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Abstra
t

This 
ontribution is 
on
erned with the 
onsistent dimensional redu
tion of a previously introdu
ed �nite

three-dimensional Cosserat mi
ropolar elasti
ity model to the two-dimensional situation of thin plates and

shells. The resulting membrane energy turns out to be a quadrati
, ellipti
, �rst order, non degenerate energy

in 
ontrast to 
lassi
al approa
hes, the standard bending 
ontribution is augmented with a term representing

an additional sti�ness of the Cosserat model and the 
orresponding system of balan
e equations remains

of se
ond order. The model in
ludes size e�e
ts, transverse shear resistan
e, thi
kness stret
h and drilling

degrees of freedom. The thin shell limit is non-degenerate due to the additional Cosserat bending sti�ness.

It is shown that the dimensionally redu
ed formulation is well-posed along the same line of argument

whi
h showed the well posedness of the three-dimensional model [Nef03a℄. De
isive use is made of a dimen-

sionally redu
ed version of an extended Korn's �rst inequality re
ently proved by the author [Nef02℄.
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1 Introdu
tion

1.1 Generalities on shells

The dimensional redu
tion of a given model is already an old and mature subje
t and it has seen many 'solutions'.

The di�erent approa
hes toward elasti
 shell theory proposed in the literature and relevant referen
es thereof

are, therefore, too numerous to list here. In any 
ase our own proposal falls within the so 
alled derived

approa
h, i.e., redu
ing a given three-dimensional model via (physi
ally) reasonable 
onstitutive assumptions

on the kinemati
s to a two-dimensional model

1

as opposed to either the intrinsi
 approa
h whi
h views

the shell from the onset as a two-dimensional surfa
e and invokes 
on
epts from di�erential geometry or the

asymptoti
 methods whi
h try to establish two-dimensional equations by formal expansion of the three-

dimensional solution in power series in terms of a small parameter. The intrinsi
 approa
h is 
losely related

to the dire
t approa
h

2

whi
h takes the shell to be a two-dimensional dire
ted medium in the sense of a

restri
ted Cosserat-surfa
e [CC09℄.

3

Two-dimensional equilibrium in appropriate new stress and strain

variables is postulated ab-initio independent of three-dimensional 
onsiderations, 
f. [Ant95, GNW65, ET58℄.

A detailed presentation of the 
lassi
al shell theories 
an be found in [Nag72℄. A thorough mathemati
al

analysis of linear, in�nitesimal shell theory, based on asymptoti
 methods is to be found in [Cia98a℄ and the

extensive referen
es therein, see also [Cia97, Cia99, Ant95, DS96, Dik82℄. Ex
ellent reviews and insightful

dis
ussions of the modelling and �nite element implementation may be found in [SB92, San95, SB98, GSW89,

GT92, BGS96, BR92℄ and in the series of papers [SF89, SFR89, SFR90, SRF90, SK92, SF92℄. Re
ently, new

C

1

-
onforming implementations for thin Kir
hho�-Love shells have been proposed in [COS00, CO01℄. Properly

invariant elasti
 plate theories are derived by formal asymptoti
 methods in [FRS93℄.

Let us sket
h �rst the apparent areas of agreement in the development of the elasti
 
ase. The various

shell models based on linearized three-dimensional elasti
ity proposed in the literature have been rigorously

justi�ed in those 
ases, where some normality assumption is introdu
ed, either a priori or as a result of an

asymptoti
 analysis, see notably the extensive work of Ciarlet and his 
o-workers [Cia97, Cia99℄. Membrane

and bending equations are identi�ed as leading order terms of asymptoti
 expansions of the three-dimensional

solution. Convergen
e of the 
omputed solution (and error estimates) to the 'exa
t' solution of linearized

three-dimensional elasti
ity is established in all relevant 
ases if various s
aling assumptions on the data are

made.

The situation is slightly less 
lear as far as in�nitesimal restri
ted Cosserat models (Reissner-Mindlin plate,

Timoshenko beam et
.) are 
onsidered. Here the 
onvergen
e as the thi
kness tends to zero of some dire
tor to

the (linearized) normal of the surfa
e poses additional diÆ
ulties, but 
an be over
ome, see e.g. [Ebe99℄ for the

plate bending problem. It is known, that the solution of the in�nitesimal Reissner-Mindlin model for various

values of the shear 
orre
tion fa
tor � 
onverges to the solution of the in�nitesimal Kir
hho�-Love model for

vanishing thi
kness.

Already in the in�nitesimal 
ase it be
omes apparent that a model, involving membrane and bending

simultaneously 
annot be obtained by formal asymptoti
 methods but is a result of 
areful modelling.

One su
h su

essful model, the Koiter model [Koi70℄ is simply the sum of the 
orre
tly identi�ed membrane

and bending 
ontribution, properly s
aled with the thi
kness. The mathemati
al analysis establishing the

well-posedness of all these in�nitesimal models is fairly well established and will not be our prin
ipal 
on
ern.

Though analyti
ally understood, the numeri
al implementation of these in�nitesimal, linear shell models is still

an area of very a
tive resear
h, mostly be
ause of intri
a
ies related to the singular 
hara
ter of the 
onsidered

systems as the thi
kness tends to zero. In the engineering 
ommunity, the in�nitesimal Reissner-Mindlin model

is usually preferred numeri
ally to whi
h witnesses the un
ountable proposals of new implementation variants,

4

sin
e one only needs to solve a se
ond order problem with standard C

0

-�nite elements for an augmented �eld

instead of a fourth order problem with diÆ
ult to handle C

1

-�nite elements in the Kir
hho�-Love model. More-

over, the Reissner-Mindlin model allows for transverse shear, whi
h may o

ur at free or loaded edges of

the three-dimensional plate. However, the in�nitesimal Reissner-Mindlin FEM-implementation is notoriously

ill-
onditioned without further provision while the underlying mathemati
al problem is well-posed. Membrane

1

This line of thought is expressed by W.T. Koiter [Koi69, p.93℄:"Any two-dimensional theory of thin shells is ne
essarily of an

approximate 
hara
ter. An exa
t two-dimensional theory of shells 
annot exist, be
ause the a
tual body we have to deal with,

thin as it may be, is always three-dimensional. ... Sin
e the theory we have to deal with is approximate in 
hara
ter, we feel that

extreme rigour in its development is hardly desirable. ... Flexible bodies like thin shells require a 
exible approa
h."

2

The philosophy behind the dire
t approa
h is best framed by P.M. Naghdi[GN69, p.58℄: \The theory of Cosserat is exa
t, but

shell theory derived from the three-dimensional equations is approximate. It may be a matter of taste, but we prefer to regard

an exa
t theory as more fundamental. The Cosserat theory of shells (Cosserat surfa
e) is on a 
omparable footing with any exa
t

three-dimensional 
ontinuum theory." This remark remains partly true today: while properly invariant derived shell models are

now available, they do not ne
essarily guarantee invertibility.

3

Restri
ted, sin
e no material length s
ale usually enters the dire
t approa
h, only the relative thi
kness h appears in the model.

4

There is a 
ertain dis
repan
y between the e�ort put into the investigations of the in�nitesimal Reissner-Mindlin model

and its physi
al signi�
an
e, given that the model is not frame-indi�erent and for that matter, stri
tly speaking, irrelevant.

4



and shear lo
king, roughly meaning that the 
al
ulated solution on 
oarse meshes only poorly approximates the

exa
t solution has motivated the sear
h for lo
king free implementations and has stipulated to some extent the

development of non
onforming elements and of dis
ontinuous Galerkin methods (
f. referen
es in [LNSO02℄)

whi
h in prin
ipal should not su�er from lo
king. In this respe
t we mention also the hierar
hi
al plate mod-

els [S
h96℄ whi
h are a dire
t out
ome of the �nite element methods applied to thin stru
tures. The idea there

is to dis
retely minimize the three-dimensional energy fun
tional over some thi
kness-restri
ted ansatz-spa
e,

preferably a polynomial approximation in thi
kness dire
tion.

In the �nite, elasti
 
ase, mostly based on the Saint Venant-Kir
hho� (SVK) free energy, the formal asymptoti


methods are still su

essful in that they identify again leading membrane and bending terms. As far as the

o

urring membrane 
ontribution is 
on
erned, it isW

mp

in (7.83) whi
h is given in [GKM96, FRS93℄. However,

methods based on variational �-
onvergen
e [DR95a℄ suggest a fundamentally di�erent membrane term whi
h

leads to a nonresistan
e of the membrane shell in 
ompression. It should be noted, that the widely a

epted

membrane term of (7.83) shows the 
hara
teristi
 apparent 
hange of the Lam�e-moduli for the two-dimensional

stru
ture. As far as the bending term is 
on
erned, some agreement has been obtained that the term 
onsistent

with the 3D-SVK energy is a quadrati
 expression in the se
ond fundamental form of the surfa
e. Nevertheless,

the 
oeÆ
ients of this quadrati
 form give still room for some dis
ussion: the Hamiltonian based derivation in

[GKM96℄ di�ers from the results obtained by formal asymptoti
 analysis in [FRS93, Cia97℄ pre
isely in whether

there is the same apparent 
hange of the elasti
 moduli as o

urs in the membrane 
ase. This di�eren
e is

immaterial as regards the mathemati
al analysis and 
an be explained by the use of a linear kinemati
al ansatz

in thi
kness dire
tion in [GKM96℄ whereas a quadrati
 ansatz in a Hamiltonian framework would yield the same

result as in [FRS93, Cia97℄ and W

bend

in (7.83).

It must be noted, that pro
eeding by asymptoti
 analysis is based itself on 
ertain a priori assumptions,

namely that all appearing quantities indeed admit an expansion in terms of a small parameter and satisfy 
ertain

s
aling assumptions. No rigorous justi�
ation of the formal asymptoti
 approa
h has been given so far for �nite

elasti
ity, pre
isely be
ause of the la
k of some en
ompassing theory whi
h guarantees the well-posedness of

the three-dimensional problem. The appli
ation of formal asymptoti
 methods has never led to basi
ally new

plate or shell models, it seems to be restri
ted to an a posteriori justi�
ation of existing models. By 
ontrast,

the equations obtained by a variational approa
h i.e. energy proje
tion and those for a Cosserat surfa
e are

independent of s
aling assumptions.

We wish to remark that in the �nite regime, no 'unique' elasti
 three-dimensional model exists: we have

always to make 
onstitutive 
hoi
es for the bulk behaviour whi
h has 
onsequen
es for the redu
ed theory. In

this 
ase, making additional, physi
ally sound, 
onstitutive assumptions on the two-dimensional response itself,

seems to be just another viable step in the modelling pro
edure. However, for in�nitesimal strains we know the

isotropi
 elasti
 bulk behaviour exa
tly

5

and subsequently it is reasonable to establish the 
onvergen
e for van-

ishing relative thi
kness h to pre
isely one model without additional 
onstitutive two-dimensional assumptions.

This remark 
onstitutes a strong justi�
ation for the asymptoti
 method in the in�nitesimal 
ase.

It has already been observed that the leading order term without additional provisions on the data is either

a membrane or a bending term. But in appli
ations, there are usually regions of a shell where membrane

e�e
ts dominate while in others, bending is dominant. A fully three-dimensional resolution of a thin shell

problem remains elusive notwithstanding the in
reased 
omputer power. Hen
e, there is still a need to 
ome up

with a sound �nite model, 
ombining both e�e
ts in one system of equations, as does the Koiter model in the

in�nitesimal 
ase.

Sin
e we have in mind the future extension of the herein presented plate theories to multipli
ative plasti
ity

let us add that the pi
ture is all the more 
ompli
ated as far as elasto-plasti
 extensions are 
on
erned, in part

be
ause of the (limited) state of the art of �nite elasto-plasti
ity itself and in part be
ause it is not straight

forward to transform an existing 3D-model to its 2D-
ounterpart, see [BS99, BW91, SRF90℄ for representative

examples. It is te
hni
ally diÆ
ult to 
arry through the program of the formal asymptoti
 methods and in fa
t

su
h a development seems not to have been undertaken in the �nite 
ase.

In order to get two-dimensional limit equations for plasti
ity despite these diÆ
ulties of some sort anyhow,

additional me
hani
al assumptions on the stress distribution in the shell are usually introdu
ed (e.g. plane

stress, zero normal stress S

1

:e

3

= 0 or less demanding: zero normal tra
tions on the midsurfa
e, S

2;33

=

0), moreover, the implementation of generally smooth, higher order shell elements is at varian
e with the la
k of

regularity either in (�nite) plasti
ity or for very thin rigid shells. More problemati
 from a mathemati
al point

of view, in many 
ases not an underlying self-
onsistent two-dimensional mathemati
al shell model is dis
retized

5

If we assume that �




= 0 in the �nite three-dimensional Cosserat model, then the linearization 
oin
ides in fa
t with the


lassi
al in�nitesimal model and the three-dimensional bulk has a unique in�nitesimal response! The very possibility of �




= 0 for

a fully invariant three-dimensional �nite Cosserat model has been 
onsidered impossible in the Cosserat 
ommunity, sin
e in e�e
t,

no in�nitesimal, linear Cosserat bulk model would exist. While we keep 
ompletely tra
k of �




> 0 and �




= 0 simultanuously, it

is our belief that �




= 0 is physi
ally the 
orre
t 
hoi
e.

5



in a
tual 
omputations, but the shell like behaviour is enfor
ed on the implementational element level only (this

is the so 
alled degenerated solid approa
h). There, evolution laws for plasti
ity are fully three-dimensionally

integrated and elasti
 equilibrium is 
omputed through numeri
al integration over the thi
kness. Only the two-

dimensional kinemati
al 
onstitutive ansatz for the total shell deformation redu
es the problem. One has termed

this method 2:5�dimensional. This applies to both elasti
ity and elasto-plasti
ity but, as already mentioned,

the resulting problem is not 
onsistent with any really two-dimensional de�nite model and a mathemati
al

analysis for su
h a numeri
ally motivated approa
h seems to be out of rea
h at present.

The Hamiltonian based, variational approa
h, whi
h we will follow in disguise, has the distin
tive advan-

tage of being 
exible enough to treat simultaneously �nite elasti
ity, �nite Cosserat models as well as �nite

elasto-plasti
ity in the framework of the multipli
ative de
omposition. This is to be 
ontrasted with 
lassi
al

approa
hes for shells in 
urvilinear 
oordinates and indi
ial notation whi
h must remain a mystery for all those

not initiated.

The 
lassi
al models proposed in the literature lead to e�e
tive numeri
al s
hemes only if the relative

thi
kness h of the stru
ture is still appre
iable, i.e. 
lassi
al bending terms are present and regularize the


omputation. However, there is an abundan
e of new appli
ations where very thin stru
tures are used, e.g. very

thin metal layers on a substrate (in 
omputer hardware, for the 
hara
teristi
 relative thi
kness h � 5 � 10

�4

).

In these 
ases, 
lassi
al bending energy, whi
h 
omes with a fa
tor of h

2


ompared with the membrane energy


ontribution, 
annot play a preponderant role for non-vanishing membrane energy. See also [BJ99℄ for an

appli
ation to thin �lms. But the membrane terms e.g. in a �nite, invariant Kir
hho�-Love plate or �nite

Reissner-Mindlin model are non-ellipti
 and the remaining (minimization) problem is not well-posed even if

bending is in
luded.

1.2 Outline and s
ope of this 
ontribution

We therefore fa
e several problems: �rst, there is no as yet generally a

epted �nite, properly invariant, elasti


plate and shell model (and perhaps there 
annot be); se
ond, 
lassi
al �nite shell models are in general insuf-

�
ient to a

ount for very thin stru
tures, the thin plate limit is degenerated; third, non-
lassi
al size e�e
ts,

whi
h 
annot be negle
ted for very thin stru
tures [CCC

+

03℄ are usually not a

ounted for; fourth, 
lassi
al

in�nitesimal or �nite shell models predi
t unrealisti
ally high levels of smoothness, typi
ally at least C

0;�

(!)

for the midsurfa
e.

We propose therefore a new shell model for very thin almost rigid materials in addition to those already

established whi
h should remedy some of the aforementioned short
omings with a view towards a subsequent

stringent mathemati
al analysis and possible numeri
al implementation. We want to provide a model whi
h

is both theoreti
ally and physi
ally sound, su
h that the numeri
al implementation 
an 
on
entrate on real


onvergen
e issues.

We view the obtained two-dimensional models as models in its own right: rather than trying to establish


onvergen
e results of the underlying three-dimensional model to its two-dimensional 
ounterpart for vanishing

thi
kness (whi
h seems to be elusive given the appearing nonlinearities) we fo
us in a �rst attempt on the

intrinsi
 mathemati
al problems inherent in the redu
ed models.

After introdu
ing the underlying parent three-dimensional �nite Cosserat model with size e�e
ts and

independent mi
rorotations and re
alling the obtained existen
e results for this model, we pro
eed by


onsidering a quadrati
 kinemati
al ansatz over the thi
kness where the dire
tor is automati
ally related to

the rotations. Using generalized zero normal tra
tions on the transverse boundary, the two unknown leading


oeÆ
ients in the quadrati
 ansatz 
an be determined in analyti
al form. The three-dimensional energy is

then evaluated for the assumed form of plate deformation and analyti
ally integrated over the thi
kness, this


onstitutes the energy proje
tion. Boundary 
onditions are 
onsistently redu
ed. The full minimization problem

for the plate is gathered in se
tion 4. The new model has six degrees of freedom (6 dof), in
luding naturally

one-drilling degree and allows for transverse shear. It is shown that the membrane part is uniformly Legendre-

Hadamard ellipti
 at given rotations. This �nishes the Cosserat modelling part.

Following, we derive a new Korn's �rst inequality for plates and elasto-plasti
 shells whi
h is de
isive for

the mathemati
al treatment of the new models in a variational 
ontext. Depending on material 
onstants

and boundary 
onditions, di�erent mathemati
al existen
e theorems are proposed. Generi
ally, we obtain for

the midsurfa
e deformation m 2 H

1;2

(!;R

3

), i.e. the midsurfa
e must not ne
essarily be 
ontinuous. It is

shown, that the limit of vanishing relative thi
kness h ! 0 in the new model is non-degenerate. The limits

�




! 1 and the zero internal length limit L




! 0, as well as the pure membrane limit h ! 0; L




! 0 and

the pure bending for vanishing internal length, are also des
ribed. We propose as well a modi�
ation of the

new plate model whi
h ensures lo
al invertibility of the re
onstru
ted deformation gradient and allows for large

stret
h. This modi�
ation takes pla
e on the two-dimensional level only whi
h implies that there need not

exist any underlying three-dimensional model. Nevertheless, the modi�ed two-dimensional model is shown to

be physi
ally more plausible than the pre
eeding model.

6



For 
omparison, we next present a derivation of a rather 
lassi
al �nite, invariant Reissner-Mindlin model

with one independent dire
tor and of the �nite, invariant Kir
hho�-Love plate model. It is shown that both �nite

models exhibit a 
ertain unphysi
al response. A modi�
ation of the Kir
hho�-Love model in view of expe
ted

small strain behaviour allows to establish the existen
e of minimizers. However, the obtained regularity is

unrealisti
ally high and the implementational 
ost is known to be very large thus limiting in e�e
t the usefulness

of the Kir
hho�-Love model. The pure bending problem based on either Reissner-Mindlin or Kir
hho�-Love

is shown to admit minimizers and to 
oin
ide with the pure bending problem obtained from the new Cosserat

model.

In the appendix we introdu
e the relevant notation, detail the treatment of external loads and present the

observed s
aling relations. Generalized 
onvexity 
onditions are re
alled and ma
ros
opi
 shear failure for plates

is de�ned, in
luding a Baker-Eri
ksen inequality for plates.

In order to relate the new �nite Cosserat plate model to more traditional approa
hes, we show, that a

linearization of the new model basi
ally results in the 
lassi
al in�nitesimal Reissner-Mindlin model (without

extra size e�e
ts) and shear 
orre
tion fa
tor � = 1.

2 The underlying �nite three-dimensional Cosserat model in varia-

tional form

In [Nef03a℄ a �nite, fully frame-invariant Cosserat model is introdu
ed. The problem has been posed in a

variational setting. The task is to �nd a pair (';R) 2 R

3

� SO(3;R) of deformation ' and independent

mi
rorotation R satisfying

Z




W

mp

(U) +W


urv

(K) � hf; 'i � hM;Ri dV �

Z

�

S

hN;'i dS�

Z

�

C

hM




; Ri dS 7! min : w.r.t. (';R);

U = R

T

F; F = r'; '

j

�

= g

d

R

j

�

=

(

R

d

; rigid pres
ription

polar(r') ; 
onsistent 
oupling) S

2

:= F

�1

D

F

W

mp

(U) 2 Sym on �

(2.1)

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

W


urv

(K) = �

L

1+p




12

(1 + �

4

L

q




kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

;

K = R

T

D

x

R =

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

; third order 
urvature tensor :

The total elasti
ally stored energy W = W

mp

+ W


urv

depends on the deformation gradient F = r' and

mi
rorotations R together with their spa
e derivatives. In general, the mi
ropolar stret
h tensor U is not

symmetri
. Here 
 � R

3

is a domain with boundary �
 and � � �
 is that part of the boundary, where

Diri
hlet 
onditions g

d

; R

d

for displa
ements and mi
rorotations, respe
tively, are pres
ribed while �

S

� �


is a part of the boundary, where tra
tion boundary 
onditions N are applied with � \ �

S

= ;. The external

volume for
e is f and M takes on the role of external volume 
ouples. In addition, �

C

� �
 is the part of the

boundary where external surfa
e 
ouples M




are applied with � \ �

C

= ;. The parameters �; � > 0 are the

Lam�e 
onstants of 
lassi
al elasti
ity, �




� 0 is 
alled the Cosserat 
ouple modulus and L




> 0 introdu
es

an internal length whi
h is 
hara
teristi
 for the material, e.g. related to the grain size in a poly
rystal.

The internal length L




> 0 is responsible for size e�e
ts in the sense that smaller samples are relatively sti�er

than larger samples. If not stated otherwise, we assume that �

5

> 0; �

6

> 0; �

7

� 0. Consistent 
oupling

7



ensures that no non-
lassi
al e�e
ts are arti�
ially introdu
ed at the Diri
hlet boundary.

6

2.1 The di�erent three-dimensional 
ases

We distinguish �ve 
ompletely di�erent situations:

I: �




> 0; �

4

� 0; p � 1; q � 0, un
onditional elasti
 ma
ro-stability, lo
al �rst order Cosserat mi
ropo-

lar, unquali�ed existen
e, mi
ros
opi
 spe
imens, non-zero Cosserat 
ouple modulus. Fra
ture ex
luded.

II: �




= 0; �

4

> 0; p � 1; q > 1, elasti
 pre-stability, nonlo
al se
ond order Cosserat mi
ropolar, ma
ro-

s
opi
 spe
imens, in a sense 
lose to 
lassi
al elasti
ity, zero Cosserat 
ouple modulus. Fra
ture ex
luded.

III: �




=1; �

4

� 0; p � 1; q � 0, un
onditional elasti
 ma
ro-stability, the 
onstrained gradient Cosserat

mi
ropolar problem (indeterminate 
ouple stress model). Compatible Diri
hlet boundary 
onditions:

'

j

�

= g

d

; polar(r�)

j

�

= polar(rg

d

)

j

�

.

IV: �




= 0; �

4

= 0; 0 < p � 1; q = 0, elasti
 pre-stability, nonlo
al se
ond order Cosserat mi
ropolar, ma
ro-

s
opi
 spe
imens, in a sense 
lose to 
lassi
al elasti
ity, zero Cosserat 
ouple modulus. Sin
e possibly

' 62W

1;1

(
;R

3

), due to la
k of elasti
 
oer
ivity, in
luding fra
ture in multiaxial situations.

V: �




= 0;L




= 0, elasti
 pre-stability, �nite elasti
ity with free rotations and mi
rostru
ture. Weak so-

lutions of a 
orresponding �nite elasti
ity model are stationary points of this minimization problem.

Allowing for sharp interfa
es.

We refer to 0 < p < 1; q � 0 as the sub-
riti
al 
ase, p = 1; q � 0 as the 
riti
al 
ase and p � 1; q > 1

as the super-
riti
al 
ase. In [Nef03a℄ the �rst three 
ases are mathemati
ally treated and 
ase V is indeed

shown to allow for sharp interfa
es.

2.2 The 
oer
ive inequality in three-dimensions

The de
isive analyti
al tool for the treatment of 
ase II (super-
riti
al) is the following non-trivial novel 
oer
ive

inequality:

Theorem 2.1 (Extended 3D-Korn's �rst inequality)

Let 
 � R

3

be a bounded Lips
hitz domain and let � � �
 be a smooth part of the boundary with non

vanishing 2-dimensional Lebesgue measure. De�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g and let F

p

; F

�1

p

2

C

1

(
;GL(3;R)). Moreover suppose that CurlF

p

2 C

1

(
;M

3�3

). Then

9 


+

> 0 8 � 2 H

1;2

Æ

(
;�) : kr�F

�1

p

(x) + F

�T

p

(x)r�

T

k

2

L

2

(
)

� 


+

k�k

2

H

1;2

(
)

:

Proof. The proof has been presented in [Nef02℄. Note that for F

p

= r� we would only have to deal with the


lassi
al Korn's inequality evaluated on the transformed domain �(
). However, in general, F

p

is in
ompat-

ible giving rise to a non-riemannian manifold stru
ture. Compare to [CG01℄ for an interpretation and the

physi
al relevan
e of the quantity CurlF

p

. �

Motivated by the investigations in [Nef02℄, it has been shown re
ently by my 
olleague W. Pompe [Pom03℄

that the extended Korn's inequality 
an be viewed as a spe
ial 
ase of a general 
lass of 
oer
ive inequalities

for quadrati
 forms. He was able to show that indeed F

p

2 C(
;GL(3;R)) is suÆ
ient for (2.1) to hold without

any 
ondition on the 
ompatibility.

However, taking the spe
ial stru
ture of the extended Korn's inequality again into a

ount, work in progress

suggests that 
ontinuity is not really ne
essary: instead F

p

2 L

1

(
;GL(3;R)) and CurlF

p

2 L

3+Æ

(
) should

suÆ
e, whereas F

p

2 L

1

(
;GL(3;R)) alone is not suÆ
ient, see the 
ounterexample presented in [Pom03℄.

In view of the important role of the extended Korn's �rst inequality let us agree in saying that a bulk-material

is elasti
ally pre-stable, whenever

9H 2 M

3�3

; H 6= 0 : D

2

F

W (x; F ):(H;H) = 0 (2.3)

9 


+

> 0 9 G 2 GL

+

(3;R) 8H 2 M

3�3

: D

2

F

W (x; F ):(H;H) � 


+

kG(x)

T

H +H

T

G(x)k

2

:

6

If, instead, we assume for the stret
h energy

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+ �

�

det[U ℄� 1)

2

+ (

1

det[U ℄

� 1)

2

�

+ �

+

kCof U � 11k

2

; (2.2)

thenW

mp

(U) is poly
onvex w.r.t. F and lo
al invertibility of the deformation ' 
an be guaranteed. However, basing the dimensional

redu
tion on this modi�
ation, would lead to ex
essive formulas.

8



In this terminology, in�nitesimal 
lassi
al elasti
ity is pre-stable with G = 11 due to the 
lassi
al Korn's �rst

inequality and the extended Korn's �rst inequality links the smoothness of G to the positive de�niteness of the

elasti
 tangent sti�ness tensor.

2.3 Mathemati
al results for the three-dimensional problem

Using the extended Korn's inequality, in [Nef03a℄ the following has been shown:

Theorem 2.2 (Existen
e for 3D-�nite elasti
 Cosserat model: 
ase I.)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and R

d

2

W

1;1+p

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and supposeN 2 L

2

(�

S

;R

3

) together withM 2 L

1

(
;M

3�3

)

andM




2 L

1

(�

C

;M

3�3

). Then (2.1) with material 
onstants 
onforming to 
ase I admits at least one minimizing

solution pair (';R) 2 H

1

(
;R

3

)�W

1;1+p

(
; SO(3;R)).

Theorem 2.3 (Existen
e for 3D-�nite elasti
 Cosserat model: 
ase II.)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and R

d

2

W

1;1+p+q

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2

L

1

(
;M

3�3

) and M




2 L

1

(�

C

;M

3�3

). Then (2.1) with material 
onstants 
onforming to 
ase II admits at

least one minimizing solution pair (';R) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)).

Theorem 2.4 (Existen
e for 3D-�nite elasti
 Cosserat model with 
onsistent boundary 
oupling)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and polar(rg

d

) 2

W

1;1+p+q

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2

L

1

(
;M

3�3

) and M




2 L

1

(�

C

;M

3�3

). Then (2.1) with material 
onstants 
onforming to 
ase I/II and the


onsistent 
oupling 
ondition

R

j

�

= polar(r')

�

; (2.4)

admits at least one minimizing solution pair (';R) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)).

3 Dimensional redu
tion of the Cosserat model

3.1 The three-dimensional problem on a thin domain

The basi
 task of any shell theory is a 
onsistent redu
tion of some presumably 'exa
t' 3D-theory to 2D. The

problem (2.1) will now be adapted to a shell like theory. Let us assume that we are given a three-dimensional

absolutely thin domain




h

:= ! � [�

h

2

;

h

2

℄; ! � R

2

; (3.5)

with transverse boundary �


trans

h

= ! � f�

h

2

;

h

2

g and lateral boundary �


lat

h

= �! � [�

h

2

;

h

2

℄, where !

is a bounded domain in R

2

with smooth boundary �! and h > 0 is the thi
kness, and a deformation ' and

mi
rorotation R

3d

' : 


h

� R

3

7! R

3

; R

3d

: 


h

� R

3

7! SO(3;R) ; (3.6)

solving the following minimization problem on 


h

:

Z




h

W

mp

(U) +W


urv

(K) � hf; 'i dV �

Z




trans

h

[f


s

�[�

h

2

;

h

2

℄g

hN;'i dS 7! min : w.r.t. (';R);

U = R

T

F; '

j

�

h

0

= g

d

; �

h

0

= 


0

� [�

h

2

;

h

2

℄; 


0

� �!; 


s

\ 


0

= ;

R

j

�

h

0

= polar(r') ; 
onsistent 
oupling (3.7)

W

mp

(U ) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

W


urv

(K) = �

L

1+p




12

(1 + �

4

L

q




kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

;

K = R

T

D

x

R =

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

; third order 
urvature tensor :

We want to �nd a reasonable approximation ('

s

; R

s

) of (';R

3d

) involving only two-dimensional quantities. The

redu
tion is based on assumed kinemati
s and energy proje
tion.

9



3.2 Enri
hed quadrati
 Cosserat kinemati
s

In the engineering shell 
ommunity it is well known [Che80, S
h85, Pie85℄ that the ansatz over the thi
kness

should at least be quadrati


7

in order to avoid the so 
alled Poisson thi
kness lo
king

8

and to fully 
apture

the three-dimensional kinemati
s without arti�
ial modi�
ation of the material laws

9

, see the detailed dis
ussion

of this point in [BR00℄ and 
ompare with [BR92, BBR94, RR96, BR97, SB98℄.

For a Cosserat theory for small elasti
 strains

10

we assume therefore the quadrati
 ansatz in the thi
kness

dire
tion for the (re
onstru
ted) �nite deformation '

s

: R

3

7! R

3

of the shell like stru
ture

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

� R

s;3

(x; y; 0) ; (3.8)

where m : ! � R

2

7! R

3

takes on the role of the deformation of the midsurfa
es of the shell viewed as a

parametrized surfa
e, the (re
onstru
ted) rotation R

s

: 
 7! SO(3;R) and with yet indeterminate fun
tions

%

m

; %

b

: ! � R

2

7! R allowing for thi
kness stret
h (%

m

6= 1) and transverse shear (R

s;3

6= ~n).

11

The

(re
onstru
ted) rotations in the thin shell are assumed to be 
onstant over the thi
kness

R

s

(x; y; z) = R(x; y) : (3.9)

This is then a kind of plate formulation sin
e for the moment the unstressed referen
e 
on�guration ! was

assumed to lie in the plane. This implies for the (re
onstru
ted) deformation gradient of the shell (plate)

F

s

= r'

s

(x; y; z) = (rmj %

m

R

3

) + z � (r(%

m

R

3

)j%

b

R

3

) +

z

2

2

(r(%

b

R

3

)j0) =

~

A

m

+ z

~

A

r

+

z

2

2

~

B

r

: (3.10)

It should be noted that the augmented ansatz 
hanges already the term whi
h is linear in the transverse

dire
tion.

12

Invertibility of the shell deformation (as a physi
al requirement) entails

8 z 2 [�h=2; h=2℄ : det[r'

s

(x; y; z)℄ > 0) %

m

(x; y) > 0 ; (3.11)

and we must guarantee that %

m

: ! 7! R

+

. The three-dimensional lo
al part of the elasti
 Cosserat energy in

(2.1) has the form

W (F;R) =

�

4

kR

T

F + F

T

R� 211k

2

+

�




4

kR

T

F � F

T

Rk

2

+

�

8

tr

h

R

T

F + F

T

R � 211

i

2

: (3.12)

The equilibrium equations of the three-dimensional Cosserat problem given in [Nef03a℄ show that on the trans-

verse boundary (exa
t)

S

3d

1

(r'

3d

(x; y;+h=2); R

3d

(x; y;+h=2)):e

3

= N

trans

(x; y;+h=2)

S

3d

1

(r'

3d

(x; y;�h=2); R

3d

(x; y;�h=2)):(�e

3

) = N

trans

(x; y;�h=2) ; (3.13)

where N

trans

are the pres
ribed tra
tions N on the transverse boundary given globally in the basis (e

1

; e

2

; e

3

).

This implies (exa
t)

R

3d

(x; y;+h=2))

T

S

3d

1

(r'

3d

(x; y;+h=2); R

3d

(x; y;+h=2)):e

3

= R

3d

(x; y;+h=2))

T

N

trans

(x; y;+h=2) (3.14)

R

3d

(x; y;�h=2))

T

S

3d

1

(r'

3d

(x; y;�h=2); R

3d

(x; y;�h=2)):(�e

3

) = R

3d

(x; y;�h=2))

T

N

trans

(x; y;�h=2) :

Abbreviate

N

+

:= N

trans

(x; y;+h=2); N

�

:= N

trans

(x; y;�h=2) ; (3.15)

7

This mimi
s the (1j1j2)-hierar
hi
 plate models: linear in-plane displa
ement and quadrati
 transverse displa
ement, instead

of (1j1j0)-plate models with 
onstant transverse displa
ement. The dimensional redu
tion is a
hieved by energy proje
tion on the

enri
hed ansatz spa
e. In this sense, we propose a (1j1j2)-model.

8

Meaning that the bending sti�ness of the redu
ed theory would tend to 1 as the Poisson-number � !

1

2

.

9

Let us quote from [S
h85℄: "Due to bending this 
hange of length is generally asymmetri
 about (the midsurfa
e) and leads to

a shift of the original midsurfa
es.... This asymmetry requires at least a quadrati
 representation of the (deformation in thi
kness

dire
tion)."

10

Whi
h 
aptures already shells with large in plane rigidity and high transverse 
exibility.

11

This leads at �rst glan
e to a 8 'dof' theory: 3 
omponents of the membrane deformation, 3 degrees of freedom for R 2 SO(3;R),

in
luding naturally one drilling degree of freedom for in-plane rotations, 2 degrees of freedom over the thi
kness. However, the

two thi
kness 
oeÆ
ients %

m

; %

b

will be eliminated, leaving us �nally with a 6 'dof' model. Already in the 
lassi
al elasti
ity 
ontext

the bene�
ial in
uen
e of drill rotations for the numeri
al implementation has been investigated in the linear 
ase in [HB89℄ and

in the �nite 
ase in [SFH92℄.

12

The 
orresponding stress �eld through the thi
kness R

T

s

S

1

(r'

s

(x; y; z); R

s

):e

3

is at least linear in the transverse variable z

and not 
onstant, as would be the 
ase in a �rst order (linear) ansatz for the deformation.

10



and de�ne

N

res

:= N

trans

(x; y;+h=2) +N

trans

(x; y;�h=2) ; N

di�

:=

1

2

�

N

trans

(x; y;+h=2)�N

trans

(x; y;�h=2)

�

: (3.16)

Then also (exa
t)

hR

3d

(x; y;+h=2))

T

S

3d

1

(r'

3d

(x; y;+h=2); R

3d

(x; y;+h=2)):e

3

; e

3

i = hN

+

; R

3d

(x; y;+h=2)):e

3

i (3.17)

hR

3d

(x; y;�h=2))

T

S

3d

1

(r'

3d

(x; y;�h=2); R

3d

(x; y;�h=2)):e

3

; e

3

i = �hN

�

; R

3d

(x; y;�h=2)):e

3

i :

We determine %

m

; %

b

from the 
orresponding requirement in terms of the assumed kinemati
s ('

s

; R

s

), yielding

hR

T

s

(x; y;�h=2)S

1

(r'

s

(x; y;�h=2); R

s

):e

3

; e

3

i = �hN

trans

(x; y;�h=2); R

s

(x; y;�h=2):e

3

i )

hR

T

S

1

(r'

s

(x; y;�h=2); R):e

3

; e

3

i = �hN

trans

(x; y;�h=2); R:e

3

i ; (3.18)

whi
h 
ondition redu
es to zero normal tra
tions on the transverse free boundary (in the absen
e of

tra
tions N

trans

) in the 
lassi
al 
ontinuum limit of R = polar(r'). Sin
e

S

1

(F;R) = R

�

�

�

F

T

R +R

T

F � 211

�

+ 2�




skew(R

T

F ) +

�

2

tr

h

F

T

R+R

T

F � 211

i

11

�

; (3.19)

the requirement hR

T

S

1

(r'

s

(x; y; z); R):e

3

; e

3

i = �hN

trans

(x; y;�h=2); R:e

3

i turns into

� hN

trans

(x; y;�h=2); R:e

3

i = � (2(%

m

� 1) + 2z %

b

)

+ �

�

hR

T

(rmj0); 11i+ %

m

+ z %

m

h(rR

3

j0)

T

R; 11i+ z %

b

� 3 +

z

2

2

%

b

hR

T

(rR

3

j0); 11i

�

; (3.20)

independent of the Cosserat 
ouple modulus �




. Let us evaluate the last equation for z = �h=2. This

yields two linear equations in %

m

; %

b

hN

+

; R:e

3

i = � (2(%

m

� 1) + h %

b

) (3.21)

+ �

�

hR

T

(rmj0); 11i+ %

m

+ h=2%

m

hrR

3

j0)

T

R; 11i+ h=2 %

b

� 3 +

h

2

8

%

b

hR

T

(rR

3

j0); 11i

�

�hN

�

; R:e

3

i = � (2(%

m

� 1)� h %

b

)

+ �

�

hR

T

(rmj0); 11i+ %

m

� h=2%

m

hrR

3

j0)

T

R; 11i � h=2 %

b

� 3 +

h

2

8

%

b

hR

T

(rR

3

j0); 11i

�

:

The exa
t solution is given by

�

%

m

%

b

�

=

1

(2�+ �)

2

h�

�

2

h

3

8

h(rR

3

j0)

T

R; 11i

2

�

(2�+ �)h �

�h

2

8

hrR

3

j0)

T

R; 11i

��hh(rR

3

j0)

T

R; 11i (2�+ �)

�

�

hN

di�

; R

3

i+ (2�+ �)� �

�

h(rmj0); Ri � 2

�

hN

res

; R

3

i

�

; (3.22)

whi
h will be approximated through

�

%

m

%

b

�

�

1

(2�+ �)

2

h

�

(2�+ �)h �

�h

2

8

hrR

3

j0); Ri

��hh(rR

3

j0); Ri (2�+ �)

��

hN

di�

; R

3

i+ (2�+ �)� �

�

h(rmj0); Ri � 2

�

hN

res

; R

3

i

�

:

(3.23)

Hen
e the leading terms

13

are:

%

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

(2�+ �)

�

�h

8(2�+ �)

2

h(rR

3

j0); Ri hN

res

; R

3

i

%

b

= �

�

2�+ �

h(rR

3

j0); Ri+

hN

res

; R

3

i

(2�+ �)h

�

�

2(2�+ �)

2

h(rR

3

j0); RihN

di�

; R

3

i (3.24)

�

2

(2�+ �)

2

h(rR

3

j0); Ri

�

h(rmj0); Ri � 2

�

:

13

Note that %

m

; %

b

have di�erent units. %

m

is dimensionless, whereas [%

b

℄ = m

�1

.

11



The term

�

2

(2�+�)

2

h(rR

3

j0); Ri

�

h(rmj0); Ri � 2

�

represents a nonlinear 
oupling between midsurfa
e in-plane

strain and normal 
urvature, an artefa
t of the derivation not present in the underlying three-dimensional theory

where only produ
ts of deformationgradient and rotations o

ur, we therefore negle
t this term.

14

Moreover,

for a almost rigid material with �� 1 we have

�

(2�+�)

2

� 1, leading �nally to the redu
ed expressions:

%

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

(2�+ �)

;

%

b

= �

�

2�+ �

h(rR

3

j0); Ri+

hN

res

; R

3

i

(2�+ �)h

: (3.25)

The formula (3.25) shows the physi
ally reasonable behaviour that to �rst order, �bers will be elongated

by opposite transverse tra
tions and in-plane stret
h leads to thi
kness redu
tion.

Having obtained the general form of the relevant 
oeÆ
ients %

m

; %

b

, it is expedient to base the expansion

of the three-dimensional elasti
 Cosserat energy on a further simpli�ed expression, namely

F

s

= r'

s

(x; y; z) � (rmj %

m

R

3

) + z � (rR

3

j%

b

R

3

) = A

m

+ z A

r

= F

s

; A

m

=

~

A

m

: (3.26)

This modi�
ation has only 
onsequen
es as far as the resulting bending 
ontribution is 
on
erned and is moti-

vated by our

Remark 3.1 (Guiding prin
iple of redu
tion)

(G1.) The redu
ed model should at no pla
e 
ontain mixed produ
ts of normal 
urvature R

T

(rR

3

j0) and

midsurfa
e in-plane strain hR

T

(rmj0);�i2, sin
e su
h a 
oupling is not present in the underlying three-

dimensional model.

(G2.) The redu
ed model should at no pla
e 
ontain spa
e derivatives of the thi
kness stret
h %

m

, sin
e in the

underlying three-dimensional Cosserat model 
urvature is only present through the third order 
urvature

tensor K related only to rotations R.

The use of (3.26) ex
ludes (up to order h

3

) exa
tly those terms whi
h would violate our prin
iple had we used

(3.10) instead. A simple but tedious 
al
ulation reveals that

�

4

kR

T

A

r

+A

T

r

Rk

2

+

�

8

tr

h

R

T

A

r

+A

T

r

R

i

2

(3.27)

= �k sym(R

T

(rR

3

j0))k

2

+

��

2�+ �

tr

h

sym(R

T

(rR

3

j0))

i

2

+

hN

res

; R

3

i

2

2(2�+ �)h

2

:

Exa
tly the same 
omputations as for the bending term allows us to 
on
lude that

�

4

kR

T

A

r

+A

T

r

R� 211k

2

+

�

8

tr

h

R

T

A

r

+A

T

r

R

i

2

(3.28)

= �k sym(R

T

(rmjR

3

))� 11k

2

+

��

2�+ �

tr

h

sym(R

T

(rmjR

3

)) � 11

i

2

+

hN

di�

; R

3

i

2

2(2�+ �)

:

3.3 Dimensionally redu
ed energy: energy proje
tion

Now we perform the analyti
al integration over the thi
kness in terms of the redu
ed kinemati
s. We insert the

result F

s

(3.26) and R

s

instead of F and R

3d

into (3.7). Sin
e

k sym(R

T

s

F

s

)� 11k

2

=

1

4

kA

T

m

R+R

T

A

m

+ z A

T

r

R+ z R

T

A

r

� 211k

2

(3.29)

=

1

4

kA

T

m

R+R

T

A

m

� 211k

2

+ z hA

T

m

R+R

T

A

m

� 211; A

T

r

Ri+

z

2

4

kA

T

r

R+R

T

A

r

k

2

:

14

It would be possible to base all further 
onsiderations indeed on the exa
t solution of %

m

; %

b

and it seems that the resulting

two-dimensional model would allow an existen
e proof. However, the mu
h more involved expressions are not easily interpreted

and do not redu
e to the 
lassi
al expressions upon linearization.
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and a similar expression for the tra
e and skew part, we obtain by expli
itly integrating over the (absolutely

thin plate like referential) domain 


h

= ! � [�

h

2

;

h

2

℄

Z

!

h

2

Z

�

h

2

W

mp

(F

s

; R

s

) dV =

Z

!

h

�

�

4

kA

T

m

R+R

T

A

m

� 211k

2

+

�




4

kA

T

m

R�R

T

A

m

k

2

+

�

8

tr

h

A

T

m

R +R

T

A

m

� 211

i

2

�

d!

+ 0 +

Z

!

h

3

12

�

�

4

kA

T

r

R+R

T

A

r

k

2

+

�




4

kA

T

r

R �R

T

A

r

k

2

+

�

8

tr

h

A

T

r

R+R

T

A

r

i

2

�

d!

=

Z

!

h

�

�k sym(R

T

(rmjR

3

))� 11k

2

+ �




k skew(R

T

(rmjR

3

))k

2

+

��

2�+ �

tr

h

sym(R

T

(rmjR

3

)) � 11

i

2

+

hN

di�

; R

3

i

2

2(2�+ �)

!

d! + (3.30)

Z

!

h

3

12

 

�k sym(R

T

(rR

3

j0))k

2

+ �




k skew(R

T

(rR

3

j0))k

2

+

��

2�+ �

tr

h

sym(R

T

(rR

3

j0))

i

2

+

hN

res

; R

3

i

2

2(2�+ �)h

2

!

d!

=

Z

!

h

�

�k sym(R

T

(rmjR

3

))� 11k

2

+ �




k skew(R

T

(rmjR

3

))k

2

+

��

2�+ �

tr

h

sym(R

T

(rmjR

3

)) � 11

i

2

+

hN

di�

; R

3

i

2

2(2�+ �)

+

hN

res

; R

3

i

2

24 (2�+ �)

!

d!

+

Z

!

h

3

12

�

�k sym(R

T

(rR

3

j0))k

2

+ �




k skew(R

T

(rR

3

j0))k

2

+

��

2�+ �

tr

h

sym(R

T

(rR

3

j0))

i

2

�

d! ;

and we may 
all (A

T

m

R + R

T

A

m

� 211) the membrane part and (A

T

r

R + R

T

A

r

) the bending part. The

in
uen
e of

h

 

hN

di�

; R

3

i

2

2(2�+ �)

+

hN

res

; R

3

i

2

24 (2�+ �)

!

; (3.31)

in the redu
ed energy is of higher order than the 
omparable in
uen
e of the assumed resultant loading, 
f.

(10.102). Moreover, for large tra
tions, the in
uen
e of this term in the energy would 
oer
e the 
omponent R

3

to adjust orthogonal to tra
tions N instead of presumably parallel. Sin
e 2�+ � � 1 for a rigid material it is

therefore suggested to negle
t this 
ontribution as well. This is all the more ne
essary, sin
e (3.31) would be a

non-frame-indi�erent 
ontribution to the plate elasti
 energy.

3.4 Redu
tion of the 
urvature

Similarly the Cosserat 
urvature term is integrated over the thi
kness. Consider

K

s

= R

T

s

D

x

R

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

; (3.32)

the redu
ed third order 
urvature tensor. Integration over the domain 


h

= ! � [�

h

2

;

h

2

℄ yields

Z

!

h

2

Z

�

h

2

W


urv

(K

s

) dV =

Z

!

�

hL

1+p




12

(1 + �

4

L

q




kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

d! :

(3.33)

3.5 Redu
tion/dedu
tion of the boundary 
onditions

Taking the Diri
hlet boundary 
onditions for ' into a

ount and the kinemati
al ansatz, we have

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

� R

s;3

(x; y; 0) ; '

s

(x; y; z)

j

�

0

= g

d

(x; y; z) : (3.34)
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Evaluating for �h=2 yields two ve
tor equations:

g

d

(x; y;+h=2) = m(x; y) +

�

h=2 %

m

(x; y) +

h

2

8

%

b

(x; y)

�

�R

s;3

(x; y; 0) (3.35)

g

d

(x; y;�h=2) = m(x; y) +

�

�h=2 %

m

(x; y) +

h

2

8

%

b

(x; y)

�

�R

s;3

(x; y; 0) :

Adding and subtra
ting shows

g

d

(x; y;+h=2) + g

d

(x; y;�h=2) = 2m(x; y) +

h

2

4

%

b

(x; y) �R

s;3

(x; y; 0) (3.36)

g

d

(x; y;+h=2)� g

d

(x; y;�h=2) = h %

m

(x; y)R

s;3

(x; y; 0)) rg

d

(x; y; 0):e

3

= %

m

(x; y)R

s;3

(x; y; 0) + o(h) :

This implies

m(x; y) =

1

2

(g

d

(x; y;+h=2) + g

d

(x; y;�h=2)) � g

d

(x; y; 0) : (3.37)

In order get a boundary 
ondition for the rotation we use the best available information of the three-dimensional

theory: 
onsider the three-dimensional 
onsistent 
oupling boundary 
ondition �

h

0

� �
:

R

3d

(x; y; z) = polar(r'(x; y; z)) = polar((�

x

'(x; y; z)j�

y

'(x; y; z)j�

z

'(x; y; z))) : (3.38)

Sin
e g

d

is given on �

h

0

, it holds that

g

d

(x; y;+h=2) = '(x; y;+h=2)

g

d

(x; y;�h=2) = '(x; y;�h=2)) �

z

'(x; y; 0) = rg

d

(x; y; 0):e

3

+ o(h) : (3.39)

Hen
e

R

3d

(x; y; 0) = polar(r'(x; y; 0)) = polar((�

x

'(x; y; 0)j�

y

'(x; y; 0)j�

z

'(x; y; 0)))

= polar((�

x

'(x; y; 0)j�

y

'(x; y; 0)jrg

d

(x; y; 0):e

3

)) ; (3.40)

whi
h, in view of the assumed kinemati
s ne
essitates the 
onsistent 
oupling for plates

R

j




0

(x; y) = polar((rm(x; y)jrg

d

(x; y; 0):e

3

)) : (3.41)

This 
ondition disposes us from the need to motivate rather arti�
ially any boundary 
onditions for the rotations.

Observe that this last boundary 
ondition does not imply that the rigid plate pres
ription

R

3j




0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; (3.42)

holds, whi
h would 
orrespond to a form of 
lamping

15

and whi
h 
an be seen as a 
onsequen
e of (3.36). Note,

however, that (3.41) implies (3.42) in the limit of small-strain: i.e. if (rmjrg

d

:e

3

)

j




0

2 SO(3;R). In this sense,

(3.42) is a small strain approximation of (3.41).

15

We reserve the notion 
lamped, meaning that ~n

m

=

rg

d

(x;y;0):e

3

rg

d

(x;y;0):e

3

on 


0

to traditional fourth order Kir
hho�-Love models

(7.83).
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Figure 1: The assumed Cosserat plate kinemati
s in
orporating transverse shear (R

3

6= ~n), thi
kness stret
h

(%

m

6= 1) and drill-rotations. Re
onstru
ted three-dimensional deformation '

s

, midsurfa
e deformation m,

mi
rorotation R.

15



4 The new �nite Cosserat thin plate model with size e�e
ts

Gathering our results we have obtained the following two-dimensional minimization problem for the deformation

of the midsurfa
e m : ! � R

2

7! R

3

and the mi
rorotation of the plate (shell) R : ! � R

2

7! SO(3;R) solving

on !:

I =

Z

!

hW

mp

(U) + hW


urv

(K

s

) +

h

3

12

W

bend

(K

b

) d! ��(m;R

3

) 7! min : w.r.t. (m;R);

U = R

T

^

F ;

^

F = (rmjR

3

); F

s

= (rmj%

m

R

3

) re
onstru
ted deformation gradient

%

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

non-invariant

z }| {

hN

di�

; R

3

i

(2�+ �)

= 1�

�

2�+ �

tr

�

U � 11

�

+

hN

di�

; R

3

i

(2�+ �)

| {z }

�rst order thi
kness stret
h

m

j




0

= g

d

(x; y; 0) ; simply supported (�xed) (4.43)

R

j




0

= polar((rmjrg

d

(x; y; 0):e

3

))

j




0

; redu
ed 
onsistent 
oupling

R

3

j




0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; alternatively: rigid pres
ription

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+

��

2�+ �

tr

�

sym(U � 11)

�

2

= � k sym((R

1

jR

2

)

T

rm� 11

2

)k

2

+ �




k skew((R

1

jR

2

)

T

rm)k

2

+

�(�+ �




)

2

�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

| {z }

transverse shear energy

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

W


urv

(K

s

) = �

L

1+p




12

(1 + �

4

L

q




kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

; redu
ed third order 
urvature tensor

W

bend

(K

b

) = � k sym(K

b

)k

2

+ �




k skew(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

K

b

= R

T

(rR

3

j0) = K

3

s

; se
ond order, non-symmetri
 bending tensor :

The (relative) thi
kness of the plate (shell) is h > 0. The total elasti
ally stored energy due to membrane,


urvature and bending

W = hW

mp

+ hW


urv

+

h

3

12

W

bend

; (4.44)

depends on the midsurfa
e deformation gradient rm and mi
rorotations R together with their spa
e derivatives

only through U and K

s

. Themi
ropolar stret
h tensor U of the plate is in general non-symmetri
. Here ! �

R

2

is a domain with boundary �! and 


0

� �! is that part of the boundary, where Diri
hlet 
onditions g

d

; R

3;d

for displa
ements and mi
rorotations, respe
tively, are pres
ribed. The redu
ed external loading fun
tional

�(m;R

3

) is a linear form in (m;R

3

) de�ned in (10.102) in terms of the underlying three-dimensional loads.

The parameters �; � > 0 are the Lam�e 
onstants of 
lassi
al elasti
ity, �




� 0 is 
alled the Cosserat 
ouple

modulus and L




> 0 introdu
es an internal length whi
h is 
hara
teristi
 for the material, e.g. related to

the grain size in a poly
rystal and whi
h is responsible for the size e�e
ts. If not stated otherwise, we assume that

�

5

> 0; �

6

> 0; �

7

� 0. We have in
luded the so 
alled shear 
orre
tion fa
tor � (0 < � � 1) to keep in line

with in�nitesimal models, in our derivation however, we obtain � = 1. The model is fully frame-indi�erent,

meaning that

8 Q 2 SO(3;R) : W (Q

^

F ;QR) =W (

^

F ;R) : (4.45)

The non-invariant term %

m

is only needed to re
onstru
t the 3D-deformation, whi
h of 
ourse depends on the

non-invariant loading.

16

Strain and 
urvature parts are additively de
oupled, as in the underlying parent model

(3.7).

16

Of 
ourse, if the external tra
tions are rotated as well, we obtain invarian
e: hQ:N

di�

;Q:R

3

i = hN

di�

; R

3

i.

16



4.1 The di�erent 
ases for the Cosserat plate

As in the three-dimensional 
ase, we may distinguish �ve di�erent situations: (di�erent values of p; q 
ompared

with the three-dimensional 
ase)

I: �




> 0; �

4

� 0; p � 1; q � 0, un
onditional elasti
 ma
ro-stability, lo
al �rst order Cosserat mi
ropo-

lar, unquali�ed existen
e, mi
ros
opi
 spe
imens, non-zero Cosserat 
ouple modulus. Fra
ture ex
luded.

II: �




= 0; �

4

= 0; p > 1; q = 0, elasti
 pre-stability, nonlo
al se
ond order Cosserat mi
ropolar, ma
ro-

s
opi
 spe
imens, in a sense 
lose to 
lassi
al elasti
ity, zero Cosserat 
ouple modulus. Fra
ture ex
luded.

III: �




=1; �

4

� 0; p � 1; q � 0, un
onditional elasti
 ma
ro-stability, the 
onstrained gradient Cosserat

mi
ropolar plate problem (indeterminate 
ouple stress plate model (4.61)). Compatible Diri
hlet boundary


onditions: m

j




0

= g

d

; polar((rmj%

m

~n

m

))

j




0

= polar(rg

d

)

j




0

.

IV: �




= 0; �

4

= 0; 0 < p � 1; q = 0, elasti
 pre-stability, nonlo
al se
ond order Cosserat mi
ropolar, ma
ro-

s
opi
 spe
imens, in a sense 
lose to 
lassi
al elasti
ity, zero Cosserat 
ouple modulus. Sin
e possibly

m 62 W

1;1

(!;R

3

), due to la
k of elasti
 
oer
ivity, in
luding fra
ture in multiaxial situations.

V: �




= 0;L




= 0, elasti
 pre-stability, �nite elasti
ity with free rotations and mi
rostru
ture. Weak so-

lutions of 
orresponding �nite elasti
ity are stationary points of this minimization problem. Allowing for

sharp interfa
es.

We refer to 0 < p < 1; q � 0 as the sub-
riti
al 
ase, p = 1; q � 0 as the 
riti
al 
ase and p � 1; q > 1 as

the super-
riti
al 
ase. We will mathemati
ally treat the �rst three 
ases.

4.2 Constitutive 
onsequen
es of the value for the Cosserat 
ouple modulus

Looking at the membrane energy W

mp

with �




> 0 we see that the impli
ation of this 
hoi
e at a �rst glan
e is

an ino

uous rise in the ma
ros
opi
 elasti
 membrane strain energyW

mp

(U) of the plate if R 6= polar(rmjR

3

)).

The 
hoi
e �




> 0 a
ts like a lo
al 'elasti
 spring' between both 
ontinuum rotations and mi
rorotations.

Let us 
onsider the mathemati
al impli
ations of �




= 0 and 0 < �




� �, respe
tively, for the membrane, in

more detail. We 
ompute the se
ond derivative of the membrane strain energyW

mp

(R

T

^

F ) at �xed R 2 SO(3;R)

w.r.t. rm 2 M

2�3

. For H 2 M

2�3

we have

D

2

rm

W

mp

(R

T

^

F ):(H;H) � D

2

rm

�

�k sym(R

T

(rmjR

3

))� 11k

2

+ �




k skew(R

T

(rmjR))k

2

�

:(H;H) (4.46)

= 2�k sym(R

T

(H j0))k

2

+ 2�




k skew(R

T

(H j0))k

2

=

(

� 2�




kR

T

(H j0))k

2

= 2�




k(H j0))k

2

if �




> 0

= 2� k sym(R

T

(H j0))k

2

if �




= 0

:

Hen
e the 
hoi
e �




> 0 leads to uniform 
onvexity of W

mp

(R

T

^

F ) w.r.t. rm and un
onditional elas-

ti
 stability on the ma
ros
opi
 level: regardless of what distribution of mi
rorotations R(x) is given, the

ma
ros
opi
 equation of balan
e of linear momentum is uniquely solvable and this equation is insensible to

any deterioration of the spatial features of the mi
rostru
ture. Uniform 
onvexity is diÆ
ult to a

ept from a


onstitutive point of view sin
e it is impossible for a geometri
ally exa
t des
ription in the framework of a 
las-

si
al ma
ros
opi
 
ontinuum but 
lear from the above dis
ussion: the additional elasti
 spring between mi
ro-

and 
ontinuum rotation extremely rigidi�es the material and 
ompletely 
hanges the type of the mathemati
al

boundary value problem 
ompared with the 
lassi
al �nite theory.

17

Fortunately, su
h a far rea
hing unsatisfa
tory 
on
lusion does not hold for �




= 0. Choose � 2 R

3

and

� = (�

1

; �

2

; 0)

T

. Then 
onsider (H j0) = � 
 � 2 M

3�3

and

D

2

rm

W

mp

(R

T

^

F ):(� 
 �; � 
 �) = �

�

kR

T

� 
 �k

2

+ hR

T

� 
 �; � 
R

T

�i

�

= �

�

kR

T

� 
 �k

2

+ hR

T

�; �i

2

�

;

whi
h shows the physi
ally mu
h more appealing inequality

D

2

rm

W

mp

(R

T

^

F ):(� 
 �; � 
 �) � � k�k

2

R

3

� k�k

2

R

2

; (4.47)

expressing nothing but uniform Legendre-Hadamard ellipti
ity of the membrane a
ousti
-tensor with el-

lipti
ity 
onstant � independent of R. The Legendre-Hadamard 
ondition has the most 
onvin
ing physi
al

basis [Ant95, p.461℄ in that it implies the reality of wave speeds and the Baker-Eri
ksen inequalities (stress

in
reases with strain, [MH83, p.19℄). The 
hoi
e �




= 0 is 
onsistent with the three-dimensional strain energy

density proposed in [Nef03b, (P3)℄ and [NW03, M1℄ if the appearing independent vis
oelasti
 rotations there

are identi�ed with the independent elasti
 Cosserat mi
rorotations here.

17

In the analyti
al se
tion we will see that �




> 0 implies that m 2 W

1;1

(!;R

3

) irrespe
tive of R 2 SO(3;R), thus ex
luding

fra
ture.

17



4.3 The 
oer
ive inequality in two-dimensions

In this se
tion we show how to use the three-dimensional extended Korn's �rst inequality Theorem 2.1 in

our redu
ed two-dimensional 
ontext of plates and shells in order to improve Legendre-Hadamard ellipti
ity

to uniform positivity. In order to show that the elasti
 membrane energy is uniformly 
onvex we look at the

se
ond di�erential of W

mp

(R

T

^

F ) with respe
t to m

D

2

rm

W

mp

(R

T

^

F ):(r�;r�) �

�

2

k(r�j0)

T

R+R

T

(r�j0)k

2

: (4.48)

Set for simpli
ity � = 2 and 
onsider the slightly more general quadrati
 form (appropriate for elasti
 shells

and elasto-plasti
 shells)

kF

�T

p

(r�j0)

T

R

e

+R

T

e

(rmj0)F

�1

p

k

2

= kR

e

�

F

�T

p

(r�j0)

T

R

e

+R

T

e

(r�j0)F

�1

p

�

R

T

e

k

2

= k(R

e

F

p

)

�T

(r�j0)

T

+ (r�j0)(R

e

F

p

)

�1

k

2

; (4.49)

where � : ! � R

2

7! R

3

and �

j




0

= 0 for 


0

� �!. Extend now � by

�

� : R

3

7! R

3

through

�

�(x; y; z) := �(x; y))

�

�(x; y; z)




0

�[�

h

2

;

h

2

℄

= 0: (4.50)

This extension implies

r

(x;y;z)

�

�(x; y; z) = (r

(x;y)

�j0): (4.51)

For

�

� it is possible to use the 3D-extended Korn's �rst inequality Theorem 2.1. To this end 
onsider 


h

=

! � [�

h

2

;

h

2

℄ and the lateral Diri
hlet boundary �

h

0

= 


0

� [�

h

2

;

h

2

℄ � �


h

. Then �

h

0

has non-vanishing 2-

dimensional Lebesgue measure. Set by abuse of notation F

p

= (R

e

F

p

) for the moment. With smooth enough,

invertible F

p

it holds on applying Theorem 2.1 that

Z

!�[�

h

2

;

h

2

℄

kr

�

�

T

F

�1

p

+ F

�T

p

r

�

�k

2

dV � 


+

3D

�

Z

!�[�

h

2

;

h

2

℄

k

�

�k

2

+ kr

�

�k

2

dV )

Z

!

h

2

Z

�

h

2

kr

�

�

T

F

�1

p

+ F

�T

p

r

�

�k

2

d! dz � 


+

3D

�

Z

!

h

2

Z

�

h

2

k

�

�k

2

+ kr

�

�k

2

d! dz : (4.52)

Sin
e

�

� is independent of z we get, however,

Z

!

kr

�

�

T

F

�1

p

+ F

�T

p

r

�

�k

2

d! � 


+

3D

�

Z

!

k

�

�k

2

+ kr

�

�k

2

d! ; (4.53)

or ba
k in terms of �

Z

!

k(r�j0)

T

F

�1

p

+ F

�T

p

(r�j0)k

2

d! � 


+

3D

�

Z

!

k�k

2

+ k(r�j0)k

2

d!: (4.54)

Observe that the 
onstant 


+

3D

is independent of the thi
kness h whi
h might be surprising at �rst glan
e.

This observation allows one to bound m 2 H

1;2

Æ

(!;R

3

; 


0

) independent of the relative thi
kness h only in terms

of the membrane energy

R

!

W (rm;R) d! if R 2 SO(3;R) is smooth enough. Thus we have �nally proved

Theorem 4.1 (Extended Korn�s �rst inequality for rigid shells)

Let ! � R

2

be a bounded Lips
hitz domain and let 


0

� �! be a smooth part of the boundary with non

vanishing 1-dimensional Lebesgue measure. De�ne H

1;2

Æ

(!;R

3

; 


0

) := f� 2 H

1;2

(!); � : ! 7! R

3

j �

j




0

= 0g

and let F

p

; F

�1

p

2 C

1

(!;GL(3;R)). Moreover suppose that CurlF

p

2 C

1

(!;M

3�3

). Then

9 


+

> 0 8 � 2 H

1;2

Æ

(!;R

3

; 


0

) : k(r�j0)F

�1

p

(x) + F

�T

p

(x)(r�j0)

T

k

2

L

2

(!)

� 


+

k�k

2

H

1;2

(!)

: �

Based on the strengthening proposed in [Pom03℄ we get immediately the following

18



Corollary 4.2 (Improved Korn's inequality for rigid shells)

Let ! � R

2

be a bounded domain with smooth boundary and let 


0

� �! be a part of the boundary with non

vanishing 1-dimensional Lebesgue measure. De�ne H

1;2

Æ

(!;R

3

; 


0

) := f� 2 H

1;2

(!); � : ! 7! R

3

j �

j




0

= 0g

and let F

p

2W

1;2+Æ

(!;GL(3;R)). Then

9 


+

> 0 8 � 2 H

1;2

Æ

(!;R

3

; 


0

) : k(r�j0)F

�1

p

(x) + F

�T

p

(x)(r�j0)

T

k

2

L

2

(!)

� 


+

k�k

2

H

1;2

(!)

; (4.55)

and the 
onstant is bounded away from zero for F

p

bounded in W

1;2+Æ

(!;GL(3;R)).

Proof. The Sobolev embedding shows that F

p

2 W

1;2+Æ

(!;GL(3;R)) may be identi�ed with a 
ontinuous

fun
tion. A 
ontradi
tion argument as in [Nef03
℄ shows that the 
onstant is bounded away from zero sin
e

W

1;2+Æ

(!;GL(3;R)) is 
ompa
tly embedded in C(!;GL(3;R)). �

However, taking the spe
ial stru
ture of the extended Korn's inequality into a

ount, work in progress

suggests that even 
ontinuity is not really ne
essary: instead F

p

2 L

1

(!;GL(3;R)) and CurlF

p

2 L

N+Æ

(!)

with N = dim(!) should suÆ
e, whereas F

p

2 L

1

(!;GL(3;R)) alone is not suÆ
ient, see the 
ounterexample

presented in [Pom03℄.

4.4 Mathemati
al analysis of the two-dimensional problem

The following results are the �rst existen
e theorems for geometri
ally exa
t

18

derived elasti
 Cosserat plate

models known to the author:

19

Theorem 4.3 (Existen
e for 2D-�nite elasti
 Cosserat model: 
ase I.)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

) and R

d

2

W

1;1+p

(!; SO(3;R)). Moreover, let f 2 L

2

(!;R

3

) and suppose N 2 L

2

(


s

;R

3

) together with M 2 L

1

(!;R

3

)

and M




2 L

1

(


s

;R

3

), see (10.102). Then (4.43) with material 
onstants 
onforming to 
ase I admits at least

one minimizing solution pair (m;R) 2 H

1

(!;R

3

)�W

1;1+p

(!; SO(3;R)).

Proof. We apply the dire
t methods of variations. First, the requirement on the data shows that

�(m;R

3

) � C �

�

kmk

L

2

(!)

+ kR

3

k

1

�

= C

�

kmk

L

2

(!)

+ 1

�

: (4.56)

With the pres
ription of (g

d

; R

d

) it is 
lear that I <1 for some pair (m;R). Observe �rst that the mi
ropolar


urvature term K

s


ontrols R 2 W

1;1+p

(!; SO(3;R)), sin
e kK

s

k = kR

T

D

x

Rk = kD

x

Rk, pointwise and �

5

; �

6

>

0. Moreover, SO(3;R) is weakly 
losed in the topology ofW

1;1+p

(!). We omit to show that I is bounded below:

this will turn out not to be ne
essary. We may 
hoose de
reasing (in�mizing) sequen
es of pairs (m

k

; R

k

).

The 
urvature 
ontribution together with the appropriate boundary 
onditions and Poin
ar�es inequality yields

boundedness of R

k

� W

1;1+p

(!; SO(3;R)). We may extra
t a subsequen
e again denoted by R

k


onverging

strongly in L

1+p

(!) to an element

~

R 2 W

1;1+p

(!; SO(3;R)) sin
e p > 0 by assumption. Be
ause �




> 0, it is

immediate that (rm

k

jR

k

) =

^

F

k

is bounded in L

2

(!;M

3�3

), independent of R

k

on a

ount of

W

mp

(R

k;T

^

F

k

) � �




kR

k;T

^

F

k

� 11k

2

= �




�

k

^

F

k

k

2

� 2h

^

F

k

; R

k

i+ 3

�

� �




�

k

^

F

k

k

2

� 2

p

3k

^

F

k

k+ 3

�

; (4.57)

and

1 >

Z

!

hW

mp

(U

k

) + hW


urv

(K

s;k

) +

h

3

12

W

bend

(K

b

) d! ��(m

k

; R

k

3

) �

Z

!

hW

mp

(U

k

)��(m

k

; R

k

3

) d!

�

Z

!

hW

mp

(U

k

) d! � C

�

km

k

k

L

2

(!)

+ 1

�

(4.58)

� �




h k

^

F

k

k

2

L

2

(!)

� 2

p

3�




h k

^

F

k

k

L

2

(!)

� Ckm

k

k

H

1;2

(!)

+ 3�




h� C

� �




h krm

k

k

2

L

2

(!)

� 2

p

3�




h krm

k

k

L

2

(!)

� C km

k

k

H

1;2

(!)

+ 3�




h� C

� �




h krm

k

k

2

L

2

(!)

� C km

k

k

H

1;2

(!)

� C � �







+

P

h kv

k

k

2

H

1;2

(!)

� C

1

kv

k

k

H

1;2

(!)

+ C

2

;

18

same as frame-indi�erent

19

The proposed �nite results determine the ma
ros
opi
 midsurfa
e plate deformation m 2 H

1

(!;R

3

) and not more. This means

that dis
ontinuous ma
ros
opi
 deformations by 
avities or the formation of holes are not ex
luded (possible mode I failure). If

�




> 0 fra
ture is e�e
tively ruled out, whi
h is unrealisti
. All results remain true for arbitrary shear 
orre
tion fa
tor � > 0.

19



where we made use of the appropriate boundary 
onditions form

k

= x+v

k

(x), and applied Poin
ar�es inequality

to u

k

sin
e it has zero boundary values on 


0

. This yields the boundedness of v

k

, thus m

k

is bounded in

H

1

(!;R

3

). Hen
e we may extra
t a subsequen
e, not relabelled, su
h that m

k

* ~m 2 H

1

(!;R

3

). Furthermore,

we may always obtain a subsequen
e of (m

k

; R

k

) su
h that U

k

= R

k;T

^

F

k


onverges weakly in L

2

(!) to an

element

~

U on a

ount of the boundedness of the stret
h energy and �




> 0.

For p � 1 we have as well that R

k


onverges indeed strongly in L

2

(!) to an element

~

R 2 H

1;2

(!; SO(3;R)).

Thus R

k;T

^

F

k


onverges weakly to

~

R

T

^

F in L

1

(!). The weak limit in L

1

(!) must 
oin
ide with the weak limit

of U

k

in L

2

(!). Hen
e,

~

U =

~

R

T

(r ~mj

~

R

3

).

Sin
e the total energy is 
onvex in (U;K

s

;K

b

) and (

^

F ;DR), we get

I( ~m;

~

R) =

Z

!

hW

mp

(

~

U) + hW


urv

(

~

K

s

) +

h

3

12

W

bend

(

~

K

b

) d! ��( ~m;

~

R

3

)

� lim inf

k!1

Z

!

hW

mp

(U

k

) + hW


urv

(K

s;k

) +

h

3

12

W

bend

(K

b;k

) d! ��(m

k

; R

k

3

) = lim

k!1

I(m

k

; R

k

) ; (4.59)

whi
h implies that the limit pair is a minimizer. Note that the limit mi
rorotations

~

R may fail to be 
ontinuous

if p � 2 (non-existen
e or limit 
ase of Sobolev embedding). Moreover, uniqueness 
annot be as
ertained,

sin
e SO(3;R) is a nonlinear manifold (and the 
onsidered problem is indeed nonlinear), su
h that 
onvex


ombinations of rotations are not rotations in general. Sin
e the fun
tional I is di�erentiable the minimizing

pair is a stationary point and therefore a solution of the 
orresponding �eld equations. Note again that the

limit mi
rorotations are trivial in L

1

(!) but may fail to be 
ontinuously distributed in spa
e. That under

these unfavourable 
ir
umstan
es a minimizing solution may nevertheless be found is entirely due to �




> 0

and p � 1. �

We 
ontinue with the (more realisti
) super-
riti
al 
ase.

Theorem 4.4 (Existen
e for 2D-�nite elasti
 Cosserat model: 
ase II.)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

) and R

d

2

W

1;1+p+q

(!; SO(3;R)). Moreover, let f 2 L

2

(!;R

3

) and suppose N 2 L

2

(


s

;R

3

) together with M 2 L

1

(!;R

3

)

and M




2 L

1

(


s

;R

3

), see (10.102). Then (4.43) with material 
onstants 
onforming to 
ase II admits at least

one minimizing solution pair (m;R) 2 H

1

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)).

Proof. We repeat the argument of 
ase I. However, the boundedness of in�mizing sequen
es is not immediately


lear. Boundedness of the rotations R

k

holds true in the spa
e W

1;1+p+q

(!; SO(3;R)) with 1 + p+ q > N = 3,

hen
e we may extra
t a subsequen
e, not relabelled, su
h that R

k


onverges strongly to

^

R 2 C

0

(!; SO(3;R)) in

the topology of C

0

(!; SO(3;R)) on a

ount of the Sobolev-embedding theorem. Along su
h strongly 
onvergent

sequen
e of rotations, the 
orresponding sequen
e of midsurfa
e-deformations m

k

is also bounded in H

1

(!;R

3

).

However, this is not due to a basi
ally simple pointwise estimate as in 
ase I, but only true after integration over

the domain: at fa
e value we only 
ontrol 
ertain mixed symmetri
 expressions in the re
onstru
ted deformation

gradient. More pre
isely, we have

1 >

Z

!

hW

mp

(U

k

) + hW


urv

(K

s;k

) +

h

3

12

W

bend

(K

b

) d! ��(m

k

; R

k

3

) �

Z

!

hW

mp

(U

k

)��(m

k

; R

k

3

) d!

�

Z

!

hW

mp

(U

k

) d! � C

�

km

k

k

L

2

(!)

+ 1

�

(4.60)

�

Z

!

h

�

4

kR

T

k

(rm

k

jR

3

) + (rm

k

jR

3

)

T

R

k

� 211k

2

d! � Ch

�

km

k

k

H

1;2

(!)

+ 1

�

�

Z

!

h

�

4

kR

T

k

(rm

k

j0) + (rm

k

j0)

T

R

k

k

2

d! � C

1

km

k

k

H

1;2

(!)

+ C

2

=

Z

!

h

�

4

k(R

k

�

^

R+

^

R)

T

(rv

k

j0) + (rv

k

j0)

T

(R

k

�

^

R+

^

R)k

2

d! � C

1

kv

k

k

H

1;2

(!)

+ C

2

�

I

h

�

4

k

^

R

T

(rv

k

j0) + (rv

k

j0)

T

^

Rk

2

| {z }


ombinations of derivatives

d! � C

3

k

^

R�R

k

k

1

kv

k

k

2

H

1;2

(!)
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� (C

1

+ 2 k

^

R�R

k

k

1

) kv

k

k

H

1;2

(!)

+ C

2

� (

�

4




+

K

� C

3

k

^

R�R

k

k

1

) kv

k

k

2

H

1;2

(!)

� (C

1

+ 2 k

^

R�R

k

k

1

) kv

k

k

H

1;2

(!)

+ C

2

;

where we made use of the appropriate boundary 
onditions for m

k

= x + u

k

and applied the extended Korn's

inequality (2.1) in the improved version of [Pom03℄ yielding the positive 
onstant 


+

K

for the 
ontinuous mi
ro-

rotation

^

R. Sin
e k

^

R�R

k

k

1

! 0 we 
on
lude the boundedness of v

k

in H

1

(!). Hen
e, m

k

is bounded as well

in H

1

(!). Now we obtain that U

k

*

~

U =

^

R

T

r ~m by 
onstru
tion with the notations as in 
ase I.

The remainder pro
eeds as in 
ase I. This �nishes the argument. The limit mi
rorotations

^

R are indeed

found to be 
ontinuous. However, for mixed boundary 
onditions, the midsurfa
e deformation m 
annot be

shown to be smooth for la
k of ellipti
 regularity. �

4.5 The limit problem for in�nite Cosserat 
ouple modulus �




!1: the Biot-plate

As in the three-dimensional 
ase, a 
onstrained plate model is obtained by setting formally �




= 1 in

(4.43). This implies that U = R

T

(rmjR

3

) 2 Sym, whi
h entails R

3

= ~n

m

and the 
onstraint rotation

R = polar(rmj~n

m

). Moreover, K

b

2 Sym is enfor
ed. Independent variation is only possible w.r.t. m and

(4.43) turns into the 
onstrained minimization problem on !:

I =

Z

!

hW

mp

(U) + hW


urv

(K

s

) +

h

3

12

W

bend

(K

b

) d! ��(m;~n

m

) 7! min : w.r.t. m;

U = R

T

^

F =

q

(rmj~n)

T

(rmj~n) 2 Sym;

^

F = (rmj~n

m

); F

s

= (rmj%

m

~n

m

); R = polar(rmj~n)

%

m

= 1�

�

2�+ �

tr

�

U � 11

�

+

hN

di�

; ~ni

(2�+ �)

; �rst order thi
kness stret
h

m

j




0

= g

d

(x; y; 0) ; simply supported (4.61)

polar(rmj~n) = polar((rmjrg

d

(x; y; 0):e

3

))

j




0

; redu
ed 
onsistent 
oupling

~n

j




0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; alternatively: 
lassi
al rigid 
ondition

W

mp

(U) = � kU � 11k

2

+

��

2�+ �

tr

�

U � 11

�

2

= � k

p

I

m

� 11

2

k

2

+

��

2�+ �

tr

h

p

I

m

� 11

2

i

2

; I

m

: �rst fundamental form of the surfa
e

W


urv

(K

s

) = �

L

1+p




12

(1 + �

4

L

q




kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

; redu
ed third order 
urvature tensor

W

bend

(K

b

) = � kK

b

k

2

+

��

2�+ �

tr [K

b

℄

2

= � kr~nk

2

+

��

2�+ �

tr

h

R

T

(r~nj0)

i

2

K

b

= polar((rmj~n))

T

(r~nj0) ; se
ond order, weighted, bending tensor

K

b

2 Sym, U

�1




II

m

2 Sym ; symmetry 
onstraint, hR

1;y

; ~ni = hR

2;x

; ~ni for smooth �elds




II

m

: extended se
ond fundamental form of the surfa
e :

Let us therefore de�ne the set of admissible deformations A := fm 2 H

1;2

(!;R

3

) j hpolar(rmj~n)

1;y

; ~ni =

hpolar(rmj~n)

2;x

; ~ni g. This set is not empty: pure bending situations (rmj~n) 2 SO(3;R) and deformations,

where U 2 diag and II

m

2 diag are 
ontained in A.

Theorem 4.5 (Existen
e for 2D-
onstrained Cosserat plate model: 
ase III)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

) and polar(rg

d

) 2

W

1;1+p

(!; SO(3;R)) and R

d

2 W

1;1+p

(!; SO(3;R)). Moreover, let f 2 L

2

(!;R

3

) and suppose N 2 L

2

(


s

;R

3

)

together with M 2 L

1

(!;R

3

) and M




2 L

1

(


s

;R

3

), see (10.102). If I < 1 over A then problem (4.61) with

p � 1 admits at least one minimizing solution m 2 H

1;2

(!;R

3

).

Proof. The proof mimi
s 
ase I sin
e the sequen
e of in�mizing rotations R

k

is 
onstrained to the orthogonal

part polar(

^

F

k

) of the 
orresponding sequen
e of deformation gradients F

k

. Due to the extra Cosserat 
urvature

21




ontrol, the rotations R

k

= polar(rm

k

j~n

k

) 
an be 
hosen su
h that they 
onverge weakly in H

1

(!; SO(3;R))

and su
h weak limit lies in A. �

Remark 4.6

Complete higher regularity of m in the 
onstrained Cosserat model, i.e. m 2 H

2;2

(!;R

3

) 
annot be as
ertained

in general sin
e we only 
ontrol 
ertain se
ond derivatives of m in the 
urvature term. One might wonder

therefore, whether the additional C

1

-
ontinuity in treating the fourth order indeterminate 
ouple stress problem

numeri
ally is worth the e�ort.

4.6 The limit problem for vanishing relative thi
kness h! 0

While it does not make mu
h sense to let h! 0 at �xed in-plane elongationL > 0, sin
e there is an absolute lower

bound on the thi
kness in terms of the internal length L




, we may 
onsider a sequen
e of plates, whose absolute

thi
kness is �xed, but whose in-plane elongation L is in
reased. This implies that the relative thi
kness h tends

to zero. In a formal sense then, the thin plate limit problem is obtained by negle
ting the h

3

- bending tensor


ontribution and giving up the possibility/ne
essity to pres
ribe mi
rorotations R

3

at the Diri
hlet boundary




0

. In view of the expe
ted limit behaviour of skew(U) = 0 ) R

3

= ~n

m

we 
onsider �




= 0 only. The

two-dimensional limit problem for the deformation of the midsurfa
e m : ! � R

2

7! R

3

and the mi
rorotation

of the thin plate (shell) R : ! � R

2

7! SO(3;R) solves formally the following minimization problem on !:

Z

!

hW

mp

(U) + hW


urv

(K

s

) d! ��(m;R

3

) 7! min : w.r.t. (m;R);

m

j




0

= g

d

(x; y; 0) ; simply supported (4.62)

R

j




0

= polar((rmj%

m

R

3

))

j




0

; redu
ed 
onsistent 
oupling) R

3

j




0

= ~n

m

; free

W

mp

(U) = � k sym(U � 11)k

2

+

��

2�+ �

tr

�

sym(U � 11)

�

2

W


urv

(K

s

) = �

L

1+p




12

(1 + �

4

L

q




kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

; redu
ed third order 
urvature tensor :

Theorem 4.7 (Existen
e for 2D-�nite Cosserat limit model for vanishing relative thi
kness)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

) and R

d

2

W

1;1+p+q

(!; SO(3;R)). Moreover, let f 2 L

2

(!;R

3

) and suppose N 2 L

2

(


s

;R

3

) together with M 2 L

1

(!;R

3

)

and M




2 L

1

(


s

;R

3

), see (10.102). Then (4.62) admits at least one minimizing solution pair (m;R) 2

H

1

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)).

Proof. Exa
tly the same proof as for 
ase II applies sin
e the de
isive 
ontrol is a�orded by W


urv

and not

W

bend

. �

Conje
ture 4.8 (�-limit)

The �-limit for h! 0 of suitably res
aled energies in (3.7) and �




� 0 is given by the variational problem (4.62)

with �




= 0. �

4.7 The limit problem for vanishing internal length L




! 0

This limit is pra
ti
ally en
ountered if very large, relatively thin plates are 
onsidered. The di�eren
e to the


ase h! 0 from above is 
lear: we 
onsider a sequen
e of ever larger plates with the same relative thi
kness.

A s
aling argument (10.3.3) shows easily that the respe
tively transformed L




on a unit domain ! will tend

to zero. We obtain formally the following two-dimensional minimization problem for the deformation of the
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midsurfa
e m : ! � R

2

7! R

3

and the mi
rorotation of the plate (shell) R : ! � R

2

7! SO(3;R) solving on !:

I =

Z

!

hW

mp

(U ) +

h

3

12

W

bend

(K

b

) d! ��(m;R

3

) 7! min : w.r.t. (m;R);

U = R

T

^

F ;

^

F = (rmjR

3

); F

s

= (rmj%

m

R

3

)

%

m

= 1�

�

2�+ �

tr

�

U � 11

�

+

hN

di�

; R

3

i

(2�+ �)

; �rst order thi
kness stret
h

m

j




0

= g

d

(x; y; 0) ; simply supported (4.63)

R

j




0

= polar((rmjrg

d

(x; y; 0):e

3

)

j




0

; redu
ed 
onsistent 
oupling

R

3

j




0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; rigid pres
ription

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+

��

2�+ �

tr

�

sym(U � 11)

�

2

W
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(K

b

) = � k sym(K

b

)k

2

+ �




k skew(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

K

b

= R

T

(rR

3

j0) ; se
ond order, non-symmetri
 bending tensor :

For �




= 0 this is 
ase V of our 
lassi�
ation. In this form, the problem is not 
ompletely determined sin
e

the remaining bending term only 
ontrols the 'dire
tor' R

3

but leaves in plane rotations free. However,

anti
ipating that R

T

(rmjR

3

) � 11 is small (appropriate for almost rigid materials), a modi�
ation of the

bending term is suggested: we modify

K

b

= R

T

(rR

3

j0) 62 Sym)

0

�

�kR

1;x

k �kR

1;y

k 0

�kR

2;x

k �kR

2;y

k 0

0 0 0

1

A

62 Sym : (4.64)

Remark 4.9 (Motivation)

The motivation of this modi�
ation for relatively thin Cosserat shells is as follows: either the membrane

energy is non-zero, in whi
h 
ase it dominates and the bending 
ontribution 
an be negle
ted or the

membrane energy is zero (R

T

(rmjR

3

) � 11 = 0) in whi
h 
ase the non-symmetri
 bending tensor of

(4.63) 
oin
ides with the symmetri
 expression of (4.64), see Lemma 11.8.

A formulation based on this modi�
ation supports an existen
e theorem if �




> 0, notwithstanding the inherent

nonlinearity along the same lines as in Theorem 4.3. The more interesting 
ase of �




= 0 must remain open at

present, sin
e the limit rotations in H

1;2

(!; SO(3;R))) must not ne
essarily be smooth.

4.8 The limit problem for vanishing L




: the pure bending 
ase.

Assume that the boundary 
onditions for the Cosserat plate support multiple �nite bending modes, i.e. rm

T

rm =

11

2

and the membrane energy W

mp

(U) is zero. What 
an we say about the 
orresponding degenerated mini-

mization problem? The variational problem for the Cosserat bending plate is then to �nd a deformation of the

midsurfa
e m : ! � R

2

7! R

3

and the mi
rorotation of the plate (shell) R : ! � R

2

7! SO(3;R) solving on !:

I =

Z

!

h

3

12

W

bend

(K

b

) d! 7! min : w.r.t. (m;R) su
h that rm

T

rm = 11

2

and W

mp

(U) = 0;

U = R

T

^

F ;

^

F = (rmjR

3

) m

j




0

= g

d

(x; y; 0) ; simply supported (4.65)

R
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0

= polar((rmjrg

d

(x; y; 0):e

3

)

j




0

; redu
ed 
onsistent 
oupling

W
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(U) = � k sym(U � 11)k
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k skew(U)k
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2

+ �




k skew(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

K

b

= R

T

(rR

3

j0) ; se
ond order, non-symmetri
 bending tensor :
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It is easily seen, that rm

T

rm = 11

2

andW

mp

(U) = 0 already 
onstrains the mi
rorotations to R = (rmj~n

m

) 2

SO(3;R) for �




> 0

20

and �




= 0.

21

This implies K

b

= R

T

(rR

3

j0) = (rmj~n

m

)

T

(r~nj0) and the in general

non-symmetri
 bending tensor K

b


oin
ides with the symmetri
 se
ond fundamental form of the midsurfa
e m.

The resulting minimization 
oin
ides with the bending problem based on the Kir
hho�-Love theory (7.88) and

admits therefore a solution m 2 H

2

(!;R

3

), from whi
h we re
over R = (rmj~n) 2 H

1;2

(!; SO(3;R)).

4.9 The limit problem for vanishing L




and vanishing h: the pure membrane.

The problem for vanishing relative thi
kness h and without 
onsideration of the internal length L




leads to the

pure membrane dominated limit problem

22

for the midsurfa
e m : ! � R

2

7! R

3

and the mi
rorotation of

the thin plate (shell) R : ! � R

2

7! SO(3;R) on !:

Z

!

hW

mp

(U) d! ��(m;R

3

) 7! min : w.r.t. (m;R) ; m

j




0

= g

d

(x; y; 0) ; (4.66)

whi
h is equivalent to

Z

!

hW

mp

(U) d! ��(m;R

3

) 7! min : w.r.t. m at given R 2 SO(3;R). ; m

j




0

= g

d

(x; y; 0) ; (4.67)

U = R

T

(rmjR

3

)

0 = skew

�

R

T

(M j0j0)

�

+ h skew

�

R

T

D

R

W

mp

(rm;R)

�

| {z }

2D-balan
e of angular momentum

; lo
al, algebrai
 
ondition ,

0 = skew

�

R

T

(M j0j0)

�

+ h skew

�

D

U

W

mp

(U)U

T

�

| {z }

thi
kness integrated 3D-balan
e of angular momentum

�h skew

�

(0j0jD

U

W

mp

(U):e

3

)

�

;

see (10.102) for the de�nition of M . The lo
al 
ondition 
omes from lo
ally minimizing w.r.t. R 2 SO(3;R), it

is balan
e of angular momentum for the plate in disguise.

23

Note that at given R, the membrane minimization

problem w.r.t. m is still uniformly Legendre-Hadamard ellipti
. However, 
oer
ivity w.r.t. m depends 
ru
ially

on the smoothness of R if �




= 0. There is no reason to expe
t R to be smoothly distributed. Existen
e to this

problem is open: we expe
t therefore sharp interfa
es.

In the absen
e of external loads, the remaining symmetry 
ondition

skew

�

D

U

W

mp

(U)U

T

�

= skew

�

(0j0jD

U

W

mp

(U):e

3

)

�

(4.69)

is satis�ed, if U 2 Sym, whi
h itself implies R = polar(rmj~n). Nevertheless, 
onsidered as a lo
al 
ondition,

the remaining symmetry 
ondition does not automati
ally imply the symmetry of U , see the dis
ussion of a

similar problem in the three-dimensional 
ase in [Nef03a℄. Su
h a dis
repan
y does not o

ur in the in�nitesimal

Reissner-Mindlin model (10.127).

20

In this 
ase, we 
ould dispose of the requirement rm

T

rm = 11

2

.

21

sym(U � 11) = 0 implies immediately R

3

= ~n. Write R

i

= a

1

i

m

x

+ a

2

i

m

y

; i = 1; 2. Using hm

x

;m

y

i = 0 the result follows.

Whether one 
an do without rm

T

rm = 11

2

in 
ase �




= 0 is open, sin
e sym(U�11) = 0 for R 2 SO(3;R) and (rmj~n) 2 GL

+

(3;R)


onsidered without gradient 
onstraint on m has nontrivial solutions.

22

Observe that the Cosserat model does not automati
ally endow a thin plate limit with additional sti�ness, sin
e it is physi
ally

not possible to let h! 0 and keep the in-plane elongations L 
onstant.

23

To see the equivalen
e of the two lo
al statements in (4.67), 
onsider variation of R along a one-parameter group of rotations

d

dt

R = A(t) �R; A 2 so(3;R) and evaluate

d

dt

W

mp

(R(rmjR

3

)) = hD

U

W

mp

(U); (ÆR)

T

(rmjR

3

) + R

T

(0j0j(ÆR)

3

)i = hD

U

W

mp

(U); (AR)

T

(rmjR

3

) + R

T

(0j0j(AR)

3

)i

= �hD

U

W

mp

(U)U

T

; R

T

ARi+ hRD

U

W

mp

(U); (0j0jAR:e

3

)i = �hD

U

W

mp

(U)U

T

; R

T

ARi+ hD

U

W

mp

(U):e

3

; R

T

AR:e

3

)i

= �hD

U

W

mp

(U)U

T

; R

T

ARi+ h(0j0jD

U

W

mp

(U):e

3

); R

T

ARi : (4.68)

24



5 A modi�ed �nite Cosserat thin plate for large stret
h and lo
al

invertibility

While the pre
eeding models have been derived from a three-dimensional model whi
h itself is appropriate only

for small strain and large rotations, let us present a modi�ed model,

24

whi
h in prin
iple allows for arbitrary

large stret
h and whi
h automati
ally preserves lo
al invertibility if the re
onstru
ted deformation is smooth.

It is 
lear that su
h an extension is by no means unique. The model reads

I =

Z

!

hW

mp

(U) + hW


urv

(K

s

) +

h

3

12

W

bend

(K

b

) d! ��(m;R

3

) 7! min : w.r.t. (m;R);

U = R

T

^

F ;

^

F = (rmjR

3

); F

s

= (rmj%

m

R

3

)

%

m

=

1

1 +

�

2�+�

(det[U ℄� 1)

+

hN

di�

; R

3

i

(2�+ �)

m

j




0

= g

d

(x; y; 0) ; simply supported (5.70)

R

j




0

= polar((rmjrg

d

(x; y; 0):e

3

))

j




0

; redu
ed 
onsistent 
oupling

R

3

j




0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; alternatively: rigid pres
ription

W

mp

(U) = � k sym(U � 11)k

2

+

��

2�+ �

1

2

�

(det[U ℄� 1)

2

+ (

1

det[U ℄

� 1)

2

�

W


urv

(K

s

) = �

L

1+p




12

(1 + �

4

L

q




kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

; redu
ed third order 
urvature tensor

W

bend

(K

b

) = � k sym(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

K

b

= R

T

(rR

3

j0) = K

3

s

; se
ond order, non-symmetri
 bending tensor :

Let us summarize the salient features of this model. First, W

mp

(U) ! 1 if det[U ℄ ! 0. Thus, if minimizers

exist, then det[U ℄ > 0 a.e. and the minimizing surfa
e is lo
ally regular. The modi�ed energy 
ontribution is

poly
onvex w.r.t rm and thus Legendre-Hadamard ellipti
. If R

3

= ~n, then

det[U ℄ = kCof (rmj0)k; kCof (rmj0)k

2

= km

x

�m

y

k

2

= km

x

k

2

km

y

k

2

� hm

x

;m

y

i

2

= det[I

m

℄ ; (5.71)

a pure, intrinsi
 measure of the surfa
e stret
h. If W

mp

(U) = 0 then U = 11 although �




= 0. The thi
k-

ness stret
h %

m

has su
h a form, that at �nite energy one has 0 < %

m

< 1 without restri
tion on the

kinemati
s and transverse �bers will be elongated upon a
tion of opposite tra
tions. Moreover, %

m

� 1 for

� = 0 (extreme 
ompressibility, � = 0) and %

m

=

1

det[U ℄

for � = 1 (in
ompressibility, � =

1

2

) su
h that

det[F

s

℄ = det[(rmj%

m

R

3

)℄ � 1, i.e. exa
t in
ompressibility for the re
onstru
ted deformation.

The formulation (5.70) has the same linearized behaviour as the initial model (4.43).

25

We 
an prove the

following result

Theorem 5.1 (Existen
e for 2D-�nite elasti
 Cosserat model with large stret
h and invertibility)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

) and R

d

2

W

1;1+p

(!; SO(3;R)). Moreover, let f 2 L

2

(!;R

3

) and suppose N 2 L

2

(


s

;R

3

) together with M 2 L

1

(!;R

3

)

and M




2 L

1

(


s

;R

3

), see (10.102). Then (5.70) with material 
onstants 
onforming to 
ase II admits at least

one minimizing solution pair (m;R) 2 H

1

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)) with det[(rmjR

3

)℄ > 0 a.e.

Proof. The proof mimi
s the arguments of the pre
eeding existen
e results for 
ase II. We only need to observe

in addition, that the modi�ed membrane energy is in fa
t poly
onvex at given R w.r.t. rm. The modi�ed term

provides us with the information that det[(rm

k

jR

k

3

)℄ is uniformly bounded in L

2

(!) for minimizing sequen
es.

Hen
e we may always 
hoose a minimizing sequen
e, su
h that det[(rm

k

jR

k

3

)℄ * � 2 L

2

(!). We have as well

R

k

! R 2 C

0

(!; SO(3;R)). Moreover, rm

k

* rm 2 L

2

(!;M

2�3

). Thus, det[(rm

k

jR

k

3

)℄ ! det[(rmjR

3

)℄

24

It is 
lear that a modi�
ation to large stret
h does not 
on
ern the bending term sin
e bending only plays a role for small

stret
h.

25

Be
ause

�

(det[U ℄� 1)

2

+ (

1

det[U℄

� 1)

2

�

= 2 tr

�

U � 11

�

2

+O(kU � 11k

3

).

25



strongly in the sense of distributions [Bal77, Th. 3.4℄. This implies � = det[(rmjR

3

)℄. The remainder is

standard. �

It is therefore believed that (5.70) represents an improvement over (4.43), although (5.70) itself is not stri
tly

obtained from a parent model.

26

6 The �nite, invariant Reissner-Mindlin plate

To 
ontrast the previous models, let us dire
tly derive a new nonlinear, �nite, properly invariant Reissner-

Mindlin plate starting from the three-dimensional SVK elasti
ity model. Again, we assume a quadrati
 ansatz

in the thi
kness dire
tion for the (re
onstru
ted) �nite deformation '

s

: R

3

7! R

3

of the shell like stru
ture

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

�

~

d(x; y) ; (6.72)

where m : ! � R

2

7! R

3

takes on the role of the deformation of the midsurfa
es of the shell viewed as a

parametrized surfa
e and

~

d : ! � R

2

7! S

2

is a unit dire
tor �eld; the fun
tions %

m

; %

b

: ! � R

2

7! R allow

for thi
kness stret
h (%

m

6= 1) and transverse shear (

~

d 6= ~n).
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This implies for the (re
onstru
ted)

deformation gradient of the shell (plate)

F

s

= r'

s

(x; y; z) = (rmj %

m

~

d) + z � (r(%

m

~

d)j%

b

~

d) +

z

2

2

(r(%

b

~

d)j0) =

~

A

m

+ z

~

A

r

+

z

2

2

~

B

r

� (rmj %

m

~

d) + z � ((r

~

d)j%

b

~

d) = A

m

+ z A

r

: (6.73)

The underlying three-dimensional Saint Venant Kir
hho� energy has the form

W

SVK

(F ) =

�

4

kF

T

F � 11k

2

+

�

8

tr

�

F

T

F � 11

�

2

: (6.74)

The equations of the three-dimensional �nite elasti
ity problem show that on the transverse boundary (exa
t)

S

3d

1

(r'

3d

(x; y;+h=2)):e

3

= N

trans

(x; y;+h=2)

S

3d

1

(r'

3d

(x; y;�h=2)):(�e

3

) = N

trans

(x; y;�h=2) ; (6.75)

where N

trans

are the pres
ribed tra
tions N on the transverse boundary.

28

Following the steps whi
h led to (3.18) we have (exa
t)

hF

�1

(x; y;�h=2)S

1

(r'(x; y;�h=2)):e

3

; e

3

i = �hN

trans

(x; y;�h=2); F

�T

(x; y;�h=2):e

3

i ; (6.76)

whi
h 
ondition redu
es to zero normal tra
tions on the transverse free boundary:

S

2;33

(r'(x; y;�h=2)) = 0 ; (6.77)

in the absen
e of tra
tions N

trans

. In view of the assumed rigidity (�� 1) we expe
t that r'

T

r'� 11� 1

su
h that r'

�T

� r' and we determine %

m

; %

b

from the 
orresponding modi�ed requirement in terms of the

assumed kinemati
s for '

s

, yielding

hF

�1

s

(x; y;�h=2)S

1

(r'

s

(x; y;�h=2)):e

3

; e

3

i = �hN

trans

(x; y;�h=2);

modi�ed

z }| {

F

s

(x; y;�h=2):e

3

i

= �hN

trans

(x; y;�h=2); (%

m

+ z %

b

)

~

di : (6.78)

Sin
e S

1

= F

�

�(F

T

F � 11) +

�

2

tr

�

F

T

F � 11

�

11

�

, we obtain the two nonlinear equations

h

�

�(F

T

s

F

s

� 11) +

�

2

tr

�

F

T

s

F

s

� 11

�

11

�

:e

3

; e

3

i = �hN

trans

(x; y;�h=2); (%

m

+ z %

b

)

~

di : (6.79)

26

There is a general danger of dire
t theories to postulate two-dimensional models from s
rat
h without re
ours to any underlying

parent model : while general two-dimensional balan
e prin
iples are easily applied, it is not 
lear how to in
orporate any three-

dimensional information.

27

This leads �nally to a 5 'dof' theory: 3 
omponents of the membrane deformation and 2 degrees of freedom for the unit dire
tor

�eld, the 
oeÆ
ients %

m

; %

b

will again be eliminated.

28

Using the approximated F

s

in (6.73) leads to an aÆne linear re
onstru
tion of the transverse shear stress hS

2

(F

s

):e

3

; e

i

i; i = 1; 2.
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There is no simple way to solve these equations exa
tly. To leading order in h we obtain for %

m

%

m

= +

hN

di�

;

~

di

(2�+ �)

�

s

1�

�

(2�+ �)

[krmk

2

� 2℄ +

hN

di�

;

~

di

2

(2�+ �)

2

; (6.80)

and for %

b

%

b

= �

�

2�+ �

h(rmj

~

d); (r

~

dj0)i+

1

(2�+ �)h

hN

res

;

~

di+

1

%

m

(2�+ �)

h(rmj%

m

~

d); (%

m;x

~

dj%

m;y

~

dj0)i :

Sin
e we do not want to 
onsider spa
e variations in the thi
kness-stret
h %

m

we take �nally

%

m

=

hN

di�

;

~

di

(2�+ �)

+

s

1�

�

(2�+ �)

[krmk

2

� 2℄ +

hN

di�

;

~

di

2

(2�+ �)

2

%

b

= �

�

2�+ �

h(rmj

~

d); (r

~

dj0)i+

hN

res

;

~

di

(2�+ �)h

: (6.81)

Note that if we identify

~

d = R

3

then %

b

in the last formula 
oin
ides with the expression for %

b

found in (3.25)

while %

m

is still di�erent.

Following 
on
eptually the same 
omputation whi
h starts after (3.26) we obtain after thi
kness integration

the following minimization problem for the midsurfa
e m : ! � R

2

7! R

3

and the unit dire
tor �eld

~

d : ! �

R

2

7! S

2

on !:

Z

!

hW

mp

(C) +

h

3

12

W

bend

(K

b

) d! � �(m;

~

d) 7! min : w.r.t. (m;

~

d)

C =

^

F

T

^

F ;

^

F = (rmj

~

d); F

s

= (rmj%

m

~

d)

%

m

=

hN

di�

;

~

di

(2�+ �)

+

s

1�

�

(2�+ �)

[krmk

2

� 2℄ +

hN

di�

;

~

di

2

(2�+ �)

2

=

hN

di�

;

~

di

(2�+ �)

+

s

1�

�

(2�+ �)

tr

�

C � 11

�

+

hN

di�

;

~

di

2

(2�+ �)

2

; �rst order thi
kness stret
h

m

j




0

= g

d

(x; y; 0) ; simply supported;

~

d

j




0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; rigid pres
ription (6.82)

W

mp

(C) =

�

4

kC � 11k

2

+

2��

8(2�+ �)

tr

�

C � 11

�

2

=

�

4

krm

T

rm� 11

2

| {z }

intrinsi
 energy

k

2

+

��

2

�

hm

x

;

~

di

2

+ hm

y

;

~

di

2

�

| {z }

transverse shear energy

+

2��

8(2�+ �)

tr

�

rm

T

rm� 11

2

�

2

W

bend

(K

b

) = � k sym(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

; K

b

= (rmj

~

d)

T

(r

~

dj0) :

It is immediate, that the obtained model is frame-indi�erent in the sense that 8 Q 2 SO(3;R) : W (Q(rmj

~

d) =

W ((QrmjQ:

~

d) =W ((rQ:mjQ:

~

d) =W (rmj

~

d). The membrane part is 
oer
ive in H

1;4

(!;R

3

). However, the

membrane part neither satis�es the Baker-Eri
ksen inequalities nor is it Legendre-Hadamard ellipti
. It is not

obvious, whi
h type of 
ontrol 
an be expe
ted in the bending 
ontribution. Drill rotations are absent, but the

model allows for transverse shear (again, � = 1 is the shear 
orre
tion fa
tor). Invertibility of the re
onstru
ted

deformation is not ensured. Nothing seems to be known on existen
e. No extra size e�e
ts enter the des
ription.

While %

m

shows the physi
ally 
orre
t behaviour that small opposite transverse tra
tions will elongate �bers, for

non-in�nitesimal transverse tra
tions whi
h 'presurrize' the plate, the �bers would as well be elongated instead

of shrinked. Linearization of this model results in the 
lassi
al in�nitesimal Reissner-Mindlin Model (10.127)

and restri
ting the dire
tor

~

d to the unit normal of the surfa
e simpli�es the model into the following �nite

Kir
hho�-Love plate. In this sense, the model has some merits.
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7 The �nite, invariant Kir
hho�-Love plate

7.1 Variational formulation

Either by formal asymptoti
 analysis (and adding together the leading membrane and bending part) or a

proper kinemati
al ansatz

29

or else by restri
ting the dire
tor

~

d in (6.82) to the unit normal of the midsurfa
e,

a �nite, properly invariant

30

Kir
hho�-Love plate problem in variational form 
an be written in the form of a

minimization problem for the deformation of the midsurfa
e m : ! � R

2

7! R

3

on !:

Z

!

hW

mp

(C) +

h

3

12

W

bend

(K

b

) d! ��(m;~n

m

) 7! min : w.r.t. m
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^

F

T

^
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^

F = (rmj~n

m

); F

s
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m

~n

m

)

%

m

=

hN

di�

; ~ni

(2�+ �)

+

s
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�

(2�+ �)

tr

�

C � 11

�

+

hN

di�

; ~ni

2

(2�+ �)

2

; �rst order thi
kness stret
h

m

j
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= g

d
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m

j




0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; 
lamped (7.83)
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mp

(C) =

�

4
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�
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2

+

2��
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=
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4
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2
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tr [I
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2

℄

2

; I
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: �rst fundamental form of the surfa
e

W
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(K

b

) = � k sym(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

= � kII
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k

2

+

��
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tr [II
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℄

2

K

b

= (rmj~n

m

)

T

(r~n

m

j0) = II

m

2 Sym ; II

m

: se
ond fundamental form of the surfa
e m:

The re
onstru
ted deformation '

s

(x; y; z) = m(x; y) +

�

z%

m

+

z

2

2

%

b

�

~n

m

yields the plane stress 
ondition

S

1

(r'

s

(x; y; 0):e

3

= 0, whi
h is only 
onsistent with three-dimensional equilibrium if there are no normal

tra
tions at the transverse boundary.
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It is easily seen that the resultant membrane strain energy W

mp

(C) is neither quasi
onvex nor Legendre-

Hadamard ellipti
. Moreover, the resultant membrane strain energy does not satisfy the Baker-Eri
ksen inequal-

ities in 
ontrast to the Biot-plate model (4.61)! The signi�
an
e of this statement 
an be seen as follows. Take

! = [�1; 1℄ � [�1; 1℄ and 
onsider zero external loads and boundary 
onditions for m on �! whi
h uniformly

shrink the plate: m

j

�!

(x; y) = B:(x; y)

T

; B 2 GL

+

(2;R). Now take a sequen
e of minimizing deformations m

k

with ~n

k

m

= e

3

= 
onst, i.e. m

k

3

(x; y) � 0. The sequen
e m

k

is naturally bounded in H

1;4

(!). Hen
e a subse-

quen
e 
onverges weakly: m

k

* ~m 2 H

1;4

(!). The minimizing sequen
e 
an be 
hosen su
h that r ~m = B.

However I(m

k

) ! 0 but I( ~m) > 0. Thus the homogeneously shrinked plate is not energy-minimal, whi
h it

29

Or other 
onstitutive requirements [LS98, p.476℄. Indeed there is no general agreement as to what really 
onstitutes an isotropi


Kir
hho�-Love plate theory [LS98, p.xiii℄ and [Kil65℄. One en
ompassing independent statement to obtain Kir
hho�-Love in an

engineering 
ontext may read: i. normals remain straight and normal to the midsurfa
e (but may be extended), ii.

plane stress, iii. the elasti
 plate energy is additively de
oupled in membrane and 
urvature parts. Formal energy

proje
tion would also yield inde�nite mixed produ
ts like hI

m

� 11; II

m

i.

30

not to be 
onfused with the nonlinear, non frame-indi�erent, Kir
hho�-Love plate model given in [Cia97, p. 318℄ and mathe-

mati
ally justi�ed in [Mon03℄.
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In fa
t, the 
ondition

~

d = ~n 
an also be motivated by eliminating lo
ally the free, extensible dire
tor %

m

�

~

d from the �nite

Reissner-Mindlin model through taking

(

~

d; %

m

) := argmin

%

m

2R

+

;

~

d2S

2

;(rmj%

m

~

d)2GL

+

(3;R)

W

mp

(C) ; C = (rmj%

m

~

d)

T

(rmj%

m

~

d) )

~

d = ~n

m

; %

2

m

= 1�

�

(2� + �)

�

krmk

2

� 2

�

: (7.84)

In doing so, no available three-dimensional information has been used. If instead, one de�nes a redu
ed membrane energy W

0

:

M

2�3

! R without re
ourse to a spe
i�
 kinemati
al ansatz as in [DR95b, p.573℄ and without invertibility 
onstraint

W

0

(rm) := inf

�2R

3

W

mp

((rmj�)

T

(rmj�)) = inf
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T
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~
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hD

F
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mp

((rmjb%
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~

d)

T

(rmjb%

m

~

d)); (0j0jÆ)i = 0 8 Æ 2 R

3

, S

1

((rmjb%

m

~

d)):e

3

= 0; plane stress )

~

d = ~n ; (7.85)

b%

m
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(

%

m

1�

�

(2�+�)

�

krmk

2

� 2

�

� 0 ; (rmjb%

m

~n) 2 GL

+

(3;R)

0 1�

�

(2�+�)

�

krmk

2

� 2

�

< 0 ; (rmjb%

m

~n) 62 GL

+

(3;R)

; W

0

(rm) =W

mp

((rmjb%

m

~n)

T

(rmjb%

m

~n)) ;

then zero normal tra
tions S

2;33

(rmjb%

m

~n) = 0 are not satis�ed for 1 �

�

(2�+�)

�

krmk

2

� 2

�

< 0, whi
h shows the unphysi
al

behaviour, 
f. [DR96, DR95
, DR00℄.
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learly should be, given the stabilization inherent through ~n

k

m

= e

3

. This de�
ien
y must be seen as unphysi
al

and will be 
alled in-plane failure.

Thus it is motivated why it is not known whether minimization based on (7.83) does admit a solution for

arbitrary data. Even the in
lusion of the 
lassi
al bending term might not be enough: the 
ontrol of only 
ertain

se
ond derivatives of m does not suÆ
e to treat the highly nonlinear problem by a 
ompa
tness argument and

to pass to the limit by strong 
onvergen
e in the non-ellipti
 membrane part. The above example suggests that

the in-plane failure is somehow related to the absen
e of drill-rotations.

Moreover, the very feasibility of a Kir
hho�-Love ansatz with thi
kness stret
h pla
es a restri
tion on the

kinemati
s in the sense that it must be guaranteed for the membrane deformation that

1�

�

(2�+ �)

tr

�

C � 11

�

� 0) krmk

2

� 3 +

2�

�

, tr

�

C � 11

�

< 1 +

2�

�

; (7.86)

in the absen
e of tra
tions. This 
ondition �gures in [Cia97, p.355℄ among others, under whi
h the quasi
onvex

hull of the membrane energy W

mp

(C) in (7.83) 
oin
ides with the energy itself. In our derivation, 
ondition

(7.86) is, as a mathemati
al 
onsequen
e of a physi
al requirement from the three-dimensional problem

(6.78), most natural. It has also appeared in [FRS93, p.180℄ where it is believed to be '...unduly restri
tive'

due to the short
omings of the SVK energy. While the short
omings of the SVK energy are well known, similar

restri
tions o

ur most natural also for our Cosserat model, there in the form %

m

> 0, di
tated by invertibility of

the re
onstru
ted shell deformation. The physi
al signi�
an
e of the 
omputed solution is thus tied to %

m

> 0,

whi
h in turn expresses as well the physi
al (not mathemati
al) requirement S

2;33

(x; y;�h=2) = 0. Looking for

solutions with %

m

= 0 is, physi
ally speaking, not realisti
.
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Remark 7.1

The problem of the non-ellipti
ity in the 
ase of the Ki
hho�-Love theory has been dealt with in Le Dret and

Raoult [DR95b, DR00℄. They perform the thin shell limit analysis based on the St.Venant-Kir
hho� density. As

a result, they get that the limit energy deformation (of the 3D-model) is independent of the transverse variable

and minimizes a limit energy 
omputed as the �-limit [Mas92℄ of the 3D-(St.Venant-Kir
hho�) energy. The

limit stored energy is again that of a nonlinearly elasti
 'membrane' shell, in the sense that it 
ontains only

�rst derivatives of the unknown deformation m of the midsurfa
e. However, it turns out that the limit energy

o�ers no resistan
e to 
ompression, a feature that is appropriate only for 'soft' elasti
 materials like a de
ated

baloon or a sail but in our oppinion ina

eptable for 'almost rigid' materials like metals or paper, the topi
 whe

are interested in sin
e the rigidity translates dire
tly into the small strain assumption.

33

The non resistan
e to


ompression in the above analysis is related to the use of the quasi
onvex hull

34

QW

0

of the redu
ed St.Venant

Kir
hho� energy W

0

in (7.85), whi
h, surprisingly enough, 
an be given in 
losed form [DR95
, HP96℄ and

whi
h shows to be in general positive but zero in the 
ompression range

35

sin
e St.Venant Kir
hho� typi
ally

looses ellipti
ity there. These remarks indi
ate that results based on �-
onvergen
e and global minimization

are not in all 
ases the appropriate dire
tion to take, 
ertainly not for almost rigid materials.

However, given all these de�
ien
ies of the �nite Kir
hho�-Love model, anti
ipating that rm

T

rm � 11

2

is

small (appropriate for almost rigid materials) as in (4.64), a modi�
ation of the bending term is suggested: we

modify

K

b

= (rmj~n

m

)

T

(r~n

m

j0) = II

m

2 Sym)

0

�

�km

xx

k �km

xy

k 0

�km

yx

k �km

yy

k 0

0 0 0

1

A

2 Sym : (7.87)

Remark 7.2 (Motivation)

The motivation of this modi�
ation for thin shells is as follows: either the membrane energy is non-zero,

in whi
h 
ase it dominates and the bending 
ontribution 
an be negle
ted or the membrane energy is

zero in whi
h 
ase the bending term of (7.83) 
oin
ides with that of (7.87), see Lemma 11.7 and 
ompare

to [GKM96℄.
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One might be in
lined to think that the apparent problem of non-ellipti
ity of the membrane expression is only related to the

use of the non-ellipti
 parent SVK-energy. This is not the 
ase. Pro
eeding by energy proje
tion from a poly
onvex Neo-Hooke

energy, the resulting membrane energy is again non-ellipti
. This is well known feature, [DR95b, p.560,iii℄.

33

They remark [DR95b, p.550℄: \...then the 
orresponding nonlinear membranes o�er no resistan
e to 
rumpling. This is an

empiri
al fa
t, witnessed by anyone who ever played with a de
ated ballon."

34

\... the fa
t that this fun
tion (W

mp

(C)) is not quasi
onvex already implied that it had to be relaxed in order to give rise to a

well posed problem."[DR95b, p.575℄.

35

Stri
tly speaking, the use of the quasi
onvex hull leads to a so 
alled tension �eld theory [Ste90℄. Steigmann himself [Ste90,

p.143℄ notes \A question then arises 
on
erning the validity of tension �led theory as an approximation to a theory of shells with

bending sti�ness that is small in some sense. Evidently, the deformation is not well des
ribed, though the theory delivers solutions

that approximate the average of the deformation observed in a real membrane 
ontaining many wrinkles. We 
onje
ture that the

stress is a

urately predi
ted, however."
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A formulation based on this modi�
ation supports an existen
e theorem.

Theorem 7.3 (Existen
e for �nite almost rigid KL-plate)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

2

(!;R

3

). Moreover, let

f 2 L

2

(!;R

3

) and suppose N 2 L

2

(


s

;R

3

) together with M 2 L

1

(!;R

3

) and M




2 L

1

(


s

;R

3

), see (10.102).

Then (7.83) with the modi�
ation (7.87) admits at least one minimizing solution m 2 H

2

(!;R

3

).

Proof. We apply the dire
t methods of variations. The fun
tional I is bounded above and below. We may


hoose an in�mizing sequen
e m

k

. Due to the boundary 
onditions and Poin
ar�e's inequality the sequen
e is

bounded in H

2

(!). The 
ompa
t embedding H

2

(!) �W

1;4

(!) shows that we may 
hoose a weakly 
onvergent

subsequen
e, not relabelled, su
h that strongly rm

k

! rm 2 L

4

(!). The weak limit is a minimizer sin
e the

bending term is 
onvex in the se
ond derivatives and the nonlinear, non-quasi
onvex membrane term is handled

by strong 
onvergen
e. The modi�ed bending term imparts as well additional 
ontrol for in-plane deformations.

�

Su
h a theorem might not be of mu
h pra
ti
al value be
ause it is pre
isely the level of smoothness we want

to avoid and it must be noted that the proposed modi�
ation of the bending term is not 
onsistent with the


lassi
al Kir
hho�-Love theory upon linearization!

7.2 The pure �nite bending Kir
hho�-Love problem

Assume that the boundary 
onditions for the plate support multiple �nite bending modes, i.e. the membrane

energy is zero, hen
e I

m

= 11. What 
an we say about the 
orresponding degenerated minimization problem

based on the remaining term involving only 
urvature? The variational problem for the 
lamped plate reads

then

inff
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12
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tr [II
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; (7.88)
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�

are normal derivatives at the boundary. The proposed system 
oin
ides with that previously derived

by [GKM96, p.44℄ apart from a modi�ed material parameter � 7!

2��

2�+�

. Note that under pure bending of a

plate, we have for the Gauss 
urvature K = 0 and using (11.139) we get, by adding zero, equivalently
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; (7.89)

on using (11.187). Inserting the linearized quantity tr [II

m

℄

2

� k�v
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k

2

+ : : : we obtain
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exural rigidity
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2

; (7.90)

the 
lassi
al in�nitesimal plate bending energy leading to the biharmoni
 equation. It is possible to show that

the �nite minimization problem admits at least one solution.

Theorem 7.4 (Existen
e for pure bending �nite KL-plate)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

2

(!;R

3

). Then (7.88)

admits at least one minimizing solution m 2 H

2

(!;R

3

).

Proof. The proof is based on the 
ru
ial observation that on the spa
e of admissible fun
tions, the energy


oin
ides with the quadrati
 expression

Z

!

h

3

12

�

� kr~nk

2

+

��

2�+ �

(km

xx

k+ km

yy

k)

2

�

d! : (7.91)

Standard arguments of the dire
t method of variations �nish the proof. A detailed presentation was given in

[Cia97, p.347℄. �

Again, the level of smoothness is dis
omforting.
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Corollary 7.5 (Existen
e for pure bending �nite RM-plate)

Let ! � R

2

be a bounded Lips
hitz domain and assume that the boundary data g

d

2 H

2

(!;R

3

) supports

bending modes. Then the pure �nite Reissner-Mindlin bending problem based on (6.82) admits at least one

minimizing solution m 2 H

2

(!;R

3

) and

~

d = ~n

m

2 H

1

(!;S

2

).

Remark 7.6 (Pure bending problems)

Note that all presented pure �nite bending problems 
oin
ide for the new Cosserat model, the new �nite

Reissner-Mindlin model and the �nite Kir
hho�-Love model. The last two results show that the 
lassi
al �nite

bending terms provide enough 
ontrol in pure bending for models, in whi
h the membrane part would have

been non-ellipti
. However, the 
lassi
al bending terms are insuÆ
ient to stabilize joint membrane and bending

situations.

8 Dis
ussion and open problems

Starting from a fully invariant three-dimensional physi
ally linear Cosserat theory with independent rotations

and size e�e
ts, we have obtained a family of fully invariant, �nite Cosserat plates by means of assumed

kinemati
s and energy proje
tion. The models in
lude in a natural way drilling degrees of freedom and size

e�e
ts (smaller samples with the same relative thi
kness are relatively sti�er than 
orresponding larger samples).

Sin
e the assumed kinemati
s is quadrati
 through the thi
kness, one avoids the so 
alled Poisson thi
kness

lo
king. In 
ontrast to traditional redu
ed theories, the membrane part is uniformly ellipti
 and allows a non-

degenerate passage to zero relative thi
kness. The balan
e equations for the midsurfa
e are not only uniformly

Legendre-Hadamard ellipti
, but linear at given rotations.

For vanishing Cosserat 
ouple modulus �




= 0, the formulation is shown to be downwards 
ompatible with

traditional in�nitesimal linear Reissner-Mindlin theories and shear-
orre
tion fa
tor � = 1.

A detailed mathemati
al analysis of the resulting two-dimensional models is proposed whi
h 
losely follows

the three-dimensional ideas. It is based on a 
orrespondingly dimensionally redu
ed version of a new extended

Korn's �rst inequality. We have a
hieved a surprising uni�
ation of two- and three-dimensional 
on
epts.

From a me
hani
al point of view, 
ompared to more traditional, non-ellipti
 �nite Reissner-Mindlin and

Kir
hho�-Love models, it seems to be the bene�
ial in
uen
e of the drill-rotations in 
onjun
tion with the

internal length L




> 0 whi
h stabilizes the new Cosserat thin plate model.

Certain limit 
ases related to Sobolev-embedding theorems must remain open for the moment, notably

the 
ase IV in
luding possible fra
ture of the plate. They leave a wide �eld of 
hallenging new mathemati
al

problems.

A modi�
ation of the new Cosserat plate model is also proposed, whi
h ensures invertibility of the re
on-

stru
ted deformation gradient and whi
h allows as well for minimizers. This model shows the most reasonable

physi
al behaviour, but is not easily seen to be obtained by dire
t des
end from three-dimensions.

While we have large freedom of spe
ifying boundary 
onditions for the rotations at the Diri
hlet boundary,

we prefer a generalization of the three-dimensional 
onsistent 
oupling 
ondition, whi
h in
ludes as a spe
ial


ase pres
riptions 
orresponding to 
lamping.

A major 
on
eptual advantage of the new proposed model is the appearan
e of rotations already in the

three-dimensional parent model. There is no need to arti�
ially introdu
e independent dire
tors of the plate.

In a subsequent 
ontribution, it will be shown that the proposed method 
an be easily extended to shells

and multipli
ative elasto-plasti
ity with the possibility of exa
tly the same mathemati
al analysis in the elasti



ase.

From a numeri
al point of view, the new Cosserat plate model o�ers the highly wel
ome perspe
tive to use

only C

0

-
onforming �nite elements. When interpolating the midsurfa
e deformation one order higher than the

rotations, shear lo
king should be avoided.

It remains to 
ompletely justify the apparently sound, new �nite Cosserat thin plate model by means of either

a 
onvergen
e proof for vanishing relative thi
kness to the underlying three-dimensional parent Cosserat model

or by showing, that a suitably res
aled three-dimensional problem �-
onverges to one of the two-dimensional

limit problems.

Let us summarize and relate some basi
 features of the obtained new plate models. We abbreviate LH :

Legendre-Hadamard ellipti
, BE: Baker-Eri
ksen inequalities, dof: degrees of freedom, invarian
e: fully frame-

indi�erent, v: midsurfa
e displa
ement,

~

d: unit dire
tor, ~n: unit normal of the midsurfa
e, �: in�nitesimal

dire
tor, invertibility: lo
al invertibility of the re
onstru
ted deformation in the sense of a stri
tly positive

determinant of the deformation gradient almost everywhere, pure bending: the problem obtained by restri
ting


onsiderations to lo
ally length preserving deformations (inextensional).
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It 
an be seen, that linearization does not always 
ommute with dimensional redu
tion. From a

modelling point of view it is 
lear, however, that linearization is the last step to be performed. The unifying

role of setting �




= 0 is also appre
iated.
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new �nite 3D-Cosserat

parent model (3.7),

invarian
e (+),

invertibility (+/-),

LH(+), BE(+),

size e�e
ts (+),

existen
e (+),

uniqueness (-),

higher regularity (?),

indep. rotations (+),

symmetri
 stress (-),

dof (6)

-

�




= 0,

linearized


lassi
al in�nit. 3D

linear elasti
ity,

existen
e (+),

uniqueness (+),

higher regularity (+),

symmetri
 stress (+),

dof (3)

�

linearized


lassi
al �nite 3D

SVK-elasti
ity,

invarian
e (+),

invertibility (-),

LH (-), BE(-),

existen
e (?),

uniqueness (-),

higher regularity (?),

size e�e
ts (-),

symmetri
 stress (+),

dof (3)

?

dimensional

redu
tion:

assumed

kinemati
s

and

energy proje
tion

?

dimensional

redu
tion:

energy

proje
tion

or

asymptoti


methods

?

dimensional

redu
tion:

formal

asymptoti


methods

or

energy

proje
tion

new �nite 2D-Cosserat

plate model (4.43),

invarian
e (+),

invertibility (-),

LH(+), BE(+),

size e�e
ts (+),

existen
e (+),

uniqueness (-),

higher regularity (?),

error estimates (?),

thin plate limit (+),

transverse shear (+),

drill rotations (+),

symmetri
 stress (-),

pure bending (+),

dof (6)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CW

�




= 0,

linearized, L

2+Æ




?

physi
ally

motivated

modi�
ation:


lassi
al in�nit. 2D

KL-plate (10.130),

invarian
e (-) ,

existen
e (+),

uniqueness (+),

higher regularity (+),

error estimates (+),

size e�e
ts (-),

drill rotations (-),

symmetri
 stress (+),

dof (3)

�

linearized

�nite 2D KL-plate

model (7.83),

invarian
e (+),

invertibility (-),

LH(-), BE(-),

existen
e (?),

uniqueness (-),

higher regularity (?),

size e�e
ts (-),

thin plate limit (-),

transverse shear (-),

drill rotations (-),

symmetri
 stress (+),

pure bending (+),

dof (3)

new �nite 2D-Cosserat

plate model (5.70),

invarian
e (+),

invertibility (+),

LH(+), BE(+),

poly
onvex (+),

size e�e
ts (+),

existen
e (+),

uniqueness (-),

higher regularity (?),

error estimates (?),

thin plate limit (+),

transverse shear (+),

drill rotations (+),

symmetri
 stress (-),

pure bending (+),

dof (6)

-

�




= 0,

linearized, L

2+Æ




6

solution of

RM

lin

; KL

lin


onverges

as h! 0

to solution

of 3D:SVK

lin


onstrain

� = (v

3;x

; v

3;y

)

T


lassi
al in�nit. 2D

RM-plate (10.126),

shear 
orre
tion � = 1,

invarian
e (-),

transverse shear (+),

existen
e (+),

uniqueness (+),

higher regularity (+),

error estimates (+),

size e�e
ts (-),

thin plate limit (-),

drill rotations (-),

symmetri
 stress (-),

dof (5)

�

linearized

6


onstrain

~

d = ~n

new �nite 2D-Biot

plate model (4.61),

invarian
e (+),

invertibility (-),

LH(-), BE(+),

transverse shear (-),

existen
e (+),

uniqueness (-),

higher regularity (?),

error estimates (?),

size e�e
ts (+),

thin plate limit (+),

drill rotations (-),

symmetri
 stress (+),

pure bending (+),

dof (3), linearized:

L

2+Æ




! 
lassi
al KL

new �nite 2D-RM

plate model (6.82),

invarian
e (+),

invertibility (-),

LH(-), BE(-),

transverse shear (+),

existen
e (?),

uniqueness (-),

higher regularity (?),

error estimates (?),

size e�e
ts (-),

thin plate limit (-),

drill rotations (-),

symmetri
 stress (-),

pure bending (+),

dof (5)
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10 Appendix A

10.1 Notation

10.1.1 Notation for bulk material

Let 
 � R

3

be a bounded domain with Lips
hitz boundary �
 and let � be a smooth subset of �
 with non-vanishing 2-dimensional

Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote the s
alar produ
t on R

3

with asso
iated ve
tor norm kak

2

R

3

= ha; ai

R

3

.

We denote by M

3�3

the set of real 3 � 3 se
ond order tensors, written with 
apital letters. The standard Eu
lidean s
alar

produ
t on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. In the

following we omit the index R

3

;M

3�3

. The identity tensor on M

3�3

will be denoted by 11, so that tr [X℄ = hX; 11i. We let

Sym and PSym denote the symmetri
 and positive de�nite symmetri
 tensors respe
tively. We adopt the usual abbreviations of

Lie-group theory, i.e., GL(3;R) := fX 2 M

3�3

jdet[X℄ 6= 0g the general linear group, SL(3;R) := fX 2 GL(3;R) jdet[X℄ =

1g; O(3) := fX 2 GL(3;R) j X

T

X = 11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X℄ = 1g with 
orresponding Lie-algebras

so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri
 tensors and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g of tra
eless tensors. With

AdjX we denote the tensor of transposed 
ofa
tors Cof(X) su
h that AdjX = det[X℄X

�1

= Cof(X)

T

if X 2 GL(3;R). We set

sym(X) =

1

2

(X

T

+X) and skew(X) =

1

2

(X �X

T

) su
h that X = sym(X) + skew(X). For X 2 M

3�3

we set for the deviatori


part devX = X �

1

3

tr [X℄ 11 2 sl(3) and for ve
tors �; � 2 R

n

we have the tensor produ
t (� 
 �)

ij

= �

i

�

j

.

We write the polar de
omposition in the form F = RU = polar(F )U with R = polar(F ) the orthogonal part of F . In general

we work in the 
ontext of nonlinear, �nite elasti
ity. For the total deformation ' 2 C

1

(
;R

3

) we have the deformation gradient

F = r' 2 C(
;M

3�3

). Furthermore, S

1

(F ) and S

2

(F ) denote the �rst and se
ond Piola Kir
hho� stress tensors, respe
tively.

Total time derivatives are written

d

dt

X(t) =

_

X . The �rst and se
ond di�erential of a s
alar valued fun
tion W (F ) are written

D

F

W (F ):H and D

2

F

W (F ):(H;H), respe
tively. We employ the standard notation of Sobolev spa
es, i.e. L

2

(
); H

1;2

(
); H

1;2

Æ

(
),

whi
h we use indi�erently for s
alar-valued fun
tions as well as for ve
tor-valued and tensor-valued fun
tions. Moreover, we

set kXk

1

= sup

x2


kX(x)k. For A 2 C

1

(
;M

3�3

) we de�ne CurlA(x) as the operation 
url applied row wise. We de�ne

H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the sense of tra
es and by C

1

0

(
) we denote

in�nitely di�erentiable fun
tions with 
ompa
t support in 
. We use 
apital letters to denote possibly large positive 
onstants, e.g.

C

+

;K and lower 
ase letters to denote possibly small positive 
onstants, e.g. 


+

; d

+

. The smallest eigenvalue of a positive de�nite

symmetri
 tensor P is abbreviated by �

min

(P ).

10.1.2 Notation for shells

Let ! � R

2

be a bounded domain with Lips
hitz boundary �! and let 


0

be a smooth subset of �! with non-vanishing 1-dimensional

Hausdor� measure. The thi
kness of the plate is taken to be h > 0 with dimension length (
ontrary to Ciarlet's de�nition of the

thi
kness to be 2", whi
h di�eren
e leads only to various di�erent 
onstants in the resulting formulas). We denote by M

n�m

the set of matri
es mapping R

n

7! R

m

. For H 2 M

2�3

and � 2 R

3

we employ also the notation (Hj�) 2 M

3�3

to denote the

matrix 
omposed of H and the 
olumn �. Likewise (vj�j�) is the matrix 
omposed of the 
olumns v; �; �. The identity tensor on

M

2�2

will be denoted by 11

2

. The mapping m : ! � R

2

7! R

3

is the deformation of the midsurfa
e, rm is the 
orresponding

deformation gradient and m

x

= (m

1;x

;m

2;x

;m

3;x

)

T

; m

y

= (m

1;y

;m

2;y

;m

3;y

)

T

. Sometimes, this is also written as rm. We write

v : R

2

7! R

3

for the displa
ement of the midsurfa
e, su
h that m(x; y) = (x; y; 0)

T

+ v(x; y). The standard volume element is

written dx dy dz = dV = d! dz.
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10.2 The treatment of external loads

10.2.1 Dead load body for
es for the thin plate

In the three-dimensional theory the dead load body for
es f(x; y; z) 2 R

3

were simply in
luded by appending the potential with

the term

Z




h

f(x; y; z) � '(x; y; z) dV : (10.92)

Inserting the ansatz for the re
onstru
ted deformation '

s

results in

Z




h

f(x; y; z) � '

s

(x; y; z) dV �

Z




h

f(x; y; z) �

�

m(x; y) + z %

m

R

3

+

z

2

2

%

b

R

3

�

dV

=

Z

!

h

^

f(x; y) �m(x; y) d! +

Z

!

0

B

�

h=2

Z

�h=2

z f(x; y; z) dz

1

C

A

%

m

R

3

d! +

Z

!

0

B

�

h=2

Z

�h=2

z

2

2

f(x; y; z) dz

1

C

A

%

b

R

3

d! (10.93)

Let us de�ne

^

f

0

(x; y) :=

h=2

Z

�h=2

f(x; y; z) dz ;

^

f

1

(x; y) :=

h=2

Z

�h=2

z f(x; y; z) dz ;

^

f

2

(x; y) :=

h=2

Z

�h=2

z

2

2

f(x; y; z) dz ; (10.94)

su
h that

^

f

0

;

^

f

1

;

^

f

2

are the zero, �rst, se
ond moment of f in thi
kness dire
tion. Moreover

h=2

Z

�h=2

z

2

2

f(x; y; z) dz =

h=2

Z

�h=2

z

2

2

(f(x; y; 0) + z �

z

f(x; y; 0) + : : : ) dz =

h

3

24

f(x; y; 0) +O(h

5

) (10.95)

h=2

Z

�h=2

z f(x; y; z) dz =

h=2

Z

�h=2

z (f(x; y; 0) + z �

z

f(x; y; 0) + : : : ) dz = 0 +

h

3

12

�

z

f(x; y; 0) +O(h

5

) :

Therefore

Z




h

f(x; y; z) � '

s

(x; y; z) dV �

Z

!

^

f

0

(x; y) �m(x; y) d! +

Z

!

^

f

1

(x; y)%

m

R

3

d! +

Z

!

^

f

2

(x; y)%

b

R

3

d! (10.96)

10.2.2 Tra
tion boundary 
onditions for the thin plate

In the three-dimensional theory the tra
tion boundary for
es N(x; y; z) 2 R

3

were simply in
luded by appending the potential with

the term

Z

�


trans

h

[f


s

�[�

h

2

;

h

2

℄g

N(x; y; z) � '(x; y; z) dS : (10.97)

Inserting our ansatz for the re
onstru
ted deformation '

s

results in

Z

�


trans

h

[f


s

�[�

h

2

;

h

2

℄g

N(x; y; z) � '

s

(x; y; z) dS �

Z

!�f�

h

2

;

h

2

g

N(x; y; z) �

�

m(x; y) + z%

m

R

3

+

z

2

2

%

b

R

3

�

dS

+

Z




s

�[�

h

2

;

h

2

℄

N(x; y; z) �

�

m(x; y) + z%

m

R

3

+

z

2

2

%

b

R

3

�

dS:

Let us de�ne

^

N

lat;0

(x; y) :=

h=2

Z

�h=2

N(x; y; z) dz ;

^

N

lat;1

(x; y) :=

h=2

Z

�h=2

z N(x; y; z) dz ;

^

N

lat;2

(x; y) :=

h=2

Z

�h=2

z

2

2

N(x; y; z) dz ; (10.98)

su
h that

^

N

lat;0

;

^

N

lat;1

;

^

N

lat;2

are the zero, �rst, se
ond moment of the tra
tions N at the lateral boundary in thi
kness dire
tion.

Hen
e

Z

�


h

N(x; y; z) � '(x; y; z) dS �

Z

!

[N(x; y;

h

2

) +N(x; y;�

h

2

)℄ �m(x; y) d! +

Z

!

h

2

[N(x; y;

h

2

)�N(x; y;�

h

2

)℄%

m

R

3

d!

+

Z

!

[

h

2

8

N

+

+

h

2

8

N

�

℄%

b

R

3

d! +

Z




s

^

N

lat

(x; y) �m(x; y) ds +

Z




s

^

N

lat;1

(x; y) %

m

R

3

ds +

Z




s

^

N

lat;2

(x; y) %

b

R

3

ds

=

Z

!

N

res

(x; y) �m(x; y) d! +

Z

!

hN

di�

(x; y)%

m

R

3

d! +

Z

!

h

2

8

N

res

%

b

R

3

d! (10.99)

+

Z




s

^

N

lat;0

(x; y) �m(x; y) ds +

Z




s

^

N

lat;1

(x; y) %

m

R

3

ds +

Z




s

^

N

lat;2

(x; y) %

b

R

3

ds ;

with

N

res

:= [N(x; y;

h

2

) +N(x; y;�

h

2

)℄ ; N

di�

:=

1

2

[N(x; y;

h

2

)�N(x; y;�

h

2

)℄ : (10.100)
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10.2.3 The external loading fun
tional

Let us gather all in
uen
es of the external loading terms. It would be possible to a

ount for all appearing in
uen
es, however, in

view of a reasonable simpli�
ation we 
onsider only those terms, whi
h would have appeared, if we had made the restri
ted linear

ansatz without thi
kness stret
h '

s

= m+ z R

3

. To leading order we have the

f =

^

f

0

+N

res

; resultant body for
e

M =

^

f

1

+ hN

di�

; resultant body 
ouple (10.101)

N =

^

N

lat;0

; resultant surfa
e tra
tion

M




=

^

N

lat;1

; resultant surfa
e 
ouple :

The resultant loading fun
tional � is given by

�(m;R

3

) =

Z

!

hf;mi+ hM;R

3

i d! +

Z




s

hN;mi+ hM




; R

3

i ds : (10.102)

If we denote the dependen
e of � on the loads of the underlying three-dimensional problem as �(f;N ; m;R

3

), then it is easily seen

that frame-indi�eren
e of the external loading fun
tional is satis�ed in the sense that �(Q:f;Q:N ; Q:m;Q:R

3

) = �(f;N ; m;R

3

)

for all rigid rotations Q 2 SO(3;R). It is possible to use the same fun
tional form of the loading fun
tional for all �nite

and linearized models. We only need to repla
e (m;R

3

) by (m;

~

d); (m;~n); (v; A

3

) for the di�erent �nite and linearized models,

respe
tively.

10.3 Transformation of the domain and s
aling

10.3.1 Classi
al �nite elasti
ity

Set 


rel:thin

L

= [0; L[m℄℄� [0; L[m℄℄� [�

h

2

�L;

h

2

�L℄ with h a small parameter indi
ating the relative thi
kness of the domain, e.g.

h 2 (0;

1

20

[m℄℄ with dimension length. The three-dimensional problem with respe
t to the relatively thin domain 


rel:thin

L

reads

Z

�2


rel:thin

L

W

3D

(r

�

'

L

(�)) � hf

L

(�); '

L

(�)i d� �

Z

�


rel:thin

L

hN

L

; '

L

i dS

L

7! min : w.r.t. '

L

; (10.103)

where we are looking for a fun
tion '

L

: 


rel:thin

L

� R

3

7! R

3

. Introdu
ing the s
aling transformation

� : 


h

= [0; 1[m℄℄� [0; 1[m℄℄� [�

h

2

;

h

2

℄ � R

3

7! 


rel:thin

L

� R

3

; �(x) = L � x ; (10.104)

(note that L itself is non-dimensional here) this turns into

Z

x2


h

�

W

3D

(r�(x)r'(x)r�

�1

(x))� hf

L

(�(x)); L � '(x)i

�

det[r�(x)℄ dV (10.105)

�

Z

�


h

hN

L

(�(x); L � '(x)i kCofr�:e

3

k dS

h

7! min : w.r.t. '. ; (10.106)

for a fun
tion ' : 


h

� R

3

7! R

3

de�ned impli
itly through '

L

(�) = �('(�

�1

(�))). With f(x) = L � f

L

(�(x)); N(x) = N

L

(�(x))

we have

Z

x2


h

[W

3D

(r')� hf; 'i℄ L

3

dV �

Z

�


h

L hN;'iL

2

dS 7! min : w.r.t. '. ; (10.107)

or equivalently

Z

x2


h

[W

3D

(r') � hf; 'i℄ dV�

Z

�


h

hN;'i dS 7! min : w.r.t. '. ; (10.108)

whi
h shows how the s
aling from a domain whi
h is relatively thin to a domain whi
h is absolutely thin is to be performed in

order to apply the subsequent dimensional redu
tion pro
edure.

10.3.2 S
aling relations for �nite Cosserat models with internal length

For 
ompleteness let us summarize the s
aling relations appearing in a �nite elasti
 Cosserat theory. Our goal is to relate the

response of large and small samples of the same material and to asses the in
uen
e of the 
hara
teristi
 length L




.

First, in our de�nition, the 
hara
teristi
 length L




is a given material parameter, 
orresponding to the smallest dis
ern-

able distan
e to be a

ounted for in the model. A simple 
onsequen
e is that a
tual geometri
al dimensions L of the bulk material

must be larger than L




, indeed for a 
ontinuum theory to apply L should be signi�
antly larger than L




.

Now let 


L

= [0; L[m℄℄� [0; L[m℄� [0; L[m℄℄ be the 
ube with (non-dimensional) edge length L, representing the bulk material.

Consider a deformation '

L

: � 2 


L

7! R

3

and mi
rorotation R

L

(�) : 


L

7! SO(3;R) as solution of the simpli�ed minimization

problem

Z

�2


L

� kR

T

L

(�)F (�) � 11k

2

+ �L

q




kD

�

R

L

(�)k

q

d� 7! min : w.r.t. ('

L

; R

L

) : (10.109)

The simple s
aling transformation � : R

3

7! R

3

; �(x) = L � x maps the unit 
ube 


1

= [0; 1[m℄℄ � [0; 1[m℄℄ � [0; 1[m℄℄ into 


L

.

De�ning the related deformation ' : x 2 


1

7! R

3

and mi
rorotation R(x) : 


1

7! SO(3;R) as

'(x) := �

�1

('

L

(�(x))) ; R(x) := R

L

(�(x)) ; (10.110)
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shows

r

x

'(x) =

1

L

r

�

'

L

(�(x))r

x

�(x) = r

�

'

L

(�) ; D

x

R(x) = D

�

R

L

(�(x)) � r

x

�(x) = D

�

R

L

(�) � L : (10.111)

Hen
e, the minimization problem 
an be transformed

Z

�2


L

� kR

T

L

(�)r

�

'

L

(�)� 11k

2

+ �L

q




kD

�

R

L

(�)k

q

d� =

Z

x2


1

� kR

T

(x)r

x

'(x)� 11k

2

det[r

x

�(x)℄ + �L

q




k

1

L

D

x

R(x)k

q

det[r

x

�(x)℄ dx

=

Z

x2


1

� kR

T

(x)r

x

'(x)� 11k

2

L

3

+ �L

q




L

3�q

kD

x

R(x)k

q

dx ; (10.112)

and we may 
onsider at last the problem de�ned on the unit 
ube 


1

:

Z

x2


1

� kR

T

(x)r

x

'(x)� 11k

2

+ �L

q




L

3�q�3

kD

x

R(x)k

q

dx 7! min : w.r.t. (';R). (10.113)

Comparison of di�erent sample sizes is a�orded by transformation to the unit 
ube respe
tively, e.g. we 
ompare two samples of

the same material with bulk sizes L

1

> L

2

. Transformation to the unit 
ube shows that the response of sample two is sti�er than

the response of sample one.

It is plain to see that for L large 
ompared to L




, the in
uen
e of the rotations will be small and in the limit

L




L

! 0, 
lassi
al

behaviour results. Otherwise, the larger

L




L

< 1, the more pronoun
ed the Cosserat e�e
ts be
ome and a small sample is relatively

sti�er than a large one.

10.3.3 S
aling relations for �nite Cosserat plates

As a 
onsequen
e for relatively thin shells of the former development we 
onsider the �nite problem on the relative thin domain




rel:thin

L

in simpli�ed form:

Z

�2


rel:thin

L

� kR

T

L

(�)r

�

'

L

(�)� 11k

2

+ �L

q




kD

�

R

L

(�)k

q

d� 7! min : w.r.t. ('

L

; R

L

). (10.114)

This implies on 


h

= ! � [�

h

2

;

h

2

℄ for the 
orrespondingly transformed variables

Z

x2


h

� kR

T

(x)r

x

'(x)� 11k

2

+ �

L

q




L

q

kD

x

R(x)k

q

dx 7! min : w.r.t. (';R). (10.115)

Inserting the redu
ed kinemati
s and integrating over the thi
kness we should 
onsider on !

Z

!

�h kR

T

(rmjR

3

)� 11k

2

+

h

3

12

�kR

T

(rR

3

j0)k

2

+ � h

L

q




L

q

kD

x

R(x)k

q

d! 7! min : w.r.t. (m;R). (10.116)

Comparing domains with the same relative thi
kness h > 0, but di�erent in-plane elongation L, we see that the smaller

sample is relatively sti�er for the same relative thi
kness.

For very large samples with the same relative thi
kness, the 
lassi
al bending terms are retrieved.
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In this sense, 
lassi
al

plate formulations represent the limit behaviour of ever larger, thin stru
tures with the same relative thi
kness..

10.4 Generalized 
onvexity 
onditions

For the 
onvenien
e of the reader we 
olle
t some of the most useful 
onvexity 
onditions. Let an elasti
 free energy density

W : M

n�m

7! R; n � m be given. We say that W 
onsidered in r' = F 2 M

n�m

is

1. uniformly stable, if D

2

F

W (F ):(H;H) � 


+

kHk

2

; H 2 M

n�m

2. stri
tly Legendre ellipti
, if D

2

F

W (F ):(H;H) > 0; 8H 6= 0

3. pre-stable, if D

2

F

W (x;F ):(H;H) � 


+

k(Hj0)

T

G(x) +G(x)

T

(Hj0)k

2

; 8 (Hj0) 2 M

m�m

; H 6= 0 with G 2 GL(m;R).

4. poly
onvex, if there exists a 
onvex fun
tion P : M

n�m

� M

n�m

� R 7! R su
h that W (F ) = P (F;Minors

ij

).

5. quasi
onvex, if

8

^

F 2 M

n�m

: jDj �W (

^

F ) �

Z

D

W (

^

F +r�(x)) dx 8� 2 C

1

0

(D;R

m

) ; (10.117)

whi
h implies that the homogeneous deformation

^

F is absolute minimizer to its own boundary 
onditions and ex
ludes

internal failure.

6. uniformly Legendre-Hadamard ellipti
, if D

2

F

W (F ):(� 
 �; � 
 �) � 


+

k�k

2

R

m

� k�k

2

R

n

7. Legendre-Hadamard ellipti
, if D

2

F

W (F ):(� 
 �; � 
 �) � 0

8. rank-one 
onvex, if f(t) :=W (F + t(� 
 �)) is 
onvex in t for all F 2 M

n�m

.

It is known [Da
89℄ that


onvexity) poly
onvexity) quasi
onvexity) rank-one 
onvexity, Legendre-Hadamard ellipti
ity ; (10.118)

but the reverse impli
ations are false in general. For the s
alar 
ase '(x

1

; : : : ; x

n

) 2 R and the one dimensional 
ase '(x

1

) 2

R

m

, all 
onditions 
oin
ide if 
orre
tly identi�ed and simplify to the requirement of 
onvexity of W .
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In plane rotations remain unspe
i�ed, they 
annot be determined from R

3

alone.
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De�nition 10.1 (Weak lower semi
ontinuity)

We say that a fun
tional I de�ned on the Sobolev spa
e W

1;p

(
) is weakly lower semi
ontinuous, whenever '

k

* ' 2 W

1;p

(
)

implies

I(') � lim inf

k

I('

k

) : (10.119)

If I(') :=

R




W (r') dx, then weak lower semi
ontinuity is equivalent to quasi
onvexity of W . This result is the 
ornerstone of

the 
lassi
al dire
t methods of variations.

10.5 Ma
ros
opi
 elasti
 shear failure for plates

It is 
onvenient to de�ne what we mean by shear failure for plates in 
lassi
al isotropi
 elasti
ity. LetW ((rmj~n)) =

^

W (rm

T

rm)

be the free elasti
 energy density of the membrane (intrinsi
) part of the plate de�ned on the �rst fundamental form of the

surfa
e rm

T

rm = I

m

2 Sym. If for some regular m : ! � R

2

7! R

3

with (rmj~n

m

) 2 GL

+

(3;R)

9 �; � 2 R

3

: D

2

F

W ((rmj~n)):(� 
 �; � 
 �) < 0 ; (10.120)

we say that the material fails or looses Legendre-Hadamard ellipti
ity (LH), also 
alled a material instability.
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This

failure 
an give rise to highly lo
alized deformation patterns, subsumed under the notion of mi
rostru
ture. Related is the

possible emergen
e of dis
ontinuous deformations sin
e Hadamard�s jump relations are violated. However, loss of ellipti
ity

may already o

ur for midsurfa
e deformations whi
h are not related to in-plane shear, e.g. uniaxial situations and pure in plane

dilations. Thus we say that W su�ers from genuine elasti
 shear failure whenever

9F 2 GL

+

(3;R) 9 �; � 2 R

3

: D

2

W (F ):(� 
 �; � 
 �) < 0 ; but

8F 2 diag(�

+

1

; �

+

2

; 1) 8 �; � 2 R

3

: D

2

W (F ):(� 
 �; � 
 �) � 0 : (10.121)

It seems that failure of a material on a ma
ros
ale other than shear failure is unphysi
al and rather due to the idiosyn
rasy of the


onstitutive equations, as long as the bulk is modelled as elasti
. In fa
t, Legendre-Hadamard ellipti
ity for F = diag(�

+

1

; �

+

2

; 1)

of the membrane energy implies immediately the Baker-Eri
ksen (BE) inequalities [MH83, p.19℄ for the membrane and genuine

elasti
 shear failure happens, if BE is satis�ed but LH is violated.
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In this sense the following non exhaustive list of free energy terms should be avoided for the membrane sin
e they are not only

failing under shear (already BE is not satis�ed): with C = (rmj~n)

T

(rmj~n); U =

p

C; F = (rmj~n) the list reads

kC � 11k

2

; hC � 11; 11i

2

; hlnC; 11i

2

; hlnC; 11i

2

+ k dev lnCk

2

; hlnU; 11i

2

; � ln det[F ℄ + (ln det[F ℄)

2

; k

C

det[C℄

1=3

� 11k

2

; (10.122)

and it is obvious that the membrane part of the �nite Kir
hho�-Love plate model (7.83) and the �nite Reissner-Mindlin model

(6.82) is failing, not only in shear! Of 
ourse, 
ombination with other terms 
ould remove the problem. Terms whi
h genuinely fail

only in shear are e.g.

kU � 11k

2

; hU � 11; 11i

2

; k

U

det[U ℄

1=3

� 11k

2

; tr

"

U

det[U ℄

1=3

� 11

2

#

2

: (10.123)

10.6 Linearized plate models

10.6.1 The 
lassi
al in�nitesimal Reissner-Mindlin model

Let us linearize a modi�
ation of 
ase II (�




= 0; �

4

= 0; q = 0; p > 1) for situations of small midsurfa
e deformations and

small 
urvature. We write m(x; y) = (x; y; 0)

T

+ v(x; y), with the displa
ement of the midsurfa
e of the plate v : ! 7! R

3

and R = 11 + A + : : : with A 2 so(3;R) the in�nitesimal mi
rorotation. For the boundary deformation we write g

d

(x; y; z) =

(x; y; z)

T

+ u

d

(x; y; z), with the 
onsequen
e, that rg

d

:e

3

= (u

d

1;z

; u

d

2;z

; 1 + u

d

3;z

). The 
urvature tensors are expanded as

K

b

= R

T

(rR

3

j0) = (11 +A+ : : : )

T

(r[A

3

+A

2

:e

3

+ : : : ℄j0) � (rA

3

j0) + : : :

K

s

�

�

(r(A:e

1

)j0); (r(A:e

2

)j0); (r(A:e

3

)j0)

�

; (10.124)

and the Cosserat mi
ropolar plate stret
h tensor expands like

U = R

T

F

s

= R

T

(rmjR

3

) = (11 + A+ : : : )

T

0

�

0

�

1 0

0 1

0 0

1

A

+rvj(11 + A+ : : : ):e

3

)

1

A

� 11 + (rvjA

3

) + : (10.125)

Sin
e p > 1, the Cosserat 
urvature 
ontribution has an exponent stri
tly bigger than two su
h that a linearization w.r.t zero


urvature does not yield any 
ontribution of this term. Moreover, for �




= 0, in-plane rotations (drilling degrees of freedom) do
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Material instability should be 
arefully distinguished from geometri
al instabilities o

urring in bu
kling or ne
king and

whi
h are fully 
onsistent with Legendre-Hadamard ellipti
ity. In this sense, poly
onvexmaterials are un
onditionallymaterially

stable and 
ertainly appropriate for rubber and soft-tissues [SN02, HN03℄.
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One version of the BE-inequalities for membranes 
an be stated as follows: for �

2

i

� 0; i = 1; 2 ; �

2

3

= 1 the (generalized)

prin
ipal stret
hes (here �

2

i

are the eigenvalues of (rmj~n)

T

(rmj~n)), the free energy �(�

1

; �

2

; 1) :=

^

W (rm

T

rm) is separately


onvex in �

i

. No mathemati
al existen
e results based only on BE are known. Note also that BE is enough to e�e
tively ex
lude

phase-transformations, modelled with multi-well potentials.
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not survive the linearization pro
ess! We are indeed left with the minimization problem for v 2 R

3

and A

3

2 R

3

Z

!

h

�

� k sym((rvjA

3

))k

2

+

��

2� + �

tr

�

sym((rvjA

3

))

�

2

�

+

h

3

12

�

� k sym((rA

3

j0))k

2

+

��

2�+ �

tr

�

sym((rA

3

j0))

�

2

�

d! � �(v;A

3

) 7! min : w.r.t. (v; A

3

);

v

j




0

= u

d

(x; y; 0) ; simply supported (10.126)

A

j




0

= skew((rvj�

z

u

d

))

j




0

; linearized 
onsistent 
oupling ) A

3

j




0

= (

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0)

T

A

3

j




0

= (u

d

1;z

; u

d

2;z

; 0)

T

; rigid pres
ription :

Abbreviating now � = (�

1

; �

2

; 0)

T

= �A

3

, we are left with the following set of equations for the displa
ement of the midsurfa
e of

the plate v : [0; T ℄� ! 7! R

3

and the in�nitesimal in
rement of the 'normal', � : ! 7! R

3

Z

!

h

0

B

B

B

�

� k symr(v

1

; v

2

)k

2

+

�

2

krv

3

� �k

2

| {z }

transverse shear energy

+

��

2�+ �

tr [symr(v

1

; v

2

)℄

2

1

C

C

C

A

+

h
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12

�

� k symr�k
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+

��

2�+ �

tr [symr�℄

2

�

d! � �(v;��) 7! min : w.r.t. (v; �);

v

j




0

= u

d

(x; y; 0) ; simply supported (10.127)
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u
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� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0)

T

; linearized 
onsistent 
oupling

��

j




0

= (u

d

1;z

; u

d

2;z

; 0)

T

; rigid pres
ription :

A further redu
tion arises if we assume only normal displa
ements: v

1

= v

2

= 0. The resulting minimization problem is

Z

!

h

�

2

krv

3

� �k

2

+

h

3

12

�

� k symr�k

2

+

��

2�+ �

tr [symr�℄

2

�

d! � �(v

3

� e

3

;��) 7! min : w.r.t. (v

3

; �); (10.128)

v
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= u
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3

; simply supported

��

j




0

= (

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0)

T

linearized 
oupling ; ��

j




0

= (u

d

1;z

; u

d

2;z

; 0)

T

rigid :

The elasti
 free energy should be 
ompared with

W

RM;
lass

(rv

3

; �) = h

��

2

krv

3

� �k

2

+

h

3

12

�

�

4

kr�

T

+r�k

2

+

2��

8(2� + �)

tr

h

r�

T

+r�

i

2

�

; (10.129)

where � =

5

6

is the so 
alled shear 
orre
tion fa
tor. In this last form, the Reissner-Mindlin problem 
an be found in many

textbooks, e.g. [Bra92, p.281℄ or [Ste95℄. It should be noted, however, that in our variationally based �nite derivation with

subsequent linearization there is no imminent reason to introdu
e � 6= 1. In fa
t, the shear 
orre
tion fa
tor � 
an be seen as a

tuning parameter of the in�nitesimal model whi
h, for 
ertain types of loading,

39

allows to improve the order of 
onvergen
e

of the in�nitesimal Reissner-Mindlin solution to the three-dimensional linear elasti
ity solution [R�os99℄.
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10.6.2 The 
lassi
al in�nitesimal Kir
hho�-Love plate (Koiter model)

For the 
onvenien
e of the reader we also supply the similar system of equations for the 
lassi
al in�nitesimal Kir
hho�-Love plate

(also the Koiter model) whi
h we derive as linearization of the �nite Kir
hho�-Love plate. In terms of the midsurfa
e displa
ement

v we have to �nd a solution of the minimization problem for v 2 R

3

Z

!

h

�

� k symr(v

1

; v

2

)k

2

+

��

2�+ �
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; v
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+
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� kD

2

v

3

k

2

+

��

2�+ �
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�
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�

2

�

d! � �(v;�rv

3

) 7! min : w.r.t. v;

v

j




0

= u

d

(x; y; 0) ; simply supported (10.130)
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= (

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0)

T

; linearized 
onsistent 
oupling)rv

3

= �1=2 (u

d

1;z

; u

d

2;z

; 0)

T

�rv

3

j




0

= (u

d

1;z

; u

d

2;z

; 0)

T

; rigid pres
ription, linearized Kir
hho� :

This energy 
an be obtained formally from (10.129) by setting � = rv

3

.
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Hen
e the shear 
orre
tion fa
tor � shows some similarity to the Cosserat 
ouple modulus �




, whose in
uen
e on the solution

of the three-dimensional problem is also strongly dependent on boundary 
onditions. For rather thi
k plates, it is known that the

shear energy in RM

lin

is overestimated, therefore, one is led to redu
e the shear energy 
ontribution a posteriori by taking � < 1.

40

It would be interesting to know the optimal shear 
orre
tion fa
tor 0 < � � 1 of the in�nitesimal Reissner-Mindlin model with

our redu
ed 
onsistent 
oupling boundary 
ondition. Su
h an optimized parameter should also be bene�
ial for the �nite Cosserat

plate!
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11 Appendix B

11.1 Prerequisites from di�erential geometry

A given mapping m : ! � R

2

7! R

3

, des
ribing a surfa
e imbedded in the three-dimensional spa
e is 
alled regular whenever

rank(rm) = 2. The ve
tor

~n :=

m

x

�m

y

km

x

�m

y

k

; (11.131)

is the Gauss unit normal �eld on the surfa
e. The map n : ! � R

2

7! S

2

is 
alled the Gauss map and the moving 3-frame

(m

x

jm

y

jn) is 
alled the Gauss frame of the surfa
e m whi
h in general is not orthonormal. The matrix representation of the

�rst fundamental form (metri
) is given through

I

m

:= rm

T

rm =

�

km

x

k

2

hm

x

;m

y

i

hm

x

;m

y

i km

y

k

2

�

2 M

2�2

; I

m

+ e

3


 e

3

= (rmjn)

T

(rmjn) =:

b

I

m

(11.132)

det[I

m

℄ = det[

b

I

m

℄ = det[(rmj~n)℄

2

:

The metri
 alone is not suÆ
ient to des
ribe the shape of a surfa
e in the ambient three-dimensional Eu
lidean spa
e, the 
urvature

is also needed, although in the rigid 
ase (rmj~n) 2 SO(3;R), the metri
 is indeed enough.

The matrix representation of the se
ond fundamental form providing a measure for 
urvature of the surfa
e is given by

II

m

:= �rm

T

Dn = �(m

x

jm

y

)

T

� (n

x

jn

y

) = �

�

hm

x

;D

x

ni hm

x

;D

y

ni

hm

y

;D

x

ni hm

y

;D

y

ni

�

2 M

2�2

(11.133)

(rmjn)

T

(D

x

njD

y

nj0) =

0

�

hm

x

;D

x

ni hm

x

; D

y

ni 0

hm

y

; D

x

ni hm

y

;D

y

ni 0

0 0 0

1

A

;




II

m

:= �(rmj~n)

T

(r~nj~n) ; det[II

m

℄ = det[




II

m

℄ :

Sin
e n is orthogonal to the tangent spa
e T

x

m, the relation 0 = �

x

hm

y

; ~ni = �

y

hm

x

; ~ni shows easily that II

m

is symmetri
. The

third fundamental form of the surfa
e in matrix representation is de�ned as

III

m

:= Dn

T

Dn =

�

kD

x

nk

2

hD

x

n;D

y

ni

hD

y

n;D

x

ni kD

y

nk

2

�

2 M

2�2

;

d

III

m

:= (r~nj~n)

T

(r~nj~n) : (11.134)

The matrix representation of the Weingarten map (shape operator) L is given by

L(x; y) := �Dn(x; y)r

�

m

�1

(m(x; y) 2 M

3�3

; L = �(r~nj0)(rmjn)

�1

; (11.135)

representing the variation of the normal in the metri
 of the surfa
e. In order to see that L = �(Dnj0)(rmjn)

�1

we extent m to

R

3

by setting �(x; y; z) = m(x; y) + z n(x; y). This yields �(x; y; 0) = m(x; y) and r�(x; y; 0) = (rmjn) while �

�1

(�(x; y; z)) =

(x; y; z)

T

and the 
hain rule shows r

�

�

�1

(�(x; y; z)℄r�(x; y; z) = 11. Hen
e

r

�

�

�1

(�(x; y; 0))r�(x; y; 0) = 11

but r

�

�

�1

(�(x; y; 0)) = r

�

m

�1

(m(x; y)) whi
h �nishes the argument. The Gauss 
urvature K of the surfa
e is determined by

K(x; y) :=

det[II

m

℄

det[I

m

℄

= det[L℄ = det[Dnr

�

m

�1

(�)℄ ; (11.136)

and the mean 
urvature H through

2H(x; y) := tr [L℄ = tr

�

Dnr

�

m

�1

(�)

�

: (11.137)

The relation III

m

� 2H II

m

+K I

m

= 0 ([Kli78, Prop. 3.5.6℄) is a 
onsequen
e of the Caley-Hamilton theorem and shows that

III

m

is not independent of I

m

; II

m

. The prin
ipal 
urvatures �

1

; �

2

are the solutions of the 
hara
teristi
 equation of �L, i.e.

�

2

� tr [L℄� + det[L℄ = �

2

� 2H� + K = 0. The Caley-Hamilton theorem on M

2�2

implies for the se
ond fundamental form on

a

ount of its symmetry

II

2

m

� tr [II

m

℄ II

m

+ det[II

m

℄ 11

2

= 0) kII

m

k

2

� tr [II

m

℄

2

+ 2det[II

m

℄ = 0 ) tr [II

m

℄

2

� kII

m

k

2

= 2det[II

m

℄ : (11.138)

Thus the Gauss 
urvature K 
an be expressed equivalently as

K =

tr [II

m

℄

2

� kII

m

k

2

2 det[I

m

℄

: (11.139)

Of major importan
e is the following 
lassi�
ation

De�nition 11.1 (Intrinsi
ality)

A property or a set of equations is intrinsi
 whenever it 
an be redu
ed to the �rst fundamental form, i.e. depends only on lo
al

length and lo
al angles on the surfa
e. (Or the 
hange of lo
al length and lo
al angles.) Intrinsi
 properties remain invariant under

isometries.
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For example, the mean 
urvature H is not intrinsi
, sin
e bending a surfa
e 
hanges H but leaves length and angles invariant

(bending belongs to the outer geometry of the surfa
e); or take the normal of the surfa
e n: this is not an intrinsi
 quantity, sin
e

bending 
hanges the normals but leaves length and angles invariant.

Gauss' 
elebrated Theorema Egregium states that 
ontrary to appearan
e (it involves the normals!), the Gauss 
urvature

K is an intrinsi
 quantity: it 
an be 
omputed through the �rst and se
ond derivatives of the �rst fundamental form. The same is

trivially true for k(rmj~n)

T

(rmj~n)� 11k

2

- it is a purely intrinsi
 strain measure (the dependen
e on ~n 
an
els out algebrai
ally).

In the thin shell limit of h! 0 it is expedient to get a model whi
h is purely two-dimensional, i.e. intrinsi
.

Theorem 11.2 (Fundamental theorem of surfa
e theory)

Any two surfa
es m; ~m : ! � R

2

7! R

3

, whi
h have the same �rst and se
ond fundamental form, di�er only by an isometry, i.e.

~m(x; y) = Q:m(x; y); Q 2 SO(3).

Proof. Well known in di�erential geometry, e.g.[Kli78, p.64℄. �

Lemma 11.3 (Developable surfa
es)

A surfa
e m with no planar points (II

m

6= 0) is developable (on the plane, without stret
h) if and only if the Gauss 
urvature K

vanishes.

Proof. Theorem 3.7.9 in [Kli78℄. �

Lemma 11.4 (Isometri
 surfa
es)

Two surfa
es with di�erent Gauss 
urvature K 
annot be mapped isometri
ally into ea
h other.

Proof. Well known. �

The following 
lassi�
ation is standard. The surfa
e m is lo
ally

8

>

<

>

:

ellipti


paraboli


hyperboli


at (x; y) 2 ! if det[II

m

(x; y)℄ is

8

>

<

>

:

> 0

= 0

< 0

: (11.140)

The surfa
e m is lo
ally uniformly ellipti
 if

9 


+

> 0 : 8 � 2 R

2

: hII

m

:�; �i

R

2

= hrm

T

Dn:�; �i

R

2

= hDn:�;rm:�i

R

3

� 


+

k�k

2

: (11.141)

De�nition 11.5 (Christo�el symbols)

Let the regular surfa
e m be given. The Christo�el symbols of the �rst kind of the surfa
e are de�ned by

�

i

jk

:= h�

j

a

k

; a

i

i; a

1

= m

x

; a

2

= m

y

; a

3

= n; j = 1; 2; i; k = 1; 2; 3 : (11.142)

They are not independent of the 
hoi
e of 
oordinates (not 
ovariant), but intrinsi
 quantities, belonging to the inner

geometry of the surfa
e, see [Lau60, p.36℄.

Let us look at kr

x

[%

2

℄k

2

. It is 
lear that this de�nes an intrinsi
 quantity, sin
e it 
an be expressed as partial derivatives of the

metri
. We have

r

x

krmk

2

= r

x

hrm
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+ �
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: (11.143)

Hen
e, kr

x

[%

2

℄k

2

= 4 (�

1

11

+ �

2

12

)

2

+ 4 (�

1

21

+ �

2

22

)

2

.

11.2 Additional material

Lemma 11.6 (Normality and polar de
omposition)

Let m : ! � R

2

7! R

3

be regular and assume for some R 2 SO(3) that R = polar(rmj %R:e

3

) ; where % > 0 is given. Then

R

3

= ~n

m

and R = polar(rmj%~n).

Proof. Sin
e F = RU we must have F

T

R 2 Sym. But

U = U

T

= F

T

R = (rmj%R

3

)

T

� polar(rmj%R

3
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�R =
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i hm
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; (11.144)

whi
h implies % hm

y

; R

3

i = % hm

x
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Lemma 11.7 (Rigidity 
oin
iden
e II)
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kII

m

k

2

= km

xx

k

2

+ 2km

xy

k

2

+ km

yy

k

2

:

43



Proof.
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Therefore
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whi
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Corollary 11.8 (Rigidity 
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e III)
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Proof. The �rst part is a 
onsequen
e of Lemma 11.7. The se
ond part is an algebrai
 
omputation. �

11.3 Linearized quantities

At various pla
es we are interested in the linearization of the proposed systems with respe
t to the referen
e plane. Let therefore
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11.4 Detailed derivations

11.4.1 Detailed 
omputations for the new Cosserat model

The equilibrium equations of the three-dimensional Cosserat problem given in [Nef03a℄ show that on the transverse boundary
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whi
h 
ondition redu
es to zero normal tra
tions on the transverse free boundary (in the absen
e of tra
tions N
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) in

the 
lassi
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independent of the Cosserat 
ouple modulus �




. Let us evaluate the last equation for z = �h=2. This yields two linear
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The exa
t solution is given by
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h will be approximated through
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Hen
e the leading terms
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are:
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The term
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represents a nonlinear 
oupling between midsurfa
e deformationgradient and


urvature, an artefa
t of the derivation not present in the underlying three-dimensional theory where only produ
ts of deformation-

gradient and rotations o

ur, we therefore negle
t this term.
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Moreover, for a rigid material with � � 1 we have
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� 1,

leading �nally to the redu
ed expressions:
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41

Note that %

m

; %

b

have di�erent units. %

m

is dimensionless, whereas [%

b

℄ = m

�1

.

42

It would be possible to base all further 
onsiderations indeed on the exa
t solution of %

m

; %

b

and it seems that the resulting

two-dimensional model would allow an existen
e proof. However, the mu
h more involved expressions are not easily interpreted

and do not redu
e to the 
lassi
al expressions upon linearization.
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The formula (11.168) shows the physi
ally reasonable behaviour that to �rst order, �bers will be elongated by opposite

transverse tra
tions.

Having obtained the general form of the relevant 
oeÆ
ients %

m

; %

b

it is expedient to base the expansion of the three-dimensional

elasti
 Cosserat energy, as far as its bending 
ontribution is 
on
erned, on a further simpli�ed expression, namely
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This is motivated by our already anoun
ed prin
iple of redu
tion. The use of (3.26) ex
ludes (up to order h

3

) exa
tly those terms

whi
h would violate our prin
iple had we used (3.10) instead. We 
ompute further
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therefore (the mixed term just 
an
els!)
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A similar 
omputation is now performed for the membrane 
ontribution. Set
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Exa
tly the same 
omputations as for the bending term allows us to 
on
lude that
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11.4.2 Detailed 
omputations for the new �nite Reissner-Mindlin model

We 
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and further
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We negle
t the O(h

3

) 
ontribution and insert z = �h=2. This yields two equations
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Adding and subtra
ting shows that
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This yields for %

m

%

m

hN

di�

;

~

di =

�

�(%

2

m

� 1) +

�

2

�

krmk

2

+ %

2

m

� 3

�

�

)

�

2�(%

2

m

� 1) + �

�

krmk

2

+ (%

2

m

� 1) � 2

��

= 2%

m

hN

di�

;

~

di

(%

2

m

� 1)(2� + �) + �[krmk

2

� 2℄ = 2%

m

hN

di�

;

~

di

(%

2

m

� 1)� 2%

m

hN

di�

;

~

di

(2� + �)

+

�

(2�+ �)

[krmk

2

� 2℄ = 0

%

2

m

� 2%

m

hN

di�

;

~

di

(2� + �)

+

�

(2� + �)

[krmk

2

� 2℄� 1 = 0

%

m

= +

hN

di�

;

~

di

(2� + �)

�

v

u

u

t

1�

�

(2� + �)

[krmk

2

� 2℄ +

hN

di�

;

~

di

2

(2� + �)

2

; (11.183)

and for %

b

h

�

�B +

�

2

tr [B℄11

�

:e

3

; e

3

i =

1

h

hN

res

; %

m

~

di

1

h

hN

res

; %

m

~

di = 2�%

m

%

b

+ � %

m

%

b

+ � h(rmj%

m

~

d); (r(%

m

~

d)j0)i ) (11.184)

(2�+ �) %

m

%

b

+ � h(rmj%

m

~

d); (%

m

r

~

dj0) + (%

m;x

~

dj%

m;y

~

dj0)i = %

m

1

h

hN

res

;

~

di (11.185)

(2�+ �) %

b

+ � h(rmj

~

d); (r

~

dj0) +

1

%

m

(%

m;x

~

dj%

m;y

~

dj0)i =

1

h

hN

res

;

~

di

%

b

= �

�

2� + �

h(rmj

~

d); (r

~

dj0)i+

1

(2�+ �)h

hN

res

;

~

di+

1

%

m

(2� + �)

h(rmj%

m

~

d); (%

m;x

~

dj%

m;y

~

dj0)i :

Sin
e we do not want to 
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e variations in the thi
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11.5 Units and elasti
 
onstants

The body for
e f has units [N=m

3

℄, the surfa
e tra
tion N has units [N=m

2

℄, of 
ourse. Note that a typi
al value of the elasti


moduli for steel is � = 80:000[N=mm

2

℄ = 8 � 10

10

[N=m

2

℄ and � = 100:000[N=mm

2

℄ = 10 � 10

10

[N=m

2

℄ = 80:000MPa = 80GPa.

The Youngs-modulus E and the Poisson number � are de�ned in terms of the Lam�e 
onstants as follows:

E := �

2�+ 3�

�+ �

; � :=

�

2(�+ �)

; �!1 , � !

1

2

� =

E �

(1 + �) (1 � 2�)

; � =

E

2(1 + �)

: (11.187)

This implies the well known relations

1

2

E

1� �

2

= 2�

(2� + 3�)(� + �)

(2�+ �)(2� + 3�)

= 2�

(� + �)

(2� + �)

: (11.188)

It is also useful to have the physi
al properties of various very thin samples at hand. For A4-paper (80g=m

2

), the thi
kness of

a 20
m quadrangle is roughly 0:08mm whi
h gives a 
hara
teristi
 value h �

1

1000

. Representative values for elasti
 moduli for

isotropi
 standardized paper are E = 5840[N=mm

2

℄; � = 0:24 or � = 2:6GPa; � = 2:34GPa.

For kit
hen plasti
 wrap one has the thi
kness 0:03mm whi
h implies h �

3

10000

and standard Aluminum foil has a thi
kness of

0:01mm implying h �

1

10000

. A typi
al thin �lm, for whi
h we 
onsider a 20mm re
tangle with thi
kness as small as 5 mi
rometers

(5 � 10

�6

m) yields a 
hara
teristi
 thi
kness of h �

5

10000

. In the spe
ial 
ase of e.g. a steel rod of length 1m and radius 2mm we

obtain the 
hara
teristi
 variable h �

4

1000

. For su
h small values of h it seems to be 
lear that 
lassi
al bending 
annot play a

prominent role.

11.6 The penalized �nite Cosserat plate

While the treatment of the mi
rorotations R is 
on
eptually 
lear, any numeri
al implementation has the burden that the rotations

live on a nonlinear manifold. In order to 
ir
umvent this diÆ
ulty, we propose a simpli�ed variant of our new Cosserat plate

model, where we relax the 
onstraint of exa
t rotations and add a penalizing term. The new minimization problem reads: �nd the

deformation of the midsurfa
e m : ! � R

2

7! R

3

and the relaxed 'mi
rorotation' of the plate (shell) R : ! � R

2

7! M

3�3

solving
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on !:

I =

Z

!

hW

mp

(U) + hW


urv

(K

s

) +

h
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12

W
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) +

�
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T

R� 11k
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d! � �(m;R
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) 7! min : w.r.t. (m;R);
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^
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^

F = (rmjR
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); penalty: � ! 1

m
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0

= g

d

(x; y; 0) ; R

j




0

= polar((rmjrg

d

(x; y; 0):e
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0

; (11.189)
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2

)j0); R

T
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3

)j0)

�

W
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(K

b

) = � k sym(K
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+

��

2�+ �

tr [sym(K
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2

; K
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T

(rR

3

j0) = K

3

s

:

It should be observed that the penalized model is still frame-indi�erent, a wel
ome feature.

11.7 The partially linearized Cosserat plate

Another method of redu
ing the 
omplexity of the ensuing model 
onsists in partially linearizing the equations. Let us redu
e

a modi�
ation of 
ase II (�




= 0; �

4

= 0; q = 0; p = 1; �

5

= �

6

= 1; �

7

= 0) for situations in whi
h we expe
t the 
urvature and

mi
rorotations to remain small but the midsurfa
e deformations are unrestri
ted. We write m(x; y) = (x; y; 0)

T

+ v(x; y), with the

(�nite) displa
ement of the midsurfa
e of the plate v : ! 7! R

3

and R = 11+A+: : : with A 2 so(3;R) the in�nitesimal mi
rorotation.

For the boundary deformation we write g

d

(x; y; z) = (x; y; z)

T

+u

d

(x; y; z), with the 
onsequen
e, thatrg

d

:e

3

= (u

d

1;z

; u

d

2;z

; 1+u

d

3;z

).

The 
urvature tensors are expanded as

K

b

= R

T

(rR

3

j0) = (11 +A+ : : : )

T

(r[A

3

+A

2

:e

3

+ : : : ℄j0) � (rA

3

j0) + : : :

K

s

�

�

(r(A:e

1

)j0); (r(A:e

2

)j0); (r(A:e

3

)j0)

�

; (11.190)

and the Cosserat mi
ropolar plate stret
h tensor expands like

U = R

T

F

s

= R

T

(rmjR

3

) = (11 +A+ : : : )

T

0

�

0

�

1 0

0 1

0 0

1

A

+rvj(11 +A+ : : : ):e

3

)

1

A

� 11 + (rvjA

3

) +A

T

+ A

T

(rvjA

3

)

� 11 + (rvjA

3

) +A

T

+ A

T

(rvj0)

| {z }

drill rotations

+A

T

(0j0jA

3

) : (11.191)

Negle
ting the quadrati
 term A

T

(0j0jA

3

) in view of the expe
ted smallness of rotations, we are indeed left with the minimization

problem for v 2 R

3

and A 2 so(3;R)
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h

�
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) +A
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) 7! min : w.r.t. (v;A);
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= u

d

(x; y; 0) ; simply supported (11.192)
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; linearized 
onsistent 
oupling ) A
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= (
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0

= (u

d

1;z

; u

d

2;z

; 0)

T

; rigid pres
ription :

The internal length L




> 0 is seen to be ne
essary to 
ontrol the in-plane drill rotations whi
h appear only as a se
ond order

e�e
t in the model. The membrane part 
an be shown to be 
oer
ive w.r.t. v in H

1

(!;R

3

) if A 2 C

0

(!; so(3;R)), sin
e the se
ond

derivative w.r.t. v 
an be estimated through k sym((11 + A)

T

(r�j0))k

2

and 11 + A 2 GL(3;R) for A 2 so(3;R). The 
orrespond-

ing �eld equations are semilinear, more pre
isely, balan
e of linear momentum is a uniformly Legendre-Hadamard ellipti
 linear

system w.r.t. v at given A and balan
e of angular momentum is a uniformly Legendre-Hadamard ellipti
 linear system w.r.t. A at

given v with 
onstant 
oeÆ
ients. Nevertheless, the resulting model is nonlinear but not frame-indi�erent. While it is not entirely


lear how to show existen
e, the simpli�ed model with drill rotations should prove to be easily implemented along the lines of

traditional in�nitesimal Reissner-Mindlin models taking into a

ount all the available knowledge on non-lo
king approximations.

Finally, we now re-derive the 
lassi
al Reissner-Mindlin model in the in�nitesimal 
ontext, pointing out 
ertain 'in
onsisten
ies'

usually en
ountered and give a short existen
e proof. Let us sket
h brie
y the 'dire
t' derivation of (10.129) in the in�nitesimal


ontext in order to understand some of the pe
uliarities of plate modelling.

11.8 Derivation of the 
lassi
al in�nitesimal Reissner-Mindlin bending plate

If " is the symmetrized displa
ement gradient of the three-dimensional theory, the elasti
 free energy of an isotropi
 medium takes

the form

W

in�n

(") = � k"k

2

+

�

2

tr ["℄

2

; � = 2� "+ � tr ["℄ 11 ; (11.193)

where � is the symmetri
 Cau
hy stress tensor. If we assume zero normal tra
tion a
ross the thi
kness on 


h

= ! � [�

h

2

;

h

2

℄, i.e.

�

33

(x; y; z) = 0; z 2 [�

h

2

;

h

2

℄, then this implies immediately

0 = �

33

= 2� "

33

+ � tr ["℄ 1) "

33

= �

�

2�+ �

("

11

+ "
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) = �

�

2�+ �

h"; 11

2

i ; (11.194)
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still on the three-dimensional level. Applying (11.194) and eliminating "

33

in the elasti
 energy (so 
alled 
ondensation of the

material law) yields,

W

stress
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(") = � k"k

2

+
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2
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2
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: (11.195)

Now the linear kinemati
al ansatz '

s

(x; y; z) = m+ z R:e

3

together with R = 11 +A+ : : : ; � = �A

3

implies to leading order

'

s
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0

�

x+ v

1

(x; y)

y + v

2

(x; y)

0 + v

3

(x; y)

1

A

+ z

0

�

��

1

��

2

z

1

A

+ : : : =

0

�

x

y

z

1

A

+ u(x; y; z) + : : : ; u(x; y; z) =

0

�

v

1

(x; y) � z�

1

(x; y)

v

2

(x; y) � z�

2

(x; y)

v

3

(x; y)

1

A

: (11.196)

Hen
e for v

1

; v

2

= 0 we get
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Expli
itly integrating over the thi
kness with respe
t to z results in (10.129) with � = 1. We note that this derivation seems to be

not fully 
onsistent: the linear kinemati
al ansatz yields "

33

= 0, while we use "

33

= �

�

2�+�

h"; 11

2

i 6= 0 in evaluating the elasti


free energy. The zero normal tra
tion 
ondition �

33

is true for the 
hosen kinemati
al ansatz only on the midsurfa
e while in the

derivation we have ta
itly assumed it to hold uniformly over the thi
kness. However, the �nal result is 
orre
t.

11.9 The 
lassi
al in�nitesimal Kir
hho� bending plate

For the 
onvenien
e of the reader we also supply the similar system of equations for the 
lassi
al Kir
hho� bending plate. If only

transverse de
e
tions v

3

(x; y) are 
onsidered, the energy to be minimized is
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(11.198)

sin
e r(rv

3

) = D

2

v

3

. This energy 
an be obtained formally from (10.129) by setting � = rv

3

, see [Bra92, p.266℄. It should be


lear, however, that these bending equations are only appropriate for de
e
tions v

3

� h. For v

3

� h 
ombined membrane/bending

needs to be used and for v

3

� h the membrane e�e
t dominates.

Let us turn qui
kly to the existen
e theory [Dav75℄ involved in the in�nitesimal 
ase:

Theorem 11.9 (Existen
e for in�nitesimal Reissner-Mindlin)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

2

(!;R

3

). Moreover, let f 2 L

2

(!;R

3

) and

suppose N 2 L
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(
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;R
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) together with M 2 L
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(!;R
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(


s
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), see (10.102). Then problem (10.127) admits a unique

minimizing solution pair (v; �) 2 H

1

(!;R

3

)�H

1

(!;R

3

).

Proof. By the dire
t methods of variations it is a simple matter to establish the existen
e of a solution: Sin
e the fun
tional is

bounded above, we may take in�mizing sequen
es (v

k

; �

k

) 2 H

1

(!;R

3

) �H

1

(!;R

3

) and establish weak 
onvergen
e of �
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* � 2

H
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(!;R

3

), strong in L

2

(!;R

3

). This implies the boundedness of v

k

2 H

1

(!;R

3

) by Korn's �rst inequality and establishes as

well that the fun
tional is bounded below. We may extra
t a subsequen
e v

k

not relabelled, 
onverging weakly to v 2 H

1

(!;R

3

).

Overall 
onvexity of the fun
tional allows us to pass to the limit. The pair (v; �) is a minimizer.

The general in�nitesimal problem is easily seen to have a unique solution (v; �) on a

ount of the stri
t positivity of the se
ond

derivative of the energy W

RM;in�n

:

D

2

W

RM;in�n

(rv; �):((r�; Æ�); (r�; Æ�)) � h� k sym((r�jÆ�)k
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; (11.199)

on the linear spa
e H

1

0

(!;R

3

) �H

1

0

(!;R

3

). Stri
t positivity is a 
onsequen
e of the 
lassi
al Korn's inequality for the membrane

part and full 
ontrol of the skew-symmetri
 in
rement in the bending part. In this 
ase, the drill rotations, whi
h are asso
iated

to �, remain unspe
i�ed. Sin
e only two independent simple rotations are required to orient a unit dire
tor �eld, a distin
-

tive feature of 
lassi
al plate and shell theories is a rotation �eld de�ned in terms of only two independent degrees of freedom:

rotations about the dire
tor itself-the so 
alled drill rotations, are irrelevant and for that matter unde�ned in 
lassi
al shell theory. �

The analysis based on (10.128) is even simpler and 
an be done with Poin
ar�e's inequality repla
ing Korn's inequality. Note,

however, that a numeri
al implementation of the linearized models based on the presented setting (displa
ement approa
h) shows

to perform badly on 
oarse meshes [Bra92℄ for small h > 0 due to shear lo
king.

11.10 Comparison of formulas for the thi
kness stret
h

The di�erent formulas for the thi
kness stret
h %

m

in the plate models will be elu
idated. We have
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Now assume that N

di�

= 0 and R = polar(rmj~n). Let �

1

; �

2

� 0 be the eigenvalues of
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rm. In terms of �
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To further simplify the exposition, take � = 2� and assume that �

1

= �

2

= j�j. Then
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All three formulas produ
e the same tangent at the identity � = 1 (no in-plane stret
h). In the Kir
hho�-Love model, evaluation

of %

KL

m

=

p

2� �

2

is only possible for � �

p

2, a severe short
oming of the model. In the new Cosserat plate model, evaluation of

%

Coss

m

is possible for all � 2 R but does make sense only for � � 2. Finally, the modi�ed Cosserat model allows useful evaluation for

all � 2 R.
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Figure 2: The di�erent formulas for the thi
kness stret
h %

m

: unphysi
al response of the Kir
hhho�-Love model

and reasonable response %

m

> 0; (rmj%

m

R

3

) 2 GL

+

(3;R) of the modi�ed Cosserat model.

11.11 Open questions

Show that
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dV 7! min : w.r.t. (';R). ; (11.203)

has the unique family of solutions R = Q = 
onst:; '(x) = Q:x+ b; Q 2 SO(3;R). Without gradient 
onstraint on ' the solution

is not unique. The same problem for plates and shells: show that
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) + (rmjR
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T
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d! 7! min : w.r.t. (m;R). ; (11.204)

has the unique family of solutions R = Q = 
onst:; m(x; y) = Q

1

� x + Q

2

� y + b; Q 2 SO(3;R). Without gradient 
onstraint on

m the solution is not unique, but it 
an be seen that R

3

= ~n must hold anyway. The same question turned around: assume that

' 2 H

1

(
;R

3

); R 2 SO(3;R) and R

T

r'+r'

T

R� 211 = 0. Show that this implies rigidity: R = Q = 
onst:; '(x) = Q:x+ b and

that we are dealing with a true strain measure.
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