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Abstract

We study the generalized Stokes equations in asymptotically flat layers,
which can be considered as compact perturbations of an infinite (flat) layer
Qo = R*! x (—1,1). Besides standard non-slip boundary conditions, we con-
sider a mixture of slip and non-slip boundary conditions on the upper and lower
boundary, respectively. In this second part, we use pseudodifferential operator
techniques to construct a parametrix to the reduced Stokes equations, which
solves the system in L?-Sobolev spaces, 1 < ¢ < oo, modulo terms which get
arbitrary small for large resolvent parameters A. This parametrix can be ana-
lyzed to prove the existence of a bounded H-calculus of the (reduced) Stokes
operator.
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1 Introduction
We consider the generalized Stokes resolvent equations

A=Au+Vp=f inQ,,
divu=y¢ inf,,
T; (u,p) = a*  on 0Q7,

Ulgg: =0 on 00

~~
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= W N =

with j=0o0r j=1and A € C\ (—o00,0), where

T (u,p) = ulogy, T (u,p) = (v S(u) = vp)lans,  S(u) = Vu+ (Vu),
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and A € ¥; U {0}. Here Q, C R*, n > 2, is an asymptotically flat layer with
CYl-boundary, i.e.,

Q, ={(",2n) €R" : v (2') <z <7 (")}

and v* — £1 and V*,V?** — 0 as |2/| — oo, cf. [3]. Moreover, 9 =
{(2',v%(2")) : 2’ € R*1},

In |3, Section 3| it is proved that (1.1)-(1.4) are uniquely solvable (with the
restriction A # 0 if j = 0) if and only if the reduced Stokes equations

A=A)u+Gju=f inQ,, (1.5)
T;Jru =a” on 00,
Ulgg: =0 on 00,

where

' 20,u,
GOOUZGOUZ VKN/' (A—lev)u|397, Glou: VK01 ( v - (A—Vllals\?fjgﬂ > )
o2y,

+ + + -
Ty u=ulpor, (Ti u)r = (v-SW)rloas, (117 w)y = divulsr,

are uniquely solvable (in suitable L?-Sobolev spaces, see [3, Section 3| for details.)
Here K; and Ky denote the Poisson operators for the Laplace equation (A = 0).

The reduced system (1.5)-(1.7) fits well into the general calculus of parameter-
dependent pseudodifferential boundary value problems developed by Grubb in [12].
In Grubb and Solonnikov [15|, the authors used this approach and applied general
results for parabolic boundary value problems to solve the instationary Navier-Stokes
equations in anisotropic L2-Sobolev in bounded smooth domains locally in time for
various kinds of boundary conditions. Later this result was extended to L?-Sobolev
spaces, cf. [11], and smooth exterior domains, cf. [13].

In the following, we will use the calculus developed in [12] to construct a parametrix
to the reduced Stokes system (1.5)-(1.7), which coincides with the exact solution op-
erator modulo term which decay faster as |A\| — oco. Using this parametrix, we prove
that the usual Stokes operator in the Dirichlet case and the reduced Stokes operator
in the mixed case admit a bounded H..-calculus in the sense of McIntosh [18].

THEOREM 1.1 Let 1 < ¢ < o0, 6 € (0,7), and let 2, CR™ be an asymptotically
fat layer with C*'-boundary. Moreover, let A, = —P,A be the Stokes operator and
Aig = —A + G be the reduced Stokes operator with domains

D(Aq) = Wf(Qv)" N qu,o(Q"/)n n Jq,O(Qv)a

D(Ayp) = {u eWZ(Q)": T 'u= 0, ulp. = O} , Tesp.,
cf. [3]. Then A, and Ay admit a bounded Ho-calculus with respect to 6 on X =
J0(82,) and X = L(S2,)", resp. , i.e.,

B(A) = — /h(—)\)()\ AN, A=Ay A, (1.8)
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18 a bounded operator on X and
1P(A) |2y < Col[Plloo (1.9)

for every h € Hy(d). Here Hy(9) denotes the algebra of all bounded holomorphic
functions h: ¥, 5 — C and T is the negatively oriented boundary of ¥5 = {z €

C\ {0} : |arg| < d}.

The theorem implies the existence of bounded imaginary powers A%, y € R, of the
Stokes and the reduced Stokes operator since h,(z) = 2% € Hy(d). Hence the
result of Dore and Venni |7| implies the mazimal regularity of the (reduced) Stokes
operators.

The parametrix in 2, is defined with the aid of the parametrix in curved half-
spaces R = {(2',7,) € R : z, > y(2')} by means of a simple partition of unity.
Here the parametrix in RY is constructed by transforming the equations to a system
in R} with variable coefficients and freezing coefficients. In order to construct the
parametrix assuming only C''-regularity of the boundary, it is necessary to modify
the general theory in [12], which assumes smooth coefficients. This will be done
by combining the techniques and results for pseudodifferential operators with non-
smooth coefficients developed in [17, 23, 24] (in an operator-valued version) with
known facts for the smooth coefficient case, c¢f. Sections 3 and 4 below. In order to
prove the boundedness of (1.8), we have to analyze the symbols of the parametrix
precisely. This is done by relating the symbol of the parametrix in R to the symbols
of the solution operators of the reduced Stokes equations in R , cf. Section 5.3 below.
The structure of the reduced Stokes equations enables us to consider the resolvent
of the reduced Stokes operator as perturbation of the Laplace resolvent, cf. Section
5.1 below. Then we obtain the necessary estimates to prove boundedness of (1.8) in
Section 5.4 below.

Remark 1.2 Note that the method presented here is not restricted to asymptotically
flat domains. It has much in common with the first published proof that the Stokes
operator in a bounded domain possesses bounded imaginary powers presented by
Giga [9], which is also based on pseudodifferential operator techniques. Since the
following proof uses the reduced Stokes equations, we can also deal with more general
boundary conditions. In 9], the proof is presented in the case of a smooth bounded
domain, but can be modified for the case of a C*#-boundary, p > 0.

An alternative method, using a perturbation theorem for the H.-calculus, can
be found in Noll and Saal [19]. In the latter contribution the existence of a bounded
H . -calculus for the Stokes operator in a bounded and exterior domain in R*, n > 3,
with C3-boundary is proved.

In the special case of an infinite layer, a more elementary proof that the Stokes
operator possesses bounded imaginary powers based on Mikhlin multiplier techniques
is presented in Abels [1].



2 Preliminaries

We will use the same notation and function spaces as in [3|. Additionally, F and
F 1 denote the Fourier and inverse Fourier transformation,

FUNE =€) = [ =t FUAW) = Fla) = [ (e

defined for a suitable function f: R* — C, where d¢ := (27) "d{. Note that in the
following all integrals with respect to a phase & will be scaled by (27)~™ as above.
Moreover, we will use partial Fourier transformation

Famel €)= F(€a) o= [ e et

and the conjugate Fourier transformation F[f](§) = F[f](=€).

Let (€) = (1+[€P)}, € € RY, and let (D,)° = OP((€)°) = FI[(€)*F[]], s € R
Moreover, S(R") denotes the space of rapidly decreasing smooth functions f: R* —
C and S'(R") denotes the space of tempered distributions. Recall that the Bessel
potential space Hj(R"), 1 < q < o0, s € R, is defined as the space of all f € S'(R")
for which (D,)*f € LY(R"), with norm

1fllzg = I1(D2)° f] e

Moreover, S(R"; X') and H;(R"; X) denote the vector-valued variants, where X is a
Banach space.

As in [14, 10], the space H (R} ) = r*H;(R") is defined as the space of all distri-
butions of H,;(R") restricted to R} equipped with the quotient norm and H;,(R")

is defined as the space of all distributions of H(R") supported in R’.
Let ¢ € C§°(R™) such that

suppp = {€:271 < €] <2}, (&) >0if 27! < |¢] < 2,
Zkez 90(27]95) =1 when £ # 0,

and set ¢o(&) = 13,2, ¢(277¢). Then the Besov space Bi(R") = B; (R"), s € R,
1 < g < o0, is defined as the spaces of all tempered distributions f with finite norm

Bs:<||900 DT+ Y 2% (2 ’“Da:)f||‘£q> -

1<k<o0

1/]

If s > 0 with s € N, the Besov space B;(R") coincides with the Sobolev-Slobodeckij
space W7 (R").

We refer to [5, Chapter 6] for the interpolation properties of Besov and Bessel
potential spaces. In particular, we use

(Hg*(R"), Hy' (R"))g, = By(R") (2.1)
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for sp,s1 € R, sp # s1, 1 < ¢ <00, and s = (1 —)sy + fs;. Here (.,.)p, denotes the
real interpolation functor.

Finally, C#(R") = B: (R"), s > 0, denotes the Zygmund space, which consists of
all functions f such that

1£llcx = sup{llo(Da) fll=, 2027 Dz) fll = : & € N} < o0,

It coincides with the usual Holder space C*(R™) for non-integer s > 0.
We also need the weighted L?*-spaces

LRe,ol) = {ueD(Ry):ajule,) € L*(R.)},  s€R

and L*(R, |z, |*), which is defined analogously. Note that, (L*(R,,z%)) = L*(R,, z,,*)
with respect to the L?(R, )-scalar product and

(L*(Ry, 7)), L*(Rye, 72))o2 = L* (R, 27) (2.2)

for 6 € (0,1) and s = (1 — 0)s; + fs, because of [5, Theorem 5.4.1]. The analogous
results hold for L*(R, |z, |*).

Lemma 2.1 [ Let 1< ¢ <2, 0 <:—5<6, andf = (;—35—0)/(6 7).

Then
(LQ(R—Fin,)JLZ(R—Fin))a,q c Lq(R_*_), (23)
(Hyo (R), Hyp(Ry))og 2 LU(R:). (2.4)
2. Let 2 < q < o0, 5’<%—%<6, and@z(%—%—é’)/(é—é’). Then
(LA(Ry, "), LRy, 27"))og 2 LI(Ry), (2.5)
(Hy (Ry), Hy(Ry))o, S LU(Ry). (2.6)
Proof: The lemma was proved by Grubb and Kokholm [14, Theorem 1.8|. |

3 Non-Smooth Pseudodifferential Operators
Let B be an arbitrary Banach space.

Definition 3.1 The symbol space C7ST(R" x R*; B), 7 > 0, m € R, is the set of
all symbols p: R* x R* — B that are in C] with respect to the first variable and
smooth with respect to the second variable satisfying the estimates

||D?p(7§)| Cr(R"*;B) S Ca<€>m—|a\ (31)
for all o € Nj. Moreover, we define the semi-norms
Pl = sup (O DE( e, KEN.
la|<k,f€R™



The symbol space C»' ST (R* xR"; B) is defined in the same way with C replaced
by C%'. Note that C%*(R") C CH(R"), hence C*' ST, C C}STY,.

In the following we will only consider the case B = L(Hy, H;) for some Hilbert
spaces Hy and Hy. Then given p € X ST (R" x R"; L(Hy, Hy)), X = C] or X = C%',

paDu = OP(pla&u= [ *pla&)ile)de and
pDsu = OPy = [ [ = I uayde  (32)

for u € S(R™; Hy) are the associated pseudodifferential operators in L- and R-form,
resp; also called z-form and y-from. Here the second integral has to be understood
as an oscillatory integral, cf. |17, Theorem 2.2|.
We note that
(p(z, Dy )u, v) 2@nsmy) = (U, D' (Da,y 2)0) 2 11,)

for all u € S(R"; Hy), v € S(R"; Hy), where p'(x,&) = p(x,&)" € L(H,, Hy) denotes
the pointwise dual of the symbol p.

The following theorem is an operator-valued variant of [23, Proposition 2.1.D|
and will be proved in the appendix.

THEOREM 3.2 Let 7 > 0, 1 < q < o0, and m € R If p € CTST(R" x
R™; L(Hy, H)), then p(x, D,) and p(D,,x) extend to a bounded linear operators

p(x, Dy): H;+m(Rn§H0) — H(R"; H1), p(Dy,x): Hj(R*; Ho) — H; ™(R"; Hy)
for all s € R with —7 < s < 7.

In the following we denote by (pip2)(z,£) = pi(x,€) o pa(x,&) € L(Hy, Hy) the
pointwise composition of the symbols.

THEOREM 3.3 Let 1 < g <oo, mi,mys €ER, 0< 7 <7y, and s € R with |s| <7
and s +mq| < 7. If pr € CPSTH(R™ x R*; L(Hy, Hy)) and p; € CPSTG(R x

R™; L(Hy, Hy)), then for every 0 < 0 < T withs —0>—m and s+my — 0 > —7

(p1p2)(2, Dy) — pi(x, Dy)p2(z, Dy): H;erﬁmra(Rn; Hy) — H;(R"; H,)
15 a bounded linear operator. Moreover, there is a k € N such that
|(p1p2) (2, Da) = pr(x, Da)pala, Do)l < Clpal ™ pal{™,

where || - || denotes the corresponding operator norm.



This theorem will also be proved in the appendix.

The latter theorem shows that the composition of pi(x, D,) and py(z, D,) co-
incides with (p1ps)(z, D,) modulo an operator of lower order in the sense of map-
ping properties in Bessel potential spaces. In the following parametrix construction
the precise size of > 0 does not matter and for given s € R with |s| < 7 and
|s + my| < 7, there are always some ¢ > 0 which satisfy the assumption of the
theorem.

Corollary 3.4 Let m € R, 1 < ¢ < 00, and s € R such that |s| <1 and |s—m| < 1.
If p e CO'ST(R" x R"; L(Hy, Hy)) and a € C%'(R"), then for every 0 < 0 < § with
s+0<lands—m+60<1

a(z)p(Dy, ) — (ap)(Dy, x): HI(R"; Hy) — H ™(R"; H)
18 a bounded operator.

Proof: The corollary is easily obtained from Theorem 3.3 by duality. [

In the following we will restrict ourselves to the case of operators with Lipschitz-
continuous coefficients; this is the case we need for the construction of the parametrix.

As in [12], the spectral parameter will be represented as A = p2e?, § € (—x, 7).
Moreover, let p = p(&',p) = é,{%, where (€', 1) = (1 + €)% + p2)2 and p > 0,
& eRvt,

It is straightforward to define a non-smooth variant of these classes of parameter-
dependent pseudodifferential operators studied in [12].

Definition 3.5 Let d,» € R. Then C%'S{y (R x RTI) is the space of all functions
p(z, &, 1) smooth w.r.t. (£, p) and Lipschitz-continuous in = such that

IDEDIp(, & pllcor < Caglp(€,p)” ™+ 1) (€, )1

uniformly in (&, ) € RTI and for all @ € N}, j € Ny. Moreover, let

d,V a ] v—|a o _ a .
Ip| () = sup IDEDLp(-, &, )| o (p(&, )1 4+ 1) 7H(E, )~ H1+
|l ,j <k,(&,p) R

be the corresponding increasing sequence of semi-norms.
Recall that
(& m* if v >0,
(@& m* ifv<o.
Remark 3.6 Note that, if p € C’O’IS% and d’' > d, then p € C’O’ISf:é'j with |p|,(cd”y) <

(y=|p ,(gd"’) for all £ € Ny. Moreover, if d < 0, v > 0 and if we look at p as a
parameter-independent symbol, then [p(., /JJ)|,(€d) <Clp

(mauf+1x§md:{

,(Cd’y) uniformly in p € R,




4 Pseudodifferential Boundary Value Problems with
Non-Smooth Coefficients

We will now define a non-smooth version of parameter-dependent Green operators
developed in [12].

We use the notation of [12] except that yju = 0julag:. Recall that Hy, d € Z,
denotes the space of all smooth f: R — C which admit an asymptotic development
f(t) ~ sqt? + s4_1t%71 + ... in the sense that for all k,[, and N € Ny

o [t f(t)— > sthth

d
< Cran (L4 )N as [t — oo
j=d—N

It is important that H_; = H'T & H~,, where HT and H~, are the subspaces of all
f € H_, which can be extended holomorphically to the lower resp. upper complex
plane, and

Wt =FletSR,), Ho,=Fle SR,

see [12, Chapter II, Section 2.2] for details. — Note that f € Ht & f € H . —
Moreover, h™ = Fetr*F~! and h=; = Fe r~F~! are continuous projections on
Ht and H~,, resp. We use the convention H, = H~, & C,[t], r € Ny, where C, [t]
denotes the set of all complex polynomials of degree . Moreover, h_;: Hq — H_1
is the projection with range #_; and kernel C,[t]. Finally, we note that Hy, d € Z,
Ht, and H;, r € Ny, are nuclear spaces. Hence there exist unique complete tensor
products HT@H,” and H_1QH_;.
We start with the definition of Poisson operators.

Definition 4.1 The space 00’15’{{’(')’(]1%”_1 xR, H*), d,v € R, of Poisson symbols of
degree d and regularity v consists of functions k(z', &', &,, u) € HT with respect to &,
which satisfy

: ’ v——1"4 - 1_ ' _lal—7
1Dg Dk (D, &,k (€' )l conganizz ) < Clp 104 1)(!, )t tHrlals

(4.1)
for all o € Ny, 5,1,0' € Ny. If k € COLST M(R*! x R, %), then
k(' 1, Dp)a =T F L [k(a, & pa(e], a € SR,

is the associated Poisson operator of order d and regularity v in L-form.

Note that the degree of a Poisson symbol reflects the order of growth as |(£, u)| — oo
in contrast to the order, which reflects the mapping properties of the associated
operator.

Alternatively, a Poisson operator can be described by its symbol-kernel:

k(xluuanB) = fﬁ_’i)a:’ ];(x,7€7u7x”)d(§l) !

8



where k(z/, &, p, x,) = FoL [k(a', €, p)] € S(Ry) w.r.t. x,. Moreover, the bound-

5 —Tn
ary symbol operators k(x' &', pu, D,,) are defined as one-dimensional operators with

symbols k(z', &, ) for fixed (2, ).

Remark 4.2 Let k € C% 1Sd"(]R”*1 x R, H*) be (for simplicity) independent of y.
Then (4.1) and || F[f]||l 2@,y = [[fllz2@) for f € HT imply

’ 1_ '_la
|1 Dgal, DL k(2. €', Dy)lleerzryy) < Cagp (€)Y o,

In particular k(z', &', D,,) is a L(C, L*(Ry))-valued pseudodifferential operator of or-
der d+%. Moreover, interpolation of the latter estimate for different values of [,1' € Ny
yields

L 6-]a
| Dg k(- €', Do)l oot @n-10(c,02 (R4 ,029))) Co ()20l (4.2)
15
||ng(-;§,;Dn)||C’0,1(R"—1;£((C,HS(R+))) < Ca,6<€,>d+2+6 || (43)

for all § > 0 and o € Nj !, cf. (2.2) and [14, Section 3.3]|.

IN

Considering a boundary symbol operator as operator-valued pseudodifferential oper-
ator, the corresponding operator in R-form k(D,,z', i) is defined as in (3.2).

Definition 4.3 Let d,v € R and let r € Nj.

1. The space of trace symbols C®'S{ (R~ x R, H,_,) of degree d and class
is the set of all

Ha' & ) = > sl &) (i&) + 1, € 6 ),
0<j<r—1
with #(2/, &, 1) € COLST (R xR, H*) and s;(a’, &, p) € COLST g7 (R 1 x
R’ +)- The associated trace operator of order d in L-form is defined as

r—1

oo D) = 3 si(als Dar)f + Fol [ [tw.8 enmiie).

J=0

2. The space of singular Green symbols C%!'S{ (R"™! x R, HT®H, ;) of degree
d and class r consists of all functions

—_

r—

g(xla gl, 5717 M H) = kj(xla 517 5717 /u) (“’/n)] + gl(xla &-l, gna s /u)

J
such that k;(z',&, &, p) € COISdfj’”(R”_l x R, HY) and ¢'(a', & mn, 1) €
HTQH, _, with respect to (&,,n,) satisfying

||DngLh71,§n hfl,ﬁn (DgngﬁlD%nnf’:g(aj‘,7 g) 77“7 M) ||CO’1(R"71;L2(R2))
< C(pV*[k*k’]nL*[lfl’]r\al + 1)<§/7 /L>d+17k+k’fl+l’f\a|fj (4.4)

Il
o
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forall o' € Ny=' k, K/, 1,1, j € Ny. If g € COLST M (R xR, HE@H, ), then

r—1

g(@' 1, Do) f = ki, Da)sif + Fe U @&, 1) FE ) din |

J=0

fe S(Ri), is the associated singular Green operator of order d, regularity v,
and class r in L-form.

Note that, if ¢/(2', D,) is a trace operator of class 0, then

(t(', De)p, ¥ )rn-r = (0, k(Dg, &), (4.5)

where k(2',€) = t(2/,€) and » € S(R}), ¢ € S(R*'). Hence trace operators can
be considered as duals of Poisson operators plus a sum of usual trace operators
s;j(2', p, Dyr)yj. Throughout the present contribution, the singular Green symbols
will be products of Poisson and trace symbols.

We can also describe trace and singular Green operators with the aid of their
symbol-kernels:

r—1 00
t(@', 0, D) = Y s, Du)yif + Fols U f’(x',5',u,xn)f(§',xn)dxn},
j=0 0
r—1 00 R
g(l‘l,M,Dw) = ij(xlauaDI)7]f+f7.l_>x’ |:/ gl(mlaglauaxnayn)f(glayn)dyn}7
=0 0

where ¢ (2, &, py ) = Fo b [t(2', € p)] € SRY) wort. @, and §' (a7, &ty T, Yn) =

En—Tn

f&;%ﬁ,ﬁgyn [g(2, &m0, )] € SRy x Ry) wort. (2,,y,). Finally, the boundary

symbol operators t(z', &', p, Dy,,) and g(2', &', u, D,,) and operators in R-form are de-
fined in the same way as for the Poisson operator.

Definition 4.4 Let p € COJS{{’S(R” X Riﬂ), d € Z, v € R, that is independent of

xn. Then p satisfies the transmission condition if there are functions sy, ; smooth
in (&, 1) and Lipschitz continuous in 2’ such that for any a € Nj and [,j € Ny

d—|a|—j

EDEDIP(LE ) = Y Skag(- & mET | < Cray (€ )™ g, 1

k=—1 X

when €. > (€', 2).

Definition 4.5 A Green operator (in L-form) of order d € Z, class r € Ny, and
regularity ¥ € R with Lipschitz-continuous coefficients is defined as

1 - p(l‘laua D$)+ +g(a:’,,u, DSIJ) k(ZL‘,,,u, D"B)
a(x ) 1 DI) o ( t(ZL‘,,M, -D;n) S(I‘I,M, DSIJ') 7

10



where k(z', p, D), t(z', p, Dy), and g(«', p, D,) are Poisson, trace, and singular Green
operators of order d, regularity v, and class r, p(z',p, Di)y = rp(a’, pu, Dy)e”,
p € C’O’ISi’g(R” X ]Ri), is a truncated pseudodifferential operator satisfying the

.. . _1 - —=n
transmission condition and s € C%'S{ " (R*! x R}).

In the following we will often restrict ourselves to the case of parameter-independent
symbols and operators. The corresponding symbol classes C*'S{((R" ! x R" !, K),
K=H"H |, or K=H"®H, | are defined as above with the restriction that the
symbols are independent of ;1 and the symbols estimates hold for p = 0.

Moreover, if f is a Poisson, trace, or singular Green symbol, then |f ,(cd’”), ke N,
are the semi-norms (monotonically increasing in k) associated to (4.1), (4.4), resp., in
the usual way, cf. Definitions 3.5 and 3.5. The semi-norms of parameter-independent
symbols will be denoted by |f|\”.

Remarks 4.6 1. As in Remark 3.6, | f|\""") < (u)=¢|f|\""), ¢ > 0.

2. If f is a parameter-dependent Poisson or trace symbol of degree d < —%,

regularity v (and class r), then f(., ), p > 0 fixed, is a parameter-independent

symbol of the same degree and class with |f(.,u)|,(€d) < |f ,(gd"’) uniformly in
> 0. The same is true for parameter-dependent singular Green symbols of
degree d < —1.

3. Conversely, if k € CO'S{ M (R x R*™',H "), then k € C’O’ISiBl’d_%(R”_l X
Ri, HT) if considered parameter-dependent, cf. [12, Proposition 2.3.14]. More-
over, every parameter-independent differential trace symbol is a trace symbol
of the same order and class and with regularity oo.

Remark 4.7 Freezing 2/, the boundary symbol operator a(z', &', u, D,,) belongs to
the class studied in [12]. Thus, if we assume that the truncated pseudodifferen-
tial operator in a(x’, &', u, D,,) is actually a differential operator, the composition of
a(x' &, p, Dy) with a second boundary symbol operator o' (2', &', i, D,,) is a bound-
ary symbol operator of order d’ = d + d', class " = [r + d'];, and regularity
V" = min{v, ;v + v'}, cf. [12, Theorem 2.6.1]. Here d,r,v (resp. d',r',v") de-
note the order, class, and regularity of a (resp. a').

Moreover, we note that a symbol f is in one of the pseudodifferential, Poisson,
trace, or singular Green symbol classes C’O’le,’g iff the symbol f(z',.) with frozen

7' € R"! is in the corresponding smooth class Si’[’)’ and the semi-norms satisfy

£ (')

uniformly in 2/, y’ € R*~! and for all k¥ € N.
Since composition of boundary symbol operators is continuous with respect to
the semi-norms we have proved that

W <oy f@ )~ F ) < Chlal — |

a(x,’ 5,7 ‘Dn) o al(xIJ 6’7 ‘Dn) = a”(l‘IJ 6’7 Dn)?

11



where a” is a non-smooth Green symbol of order d”’, class ", and regularity v”,
defined above, with coefficients in C%!.

Finally, we note that in our cases the regularities v,7" will be positive. Hence
the composition will have regularity " = min{v,v'} > 0, which is essential for the
parametrix construction.

THEOREM 4.8 Let 1 < g < o0.
1. Ifk € CMS{H R x R, HY), d € R, is a Poisson symbol of order d, then

d—1L
q

k@', D,): By (") - L(R})

_1 1
k(Dg,a'): B;l "R — LYRL) if ‘d— —| <1, resp.
q

are continuous operators.

2. Lett € C¥'S¢ (R x R, H_)), d € R, be a trace operator of order d and
class 0. Then t(z', D,) and t(D,,z") extend to bounded operators

il 1
Ha',Dy): LI(RY) — By YR if ‘d+ —‘ <1,
q
t(Dy,a'): LY(RY) — qudia(R”_l), resp.

3. Letg € C’O’lSi(T*l(Rnfl xR HT@H ), m € Ny, be a singular Green operator
of order —m and class 0. Then g(D,,x') extends to a bounded operator

9(Dg,2"): LYRY) — W (RY).

All operators depend continuously on the symbols with respect to the operator norm
and the symbol semi-norms.

Proof: The proof is carried out with the same method as in |14, Section 4.1] using
the interpolation inclusions of Lemma 2.1

1. First let 1 < ¢ < 2. Then (4.2) and Theorem 3.2 imply

k', Do), k(Dy,a'): HE 2RV & LIRS LA(R,,02)) 6> 0 (4.6)

rrn

under the restriction |d — 1 — 6| < 1 for the operator in z-form. Hence inter-
polation with different values of § and Lemma 2.1 yield the first statement in
the case 1 < ¢ < 2. The case 2 < ¢ < oo is proved in the same way using (4.3)
instead of (4.2).

2. The mapping properties of t(z', D,) and t(D,,z') can be obtained by duality
using (4.5) and the analogous statement for ¢(D,,z") and k(z', D).

12



3. We can assume w.l.o.g. m = 0. In the same way as in Remark 4.2, one can
obtain the following estimates by interpolation of the singular Green symbol
estimates in (4.3):

[N

Ca’,6<§l>7‘a’|7

'l

||D?' g(., £, D,) ||c;(Rn—l;L(L2(R+,z;25),Hg(R+)))
1D (& Du)llog gnricmsgen po@eazy) < Casl€)™®

for all 0 > 0. Hence application of Theorem 3.2 and Lemma 2.1 proves the last
part of the lemma.

Remark 4.9 Since multiplication of a Poisson symbol-kernel k(z',&, z,) with z,
reduces the order by 1, cf. (4.1), it is a consequence of the latter theorem that

k(Dy,a'): By *(R*™Y) — W™R" x (£, 00))

forallsERWiths—%>—l,mENg,ands>0.
Moreover, using L*(0,b,22°) < L*(0,b) for § < 5 and (4.6),

d—L—¢

1
k(Dg,2'): By *© (R*1') — LY®R* ', LY(0,0)) if ‘d— - —g| <1,

q

forallO<5<$andallb€R+.

The following lemma summarizes the results concerning composition of non-smooth
pseudodifferential operators which we need in Section 5.

Lemma 4.10 Let 1 < ¢ < 00, di € Ny, and r € Ny. Moreover, let py(z', D,) be a
differential operator and let t(x', D,) be a differential trace operator both of order d;
with C%-coefficients and of class r.

1. Let k(a',€) € COLSETH RV x RLHY), dy € R If |dy + do — %| < 1, then
there are € > 0 such that

d1+d2*%
q

pi(2', Dp)k(Dy, ') — (pik)(Dy,2'): B (R = LIRY).
Moreover, if s € (—1,1) such that |s + d; + ds| < 1, then
t(a', Dy)k(Dy, a') — (tk)(Dy, ') : BiFHT2*(R*) — BI(R* 1)
for an € > 0.
2. Let g(z',€) € COLSTH (R x R HYQH,). Then
P&, D2)g(Daya') — (p1g) (Do a'): LU(RE) — LI(RY)

with operator norm bounded by C|p; ,(cdl)|g|,(€_d1_1+5) for somee,C >0, k € N.
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3. Let po(x,€) € Co’lsigl(R" x R™). Then

p1(a', Dy)pa(Da, )+ — (p1p2) (D, )40 LYRY) — LA(RY)

with operator-norm bounded by C|p; ,(cdl)|p2|,(;dl+€) for somee,C >0, k € Ny.

4. If k€ COLSTEH R x R, HY), a € CONRYY), and t € C¥'SE (R x
R H,), d € R, with |[d+ ;| <1, then

k(Dg, " )t(Dy, ") — (kt)(Dy,2"): LY(R}) — LY(R?),

a(@')t(Dy, 7') — (at)(Dy, 2'): LIRE) — Wy 7 (R,

where the operator norm is bounded by C’|k|l(7d71)|t|§d+€) and C’||a||co,1|t|§d+5),
resp., for some e,C >0, [ € N.

Proof: We assume w.l.o.g. d; = 0. Then p,(z', D,) = a(2') and t(2', D,) = a(z")y
for an a € C*'(R"!). Moreover, we only give the details for 1 < ¢ < 2 since the
case ¢ > 2 is treated in the same way.

_1_
1. Since k(2/,¢, D,) € COLS1 2 (Rr=1 x R*1; £(C, L*(Ry,23)) for 0 < 6 < 1,
cf. (4.2), we get by Corollary 3.4 that

a(a)h(Dy, 0') = (ak)(Daya'): By’ * 7 (R = LR ARy, 0))

for € > 0 (depending on ¢). Hence

da—L1—¢

a(z')k(D,, ") — (ak)(Dy,2"): By © (R*') — LY(RY)

by Lemma 2.1 for ¢ > 0. Moreover, because of (4.3) and ||f||« < [|flIZ]1/]|3

for every f € S(Ry), yk(a', &, Dy) € S{3 (R x R"~1). Hence
a(2) 0k (Da, @) — (a0k) (Do, 2'): By 7*(R"™) — By(R")
for an € > 0 because of Corollary 3.4 and (2.1).

2. Since dy = —d; = 0, we look at ¢g(D,,2') as a singular Green operator of order
0<e< % Hence g(2', &', D,,) € C’O’lSio(]R"*1 XR”*I;,C(H2_6(R+),L2(R+,xi)))
for 0 <9 < %, cf. proof of Theorem 4.8.3. Therefore

a(z')g(Dy,x") — (ag)(Dy, 2): LYRY) — LU(RY)
with operator norm bounded by C||a||0,1|g|§;1+€) for e € (0, 3].

3./4. The last two parts of the lemma are proved analogously.
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5 Parametrix Construction and H_,-Calculus

5.1 The Model Operators of the Reduced Stokes Equations
in R}
In this section we discuss the structure of the boundary symbol operators of the

reduced Stokes equations in R’} — the “model operators”.
For A = p?e?, > 0,0 € (—m, ), let

, 2 16 12 D2 kr I;-DTL T ,;Dn

j=0,1,0 € (—m,m), be the model operator of the reduced Stokes equations, where

k(€ Duyu= —e €I [T i, k(€ DyJu = e < T ) ,
-1 —[¢]
tg(é-,’ D”)u = aﬂul(0)7 tq (&-l, Dn)u - 28nun(0)7
1l ! Yo " 8n !
t0(€ ’ Dn)u = o, tl (6 7Dn)u7 - < 12§ uu’((%))_:‘ anzf(()g) > .

Here [.] denotes a smooth function with [€'] = |¢'] if [€'] > 1 and [¢'] > § if |¢'| < 1.

In |15, Theorem 6.1] it was shown that the system of the reduced Stokes equations
is parameter-elliptic for arbitrary 6 € (—m,7), see [12, Definition 3.1.2.] for the
definition of parameter-ellipticity. This result implies:

Lemma 5.1 Let 0 € (—m,7) and let a}(§', p, Dy), j = 0,1, be defined as above.
Then there is a co > 0 such that

aj(&', p, Dn) + Hy(Ry)" — L*(Ry)" x C"

is bijective for all |(£',p)] > co. Moreover, a%(&', u, Dp)™" is a boundary symbol
operator of order —2, class 0, and regularity %

Proof: The first statement is a direct implication of [12, Proposition 3.1.3] and [12,
Lemma 3.1.1]. The second statement is a consequence of [12, Theorem 3.2.2]. |

Remark 5.2 Since a(¢', i, D,,) depends continuously on 6 € (-, ), there is a
constant ¢ such that a;(¢', 4, Dy,) is invertible for all |(§', )| > ¢ and 6 € [—9, 6] for
every fixed 0 € (0, ).

Moreover, let

pre + &7+ Dy

L*(Ry)
X
Yy C

e - ) s, -
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j=0,1, 8 € (—m, ), be the model operator of the Laplace resolvent with Dirichlet
or Neumann boundary condition. It is well-known that a;(£’, 1, D) is bijective for

all (¢, 1) € R} \ {0} and that

aj (€, D) = (15(&s D) k(€ 11, Dn) ), (5.1)
(€1 Dn) = p(& 1 Da)s = k5(&s 1, D)t (', 1y D), (5.2)

p(&p) = (e“u*+ 7)Y, (5.3)
k. , D B e_Cuxn Je_Cuyn d 5 4
i€ Dy)g = Tg, i, D) f = / %1 7 (Yn)dyn, (5.4)

where ¢, = (e?u? + €/2)2. As usual, we obtain a boundary symbol operator of order
—2, class 0, and regularity oo if we smooth the symbols of a;l(f’, w, Dy) for (&', p)| <
1. The smoothed operator will again be denoted by aj_l(f’, i, Dy,). Moreover, we use
the convention a; (&', Dy) = a; (€', 1, Dy,), pa(€) = p(&, p) ete., where A = p2e®

We can consider the model operator of the reduced Stokes resolvent equation as
perturbation of a;(§’, i, Dy):

a;(fl,M,Dn) = aj(gluuaDn)+bj(€lauaDn)a

where

e D) = (MO PIE DY) e = (5100 )

and t§(¢', Dy,)u = 0. Asin [13, Section 3| and |2, Section 4.2|, we get by an elementary
calculation

af € Dy) = (I+a;" (& 1 Da)bi (€, 11, D)) ta; (€, 1, D),

where

(I+aal(§luua Dn)bO(gaNaDn))_l = I—ro(f',u, Dn)kg(f,;Dn)So(fl;M)tS(flaDn)a
so(€, 1) = (I +15(€, Da)ro(€', s DR)kG(€', Dn))

(I +a; (€, 11, D)bi(€, 1, D)) ™
= T~ (1 (& DIK(E D) k(€1 D) 51 (€ 10) ( i) ) ,
acn = |1+ (D) ) 6 DIK D) RG]

1
In view of the composition rules, s; € Si’g (R*' x R?) @ L(CY) with N =n —1if
j=0and N =2if j =1. Hence we obtain:
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Lemma 5.3 Leta}(&', p, Dn), a;(§', 1, Dr), j = 0,1, be defined as above and [(£', )| >
max{cg, 1} > 0, where ¢y is the same constant as in Lemma 5.1. Then

a;’fl(fla p, Dn) = afl(gla 1, Dn) — b;' (& 1, Dy) (5.5)
with
b6(7 Dn) = TO('? Dn)k(r)(a Dn)SO(')t(T)('v Dn) (7‘0('7 Dn)7 kO(': Dn)) ) (56)
8 D) = (4 DK D). Ky D) 1) (40 D7) ) (3 Db D)
(5.7)

5.2 Coordinate Transformation

In this section we calculate the principal symbols of the operators in the reduced
Stokes equations for the curved half-space R} after coordinate transformation to R} .
The principal rule is that if a(§) is the symbol of the corresponding operator in R,
then

a(z', &) := a(A(2")E), ¢ eR" € eRY, (5.8)

is the principal symbol for the curved half-space, where A(z') depends on V'y €
COHR*1), cf. Section 5.3 below.

Lemma 5.4 Let p(§, 1) € S/¢"(R* x Riﬂ), m,v € R, and A € C*H(R")"™" with
At e C%N(R™)™ ™. Then q(x,&, p) == p(A(z)&, u) € COLSTH (R x RTI), and for
every k € Ny there is a k' € Ny such that |q|,(cm’y) < C|p|§cr,n’y), where C' depends only
on ||Al|cor, ||A7Y|con, k,m, v, and n.

Proof: The proof is carried out in a straightforward manner using

p(A(x)&, ) — p(A(y)E, 1)
- / Vepl(tA@)E + (1 - DAWE Wit - (Alw) — AW)E,  (5.9)

where tA(x)+(1—t)A(y) is invertible for all ¢ € [0, 1] if [A(z)—A(y)] < (2|47 |)
|
The analogous statement for Poisson, trace, and singular Green symbols is as follows:

Lemma 5.5 Let f(£, ) € STy (R* x@i,lC), m,v € R, r € Ny, where K =H* or
K =%H, . Moreover, let A(z') € COY(R*™)"*" such that A~'(z') € CO(Rr—1)nxn
and A possesses the block structure

no (A@) 0 ——
Ax') = ( () o) ) with c(z") > 0. (5.10)
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Then g(a', &, 1) = f(A()E n) € 0015%”(1&"*1 x R, K), and for every k € N
there is some k' € Ny such that |g|\™" < C(||Allcos, | A |co)|fIS"™). The same
statement is true if we set K = HTQH, | and set g(a', &, nn, ) := f(A(2")E, e(z')nn+

b ()¢ ).

Proof: Note that h_if(ct + d) = (h_1f)(ct +d) if f € H and ¢ > 0. Since
c(2'), ¢ (2'), and b(2") are uniformly bounded and (c&,)* = 37 (£) (c&,+b7€) (—b7¢")r!
we get

1 &50E, (f (¢ + 7€) |2y
k

C(Z (’f)|be’|’“‘l|lh—1<cén+st'>( 1)k +67E) [ race )
=0

IN

k
< C (Z<§'>’“—l||h_1sza’if(¢n)||L2(R)> (5.11)

=0

for every f € H_,, where the constant C' depends only on the bounds of ¢(2'), ¢=!(2'),
and b(z').
Now let o/ € NI 1, k, k', j € Ny. If we set o = (o, k'), we have

DgDyg(a’, & ) = (A" (2') De)* D). f) (', A(2')E, ).
Combining this identity with (5.11), we conclude

1h-1,6,62DE, Dg Dlg (@', & 1) |2y < Clp(€, )"~ 4 1), pym 1 7HE,
In order to estimate g(z',&, 1) — g(y', &, 1), we use an analogous identity to (5.9).
Furthermore, the case K = HT®H,_, is proved in the same way. ]

We note that the block structure (5.10) in the previous lemma is essential in order
to guarantee that ¢g(z', &) € K with respect to &,.

Finally, we have to analyze how the transformed boundary symbol operators
behave under composition. Let k. q4(&n) == ¢& + d, & € R, with ¢ > 0,d € R, and
Kea(f)(&n) = f(Kea(§n)) for f € H. Then ki, is an algebra homomorphism, which
maps HT, H, and H, into itself and for which

+ +

W=t o[ a6 = [ s (a2

hold. Moreover, we set 7 4(9)(&ny Mn) = 9(Ke,a(&n)s Fea(nn)) for g € H;@H:Lnn and
Kealf,D) = (52alf),b) for (£,b) € (H* @ CV) x C.

Now let a(D,,) be a one-dimensional (z,-independent) Green operator and p(&,,),
k(&) t(&€,), (&, mn), and s be its symbols. Then we define

a(cD, + d) := OP, < ealp l;té’; al9) ”z";(k) ) (5.13)
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Because of the composition rules for one-dimensional Green operators, cf. |6, Theo-
rem 1.12| and (5.12),

ai(eD,, + d) o ay(cD,, + d) = (ay 0 ay)(cD,, + d), (5.14)

where a1 o ay denotes the symbol of a;(D,,) o az(D,). — Note that the factors ¢ in
(5.13) are necessary to obtain (5.14).

5.3 Symbols of the Reduced Stokes Equations in R7

In contrast to [8, 9], we use a very simple coordinate transformation, which allows us
to construct the parametrix in a domain with C'!'-boundary, but does not preserve
the normal direction on the boundary. Therefore we have to analyse the relation
between the model operators and the Green operator of the transformed equations
carefully.

Given v € CPY(R* ) let R? = {x : x, > v(2')} be a curved half-space, and let
F: R} — R} be the coordinate transformation

/

z n
e=Fla)= < z, +7(2) ) o 2eR

In this section we will denote the variables and operators corresponding to the original
problem in R by z,£,V,... and of the transformed problem in R} by z,¢,V,
Similarly, a(z', £) will indicate the symbols of the transformed problem and a(§) the
symbols of the model operator.

If v: R! — C, we set F*(v)(z) = v(F(z)). Moreover, let Fy: R*~* — OR?: 2/ —
(z',v(z")) and F§(v)(z') = v(Fy(z')). Furthermore, let U = U(z') be an orthonormal
matrix which maps the exterior normal vector

)= @@)P <VIZ(1£’)>

on JR? at the point (z',v(z')) to —e,. We need this orthonormal matrix to correct
vector fields in such a way that the normal direction v on R is mapped to the normal
direction —e,, on OR’}. This modification is essential for preserving the structure of
the boundary conditions and model operators.

Using this notation,

VE»"'y = Fo7 OP(U () A(a)ig)v = F*~U" (@) A(z') Vv,

where A(z'){ = Uy (D,
to apply Lemma 5 5)

e (5 e (0 Yo

where A'(z') and b(z") depend smoothly on V'y(z') and ¢(z') = /1 + |V'y(z)|?.

F(z))~"¢ and v € C'(R}). Then A has the structure needed
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Lemma 5.6 Let v € Cf (R:) and u € Cg (Rz)" Then

F*Vvo=VF'v, F'divu=divF*u, F*Au=AF‘u+ RF*u,
Fivu=ywFu,  Fyyo=nF'v,  FTiu=t(z',D,)F"u,
where

1. V = OP(UT(Q’)A(Q’)ZQ, divu = OP((A(Q’)ig)TU(g’))u, A= — OP(|A(£’)§|2),
Yo = —en - NU(2"), and 11 = 3V = =7 OP((A(z")i&)n).

2. Ry is a differential operator of order 1 with L*°-coefficients.

L od el 7o ((A@)i€) I A'(2)if :
5 1@, 8 DaJu = —nU(z) ((A'@')zg)T (A(g')@) Ul

If additionally you = 0, then

Fiv, (A = Vdiv)u = t(z', D) F*u + Ry F*u,
where t(z',&', Dp)u = —(A'(2')i€) " n(2', €, Dy)(U(z)u)' and Ry: W)5(R%)" —
W, “(R*1) is a bounded linear operator for every e € (0, i)
Proof: The identities can be checked by elementary calculations. We only give the
details for the last statement. If you = 0, then
Fev (A = Vdiv)u = 7, (A — Vdiv) Fru + v R F*u

— —e0 20 OP((—|A)E[? + AliE(AW)IE) VU () F'u+ 10R Fu

= 7 OP((A(2)i€)a((A'(2)ig)", 0)U(z))) F*u + 7R F*u,
where R' is a differential operator of order 1 with L*°-coefficients depending on z’.
Hence, if £ € (0, %),

||70R,F*u||w_%(Rn71) S ||70R,F*U/||Lq(Rn—l) S C||7[)VF*U||Lq(Rn—1) S CHF*U/HW;_E(Ri)
q

|
Thus the coordinate transformation acts on the principal symbol as

a(€) ~ a(z', €) = a(A(2))E)

with an additional factor U”(z') on the left if the range of the operator consists of
vector fields and additional factor U(z') on the right if the domain of the operator
consists of vector fields. Therefore we can express principal boundary symbol opera-
tors of the equations after coordinate transformation with the aid of model operators;

e.g.
A=A
@€ 00 = (e, ) = G o (ARIE D, +1E)
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where we need the correction factor ¢! since
Yi (., eDp, + d) = OPy (¢, (., & + d)) (5.16)

due to (5.13). Note that the symbol of the trace operator v;u = Dy, =0 18 7;(€) =
(i&n)7.
Because of (5.14), the inverse of a;,(2',£', Dy,) exists for |§'| > 1 and
a;\ (2,8 Da)™ = a;,(A'(@)¢, eDn +b"¢) diag(L, 0)
= (ra(A@)¢ Dy +d) ck;\(A'(2)€,cDy +d)) ),

cf. (5.1). In particular, we get

kj(2',€, Dy) = k(2. €', Dn)|a=o = ck;(A'(2))€, eDy, + b7E), (5.17)
where k;(¢', Dy,) = kjx(€', Dy)|a=0. Now we set
T !/ ! ! ! ET £17 IJDTL Er £IJ IJDTL
A€ D) = a0+ ((BEGIIEEE D)) )
Zg\=0 50 n

where

€D = Ui IpE ) B DI )

to(a' €, DaJu =, (€, DU, (5.20
B € D) =0T (2 ) ke €D (521
('€ DaJui= —24, (&€, DU (5.22)
€ D= U7 (| ey g0 ) U 62

and tj(z', €', D,) = 0 with d = b"'(2")¢'. Because of (5.14), (5.16), and (5.17), it easy
to check that

kj(a', €, Da)tj(a', €', D) = U (2) (Kjt5) (A(2))€', Dy + d)U(2) (5.24)
for y = 0,1. Therefore
aj (2’ €, Dn) = U (') diag(1, ¢~ )aj \(A"(2)€, eDn + YU ()
and
N € D) = UT (@) (A€, eDa + d) ding(1,U().  (5.25)

This is the essential formula for the construction of the parametrix.

We have to estimate the semi-norms of the transformed symbols. Because of
(5.15) and V'y € COY(R*!), we have A(z'), A7 (z') € CO(R*™!). Thus the same
holds for A'(z'), A'(z')~', b(z'), c(z'), and ¢~'(z'). Hence we can apply Lemma 5.4
and Lemma 5.5.
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Corollary 5.7 Let gb\(g’,é), j = 0,1, be the symbol to the transformed boundary
symbol operator of the reduced Stokes equations defined in (5.18). Then a’(z',§, 1) =
aj\(2',§), A= e 2, and g;’_l(g’,ﬁ, w) are Green symbols of order 2, —2, respectively,
reqularity %, and C%'-smoothness in z'. Moreover, the semi-norms of the symbols
are uniformly bounded in 6 € [—4, 6] for any ¢ € (0, 7).

5.4 H,-Calculus for the Model Operators

In this section we will prove the basic estimates for the singular Green operators of
the parametrix for the reduced Stokes equations on the boundary symbol operator

level.
First of all recall that it is sufficient to proof (1.9) for all h € H(), where H(0)
consists of all h € Hy(0) such that

for all z € ¥, 5 and some constants C,s > 0, ¢f. Amann, Hieber, and Simonett
[4]. Moreover, since A, and Ay are invertible, it is sufficient to estimate the Cauchy
integral (1.8) for I'p :=I'\ Bg(0), R > 0, instead of T
We first consider the boundary symbol operators of the Laplace resolvent
rj,A(glaDn)f = pA(glaDn)+f - kj,)\(glaDn)tjy)\(glaDn)fa J=0,1,

cf. (5.1)-(5.4), and the corresponding transformed boundary symbol operator
iA@', & Dn) = ria(A'(2)¢, eD + b(2) 7€),

The analysis of the pseudodifferential operator parts pA(¢', Dy)+ and p, (2', &', Dp)+
is done at the end of this section. The singular Green operator falls under the scope
of the following lemma, which is similar to [9, Lemma 3] and [20, Lemma 3].

Lemma 5.8 Let gx(2',&,n,) be a symbol which is Lipschitz continuous in o' € R*1,
continuous in X € Y5\ Br(0), 0 < § < m, R > 0, smooth in & € R*"' and
in H 1QH 1 with respect to (£,,m,). Moreover, we assume that the symbol-kernel

a2 &y, yn) = f&;xn.ﬁ,ﬁbyn lg(2', &, m,)] satisfies
A2 (|onl+lyal)
Btk

uniformly in & € R*', X € 85\ Br(0), and z,,y, # 0 for all o’ € Ny~ ke, k' 1,1 €
{0,1} and a ¢s > 0. Then

’ ’ "G —la|— 1o €
||Dg xﬁD];nyle?lJng)\('ngaxnayn)HCO,l < 057a1<§’> lo/|—k+k'—1+1

(5.26)

< Cs.a (€)™ Mlhlloo (5.27)

COL(RP=1;L(L2(|za|=0"),HY'))

/h(—)\)Dg‘,'gA(.,f’,Dn)d)\
I'r

< Cs50,0 (&) 1¥||A)|0 (5.28)
COL(Rr=13L(Hy Y \L2(|J2a )

/h(—)\)Dg‘,'gA(.,f’,Dn)d)\
I'r
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uniformly in & € R for allh € H(6), 0< ¢ <1, o/ € Nj™', where

g €, D) f = / Gn(@" € 2, ) f () Dy

Remark 5.9 Note that the “singular Green operators” considered in this lemma are
operators acting on functions defined on R instead of R, .

If (., &, mn) € HYQ®H ™, then §(., z,,y,) = 0 if 2, < 0 or y,, < 0. Moreover, if
f € S(Ry), then r7g\(., Dy)et f, where gy(., D,,) is defined as above, coincides with
the usual definition of g,(., D,)f as a singular Green operator.

Proof of Lemma 5.8: Because of (2.2), we can replace k,l = 0,1 by arbitrary
numbers a,b € [0,1]. Applying the modified estimate, we get for f € L*(R; |z, |*")

[ 1PEDE (1l ) @€ Dl S )| A

1
Lo 00676557(|513n|+\yn\) )
S Ca’,ﬂ’<€,>k +d'—| // T d8||yn|6 f(yn)|dyn
R JO S2
6/
< Ca’,ﬂ/(f'>k,+6’7|a,‘ Md

Yn,-
R |xn| + |yn|

1

is continuous on L?(R),
|znl+yn|

Since the integral operator with kernel k(z,,y,) =
we get for k' = 0,1

/F B(—\)Dg ga(', €', D) f () dA

[ 10808, (Il 792) @€ D)ol £ )| 1A
I'r

J,

< o (€Y N Rlloo 1 1| 2 gy

and therefore

by complex interpolation. Since e*r*: H5(R) — Hj(R) is a continuous mapping
if |s| < L, of. [25, Lemma 2.10.2], f € H;"(R) iff r*f € Hy"(Ry) and r f €

H,;° (R_). Moreover,

HY' (R+)

< ||h||oo‘

L2(R+)

T ||h||oo\

D¢ (lval ™ 1) ('€, D)l £ ()| dIN

L2(R+)

< G004 1 MAlloo L f Nl 2oy

Hy" (R+)

/F W=\ Dg ga(«', €, Dy) f (y)dN

(5.29)

1Ny = (1 Al oy + g ) -
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Hence we can replace Hy; % (R.) by H;? (R) on the left-hand side of (5.29).

The same estimate holds with g, (2', &', D,,) replaced by gx(z', &', D,,)—agx (v, &', D)
and an additional multiplicative term |z’ —y’'| on the right-hand sides of the estimates.
Hence the estimate (5.27) is proved.

Passing to the (pointwise) adjoint, (5.28) follows from (5.27) by duality. |

Remark 5.10 In our case, the symbol-kernel of gy will be of the form gy (', &', v, yn) =
k/\(xla 617 .’L’n)i:)\ (’Z‘IJ 6,7 yn); where

1
1 7~ 765‘)‘|§|$n| , ,
DL D™ s (€ an)loon < Oy ()l l=metm 5.30
& tn g, ) |)\|5
IDE Yy DI (o & yn) oo < Cg e8P lunl (¢ry=lalzmm! (5.31)

uniformly in £ € R*™, 2,9, # 0, A € B, [A| > 1, and for o/ € Nyt m,m' =0,1.
It is a consequence of [1, Lemma 3.5] that k; \()\; &)/~ and £, ,(\; &)1 satisfy (5.30)
and (5.31), respectively. Because of

e—ida:n

Fellf (b + d))(wn) = e F [ (c€n)](20) = Fe. [ (wn/c),

Cc

and A’ b,c,c”! € C%(R*!), the symbol-kernels of the transformed Poisson and
trace operators k; (', &, z,)(\; €)1 and £, (', &', x,)(\; €)' satisfy the same
estimates.

Finally, we note that multiplication of the symbol-kernels with a pseudodiffer-
ential symbol s,(¢') of order 0 and regularity ¥ > 0 does not disturb (5.30) and
(5.31).

Because of Lemma 5.3 and (5.25),

€ D] = 5D (1) = €000 F - €D (53

Unfortunately, the symbol-kernel of ¢’ . does not satisfy the (z,, y,-pointwise) esti-
y, the sy n

mate (5.26). The critical term in the additional singular Green operator is of the
form gy (2', &', D,,) = ka(2', &', Dy,)ta(2', €', D,,) with

k)\(xla 517 Dn) = 1_9)\(1',7 gl) Dn)+kr (xla 517 Dn)

where £ is a Poisson operators of order 1. The crucial observation is that 1_9)\(:16’, ¢, Dy) .
commutes with £"(z', &', D,,) in the following sense:

kA(JJI, 5I, Dn)a = ’I“+f§;1'—>xn [kr(@"la 5)»7'—%»%&[-”‘7:5}»% [Bx(xl’ {)a]
= 7"+mkr ([L‘I, 5,, Dn)kEA (:L‘Iy 6,7 Dn)a’

where my (2', &', D,,) is a one-dimensional multiplier operator depending on (z',&’)
with symbol £ (2", €) and ky, (2/,&', Dy) is a (generalized) Poisson operator with sym-
bol p, (¢/,€), cf. Remark 5.9.
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Lemma 5.11 Let m(z',£), be smooth in & and in C% (R"™1) with respect to «' such

that
sup [IDg 1 0g,m(-Olleor < Coril€) ™! (5.33)
TLE

for o/ € NIt k = 0,1. Let m(z',&,Dyp)p = f&;mn[m(x',f)gb(fn)] be the cor-

responding multiplier operator. Moreover, let g\(x',&) satisfy the assumptions of
Lemma 5.8 and let ¢\ («',&', D,) = m(a', &, Dy)gxr(2', &, Dy). Then ¢4(2',&', D,,)
satisfies the estimate (5.27).

Proof: Since m is A-independent, we only have to show that Dg‘,'m(x’,f’,Dn) is
continuous on H = L*(R; |z,[*") and H = H (R), |§'| < %, and satisfies the estimate

IDg m(a', €', Dy)llcosgn-rsemy < Crar(€) ™ (5.34)

for every o/ € Nj™%, j =0, 1.
The estimate (5.33) implies that Dg‘,'m(x',f’,Dn) is a one-dimensional Mikhlin
multiplier with respect to &, satisfying

[Dg'm(z', €, .)]m
(D (m(',€,.) = m(y, €, .))lm

where [m]y = supg, eg g0, [EE0F, m(E)]. Since |x,|* is a Muckenhoupt weight of
class Ay, cf. [22, Chapter V], iff |0'| < 1, m(«', €, D,) is continuous on L*(R, |z,|*")
for |§'| < 3; cf. [21] for an elementary proof. Moreover, the operator norm is bounded
by C[m]am, where C' depends on the weight |x,[?. Hence (5.34) holds in the case
H = L*(R,|z,|"). The case H = HJ (R) is obvious since m(z', &', D,) commutes
with (D,)*, s € R. n

Cou (€)1 and
Ca’ <€l>f|a’\ |.ZL', - y/|,

|26’

<
<

Lemma 5.12 Let k" € C%'S] (R xR*"™, HY) @ L(CY,C") and let p, (', &', D)
be as in Remark 5.10. Then

Bx(xla &, D) k" (2, D,) = rimye (2, € Dn)k& (2',¢, Dy),

where lzgk(x’,ﬁ’,:rn) satisfies (5.30) and myg-(2',€) satisfies the condition (5.33) of
Lemma 5.11.

Proof: Using the estimate ||f|loo < C|fI3||/'|l3 for f € H)(R) and (4.1), we
conclude

sup || DG € g (5 8)llons < Cor €)Y,
én€R
for all m € Ny, o' € Nj 1. Hence (5.33) holds for my- (&) = k"(€). |
Using the previous results we get the following theorem:
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THEOREM 5.13 Let 6 € (0,7), ¢g > 0 be the constant in Lemma 5.1, and
f;f’/\(a;’,f’, D,,) be the transformed boundary symbol operator for the resolvent of the
reduced Stokes operator defined in (5.32) with j = 0,1. Then

E;:/\(x,7€,7D") = BA(xlaglaDn)+ +g§.)\(l‘,,€,,Dn),

where g9\ satisfies (5.27). Hence

for every h € H(6) and R > max{cy, 1}.

L(Lary)

/ B(=A)g" (De, ')A
FR _]’

Proof: We only consider the Dirichlet case j = 0. The analysis of the case j =1 is
done in the same way.
The additional singular Green operator in (5.32) is

2:)7)\('7 Dn) = EO,/\('J Dn)ES(; Dn)§0,)\tg('= Dn)zo,)\('v Dn)
because of Lemma 5.3 and (5.25). Then
EO,/\('J Dn)ES(; Dn) = B)\(" Dn)—i—ES(; Dn) + EO,/\('J Dn)to,)\('v Dn)ES(; Dn)?

where Lemma 5.12 can be applied to p, (., D)1k (., Dp). Moreover, ¢, (., Dy)kq (., Dn)
is a pseudodifferential symbol of order 0 and regularity v > 0. Hence

(A €) hoa@', €, wa)tg \( Du)Eg (-, Dn)
satisfies (5.30) because of Remark 5.10. Similarly,
z6(7 Dn)fo,,\(-a Dn) = 26(7 Dn)g)\('v Dn)-l— + f(;(v Dn)EO,/\('J Dn)to,,\(-a Dn)=

where £5(., Dy)p, (., Dn)+ satisfies (5.31) since ¢5(., Dy,) is a differential trace operator.
Moreover, £j(., D)k 5 (., Dy) is a pseudodifferential symbol of order 0 and regularity
1 > 0. Altogether g, ,(-s Dy) is the sum of operators satisfying the assumptions of

Lemma 5.8 and Lemma 5.11.
The last statement is a consequence of Theorem 3.2 and Lemma 2.1. [ |

It remains to estimate the pseudodifferential operator part of the parametrix.

Lemma 5.14 Let 1 < g < oo, R > 0, and 0 € (0,w). Then Q}\(x,f) = (A +
|A(z)E))™, 2 € RY, € € R, with A, A™' € CUHR™)™ ™ satisfies

uniformly in & € R", for all « € Ny and h € H(J).

S O(S,R,a||h||oo<€>_|a‘

Cco1

/F B(=\)D2p, ()
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Proof: The function A — B}\(x,ﬁ) is meromorphic in C with a pole for A =
—|A(z)&]%. Therefore the pole is contained in a compact interval I C (—o0,0] if
€] <1 and z € R". Using the homogeneity of D¢p, (z,&) of order —2 — |af, we get
with & = |€]n and )\ = [£[*2

| N @i = [ b=l D, e ndslel

I'1\Br(0)

where I'; is a curve around the compact interval I with winding number 1 with
respect to the each point in I. Using ||D§°‘1_92(.,77)||Co,1 < C, for z € 'y and |n] < 1,
we conclude that

for |£] > 1. If |€] < 1, we estimate the integral in the same way as before but without
using the substitution A = [£]?z. u

< Gl [|A]l oo (€)™
0,1

/F B(=\)Dgp, (., €)dA

5.5 Parametrix for the Poisson Operators

We have to estimate the difference of the Poisson operators K; and their parametrices.
In the first step we consider the case R”, where v € C'(R*""). Let

K; = F*'k(D,,2)F;, j=0,1,

where F* and F{ are the same operators as in Section 5.2 and k; («', &, D,) is defined
as in (5.17).

Lemma 5.15 Let R? be a curved half-space, v € CV(R*™'), and I?j, j=0,1, be
defined as above. Then I~(j: quijﬁ(aR:) — W;(Rﬁ;) and
AK; = F* 'R+ RI|F;
Ky = I+5;
where
1. R;-: quijﬁig(Rnfl) — LY(R" Y LY(0,0)) with an arbitrary b € R,
17]‘7%76 o o —
2 R WU R o B AR LUR,)), and

J= J

i (oR)

are bounded linear operators for some € > 0.

9. S W, (R - W,
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Proof: Let [0| < % and Hs = L*(R.,22) if 6§ > 0 and Hy = H;°(R,) if 6 < 0.

2 Soln
Because of Lemma 5.5, k; € C*LST 7 (R"L x R*!, H*). Since [1 —j — o<1 we
can apply Theorem 4.8 to conclude

~ 1—j—

K;: W, E(a]R:) —>W;(R’;).

Due to Lemma, 5.6,
AK; = F*7'Ak;(D,,o")Fy + F*'R'k;(D,,2")Fy,
where R' = a(z') -V, a € L®(R* ')". Hence Theorem 4.8 implies

_j_

R'k;(Dy,a): By | (R = LR L'(0, b))

for every ¢ € (0, ?) and b € R, since VE;(D, ') is a Poisson operator of order 1 —j.
Since A = OP(—]A(a)¢|?) is a differential operator in z-form and
k(2. €, D,) € COLSTI TP T (R x R £(C, Hy)),
cf. Remark 4.2, we can apply Corollary 3.4 and get for arbitrary |§| < 5 that
R := Ak;(Ds, ") — OP'(OP,(—|A(y)&1*)k; (v, €', D))

satisfies il g
RY: Hy ' 7PUTN(RY) - HU(RYY Hy)

i1,
for some e, > 0. Hence Rj: Hy ! (R**) — H,;*(R*"'; H) and, because of
Lemma 2.1,

1—j-1

R By RSY) - H R L(R,)

for some £ > 0. Since

OP, (h{ [|A(W)EPE; (', €)]) = OPu(|A(Y)E1) k5 (v, €', Dy) = 0
for [¢| > 1, the Poisson symbol h{ [|A(y")E[%k; (', €)] is of order —oo. Hence

1—j—g—¢ n— n

R} = —OP(h{ |A(y)EPk; (v, €): By~ * (R™') — LY(R})

forall0 <e < %. Thus we have proved 1. and 2.
Finally, if 7 = 0, then 7()[?0 =TI and Sy = 0. If j =1, then Lemma 4.10 yields
71[?1 = F(T,_lﬂ(mla DSL‘))EI (Dwa xl)F(;k
= Fy ' OP' (v, €, Du)ky (v, €', Da)) Fy + 51

1,
with Sj: By (OR}) — B, 6& Since 7, y ¢, D)k, (y', &, Dy) =1 for |¢'] > 1,
71[?1 =1+ 51, where S;: qu 6& —>B 8& ) for some & > 0. [ |

Now let 2, C R" be an asymptotically flat C*'-domain and £ > 0 be a number
such that ¢ < 3 dist(9QF, Q7). We choose cut-off functions .. € C*(Q,) with
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L. @x(z) =1 for dist(z, 92) < /3,0 < px <1, and
2. @.(x) =0 for dist(x,0QF) > 2/3.

Moreover, let 1 € C*°(€2,) such that
L s (x) =1 for dist(z, 90F) < 2¢/3,0 < ¢pp <1, and
2. 1ps(x) = 0 for dist(z, 90) > «,

and let K ]i denote the parametrices of the Poisson operators in ]R’;i defined above.
We will use

~ - - _1_g

Kia=9¢,Kfa" +¢_Ka~ forae W, (99,),

~ - - _1_g _1_g
RKoa= ¢ Kfa* +y_Kra~  fora® e W, * (0Q,),a" € W, * "(9Q,),

s €0, %), as parametrices for Ky, Koy, respectively, in €,.

Lemma 5.16 Let 1 < g < oo, 2, C R™ be an asymptotically flat C*-domain, K,
be the Poisson operator of the Neumann problem in €, and let Ky, be the Poisson

operator of the mized Dirichlet-Neumann problem. Moreover let K1 and K01 be
defined as above. Then

IV (57 = K)7(A = Vdiv)ully < Cllulls-cq,
IV (Kor = Kon)allg < Clla™ i ox g+ lla™ll22 )

-1 -1_¢
for all w e W25(Q,)", (a™,a7) € qu ©0) x Wy ¢ (097) and some £ > 0.

Proof: Let us first consider the mixed Dirichlet-Neumann case. Let f € L7 (Q,)"
and let f - fO + vPa fO € OJq'(Q’)‘) = {f S Lq’(Q"/)n : lef = Oafyy_f = 0}7
p e Wi(,) = {p e Wi() : vop =0}, |(fo, VD) llg < Cyllfllg, be its Helmholtz
decomposmon with m1xed boundary data, cf. |3, Corollary A.3]. Then

(V(Ko — I?Ol)aa e, = (7o (Hor — kﬁl)a? 7;rf0)3ﬂv+ + V(Ko — I}Ol)a’ Vpa,
= (Afzma,p)m + (e — 'Yff?fafa 'Yo+p)an—

Sin(i? div fo :~07 v, fo =0, 'Y()+K01a = at = 74 Ktna AKpa = 0,7 Kop = a”,
v Kora = v, Ky a™, and 74 p = 0. By construction,
AKpa = w+A[?+a+ + QZJ_AE_CL_ + P+l~(+a+ + P_I}_a_,

where P. are differential operators of order 1 with coefficients supported in supp Vi1
and dist(supp Vg, 08,) > 0. Therefore P,K} and P_K; are operators of or-

der —oo, cf. Remark 4.9, which implies that P+K0. W, (8]Rz+) — Lq(Rer) and
P_Ky: W, *(OR'.) — Li(R"_) for all |s| < 1. Thus

(AI}OIGJP)Q»Y = (A_[}JCL+, w-l-p)Rer + (Al};a’77 w—p)R;L + (Ra’ap)Q»ya
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where |(Ra, p)| < C(lla™|l,_1_. ,+la"||_1_. )l fll¢ for an e > 0. Using Lemma 5.15,

—1 ey
(AKfa", ¢+p)RZ+ = (F*'RyFya™, ¢+p)R:+ + (F*'RyFya™, ¢+p)RZ+,

where

N

(G A TARTNO

> HRE)F(Ta’—i—HLq(Rn—l;Ll(mb)) ||F*w-l-pHLQ’(R"*l;LOO(O,b))
O||a+||1—%—E,q||F*w+p||qu,(RZ_) S C||a+||1—%—e,q f||q'7

IN

‘ (F~"'RyFya", 7/)+p)R:+

< ||R6,F(;ka+||Hq_1(R"—1;Lq(R+))||F*77b+p||H;,(R"*1;Lq'(R+))
S C||a+||17%f€,q||f||ql'

Similarly, we conclude ‘(A[?l_a*, z/)_p)Rz_ < C’||a*||_%_g,q||f||q:. Finally, because of
. 1 1
Lemma 5.15, a~ —y; K{ a~ = —Sja~ with S;: Wq_a_s(aRz,) — Wq_a(am,), which
proves the Lemma in the mixed Dirichlet-Neumann case.
In case of pure Neumann boundary conditions we use the usual Helmholtz de-
composition f = fo + Vp with fu € Jyo(Q,) = {f € LTY(Q, : divf = 0,7, f = 0}
and p € W(,), cf. [3, Corollary A.3]. Then

(V(K, — K1)a, f)a, = (V(K, — K1)a, VD)o, a=7,(A— Vdiv)y,

since (Vp, fo) = 0 for every p € W;(Qv) Since p is not in L7 (£2,) in general, we
split p = p1 +po € WHQ,) with py € WA(Q,), p2 = pa(a’) € L (R*!) with
V'py € Wi(R"™), satistying ||p1ll¢, [|V'D2llie < ClIVpllg, cf. [3, Remark 2.6.2].

Then we can prove as in the mixed case that

(V(K1 = Ki)a, Vpr)e,| < Clld] 4 a0 )||f||q' < Cllulla—gll fllg-

1
W, @
Therefore it remains to estimate (V(K; — K;)a, Vp,), which can be done separately:

(VE1a, Vo) = [(a, p2)an,| = (A = V div)u, Vi)
< COlA = Vdiv)ully o) IVP2llws e, < Cllulla—zg

|le2

1,9'>
where 0 < e < %, and

(VK,a,Vp,)]
C([[(VE (D, ") Fy ya*, V) (Dy, &' ) F5 _a™ ) ||Lagn-1,000))) | V' D2l g m1

<
< Cllall-s—c f[IV'Pall por -1,

forall0 <e < % and a suitable large b € R, because of Remark 4.9. [
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5.6 Parametrix for the Reduced Stokes Equations

We first consider the case of a curved half-space R7. In this case we define
Rjp = F"7OP'(r iy, €, D)) F*

as parametrix for the reduced Stokes equations, where r7 , is defined in (5.32). Be-
cause of Corollary 5.7, Theorem 3.2, and Theorem 4.8.3, R;»: LY(R)" — WZ(RZ)"
with operator norm uniformly bounded in A € X5 U {0}, § € (0,7). Consid-
ering 1’ /\(y 5) as Green symbol of order 0 with symbol semi-norms bounded by
05(1 + |)\|) , cf. Remark 3.6 and Remark 4.6.1, we conclude [|R;\||zzemn) <

Cs(1 + |A\])~". Hence
Rjx: LYRD)" — W2 \(RY)" (5.35)

with operator norm uniformly bounded in A € ¥5 U {0}, 6 € (0, 7).

Lemma 5.17 Let R? be a curved half-space with C*'-boundary, § € (0,7), and R; ,,
j=0,1, be defined as above. Then

A= A)Rjp=1- G\ + R,
Yolox =0 if j =0 and TRy \ = Sy if j = 1, where
Gin = F " 'OP'(E(y, €, D)ty €, Du)rl\(y', €, Dy)) F*

and | R A||£ La(R ||S>\|| < Cs(1 4 |A])~F uniformly in X\ € 5 for

1
R2),W, 7 (89,))
some € > 0.

Proof: It is sufficient to prove the estimates of R}, and Sy for [A[ > ¢, where
¢o is the constant such that the model operator of the reduced Stokes equations is
invertible, cf. Lemma 5.1.

Due to Lemma 5.6 and (5.35),

A=A)Rjx = F*7'(A=A)OP'(r] (v, €, D)) F* + R,

with By = O((1 + |A])"2). Because of Lemma 4.10 and the definition of %y, we
conclude

(A =A)OP'(r} (¢, &, Dn))
— OP(OPLA+ [AG)ER) £ (5. D) + iy
= I-OP'(Ki(y, €&, D)y, €. D)\ (Y, €, Dy)) + Ry,

where

2—1—5
r

*19;

(_2+E) _E
1Rl oo ®r)y < C (‘p/\‘ ‘QML ) SO+ A (‘p‘

(_270)
)
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for an ¢ > 0 and £ € N due to Remark 3.6 and Remark 4.6.1.
Finally, voRo\f = Fpt OP'(%fg,)\(y’,f’,Dn))F* = 0. Hence it remains to esti-
mate 7] R, x. Because of Lemma 5.6,

TRy = Fy ty(a', D) OP(rf\(y, €) F™.
Since t} (2', D) consists of terms of the form a(2')v0;, a € C%(R*™"), and 1] , (¢, €)
can be considered as symbol of order —2 or %, Lemma 4.10.4 implies

t1(«', D) OP(r] \(v/,€)) = (tir},)(Dy,2') + Ry = Ry

with || R, || 1 < Cys(1+|A|) for an & > 0. m
L(LA(RE),W, 7 (Rn=1))

Now let 2, C R" be an asymptotically flat domain and let ¢, p_,1;,9_ be
defined as in the previous section. Moreover, let ¢y = 1 — ¢4 —p_ and by € C®(Q,)
with () = 1 on supp g and supp by C €2,.

Then we set for j = 0,1

Rjoxn = ViR or + 9 Ryyo +oPao,

and Ry = Ry, where Rji)\, 7 = 0,1, is the parametrix in the curved half-space R’;i
defined above and Py, = OP((A + |£*)™).

Lemma 5.18 Let 1 < ¢ < oo and 6 € (0,m). Then the operators defined above
satisfy

()\—A—FGO)RO,)\f = (I+517)\)f m Q,y,

YoRoaf =0 on 00,
A=A+ Gro)Riopf = I+ So0)f in €y,
T{+R10,>\f = Ssf on 8917
'70_R10,)\f =0 on E)Q;
for f € LI(Q,)", where
Siallewecan, IS L <C 1+, j=1,2,
1Sl e, 3,A||£(Lq(97)7wq’kq(mm w1+ A5

uniformly in A € 35 U {0} for an e > 0.
Proof: Since [|Rjofllg < Cos(1 + A7 fllg and [ Rjonfll2q < Cys

[Rjonfll2=c.q < Cos(L+ M) 2 [|f]lq for e € (0,2], j = 0, 1. Hence

fllg» we have

(A=A)Rjp
= (A= AR + - (A — A)Ry oo + (A — A)Pagg + O((1+ |A)72)
= 1 —4,Glpy —_Goyp- +O((1+[A) ) (5.36)
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for an € > 0 because of Lemma 5.17. Hence it remains to estimate the differences
GoRox — Gyt — Y-Go - =: Sip,
GioRion — ¢+Gi>\%0+ - wa[IASD— =: So2,

and to estimate the boundary values.
Because of Lemma 5.16,

IV (K1 = K1) (A = Vdiv)Roa fllg < CyllRoaflla—cq < Coa(L+ M) 21 £,
|V (Kor — KOI)(2'Yf—um’7;(A - Vdiv)“)”q < Oq||R10,/\f||2—e,q < Cq,6(1 + |)‘|)_§ f”qa
where u = Ry 5 f. Moreover,

VE17,(A — Vdiv) Ry, f
= VK7 (A= Vdiv)R] o f + VK7, (A = Vdiv)Ry ,p_f,
VKo (2v" -7 Rioaf, 7, (A = Vdiv)Riga f)
= VEf2v" -y Rf o f + VK| 7, (A — Vdiv)Ry 0 f.
Then Lemma 4.10 yields
VKF = F 'Vki(Dy o) Fy.
el
= 7t or (0T )Aw) (5 ) B0 €000 ) Fi .
where R': quijiaig(@R’;i) — LI(R. )" for an € > 0. Thus
IR (A =V div) Ryl equar, s IRV B lleqaer, ) < CL+ A2

Because of Lemma 5.6,

7 (A= Vdivju = (;(ﬂ:IOP ((A'( Nig') ty(a" €', Do) Fiu+ R'u
if yfu = 0 and 2v -7 = Fip ' OP'(85(2, €', D,,))F;. Here (A’( i Ttn (2, €) and
t7(2', &) are differential trace symbols of orde d = 2,d =1, resp. and class 2
t(D

Therefore they are of the product form a(z') - t(D,), where a e COYR" 1)V and
t(D,) is a differential trace operator of order d and class 2 with constant coeffi-

cients. Since OP(k(v',€))a(z") = OP(k(y',&)a(y’)) and t(D,) OP'(r(y', &', D,)) =
P&, Do)r(y', €', Dn)),

FIVEFyH(A - Vdiv)RE Fo™!
= 0P (0740 (5 ) 106 Dalt) ) OP(€. D)5 0. €. D2)
+O((1+ N,
FiVRG20t - REF
= 0P (0740 (5 ) tals €. Dalt)) OP (€. D)€ D,)
£ O((1+ ) )

1
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Hence Lemma 4.10.4 yields

FIVEFyH(A - Vdiv)RE, Fo

= OP'(ky(y', &', Du)ts (v, €, Du)rga(y', €' D)) + O((1 +A]) ™)
FiVEK§ovt - RE PP

= OP'(k1(y, &, Du)ti(y', €, Du)ri A (¢, €', D)) + O((1 + [A)79),

where we have used that t)(2',¢', D,) = (&', Dy)rf (2", &', Dy) is a parameter-
dependent trace operator of order d — 2, class 0, and regularity % because of the
composition rules for boundary symbol operators, cf. Remarks 4.7. Therefore all
error terms can be estimated by C'|t, ,(Cd_ZHE) < C(l1+ |)\|)’€|t’>\|,(cd72’%). Finally, the
statements for the traces of Ry and R ) are direct consequences of Lemma 5.17. m

Remark 5.19 Note that the latter lemma is used in the proof of |3, Lemma 4.3]
and that we did not use the unique solvability of the reduced and generalized Stokes
equations so far.

Proof of Theorem 1.1: Let
Siaf = A =A+Go)'Sinf, Spaf=A—A+Gio) ' Sonf + Ki1Ssnl,

where K7, , denotes the solution operator of the reduced Stokes equation (1.5)-(1.7)
with j = 1 and right-hand side f = 0 and a* € W, ,*(8)". Then

A=A+Gy) ' =Rop+ 51, A=A+Gi) ' =Riop+ 55,

with [|S} [l cze(e,)) < Cos(1 + [A)7'7¢ uniformly in A € %5, [A] > ¢ > 0 for every
¢ > 0. Therefore S}, j = 1,2, corresponds to an absolutely integrable part in (1.8)
and can be neglected, cf. [4, Lemma 2.1]. Since —A 4 G is invertible and because
of Lemma 5.18, Theorem 5.13, and Lemma 5.14, we conclude that —A + Gy admits
a bounded H-calculus with respect to 9.

Finally, the Stokes operator admits a bounded H,-calculus with respect to ¢
since Ay = —A + G|y, 0@, A+ A)™'=A=A+Go) s 00,) A€C\ (—00,0],
cf. [3, Remark 3.3], and the Stokes operator is invertible. [ ]

A Non-Smooth Pseudodifferential Operators

For the proof of Theorem 3.2, we will proceed as in [23, §2.1] and have to verify that
all statements remain true for operator-valued pseudodifferential operators.

For this purpose, we need the following more general class of non-smooth operator
valued pseudodifferential operators, which generalizes the Hormander classes ST’.
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Definition A.1 The set C7ST%(R" x R"; L(Hy, H1)), 6 € [0,1], s > 0, m € R, is the
set of all symbols p: R* x R* — L(H,, H,) that are smooth in £ and are in C? with
respect to x and satisfy the estimates

sup {|Dgp(@, &)l m) < O, (€)™ 1e
rxeR™
||D?p("€)|Cf(Rn;ﬁ(Ho,Hl)) < Ca<€>m7|a‘+56

for all o € Nj.

The corresponding operators are defined in the usual way.
The proof of Theorem 3.2 relies essentially on the following operator-valued vari-
ant of |23, Theorem 2.1.A.].

THEOREM A.2 Ifr >0, 1<q<o0, and p € CLSTy(R* x R"; L(Hy, H1)), then
p(z, D,): H;+m(R";H0) — H,(R"; Hy)
forall0 < s <r.

Proof: The proof is done in the same way as in [23] using elementary estimates and
inequalities based on

M

Collullzany < (ZM(DI)U%) < Cyllul| pagr;m)
=0

Li(R™;H)

for all 1 < ¢ < oo, where H = C and ¢;(€) are smooth functions such that supp ¢y C
B1(0), supp iy C {5 < [€] <2}, ¢; (&) = p1(2'77€) for j > 2, and Y% (€)% = 1.
The latter estimate is also valid if H is a Hilbert space. In this case (?(Ny; H) is
again a Hilbert space and we can apply the vector-valued Mikhlin multiplier theorem
as in the proof of the usual Littlewood-Paley estimate, cf. [23, §0.11.]. ]

First of all, the continuity of p(D,,x) in Theorem 3.2 can be reduced by duality
to the statement for operators in L-form. Since C}STs € CLSTY for 6 € [0, 1], the
last theorem implies the statement of Theorem 3.2 for s > 0. For the proof in the

case of —r < s < 0, we will use the technique of symbol smoothing.
Let p € CLST5(R" x R*; L(Hy, Hy)), r > 0. If r € N, then C] = C" and there

exists a decomposition
p(,€) = p*(z,6) +p"(x,€)  with (A1)

p#(@,8) = D T2 00D, )p(w, )ii(9),
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where v € (6,1] and ¥y € C§°(R") with ¥o(§) = 1 for |§] < 1 and ¥y(§) = 0
for J6] = 2 and Gu(€) = Wo(256) — Wy H1E), k > L (e = By(c). For this

decomposition we have

p# (x,€) € S p(z,€) € Crsy T, (A.2)

1,y

cf. |24, Proposition 3.2.] or [23, §1.3.]. This decomposition easily carries over to the
vector-valued case since it only uses the symbol estimates.
Using this decomposition we prove:

Proposition A.3 Let 1 < ¢ < oo and let p € CLST3(R* x R"; L(Ho, H1)), m € R,
d €[0,1], r > 0. Then

p(x,Dy): H"™(R"; Ho) — Hj(R"; Hy)

for all s € R with —r(1 —J) <s <.

Proof: The proof is just a modification of the proof of |23, Proposition 2.1.D]. =

Now we are able to prove Theorem 3.3.

Proof of Theorem 3.3: Let p; € C7'ST, i = 1,2, as in the assumption of the
theorem. We set ¢; := %. Then

51252, —7'1(1—(51):—T1—|—9<8, —72(1—52):—7'2—|—9<8+m1, 1_5z20

since § < min{r + s, 7 + s+ m} and 0 < 7. Let pi(z,§) = pi (x,€) + ph(z, €)
such that p? € St and p} € Cfofg;a. Then we get

,Dy) = pi(2, D )p2($ D )
T (@, Do) = pf (o, Da)plf (w, Do) (0] ) (2, Do) — pY (2, Do), Di) +
+(pl{p2)(anw) _pli(anw)p2(anm)-

We will estimate each difference separately with the aid of Proposition A.3.

1. Due to the usual symbolic calculus (p p¥)(x, Dy) — p¥ (&, Dy)p¥ (z, D,) is a
pseudodifferential operator with symbol in S{’fgfm_l”l since d; > 0y and 0; <
1. (See e.g. [16, Chapter 2, Theorem 1.7|.)

Due to Proposition A.3 and 1 — §; > #, we get the continuity

(0703 (2, Do) = pif (@, Da)pd (@, Dy): Hy ™2 (R"; Ho) — Hy(R"; H).

2. Using Proposition A.3 again,

py(z, Dg): Hy ™4™ =0(R™; Hy) — H; ™ (R"; Hy)
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since —7y(1 — 0y) = =15 4+ 0 < s +my < 7. Moreover, p? (x,€) is a smooth
symbol of order m;. Therefore we conclude

pY (z, D,)ph(x, Dy): HiT™ 4™~ (R*; Hy) — HE(R"; Hs). (A.3)
Considering (p?pb)(z, D,), we observe that pfpl € C;lS%ij, Hence we
get the same mapping properties as in (A.3).

Since pip, € CT* Sf}gﬁmre, we get the same continuity as in (A.3). Finally,

pi(x, Dy): HF™ %(R*; Hy) — H;(R"; Hy),
pa(x, Dy): Hy™Fm (R Hy) — H; 7™~ %(R"; Hy)

because of —7(1 —6;) = —m+0<s<m and -1, <s+m; —0 <.
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