OPTIMAL BV ESTIMATES FOR A DISCONTINUOUS GALERKIN
METHOD IN LINEAR ELASTICITY*
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Abstract. We analyze a discontinuous Galerkin method for linear elasticity. The discrete
formulation derives from the Hellinger-Reissner variational principle with the addition of stabilization
terms analogous to those previously considered by others for the Navier-Stokes equations and a scalar
Poisson equation. For our formulation, we first obtain convergence in a mesh-dependent norm and in
the natural mesh-independent BD norm. We then prove a generalization of Korn’s second inequality
which allows us to strengthen our results to an optimal, mesh-independent BV estimate for the error.
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1. Introduction. Discontinuous Galerkin (DG) finite element methods for sec-
ond and fourth order elliptic problems were introduced about three decades ago.
These methods stem from the hybrid methods developed by Pian and his coworkers
[1]. At the time of their introduction, DG methods were generally called interior
penalty methods, and were considered by Baker [2], Douglas [3], and Douglas and
Dupont [4] for fourth order problems where C! continuity was imposed on C? ele-
ments. For second order equations, Nitsche [5] appears to have introduced the idea
of imposing Dirichlet boundary conditions weakly and of adding stabilization terms
to obtain optimal convergence rates. The same idea of penalizing jumps along inter-
element faces lead to the interior penalty methods of Percell and Wheeler [6], and
Wheeler [7]. Methods for a second order, nonlinear, parabolic equation appeared in
Arnold [8].

According to [9], interest in DG methods for solving elliptic problems waned
because they were never proven to be more advantageous than traditional conforming
elements. The difficulty in identifying optimal penalty parameters and efficient solvers
may also have contributed to the lack of interest [9]. Recently, however, interest has
been rekindled by developments in DG methods for convection-diffusion problems; see,
for example, Cockburn and Shu [10, 11], Oden, et al. [12], Castillo, et al. [13], and
Houston, et al. [14], where the scalar Poisson equation is analyzed. Bassi and Rebay
[15] applied a similar technique for the solution of the Navier-Stokes equations. Brezzi,
et al. [16, 17] analyzed the method of Bassi and Rebay, for stability and accuracy, as
it applies to the scalar Poisson equation. Arnold, et al. [9, 18] provided a common
framework for all of these methods and showed the interconnections by casting them
into the form of the local discontinuous Galerkin method (LDG) of Cockburn and
Shu.

We are interested in a DG method for studying the mechanical behavior of solids.
In this paper we analyze the linear elasticity problem, with an eye toward a for-
mulation for nonlinear elastic-plastic problems and cohesive elements [19]. There are
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several benefits of such an approach, including the potential for efficient hp-adaptivity,
for example, using meshes with hanging nodes with adaptive mesh refinement, and the
prospect of rigorously handling problems with discontinuous displacements as arise
in the study of fracture. Riviere and Wheeler [20] formulate and analyze a method
for linear elasticity based on a generalization of the nonsymmetric interior penalty
Galerkin (NIPG) method presented in [12] for the diffusion equation. The resulting
bilinear form is non-symmetric. As an alternative, we follow the analysis of Brezzi,
et al. [16, 17] quite closely in our generalization from the scalar Poisson equation to
the linear elasticity problem. In this case, the bilinear form is symmetric.

Error estimates for discontinuous Galerkin methods are usually obtained in terms
of mesh-dependent norms. It is, a priori, not clear how to compare norms corre-
sponding to meshes of different size. In this article we show that the traditional error
estimates expressed in mesh-dependent norms can be used to derive error estimates
in the mesh-independent BD and BV norms, eliminating the ambiguity.

Section 2 begins with a statement of the problem and its formulation using the
DG approach. A new derivation of the equations is based on a discrete variational
principle for elasticity which naturally leads to a formulation analogous to the one
utilized in Bassi and Rebay [15]. Stabilization terms of the form considered in Brezzi,
et al. [16, 17] are added to obtain a well-posed discrete problem. In Section 3, we
show optimal convergence rates in a mesh-dependent norm similar to the one used
by Brezzi, et al. This mesh-dependent estimate is immediately strengthened to a
mesh-independent BD estimate in Section 3.2.

The classical analysis of the equations of linear elasticity needs a global version
of Korn’s first inequality to insure coerciveness of the bilinear form. In contrast
to the standard approach, in Section 3.3, we prove a generalization of Korn’s second
inequality on the element level which allows us to obtain an improved mesh-dependent
estimate. Finally, in Section 3.5 we show uniform convergence in the BV norm, an
optimal mesh-independent estimate. Since the discrete solutions are allowed to have
jumps in displacement, but the classical solution is smooth, gradients can at most
converge in measure, and indeed they do.

2. Formulation. The linear elasticity problem is described by the following set
of equations for a body B C R?, where d = 2, 3,

-V-(C-Vsu) = f in B
(2.1) u = u on OpB
(C-Vsu)-n = T on OyB.

The body B is assumed to be a bounded, polyhedral domain. The function v : B — R¢
is the displacement, and C is the fourth order elasticity tensor with major and minor
symmetries. In order to avoid technical difficulties that do not provide any additional
insight, we take C to be constant. We also assume that C is uniformly positive definite,
i.e.,

(2.2) de>0: ~v-C-y>cy-7.
for all v in the space of d x d symmetric tensors, which implies that C is invertible

on this space. The notation Vu denotes the symmetric gradient of the displacement,
Vsu = %(Vu + (VU)T). The boundary of the domain, 0B, is decomposed into two
disjoint sets, dpB and dyB. The body is acted upon by body forces, f : B — R?,

and surface tractions, T : 9y B — R%. The displacement, % : Op B — R?, is prescribed
on the part of the boundary indicated by dpB.
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2.1. Stress-displacement formulation. The two-field, stress-displacement for-
mulation of the linear elasticity problem is

c—C-Vsu = 0 in B

-V:.0 = f in B
(2.3) u = u on OpB
oc-n = T on OyB.

The first equation is the constitutive equation that relates the stress tensor o to
the strain, e(Vu) = Vsu. The second equation expresses force equilibrium, and the
final two equations give the prescribed boundary conditions. The problem described
by equation (2.3) has solutions (u,o) with components in H™(B) and H™(B),
respectively, for m > 1, depending on the smoothness of the data and the domain.
Nominally, f € (L?(B))%.

The equations (2.3) are the Euler-Lagrange equations that result from taking
free variations of the Hellinger-Reissner energy, I : (H™1(B))? x (H™(B))¥*? - R,
where

I[u,a]:/B(%a-C_l -cr—cr-Vsu+f-u)

(2.4) +/8DBn-a-(u—u)+/8NBT-u.

The discrete equations in the next section are derived using a discretization of this
variational principle.

2.2. The discrete scheme. First, we consider a family of subdivisions (7})
of B with h | 0. A subdivision 7, of B into a finite number of sets E, such that
B = UgeT, E is called admissible in the sense of [21, p.38] if each E is closed and
has nonempty interior, the interiors of the sets E of T, are pairwise disjoint, and the
boundary, OF, of each E is Lipschitz continuous. We assume the family (73,) to be
quasi-uniform [22, p. 106] so that

(2.5) max{diam E:E € Ty} =h
and
(2.6) dp>0: min{diam Bg:E€ Ty} >ph, Yh>0,

where Bp is the largest ball contained in E. Therefore, it follows that there exist
positive constants ¢ and C such that

(2.7) ch® < |E| < Ch?

for every element E € 7Tj, and for every h > 0, where |E| is the measure of E.
In addition, we require all finite elements within the family of subdivisions to be
affine equivalent [22, p.80] to a finite number of polyhedral reference finite elements,
each with a finite number of faces. Hence the reference elements possess Lipschitz
boundaries, the measure of each face of an arbitrary element in (73) is finite and there
exists an upper bound on the Lipschitz constant of the boundary for all elements in
the family (73), independent of h. Moreover, with (2.5) we infer that there exists a
constant C' > 0 such that

(2.8) lelh < C|E],
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for all h > 0, and for any face e of any element E € (7;). Even though discontinuous
Galerkin methods can potentially be used on meshes with hanging nodes, we consider
for simplicity only conforming meshes, so that a face e of an element is either also a
face of another element, or part of 0B. We note, however, that most of the theoretical
development does not rely on this assumption.

Consider a given subdivision 7, of B. Each element, E € T, has an orientable
boundary, 0F, with unit, outward normal denoted by ng. Define the set of internal
faces,

&l ={ecdE\OB:EcT,)},
the set of Dirichlet faces,
& ={e COENOpB: E € Ty},
and the set of Neumann faces,
EN ={eCOENONB:E €T}

The set of all faces is denoted by &, = &f UEP UEN. Corresponding to this set of
faces, define the combined internal and external boundary, to be

I'= Ueeghe.

Let V = IlgeT, (H'(E))? be the space of functions on B whose restriction to each
element E belongs to the Sobolev space (H'(E))?. Therefore, the traces of functions
in V belong to T'(T') = Hger, (L?(DE))%. Functions in T'(I") are multi-valued on I'\OB
and single-valued on dB. The space (L*(T))¢ can be identified with the subspace of
T'(T') consisting of functions for which the possible multiple values agree on all internal
faces. Similarly, let W = Hge7, (H'(E))**? be the space of functions on B whose
restriction to each element E belongs to the Sobelev space (H!(E))?*?. A tensor
7 € W has d? components. The d? traces, the components of 7|yx, are defined, and
each belongs to L?(0F). In particular, the linear combination of traces 7 -ng is in
()L

Next, we introduce two finite element spaces of scalar functions over an element
E, VhE and W,F , with VhE C W,f . These elemental spaces contain the polynomials and
have minimal smoothness over the element, P (E) C V¥, WF c H'(E), k > 1, where
Pi(E) denotes the space of polynomials of degree at most k, on E. The finite element
spaces for the displacements, V},, and displacement gradients, W},, are constructed so
that each component is in V£ or W/ on the element E, V), = Uge7, (VF)? and W), =
HgeT, (WEF)¥4. Consequently, we have Vj, C V. We also assume that gradients of
the displacement are in the space of displacement gradients, V[(V,F)?] C (WE)d=d,
Furthermore, we require the elemental finite element spaces to coincide over common
faces. More precisely, let e € E,{ be the face common to two elements, E and E~,
then {¢le : p € VE Y ={¢l : 6 € VE }and {¢]. : p € WE } = {§]. : 6 € WE }.
This requirement insures that the trace of a function in V;Z" (WE") is also the trace
of a function in VhE - (W,{E ), on e. Lastly, we denote with W} the space of symmetric
tensors in Wy,.

IThe space of stresses W could be taken to be larger; however, this is unnecessary since we
consider exact solutions (u, o) in (H?(B))% x (H'(B))4*4,
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We assume that the discrete spaces, V;, and Wy, are finite dimensional. Observe
that the functions in both discrete spaces can be discontinuous across element bound-
aries. The conditions specified here are satisfied by many standard finite elements
spaces, such as those constructed from Lagrange simplices of various degrees and
some spaces constructed with bilinear quadrilaterals or trilinear bricks.

Remark. Most of the proofs in this article immediately generalize to the case
of isoparametric elements, though some adjustment of the assumptions on the finite
element spaces might be required. In particular, the special treatment of Korn’s
inequality also applies to isoparametric elements.

We wish to formulate a discretized version of (2.4) subordinate to the subdivision.
To this end, we define the average operator, {-} : T([') — (L*(T))¢, and the jump
operator, [-] : T(T') — (L*(T))?. Each face, e € £/, is shared by two elements, E*
and E~; let v = v|gs for v € V. Define the average for ¢ € £/, by

1

(29 o} = 207l +utl)
and the jump by

(2.10) [o] = v7]e — v e

For e € S,?, put

(2.11) {v} =, and [v] =v;
and for e € &}, assign

(2.12) {v}=wv, and [v] =0.

In the sequel, we choose an orientation, n, for each face e € £ ,{, as the unit normal
pointing toward ET. For e C 0B, n is the unit outward normal to 8B. For o € W,
let 0* = o|p+. One€ EL the average of the vector o - n, means

1, . _
fon} =50 e o L),
with n given uniquely on the face. The definition of {o - n} on boundary faces,
e€EPUEN, is clear.
Now, specialize (2.4) to each individual element, as follows

1 1
IE:/(—U-C_l-a—a-vsu-l-f-U)-l-/ snp o (u—u™)
5 \2 OE\0B 2

(2.13) +/ n-a-(u—ﬁ)-l—/ T-u.
9ENdp B OENON B

where u®** is the trace of u on the elements adjacent to OE \ dB. The 1/2 factor
in the second term accounts for the fact that for a given face two adjacent elements
contribute to the potential energy. A global discrete functional, Iy, : Vi, x W7 = R, is
defined simply by summing over all elemental contributions,

(2.14) In="> I

EeTh
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The corresponding Euler-Lagrange equations that result from taking free variations
of I, are

(2.15) Z /E(c;a-(C_l-0—50-Vsu)+/r{n-50}-[[u]]—/ n-dc-u=0

E€Th 6pB
(2.16)E;71/E(—U-V35u+f-6u)+/F{n-a}-[[5u]]+/aNBT-6u:

Thus, we obtain the general problem which is to find u, € V}, and o, € W)} such that,

Z /E(%'(Cfl 'Uh—%-Vsuh)—k/r{n-vh}-[[uh]]

EcTh
(2.17) 2/ neyn-u,  Yyn € Wi
8DB
Z/Uh-vsvh—/{n-ah}-[[vh]]
BeTh ' F r
(2.18) =/ f-vh+/ T-'Uh, Yo € V.
B on B

Next, we define the lifting operator Ry : (L?(I))¢ — W; by
(2.19) /Ra(v)-fy:—/{n-v}-v+/ n-y-a, Yy € WL
B r op B

This operator will now be used to derive the primal form [9] of the discretization
where a single equation is obtained by eliminating op, between (2.17) and (2.18). In
terms of (2.19), equation (2.17) is the same as

S/ (m € on = Voun = Ral[un]) - m) =0 V€ W
BeT, " E

Since we require the elemental finite element spaces to satisfy V[(V,F)4] C (WE)?xd
this equation allows us to identify,

(2.20) on = on(up) = C-Veup + C- Ra([un])  in Wy

This constitutive equation for the discrete stress can be viewed as a stress-strain
relation where the strain involves the usual dependence on the displacement gradient,
plus a linear contribution that arises from jumps in displacement.

Next, take v, = C- V vy, in equation (2.17) to get

Z / (sth o, —sth-(C-Vsuh) +/{n-(C-sth}-[[uh]] :/ n-(C-Vsu) - a.
per, JE r opB
Finally, substitute equation (2.18) to obtain

Z /Evsvh -C- Vsuh—/F ({n -C-Vup} - [up] + {n-on}- [[vh]])

EeT,

(2.21) =/Bf-vh—f—/aNBT-vh—/aDBn-((C-sth)-ﬂ.
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If (un,on) € Vi, x W} solves (2.17) - (2.18), then uy, solves (2.21), with o}, = o, (up)
given by (2.20). Equation (2.21) is called the primal formulation.

Recall the definition of Ry, (2.19), and introduce the notation R = Ry. Using
(2.19) and (2.20), the primal form (2.21) can also be written as

> /E (Vavn + R([n])) - C - (Vo + R([un])) =

EeTh

(2.22) /Bf-vh—f—/aNBT-vh—/aDBn- <(C-(sth+R([[vh]]))) .

We remark that our physically-based derivation of this equation, obtained by dis-
cretizing the variational principle, produces an analogous discretization to that used
by Bassi and Rebay [15, 17]. Arnold, et al. [9] show that this discretization is consis-
tent, conservative and adjoint consistent, but unstable, for the scalar Poisson equation,
and we show in Section 3 that these properties carry over to linear elasticity.

Brezzi, et al., [16, 17] propose a stabilizing term for the scalar case which naturally
extends to linear elasticity. The stabilization is given in terms of 7. 5 : (L*(T'))? — W}.
Define r 5 for e € E,{,

(2.23) /Breﬂi('l)) Yy == /e{n v}, Yy e Wy,

while for e € EP,

(2.24) /re,ﬁ(v)-'yz—/{n-y}-v—l—/n-y-ﬂ, Yy e Wy,
B e e

and for e € &N, r.z = 0. As before, set r. = r¢o. Note that 7. z(v) vanishes outside
the union of elements containing e, and that for any element E € Tp,,

(2.25) Ry(v) = Z Te,a(v)

eCOFE

on E. The stabilizing term is 8, 55 [5 Te.a([ur]) - C - re([vn]), with B8 > 0 the
stabilization parameter. The resulting primal form with the stabilizing term is

> [ (et RED) - C (Vo + RwD) +8 S [ rellunl) - € re(fonl)

E€Th e€&y

(2.26) :/Bf-vh+/8NBT-vh—/8DBn- ((C-(sth-l-R([[vh]])+ﬂre([[vh]]))> i

The form (2.26), which derives directly from the variational principle, is stable
for any # > 0. In Section 3, we analyze in detail a modification proposed by Brezzi,
et al., [16, 17], that omits the quadratic term in R, making the method stable for
B > N, where N, is the maximum number of faces in an element of the subdivision.
The advantage of dropping this quadratic term is that the sparsity of the stiffness
matrix is increased.

The analysis of the proposed method relies on elliptic regularity, so we restrict
it to Dirichlet boundary conditions on the entire boundary, 0B. Thus, OyB = 0,
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EN =0, and without loss of generality, & = 0 on dB. Accordingly, the complete
discrete problem statement, with these modifications, is to find u;, € V} such that

(2.27) ah(uh,vh) = / f * Up Yoy € V,
B

where the bilinear form ay, is given by

anun,on) = S / (Voon € Vour+Vion - C- B[un]) + R([oal) - €+ Vsun)
BeTh ' F

(2.28) Y /B ro([unl) - C - re([onl).

ecéy

Remark. Both problems, (2.26) and (2.28), can be written in a two-field form,
i.e., with both u; and o} as unknowns.

2.3. Notation. In Section 3, a convergence proof will be given for d = 2 and 3,
simultaneously. In the proofs, the letter C' indicates a generic constant whose value
can change in each occurrence. We also employ the standard notation, || - ||p.o, to
denote the usual norm on H?(2), and |- |p,q to denote the H?(2) semi-norm, whereas
|| - || denotes the Euclidean norm for vectors or tensors. When other standard norms
are used, they will be indicated explicitly with a subscript, for example, || - [|11(q)
indicates the L'(2)-norm.

2.4. Summary of the theoretical results. The convergence proof utilizes two
relevant mesh-dependent norms on V = (Hg (B))¢ + V}, given by

(2.29) ol = > IVellg s+ Y llre(@Dlf s veV
E€Th e€lp
(2.30) Iol* = > IVollg e+ D lIre(loDlls s v eV,
E€Th e€&p
Proposition 3.4 establishes that [| - ||, is a norm on V. Also note that
(2.31) o} < Iel®  veV
which shows that || - || is also a norm on V. Although one might expect the second term

in the definition of norms (2.29) and (2.30) to act as an L2-like contribution, we can
only assert that these are semi-norms on V. In the case of the scalar Poisson equation,
[9, 12, 13, 14, 16, 17, 18], there is no need to distinguish between the norms (2.29) and
(2.30). Following the ideas in [16, 17], it is straightforward to obtain boundedness
and coercivity of the bilinear form a; with respect to the mesh-dependent norm,
Il - Is (Proposition 3.5), which leads to convergence of the discrete solutions in the
Il - fls-norm and in L?(B) (Theorem 3.12 and Theorem 3.13). The convergence in
the || - |ls-norm is sufficient for a mesh-independent BD estimate (Theorem 3.16);
however, the || - ||s norm does not provide control over the antisymmetric part of the
displacement gradient. If the displacements are in Hy (B), the equivalence of the two
norms, || - ||s and || - ||, relies on Korn’s first inequality; for nonconforming elements,
Korn’s inequality may not be valid, [23].

In order to obtain convergence in the norm, || - ||, Theorem 3.20, we prove a
generalized version of Korn’s second inequality for the subdivision, Corollary 3.19.
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The proof of this inequality relies on observations about how Korn’s inequality for
an element behaves under distortion (Theorem 3.17) and scaling (Theorem 3.18).
Finally, Theorem 3.22 shows that the mesh-dependent norm, || - ||, estimates the BV
norm, and as a consequence, Corollary 3.23, we obtain convergence in BV, an optimal
mesh-independent result.

3. Theoretical Results.

3.1. Convergence in the mesh-dependent symmetric norm. Following
the developments in [16, 17] for the two-dimensional Poisson equation, we obtain the

convergence of the discretized solutions in the mesh-dependent norm || - ||,. The first
three lemmas characterize properties of the jumps. In the subsequent proposition,
our analysis starts by establishing that || - ||, is in fact a norm on V.

LemMmaA 3.1 (Extension of traces). Let e be a face of an element E € (Ty). For
any ¢ in the trace space, T(e) = {¢ € (L*(e))™4 : ¢ = 7|,y € (WE)*1}, there
exists P.(¢) € WE)™* such that P.(¢)|e = ¢. Moreover, for all ¢ € T(e),

(3.1) 3C>0:  [|P(®)llo,z < ChY?||@llo.e,

for all h > 0, and for oall E € Tp,. .
Proof. First examine a reference element. Let ¢ C E be a face of one of the
reference elements E, and let ¢ € T'(€). There exists C' > 0 such that

(3.2) sup _inf ||7h||§ 5 <C.
¢€T(8), ||9llo,e=1 YhE(WE)IX yp|c=0¢ ’

Since v, € (W,‘?)dXd is a linear combination of basis functions on E, 7elly g is a

quadratic form in a finite dimensional space. Therefore, there is a minimizer, P;(¢), of

”%H?),E subject to the linear constraint v,|. = ¢ € T'(é), which depends continuously

on ¢. Thus, P;(¢) is bounded on the compact set ||¢]lo,e = 1, and (3.2) follows.
Next, note that P:;(A¢p) = AP:(¢) for A € R, which implies

(3.3) 1P:(9)l5 5 < C NI61l5 e

for all ¢ € T'(é). Since the number of reference elements is finite, as is the number of
faces per element, we can choose C' in (3.3) independent of the reference element and
the face.

Now, let E be any element in the family of subdivisions (7}), and let e be any
one of its faces. Let F' be the affine transformation such that E = F(E) for one of the
reference elements E, and let € be the corresponding face in the reference element,
e = F(é). Given ¢ € T'(e), the definition of affine equivalence implies ¢ = ¢go F' € T'(é).
Define P,(¢) = Ps(¢) o F~1 € (W/F)¥*4; and note P,(¢)|. = ¢. Then, use (3.3) and
|F']] < h/p (see e.g. [21, p.120]), where f is the diameter of the largest ball contained
in E, to obtain

A 2 _ d éA2 Cld 712
/E'P(““' | etF|/E|P @GP <l etF|/é|¢|

< C|det F| / 6 | det 71| | F|| < C|IF| / 6P

< O@/W-
P Je
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The lemma follows. O
LeEmMMA 3.2 (Trace inequality for r.). There exists a constant C > 0, independent
of the face e € &, and of h, such that

(3-4) Ire(@)llo.c < Ch™2[[re(v)]lo.e,

for all v € (L?(e)).
Proof. The inequality (3.4) is actually a statement about tensors v € (WF)dx4,
where v = r(v). The proof follows a scaling argument. Let e C AE be a face of one

of the reference elements, F£. Then, there exists a constant C' > 0 such that
(3.5) 191lo.e < C 15l

for all 4 € (WE )4*d. Inequality (3.5) is a direct consequence of the continuity of the

trace in W¥ C H'(E) (see, e. g., [22, pag. 37]) and the fact that in a finite dimensional
space, all norms are equivalent. Since there are a finite number of reference elements,
each with a finite number of faces, the constant C' can be chosen independent of the
reference element and of its face.

Now, consider y € (W}F)4*? where E is an element affine equivalent to E. Then,
there exists an affine mapping F such that E = F(E), and 4 € (W,F)®*¢ such that
v =40 F~L Note,

(36) Py = /E Yoy = |det F| /E y-5 = |det F| |42

B7) i, = /7'7 =||[F~'a | det F| /7'? < IF7H] [ det F] (191156

e €
where 7 is the unit outward normal to é. Therefore, (3.5), (3.6), and (3.7) combine
to yield

Chi/2 .
Ve B2 o, -

(3.8) 7llo.e < CIFHIM2 (I7llo,& <

The last part of the bound uses the fact that ||F~|| < h/(diam Bg) < h/(ph) (see
e.g. [21, p.120] ). O

LeEmMMA 3.3 (Jump bound). There exist two positive constants Cy and Cs, inde-
pendent of the face e € &, and of h, such that

(3.9) Ionlllo.e < C1h*?|Ire([onDllo,s,  Vun € Vi;
and
(3.10) Ire([val)llo,.s < Coah™?|[[vallloes  Von € Va.

Proof. Let e C E be a face of element E. Given [v,] € (L*(e))?, let 7f €
(L*(e))?*¢ be such that v¢ - n = [vp]. Note, it is possible to choose v¢ so that
17ell < Cl|[vr]ll- For the tensor 5 defined only on e, construct an extension to the
element, y,|r = Pe(75), as in Lemma 3.1. Take v, € W} to be yu|g = P.(7;,) on E,
vn = 0 elsewhere, and v = [v,] in equation (2.23) to get

Il =5 [ [ [l < [ fretlond) - Pooi)

e ([orDllo, [1Pe (vi)llo, &2
C 12 (re(ToaD)llo.s Ivn]llo.c -

(3.11)

IN N
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In the nontrivial case in which ||[vp]llo,e 7# 0, the inequality (3.9) follows from (3.11)
by dividing through by ||[vs]llo,e-
To prove (3.10), take v = r.([up]) and v = Juy] in equation (2.23) to get

IrelfonD I 5= [0 rolon])} - on]

< MTwdflo,ell{re([onl) Hlo.e
< Coh™ || [onlllo.cllre(lonD) llo,s-

We have used the linearity of 7. and (3.4) in the last step. The result, (3.10), follows.
ad

PROPOSITION 3.4 (Symmetric norm). Let v, € V = (HY(B)* + V4. Then
I lls : V = R as defined in (2.29) is a norm on V.

Proof. 1t is immediate that ||Av]s = |A|||v||s, for all A € R, and that the triangle
inequality holds since r, is linear. We show that |Jv||s = 0 implies v = 0 in V. Notice
that |Jv||s = 0 iff ||V V|jo,g = 0 for all E € Ty, and ||re([v])]|o,8 = 0 for all e € &,.
Let v=v +vy € V with v; € (H}(B))? and vy € Vj,. By Lemma 3.3, we have that
Tv2lllo,e < Ch1/2||re([[vz]])||073 Therefore, ||[vz2]|]o,e = 0. Since also ||[vi]|lo,e =0 we
have that ||[v]||o.e = 0. So v € (H(B))? by [24, Theorem 1.3]. Korn’s first inequality
for homogeneous boundary data applied to v € (H(B))? then shows that v = 0. 0

Next, we show that the bilinear form (2.28) is continuous and coercive with respect
to the norm, || - ||,. The proofs follow [16, 17] almost exactly.

ProposiTION 3.5 (Continuity and coercivity of the bilinear form). Let N, be a
bound on the number of faces in an element. Then, there exists a constant M > 0,
independent of h, such that

(D) an(un,on) < M Jlulls fonlls, ¥ un,on € V.
Moreover, for 8 > N, there exists a constant . > 0, independent of h, such that

(i) an(un,un) > pllunlly — Vun €V.

Proof. We first prove the following inequality, a consequence of equation (2.25),

(3.12) IR([onD) Iz < Ne D llre([oa])ll5 -

eCOE

We have

IR(lon D)5, = /E ( > re([[vh]])> ( > Te'([[vh]])>

eCOFE e’ COFE

<[ ¥ % Irbliie @bl

e/ COE eCBE

< 3 3 (IR s + e (D) IR )

e’ COE eCOFE

<SNe Y lre(ferD)IlE -

eCOFE
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Next, the continuity of the bilinear form (2.28) follows from estimating each term.

(3.13) /Vsuh'(c'vsvh < IV sunllo, e IVsvnllo,e
E
\ [ Ve -C-Ru[vh]])\ < C 195 unllos 1R (onDlo e
1/2
(3.14) <OV aunllos | Ne S re(TonDIE s
eCOF
319 |5 [ rllwd €| s 1€ 3 IrllnDlo.s lronblos.

eCOE eCOFE

Adding each term over all elements, and using the Cauchy-Schwartz inequality yields
(7). The constant M depends on ||C||, N, and £, but is independent of h.
Now we show coercivity, (ii). To simplify the notation, define

||v||aE,c=/v-<c-v Vy € W
FE

Due to (3.12), we get

an(un,un) = Y <||vsuh||g7E7C+/E2vsuh'(C'R([[uh]])"'ﬂ > ||r6([[uh]])||g,E,C>

EcTh eCOE

> > (1—5 IVsunll§ mc = —IIR([[Uh]])IIOEc-I-ﬂ D e [[Uh]])IIOEc>

EcTs, eCOF
>y (1_5 Vs uh||0E(C+(ﬁ—?) > v [[Uh]])HOEC)
EcTh eCOFE

where we used the standard inequality, 2ab < ea? + b?/e, for all e > 0. Any 3 > N,
guarantees that (8 — %) > 0 whenever N,/ < € < 1. Since each term is positive,
we can invoke (2.2) to deduce (ii) with p=¢(8 — =) > 0. O

Remark. As suggested in [16, 17], following the same steps as in the previous proof
establishes continuity and coercivity of the bilinear form given by equation (2.26), but
for any 8 > 0.

In addition to being continuous and coercive, the bilinear form (2.28) is consistent
and adjoint consistent (as is (2.26)). Consistency is the requirement that the exact
solution of the partial differential equation be a solution of the discrete problem, and
similarly for adjoint consistency [9]. A precise definition is given in the propositions
below. These properties form the basis for establishing convergence of the discrete
displacement, first in || - ||,, and subsequently in L?(B). The following lemma is a
preliminary to proving consistency.

LemMA 3.6. Let u € (HY(B))? with V - (C - Vu) € (L*(B))?, and let v, € Vy,
then

(3.16) Z/ (C-Vu) - v, = Z/{n C-Vu} - [vs] -

E€Th e€éy
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Proof. The assumed regularity of u implies that n - C - Vu is continuous across
inter-element boundaries (e.g., [24, Theorem 1.3]); i.e., 0 = n - (C-Vu~ —C- Vu')
on any face in &} . Therefore

Z /8En-((C-Vu)-vh

E€Th
= Z/e(—n-((C-Vqu)-v;wan-((C.Vu’).v;)+ Z /en.((c.vu)_vh

ec&l ecEp
:Z/(—%(n-(C-Vu+)+n-(C-Vu))-v,f+%<n-((C-Vu+)+n-((C-Vu))-v;
ec&l ¢
-I-Z n-(C-Vu)-vp
eegp ¢
:Z {n-C-Vu}-[un]-
ecEp V€

O

ProposITION 3.7 (Consistency of the bilinear form). Let u be the exact solution
of (2.1), with uw € (H™(B))? for some m such that 2 < m < k + 1, then

(3.17) ah(u,vh) = / f -vp, Yo € Vi,
B

where the bilinear form is given in (2.28).
Proof. To establish consistency of the bilinear form, multiply (2.1) by v, € V},
and integrate by parts over each element,

/Bf'vh:—/B’Uh'V'((C'VSU)
= Z </Evsvh'c-vsu—/aEn-((C-Vsu)-vh>

E€Th
= Vsop -C-Vu— n-C-Veult-Ju,] — n-C-Vupt-Ju
E;[E " ;/{ b Inl- 31 o} [u]
=E;/E <sth-C-Vsu+R([[vh]])-(C-Vsu+sth-C-R([[u]]))
> /B re([ul) - C- re([on])
= ap(u,vp).

We have used Lemma 3.6, the fact that [u] =0, and (2.19). O

COROLLARY 3.8 (Galerkin orthogonality). Let u be the exact solution of (2.1),
with u € (H™(B))? for some m such that 2 < m < k + 1, and let u, € V) solve
(2.27), then

(3.18) ap(u — up,vp) =0, Yo € V.
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Proof. Subtract the consistency condition, (3.17), and the characterization of the
discrete solution, (2.27) to establish the desired result. O

Since the problem (2.1) is self-adjoint, the adjoint problem is the same as the
original problem; namely, find w € (H?(B))? such that

(3.19) w = 0 on OB

{—V-((C-sz) = g in B
for g € (L*(B))%.

COROLLARY 3.9 (Adjoint consistency). Let w € (H?(B))¢ be the solution to the
adjoint problem (3.19), then

(3.20) ap(vp, w) = / g-vp Yup € V.
B

Proof. Since the problem is self-adjoint, the condition (3.20) follows from consis-
tency. O

The condition (3.20) on the bilinear form is called adjoint consistency [9].

The last component required to prove convergence is a bound on the approxima-
tion error |u — uy||, when uy is a suitable interpolant of the exact solution w. Arnold,
et al., [9], note that discontinuous interpolants can be employed, if they satisfy a local
approximation property summarized in the next theorem.

THEOREM 3.10 (Local interpolation-error estimate). For v € (H*1(E))?, let v;
be the Py-interpolant of v on E € (T,). There exists C > 0, independent of E € (Tp)
and therefore of h, such that

(3.21) v —vrlgr < CA*" ™ ol m, k+1>¢>0,

provided Py(E) CV,E C HY(E).

Proof. Ciarlet, [21, Theorem 3.1.5]. O

THEOREM 3.11 (Interpolation-error estimate). Let u € (H™(B))? for some m
such that 2 < m < k+1, and let ur € Vj, be the Py-interpolant of u over each element
in Tn. Then the following interpolation inequality holds,

(3.22) lu —urll, < Ch™ b, s,

where C > 0 is a constant depending only on d,m, and the upper bound on the
Lipschitz constant of the boundary for every element E € Ty, but not on h or the

function u.
Proof. From the previous theorem, we have
(3.23) Solu—ulp < Y CRE T, 5 m> g

EcTy, EcTy,

In addition, the trace inequality [25, p. 133] together with a scaling argument gives

(3.24) lalg. < (Bl g+ hlull z)  Vue HY(E)

where the constant C' depends only on the Lipschitz constant of the boundary of the
element, and can be chosen to be the same for all elements in the family of subdivisions
(7Tr) under consideration.
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Following [9], the interpolation inequality (3.22) is established using the inequality
(3.24), the bound (3.23), and the inverse inequality (3.10). Starting from the definition

of || - ||, the theorem is obtained as follows,
lu —urlli= Y IVslu—unlli £+ D lre(lu —url)I} 5
E€Th e€€p
<D IV@—u)llg g+ Y lre(lu — w5
E€Th ecty
<D lu—wl g+ Y O lu—udlly
E€Th e€&p
<C Y R Pl e
E€Th
(3.25) < CRm2pup?,

Again, the constant C' is positive and depends only on d, m, and the upper bound on
the Lipschitz constant of the boundary for every element E € T}, but not on h or the
function u. O

At this point we have gathered all the necessary ingredients to prove convergence
of the discrete solutions in || - ||, and || - |lo,s, which is the content of the next two
theorems.

THEOREM 3.12 (Convergence in the mesh-dependent norm || - ||,). Let u be the
exact solution to (2.1), with u € (H™(B))¢ for some m such that 2 <m < k+1, and
let up, be the solution of (2.27), then the following estimate holds

(3.26) Jlu = unlls < CH™ 7 Julm,5,

where C is a positive constant independent of h.
Proof. From Proposition 3.5, we have

pllur — unll3< an(ur — up, ur —un)
= ap(ur — u,ur — up) + ap(w — up, ur — up)
< Mluy — unllsllur — ulls + an(u — un, ur — un)
(3.27) = Mllus = unllsllwr = ulls.
Note, ap(u—up, ur—up) = 0 follows from Galerkin orthogonality, (3.18). Insert (3.22)
into (3.27) to obtain the desired result. O
THEOREM 3.13 (Convergence in L*(B)). Let u be the ezact solution of (2.1),

with u € (H™(B))? for some m such that 2 < m < k + 1, and let uy, be the solution
of (2.27), then the following estirmate holds

(3.28) lu = upllo.s < C h™|ulm.5 .

Proof. The proof follows a standard duality argument. Consider the adjoint
problem (3.19), with ¢ = u — u. Now, take w; € V} to be the piecewise linear
interpolant of w over each element, and use v, = u — u;, in (3.20) to obtain,

llu = unll§ p= an(u — up, w)
= ap(u — up, w — wy)
< Mju — up| flw — wrl,
< Chlwly,pllu — usl,,
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where we have used (3.18) and Theorem 3.11 for the interpolation error estimate
lw — wrll,. Since u — wup, € (L2(B))<, the following standard elliptic regularity esti-
mate holds (see, e.g., [26]),

(3.29) lwll2,p < Cllu — unllo,

for some constant C' > 0, and the theorem follows. O

COROLLARY 3.14 (Convergence of the stress in L*(B)). Let o be the exact
solution with components in H™~(B) for some m such that 2 < m < k+ 1, and let
on, be given by (2.20), then the following estimate holds

(330) ||0' - UhHO,B < Chm71|u|m7B.

Proof. For the exact solution [u] = 0, which implies R([u]) = 0. So we can write
0 =C- (Vsu+ R([u])). Therefore,
(3.31) o—o0p=C-Vs(u—up)+C-R(Ju —upn]).

It follows that

lo—onllse= Y llo—ounlss
EeTh
=Y lIC-Vi(u—up) +C- R([u—un]l5 ¢
EeTh
<> C(IVsw—un)lig g+ Ne > lire(lu — unDi§ )
EcThy eCOE

< Cllu—unly < CH*"2lul}, 5.

d

Note that this corollary gives L?(B) convergence of the stress, even though no
such result holds for the strain. This discrepancy is possible because the discrete
stress is given by (2.20), and is not, in general, proportional to the strain.

Remark. Again, as suggested in [16, 17], it can also be proved that the bilinear
form given by equation (2.26) is both consistent and adjoint consistent. Therefore,
the same error estimates hold for the problem directly derived from the variational
principle, equation (2.26).

3.2. The natural (suboptimal but mesh-independent) BD-estimate. Pos-
sible discontinuities in the displacement across element boundaries naturally leads to
seeking error estimates in BD(B), the space of bounded deformations. This space is
defined as the set of functions u € L!(B) whose symmetric part of the distributional
derivative Du, £(Du) = £ (Du + Du”), is a matrix-valued bounded Radon measure.

For a function u € BD(B), let ||£(Du)||(B) denote the total symmetric variation
measure of Du. A general Poincaré-type estimate for BD-functions holds in the
following form.

THEOREM 3.15 (Poincaré for BD). Let B C R? be a bounded domain with
Lipschitz boundary. Then

(332) 3C>0: YueBD(B), u,, =0, |ullps <C [|EDW|(B),

Uop

where u),,, denotes the generalized trace.



Discontinuous Galerkin 17

Proof. Témam [27, p.189], Remark 11.2.5. O
THEOREM 3.16 (Natural BD estimate).

(3.33) 3C>0: VueV, |ulspw) <Clul,,

with C' independent of h.
Proof. Recall the definition of the BD norm

llullep(B) = llullLr () + [I€E(Dw)||(B)

where
le@ule) =sup{ [ - (7 ¥+ w) ¥ e Ch ), ol <1},

The proof continues mutatis mutandis as in Theorem 3.22 below. O

Using the estimate (3.33) for the difference u — uy, together with Theorem 3.11
shows that convergence of the method is immediately strengthened from the || - |,-
norm to a mesh-independent estimate in the space BD(B). It is clear that any
‘optimal’ estimate in the symmetric norm, derived under less smoothness assumptions
on the underlying continuous problem [20], translates into a corresponding ‘optimal’
mesh-independent BD estimate. It is worth remarking that the derivation of the BD
estimate does not make use of Theorem 3.13 that additionally establishes convergence
of the discrete solutions in L?(B).

The occurrence of the space BD is, strictly speaking, an artifact of the linearized
treatment where only the symmetrized infinitesimal strains £(Vu) appear. Since this
BD estimate does not control the antisymmetric part of the displacement gradient, we
are interested in obtaining convergence in the space BV (B). However, since BV (B)
is strictly smaller than BD(B) there is no obvious way to proceed directly from the
BD estimate to a BV estimate. Instead, we will first strengthen Theorem 3.12 to the
Il - |-norm. Note that for a given mesh size h > 0, given the finite dimensionality of
Vi, and the fact that both || - || and || - ||, are norms in V3, we have for u, € V4,

(3.34) lunllep < lunlly < Cllunll < c(h)|unll,,

where the estimate ||up||py < Cllup| is obtained in Theorem 3.22. However, c(h)
may not be bounded from below away from zero for all h > 0, the possibility of which
has been observed numerically. The failure to obtain a mesh independent estimate
between |up|, and |Jun| is a manifestation of the possible lack of a discrete Korn’s
first inequality for nonconforming meshes [23]. In order to obtain convergence in the
Il - |-norm, followed by a BV -estimate, and then convergence in BV, we first establish
a generalized version of Korn’s second inequality at the element level.

3.3. Korn’s second inequality for the subdivision. In this section, we
investigate an analog to Korn’s second inequality at the element level, indepen-
dent of the element shape and size. The derivation of this inequality relies heav-
ily on how Korn’s second inequality scales under uniform contractions. We set
SL(d,R) = {X € R™4| det X = 1}.

THEOREM 3.17 (Korn’s second inequality under distortion). Assume that Q C R?
is a bounded (reference) domain with Lipschitz boundary 0Q and let M = {X €
SL(d,R) : ||X|| < K}, for some K > 0. For '€ M define Q¢ = F(Q2). Then

3C>0: VFeM, YVue H (Q),
IVeuT + Veullg o, + llullf o, > C llulli g, -
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Proof. We first translate the statement to the fixed reference domain (2. The
affine transformation ¢ = F(z) together with the definition u(§) = u(F(z)) = u(z)
and det F' =1 lead to

(3.35) / IVeuT + Veull? + [Jul]® = / IF=TVaT + Vi P42 + [|a]?
Qe Q

We proceed by contradiction. Assume without loss of generality that there exists a
sequence {i,} € H' () with ||@,|l1,0 = 1 and a sequence F,, € M such that

T~ T o 1. . 1
(3.36) 1E TV, + Van G o + l[anllg o < - 1@nllf o = -

Since Fj, is bounded, we may extract a subsequence which converges strongly to
F € M by Bolzano-Weierstrass. It is readily seen by continuity and the boundedness
of @, that

(3.37) |F-TVay + Vi F 3 o + @3 o — 0.

Thus 4, is a minimizing sequence. For fixed F the quadratic expression is uniformly
positive (generalized Korn’s second inequality, see [28] ) such that
(3.38) 1TV, + VanF 5 o + |aalg o > C(F) l|aalf o

for some C' > 0, contradicting ||, |l1,0 = 1. O

THEOREM 3.18 (Korn’s second inequality under scaling). Let Q@ C R% be a
bounded domain with Lipschitz boundary 02 and, without loss of generality, |} = 1.
Consider the scaled domain, Q, = {hz :x € Q}, h > 0. Then

3CQ)>0: YueHY(Q),
. 1 . . 1 .
IVu'+Vull§ o, + AR ull§.o, > C() <||VU||(Z),Q,, + AR ||U'||é,Qh> ;

where the constant C(Q) is independent of h > 0 and coincides with the constant in
Korn’s second inequality for €.
Proof. Let @ € H'(Q). From Korn’s second inequality (see, e.g.,[28]) we get

(3.39) IVa" + Vallg o +lall o > CQ) (IVallg o + l[allfq) -
Expressing every term with respect to the down-scaled Qy,, where @(z) = u(hx), and
noticing that || = h¢ we get
. 1 .
IVuT + Vullf o, + 7 lull6 g,

1 . 1 .
> 0O (5 1V ulfa, + galulio,

from which we deduce the required result. Note that C'(2) is just the constant in
Korn’s second inequality. O

COROLLARY 3.19 (Uniformity in (73)). Let E be the reference element for an
element E € (Tp,) as defined in Section 2. Without loss of generality take |E| = 1.
Then,

3C >0: VEE€(Th, VueHl(E)

IV + Sl + gz Nl 2 € (190l + 7z Nl )

1
hd—2
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Proof. Let F be an affine transformation such that E = F(E). Decompose
F = F, - F into its isochoric and volumetric part, where F, = (det F)'/4I, I is the
second order identity tensor and F = F/(det F)'/¢, Note that |E| = det F. Using
Theorem 3.1.3 in [29, p. 120] and the quasi-uniformity of the subdivision we have that

[|F] h 1 c

3.40 F| = — —
(340 VU= Gerryi7a = 51 =

where p is the diameter of the largest ball contained in E and C is independent of E.
Therefore, by Theorem 3.17 we can state Korn’s second inequality for each domain

F(E) in the subdivision with the same constant C' > 0. The corollary then follows
from Theorem 3.18. O

3.4. Convergence in || -|. We can now obtain convergence of the sequence
of discrete solutions in the mesh-dependent norm || - | using our generalized Korn’s
second inequality for the subdivision.

THEOREM 3.20 (Convergence in the mesh-dependent norm | - ||). Let (vp) C Vj
be a sequence such that |lup ||, < Ch™™! and ||vg|lo,s < Ch™ for h L 0. Then

(3.41) lonll < € R

for some C > 0 independent of h.
Proof. Use Corollary 3.19 and sum over the elements to obtain the estimate

. 1 . 1
> (190 + Vol s + gz Ionls) 2. € X (IV0nlB.e+ gz onl
EcT, EcTh

which, in light of equation (2.7), can be weakened to

> (19l + Voull s+ 5z lnll) 2 € 3 (190l + 5 lonlBs )
EcT, EcTh

where C' is independent of h > 0. Without loss of generality assume 0 < C' < 1.
Adding the specific jump contribution over the faces of each element shows that

| . ‘
> I1Veg + Voulli g+ ol + D Ire(fenD5

E€Th e€&p
1
(3.42) >C Y (IIWhH%E + 55 lonllé.s + > H"'e([[vh]])“aB)
EeTh €€l
or
2 1 2 2 1 2
(343 ol 4o S lealde > C (Bl + 55 S lenlid
E€Th EeTh
where again, C' > 0 is independent of h > 0. Thus
2, 1 : 2
(3.44) lonlls + IIUhIIOB >0 <|||th|| +43 ||vh||5,3> 2 C flonl”
Using the convergence of (v;,) and equation (3.44) we obtain
2 2m— 1, —
(3.45) lonll” < C (hz 24 3 h? ) = Ch*™*

which completes the theorem. O
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Remark. As it is evident from the statement of Theorem 3.20, the convergence
in || - || can only be shown for sequences converging in both || - ||, and || - ||z2(p) With
specific rates in h. In general, for solutions of the continuous problem with less
regularity one might not have such knowledge.

3.5. Convergence in BV. We prove that the mesh-dependent norm || - || esti-
mates the BV norm on V = Vj, + (H{ (B))? and as a result, obtain convergence in BV .
Recall that BV (B) is the space of functions u € L'(B) such that the distributional
derivative Du is a matrix-valued bounded Radon measure.

For a function v € BV (B), ||Dul|(B) denotes the total variation measure of Du.
A general Poincaré-type estimate for BV -functions holds in the following form.

THEOREM 3.21 (Poincaré for BV').

(3.46) 3C>0: YueBV(RY), [ullpea—gs <C [|Dul|(RY).
Proof. Evans and Gariepy, [25, p.189] Theorem 1. O
THEOREM 3.22 (Natural BV estimate).
3C>0: YueV, |ulsv <Clul,

with C independent of h.
Proof. Recall the definition of the BV norm

(3.47) lullBv(m) = llully(m) + [|Dul|(B)

where
(48) 1DulB) =sup{ [ (V- 9) : weChm, ), ol <1},
B

First observe that

/Bu-(V-\II): > /Eu-(V-\I'): > /Ev-(w-u)— > /E\If-Vu

EeT, Ee€Th Ee€Th
EeT, V9B EeT, ' P
:Z/n\Il[[u]]—Z/lIfVu
e€&y 7€ EcTh E

Each term in the two sums may be estimated individually by

(3.49) L [rovnd] < [0 g < i,
and
(3.50) L - [ew] < [ TS 9,

which yields the preliminary estimate

(3.51) 1Dull(B) < Y~ udllere + Y IVullore)-

e€éy E€Th
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Applying Holder’s inequality to each term in the sum gives

(3.52) 1Dull(B) < D lel* lTullloe + D 11 [V ullo,p-

e€ly E€Th

Taking the square of both sides and using Young’s inequality leads to

2
> |E|1/2||VU||0,E] :

EeTh

(353)  [IDulP(B) <2 | D lel*IITullloe

e€lp

+2

Now we use the Cauchy-Schwartz inequality for the sums in the brackets, to show

1/2 1/272
[ Dul*(B)< 2 (Z(|€|1/2)2> (le[[U]lllﬁ,e>

e€éy ecéh
1/2 1/272
+2 (Z (|E|1/2)2> <Z ||VU||§,E>
EE€Th Ee€Th

<2 (gg:h |€I> (gg:h II[[U]]||3,3> +2 (E%;h IEI> (E%;h IIVUIlﬁ,E>

which, by Lemma 3.3, implies

I1Dull*(B)< 2 <Z |€|> <C hy IITe([[U]])II?),B> +2B| Y [IVullg &

ecép ecéy, EeTh
<20 (z |e|h) S @i | + 28 3 19l s,
ecéy, ecép EeTh

with C independent of h. From (2.8),

IDulP(B)< 2C | D 1EI D HIre([ub)l§ 5| +21Bl D [IVull§ &
e€&y eely, E€Th
<CIBI| Y (Dl s+ Y IVull§ | < CIB| flull”.
ecéh E€Th

By hypothesis, u € Vj, + (H}(B))?; this implies u € BV (B) since u € L?*(B)
and ||Dul|(B) is bounded by ||u||. We may extend u to a function @ on all of R? by
setting u to zero outside of B. From Theorem 1, [25, p.183] (last line) we have the
equivalence

(3.54) |Daf|(R?) = ||Dul|(B).
Thus, by applying the Poincaré inequality for BV, Theorem 3.21, we obtain
(3.55) llullparca-n(p) = llall para-n ey < C |Da||(RY) = C || Dul|(B) < C [Jul]

with C' > 0 independent of h. This estimate is necessary since the mesh-dependent
norm || - || does not contain a contribution of the form ||u||p2(p). O
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COROLLARY 3.23 (Optimal mesh independent estimate). Let (v,) C Vi, be a
sequence such that |ug||, < Ch™ " and ||vpllo,s < C h™ for h L 0. Then

(3.56) llonl|sy < C A™t

Proof. Apply Theorem 3.20 together with Theorem 3.22. O

4. Final Remarks. Optimal convergence of a stabilized, discontinuous Galerkin
method for linear elasticity with Dirichlet boundary conditions, has been established
in the mesh-independent BV norm. Unlike interior penalty methods, the stabilization
term contains a constant factor 5 > N, that is easy to determine for a given discretiza-
tion. The finite element spaces composed of piecewise polynomial functions over the
elements are also easy to implement. In future work, we will explore the numerical
properties of the method and its extensions to finite elasticity, elasto-plasticity and
fracture.
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