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Abstrat. If 
�R

n

is a bounded domain with Lipshitz boundary �
 and � is an

open subset of �
, we prove that the following inequality
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holds for all u2W

1;p

(
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m

) and 1<p<1 , where
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=
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de�nes an ellipti di�erential operator of �rst order with ontinuous ontinuous oeÆ-

ients on 
. As a speial ase we obtain

(�)
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jru(x)F (x)+(ru(x)F (x))

T

j

p

dx� 

Z




jru(x)j

p

dx;

for all u2W

1;p

(
;R

n

) vanishing on �, where F : 
!M

n�n

(R) is a ontinuous map-

ping with detF (x)��> 0. Next we show that (�) is not valid if n� 3, F 2L

1

(
)

and detF (x)= 1, but does hold if p=2, �= �
 and F (x) is symmetri and positive

de�nite in 
.

1. Introdution

In the reent paper [10℄ Ne� proves that if 
�R

3

is a bounded domain with Lipshitz

boundary and if F : 
!M

3�3

(R) is of lass C

2

(
) with detF (x)��> 0, then the following

inequality

(1:1)

Z




jru(x)F (x)+(ru(x)F (x))

T

j

2

dx� 

Z




jru(x)j

2

dx;

holds for all u2W

1;2

(
;R

3

) vanishing on some open, �xed subset � of �
. If F (x) is

onstant and equal to the identity matrix, the above inequality is well-known and alled

(First) Korn's Inequality (see .f. Ciarlet [4℄ p. 292, or Ne�as-Hlav�a�ek [9℄ p. 85). Reently,

Korn's Inequality was also generalized to hold on Riemann manifolds (see Chen-Jost [3℄ for

details).

Ne� [12℄ uses inequality (1.1) to obtain an existene result in the nonlinear theory of

elasto-visoplastiity. The oeÆients F (x), denoted in Ne�'s papers by F

p

(x), represent
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the plastiity part of a model (see Ne� [12℄ for details). They also satisfy detF (x) = 1

and appear as a solution of some evolution problem, whih gives few information about the

smoothness of F (x). Therefore the natural task is to minimise the smoothness assumptions

on the oeÆients F (x) in (1.1). Ne� [11℄ was later able to relax the assumption in (1.1)

from F 2C

2

(
) to F 2C(
), rotF 2L

3

(
). The proof, very similar to that one in [10℄, is

ompliated and the method applies only to the ase n= 3.

If F (x) =F does not depend on x, inequality (1.1) is quite easy to obtain: after suitable

aÆne transformation it redues to the lassial Korn's Inequality. The situation hanges

diametrally, if one deals with variable oeÆients: Trying to follow the method from Ciarlet

[4℄, or Ne�as-Hlav�a�ek [9℄ for the ase F (x) = Id, one enounters unpleasent tehnial diÆ-

ulties, whih seem to be hard to overome, even having some extra (superuous) regularity

assumptions on the oeÆients. On the other hand, the standard way to pass from onstant

oeÆients to variable ones by loalisation, like in the oerive inequalities (Theorem 2.2

below), does not work, beause of the lak of the term jjujj

2

L

2

(
)

on the left hand side of (1.1).

In the present paper we propose another, simpler approah to inequality (1.1) obtaining

at the same time generalization to any ellipti operator A of degree 1 (see de�nition 2.1 and

inequality (2.4)) in any dimension n� 2. We will require only that the oeÆients a

ij

k

(x) are

ontinuous. In partiular, if we hoose

A(x)ru(x) =ru(x)F (x)+(ru(x)F (x))

T

;

we strengthen the result of Ne� obtaining inequality (1.1) for F 2C(
). For this partiular

hoie of A our proof will turn out to be extremally short and simple.

In the next part of the present paper we onentrate on inequality (1.1) and show that

the ontinuity of F is essential, in the sense that (1:1) does not hold if n� 3, F 2L

1

(
)

and detF (x) = 1.

On the other hand, we prove that (1.1) does hold (at least when � = �
) if F is not

ontinuous but possesses some algebrai struture, instead.

We remark that taking in our inequality as A(x) the identity mapping we obtain Friedrih's

Inequality:

�

Z




jru(x)j

p

dx

�

1=p

+

�

Z

�

ju(x)j

p

dH

n�1

(x)

�

1=p

�  jjujj

W

1;p

(
)

:

From this point of view, inequality (2.4) obtained below is a ommon generalization of Korn's

and Friedrih's Inequalities, but of ourse the main point is to explain how to overome the

diÆulties aused by the variable oeÆients keeping at the same time minimal assumptions

on their regularity.
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2. Preliminaries and the general inequality

Let 
 be an open, bounded domain in R

n

(n� 2) with Lipshitz boundary �
. Let �

be an open subset of �
. We onsider the spae W

1;p

(
) =W

1;p

(
;R

m

) with 1<p<1 of

the (vetor-valued) Sobolev funtions u : 
!R

m

(m� 1), equiped with the norm

jjujj

W

1;p

(
)

=

�

Z




ju(x)j

p

dx

�

1=p

+

�

Z




jru(x)j

p

dx

�

1=p

:

For a subset S of 
 denote by W

1;p

0

(
;S) the set of those funtions from W

1;p

(
), whih

vanish on S . In the sequel S will be either an open subset of the boundary �
 or an open

subset of 
 itself.

Moreover, let A : M

m�n

(C )! C

r

be a linear mapping represented by the matrix (a

ij

k

)

(1� i�m, 1� j�n, 1� k� r), equiped with the Eulidean norm:

jAj=

�

X

i;j;k

ja

ij

k

j

2

�

1=2

:

De�nition 2.1.

We will say that the mapping A : M

m�n

(C )! C

r

with r�m is ellipti if the ondition

A(�
�) 6= 0 holds for all � 2 C

m

, � 2 C

n

with � 6= 0, � 6= 0.

We denote by E = E(m;n;r) the set of all ellipti mappings.

Having de�ned the linear mapping A, we an introdue the r�m matrix (

ki

(�)) of linear

homogenous polynomials given by



ki

(�) =

n

X

j=1

a

ij

k

�

j

(� 2 C

n

):

Obviously, A is ellipti if and only if rank (

ki

(�)) =m for every � 2 C

n

with � 6= 0.

The importane of the above de�nition lies in the following oerive inequality, due to

Ne�as [8℄. It was later generalized by Besov [1℄ to anisotropi Sobolev spaes. More reently,

the paper of Ka lamajska [5℄ ontains a version with Mukenhoupt weights.

Theorem 2.2

Let A(x) (x2
) be a family of ellipti mappings, whose oeÆients a

ij

k

(x) are ontinuous

on 
. Then the family (A(x)ru(x))

k

(1� k� r) of di�erential operators, given by

(2:1) (A(x)ru(x))

k

=

m

X

i=1

n

X

j=1

a

ij

k

(x)

�u

i

�x

j

(x)

is oerive, i.e. there is a onstant > 0 suh that the following inequality

(2:2)

�

Z




jA(x)ru(x)j

p

dx

�

1=p

+ jjujj

L

p

(
)

�  jjujj

W

1;p

(
)

holds for all u2W

1;p

(
).
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Our goal is to modify inequality (2.2) by replaing the term jjujj

L

p

(
)

with

�

Z

�

ju(x)j

p

dH

n�1

(x)

�

1=p

:

We ahieve this using Theorem 2.2 and the following Theorem, whih reets a typial method

of treating inequalities of this type.

Theorem 2.3

If the family (A(x)ru(x))

k

of di�erential operators given by (2.1) with variable oeÆients

a

ij

k

(x) is oerive and if the following impliation holds

(2:3) A(x)ru(x) = 0, u2W

1;p

0

(
;�) ) u= 0 ;

then there is a onstant > 0 suh that the inequality

(2:4)

�

Z




jA(x)ru(x)j

p

dx

�

1=p

+

�

Z

�

ju(x)j

p

dH

n�1

(x)

�

1=p

�  jjujj

W

1;p

(
)

holds for all u2W

1;p

(
).

The proof of Theorem 2.3 uses standard ompatness argument, used already by many

authors, for example Ne�as-Hlav�a�ek [9℄, p. 85, or Ne� [10℄ Theorem 3. Sine it's neither

long nor diÆult, we represent it here for the onveniene of the reader.

Proof of Theorem 2.3

Suppose (2.4) does not hold.

Then there exists a sequene u

k

2W

1;p

(
) with jju

k

jj

W

1;p

(
)

= 1 suh that

(2:5)

�

Z




jA(x)ru

k

(x)j

p

dx

�

1=p

+

�

Z

�

ju

k

(x)j

p

dH

n�1

(x)

�

1=p

�

1

k

:

Therefore there is a subsequene of (u

k

) (still denoted by (u

k

)) and a funtion u2W

1;p

(
)

suh that u

k

! u strongly in L

p

(
) and u

k

*u weakly in W

1;p

(
). From (2:2) we obtain

jju

k

�u

l

jj

W

1;p

(
)

� jju

k

�u

l

jj

L

p

(
)

+

�

Z




jA(x)ru

k

(x)j

p

dx

�

1=p

+

�

Z




jA(x)ru

l

(x)j

p

dx

�

1=p

;

whih by (2:5) implies that (u

k

) is a Cauhy sequene in W

1;p

(
), so u

k

! u strongly

in W

1;p

(
). This, together with (2:5) implies that u vanishes on �, i.e. u2W

1;p

0

(
;�)

and A(x)ru(x) = 0 a.e. on 
. Finally, using (2:3) we obtain u= 0, whih provides a

ontradition, sine jju

k

jj

W

1;p

(
)

= 1 and u

k

! 0 strongly in W

1;p

(
).

Assuming that A(x) is ontinuous, Theorem 2.2 implies that the di�erential operators

(2.1) are oerive. So in order to prove inequality (2.4) it remains to hek if (2.3) holds.

In the appliations ondition (2.3) seems to be diÆult to verify, even if the oeÆients are

smooth enough. It turns out, however, that dealing with ontinuous oeÆients A(x) this

unpleasent impliation an be removed from the assumptions. To prove this assertion is our

goal in the next setion. Namely, we prove the following
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Theorem 2.4

Let A(x) (x2
) be a family of ellipti mappings, whose oeÆients a

ij

k

(x) are ontinuous

on 
. Then the impliation (2.3) holds. In partiular, there is a onstant > 0 suh that

the inequality (2.4) holds for all u2W

1;p

(
).

3. Proof of Theorem 2.4

We start with the following

Lemma 3.1

Let B be a ball in R

n

. Denote by B

�

an open one whose vertex oinides with the

enter of B and suh that the surfae measure H

n�1

of (�B)\B

�

is equal to �H

n�1

(�B).

Moreover, let A be ellipti (with onstant oeÆients). Then there exists a onstant > 0

suh that the inequality

(3:1)

�

Z

B

jA(ru(x))j

p

dx

�

1=p

�  jjujj

W

1;p

(B)

holds for all u2W

1;p

0

(B;B

�

).

Remark

Readers interested in the speial ase m=n and

A(x)ru(x) =ru(x)F (x)+(ru(x)F (x))

T

;

where detF (x)��> 0, may omit the proof of Lemma 3.1 and replae it by the following

short reasoning: Inequality (3.1), whih in this ase reads

�

Z

B

jru(x)F +(ru(x)F )

T

j

p

dx

�

1=p

�  jjujj

W

1;p

(B)

;

(F is onstant here) is after the aÆne oordinate transformation x 7!F

�1

x equivalent to

�

Z

E

jrv(y)+(rv(y))

T

j

p

dy

�

1=p

� 

0

jjvjj

W

1;p

(E)

;

where 

0

is a positive onstant and v(y) = u(Fy) vanishes on some �xed part of the boundary

of E =F

�1

(B). The last displayed inequality is just Korn's Inequality, so it's valid.

Proof of Lemma 3.1

Sine the proof uses standard and well-known methods, we only outline it briey indiating

the main steps.

Fix a funtion !2C

1

0

(B

0

), where B

0

is a �xed ball, whose losure lies in B

�

.

Assume that u is a smooth (i.e. C

1

(B)) funtion vanishing on B

0

.

Using the Hilbert Nullstellensatz and the method from [8℄ or [1℄ we �nd a positive integer
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N and homogenous polynomials p

i�

k

(�) (with omplex oeÆients) of degree N�1 suh that

(3:2) D

�

u

i

=

r

X

k=1

p

i�

k

(D)(A

k

u)

holds for all 1� i�m and all multiindies � with j�j=N , where

(A

k

u)(x) =

m

X

i=1

n

X

j=1

a

ij

k

�u

i

�x

j

(x) (1� k� r) :

Using the integral representation of Sobolev (see Maz'ya [6℄) and observing that ! and u

have disjoint supports, we �nd that

(3:3) u

i

(x) =

X

j�j=N

Z

B

K

�

(x;y)D

�

u

i

(y)dy (1� i�m) ;

where

K

�

(x;y) =

(�1)

N

�N

�!

�

�

�

r

n�N

Z

1

r

!(x+ t�)t

n�1

dt :

In the last formula we have substituted r= jy�xj and �=

y�x

jy�xj

. Then for every �xed

x2B , the funtion K

�

(x; � ) is smooth on B nfxg and vanishes near the boundary �B .

Write

�

�

r

n�N

Z

1

r

!(x+ t�)t

n�1

dt=

�

�

r

n�N

(x;�)�

�

�

r

n�N

d(x;�;r) ;

where

(x;�) =

Z

1

0

!(x+ t�)t

n�1

dt and d(x;�;r) =

Z

r

0

!(x+ t�)t

n�1

dt :

The funtion (x;�) is smooth on B�(R

n

nf0g). Then for any y 6= x and any multiindex �

with j�j=N�1 we obtain that

D

�

y

�

�

�

r

n�N

(x;�)

�

is the sum of the terms of the form

(3:4)

p(�)

r

n�1

Z

1

0

w(x+ t�)t

k

dt ;

where k�n�1, w2C

1

0

(B

0

) and p is a polynomial. Therefore

�

�x

j

D

�

y

�

�

�

r

n�N

(x;�)

�

is the sum of the terms of the form

(3:5)

p

1

(�)

r

n

Z

1

0

w

1

(x+ t�)t

k

dt +

p

2

(�)

r

n�1

Z

1

0

w

2

(x+ t�)t

l

dt ;

where k; l�n�1, w

1

;w

2

2C

1

0

(B

0

) and p

1

;p

2

are polynomials.

Similarly, the funtion d(x;�;r) is smooth on B�(R

n

nf0g)�(0;1). Di�erentiating with

respet to the multiindex � with j�j=N�1 we obtain that

D

�

y

�

�

�

r

n�N

d(x;�;r)

�
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is the sum of the terms of the following form

(3:6)

p

1

(�)

r

n�1

Z

r

0

w

1

(x+ t�)t

k

dt + w

2

(y)r

l

p

2

(�) ;

where k�n�1, l� 1, w

1

;w

2

2C

1

0

(B

0

) and p

1

;p

2

are polynomials.

From the above omputations and expressions (3.4) and (3.6) we see that for a �xed x2B

and for a multiindex � with j�j �N�1, the funtion D

�

y

K

�

(x;y) is integrable with respet

to y on B . Thus using (3.2), (3.3) and integrating by parts we obtain

u

i

(x) =

r

X

k=1

X

j�j=N

Z

B

(�1)

N�1

p

i�

k

(D

y

)(K

�

(x;y))A

k

u(y)dy ;

where the kernels p

i�

k

(D

y

)K

�

(x;y) are of the form (3.4) plus the terms of the form (3.6).

Di�erentiating the terms (3.6) with respet to x

j

and using that

1

r

Z

r

0

w(x+ t�)t

k

dt�C ;

for all w2C

1

0

(B

0

) appearing in (3.6) and all j�j= 1, r > 0, k� 1, we see that

D

�

y

�

�

�

r

n�N

d(x;�;r)

�

�

C

r

n�2

and

�

�x

j

D

�

y

�

�

�

r

n�N

d(x;�;r)

�

�

C

r

n�1

:

Therefore for any f 2L

1

(B),

�

�x

j

Z

B

D

�

y

�

�

�

r

n�N

d(x;�;r)

�

f(y)dy=

Z

B

�

�x

j

D

�

y

�

�

�

r

n�N

d(x;�;r)

�

f(y)dy :

Now using Theorem 1.29 from [7℄, the fat that the terms (3.5) are bounded on B�S

n�1

(S

is the unit sphere in R

n

) and the result of Calder�on and Zygmund (see [2℄ Theorem 2 or [7℄

Theorem 2.1), we obtain

(3:7)

�

�

�

�

�

�

�

�

�u

i

�x

j

�

�

�

�

�

�

�

�

p

L

p

(B)

� 

r

X

k=1

jjA

k

ujj

p

L

p

(B)

(1� i�m; 1� j�n) ;

for some onstant > 0 independent of u (vanishing on B

0

).

Sine every u2W

1;p

0

(B;B

�

) an be approximated in the norm jj � jj

W

1;p

(B)

by C

1

(B)

funtions vanishing on B

0

, we get from (3.7) and from the Poinar�e inequality, inequality

(3.1) for all u2W

1;p

0

(B;B

�

).

We will also need the following lemma, whih states that there is a ommon positive

onstant  in (3.1) for all ellipti mappings A lying in some ompat subset of E .

Lemma 3.2

Let B and B

�

be like in Lemma 3.1. Let moreover K be a ompat subset of E . Then

there exists a onstant > 0 suh that the inequality (3.1) holds for all mappings A2K and

all u2W

1;p

0

(B;B

�

).
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Proof

For a �xed mapping A, denote by 

A

the best onstant in (3.1). It is enough to show that

= inff

A

: A2Kg> 0. Suppose, to the ontrary, that = 0. Then there exist a sequene

A

n

2K and a sequene u

n

2W

1;p

0

(B;B

�

) suh that jju

n

jj

W

1;p

(B)

= 1 and

jjA

n

(ru

n

)jj

L

p

(B)

! 0 :

Sine K is ompat, we an hoose a subsequene from (A

n

), still denoted by (A

n

) and

A

1

2K , suh that jA

n

�A

1

j! 0. Then

jjA

1

(ru

n

)jj

L

p

(B)

� jj(A

1

�A

n

)(ru

n

)jj

L

p

(B)

+ jjA

n

(ru

n

)jj

L

p

(B)

� jA

1

�A

n

j�jju

n

jj

W

1;p

(B)

+ jjA

n

(ru

n

)jj

L

p

(B)

;

whih implies that jjA

1

(ru

n

)jj

L

p

(B)

! 0. On the other hand, sine A

1

is ellipti, we apply

inequality (3.1) to obtain

jjA

1

(ru

n

)jj

L

p

(B)

� 

1

jju

n

jj

W

1;p

(B)

= 

1

:

Letting n!1 we get 

1

� 0, a ontradition.

Using Lemma 3.2 and saling we arrive at the following

Corollary 3.3

Let B , B

�

and K be like in Lemma 3.2. Then there is a onstant > 0 suh that the

inequality

(3:8) jjA(ru)jj

L

p

(B)

�  jjrujj

L

p

(B)

holds for all A2K and all u2W

1;p

0

(B;B

�

) and the onstant  does not depend on the radius

of the ball B .

Now we are ready to prove Theorem 2.4:

Assume that A(x)(ru(x)) = 0 a.e. in 
 and u2W

1;p

0

(
;�).

Denote by B(x;�) the ball with enter x and radius � and by B

�

(x) the orresponding

one, like in Lemma 3.1.

Fix x

0

2�. Choose �> 0, suh that B(x

0

;�)\(�
)��. Extend u by 0 on B(x

0

;�)n
.

Then for some �> 0 we have u2W

1;p

0

(B(x

0

;�);B

�

(x

0

)). By inequality (3.8) we obtain



Z

B(x

0

;�)

jru(x)j

p

dx �

Z

B(x

0

;�)

jA(x

0

)(ru(x))j

p

dx

=

Z

B(x

0

;�)

j(A(x

0

)�A(x))(ru(x))j

p

dx

�

Z

B(x

0

;�)

jA(x

0

)�A(x)j

p

� jru(x)j

p

dx� "

p

Z

B(x

0

;�)

jru(x)j

p

dx:
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Sine the above onstant  does not depend on �, and sine A(x) is ontinuous on 
, we

use the above inequality to �nd a number �> 0 suh that

Z

B(x

0

;�)

jru(x)j

p

dx= 0 :

This implies that u(x) = 0 for x2B(x

0

;�).

Now �x x2
. Take any urve  lying within 
 and onneting x

0

with x. We repeat the

above argument with x

1

=\�B(x

0

;�) in plae of x

0

. The ontinuity of the oeÆients a

ij

k

(x)

implies that K= fA(x) j x2 g is a ompat subset of E . It follows therefore (by Corollary

3.3 and by repeating the above reasoning) that we an over  with a �nite sequene of the

balls B(x

k

;�) with x

k

2  and equal radii � (� an be hosen the same is eah step and

the oeÆients a

ij

k

(x) are uniformly ontinuous on 
), proving in eah step that u= 0 on

B(x

k

;�). This shows that u= 0 on 
.

4. Speial ase: First Korn's Inequality with variable oeÆients

From now on assume that m=n. Diretly from Theorem 2.4 we obtain the following

Corollary 4.1

Let F : 
!M

n�n

(R) (n� 2) be a ontinuous mapping with detF (x)��> 0. Then there

is a onstant > 0 suh that the following inequality

(4:1)

Z




jru(x)F (x)+(ru(x)F (x))

T

j

p

dx� 

Z




jru(x)j

p

dx

holds for all u2W

1;p

0

(
;�).

Proof

It is enough to hek that an n�n (real) matrix F with detF 6= 0 veri�es

(�
�)F +((�
�)F )

T

6= 0

whenever � 2 C

n

, � 2 C

n

and � 6= 0, � 6= 0.

Indeed, if the matrix B= (�
 �)F were nonzero and antisymmetri, then we would get

rankB� 2, whih would imply that rank (�
�)� 2, a ontradition. Therefore B = 0, whih

gives �
�= 0, whene �= 0 or �= 0.

Remarks

(a) If n= 2, p= 2 and � = �
, then inequality (4.1) holds with F 2L

1

(
) instead of being

ontinuous on 
. This was shown by Ne� [10℄, who assumed additionally that detF (x) is

onstant and positive. His proof an be easily modi�ed to the muh more general ase

detF (x)��> 0. Indeed, in the inequality (see Ne� [10℄, Theorem 6)

jru(x)F (x)+(ru(x)F (x))

T

j

2

� 2 jru(x)F (x)j

2

�4 det(ru(x)) detF (x)

9



we �rst divide both sides by detF (x) and then integrate.

(b) The lass of the mappings F (x) for whih (4.1) holds is larger than the lass of

ontinuous mappings F with detF ��> 0, also when n� 3. Indeed, if inequality (4.1)

holds for a mapping F

0

2L

1

(
), then it also holds (perhaps with another onstant > 0)

for all mappings F lying in some L

1

(
)-neighbourhood of F

0

.

() Inequality (4:1) is also valid if we assume that F (x) =rG(x), where G : R

n

!R

n

is

a bi-Lipshitz mapping { just make the oordinate transformation like in the remark after

Lemma 3.1, or see Ne� [10℄, Theorem 4 for details.

The above remarks suggest the following question: Does (4.1) hold if n� 3, F 2L

1

(
)

and detF (x)��> 0 ?

The answer turs out to be negative, even if � = �
 and detF (x) = 1 in 
. So for n� 3

the lass of the mappings F (x) for whih (4.1) holds lies somewhere stritly between C(
)

and L

1

(
). Theorem 4.3 below shows that this lass ontains also the symmetri, positive

de�nite a.e. mappings F (x), at least when p= 2 and � = �
.

Theorem 4.2

Assume that n� 3. Then there exist a nonzero funtion u2W

1;1

0

(
;R

n

) and a mapping

F 2L

1

(
;M

n�n

(R)) with detF (x) = 1 in 
 suh that

ru(x)F (x)+(ru(x)F (x))

T

= 0 a.e. on 
.

Proof

Denote by e

1

; e

2

; : : : ; e

n

the standard orthonormal basis of R

n

and let R : R

n

!R

n

be any

�xed rotation satisfying R(e

i

) 6=�e

j

for all i; j = 1;2; : : : ;n.

Let fQ

i

g (where i2N ) be a Vitali overing of 
, suh that the ubes Q

i

have pair-

wise disjoint entries and their edges are parallel to the oordinate axes (i.e. to the vetors

e

1

; e

2

; : : : ; e

n

). Let moreover fP

j

g (where j 2N ) be another Vitali overing of 
 with the

ubes P

j

, whose edges are parallel to the vetors R(e

1

);R(e

2

); : : : ;R(e

n

). De�ne

u

1

(x) = dist(x;�Q

i

) if x2Q

i

;

u

2

(x) = dist(x;�P

j

) if x2P

j

;

u

3

(x) = : : := u

n

(x) = 0 :

Then the funtion u= (u

1

;u

2

; : : : ;u

n

) is nonzero, Lipshitz ontinuous and u= 0 on �
.

Moreover jru

1

(x)j= jru

2

(x)j= 1 a.e. in 
. The vetors ru

1

and ru

2

attain only a �nite

number of values for x2
 and v , w are linearly independent for all v 2fru

1

(x) j x2
g and

w2fru

2

(x) j x2
g. Therefore there exist funtions g

3

;g

4

; : : : ;g

n

2L

1

(
;R

n

) suh that the

10



determinant of the n�n matrix

G(x) =

2

6

6

6

6

6

6

6

6

6

4

ru

2

(x)

�ru

1

(x)

g

3

(x)

.

.

.

g

n

(x)

3

7

7

7

7

7

7

7

7

7

5

is equal to 1 for every x2
. Take F (x) = (G(x))

�1

. Then

(ru(x)F (x))

ij

=

8

>

<

>

:

1 if i= 2, j = 1

�1 if i= 1, j = 2

0 otherwise

Thus ru(x)F (x)+(ru(x)F (x))

T

= 0 a.e. in 
.

Theorem 4.3

Let n� 2 and F 2L

1

(
;M

n�n

(R)) be suh that F (x) is symmetri and positive de�nite

a.e. in 
 and detF (x)��> 0. Then there is a onstant > 0 suh that the inequality

(4:2)

Z




jru(x)F (x)+(ru(x)F (x))

T

j

2

dx� 

Z




jru(x)j

2

dx

holds for all u2W

1;2

0

(
).

Proof

From the assumptions it follows that the eigenvalues �

1

(x);�

2

(x); : : : ;�

n

(x) of F (x) lie in

the interval [a;b℄, where 0<a< b. Writing F

�1

(x) in the orthonormal basis omposed of its

eigenvetors and using that �

i

(x)� a, we obtain for any real n�n matrix C ,

hF

�1

(x)C;CF

�1

(x)i�

1

a

2

jCj

2

for any x2
. Similarly we get

hCF (x);F

�1

(x)Ci�

a

b

jCj

2

:

Setting F =F (x) and using the above inequalities we get

1

a

2

jCF +FC

T

j

2

� hF

�1

(CF +FC

T

);(CF +FC

T

)F

�1

i

= hF

�1

CF +C

T

;C+FC

T

F

�1

i

= hCF;F

�1

Ci+2hC;C

T

i+hC

T

F

�1

;FC

T

i�

2a

b

jCj

2

+2hC;C

T

i :

Substituting C =ru(x), where u2W

1;2

0

(
) and integrating yields

Z




jru(x)F (x)+(ru(x)F (x))

T

j

2

dx�

2a

3

b

Z




jru(x)j

2

dx;

whih proves (4.2).
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