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Abstra
t

We investigate geometri
ally exa
t generalized 
ontinua of Cosserat mi
ropolar type. The variational

form of these models is introdu
ed and 
onsistently extended to 
over �nite elasto-plasti
ity based on the

multipli
ative de
omposition of the deformation gradient only. The de
isive stress is the Eshelby energy

momentum tensor. It is motivated that the traditional Cosserat 
ouple modulus �





an and should be set

to zero for ma
ros
opi
 spe
imens liable to fra
ture in shear, still leading to a 
omplete 
onsistent Cosserat

theory with independent rotations in the geometri
ally exa
t �nite 
ase in 
ontrast to the in�nitesimal,

linearized model.

Depending on material 
onstants di�erent mathemati
al existen
e theorems in Sobolev-spa
es are given

for the resulting nonlinear boundary value problems in the elasti
 
ase. These are the �rst su
h results

known to the author. Various assumptions on the magnitude of deformations and mi
rorotations lead to

simpli�ed models whi
h are all analysed mathemati
ally.

Partial fo
us is set to the possible regularization properties of mi
ropolar models 
ompared to 
lassi
al


ontinuum models in the ma
ros
opi
 
ase of materials failing in shear. The mathemati
al analysis heavily

uses an extended Korn's �rst inequality (Ne�, Pro
.Roy.So
.Edinb.A, 2002) dis
overed by the author re
ently.

The methods of 
hoi
e are the dire
t methods of the 
al
ulus of variations.

Key words: plasti
ity, vis
o-plasti
ity, polar-materials, non-simple materials, mi
rostru
ture,

stru
tured 
ontinua, solid me
hani
s, ellipti
 systems, variational methods,

fra
ture, shear failure.

AMS 2000 subje
t 
lassi�
ation: 74A35, 74A30, 74C05, 74C10

74C20, 74D10, 74E05, 74E10, 74E15, 74E20, 74G30, 74G65, 74N15

1



Contents

1 Introdu
tion 3

1.1 The development of Cosserat models, motivation and appli
ations . . . . . . . . . . . . . . . . . 3

1.2 Outline and s
ope of this 
ontribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The �nite elasti
 Cosserat mi
ropolar model 6

2.1 The elasti
 stret
h energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The elasti
 
urvature energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The balan
e equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Constitutive 
onsequen
es of the value for the Cosserat 
ouple modulus . . . . . . . . . . . . . . 8

2.5 The Boltzmann axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Classi�
ation of elasti
 Cosserat mi
ropolar models . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Non-dissipative Cosserat mi
ropolar elasto-plasti
ity 13

3.1 Extension to �nite mi
ropolar elasto-plasti
ity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Elasti
-vis
oplasti
 Cosserat model for poly
rystals with grain rotations . . . . . . . . . . . . . . 16

3.3 In�nitesimal elasto-plasti
 Cosserat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Mathemati
al analysis 19

4.1 Statement of the �nite elasti
 Cosserat problem in variational form . . . . . . . . . . . . . . . . . 19

4.2 The di�erent 
ases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 The 
oer
ive inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 The geometri
ally exa
t elasti
 Cosserat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Partially linearized elasti
 Cosserat theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 In�nitesimal linear elasti
 Cosserat theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 On the 
hoi
e of the 
urvature energy 
ontribution 27

6 The quasi
onvex hull and relaxation 28

7 Dis
ussion and 
on
luding remarks 29

8 A
knowledgements 30

9 Appendix A 34

9.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9.2 The Boltzmann axiom without internal length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9.3 Ma
ros
opi
 elasti
 shear failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9.4 Analyti
al investigation of in
ompressible elasti
 simple shear . . . . . . . . . . . . . . . . . . . . 35

9.5 Analyti
al investigations of 
lassi
al in
ompressible elasti
 Biot-material in simple shear . . . . . 41

10 Appendix B 43

10.1 Koiter's remarks on 
ouple stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

10.2 Some experimental results: Nonlinear relation near zero stress and size dependen
e . . . . . . . . 43

10.3 Alternative representation of the mi
ropolar stret
h energy . . . . . . . . . . . . . . . . . . . . . 44

10.4 Derivation of the geometri
ally exa
t mi
ropolar balan
e equations . . . . . . . . . . . . . . . . . 44

10.5 S
aling relations for Cosserat models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10.6 Finite elasto-plasti
 Cosserat theory for small elasti
 rotations . . . . . . . . . . . . . . . . . . . . 45

10.7 Partially linearized �nite elasto-plasti
 Cosserat theory . . . . . . . . . . . . . . . . . . . . . . . . 45

10.8 A remark on the elasto-plasti
 de
omposition of the 
urvature tensor . . . . . . . . . . . . . . . . 47

10.9 Notes on parameter identi�
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

10.10Stability of the homogeneous solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

10.11A simpli�ed elasto-plasti
 model for easy numeri
al implementation . . . . . . . . . . . . . . . . 48

2



1 Introdu
tion

1.1 The development of Cosserat models, motivation and appli
ations

This arti
le addresses the modelling and mathemati
al analysis of geometri
ally exa
t

1

generalized 
ontinua

of Cosserat mi
ropolar type in the elasti
 as well as elasto-plasti
 
ase. General 
ontinuum models involv-

ing independent rotations have been introdu
ed by the Cosserat brothers [CC09℄. In fa
t, their original

motivation 
ame from the theory of surfa
es, where the moving three-frame (Gauss frame) had been used

su

essfully.

Their development has been largely forgotten for de
ades only to be redis
overed in the beginning of the

sixties [Osh55, G�un58, AK61, ES64, Eri68, Tou62, Tou64, GR64, MT62, S
h67, TN65℄. At that time theoreti
al

investigations on non-
lassi
al 
ontinuum theories were the main motivation [Kr�o68℄. The Cosserat 
on
ept has

been generalized in various dire
tions, for an overview of these so 
alled mi
ro
ontinuum theories we refer to

[EK76, Eri99, CG77, Cap89℄.

Among the �rst 
ontributions extending the Cosserat framework to (in�nitesimal, geometri
ally linear)

elasto-plasti
ity we have to mention [Saw67, Lip69, Bes74℄. More re
ent (in�nitesimal) elasti
-plasti
 formu-

lations have been investigated in [dB92, DSW93, IW98, RV96℄. These models dire
tly 
omprise joint elasti


and plasti
 Cosserat e�e
ts. Lately, the models have been extended to a �nite elasti
-plasti
 setting, see e.g.

[GT01, San98a, San98b, San99, Ste94a, Gra03, FCS97℄ and referen
es therein. Most of these �nite extensions

dire
tly 
omprise of joint elasti
 and plasti
 Cosserat e�e
ts as well together with an additional split of the


urvature into elasti
 and plasti
 parts but their physi
al and mathemati
al signi�
an
e is at present mu
h

more diÆ
ult to asses than models in whi
h Cosserat e�e
ts are restri
ted to the elasti
 response of the material

[FCS97℄ and referen
es therein. Our own 
ontribution will be of the se
ond type.

It is generally a

epted that 
ouple stresses, understood here as the presen
e of non-symmetri
 parts of the

Cau
hy stress, exist in real elasti
 material [TN65℄. Dis
repan
ies between 
lassi
al linearized elasti
ity theory

and experiments are observed predominantly for high gradients whi
h o

ur by stress 
on
entrations in the

neighbourhood of holes, not
hes and 
ra
ks as predi
ted by 
lassi
al elasti
ity. Indeed, the measured stresses

around 
ra
ks are smaller than the predi
ted ones.

However, the sour
e, magnitude and signi�
an
e of 
ouple stresses is still being dis
ussed. A group of

resear
hers [Voi87, HK65, Koi64℄, supported by experimental eviden
e [GJ75, Gau82, S
h66, ES67℄ admits

elasti
 
ouple stresses in elasto stati
s on a ma
ros
ale only due to (very small) nonlo
al e�e
ts su
h that

an in�nitesimal elasti
 Cosserat mi
ropolar theory is meaningless: the in�nitesimal 
ontinuum rotations must


oin
ide with the in�nitesimal mi
rorotations and moreover, 
ouple stresses are altogether negle
ted sin
e they

are supposedly small.

2

Despite this situation, in�nitesimal elasto-plasti
 extensions of the indeterminate 
ouple-

stress theory have been investigated in [FMAH94, RV96℄.

Another group of resear
hers uses the in�nitesimal Cosserat mi
ropolar model, admitting non symmetri


in�nitesimal 
onstitutive Cau
hy stresses as a �rst order e�e
t due to independent in�nitesimal mi
rorotations

[Ste94a, IW98, M�uh89, dB91, GT01℄. Apparently, both views ex
lude ea
h other.

3

Notwithstanding, we present a model re
on
iling both views: the di�eren
e of opinion is due to the un
riti
al

use of the in�nitesimal, linear Cosserat model but disappears for a geometri
ally exa
t des
ription of the Cosserat

theory. The Cosserat 
ouple modulus �




(modulus of lo
al rotational sti�ness, Cosserat shear modulus,

torsional rigidity 
f. (2.6)) appearing in both the in�nitesimal and geometri
ally exa
t des
ription 
an be set

to zero, still there is a nonlo
al 
oupling together with independent �nite rotations, while the linearization

of this theory has lost all elasti
 Cosserat e�e
ts.

Another eminent sour
e for 
ouple stresses are granular material [Osh55, MV87, M�uh89, MH96, BP91, Bar94,

Bar98℄ where individual grains are supposed to be in 
onta
t and to transmit for
es by 
onta
t 
ouples. Here,

e�e
ts of 
ouple stresses 
annot usually be negle
ted, however, numeri
al simulations in
luding a des
ription of

the 
onta
t me
hani
s still suggest that they are of se
ond order [Bar98℄.

Using s
aling arguments it is 
lear, that material length s
ale e�e
ts be
ome the more a

entuated the

smaller the geometri
al dimensions of the spe
imen are. This suggests the future appli
ation of Cosserat models

for mi
ros
opi
 spe
imens or in su
h �elds as thin �lms and mi
ro a
tuators.

We remark that it has never really be admitted that Cosserat e�e
ts played a role as long as traditional

engineering materials in their elasti
 range on a ma
ros
ale were 
onsidered. Sin
e a mi
ropolar model is

1

Fully frame-indi�erent

2

In [HK65, p.339℄ we read: \Momentenspannungen sind merkli
h erst in Berei
hen vorhanden, in denen normalerweise ni
ht

nur die Anwendung der linearen, sondern au
h der ni
htlinearen Elastizit�atstheorie ni
ht mehr sinnvoll ist."

3

The experimental results of [FMAH94℄ on the torsion of thin 
opper wires revealed a strong geometri
al length s
ale e�e
t

of the plasti
 behaviour: the thinnest wires displayed 
omparatively the strongest response up into the plasti
 range. Whether

this is due to a genuine Cosserat e�e
t 
annot be as
ertained. It must be noted that in their experiments, also grain size e�e
ts

interfered, whi
h have nothing to do with geometri
al size e�e
ts.

3




onsiderably more diÆ
ult analyti
ally, the in�nitesimal

4

linear elasti
 Cosserat model was partially abandoned

in the early seventies.

Renewed interest in Cosserat models arose with the advent of the 
omputer allowing to 
ir
umvent analyti
al

details. Today, apart from the theoreti
al development, the Cosserat type models are in
reasingly advo
ated

as a means to regularize the pathologi
al mesh size dependen
e of lo
alization 
omputations where shear

failure

5

are me
hanisms [CH85, MV87, M�uh89, BP91, Bar94℄ play a dominant role, for appli
ations in plasti
ity

see the non-exhaustive list [IW98, DSW93, RV96, dB91, dBS91, dB92℄. The o

urring mathemati
al diÆ
ulties

re
e
t the physi
al fa
t that upon lo
alization of the deformation within narrow bands the validity limit

6

of

the 
lassi
al models is rea
hed. In models without any internal length the deformation should be homogeneous

on the s
ale of a representative volume element of the material [MA91℄.

Of 
ourse, there are many other possibilities available to over
ome this de�
ien
y, we mention only higher

gradient theories [Aif98℄ and referen
es therein, nonlo
al models [BC84, Eri83℄ using integral kernels in the


onstitutive law or in
remental variational formulations [Lam02, LMD03, ML03a, ML03b℄ and vis
oplasti


regularizations [Nef03a℄. While all these models su

essfully regularize the mesh-dependen
y, nonlo
al and

vis
oplasti
 approa
hes are lo
alization limiters but do not ne
essarily introdu
e a spe
i�
 geometri
 size e�e
t.

The stress-strain diagram in an in
remental variational approa
h is mesh-independent, while the thi
kness of

the lo
alization zone is given by the size of the smallest �nite element. Apart from in
remental methods all

regularizing approa
hes need additional material parameters. This is a distin
tive advantage of in
remental

methods.

The in
orporation of a length s
ale, whi
h is natural in a Cosserat theory, in prin
ipal has the power to

remove the mesh sensitivity. The presen
e of the internal length s
ale 
auses the lo
alization zones to have �nite

width. In [DSW93, IW98℄ it is expli
itly shown in the in�nitesimal elasto-plasti
 
ontext, that mode II failure

(shear failure) is ruled out while the formation of holes (mode I failure) is still possible. However, the a
tual


hara
teristi
 length s
ale of a material is diÆ
ult to establish experimentally and theoreti
ally [Lak95℄, and

remains basi
ally an open question as is the determination of other additionally appearing material 
onstants in

the Cosserat framework: the employed non-zero value of the Cosserat 
ouple modulus �




remains unmotivated

in most of these regularization pro
edures.

Let us summarize at this stage the gathered 
ir
umferential eviden
e of Cosserat e�e
ts for metalli
 and

granular materials:

4

By in�nitesimal we mean arbitrary small displa
ements and not just small displa
ements, 
ertainly far below 1 per
ent elon-

gation.

5

In short: shear failure means for us that Legendre-Hadamard ellipti
ity is violated while the Baker-Eri
ksen inequalities are

satis�ed, 
f. se
tion (9.3).

6

The o

urring high deformation gradients in a shear band suggest that in�nitesimal elasti
ity should not be used for a physi
ally


onsistent des
ription of shear bands. The same remark applies to 
al
ulations of stress 
on
entrations in the vi
inity of 
ra
ks:


ertainly, deformations are not any longer in�nitesimal small.

4



in�nitesimal elas-

ti


in�nitesimal

elasti
-plasti


�nite elasti


�nite elasto-plasti


ma
ros
opi


spe
imens,

heterogeneous on

a small s
ale, rather

homogeneous on a

large s
ale

no signi�
ant

Cosserat e�e
ts

reported: Ellis,

Gauthier, Koiter,

S
hijve et
.,

) �




= 0

Cosserat models due

to: Besdo, de Borst,

Fle
k, Forest,

Iorda
he, Lippmann,

M�uhlhaus,

Ristinmaa,

Steinmann et
.,

value �




> 0 mostly

not motivated,

in
onsistent with

in�nitesimal

elasti
ity

signi�
ant

Cosserat e�e
ts

reported for

strains > 4 per
ent

in lo
alizations

within shear

bands: Bardet,

Cambou,

M�uhlhaus et
.

geometri
al size

e�e
t of plasti


hardening, grain

size e�e
ts,

Hall-Pet
h

relation,

pronoun
ed in

torsion, small for

stret
h: Arzt,

Fle
k, Forest,

St�olken,

Tsakmakis et
.

mi
ros
opi


spe
imen,

more or less

homogeneous

relevant size:

atomi
 bonds, no

appre
iable size

e�e
t expe
ted:

Arzt, Koiter,

Kr�oner, Voigt et
.,

) �




= 0

applied to simulate

latti
e rotations,

dislo
ations in real

single 
rystals,

Forest, �




� 1,

Fle
k, �




=1,

in
onsistent with

in�nitesimal

elasti
ity

relevant size:

atomi
 bonds, no

appre
iable size

e�e
t expe
ted?

mi
robend tests,

plasti
ity of thin

�lms, single


rystals: Forest,

Grammenoudis,

Tsakmakis et
.

remarks resulted in

premature

partial

abandoning of

linear in�nitesimal

indeterminate


ouple stress

theory and linear

Cosserat theory

altogether

regularize

pathologi
al

mesh-

dependen
e in

large s
ale

numeri
al


al
ulations,

no intrinsi


experimental

eviden
e

Cosserat models

are used to

regularize shear

failure of granular

materials, based

on experiments

indi
ating a

de�nite width of

the bands

alternative: higher

gradient plasti
ity

theory, paraboli



ow rule, nonlo
al

models,

in
remental

variational

formulations,

If regularization of widely a

epted 
lassi
al 
ontinuum models on the ma
ros
opi
 s
ale is our aim, the

regularizing e�e
ts should be in
orporated su
h that essential salient features of the 
lassi
al model are still

present. Otherwise we fa
e the danger of over-regularization.

7

In the following we will see that su
h unwanted

behaviour is in part linked to the value of 
ertain material 
onstants, notably the Cosserat 
ouple modulus �




.

The mathemati
al analysis of Cosserat mi
ropolar models is at present restri
ted to the in�nitesimal, linear

elasti
 models, see e.g. [Ies71, Duv70, HH69, Ghe74a, Ghe74b℄. The major diÆ
ulty of the mathemati
al

treatment in the �nite strain 
ase is related to the geometri
ally exa
t formulation of the theory and the

appearan
e of �nite rotations. No general existen
e theorems are known to the author.

1.2 Outline and s
ope of this 
ontribution

This 
ontribution is organized as follows: �rst, we review the basi
 
on
epts of the geometri
ally exa
t elasti


Cosserat mi
ropolar theories in a variational 
ontext. In 
ontrast to other 
ontributions we keep the third-order

tensor 
hara
ter of the 
urvature tensor K and do not use a redu
ed se
ond order format

^

K based on the axial

representation.

An investigation into the 
onstitutive relations for a geometri
ally exa
t Cosserat theory apparently has

never been done. We highlight therefore the striking 
onstitutive 
onsequen
es of the 
hoi
e for the Cosserat


ouple modulus, �




> 0; �




= 0, respe
tively, in the for
e balan
e equation and it is easily seen that �




> 0

is not a ne
essary 
onstitutive assumption for the geometri
ally exa
t theory. Moreover, it is shown that,


ontrary to the in�nitesimal 
ase, the exa
t theory does not ne
essarily redu
e to the 
lassi
al elasti
ity theory

in the limit of a vanishing internal length s
ale without further provision. To 
on
lude this part, we provide a


lassi�
ation s
heme of �nite mi
ropolar elasti
ity and motivate a new boundary 
ondition for mi
rorotations,

whi
h we 
all 
onsistent 
oupling 
ondition.

The elasti
 formulation is then 
onsistently extended to �nite multipli
ative plasti
ity with non-dissipative

mi
ropolar e�e
ts. The de
isive stress tensor is nothing else than the elasti
 Eshelby energy momentum

tensor. Due to the third order 
urvature representation K we retain also the Eshelby format for the 
urvature

7

If the 
lassi
al model fails in shear by fra
ture along a slip line, we impose at least that the onset of fra
ture is 
orre
tly

reported.

5



part of the stresses. The obtained general plasti
ity model is then spe
ialized to a ma
ros
opi
 
ase of a

poly
rystal with grain rotations. It is motivated that for su
h a model the most natural 
hoi
e is to set

the Cosserat 
ouple modulus �




= 0. Various redu
tions of the geometri
ally exa
t model are possible, for


on
iseness we restri
t attention to the in�nitesimal mi
ropolar elasto-plasti
 model, operative however, only

for �




> 0.

More mathemati
ally in
lined readers 
an safely skip the modelling part and start dire
tly in the analyti
al

se
tion 4. There, the 
omplete problem statement of the geometri
ally exa
t elasti
 Cosserat 
ase in a variational


ontext is repeated.

Existen
e of minimizers in Sobolev-spa
es is established using the dire
t methods of variations and a novel

extended Korn's �rst inequality. Similar methods allow to treat the various redu
ed situations as well with

stronger results depending on the redu
tions made. However, only in the 
ompletely redu
ed well known

in�nitesimal 
ase existen
e, uniqueness and 
ontinuous dependen
e on the data 
an be established.

Finally, various alternative forms of the 
urvature part are investigated and it is argued that Cosserat models


an be superior in regularizing shear failure me
hanisms than simply taking the quasi
onvex hull or numeri
al

approximations of it as a mere 
omputational lo
alization limiter.

In the appendix we provide missing arguments for the Boltzmann axiom and de�ne what we mean by shear

failure. In a detailed analysis of simple shear (simple glide) we derive analyti
al solutions whi
h allow to 
ontrast

the di�erent models and underline the merrits of the new approa
h allowing for sharp interfa
es in the limit of

vanishing internal length.

2 The �nite elasti
 Cosserat mi
ropolar model

Let us now motivate the �nite Cosserat approa
h. The relevant notation will be found in the appendix. For our

development we 
hoose a stri
tly Lagrangean des
ription. First, in the purely elasti
 
ase, a Cosserat theory


an be obtained by introdu
ing the multipli
ative de
omposition of the ma
ros
opi
 deformation gradient F

into independent mi
rorotation R (Cosserat rotation tensor) and mi
ropolar stret
h tensor U (or �rst

Cosserat deformation tensor) with

F = R � U ; (2.1)

where R 2 SO(3;R) and U 2 GL

+

(3;R) but U 62 PSym(3) su
h that (2.1) is not ne
essarily the polar de
om-

position of F . The notion mi
ropolar is prone to misunderstandings: R must be 
onsidered as a ma
ros
opi


(average) quantity as the deformation gradient and the resulting model is still phenomenologi
al.

In the quasistati
 
ase, the Cosserat theory is now derived from a variational prin
iple by postulating the

following 'a
tion eu
lidienne' [CC09, p.156℄ for the �nite ma
ros
opi
 deformation ' : [0; T ℄� 
 7! R

3

and

the independent mi
rorotation R : 
 7! SO(3):

I(';R) =

Z




W (F;R;D

x

R)� hf; 'i � hM;Ri dV �

Z

�

S

hN;'i dS�

Z

�

C

hM




; Ri dS 7! min : w.r.t. (';R);

R

j

�

= R

d

; '

j

�

= g

d

(t) : (2.2)

The elasti
ally stored energy W depends on the deformation gradient as usual but in addition on the mi
roro-

tations together with their spa
e derivatives. Here 
 � R

3

is a domain with boundary �
 and � � �
 is that

part of the boundary, where Diri
hlet 
onditions g;R

d

for displa
ements and mi
rorotations, respe
tively, are

pres
ribed while �

S

� �
 is a part of the boundary, where tra
tion boundary 
onditions N are applied with

� \ �

S

= ;. The external volume for
e is f and M takes on the role of external volume 
ouples.

8

In addition,

�

C

� �
 is the part of the boundary where surfa
e 
ouples M




are applied with � \ �

C

= ;. Variation of the

a
tion I with respe
t to ' yields the equation for balan
e of linear momentum and variation of I with respe
t

to R yields balan
e of angular momentum.

The standard 
on
lusion from frame-indi�eren
e (here: invarian
e of the free energy under superposed rigid

body motions (SRBM) not merely observer invarian
e of the model [SB97, BS01, Mur03℄: 8Q 2 SO(3;R) :

W (F;R;D

x

R) =W (QF;QR;D

x

[QR℄) leads to the redu
ed representation of the energy

W (F;R;D

x

R) =W (R

T

F; 11; R

T

D

x

R) =W (U;R

T

D

x

R) =W (U;K) ; (2.3)

8

appearing in a non-me
hani
al 
ontext e.g. as in
uen
e of a magneti
 �eld on the polarization of a substru
ture of the bulk.

6



where K := R

T

D

x

R =

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

is one spe
i�
 representation

9

of the third order

rightmi
ropolar 
urvature tensor (or torsion-
urvature tensor, wryness tensor, se
ond Cosserat deformation

tensor, bending-twist tensor et
.). For a geometri
ally exa
t isotropi


10

theory we assume in the following an

additive split of the total free energy into lo
al stret
h and 
urvature part a

ording to

W =W

mp

(U) +W


urv

(K) : (2.4)

2.1 The elasti
 stret
h energy

For a small elasti
 strain theory, whi
h should already 
over most 
ases of physi
al interest, we require that

W

mp

(U) is a non negative isotropi
 quadrati
 form

11

normalized to

W

mp

(11) = 0; D

U

W

mp

(U)

j

U=11

= 0 : (2.5)

The most general form of W

mp


onsistent with (2.5) is 
f.(10.151)

W

mp

(U) = �

1

k sym(U � 11)k

2

+ �




k skew(U � 11)k

2

+ �

3

tr

�

sym(U � 11)

�

2

; (2.6)

with material 
onstants �

1

; �




; �

3

su
h that �

1

; 3�

3

+ �

1

; �




� 0 from non negativity [Eri99℄. By 
onsisten
y

with the 
lassi
al 
ontinuum model without mi
rorotations we 
an take �

1

= �; �

3

=

�

2

with �; � > 0 the


lassi
al Lam�e 
onstants and the Cosserat 
ouple modulus �




remains for the moment unspe
i�ed but

�




= 0 is physi
ally possible sin
e the mi
ropolar rea
tion stress D

U

W

mp

(U) � U

T

is not symmetri
 in

general, i.e. the problem does not de
ouple, 
f. (2.12). For 
omparison, in [Eri99, p.111℄ for the in�nitesimal


ase, the elasti
 moduli are taken to be �

1

= �+

�

2

; �




=

�

2

; �

3

=

�

2

but in this formula, � 
annot be regarded

as one of the Lam�e 
onstants.

12

In [DSW93, Ste94a, Ste97, FCS97, DFC98, EDV98a℄ the abbreviation �




is

used while in [Gra03℄ it is �




= � and �




= G




in [IW98℄.

13

2.2 The elasti
 
urvature energy

For the 
urvature term, to be spe
i�
, we assume the general form

W


urv

(K) = �

L

1+p




12

(1 + �

4

L

q




kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

; (2.7)

where L




is setting an internal length s
ale with units of length, �

4

� 0; p > 0; q � 0 are additional material


onstants, the fa
tor

1

12

only for 
onvenien
e and �

5

> 0; �

6

; �

7

� 0 as a minimal requirement. We mean

tr [K℄

2

= ktr [K℄k

2

by abuse of notation. This 
hoi
e for W


urv

does not presuppose any knowledge of the

magnitude of 
urvature

14

in the material and is non-degenerate in the origin kKk = 0, whi
h is not essential

however.

In [FCS97, DFC98℄ the following set of parameters (�

4

; �

5

; �

6

; �

7

; p) = (0; �; 
; �; 1) is used, while in

[BGdB98, EDV98a℄ the redu
ed set (�

4

; �

5

; �

6

; �

7

; p) = (0; �; �; �; 1) is taken and (�

4

; �

5

; �

6

; �

7

; p) = (0; 
; Æ; �; 1)

is used in [Gra03℄.

15

9

Note that K

i

= R

T

r(R:e

i

) 62 so(3;R). Another representation of K is given by K :=

�

R

T

�

x

R;R

T

�

y

R;R

T

�

z

R

�

. Sin
e

�

x

(R

T

R) = 0 for R 2 SO(3;R) it holds that K 2 so(3;R) � so(3;R) � so(3;R). It is therefore possible to base all 
onsiderations

of 
urvature on a more 
ompa
t expression like

^

K :=

�

axl(R

T

�

x

R)j axl(R

T

�

y

R)j axl(R

T

�

z

R)

�

2 M

3�3

. This is the traditional

approa
h, see e.g. [San99, FBC00, Gra03℄. We do not use

^

K sin
e it looses its advantages over K if we want to 
onsider mi
ro-

morphi
 extensions of the theory, e.g. if we would allow for R 2 SL(3;R). By extending the theory to multipli
ative plasti
ity it

be
omes apparent that K is a natural representation.

10

The 
omplete stru
ture for anisotropi
 in�nitesimal formulations has been given in [Kes64℄.

11

Hen
ky-type energies de�ned on lnU are useless, sin
e U 6= PSym in general. The stret
h part 
ould depend in prin
iple on

C = U

T

U , but would then fail to be altogether quadrati
 in U . The same argument ex
ludes a dependen
e on U . In addition, a

possible 
oupling between U and K for 
entrosymmetri
 bodies 
an be ruled out [Now86, p.14℄.

12

A simple de�nition of the Lam�e 
onstants in mi
ropolar elasti
ity is that they should 
oin
ide with the 
lassi
al Lam�e 
onstants

for symmetri
 situations. Equivalently, they are obtained by the 
lassi
al formula � =

E

2(1+�)

; � =

E�

(1+�)(1�2�)

, where E and �

are uniquely determined from uniform tra
tion. Eringens nomen
lature unfortunately led to some 
onfusion.

13

In the remainder, from a modelling point of view, we need to 
arefully distinguish between mi
ropolar moduli for mi
ros
opi


spe
imens and e�e
tive moduli for ma
ros
opi
 spe
imens, depending on the appli
ation aimed at.

14

The following question merits attention: Is it experimentally possible to determine not only the value of the internal length

s
ale L




but also to determine the relevant exponents p; q independent of mathemati
al 
onvenien
e. Dispersion experiments are

the obvious 
andidate.

15

Note that this identi�
ation is based on the representation of K in terms of the axial representation

^

K. All results in the

mathemati
al se
tion hold without modi�
ation for

^

K as well.

7



The form (2.7) is motivated by 
onsisten
y with an expansion for a 
orresponding shell theory. But 
are has

to be exerted in the �nite regime: W


urv

should preferably be 
oer
ive in the sense that we impose pointwise

9 


+

> 0 9 r > 1 : 8K 2 T(3) : W


urv

(K) � 


+

kKk

r

; (2.8)

or less demanding

9 r > 1 :

W


urv

(K)

kKk

r

!1 as kKk ! 1 ; (2.9)

whi
h implies ne
essarily �

6

> 0 in (2.8). This is at varian
e with the in�nitesimal 
ase (4.60), where �

6

= 0 is

still a

eptable. A major step forward in the subsequent mathemati
al treatment would be to show that giving

up (2.9), i.e. �

6

= 0, still yields a well posed geometri
ally exa
t �nite mi
ropolar theory.

If it is known in advan
e that the 
urvature remains small, i.e. L




� kKk � 1, then �

4

= 0; p = 1 may be a

reasonable 
hoi
e [GT01, BGdB98, EDV98a, FCS97, Ste94a℄ but we will see that this leads to a loss of 
ontrol

(in the 
riti
al 
ase �




= 0) in the 
orresponding �nite boundary value problem that 
an be over
ome by taking

�




> 0, whi
h will be seen below. Consistent with this observation (but not based on), in [S
h62, Bes74, San99℄

the parameter �




has been set to �




= � su
h that

W

mp

(U) = � kU � 11k

2

+

�

2

tr

�

U � 11

�

2

; (2.10)

super�
ially 
oin
iding with the fun
tional form of the 
lassi
al free energy de�ned on the positive de�nite right

stret
h tensor U . In [Ste94a, Ste94b℄ the strain energy

W

mp

(U) = � h

U

det[U ℄

1=3

� 11; 11i+ h(det[U ℄) (2.11)

is proposed. Upon linearization, this 
orresponds as well to the 
hoi
e � = �




.

2.3 The balan
e equations

For the 
hoi
es we have made we note the resulting material form of the �eld equations on the referen
e


on�guration (with �

4

= 0; p = 1) whi
h 
an be obtained after some algebrai
 manipulations.

0 = Div

�

S

1

(F;R) + 2�




R skew(R

T

F )

�

+ f

R

3

; for
e balan
e (2.12)

0 = skew(D

U

W

mp

(U)U

T

) + skew

�

R

T

Div

�

RD

K

W


urv

(K)

�

�

+ skew

�

D

K

W


urv

(K)K

T

�

+ skew(R

T

M)

M

3�3
; angular momentum balan
e ;

where S

1

is the �rst Piola-Kir
hho� stress (for �




= 0) with the fun
tional form

S

1

(F;R) = R

h

�(F

T

R+R

T

F � 211) + � tr

�

F

T

R� 11

�

11

i

; (2.13)

as in [Nef03a, (P3)℄ and D

K

W


urv

(K) is the materialmi
ropolar moment tensor (or 
ouple-stress tensor).

A similar form of the un
onventional

16

balan
e of angular momentum equation has been given in [Cap89, p.63℄.

In our variationally based development, the balan
e equations will not play a prominent role.

2.4 Constitutive 
onsequen
es of the value for the Cosserat 
ouple modulus

Looking at (2.6) with �




> 0 we see that the impli
ation of this 
hoi
e at a �rst glan
e is an ino

uous

rise in the ma
ros
opi
 elasti
 strain energy W

mp

(U) if R 6= polar(F ), but R is generi
ally assumed to be

independent of polar(F ). The 
hoi
e �




> 0 a
ts like a lo
al 'elasti
 spring' between both 
ontinuum rotations

and mi
rorotations.

16

be
ause we have not transformed the tensor equation into a related ve
tor format, whi
h is usually preferred. Following [Cap89℄

we 
an identify an external volume 
ouple b




in the equilibrium ve
tor-format with axl(skew(R

T

M)). Then b




is a volume 
ouple

whi
h is not a dead load. We note that a term skew

�

D

K

W


urv

(K)K

T

�

does not dire
tly appear in derivations based on

^

K sin
e

e.g.

^

K

1

= axl(R

T

�

x

R) and variation along the one-parameter group introdu
ed in (10.154) yields

Æ

^

K

1

= axl((AR)

T

�

x

R +R

T

�

x

[AR℄) = axl(�R

T

A�

x

R +R

T

(�

x

A)R+ R

T

A�

x

R) = axl(R

T

(�

x

A)R) :

This is not at varian
e with (2.12)

2

sin
e di�erentiation is 
arried out di�erently. Observe that skew

�

D

K

W


urv

(K)K

T

�

= 0 if

�

5

= �

6

; �

7

= 0, i.e. if 
ouple stresses are proportional to the 
urvature tensor.

8



Let us 
onsider the mathemati
al impli
ations of �




= 0 and 0 < �




� �, respe
tively, in more detail. It is

readily veri�ed that for the elasti
ity tensors (di�erentiating the stret
h energyW

mp

(R

T

F ) at �xed R w.r.t. F )

�




> 0) 8H 2 M

3�3

: D

2

F

W

mp

(R

T

F ):(H;H) � 2�




kHk

2

(2.14)

�




= 0) 8H 2 M

3�3

: D

2

F

W

mp

(R

T

F ):(H;H) � 2�k

1

2

(R

T

H +H

T

R)k

2

:

Hen
e the 
hoi
e �




> 0 leads to uniform 
onvexity of W

mp

(R

T

F ) w.r.t. F and un
onditional elasti
 sta-

bility on the ma
ros
opi
 level: regardless of what distribution of mi
rorotations R(x) is given, the ma
ros
opi


equation of balan
e of linear momentum is uniquely solvable and this equation is insensible to any deterioration

of the spatial features of the mi
rostru
ture. Uniform 
onvexity is diÆ
ult to a

ept from a 
onstitutive point

of view sin
e it is impossible for a geometri
ally exa
t des
ription in the framework of a 
lassi
al ma
ros
opi



ontinuum but 
lear from the above dis
ussion: the additional elasti
 spring between mi
ro- and 
ontinuum

rotation extremely rigidi�es the material and 
ompletely 
hanges the type of the mathemati
al boundary value

problem 
ompared with the 
lassi
al �nite theory.

17

Fortunately, su
h a far rea
hing unsatisfa
tory 
on
lusion does not hold for �




= 0, in whi
h 
ase we have

D

2

F

W

mp

(R

T

F ):(� 
 �; � 
 �) = �

�

kR

T

� 
 �k

2

+ hR

T

� 
 �; � 
R

T

�i

�

= �

�

kR

T

� 
 �k

2

+ hR

T

�; �i

2

�

;

whi
h shows the physi
ally mu
h more appealing inequality

D

2

F

W

mp

(R

T

F ):(� 
 �; � 
 �) � � k�k

2

� k�k

2

; (2.15)

expressing nothing but uniform Legendre-Hadamard ellipti
ity of the a
ousti
-tensor with ellipti
ity 
on-

stant � independent of R. The Legendre-Hadamard 
ondition has the most 
onvin
ing physi
al basis [Ant95,

p.461℄ in that it implies the reality of wave speeds and the Baker-Eri
ksen inequalities (stress in
reases with

strain, [MH83, p.19℄). The 
hoi
e �




= 0 leads to the strain energy density proposed in [Nef03a, (P3)℄ and

[NW03, M1℄ if the appearing independent vis
oelasti
 rotations there are identi�ed with the independent elasti


Cosserat mi
rorotations here.

18

2.5 The Boltzmann axiom

In the absen
e of volume 
ouples and 
urvature terms, i.e. without internal length s
ale, L




= 0, the se
ond

equation in (2.12) redu
es to the 
lassi
al symmetry 
ondition [SFH92, (6)℄, the so 
alled Boltzmann axiom,

D

U

W

mp

(U)U

T

2 Sym, skew

�

D

F

W (R

T

F )F

T

�

= 0, S

2

:= F

�1

S

1

(F;R) 2 Sym; (2.16)

postulating the symmetry of the se
ond Piola-Kir
hho� stress S

2

and we note that trivially

�

U 2 Sym, R = polar(F )

�

) D

U

W

mp

(U)U

T

2 Sym : However, for the 
onverse we state a �rst result:

Lemma 2.1 (Limit rotations with zero internal length s
ale)

Let W

mp

be de�ned as in (2.6). If �

1

= �




and tr

�

U

�

< 3 +

2�




�

3

then

D

U

W

mp

(U)U

T

2 Sym)

�

U 2 Sym, R = polar(F )

�

: (2.17)

Otherwise, D

U

W

mp

(U)U

T

2 Sym alone does not imply U 2 Sym. In other words: symmetry of the Cau
hy

stresses T =

1

det[F ℄

F S

2

F

T

does not imply that mi
rorotations 
oin
ide with 
ontinuum rotations.

Proof. The proof is given in (9.2). This dis
repan
y between the ful�lment of the Boltzmann axiom and the

symmetry of the mi
rostret
h U does not appear in the in�nitesimal linear 
ase, see (4.62). �

We mention that an argument relating to the general 
ase ofW

mp

taken as an isotropi
 s
alar valued fun
tion

of U has been given e.g. in [San99, p.29℄ and [SB95℄. No 
onditions on the 
oeÆ
ients or the magnitude of

17

In the analyti
al se
tion we will see that �




> 0 implies that ' 2W

1;1

(
;R

3

) irrespe
tive of R, thus ex
luding fra
ture.

18

The preferred value �




= 0 for the ma
ros
opi
 
ase 
an as well be motivated by the following 
onsideration: Consider the

Green strains F

T

F � 11 = (U � 11)

T

(U � 11) + 2 sym(U � 11). Therefore

�

4

kF

T

F � 11k

2

= �k symU � 11k

2

+O(kU � 11k

3

). Hen
e

�




= 0 provides the 
orre
t �rst order approximation to a 
lassi
al St. Venant-Kir
hho� material. With �




= 0 we ex
lusively

re
over the fa
t of the 
lassi
al 
ontinuum theory that W isotropi
 implies symmetry of the Biot stress tensor: D

U

W (U) 2 Sym.

If we expand R = 11+A+ : : : with A 2 so(3) and write F = 11+ru, then the Cosserat e�e
ts dissappear to �rst order for �




= 0.

In this sense, �




= 0 is 
lose to 
lassi
al elasti
ity.

9



tr

�

U

�

are involved, whi
h raises some questions. However, the 
on
lusion in [San99, p.29℄ is true in some 
ases

19

, whi
h may be seen for

W

mp

(U) = �kU � 11k

2

+ �

�

det[U ℄ +

1

det[U ℄

� 2

�

2

= � kU � 11k

2

+ �

�

det[F ℄ +

1

det[F ℄

� 2

�

2

D

U

W

shear

mp

(U) � U

T

= 2�

�

U � 211

�

U

T

: (2.18)

Sin
e det[U ℄ = det[R

T

F ℄ = det[F ℄ is independent of R, balan
e of angular momentum is only a�e
ted through

the shear 
ontribution and independent of the volumetri
 response. Therefore the symmetry 
ondition in the

se
ond equation in (2.12) redu
es to 2�U U

T

� 2�U

T

2 Sym, whi
h implies already U 2 Sym. The same

reasoning applies to (2.11). In
identally, this 
ould be a reasonable assumption for a generalized �nite Cosserat

mi
ropolar theory as well: why should the mi
rorotations R a�e
t the volumetri
 response of the material on

the ma
ros
opi
 level at all? We would be led to assume that the stret
h energy has the form

W

mp

(U) =W

shear

mp

(U) + h(det[U ℄) ; (2.19)

de
oupling shear behaviour from volumetri
 response.

The result of Lemma 2.1 is noteworthy: It shows that symmetry of U is an independent additional

assumption generally not implied by balan
e of angular momentum (2.5) in the absen
e of an internal length

s
ale (arbitrary large samples) in the �nite regime.

2.6 Classi�
ation of elasti
 Cosserat mi
ropolar models

Let us summarize at this stage the proposed geometri
ally exa
t �nite elasti
 Cosserat mi
ropolar model: the

task is to �nd (';R) 2 R

3

� SO(3;R) su
h that

Z




W

mp

(U) +W


urv

(K) � hf; 'i � hM;Ri dV �

Z

�

S

hN;'i dS�

Z

�

C

hM




; Ri dS 7! min : w.r.t. (';R);

U = R

T

F; F = r'; K = R

T

D

x

R; R

j

�

= R

d

; '

j

�

= g

d

(2.20)

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

W


urv

(K) = �

L

1+p
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(1 + �

4

L

q




kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

:

In [Ste97℄ a 
lassi�
ation of isotropi
 mi
ropolar theories is given. We refer to the geometri
ally exa
t 
ase

therein and put our models in this framework at the same time extending it.

0. rigidity in torsion: �




= 1; L




= 1. Classi
al in�nitesimal elasti
ity in tension. L




= 1 keeps the

mi
rorotations 
onstant and �




=1 implies that 
ontinuum- and mi
rorotations 
oin
ide.

1. gradient type, 
onstrained Cosserat mi
ropolar theory (or indeterminate 
ouple-stress the-

ory, a spe
ial 
ase of an elasti
 material of grade two,[Tou62, Tou62, Min64, Gri60, Koi64, Eri68,

Cap85℄): �




= 1; K = polar(r')

T

D

x

polar(r'); U = U = polar(r')

T

r', variation of the a
tion fun
-

tional I only with respe
t to ': the �eld equations are of fourth order, mi
rorotations 
oin
ide with

ma
rorotations, lo
al 
ontribution to the in�nitesimal Cau
hy stress tensor �

lo


and lo
al 
ontribution

20

to the �nite se
ond Piola-Kir
hho� stress tensor S

lo


2

:= F

�1

D

F

W

mp

(U) are symmetri
, \tri�edre 
a
h�e"

in the original Cosserat terminology [CC09, p.30℄, only the non-lo
al part (
alled the hyperstress) is re-

sponsible for the overall antisymmetri
 stresses. The antisymmetri
 part of the total stress is therefore

not determined by the lo
al value of the deformation �eld alone.

2. regularized gradient theory: �




> 0; �




! 1; K = R

T

D

x

R, independent variation with respe
t to

(';R), �eld equations of se
ond order, independent mi
rorotations, a sub
lass of 
ase (3), �




! 1 as a

penalty parameter, yields in the limit 
onstrained gradient theory (indeterminate 
ouple stress theory),

provides a '
heap' numeri
al approximation to (1).

19

It would be useful to obtain general ne
essary and suÆ
ient 
onditions on the free energy fun
tion W su
h that

�

U 2 Sym, R = polar(F )

�

, D

U

W

mp

(U)U

T

2 Sym. A further problem is then to 
hara
terize the 
lassi
al 
ontinuum as

a 
ertain limit of the �nite Cosserat model for vanishing internal length. We might want to 
onje
ture that the 
lassi
al Boltzmann


ontinuum is the �-limit [Mas92℄ of (2.2) for L




! 0 and �




= 0, with appropriate boundary 
onditions R

j

�

= polar(r') preventing

the situation in (9.85). A proof of this 
onje
ture is beyond the s
ope of this investigation.

20

For us, stress denotes the sum of lo
al and nonlo
al stresses in the for
e balan
e equations. Usually, what we 
all lo
al stress

is denoted simply with (
onstitutive) stress whereas our nonlo
al stress is said to be the hyperstress in the 
ase of the 
onstrained

gradient model.

10



3. �rst order Cosserat mi
ropolar: �




> 0; K = R

T

D

x

R, independent variation with respe
t to (';R),

�eld equations of se
ond order, independent mi
rorotations, strong lo
al 
oupling of �rst order between


ontinuum rotations and mi
rorotations, in�nitesimal (
onstitutive) Cau
hy stress tensor � and �nite

se
ond Piola-Kir
hho� stress tensor S

2

:= F

�1

D

F

W

mp

(U) are non-symmetri
, \tri�edre mobiles" in the

original Cosserat terminology. Appropriate for rather rigid mi
ros
opi
 spe
imens, fra
ture ex
luded sin
e

�




> 0.

3.1 traditional in�nitesimal Cosserat mi
ropolar: �




> 0; � = D

x

A; R = exp(A); A 2 so(3), indepen-

dent variation w.r.t. displa
ement and in�nitesimal mi
rorotations (u;A), linearization of (3). The next

three 
ases are our own 
ontribution:

4. se
ond order Cosserat mi
ropolar (or relaxed mi
ropolar theory): �




= 0, K = R

T

D

x

R, indepen-

dent variation with respe
t to (';R), �eld equations of se
ond order, independent mi
rorotations, weak

non-lo
al 
oupling of se
ond order, in�nitesimal (linearized) Cau
hy stress tensor � is still symmetri
,

se
ond Piola-Kir
hho� stress tensor S

2

:= F

�1

D

F

W

mp

(U) is non-symmetri
. The antisymmetri
 part

of the stresses is determined. Appropriate for ma
ros
opi
 spe
imens, in prin
iple allowing for fra
ture.

4.1 se
ond order 
onsistent Cosserat mi
ropolar: as 
ase (4), but independent Diri
hlet boundary 
on-

dition for the mi
rorotations R

j

�

= R

d

repla
ed by 
onsistent 
oupling requirement R

j

�

= polar(r')

j

�

.

4.2 �nite elasti
ity with free rotations and mi
rostru
ture: �




= 0; L




= 0, independent variation

w.r.t. (';R), no internal length s
ale. Symmetry of the se
ond Piola-Kir
hho� tensor S

2

is a lo
al

side 
ondition 
oming from balan
e of angular momentum whi
h does not imply that R = polar(r').

Lo
al minimization of rotations. Weak solutions of 
lassi
al �nite elasti
ity are automati
ally stationary

solutions of this minimization problem. In this sense en
ompassing 
lassi
al �nite elasti
ity.

5. 
lassi
al �nite elasti
ity: �




= 0; L




= 0, independent variation only w.r.t. ', no internal length s
ale.

The se
ond Piola-Kir
hho� tensor S

2

is automati
ally symmetri
.

6. 
lassi
al in�nitesimal elasti
ity: �




= 0; L




= 0, variation w.r.t. ', no internal length s
ale. The

in�nitesimal Cau
hy stress � is symmetri
.

One may be in
lined to think that 
ase (1) is 
losest to 
lassi
al elasti
ity. This is not true. To the 
ontrary,

the in
uen
e of the 
urvature part on the deformation is mu
h more pronoun
ed sin
e the spatial variation

of the 
ontinuum rotations is dire
tly penalized. Su
h a model tends to systemati
ally maximize the material

length s
ale e�e
ts, see e.g. [Eri99, p.222℄ where stress 
on
entration fa
tors are 
omputed for the di�erent


ases based on the in�nitesimal theory. Use of (1) as a model in its own right has been put into question on

theoreti
al grounds [Eri68, p.698℄ and reje
ted by Koiter [Koi64℄ as well who, however, prematurely 
on
luded

that 
ouple stresses altogether played no prominent role. If su
h a model is intended to approximate 
lassi
al

linear elasti
ity, then the appearing length s
ale L




must be 
hosen signi�
antly smaller than the length s
ale

L




, whi
h appears in the Cosserat mi
ropolar models with independent rotations.

If we assume that 
lassi
al in�nitesimal elasti
ity is a 
orre
t approximation to material behaviour under

very small loads but that 
ouple stresses may nevertheless o

ur in a material [TN65, p.398℄, we prefer for

appli
ations within the elasti
 range de�ned on a ma
ros
opi
 level the 
ase (4) of weak nonlo
al 
oupling

(�




= 0) without ex
luding the other (more mi
ros
opi
ally) 
ases from our mathemati
al analysis.

It is 
lear that if 
ouple stresses are assumed to be se
ond order e�e
ts

21

, then they should not appear

in the in�nitesimal treatment in the �rst pla
e whi
h is exa
tly what we obtain for �




= 0 subsequently.

Experimental eviden
e [Eri99, p.165 ℄ suggests already that �




� 0:0039� for the in�nitesimal theory, orders

of magnitude smaller than the 
lassi
al shear modulus. This value is 
onsistent with results [DFC98℄ obtained

from 
al
ulations on dis
rete networks with rigid substru
ture. In the same paper, it is shown that if the

representative volume element is in
reased (ma
ros
opi
 
ase) then �




! 0 while the geometri
al size e�e
t is

still present.

22

The 
ase of �




> 0 might be however, suitable for 
omputations on a mi
ros
ale where internal material

length s
ales are of the order of the geometri
al dimensions of the spe
imen. This is e.g. the 
ase in models

for single 
rystals where the mi
rorotations 
on
eptually should 
losely follow the latti
e ve
tors for a proper

physi
al de�nition of them. Then �




� 1 may be advisable sin
e we do not expe
t fra
ture.

21

\In 
lassi
al elasti
ity 
ouple stresses are to be interpreted as a non-lo
al e�e
t intimately 
onne
ted with the range of the atomi


for
es. The 
ouple stresses are of a higher order in this range than for
e-stresses and 
an therefore usually be negle
ted."[HK65℄

22

In the same volume [DDC98℄ a numeri
al investigation of 
onta
t 
ouples for granular media arrives at the 
on
lusion: \The

e�e
t of 
onta
t 
ouples appears only by a se
ond order term whi
h is not 
onsidered by the (in�nitesimal) Cosserat approa
h."

(in�nitesimal) my addition. In [Bar94, Fig.2℄ it is shown that for strains up to 4 per
ent the e�e
ts of parti
le rotations in idealized

granular materials are pra
ti
ally absent, whereas for higher strains parti
le rotation signi�
antly de
reases the failure stress. The

role of parti
le rotations is espe
ially important in shear bands.(ibidem)

11
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Figure 1: Left: Qualitative in
uen
e of �




and L




on the elasti
 behaviour in torsion. From bottom to top:

�nite elasti
ity (5), se
ond order Cosserat (4), in�nitesimal elasti
ity (6), �rst order Cosserat (3), linearized �rst

order Cosserat (3�), indeterminate 
ouple stress theory (1), linearized indeterminate 
ouple stress theory, rigid

behaviour (verti
al axes) (0). Right: �nite elasti
ity and in�nitesimal linear elasti
ity 
oin
ide in tension for

ideally homogeneous bulk material. No Cosserat e�e
ts. If inhomogeneity is present, a small Cosserat e�e
t will

appear, lower 
urve. If �




> 0, the elasti
 response in torsion would be sti�er than expe
ted from 
al
ulations

with linear elasti
ity based on material parameters obtained from measurements in tension, uniform tra
tion

and uniform 
ompression already for arbitrary small twist. The smaller �




, the larger one may 
hoose L




in

order to still approximate 
lassi
al in�nitesimal elasti
ity.

We 
an gain some feeling as regards the in
uen
e of the Cosserat 
ouple modulus �




and the 
hara
teristi


length L




on the �nite Cosserat model by looking at extremal values: L




= 0 
orresponds to the physi
ally

possible limit 
ase of arbitrary large samples, L




=1 
orresponds to the limit 
ase of arbitrary small samples.

L




= 0 L




= 0:1 L




=1

�




= 0 �nite elasti
ity

with free

rotations and

mi
rostru
ture,


ase (4.2),

en
ompassing


lassi
al �nite

elasti
ity model,


ase (5)

new se
ond order

Cosserat model,


ase (4),

linear: 
ase (6)


lassi
al

in�nitesimal

elasti
ity model,


ase (6)

�




=

�

2

in 
ertain! 
ases:


lassi
al �nite

elasti
ity model,


ase (5)

�nite �rst order

Cosserat model,


ase (3),

linear: 
ase (3.1)

linear elasti
ity

in torsion (7),

in
onsistent

torsional tangent

modulus, 
lassi
al

in�nitesimal

elasti
ity in

tension

�




=1 
lassi
al �nite

elasti
ity model,


ase (5)

traditional

indeterminate


ouple stress

theory, gradient


onstrained model,


ase (1)

totally rigid

behaviour in

torsion, 
ase (0),


lassi
al

in�nitesimal

elasti
ity in

tension

The only row where ea
h entry does not 
on
i
t with experiments is the �rst one. It is to be observed that

L




=1 linearizes the behaviour with respe
t to a given rigid 
on�guration.

23

For 
ompleteness we state the �nite gradient 
onstrained Cosserat mi
ropolar (indeterminate


ouple stress theory) problem as well, formally 
orresponding to �




= 1. Given the boundary value

23

Uniform tra
tion and uniform 
ompression do not a
tivate rotations, hen
e the 
lassi
al identi�
ation of the Lam�e 
onstants

is a
hieved independent of �




. Uniform tra
tion alone allows already to determine the Young modulus E and the Poisson ratio

� [Cia88, p.126℄. Contrary to [Gau82, p.411℄ we do not see the possibility to de�ne a spe
i�
 \mi
ropolar Young modulus" or

\mi
ropolar Poisson ratio".

12



g

d

2 H

1

(
;R

3

); rg

d

2 GL

+

(3;R) a:e: we look for the deformation ' : [0; T ℄� 
 7! R

3

satisfying

I(') =

Z




W

mp

(polar(r')

T

r') +W


urv

(polar(r')

T

D

x

polar(r')) � hf; 'i � hM; polar(r')i dV

�

Z

�

S

hN;'i dS�

Z

�

C

hM




; polar(r')i dS 7! min : w.r.t. ';

W

mp

(U) = � kU � 11k

2

+

�

2

tr [U � 11℄

2

(2.21)

S

lo


2

= F

�1

D

F

W

mp

(U) 2 Sym ; 
onstitutive stress

W


urv

(K) = �

L

1+p




12

(1 + �

4

L

q




kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

;

'

j

�

= g

d

(t) ; polar(r')

j

�

= polar(rg

d

)

j

�

:

Balan
e of angular momentum is, as the 
onsequen
e of invarian
e of the a
tion under rigid rotations, automat-

i
ally satis�ed and is but a de�ning equation for the moment stress tensor and not re
orded here. Observe that

the �rst order, lo
al 
ontribution W

mp

(U) is uniformly 
onvex in U , the 
ontinuum right stret
h tensor, but

that F 7!W

mp

(U) fails to be Legendre-Hadamard ellipti
 with respe
t to F and is as su
h not quasi
onvex

but satis�es the Baker-Eri
ksen inequalities, 
f. se
tion 9.3. Whether or not the external 
ouples M;M




should be non-zero is a modelling 
hoi
e. Observe as well that this spe
ial elasti
 material of grade two does

not 
ompletely 
ontrol the se
ond derivatives of the deformation ' whi
h shows, that a simple 
ompa
tness

argument does not suÆ
e to over
ome the nonlinearity and non-quasi
onvexity in the �rst order stret
h term.

At �rst sight it is therefore not obvious why su
h a model 
an have a regularizing e�e
t in the �nite 
ase.

Remark 2.2 (Consistent Diri
hlet boundary 
oupling 
onditions for the rotations)

For all presented models with internal length s
ale the mi
rorotations on the part of the boundary � 
an in

prin
iple be spe
i�ed arbitrarily. This implies �ve degrees of freedom: 3 
omponents of the deformation ' and

two orthogonal ve
tors, the third ve
tor of the rotation is then de�ned, we 
all this the rigid Dir
hlet 
ase.

However, if we want to des
ribe a basi
ally 
lassi
al situation, where only '

j

�

= g

d

j

�

is spe
i�ed, we may as

well impose a 
onsistent 
oupling 
ondition

R

j

�

= polar(r')

j

�

; (2.22)

whi
h prevents non-
ompatibility between mi
ro- and ma
rorotations on the Diri
hlet boundary � and allows

for otherwise impossible homogeneous solutions. It leads to three essential degrees of freedom at the Diri
hlet

boundary and disposes us from the need to motivate any independent boundary 
ondition for R. In addition,

the Boltzmann axiom is not violated on �. It is mathemati
ally possible to leave the mi
rorotations entirely

free on �, however, this does not seem to 
orrespond to any physi
al situation in a real body.

3 Non-dissipative Cosserat mi
ropolar elasto-plasti
ity

3.1 Extension to �nite mi
ropolar elasto-plasti
ity

Now we extend the formulation of mi
ropolar elasti
ity to 
over �nite plasti
ity. It should be 
lear that there

exists various ways of obtaining su
h an extension, for an overview of the 
ompeting models we refer to the

instru
tive survey arti
le [FS03℄. In
identally, the Cosserats themselves [CC09, p.5℄ already envisaged the

appli
ation of their general theory to plasti
ity and fra
ture. For 
on
iseness we take �

5

= �

6

= 1; �

7

= 0 for

the 
urvature term in this part.

In a �rst preliminary step we 
onsider the elasti
 problem de�ned over a transformed domain 


�

= �(
)

where � is a di�eomorphism. With respe
t to 


�

we assume the mi
ropolar de
omposition

r

�

'(�) = F

�

= R

�

� U

�

; (3.23)

su
h that the Cosserat problem on 


�

reads

I

�

('

�

; R

�

) =

Z




�

W

mp

(R

T

�

r

�

'

�

) +W


urv

(R

T

�

D

�

R

�

)� hf

�

; '

�

i � hM

�

; R

�

i d�

�

Z

�

S;�

hN

�

; '

�

i dS

�

�

Z

�

C;�

hM

�;


; R

�

i dS

�

7! min : w.r.t. ('

�

; R

�

); (3.24)

R

�j

�

�

= polar(rg

�

)

j

�

�

; '

�j

�

�

= g

�

(�) :
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Figure 2: S
hemati
 pi
ture of the transformed elasti
 Cosserat kinemati
s.

Now we transform the problem to the �
titious referen
e 
on�guration 
: the transformation of variables

formula and Nansons relation yields

Z




W

mp

(U

�

) det[r�℄ +W


urv

(K

�

) det[r�℄� hf; 'i det[r�℄� hM;R

�

i det[r�℄ dV

�

Z

�

S

hN;'i kCofr�:~nk dS�

Z

�

C

hM




; R

�

i kCofr�:~nk dS 7! min : w.r.t. (';R

�

);

R

�

j

�

= polar(rg

d

� r�

�1

)

j

�

; '

j

�

= g

�

(�(x)) = g

d

(3.25)

W

mp

(U

�

) = � k sym(U

�

� 11)k

2

+ �




k skew(U

�

)k

2

+

�

2

tr

�

sym(U

�

� 11)

�

2

W


urv

(K

�

) = �

L

1+p
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(1 + �

4

L

q




kK

�

k

q

) kK

�

k

1+p

r

�

'

�

= r'�r�

�1

; U

�

= R

T

�

r

�

'

�

; r� 2 GL

+

(3;R)

K

�

= R

T

�

D

�

R

�

= R

T

�

(�(x))

�

D

x

�

R

�

(�(x))

�

� r�

�1

�

:

Con
eptually, the plasti
ity model is obtained by relaxing the 
ompatibility of r�: we repla
e r� with F

p

,

identify F

e

(x) as F

�

= r

�

'

�

(�(x)), set R

e

(x) := R

�

(�(x)) and need to supply a thermodynami
al admissible


ow rule for F

p

. This is tantamount to 
onsider dire
tly the multipli
ative de
omposition of the elasti
 part of

the deformation gradient

F

e

= R

e

� U

e

; (3.26)

whi
h de�nes mi
ropolar elasti
 rotations R

e

and mi
ropolar elasti
 stret
h U

e

.

The thermodynami
al admissible 
ow rule for F

p


an be obtained as follows. Consider the rate of 
hange of

the elasti
 energy density only due to the time variation of the in
ompatible 
on�guration F

p

(variation of the

\domain" of de�nition F

p

): after some simple but tedious manipulations we obtain

d

dt

�

W

mp

(U

e

) det[F

p

℄ +W


urv

(K

e

) det[F

p

℄

�

= hdet[F

p

℄

�

U

T

e

D

U

e

W

mp

(U

e

)�W

mp

(U

e

) 11

�

; F

p

d

dt

�

F

�1

p

�

i+ (3.27)

+ hdet[F

p

℄

�

K

T

e

D

K

e

W


urv

(K

e

)�W


urv

(K

e

) 11

�

; F

p

d

dt

�

F

�1

p

�

i ;
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where it is understood that K

T

e

D

K

e

W


urv

(K

e

) =

P

3

i=1

K

i;T

e

� �

K

i

e

W


urv

(K

1

e

;K

2

e

;K

3

e

). A suÆ
ient 
ondition for the

se
ond law of thermodynami
s to be ful�lled [Nef03a℄ is to guarantee the redu
ed dissipation inequality

d

dt

�

W

mp

(U

e

) det[F

p

℄ +W


urv

(K

e

) det[F

p

℄

�

� 0 ; (3.28)

where F;R

e

are held 
onstant. This 
an be a
hieved by 
hoosing the left-invariant 
ow rule

d

dt

�

F

�1

p

�

2 �F

�1

p

� f (�

E

); �

E

= �

E;mp

+�

E;
urv

�

E;mp

= U

T

e

D

U

e

W

mp

(U

e

) det[F

p

℄�W

mp

(U

e

) det[F

p

℄ 11 (3.29)

�

E;
urv

= K

T

e

D

K

e

W


urv

(K

e

) det[F

p

℄�W


urv

(K

e

) det[F

p

℄ 11 ;

where the 
ow fun
tion f : M

3�3

7! P(M

3�3

) governs the plasti
 evolution and must satisfy 8 � : hf (�);�i �

0. Su
h a formulation 
an be 
alled of pre-monotone type in the sense of the 
lassi�
ation for in�nitesimal

elasto-plasti
 models in [Alb98℄.

Here �

E

denotes the total elasti
 Eshelby stress tensor (the driving for
e behind evolving inhomo-

geneities in the referen
e 
on�guration [Mau99℄) whi
h may be redu
ed to �

M

= F

T

e

D

F

e

W (F

e

; R

e

), the elas-

ti
 Mandel stress tensor in 
ase of a deviatori
 
ow rule whi
h preserves the in
ompressibility 
onstraint

det[F

p

℄ = 1. The Eshelby stress tensor has two di�erent 
ontributions: �

E;mp

due to ma
ro-stret
h and �

E;
urv

due to mi
ro torsion-
urvature.

In the 
ase of a simple material a similar derivation of the 
ow rules for multipli
ative elasto-plasti
ity

based on the Eshelby tensor has been given in [Nef03
, Nef03a℄. Note that the multipli
ative de
omposition

[Lee69, Man73℄ of the deformation gradient into elasti
 and plasti
 parts

r' = F = F

e

� F

p

; (3.30)

is a by-produ
t of the derivation.

24

In the quasi-stati
 setting we are thus led to study the following system of 
oupled partial di�erential and

evolution equations for the �nite deformation ' : [0; T ℄ � 
 7! R

3

, the plasti
 deformation F

p

: [0; T ℄ � 
 7!

GL

+

(3;R) and the independent Cosserat elasti
 mi
rorotation R

e

: [0; T ℄� 
 7! SO(3)

Z




W

mp

(U

e

) det[F

p

℄ +W


urv

(K

e

) det[F

p

℄� hf; 'i det[F

p

℄� hM;R

e

i det[F

p

℄ dV �

Z

�

S

hN;'i kCof F

p

:~nk dS

�

Z

�

C

hM




; R

e

i kCof F

p

:~nk dS 7! min :w.r.t. (';R

e

) at 
onstant F

p

;

R

e

j

�

=

(

polar(rg

d

� F

�1

p

)

j

�

; rigid

polar(r' � F

�1

p

)

j

�

; 
onsistent

; '

j

�

= g

d

(t)

W

mp

(U

e

) = � k sym(U

e

� 11)k

2

+ �




k skew(U

e

)k

2

+

�

2

tr

�

sym(U

e

� 11)

�

2

W


urv

(K

e

) = �

L

1+p




12

(1 + �

4

L

q




kK

e

k

q

) kK

e

k

1+p

(3.31)

F

e

= r'�F

�1

p

; U

e

= R

T

e

F

e

; K

e

= R

T

e

[D

x

R

e

(x) � F

�1

p

℄

d

dt

�

F

�1

p

�

2 �F

�1

p

� f (�

E

); �

E

= �

E;mp

+�

E;
urv

�

E;mp

= U

T

e

D

U

e

W

mp

(U

e

) det[F

p

℄�W

mp

(U

e

) det[F

p

℄ 11

�

E;
urv

= K

T

e

D

K

e

W


urv

(K

e

) det[F

p

℄�W


urv

(K

e

) det[F

p

℄ 11

F

�1

p

(0) = F

�1

p

0

; F

p

0

2 GL

+

(3;R) :
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While we 
ontinue to use the term multipli
ative de
omposition and intermediate 
on�guration it is rather an elasti


isomorphism in the sense of [Ber98℄. Some authors use P instead of F

�1

p

, [CHM02℄. Examples for 
lassi
al �nite plasti
ity

formulations may be found in [Sim88, SO85, Mie95, Sim98, SH98, EGR90, CHM00, Mie00, OR99℄. Di�erent models have been


ompared numeri
ally in [NW03℄. Note that F

p

is not a plasti
 strain but rather a relaxed 
on�guration: in a neighbourhood of a

point, F

p


an be a rigid rotation, while the 
orresponding plasti
 strain C

p

� 11 = F

T

p

F

p

� 11 vanishes.
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To 
omplete the phenomenologi
al ma
ros
opi
 elasti
-vis
oplasti
 Cosserat mi
ropolar model we spe
ify

f = �

�

su
h that we retrieve the von Mises type 'in
ompressible' J

2

-vis
o-plasti
ity with elasti
 domain

E := f�

E

j k dev(sym�

E

)k � �

y

g and yield stress �

y

. To this end we take as vis
oplasti
 potential

�

: M

3�3

7! R

of generalized Norton-Ho� overstress type

25

the following fun
tion:

�

(�

E

) =

8

<

:

0 �

E

2 E

��

0

(r+1)(k+1) �

p

�

1 +

�

kdev(sym�

E

)k��

y

��

0

�

r+1

�

k+1

�

��

0

(r+1)(k+1) �

p

�

E

62 E ;

(3.32)

where �

p

> 0 is a relaxation time due to essentially plasti
 pro
esses inside the grains, r; k > 0 and ��

0

is a stress

like material 
onstant. This de�nition is 
onsistent with the postulate of maximum plasti
 dissipation. The

parameter r allows to adjust the smoothness of the 
ow rule when passing the elasti
 boundary. A typi
al range

for k in engineering appli
ations is k 2 f0; : : : ; 80g. For k ! 1 we re
over formally ideal rate-independent

plasti
ity. A simple 
al
ulation shows that the 
orresponding single valued subdi�erential is given by

�

�

�

(�

E

) =

1

�

p

:

 

1 +

�

k dev sym�

E

k � �

y

��

0

�

r+1

+

!

k

�

k dev sym�

E

k � �

y

��

0

�

r

+

dev sym�

E

k dev sym�

E

k

: (3.33)

The resulting model (3.31) is as 
lose as possible to 
lassi
al ma
ros
opi
 elasto-plasti
 models, notably we

did not introdu
e any plasti
 mi
rorotation R

p

together with a multipli
ative de
omposition of mi
rorotations

R = R

e

�R

p

, nor did we split arti�
ially a total 
urvature K into elasti
 and plasti
 parts as has been proposed

in [DSW93, Ste94a, IW98, GT01, Gra03℄. Su
h a de
omposition represents an additional modelling assumption

not ne
essarily related to elasti
 Cosserat e�e
ts.

26

It is 
lear that �

E

will not be symmetri
 in general even under isotropy 
onditions. Thus the 
hoi
e of

sym(�

E

) in the de�nition of the elasti
 domain E sets the plasti
 spin to zero, 
onsistent with 
urrent 
lassi
al

isotropi
 ma
ros
opi
 formulations for poly
rystals. It is possible to in
orporate hardening e�e
ts independent

of the Cosserat framework in the standard, lo
al phenomenologi
al fashion.

We mention that for �




= 0 we have

R

e

skew(D

U

e

W

mp

(U

e

)U

T

e

)R

T

e

= skew (B

approx

) ; (3.34)

i.e. the rea
tion stress in the Cosserat model (3.31) is the driving for
e of the vis
oelasti
 evolution in [Nef03a,

(P3)℄.

3.2 Elasti
-vis
oplasti
 Cosserat model for poly
rystals with grain rotations

A formidable 
hallenge for 
urrent resear
h is to �nd tra
table 
ontinuum models for 
rystalline materials at

the same time 
apturing their physi
al essen
e and being geometri
ally exa
t. There are essentially two ways

to pro
eed: either one starts from the better known single 
rystal 
ase [CO92, OR99, ORS00℄ and 
omputes

a large array of single 
rystals in mutual 
onta
t or one enri
hes the 
lassi
al des
ription with new variables

taking a

ount of the mi
rostru
tural evolution in an averaged sense. We follow the se
ond line of thought.

In a poly
rystal, single 
rystal grains are joined together along grain boundaries. The intergranular grain

boundary is mainly responsible for the elasti
 and vis
ous response of the poly
rystal while plasti
 e�e
ts

are lo
ated predominantly inside ea
h grain operating by slip and twinning along glide planes. The absen
e

of any vis
ous grain boundary in single 
rystals explains why the plasti
ity of single 
rystals is traditionally

modelled as rate-independent. Consistently, for a spe
imen made of a single 
rystal, relaxation e�e
ts are

pra
ti
ally absent whereas the internal surfa
e between grains, where fri
tional e�e
ts are dominant, in
reases

for smaller grain size and leads to pronoun
ed rate-dependent response already below a ma
ros
opi
 yield limit

[Nef03a℄. Hen
e, a poly
rystal is mu
h more than a simple assembly of single 
rystals 
orroborating the fa
t

that the small s
ale (single 
rystal) behaviour 
an be quite di�erent from the bulk for non-linear heterogeneous

material already for small loads.

In addition, depending on the size of the 
onstituting grains, a poly
rystal has di�erent elasto-plasti
 prop-

erties. An a

ount of the ne
essity for ma
ros
opi
 problems to in
orporate internal length s
ale e�e
ts into a

model has been re
ently given in [WCZM02℄. Poly
rystalline 
opper has been made six times harder (apparent

25

In �nite plasti
ity, the question whether or not the plasti
 
ow has a gradient stru
ture seems to be of minor importan
e as

far as mathemati
al existen
e results are 
on
erned in sharp 
ontrast to the in�nitesimal 
ase [Alb98, HR99℄. However, the very

feasibility of a time-in
remental variational formulation [Mie00, OR99, CHM00℄ is 
ontingent upon the potential stru
ture.

26

It is motivated, though, by the experimental observation [FMAH94℄ that geometri
al size e�e
ts are be
oming in
reasingly

important in the plasti
 range. These size e�e
ts are explained on a mi
ros
ale as being due to dislo
ation intera
tions. It seems

therefore more natural to a

ount for them dire
tly by in
orporating a dislo
ation density CurlF

p

into the model and providing

non-lo
al 
ow rules of paraboli
 type for F

p

. We will not pursue this issue here.

16



yield stress �

y

nano

� 6 �

y


lass

) by redu
ing the grain-diameter dramati
ally- a 
onsequen
e of the Hall-Pet
h

relation. This shows the general need for the in
orporation of an internal length s
ale even when viewing the

poly
rystal ma
ros
opi
ally.

27

Experimental eviden
e [DML91, LLT94℄ shows that the rotations of the individual grains e.g. in poly
rys-

talline aluminium spe
imens may deviate 
onsiderably from the 
ontinuum rotation whi
h must be viewed as

orthogonal part of the average grain deformation gradient over some representative volume element. This pi
-

ture lends itself most naturally to a treatment in a Cosserat 
ontext: we identify the averaged individual elasti


rotations of grains with the elasti
 Cosserat mi
rorotations and the orthogonal part of the averaged elasti


deformation gradient with the elasti
 
ontinuum rotation.

28

Remaining in this 
ontext, it is 
lear, that a material, in whi
h a substru
ture is allowed to rotate rather

independently, should not be
ome more rigid than a 
orresponding 
lassi
al (equivalent, ma
ros
opi
) homoge-

neous material. Therefore, we 
on
lude again, that �




= 0 is a reasonable 
hoi
e for a poly
rystal treated on a

ma
ros
opi
 level.

29

If the related 
lassi
al homogeneous des
ription has the strain energy

W (U) = � kU � 11k

2

+

�

2

tr [U � 11℄

2

= � k sym(U � 11)k

2

+

�

2

tr [U � 11℄

2

; (3.35)

then after relaxing the 
onstraint on the rotations to 
oin
ide with the 
ontinuum rotations we would rather

expe
t the overall ma
ros
opi
 strain energy due to ma
ros
opi
 stret
h to be smaller than the homogeneous

one, i.e. W

mp

(U) �W (U). Sin
e in prin
iple skew(U) 
an be large, we 
on
lude 
onsistently �




= 0.

30

In the elasto-plasti
 theory the 
onsequen
es on a ma
ros
ale indu
ed by letting �




> 0 are even more

severe than in the elasti
 
ase: imagine a 
y
li
 loading history whi
h systemati
ally leaves the elasti
 region.

In general, we will obtain a time dependent inhomogeneous distribution of the plasti
 deformation F

p

(x). For

�




> 0, the so 
alled elasti
 trial step

31

will be un
onditionally stable irrespe
tive of the a

umulated

spatial inhomogeneities of F

p

as long as F

p

2 L

1

(
;GL

+

(3;R)), while �




= 0 allows some sort of elasti


fatigue/softening/failure/fra
ture sin
e the positive de�niteness of the elasti
 tangent sti�ness matrix w.r.t.

the referen
e 
on�guration is a�e
ted by the spatial 
ontinuity properties of F

p

. This apparent softening,

namely the de
rease of elasti
 moduli, is a well do
umented experimental fa
t. For a poly
rystal, we then adopt

the following pi
ture: the plasti
 deformation F

p

represents on a ma
ros
opi
 level the permanent material

substru
ture, to be more pre
ise, the permanent averaged 
umulative plasti
 deformation of the individual

grains due to slip and twinning. We may 
all therefore F

p

the average plasti
 grain transformation and R

e

the

average elasti
 grain rotation.

3.3 In�nitesimal elasto-plasti
 Cosserat model

If we assume that plasti
 deformations F

p

and elasti
 mi
rorotations remain small, we 
an 
onsiderably simplify

the problem (3.31). We expand R

e

= 11 + A

e

+ : : : ; A

e

2 so(3); kA

e

k

2

� 1; F

p

= 11 + p + : : : ; kpk

2

� 1

and 
hoose as elasti
 domain E := f�

E

j k dev(sym�

E

)k � �

y

g

32

, then (3.31) redu
es to the in�nitesimal

elasto-plasti
 system in variational form with non-dissipative Cosserat e�e
ts and reads

Z




� k"� "

p

k

2

+ �




k skew(ru�A

e

)k

2

+

�

2

tr ["℄

2

+ �

L

2




12

kr axl(A

e

)k

2

� hf; ui � hM;A

e

i dV

�

Z

�

S

hN; ui dS�

Z

�

C

hM




; A

e

i dS 7! min : w.r.t. (u;A

e

) at 
onstant "

p

"

e

= "� "

p

; "(ru(x)) =

1

2

(ru

T

+ru); "

p

=

1

2

(p

T

+ p);

_"

p

(t) 2 f (T

E

); T

E

= 2� ("� "

p

) (3.36)

u

j

�


(t; x) = g

d

(t; x)� x; A

e

j

�

= skew(rg

d

(t; x))

j

�

:

27

Whether the in
orporation of the ne
essary material length s
ale must be done in a Cosserat framework, 
annot be de
ided.

But the experimental eviden
e [FMAH94℄ suggests that size dependent hardening o

urs predominantly under torsion (possible

rotations), while in uniaxial tension (no rotations) strain gradients are negligible and length s
ale e�e
ts remain small.

28

Observe that these two rotations do not 
oin
ide in general: the averaged rotation is understood to be the best-

approximating single rotation to a rotation �eld de�ned over a representative volume element while the 
ontinuum rotation

is the orthogonal part of the averaged deformation gradient. In the in�nitesimal 
ase, both so de�ned in�nitesimal rotations


oin
ide!

29

The same argument put di�erently: Consider a wall made of 
on
rete bri
ks and 
ast 
on
rete, respe
tively. The 
ast wall will

have more rigidity.

30

\Poly
rystalline ... type mi
rostru
tures behave 
lassi
ally or nearly 
lassi
ally (in their elasti
 range)."[Lak95, p.22℄

31

or elasti
 predi
tor. In an operator-split method it amounts to 'freezing' the plasti
 evolution and to 
ompute elasti
 equilibrium.

32

no in�nitesimal plasti
 spin: p = "

p

and iso
hori
 plasti
ity: tr ["

p

℄ = 0 and assume h"

p

:~n; ~ni = 0 on �

S

[ �

C

.
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The 
orresponding equilibrium system of equations for pure Diri
hlet 
onditions and without external 
ouples

M;M




is given by (note that kA

e

k

2

= 2k axl(A

e

)k

2

for A

e

2 so(3;R))

0 = Div � + f; x 2 


� = 2� ("� "

p

) + 2�




(skew(ru)�A

e

) + � tr ["℄ � 11

0 = �

L

2




12

�axl(A

e

) + �




axl((skew(ru)�A

e

)

_"

p

(t) 2 f (T

E

); T

E

= 2� ("� "

p

) (3.37)

u

j

�


(t; x) = g

d

(t; x)� x; x 2 �
 ; A

e

j

�


= skew(rg

d

(t; x))

j

�


:

tr ["

p

(0)℄ = 0 ; "

p

(0) 2 Sym(3) :

It must be observed that this 
ompletely redu
ed set of equations is still intrinsi
ally thermodynami
ally ad-

missible. The model 
an also be obtained as limit 
ase of models proposed in [IW98, Bes74, Lip69℄.

The in�nitesimal model has already been 
ompletely justi�ed as a non-lo
al regularization (�




! 0) of


lassi
al ideal rate-independent plasti
ity in [NC03℄ using the methods exploited before in [Che98℄. Pre
isely,

it has been proved that (3.37) admits a unique global solution. The system (3.36) is therefore a reasonable

regularization of 
lassi
al plasti
ity in the sense that the system remains of se
ond order and the plasti
 
ow

part is left unaltered 
ompared to the traditional one.

In [DSW93, p.815℄ an elasto-plasti
 model based on the in�nitesimal Cosserat theory with dissipative mi-


ropolar e�e
ts has been investigated. They show that �




> 0 has a de
isive in
uen
e

33

on lo
alization e�e
ts

essentially ex
luding mode II shear failure. Sin
e our redu
ed model is non-dissipative it is diÆ
ult however, to

transfer this insight dire
tly. This remark �nishes the modelling part of this 
ontribution.

33

Sin
e the in�nitesimal model is neither observer-invariant nor frame-indi�erent it is not possible to 
on
lude on physi
al grounds

that �




> 0 is ne
essary for the general theory. A model whi
h is, stri
tly speaking, physi
ally irrelevant 
annot lead to stringent


on
lusions on the physi
al signi�
an
e of some parameter. The in�nitesimal model has only merits as a �rst approximation. We

might wonder therefore about the status of mathemati
al investigations of the in�nitesimal elasto-plasti
 models and the e�ort

still put into the investigations of their intri
a
ies (rate-independent limit), whi
h are either irrelevant for the geometri
ally exa
t

model or misleading. We 
on
lude that their investigation is mainly of high inner - mathemati
al interest. This remark applies

mutatis mutandis to the numeri
al treatment of 
lassi
al in�nitesimal elasto-plasti
ity. Here re�ned time-integration algorithms of

higher order are investigated without leading to 
onsequen
es for the numeri
al treatment of the exa
t theory, whi
h is fa
ed with


ompletely di�erent problems.
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4 Mathemati
al analysis

4.1 Statement of the �nite elasti
 Cosserat problem in variational form

Let us now return to the purely elasti
 Cosserat 
ase. The problem has been posed in a variational form. The

task is to �nd a pair (';R) 2 R

3

� SO(3;R) of deformation ' and independent mi
rorotation R satisfying

Z




W

mp

(U) +W


urv

(K) � hf; 'i � hM;Ri dV �

Z

�

S

hN;'i dS�

Z

�

C

hM




; Ri dS 7! min : w.r.t. (';R);

U = R

T

F; R

j

�

= R

d

; '

j

�

= g

d

(4.38)

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

W


urv

(K) = �

L

1+p
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(1 + �

4

L

q




kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

;

K = R

T

D

x

R =

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

; third order 
urvature tensor :

The total elasti
ally stored energy W = W

mp

+ W


urv

depends on the deformation gradient F = r' and

mi
rorotations R together with their spa
e derivatives. Here 
 � R

3

is a domain with boundary �
 and

� � �
 is that part of the boundary, where Diri
hlet 
onditions g

d

; R

d

for displa
ements and mi
rorotations,

respe
tively, are pres
ribed while �

S

� �
 is a part of the boundary, where tra
tion boundary 
onditions N are

applied with �\�

S

= ;. The external volume for
e is f and M takes on the role of external volume 
ouples. In

addition, �

C

� �
 is the part of the boundary where external surfa
e 
ouples M




are applied with �\ �

C

= ;.

The parameters �; � > 0 are the Lam�e 
onstants of 
lassi
al elasti
ity, �




� 0 is 
alled the Cosserat 
ouple

modulus and L




> 0 introdu
es an internal length whi
h is 
hara
teristi
 for the material, e.g. related to

the grain size in a poly
rystal. If not stated otherwise, we assume that �

5

> 0; �

6

> 0; �

7

� 0.

4.2 The di�erent 
ases

We distinguish �ve 
ompletely di�erent situations:

I: �




> 0; �

4

� 0; p � 1; q � 0, un
onditional elasti
 ma
ro-stability, lo
al �rst order Cosserat mi
ropo-

lar, unquali�ed existen
e, mi
ros
opi
 spe
imens, non-zero Cosserat 
ouple modulus. Fra
ture ex
luded.

II: �




= 0; �

4

> 0; p � 1; q > 1, elasti
 pre-stability, nonlo
al se
ond order Cosserat mi
ropolar, ma
ro-

s
opi
 spe
imens, in a sense 
lose to 
lassi
al elasti
ity, zero Cosserat 
ouple modulus. Fra
ture ex
luded.

III: �




=1; �

4

� 0; p � 1; q � 0, un
onditional elasti
 ma
ro-stability, the 
onstrained gradient Cosserat

mi
ropolar problem (indeterminate 
ouple stress model (2.21)). Compatible Diri
hlet boundary 
ondi-

tions: '

j

�

= g

d

; polar(r�)

j

�

= polar(rg

d

)

j

�

.

IV: �




= 0; �

4

= 0; 0 < p � 1; q = 0, elasti
 pre-stability, nonlo
al se
ond order Cosserat mi
ropolar, ma
ro-

s
opi
 spe
imens, in a sense 
lose to 
lassi
al elasti
ity, zero Cosserat 
ouple modulus. Sin
e possibly

' 62W

1;1

(
;R

3

), due to la
k of elasti
 
oer
ivity, in
luding fra
ture in multiaxial situations.

V: �




= 0;L




= 0, elasti
 pre-stability, �nite elasti
ity with free rotations and mi
rostru
ture. Weak solu-

tions of �nite elasti
ity are stationary points of this minimization problem. Allowing for sharp interfa
es.

We refer to 0 < p < 1; q � 0 as the sub-
riti
al 
ase, p = 1; q � 0 as the 
riti
al 
ase and p � 1; q > 1 as

the super-
riti
al 
ase. We will mathemati
ally treat the �rst three 
ases.

4.3 The 
oer
ive inequality

The de
isive analyti
al tool for the treatment of 
ase II (super-
riti
al) is the following non-trivial 
oer
ive

inequality:

Theorem 4.1 (Extended 3D-Korn's �rst inequality)

Let 
 � R

3

be a bounded Lips
hitz domain and let � � �
 be a smooth part of the boundary with non

vanishing 2-dimensional Lebesgue measure. De�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g and let F

p

; F

�1

p

2

C

1

(
;GL(3;R)). Moreover suppose that CurlF

p

2 C

1

(
;M

3�3

). Then

9 


+

> 0 8 � 2 H

1;2

Æ

(
;�) : kr�F

�1

p

(x) + F

�T

p

(x)r�

T

k

2

L

2

(
)

� 


+

k�k

2

H

1;2

(
)

:
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Proof. The proof has been presented in [Nef02℄. Note that for F

p

= r� we would only have to deal with the


lassi
al Korn's inequality evaluated on the transformed domain �(
). However, in general, F

p

is in
ompat-

ible giving rise to a non-riemannian manifold stru
ture. Compare to [CG01℄ for an interpretation and the

physi
al relevan
e of the quantity CurlF

p

. �

Motivated by the investigations in [Nef02℄, it has been shown re
ently by my 
olleague W. Pompe [Pom03℄

that the extended Korn's inequality 
an be viewed as a spe
ial 
ase of a general 
lass of 
oer
ive inequalities

for quadrati
 forms. He was able to show that indeed F

p

2 C(
;GL(3;R)) is suÆ
ient for (4.1) to hold without

any 
ondition on the 
ompatibility.

However, taking the spe
ial stru
ture of the extended Korn's inequality again into a

ount, work in progress

suggests that 
ontinuity is not really ne
essary: instead F

p

2 L

1

(
;GL(3;R)) and CurlF

p

2 L

3+Æ

(
) should

suÆ
e, whereas F

p

2 L

1

(
;GL(3;R)) alone is not suÆ
ient, see the 
ounterexample presented in [Pom03℄.

In view of the important role of the extended Korn's �rst inequality let us agree in saying that a material is

elasti
ally pre-stable, whenever

9H 2 M

3�3

; H 6= 0 : D

2

F

W (x; F ):(H;H) = 0 (4.39)

9 


+

> 0 9 G 2 GL

+

(3;R) 8H 2 M

3�3

: D

2

F

W (x; F ):(H;H) � 


+

kG(x)

T

H +H

T

G(x)k

2

:

In this terminology, in�nitesimal 
lassi
al elasti
ity is pre-stable with G = 11 due to the 
lassi
al Korn's �rst

inequality and the extended Korn's �rst inequality links the smoothness of G to the positive de�niteness of the

elasti
 tangent sti�ness tensor.

4.4 The geometri
ally exa
t elasti
 Cosserat model

The following results are the �rst existen
e theorems for geometri
ally exa
t elasti
 Cosserat models known to

the author:

34

Theorem 4.2 (Existen
e for 3D-�nite elasti
 Cosserat model: 
ase I.)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and R

d

2

W

1;1+p

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and supposeN 2 L

2

(�

S

;R

3

) together withM 2 L

1

(
;M

3�3

)

and M




2 L

1

(�

C

;M

3�3

). Then (4.38) with material 
onstants 
onforming to 
ase I admits at least one mini-

mizing solution pair (';R) 2 H

1

(
;R

3

)�W

1;1+p

(
; SO(3;R)).

Proof. We apply the dire
t methods of variations and 
onsider for simpli
ity N;M;M




= 0. With the pres
rip-

tion of (g

d

; R

d

) it is 
lear that I <1 for some pair (';R). Observe �rst that the mi
ropolar 
urvature term K


ontrols R 2W

1;1+p

(
; SO(3;R)), sin
e kKk = kR

T

D

x

Rk = kD

x

Rk, pointwise and �

5

; �

6

> 0.

Moreover, SO(3;R) is weakly 
losed in the topology of W

1;1+p

(
). We omit to show that I is bounded

below: this will turn out not to be ne
essary. We may 
hoose de
reasing (in�mizing) sequen
es of pairs ('

k

; R

k

).

The 
urvature 
ontribution together with the appropriate boundary 
onditions and Poin
ar�es inequality yields

boundedness of R

k

� W

1;1+p

(
; SO(3;R)). We may extra
t a subsequen
e again denoted by R

k


onverging

strongly in L

1+p

(
) to an element

~

R 2 W

1;1+p

(
; SO(3;R)) sin
e p > 0 by assumption. Be
ause �




> 0, it is

immediate that r'

k

= F

k

is bounded in L

2

(
;M

3�3

), independent of R

k

on a

ount of

W

mp

(R

k;T

F

k

) � �




kR

k;T

F

k

� 11k

2

= �




�

kF

k

k

2

� 2hR

k;T

F

k

; 11i+ 3

�

� �




�

kF

k

k

2

� 2

p

3kF

k

k+ 3

�

; (4.40)

and

1 >

Z




W

mp

(U

k

) +W


urv

(K

k

)� hf; '

k

i dV �

Z




W

mp

(U

k

)� hf; '

k

i dV

�

Z




W

mp

(U

k

) dV � kfk

L

2

(
)

k'

k

k

H

1;2

(
)

(4.41)

� �




kr'

k

k

2

� 2

p

3�




k'

k

k

H

1;2

(
)

� kfk

L

2

(
)

k'

k

k

H

1;2

(
)

+ 3�




� �




kru

k

k

2

� C

1

ku

k

k

H

1;2

(
)

+ C

2

� �







+

ku

k

k

2

H

1;2

(
)

� C

1

ku

k

k

H

1;2

(
)

+ C

2

;
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The proposed �nite results determine the ma
ros
opi
 deformation ' 2 H

1

(
;R

3

) and not more. This means that dis
ontinuous

ma
ros
opi
 deformations by 
avities or the formation of holes are not ex
luded (possible mode I failure). If �




> 0 fra
ture is

e�e
tively ruled out, whi
h is unrealisti
.
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where we made use of the appropriate boundary 
onditions for '

k

= x+u

k

(x), and applied Poin
ar�es inequality

to u

k

sin
e it has zero boundary values on �. This yields the boundedness of '

k

in H

1

(
;R

3

). Hen
e we may

extra
t a subsequen
e, not relabelled, su
h that '

k

* ~' 2 H

1

(
;R

3

). Furthermore, we may always obtain a

subsequen
e of ('

k

; R

k

) su
h that U

k

= R

k;T

F

k


onverges weakly in L

2

(
) to an element

~

U on a

ount of the

boundedness of the stret
h energy and �




> 0.

For p � 1 we have as well that R

k


onverges indeed strongly in L

2

(
) to an element

~

R 2 H

1;2

(
; SO(3;R)).

Thus R

k;T

F

k


onverges weakly to

~

R

T

F in L

1

(
). The weak limit in L

1

(
) must 
oin
ide with the weak limit

of U

k

in L

2

(
). Hen
e,

~

U =

~

R

T

r ~'.

Sin
e the total energy is 
onvex in (U;K) and (r';DR), we get

I( ~';

~

R) =

Z




W

mp

(

~

U) +W


urv

(

~

K)� hf; ~'i dV

� lim inf

k!1

Z




W

mp

(U

k

) +W


urv

(K

k

)� hf; '

k

i dV = lim

k!1

I('

k

; R

k

) ; (4.42)

whi
h implies that the limit pair is a minimizer. Note that the limit mi
rorotations

~

R may fail to be 
ontinuous

if p � 2 (non-existen
e or limit 
ase of Sobolev embedding). Moreover, uniqueness 
annot be as
ertained,

sin
e SO(3;R) is a nonlinear manifold (and the 
onsidered problem is indeed nonlinear), su
h that 
onvex


ombinations of rotations are not rotations in general. Sin
e the fun
tional I is di�erentiable the minimizing

pair is a stationary point and therefore a solution of the �eld equations (2.12). Note again that the limit

mi
rorotations are trivial in L

1

(
) but may fail to be 
ontinuously distributed in spa
e. That under these

unfavourable 
ir
umstan
es a minimizing solution may nevertheless be found is entirely due to �




> 0 and

p � 1. �

We 
ontinue with the super-
riti
al 
ase appropriate for ma
ros
opi
 situations and 
lose to 
lassi
al elasti
ity.

Theorem 4.3 (Existen
e for 3D-�nite elasti
 Cosserat model: 
ase II.)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and R

d

2

W

1;1+p+q

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2

L

1

(
;M

3�3

) and M




2 L

1

(�

C

;M

3�3

). Then (4.38) with material 
onstants 
onforming to 
ase II admits

at least one minimizing solution pair (';R) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)).

Proof. We repeat the argument of 
ase I. However, the boundedness of in�mizing sequen
es is not immediately


lear. Boundedness of the rotations R

k

holds true in the spa
e W

1;1+p+q

(
; SO(3;R)) with 1 + p+ q > N = 3,

hen
e we may extra
t a subsequen
e, not relabelled, su
h that R

k


onverges strongly to

^

R 2 C

0

(
; SO(3;R)) in

the topology of C

0

(
; SO(3;R)) on a

ount of the Sobolev-embedding theorem. Along su
h strongly 
onvergent

sequen
e of rotations, the 
orresponding sequen
e of deformations '

k

is also bounded in H

1

(
;R

3

). However,

this is not due to a basi
ally simple pointwise estimate as in 
ase I, but only true after integration over the

domain: at fa
e value we only 
ontrol 
ertain mixed symmetri
 expressions in the deformation gradient. More

pre
isely, we have

1 >

Z




W

mp

(U

k

) +W


urv

(K

k

)� hf; '

k

i dV �

Z




W

mp

(U

k

)� hf; '

k

i dV

�

Z




W

mp

(U

k

) dV � kfk

L

2

(
)

k'

k

k

H

1;2

(
)

�

Z




�

4

kR

T

k

r'

k

+r'

T

k

R

k

� 211k

2

dV � kfk

L

2

(
)

k'

k

k

H

1;2

(
)

(4.43)

�

Z




�

4

kR

T

k

ru

k

+ru

T

k

R

k

k

2

dV � C

1

ku

k

k

H

1;2

(
)

+ C

2

=

Z




�

4

k(R

k

�

^

R+

^

R)

T

ru

k

+ru

T

k

(R

k

�

^

R +

^

R)k

2

dV � C

1

ku

k

k

H

1;2

(
)

+ C

2

�

Z




�

4

k

^

R

T

ru

k

+ru

T

k

^

Rk

2

| {z }


ombinations of derivatives

dV � C

3

k

^

R�R

k

k

1

ku

k

k

2

H

1;2

(
)

� (C

1

+ 2 k

^

R�R

k

k

1

) ku

k

k

H

1;2

(
)

+ C

2
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� (

�

4




K

� C

3

k

^

R�R

k

k

1

) ku

k

k

2

H

1;2

(
)

� (C

1

+ 2 k

^

R�R

k

k

1

) ku

k

k

H

1;2

(
)

+ C

2

;

where we made use of the appropriate boundary 
onditions for '

k

= x + u

k

and applied the extended Korn's

inequality (4.1) in the improved version of [Pom03℄ yielding the positive 
onstant 


K

for the 
ontinuous mi
roro-

tation

^

R. Sin
e k

^

R�R

k

k

1

! 0 we 
on
lude the boundedness of u

k

in H

1

(
). Hen
e, '

k

is bounded in H

1

(
).

Now we obtain that U

k

*

~

U =

^

R

T

r ~' by 
onstru
tion with the notations as in 
ase I. The remainder pro
eeds

as in 
ase I. This �nishes the argument. The limit mi
rorotations

^

R are indeed found to be 
ontinuous. �

Theorem 4.4 (Existen
e for 3D-�nite elasti
 Cosserat model with nonlinear volume part)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and R

d

2

W

1;1+p+q

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2

L

1

(
;M

3�3

) and M




2 L

1

(�

C

;M

3�3

). Assume furthermore that W

mp

has the form

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skewUk

2

+ �

1

kCof Uk

2

� �

2

ln det[U ℄ + �

3

(det[U ℄� 1)

2

; (4.44)

with �

1

; �

2

; �

3

> 0. Then (4.38) with material 
onstants 
onforming to 
ase I (if �




> 0) or 
onforming to 
ase

II (if �




= 0) admits at least one minimizing solution pair (';R) 2 H

1

(
;R

3

) �W

1;1+p+q

(
; SO(3;R)) and

det[r'℄ > 0 a:e:

Proof. The argument of 
ase I/II 
an be modi�ed. We note �rst that the additional terms involving �

i

; i = 1; 2; 3

are in fa
t independent of R and 
an be redu
ed to their dependen
e on F . The additional terms have no

in
uen
e on the shear failure. Se
ond, the additional terms are poly
onvex [Bal77℄ w.r.t. F . Third,

W

mp

! 1 for det[F ℄ ! 0. In addition to the properties of minimizing sequen
es in 
ase II we obtain that

Cof F

k

* Cof F 2 L

2

(
); det[F

k

℄* det[F ℄ 2 L

1

(
) due to separate 
ontrol of the 
ofa
tor and determinant in

the energy. The result follows by standard arguments. The minimizer may not be a solution of the 
orrespond-

ing Euler-Lagrange equations. Note that repla
ing � k sym(U � 11)k

2

with �

0

kUk

2

would de
ouple the problem

and remove the possibility of elasti
 shear failure. �

Corollary 4.5 (Existen
e for 3D-
onstrained Cosserat model: 
ase III)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and polar(rg

d

) 2

W

1;1+p

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and supposeN 2 L

2

(�

S

;R

3

) together withM 2 L

1

(
;M

3�3

)

and M




2 L

1

(�

C

;M

3�3

). Then problem (2.21) admits at least one minimizing solution ' 2 H

1;2

(
;R

3

).

Proof. The proof mimi
s 
ase I sin
e the sequen
e of in�mizing rotations R

k

is 
onstrained to the orthogonal

part polar(F

k

) of the 
orresponding sequen
e of deformation gradients F

k

. �

Remark 4.6

Complete higher regularity of ' in the 
onstrained Cosserat model, i.e. ' 2 H

2;2

(
;R

3

) 
annot be as
ertained

in general sin
e we only 
ontrol 
ertain se
ond derivatives of ' in the 
urvature term. One might wonder

therefore, whether the additional C

1

-
ontinuity in treating the fourth order indeterminate 
ouple stress problem

numeri
ally is worth the e�ort.

Theorem 4.7 (Existen
e for 3D-�nite elasti
 Cosserat model with 
onsistent boundary 
oupling)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and polar(rg

d

) 2

W

1;1+p+q

(
; SO(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2

L

1

(
;M

3�3

) and M




2 L

1

(�

C

;M

3�3

). Then (4.38) with material 
onstants 
onforming to 
ase I/II and the


onsistent 
oupling 
ondition

R

�

= polar(r')

�

; (4.45)

admits at least one minimizing solution pair (';R) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)).

Proof. Basi
ally, we repeat the argument of 
ase I/II. For the pres
ription of g

d

the energy is �nite on the set

of admissible fun
tions verifying also the 
oupling 
ondition. We 
hoose minimizing sequen
es ('

k

; R

k

). Sin
e

R

k

2 SO(3;R) it follows that kR

k

k =

p

3 independent of k, a distinguishing feature of true rotations. Hen
e

R

k

is bounded in the Sobolev spa
e W

1;1+p+q

(
; SO(3;R)) without independent pres
ription of boundary 
on-

ditions. The remainder pro
eeds as in 
ase I/II. �

It is not immediately 
lear to us how to extend the method of proof to 
over the elasti
-plasti
 Cosserat 
ase

also. This topi
 will be left open for future resear
h.
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4.5 Partially linearized elasti
 Cosserat theory

If we assume small mi
rorotations, i.e. R = 11 + A + : : : ; A 2 so(3); kAk � 1, then the mi
ropolar stret
h

tensor may be expanded as follows

U = R

T

F = (11 +A+ : : : )

T

(11 +ru) � 11 +ru�A� Aru+ : : : ; (4.46)

where u is the (unrestri
ted) displa
ement but not the in�nitesimal displa
ement from whi
h we 
on
lude the

approximative expression of the stret
h energy

W

small

mp

(ru;A) = � k symru� sym(Aru)k

2

+ �




k skew(ru)�A� skew(Aru)k

2

(4.47)

+

�

2

tr

�

sym(ru)� sym(Aru)

�

2

:

The value �




= 0 is still admissible, sin
e the problem does not de
ouple, but if �




= 0, the lo
al 
oupling takes

pla
e only in the se
ond order 
ontribution Aru.

Sin
e K = R

T

D

x

R = (11+A+: : : )

T

D

x

(11+A+: : : ) � D

x

A+AD

x

A+: : : to �rst order we get as approximation

for the 
urvature energy
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, based on (2.7) the expression

W

small


urv

(K) = �

L

2




12

�

�

5

k symD

x

Ak

2

+ �

6

k skewD

x

Ak

2

+ �

7

tr

�

D

x

A

�

2

�

(4.48)

A

j

�

= A

d

;

together with the 
onsistently redu
ed boundary 
ondition for small rotations. For a mathemati
al treatment,

the de
isive simpli�
ation a�orded by (4.48) is the treatment of A on the linear manifold so(3) of skew-symmetri


matri
es instead of R 2 SO(3). The 
orresponding equation of balan
e of angular momentum

skew

�

�2�[symru� sym(Aru)℄ru

T

� 2�




[skewru�A� skew(Aru)℄(11 +ru)

T

(4.49)

��hsymru� sym(Aru); 11iru

T

�

� skew

�

DivD

D

x

A

W

small


urv

(D

x

A)

�

� skew(M) = 0

M

3�3
;


an be written equivalently as

L

2




12

DivM:D

x

A� skew(M) =




M(A;ru) := skew

�

: : :

�

; (4.50)

with a (rearranging) linear operator M : T(3) 7! T(3) and




M(A+

^

A;X) =




M(A;X) +




M(

^

A;X); k




M(A;X)k � (1 + C

+

(A)) � kXk

2

: (4.51)

It is readily seen that (4.50) is a uniformly Legendre-Hadamard ellipti
 system with 
onstant 
oeÆ
ients in A

whi
h is linear at given ru.

For a model based on (4.47) and (4.48) the only mathemati
ally interesting 
ase left is the 
riti
al 
ase

�




= 0; q = 0; p = 1 sin
e otherwise the theorems treating the exa
t �nite situations already apply. However, if

�




= 0 we have to make up for the loss of pointwise 
ontrol in the stret
h and the loss of regularity of (11 +A)

if D

x

A 2 L

2

(
) only. This suggests a slight modi�
ation of the problem on the level of the 
orresponding

equilibrium system. We repla
e (regularize)




M in (4.50) with




M

ij

℄

(A;X) :=

8

>

<

>

:




M

ij

(A;X) j




M

ij

(A;X)j � K � 1

~

M

ij

(A;X) K � 1 � j




M

ij

(A;X)j � K

K j




M

ij

(A;X)j > K ;

(4.52)

su
h that




M

ij

℄

(A;X) is smooth to any order we need. It means physi
ally that the 
omponents of the rea
tion

stresses (
ouple stresses) are assumed to be essentially bounded by a 
onstant K > 0. This is a 
onsistent

requirement with the other simplifying assumptions already made. The 
omplete problem reads therefore:

Z




W

small

mp

(ru;A)� hf; ui � hM;Ai dV 7! min : w.r.t. u at given A

u

j

�


(x) = g

d

(x)� x ; A

j

�


= A

d

(4.53)

L

2




12

DivM:D

x

A =




M

℄

(A;ru)� skew(M) :

We 
an prove the following result:

35

The expansion of the 
urvature shows that we need not introdu
e a smallness assumption on the 
urvature itself, if we already

assume that rotations are small.
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Theorem 4.8 (Existen
e for 3D-small rotation elasti
 Cosserat model)

Let 
 � R

3

be a bounded domain with smooth boundary of 
lass C

3

and assume for the boundary data g

d

2

H

3

(
;R

3

) and A

d

2 H

2;2

(
; so(3;R)). Moreover, let f 2 L

2

(
;R

3

) and skew(M) 2 L

2

(
; so(3;R)). Then the

system (4.53)with �




� 0; �

6

� 0 admits a, perhaps non-unique, solution pair (u;A) 2 H

3

(
;R

3

)�H

2

(
; so(3)).

The solution is smoother if the data are smoother.

Proof. Sin
e the exponent in the 
urvature energy is only two, we 
annot mimi
 the variational argument of the

last se
tion sin
e we have no easy way to obtain a strongly 
onvergent subsequen
e A

k

in a topology as strong

as C

0

(
). Instead, we de�ne the following iteration s
heme: given (u

j

; A

j

) 2 H

m+1

(
;R

3

) � H

m

(
; so(3))


ompute (u

j+1

; A

j+1

) 2 H

m+1

(
;R

3

)�H

m

(
; so(3)) su
h that

Z




W

small

mp

(ru

j+1

; A

j

)� hf; u

j+1

i � hM;A

j

i dV 7! min : w.r.t. u

j+1

at given A

j

u

j+1

j

�


(x) = g

d

(x)� x ; A

j+1

j

�


= A

d

(4.54)

L

2




12

DivM:D

x

A =




M

℄

(A

j

;ru

j+1

)� skew(M) :

We pro
eed to show that the sequen
e (u

j

; A

j

)

1

j=1

is bounded in H

m+1

(
;R

3

) �H

m

(
; so(3)) independent of

j. To this end we note �rst that the sequen
e is uniquely determined if A

j

2 C(
; so(3)) (extended Korn's

�rst inequality). Based on sharp L

2

-ellipti
 regularity [Ebe02℄ for systems with variable 
oeÆ
ients (Diri
hlet


onditions everywhere on �
) for both equations separately yields for some yet unspe
i�ed pair (m; r) 2 N �N

the estimates [Nef03a℄:

ku

j+1

k

m+2;2

� C(
; kA

j

k

m+1;2

) �

�

kgk

m+2;2

+ kfk

m;2

+ kA

j

k

m+1;2

�

kA

j+1

k

r+2;2

� C(
) �

�

kA

d

k

r+2;2

+ k




M

℄

(A

j

;ru

j+1

)k

r;2

+ k skew(M)k

r;2

�

; (4.55)

if the solutions are unique, respe
tively. The 
onstant in the �rst estimate is a polynomial in kA

j

k

m+1;2

and

bounded above if the Legendre-Hadamard ellipti
ity 
onstant of the related a
ousti
 tensor is bounded away

from zero. The algebrai
 estimate

D

2

ru

W

small

mp

(ru;A):(r�;r�) � � k(11 +A)

T

r�+r�

T

(11 +A)k

2

; (4.56)

implies (
f. (2.15)) that

D

2

ru

W

small

mp

(ru;A):(� 
 �; � 
 �) � 2� k(11 +A)

T

� 
 �k

2

(4.57)

� 2��

min

�

(11 +A)(11 +A)

T

�

k�k

2

k�k

2

:

Sin
e (11 +A)(11 +A)

T

= 11�A

2

and h(11�A

2

):v; vi = kvk

2

+ kA:vk

2

� kvk

2

, we 
on
lude that

�

min

�

(11 +A)(11 +A)

T

�

� 1 and the ellipti
ity 
onstant of the for
e balan
e equation is indeed uniform.

If �

6

> 0, then the balan
e of angular momentum equation has a unique solution and (4.55)

2

is true as su
h.

If �

6

= 0, then we 
ontrol only symD

x

A. However, this is still enough to guarantee a unique solution.
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For A 2 so(3;R) we have

A =

0

�

0 � �

�� 0 


�� �
 0

1

A

; axl(A) =

0

�

�

�




1

A

; r axl(A) =

0

�

�

x

�

y

�

z

�

x

�

y

�

z




x




y




z

1

A

; symr axl(A) =

0

B

�

�

x

�

y

+�

x

2

�

z

+


x

2

�

y

+�

x

2

�

y

�

z

+


y

2

�

z

+


x

2

�

z

+


y

2




z

1

C

A

;

k symr axl(Ak

2

= �

2

x

+ �

2

y

+ 


2

z

+

(�

y

+ �

x

)

2

2

+

(�

z

+ 


x

)

2

2

+

(�

z

+ 


y

)

2

2

(4.58)

k symD

x

Ak

2

= k symrA:e

1

k

2

+ k symrA:e

2

k

2

+ k symrA:e

3

k

2

=

�

2

x

2

+

�

2

x

2

+ �

2

y

+ �

2

z

+

(�

x

+ �

y

)

2

2

+ �

2

x

+

�

2

y

2

+ 


2

y

+ 


2

z

+

(�

z

+ 


x

)

2

2

+ �

2

x

+ 


2

y

+

�

2

z

2

+




2

z

2

+

(�

y

+ 


x

)

2

2

:

Now it is easy to see that for some 


+

> 0 it holds k symD

x

Ak

2

� 


+

k symr axl(A)k

2

sin
e k symD

x

Ak

2

= 0 implies

k symr axl(A)k

2

= 0, algebrai
ally. Hen
e, the standard Korn's inequality applied to k symr axl(A)k

2

yields unique existen
e.

Note that with the permutation P =

0

�

0 0 �1

0 1 0

�1 0 0

1

A

2 O(3) the in�nitesimal mi
ropolar 
urvature tensor is de�ned as

� := rP: axl(A) = P � r axl(A) and it holds that P: axl(skew(ru)) =

1

2


urlu and tr [rP: axl(skew(ru))℄ =

1

2

Div 
urlu = 0. As

a 
onsequen
e, if we were to take W

in�n

mp

(�) =

L

2




12

k�k

2

, then the 
orresponding in�nitesimal 
ouple-stress tensor D

�

W

in�n

mp

(�) is

tra
e-free in the indeterminate 
ouple stress theory. We make no expli
it use of �.
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For r = 0 we obtain therefore that the sequen
e A

j

is bounded independent of j in the spa
e H

2

(
; so(3)) �

C

2�

3

2

(
; so(3)) whi
h implies form = 1 that the sequen
e u

j

is bounded independent of j in the spa
eH

3

(
;R

3

).

Extra
ting strongly 
onvergent subsequen
es and letting j !1 shows that the limit (u

1

; A

1

) is a solution of

the modi�ed �eld equation (4.53). This ends the argument. Note that due to the de�nition of




M

℄

, we are able

to in
rease the regularity of the solution if the data are smoother. �

Appre
iating the method of proof, we see that the partially linearized model together with quadrati
 
ur-

vature energy is appropriate only for ex
eptionally 'smooth' situations. The additional provision of suÆ
iently

smooth boundary and data and restri
tion to the pure Diri
hlet 
ase allows us to 
on
lude the 
ontinuity of the

in�nitesimal mi
rorotations A 
ir
umventing the dire
t use of Sobolev embedding theorems. Considering the

redu
tions made, it is nevertheless our belief that the model (4.53) 
aptures the essential features of the geo-

metri
ally exa
t Cosserat mi
ropolar framework in 
ontrast to the subsequent in�nitesimal models. However,

it remains open whether a 
onsistent boundary 
oupling in the sense of requiring A

j

�


= skew(ru)

�

is possible

for this model.

Rather for histori
al reasons and 
ompleteness we re
onsider the 
lassi
al in�nitesimal Cosserat mi
ropolar

problem. Existen
e results have been obtained e.g. in [Ies71, Duv70, HH69, Ghe74a, Ghe74b℄.

4.6 In�nitesimal linear elasti
 Cosserat theory

If we �nally assume in�nitesimal mi
rorotations and in�nitesimal displa
ements, the mi
ropolar stret
h tensor

may again be expanded as follows

U = R

T

F = (11 +A+ : : : )

T

(11 +ru) � 11 +ru�A� Aru+ : : : : (4.59)

Negle
ting 
onsistently the quadrati
 term Aru in (4.47) yields the approximate expression for the stret
h

energy

37

(2.6)

W

in�n

mp

(ru�A) = � k sym(ru�A)k

2

+ �




k skew(ru�A)k

2

+

�

2

tr

�

sym(ru�A)

�

2

= � k symruk

2

+ �




k skew(ru)�Ak

2

+

�

2

tr [sym(ru)℄

2

; (4.60)

and for the 
urvature term

W

small


urv

(D

x

A) = �

L

2




12

�

�

5

k symD

x

Ak

2

+ �

6

k skewD

x

Ak

2

+ �

7

tr

�

D

x

A

�

2

�

: (4.61)

Two observations are essential. First, if �




= 0, the in�nitesimal problem 
ompletely de
ouples - the

in�nitesimal mi
rorotations A have no in
uen
e whatsoever on the ma
ros
opi
 behaviour of the in�nitesimal

displa
ements. We believe that this is a de�
ien
y of the in�nitesimal problem without mu
h physi
al signi�
an
e

for the geometri
ally exa
t model. It has led perhaps to the erroneous 
ommon belief that �




> 0 is regarded

to be essential

38

for any true Cosserat mi
ropolar theory as well.

And se
ond, the 
hoi
e �

6

= 0 is possible, 
ontrary to the �nite 
ase, sin
e 
oer
ivity of the redu
ed 
urvature

expression 
an still be 
on
luded on a

ount of the 
lassi
al Korn's �rst inequality applied to symD

x

A as already

shown. We mention also that 
ontrary to the �nite 
ase there is no gap: balan
e of angular momentum without

internal length s
ale and �




> 0 yields

D

A

W

in�n

mp

(ru;A) 2 Sym, D

A

W

in�n

mp

(ru;A) = 0, skew(ru) = A : (4.62)

This implies already that in�nitesimal 
ontinuum- and mi
rorotations 
oin
ide, and this in turn is

equivalent to the symmetry of the in�nitesimal Cau
hy stress � or the Boltzmann axiom.

Hen
e the in�nitesimal 
ase rather inhibits our understanding of the general �nite Cosserat mi
ropolar

problem.

37

Traditionally, the in�nitesimal model is obtained not as linearization but by dire
tly assuming a split of the displa
ement

gradient into in�nitesimal mi
ropolar stret
h and in�nitesimal mi
rorotations: ru = "+ A, where " is not ne
essarily symmetri
.

38

In many treatments of the in�nitesimal theory, e.g. [Kup79, p.34℄ the assumption D

2

W

in�n

mp

(ru � A):(H;H) � 


+

kHk

2

is expli
itly introdu
ed as being motivated on physi
al grounds rather then being ne
essary for a meaningful treatment of the

in�nitesimal Cosserat mi
ropolar theory. It would ex
lude 
lassi
al in�nitesimal elasti
ity as a spe
ial 
ase. Sometimes, a so 
alled


oupling number N

2

=

�




�+�




2 [0; 1℄ is introdu
ed, whi
h allows to 
ompare di�erent material moduli. N = 0 
orresponds to


lassi
al in�nitesimal elasti
ity, N = 1 
orresponds to in�nitesimal indeterminate 
ouple stress theory.
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The in�nitesimal mi
ropolar model in variational form is given by

Z




� k symruk

2

+ �




k skew(ru�A)k

2

+

�

2

tr [symru℄

2

+ �

L

2




12

kr axl(A)k

2

� hf; ui � hM;Ai dV

�

Z

�

S

hN; ui dS�

Z

�

C

hM




; Ai dS 7! min : w.r.t. (u;A) (4.63)

u

j

�


(t; x) = g

d

(t; x)� x; x 2 �
 ; A

j

�


= skew(rg

d

(t; x))

j

�


:

The 
orresponding equilibrium system of equations for pure Diri
hlet 
onditions and without external 
ouples

M;M




is given by (note that kAk

2

= 2k axl(A)k

2

for A 2 so(3;R))

0 = Div � + f; x 2 


� = 2� symru+ 2�




(skew(ru)�A) + � tr [symru℄ � 11 (4.64)

0 = �

L

2




12

�axl(A) + �




axl((skew(ru)�A) :

If we 
onsider nonetheless the only nontrivial 
ase left open, �




> 0, it is standard to prove that the 
orresponding

minimization problem admits a unique minimizing pair (u;A) 2 H

1

(
;R

3

)�H

1

(
; so(3)).

Theorem 4.9 (Existen
e for 3D-in�nitesimal elasti
 Cosserat model)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and A

d

2

H

1

(
; so(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2 L

2

(
; so(3;R))

and M




2 L

2

(�

C

; so(3;R)). Then the model (4.63) admits a unique minimizing solution pair (u;A) 2

H

1

(
;R

3

)�H

1

(
; so(3)). The solution is smoother if the data are smoother.

Proof. We are again in a position to apply the dire
t methods of variations. Without loss of generality 
onsider

N;M;M




= 0 and � � �




> 0. First we observe that in�mizing sequen
es (u

k

; A

k

) exist and

1 >

Z




W

in�n

mp

(ru

k

�A

k

) +W

small


urv

(D

x

A

k

)� hf; u

k

i dV �

Z




�




kru

k

�A

k

k

2

dV � kfk

L

2

ku

k

k

H

1

(
)

(4.65)

=

Z




�




k sym(ru

k

�A

k

)k

2

+ �




k skew(ru

k

�A

k

)k

2

dV � kfk

L

2

ku

k

k

H

1

(
)

�

Z




�




k symru

k

k

2

dV � kfk

L

2

ku

k

k

H

1

(
)

� �







K

ku

k

k

2

H

1

(
)

� kfk

L

2

ku

k

k

H

1

(
)

;

showing that u

k

is bounded in H

1

(
). We have used that sym is orthogonal to skew and the 
lassi
al Korn's

�rst inequality together with the boundary 
onditions for u

k

. Moreover, again by the 
lassi
al Korn's �rst

inequality (if �

6

= 0) or dire
tly pointwise, we obtain boundedness of A

k

in H

1

(
; so(3)). We 
an 
hoose a

subsequen
e of (u

k

; A

k

) 
onverging strongly in L

2

(
) and weakly in H

1

(
). By overall 
onvexity of the energy

density in (ru;D

x

A) the limit pair is a minimizer.

For the uniqueness we 
onsider the se
ond derivative of the total strain energy W = W

in�n

mp

+W

small


urv

with

respe
t to the 
omplete argument

D

2

(ru;A)

W (ru�A):((r�; ÆA); (r�; ÆA)) � �




kr�� ÆAk

2

= �




k symr�k

2

+ �




k skew(r� � ÆA)k

2

� �




k symr�k

2

: (4.66)

By the 
lassi
al Korn's �rst inequality we obtain uniform positivity of the se
ond derivative upon integration.

39

The fun
tional is stri
tly 
onvex, the solution is unique.

Sin
e the resulting �eld equations of for
e balan
e and balan
e of angular momentum are linear, uniformly

ellipti
 with 
onstants 
oeÆ
ients the standard ellipti
 regularity theory applies su
h that for pure Diri
hlet

boundary 
onditions the solution is the smoother the smoother the data. �

39

Assume (�; ÆA) 6= 0, then D

2

(ru;A)

W (ru� A):((r�; ÆA); (r�; ÆA)) > 0.
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Theorem 4.10 (Existen
e for 3D-in�nitesimal elasti
 Cosserat model with 
onsistent 
oupling)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

) and skew(rg

d

) 2

H

1

(
;M

3�3

). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M 2 L

2

(
; so(3;R)) and

M




2 L

2

(�

C

; so(3;R)). Then the model (4.63) with 
onsistent 
oupling

A

j

�

= skew(ru(t; x))

j

�

; (4.67)

admits a unique minimizing solution pair (u;A) 2 H

1

(
;R

3

) �H

1

(
; so(3)). The solution is smoother if the

data are smoother.

Proof. Observe that with g

d

as spe
i�ed the energy is �nite for 
onsistent 
oupling. Next, note that in�miz-

ing sequen
es (u

k

; A

k

) exist and are bounded sin
e the displa
ement 
an be 
ontrolled independent of A

k

and the additional L

2


ontrol of k skew(ru) � A

k

k shows that A

k

is as well L

2

-
ontrolled. Hen
e (u

k

; A

k

) 2

H

1

(
;R

3

)�H

1

(
; so(3)), independent of k. This �nishes the argument. The role played by exa
t rotations in

the �nite 
ase is repla
ed by the role of �




> 0. �

The 
orresponding in�nitesimal gradient 
onstrained Cosserat mi
ropolar model (in�nitesimal in-

determinate 
ouple stress model) has the form (simpli�ed 
urvature term: �

5

= �

6

= 1; �

7

= 0)

Z




�k symruk

2

+

�

2

tr [symru℄

2

+ �

L

2




12

kD

x

skew(ru)k

2

� hf; ui dV

�

Z

�

S

hN; ui dS�

Z

�

C

hM




; skew(ru)i dS 7! min : w.r.t. u (4.68)

� = �

lo


+ �

hyper

�

lo


= 2� sym(ru) + � tr [sym(ru)℄ � 11 2 Sym; 
onstitutive stress

�

hyper

= �2�

L

2




12

axl

�1

�

Divr axl(skew(ru))

�

2 so(3;R)

u

j

�


(x) = g

d

(x)� x ; skew(ru)

j

�


= skew(rg

d

)

j

�


:

Using the same methods as before we obtain

Theorem 4.11 (Existen
e for 3D-in�nitesimal gradient 
ase)

Let 
 � R

3

be a bounded domain with smooth boundary of 
lass C

1

and assume for the boundary data

g

d

2 H

2

(
;R

3

). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

) together with M




2 L

2

(�

C

; so(3)).

Then the model (4.68) admits a unique minimizing solution u 2 H

1

(
) \ fr 
urlu 2 L

2

(
)g.

Proof. As before. See also [Duv70℄. �

5 On the 
hoi
e of the 
urvature energy 
ontribution

In the �nite regime we have various 
hoi
es for the assumed dependen
e of the elasti
 energy density on gradients

of the mi
rorotations. It seems that there is no universally 
orre
t term available, rather the appli
ations aimed

at di
tate in some respe
t this form. We list several of these possibilities whi
h 
an be useful:

1. The 
ase exhibiting similarity to plates and shells:

W


urv

(K) = �

L

1+p




12

(1 + �

4

L

q




kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

; (5.69)

for �




= �

4

= �

6

= 0; p = 1, one 
omponent of K, namely R

T

rR:e

3

appears in the resulting 
urvature


ontribution obtained after expanding the underlying stret
h energy with respe
t to deformations of the

midsurfa
e m(x; y) of a plate assuming that '(x; y; z) = m(x; y) + z R:e

3

and integrating through the

thi
kness. For in�nitesimal rotations this may be redu
ed to

W


urv

(D

x

A) = �

L

2




12

�

�

5

k symD

x

Ak

2

+ �

6

k skewD

x

Ak

2

+ �

7

tr

�

D

x

A

�

2

�

; (5.70)

whi
h yields pointwise 
ontrol of D

x

A for �

5

; �

6

> 0. If �

6

= 0, non-lo
al 
ontrol of kD

x

Ak

L

2

(
)

is possible

on a

ount of Korn's 
lassi
al �rst inequality.
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2. The 
ase for almost rigid material behaviour: i.e. r' � R 2 SO(3;R), then K = R

T

D

x

R � Sym, su
h

that the former may be redu
ed to

W


urv

(K) = �

L

1+p




12

(1 + �

4

L

q




kKk

q

)

�

�

5

kKk

2

+ �

7

tr [K℄

2

�

1+p

2

; (5.71)

where pointwise 
ontrol of the torsion-
urvature tensor K is possible.

3. The 
ase a

ounting for dislo
ations: a measure a

ounting for in
ompatibility is the torsion tensor

R

T

CurlR 2 M

3�3

. Orthogonal to this expression is R

T

:DivR 2 R

3

(Helmholtz de
omposition), a measure

for the 
urvature. Thus W


urv

may as well be assumed to 
onsist of two independent parts

W

tors;div

= �

L

1+p




12

�

�

8

kR

T

CurlRk

2

+ �

9

kR

T

:DivRk

2

�

1+p

2

: (5.72)

Non-lo
al 
ontrol of all �rst order derivatives of R is possible, if �

8

; �

9

> 0. For in�nitesimal in
ompat-

ibility, R = 11 + A + : : : and R

T

CurlR � CurlA su
h that �

8

> 0; �

9

� 0 is suÆ
ient for pointwise(!)


ontrol of D

x

A on a

ount of the fa
t that CurlA for A 2 so(3;R) 
ontrols all �rst derivatives of A.

40

While it is 
lear that we 
annot 
ontrol 
ompletely kD

x

Rk if �

9

= 0 in the �nite 
ase we might still stand a


han
e to show that �

8

> 0; �

9

= 0 is already suÆ
ient for the variational problem. Counting derivatives

in the �nite 
ase, we see that 9 independent entries in CurlR together with 3 independent entries in DivR


ontrol already the norm of a total of 27 derivatives of R. This is the obje
t of ongoing resear
h.

4. The traditional representation based on the redu
ed se
ond order 
urvature tensor

^

K:

W


urv

(K) = �

L

1+p




12

�

�

5

k sym

^

Kk

2

+ �

6

k skew

^

Kk

2

+ �

7

tr

h

^

K

i

2

�

1+p

2

; (5.73)

where

^

K :=

�

axl(R

T

�

x

R)j axl(R

T

�

y

R)j axl(R

T

�

z

R

�

2 M

3�3

. For small 
urvature this is further redu
ed

to (axl(�

x

A)j axl(�

y

A)j axl(�

y

A)) = r axl(A) = P � � with � the in�nitesimal mi
ropolar 
urvature

tensor and the permutation matrix P as in (4.58).

6 The quasi
onvex hull and relaxation

Sin
e we have investigated the salient regularizing features of the elasti
 Cosserat approa
h whi
h in prin
i-

ple should furnish a mesh-independent solution for related numeri
al implementations it seems worthwhile to


ontrast this with another well known su

essful 
omputational method [Lam02℄, based on quasi
onvexity, to

obtain mesh-independent results for stress-strain relations.

41

The elasti
 free energy density W : M

3�3

7! R is quasi
onvex, if

8

^

F 2 M

3�3

: j
j �W (

^

F ) �

Z




W (

^

F +r�(x)) dV 8� 2 C

1

0

(
;R

3

) : (6.74)

This implies notably that the homogeneous deformation is a global minimizer to its own boundary 
onditions.

For a given free energy density W : M

3�3

7! R the quasi
onvex hull QW is de�ned as the largest quasi
onvex

fun
tion below W , i.e.

QW := supf

~

W �W :

~

W is quasi
onvexg : (6.75)

If W is lo
ally bounded and Borel measurable, another equivalent 
hara
terisation [Da
89℄ is

QW (F ) := inf

�

1

j
j

Z




W (F +r�(x)) dV : � 2 C

1

0

(
;R

3

)

	

; (6.76)

and the in�mum is independent of 
. The resulting relaxed fun
tion is always Legendre-Hadamard ellipti
,

D

2

F

[QW ℄(F ):(� 
 �; � 
 �) � 0 ; (6.77)

40

In fa
t, for A 2 so(3;R) it holds that D

x

A = L:CurlA, with L a linear mapping.

41

In many pra
ti
al 
ases, not a 
omplete mesh-independent result for stresses and deformations is needed, but only a mesh-

independent result for the stresses is looked for. The relaxed fun
tional serves this restri
ted purpose. Average values of stresses

are 
omputed, the geometry of deformation is only 
onsidered in a probabilisti
 sense.
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and the quasi
onvex hull QW is weakly lower semi 
ontinuous.

In most 
ases it is not possible to derive analyti
al formulae for QW , however, there is one notable ex
eption.

If W (F ) =

^

W (U) is a 
onvex fun
tion in U and bounded below, then a general result in [Pip94℄ implies

42

that

QW (F ) = inf

P2PSym

^

W (U + P ) : (6.78)

Let us apply this result to W (F ) = kU � 11k

2

whi
h is easily seen to be not Legendre-Hadamard ellipti
 over

the whole range of admissible deformations F 2 GL

+

(3;R) but to satisfy the Baker-Eri
ksen inequalities. The

loss of ellipti
ity is due to the behaviour of the orthogonal part R = polar(F ) of F . We obtain

QW (F ) =

X

�

i

�1

j�

i

� 1j

2

; (6.79)

where �

i

� 0 are the eigenvalues of U . The resulting fun
tion is Legendre-Hadamard ellipti
 but not uniformly,

sin
e 
ompression has zero energy. Moreover, the linearization of the relaxed density QW (F ) does not 
oin
ide

with the linearization ofW (F ) whi
h is uniformly Legendre-Hadamard ellipti
 in a neighbourhood of F = 11. It

is well known that in a neighbourhood of the identity, the nonlinear unmodi�ed problem is well-posed [Val88℄,

also under 
ompression. It is therefore apparent that repla
ing W by its quasi
onvex hull would modify the

physi
al nature of the problem. Spe
ial 
are should therefore be exerted when taking QW also as a means

of regularization, espe
ially when the analyti
al form of W is not known, as is often the 
ase in in
remental

elasto-plasti
ity.

7 Dis
ussion and 
on
luding remarks

A �nite Cosserat model has been introdu
ed and is 
onsistently extended to elasto-vis
oplasti
ity where Cosserat

e�e
ts remain non-dissipative. Various redu
ed forms of the model are introdu
ed. For elasti
ity, it is motivated

that the Cosserat ansatz with independent rotations is espe
ially suited in 
onjun
tion with energies quadrati


in the mi
ropolar stret
h tensor U = R

T

F , in whi
h 
ase the rotations are indeed the only essential nonlinearity

left in the problem.

Our 
onstitutive analysis suggests that the Cosserat ansatz with weak lo
al 
oupling (Cosserat 
ouple mod-

ulus �




= 0) leading to a stret
h energy density for small elasti
 strains of the form W

mp

(U) = � k sym(U �

11)k

2

+

�

2

tr

�

sym(U � 11)

�

2

provides just the 
orre
t amount of regularization needed for 
lassi
al ma
ros
opi


energies quadrati
 in the 
ontinuum stret
h sin
e loss of Legendre-Hadamard ellipti
ity in the equation of linear

momentum 
an be tra
ed ba
k to the presen
e of the 
ontinuum rotations and is removed by taking independent

variations with respe
t to these rotations.

A 
ompeting method of regularization, namely the 
omputation of the quasi
onvex hull QW

mp

of the energy,

whi
h also restores the Legendre-Hadamard ellipti
ity leads to unphysi
al behaviour under 
ompression in


ertain 
ases: the material shows no resistan
e under 
ompression. Hen
e, the quasi
onvexi�
ation is a useful


omputational tool to redu
e the in
uen
e of lo
alizations but 
an hardly be regarded as generally admissible

without admitting a modi�
ation of the underlying physi
s whi
h is however, sometimes intended, espe
ially in

elasto-plasti
ity, where 
omplete lo
al relaxation is arguably the optimal response. In the elasti
 
ase, we prefer

to augment the underlying physi
s by introdu
ing a length s
ale.

A deli
ate interplay between stret
h and 
urvature terms allows under reasonable physi
al assumptions to

establish the existen
e of minimizers or stationary points of the 
orresponding elasti
 a
tion fun
tional. The

sub-
riti
al 
ase (in
luding the true fra
ture 
ase IV) �




= 0; �

4

> 0; 0 < p < 1; q � 0 in (2.7) and the 
riti
al


ase �




= 0; �

4

> 0; p = 1; q = 0 in (2.7) and �




= 0; �

8

> 0; �

9

= 0; p � 1 in (5.72) are not settled and leave

a wide �eld of 
hallenging purely mathemati
al problems.

Depending on the appli
ations aimed at, the Cosserat 
ouple modulus �




should either be very large (mi-


ros
opi
 spe
imens) or zero (ma
ros
opi
 spe
imens). The mathemati
al analysis re
e
ts this di
hotomy.

The di�erent redu
ed elastostati
 Cosserat mi
ropolar models have thus been shown to be 
ompletely jus-

ti�ed. The �nite ma
ros
opi
 elasti
-plasti
 
ase where Cosserat e�e
ts are assumed to be non-dissipative,

however, is 
ompletely left open.

As another result of our investigation we note that extreme 
are should be exerted when determining

material 
onstants already for isotropi
 Cosserat mi
ropolar models: the data �t should preferably be based

on the geometri
ally exa
t model with the same number and type of parameters and not on the in�nitesimal

model whi
h degenerates for admitted values of material parameters whi
h however, are to be �tted. If this is

42

The proof in [Pip94℄ is based onW (F ) =

^

W (C),

^

W 
onvex in C. With appropriate 
hanges it 
arries over to the representation

in U . We remark that the loss of ellipti
ity of kC � 11k

2

is already o

urring in uniaxial 
ompression. Clearly a de�
ien
y of the

Green strains not shared by the Biot strains whi
h loose ellipti
ity in biaxial situations only.
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done it might turn out that for spe
i�
 ma
ros
opi
 situations we are left with the problem of �nding just the


hara
teristi
 internal length L




while the Cosserat 
ouple modulus �




, already orders of magnitudes smaller

than the 
lassi
al shear modulus � in many 
ases, drops 
ompletely out. In the ma
ros
opi
 
ase, we favour

therefore an essentially redu
ed three-parameter isotropi
 Cosserat mi
ropolar theory with independent

mi
rorotations: the two 
lassi
al Lam�e 
onstants �; �, one additional internal 
hara
teristi
 length s
ale L




> 0

and (�




; �

4

; �

5

; �

6

; �

7

; p; q) = (0; 1; 1; 1; 0; 1; 1), thus dis
arding all other unne
essary material 
onstants. This

far rea
hing redu
tion will also fa
ilitate renewed experimental identi�
ation of the length s
ale L




and its

pre
ise relation to the shear band width, obs
ured in the in�nitesimal theory.

To 
on
lude, we believe that the 
hoi
e �




= 0 represents a refreshing departure from traditional linear

approa
hes; it re
on
iles experimental eviden
e on a ma
ros
ale and the possibility of fra
ture with the Cosserat

model and leads to interesting new mathemati
al problems. It shows to furnish a natural method to physi
ally

regularize 
ertain shear failure problems and it introdu
es experimentally observed se
ond order size e�e
ts

whi
h seem to be present in nearly all materials. It is therefore hoped that the presented development will

stimulate further mathemati
al resear
h in this important �eld for the appli
ations.
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9 Appendix A

9.1 Notation

Let 
 � R

3

be a bounded domain with Lips
hitz boundary �
 and let � be a smooth subset of �
 with non-vanishing 2-dimensional

Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote the s
alar produ
t on R

3

with asso
iated ve
tor norm kak

2

R

3

= ha; ai

R

3

.

We denote by M

3�3

the set of real 3 � 3 se
ond order tensors, written with 
apital letters and by T(3) the set of all third order

tensors. The standard Eu
lidean s
alar produ
t on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor

norm is kXk

2

= hX;Xi

M

3�3

. In the following we omit the index R

3

;M

3�3

. The identity tensor on M

3�3

will be denoted by 11,

so that tr [X℄ = hX; 11i. We let Sym and PSym denote the symmetri
 and positive de�nite symmetri
 tensors respe
tively. We

adopt the usual abbreviations of Lie-group theory, i.e., GL(3;R) := fX 2 M

3�3

jdet[X℄ 6= 0g the general linear group, SL(3;R) :=

fX 2 GL(3;R) jdet[X℄ = 1g; O(3) := fX 2 GL(3;R) j X

T

X = 11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X℄ = 1g with


orresponding Lie-algebras so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri
 tensors and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g

of tra
eless tensors. We set sym(X) =

1

2

(X

T

+ X) and skew(X) =

1

2

(X � X

T

) su
h that X = sym(X) + skew(X). For

X 2 M

3�3

we set for the deviatori
 part devX = X �

1

3

tr [X℄ 11 2 sl(3) and for ve
tors �; � 2 R

n

we have the tensor produ
t

(� 
 �)

ij

= �

i

�

j

. (vj�j�) 2 M

3�3

is the matrix 
omposed of the 
olumns v; �; � 2 R

3

. We write the polar de
omposition in

the form F = RU = polar(F )U with R = polar(F ) the orthogonal part of F . For a se
ond order tensor X we de�ne the third

order tensor h = D

x

X(x) = (r(X(x):e

1

);r(X(x):e

2

);r(X(x):e

3

)) = (h

1

; h

2

; h

3

) 2 M

3�3

� M

3�3

� M

3�3

. For third order tensors

h 2 T(3) we set khk

2

=

P

3

i=1

kh

i

k

2

together with sym(h) := (sym h

1

; sym h

2

; sym h

3

) and tr [h℄ := (tr

�

h

1

�

; tr

�

h

2

�

; tr

�

h

3

�

) 2 R

3

.

Moreover, for any se
ond order tensor X we de�ne X � h := (Xh

1

;Xh

2

;Xh

3

) and h �X 
orrespondingly. Quantities with a bar, e.g.

the mi
ropolar rotation R, represent the mi
ropolar repla
ement of the 
orresponding 
lassi
al 
ontinuum rotation R. In general

we work in the 
ontext of nonlinear, �nite elasti
ity. For the total deformation ' 2 C

1

(
;R

3

) we have the deformation gradient

F = r' 2 C(
;M

3�3

) and we use r in general only for 
olumn-ve
tors in R

3

. Furthermore, S

1

(F ) and S

2

(F ) denote the �rst and

se
ond Piola Kir
hho� stress tensors, respe
tively. Total time derivatives are written

d

dt

X(t) =

_

X . The �rst and se
ond di�erential

of a s
alar valued fun
tion W (F ) are written D

F

W (F ):H and D

2

F

W (F ):(H;H), respe
tively. Sometimes we use also �

X

W (X) to

denote the �rst derivative ofW with respe
t toX. We employ the standard notation of Sobolev spa
es, i.e. L

2

(
); H

1;2

(
); H

1;2

Æ

(
),

whi
h we use indi�erently for s
alar-valued fun
tions as well as for ve
tor-valued and tensor-valued fun
tions. Moreover, we set

kXk

1

= sup

x2


kX(x)k. For X 2 C

1

(
;M

3�3

) we de�ne CurlX(x) and DivX(x) as the operation 
url and Div applied row wise,

respe
tively. For h 2 T(3) we de�ne Div h =

�

Div h

1

jDiv h

2

jDiv h

3

�

T

2 M

3�3

. We de�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g,

where �

j

�

= 0 is to be understood in the sense of tra
es and by C

1

0

(
) we denote in�nitely di�erentiable fun
tions with 
ompa
t

support in 
. We use 
apital letters to denote possibly large positive 
onstants, e.g. C

+

;K and lower 
ase letters to denote possibly

small positive 
onstants, e.g. 


+

; d

+

. The smallest eigenvalue of a positive de�nite symmetri
 tensor P is abbreviated by �

min

(P ).

Finally, w.r.t. abbreviates with respe
t to.

9.2 The Boltzmann axiom without internal length

Lemma 9.1 (Limit rotations with zero internal length s
ale)

De�ne W

mp

as

W

mp

(U) = �

1

k sym(U � 11)k

2

+ �




k skew(U)k

2

+ �

3

tr

�

sym(U � 11)

�

2

(9.80)

as in (2.6). If �

1

= �




and tr

�

U

�

< 3 +

2�




�

3

then D

U

W

mp

(U)U

T

2 Sym)

�

U 2 Sym, R = polar(F )

�

. Otherwise,

D

U

W

mp

(U)U

T

2 Sym alone does not imply U 2 Sym.

Proof. An argument relating to the general 
ase of W

mp

taken as an isotropi
 s
alar valued fun
tion of U has been given e.g. in

[San99, p.29℄ and [SB95℄. However, no 
onditions on the 
oeÆ
ients or the magnitude of tr

�

U

�

are involved, whi
h raises some

questions. Note �rst that D

U

W

mp

(U)U

T

2 Sym is equivalent to

skew

�

(�

1

� �




)U

T

U

T

� 2�

1

U

T

+ 2�

3

tr

�

U � 11

�

U

T

�

= 0 : (9.81)

We write U = symU + skewU = S +A. This yields in three steps

skew

�

(�

1

� �




) (S + A)

T

(S + A)

T

� 2�

1

(S + A)

T

+ 2�

3

tr [S � 11℄ (S + A)

T

�

= 0

skew

�

(�

1

� �




) (S

T

S

T

+ S

T

A

T

+ A

T

S

T

+ A

T

A

T

)� 2�

1

A

T

+ 2�

3

tr [S � 11℄A

T

�

= 0 (9.82)

skew

�

(�

1

� �




) (SA

T

+ A

T

S)� 2�

1

A

T

+ 2�

3

tr [S � 11℄A

T

�

= 0 ;
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and sin
e A

2

2 Sym(3) for A 2 so(3;R), this leads to the system

�(�

1

� �




) (SA+AS) + 2 (�

1

+ �

3

tr [S � 11℄)A = 0 ; (9.83)

whi
h represents 3 linear equations for three unknowns in A 2 so(3;R). If �

1

= �




and tr

�

U

�

< 3 +

2�




�

3

then A = 0 ne
essarily. A

small algebrai
 argument shows that SA+ AS = 0; A 2 so(3;R); S 2 Sym implies A = 0 if (d

1

+ d

2

) (d

2

+ d

3

) (d

1

+ d

3

) 6= 0 for d

i

the eigenvalues of S. For the se
ond statement, set �




= � = �

1

; �

3

=

�

2

= �, whi
h is in the range of a
tual material behaviour

of ma
ros
opi
 
rystalline solids, and 
onsider a

ordingly

W

mp

(U) = � kU � 11k

2

+ � tr

�

U � 11

�

2

; D

U

W

mp

(U) � U

T

= 2�U U

T

� 2�U

T

+ 2� tr

�

U � 11

�

U

T

: (9.84)

Now take

U =

0

�

1 � 0

�� 1 0

0 0 2

1

A

2 GL

+

(3;R) if j�j � 1 and U 62 Sym : (9.85)

The 
orresponding mi
rorotation R and deformation ' su
h that U = R

T

r' 
an be easily dedu
ed. This impliesD

U

W

mp

(U)�U

T

2

Sym and balan
e of linear momentum is satis�ed for zero loads sin
e the quantities (R;r') are homogeneous if appropriate bound-

ary 
onditions are spe
i�ed but U 62 Sym. �

9.3 Ma
ros
opi
 elasti
 shear failure

It is appropriate to de�ne what we mean by shear failure in 
lassi
al isotropi
 elasti
ity. Let W (F ) be the free elasti
 energy

density of the bulk material. If for some F 2 GL

+

(3;R)

9 �; � 2 R

3

: D

2

W (F ):(� 
 �; � 
 �) < 0 ; (9.86)

we say that the material fails or looses Legendre-Hadamard ellipti
ity (LH), also 
alled a material instability.

43

This

failure 
an give rise to highly lo
alized deformation patterns, subsumed under the notion of mi
rostru
ture. Related is the

possible emergen
e of dis
ontinuous deformations sin
e Hadamard�s jump relations are violated. However, loss of ellipti
ity

may already o

ur for deformations whi
h are not related to shear, e.g. uniaxial situations and pure dilations. Thus we say that

W su�ers from genuine elasti
 shear failure whenever

9F 2 GL

+

(3;R) 9 �; � 2 R

3

: D

2

W (F ):(� 
 �; � 
 �) < 0 ; but

8F 2 diag(�

+

1

; �

+

2

; �

+

3

) 8 �; � 2 R

3

: D

2

W (F ):(� 
 �; � 
 �) � 0 : (9.87)

It seems that failure of a material on a ma
ros
ale other than shear failure is unphysi
al and rather due to the idiosyn
rasy of the


onstitutive equations, as long as the bulk is modelled as elasti
. In fa
t, Legendre-Hadamard ellipti
ity for F = diag(�

+

1

; �

+

2

; �

+

3

)

implies immediately the Baker-Eri
ksen (BE) inequalities [MH83, p.19℄ and genuine elasti
 shear failure happens, if BE is

satis�ed but LH is violated.

44

In this sense the following non exhaustive list of free energy terms should be avoided sin
e they are not only failing under shear

(already BE is not satis�ed):

kC � 11k

2

; hC � 11; 11i

2

; hlnC; 11i

2

; hlnC; 11i

2

+ k dev lnCk

2

; hlnU; 11i

2

; � ln det[F ℄ + (ln det[F ℄)

2

; k

C

det[C℄

1=3

� 11k

2

: (9.88)

Of 
ourse, 
ombination with other terms 
ould remove the problem. Terms whi
h genuinely fail only in shear are e.g.

kU � 11k

2

; hU � 11; 11i

2

and k

U

det[U℄

1=3

� 11k

2

; tr

h

U

det[U℄

1=3

� 11

i

2

.

9.4 Analyti
al investigation of in
ompressible elasti
 simple shear

In order to elu
idate the proposed theory and to be able to validate numeri
al solutions we 
onsider �rst the deformation of

an in
ompressible homogeneous unit 
ube in simple shear at the upper and lower fa
es. Let 
 = [0; 1℄ � [0; 1℄ � [0; 1℄ be the

unit 
ube and impose the boundary 
onditions g(x

1

; x

2

; 0) = (x

1

; x

2

; 0)

T

; g(x

1

; x

2

; 1) = (x

1

+ 
; x

2

; x

3

)

T

; 0 � x

1

; x

2

� 1. The

parameter 
 � 0 is the amount of maximal shear at the upper fa
e per unit length. In order to arrive at an analyti
ally tra
table

one-dimensional problem we wish to �nd energy minimizing deformations of the form

'(x

1

; x

2

; x

3

) =

0

�

x

1

+ u(x

1

; x

3

)

x

2

x

3

1

A

; r'(x

1

; x

2

; x

3

) = F =

0

�

1 + u

x

1

(x

1

; x

3

) 0 u

x

3

(x

1

; x

3

)

0 1 0

0 0 1

1

A

; (9.89)

with u(x

1

; 0) = 0; u(x

1

; 1) = 
. E�e
tively, we require, that initially horizontal material planes remain horizontal.
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In
ompress-

ibility requires that det[F ℄ = 1 and implies u

x

1

(x

1

; x

3

) = 0. The boundary 
onditions show then that u must be 
onstant in

x

1

-dire
tion. Hen
e the redu
ed kinemati
s

'(x

1

; x

2

; x

3

) =

0

�

x

1

+ u(x

3

)

x

2

x

3

1

A

; r'(x

1

; x

2

; x

3

) = F =

0

�

1 0 u

0

(x

3

)

0 1 0

0 0 1

1

A

; (9.90)
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Material instability should be 
arefully distinguished from geometri
al instabilities o

urring in bu
kling or ne
king and

whi
h are fully 
onsistent with Legendre-Hadamard ellipti
ity. In this sense, poly
onvexmaterials are un
onditionallymaterially

stable and 
ertainly appropriate for rubber and soft-tissues [SN02, HN03℄.
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One version of BE 
an be stated as follows: for �

i

> 0 the prin
ipal stret
hes, the free energy �(�

1

; �

2

; �

3

) := W (U) is

separately 
onvex in �

i

. No mathemati
al existen
e results based only on BE are known. Note also that BE is enough to e�e
tively

ex
lude phase-transformations, modelled with multi-well potentials.
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These are not the most general possible deformations. The most general deformations are of the form '(x

1

; x

2

; x

3

) = (x

1

+

u(x

1

; x

3

); x

2

; x

3

+ v(x

1

; x

3

)

T

.

35



with u(0) = 0; u(1) = 
 suÆ
es.

46

A

ordingly we postulate mi
rorotations R 2 SO(3;R) and in�nitesimal mi
rorotations

A 2 so(3;R) of the type:

R(x

1

; x

2

; x

3

) =

0

�


os�(x

3

) 0 sin�(x

3

)

0 1 0

� sin�(x

3

) 0 
os�(x

3

)

1

A

; A(x

1

; x

2

; x

3

) =

0

�

0 0 �(x

3

)

0 1 0

��(x

3

) 0 0

1

A

: (9.91)

This implies that kD

x

Rk

2

= kD

x

Ak

2

= 2 j�

0

(x

3

)j

2

. In view of symmetry 
onsiderations we try to �nd solutions for the shear pro�le

angle � : [0; 1℄ 7! R of the form �(1=2 + x) = �(1=2 � x), implying that �

(n)

(0) = (�1)

n

�

(n)

(0). Expli
it 
al
ulation shows that

R

T

F =

0

�


os�(x) 0 
os�(x) � u

0

(x) � sin�

0 1 0

sin�(x) 0 sin�(x) � u

0

(x) + 
os�(x)

1

A

; symR

T

F =

0

B

�


os�(x) 0


os�(x)�u

0

(x)

2

0 1 0


os �(x)�u

0

(x)

2

0 sin�(x) � u

0

(x) + 
os�(x)

1

C

A

;

skewR

T

F =

0

B

�

0 0


os�(x)�u

0

(x)�2 sin�(x)

2

0 0 0

�


os �(x)�u

0

(x)�2 sin�(x)

2

0 0

1

C

A

: (9.92)

The energy
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is given by

Z




� k symR

T

F � 11k

2

+ �




k skewR

T

Fk

2

+ 2�L

2




j�

0

(x)j

2

dV 7! min : w.r.t. (u; �). (9.93)

u(0) = 0; u(1) = 
; Diri
hlet boundary 
onditions for displa
ement

�(0) = �(1) = 0; 
lassi
al (rigid) boundary 
onditions for mi
rorotations

0 = skew(R

T

F )

f0;1g

, 2 tan�(0) = u

0

(0); 2 tan�(1) = u

0

(1); 
onsistent 
oupling boundary 
onditions

in the �nite 
ase
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and

Z




� k symF � 11k

2

+ �




k skewF �Ak

2

+ 2�L

2




j�

0

(x)j

2

dV 7! min : w.r.t. (u;�). (9.94)

u(0) = 0; u(1) = 


�(0) = �(1) = 0; 
lassi
al rigid boundary 
onditions

0 =

�

skew(F )� A

�

f0;1g

, 2�(0) = u

0

(0); 2�(1) = u

0

(1); redu
ed 
onsistent 
oupling boundary 
onditions ;

in the in�nitesimal 
ase. The 
lassi
al elasti
ity formulation in the �nite 
ase
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is re
overed, if �




= 0; L




= 0; skew(R

T

F ) = 0 ,

2 tan�(x) = u

0

(x) and in the in�nitesimal 
ase, if �




= 0; L




= 0;

�

skew(F )� A

�

= 0 , 2�(x) = u

0

(x) and independent variation

is performed w.r.t. to the displa
ement u only.

In terms of (u

0

; �) the �nite energy expression is

W

�nite

(u

0

; �) = �

 

2(
os�� 1)

2

+

u

0

2

2

+

sin

2

�u

0

2

2

+ 2(
os�� 1) sin�u

0

!

+ �




 


os

2

�u

0

2

2

� 2 
os� sin�u

0

+ 2 sin

2

�

!

+ 2�L

2




j�

0

j

2

; (9.95)

and the �rst order redu
tion 
os� � 1; sin� � � for small � yields the 
orresponding in�nitesimal energy expression

W

small

(u

0

; �) = �

u

0

2

2

+ �




 

u

0

2

2

� 2� � u

0

+ 2�

2

!

+ 2�L

2




j�

0

j

2

= �

u

0

2

2

+ 2�




�

u

0

2

� �

�

2

+ 2�L

2




j�

0

j

2

: (9.96)

The se
ond derivative of the energy in the in�nitesimal 
ase w.r.t. (u

0

; �) is given by

D

2

(u

0

;�)

W

small

(u

0

; �):((Æu; Æ�); (Æu; Æ�)) = � j(Æu)

0

j

2

+ 2�




j

(Æu)

0

2

� Æ�j

2

+ 4�L

2




j(Æ�)

0

j

2

; (9.97)

whi
h shows that for 
lassi
al rigid Diri
hlet boundary 
onditions and for 
onsistent 
oupling 
onditions the solution

(u; �) of the in�nitesimal problem is unique. Sin
e the homogeneous deformation u(x) = 
 �x together with 
onstant shear angle

�(x) =




2

is always a solution for 
onsistent 
oupling, it is the unique solution 
oin
iding with the unique solution of the 
lassi
al

in�nitesimal elasti
ity problem with shear stress at the upper fa
e �

lin

= � 
.

It is useful to 
onsider as well a se
ond order redu
tion of the energy: 
os� � 1 �

�

2

2

; sin� � � �

�

3

3!

. Skipping terms

higher then order four we get

W

red

(u

0

; �) == �

�

1 + �

2

2

u

0

2

+

�

4

2

� �

3

u

0

�

+ 2�




 

�

u

0

2

� �

�

2

�

�

2

u

0

2

4

+

2

3

�

3

u

0

�

�

4

3

!

+ 2�L

2




j�

0

j

2

: (9.98)
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The 
onsidered problem is therefore the exa
t formulation of the simple glide in e

1

-dire
tion with amount 
 at the upper fa
e

of an in�nite layer of material with unit height �xed at the bottom.
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The energy 
orresponds to the 
lass studied in Theorem 4.4. Note that by the analyti
al methods proposed in se
tion (4)

we already know that minimum energy 
on�gurations in the �nite 
ase exist for both types of boundary 
onditions. In the

one-dimensional 
ase the 
oer
ivity j�

0

(x)j

2

is enough to guarantee strong 
onvergen
e of minimizing sequen
es of mi
rorotations

(sin�

k

; 
os�

k

) in the spa
e of 
ontinuous fun
tions due to Sobolev embedding theorems.
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It is a deli
ate matter to spe
ify independent boundary 
onditions for the mi
rorotations �. Somehow it requires to know the

solution of the boundary value problem in advan
e. In this sense su
h a 
lassi
al rigid boundary 
ondition is nothing but a �rst

guess, perhaps useful as start value in a numeri
al s
heme.
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The 
onsistent redu
tion of this requirement for small � is � =

u

0

2

�

u

0

2

24

+ : : : .
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The 
orresponding redu
ed 
lassi
al elasti
ity problem is obtained by

W


lass

red

(u

0

) :=W

red

j

�




=0;L




=0

(u

0

;

u

0

2

) = �

 

u

0

2

2

+

u

0

4

32

!

: (9.99)

The equilibrium equations in the fully �nite 
ase are obtained by taking free variations w.r.t. (u; �). For
e balan
e amounts to

0 =

d

dt

t=0

W

�nite

(u+ t�; �)

0 =

�

�� u

00

(x)� �

�

2 sin�(x) 
os�(x)�

0

(x)u

0

(x) + sin

2

�(x) u

00

(x)

�

� 2�

�

(
os�(x) � 1) 
os�(x)�

0

(x)� sin

2

�(x)�

0

(x)

�

��




�

�2 
os�(x) sin��

0

(x)u

0

(x) + 
os

2

�(x)u

00

(x)

�

� 2�




�

� sin

2

�(x)�

0

(x) + 
os

2

�(x)�

0

(x)

��

� � ; (9.100)

and balan
e of angular momentum is obtained from variation w.r.t. �:

0 =

d

dt

t=0

W

�nite

(u; �+ t Æ�)

= �4�(
os�(x) � 1) sin� Æ� +

�

2

2 sin�(x) 
os�(x)u

0

(x)

2

Æ�+ 2�(
os�(x) � 1) 
os�(x) u

0

(x) Æ�(x)

+ 2�(� sin�(x) sin�(x)u

0

(x)Æ�(x) + 4�L

2




�

0

(x)(Æ�)

0

(x) (9.101)

+ �




�

2 
os�(x)(� sin�(x))

2

Æ� u

0

(x)

2

� 2 
os�(x) 
os�(x)Æ�(x) + 2 sin�(x) sin�(x)Æ�u

0

(x) + 4 sin�(x) 
os�(x)Æ�

�

:

In the �nite 
ase, we evaluate the generated tangential shear stresses � at the upper fa
e where maximal shear o

urs. They are

� = hS

1

(F (1); R(1)):e

3

; e

1

i = hR(1)

�

2� sym(R

T

F � 11) + 2�




skew(R

T

F )

�

:e

3

; e

1

i : (9.102)

For 
onsistent 
oupling 
onditions, the homogeneous deformation u(x) = 
 x and tan�(0) = tan�(x) =




2

is always a solution and

leads to a nonlinear, stri
tly monotone shear response at the upper fa
e of

� = �u

0

(1) + � sin

2

�(1)u

0

(1) + 2� sin�(1)(
os �(1) � 1)

= �
 + � sin

2

(ar
tan




2

) 
 + 2� sin(ar
tan




2

) (
os(ar
tan




2

)� 1) : (9.103)

For the �nite problem, at this point, we do not know whether the homogeneous response is the only one possible or realizes the

minimum energy.

In order to investigate this point further, we simplify the two equilibrium equations by 
onsidering the se
ond order expansions


os�(x) = 1�

�

2

2

+ : : : ; sin� = ��

�

3

6

+ : : : and keep terms up to order three in the variables (u

0

; �). After partial integration

su
h a redu
tion 
oin
ides with the system of equilibrium equations based dire
tly on the redu
ed energy W

red

:

0 = u

00

+

2(� � �




)��

0

u

0

�(1 + �

2

) + �




(1� �

2

)

+

(4�




� 3�)�

2

�

0

�(1 + �

2

) + �




(1� �

2
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�

2�




�
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2

) + �




(1� �
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)

0 = �

�

1
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�

3

+

1

4

�u

0
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�

3
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�
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� L
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�
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� �
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2
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3

+ �




�

2

u

0

+

�

u

0

2

� �

��

(9.104)

u(0) = 0; u(1) = 


�(0) = �(1) = 0; 
lassi
al rigid boundary 
onditions

2�(0) = u

0

(0); 2�(1) = u

0

(1); redu
ed 
onsistent boundary 
onditions :

Observe that the homogeneous deformation remains a solution of the redu
ed system for 
onsistent 
oupling.

It is natural to require that the solution of the 
oupled boundary value problem, notably the shear pro�le angle �, is in

fa
t independent of the shear modulus � and the Cosserat 
ouple modulus �




as in 
lassi
al elasti
ity. This 
ondition 
an

only be met with �




= 0 or �




= �.

If �




= 0 the 
orresponding system of balan
e equations based 
onsistently on W

red

redu
es further to

0 =

2��

0

1 + �

2

u

0

�

3�

2

�

0

1 + �

2

+ u

00

0 =

1

2

�

3

+

1

4

�u

0

2

�

3

4

�

2

u

0

� L

2




�

00

(9.105)

u(0) = 0; u(1) = 


�(0) = �(1) = 0; 
lassi
al rigid boundary 
onditions

2�(0) = u

0

(0); 2�(1) = u

0

(1); 
onsistent 
oupling boundary 
onditions :

Let us integrate the �rst equation of (9.105) at given � by means of the variations of 
onstants formula. This shows that

u

0

(x) = e

�

R

x

0

2�(t)�

0

(t)

1+�

2

(t)

dt

�

0

�

u

0

(0) +

x

Z

0

3�

2

�

0

(t)

1 + �

2

(t)

e

R

t

0

2�(s)�

0

(s)

1+�

2

(s)

ds

1

A

dt =

1 + �

2

(0)

1 + �

2

(x)

�

u

0

(0) +

[�

3

(x) � �

3

(0)℄

1 + �

2

(0)

�

: (9.106)

The last equation is the integrated form of the for
e balan
e equation. The Diri
hlet boundary 
onditions for u imply the

additional integral 
ondition


 = 
 � 0 = u(1) � u(0) =

1

Z

0

u

0

(x) dx =

1

Z

0

1 + �

2

(0)

1 + �

2

(x)

�

u

0

(0) +

[�

3

(x)� �

3

(0)℄

1 + �

2

(0)

�

dx : (9.107)

Let us 
onsider the limit 
ase L




= 0, disregarding the possible boundary values for � in a �rst approa
h. This 
orresponds to the


ase (4.2) �nite elasti
ity with free rotations and mi
rostru
ture of the 
lassi�
ation (2.20). The se
ond (now algebrai
)

equation of (9.105) 
an then be solved for � with the result that � 
an take on only three distin
t values

�(x) 2 f0;

u

0

(x)

2

; u

0

(x)g : (9.108)
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Reinserting the result into (9.106) shows that we have altogether only two di�erent values for u

0

(x) at our disposition, determined

by three equations (two 
oin
iding)

�

1 + �

2

(0)℄u

0

(0) � �

3

(0)

�

=

8

>

<

>

:

u

0

(x) insert �(x) = 0

u

0

(x) +

1

8

u

0

(x)

3

insert �(x) =

u

0

(x)

2

u

0

(x) insert �(x) = u

0

(x)

: (9.109)

Let us 
hoose u

0

(0); �(0) su
h that

�

1 + �

2

(0)℄u

0

(0)� �

3

(0)

�

= 
 + Æ

+

; Æ

+

> 0 : (9.110)

The value Æ

+

> 0 to be determined subsequently. Taking �(0) =

u

0

(0)

2

in (9.110) implies that u

0

(0)+

1

8

u

0

(0)

3

= 
+Æ

+

and (9.109)

redu
es to


 + Æ

+

=

(

u

0

(x)

u

0

(x) +

1

8

u

0

(x)

3

: (9.111)

We take Æ

+

> 0 as the unique solution of the equation

(
 � Æ

+

) +

1

8

(
 � Æ

+

)

3

= 
 + Æ; if Æ

+

= 


+

� 
 , (1� 


+

)

3

=

�

4




�

2




+

: (9.112)

For 
 !1 we have Æ

+

! 
; 


+

! 1 and Æ

+

= Æ

+

(
) is a monotone in
reasing fun
tion of 
. This implies

u

0

(x) =

(




1

= 
 + Æ

+




2

= 
 � Æ

+

; (9.113)

and notably u

0

(0) = 
 � Æ

+

. Now 
onsider the family of straight lines

v

1

(x) = 


1

x; v

2

(x) = 


1

x+ (
 � 


1

); v

3

(x) = 


2

x; v

4

(x) = 


2

x+ (
 � 


2

) : (9.114)

A family of weak solutions of (9.105) with L




= 0 and �(0) =

u

0

(0)

2

; u

0

(0) = 
 � Æ

+

is given as a 
ontinuous 
ombination of

pie
ewise aÆne fun
tions with slopes parallel to v

i

; i = 1; : : : 4 satisfying u(0) = 0; u(1) = 
. This is the expe
ted mi
rostru
ture.

The 
onstru
ted solutions u are absolutely 
ontinuous, but do not belong to H

2

([0; 1℄;R).

Any point symmetri
 solution w.r.t. (1=2) must have �(1) =

u

0

(1)

2

; u

0

(1) = 
�Æ

+

. Symmetry, however, is not enough to single

out a unique response. We 
hoose that solution, whi
h has the least number of weak dis
ontinuity points. It is given by

u(x) =

8

>

<

>

:

(
 � Æ

+

) x 0 � x �

1

2

�

1

4

(
 + Æ

+

) x�

Æ

+

2

1

2

�

1

4

�

1

2

+

1

4

(
 � Æ

+

) x+ Æ

+

1

2

+

1

4

� x � 1

; �(x) =

u

0

(x)

2

=

8

>

<

>

:


 � Æ

+

0 � x �

1

2

�

1

4


 + Æ

+

1

2

�

1

4

�

1

2

+

1

4


 � Æ

+

1

2

+

1

4

� x � 1

; (9.115)

showing the expe
ted (sharp) S-type symmetri
 shear pro�le.
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For the redu
ed formulation we evaluate the generated shear

stress response at the upper fa
e. They are

�

red

= D

u

0W

red

(u

0

(1)) = �

�

u

0

(1) + �

2

(1)u

0

(1) � �

3

(1)

�

= �

 

u

0

(1) +

�

u

0

(1)

2

�

2

u

0

(1) �

�

u

0

(1)

2

�

3

!

)

�

hom

red

= � (1 +

1

8




2

) 
; �

mi
ro

red

= � (1 + 


+

(
)) 
 ; (9.116)

with 


+

(
) 2 (0; 1) from (9.112). This shows that the response with mi
rostru
ture due to free rotations is always weaker

(energeti
ally favourable) than the still possible homogeneous response.

51

In order to determine L




for a given material we 
onsider the same material in di�erent sample sizes with edge length L

i

> 1 and

perform 
orresponding shear experiments. Due to s
aling relations the di�erent sizes 
an be transformed to the unit 
ube leading

to a modi�ed internal length

L




L

i

. The solution on the unit 
ube depends only on 
 and

L




L

i

. Hen
e the sequen
e of experiments

leads to best-�tting values

L




L

i

= C

i

, whi
h implies that L




=

1

n

P

n

i=1

L

i

C

i

is a good 
andidate for the real 
hara
teristi
 length.

Note that no knowledge of size-independent material parameters is ne
essary to obtain a value for L




if �




= 0.

Let us 
ontrast the foregoing result with a similar analysis of the in�nitesimal Cosserat model with ne
essarily �




> 0. The

system of balan
e equations is now given by

u

00

(x) = 2

�




�+ �




�

0

(x) = 2N

2

�

0

(x)

�L

2




�

00

(x) = �




�

�(x) �

u

0

(x)

2

�

(9.117)

u(0) = 0; u(1) = 


�(0) = �(1) = 0; 
lassi
al rigid boundary 
onditions

2�(0) = u

0

(0); 2�(1) = u

0

(1); 
onsistent 
oupling boundary 
onditions ;

with the traditional Cosserat 
oupling number N

2

=

�




�




+�

. Observe again that the homogeneous solution is the unique solution

for 
onsistent 
oupling.

50

It is surprising that the 
onstru
ted solution satis�es the Boltzmann axiom: � =

u

0

2

everywhere yet it does not 
oin
ide with

the 
lassi
al solution.

51

The weak dis
ontinuities inherent in this mi
rostru
ture 
an be seen as a pre
ursor to fra
ture. The road to fra
ture starts

with homogeneous solutions, whi
h turn into smooth inhomogeneous solutions u 2 H

2

, whi
h degenerate into solutions with weak

dis
ontinuities u 2 H

1

nH

2

, whi
h �nally fail along glide planes with u 62W

1;1

.
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In order to �nd the unique nontrivial solution for rigid 
onditions, we integrate the �rst equation of (9.117) and get

2N

2

[�(x)� �(0)℄ = u

0

(x)� u

0

(0); and 2N

2

1

Z

0

�(x) dx� 2N

2

�(0) = u(1)� u(0) � u

0

(0) = 
 � u

0

(0) ; (9.118)

where we have used the Diri
hlet boundary 
onditions for the displa
ement u. This shows

u

0

(0) = 
 � 2N

2

1

Z

0

�(x) dx; (use (9.118)

2

and �(0) = 0) ) (9.119)

u

0

(x) = 
 + 2N

2

0

�

�(x) �

1

Z

0

�(x) dx

1

A

; 
lassi
al rigid boundary 
onditions;) u

0

(0) = u

0

(1) < 
 :

Inserting the result for u

0

(x) into balan
e of angular momentum and rearranging yields the linear se
ond order di�erential equation

�

00

(x)�

N

2

L

2




�(x) = �

�




�L

2







2

+

N

2

�




L

2




�

1

Z

0

�(x) dx : (9.120)

Di�erentiating w.r.t. x on
e more yields the linear third order equation

�

000

(x)�

N

2

L

2




�

0

(x) = 0, �N

2

�

0

(x) + L

2




�

000

(x) = 0 : (9.121)

The general solution of this di�erential equation in view of the exerted point symmetry of � w.r.t.

1

2

is given by

�(x) = �

1

� 
osh

�

N

L




[x�

1

2

℄

�

+ �

2

: (9.122)

For the rigid Diri
hlet 
ase we use now �(0) = �(1) = 0. This implies that

0 = �(0) = �

1

� 
osh

�

N

L




[�

1

2

℄

�

+ �

2

) �(x) = �

1

�

�


osh

�

N

L




[x�

1

2

℄

�

� 
osh

�

N

L




[�

1

2

℄

��

: (9.123)

We 
al
ulate

�

00

(x) = �

1

�

N

2

L

2





osh

�

N

L




[x�

1

2

℄

�

(9.124)

1

Z

0

�(x) dx = ��

1
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�

N
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℄

�

+ �

1
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N

�

sinh
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N
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℄

�

� sinh

�
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℄
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℄

�

� �

1


osh

�

N

L




[�

1

2

℄

�

Inserting the results into (9.120) we obtain

�

1

=

�


2 
osh

�

N

L




[�

1

2

℄

�

� 4NL




sinh

�

N

L




[

1

2

℄

�

; (9.125)

whi
h yields the mi
ropolar shear pro�le

�(x) = �

h


osh

�

N

L




[x�

1

2

℄

�

� 
osh

�

N

L




[�
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℄

�i
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2 
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�

N

L
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1
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℄

�

� 4NL




�

1

sinh

�

N

L




[

1

2

℄

�

=

h


osh

�

N

L




[x�

1
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℄

�

� 
osh

�

N

L




[�

1

2

℄

�i
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�2 
osh

�

N

L




[�

1

2

℄

�

+ 4NL




sinh

�

N

L




[

1

2

℄

�

; (9.126)

with the non-uniform behaviour 0 � �(x)!




2

for 0 < x < 1 and N;L




! 0. A physi
ally a

eptable (smooth) S-type symmetri


shear pro�le is 
hara
terized by a steepest tangent of u at

1

2

. This 
orresponds to a maximum of � at

1

2

. The sign of the denominator

in the last formula is de
isive: it should be negative. Therefore

0 > �2 
osh

�

N

L




[�

1

2

℄

�

+ 4NL




sinh

�

N

L




[

1

2

℄

�

, 2N L




< 
oth

�

N

L




[

1

2

℄

�

, 1 > 2NL




tanh

�

N

2L




�

(9.127)

whi
h is always satis�ed sin
e tanh(x) < x;x > 0 and 0 < N

2

< 1. The tangential shear stresses are given by

�

small

= h�:e

3

; e

1

i = h[2� sym(F � 11) + 2�




(skew(F � 11)�A)℄:e

3

; e

1

i = (� + �




) � u

0

(1) � 2�




�(1)

= (�+ �




) � u

0

(0) = (� + �




)

0

�


 � 2N

2

1

Z

0

�(x) dx

1

A

= �

0

�

1

1� 2NL




tanh

�

N

L




[

1

2

℄

�

1

A

� 
 : (9.128)

Expansion shows that for N > 0; L




!1 (ever smaller samples)

52

it results in the limit �

small

= (� + �




) � 
 and u(x) = 
 x, the

evaluated stresses �

small

are in
reased due to �




> 0 and the in
ompatibel rigid boundary pres
ription. For 0 < N � 1; L




> 0 we

observe that �

small

� (�+�




) � 
 and u(x) � 
 x. In this 
ase, it 
an be seen that the Cosserat 
ouple modulus �




> 0 is in fa
t

also a measure of the in
uen
e of boundary 
onditions on the solution and therefore not a material parameter.

53

52

Only a formal limit: the smallest sample size should be larger than the 
hosen L




> 0 of the unit 
ube, i.e. the smallest sample

size must be larger than the smallest 
onstituents of the material given as unit 
ube. Hen
e, if L




has any physi
al meaning, we

should have 0 � L




< 1.

53

Consider any other independent (arti�
ial) Diri
hlet boundary 
ondition for the shear angle 0 � �(0) = �(1) = a <




2

. The

solution u will produ
e a di�erent shear stress response �

small

= � u

0

(1) + 2�




(

u

0

(1)

2

� a) whi
h, for di�erent L




, ne
essitates a

modi�
ation of �




for the same material. In our example, this in
onsisten
y 
an be avoided for 
onsistent 
oupling but persists in

the general 
ase.
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Similarly, it 
an be shown that N ! 0; L




> 0 is possible and results in the 
lassi
al response �

small

= � �
. Finally, N > 0; L




! 0

approa
hes the 
lassi
al result as well. In all 
ases the mi
ropolar response for rigid Diri
hlet data is sti�er than the 
orresponding

homogeneous 
lassi
al response.

The 
omputed mi
ropolar displa
ement for rigid Diri
hlet data is given by

u(x) =

x

Z

0

u

0

(s) ds =

x

Z

0


 + 2N

2

�(s)� 2N

2

1

Z

0

�(x) dx ds = 
 x+ 2N

2

x

Z

0

�(s) ds� 2N

2

x

1

Z

0

�(x) dx
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�
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�

N
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�
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N
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�

N
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2

℄

�

� sinh

�

N

L
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℄
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2

℄

�

� 2NL




sinh

�

N

L




[

1

2

℄

�

1

A

: (9.129)

The 
omplete solution of the problem in terms of the displa
ement u is now a fun
tion of 
;

N

L




and N �L




. Consider the same

material given in di�erent sample sizes of 
ubes with edge length L

i

> 1. Due to s
aling relations, we may transform the di�erent

sample sizes to the unit 
ube resulting in a modi�ed internal length

L




L

i

but identi
al values 
; N by the assumption that �




, hen
e

N is a material parameter independent of size. Performing a 
orresponding shear experiment on ea
h sample size we obtain

best-�tting values of

N

(L




=L

i

)

=

^

C

i

and N

L




L

i

=

^

D

i

. If the in�nitesimal mi
ropolar model is 
orre
t this implies that N

2

=

^

C

i

�

^

D

i

independent
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of i. A striking 
onsequen
e of this development is that the assumed size-independent material parameter N 
annot

be determined without prior knowledge of the 
hara
teristi
 length L




in 
ontrast to the other elasti
 
onstants and vi
e-versa: the


hara
teristi
 internal length L





an only be determined on
e N is known. This is a problemati
 feature shared by all mi
ropolar

models with �




> 0.

As for the homogeneous solution for 
onsistent 
oupling: The tangential stresses are given by

�

hom

small

== (� + �




) � u

0

(1) � 2�




�(1) = (�+ �




) � u

0

(0) � 2�




�(0) = � 
 : (9.130)

Now we 
onsider the in�nitesimal indeterminate 
ouple stress response in simple shear. The variational problem is easily

obtained from (9.94) by identifying �(x) =

u

0

(x)

2

and taking free variations w.r.t. u only. This results in the problem

Z




� k symF � 11k

2

+

�

2

L

2




ju

00

(x)j

2

dV 7! min : w.r.t. u, u(0) = 0; u(1) = 
 ; (9.131)

� = �

lo


+ �

hyper

; �

indet

small

= �u

0

(x)� �L

2




u

000

(x) ;

and the Euler-Lagrange equation of fourth order is given by

�u

00

(x) + L

2




u

(4)

(x) = 0; u(0) = 0; u(1) = 


u

0

(0) = u

0

(1) = 0 
lassi
al rigid 
ondition (9.132)

u

00

(0) = u

00

(1) = 0 natural boundary 
ondition :

This equation 
oin
ides with (9.121) if we identify again u

0

=

�

2

and take N � 1.

The general solution of (9.132) is given by
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�
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℄

�

+ b

3

(x�
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2

) + b

4

: (9.133)

Natural boundary 
onditions imply e�e
tively u(x) = 
 x as unique homogeneous solution with shear stress response �

indet;hom

small

=

� 
. For rigid boundary 
onditions the 
onstants are

b
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= �
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and the unique solution of the rigid indeterminate 
ouple stress problem is
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The term

u

0

(x)

2

does 
oin
ide with �(x) in (9.126) for N � 1. The limit L




! 0 (ever larger samples) is possible, 
onverging

pointwise to the homogeneous solution, but the 
onvergen
e is not uniform due to the appearan
e of a strong boundary layer


aused by the in
ompatible rigid boundary pres
ription. For large L




the solution 
onverges to a smooth S-type shear pro�le.

The shear stress response is given by
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oin
iding with the sti�er shear stress response of the in�nitesimal mi
ropolar model for N = 1. Passage to the limit L




! 1

(ever smaller samples) is not possible.
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This implies as a rule for additional boundary 
onditions: boundary 
onditions should be

su
h that in prin
ipal homogeneous solutions remain possible. The boundary 
onditions in a three-dimensional problem should not

be the 
ause for nonhomogeneous response! This prin
iple does not apply to plates and shells where boundary 
onditions appear

naturally by a dimensional redu
tion pro
ess and 
arry physi
al information.
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It appears to us that N

2

=

^

C

i

�

^

D

i

independent of i for di�erent sizes is highly questionable.
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Sin
e tanh x = x �

x

3

3

+ : : : , for L




! 1, then �

indet

small

! 1, a severe short
oming of the indeterminate 
ouple stress model.

This underlines the obje
tions of Koiter against this model.
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Figure 3: Computed shear pro�le u and 
orresponding angle � for large (above) and small (below) values of maximal shear 


in simple glide. Di�erent 
urves: �nite redu
ed problem with free rotations, in�nitesimal mi
ropolar and indeterminate 
ouple

stress model. u(x) = 
 x; �(x) = 
=2 the homogeneous 
lassi
al response. The traditional in�nitesimal Cosserat models with rigid

boundary 
onditions and �




> 0 show a strong boundary layer- not shared by the new relaxed model with �




= 0 and 
onsistent


oupling. The new model allows for sharp interfa
es for vanishing internal length L




, indi
ating the onset of fra
ture.

9.5 Analyti
al investigations of 
lassi
al in
ompressible elasti
 Biot-material in

simple shear

Now we 
onsider the same situation of simple glide in a 
lassi
al elasti
ity 
ontext. The energy of the 
lassi
al elasti
 Biot material

is assumed to be of the form

Z
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U

det[U ℄

(1=3)

� 11k

2

+ �

�

det[U ℄ +

1

det[U ℄

� 2

�

2

dx ; (9.137)

whi
h redu
es to

Z




� kU � 11k

2

dx =

Z




� kR

T

F � 11k

2

dx =

Z




� kF �Rk

2
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�

�

kFk

2

� 2hF;Ri+ 3

�

dx (9.138)

for in
ompressible behaviour and R 2 SO(3;R) represents the 
ontinuum rotation. For the assumed kinemati
s in simple glide,

the 
ontinuum rotation has the form

R(x

1

; x

2

; x

3

) =
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�


os�(x

3

) 0 sin�(x
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) 0 
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A

; (9.139)

with 
ontinuum rotation angle � 2 [0; 2�). A simple 
al
ulation shows that

sin�(x) =

u

0

(x)

p

4 + (u

0
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2

; R(x) =
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; (9.140)

and the (surprisingly?) 
onvex total energy is given by

1
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dx ==
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� � dx : (9.141)
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The Euler-Lagrange equation is given by

8 � 2 C

0

([0; 1℄;R) :
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(x) dx = 0; weak form (9.142)
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�

(3=2)
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C

A

= 0; di�erentiated form

u(0) = 0; u(1) = 
;

showing that the homogeneous deformation is always a solution and hen
e, by stri
t 
onvexity, the unique solution with non-

linear, stri
tly-monotone shear stress response
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= 2�

�

p

4 + 


2

� 1

�

p

4 + 


2

� 
 (= � 
 + o(
)) ; (9.143)

whi
h 
oin
ides in fa
t with the shear response of the �nite Cosserat model with 
onsistent 
oupling evaluated for this homogeneous

response.
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In 
ontrast, from a three-dimensional viewpoint, the shear energy � kU � 11k

2

is not quasi
onvex and not Legendre-

Hadamard ellipti
 but satis�es the Baker-Eri
ksen inequalities. We 
onsider therefore the behaviour of its quasi
onvexi�-


ation for the same assumed kinemati
s. It 
an be given expli
itly. If �

i

are the eigenvalues of U we have

QW (F ) = �

X

�

i

�1

j�

i

� 1j

2

: (9.144)

In view of the underlying kinemati
s, the �

i


an be 
al
ulated expli
itly and we obtain
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su
h that
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The resulting formulation is again stri
tly 
onvex and the homogeneous response is the unique minimizer of the 
orresponding

minimization problem. However, the shear response is 
onsiderably weaker than the unmodi�ed one for the same homogeneous

solution, sin
e

�

quasi

�nite

= D

u

0 [QW (F )℄℄ = �

�

1

2

p

4 + 


2

+




2
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2

+ 1
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; (9.147)

We note that in this spe
i�
 example, quasi
onvexi�
ation of the three-dimensional problem 
oin
ides with the rank-one 
onvexif
a-

tion. However, quasi
onvexi�
ation 
hanges the stress/strain law already in situations, where 
onvexity holds true for the assumed

kinemati
s, i.e. where there is no imminent need for any 
hange due to instabilities. This underlines the 
are, whi
h has to be

exerted when using the quasi
onvex hull.

Let us summarize the obtained stress/strain behaviour in uniaxial shear for small amounts of shear. For 
onsistent 
oupling

we have:

� 
 = �

lin

= �

small

= �

indet

small

> �

quasi


lass

; � 
 = �

lin

< �
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ro

red

< �

hom

�nite

< �

hom

red

; (9.148)

where �

lin

< �

mi
ro

red

< �

hom

�nite

< �

hom

red

have the same tangent in 0, but �

quasi


lass

is weaker. For rigid Diri
hlet data we obtain

� 
 = �

lin

< �

small

< �

indet

small

; (9.149)

with arti�
ially sti�er behaviour for arbitrary small shear.
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To see only after some algebra.
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Figure 4: Paraboli
 behaviour for in�nitesimal load.

10 Appendix B

10.1 Koiter's remarks on 
ouple stresses

It seems appropriate to 
ite also Koiter [Koi64℄: "The predi
tions of the (
lassi
al elasti
ity) theory are usually in satisfa
tory

agreement with 
areful experiments, if the stresses remain within the elasti
 limit of the material. Unfortunately the theory of

elasti
ity apparently fails, however, to give an adequate des
ription of the behaviour in fatigue of ma
hine parts or other stru
tural

elements involving high stress 
on
entrations. This failure 
an hardly be as
ribed 
ompletely to inelasti
 behaviour of the material,

be
ause the enduran
e limit in fatigue is usually well below the ma
ros
opi
 elasti
 limit of the material. A more likely explanation

is that the 
lassi
al (�nite elasti
ity) theory is not adequate in the presen
e of large stress gradients. The latter explanation is

entirely plausible in view of the dis
ontinuous poly
rystalline stru
ture of a
tual engineering materials. It is also supported by

eviden
e that the dis
repan
y between the theoreti
al predi
tions and fatigue test results is more marked for materials with a


oarse grain stru
ture. It would seem therefore that the idealized model of an elasti
 
ontinuum is not quite appropriate for the

analysis of stress and strain in an a
tual dis
ontinuous poly
rystalline material involving large stress gradients. It need hardly be

argued, however, that a detailed analysis of the transmission of loads between the individual grains in a poly
rystalline material

would pose a formidable problem. Some idealisation, preferably in the form of a 
ontinuous model, is highly desirable in order to

make the problem amenable to analysis. At �rst sight it might seem that this return to a 
ontinuous model would also imply a


omplete return to the 
lassi
al theory of elasti
ity. It should be remembered, however, that we have already alluded to additional

assumptions made in the 
lassi
al theory, apart from the model of a 
ontinuum. The assumption in question is that the transmission

of loads between the material on both sides of an in�nitesimal surfa
e element dS is des
ribed 
ompletely by a for
e ve
tor pdS

a
ting in the 
enter of gravity of the surfa
e element. We emphasize that this is an assumption whi
h 
an neither be proved dire
tly,

nor disproved. It 
an only be tested by a 
onfrontation of its predi
tions for measurable quantities with experiments. For most

purposes it has indeed proved to be an appropriate assumption, resulting in satisfa
tory agreement between theoreti
al predi
tions

and experimental eviden
e. The la
k of agreement between theory and experiment on the e�e
t of stress gradients, however, makes

this assumption questionable at least in 
ases of large stress gradients. A quite natural generalisation of the 
lassi
al theory of the

elasti
 
ontinuum is thus obtained, if we drop the additional assumption. (...) It turned out, however, that the magnitude of the

e�e
t of 
ouple-stresses, required to explain quantitatively the e�e
t of stress gradients in fatigue tests, was su
h that it 
ould not

easily have es
aped attention in other 
areful experiments.\ and he 
ontinues [Koi64, p.41℄: "We venture to 
onje
ture that the

stress gradient e�e
t in fatigue 
annot be des
ribed satisfa
torily by allowing the presen
e of 
ouple-stresses in an isotropi
 elasti


medium." Bra
kets my addition.

It must be noted that Koiter 
ame to reje
t the signi�
ant presen
e of 
ouple stresses be
ause he based his investigations on

the so 
alled indeterminate 
ouple stress theory (2.21), whi
h tends to maximize the in
uen
e of length s
ale e�e
ts. His arguments

only show that this spe
ial 
onstrained gradient theory 
annot be based on experimental eviden
e. However, the main thrust of

his 
omments remains valid. I have not been aware of Koiters 
ontribution during the preparation of my main arguments, but it

squares with my development

10.2 Some experimental results: Nonlinear relation near zero stress and size de-

penden
e

Usually, in engineering appli
ation, several simplifying assumptions are ta
itly introdu
ed. The �rst one is that the elasti
 behaviour

of the stru
ture 
an be negle
ted altogether leading to the rigid plasti
ity models and the se
ond one, that the stress-strain relation

for very small stress levels is indeed linear (generalized Hookes law). While the �rst simpli�
ation is evidently not appropriate the

last simpli�
ation is generally assumed to be valid. However, it 
annot be based on eviden
e. To the 
ontrary, taking the vast

amount of pre
ise experimental data for metalli
 material 
ompiled in [Bel73℄ seriously, we must 
on
lude that there is no level

of stress, su
h that the stress-strain relation is linear. Instead, pra
ti
ally all materials under in�nitesimal loads (in torsion and

tension) obey a paraboli
 relation of the form k�k = E k"k�b k"k

2

with E the initial zero stress modulus in tension and b a positive


onstant [Bel73, p.127℄ and see the footnote in [Nad63, p.10℄. There has never been made a serious attempt to understand this

paraboli
 behaviour. Our Cosserat model o�ers an interpretation: sin
e the initial tangent modulus is bounded, the 
ase �




=1


an be disposed of for all values of L




. Be
ause the initial tangent moduli determined from tension experiments are 
onsistent

with predi
tions based on the 
lassi
al linear theory for torsion experiments, we must set �




= 0. The point is that �




> 0 would

immediately 
hange the elasti
 behaviour for very small stress levels in torsion. In this sense, �




is small strain determined. Whether

the 
ouple modulus is really zero, 
annot be de
ided by experiment alone, given the unavoidable s
atter in the experiment. In any


ase it would have to be very small.

The se
ond order e�e
t of rotations will intervene if we keep the geometri
ally exa
t stru
ture of the model and lead to redu
ed

tangent moduli in tension and torsion, with a more pronoun
ed redu
tion in torsion, 
f. (2.6). A di�eren
e of response in tension and
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torsion for small stress levels has been observed as early as 1857. Wertheim [Wer57℄ and Baus
hinger [Bau81℄ observed (roughly)

linearity in tension and nonlinearity in torsion. Moreover, to quote from [Bel73, p.89℄: "For all the 
ylinders, Wertheim

noti
ed that in addition to the nonlinearity of the relation between torque and angle, the amount of the departure from the linear

approximation depended upon the length of the spe
imen. Only when very long spe
imens were 
ompared 
ould he a
hieve the

independen
e of length assumed in the elementary theory."

In Wertheims own words [Wer57, p.281℄ he summarizes: "2. Les angles de torsion temporaires (elasti
 twist) ne sont pas

rigoureusement proportionelles aux moments des 
ouples; ils augment plus rapide que 
eux-
i, et 
et a

roissement de l�angle

moyen (empiri
 modulus in torsion) ... s�etend jusque�a la rupture ... 3. Ces angles temporaires ne sont pas rigoureusement

proportionels aux longueurs; ramene a l�unite de longeur, suivant 
ette loi de proportionalite, on les trouve d�autant plus grand,

tout egal du reste, que la pie
e soumise a l�experien
e a ete plus 
ourte.

... 
ette proportionalite (
lassi
al in�nitesimal linear elasti
ity) ne saurait etre 
onsidere que 
omme la limite vers laquelle

tendent les angles a mesure que diminuent les intensites des 
ouples et les dimension du 
orps qui sont perpendi
ulaire a l�axe de

torsion."

10.3 Alternative representation of the mi
ropolar stret
h energy

For a small elasti
 strain theory, whi
h should already 
over many 
ases of physi
al interest we required that W

mp

(U) is a non

negative isotropi
 quadrati
 form with

W

mp

(11) = 0; D

U

W

mp

(U)

j

U=11

= 0 : (10.150)

The most general form of W

mp


onsistent with (2.5) is
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where (2.6)

2;3

is the form used in [Gra03, San99℄, respe
tively and we note the indu
ed relations
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with material 
onstants �

i

; i = 1; 2; 3 su
h that �

1

; 3�

3

� �

1

; �




� 0 from non negativity [Eri99℄.

10.4 Derivation of the geometri
ally exa
t mi
ropolar balan
e equations

The derivation of (2.12)

1

is standard. For (2.12)

2

we 
onsider simultaneously in ea
h spa
e point a one parameter group of rotations

d
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^

R(x; t) = A(x; t)�

^
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^

R(x; 0) = R(x); A 2 C
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0

(
; so(3;R)). The stationarity 
ondition is obtained from
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0. This yields three terms: the derivatives involving W
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respe
tively, where h�; �i means additionally integration w.r.t. x. For the term 
ontaining the 
urvature part, we note
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e A 2 C

1
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(
; so(3;R)) is arbitrary, equation (2.12)

2

follows.
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10.5 S
aling relations for Cosserat models

For 
ompleteness let us summarize the s
aling relations appearing in a �nite elasti
 Cosserat theory. Our goal is to relate the

response of large and small samples of the same material and to asses the in
uen
e of the 
hara
teristi
 length L




.

First, in our de�nition, the 
hara
teristi
 length L




is a given material parameter, 
orresponding to the smallest dis
ern-

able distan
e to be a

ounted for in the model. A simple 
onsequen
e is that geometri
al dimensions L of the bulk material must

be larger than L




, indeed for a 
ontinuum theory to apply L should be signi�
antly larger than L




.

Now let 


L

= [0; L℄� [0; L℄ � [0; L℄ be the 
ube with edge length L, representing the bulk material. Consider a deformation

'

L

: � 2 


L

7! R

3

and mi
rorotation R

L

(�) : 


L

7! SO(3;R) as solution of the simpli�ed minimization problem

Z

�2


L

� kR

T

L

(�)F (�)� 11k
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+ �L

q




kD

�

R

L

(�)k

q

d� 7! min : w.r.t. ('

L

; R

L

) (10.155)

The simple s
aling transformation � : R

3

7! R

3

; �(x) = L � x maps the unit 
ube 


1

= [0; 1℄ � [0; 1℄� [0; 1℄ into 


L

. De�ning

the related deformation ' : x 2 


1

7! R

3

and mi
rorotation R(x) : 


1

7! SO(3;R) as

'(x) := �

�1

('

L

(�(x))) ; R(x) := R

L

(�(x)) ; (10.156)

shows

D

x
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(�) : (10.157)

Hen
e, the minimization problem 
an be transformed
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dx ; (10.158)

and we may 
onsider the problem de�ned on 


1

:

Z

x2


1

� kR

T

(x)r

x

'(x)� 11k

2

+ �L

q




L

3�q�3

kD

x

R(x)k

q

dx 7! min : w.r.t. (';R) (10.159)

Comparison of di�erent sample sizes is a�orded by transformation to the unit 
ube repe
tively, e.g. we 
ompare two samples of

the same material with sizes L

1

> L

2

. Transformation to the unit 
ube shows that the response of sample two is sti�er than the

response of sample one.

It is plain to see that for L large 
ompared to L




, the in
uen
e of the rotations will be small and in the limit

L




L

! 0 
lassi
al

behaviour results. Otherwise, the larger

L




L

< 1, the more pronoun
ed the Cosserat e�e
ts be
ome and a small sample is relatively

sti�er than a large one.

10.6 Finite elasto-plasti
 Cosserat theory for small elasti
 rotations

Sin
e we are at present not in a position to mathemati
ally treat the geometri
ally exa
t elasto-plasti
 Cosserat model (3.31) it

seems expedient to introdu
e a �rst partial redu
tion of the model whi
h will allow an adequate analysis in the near future. We

assume only that elasti
 rotations R

e

remain small. Hen
e by expansion R

e

= 11 + A

e

+ : : : ; A

e

2 so(3) and D

x

R

e

� D

x

A

e

+ : : : .

Furthermore we take �




= 0; �

4

= 0; p = 1 and dispose of external volume and surfa
e 
ouples.

This simpli�
ation results in the following nonlinear system of 
oupled partial di�erential and evolution equations for the �nite

deformation ' : [0; T ℄ � 
 7! R

3

, the plasti
 deformation F

p

: [0; T ℄ � 
 7! GL

+

(3;R) and the independent Cosserat elasti


\mi
rorotation" R

e

: [0; T ℄�
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+

(3)
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F
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= r'�F
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= R

T

e
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; R
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= 11 + A

e
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2 �F
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� f (�
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); �

E

= �

E;mp

+ �

E;
urv

:

No assumptions on the magnitude of deformations or plasti
 deformation are introdu
ed. We venture to say that lo
al existen
e


an be established along the lines of [Nef03b℄.

10.7 Partially linearized �nite elasto-plasti
 Cosserat theory

A further redu
tion is a
hieved if we assume additionally that plasti
 deformations F

p

remain small.
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To this end we pro
eed similar to (4.47) and write R

e

= 11 + A

e

+ : : : ; A

e

2 so(3); kA

e

k

2

� 1; F

p

= 11 + p + : : : , then the
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ropolar stret
h tensor U
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e
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e
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may be expanded as follows
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su
h that to leading order (in (4.47) by 
ontrast we keep one order more)
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and the elasti
 mi
ropolar 
urvature is expanded as
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Introdu
ing these redu
tions 
onsistently into (3.31) we obtain the following (seemingly more 
ompli
ated) system of 
oupled partial

di�erential and evolution equations for the �nite ma
ros
opi
 displa
ement u : [0; T ℄�
 7! R

3

, the in�nitesimal plasti
 deformation

p : [0; T ℄�
 7! M

3�3

and the independent in�nitesimal Cosserat elasti
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rorotation A

e

: [0; T ℄�
 7! so(3)
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:

Here T

E

is the redu
ed elasti
 Eshelby tensor. Observe that the 
oupling in T

E;
urv

is of se
ond order, otherwise the Cosserat


ontribution would not appear in the plasti
 
ow part. This system is intrinsi
ally thermodynami
ally admissible. Note that in

the formal limit �




! 1, the total in�nitesimal 
ontinuum rotation splits additively into elasti
 in�nitesimal mi
rorotations A

e

and in�nitesimal plasti
 spin skew(p):

skew(ru) = A

e

+ skew(p) : (10.165)

If we 
hoose the elasti
 domain E := f�

E

j k dev(sym�

E

)k � �

y

g
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, then the system further redu
es to
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no in�nitesimal plasti
 spin: p = "

p

and iso
hori
 plasti
ity: tr ["

p

℄ = 0 and assume h"

p

:~n; ~ni = 0 on �

S

[ �

C

.
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A simple 
al
ulation yields the relations kD
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ation of a skew-symmetri
 matrix with its

axial ve
tor. Therefore,
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and we appre
iate the role, the elasti
 Cosserat 
ontribution takes in the elasto-plasti
 model: in �rst order it resembles a softening

me
hanism. A similar softening e�e
t 
an be observed in the model of [Bes74, (11.5)℄, where, however, the kinemati
al des
ription

is di�erent from ours. In spite of the softening e�e
t, we expe
t that the system (10.166) admits a global in-time solution with

slightly improved regularity in the rate-independent ideal plasti
ity 
ase.

If we �nally negle
t all se
ond order terms, we obtain the in�nitesimal, geometri
ally linear model (3.36).

10.8 A remark on the elasto-plasti
 de
omposition of the 
urvature tensor

There is some dis
ussion in the literature as regards the suitable de�nition of an independent quantity of plasti
 
urvature �

p

.

We did not advo
ate its use. Ehlers has already observed that �

p


annot really be independent under a disguised 
onsisten
y

requirement. The argument runs as follows (only for the in�nitesimal 
ase for simpli
ity): the mi
ropolar de
omposition of the

displa
ement gradient into mi
rostrain " and mi
rorotation A

" = ru� A ; (10.168)

shows that � := CurlA = �Curl ". In in�nitesimal mi
ropolar elasto-plasti
ity the mi
rostrain is additively de
omposed into

elasti
 and plasti
 parts: " = "

e

+ "

p

. This yields

"

e

+ "

p

= " = ru� A;, Curl "

e

+Curl "

p

= �CurlA = �� : (10.169)

If we assume in addition that the total 
urvature splits as well additively into elasti
 and plasti
 parts, � = �

e

+�

p

, we are naturally

led to assume by 
onsisten
y with (10.169), that �

e

= �Curl "

e

and �

p

= �Curl "

p

.

The 
orresponding thermodynami
al dissipation potential
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dV ; (10.170)

with only remaining independent dissipative variable "

p

(instead of two independent variables ("

p

; �

p

)) should lead to a paraboli



ow rule for "

p

due to a nonlo
al evaluation (instead of a traditional 
ow rule of ordinary di�erential equations for ("

p

; �

p

). While

the 
onsisten
y requirement (10.169) has already been postulated in [EDV98b℄, in their work they still use the 
ow rule 
oming

from the ordinary di�erential approa
h.

10.9 Notes on parameter identi�
ation

We in
lude this dis
ussion be
ause there seems to be some 
onfusion on what signi�
an
e 
ertain material parameters appearing

in a Cosserat 
ontext have. Here it suÆ
es to 
onsider only the in�nitesimal 
ase in equilibrium format

0 = Div � + f; x 2 


� = 2� symru+ 2�




(skew(ru)�A) + � tr [symru℄ � 11 (10.171)
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(t; x) = g

d

(t; x)� x; x 2 �
 ; A

j

�


= skew(rg

d

(t; x))

j

�


:

Suppose homogeneous boundary 
onditions are pres
ribed: for B 2 GL(3;R) a 
onstant matrix, we set g

d

(x) := B:x. Thus we are

able e.g. to des
ribe uniform tra
tion, uniform 
ompression or simple shear. It is 
lear that u(x) = B:x� x and A(x) = skew(B)

satisfy the boundary 
onditions and equilibrium equations. They are also the unique solutions. However, for these unique solutions,

the Cosserat me
hanisms are not a
tiviated and we may determine �; � as 
lassi
al moduli independent of the 
ouple modulus �




.

In any homogeneous situation, only 
lassi
al me
hanisms are involved. Turning this argument upside down, we 
on
lude that


lassi
al in�nitesimal elasti
ity is appropriate for homogeneous situations only.

In order to get some information on the value of �




and the length s
ale L




we need to perform experiments leading to

inhomogeneous response. One of the simplest 
ases is torsion of a 
ylinder. A sequen
e of torsion experiments allows to

determine �




and L




if analyti
al formula are available relating torque and twist and in
orporating the appearing parameters. Su
h

formulas exist, showing that torsion in a Cosserat material would be sti�er (and depending on the length of the spe
imen) than

ought to be expe
ted by 
al
ulations based on 
lassi
al linear elasti
ity and the already determined 
lassi
al 
oeÆ
ients.

Investigations to this end on many materials have been performed, with the de
eiving result that �




should be set to zero, thus

implying that the in�nitesimal Cosserat model is not appropriate for a more realisti
 des
ription than 
lassi
al linear elasti
ity.

However, this shows only that Cosserat e�e
ts, if they really exist, are se
ond order e�e
ts, not dis
ernable in a �rst linear

approximation.

Sin
e, however, the parameter �




appears as well in the geometri
ally exa
t des
ription, the foregoing experiments have already

shown 
on
lusively that �




= 0 is the 
orre
t value for the �nite theory. This possibility of �




= 0 together with a true �nite

Cosserat theory has been 
onsistently overlooked by overemphasizing the linear model.

It remains to determine the length s
ale L




. But now we 
annot use the in�nitesimal model and its solution formula in torsion

sin
e with �




= 0 no Cosserat e�e
ts remain. We are either in need of a solution formula for the torsion problem of the nonlinear

model or we have to 
al
ulate the torsional response dire
tly numeri
ally. However, one simpli�
ation is possible: we do not really

need the full nonlinear system, instead an intermediate model in
orporating se
ond order e�e
ts would suÆ
e. Below, we will give

su
h a model.
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10.10 Stability of the homogeneous solution

Consider the simpli�ed �nite Cosserat problem with 
onsistent 
oupling 
ondition
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and impose homogeneous boundary 
onditions: g

d

(x) = B:x with a 
onstant matrix B. It is 
lear that the homogeneous solution

'(x) = B:x and R = polar(F ) = polar(B) solves the 
orresponding equilibrium equation and boundary 
onditions. Is it possible to


on
lude that this solution is also a (unique?) global minimizer of the energy? At least we surmise that the homogeneous solution is

lo
ally stable. No rigourous 
on
lusion is possible at this stage of the investigation. Note that for the 
onsistent 
oupling boundary


ondition we have the trivial estimate
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Moreover, the homogeneous solution will be energeti
ally more favourable, the higher the value of L




> 0 (or the smaller the

spe
imen is). The height of a potential well around the homogeneous solution should be stri
tly related to L




> 0. If L




= 1,

then the homogeneous solution is the only possible one.

The Cosserat model allows therefore in prin
ipal for inhomogeneous minimizers in situations where homogeneous stationary

solutions are possible.

10.11 A simpli�ed elasto-plasti
 model for easy numeri
al implementation

Here we propose a model, based on our development, whi
h should 
over the essential behaviour of the geometri
ally exa
t model

while being slightly simpli�ed in order to arrive at a reasonable numeri
al implementation. It should as well serve the purpose of

�nding the value of the 
hara
teristi
 length L




for zero Cosserat 
ouple modulus �




= 0.

Numeri
al implementations based on an in�nitesimal system are already in use. Tentative 
al
ulations of geometri
al exa
t

equations have also been done. However, due to the nonlinear manifold stru
ture of SO(3;R) the implementation is awkward and

the performan
e of the �nite 
odes is in general insuÆ
ient. In order to 
ir
umvent these problems right from the start we propose

a penalty formulation for the treatment of the �nite rotations. We augment the free energy with a penalty term
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where � is not a material parameter but supposed to approa
h 1 in order to adjust R to exa
t rotations.

The geometri
al exa
t elasto-plasti
 Cosserat model was given by
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An immediate permitted simpli�
ation is obtained by setting �

4

= 0; p = 1 and dis
arding external volume and surfa
e 
ouples.

This implies already that we 
an redu
e the 
onsideration of K

e

to K

e

= [D

x

R

e

(x) � F

�1

p

℄, the rotations do not appear expli
itly in

the 
urvature.

No we introdu
e the penalty term and relax the rotations in the sense that we only require R

e

2 M
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:
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While the formal stru
ture is thus kept, the di�eren
es appear in the related Euler-Lagrange equations. The for
e balan
e equation

(translational equilibrium) remains invariant. The balan
e of angular momentum (rotational equilibrium) is modi�ed: taking free

variations w.r.t. R

e

2 M

3�3

yields the stationarity 
ondition
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Hen
e the strong form is given by
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with F

�1

p

F

�T

p

playing the role of a plasti
 metri
. The 
omplete penalized model reads
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The ensuing model is still thermodynami
al 
onsistent sin
e the modi�
ations a�e
t only the elasti
 behaviour. A wel
ome

feature of the penalized model is the fa
t that it remains frame-indi�erent.

The signi�
an
e of a 
omputed solution 
an easily be 
he
ked by evaluating kR

T

e

R

e

� 11k and/or inserting the result into

the exa
t Euler-Lagrange equations (2.12). It is also possible to make � a fun
tion of the residuum of the exa
t Euler-Lagrange

equation.

If we augment the penalty term further with k skew(F

e
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e

k

2

, then in the limit (� !1; L




! 0) we re
over the 
lassi
al result

R
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= polar(F
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) and we are 
lose to the model investigated numeri
ally in [NW03, M2℄.
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