Korn’s First Inequality with Variable Coefficients

and its generalization
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Abstract. If Q CR" is a bounded domain with Lipschitz boundary 02 and I' is an
open subset of 0, we prove that the following inequality

1/p L 1/p
([ 1A@va@Pde) "+ ([ u@rae@) " > clulwo
Q r
holds for all uw € WHP(€;R™) and 1< p < oo, where

(A@@) V() =33 al (z) ZZ] (z) (k=1,2,...,r; r>m)

i=1j=1

defines an elliptic differential operator of first order with continuous continuous coeffi-
cients on . As a special case we obtain

T\p
(%) /Q|Vu(a;)F(m)+(Vu($)F(a:)) | da;Zc/Q|Vu(a;)|pda;,

for all uw € WHP(€;R™) vanishing on I', where F:Q — M™ "(R) is a continuous map-
ping with det F'(z) > p >0. Next we show that (x) is not valid if n >3, F € L*(Q)
and det F'(z) =1, but does hold if p=2, T'=0Q and F(z) is symmetric and positive
definite in 2.

1. Introduction
In the recent paper [10] Neff proves that if Q C R? is a bounded domain with Lipschitz
boundary and if F': Q — M3*3(R) is of class C*(Q) with det F'(z) > p> 0, then the following

inequality
(1.1) /Q|Vu(x)F(:v)+(Vu(x)F(x))T|2da; > C/Q Vu(z) | da,

holds for all u € W2?(Q;R?) vanishing on some open, fixed subset I' of Q. If F(x) is
constant and equal to the identity matrix, the above inequality is well-known and called
(First) Korn’s Inequality (see c.f. Ciarlet [4] p. 292, or Necas-Hlavacek [9] p. 85). Recently,
Korn’s Inequality was also generalized to hold on Riemann manifolds (see Chen-Jost [3] for
details).

Neff [12] uses inequality (1.1) to obtain an existence result in the nonlinear theory of

elasto-viscoplasticity. The coefficients F'(z), denoted in Neff’s papers by F,(x), represent
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the plasticity part of a model (see Neff [12] for details). They also satisfy det F'(x)=1
and appear as a solution of some evolution problem, which gives few information about the
smoothness of F(z). Therefore the natural task is to minimise the smoothness assumptions
on the coefficients F'(x) in (1.1). Neff [11] was later able to relax the assumption in (1.1)
from F e C?(Q) to FeC(Q), rot F € L3(2). The proof, very similar to that one in [10], is
complicated and the method applies only to the case n=3.

If F(z)=F does not depend on z, inequality (1.1) is quite easy to obtain: after suitable
affine transformation it reduces to the classical Korn’s Inequality. The situation changes
diametrally, if one deals with variable coefficients: Trying to follow the method from Ciarlet
[4], or Necas-Hlavdacek [9] for the case F'(x)=1Id, one encounters unpleasent technical diffi-
culties, which seem to be hard to overcome, even having some extra (superfluous) regularity
assumptions on the coefficients. On the other hand, the standard way to pass from constant
coefficients to variable ones by localisation, like in the coercive inequalities (Theorem 2.2
below), does not work, because of the lack of the term ||u||%2(m on the left hand side of (1.1).

In the present paper we propose another, simpler approach to inequality (1.1) obtaining
at the same time generalization to any elliptic operator A of degree 1 (see definition 2.1 and
inequality (2.4)) in any dimension n>2. We will require only that the coefficients a’ (x) are

continuous. In particular, if we choose

A(2)Vu(z) = Vu(z)F(x) + (Vu(z)F(z))",

we strengthen the result of Neff obtaining inequality (1.1) for F'e€ C(€2). For this particular
choice of A our proof will turn out to be extremally short and simple.

In the next part of the present paper we concentrate on inequality (1.1) and show that
the continuity of F' is essential, in the sense that (1.1) does not hold if n>3, F e L>*(Q)
and det Fl(x)=1.

On the other hand, we prove that (1.1) does hold (at least when I'=0Q) if F' is not
continuous but possesses some algebraic structure, instead.

We remark that taking in our inequality as A(z) the identity mapping we obtain Friedrich’s
Inequality:

1/p 1/p
([1vu@pde) "+ ([ u@pane @) " 2 clulw.
From this point of view, inequality (2.4) obtained below is a common generalization of Korn’s
and Friedrich’s Inequalities, but of course the main point is to explain how to overcome the

difficulties caused by the variable coefficients keeping at the same time minimal assumptions

on their regularity.



2. Preliminaries and the general inequality
Let © be an open, bounded domain in R" (n >2) with Lipschitz boundary 0Q2. Let I'
be an open subset of 92. We consider the space W1?(Q)=W"(Q;R™) with 1 <p<oo of

the (vector-valued) Sobolev functions w: Q2 —R™ (m >1), equiped with the norm

||U/||W1sP(Q) = </Q |u(x)|pdx> 1/p+ (/Q |Vu(a;)|pda;>1/p

For a subset S of Q denote by Wy (,S) the set of those functions from W'(€), which
vanish on S. In the sequel S will be either an open subset of the boundary 02 or an open
subset of 2 itself.

Moreover, let A: M™"(C) —C" be a linear mapping represented by the matrix (a)
(1<i<m, 1<j<n, 1<k<r), equiped with the Euclidean norm:

o\ 1/2
A= (3 1)
gk

Definition 2.1.

We will say that the mapping A: M™*"(C) — C" with r >m is elliptic if the condition
A(n®&) #0 holds for all neC™, £€C™ with n#£0, £#£0.

We denote by £=E(m,n,r) the set of all elliptic mappings.

Having defined the linear mapping A, we can introduce the rxm matrix (cg;(€)) of linear

homogenous polynomials given by
(€)= afE; (E€C).
=1

Obviously, A is elliptic if and only if rank (¢x;(£)) =m for every £ € C" with £#£0.
The importance of the above definition lies in the following coercive inequality, due to
Necas [8]. It was later generalized by Besov [1] to anisotropic Sobolev spaces. More recently,

the paper of Kalamajska [5] contains a version with Muckenhoupt weights.

Theorem 2.2
Let A(z) (z€9Q) be a family of elliptic mappings, whose coefficients a} () are continuous

on Q. Then the family (A(x)Vu(x)), (1 <k<r) of differential operators, given by

(2.1) (A@)Va()e =33 ¥ (z) 2% o

i=1j=1 833]

is coercive, i.e. there is a constant ¢ >0 such that the following inequality

(2.2 ([ 14w vurar) "+l = cludwo

holds for all uw € W'?(Q). n



Our goal is to modify inequality (2.2) by replacing the term |u| rr(q) with

u@P (@)
(/ )

We achieve this using Theorem 2.2 and the following Theorem, which reflects a typical method
of treating inequalities of this type.

Theorem 2.3

If the family (A(z)Vu(z)), of differential operators given by (2.1) with variable coefficients

a? () is coercive and if the following implication holds

(2.3) A(z)Vu(z) =0, ue WyP(Q,T) = u=0,

then there is a constant ¢ >0 such that the inequality

(2.4) ([ 1a@vu@pdr) "+ ([ @ pan @) " > clubwo
holds for all uw € WP(Q).

The proof of Theorem 2.3 uses standard compactness argument, used already by many
authors, for example Necas-Hlavacek [9], p. 85, or Neff [10] Theorem 3. Since it’s neither
long nor difficult, we represent it here for the convenience of the reader.

Proof of Theorem 2.3

Suppose (2.4) does not hold.

Then there exists a sequence u, € WP(Q) with [ug|wre@) =1 such that

(2.5) ( /Q |A(x)Vuk(J:)|pdx> " ( /F |uk(x)|pd?{”_1(x)>l/p g%.

Therefore there is a subsequence of (ug) (still denoted by (uy)) and a function u € W'?(Q)
such that u, —u strongly in L?(Q) and uy — u weakly in W'P(Q). From (2.2) we obtain

1/p
([ 14@Vulo)pdr) .
Q
which by (2.5) implies that (uz) is a Cauchy sequence in W'P(Q), so uy— u strongly
in W'»(Q). This, together with (2.5) implies that u vanishes on I', i.e. u€W,”(Q,T)
and A(x)Vu(x)=0 a.e. on €. Finally, using (2.3) we obtain uw=0, which provides a

1/p
llug — oy <k — il zogay + ( / |A(x)Vuk(x)|pdx> 4

contradiction, since |Jug|wir@) =1 and uy — 0 strongly in W?(Q). n

Assuming that A(x) is continuous, Theorem 2.2 implies that the differential operators
(2.1) are coercive. So in order to prove inequality (2.4) it remains to check if (2.3) holds.
In the applications condition (2.3) seems to be difficult to verify, even if the coefficients are
smooth enough. It turns out, however, that dealing with continuous coefficients A(x) this
unpleasent implication can be removed from the assumptions. To prove this assertion is our

goal in the next section. Namely, we prove the following

4



Theorem 2.4
Let A(z) (z € Q) be a family of elliptic mappings, whose coefficients a} () are continuous

on . Then the implication (2.3) holds. In particular, there is a constant ¢>0 such that
the inequality (2.4) holds for all uw € W'?(Q).

3. Proof of Theorem 2.4

We start with the following

Lemma 3.1

Let B be a ball in R". Denote by B, an open cone whose vertex coincides with the
center of B and such that the surface measure H"~! of (0B)N B, is equal to AH""*(dB).
Moreover, let A be elliptic (with constant coefficients). Then there exists a constant ¢ >0

such that the inequality

5.1 ([ 1avu@pas) " = clulwios

holds for all u € Wy”(B, By).
Remark

Readers interested in the special case m =n and
A(x)Vu(z) = Vu(x)F(z) + (Vu(z)F ()",

where det F'(x) > >0, may omit the proof of Lemma 3.1 and replace it by the following

short reasoning: Inequality (3.1), which in this case reads

1/p
([ IVu@F+ (Vu@F) o) " = clulwis.

(F is constant here) is after the affine coordinate transformation x+— F~'z equivalent to

1/p
([ 170+ (Fo@) Pdy) = ol

where ¢’ is a positive constant and v(y) =wu(F'y) vanishes on some fixed part of the boundary
of E=F~YB). The last displayed inequality is just Korn’s Inequality, so it’s valid.

Proof of Lemma 3.1

Since the proof uses standard and well-known methods, we only outline it briefly indicating
the main steps.

Fix a function w e C§°(B'), where B’ is a fixed ball, whose closure lies in B,).

Assume that u is a smooth (i.e. C*°(B)) function vanishing on B'.

Using the Hilbert Nullstellensatz and the method from [8] or [1] we find a positive integer

5



N and homogenous polynomials pi*(£) (with complex coefficients) of degree N —1 such that

(3.2) Zp D)(Agu)

holds for all 1 <i<m and all multiindices a with |a|= N, where

" aul

(Agu)(z ZZ kax] () (1<k<r).

i=1 j=1

Using the integral representation of Sobolev (see Maz’ya [6]) and observing that w and u

have disjoint supports, we find that

(3.3) ui(z)= > /K (z,y) Du;(y)dy (1<i<m),
la|=N
where N
(_1) N0 o n—1
Ko (x,y)= o -Tan/r w(r+10)t" " dt.
In the last formula we have substituted r=|y—x| and 6= |y— E Then for every fixed
y—x

x € B, the function K,(z,-) is smooth on B\ {z} and vanishes near the boundary 0B.

Write
0a

Tn—N

0 0

N c(x,0) - yn—N

d(x,0,r),

T

/ w(z+t0)t"dt =
where
c(x,0) :/ w(z+t0)t"'dt and d(z,0,r) :/ w(z+t0)t"'dt.
0 0
The function ¢(x,0) is smooth on B x (R"\{0}). Then for any y# x and any multiindex
with |3|=N —1 we obtain that
9&
Dg (TnN c(x,@))
is the sum of the terms of the form
p(9)

Tn—l

(3.4)

/ w(x+t0)t* dt,
0
where £k >n—1, we C§°(B') and p is a polynomial. Therefore

0 o
67]- Dy’g (TTL—N C(.’If, 0))

is the sum of the terms of the form

0 00 0 o
pi( )/ w1($+t0)tkdt + pZ_(l)/ wQ(x—i-t@)tldt,
™= Jo

™ Jo

(3.5)

where k,l>n—1, wy,wy € C(B') and p;,pe are polynomials.
Similarly, the function d(z,6,r) is smooth on B x (R"\{0}) x (0,00). Differentiating with
respect to the multiindex 5 with || =N —1 we obtain that

9&
Dg <Tn_N d(x,@,r))
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is the sum of the terms of the following form

p1(9)

Tnfl

(3.6) / " (zH0) R dt + ws(y)rpa(6),

where k>n—1, [>1, wy,wy € C§°(B') and py,p, are polynomials.

From the above computations and expressions (3.4) and (3.6) we see that for a fixed z € B
and for a multiindex § with |3| <N —1, the function D} K,(z,y) is integrable with respect
to y on B. Thus using (3.2), (3.3) and integrating by parts we obtain

=3 X [N D) (Ka(r9) Ay
k=1|a|=N
where the kernels pi®(D,)K,(x,y) are of the form (3.4) plus the terms of the form (3.6).
Differentiating the terms (3.6) with respect to x; and using that

1 rr
—/ w(z+t)t dt<C,
rJo
for all we C§°(B') appearing in (3.6) and all |#| =1, r>0, k> 1, we see that
o 0 6>
B B
D, <Tn_N d(x,&,r)) < g and a—ij < — d(x,&,r)) < g

Therefore for any f € L'(B),
0 0«
7 Dﬂ< (.0, ) dy= [ —Dﬂ<
O, /B Y\rn-N (z,6,r v= O,

Now using Theorem 1.29 from [7], the fact that the terms (3.5) are bounded on B x S™! (S

(@.0.1)) S dy.

is the unit sphere in R™) and the result of Calderén and Zygmund (see [2] Theorem 2 or [7]

Theorem 2.1), we obtain

8ui p
0z Il

(3.7) ‘

S62:”"4/6“’”11;17(3) (léiém; ISJSn),
B) k=1

for some constant ¢ >0 independent of u (vanishing on B').

Since every u€ W, ?(B,B,) can be approximated in the norm || - |wirz by C*(B)
functions vanishing on B’, we get from (3.7) and from the Poincaré inequality, inequality
(3.1) for all u € W, ?(B,B,). n

We will also need the following lemma, which states that there is a common positive

constant ¢ in (3.1) for all elliptic mappings A lying in some compact subset of €.

Lemma 3.2

Let B and B, be like in Lemma 3.1. Let moreover K be a compact subset of £. Then
there exists a constant ¢ > 0 such that the inequality (3.1) holds for all mappings A € K and
all ue W,”(B,B,).



Proof

For a fixed mapping A, denote by c4 the best constant in (3.1). It is enough to show that
c=inf{cy : A€ K} >0. Suppose, to the contrary, that c¢=0. Then there exist a sequence
A, €K and a sequence u, € Wy"(B, By) such that |u,|wisz =1 and

| AL (V)| Lr(s) — 0.

Since K is compact, we can choose a subsequence from (A4,), still denoted by (A4,) and

Ay € K, such that |A, — Ax| — 0. Then

Ao (Vun)lo) < [[(Aso = An) (Vtn) o) + [ An (V) || Lo ()

<Aoo = Anl-[unllwies) + [ An (V) || o)

which implies that ||Ax(Vuy)||r(sy — 0. On the other hand, since A is elliptic, we apply
inequality (3.1) to obtain

[ Aoo (Vun)”LP >Coo||un||wlp B) = Coo -

Letting n — oo we get ¢, <0, a contradiction. ]
Using Lemma 3.2 and scaling we arrive at the following
Corollary 3.3
Let B, By and K be like in Lemma 3.2. Then there is a constant ¢>0 such that the

inequality
(3.8) |A(Vu)| ey > ¢||VullLr(s)
holds for all A € K and all u € W,”(B,B,) and the constant ¢ does not depend on the radius

of the ball B. ]

Now we are ready to prove Theorem 2.4:

Assume that A(z)(Vu(z))=0 a.e. in Q and ue W,?(Q,T').

Denote by B(z,p) the ball with center x and radius p and by B,(z) the corresponding
cone, like in Lemma 3.1.

Fix 2o €. Choose p> 0, such that B(zg,p)N(0Q) CI'. Extend u by 0 on B(zg,p)\ 2.
Then for some A >0 we have u € W, (B(x,p), Bx(zy)). By inequality (3.8) we obtain

¢ /B o [Vu)Pde < | Az0) (Vu(@)) P do

B(zo,p)

B /B(wo,p) |(A(wo) = A(2))(Vu(2)) [P dz

<[ JA@w) - A@P-Vu@Pde<e [ |Gu(@)Pde.
B(zo,p) B

(z0,p)

8



Since the above constant ¢ does not depend on p, and since A(z) is continuous on €2, we

use the above inequality to find a number p >0 such that

/ |Vu(z)Pdr=0.
B(zo,p)

This implies that u(z) =0 for x € B(xg,p).

Now fix x € ). Take any curve 7 lying within {2 and connecting x, with . We repeat the
above argument with z, =vNdB(x, p) in place of zy. The continuity of the coefficients af/ (x)
implies that K ={A(z) |z €~} is a compact subset of €. It follows therefore (by Corollary
3.3 and by repeating the above reasoning) that we can cover v with a finite sequence of the
balls B(zg,p) with zj €y and equal radii p (A can be chosen the same is each step and
the coefficients af () are uniformly continuous on ), proving in each step that u=0 on

B(zg,p). This shows that ©=0 on €. n

4. Special case: First Korn’s Inequality with variable coefficients

From now on assume that m =n. Directly from Theorem 2.4 we obtain the following
Corollary 4.1

Let F': Q— M™"(R) (n>2) be a continuous mapping with det F'(z) >y >0. Then there

is a constant ¢> 0 such that the following inequality
(4.1) / \Vu(x)F(z)+ (Vu(z)F(x)" | do > c/ |Vu(z)Pdx
Q Q

holds for all u e WyP(Q,T).
Proof
It is enough to check that an nxn (real) matrix F with det F'# 0 verifies

(@& F+((n@&)F)" #0

whenever ne€ C", €€ C" and n#0, £#£0.

Indeed, if the matrix B= (n®¢&)F were nonzero and antisymmetric, then we would get
rank B > 2, which would imply that rank (n®¢&) > 2, a contradiction. Therefore B =0, which
gives n®&=0, whence n=0 or £=0. ]

Remarks

(a) f n=2, p=2and [' =012, then inequality (4.1) holds with F' € L>(2) instead of being
continuous on . This was shown by Neff [10], who assumed additionally that det F'(z) is
constant and positive. His proof can be easily modified to the much more general case

det F(z) > 1> 0. Indeed, in the inequality (see Neff [10], Theorem 6)
\Vu(z)F(x)+ (Vu(z)F(z))T)* > 2|Vu(z)F(z) > — 4 det(Vu(z)) det F(z)

9



we first divide both sides by det F'(z) and then integrate.

(b) The class of the mappings F(z) for which (4.1) holds is larger than the class of
continuous mappings F' with det /> >0, also when n>3. Indeed, if inequality (4.1)
holds for a mapping Fy € L*°(2), then it also holds (perhaps with another constant ¢ >0)
for all mappings F' lying in some L°°(Q)-neighbourhood of Fj.

(c) Inequality (4.1) is also valid if we assume that F'(z)=VG(z), where G:R" - R" is
a bi-Lipschitz mapping — just make the coordinate transformation like in the remark after
Lemma 3.1, or see Neff [10], Theorem 4 for details.

The above remarks suggest the following question: Does (4.1) hold if n>3, F € L*°(Q)
and det F(z) >u>07

The answer turs out to be negative, even if ['=0Q and det F'(x)=1 in Q. So for n>3
the class of the mappings F'(z) for which (4.1) holds lies somewhere strictly between C(Q)
and L>(€2). Theorem 4.3 below shows that this class contains also the symmetric, positive
definite a.e. mappings F(z), at least when p=2 and I'=09Q.

Theorem 4.2

Assume that n>3. Then there exist a nonzero function u € Wy (;R") and a mapping
FeL>*(Q;M™"™(R)) with det F(x) =1 in Q such that

Vu(z)F(z)+ (Vu(z)F(2))' =0 a.e. on Q.

Proof

Denote by eq,es,...,¢e, the standard orthonormal basis of R" and let R: R" — R" be any
fixed rotation satisfying R(e;) # *e; for all 4,j=1,2,...,n.

Let {Q;} (where i€N) be a Vitali covering of €2, such that the cubes @); have pair-
wise disjoint entries and their edges are parallel to the coordinate axes (i.e. to the vectors
€1,€,...,6e,). Let moreover {P;} (where j€N) be another Vitali covering of 2 with the
cubes Pj, whose edges are parallel to the vectors R(e;),R(ez),...,R(ey,). Define

uy(z) = dist(x,00Q;) if z€Q;,
ug(x) = dist(z,0P;) if z€ P,
uz(z) = ...=u,(x)=0.

Then the function u= (uy,us,...,u,) is nonzero, Lipschitz continuous and u=0 on 0.
Moreover |Vui(x)| = |Vuy(x)|=1 a.e. in Q. The vectors Vu; and Vu, attain only a finite
number of values for z € 2 and v, w are linearly independent for all v € {Vu;(x) |z € Q} and

w € {Vuy(x) | x € Q}. Therefore there exist functions gs, ga,...,g, € L=(;R") such that the

10



determinant of the n xn matrix

( Vg (z)
—Vu, (x)

Gz)=| 93(x)

gn(z

is equal to 1 for every z € Q. Take F(z)=(G(z))~'. Then

1 ifi=2,5=1
(Vu(x)F ()= —1 ifi=1,j=2
0 otherwise

Thus Vu(z)F(z)+(Vu(z)F(x))T =0 a.e. in Q. ]

Theorem 4.3
Let n>2 and F € L*>®(Q; M"*"(R)) be such that F(x) is symmetric and positive definite
a.e. in © and det F'(x) > > 0. Then there is a constant ¢ >0 such that the inequality

(4.2) /Q|Vu(a;)F(a;) +(Vu(2)F(2)T| de > c/Q Vu(z)[? dz

holds for all u € Wy (Q).

Proof

From the assumptions it follows that the eigenvalues A\;(z), A2(z),..., \y(z) of F(z) lie in
the interval [a,b], where 0 <a <b. Writing F~!(z) in the orthonormal basis composed of its

eigenvectors and using that \;(x) > a, we obtain for any real n xn matrix C,
(F7H(@)C,CF7 @) < 5 1CP
for any x € Q). Similarly we get
(CF(@),F }2)0) 2 7O,
Setting F'= F'(z) and using the above inequalities we get
%|CF+FCT|2 > (FY(CF+FCh),(CF+FCHF™)
= (F'CF+CT,C+FCTF 1)
_ (CF,F'0)+2(C,CTY + (CTF, FCT) > %“ CP+2(C,C™).
Substituting C'= Vu(z), where u € W, () and integrating yields
[190() F@)+ (Vul@) P@) P = 2 [ [Fu(e) s,
which proves (4.2). ]
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