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Abstra
t. We analyze a dis
ontinuous Galerkin method for linear elasti
ity. The dis
rete

formulation derives from the Hellinger-Reissner variational prin
iple with the addition of stabilization

terms analogous to those previously 
onsidered by others for the Navier-Stokes equations and a s
alar

Poisson equation. For our formulation, we �rst obtain 
onvergen
e in a mesh-dependent norm and in

the natural mesh-independent BD norm. We then prove a generalization of Korn's se
ond inequality

whi
h allows us to strengthen our results to an optimal, mesh-independent BV estimate for the error.
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1. Introdu
tion. Dis
ontinuous Galerkin (DG) �nite element methods for se
-

ond and fourth order ellipti
 problems were introdu
ed about three de
ades ago.

These methods stem from the hybrid methods developed by Pian and his 
oworkers

[1℄. At the time of their introdu
tion, DG methods were generally 
alled interior

penalty methods, and were 
onsidered by Baker [2℄, Douglas [3℄, and Douglas and

Dupont [4℄ for fourth order problems where C

1


ontinuity was imposed on C

0

ele-

ments. For se
ond order equations, Nits
he [5℄ appears to have introdu
ed the idea

of imposing Diri
hlet boundary 
onditions weakly and of adding stabilization terms

to obtain optimal 
onvergen
e rates. The same idea of penalizing jumps along inter-

element fa
es lead to the interior penalty methods of Per
ell and Wheeler [6℄, and

Wheeler [7℄. Methods for a se
ond order, nonlinear, paraboli
 equation appeared in

Arnold [8℄.

A

ording to [9℄, interest in DG methods for solving ellipti
 problems waned

be
ause they were never proven to be more advantageous than traditional 
onforming

elements. The diÆ
ulty in identifying optimal penalty parameters and eÆ
ient solvers

may also have 
ontributed to the la
k of interest [9℄. Re
ently, however, interest has

been rekindled by developments in DG methods for 
onve
tion-di�usion problems; see,

for example, Co
kburn and Shu [10, 11℄, Oden, et al. [12℄, Castillo, et al. [13℄, and

Houston, et al. [14℄, where the s
alar Poisson equation is analyzed. Bassi and Rebay

[15℄ applied a similar te
hnique for the solution of the Navier-Stokes equations. Brezzi,

et al. [16, 17℄ analyzed the method of Bassi and Rebay, for stability and a

ura
y, as

it applies to the s
alar Poisson equation. Arnold, et al. [9, 18℄ provided a 
ommon

framework for all of these methods and showed the inter
onne
tions by 
asting them

into the form of the lo
al dis
ontinuous Galerkin method (LDG) of Co
kburn and

Shu.

We are interested in a DG method for studying the me
hani
al behavior of solids.

In this paper we analyze the linear elasti
ity problem, with an eye toward a for-

mulation for nonlinear elasti
-plasti
 problems and 
ohesive elements [19℄. There are

�
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several bene�ts of su
h an approa
h, in
luding the potential for eÆ
ient hp-adaptivity,

for example, using meshes with hanging nodes with adaptive mesh re�nement, and the

prospe
t of rigorously handling problems with dis
ontinuous displa
ements as arise

in the study of fra
ture. Rivi�ere and Wheeler [20℄ formulate and analyze a method

for linear elasti
ity based on a generalization of the nonsymmetri
 interior penalty

Galerkin (NIPG) method presented in [12℄ for the di�usion equation. The resulting

bilinear form is non-symmetri
. As an alternative, we follow the analysis of Brezzi,

et al. [16, 17℄ quite 
losely in our generalization from the s
alar Poisson equation to

the linear elasti
ity problem. In this 
ase, the bilinear form is symmetri
.

Error estimates for dis
ontinuous Galerkin methods are usually obtained in terms

of mesh-dependent norms. It is, a priori, not 
lear how to 
ompare norms 
orre-

sponding to meshes of di�erent size. In this arti
le we show that the traditional error

estimates expressed in mesh-dependent norms 
an be used to derive error estimates

in the mesh-independent BD and BV norms, eliminating the ambiguity.

Se
tion 2 begins with a statement of the problem and its formulation using the

DG approa
h. A new derivation of the equations is based on a dis
rete variational

prin
iple for elasti
ity whi
h naturally leads to a formulation analogous to the one

utilized in Bassi and Rebay [15℄. Stabilization terms of the form 
onsidered in Brezzi,

et al. [16, 17℄ are added to obtain a well-posed dis
rete problem. In Se
tion 3, we

show optimal 
onvergen
e rates in a mesh-dependent norm similar to the one used

by Brezzi, et al. This mesh-dependent estimate is immediately strengthened to a

mesh-independent BD estimate in Se
tion 3.2.

The 
lassi
al analysis of the equations of linear elasti
ity needs a global version

of Korn's �rst inequality to insure 
oer
iveness of the bilinear form. In 
ontrast

to the standard approa
h, in Se
tion 3.3, we prove a generalization of Korn's se
ond

inequality on the element level whi
h allows us to obtain an improved mesh-dependent

estimate. Finally, in Se
tion 3.5 we show uniform 
onvergen
e in the BV norm, an

optimal mesh-independent estimate. Sin
e the dis
rete solutions are allowed to have

jumps in displa
ement, but the 
lassi
al solution is smooth, gradients 
an at most


onverge in measure, and indeed they do.

2. Formulation. The linear elasti
ity problem is des
ribed by the following set

of equations for a body B � R

d

, where d = 2; 3,

8

<

:

�r � (C � r

s

u) = f in B

u = �u on �

D

B

(C � r

s

u) � n =

�

T on �

N

B:

(2.1)

The body B is assumed to be a bounded, polyhedral domain. The fun
tion u : B ! R

d

is the displa
ement, and C is the fourth order elasti
ity tensor with major and minor

symmetries. In order to avoid te
hni
al diÆ
ulties that do not provide any additional

insight, we take C to be 
onstant. We also assume that C is uniformly positive de�nite,

i.e.,

9 
 > 0 : 
 � C � 
 � 
 
 � 
:(2.2)

for all 
 in the spa
e of d � d symmetri
 tensors, whi
h implies that C is invertible

on this spa
e. The notation r

s

u denotes the symmetri
 gradient of the displa
ement,

r

s

u =

1

2

�

ru + (ru)

T

�

: The boundary of the domain, �B, is de
omposed into two

disjoint sets, �

D

B and �

N

B. The body is a
ted upon by body for
es, f : B ! R

d

,

and surfa
e tra
tions,

�

T : �

N

B ! R

d

. The displa
ement, �u : �

D

B ! R

d

, is pres
ribed

on the part of the boundary indi
ated by �

D

B.
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2.1. Stress-displa
ement formulation. The two-�eld, stress-displa
ement for-

mulation of the linear elasti
ity problem is

8

>

>

<

>

>

:

� � C � r

s

u = 0 in B

�r � � = f in B

u = �u on �

D

B

� � n =

�

T on �

N

B:

(2.3)

The �rst equation is the 
onstitutive equation that relates the stress tensor � to

the strain, "(ru) = r

s

u. The se
ond equation expresses for
e equilibrium, and the

�nal two equations give the pres
ribed boundary 
onditions. The problem des
ribed

by equation (2.3) has solutions (u; �) with 
omponents in H

m+1

(B) and H

m

(B),

respe
tively, for m � 1, depending on the smoothness of the data and the domain.

Nominally, f 2 (L

2

(B))

d

.

The equations (2.3) are the Euler-Lagrange equations that result from taking

free variations of the Hellinger-Reissner energy, I : (H

m+1

(B))

d

� (H

m

(B))

d�d

! R,

where

I [u; �℄ =

Z

B

�

1

2

� � C

�1

� ��� � r

s

u+ f � u

�

+

Z

�

D

B

n � � � (u� �u) +

Z

�

N

B

�

T � u:(2.4)

The dis
rete equations in the next se
tion are derived using a dis
retization of this

variational prin
iple.

2.2. The dis
rete s
heme. First, we 
onsider a family of subdivisions (T

h

)

of B with h # 0. A subdivision T

h

of B into a �nite number of sets E, su
h that

�

B = [

E2T

h

E is 
alled admissible in the sense of [21, p. 38℄ if ea
h E is 
losed and

has nonempty interior, the interiors of the sets E of T

h

are pairwise disjoint, and the

boundary, �E, of ea
h E is Lips
hitz 
ontinuous. We assume the family (T

h

) to be

quasi-uniform [22, p. 106℄ so that

maxfdiam E : E 2 T

h

g = h;(2.5)

and

9 � > 0 : minfdiam B

E

: E 2 T

h

g � � h; 8h > 0;(2.6)

where B

E

is the largest ball 
ontained in E. Therefore, it follows that there exist

positive 
onstants 
 and C su
h that


h

d

� jEj � Ch

d

(2.7)

for every element E 2 T

h

and for every h > 0, where jEj is the measure of E.

In addition, we require all �nite elements within the family of subdivisions to be

aÆne equivalent [22, p. 80℄ to a �nite number of polyhedral referen
e �nite elements,

ea
h with a �nite number of fa
es. Hen
e the referen
e elements possess Lips
hitz

boundaries, the measure of ea
h fa
e of an arbitrary element in (T

h

) is �nite and there

exists an upper bound on the Lips
hitz 
onstant of the boundary for all elements in

the family (T

h

), independent of h. Moreover, with (2.5) we infer that there exists a


onstant C > 0 su
h that

jejh � CjEj;(2.8)
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for all h > 0, and for any fa
e e of any element E 2 (T

h

). Even though dis
ontinuous

Galerkin methods 
an potentially be used on meshes with hanging nodes, we 
onsider

for simpli
ity only 
onforming meshes, so that a fa
e e of an element is either also a

fa
e of another element, or part of �B. We note, however, that most of the theoreti
al

development does not rely on this assumption.

Consider a given subdivision T

h

of B. Ea
h element, E 2 T

h

has an orientable

boundary, �E, with unit, outward normal denoted by n

E

. De�ne the set of internal

fa
es,

E

I

h

= fe � �E n �B : E 2 T

h

g;

the set of Diri
hlet fa
es,

E

D

h

= fe � �E \ �

D

B : E 2 T

h

g;

and the set of Neumann fa
es,

E

N

h

= fe � �E \ �

N

B : E 2 T

h

g:

The set of all fa
es is denoted by E

h

= E

I

h

[ E

D

h

[ E

N

h

. Corresponding to this set of

fa
es, de�ne the 
ombined internal and external boundary, to be

� = [

e2E

h

e:

Let

~

V = �

E2T

h

(H

1

(E))

d

be the spa
e of fun
tions on B whose restri
tion to ea
h

element E belongs to the Sobolev spa
e (H

1

(E))

d

. Therefore, the tra
es of fun
tions

in

~

V belong to T (�) = �

E2T

h

(L

2

(�E))

d

. Fun
tions in T (�) are multi-valued on �n�B

and single-valued on �B. The spa
e (L

2

(�))

d


an be identi�ed with the subspa
e of

T (�) 
onsisting of fun
tions for whi
h the possible multiple values agree on all internal

fa
es. Similarly, let

~

W = �

E2T

h

(H

1

(E))

d�d

be the spa
e of fun
tions on B whose

restri
tion to ea
h element E belongs to the Sobelev spa
e (H

1

(E))

d�d

. A tensor

� 2

~

W has d

2


omponents. The d

2

tra
es, the 
omponents of � j

�E

, are de�ned, and

ea
h belongs to L

2

(�E). In parti
ular, the linear 
ombination of tra
es � � n

E

is in

T (�)

1

.

Next, we introdu
e two �nite element spa
es of s
alar fun
tions over an element

E, V

E

h

andW

E

h

, with V

E

h

�W

E

h

. These elemental spa
es 
ontain the polynomials and

have minimal smoothness over the element, P

k

(E) � V

E

h

;W

E

h

� H

1

(E), k � 1, where

P

k

(E) denotes the spa
e of polynomials of degree at most k, on E. The �nite element

spa
es for the displa
ements, V

h

, and displa
ement gradients, W

h

, are 
onstru
ted so

that ea
h 
omponent is in V

E

h

orW

E

h

on the element E, V

h

= �

E2T

h

(V

E

h

)

d

andW

h

=

�

E2T

h

(W

E

h

)

d�d

. Consequently, we have V

h

�

~

V . We also assume that gradients of

the displa
ement are in the spa
e of displa
ement gradients, r[(V

E

h

)

d

℄ � (W

E

h

)

d�d

.

Furthermore, we require the elemental �nite element spa
es to 
oin
ide over 
ommon

fa
es. More pre
isely, let e 2 E

I

h

be the fa
e 
ommon to two elements, E

+

and E

�

,

then f�j

e

: � 2 V

E

+

h

g = f�j

e

: � 2 V

E

�

h

g and f�j

e

: � 2 W

E

+

h

g = f�j

e

: � 2 W

E

�

h

g.

This requirement insures that the tra
e of a fun
tion in V

E

+

h

(W

E

+

h

) is also the tra
e

of a fun
tion in V

E

�

h

(W

E

�

h

), on e. Lastly, we denote with W

s

h

the spa
e of symmetri


tensors in W

h

.

1

The spa
e of stresses

~

W 
ould be taken to be larger; however, this is unne
essary sin
e we


onsider exa
t solutions (u; �) in (H

2

(B))

d

� (H

1

(B))

d�d

.
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We assume that the dis
rete spa
es, V

h

and W

h

, are �nite dimensional. Observe

that the fun
tions in both dis
rete spa
es 
an be dis
ontinuous a
ross element bound-

aries. The 
onditions spe
i�ed here are satis�ed by many standard �nite elements

spa
es, su
h as those 
onstru
ted from Lagrange simpli
es of various degrees and

some spa
es 
onstru
ted with bilinear quadrilaterals or trilinear bri
ks.

Remark. Most of the proofs in this arti
le immediately generalize to the 
ase

of isoparametri
 elements, though some adjustment of the assumptions on the �nite

element spa
es might be required. In parti
ular, the spe
ial treatment of Korn's

inequality also applies to isoparametri
 elements.

We wish to formulate a dis
retized version of (2.4) subordinate to the subdivision.

To this end, we de�ne the average operator, f�g : T (�) ! (L

2

(�))

d

, and the jump

operator, [[�℄℄ : T (�) ! (L

2

(�))

d

. Ea
h fa
e, e 2 E

I

h

, is shared by two elements, E

+

and E

�

; let v

�

= vj

E

� for v 2

~

V . De�ne the average for e 2 E

I

h

, by

fvg =

1

2

(v

�

j

e

+ v

+

j

e

)(2.9)

and the jump by

[[v℄℄ = v

�

j

e

� v

+

j

e

:(2.10)

For e 2 E

D

h

, put

fvg = v; and [[v℄℄ = v;(2.11)

and for e 2 E

N

h

, assign

fvg = v; and [[v℄℄ = 0:(2.12)

In the sequel, we 
hoose an orientation, n, for ea
h fa
e e 2 E

I

h

, as the unit normal

pointing toward E

+

. For e � �B, n is the unit outward normal to �B. For � 2

~

W ,

let �

�

= �j

E

� . On e 2 E

I

h

, the average of the ve
tor � � n, means

f� � ng =

1

2

(�

+

j

e

+ �

�

j

e

) � n;

with n given uniquely on the fa
e. The de�nition of f� � ng on boundary fa
es,

e 2 E

D

h

[ E

N

h

, is 
lear.

Now, spe
ialize (2.4) to ea
h individual element, as follows

I

E

=

Z

E

�

1

2

� � C

�1

� ��� � r

s

u+ f � u

�

+

Z

�En�B

1

2

n

E

� � � (u� u

ext

)

+

Z

�E\�

D

B

n � � � (u� �u) +

Z

�E\�

N

B

�

T � u:(2.13)

where u

ext

is the tra
e of u on the elements adja
ent to �E n �B. The 1=2 fa
tor

in the se
ond term a

ounts for the fa
t that for a given fa
e two adja
ent elements


ontribute to the potential energy. A global dis
rete fun
tional, I

h

: V

h

�W

s

h

! R, is

de�ned simply by summing over all elemental 
ontributions,

I

h

=

X

E2T

h

I

E

:(2.14)



6 Lew, Ne�, Sulsky, and Ortiz

The 
orresponding Euler-Lagrange equations that result from taking free variations

of I

h

are

X

E2T

h

Z

E

�

Æ� � C

�1

� � � Æ� � r

s

u

�

+

Z

�

fn � Æ�g � [[u℄℄�

Z

�

D

B

n � Æ� � �u = 0(2.15)

X

E2T

h

Z

E

�

� � � r

s

Æu+ f � Æu

�

+

Z

�

fn � �g � [[Æu℄℄ +

Z

�

N

B

�

T � Æu = 0:(2.16)

Thus, we obtain the general problem whi
h is to �nd u

h

2 V

h

and �

h

2W

s

h

su
h that,

X

E2T

h

Z

E

�




h

� C

�1

� �

h

� 


h

� r

s

u

h

�

+

Z

�

fn � 


h

g � [[u

h

℄℄

=

Z

�

D

B

n � 


h

� �u; 8


h

2W

s

h

;(2.17)

X

E2T

h

Z

E

�

h

� r

s

v

h

�

Z

�

fn � �

h

g � [[v

h

℄℄

=

Z

B

f � v

h

+

Z

�

N

B

�

T � v

h

; 8v

h

2 V

h

:(2.18)

Next, we de�ne the lifting operator R

�u

: (L

2

(�))

d

!W

s

h

by

Z

B

R

�u

(v) � 
 = �

Z

�

fn � 
g � v +

Z

�

D

B

n � 
 � �u; 8
 2W

s

h

:(2.19)

This operator will now be used to derive the primal form [9℄ of the dis
retization

where a single equation is obtained by eliminating �

h

between (2.17) and (2.18). In

terms of (2.19), equation (2.17) is the same as

X

E2T

h

Z

E

�




h

� C

�1

� �

h

� 


h

� r

s

u

h

�R

�u

([[u

h

℄℄) � 


h

�

= 0 8


h

2W

s

h

:

Sin
e we require the elemental �nite element spa
es to satisfy r[(V

E

h

)

d

℄ � (W

E

h

)

d�d

,

this equation allows us to identify,

�

h

= �

h

(u

h

) = C � r

s

u

h

+ C �R

�u

([[u

h

℄℄) in W

s

h

:(2.20)

This 
onstitutive equation for the dis
rete stress 
an be viewed as a stress-strain

relation where the strain involves the usual dependen
e on the displa
ement gradient,

plus a linear 
ontribution that arises from jumps in displa
ement.

Next, take 


h

= C � r

s

v

h

in equation (2.17) to get

X

E2T

h

Z

E

�

r

s

v

h

� �

h

�r

s

v

h

� C � r

s

u

h

�

+

Z

�

fn � C � r

s

v

h

g � [[u

h

℄℄ =

Z

�

D

B

n � (C � r

s

v

h

) � �u:

Finally, substitute equation (2.18) to obtain

X

E2T

h

Z

E

r

s

v

h

� C � r

s

u

h

�

Z

�

�

fn � C � r

s

v

h

g � [[u

h

℄℄ + fn � �

h

g � [[v

h

℄℄

�

=

Z

B

f � v

h

+

Z

�

N

B

�

T � v

h

�

Z

�

D

B

n � (C � r

s

v

h

) � �u :(2.21)
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If (u

h

; �

h

) 2 V

h

�W

s

h

solves (2.17) - (2.18), then u

h

solves (2.21), with �

h

= �

h

(u

h

)

given by (2.20). Equation (2.21) is 
alled the primal formulation.

Re
all the de�nition of R

�u

, (2.19), and introdu
e the notation R = R

0

. Using

(2.19) and (2.20), the primal form (2.21) 
an also be written as

X

E2T

h

Z

E

(r

s

v

h

+R([[v

h

℄℄)) � C � (r

s

u

h

+R([[u

h

℄℄)) =

Z

B

f � v

h

+

Z

�

N

B

�

T � v

h

�

Z

�

D

B

n �

�

C �(r

s

v

h

+R([[v

h

℄℄))

�

� �u:(2.22)

We remark that our physi
ally-based derivation of this equation, obtained by dis-


retizing the variational prin
iple, produ
es an analogous dis
retization to that used

by Bassi and Rebay [15, 17℄. Arnold, et al. [9℄ show that this dis
retization is 
onsis-

tent, 
onservative and adjoint 
onsistent, but unstable, for the s
alar Poisson equation,

and we show in Se
tion 3 that these properties 
arry over to linear elasti
ity.

Brezzi, et al., [16, 17℄ propose a stabilizing term for the s
alar 
ase whi
h naturally

extends to linear elasti
ity. The stabilization is given in terms of r

e;�u

: (L

2

(�))

d

! W

s

h

.

De�ne r

e;�u

for e 2 E

I

h

,

Z

B

r

e;�u

(v) � 
 = �

Z

e

fn � 
g � v; 8
 2 W

s

h

;(2.23)

while for e 2 E

D

h

,

Z

B

r

e;�u

(v) � 
 = �

Z

e

fn � 
g � v +

Z

e

n � 
 � �u; 8
 2 W

s

h

;(2.24)

and for e 2 E

N

h

, r

e;�u

= 0. As before, set r

e

= r

e;0

. Note that r

e;�u

(v) vanishes outside

the union of elements 
ontaining e, and that for any element E 2 T

h

,

R

�u

(v) =

X

e��E

r

e;�u

(v)(2.25)

on E. The stabilizing term is �

P

e��E

R

B

r

e;�u

([[u

h

℄℄) � C � r

e

([[v

h

℄℄); with � > 0 the

stabilization parameter. The resulting primal form with the stabilizing term is

X

E2T

h

Z

E

(r

s

v

h

+R([[v

h

℄℄)) � C � (r

s

u

h

+R([[u

h

℄℄)) + �

X

e2E

h

Z

B

r

e

([[u

h

℄℄) � C � r

e

([[v

h

℄℄)

=

Z

B

f � v

h

+

Z

�

N

B

�

T � v

h

�

Z

�

D

B

n �

�

C � (r

s

v

h

+R([[v

h

℄℄) + �r

e

([[v

h

℄℄))

�

� �u:(2.26)

The form (2.26), whi
h derives dire
tly from the variational prin
iple, is stable

for any � > 0. In Se
tion 3, we analyze in detail a modi�
ation proposed by Brezzi,

et al., [16, 17℄, that omits the quadrati
 term in R, making the method stable for

� > N

e

, where N

e

is the maximum number of fa
es in an element of the subdivision.

The advantage of dropping this quadrati
 term is that the sparsity of the sti�ness

matrix is in
reased.

The analysis of the proposed method relies on ellipti
 regularity, so we restri
t

it to Diri
hlet boundary 
onditions on the entire boundary, �B. Thus, �

N

B = ;,



8 Lew, Ne�, Sulsky, and Ortiz

E

N

h

= ;, and without loss of generality, �u = 0 on �B. A

ordingly, the 
omplete

dis
rete problem statement, with these modi�
ations, is to �nd u

h

2 V

h

su
h that

a

h

(u

h

; v

h

) =

Z

B

f � v

h

8v

h

2 V

h

(2.27)

where the bilinear form a

h

is given by

a

h

(u

h

; v

h

) =

X

E2T

h

Z

E

�

r

s

v

h

� C � r

s

u

h

+r

s

v

h

� C � R([[u

h

℄℄) +R([[v

h

℄℄) � C � r

s

u

h

�

+�

X

e2E

h

Z

B

r

e

([[u

h

℄℄) � C � r

e

([[v

h

℄℄):(2.28)

Remark. Both problems, (2.26) and (2.28), 
an be written in a two-�eld form,

i.e., with both u

h

and �

h

as unknowns.

2.3. Notation. In Se
tion 3, a 
onvergen
e proof will be given for d = 2 and 3,

simultaneously. In the proofs, the letter C indi
ates a generi
 
onstant whose value


an 
hange in ea
h o

urren
e. We also employ the standard notation, k � k

p;


, to

denote the usual norm on H

p

(
), and j � j

p;


to denote the H

p

(
) semi-norm, whereas

k � k denotes the Eu
lidean norm for ve
tors or tensors. When other standard norms

are used, they will be indi
ated expli
itly with a subs
ript, for example, k � k

L

1

(
)

indi
ates the L

1

(
)-norm.

2.4. Summary of the theoreti
al results. The 
onvergen
e proof utilizes two

relevant mesh-dependent norms on

^

V = (H

1

0

(B))

d

+ V

h

given by

jjjvjjj

2

s

=

X

E2T

h

kr

s

vk

2

0;E

+

X

e2E

h

kr

e

([[v℄℄)k

2

0;B

v 2

^

V(2.29)

jjjvjjj

2

=

X

E2T

h

krvk

2

0;E

+

X

e2E

h

kr

e

([[v℄℄)k

2

0;B

v 2

^

V :(2.30)

Proposition 3.4 establishes that jjj � jjj

s

is a norm on

^

V . Also note that

jjjvjjj

2

s

� jjjvjjj

2

v 2

^

V(2.31)

whi
h shows that jjj � jjj is also a norm on

^

V . Although one might expe
t the se
ond term

in the de�nition of norms (2.29) and (2.30) to a
t as an L

2

-like 
ontribution, we 
an

only assert that these are semi-norms on

~

V . In the 
ase of the s
alar Poisson equation,

[9, 12, 13, 14, 16, 17, 18℄, there is no need to distinguish between the norms (2.29) and

(2.30). Following the ideas in [16, 17℄, it is straightforward to obtain boundedness

and 
oer
ivity of the bilinear form a

h

with respe
t to the mesh-dependent norm,

jjj � jjj

s

(Proposition 3.5), whi
h leads to 
onvergen
e of the dis
rete solutions in the

jjj � jjj

s

-norm and in L

2

(B) (Theorem 3.12 and Theorem 3.13). The 
onvergen
e in

the jjj � jjj

s

-norm is suÆ
ient for a mesh-independent BD estimate (Theorem 3.16);

however, the jjj � jjj

s

norm does not provide 
ontrol over the antisymmetri
 part of the

displa
ement gradient. If the displa
ements are in H

1

0

(B), the equivalen
e of the two

norms, jjj � jjj

s

and jjj � jjj, relies on Korn's �rst inequality; for non
onforming elements,

Korn's inequality may not be valid, [23℄.

In order to obtain 
onvergen
e in the norm, jjj � jjj, Theorem 3.20, we prove a

generalized version of Korn's se
ond inequality for the subdivision, Corollary 3.19.
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The proof of this inequality relies on observations about how Korn's inequality for

an element behaves under distortion (Theorem 3.17) and s
aling (Theorem 3.18).

Finally, Theorem 3.22 shows that the mesh-dependent norm, jjj � jjj, estimates the BV

norm, and as a 
onsequen
e, Corollary 3.23, we obtain 
onvergen
e in BV , an optimal

mesh-independent result.

3. Theoreti
al Results.

3.1. Convergen
e in the mesh-dependent symmetri
 norm. Following

the developments in [16, 17℄ for the two-dimensional Poisson equation, we obtain the


onvergen
e of the dis
retized solutions in the mesh-dependent norm jjj � jjj

s

. The �rst

three lemmas 
hara
terize properties of the jumps. In the subsequent proposition,

our analysis starts by establishing that jjj � jjj

s

is in fa
t a norm on

^

V .

Lemma 3.1 (Extension of tra
es). Let e be a fa
e of an element E 2 (T

h

). For

any � in the tra
e spa
e, T (e) = f� 2 (L

2

(e))

d�d

: � = 
j

e

; 
 2 (W

E

h

)

d�d

g, there

exists P

e

(�) 2 (W

E

h

)

d�d

su
h that P

e

(�)j

e

= �. Moreover, for all � 2 T (e),

9C > 0 : kP

e

(�)k

0;E

� Ch

1=2

k�k

0;e

;(3.1)

for all h > 0, and for all E 2 T

h

.

Proof. First examine a referen
e element. Let ê � �

^

E be a fa
e of one of the

referen
e elements

^

E, and let � 2 T (ê). There exists C > 0 su
h that

sup

�2T (ê); k�k

0;ê

=1

inf




h

2(W

^

E

h

)

d�d

; 


h

j

e

=�

k


h

k

2

0;

^

E

< C:(3.2)

Sin
e 


h

2 (W

^

E

h

)

d�d

is a linear 
ombination of basis fun
tions on

^

E, k


h

k

0;

^

E

is a

quadrati
 form in a �nite dimensional spa
e. Therefore, there is a minimizer, P

ê

(�), of

k


h

k

2

0;

^

E

subje
t to the linear 
onstraint 


h

j

e

= � 2 T (ê), whi
h depends 
ontinuously

on �. Thus, P

ê

(�) is bounded on the 
ompa
t set k�k

0;ê

= 1, and (3.2) follows.

Next, note that P

ê

(��) = �P

ê

(�) for � 2 R, whi
h implies

kP

ê

(�)k

2

0;

^

E

� C k�k

2

0;ê

;(3.3)

for all � 2 T (ê). Sin
e the number of referen
e elements is �nite, as is the number of

fa
es per element, we 
an 
hoose C in (3.3) independent of the referen
e element and

the fa
e.

Now, let E be any element in the family of subdivisions (T

h

), and let e be any

one of its fa
es. Let F be the aÆne transformation su
h that E = F (

^

E) for one of the

referen
e elements

^

E, and let ê be the 
orresponding fa
e in the referen
e element,

e = F (ê). Given � 2 T (e), the de�nition of aÆne equivalen
e implies

^

� = �ÆF 2 T (ê).

De�ne P

e

(�) = P

ê

(

^

�) Æ F

�1

2 (W

E

h

)

d�d

; and note P

e

(�)j

e

= �. Then, use (3.3) and

kFk � h=�̂ (see e.g. [21, p. 120℄), where �̂ is the diameter of the largest ball 
ontained

in

^

E, to obtain

Z

E

jP

e

(�)j

2

= j detF j

Z

^

E

jP

ê

(

^

�)j

2

� Cj detF j

Z

ê

j

^

�j

2

� Cj detF j

Z

e

j�j

2

j detF

�1

j kFk � CkFk

Z

e

j�j

2

� C

h

�̂

Z

e

j�j

2

:
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The lemma follows.

Lemma 3.2 (Tra
e inequality for r

e

). There exists a 
onstant C > 0, independent

of the fa
e e 2 E

h

and of h, su
h that

kr

e

(v)k

0;e

� Ch

�1=2

kr

e

(v)k

0;E

;(3.4)

for all v 2 (L

2

(e))

d

.

Proof. The inequality (3.4) is a
tually a statement about tensors 
 2 (W

E

h

)

d�d

,

where 
 = r

e

(v). The proof follows a s
aling argument. Let ê � �

^

E be a fa
e of one

of the referen
e elements,

^

E. Then, there exists a 
onstant C > 0 su
h that

k
̂k

0;ê

� C k
̂k

0;

^

E

(3.5)

for all 
̂ 2 (W

^

E

h

)

d�d

. Inequality (3.5) is a dire
t 
onsequen
e of the 
ontinuity of the

tra
e inW

^

E

h

� H

1

(

^

E) (see, e. g., [22, pag. 37℄) and the fa
t that in a �nite dimensional

spa
e, all norms are equivalent. Sin
e there are a �nite number of referen
e elements,

ea
h with a �nite number of fa
es, the 
onstant C 
an be 
hosen independent of the

referen
e element and of its fa
e.

Now, 
onsider 
 2 (W

E

h

)

d�d

, where E is an element aÆne equivalent to

^

E. Then,

there exists an aÆne mapping F su
h that E = F (

^

E), and 
̂ 2 (W

^

E

h

)

d�d

su
h that


 = 
̂ Æ F

�1

. Note,

k
k

2

0;E

=

Z

E


 � 
 = j detF j

Z

^

E


̂ � 
̂ = j detF j k
̂k

2

0;

^

E

(3.6)

k
k

2

0;e

=

Z

e


 � 
 = kF

�1

n̂k j detF j

Z

ê


̂ � 
̂ � kF

�1

k j detF j k
̂k

2

0;ê

(3.7)

where n̂ is the unit outward normal to ê. Therefore, (3.5), (3.6), and (3.7) 
ombine

to yield

k
k

0;e

� C kF

�1

k

1=2

k
k

0;E

�

C

^

h

1=2

�

1=2

h

�1=2

k
k

0;E

:(3.8)

The last part of the bound uses the fa
t that kF

�1

k �

^

h=(diam B

E

) �

^

h=(�h) (see

e.g. [21, p. 120℄ ).

Lemma 3.3 (Jump bound). There exist two positive 
onstants C

1

and C

2

, inde-

pendent of the fa
e e 2 E

h

and of h, su
h that

k[[v

h

℄℄k

0;e

� C

1

h

1=2

kr

e

([[v

h

℄℄)k

0;B

; 8 v

h

2 V

h

;(3.9)

and

kr

e

([[v

h

℄℄)k

0;B

� C

2

h

�1=2

k[[v

h

℄℄k

0;e

; 8 v

h

2 V

h

:(3.10)

Proof. Let e � E be a fa
e of element E. Given [[v

h

℄℄ 2 (L

2

(e))

d

, let 


e

h

2

(L

2

(e))

d�d

be su
h that 


e

h

� n = [[v

h

℄℄. Note, it is possible to 
hoose 


e

h

so that

k


e

h

k � Ck[[v

h

℄℄k. For the tensor 


e

h

de�ned only on e, 
onstru
t an extension to the

element, 


h

j

E

= P

e

(


e

h

), as in Lemma 3.1. Take 


h

2 W

s

h

to be 


h

j

E

= P

e

(


e

h

) on E,




h

= 0 elsewhere, and v = [[v

h

℄℄ in equation (2.23) to get

1

2

k[[v

h

℄℄k

2

0;e

=

1

2

Z

e

[[v

h

℄℄ � [[v

h

℄℄ �

Z

B

�

�

�

r

e

([[v

h

℄℄) � P

e

(


e

h

)

�

�

�

� kr

e

([[v

h

℄℄)k

0;B

kP

e

(


e

h

)k

0;E

(3.11)

� C h

1=2

kr

e

([[v

h

℄℄)k

0;B

k[[v

h

℄℄k

0;e

:
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In the nontrivial 
ase in whi
h k[[v

h

℄℄k

0;e

6= 0, the inequality (3.9) follows from (3.11)

by dividing through by k[[v

h

℄℄k

0;e

.

To prove (3.10), take 
 = r

e

([[v

h

℄℄) and v = [[v

h

℄℄ in equation (2.23) to get

kr

e

([[v

h

℄℄)k

2

0;B

=

�

�

�

Z

e

fn � r

e

([[v

h

℄℄)g � [[v

h

℄℄

�

�

�

� k[[v℄℄k

0;e

kfr

e

([[v

h

℄℄)gk

0;e

� C

2

h

�1=2

k[[v

h

℄℄k

0;e

kr

e

([[v

h

℄℄)k

0;B

:

We have used the linearity of r

e

and (3.4) in the last step. The result, (3.10), follows.

Proposition 3.4 (Symmetri
 norm). Let v

h

2

^

V = (H

1

0

(B))

d

+ V

h

. Then

jjj � jjj

s

:

^

V ! R as de�ned in (2.29) is a norm on

^

V .

Proof. It is immediate that jjj�vjjj

s

= j�jjjjvjjj

s

, for all � 2 R, and that the triangle

inequality holds sin
e r

e

is linear. We show that jjjvjjj

s

= 0 implies v = 0 in

^

V . Noti
e

that jjjvjjj

s

= 0 i� kr

s

vk

0;E

= 0 for all E 2 T

h

and kr

e

([[v℄℄)k

0;B

= 0 for all e 2 E

h

.

Let v = v

1

+ v

2

2

^

V , with v

1

2 (H

1

0

(B))

d

and v

2

2 V

h

. By Lemma 3.3, we have that

k[[v

2

℄℄k

0;e

� C h

1=2

kr

e

([[v

2

℄℄)k

0;B

. Therefore, k[[v

2

℄℄k

0;e

= 0. Sin
e also k[[v

1

℄℄k

0;e

= 0 we

have that k[[v℄℄k

0;e

= 0. So v 2 (H

1

0

(B))

d

by [24, Theorem 1.3℄. Korn's �rst inequality

for homogeneous boundary data applied to v 2 (H

1

0

(B))

d

then shows that v = 0.

Next, we show that the bilinear form (2.28) is 
ontinuous and 
oer
ive with respe
t

to the norm, jjj � jjj

s

. The proofs follow [16, 17℄ almost exa
tly.

Proposition 3.5 (Continuity and 
oer
ivity of the bilinear form). Let N

e

be a

bound on the number of fa
es in an element. Then, there exists a 
onstant M > 0,

independent of h, su
h that

(i) a

h

(u

h

; v

h

) �M jjju

h

jjj

s

jjjv

h

jjj

s

; 8 u

h

; v

h

2

^

V :

Moreover, for � > N

e

, there exists a 
onstant � > 0, independent of h, su
h that

(ii) a

h

(u

h

; u

h

) � � jjju

h

jjj

2

s

8 u

h

2

^

V :

Proof. We �rst prove the following inequality, a 
onsequen
e of equation (2.25),

kR([[v

h

℄℄)k

2

0;E

� N

e

X

e��E

kr

e

([[v

h

℄℄)k

2

0;E

:(3.12)

We have

kR([[v

h

℄℄)k

2

0;E

=

Z

E

 

X

e��E

r

e

([[v

h

℄℄)

! 

X

e

0

��E

r

e

0

([[v

h

℄℄)

!

�

Z

E

X

e

0

��E

X

e��E

kr

e

([[v

h

℄℄)k kr

e

0

([[v

h

℄℄)k

�

X

e

0

��E

X

e��E

1

2

�

kr

e

([[v

h

℄℄)k

2

0;E

+ kr

e

0

([[v

h

℄℄)k

2

0;E

�

� N

e

X

e��E

kr

e

([[v

h

℄℄)k

2

0;E

:
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Next, the 
ontinuity of the bilinear form (2.28) follows from estimating ea
h term.

�

�

�

�

Z

E

r

s

u

h

� C � r

s

v

h

�

�

�

�

� kC k kr

s

u

h

k

0;E

kr

s

v

h

k

0;E

(3.13)

�

�

�

�

Z

E

r

s

u

h

� C �R([[v

h

℄℄)

�

�

�

�

� kC k kr

s

u

h

k

0;E

kR([[v

h

℄℄)k

0;E

� kC k kr

s

u

h

k

0;E

"

N

e

X

e��E

kr

e

([[v

h

℄℄)k

2

0;E

#

1=2

(3.14)

�

�

�

�

�

X

e��E

Z

E

r

e

([[u

h

℄℄) � C � r

e

([[v

h

℄℄)

�

�

�

�

�

� kC k

X

e��E

kr

e

([[u

h

℄℄)k

0;E

kr

e

([[v

h

℄℄)k

0;E

:(3.15)

Adding ea
h term over all elements, and using the Cau
hy-S
hwartz inequality yields

(i). The 
onstant M depends on kC k, N

e

and �, but is independent of h.

Now we show 
oer
ivity, (ii). To simplify the notation, de�ne

k
k

2

0;E;C

=

Z

E


 � C � 
 8
 2W

s

h

:

Due to (3.12), we get

a

h

(u

h

; u

h

) =

X

E2T

h

 

kr

s

u

h

k

2

0;E;C

+

Z

E

2r

s

u

h

� C � R([[u

h

℄℄) + �

X

e��E

kr

e

([[u

h

℄℄)k

2

0;E;C

!

�

X

E2T

h

 

(1� ")kr

s

u

h

k

2

0;E;C

�

1

"

kR([[u

h

℄℄)k

2

0;E;C

+ �

X

e��E

kr

e

([[u

h

℄℄)k

2

0;E;C

!

�

X

E2T

h

 

(1� ")kr

s

u

h

k

2

0;E;C

+

�

� �

N

e

"

�

X

e��E

kr

e

([[u

h

℄℄)k

2

0;E;C

!

;

where we used the standard inequality, 2ab � "a

2

+ b

2

=", for all " > 0. Any � > N

e

guarantees that (� �

N

e

"

) > 0 whenever N

e

=� < " < 1. Sin
e ea
h term is positive,

we 
an invoke (2.2) to dedu
e (ii) with � = 
(� �

N

e

"

) > 0.

Remark. As suggested in [16, 17℄, following the same steps as in the previous proof

establishes 
ontinuity and 
oer
ivity of the bilinear form given by equation (2.26), but

for any � > 0.

In addition to being 
ontinuous and 
oer
ive, the bilinear form (2.28) is 
onsistent

and adjoint 
onsistent (as is (2.26)). Consisten
y is the requirement that the exa
t

solution of the partial di�erential equation be a solution of the dis
rete problem, and

similarly for adjoint 
onsisten
y [9℄. A pre
ise de�nition is given in the propositions

below. These properties form the basis for establishing 
onvergen
e of the dis
rete

displa
ement, �rst in jjj � jjj

s

, and subsequently in L

2

(B). The following lemma is a

preliminary to proving 
onsisten
y.

Lemma 3.6. Let u 2 (H

1

(B))

d

with r � (C � ru) 2 (L

2

(B))

d

, and let v

h

2 V

h

,

then

X

E2T

h

Z

�E

n � (C � ru) � v

h

=

X

e2E

h

Z

e

fn � C � rug � [[v

h

℄℄ :(3.16)
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Proof. The assumed regularity of u implies that n � C � ru is 
ontinuous a
ross

inter-element boundaries (e.g., [24, Theorem 1.3℄); i.e., 0 = n � (C � ru

�

� C � ru

+

)

on any fa
e in E

I

h

. Therefore

X

E2T

h

Z

�E

n � (C � ru) � v

h

=

X

e2E

I

h

Z

e

�

� n � (C � ru

+

) � v

+

h

+ n � (C � ru

�

) � v

�

h

�

+

X

e2E

D

h

Z

e

n � (C � ru) � v

h

=

X

e2E

I

h

Z

e

�

�

1

2

�

n � (C � ru

+

) + n � (C � ru

�

)

�

� v

+

h

+

1

2

�

n � (C � ru

+

) + n � (C � ru

�

)

�

� v

�

h

+

X

e2E

D

h

Z

e

n � (C � ru) � v

h

=

X

e2E

h

Z

e

fn � C � rug � [[v

h

℄℄ :

Proposition 3.7 (Consisten
y of the bilinear form). Let u be the exa
t solution

of (2.1), with u 2 (H

m

(B))

d

for some m su
h that 2 � m � k + 1, then

a

h

(u; v

h

) =

Z

B

f � v

h

8v

h

2 V

h

;(3.17)

where the bilinear form is given in (2.28).

Proof. To establish 
onsisten
y of the bilinear form, multiply (2.1) by v

h

2 V

h

and integrate by parts over ea
h element,

Z

B

f � v

h

= �

Z

B

v

h

� r � (C � r

s

u)

=

X

E2T

h

�

Z

E

r

s

v

h

� C � r

s

u�

Z

�E

n � (C � r

s

u) � v

h

�

=

X

E2T

h

Z

E

r

s

v

h

� C � r

s

u�

X

e2E

h

Z

e

fn � C � r

s

ug � [[v

h

℄℄�

X

e2E

h

fn � C � r

s

v

h

g � [[u℄℄

=

X

E2T

h

Z

E

�

r

s

v

h

� C � r

s

u+R([[v

h

℄℄) � C � r

s

u+r

s

v

h

� C �R([[u℄℄)

�

+�

X

e2E

h

Z

B

r

e

([[u℄℄) � C � r

e

([[v

h

℄℄)

= a

h

(u; v

h

):

We have used Lemma 3.6, the fa
t that [[u℄℄ = 0, and (2.19).

Corollary 3.8 (Galerkin orthogonality). Let u be the exa
t solution of (2.1),

with u 2 (H

m

(B))

d

for some m su
h that 2 � m � k + 1, and let u

h

2 V

h

solve

(2.27), then

a

h

(u� u

h

; v

h

) = 0; 8 v

h

2 V

h

:(3.18)
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Proof. Subtra
t the 
onsisten
y 
ondition, (3.17), and the 
hara
terization of the

dis
rete solution, (2.27) to establish the desired result.

Sin
e the problem (2.1) is self-adjoint, the adjoint problem is the same as the

original problem; namely, �nd w 2 (H

2

(B))

d

su
h that

�

�r � (C � r

s

w) = g in B

w = 0 on �B

(3.19)

for g 2 (L

2

(B))

d

.

Corollary 3.9 (Adjoint 
onsisten
y). Let w 2 (H

2

(B))

d

be the solution to the

adjoint problem (3.19), then

a

h

(v

h

; w) =

Z

B

g � v

h

8v

h

2 V

h

:(3.20)

Proof. Sin
e the problem is self-adjoint, the 
ondition (3.20) follows from 
onsis-

ten
y.

The 
ondition (3.20) on the bilinear form is 
alled adjoint 
onsisten
y [9℄.

The last 
omponent required to prove 
onvergen
e is a bound on the approxima-

tion error jjju� u

I

jjj

s

when u

I

is a suitable interpolant of the exa
t solution u. Arnold,

et al., [9℄, note that dis
ontinuous interpolants 
an be employed, if they satisfy a lo
al

approximation property summarized in the next theorem.

Theorem 3.10 (Lo
al interpolation-error estimate). For v 2 (H

k+1

(E))

d

, let v

I

be the P

k

-interpolant of v on E 2 (T

h

). There exists C > 0, independent of E 2 (T

h

)

and therefore of h, su
h that

jv � v

I

j

q;E

� Ch

k+1�q

jvj

k+1;E

; k + 1 � q � 0;(3.21)

provided P

k

(E) � V

E

h

� H

q

(E).

Proof. Ciarlet, [21, Theorem 3.1.5℄.

Theorem 3.11 (Interpolation-error estimate). Let u 2 (H

m

(B))

d

for some m

su
h that 2 � m � k+1, and let u

I

2 V

h

be the P

k

-interpolant of u over ea
h element

in T

h

. Then the following interpolation inequality holds,

jjju� u

I

jjj

s

� Ch

m�1

juj

m;B

;(3.22)

where C > 0 is a 
onstant depending only on d;m, and the upper bound on the

Lips
hitz 
onstant of the boundary for every element E 2 T

h

, but not on h or the

fun
tion u.

Proof. From the previous theorem, we have

X

E2T

h

ju� u

I

j

2

q;E

�

X

E2T

h

Ch

2m�2q

juj

2

m;E

; m � q:(3.23)

In addition, the tra
e inequality [25, p. 133℄ together with a s
aling argument gives

kuk

2

0;e

� C

�

h

�1

juj

2

0;E

+ hjuj

2

1;E

�

8u 2 H

1

(E)(3.24)

where the 
onstant C depends only on the Lips
hitz 
onstant of the boundary of the

element, and 
an be 
hosen to be the same for all elements in the family of subdivisions

(T

h

) under 
onsideration.
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Following [9℄, the interpolation inequality (3.22) is established using the inequality

(3.24), the bound (3.23), and the inverse inequality (3.10). Starting from the de�nition

of jjj � jjj

s

, the theorem is obtained as follows,

jjju� u

I

jjj

2

s

=

X

E2T

h

kr

s

(u� u

I

)k

2

0;E

+

X

e2E

h

kr

e

([[u� u

I

℄℄)k

2

0;B

�

X

E2T

h

kr(u� u

I

)k

2

0;E

+

X

e2E

h

kr

e

([[u� u

I

℄℄)k

2

0;B

�

X

E2T

h

ju� u

I

j

2

1;E

+

X

e2E

h

Ch

�1

k[[u� u

I

℄℄k

2

0;e

� C

X

E2T

h

h

2m�2

juj

2

m;E

� Ch

2m�2

juj

2

m;B

:(3.25)

Again, the 
onstant C is positive and depends only on d, m, and the upper bound on

the Lips
hitz 
onstant of the boundary for every element E 2 T

h

, but not on h or the

fun
tion u.

At this point we have gathered all the ne
essary ingredients to prove 
onvergen
e

of the dis
rete solutions in jjj � jjj

s

and k � k

0;B

, whi
h is the 
ontent of the next two

theorems.

Theorem 3.12 (Convergen
e in the mesh-dependent norm jjj � jjj

s

). Let u be the

exa
t solution to (2.1), with u 2 (H

m

(B))

d

for some m su
h that 2 � m � k+1, and

let u

h

be the solution of (2.27), then the following estimate holds

jjju� u

h

jjj

s

� C h

m�1

juj

m;B

;(3.26)

where C is a positive 
onstant independent of h.

Proof. From Proposition 3.5, we have

�jjju

I

� u

h

jjj

2

s

� a

h

(u

I

� u

h

; u

I

� u

h

)

= a

h

(u

I

� u; u

I

� u

h

) + a

h

(u� u

h

; u

I

� u

h

)

�M jjju

I

� u

h

jjj

s

jjju

I

� ujjj

s

+ a

h

(u� u

h

; u

I

� u

h

)

=M jjju

I

� u

h

jjj

s

jjju

I

� ujjj

s

:(3.27)

Note, a

h

(u�u

h

; u

I

�u

h

) = 0 follows from Galerkin orthogonality, (3.18). Insert (3.22)

into (3.27) to obtain the desired result.

Theorem 3.13 (Convergen
e in L

2

(B)). Let u be the exa
t solution of (2.1),

with u 2 (H

m

(B))

d

for some m su
h that 2 � m � k + 1, and let u

h

be the solution

of (2.27), then the following estimate holds

ku� u

h

k

0;B

� C h

m

juj

m;B

:(3.28)

Proof. The proof follows a standard duality argument. Consider the adjoint

problem (3.19), with g = u � u

h

. Now, take w

I

2 V

h

to be the pie
ewise linear

interpolant of w over ea
h element, and use v

h

= u� u

h

in (3.20) to obtain,

ku� u

h

k

2

0;B

= a

h

(u� u

h

; w)

= a

h

(u� u

h

; w � w

I

)

�M jjju� u

h

jjj

s

jjjw � w

I

jjj

s

� Chjwj

2;B

jjju� u

h

jjj

s

;
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where we have used (3.18) and Theorem 3.11 for the interpolation error estimate

jjjw � w

I

jjj

s

. Sin
e u� u

h

2 (L

2

(B))

d

, the following standard ellipti
 regularity esti-

mate holds (see, e.g., [26℄),

kwk

2;B

� Cku� u

h

k

0;B

(3.29)

for some 
onstant C > 0, and the theorem follows.

Corollary 3.14 (Convergen
e of the stress in L

2

(B)). Let � be the exa
t

solution with 
omponents in H

m�1

(B) for some m su
h that 2 � m � k + 1, and let

�

h

be given by (2.20), then the following estimate holds

k� � �

h

k

0;B

� Ch

m�1

juj

m;B

:(3.30)

Proof. For the exa
t solution [[u℄℄ = 0, whi
h implies R([[u℄℄) = 0. So we 
an write

� = C � (r

s

u+R([[u℄℄)). Therefore,

� � �

h

= C � r

s

(u� u

h

) + C �R([[u� u

h

℄℄):(3.31)

It follows that

k� � �

h

k

2

0;B

=

X

E2T

h

k� � �

h

k

2

0;E

=

X

E2T

h

kC � r

s

(u� u

h

) + C � R([[u� u

h

℄℄)k

2

0;E

�

X

E2T

h

C

�

kr

s

(u� u

h

)k

2

0;E

+N

e

X

e��E

kr

e

([[u� u

h

℄℄)k

2

0;E

�

� Cjjju� u

h

jjj

2

s

� Ch

2m�2

juj

2

m;B

:

Note that this 
orollary gives L

2

(B) 
onvergen
e of the stress, even though no

su
h result holds for the strain. This dis
repan
y is possible be
ause the dis
rete

stress is given by (2.20), and is not, in general, proportional to the strain.

Remark. Again, as suggested in [16, 17℄, it 
an also be proved that the bilinear

form given by equation (2.26) is both 
onsistent and adjoint 
onsistent. Therefore,

the same error estimates hold for the problem dire
tly derived from the variational

prin
iple, equation (2.26).

3.2. The natural (suboptimal but mesh-independent) BD-estimate. Pos-

sible dis
ontinuities in the displa
ement a
ross element boundaries naturally leads to

seeking error estimates in BD(B), the spa
e of bounded deformations. This spa
e is

de�ned as the set of fun
tions u 2 L

1

(B) whose symmetri
 part of the distributional

derivative Du, E(Du) =

1

2

(Du+Du

T

), is a matrix-valued bounded Radon measure.

For a fun
tion u 2 BD(B), let kE(Du)k(B) denote the total symmetri
 variation

measure of Du. A general Poin
ar�e-type estimate for BD-fun
tions holds in the

following form.

Theorem 3.15 (Poin
ar�e for BD). Let B � R

d

be a bounded domain with

Lips
hitz boundary. Then

9 C > 0 : 8 u 2 BD(B); u

j

�B

= 0; kuk

L

1

(B)

� C kE(Du)k(B);(3.32)

where u

j

�B

denotes the generalized tra
e.
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Proof. T�emam [27, p. 189℄, Remark II.2.5.

Theorem 3.16 (Natural BD estimate).

9 C > 0 : 8 u 2

^

V ; kuk

BD(B)

� C jjjujjj

s

;(3.33)

with C independent of h.

Proof. Re
all the de�nition of the BD norm

kuk

BD(B)

= kuk

L

1

(B)

+ kE(Du)k(B)

where

kE(Du)k(B) = sup

�

Z

B

u � (r � (	

T

+	)) : 	 2 C

1

0

(B;R

d�d

); k	k

L

1

� 1

�

:

The proof 
ontinues mutatis mutandis as in Theorem 3.22 below.

Using the estimate (3.33) for the di�eren
e u � u

h

together with Theorem 3.11

shows that 
onvergen
e of the method is immediately strengthened from the jjj � jjj

s

-

norm to a mesh-independent estimate in the spa
e BD(B). It is 
lear that any

`optimal' estimate in the symmetri
 norm, derived under less smoothness assumptions

on the underlying 
ontinuous problem [20℄, translates into a 
orresponding `optimal'

mesh-independent BD estimate. It is worth remarking that the derivation of the BD

estimate does not make use of Theorem 3.13 that additionally establishes 
onvergen
e

of the dis
rete solutions in L

2

(B).

The o

urren
e of the spa
e BD is, stri
tly speaking, an artifa
t of the linearized

treatment where only the symmetrized in�nitesimal strains "(ru) appear. Sin
e this

BD estimate does not 
ontrol the antisymmetri
 part of the displa
ement gradient, we

are interested in obtaining 
onvergen
e in the spa
e BV (B). However, sin
e BV (B)

is stri
tly smaller than BD(B) there is no obvious way to pro
eed dire
tly from the

BD estimate to a BV estimate. Instead, we will �rst strengthen Theorem 3.12 to the

jjj � jjj-norm. Note that for a given mesh size h > 0, given the �nite dimensionality of

V

h

and the fa
t that both jjj � jjj and jjj � jjj

s

are norms in V

h

, we have for u

h

2 V

h

,

ku

h

k

BD

� ku

h

k

BV

� Cjjju

h

jjj � 
(h)jjju

h

jjj

s

;(3.34)

where the estimate ku

h

k

BV

� Cjjju

h

jjj is obtained in Theorem 3.22. However, 
(h)

may not be bounded from below away from zero for all h > 0, the possibility of whi
h

has been observed numeri
ally. The failure to obtain a mesh independent estimate

between jjju

h

jjj

s

and jjju

h

jjj is a manifestation of the possible la
k of a dis
rete Korn's

�rst inequality for non
onforming meshes [23℄. In order to obtain 
onvergen
e in the

jjj � jjj-norm, followed by a BV -estimate, and then 
onvergen
e in BV , we �rst establish

a generalized version of Korn's se
ond inequality at the element level.

3.3. Korn's se
ond inequality for the subdivision. In this se
tion, we

investigate an analog to Korn's se
ond inequality at the element level, indepen-

dent of the element shape and size. The derivation of this inequality relies heav-

ily on how Korn's se
ond inequality s
ales under uniform 
ontra
tions. We set

SL(d;R) = fX 2 R

d�d

j detX = 1g.

Theorem 3.17 (Korn's se
ond inequality under distortion). Assume that 
 � R

d

is a bounded (referen
e) domain with Lips
hitz boundary �
 and let M = fX 2

SL(d;R) : kXk � Kg, for some K > 0. For F 2M de�ne 


�

= F (
). Then

9 C > 0 : 8F 2M; 8 u 2 H

1

(


�

);

kr

�

u

T

+r

�

uk

2

0;


�

+ kuk

2

0;


�

� C kuk

2

1;


�

:
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Proof. We �rst translate the statement to the �xed referen
e domain 
. The

aÆne transformation � = F (x) together with the de�nition u(�) = u(F (x)) = ~u(x)

and detF = 1 lead to

Z




�

kr

�

u

T

+r

�

uk

2

+ kuk

2

=

Z




kF

�T

r~u

T

+r~uF

�1

k

2

+ k~uk

2

:(3.35)

We pro
eed by 
ontradi
tion. Assume without loss of generality that there exists a

sequen
e f~u

n

g 2 H

1

(
) with k~u

n

k

1;


= 1 and a sequen
e F

n

2M su
h that

kF

�T

n

r~u

T

n

+r~u

n

F

�1

n

k

2

0;


+ k~u

n

k

2

0;


�

1

n

k~u

n

k

2

1;


=

1

n

:(3.36)

Sin
e F

n

is bounded, we may extra
t a subsequen
e whi
h 
onverges strongly to

^

F 2M by Bolzano-Weierstrass. It is readily seen by 
ontinuity and the boundedness

of ~u

n

that

k

^

F

�T

r~u

T

n

+r~u

n

^

F

�1

k

2

0;


+ k~u

n

k

2

0;


! 0:(3.37)

Thus ~u

n

is a minimizing sequen
e. For �xed

^

F the quadrati
 expression is uniformly

positive (generalized Korn's se
ond inequality, see [28℄ ) su
h that

k

^

F

�T

r~u

T

n

+r~u

n

^

F

�1

k

2

0;


+ k~u

n

k

2

0;


� C(

^

F ) k~u

n

k

2

1;


(3.38)

for some C > 0, 
ontradi
ting k~u

n

k

1;


= 1.

Theorem 3.18 (Korn's se
ond inequality under s
aling). Let 
 � R

d

be a

bounded domain with Lips
hitz boundary �
 and, without loss of generality, j
j = 1.

Consider the s
aled domain, 


h

= fhx : x 2 
g, h > 0. Then

9 C(
) > 0 : 8 u 2 H

1

(


h

);

kru

T

+ruk

2

0;


h

+

1

j


h

j

2=d

kuk

2

0;


h

� C(
)

�

kruk

2

0;


h

+

1

j


h

j

2=d

kuk

2

0;


h

�

;

where the 
onstant C(
) is independent of h > 0 and 
oin
ides with the 
onstant in

Korn's se
ond inequality for 
.

Proof. Let ~u 2 H

1

(
). From Korn's se
ond inequality (see, e.g.,[28℄) we get

kr~u

T

+r~uk

2

0;


+ k~uk

2

0;


� C(
)

�

kr~uk

2

0;


+ k~uk

2

0;


�

:(3.39)

Expressing every term with respe
t to the down-s
aled 


h

, where ~u(x) = u(hx), and

noti
ing that j


h

j = h

d

we get

1

h

d�2

kru

T

+ruk

2

0;


h

+

1

h

d

kuk

2

0;


h

� C(
)

�

1

h

d�2

kruk

2

0;


h

+

1

h

d

kuk

2

0;


h

�

from whi
h we dedu
e the required result. Note that C(
) is just the 
onstant in

Korn's se
ond inequality.

Corollary 3.19 (Uniformity in (T

h

)). Let

^

E be the referen
e element for an

element E 2 (T

h

) as de�ned in Se
tion 2. Without loss of generality take j

^

Ej = 1.

Then,

9C > 0 : 8 E 2 (T

h

); 8 u 2 H

1

(E);

kru

T

+ruk

2

0;E

+

1

jEj

2=d

kuk

2

0;E

� C

�

kruk

2

0;E

+

1

jEj

2=d

kuk

2

0;E

�

:
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Proof. Let F be an aÆne transformation su
h that E = F (

^

E). De
ompose

F = F

v

�

~

F into its iso
hori
 and volumetri
 part, where F

v

= (detF )

1=d

I , I is the

se
ond order identity tensor and

~

F = F=(detF )

1=d

. Note that jEj = detF . Using

Theorem 3.1.3 in [29, p. 120℄ and the quasi-uniformity of the subdivision we have that

k

~

Fk =

kFk

(detF )

1=d

�

h

�̂

1

jEj

1=d

�

C

�̂

(3.40)

where �̂ is the diameter of the largest ball 
ontained in

^

E and C is independent of E.

Therefore, by Theorem 3.17 we 
an state Korn's se
ond inequality for ea
h domain

~

F (

^

E) in the subdivision with the same 
onstant C > 0. The 
orollary then follows

from Theorem 3.18.

3.4. Convergen
e in jjj � jjj. We 
an now obtain 
onvergen
e of the sequen
e

of dis
rete solutions in the mesh-dependent norm jjj � jjj using our generalized Korn's

se
ond inequality for the subdivision.

Theorem 3.20 (Convergen
e in the mesh-dependent norm jjj � jjj). Let (v

h

) � V

h

be a sequen
e su
h that jjjv

h

jjj

s

� Ch

m�1

and kv

h

k

0;B

� Ch

m

for h # 0. Then

jjjv

h

jjj � C h

m�1

(3.41)

for some C > 0 independent of h.

Proof. Use Corollary 3.19 and sum over the elements to obtain the estimate

X

E2T

h

�

krv

T

h

+rv

h

k

2

0;E

+

1

jEj

2=d

kv

h

k

2

0;E

�

� C

X

E2T

h

�

krv

h

k

2

0;E

+

1

jEj

2=d

kv

h

k

2

0;E

�

whi
h, in light of equation (2.7), 
an be weakened to

X

E2T

h

�

krv

T

h

+rv

h

k

2

0;E

+

1

h

2

kv

h

k

2

0;E

�

� C

X

E2T

h

�

krv

h

k

2

0;E

+

1

h

2

kv

h

k

2

0;E

�

;

where C is independent of h > 0. Without loss of generality assume 0 < C � 1.

Adding the spe
i�
 jump 
ontribution over the fa
es of ea
h element shows that

X

E2T

h

krv

T

h

+rv

h

k

2

0;E

+

1

h

2

kv

h

k

2

0;E

+

X

e2E

h

kr

e

([[v

h

℄℄)k

2

0;B

� C

X

E2T

h

 

krv

h

k

2

0;E

+

1

h

2

kv

h

k

2

0;E

+

X

e2E

h

kr

e

([[v

h

℄℄)k

2

0;B

!

(3.42)

or

jjjv

h

jjj

2

s

+

1

h

2

X

E2T

h

kv

h

k

2

0;E

� C

 

jjjv

h

jjj

2

+

1

h

2

X

E2T

h

kv

h

k

2

0;E

!

(3.43)

where again, C > 0 is independent of h > 0. Thus

jjjv

h

jjj

2

s

+

1

h

2

kv

h

k

2

0;B

� C

�

jjjv

h

jjj

2

+

1

h

2

kv

h

k

2

0;B

�

� C jjjv

h

jjj

2

:(3.44)

Using the 
onvergen
e of (v

h

) and equation (3.44) we obtain

jjjv

h

jjj

2

� C

�

h

2m�2

+

1

h

2

h

2m

�

= Ch

2m�2

(3.45)

whi
h 
ompletes the theorem.
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Remark. As it is evident from the statement of Theorem 3.20, the 
onvergen
e

in jjj � jjj 
an only be shown for sequen
es 
onverging in both jjj � jjj

s

and k � k

L

2

(B)

with

spe
i�
 rates in h. In general, for solutions of the 
ontinuous problem with less

regularity one might not have su
h knowledge.

3.5. Convergen
e in BV. We prove that the mesh-dependent norm jjj � jjj esti-

mates the BV norm on

^

V = V

h

+(H

1

0

(B))

d

and as a result, obtain 
onvergen
e in BV .

Re
all that BV (B) is the spa
e of fun
tions u 2 L

1

(B) su
h that the distributional

derivative Du is a matrix-valued bounded Radon measure.

For a fun
tion u 2 BV (B), kDuk(B) denotes the total variation measure of Du.

A general Poin
ar�e-type estimate for BV -fun
tions holds in the following form.

Theorem 3.21 (Poin
ar�e for BV ).

9 C > 0 : 8 u 2 BV (R

d

); kuk

L

d=(d�1)

(R

d

)

� C kDuk(R

d

):(3.46)

Proof. Evans and Gariepy, [25, p. 189℄ Theorem 1.

Theorem 3.22 (Natural BV estimate).

9 C > 0 : 8 u 2

^

V ; kuk

BV

� C jjjujjj;

with C independent of h.

Proof. Re
all the de�nition of the BV norm

kuk

BV (B)

= kuk

L

1

(B)

+ kDuk(B)(3.47)

where

kDuk(B) = sup

�

Z

B

u � (r �	) : 	 2 C

1

0

(B;R

d�d

); k	k

L

1

� 1

�

:(3.48)

First observe that

Z

B

u � (r �	) =

X

E2T

h

Z

E

u � (r �	) =

X

E2T

h

Z

E

r � (	 � u)�

X

E2T

h

Z

E

	 � ru

=

X

E2T

h

Z

�E

n

E

�	 � u�

X

E2T

h

Z

E

	 � ru

=

X

e2E

h

Z

e

n �	 � [[u℄℄�

X

E2T

h

Z

E

	 � ru

Ea
h term in the two sums may be estimated individually by

sup

k	k

L

1

�1

�

Z

e

n �	 � [[u℄℄

�

�

Z

e

[[u℄℄ �

[[u℄℄

k[[u℄℄k

� k[[u℄℄k

L

1

(e)

;(3.49)

and

sup

k	k

L

1

�1

�

�

Z

E

	 � ru

�

�

Z

E

ru

kruk

� ru � kruk

L

1

(E)

;(3.50)

whi
h yields the preliminary estimate

kDuk(B) �

X

e2E

h

k[[u℄℄k

L

1

(e)

+

X

E2T

h

kruk

L

1

(E)

:(3.51)
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Applying H�older's inequality to ea
h term in the sum gives

kDuk(B) �

X

e2E

h

jej

1=2

k[[u℄℄k

0;e

+

X

E2T

h

jEj

1=2

kruk

0;E

:(3.52)

Taking the square of both sides and using Young's inequality leads to

kDuk

2

(B) � 2

"

X

e2E

h

jej

1=2

k[[u℄℄k

0;e

#

2

+ 2

"

X

E2T

h

jEj

1=2

kruk

0;E

#

2

:(3.53)

Now we use the Cau
hy-S
hwartz inequality for the sums in the bra
kets, to show

kDuk

2

(B)� 2

2

4

 

X

e2E

h

(jej

1=2

)

2

!

1=2

 

X

e2E

h

k[[u℄℄k

2

0;e

!

1=2

3

5

2

+2

2

4

 

X

E2T

h

(jEj

1=2

)

2

!

1=2

 

X

E2T

h

kruk

2

0;E

!

1=2

3

5

2

� 2

 

X

e2E

h

jej

! 

X

e2E

h

k[[u℄℄k

2

0;e

!

+ 2

 

X

E2T

h

jEj

! 

X

E2T

h

kruk

2

0;E

!

whi
h, by Lemma 3.3, implies

kDuk

2

(B)� 2

 

X

e2E

h

jej

! 

C h

X

e2E

h

kr

e

([[u℄℄)k

2

0;B

!

+ 2jBj

X

E2T

h

kruk

2

0;E

� 2C

" 

X

e2E

h

jejh

!

X

e2E

h

kr

e

([[u℄℄)k

2

0;B

#

+ 2jBj

X

E2T

h

kruk

2

0;E

;

with C independent of h. From (2.8),

kDuk

2

(B)� 2C

"

X

e2E

h

jEj

X

e2E

h

kr

e

([[u℄℄)k

2

0;B

#

+ 2jBj

X

E2T

h

kruk

2

0;E

� CjBj

"

X

e2E

h

kr

e

([[u℄℄)k

2

0;B

+

X

E2T

h

kruk

2

0;E

#

� CjBj jjjujjj

2

:

By hypothesis, u 2 V

h

+ (H

1

0

(B))

d

; this implies u 2 BV (B) sin
e u 2 L

2

(B)

and kDuk(B) is bounded by jjjujjj. We may extend u to a fun
tion ~u on all of R

d

by

setting u to zero outside of B. From Theorem 1, [25, p. 183℄ (last line) we have the

equivalen
e

kD~uk(R

d

) = kDuk(B):(3.54)

Thus, by applying the Poin
ar�e inequality for BV , Theorem 3.21, we obtain

kuk

L

d=(d�1)

(B)

= k~uk

L

d=(d�1)

(R

d

)

� C kD~uk(R

d

) = C kDuk(B) � C jjjujjj(3.55)

with C > 0 independent of h. This estimate is ne
essary sin
e the mesh-dependent

norm jjj � jjj does not 
ontain a 
ontribution of the form kuk

L

2

(B)

.
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Corollary 3.23 (Optimal mesh independent estimate). Let (v

h

) � V

h

be a

sequen
e su
h that jjjv

h

jjj

s

� Ch

m�1

and kv

h

k

0;B

� C h

m

for h # 0. Then

kv

h

k

BV

� C h

m�1

(3.56)

Proof. Apply Theorem 3.20 together with Theorem 3.22.

4. Final Remarks. Optimal 
onvergen
e of a stabilized, dis
ontinuous Galerkin

method for linear elasti
ity with Diri
hlet boundary 
onditions, has been established

in the mesh-independent BV norm. Unlike interior penalty methods, the stabilization

term 
ontains a 
onstant fa
tor � > N

e

that is easy to determine for a given dis
retiza-

tion. The �nite element spa
es 
omposed of pie
ewise polynomial fun
tions over the

elements are also easy to implement. In future work, we will explore the numeri
al

properties of the method and its extensions to �nite elasti
ity, elasto-plasti
ity and

fra
ture.
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