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Abstra
t. If 
�R

n

is a bounded domain with Lips
hitz boundary �
 and � is an

open subset of �
, we prove that the following inequality

�

Z




jA(x)ru(x)j

p
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�

1=p

+

�

Z

�

ju(x)j

p

dH

n�1

(x)

�

1=p

� 
 jjujj

W

1;p

(
)

holds for all u2W

1;p

(
;R

m

) and 1<p<1 , where

(A(x)ru(x))

k

=

m

X

i=1

n

X

j=1

a

ij

k

(x)

�u

i

�x

j

(x) (k=1;2; : : : ; r; r�m)

de�nes an ellipti
 di�erential operator of �rst order with 
ontinuous 
ontinuous 
oeÆ-


ients on 
. As a spe
ial 
ase we obtain

(�)

Z




jru(x)F (x)+(ru(x)F (x))

T

j

p

dx� 


Z




jru(x)j

p

dx;

for all u2W

1;p

(
;R

n

) vanishing on �, where F : 
!M

n�n

(R) is a 
ontinuous map-

ping with detF (x)��> 0. Next we show that (�) is not valid if n� 3, F 2L

1

(
)

and detF (x)= 1, but does hold if p=2, �= �
 and F (x) is symmetri
 and positive

de�nite in 
.

1. Introdu
tion

In the re
ent paper [10℄ Ne� proves that if 
�R

3

is a bounded domain with Lips
hitz

boundary and if F : 
!M

3�3

(R) is of 
lass C

2

(
) with detF (x)��> 0, then the following

inequality

(1:1)

Z




jru(x)F (x)+(ru(x)F (x))

T

j

2

dx� 


Z




jru(x)j

2

dx;

holds for all u2W

1;2

(
;R

3

) vanishing on some open, �xed subset � of �
. If F (x) is


onstant and equal to the identity matrix, the above inequality is well-known and 
alled

(First) Korn's Inequality (see 
.f. Ciarlet [4℄ p. 292, or Ne�
as-Hlav�a�
ek [9℄ p. 85). Re
ently,

Korn's Inequality was also generalized to hold on Riemann manifolds (see Chen-Jost [3℄ for

details).

Ne� [12℄ uses inequality (1.1) to obtain an existen
e result in the nonlinear theory of

elasto-vis
oplasti
ity. The 
oeÆ
ients F (x), denoted in Ne�'s papers by F

p

(x), represent
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the plasti
ity part of a model (see Ne� [12℄ for details). They also satisfy detF (x) = 1

and appear as a solution of some evolution problem, whi
h gives few information about the

smoothness of F (x). Therefore the natural task is to minimise the smoothness assumptions

on the 
oeÆ
ients F (x) in (1.1). Ne� [11℄ was later able to relax the assumption in (1.1)

from F 2C

2

(
) to F 2C(
), rotF 2L

3

(
). The proof, very similar to that one in [10℄, is


ompli
ated and the method applies only to the 
ase n= 3.

If F (x) =F does not depend on x, inequality (1.1) is quite easy to obtain: after suitable

aÆne transformation it redu
es to the 
lassi
al Korn's Inequality. The situation 
hanges

diametrally, if one deals with variable 
oeÆ
ients: Trying to follow the method from Ciarlet

[4℄, or Ne�
as-Hlav�a�
ek [9℄ for the 
ase F (x) = Id, one en
ounters unpleasent te
hni
al diÆ-


ulties, whi
h seem to be hard to over
ome, even having some extra (super
uous) regularity

assumptions on the 
oeÆ
ients. On the other hand, the standard way to pass from 
onstant


oeÆ
ients to variable ones by lo
alisation, like in the 
oer
ive inequalities (Theorem 2.2

below), does not work, be
ause of the la
k of the term jjujj

2

L

2

(
)

on the left hand side of (1.1).

In the present paper we propose another, simpler approa
h to inequality (1.1) obtaining

at the same time generalization to any ellipti
 operator A of degree 1 (see de�nition 2.1 and

inequality (2.4)) in any dimension n� 2. We will require only that the 
oeÆ
ients a

ij

k

(x) are


ontinuous. In parti
ular, if we 
hoose

A(x)ru(x) =ru(x)F (x)+(ru(x)F (x))

T

;

we strengthen the result of Ne� obtaining inequality (1.1) for F 2C(
). For this parti
ular


hoi
e of A our proof will turn out to be extremally short and simple.

In the next part of the present paper we 
on
entrate on inequality (1.1) and show that

the 
ontinuity of F is essential, in the sense that (1:1) does not hold if n� 3, F 2L

1

(
)

and detF (x) = 1.

On the other hand, we prove that (1.1) does hold (at least when � = �
) if F is not


ontinuous but possesses some algebrai
 stru
ture, instead.

We remark that taking in our inequality as A(x) the identity mapping we obtain Friedri
h's

Inequality:

�

Z




jru(x)j

p

dx

�

1=p

+

�

Z

�

ju(x)j

p

dH

n�1

(x)

�

1=p

� 
 jjujj

W

1;p

(
)

:

From this point of view, inequality (2.4) obtained below is a 
ommon generalization of Korn's

and Friedri
h's Inequalities, but of 
ourse the main point is to explain how to over
ome the

diÆ
ulties 
aused by the variable 
oeÆ
ients keeping at the same time minimal assumptions

on their regularity.
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2. Preliminaries and the general inequality

Let 
 be an open, bounded domain in R

n

(n� 2) with Lips
hitz boundary �
. Let �

be an open subset of �
. We 
onsider the spa
e W

1;p

(
) =W

1;p

(
;R

m

) with 1<p<1 of

the (ve
tor-valued) Sobolev fun
tions u : 
!R

m

(m� 1), equiped with the norm

jjujj

W

1;p

(
)

=

�

Z




ju(x)j

p

dx

�

1=p

+

�

Z




jru(x)j

p

dx

�

1=p

:

For a subset S of 
 denote by W

1;p

0

(
;S) the set of those fun
tions from W

1;p

(
), whi
h

vanish on S . In the sequel S will be either an open subset of the boundary �
 or an open

subset of 
 itself.

Moreover, let A : M

m�n

(C )! C

r

be a linear mapping represented by the matrix (a

ij

k

)

(1� i�m, 1� j�n, 1� k� r), equiped with the Eu
lidean norm:

jAj=

�

X

i;j;k

ja

ij

k

j

2

�

1=2

:

De�nition 2.1.

We will say that the mapping A : M

m�n

(C )! C

r

with r�m is ellipti
 if the 
ondition

A(�
�) 6= 0 holds for all � 2 C

m

, � 2 C

n

with � 6= 0, � 6= 0.

We denote by E = E(m;n;r) the set of all ellipti
 mappings.

Having de�ned the linear mapping A, we 
an introdu
e the r�m matrix (


ki

(�)) of linear

homogenous polynomials given by




ki

(�) =

n

X

j=1

a

ij

k

�

j

(� 2 C

n

):

Obviously, A is ellipti
 if and only if rank (


ki

(�)) =m for every � 2 C

n

with � 6= 0.

The importan
e of the above de�nition lies in the following 
oer
ive inequality, due to

Ne�
as [8℄. It was later generalized by Besov [1℄ to anisotropi
 Sobolev spa
es. More re
ently,

the paper of Ka lamajska [5℄ 
ontains a version with Mu
kenhoupt weights.

Theorem 2.2

Let A(x) (x2
) be a family of ellipti
 mappings, whose 
oeÆ
ients a

ij

k

(x) are 
ontinuous

on 
. Then the family (A(x)ru(x))

k

(1� k� r) of di�erential operators, given by

(2:1) (A(x)ru(x))

k

=

m

X

i=1

n

X

j=1

a

ij

k

(x)

�u

i

�x

j

(x)

is 
oer
ive, i.e. there is a 
onstant 
> 0 su
h that the following inequality

(2:2)

�

Z




jA(x)ru(x)j

p

dx

�

1=p

+ jjujj

L

p

(
)

� 
 jjujj

W

1;p

(
)

holds for all u2W

1;p

(
).
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Our goal is to modify inequality (2.2) by repla
ing the term jjujj

L

p

(
)

with

�

Z

�

ju(x)j

p

dH

n�1

(x)

�

1=p

:

We a
hieve this using Theorem 2.2 and the following Theorem, whi
h re
e
ts a typi
al method

of treating inequalities of this type.

Theorem 2.3

If the family (A(x)ru(x))

k

of di�erential operators given by (2.1) with variable 
oeÆ
ients

a

ij

k

(x) is 
oer
ive and if the following impli
ation holds

(2:3) A(x)ru(x) = 0, u2W

1;p

0

(
;�) ) u= 0 ;

then there is a 
onstant 
> 0 su
h that the inequality

(2:4)

�

Z




jA(x)ru(x)j

p

dx

�

1=p

+

�

Z

�

ju(x)j

p

dH

n�1

(x)

�

1=p

� 
 jjujj

W

1;p

(
)

holds for all u2W

1;p

(
).

The proof of Theorem 2.3 uses standard 
ompa
tness argument, used already by many

authors, for example Ne�
as-Hlav�a�
ek [9℄, p. 85, or Ne� [10℄ Theorem 3. Sin
e it's neither

long nor diÆ
ult, we represent it here for the 
onvenien
e of the reader.

Proof of Theorem 2.3

Suppose (2.4) does not hold.

Then there exists a sequen
e u

k

2W

1;p

(
) with jju

k

jj

W

1;p

(
)

= 1 su
h that

(2:5)

�

Z




jA(x)ru

k

(x)j

p

dx

�

1=p

+

�

Z

�

ju

k

(x)j

p

dH

n�1

(x)

�

1=p

�

1

k

:

Therefore there is a subsequen
e of (u

k

) (still denoted by (u

k

)) and a fun
tion u2W

1;p

(
)

su
h that u

k

! u strongly in L

p

(
) and u

k

*u weakly in W

1;p

(
). From (2:2) we obtain


jju

k

�u

l

jj

W

1;p

(
)

� jju

k

�u

l

jj

L

p

(
)

+

�

Z




jA(x)ru

k

(x)j

p

dx

�

1=p

+

�

Z




jA(x)ru

l

(x)j

p

dx

�

1=p

;

whi
h by (2:5) implies that (u

k

) is a Cau
hy sequen
e in W

1;p

(
), so u

k

! u strongly

in W

1;p

(
). This, together with (2:5) implies that u vanishes on �, i.e. u2W

1;p

0

(
;�)

and A(x)ru(x) = 0 a.e. on 
. Finally, using (2:3) we obtain u= 0, whi
h provides a


ontradi
tion, sin
e jju

k

jj

W

1;p

(
)

= 1 and u

k

! 0 strongly in W

1;p

(
).

Assuming that A(x) is 
ontinuous, Theorem 2.2 implies that the di�erential operators

(2.1) are 
oer
ive. So in order to prove inequality (2.4) it remains to 
he
k if (2.3) holds.

In the appli
ations 
ondition (2.3) seems to be diÆ
ult to verify, even if the 
oeÆ
ients are

smooth enough. It turns out, however, that dealing with 
ontinuous 
oeÆ
ients A(x) this

unpleasent impli
ation 
an be removed from the assumptions. To prove this assertion is our

goal in the next se
tion. Namely, we prove the following

4



Theorem 2.4

Let A(x) (x2
) be a family of ellipti
 mappings, whose 
oeÆ
ients a

ij

k

(x) are 
ontinuous

on 
. Then the impli
ation (2.3) holds. In parti
ular, there is a 
onstant 
> 0 su
h that

the inequality (2.4) holds for all u2W

1;p

(
).

3. Proof of Theorem 2.4

We start with the following

Lemma 3.1

Let B be a ball in R

n

. Denote by B

�

an open 
one whose vertex 
oin
ides with the


enter of B and su
h that the surfa
e measure H

n�1

of (�B)\B

�

is equal to �H

n�1

(�B).

Moreover, let A be ellipti
 (with 
onstant 
oeÆ
ients). Then there exists a 
onstant 
> 0

su
h that the inequality

(3:1)

�

Z

B

jA(ru(x))j

p

dx

�

1=p

� 
 jjujj

W

1;p

(B)

holds for all u2W

1;p

0

(B;B

�

).

Remark

Readers interested in the spe
ial 
ase m=n and

A(x)ru(x) =ru(x)F (x)+(ru(x)F (x))

T

;

where detF (x)��> 0, may omit the proof of Lemma 3.1 and repla
e it by the following

short reasoning: Inequality (3.1), whi
h in this 
ase reads

�

Z

B

jru(x)F +(ru(x)F )

T

j

p

dx

�

1=p

� 
 jjujj

W

1;p

(B)

;

(F is 
onstant here) is after the aÆne 
oordinate transformation x 7!F

�1

x equivalent to

�

Z

E

jrv(y)+(rv(y))

T

j

p

dy

�

1=p

� 


0

jjvjj

W

1;p

(E)

;

where 


0

is a positive 
onstant and v(y) = u(Fy) vanishes on some �xed part of the boundary

of E =F

�1

(B). The last displayed inequality is just Korn's Inequality, so it's valid.

Proof of Lemma 3.1

Sin
e the proof uses standard and well-known methods, we only outline it brie
y indi
ating

the main steps.

Fix a fun
tion !2C

1

0

(B

0

), where B

0

is a �xed ball, whose 
losure lies in B

�

.

Assume that u is a smooth (i.e. C

1

(B)) fun
tion vanishing on B

0

.

Using the Hilbert Nullstellensatz and the method from [8℄ or [1℄ we �nd a positive integer
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N and homogenous polynomials p

i�

k

(�) (with 
omplex 
oeÆ
ients) of degree N�1 su
h that

(3:2) D

�

u

i

=

r

X

k=1

p

i�

k

(D)(A

k

u)

holds for all 1� i�m and all multiindi
es � with j�j=N , where

(A

k

u)(x) =

m

X

i=1

n

X

j=1

a

ij

k

�u

i

�x

j

(x) (1� k� r) :

Using the integral representation of Sobolev (see Maz'ya [6℄) and observing that ! and u

have disjoint supports, we �nd that

(3:3) u

i

(x) =

X

j�j=N

Z

B

K

�

(x;y)D

�

u

i

(y)dy (1� i�m) ;

where

K

�

(x;y) =

(�1)

N

�N

�!

�

�

�

r

n�N

Z

1

r

!(x+ t�)t

n�1

dt :

In the last formula we have substituted r= jy�xj and �=

y�x

jy�xj

. Then for every �xed

x2B , the fun
tion K

�

(x; � ) is smooth on B nfxg and vanishes near the boundary �B .

Write

�

�

r

n�N

Z

1

r

!(x+ t�)t

n�1

dt=

�

�

r

n�N


(x;�)�

�

�

r

n�N

d(x;�;r) ;

where


(x;�) =

Z

1

0

!(x+ t�)t

n�1

dt and d(x;�;r) =

Z

r

0

!(x+ t�)t

n�1

dt :

The fun
tion 
(x;�) is smooth on B�(R

n

nf0g). Then for any y 6= x and any multiindex �

with j�j=N�1 we obtain that

D

�

y

�

�

�

r

n�N


(x;�)

�

is the sum of the terms of the form

(3:4)

p(�)

r

n�1

Z

1

0

w(x+ t�)t

k

dt ;

where k�n�1, w2C

1

0

(B

0

) and p is a polynomial. Therefore

�

�x

j

D

�

y

�

�

�

r

n�N


(x;�)

�

is the sum of the terms of the form

(3:5)

p

1

(�)

r

n

Z

1

0

w

1

(x+ t�)t

k

dt +

p

2

(�)

r

n�1

Z

1

0

w

2

(x+ t�)t

l

dt ;

where k; l�n�1, w

1

;w

2

2C

1

0

(B

0

) and p

1

;p

2

are polynomials.

Similarly, the fun
tion d(x;�;r) is smooth on B�(R

n

nf0g)�(0;1). Di�erentiating with

respe
t to the multiindex � with j�j=N�1 we obtain that

D

�

y

�

�

�

r

n�N

d(x;�;r)

�
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is the sum of the terms of the following form

(3:6)

p

1

(�)

r

n�1

Z

r

0

w

1

(x+ t�)t

k

dt + w

2

(y)r

l

p

2

(�) ;

where k�n�1, l� 1, w

1

;w

2

2C

1

0

(B

0

) and p

1

;p

2

are polynomials.

From the above 
omputations and expressions (3.4) and (3.6) we see that for a �xed x2B

and for a multiindex � with j�j �N�1, the fun
tion D

�

y

K

�

(x;y) is integrable with respe
t

to y on B . Thus using (3.2), (3.3) and integrating by parts we obtain

u

i

(x) =

r

X

k=1

X

j�j=N

Z

B

(�1)

N�1

p

i�

k

(D

y

)(K

�

(x;y))A

k

u(y)dy ;

where the kernels p

i�

k

(D

y

)K

�

(x;y) are of the form (3.4) plus the terms of the form (3.6).

Di�erentiating the terms (3.6) with respe
t to x

j

and using that

1

r

Z

r

0

w(x+ t�)t

k

dt�C ;

for all w2C

1

0

(B

0

) appearing in (3.6) and all j�j= 1, r > 0, k� 1, we see that

D

�

y

�

�

�

r

n�N

d(x;�;r)

�

�

C

r

n�2

and

�

�x

j

D

�

y

�

�

�

r

n�N

d(x;�;r)

�

�

C

r

n�1

:

Therefore for any f 2L

1

(B),

�

�x

j

Z

B

D

�

y

�

�

�

r

n�N

d(x;�;r)

�

f(y)dy=

Z

B

�

�x

j

D

�

y

�

�

�

r

n�N

d(x;�;r)

�

f(y)dy :

Now using Theorem 1.29 from [7℄, the fa
t that the terms (3.5) are bounded on B�S

n�1

(S

is the unit sphere in R

n

) and the result of Calder�on and Zygmund (see [2℄ Theorem 2 or [7℄

Theorem 2.1), we obtain

(3:7)

�

�

�

�

�

�

�

�

�u

i

�x

j

�

�

�

�

�

�

�

�

p

L

p

(B)

� 


r

X

k=1

jjA

k

ujj

p

L

p

(B)

(1� i�m; 1� j�n) ;

for some 
onstant 
> 0 independent of u (vanishing on B

0

).

Sin
e every u2W

1;p

0

(B;B

�

) 
an be approximated in the norm jj � jj

W

1;p

(B)

by C

1

(B)

fun
tions vanishing on B

0

, we get from (3.7) and from the Poin
ar�e inequality, inequality

(3.1) for all u2W

1;p

0

(B;B

�

).

We will also need the following lemma, whi
h states that there is a 
ommon positive


onstant 
 in (3.1) for all ellipti
 mappings A lying in some 
ompa
t subset of E .

Lemma 3.2

Let B and B

�

be like in Lemma 3.1. Let moreover K be a 
ompa
t subset of E . Then

there exists a 
onstant 
> 0 su
h that the inequality (3.1) holds for all mappings A2K and

all u2W

1;p

0

(B;B

�

).
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Proof

For a �xed mapping A, denote by 


A

the best 
onstant in (3.1). It is enough to show that


= inff


A

: A2Kg> 0. Suppose, to the 
ontrary, that 
= 0. Then there exist a sequen
e

A

n

2K and a sequen
e u

n

2W

1;p

0

(B;B

�

) su
h that jju

n

jj

W

1;p

(B)

= 1 and

jjA

n

(ru

n

)jj

L

p

(B)

! 0 :

Sin
e K is 
ompa
t, we 
an 
hoose a subsequen
e from (A

n

), still denoted by (A

n

) and

A

1

2K , su
h that jA

n

�A

1

j! 0. Then

jjA

1

(ru

n

)jj

L

p

(B)

� jj(A

1

�A

n

)(ru

n

)jj

L

p

(B)

+ jjA

n

(ru

n

)jj

L

p

(B)

� jA

1

�A

n

j�jju

n

jj

W

1;p

(B)

+ jjA

n

(ru

n

)jj

L

p

(B)

;

whi
h implies that jjA

1

(ru

n

)jj

L

p

(B)

! 0. On the other hand, sin
e A

1

is ellipti
, we apply

inequality (3.1) to obtain

jjA

1

(ru

n

)jj

L

p

(B)

� 


1

jju

n

jj

W

1;p

(B)

= 


1

:

Letting n!1 we get 


1

� 0, a 
ontradi
tion.

Using Lemma 3.2 and s
aling we arrive at the following

Corollary 3.3

Let B , B

�

and K be like in Lemma 3.2. Then there is a 
onstant 
> 0 su
h that the

inequality

(3:8) jjA(ru)jj

L

p

(B)

� 
 jjrujj

L

p

(B)

holds for all A2K and all u2W

1;p

0

(B;B

�

) and the 
onstant 
 does not depend on the radius

of the ball B .

Now we are ready to prove Theorem 2.4:

Assume that A(x)(ru(x)) = 0 a.e. in 
 and u2W

1;p

0

(
;�).

Denote by B(x;�) the ball with 
enter x and radius � and by B

�

(x) the 
orresponding


one, like in Lemma 3.1.

Fix x

0

2�. Choose �> 0, su
h that B(x

0

;�)\(�
)��. Extend u by 0 on B(x

0

;�)n
.

Then for some �> 0 we have u2W

1;p

0

(B(x

0

;�);B

�

(x

0

)). By inequality (3.8) we obtain




Z

B(x

0

;�)

jru(x)j

p

dx �

Z

B(x

0

;�)

jA(x

0

)(ru(x))j

p

dx

=

Z

B(x

0

;�)

j(A(x

0

)�A(x))(ru(x))j

p

dx

�

Z

B(x

0

;�)

jA(x

0

)�A(x)j

p

� jru(x)j

p

dx� "

p

Z

B(x

0

;�)

jru(x)j

p

dx:

8



Sin
e the above 
onstant 
 does not depend on �, and sin
e A(x) is 
ontinuous on 
, we

use the above inequality to �nd a number �> 0 su
h that

Z

B(x

0

;�)

jru(x)j

p

dx= 0 :

This implies that u(x) = 0 for x2B(x

0

;�).

Now �x x2
. Take any 
urve 
 lying within 
 and 
onne
ting x

0

with x. We repeat the

above argument with x

1

=
\�B(x

0

;�) in pla
e of x

0

. The 
ontinuity of the 
oeÆ
ients a

ij

k

(x)

implies that K= fA(x) j x2 
g is a 
ompa
t subset of E . It follows therefore (by Corollary

3.3 and by repeating the above reasoning) that we 
an 
over 
 with a �nite sequen
e of the

balls B(x

k

;�) with x

k

2 
 and equal radii � (� 
an be 
hosen the same is ea
h step and

the 
oeÆ
ients a

ij

k

(x) are uniformly 
ontinuous on 
), proving in ea
h step that u= 0 on

B(x

k

;�). This shows that u= 0 on 
.

4. Spe
ial 
ase: First Korn's Inequality with variable 
oeÆ
ients

From now on assume that m=n. Dire
tly from Theorem 2.4 we obtain the following

Corollary 4.1

Let F : 
!M

n�n

(R) (n� 2) be a 
ontinuous mapping with detF (x)��> 0. Then there

is a 
onstant 
> 0 su
h that the following inequality

(4:1)

Z




jru(x)F (x)+(ru(x)F (x))

T

j

p

dx� 


Z




jru(x)j

p

dx

holds for all u2W

1;p

0

(
;�).

Proof

It is enough to 
he
k that an n�n (real) matrix F with detF 6= 0 veri�es

(�
�)F +((�
�)F )

T

6= 0

whenever � 2 C

n

, � 2 C

n

and � 6= 0, � 6= 0.

Indeed, if the matrix B= (�
 �)F were nonzero and antisymmetri
, then we would get

rankB� 2, whi
h would imply that rank (�
�)� 2, a 
ontradi
tion. Therefore B = 0, whi
h

gives �
�= 0, when
e �= 0 or �= 0.

Remarks

(a) If n= 2, p= 2 and � = �
, then inequality (4.1) holds with F 2L

1

(
) instead of being


ontinuous on 
. This was shown by Ne� [10℄, who assumed additionally that detF (x) is


onstant and positive. His proof 
an be easily modi�ed to the mu
h more general 
ase

detF (x)��> 0. Indeed, in the inequality (see Ne� [10℄, Theorem 6)

jru(x)F (x)+(ru(x)F (x))

T

j

2

� 2 jru(x)F (x)j

2

�4 det(ru(x)) detF (x)

9



we �rst divide both sides by detF (x) and then integrate.

(b) The 
lass of the mappings F (x) for whi
h (4.1) holds is larger than the 
lass of


ontinuous mappings F with detF ��> 0, also when n� 3. Indeed, if inequality (4.1)

holds for a mapping F

0

2L

1

(
), then it also holds (perhaps with another 
onstant 
> 0)

for all mappings F lying in some L

1

(
)-neighbourhood of F

0

.

(
) Inequality (4:1) is also valid if we assume that F (x) =rG(x), where G : R

n

!R

n

is

a bi-Lips
hitz mapping { just make the 
oordinate transformation like in the remark after

Lemma 3.1, or see Ne� [10℄, Theorem 4 for details.

The above remarks suggest the following question: Does (4.1) hold if n� 3, F 2L

1

(
)

and detF (x)��> 0 ?

The answer turs out to be negative, even if � = �
 and detF (x) = 1 in 
. So for n� 3

the 
lass of the mappings F (x) for whi
h (4.1) holds lies somewhere stri
tly between C(
)

and L

1

(
). Theorem 4.3 below shows that this 
lass 
ontains also the symmetri
, positive

de�nite a.e. mappings F (x), at least when p= 2 and � = �
.

Theorem 4.2

Assume that n� 3. Then there exist a nonzero fun
tion u2W

1;1

0

(
;R

n

) and a mapping

F 2L

1

(
;M

n�n

(R)) with detF (x) = 1 in 
 su
h that

ru(x)F (x)+(ru(x)F (x))

T

= 0 a.e. on 
.

Proof

Denote by e

1

; e

2

; : : : ; e

n

the standard orthonormal basis of R

n

and let R : R

n

!R

n

be any

�xed rotation satisfying R(e

i

) 6=�e

j

for all i; j = 1;2; : : : ;n.

Let fQ

i

g (where i2N ) be a Vitali 
overing of 
, su
h that the 
ubes Q

i

have pair-

wise disjoint entries and their edges are parallel to the 
oordinate axes (i.e. to the ve
tors

e

1

; e

2

; : : : ; e

n

). Let moreover fP

j

g (where j 2N ) be another Vitali 
overing of 
 with the


ubes P

j

, whose edges are parallel to the ve
tors R(e

1

);R(e

2

); : : : ;R(e

n

). De�ne

u

1

(x) = dist(x;�Q

i

) if x2Q

i

;

u

2

(x) = dist(x;�P

j

) if x2P

j

;

u

3

(x) = : : := u

n

(x) = 0 :

Then the fun
tion u= (u

1

;u

2

; : : : ;u

n

) is nonzero, Lips
hitz 
ontinuous and u= 0 on �
.

Moreover jru

1

(x)j= jru

2

(x)j= 1 a.e. in 
. The ve
tors ru

1

and ru

2

attain only a �nite

number of values for x2
 and v , w are linearly independent for all v 2fru

1

(x) j x2
g and

w2fru

2

(x) j x2
g. Therefore there exist fun
tions g

3

;g

4

; : : : ;g

n

2L

1

(
;R

n

) su
h that the

10



determinant of the n�n matrix

G(x) =

2

6

6

6

6

6

6

6

6

6

4

ru

2

(x)

�ru

1

(x)

g

3

(x)

.

.

.

g

n

(x)

3

7

7

7

7

7

7

7

7

7

5

is equal to 1 for every x2
. Take F (x) = (G(x))

�1

. Then

(ru(x)F (x))

ij

=

8

>

<

>

:

1 if i= 2, j = 1

�1 if i= 1, j = 2

0 otherwise

Thus ru(x)F (x)+(ru(x)F (x))

T

= 0 a.e. in 
.

Theorem 4.3

Let n� 2 and F 2L

1

(
;M

n�n

(R)) be su
h that F (x) is symmetri
 and positive de�nite

a.e. in 
 and detF (x)��> 0. Then there is a 
onstant 
> 0 su
h that the inequality

(4:2)

Z




jru(x)F (x)+(ru(x)F (x))

T

j

2

dx� 


Z




jru(x)j

2

dx

holds for all u2W

1;2

0

(
).

Proof

From the assumptions it follows that the eigenvalues �

1

(x);�

2

(x); : : : ;�

n

(x) of F (x) lie in

the interval [a;b℄, where 0<a< b. Writing F

�1

(x) in the orthonormal basis 
omposed of its

eigenve
tors and using that �

i

(x)� a, we obtain for any real n�n matrix C ,

hF

�1

(x)C;CF

�1

(x)i�

1

a

2

jCj

2

for any x2
. Similarly we get

hCF (x);F

�1

(x)Ci�

a

b

jCj

2

:

Setting F =F (x) and using the above inequalities we get

1

a

2

jCF +FC

T

j

2

� hF

�1

(CF +FC

T

);(CF +FC

T

)F

�1

i

= hF

�1

CF +C

T

;C+FC

T

F

�1

i

= hCF;F

�1

Ci+2hC;C

T

i+hC

T

F

�1

;FC

T

i�

2a

b

jCj

2

+2hC;C

T

i :

Substituting C =ru(x), where u2W

1;2

0

(
) and integrating yields

Z




jru(x)F (x)+(ru(x)F (x))

T

j

2

dx�

2a

3

b

Z




jru(x)j

2

dx;

whi
h proves (4.2).
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