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Abstrat

We study the generalized Stokes equations in asymptotially �at layers,

whih an be onsidered as ompat perturbations of an in�nite (�at) layer




0

= R

n�1

� (�1; 1). Besides standard non-slip boundary onditions, we on-

sider a mixture of slip and non-slip boundary onditions on the upper and lower

boundary, respetively. In this seond part, we use pseudodi�erential operator

tehniques to onstrut a parametrix to the redued Stokes equations, whih

solves the system in L

q

-Sobolev spaes, 1 < q < 1, modulo terms whih get

arbitrary small for large resolvent parameters �. This parametrix an be ana-

lyzed to prove the existene of a bounded H

1

-alulus of the (redued) Stokes

operator.

Key words: Stokes equations, free boundary value problems, boundary value

problems for pseudodi�erential operators, non-smooth pseudodi�erential oper-

ators
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1 Introdution

We onsider the generalized Stokes resolvent equations

(���)u+rp = f in 




; (1.1)

div u = g in 




; (1.2)

T

+

j

(u; p) = a

+

on �


+



; (1.3)

uj

�


�



= 0 on �


�



(1.4)

with j = 0 or j = 1 and � 2 C n (�1; 0), where

T

+

0

(u; p) = uj

�


+



; T

+

1

(u; p) = (� � S(u)� �p)j

�


+



; S(u) = ru+ (ru)

T

;

1



and � 2 �

Æ

[ f0g. Here 




� R

n

, n � 2, is an asymptotially �at layer with

C

1;1

-boundary, i.e.,






= f(x

0

; x

n

) 2 R

n

: 

+

(x

0

) < x

n

< 

�

(x

0

)g

and 

�

! �1 and r

�

;r

2



�

! 0 as jx

0

j ! 1, f. [3℄. Moreover, �


�



=

f(x

0

; 

�

(x

0

)) : x

0

2 R

n�1

g.

In [3, Setion 3℄ it is proved that (1.1)-(1.4) are uniquely solvable (with the

restrition � 6= 0 if j = 0) if and only if the redued Stokes equations

(���)u+G

j0

u = f in 




; (1.5)

T

0

j

+

u = a

+

on �


+



; (1.6)

uj

�


�



= 0 on �


�



; (1.7)

where

G

00

u = G

0

u = rK

1

� � (��r div)uj

�




; G

10

u = rK

01

�

2�

�

u

�

j

�


+



� � (��r div)uj

�


�



�

;

T

0

0

+

u = uj

�


+



; (T

0

1

+

u)

�

= (� � S(u))

�

j

�


+



; (T

0

1

+

u)

�

= div uj

�


+



;

are uniquely solvable (in suitable L

q

-Sobolev spaes, see [3, Setion 3℄ for details.)

Here K

1

and K

01

denote the Poisson operators for the Laplae equation (� = 0).

The redued system (1.5)-(1.7) �ts well into the general alulus of parameter-

dependent pseudodi�erential boundary value problems developed by Grubb in [12℄.

In Grubb and Solonnikov [15℄, the authors used this approah and applied general

results for paraboli boundary value problems to solve the instationary Navier-Stokes

equations in anisotropi L

2

-Sobolev in bounded smooth domains loally in time for

various kinds of boundary onditions. Later this result was extended to L

q

-Sobolev

spaes, f. [11℄, and smooth exterior domains, f. [13℄.

In the following, we will use the alulus developed in [12℄ to onstrut a parametrix

to the redued Stokes system (1.5)-(1.7), whih oinides with the exat solution op-

erator modulo term whih deay faster as j�j ! 1. Using this parametrix, we prove

that the usual Stokes operator in the Dirihlet ase and the redued Stokes operator

in the mixed ase admit a bounded H

1

-alulus in the sense of MIntosh [18℄.

THEOREM 1.1 Let 1 < q <1, Æ 2 (0; �), and let 




� R

n

be an asymptotially

�at layer with C

1;1

-boundary. Moreover, let A

q

= �P

q

� be the Stokes operator and

A

10

= ��+G

10

be the redued Stokes operator with domains

D(A

q

) = W

2

q

(




)

n

\W

1

q;0

(




)

n

\ J

q;0

(




);

D(A

10

) =

n

u 2 W

2

q

(




)

n

: T

0

1

+

u = 0; uj

�


�



= 0

o

; resp:;

f. [3℄. Then A

q

and A

10

admit a bounded H

1

-alulus with respet to Æ on X =

J

q;0

(




) and X = L

q

(




)

n

, resp. , i.e.,

h(A) =

1

2�i

Z

�

h(��)(� + A)

�1

d�; A = A

q

; A

10

; (1.8)
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is a bounded operator on X and

kh(A)k

L(X)

� C

Æ

khk

1

(1.9)

for every h 2 H

1

(Æ). Here H

1

(Æ) denotes the algebra of all bounded holomorphi

funtions h : �

��Æ

! C and � is the negatively oriented boundary of �

Æ

= fz 2

C n f0g : j arg j < Æg.

The theorem implies the existene of bounded imaginary powers A

iy

, y 2 R, of the

Stokes and the redued Stokes operator sine h

y

(z) = z

iy

2 H

1

(Æ). Hene the

result of Dore and Venni [7℄ implies the maximal regularity of the (redued) Stokes

operators.

The parametrix in 




is de�ned with the aid of the parametrix in urved half-

spaes R

n



= f(x

0

; x

n

) 2 R

n

: x

n

> (x

0

)g by means of a simple partition of unity.

Here the parametrix in R

n



is onstruted by transforming the equations to a system

in R

n

+

with variable oe�ients and freezing oe�ients. In order to onstrut the

parametrix assuming only C

1;1

-regularity of the boundary, it is neessary to modify

the general theory in [12℄, whih assumes smooth oe�ients. This will be done

by ombining the tehniques and results for pseudodi�erential operators with non-

smooth oe�ients developed in [17, 23, 24℄ (in an operator-valued version) with

known fats for the smooth oe�ient ase, f. Setions 3 and 4 below. In order to

prove the boundedness of (1.8), we have to analyze the symbols of the parametrix

preisely. This is done by relating the symbol of the parametrix in R

n



to the symbols

of the solution operators of the redued Stokes equations in R

n

+

, f. Setion 5.3 below.

The struture of the redued Stokes equations enables us to onsider the resolvent

of the redued Stokes operator as perturbation of the Laplae resolvent, f. Setion

5.1 below. Then we obtain the neessary estimates to prove boundedness of (1.8) in

Setion 5.4 below.

Remark 1.2 Note that the method presented here is not restrited to asymptotially

�at domains. It has muh in ommon with the �rst published proof that the Stokes

operator in a bounded domain possesses bounded imaginary powers presented by

Giga [9℄, whih is also based on pseudodi�erential operator tehniques. Sine the

following proof uses the redued Stokes equations, we an also deal with more general

boundary onditions. In [9℄, the proof is presented in the ase of a smooth bounded

domain, but an be modi�ed for the ase of a C

2;�

-boundary, � > 0.

An alternative method, using a perturbation theorem for the H

1

-alulus, an

be found in Noll and Saal [19℄. In the latter ontribution the existene of a bounded

H

1

-alulus for the Stokes operator in a bounded and exterior domain in R

n

, n � 3,

with C

3

-boundary is proved.

In the speial ase of an in�nite layer, a more elementary proof that the Stokes

operator possesses bounded imaginary powers based on Mikhlin multiplier tehniques

is presented in Abels [1℄.
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2 Preliminaries

We will use the same notation and funtion spaes as in [3℄. Additionally, F and

F

�1

denote the Fourier and inverse Fourier transformation,

F [f ℄(�) :=

^

f(�) :=

Z

R

n

e

�ix��

f(x)dx; F

�1

[f ℄(x) :=

�

f(x) :=

Z

R

n

e

ix��

f(�)��;

de�ned for a suitable funtion f : R

n

! C , where �� := (2�)

�n

d�. Note that in the

following all integrals with respet to a phase � will be saled by (2�)

�n

as above.

Moreover, we will use partial Fourier transformation

F

x

0

7!�

0

[f ℄(�

0

; x

n

) :=

~

f(�

0

; x

n

) :=

Z

R

n�1

e

�ix

0

��

0

f(x

0

; x

n

)dx

0

and the onjugate Fourier transformation

�

F [f ℄(�) = F [f ℄(��).

Let h�i = (1 + j�j

2

)

1

2

, � 2 R

n

, and let hD

x

i

s

= OP(h�i

s

) = F

�1

[h�i

s

F [:℄℄, s 2 R.

Moreover, S(R

n

) denotes the spae of rapidly dereasing smooth funtions f : R

n

!

C and S

0

(R

n

) denotes the spae of tempered distributions. Reall that the Bessel

potential spae H

s

q

(R

n

), 1 < q <1, s 2 R, is de�ned as the spae of all f 2 S

0

(R

n

)

for whih hD

x

i

s

f 2 L

q

(R

n

), with norm

kfk

H

s

q

= khD

x

i

s

fk

L

q

:

Moreover, S(R

n

;X) and H

s

q

(R

n

;X) denote the vetor-valued variants, where X is a

Banah spae.

As in [14, 10℄, the spae H

s

q

(R

n

+

) = r

+

H

s

q

(R

n

) is de�ned as the spae of all distri-

butions of H

s

q

(R

n

) restrited to R

n

+

equipped with the quotient norm and H

s

q;0

(R

n

+

)

is de�ned as the spae of all distributions of H

s

q

(R

n

) supported in R

n

+

.

Let ' 2 C

1

0

(R

n

) suh that

supp' = f� : 2

�1

� j�j � 2g; '(�) > 0 if 2

�1

< j�j < 2;

P

k2Z

'(2

�k

�) = 1 when � 6= 0;

and set '

0

(�) = 1�

P

1

k=1

'(2

�k

�). Then the Besov spae B

s

q

(R

n

) = B

s

q;q

(R

n

), s 2 R,

1 � q <1, is de�ned as the spaes of all tempered distributions f with �nite norm

kfk

B

s

q

=

 

k'

0

(D

x

)fk

q

L

q

+

X

1�k<1

2

sqk

k'(2

�k

D

x

)fk

q

L

q

!

1

q

:

If s > 0 with s 62 N , the Besov spae B

s

q

(R

n

) oinides with the Sobolev-Slobodekij

spae W

s

q

(R

n

).

We refer to [5, Chapter 6℄ for the interpolation properties of Besov and Bessel

potential spaes. In partiular, we use

(H

s

0

q

(R

n

); H

s

1

q

(R

n

))

�;q

= B

s

q

(R

n

) (2.1)

4



for s

0

; s

1

2 R, s

0

6= s

1

, 1 < q <1, and s = (1� �)s

0

+ �s

1

. Here (:; :)

�;q

denotes the

real interpolation funtor.

Finally, C

s

�

(R

n

) = B

s

1

(R

n

), s > 0, denotes the Zygmund spae, whih onsists of

all funtions f suh that

kfk

C

s

�

= supfk'

0

(D

x

)fk

L

1

; 2

ks

k'(2

�k

D

x

)fk

L

1

: k 2 Ng <1:

It oinides with the usual Hölder spae C

s

(R

n

) for non-integer s > 0.

We also need the weighted L

2

-spaes

L

2

(R

+

; x

s

n

) = fu 2 D

0

(R

+

) : x

s

n

u(x

n

) 2 L

2

(R

+

)g; s 2 R;

and L

2

(R; jx

n

j

s

), whih is de�ned analogously. Note that, (L

2

(R

+

; x

s

n

))

0

= L

2

(R

+

; x

�s

n

)

with respet to the L

2

(R

+

)-salar produt and

(L

2

(R

+

; x

s

1

n

); L

2

(R

+

; x

s

2

n

))

�;2

= L

2

(R

+

; x

s

n

) (2.2)

for � 2 (0; 1) and s = (1� �)s

1

+ �s

2

beause of [5, Theorem 5.4.1℄. The analogous

results hold for L

2

(R; jx

n

j

s

).

Lemma 2.1 1. Let 1 < q � 2, Æ

0

<

1

q

�

1

2

< Æ, and � = (

1

q

�

1

2

� Æ

0

)=(Æ � Æ

0

).

Then

(L

2

(R

+

; x

Æ

0

n

); L

2

(R

+

; x

Æ

n

))

�;q

� L

q

(R

+

); (2.3)

(H

�Æ

0

2;0

(R

+

); H

�Æ

2;0

(R

+

))

�;q

� L

q

(R

+

): (2.4)

2. Let 2 � q <1, Æ

0

<

1

2

�

1

q

< Æ, and � = (

1

2

�

1

q

� Æ

0

)=(Æ � Æ

0

). Then

(L

2

(R

+

; x

�Æ

0

n

); L

2

(R

+

; x

�Æ

n

))

�;q

� L

q

(R

+

); (2.5)

(H

Æ

0

2

(R

+

); H

Æ

2

(R

+

))

�;q

� L

q

(R

+

): (2.6)

Proof: The lemma was proved by Grubb and Kokholm [14, Theorem 1.8℄.

3 Non-Smooth Pseudodi�erential Operators

Let B be an arbitrary Banah spae.

De�nition 3.1 The symbol spae C

�

�

S

m

1;0

(R

n

� R

n

;B), � > 0, m 2 R, is the set of

all symbols p : R

n

� R

n

! B that are in C

�

�

with respet to the �rst variable and

smooth with respet to the seond variable satisfying the estimates

kD

�

�

p(:; �)k

C

�

�

(R

n

;B)

� C

�

h�i

m�j�j

(3.1)

for all � 2 N

n

0

. Moreover, we de�ne the semi-norms

jpj

(m)

k

:= sup

j�j�k;�2R

n

h�i

j�j�m

kD

�

�

p(:; �)k

C

�

�

(B)

; k 2 N :

5



The symbol spae C

0;1

S

m

1;0

(R

n

�R

n

;B) is de�ned in the same way withC

�

�

replaed

by C

0;1

. Note that C

0;1

(R

n

) � C

1

�

(R

n

), hene C

0;1

S

m

1;0

� C

1

�

S

m

1;0

.

In the following we will only onsider the ase B = L(H

0

; H

1

) for some Hilbert

spaes H

0

and H

1

. Then given p 2 XS

m

1;0

(R

n

�R

n

;L(H

0

; H

1

)), X = C

�

�

or X = C

0;1

,

p(x;D

x

)u = OP(p(x; �))u =

Z

R

n

e

ix��

p(x; �)û(�)�� and

p(D

x

; x)u = OP(p(y; �))u =

Z

R

n

Z

R

n

e

i(x�y)��

p(y; �)u(y)dy�� (3.2)

for u 2 S(R

n

;H

0

) are the assoiated pseudodi�erential operators in L- and R-form,

resp; also alled x-form and y-from. Here the seond integral has to be understood

as an osillatory integral, f. [17, Theorem 2.2℄.

We note that

(p(x;D

x

)u; v)

L

2

(R

n

;H

1

)

= (u; p

0

(D

x

; x)v)

L

2

(R

n

;H

0

)

for all u 2 S(R

n

;H

0

), v 2 S(R

n

;H

1

), where p

0

(x; �) = p(x; �)

0

2 L(H

1

; H

0

) denotes

the pointwise dual of the symbol p.

The following theorem is an operator-valued variant of [23, Proposition 2.1.D℄

and will be proved in the appendix.

THEOREM 3.2 Let � > 0, 1 < q < 1, and m 2 R. If p 2 C

�

�

S

m

1;0

(R

n

�

R

n

;L(H

0

; H

1

)), then p(x;D

x

) and p(D

x

; x) extend to a bounded linear operators

p(x;D

x

) : H

s+m

q

(R

n

;H

0

)! H

s

q

(R

n

;H

1

); p(D

x

; x) : H

s

q

(R

n

;H

0

)! H

s�m

q

(R

n

;H

1

)

for all s 2 R with �� < s < � .

In the following we denote by (p

1

p

2

)(x; �) = p

1

(x; �) Æ p

2

(x; �) 2 L(H

0

; H

2

) the

pointwise omposition of the symbols.

THEOREM 3.3 Let 1 < q <1, m

1

; m

2

2 R, 0 < �

1

� �

2

, and s 2 R with jsj < �

1

and js + m

1

j < �

2

. If p

1

2 C

�

1

�

S

m

1

1;0

(R

n

� R

n

;L(H

1

; H

2

)) and p

2

2 C

�

2

�

S

m

2

1;0

(R

n

�

R

n

;L(H

0

; H

1

)), then for every 0 < � �

�

1

1+�

1

with s� � > ��

1

and s+m

1

� � > ��

2

(p

1

p

2

)(x;D

x

)� p

1

(x;D

x

)p

2

(x;D

x

) : H

s+m

1

+m

2

��

q

(R

n

;H

0

)! H

s

q

(R

n

;H

2

)

is a bounded linear operator. Moreover, there is a k 2 N suh that

k(p

1

p

2

)(x;D

x

)� p

1

(x;D

x

)p

2

(x;D

x

)k � Cjp

1

j

(m

1

)

k

jp

2

j

(m

2

)

k

;

where k � k denotes the orresponding operator norm.
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This theorem will also be proved in the appendix.

The latter theorem shows that the omposition of p

1

(x;D

x

) and p

2

(x;D

x

) o-

inides with (p

1

p

2

)(x;D

x

) modulo an operator of lower order in the sense of map-

ping properties in Bessel potential spaes. In the following parametrix onstrution

the preise size of � > 0 does not matter and for given s 2 R with jsj < �

1

and

js + m

1

j < �

2

, there are always some � > 0 whih satisfy the assumption of the

theorem.

Corollary 3.4 Let m 2 R, 1 < q <1, and s 2 R suh that jsj < 1 and js�mj < 1.

If p 2 C

0;1

S

m

1;0

(R

n

� R

n

;L(H

0

; H

1

)) and a 2 C

0;1

(R

n

), then for every 0 < � �

1

2

with

s+ � < 1 and s�m+ � < 1

a(x)p(D

x

; x)� (ap)(D

x

; x) : H

s

q

(R

n

;H

0

)! H

s�m+�

q

(R

n

;H

2

)

is a bounded operator.

Proof: The orollary is easily obtained from Theorem 3.3 by duality.

In the following we will restrit ourselves to the ase of operators with Lipshitz-

ontinuous oe�ients; this is the ase we need for the onstrution of the parametrix.

As in [12℄, the spetral parameter will be represented as � = �

2

e

i�

, � 2 (��; �).

Moreover, let � = �(�

0

; �) =

h�

0

i

h�

0

;�i

, where h�

0

; �i = (1 + j�

0

j

2

+ �

2

)

1

2

and � � 0,

�

0

2 R

n�1

.

It is straightforward to de�ne a non-smooth variant of these lasses of parameter-

dependent pseudodi�erential operators studied in [12℄.

De�nition 3.5 Let d; � 2 R. Then C

0;1

S

d;�

1;0

(R

n

�R

n+1

+

) is the spae of all funtions

p(x; �; �) smooth w.r.t. (�; �) and Lipshitz-ontinuous in x suh that

kD

�

�

D

j

�

p(:; �; �)k

C

0;1

� C

�;j

(�(�; �)

��j�j

+ 1)h�; �i

d�j�j�j

uniformly in (�; �) 2 R

n+1

+

and for all � 2 N

n

0

, j 2 N

0

. Moreover, let

jpj

(d;�)

k

= sup

j�j;j�k;(�;�)2R

n+1

+

kD

�

�

D

j

�

p(:; �; �)k

C

0;1

(�(�; �)

��j�j

+ 1)

�1

h�; �i

�d+j�j+j

be the orresponding inreasing sequene of semi-norms.

Reall that

(�(�; �)

�

+ 1)h�; �i

d

'

(

h�; �i

d

if � � 0;

h�i

�

h�; �i

d��

if � < 0:

Remark 3.6 Note that, if p 2 C

0;1

S

d;�

1;0

and d

0

> d, then p 2 C

0;1

S

d

0

;�

1;0

with jpj

(d

0

;�)

k

�

h�i

d�d

0

jpj

(d;�)

k

for all k 2 N

0

. Moreover, if d � 0, � � 0 and if we look at p as a

parameter-independent symbol, then jp(:; �)j

(d)

k

� Cjpj

(d;�)

k

uniformly in � 2 R

+

.
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4 Pseudodi�erential Boundary Value Problems with

Non-Smooth Coe�ients

We will now de�ne a non-smooth version of parameter-dependent Green operators

developed in [12℄.

We use the notation of [12℄ exept that 

j

u = �

j

n

uj

�R

n

+

. Reall that H

d

, d 2 Z,

denotes the spae of all smooth f : R ! C whih admit an asymptoti development

f(t) � s

d

t

d

+ s

d�1

t

d�1

+ : : : in the sense that for all k; l, and N 2 N

0

�

�

�

�

�

�

l

t

"

t

k

f(t)�

d

X

j=d�N

s

j

t

j+k

#

�

�

�

�

�

� C

k;l;N

(1 + jtj)

d�N�1+k�l

as jtj ! 1:

It is important that H

�1

= H

+

�H

�

�1

, where H

+

and H

�

�1

are the subspaes of all

f 2 H

�1

whih an be extended holomorphially to the lower resp. upper omplex

plane, and

H

+

= F [e

+

S(R

+

)℄; H

�

�1

= F [e

�

S(R

�

)℄;

see [12, Chapter II, Setion 2.2℄ for details. � Note that f 2 H

+

, f 2 H

�

�1

. �

Moreover, h

+

= Fe

+

r

+

F

�1

and h

�

�1

= Fe

�

r

�

F

�1

are ontinuous projetions on

H

+

and H

�

�1

, resp. We use the onvention H

�

r

= H

�

�1

� C

r

[t℄, r 2 N

0

, where C

r

[t℄

denotes the set of all omplex polynomials of degree r. Moreover, h

�1

: H

d

! H

�1

is the projetion with range H

�1

and kernel C

d

[t℄. Finally, we note that H

d

, d 2 Z,

H

+

, and H

�

r

, r 2 N

0

, are nulear spaes. Hene there exist unique omplete tensor

produts H

+

^


H

�

r

and H

�1

^


H

�1

.

We start with the de�nition of Poisson operators.

De�nition 4.1 The spae C

0;1

S

d;�

1;0

(R

n�1

�R

n

+

;H

+

), d; � 2 R, of Poisson symbols of

degree d and regularity � onsists of funtions k(x

0

; �

0

; �

n

; �) 2 H

+

with respet to �

n

whih satisfy

kD

�

�

0

D

j

�

h

�1

(D

l

�

n

�

l

0

n

k(:; �

0

; :; �))k

C

0;1

(R

n�1

;L

2

�

n

)

� C(�

��[l�l

0

℄

+

�j�j

+ 1)h�

0

; �i

d+

1

2

�l+l

0

�j�j�j

(4.1)

for all �

0

2 N

n�1

0

; j; l; l

0

2 N

0

. If k 2 C

0;1

S

d�1;�

1;0

(R

n�1

� R

n

+

;H

+

), then

k(x

0

; �;D

x

)a = r

+

F

�1

� 7!x

[k(x

0

; �; �)~a(�

0

)℄ ; a 2 S(R

n�1

);

is the assoiated Poisson operator of order d and regularity � in L-form.

Note that the degree of a Poisson symbol re�ets the order of growth as j(�; �)j ! 1

in ontrast to the order, whih re�ets the mapping properties of the assoiated

operator.

Alternatively, a Poisson operator an be desribed by its symbol-kernel :

k(x

0

; �;D

x

) = F

�1

�

0

7!x

0

h

~

k(x

0

; �; �; x

n

)~a(�

0

)

i

;

8



where

~

k(x

0

; �

0

; �; x

n

) = F

�1

�

n

7!x

n

[k(x

0

; �; �)℄ 2 S(R

+

) w.r.t. x

n

. Moreover, the bound-

ary symbol operators k(x

0

; �

0

; �;D

n

) are de�ned as one-dimensional operators with

symbols k(x

0

; �; �) for �xed (x

0

; �

0

).

Remark 4.2 Let k 2 C

0;1

S

d;�

1;0

(R

n�1

�R

n

+

;H

+

) be (for simpliity) independent of �.

Then (4.1) and kF [f ℄k

L

2

(R

+

)

= kfk

L

2

(R)

for f 2 H

+

imply

kD

�

�

0

x

l

n

D

l

0

x

n

k(x

0

; �

0

; D

n

)k

L(C ;L

2

(R

+

))

� C

�;l;l

0

h�

0

i

d+

1

2

�l+l

0

�j�j

:

In partiular k(x

0

; �

0

; D

n

) is a L(C ; L

2

(R

+

))-valued pseudodi�erential operator of or-

der d+

1

2

. Moreover, interpolation of the latter estimate for di�erent values of l; l

0

2 N

0

yields

kD

�

�

0

k(:; �

0

; D

n

)k

C

0;1

(R

n�1

;L(C ;L

2

(R

+

;x

2Æ

n

)))

� C

�;Æ

h�

0

i

d+

1

2

�Æ�j�j

; (4.2)

kD

�

�

0

k(:; �

0

; D

n

)k

C

0;1

(R

n�1

;L(C ;H

Æ

2

(R

+

)))

� C

�;Æ

h�

0

i

d+

1

2

+Æ�j�j

(4.3)

for all Æ � 0 and � 2 N

n�1

0

, f. (2.2) and [14, Setion 3.3℄.

Considering a boundary symbol operator as operator-valued pseudodi�erential oper-

ator, the orresponding operator in R-form k(D

x

; x

0

; �) is de�ned as in (3.2).

De�nition 4.3 Let d; � 2 R and let r 2 N

0

.

1. The spae of trae symbols C

0;1

S

d;�

1;0

(R

n�1

� R

n

+

;H

�

r�1

) of degree d and lass r

is the set of all

t(x

0

; �

0

; �

n

; �) =

X

0�j�r�1

s

j

(x

0

; �

0

; �)(i�

n

)

j

+ t

0

(x

0

; �

0

; �

n

; �);

with t

0

(x

0

; �; �) 2 C

0;1

S

d;�

1;0

(R

n�1

�R

n

+

;H

+

) and s

j

(x

0

; �

0

; �) 2 C

0;1

S

d�j;�

1;0

(R

n�1

�

R

n

+

). The assoiated trae operator of order d in L-form is de�ned as

t(x

0

; �;D

x

)f =

r�1

X

j=0

s

j

(x

0

; �;D

x

0

)

j

f + F

�1

�

0

7!x

0

�

Z

t

0

(x

0

; �

0

; �

n

; �)

^

f(�)��

n

�

:

2. The spae of singular Green symbols C

0;1

S

d;�

1;0

(R

n�1

�R

n

+

;H

+

^


H

�

r�1

) of degree

d and lass r onsists of all funtions

g(x

0

; �

0

; �

n

; �

n

; �) =

r�1

X

j=0

k

j

(x

0

; �

0

; �

n

; �)(i�

n

)

j

+ g

0

(x

0

; �

0

; �

n

; �

n

; �)

suh that k

j

(x

0

; �

0

; �

n

; �) 2 C

0;1

S

d�j;�

1;0

(R

n�1

� R

n

+

;H

+

) and g

0

(x

0

; �; �

n

; �) 2

H

+

^


H

�

r�1

with respet to (�

n

; �

n

) satisfying

kD

�

�

0

D

j

�

h

�1;�

n

h

�1;�

n

(D

k

�

n

�

k

0

n

D

l

�

n

�

l

0

n

g(x

0

; �; �

n

; �)k

C

0;1

(R

n�1

;L

2

(R

2

))

� C(�

��[k�k

0

℄

+

�[l�l

0

℄

+

�j�j

+ 1)h�

0

; �i

d+1�k+k

0

�l+l

0

�j�j�j

(4.4)
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for all �

0

2 N

n�1

0

; k; k

0

; l; l

0

; j 2 N

0

. If g 2 C

0;1

S

d�1;�

1;0

(R

n�1

�R

n

+

;H

+

^


H

�

r

), then

g(x

0

; �;D

x

)f =

r�1

X

j=0

k

j

(x

0

; �;D

x

)

j

f + F

�1

� 7!x

�

Z

g

0

(x

0

; �; �

n

; �)

^

f(�

0

; �

n

)��

n

�

;

f 2 S(R

n

+

), is the assoiated singular Green operator of order d, regularity �,

and lass r in L-form.

Note that, if t

0

(x

0

; D

x

) is a trae operator of lass 0, then

(t(x

0

; D

x

)';  )

R

n�1

= ('; k(D

x

; x

0

) )

R

n

+

; (4.5)

where k(x

0

; �) = t(x

0

; �) and ' 2 S(R

n

+

),  2 S(R

n�1

). Hene trae operators an

be onsidered as duals of Poisson operators plus a sum of usual trae operators

s

j

(x

0

; �;D

x

0

)

j

. Throughout the present ontribution, the singular Green symbols

will be produts of Poisson and trae symbols.

We an also desribe trae and singular Green operators with the aid of their

symbol-kernels:

t(x

0

; �;D

x

) =

r�1

X

j=0

s

j

(x

0

; �;D

x

0

)

j

f + F

�1

�

0

7!x

0

�

Z

1

0

~

t

0

(x

0

; �

0

; �; x

n

)

~

f(�

0

; x

n

)dx

n

�

;

g(x

0

; �;D

x

) =

r�1

X

j=0

k

j

(x

0

; �;D

x

)

j

f + F

�1

�

0

7!x

0

�

Z

1

0

~g

0

(x

0

; �

0

; �; x

n

; y

n

)

^

f(�

0

; y

n

)dy

n

�

;

where

~

t

0

(x

0

; �; �; x

n

) =

�

F

�1

�

n

7!x

n

[t(x

0

; �; �)℄ 2 S(R

+

) w.r.t. x

n

and ~g

0

(x

0

; �

0

; �; x

n

; y

n

) =

F

�1

�

n

7!x

n

�

F

�1

�

n

7!y

n

[g(x

0

; �; �

n

; �)℄ 2 S(R

+

� R

+

) w.r.t. (x

n

; y

n

). Finally, the boundary

symbol operators t(x

0

; �

0

; �;D

n

) and g(x

0

; �

0

; �;D

n

) and operators in R-form are de-

�ned in the same way as for the Poisson operator.

De�nition 4.4 Let p 2 C

0;1

S

d;�

1;0

(R

n

� R

n+1

+

), d 2 Z, � 2 R, that is independent of

x

n

. Then p satis�es the transmission ondition if there are funtions s

k;�;j

smooth

in (�

0

; �) and Lipshitz ontinuous in x

0

suh that for any � 2 N

n

0

and l; j 2 N

0













�

l

n

D

�

�

D

j

�

p(:; �; �)�

d�j�j�j

X

k=�l

s

k;�;j

(:; �

0

; �)�

k+l

n













X

� C

k;�;j

h�

0

; �i

m+1+l�j�j�j

j�

n

j

�1

when j�

n

j � h�

0

; �i.

De�nition 4.5 A Green operator (in L-form) of order d 2 Z, lass r 2 N

0

, and

regularity � 2 R with Lipshitz-ontinuous oe�ients is de�ned as

a(x

0

; �;D

x

) =

�

p(x

0

; �;D

x

)

+

+ g(x

0

; �;D

x

) k(x

0

; �;D

x

)

t(x

0

; �;D

x

) s(x

0

; �;D

x

0

)

�

;
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where k(x

0

; �;D

x

), t(x

0

; �;D

x

), and g(x

0

; �;D

x

) are Poisson, trae, and singular Green

operators of order d, regularity �, and lass r, p(x

0

; �;D

x

)

+

= r

+

p(x

0

; �;D

x

)e

+

,

p 2 C

0;1

S

d;�

1;0

(R

n

� R

n

+

), is a trunated pseudodi�erential operator satisfying the

transmission ondition and s 2 C

0;1

S

d�1;�

1;0

(R

n�1

� R

n

+

).

In the following we will often restrit ourselves to the ase of parameter-independent

symbols and operators. The orresponding symbol lasses C

0;1

S

d

1;0

(R

n�1

� R

n�1

;K),

K = H

+

;H

�

r�1

, or K = H

+

^


H

�

r�1

are de�ned as above with the restrition that the

symbols are independent of � and the symbols estimates hold for � = 0.

Moreover, if f is a Poisson, trae, or singular Green symbol, then jf j

(d;�)

k

, k 2 N ,

are the semi-norms (monotonially inreasing in k) assoiated to (4.1), (4.4), resp., in

the usual way, f. De�nitions 3.5 and 3.5. The semi-norms of parameter-independent

symbols will be denoted by jf j

(d)

k

.

Remarks 4.6 1. As in Remark 3.6, jf j

(d+";�)

k

� h�i

�"

jf j

(d;�)

k

, " > 0.

2. If f is a parameter-dependent Poisson or trae symbol of degree d � �

1

2

,

regularity � (and lass r), then f(:; �), � � 0 �xed, is a parameter-independent

symbol of the same degree and lass with jf(:; �)j

(d)

k

� jf j

(d;�)

k

uniformly in

� > 0. The same is true for parameter-dependent singular Green symbols of

degree d � �1.

3. Conversely, if k 2 C

0;1

S

d�1

1;0

(R

n�1

� R

n�1

;H

+

), then k 2 C

0;1

S

d�1;d�

1

2

1;0

(R

n�1

�

R

n

+

;H

+

) if onsidered parameter-dependent, f. [12, Proposition 2.3.14℄. More-

over, every parameter-independent di�erential trae symbol is a trae symbol

of the same order and lass and with regularity 1.

Remark 4.7 Freezing x

0

, the boundary symbol operator a(x

0

; �

0

; �;D

n

) belongs to

the lass studied in [12℄. Thus, if we assume that the trunated pseudodi�eren-

tial operator in a(x

0

; �

0

; �;D

n

) is atually a di�erential operator, the omposition of

a(x

0

; �

0

; �;D

n

) with a seond boundary symbol operator a

0

(x

0

; �

0

; �;D

n

) is a bound-

ary symbol operator of order d

00

= d + d

0

, lass r

00

= [r + d

0

℄

+

, and regularity

�

00

= minf�; �

0

; � + �

0

g, f. [12, Theorem 2.6.1℄. Here d; r; � (resp. d

0

; r

0

; �

0

) de-

note the order, lass, and regularity of a (resp. a

0

).

Moreover, we note that a symbol f is in one of the pseudodi�erential, Poisson,

trae, or singular Green symbol lasses C

0;1

S

d;�

1;0

i� the symbol f(x

0

; :) with frozen

x

0

2 R

n�1

is in the orresponding smooth lass S

d;�

1;0

and the semi-norms satisfy

jf(x

0

; :)j

(d;�)

k

� C

k

jf(x

0

; :)� f(y

0

; :)j

(d;�)

k

� C

0

k

jx

0

� y

0

j

uniformly in x

0

; y

0

2 R

n�1

and for all k 2 N .

Sine omposition of boundary symbol operators is ontinuous with respet to

the semi-norms we have proved that

a(x

0

; �

0

; D

n

) Æ a

0

(x

0

; �

0

; D

n

) = a

00

(x

0

; �

0

; D

n

);
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where a

00

is a non-smooth Green symbol of order d

00

, lass r

00

, and regularity �

00

,

de�ned above, with oe�ients in C

0;1

.

Finally, we note that in our ases the regularities �; �

0

will be positive. Hene

the omposition will have regularity �

00

= minf�; �

0

g > 0, whih is essential for the

parametrix onstrution.

THEOREM 4.8 Let 1 < q <1.

1. If k 2 C

0;1

S

d�1

1;0

(R

n�1

� R

n�1

;H

+

), d 2 R; is a Poisson symbol of order d, then

k(x

0

; D

x

) : B

d�

1

q

q

(R

n�1

)! L

q

(R

n

+

) ;

k(D

x

; x

0

) : B

d�

1

q

q

(R

n�1

)! L

q

(R

n

+

) if

�

�

�

�

d�

1

q

�

�

�

�

< 1; resp.

are ontinuous operators.

2. Let t 2 C

0;1

S

d

1;0

(R

n�1

� R

n�1

;H

�

�1

), d 2 R, be a trae operator of order d and

lass 0. Then t(x

0

; D

x

) and t(D

x

; x

0

) extend to bounded operators

t(x

0

; D

x

) : L

q

(R

n

+

)! B

�d�

1

q

q

(R

n�1

) if

�

�

�

�

d+

1

q

�

�

�

�

< 1;

t(D

x

; x

0

) : L

q

(R

n

+

)! B

�d�

1

q

q

(R

n�1

); resp.

3. Let g 2 C

0;1

S

�m�1

1;0

(R

n�1

�R

n

;H

+

^


H

�

�1

), m 2 N

0

, be a singular Green operator

of order �m and lass 0. Then g(D

x

; x

0

) extends to a bounded operator

g(D

x

; x

0

) : L

q

(R

n

+

)!W

m

q

(R

n

+

):

All operators depend ontinuously on the symbols with respet to the operator norm

and the symbol semi-norms.

Proof: The proof is arried out with the same method as in [14, Setion 4.1℄ using

the interpolation inlusions of Lemma 2.1

1. First let 1 < q � 2. Then (4.2) and Theorem 3.2 imply

k(x

0

; D

x

); k(D

x

; x

0

) : H

d�

1

2

�Æ

q

(R

n�1

)! L

q

(R

n�1

;L

2

(R

+

; x

2Æ

n

)) Æ � 0 (4.6)

under the restrition jd �

1

2

� Æj < 1 for the operator in x-form. Hene inter-

polation with di�erent values of Æ and Lemma 2.1 yield the �rst statement in

the ase 1 < q � 2. The ase 2 � q <1 is proved in the same way using (4.3)

instead of (4.2).

2. The mapping properties of t(x

0

; D

x

) and t(D

x

; x

0

) an be obtained by duality

using (4.5) and the analogous statement for t(D

x

; x

0

) and k(x

0

; D

x

).

12



3. We an assume w.l.o.g. m = 0. In the same way as in Remark 4.2, one an

obtain the following estimates by interpolation of the singular Green symbol

estimates in (4.3):

kD

�

0

�

0

g(:; �

0

; D

n

)k

C

�

�

(R

n�1

;L(L

2

(R

+

;x

�2Æ

n

);H

Æ

2

(R

+

)))

� C

�

0

;Æ

h�

0

i

�j�

0

j

;

kD

�

0

�

0

g(:; �

0

; D

n

)k

C

�

�

(R

n�1

;L(H

�Æ

2;0

(R

+

);L

2

(R

+

;x

2Æ

n

)))

� C

�

0

;Æ

h�

0

i

�j�

0

j

for all Æ � 0. Hene appliation of Theorem 3.2 and Lemma 2.1 proves the last

part of the lemma.

Remark 4.9 Sine multipliation of a Poisson symbol-kernel

~

k(x

0

; �

0

; x

n

) with x

n

redues the order by 1, f. (4.1), it is a onsequene of the latter theorem that

k(D

x

; x

0

) : B

s�

1

q

q

(R

n�1

)!W

m

q

(R

n

� (";1))

for all s 2 R with s�

1

q

> �1, m 2 N

0

, and " > 0.

Moreover, using L

2

(0; b; x

2Æ

n

) ,! L

1

(0; b) for Æ <

1

2

and (4.6),

k(D

x

; x

0

) : B

d�

1

q

�"

q

(R

n�1

)! L

q

(R

n�1

; L

1

(0; b)) if

�

�

�

�

d�

1

q

� "

�

�

�

�

< 1;

for all 0 < " <

1

q

0

and all b 2 R

+

.

The following lemma summarizes the results onerning omposition of non-smooth

pseudodi�erential operators whih we need in Setion 5.

Lemma 4.10 Let 1 < q < 1, d

1

2 N

0

, and r 2 N

0

. Moreover, let p

1

(x

0

; D

x

) be a

di�erential operator and let t(x

0

; D

x

) be a di�erential trae operator both of order d

1

with C

0;1

-oe�ients and of lass r.

1. Let k(x

0

; �) 2 C

0;1

S

d

2

�1

1;0

(R

n�1

� R

n�1

;H

+

), d

2

2 R. If jd

1

+ d

2

�

1

q

j < 1, then

there are " > 0 suh that

p

1

(x

0

; D

x

)k(D

x

; x

0

)� (p

1

k)(D

x

; x

0

) : B

d

1

+d

2

�

1

q

�"

q

(R

n�1

)! L

q

(R

n

+

):

Moreover, if s 2 (�1; 1) suh that js+ d

1

+ d

2

j < 1, then

t(x

0

; D

x

)k(D

x

; x

0

)� (tk)(D

x

; x

0

) : B

s+d

1

+d

2

�"

q

(R

n�1

)! B

s

q

(R

n�1

)

for an " > 0.

2. Let g(x

0

; �) 2 C

0;1

S

�d

1

�1

1;0

(R

n�1

� R

n�1

;H

+

^


H

�

�1

). Then

p

1

(x

0

; D

x

)g(D

x

; x

0

)� (p

1

g)(D

x

; x

0

) : L

q

(R

n

+

)! L

q

(R

n

+

)

with operator norm bounded by Cjp

1

j

(d

1

)

k

jgj

(�d

1

�1+")

k

for some "; C > 0, k 2 N.
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3. Let p

2

(x; �) 2 C

0;1

S

�d

1

1;0

(R

n

� R

n

). Then

p

1

(x

0

; D

x

)p

2

(D

x

; x)

+

� (p

1

p

2

)(D

x

; x)

+

: L

q

(R

n

+

)! L

q

(R

n

+

)

with operator-norm bounded by Cjp

1

j

(d

1

)

k

jp

2

j

(�d

1

+")

k

for some "; C > 0, k 2 N

0

.

4. If k 2 C

0;1

S

�d�1

1;0

(R

n�1

� R

n�1

;H

+

), a 2 C

0;1

(R

n�1

), and t 2 C

0;1

S

d

1;0

(R

n�1

�

R

n�1

;H

�

�1

), d 2 R, with jd+

1

q

j < 1, then

k(D

x

; x

0

)t(D

x

; x

0

)� (kt)(D

x

; x

0

) : L

q

(R

n

+

)! L

q

(R

n

+

);

a(x

0

)t(D

x

; x

0

)� (at)(D

x

; x

0

) : L

q

(R

n

+

)!W

�d�

1

q

q

(R

n�1

);

where the operator norm is bounded by Cjkj

(�d�1)

l

jtj

(d+")

l

and Ckak

C

0;1

jtj

(d+")

l

,

resp., for some "; C > 0, l 2 N.

Proof: We assume w.l.o.g. d

1

= 0. Then p

1

(x

0

; D

x

) = a(x

0

) and t(x

0

; D

x

) = a(x

0

)

0

for an a 2 C

0;1

(R

n�1

). Moreover, we only give the details for 1 < q � 2 sine the

ase q � 2 is treated in the same way.

1. Sine k(x

0

; �

0

; D

n

) 2 C

0;1

S

d

2

�

1

2

�Æ

1;0

(R

n�1

� R

n�1

;L(C ; L

2

(R

+

; x

Æ

n

)) for 0 � Æ <

1

2

,

f. (4.2), we get by Corollary 3.4 that

a(x

0

)k(D

x

; x

0

)� (ak)(D

x

; x

0

) : B

d

2

�

1

2

�Æ�"

q

(R

n�1

)! L

q

(R

n�1

; L

2

(R

+

; x

Æ

n

))

for " > 0 (depending on Æ). Hene

a(x

0

)k(D

x

; x

0

)� (ak)(D

x

; x

0

) : B

d

2

�

1

q

�"

q

(R

n�1

)! L

q

(R

n

+

)

by Lemma 2.1 for " > 0. Moreover, beause of (4.3) and kfk

1

� kfk

1

2

2

kf

0

k

1

2

2

for every f 2 S(R

+

), 

0

k(x

0

; �

0

; D

n

) 2 S

d

2

1;0

(R

n�1

� R

n�1

). Hene

a(x

0

)

0

k(D

x

; x

0

)� (a

0

k)(D

x

; x

0

) : B

s+d

2

�"

q

(R

n�1

)! B

s

q

(R

n�1

)

for an " > 0 beause of Corollary 3.4 and (2.1).

2. Sine d

2

= �d

1

= 0, we look at g(D

x

; x

0

) as a singular Green operator of order

0 < " �

1

2

. Hene g(x

0

; �

0

; D

n

) 2 C

0;1

S

"

1;0

(R

n�1

�R

n�1

;L(H

�Æ

2

(R

+

); L

2

(R

+

; x

Æ

n

)))

for 0 � Æ <

1

2

, f. proof of Theorem 4.8.3. Therefore

a(x

0

)g(D

x

; x

0

)� (ag)(D

x

; x

0

) : L

q

(R

n

+

)! L

q

(R

n

+

)

with operator norm bounded by Ckak

0;1

jgj

(�1+")

k

for " 2 (0;

1

2

℄.

3./4. The last two parts of the lemma are proved analogously.
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5 Parametrix Constrution and H

1

-Calulus

5.1 The Model Operators of the Redued Stokes Equations

in R

n

+

In this setion we disuss the struture of the boundary symbol operators of the

redued Stokes equations in R

n

+

� the �model operators�.

For � = �

2

e

i�

, � � 0, � 2 (��; �), let

a

r

j

(�

0

; �;D

n

) =

�

�

2

e

i�

+ j�

0

j

2

+D

2

n

+ k

r

j

(�

0

; D

n

)t

r

j

(�

0

; D

n

)

t

0

j

(�

0

; D

n

)

�

;

j = 0; 1, � 2 (��; �), be the model operator of the redued Stokes equations, where

k

r

0

(�

0

; D

n

)u = �e

�[�

0

℄x

n

 

i�

0

[�

0

℄

�1

!

i�

0

T

; k

r

1

(�

0

; D

n

)u = e

�[�

0

℄x

n

�

i�

0

�[�

0

℄

�

;

t

r

0

(�

0

; D

n

)u = �

n

u

0

(0); t

r

1

(�

0

; D

n

)u = 2�

n

u

n

(0);

t

0

0

(�

0

; D

n

)u = 

0

u; t

0

1

(�

0

; D

n

)u; =

�

i�

0

u

n

(0) + �

n

u

0

(0)

i�

0

� u

0

(0) + �

n

u

n

(0)

�

:

Here [:℄ denotes a smooth funtion with [�

0

℄ = j�

0

j if j�

0

j � 1 and [�

0

℄ �

1

2

if j�

0

j < 1.

In [15, Theorem 6.1℄ it was shown that the system of the redued Stokes equations

is parameter-ellipti for arbitrary � 2 (��; �), see [12, De�nition 3.1.2.℄ for the

de�nition of parameter-elliptiity. This result implies:

Lemma 5.1 Let � 2 (��; �) and let a

r

j

(�

0

; �;D

n

), j = 0; 1, be de�ned as above.

Then there is a 

0

> 0 suh that

a

r

j

(�

0

; �;D

n

) : H

2

2

(R

+

)

n

! L

2

(R

+

)

n

� C

n

is bijetive for all j(�

0

; �)j � 

0

. Moreover, a

r

j

(�

0

; �;D

n

)

�1

is a boundary symbol

operator of order �2, lass 0, and regularity

1

2

.

Proof: The �rst statement is a diret impliation of [12, Proposition 3.1.3℄ and [12,

Lemma 3.1.1℄. The seond statement is a onsequene of [12, Theorem 3.2.2℄.

Remark 5.2 Sine a

r

j

(�

0

; �;D

n

) depends ontinuously on � 2 (��; �), there is a

onstant 

0

0

suh that a

j

(�

0

; �;D

n

) is invertible for all j(�

0

; �)j � 

0

0

and � 2 [�Æ; Æ℄ for

every �xed Æ 2 (0; �).

Moreover, let

a

j

(�

0

; �;D

n

) =

�

�

2

e

i�

+ j�

0

j

2

+D

2

n



j

�

: H

2

2

(R

+

)!

L

2

(R

+

)

�

C
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j = 0; 1; � 2 (��; �), be the model operator of the Laplae resolvent with Dirihlet

or Neumann boundary ondition. It is well-known that a

j

(�

0

; �;D

n

) is bijetive for

all (�

0

; �) 2 R

n

+

n f0g and that

a

�1

j

(�

0

; �;D

n

) =

�

r

j

(�

0

; �;D

n

) k

j

(�

0

; �;D

n

)

�

; (5.1)

r

j

(�

0

; �;D

n

) = p(�

0

; �;D

n

)

+

� k

j

(�

0

; �;D

n

)t

j

(�

0

; �;D

n

); (5.2)

p(�; �) = (e

i�

�

2

+ j�j

2

)

�1

; (5.3)

k

j

(�

0

; �;D

n

)g =

e

��

�

x

n

�

�

j

g; t

j

(�

0

; �;D

n

)f =

Z

1

0

(�1)

j

e

��

�

y

n

2�

�

1�j

f(y

n

)dy

n

; (5.4)

where �

�

= (e

i�

�

2

+ j�

0

j

2

)

1

2

. As usual, we obtain a boundary symbol operator of order

�2, lass 0, and regularity1 if we smooth the symbols of a

�1

j

(�

0

; �;D

n

) for j(�

0

; �)j �

1. The smoothed operator will again be denoted by a

�1

j

(�

0

; �;D

n

). Moreover, we use

the onvention a

j;�

(�

0

; D

n

) = a

j

(�

0

; �;D

n

), p

�

(�) = p(�; �) et., where � = �

2

e

i�

.

We an onsider the model operator of the redued Stokes resolvent equation as

perturbation of a

j

(�

0

; �;D

n

):

a

r

j

(�

0

; �;D

n

) = a

j

(�

0

; �;D

n

) + b

j

(�

0

; �;D

n

);

where

b

j

(�

0

; �;D

n

) =

�

k

r

j

(�

0

; D

n

)t

r

j

(�

0

; D

n

)

t

00

j

(�

0

; D

n

)

�

; t

00

1

(�

0

; D

n

)u;=

�

i�

0

u

n

(0)

i�

0

� u

0

(0)

�

;

and t

00

0

(�

0

; D

n

)u = 0. As in [13, Setion 3℄ and [2, Setion 4.2℄, we get by an elementary

alulation

a

r;�1

j

(�

0

; �;D

n

) = (I + a

�1

j

(�

0

; �;D

n

)b

j

(�

0

; �;D

n

))

�1

a

�1

j

(�

0

; �;D

n

);

where

�

I + a

�1

0

(�

0

; �;D

n

)b

0

(�

0

; �;D

n

)

�

�1

= I � r

0

(�

0

; �;D

n

)k

r

0

(�

0

; D

n

)s

0

(�

0

; �)t

r

0

(�

0

; D

n

);

s

0

(�

0

; �) = (I + t

r

0

(�

0

; D

n

)r

0

(�

0

; �;D

n

)k

r

0

(�

0

; D

n

))

�1

;

�

I + a

�1

1

(�

0

; �;D

n

)b

1

(�

0

; �;D

n

)

�

�1

= I � (r

1

(�

0

; �;D

n

)k

r

1

(�

0

; D

n

); k

1

(�

0

; �;D

n

)) s

1

(�

0

; �)

�

t

r

1

(�

0

; D

n

)

t

00

1

(�

0

; �;D

n

)

�

;

s

1

(�

0

; �) =

�

I +

�

t

r

1

(:; D

n

)

t

00

1

(:; D

n

)

�

(r

1

(:; D

n

)k

r

1

(:; D

n

); k

1

(:; D

n

))

�

�1

:

In view of the omposition rules, s

j

2 S

0;

1

2

1;0

(R

n�1

� R

n

+

)
 L(C

N

) with N = n � 1 if

j = 0 and N = 2 if j = 1. Hene we obtain:
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Lemma 5.3 Let a

r

j

(�

0

; �;D

n

); a

j

(�

0

; �;D

n

), j = 0; 1, be de�ned as above and j(�

0

; �)j �

maxf

0

; 1g > 0, where 

0

is the same onstant as in Lemma 5.1. Then

a

r;�1

j

(�

0

; �;D

n

) = a

�1

j

(�

0

; �;D

n

)� b

0

j

(�

0

; �;D

n

) (5.5)

with

b

0

0

(:; D

n

) = r

0

(:; D

n

)k

r

0

(:; D

n

)s

0

(:)t

r

0

(:; D

n

) (r

0

(:; D

n

); k

0

(:; D

n

)) ; (5.6)

b

0

1

(:; D

n

) = (r

1

(:; D

n

)k

r

1

(:; D

n

); k

1

(:; D

n

)) s

1

(:)

�

t

r

1

(:; D

n

)

t

00

1

(:; D

n

)

�

(r

1

(:; D

n

); k

1

(:; D

n

)) :

(5.7)

5.2 Coordinate Transformation

In this setion we alulate the prinipal symbols of the operators in the redued

Stokes equations for the urved half-spae R

n



after oordinate transformation to R

n

+

.

The prinipal rule is that if a(�) is the symbol of the orresponding operator in R

n

+

,

then

a(x

0

; �) := a(A(x

0

)�); x

0

2 R

n�1

; � 2 R

n

; (5.8)

is the prinipal symbol for the urved half-spae, where A(x

0

) depends on r

0

 2

C

0;1

(R

n�1

), f. Setion 5.3 below.

Lemma 5.4 Let p(�; �) 2 S

m;�

1;0

(R

n

� R

n+1

+

), m; � 2 R, and A 2 C

0;1

(R

n

)

n�n

with

A

�1

2 C

0;1

(R

n

)

n�n

. Then q(x; �; �) := p(A(x)�; �) 2 C

0;1

S

m;�

1;0

(R

n

� R

n+1

+

), and for

every k 2 N

0

there is a k

0

2 N

0

suh that jqj

(m;�)

k

� Cjpj

(m;�)

k

0

; where C depends only

on kAk

C

0;1

; kA

�1

k

C

0;1

; k;m; �, and n.

Proof: The proof is arried out in a straightforward manner using

p(A(x)�; �)� p(A(y)�; �)

=

Z

1

0

r

�

p(tA(x)� + (1� t)A(y)�; �)dt � (A(x)� A(y))�; (5.9)

where tA(x)+(1�t)A(y) is invertible for all t 2 [0; 1℄ if jA(x)�A(y)j � (2kA

�1

k

1

)

�1

.

The analogous statement for Poisson, trae, and singular Green symbols is as follows:

Lemma 5.5 Let f(�; �) 2 S

m;�

1;0

(R

n�1

�R

n

+

;K), m; � 2 R, r 2 N

0

, where K = H

+

or

K = H

�

r�1

. Moreover, let A(x

0

) 2 C

0;1

(R

n�1

)

n�n

suh that A

�1

(x

0

) 2 C

0;1

(R

n�1

)

n�n

and A possesses the blok struture

A(x

0

) =

�

A

0

(x

0

) 0

b

T

(x

0

) (x

0

)

�

with (x

0

) > 0: (5.10)
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Then g(x

0

; �; �) := f(A(x

0

)�; �) 2 C

0;1

S

m;�

1;0

(R

n�1

� R

n

+

;K), and for every k 2 N

0

there is some k

0

2 N

0

suh that jgj

(m;�)

k

� C(kAk

C

0;1

; kA

�1

k

C

0;1

)jf j

(m;�)

k

0

: The same

statement is true if we set K = H

+

^


H

�

r�1

and set g(x

0

; �; �

n

; �) := f(A(x

0

)�; (x

0

)�

n

+

b

T

(x

0

)�

0

; �).

Proof: Note that h

�1

f(t + d) = (h

�1

f)(t + d) if f 2 H and  > 0. Sine

(x

0

); 

�1

(x

0

), and b(x

0

) are uniformly bounded and (�

n

)

k

=

P

k

l=0

�

k

l

�

(�

n

+b

T

�

0

)

l

(�b

T

�

0

)

k�l

,

we get

kh

�1

�

k

n

�

k

0

�

n

(f(�

n

+ b

T

�

0

))k

L

2

(R)

� C

 

k

X

l=0

�

k

l

�

jb

T

�

0

j

k�l

kh

�1

(�

n

+ b

T

�

0

)

l

(�

k

0

�

n

f)(�

n

+ b

T

�

0

)k

L

2

(R)

!

� C

 

k

X

l=0

h�

0

i

k�l

kh

�1

�

l

n

�

k

0

�

n

f(�

n

)k

L

2

(R)

!

(5.11)

for every f 2 H

�1

, where the onstant C depends only on the bounds of (x

0

), 

�1

(x

0

),

and b(x

0

).

Now let �

0

2 N

n�1

0

, k; k

0

; j 2 N

0

. If we set � = (�

0

; k

0

), we have

D

�

�

D

j

�

g(x

0

; �; �) =

�

(A

T

(x

0

)D

�

)

�

D

j

�

f

�

(x

0

; A(x

0

)�; �):

Combining this identity with (5.11), we onlude

kh

�1;�

n

�

k

n

D

k

0

�

n

D

�

0

�

D

j

�

g(x

0

; �; �)k

L

2

(R)

� C(�(�

0

; �)

��[k

0

�k℄

+

+ 1)h�

0

; �i

m�j�

0

j�k

0

+k�j

:

In order to estimate g(x

0

; �; �) � g(y

0

; �; �), we use an analogous identity to (5.9).

Furthermore, the ase K = H

+

^


H

�

r�1

is proved in the same way.

We note that the blok struture (5.10) in the previous lemma is essential in order

to guarantee that g(x

0

; �) 2 K with respet to �

n

.

Finally, we have to analyze how the transformed boundary symbol operators

behave under omposition. Let �

;d

(�

n

) := �

n

+ d, �

n

2 R, with  > 0; d 2 R, and

�

�

;d

(f)(�

n

) = f(�

;d

(�

n

)) for f 2 H. Then �

�

;d

is an algebra homomorphism, whih

maps H

+

, H

�

r

, and H

r

into itself and for whih

h

+

�

�

;d

= �

�

;d

h

+

; 

Z

+

�

�

;d

(f)(�

n

)��

n

=

Z

+

f(�

n

)��

n

(5.12)

hold. Moreover, we set �

�

;d

(g)(�

n

; �

n

) = g(�

;d

(�

n

); �

;d

(�

n

)) for g 2 H

+

�

n

^


H

�

�1;�

n

and

�

�

;d

(f; b) = (�

�

;d

(f); b) for (f; b) 2 (H

+


 C

M

)� C

N

.

Now let a(D

n

) be a one-dimensional (x

n

-independent) Green operator and p(�

n

),

k(�

n

), t(�

n

), g(�

n

; �

n

), and s be its symbols. Then we de�ne

a(D

n

+ d) := OP

n

�

�

�

;d

(p)

+

+ �

�

;d

(g) �

�

;d

(k)

�

�

;d

(t) s

�

: (5.13)
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Beause of the omposition rules for one-dimensional Green operators, f. [6, Theo-

rem 1.12℄ and (5.12),

a

1

(D

n

+ d) Æ a

2

(D

n

+ d) = (a

1

Æ a

2

)(D

n

+ d); (5.14)

where a

1

Æ a

2

denotes the symbol of a

1

(D

n

) Æ a

2

(D

n

). � Note that the fators  in

(5.13) are neessary to obtain (5.14).

5.3 Symbols of the Redued Stokes Equations in R

n



In ontrast to [8, 9℄, we use a very simple oordinate transformation, whih allows us

to onstrut the parametrix in a domain with C

1;1

-boundary, but does not preserve

the normal diretion on the boundary. Therefore we have to analyse the relation

between the model operators and the Green operator of the transformed equations

arefully.

Given  2 C

1;1

(R

n�1

) let R

n



= fx : x

n

> (x

0

)g be a urved half-spae, and let

F : R

n

+

! R

n



be the oordinate transformation

x = F (x) =

�

x

0

x

n

+ (x

0

)

�

; x 2 R

n

+

:

In this setion we will denote the variables and operators orresponding to the original

problem in R

n



by x; �;r; : : : and of the transformed problem in R

n

+

by x; �;r; : : :.

Similarly, a(x

0

; �) will indiate the symbols of the transformed problem and a(�) the

symbols of the model operator.

If v : R

n



! C , we set F

�

(v)(x) = v(F (x)). Moreover, let F

0

: R

n�1

! �R

n



: x

0

7!

(x

0

; (x

0

)) and F

�

0

(v)(x

0

) = v(F

0

(x

0

)). Furthermore, let U = U(x

0

) be an orthonormal

matrix whih maps the exterior normal vetor

�(x

0

) =

1

p

1 + jr

0

(x

0

)j

2

�

r

0

(x

0

)

�1

�

on �R

n



at the point (x

0

; (x

0

)) to �e

n

. We need this orthonormal matrix to orret

vetor �elds in suh a way that the normal diretion � on �R

n



is mapped to the normal

diretion �e

n

on �R

n

+

. This modi�ation is essential for preserving the struture of

the boundary onditions and model operators.

Using this notation,

rF

�;�1

v = F

�;�1

OP(U

T

(x

0

)A(x

0

)i�)v = F

�;�1

U

T

(x

0

)A(x

0

)rv;

where A(x

0

)� = U

x

0

(D

x

F (x))

�T

� and v 2 C

1

(R

n



). Then A has the struture needed

to apply Lemma 5.5

A(x

0

)� = U

x

0

�

I

0

�r

0

(x

0

)

0 1

�

� =

�

A

0

(x

0

) 0

b(x

0

)

T

(x

0

)

�

�; (5.15)

where A

0

(x

0

) and b(x

0

) depend smoothly on r

0

(x

0

) and (x

0

) =

p

1 + jr

0

(x

0

)j

2

.
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Lemma 5.6 Let v 2 C

1

(0)

(R

n



) and u 2 C

1

(0)

(R

n



)

n

. Then

F

�

rv = rF

�

v; F

�

div u = divF

�

u; F

�

�u = �F

�

u+R

1

F

�

u;

F

�

0



�

u = 

�

F

�

u; F

�

0



1

v = 

1

F

�

v; F

�

0

T

0

1

u = t

0

1

(x

0

; D

x

)F

�

u;

where

1. r = OP(U

T

(x

0

)A(x

0

)i�), div u = OP((A(x

0

)i�)

T

U(x

0

))u, � = �OP(jA(x

0

)�j

2

),



�

= �e

n

� 

0

U(x

0

), and 

1

= 

�

r = �

0

OP((A(x

0

)i�)

n

).

2. R

1

is a di�erential operator of order 1 with L

1

-oe�ients.

3. t

0

1

(x

0

; �

0

; D

n

)u = �

0

U

T

(x

0

)

�

(A(x

0

)i�)

n

I

0

A

0

(x

0

)i�

0

(A

0

(x

0

)i�

0

)

T

(A(x

0

)i�)

n

�

U(x

0

)u:

If additionally 

0

u = 0, then

F

�

0



�

(��r div)u = t(x

0

; D

x

)F

�

u+R

2

F

�

u;

where t(x

0

; �

0

; D

n

)u = �(A

0

(x

0

)i�

0

)

T



1

(x

0

; �

0

; D

n

)(U(x

0

)u)

0

and R

2

: W

2�"

q

(R

n

+

)

n

!

W

�

1

q

q

(R

n�1

) is a bounded linear operator for every " 2 (0;

1

q

0

).

Proof: The identities an be heked by elementary alulations. We only give the

details for the last statement. If 

0

u = 0, then

F

�

0



�

(��r div)u = 

�

(��rdiv)F

�

u+ 

0

R

1

F

�

u

= �e

n

� 

0

OP((�jA(x

0

)�j

2

+ A(x

0

)i�(A(x

0

)i�)

T

)U(x

0

))F

�

u+ 

0

R

0

F

�

u

= 

0

OP((A(x

0

)i�)

n

((A

0

(x

0

)i�

0

)

T

; 0)U(x

0

))F

�

u+ 

0

R

0

F

�

u;

where R

0

is a di�erential operator of order 1 with L

1

-oe�ients depending on x

0

.

Hene, if " 2 (0;

1

q

0

),

k

0

R

0

F

�

uk

W

�

1

q

q

(R

n�1

)

� k

0

R

0

F

�

uk

L

q

(R

n�1

)

� Ck

0

rF

�

uk

L

q

(R

n�1

)

� CkF

�

uk

W

2�"

q

(R

n

+

)

:

Thus the oordinate transformation ats on the prinipal symbol as

a(�) a(x

0

; �) = a(A(x

0

)�)

with an additional fator U

T

(x

0

) on the left if the range of the operator onsists of

vetor �elds and additional fator U(x

0

) on the right if the domain of the operator

onsists of vetor �elds. Therefore we an express prinipal boundary symbol opera-

tors of the equations after oordinate transformation with the aid of model operators;

e.g.

a

j;�

(x

0

; �

0

; D

n

) :=

�

���



j

(�

0

; D

n

)

�

= diag(1; 

�1

)a

j;�

(A

0

(x

0

)�

0

; D

n

+ b

T

�

0

);
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where we need the orretion fator 

�1

sine



j

(:; D

n

+ d) = OP

n

(

j

(:; �

n

+ d)) (5.16)

due to (5.13). Note that the symbol of the trae operator 

j

u = �

j

n

uj

x

n

=0

is 

j

(�) =

(i�

n

)

j

.

Beause of (5.14), the inverse of a

j;�

(x

0

; �

0

; D

n

) exists for j�

0

j � 1 and

a

j;�

(x

0

; �

0

; D

n

)

�1

= a

�1

j;�

(A

0

(x

0

)�

0

; D

n

+ b

T

�

0

) diag(1; )

=

�

r

j;�

(A

0

(x

0

)�

0

; D

n

+ d) k

j;�

(A

0

(x

0

)�

0

; D

n

+ d))

�

;

f. (5.1). In partiular, we get

k

j

(x

0

; �

0

; D

n

) := k

j;�

(x

0

; �

0

; D

n

)j

�=0

= k

j

(A

0

(x

0

)�

0

; D

n

+ b

T

�

0

); (5.17)

where k

j

(�

0

; D

n

) = k

j;�

(�

0

; D

n

)j

�=0

. Now we set

a

r

j;�

(x

0

; �

0

; D

n

) := a

j;�

(x

0

; �

0

; D

n

) +

�

k

r

j

(x

0

; �

0

; D

n

)t

r

j

(x

0

; �

0

; D

n

)

t

00

j

(x

0

; �

0

; D

n

)

�

; (5.18)

where

k

r

0

(x

0

; �

0

; D

n

) := �U

T

(x

0

)i

�

A

0

(x

0

)�

0

D

n

+ d

�

k

1

(x

0

; �

0

; D

n

)(A

0

(x

0

)i�

0

)

T

(5.19)

t

r

0

(x

0

; �

0

; D

n

)u := 

1

(x

0

; �

0

; D

n

)(U(x

0

)u)

0

; (5.20)

k

r

1

(x

0

; �

0

; D

n

) := U

T

(x

0

)i

�

A

0

(x

0

)�

0

D

n

+ d

�

k

0

(x

0

; �

0

; D

n

); (5.21)

t

r

1

(x

0

; �

0

; D

n

)u := �2

1

(x

0

; �

0

; D

n

)(U(x

0

)u)

n

; (5.22)

t

00

1

(x

0

; �

0

; D

n

)u := �U

T

(x

0

)

�

0 

0

A

0

(x

0

)�

0



0

(A

0

(x

0

)�

0

)

T

0

�

U(x

0

)u; (5.23)

and t

00

0

(x

0

; �

0

; D

n

) = 0 with d = b

T

(x

0

)�

0

. Beause of (5.14), (5.16), and (5.17), it easy

to hek that

k

r

j

(x

0

; �

0

; D

n

)t

r

j

(x

0

; �

0

; D

n

) = U

T

(x

0

)(k

r

j

t

r

j

)(A(x

0

)�

0

; D

n

+ d)U(x

0

) (5.24)

for j = 0; 1. Therefore

a

r

j;�

(x

0

; �

0

; D

n

) = U

T

(x

0

) diag(1; 

�1

)a

r

j;�

(A

0

(x

0

)�

0

; D

n

+ d)U(x

0

)

and

a

r;�1

j;�

(x

0

; �

0

; D

n

) = U

T

(x

0

)a

r;�1

j;�

(A

0

(x

0

)�

0

; D

n

+ d) diag(1; )U(x

0

): (5.25)

This is the essential formula for the onstrution of the parametrix.

We have to estimate the semi-norms of the transformed symbols. Beause of

(5.15) and r

0

 2 C

0;1

(R

n�1

), we have A(x

0

), A

�1

(x

0

) 2 C

0;1

(R

n�1

). Thus the same

holds for A

0

(x

0

); A

0

(x

0

)

�1

, b(x

0

), (x

0

), and 

�1

(x

0

). Hene we an apply Lemma 5.4

and Lemma 5.5.
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Corollary 5.7 Let a

r

j;�

(x

0

; �), j = 0; 1, be the symbol to the transformed boundary

symbol operator of the redued Stokes equations de�ned in (5.18). Then a

r

j

(x

0

; �; �) :=

a

r

j;�

(x

0

; �), � = e

i�

�

2

, and a

r;�1

j

(x

0

; �; �) are Green symbols of order 2, �2, respetively,

regularity

1

2

, and C

0;1

-smoothness in x

0

. Moreover, the semi-norms of the symbols

are uniformly bounded in � 2 [�Æ; Æ℄ for any Æ 2 (0; �).

5.4 H

1

-Calulus for the Model Operators

In this setion we will prove the basi estimates for the singular Green operators of

the parametrix for the redued Stokes equations on the boundary symbol operator

level.

First of all reall that it is su�ient to proof (1.9) for all h 2 H(Æ), where H(Æ)

onsists of all h 2 H

1

(Æ) suh that

jh(z)j � C

jzj

s

1 + jzj

2s

for all z 2 �

��Æ

and some onstants C; s > 0, f. Amann, Hieber, and Simonett

[4℄. Moreover, sine A

q

and A

10

are invertible, it is su�ient to estimate the Cauhy

integral (1.8) for �

R

:= � nB

R

(0), R > 0, instead of �.

We �rst onsider the boundary symbol operators of the Laplae resolvent

r

j;�

(�

0

; D

n

)f = p

�

(�

0

; D

n

)

+

f � k

j;�

(�

0

; D

n

)t

j;�

(�

0

; D

n

)f; j = 0; 1;

f. (5.1)-(5.4), and the orresponding transformed boundary symbol operator

r

j;�

(x

0

; �

0

; D

n

) = r

j;�

(A

0

(x

0

)�

0

; D

n

+ b(x

0

)

T

�

0

):

The analysis of the pseudodi�erential operator parts p

�

(�

0

; D

n

)

+

and p

�

(x

0

; �

0

; D

n

)

+

is done at the end of this setion. The singular Green operator falls under the sope

of the following lemma, whih is similar to [9, Lemma 3℄ and [20, Lemma 3℄.

Lemma 5.8 Let g

�

(x

0

; �; �

n

) be a symbol whih is Lipshitz ontinuous in x

0

2 R

n�1

,

ontinuous in � 2 �

Æ

n B

R

(0), 0 < Æ < �, R > 0, smooth in �

0

2 R

n�1

, and

in H

�1

^


H

�1

with respet to (�

n

; �

n

). Moreover, we assume that the symbol-kernel

~g

�

(x

0

; �

0

; x

n

; y

n

) := F

�1

�

n

7!x

n

�

F

�1

�

n

7!y

n

[g(x

0

; �; �

n

)℄ satis�es

kD

�

0

�

0

x

k

n

D

k

0

x

n

y

l

n

D

l

0

y

n

~g

�

(:; �

0

; x

n

; y

n

)k

C

0;1

� C

Æ;�

0

h�

0

i

�j�

0

j�k+k

0

�l+l

0

e

�

Æ

j�j

1

2

(jx

n

j+jy

n

j)

j�j

1

2

(5.26)

uniformly in �

0

2 R

n�1

, � 2 �

Æ

n B

R

(0), and x

n

; y

n

6= 0 for all �

0

2 N

n�1

0

; k; k

0

; l; l

0

2

f0; 1g and a 

Æ

> 0. Then









Z

�

R

h(��)D

�

0

�

0

g

�

(:; �

0

; D

n

)d�









C

0;1

(R

n�1

;L(L

2

(jx

n

j

�Æ

0

);H

Æ

0

2

))

� C

Æ;Æ

0

;�

0

h�

0

i

�j�

0

j

khk

1

(5.27)









Z

�

R

h(��)D

�

0

�

0

g

�

(:; �

0

; D

n

)d�









C

0;1

(R

n�1

;L(H

�Æ

0

2

;L

2

(jx

n

j

Æ

0

)))

� C

Æ;Æ

0

;�

0

h�

0

i

�j�

0

j

khk

1

(5.28)
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uniformly in �

0

2 R

n�1

for all h 2 H(Æ), 0 � Æ

0

<

1

2

, �

0

2 N

n�1

0

, where

g

�

(x

0

; �

0

; D

n

)f :=

Z

R

~g

�

(x

0

; �

0

; x

n

; y

n

)f(y

n

)dy

n

:

Remark 5.9 Note that the �singular Green operators� onsidered in this lemma are

operators ating on funtions de�ned on R instead of R

+

.

If g(:; �

n

; �

n

) 2 H

+

^


H

�

�1

, then ~g(:; x

n

; y

n

) = 0 if x

n

< 0 or y

n

< 0. Moreover, if

f 2 S(R

+

), then r

+

g

�

(:; D

n

)e

+

f , where g

�

(:; D

n

) is de�ned as above, oinides with

the usual de�nition of g

�

(:; D

n

)f as a singular Green operator.

Proof of Lemma 5.8: Beause of (2.2), we an replae k; l = 0; 1 by arbitrary

numbers a; b 2 [0; 1℄. Applying the modi�ed estimate, we get for f 2 L

2

(R; jx

n

j

2Æ

0

):

Z

�

R

�

�

�

D

�

0

�

0

D

k

0

x

n

�

jy

n

j

�Æ

0

g

�

�

(x

0

; �

0

; D

n

)(jy

n

j

Æ

0

f(y

n

))

�

�

�

dj�j

� C

�

0

;�

0

h�

0

i

k

0

+Æ

0

�j�

0

j

Z

R

Z

1

0

e

�

Æ

s

1

2

(jx

n

j+jy

n

j)

s

1

2

dsjjy

n

j

Æ

0

f(y

n

)jdy

n

� C

�

0

;�

0

h�

0

i

k

0

+Æ

0

�j�

0

j

Z

R

jjy

n

j

Æ

0

f(y

n

)j

jx

n

j+ jy

n

j

dy

n

:

Sine the integral operator with kernel k(x

n

; y

n

) =

1

jx

n

j+jy

n

j

is ontinuous on L

2

(R),

we get for k

0

= 0; 1









Z

�

R

h(��)D

�

0

�

0

g

�

(x

0

; �

0

; D

n

)f(y

n

)d�









H

k

0

2

(R

�

)

� khk

1









Z

�

R

�

�

�

D

�

0

�

0

D

k

0

x

n

�

jy

n

j

�Æ

0

g

�

�

(x

0

; �

0

; D

n

)jjy

n

j

Æ

0

f(y

n

)j

�

�

�

dj�j









L

2

(R

�

)

+ khk

1









Z

�

R

�

�

�

D

�

0

�

0

�

jy

n

j

�Æ

0

g

�

�

(x

0

; �

0

; D

n

)jjy

n

j

Æ

0

f(y

n

)j

�

�

�

dj�j









L

2

(R

�

)

� C

Æ;Æ

0

;�

0

;k

0

h�

0

i

k

0

+Æ

0

�j�

0

j

khk

1

kfk

L

2

(R;jy

n

j

2Æ

0

)

;

and therefore









Z

�

R

h(��)D

�

0

�

0

g

�

(x

0

; �

0

; D

n

)f(y

n

)d�









H

�Æ

0

2

(R

�

)

� C

Æ;Æ

0

;�

0

h�

0

i

�j�

0

j

khk

1

kfk

L

2

(R;jy

n

j

2Æ

0

)

(5.29)

by omplex interpolation. Sine e

�

r

�

: H

s

2

(R) ! H

s

2

(R) is a ontinuous mapping

if jsj <

1

2

, f. [25, Lemma 2.10.2℄, f 2 H

�Æ

0

2

(R) i� r

+

f 2 H

�Æ

0

2

(R

+

) and r

�

f 2

H

�Æ

0

2

(R

�

). Moreover,

kfk

H

�Æ

0

2

(R)

'

�

kr

+

fk

H

�Æ

0

2

(R

+

)

+ kr

�

fk

H

�Æ

0

2

(R

�

)

�

:
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Hene we an replae H

�Æ

0

2

(R

�

) by H

�Æ

0

2

(R) on the left-hand side of (5.29).

The same estimate holds with g

�

(x

0

; �

0

; D

n

) replaed by g

�

(x

0

; �

0

; D

n

)�g

�

(y

0

; �

0

; D

n

)

and an additional multipliative term jx

0

�y

0

j on the right-hand sides of the estimates.

Hene the estimate (5.27) is proved.

Passing to the (pointwise) adjoint, (5.28) follows from (5.27) by duality.

Remark 5.10 In our ase, the symbol-kernel of g

�

will be of the form ~g

�

(x

0

; �

0

; x

n

; y

n

) =

~

k

�

(x

0

; �

0

; x

n

)

~

t

�

(x

0

; �

0

; y

n

), where

kD

�

0

�

0

x

m

n

D

m

0

x

n

~

k

�

(:; �

0

; x

n

)k

C

0;1

� C

Æ;�

0

e

�

Æ

j�j

1

2

jx

n

j

j�j

1

2

h�

0

i

�j�

0

j�m+m

0

(5.30)

kD

�

0

�

0

y

m

n

D

m

0

y

n

~

t

�

(:; �

0

; y

n

)k

C

0;1

� C

Æ;�

0

e

�

Æ

j�j

1

2

jy

n

j

h�

0

i

�j�

0

j�m+m

0

(5.31)

uniformly in �

0

2 R

n�1

, x

n

; y

n

6= 0, � 2 �

Æ

, j�j � 1, and for �

0

2 N

n�1

0

, m;m

0

= 0; 1.

It is a onsequene of [1, Lemma 3.5℄ that

~

k

j;�

h�; �

0

i

j�1

and

~

t

j;�

h�; �

0

i

1�j

satisfy (5.30)

and (5.31), respetively. Beause of

F

�1

�

n

[f(�

n

+ d)℄(x

n

) = e

�idx

n

F

�1

�

n

[f(�

n

)℄(x

n

) =

e

�idx

n



F

�1

�

n

[f ℄(x

n

=);

and A

0

; b; ; 

�1

2 C

0;1

(R

n�1

), the symbol-kernels of the transformed Poisson and

trae operators

~

k

j;�

(x

0

; �

0

; x

n

)h�; �

0

i

j�1

and

~

t

j;�

(x

0

; �

0

; x

n

)h�; �

0

i

1�j

satisfy the same

estimates.

Finally, we note that multipliation of the symbol-kernels with a pseudodi�er-

ential symbol s

�

(�

0

) of order 0 and regularity � � 0 does not disturb (5.30) and

(5.31).

Beause of Lemma 5.3 and (5.25),

r

r

j;�

(x

0

; �

0

; D

n

)f := a

r;�1

j;�

(x

0

; �

0

; D

n

)

�

f

0

�

= r

j;�

(x

0

; �

0

; D

n

)f � g

0

j;�

(x

0

; �

0

; D

n

)f: (5.32)

Unfortunately, the symbol-kernel of g

0

j;�

does not satisfy the (x

n

; y

n

-pointwise) esti-

mate (5.26). The ritial term in the additional singular Green operator is of the

form g

�

(x

0

; �

0

; D

n

) = k

�

(x

0

; �

0

; D

n

)t

�

(x

0

; �

0

; D

n

) with

k

�

(x

0

; �

0

; D

n

) = p

�

(x

0

; �

0

; D

n

)

+

k

r

(x

0

; �

0

; D

n

)

where k

r

is a Poisson operators of order 1. The ruial observation is that p

�

(x

0

; �

0

; D

n

)

+

ommutes with k

r

(x

0

; �

0

; D

n

) in the following sense:

k

�

(x

0

; �

0

; D

n

)a = r

+

F

�1

�

n

7!x

n

[k

r

(x

0

; �)F

x

n

7!�

n

[:℄℄F

�1

�

n

7!x

n

[p

�

(x

0

; �)a℄

= r

+

m

k

r

(x

0

; �

0

; D

n

)k

p

�

(x

0

; �

0

; D

n

)a

where m

k

r

(x

0

; �

0

; D

n

) is a one-dimensional multiplier operator depending on (x

0

; �

0

)

with symbol k

r

(x

0

; �) and k

p

�

(x

0

; �

0

; D

n

) is a (generalized) Poisson operator with sym-

bol p

�

(x

0

; �), f. Remark 5.9.
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Lemma 5.11 Let m(x

0

; �), be smooth in � and in C

0;1

(R

n�1

) with respet to x

0

suh

that

sup

�

n

2R

kD

�

0

�

0

�

k

n

D

k

�

n

m(:; �)k

C

0;1

� C

�

0

;k

h�

0

i

�j�

0

j

(5.33)

for �

0

2 N

n�1

0

, k = 0; 1. Let m(x

0

; �

0

; D

n

)' = F

�1

�

n

7!x

n

[m(x

0

; �)'̂(�

n

)℄ be the or-

responding multiplier operator. Moreover, let g

�

(x

0

; �) satisfy the assumptions of

Lemma 5.8 and let g

0

�

(x

0

; �

0

; D

n

) := m(x

0

; �

0

; D

n

)g

�

(x

0

; �

0

; D

n

). Then g

0

�

(x

0

; �

0

; D

n

)

satis�es the estimate (5.27).

Proof: Sine m is �-independent, we only have to show that D

�

0

�

0

m(x

0

; �

0

; D

n

) is

ontinuous on H = L

2

(R; jx

n

j

2Æ

0

) and H = H

Æ

0

2

(R), jÆ

0

j <

1

2

, and satis�es the estimate

kD

�

0

�

0

m(x

0

; �

0

; D

n

)k

C

0;1

(R

n�1

;L(H))

� C

Æ

0

;�

0

h�

0

i

�j�

0

j

(5.34)

for every �

0

2 N

n�1

0

, j = 0; 1.

The estimate (5.33) implies that D

�

0

�

0

m(x

0

; �

0

; D

n

) is a one-dimensional Mikhlin

multiplier with respet to �

n

satisfying

[D

�

0

�

0

m(x

0

; �

0

; :)℄

M

� C

�

0

h�

0

i

�j�

0

j

and

[D

�

0

�

0

(m(x

0

; �

0

; :)�m(y

0

; �

0

; :))℄

M

� C

�

0

h�

0

i

�j�

0

j

jx

0

� y

0

j;

where [m℄

M

= sup

�

n

2R;k=0;1

j�

k

n

�

k

�

n

m(�)j. Sine jx

n

j

2Æ

0

is a Mukenhoupt weight of

lass A

2

, f. [22, Chapter V℄, i� jÆ

0

j <

1

2

, m(x

0

; �

0

; D

n

) is ontinuous on L

2

(R; jx

n

j

2Æ

0

)

for jÆ

0

j <

1

2

; f. [21℄ for an elementary proof. Moreover, the operator norm is bounded

by C[m℄

M

, where C depends on the weight jx

n

j

2Æ

0

. Hene (5.34) holds in the ase

H = L

2

(R; jx

n

j

Æ

0

). The ase H = H

Æ

0

2

(R) is obvious sine m(x

0

; �

0

; D

n

) ommutes

with hD

n

i

s

, s 2 R.

Lemma 5.12 Let k

r

2 C

0;1

S

0

1;0

(R

n�1

�R

n�1

;H

+

)
L(C

N

; C

n

) and let p

�

(x

0

; �

0

; D

n

)

be as in Remark 5.10. Then

p

�

(x

0

; �

0

; D

n

)

+

k

r

(x

0

; �

0

; D

n

) = r

+

m

k

r

(x

0

; �

0

; D

n

)k

p

�

(x

0

; �

0

; D

n

);

where

~

k

p

�

(x

0

; �

0

; x

n

) satis�es (5.30) and m

k

r

(x

0

; �) satis�es the ondition (5.33) of

Lemma 5.11.

Proof: Using the estimate kfk

1

� Ckfk

1

2

2

kf

0

k

1

2

2

for f 2 H

1

2

(R) and (4.1), we

onlude

sup

�

n

2R

kD

�

0

�

0

�

m

n

D

m

�

n

k

r

(:; �)k

C

0;1

� C

�

0

;m

h�

0

i

�j�

0

j

;

for all m 2 N

0

, �

0

2 N

n�1

0

. Hene (5.33) holds for m

k

r

(�) = k

r

(�).

Using the previous results we get the following theorem:
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THEOREM 5.13 Let Æ 2 (0; �), 

0

> 0 be the onstant in Lemma 5.1, and

r

r

j;�

(x

0

; �

0

; D

n

) be the transformed boundary symbol operator for the resolvent of the

redued Stokes operator de�ned in (5.32) with j = 0; 1. Then

r

r

j;�

(x

0

; �

0

; D

n

) = p

�

(x

0

; �

0

; D

n

)

+

+ g

r

j;�

(x

0

; �

0

; D

n

);

where g

r

j;�

satis�es (5.27). Hene









Z

�

R

h(��)g

r

j;�

(D

x

; x

0

)d�









L(L

q

(R

n

+

))

� C

Æ

khk

1

for every h 2 H(Æ) and R � maxf

0

; 1g.

Proof: We only onsider the Dirihlet ase j = 0. The analysis of the ase j = 1 is

done in the same way.

The additional singular Green operator in (5.32) is

g

0

0;�

(:; D

n

) = r

0;�

(:; D

n

)k

r

0

(:; D

n

)s

0;�

t

r

0

(:; D

n

)r

0;�

(:; D

n

)

beause of Lemma 5.3 and (5.25). Then

r

0;�

(:; D

n

)k

r

0

(:; D

n

) = p

�

(:; D

n

)

+

k

r

0

(:; D

n

) + k

0;�

(:; D

n

)t

0;�

(:; D

n

)k

r

0

(:; D

n

);

where Lemma 5.12 an be applied to p

�

(:; D

n

)

+

k

r

0

(:; D

n

). Moreover, t

0;�

(:; D

n

)k

r

0

(:; D

n

)

is a pseudodi�erential symbol of order 0 and regularity � � 0. Hene

h�; �

0

i

�1

~

k

0;�

(x

0

; �

0

; x

n

)t

0;�

(:; D

n

)k

r

0

(:; D

n

)

satis�es (5.30) beause of Remark 5.10. Similarly,

t

r

0

(:; D

n

)r

0;�

(:; D

n

) = t

r

0

(:; D

n

)p

�

(:; D

n

)

+

+ t

r

0

(:; D

n

)k

0;�

(:; D

n

)t

0;�

(:; D

n

);

where t

r

0

(:; D

n

)p

�

(:; D

n

)

+

satis�es (5.31) sine t

r

0

(:; D

n

) is a di�erential trae operator.

Moreover, t

r

0

(:; D

n

)k

0;�

(:; D

n

) is a pseudodi�erential symbol of order 0 and regularity

1

2

� 0. Altogether g

0

0;�

(:; D

n

) is the sum of operators satisfying the assumptions of

Lemma 5.8 and Lemma 5.11.

The last statement is a onsequene of Theorem 3.2 and Lemma 2.1.

It remains to estimate the pseudodi�erential operator part of the parametrix.

Lemma 5.14 Let 1 < q < 1, R > 0, and Æ 2 (0; �). Then p

�

(x; �) = (� +

jA(x)�j

2

)

�1

, x 2 R

n

, � 2 R, with A;A

�1

2 C

0;1

(R

n

)

n�n

satis�es









Z

�

R

h(��)D

�

�

p

�

(:; �)d�









C

0;1

� C

Æ;R;�

khk

1

h�i

�j�j

uniformly in � 2 R

n

, for all � 2 N

n

0

and h 2 H(Æ).
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Proof: The funtion � 7! p

�

(x; �) is meromorphi in C with a pole for � =

�jA(x)�j

2

. Therefore the pole is ontained in a ompat interval I � (�1; 0℄ if

j�j � 1 and x 2 R

n

. Using the homogeneity of D

�

�

p

�

(x; �) of order �2 � j�j, we get

with � = j�j� and � = j�j

2

z

Z

�

R

h(��)D

�

�

p

�

(x; �)d� =

Z

�

I

nB

R

(0)

h(�j�j

2

z)D

�

�

p

z

(x; �)dzj�j

�j�j

;

where �

I

is a urve around the ompat interval I with winding number 1 with

respet to the eah point in I. Using kD

�

�

p

z

(:; �)k

C

0;1

� C

�

for z 2 �

I

and j�j � 1,

we onlude that









Z

�

R

h(��)D

�

�

p

�

(:; �)d�









C

0;1

� C

�

j�

I

jkhk

1

h�i

�j�j

for j�j � 1. If j�j < 1, we estimate the integral in the same way as before but without

using the substitution � = j�j

2

z.

5.5 Parametrix for the Poisson Operators

We have to estimate the di�erene of the Poisson operatorsK

j

and their parametries.

In the �rst step we onsider the ase R

n



, where  2 C

1;1

(R

n�1

). Let

e

K

j

= F

�;�1

k

j

(D

x

; x

0

)F

�

0

; j = 0; 1;

where F

�

and F

�

0

are the same operators as in Setion 5.2 and k

j

(x

0

; �

0

; D

x

) is de�ned

as in (5.17).

Lemma 5.15 Let R

n



be a urved half-spae,  2 C

1;1

(R

n�1

), and

e

K

j

, j = 0; 1, be

de�ned as above. Then

e

K

j

: W

1�j�

1

q

q

(�R

n



)!W

1

q

(R

n



) and

�

e

K

j

= F

�;�1

[R

0

j

+R

00

j

℄F

�

0



j

e

K

j

= I + S

j

;

where

1. R

0

j

: W

1�j�

1

q

�"

q

(R

n�1

)! L

q

(R

n�1

;L

1

(0; b)) with an arbitrary b 2 R

+

,

2. R

00

j

: W

1�j�

1

q

�"

q

(R

n�1

)! H

�1

q

(R

n�1

;L

q

(R

+

)), and

3. S

j

: W

1�j�

1

q

�"

q

(�R

n



)!W

1�j�

1

q

q

(�R

n



)

are bounded linear operators for some " > 0.
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Proof: Let jÆj <

1

2

and H

Æ

= L

2

(R

+

; x

Æ

n

) if Æ � 0 and H

Æ

= H

�Æ

2

(R

+

) if Æ < 0.

Beause of Lemma 5.5, k

j

2 C

0;1

S

�j�1

1;0

(R

n�1

� R

n�1

;H

+

). Sine j1� j �

1

q

j < 1, we

an apply Theorem 4.8 to onlude

e

K

j

: W

1�j�

1

q

q

(�R

n



)!W

1

q

(R

n



):

Due to Lemma 5.6,

�

e

K

j

= F

�;�1

� k

j

(D

x

; x

0

)F

�

0

+ F

�;�1

R

0

k

j

(D

x

; x

0

)F

�

0

;

where R

0

= a(x

0

) � r, a 2 L

1

(R

n�1

)

n

. Hene Theorem 4.8 implies

R

0

k

j

(D

x

; x

0

) : B

1�j�

1

q

�"

q

(R

n�1

)! L

q

(R

n

;L

1

(0; b))

for every " 2 (0;

1

q

0

) and b 2 R

+

sine rk

j

(D

x

; x

0

) is a Poisson operator of order 1�j.

Sine � = OP(�jA(x

0

)�j

2

) is a di�erential operator in x-form and

k

j

(x

0

; �

0

; D

n

) 2 C

0;1

S

�j�

1

2

�Æ

1;0

(R

n�1

� R

n�1

;L(C ; H

Æ

));

f. Remark 4.2, we an apply Corollary 3.4 and get for arbitrary jÆj <

1

2

that

R

00

j

:= � k

j

(D

x

; x

0

)� OP

0

(OP

n

(�jA(y

0

)�j

2

)k

j

(y

0

; �

0

; D

n

))

satis�es

R

00

j

: H

1�j�

1

2

�Æ�"

q

(R

n�1

)! H

�1+"

0

q

(R

n�1

;H

Æ

)

for some "; "

0

> 0. Hene R

00

j

: H

1�j�

1

2

�Æ�"

q

(R

n�1

) ! H

�1

q

(R

n�1

;H

Æ

) and, beause of

Lemma 2.1,

R

00

j

: B

1�j�

1

q

�"

q

(R

n�1

)! H

�1

q

(R

n�1

;L

q

(R

+

))

for some " > 0. Sine

OP

n

(h

+

�

n

[jA(y

0

)�j

2

k

j

(y

0

; �)℄) = OP

n

(jA(y

0

)�j

2

)

+

k

j

(y

0

; �

0

; D

n

) = 0

for j�

0

j � 1, the Poisson symbol h

+

�

n

[jA(y

0

)�j

2

k

j

(y

0

; �)℄ is of order �1. Hene

R

000

j

:= �OP(h

+

�

n

jA(y

0

)�j

2

k

j

(y

0

; �)) : B

1�j�

1

q

�"

q

(R

n�1

)! L

q

(R

n

+

)

for all 0 < " <

1

q

0

. Thus we have proved 1. and 2.

Finally, if j = 0, then 

0

e

K

0

= I and S

0

= 0. If j = 1, then Lemma 4.10 yields



1

e

K

1

= F

�;�1

0



1

(x

0

; D

x

))k

1

(D

x

; x

0

)F

�

0

= F

�;�1

0

OP

0

(

1

(y

0

; �

0

; D

n

)k

1

(y

0

; �

0

; D

n

))F

�

0

+ S

0

1

with S

0

1

: B

�

1

q

�"

q

(�R

n



)! B

�

1

q

q

(�R

n



). Sine 

1

(y

0

; �

0

; D

n

)k

1

(y

0

; �

0

; D

n

) = I for j�

0

j � 1,



1

e

K

1

= I + S

1

; where S

1

: B

�

1

q

�"

q

(�R

n



)! B

�

1

q

q

(�R

n



) for some " > 0.

Now let 




� R

n

be an asymptotially �at C

1;1

-domain and " > 0 be a number

suh that " <

1

2

dist(�


+



; �


�



). We hoose ut-o� funtions '

�

2 C

1

(




) with
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1. '

�

(x) = 1 for dist(x; �


�



) � "=3, 0 � '

�

� 1, and

2. '

�

(x) = 0 for dist(x; �


�



) � 2"=3.

Moreover, let  

�

2 C

1

(




) suh that

1.  

�

(x) = 1 for dist(x; �


�



) � 2"=3, 0 �  

�

� 1, and

2.  

�

(x) = 0 for dist(x; �


�



) � ",

and let

e

K

�

j

denote the parametries of the Poisson operators in R

n



�

de�ned above.

We will use

e

K

1

a =  

+

e

K

+

1

a

+

+  

�

e

K

�

1

a

�

for a 2 W

�

1

q

�s

q

(�




);

e

K

01

a =  

+

e

K

+

0

a

+

+  

�

e

K

�

1

a

�

for a

+

2 W

1�

1

q

�s

q

(�




); a

�

2 W

�

1

q

�s

q

(�




);

s 2 [0;

1

q

0

), as parametries for K

0

, K

01

, respetively, in 




.

Lemma 5.16 Let 1 < q < 1, 




� R

n

be an asymptotially �at C

1;1

-domain, K

1

be the Poisson operator of the Neumann problem in 




, and let K

01

be the Poisson

operator of the mixed Dirihlet-Neumann problem. Moreover, let

e

K

1

and

e

K

01

be

de�ned as above. Then

kr(K

1

�

e

K

1

)

�

(��r div)uk

q

� Ckuk

2�";q

;

kr(K

01

�

e

K

01

)ak

q

� C(ka

+

k

1�

1

q

�";q

+ ka

�

k

�

1

q

�";q

)

for all u 2 W

2�"

q

(




)

n

, (a

+

; a

�

) 2 W

1�

1

q

�"

q

(�


+



)�W

�

1

q

�"

q

(�


�



) and some " > 0.

Proof: Let us �rst onsider the mixed Dirihlet-Neumann ase. Let f 2 L

q

0

(




)

n

and let f = f

0

+ rp, f

0

2

0

J

q

0

(




) = ff 2 L

q

0

(




)

n

: div f = 0; 

�

�

f = 0g,

p 2

0

W

1

q

0

(




) = fp 2 W

1

q

0

(




) : 

+

0

p = 0g, k(f

0

;rp)k

q

0

� C

q

kfk

q

0

, be its Helmholtz

deomposition with mixed boundary data, f. [3, Corollary A.3℄. Then

(r(K

01

�

e

K

01

)a; f)






= (

+

0

(K

01

�

e

K

01

)a; 

+

�

f

0

)

�


+



+ (r(K

01

�

e

K

01

)a;rp)






= (�

e

K

01

a; p)






+ (a

�

� 

�

1

e

K

�

1

a

�

; 

+

0

p)

�


�



sine div f

0

= 0, 

�

�

f

0

= 0, 

+

0

K

01

a = a

+

= 

+

0

e

K

01

a, �K

01

a = 0; 

�

1

K

01

= a

�

,



�

1

e

K

01

a = 

�

1

e

K

�

1

a

�

, and 

+

0

p = 0. By onstrution,

�

e

K

01

a =  

+

�

e

K

+

0

a

+

+  

�

�

e

K

�

1

a

�

+ P

+

e

K

+

0

a

+

+ P

�

e

K

�

1

a

�

;

where P

�

are di�erential operators of order 1 with oe�ients supported in suppr 

�

and dist(suppr 

�

; �




) > 0. Therefore P

+

e

K

+

0

and P

�

e

K

+

1

are operators of or-

der �1, f. Remark 4.9, whih implies that P

+

e

K

0

: W

�s

q

(�R

n



+

) ! L

q

(R

n



+

) and

P

�

e

K

1

: W

�s

q

(�R

n



�

)! L

q

(R

n



�

) for all jsj < 1. Thus

(�

e

K

01

a; p)






= (�

e

K

+

0

a

+

;  

+

p)

R

n



+

+ (�

e

K

�

1

a

�

;  

�

p)

R

n



�

+ (Ra; p)






;
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where j(Ra; p)j � C(ka

+

k

1�

1

q

�";q

+ka

�

k

�

1

q

�";q

)kfk

q

0

for an " > 0. Using Lemma 5.15,

(�

e

K

+

0

a

+

;  

+

p)

R

n



+

= (F

�;�1

R

0

0

F

�

0

a

+

;  

+

p)

R

n



+

+ (F

�;�1

R

00

0

F

�

0

a

+

;  

+

p)

R

n



+

;

where

�

�

�

(F

�;�1

R

0

0

F

�

0

a

+

;  

+

p)

R

n



+

�

�

�

�





R

0

0

F

�

0

a

+





L

q

(R

n�1

;L

1

(0;b))

kF

�

 

+

pk

L

q

0

(R

n�1

;L

1

(0;b))

� Cka

+

k

1�

1

q

�";q

kF

�

 

+

pk

W

1

q

0

(R

n

+

)

� Cka

+

k

1�

1

q

�";q

kfk

q

0

;

�

�

�

(F

�;�1

R

00

0

F

�

0

a

+

;  

+

p)

R

n



+

�

�

�

� kR

00

0

F

�

0

a

+

k

H

�1

q

(R

n�1

;L

q

(R

+

))

kF

�

 

+

pk

H

1

q

0

(R

n�1

;L

q

0

(R

+

))

� Cka

+

k

1�

1

q

�";q

kfk

q

0

:

Similarly, we onlude

�

�

�

(�

e

K

�

1

a

�

;  

�

p)

R

n



�

�

�

�

� Cka

�

k

�

1

q

�";q

kfk

q

0

: Finally, beause of

Lemma 5.15, a

�

�

�

1

e

K

�

1

a

�

= �S

1

a

�

with S

1

: W

�

1

q

�"

q

(�R

n



�

)! W

�

1

q

q

(�R

n



�

), whih

proves the Lemma in the mixed Dirihlet-Neumann ase.

In ase of pure Neumann boundary onditions we use the usual Helmholtz de-

omposition f = f

0

+ rp with f

0

2 J

q

0

;0

(




) = ff 2 L

q

0

(
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r
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�
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�
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1

q

0

and a suitable large b 2 R

+

beause of Remark 4.9.
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5.6 Parametrix for the Redued Stokes Equations

We �rst onsider the ase of a urved half-spae R

n



. In this ase we de�ne

R

j;�

:= F

�;�1

OP

0

(r

r

j;�

(y

0

; �

0

; D

n

))F

�

as parametrix for the redued Stokes equations, where r

r

j;�

is de�ned in (5.32). Be-

ause of Corollary 5.7, Theorem 3.2, and Theorem 4.8.3, R

j;�

: L

q

(R

n



)

n

! W

2

q

(R

n



)

n

with operator norm uniformly bounded in � 2 �

Æ

[ f0g, Æ 2 (0; �). Consid-

ering r

r

j;�

(y

0

; �) as Green symbol of order 0 with symbol semi-norms bounded by

C

Æ

(1 + j�j)

�1

, f. Remark 3.6 and Remark 4.6.1, we onlude kR

j;�

k

L(L

q

(R
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))

�

C

Æ
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R

j;�
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q

(R
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)
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! W

2
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(R
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)

n

(5.35)

with operator norm uniformly bounded in � 2 �

Æ

[ f0g, Æ 2 (0; �).

Lemma 5.17 Let R

n



be a urved half-spae with C

1;1

-boundary, Æ 2 (0; �), and R

j;�

,

j = 0; 1, be de�ned as above. Then
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uniformly in � 2 �

Æ
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some " > 0.

Proof: It is su�ient to prove the estimates of R

0

j;�

and S

�

for j�j � 

0

where



0

is the onstant suh that the model operator of the redued Stokes equations is

invertible, f. Lemma 5.1.

Due to Lemma 5.6 and (5.35),
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�
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e
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�

1
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+
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+
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for an " > 0 and k 2 N due to Remark 3.6 and Remark 4.6.1.

Finally, 
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0
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0;�
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1
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Now let 




� R

n
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, j = 0; 1, is the parametrix in the urved half-spae R
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2
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Lemma 5.18 Let 1 < q < 1 and Æ 2 (0; �). Then the operators de�ned above

satisfy

(���+G

0

)R

0;�

f = (I + S

1;�

)f in 




;



0

R

0;�

f = 0 on �




;

(���+G

10

)R

10;�

f = (I + S

2;�

)f in 




;

T

0

1

+

R

10;�

f = S

3;�

f on �


+



;



�

0

R

10;�

f = 0 on �


�



for f 2 L

q

(




)

n

, where

kS

j;�

k

L(L

q

(




))

; kS

3;�

k

L(L

q

(




);W

1�

1

q

q;�

(�




))

� C

q;Æ

(1 + j�j)

�"

; j = 1; 2;

uniformly in � 2 �
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for an " > 0 beause of Lemma 5.17. Hene it remains to estimate the di�erenes
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Hene Lemma 4.10.4 yields
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dependent trae operator of order d � 2, lass 0, and regularity

1

2

beause of the

omposition rules for boundary symbol operators, f. Remarks 4.7. Therefore all

error terms an be estimated by Cjt
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Remark 5.19 Note that the latter lemma is used in the proof of [3, Lemma 4.3℄

and that we did not use the unique solvability of the redued and generalized Stokes

equations so far.

Proof of Theorem 1.1: Let
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is invertible and beause
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f. [3, Remark 3.3℄, and the Stokes operator is invertible.

A Non-Smooth Pseudodi�erential Operators

For the proof of Theorem 3.2, we will proeed as in [23, �2.1℄ and have to verify that

all statements remain true for operator-valued pseudodi�erential operators.

For this purpose, we need the following more general lass of non-smooth operator

valued pseudodi�erential operators, whih generalizes the Hörmander lasses S

m

1;Æ

.
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(R

n

�R

n

;L(H

0

; H

1

)), Æ 2 [0; 1℄, s > 0, m 2 R, is the

set of all symbols p : R

n

� R

n

! L(H

0

; H

1

) that are smooth in � and are in C

s

�

with

respet to x and satisfy the estimates

sup

x2R

n

kD

�

�

p(x; �)k

L(H

0

;H

1

)

� C

�

h�i

m�j�j

kD

�

�

p(:; �)k

C

s

�

(R

n

;L(H

0

;H

1

))

� C

�

h�i

m�j�j+sÆ

for all � 2 N

n

0

.

The orresponding operators are de�ned in the usual way.

The proof of Theorem 3.2 relies essentially on the following operator-valued vari-

ant of [23, Theorem 2.1.A.℄.

THEOREM A.2 If r > 0, 1 < q <1, and p 2 C

r

�

S

m

1;1

(R

n

� R

n

;L(H

0

; H

1

)), then

p(x;D

x

) : H

s+m

q

(R

n

;H

0

)! H

s

q

(R

n

;H

1

)

for all 0 < s < r.

Proof: The proof is done in the same way as in [23℄ using elementary estimates and

inequalities based on

C

0

q

kuk

L

q

(R

n

;H)

�













 

1

X

j=0

k'

j

(D

x

)uk

2

H

!

1

2













L

q

(R

n

;H)

� C

q

kuk

L

q

(R

n

;H)

for all 1 < q <1, where H = C and '

j

(�) are smooth funtions suh that supp'

0

�

B

1

(0), supp'

1

� f

1

2

� j�j � 2g, '

j

(�) = '

1

(2

1�j

�) for j � 2, and

P

1

j=0

'

j

(�)

2

= 1:

The latter estimate is also valid if H is a Hilbert spae. In this ase `

2

(N

0

;H) is

again a Hilbert spae and we an apply the vetor-valued Mikhlin multiplier theorem

as in the proof of the usual Littlewood-Paley estimate, f. [23, �0.11.℄.

First of all, the ontinuity of p(D

x

; x) in Theorem 3.2 an be redued by duality

to the statement for operators in L-form. Sine C

r

�

S

m

1;Æ

� C

r

�

S

m

1;1

for Æ 2 [0; 1℄, the

last theorem implies the statement of Theorem 3.2 for s > 0. For the proof in the

ase of �r < s � 0, we will use the tehnique of symbol smoothing.

Let p 2 C

r

�

S

m

1;Æ

(R

n

� R

n

;L(H

0

; H

1

)), r > 0. If r 62 N , then C

r

�

= C

r

and there

exists a deomposition

p(x; �) = p

#

(x; �) + p

b

(x; �) with (A.1)

p

#

(x; �) =

1

X

k=0

	

0

(2

�k(�Æ)

D

x

)p(x; �) 

k

(�);
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where  2 (Æ; 1℄ and 	

0

2 C

1

0

(R

n

) with 	

0

(�) = 1 for j�j � 1 and 	

0

(�) = 0

for j�j � 2 and  

k

(�) := 	

0

(2

�k

�) � 	

0

(2

�k+1

�), k � 1,  

0

(�) := 	

0

(�). For this

deomposition we have

p

#

(x; �) 2 S

m

1;

; p

b

(x; �) 2 C

r

�

S

m�r(�Æ)

1;

; (A.2)

f. [24, Proposition 3.2.℄ or [23, �1.3.℄. This deomposition easily arries over to the

vetor-valued ase sine it only uses the symbol estimates.

Using this deomposition we prove:

Proposition A.3 Let 1 < q < 1 and let p 2 C

r

�

S

m

1;Æ

(R

n

� R

n

;L(H

0

; H

1

)), m 2 R,

Æ 2 [0; 1℄, r > 0. Then

p(x;D

x

) : H

s+m

q

(R

n

;H

0

)! H

s

q

(R

n

;H

1

)

for all s 2 R with �r(1� Æ) < s < r.

Proof: The proof is just a modi�ation of the proof of [23, Proposition 2.1.D℄.

Now we are able to prove Theorem 3.3.

Proof of Theorem 3.3: Let p

i

2 C

�

i

�

S

m

i

1;0

, i = 1; 2, as in the assumption of the

theorem. We set Æ

i

:=

�

�

i

. Then

Æ

1

� Æ

2

; ��

1

(1� Æ

1

) = ��

1

+ � < s; ��

2

(1� Æ

2

) = ��

2

+ � < s +m

1

; 1� Æ

i

� �

sine � < minf�

1

+ s; �

2

+ s +m

1

g and � �

�

i

1+�

i

. Let p

i

(x; �) = p

#

i

(x; �) + p

b

i

(x; �)

suh that p

#

i

2 S

m

i

1;Æ

i

and p

b

i

2 C

�

i

�

S

m

i

��

1;Æ

i

. Then we get

(p

1

p

2

)(x;D

x

)� p

1

(x;D

x

)p

2

(x;D

x

)

= (p

#

1

p

#

2

)(x;D

x

)� p

#

1

(x;D

x

)p

#

2

(x;D

x

)(p

#

1

p

b

2

)(x;D

x

)� p

#

1

(x;D

x

)p

b

2

(x;D

x

) +

+(p

b

1

p

2

)(x;D

x

)� p

b

1

(x;D

x

)p

2

(x;D

x

):

We will estimate eah di�erene separately with the aid of Proposition A.3.

1. Due to the usual symboli alulus (p

#

1

p

#

2

)(x;D

x

) � p

#

1

(x;D

x

)p

#

2

(x;D

x

) is a

pseudodi�erential operator with symbol in S

m

1

+m

2

�1+Æ

1

1;Æ

1

sine Æ

1

� Æ

2

and Æ

1

<

1. (See e.g. [16, Chapter 2, Theorem 1.7℄.)

Due to Proposition A.3 and 1� Æ

1

� �, we get the ontinuity

(p

#

1

p

#

2

)(x;D

x

)� p

#

1

(x;D

x

)p

#

2

(x;D

x

) : H

s+m

1

+m

2

��

q

(R

n

;H

0

)! H

s

q

(R

n

;H

2

):

2. Using Proposition A.3 again,

p

b

2

(x;D

x

) : H

s+m

1

+m

2

��

q

(R

n

;H

0

)! H

s+m

1

q

(R

n

;H

1

)
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sine ��

2

(1 � Æ

2

) = ��

2

+ � < s + m

1

< �

1

. Moreover, p

#

1

(x; �) is a smooth

symbol of order m

1

. Therefore we onlude

p

#

1

(x;D

x

)p

b

2

(x;D

x

) : H

s+m

1

+m

2

��

q

(R

n

;H

0

)! H

s

q

(R

n

;H

2

): (A.3)

Considering (p

#

1

p

b

2

)(x;D

x

), we observe that p

#

1

p

b

2

2 C

�

1

�

S

m

1

+m

2

��

1;Æ

1

. Hene we

get the same mapping properties as in (A.3).

3. Sine p

b

1

p

2

2 C

�

1

�

S

m

1

+m

2

��

1;Æ

1

, we get the same ontinuity as in (A.3). Finally,

p

b

1

(x;D

x

) : H

s+m

1

��

q

(R

n

;H

1
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2
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p

2
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1

+m

2

��

q
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n
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0

)! H

s+m

1

��

q
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n
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1

)

beause of ��

1

(1� Æ

1

) = ��

1

+ � < s < �

1

and ��

2

< s+m

1

� � < �

2

.
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