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Abstrat

We investigate geometrially exat generalized ontinua of Cosserat miropolar type. The variational

form of these models is introdued and onsistently extended to over �nite elasto-plastiity based on the

multipliative deomposition of the deformation gradient only. The deisive stress is the Eshelby energy

momentum tensor. It is motivated that the traditional Cosserat ouple modulus �



an and should be set

to zero for marosopi speimens liable to frature in shear, still leading to a omplete onsistent Cosserat

theory with independent rotations in the geometrially exat �nite ase in ontrast to the in�nitesimal,

linearized model.

Depending on material onstants di�erent mathematial existene theorems in Sobolev-spaes are given

for the resulting nonlinear boundary value problems in the elasti ase. These are the �rst suh results

known to the author. Various assumptions on the magnitude of deformations and mirorotations lead to

simpli�ed models whih are all analysed mathematially.

Partial fous is set to the possible regularization properties of miropolar models ompared to lassial

ontinuum models in the marosopi ase of materials failing in shear. The mathematial analysis heavily

uses an extended Korn's �rst inequality (Ne�, Pro.Roy.So.Edinb.A, 2002) disovered by the author reently.

The methods of hoie are the diret methods of the alulus of variations.

Key words: plastiity, viso-plastiity, polar-materials, non-simple materials, mirostruture,

strutured ontinua, solid mehanis, ellipti systems, variational methods,

frature, shear failure.

AMS 2000 subjet lassi�ation: 74A35, 74A30, 74C05, 74C10

74C20, 74D10, 74E05, 74E10, 74E15, 74E20, 74G30, 74G65, 74N15

1



Contents

1 Introdution 3

1.1 The development of Cosserat models, motivation and appliations . . . . . . . . . . . . . . . . . 3

1.2 Outline and sope of this ontribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The �nite elasti Cosserat miropolar model 6

2.1 The elasti streth energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The elasti urvature energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The balane equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Constitutive onsequenes of the value for the Cosserat ouple modulus . . . . . . . . . . . . . . 8

2.5 The Boltzmann axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Classi�ation of elasti Cosserat miropolar models . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Non-dissipative Cosserat miropolar elasto-plastiity 13

3.1 Extension to �nite miropolar elasto-plastiity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Elasti-visoplasti Cosserat model for polyrystals with grain rotations . . . . . . . . . . . . . . 16

3.3 In�nitesimal elasto-plasti Cosserat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Mathematial analysis 19

4.1 Statement of the �nite elasti Cosserat problem in variational form . . . . . . . . . . . . . . . . . 19

4.2 The di�erent ases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 The oerive inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 The geometrially exat elasti Cosserat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Partially linearized elasti Cosserat theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 In�nitesimal linear elasti Cosserat theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 On the hoie of the urvature energy ontribution 27

6 The quasionvex hull and relaxation 28

7 Disussion and onluding remarks 29

8 Aknowledgements 30

9 Appendix A 34

9.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9.2 The Boltzmann axiom without internal length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9.3 Marosopi elasti shear failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9.4 Analytial investigation of inompressible elasti simple shear . . . . . . . . . . . . . . . . . . . . 35

9.5 Analytial investigations of lassial inompressible elasti Biot-material in simple shear . . . . . 41

10 Appendix B 43

10.1 Koiter's remarks on ouple stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

10.2 Some experimental results: Nonlinear relation near zero stress and size dependene . . . . . . . . 43

10.3 Alternative representation of the miropolar streth energy . . . . . . . . . . . . . . . . . . . . . 44

10.4 Derivation of the geometrially exat miropolar balane equations . . . . . . . . . . . . . . . . . 44

10.5 Saling relations for Cosserat models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10.6 Finite elasto-plasti Cosserat theory for small elasti rotations . . . . . . . . . . . . . . . . . . . . 45

10.7 Partially linearized �nite elasto-plasti Cosserat theory . . . . . . . . . . . . . . . . . . . . . . . . 45

10.8 A remark on the elasto-plasti deomposition of the urvature tensor . . . . . . . . . . . . . . . . 47

10.9 Notes on parameter identi�ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

10.10Stability of the homogeneous solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

10.11A simpli�ed elasto-plasti model for easy numerial implementation . . . . . . . . . . . . . . . . 48

2



1 Introdution

1.1 The development of Cosserat models, motivation and appliations

This artile addresses the modelling and mathematial analysis of geometrially exat

1

generalized ontinua

of Cosserat miropolar type in the elasti as well as elasto-plasti ase. General ontinuum models involv-

ing independent rotations have been introdued by the Cosserat brothers [CC09℄. In fat, their original

motivation ame from the theory of surfaes, where the moving three-frame (Gauss frame) had been used

suessfully.

Their development has been largely forgotten for deades only to be redisovered in the beginning of the

sixties [Osh55, G�un58, AK61, ES64, Eri68, Tou62, Tou64, GR64, MT62, Sh67, TN65℄. At that time theoretial

investigations on non-lassial ontinuum theories were the main motivation [Kr�o68℄. The Cosserat onept has

been generalized in various diretions, for an overview of these so alled miroontinuum theories we refer to

[EK76, Eri99, CG77, Cap89℄.

Among the �rst ontributions extending the Cosserat framework to (in�nitesimal, geometrially linear)

elasto-plastiity we have to mention [Saw67, Lip69, Bes74℄. More reent (in�nitesimal) elasti-plasti formu-

lations have been investigated in [dB92, DSW93, IW98, RV96℄. These models diretly omprise joint elasti

and plasti Cosserat e�ets. Lately, the models have been extended to a �nite elasti-plasti setting, see e.g.

[GT01, San98a, San98b, San99, Ste94a, Gra03, FCS97℄ and referenes therein. Most of these �nite extensions

diretly omprise of joint elasti and plasti Cosserat e�ets as well together with an additional split of the

urvature into elasti and plasti parts but their physial and mathematial signi�ane is at present muh

more diÆult to asses than models in whih Cosserat e�ets are restrited to the elasti response of the material

[FCS97℄ and referenes therein. Our own ontribution will be of the seond type.

It is generally aepted that ouple stresses, understood here as the presene of non-symmetri parts of the

Cauhy stress, exist in real elasti material [TN65℄. Disrepanies between lassial linearized elastiity theory

and experiments are observed predominantly for high gradients whih our by stress onentrations in the

neighbourhood of holes, nothes and raks as predited by lassial elastiity. Indeed, the measured stresses

around raks are smaller than the predited ones.

However, the soure, magnitude and signi�ane of ouple stresses is still being disussed. A group of

researhers [Voi87, HK65, Koi64℄, supported by experimental evidene [GJ75, Gau82, Sh66, ES67℄ admits

elasti ouple stresses in elasto statis on a marosale only due to (very small) nonloal e�ets suh that

an in�nitesimal elasti Cosserat miropolar theory is meaningless: the in�nitesimal ontinuum rotations must

oinide with the in�nitesimal mirorotations and moreover, ouple stresses are altogether negleted sine they

are supposedly small.

2

Despite this situation, in�nitesimal elasto-plasti extensions of the indeterminate ouple-

stress theory have been investigated in [FMAH94, RV96℄.

Another group of researhers uses the in�nitesimal Cosserat miropolar model, admitting non symmetri

in�nitesimal onstitutive Cauhy stresses as a �rst order e�et due to independent in�nitesimal mirorotations

[Ste94a, IW98, M�uh89, dB91, GT01℄. Apparently, both views exlude eah other.

3

Notwithstanding, we present a model reoniling both views: the di�erene of opinion is due to the unritial

use of the in�nitesimal, linear Cosserat model but disappears for a geometrially exat desription of the Cosserat

theory. The Cosserat ouple modulus �



(modulus of loal rotational sti�ness, Cosserat shear modulus,

torsional rigidity f. (2.6)) appearing in both the in�nitesimal and geometrially exat desription an be set

to zero, still there is a nonloal oupling together with independent �nite rotations, while the linearization

of this theory has lost all elasti Cosserat e�ets.

Another eminent soure for ouple stresses are granular material [Osh55, MV87, M�uh89, MH96, BP91, Bar94,

Bar98℄ where individual grains are supposed to be in ontat and to transmit fores by ontat ouples. Here,

e�ets of ouple stresses annot usually be negleted, however, numerial simulations inluding a desription of

the ontat mehanis still suggest that they are of seond order [Bar98℄.

Using saling arguments it is lear, that material length sale e�ets beome the more aentuated the

smaller the geometrial dimensions of the speimen are. This suggests the future appliation of Cosserat models

for mirosopi speimens or in suh �elds as thin �lms and miro atuators.

We remark that it has never really be admitted that Cosserat e�ets played a role as long as traditional

engineering materials in their elasti range on a marosale were onsidered. Sine a miropolar model is

1

Fully frame-indi�erent

2

In [HK65, p.339℄ we read: \Momentenspannungen sind merklih erst in Bereihen vorhanden, in denen normalerweise niht

nur die Anwendung der linearen, sondern auh der nihtlinearen Elastizit�atstheorie niht mehr sinnvoll ist."

3

The experimental results of [FMAH94℄ on the torsion of thin opper wires revealed a strong geometrial length sale e�et

of the plasti behaviour: the thinnest wires displayed omparatively the strongest response up into the plasti range. Whether

this is due to a genuine Cosserat e�et annot be asertained. It must be noted that in their experiments, also grain size e�ets

interfered, whih have nothing to do with geometrial size e�ets.

3



onsiderably more diÆult analytially, the in�nitesimal

4

linear elasti Cosserat model was partially abandoned

in the early seventies.

Renewed interest in Cosserat models arose with the advent of the omputer allowing to irumvent analytial

details. Today, apart from the theoretial development, the Cosserat type models are inreasingly advoated

as a means to regularize the pathologial mesh size dependene of loalization omputations where shear

failure

5

are mehanisms [CH85, MV87, M�uh89, BP91, Bar94℄ play a dominant role, for appliations in plastiity

see the non-exhaustive list [IW98, DSW93, RV96, dB91, dBS91, dB92℄. The ourring mathematial diÆulties

reet the physial fat that upon loalization of the deformation within narrow bands the validity limit

6

of

the lassial models is reahed. In models without any internal length the deformation should be homogeneous

on the sale of a representative volume element of the material [MA91℄.

Of ourse, there are many other possibilities available to overome this de�ieny, we mention only higher

gradient theories [Aif98℄ and referenes therein, nonloal models [BC84, Eri83℄ using integral kernels in the

onstitutive law or inremental variational formulations [Lam02, LMD03, ML03a, ML03b℄ and visoplasti

regularizations [Nef03a℄. While all these models suessfully regularize the mesh-dependeny, nonloal and

visoplasti approahes are loalization limiters but do not neessarily introdue a spei� geometri size e�et.

The stress-strain diagram in an inremental variational approah is mesh-independent, while the thikness of

the loalization zone is given by the size of the smallest �nite element. Apart from inremental methods all

regularizing approahes need additional material parameters. This is a distintive advantage of inremental

methods.

The inorporation of a length sale, whih is natural in a Cosserat theory, in prinipal has the power to

remove the mesh sensitivity. The presene of the internal length sale auses the loalization zones to have �nite

width. In [DSW93, IW98℄ it is expliitly shown in the in�nitesimal elasto-plasti ontext, that mode II failure

(shear failure) is ruled out while the formation of holes (mode I failure) is still possible. However, the atual

harateristi length sale of a material is diÆult to establish experimentally and theoretially [Lak95℄, and

remains basially an open question as is the determination of other additionally appearing material onstants in

the Cosserat framework: the employed non-zero value of the Cosserat ouple modulus �



remains unmotivated

in most of these regularization proedures.

Let us summarize at this stage the gathered irumferential evidene of Cosserat e�ets for metalli and

granular materials:

4

By in�nitesimal we mean arbitrary small displaements and not just small displaements, ertainly far below 1 perent elon-

gation.

5

In short: shear failure means for us that Legendre-Hadamard elliptiity is violated while the Baker-Eriksen inequalities are

satis�ed, f. setion (9.3).

6

The ourring high deformation gradients in a shear band suggest that in�nitesimal elastiity should not be used for a physially

onsistent desription of shear bands. The same remark applies to alulations of stress onentrations in the viinity of raks:

ertainly, deformations are not any longer in�nitesimal small.

4
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) �
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value �
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pronouned in
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more or less
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e�et expeted:

Arzt, Koiter,
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) �
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applied to simulate

lattie rotations,
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plastiity of thin

�lms, single

rystals: Forest,
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remarks resulted in

premature
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linear in�nitesimal
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ouple stress

theory and linear

Cosserat theory

altogether

regularize

pathologial

mesh-

dependene in

large sale

numerial

alulations,

no intrinsi

experimental

evidene

Cosserat models

are used to

regularize shear

failure of granular

materials, based

on experiments

indiating a

de�nite width of

the bands

alternative: higher

gradient plastiity

theory, paraboli

ow rule, nonloal

models,

inremental

variational

formulations,

If regularization of widely aepted lassial ontinuum models on the marosopi sale is our aim, the

regularizing e�ets should be inorporated suh that essential salient features of the lassial model are still

present. Otherwise we fae the danger of over-regularization.

7

In the following we will see that suh unwanted

behaviour is in part linked to the value of ertain material onstants, notably the Cosserat ouple modulus �



.

The mathematial analysis of Cosserat miropolar models is at present restrited to the in�nitesimal, linear

elasti models, see e.g. [Ies71, Duv70, HH69, Ghe74a, Ghe74b℄. The major diÆulty of the mathematial

treatment in the �nite strain ase is related to the geometrially exat formulation of the theory and the

appearane of �nite rotations. No general existene theorems are known to the author.

1.2 Outline and sope of this ontribution

This ontribution is organized as follows: �rst, we review the basi onepts of the geometrially exat elasti

Cosserat miropolar theories in a variational ontext. In ontrast to other ontributions we keep the third-order

tensor harater of the urvature tensor K and do not use a redued seond order format

^

K based on the axial

representation.

An investigation into the onstitutive relations for a geometrially exat Cosserat theory apparently has

never been done. We highlight therefore the striking onstitutive onsequenes of the hoie for the Cosserat

ouple modulus, �



> 0; �



= 0, respetively, in the fore balane equation and it is easily seen that �



> 0

is not a neessary onstitutive assumption for the geometrially exat theory. Moreover, it is shown that,

ontrary to the in�nitesimal ase, the exat theory does not neessarily redue to the lassial elastiity theory

in the limit of a vanishing internal length sale without further provision. To onlude this part, we provide a

lassi�ation sheme of �nite miropolar elastiity and motivate a new boundary ondition for mirorotations,

whih we all onsistent oupling ondition.

The elasti formulation is then onsistently extended to �nite multipliative plastiity with non-dissipative

miropolar e�ets. The deisive stress tensor is nothing else than the elasti Eshelby energy momentum

tensor. Due to the third order urvature representation K we retain also the Eshelby format for the urvature

7

If the lassial model fails in shear by frature along a slip line, we impose at least that the onset of frature is orretly

reported.

5



part of the stresses. The obtained general plastiity model is then speialized to a marosopi ase of a

polyrystal with grain rotations. It is motivated that for suh a model the most natural hoie is to set

the Cosserat ouple modulus �



= 0. Various redutions of the geometrially exat model are possible, for

oniseness we restrit attention to the in�nitesimal miropolar elasto-plasti model, operative however, only

for �



> 0.

More mathematially inlined readers an safely skip the modelling part and start diretly in the analytial

setion 4. There, the omplete problem statement of the geometrially exat elasti Cosserat ase in a variational

ontext is repeated.

Existene of minimizers in Sobolev-spaes is established using the diret methods of variations and a novel

extended Korn's �rst inequality. Similar methods allow to treat the various redued situations as well with

stronger results depending on the redutions made. However, only in the ompletely redued well known

in�nitesimal ase existene, uniqueness and ontinuous dependene on the data an be established.

Finally, various alternative forms of the urvature part are investigated and it is argued that Cosserat models

an be superior in regularizing shear failure mehanisms than simply taking the quasionvex hull or numerial

approximations of it as a mere omputational loalization limiter.

In the appendix we provide missing arguments for the Boltzmann axiom and de�ne what we mean by shear

failure. In a detailed analysis of simple shear (simple glide) we derive analytial solutions whih allow to ontrast

the di�erent models and underline the merrits of the new approah allowing for sharp interfaes in the limit of

vanishing internal length.

2 The �nite elasti Cosserat miropolar model

Let us now motivate the �nite Cosserat approah. The relevant notation will be found in the appendix. For our

development we hoose a stritly Lagrangean desription. First, in the purely elasti ase, a Cosserat theory

an be obtained by introduing the multipliative deomposition of the marosopi deformation gradient F

into independent mirorotation R (Cosserat rotation tensor) and miropolar streth tensor U (or �rst

Cosserat deformation tensor) with

F = R � U ; (2.1)

where R 2 SO(3;R) and U 2 GL

+

(3;R) but U 62 PSym(3) suh that (2.1) is not neessarily the polar deom-

position of F . The notion miropolar is prone to misunderstandings: R must be onsidered as a marosopi

(average) quantity as the deformation gradient and the resulting model is still phenomenologial.

In the quasistati ase, the Cosserat theory is now derived from a variational priniple by postulating the

following 'ation eulidienne' [CC09, p.156℄ for the �nite marosopi deformation ' : [0; T ℄� 
 7! R

3

and

the independent mirorotation R : 
 7! SO(3):

I(';R) =

Z




W (F;R;D

x

R)� hf; 'i � hM;Ri dV �

Z

�

S

hN;'i dS�

Z

�

C

hM



; Ri dS 7! min : w.r.t. (';R);

R

j

�

= R

d

; '

j

�

= g

d

(t) : (2.2)

The elastially stored energy W depends on the deformation gradient as usual but in addition on the miroro-

tations together with their spae derivatives. Here 
 � R

3

is a domain with boundary �
 and � � �
 is that

part of the boundary, where Dirihlet onditions g;R

d

for displaements and mirorotations, respetively, are

presribed while �

S

� �
 is a part of the boundary, where tration boundary onditions N are applied with

� \ �

S

= ;. The external volume fore is f and M takes on the role of external volume ouples.

8

In addition,

�

C

� �
 is the part of the boundary where surfae ouples M



are applied with � \ �

C

= ;. Variation of the

ation I with respet to ' yields the equation for balane of linear momentum and variation of I with respet

to R yields balane of angular momentum.

The standard onlusion from frame-indi�erene (here: invariane of the free energy under superposed rigid

body motions (SRBM) not merely observer invariane of the model [SB97, BS01, Mur03℄: 8Q 2 SO(3;R) :

W (F;R;D

x

R) =W (QF;QR;D

x

[QR℄) leads to the redued representation of the energy

W (F;R;D

x

R) =W (R

T

F; 11; R

T

D

x

R) =W (U;R

T

D

x

R) =W (U;K) ; (2.3)

8

appearing in a non-mehanial ontext e.g. as inuene of a magneti �eld on the polarization of a substruture of the bulk.

6



where K := R

T

D

x

R =

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

is one spei� representation

9

of the third order

rightmiropolar urvature tensor (or torsion-urvature tensor, wryness tensor, seond Cosserat deformation

tensor, bending-twist tensor et.). For a geometrially exat isotropi

10

theory we assume in the following an

additive split of the total free energy into loal streth and urvature part aording to

W =W

mp

(U) +W

urv

(K) : (2.4)

2.1 The elasti streth energy

For a small elasti strain theory, whih should already over most ases of physial interest, we require that

W

mp

(U) is a non negative isotropi quadrati form

11

normalized to

W

mp

(11) = 0; D

U

W

mp

(U)

j

U=11

= 0 : (2.5)

The most general form of W

mp

onsistent with (2.5) is f.(10.151)

W

mp

(U) = �

1

k sym(U � 11)k

2

+ �



k skew(U � 11)k

2

+ �

3

tr

�

sym(U � 11)

�

2

; (2.6)

with material onstants �

1

; �



; �

3

suh that �

1

; 3�

3

+ �

1

; �



� 0 from non negativity [Eri99℄. By onsisteny

with the lassial ontinuum model without mirorotations we an take �

1

= �; �

3

=

�

2

with �; � > 0 the

lassial Lam�e onstants and the Cosserat ouple modulus �



remains for the moment unspei�ed but

�



= 0 is physially possible sine the miropolar reation stress D

U

W

mp

(U) � U

T

is not symmetri in

general, i.e. the problem does not deouple, f. (2.12). For omparison, in [Eri99, p.111℄ for the in�nitesimal

ase, the elasti moduli are taken to be �

1

= �+

�

2

; �



=

�

2

; �

3

=

�

2

but in this formula, � annot be regarded

as one of the Lam�e onstants.

12

In [DSW93, Ste94a, Ste97, FCS97, DFC98, EDV98a℄ the abbreviation �



is

used while in [Gra03℄ it is �



= � and �



= G



in [IW98℄.

13

2.2 The elasti urvature energy

For the urvature term, to be spei�, we assume the general form

W

urv

(K) = �

L

1+p



12

(1 + �

4

L

q



kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

; (2.7)

where L



is setting an internal length sale with units of length, �

4

� 0; p > 0; q � 0 are additional material

onstants, the fator

1

12

only for onveniene and �

5

> 0; �

6

; �

7

� 0 as a minimal requirement. We mean

tr [K℄

2

= ktr [K℄k

2

by abuse of notation. This hoie for W

urv

does not presuppose any knowledge of the

magnitude of urvature

14

in the material and is non-degenerate in the origin kKk = 0, whih is not essential

however.

In [FCS97, DFC98℄ the following set of parameters (�

4

; �

5

; �

6

; �

7

; p) = (0; �; ; �; 1) is used, while in

[BGdB98, EDV98a℄ the redued set (�

4

; �

5

; �

6

; �

7

; p) = (0; �; �; �; 1) is taken and (�

4

; �

5

; �

6

; �

7

; p) = (0; ; Æ; �; 1)

is used in [Gra03℄.

15

9

Note that K

i

= R

T

r(R:e

i

) 62 so(3;R). Another representation of K is given by K :=

�

R

T

�

x

R;R

T

�

y

R;R

T

�

z

R

�

. Sine

�

x

(R

T

R) = 0 for R 2 SO(3;R) it holds that K 2 so(3;R) � so(3;R) � so(3;R). It is therefore possible to base all onsiderations

of urvature on a more ompat expression like

^

K :=

�

axl(R

T

�

x

R)j axl(R

T

�

y

R)j axl(R

T

�

z

R)

�

2 M

3�3

. This is the traditional

approah, see e.g. [San99, FBC00, Gra03℄. We do not use

^

K sine it looses its advantages over K if we want to onsider miro-

morphi extensions of the theory, e.g. if we would allow for R 2 SL(3;R). By extending the theory to multipliative plastiity it

beomes apparent that K is a natural representation.

10

The omplete struture for anisotropi in�nitesimal formulations has been given in [Kes64℄.

11

Henky-type energies de�ned on lnU are useless, sine U 6= PSym in general. The streth part ould depend in priniple on

C = U

T

U , but would then fail to be altogether quadrati in U . The same argument exludes a dependene on U . In addition, a

possible oupling between U and K for entrosymmetri bodies an be ruled out [Now86, p.14℄.

12

A simple de�nition of the Lam�e onstants in miropolar elastiity is that they should oinide with the lassial Lam�e onstants

for symmetri situations. Equivalently, they are obtained by the lassial formula � =

E

2(1+�)

; � =

E�

(1+�)(1�2�)

, where E and �

are uniquely determined from uniform tration. Eringens nomenlature unfortunately led to some onfusion.

13

In the remainder, from a modelling point of view, we need to arefully distinguish between miropolar moduli for mirosopi

speimens and e�etive moduli for marosopi speimens, depending on the appliation aimed at.

14

The following question merits attention: Is it experimentally possible to determine not only the value of the internal length

sale L



but also to determine the relevant exponents p; q independent of mathematial onveniene. Dispersion experiments are

the obvious andidate.

15

Note that this identi�ation is based on the representation of K in terms of the axial representation

^

K. All results in the

mathematial setion hold without modi�ation for

^

K as well.

7



The form (2.7) is motivated by onsisteny with an expansion for a orresponding shell theory. But are has

to be exerted in the �nite regime: W

urv

should preferably be oerive in the sense that we impose pointwise

9 

+

> 0 9 r > 1 : 8K 2 T(3) : W

urv

(K) � 

+

kKk

r

; (2.8)

or less demanding

9 r > 1 :

W

urv

(K)

kKk

r

!1 as kKk ! 1 ; (2.9)

whih implies neessarily �

6

> 0 in (2.8). This is at variane with the in�nitesimal ase (4.60), where �

6

= 0 is

still aeptable. A major step forward in the subsequent mathematial treatment would be to show that giving

up (2.9), i.e. �

6

= 0, still yields a well posed geometrially exat �nite miropolar theory.

If it is known in advane that the urvature remains small, i.e. L



� kKk � 1, then �

4

= 0; p = 1 may be a

reasonable hoie [GT01, BGdB98, EDV98a, FCS97, Ste94a℄ but we will see that this leads to a loss of ontrol

(in the ritial ase �



= 0) in the orresponding �nite boundary value problem that an be overome by taking

�



> 0, whih will be seen below. Consistent with this observation (but not based on), in [Sh62, Bes74, San99℄

the parameter �



has been set to �



= � suh that

W

mp

(U) = � kU � 11k

2

+

�

2

tr

�

U � 11

�

2

; (2.10)

super�ially oiniding with the funtional form of the lassial free energy de�ned on the positive de�nite right

streth tensor U . In [Ste94a, Ste94b℄ the strain energy

W

mp

(U) = � h

U

det[U ℄

1=3

� 11; 11i+ h(det[U ℄) (2.11)

is proposed. Upon linearization, this orresponds as well to the hoie � = �



.

2.3 The balane equations

For the hoies we have made we note the resulting material form of the �eld equations on the referene

on�guration (with �

4

= 0; p = 1) whih an be obtained after some algebrai manipulations.

0 = Div

�

S

1

(F;R) + 2�



R skew(R

T

F )

�

+ f

R

3

; fore balane (2.12)

0 = skew(D

U

W

mp

(U)U

T

) + skew

�

R

T

Div

�

RD

K

W

urv

(K)

�

�

+ skew

�

D

K

W

urv

(K)K

T

�

+ skew(R

T

M)

M

3�3
; angular momentum balane ;

where S

1

is the �rst Piola-Kirhho� stress (for �



= 0) with the funtional form

S

1

(F;R) = R

h

�(F

T

R+R

T

F � 211) + � tr

�

F

T

R� 11

�

11

i

; (2.13)

as in [Nef03a, (P3)℄ and D

K

W

urv

(K) is the materialmiropolar moment tensor (or ouple-stress tensor).

A similar form of the unonventional

16

balane of angular momentum equation has been given in [Cap89, p.63℄.

In our variationally based development, the balane equations will not play a prominent role.

2.4 Constitutive onsequenes of the value for the Cosserat ouple modulus

Looking at (2.6) with �



> 0 we see that the impliation of this hoie at a �rst glane is an inouous

rise in the marosopi elasti strain energy W

mp

(U) if R 6= polar(F ), but R is generially assumed to be

independent of polar(F ). The hoie �



> 0 ats like a loal 'elasti spring' between both ontinuum rotations

and mirorotations.

16

beause we have not transformed the tensor equation into a related vetor format, whih is usually preferred. Following [Cap89℄

we an identify an external volume ouple b



in the equilibrium vetor-format with axl(skew(R

T

M)). Then b



is a volume ouple

whih is not a dead load. We note that a term skew

�

D

K

W

urv

(K)K

T

�

does not diretly appear in derivations based on

^

K sine

e.g.

^

K

1

= axl(R

T

�

x

R) and variation along the one-parameter group introdued in (10.154) yields

Æ

^

K

1

= axl((AR)

T

�

x

R +R

T

�

x

[AR℄) = axl(�R

T

A�

x

R +R

T

(�

x

A)R+ R

T

A�

x

R) = axl(R

T

(�

x

A)R) :

This is not at variane with (2.12)

2

sine di�erentiation is arried out di�erently. Observe that skew

�

D

K

W

urv

(K)K

T

�

= 0 if

�

5

= �

6

; �

7

= 0, i.e. if ouple stresses are proportional to the urvature tensor.

8



Let us onsider the mathematial impliations of �



= 0 and 0 < �



� �, respetively, in more detail. It is

readily veri�ed that for the elastiity tensors (di�erentiating the streth energyW

mp

(R

T

F ) at �xed R w.r.t. F )

�



> 0) 8H 2 M

3�3

: D

2

F

W

mp

(R

T

F ):(H;H) � 2�



kHk

2

(2.14)

�



= 0) 8H 2 M

3�3

: D

2

F

W

mp

(R

T

F ):(H;H) � 2�k

1

2

(R

T

H +H

T

R)k

2

:

Hene the hoie �



> 0 leads to uniform onvexity of W

mp

(R

T

F ) w.r.t. F and unonditional elasti sta-

bility on the marosopi level: regardless of what distribution of mirorotations R(x) is given, the marosopi

equation of balane of linear momentum is uniquely solvable and this equation is insensible to any deterioration

of the spatial features of the mirostruture. Uniform onvexity is diÆult to aept from a onstitutive point

of view sine it is impossible for a geometrially exat desription in the framework of a lassial marosopi

ontinuum but lear from the above disussion: the additional elasti spring between miro- and ontinuum

rotation extremely rigidi�es the material and ompletely hanges the type of the mathematial boundary value

problem ompared with the lassial �nite theory.

17

Fortunately, suh a far reahing unsatisfatory onlusion does not hold for �



= 0, in whih ase we have

D

2

F

W

mp

(R

T

F ):(� 
 �; � 
 �) = �

�

kR

T

� 
 �k

2

+ hR

T

� 
 �; � 
R

T

�i

�

= �

�

kR

T

� 
 �k

2

+ hR

T

�; �i

2

�

;

whih shows the physially muh more appealing inequality

D

2

F

W

mp

(R

T

F ):(� 
 �; � 
 �) � � k�k

2

� k�k

2

; (2.15)

expressing nothing but uniform Legendre-Hadamard elliptiity of the aousti-tensor with elliptiity on-

stant � independent of R. The Legendre-Hadamard ondition has the most onvining physial basis [Ant95,

p.461℄ in that it implies the reality of wave speeds and the Baker-Eriksen inequalities (stress inreases with

strain, [MH83, p.19℄). The hoie �



= 0 leads to the strain energy density proposed in [Nef03a, (P3)℄ and

[NW03, M1℄ if the appearing independent visoelasti rotations there are identi�ed with the independent elasti

Cosserat mirorotations here.

18

2.5 The Boltzmann axiom

In the absene of volume ouples and urvature terms, i.e. without internal length sale, L



= 0, the seond

equation in (2.12) redues to the lassial symmetry ondition [SFH92, (6)℄, the so alled Boltzmann axiom,

D

U

W

mp

(U)U

T

2 Sym, skew

�

D

F

W (R

T

F )F

T

�

= 0, S

2

:= F

�1

S

1

(F;R) 2 Sym; (2.16)

postulating the symmetry of the seond Piola-Kirhho� stress S

2

and we note that trivially

�

U 2 Sym, R = polar(F )

�

) D

U

W

mp

(U)U

T

2 Sym : However, for the onverse we state a �rst result:

Lemma 2.1 (Limit rotations with zero internal length sale)

Let W

mp

be de�ned as in (2.6). If �

1

= �



and tr

�

U

�

< 3 +

2�



�

3

then

D

U

W

mp

(U)U

T

2 Sym)

�

U 2 Sym, R = polar(F )

�

: (2.17)

Otherwise, D

U

W

mp

(U)U

T

2 Sym alone does not imply U 2 Sym. In other words: symmetry of the Cauhy

stresses T =

1

det[F ℄

F S

2

F

T

does not imply that mirorotations oinide with ontinuum rotations.

Proof. The proof is given in (9.2). This disrepany between the ful�lment of the Boltzmann axiom and the

symmetry of the mirostreth U does not appear in the in�nitesimal linear ase, see (4.62). �

We mention that an argument relating to the general ase ofW

mp

taken as an isotropi salar valued funtion

of U has been given e.g. in [San99, p.29℄ and [SB95℄. No onditions on the oeÆients or the magnitude of

17

In the analytial setion we will see that �



> 0 implies that ' 2W

1;1

(
;R

3

) irrespetive of R, thus exluding frature.

18

The preferred value �



= 0 for the marosopi ase an as well be motivated by the following onsideration: Consider the

Green strains F

T

F � 11 = (U � 11)

T

(U � 11) + 2 sym(U � 11). Therefore

�

4

kF

T

F � 11k

2

= �k symU � 11k

2

+O(kU � 11k

3

). Hene

�



= 0 provides the orret �rst order approximation to a lassial St. Venant-Kirhho� material. With �



= 0 we exlusively

reover the fat of the lassial ontinuum theory that W isotropi implies symmetry of the Biot stress tensor: D

U

W (U) 2 Sym.

If we expand R = 11+A+ : : : with A 2 so(3) and write F = 11+ru, then the Cosserat e�ets dissappear to �rst order for �



= 0.

In this sense, �



= 0 is lose to lassial elastiity.

9



tr

�

U

�

are involved, whih raises some questions. However, the onlusion in [San99, p.29℄ is true in some ases

19

, whih may be seen for

W

mp

(U) = �kU � 11k

2

+ �

�

det[U ℄ +

1

det[U ℄

� 2

�

2

= � kU � 11k

2

+ �

�

det[F ℄ +

1

det[F ℄

� 2

�

2

D

U

W

shear

mp

(U) � U

T

= 2�

�

U � 211

�

U

T

: (2.18)

Sine det[U ℄ = det[R

T

F ℄ = det[F ℄ is independent of R, balane of angular momentum is only a�eted through

the shear ontribution and independent of the volumetri response. Therefore the symmetry ondition in the

seond equation in (2.12) redues to 2�U U

T

� 2�U

T

2 Sym, whih implies already U 2 Sym. The same

reasoning applies to (2.11). Inidentally, this ould be a reasonable assumption for a generalized �nite Cosserat

miropolar theory as well: why should the mirorotations R a�et the volumetri response of the material on

the marosopi level at all? We would be led to assume that the streth energy has the form

W

mp

(U) =W

shear

mp

(U) + h(det[U ℄) ; (2.19)

deoupling shear behaviour from volumetri response.

The result of Lemma 2.1 is noteworthy: It shows that symmetry of U is an independent additional

assumption generally not implied by balane of angular momentum (2.5) in the absene of an internal length

sale (arbitrary large samples) in the �nite regime.

2.6 Classi�ation of elasti Cosserat miropolar models

Let us summarize at this stage the proposed geometrially exat �nite elasti Cosserat miropolar model: the

task is to �nd (';R) 2 R

3

� SO(3;R) suh that

Z




W

mp

(U) +W

urv

(K) � hf; 'i � hM;Ri dV �

Z

�

S

hN;'i dS�

Z

�

C

hM



; Ri dS 7! min : w.r.t. (';R);

U = R

T

F; F = r'; K = R

T

D

x

R; R

j

�

= R

d

; '

j

�

= g

d

(2.20)

W

mp

(U) = � k sym(U � 11)k

2

+ �



k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

W

urv

(K) = �

L

1+p



12

(1 + �

4

L

q



kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

:

In [Ste97℄ a lassi�ation of isotropi miropolar theories is given. We refer to the geometrially exat ase

therein and put our models in this framework at the same time extending it.

0. rigidity in torsion: �



= 1; L



= 1. Classial in�nitesimal elastiity in tension. L



= 1 keeps the

mirorotations onstant and �



=1 implies that ontinuum- and mirorotations oinide.

1. gradient type, onstrained Cosserat miropolar theory (or indeterminate ouple-stress the-

ory, a speial ase of an elasti material of grade two,[Tou62, Tou62, Min64, Gri60, Koi64, Eri68,

Cap85℄): �



= 1; K = polar(r')

T

D

x

polar(r'); U = U = polar(r')

T

r', variation of the ation fun-

tional I only with respet to ': the �eld equations are of fourth order, mirorotations oinide with

marorotations, loal ontribution to the in�nitesimal Cauhy stress tensor �

lo

and loal ontribution

20

to the �nite seond Piola-Kirhho� stress tensor S

lo

2

:= F

�1

D

F

W

mp

(U) are symmetri, \tri�edre ah�e"

in the original Cosserat terminology [CC09, p.30℄, only the non-loal part (alled the hyperstress) is re-

sponsible for the overall antisymmetri stresses. The antisymmetri part of the total stress is therefore

not determined by the loal value of the deformation �eld alone.

2. regularized gradient theory: �



> 0; �



! 1; K = R

T

D

x

R, independent variation with respet to

(';R), �eld equations of seond order, independent mirorotations, a sublass of ase (3), �



! 1 as a

penalty parameter, yields in the limit onstrained gradient theory (indeterminate ouple stress theory),

provides a 'heap' numerial approximation to (1).

19

It would be useful to obtain general neessary and suÆient onditions on the free energy funtion W suh that

�

U 2 Sym, R = polar(F )

�

, D

U

W

mp

(U)U

T

2 Sym. A further problem is then to haraterize the lassial ontinuum as

a ertain limit of the �nite Cosserat model for vanishing internal length. We might want to onjeture that the lassial Boltzmann

ontinuum is the �-limit [Mas92℄ of (2.2) for L



! 0 and �



= 0, with appropriate boundary onditions R

j

�

= polar(r') preventing

the situation in (9.85). A proof of this onjeture is beyond the sope of this investigation.

20

For us, stress denotes the sum of loal and nonloal stresses in the fore balane equations. Usually, what we all loal stress

is denoted simply with (onstitutive) stress whereas our nonloal stress is said to be the hyperstress in the ase of the onstrained

gradient model.

10



3. �rst order Cosserat miropolar: �



> 0; K = R

T

D

x

R, independent variation with respet to (';R),

�eld equations of seond order, independent mirorotations, strong loal oupling of �rst order between

ontinuum rotations and mirorotations, in�nitesimal (onstitutive) Cauhy stress tensor � and �nite

seond Piola-Kirhho� stress tensor S

2

:= F

�1

D

F

W

mp

(U) are non-symmetri, \tri�edre mobiles" in the

original Cosserat terminology. Appropriate for rather rigid mirosopi speimens, frature exluded sine

�



> 0.

3.1 traditional in�nitesimal Cosserat miropolar: �



> 0; � = D

x

A; R = exp(A); A 2 so(3), indepen-

dent variation w.r.t. displaement and in�nitesimal mirorotations (u;A), linearization of (3). The next

three ases are our own ontribution:

4. seond order Cosserat miropolar (or relaxed miropolar theory): �



= 0, K = R

T

D

x

R, indepen-

dent variation with respet to (';R), �eld equations of seond order, independent mirorotations, weak

non-loal oupling of seond order, in�nitesimal (linearized) Cauhy stress tensor � is still symmetri,

seond Piola-Kirhho� stress tensor S

2

:= F

�1

D

F

W

mp

(U) is non-symmetri. The antisymmetri part

of the stresses is determined. Appropriate for marosopi speimens, in priniple allowing for frature.

4.1 seond order onsistent Cosserat miropolar: as ase (4), but independent Dirihlet boundary on-

dition for the mirorotations R

j

�

= R

d

replaed by onsistent oupling requirement R

j

�

= polar(r')

j

�

.

4.2 �nite elastiity with free rotations and mirostruture: �



= 0; L



= 0, independent variation

w.r.t. (';R), no internal length sale. Symmetry of the seond Piola-Kirhho� tensor S

2

is a loal

side ondition oming from balane of angular momentum whih does not imply that R = polar(r').

Loal minimization of rotations. Weak solutions of lassial �nite elastiity are automatially stationary

solutions of this minimization problem. In this sense enompassing lassial �nite elastiity.

5. lassial �nite elastiity: �



= 0; L



= 0, independent variation only w.r.t. ', no internal length sale.

The seond Piola-Kirhho� tensor S

2

is automatially symmetri.

6. lassial in�nitesimal elastiity: �



= 0; L



= 0, variation w.r.t. ', no internal length sale. The

in�nitesimal Cauhy stress � is symmetri.

One may be inlined to think that ase (1) is losest to lassial elastiity. This is not true. To the ontrary,

the inuene of the urvature part on the deformation is muh more pronouned sine the spatial variation

of the ontinuum rotations is diretly penalized. Suh a model tends to systematially maximize the material

length sale e�ets, see e.g. [Eri99, p.222℄ where stress onentration fators are omputed for the di�erent

ases based on the in�nitesimal theory. Use of (1) as a model in its own right has been put into question on

theoretial grounds [Eri68, p.698℄ and rejeted by Koiter [Koi64℄ as well who, however, prematurely onluded

that ouple stresses altogether played no prominent role. If suh a model is intended to approximate lassial

linear elastiity, then the appearing length sale L



must be hosen signi�antly smaller than the length sale

L



, whih appears in the Cosserat miropolar models with independent rotations.

If we assume that lassial in�nitesimal elastiity is a orret approximation to material behaviour under

very small loads but that ouple stresses may nevertheless our in a material [TN65, p.398℄, we prefer for

appliations within the elasti range de�ned on a marosopi level the ase (4) of weak nonloal oupling

(�



= 0) without exluding the other (more mirosopially) ases from our mathematial analysis.

It is lear that if ouple stresses are assumed to be seond order e�ets

21

, then they should not appear

in the in�nitesimal treatment in the �rst plae whih is exatly what we obtain for �



= 0 subsequently.

Experimental evidene [Eri99, p.165 ℄ suggests already that �



� 0:0039� for the in�nitesimal theory, orders

of magnitude smaller than the lassial shear modulus. This value is onsistent with results [DFC98℄ obtained

from alulations on disrete networks with rigid substruture. In the same paper, it is shown that if the

representative volume element is inreased (marosopi ase) then �



! 0 while the geometrial size e�et is

still present.

22

The ase of �



> 0 might be however, suitable for omputations on a mirosale where internal material

length sales are of the order of the geometrial dimensions of the speimen. This is e.g. the ase in models

for single rystals where the mirorotations oneptually should losely follow the lattie vetors for a proper

physial de�nition of them. Then �



� 1 may be advisable sine we do not expet frature.

21

\In lassial elastiity ouple stresses are to be interpreted as a non-loal e�et intimately onneted with the range of the atomi

fores. The ouple stresses are of a higher order in this range than fore-stresses and an therefore usually be negleted."[HK65℄

22

In the same volume [DDC98℄ a numerial investigation of ontat ouples for granular media arrives at the onlusion: \The

e�et of ontat ouples appears only by a seond order term whih is not onsidered by the (in�nitesimal) Cosserat approah."

(in�nitesimal) my addition. In [Bar94, Fig.2℄ it is shown that for strains up to 4 perent the e�ets of partile rotations in idealized

granular materials are pratially absent, whereas for higher strains partile rotation signi�antly dereases the failure stress. The

role of partile rotations is espeially important in shear bands.(ibidem)
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Figure 1: Left: Qualitative inuene of �



and L



on the elasti behaviour in torsion. From bottom to top:

�nite elastiity (5), seond order Cosserat (4), in�nitesimal elastiity (6), �rst order Cosserat (3), linearized �rst

order Cosserat (3�), indeterminate ouple stress theory (1), linearized indeterminate ouple stress theory, rigid

behaviour (vertial axes) (0). Right: �nite elastiity and in�nitesimal linear elastiity oinide in tension for

ideally homogeneous bulk material. No Cosserat e�ets. If inhomogeneity is present, a small Cosserat e�et will

appear, lower urve. If �



> 0, the elasti response in torsion would be sti�er than expeted from alulations

with linear elastiity based on material parameters obtained from measurements in tension, uniform tration

and uniform ompression already for arbitrary small twist. The smaller �



, the larger one may hoose L



in

order to still approximate lassial in�nitesimal elastiity.

We an gain some feeling as regards the inuene of the Cosserat ouple modulus �



and the harateristi

length L



on the �nite Cosserat model by looking at extremal values: L



= 0 orresponds to the physially

possible limit ase of arbitrary large samples, L



=1 orresponds to the limit ase of arbitrary small samples.

L



= 0 L



= 0:1 L



=1

�



= 0 �nite elastiity

with free

rotations and

mirostruture,

ase (4.2),

enompassing

lassial �nite

elastiity model,

ase (5)

new seond order

Cosserat model,

ase (4),

linear: ase (6)

lassial

in�nitesimal

elastiity model,

ase (6)

�



=

�

2

in ertain! ases:

lassial �nite

elastiity model,

ase (5)

�nite �rst order

Cosserat model,

ase (3),

linear: ase (3.1)

linear elastiity

in torsion (7),

inonsistent

torsional tangent

modulus, lassial

in�nitesimal

elastiity in

tension

�



=1 lassial �nite

elastiity model,

ase (5)

traditional

indeterminate

ouple stress

theory, gradient

onstrained model,

ase (1)

totally rigid

behaviour in

torsion, ase (0),

lassial

in�nitesimal

elastiity in

tension

The only row where eah entry does not onit with experiments is the �rst one. It is to be observed that

L



=1 linearizes the behaviour with respet to a given rigid on�guration.

23

For ompleteness we state the �nite gradient onstrained Cosserat miropolar (indeterminate

ouple stress theory) problem as well, formally orresponding to �



= 1. Given the boundary value

23

Uniform tration and uniform ompression do not ativate rotations, hene the lassial identi�ation of the Lam�e onstants

is ahieved independent of �



. Uniform tration alone allows already to determine the Young modulus E and the Poisson ratio

� [Cia88, p.126℄. Contrary to [Gau82, p.411℄ we do not see the possibility to de�ne a spei� \miropolar Young modulus" or

\miropolar Poisson ratio".
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g

d

2 H

1

(
;R

3

); rg

d

2 GL

+

(3;R) a:e: we look for the deformation ' : [0; T ℄� 
 7! R

3

satisfying

I(') =

Z




W

mp

(polar(r')

T

r') +W

urv

(polar(r')

T

D

x

polar(r')) � hf; 'i � hM; polar(r')i dV

�

Z

�

S

hN;'i dS�

Z

�

C

hM



; polar(r')i dS 7! min : w.r.t. ';

W

mp

(U) = � kU � 11k

2

+

�

2

tr [U � 11℄

2

(2.21)

S

lo

2

= F

�1

D

F

W

mp

(U) 2 Sym ; onstitutive stress

W

urv

(K) = �

L

1+p



12

(1 + �

4

L

q



kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

;

'

j

�

= g

d

(t) ; polar(r')

j

�

= polar(rg

d

)

j

�

:

Balane of angular momentum is, as the onsequene of invariane of the ation under rigid rotations, automat-

ially satis�ed and is but a de�ning equation for the moment stress tensor and not reorded here. Observe that

the �rst order, loal ontribution W

mp

(U) is uniformly onvex in U , the ontinuum right streth tensor, but

that F 7!W

mp

(U) fails to be Legendre-Hadamard ellipti with respet to F and is as suh not quasionvex

but satis�es the Baker-Eriksen inequalities, f. setion 9.3. Whether or not the external ouples M;M



should be non-zero is a modelling hoie. Observe as well that this speial elasti material of grade two does

not ompletely ontrol the seond derivatives of the deformation ' whih shows, that a simple ompatness

argument does not suÆe to overome the nonlinearity and non-quasionvexity in the �rst order streth term.

At �rst sight it is therefore not obvious why suh a model an have a regularizing e�et in the �nite ase.

Remark 2.2 (Consistent Dirihlet boundary oupling onditions for the rotations)

For all presented models with internal length sale the mirorotations on the part of the boundary � an in

priniple be spei�ed arbitrarily. This implies �ve degrees of freedom: 3 omponents of the deformation ' and

two orthogonal vetors, the third vetor of the rotation is then de�ned, we all this the rigid Dirhlet ase.

However, if we want to desribe a basially lassial situation, where only '

j

�

= g

d

j

�

is spei�ed, we may as

well impose a onsistent oupling ondition

R

j

�

= polar(r')

j

�

; (2.22)

whih prevents non-ompatibility between miro- and marorotations on the Dirihlet boundary � and allows

for otherwise impossible homogeneous solutions. It leads to three essential degrees of freedom at the Dirihlet

boundary and disposes us from the need to motivate any independent boundary ondition for R. In addition,

the Boltzmann axiom is not violated on �. It is mathematially possible to leave the mirorotations entirely

free on �, however, this does not seem to orrespond to any physial situation in a real body.

3 Non-dissipative Cosserat miropolar elasto-plastiity

3.1 Extension to �nite miropolar elasto-plastiity

Now we extend the formulation of miropolar elastiity to over �nite plastiity. It should be lear that there

exists various ways of obtaining suh an extension, for an overview of the ompeting models we refer to the

instrutive survey artile [FS03℄. Inidentally, the Cosserats themselves [CC09, p.5℄ already envisaged the

appliation of their general theory to plastiity and frature. For oniseness we take �

5

= �

6

= 1; �

7

= 0 for

the urvature term in this part.

In a �rst preliminary step we onsider the elasti problem de�ned over a transformed domain 


�

= �(
)

where � is a di�eomorphism. With respet to 


�

we assume the miropolar deomposition

r

�

'(�) = F

�

= R

�

� U

�

; (3.23)

suh that the Cosserat problem on 


�

reads

I

�

('

�

; R

�

) =

Z




�

W

mp

(R

T

�

r

�

'

�

) +W

urv

(R

T

�

D

�

R

�

)� hf

�

; '

�

i � hM

�

; R

�

i d�

�

Z

�

S;�

hN

�

; '

�

i dS

�

�

Z

�

C;�

hM

�;

; R

�

i dS

�

7! min : w.r.t. ('

�

; R

�

); (3.24)

R

�j

�

�

= polar(rg

�

)

j

�

�

; '

�j

�

�

= g

�

(�) :
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Figure 2: Shemati piture of the transformed elasti Cosserat kinematis.

Now we transform the problem to the �titious referene on�guration 
: the transformation of variables

formula and Nansons relation yields

Z




W

mp

(U

�

) det[r�℄ +W

urv

(K

�

) det[r�℄� hf; 'i det[r�℄� hM;R

�

i det[r�℄ dV

�

Z

�

S

hN;'i kCofr�:~nk dS�

Z

�

C

hM



; R

�

i kCofr�:~nk dS 7! min : w.r.t. (';R

�

);

R

�

j

�

= polar(rg

d

� r�

�1

)

j

�

; '

j

�

= g

�

(�(x)) = g

d

(3.25)

W

mp

(U

�

) = � k sym(U

�

� 11)k

2

+ �



k skew(U

�

)k

2

+

�

2

tr

�

sym(U

�

� 11)

�

2

W

urv

(K

�

) = �

L

1+p
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(1 + �

4

L

q



kK

�

k

q

) kK

�

k

1+p

r

�

'

�

= r'�r�

�1

; U

�

= R

T

�

r

�

'

�

; r� 2 GL

+

(3;R)

K

�

= R

T

�

D

�

R

�

= R

T

�

(�(x))

�

D

x

�

R

�

(�(x))

�

� r�

�1

�

:

Coneptually, the plastiity model is obtained by relaxing the ompatibility of r�: we replae r� with F

p

,

identify F

e

(x) as F

�

= r

�

'

�

(�(x)), set R

e

(x) := R

�

(�(x)) and need to supply a thermodynamial admissible

ow rule for F

p

. This is tantamount to onsider diretly the multipliative deomposition of the elasti part of

the deformation gradient

F

e

= R

e

� U

e

; (3.26)

whih de�nes miropolar elasti rotations R

e

and miropolar elasti streth U

e

.

The thermodynamial admissible ow rule for F

p

an be obtained as follows. Consider the rate of hange of

the elasti energy density only due to the time variation of the inompatible on�guration F

p

(variation of the

\domain" of de�nition F

p

): after some simple but tedious manipulations we obtain

d

dt

�

W

mp

(U

e

) det[F

p

℄ +W

urv

(K

e

) det[F

p

℄

�

= hdet[F

p

℄

�

U

T

e

D

U

e

W

mp

(U

e

)�W

mp

(U

e

) 11

�

; F

p

d

dt

�

F

�1

p

�

i+ (3.27)

+ hdet[F

p

℄

�

K

T

e

D

K

e

W

urv

(K

e

)�W

urv

(K

e

) 11

�

; F

p

d

dt

�

F

�1

p

�

i ;
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where it is understood that K

T

e

D

K

e

W

urv

(K

e

) =

P

3

i=1

K

i;T

e

� �

K

i

e

W

urv

(K

1

e

;K

2

e

;K

3

e

). A suÆient ondition for the

seond law of thermodynamis to be ful�lled [Nef03a℄ is to guarantee the redued dissipation inequality

d

dt

�

W

mp

(U

e

) det[F

p

℄ +W

urv

(K

e

) det[F

p

℄

�

� 0 ; (3.28)

where F;R

e

are held onstant. This an be ahieved by hoosing the left-invariant ow rule

d

dt

�

F

�1

p

�

2 �F

�1

p

� f (�

E

); �

E

= �

E;mp

+�

E;urv

�

E;mp

= U

T

e

D

U

e

W

mp

(U

e

) det[F

p

℄�W

mp

(U

e

) det[F

p

℄ 11 (3.29)

�

E;urv

= K

T

e

D

K

e

W

urv

(K

e

) det[F

p

℄�W

urv

(K

e

) det[F

p

℄ 11 ;

where the ow funtion f : M

3�3

7! P(M

3�3

) governs the plasti evolution and must satisfy 8 � : hf (�);�i �

0. Suh a formulation an be alled of pre-monotone type in the sense of the lassi�ation for in�nitesimal

elasto-plasti models in [Alb98℄.

Here �

E

denotes the total elasti Eshelby stress tensor (the driving fore behind evolving inhomo-

geneities in the referene on�guration [Mau99℄) whih may be redued to �

M

= F

T

e

D

F

e

W (F

e

; R

e

), the elas-

ti Mandel stress tensor in ase of a deviatori ow rule whih preserves the inompressibility onstraint

det[F

p

℄ = 1. The Eshelby stress tensor has two di�erent ontributions: �

E;mp

due to maro-streth and �

E;urv

due to miro torsion-urvature.

In the ase of a simple material a similar derivation of the ow rules for multipliative elasto-plastiity

based on the Eshelby tensor has been given in [Nef03, Nef03a℄. Note that the multipliative deomposition

[Lee69, Man73℄ of the deformation gradient into elasti and plasti parts

r' = F = F

e

� F

p

; (3.30)

is a by-produt of the derivation.

24

In the quasi-stati setting we are thus led to study the following system of oupled partial di�erential and

evolution equations for the �nite deformation ' : [0; T ℄ � 
 7! R

3

, the plasti deformation F

p

: [0; T ℄ � 
 7!

GL

+

(3;R) and the independent Cosserat elasti mirorotation R

e

: [0; T ℄� 
 7! SO(3)
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While we ontinue to use the term multipliative deomposition and intermediate on�guration it is rather an elasti

isomorphism in the sense of [Ber98℄. Some authors use P instead of F

�1

p

, [CHM02℄. Examples for lassial �nite plastiity

formulations may be found in [Sim88, SO85, Mie95, Sim98, SH98, EGR90, CHM00, Mie00, OR99℄. Di�erent models have been

ompared numerially in [NW03℄. Note that F

p

is not a plasti strain but rather a relaxed on�guration: in a neighbourhood of a

point, F

p

an be a rigid rotation, while the orresponding plasti strain C

p

� 11 = F

T

p

F

p

� 11 vanishes.
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To omplete the phenomenologial marosopi elasti-visoplasti Cosserat miropolar model we speify

f = �

�

suh that we retrieve the von Mises type 'inompressible' J

2

-viso-plastiity with elasti domain

E := f�

E

j k dev(sym�

E

)k � �

y

g and yield stress �

y

. To this end we take as visoplasti potential

�

: M

3�3

7! R

of generalized Norton-Ho� overstress type

25

the following funtion:

�
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E

) =

8
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:

0 �
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2 E
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(r+1)(k+1) �

p

�

1 +

�

kdev(sym�

E

)k��

y

��

0

�

r+1

�

k+1

�

��
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�
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62 E ;

(3.32)

where �

p

> 0 is a relaxation time due to essentially plasti proesses inside the grains, r; k > 0 and ��

0

is a stress

like material onstant. This de�nition is onsistent with the postulate of maximum plasti dissipation. The

parameter r allows to adjust the smoothness of the ow rule when passing the elasti boundary. A typial range

for k in engineering appliations is k 2 f0; : : : ; 80g. For k ! 1 we reover formally ideal rate-independent

plastiity. A simple alulation shows that the orresponding single valued subdi�erential is given by

�

�

�

(�

E

) =

1

�

p
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1 +

�

k dev sym�

E

k � �

y

��

0

�

r+1

+

!

k

�

k dev sym�

E

k � �

y

��

0

�

r

+

dev sym�

E

k dev sym�

E

k

: (3.33)

The resulting model (3.31) is as lose as possible to lassial marosopi elasto-plasti models, notably we

did not introdue any plasti mirorotation R

p

together with a multipliative deomposition of mirorotations

R = R

e

�R

p

, nor did we split arti�ially a total urvature K into elasti and plasti parts as has been proposed

in [DSW93, Ste94a, IW98, GT01, Gra03℄. Suh a deomposition represents an additional modelling assumption

not neessarily related to elasti Cosserat e�ets.

26

It is lear that �

E

will not be symmetri in general even under isotropy onditions. Thus the hoie of

sym(�

E

) in the de�nition of the elasti domain E sets the plasti spin to zero, onsistent with urrent lassial

isotropi marosopi formulations for polyrystals. It is possible to inorporate hardening e�ets independent

of the Cosserat framework in the standard, loal phenomenologial fashion.

We mention that for �



= 0 we have

R

e

skew(D

U

e

W

mp

(U

e

)U

T

e

)R

T

e

= skew (B

approx

) ; (3.34)

i.e. the reation stress in the Cosserat model (3.31) is the driving fore of the visoelasti evolution in [Nef03a,

(P3)℄.

3.2 Elasti-visoplasti Cosserat model for polyrystals with grain rotations

A formidable hallenge for urrent researh is to �nd tratable ontinuum models for rystalline materials at

the same time apturing their physial essene and being geometrially exat. There are essentially two ways

to proeed: either one starts from the better known single rystal ase [CO92, OR99, ORS00℄ and omputes

a large array of single rystals in mutual ontat or one enrihes the lassial desription with new variables

taking aount of the mirostrutural evolution in an averaged sense. We follow the seond line of thought.

In a polyrystal, single rystal grains are joined together along grain boundaries. The intergranular grain

boundary is mainly responsible for the elasti and visous response of the polyrystal while plasti e�ets

are loated predominantly inside eah grain operating by slip and twinning along glide planes. The absene

of any visous grain boundary in single rystals explains why the plastiity of single rystals is traditionally

modelled as rate-independent. Consistently, for a speimen made of a single rystal, relaxation e�ets are

pratially absent whereas the internal surfae between grains, where fritional e�ets are dominant, inreases

for smaller grain size and leads to pronouned rate-dependent response already below a marosopi yield limit

[Nef03a℄. Hene, a polyrystal is muh more than a simple assembly of single rystals orroborating the fat

that the small sale (single rystal) behaviour an be quite di�erent from the bulk for non-linear heterogeneous

material already for small loads.

In addition, depending on the size of the onstituting grains, a polyrystal has di�erent elasto-plasti prop-

erties. An aount of the neessity for marosopi problems to inorporate internal length sale e�ets into a

model has been reently given in [WCZM02℄. Polyrystalline opper has been made six times harder (apparent

25

In �nite plastiity, the question whether or not the plasti ow has a gradient struture seems to be of minor importane as

far as mathematial existene results are onerned in sharp ontrast to the in�nitesimal ase [Alb98, HR99℄. However, the very

feasibility of a time-inremental variational formulation [Mie00, OR99, CHM00℄ is ontingent upon the potential struture.

26

It is motivated, though, by the experimental observation [FMAH94℄ that geometrial size e�ets are beoming inreasingly

important in the plasti range. These size e�ets are explained on a mirosale as being due to disloation interations. It seems

therefore more natural to aount for them diretly by inorporating a disloation density CurlF

p

into the model and providing

non-loal ow rules of paraboli type for F

p

. We will not pursue this issue here.

16



yield stress �

y

nano

� 6 �

y

lass

) by reduing the grain-diameter dramatially- a onsequene of the Hall-Peth

relation. This shows the general need for the inorporation of an internal length sale even when viewing the

polyrystal marosopially.

27

Experimental evidene [DML91, LLT94℄ shows that the rotations of the individual grains e.g. in polyrys-

talline aluminium speimens may deviate onsiderably from the ontinuum rotation whih must be viewed as

orthogonal part of the average grain deformation gradient over some representative volume element. This pi-

ture lends itself most naturally to a treatment in a Cosserat ontext: we identify the averaged individual elasti

rotations of grains with the elasti Cosserat mirorotations and the orthogonal part of the averaged elasti

deformation gradient with the elasti ontinuum rotation.

28

Remaining in this ontext, it is lear, that a material, in whih a substruture is allowed to rotate rather

independently, should not beome more rigid than a orresponding lassial (equivalent, marosopi) homoge-

neous material. Therefore, we onlude again, that �



= 0 is a reasonable hoie for a polyrystal treated on a

marosopi level.

29

If the related lassial homogeneous desription has the strain energy

W (U) = � kU � 11k

2

+

�

2

tr [U � 11℄

2

= � k sym(U � 11)k

2

+

�

2

tr [U � 11℄

2

; (3.35)

then after relaxing the onstraint on the rotations to oinide with the ontinuum rotations we would rather

expet the overall marosopi strain energy due to marosopi streth to be smaller than the homogeneous

one, i.e. W

mp

(U) �W (U). Sine in priniple skew(U) an be large, we onlude onsistently �



= 0.

30

In the elasto-plasti theory the onsequenes on a marosale indued by letting �



> 0 are even more

severe than in the elasti ase: imagine a yli loading history whih systematially leaves the elasti region.

In general, we will obtain a time dependent inhomogeneous distribution of the plasti deformation F

p

(x). For

�



> 0, the so alled elasti trial step

31

will be unonditionally stable irrespetive of the aumulated

spatial inhomogeneities of F

p

as long as F

p

2 L

1

(
;GL

+

(3;R)), while �



= 0 allows some sort of elasti

fatigue/softening/failure/frature sine the positive de�niteness of the elasti tangent sti�ness matrix w.r.t.

the referene on�guration is a�eted by the spatial ontinuity properties of F

p

. This apparent softening,

namely the derease of elasti moduli, is a well doumented experimental fat. For a polyrystal, we then adopt

the following piture: the plasti deformation F

p

represents on a marosopi level the permanent material

substruture, to be more preise, the permanent averaged umulative plasti deformation of the individual

grains due to slip and twinning. We may all therefore F

p

the average plasti grain transformation and R

e

the

average elasti grain rotation.

3.3 In�nitesimal elasto-plasti Cosserat model

If we assume that plasti deformations F

p

and elasti mirorotations remain small, we an onsiderably simplify

the problem (3.31). We expand R

e

= 11 + A

e

+ : : : ; A

e

2 so(3); kA

e

k

2

� 1; F

p

= 11 + p + : : : ; kpk

2

� 1

and hoose as elasti domain E := f�

E

j k dev(sym�

E

)k � �

y

g

32

, then (3.31) redues to the in�nitesimal

elasto-plasti system in variational form with non-dissipative Cosserat e�ets and reads

Z




� k"� "

p

k

2

+ �



k skew(ru�A

e

)k

2

+

�

2

tr ["℄

2

+ �

L

2



12

kr axl(A

e

)k

2

� hf; ui � hM;A

e

i dV

�

Z

�

S

hN; ui dS�

Z

�

C

hM



; A

e

i dS 7! min : w.r.t. (u;A

e

) at onstant "

p

"

e

= "� "

p

; "(ru(x)) =

1

2

(ru

T

+ru); "

p

=

1

2

(p

T

+ p);

_"

p

(t) 2 f (T

E

); T

E

= 2� ("� "

p

) (3.36)

u

j

�


(t; x) = g

d

(t; x)� x; A

e

j

�

= skew(rg

d

(t; x))

j

�

:

27

Whether the inorporation of the neessary material length sale must be done in a Cosserat framework, annot be deided.

But the experimental evidene [FMAH94℄ suggests that size dependent hardening ours predominantly under torsion (possible

rotations), while in uniaxial tension (no rotations) strain gradients are negligible and length sale e�ets remain small.

28

Observe that these two rotations do not oinide in general: the averaged rotation is understood to be the best-

approximating single rotation to a rotation �eld de�ned over a representative volume element while the ontinuum rotation

is the orthogonal part of the averaged deformation gradient. In the in�nitesimal ase, both so de�ned in�nitesimal rotations

oinide!

29

The same argument put di�erently: Consider a wall made of onrete briks and ast onrete, respetively. The ast wall will

have more rigidity.

30

\Polyrystalline ... type mirostrutures behave lassially or nearly lassially (in their elasti range)."[Lak95, p.22℄

31

or elasti preditor. In an operator-split method it amounts to 'freezing' the plasti evolution and to ompute elasti equilibrium.

32

no in�nitesimal plasti spin: p = "

p

and isohori plastiity: tr ["

p

℄ = 0 and assume h"

p

:~n; ~ni = 0 on �

S

[ �

C

.
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The orresponding equilibrium system of equations for pure Dirihlet onditions and without external ouples

M;M



is given by (note that kA

e

k

2

= 2k axl(A

e

)k

2

for A

e

2 so(3;R))

0 = Div � + f; x 2 


� = 2� ("� "

p

) + 2�



(skew(ru)�A

e

) + � tr ["℄ � 11

0 = �

L

2



12

�axl(A

e

) + �



axl((skew(ru)�A

e

)

_"

p

(t) 2 f (T

E

); T

E

= 2� ("� "

p

) (3.37)

u

j

�


(t; x) = g

d

(t; x)� x; x 2 �
 ; A

e

j

�


= skew(rg

d

(t; x))

j

�


:

tr ["

p

(0)℄ = 0 ; "

p

(0) 2 Sym(3) :

It must be observed that this ompletely redued set of equations is still intrinsially thermodynamially ad-

missible. The model an also be obtained as limit ase of models proposed in [IW98, Bes74, Lip69℄.

The in�nitesimal model has already been ompletely justi�ed as a non-loal regularization (�



! 0) of

lassial ideal rate-independent plastiity in [NC03℄ using the methods exploited before in [Che98℄. Preisely,

it has been proved that (3.37) admits a unique global solution. The system (3.36) is therefore a reasonable

regularization of lassial plastiity in the sense that the system remains of seond order and the plasti ow

part is left unaltered ompared to the traditional one.

In [DSW93, p.815℄ an elasto-plasti model based on the in�nitesimal Cosserat theory with dissipative mi-

ropolar e�ets has been investigated. They show that �



> 0 has a deisive inuene

33

on loalization e�ets

essentially exluding mode II shear failure. Sine our redued model is non-dissipative it is diÆult however, to

transfer this insight diretly. This remark �nishes the modelling part of this ontribution.

33

Sine the in�nitesimal model is neither observer-invariant nor frame-indi�erent it is not possible to onlude on physial grounds

that �



> 0 is neessary for the general theory. A model whih is, stritly speaking, physially irrelevant annot lead to stringent

onlusions on the physial signi�ane of some parameter. The in�nitesimal model has only merits as a �rst approximation. We

might wonder therefore about the status of mathematial investigations of the in�nitesimal elasto-plasti models and the e�ort

still put into the investigations of their intriaies (rate-independent limit), whih are either irrelevant for the geometrially exat

model or misleading. We onlude that their investigation is mainly of high inner - mathematial interest. This remark applies

mutatis mutandis to the numerial treatment of lassial in�nitesimal elasto-plastiity. Here re�ned time-integration algorithms of

higher order are investigated without leading to onsequenes for the numerial treatment of the exat theory, whih is faed with

ompletely di�erent problems.
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4 Mathematial analysis

4.1 Statement of the �nite elasti Cosserat problem in variational form

Let us now return to the purely elasti Cosserat ase. The problem has been posed in a variational form. The

task is to �nd a pair (';R) 2 R

3

� SO(3;R) of deformation ' and independent mirorotation R satisfying

Z




W

mp

(U) +W

urv

(K) � hf; 'i � hM;Ri dV �

Z

�

S

hN;'i dS�

Z

�

C

hM



; Ri dS 7! min : w.r.t. (';R);

U = R

T

F; R

j

�

= R

d

; '

j

�

= g

d

(4.38)

W

mp

(U) = � k sym(U � 11)k

2

+ �



k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

W

urv

(K) = �

L

1+p



12

(1 + �

4

L

q



kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

;

K = R

T

D

x

R =

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

; third order urvature tensor :

The total elastially stored energy W = W

mp

+ W

urv

depends on the deformation gradient F = r' and

mirorotations R together with their spae derivatives. Here 
 � R

3

is a domain with boundary �
 and

� � �
 is that part of the boundary, where Dirihlet onditions g

d

; R

d

for displaements and mirorotations,

respetively, are presribed while �

S

� �
 is a part of the boundary, where tration boundary onditions N are

applied with �\�

S

= ;. The external volume fore is f and M takes on the role of external volume ouples. In

addition, �

C

� �
 is the part of the boundary where external surfae ouples M



are applied with �\ �

C

= ;.

The parameters �; � > 0 are the Lam�e onstants of lassial elastiity, �



� 0 is alled the Cosserat ouple

modulus and L



> 0 introdues an internal length whih is harateristi for the material, e.g. related to

the grain size in a polyrystal. If not stated otherwise, we assume that �

5

> 0; �

6

> 0; �

7

� 0.

4.2 The di�erent ases

We distinguish �ve ompletely di�erent situations:

I: �



> 0; �

4

� 0; p � 1; q � 0, unonditional elasti maro-stability, loal �rst order Cosserat miropo-

lar, unquali�ed existene, mirosopi speimens, non-zero Cosserat ouple modulus. Frature exluded.

II: �



= 0; �

4

> 0; p � 1; q > 1, elasti pre-stability, nonloal seond order Cosserat miropolar, maro-

sopi speimens, in a sense lose to lassial elastiity, zero Cosserat ouple modulus. Frature exluded.

III: �



=1; �

4

� 0; p � 1; q � 0, unonditional elasti maro-stability, the onstrained gradient Cosserat

miropolar problem (indeterminate ouple stress model (2.21)). Compatible Dirihlet boundary ondi-

tions: '

j

�

= g

d

; polar(r�)

j

�

= polar(rg

d

)

j

�

.

IV: �



= 0; �

4

= 0; 0 < p � 1; q = 0, elasti pre-stability, nonloal seond order Cosserat miropolar, maro-

sopi speimens, in a sense lose to lassial elastiity, zero Cosserat ouple modulus. Sine possibly

' 62W

1;1

(
;R

3

), due to lak of elasti oerivity, inluding frature in multiaxial situations.

V: �



= 0;L



= 0, elasti pre-stability, �nite elastiity with free rotations and mirostruture. Weak solu-

tions of �nite elastiity are stationary points of this minimization problem. Allowing for sharp interfaes.

We refer to 0 < p < 1; q � 0 as the sub-ritial ase, p = 1; q � 0 as the ritial ase and p � 1; q > 1 as

the super-ritial ase. We will mathematially treat the �rst three ases.

4.3 The oerive inequality

The deisive analytial tool for the treatment of ase II (super-ritial) is the following non-trivial oerive

inequality:

Theorem 4.1 (Extended 3D-Korn's �rst inequality)

Let 
 � R

3

be a bounded Lipshitz domain and let � � �
 be a smooth part of the boundary with non

vanishing 2-dimensional Lebesgue measure. De�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g and let F

p

; F

�1

p

2

C

1

(
;GL(3;R)). Moreover suppose that CurlF

p

2 C

1

(
;M

3�3

). Then

9 

+

> 0 8 � 2 H

1;2

Æ

(
;�) : kr�F

�1

p

(x) + F

�T

p

(x)r�

T

k

2

L

2

(
)

� 

+

k�k

2

H

1;2

(
)

:
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Proof. The proof has been presented in [Nef02℄. Note that for F

p

= r� we would only have to deal with the

lassial Korn's inequality evaluated on the transformed domain �(
). However, in general, F

p

is inompat-

ible giving rise to a non-riemannian manifold struture. Compare to [CG01℄ for an interpretation and the

physial relevane of the quantity CurlF

p

. �

Motivated by the investigations in [Nef02℄, it has been shown reently by my olleague W. Pompe [Pom03℄

that the extended Korn's inequality an be viewed as a speial ase of a general lass of oerive inequalities

for quadrati forms. He was able to show that indeed F

p

2 C(
;GL(3;R)) is suÆient for (4.1) to hold without

any ondition on the ompatibility.

However, taking the speial struture of the extended Korn's inequality again into aount, work in progress

suggests that ontinuity is not really neessary: instead F

p

2 L

1

(
;GL(3;R)) and CurlF

p

2 L

3+Æ

(
) should

suÆe, whereas F

p

2 L

1

(
;GL(3;R)) alone is not suÆient, see the ounterexample presented in [Pom03℄.

In view of the important role of the extended Korn's �rst inequality let us agree in saying that a material is

elastially pre-stable, whenever

9H 2 M

3�3

; H 6= 0 : D

2

F

W (x; F ):(H;H) = 0 (4.39)

9 

+

> 0 9 G 2 GL

+

(3;R) 8H 2 M

3�3

: D

2

F

W (x; F ):(H;H) � 

+

kG(x)

T

H +H

T

G(x)k

2

:

In this terminology, in�nitesimal lassial elastiity is pre-stable with G = 11 due to the lassial Korn's �rst

inequality and the extended Korn's �rst inequality links the smoothness of G to the positive de�niteness of the

elasti tangent sti�ness tensor.

4.4 The geometrially exat elasti Cosserat model

The following results are the �rst existene theorems for geometrially exat elasti Cosserat models known to

the author:
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Theorem 4.2 (Existene for 3D-�nite elasti Cosserat model: ase I.)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and R

d

2

W

1;1+p

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and supposeN 2 L

2

(�

S

;R

3

) together withM 2 L

1

(
;M

3�3

)

and M



2 L

1

(�

C

;M

3�3

). Then (4.38) with material onstants onforming to ase I admits at least one mini-

mizing solution pair (';R) 2 H

1

(
;R

3

)�W

1;1+p

(
; SO(3;R)).

Proof. We apply the diret methods of variations and onsider for simpliity N;M;M



= 0. With the presrip-

tion of (g

d

; R

d

) it is lear that I <1 for some pair (';R). Observe �rst that the miropolar urvature term K

ontrols R 2W

1;1+p

(
; SO(3;R)), sine kKk = kR

T

D

x

Rk = kD

x

Rk, pointwise and �

5

; �

6

> 0.

Moreover, SO(3;R) is weakly losed in the topology of W

1;1+p

(
). We omit to show that I is bounded

below: this will turn out not to be neessary. We may hoose dereasing (in�mizing) sequenes of pairs ('

k

; R

k

).

The urvature ontribution together with the appropriate boundary onditions and Poinar�es inequality yields

boundedness of R

k

� W

1;1+p

(
; SO(3;R)). We may extrat a subsequene again denoted by R

k

onverging

strongly in L

1+p

(
) to an element

~

R 2 W

1;1+p

(
; SO(3;R)) sine p > 0 by assumption. Beause �



> 0, it is

immediate that r'

k

= F

k

is bounded in L

2
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), independent of R

k

on aount of
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k
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� 11k
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; (4.40)
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The proposed �nite results determine the marosopi deformation ' 2 H

1

(
;R

3

) and not more. This means that disontinuous

marosopi deformations by avities or the formation of holes are not exluded (possible mode I failure). If �



> 0 frature is

e�etively ruled out, whih is unrealisti.
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where we made use of the appropriate boundary onditions for '

k

= x+u

k

(x), and applied Poinar�es inequality

to u

k

sine it has zero boundary values on �. This yields the boundedness of '

k

in H

1

(
;R

3

). Hene we may

extrat a subsequene, not relabelled, suh that '

k

* ~' 2 H

1

(
;R

3

). Furthermore, we may always obtain a

subsequene of ('

k

; R

k

) suh that U

k

= R

k;T

F

k

onverges weakly in L

2

(
) to an element

~

U on aount of the

boundedness of the streth energy and �



> 0.

For p � 1 we have as well that R

k

onverges indeed strongly in L

2

(
) to an element

~

R 2 H

1;2

(
; SO(3;R)).

Thus R

k;T

F

k

onverges weakly to

~

R

T

F in L

1

(
). The weak limit in L

1

(
) must oinide with the weak limit

of U

k

in L

2

(
). Hene,

~

U =

~

R

T

r ~'.

Sine the total energy is onvex in (U;K) and (r';DR), we get

I( ~';

~

R) =

Z




W

mp

(

~

U) +W

urv

(

~

K)� hf; ~'i dV

� lim inf

k!1

Z




W

mp

(U

k

) +W

urv

(K

k

)� hf; '

k

i dV = lim

k!1

I('

k

; R

k

) ; (4.42)

whih implies that the limit pair is a minimizer. Note that the limit mirorotations

~

R may fail to be ontinuous

if p � 2 (non-existene or limit ase of Sobolev embedding). Moreover, uniqueness annot be asertained,

sine SO(3;R) is a nonlinear manifold (and the onsidered problem is indeed nonlinear), suh that onvex

ombinations of rotations are not rotations in general. Sine the funtional I is di�erentiable the minimizing

pair is a stationary point and therefore a solution of the �eld equations (2.12). Note again that the limit

mirorotations are trivial in L

1

(
) but may fail to be ontinuously distributed in spae. That under these

unfavourable irumstanes a minimizing solution may nevertheless be found is entirely due to �



> 0 and

p � 1. �

We ontinue with the super-ritial ase appropriate for marosopi situations and lose to lassial elastiity.

Theorem 4.3 (Existene for 3D-�nite elasti Cosserat model: ase II.)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and R

d

2

W

1;1+p+q

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2

L

1

(
;M

3�3

) and M



2 L

1

(�

C

;M

3�3

). Then (4.38) with material onstants onforming to ase II admits

at least one minimizing solution pair (';R) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)).

Proof. We repeat the argument of ase I. However, the boundedness of in�mizing sequenes is not immediately

lear. Boundedness of the rotations R

k

holds true in the spae W

1;1+p+q

(
; SO(3;R)) with 1 + p+ q > N = 3,

hene we may extrat a subsequene, not relabelled, suh that R

k

onverges strongly to

^

R 2 C

0

(
; SO(3;R)) in

the topology of C

0

(
; SO(3;R)) on aount of the Sobolev-embedding theorem. Along suh strongly onvergent

sequene of rotations, the orresponding sequene of deformations '

k

is also bounded in H

1

(
;R

3

). However,

this is not due to a basially simple pointwise estimate as in ase I, but only true after integration over the

domain: at fae value we only ontrol ertain mixed symmetri expressions in the deformation gradient. More

preisely, we have

1 >

Z




W

mp

(U

k

) +W

urv

(K

k

)� hf; '

k

i dV �

Z




W

mp

(U

k

)� hf; '

k

i dV

�

Z




W

mp

(U

k

) dV � kfk

L

2

(
)

k'

k

k

H

1;2

(
)

�

Z




�

4

kR

T

k

r'

k

+r'

T

k

R

k

� 211k

2

dV � kfk

L

2

(
)

k'

k

k

H

1;2

(
)

(4.43)

�

Z




�

4

kR

T

k

ru

k

+ru

T

k

R

k

k

2

dV � C

1

ku

k

k

H

1;2

(
)

+ C

2

=

Z




�

4

k(R

k

�

^

R+

^

R)

T

ru

k

+ru

T

k

(R

k

�

^

R +

^

R)k

2

dV � C

1

ku

k

k

H

1;2

(
)

+ C

2

�

Z




�

4

k

^

R

T

ru

k

+ru

T

k

^

Rk

2

| {z }

ombinations of derivatives

dV � C

3

k

^

R�R

k

k

1

ku

k

k

2

H

1;2

(
)

� (C

1

+ 2 k

^

R�R

k

k

1

) ku

k

k

H

1;2

(
)

+ C

2
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� (

�

4



K

� C

3

k

^

R�R

k

k

1

) ku

k

k

2

H

1;2

(
)

� (C

1

+ 2 k

^

R�R

k

k

1

) ku

k

k

H

1;2

(
)

+ C

2

;

where we made use of the appropriate boundary onditions for '

k

= x + u

k

and applied the extended Korn's

inequality (4.1) in the improved version of [Pom03℄ yielding the positive onstant 

K

for the ontinuous miroro-

tation

^

R. Sine k

^

R�R

k

k

1

! 0 we onlude the boundedness of u

k

in H

1

(
). Hene, '

k

is bounded in H

1

(
).

Now we obtain that U

k

*

~

U =

^

R

T

r ~' by onstrution with the notations as in ase I. The remainder proeeds

as in ase I. This �nishes the argument. The limit mirorotations

^

R are indeed found to be ontinuous. �

Theorem 4.4 (Existene for 3D-�nite elasti Cosserat model with nonlinear volume part)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and R

d

2

W

1;1+p+q

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2

L

1

(
;M

3�3

) and M



2 L

1

(�

C

;M

3�3

). Assume furthermore that W

mp

has the form

W

mp

(U) = � k sym(U � 11)k

2

+ �



k skewUk

2

+ �

1

kCof Uk

2

� �

2

ln det[U ℄ + �

3

(det[U ℄� 1)

2

; (4.44)

with �

1

; �

2

; �

3

> 0. Then (4.38) with material onstants onforming to ase I (if �



> 0) or onforming to ase

II (if �



= 0) admits at least one minimizing solution pair (';R) 2 H

1

(
;R

3

) �W

1;1+p+q

(
; SO(3;R)) and

det[r'℄ > 0 a:e:

Proof. The argument of ase I/II an be modi�ed. We note �rst that the additional terms involving �

i

; i = 1; 2; 3

are in fat independent of R and an be redued to their dependene on F . The additional terms have no

inuene on the shear failure. Seond, the additional terms are polyonvex [Bal77℄ w.r.t. F . Third,

W

mp

! 1 for det[F ℄ ! 0. In addition to the properties of minimizing sequenes in ase II we obtain that

Cof F

k

* Cof F 2 L

2

(
); det[F

k

℄* det[F ℄ 2 L

1

(
) due to separate ontrol of the ofator and determinant in

the energy. The result follows by standard arguments. The minimizer may not be a solution of the orrespond-

ing Euler-Lagrange equations. Note that replaing � k sym(U � 11)k

2

with �

0

kUk

2

would deouple the problem

and remove the possibility of elasti shear failure. �

Corollary 4.5 (Existene for 3D-onstrained Cosserat model: ase III)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and polar(rg

d

) 2

W

1;1+p

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and supposeN 2 L

2

(�

S

;R

3

) together withM 2 L

1

(
;M

3�3

)

and M



2 L

1

(�

C

;M

3�3

). Then problem (2.21) admits at least one minimizing solution ' 2 H

1;2

(
;R

3

).

Proof. The proof mimis ase I sine the sequene of in�mizing rotations R

k

is onstrained to the orthogonal

part polar(F

k

) of the orresponding sequene of deformation gradients F

k

. �

Remark 4.6

Complete higher regularity of ' in the onstrained Cosserat model, i.e. ' 2 H

2;2

(
;R

3

) annot be asertained

in general sine we only ontrol ertain seond derivatives of ' in the urvature term. One might wonder

therefore, whether the additional C

1

-ontinuity in treating the fourth order indeterminate ouple stress problem

numerially is worth the e�ort.

Theorem 4.7 (Existene for 3D-�nite elasti Cosserat model with onsistent boundary oupling)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and polar(rg

d

) 2

W

1;1+p+q

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2

L

1

(
;M

3�3

) and M



2 L

1

(�

C

;M

3�3

). Then (4.38) with material onstants onforming to ase I/II and the

onsistent oupling ondition

R

�

= polar(r')

�

; (4.45)

admits at least one minimizing solution pair (';R) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)).

Proof. Basially, we repeat the argument of ase I/II. For the presription of g

d

the energy is �nite on the set

of admissible funtions verifying also the oupling ondition. We hoose minimizing sequenes ('

k

; R

k

). Sine

R

k

2 SO(3;R) it follows that kR

k

k =

p

3 independent of k, a distinguishing feature of true rotations. Hene

R

k

is bounded in the Sobolev spae W

1;1+p+q

(
; SO(3;R)) without independent presription of boundary on-

ditions. The remainder proeeds as in ase I/II. �

It is not immediately lear to us how to extend the method of proof to over the elasti-plasti Cosserat ase

also. This topi will be left open for future researh.
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4.5 Partially linearized elasti Cosserat theory

If we assume small mirorotations, i.e. R = 11 + A + : : : ; A 2 so(3); kAk � 1, then the miropolar streth

tensor may be expanded as follows

U = R

T

F = (11 +A+ : : : )

T

(11 +ru) � 11 +ru�A� Aru+ : : : ; (4.46)

where u is the (unrestrited) displaement but not the in�nitesimal displaement from whih we onlude the

approximative expression of the streth energy

W

small

mp

(ru;A) = � k symru� sym(Aru)k

2

+ �



k skew(ru)�A� skew(Aru)k

2

(4.47)

+

�

2

tr

�

sym(ru)� sym(Aru)

�

2

:

The value �



= 0 is still admissible, sine the problem does not deouple, but if �



= 0, the loal oupling takes

plae only in the seond order ontribution Aru.

Sine K = R

T

D

x

R = (11+A+: : : )

T

D

x

(11+A+: : : ) � D

x

A+AD

x

A+: : : to �rst order we get as approximation

for the urvature energy

35

, based on (2.7) the expression

W

small

urv

(K) = �

L

2



12

�

�

5

k symD

x

Ak

2

+ �

6

k skewD

x

Ak

2

+ �

7

tr

�

D

x

A

�

2

�

(4.48)

A

j

�

= A

d

;

together with the onsistently redued boundary ondition for small rotations. For a mathematial treatment,

the deisive simpli�ation a�orded by (4.48) is the treatment of A on the linear manifold so(3) of skew-symmetri

matries instead of R 2 SO(3). The orresponding equation of balane of angular momentum

skew

�

�2�[symru� sym(Aru)℄ru

T

� 2�



[skewru�A� skew(Aru)℄(11 +ru)

T

(4.49)

��hsymru� sym(Aru); 11iru

T

�

� skew

�

DivD

D

x

A

W

small

urv

(D

x

A)

�

� skew(M) = 0

M

3�3
;

an be written equivalently as

L

2



12

DivM:D

x

A� skew(M) =



M(A;ru) := skew

�

: : :

�

; (4.50)

with a (rearranging) linear operator M : T(3) 7! T(3) and



M(A+

^

A;X) =



M(A;X) +



M(

^

A;X); k



M(A;X)k � (1 + C

+

(A)) � kXk

2

: (4.51)

It is readily seen that (4.50) is a uniformly Legendre-Hadamard ellipti system with onstant oeÆients in A

whih is linear at given ru.

For a model based on (4.47) and (4.48) the only mathematially interesting ase left is the ritial ase

�



= 0; q = 0; p = 1 sine otherwise the theorems treating the exat �nite situations already apply. However, if

�



= 0 we have to make up for the loss of pointwise ontrol in the streth and the loss of regularity of (11 +A)

if D

x

A 2 L

2

(
) only. This suggests a slight modi�ation of the problem on the level of the orresponding

equilibrium system. We replae (regularize)



M in (4.50) with



M

ij

℄

(A;X) :=

8

>

<

>

:



M

ij

(A;X) j



M

ij

(A;X)j � K � 1

~

M

ij

(A;X) K � 1 � j



M

ij

(A;X)j � K

K j



M

ij

(A;X)j > K ;

(4.52)

suh that



M

ij

℄

(A;X) is smooth to any order we need. It means physially that the omponents of the reation

stresses (ouple stresses) are assumed to be essentially bounded by a onstant K > 0. This is a onsistent

requirement with the other simplifying assumptions already made. The omplete problem reads therefore:

Z




W

small

mp

(ru;A)� hf; ui � hM;Ai dV 7! min : w.r.t. u at given A

u

j

�


(x) = g

d

(x)� x ; A

j

�


= A

d

(4.53)

L

2



12

DivM:D

x

A =



M

℄

(A;ru)� skew(M) :

We an prove the following result:

35

The expansion of the urvature shows that we need not introdue a smallness assumption on the urvature itself, if we already

assume that rotations are small.
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Theorem 4.8 (Existene for 3D-small rotation elasti Cosserat model)

Let 
 � R

3

be a bounded domain with smooth boundary of lass C

3

and assume for the boundary data g

d

2

H

3

(
;R

3

) and A

d

2 H

2;2

(
; so(3;R)). Moreover, let f 2 L

2

(
;R

3

) and skew(M) 2 L

2

(
; so(3;R)). Then the

system (4.53)with �



� 0; �

6

� 0 admits a, perhaps non-unique, solution pair (u;A) 2 H

3

(
;R

3

)�H

2

(
; so(3)).

The solution is smoother if the data are smoother.

Proof. Sine the exponent in the urvature energy is only two, we annot mimi the variational argument of the

last setion sine we have no easy way to obtain a strongly onvergent subsequene A

k

in a topology as strong

as C

0

(
). Instead, we de�ne the following iteration sheme: given (u

j

; A

j

) 2 H

m+1

(
;R

3

) � H

m

(
; so(3))

ompute (u

j+1

; A

j+1

) 2 H

m+1

(
;R

3

)�H

m

(
; so(3)) suh that

Z




W

small

mp

(ru

j+1

; A

j

)� hf; u

j+1

i � hM;A

j

i dV 7! min : w.r.t. u

j+1

at given A

j

u

j+1

j

�


(x) = g

d

(x)� x ; A

j+1

j

�


= A

d

(4.54)

L

2



12

DivM:D

x

A =



M

℄

(A

j

;ru

j+1

)� skew(M) :

We proeed to show that the sequene (u

j

; A

j

)

1

j=1

is bounded in H

m+1

(
;R

3

) �H

m

(
; so(3)) independent of

j. To this end we note �rst that the sequene is uniquely determined if A

j

2 C(
; so(3)) (extended Korn's

�rst inequality). Based on sharp L

2

-ellipti regularity [Ebe02℄ for systems with variable oeÆients (Dirihlet

onditions everywhere on �
) for both equations separately yields for some yet unspei�ed pair (m; r) 2 N �N

the estimates [Nef03a℄:

ku

j+1

k

m+2;2

� C(
; kA

j

k

m+1;2

) �

�

kgk

m+2;2

+ kfk

m;2

+ kA

j

k

m+1;2

�

kA

j+1

k

r+2;2

� C(
) �

�

kA

d

k

r+2;2

+ k



M

℄

(A

j

;ru

j+1

)k

r;2

+ k skew(M)k

r;2

�

; (4.55)

if the solutions are unique, respetively. The onstant in the �rst estimate is a polynomial in kA

j

k

m+1;2

and

bounded above if the Legendre-Hadamard elliptiity onstant of the related aousti tensor is bounded away

from zero. The algebrai estimate

D

2

ru

W

small

mp

(ru;A):(r�;r�) � � k(11 +A)

T

r�+r�

T

(11 +A)k

2

; (4.56)

implies (f. (2.15)) that

D

2

ru

W

small

mp

(ru;A):(� 
 �; � 
 �) � 2� k(11 +A)

T

� 
 �k

2

(4.57)

� 2��

min

�

(11 +A)(11 +A)

T

�

k�k

2

k�k

2

:

Sine (11 +A)(11 +A)

T

= 11�A

2

and h(11�A

2

):v; vi = kvk

2

+ kA:vk

2

� kvk

2

, we onlude that

�

min

�

(11 +A)(11 +A)

T

�

� 1 and the elliptiity onstant of the fore balane equation is indeed uniform.

If �

6

> 0, then the balane of angular momentum equation has a unique solution and (4.55)

2

is true as suh.

If �

6

= 0, then we ontrol only symD

x

A. However, this is still enough to guarantee a unique solution.
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For A 2 so(3;R) we have

A =

0

�

0 � �

�� 0 

�� � 0

1

A

; axl(A) =

0

�

�

�



1

A

; r axl(A) =
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�

�
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�
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�
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�
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�
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z



x



y
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1
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+
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1
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A

;

k symr axl(Ak
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(4.58)

k symD

x

Ak

2

= k symrA:e

1

k

2

+ k symrA:e

2

k

2

+ k symrA:e

3
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�

2

x

2

+

�
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2

+ �

2
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+ �

2

z
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x

+ �

y
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+ �

2
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2
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2

z
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(�
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+ 

x

)

2

2

:

Now it is easy to see that for some 

+

> 0 it holds k symD

x

Ak

2

� 

+

k symr axl(A)k

2

sine k symD

x

Ak

2

= 0 implies

k symr axl(A)k

2

= 0, algebraially. Hene, the standard Korn's inequality applied to k symr axl(A)k

2

yields unique existene.

Note that with the permutation P =

0

�

0 0 �1

0 1 0

�1 0 0

1

A

2 O(3) the in�nitesimal miropolar urvature tensor is de�ned as

� := rP: axl(A) = P � r axl(A) and it holds that P: axl(skew(ru)) =

1

2

urlu and tr [rP: axl(skew(ru))℄ =

1

2

Div urlu = 0. As

a onsequene, if we were to take W

in�n

mp

(�) =

L

2



12

k�k

2

, then the orresponding in�nitesimal ouple-stress tensor D

�

W

in�n

mp

(�) is

trae-free in the indeterminate ouple stress theory. We make no expliit use of �.
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For r = 0 we obtain therefore that the sequene A

j

is bounded independent of j in the spae H

2

(
; so(3)) �

C

2�

3

2

(
; so(3)) whih implies form = 1 that the sequene u

j

is bounded independent of j in the spaeH

3

(
;R

3

).

Extrating strongly onvergent subsequenes and letting j !1 shows that the limit (u

1

; A

1

) is a solution of

the modi�ed �eld equation (4.53). This ends the argument. Note that due to the de�nition of



M

℄

, we are able

to inrease the regularity of the solution if the data are smoother. �

Appreiating the method of proof, we see that the partially linearized model together with quadrati ur-

vature energy is appropriate only for exeptionally 'smooth' situations. The additional provision of suÆiently

smooth boundary and data and restrition to the pure Dirihlet ase allows us to onlude the ontinuity of the

in�nitesimal mirorotations A irumventing the diret use of Sobolev embedding theorems. Considering the

redutions made, it is nevertheless our belief that the model (4.53) aptures the essential features of the geo-

metrially exat Cosserat miropolar framework in ontrast to the subsequent in�nitesimal models. However,

it remains open whether a onsistent boundary oupling in the sense of requiring A

j

�


= skew(ru)

�

is possible

for this model.

Rather for historial reasons and ompleteness we reonsider the lassial in�nitesimal Cosserat miropolar

problem. Existene results have been obtained e.g. in [Ies71, Duv70, HH69, Ghe74a, Ghe74b℄.

4.6 In�nitesimal linear elasti Cosserat theory

If we �nally assume in�nitesimal mirorotations and in�nitesimal displaements, the miropolar streth tensor

may again be expanded as follows

U = R

T

F = (11 +A+ : : : )

T

(11 +ru) � 11 +ru�A� Aru+ : : : : (4.59)

Negleting onsistently the quadrati term Aru in (4.47) yields the approximate expression for the streth

energy

37

(2.6)

W

in�n

mp

(ru�A) = � k sym(ru�A)k

2

+ �



k skew(ru�A)k

2

+

�

2

tr

�

sym(ru�A)

�

2

= � k symruk

2

+ �



k skew(ru)�Ak

2

+

�

2

tr [sym(ru)℄

2

; (4.60)

and for the urvature term

W

small

urv

(D

x

A) = �

L

2



12

�

�

5

k symD

x

Ak

2

+ �

6

k skewD

x

Ak

2

+ �

7

tr

�

D

x

A

�

2

�

: (4.61)

Two observations are essential. First, if �



= 0, the in�nitesimal problem ompletely deouples - the

in�nitesimal mirorotations A have no inuene whatsoever on the marosopi behaviour of the in�nitesimal

displaements. We believe that this is a de�ieny of the in�nitesimal problem without muh physial signi�ane

for the geometrially exat model. It has led perhaps to the erroneous ommon belief that �



> 0 is regarded

to be essential

38

for any true Cosserat miropolar theory as well.

And seond, the hoie �

6

= 0 is possible, ontrary to the �nite ase, sine oerivity of the redued urvature

expression an still be onluded on aount of the lassial Korn's �rst inequality applied to symD

x

A as already

shown. We mention also that ontrary to the �nite ase there is no gap: balane of angular momentum without

internal length sale and �



> 0 yields

D

A

W

in�n

mp

(ru;A) 2 Sym, D

A

W

in�n

mp

(ru;A) = 0, skew(ru) = A : (4.62)

This implies already that in�nitesimal ontinuum- and mirorotations oinide, and this in turn is

equivalent to the symmetry of the in�nitesimal Cauhy stress � or the Boltzmann axiom.

Hene the in�nitesimal ase rather inhibits our understanding of the general �nite Cosserat miropolar

problem.

37

Traditionally, the in�nitesimal model is obtained not as linearization but by diretly assuming a split of the displaement

gradient into in�nitesimal miropolar streth and in�nitesimal mirorotations: ru = "+ A, where " is not neessarily symmetri.

38

In many treatments of the in�nitesimal theory, e.g. [Kup79, p.34℄ the assumption D

2

W

in�n

mp

(ru � A):(H;H) � 

+

kHk

2

is expliitly introdued as being motivated on physial grounds rather then being neessary for a meaningful treatment of the

in�nitesimal Cosserat miropolar theory. It would exlude lassial in�nitesimal elastiity as a speial ase. Sometimes, a so alled

oupling number N

2

=

�



�+�



2 [0; 1℄ is introdued, whih allows to ompare di�erent material moduli. N = 0 orresponds to

lassial in�nitesimal elastiity, N = 1 orresponds to in�nitesimal indeterminate ouple stress theory.
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The in�nitesimal miropolar model in variational form is given by

Z




� k symruk

2

+ �



k skew(ru�A)k

2

+

�

2

tr [symru℄

2

+ �

L

2



12

kr axl(A)k

2

� hf; ui � hM;Ai dV

�

Z

�

S

hN; ui dS�

Z

�

C

hM



; Ai dS 7! min : w.r.t. (u;A) (4.63)

u

j

�


(t; x) = g

d

(t; x)� x; x 2 �
 ; A

j

�


= skew(rg

d

(t; x))

j

�


:

The orresponding equilibrium system of equations for pure Dirihlet onditions and without external ouples

M;M



is given by (note that kAk

2

= 2k axl(A)k

2

for A 2 so(3;R))

0 = Div � + f; x 2 


� = 2� symru+ 2�



(skew(ru)�A) + � tr [symru℄ � 11 (4.64)

0 = �

L

2



12

�axl(A) + �



axl((skew(ru)�A) :

If we onsider nonetheless the only nontrivial ase left open, �



> 0, it is standard to prove that the orresponding

minimization problem admits a unique minimizing pair (u;A) 2 H

1

(
;R

3

)�H

1

(
; so(3)).

Theorem 4.9 (Existene for 3D-in�nitesimal elasti Cosserat model)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and A

d

2

H

1

(
; so(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2 L

2

(
; so(3;R))

and M



2 L

2

(�

C

; so(3;R)). Then the model (4.63) admits a unique minimizing solution pair (u;A) 2

H

1

(
;R

3

)�H

1

(
; so(3)). The solution is smoother if the data are smoother.

Proof. We are again in a position to apply the diret methods of variations. Without loss of generality onsider

N;M;M



= 0 and � � �



> 0. First we observe that in�mizing sequenes (u

k

; A

k

) exist and

1 >

Z




W

in�n

mp

(ru

k

�A

k

) +W

small

urv

(D

x

A

k

)� hf; u

k

i dV �

Z




�



kru

k

�A

k

k

2

dV � kfk

L

2

ku

k

k

H

1

(
)

(4.65)

=

Z




�



k sym(ru

k

�A

k

)k

2

+ �



k skew(ru

k

�A

k

)k

2

dV � kfk

L

2

ku

k

k

H

1

(
)

�

Z




�



k symru

k

k

2

dV � kfk

L

2

ku

k

k

H

1

(
)

� �





K

ku

k

k

2

H

1

(
)

� kfk

L

2

ku

k

k

H

1

(
)

;

showing that u

k

is bounded in H

1

(
). We have used that sym is orthogonal to skew and the lassial Korn's

�rst inequality together with the boundary onditions for u

k

. Moreover, again by the lassial Korn's �rst

inequality (if �

6

= 0) or diretly pointwise, we obtain boundedness of A

k

in H

1

(
; so(3)). We an hoose a

subsequene of (u

k

; A

k

) onverging strongly in L

2

(
) and weakly in H

1

(
). By overall onvexity of the energy

density in (ru;D

x

A) the limit pair is a minimizer.

For the uniqueness we onsider the seond derivative of the total strain energy W = W

in�n

mp

+W

small

urv

with

respet to the omplete argument

D

2

(ru;A)

W (ru�A):((r�; ÆA); (r�; ÆA)) � �



kr�� ÆAk

2

= �



k symr�k

2

+ �



k skew(r� � ÆA)k

2

� �



k symr�k

2

: (4.66)

By the lassial Korn's �rst inequality we obtain uniform positivity of the seond derivative upon integration.

39

The funtional is stritly onvex, the solution is unique.

Sine the resulting �eld equations of fore balane and balane of angular momentum are linear, uniformly

ellipti with onstants oeÆients the standard ellipti regularity theory applies suh that for pure Dirihlet

boundary onditions the solution is the smoother the smoother the data. �

39

Assume (�; ÆA) 6= 0, then D

2

(ru;A)

W (ru� A):((r�; ÆA); (r�; ÆA)) > 0.
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Theorem 4.10 (Existene for 3D-in�nitesimal elasti Cosserat model with onsistent oupling)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and skew(rg

d

) 2

H

1

(
;M

3�3

). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2 L

2

(
; so(3;R)) and

M



2 L

2

(�

C

; so(3;R)). Then the model (4.63) with onsistent oupling

A

j

�

= skew(ru(t; x))

j

�

; (4.67)

admits a unique minimizing solution pair (u;A) 2 H

1

(
;R

3

) �H

1

(
; so(3)). The solution is smoother if the

data are smoother.

Proof. Observe that with g

d

as spei�ed the energy is �nite for onsistent oupling. Next, note that in�miz-

ing sequenes (u

k

; A

k

) exist and are bounded sine the displaement an be ontrolled independent of A

k

and the additional L

2

ontrol of k skew(ru) � A

k

k shows that A

k

is as well L

2

-ontrolled. Hene (u

k

; A

k

) 2

H

1

(
;R

3

)�H

1

(
; so(3)), independent of k. This �nishes the argument. The role played by exat rotations in

the �nite ase is replaed by the role of �



> 0. �

The orresponding in�nitesimal gradient onstrained Cosserat miropolar model (in�nitesimal in-

determinate ouple stress model) has the form (simpli�ed urvature term: �

5

= �

6

= 1; �

7

= 0)

Z




�k symruk

2

+

�

2

tr [symru℄

2

+ �

L

2



12

kD

x

skew(ru)k

2

� hf; ui dV

�

Z

�

S

hN; ui dS�

Z

�

C

hM



; skew(ru)i dS 7! min : w.r.t. u (4.68)

� = �

lo

+ �

hyper

�

lo

= 2� sym(ru) + � tr [sym(ru)℄ � 11 2 Sym; onstitutive stress

�

hyper

= �2�

L

2



12

axl

�1

�

Divr axl(skew(ru))

�

2 so(3;R)

u

j

�


(x) = g

d

(x)� x ; skew(ru)

j

�


= skew(rg

d

)

j

�


:

Using the same methods as before we obtain

Theorem 4.11 (Existene for 3D-in�nitesimal gradient ase)

Let 
 � R

3

be a bounded domain with smooth boundary of lass C

1

and assume for the boundary data

g

d

2 H

2

(
;R

3

). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M



2 L

2

(�

C

; so(3)).

Then the model (4.68) admits a unique minimizing solution u 2 H

1

(
) \ fr urlu 2 L

2

(
)g.

Proof. As before. See also [Duv70℄. �

5 On the hoie of the urvature energy ontribution

In the �nite regime we have various hoies for the assumed dependene of the elasti energy density on gradients

of the mirorotations. It seems that there is no universally orret term available, rather the appliations aimed

at ditate in some respet this form. We list several of these possibilities whih an be useful:

1. The ase exhibiting similarity to plates and shells:

W

urv

(K) = �

L

1+p



12

(1 + �

4

L

q



kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

; (5.69)

for �



= �

4

= �

6

= 0; p = 1, one omponent of K, namely R

T

rR:e

3

appears in the resulting urvature

ontribution obtained after expanding the underlying streth energy with respet to deformations of the

midsurfae m(x; y) of a plate assuming that '(x; y; z) = m(x; y) + z R:e

3

and integrating through the

thikness. For in�nitesimal rotations this may be redued to

W

urv

(D

x

A) = �

L

2



12

�

�

5

k symD

x

Ak

2

+ �

6

k skewD

x

Ak

2

+ �

7

tr

�

D

x

A

�

2

�

; (5.70)

whih yields pointwise ontrol of D

x

A for �

5

; �

6

> 0. If �

6

= 0, non-loal ontrol of kD

x

Ak

L

2

(
)

is possible

on aount of Korn's lassial �rst inequality.
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2. The ase for almost rigid material behaviour: i.e. r' � R 2 SO(3;R), then K = R

T

D

x

R � Sym, suh

that the former may be redued to

W

urv

(K) = �

L

1+p



12

(1 + �

4

L

q



kKk

q

)

�

�

5

kKk

2

+ �

7

tr [K℄

2

�

1+p

2

; (5.71)

where pointwise ontrol of the torsion-urvature tensor K is possible.

3. The ase aounting for disloations: a measure aounting for inompatibility is the torsion tensor

R

T

CurlR 2 M

3�3

. Orthogonal to this expression is R

T

:DivR 2 R

3

(Helmholtz deomposition), a measure

for the urvature. Thus W

urv

may as well be assumed to onsist of two independent parts

W

tors;div

= �

L

1+p



12

�

�

8

kR

T

CurlRk

2

+ �

9

kR

T

:DivRk

2

�

1+p

2

: (5.72)

Non-loal ontrol of all �rst order derivatives of R is possible, if �

8

; �

9

> 0. For in�nitesimal inompat-

ibility, R = 11 + A + : : : and R

T

CurlR � CurlA suh that �

8

> 0; �

9

� 0 is suÆient for pointwise(!)

ontrol of D

x

A on aount of the fat that CurlA for A 2 so(3;R) ontrols all �rst derivatives of A.

40

While it is lear that we annot ontrol ompletely kD

x

Rk if �

9

= 0 in the �nite ase we might still stand a

hane to show that �

8

> 0; �

9

= 0 is already suÆient for the variational problem. Counting derivatives

in the �nite ase, we see that 9 independent entries in CurlR together with 3 independent entries in DivR

ontrol already the norm of a total of 27 derivatives of R. This is the objet of ongoing researh.

4. The traditional representation based on the redued seond order urvature tensor

^

K:

W

urv

(K) = �

L

1+p



12

�

�

5

k sym

^

Kk

2

+ �

6

k skew

^

Kk

2

+ �

7

tr

h

^

K

i

2

�

1+p

2

; (5.73)

where

^

K :=

�

axl(R

T

�

x

R)j axl(R

T

�

y

R)j axl(R

T

�

z

R

�

2 M

3�3

. For small urvature this is further redued

to (axl(�

x

A)j axl(�

y

A)j axl(�

y

A)) = r axl(A) = P � � with � the in�nitesimal miropolar urvature

tensor and the permutation matrix P as in (4.58).

6 The quasionvex hull and relaxation

Sine we have investigated the salient regularizing features of the elasti Cosserat approah whih in prini-

ple should furnish a mesh-independent solution for related numerial implementations it seems worthwhile to

ontrast this with another well known suessful omputational method [Lam02℄, based on quasionvexity, to

obtain mesh-independent results for stress-strain relations.

41

The elasti free energy density W : M

3�3

7! R is quasionvex, if

8

^

F 2 M

3�3

: j
j �W (

^

F ) �

Z




W (

^

F +r�(x)) dV 8� 2 C

1

0

(
;R

3

) : (6.74)

This implies notably that the homogeneous deformation is a global minimizer to its own boundary onditions.

For a given free energy density W : M

3�3

7! R the quasionvex hull QW is de�ned as the largest quasionvex

funtion below W , i.e.

QW := supf

~

W �W :

~

W is quasionvexg : (6.75)

If W is loally bounded and Borel measurable, another equivalent haraterisation [Da89℄ is

QW (F ) := inf

�

1

j
j

Z




W (F +r�(x)) dV : � 2 C

1

0

(
;R

3

)

	

; (6.76)

and the in�mum is independent of 
. The resulting relaxed funtion is always Legendre-Hadamard ellipti,

D

2

F

[QW ℄(F ):(� 
 �; � 
 �) � 0 ; (6.77)

40

In fat, for A 2 so(3;R) it holds that D

x

A = L:CurlA, with L a linear mapping.

41

In many pratial ases, not a omplete mesh-independent result for stresses and deformations is needed, but only a mesh-

independent result for the stresses is looked for. The relaxed funtional serves this restrited purpose. Average values of stresses

are omputed, the geometry of deformation is only onsidered in a probabilisti sense.
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and the quasionvex hull QW is weakly lower semi ontinuous.

In most ases it is not possible to derive analytial formulae for QW , however, there is one notable exeption.

If W (F ) =

^

W (U) is a onvex funtion in U and bounded below, then a general result in [Pip94℄ implies

42

that

QW (F ) = inf

P2PSym

^

W (U + P ) : (6.78)

Let us apply this result to W (F ) = kU � 11k

2

whih is easily seen to be not Legendre-Hadamard ellipti over

the whole range of admissible deformations F 2 GL

+

(3;R) but to satisfy the Baker-Eriksen inequalities. The

loss of elliptiity is due to the behaviour of the orthogonal part R = polar(F ) of F . We obtain

QW (F ) =

X

�

i

�1

j�

i

� 1j

2

; (6.79)

where �

i

� 0 are the eigenvalues of U . The resulting funtion is Legendre-Hadamard ellipti but not uniformly,

sine ompression has zero energy. Moreover, the linearization of the relaxed density QW (F ) does not oinide

with the linearization ofW (F ) whih is uniformly Legendre-Hadamard ellipti in a neighbourhood of F = 11. It

is well known that in a neighbourhood of the identity, the nonlinear unmodi�ed problem is well-posed [Val88℄,

also under ompression. It is therefore apparent that replaing W by its quasionvex hull would modify the

physial nature of the problem. Speial are should therefore be exerted when taking QW also as a means

of regularization, espeially when the analytial form of W is not known, as is often the ase in inremental

elasto-plastiity.

7 Disussion and onluding remarks

A �nite Cosserat model has been introdued and is onsistently extended to elasto-visoplastiity where Cosserat

e�ets remain non-dissipative. Various redued forms of the model are introdued. For elastiity, it is motivated

that the Cosserat ansatz with independent rotations is espeially suited in onjuntion with energies quadrati

in the miropolar streth tensor U = R

T

F , in whih ase the rotations are indeed the only essential nonlinearity

left in the problem.

Our onstitutive analysis suggests that the Cosserat ansatz with weak loal oupling (Cosserat ouple mod-

ulus �



= 0) leading to a streth energy density for small elasti strains of the form W

mp

(U) = � k sym(U �

11)k

2

+

�

2

tr

�

sym(U � 11)

�

2

provides just the orret amount of regularization needed for lassial marosopi

energies quadrati in the ontinuum streth sine loss of Legendre-Hadamard elliptiity in the equation of linear

momentum an be traed bak to the presene of the ontinuum rotations and is removed by taking independent

variations with respet to these rotations.

A ompeting method of regularization, namely the omputation of the quasionvex hull QW

mp

of the energy,

whih also restores the Legendre-Hadamard elliptiity leads to unphysial behaviour under ompression in

ertain ases: the material shows no resistane under ompression. Hene, the quasionvexi�ation is a useful

omputational tool to redue the inuene of loalizations but an hardly be regarded as generally admissible

without admitting a modi�ation of the underlying physis whih is however, sometimes intended, espeially in

elasto-plastiity, where omplete loal relaxation is arguably the optimal response. In the elasti ase, we prefer

to augment the underlying physis by introduing a length sale.

A deliate interplay between streth and urvature terms allows under reasonable physial assumptions to

establish the existene of minimizers or stationary points of the orresponding elasti ation funtional. The

sub-ritial ase (inluding the true frature ase IV) �



= 0; �

4

> 0; 0 < p < 1; q � 0 in (2.7) and the ritial

ase �



= 0; �

4

> 0; p = 1; q = 0 in (2.7) and �



= 0; �

8

> 0; �

9

= 0; p � 1 in (5.72) are not settled and leave

a wide �eld of hallenging purely mathematial problems.

Depending on the appliations aimed at, the Cosserat ouple modulus �



should either be very large (mi-

rosopi speimens) or zero (marosopi speimens). The mathematial analysis reets this dihotomy.

The di�erent redued elastostati Cosserat miropolar models have thus been shown to be ompletely jus-

ti�ed. The �nite marosopi elasti-plasti ase where Cosserat e�ets are assumed to be non-dissipative,

however, is ompletely left open.

As another result of our investigation we note that extreme are should be exerted when determining

material onstants already for isotropi Cosserat miropolar models: the data �t should preferably be based

on the geometrially exat model with the same number and type of parameters and not on the in�nitesimal

model whih degenerates for admitted values of material parameters whih however, are to be �tted. If this is

42

The proof in [Pip94℄ is based onW (F ) =

^

W (C),

^

W onvex in C. With appropriate hanges it arries over to the representation

in U . We remark that the loss of elliptiity of kC � 11k

2

is already ourring in uniaxial ompression. Clearly a de�ieny of the

Green strains not shared by the Biot strains whih loose elliptiity in biaxial situations only.
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done it might turn out that for spei� marosopi situations we are left with the problem of �nding just the

harateristi internal length L



while the Cosserat ouple modulus �



, already orders of magnitudes smaller

than the lassial shear modulus � in many ases, drops ompletely out. In the marosopi ase, we favour

therefore an essentially redued three-parameter isotropi Cosserat miropolar theory with independent

mirorotations: the two lassial Lam�e onstants �; �, one additional internal harateristi length sale L



> 0

and (�



; �

4

; �

5

; �

6

; �

7

; p; q) = (0; 1; 1; 1; 0; 1; 1), thus disarding all other unneessary material onstants. This

far reahing redution will also failitate renewed experimental identi�ation of the length sale L



and its

preise relation to the shear band width, obsured in the in�nitesimal theory.

To onlude, we believe that the hoie �



= 0 represents a refreshing departure from traditional linear

approahes; it reoniles experimental evidene on a marosale and the possibility of frature with the Cosserat

model and leads to interesting new mathematial problems. It shows to furnish a natural method to physially

regularize ertain shear failure problems and it introdues experimentally observed seond order size e�ets

whih seem to be present in nearly all materials. It is therefore hoped that the presented development will

stimulate further mathematial researh in this important �eld for the appliations.
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9 Appendix A

9.1 Notation

Let 
 � R

3

be a bounded domain with Lipshitz boundary �
 and let � be a smooth subset of �
 with non-vanishing 2-dimensional

Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote the salar produt on R

3

with assoiated vetor norm kak

2

R

3

= ha; ai

R

3

.

We denote by M

3�3

the set of real 3 � 3 seond order tensors, written with apital letters and by T(3) the set of all third order

tensors. The standard Eulidean salar produt on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor

norm is kXk

2

= hX;Xi

M

3�3

. In the following we omit the index R

3

;M

3�3

. The identity tensor on M

3�3

will be denoted by 11,

so that tr [X℄ = hX; 11i. We let Sym and PSym denote the symmetri and positive de�nite symmetri tensors respetively. We

adopt the usual abbreviations of Lie-group theory, i.e., GL(3;R) := fX 2 M

3�3

jdet[X℄ 6= 0g the general linear group, SL(3;R) :=

fX 2 GL(3;R) jdet[X℄ = 1g; O(3) := fX 2 GL(3;R) j X

T

X = 11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X℄ = 1g with

orresponding Lie-algebras so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri tensors and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g

of traeless tensors. We set sym(X) =

1

2

(X

T

+ X) and skew(X) =

1

2

(X � X

T

) suh that X = sym(X) + skew(X). For

X 2 M

3�3

we set for the deviatori part devX = X �

1

3

tr [X℄ 11 2 sl(3) and for vetors �; � 2 R

n

we have the tensor produt

(� 
 �)

ij

= �

i

�

j

. (vj�j�) 2 M

3�3

is the matrix omposed of the olumns v; �; � 2 R

3

. We write the polar deomposition in

the form F = RU = polar(F )U with R = polar(F ) the orthogonal part of F . For a seond order tensor X we de�ne the third

order tensor h = D

x

X(x) = (r(X(x):e

1

);r(X(x):e

2

);r(X(x):e

3

)) = (h

1

; h

2

; h

3

) 2 M

3�3

� M

3�3

� M

3�3

. For third order tensors

h 2 T(3) we set khk

2

=

P

3

i=1

kh

i

k

2

together with sym(h) := (sym h

1

; sym h

2

; sym h

3

) and tr [h℄ := (tr

�

h

1

�

; tr

�

h

2

�

; tr

�

h

3

�

) 2 R

3

.

Moreover, for any seond order tensor X we de�ne X � h := (Xh

1

;Xh

2

;Xh

3

) and h �X orrespondingly. Quantities with a bar, e.g.

the miropolar rotation R, represent the miropolar replaement of the orresponding lassial ontinuum rotation R. In general

we work in the ontext of nonlinear, �nite elastiity. For the total deformation ' 2 C

1

(
;R

3

) we have the deformation gradient

F = r' 2 C(
;M

3�3

) and we use r in general only for olumn-vetors in R

3

. Furthermore, S

1

(F ) and S

2

(F ) denote the �rst and

seond Piola Kirhho� stress tensors, respetively. Total time derivatives are written

d

dt

X(t) =

_

X . The �rst and seond di�erential

of a salar valued funtion W (F ) are written D

F

W (F ):H and D

2

F

W (F ):(H;H), respetively. Sometimes we use also �

X

W (X) to

denote the �rst derivative ofW with respet toX. We employ the standard notation of Sobolev spaes, i.e. L

2

(
); H

1;2

(
); H

1;2

Æ

(
),

whih we use indi�erently for salar-valued funtions as well as for vetor-valued and tensor-valued funtions. Moreover, we set

kXk

1

= sup

x2


kX(x)k. For X 2 C

1

(
;M

3�3

) we de�ne CurlX(x) and DivX(x) as the operation url and Div applied row wise,

respetively. For h 2 T(3) we de�ne Div h =

�

Div h

1

jDiv h

2

jDiv h

3

�

T

2 M

3�3

. We de�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g,

where �

j

�

= 0 is to be understood in the sense of traes and by C

1

0

(
) we denote in�nitely di�erentiable funtions with ompat

support in 
. We use apital letters to denote possibly large positive onstants, e.g. C

+

;K and lower ase letters to denote possibly

small positive onstants, e.g. 

+

; d

+

. The smallest eigenvalue of a positive de�nite symmetri tensor P is abbreviated by �

min

(P ).

Finally, w.r.t. abbreviates with respet to.

9.2 The Boltzmann axiom without internal length

Lemma 9.1 (Limit rotations with zero internal length sale)

De�ne W

mp

as

W

mp

(U) = �

1

k sym(U � 11)k

2

+ �



k skew(U)k

2

+ �

3

tr

�

sym(U � 11)

�

2

(9.80)

as in (2.6). If �

1

= �



and tr

�

U

�

< 3 +

2�



�

3

then D

U

W

mp

(U)U

T

2 Sym)

�

U 2 Sym, R = polar(F )

�

. Otherwise,

D

U

W

mp

(U)U

T

2 Sym alone does not imply U 2 Sym.

Proof. An argument relating to the general ase of W

mp

taken as an isotropi salar valued funtion of U has been given e.g. in

[San99, p.29℄ and [SB95℄. However, no onditions on the oeÆients or the magnitude of tr

�

U

�

are involved, whih raises some

questions. Note �rst that D

U

W

mp

(U)U

T

2 Sym is equivalent to

skew

�

(�

1

� �



)U

T

U

T

� 2�

1

U

T

+ 2�

3

tr

�

U � 11

�

U

T

�

= 0 : (9.81)

We write U = symU + skewU = S +A. This yields in three steps

skew

�

(�

1

� �



) (S + A)

T

(S + A)

T

� 2�

1

(S + A)

T

+ 2�

3

tr [S � 11℄ (S + A)

T

�

= 0

skew

�

(�

1

� �



) (S

T

S

T

+ S

T

A

T

+ A

T

S

T

+ A

T

A

T

)� 2�

1

A

T

+ 2�

3

tr [S � 11℄A

T

�

= 0 (9.82)

skew

�

(�

1

� �



) (SA

T

+ A

T

S)� 2�

1

A

T

+ 2�

3

tr [S � 11℄A

T

�

= 0 ;
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and sine A

2

2 Sym(3) for A 2 so(3;R), this leads to the system

�(�

1

� �



) (SA+AS) + 2 (�

1

+ �

3

tr [S � 11℄)A = 0 ; (9.83)

whih represents 3 linear equations for three unknowns in A 2 so(3;R). If �

1

= �



and tr

�

U

�

< 3 +

2�



�

3

then A = 0 neessarily. A

small algebrai argument shows that SA+ AS = 0; A 2 so(3;R); S 2 Sym implies A = 0 if (d

1

+ d

2

) (d

2

+ d

3

) (d

1

+ d

3

) 6= 0 for d

i

the eigenvalues of S. For the seond statement, set �



= � = �

1

; �

3

=

�

2

= �, whih is in the range of atual material behaviour

of marosopi rystalline solids, and onsider aordingly

W

mp

(U) = � kU � 11k

2

+ � tr

�

U � 11

�

2

; D

U

W

mp

(U) � U

T

= 2�U U

T

� 2�U

T

+ 2� tr

�

U � 11

�

U

T

: (9.84)

Now take

U =

0

�

1 � 0

�� 1 0

0 0 2

1

A

2 GL

+

(3;R) if j�j � 1 and U 62 Sym : (9.85)

The orresponding mirorotation R and deformation ' suh that U = R

T

r' an be easily dedued. This impliesD

U

W

mp

(U)�U

T

2

Sym and balane of linear momentum is satis�ed for zero loads sine the quantities (R;r') are homogeneous if appropriate bound-

ary onditions are spei�ed but U 62 Sym. �

9.3 Marosopi elasti shear failure

It is appropriate to de�ne what we mean by shear failure in lassial isotropi elastiity. Let W (F ) be the free elasti energy

density of the bulk material. If for some F 2 GL

+

(3;R)

9 �; � 2 R

3

: D

2

W (F ):(� 
 �; � 
 �) < 0 ; (9.86)

we say that the material fails or looses Legendre-Hadamard elliptiity (LH), also alled a material instability.

43

This

failure an give rise to highly loalized deformation patterns, subsumed under the notion of mirostruture. Related is the

possible emergene of disontinuous deformations sine Hadamard�s jump relations are violated. However, loss of elliptiity

may already our for deformations whih are not related to shear, e.g. uniaxial situations and pure dilations. Thus we say that

W su�ers from genuine elasti shear failure whenever

9F 2 GL

+

(3;R) 9 �; � 2 R

3

: D

2

W (F ):(� 
 �; � 
 �) < 0 ; but

8F 2 diag(�

+

1

; �

+

2

; �

+

3

) 8 �; � 2 R

3

: D

2

W (F ):(� 
 �; � 
 �) � 0 : (9.87)

It seems that failure of a material on a marosale other than shear failure is unphysial and rather due to the idiosynrasy of the

onstitutive equations, as long as the bulk is modelled as elasti. In fat, Legendre-Hadamard elliptiity for F = diag(�

+

1

; �

+

2

; �

+

3

)

implies immediately the Baker-Eriksen (BE) inequalities [MH83, p.19℄ and genuine elasti shear failure happens, if BE is

satis�ed but LH is violated.

44

In this sense the following non exhaustive list of free energy terms should be avoided sine they are not only failing under shear

(already BE is not satis�ed):

kC � 11k

2

; hC � 11; 11i

2

; hlnC; 11i

2

; hlnC; 11i

2

+ k dev lnCk

2

; hlnU; 11i

2

; � ln det[F ℄ + (ln det[F ℄)

2

; k

C

det[C℄

1=3

� 11k

2

: (9.88)

Of ourse, ombination with other terms ould remove the problem. Terms whih genuinely fail only in shear are e.g.

kU � 11k

2

; hU � 11; 11i

2

and k

U

det[U℄

1=3

� 11k

2

; tr

h

U

det[U℄

1=3

� 11

i

2

.

9.4 Analytial investigation of inompressible elasti simple shear

In order to eluidate the proposed theory and to be able to validate numerial solutions we onsider �rst the deformation of

an inompressible homogeneous unit ube in simple shear at the upper and lower faes. Let 
 = [0; 1℄ � [0; 1℄ � [0; 1℄ be the

unit ube and impose the boundary onditions g(x

1

; x

2

; 0) = (x

1

; x

2

; 0)

T

; g(x

1

; x

2

; 1) = (x

1

+ ; x

2

; x

3

)

T

; 0 � x

1

; x

2

� 1. The

parameter  � 0 is the amount of maximal shear at the upper fae per unit length. In order to arrive at an analytially tratable

one-dimensional problem we wish to �nd energy minimizing deformations of the form

'(x

1

; x

2

; x

3

) =

0

�

x

1

+ u(x

1

; x

3

)

x

2

x

3

1

A

; r'(x

1

; x

2

; x

3

) = F =

0

�

1 + u

x

1

(x

1

; x

3

) 0 u

x

3

(x

1

; x

3

)

0 1 0

0 0 1

1

A

; (9.89)

with u(x

1

; 0) = 0; u(x

1

; 1) = . E�etively, we require, that initially horizontal material planes remain horizontal.

45

Inompress-

ibility requires that det[F ℄ = 1 and implies u

x

1

(x

1

; x

3

) = 0. The boundary onditions show then that u must be onstant in

x

1

-diretion. Hene the redued kinematis

'(x

1

; x

2

; x

3

) =

0

�

x

1

+ u(x

3

)

x

2

x

3

1

A

; r'(x

1

; x

2

; x

3

) = F =

0

�

1 0 u

0

(x

3

)

0 1 0

0 0 1

1

A

; (9.90)
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Material instability should be arefully distinguished from geometrial instabilities ourring in bukling or neking and

whih are fully onsistent with Legendre-Hadamard elliptiity. In this sense, polyonvexmaterials are unonditionallymaterially

stable and ertainly appropriate for rubber and soft-tissues [SN02, HN03℄.

44

One version of BE an be stated as follows: for �

i

> 0 the prinipal strethes, the free energy �(�

1

; �

2

; �

3

) := W (U) is

separately onvex in �

i

. No mathematial existene results based only on BE are known. Note also that BE is enough to e�etively

exlude phase-transformations, modelled with multi-well potentials.
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These are not the most general possible deformations. The most general deformations are of the form '(x

1

; x

2

; x

3

) = (x

1

+

u(x

1

; x

3

); x

2

; x

3

+ v(x

1

; x

3

)

T

.
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with u(0) = 0; u(1) =  suÆes.
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Aordingly we postulate mirorotations R 2 SO(3;R) and in�nitesimal mirorotations

A 2 so(3;R) of the type:

R(x

1

; x

2

; x

3

) =

0

�

os�(x

3

) 0 sin�(x

3

)

0 1 0

� sin�(x

3

) 0 os�(x

3

)

1

A

; A(x

1

; x

2

; x

3

) =

0

�

0 0 �(x

3

)

0 1 0

��(x

3

) 0 0

1

A

: (9.91)

This implies that kD

x

Rk

2

= kD

x

Ak

2

= 2 j�

0

(x

3

)j

2

. In view of symmetry onsiderations we try to �nd solutions for the shear pro�le

angle � : [0; 1℄ 7! R of the form �(1=2 + x) = �(1=2 � x), implying that �

(n)

(0) = (�1)

n

�

(n)

(0). Expliit alulation shows that

R

T

F =

0

�

os�(x) 0 os�(x) � u

0

(x) � sin�

0 1 0

sin�(x) 0 sin�(x) � u

0

(x) + os�(x)

1

A

; symR

T

F =

0

B

�

os�(x) 0

os�(x)�u

0

(x)

2

0 1 0

os �(x)�u

0

(x)

2

0 sin�(x) � u

0

(x) + os�(x)

1

C

A

;

skewR

T

F =

0

B

�

0 0

os�(x)�u

0

(x)�2 sin�(x)

2

0 0 0

�

os �(x)�u

0

(x)�2 sin�(x)

2

0 0

1

C

A

: (9.92)

The energy

47

is given by

Z




� k symR

T

F � 11k

2

+ �



k skewR

T

Fk

2

+ 2�L

2



j�

0

(x)j

2

dV 7! min : w.r.t. (u; �). (9.93)

u(0) = 0; u(1) = ; Dirihlet boundary onditions for displaement

�(0) = �(1) = 0; lassial (rigid) boundary onditions for mirorotations

0 = skew(R

T

F )

f0;1g

, 2 tan�(0) = u

0

(0); 2 tan�(1) = u

0

(1); onsistent oupling boundary onditions

in the �nite ase
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and

Z




� k symF � 11k

2

+ �



k skewF �Ak

2

+ 2�L

2



j�

0

(x)j

2

dV 7! min : w.r.t. (u;�). (9.94)

u(0) = 0; u(1) = 

�(0) = �(1) = 0; lassial rigid boundary onditions

0 =

�

skew(F )� A

�

f0;1g

, 2�(0) = u

0

(0); 2�(1) = u

0

(1); redued onsistent oupling boundary onditions ;

in the in�nitesimal ase. The lassial elastiity formulation in the �nite ase

49

is reovered, if �



= 0; L



= 0; skew(R

T

F ) = 0 ,

2 tan�(x) = u

0

(x) and in the in�nitesimal ase, if �



= 0; L



= 0;

�

skew(F )� A

�

= 0 , 2�(x) = u

0

(x) and independent variation

is performed w.r.t. to the displaement u only.

In terms of (u

0

; �) the �nite energy expression is

W

�nite

(u

0

; �) = �

 

2(os�� 1)

2

+

u

0

2

2

+

sin

2

�u

0

2

2

+ 2(os�� 1) sin�u

0

!

+ �



 

os

2

�u

0

2

2

� 2 os� sin�u

0

+ 2 sin

2

�

!

+ 2�L

2



j�

0

j

2

; (9.95)

and the �rst order redution os� � 1; sin� � � for small � yields the orresponding in�nitesimal energy expression

W

small

(u

0

; �) = �

u

0

2

2

+ �



 

u

0

2

2

� 2� � u

0

+ 2�

2

!

+ 2�L

2



j�

0

j

2

= �

u

0

2

2

+ 2�



�

u

0

2

� �

�

2

+ 2�L

2



j�

0

j

2

: (9.96)

The seond derivative of the energy in the in�nitesimal ase w.r.t. (u

0

; �) is given by

D

2

(u

0

;�)

W

small

(u

0

; �):((Æu; Æ�); (Æu; Æ�)) = � j(Æu)

0

j

2

+ 2�



j

(Æu)

0

2

� Æ�j

2

+ 4�L

2



j(Æ�)

0

j

2

; (9.97)

whih shows that for lassial rigid Dirihlet boundary onditions and for onsistent oupling onditions the solution

(u; �) of the in�nitesimal problem is unique. Sine the homogeneous deformation u(x) =  �x together with onstant shear angle

�(x) =



2

is always a solution for onsistent oupling, it is the unique solution oiniding with the unique solution of the lassial

in�nitesimal elastiity problem with shear stress at the upper fae �

lin

= � .

It is useful to onsider as well a seond order redution of the energy: os� � 1 �

�

2

2

; sin� � � �

�

3

3!

. Skipping terms

higher then order four we get

W

red

(u

0

; �) == �

�

1 + �

2

2

u

0

2

+

�

4

2

� �

3

u

0

�

+ 2�



 

�

u

0

2

� �

�

2

�

�

2

u

0

2

4

+

2

3

�

3

u

0

�

�

4

3

!

+ 2�L

2



j�

0

j

2

: (9.98)

46

The onsidered problem is therefore the exat formulation of the simple glide in e

1

-diretion with amount  at the upper fae

of an in�nite layer of material with unit height �xed at the bottom.

47

The energy orresponds to the lass studied in Theorem 4.4. Note that by the analytial methods proposed in setion (4)

we already know that minimum energy on�gurations in the �nite ase exist for both types of boundary onditions. In the

one-dimensional ase the oerivity j�

0

(x)j

2

is enough to guarantee strong onvergene of minimizing sequenes of mirorotations

(sin�

k

; os�

k

) in the spae of ontinuous funtions due to Sobolev embedding theorems.

48

It is a deliate matter to speify independent boundary onditions for the mirorotations �. Somehow it requires to know the

solution of the boundary value problem in advane. In this sense suh a lassial rigid boundary ondition is nothing but a �rst

guess, perhaps useful as start value in a numerial sheme.

49

The onsistent redution of this requirement for small � is � =

u

0

2

�

u

0

2

24

+ : : : .
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The orresponding redued lassial elastiity problem is obtained by

W

lass

red

(u

0

) :=W

red

j

�



=0;L



=0

(u

0

;

u

0

2

) = �

 

u

0

2

2

+

u

0

4

32

!

: (9.99)

The equilibrium equations in the fully �nite ase are obtained by taking free variations w.r.t. (u; �). Fore balane amounts to

0 =

d

dt

t=0

W

�nite

(u+ t�; �)

0 =

�

�� u

00

(x)� �

�

2 sin�(x) os�(x)�

0

(x)u

0

(x) + sin

2

�(x) u

00

(x)

�

� 2�

�

(os�(x) � 1) os�(x)�

0

(x)� sin

2

�(x)�

0

(x)

�

��



�

�2 os�(x) sin��

0

(x)u

0

(x) + os

2

�(x)u

00

(x)

�

� 2�



�

� sin

2

�(x)�

0

(x) + os

2

�(x)�

0

(x)

��

� � ; (9.100)

and balane of angular momentum is obtained from variation w.r.t. �:

0 =

d

dt

t=0

W

�nite

(u; �+ t Æ�)

= �4�(os�(x) � 1) sin� Æ� +

�

2

2 sin�(x) os�(x)u

0

(x)

2

Æ�+ 2�(os�(x) � 1) os�(x) u

0

(x) Æ�(x)

+ 2�(� sin�(x) sin�(x)u

0

(x)Æ�(x) + 4�L

2



�

0

(x)(Æ�)

0

(x) (9.101)

+ �



�

2 os�(x)(� sin�(x))

2

Æ� u

0

(x)

2

� 2 os�(x) os�(x)Æ�(x) + 2 sin�(x) sin�(x)Æ�u

0

(x) + 4 sin�(x) os�(x)Æ�

�

:

In the �nite ase, we evaluate the generated tangential shear stresses � at the upper fae where maximal shear ours. They are

� = hS

1

(F (1); R(1)):e

3

; e

1

i = hR(1)

�

2� sym(R

T

F � 11) + 2�



skew(R

T

F )

�

:e

3

; e

1

i : (9.102)

For onsistent oupling onditions, the homogeneous deformation u(x) =  x and tan�(0) = tan�(x) =



2

is always a solution and

leads to a nonlinear, stritly monotone shear response at the upper fae of

� = �u

0

(1) + � sin

2

�(1)u

0

(1) + 2� sin�(1)(os �(1) � 1)

= � + � sin

2

(artan



2

)  + 2� sin(artan



2

) (os(artan



2

)� 1) : (9.103)

For the �nite problem, at this point, we do not know whether the homogeneous response is the only one possible or realizes the

minimum energy.

In order to investigate this point further, we simplify the two equilibrium equations by onsidering the seond order expansions

os�(x) = 1�

�

2

2

+ : : : ; sin� = ��

�

3

6

+ : : : and keep terms up to order three in the variables (u

0

; �). After partial integration

suh a redution oinides with the system of equilibrium equations based diretly on the redued energy W

red

:

0 = u

00

+

2(� � �



)��

0

u

0

�(1 + �

2

) + �



(1� �

2

)

+

(4�



� 3�)�

2

�

0

�(1 + �

2

) + �



(1� �

2
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�
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�
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�(1 + �
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) + �



(1� �
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)

0 = �

�

1
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�
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+

1

4

�u
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�

3
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�

2
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0
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�
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�

1

4
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2

+

2

3

�

3

+ �



�

2

u

0

+

�

u

0

2

� �

��

(9.104)

u(0) = 0; u(1) = 

�(0) = �(1) = 0; lassial rigid boundary onditions

2�(0) = u

0

(0); 2�(1) = u

0

(1); redued onsistent boundary onditions :

Observe that the homogeneous deformation remains a solution of the redued system for onsistent oupling.

It is natural to require that the solution of the oupled boundary value problem, notably the shear pro�le angle �, is in

fat independent of the shear modulus � and the Cosserat ouple modulus �



as in lassial elastiity. This ondition an

only be met with �



= 0 or �



= �.

If �



= 0 the orresponding system of balane equations based onsistently on W

red

redues further to

0 =

2��

0

1 + �

2

u

0

�

3�

2

�

0

1 + �

2

+ u

00

0 =

1

2

�

3

+

1

4

�u

0

2

�

3

4

�

2

u

0

� L

2



�

00

(9.105)

u(0) = 0; u(1) = 

�(0) = �(1) = 0; lassial rigid boundary onditions

2�(0) = u

0

(0); 2�(1) = u

0

(1); onsistent oupling boundary onditions :

Let us integrate the �rst equation of (9.105) at given � by means of the variations of onstants formula. This shows that

u

0

(x) = e

�

R

x

0

2�(t)�

0

(t)

1+�

2

(t)

dt

�

0

�
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(0) +
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Z

0
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(t)
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(t)

e

R

t

0

2�(s)�

0

(s)

1+�

2

(s)

ds

1

A

dt =

1 + �

2

(0)

1 + �

2

(x)

�

u

0

(0) +

[�

3

(x) � �

3

(0)℄

1 + �

2

(0)

�

: (9.106)

The last equation is the integrated form of the fore balane equation. The Dirihlet boundary onditions for u imply the

additional integral ondition

 =  � 0 = u(1) � u(0) =

1

Z

0

u

0

(x) dx =

1

Z

0

1 + �

2

(0)

1 + �

2

(x)

�

u

0

(0) +

[�

3

(x)� �

3

(0)℄

1 + �

2

(0)

�

dx : (9.107)

Let us onsider the limit ase L



= 0, disregarding the possible boundary values for � in a �rst approah. This orresponds to the

ase (4.2) �nite elastiity with free rotations and mirostruture of the lassi�ation (2.20). The seond (now algebrai)

equation of (9.105) an then be solved for � with the result that � an take on only three distint values

�(x) 2 f0;

u

0

(x)

2

; u

0

(x)g : (9.108)
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Reinserting the result into (9.106) shows that we have altogether only two di�erent values for u

0

(x) at our disposition, determined

by three equations (two oiniding)

�

1 + �

2

(0)℄u

0

(0) � �

3

(0)

�

=

8

>

<

>

:

u

0

(x) insert �(x) = 0

u

0

(x) +

1

8

u

0

(x)

3

insert �(x) =

u

0

(x)

2

u

0

(x) insert �(x) = u

0

(x)

: (9.109)

Let us hoose u

0

(0); �(0) suh that

�

1 + �

2

(0)℄u

0

(0)� �

3

(0)

�

=  + Æ

+

; Æ

+

> 0 : (9.110)

The value Æ

+

> 0 to be determined subsequently. Taking �(0) =

u

0

(0)

2

in (9.110) implies that u

0

(0)+

1

8

u

0

(0)

3

= +Æ

+

and (9.109)

redues to

 + Æ

+

=

(

u

0

(x)

u

0

(x) +

1

8

u

0

(x)

3

: (9.111)

We take Æ

+

> 0 as the unique solution of the equation

( � Æ

+

) +

1

8

( � Æ

+

)

3

=  + Æ; if Æ

+

= 

+

�  , (1� 

+

)

3

=

�

4



�

2



+

: (9.112)

For  !1 we have Æ

+

! ; 

+

! 1 and Æ

+

= Æ

+

() is a monotone inreasing funtion of . This implies

u

0

(x) =

(



1

=  + Æ

+



2

=  � Æ

+

; (9.113)

and notably u

0

(0) =  � Æ

+

. Now onsider the family of straight lines

v

1

(x) = 

1

x; v

2

(x) = 

1

x+ ( � 

1

); v

3

(x) = 

2

x; v

4

(x) = 

2

x+ ( � 

2

) : (9.114)

A family of weak solutions of (9.105) with L



= 0 and �(0) =

u

0

(0)

2

; u

0

(0) =  � Æ

+

is given as a ontinuous ombination of

pieewise aÆne funtions with slopes parallel to v

i

; i = 1; : : : 4 satisfying u(0) = 0; u(1) = . This is the expeted mirostruture.

The onstruted solutions u are absolutely ontinuous, but do not belong to H

2

([0; 1℄;R).

Any point symmetri solution w.r.t. (1=2) must have �(1) =

u

0

(1)

2

; u

0

(1) = �Æ

+

. Symmetry, however, is not enough to single

out a unique response. We hoose that solution, whih has the least number of weak disontinuity points. It is given by

u(x) =
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+

1

4

� x � 1

; (9.115)

showing the expeted (sharp) S-type symmetri shear pro�le.

50

For the redued formulation we evaluate the generated shear

stress response at the upper fae. They are

�

red

= D

u

0W

red

(u
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(1)) = �
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u

0

(1) + �
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(1)u
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0

(1)
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!

)

�
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red

= � (1 +

1

8



2

) ; �

miro

red

= � (1 + 

+

())  ; (9.116)

with 

+

() 2 (0; 1) from (9.112). This shows that the response with mirostruture due to free rotations is always weaker

(energetially favourable) than the still possible homogeneous response.

51

In order to determine L



for a given material we onsider the same material in di�erent sample sizes with edge length L

i

> 1 and

perform orresponding shear experiments. Due to saling relations the di�erent sizes an be transformed to the unit ube leading

to a modi�ed internal length

L



L

i

. The solution on the unit ube depends only on  and

L



L

i

. Hene the sequene of experiments

leads to best-�tting values

L



L

i

= C

i

, whih implies that L



=

1

n

P

n

i=1

L

i

C

i

is a good andidate for the real harateristi length.

Note that no knowledge of size-independent material parameters is neessary to obtain a value for L



if �



= 0.

Let us ontrast the foregoing result with a similar analysis of the in�nitesimal Cosserat model with neessarily �



> 0. The

system of balane equations is now given by

u

00

(x) = 2

�



�+ �



�

0

(x) = 2N

2

�

0

(x)

�L

2



�

00

(x) = �



�

�(x) �

u

0

(x)

2

�

(9.117)

u(0) = 0; u(1) = 

�(0) = �(1) = 0; lassial rigid boundary onditions

2�(0) = u

0

(0); 2�(1) = u

0

(1); onsistent oupling boundary onditions ;

with the traditional Cosserat oupling number N

2

=

�



�



+�

. Observe again that the homogeneous solution is the unique solution

for onsistent oupling.

50

It is surprising that the onstruted solution satis�es the Boltzmann axiom: � =

u

0

2

everywhere yet it does not oinide with

the lassial solution.

51

The weak disontinuities inherent in this mirostruture an be seen as a preursor to frature. The road to frature starts

with homogeneous solutions, whih turn into smooth inhomogeneous solutions u 2 H

2

, whih degenerate into solutions with weak

disontinuities u 2 H

1

nH

2

, whih �nally fail along glide planes with u 62W

1;1

.
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In order to �nd the unique nontrivial solution for rigid onditions, we integrate the �rst equation of (9.117) and get

2N

2

[�(x)� �(0)℄ = u
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(x)� u

0

(0); and 2N

2

1

Z
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�(x) dx� 2N

2

�(0) = u(1)� u(0) � u

0

(0) =  � u

0

(0) ; (9.118)

where we have used the Dirihlet boundary onditions for the displaement u. This shows

u
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(0) =  � 2N

2
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Z
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�(x) dx; (use (9.118)

2

and �(0) = 0) ) (9.119)
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1

Z
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�(x) dx

1

A

; lassial rigid boundary onditions;) u

0

(0) = u

0

(1) <  :

Inserting the result for u

0

(x) into balane of angular momentum and rearranging yields the linear seond order di�erential equation
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Di�erentiating w.r.t. x one more yields the linear third order equation
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0
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�

000

(x) = 0 : (9.121)

The general solution of this di�erential equation in view of the exerted point symmetry of � w.r.t.

1

2

is given by
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� osh
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2

: (9.122)

For the rigid Dirihlet ase we use now �(0) = �(1) = 0. This implies that

0 = �(0) = �

1

� osh
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: (9.123)

We alulate
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(9.124)
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Inserting the results into (9.120) we obtain

�

1

=

�

2 osh

�

N

L



[�

1

2

℄

�

� 4NL



sinh

�

N

L



[

1

2

℄

�

; (9.125)

whih yields the miropolar shear pro�le
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; (9.126)

with the non-uniform behaviour 0 � �(x)!



2

for 0 < x < 1 and N;L



! 0. A physially aeptable (smooth) S-type symmetri

shear pro�le is haraterized by a steepest tangent of u at

1

2

. This orresponds to a maximum of � at

1

2

. The sign of the denominator

in the last formula is deisive: it should be negative. Therefore
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(9.127)

whih is always satis�ed sine tanh(x) < x;x > 0 and 0 < N

2

< 1. The tangential shear stresses are given by
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Expansion shows that for N > 0; L



!1 (ever smaller samples)

52

it results in the limit �

small

= (� + �



) �  and u(x) =  x, the

evaluated stresses �

small

are inreased due to �



> 0 and the inompatibel rigid boundary presription. For 0 < N � 1; L



> 0 we

observe that �

small

� (�+�



) �  and u(x) �  x. In this ase, it an be seen that the Cosserat ouple modulus �



> 0 is in fat

also a measure of the inuene of boundary onditions on the solution and therefore not a material parameter.

53

52

Only a formal limit: the smallest sample size should be larger than the hosen L



> 0 of the unit ube, i.e. the smallest sample

size must be larger than the smallest onstituents of the material given as unit ube. Hene, if L



has any physial meaning, we

should have 0 � L



< 1.
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Consider any other independent (arti�ial) Dirihlet boundary ondition for the shear angle 0 � �(0) = �(1) = a <



2

. The

solution u will produe a di�erent shear stress response �

small

= � u

0

(1) + 2�



(

u

0

(1)

2

� a) whih, for di�erent L



, neessitates a

modi�ation of �



for the same material. In our example, this inonsisteny an be avoided for onsistent oupling but persists in

the general ase.
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Similarly, it an be shown that N ! 0; L



> 0 is possible and results in the lassial response �

small

= � �. Finally, N > 0; L



! 0

approahes the lassial result as well. In all ases the miropolar response for rigid Dirihlet data is sti�er than the orresponding

homogeneous lassial response.

The omputed miropolar displaement for rigid Dirihlet data is given by

u(x) =

x

Z

0

u

0

(s) ds =

x

Z

0

 + 2N

2

�(s)� 2N

2

1
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0
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A

: (9.129)

The omplete solution of the problem in terms of the displaement u is now a funtion of ;

N

L



and N �L



. Consider the same

material given in di�erent sample sizes of ubes with edge length L

i

> 1. Due to saling relations, we may transform the di�erent

sample sizes to the unit ube resulting in a modi�ed internal length

L



L

i

but idential values ; N by the assumption that �



, hene

N is a material parameter independent of size. Performing a orresponding shear experiment on eah sample size we obtain

best-�tting values of

N

(L



=L

i

)

=

^

C

i

and N

L



L

i

=

^

D

i

. If the in�nitesimal miropolar model is orret this implies that N

2

=

^

C

i

�

^

D

i

independent
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of i. A striking onsequene of this development is that the assumed size-independent material parameter N annot

be determined without prior knowledge of the harateristi length L



in ontrast to the other elasti onstants and vie-versa: the

harateristi internal length L



an only be determined one N is known. This is a problemati feature shared by all miropolar

models with �



> 0.

As for the homogeneous solution for onsistent oupling: The tangential stresses are given by

�

hom

small

== (� + �



) � u

0

(1) � 2�



�(1) = (�+ �



) � u

0

(0) � 2�



�(0) = �  : (9.130)

Now we onsider the in�nitesimal indeterminate ouple stress response in simple shear. The variational problem is easily

obtained from (9.94) by identifying �(x) =

u

0

(x)

2

and taking free variations w.r.t. u only. This results in the problem

Z




� k symF � 11k

2

+

�

2
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2



ju

00

(x)j

2

dV 7! min : w.r.t. u, u(0) = 0; u(1) =  ; (9.131)
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+ �

hyper

; �
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small

= �u

0

(x)� �L

2



u

000

(x) ;

and the Euler-Lagrange equation of fourth order is given by

�u

00

(x) + L

2



u

(4)

(x) = 0; u(0) = 0; u(1) = 

u

0

(0) = u

0

(1) = 0 lassial rigid ondition (9.132)

u

00

(0) = u

00

(1) = 0 natural boundary ondition :

This equation oinides with (9.121) if we identify again u

0

=

�

2

and take N � 1.

The general solution of (9.132) is given by
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: (9.133)

Natural boundary onditions imply e�etively u(x) =  x as unique homogeneous solution with shear stress response �

indet;hom

small

=

� . For rigid boundary onditions the onstants are
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and the unique solution of the rigid indeterminate ouple stress problem is
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The term

u

0

(x)

2

does oinide with �(x) in (9.126) for N � 1. The limit L



! 0 (ever larger samples) is possible, onverging

pointwise to the homogeneous solution, but the onvergene is not uniform due to the appearane of a strong boundary layer

aused by the inompatible rigid boundary presription. For large L



the solution onverges to a smooth S-type shear pro�le.

The shear stress response is given by
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oiniding with the sti�er shear stress response of the in�nitesimal miropolar model for N = 1. Passage to the limit L



! 1

(ever smaller samples) is not possible.
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This implies as a rule for additional boundary onditions: boundary onditions should be

suh that in prinipal homogeneous solutions remain possible. The boundary onditions in a three-dimensional problem should not

be the ause for nonhomogeneous response! This priniple does not apply to plates and shells where boundary onditions appear

naturally by a dimensional redution proess and arry physial information.
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It appears to us that N

2

=

^

C

i

�

^

D

i

independent of i for di�erent sizes is highly questionable.
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Sine tanh x = x �

x

3

3

+ : : : , for L



! 1, then �

indet

small

! 1, a severe shortoming of the indeterminate ouple stress model.

This underlines the objetions of Koiter against this model.
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Figure 3: Computed shear pro�le u and orresponding angle � for large (above) and small (below) values of maximal shear 

in simple glide. Di�erent urves: �nite redued problem with free rotations, in�nitesimal miropolar and indeterminate ouple

stress model. u(x) =  x; �(x) = =2 the homogeneous lassial response. The traditional in�nitesimal Cosserat models with rigid

boundary onditions and �



> 0 show a strong boundary layer- not shared by the new relaxed model with �



= 0 and onsistent

oupling. The new model allows for sharp interfaes for vanishing internal length L



, indiating the onset of frature.

9.5 Analytial investigations of lassial inompressible elasti Biot-material in

simple shear

Now we onsider the same situation of simple glide in a lassial elastiity ontext. The energy of the lassial elasti Biot material

is assumed to be of the form
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dx ; (9.137)

whih redues to
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for inompressible behaviour and R 2 SO(3;R) represents the ontinuum rotation. For the assumed kinematis in simple glide,

the ontinuum rotation has the form
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; (9.139)

with ontinuum rotation angle � 2 [0; 2�). A simple alulation shows that
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; (9.140)

and the (surprisingly?) onvex total energy is given by
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The Euler-Lagrange equation is given by

8 � 2 C
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= 0; di�erentiated form

u(0) = 0; u(1) = ;

showing that the homogeneous deformation is always a solution and hene, by strit onvexity, the unique solution with non-

linear, stritly-monotone shear stress response
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�  (= �  + o()) ; (9.143)

whih oinides in fat with the shear response of the �nite Cosserat model with onsistent oupling evaluated for this homogeneous

response.
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In ontrast, from a three-dimensional viewpoint, the shear energy � kU � 11k

2

is not quasionvex and not Legendre-

Hadamard ellipti but satis�es the Baker-Eriksen inequalities. We onsider therefore the behaviour of its quasionvexi�-

ation for the same assumed kinematis. It an be given expliitly. If �

i

are the eigenvalues of U we have
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: (9.144)

In view of the underlying kinematis, the �

i

an be alulated expliitly and we obtain
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suh that
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The resulting formulation is again stritly onvex and the homogeneous response is the unique minimizer of the orresponding

minimization problem. However, the shear response is onsiderably weaker than the unmodi�ed one for the same homogeneous

solution, sine
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2
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; (9.147)

We note that in this spei� example, quasionvexi�ation of the three-dimensional problem oinides with the rank-one onvexifa-

tion. However, quasionvexi�ation hanges the stress/strain law already in situations, where onvexity holds true for the assumed

kinematis, i.e. where there is no imminent need for any hange due to instabilities. This underlines the are, whih has to be

exerted when using the quasionvex hull.

Let us summarize the obtained stress/strain behaviour in uniaxial shear for small amounts of shear. For onsistent oupling

we have:

�  = �

lin

= �

small

= �

indet

small

> �

quasi

lass

; �  = �

lin

< �

miro

red

< �

hom

�nite

< �

hom

red

; (9.148)

where �
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< �

miro

red

< �

hom

�nite

< �

hom

red

have the same tangent in 0, but �

quasi

lass

is weaker. For rigid Dirihlet data we obtain

�  = �
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< �

small

< �

indet

small

; (9.149)

with arti�ially sti�er behaviour for arbitrary small shear.
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To see only after some algebra.
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Figure 4: Paraboli behaviour for in�nitesimal load.

10 Appendix B

10.1 Koiter's remarks on ouple stresses

It seems appropriate to ite also Koiter [Koi64℄: "The preditions of the (lassial elastiity) theory are usually in satisfatory

agreement with areful experiments, if the stresses remain within the elasti limit of the material. Unfortunately the theory of

elastiity apparently fails, however, to give an adequate desription of the behaviour in fatigue of mahine parts or other strutural

elements involving high stress onentrations. This failure an hardly be asribed ompletely to inelasti behaviour of the material,

beause the endurane limit in fatigue is usually well below the marosopi elasti limit of the material. A more likely explanation

is that the lassial (�nite elastiity) theory is not adequate in the presene of large stress gradients. The latter explanation is

entirely plausible in view of the disontinuous polyrystalline struture of atual engineering materials. It is also supported by

evidene that the disrepany between the theoretial preditions and fatigue test results is more marked for materials with a

oarse grain struture. It would seem therefore that the idealized model of an elasti ontinuum is not quite appropriate for the

analysis of stress and strain in an atual disontinuous polyrystalline material involving large stress gradients. It need hardly be

argued, however, that a detailed analysis of the transmission of loads between the individual grains in a polyrystalline material

would pose a formidable problem. Some idealisation, preferably in the form of a ontinuous model, is highly desirable in order to

make the problem amenable to analysis. At �rst sight it might seem that this return to a ontinuous model would also imply a

omplete return to the lassial theory of elastiity. It should be remembered, however, that we have already alluded to additional

assumptions made in the lassial theory, apart from the model of a ontinuum. The assumption in question is that the transmission

of loads between the material on both sides of an in�nitesimal surfae element dS is desribed ompletely by a fore vetor pdS

ating in the enter of gravity of the surfae element. We emphasize that this is an assumption whih an neither be proved diretly,

nor disproved. It an only be tested by a onfrontation of its preditions for measurable quantities with experiments. For most

purposes it has indeed proved to be an appropriate assumption, resulting in satisfatory agreement between theoretial preditions

and experimental evidene. The lak of agreement between theory and experiment on the e�et of stress gradients, however, makes

this assumption questionable at least in ases of large stress gradients. A quite natural generalisation of the lassial theory of the

elasti ontinuum is thus obtained, if we drop the additional assumption. (...) It turned out, however, that the magnitude of the

e�et of ouple-stresses, required to explain quantitatively the e�et of stress gradients in fatigue tests, was suh that it ould not

easily have esaped attention in other areful experiments.\ and he ontinues [Koi64, p.41℄: "We venture to onjeture that the

stress gradient e�et in fatigue annot be desribed satisfatorily by allowing the presene of ouple-stresses in an isotropi elasti

medium." Brakets my addition.

It must be noted that Koiter ame to rejet the signi�ant presene of ouple stresses beause he based his investigations on

the so alled indeterminate ouple stress theory (2.21), whih tends to maximize the inuene of length sale e�ets. His arguments

only show that this speial onstrained gradient theory annot be based on experimental evidene. However, the main thrust of

his omments remains valid. I have not been aware of Koiters ontribution during the preparation of my main arguments, but it

squares with my development

10.2 Some experimental results: Nonlinear relation near zero stress and size de-

pendene

Usually, in engineering appliation, several simplifying assumptions are taitly introdued. The �rst one is that the elasti behaviour

of the struture an be negleted altogether leading to the rigid plastiity models and the seond one, that the stress-strain relation

for very small stress levels is indeed linear (generalized Hookes law). While the �rst simpli�ation is evidently not appropriate the

last simpli�ation is generally assumed to be valid. However, it annot be based on evidene. To the ontrary, taking the vast

amount of preise experimental data for metalli material ompiled in [Bel73℄ seriously, we must onlude that there is no level

of stress, suh that the stress-strain relation is linear. Instead, pratially all materials under in�nitesimal loads (in torsion and

tension) obey a paraboli relation of the form k�k = E k"k�b k"k

2

with E the initial zero stress modulus in tension and b a positive

onstant [Bel73, p.127℄ and see the footnote in [Nad63, p.10℄. There has never been made a serious attempt to understand this

paraboli behaviour. Our Cosserat model o�ers an interpretation: sine the initial tangent modulus is bounded, the ase �



=1

an be disposed of for all values of L



. Beause the initial tangent moduli determined from tension experiments are onsistent

with preditions based on the lassial linear theory for torsion experiments, we must set �



= 0. The point is that �



> 0 would

immediately hange the elasti behaviour for very small stress levels in torsion. In this sense, �



is small strain determined. Whether

the ouple modulus is really zero, annot be deided by experiment alone, given the unavoidable satter in the experiment. In any

ase it would have to be very small.

The seond order e�et of rotations will intervene if we keep the geometrially exat struture of the model and lead to redued

tangent moduli in tension and torsion, with a more pronouned redution in torsion, f. (2.6). A di�erene of response in tension and
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torsion for small stress levels has been observed as early as 1857. Wertheim [Wer57℄ and Baushinger [Bau81℄ observed (roughly)

linearity in tension and nonlinearity in torsion. Moreover, to quote from [Bel73, p.89℄: "For all the ylinders, Wertheim

notied that in addition to the nonlinearity of the relation between torque and angle, the amount of the departure from the linear

approximation depended upon the length of the speimen. Only when very long speimens were ompared ould he ahieve the

independene of length assumed in the elementary theory."

In Wertheims own words [Wer57, p.281℄ he summarizes: "2. Les angles de torsion temporaires (elasti twist) ne sont pas

rigoureusement proportionelles aux moments des ouples; ils augment plus rapide que eux-i, et et aroissement de l�angle

moyen (empiri modulus in torsion) ... s�etend jusque�a la rupture ... 3. Ces angles temporaires ne sont pas rigoureusement

proportionels aux longueurs; ramene a l�unite de longeur, suivant ette loi de proportionalite, on les trouve d�autant plus grand,

tout egal du reste, que la piee soumise a l�experiene a ete plus ourte.

... ette proportionalite (lassial in�nitesimal linear elastiity) ne saurait etre onsidere que omme la limite vers laquelle

tendent les angles a mesure que diminuent les intensites des ouples et les dimension du orps qui sont perpendiulaire a l�axe de

torsion."

10.3 Alternative representation of the miropolar streth energy

For a small elasti strain theory, whih should already over many ases of physial interest we required that W

mp

(U) is a non

negative isotropi quadrati form with

W

mp

(11) = 0; D

U

W

mp

(U)

j

U=11

= 0 : (10.150)
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onsistent with (2.5) is

W

mp

(U) = �

1

k sym(U � 11)k

2

+ �



k skew(U � 11)k

2

+ �

3

tr

�

sym(U � 11)

�

2

=

�

1

+ �



2

kU � 11k

2

+

�

1

� �



2

hU � 11; (U � 11)

T

i+ �

3

tr

�

sym(U � 11)

�

2

; (10.151)

= �(2�

1

+ 6�

3

) tr

�

U

�

+ �

3

tr

�

U

�

2

+

(�

1

� �



)

2

tr

h

U

2

i

+

(�

1

+ �



)

2

tr

h

U

T

U

i

+ onst: ;

where (2.6)
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is the form used in [Gra03, San99℄, respetively and we note the indued relations

D

U

W

mp

(U) = (�

1

+ �



)U + (�

1

� �



)U

T

� 2�

1

11 + 2�

3

tr

�

U � 11

�

11

D

U

W

mp

(U) � U

T

= (�

1

+ �



)U U

T

+ (�

1

� �



)U

T

U

T

� 2�

1

U

T

+ 2�

3

tr

�

U � 11

�

U

T

(10.152)

skew

�

D

U

W

mp

(U) � U

T

�

= skew

�

(�

1

� �



)U

T

U

T

� 2�

1

U

T

+ 2�

3

tr

�

U � 11

�

U

T

�

;

with material onstants �
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� 0 from non negativity [Eri99℄.

10.4 Derivation of the geometrially exat miropolar balane equations

The derivation of (2.12)

1

is standard. For (2.12)

2

we onsider simultaneously in eah spae point a one parameter group of rotations
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respetively, where h�; �i means additionally integration w.r.t. x. For the term ontaining the urvature part, we note
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; so(3;R)) is arbitrary, equation (2.12)
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follows.
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10.5 Saling relations for Cosserat models

For ompleteness let us summarize the saling relations appearing in a �nite elasti Cosserat theory. Our goal is to relate the

response of large and small samples of the same material and to asses the inuene of the harateristi length L



.

First, in our de�nition, the harateristi length L



is a given material parameter, orresponding to the smallest disern-

able distane to be aounted for in the model. A simple onsequene is that geometrial dimensions L of the bulk material must

be larger than L



, indeed for a ontinuum theory to apply L should be signi�antly larger than L



.

Now let 


L

= [0; L℄� [0; L℄ � [0; L℄ be the ube with edge length L, representing the bulk material. Consider a deformation
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The simple saling transformation � : R

3

7! R

3

; �(x) = L � x maps the unit ube 
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= [0; 1℄ � [0; 1℄� [0; 1℄ into 
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Hene, the minimization problem an be transformed
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and we may onsider the problem de�ned on 
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Comparison of di�erent sample sizes is a�orded by transformation to the unit ube repetively, e.g. we ompare two samples of

the same material with sizes L

1

> L

2

. Transformation to the unit ube shows that the response of sample two is sti�er than the

response of sample one.

It is plain to see that for L large ompared to L



, the inuene of the rotations will be small and in the limit

L



L

! 0 lassial

behaviour results. Otherwise, the larger

L



L

< 1, the more pronouned the Cosserat e�ets beome and a small sample is relatively

sti�er than a large one.

10.6 Finite elasto-plasti Cosserat theory for small elasti rotations

Sine we are at present not in a position to mathematially treat the geometrially exat elasto-plasti Cosserat model (3.31) it

seems expedient to introdue a �rst partial redution of the model whih will allow an adequate analysis in the near future. We

assume only that elasti rotations R

e

remain small. Hene by expansion R

e

= 11 + A
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+ : : : ; A

e
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+ : : : .

Furthermore we take �



= 0; �

4

= 0; p = 1 and dispose of external volume and surfae ouples.

This simpli�ation results in the following nonlinear system of oupled partial di�erential and evolution equations for the �nite
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No assumptions on the magnitude of deformations or plasti deformation are introdued. We venture to say that loal existene

an be established along the lines of [Nef03b℄.

10.7 Partially linearized �nite elasto-plasti Cosserat theory

A further redution is ahieved if we assume additionally that plasti deformations F

p

remain small.
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To this end we proeed similar to (4.47) and write R
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suh that to leading order (in (4.47) by ontrast we keep one order more)
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and the elasti miropolar urvature is expanded as

K

e

= R

T

e

�

D

x

R

e

�F

�1

p

�

= (11 + A

e

+ : : : )

T

�

D

x

(11 + A

e

+ : : : )(11 � p+ : : : )

�

�D

x

A

e

(11 � p) + : : : : (10.163)

Introduing these redutions onsistently into (3.31) we obtain the following (seemingly more ompliated) system of oupled partial

di�erential and evolution equations for the �nite marosopi displaement u : [0; T ℄�
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Here T

E

is the redued elasti Eshelby tensor. Observe that the oupling in T

E;urv

is of seond order, otherwise the Cosserat

ontribution would not appear in the plasti ow part. This system is intrinsially thermodynamially admissible. Note that in

the formal limit �



! 1, the total in�nitesimal ontinuum rotation splits additively into elasti in�nitesimal mirorotations A
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, then the system further redues to
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no in�nitesimal plasti spin: p = "
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and isohori plastiity: tr ["
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and we appreiate the role, the elasti Cosserat ontribution takes in the elasto-plasti model: in �rst order it resembles a softening

mehanism. A similar softening e�et an be observed in the model of [Bes74, (11.5)℄, where, however, the kinematial desription

is di�erent from ours. In spite of the softening e�et, we expet that the system (10.166) admits a global in-time solution with

slightly improved regularity in the rate-independent ideal plastiity ase.

If we �nally neglet all seond order terms, we obtain the in�nitesimal, geometrially linear model (3.36).

10.8 A remark on the elasto-plasti deomposition of the urvature tensor

There is some disussion in the literature as regards the suitable de�nition of an independent quantity of plasti urvature �

p

.

We did not advoate its use. Ehlers has already observed that �

p

annot really be independent under a disguised onsisteny

requirement. The argument runs as follows (only for the in�nitesimal ase for simpliity): the miropolar deomposition of the

displaement gradient into mirostrain " and mirorotation A

" = ru� A ; (10.168)
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If we assume in addition that the total urvature splits as well additively into elasti and plasti parts, � = �
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, we are naturally

led to assume by onsisteny with (10.169), that �
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The orresponding thermodynamial dissipation potential
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with only remaining independent dissipative variable "

p

(instead of two independent variables ("

p

; �

p

)) should lead to a paraboli

ow rule for "

p

due to a nonloal evaluation (instead of a traditional ow rule of ordinary di�erential equations for ("

p

; �

p

). While

the onsisteny requirement (10.169) has already been postulated in [EDV98b℄, in their work they still use the ow rule oming

from the ordinary di�erential approah.

10.9 Notes on parameter identi�ation

We inlude this disussion beause there seems to be some onfusion on what signi�ane ertain material parameters appearing

in a Cosserat ontext have. Here it suÆes to onsider only the in�nitesimal ase in equilibrium format

0 = Div � + f; x 2 


� = 2� symru+ 2�



(skew(ru)�A) + � tr [symru℄ � 11 (10.171)
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= skew(rg
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:

Suppose homogeneous boundary onditions are presribed: for B 2 GL(3;R) a onstant matrix, we set g

d

(x) := B:x. Thus we are

able e.g. to desribe uniform tration, uniform ompression or simple shear. It is lear that u(x) = B:x� x and A(x) = skew(B)

satisfy the boundary onditions and equilibrium equations. They are also the unique solutions. However, for these unique solutions,

the Cosserat mehanisms are not ativiated and we may determine �; � as lassial moduli independent of the ouple modulus �



.

In any homogeneous situation, only lassial mehanisms are involved. Turning this argument upside down, we onlude that

lassial in�nitesimal elastiity is appropriate for homogeneous situations only.

In order to get some information on the value of �



and the length sale L



we need to perform experiments leading to

inhomogeneous response. One of the simplest ases is torsion of a ylinder. A sequene of torsion experiments allows to

determine �



and L



if analytial formula are available relating torque and twist and inorporating the appearing parameters. Suh

formulas exist, showing that torsion in a Cosserat material would be sti�er (and depending on the length of the speimen) than

ought to be expeted by alulations based on lassial linear elastiity and the already determined lassial oeÆients.

Investigations to this end on many materials have been performed, with the deeiving result that �



should be set to zero, thus

implying that the in�nitesimal Cosserat model is not appropriate for a more realisti desription than lassial linear elastiity.

However, this shows only that Cosserat e�ets, if they really exist, are seond order e�ets, not disernable in a �rst linear

approximation.

Sine, however, the parameter �



appears as well in the geometrially exat desription, the foregoing experiments have already

shown onlusively that �



= 0 is the orret value for the �nite theory. This possibility of �



= 0 together with a true �nite

Cosserat theory has been onsistently overlooked by overemphasizing the linear model.

It remains to determine the length sale L



. But now we annot use the in�nitesimal model and its solution formula in torsion

sine with �



= 0 no Cosserat e�ets remain. We are either in need of a solution formula for the torsion problem of the nonlinear

model or we have to alulate the torsional response diretly numerially. However, one simpli�ation is possible: we do not really

need the full nonlinear system, instead an intermediate model inorporating seond order e�ets would suÆe. Below, we will give

suh a model.
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10.10 Stability of the homogeneous solution

Consider the simpli�ed �nite Cosserat problem with onsistent oupling ondition
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and impose homogeneous boundary onditions: g

d

(x) = B:x with a onstant matrix B. It is lear that the homogeneous solution

'(x) = B:x and R = polar(F ) = polar(B) solves the orresponding equilibrium equation and boundary onditions. Is it possible to

onlude that this solution is also a (unique?) global minimizer of the energy? At least we surmise that the homogeneous solution is

loally stable. No rigourous onlusion is possible at this stage of the investigation. Note that for the onsistent oupling boundary

ondition we have the trivial estimate

Z




W (r';R) dV �

Z




W (B; polar(B)) dV =W (B;polar(B)) � j
j : (10.173)

Moreover, the homogeneous solution will be energetially more favourable, the higher the value of L



> 0 (or the smaller the

speimen is). The height of a potential well around the homogeneous solution should be stritly related to L



> 0. If L



= 1,

then the homogeneous solution is the only possible one.

The Cosserat model allows therefore in prinipal for inhomogeneous minimizers in situations where homogeneous stationary

solutions are possible.

10.11 A simpli�ed elasto-plasti model for easy numerial implementation

Here we propose a model, based on our development, whih should over the essential behaviour of the geometrially exat model

while being slightly simpli�ed in order to arrive at a reasonable numerial implementation. It should as well serve the purpose of

�nding the value of the harateristi length L



for zero Cosserat ouple modulus �



= 0.

Numerial implementations based on an in�nitesimal system are already in use. Tentative alulations of geometrial exat

equations have also been done. However, due to the nonlinear manifold struture of SO(3;R) the implementation is awkward and

the performane of the �nite odes is in general insuÆient. In order to irumvent these problems right from the start we propose

a penalty formulation for the treatment of the �nite rotations. We augment the free energy with a penalty term
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e
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� 11k

2

where � is not a material parameter but supposed to approah 1 in order to adjust R to exat rotations.

The geometrial exat elasto-plasti Cosserat model was given by
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An immediate permitted simpli�ation is obtained by setting �

4

= 0; p = 1 and disarding external volume and surfae ouples.

This implies already that we an redue the onsideration of K

e

to K

e

= [D

x

R

e

(x) � F

�1

p

℄, the rotations do not appear expliitly in

the urvature.

No we introdue the penalty term and relax the rotations in the sense that we only require R

e

2 M

3�3

:
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While the formal struture is thus kept, the di�erenes appear in the related Euler-Lagrange equations. The fore balane equation

(translational equilibrium) remains invariant. The balane of angular momentum (rotational equilibrium) is modi�ed: taking free

variations w.r.t. R

e

2 M

3�3

yields the stationarity ondition
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Hene the strong form is given by
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with F

�1

p

F

�T

p

playing the role of a plasti metri. The omplete penalized model reads
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The ensuing model is still thermodynamial onsistent sine the modi�ations a�et only the elasti behaviour. A welome

feature of the penalized model is the fat that it remains frame-indi�erent.

The signi�ane of a omputed solution an easily be heked by evaluating kR

T

e

R

e

� 11k and/or inserting the result into

the exat Euler-Lagrange equations (2.12). It is also possible to make � a funtion of the residuum of the exat Euler-Lagrange

equation.

If we augment the penalty term further with k skew(F

e
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2

, then in the limit (� !1; L



! 0) we reover the lassial result
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) and we are lose to the model investigated numerially in [NW03, M2℄.
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