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Abstract

This contribution is concerned with the consistent dimensional reduction of a previously introduced finite
three-dimensional Cosserat micropolar elasticity model to the two-dimensional situation of thin plates and
shells. The resulting membrane energy turns out to be a quadratic, elliptic, first order, non degenerate energy
in contrast to classical approaches, the standard bending contribution is augmented with a term representing
an additional stiffness of the Cosserat model and the corresponding system of balance equations remains
of second order. The model includes size effects, transverse shear resistance, thickness stretch and drilling
degrees of freedom. The thin shell limit is non-degenerate due to the additional Cosserat bending stiffness.

It is shown that the dimensionally reduced formulation is well-posed along the same line of argument
which showed the well posedness of the three-dimensional model [Nef03a]. Decisive use is made of a dimen-
sionally reduced version of an extended Korn’s first inequality recently proved by the author [Nef02].
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1 Introduction

1.1 Generalities on shells

The dimensional reduction of a given model is already an old and mature subject and it has seen many ’solutions’.
The different approaches toward elastic shell theory proposed in the literature and relevant references thereof
are, therefore, too numerous to list here. In any case our own proposal falls within the so called derived
approach, i.e., reducing a given three-dimensional model via (physically) reasonable constitutive assumptions
on the kinematics to a two-dimensional model' as opposed to either the intrinsic approach which views
the shell from the onset as a two-dimensional surface and invokes concepts from differential geometry or the
asymptotic methods which try to establish two-dimensional equations by formal expansion of the three-
dimensional solution in power series in terms of a small parameter. The intrinsic approach is closely related
to the direct approach? which takes the shell to be a two-dimensional directed medium in the sense of a
restricted Cosserat-surface [CC09].> Two-dimensional equilibrium in appropriate new stress and strain
variables is postulated ab-initio independent of three-dimensional considerations, cf. [Ant95, GNW65, ET58].

A detailed presentation of the classical shell theories can be found in [Nag72]. A thorough mathematical
analysis of linear, infinitesimal shell theory, based on asymptotic methods is to be found in [Cia98a] and the
extensive references therein, see also [Cia97, Cia99, Ant95, DS96, Dik82]. Excellent reviews and insightful
discussions of the modelling and finite element implementation may be found in [SB92, San95, SB98, GSW&9,
GT92, BGS96, BR92] and in the series of papers [SF89, SFR89, SFR90, SRF90, SK92, SF92]. Recently, new
C'-conforming implementations for thin Kirchhoff-Love shells have been proposed in [COS00, CO01]. Properly
invariant elastic plate theories are derived by formal asymptotic methods in [FRS93].

Let us sketch first the apparent areas of agreement in the development of the elastic case. The various
shell models based on linearized three-dimensional elasticity proposed in the literature have been rigorously
justified in those cases, where some normality assumption is introduced, either a priori or as a result of an
asymptotic analysis, see notably the extensive work of Ciarlet and his co-workers [Cia97, Cia99]. Membrane
and bending equations are identified as leading order terms of asymptotic expansions of the three-dimensional
solution. Convergence of the computed solution (and error estimates) to the ’exact’ solution of linearized
three-dimensional elasticity is established in all relevant cases if various scaling assumptions on the data are
made.

The situation is slightly less clear as far as infinitesimal restricted Cosserat models (Reissner-Mindlin plate,
Timoshenko beam etc.) are considered. Here the convergence as the thickness tends to zero of some director to
the (linearized) normal of the surface poses additional difficulties, but can be overcome, see e.g. [Ebe99] for the
plate bending problem. It is known, that the solution of the infinitesimal Reissner-Mindlin model for various
values of the shear correction factor x converges to the solution of the infinitesimal Kirchhoff-Love model for
vanishing thickness.

Already in the infinitesimal case it becomes apparent that a model, involving membrane and bending
simultaneously cannot be obtained by formal asymptotic methods but is a result of careful modelling.
One such successful model, the Koiter model [Koi70] is simply the sum of the correctly identified membrane
and bending contribution, properly scaled with the thickness. The mathematical analysis establishing the
well-posedness of all these infinitesimal models is fairly well established and will not be our principal concern.
Though analytically understood, the numerical implementation of these infinitesimal, linear shell models is still
an area of very active research, mostly because of intricacies related to the singular character of the considered
systems as the thickness tends to zero. In the engineering community, the infinitesimal Reissner-Mindlin model
is usually preferred numerically to which witnesses the uncountable proposals of new implementation variants,*
since one only needs to solve a second order problem with standard C°-finite elements for an augmented field
instead of a fourth order problem with difficult to handle C'-finite elements in the Kirchhoff-Love model. More-
over, the Reissner-Mindlin model allows for transverse shear, which may occur at free or loaded edges of
the three-dimensional plate. However, the infinitesimal Reissner-Mindlin FEM-implementation is notoriously
ill-conditioned without further provision while the underlying mathematical problem is well-posed. Membrane

I This line of thought is expressed by W.T. Koiter [Ko0i69, p.93]:” Any two-dimensional theory of thin shells is necessarily of an
approximate character. An exact two-dimensional theory of shells cannot exist, because the actual body we have to deal with,
thin as it may be, is always three-dimensional. ... Since the theory we have to deal with is approximate in character, we feel that
extreme rigour in its development is hardly desirable. ... Flexible bodies like thin shells require a flexible approach.”

2The philosophy behind the direct approach is best framed by P.M. Naghdi[GN69, p.58]: “The theory of Cosserat is exact, but
shell theory derived from the three-dimensional equations is approximate. It may be a matter of taste, but we prefer to regard
an exact theory as more fundamental. The Cosserat theory of shells (Cosserat surface) is on a comparable footing with any exact
three-dimensional continuum theory.” This remark remains partly true today: while properly invariant derived shell models are
now available, they do not necessarily guarantee invertibility.

3Restricted, since no material length scale usually enters the direct approach, only the relative thickness h appears in the model.

4There is a certain discrepancy between the effort put into the investigations of the infinitesimal Reissner-Mindlin model
and its physical significance, given that the model is not frame-indifferent and for that matter, strictly speaking, irrelevant.



and shear locking, roughly meaning that the calculated solution on coarse meshes only poorly approximates the
exact solution has motivated the search for locking free implementations and has stipulated to some extent the
development of nonconforming elements and of discontinuous Galerkin methods (cf. references in [LNSO02])
which in principal should not suffer from locking. In this respect we mention also the hierarchical plate mod-
els [Sch96] which are a direct outcome of the finite element methods applied to thin structures. The idea there
is to discretely minimize the three-dimensional energy functional over some thickness-restricted ansatz-space,
preferably a polynomial approximation in thickness direction.

In the finite, elastic case, mostly based on the Saint Venant-Kirchhoff (SVK) free energy, the formal asymptotic
methods are still successful in that they identify again leading membrane and bending terms. As far as the
occurring membrane contribution is concerned, it is Wi, in (7.83) which is given in [GKM96, FRS93]. However,
methods based on variational I'-convergence [DR95a] suggest a fundamentally different membrane term which
leads to a nonresistance of the membrane shell in compression. It should be noted, that the widely accepted
membrane term of (7.83) shows the characteristic apparent change of the Lamé-moduli for the two-dimensional
structure. As far as the bending term is concerned, some agreement has been obtained that the term consistent
with the 3D-SVK energy is a quadratic expression in the second fundamental form of the surface. Nevertheless,
the coefficients of this quadratic form give still room for some discussion: the Hamiltonian based derivation in
[GKMO6] differs from the results obtained by formal asymptotic analysis in [FRS93, Cia97] precisely in whether
there is the same apparent change of the elastic moduli as occurs in the membrane case. This difference is
immaterial as regards the mathematical analysis and can be explained by the use of a linear kinematical ansatz
in thickness direction in [GKM96] whereas a quadratic ansatz in a Hamiltonian framework would yield the same
result as in [FRS93, Cia97] and Wyeng in (7.83).

It must be noted, that proceeding by asymptotic analysis is based itself on certain a priori assumptions,
namely that all appearing quantities indeed admit an expansion in terms of a small parameter and satisfy certain
scaling assumptions. No rigorous justification of the formal asymptotic approach has been given so far for finite
elasticity, precisely because of the lack of some encompassing theory which guarantees the well-posedness of
the three-dimensional problem. The application of formal asymptotic methods has never led to basically new
plate or shell models, it seems to be restricted to an a posteriori justification of existing models. By contrast,
the equations obtained by a variational approach i.e. energy projection and those for a Cosserat surface are
independent of scaling assumptions.

We wish to remark that in the finite regime, no 'unique’ elastic three-dimensional model exists: we have
always to make constitutive choices for the bulk behaviour which has consequences for the reduced theory. In
this case, making additional, physically sound, constitutive assumptions on the two-dimensional response itself,
seems to be just another viable step in the modelling procedure. However, for infinitesimal strains we know the
isotropic elastic bulk behaviour exactly® and subsequently it is reasonable to establish the convergence for van-
ishing relative thickness h to precisely one model without additional constitutive two-dimensional assumptions.
This remark constitutes a strong justification for the asymptotic method in the infinitesimal case.

It has already been observed that the leading order term without additional provisions on the data is either
a membrane or a bending term. But in applications, there are usually regions of a shell where membrane
effects dominate while in others, bending is dominant. A fully three-dimensional resolution of a thin shell
problem remains elusive notwithstanding the increased computer power. Hence, there is still a need to come up
with a sound finite model, combining both effects in one system of equations, as does the Koiter model in the
infinitesimal case.

Since we have in mind the future extension of the herein presented plate theories to multiplicative plasticity
let us add that the picture is all the more complicated as far as elasto-plastic extensions are concerned, in part
because of the (limited) state of the art of finite elasto-plasticity itself and in part because it is not straight
forward to transform an existing 3D-model to its 2D-counterpart, see [BS99, BW91, SRF90] for representative
examples. It is technically difficult to carry through the program of the formal asymptotic methods and in fact
such a development seems not to have been undertaken in the finite case.

In order to get two-dimensional limit equations for plasticity despite these difficulties of some sort anyhow,
additional mechanical assumptions on the stress distribution in the shell are usually introduced (e.g. plane
stress, zero normal stress S;.e3 = 0 or less demanding: zero normal tractions on the midsurface, S5 33 =
0), moreover, the implementation of generally smooth, higher order shell elements is at variance with the lack of
regularity either in (finite) plasticity or for very thin rigid shells. More problematic from a mathematical point
of view, in many cases not an underlying self-consistent two-dimensional mathematical shell model is discretized

5If we assume that pe = 0 in the finite three-dimensional Cosserat model, then the linearization coincides in fact with the
classical infinitesimal model and the three-dimensional bulk has a unique infinitesimal response! The very possibility of u. = 0 for
a fully invariant three-dimensional finite Cosserat model has been considered impossible in the Cosserat community, since in effect,
no infinitesimal, linear Cosserat bulk model would exist. While we keep completely track of u. > 0 and p. = 0 simultanuously, it
is our belief that p. = 0 is physically the correct choice.



in actual computations, but the shell like behaviour is enforced on the implementational element level only (this
is the so called degenerated solid approach). There, evolution laws for plasticity are fully three-dimensionally
integrated and elastic equilibrium is computed through numerical integration over the thickness. Only the two-
dimensional kinematical constitutive ansatz for the total shell deformation reduces the problem. One has termed
this method 2.5—dimensional. This applies to both elasticity and elasto-plasticity but, as already mentioned,
the resulting problem is not consistent with any really two-dimensional definite model and a mathematical
analysis for such a numerically motivated approach seems to be out of reach at present.

The Hamiltonian based, variational approach, which we will follow in disguise, has the distinctive advan-
tage of being flexible enough to treat simultaneously finite elasticity, finite Cosserat models as well as finite
elasto-plasticity in the framework of the multiplicative decomposition. This is to be contrasted with classical
approaches for shells in curvilinear coordinates and indicial notation which must remain a mystery for all those
not initiated.

The classical models proposed in the literature lead to effective numerical schemes only if the relative
thickness h of the structure is still appreciable, i.e. classical bending terms are present and regularize the
computation. However, there is an abundance of new applications where very thin structures are used, e.g. very
thin metal layers on a substrate (in computer hardware, for the characteristic relative thickness h < 5-107%).
In these cases, classical bending energy, which comes with a factor of h? compared with the membrane energy
contribution, cannot play a preponderant role for non-vanishing membrane energy. See also [BJ99] for an
application to thin films. But the membrane terms e.g. in a finite, invariant Kirchhoff-Love plate or finite
Reissner-Mindlin model are non-elliptic and the remaining (minimization) problem is not well-posed even if
bending is included.

1.2 Outline and scope of this contribution

We therefore face several problems: first, there is no as yet generally accepted finite, properly invariant, elastic
plate and shell model (and perhaps there cannot be); second, classical finite shell models are in general insuf-
ficient to account for very thin structures, the thin plate limit is degenerated; third, non-classical size effects,
which cannot be neglected for very thin structures [CCCT03] are usually not accounted for; fourth, classical
infinitesimal or finite shell models predict unrealistically high levels of smoothness, typically at least C%%(w)
for the midsurface.

We propose therefore a new shell model for very thin almost rigid materials in addition to those already
established which should remedy some of the aforementioned shortcomings with a view towards a subsequent
stringent mathematical analysis and possible numerical implementation. We want to provide a model which
is both theoretically and physically sound, such that the numerical implementation can concentrate on real
convergence issues.

We view the obtained two-dimensional models as models in its own right: rather than trying to establish
convergence results of the underlying three-dimensional model to its two-dimensional counterpart for vanishing
thickness (which seems to be elusive given the appearing nonlinearities) we focus in a first attempt on the
intrinsic mathematical problems inherent in the reduced models.

After introducing the underlying parent three-dimensional finite Cosserat model with size effects and
independent microrotations and recalling the obtained existence results for this model, we proceed by
considering a quadratic kinematical ansatz over the thickness where the director is automatically related to
the rotations. Using generalized zero normal tractions on the transverse boundary, the two unknown leading
coefficients in the quadratic ansatz can be determined in analytical form. The three-dimensional energy is
then evaluated for the assumed form of plate deformation and analytically integrated over the thickness, this
constitutes the energy projection. Boundary conditions are consistently reduced. The full minimization problem
for the plate is gathered in section 4. The new model has six degrees of freedom (6 dof), including naturally
one-drilling degree and allows for transverse shear. It is shown that the membrane part is uniformly Legendre-
Hadamard elliptic at given rotations. This finishes the Cosserat modelling part.

Following, we derive a new Korn’s first inequality for plates and elasto-plastic shells which is decisive for
the mathematical treatment of the new models in a variational context. Depending on material constants
and boundary conditions, different mathematical existence theorems are proposed. Generically, we obtain for
the midsurface deformation m € H'?(w,R3), i.e. the midsurface must not necessarily be continuous. It is
shown, that the limit of vanishing relative thickness h — 0 in the new model is non-degenerate. The limits
e — oo and the zero internal length limit L. — 0, as well as the pure membrane limit h — 0, L. — 0 and
the pure bending for vanishing internal length, are also described. We propose as well a modification of the
new plate model which ensures local invertibility of the reconstructed deformation gradient and allows for large
stretch. This modification takes place on the two-dimensional level only which implies that there need not
exist any underlying three-dimensional model. Nevertheless, the modified two-dimensional model is shown to
be physically more plausible than the preceeding model.



For comparison, we next present a derivation of a rather classical finite, invariant Reissner-Mindlin model
with one independent director and of the finite, invariant Kirchhoff-Love plate model. It is shown that both finite
models exhibit a certain unphysical response. A modification of the Kirchhoff-Love model in view of expected
small strain behaviour allows to establish the existence of minimizers. However, the obtained regularity is
unrealistically high and the implementational cost is known to be very large thus limiting in effect the usefulness
of the Kirchhoff-Love model. The pure bending problem based on either Reissner-Mindlin or Kirchhoff-Love
is shown to admit minimizers and to coincide with the pure bending problem obtained from the new Cosserat
model.

In the appendix we introduce the relevant notation, detail the treatment of external loads and present the
observed scaling relations. Generalized convexity conditions are recalled and macroscopic shear failure for plates
is defined, including a Baker-Ericksen inequality for plates.

In order to relate the new finite Cosserat plate model to more traditional approaches, we show, that a
linearization of the new model basically results in the classical infinitesimal Reissner-Mindlin model (without
extra size effects) and shear correction factor x = 1.

2 The underlying finite three-dimensional Cosserat model in varia-
tional form

In [Nef03a] a finite, fully frame-invariant Cosserat model is introduced. The problem has been posed in a
variational setting. The task is to find a pair (¢, R) € R?® x SO(3,R) of deformation ¢ and independent
microrotation R satisfying

/ W () + Weure(8) = (f, ) — (M, R) dV — / (N, ) dS — / (M., T)dS — min. wrt. (o, F),
Q I's e

— =T
U=RF, F=Vp, ¢p=4da

= Ry, rigid prescription
e polar(Vip),  consistent coupling = Sy := F 1DpWy,,(U) € Symon T

_ — . . A — 2
Wap (@) = | sym(@ = W + o || skew(@) > + 5 tr [sym(T - 1)]

14+
I+p =t

L ‘ . ‘
Wears(8) = p == (1+ g LLIAINY) (s [|sym &I + ag || skew R + ar tr[8]°) 7

K= RTDXR = (RTV(R.el),ETV(R.eg),ﬁTV(R.eg)) , third order curvature tensor.

The total elastically stored energy W = Wy, + Weury depends on the deformation gradient F' = Vi and
microrotations R together with their space derivatives. In general, the micropolar stretch tensor U is not
symmetric. Here Q C R® is a domain with boundary dQ and I' C 9Q is that part of the boundary, where
Dirichlet conditions gq, Rq for displacements and microrotations, respectively, are prescribed while I's C 99
is a part of the boundary, where traction boundary conditions N are applied with I N T's = (). The external
volume force is f and M takes on the role of external volume couples. In addition, I'c C 912 is the part of the
boundary where external surface couples M, are applied with I’ N I'c = (. The parameters pu, A > 0 are the
Lamé constants of classical elasticity, p. > 0 is called the Cosserat couple modulus and L. > 0 introduces
an internal length which is characteristic for the material, e.g. related to the grain size in a polycrystal.
The internal length L. > 0 is responsible for size effects in the sense that smaller samples are relatively stiffer
than larger samples. If not stated otherwise, we assume that as; > 0,a > 0,7 > 0. Consistent coupling



ensures that no non-classical effects are artificially introduced at the Dirichlet boundary.5

2.1 The different three-dimensional cases
We distinguish five completely different situations:

I pe >0,04 >0,p>1,q>0, unconditional elastic macro-stability, local first order Cosserat micropo-
lar, unqualified existence, microscopic specimens, non-zero Cosserat couple modulus. Fracture excluded.

Il: e =0,04 >0,p>1,q>1, elastic pre-stability, nonlocal second order Cosserat micropolar, macro-
scopic specimens, in a sense close to classical elasticity, zero Cosserat couple modulus. Fracture excluded.

III: pe =00, 4 > 0, p>1,q>0, unconditional elastic macro-stability, the constrained gradient Cosserat
micropolar problem (indeterminate couple stress model). Compatible Dirichlet boundary conditions:
©|. = gd, polar(Ve)|. = polar(Vga)|,.-

IV: ue =0, a4 =0,0<p<1,q=0, elasticpre-stability, nonlocal second order Cosserat micropolar, macro-
scopic specimens, in a sense close to classical elasticity, zero Cosserat couple modulus. Since possibly
© & WH(Q,R?), due to lack of elastic coercivity, including fracture in multiaxial situations.

V: pue =0,L. =0, elastic pre-stability, finite elasticity with free rotations and microstructure. Weak so-
lutions of a corresponding finite elasticity model are stationary points of this minimization problem.
Allowing for sharp interfaces.

We refer to 0 < p < 1, ¢ > 0 as the sub-critical case, p = 1, ¢ > 0 as the critical case and p > 1,q > 1
as the super-critical case. In [Nef03a] the first three cases are mathematically treated and case V is indeed
shown to allow for sharp interfaces.

2.2 The coercive inequality in three-dimensions

The decisive analytical tool for the treatment of case IT (super-critical) is the following non-trivial novel coercive
inequality:

Theorem 2.1 (Extended 3D-Korn’s first inequality)

Let Q C R® be a bounded Lipschitz domain and let T' C 09 be a smooth part of the boundary with non
vanishing 2-dimensional Lebesgue measure. Define Hy*(Q,T) := {¢ € H"*(Q) | 4. = 0} and let F,,F, ' €
C(Q,GL(3,R)). Moreover suppose that Curl F, € C*(Q,M?*3). Then

3t >0V e H* (L) [VoF, H(z) + B, (2) Vo' 20 > ¢ 0l -

Proof. The proof has been presented in [Nef02]. Note that for Fj, = VO we would only have to deal with the
classical Korn’s inequality evaluated on the transformed domain ©(Q2). However, in general, F), is incompat-
ible giving rise to a non-riemannian manifold structure. Compare to [CGO1] for an interpretation and the
physical relevance of the quantity Curl F},. |

Motivated by the investigations in [Nef02], it has been shown recently by my colleague W. Pompe [Pom03]
that the extended Korn’s inequality can be viewed as a special case of a general class of coercive inequalities
for quadratic forms. He was able to show that indeed F, € C(Q, GL(3,R)) is sufficient for (2.1) to hold without
any condition on the compatibility.

However, taking the special structure of the extended Korn’s inequality again into account, work in progress
suggests that continuity is not really necessary: instead F, € L>(Q, GL(3,R)) and Curl F,, € L3+9(Q) should
suffice, whereas F), € L (2, GL(3,R)) alone is not sufficient, see the counterexample presented in [Pom03].

In view of the important role of the extended Korn’s first inequality let us agree in saying that a bulk-material
is elastically pre-stable, whenever

JHeM*®, H#0: D+W(x,F).(H,H)=0 (2.3)
3¢t >03G e GLT(3,R) VH € M®*® : DZW (z,F).(H,H) > c¢"||G(z)"H + H'G(x)|]*.

61f, instead, we assume for the stretch energy

Winp(T) = p||sym(T — 1)[|2 + pe || skew(T)]|? + A (det[ﬁ] —1)2+ (detl[ﬁ] - 1)2) + 8| Cof U — 1%, (2.2)

then Wip(U) is polyconvex w.r.t. F' and local invertibility of the deformation ¢ can be guaranteed. However, basing the dimensional
reduction on this modification, would lead to excessive formulas.



In this terminology, infinitesimal classical elasticity is pre-stable with G = 1l due to the classical Korn’s first
inequality and the extended Korn’s first inequality links the smoothness of G to the positive definiteness of the
elastic tangent stiffness tensor.

2.3 Mathematical results for the three-dimensional problem

Using the extended Korn’s inequality, in [Nef03a] the following has been shown:

Theorem 2.2 (Existence for 3D-finite elastic Cosserat model: case 1.)

Let Q C R® be a bounded Lipschitz domain and assume for the boundary data gq € H'(Q,R?) and Rq €
Whitr(Q SO(3,R)). Moreover, let f € L*(2,R?) and suppose N € L?(I's, R?) together with M € L*(Q, M2*3)
and M. € L*(D¢,M?*3). Then (2.1) with material constants conforming to case I admits at least one minimizing
solution pair (p, R) € H*(Q,R?) x WhtP(Q,SO(3,R)).

Theorem 2.3 (Existence for 3D-finite elastic Cosserat model: case II.)
Let Q C R® be a bounded Lipschitz domain and assume for the boundary data gq € H'(Q,R?) and Rq €
whitete(Q SO(3,R)). Moreover, let f € L*(Q,R*) and suppose N € L?(T's,R®) together with M €
LY(Q,MP*3) and M. € L'(T¢,M3*3). Then (2.1) with material constants conforming to case II admits at
least one minimizing solution pair (¢, R) € H'(Q,R?) x WhiTrPHe(Q SO(3, R)).

Theorem 2.4 (Existence for 3D-finite elastic Cosserat model with consistent boundary coupling)
Let Q C R® be a bounded Lipschitz domain and assume for the boundary data gq € H'(Q,R*) and polar(Vgq) €
whiteta(Q SO(3,R)). Moreover, let f € L?(Q,R*) and suppose N € L?(T's,R®) together with M €
LY(Q,M*3) and M. € L'(T¢,M3*3). Then (2.1) with material constants conforming to case I/II and the
consistent coupling condition

EF = polar(Vip)r, (2.4)
admits at least one minimizing solution pair (o, R) € H'(Q,R?) x Whi+r+e(Q SO(3, R)).

3 Dimensional reduction of the Cosserat model

3.1 The three-dimensional problem on a thin domain

The basic task of any shell theory is a consistent reduction of some presumably ’exact’ 3D-theory to 2D. The
problem (2.1) will now be adapted to a shell like theory. Let us assume that we are given a three-dimensional
absolutely thin domain
h h]
2727
with transverse boundary 90" = w x {—%, %} and lateral boundary 00 = Gw x [—%, %], where w
is a bounded domain in R?> with smooth boundary dw and h > 0 is the thickness, and a deformation ¢ and

Q= wx [~ wC R, (3.5)

. . =3d
microrotation R

o: WCR R, R0, cF - SOB,R), (3.6)
solving the following minimization problem on p:
/me(U) + Weurv(R) — (f, ) dV — / (N,¢)dS + min. w.r.t. (p,R),
2n Qprereu{vax[— 5,51}

— =T h h
U=RF, ¢, =91, Lg=7x[- Yo C 0w, ¥s Ny =10
0

57 5]7
R\rg = polar(Vip), consistent coupling (3.7)

— — — A — 2
Winp (U) = pu || sym(U — 1)||” + pec || skew (U) ||* + 2 tr [sym(U — 1)]

1+
itp ="

L
Weurv(R) = i2 (1+ aq L2189 (a5 | sym &% + ag || skew &]|? + a7 tr [ﬁ]2) ,

R = ETDXE = (ETV(}_{el),}_fTV(E.eg),ETV(E.eg)) , third order curvature tensor.

S = —3d, . . . . i,
We want to find a reasonable approximation (¢s, Rs) of (p, R™) involving only two-dimensional quantities. The
reduction is based on assumed kinematics and energy projection.



3.2 Enriched quadratic Cosserat kinematics

In the engineering shell community it is well known [Che80, Sch85, Pie85] that the ansatz over the thickness
should at least be quadratic” in order to avoid the so called Poisson thickness locking® and to fully capture
the three-dimensional kinematics without artificial modification of the material laws?, see the detailed discussion
of this point in [BR00] and compare with [BR92, BBR94, RR96, BR97, SB98].

For a Cosserat theory for small elastic strains!? we assume therefore the quadratic ansatz in the thickness
direction for the (reconstructed) finite deformation ¢, : R — R?® of the shell like structure

el = m(e) + (2an(e0) + S 0en)) - Ruao,s.0). 35)

where m : w C R?2 — R3 takes on the role of the deformation of the midsurfaces of the shell viewed as a
parametrized surface, the (reconstructed) rotation Ry : O — SO(3,R) and with yet indeterminate functions
Om, 0p : w C R? — R allowing for thickness stretch (¢,, # 1) and transverse shear (R, 3 # i).!' The
(reconstructed) rotations in the thin shell are assumed to be constant over the thickness

Rs(x,y,z) = R(z,y) . (3.9)

This is then a kind of plate formulation since for the moment the unstressed reference configuration w was
assumed to lie in the plane. This implies for the (reconstructed) deformation gradient of the shell (plate)

— — — z2 — ~ ~ 22 ~
Fy = Vips(z,y,2) = (VYm| 0m R3) + 2 - (V(0m R3)|o» R3) + 5(V(Qb R3)|0) = A, + 2 A + 5B (3.10)

It should be noted that the augmented ansatz changes already the term which is linear in the transverse
direction.!? Invertibility of the shell deformation (as a physical requirement) entails

Vze[-h/2,h/2]: det|Vips(z,y,2)] > 0= on(z,y) >0, (3.11)

and we must guarantee that g, : w — RT. The three-dimensional local part of the elastic Cosserat energy in
(2.1) has the form

_ _ _ _ _ A _ 2
W(F,R) = % IR'F+ FTR — 211 + % IR'F - FTR|]? + g R F+FTR-21] . (3.12)

The equilibrium equations of the three-dimensional Cosserat problem given in [Nef03a] show that on the trans-
verse boundary (exact)

¥ (w,y, +h/2), B (@, +h/2)).c5 = N"(2,y, +1/2)
53d rans
Si}d(V(pE}d(m:y:_h/Q):R ('Taya_h/2))'(_e3) = Nt (.’L',y,—h/2), (313)

where N'a are the prescribed tractions N on the transverse boundary given globally in the basis (e, 2, €3).
This implies (exact)

B (2, y,+1/2) T SM (V¥ (@, y, +1/2), B (2,5, +1/2)) €5 = B (@, y, +h/2) T N"S (2, y, +h/2) (3.14)
—3d —3d —3d rans
R (ZL“, Y, _h/2))TSI3d(v<p3d(l’7 Y, _h/2)7 R (l’, Y, —h/2)).(—€3) = R (ZL“, Y, _h/2))T]Vt (l’, Y, _h/2) .
Abbreviate

N* = NS (g g 1h/2), N7 = N™(z,y, —h/2), (3.15)

“This mimics the (1|1|2)-hierarchic plate models: linear in-plane displacement and quadratic transverse displacement, instead
of (1]1]0)-plate models with constant transverse displacement. The dimensional reduction is achieved by energy projection on the
enriched ansatz space. In this sense, we propose a (0o0|0o|2)-model.

8Meaning that the bending stiffness of the reduced theory would tend to oo as the Poisson-number v — L.

9Let us quote from [Sch85]: ”Due to bending this change of length is generally asymmetric about (the midsurface) and leads to
a shift of the original midsurfaces.... This asymmetry requires at least a quadratic representation of the (deformation in thickness
direction).”

10Which captures already shells with large in plane rigidity and high transverse flexibility.

1 This leads at first glance to a 8 *dof’ theory: 3 components of the membrane deformation, 3 degrees of freedom for R € SO(3,R),
including naturally one drilling degree of freedom for in-plane rotations, 2 degrees of freedom over the thickness. However, the
two thickness coefficients g, gp will be eliminated, leaving us finally with a 6 'dof’ model. Already in the classical elasticity context
the beneficial influence of drill rotations for the numerical implementation has been investigated in the linear case in [HB89] and
in the finite case in [SFH92].

12The corresponding stress field through the thickness EZSl(VwS (w,y,2), Rs).e3 is at least linear in the transverse variable z
and not constant, as would be the case in a first order (linear) ansatz for the deformation.
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and define
1
Nies 1= N385 (g gy, +h/2) + N'TAnS (g gy, —h/2), Nag = 3 [Ntrans(x,y, +h/2) — N0 (g g —h/2)] . (3.16)
Then also (exact)

(B (x,y, +1/2))T SV (2, y, +h/2), R (z,y, +h/2)).e5,e3) = (NT, R (z,y, +h/2)).e5) (3.17)

(B (2,y,~h/2))" SV (2, y, —1/2), R (2, y,—h/2)).e5,e5) = (N~ B (2,4, ~h/2)).c3) -

We determine g,,,, gy from the corresponding requirement in terms of the assumed kinematics (s, R;), yielding

(T%f(w,y,ih/2)Sl(V<ps($,y,:I:h/2),}_%s).63,63> = £(N" (3, y, £h/2), Rs(z,y, £h/2).e3) =
R S1(Vps (@, y, £h/2), )., e5) = £(N"™(a,y, £h/2), Rees), (3.18)

which condition reduces to zero normal tractions on the transverse free boundary (in the absence of
tractions N*22%) in the classical continuum limit of R = polar(Vi). Since

_ o _ A L
SI(F,R) =R {u (FTR +RF- 211) + 20 skew(R' F) + Str [FTR +RF- 211] n} : (3.19)

the requirement (}_%Tsl(Vgos(x,y,z),}_%).eg,63> = £(N¥ans (3 y +h/2), R.e3) turns into
£ (N (2, y, £h/2), R.e3) = pu (2(0m — 1) + 22 0p)

A ((ﬁT(me), 1) + o + 2 0m (VR3]0 R, IL) + 2 05 — 3 + Z—; on(R' (VR3|0), 11>> , (3.20)

independent of the Cosserat couple modulus p.. Let us evaluate the last equation for z = +h/2. This
yields two linear equations in g,,, 0p

(N, R.e3) = p(2(0m — 1) + h op) (3.21)
+A <<RT(vm|0), 1) + 0 + h/20m(VR3|0) TR, 1) + h/2 05 — 3 + %ng(RT(vﬁgm), 11))
—(N7,Re3) = p(2(om — 1) — hop)

A ((RT(me), 1) + o — h/20m(VRs|0) R, 1) — h/2 0p — 3 + %ng@T(vEm), 11)) .

The exact solution is given by

(gm> _ 1 ( @u+Nh_ —AE(VR|0)TE, 11>>
%) (2u+ N2 h— 2 (VR,|0)TR, 1)° \~Ah{(VRs[0)"R, 1) (2u+ )
(Naiwr, Bs) + 2+ A) = A [(Vm]0), ) — 2]
( o ) L (322)

which will be approximated through

<em> - 1 ( (2u+A)h —*T<VR3|0),E>> <<Ndiff,R3>+(2u+A> - [((VmIO),E—?]) _

o) " 2u+ N2 h \=Ah((VRs|0),R) (20 + \) (Nres, Rs3)
(3.23)
Hence the leading terms'® are:
om =1~ 52— [(Vml0), ) ~ 2] + <g‘zﬁ+’f§> - S (TS0, T8 (Vo T
_ )‘ §5) ) ( res, > )\
=5 3 ((VERs|0), R) + OSSN, ((VR3|0), R)(Naisr, Rs) (3.24)
A2 = _
m((VR3|O), R> [((Vm|0), R> — 2] .

3 Note that om, 0p have different units. g, is dimensionless, whereas [05] = m™1.
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The term ﬁ((VRg 0), R) [((Vm|0), R) — 2] represents a nonlinear coupling between midsurface in-plane
strain and normal curvature, an artefact of the derivation not present in the underlying three-dimensional theory
where only products of deformationgradient and rotations occur, we therefore neglect this term.'* Moreover,

for a almost rigid material with A > 1 we have W < 1, leading finally to the reduced expressions:
A - (Nait, Rs)
=1- 0),R) — 2| + ——=
A 53 - (Nres:§3>
=- VR3|0),R) + ——. 3.25
0=~ gy (V0 F) 4 e (3.25)

The formula (3.25) shows the physically reasonable behaviour that to first order, fibers will be elongated
by opposite transverse tractions and in-plane stretch leads to thickness reduction.

Having obtained the general form of the relevant coefficients g,,, 0p, it is expedient to base the expansion
of the three-dimensional elastic Cosserat energy on a further simplified expression, namely

F, =Vps(z,y,2) = (Vm| o ﬁg) +z- (V§3|Qbﬁg) =A,+2A, =F,, A,=A4,,. (3.26)

This modification has only consequences as far as the resulting bending contribution is concerned and is moti-
vated by our

Remark 3.1 (Guiding principle of reduction)
(G1.) The reduced model should at no place contain mixed products of normal curvature R (VR3|O) and

midsurface in-plane strain (R (Vm|0) —)2, since such a coupling is not present in the underlying three-
dimensional model.

(G2.) The reduced model should at no place contain space derivatives of the thickness stretch o,,, since in the
underlying three-dimensional Cosserat model curvature is only present through the third order curvature
tensor R related only to rotations R.

The use of (3.26) excludes (up to order h®) exactly those terms which would violate our principle had we used
(3.10) instead. A simple but tedious calculation reveals that

LIR" A, + ATRI? + Atr 74, +ATR} (3.27)
= 2
_ —T — 2 ,U/\ =T = 2 (Nres; R3>
= pl|sym(R" (VR3|0))||* + n )\tr {sym(R (VR3|O))] + 22u+ A 2

Exactly the same computations as for the bending term allows us to conclude that
i _ A — 12
%HRTAT + ATR— 21| + Sor R A, + A,TR] (3.28)

]2 N (Ndiff;ﬁ3>2
22pn+A)

LA
2u+/\

= pllsym(R" (Vm[By)) - 1 + r [sym(R" (V| Rs)) -

3.3 Dimensionally reduced energy: energy projection

Now we perform the analytical integration over the thickness in terms of the reduced kinematics. We insert the
result Fy (3.26) and R, instead of F and " into (3.7). Since

L . 1 — — — .
| sym(ER. Fy) — 1||> = IALR + R Ap+2ATR+ 2R A, — 21| (3.29)

Lirs w7 2 75, Bl %5 2 5 , Bl 2
:Z||AmR+R Ay —20|°+2z (A, R+ R Am—2]1,A,,R)+Z||A,,R+R Al

141t would be possible to base all further considerations indeed on the exact solution of g, 0, and it seems that the resulting
two-dimensional model would allow an existence proof. However, the much more involved expressions are not easily interpreted
and do not reduce to the classical expressions upon linearization.
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and a similar expression for the trace and skew part, we obtain by explicitly integrating over the (absolutely
thin plate like referential) domain Qp = w x [-%, 2

2732

— 2
//me (F,,R,)dV = < IATR + R Ay, — 21| + ’uc||ATR R Al + 5tr [ATR+R Am —211] > dw
_h

L RPLR c = B . A — 2
* / 12 <%||AZR+ R AP+ EATR R A + S [AIR+R" 4] ) dw

=/'(mmwm (V) = P + e | skew(F (VB + 525 [sym(® (VnfF)) 1]

(Ndiff;ﬁ3>2
+WE?§>M+ (3.30)

w

[ 55 [ svm R (R0 + e sk (B (VRN + 52 @R+ DB Y
15 | Allsym 3 fte || skew 3 Y r |[sym 3 32+ V) 2 w

w

= [ (sl sy R (FmiFe)) = P+ e ke (R (TR + 52 [sym(R (TR - 1]

w

(Nain, Bs)” | (Neos, Ba)” )
22u+ )  24(2u+N)

3
+/g(me (VRO + el ke (B (VRfO)|P + 52t [sym(R wmmﬂ)w

w

and we may call (AL R + RTAm — 211) the membrane part and (AR + RTAT) the bending part. The
influence of

((Ndiff,R3>2 (Nresaﬁ3>2> (3.31)

22u+ N | 242u+ N

in the reduced energy is of higher order than the comparable influence of the assumed resultant loading, cf.
(10.102). Moreover, for large tractions, the influence of this term in the energy would coerce the component R
to adjust orthogonal to tractions IV instead of presumably parallel. Since 2+ A > 1 for a rigid material it is
therefore suggested to neglect this contribution as well. This is all the more necessary, since (3.31) would be a
non-frame-indifferent contribution to the plate elastic energy.

3.4 Reduction of the curvature

Similarly the Cosserat curvature term is integrated over the thickness. Consider
=T . = —=T — =T — —T —
& =R DR, = (R (V(R.e1)|0), R (V(R.e2)|0), R (V(R.63)|O)) , (3.32)

the reduced third order curvature tensor. Integration over the domain Q) = w x [—5, 5] yields

h LLtp ) 5 2\ 22
// Weury (8) dV :/u e (1 L |81 (a5||symﬁs|| + ag || skew & || +a7tr[ﬁs]) dw.

(3.33)
3.5 Reduction/deduction of the boundary conditions
Taking the Dirichlet boundary conditions for ¢ into account and the kinematical ansatz, we have
22 —
pulo.) =) + (2enen) + S 0@ Fuaon), ooy, =m@ns). (639
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Evaluating for +h/2 yields two vector equations:

satey, +112) = (o) + (W2 0n(o) + ' () ) R0 (3.35

dale =1/ = mla,) + (/20 (e) + G 0sen)) a0,

Adding and subtracting shows

h? —
gd(ma Y, +h/2) + gd(l', Y, _h/2) = 2m(a:, y) + Z:Qb(ma y) : Rs73(m7 Y, 0) (336)

ga(z,y, +h/2) — ga(z,y, —h/2) = hom(z,y) Rs 3(2,y,0) = Vga(z,y,0).e3 = 0m(z,y) Rs3(x,y,0) + o(h).

This implies

m(e,9) = 5 (0, +4/2) + ga(e,, ~h/2) % ga(2,0,0). (337)

In order get a boundary condition for the rotation we use the best available information of the three-dimensional
theory: consider the three-dimensional consistent coupling boundary condition I'% C 9Q:

—3d
R (z,y,z) = polar(Vip(z,y, z)) = polar((9(z,y, 2)|0y (7, y, 2)|0:0(,y, 2))) . (3.38)
Since gq is given on ['%, it holds that

gd(l', Y, +h/2) = 90(1'7 Y, +h/2)
gd(maya _h/2) = @(waya _h/2) = 62(10(1'7:1/70) = ng(ﬂ?,ya 0)'63 + O(h) . (339)
Hence

B (,y,0) = polar(Vip(z, y,0)) = polar((0:¢(z,y,0)|9,¢(x,y,0)|0-¢(x,y,0)))
= pOlar((adi(p(x; Y, 0)|ay90(m> Y, 0)|v.gd(m7 Y, 0)63)) ) (340)

which, in view of the assumed kinematics necessitates the consistent coupling for plates
Ry, (z,y) = polar((Vm(z,y)|Vga(z,y,0).e3)). (3.41)

This condition disposes us from the need to motivate rather artificially any boundary conditions for the rotations.
Observe that this last boundary condition does not imply that the rigid plate prescription

R — v.gd(ma Y, 0)'63
o T IVgal,y,0).e3]]’

(3.42)

holds, which would correspond to a form of clamping!® and which can be seen as a consequence of (3.36). Note,
however, that (3.41) implies (3.42) in the limit of small-strain: i.e. if (Vm|Vgq.e3);. € SO(3,R). In this sense,
(3.42) is a small strain approximation of (3.41).

lvo

15We reserve the notion clamped, meaning that i, = %

(7.83).

on 7o to traditional fourth order Kirchhoff-Love models
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Figure 1: The assumed Cosserat plate kinematics incorporating transverse shear (R3 # 1), thickness stretch
(0m # 1) and drill-rotations. Reconstructed three-dimensional deformation g, midsurface deformation m,
microrotation R.



4 The new finite Cosserat thin plate model with size effects

Gathering our results we have obtained the following two-dimensional minimization problem for the deformation
of the midsurface m : w C R? — R® and the microrotation of the plate (shell) R : w C R* — SO(3,R) solving
on w:

3
I= /thp(U) + h Weurv (Rs) + % Whend (&) dw — II(m, R3) ~ min. w.r.t. (m,R),

U= RTF, F = (Vm|Rs), F,=(Vm|omRs) reconstructed deformation gradient
non-invariant
(Nairr, R3) A
(2p + A) 2u+ A
first order thickness stretch
m),. = ga(,y,0), simply supported (fixed) (4.43)
Rl“ro = polar((Vm|Vgq4(z,y,0).e3))
— Vga(z,y,0).e3

Rs; = , alternatively: rigid prescription
o ||ng(m7y70)e3||

_ _ . — A —
W (@) = ull sym(@ = DI + pe | skew(@)| + 5= o [sym(T = )]

= pu||sym((Ry[Rz)" Vim — W) [* + pee | skew((Ry [Ra) "' Vim) ||

(Naitr, R3)
(2u+ )

v

A
2+ A

[((Vm|0), R) — 2] + o [T — 1] +

szl—

~~

o reduced consistent coupling

+ Kt pe) (<R3,mz>2 + (Fg,my>2) + tr [sym((R1|Rs)" Vim — ]12)]2

UA
2 2u+ A

e

transverse shear energy
1+p

1+4+p 1+p
© = (L g LEIR 1Y) (a5 [lsym &2 + o || skew & 12 + ar tr[8,]%) ©

L
Wcurv(ﬁs) =p 12

Rs = (RT(V(R.elﬂo),ET(V(E.CQ)|0),RT(V(E.€3)|O)) , reduced third order curvature tensor

Whend (R5) = || sym(£)[|* + pee || skew (£)[]* + tr [sym(f,)]”

LA
2u+ A
Ry = ET(V}_f3|O) = &% second order, non-symmetric bending tensor.

The (relative) thickness of the plate (shell) is A > 0. The total elastically stored energy due to membrane,
curvature and bending

h3
W = thp +h Wcurv + EWbend ’ (444)

depends on the midsurface deformation gradient Vm and microrotations R together with their space derivatives
only through U and &;. The micropolar stretch tensor U of the plate is in general non-symmetric. Here w C
R? is a domain with boundary dw and 7o C Ow is that part of the boundary, where Dirichlet conditions gq, R34
for displacements and microrotations, respectively, are prescribed. The reduced external loading functional
[I(m, R3) is a linear form in (m, R3) defined in (10.102) in terms of the underlying three-dimensional loads.
The parameters g, A > 0 are the Lamé constants of classical elasticity, g, > 0 is called the Cosserat couple
modulus and L. > 0 introduces an internal length which is characteristic for the material, e.g. related to
the grain size in a polycrystal and which is responsible for the size effects. If not stated otherwise, we assume that
as > 0,a6 > 0,7 > 0. We have included the so called shear correction factor s (0 < k < 1) to keep in line
with infinitesimal models, in our derivation however, we obtain x = 1. The model is fully frame-indifferent,
meaning that

VQ eSOB3,R) : W(QF,QR) =W (F,R). (4.45)

The non-invariant term g,, is only needed to reconstruct the 3D-deformation, which of course depends on the
non-invariant loading.'® Strain and curvature parts are additively decoupled, as in the underlying parent model
(3.7).

L60Of course, if the external tractions are rotated as well, we obtain invariance: (Q.Naig, Q.R3) = (Naig, R3)-
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4.1 The different cases for the Cosserat plate

As in the three-dimensional case, we may distinguish five different situations: (different values of p, g compared
with the three-dimensional case)

I pe >0,04 >0,p>1,q >0, unconditional elastic macro-stability, local first order Cosserat micropo-
lar, unqualified existence, microscopic specimens, non-zero Cosserat couple modulus. Fracture excluded.

Il: e =0,04 =0,p>1,q=0, elastic pre-stability, nonlocal second order Cosserat micropolar, macro-
scopic specimens, in a sense close to classical elasticity, zero Cosserat couple modulus. Fracture excluded.

III: pe =00, 4 > 0, p>1,q>0, unconditional elastic macro-stability, the constrained gradient Cosserat
micropolar plate problem (indeterminate couple stress plate model (4.61)). Compatible Dirichlet boundary
conditions: my, = gq, polar((Vm|omiin))|,, = polar(Vga)

lvo o *

IV: ue =0, a4 =0,0<p<1,q=0, elasticpre-stability, nonlocal second order Cosserat micropolar, macro-
scopic specimens, in a sense close to classical elasticity, zero Cosserat couple modulus. Since possibly
m & WHt(w,R?), due to lack of elastic coercivity, including fracture in multiaxial situations.

V: pue =0,L. =0, elastic pre-stability, finite elasticity with free rotations and microstructure. Weak so-
lutions of corresponding finite elasticity are stationary points of this minimization problem. Allowing for
sharp interfaces.

We refer to 0 < p < 1, ¢ > 0 as the sub-critical case, p = 1, ¢ > 0 as the critical case and p > 1, ¢ > 1 as
the super-critical case. We will mathematically treat the first three cases.

4.2 Constitutive consequences of the value for the Cosserat couple modulus

Looking at the membrane energy Wy, with p. > 0 we see that the implication of this choice at a first glance is
an inoccuous rise in the macroscopic elastic membrane strain energy Wi, (U) of the plate if R # polar(Vm|R3)).
The choice u. > 0 acts like a local ’elastic spring’ between both continuum rotations and microrotations.

Let us consider the mathematical implications of g, = 0 and 0 < p. < u, respectively, for the membrane, in
more detail. We compute the second derivative of the membrane strain energy W, (ETﬁ) at fixed R € SO(3, R)
w.r.t. Vm € M2X3. For H € M?*3 we have

D%, Wanp (R F).(H, H) > DY, (ullsym(® (Vm[Rs)) = W2 + picllskew(R (Vm|R)I?) .(H, H)  (4.46)

=T 9 9 .
= 2l sym(&" (HIO)I? + 21l skew(E (HJ0)) | = {Z ue [T GOV = 2pe [CHIODIE e > 0
= 2p||sym(R" (H|0))]|? if pe =0

Hence the choice . > 0 leads to uniform convexity of me(ﬁTﬁ') w.r.t. Vm and unconditional elas-
tic stability on the macroscopic level: regardless of what distribution of microrotations R(z) is given, the
macroscopic equation of balance of linear momentum is uniquely solvable and this equation is insensible to
any deterioration of the spatial features of the microstructure. Uniform convexity is difficult to accept from a
constitutive point of view since it is impossible for a geometrically exact description in the framework of a clas-
sical macroscopic continuum but clear from the above discussion: the additional elastic spring between micro-
and continuum rotation extremely rigidifies the material and completely changes the type of the mathematical
boundary value problem compared with the classical finite theory.'”

Fortunately, such a far reaching unsatisfactory conclusion does not hold for p, = 0. Choose ¢ € R?® and
n = (n1,m2,0)L. Then consider (H|0) = £ ® n € M**? and

. —T ~ —T . —T —T —T . —T 2
D%y Wup(R F).(E @1, @n) = M(HR EonP+(R ¢onneR 6)) = u(IIR En|* + (R & n) ) ;
which shows the physically much more appealing inequality

. —T ~ . .
D3 Winp (R F)(€@n,6 1) > pll€llze - Inllz:, (4.47)

expressing nothing but uniform Legendre-Hadamard ellipticity of the membrane acoustic-tensor with el-
lipticity constant p independent of R. The Legendre-Hadamard condition has the most convincing physical
basis [Ant95, p.461] in that it implies the reality of wave speeds and the Baker-Ericksen inequalities (stress
increases with strain, [MHS83, p.19]). The choice u. = 0 is consistent with the three-dimensional strain energy
density proposed in [Nef03b, (P3)] and [NW03, M1] if the appearing independent viscoelastic rotations there
are identified with the independent elastic Cosserat microrotations here.

17In the analytical section we will see that u. > 0 implies that m € W1 (w,R3) irrespective of R € SO(3,R), thus excluding
fracture.
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4.3 The coercive inequality in two-dimensions

In this section we show how to use the three-dimensional extended Korn’s first inequality Theorem 2.1 in
our reduced two-dimensional context of plates and shells in order to improve Legendre-Hadamard ellipticity
to uniform positivity. In order to show that the elastic membrane energy is uniformly convex we look at the

second differential of Wi, (RTF ) with respect to m
T A — T .
D3 Wip (R F).(V, V) > %II(V¢|O)TR+ R (Volo)|I*. (4.48)

Set for simplicity 4 = 2 and consider the slightly more general quadratic form (appropriate for elastic shells
and elasto-plastic shells)

IE; T (V610) Re + R, (VmlO)F; |12 = | (B, T(Vol0) R + R (Vl0)F; ) Ry |
= (R Fp)~T(Vol0)” + (Vol0) (R Fyp) I (4.49)

where ¢ : w C R? — R® and 9, =0 for v C Ow. Extend now ¢ by ¢ : R® — R* through

d)(l',y, Z) = gZS(iL“,y) = (b(m;y:Z)fyOx[—%,%] =0. (450)
This extension implies

Vw095 2) = (Via,y)00). (4.51)

For ¢ it is possible to use the 3D-extended Korn’s first inequality Theorem 2.1. To this end consider ) =
w x [—%,2] and the lateral Dirichlet boundary I'f = vo x [—%,%] C 99j. Then I'! has non-vanishing 2-
dimensional Lebesgue measure. Set by abuse of notation F, = (R.F,) for the moment. With smooth enough,
invertible F}, it holds on applying Theorem 2.1 that

/ IVETES + ETVRAV > by / 1312 + V2 dV =

wx[—%&, 2] wx[—%&, 2]
L 4
| [196 4 B VAP dvdez - [ [ 101 + 190 doda. (4.52)
Since ¢ is independent of z we get, however,
JINGE BV o> el [ 6P + VAP (4.53)
or back in terms of ¢
SIS0 E 4+ B (T do 2 ey - [ 161F + 1T (4.54)

Observe that the constant cj,, is independent of the thickness h which might be surprising at first glance.
This observation allows one to bound m € H. (}_2 (w,R3; ) independent of the relative thickness h only in terms
of the membrane energy [ W(Vm,R) dw if R € SO(3,R) is smooth enough. Thus we have finally proved

Theorem 4.1 (Extended Korn s first inequality for rigid shells)
Let w C R? be a bounded Lipschitz domain and let vy C Ow be a smooth part of the boundary with non

vanishing 1-dimensional Lebesgue measure. Define HY?(w,R?; ) := {¢ € H?(w), ¢ : w — R? | P, = 0}
and let Fy,, F; 't € C'(w,GL(3,R)). Moreover suppose that Curl F,, € C* (@, M?*?). Then
3t >0 Ve H(w,Rm0) : I(VOl0)F, (@) + T (@) (Vol0) 7w > ¢t 18]l 2 ) - u

Based on the strengthening proposed in [Pom03] we get immediately the following
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Corollary 4.2 (Improved Korn’s inequality for rigid shells)
Let w C R? be a bounded domain with smooth boundary and let vy C Ow be a part of the boundary with non

vanishing 1-dimensional Lebesgue measure. Define HY?(w,R3; ) := {¢ € H'2(w), ¢ : w — R? | 1, = 0}
and let F, € W4?*%(w, GL(3,R)). Then

3t >0 Vg e HE (w8 0) = IVOI0)F, (o) + B, T @)Vl [Ba) > ¢ I0l3nae),  (459)

and the constant is bounded away from zero for F,, bounded in W*° (@, GL(3, R)).

Proof. The Sobolev embedding shows that F, € W?*%(w, GL(3,R)) may be identified with a continuous
function. A contradiction argument as in [Nef03c] shows that the constant is bounded away from zero since
W2+ (5, GL(3,R)) is compactly embedded in C(@, GL(3,R)). [ |

However, taking the special structure of the extended Korn’s inequality into account, work in progress
suggests that even continuity is not really necessary: instead F, € L*®(w,GL(3,R)) and Curl F, € LN*%(w)
with N = dim(w) should suffice, whereas Fj,, € L*(w, GL(3,R)) alone is not sufficient, see the counterexample
presented in [PomO03].

4.4 Mathematical analysis of the two-dimensional problem

t18

The following results are the first existence theorems for geometrically exact™® derived elastic Cosserat plate

models known to the author:!®

Theorem 4.3 (Existence for 2D-finite elastic Cosserat model: case I.)

Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H'(w,R®) and Rq €
Wh+P(w,SO(3,R)). Moreover, let f € L?(w,R?) and suppose N € L*(v,,R®) together with M € L'(w,R?)
and M, € L*(vs,R?), see (10.102). Then (4.43) with material constants conforming to case I admits at least
one minimizing solution pair (m, R) € H'(w,R®) x WH1*P(w,SO(3, R)).

Proof. We apply the direct methods of variations. First, the requirement on the data shows that
II(m, R3) < C - ([Imllr2w) + [Rsllec) = C (lImlr2w) +1) - (4.56)

With the prescription of (gq, Rq) it is clear that I < oo for some pair (m, R). Observe first that the micropolar

curvature term £, controls R € WH1*P(w, SO(3, R)), since ||&|| = ||§TDX}_%I| = ||DcR||, pointwise and as, ag >
0. Moreover, SO(3, R) is weakly closed in the topology of W17 (w). We omit to show that I is bounded below:

. . . .. . —k
this will turn out not to be necessary. We may choose decreasing (infimizing) sequences of pairs (m*, R").
The curvature contribution together with the appropriate boundary conditions and Poincarés inequality yields

boundedness of R C Whitr(w, SQ(?), R)). We may extract a subsequence again denoted by R converging
strongly in L'*?(w) to an element R € W'1*P(w,SO(3,R)) since p > 0 by assumption. Because . > 0, it is
immediate that (Vmﬂﬁk) = F* is bounded in L2(w,M?*?), independent of R" on account of

—k,T ~p, —k,T ~ A ~ =k A -
W (B ) > e [BYTF* = 02 = e (IFHP = 206, T +3) > e (1FF)12 = 2V3IE | +3) ,  (4.57)
and

_ B3 _ _ —
00 > /thp(Uk) 1 Woury (Rs) + T3 Whoena(89) dewr — T(my, ') > /thp(Uk) — H(my, By) dw

w w

> /thp(Uk)dw—C(HmkHLz(w) +1) (4.58)

> pie B\ F¥I1Z 200y — 2V3 e (I F¥|| 20y — Climil| 12wy + 3ue b — C
> pe h|[Vml| 72y — 2V3 e B IVl 2wy — C llmill () + 3pe h = C
> e B [IVmgl| 720y — Cllmillgrzw) = C > pe e hlloellFe ) = Cr llokll 2w + Co,

18same as frame-indifferent

19The proposed finite results determine the macroscopic midsurface plate deformation m € H?! (w,R3) and not more. This means
that discontinuous macroscopic deformations by cavities or the formation of holes are not excluded (possible mode I failure). If
e > 0 fracture is effectively ruled out, which is unrealistic. All results remain true for arbitrary shear correction factor x > 0.
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where we made use of the appropriate boundary conditions for my = x+wvg(z), and applied Poincarés inequality
to u since it has zero boundary values on 7. This yields the boundedness of v, thus my is bounded in
H'(w,R?). Hence we may extract a subsequence, not relabelled, such that mj, — m € H'(w,R®). Furthermore,

we may always obtain a subsequence of (mk,Rk) such that Uy = RO e converges weakly in L%*(w) to an
element U on account of the boundedness of the stretch energy and p. > 0. }
For p > 1 we have as well that R converges indeed strongly in L?(w) to an element R € H?(w,SO(3, R)).

— kT ~ =T .
Thus B®" F* converges weakly to B F' in L'(w). The weak limit in L'(w) must coincide with the weak limit

— =~ =T =
of Uy in L*(w). Hence, U = R (Vi|R3). o
Since the total energy is convex in (U, Rs, Ry) and (F', DR), we get

=~ =~ ~ h3 ~ =~
I, ) = / B W (@) + B Weare (&) + 75 Woena (F) do — 1100, )
3 PR

_ h _
< lim inf / B Wan (T) + P Weare () + 1= Woena (1) deo — (i, BE) = lim T(me, B, (4.59)
— 00

k—o00

which implies that the limit pair is a minimizer. Note that the limit microrotations R may fail to be continuous
if p < 2 (non-existence or limit case of Sobolev embedding). Moreover, uniqueness cannot be ascertained,
since SO(3,R) is a nonlinear manifold (and the considered problem is indeed nonlinear), such that convex
combinations of rotations are not rotations in general. Since the functional I is differentiable the minimizing
pair is a stationary point and therefore a solution of the corresponding field equations. Note again that the
limit microrotations are trivial in L°(w) but may fail to be continuously distributed in space. That under
these unfavourable circumstances a minimizing solution may nevertheless be found is entirely due to p. > 0
and p > 1. ]
We continue with the (more realistic) super-critical case.

Theorem 4.4 (Existence for 2D-finite elastic Cosserat model: case II.)

Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H'(w,R?) and Rq €
Whitrta(y, SO(3,R)). Moreover, let f € L?(w,R®) and suppose N € L?(vy,, R®) together with M € L'(w,R?)
and M. € L'(vs,R?), see (10.102). Then (4.43) with material constants conforming to case II admits at least

one minimizing solution pair (m, R) € H'(w,R3) x Whitrta(y SO(3,R)).

Proof. We repeat the argument of case I. However, the boundedness of infimizing sequences is not immediately
clear. Boundedness of the rotations R* holds true in the space Whitrta(y SO(3,R)) with 1+p+¢ > N = 3,

hence we may extract a subsequence, not relabelled, such that B converges strongly to R € C°(@,SO(3,R)) in
the topology of C°(@,SO(3,R)) on account of the Sobolev-embedding theorem. Along such strongly convergent
sequence of rotations, the corresponding sequence of midsurface-deformations m* is also bounded in H'(w, R?).
However, this is not due to a basically simple pointwise estimate as in case I, but only true after integration over
the domain: at face value we only control certain mixed symmetric expressions in the reconstructed deformation
gradient. More precisely, we have

_ B3 _ _ _
00 > /thp(Uk) B Woeury (Ra,) + T3 Woena(8) dew — H(my, ) > /thp(Uk) — H(mg, By) dw

> /thp(Uk)dw —C (Imallzzge) +1) (4.60)
T — — —

> [ W8I (Vi Fa) + (Ve [R) "R 21 o = Ch (sl + 1)

>

T .
[ SR Tmal0) + (Fme o) Bl o — Ci oy + Co

[ BB~ fet BT (V0ul0) + (Verl0) (B = Bt B do = Ci ooy + Co

> ¢ 0% IR (V0ul0) + (Vorl0) RIP do = Calf = Rl ol

e

combinations of derivatives
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—(Cy +2||R — Rilloo) okl 12 (w) + Co
. Con ‘ .
> (Z ¢t — Oy IR — Rilloo) ||'Ulc||i11>2(w) = (C1 + 2[|R — Rilloo) [Vl 2(w) + C2,

where we made use of the appropriate boundary conditions for m* = z 4+ uj and applied the extended Korn’s
inequality (2.1) in the improved version of [Pom03] yielding the positive constant ¢ for the continuous micro-
rotation R. Since |R — Rg||oo — 0 we conclude the boundedness of vy, in H!(w). Hence, my, is bounded as well

in H'(w). Now we obtain that Uy — U = R Vi by construction with the notations as in case L.

The remainder proceeds as in case I. This finishes the argument. The limit microrotations R are indeed
found to be continuous. However, for mixed boundary conditions, the midsurface deformation m cannot be
shown to be smooth for lack of elliptic regularity. |

4.5 The limit problem for infinite Cosserat couple modulus ;. — oco: the Biot-plate

As in the three-dimensional case, a constrained plate model is obtained by setting formally g, = oo in
(4.43). This implies that U = }_%T(Vm@g) € Sym, which entails R3 = 1, and the constraint rotation

R = polar(Vm|fi,,). Moreover, K, € Sym is enforced. Independent variation is only possible w.r.t. m and
(4.43) turns into the constrained minimization problem on w:

3

— h
I= /thp(U) + h Weurv (Rs) + T Whend (Rp) dw — II(m, ii,,) — min . w.r.t. m,

w

U=RF= \/(Vm|ﬁ)T(Vm|ﬁ) € Sym, F=(Vm|i,), F,=(Vmlomim), R = polar(Vm|f)

A Naie, 7T .
om=1-— T )\tr U-—1]+ % , first order thickness stretch
my, = ga(z,y,0), simply supported (4.61)

polar(Vm|) = polar((Vm|Vgq(x,y,0).e3)) reduced consistent coupling

i _ ng(m,y,O).eg
o = [ Vga(z,y,0)-e3]’

_ — . A 2
- — _]12 12 1
Wnp(U) = p||U - 1] +2M+A“W ]

o 2

alternatively: classical rigid condition

2
=p ||/ I — 3] + HA tr [\/[m - ]12] , Im: first fundamental form of the surface

24+ A
Litp ) ) N
Weurs (8) = n=5= (1+ s LEIRIIY) (as | sym R + ag || skew &2 + ar tr [R) 7

Rs = (RT(V(R.61)|O),RT(V(R.GQNO),RT(V(R.€3)|O)) , reduced third order curvature tensor

Whend (85) = pu[|£]|> +

2 _ =112 l’t)‘ =T — 2
g IR = VAP + [R (vn|0)]

&y = polar((Vml|i))T (V#i|0), second order, weighted, bending tensor
R €Sym & U Il €Sym, symmetry constraint < (R1,y,ity = (Ra4,i) for smooth fields

ﬁm :  extended second fundamental form of the surface.

Let us therefore define the set of admissible deformations A := {m € H'“?(w,R*)|(polar(Vm|i), ,,7) =
(polar(Vm|ii)a z,7) }. This set is not empty: pure bending situations (Vm|i7) € SO(3,R) and deformations,
where U € diag and 11, € diag are contained in A.

Theorem 4.5 (Existence for 2D-constrained Cosserat plate model: case III)

Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H*(w, R?) and polar(Vgq) €
WH+P(w, SO(3,R)) and Rq € WH1TP(w,SO(3,R)). Moreover, let f € L?(w,R*) and suppose N € L*(v,, R?)
together with M € L'(w,R®) and M. € L' (vs,R?), see (10.102). If I < oo over A then problem (4.61) with
p > 1 admits at least one minimizing solution m € H%?(w,R?).

Proof. The proof mimics case I since the sequence of infimizing rotations Ry, is constrained to the orthogonal
part polar(F}) of the corresponding sequence of deformation gradients Fj,. Due to the extra Cosserat curvature
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control, the rotations Rj, = polar(Vmy|iix) can be chosen such that they converge weakly in H'(w,SO(3,R))
and such weak limit lies in A. |

Remark 4.6

Complete higher regularity of m in the constrained Cosserat model, i.e. m € H?*?(w,R®) cannot be ascertained
in general since we only control certain second derivatives of m in the curvature term. One might wonder
therefore, whether the additional C''-continuity in treating the fourth order indeterminate couple stress problem
numerically is worth the effort.

4.6 The limit problem for vanishing relative thickness h — 0

While it does not make much sense to let h — 0 at fixed in-plane elongation L > 0, since there is an absolute lower
bound on the thickness in terms of the internal length L., we may consider a sequence of plates, whose absolute
thickness is fixed, but whose in-plane elongation L is increased. This implies that the relative thickness h tends
to zero. In a formal sense then, the thin plate limit problem is obtained by neglecting the h3- bending tensor
contribution and giving up the possibility /necessity to prescribe microrotations Rz at the Dirichlet boundary
Y. In view of the expected limit behaviour of skeW(U) =0 = R3 = ii,, we consider p, = 0 only. The
two-dimensional limit problem for the deformation of the midsurface m : w C R? ~ R® and the microrotation
of the thin plate (shell) R : w C R? = SO(3,R) solves formally the following minimization problem on w:

/thp(U) + h Weury (8s) dw — II(m, R3) = min. w.r.t. (m, R),

my,, = ga(z,y,0), simply supported (4.62)

R, = polar((Vim|on, R3)) reduced consistent coupling = Eglm =iy, free

lyo

— — . B — 2
Wonp(0) = el sym(@ = W) + 225 o [sym(@ — 1)
Lt ) ) 2\ 2
Wearv (&) = n=5= (1+ au LE K1) (s [lsym &2 + ag || skew & + ar tr[&]F) ©

Rs = (RT(V(E.61)|O),RT(V(R.62)|O),ET(V(§.63)|O)) , reduced third order curvature tensor.

Theorem 4.7 (Existence for 2D-finite Cosserat limit model for vanishing relative thickness)

Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H'(w,R®) and Rq €
Whi+rta(wy SO(3,R)). Moreover, let f € L?(w,R*) and suppose N € L?(vs, R®) together with M € L*(w,R®)
and M. € L'(vs,R?), see (10.102). Then (4.62) admits at least one minimizing solution pair (m,R) €
H'(w,R?) x WhiTrP+a(u SO(3, R)).

Proof. Exactly the same proof as for case II applies since the decisive control is afforded by Wy, and not
Wbend- n

Conjecture 4.8 (I'-limit)
The T'-limit for h — 0 of suitably rescaled energies in (3.7) and p. > 0 is given by the variational problem (4.62)
with e = 0. n

4.7 The limit problem for vanishing internal length L, — 0

This limit is practically encountered if very large, relatively thin plates are considered. The difference to the
case h — 0 from above is clear: we consider a sequence of ever larger plates with the same relative thickness.
A scaling argument (10.3.3) shows easily that the respectively transformed L. on a unit domain w will tend
to zero. We obtain formally the following two-dimensional minimization problem for the deformation of the
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midsurface m : w C R?> — R? and the microrotation of the plate (shell) R : w C R? — SO(3, R) solving on w:

3
I= /thp(U) + ill—2 Whend(8p) dw — II(m, R3) + min. w.r.t. (m, R),

U=R'F, F=(mlRs), F,=(Vm|omRs)

A — N, R .
om =1-— mtr [U — ]1] + ﬁ , first order thickness stretch
my, = ga(z,y,0), simply supported (4.63)

EWO = polar((Vm|Vga(z,y,0).e3), , reduced consistent coupling

- Vga(z,y,0).es . -
R; = , rigid prescription
b0 = Vga(@,y,00esll”

2

— — — A —
Winp(U) = p [l sym(U — W)|I* + pee || skew(T)|1* + 2:+ S, [sym(U — 1)]

Whend (R5) = g || sym(£)[|* + pee || skew (£)[]* + tr [sym(%;)]”

A
20+ A
Ry = ET(V}_f3|O) , second order, non-symmetric bending tensor.

For pe = 0 this is case V of our classification. In this form, the problem is not completely determined since

the remaining bending term only controls the ’director’ R3 but leaves in plane rotations free. However,
—T —

anticipating that R (Vm|R3) — 1L is small (appropriate for almost rigid materials), a modification of the

bending term is suggested: we modify

o —lBizll =lBiyll 0
R =R (VRs|0) € Sym = | —||Reall —||Rzyll 0] ¢ Sym. (4.64)
0 0 0

Remark 4.9 (Motivation)
The motivation of this modification for relatively thin Cosserat shells is as follows: either the membrane
energy is non-zero, in which case it dominates and the bending contribution can be neglected or the

membrane energy is zero (RT(Vm|§3) — 1l = 0) in which case the non-symmetric bending tensor of
(4.63) coincides with the symmetric expression of (4.64), see Lemma 11.8.

A formulation based on this modification supports an existence theorem if p. > 0, notwithstanding the inherent
nonlinearity along the same lines as in Theorem 4.3. The more interesting case of yu, = 0 must remain open at
present, since the limit rotations in H'?(w,SO(3,R))) must not necessarily be smooth.

4.8 The limit problem for vanishing L.: the pure bending case.

Assume that the boundary conditions for the Cosserat plate support multiple finite bending modes, i.e. Vm?Vm =
I, and the membrane energy Wy,,(U) is zero. What can we say about the corresponding degenerated mini-
mization problem? The variational problem for the Cosserat bending plate is then to find a deformation of the
midsurface m : w C R? — R? and the microrotation of the plate (shell) R : w C R? — SO(3, R) solving on w:

h? — _
I= | — Whena(f) dw = min. w.r.t. (m,R) such that Vi’ Vm = 1y and Wy,,(U) = 0,

12
= =T - = .
U=R F, F=(Vm|R;3) my, = ga(z,y,0), simply supported (4.65)
}_%‘70 = polar((Vm|Vga(z,y,0).e3), , reduced consistent coupling
— — — A — 2
Winp(U) = p[|sym(U — )1 + pe || skew(T)[|* + At [sym(U — 1)]
A A
Whend (85) = | sym(8&5)[|” + pe || skew (&) [|* + 2:+ 3t [sym(%)]”

R = RT(VR3|O) , second order, non-symmetric bending tensor.
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It is easily seen, that Vm” Vm = 1l and Wy, (U) = 0 already constrains the microrotations to R = (Vm|it,,) €
SO(3,R) for p. > 0%° and p. = 0.2 This implies &, = RT(VE3|O) = (Vm|it,,)T (Vii|0) and the in general
non-symmetric bending tensor £ coincides with the symmetric second fundamental form of the midsurface m.
The resulting minimization coincides with the bending problem based on the Kirchhoff-Love theory (7.88) and
admits therefore a solution m € H?(w, R?*), from which we recover R = (Vm|i?) € H?(w,SO(3,R)).

4.9 The limit problem for vanishing L. and vanishing h: the pure membrane.

The problem for vanishing relative thickness h and without consideration of the internal length L. leads to the
pure membrane dominated limit problem** for the midsurface m : w C R* - R* and the microrotation of
the thin plate (shell) R : w C R? — SO(3,R) on w:

/thp(U) dw —II(m, R3) — min. w.r.t. (m,R), my, = 9a(z,y,0), (4.66)

w

which is equivalent to

/h Winp(T) dw — T(m, Bs) > min. w.r.t. m at given & € SOB3,R)., m,, =ga(e,5,0),  (4.67)
w

U =R (Vm|R;)
—T — —T = . L
0 = skew (R (M|0|0)) + h skew (R DiWinp(Vm, R)) , local, algebraic condition <

2D-balance of angular momentum

0 =skew (RT(M|0|0)) + I skew (DUme (U)UT) —h skew ((0]0|DgWinp (T)-€3)) ,

>l

thickness integrated 3D-balance of angular momentum

see (10.102) for the definition of M. The local condition comes from locally minimizing w.r.t. R € SO(3,R), it
is balance of angular momentum for the plate in disguise.?® Note that at given R, the membrane minimization
problem w.r.t. m is still uniformly Legendre-Hadamard elliptic. However, coercivity w.r.t. m depends crucially
on the smoothness of R if s, = 0. There is no reason to expect R to be smoothly distributed. Existence to this
problem is open: we expect therefore sharp interfaces.

In the absence of external loads, the remaining symmetry condition

skew (Dﬁme (U)UT) = skew ((0]0|DgWinp(T).€3)) (4.69)

is satisfied, if U € Sym, which itself implies R = polar(Vm|i7). Nevertheless, considered as a local condition,
the remaining symmetry condition does not automatically imply the symmetry of U, see the discussion of a
similar problem in the three-dimensional case in [Nef03a]. Such a discrepancy does not occur in the infinitesimal
Reissner-Mindlin model (10.127).

20n this case, we could dispose of the requirement Vm” Vm = 1.

Zlgym(U — 1) = 0 implies immediately Rs = @i. Write R; = aimg + a?my, i = 1,2. Using (mg,my) = 0 the result follows.
Whether one can do without Vm” Vm = 112 in case uc = 0 is open, since sym(U —11) = 0 for R € SO(3,R) and (Vm|ii) € GL*(3,R)
considered without gradient constraint on m has nontrivial solutions.

220bserve that the Cosserat model does not automatically endow a thin plate limit with additional stiffness, since it is physically
not possible to let h — 0 and keep the in-plane elongations L constant.

23To see the equivalence of the two local statements in (4.67), consider variation of R along a one-parameter group of rotations
%R = A(t) - R, A € 50(3,R) and evaluate

%me(E(leﬁs)) = (DgWinp(0), (6R)T (Vm|Rs) + ' (0[0|(§R)s)) = (Dg-Wnp (D), (AR)T (Vm|R3) + R (0/0|(AR)3))
= —(DgWup(@T, R AR) + (RDyWinp(T), (0)0|AR.e3)) = —(DyWnp(@) T, R AR) + (DgWup(D).e3, ' AR.e3))
= —(DgWup(@T ", R AR) + ((0[0| DpWunp(T).e3), R' AR). (4.68)
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5 A modified finite Cosserat thin plate for large stretch and local
invertibility

While the preceeding models have been derived from a three-dimensional model which itself is appropriate only
for small strain and large rotations, let us present a modified model,?* which in principle allows for arbitrary
large stretch and which automatically preserves local invertibility if the reconstructed deformation is smooth.
It is clear that such an extension is by no means unique. The model reads

_ h3 _ _
I= /thp(U) + h Weurv (Rs) + 13 Whend(Rp) dw — II(m, R3) — min. w.r.t. (m,R),

w

U=RF, F=(mRs), F,=(Vm|omRs)
o = 1 + (Nai, Rs)
1+ 225 (det[T] —1) © (2u+A)
my,, = ga(z,y,0), simply supported (5.70)

EWO = polar((Vm|Vga(z,y,0).e3))

ES — ng(ﬂ?,yao)-%
7o ||ng(x7y70)e3|| ’

Wonp () = pol| sym(T — )2 + 2L ((det[U]—1>2+< ! —1>2)

o reduced consistent coupling

alternatively: rigid prescription

2u+ A2 det[0]
Litp ) ) 2\ 22
Wearv(8s) = n=5= (1+ au LRI (s lsym &2 + ag || skew & + ar tr[&]F) ©

Rs = (RT(V(R.61)|O),RT(V(R.eg)|0),RT(V(R.63)|O)) , reduced third order curvature tensor

UA

2
2+ A tr [sym(£p)]

Whend (85) = || sym(£)|* +

Ry = ET(V}_f3|O) = &% second order, non-symmetric bending tensor.

Let us summarize the salient features of this model. First, Wy, (U) — oo if det[U] — 0. Thus, if minimizers

exist, then det[U] > 0 a.e. and the minimizing surface is locally regular. The modified energy contribution is
polyconvex w.r.t Vm and thus Legendre-Hadamard elliptic. If R3 = i, then

det[T] = || Cof (Vm|0)]|, || Cof (Vm|0)[|* = [[m x my || = [[ma|*[lmy||* — (ma,my)* = det[Ln],  (5.71)

a pure, intrinsic measure of the surface stretch. If Wy,,(U) = 0 then U = 1l although p. = 0. The thick-

ness stretch g, has such a form, that at finite energy one has 0 < p,, < oo without restriction on the

kinematics and transverse fibers will be elongated upon action of opposite tractions. Moreover, g, = 1 for
1

A = 0 (extreme compressibility, v = 0) and g, = (D] for A = oo (incompressibility, v = %) such that

det[F,] = det[(Vm|om R3)] = 1, i.e. exact incompressibility for the reconstructed deformation.
The formulation (5.70) has the same linearized behaviour as the initial model (4.43).2> We can prove the
following result

Theorem 5.1 (Existence for 2D-finite elastic Cosserat model with large stretch and invertibility)
Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H'(w,R%®) and Rq €
Wh+P(y,,SO(3,R)). Moreover, let f € L?(w,R?*) and suppose N € L?(vy,, R®) together with M € L'(w,R?)
and M. € L'(vs,R?), see (10.102). Then (5.70) with material constants conforming to case II admits at least
one minimizing solution pair (m, R) € H'(w,R®) x WhitP+e(w SO(3,R)) with det[(Vm|R3)] > 0 a.e.

Proof. The proof mimics the arguments of the preceeding existence results for case II. We only need to observe
in addition, that the modified membrane energy is in fact polyconvex at given R w.r.t. Vm. The modified term
provides us with the information that det[(VmHR];)] is uniformly bounded in L?(w) for minimizing sequences.
Hence we may always choose a minimizing sequence, such that det[(Vmg|R3)] = ¢ € L?(w). We have as well
R >Re C°(w,SO(3,R)). Moreover, Vm, — Vm € L?(w,M?*3). Thus, det[(VmHﬁ];)] — det[(Vm|R3)]

241t is clear that a modification to large stretch does not concern the bending term since bending only plays a role for small
stretch.

# Because ((det[U] — 1)* + (3w - 1)?) =26 [0 - 1)° +O(|U - 1|}®).
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strongly in the sense of distributions [Bal77, Th. 3.4]. This implies ( = det[(Vm|R3)]. The remainder is
standard. m

It is therefore believed that (5.70) represents an improvement over (4.43), although (5.70) itself is not strictly
obtained from a parent model.2®

6 The finite, invariant Reissner-Mindlin plate

To contrast the previous models, let us directly derive a new nonlinear, finite, properly invariant Reissner-
Mindlin plate starting from the three-dimensional SVK elasticity model. Again, we assume a quadratic ansatz
in the thickness direction for the (reconstructed) finite deformation s : R* — R® of the shell like structure

pula.2) = me) + (2 onlen) + S on(on) ) - dlavn), (6.72)

where m : w C R%2 — R3 takes on the role of the deformation of the midsurfaces of the shell viewed as a
parametrized surface and d:wC R — S?is a unit director field; the functions g, 0p : w C R? — R allow
for thickness stretch (o,, # 1) and transverse shear (d # ). 27 This implies for the (reconstructed)
deformation gradient of the shell (plate)

Fy = Vou(e,0,2) = (Vml o d) + 2 (Vomdlovd) + 5 (Voud)0) = A+ 24, + 2 B,
~ (Vm|omd) + 2 - (Vd)|oyd) = A + 2 A, . (6.73)
The underlying three-dimensional Saint Venant Kirchhoff energy has the form
Wevk (F) = % |FLF — 12 + %tr [FTF—1]°. (6.74)

The equations of the three-dimensional finite elasticity problem show that on the transverse boundary (exact)
St (Ve (z,y, +h/2)).e5 = N (z,y, +h/2)
SP(VR* (2, y, —h/2)).(—es) = N (z,y, ~h/2), (6.75)

where N2 are the prescribed tractions N on the transverse boundary.?8
Following the steps which led to (3.18) we have (exact)

<F71($7 Y, :th/Q)Sl (VQO(:U: Y, :th/?))€3, €3> = :t<NtranS($, Y, :th/Q)v FﬁT('T: Y, ﬂ:h/2)€3) ) (676)
which condition reduces to zero normal tractions on the transverse free boundary:
Szy33(v¢(m7y7:th‘/2)) =0, (677)

in the absence of tractions N*2" In view of the assumed rigidity (u > 1) we expect that Vip? Vip — 1l < 1
such that V=T ~ Vi and we determine p,,, 05 from the corresponding modified requirement in terms of the
assumed kinematics for @, yielding

modified
e e
(Fs_l('ra Y, ih/Z)Sl(ths(x, Y, ﬂ:h/2))€3, €3> = :t<Ntrans($, Y, :th/Q)a FS('Ta Y, ﬂ:h/2)€3)
= £(N" (3. y, £h/2), (om +ng)(f). (6.78)

Since S; = F [p(FTF — 1) + %tr [FTF — 11]11], we obtain the two nonlinear equations

A
(|u(FIF, — 1) + Str [FIF, — 11| .e3,e5) = £(N"(z,y, £h/2), (om + 2 00) d) . (6.79)

26There is a general danger of direct theories to postulate two-dimensional models from scratch without recours to any underlying
parent model : while general two-dimensional balance principles are easily applied, it is not clear how to incorporate any three-
dimensional information.

27This leads finally to a 5 ’dof’ theory: 3 components of the membrane deformation and 2 degrees of freedom for the unit director
field, the coefficients om , gp will again be eliminated.

28Using the approximated F in (6.73) leads to an affine linear reconstruction of the transverse shear stress (S2(Fs).e3,e;), i = 1,2.
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There is no simple way to solve these equations exactly. To leading order in h we obtain for g,

- =2
_ (Naigr, d) A 5 (Nait, d)
on =+ T IVmI =2+ s (6:50)
and for gy
= A ((mld), (VAI0) 4 s (N )+ (Vimlo ), (0 ol o 10)
Op = 2114 A mia), (2,u T )\) p \res) om (2,u T )\) m|Om @), (Om,z@|Om,y .
Since we do not want to consider space variations in the thickness-stretch g, we take finally
- )
(Naisr, d) \/ A (Naier, d) d
m = ————+A1l———[||Vm]? - 2]+
om = ou T ) Gy IVmlE =2+ 5 =57
)\ R 7 <Nres7 d}
=— d d —_ 81
0=~ g5 (Tmld). (V) + el (6:81)

Note that if we identify d = R then o in the last formula coincides with the expression for g, found in (3.25)

while o,, is still different.
Following conceptually the same computation which starts after (3.26) we obtain after thickness integration

the following minimization problem for the midsurface m : w C R? — R3 and the unit director field d:wcC
R? — S% on w:

3
/h Winp(C) + % Whend () dw — II(m, d) — min . w.r.t. (m,d)

C=FTF, F=(Vm|d), F,=(Vm|ond

2

(Nais, \/ A ¢ oy Wand dj
m= e L 1= 2 [[Vm? — 2] +

o= n TV @ YA g

(Naitr, &) A (Nair, 5
diff 5 diff , .
= (21u n A) \/1 — mtr It — ] m s first order thickness stretch
. > Vga(z,y,0).e .. L.
m, = ga(z,y,0), simply supported, d), = ||szgw,gzj,0;.62|| , rigid prescription (6.82)

— — . 2pA 2
Winp (@) = £ |[C - 1)1 + L}\)tr [C - 1]

8(2u +
2uA
82+ A)

= BIYmT T — 1 |+ 5 () + myy ) +
—_————

intrinsic energy

tr [Vm”Vm — ]12]2

e

transverse shear energy

tr [sym(R)]°, K = (Vm|d)T(Vd]0).

Woena(5) = i | syan(o) [P + 31
It is immediate, that the obtained model is frame-indifferent in the sense that V ) € SO(3, R) : W(Q(Vmﬂ) =
W(QVm|Q.d) = W((VQ.m|Q.d) = W (Vm|d). The membrane part is coercive in H*(w, R?). However, the
membrane part neither satisfies the Baker-Ericksen inequalities nor is it Legendre-Hadamard elliptic. It is not
obvious, which type of control can be expected in the bending contribution. Drill rotations are absent, but the
model allows for transverse shear (again, k = 1 is the shear correction factor). Invertibility of the reconstructed
deformation is not ensured. Nothing seems to be known on existence. No extra size effects enter the description.
While g,,, shows the physically correct behaviour that small opposite transverse tractions will elongate fibers, for
non-infinitesimal transverse tractions which ’presurrize’ the plate, the fibers would as well be elongated instead
of shrinked. Linearization of this model results in the classical infinitesimal Reissner-Mindlin Model (10.127)
and restricting the director d to the unit normal of the surface simplifies the model into the following finite
Kirchhoff-Love plate. In this sense, the model has some merits.
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7 The finite, invariant Kirchhoff-Love plate

7.1 Variational formulation

Either by formal asymptotic analysis (and adding together the leading membrane and bending part) or a
proper kinematical ansatz?? or else by restricting the director din (6.82) to the unit normal of the midsurface,
a finite, properly invariant®® Kirchhoff-Love plate problem in variational form can be written in the form of a
minimization problem for the deformation of the midsurface m : w C R? — R? on w:

3
/thp(U) + ill—2 Whend (8) dw — II(m, ;) — min. w.r.t. m

C=FTF, F=(Ymlity), Fs= (Vm|omim)

Nig, i A _ Naigr, 7)>
Om = M + \/1 — (7tr [C — ]1] + M first order thickness stretch

(2u+ A) 2+ ) 2u+ N2’
. - ng(l“;y;o)-ea‘
1y = 0a(e0), smply supported, i, = UL e 7

2u
8(2u + A)

Winp(C) = % IC — 1)) + 2: tr [C = 1]° = £ |vmT Vi — 1,2 + tr [V Vm — 11,)°

+A 4

2u\ .
= % |1 — Ta||* + m tr[l,, — 5], I, first fundamental form of the surface
2 PA 2 2 pA 2
(Ry) = ¢ = u|[IL, tr [T,
Whend(R5) = || sym(8,)||” + ST r[sym(8)]" = pl|[ILn]|” + T r[I1n]

Ry = (Vm|i,,) T (Vi,|0) = I1,, € Sym, II,,: second fundamental form of the surface m .

The reconstructed deformation ps(x,y,z) = m(z,y) + (zgm + égb) iy yields the plane stress condition

S1(Vps(z,y,0).e3 = 0, which is only consistent with three-dimensional equilibrium if there are no normal
tractions at the transverse boundary. 3!

It is easily seen that the resultant membrane strain energy Wi, (C) is neither quasiconvex nor Legendre-
Hadamard elliptic. Moreover, the resultant membrane strain energy does not satisfy the Baker-Ericksen inequal-
ities in contrast to the Biot-plate model (4.61)! The significance of this statement can be seen as follows. Take
w = [-1,1] x [-1,1] and consider zero external loads and boundary conditions for m on dw which uniformly
shrink the plate: m,, (z,y) = B.(z,y)”, B € GL*(2,R). Now take a sequence of minimizing deformations my
with 7% = e3 = const, i.e. m%(z,y) = 0. The sequence my, is naturally bounded in H'*(w). Hence a subse-
quence converges weakly: my — m € H"*(w). The minimizing sequence can be chosen such that Vin = B.
However I(my) — 0 but I(/m) > 0. Thus the homogeneously shrinked plate is not energy-minimal, which it

290r other constitutive requirements [.S98, p.476]. Indeed there is no general agreement as to what really constitutes an isotropic
Kirchhoff-Love plate theory [LS98, p.xiii] and [Kil65]. One encompassing independent statement to obtain Kirchhoff-Love in an
engineering context may read: i. normals remain straight and normal to the midsurface (but may be extended), ii.
plane stress, iii. the elastic plate energy is additively decoupled in membrane and curvature parts. Formal energy
projection would also yield indefinite mixed products like (I, — 1L, [1;,).

30not to be confused with the nonlinear, non frame-indifferent, Kirchhoff-Love plate model given in [Cia97, p. 318] and mathe-
matically justified in [Mon03].

31In fact, the condition d = il can also be motivated by eliminating locally the free, extensible director g, - d from the finite
Reissner-Mindlin model through taking

(d,0m) = argmin, _cpt jes2 (vmjomdeart sr) Wmp(C)s €= (Ymlond)" (Ymlomd) =
. A
d=fm, Z=1—-—"[lvm|® -2]. 7.84
m 0 Sy, [[IVm|* — 2] (7.84)

In doing so, no available three-dimensional information has been used. If instead, one defines a reduced membrane energy Wy :
M2*3 — R without recourse to a specific kinematical ansatz as in [DR95b, p.573] and without invertibility constraint

Wo(Vm) := inf Winp((Vmln)" (Vmln)) = inf_ Wup((Vm|@md)” (Vm|omd)) <
neER3 om €ER,deS?

(DpWinp(Vm|omd)L (Vm|gmd)), (010]6)) =0 V4§ eR> e  S1(Vm|gmd)).e3 =0, plane stress = d=7, (7.85)
_ {em 1 G (IVmI? —2] >0, (Vmlgmi) € GLT(3,R)

= . Wo(Vm) = Wap(Vm|om @)L (Vm|om#)) ,
U I9ml2 2] <0, (Vmignm) g GLH(,E) * O = W (mlen T mIen )

S S [
(2p+X)
then zero normal tractions S2 33(Vm|0m7) = 0 are not satisfied for 1 — [[IVm||? — 2] < 0, which shows the unphysical

behaviour, cf. [DR96, DR95c, DRO0].

A
(2p+X)
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clearly should be, given the stabilization inherent through 7i¥, = e3. This deficiency must be seen as unphysical
and will be called in-plane failure.

Thus it is motivated why it is not known whether minimization based on (7.83) does admit a solution for
arbitrary data. Even the inclusion of the classical bending term might not be enough: the control of only certain
second derivatives of m does not suffice to treat the highly nonlinear problem by a compactness argument and
to pass to the limit by strong convergence in the non-elliptic membrane part. The above example suggests that
the in-plane failure is somehow related to the absence of drill-rotations.

Moreover, the very feasibility of a Kirchhoff-Love ansatz with thickness stretch places a restriction on the
kinematics in the sense that it must be guaranteed for the membrane deformation that
2p

@tr@—]l]<1+7, (7.86)

2u

A
1—- — — 1| > 2 <
(2,“4‘)\)“@ ]_0:>||Vm|| <3+ 3

in the absence of tractions. This condition figures in [Cia97, p.355] among others, under which the quasiconvex
hull of the membrane energy Wy,,(C) in (7.83) coincides with the energy itself. In our derivation, condition
(7.86) is, as a mathematical consequence of a physical requirement from the three-dimensional problem
(6.78), most natural. It has also appeared in [FRS93, p.180] where it is believed to be ’...unduly restrictive’
due to the shortcomings of the SVK energy. While the shortcomings of the SVK energy are well known, similar
restrictions occur most natural also for our Cosserat model, there in the form g,, > 0, dictated by invertibility of
the reconstructed shell deformation. The physical significance of the computed solution is thus tied to g,, > 0,
which in turn expresses as well the physical (not mathematical) requirement Ss 33(x,y,+h/2) = 0. Looking for

solutions with g,,, = 0 is, physically speaking, not realistic.??

Remark 7.1

The problem of the non-ellipticity in the case of the Kichhoff-Love theory has been dealt with in Le Dret and
Raoult [DR95b, DR00]. They perform the thin shell limit analysis based on the St.Venant-Kirchhoff density. As
a result, they get that the limit energy deformation (of the 3D-model) is independent of the transverse variable
and minimizes a limit energy computed as the I'-limit [Mas92] of the 3D-(St.Venant-Kirchhoff) energy. The
limit stored energy is again that of a nonlinearly elastic ‘'membrane’ shell, in the sense that it contains only
first derivatives of the unknown deformation m of the midsurface. However, it turns out that the limit energy
offers no resistance to compression, a feature that is appropriate only for ’soft’ elastic materials like a deflated
baloon or a sail but in our oppinion inacceptable for ’almost rigid’ materials like metals or paper, the topic whe
are interested in since the rigidity translates directly into the small strain assumption.®® The non resistance to
compression in the above analysis is related to the use of the quasiconvex hull 3* QWj of the reduced St.Venant
Kirchhoff energy Wy in (7.85), which, surprisingly enough, can be given in closed form [DR95c, HP96] and
which shows to be in general positive but zero in the compression range 3° since St.Venant Kirchhoff typically
looses ellipticity there. These remarks indicate that results based on I'-convergence and global minimization
are not in all cases the appropriate direction to take, certainly not for almost rigid materials.

However, given all these deficiencies of the finite Kirchhoff-Love model, anticipating that Vm’ Vm — 11, is
small (appropriate for almost rigid materials) as in (4.64), a modification of the bending term is suggested: we
modify

. —llmaz|l  —|lmayll O
R = (Vnlitn)T (Vitm|0) = I1, € Sym = | —|lmyell —llmyyll 0] € Sym. (7.87)
0 0 0

Remark 7.2 (Motivation)

The motivation of this modification for thin shells is as follows: either the membrane energy is non-zero,
in which case it dominates and the bending contribution can be neglected or the membrane energy is
zero in which case the bending term of (7.83) coincides with that of (7.87), see Lemma 11.7 and compare
to [GKM96].

320ne might be inclined to think that the apparent problem of non-ellipticity of the membrane expression is only related to the
use of the non-elliptic parent SVK-energy. This is not the case. Proceeding by energy projection from a polyconvex Neo-Hooke
energy, the resulting membrane energy is again non-elliptic. This is well known feature, [DR95b, p.560,iii].

33They remark [DR95b, p.550]: “...then the corresponding nonlinear membranes offer no resistance to crumpling. This is an
empirical fact, witnessed by anyone who ever played with a deflated ballon.”

34« the fact that this function (Wmp(C)) is not quasiconvex already implied that it had to be relaxed in order to give rise to a
well posed problem.”[DR95b, p.575].

358trictly speaking, the use of the quasiconvex hull leads to a so called tension field theory [Ste90]. Steigmann himself [Ste90,
p.143] notes “A question then arises concerning the validity of tension filed theory as an approximation to a theory of shells with
bending stiffness that is small in some sense. Evidently, the deformation is not well described, though the theory delivers solutions
that approximate the average of the deformation observed in a real membrane containing many wrinkles. We conjecture that the
stress is accurately predicted, however.”
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A formulation based on this modification supports an existence theorem.

Theorem 7.3 (Existence for finite almost rigid KL-plate)

Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H*(w,R?). Moreover, let
f € L*(w,R®) and suppose N € L*(vs,R?) together with M € L*(w,R?) and M. € L(v,,R?), see (10.102).
Then (7.83) with the modification (7.87) admits at least one minimizing solution m € H?(w,R?).

Proof. We apply the direct methods of variations. The functional I is bounded above and below. We may
choose an infimizing sequence m*. Due to the boundary conditions and Poincaré’s inequality the sequence is
bounded in H?(w). The compact embedding H?(w) C W1*(w) shows that we may choose a weakly convergent
subsequence, not relabelled, such that strongly Vm* — Vm € L*(w). The weak limit is a minimizer since the
bending term is convex in the second derivatives and the nonlinear, non-quasiconvex membrane term is handled
by strong convergence. The modified bending term imparts as well additional control for in-plane deformations.
|

Such a theorem might not be of much practical value because it is precisely the level of smoothness we want
to avoid and it must be noted that the proposed modification of the bending term is not consistent with the
classical Kirchhoff-Love theory upon linearization!

7.2 The pure finite bending Kirchhoff-Love problem

Assume that the boundary conditions for the plate support multiple finite bending modes, i.e. the membrane
energy is zero, hence I,,, = 1. What can we say about the corresponding degenerated minimization problem
based on the remaining term involving only curvature? The variational problem for the clamped plate reads
then

. h3 A
1nf{/ﬁ [u||1[m||2 + 2lllu+ 3 tr [I1n)° | dw, m € H?(w,R?) : VmTVm = 1, (7.88)
w

m‘Wo = gd(xayao)a allmho = allgd\.m; gd € HZ(W7R3) : (v9d|ﬁgd) € SO(3)} .

Here 0, are normal derivatives at the boundary. The proposed system coincides with that previously derived

by [GKMO96, p.44] apart from a modified material parameter A — 22”‘23\. Note that under pure bending of a

plate, we have for the Gauss curvature K = 0 and using (11.139) we get, by adding zero, equivalently

h3 A 2
N p ML+ S

— e [IL,)? +2
12 > e+ 2

2 2 3
tr[lfm] ||I[m|| :h_ éi tr[[[m]2
2 det[,n] 12 2 (21 +2)

K=0

h A
Wy AT

K W1 E
1Mo

on using (11.187). Inserting the linearized quantity tr [I1,,]” ~ ||Avs||2 + ... we obtain

w1l E

1221 -2
———
flexural rigidity

|Avs|?, (7.90)

the classical infinitesimal plate bending energy leading to the biharmonic equation. It is possible to show that
the finite minimization problem admits at least one solution.

Theorem 7.4 (Existence for pure bending finite KL-plate)
Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H*(w,R?). Then (7.88)
admits at least one minimizing solution m € H?(w, R?).

Proof. The proof is based on the crucial observation that on the space of admissible functions, the energy
coincides with the quadratic expression

h? 12 ) 2
T3 [PIVAIP + I (el + llmyy )] do- (7.91)

w

Standard arguments of the direct method of variations finish the proof. A detailed presentation was given in
[Cia97, p.347]. [ ]
Again, the level of smoothness is discomforting.
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Corollary 7.5 (Existence for pure bending finite RM-plate)
Let w C R? be a bounded Lipschitz domain and assume that the boundary data g4 € H?(w,R®) supports
bending modes. Then the pure finite Reissner-Mindlin bending problem based on (6.82) admits at least one

minimizing solution m € H?(w,R®) and d = i, € H*(w,S?).

Remark 7.6 (Pure bending problems)

Note that all presented pure finite bending problems coincide for the new Cosserat model, the new finite
Reissner-Mindlin model and the finite Kirchhoff-Love model. The last two results show that the classical finite
bending terms provide enough control in pure bending for models, in which the membrane part would have
been non-elliptic. However, the classical bending terms are insufficient to stabilize joint membrane and bending
situations.

8 Discussion and open problems

Starting from a fully invariant three-dimensional physically linear Cosserat theory with independent rotations
and size effects, we have obtained a family of fully invariant, finite Cosserat plates by means of assumed
kinematics and energy projection. The models include in a natural way drilling degrees of freedom and size
effects (smaller samples with the same relative thickness are relatively stiffer than corresponding larger samples).
Since the assumed kinematics is quadratic through the thickness, one avoids the so called Poisson thickness
locking. In contrast to traditional reduced theories, the membrane part is uniformly elliptic and allows a non-
degenerate passage to zero relative thickness. The balance equations for the midsurface are not only uniformly
Legendre-Hadamard elliptic, but linear at given rotations.

For vanishing Cosserat couple modulus p. = 0, the formulation is shown to be downwards compatible with
traditional infinitesimal linear Reissner-Mindlin theories and shear-correction factor k£ = 1.

A detailed mathematical analysis of the resulting two-dimensional models is proposed which closely follows
the three-dimensional ideas. It is based on a correspondingly dimensionally reduced version of a new extended
Korn’s first inequality. We have achieved a surprising unification of two- and three-dimensional concepts.

From a mechanical point of view, compared to more traditional, non-elliptic finite Reissner-Mindlin and
Kirchhoff-Love models, it seems to be the beneficial influence of the drill-rotations in conjunction with the
internal length L. > 0 which stabilizes the new Cosserat thin plate model.

Certain limit cases related to Sobolev-embedding theorems must remain open for the moment, notably
the case IV including possible fracture of the plate. They leave a wide field of challenging new mathematical
problems.

A modification of the new Cosserat plate model is also proposed, which ensures invertibility of the recon-
structed deformation gradient and which allows as well for minimizers. This model shows the most reasonable
physical behaviour, but is not easily seen to be obtained by direct descend from three-dimensions.

While we have large freedom of specifying boundary conditions for the rotations at the Dirichlet boundary,
we prefer a generalization of the three-dimensional consistent coupling condition, which includes as a special
case prescriptions corresponding to clamping.

A major conceptual advantage of the new proposed model is the appearance of rotations already in the
three-dimensional parent model. There is no need to artificially introduce independent directors of the plate.

In a subsequent contribution, it will be shown that the proposed method can be easily extended to shells
and multiplicative elasto-plasticity with the possibility of exactly the same mathematical analysis in the elastic
case.

From a numerical point of view, the new Cosserat plate model offers the highly welcome perspective to use
only C°-conforming finite elements. When interpolating the midsurface deformation one order higher than the
rotations, shear locking should be avoided.

It remains to completely justify the apparently sound, new finite Cosserat thin plate model by means of either
a convergence proof for vanishing relative thickness to the underlying three-dimensional parent Cosserat model
or by showing, that a suitably rescaled three-dimensional problem I'-converges to one of the two-dimensional
limit problems.

Let us summarize and relate some basic features of the obtained new plate models. We abbreviate LH:
Legendre-Hadamard elliptic, BE: Baker-Ericksen inequalities, dof: degrees of freedom, invariance: fully frame-
indifferent, v: midsurface displacement, d: unit director, 7i: unit normal of the midsurface, #: infinitesimal
director, invertibility: local invertibility of the reconstructed deformation in the sense of a strictly positive
determinant of the deformation gradient almost everywhere, pure bending: the problem obtained by restricting
considerations to locally length preserving deformations (inextensional).
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It can be seen, that linearization does not always commute with dimensional reduction. From a
modelling point of view it is clear, however, that linearization is the last step to be performed. The unifying
role of setting p. = 0 is also appreciated.
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new finite 3D-Cosserat
parent model (3.7),
invariance (+),
invertibility (4/-),
LH(+), BE(+),

size effects (+),
existence (+),
uniqueness (-),
higher regularity (?),
indep. rotations (+),
symmetric stress (-),
dof (6)

dimensional
reduction:
assumed
kinematics
and

pe =0,
linearized
_—

energy projection

new finite 2D-Cosserat
plate model (4.43),
invariance (+),
1nvert1b111ty ),

LH(+), BE(+),

size effects (+),
existence (+),
uniqueness (-),

higher regularity (7),
error estimates (7),
thin plate limit (+)
transverse shear (+
drill rotations (+),
symmetric stress (-
pure bending (+),
dof (6)

+),
)

physically
l motivated

modification:

new finite 2D-Cosserat
plate model (5.70),
invariance (+),
invertibility (+),
LH(+), BE(+),
polyconvex (+),

size effects (+),
existence (+),
uniqueness (-),

higher regularity (?),
error estimates (?),
thin plate limit (4),
transverse shear (+),
drill rotations (+),
symmetric stress (-),
pure bending (+),
dof (6)

new finite 2D-Biot
plate model (4.61),
invariance (+),
invertibility (-),
LH(')7 BE(+):
transverse shear (-),
existence (+),
uniqueness (-),
higher regularity (?),
error estimates (7),
size effects (+),

thin plate limit (4),
drill rotations (-),
symmetric stress (+),
pure bending (+),
dof (3), linearized:
Lg""; — classical KL

He =0,
linearized,

L2+

pe =0,

linearized, Lg+6

B ————_—

classical infinit. 3D
linear elasticity,
existence (+),
uniqueness (+),
higher regularity (+),
symmetric stress (+),
dof (3)

dimensional
reduction:
energy
projection
or
asymptotic
methods

classical infinit. 2D
KL-plate (10.130),
invariance (-) ,
existence (+),
uniqueness (+),
higher regularity (+),
error estimates (+),
size effects (-),

drill rotations (-),
symmetric stress (+),
dof (3)

b solution of
RM;y,, KLy
converges
ash —0
to solution
of 3D.SVK1in

constrain

classical infinit. 2D
RM-plate (10.126),
shear correction kK = 1,
invariance (-),
transverse shear (+),
existence (+),
uniqueness (+),
higher regularity (+),
error estimates (+),
size effects (-),

thin plate limit (-),
drill rotations (-),
symmetric stress (-),
dof (5)
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classical finite 3D
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invariance (+),
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higher regularity (?),
size effects (-),
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dof (3)
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projection

finite 2D KL-plate
model (7.83),
invariance (+),
invertibility (-),
LH('): BE('):
existence (?),
uniqueness (-),
higher regularity (?),
size effects (-),

thin plate limit (-),
transverse shear (-),
drill rotations (-),
symmetric stress (+),
pure bending (+),
dof (3)

constrain
d=1

new finite 2D-RM
plate model (6.82),
invariance (4),
invertibility (-),
LH('): BE('):
transverse shear (+),
existence (7),
uniqueness (-),
higher regularity (?),
error estimates (?),
size effects (-),

thin plate limit (-),
drill rotations (-),
symmetric stress (-),
pure bending (+),
dof (5)
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10 Appendix A

10.1 Notation

10.1.1 Notation for bulk material

Let 2 C R? be a bounded domain with Lipschitz boundary 852 and let ' be a smooth subset of 8§ with non-vanishing 2-dimensional
Hausdorff measure. For a,b € R* we let (a,b)ys denote the scalar product on R3 with associated vector norm [|al|2 5 = (a, a)gs-

We denote by MBX3 the set of real 3 x 3 second order tensors, written with capital letters. The standard Euclidean scalar
product on MPX3 is given by (X,Y)ysxs = tr [XYT], and thus the Frobenius tensor norm is ||X||? = (X, X)ysxs. In the
following we omit the index R2,M2X3. The identity tensor on M2*3 will be denoted by 1, so that tr[X] = (X, 1). We let
Sym and PSym denote the symmetric and positive definite symmetric tensors respectively. We adopt the usual abbreviations of
Lie-group theory, i.e., GL(3,R) := {X € M?*3 |det[X] # 0} the general linear group, SL(3,R) := {X € GL(3,R) |det[X] =
1}, O(3) := {X € GL(3,R) | XTX = 1}, SO(3,R) := {X € GL(3,R) [XTX = 1, det[X] = 1} with corresponding Lie-algebras
50(3) := {X € M3*3 |XT = —X7} of skew symmetric tensors and sl(3) := {X € M3X3 |tr[X] = 0} of traceless tensors. With
Adj X we denote the tensor of transposed cofactors Cof(X) such that Adj X = det[X]X~! = Cof(X)T if X € GL(3,R). We set
sym(X) = %(XT + X) and skew(X) = %(X — X7T) such that X = sym(X) + skew(X). For X € M2*2 we set for the deviatoric
part dev X = X — % tr [X] 1l € s((3) and for vectors £,n € R™ we have the tensor product (§ ® n);; = & nj.

We write the polar decomposition in the form F = RU = polar(F) U with R = polar(F') the orthogonal part of F'. In general
we work in the context of nonlinear, finite elasticity. For the total deformation ¢ € C''(€2,R3) we have the deformation gradient
F = Vip € C(Q,M?%3). Furthermore, S1(F) and S2(F) denote the first and second Piola Kirchhoff stress tensors, respectively.
Total time derivatives are written %X(t) = X. The first and second differential of a scalar valued function W (F) are written
DpW (F).H and DLW (F).(H, H), respectively. We employ the standard notation of Sobolev spaces, i.e. LZ(Q), H1:2(Q), HE? (),
which we use indifferently for scalar-valued functions as well as for vector-valued and tensor-valued functions. Moreover, we
set ||X||oo = supyeq [|X(z)||. For A € C1(Q,M3%3) we define Curl A(z) as the operation curl applied row wise. We define
HY?(Q,T) := {¢ € H-2(Q) | #|» = 0}, where ¢|. = 0 is to be understood in the sense of traces and by C§°(f2) we denote
infinitely differentiable functions with compact support in 2. We use capital letters to denote possibly large positive constants, e.g.
C7, K and lower case letters to denote possibly small positive constants, e.g. c¢t,d?. The smallest eigenvalue of a positive definite
symmetric tensor P is abbreviated by Amin(P)-

10.1.2 Notation for shells

Let w C R? be a bounded domain with Lipschitz boundary dw and let o be a smooth subset of dw with non-vanishing 1-dimensional
Hausdorff measure. The thickness of the plate is taken to be h > 0 with dimension length (contrary to Ciarlet’s definition of the
thickness to be 2e, which difference leads only to various different constants in the resulting formulas). We denote by M**™
the set of matrices mapping R® — R™. For H € M?*2 and ¢ € R? we employ also the notation (H|¢) € M2X3 to denote the
matrix composed of H and the column . Likewise (v|¢|n) is the matrix composed of the columns v, &,n. The identity tensor on
M?*2 will be denoted by 13. The mapping m : w C R? — R? is the deformation of the midsurface, Vm is the corresponding
deformation gradient and maz = (m1,z,m2,3,m3,2)T, my = (m1,y,m2,y,m3 )T . Sometimes, this is also written as Vm. We write
v : R? — R3 for the displacement of the midsurface, such that m(z,y) = (z,¥,0)” + v(x,y). The standard volume element is
written dxdydz = dV = dwdz.
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10.2 The treatment of external loads

10.2.1 Dead load body forces for the thin plate

In the three-dimensional theory the dead load body forces f(z,y,2) € R® were simply included by appending the potential with
the term

/ f(@,y,2) - o(w,y,2)dV . (10.92)

Inserting the ansatz for the reconstructed deformation s results in

— 22 —
[ f@) ooV & [ f@2) - ) +zonRa+ S o T av
Q

h/2 h/
:/hf(:c,y)~m(:c,y)dw+/ / z f(2,y,2)dz | omR3 dw+/ / ; (z,y,2)dz | opR3dw (10.93)
w w \—h/2 w \~h/2
Let us define
h/2 h/2 2o
fow) = [ fepde, fiew = [ 2fennd, o= [ 5 ey, (10.94)
—h/2 —h/2 —h/2

such that fo, fl, f2 are the zero, first, second moment of f in thickness direction. Moreover
h/2 h/2

22 h3
[ Ziuaa= [ 2000 +e00w0.0 4. di= 2re,y,0 4 000) (10.95)
—h/2 —h/2
h/2 h/2
h3
/ z f(z,y,2)dz = / 2 (f(z,9,0) + 20, f(2,y,0) +...) dz =0 + Eazf(a:,y,o) +O(h5).
—h/2 —h/2
Therefore
/ F@,9,2) - 0s(2,9,2) AV ~ / fol@,y) - m(z,y) dw + / i@, y)om Bs dw + / Fo(@,y)op Rs dw (10.96)

10.2.2 Traction boundary conditions for the thin plate

In the three-dimensional theory the traction boundary forces N(z,y,z) € R® were simply included by appending the potential with
the term

/ N(z,y,2) - p(z,y,2)dS. (10.97)
BQ'ilra.nsU{,ys X[*%,%]}

Inserting our ansatz for the reconstructed deformation ¢s results in

_ 22
/ N(CL‘, Y, Z) : <Ps(i’3, y:Z) ds =~ / N(CL‘, yrz) . {m(m,y) +zomR3 + ?!]bRg] ds
R Uy, [ &, 1} wx{—h By
— 22
+ N(z,y,z) - {m(w,y) +zomR3 + EQbRS] ds.
’st[—%,%]
Let us define
h/2 h/2 h/2 9
~ ~ ~ z
Nlat,O(m,y) = / N(a:,y, Z) dZ, Nlat,l(m,y) = / z N(SL‘, Y, Z) dZ: Nlat,?(xy y) = / E N(SL‘, Y, Z) dz s (1098)
—h/2 —h/2 —h/2

such that J\Aflat,o, Nlat,l, Nla,t,Z are the zero, first, second moment of the tractions N at the lateral boundary in thickness direction.
Hence

h h h _
/ N(a:,y,z)-np(a:,y,z)dSN/[N( T, Y, = )+N( z,Y, — )] T,y dw+/ ay, N(w,y,—g)]ngg,dw
oy, w

h2 R -
+/[§N++§N ]gbRader/Nlat(x,y)- m(z, y ds+/N1aH z,v) ngads+/Nlat2 2,y) 0 Fis ds
Vs

= /Nres (z,y) -m(z,y) dw+/hNdlff(CB y)ngg dw+/ Niesop R3 dw (10.99)

w

+/Nlat0 ay ( z, Y ds+/Nlatl 7y)ng3ds+/Nlat2 ,y)QbR:’)dS,

¥s
with

News = [N (2,9, 0) + N,y —)], Naiw = 3 IN(@9, ) = Nz, — 2], (10.100)
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10.2.3 The external loading functional

Let us gather all influences of the external loading terms. It would be possible to account for all appearing influences, however, in
view of a reasonable simplification we consider only those terms, which would have appeared, if we had made the restricted linear
ansatz without thickness stretch s = m + z R3. To leading order we have the

T = fo+ Nres, resultant body force
M = fi + h Ngigg resultant body couple (10.101)

N = Nlat,O , resultant surface traction

M. = Nlat,l , resultant surface couple.

The resultant loading functional II is given by
I(m, Rs) = /(}, m) + (M,E3>dw+/<ﬁ,m> + (M., R ds. (10.102)
¥s

If we denote the dependence of II on the loads of the underlying three-dimensional problem as II( f, N; m,ﬁg)_, then it is easily seen
that frame-indifference of the external loading functional is satisfied in the sense that II(Q.f, Q.N; Q.m,Q.R3) = II(f, N; m, R3)
for all rigid rotations @ € SO(3,R). It is possible to use the same functional form of the loading functional for all finite

and linearized models. We only need to replace (m, R3) by (m, J), (m, ), (v, A3) for the different finite and linearized models,
respectively.

10.3 Transformation of the domain and scaling

10.3.1 Classical finite elasticity

Set Qtel-thin = [0, L[m]] x [0, L[m]] x [f% -L, % - L] with h a small parameter indicating the relative thickness of the domain, e.g.

h € (0, 55 [m]] with dimension length. The three-dimensional problem with respect to the relatively thin domain Q%°!-*hin reads
Wap(Vepr(§)) — (fr(§), vr(§))dE — / (NL,pr)dSp = min. wrt. or, (10.103)

rel.thin rel.thin
Eears aqre

where we are looking for a function g, : Qiel-thin ¢ R3 s R3. Introducing the scaling transformation

¢:Qp = [0,1[m]] x [0, 1[m]] x [_g’ %} CR® = QMR CR?,  ((¢)=L-z, (10.104)
(note that L itself is non-dimensional here) this turns into
/ (W3 (V¢(2)Vip(2)VEH (@) = (FL(¢()), L - w(x))] det[V((2)]dV (10.105)
zEQ
- / (NL(¢(@), L - (x)) || Cof V(.es]|dSp — min. w.rt. o., (10.106)

oQy,

for a function ¢ : Q; C R? — R3 defined implicitly through ¢ (¢) = ¢(p(¢71(€))). With f(z) = L - fr(¢(x)), N(z) = N (¢(z))
we have

/ [Wap (Vi) — (f, )] L2V — / L(N,p)L?dS — min. w.rt. ., (10.107)
TEQ, Yy,
or equivalently
/ [Wap (V) = (f,»)] dV — / (N,9)dS + min. w.rt. ¢., (10.108)
zEQ, a0y,

which shows how the scaling from a domain which is relatively thin to a domain which is absolutely thin is to be performed in
order to apply the subsequent dimensional reduction procedure.

10.3.2 Scaling relations for finite Cosserat models with internal length

For completeness let us summarize the scaling relations appearing in a finite elastic Cosserat theory. Our goal is to relate the
response of large and small samples of the same material and to asses the influence of the characteristic length L.

First, in our definition, the characteristic length L. is a given material parameter, corresponding to the smallest discern-
able distance to be accounted for in the model. A simple consequence is that actual geometrical dimensions L of the bulk material
must be larger than L., indeed for a continuum theory to apply L should be significantly larger than L.

Now let Q7 = [0, L[m]] X [0, L[m] x [0, L[m]] be the cube with (non-dimensional) edge length L, representing the bulk material.
Consider a deformation ¢z, : £ € Qr — R® and microrotation Ry, (€) : Qr +— SO(3,R) as solution of the simplified minimization
problem

pIRL(EF(€) — L[> + p LY |DeRL (619 €+ min. w.rst. (pr,Rr). (10.109)
£eqy

The simple scaling transformation ¢ : R® — R3, ((#) = L - £ maps the unit cube ©; = [0, 1[m]] x [0,1[m]] X [0,1[m]] into Q.
Defining the related deformation ¢ : z € Q1 — R? and microrotation R(z) : Q1 — SO(3,R) as

o) =" (pr(C(@), R(x):=Re(((2)), (10.110)
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shows
V() = 7 Verr (@) Val(@) = Vepr(€), D) = DeRe(¢(@)) - Val(e) = DRn(6) - L. (10.111)

Hence, the minimization problem can be transformed

/n IRL(€)Vepr(€) — N[> + LY [DeRL (€)1 dg = /u IR (2)Vaip(z) — 1| det[Vo( ()] + p L2 II%DxE(@IIq det[Vz((z)] dx
£eQr TEN
:(/uHET@ﬂVmwm)—Hﬂ2L3+uLgL&ﬁHDjﬂmqux, (10.112)
r€EN

and we may consider at last the problem defined on the unit cube Q:

/)ﬂ”RT@“h@@ﬂ—H“2+uLgL&ﬂ_3mk§@MdeH-mm.wmt(wja. (10.113)
r€EN

Comparison of different sample sizes is afforded by transformation to the unit cube respectively, e.g. we compare two samples of
the same material with bulk sizes L1 > La. Transformation to the unit cube shows that the response of sample two is stiffer than
the response of sample one.

It is plain to see that for L large compared to L., the influence of the rotations will be small and in the limit % — 0, classical

behaviour results. Otherwise, the larger % < 1, the more pronounced the Cosserat effects become and a small sample is relatively
stiffer than a large one.

10.3.3 Scaling relations for finite Cosserat plates

As a consequence for relatively thin shells of the former development we consider the finite problem on the relative thin domain
Q‘fl'th‘“ in simplified form:

pIRL(€)Vepr(€) — L] + p L |DeRL (6)]|7 d€ — min. wort. (pr, Ry). (10.114)

rel.thin
gears

This implies on Q) = w X [f%, %} for the correspondingly transformed variables

— . Ll _ _
/ W HRT(Q?)V;,;W(SC) — 1) +p L—; [|[DxR(z)||? dx — min. w.r.t. (¢, R). (10.115)
zEQ

Inserting the reduced kinematics and integrating over the thickness we should consider on w

_ - . h3 - . L _
/uh IR" (Vm|Rs) — )2 + 5 ul| B (VR3|0)||2 + h T2 IDR@)||" dw = min. w.rt. (m, R). (10.116)
w

Comparing domains with the same relative thickness h > 0, but different in-plane elongation L, we see that the smaller
sample is relatively stiffer for the same relative thickness.

For very large samples with the same relative thickness, the classical bending terms are retrieved.?® In this sense, classical
plate formulations represent the limit behaviour of ever larger, thin structures with the same relative thickness..

10.4 Generalized convexity conditions

For the convenience of the reader we collect some of the most useful convexity conditions. Let an elastic free energy density
W MPX™ — R, n < m be given. We say that W considered in Vip = F € M*X"™ ig

1. uniformly stable, if D2W(F).(H,H) > ¢t ||H||?>, H € M*X™

2. strictly Legendre elliptic, if DZ2W (F).(H,H) >0, VH #0

3. pre-stable, if DZW (z,F).(H, H) > ¢t ||(H|0)TG(2) + G(z)T (H|0)||?, V (H|0) € M™*™ | H # 0 with G € GL(m,R).
4. polyconvex, if there exists a convex function P : M**™ x M**™ x R — R such that W(F) = P(F, Minors;;).

5

. quasiconvex, if

VE e MPX™ ;D] W(F) < /W(F+v¢(w))dx Ve CP(D,R™), (10.117)
D

which implies that the homogeneous deformation F is absolute minimizer to its own boundary conditions and excludes
internal failure.

6. uniformly Legendre-Hadamard elliptic, if DLW (F).(£®@n,£®n) > ¢t ||¢]1Zm - |Inll3 -
7. Legendre-Hadamard elliptic, if DZ2W (F).(§®n,£®1n) >0
8. rank-one convex, if f(t) := W(F + t(§ ® 7)) is convex in ¢ for all F € M"X™ .
It is known [Dac89] that
convexity = polyconvexity = quasiconvexity = rank-one convexity < Legendre-Hadamard ellipticity, (10.118)

but the reverse implications are false in general. For the scalar case ¢(z1,...,2n) € R and the one dimensional case ¢(z1) €
R™ all conditions coincide if correctly identified and simplify to the requirement of convexity of W.

36In plane rotations remain unspecified, they cannot be determined from R3 alone.
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Definition 10.1 (Weak lower semicontinuity)
We say that a functional I defined on the Sobolev space W1P(Q) is weakly lower semicontinuous, whenever pj, — ¢ € WHP(Q)
implies

I(p) < lin}cinf I{pg) - (10.119)

If I(p) := fn (Vep) dx, then weak lower semicontinuity is equivalent to quasiconvexity of W. This result is the cornerstone of
the classwal direct methods of variations.

10.5 Macroscopic elastic shear failure for plates

It is convenient to define what we mean by shear failure for plates in classical isotropic elasticity. Let W ((Vm|it)) = W(VmT Vi)
be the free elastic energy density of the membrane (intrinsic) part of the plate defined on the first fundamental form of the
surface Vm®Vm = I,, € Sym. If for some regular m : w C R? — R? with (Vm|i,,) € GLT(3,R)

IEneR®: DEW((Vm|it).(E®@n,E@n) <0, (10.120)

we say that the material fails or looses Legendre-Hadamard ellipticity (LH), also called a material instability.?” This
failure can give rise to highly localized deformation patterns, subsumed under the notion of microstructure. Related is the
possible emergence of discontinuous deformations since Hadamard “s jump relations are violated. However, loss of ellipticity
may already occur for midsurface deformations which are not related to in-plane shear, e.g. uniaxial situations and pure in plane
dilations. Thus we say that W suffers from genuine elastic shear failure whenever

JFeGLT(3,R) 3&neR®: D2W(F).(6®n,6®7) <0, but
VF €diag A\, A, 1) VERER?: DPW(F).(E@nt®n) >0. (10.121)

It seems that failure of a material on a macroscale other than shear failure is unphysical and rather due to the idiosyncrasy of the
constitutive equations, as long as the bulk is modelled as elastic. In fact, Legendre-Hadamard ellipticity for F' = diag(/\f, X;, 1)
of the membrane energy implies immediately the Baker-Ericksen (BE) inequalities [MH83, p.19] for the membrane and genuine
elastic shear failure happens, if BE is satisfied but LH is violated.38

In this sense the following non exhaustive list of free energy terms should be avoided for the membrane since they are not only

failing under shear (already BE is not satisfied): with C = (Vm|i)T (Vm|i), T = VT, F = (Vml|i) the list reads

IC =132, (C—1,1)% (InC,1)°, (InC,1)* + ||devIn T||, (InT, 1)°, —Indet[F]+ (In det[F])2, || — 12, (10.122)

et[C }”3

and it is obvious that the membrane part of the finite Kirchhoff-Love plate model (7.83) and the finite Reissner-Mindlin model
(6.82) is failing, not only in shear! Of course, combination with other terms could remove the problem. Terms which genuinely fail
only in shear are e.g.

T 2

— - ]12] : (10.123)

”ﬁ_]l”Za (ﬁ_]l7]1> ) H —
det[U]

— 1%, tr

ot[T }”3

10.6 Linearized plate models

10.6.1 The classical infinitesimal Reissner-Mindlin model

Let us linearize a modification of case II (. = 0, a4 = 0, ¢ = 0, p > 1) for situations of small midsurface deformations and
small curvature. We write m(z,y) = (z,4,0)T + v(z,y), with the displacement of the midsurface of the plate v : w +— R3
and R = I + A + ... with A € 50(3,R) the infinitesimal microrotation. For the boundary deformation we write gq(z,y,2) =
(z,y,2)T +ud(z,vy, 2), with the consequence, that Vgq.e3 = (u‘f,z,ug,z, 1+ ug,z). The curvature tensors are expanded as

R =R (VR30)= (L +A+...)T (V[As + A .e5+...]/0) & (VA3|0) +
s & ((V(A.e1)]0), (V(A.e2)|0), (V(A.3)]0)) , (10.124)
and the Cosserat micropolar plate stretch tensor expands like
1 0
T=R'F=R'(VmRs) =@ +A+.. )T [ [0 1| +Vol@+A+...)es) | ~ 1+ (Vo[As)+ . (10.125)
0 0

Since p > 1, the Cosserat curvature contribution has an exponent strictly bigger than two such that a linearization w.r.t zero
curvature does not yield any contribution of this term. Moreover, for u. = 0, in-plane rotations (drilling degrees of freedom) do

37Material instability should be carefully distinguished from geometrical instabilities occurring in buckling or necking and
which are fully consistent with Legendre-Hadamard ellipticity. In this sense, polyconvex materials are unconditionally materially
stable and certainly appropriate for rubber and soft-tissues [SN02, HN03].

380ne version of the BE-inequalities for membranes can be stated as follows: for )\? > 0,1 = 1,2,)% = 1 the (generalized)
principal stretches (here A? are the eigenvalues of (Vm|it)T(Vm|ii)), the free energy ®(A1,Az,1) = W(VmTVm) is separately
convex in ;. No mathematical existence results based only on BE are known. Note also that BE is enough to effectively exclude
phase-transformations, modelled with multi-well potentials.
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not survive the linearization process! We are indeed left with the minimization problem for v € R® and A3 € R?

[ (s llsym((ToTANIP + S e fsym((7012)) )

w

h3 — A — 2 — . —
+ T (u | sym((VAz|0))||*> + 2: X tr [sym((VA3|0))] ) dw — II(v, A3) — min. w.r.t. (v, A3),
U,y = ud(z,y,0), simply supported (10.126)
- d . . . . - u(li,z — U3z ’u‘g,z — U3y T
AHO = skew((Vv|0:u ))|70 , linearized consistent coupling = A3|70 =( 5 R 5 ,0)
Z3I70 = (uf,z,ug,z,O)T, rigid prescription.
Abbreviating now @ = (01,602,0)7 = — A3, we are left with the following set of equations for the displacement of the midsurface of
the plate v : [0,T] x @ + R® and the infinitesimal increment of the ’normal’, § : w +» R3
A .
[ pllsm P+ 5V =0 43 sym V(o)
2 20+ A
w N————
transverse shear energy
h3 2 u)\ 2 .
+ — | ©||sym Vo|© + tr[sym V0]° | dw —II(v, —0) — min. w.r.t. (v,0),
12 20+ A
v, = ud(a:,y, 0), simply supported (10.127)

d d
_o = (ul,z — U3z U, — U3y
o = 2 2

-0y, = (ucllyz,ugyz,O)T , rigid prescription.

,O)T , linearized consistent coupling

A further reduction arises if we assume only normal displacements: v; = va = 0. The resulting minimization problem is

h? A
/h Bivus — 02 + = (u | sym Vo2 + —E2tr [symV9]2> dw — I(vs - €3, —0) — min. w.r.t. (vs,0),  (10.128)
2 12 20+ A
w
V3|, = ug R simply supported
d d
Ui, = U3z Uy, — U3y . . . ..
=0, =(—= 3 , 5 ,0T linearized coupling, =0, = (u?,z,ug,z,O)T rigid .
The elastic free energy should be compared with
ki 2 h® (IL T 2 2pA T 2)
Wi Vwus,0) =h— ||Vvz — 0 — [ = ||V Vo —tr | VO Vo 10.129
Rt ctass (V0,0) = b = (Voo =01+ 5 (T IV07 4+ VO + g =Brsr [V0F 4 90] ) (10.129)

where k = % is the so called shear correction factor. In this last form, the Reissner-Mindlin problem can be found in many
textbooks, e.g. [Bra92, p.281] or [Ste95]. It should be noted, however, that in our variationally based finite derivation with
subsequent linearization there is no imminent reason to introduce k # 1. In fact, the shear correction factor x can be seen as a
tuning parameter of the infinitesimal model which, for certain types of loading,3® allows to improve the order of convergence
of the infinitesimal Reissner-Mindlin solution to the three-dimensional linear elasticity solution [R&s99].4°

10.6.2 The classical infinitesimal Kirchhoff-Love plate (Koiter model)

For the convenience of the reader we also supply the similar system of equations for the classical infinitesimal Kirchhoff-Love plate
(also the Koiter model) which we derive as linearization of the finite Kirchhoff-Love plate. In terms of the midsurface displacement
v we have to find a solution of the minimization problem for v € R3

A .
[ (unsymvm,mw oy [symV(m,w)F)
2u+ A

w

+ h—3 (u [|D%vs]]* + HA tr [D2v3]2) dw — II(v, —Vv3) — min. w.r.t. v
12 20+ A ’ T
v, = ud(z,y,0), simply supported (10.130)
d d
u — U3z U —vs, . . . .
~Vus,, = ( L,z 5 i , 22 5 Y ,00T . linearized consistent coupling = Vs = —1/2 (u‘f’z,ug‘,z,o)T
7V’U3‘_m = (uf,z,uS,Z,O)T ,  rigid prescription, linearized Kirchhoff.

This energy can be obtained formally from (10.129) by setting 6 = Vus.

39Hence the shear correction factor s shows some similarity to the Cosserat couple modulus pc, whose influence on the solution
of the three-dimensional problem is also strongly dependent on boundary conditions. For rather thick plates, it is known that the
shear energy in RMj;, is overestimated, therefore, one is led to reduce the shear energy contribution a posteriori by taking x < 1.

401t would be interesting to know the optimal shear correction factor 0 < & < 1 of the infinitesimal Reissner-Mindlin model with
our reduced consistent coupling boundary condition. Such an optimized parameter should also be beneficial for the finite Cosserat
plate!
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11 Appendix B

11.1 Prerequisites from differential geometry

A given mapping m : w C R? — R3, describing a surface imbedded in the three-dimensional space is called regular whenever
rank(Vm) = 2. The vector
Mg X My

ni=—}7 11.131
e x my ]| (1L181)

is the Gauss unit normal field on the surface. The map n : w C R? — S? is called the Gauss map and the moving 3-frame
(mz|my|n) is called the Gauss frame of the surface m which in general is not orthonormal. The matrix representation of the
first fundamental form (metric) is given through

lIme|I? (mzamy>

<7nz my) Hmy”Z ) € M2><2, I, +e3Rez = (Vm‘n)T(me) = Tm (11'132)
)

Im :=VmT Vm = (

det[I,,] = det[T,] = det[(Vm|i)]2.

The metric alone is not sufficient to describe the shape of a surface in the ambient three-dimensional Euclidean space, the curvature
is also needed, although in the rigid case (Vm|it) € SO(3,R), the metric is indeed enough.
The matrix representation of the second fundamental form providing a measure for curvature of the surface is given by

o T _ T __({ma,Dzn) (mg,Dyn) 2% 2
I, :== —Vm~ Dn = —(mg|my)" - (nz|ny) = ((my,Dzn> (my, Dyn) e M (11.133)
(mg,Dgn) (mg,Dyn) 0 . -
(Vm|n)T (Den|Dyn|0) = | (my, Den)  (my,Dyn) 0|, 1ly:=—(Vm|7)T(VilR), det[lin]=det[Ily].
0 0 0

Since n is orthogonal to the tangent space T m, the relation 0 = 9, (my, i) = 9y (my, ) shows easily that II,, is symmetric. The
third fundamental form of the surface in matrix representation is defined as

|Dzn|>  (Dyn, Dyn)

III,, := DnT Dn =
" ((Dyn,Dzm |Dynl?

) € M2%2 | TIl,, := (Vil@)T (Viii). (11.134)

The matrix representation of the Weingarten map (shape operator) L is given by
L(z,y) := —Dn(z,y) ngfl(m(az,y) e MEX3 ) L = —(VA[0)(Vm|n)~ !, (11.135)
representing the variation of the normal in the metric of the surface. In order to see that L = —(Dn|0)(Vm|n)~! we extent m to
R? by setting O(z,y, z) = m(z,y) + zn(z,y). This yields O(z,y,0) = m(z,y) and VO(z,y,0) = (Vm|n) while ©~1(0(z,y, 2)) =
(z,y,2)T and the chain rule shows V0~ Y(O(z,y,2)|VO(x,y,z) = 1. Hence
Ve© H(O(2,y,0)VO(z,y,0) = 1L
but Ve©~1(O(z,y,0)) = Vem™! (m(z,y)) which finishes the argument. The Gauss curvature K of the surface is determined by

 det[I1y)

K(z,y) == detln] — det[L] = det[Dn Vem™1(€)], (11.136)

and the mean curvature H through
2H(z,y):=tr[L] =tr [Dn ngfl(g)] . (11.137)

The relation 111, —2H II,, + K I, = 0 ([KIli78, Prop. 3.5.6]) is a consequence of the Caley-Hamilton theorem and shows that
111, is not independent of I,,,II,. The principal curvatures ki1,k2 are the solutions of the characteristic equation of —L, i.e.
k%2 —tr[L]x + det[L] = k2 — 2Hk + K = 0. The Caley-Hamilton theorem on M2?*? implies for the second fundamental form on
account of its symmetry

IT2, —tr [I1] Iy, + det[IT] o = 0 = [|[I1,]|? — tr [I1,,)? 4+ 2det[IL,,] =0 = tr[[Ln]? — |[|[I1n]|? = 2det[I],]. (11.138)
Thus the Gauss curvature K can be expressed equivalently as

e [IIn]? = |12

3 den] (11.139)

Of major importance is the following classification

Definition 11.1 (Intrinsicality)

A property or a set of equations is intrinsic whenever it can be reduced to the first fundamental form, i.e. depends only on local
length and local angles on the surface. (Or the change of local length and local angles.) Intrinsic properties remain invariant under
isometries.
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For example, the mean curvature H is not intrinsic, since bending a surface changes H but leaves length and angles invariant
(bending belongs to the outer geometry of the surface); or take the normal of the surface n: this is not an intrinsic quantity, since
bending changes the normals but leaves length and angles invariant.
Gauss’ celebrated Theorema Egregium states that contrary to appearance (it involves the normals!), the Gauss curvature
K is an intrinsic quantity: it can be computed through the first and second derivatives of the first fundamental form. The same is
trivially true for ||(Vm|@)T (Vm|@i) — 1||2- it is a purely intrinsic strain measure (the dependence on 7i cancels out algebraically).
In the thin shell limit of h — 0 it is expedient to get a model which is purely two-dimensional, i.e. intrinsic.

Theorem 11.2 (Fundamental theorem of surface theory)
Any two surfaces m,m : w C R%2 — R?, which have the same first and second fundamental form, differ only by an isometry, i.e.

m(z,y) = Qm(z,y), Q € SO(3).
Proof. Well known in differential geometry, e.g.[K1i78, p.64]. |

Lemma 11.3 (Developable surfaces)
A surface m with no planar points (I, # 0) is developable (on the plane, without stretch) if and only if the Gauss curvature K
vanishes.

Proof. Theorem 3.7.9 in [KIi78|. |

Lemma 11.4 (Isometric surfaces)
Two surfaces with different Gauss curvature K cannot be mapped isometrically into each other.

Proof. Well known. |
The following classification is standard. The surface m is locally
elliptic >0
parabolic at (z,y) € wif det[IIn(z,y)]isq =0 . (11.140)
hyperbolic <0

The surface m is locally uniformly elliptic if
JeT > 0:VEERY:  (IIm.£,E)g2 = (VmT Dn.g,E)gs = (Dn.&, Vm.E)gs > ¢ [|€]%. (11.141)

Definition 11.5 (Christoffel symbols)
Let the regular surface m be given. The Christoffel symbols of the first kind of the surface are defined by

;‘k = (0jag,ai), a1 =mg,a2 =my,a3 =mn,j=12,1i,k=1,2,3. (11.142)

They are not independent of the choice of coordinates (not covariant), but intrinsic quantities, belonging to the inner
geometry of the surface, see [Lau60, p.36].

Let us look at ||[Vz[0?]]|?. Tt is clear that this defines an intrinsic quantity, since it can be expressed as partial derivatives of the
metric. We have

i, +712
Vel [Vm)? = Vo (VmT Vim, 12) = Ve (|lme||* + [Imy > :2(<m”’m”>+<my’my”>) :2( LTz 11.143
IVml| (Vm? Vim, 1) (e [|7 + [y [17) (M, May) + (my, myy) vl +ra ( )

Hence, ||Vw[92]||2 = 4(F}1 +F%2)2 +4(F%1 +F%2)2~

11.2 Additional material

Lemma 11.6 (Normality and polar decomposition)

Let m : w C R? — R3 be regular and assume for some R € SO(3) that R = polar(Vm| ¢ R.e3), where o > 0 is given. Then
R3 = i;n and R = polar(Vm|p 7).

Proof. Since ' = RU we must have FT'R € Sym. But

T T T T <mZ7R1> (mmR2> (m:caQR3>
U=U" =F R=(Vm|pR3)" -polar(Vm|oR3) = (Vm|oR3)" -R= | (my,R1) (my,R2) (my,0R3)]| , (11.144)
0 0 0

which implies ¢ (my, R3) = 0 (me, R3) = 0 by symmetry of U. Thus R3 coincides with the unit normal 7y, on m. |

For m = (z,y,0)T + v(z,y) we have

v1,y+tv2 e B+v3 =
Vi,e Vly B V1,2 — s T3

_ _ 2
(Vo[Az) = [ve vay 7], sym((Vo[As)) = [ Mafvze ) 3ty (11.145)
v3z 3,y O B+v3.» ytvs.y 0
2 2

— ) — — 2 .
|sym((Vo[As))|I? = || symy(V(v1,v2))I1? + Vs — (~A3)[|*,  tr [sym((Ve[A3))]” = tr[sym(Vo|0)]* .
Lemma 11.7 (Rigidity coincidence II)
If (Vm|n) € SO(3) then
|1 Im||* = tr [ITI;m] = || Denl|® + || Dyn||?
tr [[Im]* = (llmaz || + [lmyyl)? (11.146)

I |1 = [[ma || + 2llmay||* + [[myy *
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Proof.

(mg,Dgn) (mg,Dyn) 0
(my,Dzn)  (my,Dyn) 0

(Vm|n)T - (Dyn|Dyn|0) = (n,Den)  (n,Dyn) 0] - (11.147)
=0 =0
Therefore
[ Im|* = [(Vm|n)" (Den|Dyn|0)||* = [|(Den|Dyn|0)||* = | Denl|* + || Dynl|* = tr [[1Im], (11.148)
which finishes the first part. Now tr[I1,]*> = ((ma,nz) + (my,ny))2. Using 0 = %(mz,n) = %(my,m we have tr[[1,]? =

((Mmea,n) + (myy,n))?. But if (Vm|n) € SO(3,R) we get in addition, on account of

d d d
0=—(mg,mz), 0=—(my,my), 0= —(mg,my), (11.149)
dx dy dx
that (mge,mz) = (Mee,my) = 0 and (Mmyy,maz) = (Myy,my) = 0 which implies that mgze = ||Mmee||n and myy = ||myy||n. The
same reasoning implies altogether
. —llmee||  —[lmayl| 0
(Vmln)” - (DenlDynl0) = [ —lmyell  —lImyyll 0 (11.150)
0 0 0
|

Ccﬂ'qulary_ll.S (Rigidity coincidence IIT)
If R” (Vm|R3) — 1l =0 then R = (Vm|f,,) € SO(3) and R1,y = Ry, together with

o =Rzl =Ryl O
B (VRs|0) = [T = | —[[Raell —|[R2yll 0] - (11.151)

0 0 0

Moreover,
Bzl —lRiyll 0 ) o o
llsym | —[|R2ell  —[[R2yll O fI° 2 (IVRLI" +[VR2[". (11.152)
0 0 0

Proof. The first part is a consequence of Lemma 11.7. The second part is an algebraic computation. |

11.3 Linearized quantities

At various places we are interested in the linearization of the proposed systems with respect to the reference plane. Let therefore
m(z,y) = (z,9,0)T + (v1,v2,v3)T and g4 = (z,y,2)T + ud(z,y,2)T. Then upon expanding to first order

1 0 Uiz Vly
Vm= 10 1]+ |v2z U2,y
0 0 U3z U3y
My X My = €3 +e1 X Uy + Uz X ez + vz XUy
n R es + (=30, —v3,y,0)" +o([|V])
Vga =1 + vud, Vgq.e3 = e3 + Vules = (u‘li,z,ug,z, 1+ ug,z)T
Vagq.€3 _ _
_Y9d-es Vga-e3-||[Vga-eal]| ™! = (ea + Vul.es) - ||es + Vul.es|| !
IVga-esl|
_ _o, €3
~ (es + Vud.es) |:H63|| L (=1)|lea]] 2(W,Vud.eg) + ...
~ (es + Vud.es) [1 — (es, Vud.eg,)] ~es + Vud.es — “g,z =e3+ (uiz,ug‘,z,o)T
Ui,z U1,y —V3,x
(Vmn) L+ | v22 v2,y  —v3y | +o([VY]])
Vs, U3y 0
201 2 vy +v2. 0

(Vm|n)T (Vm|n) — 1L ~ V2,0 + U1,y 202y 0] +o(||Vv]])
0 0 0

IVm||? & 2 4 2(01.2 +v2) + [[V0]]? =2 + 2 Divo + [Vo||?

Vl,z Ul,y —V3,z
polar((Vm|n)) = 1 +skew | va. w2,y —w3,y | +o(||Vv]]) (11.153)
U3,z U3,y
2"}1,1: Ul,y + U2,z 0
U(Vmin) % 14 = (w0 401y 2oy 0] +o(|IV])
2
0 0 0
—U3,xx —U3,zy 0
(Dnj0) x| —vsye  —vsyy O] +o([Vol]) = =Dvs + o(||Vv]))
0 0 0
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(vm|n)T (Dn|0) ~ —D?v3
tr [(Vm\n)T(Dn|0)]2 A tr [D2v3]2
1(Vmin)* (Dn|0)||? & || D?vs]?

1vol*

0 (Vm) & 1

_ Divw
2+ X 2n+ A
) 2\ VUl,ze + U2,y
Valoy, (Vm)] ~ BETESY (m,wy + vz,yy)
472
(2p+2)?

2

IV leh, (V)] ~ (V12 +v2,42)? + (V1,29 +V2,4y)*)

—VU3,zy V3,zx 0 . . 9 9
Curl(Vmln) & | —vs,yy vaye O], [ Curl(Vm|n)|?~ vé,” + 203 4y T3y
0 0 0
— — 1— — —
RZH+A+§A2+..., R.83N83+A.83

11.4 Detailed derivations

11.4.1 Detailed computations for the new Cosserat model

The equilibrium equations of the three-dimensional Cosserat problem given in [Nef03a] show that on the transverse boundary
(exact)
3 (V¥ (x, y, +h/2), B> (2, y, +h/2)).e5 = N""(a,y, +h/2)
SV (w,y, —h/2), R (2,9, —h/2)).(~e3) = N5 (z,y, ~h/2), (11.154)
where N'a15 are the prescribed tractions N on the transverse boundary given globally in the basis (e1, e2,e3). This implies (exact)
R @, y, +h/2)T S34(Vip3 (2, y, +h/2), B> (z,y, +h/2)).e3 = R°*(z,y, +h/2))T N2 (g, y, +h/2) (11.155)
B (@,y, —h/2)7 53V (@,y, ~h/2), B (2,9, ~h/2).(—es) = B (2,5, —h/2) T N (2, y, ~h/2)..

Abbreviate

Nt = N0 (g gy +h/2), N7 := NU"S(g y —h/2), (11.156)
and define
Nres = N3 (g y 4 h/2) + N2 (g y —h/2), Ngig := % [NtranS (g, y, +h/2) — N™3"S(g,y, —h/2)] . (11.157)
Then also (exact)
(B (z,y, +h/2))T S34(Vp3¢ (2, y, +h/2), B (@, y, +h/2)).es,e5) = (N*, B> (z,y, +h/2)).e3) (11.158)
B (z,y, ~h/2))T $3(Vp (2, y, ~/2), B (2,y, ~h/2)).e,e5) = —(N ", B (2,y, ~h/2)).e3) .

We determine g, 0p from the corresponding requirement in terms of the assumed kinematics (ps, Rs), yielding
i z,y, £h/2)S1(Vps(z,y, £h/2), Rs).e3,e3) = £(N"3S (g y, +h/2), Rs(x,y, £h/2).e3) =
8
7T — —
(R" S1(Vps(x,y,£h/2), R).e3,e3) = £(N®325(g 4 +h/2), R.e3), (11.159)

which condition reduces to zero normal tractions on the transverse free boundary (in the absence of tractions Ntrans) ip
the classical continuum limit of R = polar(Vip). We compute

2
— — — — — z —
Br =R [<Vm|ng3> +2(V(om Ra)ls Ts) + 0 (V(0y Ts)|0)

=B [(9ml0) + OlenTa) + 2(V (om RI0) + 00l ’s) + 5 (V(es Fa)l0)

— — — A
=R"(Vm|0) + om(00]ea) + 2R (V(om R2)[0) + z06(0[0]es) + - F
FIR+R'F,—21 =R (Vm|0) + (Vm|0)TR + 20, (0[0]es) — 21
+2 (R"(V(om R9)|0) + (V(om B3)[0)T T + 20, (0]0]e3))
2% (T — _ _
+ 5 (B (V(es B2)l0) + (V(es R3)|0)" R) (11.160)
([FEE«FETFS — 2]1] ez, e3) = 2(om — 1)+ 2z gp
tr [FSTR+ETFS - 211] =2 (<RT(Vm\o), 1) + om + 2((V(om R3)[0)TR, 1) + z 0 — 3
22 —r —
+S R (V0 R)/0), 1))

((V(e» R3)(0), R) = ((0b,2 R3|(0b,y R3]0), (R1|R2|R3)) + o ((VR3)|0), R) = 0, ((VR3)|0), R)
((V(em R3)|0), R) = om ((VR3)|0), R) .

~
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Since

— — — — A —_
S1(F,R) =R {u (FTR +RF- 211) + 2 skew(RTF) + S [FTR +RF- 211] 11] , (11.161)

the requirement (ETSl (Vips(m,y, 2), R).€3,e3) = £(Ntans(z y +h/2), R.e3) turns into

+ (N2 (2, y, £h/2), Rees) = p (2(om — 1) + 22 0p)
2

2 (R (Om0), 1) + g+ #(Ven RO R +20 =3+ S (R (Ve Ra)l0). 1)) =

+ (Nt2S(g oy +h/2), Rees) = 1 (2(om — 1) + 22 0p)
2
+A ((RT(Vm\m, 1) + om + 2 0m((VRa|0) By 1) + 20, ~ 3+ oa(R' (VR3[0), n>) : (11.162)

independent of the Cosserat couple modulus p.. Let us evaluate the last equation for z = +h/2. This yields two linear
equations in g, 0p

(NT, Reea) = p(2(om — 1) + h oy) (11.163)
2 (BT (Oml0), 1) + 0 + h/20m (VRAOTR) + /200~ 3+ o 0BT (VRel0), 1))
—(N7,R.e3) = p(2(om — 1) — hop)
+A ((ET(vm\o), 1) + om — h/20m (VR3|0)TR, 1) — h/20p — 3 + %Zgb(ET(vﬁg\o), ]1)) .
Adding and subtracting shows that

_ (Naig, R3)
)| = Fam )

m [20+ A+ op {)‘Thzwﬁgm)Tﬁ, 1 + (21 + A) = A [((Vm|0), Ry — 2]

om [/\ h(VR30)LR, 11>] + 0b [(21 + A)h] = (Nyes, R3)

2+ A AR (R 0)TR, 1)\ (om) _ ((Naig, Rs) + (21 + X) — A [((Vm|0), R) — 2]
(Ah<(vﬁg|0>Tﬁ,n> R ) ()= ( (Nees, Rs) ). (11164
The exact solution is given by
(Qm) _ 1 ( u+MNh (VR30)"R 11))
% (2u+ N2 h — 2252 (VR3|0) TR, 1) \-Ah((VE3]0)" R, 11) (2p+ )
(Ndiff,ﬁg) + (2# + /\) [((me) > 2]
( (Nres,R3> ) y (11.165)
which will be approximated through
(@m) . @utNh  —22TRs0), R (<Ndig,ﬁa> + 21+ A) = A [(Vm]0), B) - 2])
% (2[J+A)2h 7)\h((VE3‘0),E> (2p + X) <Nres;R3>
_ ( ey W((V&IO)J&) (<NdiH,R3>+ 21+ A) = A[((Vm]0), R) —2]>
—W«VRﬂU),R) ETETYI (Nres, R3)
1- 2 [<<Vm|o —2] + (g ) 8(2;5)2(@3\0) R) (Nres, Rs)
= z(zw—/\) <( R3|0), R)(Naier, Rs) — 5,775 (VR3|0), R) : (11.166)
+ ey (VRsl0), R) [(Vm|0), B) — 2] + (eeesfia)
Hence the leading terms*! are:
_ A - (Ngim, R3) Ah — _ _
om =1— 2” A [<(vm‘0)7R> - 2] + (Qlt I )\) - 8(2# ¥ A)Z <(VR3|O)’R> <N!'eS’R3>
0= 55 (TTsl0). T+ E;V+ f}”') - sy (V10 ) o ) (11.167)
A2 — — _
m((VR3|U),R> [((Vm|0), R) — 2] .

Th A2

e term m((
curvature, an artefact of the derivation not present in the underlying three-dimensional theory where only products of deformation-
gradient and rotations occur, we therefore neglect this term.42 Moreover, for a rigid material with A > 1 we have W <1,

VR3|0), R) [((Vm|0), R) — 2] represents a nonlinear coupling between midsurface deformationgradient and

leading finally to the reduced expressions:

B A — (Naigr, R3)
om =1-— St A [((Vm]0), R) — 2] + Cut N
_ A — 1\ =, (Nees, Ra)
00 =~ 5 (TFsl0) Ty + (s (11.168)

4INote that o, 0, have different units. g, is dimensionless, whereas [05] = m™1.
421t would be possible to base all further considerations indeed on the exact solution of g, 0, and it seems that the resulting
two-dimensional model would allow an existence proof. However, the much more involved expressions are not easily interpreted

and do not reduce to the classical expressions upon linearization.
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The formula (11.168) shows the physically reasonable behaviour that to first order, fibers will be elongated by opposite

transverse tractions.
Having obtained the general form of the relevant coefficients g, 0p it is expedient to base the expansion of the three-dimensional
elastic Cosserat energy, as far as its bending contribution is concerned, on a further simplified expression, namely

Fys = Vips(2,y,2) &~ (Vm| om R3) + z- (VR3|op R3) = Am + 2 A, = Fs . (11.169)

This is motivated by our already anounced principle of reduction. The use of (3.26) excludes (up to order h%) exactly those terms
which would violate our principle had we used (3.10) instead. We compute further

(R1,R3,2) (R1,R3y) O
T _ Ry, R3,.) (R2,R3y) O
R Ay =R (VHs|ey ) = (R3,R32) (Rs,Rsy) op |’

=0 =0
| skew (R A% = % ((R1,Rsy) — (R2,Rs )’ = ||skew(R' (VRs)0))|?
o - 2(R1,Rs ) <R1,R37y7> +7(E2,E3,z> 0
R Ay + AR = | (Ri,Rs) + <R2,R3,x> 2(R2, Rs,y) 0, (11.170)
0 20
A2 tr [sym(ﬁ (vRo,IO))]2 2X (Nres, R3) o (Nres, Rs)”
s e L RO+
IR" A, + ATR||? = 4] sym(R" (VR3]0))|[> + 40}
2
= 4] sym(R" (VR3|0)) |2 + ﬁtr [sym(RT(ng\o))]2
8\ <Nre57ﬁ3> —=T — 4(Nresaﬁ3>2
TR [sym(R" (VRs]0))] + Ty
r[B" A, + ATR]” = (2ur [sym(RT (VEs(0))] + 200
— dtr [sym(ET(vﬁg,\o))] * f 8t [sym(ET(vﬁg\o))] op + 402 (11.171)
— ttr [sym(® (VR o))"~ 3 o sy (TR0 + % v [sym(®” (VRs/0))]
2 R =2
+ 7(2;1 szt [svm (B (Rsjo)]” 78(251“;’)?;% [sym(® (VFal0))] + 7?2<fj5;§3;2
B 2 8\ 4X2 8\ (Nres,§3>
= tr [sym(B" (VRs|0))] - (47 et (2u+>\)2> - e e sy R (7R3 o)
8<Nre5;§3> 4<Nre57§3>2
TS [sym(R" (VRs 0))] + e
Since
W 8\ (Nres, R3) A [ 8A(Nres, R3)
L (m VT [sym(R (VR3|0>)]> +5 (m o [sym(R" (VRs/0))]
8(Nyes, R3) —2u\ A2 A
Fop et r [sym(R (VR3|0>)]> ((ZH T @ h G h) (Nves, Ra)tr [sym(R" (VRs|0))]
= 2p 42N A - =T o= o
- ((2u+/\)2h n (2u+/\)h) (Nres, Rs)tr [sym(R (VR3|0))] =0, (11.172)

therefore (the mixed term just cancels!)

2
4|R Ar + ATR|2 + tr [R A+ ATR ]

= 4l sym@T(vRsm))n? b2 [sym(E (VRal0))]”

(2p+ )
A T 2 8\ 402 (Nres,ﬁ3>2
+ St [sym(R (VR3|0))] : (4 “ontx T @y )\)2) AT (11.173)
B pA? A 8\ 42 2
= sy (VRO + | 0+ 5 (4= 305 + e )| b [ (TTel0)]
<Nres;§3>2
221 + A) h2
— 2
= Wllsvin(® (VRO + 2 tr [sym(R” (VRa(0))] + % .
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A similar computation is now performed for the membrane contribution. Set

A - (Naigr, R3) .
=1——|[((Vm|0),R) — 2 -t =1
om 2+ A [((Vm|0), R) — 2] + 2+ \) +om
N A - (Naigr, R3) A =\ 5 (Naier, R3)
=_ vm|0), R) — 2] + =_ Vm|Rs), R) — 3] 4 difl> 73/
om = =g (VmI B =255 2+ x ((VmiRa), By = 3]+ 25 25
Then
2 =T - 2 _

2 - A2 tr [sym(R (Vm|R3)) — ]1] 22 (Nair, Rs) [Sym( (VmlFs)) ] Ndlg,Rg
" (21 + )2 (21 + )2 (2 +A)?

IR A + ALR =21 |]? = 4| sym(R" (Vm|R3)) — || + 442,
tr [B A + AL~ 211] (2t [sym(B" (Vim[Ry)) — 1] +20m)?.
Exactly the same computations as for the bendlng term allows us to conclude that
%HETAT + ATR —2n|) + tr [R Ay +ATR]

A
= pllsym(R" (Vm[Rs)) — 1|2 + -~

] NdlffaR3>

[sym( (Vm|R3)) 220+ N

11.4.2 Detailed computations for the new finite Reissner-Mindlin model

We compute

~ ~ 22 . r ~ ~ 22 .
FST‘FS = (Am +zAr + EBT> (Am +2Ar + EBT>

2 3 2 3 4
.~ .~ 2% -~ o .~ 2° o~ 29 o~ o~ 2° o~ o~ 2%~
:A%Am-i—zAZ;Ar-i—?A53T+zAfAm+z2AZAT+?AZBT+?B?AW+EBfAT+ZBfBT

~ ~ ~ ~ ~ 2 ~ ~ ~ ~ ~ ~
= AT Ay +2 (AﬁAT + ATTAm) +% (ALBT +2ATA, + B,TAW) +O(h3),

N——
=:A =B =C
and further
N o mal (maymy) osd)
AL Ay = (V| om d)F (V| o d) = (mg,my) lImyl1* (Myyd)
om(mz,d)  om(my,d) o

tr[B] = tr [AT A, + AT An] = 2t [AT A, ] = 2(Am, Ar) = 2 ((Tmlom ), (V(emd)|0)) + om 01)

(B.eg,e3) = 2(AL A, ez, e3) = 2(Am.e3, Ar.e3) = 2(om d, 05 dy = 2 0m 03 -

We neglect the O(h®) contribution and insert z = +h/2. This yields two equations

({u(A — 1 4 (h/2)B + h?/4C) + %tr [A -1+ (h/2)B + h%/4C] 11] e3,e3) = (N, (om + (h/2) 0p) d)

({u(A — 1l — (h/2)B + h?/4C) + %tr [A -1 — (h/2)B + h%/4C] 11] e3,e3) = —(N7, (om — (h/2) o) d) -

Adding and subtracting shows that

2({u(A — 1+ h2/4C) + %tr [A -1+ h?/4C) 11} e3,e3) = (Nt = N~ omd) + h/2 05 (Nt + N~ ,d)

() + S BIN] e, ea) = (NF (N Do d) /2 (V- N

and to leading order in both equations
A o
2( {u(A — 1)+ Str (A - 11]11] e3,e3) = (NT — N7, o, d)

<N++N7)=chz>

<{uB + gtr [B]]l] 3, e3) = %

or

(lu(A— 1)+ %tr [A— ]1]]1} .e3,e3) = (Naig, om dy, ({uB + %tr [B]n] e3,e3) = (Nres,gm dy.
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(11.182)



This yields for gm,

~ . A
2

om (Naig, d) = |p(oy, — 1)+ = (IVmI]® + 05, —3) | =

(2002, — 1) + A (IVm|® + (62, — 1) — 2)] = 20m (Naigr, d)
(02, — 1)(2u + A) + A[||Vml|* — 2] = 20m (Naigr, d)

-

Naifr, d) A
2 1) 2g,, Naif Vm|? 2] =0
(¢ = 1) = 20 GETS AT 2
02— 20 LW D) A (o g g2

RCTESVIRECTESY)

= =2

Ny, d A . Ny, d

Om :+< diff >j; 1— [||Vm||2 72]+< diff >
2u+X) 2u+X) (2 + A)?

, (11.183)

and for g,
A L 7
(|uB + Sbr [BIL| .e3,e3) = E(Nres’gm d)

-

1 . —
- (Nies, om d) = 200m 04 + X om 05 + A (Vmlom d), (V(emd)|0)) = (11.184)

~ - " - 1 -
(264 A) om 06 + A ((Vm|om d), (0m Vd|0) + (0m,2d|om,yd|0)) = om - (Nres, d) (11.185)

=>

1 o
—(Nres, d)

=>

I, 1 B -
(21 + A) 0p + A {(Vm]d), (Vd|0) + Q—(gm,zd\gmyydm)) =

m

-

(Vmld), (Vd|0)) + (Nres, d) + ((Vmlomd), (0m = d|om,yd]0)) -

»- (2ut Ak om (20 + A)

Since we do not want to consider space variations in the thickness-stretch g,, we take finally

72u+/\

o 2
(Naigr, d) A (Naigr, d)

=L\l —|Vm|? - 2]+ ——

o = ot N) G V™I =21 5,0

-

(Nres, d)
(2u+A)h’

o = (Vmld), (Vd|0)) + (11.186)

72u+)\

11.5 Units and elastic constants

The body force f has units [N/m3], the surface traction N has units [N/m?], of course. Note that a typical value of the elastic
moduli for steel is u = 80.000[N/mm?] = 8 - 101°[N/m?2] and A = 100.000[N/mm?] = 10 - 101°[N/m?] = 80.000M Pa = 80GPa.
The Youngs-modulus E and the Poisson number v are defined in terms of the Lamé constants as follows:

2
E:=pu ,u+3)\, Vi= A R /\%ooﬁuﬂl
Bt A 2(p+A) 2
Ev E
A= — —————— =—. 11.187
Arn-2) "“ 2010 ( )
This implies the well known relations
1 FE 2
Z Cgy e INWEN _, (mtN) (11.188)
21—wv2 (2p+ X)) (21 + 3X) (2p + A)

It is also useful to have the physical properties of various very thin samples at hand. For A4-paper (80g/m?), the thickness of
a 20cm quadrangle is roughly 0.08mm which gives a characteristic value h =~ ﬁ. Representative values for elastic moduli for

isotropic standardized paper are E = 5840[N/mm?], v = 0.24 or yu = 2.6GPa, A = 2.34GPa.
For kitchen plastic wrap one has the thickness 0.03mm which implies h & ﬁ and standard Aluminum foil has a thickness of
A typical thin film, for which we consider a 20mm rectangle with thickness as small as 5 micrometers

5 _
10000 *

For such small values of h it seems to be clear that classical bending cannot play a

0.0lmm implying h ~ m.
(5-107%m) yields a characteristic thickness of h = In the special case of e.g. a steel rod of length 1m and radius 2mm we
obtain the characteristic variable h &

prominent role.

_4_
1000

11.6 The penalized finite Cosserat plate

While the treatment of the microrotations R is conceptually clear, any numerical implementation has the burden that the rotations
live on a nonlinear manifold. In order to circumvent this difficulty, we propose a simplified variant of our new Cosserat plate
model, where we relax the constraint of exact rotations and add a penalizing term. The new minimization problem reads: find the
deformation of the midsurface m : w C R? — R3 and the relaxed ’microrotation’ of the plate (shell) B : w C R? — M3*3 solving
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on w:

— h? N —r— — . —
I— /h Wasp (0) + b Wenre(R2) + - Woena(R0) + 3 |/ B~ 12 dw — T(m, F) > min. w.r.t. (m, F),

w
U:RTF, F =(Vm|R3), penalty: X — oo

mp, =9d(z,y,0), Ry, = polar((Vm|Vga(z,y,0).e3)), (11.189)
Winp(T) = 7w+ -y T 1)), Weure(R) = 22 1812
mp(U) = p sym( W+ 2 r [sym( N Weure(Rs) = npp 18117,

R = (ET(V(Rel)m),ET(V(E.e2)|0),ET(V(E.eg)\o))

oy
Whend(86) = 1|| sym(&)]|? + tr[sym(%,)]*, R = R (VRs|0) = &2 .

I
2u+ A
It should be observed that the penalized model is still frame-indifferent, a welcome feature.

11.7 The partially linearized Cosserat plate

Another method of reducing the complexity of the ensuing model consists in partially linearizing the equations. Let us reduce
a modification of case Il (ue =0, s =0,¢=0,p =1, as = ag = 1, ay = 0) for situations in which we expect the curvature and
microrotations to remain small but the midsurface deformations are unrestricted. We write m(z,y) = (x,y,0)T + v(z, y), with the
(finite) displacement of the midsurface of the plate v : w — R3 and R = 1+ A+... with A € s0(3,R) the infinitesimal microrotation.
For the boundary deformation we write g4(z,y, z) = (z,y,2)T +ud(z,y, 2), with the consequence, that Vgq.e3 = (u{1 2 ug . 1+ug 2)
The curvature tensors are expanded as ’ ’ ’

R =R (VR30)= (L +A+...)T (V[A3 + A .e5 +...]|0) & (VA3|0) + ...

s & ((V(A.e1)]0), (V(A.e2)|0), (V(A.3)]0)) , (11.190)
and the Cosserat micropolar plate stretch tensor expands like
1 0
U=RF. =R (Vm[Rs)=(M+A+..)7 [0 1| +Vo|(W+ZA+...)es)| 1+ (Vo[As) +A +A (Vo[As)
0 0
— —T = =T =T —
~ 1+ (Vu|A3)+ A" + A (Vv|0) +A" (0/0]A3). (11.191)
———

drill rotations
. . —T e . . . . NPT
Neglecting the quadratic term A” (0|0|A3) in view of the expected smallness of rotations, we are indeed left with the minimization
problem for v € R? and A € s0(3,R)

[ (uusym((w%)+ZT<W|0>>||2 +

w

UA
2+ A

2
e [syn((Vola) + A7 (Volo)] + u T2 D)

3

h — . UA
— VA3)0))]?
+ 15 (kllsm( oI + 212

=ud(z,y,0), simply supported (11.192)

tr [sym((VAs]0))] 2) dw — TI(v, A3) + min. w.r.t. (v, A),

d d
Ul .~ Ve Up, —V3y .
D)

=
3
|

= skew((Vv|8,u%))_ , linearized consistent coupling = Zg‘_m =(

lvo
Zgho = (u‘f,z,ug,z,O)T , rigid prescription .

The internal length L. > 0 is seen to be necessary to control the in-plane drill rotations which appear only as a second order
effect in the model. The membrane part can be shown to be coercive w.r.t. v in H!(w,R?) if A € C%(w,s0(3,R)), since the second
derivative w.r.t. v can be estimated through ||sym((1l + A)T(V¢|0))||?> and 1L + A € GL(3,R) for A € s0(3,R). The correspond-
ing field equations are semilinear, more precisely, balance of linear momentum is a uniformly Legendre-Hadamard elliptic linear
system w.r.t. v at given A and balance of angular momentum is a uniformly Legendre-Hadamard elliptic linear system w.r.t. A at
given v with constant coefficients. Nevertheless, the resulting model is nonlinear but not frame-indifferent. While it is not entirely
clear how to show existence, the simplified model with drill rotations should prove to be easily implemented along the lines of
traditional infinitesimal Reissner-Mindlin models taking into account all the available knowledge on non-locking approximations.

Finally, we now re-derive the classical Reissner-Mindlin model in the infinitesimal context, pointing out certain ’inconsistencies’
usually encountered and give a short existence proof. Let us sketch briefly the ’direct’ derivation of (10.129) in the infinitesimal
context in order to understand some of the peculiarities of plate modelling.

11.8 Derivation of the classical infinitesimal Reissner-Mindlin bending plate

If ¢ is the symmetrized displacement gradient of the three-dimensional theory, the elastic free energy of an isotropic medium takes
the form

A
Winin(e) = llll® + Strlel?, o= 2pe+ At []1, (11.193)
where o is the symmetric Cauchy stress tensor. If we assume zero normal traction across the thickness on Q) = w X [f%, %], i.e
o33(z,y,2) =0, z € [f%, %], then this implies immediately
A
0 =033 =2uezz +Atrje]l = e33 = —— (€11 + €22) = — g,1la), 11.194
33 = 233 [€] 33 2u+>\(11 22) 2H+)\< 2) ( )
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still on the three-dimensional level. Applying (11.194) and eliminating e33 in the elastic energy (so called condensation of the
material law) yields,

infin

. A .
Witk () = wllell® + Jtrle]®

. . 2 by A 2
= 15| 2 2 7,]12—(,]12—2,]1—,]1 7,112)
wlle Lol + p ez, +532)+ﬂ(2 +)\)2(E 2)" + 5 (& 12) (e 2>2;¢+A(E 2) + (2u+>\)2<5 2)
A
= plle M2)” + p(e5 +532)+5m( J12)% . (11.195)
Now the linear kinematical ansatz os(z,y,2) = m + 2z R.eg together with R=1+A+...,0 = —A3 implies to leading order
z +vi(z,y) —01 T ,y — 201 (z,y)
vs(x,y,2) = y+vzgw,y§ +z|—02)+...= |y | +tulz,y,2)+..., T,Y, 2 a:y fzé?z(w y) | - (11.196)
0+ vs(z,y z z
Hence for vy,v2 = 0 we get
2 v3,z—0
1 r _Zela: _3(01,y+02 ac) 3T7€1
= 5(Vu +Vu)=| —Z (01, + 02,2) —2 02, 72 ] (11.197)
v3,2 —01 v3,y —02
3 e 0

Explicitly integrating over the thickness with respect to z results in (10.129) with k = 1. We note that this derivation seems to be
not fully consistent: the linear kinematical ansatz yields €33 = 0, while we use £33 = 2u/§r>\ (g, 2) # 0 in evaluating the elastic

free energy. The zero normal traction condition o33 is true for the chosen kinematical ansatz only on the midsurface while in the
derivation we have tacitly assumed it to hold uniformly over the thickness. However, the final result is correct.

11.9 The classical infinitesimal Kirchhoff bending plate

For the convenience of the reader we also supply the similar system of equations for the classical Kirchhoff bending plate. If only
transverse deflections v3(z,y) are considered, the energy to be minimized is

h3
12

h3

Wclass —
K 12

(% IV(Vos)T + V(Vos)|2 + — P4 [V(V’U;;)T + V(VU3)T]2) -

A 2u 2
D2pall2 + 2 tr (D2 ) 7
8(2u + ) (u [|1Dvs]| +3 r [D?vs3]

2+ A
(11.198)

since V(Vws) = D2?v3. This energy can be obtained formally from (10.129) by setting § = Vus, see [Bra92, p.266]. It should be
clear, however, that these bending equations are only appropriate for deflections vz < h. For vz & h combined membrane/bending
needs to be used and for vz > h the membrane effect dominates.

Let us turn quickly to the existence theory [Dav75] involved in the infinitesimal case:

Theorem 11.9 (Existence for infinitesimal Reissner-Mindlin)

Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H?(w,R3). Moreover, let fe L?(w,R3) and
suppose N € L%(vs,R?) together with M € L'(w,R3) and M, € L'(vs,R?), see (10.102). Then problem (10.127) admits a unique
minimizing solution pair (v,0) € H*(w,R3) x H(w,R3).

Proof. By the direct methods of variations it is a simple matter to establish the existence of a solution: Since the functional is
bounded above, we may take infimizing sequences (vg,0;) € H*(w,R3) x H!(w,R?) and establish weak convergence of 0, — 0 €
H'(w,R3), strong in L?(w,R?). This implies the boundedness of v;, € H!(w,R?) by Korn’s first inequality and establishes as
well that the functional is bounded below. We may extract a subsequence v not relabelled, converging weakly to v € H' (w,R?).
Overall convexity of the functional allows us to pass to the limit. The pair (v, 0) is a minimizer.

The general infinitesimal problem is easily seen to have a unique solution (v, #) on account of the strict positivity of the second
derivative of the energy WRM,infin:

h3
D*Wint,infin (V0,0)-(V,00), (V,00)) > hp || sym((Veld0)[|* + 75 1 [Vo0]1* (11.199)

on the linear space H}(w,R3) x H}(w,R3). Strict positivity is a consequence of the classical Korn’s inequality for the membrane
part and full control of the skew-symmetric increment in the bending part. In this case, the drill rotations, which are associated
to «, remain unspecified. Since only two independent simple rotations are required to orient a unit director field, a distinc-
tive feature of classical plate and shell theories is a rotation field defined in terms of only two independent degrees of freedom:
rotations about the director itself-the so called drill rotations, are irrelevant and for that matter undefined in classical shell theory. B

The analysis based on (10.128) is even simpler and can be done with Poincaré’s inequality replacing Korn’s inequality. Note,

however, that a numerical implementation of the linearized models based on the presented setting (displacement approach) shows
to perform badly on coarse meshes [Bra92] for small h > 0 due to shear locking.

11.10 Comparison of formulas for the thickness stretch

The different formulas for the thickness stretch g,, in the plate models will be elucidated. We have

=T = R
1- —2;2i->\ tr [R (Vm|R3) - ]1] + _<7]\(]S;f§_’f)3) new Cosserat plate (4.43)
1 (Naifr, R3) .
I+ 5.2 (det(Vm Fa)]- D) eTESY) modified new Cosserat plate (5.70)
om =4 — o o (11.200)
((211;5:5\)‘) + \/1 - (2u>\+T) [[IVm||? — 2] + % new finite Reissner-Mindlin plate (6.82)
Naigr 7t Nage )2 -
i \/ 1= 2oy NIVmll? — 2] + LFefe - finite Kirchhoff-Love plate (7.83) .
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Now assume that Ng;g = 0 and R = polar(Vm/|ii). Let A1, A2 > 0 be the eigenvalues of VVmTVm. In terms of A1, A2 we
distinguish the cases

COSSs _ 1 _
" 20+ A

1 A
AL+ A2 —2], QLARGE = , o= 1 — 2 A2+ A2-2]. 11.201
| | L+ s Pade — 1] CYESVIGRECI ( )

To further simplify the exposition, take A = 2y and assume that A\ = A2 = |(|. Then

2 ;
0GOS =2 (|, ORAROE o pKE— B2 (11.202)
1+¢
All three formulas produce the same tangent at the identity ( = 1 (no in-plane stretch). In the Kirchhoff-Love model, evaluation
of oKl = /2 — (2 is only possible for ¢ < v/2, a severe shortcoming of the model. In the new Cosserat plate model, evaluation of
0595 is possible for all ¢ € R but does make sense only for ¢ < 2. Finally, the modified Cosserat model allows useful evaluation for
all ¢ € R.

h
) /2 2\ ) stretc
-0.5

Figure 2: The different formulas for the thickness stretch g,,: unphysical response of the Kirchhhoff-Love model
and reasonable response g, > 0, (Vm|o, R3) € GLT(3,R) of the modified Cosserat model.

11.11 Open questions
Show that

/ IR Vo + Vo' R — 2112 dV  min. w.rt. (p,R)., (11.203)
Q

has the unique family of solutions R = Q = const., p(z) = Q.z + b, Q@ € SO(3,R). Without gradient constraint on ¢ the solution
is not unique. The same problem for plates and shells: show that

/ R (Vm[Rs) + (Vm[Rs)TR — 21 |2 dw > min. w.rt. (m, R)., (11.204)
w

has the unique family of solutions R = Q = const., m(z,y) = Q1 -+ Q2 -y + b, Q@ € SO(3,R). Without gradient constraint on
m the solution is not unique, but it can be seen that Rz = 7 must hold anyway. The same question turned around: assume that

p € HY(Q,R?), R € SO(3,R) and RTV@ + VTR — 21l = 0. Show that this implies rigidity: R = Q = const., p(z) = Q.z + b and
that we are dealing with a true strain measure.
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uniformly elliptic, 43
symmetry constraint, 24
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