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Abstra
t

We study the generalized Stokes equations in asymptoti
ally �at layers,

whi
h 
an be 
onsidered as 
ompa
t perturbations of an in�nite (�at) layer




0

= R

n�1

� (�1; 1). Besides standard non-slip boundary 
onditions, we 
on-

sider a mixture of slip and non-slip boundary 
onditions on the upper and lower

boundary, respe
tively. In this se
ond part, we use pseudodi�erential operator

te
hniques to 
onstru
t a parametrix to the redu
ed Stokes equations, whi
h

solves the system in L

q

-Sobolev spa
es, 1 < q < 1, modulo terms whi
h get

arbitrary small for large resolvent parameters �. This parametrix 
an be ana-

lyzed to prove the existen
e of a bounded H

1

-
al
ulus of the (redu
ed) Stokes

operator.
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1 Introdu
tion

We 
onsider the generalized Stokes resolvent equations

(���)u+rp = f in 





; (1.1)

div u = g in 





; (1.2)

T

+

j

(u; p) = a

+

on �


+




; (1.3)

uj

�


�




= 0 on �


�




(1.4)

with j = 0 or j = 1 and � 2 C n (�1; 0), where

T

+

0

(u; p) = uj

�


+




; T

+

1

(u; p) = (� � S(u)� �p)j

�


+




; S(u) = ru+ (ru)

T

;
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and � 2 �

Æ

[ f0g. Here 





� R

n

, n � 2, is an asymptoti
ally �at layer with

C

1;1

-boundary, i.e.,







= f(x

0

; x

n

) 2 R

n

: 


+

(x

0

) < x

n

< 


�

(x

0

)g

and 


�

! �1 and r


�

;r

2




�

! 0 as jx

0

j ! 1, 
f. [3℄. Moreover, �


�




=

f(x

0

; 


�

(x

0

)) : x

0

2 R

n�1

g.

In [3, Se
tion 3℄ it is proved that (1.1)-(1.4) are uniquely solvable (with the

restri
tion � 6= 0 if j = 0) if and only if the redu
ed Stokes equations

(���)u+G

j0

u = f in 





; (1.5)

T

0

j

+

u = a

+

on �


+




; (1.6)

uj

�


�




= 0 on �


�




; (1.7)

where

G

00

u = G

0

u = rK

1

� � (��r div)uj

�





; G

10

u = rK

01

�

2�

�

u

�

j

�


+




� � (��r div)uj

�


�




�

;

T

0

0

+

u = uj

�


+




; (T

0

1

+

u)

�

= (� � S(u))

�

j

�


+




; (T

0

1

+

u)

�

= div uj

�


+




;

are uniquely solvable (in suitable L

q

-Sobolev spa
es, see [3, Se
tion 3℄ for details.)

Here K

1

and K

01

denote the Poisson operators for the Lapla
e equation (� = 0).

The redu
ed system (1.5)-(1.7) �ts well into the general 
al
ulus of parameter-

dependent pseudodi�erential boundary value problems developed by Grubb in [12℄.

In Grubb and Solonnikov [15℄, the authors used this approa
h and applied general

results for paraboli
 boundary value problems to solve the instationary Navier-Stokes

equations in anisotropi
 L

2

-Sobolev in bounded smooth domains lo
ally in time for

various kinds of boundary 
onditions. Later this result was extended to L

q

-Sobolev

spa
es, 
f. [11℄, and smooth exterior domains, 
f. [13℄.

In the following, we will use the 
al
ulus developed in [12℄ to 
onstru
t a parametrix

to the redu
ed Stokes system (1.5)-(1.7), whi
h 
oin
ides with the exa
t solution op-

erator modulo term whi
h de
ay faster as j�j ! 1. Using this parametrix, we prove

that the usual Stokes operator in the Diri
hlet 
ase and the redu
ed Stokes operator

in the mixed 
ase admit a bounded H

1

-
al
ulus in the sense of M
Intosh [18℄.

THEOREM 1.1 Let 1 < q <1, Æ 2 (0; �), and let 





� R

n

be an asymptoti
ally

�at layer with C

1;1

-boundary. Moreover, let A

q

= �P

q

� be the Stokes operator and

A

10

= ��+G

10

be the redu
ed Stokes operator with domains

D(A

q

) = W

2

q

(





)

n

\W

1

q;0

(





)

n

\ J

q;0

(





);

D(A

10

) =

n

u 2 W

2

q

(





)

n

: T

0

1

+

u = 0; uj

�


�




= 0

o

; resp:;


f. [3℄. Then A

q

and A

10

admit a bounded H

1

-
al
ulus with respe
t to Æ on X =

J

q;0

(





) and X = L

q

(





)

n

, resp. , i.e.,

h(A) =

1

2�i

Z

�

h(��)(� + A)

�1

d�; A = A

q

; A

10

; (1.8)
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is a bounded operator on X and

kh(A)k

L(X)

� C

Æ

khk

1

(1.9)

for every h 2 H

1

(Æ). Here H

1

(Æ) denotes the algebra of all bounded holomorphi


fun
tions h : �

��Æ

! C and � is the negatively oriented boundary of �

Æ

= fz 2

C n f0g : j arg j < Æg.

The theorem implies the existen
e of bounded imaginary powers A

iy

, y 2 R, of the

Stokes and the redu
ed Stokes operator sin
e h

y

(z) = z

iy

2 H

1

(Æ). Hen
e the

result of Dore and Venni [7℄ implies the maximal regularity of the (redu
ed) Stokes

operators.

The parametrix in 





is de�ned with the aid of the parametrix in 
urved half-

spa
es R

n




= f(x

0

; x

n

) 2 R

n

: x

n

> 
(x

0

)g by means of a simple partition of unity.

Here the parametrix in R

n




is 
onstru
ted by transforming the equations to a system

in R

n

+

with variable 
oe�
ients and freezing 
oe�
ients. In order to 
onstru
t the

parametrix assuming only C

1;1

-regularity of the boundary, it is ne
essary to modify

the general theory in [12℄, whi
h assumes smooth 
oe�
ients. This will be done

by 
ombining the te
hniques and results for pseudodi�erential operators with non-

smooth 
oe�
ients developed in [17, 23, 24℄ (in an operator-valued version) with

known fa
ts for the smooth 
oe�
ient 
ase, 
f. Se
tions 3 and 4 below. In order to

prove the boundedness of (1.8), we have to analyze the symbols of the parametrix

pre
isely. This is done by relating the symbol of the parametrix in R

n




to the symbols

of the solution operators of the redu
ed Stokes equations in R

n

+

, 
f. Se
tion 5.3 below.

The stru
ture of the redu
ed Stokes equations enables us to 
onsider the resolvent

of the redu
ed Stokes operator as perturbation of the Lapla
e resolvent, 
f. Se
tion

5.1 below. Then we obtain the ne
essary estimates to prove boundedness of (1.8) in

Se
tion 5.4 below.

Remark 1.2 Note that the method presented here is not restri
ted to asymptoti
ally

�at domains. It has mu
h in 
ommon with the �rst published proof that the Stokes

operator in a bounded domain possesses bounded imaginary powers presented by

Giga [9℄, whi
h is also based on pseudodi�erential operator te
hniques. Sin
e the

following proof uses the redu
ed Stokes equations, we 
an also deal with more general

boundary 
onditions. In [9℄, the proof is presented in the 
ase of a smooth bounded

domain, but 
an be modi�ed for the 
ase of a C

2;�

-boundary, � > 0.

An alternative method, using a perturbation theorem for the H

1

-
al
ulus, 
an

be found in Noll and Saal [19℄. In the latter 
ontribution the existen
e of a bounded

H

1

-
al
ulus for the Stokes operator in a bounded and exterior domain in R

n

, n � 3,

with C

3

-boundary is proved.

In the spe
ial 
ase of an in�nite layer, a more elementary proof that the Stokes

operator possesses bounded imaginary powers based on Mikhlin multiplier te
hniques

is presented in Abels [1℄.
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2 Preliminaries

We will use the same notation and fun
tion spa
es as in [3℄. Additionally, F and

F

�1

denote the Fourier and inverse Fourier transformation,

F [f ℄(�) :=

^

f(�) :=

Z

R

n

e

�ix��

f(x)dx; F

�1

[f ℄(x) :=

�

f(x) :=

Z

R

n

e

ix��

f(�)��;

de�ned for a suitable fun
tion f : R

n

! C , where �� := (2�)

�n

d�. Note that in the

following all integrals with respe
t to a phase � will be s
aled by (2�)

�n

as above.

Moreover, we will use partial Fourier transformation

F

x

0

7!�

0

[f ℄(�

0

; x

n

) :=

~

f(�

0

; x

n

) :=

Z

R

n�1

e

�ix

0

��

0

f(x

0

; x

n

)dx

0

and the 
onjugate Fourier transformation

�

F [f ℄(�) = F [f ℄(��).

Let h�i = (1 + j�j

2

)

1

2

, � 2 R

n

, and let hD

x

i

s

= OP(h�i

s

) = F

�1

[h�i

s

F [:℄℄, s 2 R.

Moreover, S(R

n

) denotes the spa
e of rapidly de
reasing smooth fun
tions f : R

n

!

C and S

0

(R

n

) denotes the spa
e of tempered distributions. Re
all that the Bessel

potential spa
e H

s

q

(R

n

), 1 < q <1, s 2 R, is de�ned as the spa
e of all f 2 S

0

(R

n

)

for whi
h hD

x

i

s

f 2 L

q

(R

n

), with norm

kfk

H

s

q

= khD

x

i

s

fk

L

q

:

Moreover, S(R

n

;X) and H

s

q

(R

n

;X) denote the ve
tor-valued variants, where X is a

Bana
h spa
e.

As in [14, 10℄, the spa
e H

s

q

(R

n

+

) = r

+

H

s

q

(R

n

) is de�ned as the spa
e of all distri-

butions of H

s

q

(R

n

) restri
ted to R

n

+

equipped with the quotient norm and H

s

q;0

(R

n

+

)

is de�ned as the spa
e of all distributions of H

s

q

(R

n

) supported in R

n

+

.

Let ' 2 C

1

0

(R

n

) su
h that

supp' = f� : 2

�1

� j�j � 2g; '(�) > 0 if 2

�1

< j�j < 2;

P

k2Z

'(2

�k

�) = 1 when � 6= 0;

and set '

0

(�) = 1�

P

1

k=1

'(2

�k

�). Then the Besov spa
e B

s

q

(R

n

) = B

s

q;q

(R

n

), s 2 R,

1 � q <1, is de�ned as the spa
es of all tempered distributions f with �nite norm

kfk

B

s

q

=

 

k'

0

(D

x

)fk

q

L

q

+

X

1�k<1

2

sqk

k'(2

�k

D

x

)fk

q

L

q

!

1

q

:

If s > 0 with s 62 N , the Besov spa
e B

s

q

(R

n

) 
oin
ides with the Sobolev-Slobode
kij

spa
e W

s

q

(R

n

).

We refer to [5, Chapter 6℄ for the interpolation properties of Besov and Bessel

potential spa
es. In parti
ular, we use

(H

s

0

q

(R

n

); H

s

1

q

(R

n

))

�;q

= B

s

q

(R

n

) (2.1)
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for s

0

; s

1

2 R, s

0

6= s

1

, 1 < q <1, and s = (1� �)s

0

+ �s

1

. Here (:; :)

�;q

denotes the

real interpolation fun
tor.

Finally, C

s

�

(R

n

) = B

s

1

(R

n

), s > 0, denotes the Zygmund spa
e, whi
h 
onsists of

all fun
tions f su
h that

kfk

C

s

�

= supfk'

0

(D

x

)fk

L

1

; 2

ks

k'(2

�k

D

x

)fk

L

1

: k 2 Ng <1:

It 
oin
ides with the usual Hölder spa
e C

s

(R

n

) for non-integer s > 0.

We also need the weighted L

2

-spa
es

L

2

(R

+

; x

s

n

) = fu 2 D

0

(R

+

) : x

s

n

u(x

n

) 2 L

2

(R

+

)g; s 2 R;

and L

2

(R; jx

n

j

s

), whi
h is de�ned analogously. Note that, (L

2

(R

+

; x

s

n

))

0

= L

2

(R

+

; x

�s

n

)

with respe
t to the L

2

(R

+

)-s
alar produ
t and

(L

2

(R

+

; x

s

1

n

); L

2

(R

+

; x

s

2

n

))

�;2

= L

2

(R

+

; x

s

n

) (2.2)

for � 2 (0; 1) and s = (1� �)s

1

+ �s

2

be
ause of [5, Theorem 5.4.1℄. The analogous

results hold for L

2

(R; jx

n

j

s

).

Lemma 2.1 1. Let 1 < q � 2, Æ

0

<

1

q

�

1

2

< Æ, and � = (

1

q

�

1

2

� Æ

0

)=(Æ � Æ

0

).

Then

(L

2

(R

+

; x

Æ

0

n

); L

2

(R

+

; x

Æ

n

))

�;q

� L

q

(R

+

); (2.3)

(H

�Æ

0

2;0

(R

+

); H

�Æ

2;0

(R

+

))

�;q

� L

q

(R

+

): (2.4)

2. Let 2 � q <1, Æ

0

<

1

2

�

1

q

< Æ, and � = (

1

2

�

1

q

� Æ

0

)=(Æ � Æ

0

). Then

(L

2

(R

+

; x

�Æ

0

n

); L

2

(R

+

; x

�Æ

n

))

�;q

� L

q

(R

+

); (2.5)

(H

Æ

0

2

(R

+

); H

Æ

2

(R

+

))

�;q

� L

q

(R

+

): (2.6)

Proof: The lemma was proved by Grubb and Kokholm [14, Theorem 1.8℄.

3 Non-Smooth Pseudodi�erential Operators

Let B be an arbitrary Bana
h spa
e.

De�nition 3.1 The symbol spa
e C

�

�

S

m

1;0

(R

n

� R

n

;B), � > 0, m 2 R, is the set of

all symbols p : R

n

� R

n

! B that are in C

�

�

with respe
t to the �rst variable and

smooth with respe
t to the se
ond variable satisfying the estimates

kD

�

�

p(:; �)k

C

�

�

(R

n

;B)

� C

�

h�i

m�j�j

(3.1)

for all � 2 N

n

0

. Moreover, we de�ne the semi-norms

jpj

(m)

k

:= sup

j�j�k;�2R

n

h�i

j�j�m

kD

�

�

p(:; �)k

C

�

�

(B)

; k 2 N :

5



The symbol spa
e C

0;1

S

m

1;0

(R

n

�R

n

;B) is de�ned in the same way withC

�

�

repla
ed

by C

0;1

. Note that C

0;1

(R

n

) � C

1

�

(R

n

), hen
e C

0;1

S

m

1;0

� C

1

�

S

m

1;0

.

In the following we will only 
onsider the 
ase B = L(H

0

; H

1

) for some Hilbert

spa
es H

0

and H

1

. Then given p 2 XS

m

1;0

(R

n

�R

n

;L(H

0

; H

1

)), X = C

�

�

or X = C

0;1

,

p(x;D

x

)u = OP(p(x; �))u =

Z

R

n

e

ix��

p(x; �)û(�)�� and

p(D

x

; x)u = OP(p(y; �))u =

Z

R

n

Z

R

n

e

i(x�y)��

p(y; �)u(y)dy�� (3.2)

for u 2 S(R

n

;H

0

) are the asso
iated pseudodi�erential operators in L- and R-form,

resp; also 
alled x-form and y-from. Here the se
ond integral has to be understood

as an os
illatory integral, 
f. [17, Theorem 2.2℄.

We note that

(p(x;D

x

)u; v)

L

2

(R

n

;H

1

)

= (u; p

0

(D

x

; x)v)

L

2

(R

n

;H

0

)

for all u 2 S(R

n

;H

0

), v 2 S(R

n

;H

1

), where p

0

(x; �) = p(x; �)

0

2 L(H

1

; H

0

) denotes

the pointwise dual of the symbol p.

The following theorem is an operator-valued variant of [23, Proposition 2.1.D℄

and will be proved in the appendix.

THEOREM 3.2 Let � > 0, 1 < q < 1, and m 2 R. If p 2 C

�

�

S

m

1;0

(R

n

�

R

n

;L(H

0

; H

1

)), then p(x;D

x

) and p(D

x

; x) extend to a bounded linear operators

p(x;D

x

) : H

s+m

q

(R

n

;H

0

)! H

s

q

(R

n

;H

1

); p(D

x

; x) : H

s

q

(R

n

;H

0

)! H

s�m

q

(R

n

;H

1

)

for all s 2 R with �� < s < � .

In the following we denote by (p

1

p

2

)(x; �) = p

1

(x; �) Æ p

2

(x; �) 2 L(H

0

; H

2

) the

pointwise 
omposition of the symbols.

THEOREM 3.3 Let 1 < q <1, m

1

; m

2

2 R, 0 < �

1

� �

2

, and s 2 R with jsj < �

1

and js + m

1

j < �

2

. If p

1

2 C

�

1

�

S

m

1

1;0

(R

n

� R

n

;L(H

1

; H

2

)) and p

2

2 C

�

2

�

S

m

2

1;0

(R

n

�

R

n

;L(H

0

; H

1

)), then for every 0 < � �

�

1

1+�

1

with s� � > ��

1

and s+m

1

� � > ��

2

(p

1

p

2

)(x;D

x

)� p

1

(x;D

x

)p

2

(x;D

x

) : H

s+m

1

+m

2

��

q

(R

n

;H

0

)! H

s

q

(R

n

;H

2

)

is a bounded linear operator. Moreover, there is a k 2 N su
h that

k(p

1

p

2

)(x;D

x

)� p

1

(x;D

x

)p

2

(x;D

x

)k � Cjp

1

j

(m

1

)

k

jp

2

j

(m

2

)

k

;

where k � k denotes the 
orresponding operator norm.
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This theorem will also be proved in the appendix.

The latter theorem shows that the 
omposition of p

1

(x;D

x

) and p

2

(x;D

x

) 
o-

in
ides with (p

1

p

2

)(x;D

x

) modulo an operator of lower order in the sense of map-

ping properties in Bessel potential spa
es. In the following parametrix 
onstru
tion

the pre
ise size of � > 0 does not matter and for given s 2 R with jsj < �

1

and

js + m

1

j < �

2

, there are always some � > 0 whi
h satisfy the assumption of the

theorem.

Corollary 3.4 Let m 2 R, 1 < q <1, and s 2 R su
h that jsj < 1 and js�mj < 1.

If p 2 C

0;1

S

m

1;0

(R

n

� R

n

;L(H

0

; H

1

)) and a 2 C

0;1

(R

n

), then for every 0 < � �

1

2

with

s+ � < 1 and s�m+ � < 1

a(x)p(D

x

; x)� (ap)(D

x

; x) : H

s

q

(R

n

;H

0

)! H

s�m+�

q

(R

n

;H

2

)

is a bounded operator.

Proof: The 
orollary is easily obtained from Theorem 3.3 by duality.

In the following we will restri
t ourselves to the 
ase of operators with Lips
hitz-


ontinuous 
oe�
ients; this is the 
ase we need for the 
onstru
tion of the parametrix.

As in [12℄, the spe
tral parameter will be represented as � = �

2

e

i�

, � 2 (��; �).

Moreover, let � = �(�

0

; �) =

h�

0

i

h�

0

;�i

, where h�

0

; �i = (1 + j�

0

j

2

+ �

2

)

1

2

and � � 0,

�

0

2 R

n�1

.

It is straightforward to de�ne a non-smooth variant of these 
lasses of parameter-

dependent pseudodi�erential operators studied in [12℄.

De�nition 3.5 Let d; � 2 R. Then C

0;1

S

d;�

1;0

(R

n

�R

n+1

+

) is the spa
e of all fun
tions

p(x; �; �) smooth w.r.t. (�; �) and Lips
hitz-
ontinuous in x su
h that

kD

�

�

D

j

�

p(:; �; �)k

C

0;1

� C

�;j

(�(�; �)

��j�j

+ 1)h�; �i

d�j�j�j

uniformly in (�; �) 2 R

n+1

+

and for all � 2 N

n

0

, j 2 N

0

. Moreover, let

jpj

(d;�)

k

= sup

j�j;j�k;(�;�)2R

n+1

+

kD

�

�

D

j

�

p(:; �; �)k

C

0;1

(�(�; �)

��j�j

+ 1)

�1

h�; �i

�d+j�j+j

be the 
orresponding in
reasing sequen
e of semi-norms.

Re
all that

(�(�; �)

�

+ 1)h�; �i

d

'

(

h�; �i

d

if � � 0;

h�i

�

h�; �i

d��

if � < 0:

Remark 3.6 Note that, if p 2 C

0;1

S

d;�

1;0

and d

0

> d, then p 2 C

0;1

S

d

0

;�

1;0

with jpj

(d

0

;�)

k

�

h�i

d�d

0

jpj

(d;�)

k

for all k 2 N

0

. Moreover, if d � 0, � � 0 and if we look at p as a

parameter-independent symbol, then jp(:; �)j

(d)

k

� Cjpj

(d;�)

k

uniformly in � 2 R

+

.
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4 Pseudodi�erential Boundary Value Problems with

Non-Smooth Coe�
ients

We will now de�ne a non-smooth version of parameter-dependent Green operators

developed in [12℄.

We use the notation of [12℄ ex
ept that 


j

u = �

j

n

uj

�R

n

+

. Re
all that H

d

, d 2 Z,

denotes the spa
e of all smooth f : R ! C whi
h admit an asymptoti
 development

f(t) � s

d

t

d

+ s

d�1

t

d�1

+ : : : in the sense that for all k; l, and N 2 N

0

�

�

�

�

�

�

l

t

"

t

k

f(t)�

d

X

j=d�N

s

j

t

j+k

#

�

�

�

�

�

� C

k;l;N

(1 + jtj)

d�N�1+k�l

as jtj ! 1:

It is important that H

�1

= H

+

�H

�

�1

, where H

+

and H

�

�1

are the subspa
es of all

f 2 H

�1

whi
h 
an be extended holomorphi
ally to the lower resp. upper 
omplex

plane, and

H

+

= F [e

+

S(R

+

)℄; H

�

�1

= F [e

�

S(R

�

)℄;

see [12, Chapter II, Se
tion 2.2℄ for details. � Note that f 2 H

+

, f 2 H

�

�1

. �

Moreover, h

+

= Fe

+

r

+

F

�1

and h

�

�1

= Fe

�

r

�

F

�1

are 
ontinuous proje
tions on

H

+

and H

�

�1

, resp. We use the 
onvention H

�

r

= H

�

�1

� C

r

[t℄, r 2 N

0

, where C

r

[t℄

denotes the set of all 
omplex polynomials of degree r. Moreover, h

�1

: H

d

! H

�1

is the proje
tion with range H

�1

and kernel C

d

[t℄. Finally, we note that H

d

, d 2 Z,

H

+

, and H

�

r

, r 2 N

0

, are nu
lear spa
es. Hen
e there exist unique 
omplete tensor

produ
ts H

+

^


H

�

r

and H

�1

^


H

�1

.

We start with the de�nition of Poisson operators.

De�nition 4.1 The spa
e C

0;1

S

d;�

1;0

(R

n�1

�R

n

+

;H

+

), d; � 2 R, of Poisson symbols of

degree d and regularity � 
onsists of fun
tions k(x

0

; �

0

; �

n

; �) 2 H

+

with respe
t to �

n

whi
h satisfy

kD

�

�

0

D

j

�

h

�1

(D

l

�

n

�

l

0

n

k(:; �

0

; :; �))k

C

0;1

(R

n�1

;L

2

�

n

)

� C(�

��[l�l

0

℄

+

�j�j

+ 1)h�

0

; �i

d+

1

2

�l+l

0

�j�j�j

(4.1)

for all �

0

2 N

n�1

0

; j; l; l

0

2 N

0

. If k 2 C

0;1

S

d�1;�

1;0

(R

n�1

� R

n

+

;H

+

), then

k(x

0

; �;D

x

)a = r

+

F

�1

� 7!x

[k(x

0

; �; �)~a(�

0

)℄ ; a 2 S(R

n�1

);

is the asso
iated Poisson operator of order d and regularity � in L-form.

Note that the degree of a Poisson symbol re�e
ts the order of growth as j(�; �)j ! 1

in 
ontrast to the order, whi
h re�e
ts the mapping properties of the asso
iated

operator.

Alternatively, a Poisson operator 
an be des
ribed by its symbol-kernel :

k(x

0

; �;D

x

) = F

�1

�

0

7!x

0

h

~

k(x

0

; �; �; x

n

)~a(�

0

)

i

;
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where

~

k(x

0

; �

0

; �; x

n

) = F

�1

�

n

7!x

n

[k(x

0

; �; �)℄ 2 S(R

+

) w.r.t. x

n

. Moreover, the bound-

ary symbol operators k(x

0

; �

0

; �;D

n

) are de�ned as one-dimensional operators with

symbols k(x

0

; �; �) for �xed (x

0

; �

0

).

Remark 4.2 Let k 2 C

0;1

S

d;�

1;0

(R

n�1

�R

n

+

;H

+

) be (for simpli
ity) independent of �.

Then (4.1) and kF [f ℄k

L

2

(R

+

)

= kfk

L

2

(R)

for f 2 H

+

imply

kD

�

�

0

x

l

n

D

l

0

x

n

k(x

0

; �

0

; D

n

)k

L(C ;L

2

(R

+

))

� C

�;l;l

0

h�

0

i

d+

1

2

�l+l

0

�j�j

:

In parti
ular k(x

0

; �

0

; D

n

) is a L(C ; L

2

(R

+

))-valued pseudodi�erential operator of or-

der d+

1

2

. Moreover, interpolation of the latter estimate for di�erent values of l; l

0

2 N

0

yields

kD

�

�

0

k(:; �

0

; D

n

)k

C

0;1

(R

n�1

;L(C ;L

2

(R

+

;x

2Æ

n

)))

� C

�;Æ

h�

0

i

d+

1

2

�Æ�j�j

; (4.2)

kD

�

�

0

k(:; �

0

; D

n

)k

C

0;1

(R

n�1

;L(C ;H

Æ

2

(R

+

)))

� C

�;Æ

h�

0

i

d+

1

2

+Æ�j�j

(4.3)

for all Æ � 0 and � 2 N

n�1

0

, 
f. (2.2) and [14, Se
tion 3.3℄.

Considering a boundary symbol operator as operator-valued pseudodi�erential oper-

ator, the 
orresponding operator in R-form k(D

x

; x

0

; �) is de�ned as in (3.2).

De�nition 4.3 Let d; � 2 R and let r 2 N

0

.

1. The spa
e of tra
e symbols C

0;1

S

d;�

1;0

(R

n�1

� R

n

+

;H

�

r�1

) of degree d and 
lass r

is the set of all

t(x

0

; �

0

; �

n

; �) =

X

0�j�r�1

s

j

(x

0

; �

0

; �)(i�

n

)

j

+ t

0

(x

0

; �

0

; �

n

; �);

with t

0

(x

0

; �; �) 2 C

0;1

S

d;�

1;0

(R

n�1

�R

n

+

;H

+

) and s

j

(x

0

; �

0

; �) 2 C

0;1

S

d�j;�

1;0

(R

n�1

�

R

n

+

). The asso
iated tra
e operator of order d in L-form is de�ned as

t(x

0

; �;D

x

)f =

r�1

X

j=0

s

j

(x

0

; �;D

x

0

)


j

f + F

�1

�

0

7!x

0

�

Z

t

0

(x

0

; �

0

; �

n

; �)

^

f(�)��

n

�

:

2. The spa
e of singular Green symbols C

0;1

S

d;�

1;0

(R

n�1

�R

n

+

;H

+

^


H

�

r�1

) of degree

d and 
lass r 
onsists of all fun
tions

g(x

0

; �

0

; �

n

; �

n

; �) =

r�1

X

j=0

k

j

(x

0

; �

0

; �

n

; �)(i�

n

)

j

+ g

0

(x

0

; �

0

; �

n

; �

n

; �)

su
h that k

j

(x

0

; �

0

; �

n

; �) 2 C

0;1

S

d�j;�

1;0

(R

n�1

� R

n

+

;H

+

) and g

0

(x

0

; �; �

n

; �) 2

H

+

^


H

�

r�1

with respe
t to (�

n

; �

n

) satisfying

kD

�

�

0

D

j

�

h

�1;�

n

h

�1;�

n

(D

k

�

n

�

k

0

n

D

l

�

n

�

l

0

n

g(x

0

; �; �

n

; �)k

C

0;1

(R

n�1

;L

2

(R

2

))

� C(�

��[k�k

0

℄

+

�[l�l

0

℄

+

�j�j

+ 1)h�

0

; �i

d+1�k+k

0

�l+l

0

�j�j�j

(4.4)
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for all �

0

2 N

n�1

0

; k; k

0

; l; l

0

; j 2 N

0

. If g 2 C

0;1

S

d�1;�

1;0

(R

n�1

�R

n

+

;H

+

^


H

�

r

), then

g(x

0

; �;D

x

)f =

r�1

X

j=0

k

j

(x

0

; �;D

x

)


j

f + F

�1

� 7!x

�

Z

g

0

(x

0

; �; �

n

; �)

^

f(�

0

; �

n

)��

n

�

;

f 2 S(R

n

+

), is the asso
iated singular Green operator of order d, regularity �,

and 
lass r in L-form.

Note that, if t

0

(x

0

; D

x

) is a tra
e operator of 
lass 0, then

(t(x

0

; D

x

)';  )

R

n�1

= ('; k(D

x

; x

0

) )

R

n

+

; (4.5)

where k(x

0

; �) = t(x

0

; �) and ' 2 S(R

n

+

),  2 S(R

n�1

). Hen
e tra
e operators 
an

be 
onsidered as duals of Poisson operators plus a sum of usual tra
e operators

s

j

(x

0

; �;D

x

0

)


j

. Throughout the present 
ontribution, the singular Green symbols

will be produ
ts of Poisson and tra
e symbols.

We 
an also des
ribe tra
e and singular Green operators with the aid of their

symbol-kernels:

t(x

0

; �;D

x

) =

r�1

X

j=0

s

j

(x

0

; �;D

x

0

)


j

f + F

�1

�

0

7!x

0

�

Z

1

0

~

t

0

(x

0

; �

0

; �; x

n

)

~

f(�

0

; x

n

)dx

n

�

;

g(x

0

; �;D

x

) =

r�1

X

j=0

k

j

(x

0

; �;D

x

)


j

f + F

�1

�

0

7!x

0

�

Z

1

0

~g

0

(x

0

; �

0

; �; x

n

; y

n

)

^

f(�

0

; y

n

)dy

n

�

;

where

~

t

0

(x

0

; �; �; x

n

) =

�

F

�1

�

n

7!x

n

[t(x

0

; �; �)℄ 2 S(R

+

) w.r.t. x

n

and ~g

0

(x

0

; �

0

; �; x

n

; y

n

) =

F

�1

�

n

7!x

n

�

F

�1

�

n

7!y

n

[g(x

0

; �; �

n

; �)℄ 2 S(R

+

� R

+

) w.r.t. (x

n

; y

n

). Finally, the boundary

symbol operators t(x

0

; �

0

; �;D

n

) and g(x

0

; �

0

; �;D

n

) and operators in R-form are de-

�ned in the same way as for the Poisson operator.

De�nition 4.4 Let p 2 C

0;1

S

d;�

1;0

(R

n

� R

n+1

+

), d 2 Z, � 2 R, that is independent of

x

n

. Then p satis�es the transmission 
ondition if there are fun
tions s

k;�;j

smooth

in (�

0

; �) and Lips
hitz 
ontinuous in x

0

su
h that for any � 2 N

n

0

and l; j 2 N

0



















�

l

n

D

�

�

D

j

�

p(:; �; �)�

d�j�j�j

X

k=�l

s

k;�;j

(:; �

0

; �)�

k+l

n



















X

� C

k;�;j

h�

0

; �i

m+1+l�j�j�j

j�

n

j

�1

when j�

n

j � h�

0

; �i.

De�nition 4.5 A Green operator (in L-form) of order d 2 Z, 
lass r 2 N

0

, and

regularity � 2 R with Lips
hitz-
ontinuous 
oe�
ients is de�ned as

a(x

0

; �;D

x

) =

�

p(x

0

; �;D

x

)

+

+ g(x

0

; �;D

x

) k(x

0

; �;D

x

)

t(x

0

; �;D

x

) s(x

0

; �;D

x

0

)

�

;
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where k(x

0

; �;D

x

), t(x

0

; �;D

x

), and g(x

0

; �;D

x

) are Poisson, tra
e, and singular Green

operators of order d, regularity �, and 
lass r, p(x

0

; �;D

x

)

+

= r

+

p(x

0

; �;D

x

)e

+

,

p 2 C

0;1

S

d;�

1;0

(R

n

� R

n

+

), is a trun
ated pseudodi�erential operator satisfying the

transmission 
ondition and s 2 C

0;1

S

d�1;�

1;0

(R

n�1

� R

n

+

).

In the following we will often restri
t ourselves to the 
ase of parameter-independent

symbols and operators. The 
orresponding symbol 
lasses C

0;1

S

d

1;0

(R

n�1

� R

n�1

;K),

K = H

+

;H

�

r�1

, or K = H

+

^


H

�

r�1

are de�ned as above with the restri
tion that the

symbols are independent of � and the symbols estimates hold for � = 0.

Moreover, if f is a Poisson, tra
e, or singular Green symbol, then jf j

(d;�)

k

, k 2 N ,

are the semi-norms (monotoni
ally in
reasing in k) asso
iated to (4.1), (4.4), resp., in

the usual way, 
f. De�nitions 3.5 and 3.5. The semi-norms of parameter-independent

symbols will be denoted by jf j

(d)

k

.

Remarks 4.6 1. As in Remark 3.6, jf j

(d+";�)

k

� h�i

�"

jf j

(d;�)

k

, " > 0.

2. If f is a parameter-dependent Poisson or tra
e symbol of degree d � �

1

2

,

regularity � (and 
lass r), then f(:; �), � � 0 �xed, is a parameter-independent

symbol of the same degree and 
lass with jf(:; �)j

(d)

k

� jf j

(d;�)

k

uniformly in

� > 0. The same is true for parameter-dependent singular Green symbols of

degree d � �1.

3. Conversely, if k 2 C

0;1

S

d�1

1;0

(R

n�1

� R

n�1

;H

+

), then k 2 C

0;1

S

d�1;d�

1

2

1;0

(R

n�1

�

R

n

+

;H

+

) if 
onsidered parameter-dependent, 
f. [12, Proposition 2.3.14℄. More-

over, every parameter-independent di�erential tra
e symbol is a tra
e symbol

of the same order and 
lass and with regularity 1.

Remark 4.7 Freezing x

0

, the boundary symbol operator a(x

0

; �

0

; �;D

n

) belongs to

the 
lass studied in [12℄. Thus, if we assume that the trun
ated pseudodi�eren-

tial operator in a(x

0

; �

0

; �;D

n

) is a
tually a di�erential operator, the 
omposition of

a(x

0

; �

0

; �;D

n

) with a se
ond boundary symbol operator a

0

(x

0

; �

0

; �;D

n

) is a bound-

ary symbol operator of order d

00

= d + d

0

, 
lass r

00

= [r + d

0

℄

+

, and regularity

�

00

= minf�; �

0

; � + �

0

g, 
f. [12, Theorem 2.6.1℄. Here d; r; � (resp. d

0

; r

0

; �

0

) de-

note the order, 
lass, and regularity of a (resp. a

0

).

Moreover, we note that a symbol f is in one of the pseudodi�erential, Poisson,

tra
e, or singular Green symbol 
lasses C

0;1

S

d;�

1;0

i� the symbol f(x

0

; :) with frozen

x

0

2 R

n�1

is in the 
orresponding smooth 
lass S

d;�

1;0

and the semi-norms satisfy

jf(x

0

; :)j

(d;�)

k

� C

k

jf(x

0

; :)� f(y

0

; :)j

(d;�)

k

� C

0

k

jx

0

� y

0

j

uniformly in x

0

; y

0

2 R

n�1

and for all k 2 N .

Sin
e 
omposition of boundary symbol operators is 
ontinuous with respe
t to

the semi-norms we have proved that

a(x

0

; �

0

; D

n

) Æ a

0

(x

0

; �

0

; D

n

) = a

00

(x

0

; �

0

; D

n

);

11



where a

00

is a non-smooth Green symbol of order d

00

, 
lass r

00

, and regularity �

00

,

de�ned above, with 
oe�
ients in C

0;1

.

Finally, we note that in our 
ases the regularities �; �

0

will be positive. Hen
e

the 
omposition will have regularity �

00

= minf�; �

0

g > 0, whi
h is essential for the

parametrix 
onstru
tion.

THEOREM 4.8 Let 1 < q <1.

1. If k 2 C

0;1

S

d�1

1;0

(R

n�1

� R

n�1

;H

+

), d 2 R; is a Poisson symbol of order d, then

k(x

0

; D

x

) : B

d�

1

q

q

(R

n�1

)! L

q

(R

n

+

) ;

k(D

x

; x

0

) : B

d�

1

q

q

(R

n�1

)! L

q

(R

n

+

) if

�

�

�

�

d�

1

q

�

�

�

�

< 1; resp.

are 
ontinuous operators.

2. Let t 2 C

0;1

S

d

1;0

(R

n�1

� R

n�1

;H

�

�1

), d 2 R, be a tra
e operator of order d and


lass 0. Then t(x

0

; D

x

) and t(D

x

; x

0

) extend to bounded operators

t(x

0

; D

x

) : L

q

(R

n

+

)! B

�d�

1

q

q

(R

n�1

) if

�

�

�

�

d+

1

q

�

�

�

�

< 1;

t(D

x

; x

0

) : L

q

(R

n

+

)! B

�d�

1

q

q

(R

n�1

); resp.

3. Let g 2 C

0;1

S

�m�1

1;0

(R

n�1

�R

n

;H

+

^


H

�

�1

), m 2 N

0

, be a singular Green operator

of order �m and 
lass 0. Then g(D

x

; x

0

) extends to a bounded operator

g(D

x

; x

0

) : L

q

(R

n

+

)!W

m

q

(R

n

+

):

All operators depend 
ontinuously on the symbols with respe
t to the operator norm

and the symbol semi-norms.

Proof: The proof is 
arried out with the same method as in [14, Se
tion 4.1℄ using

the interpolation in
lusions of Lemma 2.1

1. First let 1 < q � 2. Then (4.2) and Theorem 3.2 imply

k(x

0

; D

x

); k(D

x

; x

0

) : H

d�

1

2

�Æ

q

(R

n�1

)! L

q

(R

n�1

;L

2

(R

+

; x

2Æ

n

)) Æ � 0 (4.6)

under the restri
tion jd �

1

2

� Æj < 1 for the operator in x-form. Hen
e inter-

polation with di�erent values of Æ and Lemma 2.1 yield the �rst statement in

the 
ase 1 < q � 2. The 
ase 2 � q <1 is proved in the same way using (4.3)

instead of (4.2).

2. The mapping properties of t(x

0

; D

x

) and t(D

x

; x

0

) 
an be obtained by duality

using (4.5) and the analogous statement for t(D

x

; x

0

) and k(x

0

; D

x

).

12



3. We 
an assume w.l.o.g. m = 0. In the same way as in Remark 4.2, one 
an

obtain the following estimates by interpolation of the singular Green symbol

estimates in (4.3):

kD

�

0

�

0

g(:; �

0

; D

n

)k

C

�

�

(R

n�1

;L(L

2

(R

+

;x

�2Æ

n

);H

Æ

2

(R

+

)))

� C

�

0

;Æ

h�

0

i

�j�

0

j

;

kD

�

0

�

0

g(:; �

0

; D

n

)k

C

�

�

(R

n�1

;L(H

�Æ

2;0

(R

+

);L

2

(R

+

;x

2Æ

n

)))

� C

�

0

;Æ

h�

0

i

�j�

0

j

for all Æ � 0. Hen
e appli
ation of Theorem 3.2 and Lemma 2.1 proves the last

part of the lemma.

Remark 4.9 Sin
e multipli
ation of a Poisson symbol-kernel

~

k(x

0

; �

0

; x

n

) with x

n

redu
es the order by 1, 
f. (4.1), it is a 
onsequen
e of the latter theorem that

k(D

x

; x

0

) : B

s�

1

q

q

(R

n�1

)!W

m

q

(R

n

� (";1))

for all s 2 R with s�

1

q

> �1, m 2 N

0

, and " > 0.

Moreover, using L

2

(0; b; x

2Æ

n

) ,! L

1

(0; b) for Æ <

1

2

and (4.6),

k(D

x

; x

0

) : B

d�

1

q

�"

q

(R

n�1

)! L

q

(R

n�1

; L

1

(0; b)) if

�

�

�

�

d�

1

q

� "

�

�

�

�

< 1;

for all 0 < " <

1

q

0

and all b 2 R

+

.

The following lemma summarizes the results 
on
erning 
omposition of non-smooth

pseudodi�erential operators whi
h we need in Se
tion 5.

Lemma 4.10 Let 1 < q < 1, d

1

2 N

0

, and r 2 N

0

. Moreover, let p

1

(x

0

; D

x

) be a

di�erential operator and let t(x

0

; D

x

) be a di�erential tra
e operator both of order d

1

with C

0;1

-
oe�
ients and of 
lass r.

1. Let k(x

0

; �) 2 C

0;1

S

d

2

�1

1;0

(R

n�1

� R

n�1

;H

+

), d

2

2 R. If jd

1

+ d

2

�

1

q

j < 1, then

there are " > 0 su
h that

p

1

(x

0

; D

x

)k(D

x

; x

0

)� (p

1

k)(D

x

; x

0

) : B

d

1

+d

2

�

1

q

�"

q

(R

n�1

)! L

q

(R

n

+

):

Moreover, if s 2 (�1; 1) su
h that js+ d

1

+ d

2

j < 1, then

t(x

0

; D

x

)k(D

x

; x

0

)� (tk)(D

x

; x

0

) : B

s+d

1

+d

2

�"

q

(R

n�1

)! B

s

q

(R

n�1

)

for an " > 0.

2. Let g(x

0

; �) 2 C

0;1

S

�d

1

�1

1;0

(R

n�1

� R

n�1

;H

+

^


H

�

�1

). Then

p

1

(x

0

; D

x

)g(D

x

; x

0

)� (p

1

g)(D

x

; x

0

) : L

q

(R

n

+

)! L

q

(R

n

+

)

with operator norm bounded by Cjp

1

j

(d

1

)

k

jgj

(�d

1

�1+")

k

for some "; C > 0, k 2 N.
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3. Let p

2

(x; �) 2 C

0;1

S

�d

1

1;0

(R

n

� R

n

). Then

p

1

(x

0

; D

x

)p

2

(D

x

; x)

+

� (p

1

p

2

)(D

x

; x)

+

: L

q

(R

n

+

)! L

q

(R

n

+

)

with operator-norm bounded by Cjp

1

j

(d

1

)

k

jp

2

j

(�d

1

+")

k

for some "; C > 0, k 2 N

0

.

4. If k 2 C

0;1

S

�d�1

1;0

(R

n�1

� R

n�1

;H

+

), a 2 C

0;1

(R

n�1

), and t 2 C

0;1

S

d

1;0

(R

n�1

�

R

n�1

;H

�

�1

), d 2 R, with jd+

1

q

j < 1, then

k(D

x

; x

0

)t(D

x

; x

0

)� (kt)(D

x

; x

0

) : L

q

(R

n

+

)! L

q

(R

n

+

);

a(x

0

)t(D

x

; x

0

)� (at)(D

x

; x

0

) : L

q

(R

n

+

)!W

�d�

1

q

q

(R

n�1

);

where the operator norm is bounded by Cjkj

(�d�1)

l

jtj

(d+")

l

and Ckak

C

0;1

jtj

(d+")

l

,

resp., for some "; C > 0, l 2 N.

Proof: We assume w.l.o.g. d

1

= 0. Then p

1

(x

0

; D

x

) = a(x

0

) and t(x

0

; D

x

) = a(x

0

)


0

for an a 2 C

0;1

(R

n�1

). Moreover, we only give the details for 1 < q � 2 sin
e the


ase q � 2 is treated in the same way.

1. Sin
e k(x

0

; �

0

; D

n

) 2 C

0;1

S

d

2

�

1

2

�Æ

1;0

(R

n�1

� R

n�1

;L(C ; L

2

(R

+

; x

Æ

n

)) for 0 � Æ <

1

2

,


f. (4.2), we get by Corollary 3.4 that

a(x

0

)k(D

x

; x

0

)� (ak)(D

x

; x

0

) : B

d

2

�

1

2

�Æ�"

q

(R

n�1

)! L

q

(R

n�1

; L

2

(R

+

; x

Æ

n

))

for " > 0 (depending on Æ). Hen
e

a(x

0

)k(D

x

; x

0

)� (ak)(D

x

; x

0

) : B

d

2

�

1

q

�"

q

(R

n�1

)! L

q

(R

n

+

)

by Lemma 2.1 for " > 0. Moreover, be
ause of (4.3) and kfk

1

� kfk

1

2

2

kf

0

k

1

2

2

for every f 2 S(R

+

), 


0

k(x

0

; �

0

; D

n

) 2 S

d

2

1;0

(R

n�1

� R

n�1

). Hen
e

a(x

0

)


0

k(D

x

; x

0

)� (a


0

k)(D

x

; x

0

) : B

s+d

2

�"

q

(R

n�1

)! B

s

q

(R

n�1

)

for an " > 0 be
ause of Corollary 3.4 and (2.1).

2. Sin
e d

2

= �d

1

= 0, we look at g(D

x

; x

0

) as a singular Green operator of order

0 < " �

1

2

. Hen
e g(x

0

; �

0

; D

n

) 2 C

0;1

S

"

1;0

(R

n�1

�R

n�1

;L(H

�Æ

2

(R

+

); L

2

(R

+

; x

Æ

n

)))

for 0 � Æ <

1

2

, 
f. proof of Theorem 4.8.3. Therefore

a(x

0

)g(D

x

; x

0

)� (ag)(D

x

; x

0

) : L

q

(R

n

+

)! L

q

(R

n

+

)

with operator norm bounded by Ckak

0;1

jgj

(�1+")

k

for " 2 (0;

1

2

℄.

3./4. The last two parts of the lemma are proved analogously.
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5 Parametrix Constru
tion and H

1

-Cal
ulus

5.1 The Model Operators of the Redu
ed Stokes Equations

in R

n

+

In this se
tion we dis
uss the stru
ture of the boundary symbol operators of the

redu
ed Stokes equations in R

n

+

� the �model operators�.

For � = �

2

e

i�

, � � 0, � 2 (��; �), let

a

r

j

(�

0

; �;D

n

) =

�

�

2

e

i�

+ j�

0

j

2

+D

2

n

+ k

r

j

(�

0

; D

n

)t

r

j

(�

0

; D

n

)

t

0

j

(�

0

; D

n

)

�

;

j = 0; 1, � 2 (��; �), be the model operator of the redu
ed Stokes equations, where

k

r

0

(�

0

; D

n

)u = �e

�[�

0

℄x

n

 

i�

0

[�

0

℄

�1

!

i�

0

T

; k

r

1

(�

0

; D

n

)u = e

�[�

0

℄x

n

�

i�

0

�[�

0

℄

�

;

t

r

0

(�

0

; D

n

)u = �

n

u

0

(0); t

r

1

(�

0

; D

n

)u = 2�

n

u

n

(0);

t

0

0

(�

0

; D

n

)u = 


0

u; t

0

1

(�

0

; D

n

)u; =

�

i�

0

u

n

(0) + �

n

u

0

(0)

i�

0

� u

0

(0) + �

n

u

n

(0)

�

:

Here [:℄ denotes a smooth fun
tion with [�

0

℄ = j�

0

j if j�

0

j � 1 and [�

0

℄ �

1

2

if j�

0

j < 1.

In [15, Theorem 6.1℄ it was shown that the system of the redu
ed Stokes equations

is parameter-ellipti
 for arbitrary � 2 (��; �), see [12, De�nition 3.1.2.℄ for the

de�nition of parameter-ellipti
ity. This result implies:

Lemma 5.1 Let � 2 (��; �) and let a

r

j

(�

0

; �;D

n

), j = 0; 1, be de�ned as above.

Then there is a 


0

> 0 su
h that

a

r

j

(�

0

; �;D

n

) : H

2

2

(R

+

)

n

! L

2

(R

+

)

n

� C

n

is bije
tive for all j(�

0

; �)j � 


0

. Moreover, a

r

j

(�

0

; �;D

n

)

�1

is a boundary symbol

operator of order �2, 
lass 0, and regularity

1

2

.

Proof: The �rst statement is a dire
t impli
ation of [12, Proposition 3.1.3℄ and [12,

Lemma 3.1.1℄. The se
ond statement is a 
onsequen
e of [12, Theorem 3.2.2℄.

Remark 5.2 Sin
e a

r

j

(�

0

; �;D

n

) depends 
ontinuously on � 2 (��; �), there is a


onstant 


0

0

su
h that a

j

(�

0

; �;D

n

) is invertible for all j(�

0

; �)j � 


0

0

and � 2 [�Æ; Æ℄ for

every �xed Æ 2 (0; �).

Moreover, let

a

j

(�

0

; �;D

n

) =

�

�

2

e

i�

+ j�

0

j

2

+D

2

n




j

�

: H

2

2

(R

+

)!

L

2

(R

+

)

�

C

15



j = 0; 1; � 2 (��; �), be the model operator of the Lapla
e resolvent with Diri
hlet

or Neumann boundary 
ondition. It is well-known that a

j

(�

0

; �;D

n

) is bije
tive for

all (�

0

; �) 2 R

n

+

n f0g and that

a

�1

j

(�

0

; �;D

n

) =

�

r

j

(�

0

; �;D

n

) k

j

(�

0

; �;D

n

)

�

; (5.1)

r

j

(�

0

; �;D

n

) = p(�

0

; �;D

n

)

+

� k

j

(�

0

; �;D

n

)t

j

(�

0

; �;D

n

); (5.2)

p(�; �) = (e

i�

�

2

+ j�j

2

)

�1

; (5.3)

k

j

(�

0

; �;D

n

)g =

e

��

�

x

n

�

�

j

g; t

j

(�

0

; �;D

n

)f =

Z

1

0

(�1)

j

e

��

�

y

n

2�

�

1�j

f(y

n

)dy

n

; (5.4)

where �

�

= (e

i�

�

2

+ j�

0

j

2

)

1

2

. As usual, we obtain a boundary symbol operator of order

�2, 
lass 0, and regularity1 if we smooth the symbols of a

�1

j

(�

0

; �;D

n

) for j(�

0

; �)j �

1. The smoothed operator will again be denoted by a

�1

j

(�

0

; �;D

n

). Moreover, we use

the 
onvention a

j;�

(�

0

; D

n

) = a

j

(�

0

; �;D

n

), p

�

(�) = p(�; �) et
., where � = �

2

e

i�

.

We 
an 
onsider the model operator of the redu
ed Stokes resolvent equation as

perturbation of a

j

(�

0

; �;D

n

):

a

r

j

(�

0

; �;D

n

) = a

j

(�

0

; �;D

n

) + b

j

(�

0

; �;D

n

);

where

b

j

(�

0

; �;D

n

) =

�

k

r

j

(�

0

; D

n

)t

r

j

(�

0

; D

n

)

t

00

j

(�

0

; D

n

)

�

; t

00

1

(�

0

; D

n

)u;=

�

i�

0

u

n

(0)

i�

0

� u

0

(0)

�

;

and t

00

0

(�

0

; D

n

)u = 0. As in [13, Se
tion 3℄ and [2, Se
tion 4.2℄, we get by an elementary


al
ulation

a

r;�1

j

(�

0

; �;D

n

) = (I + a

�1

j

(�

0

; �;D

n

)b

j

(�

0

; �;D

n

))

�1

a

�1

j

(�

0

; �;D

n

);

where

�

I + a

�1

0

(�

0

; �;D

n

)b

0

(�

0

; �;D

n

)

�

�1

= I � r

0

(�

0

; �;D

n

)k

r

0

(�

0

; D

n

)s

0

(�

0

; �)t

r

0

(�

0

; D

n

);

s

0

(�

0

; �) = (I + t

r

0

(�

0

; D

n

)r

0

(�

0

; �;D

n

)k

r

0

(�

0

; D

n

))

�1

;

�

I + a

�1

1

(�

0

; �;D

n

)b

1

(�

0

; �;D

n

)

�

�1

= I � (r

1

(�

0

; �;D

n

)k

r

1

(�

0

; D

n

); k

1

(�

0

; �;D

n

)) s

1

(�

0

; �)

�

t

r

1

(�

0

; D

n

)

t

00

1

(�

0

; �;D

n

)

�

;

s

1

(�

0

; �) =

�

I +

�

t

r

1

(:; D

n

)

t

00

1

(:; D

n

)

�

(r

1

(:; D

n

)k

r

1

(:; D

n

); k

1

(:; D

n

))

�

�1

:

In view of the 
omposition rules, s

j

2 S

0;

1

2

1;0

(R

n�1

� R

n

+

)
 L(C

N

) with N = n � 1 if

j = 0 and N = 2 if j = 1. Hen
e we obtain:
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Lemma 5.3 Let a

r

j

(�

0

; �;D

n

); a

j

(�

0

; �;D

n

), j = 0; 1, be de�ned as above and j(�

0

; �)j �

maxf


0

; 1g > 0, where 


0

is the same 
onstant as in Lemma 5.1. Then

a

r;�1

j

(�

0

; �;D

n

) = a

�1

j

(�

0

; �;D

n

)� b

0

j

(�

0

; �;D

n

) (5.5)

with

b

0

0

(:; D

n

) = r

0

(:; D

n

)k

r

0

(:; D

n

)s

0

(:)t

r

0

(:; D

n

) (r

0

(:; D

n

); k

0

(:; D

n

)) ; (5.6)

b

0

1

(:; D

n

) = (r

1

(:; D

n

)k

r

1

(:; D

n

); k

1

(:; D

n

)) s

1

(:)

�

t

r

1

(:; D

n

)

t

00

1

(:; D

n

)

�

(r

1

(:; D

n

); k

1

(:; D

n

)) :

(5.7)

5.2 Coordinate Transformation

In this se
tion we 
al
ulate the prin
ipal symbols of the operators in the redu
ed

Stokes equations for the 
urved half-spa
e R

n




after 
oordinate transformation to R

n

+

.

The prin
ipal rule is that if a(�) is the symbol of the 
orresponding operator in R

n

+

,

then

a(x

0

; �) := a(A(x

0

)�); x

0

2 R

n�1

; � 2 R

n

; (5.8)

is the prin
ipal symbol for the 
urved half-spa
e, where A(x

0

) depends on r

0


 2

C

0;1

(R

n�1

), 
f. Se
tion 5.3 below.

Lemma 5.4 Let p(�; �) 2 S

m;�

1;0

(R

n

� R

n+1

+

), m; � 2 R, and A 2 C

0;1

(R

n

)

n�n

with

A

�1

2 C

0;1

(R

n

)

n�n

. Then q(x; �; �) := p(A(x)�; �) 2 C

0;1

S

m;�

1;0

(R

n

� R

n+1

+

), and for

every k 2 N

0

there is a k

0

2 N

0

su
h that jqj

(m;�)

k

� Cjpj

(m;�)

k

0

; where C depends only

on kAk

C

0;1

; kA

�1

k

C

0;1

; k;m; �, and n.

Proof: The proof is 
arried out in a straightforward manner using

p(A(x)�; �)� p(A(y)�; �)

=

Z

1

0

r

�

p(tA(x)� + (1� t)A(y)�; �)dt � (A(x)� A(y))�; (5.9)

where tA(x)+(1�t)A(y) is invertible for all t 2 [0; 1℄ if jA(x)�A(y)j � (2kA

�1

k

1

)

�1

.

The analogous statement for Poisson, tra
e, and singular Green symbols is as follows:

Lemma 5.5 Let f(�; �) 2 S

m;�

1;0

(R

n�1

�R

n

+

;K), m; � 2 R, r 2 N

0

, where K = H

+

or

K = H

�

r�1

. Moreover, let A(x

0

) 2 C

0;1

(R

n�1

)

n�n

su
h that A

�1

(x

0

) 2 C

0;1

(R

n�1

)

n�n

and A possesses the blo
k stru
ture

A(x

0

) =

�

A

0

(x

0

) 0

b

T

(x

0

) 
(x

0

)

�

with 
(x

0

) > 0: (5.10)
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Then g(x

0

; �; �) := f(A(x

0

)�; �) 2 C

0;1

S

m;�

1;0

(R

n�1

� R

n

+

;K), and for every k 2 N

0

there is some k

0

2 N

0

su
h that jgj

(m;�)

k

� C(kAk

C

0;1

; kA

�1

k

C

0;1

)jf j

(m;�)

k

0

: The same

statement is true if we set K = H

+

^


H

�

r�1

and set g(x

0

; �; �

n

; �) := f(A(x

0

)�; 
(x

0

)�

n

+

b

T

(x

0

)�

0

; �).

Proof: Note that h

�1

f(
t + d) = (h

�1

f)(
t + d) if f 2 H and 
 > 0. Sin
e


(x

0

); 


�1

(x

0

), and b(x

0

) are uniformly bounded and (
�

n

)

k

=

P

k

l=0

�

k

l

�

(
�

n

+b

T

�

0

)

l

(�b

T

�

0

)

k�l

,

we get

kh

�1

�

k

n

�

k

0

�

n

(f(
�

n

+ b

T

�

0

))k

L

2

(R)

� C

 

k

X

l=0

�

k

l

�

jb

T

�

0

j

k�l

kh

�1

(
�

n

+ b

T

�

0

)

l

(�

k

0

�

n

f)(
�

n

+ b

T

�

0

)k

L

2

(R)

!

� C

 

k

X

l=0

h�

0

i

k�l

kh

�1

�

l

n

�

k

0

�

n

f(�

n

)k

L

2

(R)

!

(5.11)

for every f 2 H

�1

, where the 
onstant C depends only on the bounds of 
(x

0

), 


�1

(x

0

),

and b(x

0

).

Now let �

0

2 N

n�1

0

, k; k

0

; j 2 N

0

. If we set � = (�

0

; k

0

), we have

D

�

�

D

j

�

g(x

0

; �; �) =

�

(A

T

(x

0

)D

�

)

�

D

j

�

f

�

(x

0

; A(x

0

)�; �):

Combining this identity with (5.11), we 
on
lude

kh

�1;�

n

�

k

n

D

k

0

�

n

D

�

0

�

D

j

�

g(x

0

; �; �)k

L

2

(R)

� C(�(�

0

; �)

��[k

0

�k℄

+

+ 1)h�

0

; �i

m�j�

0

j�k

0

+k�j

:

In order to estimate g(x

0

; �; �) � g(y

0

; �; �), we use an analogous identity to (5.9).

Furthermore, the 
ase K = H

+

^


H

�

r�1

is proved in the same way.

We note that the blo
k stru
ture (5.10) in the previous lemma is essential in order

to guarantee that g(x

0

; �) 2 K with respe
t to �

n

.

Finally, we have to analyze how the transformed boundary symbol operators

behave under 
omposition. Let �


;d

(�

n

) := 
�

n

+ d, �

n

2 R, with 
 > 0; d 2 R, and

�

�


;d

(f)(�

n

) = f(�


;d

(�

n

)) for f 2 H. Then �

�


;d

is an algebra homomorphism, whi
h

maps H

+

, H

�

r

, and H

r

into itself and for whi
h

h

+

�

�


;d

= �

�


;d

h

+

; 


Z

+

�

�


;d

(f)(�

n

)��

n

=

Z

+

f(�

n

)��

n

(5.12)

hold. Moreover, we set �

�


;d

(g)(�

n

; �

n

) = g(�


;d

(�

n

); �


;d

(�

n

)) for g 2 H

+

�

n

^


H

�

�1;�

n

and

�

�


;d

(f; b) = (�

�


;d

(f); b) for (f; b) 2 (H

+


 C

M

)� C

N

.

Now let a(D

n

) be a one-dimensional (x

n

-independent) Green operator and p(�

n

),

k(�

n

), t(�

n

), g(�

n

; �

n

), and s be its symbols. Then we de�ne

a(
D

n

+ d) := OP

n

�

�

�


;d

(p)

+

+ 
�

�


;d

(g) �

�


;d

(k)


�

�


;d

(t) s

�

: (5.13)
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Be
ause of the 
omposition rules for one-dimensional Green operators, 
f. [6, Theo-

rem 1.12℄ and (5.12),

a

1

(
D

n

+ d) Æ a

2

(
D

n

+ d) = (a

1

Æ a

2

)(
D

n

+ d); (5.14)

where a

1

Æ a

2

denotes the symbol of a

1

(D

n

) Æ a

2

(D

n

). � Note that the fa
tors 
 in

(5.13) are ne
essary to obtain (5.14).

5.3 Symbols of the Redu
ed Stokes Equations in R

n




In 
ontrast to [8, 9℄, we use a very simple 
oordinate transformation, whi
h allows us

to 
onstru
t the parametrix in a domain with C

1;1

-boundary, but does not preserve

the normal dire
tion on the boundary. Therefore we have to analyse the relation

between the model operators and the Green operator of the transformed equations


arefully.

Given 
 2 C

1;1

(R

n�1

) let R

n




= fx : x

n

> 
(x

0

)g be a 
urved half-spa
e, and let

F : R

n

+

! R

n




be the 
oordinate transformation

x = F (x) =

�

x

0

x

n

+ 
(x

0

)

�

; x 2 R

n

+

:

In this se
tion we will denote the variables and operators 
orresponding to the original

problem in R

n




by x; �;r; : : : and of the transformed problem in R

n

+

by x; �;r; : : :.

Similarly, a(x

0

; �) will indi
ate the symbols of the transformed problem and a(�) the

symbols of the model operator.

If v : R

n




! C , we set F

�

(v)(x) = v(F (x)). Moreover, let F

0

: R

n�1

! �R

n




: x

0

7!

(x

0

; 
(x

0

)) and F

�

0

(v)(x

0

) = v(F

0

(x

0

)). Furthermore, let U = U(x

0

) be an orthonormal

matrix whi
h maps the exterior normal ve
tor

�(x

0

) =

1

p

1 + jr

0


(x

0

)j

2

�

r

0


(x

0

)

�1

�

on �R

n




at the point (x

0

; 
(x

0

)) to �e

n

. We need this orthonormal matrix to 
orre
t

ve
tor �elds in su
h a way that the normal dire
tion � on �R

n




is mapped to the normal

dire
tion �e

n

on �R

n

+

. This modi�
ation is essential for preserving the stru
ture of

the boundary 
onditions and model operators.

Using this notation,

rF

�;�1

v = F

�;�1

OP(U

T

(x

0

)A(x

0

)i�)v = F

�;�1

U

T

(x

0

)A(x

0

)rv;

where A(x

0

)� = U

x

0

(D

x

F (x))

�T

� and v 2 C

1

(R

n




). Then A has the stru
ture needed

to apply Lemma 5.5

A(x

0

)� = U

x

0

�

I

0

�r

0


(x

0

)

0 1

�

� =

�

A

0

(x

0

) 0

b(x

0

)

T


(x

0

)

�

�; (5.15)

where A

0

(x

0

) and b(x

0

) depend smoothly on r

0


(x

0

) and 
(x

0

) =

p

1 + jr

0


(x

0

)j

2

.
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Lemma 5.6 Let v 2 C

1

(0)

(R

n




) and u 2 C

1

(0)

(R

n




)

n

. Then

F

�

rv = rF

�

v; F

�

div u = divF

�

u; F

�

�u = �F

�

u+R

1

F

�

u;

F

�

0




�

u = 


�

F

�

u; F

�

0




1

v = 


1

F

�

v; F

�

0

T

0

1

u = t

0

1

(x

0

; D

x

)F

�

u;

where

1. r = OP(U

T

(x

0

)A(x

0

)i�), div u = OP((A(x

0

)i�)

T

U(x

0

))u, � = �OP(jA(x

0

)�j

2

),




�

= �e

n

� 


0

U(x

0

), and 


1

= 


�

r = �


0

OP((A(x

0

)i�)

n

).

2. R

1

is a di�erential operator of order 1 with L

1

-
oe�
ients.

3. t

0

1

(x

0

; �

0

; D

n

)u = �


0

U

T

(x

0

)

�

(A(x

0

)i�)

n

I

0

A

0

(x

0

)i�

0

(A

0

(x

0

)i�

0

)

T

(A(x

0

)i�)

n

�

U(x

0

)u:

If additionally 


0

u = 0, then

F

�

0




�

(��r div)u = t(x

0

; D

x

)F

�

u+R

2

F

�

u;

where t(x

0

; �

0

; D

n

)u = �(A

0

(x

0

)i�

0

)

T




1

(x

0

; �

0

; D

n

)(U(x

0

)u)

0

and R

2

: W

2�"

q

(R

n

+

)

n

!

W

�

1

q

q

(R

n�1

) is a bounded linear operator for every " 2 (0;

1

q

0

).

Proof: The identities 
an be 
he
ked by elementary 
al
ulations. We only give the

details for the last statement. If 


0

u = 0, then

F

�

0




�

(��r div)u = 


�

(��rdiv)F

�

u+ 


0

R

1

F

�

u

= �e

n

� 


0

OP((�jA(x

0

)�j

2

+ A(x

0

)i�(A(x

0

)i�)

T

)U(x

0

))F

�

u+ 


0

R

0

F

�

u

= 


0

OP((A(x

0

)i�)

n

((A

0

(x

0

)i�

0

)

T

; 0)U(x

0

))F

�

u+ 


0

R

0

F

�

u;

where R

0

is a di�erential operator of order 1 with L

1

-
oe�
ients depending on x

0

.

Hen
e, if " 2 (0;

1

q

0

),

k


0

R

0

F

�

uk

W

�

1

q

q

(R

n�1

)

� k


0

R

0

F

�

uk

L

q

(R

n�1

)

� Ck


0

rF

�

uk

L

q

(R

n�1

)

� CkF

�

uk

W

2�"

q

(R

n

+

)

:

Thus the 
oordinate transformation a
ts on the prin
ipal symbol as

a(�) a(x

0

; �) = a(A(x

0

)�)

with an additional fa
tor U

T

(x

0

) on the left if the range of the operator 
onsists of

ve
tor �elds and additional fa
tor U(x

0

) on the right if the domain of the operator


onsists of ve
tor �elds. Therefore we 
an express prin
ipal boundary symbol opera-

tors of the equations after 
oordinate transformation with the aid of model operators;

e.g.

a

j;�

(x

0

; �

0

; D

n

) :=

�

���




j

(�

0

; D

n

)

�

= diag(1; 


�1

)a

j;�

(A

0

(x

0

)�

0

; 
D

n

+ b

T

�

0

);
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where we need the 
orre
tion fa
tor 


�1

sin
e




j

(:; 
D

n

+ d) = OP

n

(



j

(:; 
�

n

+ d)) (5.16)

due to (5.13). Note that the symbol of the tra
e operator 


j

u = �

j

n

uj

x

n

=0

is 


j

(�) =

(i�

n

)

j

.

Be
ause of (5.14), the inverse of a

j;�

(x

0

; �

0

; D

n

) exists for j�

0

j � 1 and

a

j;�

(x

0

; �

0

; D

n

)

�1

= a

�1

j;�

(A

0

(x

0

)�

0

; 
D

n

+ b

T

�

0

) diag(1; 
)

=

�

r

j;�

(A

0

(x

0

)�

0

; 
D

n

+ d) 
k

j;�

(A

0

(x

0

)�

0

; 
D

n

+ d))

�

;


f. (5.1). In parti
ular, we get

k

j

(x

0

; �

0

; D

n

) := k

j;�

(x

0

; �

0

; D

n

)j

�=0

= 
k

j

(A

0

(x

0

)�

0

; 
D

n

+ b

T

�

0

); (5.17)

where k

j

(�

0

; D

n

) = k

j;�

(�

0

; D

n

)j

�=0

. Now we set

a

r

j;�

(x

0

; �

0

; D

n

) := a

j;�

(x

0

; �

0

; D

n

) +

�

k

r

j

(x

0

; �

0

; D

n

)t

r

j

(x

0

; �

0

; D

n

)

t

00

j

(x

0

; �

0

; D

n

)

�

; (5.18)

where

k

r

0

(x

0

; �

0

; D

n

) := �U

T

(x

0

)i

�

A

0

(x

0

)�

0


D

n

+ d

�

k

1

(x

0

; �

0

; D

n

)(A

0

(x

0

)i�

0

)

T

(5.19)

t

r

0

(x

0

; �

0

; D

n

)u := 


1

(x

0

; �

0

; D

n

)(U(x

0

)u)

0

; (5.20)

k

r

1

(x

0

; �

0

; D

n

) := U

T

(x

0

)i

�

A

0

(x

0

)�

0


D

n

+ d

�

k

0

(x

0

; �

0

; D

n

); (5.21)

t

r

1

(x

0

; �

0

; D

n

)u := �2


1

(x

0

; �

0

; D

n

)(U(x

0

)u)

n

; (5.22)

t

00

1

(x

0

; �

0

; D

n

)u := �U

T

(x

0

)

�

0 


0

A

0

(x

0

)�

0




0

(A

0

(x

0

)�

0

)

T

0

�

U(x

0

)u; (5.23)

and t

00

0

(x

0

; �

0

; D

n

) = 0 with d = b

T

(x

0

)�

0

. Be
ause of (5.14), (5.16), and (5.17), it easy

to 
he
k that

k

r

j

(x

0

; �

0

; D

n

)t

r

j

(x

0

; �

0

; D

n

) = U

T

(x

0

)(k

r

j

t

r

j

)(A(x

0

)�

0

; 
D

n

+ d)U(x

0

) (5.24)

for j = 0; 1. Therefore

a

r

j;�

(x

0

; �

0

; D

n

) = U

T

(x

0

) diag(1; 


�1

)a

r

j;�

(A

0

(x

0

)�

0

; 
D

n

+ d)U(x

0

)

and

a

r;�1

j;�

(x

0

; �

0

; D

n

) = U

T

(x

0

)a

r;�1

j;�

(A

0

(x

0

)�

0

; 
D

n

+ d) diag(1; 
)U(x

0

): (5.25)

This is the essential formula for the 
onstru
tion of the parametrix.

We have to estimate the semi-norms of the transformed symbols. Be
ause of

(5.15) and r

0


 2 C

0;1

(R

n�1

), we have A(x

0

), A

�1

(x

0

) 2 C

0;1

(R

n�1

). Thus the same

holds for A

0

(x

0

); A

0

(x

0

)

�1

, b(x

0

), 
(x

0

), and 


�1

(x

0

). Hen
e we 
an apply Lemma 5.4

and Lemma 5.5.
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Corollary 5.7 Let a

r

j;�

(x

0

; �), j = 0; 1, be the symbol to the transformed boundary

symbol operator of the redu
ed Stokes equations de�ned in (5.18). Then a

r

j

(x

0

; �; �) :=

a

r

j;�

(x

0

; �), � = e

i�

�

2

, and a

r;�1

j

(x

0

; �; �) are Green symbols of order 2, �2, respe
tively,

regularity

1

2

, and C

0;1

-smoothness in x

0

. Moreover, the semi-norms of the symbols

are uniformly bounded in � 2 [�Æ; Æ℄ for any Æ 2 (0; �).

5.4 H

1

-Cal
ulus for the Model Operators

In this se
tion we will prove the basi
 estimates for the singular Green operators of

the parametrix for the redu
ed Stokes equations on the boundary symbol operator

level.

First of all re
all that it is su�
ient to proof (1.9) for all h 2 H(Æ), where H(Æ)


onsists of all h 2 H

1

(Æ) su
h that

jh(z)j � C

jzj

s

1 + jzj

2s

for all z 2 �

��Æ

and some 
onstants C; s > 0, 
f. Amann, Hieber, and Simonett

[4℄. Moreover, sin
e A

q

and A

10

are invertible, it is su�
ient to estimate the Cau
hy

integral (1.8) for �

R

:= � nB

R

(0), R > 0, instead of �.

We �rst 
onsider the boundary symbol operators of the Lapla
e resolvent

r

j;�

(�

0

; D

n

)f = p

�

(�

0

; D

n

)

+

f � k

j;�

(�

0

; D

n

)t

j;�

(�

0

; D

n

)f; j = 0; 1;


f. (5.1)-(5.4), and the 
orresponding transformed boundary symbol operator

r

j;�

(x

0

; �

0

; D

n

) = r

j;�

(A

0

(x

0

)�

0

; 
D

n

+ b(x

0

)

T

�

0

):

The analysis of the pseudodi�erential operator parts p

�

(�

0

; D

n

)

+

and p

�

(x

0

; �

0

; D

n

)

+

is done at the end of this se
tion. The singular Green operator falls under the s
ope

of the following lemma, whi
h is similar to [9, Lemma 3℄ and [20, Lemma 3℄.

Lemma 5.8 Let g

�

(x

0

; �; �

n

) be a symbol whi
h is Lips
hitz 
ontinuous in x

0

2 R

n�1

,


ontinuous in � 2 �

Æ

n B

R

(0), 0 < Æ < �, R > 0, smooth in �

0

2 R

n�1

, and

in H

�1

^


H

�1

with respe
t to (�

n

; �

n

). Moreover, we assume that the symbol-kernel

~g

�

(x

0

; �

0

; x

n

; y

n

) := F

�1

�

n

7!x

n

�

F

�1

�

n

7!y

n

[g(x

0

; �; �

n

)℄ satis�es

kD

�

0

�

0

x

k

n

D

k

0

x

n

y

l

n

D

l

0

y

n

~g

�

(:; �

0

; x

n

; y

n

)k

C

0;1

� C

Æ;�

0

h�

0

i

�j�

0

j�k+k

0

�l+l

0

e

�


Æ

j�j

1

2

(jx

n

j+jy

n

j)

j�j

1

2

(5.26)

uniformly in �

0

2 R

n�1

, � 2 �

Æ

n B

R

(0), and x

n

; y

n

6= 0 for all �

0

2 N

n�1

0

; k; k

0

; l; l

0

2

f0; 1g and a 


Æ

> 0. Then
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n
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(R
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n
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�Æ
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);H
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0

2
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Æ;Æ
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i

�j�
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(5.27)
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(R
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;L(H

�Æ

0

2

;L

2

(jx

n

j

Æ

0

)))

� C

Æ;Æ

0

;�

0

h�

0

i

�j�

0

j

khk

1

(5.28)
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uniformly in �

0

2 R

n�1

for all h 2 H(Æ), 0 � Æ

0

<

1

2

, �

0

2 N

n�1

0

, where

g

�

(x

0

; �

0

; D

n

)f :=

Z

R

~g

�

(x

0

; �

0

; x

n

; y

n

)f(y

n

)dy

n

:

Remark 5.9 Note that the �singular Green operators� 
onsidered in this lemma are

operators a
ting on fun
tions de�ned on R instead of R

+

.

If g(:; �

n

; �

n

) 2 H

+

^


H

�

�1

, then ~g(:; x

n

; y

n

) = 0 if x

n

< 0 or y

n

< 0. Moreover, if

f 2 S(R

+

), then r

+

g

�

(:; D

n

)e

+

f , where g

�

(:; D

n

) is de�ned as above, 
oin
ides with

the usual de�nition of g

�

(:; D

n

)f as a singular Green operator.

Proof of Lemma 5.8: Be
ause of (2.2), we 
an repla
e k; l = 0; 1 by arbitrary

numbers a; b 2 [0; 1℄. Applying the modi�ed estimate, we get for f 2 L

2

(R; jx

n

j

2Æ

0

):

Z

�

R

�

�

�

D

�

0

�

0

D

k

0

x

n

�

jy

n

j

�Æ

0

g

�

�

(x

0

; �

0

; D

n

)(jy

n

j

Æ

0

f(y

n

))

�

�

�

dj�j

� C

�

0

;�

0

h�

0

i

k

0

+Æ

0

�j�

0

j

Z

R

Z

1

0

e

�


Æ

s

1

2

(jx

n

j+jy

n

j)

s

1

2

dsjjy

n

j

Æ

0

f(y

n

)jdy

n

� C

�

0

;�

0

h�

0

i

k

0

+Æ

0

�j�

0

j

Z

R

jjy

n

j

Æ

0

f(y

n

)j

jx

n

j+ jy

n

j

dy

n

:

Sin
e the integral operator with kernel k(x

n

; y

n

) =

1

jx

n

j+jy

n

j

is 
ontinuous on L

2

(R),

we get for k

0

= 0; 1
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�
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�

0

g

�
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; �
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n

)f(y

n
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�
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� khk
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n

�
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n
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�Æ

0
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�

�

(x

0

; �
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n
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n

j

Æ

0
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n
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�

�

�

dj�j













L

2
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�

)
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�
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�Æ

0
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�

�

(x

0

; �

0

; D

n

)jjy

n

j

Æ

0
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n
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�

�

�
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2
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�

)
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Æ;Æ

0
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0
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0
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0

i

k

0

+Æ

0

�j�

0

j

khk

1

kfk

L

2

(R;jy

n

j

2Æ

0

)

;

and therefore
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�

0

�

0

g

�

(x

0

; �

0

; D

n

)f(y

n
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H

�Æ

0

2

(R

�

)

� C

Æ;Æ

0
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0
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0

i

�j�

0

j

khk

1

kfk

L

2

(R;jy

n

j

2Æ

0

)

(5.29)

by 
omplex interpolation. Sin
e e

�

r

�

: H

s

2

(R) ! H

s

2

(R) is a 
ontinuous mapping

if jsj <

1

2

, 
f. [25, Lemma 2.10.2℄, f 2 H

�Æ

0

2

(R) i� r

+

f 2 H

�Æ

0

2

(R

+

) and r

�

f 2

H

�Æ

0

2

(R

�

). Moreover,

kfk

H

�Æ

0

2

(R)

'

�

kr

+

fk

H

�Æ

0

2

(R

+

)

+ kr

�

fk

H

�Æ

0

2

(R

�

)

�

:
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Hen
e we 
an repla
e H

�Æ

0

2

(R

�

) by H

�Æ

0

2

(R) on the left-hand side of (5.29).

The same estimate holds with g

�

(x

0

; �

0

; D

n

) repla
ed by g

�

(x

0

; �

0

; D

n

)�g

�

(y

0

; �

0

; D

n

)

and an additional multipli
ative term jx

0

�y

0

j on the right-hand sides of the estimates.

Hen
e the estimate (5.27) is proved.

Passing to the (pointwise) adjoint, (5.28) follows from (5.27) by duality.

Remark 5.10 In our 
ase, the symbol-kernel of g

�

will be of the form ~g

�

(x

0

; �

0

; x

n

; y

n

) =

~

k

�

(x

0

; �

0

; x

n

)

~

t

�

(x

0

; �

0

; y

n

), where

kD

�

0

�

0

x

m

n

D

m

0

x

n

~

k

�

(:; �

0

; x

n

)k

C

0;1

� C

Æ;�

0

e

�


Æ

j�j

1

2

jx

n

j

j�j

1

2

h�

0

i

�j�

0

j�m+m

0

(5.30)
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n
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0
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n

~
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(:; �
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e
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Æ

j�j

1

2
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n

j

h�
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i

�j�

0
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(5.31)

uniformly in �

0

2 R

n�1

, x

n

; y

n

6= 0, � 2 �

Æ

, j�j � 1, and for �

0

2 N

n�1

0

, m;m

0

= 0; 1.

It is a 
onsequen
e of [1, Lemma 3.5℄ that

~

k

j;�

h�; �

0

i

j�1

and

~

t

j;�

h�; �

0

i

1�j

satisfy (5.30)

and (5.31), respe
tively. Be
ause of

F

�1

�

n

[f(
�

n

+ d)℄(x

n

) = e

�idx

n

F

�1

�

n

[f(
�

n

)℄(x

n

) =

e

�idx

n




F

�1

�

n

[f ℄(x

n

=
);

and A

0

; b; 
; 


�1

2 C

0;1

(R

n�1

), the symbol-kernels of the transformed Poisson and

tra
e operators

~

k

j;�

(x

0

; �

0

; x

n

)h�; �

0

i

j�1

and

~

t

j;�

(x

0

; �

0

; x

n

)h�; �

0

i

1�j

satisfy the same

estimates.

Finally, we note that multipli
ation of the symbol-kernels with a pseudodi�er-

ential symbol s

�

(�

0

) of order 0 and regularity � � 0 does not disturb (5.30) and

(5.31).

Be
ause of Lemma 5.3 and (5.25),

r

r

j;�

(x

0

; �

0

; D

n

)f := a

r;�1

j;�

(x

0

; �

0

; D

n

)

�

f

0

�

= r

j;�

(x

0

; �

0

; D

n

)f � g

0

j;�

(x

0

; �

0

; D

n

)f: (5.32)

Unfortunately, the symbol-kernel of g

0

j;�

does not satisfy the (x

n

; y

n

-pointwise) esti-

mate (5.26). The 
riti
al term in the additional singular Green operator is of the

form g

�

(x

0

; �

0

; D

n

) = k

�

(x

0

; �

0

; D

n

)t

�

(x

0

; �

0

; D

n

) with

k

�

(x

0

; �

0

; D

n

) = p

�

(x

0

; �

0

; D

n

)

+

k

r

(x

0

; �

0

; D

n

)

where k

r

is a Poisson operators of order 1. The 
ru
ial observation is that p

�

(x

0

; �

0

; D

n

)

+


ommutes with k

r

(x

0

; �

0

; D

n

) in the following sense:

k

�

(x

0

; �

0

; D

n

)a = r

+

F

�1

�

n

7!x

n

[k

r

(x

0

; �)F

x

n

7!�

n

[:℄℄F

�1

�

n

7!x

n

[p

�

(x

0

; �)a℄

= r

+

m

k

r

(x

0

; �

0

; D

n

)k

p

�

(x

0

; �

0

; D

n

)a

where m

k

r

(x

0

; �

0

; D

n

) is a one-dimensional multiplier operator depending on (x

0

; �

0

)

with symbol k

r

(x

0

; �) and k

p

�

(x

0

; �

0

; D

n

) is a (generalized) Poisson operator with sym-

bol p

�

(x

0

; �), 
f. Remark 5.9.
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Lemma 5.11 Let m(x

0

; �), be smooth in � and in C

0;1

(R

n�1

) with respe
t to x

0

su
h

that

sup

�

n

2R

kD

�

0

�

0

�

k

n

D

k

�

n

m(:; �)k

C

0;1

� C

�

0

;k

h�

0

i

�j�

0

j

(5.33)

for �

0

2 N

n�1

0

, k = 0; 1. Let m(x

0

; �

0

; D

n

)' = F

�1

�

n

7!x

n

[m(x

0

; �)'̂(�

n

)℄ be the 
or-

responding multiplier operator. Moreover, let g

�

(x

0

; �) satisfy the assumptions of

Lemma 5.8 and let g

0

�

(x

0

; �

0

; D

n

) := m(x

0

; �

0

; D

n

)g

�

(x

0

; �

0

; D

n

). Then g

0

�

(x

0

; �

0

; D

n

)

satis�es the estimate (5.27).

Proof: Sin
e m is �-independent, we only have to show that D

�

0

�

0

m(x

0

; �

0

; D

n

) is


ontinuous on H = L

2

(R; jx

n

j

2Æ

0

) and H = H

Æ

0

2

(R), jÆ

0

j <

1

2

, and satis�es the estimate

kD

�

0

�

0

m(x

0
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0

; D

n

)k
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(5.34)

for every �

0

2 N

n�1

0

, j = 0; 1.

The estimate (5.33) implies that D

�

0

�

0

m(x

0

; �

0

; D

n

) is a one-dimensional Mikhlin

multiplier with respe
t to �

n

satisfying

[D

�

0

�

0

m(x

0

; �

0

; :)℄

M

� C

�

0

h�

0

i

�j�

0

j

and

[D

�

0

�

0

(m(x

0

; �

0

; :)�m(y

0

; �

0

; :))℄

M

� C

�

0

h�

0

i

�j�

0

j

jx

0

� y

0

j;

where [m℄

M

= sup

�

n

2R;k=0;1

j�

k

n

�

k

�

n

m(�)j. Sin
e jx

n

j

2Æ

0

is a Mu
kenhoupt weight of


lass A

2

, 
f. [22, Chapter V℄, i� jÆ

0

j <

1

2

, m(x

0

; �

0

; D

n

) is 
ontinuous on L

2

(R; jx

n

j

2Æ

0

)

for jÆ

0

j <

1

2

; 
f. [21℄ for an elementary proof. Moreover, the operator norm is bounded

by C[m℄

M

, where C depends on the weight jx

n

j

2Æ

0

. Hen
e (5.34) holds in the 
ase

H = L

2

(R; jx

n

j

Æ

0

). The 
ase H = H

Æ

0

2

(R) is obvious sin
e m(x

0

; �

0

; D

n

) 
ommutes

with hD

n

i

s

, s 2 R.

Lemma 5.12 Let k

r

2 C

0;1

S

0

1;0

(R

n�1

�R

n�1

;H

+

)
L(C

N

; C

n

) and let p

�

(x

0

; �

0

; D

n

)

be as in Remark 5.10. Then

p

�

(x

0

; �

0

; D

n

)

+

k

r

(x

0

; �

0

; D

n

) = r

+

m

k

r

(x

0

; �

0

; D

n

)k

p

�

(x

0

; �

0

; D

n

);

where

~

k

p

�

(x

0

; �

0

; x

n

) satis�es (5.30) and m

k

r

(x

0

; �) satis�es the 
ondition (5.33) of

Lemma 5.11.

Proof: Using the estimate kfk

1

� Ckfk

1

2

2

kf

0

k

1

2

2

for f 2 H

1

2

(R) and (4.1), we


on
lude

sup

�

n

2R

kD

�

0

�

0

�

m

n

D

m

�

n

k

r

(:; �)k

C

0;1

� C

�

0

;m

h�

0

i

�j�

0

j

;

for all m 2 N

0

, �

0

2 N

n�1

0

. Hen
e (5.33) holds for m

k

r

(�) = k

r

(�).

Using the previous results we get the following theorem:
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THEOREM 5.13 Let Æ 2 (0; �), 


0

> 0 be the 
onstant in Lemma 5.1, and

r

r

j;�

(x

0

; �

0

; D

n

) be the transformed boundary symbol operator for the resolvent of the

redu
ed Stokes operator de�ned in (5.32) with j = 0; 1. Then

r

r

j;�

(x

0

; �

0

; D

n

) = p

�

(x

0

; �

0

; D

n

)

+

+ g

r

j;�

(x

0

; �

0

; D

n

);

where g

r

j;�

satis�es (5.27). Hen
e













Z

�

R

h(��)g

r

j;�

(D

x

; x

0

)d�













L(L

q

(R

n

+

))

� C

Æ

khk

1

for every h 2 H(Æ) and R � maxf


0

; 1g.

Proof: We only 
onsider the Diri
hlet 
ase j = 0. The analysis of the 
ase j = 1 is

done in the same way.

The additional singular Green operator in (5.32) is

g

0

0;�

(:; D

n

) = r

0;�

(:; D

n

)k

r

0

(:; D

n

)s

0;�

t

r

0

(:; D

n

)r

0;�

(:; D

n

)

be
ause of Lemma 5.3 and (5.25). Then

r

0;�

(:; D

n

)k

r

0

(:; D

n

) = p

�

(:; D

n

)

+

k

r

0

(:; D

n

) + k

0;�

(:; D

n

)t

0;�

(:; D

n

)k

r

0

(:; D

n

);

where Lemma 5.12 
an be applied to p

�

(:; D

n

)

+

k

r

0

(:; D

n

). Moreover, t

0;�

(:; D

n

)k

r

0

(:; D

n

)

is a pseudodi�erential symbol of order 0 and regularity � � 0. Hen
e

h�; �

0

i

�1

~

k

0;�

(x

0

; �

0

; x

n

)t

0;�

(:; D

n

)k

r

0

(:; D

n

)

satis�es (5.30) be
ause of Remark 5.10. Similarly,

t

r

0

(:; D

n

)r

0;�

(:; D

n

) = t

r

0

(:; D

n

)p

�

(:; D

n

)

+

+ t

r

0

(:; D

n

)k

0;�

(:; D

n

)t

0;�

(:; D

n

);

where t

r

0

(:; D

n

)p

�

(:; D

n

)

+

satis�es (5.31) sin
e t

r

0

(:; D

n

) is a di�erential tra
e operator.

Moreover, t

r

0

(:; D

n

)k

0;�

(:; D

n

) is a pseudodi�erential symbol of order 0 and regularity

1

2

� 0. Altogether g

0

0;�

(:; D

n

) is the sum of operators satisfying the assumptions of

Lemma 5.8 and Lemma 5.11.

The last statement is a 
onsequen
e of Theorem 3.2 and Lemma 2.1.

It remains to estimate the pseudodi�erential operator part of the parametrix.

Lemma 5.14 Let 1 < q < 1, R > 0, and Æ 2 (0; �). Then p

�

(x; �) = (� +

jA(x)�j

2

)

�1

, x 2 R

n

, � 2 R, with A;A

�1

2 C

0;1

(R

n

)

n�n

satis�es













Z

�

R

h(��)D

�

�

p

�

(:; �)d�













C

0;1

� C

Æ;R;�

khk

1

h�i

�j�j

uniformly in � 2 R

n

, for all � 2 N

n

0

and h 2 H(Æ).
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Proof: The fun
tion � 7! p

�

(x; �) is meromorphi
 in C with a pole for � =

�jA(x)�j

2

. Therefore the pole is 
ontained in a 
ompa
t interval I � (�1; 0℄ if

j�j � 1 and x 2 R

n

. Using the homogeneity of D

�

�

p

�

(x; �) of order �2 � j�j, we get

with � = j�j� and � = j�j

2

z

Z

�

R

h(��)D

�

�

p

�

(x; �)d� =

Z

�

I

nB

R

(0)

h(�j�j

2

z)D

�

�

p

z

(x; �)dzj�j

�j�j

;

where �

I

is a 
urve around the 
ompa
t interval I with winding number 1 with

respe
t to the ea
h point in I. Using kD

�

�

p

z

(:; �)k

C

0;1

� C

�

for z 2 �

I

and j�j � 1,

we 
on
lude that













Z

�

R

h(��)D

�

�

p

�

(:; �)d�













C

0;1

� C

�

j�

I

jkhk

1

h�i

�j�j

for j�j � 1. If j�j < 1, we estimate the integral in the same way as before but without

using the substitution � = j�j

2

z.

5.5 Parametrix for the Poisson Operators

We have to estimate the di�eren
e of the Poisson operatorsK

j

and their parametri
es.

In the �rst step we 
onsider the 
ase R

n




, where 
 2 C

1;1

(R

n�1

). Let

e

K

j

= F

�;�1

k

j

(D

x

; x

0

)F

�

0

; j = 0; 1;

where F

�

and F

�

0

are the same operators as in Se
tion 5.2 and k

j

(x

0

; �

0

; D

x

) is de�ned

as in (5.17).

Lemma 5.15 Let R

n




be a 
urved half-spa
e, 
 2 C

1;1

(R

n�1

), and

e

K

j

, j = 0; 1, be

de�ned as above. Then

e

K

j

: W

1�j�

1

q

q

(�R

n




)!W

1

q

(R

n




) and

�

e

K

j

= F

�;�1

[R

0

j

+R

00

j

℄F

�

0




j

e

K

j

= I + S

j

;

where

1. R

0

j

: W

1�j�

1

q

�"

q

(R

n�1

)! L

q

(R

n�1

;L

1

(0; b)) with an arbitrary b 2 R

+

,

2. R

00

j

: W

1�j�

1

q

�"

q

(R

n�1

)! H

�1

q

(R

n�1

;L

q

(R

+

)), and

3. S

j

: W

1�j�

1

q

�"

q

(�R

n




)!W

1�j�

1

q

q

(�R

n




)

are bounded linear operators for some " > 0.
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Proof: Let jÆj <

1

2

and H

Æ

= L

2

(R

+

; x

Æ

n

) if Æ � 0 and H

Æ

= H

�Æ

2

(R

+

) if Æ < 0.

Be
ause of Lemma 5.5, k

j

2 C

0;1

S

�j�1

1;0

(R

n�1

� R

n�1

;H

+

). Sin
e j1� j �

1

q

j < 1, we


an apply Theorem 4.8 to 
on
lude

e

K

j

: W

1�j�

1

q

q

(�R

n




)!W

1

q

(R

n




):

Due to Lemma 5.6,

�

e

K

j

= F

�;�1

� k

j

(D

x

; x

0

)F

�

0

+ F

�;�1

R

0

k

j

(D

x

; x

0

)F

�

0

;

where R

0

= a(x

0

) � r, a 2 L

1

(R

n�1

)

n

. Hen
e Theorem 4.8 implies

R

0

k

j

(D

x

; x

0

) : B

1�j�

1

q

�"

q

(R

n�1

)! L

q

(R

n

;L

1

(0; b))

for every " 2 (0;

1

q

0

) and b 2 R

+

sin
e rk

j

(D

x

; x

0

) is a Poisson operator of order 1�j.

Sin
e � = OP(�jA(x

0

)�j

2

) is a di�erential operator in x-form and

k

j

(x

0

; �

0

; D

n

) 2 C

0;1

S

�j�

1

2

�Æ

1;0

(R

n�1

� R

n�1

;L(C ; H

Æ

));


f. Remark 4.2, we 
an apply Corollary 3.4 and get for arbitrary jÆj <

1

2

that

R

00

j

:= � k

j

(D

x

; x

0

)� OP

0

(OP

n

(�jA(y

0

)�j

2

)k

j

(y

0

; �

0

; D

n

))

satis�es

R

00

j

: H

1�j�

1

2

�Æ�"

q

(R

n�1

)! H

�1+"

0

q

(R

n�1

;H

Æ

)

for some "; "

0

> 0. Hen
e R

00

j

: H

1�j�

1

2

�Æ�"

q

(R

n�1

) ! H

�1

q

(R

n�1

;H

Æ

) and, be
ause of

Lemma 2.1,

R

00

j

: B

1�j�

1

q

�"

q

(R

n�1

)! H

�1

q

(R

n�1

;L

q

(R

+

))

for some " > 0. Sin
e

OP

n

(h

+

�

n

[jA(y

0

)�j

2

k

j

(y

0

; �)℄) = OP

n

(jA(y

0

)�j

2

)

+

k

j

(y

0

; �

0

; D

n

) = 0

for j�

0

j � 1, the Poisson symbol h

+

�

n

[jA(y

0

)�j

2

k

j

(y

0

; �)℄ is of order �1. Hen
e

R

000

j

:= �OP(h

+

�

n

jA(y

0

)�j

2

k

j

(y

0

; �)) : B

1�j�

1

q

�"

q

(R

n�1

)! L

q

(R

n

+

)

for all 0 < " <

1

q

0

. Thus we have proved 1. and 2.

Finally, if j = 0, then 


0

e

K

0

= I and S

0

= 0. If j = 1, then Lemma 4.10 yields




1

e

K

1

= F

�;�1

0




1

(x

0

; D

x

))k

1

(D

x

; x

0

)F

�

0

= F

�;�1

0

OP

0

(


1

(y

0

; �

0

; D

n

)k

1

(y

0

; �

0

; D

n

))F

�

0

+ S

0

1

with S

0

1

: B

�

1

q

�"

q

(�R

n




)! B

�

1

q

q

(�R

n




). Sin
e 


1

(y

0

; �

0

; D

n

)k

1

(y

0

; �

0

; D

n

) = I for j�

0

j � 1,




1

e

K

1

= I + S

1

; where S

1

: B

�

1

q

�"

q

(�R

n




)! B

�

1

q

q

(�R

n




) for some " > 0.

Now let 





� R

n

be an asymptoti
ally �at C

1;1

-domain and " > 0 be a number

su
h that " <

1

2

dist(�


+




; �


�




). We 
hoose 
ut-o� fun
tions '

�

2 C

1

(





) with
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1. '

�

(x) = 1 for dist(x; �


�




) � "=3, 0 � '

�

� 1, and

2. '

�

(x) = 0 for dist(x; �


�




) � 2"=3.

Moreover, let  

�

2 C

1

(





) su
h that

1.  

�

(x) = 1 for dist(x; �


�




) � 2"=3, 0 �  

�

� 1, and

2.  

�

(x) = 0 for dist(x; �


�




) � ",

and let

e

K

�

j

denote the parametri
es of the Poisson operators in R

n




�

de�ned above.

We will use

e

K

1

a =  

+

e

K

+

1

a

+

+  

�

e

K

�

1

a

�

for a 2 W

�

1

q

�s

q

(�





);

e

K

01

a =  

+

e

K

+

0

a

+

+  

�

e

K

�

1

a

�

for a

+

2 W

1�

1

q

�s

q

(�





); a

�

2 W

�

1

q

�s

q

(�





);

s 2 [0;

1

q

0

), as parametri
es for K

0

, K

01

, respe
tively, in 





.

Lemma 5.16 Let 1 < q < 1, 





� R

n

be an asymptoti
ally �at C

1;1

-domain, K

1

be the Poisson operator of the Neumann problem in 





, and let K

01

be the Poisson

operator of the mixed Diri
hlet-Neumann problem. Moreover, let

e

K

1

and

e

K

01

be

de�ned as above. Then

kr(K

1

�

e

K

1

)


�

(��r div)uk

q

� Ckuk

2�";q

;

kr(K

01

�

e

K

01

)ak

q

� C(ka

+

k

1�

1

q

�";q

+ ka

�

k

�

1

q

�";q

)

for all u 2 W

2�"

q

(





)

n

, (a

+

; a

�

) 2 W

1�

1

q

�"

q

(�


+




)�W

�

1

q

�"

q

(�


�




) and some " > 0.

Proof: Let us �rst 
onsider the mixed Diri
hlet-Neumann 
ase. Let f 2 L

q

0

(





)

n

and let f = f

0

+ rp, f

0

2

0

J

q

0

(





) = ff 2 L

q

0

(





)

n

: div f = 0; 


�

�

f = 0g,

p 2

0

W

1

q

0

(





) = fp 2 W

1

q

0

(





) : 


+

0

p = 0g, k(f

0

;rp)k

q

0

� C

q

kfk

q

0

, be its Helmholtz

de
omposition with mixed boundary data, 
f. [3, Corollary A.3℄. Then

(r(K

01

�

e

K

01

)a; f)







= (


+

0

(K

01

�

e

K

01

)a; 


+

�

f

0

)

�


+




+ (r(K

01

�

e

K

01

)a;rp)







= (�

e

K

01

a; p)







+ (a

�

� 


�

1

e

K

�

1

a

�

; 


+

0

p)

�


�




sin
e div f

0

= 0, 


�

�

f

0

= 0, 


+

0

K

01

a = a

+

= 


+

0

e

K

01

a, �K

01

a = 0; 


�

1

K

01

= a

�

,




�

1

e

K

01

a = 


�

1

e

K

�

1

a

�

, and 


+

0

p = 0. By 
onstru
tion,

�

e

K

01

a =  

+

�

e

K

+

0

a

+

+  

�

�

e

K

�

1

a

�

+ P

+

e

K

+

0

a

+

+ P

�

e

K

�

1

a

�

;

where P

�

are di�erential operators of order 1 with 
oe�
ients supported in suppr 

�

and dist(suppr 

�

; �





) > 0. Therefore P

+

e

K

+

0

and P

�

e

K

+

1

are operators of or-

der �1, 
f. Remark 4.9, whi
h implies that P

+

e

K

0

: W

�s

q

(�R

n




+

) ! L

q

(R

n




+

) and

P

�

e

K

1

: W

�s

q

(�R

n




�

)! L

q

(R

n




�

) for all jsj < 1. Thus

(�

e

K

01

a; p)







= (�

e

K

+

0

a

+

;  

+

p)

R

n




+

+ (�

e

K

�

1

a

�

;  

�

p)

R

n




�

+ (Ra; p)







;
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where j(Ra; p)j � C(ka

+

k

1�

1

q

�";q

+ka

�

k

�

1

q

�";q

)kfk

q

0

for an " > 0. Using Lemma 5.15,
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+
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+
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+
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+
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+
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+
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+
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;
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+
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+
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�
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1
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+
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�
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0
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+
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+
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�
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+
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+
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+
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q

0
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+
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+
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1
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q

0

:

Similarly, we 
on
lude

�

�

�

(�

e

K

�

1

a

�
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�
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R
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�
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�

1
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q

0

: Finally, be
ause of

Lemma 5.15, a

�

�


�

1

e

K

�

1

a

�

= �S

1

a

�
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1
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�

1

q

�"

q

(�R
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�

)! W

�

1

q

q

(�R

n




�

), whi
h

proves the Lemma in the mixed Diri
hlet-Neumann 
ase.

In 
ase of pure Neumann boundary 
onditions we use the usual Helmholtz de-


omposition f = f

0

+ rp with f

0

2 J

q

0

;0

(





) = ff 2 L

q

0

(





: div f = 0; 


�

f = 0g

and p 2

_

W

1

q

0

(





), 
f. [3, Corollary A.3℄. Then
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1

�

e

K

1
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1

�

e

K

1
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; a = 


�
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e (r~p; f

0

) = 0 for every ~p 2

_

W

1

q

(





). Sin
e p is not in L

q

0

(





) in general, we

split p = p

1

+ p

2

2

_

W

1

q

0

(





) with p

1

2 W

1

q

0

(





), p

2

= p

2

(x

0

) 2 L

q
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(R
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r

0

p

2

2 W

1

q

0

(R
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), satisfying kp

1
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1;q

0
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0

p

2

k

1;q

0

� Ckrpk

q

0

, 
f. [3, Remark 2.6.2℄.

Then we 
an prove as in the mixed 
ase that

�

�

�
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�
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:

Therefore it remains to estimate (r(K

1

�

e

K

1

)a;rp

2

), whi
h 
an be done separately:
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1
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2
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2
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;
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1

q

0

, and
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e

K

1
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2
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�

k(rk

1

(D

x
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0
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�
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a

+
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1

(D

x
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0
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�
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a

�
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L

q

(R
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1
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�
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0

p

2

k

q

0
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�
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q
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0

p

2

k

L

q

0

(R
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)

for all 0 < " <

1

q

0

and a suitable large b 2 R

+

be
ause of Remark 4.9.
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5.6 Parametrix for the Redu
ed Stokes Equations

We �rst 
onsider the 
ase of a 
urved half-spa
e R

n




. In this 
ase we de�ne

R

j;�

:= F

�;�1

OP

0

(r

r

j;�

(y

0

; �

0

; D

n

))F

�

as parametrix for the redu
ed Stokes equations, where r

r

j;�

is de�ned in (5.32). Be-


ause of Corollary 5.7, Theorem 3.2, and Theorem 4.8.3, R

j;�

: L

q

(R

n




)

n

! W

2

q

(R

n




)

n

with operator norm uniformly bounded in � 2 �

Æ

[ f0g, Æ 2 (0; �). Consid-

ering r

r

j;�

(y

0

; �) as Green symbol of order 0 with symbol semi-norms bounded by

C

Æ

(1 + j�j)

�1

, 
f. Remark 3.6 and Remark 4.6.1, we 
on
lude kR

j;�

k

L(L

q

(R

n




))

�

C

Æ

(1 + j�j)

�1

. Hen
e

R

j;�

: L

q

(R

n




)

n

! W

2

q;�

(R

n




)

n

(5.35)

with operator norm uniformly bounded in � 2 �

Æ

[ f0g, Æ 2 (0; �).

Lemma 5.17 Let R

n




be a 
urved half-spa
e with C

1;1

-boundary, Æ 2 (0; �), and R

j;�

,

j = 0; 1, be de�ned as above. Then

(���)R
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= I �

e

G

j;�

+R
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0

R

0;�
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0

1

R
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�
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e
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; �
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n

)r

r

j;�

(y

0

; �
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n
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�
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0
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�

k
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q
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);W
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1

q
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))

� C

Æ

(1 + j�j)

�"

uniformly in � 2 �

Æ

for

some " > 0.

Proof: It is su�
ient to prove the estimates of R

0

j;�

and S

�

for j�j � 


0

where




0

is the 
onstant su
h that the model operator of the redu
ed Stokes equations is

invertible, 
f. Lemma 5.1.

Due to Lemma 5.6 and (5.35),

(���)R
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(r

r
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; �

0
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n

))F

�

+

e

R

�
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e

R

�

= O((1 + j�j)

�

1

2

). Be
ause of Lemma 4.10 and the de�nition of r

r

j;�

, we
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n
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e
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;

where

k

e

R

�

k

L(L

q

(R
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+
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�

�

�

�

p

�

�

�

�
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k

+

�

�
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g
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�
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�
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�
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2
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+
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for an " > 0 and k 2 N due to Remark 3.6 and Remark 4.6.1.

Finally, 


0

R

0;�

f = F

�;�1

0

OP

0

(


0

r

r

0;�

(y

0

; �

0

; D

n

))F

�

= 0. Hen
e it remains to esti-

mate T

0

1

R
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. Be
ause of Lemma 5.6,

T
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1
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0
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x
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�

:
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e t

0

1

(x

0

; D

x

) 
onsists of terms of the form a(x

0

)


0

�

j

, a 2 C

0;1

(R

n�1

), and r

r

1;�

(y

0

; �)


an be 
onsidered as symbol of order �2 or

1

q

, Lemma 4.10.4 implies

t

0
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x
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r
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0
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�

=
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for an " > 0.

Now let 





� R

n

be an asymptoti
ally �at domain and let '

+

; '

�
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+

;  

�

be

de�ned as in the previous se
tion. Moreover, let '

0

= 1�'

+

�'

�
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0
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1
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)
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0
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0
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0
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.
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R
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+
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+
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;

and R
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= R

00;�

, where R

�
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, j = 0; 1, is the parametrix in the 
urved half-spa
e R
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�

de�ned above and P

�
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2

)
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Lemma 5.18 Let 1 < q < 1 and Æ 2 (0; �). Then the operators de�ned above
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for an " > 0 be
ause of Lemma 5.17. Hen
e it remains to estimate the di�eren
es
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ause of Lemma 5.6,
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Hen
e Lemma 4.10.4 yields
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) is a parameter-

dependent tra
e operator of order d � 2, 
lass 0, and regularity

1

2

be
ause of the


omposition rules for boundary symbol operators, 
f. Remarks 4.7. Therefore all

error terms 
an be estimated by Cjt

0

�

j

(d�2+2")

k

� C(1 + j�j)

�"

jt

0

�

j

(d�2;

1

2

)

k

: Finally, the

statements for the tra
es of R

0;�

and R

10;�

are dire
t 
onsequen
es of Lemma 5.17.

Remark 5.19 Note that the latter lemma is used in the proof of [3, Lemma 4.3℄

and that we did not use the unique solvability of the redu
ed and generalized Stokes

equations so far.

Proof of Theorem 1.1: Let

S

0

1;�

f = (���+G

0

)

�1

S

1;�

f; S

0

2;�

f = (���+G

10

)

�1

S

2;�

f +K

r

10;�

S

3;�

f;

where K

r

10;�

denotes the solution operator of the redu
ed Stokes equation (1.5)-(1.7)

with j = 1 and right-hand side f = 0 and a

+

2 W

1�

1

q

q;�

(�


+




)

n

. Then

(���+G

0

)

�1

= R

0;�

+ S

0

1;�

; (���+G

10

)

�1

= R

10;�

+ S

0

2;�

with kS

0

j;�

k

L(L

q

(





))

� C

q;Æ

(1 + j�j)

�1�"

uniformly in � 2 �

Æ

, j�j � 
 > 0 for every


 > 0. Therefore S

0

j;�

, j = 1; 2, 
orresponds to an absolutely integrable part in (1.8)

and 
an be negle
ted, 
f. [4, Lemma 2.1℄. Sin
e ��+G

10

is invertible and be
ause

of Lemma 5.18, Theorem 5.13, and Lemma 5.14, we 
on
lude that ��+G

10

admits

a bounded H

1

-
al
ulus with respe
t to Æ.

Finally, the Stokes operator admits a bounded H

1

-
al
ulus with respe
t to Æ

sin
e A

q

= �� +G

0

j

J

q;0

(





)

, (�+ A

q

)

�1

= (���+G

0

)

�1

j

J

q;0

(





)

, � 2 C n (�1; 0℄,


f. [3, Remark 3.3℄, and the Stokes operator is invertible.

A Non-Smooth Pseudodi�erential Operators

For the proof of Theorem 3.2, we will pro
eed as in [23, �2.1℄ and have to verify that

all statements remain true for operator-valued pseudodi�erential operators.

For this purpose, we need the following more general 
lass of non-smooth operator

valued pseudodi�erential operators, whi
h generalizes the Hörmander 
lasses S

m

1;Æ

.
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De�nition A.1 The set C

s

�

S

m

1;Æ

(R

n

�R

n

;L(H

0

; H

1

)), Æ 2 [0; 1℄, s > 0, m 2 R, is the

set of all symbols p : R

n

� R

n

! L(H

0

; H

1

) that are smooth in � and are in C

s

�

with

respe
t to x and satisfy the estimates

sup

x2R

n

kD

�

�

p(x; �)k

L(H

0

;H

1

)

� C

�

h�i

m�j�j

kD

�

�

p(:; �)k

C

s

�

(R

n

;L(H

0

;H

1

))

� C

�

h�i

m�j�j+sÆ

for all � 2 N

n

0

.

The 
orresponding operators are de�ned in the usual way.

The proof of Theorem 3.2 relies essentially on the following operator-valued vari-

ant of [23, Theorem 2.1.A.℄.

THEOREM A.2 If r > 0, 1 < q <1, and p 2 C

r

�

S

m

1;1

(R

n

� R

n

;L(H

0

; H

1

)), then

p(x;D

x

) : H

s+m

q

(R

n

;H

0

)! H

s

q

(R

n

;H

1

)

for all 0 < s < r.

Proof: The proof is done in the same way as in [23℄ using elementary estimates and

inequalities based on

C

0

q

kuk

L

q

(R

n

;H)

�



















 

1

X

j=0

k'

j

(D

x

)uk

2

H

!

1

2



















L

q

(R

n

;H)

� C

q

kuk

L

q

(R

n

;H)

for all 1 < q <1, where H = C and '

j

(�) are smooth fun
tions su
h that supp'

0

�

B

1

(0), supp'

1

� f

1

2

� j�j � 2g, '

j

(�) = '

1

(2

1�j

�) for j � 2, and

P

1

j=0

'

j

(�)

2

= 1:

The latter estimate is also valid if H is a Hilbert spa
e. In this 
ase `

2

(N

0

;H) is

again a Hilbert spa
e and we 
an apply the ve
tor-valued Mikhlin multiplier theorem

as in the proof of the usual Littlewood-Paley estimate, 
f. [23, �0.11.℄.

First of all, the 
ontinuity of p(D

x

; x) in Theorem 3.2 
an be redu
ed by duality

to the statement for operators in L-form. Sin
e C

r

�

S

m

1;Æ

� C

r

�

S

m

1;1

for Æ 2 [0; 1℄, the

last theorem implies the statement of Theorem 3.2 for s > 0. For the proof in the


ase of �r < s � 0, we will use the te
hnique of symbol smoothing.

Let p 2 C

r

�

S

m

1;Æ

(R

n

� R

n

;L(H

0

; H

1

)), r > 0. If r 62 N , then C

r

�

= C

r

and there

exists a de
omposition

p(x; �) = p

#

(x; �) + p

b

(x; �) with (A.1)

p

#

(x; �) =

1

X

k=0

	

0

(2

�k(
�Æ)

D

x

)p(x; �) 

k

(�);
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where 
 2 (Æ; 1℄ and 	

0

2 C

1

0

(R

n

) with 	

0

(�) = 1 for j�j � 1 and 	

0

(�) = 0

for j�j � 2 and  

k

(�) := 	

0

(2

�k

�) � 	

0

(2

�k+1

�), k � 1,  

0

(�) := 	

0

(�). For this

de
omposition we have

p

#

(x; �) 2 S

m

1;


; p

b

(x; �) 2 C

r

�

S

m�r(
�Æ)

1;


; (A.2)


f. [24, Proposition 3.2.℄ or [23, �1.3.℄. This de
omposition easily 
arries over to the

ve
tor-valued 
ase sin
e it only uses the symbol estimates.

Using this de
omposition we prove:

Proposition A.3 Let 1 < q < 1 and let p 2 C

r

�

S

m

1;Æ

(R

n

� R

n

;L(H

0

; H

1

)), m 2 R,

Æ 2 [0; 1℄, r > 0. Then

p(x;D

x

) : H

s+m

q

(R

n

;H

0

)! H

s

q

(R

n

;H

1

)

for all s 2 R with �r(1� Æ) < s < r.

Proof: The proof is just a modi�
ation of the proof of [23, Proposition 2.1.D℄.

Now we are able to prove Theorem 3.3.

Proof of Theorem 3.3: Let p

i

2 C

�

i

�

S

m

i

1;0

, i = 1; 2, as in the assumption of the

theorem. We set Æ

i

:=

�

�

i

. Then

Æ

1

� Æ

2

; ��

1

(1� Æ

1

) = ��

1

+ � < s; ��

2

(1� Æ

2

) = ��

2

+ � < s +m

1

; 1� Æ

i

� �

sin
e � < minf�

1

+ s; �

2

+ s +m

1

g and � �

�

i

1+�

i

. Let p

i

(x; �) = p

#

i

(x; �) + p

b

i

(x; �)

su
h that p

#

i

2 S

m

i

1;Æ

i

and p

b

i

2 C

�

i

�

S

m

i

��

1;Æ

i

. Then we get

(p

1

p

2

)(x;D

x

)� p

1

(x;D

x

)p

2

(x;D

x

)

= (p

#

1

p

#

2

)(x;D

x

)� p

#

1

(x;D

x

)p

#

2

(x;D

x

)(p

#

1

p

b

2

)(x;D

x

)� p

#

1

(x;D

x

)p

b

2

(x;D

x

) +

+(p

b

1

p

2

)(x;D

x

)� p

b

1

(x;D

x

)p

2

(x;D

x

):

We will estimate ea
h di�eren
e separately with the aid of Proposition A.3.

1. Due to the usual symboli
 
al
ulus (p

#

1

p

#

2

)(x;D

x

) � p

#

1

(x;D

x

)p

#

2

(x;D

x

) is a

pseudodi�erential operator with symbol in S

m

1

+m

2

�1+Æ

1

1;Æ

1

sin
e Æ

1

� Æ

2

and Æ

1

<

1. (See e.g. [16, Chapter 2, Theorem 1.7℄.)

Due to Proposition A.3 and 1� Æ

1

� �, we get the 
ontinuity

(p

#

1

p

#

2

)(x;D

x

)� p

#

1

(x;D

x

)p

#

2

(x;D

x

) : H

s+m

1

+m

2

��

q

(R

n

;H

0

)! H

s

q

(R

n

;H

2

):

2. Using Proposition A.3 again,

p

b

2

(x;D

x

) : H

s+m

1

+m

2

��

q

(R

n

;H

0

)! H

s+m

1

q

(R

n

;H

1

)
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sin
e ��

2

(1 � Æ

2

) = ��

2

+ � < s + m

1

< �

1

. Moreover, p

#

1

(x; �) is a smooth

symbol of order m

1

. Therefore we 
on
lude

p

#

1

(x;D

x

)p

b

2

(x;D

x

) : H

s+m

1

+m

2

��

q

(R

n

;H

0

)! H

s

q

(R

n

;H

2

): (A.3)

Considering (p

#

1

p

b

2

)(x;D

x

), we observe that p

#

1

p

b

2

2 C

�

1

�

S

m

1

+m

2

��

1;Æ

1

. Hen
e we

get the same mapping properties as in (A.3).

3. Sin
e p

b

1

p

2

2 C

�

1

�

S

m

1

+m

2

��

1;Æ

1

, we get the same 
ontinuity as in (A.3). Finally,

p

b

1

(x;D

x

) : H

s+m

1

��

q

(R

n

;H

1

)! H

s

q

(R

n

;H

2

);

p

2

(x;D

x

) : H

s+m

1

+m

2

��

q

(R

n

;H

0

)! H

s+m

1

��

q

(R

n

;H

1

)

be
ause of ��

1

(1� Æ

1

) = ��

1

+ � < s < �

1

and ��

2

< s+m

1

� � < �

2

.
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