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Abstrat. We analyze a disontinuous Galerkin method for linear elastiity. The disrete

formulation derives from the Hellinger-Reissner variational priniple with the addition of stabilization

terms analogous to those previously onsidered by others for the Navier-Stokes equations and a salar

Poisson equation. For our formulation, we �rst obtain onvergene in a mesh-dependent norm and in

the natural mesh-independent BD norm. We then prove a generalization of Korn's seond inequality

whih allows us to strengthen our results to an optimal, mesh-independent BV estimate for the error.
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1. Introdution. Disontinuous Galerkin (DG) �nite element methods for se-

ond and fourth order ellipti problems were introdued about three deades ago.

These methods stem from the hybrid methods developed by Pian and his oworkers

[1℄. At the time of their introdution, DG methods were generally alled interior

penalty methods, and were onsidered by Baker [2℄, Douglas [3℄, and Douglas and

Dupont [4℄ for fourth order problems where C

1

ontinuity was imposed on C

0

ele-

ments. For seond order equations, Nitshe [5℄ appears to have introdued the idea

of imposing Dirihlet boundary onditions weakly and of adding stabilization terms

to obtain optimal onvergene rates. The same idea of penalizing jumps along inter-

element faes lead to the interior penalty methods of Perell and Wheeler [6℄, and

Wheeler [7℄. Methods for a seond order, nonlinear, paraboli equation appeared in

Arnold [8℄.

Aording to [9℄, interest in DG methods for solving ellipti problems waned

beause they were never proven to be more advantageous than traditional onforming

elements. The diÆulty in identifying optimal penalty parameters and eÆient solvers

may also have ontributed to the lak of interest [9℄. Reently, however, interest has

been rekindled by developments in DG methods for onvetion-di�usion problems; see,

for example, Cokburn and Shu [10, 11℄, Oden, et al. [12℄, Castillo, et al. [13℄, and

Houston, et al. [14℄, where the salar Poisson equation is analyzed. Bassi and Rebay

[15℄ applied a similar tehnique for the solution of the Navier-Stokes equations. Brezzi,

et al. [16, 17℄ analyzed the method of Bassi and Rebay, for stability and auray, as

it applies to the salar Poisson equation. Arnold, et al. [9, 18℄ provided a ommon

framework for all of these methods and showed the interonnetions by asting them

into the form of the loal disontinuous Galerkin method (LDG) of Cokburn and

Shu.

We are interested in a DG method for studying the mehanial behavior of solids.

In this paper we analyze the linear elastiity problem, with an eye toward a for-

mulation for nonlinear elasti-plasti problems and ohesive elements [19℄. There are

�
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several bene�ts of suh an approah, inluding the potential for eÆient hp-adaptivity,

for example, using meshes with hanging nodes with adaptive mesh re�nement, and the

prospet of rigorously handling problems with disontinuous displaements as arise

in the study of frature. Rivi�ere and Wheeler [20℄ formulate and analyze a method

for linear elastiity based on a generalization of the nonsymmetri interior penalty

Galerkin (NIPG) method presented in [12℄ for the di�usion equation. The resulting

bilinear form is non-symmetri. As an alternative, we follow the analysis of Brezzi,

et al. [16, 17℄ quite losely in our generalization from the salar Poisson equation to

the linear elastiity problem. In this ase, the bilinear form is symmetri.

Error estimates for disontinuous Galerkin methods are usually obtained in terms

of mesh-dependent norms. It is, a priori, not lear how to ompare norms orre-

sponding to meshes of di�erent size. In this artile we show that the traditional error

estimates expressed in mesh-dependent norms an be used to derive error estimates

in the mesh-independent BD and BV norms, eliminating the ambiguity.

Setion 2 begins with a statement of the problem and its formulation using the

DG approah. A new derivation of the equations is based on a disrete variational

priniple for elastiity whih naturally leads to a formulation analogous to the one

utilized in Bassi and Rebay [15℄. Stabilization terms of the form onsidered in Brezzi,

et al. [16, 17℄ are added to obtain a well-posed disrete problem. In Setion 3, we

show optimal onvergene rates in a mesh-dependent norm similar to the one used

by Brezzi, et al. This mesh-dependent estimate is immediately strengthened to a

mesh-independent BD estimate in Setion 3.2.

The lassial analysis of the equations of linear elastiity needs a global version

of Korn's �rst inequality to insure oeriveness of the bilinear form. In ontrast

to the standard approah, in Setion 3.3, we prove a generalization of Korn's seond

inequality on the element level whih allows us to obtain an improved mesh-dependent

estimate. Finally, in Setion 3.5 we show uniform onvergene in the BV norm, an

optimal mesh-independent estimate. Sine the disrete solutions are allowed to have

jumps in displaement, but the lassial solution is smooth, gradients an at most

onverge in measure, and indeed they do.

2. Formulation. The linear elastiity problem is desribed by the following set

of equations for a body B � R

d

, where d = 2; 3,

8

<

:

�r � (C � r

s

u) = f in B

u = �u on �

D

B

(C � r

s

u) � n =

�

T on �

N

B:

(2.1)

The body B is assumed to be a bounded, polyhedral domain. The funtion u : B ! R

d

is the displaement, and C is the fourth order elastiity tensor with major and minor

symmetries. In order to avoid tehnial diÆulties that do not provide any additional

insight, we take C to be onstant. We also assume that C is uniformly positive de�nite,

i.e.,

9  > 0 :  � C �  �   � :(2.2)

for all  in the spae of d � d symmetri tensors, whih implies that C is invertible

on this spae. The notation r

s

u denotes the symmetri gradient of the displaement,

r

s

u =

1

2

�

ru + (ru)

T

�

: The boundary of the domain, �B, is deomposed into two

disjoint sets, �

D

B and �

N

B. The body is ated upon by body fores, f : B ! R

d

,

and surfae trations,

�

T : �

N

B ! R

d

. The displaement, �u : �

D

B ! R

d

, is presribed

on the part of the boundary indiated by �

D

B.
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2.1. Stress-displaement formulation. The two-�eld, stress-displaement for-

mulation of the linear elastiity problem is

8

>

>

<

>

>

:

� � C � r

s

u = 0 in B

�r � � = f in B

u = �u on �

D

B

� � n =

�

T on �

N

B:

(2.3)

The �rst equation is the onstitutive equation that relates the stress tensor � to

the strain, "(ru) = r

s

u. The seond equation expresses fore equilibrium, and the

�nal two equations give the presribed boundary onditions. The problem desribed

by equation (2.3) has solutions (u; �) with omponents in H

m+1

(B) and H

m

(B),

respetively, for m � 1, depending on the smoothness of the data and the domain.

Nominally, f 2 (L

2

(B))

d

.

The equations (2.3) are the Euler-Lagrange equations that result from taking

free variations of the Hellinger-Reissner energy, I : (H

m+1

(B))

d

� (H

m

(B))

d�d

! R,

where

I [u; �℄ =

Z

B

�

1

2

� � C

�1

� ��� � r

s

u+ f � u

�

+

Z

�

D

B

n � � � (u� �u) +

Z

�

N

B

�

T � u:(2.4)

The disrete equations in the next setion are derived using a disretization of this

variational priniple.

2.2. The disrete sheme. First, we onsider a family of subdivisions (T

h

)

of B with h # 0. A subdivision T

h

of B into a �nite number of sets E, suh that

�

B = [

E2T

h

E is alled admissible in the sense of [21, p. 38℄ if eah E is losed and

has nonempty interior, the interiors of the sets E of T

h

are pairwise disjoint, and the

boundary, �E, of eah E is Lipshitz ontinuous. We assume the family (T

h

) to be

quasi-uniform [22, p. 106℄ so that

maxfdiam E : E 2 T

h

g = h;(2.5)

and

9 � > 0 : minfdiam B

E

: E 2 T

h

g � � h; 8h > 0;(2.6)

where B

E

is the largest ball ontained in E. Therefore, it follows that there exist

positive onstants  and C suh that

h

d

� jEj � Ch

d

(2.7)

for every element E 2 T

h

and for every h > 0, where jEj is the measure of E.

In addition, we require all �nite elements within the family of subdivisions to be

aÆne equivalent [22, p. 80℄ to a �nite number of polyhedral referene �nite elements,

eah with a �nite number of faes. Hene the referene elements possess Lipshitz

boundaries, the measure of eah fae of an arbitrary element in (T

h

) is �nite and there

exists an upper bound on the Lipshitz onstant of the boundary for all elements in

the family (T

h

), independent of h. Moreover, with (2.5) we infer that there exists a

onstant C > 0 suh that

jejh � CjEj;(2.8)
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for all h > 0, and for any fae e of any element E 2 (T

h

). Even though disontinuous

Galerkin methods an potentially be used on meshes with hanging nodes, we onsider

for simpliity only onforming meshes, so that a fae e of an element is either also a

fae of another element, or part of �B. We note, however, that most of the theoretial

development does not rely on this assumption.

Consider a given subdivision T

h

of B. Eah element, E 2 T

h

has an orientable

boundary, �E, with unit, outward normal denoted by n

E

. De�ne the set of internal

faes,

E

I

h

= fe � �E n �B : E 2 T

h

g;

the set of Dirihlet faes,

E

D

h

= fe � �E \ �

D

B : E 2 T

h

g;

and the set of Neumann faes,

E

N

h

= fe � �E \ �

N

B : E 2 T

h

g:

The set of all faes is denoted by E

h

= E

I

h

[ E

D

h

[ E

N

h

. Corresponding to this set of

faes, de�ne the ombined internal and external boundary, to be

� = [

e2E

h

e:

Let

~

V = �

E2T

h

(H

1

(E))

d

be the spae of funtions on B whose restrition to eah

element E belongs to the Sobolev spae (H

1

(E))

d

. Therefore, the traes of funtions

in

~

V belong to T (�) = �

E2T

h

(L

2

(�E))

d

. Funtions in T (�) are multi-valued on �n�B

and single-valued on �B. The spae (L

2

(�))

d

an be identi�ed with the subspae of

T (�) onsisting of funtions for whih the possible multiple values agree on all internal

faes. Similarly, let

~

W = �

E2T

h

(H

1

(E))

d�d

be the spae of funtions on B whose

restrition to eah element E belongs to the Sobelev spae (H

1

(E))

d�d

. A tensor

� 2

~

W has d

2

omponents. The d

2

traes, the omponents of � j

�E

, are de�ned, and

eah belongs to L

2

(�E). In partiular, the linear ombination of traes � � n

E

is in

T (�)

1

.

Next, we introdue two �nite element spaes of salar funtions over an element

E, V

E

h

andW

E

h

, with V

E

h

�W

E

h

. These elemental spaes ontain the polynomials and

have minimal smoothness over the element, P

k

(E) � V

E

h

;W

E

h

� H

1

(E), k � 1, where

P

k

(E) denotes the spae of polynomials of degree at most k, on E. The �nite element

spaes for the displaements, V

h

, and displaement gradients, W

h

, are onstruted so

that eah omponent is in V

E

h

orW

E

h

on the element E, V

h

= �

E2T

h

(V

E

h

)

d

andW

h

=

�

E2T

h

(W

E

h

)

d�d

. Consequently, we have V

h

�

~

V . We also assume that gradients of

the displaement are in the spae of displaement gradients, r[(V

E

h

)

d

℄ � (W

E

h

)

d�d

.

Furthermore, we require the elemental �nite element spaes to oinide over ommon

faes. More preisely, let e 2 E

I

h

be the fae ommon to two elements, E

+

and E

�

,

then f�j

e

: � 2 V

E

+

h

g = f�j

e

: � 2 V

E

�

h

g and f�j

e

: � 2 W

E

+

h

g = f�j

e

: � 2 W

E

�

h

g.

This requirement insures that the trae of a funtion in V

E

+

h

(W

E

+

h

) is also the trae

of a funtion in V

E

�

h

(W

E

�

h

), on e. Lastly, we denote with W

s

h

the spae of symmetri

tensors in W

h

.

1

The spae of stresses

~

W ould be taken to be larger; however, this is unneessary sine we

onsider exat solutions (u; �) in (H

2

(B))

d

� (H

1

(B))

d�d

.
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We assume that the disrete spaes, V

h

and W

h

, are �nite dimensional. Observe

that the funtions in both disrete spaes an be disontinuous aross element bound-

aries. The onditions spei�ed here are satis�ed by many standard �nite elements

spaes, suh as those onstruted from Lagrange simplies of various degrees and

some spaes onstruted with bilinear quadrilaterals or trilinear briks.

Remark. Most of the proofs in this artile immediately generalize to the ase

of isoparametri elements, though some adjustment of the assumptions on the �nite

element spaes might be required. In partiular, the speial treatment of Korn's

inequality also applies to isoparametri elements.

We wish to formulate a disretized version of (2.4) subordinate to the subdivision.

To this end, we de�ne the average operator, f�g : T (�) ! (L

2

(�))

d

, and the jump

operator, [[�℄℄ : T (�) ! (L

2

(�))

d

. Eah fae, e 2 E

I

h

, is shared by two elements, E

+

and E

�

; let v

�

= vj

E

� for v 2

~

V . De�ne the average for e 2 E

I

h

, by

fvg =

1

2

(v

�

j

e

+ v

+

j

e

)(2.9)

and the jump by

[[v℄℄ = v

�

j

e

� v

+

j

e

:(2.10)

For e 2 E

D

h

, put

fvg = v; and [[v℄℄ = v;(2.11)

and for e 2 E

N

h

, assign

fvg = v; and [[v℄℄ = 0:(2.12)

In the sequel, we hoose an orientation, n, for eah fae e 2 E

I

h

, as the unit normal

pointing toward E

+

. For e � �B, n is the unit outward normal to �B. For � 2

~

W ,

let �

�

= �j

E

� . On e 2 E

I

h

, the average of the vetor � � n, means

f� � ng =

1

2

(�

+

j

e

+ �

�

j

e

) � n;

with n given uniquely on the fae. The de�nition of f� � ng on boundary faes,

e 2 E

D

h

[ E

N

h

, is lear.

Now, speialize (2.4) to eah individual element, as follows

I

E

=

Z

E

�

1

2

� � C

�1

� ��� � r

s

u+ f � u

�

+

Z

�En�B

1

2

n

E

� � � (u� u

ext

)

+

Z

�E\�

D

B

n � � � (u� �u) +

Z

�E\�

N

B

�

T � u:(2.13)

where u

ext

is the trae of u on the elements adjaent to �E n �B. The 1=2 fator

in the seond term aounts for the fat that for a given fae two adjaent elements

ontribute to the potential energy. A global disrete funtional, I

h

: V

h

�W

s

h

! R, is

de�ned simply by summing over all elemental ontributions,

I

h

=

X

E2T

h

I

E

:(2.14)
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The orresponding Euler-Lagrange equations that result from taking free variations

of I

h

are

X

E2T

h

Z

E

�

Æ� � C

�1

� � � Æ� � r

s

u

�

+

Z

�

fn � Æ�g � [[u℄℄�

Z

�

D

B

n � Æ� � �u = 0(2.15)

X

E2T

h

Z

E

�

� � � r

s

Æu+ f � Æu

�

+

Z

�

fn � �g � [[Æu℄℄ +

Z

�

N

B

�

T � Æu = 0:(2.16)

Thus, we obtain the general problem whih is to �nd u

h

2 V

h

and �

h

2W

s

h

suh that,

X

E2T

h

Z

E

�



h

� C

�1

� �

h

� 

h

� r

s

u

h

�

+

Z

�

fn � 

h

g � [[u

h

℄℄

=

Z

�

D

B

n � 

h

� �u; 8

h

2W

s

h

;(2.17)

X

E2T

h

Z

E

�

h

� r

s

v

h

�

Z

�

fn � �

h

g � [[v

h

℄℄

=

Z

B

f � v

h

+

Z

�

N

B

�

T � v

h

; 8v

h

2 V

h

:(2.18)

Next, we de�ne the lifting operator R

�u

: (L

2

(�))

d

!W

s

h

by

Z

B

R

�u

(v) �  = �

Z

�

fn � g � v +

Z

�

D

B

n �  � �u; 8 2W

s

h

:(2.19)

This operator will now be used to derive the primal form [9℄ of the disretization

where a single equation is obtained by eliminating �

h

between (2.17) and (2.18). In

terms of (2.19), equation (2.17) is the same as

X

E2T

h

Z

E

�



h

� C

�1

� �

h

� 

h

� r

s

u

h

�R

�u

([[u

h

℄℄) � 

h

�

= 0 8

h

2W

s

h

:

Sine we require the elemental �nite element spaes to satisfy r[(V

E

h

)

d

℄ � (W

E

h

)

d�d

,

this equation allows us to identify,

�

h

= �

h

(u

h

) = C � r

s

u

h

+ C �R

�u

([[u

h

℄℄) in W

s

h

:(2.20)

This onstitutive equation for the disrete stress an be viewed as a stress-strain

relation where the strain involves the usual dependene on the displaement gradient,

plus a linear ontribution that arises from jumps in displaement.

Next, take 

h

= C � r

s

v

h

in equation (2.17) to get

X

E2T

h

Z

E

�

r

s

v

h

� �

h

�r

s

v

h

� C � r

s

u

h

�

+

Z

�

fn � C � r

s

v

h

g � [[u

h

℄℄ =

Z

�

D

B

n � (C � r

s

v

h

) � �u:

Finally, substitute equation (2.18) to obtain

X

E2T

h

Z

E

r

s

v

h

� C � r

s

u

h

�

Z

�

�

fn � C � r

s

v

h

g � [[u

h

℄℄ + fn � �

h

g � [[v

h

℄℄

�

=

Z

B

f � v

h

+

Z

�

N

B

�

T � v

h

�

Z

�

D

B

n � (C � r

s

v

h

) � �u :(2.21)



Disontinuous Galerkin 7

If (u

h

; �

h

) 2 V

h

�W

s

h

solves (2.17) - (2.18), then u

h

solves (2.21), with �

h

= �

h

(u

h

)

given by (2.20). Equation (2.21) is alled the primal formulation.

Reall the de�nition of R

�u

, (2.19), and introdue the notation R = R

0

. Using

(2.19) and (2.20), the primal form (2.21) an also be written as

X

E2T

h

Z

E

(r

s

v

h

+R([[v

h

℄℄)) � C � (r

s

u

h

+R([[u

h

℄℄)) =

Z

B

f � v

h

+

Z

�

N

B

�

T � v

h

�

Z

�

D

B

n �

�

C �(r

s

v

h

+R([[v

h

℄℄))

�

� �u:(2.22)

We remark that our physially-based derivation of this equation, obtained by dis-

retizing the variational priniple, produes an analogous disretization to that used

by Bassi and Rebay [15, 17℄. Arnold, et al. [9℄ show that this disretization is onsis-

tent, onservative and adjoint onsistent, but unstable, for the salar Poisson equation,

and we show in Setion 3 that these properties arry over to linear elastiity.

Brezzi, et al., [16, 17℄ propose a stabilizing term for the salar ase whih naturally

extends to linear elastiity. The stabilization is given in terms of r

e;�u

: (L

2

(�))

d

! W

s

h

.

De�ne r

e;�u

for e 2 E

I

h

,

Z

B

r

e;�u

(v) �  = �

Z

e

fn � g � v; 8 2 W

s

h

;(2.23)

while for e 2 E

D

h

,

Z

B

r

e;�u

(v) �  = �

Z

e

fn � g � v +

Z

e

n �  � �u; 8 2 W

s

h

;(2.24)

and for e 2 E

N

h

, r

e;�u

= 0. As before, set r

e

= r

e;0

. Note that r

e;�u

(v) vanishes outside

the union of elements ontaining e, and that for any element E 2 T

h

,

R

�u

(v) =

X

e��E

r

e;�u

(v)(2.25)

on E. The stabilizing term is �

P

e��E

R

B

r

e;�u

([[u

h

℄℄) � C � r

e

([[v

h

℄℄); with � > 0 the

stabilization parameter. The resulting primal form with the stabilizing term is

X

E2T

h

Z

E

(r

s

v

h

+R([[v

h

℄℄)) � C � (r

s

u

h

+R([[u

h

℄℄)) + �

X

e2E

h

Z

B

r

e

([[u

h

℄℄) � C � r

e

([[v

h

℄℄)

=

Z

B

f � v

h

+

Z

�

N

B

�

T � v

h

�

Z

�

D

B

n �

�

C � (r

s

v

h

+R([[v

h

℄℄) + �r

e

([[v

h

℄℄))

�

� �u:(2.26)

The form (2.26), whih derives diretly from the variational priniple, is stable

for any � > 0. In Setion 3, we analyze in detail a modi�ation proposed by Brezzi,

et al., [16, 17℄, that omits the quadrati term in R, making the method stable for

� > N

e

, where N

e

is the maximum number of faes in an element of the subdivision.

The advantage of dropping this quadrati term is that the sparsity of the sti�ness

matrix is inreased.

The analysis of the proposed method relies on ellipti regularity, so we restrit

it to Dirihlet boundary onditions on the entire boundary, �B. Thus, �

N

B = ;,
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E

N

h

= ;, and without loss of generality, �u = 0 on �B. Aordingly, the omplete

disrete problem statement, with these modi�ations, is to �nd u

h

2 V

h

suh that

a

h

(u

h

; v

h

) =

Z

B

f � v

h

8v

h

2 V

h

(2.27)

where the bilinear form a

h

is given by

a

h

(u

h

; v

h

) =

X

E2T

h

Z

E

�

r

s

v

h

� C � r

s

u

h

+r

s

v

h

� C � R([[u

h

℄℄) +R([[v

h

℄℄) � C � r

s

u

h

�

+�

X

e2E

h

Z

B

r

e

([[u

h

℄℄) � C � r

e

([[v

h

℄℄):(2.28)

Remark. Both problems, (2.26) and (2.28), an be written in a two-�eld form,

i.e., with both u

h

and �

h

as unknowns.

2.3. Notation. In Setion 3, a onvergene proof will be given for d = 2 and 3,

simultaneously. In the proofs, the letter C indiates a generi onstant whose value

an hange in eah ourrene. We also employ the standard notation, k � k

p;


, to

denote the usual norm on H

p

(
), and j � j

p;


to denote the H

p

(
) semi-norm, whereas

k � k denotes the Eulidean norm for vetors or tensors. When other standard norms

are used, they will be indiated expliitly with a subsript, for example, k � k

L

1

(
)

indiates the L

1

(
)-norm.

2.4. Summary of the theoretial results. The onvergene proof utilizes two

relevant mesh-dependent norms on

^

V = (H

1

0

(B))

d

+ V

h

given by

jjjvjjj

2

s

=

X

E2T

h

kr

s

vk

2

0;E

+

X

e2E

h

kr

e

([[v℄℄)k

2

0;B

v 2

^

V(2.29)

jjjvjjj

2

=

X

E2T

h

krvk

2

0;E

+

X

e2E

h

kr

e

([[v℄℄)k

2

0;B

v 2

^

V :(2.30)

Proposition 3.4 establishes that jjj � jjj

s

is a norm on

^

V . Also note that

jjjvjjj

2

s

� jjjvjjj

2

v 2

^

V(2.31)

whih shows that jjj � jjj is also a norm on

^

V . Although one might expet the seond term

in the de�nition of norms (2.29) and (2.30) to at as an L

2

-like ontribution, we an

only assert that these are semi-norms on

~

V . In the ase of the salar Poisson equation,

[9, 12, 13, 14, 16, 17, 18℄, there is no need to distinguish between the norms (2.29) and

(2.30). Following the ideas in [16, 17℄, it is straightforward to obtain boundedness

and oerivity of the bilinear form a

h

with respet to the mesh-dependent norm,

jjj � jjj

s

(Proposition 3.5), whih leads to onvergene of the disrete solutions in the

jjj � jjj

s

-norm and in L

2

(B) (Theorem 3.12 and Theorem 3.13). The onvergene in

the jjj � jjj

s

-norm is suÆient for a mesh-independent BD estimate (Theorem 3.16);

however, the jjj � jjj

s

norm does not provide ontrol over the antisymmetri part of the

displaement gradient. If the displaements are in H

1

0

(B), the equivalene of the two

norms, jjj � jjj

s

and jjj � jjj, relies on Korn's �rst inequality; for nononforming elements,

Korn's inequality may not be valid, [23℄.

In order to obtain onvergene in the norm, jjj � jjj, Theorem 3.20, we prove a

generalized version of Korn's seond inequality for the subdivision, Corollary 3.19.
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The proof of this inequality relies on observations about how Korn's inequality for

an element behaves under distortion (Theorem 3.17) and saling (Theorem 3.18).

Finally, Theorem 3.22 shows that the mesh-dependent norm, jjj � jjj, estimates the BV

norm, and as a onsequene, Corollary 3.23, we obtain onvergene in BV , an optimal

mesh-independent result.

3. Theoretial Results.

3.1. Convergene in the mesh-dependent symmetri norm. Following

the developments in [16, 17℄ for the two-dimensional Poisson equation, we obtain the

onvergene of the disretized solutions in the mesh-dependent norm jjj � jjj

s

. The �rst

three lemmas haraterize properties of the jumps. In the subsequent proposition,

our analysis starts by establishing that jjj � jjj

s

is in fat a norm on

^

V .

Lemma 3.1 (Extension of traes). Let e be a fae of an element E 2 (T

h

). For

any � in the trae spae, T (e) = f� 2 (L

2

(e))

d�d

: � = j

e

;  2 (W

E

h

)

d�d

g, there

exists P

e

(�) 2 (W

E

h

)

d�d

suh that P

e

(�)j

e

= �. Moreover, for all � 2 T (e),

9C > 0 : kP

e

(�)k

0;E

� Ch

1=2

k�k

0;e

;(3.1)

for all h > 0, and for all E 2 T

h

.

Proof. First examine a referene element. Let ê � �

^

E be a fae of one of the

referene elements

^

E, and let � 2 T (ê). There exists C > 0 suh that

sup

�2T (ê); k�k

0;ê

=1

inf



h

2(W

^

E

h

)

d�d

; 

h

j

e

=�

k

h

k

2

0;

^

E

< C:(3.2)

Sine 

h

2 (W

^

E

h

)

d�d

is a linear ombination of basis funtions on

^

E, k

h

k

0;

^

E

is a

quadrati form in a �nite dimensional spae. Therefore, there is a minimizer, P

ê

(�), of

k

h

k

2

0;

^

E

subjet to the linear onstraint 

h

j

e

= � 2 T (ê), whih depends ontinuously

on �. Thus, P

ê

(�) is bounded on the ompat set k�k

0;ê

= 1, and (3.2) follows.

Next, note that P

ê

(��) = �P

ê

(�) for � 2 R, whih implies

kP

ê

(�)k

2

0;

^

E

� C k�k

2

0;ê

;(3.3)

for all � 2 T (ê). Sine the number of referene elements is �nite, as is the number of

faes per element, we an hoose C in (3.3) independent of the referene element and

the fae.

Now, let E be any element in the family of subdivisions (T

h

), and let e be any

one of its faes. Let F be the aÆne transformation suh that E = F (

^

E) for one of the

referene elements

^

E, and let ê be the orresponding fae in the referene element,

e = F (ê). Given � 2 T (e), the de�nition of aÆne equivalene implies

^

� = �ÆF 2 T (ê).

De�ne P

e

(�) = P

ê

(

^

�) Æ F

�1

2 (W

E

h

)

d�d

; and note P

e

(�)j

e

= �. Then, use (3.3) and

kFk � h=�̂ (see e.g. [21, p. 120℄), where �̂ is the diameter of the largest ball ontained

in

^

E, to obtain

Z

E

jP

e

(�)j

2

= j detF j

Z

^

E

jP

ê

(

^

�)j

2

� Cj detF j

Z

ê

j

^

�j

2

� Cj detF j

Z

e

j�j

2

j detF

�1

j kFk � CkFk

Z

e

j�j

2

� C

h

�̂

Z

e

j�j

2

:



10 Lew, Ne�, Sulsky, and Ortiz

The lemma follows.

Lemma 3.2 (Trae inequality for r

e

). There exists a onstant C > 0, independent

of the fae e 2 E

h

and of h, suh that

kr

e

(v)k

0;e

� Ch

�1=2

kr

e

(v)k

0;E

;(3.4)

for all v 2 (L

2

(e))

d

.

Proof. The inequality (3.4) is atually a statement about tensors  2 (W

E

h

)

d�d

,

where  = r

e

(v). The proof follows a saling argument. Let ê � �

^

E be a fae of one

of the referene elements,

^

E. Then, there exists a onstant C > 0 suh that

k̂k

0;ê

� C k̂k

0;

^

E

(3.5)

for all ̂ 2 (W

^

E

h

)

d�d

. Inequality (3.5) is a diret onsequene of the ontinuity of the

trae inW

^

E

h

� H

1

(

^

E) (see, e. g., [22, pag. 37℄) and the fat that in a �nite dimensional

spae, all norms are equivalent. Sine there are a �nite number of referene elements,

eah with a �nite number of faes, the onstant C an be hosen independent of the

referene element and of its fae.

Now, onsider  2 (W

E

h

)

d�d

, where E is an element aÆne equivalent to

^

E. Then,

there exists an aÆne mapping F suh that E = F (

^

E), and ̂ 2 (W

^

E

h

)

d�d

suh that

 = ̂ Æ F

�1

. Note,

kk

2

0;E

=

Z

E

 �  = j detF j

Z

^

E

̂ � ̂ = j detF j k̂k

2

0;

^

E

(3.6)

kk

2

0;e

=

Z

e

 �  = kF

�1

n̂k j detF j

Z

ê

̂ � ̂ � kF

�1

k j detF j k̂k

2

0;ê

(3.7)

where n̂ is the unit outward normal to ê. Therefore, (3.5), (3.6), and (3.7) ombine

to yield

kk

0;e

� C kF

�1

k

1=2

kk

0;E

�

C

^

h

1=2

�

1=2

h

�1=2

kk

0;E

:(3.8)

The last part of the bound uses the fat that kF

�1

k �

^

h=(diam B

E

) �

^

h=(�h) (see

e.g. [21, p. 120℄ ).

Lemma 3.3 (Jump bound). There exist two positive onstants C

1

and C

2

, inde-

pendent of the fae e 2 E

h

and of h, suh that

k[[v

h

℄℄k

0;e

� C

1

h

1=2

kr

e

([[v

h

℄℄)k

0;B

; 8 v

h

2 V

h

;(3.9)

and

kr

e

([[v

h

℄℄)k

0;B

� C

2

h

�1=2

k[[v

h

℄℄k

0;e

; 8 v

h

2 V

h

:(3.10)

Proof. Let e � E be a fae of element E. Given [[v

h

℄℄ 2 (L

2

(e))

d

, let 

e

h

2

(L

2

(e))

d�d

be suh that 

e

h

� n = [[v

h

℄℄. Note, it is possible to hoose 

e

h

so that

k

e

h

k � Ck[[v

h

℄℄k. For the tensor 

e

h

de�ned only on e, onstrut an extension to the

element, 

h

j

E

= P

e

(

e

h

), as in Lemma 3.1. Take 

h

2 W

s

h

to be 

h

j

E

= P

e

(

e

h

) on E,



h

= 0 elsewhere, and v = [[v

h

℄℄ in equation (2.23) to get

1

2

k[[v

h

℄℄k

2

0;e

=

1

2

Z

e

[[v

h

℄℄ � [[v

h

℄℄ �

Z

B

�

�

�

r

e

([[v

h

℄℄) � P

e

(

e

h

)

�

�

�

� kr

e

([[v

h

℄℄)k

0;B

kP

e

(

e

h

)k

0;E

(3.11)

� C h

1=2

kr

e

([[v

h

℄℄)k

0;B

k[[v

h

℄℄k

0;e

:
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In the nontrivial ase in whih k[[v

h

℄℄k

0;e

6= 0, the inequality (3.9) follows from (3.11)

by dividing through by k[[v

h

℄℄k

0;e

.

To prove (3.10), take  = r

e

([[v

h

℄℄) and v = [[v

h

℄℄ in equation (2.23) to get

kr

e

([[v

h

℄℄)k

2

0;B

=

�

�

�

Z

e

fn � r

e

([[v

h

℄℄)g � [[v

h

℄℄

�

�

�

� k[[v℄℄k

0;e

kfr

e

([[v

h

℄℄)gk

0;e

� C

2

h

�1=2

k[[v

h

℄℄k

0;e

kr

e

([[v

h

℄℄)k

0;B

:

We have used the linearity of r

e

and (3.4) in the last step. The result, (3.10), follows.

Proposition 3.4 (Symmetri norm). Let v

h

2

^

V = (H

1

0

(B))

d

+ V

h

. Then

jjj � jjj

s

:

^

V ! R as de�ned in (2.29) is a norm on

^

V .

Proof. It is immediate that jjj�vjjj

s

= j�jjjjvjjj

s

, for all � 2 R, and that the triangle

inequality holds sine r

e

is linear. We show that jjjvjjj

s

= 0 implies v = 0 in

^

V . Notie

that jjjvjjj

s

= 0 i� kr

s

vk

0;E

= 0 for all E 2 T

h

and kr

e

([[v℄℄)k

0;B

= 0 for all e 2 E

h

.

Let v = v

1

+ v

2

2

^

V , with v

1

2 (H

1

0

(B))

d

and v

2

2 V

h

. By Lemma 3.3, we have that

k[[v

2

℄℄k

0;e

� C h

1=2

kr

e

([[v

2

℄℄)k

0;B

. Therefore, k[[v

2

℄℄k

0;e

= 0. Sine also k[[v

1

℄℄k

0;e

= 0 we

have that k[[v℄℄k

0;e

= 0. So v 2 (H

1

0

(B))

d

by [24, Theorem 1.3℄. Korn's �rst inequality

for homogeneous boundary data applied to v 2 (H

1

0

(B))

d

then shows that v = 0.

Next, we show that the bilinear form (2.28) is ontinuous and oerive with respet

to the norm, jjj � jjj

s

. The proofs follow [16, 17℄ almost exatly.

Proposition 3.5 (Continuity and oerivity of the bilinear form). Let N

e

be a

bound on the number of faes in an element. Then, there exists a onstant M > 0,

independent of h, suh that

(i) a

h

(u

h

; v

h

) �M jjju

h

jjj

s

jjjv

h

jjj

s

; 8 u

h

; v

h

2

^

V :

Moreover, for � > N

e

, there exists a onstant � > 0, independent of h, suh that

(ii) a

h

(u

h

; u

h

) � � jjju

h

jjj

2

s

8 u

h

2

^

V :

Proof. We �rst prove the following inequality, a onsequene of equation (2.25),

kR([[v

h

℄℄)k

2

0;E

� N

e

X

e��E

kr

e

([[v

h

℄℄)k

2

0;E

:(3.12)

We have

kR([[v

h

℄℄)k

2

0;E

=

Z

E

 

X

e��E

r

e

([[v

h

℄℄)

! 

X

e

0

��E

r

e

0

([[v

h

℄℄)

!

�

Z

E

X

e

0

��E

X

e��E

kr

e

([[v

h

℄℄)k kr

e

0

([[v

h

℄℄)k

�

X

e

0

��E

X

e��E

1

2

�

kr

e

([[v

h

℄℄)k

2

0;E

+ kr

e

0

([[v

h

℄℄)k

2

0;E

�

� N

e

X

e��E

kr

e

([[v

h

℄℄)k

2

0;E

:
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Next, the ontinuity of the bilinear form (2.28) follows from estimating eah term.

�

�

�

�

Z

E

r

s

u

h

� C � r

s

v

h

�

�

�

�

� kC k kr

s

u

h

k

0;E

kr

s

v

h

k

0;E

(3.13)

�

�

�

�

Z

E

r

s

u

h

� C �R([[v

h

℄℄)

�

�

�

�

� kC k kr

s

u

h

k

0;E

kR([[v

h

℄℄)k

0;E

� kC k kr

s

u

h

k

0;E

"

N

e

X

e��E

kr

e

([[v

h

℄℄)k

2

0;E

#

1=2

(3.14)

�

�

�

�

�

X

e��E

Z

E

r

e

([[u

h

℄℄) � C � r

e

([[v

h

℄℄)

�

�

�

�

�

� kC k

X

e��E

kr

e

([[u

h

℄℄)k

0;E

kr

e

([[v

h

℄℄)k

0;E

:(3.15)

Adding eah term over all elements, and using the Cauhy-Shwartz inequality yields

(i). The onstant M depends on kC k, N

e

and �, but is independent of h.

Now we show oerivity, (ii). To simplify the notation, de�ne

kk

2

0;E;C

=

Z

E

 � C �  8 2W

s

h

:

Due to (3.12), we get

a

h

(u

h

; u

h

) =

X

E2T

h

 

kr

s

u

h

k

2

0;E;C

+

Z

E

2r

s

u

h

� C � R([[u

h

℄℄) + �

X

e��E

kr

e

([[u

h

℄℄)k

2

0;E;C

!

�

X

E2T

h

 

(1� ")kr

s

u

h

k

2

0;E;C

�

1

"

kR([[u

h

℄℄)k

2

0;E;C

+ �

X

e��E

kr

e

([[u

h

℄℄)k

2

0;E;C

!

�

X

E2T

h

 

(1� ")kr

s

u

h

k

2

0;E;C

+

�

� �

N

e

"

�

X

e��E

kr

e

([[u

h

℄℄)k

2

0;E;C

!

;

where we used the standard inequality, 2ab � "a

2

+ b

2

=", for all " > 0. Any � > N

e

guarantees that (� �

N

e

"

) > 0 whenever N

e

=� < " < 1. Sine eah term is positive,

we an invoke (2.2) to dedue (ii) with � = (� �

N

e

"

) > 0.

Remark. As suggested in [16, 17℄, following the same steps as in the previous proof

establishes ontinuity and oerivity of the bilinear form given by equation (2.26), but

for any � > 0.

In addition to being ontinuous and oerive, the bilinear form (2.28) is onsistent

and adjoint onsistent (as is (2.26)). Consisteny is the requirement that the exat

solution of the partial di�erential equation be a solution of the disrete problem, and

similarly for adjoint onsisteny [9℄. A preise de�nition is given in the propositions

below. These properties form the basis for establishing onvergene of the disrete

displaement, �rst in jjj � jjj

s

, and subsequently in L

2

(B). The following lemma is a

preliminary to proving onsisteny.

Lemma 3.6. Let u 2 (H

1

(B))

d

with r � (C � ru) 2 (L

2

(B))

d

, and let v

h

2 V

h

,

then

X

E2T

h

Z

�E

n � (C � ru) � v

h

=

X

e2E

h

Z

e

fn � C � rug � [[v

h

℄℄ :(3.16)
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Proof. The assumed regularity of u implies that n � C � ru is ontinuous aross

inter-element boundaries (e.g., [24, Theorem 1.3℄); i.e., 0 = n � (C � ru

�

� C � ru

+

)

on any fae in E

I

h

. Therefore

X

E2T

h

Z

�E

n � (C � ru) � v

h

=

X

e2E

I

h

Z

e

�

� n � (C � ru

+

) � v

+

h

+ n � (C � ru

�

) � v

�

h

�

+

X

e2E

D

h

Z

e

n � (C � ru) � v

h

=

X

e2E

I

h

Z

e

�

�

1

2

�

n � (C � ru

+

) + n � (C � ru

�

)

�

� v

+

h

+

1

2

�

n � (C � ru

+

) + n � (C � ru

�

)

�

� v

�

h

+

X

e2E

D

h

Z

e

n � (C � ru) � v

h

=

X

e2E

h

Z

e

fn � C � rug � [[v

h

℄℄ :

Proposition 3.7 (Consisteny of the bilinear form). Let u be the exat solution

of (2.1), with u 2 (H

m

(B))

d

for some m suh that 2 � m � k + 1, then

a

h

(u; v

h

) =

Z

B

f � v

h

8v

h

2 V

h

;(3.17)

where the bilinear form is given in (2.28).

Proof. To establish onsisteny of the bilinear form, multiply (2.1) by v

h

2 V

h

and integrate by parts over eah element,

Z

B

f � v

h

= �

Z

B

v

h

� r � (C � r

s

u)

=

X

E2T

h

�

Z

E

r

s

v

h

� C � r

s

u�

Z

�E

n � (C � r

s

u) � v

h

�

=

X

E2T

h

Z

E

r

s

v

h

� C � r

s

u�

X

e2E

h

Z

e

fn � C � r

s

ug � [[v

h

℄℄�

X

e2E

h

fn � C � r

s

v

h

g � [[u℄℄

=

X

E2T

h

Z

E

�

r

s

v

h

� C � r

s

u+R([[v

h

℄℄) � C � r

s

u+r

s

v

h

� C �R([[u℄℄)

�

+�

X

e2E

h

Z

B

r

e

([[u℄℄) � C � r

e

([[v

h

℄℄)

= a

h

(u; v

h

):

We have used Lemma 3.6, the fat that [[u℄℄ = 0, and (2.19).

Corollary 3.8 (Galerkin orthogonality). Let u be the exat solution of (2.1),

with u 2 (H

m

(B))

d

for some m suh that 2 � m � k + 1, and let u

h

2 V

h

solve

(2.27), then

a

h

(u� u

h

; v

h

) = 0; 8 v

h

2 V

h

:(3.18)
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Proof. Subtrat the onsisteny ondition, (3.17), and the haraterization of the

disrete solution, (2.27) to establish the desired result.

Sine the problem (2.1) is self-adjoint, the adjoint problem is the same as the

original problem; namely, �nd w 2 (H

2

(B))

d

suh that

�

�r � (C � r

s

w) = g in B

w = 0 on �B

(3.19)

for g 2 (L

2

(B))

d

.

Corollary 3.9 (Adjoint onsisteny). Let w 2 (H

2

(B))

d

be the solution to the

adjoint problem (3.19), then

a

h

(v

h

; w) =

Z

B

g � v

h

8v

h

2 V

h

:(3.20)

Proof. Sine the problem is self-adjoint, the ondition (3.20) follows from onsis-

teny.

The ondition (3.20) on the bilinear form is alled adjoint onsisteny [9℄.

The last omponent required to prove onvergene is a bound on the approxima-

tion error jjju� u

I

jjj

s

when u

I

is a suitable interpolant of the exat solution u. Arnold,

et al., [9℄, note that disontinuous interpolants an be employed, if they satisfy a loal

approximation property summarized in the next theorem.

Theorem 3.10 (Loal interpolation-error estimate). For v 2 (H

k+1

(E))

d

, let v

I

be the P

k

-interpolant of v on E 2 (T

h

). There exists C > 0, independent of E 2 (T

h

)

and therefore of h, suh that

jv � v

I

j

q;E

� Ch

k+1�q

jvj

k+1;E

; k + 1 � q � 0;(3.21)

provided P

k

(E) � V

E

h

� H

q

(E).

Proof. Ciarlet, [21, Theorem 3.1.5℄.

Theorem 3.11 (Interpolation-error estimate). Let u 2 (H

m

(B))

d

for some m

suh that 2 � m � k+1, and let u

I

2 V

h

be the P

k

-interpolant of u over eah element

in T

h

. Then the following interpolation inequality holds,

jjju� u

I

jjj

s

� Ch

m�1

juj

m;B

;(3.22)

where C > 0 is a onstant depending only on d;m, and the upper bound on the

Lipshitz onstant of the boundary for every element E 2 T

h

, but not on h or the

funtion u.

Proof. From the previous theorem, we have

X

E2T

h

ju� u

I

j

2

q;E

�

X

E2T

h

Ch

2m�2q

juj

2

m;E

; m � q:(3.23)

In addition, the trae inequality [25, p. 133℄ together with a saling argument gives

kuk

2

0;e

� C

�

h

�1

juj

2

0;E

+ hjuj

2

1;E

�

8u 2 H

1

(E)(3.24)

where the onstant C depends only on the Lipshitz onstant of the boundary of the

element, and an be hosen to be the same for all elements in the family of subdivisions

(T

h

) under onsideration.
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Following [9℄, the interpolation inequality (3.22) is established using the inequality

(3.24), the bound (3.23), and the inverse inequality (3.10). Starting from the de�nition

of jjj � jjj

s

, the theorem is obtained as follows,

jjju� u

I

jjj

2

s

=

X

E2T

h

kr

s

(u� u

I

)k

2

0;E

+

X

e2E

h

kr

e

([[u� u

I

℄℄)k

2

0;B

�

X

E2T

h

kr(u� u

I

)k

2

0;E

+

X

e2E

h

kr

e

([[u� u

I

℄℄)k

2

0;B

�

X

E2T

h

ju� u

I

j

2

1;E

+

X

e2E

h

Ch

�1

k[[u� u

I

℄℄k

2

0;e

� C

X

E2T

h

h

2m�2

juj

2

m;E

� Ch

2m�2

juj

2

m;B

:(3.25)

Again, the onstant C is positive and depends only on d, m, and the upper bound on

the Lipshitz onstant of the boundary for every element E 2 T

h

, but not on h or the

funtion u.

At this point we have gathered all the neessary ingredients to prove onvergene

of the disrete solutions in jjj � jjj

s

and k � k

0;B

, whih is the ontent of the next two

theorems.

Theorem 3.12 (Convergene in the mesh-dependent norm jjj � jjj

s

). Let u be the

exat solution to (2.1), with u 2 (H

m

(B))

d

for some m suh that 2 � m � k+1, and

let u

h

be the solution of (2.27), then the following estimate holds

jjju� u

h

jjj

s

� C h

m�1

juj

m;B

;(3.26)

where C is a positive onstant independent of h.

Proof. From Proposition 3.5, we have

�jjju

I

� u

h

jjj

2

s

� a

h

(u

I

� u

h

; u

I

� u

h

)

= a

h

(u

I

� u; u

I

� u

h

) + a

h

(u� u

h

; u

I

� u

h

)

�M jjju

I

� u

h

jjj

s

jjju

I

� ujjj

s

+ a

h

(u� u

h

; u

I

� u

h

)

=M jjju

I

� u

h

jjj

s

jjju

I

� ujjj

s

:(3.27)

Note, a

h

(u�u

h

; u

I

�u

h

) = 0 follows from Galerkin orthogonality, (3.18). Insert (3.22)

into (3.27) to obtain the desired result.

Theorem 3.13 (Convergene in L

2

(B)). Let u be the exat solution of (2.1),

with u 2 (H

m

(B))

d

for some m suh that 2 � m � k + 1, and let u

h

be the solution

of (2.27), then the following estimate holds

ku� u

h

k

0;B

� C h

m

juj

m;B

:(3.28)

Proof. The proof follows a standard duality argument. Consider the adjoint

problem (3.19), with g = u � u

h

. Now, take w

I

2 V

h

to be the pieewise linear

interpolant of w over eah element, and use v

h

= u� u

h

in (3.20) to obtain,

ku� u

h

k

2

0;B

= a

h

(u� u

h

; w)

= a

h

(u� u

h

; w � w

I

)

�M jjju� u

h

jjj

s

jjjw � w

I

jjj

s

� Chjwj

2;B

jjju� u

h

jjj

s

;
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where we have used (3.18) and Theorem 3.11 for the interpolation error estimate

jjjw � w

I

jjj

s

. Sine u� u

h

2 (L

2

(B))

d

, the following standard ellipti regularity esti-

mate holds (see, e.g., [26℄),

kwk

2;B

� Cku� u

h

k

0;B

(3.29)

for some onstant C > 0, and the theorem follows.

Corollary 3.14 (Convergene of the stress in L

2

(B)). Let � be the exat

solution with omponents in H

m�1

(B) for some m suh that 2 � m � k + 1, and let

�

h

be given by (2.20), then the following estimate holds

k� � �

h

k

0;B

� Ch

m�1

juj

m;B

:(3.30)

Proof. For the exat solution [[u℄℄ = 0, whih implies R([[u℄℄) = 0. So we an write

� = C � (r

s

u+R([[u℄℄)). Therefore,

� � �

h

= C � r

s

(u� u

h

) + C �R([[u� u

h

℄℄):(3.31)

It follows that

k� � �

h

k

2

0;B

=

X

E2T

h

k� � �

h

k

2

0;E

=

X

E2T

h

kC � r

s

(u� u

h

) + C � R([[u� u

h

℄℄)k

2

0;E

�

X

E2T

h

C

�

kr

s

(u� u

h

)k

2

0;E

+N

e

X

e��E

kr

e

([[u� u

h

℄℄)k

2

0;E

�

� Cjjju� u

h

jjj

2

s

� Ch

2m�2

juj

2

m;B

:

Note that this orollary gives L

2

(B) onvergene of the stress, even though no

suh result holds for the strain. This disrepany is possible beause the disrete

stress is given by (2.20), and is not, in general, proportional to the strain.

Remark. Again, as suggested in [16, 17℄, it an also be proved that the bilinear

form given by equation (2.26) is both onsistent and adjoint onsistent. Therefore,

the same error estimates hold for the problem diretly derived from the variational

priniple, equation (2.26).

3.2. The natural (suboptimal but mesh-independent) BD-estimate. Pos-

sible disontinuities in the displaement aross element boundaries naturally leads to

seeking error estimates in BD(B), the spae of bounded deformations. This spae is

de�ned as the set of funtions u 2 L

1

(B) whose symmetri part of the distributional

derivative Du, E(Du) =

1

2

(Du+Du

T

), is a matrix-valued bounded Radon measure.

For a funtion u 2 BD(B), let kE(Du)k(B) denote the total symmetri variation

measure of Du. A general Poinar�e-type estimate for BD-funtions holds in the

following form.

Theorem 3.15 (Poinar�e for BD). Let B � R

d

be a bounded domain with

Lipshitz boundary. Then

9 C > 0 : 8 u 2 BD(B); u

j

�B

= 0; kuk

L

1

(B)

� C kE(Du)k(B);(3.32)

where u

j

�B

denotes the generalized trae.
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Proof. T�emam [27, p. 189℄, Remark II.2.5.

Theorem 3.16 (Natural BD estimate).

9 C > 0 : 8 u 2

^

V ; kuk

BD(B)

� C jjjujjj

s

;(3.33)

with C independent of h.

Proof. Reall the de�nition of the BD norm

kuk

BD(B)

= kuk

L

1

(B)

+ kE(Du)k(B)

where

kE(Du)k(B) = sup

�

Z

B

u � (r � (	

T

+	)) : 	 2 C

1

0

(B;R

d�d

); k	k

L

1

� 1

�

:

The proof ontinues mutatis mutandis as in Theorem 3.22 below.

Using the estimate (3.33) for the di�erene u � u

h

together with Theorem 3.11

shows that onvergene of the method is immediately strengthened from the jjj � jjj

s

-

norm to a mesh-independent estimate in the spae BD(B). It is lear that any

`optimal' estimate in the symmetri norm, derived under less smoothness assumptions

on the underlying ontinuous problem [20℄, translates into a orresponding `optimal'

mesh-independent BD estimate. It is worth remarking that the derivation of the BD

estimate does not make use of Theorem 3.13 that additionally establishes onvergene

of the disrete solutions in L

2

(B).

The ourrene of the spae BD is, stritly speaking, an artifat of the linearized

treatment where only the symmetrized in�nitesimal strains "(ru) appear. Sine this

BD estimate does not ontrol the antisymmetri part of the displaement gradient, we

are interested in obtaining onvergene in the spae BV (B). However, sine BV (B)

is stritly smaller than BD(B) there is no obvious way to proeed diretly from the

BD estimate to a BV estimate. Instead, we will �rst strengthen Theorem 3.12 to the

jjj � jjj-norm. Note that for a given mesh size h > 0, given the �nite dimensionality of

V

h

and the fat that both jjj � jjj and jjj � jjj

s

are norms in V

h

, we have for u

h

2 V

h

,

ku

h

k

BD

� ku

h

k

BV

� Cjjju

h

jjj � (h)jjju

h

jjj

s

;(3.34)

where the estimate ku

h

k

BV

� Cjjju

h

jjj is obtained in Theorem 3.22. However, (h)

may not be bounded from below away from zero for all h > 0, the possibility of whih

has been observed numerially. The failure to obtain a mesh independent estimate

between jjju

h

jjj

s

and jjju

h

jjj is a manifestation of the possible lak of a disrete Korn's

�rst inequality for nononforming meshes [23℄. In order to obtain onvergene in the

jjj � jjj-norm, followed by a BV -estimate, and then onvergene in BV , we �rst establish

a generalized version of Korn's seond inequality at the element level.

3.3. Korn's seond inequality for the subdivision. In this setion, we

investigate an analog to Korn's seond inequality at the element level, indepen-

dent of the element shape and size. The derivation of this inequality relies heav-

ily on how Korn's seond inequality sales under uniform ontrations. We set

SL(d;R) = fX 2 R

d�d

j detX = 1g.

Theorem 3.17 (Korn's seond inequality under distortion). Assume that 
 � R

d

is a bounded (referene) domain with Lipshitz boundary �
 and let M = fX 2

SL(d;R) : kXk � Kg, for some K > 0. For F 2M de�ne 


�

= F (
). Then

9 C > 0 : 8F 2M; 8 u 2 H

1

(


�

);

kr

�

u

T

+r

�

uk

2

0;


�

+ kuk

2

0;


�

� C kuk

2

1;


�

:
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Proof. We �rst translate the statement to the �xed referene domain 
. The

aÆne transformation � = F (x) together with the de�nition u(�) = u(F (x)) = ~u(x)

and detF = 1 lead to

Z




�

kr

�

u

T

+r

�

uk

2

+ kuk

2

=

Z




kF

�T

r~u

T

+r~uF

�1

k

2

+ k~uk

2

:(3.35)

We proeed by ontradition. Assume without loss of generality that there exists a

sequene f~u

n

g 2 H

1

(
) with k~u

n

k

1;


= 1 and a sequene F

n

2M suh that

kF

�T

n

r~u

T

n

+r~u

n

F

�1

n

k

2

0;


+ k~u

n

k

2

0;


�

1

n

k~u

n

k

2

1;


=

1

n

:(3.36)

Sine F

n

is bounded, we may extrat a subsequene whih onverges strongly to

^

F 2M by Bolzano-Weierstrass. It is readily seen by ontinuity and the boundedness

of ~u

n

that

k

^

F

�T

r~u

T

n

+r~u

n

^

F

�1

k

2

0;


+ k~u

n

k

2

0;


! 0:(3.37)

Thus ~u

n

is a minimizing sequene. For �xed

^

F the quadrati expression is uniformly

positive (generalized Korn's seond inequality, see [28℄ ) suh that

k

^

F

�T

r~u

T

n

+r~u

n

^

F

�1

k

2

0;


+ k~u

n

k

2

0;


� C(

^

F ) k~u

n

k

2

1;


(3.38)

for some C > 0, ontraditing k~u

n

k

1;


= 1.

Theorem 3.18 (Korn's seond inequality under saling). Let 
 � R

d

be a

bounded domain with Lipshitz boundary �
 and, without loss of generality, j
j = 1.

Consider the saled domain, 


h

= fhx : x 2 
g, h > 0. Then

9 C(
) > 0 : 8 u 2 H

1

(


h

);

kru

T

+ruk

2

0;


h

+

1

j


h

j

2=d

kuk

2

0;


h

� C(
)

�

kruk

2

0;


h

+

1

j


h

j

2=d

kuk

2

0;


h

�

;

where the onstant C(
) is independent of h > 0 and oinides with the onstant in

Korn's seond inequality for 
.

Proof. Let ~u 2 H

1

(
). From Korn's seond inequality (see, e.g.,[28℄) we get

kr~u

T

+r~uk

2

0;


+ k~uk

2

0;


� C(
)

�

kr~uk

2

0;


+ k~uk

2

0;


�

:(3.39)

Expressing every term with respet to the down-saled 


h

, where ~u(x) = u(hx), and

notiing that j


h

j = h

d

we get

1

h

d�2

kru

T

+ruk

2

0;


h

+

1

h

d

kuk

2

0;


h

� C(
)

�

1

h

d�2

kruk

2

0;


h

+

1

h

d

kuk

2

0;


h

�

from whih we dedue the required result. Note that C(
) is just the onstant in

Korn's seond inequality.

Corollary 3.19 (Uniformity in (T

h

)). Let

^

E be the referene element for an

element E 2 (T

h

) as de�ned in Setion 2. Without loss of generality take j

^

Ej = 1.

Then,

9C > 0 : 8 E 2 (T

h

); 8 u 2 H

1

(E);

kru

T

+ruk

2

0;E

+

1

jEj

2=d

kuk

2

0;E

� C

�

kruk

2

0;E

+

1

jEj

2=d

kuk

2

0;E

�

:
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Proof. Let F be an aÆne transformation suh that E = F (

^

E). Deompose

F = F

v

�

~

F into its isohori and volumetri part, where F

v

= (detF )

1=d

I , I is the

seond order identity tensor and

~

F = F=(detF )

1=d

. Note that jEj = detF . Using

Theorem 3.1.3 in [29, p. 120℄ and the quasi-uniformity of the subdivision we have that

k

~

Fk =

kFk

(detF )

1=d

�

h

�̂

1

jEj

1=d

�

C

�̂

(3.40)

where �̂ is the diameter of the largest ball ontained in

^

E and C is independent of E.

Therefore, by Theorem 3.17 we an state Korn's seond inequality for eah domain

~

F (

^

E) in the subdivision with the same onstant C > 0. The orollary then follows

from Theorem 3.18.

3.4. Convergene in jjj � jjj. We an now obtain onvergene of the sequene

of disrete solutions in the mesh-dependent norm jjj � jjj using our generalized Korn's

seond inequality for the subdivision.

Theorem 3.20 (Convergene in the mesh-dependent norm jjj � jjj). Let (v

h

) � V

h

be a sequene suh that jjjv

h

jjj

s

� Ch

m�1

and kv

h

k

0;B

� Ch

m

for h # 0. Then

jjjv

h

jjj � C h

m�1

(3.41)

for some C > 0 independent of h.

Proof. Use Corollary 3.19 and sum over the elements to obtain the estimate

X

E2T

h

�

krv

T

h

+rv

h

k

2

0;E

+

1

jEj

2=d

kv

h

k

2

0;E

�

� C

X

E2T

h

�

krv

h

k

2

0;E

+

1

jEj

2=d

kv

h

k

2

0;E

�

whih, in light of equation (2.7), an be weakened to

X

E2T

h

�

krv

T

h

+rv

h

k

2

0;E

+

1

h

2

kv

h

k

2

0;E

�

� C

X

E2T

h

�

krv

h

k

2

0;E

+

1

h

2

kv

h

k

2

0;E

�

;

where C is independent of h > 0. Without loss of generality assume 0 < C � 1.

Adding the spei� jump ontribution over the faes of eah element shows that

X

E2T

h

krv

T

h

+rv

h

k

2

0;E

+

1

h

2

kv

h

k

2

0;E

+

X

e2E

h

kr

e

([[v

h

℄℄)k

2

0;B

� C

X

E2T

h

 

krv

h

k

2

0;E

+

1

h

2

kv

h

k

2

0;E

+

X

e2E

h

kr

e

([[v

h

℄℄)k

2

0;B

!

(3.42)

or

jjjv

h

jjj

2

s

+

1

h

2

X

E2T

h

kv

h

k

2

0;E

� C

 

jjjv

h

jjj

2

+

1

h

2

X

E2T

h

kv

h

k

2

0;E

!

(3.43)

where again, C > 0 is independent of h > 0. Thus

jjjv

h

jjj

2

s

+

1

h

2

kv

h

k

2

0;B

� C

�

jjjv

h

jjj

2

+

1

h

2

kv

h

k

2

0;B

�

� C jjjv

h

jjj

2

:(3.44)

Using the onvergene of (v

h

) and equation (3.44) we obtain

jjjv

h

jjj

2

� C

�

h

2m�2

+

1

h

2

h

2m

�

= Ch

2m�2

(3.45)

whih ompletes the theorem.
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Remark. As it is evident from the statement of Theorem 3.20, the onvergene

in jjj � jjj an only be shown for sequenes onverging in both jjj � jjj

s

and k � k

L

2

(B)

with

spei� rates in h. In general, for solutions of the ontinuous problem with less

regularity one might not have suh knowledge.

3.5. Convergene in BV. We prove that the mesh-dependent norm jjj � jjj esti-

mates the BV norm on

^

V = V

h

+(H

1

0

(B))

d

and as a result, obtain onvergene in BV .

Reall that BV (B) is the spae of funtions u 2 L

1

(B) suh that the distributional

derivative Du is a matrix-valued bounded Radon measure.

For a funtion u 2 BV (B), kDuk(B) denotes the total variation measure of Du.

A general Poinar�e-type estimate for BV -funtions holds in the following form.

Theorem 3.21 (Poinar�e for BV ).

9 C > 0 : 8 u 2 BV (R

d

); kuk

L

d=(d�1)

(R

d

)

� C kDuk(R

d

):(3.46)

Proof. Evans and Gariepy, [25, p. 189℄ Theorem 1.

Theorem 3.22 (Natural BV estimate).

9 C > 0 : 8 u 2

^

V ; kuk

BV

� C jjjujjj;

with C independent of h.

Proof. Reall the de�nition of the BV norm

kuk

BV (B)

= kuk

L

1

(B)

+ kDuk(B)(3.47)

where

kDuk(B) = sup

�

Z

B

u � (r �	) : 	 2 C

1

0

(B;R

d�d

); k	k

L

1

� 1

�

:(3.48)

First observe that

Z

B

u � (r �	) =

X

E2T

h

Z

E

u � (r �	) =

X

E2T

h

Z

E

r � (	 � u)�

X

E2T

h

Z

E

	 � ru

=

X

E2T

h

Z

�E

n

E

�	 � u�

X

E2T

h

Z

E

	 � ru

=

X

e2E

h

Z

e

n �	 � [[u℄℄�

X

E2T

h

Z

E

	 � ru

Eah term in the two sums may be estimated individually by

sup

k	k

L

1

�1

�

Z

e

n �	 � [[u℄℄

�

�

Z

e

[[u℄℄ �

[[u℄℄

k[[u℄℄k

� k[[u℄℄k

L

1

(e)

;(3.49)

and

sup

k	k

L

1

�1

�

�

Z

E

	 � ru

�

�

Z

E

ru

kruk

� ru � kruk

L

1

(E)

;(3.50)

whih yields the preliminary estimate

kDuk(B) �

X

e2E

h

k[[u℄℄k

L

1

(e)

+

X

E2T

h

kruk

L

1

(E)

:(3.51)
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Applying H�older's inequality to eah term in the sum gives

kDuk(B) �

X

e2E

h

jej

1=2

k[[u℄℄k

0;e

+

X

E2T

h

jEj

1=2

kruk

0;E

:(3.52)

Taking the square of both sides and using Young's inequality leads to

kDuk

2

(B) � 2

"

X

e2E

h

jej

1=2

k[[u℄℄k

0;e

#

2

+ 2

"

X

E2T

h

jEj

1=2

kruk

0;E

#

2

:(3.53)

Now we use the Cauhy-Shwartz inequality for the sums in the brakets, to show

kDuk

2

(B)� 2

2

4

 

X

e2E

h

(jej

1=2

)

2

!

1=2

 

X

e2E

h

k[[u℄℄k

2

0;e

!

1=2

3

5

2

+2

2

4

 

X

E2T

h

(jEj

1=2

)

2

!

1=2

 

X

E2T

h

kruk

2

0;E

!

1=2

3

5

2

� 2

 

X

e2E

h

jej

! 

X

e2E

h

k[[u℄℄k

2

0;e

!

+ 2

 

X

E2T

h

jEj

! 

X

E2T

h

kruk

2

0;E

!

whih, by Lemma 3.3, implies

kDuk

2

(B)� 2

 

X

e2E

h

jej

! 

C h

X

e2E

h

kr

e

([[u℄℄)k

2

0;B

!

+ 2jBj

X

E2T

h

kruk

2

0;E

� 2C

" 

X

e2E

h

jejh

!

X

e2E

h

kr

e

([[u℄℄)k

2

0;B

#

+ 2jBj

X

E2T

h

kruk

2

0;E

;

with C independent of h. From (2.8),

kDuk

2

(B)� 2C

"

X

e2E

h

jEj

X

e2E

h

kr

e

([[u℄℄)k

2

0;B

#

+ 2jBj

X

E2T

h

kruk

2

0;E

� CjBj

"

X

e2E

h

kr

e

([[u℄℄)k

2

0;B

+

X

E2T

h

kruk

2

0;E

#

� CjBj jjjujjj

2

:

By hypothesis, u 2 V

h

+ (H

1

0

(B))

d

; this implies u 2 BV (B) sine u 2 L

2

(B)

and kDuk(B) is bounded by jjjujjj. We may extend u to a funtion ~u on all of R

d

by

setting u to zero outside of B. From Theorem 1, [25, p. 183℄ (last line) we have the

equivalene

kD~uk(R

d

) = kDuk(B):(3.54)

Thus, by applying the Poinar�e inequality for BV , Theorem 3.21, we obtain

kuk

L

d=(d�1)

(B)

= k~uk

L

d=(d�1)

(R

d

)

� C kD~uk(R

d

) = C kDuk(B) � C jjjujjj(3.55)

with C > 0 independent of h. This estimate is neessary sine the mesh-dependent

norm jjj � jjj does not ontain a ontribution of the form kuk

L

2

(B)

.
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Corollary 3.23 (Optimal mesh independent estimate). Let (v

h

) � V

h

be a

sequene suh that jjjv

h

jjj

s

� Ch

m�1

and kv

h

k

0;B

� C h

m

for h # 0. Then

kv

h

k

BV

� C h

m�1

(3.56)

Proof. Apply Theorem 3.20 together with Theorem 3.22.

4. Final Remarks. Optimal onvergene of a stabilized, disontinuous Galerkin

method for linear elastiity with Dirihlet boundary onditions, has been established

in the mesh-independent BV norm. Unlike interior penalty methods, the stabilization

term ontains a onstant fator � > N

e

that is easy to determine for a given disretiza-

tion. The �nite element spaes omposed of pieewise polynomial funtions over the

elements are also easy to implement. In future work, we will explore the numerial

properties of the method and its extensions to �nite elastiity, elasto-plastiity and

frature.
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