtion a

h

does not depend on x.

The most simple (and, perhaps, most important) pseudodi�erential operators

with slowly osillating symbols are those whose symbols are slowly osillating

with respet to both variables simultaneously. We denote this lass of symbols

by SO

0

0;0

and the orresponding set of pseudodi�erential operators by OPSO

0

0;0

.

For operators in this lass, all limit operators are operators of onvolution or

operators of multipliation (indeed, if the sequene h = (h

1

; h

2

) tends to in�nity,

then at least one of the sequenes h

1

and h

2

goes to in�nity, too). For both kinds

of limit operators, their invertibility an be easily heked.

Theorem 5.2 Let a 2 SO

0

0;0

. Then all limit operators of Op(a) are invertible if

and only if

lim

R!1

inf

jxj+j�j�R

ja(x; �)j > 0: (35)

Proof. Let ondition (35) be satis�ed, and let h = (h

1

; h

2

) be a sequene

whih de�nes a limit operator of Op(a). Further assume for de�niteness that the

sequene h

1

tends to in�nity (the ase when h

2

! 1 an be treated similarly).

Then, as we have seen in Proposition 5.1, the limit operator Op(a)

h

is shift

invariant, i.e. there is a funtion a

h

in S

0

0;0

whih is independent of x suh that

Op(a)

h

= Op(a

h

). Moreover, the funtions

a

(h(m))

: (x; �) 7! a(x + h

1

(m); � + h

2

(m))
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onverge to the funtion (x; �) 7! a

h

(�) in the topology of C

1

(R

N

� R

N

) as

m!1. Thus, for eah L > 0,

lim

m!1

sup

jxj+j�j�L

ja(x + h

1

(m); � + h

2

(m))� a

h

(�)j = 0: (36)

From (35) and (36) we onlude that inf

�

ja

h

(�)j > 0, i.e. the limit operator

Op(a)

h

is invertible.

To prove the reverse statement, suppose that all limit operators of Op(a)

are invertible, but that ondition (35) is not ful�lled. Then there exists a se-

quene h = (h

1

; h

2

) : N ! Z

N

� Z

N

whih tends to in�nity and for whih

a(h

1

(m); h

2

(m)) ! 0. Without loss we an assume that the limit operator of

Op(a) with respet to h exists (otherwise we hoose a suitable subsequene of h).

We further assume for de�niteness that h

1

!1 (the ase when h

2

!1 follows

similarly). Then, as before, Op(a)

h

= Op(a

h

) with a funtion a

h

independent of

x and suh that the funtions a

(h(m))

onverge to a

h

in C

1

(R

N

� R

N

). It follows

from a(h

1

(m); h

2

(m)) ! 0 that a

h

(0) = 0 whih ontradits the invertibility of

Op(a

h

).

Corollary 5.3 An operator Op(a) 2 OPSO

0

0;0

is Fredholm if and only if ondi-

tion (35) holds. Moreover,

kOp(a)k

ess

= lim

R!1

sup

jxj+j�j�R

ja(x; �)j:

The proof of the �rst assertion follows from the previous result and from Theorem

4.15. For the seond assertion, reall Corollary 4.11.

These results admit generalizations to pseudodi�erential operators with double

symbols. For, we all the double symbol a 2 S

0

0;0;0

slowly osillating and write

a 2 SO

0

0;0;0

if, for arbitrary ompat sets K � R

N

,

lim

x!1

sup

(y; �)2K�R

N

j�

x

j

a(x; x+ y; �)j = 0

and

lim

�!1

sup

(x; y)2R

N

�R

N

j�

�

j

a(x; y; �)j = 0:

Proposition 5.4 (a) Let a 2 SO

0

0;0;0

, and let h = (h

1

; h

2

) be a sequene with

h

1

!1 for whih the limit operator Op

d

(a)

h

exists. Then this limit operator is

of the form Op(a

h

) where a

h

is the limit in the topology of C

1

(R

N

� R

N

) of the

funtions

(x; �) 7! a(x+ h

1

(m); x + h

1

(m); � + h

2

(m))

as m!1. The funtion a

h

is independent of x in this ase.

(b) Let a 2 SO

0

0;0;0

, and let h = (h

1

; h

2

) be a sequene with h

2

! 1 for whih
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the limit operator Op

d

(a)

h

exists. Then this limit operator is of the form Op(a

h

)

where a

h

is the limit in the topology of C

1

(R

N

� R

N

) of the funtions

(x; �) 7! a(x+ h

1

(m); x + h

1

(m); � + h

2

(m))

as m!1. The funtion a

h

is independent of � in this ase.

Proof. We will hek assertion (b) for example. The symbol a

h

of the limit

operator of Op

d

(a) with respet to h is de�ned as the limit as m ! 1 of the

osillatory integral

os (2�)

�N

Z Z

R

N

a(x + h

1

(m); x+ h

1

(m) + y; � + h

2

(m) + �)e

�ihy; �i

dy d�:

Thus,

a

h

(x; x) = os (2�)

�N

Z Z

R

N

a

h

(x; x + y)e

�ihy; �i

dy d�

by Corollary 2.2.2 in [16℄.

As in Theorem 5.2 and its Corollary 5.3, one an also prove that, if a 2 SO

0

0;0;0

,

then all limit operators of Op

d

(a) are invertible if and only if

lim

R!1

sup

jxj+j�j�R

ja(x; x; �)j > 0: (37)

Hene, ondition (37) is neessary and suÆient for Fredholmness of Op

d

(a); and

kOp

d

(a)k

ess

= lim

R!1

inf

jxj+j�j�R

ja(x; x; �)j:

5.2 Operators with almost periodi symbols

A funtion a in C

b

(R

N

) (= the C

�

-algebra of the bounded ontinuous funtions

on R

N

) is alled almost periodi if the set fV

r

a : r 2 R

N

g of all shifts of a

is relatively ompat in C

b

(R

N

), i.e. if every sequene in this set has a norm

onvergent subsequene. Here, V

r

a stands for the funtion x 7! a(x � r). The

lass of all almost periodi funtions will be denoted by AP (R

N

). Note that

AP (R

N

) is a C

�

-algebra with respet to the supremum norm. Nie referenes to

this lass are still [14, 15℄.

We set AP

1

(R

N

) := AP (R

N

) \ C

1

b

(R

N

) and denote by A

0

0;0

the losure in

S

0

0;0

of the lass of all funtions of the form

a(x; �) =

J

X

j=1



j

(x)b

j

(�) (38)

where J 2 N , 

j

2 AP

1

(R

N

) and b

j

2 SO

0

0;0

. Pseudodi�erential operators with

symbols in this lass possess limit operators with respet to the shifts V

k

where

the onvergene is in the operator norm.
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Proposition 5.5 Let A 2 OPA

0

0;0

. Then eah sequene h : N ! Z

N

whih tends

to in�nity has a subsequene g suh that there exists an operator A

g

2 OPA

0

0;0

with

lim

m!1

kV

�g(m)

AV

g(m)

� A

g

k = 0:

Proof. To start with, let A = Op(a) where a 2 A

0

0;0

is a symbol of the form

(38), and let h 2 H. Sine the funtions 

k

are almost periodi (and by a simple

Cantor diagonal argument), there are a subsequene g of h as well as funtions



jg

2 AP (R

N

) suh that

lim

m!1

sup

x2R

N

j

j

(x+ g(m))� 

jg

(x)j = 0 (39)

for 1 � j � J . Applying the inequality

sup

R

N

X

j�j=1

j�

�

a(x)j � C

0

�

sup

x2R

N

ja(x)j

0

�

sup

x2R

N

ja(x)j+ sup

x2R

N

X

j�j=2

j�

�

a(x)j

1

A

1

A

1=2

(see, for instane, [22℄, p. 22), one obtains that the sequene of the shifted

funtions V

g(m)



j

onverges to 

jg

in the topology of C

1

b

(R

N

), whih implies that



jg

2 AP

1

(R

N

). Now set

A

g

:= Op(a

g

) with a

g

(x; �) :=

J

X

j=1



jg

(x)b

j

(�):

Then it follows from (39) that indeed

lim

m!1

kV

�g(m)

AV

g(m)

� A

g

k = 0:

This settles the assertion for operators A = Op(a) where a is of the form (38).

The general ase follows straightforwardly by a Cantor diagonalization proedure

and standard ontinuity arguments.

One an also easily hek that A

g

2 OPA

0

0;0

again and that A

g

is a limit operator

of A de�ned by the sequene h : m 7! (g(m); 0) 2 Z

N

� Z

N

and with respet to

the shift operators U

h(m)

(f. Setion 3.3).

Theorem 5.6 Let A 2 OPA

0

0;0

. Then the following assertions are equivalent:

(a) A is a Fredholm operator.

(b) All limit operators of A are invertible.

() At least one limit operator of A is invertible.

(d) A is an invertible operator.
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Proof. If A is Fredholm, then all limit operators of A are invertible. Let,

onversely, A

h

be an invertible limit operator of A. By Proposition 5.5, there is

a subsequene g of h suh that

lim

m!1

kV

�g(m)

AV

g(m)

� A

g

k = 0:

Then A

h

= A

g

and, sine the invertible operators form an open subset of L(E),

the operators V

�g(m)

AV

g(m)

must be invertible for all suÆiently large m. Hene,

A is invertible.

Similarly, if A is ompat, then all limit operators of A are zero. Conversely, if

0 is a limit operator of A, then (again by Proposition 5.5) there is a subsequene

g of h suh that kV

�g(m)

AV

g(m)

k ! 0. Sine the operators V

k

are isometries, A

must be the zero operator.

Corollary 5.7 The smallest C

�

-subalgebra of L(L

2

(R

N

)) whih ontains OPA

0

0;0

does not ontain nonzero ompat operators.

We are now going to sketh briey how these results speialize to symbols in a

sublass of A

0

0;0

, in whih ase the Fredholmness of the operator together with

its uniform elliptiity and a ertain index ondition yields the invertibility of the

operator.

We say that the funtion a 2 S

0

0;0

belongs to S

0

1;0

if

jaj

l

:=

X

j�j+j�j�l

sup

(x; �)2R

N

�R

N

j�

�

x

�

�

�

a(x; �)jh�i

j�j

<1

for all non-negative integers l. The semi-norms j:j

l

de�ne the topology of S

0

1;0

.

Further, we onsider the lass A

0

1;0

whih is the losure in S

0

1;0

of the set of all

symbols of form (38) where the 

j

satisfy the estimates

j�

�



j

(�)j � C

�; k

h�i

�j�j

for all multi-indies �. Finally, an operator Op(a) 2 OPA

0

1;0

is alled uniformly

ellipti if

lim

R!1

inf

x; �2R

N

; j�j>R

ja(x; �)j > 0: (40)

It is easy to see that an operator Op(a) 2 OPA

0

1;0

is uniformly ellipti if and

only if all limit operators of A de�ned by sequenes (g

1

; g

2

) : N ! Z

N

�Z

N

with

g

2

!1 are invertible. Thus, the uniform elliptiity is a neessary ondition for

the invertibility of Op(a). An analogous result holds for almost periodi operators

with matrix valued symbols, where one has to replae the value a(x; �) in (40)

by det a(x; �).

Let now A 2 OPA

0

1;0

be a uniformly ellipti operator with M �M -matrix-

valued oeÆients. Then the di�erene between its Fredholmness and its in-

vertibility is measured by its almost periodi index �(A). This index has been
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introdued in [5℄ (see also [8℄) by means of Breuer's Fredholm theory for II

1

fators. In distintion to the usual (Fredholm) index, �(A) an be an arbitrary

real number. We will not go into the details and restrit ourselves to rephrasing

a few basi properties:

� If A; B 2 OPA

0

1;0

are uniformly ellipti operators, then �(AB) = �(A)�(B).

� The almost periodi index is stable in the following sense. Given a uni-

formly ellipti operator Op(a) 2 OPA

0

1;0

, there exists an " > 0 suh that

�(Op(b)) = �(Op(a)) for all operators Op(b) 2 OPA

0

1;0

with

lim

R!1

sup

x; �2R

N

; j�j>R

ka(x; �)� b(x; �)k

L(C

M

)

< ":

� If A 2 OPA

0

1;0

is invertible, then �(A) = 0.

� Let A 2 OPA

0

1;0

be uniformly ellipti and �(A) = 0. Then A is invertible

if and only if

�(A) := inf

k'k�1

kA'k > 0:

� Let A 2 OPA

0

1;0

be a salar uniformly ellipti operator, and let N > 1.

Then �(A) = 0. Thus, for suh operators, the ondition �(A) > 0 is

neessary and suÆient for invertibility of A.

The ondition �(A) > 0 is satis�ed if and only if the operator A has a trivial

kernel and a losed range, whih holds, for example, if A is Fredholm. Hene, if

A 2 OPA

0

1;0

is a salar uniformly ellipti and Fredholm operator with �(A) = 0,

then A is invertible.

5.3 Operators with semi-almost periodi symbols

The lass B

0

1;0

of the semi-almost periodi symbols with respet to x is de�ned as

the losure in the topology of S

0

1;0

of the set of all funtions of the form

a(x; �) =

J

X

j=1



j

(x)b

j

(x; �)

where J 2 N , 

j

2 AP

1

(R

N

) and b

j

2 SO

0

1;0

:= SO

0

0;0

\ S

0

1;0

.

Theorem 5.8 Let N > 1, and let a 2 B

0

1;0

. Then the operator A := Op(a) is a

Fredholm operator if and only if the following onditions are satis�ed:

(a) A is uniformly ellipti, that is

lim

R!1

inf

x; �2R

N

; j�j>R

ja(x; �)j > 0:

(b) For eah limit operator A

g

of A whih is de�ned by a sequene g = (g

1

; g

2

) :

N ! Z

N

� Z

N

with g

2

!1, one has �(A

g

) > 0.
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Proof. Let onditions (a) and (b) be satis�ed. In the same way as in the proof

of Theorem 5.2, we obtain that ondition (a) implies the invertibility of all limit

operators of A whih orrespond to sequenes g = (g

1

; g

2

) with g

2

! 1. Let

now g = (g

1

; g

2

) be a sequene with g

1

! 1 for whih the limit operator A

g

exists. Then, by the de�nition of the lass B

0

1;0

, this limit operator belongs to

OPA

0

1;0

and, due to ondition (a), the operator A

g

is uniformly ellipti with

�(A

g

) = 0 (sine A is an operator with salar-valued symbol). It follows from the

last remark in the preeding subsetion that A

g

is invertible if the lower norm

�(A

g

) is positive. Thus, onditions (a) and (b) provide us with the invertibility

of all limit operators of A. By Theorem 4.15, A is a Fredholm operator.

Let, onversely, A be a Fredholm operator. Then, by Theorem 4.15 again, all

limit operators of A are invertible. The invertibility of all limit operators with

respet to sequenes g = (g

1

; g

2

) with g

2

!1 yields the uniform elliptiity of A,

that is ondition (a), whereas the invertibility of all limit operators orresponding

to sequenes g = (g

1

; g

2

) with g

1

!1 evidently implies ondition (b).

5.4 Pseudodi�erential operators of nonzero order

Let a 2 S

m

0;0

. Then the pseudodi�erential operator A := Op(a) ats as a linear

bounded operator from H

s+m

(R

N

) into H

s

(R

N

) for every s 2 R (whih is a

simple onsequene of the Calderon-Vaillanourt theorem). We are going to study

the Fredholm properties of that operator by reduing it in a standard way to a

pseudodi�erential operator ating on H

0

(R

N

) = L

2

(R

N

). For, let hDi

r

refer to

the pseudodi�erential operator with symbol (x; �) 7! (1 + j�j

2

2

)

r=2

. The operator

hDi

r

is an isometry from H

s+r

(R

N

) onto H

s

(R

N

) for eah real s. Thus,

A : H

s+m

(R

N

)! H

s

(R

N

)

is a Fredholm operator if and only if

B := hDi

s

AhDi

�s�m

: L

2

(R

N

)! L

2

(R

N

)

is a Fredholm operator. The operator B is a pseudodi�erential operator in the

lass to OPS

0

0;0

. Hene, Theorem 4.15 implies the following.

Theorem 5.9 Let a 2 S

m

0;0

. Then the operator A = Op(a) : H

s+m

(R

N

) !

H

s

(R

N

) is Fredholm operator if and only if all limit operators of the operator

B := hDi

s

AhDi

�s�m

: L

2

(R

N

)! L

2

(R

N

) are invertible. In partiular,

�

ess

(A) = [

B

h

2�

op

(B)

�(B

h

):

These onditions an be made more expliit for symbols whih are slowly osil-

lating in the following sense. We say that the funtion a is in the lass SO

m

0;0

with

m 2 N if the funtion (x; �) 7! a(x; �)h�i

�m

belongs to SO

0

0;0

. Analogously, the

double symbol a is said to be in SO

m

0;0;0

if the funtion (x; y; �) 7! a(x; y; �)h�i

�m

belongs to SO

0

0;0;0

.
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Proposition 5.10 (a) Let A := Op(a) 2 OPSO

m

1

0;0

and B := Op(b) 2 OPSO

m

2

0;0

.

Then AB 2 OPSO

m

1

+m

2

0;0

, and the symbol of AB is of the form sym

AB

= ab + t

with t satisfying

lim

(x; �)!1

t(x; �)h�i

�m

1

�m

2

= 0: (41)

(b) Let A := Op

d

(a) 2 OPSO

m

0;0;0

. Then A 2 OPS

m

0;0

, and the formal symbol of

that operator is given by sym

A

(x; �) := a(x; x; �) + t(x; �) where t is suh that

lim

(x; �)!1

t(x; �)h�i

�m

= 0:

Proof. (a) By Theorem 4.2.1 in [16℄, the operator AB belongs to OPSO

m

1

+m

2

0;0

,

and its symbol is given by

sym

AB

(x; �) = os (2�)

�N

Z Z

R

N

a(x; � + �)b(x + y; �)e

�ihy; �i

dy d�:

By Lagrange's formula, we have

a(x; � + �) = a(x; �) +

N

X

j=1

�

j

Z

1

0

�

�

j

a(x; � + ��) d�;

whene via Corollary 2.2.2 in [16℄,

sym

AB

(x; �) = a(x; �)b(x; �) + t(x; �);

with

t(x; �) =

N

X

j=1

Z

1

0

L

j

(x; �; �) d�

and

L

j

(x; �; �)

= os (2�)

�N

Z Z

R

N

�

�

j

a(x; � + ��)(�i�

x

j

)b(x + y; �)e

�ihy; �i

dy d�

= os (2�)

�N

Z Z

R

N

h�i

�2k

2

hD

y

i

2k

2

�

�

�

hyi

�2k

1

hD

�

i

2k

1

�

�

j

a(x; � + ��)(�i�

x

j

)b(x + y; �))

	

e

�ihy; �i

dy d�

for all k

1

; k

2

with 2k

1

> N and 2k

2

> N + jm

1

j. Taking into aount the

elementary inequality

h� + �i

l

� 2

l=2

h�i

jlj

h�i

l

for l 2 R;

we obtain

L

j

(x; �; �) � Ch�i

m

1

+m

2

K

j

(x; �; �)
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where

K

j

(x; �; �)

= os (2�)

�N

Z Z

R

N

h� + ��i

�m

1

h�i

�2k

2

+jm

1

j

�

�

�

�

hD

y

i

2k

2

hyi

�2k

1

hD

�

i

2k

1

�

�

j

a(x; � + ��)(�i�

x

j

)b(x + y; �)h�i

�m

2

)

�

�

dy d�:

The latter integral onverges uniformly with respet to x; � 2 R

N

and � 2 [0; 1℄.

Hene, we an pass to the limit as (x; �)!1 under this integral, whih yields

lim

(x; �)!1

sup

�2[0; 1℄

K

j

(x; �; �) = 0:

This implies (41). Assertion (b) an be heked in the same way.

A onsequene of this proposition is that, if A = Op(a) 2 OPSO

0

0;0

, then

B := hDi

s

AhDi

�(s+m)

= Op(a

m

) +Op(t)

where

a

m

(x; �) := a(x; �)h�i

�m

and lim

(x; �)!1

t(x; �) = 0:

Thus, all limit operators B

g

of B depend on the main part a

m

of the symbol of

B only. Moreover, these limit operators are pseudodi�erential operators B

g

=

Op(b

g

) whih are invariant with respet to shifts (i.e. their symbols b

g

depend

on � only), or they are operators of multipliation (i.e. their symbols are only

dependent on x). So we arrive at the following theorem.

Theorem 5.11 (a) Consider the operator A = Op(a) 2 OPSO

m

0;0

as ating from

H

s+m

(R

N

) into H

s

(R

N

). Then all limit operators of B := hDi

s

AhDi

�(s+m)

:

L

2

(R

N

)! L

2

(R

N

) invertible if and only if

lim

R!1

inf

jxj+j�j�R

ja(x; �)jh�i

�m

> 0: (42)

The ondition (42) is neessary and suÆient for the Fredholmness of A.

(b) Consider the operator A = Op

d

(a) 2 OPSO

m

0;0;0

as ating from H

s+m

(R

N

)

into H

s

(R

N

). Then all limit operators of B := hDi

s

AhDi

�(s+m)

: L

2

(R

N

) !

L

2

(R

N

) are invertible if and only if

lim

R!1

inf

jxj+j�j�R

ja(x; x; �)jh�i

�m

> 0: (43)

Condition (43) is neessary and suÆient for the Fredholmness of A.
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5.5 Di�erential operators

The results of the previous setion apply to study the Fredholmness of di�erential

operators on R

N

by means of their limit operators. Let

P =

X

j�j�m

a

�

D

�

be a di�erential operator of order m with oeÆients a

�

2 C

1

b

(R

N

). We onsider

this operator as ating from H

s+m

(R

N

) into H

s

(R

N

). The funtion

p

m

: R

N

� R

N

! R; (x; �) 7!

X

j�j=m

a

�

(x)�

�

is alled the main symbol of P , and the operator P is alled uniformly ellipti if

inf

x2R

N

jp

m

(x; !)j > 0 for all ! 2 S

N�1

:

Let h : N ! Z

N

be a sequene whih tends to in�nity. Then there exist a

subsequene g of h and funtions a

g

�

2 C

1

b

(R

N

) suh that the funtions x 7!

a

�

(x+ g(k)) onverge to a

g

�

in the topology of C

1

b

(R

N

) for every �. We set

P

g

:=

X

j�j�m

a

g

�

D

�

;

onsider P

g

as an operator from H

s+m

(R

N

) into H

s

(R

N

) again, and denote by

�

1

op

(P ) the set of all operators whih arise in this way.

Theorem 5.12 The di�erential operator P : H

s+m

(R

N

)! H

s

(R

N

) is Fredholm

if and only if the following onditions are satis�ed:

(a) All operators P

g

2 �

1

op

(P ) are invertible.

(b) The operator P is uniformly ellipti.

Proof. It follows from Theorem 5.9 that P is a Fredholm operator if and only if

all limit operators of hDi

s

P hDi

�s�m

are invertible on L

2

(R

N

).

Let h = (h

1

; h

2

) : N ! Z

N

� Z

N

be a sequene suh that h

1

! 1 but h

2

is bounded. Then there exists a subsequene g = (g

1

; g

2

) of h suh that, for

every �, the funtions x 7! a

�

(x+ g

1

(k)) onverge to ertain funtions a

g

1

�

in the

topology of C

1

b

(R

N

) and that the sequene g

2

is onstant, say g

2

(k) = 

2

2 Z

N

for all k. In this ase, it is easy to see that

s-lim

k!1

U

�

g(k)

hDi

s

P hDi

�s�m

U

g(k)

= E

�



2

hDi

s

P

g

1

hDi

�s�m

E



2

with (E



u)(x) := e

ih; xi

u(x). Thus, the limit operators of hDi

s

P hDi

�s�m

whih

are de�ned be sequenes of this kind are invertible if and only if ondition (a)

holds.
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Now onsider limit operators of hDi

s

P hDi

�s�m

whih are de�ned by sequenes

g = (g

1

; g

2

) suh that g

2

!1 and g

1

is onstant, say g

1

(k) = 

1

2 Z

N

. Suppose

for de�niteness that g

2

tends to in�nity into the diretion of the in�nitely distant

point ! 2 S

N�1

. Then

s-lim

k!1

E

�

g

2

(k)

hDi

s

P hDi

�s�m

E

g

2

(k)

= p

m

( :; !)I

whene

s-lim

k!1

U

�

g(k)

hDi

s

P hDi

�s�m

U

g(k)

=

X

j�j=m

a( :� 

1

)!

�

I:

Hene, all limit operators de�ned by these sequenes are operators of multiplia-

tion by the funtions

p

m; g

: (x; !) 7!

X

j�j=m

a(:� 

1

)!

�

:

Finally, if both g

1

and g

2

go to in�nity, and if g

1

and g

2

are hosen suh that the

funtions x 7! a

�

(x + g

1

(k)) onverge to ertain funtions a

g

1

�

in the topology of

C

1

(R

N

) and that g

2

tends to in�nity into the diretion of the in�nitely distant

point ! 2 S

N�1

, then

s-lim

k!1

U

�

g(k)

hDi

s

P hDi

�s�m

U

g(k)

=

X

j�j=m

a

g

1

�

!

�

I:

Thus, we get multipliation operators again, this time by the funtions

p

m; g

: (x; !) 7!

X

j�j=m

a

g

1

�

(x)!

�

:

Evidently, if the operator is uniformly ellipti, then in all ases

inf

x2R

N

jp

m;g

(x; !)j > 0:

Hene, the limit operators Op(p

m;g

)I are invertible on L

2

(R

N

), and ondition

(b) implies the invertibility of all limit operators de�ned by sequenes g with

g

2

! 1. Conversely, hoosing sequenes g = (g

1

; g

2

) with g

1

(k) = 0 for all k

and with g

2

tending to in�nity into the diretion of ! 2 S

N�1

, we obtain that

the invertibility of all assoiated limit operators implies ondition (b).

Corollary 5.13 Let P : H

m

(R

N

) ! L

2

(R

N

) be a uniformly ellipti di�erential

operator of order m. Then

�

ess

(P ) = [

P

g

2�

1

op

(P )

�(P

g

):
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Proof. By Theorem 5.9, the operator P � �I : H

m

(R

N

)! L

2

(R

N

) is Fredholm

if and only if all limit operators

P

g

� �I : H

m

(R

N

)! L

2

(R

N

); P

g

2 �

1

op

(P );

are invertible and if P � �I is uniformly ellipti. Sine the uniform elliptiity of

a di�erential operator depends on its main symbol only, the uniform elliptiity

of P � �I follows from the onditions of the orollary.

We denote by SO

1

(R

N

) the lass of the smooth slowly osillating funtions on

R

N

, that is the lass of all funtions a 2 C

1

b

(R

N

) with

lim

x!1

�

x

j

a(x) = 0 for all j = 1; : : : ; N:

Let the oeÆients a

�

of the di�erential operator P belong to SO

1

(R

N

). Then

all limit operators P

g

2 �

1

op

(P ) are of the form

P

g

= Op(p

g

) =

X

j�j�m

a

g

1

�

D

�

with onstant oeÆients a

g

1

�

. The operator P

g

is invertible if and only if

inf

�2R

N

jp

g

(�)jh�i

�m

= inf

�2R

N

�

�

�

�

�

�

X

j�j�m

a

g

1

�

�

�

�

�

�

�

�

�

h�i

�m

> 0:

Hene, if P is a di�erential operator with smooth slowly osillating oeÆients,

then

�

ess

(P ) =

[

P

g

2�

1

op

(P )

fp

g

(�) : � 2 R

N

g:

Remark. A di�erential operator P of order m an be onsidered as an un-

bounded operator on the Hilbert spae L

2

(R

N

) with domain H

m

(R

N

). If P is

uniformly ellipti, then P is a losed operator. An unbounded operator P is

alled a Fredholm operator if its range is losed in L

2

(R

N

) and if kerA and kerA

�

are �nite dimensional spaes, and the essential spetrum �

ess

(A) of A onsists of

all � 2 C for whih A� �I is not a Fredholm operator.

It is well known that, if P is uniformly ellipti, then P is a Fredholm operator

in this sense (i.e. as an unbounded operator) if and only if P : H

m

(R

N

)! L

2

(R

N

)

is a Fredholm operator in the ommon sense (i.e. as a bounded operator). Hene,

if P is a uniformly ellipti di�erential operator, then

�

ess

(P ) = [

P

g

2�

1

op

(P )

�(P

g

);

where now both the essential spetrum on the left hand side and the spetra on

the right hand side are understood in the unbounded operator sense.
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5.6 Shr�odinger operators

Here we are going to speialize the results of the previous setion to operators of

the form

H =

N

X

l;m=1

(i�

x

l

+ a

l

I)g

lm

(i�

x

m

+ a

m

I) + wI

where g

lm

; a

l

and w are real-valued funtions in C

1

b

(R

N

). This operator an be

viewed of as the eletro-magneti Shr�odinger operator on the Riemann spae

R

N

provided with the metri tensor (g

lm

)

N

l;m=1

whih is the tensor inverse of

(g

lm

)

N

l;m=1

. Shr�odinger operators of this form arise in multi-partile problems

after separating the mass enter of the system (see, for instane, [6℄, pp. 29 { 33

and [11℄, pp. 172 { 176). Throughout this setion, we will suppose that

inf

x2R

N

; �2S

N�1

N

X

l;m=1

g

lm

(x)�

l

�

m

> 0:

Let h : N ! Z

N

be a sequene whih tends to in�nity. Then there exists a

subsequene k of h suh that the funtions

x 7! g

lm

(x + k(n)); x 7! a

l

(x+ k(n)) and x 7! w(x+ k(n))

onverge in the topology of C

1

b

(R

N

) to ertain funtions g

lm

k

, a

k

l

and w

k

, respe-

tively. In partiular, these limit funtions belong to C

1

b

(R

N

) again. If k is hosen

in this way, then the limit operator H

k

of H with respet to k exists, and

H

k

=

N

X

l;m=1

(i�

x

l

+ a

k

l

I)g

lm

k

(i�

x

m

+ a

k

m

I) + w

k

I:

We onsider H as an unbounded operator on L

2

(R

N

) with domain H

2

(R

N

).

Note that � 2 C is a point in the disrete spetrum of the unbounded operator

H if and only if � belongs to the disrete spetrum of the bounded operator

H : H

2

(R

N

) ! L

2

(R

N

). Hene, the essential spetrum of H, onsidered as

an unbounded operator, oinides with the essential spetrum of the bounded

operator H : H

2

(R

N

)! L

2

(R

N

). With Corollary 5.13, we �nd

�

ess

(H) =

[

H

k

2�

1

op

(H)

�(H

k

): (44)

Here are a few instanes where the struture of the limit operators is suÆiently

simple suh that their invertibility an be e�etively heked.

Example A. Let the funtions g

lm

, a

l

and w be in SO

1

(R

N

). Then eah limit

operator of H is a di�erential operator with onstant oeÆients, i.e.

H

k

=

N

X

l;m=1

(i�

x

l

+ a

k

l

I)g

lm

k

(i�

x

m

+ a

k

m

I) + w

k

I:
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with real numbers g

lm

k

; a

k

l

and w

k

. Set a

k

:= (a

k

1

; : : : ; a

k

N

) and (E

�

u)(x) :=

e

ih�; xi

u(x) for � 2 R

N

. Then

E

a

k
H

k

E

�1

a

k

= �

N

X

l;m=1

g

lm

k

�

x

l

�

x

m

+ w

k

I:

Thus,

�(H

k

) =

(

N

X

l;m=1

g

lm

k

�

l

�

m

+ w

k

: (�

1

; : : : ; �

N

) 2 R

N

)

= [w

k

; +1℄;

and the essential spetrum of H is

�

ess

(H) =

[

[w

k

; +1℄ = [m

w

; +1℄

where m

w

:= inf w

k

= lim inf

x2R

N
w(x).

Example B. We let v

1

; v

2

and v

12

be C

1

-funtions on R

3

with

lim

y!1

v

1

(y) = lim

y!1

v

2

(y) = lim

y!1

v

12

(y) = 0;

de�ne funtions w

1

; w

2

; w

12

on R

3

� R

3

by

w

1

(x) := v

1

(x

(1)

); w

2

(x) := v

2

(x

(2)

); w

12

(x) := v

12

(x

(1)

� x

(2)

)

where x = (x

(1)

; x

(2)

) 2 R

3

� R

3

, and onsider the Hamiltonian on L

2

(R

3

� R

3

),

H := ��

x

(1)

��

x

(2)

� w

1

I � w

2

I � w

12

I:

Hamiltonians of this speial struture arise in nulear physis (but, usually, with

non-smooth funtions v

1

; v

2

and v

12

, whih moreover will have singularities at 0;

see, for instane, [7℄, p. 163, and [6℄, p. 29).

We will desribe the essential spetrum of H by means of its limit operators.

Let the sequene h := (h

1

; h

2

) : N ! Z

3

� Z

3

tend to in�nity. After passing

to suitable subsequenes of h, if neessary, we have to distinguish between four

ases.

[A℄ We have h

1

!1, and h

2

is a onstant sequene, say h

2

(k) = 

2

2 Z

N

for

all k. Then the limit operator of H with respet to h exists, and

(H

h

u)(x) = �(�

x

(1)

u)(x)� (�

x

(2)

u)(x)� w

2

(x

(2)

+ 

2

)u(x):

The operator H

h

is unitarily equivalent to the operator

H

1

:= ��

x

(1)

��

x

(2)

� w

2

I:
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[B℄ If h

2

! 1, and if h

1

(k) = 

1

2 Z

N

for all k, then the limit operator of H

with respet to h exists, and it is unitarily equivalent to the operator

H

2

:= ��

x

(1)

��

x

(2)

� w

1

I:

[C℄ If both h

1

and h

2

tend to in�nity, and if also h

1

� h

2

!1, then the limit

operator of H is equal to the Laplaian

H

3

:= ��

x

(1)

��

x

(2)

:

[D℄ If, �nally, h

1

and h

2

tend to in�nity, and if the di�erene h

1

� h

2

is a

onstant sequene, then the limit operator of H with respet to h exists,

and it is unitarily equivalent to the operator

H

4

:= ��

x

(1)

��

x

(2)

� w

12

I:

Let j = 1; 2. Applying the Fourier transform with respet to x

(j)

, we obtain that

the operator H

j

is unitarily equivalent to the operator of multipliation by the

operator-valued funtion

b

H

j

: R

3

! L(L

2

(R

3

� R

3

)); � 7! j�j

2

��

x

(3�j)

� w

3�j

I:

It is well-known that the essential spetrum of the operator A

j

:= ��

x

(3�j)

�

w

3�j

I is the interval [0; 1) and that its disrete spetrum onsists of �nitely

many points in (�1; 0). Let �

(j)

min

< 0 be the minimal eigenvalue of A

j

. Then,

sine j�j

2

varies over [0; 1), the spetrum of H

j

is the interval [�

(j)

min

; 1).

Now onsider the operator H

4

. After a hange of variables

y

(1)

:= x

(1)

+ x

(2)

; y

(2)

:= x

(1)

� x

(2)

;

the operator H

4

beomes

�2(�

y

(1)

+�

y

(2)

)� ŵ

12

I

with ŵ

12

(y) := v

12

(y

(2)

). The spetrum of this operator is the interval [�

(12)

min

; 1)

where �

(12)

min

< 0 is the minimal eigenvalue of �2�

y

(2)

� ŵ

12

I.

Summarizing, we get

�

ess

(H) = [�

min

; 1) where �

min

:= minf�

(1)

min

; �

(2)

min

; �

(12)

min

g:
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5.7 Partial di�erential-di�erene operators

Finally, we onsider di�erential-di�erene operators of the form

P :=

X

j�j�m; j�N

a

�j

D

�

V

�

�j

where (V

�

u)(x) = u(x � �) for � 2 R

N

and where the oeÆients a

�j

belong to

SO

1

(R

N

). The operator P is a pseudodi�erential operator in the lass OPS

m

0;0

with symbol

p(x; �) :=

X

j�j�m; j�N

a

�j

(x)�

�

e

ih�

�j

; �i

:

Hene, P : H

m

(R

N

) ! L

2

(R

N

) is a Fredholm operator if and only if all limit

operators of the operator R := P hDi

�m

: L

2

(R

N

)! L

2

(R

N

) are invertible.

Let h = (h

1

; h

2

) : N ! Z

N

�Z

N

be a sequene tending to in�nity whih de�nes

a limit operator of R. We distinguish between three ases for the sequene h.

[A℄ Let h

1

!1, and let h

2

tend to in�nity into the diretion of the in�nitely

distant point � 2 S

N�1

. Then the limit operator ofR is a di�erene operator

with onstant oeÆients the form

R

h

:=

X

j�j=m; j�N

a

h

�j

�

�

V

�

�j

;

i.e. with numbers a

h

�j

2 C . It is evident that R

h

is invariant with respet

to shifts, and this operator is invertible if and only if

inf

�2R

N

�

�

�

�

�

�

X

j�j=m; j�N

a

h

�j

�

�

e

ih�

�j

; �i

�

�

�

�

�

�

> 0:

[B℄ Let h

1

! 1, and let h

2

be a onstant sequene. Then the limit operator

R

h

is unitarily equivalent to the pseudodi�erential operator with symbol

r

h

: � 7!

X

j�j�m; j�N

a

h

�j

�

�

h�i

m

e

ih�

�j

; �i

:

Clearly, this operator is invertible if and only if

inf fjr

h

(�)j : � 2 R

N

g > 0:

[C℄ Finally, let h

2

tend to in�nity into the diretion of the in�nitely distant point

� 2 S

N�1

, and let h

1

be a onstant sequene. Then the limit operator R

h

is unitarily equivalent to the di�erene operator with variable oeÆients,

X

j�j=m; j�N

a

�j

�

�

V

�

�j

:

E�etive suÆient onditions for the invertibility of di�erene operators

with variable oeÆients an be found in the monographs [1, 2, 3℄.
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