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Abstra
t

We introdu
e a Wiener algebra of operators on L

2

(R

N

) whi
h 
on-

tains, for example, all pseudodi�erential operators in the H�ormander 
lass

OPS

0

0;0

. A dis
retization based on the a
tion of the dis
rete Heisenberg

group asso
iates to ea
h operator in this algebra a band-dominated oper-

ator in a Wiener algebra of operators on l

2

(Z

2N

; L

2

(R

N

)). The (general-

ized) Fredholmness of these dis
retized operators 
an be expressed by the

invertibility of their limit operators. This implies a 
riterion for the Fred-

holmness on L

2

(R

N

) of pseudodi�erential operators in OPS

0

0;0

in terms of

their limit operators. Appli
ations to S
hr�odinger operators with 
ontinu-

ous potential and other partial di�erential operators are given.

1 Introdu
tion

In this paper, we 
onsider pseudodi�erential operators on L

2

(R

N

) with symbols

in S

0

0;0

. For m � 0, the H�ormander 
lass S

m

0;0


onsists of all fun
tions a 2

C

1

(R

N

� R

N

) satisfying

jaj

r; t

:=

X

j�j�r; j�j�t

sup

(x; �)2R

N

�R

N

j�

�

�

�

�

x

a(x; �)j h�i

�m

<1

for ea
h 
hoi
e of r; t 2 N . Here, � = (�

1

; : : : ; �

N

) 2 N

N

is a multi-index, and

we write �

�

x

and �

�

�

for the operator �

�

, applied to the fun
tions x 7! a(x; �) and

� 7! a(x; �), respe
tively.

Let a 2 S

m

0;0

. The operator Op(a) de�ned on the S
hwartz spa
e S(R

N

) by

(Op(a)u)(x) := (2�)

�N

Z

R

N

a(x; �)û(�)e

ihx; �i

d�; x 2 R

N

(1)

�
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is 
alled the pseudodi�erential operator with symbol a. The 
lass of all pseudod-

i�erential operators with symbol in S

m

0;0

is denoted by OPS

m

0;0

.

The basi
 boundedness and 
ompa
tness results for pseudodi�erential opera-

tors are as follows.

Theorem 1.1 Let a 2 S

0

0;0

.

(a) The operator Op(a) is bounded on L

2

(R

N

), and

kOp(a)k

L

2

� Cjaj

2k

1

; 2k

2

whenever 2k

1

> N and 2k

2

> N;

where C is a 
onstant independent of a (but depending on k

1

and k

2

).

(b) The operator Op(a) is 
ompa
t on L

2

(R

N

) if and only if

lim

(x; �)!1

a(x; �) = 0:

Assertion (a) is known as the Calderon-Vaillan
ourt theorem. Its proof 
an be

found in [16℄, for example. More 
omprehensive introdu
tions into the world of

pseudodi�erential operators are [10, 12, 25, 26℄.

In this paper we are going to study the Fredholm properties of pseudodi�eren-

tial operators in OPS

0

0;0

. By de�nition, a linear bounded operator A on a Bana
h

spa
e X if Fredholm if both its kernel kerA and its 
okernel 
okerA := X=(AX)

have �nite dimension. The standard approa
h to Fredholmness of pseudodi�er-

ential operators, whi
h makes use of the 
omposition formulas (see, for instan
e,

[22, 25, 10, 16℄), does not work for operators in OPS

m

0;0

. So, new tools are needed,

and we would like to 
onvin
e the reader that the limit operators method is very

promising among these tools.

Here is a short des
ription of that method and of its results. We write ea
h

ve
tor 
 2 Z

2N

as (


1

; 


2

) 2 Z

N

� Z

N

and set U




:= V




1

E




2

2 L

2

(R

N

), where

(E

�

u)(x) := e

ih�; xi

u(x) and (V

�

u)(x) := u(x� �):

The operators U




are unitary. Note that these operators, together with the

s
alar unitary operators e

ir

I with r running through the integers, form a non-


ommutative group, the so-
alled dis
rete Heisenberg group. In parti
ular,

U

�

�

= e

ih�

2

; �

1

i

U

��

; U

�

U

�

= e

ih�

2

; �

1

i

U

�+�

; (2)

U

�

�

U

�

= e

ih�

2

; �

1

��

1

i

U

���

= e

ih�

2

; �

1

��

1

i

U

�

���

(3)

where � := (�

1

; �

2

); � := (�

1

; �

2

) 2 Z

N

� Z

N

.

Further we denote the set of all sequen
es in Z

2N

whi
h tend to in�nity by

H. In a

ordan
e with the notations from [18, 19℄, we 
all an operator A

h

2

L(L

2

(R

N

)) the limit operator of A 2 L(L

2

(R

N

)) with respe
t to the sequen
e

h 2 H if

s-lim

m!1

(U

�

h(m)

AU

h(m)

= A

h

and s-lim

m!1

(U

�

h(m)

A

�

U

h(m)

= A

�

h

: (4)

The set �

op

(A) of all limit operators of A will be 
alled the operator spe
trum of

A. With these notions, we will prove the following.
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Theorem 1.2 A pseudodi�erential operator A in OPS

0

0;0

is Fredholm if and only

if ea
h of its limit operators is invertible. In parti
ular, the essential spe
trum

�

ess

(A) := �(A+K(L

2

(R

N

))) of A is given by

�

ess

(A) = [

A

h

2�

op

(A)

�(A

h

)

where �(A

h

) refers to the usual spe
trum of the operator A

h

.

In many important instan
es, the stru
ture of the limit operators is mu
h simpler

than the stru
ture of the operator itself, whi
h allows one to obtain expli
it and

e�e
tive Fredholm 
onditions.

Our strategy to prove Theorem 1.2 is as follows. We introdu
e an algebra

W(L

2

(R

N

)) of Wiener type, whi
h 
onsists of 
ertain linear and bounded opera-

tors on L

2

(R

N

). This algebra 
ontains OPS

0

0;0

as its subalgebra. Similar algebras

of Wiener type were 
onsidered by Sj�ostrand [23, 24℄ and Boulkhemair [4℄.

A suitable dis
retization asso
iates to every operator in W(L

2

(R

N

)) a band-

dominated operator a
ting on an appropriate l

2

(Z

2N

)-spa
e. Moreover, these dis-


retizations belong to an algebraW(l

2

(Z

2N

)) of Wiener type again, the elements

of whi
h are band-dominated operators on l

2

(Z

2N

). Here we 
all an operator

band-dominated if it is the norm limit of a sequen
e of band operators.

It turns out that an operator in W(L

2

(R

N

)) is Fredholm if and only if its

dis
retization satis�es a generalized Fredholm 
ondition 
alled P-Fredholmness.

The P-Fredholmness of band-dominated operators has been studied in [18, 19℄

by means of the limit operators method. Basi
ally, the result is as follows: A

band-dominated operator is P-Fredholm if and only if ea
h of its (appropriately

de�ned) limit operators is invertible, and if the norms of their inverses are uni-

formly bounded.

In pra
ti
e, it proves to be hard to verify the 
ondition of uniform bounded-

ness of the inverses of the limit operators. It is one of the main results of the

present paper that this 
ondition is redundant for band-dominated operators in

the dis
rete Wiener algebra W(l

2

(Z

2N

)). That is, an operator in this algebra is

P-Fredholm if and only if ea
h of its limit operators is invertible. Combining

these devi
es, we obtain the Fredholm 
riterion for pseudodi�erential operators

stated in Theorem 1.2.

A similar strategy has been pursued for operators of 
onvolution type on

L

p

(R

N

) in [17℄. The dis
retization used in [17℄ is based on the a
tion of the


ommutative group Z

N

. It yields that the P-Fredholmness of the dis
retized

operator is equivalent to some kind of generalized Fredholmness of the opera-

tor itself. Thus, one needs a further property of the operator (for example, its

lo
al 
ompa
tness) in order to guarantee that its generalized Fredholmness im-

plies its 
ommon Fredholmness. In 
ontrast to this situation, the dis
retization

employed in this paper is mu
h �ner. It is based on the a
tion of a dis
rete

Heisenberg group, and it leads to a simultaneous dis
retization with respe
t to

3



the variable in L

2

(R

N

) and to the 
o-variable in the Fourier image, whi
h we 
all

bi-dis
retization.

The paper is organized as follows. We start with the introdu
tion of the

dis
rete Wiener algebra W(l

2

(Z

2N

)) in Se
tion 2. In parti
ular, we will derive

the announ
ed 
riterion for operators in W(l

2

(Z

2N

)) to be P-Fredholm. The bi-

dis
retization is des
ribed in Se
tion 3. It is applied to the study of the Fredholm

properties of pseudodi�erential operators in Se
tion 4 (with the main result being

Theorem 4.15), and several appli
ations to more 
on
rete 
lasses of pseudodif-

ferential operators are given in Se
tion 5. Let us mention some of these 
lasses

expli
itely. In Se
tion 5.1, we 
onsider operators in OPS

0

0;0

with slowly os
illating

symbols. For operators in this 
lass, all limit operators are either operators of

multipli
ation by a bounded fun
tion, or operators of 
onvolution. Thus, the in-

vertibility of these operators 
an be e�e
tively 
he
ked, and this yields an expli
it

des
ription of the essential spe
trum. The Fredholm theory of pseudodi�erential

operators in OPS

m

1;0

with symbols whi
h are slowly os
illating with respe
t to the

spatial variable x has been 
onsidered by Grushin [9℄.

In 5.2, we 
onsider operators in OPS

0

0;0

the symbols of whi
h are almost-

periodi
 with respe
t to x. Here we use the limit operators method to get a simple

proof of the following results: The 
lass of these operators does not 
ontain non-

trivial 
ompa
t operators, and an operator in this 
lass is Fredholm if and only if

it is invertible. For ellipti
 operators in this 
lass, 
onditions for the invertibility

are given in Shubin [20, 21℄, Fedosov and Shubin [8℄ and Coburn, Moyer and

Singer [5℄. These 
onditions are based upon the 
on
ept of the almost periodi


index.

In 5.3, we will deal with operators with semi-almost periodi
 symbols, and in

Se
tions 5.4 and 5.5 we 
onsider operators of nonzero order. Finally, in 5.6, we

are going to apply the results of Se
tion 5.5 to des
ribe the essential spe
trum of

some ele
tromagneti
 S
hr�odinger operators.

2 Operators in the dis
rete Wiener algebra

2.1 Band-dominated operators and their

^

P-Fredholmness

We start this se
tion with re
alling the notions of ri
h band and band-dominated

operators and the 
riterion for

^

P-Fredholmness from [19℄. The reader should

take into a

ount that we used the notion invertibility at in�nity instead of

^

P-

Fredholmness in [19℄.

Given a Bana
h spa
e X, a positive integer N and a real number p � 1, we

let l

p

(Z

N

; X) stand for the Bana
h spa
e of all sequen
es x on Z

N

with values

in X su
h that

kfk

p

p

:=

X

�2Z

N

kx

�

k

X

<1;
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and we write l

1

(Z

N

; X) for the Bana
h spa
e of all sequen
es x : Z

N

! X with

kfk

1

:= sup

�2Z

N

kx

�

k

X

<1:

Further, E

1

stands for one of the Bana
h spa
es l

p

(Z

N

; X) with 1 � p � 1,

whereas E refers to one of the spa
es l

p

(Z

N

; X) with 1 < p <1.

Every fun
tion a 2 l

1

(Z

N

; L(X)) gives rise to a multipli
ation operator on

E

1

on de�ning

(ax)




:= a




x




; 
 2 Z

N

:

We denote this operator by aI. Evidently, aI 2 L(E

1

) and kaIk = kak

1

.

A band operator on E

1

is a �nite sum of the form

P

�

a

�

^

V

�

where � 2 Z

2N

,

a

�

2 l

1

(Z

N

; L(X)), and where

^

V




is the shift operator

(

^

V




u)

�

:= u

��


; � 2 Z

N

:

A band-dominated operator is the norm limit of a sequen
e of band operators. The

band-dominated operators form a 
losed and symmetri
 subalgebra of L(E

1

)

whi
h we denote by A.

Given 
 2 Z

N

, let S




stand for the operator on E

1

whi
h sends a sequen
e

f to the sequen
e g with g




= f




and g

�

= 0 for � 6= 
. For n � 0, de�ne

^

P

n

as

the sum

P

j
j

1

�n

S




, and let

^

P stand for the family (

^

P

n

)

n�0

. The operators

^

P

n

are proje
tions whi
h 
onverge strongly to the identity operator if p <1.

Let A 2 L(E

1

), and let h : N ! Z

N

be a sequen
e whi
h tends to in�nity. We

say that the operator A

h

is the limit operator of A with respe
t to the sequen
e

h if

lim

n!1

k

^

P

k

(

^

V

�h(n)

A

^

V

h(n)

� A

h

)k = lim

n!1

k(

^

V

�h(n)

A

^

V

h(n)

� A

h

)

^

P

k

k = 0

for every k 2 N . Let further H denote the set of all sequen
es h : Z

N

! N whi
h

tend to in�nity, and let A

$

refer to the set of all operators A 2 A enjoying the

following property: Every sequen
e h 2 H possesses a subsequen
e g for whi
h the

limit operator A

g

exists. We refer to the operators in A

$

as ri
h band-dominated

operators.

Further, we have to mention the notions of generalized 
ompa
tness and gen-

eralized Fredholmness. We did not use these notions expli
itely in [19℄, but a


loser look will 
onvin
e the reader that the de�nitions given in [19℄ are in full


oin
iden
e with these notions. An operator K 2 L(E

1

) is 
alled

^

P-
ompa
t if

kK

^

P

n

�Kk ! 0 and k

^

P

n

K �Kk ! 0 as n!1:

By K(E

1

;

^

P) we denote the set of all

^

P-
ompa
t operators on E

1

, and by

L(E

1

;

^

P) the set of all operators A 2 L(E

1

) for whi
h both AK and KA are

^

P-
ompa
t whenever K is

^

P-
ompa
t. Then L(E

1

;P) is a 
losed subalgebra

5



of L(E

1

) whi
h 
ontains K(E

1

;

^

P) as its 
losed ideal. Moreover, K(E

1

;

^

P)


ontains all 
ompa
t operators if 1 < p < 1. An operator A 2 L(E

1

;

^

P) is


alled

^

P-Fredholm if it is invertible modulo operators in K(E

1

;

^

P). In 
ase X

has �nite dimension, this is just the usual notion of a Fredholm operator. Now

the main result of [19℄ 
an be stated as follows.

Theorem 2.1 An operator A 2 A

$

is

^

P-Fredholm if and only if ea
h of its limit

operators is invertible and if

supfk(A

h

)

�1

k : A

h

2 �

op

(A)g <1: (5)

2.2 The Wiener algebra

The result of Theorem 2.1 takes a more satisfa
tory form for band-dominated

operators whi
h belong to the Wiener algebra, in whi
h 
ase the uniform bound-

edness of the inverses of the limit operators is not required.

Let (a

�

)

�2Z

N be a sequen
e of fun
tions in l

1

(Z

N

; L(X)) satisfying

X

�2Z

N

ka

�

k

1

<1: (6)

Then the series

P

�2Z

n

a

�

^

V

�


onverges in the norm of L(E

1

), and
















X

�2Z

N

a

�

^

V

�
















L(E

1

)

�

X

�2Z

N

ka

�

k

1

: (7)

Let W stand for the set of all operators A =

P

�2Z

N

a

�

^

V

�

with 
oeÆ
ient fun
-

tions a

�

satisfying (6). Provided with the usual operations and the norm

kAk

W

:=

X

�2Z

N

ka

�

k

1

;

the set W be
omes a Bana
h algebra, the so-
alled Wiener algebra. By (7), the

Wiener algebra is 
ontinuously embedded into L(E

1

;

^

P) and, hen
e, into A for

all 
hoi
es of E

1

.

Later on, we will also have to deal with Wiener algebras of operators on

L

2

(R

N

). In this setting, we will refer to the Wiener algebra W on the sequen
e

spa
es as the dis
rete Wiener algebra.

A basi
 basi
 property of the Wiener algebra is des
ribed in the following

theorem the proof of whi
h 
an be found in [13℄.

Theorem 2.2 The Wiener algebra W is inverse 
losed in L(E

1

).

This means that, if A 2 W is invertible in L(E

1

), then A

�1

2 W.

6



Corollary 2.3 Let A 2 W be invertible on one of the spa
es E

1

. Then A is

invertible on all of these spa
es, and the norms of the 
orresponding inverses are

uniformly bounded.

Indeed, if A is invertible on one of the spa
es E

1

, then A

�1

2 W by Theorem

2.2, and from kA

�1

k

L(E

1

)

� kA

�1

k

W

we 
on
lude that A

�1

is the inverse for A

on every of the spa
es E

1

, and that the norm of A

�1

in L(E

1

) is bounded by

kA

�1

k

W

.

2.3 Fredholmness of operators in the Wiener algebra

The interse
tion W \ A

$

is 
alled the ri
h Wiener algebra and will be denoted

by W

$

. It is not hard to see and will used in the following proposition that

the multipli
ation operators forming the diagonals of an operator A in the ri
h

Wiener algebra are ri
h operators themselves.

Here is what 
an be said about limit operators of ri
h operators in the Wiener

algebra.

Proposition 2.4 Let A 2 W

$

and let h � Z

N

be a sequen
e tending to in�nity.

Then there is a subsequen
e g of h su
h that the limit operator A

g

exists with

respe
t to all spa
es E

1

. This limit operator belongs to W, and kA

g

k

W

� kAk

W

.

Proof. Let A =

P

�2Z

N

a

�

^

V

�

with

P

�2Z

N

ka

�

k <1. Sin
e all diagonals a

�

are

ri
h multipli
ation operators, a Cantor diagonal argument yields the existen
e

of a subsequen
e g of h su
h that the limit operators (a

�

I)

g

exist with respe
t

to E

1

for all �. These limit operators are again operators of multipli
ation by


ertain fun
tions a

�;g

, and

ka

�;g

k

1

= k(a

�

I)

g

k

L(E

1

)

� ka

�

k

1

;

whi
h follows immediately from the de�nition of limit operators. Thus,

X

�2Z

N

ka

�;g

k

1

<1;

and the operator A

g

:=

P

�2Z

N

a

�;g

^

V

�

is 
orre
tly de�ned. This operator belongs

to the Wiener algebra W, and kA

g

k

W

� kAk

W

. Now it is evident that A

g

is

indeed the limit operator of A with respe
t to the sequen
e g in ea
h of the

spa
es E

1

.

The main result of this se
tion is the following theorem whi
h states that, for

ri
h operators A in the Wiener algebra, the uniform boundedness 
ondition from

Theorem 2.1,

supfk(A

h

)

�1

k; A

h

2 �(A)g <1;

is automati
ally satis�ed if all limit operators of A are invertible.
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Theorem 2.5 Let X be a re
exive Bana
h spa
e. Then the following assertions

are equivalent for every operator A 2 W

$

:

(a) There is a spa
e E su
h that A is

^

P-Fredholm on E.

(b) There is a spa
e E su
h that all limit operators of A are invertible on E.

(
) All limit operators of A are invertible on l

1

(Z

N

; X).

(d) All limit operators of A are invertible on l

1

(Z

N

; X), and the norms of their

inverses are uniformly bounded.

(e) All limit operators of A are invertible on E

1

for all spa
es E

1

, and the norms

of their inverses are uniformly bounded.

(f) The operator A is

^

P-Fredholm on all spa
es E.

Proof. (a)) (b): This impli
ation 
an be easily 
he
ked. See, for example, the

simpler part of the proof of Theorem 2.16 in [19℄.

(b) ) (
): Let A

h

be a limit operator of A with respe
t to the Bana
h spa
e E.

If A

h

is invertible on E, then A

�1

h

is in the Wiener algebraW by Proposition 2.4

and Theorem 2.2, and A

�1

h

2 L(l

1

(Z

N

; X)) by Corollary 2.3.

(
) ) (d): Let � : R

N

! [0; 1℄ be a 
ontinuous fun
tion whi
h is identi
ally

1 in a 
ertain neighborhood of 0 and whi
h vanishes outside the 
ube [�1; 1℄

N

.

Further, given a positive integer k, de�ne the fun
tion �

k

by �

k

(x) := �(x=k),

and let T

k

refer to the operator of multipli
ation by the restri
tion of the fun
tion

�

k

onto Z

N

. We 
laim that there are 
onstants C > 0 and k 2 N su
h that

kuk

1

� C (kAuk

1

+ kT

k

uk

1

) for all u 2 l

1

(Z

N

; X): (8)

The 
laim is evidently equivalent to the existen
e of 
onstants C; k su
h that

1=C � kAuk

1

+ kT

k

uk

1

for all unit ve
tors u 2 l

1

(Z

N

; X):

Assume, su
h 
onstants do not exist. Then, for all C > 0 and k 2 N , there exists

a ve
tor u

k;C

2 l

1

(Z

N

; X) with ku

k;C

k

1

= 1 su
h that

1=C > kAu

k;C

k

1

+ kT

k

u

k;C

k

1

In parti
ular, we 
an 
hoose C = k, i.e. for ea
h k 2 N , there is a u

k

2 l

1

(Z

N

; X)

with ku

k

k

1

= 1 su
h that

1=k > kAu

k

k

1

+ kT

k

u

k

k

1

: (9)

From ku

k

k

1

= 1 and kT

k

u

k

k

1

< 1=k we 
on
lude the existen
e of points x

k

2 Z

N

su
h that

ku

k

(x

k

)k

L(X)

� 1=2 and jx

k

j ! 1:

Let h be the sequen
e h(m) := x

m

. Sin
e A is ri
h, there is a subsequen
e g

of h for whi
h the limit operator A

g

exists. Let v

m

:=

^

V

�g(m)

u

g(m)

. Then, for

8



arbitrary k; m 2 N ,

kA

g

T

k

v

m

k � k(A

g

�

^

V

�g(m)

A

^

V

g(m)

)T

k

k kv

m

k+ k

^

V V

�g(m)

A

^

V

g(m)

T

k

v

m

k

� k(A

g

�

^

V

�g(m)

A

^

V

g(m)

)T

k

k

+ k(

^

V

�g(m)

A

^

V

g(m)

T

k

� T

k

^

V

�g(m)

A

^

V

g(m)

)v

m

k

+ kT

k

^

V

�g(m)

A

^

V

g(m)

v

m

k

� k(A

g

�

^

V

�g(m)

A

^

V

g(m)

)T

k

k (10)

+ k

^

V

�g(m)

A

^

V

g(m)

T

k

� T

k

^

V

�g(m)

A

^

V

g(m)

k+ kAu

g(m)

k:

Let " > 0 be arbitrary. Then 
hoose and �x k su
h that the se
ond term on the

right hand side of estimate (10) be
omes less than " for all m, whi
h 
an be done

due to Proposition 2.2 in [19℄. Now 
hoose m > 1=" so large that the �rst term

in (10) also be
omes less than ". Sin
e kAu

m

k < 1=m by (9), then the third term

in (10) is less than ", too. Thus,

8 " > 0 9 k; m 2 N : kA

g

T

k

v

m

k

1

� 3 ": (11)

On the other hand, kv

m

(0)k = ku

g(m)

(g(m))k � 1=2, when
e kT

k

v

m

k

1

� 1=2.

Thus, by (11), and sin
e all limit operators of A are invertible by hypothesis,

1=2 � kT

k

v

m

k

1

� kA

�1

g

k kA

g

T

k

v

m

k

1

� 3 " kA

�1

g

k

when
e

kA

�1

g

k � 1=(6 ") for all " > 0:

This is 
learly impossible, and our 
laim (8) is proved. We will now employ (8)

to prove the uniform boundedness of the inverses of the limit operators of A on

l

1

(Z

N

; X).

From (8) we 
on
lude that, for all u 2 l

1

(Z

N

; X), r 2 N and l 2 Z

N

,

k

^

V

l

T

r

uk

1

� C(kA

^

V

l

T

r

uk

1

+ kT

k

^

V

l

T

r

uk

1

):

Let h 2 H be a sequen
e for whi
h the limit operator A

h

exists. Sin
e every

^

V

l

is an isometry, we get

kT

r

uk

1

� C(k

^

V

�h(m)

A

^

V

h(m)

T

r

uk

1

+ k

^

V

�h(m)

T

k

^

V

h(m)

T

r

uk

1

): (12)

Further, sin
e T

r

u 2 


0

(Z

N

; X) and

^

V

�h(m)

T

k

^

V

h(m)

! 0 strongly on 


0

(Z

N

; X),

we 
an pass to the limit as m!1 in (12) to obtain

kT

r

uk

1

� CkA

h

T

r

uk

1

(13)

for all u 2 l

1

(Z

N

; X) and r 2 N . For r ! 1, the left hand side of (13) goes

to kuk

1

. For the right hand side, some more 
are is in order. Again from

Proposition 2.2 in [19℄, we 
on
lude that the right hand side of

j kA

h

T

r

uk � kT

r

A

h

uk j � kA

h

T

r

� T

r

A

h

k kuk

9



tends to zero as r ! 1 (note that A

h

is band dominated if A is so). Sin
e

kT

r

A

h

uk ! kA

h

uk as r ! 1, this estimate implies that kA

h

T

r

uk ! kA

h

uk as

r !1. Thus, passage to the limit r !1 in (13) gives

kuk

1

� CkA

h

uk

1

for all u 2 l

1

(Z

N

; X)

when
e kA

�1

h

k � C, i.e. the uniform boundedness of the inverses of the limit

operators.

(d) ) (e): The proof of this impli
ation is based on the possibility to asso
iate

with every operator in the Wiener algebra a naturally de�ned adjoint operator.

To make this point 
lear we will indi
ate the dependen
e of the Wiener algebra

from the underlying Bana
h spa
e X by writing W

X

in pla
e of W. For A =

P

�2Z

N

a

�

V

�

2 W

X

, we de�ne its Wiener adjoint A

?

as

P

�2Z

N

V

��

a

�

�

I, where

a

�

�

(x) is the usual Bana
h dual operator of a

�

(x), a
ting on X

�

. Clearly, we have

A

?

=

P

�2Z

N

b

�

V

��

where b

�

(x) = a

�

�

(x + �). This shows that A

?

belongs to

the Wiener algebra W

X

�

, and it is easy to 
he
k that the mapping A 7! A

?

is

an anti-linear isometry from W

X

into W

X

�

whi
h satis�es (AB)

?

= B

?

A

?

for all

A; B 2 W

X

. In parti
ular, I

?

= I and, if A is invertible in W

X

, then A

?

is

invertible in W

X

�

and (A

?

)

�1

= (A

�1

)

?

.

For the proof of the impli
ation (d) ) (e), let now A 2 W

$

X

be an operator

with

C

1

(A) := sup fkA

�1

h

k

L(l

1

(Z

N

;X))

: A

h

2 �

op

(A)g <1: (14)

The limit operators of A

?

are just the Wiener adjoints of the limit operators of

A. Thus, the invertibility of all limit operators of A implies the invertibility of all

limit operators of A

?

. So we 
on
lude from the already established impli
ation

(
)) (d) that

C

1

(A

?

) := sup fk(A

?

h

)

�1

k

L(l

1

(Z

N

;X

�

))

: A

h

2 �

op

(A)g <1:

Sin
e the limit operators of A

?

as well as their inverses belong to the Wiener

algebraW

X

�

(due to Proposition 2.4 and Theorem 2.2), the operators A

?

h

also a
t

as bounded and invertible operators on 


0

(Z

N

; X

�

), and k(A

?

h

)

�1

k

L(


0

(Z

N

;X

�

))

�

k(A

?

h

)

�1

k

L(l

1

(Z

N

;X

�

))

. This shows that

C

0

(A

?

) := sup fk(A

?

h

)

�1

k

L(


0

(Z

N

;X

�

))

: A

h

2 �

op

(A)g <1: (15)

The operator A, thought of as a
ting on l

1

(Z

N

; X), 
an be identi�ed with the

usual Bana
h dual operator of A

?

2 L(


0

(Z

N

; X

�

)) (this is the pla
e where we

need the re
exivity of X). Hen
e,

C

1

(A) := sup fkA

�1

h

k

L(l

1

(Z

N

;X))

: A

h

2 �

op

(A)g = C

0

(A

?

) <1:

Consequently, by the Riess-Thorin interpolation theorem (Theorem 1 and Re-

mark 4 in Se
tion 1.18.3 of [27℄), we have for every 1 < p <1 and A

h

2 �(A),

kA

�1

h

k

p

L(l

p

(Z

N

;X))

� kA

�1

h

k

p�1

L(l

1

(Z

N

;X))

kA

�1

h

k

L(l

1

(Z

N

;X))

� C

1

(A)

p�1

C

1

(A);

10



whi
h veri�es the uniform boundedness of the norms of the inverses of the limit

operators of A on all spa
es l

p

(Z

N

; X) with 1 � p � 1. For E

1

= 


0

(Z

N

; X),

this result follows in the same way as we derived (15).

Finally, the impli
ation (e)) (f) is Theorem 2.1, and the impli
ation (f))

(a) is evident.

Observe that the impli
ation (
)) (d) holds for arbitrary ri
h operators A and

arbitrary (not ne
essarily re
exive) Bana
h spa
es X.

Corollary 2.6 Let X be a re
exive Bana
h spa
e. Then the P-essential spe
-

trum of an operator A 2 W

$

in the spa
e E

1

does not depend on E

1

, and

�

^

P�ess

(A) = [�

E

(A

h

)

where the union is taken over all limit operators A

h

of A and where the

^

P-essential

spe
trum �

^

P�ess

(A) 
onsists of all � 2 C for whi
h the operator A � �I is not

^

P-Fredholm.

If the spa
e X is �nite dimensional, then the P-essential spe
trum is the usual

essential spe
trum. The proof of the independen
e of the P-essential spe
trum

of the underlying spa
e follows from Theorem 2.2 and from the fa
t that limit

operators of operators in the Wiener algebra belong to the Wiener algebra again.

3 Bi-dis
retization of operators on L

2

(R

N

)

3.1 Bi-dis
retization

Let f 2 C

1

0

(R

N

) be a non-negative fun
tion su
h f(x) = f(�x) for all x, f(x) = 1

if jx

i

j � 2=3 for all i = 1; : : : ; N and that f(x) = 0 if jx

i

j � 3=4 for at least one

i. De�ne a non-negative fun
tion ' by

'

2

(x) :=

f(x)

P

�2Z

N

f(x� �)

; x 2 R

N

;

and set '

�

(x) := '(x��) for � 2 Z

N

. The family ('

�

) forms a partition of unit

on R

N

in the sense that

X

�2Z

N

'

2

�

(x) = 1 for all x 2 R

N

: (16)

For 
 := (�; �) 2 Z

N

� Z

N

, we set �




(x; �) := '

�

(x)'

�

(�) and �




:= Op(�




).

These operators are 
ompa
t by Theorem 1.1 (b), and (16) implies that

X


2Z

2N

�

�




�




u =

X

�2Z

N

Op('

�

)

X

�2Z

N

'

2

�

Op('

�

)u

=

X

�2Z

N

Op('

�

)

2

u = F

�1

X

�2Z

N

'

2

�

Fu = u

11



for all u 2 L

2

(R

N

). Thus, the operator family (�




)


2Z

2N forms a partition of unit

in the sense that

X


2Z

2N

�

�




�




= I (17)

where the series 
onverges strongly on L

2

(R

N

). Analogously, one 
he
ks that

P




�




�

�




= I. Moreover,

kuk

2

L

2

=

X


2Z

2N

k�




uk

2

L

2

=

X


2Z

2N

k�

�




uk

2

L

2

(18)

for every u 2 L

2

(R

N

) whi
h follows easily from (17):

kuk

2

L

2

=

X


2Z

2N

h�

�




�




u; ui =

X


2Z

2N

h�




u; �




ui =

X


2Z

2N

k�




uk

2

L

2

:

One also easily 
he
ks that �




= U




�

0

U

�




with the unitary operators U




intro-

du
ed in the introdu
tion.

We de�ne the bi-dis
retization Gu of a fun
tion u 2 L

2

(R

N

) by

(Gu)




:= �

0

U

�




u; 
 2 Z

2N

;

i.e. we 
onsider Gu as a ve
tor-valued fun
tion on Z

2N

with values in L

2

(R

N

).

These fun
tions form a Hilbert spa
e l

2

(Z

2N

; L

2

(R

N

)) with s
alar produ
t

hf; gi :=

X


2Z

2N

hf




; g




i

L

2

(R

N

)

:

Proposition 3.1 The operator G : L

2

(R

N

) ! l

2

(Z

2N

; L

2

(R

N

)) is an isometry.

Its adjoint is given by

G

�

f =

X


2Z

2N

U




�

�

0

f




where the series 
onverges in L

2

(R

N

).

Proof. The isometry of G follows from (18) sin
e

kGuk

2

l

2

=

X


2Z

2N

k�

0

U

�




uk

2

L

2

=

X


2Z

2N

kU




�

0

U

�




uk

2

L

2

=

X


2Z

2N

k�




uk

2

L

2

= kuk

2

L

2

:

Further, one has

hGu; fi

l

2

=

X


2Z

2N

h(Gu)




; f




i

L

2

=

X


2Z

2N

h�

0

U

�




u; f




i

L

2

=

X


2Z

2N

hu; U




�

�

0

fi

L

2

= hu; G

�

fi

L

2
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for every u 2 L

2

(R

N

) and f 2 l

2

(Z

2N

; L

2

(R

N

)).

Thus, G

�

G = I, and the operator Q := GG

�

is an orthogonal proje
tion on

l

2

(Z

2N

; L

2

(R

N

)). We denote its range by ImQ. Then

G : L

2

(R

N

)! ImQ

is a unitary operator, and every operator A 2 L(L

2

(R

N

)) is unitarily equivalent

to the operator

A

G

:= GAG

�

j

ImQ

:

We extend A

G

to an operator �(A) a
ting on all of l

2

(Z

2N

; L

2

(R

N

)) by setting

�(A) := A

G

Q + I �Q = GAG

�

+ I �Q:

Clearly,

G

�

�(A)G = G

�

(GAG

�

+ I �GG

�

)G = A:

3.2 Bi-dis
retization and Fredholmness

We will now examine the relation between the Fredholmness of an operator on

L

2

(R

N

) and the

^

P-Fredholmness of its dis
retization.

Proposition 3.2 (a) The operators

^

P

n

Q and Q

^

P

n

are 
ompa
t for every k 2 N.

(b) The proje
tion Q belongs to L(l

2

;

^

P).

(
) For every A 2 L(L

2

(R

N

)), the operator �(A) belongs to L(l

2

;

^

P).

(d) Let K 2 L(l

2

(Z

2N

; L

2

(R

N

))) be a

^

P-
ompa
t operator of the form K = QKQ.

Then G

�

KG is 
ompa
t.

(e) The operator A 2 L(L

2

(R

N

)) is invertible (Fredholm) if and only if the oper-

ator �(A) 2 L(l

2

(Z

2N

; L

2

(R

N

))) is invertible (

^

P-Fredholm).

Proof. (a) It is suÆ
ient to verify the 
ompa
tness of all operators S




Q and

QS




. A straightforward 
al
ulation yields

S




Q =

X

�2Z

2N

T




�

0

U

�




U

�

�

�

0

R

�

(19)

where we wrote

R

�

: ImS

�

! L

2

(R

N

); (: : : ; 0; f

�

; 0; : : :) 7! f

�

and

T




: L

2

(R

N

)! ImS




; f




7! (: : : ; 0; f




; 0; : : :);

for a moment. Sin
e, with 
ertain 
onstants 



�

,

�

0

U

�




U

�

�

�

0

= 



�

�

0

U

�


��

�

�

0

= 



�

U

�


��

�


��

�

�

0

= 0
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if � is suÆ
iently large, the sum (19) has only a �nite number of non-vanishing

items. Ea
h of these items is 
ompa
t be
ause �

0

is 
ompa
t. Thus, S




Q and

QS




= (S




Q)

�

are 
ompa
t.

(b) It is easy to 
he
k that the operator Q belongs to L(l

2

;

^

P) if and only if, for

every k 2 N ,

k

^

P

k

Q(I �

^

P

n

)k ! 0 and k(I �

^

P

n

)Q

^

P

k

k ! 0

as n ! 1. These 
onditions follow immediately from the 
ompa
tness of

^

P

k

Q

and Q

^

P

k

and from the

�

-strong 
onvergen
e of the

^

P

n

to the identity.

(
) As in the previous step, we have to show that, for every k 2 N ,

k

^

P

k

�(A)(I �

^

P

n

)k ! 0 and k(I �

^

P

n

)�(A)

^

P

k

k ! 0

as n!1. Let us 
he
k the �rst 
ondition. We have

^

P

k

�(A)(I �

^

P

n

) =

^

P

k

QGAG

�

(I �

^

P

n

) +

^

P

k

(I �

^

P

n

)�

^

P

k

Q(I �

^

P

n

):

The �rst and the third term in this sum tend to zero in the norm sin
e

^

P

k

Q is


ompa
t and sin
e the I �

^

P

n


onverge strongly to 0. The se
ond term is zero

whenever n > k.

(d) If K is

^

P-
ompa
t, then kK(I �

^

P

n

)k ! 0. Consequently,

kG

�

K(I �

^

P

n

)Gk = kG

�

KGG

�

(I �

^

P

n

)Gk = kG

�

KG(I �G

�

^

P

n

G)k ! 0:

Sin
e

G

�

^

P

n

G =

X

�2[�n;n℄

2N

\Z

2N

�

�

�

�

�

and �

�

�

�

�

is 
ompa
t, the operator G

�

KG is the norm limit of 
ompa
t operators

and, hen
e, 
ompa
t.

(e) Sin
e A and A

G

are unitarily equivalent, the operator A is invertible (Fred-

holm) if and only if A

G

is invertible (Fredholm). We 
laim that the latter happens

if and only if the operator �(A) is invertible (

^

P -Fredholm).

Let A

G

be invertible on ImQ, and let B be its inverse. Then, 
learly, QBQ+

I �Q is the inverse of �(A). Conversely, if C is the inverse of �(A), then QCQ

is the inverse of A

G

, sin
e �(A)Q = Q�(A)Q = Q�(A).

Let now A

G

be Fredholm, and let B be a regularizer of A

G

, i.e. the operators

A

G

B � I and BA

G

� I are 
ompa
t. Then the operators

�(A)(QBQ + I �Q)� I

= (QA

G

Q+ I �Q)(QBQ + I �Q)� I = QA

G

BQ�Q = Q(A

G

B � I)Q

and (QBQ + I � Q)�(A) � I are 
ompa
t and, hen
e, also

^

P-
ompa
t, when
e

the

^

P-Fredholmness of �(A). Let, 
onversely, �(A) be a

^

P-Fredholm operator.
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Thus, there are an operator B 2 L(l

2

;

^

P) and

^

P-
ompa
t operators K; L su
h

that

�(A)B = I +K and B�(A) = I + L:

We multiply both equalities from both sides by Q. Sin
e �(A) 
ommutes with

Q, we get

Q�(A)QBQ = Q+K

0

and QBQ�(A)Q = Q + L

0

(20)

with

^

P-
ompa
t operators K

0

and L

0

satisfying

K

0

= QK

0

Q and L

0

= QL

0

Q:

Multiplying (20) by G

�

from the left band by G from the right hand side we �nd

AG

�

BG = I +G

�

K

0

G and G

�

BGA = I +G

�

L

0

G:

The operators G

�

K

0

G and G

�

L

0

G are 
ompa
t by assertion (d).

3.3 Bi-dis
retization and limit operators

Our next goal is to relate the limit operators of operators A on L

2

(R

N

) with the

limit operators of its dis
retization �(A) on L(l

2

(Z

2N

; L

2

(R

N

))). The latter ones

are de�ned as in Se
tion 2.1 (with p; N and X repla
ed by 2; 2n and L

2

(R

N

)).

Given 
 = (


1

; 


2

) 2 Z

2N

= Z

N

� Z

N

, we de�ne a unitary operator

^

T




on

l

2

(Z

2N

; L

2

(R

N

)) by (

^

T




u)

�

:= e

ih


2

;�

1

i

u

�

.

Lemma 3.3 Let 
 2 Z

2N

. Then

^

V

�


G =

^

T




GU

�




and G

�

^

V




= U




G

�

^

T

�




on L

2

(R

N

) and on l

2

(Z

2N

; L

2

(R

N

)), respe
tively.

Proof. Let f 2 L

2

(R

N

) and � 2 Z

N

� Z

N

. Then

(

^

V

�


GU




f)

�

= (GU




f)

�+


= �

0

U

�

�+


U




f

= e

ih


2

;�

1

i

�

0

U




f = e

ih


2

;�

1

i

(Gf)

�

= (

^

T




Gf)

�

where we used (3). Hen
e,

^

V

�


GU




=

^

T




G on L

2

(R

N

), whi
h implies the asser-

tions.

Lemma 3.4 Every sequen
e h 2 H possesses a subsequen
e g su
h that the

fun
tions

f

m

: Z

N

! T; � 7! e

ihg(m); �i

(21)


onverge uniformly on Z

N

as m!1.
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Proof. Set r

�1

:= h, and let 
 : N ! Z

N

be an enumeration of Z

N

. By the


ompa
tness of the unit 
ir
le T, there is a subsequen
e r

0

of r

�1

su
h that

e

ihr

0

(m); 


0

i

! f(


0

) 2 T as m!1

and

je

ihr

0

(m); 


0

i

� f(


0

)j < 2 for all m 2 Z

N

:

We pro
eed in this way and get, for every positive integer n, a subsequen
e r

n

of

r

n�1

su
h that

e

ihr

n

(m); 


n

i

! f(


n

) 2 T as m!1

and

je

ihr

n

(m); 


n

i

� f(


n

)j < 2

�n

for allm 2 Z

N

:

Set g(n) := r

n

(n). Sin
e g is (with ex
eption of a �nite number of entries) a

subsequen
e of ea
h sequen
e r

n

, we have g 2 H,

e

ihg(m); 


n

i

! f(


n

) as m!1

and

je

ihg(m); 


n

i

� f(


n

)j < 2

�n

for all m 2 Z

N

and n 2 N :

We 
laim that the fun
tions f

m


onverge uniformly to the fun
tion f : Z

N

! T

de�ned in this way. Given " > 0, 
hoose K 2 N su
h that 2

�K

< ", and then


hoose M 2 N su
h that

je

ihg(m); 


n

i

� f(


n

)j < " for allm � M and n � K:

Then je

ihg(m); �i

� f(�)j < " for all m �M and � 2 Z

N

.

Proposition 3.5 Let A 2 L(L

2

(R

N

)) be su
h that the limit operator A

h

with

respe
t to the sequen
e h 2 H exists. Then there is a subsequen
e g of h su
h

that the limit operator �(A)

g

of �(A) exists and that the operators �(A)

g

and

�(A

h

) are unitarily equivalent.

Proof. Let h 2 H be a sequen
e su
h that the limit operator A

h

exists. By

the pre
eding lemma, there is a subsequen
e g of h su
h that the fun
tions (21)


onverge uniformly on Z

2N

to a 
ertain fun
tion f

g

: Z

2N

! T. Let the operator

T

g

: l

2

(Z

2N

; L

2

(R

N

))! l

2

(Z

2N

; L

2

(R

N

)) be de�ned by (T

g

u)

�

:= f

g

(�

1

)u

�

. Sin
e

all values of f

g

are unimodular, the operator T

g

is unitary. Moreover, from the

uniform 
onvergen
e of the fun
tions (21) to f

g

we 
on
lude that

k

^

T

g(m)

� T

g

k = sup

�2Z

2N

je

ihg(m); �i

� f

g

(�)j ! 0 as m!1:

Now we have, by Lemma 3.3,

^

V

�g(m)

GAG

�

^

V

g(m)

=

^

T

g(m)

GU

�

g(m)

AU

g(m)

G

�

^

T

g(m)

;
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and the right hand side of this equality 
onverges

�

-strongly to T

g

GA

h

G

�

T

�

g

.

Hen
e, the limit operator (GAG

�

)

g

exists, and

(GAG

�

)

g

= T

g

GA

h

G

�

T

�

g

: (22)

Choosing A = I, we see in parti
ular that every sequen
e h whi
h tends to

in�nity possesses a subsequen
e g su
h that the limit operator Q

g

of Q = GG

�

exists and that this limit operator is equal to T

g

QT

�

g

. Of 
ourse, one 
an 
hoose

the same subsequen
e g as in (22). Consequently, the limit operator of �(A) =

GAG

�

+ I �Q with respe
t to g also exists, and

�(A)

g

= (GAG

�

)

g

+ (I �Q)

g

= T

g

GA

h

G

�

T

�

g

+ T

g

(I �Q)T

�

g

= T

g

�(A

h

)T

�

g

: (23)

This proves the assertion.

4 Fredholmness of pseudodi�erential operators

We are now going to single out a 
lass of operators on L

2

(R

N

) whi
h be
ome band-

dominated operators in the ri
h Wiener algebra after bi-dis
retization. This will

enable us to derive Fredholm 
riteria for these operators. Parti
ular examples

of operators whi
h belong to this 
lass are provided by the pseudodi�erential

operators with symbol in S

0

0; 0

.

4.1 A Wiener algebra on L

2

(R

N

)

We de�ne a Wiener algebra of operators on L

2

(R

N

) by imposing 
onditions on

the de
ay of the norms k�

�

A�

�

��


k.

De�nition 4.1 Let A be a linear (at this moment not ne
essarily bounded) op-

erator on L

2

(R

N

). We say that A belongs to W(L

2

(R

N

)) if

kAk

W(L

2

(R

N

))

:=

X


2Z

2N

sup

�2Z

2N

k�

�

A�

�

��


k

L(L

2

(R

N

))

<1:

The 
lass W(L

2

(R

N

)) 
ontains suÆ
iently many interesting operators. A
tu-

ally we will see that all pseudodi�erential operators with symbol in S

0

0;0

belong

to W(L

2

(R

N

)). To 
he
k this, we need some auxiliary results. The following

proposition is proved in [16℄, Proposition 5.5.2.

Proposition 4.2 Let A = Op(a) 2 OPS

0

0;0

, and let ('

�

) be a partition of unit

satisfying (16). Then, for all �; � 2 Z

N

and k

1

; k

2

> N=2,

k'

�

A'

�

Ik

L(L

2

(R

N

))

� Ch� � �i

�2k

1

jaj

2k

1

; 2k

2

(24)

with a 
onstant C > 0 independent of �; � and a (but depending on k

1

and k

2

).
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Proposition 4.3 Let A = Op(a) 2 OPS

0

0;0

and � = (�

1

; �

2

); � = (�

1

; �

2

) 2

Z

N

� Z

N

. Then

k�

�

A�

�

�

k

L(L

2

(R

N

))

� Cjaj

2k+2m; 2k+2m

h�

1

� �

1

i

�k

h�

2

� �

2

i

�k

whenever 2k > N , m 2 N is large enough, and with a 
onstant C > 0 independent

of a and of � and � (but depending on k and m).

Proof. Applying Proposition 4.2 to the operator B := Op('

�

2

)AOp('

�

2

), we

get

k�

�

A�

�

�

k

L(L

2

(R

N

))

= k'

�

1

Op('

�

2

)AOp('

�

2

)'

�

1

Ik

L(L

2

(R

N

))

� Ch�

1

� �

1

i

�2k

jsym

B

j

2k; 2k

for all 2k > N . By Theorem 4.2.1 from [16℄, jsym

B

j

2k; 2k

� Cjaj

2k+2m; 2k+2m

whenever 2m > N . Thus,

k�

�

A�

�

�

k

L(L

2

(R

N

))

� Ch�

1

� �

1

i

�2k

jaj

2k+2m; 2k+2m

: (25)

Similarly, writing FOp(a)F

�1

(with F denoting the Fourier transform on L

2

(R

N

))

as the pseudodi�erential operator with double symbol ~a(x; y; �) := a(��; y), and

estimating the right hand side of the estimate

k�

�

A�

�

�

k

L(L

2

(R

N

))

= kF�

�

A�

�

�

F

�1

k

L(L

2

(R

N

))

= kOp('

�

1

)'

�

2

FAF

�1

'

�

2

Op('

�

2

)k

L(L

2

(R

N

))

� k'

�

2

FAF

�1

'

�

2

Ik

L(L

2

(R

N

))

by using Theorem 4.3.2 from [16℄ and the Calderon-Vaillan
ourt theorem, we

obtain

k�

�

A�

�

�

k

L(L

2

(R

N

))

� Ch�

2

� �

2

i

�2k

jaj

2k+2m; 2k+2m

: (26)

for every 2k > N and for every m whi
h is suÆ
iently large (re
all that ' is an

even fun
tion by hypothesis). Multiplying (25) by (26) and taking square roots,

we get the assertion.

Corollary 4.4 OPS

0

0;0

� W(L

2

(R

N

)).

Indeed, for A 2 OPS

0

0;0

, and with 
 := (


1

; 


2

) and � := (�

1

; �

2

), the pre
eding

proposition implies

X


2Z

2N

sup

�2Z

2N

k�

�

A�

�

��


k

L(L

2

(R

N

))

� Cjaj

2k+2m; 2k+2m

X


2Z

2N

h


1

i

�k

h


2

i

�k

;

whi
h is �nite if k is 
hosen large enough.

Here are some basi
 properties of W(L

2

(R

N

)).
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Proposition 4.5 (a) W(L

2

(R

N

)) � L(L

2

(R

N

)), and

kAk

L(L

2

(R

N

))

� kAk

W(L

2

(R

N

))

for all A 2 W(L

2

(R

N

)):

(b) When provided with the norm A 7! kAk

W(L

2

(R

N

))

and with the involution

A 7! A

�

(= the Hilbert spa
e adjoint of A), the set W(L

2

(R

N

)) be
omes a unital

involutive Bana
h algebra.

Proof. (a) The boundedness of A 2 W(L

2

(R

N

)) as well as the norm estimate


an be obtained as follows, where we employ (17) and (18) several times:

kAuk

2

=

X


2Z

2N

k�




Auk

2

=

X


2Z

2N
















�




A

X

Æ2Z

2N

�

�

Æ

�

Æ

u
















2

�

X


2Z

2N

 

X

�2Z

2N

k�




A�

�


��

k k�


��

uk

!

2

�

X


2Z

2N

 

X

�2Z

2N

k

A

(�)k�


��

uk

!

2

�

X


2Z

2N

 

X

�2Z

2N

k

A

(
 � �)k�

�

uk

!

2

with k

A

(�) := sup


2Z

N

k�




A�

�


��

k. Sin
e k

A

is in l

1

(Z

N

),

kAuk

2

�

0

�

X


2Z

2N

k

A

(
)

1

A

2

X

�2Z

2N

k�

�

uk

2

= kAk

2

W(L

2

(R

N

))

kuk

2

;

when
e assertion (a).

(b) Let A; B 2 W(L

2

(R

N

)). Then, 
learly,

k�Ak

W(L

2

(R

N

))

= j�j kAk

W(L

2

(R

N

))

and

kA+Bk

W(L

2

(R

N

))

� kAk

W(L

2

(R

N

))

+ kBk

W(L

2

(R

N

))

:

For the produ
t AB, one �nds

kABk

W(L

2

(R

N

))

=

X


2Z

2N

sup

�2Z

2N

k�

�

AB�

�

��


k
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=

X


2Z

2N

sup

�2Z

2N
















X

�2Z

2N

�

�

A�

�

���

�

���

B�

�

��

















�

X


2Z

2N

X

�2Z

2N

k

A

(�)k

B

(
 � �)

� kAk

W(L

2

(R

N

))

kBk

W(L

2

(R

N

))

:

Further, sin
e k�




A�

�

Æ

k = k�




A

�

�

�

Æ

k, the operators A and A

�

belong to the

Wiener algebra W(L

2

(R

N

)) only simultaneously, and one has

kAk

W(L

2

(R

N

))

= kA

�

k

W(L

2

(R

N

))

:

That the identity operator belongs to W(L

2

(R

N

)) follows from Corollary 4.4.

Finally, if (A

n

) is a Cau
hy sequen
e inW(L

2

(R

N

)) then, by part (a), it is also a

Cau
hy sequen
e in L(L

2

(R

N

)), hen
e 
onvergent. Let A 2 L(L

2

(R

N

)) denote the

limit of this sequen
e. Given " > 0, 
hoose M su
h that kA

n

�A

m

k

W(L

2

(R

N

))

< "

for all m; n � M . Letting m go to in�nity in this inequality, we get the 
onver-

gen
e of the A

m

to A with respe
t to the norm in the Wiener algebra.

Next we 
onsider bi-dis
retizations of operators in the Wiener algebra. For nota-

tional 
onvenien
e, we denote the dis
rete Wiener algebraW on l

2

(Z

2N

; L

2

(R

N

))

introdu
ed in Se
tion 2.2 by W(l

2

(Z

2N

)) in what follows.

Proposition 4.6 (a) Let A 2 W(L

2

(R

N

)). Then the operators GAG

�

and �(A)

belong to the Wiener algebra W(l

2

(Z

2N

)).

(b) Let B 2 W(l

2

(Z

2N

)). Then the operator G

�

BG belongs to the Wiener algebra

W(L

2

(R

N

)).

Proof. (a) Let u 2 l

2

(Z

2N

; L

2

(R

N

)) and � 2 Z

2N

. Then

(GAG

�

u)

�

= (GA

X


2Z

2N

U




�

�

0

u




)

�

= �

0

U

�

�

A

X


2Z

2N

U




�

�

0

u




=

X


2Z

2N

�

0

U

�

�

AU

��


�

�

0

u

��


=

X


2Z

2N

�

0

U

�

�

AU

��


�

�

0

(

^

V




u)

�

;

whi
h shows that GAG

�

2 W(l

2

(Z

2N

)). When applied to the operator A = I

(whi
h is in W(L

2

(R

N

)) by Proposition 4.5), this in
lusion implies in parti
ular

that Q = GG

�

2 W(l

2

(Z

2N

)). Clearly, the dis
rete Wiener algebra W(l

2

(Z

2N

))

also 
ontains the identity operator, when
e the �rst assertion.

(b) Let B 2 W(l

2

(Z

2N

)) be given by

B =

X

�2Z

2N

b

�

^

V

�

with kBk

W(l

2

(Z

2N

))

=

X

�2Z

2N

kb

�

k <1
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with multipli
ation operators b

�

. Further, let �; 
 2 Z

2N

and u 2 L

2

(R

N

). Then

�

�

G

�

BG�

�

��


u =

X

Æ2Z

2N

�

�

U

Æ

�

�

0

(BG�

�

��


u)

Æ

=

X

Æ2Z

2N

�

�

U

Æ

�

�

0

X

�2Z

2N

b

�

(Æ)(G�

�

��


u)

Æ��

=

X

Æ2Z

2N

�

�

U

Æ

�

�

0

X

�2Z

2N

b

�

(Æ)�

0

U

�

Æ��

�

�

alpha�


u

=

X

Æ2Z

2N

�

�

�

�

Æ

X

�2Z

2N

U

Æ

b

�

(Æ)U

�

Æ��

�

Æ��

�

�

��


u

when
e

k�

�

G

�

BG�

�

��


k �

X

Æ2Z

2N

k�

�

�

�

Æ

k

X

�2Z

2N

kb

�

k k�

Æ��

�

�

��


k

=

X

�2Z

2N

kb

�

k

X

Æ2Z

2N

k�

�

�

�

Æ

k k�

Æ��

�

�

��


k:

We write all indi
es as � = (�

1

; �

2

) 2 Z

N

� Z

N

and use Proposition 4.3 to get

X

Æ2Z

2N

k�

�

�

�

Æ

k k�

Æ��

�

�

��


k

� C

X

Æ2Z

2N

h�

1

� Æ

1

i

�k

h�

2

� Æ

2

i

�k

h


1

+ Æ

1

� �

1

� �

1

i

�k

h


2

+ Æ

2

� �

2

� �

2

i

�k

= C

X

Æ

1

2Z

N

h�

1

� Æ

1

i

�k

h


1

+ Æ

1

� �

1

� �

1

i

�k

�

�

X

Æ

2

2Z

N

h�

2

� Æ

2

i

�k

h


2

+ Æ

2

� �

2

� �

2

i

�k

:

If k is large enough, then the sequen
e x 7! hxi

�k

belongs to l

1

(Z

N

). Sin
e l

1

(Z

N

)

is 
losed under 
onvolution, there is a sequen
e f 2 l

1

(Z

N

) su
h that

k�

�

G

�

BG�

�

��


k � C

X

�2Z

2N

kb

�

kf(


1

� �

1

) f(


2

� �

2

):

The sequen
e g : (x

1

; x

2

) 7! f(x

1

)f(x

2

) belongs to l

1

(Z

2N

). Hen
e, by the


onvolution theorem,

k�

�

G

�

BG�

�

��


k � C

X

�2Z

2N

kb

�

k g(
 � �) = h(
)

with a 
ertain fun
tion h 2 l

1

(Z

2N

) independent of � and 
. This estimate implies

the assertion (b).
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Proposition 4.7 The algebra W(L

2

(R

N

)) is inverse 
losed in L(L

2

(R

N

)), i.e.

if A 2 W(L

2

(R

N

)) is invertible in L(L

2

(R

N

)), then A

�1

2 W(L

2

(R

N

)).

Proof. Let A 2 W(L

2

(R

N

)) be invertible on L

2

(R

N

). Then �(A) belongs to

W(l

2

(Z

2N

)) by Proposition 4.6 (a), and it is invertible in L(l

2

(Z

2N

; L

2

(R

N

))) by

Proposition 3.2. The well known inverse 
losedness of the dis
rete Wiener algebra

([13℄) implies that �(A)

�1

2 W(l

2

(Z

2N

)). Sin
e

G

�

�(A)

�1

GA = G

�

�(A)

�1

GAG

�

G = G

�

�(A)

�1

�(A)QG = I;

one has G

�

�(A)

�1

G = A

�1

2 W(L

2

(R

N

)) by Proposition 4.6 (b).

4.2 Fredholmness of operators in W(L

2

(R

N

))

Operators on L

2

(R

N

) whi
h possess a ri
h operator spe
trum are de�ned in 
om-

plete analogy to the dis
rete setting. More pre
isely: We let W

$

(L

2

(R

N

)) stand

for the set of all operators A in the Wiener algebraW(L

2

(R

N

)) with the following

property: every sequen
e h 2 H possesses a subsequen
e g su
h that the limit

operator A

g

with respe
t to this sequen
e exists. It 
an be easily 
he
ked that

W

$

(L

2

(R

N

)) is a 
losed and unital subalgebra of W(L

2

(R

N

)).

Proposition 4.8 Let A 2 W

$

(L

2

(R

N

)). Then GAG

�

and �(A) belong to the

algebra W

$

(l

2

(Z

2N

)), and

�

op

(GAG

�

) = fT

g

GA

h

G

�

T

�

g

: A

h

2 �

op

(A)g;

�

op

(�(A)) = fT

g

�(A

h

)T

�

g

: A

h

2 �

op

(A)g:

Proof. Let k 2 H. Sin
e A has a ri
h operator spe
trum, there is a subsequen
e

h of k su
h that A

h

exists. By the Proposition 3.5, there is a subsequen
e g of

h su
h that the limit operators (GAG

�

)

g

and �(A)

g

exist. Hen
e, GAG

�

and

�(A) are ri
h, too. The des
ription of the 
orresponding operator spe
tra follows

immediately from (22) and (23).

Theorem 4.9 Let A 2 W

$

(L

2

(R

N

)). Then A is a Fredholm operator if and only

if all limit operators of A are invertible, and the essential spe
trum of A is the

union of all spe
tra of its limit operators.

Proof. It is easy to see that, if A is a Fredholm operator, then all limit oper-

ators of A are invertible. Let, 
onversely, all limit operators of A be invertible.

Then, by Propositions 4.8 and 3.2 (e), all limit operators of �(A) are invertible.

Consequently, �(A) is a P-Fredholm operator by Theorem 2.5. By Proposition

3.2 (e) again, A is a Fredholm operator.

Let A

$

(L

2

(R

N

)) denote the 
losure in L(L

2

(R

N

)) of the ri
h Wiener algebra

W

$

(L

2

(R

N

)). Further we agree upon 
alling a family of operators uniformly in-

vertible if ea
h member of the family is invertible and if the norms of their inverses

are uniformly bounded.
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Theorem 4.10 An operator A 2 A

$

(L

2

(R

N

)) is Fredholm on L

2

(R

N

) if and

only if all limit operators of A are uniformly invertible on L

2

(R

N

).

Proof. Let (A

n

) be a sequen
e of operators in W

$

(L

2

(R

N

)) whi
h 
onverges to

A in the norm. By B we denote the smallest C

�

-subalgebra of L(L

2

(R

N

)) whi
h


ontains all operators A

n

and the idealK(L

2

(R

N

)) of the 
ompa
t operators, and

we write H

B

for the set of all sequen
es h in H su
h that the limit operator B

h

exists for every operator B 2 B. Then the mappings

W

h

: A=K(L

2

(R

N

))! L(L

2

(R

N

)); A +K(L

2

(R

N

)) 7! A

h

are 
orre
tly de�ned C

�

-algebra homomorphisms for h 2 H

B

. Employing a Can-

tor diagonal argument is is also not hard to verify that

�

op

(B) = fW

h

(B) : h 2 H

B

g for every B 2 B:

Let now the limit operators of A be uniformly invertible. Then, by Neumann

series, all limit operators of all operators A

n

are uniformly invertible if only n is

large enough. By Theorem 4.9, this implies that all operators A

n

with n large

enough are Fredholm or, equivalently, their 
osets modulo the 
ompa
t operators

are invertible. Moreover, these 
osets are even uniformly invertible whi
h follows

easily from the se
ond assertion of 4.9 (or, likewise, from the symbol 
al
ulus

developed in [18℄). Sin
e the 
osets of A

n


onverge to the 
oset of A, and sin
e

these 
osets are uniformly invertible, we obtain the invertibility of the 
oset of A

modulo the 
ompa
t operators, i.e. the Fredholmness of A.

Corollary 4.11 Let A 2 A

$

(L

2

(R

N

)). Then

kAk

ess

:= kA+K(L

2

(R

N

))k = supfkA

h

k : A

h

2 �

op

(A)g:

There is also a lo
al version of the latter result. Given a radius R > 0, a dire
tion

� 2 S

N�1

with S

N�1

referring to the unit sphere in R

N

, and a neighborhood

U � S

N�1

of �, de�ne

W

R;U

:= fz 2 R

N

: jzj > R and z=jzj 2 Ug: (27)

We 
all W

R;U

a neighborhood at in�nity of �. If h is a sequen
e whi
h tends to

in�nity, then we say that h tends into the dire
tion of � 2 S

N�1

if, for every

neighborhood at in�nity W

R;U

of �, there is an m

0

su
h that

h(m) 2 W

R;U

for allm � m

0

:

Finally, we 
all an operator A 2 L(L

2

(R

N

)) lo
ally invertible at the in�nitely

distant point � 2 S

N�1

if there exist a neighborhood at in�nity W of � as well as

operators R; L 2 L(L

2

(R

N

)) su
h that

LA�

W

I = �

W

AR = �

W

I:

We denote by �

op;�

(A) the set of all limit operators of A 2 B(L

2

(R

N

)) whi
h are

de�ned by sequen
es h = (h

1

; h

2

) : N ! Z

N

� Z

N

for whi
h h

1

tends to in�nity

into the dire
tion of �.
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Theorem 4.12 Let A 2 W

$

(L

2

(R

N

)). Then A is lo
ally invertible at the in-

�nitely distant point � 2 S

N�1

if and only if all limit operators A

h

2 �

op;�

(A) are

invertible.

The proof is similar to the proof of Theorem 4.9. An analogous result (with the

invertibility of all limit operators in the lo
al operator spe
trum repla
ed by their

uniform invertibility) holds for operators in A

$

(L

2

(R

N

)).

Finally, we say that � 2 C belongs to the lo
al spe
trum �

�

(A) of the operator

A at � if A� �I is not lo
ally invertible at the in�nitely distant point � 2 S

N�1

.

The following is a 
orollary of Theorem 4.12.

Theorem 4.13 Let A 2 W

$

(L

2

(R

N

)). Then

�

�

(A) =

[

A

h

2�

op;�

(A)

�(A

h

):

4.3 Fredholmness of pseudodi�erential operators in the


lass OPS

0

0;0

We have seen in Corollary 4.4, that every pseudodi�erential operator with symbol

in S

0

0;0

belongs to the Wiener algebra. Now we will show, moreover, that these

pseudodi�erential operators possess a ri
h operator spe
trum. Thus, they be
ome

subje
t to Theorem 4.9.

Theorem 4.14 OPS

0

0;0

� W

$

(L

2

(R

N

)).

Proof. Let a 2 S

0

0;0

and A := Op(a), and let h 2 H. For k = (k

1

; k

2

) 2 Z

N

�Z

N

,

we 
onsider the fun
tions

a

(k)

: R

N

� R

N

! R; (x

1

; x

2

) 7! a(x

1

+ k

1

; x

2

+ k

2

):

Clearly, U

�

h(m)

AU

h(m)

= Op(a

(h(m))

). The sequen
e (a

(h(m))

)

m2N

� C

1

(R

N

� R

N

)

is bounded with respe
t to the supremum norm. Hen
e, by the Arzel�a-As
oli

theorem, there exists a subsequen
e g of h su
h that the fun
tions a

(g(m))


onverge

in the topology of C

1

(R

N

�R

N

) to a fun
tion a

g

. It is easy to see that the limit

fun
tion a

g

belongs to S

0

0;0

and that

ja

g

j

k;l

� jaj

k;l

for all k; l 2 N :

We set A

g

:= Op(a

g

) and 
laim that A

g

is the limit operator of A with respe
t

to the sequen
e g, i.e., we 
laim that

s-lim

m!1

U

�

g(m)

AU

g(m)

= A

g

and s-lim

m!1

U

�

g(m)

A

�

U

g(m)

= A

�

g

: (28)

For the �rst assertion of (28), 
hoose a fun
tion ' 2 C

1

0

(R

N

) whi
h is equal to

1 in a neighborhood of the origin. Further, for R > 0, set '

R

(x) := '(x=R), and


onsider the 
ut-o� fun
tions  

R

(x; �) := '

R

(x)'

R

(�) on R

N

� R

N

. Evidently,

s-lim

R!1

Op( 

R

) = I: (29)

24



The operatorOp(a)Op( 

R

) is a pseudodi�erential operator with symbol 


R

2 S

0

0;0

,

given by the os
illatory integral




R

(x; �) = os (2�)

�N

Z Z

R

N

a(x; � + �) 

R

(x + y; �)e

�ihy; �i

dy d� (30)

(see, e.g. [16℄, Theorem 4.2.1). By means of the Lagrange formula, we write

 

R

(x+ y; �) =  

R

(x; �) + q

R

(x; y; �)

where q

R

(x; y; �) :=

P

N

j=1

l

j;R

(x; y; �)y

j

and

l

j;R

(x; y; �) :=

Z

1

0

(�

x

j

 

R

)(x + �y; �) d�:

Then we obtain (
f. [16℄, Corollary 2.2.2)

os (2�)

�N

Z Z

R

N

a(x; � + �)e

�ihy; �i

dy d� = p(x; �);

su
h that (30) 
an be written as




R

(x; �) = a(x; �) 

R

(x; �) + t

R

(x; �)

where

t

R

(x; �) = (2�)

�N

N

X

j=1

Z

R

N

Z

R

N

l

j;R

(x; y; �)(i�

y

j

)a(x; � + �)e

�ihy; �i

dy d�:

Simple manipulations yield the estimates

�

�

�

�

�

x

�

�

�

t

R

(x+ g

1

(m); � + g

2

(m))

�

�

�

� C

�;�

jaj

2k

1

+j�j;2k

2

+j�j

(1 +R)

�1

for all 2k

1

> N and 2k

2

> N , and with a 
onstant C

�; �

independent of a. By

the Calderon-Vaillan
ourt Theorem,

Op(t

(g(m))

R

) � Cjaj

N

1

;N

2

(1 +R)

�1

(31)

whenever N

1

and N

2

are suÆ
iently large. Here we used the 
onvention

t

(g(m))

R

(x; �) := t

R

(x + g

1

(m); � + g

2

(m)):

Let now u 2 L

2

(R

N

) and " > 0. Due to (29) and (31), we 
an 
hoose R

0

> 0

su
h that, for all R > R

0

,

ku� Op( 

R

)uk �

"

6kuk

and sup

m2N

kOp(t

(g(m))

R

)k �

"

3kuk

:
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Thus, for all m 2 N ,

k(U

�

g(m)

AU

g(m)

� A

g

)uk � k(U

�

g(m)

AU

g(m)

� A

g

)Op( 

R

)uk+ "=3

� kOp((a

(g(m))

� a

g

) 

R

)uk+ 2"=3: (32)

Sin
e the fun
tions a

(g(m))

�a

g

tend to zero in the topology of C

1

(R

N

�R

N

), the

sequen
e of the fun
tions (a

(g(m))

� a

g

) 

R

tends uniformly to zero together with

their derivatives. Hen
e, by the Calderon-Vaillan
ourt Theorem, there exist an

m

0

su
h that, for all m > m

0

kOp((a

(g(m))

� a

g

) 

R

)k �

"

3kuk

: (33)

Estimates (32) and (33) imply that, for arbitrary u 2 L

2

(R

N

) and " > 0, there

exists an m

0

su
h that

k(U

�

g(m)

AU

g(m)

� A

g

)uk < " for all m > m

0

:

This settles the �rst assertion of (28). For the se
ond one, noti
e that the symbol

of the adjoint operator is given by the os
illatory integral

sym

A

�

(x; �) = os (2�)

�N

Z Z

R

N

�a(x + y; � + �)e

�ihy; �i

dy d�

(Theorem 4.4.2 in [16℄). Sin
e a

(g(m))

! a

g

in the topology of C

1

(R

N

� R

N

),

this implies that

sym

A

�

(x + g

1

(m); � + g

2

(m))

= os (2�)

�N

Z Z

R

N

�a(x + g

1

(m) + y; � + g

2

(m) + �)e

�ihy; �i

dy d�

! os (2�)

�N

Z Z

R

N

�a

g

(x+ y; � + �)e

�ihy; �i

dy d�:

Hen
e, the symbols sym

(g(m))

A


onverge to sym

A

�

g

in the topology of C

1

(R

N

�R

N

)

as m ! 1. Repeating the above arguments, we obtain the se
ond assertion of

(28).

Due to Theorem 4.14, the following results are straightforward 
onsequen
es of

Theorems 4.10 and 4.13 and of Corollary 4.11.

Theorem 4.15 An operator A 2 OPS

0

0;0

is Fredholm on L

2

(R

N

) if and only if

all limit operators of A are invertible on L

2

(R

N

). Thus,

�

ess

(A) := �(A +K(L

2

(R

N

))) = [

A

h

2�

op

(A)

�(A

h

)

and, moreover,

kAk

ess

:= kA+K(L

2

(R

N

))k = inf

K2K(L

2

(R

N

))

kA�Kk = sup

A

h

2�

op

(A)

kA

h

k: (34)
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Theorem 4.16 An operator A 2 OPS

0

0;0

is lo
ally invertible at the in�nitely

distant point � 2 S

N�1

if and only if all limit operators of A in �

op;�

(A) are

invertible. In parti
ular,

�

�

(A) = [

A

h

2�

op;�

(A)

�(A

h

):

Remark. One also 
onsiders pseudodi�erential operators with double symbols

a 2 S

0

0;0;0

. The 
lass S

m

0;0;0


onsists of all fun
tions a 2 C

1

(R

N

� R

N

� R

N

) su
h

that

jaj

r; s; t

:= sup

R

N

�R

N

�R

N

X

j�j�r; j�j�s; j
j�t

j�

�

�

�

�

x

�




y

a(x; y; �)jh�i

�m

<1

for ea
h 
hoi
e of r; s; t 2 N . For ea
h a 2 S

m

0;0;0

, the pseudodi�erential operator

Op

d

(a) with double symbol a is de�ned by

(Op

d

(a)u)(x) :=

Z

R

N

Z

R

N

a(x; y; �)u(y)e

ihx�y; �i

dy d�; u 2 S(R

N

):

The 
lass of all operators Op

d

(a) with a 2 S

m

0;0;0

is denoted by OPS

m

0;0;0

. This


lass seems to be mu
h larger than the 
lass OPS

m

0;0

, but a
tually, both 
lasses


oin
ide (Theorem 4.3.2 in [16℄). Thus, the results of the previous theorems apply

to pseudodi�erential operators with double symbol a 2 S

0

0;0;0

, and what they yield

is the following. For k = (k

1

; k

2

) 2 Z

N

� Z

N

, we set

a

(k)

(x; y; �) := a(x + k

1

; y + k

1

; � + k

2

):

Then U

�

h(m)

AU

h(m)

= Op(a

(h(m))

), and the sequen
e h has a subsequen
e g su
h

that the fun
tions a

(g(m))


onverge to a fun
tion a

g

in the topology of C

1

(R

N

�

R

N

� R

N

) as m ! 1. The limit fun
tion a

g

belongs to S

0

0;0;0

, and the limit

operator of A with respe
t to the sequen
e g exists and is equal to Op(a

g

). So,

these operators possess a ri
h operator spe
trum, and Theorems 4.15 and 4.16

remain valid without 
hanges.

5 Appli
ations

5.1 Operators with slowly os
illating symbols

A symbol a 2 S

0

0;0

is 
alled slowly os
illating with respe
t to x if

lim

x!1

sup

�2R

N

j�

x

j

a(x; �)j = 0 for all j = 1; : : : ; N;

and a is slowly os
illating with respe
t to � if

lim

�!1

sup

x2R

N

j�

�

j

a(x; �)j = 0 for all j = 1; : : : ; N:

27



Proposition 5.1 Let the fun
tion a 2 S

0

0;0

be slowly os
illating with respe
t to

x. Then every limit operator of A := Op(a), whi
h is de�ned with respe
t to

a sequen
e h = (h

1

; h

2

) : N ! Z

N

� Z

N

with h

1

(m) ! 1 as m ! 1, is a

pseudodi�erential operator Op(a

h

) with a symbol independent of x. In parti
ular,

Op(a

h

) is shift invariant and, thus, a 
onvolution operator. Similarly, if a is

slowly os
illating with respe
t to �, and if h

2

(m)!1 as m!1, then the limit

operator Op(a

h

) has a symbol independent of � and is, thus, a multipli
ation

operator.

Proof. We will prove the �rst assertion only. Let a be slowly os
illating with

respe
t to x. As we have seen in the proof of Theorem 4.14, the symbol a

h

of the

limit operator is the C

1

(R

N

� R

N

)-limit of the fun
tions

a

(h(m))

: R

N

� R

N

! R; (x; �) 7! a(x + h

1

(m); � + h

2

(m)):

Sin
e, for �xed x

0

; x

00

2 R

N

,

ja

(h(m))

(x

0

; �)� a

(h(m))

(x

00

; �)j

�

N

X

j=1

jx

0

j

� x

00

j

j

Z

1

0

j�

x

j

(a

(h(m))

((1� t)x

0

+ tx

00

; �)j dt! 0

as m!1, the fun
tion a

h

does not depend on x.

The most simple (and, perhaps, most important) pseudodi�erential operators

with slowly os
illating symbols are those whose symbols are slowly os
illating

with respe
t to both variables simultaneously. We denote this 
lass of symbols

by SO

0

0;0

and the 
orresponding set of pseudodi�erential operators by OPSO

0

0;0

.

For operators in this 
lass, all limit operators are operators of 
onvolution or

operators of multipli
ation (indeed, if the sequen
e h = (h

1

; h

2

) tends to in�nity,

then at least one of the sequen
es h

1

and h

2

goes to in�nity, too). For both kinds

of limit operators, their invertibility 
an be easily 
he
ked.

Theorem 5.2 Let a 2 SO

0

0;0

. Then all limit operators of Op(a) are invertible if

and only if

lim

R!1

inf

jxj+j�j�R

ja(x; �)j > 0: (35)

Proof. Let 
ondition (35) be satis�ed, and let h = (h

1

; h

2

) be a sequen
e

whi
h de�nes a limit operator of Op(a). Further assume for de�niteness that the

sequen
e h

1

tends to in�nity (the 
ase when h

2

! 1 
an be treated similarly).

Then, as we have seen in Proposition 5.1, the limit operator Op(a)

h

is shift

invariant, i.e. there is a fun
tion a

h

in S

0

0;0

whi
h is independent of x su
h that

Op(a)

h

= Op(a

h

). Moreover, the fun
tions

a

(h(m))

: (x; �) 7! a(x + h

1

(m); � + h

2

(m))
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onverge to the fun
tion (x; �) 7! a

h

(�) in the topology of C

1

(R

N

� R

N

) as

m!1. Thus, for ea
h L > 0,

lim

m!1

sup

jxj+j�j�L

ja(x + h

1

(m); � + h

2

(m))� a

h

(�)j = 0: (36)

From (35) and (36) we 
on
lude that inf

�

ja

h

(�)j > 0, i.e. the limit operator

Op(a)

h

is invertible.

To prove the reverse statement, suppose that all limit operators of Op(a)

are invertible, but that 
ondition (35) is not ful�lled. Then there exists a se-

quen
e h = (h

1

; h

2

) : N ! Z

N

� Z

N

whi
h tends to in�nity and for whi
h

a(h

1

(m); h

2

(m)) ! 0. Without loss we 
an assume that the limit operator of

Op(a) with respe
t to h exists (otherwise we 
hoose a suitable subsequen
e of h).

We further assume for de�niteness that h

1

!1 (the 
ase when h

2

!1 follows

similarly). Then, as before, Op(a)

h

= Op(a

h

) with a fun
tion a

h

independent of

x and su
h that the fun
tions a

(h(m))


onverge to a

h

in C

1

(R

N

� R

N

). It follows

from a(h

1

(m); h

2

(m)) ! 0 that a

h

(0) = 0 whi
h 
ontradi
ts the invertibility of

Op(a

h

).

Corollary 5.3 An operator Op(a) 2 OPSO

0

0;0

is Fredholm if and only if 
ondi-

tion (35) holds. Moreover,

kOp(a)k

ess

= lim

R!1

sup

jxj+j�j�R

ja(x; �)j:

The proof of the �rst assertion follows from the previous result and from Theorem

4.15. For the se
ond assertion, re
all Corollary 4.11.

These results admit generalizations to pseudodi�erential operators with double

symbols. For, we 
all the double symbol a 2 S

0

0;0;0

slowly os
illating and write

a 2 SO

0

0;0;0

if, for arbitrary 
ompa
t sets K � R

N

,

lim

x!1

sup

(y; �)2K�R

N

j�

x

j

a(x; x+ y; �)j = 0

and

lim

�!1

sup

(x; y)2R

N

�R

N

j�

�

j

a(x; y; �)j = 0:

Proposition 5.4 (a) Let a 2 SO

0

0;0;0

, and let h = (h

1

; h

2

) be a sequen
e with

h

1

!1 for whi
h the limit operator Op

d

(a)

h

exists. Then this limit operator is

of the form Op(a

h

) where a

h

is the limit in the topology of C

1

(R

N

� R

N

) of the

fun
tions

(x; �) 7! a(x+ h

1

(m); x + h

1

(m); � + h

2

(m))

as m!1. The fun
tion a

h

is independent of x in this 
ase.

(b) Let a 2 SO

0

0;0;0

, and let h = (h

1

; h

2

) be a sequen
e with h

2

! 1 for whi
h
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the limit operator Op

d

(a)

h

exists. Then this limit operator is of the form Op(a

h

)

where a

h

is the limit in the topology of C

1

(R

N

� R

N

) of the fun
tions

(x; �) 7! a(x+ h

1

(m); x + h

1

(m); � + h

2

(m))

as m!1. The fun
tion a

h

is independent of � in this 
ase.

Proof. We will 
he
k assertion (b) for example. The symbol a

h

of the limit

operator of Op

d

(a) with respe
t to h is de�ned as the limit as m ! 1 of the

os
illatory integral

os (2�)

�N

Z Z

R

N

a(x + h

1

(m); x+ h

1

(m) + y; � + h

2

(m) + �)e

�ihy; �i

dy d�:

Thus,

a

h

(x; x) = os (2�)

�N

Z Z

R

N

a

h

(x; x + y)e

�ihy; �i

dy d�

by Corollary 2.2.2 in [16℄.

As in Theorem 5.2 and its Corollary 5.3, one 
an also prove that, if a 2 SO

0

0;0;0

,

then all limit operators of Op

d

(a) are invertible if and only if

lim

R!1

sup

jxj+j�j�R

ja(x; x; �)j > 0: (37)

Hen
e, 
ondition (37) is ne
essary and suÆ
ient for Fredholmness of Op

d

(a); and

kOp

d

(a)k

ess

= lim

R!1

inf

jxj+j�j�R

ja(x; x; �)j:

5.2 Operators with almost periodi
 symbols

A fun
tion a in C

b

(R

N

) (= the C

�

-algebra of the bounded 
ontinuous fun
tions

on R

N

) is 
alled almost periodi
 if the set fV

r

a : r 2 R

N

g of all shifts of a

is relatively 
ompa
t in C

b

(R

N

), i.e. if every sequen
e in this set has a norm


onvergent subsequen
e. Here, V

r

a stands for the fun
tion x 7! a(x � r). The


lass of all almost periodi
 fun
tions will be denoted by AP (R

N

). Note that

AP (R

N

) is a C

�

-algebra with respe
t to the supremum norm. Ni
e referen
es to

this 
lass are still [14, 15℄.

We set AP

1

(R

N

) := AP (R

N

) \ C

1

b

(R

N

) and denote by A

0

0;0

the 
losure in

S

0

0;0

of the 
lass of all fun
tions of the form

a(x; �) =

J

X

j=1




j

(x)b

j

(�) (38)

where J 2 N , 


j

2 AP

1

(R

N

) and b

j

2 SO

0

0;0

. Pseudodi�erential operators with

symbols in this 
lass possess limit operators with respe
t to the shifts V

k

where

the 
onvergen
e is in the operator norm.
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Proposition 5.5 Let A 2 OPA

0

0;0

. Then ea
h sequen
e h : N ! Z

N

whi
h tends

to in�nity has a subsequen
e g su
h that there exists an operator A

g

2 OPA

0

0;0

with

lim

m!1

kV

�g(m)

AV

g(m)

� A

g

k = 0:

Proof. To start with, let A = Op(a) where a 2 A

0

0;0

is a symbol of the form

(38), and let h 2 H. Sin
e the fun
tions 


k

are almost periodi
 (and by a simple

Cantor diagonal argument), there are a subsequen
e g of h as well as fun
tions




jg

2 AP (R

N

) su
h that

lim

m!1

sup

x2R

N

j


j

(x+ g(m))� 


jg

(x)j = 0 (39)

for 1 � j � J . Applying the inequality

sup

R

N

X

j�j=1

j�

�

a(x)j � C

0

�

sup

x2R

N

ja(x)j

0

�

sup

x2R

N

ja(x)j+ sup

x2R

N

X

j�j=2

j�

�

a(x)j

1

A

1

A

1=2

(see, for instan
e, [22℄, p. 22), one obtains that the sequen
e of the shifted

fun
tions V

g(m)




j


onverges to 


jg

in the topology of C

1

b

(R

N

), whi
h implies that




jg

2 AP

1

(R

N

). Now set

A

g

:= Op(a

g

) with a

g

(x; �) :=

J

X

j=1




jg

(x)b

j

(�):

Then it follows from (39) that indeed

lim

m!1

kV

�g(m)

AV

g(m)

� A

g

k = 0:

This settles the assertion for operators A = Op(a) where a is of the form (38).

The general 
ase follows straightforwardly by a Cantor diagonalization pro
edure

and standard 
ontinuity arguments.

One 
an also easily 
he
k that A

g

2 OPA

0

0;0

again and that A

g

is a limit operator

of A de�ned by the sequen
e h : m 7! (g(m); 0) 2 Z

N

� Z

N

and with respe
t to

the shift operators U

h(m)

(
f. Se
tion 3.3).

Theorem 5.6 Let A 2 OPA

0

0;0

. Then the following assertions are equivalent:

(a) A is a Fredholm operator.

(b) All limit operators of A are invertible.

(
) At least one limit operator of A is invertible.

(d) A is an invertible operator.
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Proof. If A is Fredholm, then all limit operators of A are invertible. Let,


onversely, A

h

be an invertible limit operator of A. By Proposition 5.5, there is

a subsequen
e g of h su
h that

lim

m!1

kV

�g(m)

AV

g(m)

� A

g

k = 0:

Then A

h

= A

g

and, sin
e the invertible operators form an open subset of L(E),

the operators V

�g(m)

AV

g(m)

must be invertible for all suÆ
iently large m. Hen
e,

A is invertible.

Similarly, if A is 
ompa
t, then all limit operators of A are zero. Conversely, if

0 is a limit operator of A, then (again by Proposition 5.5) there is a subsequen
e

g of h su
h that kV

�g(m)

AV

g(m)

k ! 0. Sin
e the operators V

k

are isometries, A

must be the zero operator.

Corollary 5.7 The smallest C

�

-subalgebra of L(L

2

(R

N

)) whi
h 
ontains OPA

0

0;0

does not 
ontain nonzero 
ompa
t operators.

We are now going to sket
h brie
y how these results spe
ialize to symbols in a

sub
lass of A

0

0;0

, in whi
h 
ase the Fredholmness of the operator together with

its uniform ellipti
ity and a 
ertain index 
ondition yields the invertibility of the

operator.

We say that the fun
tion a 2 S

0

0;0

belongs to S

0

1;0

if

jaj

l

:=

X

j�j+j�j�l

sup

(x; �)2R

N

�R

N

j�

�

x

�

�

�

a(x; �)jh�i

j�j

<1

for all non-negative integers l. The semi-norms j:j

l

de�ne the topology of S

0

1;0

.

Further, we 
onsider the 
lass A

0

1;0

whi
h is the 
losure in S

0

1;0

of the set of all

symbols of form (38) where the 


j

satisfy the estimates

j�

�




j

(�)j � C

�; k

h�i

�j�j

for all multi-indi
es �. Finally, an operator Op(a) 2 OPA

0

1;0

is 
alled uniformly

ellipti
 if

lim

R!1

inf

x; �2R

N

; j�j>R

ja(x; �)j > 0: (40)

It is easy to see that an operator Op(a) 2 OPA

0

1;0

is uniformly ellipti
 if and

only if all limit operators of A de�ned by sequen
es (g

1

; g

2

) : N ! Z

N

�Z

N

with

g

2

!1 are invertible. Thus, the uniform ellipti
ity is a ne
essary 
ondition for

the invertibility of Op(a). An analogous result holds for almost periodi
 operators

with matrix valued symbols, where one has to repla
e the value a(x; �) in (40)

by det a(x; �).

Let now A 2 OPA

0

1;0

be a uniformly ellipti
 operator with M �M -matrix-

valued 
oeÆ
ients. Then the di�eren
e between its Fredholmness and its in-

vertibility is measured by its almost periodi
 index �(A). This index has been
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introdu
ed in [5℄ (see also [8℄) by means of Breuer's Fredholm theory for II

1

fa
tors. In distin
tion to the usual (Fredholm) index, �(A) 
an be an arbitrary

real number. We will not go into the details and restri
t ourselves to rephrasing

a few basi
 properties:

� If A; B 2 OPA

0

1;0

are uniformly ellipti
 operators, then �(AB) = �(A)�(B).

� The almost periodi
 index is stable in the following sense. Given a uni-

formly ellipti
 operator Op(a) 2 OPA

0

1;0

, there exists an " > 0 su
h that

�(Op(b)) = �(Op(a)) for all operators Op(b) 2 OPA

0

1;0

with

lim

R!1

sup

x; �2R

N

; j�j>R

ka(x; �)� b(x; �)k

L(C

M

)

< ":

� If A 2 OPA

0

1;0

is invertible, then �(A) = 0.

� Let A 2 OPA

0

1;0

be uniformly ellipti
 and �(A) = 0. Then A is invertible

if and only if

�(A) := inf

k'k�1

kA'k > 0:

� Let A 2 OPA

0

1;0

be a s
alar uniformly ellipti
 operator, and let N > 1.

Then �(A) = 0. Thus, for su
h operators, the 
ondition �(A) > 0 is

ne
essary and suÆ
ient for invertibility of A.

The 
ondition �(A) > 0 is satis�ed if and only if the operator A has a trivial

kernel and a 
losed range, whi
h holds, for example, if A is Fredholm. Hen
e, if

A 2 OPA

0

1;0

is a s
alar uniformly ellipti
 and Fredholm operator with �(A) = 0,

then A is invertible.

5.3 Operators with semi-almost periodi
 symbols

The 
lass B

0

1;0

of the semi-almost periodi
 symbols with respe
t to x is de�ned as

the 
losure in the topology of S

0

1;0

of the set of all fun
tions of the form

a(x; �) =

J

X

j=1




j

(x)b

j

(x; �)

where J 2 N , 


j

2 AP

1

(R

N

) and b

j

2 SO

0

1;0

:= SO

0

0;0

\ S

0

1;0

.

Theorem 5.8 Let N > 1, and let a 2 B

0

1;0

. Then the operator A := Op(a) is a

Fredholm operator if and only if the following 
onditions are satis�ed:

(a) A is uniformly ellipti
, that is

lim

R!1

inf

x; �2R

N

; j�j>R

ja(x; �)j > 0:

(b) For ea
h limit operator A

g

of A whi
h is de�ned by a sequen
e g = (g

1

; g

2

) :

N ! Z

N

� Z

N

with g

2

!1, one has �(A

g

) > 0.
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Proof. Let 
onditions (a) and (b) be satis�ed. In the same way as in the proof

of Theorem 5.2, we obtain that 
ondition (a) implies the invertibility of all limit

operators of A whi
h 
orrespond to sequen
es g = (g

1

; g

2

) with g

2

! 1. Let

now g = (g

1

; g

2

) be a sequen
e with g

1

! 1 for whi
h the limit operator A

g

exists. Then, by the de�nition of the 
lass B

0

1;0

, this limit operator belongs to

OPA

0

1;0

and, due to 
ondition (a), the operator A

g

is uniformly ellipti
 with

�(A

g

) = 0 (sin
e A is an operator with s
alar-valued symbol). It follows from the

last remark in the pre
eding subse
tion that A

g

is invertible if the lower norm

�(A

g

) is positive. Thus, 
onditions (a) and (b) provide us with the invertibility

of all limit operators of A. By Theorem 4.15, A is a Fredholm operator.

Let, 
onversely, A be a Fredholm operator. Then, by Theorem 4.15 again, all

limit operators of A are invertible. The invertibility of all limit operators with

respe
t to sequen
es g = (g

1

; g

2

) with g

2

!1 yields the uniform ellipti
ity of A,

that is 
ondition (a), whereas the invertibility of all limit operators 
orresponding

to sequen
es g = (g

1

; g

2

) with g

1

!1 evidently implies 
ondition (b).

5.4 Pseudodi�erential operators of nonzero order

Let a 2 S

m

0;0

. Then the pseudodi�erential operator A := Op(a) a
ts as a linear

bounded operator from H

s+m

(R

N

) into H

s

(R

N

) for every s 2 R (whi
h is a

simple 
onsequen
e of the Calderon-Vaillan
ourt theorem). We are going to study

the Fredholm properties of that operator by redu
ing it in a standard way to a

pseudodi�erential operator a
ting on H

0

(R

N

) = L

2

(R

N

). For, let hDi

r

refer to

the pseudodi�erential operator with symbol (x; �) 7! (1 + j�j

2

2

)

r=2

. The operator

hDi

r

is an isometry from H

s+r

(R

N

) onto H

s

(R

N

) for ea
h real s. Thus,

A : H

s+m

(R

N

)! H

s

(R

N

)

is a Fredholm operator if and only if

B := hDi

s

AhDi

�s�m

: L

2

(R

N

)! L

2

(R

N

)

is a Fredholm operator. The operator B is a pseudodi�erential operator in the


lass to OPS

0

0;0

. Hen
e, Theorem 4.15 implies the following.

Theorem 5.9 Let a 2 S

m

0;0

. Then the operator A = Op(a) : H

s+m

(R

N

) !

H

s

(R

N

) is Fredholm operator if and only if all limit operators of the operator

B := hDi

s

AhDi

�s�m

: L

2

(R

N

)! L

2

(R

N

) are invertible. In parti
ular,

�

ess

(A) = [

B

h

2�

op

(B)

�(B

h

):

These 
onditions 
an be made more expli
it for symbols whi
h are slowly os
il-

lating in the following sense. We say that the fun
tion a is in the 
lass SO

m

0;0

with

m 2 N if the fun
tion (x; �) 7! a(x; �)h�i

�m

belongs to SO

0

0;0

. Analogously, the

double symbol a is said to be in SO

m

0;0;0

if the fun
tion (x; y; �) 7! a(x; y; �)h�i

�m

belongs to SO

0

0;0;0

.
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Proposition 5.10 (a) Let A := Op(a) 2 OPSO

m

1

0;0

and B := Op(b) 2 OPSO

m

2

0;0

.

Then AB 2 OPSO

m

1

+m

2

0;0

, and the symbol of AB is of the form sym

AB

= ab + t

with t satisfying

lim

(x; �)!1

t(x; �)h�i

�m

1

�m

2

= 0: (41)

(b) Let A := Op

d

(a) 2 OPSO

m

0;0;0

. Then A 2 OPS

m

0;0

, and the formal symbol of

that operator is given by sym

A

(x; �) := a(x; x; �) + t(x; �) where t is su
h that

lim

(x; �)!1

t(x; �)h�i

�m

= 0:

Proof. (a) By Theorem 4.2.1 in [16℄, the operator AB belongs to OPSO

m

1

+m

2

0;0

,

and its symbol is given by

sym

AB

(x; �) = os (2�)

�N

Z Z

R

N

a(x; � + �)b(x + y; �)e

�ihy; �i

dy d�:

By Lagrange's formula, we have

a(x; � + �) = a(x; �) +

N

X

j=1

�

j

Z

1

0

�

�

j

a(x; � + ��) d�;

when
e via Corollary 2.2.2 in [16℄,

sym

AB

(x; �) = a(x; �)b(x; �) + t(x; �);

with

t(x; �) =

N

X

j=1

Z

1

0

L

j

(x; �; �) d�

and

L

j

(x; �; �)

= os (2�)

�N

Z Z

R

N

�

�

j

a(x; � + ��)(�i�

x

j

)b(x + y; �)e

�ihy; �i

dy d�

= os (2�)

�N

Z Z

R

N

h�i

�2k

2

hD

y

i

2k

2

�

�

�

hyi

�2k

1

hD

�

i

2k

1

�

�

j

a(x; � + ��)(�i�

x

j

)b(x + y; �))

	

e

�ihy; �i

dy d�

for all k

1

; k

2

with 2k

1

> N and 2k

2

> N + jm

1

j. Taking into a

ount the

elementary inequality

h� + �i

l

� 2

l=2

h�i

jlj

h�i

l

for l 2 R;

we obtain

L

j

(x; �; �) � Ch�i

m

1

+m

2

K

j

(x; �; �)
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where

K

j

(x; �; �)

= os (2�)

�N

Z Z

R

N

h� + ��i

�m

1

h�i

�2k

2

+jm

1

j

�

�

�

�

hD

y

i

2k

2

hyi

�2k

1

hD

�

i

2k

1

�

�

j

a(x; � + ��)(�i�

x

j

)b(x + y; �)h�i

�m

2

)

�

�

dy d�:

The latter integral 
onverges uniformly with respe
t to x; � 2 R

N

and � 2 [0; 1℄.

Hen
e, we 
an pass to the limit as (x; �)!1 under this integral, whi
h yields

lim

(x; �)!1

sup

�2[0; 1℄

K

j

(x; �; �) = 0:

This implies (41). Assertion (b) 
an be 
he
ked in the same way.

A 
onsequen
e of this proposition is that, if A = Op(a) 2 OPSO

0

0;0

, then

B := hDi

s

AhDi

�(s+m)

= Op(a

m

) +Op(t)

where

a

m

(x; �) := a(x; �)h�i

�m

and lim

(x; �)!1

t(x; �) = 0:

Thus, all limit operators B

g

of B depend on the main part a

m

of the symbol of

B only. Moreover, these limit operators are pseudodi�erential operators B

g

=

Op(b

g

) whi
h are invariant with respe
t to shifts (i.e. their symbols b

g

depend

on � only), or they are operators of multipli
ation (i.e. their symbols are only

dependent on x). So we arrive at the following theorem.

Theorem 5.11 (a) Consider the operator A = Op(a) 2 OPSO

m

0;0

as a
ting from

H

s+m

(R

N

) into H

s

(R

N

). Then all limit operators of B := hDi

s

AhDi

�(s+m)

:

L

2

(R

N

)! L

2

(R

N

) invertible if and only if

lim

R!1

inf

jxj+j�j�R

ja(x; �)jh�i

�m

> 0: (42)

The 
ondition (42) is ne
essary and suÆ
ient for the Fredholmness of A.

(b) Consider the operator A = Op

d

(a) 2 OPSO

m

0;0;0

as a
ting from H

s+m

(R

N

)

into H

s

(R

N

). Then all limit operators of B := hDi

s

AhDi

�(s+m)

: L

2

(R

N

) !

L

2

(R

N

) are invertible if and only if

lim

R!1

inf

jxj+j�j�R

ja(x; x; �)jh�i

�m

> 0: (43)

Condition (43) is ne
essary and suÆ
ient for the Fredholmness of A.

36



5.5 Di�erential operators

The results of the previous se
tion apply to study the Fredholmness of di�erential

operators on R

N

by means of their limit operators. Let

P =

X

j�j�m

a

�

D

�

be a di�erential operator of order m with 
oeÆ
ients a

�

2 C

1

b

(R

N

). We 
onsider

this operator as a
ting from H

s+m

(R

N

) into H

s

(R

N

). The fun
tion

p

m

: R

N

� R

N

! R; (x; �) 7!

X

j�j=m

a

�

(x)�

�

is 
alled the main symbol of P , and the operator P is 
alled uniformly ellipti
 if

inf

x2R

N

jp

m

(x; !)j > 0 for all ! 2 S

N�1

:

Let h : N ! Z

N

be a sequen
e whi
h tends to in�nity. Then there exist a

subsequen
e g of h and fun
tions a

g

�

2 C

1

b

(R

N

) su
h that the fun
tions x 7!

a

�

(x+ g(k)) 
onverge to a

g

�

in the topology of C

1

b

(R

N

) for every �. We set

P

g

:=

X

j�j�m

a

g

�

D

�

;


onsider P

g

as an operator from H

s+m

(R

N

) into H

s

(R

N

) again, and denote by

�

1

op

(P ) the set of all operators whi
h arise in this way.

Theorem 5.12 The di�erential operator P : H

s+m

(R

N

)! H

s

(R

N

) is Fredholm

if and only if the following 
onditions are satis�ed:

(a) All operators P

g

2 �

1

op

(P ) are invertible.

(b) The operator P is uniformly ellipti
.

Proof. It follows from Theorem 5.9 that P is a Fredholm operator if and only if

all limit operators of hDi

s

P hDi

�s�m

are invertible on L

2

(R

N

).

Let h = (h

1

; h

2

) : N ! Z

N

� Z

N

be a sequen
e su
h that h

1

! 1 but h

2

is bounded. Then there exists a subsequen
e g = (g

1

; g

2

) of h su
h that, for

every �, the fun
tions x 7! a

�

(x+ g

1

(k)) 
onverge to 
ertain fun
tions a

g

1

�

in the

topology of C

1

b

(R

N

) and that the sequen
e g

2

is 
onstant, say g

2

(k) = 


2

2 Z

N

for all k. In this 
ase, it is easy to see that

s-lim

k!1

U

�

g(k)

hDi

s

P hDi

�s�m

U

g(k)

= E

�




2

hDi

s

P

g

1

hDi

�s�m

E




2

with (E




u)(x) := e

ih
; xi

u(x). Thus, the limit operators of hDi

s

P hDi

�s�m

whi
h

are de�ned be sequen
es of this kind are invertible if and only if 
ondition (a)

holds.
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Now 
onsider limit operators of hDi

s

P hDi

�s�m

whi
h are de�ned by sequen
es

g = (g

1

; g

2

) su
h that g

2

!1 and g

1

is 
onstant, say g

1

(k) = 


1

2 Z

N

. Suppose

for de�niteness that g

2

tends to in�nity into the dire
tion of the in�nitely distant

point ! 2 S

N�1

. Then

s-lim

k!1

E

�

g

2

(k)

hDi

s

P hDi

�s�m

E

g

2

(k)

= p

m

( :; !)I

when
e

s-lim

k!1

U

�

g(k)

hDi

s

P hDi

�s�m

U

g(k)

=

X

j�j=m

a( :� 


1

)!

�

I:

Hen
e, all limit operators de�ned by these sequen
es are operators of multipli
a-

tion by the fun
tions

p

m; g

: (x; !) 7!

X

j�j=m

a(:� 


1

)!

�

:

Finally, if both g

1

and g

2

go to in�nity, and if g

1

and g

2

are 
hosen su
h that the

fun
tions x 7! a

�

(x + g

1

(k)) 
onverge to 
ertain fun
tions a

g

1

�

in the topology of

C

1

(R

N

) and that g

2

tends to in�nity into the dire
tion of the in�nitely distant

point ! 2 S

N�1

, then

s-lim

k!1

U

�

g(k)

hDi

s

P hDi

�s�m

U

g(k)

=

X

j�j=m

a

g

1

�

!

�

I:

Thus, we get multipli
ation operators again, this time by the fun
tions

p

m; g

: (x; !) 7!

X

j�j=m

a

g

1

�

(x)!

�

:

Evidently, if the operator is uniformly ellipti
, then in all 
ases

inf

x2R

N

jp

m;g

(x; !)j > 0:

Hen
e, the limit operators Op(p

m;g

)I are invertible on L

2

(R

N

), and 
ondition

(b) implies the invertibility of all limit operators de�ned by sequen
es g with

g

2

! 1. Conversely, 
hoosing sequen
es g = (g

1

; g

2

) with g

1

(k) = 0 for all k

and with g

2

tending to in�nity into the dire
tion of ! 2 S

N�1

, we obtain that

the invertibility of all asso
iated limit operators implies 
ondition (b).

Corollary 5.13 Let P : H

m

(R

N

) ! L

2

(R

N

) be a uniformly ellipti
 di�erential

operator of order m. Then

�

ess

(P ) = [

P

g

2�

1

op

(P )

�(P

g

):
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Proof. By Theorem 5.9, the operator P � �I : H

m

(R

N

)! L

2

(R

N

) is Fredholm

if and only if all limit operators

P

g

� �I : H

m

(R

N

)! L

2

(R

N

); P

g

2 �

1

op

(P );

are invertible and if P � �I is uniformly ellipti
. Sin
e the uniform ellipti
ity of

a di�erential operator depends on its main symbol only, the uniform ellipti
ity

of P � �I follows from the 
onditions of the 
orollary.

We denote by SO

1

(R

N

) the 
lass of the smooth slowly os
illating fun
tions on

R

N

, that is the 
lass of all fun
tions a 2 C

1

b

(R

N

) with

lim

x!1

�

x

j

a(x) = 0 for all j = 1; : : : ; N:

Let the 
oeÆ
ients a

�

of the di�erential operator P belong to SO

1

(R

N

). Then

all limit operators P

g

2 �

1

op

(P ) are of the form

P

g

= Op(p

g

) =

X

j�j�m

a

g

1

�

D

�

with 
onstant 
oeÆ
ients a

g

1

�

. The operator P

g

is invertible if and only if

inf

�2R

N

jp

g

(�)jh�i

�m

= inf

�2R

N

�

�

�

�

�

�

X

j�j�m

a

g

1

�

�

�

�

�

�

�

�

�

h�i

�m

> 0:

Hen
e, if P is a di�erential operator with smooth slowly os
illating 
oeÆ
ients,

then

�

ess

(P ) =

[

P

g

2�

1

op

(P )

fp

g

(�) : � 2 R

N

g:

Remark. A di�erential operator P of order m 
an be 
onsidered as an un-

bounded operator on the Hilbert spa
e L

2

(R

N

) with domain H

m

(R

N

). If P is

uniformly ellipti
, then P is a 
losed operator. An unbounded operator P is


alled a Fredholm operator if its range is 
losed in L

2

(R

N

) and if kerA and kerA

�

are �nite dimensional spa
es, and the essential spe
trum �

ess

(A) of A 
onsists of

all � 2 C for whi
h A� �I is not a Fredholm operator.

It is well known that, if P is uniformly ellipti
, then P is a Fredholm operator

in this sense (i.e. as an unbounded operator) if and only if P : H

m

(R

N

)! L

2

(R

N

)

is a Fredholm operator in the 
ommon sense (i.e. as a bounded operator). Hen
e,

if P is a uniformly ellipti
 di�erential operator, then

�

ess

(P ) = [

P

g

2�

1

op

(P )

�(P

g

);

where now both the essential spe
trum on the left hand side and the spe
tra on

the right hand side are understood in the unbounded operator sense.
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5.6 S
hr�odinger operators

Here we are going to spe
ialize the results of the previous se
tion to operators of

the form

H =

N

X

l;m=1

(i�

x

l

+ a

l

I)g

lm

(i�

x

m

+ a

m

I) + wI

where g

lm

; a

l

and w are real-valued fun
tions in C

1

b

(R

N

). This operator 
an be

viewed of as the ele
tro-magneti
 S
hr�odinger operator on the Riemann spa
e

R

N

provided with the metri
 tensor (g

lm

)

N

l;m=1

whi
h is the tensor inverse of

(g

lm

)

N

l;m=1

. S
hr�odinger operators of this form arise in multi-parti
le problems

after separating the mass 
enter of the system (see, for instan
e, [6℄, pp. 29 { 33

and [11℄, pp. 172 { 176). Throughout this se
tion, we will suppose that

inf

x2R

N

; �2S

N�1

N

X

l;m=1

g

lm

(x)�

l

�

m

> 0:

Let h : N ! Z

N

be a sequen
e whi
h tends to in�nity. Then there exists a

subsequen
e k of h su
h that the fun
tions

x 7! g

lm

(x + k(n)); x 7! a

l

(x+ k(n)) and x 7! w(x+ k(n))


onverge in the topology of C

1

b

(R

N

) to 
ertain fun
tions g

lm

k

, a

k

l

and w

k

, respe
-

tively. In parti
ular, these limit fun
tions belong to C

1

b

(R

N

) again. If k is 
hosen

in this way, then the limit operator H

k

of H with respe
t to k exists, and

H

k

=

N

X

l;m=1

(i�

x

l

+ a

k

l

I)g

lm

k

(i�

x

m

+ a

k

m

I) + w

k

I:

We 
onsider H as an unbounded operator on L

2

(R

N

) with domain H

2

(R

N

).

Note that � 2 C is a point in the dis
rete spe
trum of the unbounded operator

H if and only if � belongs to the dis
rete spe
trum of the bounded operator

H : H

2

(R

N

) ! L

2

(R

N

). Hen
e, the essential spe
trum of H, 
onsidered as

an unbounded operator, 
oin
ides with the essential spe
trum of the bounded

operator H : H

2

(R

N

)! L

2

(R

N

). With Corollary 5.13, we �nd

�

ess

(H) =

[

H

k

2�

1

op

(H)

�(H

k

): (44)

Here are a few instan
es where the stru
ture of the limit operators is suÆ
iently

simple su
h that their invertibility 
an be e�e
tively 
he
ked.

Example A. Let the fun
tions g

lm

, a

l

and w be in SO

1

(R

N

). Then ea
h limit

operator of H is a di�erential operator with 
onstant 
oeÆ
ients, i.e.

H

k

=

N

X

l;m=1

(i�

x

l

+ a

k

l

I)g

lm

k

(i�

x

m

+ a

k

m

I) + w

k

I:
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with real numbers g

lm

k

; a

k

l

and w

k

. Set a

k

:= (a

k

1

; : : : ; a

k

N

) and (E

�

u)(x) :=

e

ih�; xi

u(x) for � 2 R

N

. Then

E

a

k
H

k

E

�1

a

k

= �

N

X

l;m=1

g

lm

k

�

x

l

�

x

m

+ w

k

I:

Thus,

�(H

k

) =

(

N

X

l;m=1

g

lm

k

�

l

�

m

+ w

k

: (�

1

; : : : ; �

N

) 2 R

N

)

= [w

k

; +1℄;

and the essential spe
trum of H is

�

ess

(H) =

[

[w

k

; +1℄ = [m

w

; +1℄

where m

w

:= inf w

k

= lim inf

x2R

N
w(x).

Example B. We let v

1

; v

2

and v

12

be C

1

-fun
tions on R

3

with

lim

y!1

v

1

(y) = lim

y!1

v

2

(y) = lim

y!1

v

12

(y) = 0;

de�ne fun
tions w

1

; w

2

; w

12

on R

3

� R

3

by

w

1

(x) := v

1

(x

(1)

); w

2

(x) := v

2

(x

(2)

); w

12

(x) := v

12

(x

(1)

� x

(2)

)

where x = (x

(1)

; x

(2)

) 2 R

3

� R

3

, and 
onsider the Hamiltonian on L

2

(R

3

� R

3

),

H := ��

x

(1)

��

x

(2)

� w

1

I � w

2

I � w

12

I:

Hamiltonians of this spe
ial stru
ture arise in nu
lear physi
s (but, usually, with

non-smooth fun
tions v

1

; v

2

and v

12

, whi
h moreover will have singularities at 0;

see, for instan
e, [7℄, p. 163, and [6℄, p. 29).

We will des
ribe the essential spe
trum of H by means of its limit operators.

Let the sequen
e h := (h

1

; h

2

) : N ! Z

3

� Z

3

tend to in�nity. After passing

to suitable subsequen
es of h, if ne
essary, we have to distinguish between four


ases.

[A℄ We have h

1

!1, and h

2

is a 
onstant sequen
e, say h

2

(k) = 


2

2 Z

N

for

all k. Then the limit operator of H with respe
t to h exists, and

(H

h

u)(x) = �(�

x

(1)

u)(x)� (�

x

(2)

u)(x)� w

2

(x

(2)

+ 


2

)u(x):

The operator H

h

is unitarily equivalent to the operator

H

1

:= ��

x

(1)

��

x

(2)

� w

2

I:
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[B℄ If h

2

! 1, and if h

1

(k) = 


1

2 Z

N

for all k, then the limit operator of H

with respe
t to h exists, and it is unitarily equivalent to the operator

H

2

:= ��

x

(1)

��

x

(2)

� w

1

I:

[C℄ If both h

1

and h

2

tend to in�nity, and if also h

1

� h

2

!1, then the limit

operator of H is equal to the Lapla
ian

H

3

:= ��

x

(1)

��

x

(2)

:

[D℄ If, �nally, h

1

and h

2

tend to in�nity, and if the di�eren
e h

1

� h

2

is a


onstant sequen
e, then the limit operator of H with respe
t to h exists,

and it is unitarily equivalent to the operator

H

4

:= ��

x

(1)

��

x

(2)

� w

12

I:

Let j = 1; 2. Applying the Fourier transform with respe
t to x

(j)

, we obtain that

the operator H

j

is unitarily equivalent to the operator of multipli
ation by the

operator-valued fun
tion

b

H

j

: R

3

! L(L

2

(R

3

� R

3

)); � 7! j�j

2

��

x

(3�j)

� w

3�j

I:

It is well-known that the essential spe
trum of the operator A

j

:= ��

x

(3�j)

�

w

3�j

I is the interval [0; 1) and that its dis
rete spe
trum 
onsists of �nitely

many points in (�1; 0). Let �

(j)

min

< 0 be the minimal eigenvalue of A

j

. Then,

sin
e j�j

2

varies over [0; 1), the spe
trum of H

j

is the interval [�

(j)

min

; 1).

Now 
onsider the operator H

4

. After a 
hange of variables

y

(1)

:= x

(1)

+ x

(2)

; y

(2)

:= x

(1)

� x

(2)

;

the operator H

4

be
omes

�2(�

y

(1)

+�

y

(2)

)� ŵ

12

I

with ŵ

12

(y) := v

12

(y

(2)

). The spe
trum of this operator is the interval [�

(12)

min

; 1)

where �

(12)

min

< 0 is the minimal eigenvalue of �2�

y

(2)

� ŵ

12

I.

Summarizing, we get

�

ess

(H) = [�

min

; 1) where �

min

:= minf�

(1)

min

; �

(2)

min

; �

(12)

min

g:
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5.7 Partial di�erential-di�eren
e operators

Finally, we 
onsider di�erential-di�eren
e operators of the form

P :=

X

j�j�m; j�N

a

�j

D

�

V

�

�j

where (V

�

u)(x) = u(x � �) for � 2 R

N

and where the 
oeÆ
ients a

�j

belong to

SO

1

(R

N

). The operator P is a pseudodi�erential operator in the 
lass OPS

m

0;0

with symbol

p(x; �) :=

X

j�j�m; j�N

a

�j

(x)�

�

e

ih�

�j

; �i

:

Hen
e, P : H

m

(R

N

) ! L

2

(R

N

) is a Fredholm operator if and only if all limit

operators of the operator R := P hDi

�m

: L

2

(R

N

)! L

2

(R

N

) are invertible.

Let h = (h

1

; h

2

) : N ! Z

N

�Z

N

be a sequen
e tending to in�nity whi
h de�nes

a limit operator of R. We distinguish between three 
ases for the sequen
e h.

[A℄ Let h

1

!1, and let h

2

tend to in�nity into the dire
tion of the in�nitely

distant point � 2 S

N�1

. Then the limit operator ofR is a di�eren
e operator

with 
onstant 
oeÆ
ients the form

R

h

:=

X

j�j=m; j�N

a

h

�j

�

�

V

�

�j

;

i.e. with numbers a

h

�j

2 C . It is evident that R

h

is invariant with respe
t

to shifts, and this operator is invertible if and only if

inf

�2R

N

�

�

�

�

�

�

X

j�j=m; j�N

a

h

�j

�

�

e

ih�

�j

; �i

�

�

�

�

�

�

> 0:

[B℄ Let h

1

! 1, and let h

2

be a 
onstant sequen
e. Then the limit operator

R

h

is unitarily equivalent to the pseudodi�erential operator with symbol

r

h

: � 7!

X

j�j�m; j�N

a

h

�j

�

�

h�i

m

e

ih�

�j

; �i

:

Clearly, this operator is invertible if and only if

inf fjr

h

(�)j : � 2 R

N

g > 0:

[C℄ Finally, let h

2

tend to in�nity into the dire
tion of the in�nitely distant point

� 2 S

N�1

, and let h

1

be a 
onstant sequen
e. Then the limit operator R

h

is unitarily equivalent to the di�eren
e operator with variable 
oeÆ
ients,

X

j�j=m; j�N

a

�j

�

�

V

�

�j

:

E�e
tive suÆ
ient 
onditions for the invertibility of di�eren
e operators

with variable 
oeÆ
ients 
an be found in the monographs [1, 2, 3℄.
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