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Abstrat

This ontribution is onerned with the onsistent dimensional redution of a previously introdued �nite

three-dimensional Cosserat miropolar elastiity model to the two-dimensional situation of thin plates and

shells. The resulting membrane energy turns out to be a quadrati, ellipti, �rst order, non degenerate energy

in ontrast to lassial approahes, the standard bending ontribution is augmented with a term representing

an additional sti�ness of the Cosserat model and the orresponding system of balane equations remains

of seond order. The model inludes size e�ets, transverse shear resistane, thikness streth and drilling

degrees of freedom. The thin shell limit is non-degenerate due to the additional Cosserat bending sti�ness.

It is shown that the dimensionally redued formulation is well-posed along the same line of argument

whih showed the well posedness of the three-dimensional model [Nef03a℄. Deisive use is made of a dimen-

sionally redued version of an extended Korn's �rst inequality reently proved by the author [Nef02℄.

Key words: shells, plates, membranes, thin �lms, polar materials, non-simple materials, solid mehanis,

ellipti systems, variational methods.

AMS 2000 subjet lassi�ation: 74K20, 74K25, 74B20, 74D10, 74A35

74E05, 74G65, 74N15, 74K35

1



Contents

1 Introdution 4

1.1 Generalities on shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Outline and sope of this ontribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The underlying �nite three-dimensional Cosserat model in variational form 7

2.1 The di�erent three-dimensional ases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The oerive inequality in three-dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Mathematial results for the three-dimensional problem . . . . . . . . . . . . . . . . . . . . . . . 9

3 Dimensional redution of the Cosserat model 9

3.1 The three-dimensional problem on a thin domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Enrihed quadrati Cosserat kinematis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Dimensionally redued energy: energy projetion . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Redution of the urvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Redution/dedution of the boundary onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 The new �nite Cosserat thin plate model with size e�ets 16

4.1 The di�erent ases for the Cosserat plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Constitutive onsequenes of the value for the Cosserat ouple modulus . . . . . . . . . . . . . . 17

4.3 The oerive inequality in two-dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Mathematial analysis of the two-dimensional problem . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5 The limit problem for in�nite Cosserat ouple modulus �



!1: the Biot-plate . . . . . . . . . . 21

4.6 The limit problem for vanishing relative thikness h! 0 . . . . . . . . . . . . . . . . . . . . . . . 22

4.7 The limit problem for vanishing internal length L



! 0 . . . . . . . . . . . . . . . . . . . . . . . . 22

4.8 The limit problem for vanishing L



: the pure bending ase. . . . . . . . . . . . . . . . . . . . . . 23

4.9 The limit problem for vanishing L



and vanishing h: the pure membrane. . . . . . . . . . . . . . 24

5 A modi�ed �nite Cosserat thin plate for large streth and loal invertibility 25

6 The �nite, invariant Reissner-Mindlin plate 26

7 The �nite, invariant Kirhho�-Love plate 28

7.1 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.2 The pure �nite bending Kirhho�-Love problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8 Disussion and open problems 31

9 Aknowledgements 34

10 Appendix A 36

10.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10.1.1 Notation for bulk material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10.1.2 Notation for shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10.2 The treatment of external loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.2.1 Dead load body fores for the thin plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.2.2 Tration boundary onditions for the thin plate . . . . . . . . . . . . . . . . . . . . . . . . 37

10.2.3 The external loading funtional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10.3 Transformation of the domain and saling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10.3.1 Classial �nite elastiity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10.3.2 Saling relations for �nite Cosserat models with internal length . . . . . . . . . . . . . . . 38

10.3.3 Saling relations for �nite Cosserat plates . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.4 Generalized onvexity onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.5 Marosopi elasti shear failure for plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10.6 Linearized plate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10.6.1 The lassial in�nitesimal Reissner-Mindlin model . . . . . . . . . . . . . . . . . . . . . . 40

10.6.2 The lassial in�nitesimal Kirhho�-Love plate (Koiter model) . . . . . . . . . . . . . . . 41

2



11 Appendix B 42

11.1 Prerequisites from di�erential geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

11.2 Additional material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11.3 Linearized quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

11.4 Detailed derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

11.4.1 Detailed omputations for the new Cosserat model . . . . . . . . . . . . . . . . . . . . . . 45

11.4.2 Detailed omputations for the new �nite Reissner-Mindlin model . . . . . . . . . . . . . . 48

11.5 Units and elasti onstants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11.6 The penalized �nite Cosserat plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11.7 The partially linearized Cosserat plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

11.8 Derivation of the lassial in�nitesimal Reissner-Mindlin bending plate . . . . . . . . . . . . . . . 50

11.9 The lassial in�nitesimal Kirhho� bending plate . . . . . . . . . . . . . . . . . . . . . . . . . . 51

11.10Comparison of formulas for the thikness streth . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

11.11Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3



1 Introdution

1.1 Generalities on shells

The dimensional redution of a given model is already an old and mature subjet and it has seen many 'solutions'.

The di�erent approahes toward elasti shell theory proposed in the literature and relevant referenes thereof

are, therefore, too numerous to list here. In any ase our own proposal falls within the so alled derived

approah, i.e., reduing a given three-dimensional model via (physially) reasonable onstitutive assumptions

on the kinematis to a two-dimensional model

1

as opposed to either the intrinsi approah whih views

the shell from the onset as a two-dimensional surfae and invokes onepts from di�erential geometry or the

asymptoti methods whih try to establish two-dimensional equations by formal expansion of the three-

dimensional solution in power series in terms of a small parameter. The intrinsi approah is losely related

to the diret approah

2

whih takes the shell to be a two-dimensional direted medium in the sense of a

restrited Cosserat-surfae [CC09℄.

3

Two-dimensional equilibrium in appropriate new stress and strain

variables is postulated ab-initio independent of three-dimensional onsiderations, f. [Ant95, GNW65, ET58℄.

A detailed presentation of the lassial shell theories an be found in [Nag72℄. A thorough mathematial

analysis of linear, in�nitesimal shell theory, based on asymptoti methods is to be found in [Cia98a℄ and the

extensive referenes therein, see also [Cia97, Cia99, Ant95, DS96, Dik82℄. Exellent reviews and insightful

disussions of the modelling and �nite element implementation may be found in [SB92, San95, SB98, GSW89,

GT92, BGS96, BR92℄ and in the series of papers [SF89, SFR89, SFR90, SRF90, SK92, SF92℄. Reently, new

C

1

-onforming implementations for thin Kirhho�-Love shells have been proposed in [COS00, CO01℄. Properly

invariant elasti plate theories are derived by formal asymptoti methods in [FRS93℄.

Let us sketh �rst the apparent areas of agreement in the development of the elasti ase. The various

shell models based on linearized three-dimensional elastiity proposed in the literature have been rigorously

justi�ed in those ases, where some normality assumption is introdued, either a priori or as a result of an

asymptoti analysis, see notably the extensive work of Ciarlet and his o-workers [Cia97, Cia99℄. Membrane

and bending equations are identi�ed as leading order terms of asymptoti expansions of the three-dimensional

solution. Convergene of the omputed solution (and error estimates) to the 'exat' solution of linearized

three-dimensional elastiity is established in all relevant ases if various saling assumptions on the data are

made.

The situation is slightly less lear as far as in�nitesimal restrited Cosserat models (Reissner-Mindlin plate,

Timoshenko beam et.) are onsidered. Here the onvergene as the thikness tends to zero of some diretor to

the (linearized) normal of the surfae poses additional diÆulties, but an be overome, see e.g. [Ebe99℄ for the

plate bending problem. It is known, that the solution of the in�nitesimal Reissner-Mindlin model for various

values of the shear orretion fator � onverges to the solution of the in�nitesimal Kirhho�-Love model for

vanishing thikness.

Already in the in�nitesimal ase it beomes apparent that a model, involving membrane and bending

simultaneously annot be obtained by formal asymptoti methods but is a result of areful modelling.

One suh suessful model, the Koiter model [Koi70℄ is simply the sum of the orretly identi�ed membrane

and bending ontribution, properly saled with the thikness. The mathematial analysis establishing the

well-posedness of all these in�nitesimal models is fairly well established and will not be our prinipal onern.

Though analytially understood, the numerial implementation of these in�nitesimal, linear shell models is still

an area of very ative researh, mostly beause of intriaies related to the singular harater of the onsidered

systems as the thikness tends to zero. In the engineering ommunity, the in�nitesimal Reissner-Mindlin model

is usually preferred numerially to whih witnesses the unountable proposals of new implementation variants,

4

sine one only needs to solve a seond order problem with standard C

0

-�nite elements for an augmented �eld

instead of a fourth order problem with diÆult to handle C

1

-�nite elements in the Kirhho�-Love model. More-

over, the Reissner-Mindlin model allows for transverse shear, whih may our at free or loaded edges of

the three-dimensional plate. However, the in�nitesimal Reissner-Mindlin FEM-implementation is notoriously

ill-onditioned without further provision while the underlying mathematial problem is well-posed. Membrane

1

This line of thought is expressed by W.T. Koiter [Koi69, p.93℄:"Any two-dimensional theory of thin shells is neessarily of an

approximate harater. An exat two-dimensional theory of shells annot exist, beause the atual body we have to deal with,

thin as it may be, is always three-dimensional. ... Sine the theory we have to deal with is approximate in harater, we feel that

extreme rigour in its development is hardly desirable. ... Flexible bodies like thin shells require a exible approah."

2

The philosophy behind the diret approah is best framed by P.M. Naghdi[GN69, p.58℄: \The theory of Cosserat is exat, but

shell theory derived from the three-dimensional equations is approximate. It may be a matter of taste, but we prefer to regard

an exat theory as more fundamental. The Cosserat theory of shells (Cosserat surfae) is on a omparable footing with any exat

three-dimensional ontinuum theory." This remark remains partly true today: while properly invariant derived shell models are

now available, they do not neessarily guarantee invertibility.

3

Restrited, sine no material length sale usually enters the diret approah, only the relative thikness h appears in the model.

4

There is a ertain disrepany between the e�ort put into the investigations of the in�nitesimal Reissner-Mindlin model

and its physial signi�ane, given that the model is not frame-indi�erent and for that matter, stritly speaking, irrelevant.
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and shear loking, roughly meaning that the alulated solution on oarse meshes only poorly approximates the

exat solution has motivated the searh for loking free implementations and has stipulated to some extent the

development of nononforming elements and of disontinuous Galerkin methods (f. referenes in [LNSO02℄)

whih in prinipal should not su�er from loking. In this respet we mention also the hierarhial plate mod-

els [Sh96℄ whih are a diret outome of the �nite element methods applied to thin strutures. The idea there

is to disretely minimize the three-dimensional energy funtional over some thikness-restrited ansatz-spae,

preferably a polynomial approximation in thikness diretion.

In the �nite, elasti ase, mostly based on the Saint Venant-Kirhho� (SVK) free energy, the formal asymptoti

methods are still suessful in that they identify again leading membrane and bending terms. As far as the

ourring membrane ontribution is onerned, it isW

mp

in (7.83) whih is given in [GKM96, FRS93℄. However,

methods based on variational �-onvergene [DR95a℄ suggest a fundamentally di�erent membrane term whih

leads to a nonresistane of the membrane shell in ompression. It should be noted, that the widely aepted

membrane term of (7.83) shows the harateristi apparent hange of the Lam�e-moduli for the two-dimensional

struture. As far as the bending term is onerned, some agreement has been obtained that the term onsistent

with the 3D-SVK energy is a quadrati expression in the seond fundamental form of the surfae. Nevertheless,

the oeÆients of this quadrati form give still room for some disussion: the Hamiltonian based derivation in

[GKM96℄ di�ers from the results obtained by formal asymptoti analysis in [FRS93, Cia97℄ preisely in whether

there is the same apparent hange of the elasti moduli as ours in the membrane ase. This di�erene is

immaterial as regards the mathematial analysis and an be explained by the use of a linear kinematial ansatz

in thikness diretion in [GKM96℄ whereas a quadrati ansatz in a Hamiltonian framework would yield the same

result as in [FRS93, Cia97℄ and W

bend

in (7.83).

It must be noted, that proeeding by asymptoti analysis is based itself on ertain a priori assumptions,

namely that all appearing quantities indeed admit an expansion in terms of a small parameter and satisfy ertain

saling assumptions. No rigorous justi�ation of the formal asymptoti approah has been given so far for �nite

elastiity, preisely beause of the lak of some enompassing theory whih guarantees the well-posedness of

the three-dimensional problem. The appliation of formal asymptoti methods has never led to basially new

plate or shell models, it seems to be restrited to an a posteriori justi�ation of existing models. By ontrast,

the equations obtained by a variational approah i.e. energy projetion and those for a Cosserat surfae are

independent of saling assumptions.

We wish to remark that in the �nite regime, no 'unique' elasti three-dimensional model exists: we have

always to make onstitutive hoies for the bulk behaviour whih has onsequenes for the redued theory. In

this ase, making additional, physially sound, onstitutive assumptions on the two-dimensional response itself,

seems to be just another viable step in the modelling proedure. However, for in�nitesimal strains we know the

isotropi elasti bulk behaviour exatly

5

and subsequently it is reasonable to establish the onvergene for van-

ishing relative thikness h to preisely one model without additional onstitutive two-dimensional assumptions.

This remark onstitutes a strong justi�ation for the asymptoti method in the in�nitesimal ase.

It has already been observed that the leading order term without additional provisions on the data is either

a membrane or a bending term. But in appliations, there are usually regions of a shell where membrane

e�ets dominate while in others, bending is dominant. A fully three-dimensional resolution of a thin shell

problem remains elusive notwithstanding the inreased omputer power. Hene, there is still a need to ome up

with a sound �nite model, ombining both e�ets in one system of equations, as does the Koiter model in the

in�nitesimal ase.

Sine we have in mind the future extension of the herein presented plate theories to multipliative plastiity

let us add that the piture is all the more ompliated as far as elasto-plasti extensions are onerned, in part

beause of the (limited) state of the art of �nite elasto-plastiity itself and in part beause it is not straight

forward to transform an existing 3D-model to its 2D-ounterpart, see [BS99, BW91, SRF90℄ for representative

examples. It is tehnially diÆult to arry through the program of the formal asymptoti methods and in fat

suh a development seems not to have been undertaken in the �nite ase.

In order to get two-dimensional limit equations for plastiity despite these diÆulties of some sort anyhow,

additional mehanial assumptions on the stress distribution in the shell are usually introdued (e.g. plane

stress, zero normal stress S

1

:e

3

= 0 or less demanding: zero normal trations on the midsurfae, S

2;33

=

0), moreover, the implementation of generally smooth, higher order shell elements is at variane with the lak of

regularity either in (�nite) plastiity or for very thin rigid shells. More problemati from a mathematial point

of view, in many ases not an underlying self-onsistent two-dimensional mathematial shell model is disretized

5

If we assume that �



= 0 in the �nite three-dimensional Cosserat model, then the linearization oinides in fat with the

lassial in�nitesimal model and the three-dimensional bulk has a unique in�nitesimal response! The very possibility of �



= 0 for

a fully invariant three-dimensional �nite Cosserat model has been onsidered impossible in the Cosserat ommunity, sine in e�et,

no in�nitesimal, linear Cosserat bulk model would exist. While we keep ompletely trak of �



> 0 and �



= 0 simultanuously, it

is our belief that �



= 0 is physially the orret hoie.
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in atual omputations, but the shell like behaviour is enfored on the implementational element level only (this

is the so alled degenerated solid approah). There, evolution laws for plastiity are fully three-dimensionally

integrated and elasti equilibrium is omputed through numerial integration over the thikness. Only the two-

dimensional kinematial onstitutive ansatz for the total shell deformation redues the problem. One has termed

this method 2:5�dimensional. This applies to both elastiity and elasto-plastiity but, as already mentioned,

the resulting problem is not onsistent with any really two-dimensional de�nite model and a mathematial

analysis for suh a numerially motivated approah seems to be out of reah at present.

The Hamiltonian based, variational approah, whih we will follow in disguise, has the distintive advan-

tage of being exible enough to treat simultaneously �nite elastiity, �nite Cosserat models as well as �nite

elasto-plastiity in the framework of the multipliative deomposition. This is to be ontrasted with lassial

approahes for shells in urvilinear oordinates and indiial notation whih must remain a mystery for all those

not initiated.

The lassial models proposed in the literature lead to e�etive numerial shemes only if the relative

thikness h of the struture is still appreiable, i.e. lassial bending terms are present and regularize the

omputation. However, there is an abundane of new appliations where very thin strutures are used, e.g. very

thin metal layers on a substrate (in omputer hardware, for the harateristi relative thikness h � 5 � 10

�4

).

In these ases, lassial bending energy, whih omes with a fator of h

2

ompared with the membrane energy

ontribution, annot play a preponderant role for non-vanishing membrane energy. See also [BJ99℄ for an

appliation to thin �lms. But the membrane terms e.g. in a �nite, invariant Kirhho�-Love plate or �nite

Reissner-Mindlin model are non-ellipti and the remaining (minimization) problem is not well-posed even if

bending is inluded.

1.2 Outline and sope of this ontribution

We therefore fae several problems: �rst, there is no as yet generally aepted �nite, properly invariant, elasti

plate and shell model (and perhaps there annot be); seond, lassial �nite shell models are in general insuf-

�ient to aount for very thin strutures, the thin plate limit is degenerated; third, non-lassial size e�ets,

whih annot be negleted for very thin strutures [CCC

+

03℄ are usually not aounted for; fourth, lassial

in�nitesimal or �nite shell models predit unrealistially high levels of smoothness, typially at least C

0;�

(!)

for the midsurfae.

We propose therefore a new shell model for very thin almost rigid materials in addition to those already

established whih should remedy some of the aforementioned shortomings with a view towards a subsequent

stringent mathematial analysis and possible numerial implementation. We want to provide a model whih

is both theoretially and physially sound, suh that the numerial implementation an onentrate on real

onvergene issues.

We view the obtained two-dimensional models as models in its own right: rather than trying to establish

onvergene results of the underlying three-dimensional model to its two-dimensional ounterpart for vanishing

thikness (whih seems to be elusive given the appearing nonlinearities) we fous in a �rst attempt on the

intrinsi mathematial problems inherent in the redued models.

After introduing the underlying parent three-dimensional �nite Cosserat model with size e�ets and

independent mirorotations and realling the obtained existene results for this model, we proeed by

onsidering a quadrati kinematial ansatz over the thikness where the diretor is automatially related to

the rotations. Using generalized zero normal trations on the transverse boundary, the two unknown leading

oeÆients in the quadrati ansatz an be determined in analytial form. The three-dimensional energy is

then evaluated for the assumed form of plate deformation and analytially integrated over the thikness, this

onstitutes the energy projetion. Boundary onditions are onsistently redued. The full minimization problem

for the plate is gathered in setion 4. The new model has six degrees of freedom (6 dof), inluding naturally

one-drilling degree and allows for transverse shear. It is shown that the membrane part is uniformly Legendre-

Hadamard ellipti at given rotations. This �nishes the Cosserat modelling part.

Following, we derive a new Korn's �rst inequality for plates and elasto-plasti shells whih is deisive for

the mathematial treatment of the new models in a variational ontext. Depending on material onstants

and boundary onditions, di�erent mathematial existene theorems are proposed. Generially, we obtain for

the midsurfae deformation m 2 H

1;2

(!;R

3

), i.e. the midsurfae must not neessarily be ontinuous. It is

shown, that the limit of vanishing relative thikness h ! 0 in the new model is non-degenerate. The limits

�



! 1 and the zero internal length limit L



! 0, as well as the pure membrane limit h ! 0; L



! 0 and

the pure bending for vanishing internal length, are also desribed. We propose as well a modi�ation of the

new plate model whih ensures loal invertibility of the reonstruted deformation gradient and allows for large

streth. This modi�ation takes plae on the two-dimensional level only whih implies that there need not

exist any underlying three-dimensional model. Nevertheless, the modi�ed two-dimensional model is shown to

be physially more plausible than the preeeding model.
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For omparison, we next present a derivation of a rather lassial �nite, invariant Reissner-Mindlin model

with one independent diretor and of the �nite, invariant Kirhho�-Love plate model. It is shown that both �nite

models exhibit a ertain unphysial response. A modi�ation of the Kirhho�-Love model in view of expeted

small strain behaviour allows to establish the existene of minimizers. However, the obtained regularity is

unrealistially high and the implementational ost is known to be very large thus limiting in e�et the usefulness

of the Kirhho�-Love model. The pure bending problem based on either Reissner-Mindlin or Kirhho�-Love

is shown to admit minimizers and to oinide with the pure bending problem obtained from the new Cosserat

model.

In the appendix we introdue the relevant notation, detail the treatment of external loads and present the

observed saling relations. Generalized onvexity onditions are realled and marosopi shear failure for plates

is de�ned, inluding a Baker-Eriksen inequality for plates.

In order to relate the new �nite Cosserat plate model to more traditional approahes, we show, that a

linearization of the new model basially results in the lassial in�nitesimal Reissner-Mindlin model (without

extra size e�ets) and shear orretion fator � = 1.

2 The underlying �nite three-dimensional Cosserat model in varia-

tional form

In [Nef03a℄ a �nite, fully frame-invariant Cosserat model is introdued. The problem has been posed in a

variational setting. The task is to �nd a pair (';R) 2 R

3

� SO(3;R) of deformation ' and independent

mirorotation R satisfying

Z




W

mp

(U) +W

urv

(K) � hf; 'i � hM;Ri dV �

Z

�

S

hN;'i dS�

Z

�

C

hM



; Ri dS 7! min : w.r.t. (';R);

U = R

T

F; F = r'; '

j

�

= g

d

R

j

�

=

(

R

d

; rigid presription

polar(r') ; onsistent oupling) S

2

:= F

�1

D

F

W

mp

(U) 2 Sym on �

(2.1)

W

mp

(U) = � k sym(U � 11)k

2

+ �



k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

W

urv

(K) = �

L

1+p
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(1 + �

4

L

q



kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

;

K = R

T

D

x

R =

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

; third order urvature tensor :

The total elastially stored energy W = W

mp

+ W

urv

depends on the deformation gradient F = r' and

mirorotations R together with their spae derivatives. In general, the miropolar streth tensor U is not

symmetri. Here 
 � R

3

is a domain with boundary �
 and � � �
 is that part of the boundary, where

Dirihlet onditions g

d

; R

d

for displaements and mirorotations, respetively, are presribed while �

S

� �


is a part of the boundary, where tration boundary onditions N are applied with � \ �

S

= ;. The external

volume fore is f and M takes on the role of external volume ouples. In addition, �

C

� �
 is the part of the

boundary where external surfae ouples M



are applied with � \ �

C

= ;. The parameters �; � > 0 are the

Lam�e onstants of lassial elastiity, �



� 0 is alled the Cosserat ouple modulus and L



> 0 introdues

an internal length whih is harateristi for the material, e.g. related to the grain size in a polyrystal.

The internal length L



> 0 is responsible for size e�ets in the sense that smaller samples are relatively sti�er

than larger samples. If not stated otherwise, we assume that �

5

> 0; �

6

> 0; �

7

� 0. Consistent oupling

7



ensures that no non-lassial e�ets are arti�ially introdued at the Dirihlet boundary.

6

2.1 The di�erent three-dimensional ases

We distinguish �ve ompletely di�erent situations:

I: �



> 0; �

4

� 0; p � 1; q � 0, unonditional elasti maro-stability, loal �rst order Cosserat miropo-

lar, unquali�ed existene, mirosopi speimens, non-zero Cosserat ouple modulus. Frature exluded.

II: �



= 0; �

4

> 0; p � 1; q > 1, elasti pre-stability, nonloal seond order Cosserat miropolar, maro-

sopi speimens, in a sense lose to lassial elastiity, zero Cosserat ouple modulus. Frature exluded.

III: �



=1; �

4

� 0; p � 1; q � 0, unonditional elasti maro-stability, the onstrained gradient Cosserat

miropolar problem (indeterminate ouple stress model). Compatible Dirihlet boundary onditions:

'

j

�

= g

d

; polar(r�)

j

�

= polar(rg

d

)

j

�

.

IV: �



= 0; �

4

= 0; 0 < p � 1; q = 0, elasti pre-stability, nonloal seond order Cosserat miropolar, maro-

sopi speimens, in a sense lose to lassial elastiity, zero Cosserat ouple modulus. Sine possibly

' 62W

1;1

(
;R

3

), due to lak of elasti oerivity, inluding frature in multiaxial situations.

V: �



= 0;L



= 0, elasti pre-stability, �nite elastiity with free rotations and mirostruture. Weak so-

lutions of a orresponding �nite elastiity model are stationary points of this minimization problem.

Allowing for sharp interfaes.

We refer to 0 < p < 1; q � 0 as the sub-ritial ase, p = 1; q � 0 as the ritial ase and p � 1; q > 1

as the super-ritial ase. In [Nef03a℄ the �rst three ases are mathematially treated and ase V is indeed

shown to allow for sharp interfaes.

2.2 The oerive inequality in three-dimensions

The deisive analytial tool for the treatment of ase II (super-ritial) is the following non-trivial novel oerive

inequality:

Theorem 2.1 (Extended 3D-Korn's �rst inequality)

Let 
 � R

3

be a bounded Lipshitz domain and let � � �
 be a smooth part of the boundary with non

vanishing 2-dimensional Lebesgue measure. De�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g and let F

p

; F

�1

p

2

C

1

(
;GL(3;R)). Moreover suppose that CurlF

p

2 C

1

(
;M

3�3

). Then

9 

+

> 0 8 � 2 H

1;2

Æ

(
;�) : kr�F

�1

p

(x) + F

�T

p

(x)r�

T

k

2

L

2

(
)

� 

+

k�k

2

H

1;2

(
)

:

Proof. The proof has been presented in [Nef02℄. Note that for F

p

= r� we would only have to deal with the

lassial Korn's inequality evaluated on the transformed domain �(
). However, in general, F

p

is inompat-

ible giving rise to a non-riemannian manifold struture. Compare to [CG01℄ for an interpretation and the

physial relevane of the quantity CurlF

p

. �

Motivated by the investigations in [Nef02℄, it has been shown reently by my olleague W. Pompe [Pom03℄

that the extended Korn's inequality an be viewed as a speial ase of a general lass of oerive inequalities

for quadrati forms. He was able to show that indeed F

p

2 C(
;GL(3;R)) is suÆient for (2.1) to hold without

any ondition on the ompatibility.

However, taking the speial struture of the extended Korn's inequality again into aount, work in progress

suggests that ontinuity is not really neessary: instead F

p

2 L

1

(
;GL(3;R)) and CurlF

p

2 L

3+Æ

(
) should

suÆe, whereas F

p

2 L

1

(
;GL(3;R)) alone is not suÆient, see the ounterexample presented in [Pom03℄.

In view of the important role of the extended Korn's �rst inequality let us agree in saying that a bulk-material

is elastially pre-stable, whenever

9H 2 M

3�3

; H 6= 0 : D

2

F

W (x; F ):(H;H) = 0 (2.3)

9 

+

> 0 9 G 2 GL

+

(3;R) 8H 2 M

3�3

: D

2

F

W (x; F ):(H;H) � 

+

kG(x)

T

H +H

T

G(x)k

2

:

6

If, instead, we assume for the streth energy

W

mp

(U) = � k sym(U � 11)k

2

+ �



k skew(U)k

2

+ �

�

det[U ℄� 1)

2

+ (

1

det[U ℄

� 1)

2

�

+ �

+

kCof U � 11k

2

; (2.2)

thenW

mp

(U) is polyonvex w.r.t. F and loal invertibility of the deformation ' an be guaranteed. However, basing the dimensional

redution on this modi�ation, would lead to exessive formulas.

8



In this terminology, in�nitesimal lassial elastiity is pre-stable with G = 11 due to the lassial Korn's �rst

inequality and the extended Korn's �rst inequality links the smoothness of G to the positive de�niteness of the

elasti tangent sti�ness tensor.

2.3 Mathematial results for the three-dimensional problem

Using the extended Korn's inequality, in [Nef03a℄ the following has been shown:

Theorem 2.2 (Existene for 3D-�nite elasti Cosserat model: ase I.)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and R

d

2

W

1;1+p

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and supposeN 2 L

2

(�

S

;R

3

) together withM 2 L

1

(
;M

3�3

)

andM



2 L

1

(�

C

;M

3�3

). Then (2.1) with material onstants onforming to ase I admits at least one minimizing

solution pair (';R) 2 H

1

(
;R

3

)�W

1;1+p

(
; SO(3;R)).

Theorem 2.3 (Existene for 3D-�nite elasti Cosserat model: ase II.)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and R

d

2

W

1;1+p+q

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2

L

1

(
;M

3�3

) and M



2 L

1

(�

C

;M

3�3

). Then (2.1) with material onstants onforming to ase II admits at

least one minimizing solution pair (';R) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)).

Theorem 2.4 (Existene for 3D-�nite elasti Cosserat model with onsistent boundary oupling)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and polar(rg

d

) 2

W

1;1+p+q

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2

L

1

(
;M

3�3

) and M



2 L

1

(�

C

;M

3�3

). Then (2.1) with material onstants onforming to ase I/II and the

onsistent oupling ondition

R

j

�

= polar(r')

�

; (2.4)

admits at least one minimizing solution pair (';R) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)).

3 Dimensional redution of the Cosserat model

3.1 The three-dimensional problem on a thin domain

The basi task of any shell theory is a onsistent redution of some presumably 'exat' 3D-theory to 2D. The

problem (2.1) will now be adapted to a shell like theory. Let us assume that we are given a three-dimensional

absolutely thin domain




h

:= ! � [�

h

2

;

h

2

℄; ! � R

2

; (3.5)

with transverse boundary �


trans

h

= ! � f�

h

2

;

h

2

g and lateral boundary �


lat

h

= �! � [�

h

2

;

h

2

℄, where !

is a bounded domain in R

2

with smooth boundary �! and h > 0 is the thikness, and a deformation ' and

mirorotation R

3d

' : 


h

� R

3

7! R

3

; R

3d

: 


h

� R

3

7! SO(3;R) ; (3.6)

solving the following minimization problem on 


h

:

Z




h

W

mp

(U) +W

urv

(K) � hf; 'i dV �

Z




trans

h

[f

s

�[�

h

2

;

h

2

℄g

hN;'i dS 7! min : w.r.t. (';R);

U = R

T

F; '

j

�

h

0

= g

d

; �

h

0

= 

0

� [�

h

2

;

h

2

℄; 

0

� �!; 

s

\ 

0

= ;

R

j

�

h

0

= polar(r') ; onsistent oupling (3.7)

W

mp

(U ) = � k sym(U � 11)k

2

+ �



k skew(U)k

2

+

�

2
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�

sym(U � 11)

�

2

W

urv

(K) = �

L

1+p
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4

L
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kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

;

K = R

T

D

x

R =

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

; third order urvature tensor :

We want to �nd a reasonable approximation ('

s

; R

s

) of (';R

3d

) involving only two-dimensional quantities. The

redution is based on assumed kinematis and energy projetion.

9



3.2 Enrihed quadrati Cosserat kinematis

In the engineering shell ommunity it is well known [Che80, Sh85, Pie85℄ that the ansatz over the thikness

should at least be quadrati

7

in order to avoid the so alled Poisson thikness loking

8

and to fully apture

the three-dimensional kinematis without arti�ial modi�ation of the material laws

9

, see the detailed disussion

of this point in [BR00℄ and ompare with [BR92, BBR94, RR96, BR97, SB98℄.

For a Cosserat theory for small elasti strains

10

we assume therefore the quadrati ansatz in the thikness

diretion for the (reonstruted) �nite deformation '

s

: R

3

7! R

3

of the shell like struture

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

� R

s;3

(x; y; 0) ; (3.8)

where m : ! � R

2

7! R

3

takes on the role of the deformation of the midsurfaes of the shell viewed as a

parametrized surfae, the (reonstruted) rotation R

s

: 
 7! SO(3;R) and with yet indeterminate funtions

%

m

; %

b

: ! � R

2

7! R allowing for thikness streth (%

m

6= 1) and transverse shear (R

s;3

6= ~n).

11

The

(reonstruted) rotations in the thin shell are assumed to be onstant over the thikness

R

s

(x; y; z) = R(x; y) : (3.9)

This is then a kind of plate formulation sine for the moment the unstressed referene on�guration ! was

assumed to lie in the plane. This implies for the (reonstruted) deformation gradient of the shell (plate)

F

s

= r'

s

(x; y; z) = (rmj %

m

R

3

) + z � (r(%

m

R

3

)j%

b

R

3

) +

z

2

2

(r(%

b

R

3

)j0) =

~

A

m

+ z

~

A

r

+

z

2

2

~

B

r

: (3.10)

It should be noted that the augmented ansatz hanges already the term whih is linear in the transverse

diretion.

12

Invertibility of the shell deformation (as a physial requirement) entails

8 z 2 [�h=2; h=2℄ : det[r'

s

(x; y; z)℄ > 0) %

m

(x; y) > 0 ; (3.11)

and we must guarantee that %

m

: ! 7! R

+

. The three-dimensional loal part of the elasti Cosserat energy in

(2.1) has the form

W (F;R) =

�

4

kR

T

F + F

T

R� 211k

2

+

�



4

kR

T

F � F

T

Rk

2

+

�

8

tr

h

R

T

F + F

T

R � 211

i

2

: (3.12)

The equilibrium equations of the three-dimensional Cosserat problem given in [Nef03a℄ show that on the trans-

verse boundary (exat)

S

3d

1

(r'

3d

(x; y;+h=2); R

3d

(x; y;+h=2)):e

3

= N

trans

(x; y;+h=2)

S

3d

1

(r'

3d

(x; y;�h=2); R

3d

(x; y;�h=2)):(�e

3

) = N

trans

(x; y;�h=2) ; (3.13)

where N

trans

are the presribed trations N on the transverse boundary given globally in the basis (e

1

; e

2

; e

3

).

This implies (exat)

R

3d

(x; y;+h=2))

T

S

3d

1

(r'

3d

(x; y;+h=2); R

3d

(x; y;+h=2)):e

3

= R

3d

(x; y;+h=2))

T

N

trans

(x; y;+h=2) (3.14)

R

3d

(x; y;�h=2))

T

S

3d

1

(r'

3d

(x; y;�h=2); R

3d

(x; y;�h=2)):(�e

3

) = R

3d

(x; y;�h=2))

T

N

trans

(x; y;�h=2) :

Abbreviate

N

+

:= N

trans

(x; y;+h=2); N

�

:= N

trans

(x; y;�h=2) ; (3.15)

7

This mimis the (1j1j2)-hierarhi plate models: linear in-plane displaement and quadrati transverse displaement, instead

of (1j1j0)-plate models with onstant transverse displaement. The dimensional redution is ahieved by energy projetion on the

enrihed ansatz spae. In this sense, we propose a (1j1j2)-model.

8

Meaning that the bending sti�ness of the redued theory would tend to 1 as the Poisson-number � !

1

2

.

9

Let us quote from [Sh85℄: "Due to bending this hange of length is generally asymmetri about (the midsurfae) and leads to

a shift of the original midsurfaes.... This asymmetry requires at least a quadrati representation of the (deformation in thikness

diretion)."

10

Whih aptures already shells with large in plane rigidity and high transverse exibility.

11

This leads at �rst glane to a 8 'dof' theory: 3 omponents of the membrane deformation, 3 degrees of freedom for R 2 SO(3;R),

inluding naturally one drilling degree of freedom for in-plane rotations, 2 degrees of freedom over the thikness. However, the

two thikness oeÆients %

m

; %

b

will be eliminated, leaving us �nally with a 6 'dof' model. Already in the lassial elastiity ontext

the bene�ial inuene of drill rotations for the numerial implementation has been investigated in the linear ase in [HB89℄ and

in the �nite ase in [SFH92℄.

12

The orresponding stress �eld through the thikness R

T

s

S

1

(r'

s

(x; y; z); R

s

):e

3

is at least linear in the transverse variable z

and not onstant, as would be the ase in a �rst order (linear) ansatz for the deformation.

10



and de�ne

N

res

:= N

trans

(x; y;+h=2) +N

trans

(x; y;�h=2) ; N

di�

:=

1

2

�

N

trans

(x; y;+h=2)�N

trans

(x; y;�h=2)

�

: (3.16)

Then also (exat)

hR

3d

(x; y;+h=2))

T

S

3d

1

(r'

3d

(x; y;+h=2); R

3d

(x; y;+h=2)):e

3

; e

3

i = hN

+

; R

3d

(x; y;+h=2)):e

3

i (3.17)

hR

3d

(x; y;�h=2))

T

S

3d

1

(r'

3d

(x; y;�h=2); R

3d

(x; y;�h=2)):e

3

; e

3

i = �hN

�

; R

3d

(x; y;�h=2)):e

3

i :

We determine %

m

; %

b

from the orresponding requirement in terms of the assumed kinematis ('

s

; R

s

), yielding

hR

T

s

(x; y;�h=2)S

1

(r'

s

(x; y;�h=2); R

s

):e

3

; e

3

i = �hN

trans

(x; y;�h=2); R

s

(x; y;�h=2):e

3

i )

hR

T

S

1

(r'

s

(x; y;�h=2); R):e

3

; e

3

i = �hN

trans

(x; y;�h=2); R:e

3

i ; (3.18)

whih ondition redues to zero normal trations on the transverse free boundary (in the absene of

trations N

trans

) in the lassial ontinuum limit of R = polar(r'). Sine

S

1

(F;R) = R

�

�

�

F

T

R +R

T

F � 211

�

+ 2�



skew(R

T

F ) +

�

2

tr

h

F

T

R+R

T

F � 211

i

11

�

; (3.19)

the requirement hR

T

S

1

(r'

s

(x; y; z); R):e

3

; e

3

i = �hN

trans

(x; y;�h=2); R:e

3

i turns into

� hN

trans

(x; y;�h=2); R:e

3

i = � (2(%

m

� 1) + 2z %

b

)

+ �

�

hR

T

(rmj0); 11i+ %

m

+ z %

m

h(rR

3

j0)

T

R; 11i+ z %

b

� 3 +

z

2

2

%

b

hR

T

(rR

3

j0); 11i

�

; (3.20)

independent of the Cosserat ouple modulus �



. Let us evaluate the last equation for z = �h=2. This

yields two linear equations in %

m

; %

b

hN

+

; R:e

3

i = � (2(%

m

� 1) + h %

b

) (3.21)

+ �

�

hR

T

(rmj0); 11i+ %

m

+ h=2%

m

hrR

3

j0)

T

R; 11i+ h=2 %

b

� 3 +

h

2

8

%

b

hR

T

(rR

3

j0); 11i

�

�hN

�

; R:e

3

i = � (2(%

m

� 1)� h %

b

)

+ �

�

hR

T

(rmj0); 11i+ %

m

� h=2%

m

hrR

3

j0)

T

R; 11i � h=2 %

b

� 3 +

h

2

8

%

b

hR

T

(rR

3

j0); 11i

�

:

The exat solution is given by

�

%

m

%

b

�

=

1

(2�+ �)

2

h�

�

2

h

3

8

h(rR

3

j0)

T

R; 11i

2

�

(2�+ �)h �

�h

2

8

hrR

3

j0)

T

R; 11i

��hh(rR

3

j0)

T

R; 11i (2�+ �)

�

�

hN

di�

; R

3

i+ (2�+ �)� �

�

h(rmj0); Ri � 2

�

hN

res

; R

3

i

�

; (3.22)

whih will be approximated through

�

%

m

%

b

�

�

1

(2�+ �)

2

h

�

(2�+ �)h �

�h

2

8

hrR

3

j0); Ri

��hh(rR

3

j0); Ri (2�+ �)

��

hN

di�

; R

3

i+ (2�+ �)� �

�

h(rmj0); Ri � 2

�

hN

res

; R

3

i

�

:

(3.23)

Hene the leading terms

13

are:

%

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

(2�+ �)

�

�h

8(2�+ �)

2

h(rR

3

j0); Ri hN

res

; R

3

i

%

b

= �

�

2�+ �

h(rR

3

j0); Ri+

hN

res

; R

3

i

(2�+ �)h

�

�

2(2�+ �)

2

h(rR

3

j0); RihN

di�

; R

3

i (3.24)

�

2

(2�+ �)

2

h(rR

3

j0); Ri

�

h(rmj0); Ri � 2

�

:

13

Note that %

m

; %

b

have di�erent units. %

m

is dimensionless, whereas [%

b

℄ = m

�1

.
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The term

�

2

(2�+�)

2

h(rR

3

j0); Ri

�

h(rmj0); Ri � 2

�

represents a nonlinear oupling between midsurfae in-plane

strain and normal urvature, an artefat of the derivation not present in the underlying three-dimensional theory

where only produts of deformationgradient and rotations our, we therefore neglet this term.

14

Moreover,

for a almost rigid material with �� 1 we have

�

(2�+�)

2

� 1, leading �nally to the redued expressions:

%

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

(2�+ �)

;

%

b

= �

�

2�+ �

h(rR

3

j0); Ri+

hN

res

; R

3

i

(2�+ �)h

: (3.25)

The formula (3.25) shows the physially reasonable behaviour that to �rst order, �bers will be elongated

by opposite transverse trations and in-plane streth leads to thikness redution.

Having obtained the general form of the relevant oeÆients %

m

; %

b

, it is expedient to base the expansion

of the three-dimensional elasti Cosserat energy on a further simpli�ed expression, namely

F

s

= r'

s

(x; y; z) � (rmj %

m

R

3

) + z � (rR

3

j%

b

R

3

) = A

m

+ z A

r

= F

s

; A

m

=

~

A

m

: (3.26)

This modi�ation has only onsequenes as far as the resulting bending ontribution is onerned and is moti-

vated by our

Remark 3.1 (Guiding priniple of redution)

(G1.) The redued model should at no plae ontain mixed produts of normal urvature R

T

(rR

3

j0) and

midsurfae in-plane strain hR

T

(rmj0);�i2, sine suh a oupling is not present in the underlying three-

dimensional model.

(G2.) The redued model should at no plae ontain spae derivatives of the thikness streth %

m

, sine in the

underlying three-dimensional Cosserat model urvature is only present through the third order urvature

tensor K related only to rotations R.

The use of (3.26) exludes (up to order h

3

) exatly those terms whih would violate our priniple had we used

(3.10) instead. A simple but tedious alulation reveals that

�

4

kR

T

A

r

+A

T

r

Rk

2

+

�

8

tr

h

R

T

A

r

+A

T

r

R

i

2

(3.27)

= �k sym(R

T

(rR

3

j0))k

2

+

��

2�+ �

tr

h

sym(R

T

(rR

3

j0))

i

2

+

hN

res

; R

3

i

2

2(2�+ �)h

2

:

Exatly the same omputations as for the bending term allows us to onlude that

�

4

kR

T

A

r

+A

T

r

R� 211k

2

+

�

8

tr

h

R

T

A

r

+A

T

r

R

i

2

(3.28)

= �k sym(R

T

(rmjR

3

))� 11k

2

+

��

2�+ �

tr

h

sym(R

T

(rmjR

3

)) � 11

i

2

+

hN

di�

; R

3

i

2

2(2�+ �)

:

3.3 Dimensionally redued energy: energy projetion

Now we perform the analytial integration over the thikness in terms of the redued kinematis. We insert the

result F

s

(3.26) and R

s

instead of F and R

3d

into (3.7). Sine

k sym(R

T

s

F

s

)� 11k

2

=

1

4

kA

T

m

R+R

T

A

m

+ z A

T

r

R+ z R

T

A

r

� 211k

2

(3.29)

=

1

4

kA

T

m

R+R

T

A

m

� 211k

2

+ z hA

T

m

R+R

T

A

m

� 211; A

T

r

Ri+

z

2

4

kA

T

r

R+R

T

A

r

k

2

:

14

It would be possible to base all further onsiderations indeed on the exat solution of %

m

; %

b

and it seems that the resulting

two-dimensional model would allow an existene proof. However, the muh more involved expressions are not easily interpreted

and do not redue to the lassial expressions upon linearization.

12



and a similar expression for the trae and skew part, we obtain by expliitly integrating over the (absolutely

thin plate like referential) domain 


h

= ! � [�

h

2

;

h

2

℄

Z

!

h

2

Z

�

h

2

W

mp

(F

s

; R

s

) dV =

Z

!

h

�

�

4

kA

T

m

R+R

T

A

m

� 211k

2

+

�



4

kA

T

m

R�R

T

A

m

k

2

+

�

8

tr

h

A

T

m

R +R

T

A

m

� 211

i

2

�

d!

+ 0 +

Z

!

h

3

12

�

�

4

kA

T

r

R+R

T

A

r

k

2

+

�



4

kA

T

r

R �R

T

A

r

k

2

+

�

8

tr

h

A

T

r

R+R

T

A

r

i

2

�

d!

=

Z

!

h

�

�k sym(R

T

(rmjR

3

))� 11k

2

+ �



k skew(R

T

(rmjR

3

))k

2

+

��

2�+ �

tr

h

sym(R

T

(rmjR

3

)) � 11

i

2

+

hN

di�

; R

3

i

2

2(2�+ �)

!

d! + (3.30)

Z

!

h

3

12

 

�k sym(R

T

(rR

3

j0))k

2

+ �



k skew(R

T

(rR

3

j0))k

2

+

��

2�+ �

tr

h

sym(R

T

(rR

3

j0))

i

2

+

hN

res

; R

3

i

2

2(2�+ �)h

2

!

d!

=

Z

!

h

�

�k sym(R

T

(rmjR

3

))� 11k

2

+ �



k skew(R

T

(rmjR

3

))k

2

+

��

2�+ �

tr

h

sym(R

T

(rmjR

3

)) � 11

i

2

+

hN

di�

; R

3

i

2

2(2�+ �)

+

hN

res

; R

3

i

2

24 (2�+ �)

!

d!

+

Z

!

h

3

12

�

�k sym(R

T

(rR

3

j0))k

2

+ �



k skew(R

T

(rR

3

j0))k

2

+

��

2�+ �

tr

h

sym(R

T

(rR

3

j0))

i

2

�

d! ;

and we may all (A

T

m

R + R

T

A

m

� 211) the membrane part and (A

T

r

R + R

T

A

r

) the bending part. The

inuene of

h

 

hN

di�

; R

3

i

2

2(2�+ �)

+

hN

res

; R

3

i

2

24 (2�+ �)

!

; (3.31)

in the redued energy is of higher order than the omparable inuene of the assumed resultant loading, f.

(10.102). Moreover, for large trations, the inuene of this term in the energy would oere the omponent R

3

to adjust orthogonal to trations N instead of presumably parallel. Sine 2�+ � � 1 for a rigid material it is

therefore suggested to neglet this ontribution as well. This is all the more neessary, sine (3.31) would be a

non-frame-indi�erent ontribution to the plate elasti energy.

3.4 Redution of the urvature

Similarly the Cosserat urvature term is integrated over the thikness. Consider

K

s

= R

T

s

D

x

R

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

; (3.32)

the redued third order urvature tensor. Integration over the domain 


h

= ! � [�

h

2

;

h

2

℄ yields

Z

!

h

2

Z

�

h

2

W

urv

(K

s

) dV =

Z

!

�

hL

1+p



12

(1 + �

4

L

q



kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

d! :

(3.33)

3.5 Redution/dedution of the boundary onditions

Taking the Dirihlet boundary onditions for ' into aount and the kinematial ansatz, we have

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

� R

s;3

(x; y; 0) ; '

s

(x; y; z)

j

�

0

= g

d

(x; y; z) : (3.34)
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Evaluating for �h=2 yields two vetor equations:

g

d

(x; y;+h=2) = m(x; y) +

�

h=2 %

m

(x; y) +

h

2

8

%

b

(x; y)

�

�R

s;3

(x; y; 0) (3.35)

g

d

(x; y;�h=2) = m(x; y) +

�

�h=2 %

m

(x; y) +

h

2

8

%

b

(x; y)

�

�R

s;3

(x; y; 0) :

Adding and subtrating shows

g

d

(x; y;+h=2) + g

d

(x; y;�h=2) = 2m(x; y) +

h

2

4

%

b

(x; y) �R

s;3

(x; y; 0) (3.36)

g

d

(x; y;+h=2)� g

d

(x; y;�h=2) = h %

m

(x; y)R

s;3

(x; y; 0)) rg

d

(x; y; 0):e

3

= %

m

(x; y)R

s;3

(x; y; 0) + o(h) :

This implies

m(x; y) =

1

2

(g

d

(x; y;+h=2) + g

d

(x; y;�h=2)) � g

d

(x; y; 0) : (3.37)

In order get a boundary ondition for the rotation we use the best available information of the three-dimensional

theory: onsider the three-dimensional onsistent oupling boundary ondition �

h

0

� �
:

R

3d

(x; y; z) = polar(r'(x; y; z)) = polar((�

x

'(x; y; z)j�

y

'(x; y; z)j�

z

'(x; y; z))) : (3.38)

Sine g

d

is given on �

h

0

, it holds that

g

d

(x; y;+h=2) = '(x; y;+h=2)

g

d

(x; y;�h=2) = '(x; y;�h=2)) �

z

'(x; y; 0) = rg

d

(x; y; 0):e

3

+ o(h) : (3.39)

Hene

R

3d

(x; y; 0) = polar(r'(x; y; 0)) = polar((�

x

'(x; y; 0)j�

y

'(x; y; 0)j�

z

'(x; y; 0)))

= polar((�

x

'(x; y; 0)j�

y

'(x; y; 0)jrg

d

(x; y; 0):e

3

)) ; (3.40)

whih, in view of the assumed kinematis neessitates the onsistent oupling for plates

R

j



0

(x; y) = polar((rm(x; y)jrg

d

(x; y; 0):e

3

)) : (3.41)

This ondition disposes us from the need to motivate rather arti�ially any boundary onditions for the rotations.

Observe that this last boundary ondition does not imply that the rigid plate presription

R

3j



0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; (3.42)

holds, whih would orrespond to a form of lamping

15

and whih an be seen as a onsequene of (3.36). Note,

however, that (3.41) implies (3.42) in the limit of small-strain: i.e. if (rmjrg

d

:e

3

)

j



0

2 SO(3;R). In this sense,

(3.42) is a small strain approximation of (3.41).

15

We reserve the notion lamped, meaning that ~n

m

=

rg

d

(x;y;0):e

3

rg

d

(x;y;0):e

3

on 

0

to traditional fourth order Kirhho�-Love models

(7.83).
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Figure 1: The assumed Cosserat plate kinematis inorporating transverse shear (R

3

6= ~n), thikness streth

(%

m

6= 1) and drill-rotations. Reonstruted three-dimensional deformation '

s

, midsurfae deformation m,

mirorotation R.

15



4 The new �nite Cosserat thin plate model with size e�ets

Gathering our results we have obtained the following two-dimensional minimization problem for the deformation

of the midsurfae m : ! � R

2

7! R

3

and the mirorotation of the plate (shell) R : ! � R

2

7! SO(3;R) solving

on !:

I =

Z

!

hW

mp

(U) + hW

urv

(K

s

) +

h

3

12

W

bend

(K

b

) d! ��(m;R

3

) 7! min : w.r.t. (m;R);

U = R

T

^

F ;

^

F = (rmjR

3

); F

s

= (rmj%

m

R

3

) reonstruted deformation gradient

%

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

non-invariant

z }| {

hN

di�

; R

3

i

(2�+ �)

= 1�

�

2�+ �

tr

�

U � 11

�

+

hN

di�

; R

3

i

(2�+ �)

| {z }

�rst order thikness streth

m

j



0

= g

d

(x; y; 0) ; simply supported (�xed) (4.43)

R

j



0

= polar((rmjrg

d

(x; y; 0):e

3

))

j



0

; redued onsistent oupling

R

3

j



0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; alternatively: rigid presription

W

mp

(U) = � k sym(U � 11)k

2

+ �



k skew(U)k

2

+

��

2�+ �

tr

�

sym(U � 11)

�

2

= � k sym((R

1

jR

2

)

T

rm� 11

2

)k

2

+ �



k skew((R

1

jR

2

)

T

rm)k

2

+

�(�+ �



)

2

�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

| {z }

transverse shear energy

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

W

urv

(K

s

) = �

L

1+p
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(1 + �

4

L

q



kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

; redued third order urvature tensor

W

bend

(K

b

) = � k sym(K

b

)k

2

+ �



k skew(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

K

b

= R

T

(rR

3

j0) = K

3

s

; seond order, non-symmetri bending tensor :

The (relative) thikness of the plate (shell) is h > 0. The total elastially stored energy due to membrane,

urvature and bending

W = hW

mp

+ hW

urv

+

h

3

12

W

bend

; (4.44)

depends on the midsurfae deformation gradient rm and mirorotations R together with their spae derivatives

only through U and K

s

. Themiropolar streth tensor U of the plate is in general non-symmetri. Here ! �

R

2

is a domain with boundary �! and 

0

� �! is that part of the boundary, where Dirihlet onditions g

d

; R

3;d

for displaements and mirorotations, respetively, are presribed. The redued external loading funtional

�(m;R

3

) is a linear form in (m;R

3

) de�ned in (10.102) in terms of the underlying three-dimensional loads.

The parameters �; � > 0 are the Lam�e onstants of lassial elastiity, �



� 0 is alled the Cosserat ouple

modulus and L



> 0 introdues an internal length whih is harateristi for the material, e.g. related to

the grain size in a polyrystal and whih is responsible for the size e�ets. If not stated otherwise, we assume that

�

5

> 0; �

6

> 0; �

7

� 0. We have inluded the so alled shear orretion fator � (0 < � � 1) to keep in line

with in�nitesimal models, in our derivation however, we obtain � = 1. The model is fully frame-indi�erent,

meaning that

8 Q 2 SO(3;R) : W (Q

^

F ;QR) =W (

^

F ;R) : (4.45)

The non-invariant term %

m

is only needed to reonstrut the 3D-deformation, whih of ourse depends on the

non-invariant loading.

16

Strain and urvature parts are additively deoupled, as in the underlying parent model

(3.7).

16

Of ourse, if the external trations are rotated as well, we obtain invariane: hQ:N

di�

;Q:R

3

i = hN

di�

; R

3

i.

16



4.1 The di�erent ases for the Cosserat plate

As in the three-dimensional ase, we may distinguish �ve di�erent situations: (di�erent values of p; q ompared

with the three-dimensional ase)

I: �



> 0; �

4

� 0; p � 1; q � 0, unonditional elasti maro-stability, loal �rst order Cosserat miropo-

lar, unquali�ed existene, mirosopi speimens, non-zero Cosserat ouple modulus. Frature exluded.

II: �



= 0; �

4

= 0; p > 1; q = 0, elasti pre-stability, nonloal seond order Cosserat miropolar, maro-

sopi speimens, in a sense lose to lassial elastiity, zero Cosserat ouple modulus. Frature exluded.

III: �



=1; �

4

� 0; p � 1; q � 0, unonditional elasti maro-stability, the onstrained gradient Cosserat

miropolar plate problem (indeterminate ouple stress plate model (4.61)). Compatible Dirihlet boundary

onditions: m

j



0

= g

d

; polar((rmj%

m

~n

m

))

j



0

= polar(rg

d

)

j



0

.

IV: �



= 0; �

4

= 0; 0 < p � 1; q = 0, elasti pre-stability, nonloal seond order Cosserat miropolar, maro-

sopi speimens, in a sense lose to lassial elastiity, zero Cosserat ouple modulus. Sine possibly

m 62 W

1;1

(!;R

3

), due to lak of elasti oerivity, inluding frature in multiaxial situations.

V: �



= 0;L



= 0, elasti pre-stability, �nite elastiity with free rotations and mirostruture. Weak so-

lutions of orresponding �nite elastiity are stationary points of this minimization problem. Allowing for

sharp interfaes.

We refer to 0 < p < 1; q � 0 as the sub-ritial ase, p = 1; q � 0 as the ritial ase and p � 1; q > 1 as

the super-ritial ase. We will mathematially treat the �rst three ases.

4.2 Constitutive onsequenes of the value for the Cosserat ouple modulus

Looking at the membrane energy W

mp

with �



> 0 we see that the impliation of this hoie at a �rst glane is

an inouous rise in the marosopi elasti membrane strain energyW

mp

(U) of the plate if R 6= polar(rmjR

3

)).

The hoie �



> 0 ats like a loal 'elasti spring' between both ontinuum rotations and mirorotations.

Let us onsider the mathematial impliations of �



= 0 and 0 < �



� �, respetively, for the membrane, in

more detail. We ompute the seond derivative of the membrane strain energyW

mp

(R

T

^

F ) at �xed R 2 SO(3;R)

w.r.t. rm 2 M

2�3

. For H 2 M

2�3

we have

D

2

rm

W

mp

(R

T

^

F ):(H;H) � D

2

rm

�

�k sym(R

T

(rmjR

3

))� 11k

2

+ �



k skew(R

T

(rmjR))k

2

�

:(H;H) (4.46)

= 2�k sym(R

T

(H j0))k

2

+ 2�



k skew(R

T

(H j0))k

2

=

(

� 2�



kR

T

(H j0))k

2

= 2�



k(H j0))k

2

if �



> 0

= 2� k sym(R

T

(H j0))k

2

if �



= 0

:

Hene the hoie �



> 0 leads to uniform onvexity of W

mp

(R

T

^

F ) w.r.t. rm and unonditional elas-

ti stability on the marosopi level: regardless of what distribution of mirorotations R(x) is given, the

marosopi equation of balane of linear momentum is uniquely solvable and this equation is insensible to

any deterioration of the spatial features of the mirostruture. Uniform onvexity is diÆult to aept from a

onstitutive point of view sine it is impossible for a geometrially exat desription in the framework of a las-

sial marosopi ontinuum but lear from the above disussion: the additional elasti spring between miro-

and ontinuum rotation extremely rigidi�es the material and ompletely hanges the type of the mathematial

boundary value problem ompared with the lassial �nite theory.

17

Fortunately, suh a far reahing unsatisfatory onlusion does not hold for �



= 0. Choose � 2 R

3

and

� = (�

1

; �

2

; 0)

T

. Then onsider (H j0) = � 
 � 2 M

3�3

and

D

2

rm

W

mp

(R

T

^

F ):(� 
 �; � 
 �) = �

�

kR

T

� 
 �k

2

+ hR

T

� 
 �; � 
R

T

�i

�

= �

�

kR

T

� 
 �k

2

+ hR

T

�; �i

2

�

;

whih shows the physially muh more appealing inequality

D

2

rm

W

mp

(R

T

^

F ):(� 
 �; � 
 �) � � k�k

2

R

3

� k�k

2

R

2

; (4.47)

expressing nothing but uniform Legendre-Hadamard elliptiity of the membrane aousti-tensor with el-

liptiity onstant � independent of R. The Legendre-Hadamard ondition has the most onvining physial

basis [Ant95, p.461℄ in that it implies the reality of wave speeds and the Baker-Eriksen inequalities (stress

inreases with strain, [MH83, p.19℄). The hoie �



= 0 is onsistent with the three-dimensional strain energy

density proposed in [Nef03b, (P3)℄ and [NW03, M1℄ if the appearing independent visoelasti rotations there

are identi�ed with the independent elasti Cosserat mirorotations here.

17

In the analytial setion we will see that �



> 0 implies that m 2 W

1;1

(!;R

3

) irrespetive of R 2 SO(3;R), thus exluding

frature.
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4.3 The oerive inequality in two-dimensions

In this setion we show how to use the three-dimensional extended Korn's �rst inequality Theorem 2.1 in

our redued two-dimensional ontext of plates and shells in order to improve Legendre-Hadamard elliptiity

to uniform positivity. In order to show that the elasti membrane energy is uniformly onvex we look at the

seond di�erential of W

mp

(R

T

^

F ) with respet to m

D

2

rm

W

mp

(R

T

^

F ):(r�;r�) �

�

2

k(r�j0)

T

R+R

T

(r�j0)k

2

: (4.48)

Set for simpliity � = 2 and onsider the slightly more general quadrati form (appropriate for elasti shells

and elasto-plasti shells)

kF

�T

p

(r�j0)

T

R

e

+R

T

e

(rmj0)F

�1

p

k

2

= kR

e

�

F

�T

p

(r�j0)

T

R

e

+R

T

e

(r�j0)F

�1

p

�

R

T

e

k

2

= k(R

e

F

p

)

�T

(r�j0)

T

+ (r�j0)(R

e

F

p

)

�1

k

2

; (4.49)

where � : ! � R

2

7! R

3

and �

j



0

= 0 for 

0

� �!. Extend now � by

�

� : R

3

7! R

3

through

�

�(x; y; z) := �(x; y))

�

�(x; y; z)



0

�[�

h

2

;

h

2

℄

= 0: (4.50)

This extension implies

r

(x;y;z)

�

�(x; y; z) = (r

(x;y)

�j0): (4.51)

For

�

� it is possible to use the 3D-extended Korn's �rst inequality Theorem 2.1. To this end onsider 


h

=

! � [�

h

2

;

h

2

℄ and the lateral Dirihlet boundary �

h

0

= 

0

� [�

h

2

;

h

2

℄ � �


h

. Then �

h

0

has non-vanishing 2-

dimensional Lebesgue measure. Set by abuse of notation F

p

= (R

e

F

p

) for the moment. With smooth enough,

invertible F

p

it holds on applying Theorem 2.1 that

Z

!�[�

h

2

;

h

2

℄

kr

�

�

T

F

�1

p

+ F

�T

p

r

�

�k

2

dV � 

+

3D

�

Z

!�[�

h

2

;

h

2

℄

k

�

�k

2

+ kr

�

�k

2

dV )

Z

!

h

2

Z

�

h

2

kr

�

�

T

F

�1

p

+ F

�T

p

r

�

�k

2

d! dz � 

+

3D

�

Z

!

h

2

Z

�

h

2

k

�

�k

2

+ kr

�

�k

2

d! dz : (4.52)

Sine

�

� is independent of z we get, however,

Z

!

kr

�

�

T

F

�1

p

+ F

�T

p

r

�

�k

2

d! � 

+

3D

�

Z

!

k

�

�k

2

+ kr

�

�k

2

d! ; (4.53)

or bak in terms of �

Z

!

k(r�j0)

T

F

�1

p

+ F

�T

p

(r�j0)k

2

d! � 

+

3D

�

Z

!

k�k

2

+ k(r�j0)k

2

d!: (4.54)

Observe that the onstant 

+

3D

is independent of the thikness h whih might be surprising at �rst glane.

This observation allows one to bound m 2 H

1;2

Æ

(!;R

3

; 

0

) independent of the relative thikness h only in terms

of the membrane energy

R

!

W (rm;R) d! if R 2 SO(3;R) is smooth enough. Thus we have �nally proved

Theorem 4.1 (Extended Korn�s �rst inequality for rigid shells)

Let ! � R

2

be a bounded Lipshitz domain and let 

0

� �! be a smooth part of the boundary with non

vanishing 1-dimensional Lebesgue measure. De�ne H

1;2

Æ

(!;R

3

; 

0

) := f� 2 H

1;2

(!); � : ! 7! R

3

j �

j



0

= 0g

and let F

p

; F

�1

p

2 C

1

(!;GL(3;R)). Moreover suppose that CurlF

p

2 C

1

(!;M

3�3

). Then

9 

+

> 0 8 � 2 H

1;2

Æ

(!;R

3

; 

0

) : k(r�j0)F

�1

p

(x) + F

�T

p

(x)(r�j0)

T

k

2

L

2

(!)

� 

+

k�k

2

H

1;2

(!)

: �

Based on the strengthening proposed in [Pom03℄ we get immediately the following
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Corollary 4.2 (Improved Korn's inequality for rigid shells)

Let ! � R

2

be a bounded domain with smooth boundary and let 

0

� �! be a part of the boundary with non

vanishing 1-dimensional Lebesgue measure. De�ne H

1;2

Æ

(!;R

3

; 

0

) := f� 2 H

1;2

(!); � : ! 7! R

3

j �

j



0

= 0g

and let F

p

2W

1;2+Æ

(!;GL(3;R)). Then

9 

+

> 0 8 � 2 H

1;2

Æ

(!;R

3

; 

0

) : k(r�j0)F

�1

p

(x) + F

�T

p

(x)(r�j0)

T

k

2

L

2

(!)

� 

+

k�k

2

H

1;2

(!)

; (4.55)

and the onstant is bounded away from zero for F

p

bounded in W

1;2+Æ

(!;GL(3;R)).

Proof. The Sobolev embedding shows that F

p

2 W

1;2+Æ

(!;GL(3;R)) may be identi�ed with a ontinuous

funtion. A ontradition argument as in [Nef03℄ shows that the onstant is bounded away from zero sine

W

1;2+Æ

(!;GL(3;R)) is ompatly embedded in C(!;GL(3;R)). �

However, taking the speial struture of the extended Korn's inequality into aount, work in progress

suggests that even ontinuity is not really neessary: instead F

p

2 L

1

(!;GL(3;R)) and CurlF

p

2 L

N+Æ

(!)

with N = dim(!) should suÆe, whereas F

p

2 L

1

(!;GL(3;R)) alone is not suÆient, see the ounterexample

presented in [Pom03℄.

4.4 Mathematial analysis of the two-dimensional problem

The following results are the �rst existene theorems for geometrially exat

18

derived elasti Cosserat plate

models known to the author:
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Theorem 4.3 (Existene for 2D-�nite elasti Cosserat model: ase I.)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

) and R

d

2

W

1;1+p

(!; SO(3;R)). Moreover, let f 2 L

2

(!;R

3

) and suppose N 2 L

2

(

s

;R

3

) together with M 2 L

1

(!;R

3

)

and M



2 L

1

(

s

;R

3

), see (10.102). Then (4.43) with material onstants onforming to ase I admits at least

one minimizing solution pair (m;R) 2 H

1

(!;R

3

)�W

1;1+p

(!; SO(3;R)).

Proof. We apply the diret methods of variations. First, the requirement on the data shows that

�(m;R

3

) � C �

�

kmk

L

2

(!)

+ kR

3

k

1

�

= C

�

kmk

L

2

(!)

+ 1

�

: (4.56)

With the presription of (g

d

; R

d

) it is lear that I <1 for some pair (m;R). Observe �rst that the miropolar

urvature term K

s

ontrols R 2 W

1;1+p

(!; SO(3;R)), sine kK

s

k = kR

T

D

x

Rk = kD

x

Rk, pointwise and �

5

; �

6

>

0. Moreover, SO(3;R) is weakly losed in the topology ofW

1;1+p

(!). We omit to show that I is bounded below:

this will turn out not to be neessary. We may hoose dereasing (in�mizing) sequenes of pairs (m

k

; R

k

).

The urvature ontribution together with the appropriate boundary onditions and Poinar�es inequality yields

boundedness of R

k

� W

1;1+p

(!; SO(3;R)). We may extrat a subsequene again denoted by R

k

onverging

strongly in L

1+p

(!) to an element

~

R 2 W

1;1+p

(!; SO(3;R)) sine p > 0 by assumption. Beause �



> 0, it is

immediate that (rm

k

jR

k

) =

^

F

k

is bounded in L

2

(!;M

3�3

), independent of R

k

on aount of

W

mp

(R

k;T

^

F

k

) � �



kR

k;T

^

F

k

� 11k

2

= �



�

k

^

F

k

k

2

� 2h

^

F

k

; R

k

i+ 3

�

� �



�

k

^

F

k

k

2

� 2

p

3k

^

F

k

k+ 3

�

; (4.57)

and

1 >

Z

!

hW

mp

(U

k

) + hW

urv

(K

s;k

) +

h

3

12

W

bend

(K

b

) d! ��(m

k

; R

k

3

) �

Z

!

hW

mp

(U

k

)��(m

k

; R

k

3

) d!

�

Z

!

hW

mp

(U

k

) d! � C

�

km

k

k

L

2

(!)

+ 1

�

(4.58)

� �



h k

^

F

k

k

2

L

2

(!)

� 2

p

3�



h k

^

F

k

k

L

2

(!)

� Ckm

k

k

H

1;2

(!)

+ 3�



h� C

� �



h krm

k

k

2

L

2

(!)

� 2

p

3�



h krm

k

k

L

2

(!)

� C km

k

k

H

1;2

(!)

+ 3�



h� C

� �



h krm

k

k

2

L

2

(!)

� C km

k

k

H

1;2

(!)

� C � �





+

P

h kv

k

k

2

H

1;2

(!)

� C

1

kv

k

k

H

1;2

(!)

+ C

2

;

18

same as frame-indi�erent

19

The proposed �nite results determine the marosopi midsurfae plate deformation m 2 H

1

(!;R

3

) and not more. This means

that disontinuous marosopi deformations by avities or the formation of holes are not exluded (possible mode I failure). If

�



> 0 frature is e�etively ruled out, whih is unrealisti. All results remain true for arbitrary shear orretion fator � > 0.
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where we made use of the appropriate boundary onditions form

k

= x+v

k

(x), and applied Poinar�es inequality

to u

k

sine it has zero boundary values on 

0

. This yields the boundedness of v

k

, thus m

k

is bounded in

H

1

(!;R

3

). Hene we may extrat a subsequene, not relabelled, suh that m

k

* ~m 2 H

1

(!;R

3

). Furthermore,

we may always obtain a subsequene of (m

k

; R

k

) suh that U

k

= R

k;T

^

F

k

onverges weakly in L

2

(!) to an

element

~

U on aount of the boundedness of the streth energy and �



> 0.

For p � 1 we have as well that R

k

onverges indeed strongly in L

2

(!) to an element

~

R 2 H

1;2

(!; SO(3;R)).

Thus R

k;T

^

F

k

onverges weakly to

~

R

T

^

F in L

1

(!). The weak limit in L

1

(!) must oinide with the weak limit

of U

k

in L

2

(!). Hene,

~

U =

~

R

T

(r ~mj

~

R

3

).

Sine the total energy is onvex in (U;K

s

;K

b

) and (

^

F ;DR), we get

I( ~m;

~

R) =

Z

!

hW

mp

(

~

U) + hW

urv

(

~

K

s

) +

h

3

12

W

bend

(

~

K

b

) d! ��( ~m;

~

R

3

)

� lim inf

k!1

Z

!

hW

mp

(U

k

) + hW

urv

(K

s;k

) +

h

3

12

W

bend

(K

b;k

) d! ��(m

k

; R

k

3

) = lim

k!1

I(m

k

; R

k

) ; (4.59)

whih implies that the limit pair is a minimizer. Note that the limit mirorotations

~

R may fail to be ontinuous

if p � 2 (non-existene or limit ase of Sobolev embedding). Moreover, uniqueness annot be asertained,

sine SO(3;R) is a nonlinear manifold (and the onsidered problem is indeed nonlinear), suh that onvex

ombinations of rotations are not rotations in general. Sine the funtional I is di�erentiable the minimizing

pair is a stationary point and therefore a solution of the orresponding �eld equations. Note again that the

limit mirorotations are trivial in L

1

(!) but may fail to be ontinuously distributed in spae. That under

these unfavourable irumstanes a minimizing solution may nevertheless be found is entirely due to �



> 0

and p � 1. �

We ontinue with the (more realisti) super-ritial ase.

Theorem 4.4 (Existene for 2D-�nite elasti Cosserat model: ase II.)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

) and R

d

2

W

1;1+p+q

(!; SO(3;R)). Moreover, let f 2 L

2

(!;R

3

) and suppose N 2 L

2

(

s

;R

3

) together with M 2 L

1

(!;R

3

)

and M



2 L

1

(

s

;R

3

), see (10.102). Then (4.43) with material onstants onforming to ase II admits at least

one minimizing solution pair (m;R) 2 H

1

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)).

Proof. We repeat the argument of ase I. However, the boundedness of in�mizing sequenes is not immediately

lear. Boundedness of the rotations R

k

holds true in the spae W

1;1+p+q

(!; SO(3;R)) with 1 + p+ q > N = 3,

hene we may extrat a subsequene, not relabelled, suh that R

k

onverges strongly to

^

R 2 C

0

(!; SO(3;R)) in

the topology of C

0

(!; SO(3;R)) on aount of the Sobolev-embedding theorem. Along suh strongly onvergent

sequene of rotations, the orresponding sequene of midsurfae-deformations m

k

is also bounded in H

1

(!;R

3

).

However, this is not due to a basially simple pointwise estimate as in ase I, but only true after integration over

the domain: at fae value we only ontrol ertain mixed symmetri expressions in the reonstruted deformation

gradient. More preisely, we have

1 >

Z

!

hW

mp

(U

k

) + hW

urv

(K

s;k

) +

h

3

12

W

bend

(K

b

) d! ��(m

k

; R

k

3

) �

Z

!

hW

mp

(U

k

)��(m

k

; R

k

3

) d!

�

Z

!

hW

mp

(U

k

) d! � C

�

km

k

k

L

2

(!)

+ 1

�

(4.60)

�

Z

!

h

�

4

kR

T

k

(rm

k

jR

3

) + (rm

k

jR

3

)

T

R

k

� 211k

2

d! � Ch

�

km

k

k

H

1;2

(!)

+ 1

�

�

Z

!

h

�

4

kR

T

k

(rm

k

j0) + (rm

k

j0)

T

R

k

k

2

d! � C

1

km

k

k

H

1;2

(!)

+ C

2

=
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�

^
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^
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T
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k
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k

j0)

T
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�

^
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^
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1
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k

k

H
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+ C

2

�

I

h

�

4

k

^

R

T
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k

j0) + (rv

k
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T
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2
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ombinations of derivatives

d! � C

3

k

^
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k

k

1
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2

H

1;2
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^
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k

k

1
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k

k
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1;2

(!)

+ C

2

� (

�

4



+

K

� C

3

k

^

R�R

k

k

1

) kv

k

k

2

H

1;2

(!)

� (C

1

+ 2 k

^

R�R

k

k

1

) kv

k

k

H

1;2

(!)

+ C

2

;

where we made use of the appropriate boundary onditions for m

k

= x + u

k

and applied the extended Korn's

inequality (2.1) in the improved version of [Pom03℄ yielding the positive onstant 

+

K

for the ontinuous miro-

rotation

^

R. Sine k

^

R�R

k

k

1

! 0 we onlude the boundedness of v

k

in H

1

(!). Hene, m

k

is bounded as well

in H

1

(!). Now we obtain that U

k

*

~

U =

^

R

T

r ~m by onstrution with the notations as in ase I.

The remainder proeeds as in ase I. This �nishes the argument. The limit mirorotations

^

R are indeed

found to be ontinuous. However, for mixed boundary onditions, the midsurfae deformation m annot be

shown to be smooth for lak of ellipti regularity. �

4.5 The limit problem for in�nite Cosserat ouple modulus �



!1: the Biot-plate

As in the three-dimensional ase, a onstrained plate model is obtained by setting formally �



= 1 in

(4.43). This implies that U = R

T

(rmjR

3

) 2 Sym, whih entails R

3

= ~n

m

and the onstraint rotation

R = polar(rmj~n

m

). Moreover, K

b

2 Sym is enfored. Independent variation is only possible w.r.t. m and

(4.43) turns into the onstrained minimization problem on !:

I =

Z

!

hW

mp

(U) + hW

urv

(K

s

) +

h

3

12

W

bend

(K

b

) d! ��(m;~n

m

) 7! min : w.r.t. m;

U = R

T

^

F =

q

(rmj~n)

T

(rmj~n) 2 Sym;

^

F = (rmj~n

m

); F

s

= (rmj%

m

~n

m

); R = polar(rmj~n)

%

m

= 1�

�

2�+ �

tr

�

U � 11

�

+

hN

di�

; ~ni

(2�+ �)

; �rst order thikness streth

m

j



0

= g

d

(x; y; 0) ; simply supported (4.61)

polar(rmj~n) = polar((rmjrg

d

(x; y; 0):e

3

))

j



0

; redued onsistent oupling

~n

j



0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; alternatively: lassial rigid ondition

W

mp

(U) = � kU � 11k

2

+

��

2�+ �

tr

�

U � 11

�

2

= � k

p

I

m

� 11

2

k

2

+

��

2�+ �

tr

h

p

I

m

� 11

2

i

2

; I

m

: �rst fundamental form of the surfae

W

urv

(K

s

) = �

L

1+p
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(1 + �

4

L

q



kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

; redued third order urvature tensor

W

bend

(K

b

) = � kK

b

k

2

+

��

2�+ �

tr [K

b

℄

2

= � kr~nk

2

+

��

2�+ �

tr

h

R

T

(r~nj0)

i

2

K

b

= polar((rmj~n))

T

(r~nj0) ; seond order, weighted, bending tensor

K

b

2 Sym, U

�1



II

m

2 Sym ; symmetry onstraint, hR

1;y

; ~ni = hR

2;x

; ~ni for smooth �elds



II

m

: extended seond fundamental form of the surfae :

Let us therefore de�ne the set of admissible deformations A := fm 2 H

1;2

(!;R

3

) j hpolar(rmj~n)

1;y

; ~ni =

hpolar(rmj~n)

2;x

; ~ni g. This set is not empty: pure bending situations (rmj~n) 2 SO(3;R) and deformations,

where U 2 diag and II

m

2 diag are ontained in A.

Theorem 4.5 (Existene for 2D-onstrained Cosserat plate model: ase III)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

) and polar(rg

d

) 2

W

1;1+p

(!; SO(3;R)) and R

d

2 W

1;1+p

(!; SO(3;R)). Moreover, let f 2 L

2

(!;R

3

) and suppose N 2 L

2

(

s

;R

3

)

together with M 2 L

1

(!;R

3

) and M



2 L

1

(

s

;R

3

), see (10.102). If I < 1 over A then problem (4.61) with

p � 1 admits at least one minimizing solution m 2 H

1;2

(!;R

3

).

Proof. The proof mimis ase I sine the sequene of in�mizing rotations R

k

is onstrained to the orthogonal

part polar(

^

F

k

) of the orresponding sequene of deformation gradients F

k

. Due to the extra Cosserat urvature

21



ontrol, the rotations R

k

= polar(rm

k

j~n

k

) an be hosen suh that they onverge weakly in H

1

(!; SO(3;R))

and suh weak limit lies in A. �

Remark 4.6

Complete higher regularity of m in the onstrained Cosserat model, i.e. m 2 H

2;2

(!;R

3

) annot be asertained

in general sine we only ontrol ertain seond derivatives of m in the urvature term. One might wonder

therefore, whether the additional C

1

-ontinuity in treating the fourth order indeterminate ouple stress problem

numerially is worth the e�ort.

4.6 The limit problem for vanishing relative thikness h! 0

While it does not make muh sense to let h! 0 at �xed in-plane elongationL > 0, sine there is an absolute lower

bound on the thikness in terms of the internal length L



, we may onsider a sequene of plates, whose absolute

thikness is �xed, but whose in-plane elongation L is inreased. This implies that the relative thikness h tends

to zero. In a formal sense then, the thin plate limit problem is obtained by negleting the h

3

- bending tensor

ontribution and giving up the possibility/neessity to presribe mirorotations R

3

at the Dirihlet boundary



0

. In view of the expeted limit behaviour of skew(U) = 0 ) R

3

= ~n

m

we onsider �



= 0 only. The

two-dimensional limit problem for the deformation of the midsurfae m : ! � R

2

7! R

3

and the mirorotation

of the thin plate (shell) R : ! � R

2

7! SO(3;R) solves formally the following minimization problem on !:

Z

!

hW

mp

(U) + hW

urv

(K

s

) d! ��(m;R

3

) 7! min : w.r.t. (m;R);

m

j



0

= g

d

(x; y; 0) ; simply supported (4.62)

R
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0

= polar((rmj%

m

R

3
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j



0

; redued onsistent oupling) R

3
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0

= ~n

m

; free

W
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�
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�

�

5
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s
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2
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6

k skewK

s

k

2
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7

tr [K
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2

;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

; redued third order urvature tensor :

Theorem 4.7 (Existene for 2D-�nite Cosserat limit model for vanishing relative thikness)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

) and R

d

2

W

1;1+p+q

(!; SO(3;R)). Moreover, let f 2 L

2

(!;R

3

) and suppose N 2 L

2

(

s

;R

3

) together with M 2 L

1

(!;R

3

)

and M



2 L

1

(

s

;R

3

), see (10.102). Then (4.62) admits at least one minimizing solution pair (m;R) 2

H

1

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)).

Proof. Exatly the same proof as for ase II applies sine the deisive ontrol is a�orded by W

urv

and not

W

bend

. �

Conjeture 4.8 (�-limit)

The �-limit for h! 0 of suitably resaled energies in (3.7) and �



� 0 is given by the variational problem (4.62)

with �



= 0. �

4.7 The limit problem for vanishing internal length L



! 0

This limit is pratially enountered if very large, relatively thin plates are onsidered. The di�erene to the

ase h! 0 from above is lear: we onsider a sequene of ever larger plates with the same relative thikness.

A saling argument (10.3.3) shows easily that the respetively transformed L



on a unit domain ! will tend

to zero. We obtain formally the following two-dimensional minimization problem for the deformation of the

22



midsurfae m : ! � R

2

7! R

3

and the mirorotation of the plate (shell) R : ! � R

2

7! SO(3;R) solving on !:

I =

Z

!

hW

mp

(U ) +

h

3

12

W
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b

) d! ��(m;R

3

) 7! min : w.r.t. (m;R);

U = R

T

^

F ;

^

F = (rmjR

3

); F

s

= (rmj%

m

R

3

)

%

m

= 1�

�

2�+ �

tr

�

U � 11

�

+

hN

di�

; R

3

i

(2�+ �)

; �rst order thikness streth

m

j



0

= g

d

(x; y; 0) ; simply supported (4.63)

R
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0

= polar((rmjrg

d

(x; y; 0):e

3

)

j



0

; redued onsistent oupling

R

3

j
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=
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d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; rigid presription
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(U) = � k sym(U � 11)k
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k skew(U)k
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sym(U � 11)

�

2

W
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b
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2
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k skew(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

K

b

= R

T

(rR

3

j0) ; seond order, non-symmetri bending tensor :

For �



= 0 this is ase V of our lassi�ation. In this form, the problem is not ompletely determined sine

the remaining bending term only ontrols the 'diretor' R

3

but leaves in plane rotations free. However,

antiipating that R

T

(rmjR

3

) � 11 is small (appropriate for almost rigid materials), a modi�ation of the

bending term is suggested: we modify

K

b

= R

T

(rR

3

j0) 62 Sym)

0

�

�kR

1;x

k �kR

1;y

k 0

�kR

2;x

k �kR

2;y

k 0

0 0 0

1

A

62 Sym : (4.64)

Remark 4.9 (Motivation)

The motivation of this modi�ation for relatively thin Cosserat shells is as follows: either the membrane

energy is non-zero, in whih ase it dominates and the bending ontribution an be negleted or the

membrane energy is zero (R

T

(rmjR

3

) � 11 = 0) in whih ase the non-symmetri bending tensor of

(4.63) oinides with the symmetri expression of (4.64), see Lemma 11.8.

A formulation based on this modi�ation supports an existene theorem if �



> 0, notwithstanding the inherent

nonlinearity along the same lines as in Theorem 4.3. The more interesting ase of �



= 0 must remain open at

present, sine the limit rotations in H

1;2

(!; SO(3;R))) must not neessarily be smooth.

4.8 The limit problem for vanishing L



: the pure bending ase.

Assume that the boundary onditions for the Cosserat plate support multiple �nite bending modes, i.e. rm

T

rm =

11

2

and the membrane energy W

mp

(U) is zero. What an we say about the orresponding degenerated mini-

mization problem? The variational problem for the Cosserat bending plate is then to �nd a deformation of the

midsurfae m : ! � R

2

7! R

3

and the mirorotation of the plate (shell) R : ! � R

2

7! SO(3;R) solving on !:

I =

Z

!

h

3

12

W

bend

(K

b

) d! 7! min : w.r.t. (m;R) suh that rm

T

rm = 11

2

and W

mp

(U) = 0;

U = R

T

^

F ;

^

F = (rmjR

3

) m

j



0

= g

d

(x; y; 0) ; simply supported (4.65)

R

j



0

= polar((rmjrg

d

(x; y; 0):e

3

)

j



0

; redued onsistent oupling

W
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(U) = � k sym(U � 11)k
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+ �



k skew(U)k

2
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tr

�

sym(U � 11)

�

2

W
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b

) = � k sym(K

b

)k
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+ �



k skew(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

K

b

= R

T

(rR

3

j0) ; seond order, non-symmetri bending tensor :
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It is easily seen, that rm

T

rm = 11

2

andW

mp

(U) = 0 already onstrains the mirorotations to R = (rmj~n

m

) 2

SO(3;R) for �



> 0

20

and �



= 0.

21

This implies K

b

= R

T

(rR

3

j0) = (rmj~n

m

)

T

(r~nj0) and the in general

non-symmetri bending tensor K

b

oinides with the symmetri seond fundamental form of the midsurfae m.

The resulting minimization oinides with the bending problem based on the Kirhho�-Love theory (7.88) and

admits therefore a solution m 2 H

2

(!;R

3

), from whih we reover R = (rmj~n) 2 H

1;2

(!; SO(3;R)).

4.9 The limit problem for vanishing L



and vanishing h: the pure membrane.

The problem for vanishing relative thikness h and without onsideration of the internal length L



leads to the

pure membrane dominated limit problem

22

for the midsurfae m : ! � R

2

7! R

3

and the mirorotation of

the thin plate (shell) R : ! � R

2

7! SO(3;R) on !:

Z

!

hW

mp

(U) d! ��(m;R

3

) 7! min : w.r.t. (m;R) ; m

j



0

= g

d

(x; y; 0) ; (4.66)

whih is equivalent to

Z

!

hW

mp

(U) d! ��(m;R

3

) 7! min : w.r.t. m at given R 2 SO(3;R). ; m

j



0

= g

d

(x; y; 0) ; (4.67)

U = R

T

(rmjR

3

)

0 = skew

�

R

T

(M j0j0)

�

+ h skew

�

R

T

D

R

W

mp

(rm;R)

�

| {z }

2D-balane of angular momentum

; loal, algebrai ondition ,

0 = skew

�

R

T

(M j0j0)

�

+ h skew

�

D

U

W

mp

(U)U

T

�

| {z }

thikness integrated 3D-balane of angular momentum

�h skew

�

(0j0jD

U

W

mp

(U):e

3

)

�

;

see (10.102) for the de�nition of M . The loal ondition omes from loally minimizing w.r.t. R 2 SO(3;R), it

is balane of angular momentum for the plate in disguise.

23

Note that at given R, the membrane minimization

problem w.r.t. m is still uniformly Legendre-Hadamard ellipti. However, oerivity w.r.t. m depends ruially

on the smoothness of R if �



= 0. There is no reason to expet R to be smoothly distributed. Existene to this

problem is open: we expet therefore sharp interfaes.

In the absene of external loads, the remaining symmetry ondition

skew

�

D

U

W

mp

(U)U

T

�

= skew

�

(0j0jD

U

W

mp

(U):e

3

)

�

(4.69)

is satis�ed, if U 2 Sym, whih itself implies R = polar(rmj~n). Nevertheless, onsidered as a loal ondition,

the remaining symmetry ondition does not automatially imply the symmetry of U , see the disussion of a

similar problem in the three-dimensional ase in [Nef03a℄. Suh a disrepany does not our in the in�nitesimal

Reissner-Mindlin model (10.127).

20

In this ase, we ould dispose of the requirement rm

T

rm = 11

2

.

21

sym(U � 11) = 0 implies immediately R

3

= ~n. Write R

i

= a

1

i

m

x

+ a

2

i

m

y

; i = 1; 2. Using hm

x

;m

y

i = 0 the result follows.

Whether one an do without rm

T

rm = 11

2

in ase �



= 0 is open, sine sym(U�11) = 0 for R 2 SO(3;R) and (rmj~n) 2 GL

+

(3;R)

onsidered without gradient onstraint on m has nontrivial solutions.

22

Observe that the Cosserat model does not automatially endow a thin plate limit with additional sti�ness, sine it is physially

not possible to let h! 0 and keep the in-plane elongations L onstant.

23

To see the equivalene of the two loal statements in (4.67), onsider variation of R along a one-parameter group of rotations

d

dt

R = A(t) �R; A 2 so(3;R) and evaluate

d

dt

W

mp

(R(rmjR

3

)) = hD
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W
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(U); (ÆR)
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3

) + R
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(0j0j(ÆR)

3
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(U):e
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W
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(U)U

T

; R

T

ARi+ h(0j0jD

U

W
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(U):e

3

); R

T

ARi : (4.68)
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5 A modi�ed �nite Cosserat thin plate for large streth and loal

invertibility

While the preeeding models have been derived from a three-dimensional model whih itself is appropriate only

for small strain and large rotations, let us present a modi�ed model,

24

whih in priniple allows for arbitrary

large streth and whih automatially preserves loal invertibility if the reonstruted deformation is smooth.

It is lear that suh an extension is by no means unique. The model reads

I =

Z

!

hW

mp

(U) + hW

urv

(K

s

) +

h

3

12

W
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(K

b

) d! ��(m;R

3

) 7! min : w.r.t. (m;R);
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^

F ;

^

F = (rmjR

3

); F
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)

%
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2�+�

(det[U ℄� 1)

+

hN

di�

; R
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m
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0

= g

d

(x; y; 0) ; simply supported (5.70)
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0
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(x; y; 0):e
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; redued onsistent oupling

R

3

j



0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; alternatively: rigid presription

W

mp

(U) = � k sym(U � 11)k

2

+

��

2�+ �

1

2

�

(det[U ℄� 1)

2

+ (

1

det[U ℄

� 1)

2

�

W

urv

(K

s

) = �

L

1+p
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(1 + �

4

L

q



kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

; redued third order urvature tensor

W

bend

(K

b

) = � k sym(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

K

b

= R

T

(rR

3

j0) = K

3

s

; seond order, non-symmetri bending tensor :

Let us summarize the salient features of this model. First, W

mp

(U) ! 1 if det[U ℄ ! 0. Thus, if minimizers

exist, then det[U ℄ > 0 a.e. and the minimizing surfae is loally regular. The modi�ed energy ontribution is

polyonvex w.r.t rm and thus Legendre-Hadamard ellipti. If R

3

= ~n, then

det[U ℄ = kCof (rmj0)k; kCof (rmj0)k

2

= km

x

�m

y

k

2

= km

x

k

2

km

y

k

2

� hm

x

;m

y

i

2

= det[I

m

℄ ; (5.71)

a pure, intrinsi measure of the surfae streth. If W

mp

(U) = 0 then U = 11 although �



= 0. The thik-

ness streth %

m

has suh a form, that at �nite energy one has 0 < %

m

< 1 without restrition on the

kinematis and transverse �bers will be elongated upon ation of opposite trations. Moreover, %

m

� 1 for

� = 0 (extreme ompressibility, � = 0) and %

m

=

1

det[U ℄

for � = 1 (inompressibility, � =

1

2

) suh that

det[F

s

℄ = det[(rmj%

m

R

3

)℄ � 1, i.e. exat inompressibility for the reonstruted deformation.

The formulation (5.70) has the same linearized behaviour as the initial model (4.43).

25

We an prove the

following result

Theorem 5.1 (Existene for 2D-�nite elasti Cosserat model with large streth and invertibility)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

) and R

d

2

W

1;1+p

(!; SO(3;R)). Moreover, let f 2 L

2

(!;R

3

) and suppose N 2 L

2

(

s

;R

3

) together with M 2 L

1

(!;R

3

)

and M



2 L

1

(

s

;R

3

), see (10.102). Then (5.70) with material onstants onforming to ase II admits at least

one minimizing solution pair (m;R) 2 H

1

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)) with det[(rmjR

3

)℄ > 0 a.e.

Proof. The proof mimis the arguments of the preeeding existene results for ase II. We only need to observe

in addition, that the modi�ed membrane energy is in fat polyonvex at given R w.r.t. rm. The modi�ed term

provides us with the information that det[(rm

k

jR

k

3

)℄ is uniformly bounded in L

2

(!) for minimizing sequenes.

Hene we may always hoose a minimizing sequene, suh that det[(rm

k

jR

k

3

)℄ * � 2 L

2

(!). We have as well

R

k

! R 2 C

0

(!; SO(3;R)). Moreover, rm

k

* rm 2 L

2

(!;M

2�3

). Thus, det[(rm

k

jR

k

3

)℄ ! det[(rmjR

3

)℄

24

It is lear that a modi�ation to large streth does not onern the bending term sine bending only plays a role for small

streth.

25

Beause

�

(det[U ℄� 1)

2

+ (

1

det[U℄

� 1)

2

�

= 2 tr

�

U � 11

�

2

+O(kU � 11k

3

).

25



strongly in the sense of distributions [Bal77, Th. 3.4℄. This implies � = det[(rmjR

3

)℄. The remainder is

standard. �

It is therefore believed that (5.70) represents an improvement over (4.43), although (5.70) itself is not stritly

obtained from a parent model.

26

6 The �nite, invariant Reissner-Mindlin plate

To ontrast the previous models, let us diretly derive a new nonlinear, �nite, properly invariant Reissner-

Mindlin plate starting from the three-dimensional SVK elastiity model. Again, we assume a quadrati ansatz

in the thikness diretion for the (reonstruted) �nite deformation '

s

: R

3

7! R

3

of the shell like struture

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

�

~

d(x; y) ; (6.72)

where m : ! � R

2

7! R

3

takes on the role of the deformation of the midsurfaes of the shell viewed as a

parametrized surfae and

~

d : ! � R

2

7! S

2

is a unit diretor �eld; the funtions %

m

; %

b

: ! � R

2

7! R allow

for thikness streth (%

m

6= 1) and transverse shear (

~

d 6= ~n).
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This implies for the (reonstruted)

deformation gradient of the shell (plate)

F

s

= r'

s

(x; y; z) = (rmj %

m

~

d) + z � (r(%

m

~

d)j%

b

~

d) +

z

2

2

(r(%

b

~

d)j0) =

~

A

m

+ z

~

A

r

+

z

2

2

~

B

r

� (rmj %

m

~

d) + z � ((r

~

d)j%

b

~

d) = A

m

+ z A

r

: (6.73)

The underlying three-dimensional Saint Venant Kirhho� energy has the form

W

SVK

(F ) =

�

4

kF

T

F � 11k

2

+

�

8

tr

�

F

T

F � 11

�

2

: (6.74)

The equations of the three-dimensional �nite elastiity problem show that on the transverse boundary (exat)

S

3d

1

(r'

3d

(x; y;+h=2)):e

3

= N

trans

(x; y;+h=2)

S

3d

1

(r'

3d

(x; y;�h=2)):(�e

3

) = N

trans

(x; y;�h=2) ; (6.75)

where N

trans

are the presribed trations N on the transverse boundary.

28

Following the steps whih led to (3.18) we have (exat)

hF

�1

(x; y;�h=2)S

1

(r'(x; y;�h=2)):e

3

; e

3

i = �hN

trans

(x; y;�h=2); F

�T

(x; y;�h=2):e

3

i ; (6.76)

whih ondition redues to zero normal trations on the transverse free boundary:

S

2;33

(r'(x; y;�h=2)) = 0 ; (6.77)

in the absene of trations N

trans

. In view of the assumed rigidity (�� 1) we expet that r'

T

r'� 11� 1

suh that r'

�T

� r' and we determine %

m

; %

b

from the orresponding modi�ed requirement in terms of the

assumed kinematis for '

s

, yielding

hF

�1

s

(x; y;�h=2)S

1

(r'

s

(x; y;�h=2)):e

3

; e

3

i = �hN

trans

(x; y;�h=2);

modi�ed

z }| {

F

s

(x; y;�h=2):e

3

i

= �hN

trans

(x; y;�h=2); (%

m

+ z %

b

)

~

di : (6.78)

Sine S

1

= F

�

�(F

T

F � 11) +

�

2

tr

�

F

T

F � 11

�

11

�

, we obtain the two nonlinear equations

h

�

�(F

T

s

F

s

� 11) +

�

2

tr

�

F

T

s

F

s

� 11

�

11

�

:e

3

; e

3

i = �hN

trans

(x; y;�h=2); (%

m

+ z %

b

)

~

di : (6.79)

26

There is a general danger of diret theories to postulate two-dimensional models from srath without reours to any underlying

parent model : while general two-dimensional balane priniples are easily applied, it is not lear how to inorporate any three-

dimensional information.

27

This leads �nally to a 5 'dof' theory: 3 omponents of the membrane deformation and 2 degrees of freedom for the unit diretor

�eld, the oeÆients %

m

; %

b

will again be eliminated.

28

Using the approximated F

s

in (6.73) leads to an aÆne linear reonstrution of the transverse shear stress hS

2

(F

s

):e

3

; e

i

i; i = 1; 2.

26



There is no simple way to solve these equations exatly. To leading order in h we obtain for %

m

%

m

= +

hN

di�

;

~

di

(2�+ �)

�

s

1�

�

(2�+ �)

[krmk

2

� 2℄ +

hN

di�

;

~

di

2

(2�+ �)

2

; (6.80)

and for %

b

%

b

= �

�

2�+ �

h(rmj

~

d); (r

~

dj0)i+

1

(2�+ �)h

hN

res

;

~

di+

1

%

m

(2�+ �)

h(rmj%

m

~

d); (%

m;x

~

dj%

m;y

~

dj0)i :

Sine we do not want to onsider spae variations in the thikness-streth %

m

we take �nally

%

m

=

hN

di�

;

~

di

(2�+ �)

+

s

1�

�

(2�+ �)

[krmk

2

� 2℄ +

hN

di�

;

~

di

2

(2�+ �)

2

%

b

= �

�

2�+ �

h(rmj

~

d); (r

~

dj0)i+

hN

res

;

~

di

(2�+ �)h

: (6.81)

Note that if we identify

~

d = R

3

then %

b

in the last formula oinides with the expression for %

b

found in (3.25)

while %

m

is still di�erent.

Following oneptually the same omputation whih starts after (3.26) we obtain after thikness integration

the following minimization problem for the midsurfae m : ! � R

2

7! R

3

and the unit diretor �eld

~

d : ! �

R

2

7! S

2

on !:

Z

!

hW

mp

(C) +

h

3

12

W

bend

(K

b

) d! � �(m;

~

d) 7! min : w.r.t. (m;

~

d)

C =

^

F

T

^

F ;

^

F = (rmj

~

d); F

s

= (rmj%

m

~

d)

%

m

=

hN

di�

;

~

di

(2�+ �)

+

s

1�

�

(2�+ �)

[krmk

2

� 2℄ +

hN

di�

;

~

di

2

(2�+ �)

2

=

hN

di�

;

~

di

(2�+ �)

+

s

1�

�

(2�+ �)

tr

�

C � 11

�

+

hN

di�

;

~

di

2

(2�+ �)

2

; �rst order thikness streth

m

j



0

= g

d

(x; y; 0) ; simply supported;

~

d

j



0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; rigid presription (6.82)

W

mp

(C) =

�

4

kC � 11k

2

+

2��

8(2�+ �)

tr

�

C � 11

�

2

=

�

4

krm

T

rm� 11

2

| {z }

intrinsi energy

k

2

+

��

2

�

hm

x

;

~

di

2

+ hm

y

;

~

di

2

�

| {z }

transverse shear energy

+

2��

8(2�+ �)

tr

�

rm

T

rm� 11

2

�

2

W

bend

(K

b

) = � k sym(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

; K

b

= (rmj

~

d)

T

(r

~

dj0) :

It is immediate, that the obtained model is frame-indi�erent in the sense that 8 Q 2 SO(3;R) : W (Q(rmj

~

d) =

W ((QrmjQ:

~

d) =W ((rQ:mjQ:

~

d) =W (rmj

~

d). The membrane part is oerive in H

1;4

(!;R

3

). However, the

membrane part neither satis�es the Baker-Eriksen inequalities nor is it Legendre-Hadamard ellipti. It is not

obvious, whih type of ontrol an be expeted in the bending ontribution. Drill rotations are absent, but the

model allows for transverse shear (again, � = 1 is the shear orretion fator). Invertibility of the reonstruted

deformation is not ensured. Nothing seems to be known on existene. No extra size e�ets enter the desription.

While %

m

shows the physially orret behaviour that small opposite transverse trations will elongate �bers, for

non-in�nitesimal transverse trations whih 'presurrize' the plate, the �bers would as well be elongated instead

of shrinked. Linearization of this model results in the lassial in�nitesimal Reissner-Mindlin Model (10.127)

and restriting the diretor

~

d to the unit normal of the surfae simpli�es the model into the following �nite

Kirhho�-Love plate. In this sense, the model has some merits.
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7 The �nite, invariant Kirhho�-Love plate

7.1 Variational formulation

Either by formal asymptoti analysis (and adding together the leading membrane and bending part) or a

proper kinematial ansatz

29

or else by restriting the diretor

~

d in (6.82) to the unit normal of the midsurfae,

a �nite, properly invariant

30

Kirhho�-Love plate problem in variational form an be written in the form of a

minimization problem for the deformation of the midsurfae m : ! � R

2

7! R

3

on !:

Z

!

hW

mp

(C) +

h

3

12

W

bend

(K

b

) d! ��(m;~n

m

) 7! min : w.r.t. m

C =

^

F

T

^

F ;

^

F = (rmj~n

m

); F

s

= (rmj%

m

~n

m

)

%

m

=

hN

di�

; ~ni

(2�+ �)

+

s

1�

�

(2�+ �)

tr

�

C � 11

�

+

hN

di�

; ~ni

2

(2�+ �)

2

; �rst order thikness streth

m

j



0

= g

d

(x; y; 0) ; simply supported; ~n

m

j



0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; lamped (7.83)

W

mp

(C) =

�

4

kC � 11k

2

+

��

2�+ �

tr

�

C � 11

�

2

=

�

4

krm

T

rm� 11

2

k

2

+

2��

8(2�+ �)

tr

�

rm

T

rm� 11

2

�

2

=

�

4

kI

m

� 11

2

k

2

+

2��

8(2�+ �)

tr [I

m

� 11

2

℄

2

; I

m

: �rst fundamental form of the surfae

W

bend

(K

b

) = � k sym(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

= � kII

m

k

2

+

��

2�+ �

tr [II

m

℄

2

K

b

= (rmj~n

m

)

T

(r~n

m

j0) = II

m

2 Sym ; II

m

: seond fundamental form of the surfae m:

The reonstruted deformation '

s

(x; y; z) = m(x; y) +

�

z%

m

+

z

2

2

%

b

�

~n

m

yields the plane stress ondition

S

1

(r'

s

(x; y; 0):e

3

= 0, whih is only onsistent with three-dimensional equilibrium if there are no normal

trations at the transverse boundary.

31

It is easily seen that the resultant membrane strain energy W

mp

(C) is neither quasionvex nor Legendre-

Hadamard ellipti. Moreover, the resultant membrane strain energy does not satisfy the Baker-Eriksen inequal-

ities in ontrast to the Biot-plate model (4.61)! The signi�ane of this statement an be seen as follows. Take

! = [�1; 1℄ � [�1; 1℄ and onsider zero external loads and boundary onditions for m on �! whih uniformly

shrink the plate: m

j

�!

(x; y) = B:(x; y)

T

; B 2 GL

+

(2;R). Now take a sequene of minimizing deformations m

k

with ~n

k

m

= e

3

= onst, i.e. m

k

3

(x; y) � 0. The sequene m

k

is naturally bounded in H

1;4

(!). Hene a subse-

quene onverges weakly: m

k

* ~m 2 H

1;4

(!). The minimizing sequene an be hosen suh that r ~m = B.

However I(m

k

) ! 0 but I( ~m) > 0. Thus the homogeneously shrinked plate is not energy-minimal, whih it

29

Or other onstitutive requirements [LS98, p.476℄. Indeed there is no general agreement as to what really onstitutes an isotropi

Kirhho�-Love plate theory [LS98, p.xiii℄ and [Kil65℄. One enompassing independent statement to obtain Kirhho�-Love in an

engineering ontext may read: i. normals remain straight and normal to the midsurfae (but may be extended), ii.

plane stress, iii. the elasti plate energy is additively deoupled in membrane and urvature parts. Formal energy

projetion would also yield inde�nite mixed produts like hI

m

� 11; II

m

i.

30

not to be onfused with the nonlinear, non frame-indi�erent, Kirhho�-Love plate model given in [Cia97, p. 318℄ and mathe-

matially justi�ed in [Mon03℄.
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In fat, the ondition

~

d = ~n an also be motivated by eliminating loally the free, extensible diretor %

m

�

~

d from the �nite

Reissner-Mindlin model through taking

(

~

d; %

m

) := argmin

%

m

2R

+

;

~

d2S

2

;(rmj%

m

~

d)2GL

+

(3;R)

W

mp

(C) ; C = (rmj%

m

~

d)

T

(rmj%

m

~

d) )

~

d = ~n

m

; %

2

m

= 1�

�

(2� + �)

�

krmk

2

� 2

�

: (7.84)

In doing so, no available three-dimensional information has been used. If instead, one de�nes a redued membrane energy W

0

:

M

2�3

! R without reourse to a spei� kinematial ansatz as in [DR95b, p.573℄ and without invertibility onstraint

W

0

(rm) := inf

�2R

3

W

mp

((rmj�)

T

(rmj�)) = inf

b%

m

2R;

~

d2S

2

W

mp

((rmjb%

m

~

d)

T

(rmjb%

m

~

d)),

hD

F

W

mp

((rmjb%

m

~

d)

T

(rmjb%

m

~

d)); (0j0jÆ)i = 0 8 Æ 2 R

3

, S

1

((rmjb%

m

~

d)):e

3

= 0; plane stress )

~

d = ~n ; (7.85)

b%

m

=

(

%

m

1�

�

(2�+�)

�

krmk

2

� 2

�

� 0 ; (rmjb%

m

~n) 2 GL

+

(3;R)

0 1�

�

(2�+�)

�

krmk

2

� 2

�

< 0 ; (rmjb%

m

~n) 62 GL

+

(3;R)

; W

0

(rm) =W

mp

((rmjb%

m

~n)

T

(rmjb%

m

~n)) ;

then zero normal trations S

2;33

(rmjb%

m

~n) = 0 are not satis�ed for 1 �

�

(2�+�)

�

krmk

2

� 2

�

< 0, whih shows the unphysial

behaviour, f. [DR96, DR95, DR00℄.

28



learly should be, given the stabilization inherent through ~n

k

m

= e

3

. This de�ieny must be seen as unphysial

and will be alled in-plane failure.

Thus it is motivated why it is not known whether minimization based on (7.83) does admit a solution for

arbitrary data. Even the inlusion of the lassial bending term might not be enough: the ontrol of only ertain

seond derivatives of m does not suÆe to treat the highly nonlinear problem by a ompatness argument and

to pass to the limit by strong onvergene in the non-ellipti membrane part. The above example suggests that

the in-plane failure is somehow related to the absene of drill-rotations.

Moreover, the very feasibility of a Kirhho�-Love ansatz with thikness streth plaes a restrition on the

kinematis in the sense that it must be guaranteed for the membrane deformation that

1�

�

(2�+ �)

tr

�

C � 11

�

� 0) krmk

2

� 3 +

2�

�

, tr

�

C � 11

�

< 1 +

2�

�

; (7.86)

in the absene of trations. This ondition �gures in [Cia97, p.355℄ among others, under whih the quasionvex

hull of the membrane energy W

mp

(C) in (7.83) oinides with the energy itself. In our derivation, ondition

(7.86) is, as a mathematial onsequene of a physial requirement from the three-dimensional problem

(6.78), most natural. It has also appeared in [FRS93, p.180℄ where it is believed to be '...unduly restritive'

due to the shortomings of the SVK energy. While the shortomings of the SVK energy are well known, similar

restritions our most natural also for our Cosserat model, there in the form %

m

> 0, ditated by invertibility of

the reonstruted shell deformation. The physial signi�ane of the omputed solution is thus tied to %

m

> 0,

whih in turn expresses as well the physial (not mathematial) requirement S

2;33

(x; y;�h=2) = 0. Looking for

solutions with %

m

= 0 is, physially speaking, not realisti.
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Remark 7.1

The problem of the non-elliptiity in the ase of the Kihho�-Love theory has been dealt with in Le Dret and

Raoult [DR95b, DR00℄. They perform the thin shell limit analysis based on the St.Venant-Kirhho� density. As

a result, they get that the limit energy deformation (of the 3D-model) is independent of the transverse variable

and minimizes a limit energy omputed as the �-limit [Mas92℄ of the 3D-(St.Venant-Kirhho�) energy. The

limit stored energy is again that of a nonlinearly elasti 'membrane' shell, in the sense that it ontains only

�rst derivatives of the unknown deformation m of the midsurfae. However, it turns out that the limit energy

o�ers no resistane to ompression, a feature that is appropriate only for 'soft' elasti materials like a deated

baloon or a sail but in our oppinion inaeptable for 'almost rigid' materials like metals or paper, the topi whe

are interested in sine the rigidity translates diretly into the small strain assumption.

33

The non resistane to

ompression in the above analysis is related to the use of the quasionvex hull

34

QW

0

of the redued St.Venant

Kirhho� energy W

0

in (7.85), whih, surprisingly enough, an be given in losed form [DR95, HP96℄ and

whih shows to be in general positive but zero in the ompression range

35

sine St.Venant Kirhho� typially

looses elliptiity there. These remarks indiate that results based on �-onvergene and global minimization

are not in all ases the appropriate diretion to take, ertainly not for almost rigid materials.

However, given all these de�ienies of the �nite Kirhho�-Love model, antiipating that rm

T

rm � 11

2

is

small (appropriate for almost rigid materials) as in (4.64), a modi�ation of the bending term is suggested: we

modify

K

b

= (rmj~n

m

)

T

(r~n

m

j0) = II

m

2 Sym)

0

�

�km

xx

k �km

xy

k 0

�km

yx

k �km

yy

k 0

0 0 0

1

A

2 Sym : (7.87)

Remark 7.2 (Motivation)

The motivation of this modi�ation for thin shells is as follows: either the membrane energy is non-zero,

in whih ase it dominates and the bending ontribution an be negleted or the membrane energy is

zero in whih ase the bending term of (7.83) oinides with that of (7.87), see Lemma 11.7 and ompare

to [GKM96℄.
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One might be inlined to think that the apparent problem of non-elliptiity of the membrane expression is only related to the

use of the non-ellipti parent SVK-energy. This is not the ase. Proeeding by energy projetion from a polyonvex Neo-Hooke

energy, the resulting membrane energy is again non-ellipti. This is well known feature, [DR95b, p.560,iii℄.

33

They remark [DR95b, p.550℄: \...then the orresponding nonlinear membranes o�er no resistane to rumpling. This is an

empirial fat, witnessed by anyone who ever played with a deated ballon."

34

\... the fat that this funtion (W

mp

(C)) is not quasionvex already implied that it had to be relaxed in order to give rise to a

well posed problem."[DR95b, p.575℄.

35

Stritly speaking, the use of the quasionvex hull leads to a so alled tension �eld theory [Ste90℄. Steigmann himself [Ste90,

p.143℄ notes \A question then arises onerning the validity of tension �led theory as an approximation to a theory of shells with

bending sti�ness that is small in some sense. Evidently, the deformation is not well desribed, though the theory delivers solutions

that approximate the average of the deformation observed in a real membrane ontaining many wrinkles. We onjeture that the

stress is aurately predited, however."
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A formulation based on this modi�ation supports an existene theorem.

Theorem 7.3 (Existene for �nite almost rigid KL-plate)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

2

(!;R

3

). Moreover, let

f 2 L

2

(!;R

3

) and suppose N 2 L

2

(

s

;R

3

) together with M 2 L

1

(!;R

3

) and M



2 L

1

(

s

;R

3

), see (10.102).

Then (7.83) with the modi�ation (7.87) admits at least one minimizing solution m 2 H

2

(!;R

3

).

Proof. We apply the diret methods of variations. The funtional I is bounded above and below. We may

hoose an in�mizing sequene m

k

. Due to the boundary onditions and Poinar�e's inequality the sequene is

bounded in H

2

(!). The ompat embedding H

2

(!) �W

1;4

(!) shows that we may hoose a weakly onvergent

subsequene, not relabelled, suh that strongly rm

k

! rm 2 L

4

(!). The weak limit is a minimizer sine the

bending term is onvex in the seond derivatives and the nonlinear, non-quasionvex membrane term is handled

by strong onvergene. The modi�ed bending term imparts as well additional ontrol for in-plane deformations.

�

Suh a theorem might not be of muh pratial value beause it is preisely the level of smoothness we want

to avoid and it must be noted that the proposed modi�ation of the bending term is not onsistent with the

lassial Kirhho�-Love theory upon linearization!

7.2 The pure �nite bending Kirhho�-Love problem

Assume that the boundary onditions for the plate support multiple �nite bending modes, i.e. the membrane

energy is zero, hene I

m

= 11. What an we say about the orresponding degenerated minimization problem

based on the remaining term involving only urvature? The variational problem for the lamped plate reads

then

inff

Z

!

h

3

12

�

� kII

m

k

2

+

��

2�+ �

tr [II

m

℄

2

�

d!; m 2 H

2

(!;R

3

) : rm

T

rm = 11

2

; (7.88)
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d

) 2 SO(3)g :

Here �

�

are normal derivatives at the boundary. The proposed system oinides with that previously derived

by [GKM96, p.44℄ apart from a modi�ed material parameter � 7!

2��

2�+�

. Note that under pure bending of a

plate, we have for the Gauss urvature K = 0 and using (11.139) we get, by adding zero, equivalently
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; (7.89)

on using (11.187). Inserting the linearized quantity tr [II

m

℄

2

� k�v

3

k

2

+ : : : we obtain

h

3

12

1

2

E

1� �

2

| {z }

exural rigidity

k�v

3

k

2

; (7.90)

the lassial in�nitesimal plate bending energy leading to the biharmoni equation. It is possible to show that

the �nite minimization problem admits at least one solution.

Theorem 7.4 (Existene for pure bending �nite KL-plate)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

2

(!;R

3

). Then (7.88)

admits at least one minimizing solution m 2 H

2

(!;R

3

).

Proof. The proof is based on the ruial observation that on the spae of admissible funtions, the energy

oinides with the quadrati expression

Z

!

h

3

12

�

� kr~nk

2

+

��

2�+ �

(km

xx

k+ km

yy

k)

2

�

d! : (7.91)

Standard arguments of the diret method of variations �nish the proof. A detailed presentation was given in

[Cia97, p.347℄. �

Again, the level of smoothness is disomforting.
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Corollary 7.5 (Existene for pure bending �nite RM-plate)

Let ! � R

2

be a bounded Lipshitz domain and assume that the boundary data g

d

2 H

2

(!;R

3

) supports

bending modes. Then the pure �nite Reissner-Mindlin bending problem based on (6.82) admits at least one

minimizing solution m 2 H

2

(!;R

3

) and

~

d = ~n

m

2 H

1

(!;S

2

).

Remark 7.6 (Pure bending problems)

Note that all presented pure �nite bending problems oinide for the new Cosserat model, the new �nite

Reissner-Mindlin model and the �nite Kirhho�-Love model. The last two results show that the lassial �nite

bending terms provide enough ontrol in pure bending for models, in whih the membrane part would have

been non-ellipti. However, the lassial bending terms are insuÆient to stabilize joint membrane and bending

situations.

8 Disussion and open problems

Starting from a fully invariant three-dimensional physially linear Cosserat theory with independent rotations

and size e�ets, we have obtained a family of fully invariant, �nite Cosserat plates by means of assumed

kinematis and energy projetion. The models inlude in a natural way drilling degrees of freedom and size

e�ets (smaller samples with the same relative thikness are relatively sti�er than orresponding larger samples).

Sine the assumed kinematis is quadrati through the thikness, one avoids the so alled Poisson thikness

loking. In ontrast to traditional redued theories, the membrane part is uniformly ellipti and allows a non-

degenerate passage to zero relative thikness. The balane equations for the midsurfae are not only uniformly

Legendre-Hadamard ellipti, but linear at given rotations.

For vanishing Cosserat ouple modulus �



= 0, the formulation is shown to be downwards ompatible with

traditional in�nitesimal linear Reissner-Mindlin theories and shear-orretion fator � = 1.

A detailed mathematial analysis of the resulting two-dimensional models is proposed whih losely follows

the three-dimensional ideas. It is based on a orrespondingly dimensionally redued version of a new extended

Korn's �rst inequality. We have ahieved a surprising uni�ation of two- and three-dimensional onepts.

From a mehanial point of view, ompared to more traditional, non-ellipti �nite Reissner-Mindlin and

Kirhho�-Love models, it seems to be the bene�ial inuene of the drill-rotations in onjuntion with the

internal length L



> 0 whih stabilizes the new Cosserat thin plate model.

Certain limit ases related to Sobolev-embedding theorems must remain open for the moment, notably

the ase IV inluding possible frature of the plate. They leave a wide �eld of hallenging new mathematial

problems.

A modi�ation of the new Cosserat plate model is also proposed, whih ensures invertibility of the reon-

struted deformation gradient and whih allows as well for minimizers. This model shows the most reasonable

physial behaviour, but is not easily seen to be obtained by diret desend from three-dimensions.

While we have large freedom of speifying boundary onditions for the rotations at the Dirihlet boundary,

we prefer a generalization of the three-dimensional onsistent oupling ondition, whih inludes as a speial

ase presriptions orresponding to lamping.

A major oneptual advantage of the new proposed model is the appearane of rotations already in the

three-dimensional parent model. There is no need to arti�ially introdue independent diretors of the plate.

In a subsequent ontribution, it will be shown that the proposed method an be easily extended to shells

and multipliative elasto-plastiity with the possibility of exatly the same mathematial analysis in the elasti

ase.

From a numerial point of view, the new Cosserat plate model o�ers the highly welome perspetive to use

only C

0

-onforming �nite elements. When interpolating the midsurfae deformation one order higher than the

rotations, shear loking should be avoided.

It remains to ompletely justify the apparently sound, new �nite Cosserat thin plate model by means of either

a onvergene proof for vanishing relative thikness to the underlying three-dimensional parent Cosserat model

or by showing, that a suitably resaled three-dimensional problem �-onverges to one of the two-dimensional

limit problems.

Let us summarize and relate some basi features of the obtained new plate models. We abbreviate LH :

Legendre-Hadamard ellipti, BE: Baker-Eriksen inequalities, dof: degrees of freedom, invariane: fully frame-

indi�erent, v: midsurfae displaement,

~

d: unit diretor, ~n: unit normal of the midsurfae, �: in�nitesimal

diretor, invertibility: loal invertibility of the reonstruted deformation in the sense of a stritly positive

determinant of the deformation gradient almost everywhere, pure bending: the problem obtained by restriting

onsiderations to loally length preserving deformations (inextensional).

31



It an be seen, that linearization does not always ommute with dimensional redution. From a

modelling point of view it is lear, however, that linearization is the last step to be performed. The unifying

role of setting �



= 0 is also appreiated.
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new �nite 3D-Cosserat

parent model (3.7),

invariane (+),

invertibility (+/-),

LH(+), BE(+),

size e�ets (+),

existene (+),

uniqueness (-),

higher regularity (?),

indep. rotations (+),

symmetri stress (-),

dof (6)

-

�



= 0,

linearized

lassial in�nit. 3D

linear elastiity,

existene (+),

uniqueness (+),

higher regularity (+),

symmetri stress (+),

dof (3)

�

linearized

lassial �nite 3D

SVK-elastiity,

invariane (+),

invertibility (-),

LH (-), BE(-),

existene (?),

uniqueness (-),

higher regularity (?),

size e�ets (-),

symmetri stress (+),

dof (3)

?

dimensional

redution:

assumed

kinematis

and

energy projetion

?

dimensional

redution:

energy

projetion

or

asymptoti

methods

?

dimensional

redution:

formal

asymptoti

methods

or

energy

projetion

new �nite 2D-Cosserat

plate model (4.43),

invariane (+),

invertibility (-),

LH(+), BE(+),

size e�ets (+),

existene (+),

uniqueness (-),

higher regularity (?),

error estimates (?),

thin plate limit (+),

transverse shear (+),

drill rotations (+),

symmetri stress (-),

pure bending (+),

dof (6)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CW

�



= 0,

linearized, L

2+Æ



?

physially

motivated

modi�ation:

lassial in�nit. 2D

KL-plate (10.130),

invariane (-) ,

existene (+),

uniqueness (+),

higher regularity (+),

error estimates (+),

size e�ets (-),

drill rotations (-),

symmetri stress (+),

dof (3)

�

linearized

�nite 2D KL-plate

model (7.83),

invariane (+),

invertibility (-),

LH(-), BE(-),

existene (?),

uniqueness (-),

higher regularity (?),

size e�ets (-),

thin plate limit (-),

transverse shear (-),

drill rotations (-),

symmetri stress (+),

pure bending (+),

dof (3)

new �nite 2D-Cosserat

plate model (5.70),

invariane (+),

invertibility (+),

LH(+), BE(+),

polyonvex (+),

size e�ets (+),

existene (+),

uniqueness (-),

higher regularity (?),

error estimates (?),

thin plate limit (+),

transverse shear (+),

drill rotations (+),

symmetri stress (-),

pure bending (+),

dof (6)

-

�



= 0,

linearized, L

2+Æ



6

solution of

RM

lin

; KL

lin

onverges

as h! 0

to solution

of 3D:SVK

lin

onstrain

� = (v

3;x

; v

3;y

)

T

lassial in�nit. 2D

RM-plate (10.126),

shear orretion � = 1,

invariane (-),

transverse shear (+),

existene (+),

uniqueness (+),

higher regularity (+),

error estimates (+),

size e�ets (-),

thin plate limit (-),

drill rotations (-),

symmetri stress (-),

dof (5)

�

linearized

6

onstrain

~

d = ~n

new �nite 2D-Biot

plate model (4.61),

invariane (+),

invertibility (-),

LH(-), BE(+),

transverse shear (-),

existene (+),

uniqueness (-),

higher regularity (?),

error estimates (?),

size e�ets (+),

thin plate limit (+),

drill rotations (-),

symmetri stress (+),

pure bending (+),

dof (3), linearized:

L

2+Æ



! lassial KL

new �nite 2D-RM

plate model (6.82),

invariane (+),

invertibility (-),

LH(-), BE(-),

transverse shear (+),

existene (?),

uniqueness (-),

higher regularity (?),

error estimates (?),

size e�ets (-),

thin plate limit (-),

drill rotations (-),

symmetri stress (-),

pure bending (+),

dof (5)
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10 Appendix A

10.1 Notation

10.1.1 Notation for bulk material

Let 
 � R

3

be a bounded domain with Lipshitz boundary �
 and let � be a smooth subset of �
 with non-vanishing 2-dimensional

Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote the salar produt on R

3

with assoiated vetor norm kak

2

R

3

= ha; ai

R

3

.

We denote by M

3�3

the set of real 3 � 3 seond order tensors, written with apital letters. The standard Eulidean salar

produt on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. In the

following we omit the index R

3

;M

3�3

. The identity tensor on M

3�3

will be denoted by 11, so that tr [X℄ = hX; 11i. We let

Sym and PSym denote the symmetri and positive de�nite symmetri tensors respetively. We adopt the usual abbreviations of

Lie-group theory, i.e., GL(3;R) := fX 2 M

3�3

jdet[X℄ 6= 0g the general linear group, SL(3;R) := fX 2 GL(3;R) jdet[X℄ =

1g; O(3) := fX 2 GL(3;R) j X

T

X = 11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X℄ = 1g with orresponding Lie-algebras

so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri tensors and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g of traeless tensors. With

AdjX we denote the tensor of transposed ofators Cof(X) suh that AdjX = det[X℄X

�1

= Cof(X)

T

if X 2 GL(3;R). We set

sym(X) =

1

2

(X

T

+X) and skew(X) =

1

2

(X �X

T

) suh that X = sym(X) + skew(X). For X 2 M

3�3

we set for the deviatori

part devX = X �

1

3

tr [X℄ 11 2 sl(3) and for vetors �; � 2 R

n

we have the tensor produt (� 
 �)

ij

= �

i

�

j

.

We write the polar deomposition in the form F = RU = polar(F )U with R = polar(F ) the orthogonal part of F . In general

we work in the ontext of nonlinear, �nite elastiity. For the total deformation ' 2 C

1

(
;R

3

) we have the deformation gradient

F = r' 2 C(
;M

3�3

). Furthermore, S

1

(F ) and S

2

(F ) denote the �rst and seond Piola Kirhho� stress tensors, respetively.

Total time derivatives are written

d

dt

X(t) =

_

X . The �rst and seond di�erential of a salar valued funtion W (F ) are written

D

F

W (F ):H and D

2

F

W (F ):(H;H), respetively. We employ the standard notation of Sobolev spaes, i.e. L

2

(
); H

1;2

(
); H

1;2

Æ

(
),

whih we use indi�erently for salar-valued funtions as well as for vetor-valued and tensor-valued funtions. Moreover, we

set kXk

1

= sup

x2


kX(x)k. For A 2 C

1

(
;M

3�3

) we de�ne CurlA(x) as the operation url applied row wise. We de�ne

H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the sense of traes and by C

1

0

(
) we denote

in�nitely di�erentiable funtions with ompat support in 
. We use apital letters to denote possibly large positive onstants, e.g.

C

+

;K and lower ase letters to denote possibly small positive onstants, e.g. 

+

; d

+

. The smallest eigenvalue of a positive de�nite

symmetri tensor P is abbreviated by �

min

(P ).

10.1.2 Notation for shells

Let ! � R

2

be a bounded domain with Lipshitz boundary �! and let 

0

be a smooth subset of �! with non-vanishing 1-dimensional

Hausdor� measure. The thikness of the plate is taken to be h > 0 with dimension length (ontrary to Ciarlet's de�nition of the

thikness to be 2", whih di�erene leads only to various di�erent onstants in the resulting formulas). We denote by M

n�m

the set of matries mapping R

n

7! R

m

. For H 2 M

2�3

and � 2 R

3

we employ also the notation (Hj�) 2 M

3�3

to denote the

matrix omposed of H and the olumn �. Likewise (vj�j�) is the matrix omposed of the olumns v; �; �. The identity tensor on

M

2�2

will be denoted by 11

2

. The mapping m : ! � R

2

7! R

3

is the deformation of the midsurfae, rm is the orresponding

deformation gradient and m

x

= (m

1;x

;m

2;x

;m

3;x

)

T

; m

y

= (m

1;y

;m

2;y

;m

3;y

)

T

. Sometimes, this is also written as rm. We write

v : R

2

7! R

3

for the displaement of the midsurfae, suh that m(x; y) = (x; y; 0)

T

+ v(x; y). The standard volume element is

written dx dy dz = dV = d! dz.
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10.2 The treatment of external loads

10.2.1 Dead load body fores for the thin plate

In the three-dimensional theory the dead load body fores f(x; y; z) 2 R

3

were simply inluded by appending the potential with

the term

Z




h

f(x; y; z) � '(x; y; z) dV : (10.92)

Inserting the ansatz for the reonstruted deformation '

s

results in

Z




h

f(x; y; z) � '

s

(x; y; z) dV �

Z




h

f(x; y; z) �

�

m(x; y) + z %

m

R

3

+

z

2

2

%

b

R

3

�

dV

=

Z

!

h

^

f(x; y) �m(x; y) d! +

Z

!

0

B

�

h=2

Z

�h=2

z f(x; y; z) dz

1

C

A

%

m

R

3

d! +

Z

!

0

B

�

h=2

Z

�h=2

z

2

2

f(x; y; z) dz

1

C

A

%

b

R

3

d! (10.93)

Let us de�ne

^

f

0

(x; y) :=

h=2

Z

�h=2

f(x; y; z) dz ;

^

f

1

(x; y) :=

h=2

Z

�h=2

z f(x; y; z) dz ;

^

f

2

(x; y) :=

h=2

Z

�h=2

z

2

2

f(x; y; z) dz ; (10.94)

suh that

^

f

0

;

^

f

1

;

^

f

2

are the zero, �rst, seond moment of f in thikness diretion. Moreover

h=2

Z

�h=2

z

2

2

f(x; y; z) dz =

h=2

Z

�h=2

z

2

2

(f(x; y; 0) + z �

z

f(x; y; 0) + : : : ) dz =

h

3

24

f(x; y; 0) +O(h

5

) (10.95)

h=2

Z

�h=2

z f(x; y; z) dz =

h=2

Z

�h=2

z (f(x; y; 0) + z �

z

f(x; y; 0) + : : : ) dz = 0 +

h

3

12

�

z

f(x; y; 0) +O(h

5

) :

Therefore

Z




h

f(x; y; z) � '

s

(x; y; z) dV �

Z

!

^

f

0

(x; y) �m(x; y) d! +

Z

!

^

f

1

(x; y)%

m

R

3

d! +

Z

!

^

f

2

(x; y)%

b

R

3

d! (10.96)

10.2.2 Tration boundary onditions for the thin plate

In the three-dimensional theory the tration boundary fores N(x; y; z) 2 R

3

were simply inluded by appending the potential with

the term

Z

�


trans

h

[f

s

�[�

h

2

;

h

2

℄g

N(x; y; z) � '(x; y; z) dS : (10.97)

Inserting our ansatz for the reonstruted deformation '

s

results in

Z

�


trans

h

[f

s

�[�

h

2

;

h

2

℄g

N(x; y; z) � '

s

(x; y; z) dS �

Z

!�f�

h

2

;

h

2

g

N(x; y; z) �

�

m(x; y) + z%

m

R

3

+

z

2

2

%

b

R

3

�

dS

+

Z



s

�[�

h

2

;

h

2

℄

N(x; y; z) �

�

m(x; y) + z%

m

R

3

+

z

2

2

%

b

R

3

�

dS:

Let us de�ne

^

N

lat;0

(x; y) :=

h=2

Z

�h=2

N(x; y; z) dz ;

^

N

lat;1

(x; y) :=

h=2

Z

�h=2

z N(x; y; z) dz ;

^

N

lat;2

(x; y) :=

h=2

Z

�h=2

z

2

2

N(x; y; z) dz ; (10.98)

suh that

^

N

lat;0

;

^

N

lat;1

;

^

N

lat;2

are the zero, �rst, seond moment of the trations N at the lateral boundary in thikness diretion.

Hene

Z

�


h

N(x; y; z) � '(x; y; z) dS �

Z

!

[N(x; y;

h

2

) +N(x; y;�

h

2

)℄ �m(x; y) d! +

Z

!

h

2

[N(x; y;

h

2

)�N(x; y;�

h

2

)℄%

m

R

3

d!

+

Z

!

[

h

2

8

N

+

+

h

2

8

N

�

℄%

b

R

3

d! +

Z



s

^

N

lat

(x; y) �m(x; y) ds +

Z



s

^

N

lat;1

(x; y) %

m

R

3

ds +

Z



s

^

N

lat;2

(x; y) %

b

R

3

ds

=

Z

!

N

res

(x; y) �m(x; y) d! +

Z

!

hN

di�

(x; y)%

m

R

3

d! +

Z

!

h

2

8

N

res

%

b

R

3

d! (10.99)

+

Z



s

^

N

lat;0

(x; y) �m(x; y) ds +

Z



s

^

N

lat;1

(x; y) %

m

R

3

ds +

Z



s

^

N

lat;2

(x; y) %

b

R

3

ds ;

with

N

res

:= [N(x; y;

h

2

) +N(x; y;�

h

2

)℄ ; N

di�

:=

1

2

[N(x; y;

h

2

)�N(x; y;�

h

2

)℄ : (10.100)
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10.2.3 The external loading funtional

Let us gather all inuenes of the external loading terms. It would be possible to aount for all appearing inuenes, however, in

view of a reasonable simpli�ation we onsider only those terms, whih would have appeared, if we had made the restrited linear

ansatz without thikness streth '

s

= m+ z R

3

. To leading order we have the

f =

^

f

0

+N

res

; resultant body fore

M =

^

f

1

+ hN

di�

; resultant body ouple (10.101)

N =

^

N

lat;0

; resultant surfae tration

M



=

^

N

lat;1

; resultant surfae ouple :

The resultant loading funtional � is given by

�(m;R

3

) =

Z

!

hf;mi+ hM;R

3

i d! +

Z



s

hN;mi+ hM



; R

3

i ds : (10.102)

If we denote the dependene of � on the loads of the underlying three-dimensional problem as �(f;N ; m;R

3

), then it is easily seen

that frame-indi�erene of the external loading funtional is satis�ed in the sense that �(Q:f;Q:N ; Q:m;Q:R

3

) = �(f;N ; m;R

3

)

for all rigid rotations Q 2 SO(3;R). It is possible to use the same funtional form of the loading funtional for all �nite

and linearized models. We only need to replae (m;R

3

) by (m;

~

d); (m;~n); (v; A

3

) for the di�erent �nite and linearized models,

respetively.

10.3 Transformation of the domain and saling

10.3.1 Classial �nite elastiity

Set 


rel:thin

L

= [0; L[m℄℄� [0; L[m℄℄� [�

h

2

�L;

h

2

�L℄ with h a small parameter indiating the relative thikness of the domain, e.g.

h 2 (0;

1

20

[m℄℄ with dimension length. The three-dimensional problem with respet to the relatively thin domain 


rel:thin

L

reads

Z

�2


rel:thin

L

W

3D

(r

�

'

L

(�)) � hf

L

(�); '

L

(�)i d� �

Z

�


rel:thin

L

hN

L

; '

L

i dS

L

7! min : w.r.t. '

L

; (10.103)

where we are looking for a funtion '

L

: 


rel:thin

L

� R

3

7! R

3

. Introduing the saling transformation

� : 


h

= [0; 1[m℄℄� [0; 1[m℄℄� [�

h

2

;

h

2

℄ � R

3

7! 


rel:thin

L

� R

3

; �(x) = L � x ; (10.104)

(note that L itself is non-dimensional here) this turns into

Z

x2


h

�

W

3D

(r�(x)r'(x)r�

�1

(x))� hf

L

(�(x)); L � '(x)i

�

det[r�(x)℄ dV (10.105)
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(�(x); L � '(x)i kCofr�:e

3

k dS

h

7! min : w.r.t. '. ; (10.106)

for a funtion ' : 


h

� R

3

7! R

3

de�ned impliitly through '

L

(�) = �('(�

�1

(�))). With f(x) = L � f

L

(�(x)); N(x) = N

L

(�(x))

we have
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(r')� hf; 'i℄ L
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dV �
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h

L hN;'iL

2

dS 7! min : w.r.t. '. ; (10.107)

or equivalently

Z
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h

[W

3D

(r') � hf; 'i℄ dV�

Z

�


h

hN;'i dS 7! min : w.r.t. '. ; (10.108)

whih shows how the saling from a domain whih is relatively thin to a domain whih is absolutely thin is to be performed in

order to apply the subsequent dimensional redution proedure.

10.3.2 Saling relations for �nite Cosserat models with internal length

For ompleteness let us summarize the saling relations appearing in a �nite elasti Cosserat theory. Our goal is to relate the

response of large and small samples of the same material and to asses the inuene of the harateristi length L



.

First, in our de�nition, the harateristi length L



is a given material parameter, orresponding to the smallest disern-

able distane to be aounted for in the model. A simple onsequene is that atual geometrial dimensions L of the bulk material

must be larger than L



, indeed for a ontinuum theory to apply L should be signi�antly larger than L



.

Now let 


L

= [0; L[m℄℄� [0; L[m℄� [0; L[m℄℄ be the ube with (non-dimensional) edge length L, representing the bulk material.

Consider a deformation '

L

: � 2 


L

7! R

3

and mirorotation R

L

(�) : 


L

7! SO(3;R) as solution of the simpli�ed minimization

problem

Z

�2


L

� kR

T

L

(�)F (�) � 11k
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+ �L

q



kD

�

R

L

(�)k

q

d� 7! min : w.r.t. ('

L

; R

L

) : (10.109)

The simple saling transformation � : R

3

7! R

3

; �(x) = L � x maps the unit ube 


1

= [0; 1[m℄℄ � [0; 1[m℄℄ � [0; 1[m℄℄ into 


L

.

De�ning the related deformation ' : x 2 


1

7! R

3

and mirorotation R(x) : 


1

7! SO(3;R) as

'(x) := �

�1

('

L

(�(x))) ; R(x) := R

L

(�(x)) ; (10.110)
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shows

r

x

'(x) =

1

L
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�
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(�(x))r
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(�) ; D

x

R(x) = D

�

R

L

(�(x)) � r

x

�(x) = D

�

R

L

(�) � L : (10.111)

Hene, the minimization problem an be transformed
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L
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L

3�q

kD

x

R(x)k

q

dx ; (10.112)

and we may onsider at last the problem de�ned on the unit ube 


1

:

Z

x2


1

� kR

T

(x)r

x

'(x)� 11k

2

+ �L

q



L

3�q�3

kD

x

R(x)k

q

dx 7! min : w.r.t. (';R). (10.113)

Comparison of di�erent sample sizes is a�orded by transformation to the unit ube respetively, e.g. we ompare two samples of

the same material with bulk sizes L

1

> L

2

. Transformation to the unit ube shows that the response of sample two is sti�er than

the response of sample one.

It is plain to see that for L large ompared to L



, the inuene of the rotations will be small and in the limit

L



L

! 0, lassial

behaviour results. Otherwise, the larger

L



L

< 1, the more pronouned the Cosserat e�ets beome and a small sample is relatively

sti�er than a large one.

10.3.3 Saling relations for �nite Cosserat plates

As a onsequene for relatively thin shells of the former development we onsider the �nite problem on the relative thin domain




rel:thin

L

in simpli�ed form:
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). (10.114)

This implies on 


h

= ! � [�

h

2

;

h

2

℄ for the orrespondingly transformed variables
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Inserting the redued kinematis and integrating over the thikness we should onsider on !
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�h kR
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L
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kD

x

R(x)k

q

d! 7! min : w.r.t. (m;R). (10.116)

Comparing domains with the same relative thikness h > 0, but di�erent in-plane elongation L, we see that the smaller

sample is relatively sti�er for the same relative thikness.

For very large samples with the same relative thikness, the lassial bending terms are retrieved.
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In this sense, lassial

plate formulations represent the limit behaviour of ever larger, thin strutures with the same relative thikness..

10.4 Generalized onvexity onditions

For the onveniene of the reader we ollet some of the most useful onvexity onditions. Let an elasti free energy density

W : M

n�m

7! R; n � m be given. We say that W onsidered in r' = F 2 M

n�m

is

1. uniformly stable, if D

2

F

W (F ):(H;H) � 

+

kHk

2

; H 2 M

n�m

2. stritly Legendre ellipti, if D

2

F

W (F ):(H;H) > 0; 8H 6= 0

3. pre-stable, if D

2

F

W (x;F ):(H;H) � 

+

k(Hj0)

T

G(x) +G(x)

T

(Hj0)k

2

; 8 (Hj0) 2 M

m�m

; H 6= 0 with G 2 GL(m;R).

4. polyonvex, if there exists a onvex funtion P : M

n�m

� M

n�m

� R 7! R suh that W (F ) = P (F;Minors

ij

).

5. quasionvex, if

8

^

F 2 M

n�m

: jDj �W (

^

F ) �

Z

D

W (

^

F +r�(x)) dx 8� 2 C

1

0

(D;R

m

) ; (10.117)

whih implies that the homogeneous deformation

^

F is absolute minimizer to its own boundary onditions and exludes

internal failure.

6. uniformly Legendre-Hadamard ellipti, if D

2

F

W (F ):(� 
 �; � 
 �) � 

+

k�k

2

R

m

� k�k

2

R

n

7. Legendre-Hadamard ellipti, if D

2

F

W (F ):(� 
 �; � 
 �) � 0

8. rank-one onvex, if f(t) :=W (F + t(� 
 �)) is onvex in t for all F 2 M

n�m

.

It is known [Da89℄ that

onvexity) polyonvexity) quasionvexity) rank-one onvexity, Legendre-Hadamard elliptiity ; (10.118)

but the reverse impliations are false in general. For the salar ase '(x

1

; : : : ; x

n

) 2 R and the one dimensional ase '(x

1

) 2

R

m

, all onditions oinide if orretly identi�ed and simplify to the requirement of onvexity of W .
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In plane rotations remain unspei�ed, they annot be determined from R

3

alone.
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De�nition 10.1 (Weak lower semiontinuity)

We say that a funtional I de�ned on the Sobolev spae W

1;p

(
) is weakly lower semiontinuous, whenever '

k

* ' 2 W

1;p

(
)

implies

I(') � lim inf

k

I('

k

) : (10.119)

If I(') :=

R




W (r') dx, then weak lower semiontinuity is equivalent to quasionvexity of W . This result is the ornerstone of

the lassial diret methods of variations.

10.5 Marosopi elasti shear failure for plates

It is onvenient to de�ne what we mean by shear failure for plates in lassial isotropi elastiity. LetW ((rmj~n)) =

^

W (rm

T

rm)

be the free elasti energy density of the membrane (intrinsi) part of the plate de�ned on the �rst fundamental form of the

surfae rm

T

rm = I

m

2 Sym. If for some regular m : ! � R

2

7! R

3

with (rmj~n

m

) 2 GL

+

(3;R)

9 �; � 2 R

3

: D

2

F

W ((rmj~n)):(� 
 �; � 
 �) < 0 ; (10.120)

we say that the material fails or looses Legendre-Hadamard elliptiity (LH), also alled a material instability.

37

This

failure an give rise to highly loalized deformation patterns, subsumed under the notion of mirostruture. Related is the

possible emergene of disontinuous deformations sine Hadamard�s jump relations are violated. However, loss of elliptiity

may already our for midsurfae deformations whih are not related to in-plane shear, e.g. uniaxial situations and pure in plane

dilations. Thus we say that W su�ers from genuine elasti shear failure whenever

9F 2 GL

+

(3;R) 9 �; � 2 R

3

: D

2

W (F ):(� 
 �; � 
 �) < 0 ; but

8F 2 diag(�

+

1

; �

+

2

; 1) 8 �; � 2 R

3

: D

2

W (F ):(� 
 �; � 
 �) � 0 : (10.121)

It seems that failure of a material on a marosale other than shear failure is unphysial and rather due to the idiosynrasy of the

onstitutive equations, as long as the bulk is modelled as elasti. In fat, Legendre-Hadamard elliptiity for F = diag(�

+

1

; �

+

2

; 1)

of the membrane energy implies immediately the Baker-Eriksen (BE) inequalities [MH83, p.19℄ for the membrane and genuine

elasti shear failure happens, if BE is satis�ed but LH is violated.
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In this sense the following non exhaustive list of free energy terms should be avoided for the membrane sine they are not only

failing under shear (already BE is not satis�ed): with C = (rmj~n)

T

(rmj~n); U =

p

C; F = (rmj~n) the list reads

kC � 11k

2

; hC � 11; 11i

2

; hlnC; 11i

2

; hlnC; 11i

2

+ k dev lnCk
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; hlnU; 11i

2

; � ln det[F ℄ + (ln det[F ℄)

2

; k

C

det[C℄

1=3

� 11k

2

; (10.122)

and it is obvious that the membrane part of the �nite Kirhho�-Love plate model (7.83) and the �nite Reissner-Mindlin model

(6.82) is failing, not only in shear! Of ourse, ombination with other terms ould remove the problem. Terms whih genuinely fail

only in shear are e.g.

kU � 11k

2

; hU � 11; 11i

2

; k

U

det[U ℄

1=3

� 11k

2

; tr
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U
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� 11

2

#

2

: (10.123)

10.6 Linearized plate models

10.6.1 The lassial in�nitesimal Reissner-Mindlin model

Let us linearize a modi�ation of ase II (�



= 0; �

4

= 0; q = 0; p > 1) for situations of small midsurfae deformations and

small urvature. We write m(x; y) = (x; y; 0)

T

+ v(x; y), with the displaement of the midsurfae of the plate v : ! 7! R

3

and R = 11 + A + : : : with A 2 so(3;R) the in�nitesimal mirorotation. For the boundary deformation we write g

d

(x; y; z) =
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T

+ u

d

(x; y; z), with the onsequene, that rg

d

:e

3

= (u

d

1;z

; u

d

2;z

; 1 + u

d

3;z

). The urvature tensors are expanded as

K

b

= R

T

(rR

3

j0) = (11 +A+ : : : )

T

(r[A

3

+A

2

:e

3

+ : : : ℄j0) � (rA

3

j0) + : : :

K

s

�

�

(r(A:e

1

)j0); (r(A:e

2

)j0); (r(A:e

3

)j0)

�

; (10.124)

and the Cosserat miropolar plate streth tensor expands like

U = R

T

F

s

= R

T

(rmjR

3

) = (11 + A+ : : : )

T

0

�

0

�

1 0

0 1

0 0

1

A

+rvj(11 + A+ : : : ):e

3

)

1

A

� 11 + (rvjA

3

) + : (10.125)

Sine p > 1, the Cosserat urvature ontribution has an exponent stritly bigger than two suh that a linearization w.r.t zero

urvature does not yield any ontribution of this term. Moreover, for �



= 0, in-plane rotations (drilling degrees of freedom) do

37

Material instability should be arefully distinguished from geometrial instabilities ourring in bukling or neking and

whih are fully onsistent with Legendre-Hadamard elliptiity. In this sense, polyonvexmaterials are unonditionallymaterially

stable and ertainly appropriate for rubber and soft-tissues [SN02, HN03℄.
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One version of the BE-inequalities for membranes an be stated as follows: for �

2

i

� 0; i = 1; 2 ; �

2

3

= 1 the (generalized)

prinipal strethes (here �

2

i

are the eigenvalues of (rmj~n)

T

(rmj~n)), the free energy �(�

1

; �

2

; 1) :=

^

W (rm

T

rm) is separately

onvex in �

i

. No mathematial existene results based only on BE are known. Note also that BE is enough to e�etively exlude

phase-transformations, modelled with multi-well potentials.
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not survive the linearization proess! We are indeed left with the minimization problem for v 2 R

3

and A
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A

j



0

= skew((rvj�

z

u

d

))

j



0

; linearized onsistent oupling ) A

3

j



0

= (

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0)

T

A

3

j



0

= (u

d

1;z

; u

d

2;z

; 0)

T

; rigid presription :

Abbreviating now � = (�
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3

, we are left with the following set of equations for the displaement of the midsurfae of
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A further redution arises if we assume only normal displaements: v

1

= v

2

= 0. The resulting minimization problem is
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The elasti free energy should be ompared with
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where � =

5

6

is the so alled shear orretion fator. In this last form, the Reissner-Mindlin problem an be found in many

textbooks, e.g. [Bra92, p.281℄ or [Ste95℄. It should be noted, however, that in our variationally based �nite derivation with

subsequent linearization there is no imminent reason to introdue � 6= 1. In fat, the shear orretion fator � an be seen as a

tuning parameter of the in�nitesimal model whih, for ertain types of loading,

39

allows to improve the order of onvergene

of the in�nitesimal Reissner-Mindlin solution to the three-dimensional linear elastiity solution [R�os99℄.

40

10.6.2 The lassial in�nitesimal Kirhho�-Love plate (Koiter model)

For the onveniene of the reader we also supply the similar system of equations for the lassial in�nitesimal Kirhho�-Love plate

(also the Koiter model) whih we derive as linearization of the �nite Kirhho�-Love plate. In terms of the midsurfae displaement

v we have to �nd a solution of the minimization problem for v 2 R
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; rigid presription, linearized Kirhho� :

This energy an be obtained formally from (10.129) by setting � = rv

3

.
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Hene the shear orretion fator � shows some similarity to the Cosserat ouple modulus �



, whose inuene on the solution

of the three-dimensional problem is also strongly dependent on boundary onditions. For rather thik plates, it is known that the

shear energy in RM

lin

is overestimated, therefore, one is led to redue the shear energy ontribution a posteriori by taking � < 1.

40

It would be interesting to know the optimal shear orretion fator 0 < � � 1 of the in�nitesimal Reissner-Mindlin model with

our redued onsistent oupling boundary ondition. Suh an optimized parameter should also be bene�ial for the �nite Cosserat

plate!
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11 Appendix B

11.1 Prerequisites from di�erential geometry

A given mapping m : ! � R

2

7! R

3

, desribing a surfae imbedded in the three-dimensional spae is alled regular whenever

rank(rm) = 2. The vetor

~n :=

m

x

�m

y

km

x

�m

y

k

; (11.131)

is the Gauss unit normal �eld on the surfae. The map n : ! � R

2

7! S

2

is alled the Gauss map and the moving 3-frame

(m

x
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y

jn) is alled the Gauss frame of the surfae m whih in general is not orthonormal. The matrix representation of the

�rst fundamental form (metri) is given through

I

m

:= rm

T

rm =

�
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x

k

2
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x

;m

y

i
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x

;m

y
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y
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2

�

2 M

2�2

; I

m

+ e

3


 e

3

= (rmjn)

T

(rmjn) =:

b

I

m

(11.132)

det[I

m

℄ = det[

b

I

m

℄ = det[(rmj~n)℄

2

:

The metri alone is not suÆient to desribe the shape of a surfae in the ambient three-dimensional Eulidean spae, the urvature

is also needed, although in the rigid ase (rmj~n) 2 SO(3;R), the metri is indeed enough.

The matrix representation of the seond fundamental form providing a measure for urvature of the surfae is given by

II

m

:= �rm

T

Dn = �(m

x

jm

y

)

T

� (n

x

jn

y

) = �
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2 M
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(rmjn)

T

(D

x

njD

y

nj0) =
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�
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x

;D

x

ni hm

x

; D

y

ni 0

hm

y

; D

x

ni hm

y

;D

y

ni 0

0 0 0

1

A

;



II

m

:= �(rmj~n)

T

(r~nj~n) ; det[II

m

℄ = det[



II

m

℄ :

Sine n is orthogonal to the tangent spae T

x

m, the relation 0 = �

x

hm

y

; ~ni = �

y

hm

x

; ~ni shows easily that II

m

is symmetri. The

third fundamental form of the surfae in matrix representation is de�ned as

III

m

:= Dn

T

Dn =

�

kD

x

nk

2

hD

x

n;D

y

ni

hD

y

n;D
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y
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�

2 M

2�2

;

d

III

m

:= (r~nj~n)

T

(r~nj~n) : (11.134)

The matrix representation of the Weingarten map (shape operator) L is given by

L(x; y) := �Dn(x; y)r

�

m

�1

(m(x; y) 2 M

3�3

; L = �(r~nj0)(rmjn)

�1

; (11.135)

representing the variation of the normal in the metri of the surfae. In order to see that L = �(Dnj0)(rmjn)

�1

we extent m to

R

3

by setting �(x; y; z) = m(x; y) + z n(x; y). This yields �(x; y; 0) = m(x; y) and r�(x; y; 0) = (rmjn) while �

�1

(�(x; y; z)) =

(x; y; z)

T

and the hain rule shows r

�

�

�1

(�(x; y; z)℄r�(x; y; z) = 11. Hene

r

�

�

�1

(�(x; y; 0))r�(x; y; 0) = 11

but r

�

�

�1

(�(x; y; 0)) = r

�

m

�1

(m(x; y)) whih �nishes the argument. The Gauss urvature K of the surfae is determined by

K(x; y) :=

det[II

m

℄

det[I

m

℄

= det[L℄ = det[Dnr

�

m

�1

(�)℄ ; (11.136)

and the mean urvature H through

2H(x; y) := tr [L℄ = tr

�

Dnr

�

m

�1

(�)

�

: (11.137)

The relation III

m

� 2H II

m

+K I

m

= 0 ([Kli78, Prop. 3.5.6℄) is a onsequene of the Caley-Hamilton theorem and shows that

III

m

is not independent of I

m

; II

m

. The prinipal urvatures �

1

; �

2

are the solutions of the harateristi equation of �L, i.e.

�

2

� tr [L℄� + det[L℄ = �

2

� 2H� + K = 0. The Caley-Hamilton theorem on M

2�2

implies for the seond fundamental form on

aount of its symmetry

II

2

m

� tr [II

m

℄ II

m

+ det[II

m

℄ 11

2

= 0) kII

m

k

2

� tr [II
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℄

2

+ 2det[II

m

℄ = 0 ) tr [II

m

℄

2

� kII

m

k

2

= 2det[II

m

℄ : (11.138)

Thus the Gauss urvature K an be expressed equivalently as

K =

tr [II

m

℄

2

� kII

m

k

2

2 det[I

m

℄

: (11.139)

Of major importane is the following lassi�ation

De�nition 11.1 (Intrinsiality)

A property or a set of equations is intrinsi whenever it an be redued to the �rst fundamental form, i.e. depends only on loal

length and loal angles on the surfae. (Or the hange of loal length and loal angles.) Intrinsi properties remain invariant under

isometries.

42



For example, the mean urvature H is not intrinsi, sine bending a surfae hanges H but leaves length and angles invariant

(bending belongs to the outer geometry of the surfae); or take the normal of the surfae n: this is not an intrinsi quantity, sine

bending hanges the normals but leaves length and angles invariant.

Gauss' elebrated Theorema Egregium states that ontrary to appearane (it involves the normals!), the Gauss urvature

K is an intrinsi quantity: it an be omputed through the �rst and seond derivatives of the �rst fundamental form. The same is

trivially true for k(rmj~n)

T

(rmj~n)� 11k

2

- it is a purely intrinsi strain measure (the dependene on ~n anels out algebraially).

In the thin shell limit of h! 0 it is expedient to get a model whih is purely two-dimensional, i.e. intrinsi.

Theorem 11.2 (Fundamental theorem of surfae theory)

Any two surfaes m; ~m : ! � R

2

7! R

3

, whih have the same �rst and seond fundamental form, di�er only by an isometry, i.e.

~m(x; y) = Q:m(x; y); Q 2 SO(3).

Proof. Well known in di�erential geometry, e.g.[Kli78, p.64℄. �

Lemma 11.3 (Developable surfaes)

A surfae m with no planar points (II

m

6= 0) is developable (on the plane, without streth) if and only if the Gauss urvature K

vanishes.

Proof. Theorem 3.7.9 in [Kli78℄. �

Lemma 11.4 (Isometri surfaes)

Two surfaes with di�erent Gauss urvature K annot be mapped isometrially into eah other.

Proof. Well known. �

The following lassi�ation is standard. The surfae m is loally

8

>

<

>

:

ellipti

paraboli

hyperboli

at (x; y) 2 ! if det[II

m

(x; y)℄ is

8

>

<

>

:

> 0

= 0

< 0

: (11.140)

The surfae m is loally uniformly ellipti if

9 

+

> 0 : 8 � 2 R

2

: hII

m

:�; �i

R

2

= hrm

T

Dn:�; �i

R

2

= hDn:�;rm:�i

R

3

� 

+

k�k

2

: (11.141)

De�nition 11.5 (Christo�el symbols)

Let the regular surfae m be given. The Christo�el symbols of the �rst kind of the surfae are de�ned by

�

i

jk

:= h�

j

a

k

; a

i

i; a

1

= m

x

; a

2

= m

y

; a

3

= n; j = 1; 2; i; k = 1; 2; 3 : (11.142)

They are not independent of the hoie of oordinates (not ovariant), but intrinsi quantities, belonging to the inner

geometry of the surfae, see [Lau60, p.36℄.

Let us look at kr

x

[%

2

℄k

2

. It is lear that this de�nes an intrinsi quantity, sine it an be expressed as partial derivatives of the

metri. We have

r

x
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T
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: (11.143)

Hene, kr

x

[%

2

℄k

2

= 4 (�

1

11

+ �

2

12

)

2

+ 4 (�

1

21

+ �

2

22

)

2

.

11.2 Additional material

Lemma 11.6 (Normality and polar deomposition)

Let m : ! � R

2

7! R

3

be regular and assume for some R 2 SO(3) that R = polar(rmj %R:e

3

) ; where % > 0 is given. Then

R

3

= ~n

m

and R = polar(rmj%~n).

Proof. Sine F = RU we must have F

T

R 2 Sym. But

U = U

T

= F

T

R = (rmj%R

3

)

T

� polar(rmj%R

3

) = (rmj%R
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)

T
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i hm
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1

i hm
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; R

2

i hm
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0 0 %
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; (11.144)

whih implies % hm

y

; R

3

i = % hm

x

; R

3

i = 0 by symmetry of U . Thus R

3

oinides with the unit normal ~n

m

on m. �

For m = (x; y; 0)

T

+ v(x; y) we have
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�

v
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v
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�

v
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v
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k sym((rvjA

3

))k

2

= k sym

2

(r(v
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� (�A

3
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; tr
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sym((rvjA
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= tr [sym(rvj0)℄

2

:

Lemma 11.7 (Rigidity oinidene II)

If (rmjn) 2 SO(3) then

kII

m

k

2

= tr [III
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nk
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+ kD
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tr [II
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(11.146)

kII

m

k

2

= km
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k

2

+ 2km
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k

2

+ km
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k

2

:
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Proof.
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Therefore
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whih �nishes the �rst part. Now tr [II
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that hm

xx

;m

x

i = hm

xx

;m

y
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�

Corollary 11.8 (Rigidity oinidene III)
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Moreover,
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Proof. The �rst part is a onsequene of Lemma 11.7. The seond part is an algebrai omputation. �

11.3 Linearized quantities

At various plaes we are interested in the linearization of the proposed systems with respet to the referene plane. Let therefore

m(x; y) = (x; y; 0)
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. Then upon expanding to �rst order
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11.4 Detailed derivations

11.4.1 Detailed omputations for the new Cosserat model

The equilibrium equations of the three-dimensional Cosserat problem given in [Nef03a℄ show that on the transverse boundary
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where N
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are the presribed trations N on the transverse boundary given globally in the basis (e
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). This implies (exat)
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Then also (exat)
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whih ondition redues to zero normal trations on the transverse free boundary (in the absene of trations N

trans

) in

the lassial ontinuum limit of R = polar(r'). We ompute
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independent of the Cosserat ouple modulus �



. Let us evaluate the last equation for z = �h=2. This yields two linear

equations in %

m

; %

b

hN

+

; R:e

3

i = � (2(%

m

� 1) + h %

b

) (11.163)

+ �

�

hR

T

(rmj0); 11i + %

m

+ h=2%

m

hrR

3

j0)

T

R; 11i + h=2 %

b

� 3 +

h

2

8

%

b

hR

T

(rR

3

j0); 11i

�

�hN

�

; R:e

3

i = � (2(%

m

� 1) � h %

b

)

+ �

�

hR

T

(rmj0); 11i + %

m

� h=2%

m

hrR

3

j0)

T

R; 11i � h=2 %

b

� 3 +

h

2

8

%

b

hR

T

(rR

3

j0); 11i

�

:

Adding and subtrating shows that
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The exat solution is given by
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whih will be approximated through
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Hene the leading terms
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The term
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represents a nonlinear oupling between midsurfae deformationgradient and

urvature, an artefat of the derivation not present in the underlying three-dimensional theory where only produts of deformation-

gradient and rotations our, we therefore neglet this term.
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41

Note that %

m

; %

b

have di�erent units. %

m

is dimensionless, whereas [%

b

℄ = m

�1

.

42

It would be possible to base all further onsiderations indeed on the exat solution of %

m

; %

b

and it seems that the resulting

two-dimensional model would allow an existene proof. However, the muh more involved expressions are not easily interpreted

and do not redue to the lassial expressions upon linearization.
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The formula (11.168) shows the physially reasonable behaviour that to �rst order, �bers will be elongated by opposite

transverse trations.

Having obtained the general form of the relevant oeÆients %
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it is expedient to base the expansion of the three-dimensional

elasti Cosserat energy, as far as its bending ontribution is onerned, on a further simpli�ed expression, namely
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This is motivated by our already anouned priniple of redution. The use of (3.26) exludes (up to order h
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therefore (the mixed term just anels!)
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A similar omputation is now performed for the membrane ontribution. Set
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Exatly the same omputations as for the bending term allows us to onlude that
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11.4.2 Detailed omputations for the new �nite Reissner-Mindlin model
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We neglet the O(h
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11.5 Units and elasti onstants

The body fore f has units [N=m

3

℄, the surfae tration N has units [N=m

2

℄, of ourse. Note that a typial value of the elasti

moduli for steel is � = 80:000[N=mm

2

℄ = 8 � 10

10
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℄ and � = 100:000[N=mm
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The Youngs-modulus E and the Poisson number � are de�ned in terms of the Lam�e onstants as follows:
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This implies the well known relations
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It is also useful to have the physial properties of various very thin samples at hand. For A4-paper (80g=m

2

), the thikness of

a 20m quadrangle is roughly 0:08mm whih gives a harateristi value h �

1

1000

. Representative values for elasti moduli for

isotropi standardized paper are E = 5840[N=mm

2

℄; � = 0:24 or � = 2:6GPa; � = 2:34GPa.

For kithen plasti wrap one has the thikness 0:03mm whih implies h �

3

10000

and standard Aluminum foil has a thikness of

0:01mm implying h �

1

10000

. A typial thin �lm, for whih we onsider a 20mm retangle with thikness as small as 5 mirometers

(5 � 10

�6

m) yields a harateristi thikness of h �

5

10000

. In the speial ase of e.g. a steel rod of length 1m and radius 2mm we

obtain the harateristi variable h �

4

1000

. For suh small values of h it seems to be lear that lassial bending annot play a

prominent role.

11.6 The penalized �nite Cosserat plate

While the treatment of the mirorotations R is oneptually lear, any numerial implementation has the burden that the rotations

live on a nonlinear manifold. In order to irumvent this diÆulty, we propose a simpli�ed variant of our new Cosserat plate

model, where we relax the onstraint of exat rotations and add a penalizing term. The new minimization problem reads: �nd the

deformation of the midsurfae m : ! � R
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3

and the relaxed 'mirorotation' of the plate (shell) R : ! � R
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3�3

solving
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It should be observed that the penalized model is still frame-indi�erent, a welome feature.

11.7 The partially linearized Cosserat plate

Another method of reduing the omplexity of the ensuing model onsists in partially linearizing the equations. Let us redue

a modi�ation of ase II (�



= 0; �

4

= 0; q = 0; p = 1; �

5

= �

6

= 1; �

7

= 0) for situations in whih we expet the urvature and

mirorotations to remain small but the midsurfae deformations are unrestrited. We write m(x; y) = (x; y; 0)

T

+ v(x; y), with the

(�nite) displaement of the midsurfae of the plate v : ! 7! R

3

and R = 11+A+: : : with A 2 so(3;R) the in�nitesimal mirorotation.

For the boundary deformation we write g

d

(x; y; z) = (x; y; z)

T

+u

d

(x; y; z), with the onsequene, thatrg

d

:e

3

= (u

d

1;z

; u

d

2;z

; 1+u

d

3;z

).

The urvature tensors are expanded as

K

b

= R

T

(rR

3

j0) = (11 +A+ : : : )

T

(r[A

3

+A

2

:e

3

+ : : : ℄j0) � (rA

3

j0) + : : :

K

s

�

�

(r(A:e

1

)j0); (r(A:e

2

)j0); (r(A:e

3

)j0)

�

; (11.190)

and the Cosserat miropolar plate streth tensor expands like
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Negleting the quadrati term A
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> 0 is seen to be neessary to ontrol the in-plane drill rotations whih appear only as a seond order

e�et in the model. The membrane part an be shown to be oerive w.r.t. v in H

1

(!;R

3

) if A 2 C

0

(!; so(3;R)), sine the seond

derivative w.r.t. v an be estimated through k sym((11 + A)
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and 11 + A 2 GL(3;R) for A 2 so(3;R). The orrespond-

ing �eld equations are semilinear, more preisely, balane of linear momentum is a uniformly Legendre-Hadamard ellipti linear

system w.r.t. v at given A and balane of angular momentum is a uniformly Legendre-Hadamard ellipti linear system w.r.t. A at

given v with onstant oeÆients. Nevertheless, the resulting model is nonlinear but not frame-indi�erent. While it is not entirely

lear how to show existene, the simpli�ed model with drill rotations should prove to be easily implemented along the lines of

traditional in�nitesimal Reissner-Mindlin models taking into aount all the available knowledge on non-loking approximations.

Finally, we now re-derive the lassial Reissner-Mindlin model in the in�nitesimal ontext, pointing out ertain 'inonsistenies'

usually enountered and give a short existene proof. Let us sketh briey the 'diret' derivation of (10.129) in the in�nitesimal

ontext in order to understand some of the peuliarities of plate modelling.

11.8 Derivation of the lassial in�nitesimal Reissner-Mindlin bending plate

If " is the symmetrized displaement gradient of the three-dimensional theory, the elasti free energy of an isotropi medium takes

the form
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where � is the symmetri Cauhy stress tensor. If we assume zero normal tration aross the thikness on 
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still on the three-dimensional level. Applying (11.194) and eliminating "
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in the elasti energy (so alled ondensation of the

material law) yields,
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Now the linear kinematial ansatz '
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Expliitly integrating over the thikness with respet to z results in (10.129) with � = 1. We note that this derivation seems to be

not fully onsistent: the linear kinematial ansatz yields "

33

= 0, while we use "

33

= �

�

2�+�

h"; 11

2

i 6= 0 in evaluating the elasti

free energy. The zero normal tration ondition �

33

is true for the hosen kinematial ansatz only on the midsurfae while in the

derivation we have taitly assumed it to hold uniformly over the thikness. However, the �nal result is orret.

11.9 The lassial in�nitesimal Kirhho� bending plate

For the onveniene of the reader we also supply the similar system of equations for the lassial Kirhho� bending plate. If only

transverse deetions v

3

(x; y) are onsidered, the energy to be minimized is
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sine r(rv

3

) = D

2

v

3

. This energy an be obtained formally from (10.129) by setting � = rv

3

, see [Bra92, p.266℄. It should be

lear, however, that these bending equations are only appropriate for deetions v

3

� h. For v

3

� h ombined membrane/bending

needs to be used and for v

3

� h the membrane e�et dominates.

Let us turn quikly to the existene theory [Dav75℄ involved in the in�nitesimal ase:

Theorem 11.9 (Existene for in�nitesimal Reissner-Mindlin)

Let ! � R
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be a bounded Lipshitz domain and assume for the boundary data g
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), see (10.102). Then problem (10.127) admits a unique

minimizing solution pair (v; �) 2 H
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).

Proof. By the diret methods of variations it is a simple matter to establish the existene of a solution: Sine the funtional is

bounded above, we may take in�mizing sequenes (v
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; �
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) and establish weak onvergene of �
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), strong in L
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). This implies the boundedness of v
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) by Korn's �rst inequality and establishes as

well that the funtional is bounded below. We may extrat a subsequene v

k

not relabelled, onverging weakly to v 2 H

1

(!;R

3

).

Overall onvexity of the funtional allows us to pass to the limit. The pair (v; �) is a minimizer.

The general in�nitesimal problem is easily seen to have a unique solution (v; �) on aount of the strit positivity of the seond

derivative of the energy W

RM;in�n

:
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on the linear spae H

1

0

(!;R

3

) �H

1

0

(!;R

3

). Strit positivity is a onsequene of the lassial Korn's inequality for the membrane

part and full ontrol of the skew-symmetri inrement in the bending part. In this ase, the drill rotations, whih are assoiated

to �, remain unspei�ed. Sine only two independent simple rotations are required to orient a unit diretor �eld, a distin-

tive feature of lassial plate and shell theories is a rotation �eld de�ned in terms of only two independent degrees of freedom:

rotations about the diretor itself-the so alled drill rotations, are irrelevant and for that matter unde�ned in lassial shell theory. �

The analysis based on (10.128) is even simpler and an be done with Poinar�e's inequality replaing Korn's inequality. Note,

however, that a numerial implementation of the linearized models based on the presented setting (displaement approah) shows

to perform badly on oarse meshes [Bra92℄ for small h > 0 due to shear loking.

11.10 Comparison of formulas for the thikness streth

The di�erent formulas for the thikness streth %

m

in the plate models will be eluidated. We have
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Now assume that N
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= 0 and R = polar(rmj~n). Let �
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To further simplify the exposition, take � = 2� and assume that �
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= j�j. Then
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All three formulas produe the same tangent at the identity � = 1 (no in-plane streth). In the Kirhho�-Love model, evaluation

of %

KL

m

=

p

2� �

2

is only possible for � �

p

2, a severe shortoming of the model. In the new Cosserat plate model, evaluation of

%

Coss

m

is possible for all � 2 R but does make sense only for � � 2. Finally, the modi�ed Cosserat model allows useful evaluation for

all � 2 R.
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Figure 2: The di�erent formulas for the thikness streth %

m

: unphysial response of the Kirhhho�-Love model

and reasonable response %

m

> 0; (rmj%

m

R

3

) 2 GL

+

(3;R) of the modi�ed Cosserat model.

11.11 Open questions

Show that
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has the unique family of solutions R = Q = onst:; '(x) = Q:x+ b; Q 2 SO(3;R). Without gradient onstraint on ' the solution

is not unique. The same problem for plates and shells: show that
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has the unique family of solutions R = Q = onst:; m(x; y) = Q

1

� x + Q

2

� y + b; Q 2 SO(3;R). Without gradient onstraint on

m the solution is not unique, but it an be seen that R

3

= ~n must hold anyway. The same question turned around: assume that

' 2 H

1

(
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3

); R 2 SO(3;R) and R

T

r'+r'

T

R� 211 = 0. Show that this implies rigidity: R = Q = onst:; '(x) = Q:x+ b and

that we are dealing with a true strain measure.
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