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Abstrat

We study the generalized Stokes equations in asymptotially �at layers,

whih an be onsidered as ompat perturbations of an in�nite (�at) layer




0

= R

n�1

� (�1; 1). Besides standard non-slip boundary onditions, we on-

sider a mixture of slip and non-slip boundary onditions on the upper and

lower boundary, respetively. In the �rst part we prove the unique solvabil-

ity in L

q

-Sobolev spaes, 1 < q < 1, by extending the known results in the

ase of an in�nite layer 


0

via a perturbation argument to asymptotially �at

layers whih are su�iently lose to 


0

. Combining this result with standard

ut-o� tehniques and the parametrix onstruted in the seond part, we prove

the unique solvability for an arbitrary asymptotially �at layer. Moreover, we

show equivalene of unique solvability of the generalized and the redued Stokes

resolvent equations, whih is essential for the seond part of this ontribution.

Key words: Stokes equations, free boundary value problems, boundary value prob-

lems for pseudodi�erential operators, non-smooth pseudodi�erential operators

AMS-Classi�ation: 35 Q 30, 76 D 07, 35 R 35, 35 S 15

1 Introdution

We onsider the generalized Stokes resolvent equations

(���)u+rp = f in 




; (1.1)

div u = g in 




; (1.2)

T

+

j

(u; p) = a

+

on �


+



; (1.3)

uj

�


�



= 0 on �


�



(1.4)

with two kinds of boundary onditions, j = 0 or j = 1, where

T

+

0

(u; p) = uj

�


+



; T

+

1

(u; p) = (� � S(u)� �p)j

�


+



; S(u) = ru+ (ru)

T

;

1



and � 2 �

Æ

[ f0g. Here 




� R

n

, n � 2, is an asymptotially �at layer, whih is

a domain bounded by two surfaes �


+



and �


�



, whih get �lose� to two parallel

hyper-planes at in�nity, see De�nition 2.1 below.
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Figure 1: An asymptotially �at layer

The ase j = 0 orresponds to standard non-slip boundary onditions. The mixed

ase j = 1 is important for appliation to free boundary value problems. Beale [7℄

and Sylvester [18℄ studied this ase in a similar lass of domains in L

2

-Sobolev spaes.

They applied their result to solve a free boundary value problem for the instationary

Navier-Stokes equations, whih desribes the motion of an in�nite oean of water

under fore of gravity.

In the present ontribution, we prove unique solvability of the system (1.1)-(1.4)

in L

q

-Sobolev spaes. The more general L

q

-theory has many advantages for further

appliations to the non-linear Navier-Stokes equations. In the mixed ase, the regu-

larity assumptions on the data for the problem studied in [7, 18℄ an be redued by

using the embedding W

1

q

(
) ,! L

1

(
) for q > n instead of W

m

2

(
) ,! L

1

(
) for

m >

n

2

, f. Solonnikov [17℄ for bounded domains and Abels [4℄. Moreover, the fol-

lowing results in the ase j = 0 imply that the Stokes operator generates a bounded

analyti semi-group, whih deays exponentially as t!1. These properties an be

used to onstrut strong solutions loally in time, f. [14, 2℄.

Our main result is:

THEOREM 1.1 Let 1 < q < 1, j = 0; 1, � 2 C n (�1; 0), and let 




� R

n

,

n � 2, be an asymptotially �at C

1;1

-layer. Then for every (f; g; a

+

) 2 L

q

(




)

n

�

W

1

q;�

(




) � W

2�j�

1

q

q;�

(�


+



)

n

with g 2

_

W

�1

q;0

(




) if j = 0 there is a unique solution

(u; p) 2 W

2

q;�

(




)

n

�

_

W

1

q

(




) of (1.1)-(1.4). Moreover,

(1 + j�j)kuk

q

+ kr

2

uk

q

+ krpk

q

� C

Æ

�

kfk

q

+ kgk

1;q;�

+ (1 + j�j)kgk

�;�1;q;0

+ ka

+

k

2�

1

q

;q;�

�

(1.5)
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if j = 0 and

(1 + j�j)kuk

q

+ kr

2

uk

q

+ krpk

q

+ kpj

�


+



k

1�

1

q

;q;�

� C

Æ

�

kfk

q

+ kgk

1;q;�

+ (1 + j�j)kgk

0

W

�1

q

+ ka

+

k

1�

1

q

;q;�

�

(1.6)

if j = 1 uniformly in � 2 �

Æ

[ f0g. If additionally (f; g; a

+

) 2 L

r

(




)

n

�W

1

r

(




)�

W

2�j�

1

r

r

(�


+



)

n

with g 2

_

W

�1

r;0

(




) if j = 0, then (u; p) 2 W

2

r

(




)

n

�

_

W

1

r

(




).

The used funtion spaes are de�ned in Setion 2 below.

In the ase of an in�nite layer 


0

= R

n�1

� (�1; 1), Theorem 1.1 was proved by

Wiegner [19℄ in the ase j = 0 and by Abels [3℄ in the ase j = 1. Therefore we an

use these results to obtain the unique solvability for asymptotially �at layers whih

are �su�iently� lose to an in�nite layer. This will done by a similar perturbation

argument as in Farwig and Sohr [10, Setion 3℄. Combining this result with ut-o�

tehniques and the parametrix onstruted in the seond part, we prove Theorem 1.1

for arbitrary asymptotially �at layers.

The struture of the thesis is as follows:

In Setion 2, we disuss some fundamental properties of L

q

-Sobolev spaes on

layer-like domains in parameter-dependent and homogeneous versions. In partiular,

the haraterization of the homogeneous Sobolev spae

_

W

1

q

(




) plays a entral role.

Then in Setion 3 we prove equivalene of unique solvability of the generalized Stokes

resolvent equations and a pseudodi�erential boundary value problem � the redued

Stokes resolvent equations. This equivalene is fundamental for the parametrix on-

strution in [5℄. The main theorem is proved in Setion 4 by the method desribed

above. Finally, we prove the unique solvability of the weak Laplae resolvent equation

with Neumann and mixed Neumann-Dirihlet boundary onditions in the appendix.

These results are needed in Setion 3. As a byprodut, we obtain the existene of

the Helmholtz deomposition of L

q

(




)

n

in the lassial and a modi�ed version with

mixed boundary onditions.
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2 Preliminaries

2.1 Notation

In the following N denotes the set of natural numbers (without 0), N

0

= N [ f0g, R

the real numbers, and C denotes the set of omplex numbers.
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For s 2 R we denote by [s℄ the largest integer � s, set fsg := s� [s℄ 2 [0; 1), and

de�ne [s℄

+

= maxfs; 0g. Moreover, �

Æ

:= fz 2 C n f0g : j arg zj < Æg, Æ 2 (0; �),

denotes a setor with angle Æ in C , where arg z 2 (��; �℄, z 6= 0, denotes the angle

of z in polar oordinates.

If M � R

n

is measurable L

q

(M), 1 � q � 1 denotes the usual Lebesgue-spae

and k:k

q

its norm. If 
 � R

n

is an open set, then L

q

lo

(
), 1 � q � 1, denotes the

vetor spae of all measurable funtions f : 
 ! K , K = R or K = C , suh that

f 2 L

q

(B \ 
) for all balls B with B \ 
 6= ;. If f 2 L

q

(M), g 2 L

q

0

(M), where

1

q

+

1

q

0

= 1, then

(f; g)

M

:=

Z

M

f(x)g(x)dx:

The set of all smooth bounded funtions f : R

n

! R with bounded derivatives is

denoted by C

1

(R

n

). If 
 � R

n

is a domain, C

1

0

(
) = D(
) is the set of all funtions

f 2 C

1

(R

n

) suh that supp f � 
 is ompat. Furthermore,

C

1

(0)

(
) := ff : 
! R : f = uj




;where u 2 C

1

0

(R

n

)g:

The Banah spae of all funtions f : R

n

! R that are k-times di�erentiable and

have Lipshitz ontinuous k-th derivatives is denoted by C

k;1

(R

n

), k 2 N

0

.

The dual of a topologial vetor spae V is denoted by V

0

. If v 2 V and v

0

2 V

0

,

then hv; v

0

i := v

0

(v) denotes the duality produt. If A : V ! W is a ontinuous linear

operator, A

0

: W

0

! V

0

denotes its adjoint.

Finally, if x 2 R

n

, n � 2, then we use the deomposition x = (x

0

; x

n

), where x

0

denotes the �rst n� 1 omponents.

2.2 Layer-Like Domains

De�nition 2.1 Let k 2 N

0

and n � 2. If  = (

+

; 

�

) 2 C

k;1

(R

n�1

)

2

with 

+

(x

0

)�



�

(x

0

) �  > 0 for all x

0

2 R

n�1

, then






= f(x

0

; x

n

) 2 R

n

: 

�

(x

0

) < x

n

< 

+

(x

0

)g

is alled a layer-like domain with C

k;1

-boundary. If additionally lim

jx

0

j!1



�

(x

0

) =



�

1

for some onstants 

�

1

2 R and lim

jx

0

j!1

D

�

x

0



�

(x

0

) = 0 for all j�j � k + 1, then






is alled an asymptotially �at layer, f. Figure 1. In the ase that 

�

(x

0

) � 

�

1

are onstant, 




is alled in�nite (�at) layer.

We will assume w.l.o.g. that 

�

1

= �1 and denote by 


0

= R

n�1

� (�1; 1) the

orresponding in�nite layer.

If 




is a layer-like domain with C

k;1

-boundary, then we will use the C

k;1

-

di�eomorphism F : 


0

! 




de�ned by

F (x) =

�

x

0



+

(x

0

)�

�

(x

0

)

2

x

n

+



+

(x

0

)+

�

(x

0

)

2

�

; x 2 


0

;
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to redue problems to the in�nite layer 


0

. If u : 




! C , then F

�

(u)(x) = u(F (x))

de�nes the pull-bak of u to 


0

. Similarly, if v : 


0

! C , F

�;�1

(v) = v(F

�1

(x))

de�nes the push-forward of v.

We denote by �


�



= f(x

0

; 

�

(x

0

)) : x

0

2 R

n�1

g the upper and lower boundary,

respetively. In order to loalize the domain around the upper and lower boundary,

we hoose a partition of unity '

�

0

2 C

1

([�1; 1℄) with '

�

0

� 1 on [�1;�

1

2

℄ and

'

+

0

� 1 on [

1

2

; 1℄. Then '

�

= F

�;�1

('

�

0

) is a partition of unity on 




with '

�

� 1 in

a neighborhood of �


�



. Beause of the onstrution, '

�

2 C

k;1

(




). By onvolution

with a suitable smooth funtion, we an ahieve '

�

2 C

1

(




).

2.3 Non-Homogeneous Spaes

Let 
 � R

n

be a domain. Studying resolvent equations, it is natural to onsider the

usual Sobolev spae with parameter-dependent norm

W

m

q;�

(
) = fu 2 L

q

(
) : D

�

u 2 L

q

(
); j�j � m; kuk

m;q;�

<1g;

kuk

m;q;�

=

X

j�j�m

(1 + j�j)

1

2

(m�j�j)

kD

�

uk

q

;

for 1 � q � 1, m 2 N

0

, f. [11, Setion 1℄. Moreover, W

m

q;0;�

(
) denotes the losure

of C

1

0

(
) in W

m

q;�

(
) and

W

�m

q;�

(
) :=

�

W

m

q

0

;0;�

(
)

�

0

; W

�m

q;0;�

(
) :=

�

W

m

q

0

;�

(
)

�

0

:

ThenW

m

q

(
) :=W

m

q;�

(
)j

�=0

oinides with the usual parameter-independent Sobolev

spae.

Lemma 2.2 Let k 2 N

0

, m 2 f0; 1; : : : ; k + 1g, 1 < q < 1, and let 




� R

n

be

a layer-like domain with C

k;1

-boundary. Then F

�

is a linear isomorphism in the

following settings:

F

�

: W

m

q;�

(




)!W

m

q;�

(


0

); F

�

: L

q

lo

(




) \W

�1

q;0

(




)! L

q

lo

(


0

) \W

�1

q;0

(


0

):

Here L

q

lo

(
) \W

�1

q;0

(
) is understood as the topologial vetor spae of all funtions

f 2 L

q

lo

(
) that extend to funtionals in W

�1

q;0

(
) if the funtions are identi�ed with

funtionals in the anonial way.

Proof: The �rst part is a diret onsequene of the hain rule, the transformation

formula, and 0 <  � detDF =

1

2

(

+

� 

�

) � C. Sine

Z




0

(F

�

f)(x)g(x)dx =

Z






f(x)(F

�;�1

g)(x) detDF

�1

(x)dx;

we get j(F

�

f; g)




0

j � Ckfk

W

�1

q;0

(




)

kgk

W

1

q

0

(


0

)

for all g 2 W

1

q

(


0

), whih implies the

seond part.
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The natural parameter-dependent Sobolev-Slobodekij spaes are de�ned as

W

s

q;�

(M) = ff 2 L

q

(M) : kfk

s;q;�

<1g;

kfk

s;q;�

= (1 + j�j)

s�[s℄

2

kfk

W

[s℄

q;�

+

X

j�j=[s℄

�

Z

M

Z

M

jD

�

f(x)�D

�

f(y)j

q

jx� yj

n�1+qfsg

d�

x

d�

y

�

1

q

;

for a given (n � 1)-dimensional C

k;1

-sub-manifold M of R

n

without boundary and

0 < s 62 N with s < k + 1.

If 




is a layer-like domain with C

k;1

-boundary, �




is the disjoint union of two

C

k;1

-manifolds. Therefore we identify a funtion a : �




! C with the tuple (a

+

; a

�

),

where a

�

= aj

�


�

.

Let F

0

= F j

�


0

be the restrition of F to the boundary. Then

F

�

0

: W

s

q;�

(�




)!W

s

q;�

(�


0

); F

�;�1

0

: W

s

q;�

(�


0

)!W

s

q;�

(�




)

are ontinuous, if 0 � s < k + 1, with operator norms uniformly bounded in � 2 C .

We denote by 

0

u = uj

�


the Dirihlet trae and by 

j

u = (

+

j

u; 

�

j

u) the trae

of the j-th normal derivative 

j

u = 

0

(�

�

)

j

u, where � denotes the exterior normal

vetor on the boundary. Moreover, if u : 
 ! C

n

is a vetor �eld, we also use the

trae of the normal omponent 

�

u = � � 

0

u and 

�

�

u = � � 

�

0

u. Similarly, a

�

and a

�

denote the normal and the tangential omponents, resp., of a vetor �eld

a : �
! C

n

.

Lemma 2.3 Let 1 < q <1, m 2 N, and let 
 � R

n

, n � 2, be a layer-like domain

with C

m�1;1

-boundary. Then:

1. (

0

; : : : ; 

m�1

) : W

m

q;�

(
) !

Q

m�1

j=0

W

m�j�

1

q

q;�

(�
) is a surjetive and ontinuous

linear mapping.

2. W

m

q;0;�

(




) = ff 2 W

m

q;�

(




) : 

j

f = 0 for j = 0; : : : ; m� 1g

Proof: Using the oordinate transformation F : 




! 


0

, the statements are easily

redued to the ase of an in�nite layer 


0

. Using a partition of unity on 


0

, the

statements are easily redued to the orresponding statements for the half-spaes

R

n

+

, f. [11, Theorem 1.1℄.

Sine we will onsider di�erential equations with mixed Dirihlet-Neumann bound-

ary onditions, it is natural to onsider

0

W

m

q

(




) = fu 2 W

m

q

(




) : 

+

j

u = 0 for j = 0; : : : ; m� 1g;

0

W

m

q

(




) = fu 2 W

m

q

(




) : 

�

j

u = 0 for j = 0; : : : ; m� 1g:

Similarly to the notation above, we de�ne

0

W

�m

q

(




) =

�

0

W

m

q

0

(




)

�

0

;

0

W

�m

q

(




) =

�

0

W

m

q

0

(




)

�

0

for m 2 N . Moreover, Lemma 2.2 holds if W

m

q

and W

�1

q;0

are replaes by

0

W

m

q

and

0

W

�1

q

, resp.
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2.4 Homogeneous Sobolev Spaes

Although the usual (non-homogeneous) Sobolev, Besov, and Bessel potential spaes

for a layer-like domain, de�ned in the last setion, have the usual properties, the

analysis of the homogeneous spaes auses more problems.

Let 
 � R

n

be a domain and let

_

W

m

q

(
) = ff 2 L

q

lo

(
) : D

�

f 2 L

q

(
) for all j�j = mg

be the usual homogeneous Sobolev spae of order m 2 N

0

. If we identify funtions

whih di�er by a polynomial of order m� 1, then

_

W

m

q

(
) is a Banah spae. At �rst

sight it is surprising that

_

W

1

q

(




) 6= r






_

W

1

q

(R

n

) (2.1)

if 




is a layer-like domain, where r






f = f j






. Of ourse r






:

_

W

1

q

(R

n

) !

_

W

1

q

(




)

is ontinuous. But there is no ontinuous extension operator e :

_

W

1

q

(




)!

_

W

1

q

(R

n

).

This an easily be seen with the aid of the next important haraterization.

Lemma 2.4 Let 1 < q < 1 and let 




� R

n

, n � 2, be a Lipshitz layer-like

domain. Then

_

W

1

q

(




) = fu 2 L

q

lo

(




) : u(x) = u

1

(x) + u

2

(x

0

); u

1

2 W

1

q

(




); u

2

2

_

W

1

q

(R

n�1

)g;

where u

1

and u

2

in the deomposition of u 2

_

W

1

q

(




) an be hosen suh that

ku

1

k

1;q

; kr

0

u

2

k

q

� Ckruk

q

. Finally, C

1

(0)

(




) is dense in

_

W

1

q

(




).

Proof: First of all, we note that F

�

:

_

W

1

q

(




)!

_

W

1

q

(


0

) sine

rF

�

(u) = (D

x

F

T

)F

�

(ru);

where D

x

F 2 L

1

(


0

)

n�n

if  is Lipshitz. Now we set

u

2

(x

0

) =

1



+

� 

�

Z



+



�

u(x

0

; y

n

)dy

n

=

1

2

Z

1

�1

u(F (x

0

; y

n

))dy

n

= F

�

(u)

[�1;1℄

(x

0

)

and u

1

:= u� u

2

. Here f

B

denotes the mean-value of f on the set B. Then

kr

0

u

2

k

L

q

(R

n�1

)

�

1

2

Z

1

�1

kr

0

F

�

(u)(:; y

n

)k

q

dy

n

� Ckruk

L

q

(




)

;

ku

1

k

q

L

q

(




)

� C

Z

R

n�1

kF

�

(u)� F

�

(u)

[�1;1℄

k

q

L

q

(�1;1)

dx

0

� Ckruk

q

L

q

(




)

;

where we have used Poinaré's inequality on (�1; 1) for funtions with vanishing

mean-value.
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Corollary 2.5 Let 1 < q <1 and let 




� R

n

, n � 2, be a layer-like domain with

C

0;1

-boundary. Then F

�

is a linear isomorphism in the following settings:

F

�

:

_

W

1

q

(




)!

_

W

1

q

(


0

); F

�

: L

q

lo

(




) \

_

W

�1

q;0

(




)! L

q

lo

(


0

) \

_

W

�1

q;0

(


0

):

Here L

q

lo

(
) \

_

W

�1

q;0

(
) is understood as the topologial vetor spae of all funtions

f 2 L

q

lo

(
) that extend to funtionals in

_

W

�1

q;0

(
) if the funtions are identi�ed with

funtionals in the anonial way.

Proof: The �rst mapping property was proved in the proof of Lemma 2.4.

Due to the haraterization of

_

W

1

q

0

(




), g 2 L

q

lo

(




)\

_

W

�1

q;0

(




) i� g 2 L

q

lo

(




)\

W

�1

q;0

(




) and

1



+

� 

�

Z



+



�

g(x

0

; x

n

)dx

n

2 L

q

lo

(R

n�1

) \

_

W

�1

q

(R

n�1

):

Replaing 

�

with �1, we get the orresponding haraterization of L

q

lo

(


0

) \

_

W

�1

q;0

(


0

).

Sine F

�

: W

�1

q

(




)!W

�1

q

(


0

), it remains to show that

1

2

Z

1

�1

(F

�

g)(x

0

; x

n

)dx

n

2 L

q

lo

(R

n�1

) \

_

W

�1

q

(R

n�1

):

Using detDF

�1

(x

0

) =

2

(

+

�

�

)(x

0

)

, we onlude

Z

R

n�1

1

2

Z

1

�1

(F

�

g)(x

0

; x

n

)dx

n

'(x

0

)dx

0

=

Z

R

n�1

1



+

� 

�

Z



+



�

g(x

0

; x

n

)dx

n

'(x

0

)dx

0

for all ' 2 C

1

0

(R

n�1

) \

_

W

1

q

0

(R

n�1

). Hene

1

2

R

1

�1

(F

�

g)(x

0

; x

n

)dx

n

2

_

W

�1

q

(R

n�1

).

Remarks 2.6 1. To prove (2.1), let u 2

_

W

1

q

(R

n�1

) n

_

W

1�

1

q

q

(R

n�1

). Considering

u as a funtion in

_

W

1

q

(




) independent of x

n

, u does not have an extension

U 2

_

W

1

q

(R

n

) sine U j

x

n

=0

= u 2

_

W

1�

1

q

q

(R

n�1

) would ontradit the assumption.

Here

_

W

1�

1

q

q

(R

n�1

) =

_

B

1�

1

q

q

(R

n�1

) is de�ned as in [8, Setion 6.3℄.

2. We an modify the deomposition Lemma 2.4 as follows: If u

2

(x

0

) 2

_

W

1

q

(R

n�1

)

as above, we split u

2

= u

0

2

+ u

00

2

with u

0

2

= F

�1

�

0

7!x

0

['(�

0

)~u

2

(�

0

)℄ where ' 2

C

1

0

(R

n�1

), ' � 1 on B

1

(0). Then u

0

2

2 L

q

lo

(R

n�1

) with r

0

u

0

2

2 W

1

q

(R

n�1

), and

u

00

2

2 W

1

q

(R

n�1

). Hene we get a deomposition of u 2

_

W

1

q

(


0

) with

u(x) = u

0

1

(x) + u

0

2

(x

0

); ku

0

1

k

W

1

q

(


0

)

+ kr

0

u

0

2

k

W

1

q

(R

n�1

)

� Ckruk

L

q

(


0

)

:
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3. Although

_

W

1

q

(




) does not have the extension property to R

n

, there is a on-

tinuous extension operator e :

_

W

1

q

(




)!

_

W

1

q

(




0

) where 




0

� 




is a seond

layer-like domain.

As for the non-homogeneous spaes we set

_

W

�1

q;0

(
) = (

_

W

1

q

0

(
))

0

: Note that L

q

(




) is

not ontinuously embedded in

_

W

�1

q;0

(




), if we identify a funtion with a distribution

in the usual sense. The norm

kuk

�;�1;q;0

:= sup

(

�

�

�

�

�

Z






uvdx

�

�

�

�

�

: v 2 C

1

(0)

(




); krvk

q

0

= 1

)

does not have to be �nite for u 2 L

q

(




). If u 2 L

q

lo

(




) and kuk

�;�1;q;0

< 1, then

we an extend v 7!

R






uvdx, v 2 C

1

(0)

(




), uniquely to a funtional on

_

W

1

q

0

(




). In

this sense we understand u 2 L

q

lo

(




)\

_

W

�1

q;0

(




). In partiular, W

1

q

(




)\

_

W

1

q;0

(




)

has to be understood in this sense.

Remark 2.7 Using Lemma 2.4 again and L

q

(R

n�1

) �

_

W

�1

q

(R

n�1

) \

_

W

1

q

(R

n�1

),

it an be shown that W

1

q

(




) \

_

W

�1

q;0

(




) =

_

W

1

q

(




) \

_

W

�1

q;0

(




) algebraially and

topologially, f. [6, Lemma 2.8℄.

The ompatly supported elements of L

q

(
)\

_

W

�1

q;0

(
) an be haraterized as follows.

Lemma 2.8 Let n � 2 and let 
 = 




� R

n

be a layer-like Lipshitz domain or let


 = R

n�1

.

1. If n = 2 and 1 < q < 1 or n � 3 and 1 < q �

n�1

n�2

, then every g 2

L

q

(
) \

_

W

�1

q;0

(
) with ompat support satis�es

Z

supp g

gdx = 0:

2. If n � 3 and q >

n�1

n�2

, then g 2 L

q

(
) and supp g ompat implies g 2

_

W

�1

q;0

(
).

Proof: First let 
 = 




be a layer-like domain.

1. Let M > 0 be so large that supp g � fx 2 




: jx

0

j � Mg =: D

M

. Moreover,

let '

R

2 C

1

0

(R

n�1

) be suh that '

R

(x

0

) � 1 on B

M

(0), supp'

R

� B

M+R

(0),

and jr

0

'

R

(x

0

)j � CR

�1

. Then kr

0

'

R

k

q

0

q

0

� CR

n�1�q

0

; whih is bounded as

R!1 if q

0

� n� 1. If n � 3, the latter ondition is equivalent to q �

n�1

n�2

. If

n = 2, the ondition is satis�ed for all 1 < q <1. Hene there is subsequene

r

0

'

R

j

, j 2 N , that onverges weakly in L

q

0

(R

n�1

). Sine (r

0

'

R

)

R>0

onverges

pointwise to 0 as R ! 1, the only possible weak aumulation point is 0.

Hene r

0

'

R

* 0 as R!1.
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Beause of the Lemma of Mazur, there is a sequene of onvex ombinations

 

R

of '

R

suh that r

0

 

R

! 0 in L

q

0

(R

n�1

) as R!1. Therefore

�

�

�

�

Z

supp g

gdx

�

�

�

�

=

�

�

�

�

�

Z






g 

R

dx

�

�

�

�

�

� Ckr

0

 

R

k

q

0

! 0 as R!1:

2. Let ' 2

_

W

1

q

0

(




) and let ' = '

1

+ '

2

, '

1

2 W

1

q

0

(




), '

2

2

_

W

1

q

0

(R

n�1

), be its

deomposition due to Lemma 2.4. Using the Sobolev embedding

_

W

1

q

0

(R

n�1

) ,!

L

r

(R

n�1

) with

1

r

=

1

q

0

�

1

n�1

, we obtain '

2

2 L

r

(R

n�1

), where the ondition

q >

n�1

n�2

is equivalent to

1

r

=

1

q

0

�

1

n�1

> 0. Therefore

j(g; ')






j � kgk

q

k'k

q

0

;D

M

� Ckgk

q

(k'

1

k

q

0

;D

M

+ k'

2

k

r;D

M

)

� Ckgk

q

(k'

1

k

1;q

0

+ kr

0

'

2

k

q

0

) � Ckgk

q

kr'k

q

0

for arbitrary ' 2

_

W

1

q

0

(




), where B := supp g. Hene g 2

_

W

�1

q;0

(




).

The arguments for the proof in the ase 
 = R

n�1

are ontained in the proof for a

layer-like domain.

If f 2 L

q

(




)

n

with div f 2 L

q

lo

(




) \

_

W

�1

q;0

(




), we an de�ne a weak trae 

�

f as

h

�

f; vi

�




:= (f;rV ) + (div f; V ); (2.2)

where v 2 

0

(

_

W

1

q

0

(




)) and V 2

_

W

1

q

0

(




) is an arbitrary extension of v. If f 2

C

1

(0)

(




), the de�nition oinides with the usual trae. Moreover, the de�nition does

not depend on the hoie of V . Hene



�

f 2 (

0

_

W

1

q

0

(




))

0

=: W

�

1

q

q;�

(�




)

and k

�

fk

W

�

1

q

q;�

� C

�

kfk

L

q

+ k div fk

_

W

�1

q;0

�

: In partiular, 

�

f is de�ned for f 2

L

q

(




)

n

with div f = 0.

Remark 2.9 Using Lemma 2.4, we an haraterize 

0

(

_

W

1

q

0

(




))

0

as follows:

W

�

1

q

q;�

(�




) = fa 2 W

�

1

q

q

(�




) : (F

�

0

a)

+

�

+

+ (F

�

0

a)

�

�

�

2

_

W

�1

q

(R

n�1

)g;

where �

�

(x

0

) =

p

1 + jr

0



�

(x

0

)j

2

, f. [6, Lemma 2.11℄ for details.

Similarly, if u 2 L

q

(




)

n

with div u 2 L

q

lo

(




)\

0

W

�1

q

(




), then we de�ne the trae



+

�

u 2 W

�

1

q

q

(�


+



) as

h

+

�

u; vi = (u;rV ) + (div u; V ); (2.3)

where v 2 W

1�

1

q

0

q

0

(�


+



) and V 2

0

W

1

q

0

(




) with 

+

0

V = v. As in the ase of 

�

u, the

de�nition does not depend on the hoie of V . Moreover,

k

+

�

uk

�

1

q

;q

� C

�

kuk

q

+ k div uk

0

W

�1

q

�

:

In the same way we an de�ne 

�

�

u 2 W

�

1

q

q

(�


�



).
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3 Redued Stokes Equations and Weak Laplae Re-

solvent Equations

The following redution is a modi�ation of the redution introdued by Grubb and

Solonnikov [12℄.

First we onsider the Dirihlet ase j = 0. Let (u; p) 2 W

2

q

(




)

n

�

_

W

1

q

(




) be a

solution of (1.1)-(1.4) with

f 2 L

q

(




)

n

; a

+

= 0; g 2 W

1

q

(




) \

_

W

�1

q;0

(




): (3.1)

Applying �rst � div to (1.1) then 

�

, the pressure p is determined by

��p = � div f + (���)g in 




; (3.2)



1

p = 

�

(f +rg) + 

�

(��r div)u on �




:

Provided we have proved unique solvability of this weak Neumann problem, see

Theorem 3.1 below, we an split p = p

1

+ p

2

suh that p

1

depends only on u and p

2

depends only on (f; g). Then we end up with the redued Stokes equations

(���)u+G

0

u = f

r

in 




; (3.3)



0

u = 0 on �




(3.4)

where G

0

u = rK

1



�

(��r div)u and f

r

= f �rp

2

. Here K

1

denotes the Poisson

operator for the Laplae equation.

The most important fat is that we an drop the equation div u = g: If u solves

the equations (3.3)-(3.4) with f

r

de�ned as above, then

(���)div u = (���)g in 




;



1

div u = 

1

g on �




beause of the onstrution. Sine these equations are uniquely solvable, we onlude

div u = g.

THEOREM 3.1 Let 1 < q; r <1, Æ 2 (0; �), and 




, n � 2, be an asymptotially

�at layer with C

0;1

-boundary. Then for every f 2 L

q

(




)

n

and � 2 �

Æ

[ f0g there

is a unique solution u 2

_

W

1

q

(




) with �u 2

_

W

�1

q;0

(




) of the weak Laplae resolvent

equation

(���)u = � div f in 




; (3.5)



1

u = 

�

f on �




; (3.6)

where (3.6) is understood as 

�

(ru � f) = 0, f. (2.2). Moreover, u is uniquely

determined by

�(u; v) + (ru;rv) = (f;rv) for all v 2

_

W

1

q

0

(




) (3.7)

11



and satis�es

j�jkuk

_

W

�1

q;0

+ j�j

1

2

kuk

q

+ kruk

q

� C

q;Æ;"

kfk

q

(3.8)

uniformly in � 2 �

Æ

with j�j � " > 0 and for � = 0. If additionally f 2 L

r

(




)

n

,

then u 2

_

W

1

r

(




) and �u 2

_

W

�1

r;0

(




).

Hene the generalized Stokes equations (1.1)-(1.4) with right-hand side as in (3.1)

are uniquely solvable if the redued Stokes equations (3.3)-(3.4) are uniquely solvable

for f

r

2 L

q

(




)

n

.

In the ase � 6= 0, the onverse impliation is also true: If f

r

2 L

q

(




)

n

, then we

get a solution u of the redued Stokes equations (3.3)-(3.4) as follows: Let (u; p) 2

W

2

q

(




) �

_

W

1

q

(




) be solution of the generalized Stokes equations (1.1)-(1.4) with

right-hand side (f

r

; g; 0), where g is determined as solution of (3.5)-(3.6) with right-

hand side f

r

. Then rp = G

0

u sine ��p = 0 and 

1

p = 

�

(� �r div)u. Hene u

solves the redued Stokes equations.

Therefore we have proved

Lemma 3.2 Let 1 < q < 1, � 2 �

Æ

, Æ 2 (0; �), j = 0, and let 




� R

n

, n �

2, be an asymptotially �at layer with C

0;1

-boundary. Then the generalized Stokes

equations (1.1)-(1.4) are uniquely solvable for given data as in (3.1) i� the redued

Stokes equations (3.3)-(3.4) are uniquely solvable for every f

r

2 L

q

(




)

n

. Moreover,

the solutions of the generalized Stokes equations satisfy (1.5) for all � 2 �

Æ

with

j�j � " > 0 i� the solutions of redued Stokes equations satisfy

j�jkuk

q

+ j�j

1

2

kruk

q

+ kr

2

uk

q

� C

q;Æ;"

kf

r

k

q

(3.9)

for all � 2 �

Æ

with j�j � " > 0.

Remark 3.3 We an onsider A

0

:= ��+G

0

as unbounded operators with domain

D(A

0

) := D(�

D

)

n

= W

2

q

(




)

n

\ W

1

q;0

(




)

n

. We all this operator redued Stokes

operator. Then A

0

j

J

q;0

= A

q

, where A

q

= �P

q

�

D

is the usual Stokes operator and

P

q

: L

q

(




)

n

! J

q;0

(




) is the Helmholtz projetion, f. Corollary A.3 below. This

statement an be seen as follows: If u 2 D(�

D

)

n

\J

q;0

(




), then div(��u+G

0

u) = 0

and



�

(��u +G

0

u) = �

�

�u+ 

1

K

1



�

(��r div)u = 0:

Hene ��u = (�� + G

0

)u � G

0

u is the Helmholtz deomposition of ��u, i.e.,

(��+G

0

)u = P

q

(��)u = A

q

u.

Moreover, if f 2 J

q;0

(




) and u = (���+G

0

)

�1

f , then div u = 0 and therefore

u 2 J

q;0

(




) sine (� ��)div u = 0 and 

1

div u = 0. Hene (��� + G

0

)

�1

j

J

q;0

=

(�+ A

q

)

�1

if (����G

0

)

�1

exists and � 62 (�1; 0).

Remark 3.4 Although the Stokes operator A

q

is known to be invertible, f. [19℄

and [1, 2℄, the redued Stokes operator A

0

is not, whih an be proved as follows: Let

f = rp with p 2

_

W

1

q

(




) n L

q

(




). Then p+  62

_

W

�1

q;0

(




) for any  2 R beause of

12



Remark 2.7. Thus there is no u 2 W

2

q

(




)

n

whih solves (3.3)-(3.4) for � = 0 sine

the redued Stokes equations imply

��div u = ��p in 






1

div u = 

1

p on �




and therefore div u = p+ 62

_

W

�1

q;0

(




) whih ontradits the ompatibility ondition

g = div u 2

_

W

�1

q;0

(




) \W

1

q

(




).

In the mixed ase, j = 1, there is an analogous redution of (1.1)-(1.4) to the system

(���)u+G

10

u = f

r

in 


0

; (3.10)

T

0

1

+

u = a

+

r

on �


+

0

; (3.11)



�

0

u = 0 on �


�

0

(3.12)

with

G

10

u = rK

01

�

2

+

1

u

�



�

�

(��r div)u

�

; (T

0

1

+

u)

�

= (

+

�

S(u))

�

; (T

0

1

+

u)

�

= 

+

0

div u;

f

r

= f � rp

2

, (a

+

r

)

�

= a

+

�

, and a

+

�

= 

+

0

g, where p

2

solves (3.2) with boundary

onditions 

+

0

p

2

= �a

+

�

and 

�

1

p

2

= 

�

�

f + 

�

1

g.

Lemma 3.5 Let 1 < q < 1, Æ 2 (0; �), j = 1, and let 




� R

n

, n � 2, be an

asymptotially �at layer with C

0;1

-boundary. Then the generalized Stokes equations

(1.1)-(1.4) are uniquely solvable for (f; g; a

+

) 2 L

q

(




)

n

�W

1

q;�

(




)�W

1�

1

q

q;�

(�


+



)

n

i� the redued Stokes equations (3.10)-(3.12) are uniquely solvable for every f

r

2

L

q

(




)

n

and a

+

r

2 W

1�

1

q

q;�

(�


+



)

n

. Moreover, the solutions of the generalized Stokes

equations satisfy (1.6) for all � 2 �

Æ

[f0g i� the solutions of redued Stokes equations

satisfy

(1 + j�j)kuk

q

+ kr

2

uk

q

� C

q;Æ

�

kf

r

k

q

+ ka

+

r

k

1�

1

q

;q;�

�

(3.13)

for all � 2 �

Æ

[ f0g.

Proof: The proof is done in the same way as in the Dirihlet ase, j = 0, using

Theorem 3.6 below instead of Theorem 3.1 and hanging the boundary onditions in

the obvious way. Details an be found in [3, Setion 4.1℄, where 


0

has to be replaed

by 




.

THEOREM 3.6 Let 1 < q; r < 1, Æ 2 (0; �), and 




� R

n

, n � 2, be an

asymptotially �at layer with C

0;1

-boundary. Then for every f 2 L

q

(




)

n

and � 2

�

Æ

[f0g there is a unique solution u 2

0

W

1

q

(




) of the weak Laplae resolvent equation

(���)u = � div f in 




; (3.14)



+

0

u = 0 on �


+



; (3.15)



�

1

u = 

�

�

f on �


�



; (3.16)

13



where (3.16) is understood as 

�

�

(ru � f) = 0, f. (2.3). Moreover, u is uniquely

determined by

�(u; v) + (ru;rv) = (f;rv) for all v 2

0

W

1

q

0

(




): (3.17)

and satis�es (1 + j�j)kuk

0

W

�1

q

+ kuk

1;q;�

� C

q;Æ

kfk

q

uniformly in � 2 �

Æ

[ f0g. If

additionally f 2 L

r

(




)

n

, then u 2

0

W

1

r

(




).

4 Stokes Equations in Asymptotially Flat Layers

4.1 Small Global Perturbations

Let 




� R

n

, n � 2, be an asymptotially �at layer with C

1;1

-boundary, 


0

the

in�nite layer, and F : 


0

! 




be the di�eomorphism de�ned in Setion 2.2. In the

following we will denote by all variables, funtions, and operators ating in 


0

,

e.g. x; u(x);r;�. For the variables, funtions, and operators on 




will use simple

letters as x; u(x);r;�.

In order to apply a similar perturbation argument as in [10, Setion 3℄, we observe

rF

�

u =

�

I

0

r

0

a(x)

0 �

n

a(x)

�

F

�

ru;

�F

�

u = F

�

�

0

u+

�

(�

n

a)

2

+ jr

0

aj

2

�

F

�

(�

2

n

u) + 2r

0

aF

�

(�

n

r

0

u) + �

0

aF

�

(�

n

u)

with a(x) =

1

2

(

+

(x

0

)� 

�

(x

0

))x

n

+

1

2

(

+

(x

0

) + 

�

(x

0

)). Hene

F

�;�1

rF

�

u = ru+R

1

u; F

�;�1

divF

�

u = div u+R

2

u; (4.1)

F

�;�1

�F

�

u = �u+R

3

u; (4.2)

with

kR

1

uk

q

� C()kruk

q

; kR

2

uk

1;q;�

� C()kruk

2;q;�

; kR

3

uk

q

� C()kuk

2;q;�

;

where C()! 0 if k(r

0



�

;r

0

2



�

; 

+

� 

�

� 2)k

1

! 0.

THEOREM 4.1 Let 1 < q; r < 1, � 2 �

Æ

[ f0g, Æ 2 (0; �), n � 2, and j = 0

or j = 1. Then there is a onstant K = K(q; r; Æ) > 0 suh that Theorem 1.1 holds

under the additional assumption k(r

0



�

;r

0

2



�

; 

+

+ 

�

� 2)k

1

� K.

Proof: First let j = 0. To apply the perturbation argument we introdue the

operator

S

0;�

: X

0

! Y

0

; S

0;�

(u; p) = (�u��u+rp; div u)

on the Banah spaes X

0

=

�

W

2

q;�

(


0

)

n

\W

1

q;0;�

(


0

)

n

�

�

_

W

1

q

(


0

) and Y

0

= L

q

(


0

)

n

�

(W

1

q;�

(


0

)\

_

W

�1

q;0

(


0

)), where k(u; p)k

X

0

:= kuk

2;q;�

+krpk

q

and k(f; g)k

Y

0

:= kfk

q

+

14



kgk

1;q;�

+(1+ j�j)kgk

_

W

�1

q;0

(


0

)

. The orresponding operator and funtion spaes on 




are denoted by S

;�

, X



, and Y



.

Beause of the unique solvability of the generalized Stokes equations in 


0

and the

resolvent estimate, f. [19℄, S

0;�

: X

0

! Y

0

is an isomorphism with norms uniformly

bounded in �

Æ

[ f0g. Due to Lemma 2.2 and Corollary 2.5, F

�;�1

S

0;�

F

�

: X



! Y



is an isomorphism. Using the identities (4.1)-(4.2), we get

F

�;�1

S

0;�

F

�

= S

;�

+R

;�

;

where R

;�

(u; p) = (�R

3

u + R

1

p; R

2

u) satisfying kR

;�

(u; p)k

L(X



;Y



)

� C() with a

onstant C() whih gets arbitrarily small if K > 0 in the assumption of the lemma

is su�iently small. Hene there is a K > 0 suh that

kR

;�

(u; p)k

Y



� �kF

�;�1

S

0;�

F

�

(u; p)k

Y



uniformly in � 2 �

Æ

[f0g with � < 1. Thus R

;�

is relatively bounded with respet to

the isomorphism F

�;�1

S

0;�

F

�

(u; p) and we an apply Kato's perturbation riterion,

f. [13, Chapter 4, Theorem 1.16℄. Therefore S

;�

: X



! Y



is an isomorphism for

all � 2 �

Æ

[ f0g and kS

;�

k

L(X



;Y



)

� C

Æ

.

For the mixed ase j = 1 we replae the spaes by

X

10

= (W

2

q;�

(


0

)

n

\

0

W

1

q;�

(


0

)

n

)�

�

p 2

_

W

1

q

(


0

) : 

+

0

p 2 W

1�

1

q

q;�

(�


+

0

)

�

;

k(u; p)k

X

10

= kuk

2;q;�

+ krpk

q

+ k

+

0

pk

1�

1

q

;q;�

;

Y

10

= L

q

(


0

)

n

�W

1

q;�

(


0

)�W

1�

1

q

q;�

(�


+

0

)

n

;

k(f; g; a

+

)k

Y

10

= kfk

q

+ kgk

1;q;�

+ (1 + j�j)kgk

0

W

�1

q

(


0

)

+ ka

+

k

1�

1

q

;q;�

and the operator by

S

10;�

: X

10

! Y

10

; S

10;�

(u; p) = (�u��u+rp; div u; T

+

1

(u; p))

and arry on in the same way as in the Dirihlet ase j = 0 with the additional

perturbation term

R

4

u = 

+

0

(�

+

0

� �

+



) � S(u)� 

+

0

(�

+

0

� �

+



)p+ 

0

�

+



� (R

1

u+ (R

1

u)

T

)

in the boundary ondition on �


+



. Here �

+



= (�r

0



+

(x

0

); 1)=

p

1 + jr

0



+

(x

0

)j

2

denotes the exterior normal vetor on �


+



and �

+

0

= e

n

the exterior normal vetor

on �


+

0

. This term an be estimated in the same way as before using additionally

k�

+



� �

+

0

k

C

0;1

(R

n�1

)

� Ck(r

0



+

;r

0

2



+

)k

1

:
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4.2 Large Loal Perturbations

Let K > 0 be the onstant in Theorem 4.1 for given 1 < q < 1 and r = 2. If






� R

n

, n � 2, is an arbitrary asymptotially �at layer with C

1;1

-boundary, we an

�nd an asymptotially �at domain 




0

suh that k(r

�

0

;r

2



�

0

; 

+

0

�

�

0

� 2)k

1

� K

and whih oinides with 




on R

n

n B

R

(0). Moreover, let 


+

and 


�

be bounded

C

1;1

-domains with






= (




0

nB

R+1

(0)) [ 


+

[ 


�

and dist(


�

; �


�



) > 0:

Now let '

0

; '

�

be a partition of unity on 




and  

0

;  

�

2 C

1

(0)

(




) suh that  

�

= 1

on supp'

�

, � = 0;�, supp 

0

� R

n

nB

R

(0), and supp 

�

� 


�

.

Lemma 4.2 Let � 2 C n (�1; 0). Then S

0;�

and S

10;�

de�ned as in the proof of

Theorem 4.1 are Fredholm operators with trivial kernel.

Proof: First let j = 0 and w.l.o.g. a

+

= 0. We set g

0

=  

0

g � h

0

, where h

0

2

C

1

0

(




0

\ 




) with supp h

0

\ supp 

0

= ; and kh

0

k

q

� Ckgk

q

is hosen suh that

Z

supp(1� 

0

)\




((1�  

0

)g � h

0

)dx = 0:

Then g

0

2

_

W

�1

q;0

(




) with supp g

0

� 




\ 




0

. Hene g

0

2

_

W

�1

q;0

(




0

). Similarly, we

hoose g

�

=  

�

g�h

�

, where h

�

2 C

1

0

(


�

) is hosen suh that supp h

�

\supp'

�

= ;

and

R




�

g

�

dx = 0: Moreover, let f

�

= '

�

f , � 2 I := f0;+;�g, and D

�

:= supp'

�

.

Now let (u

�

; p

�

), � 2 I, be the solution of the generalized Stokes equations in 




0

;


�

,

resp., with right-hand side (f

�

; g

�

) and non-slip boundary ondition, where p

0

and

p

�

are hosen suh that

Z






0

\


�

p

0

dx =

Z






0

\


�

p

�

dx: (4.3)

Then (u; p) :=

P

�2I

 

�

(u

�

; p

�

) 2 W

2

q;�

(




)

n

�

_

W

1

q

(




) depends ontinuously on (f; g)

and solves

(���)u+rp = f + S

1

u+ S

2

p in 




;

div u = g + S

3

u in 




;



0

u = 0 on �




;

where S

1

is a di�erential operator of order 1 with oe�ients supported in suppr'

0

=

suppr'

+

[ suppr'

�

, S

2

p = r'

0

(p

0

� p

�

) in 


�

, and S

3

u = r'

0

� (u

0

�u

�

) in 


�

.

Sine all error terms are supported in the bounded set D

+

[D

�

and possess higher

regularity, the operator K

�

(f; g) := (S

1

u + S

2

p; S

3

u) is ompat from L

q

� (W

1

q;�

\

_

W

�1

q;0

) to L

q

�W

1

q;�

.
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Beause of g; div u 2

_

W

�1

q;0

(




), also S

3

u 2

_

W

�1

q;0

(




). Sine suppS

3

u � D

+

[D

�

,

this is equivalent to

Z

D

+

[D

�

S

3

udx = 0

if n = 2 or n � 3, 1 < q �

n�1

n�2

, due to Lemma 2.8. If n � 3 and q >

n�1

n�2

, every

ompatly supported L

q

funtion is in

_

W

�1

q;0

(




). Hene kS

3

uk

�;�1;q;0

� CkS

3

uk

q

and

K

�

is a ompat mapping on L

q

�(W

1

q

\

_

W

�1

q;0

). Thus S

0;�

is a semi-Fredholm operator

with �nite o-dimension of R(S

0;�

).

Finally, let (u; p) 2 W

2

q;�

(




)

n

�

_

W

1

q

(




) be a zero-solution. If q = 2, testing the

equation (1.1) with u and integrating by parts immediately implies that u = 0 and

therefore rp = 0. If q 6= 2, then (v; ~p) = ('

0

u; '

0

p) solves the generalized Stokes

equations in 




0

with ompatly supported right-hand side in W

1

q

(




0

)

n

�W

2

q

(




0

).

Therefore, if q > 2, (v; ~p) 2 W

2

2

(




0

)

n

�

_

W

1

2

(




0

) beause of the regularity assertion of

Theorem 4.1 for r = 2. Thus (u; p) 2 W

2

2

(




)

n

�

_

W

1

2

(




), whih implies (u;rp) = 0.

In the ase 1 < q < 2, we use Sobolev's embedding W

1

q

(




0

) ,! L

r

(




0

),

1

r

=

1

q

�

1

n

,

to obtain (v; ~p) 2 W

2

r

(




0

)

n

�

_

W

1

r

(




0

). Repeating this argument �nitely many times

and hoosing K > 0 a priori su�iently small, we obtain (u; p) 2 W

2

s

(




)

n

�

_

W

1

s

(




)

for some s > 2, whih implies (u;rp) = 0.

Now we onsider the ase j = 1. In this ase we replae 


�

by bounded domains




1

; : : : ;


N

;


�

with C

1;1

-boundary suh that






= (




0

nB

R+1

(0)) [

N

[

k=1




k

[ 


�

; dist(

N

[

k=1




k

; �


�



); dist(


�

; �


+



) > 0:

Moreover, we assume that 


k

, k = 1; : : : ; N , are hosen suh that there are asymp-

totially �at layers 




k

� 


k

, k = 1; : : : ; N , (possibly rotated) satisfying the assump-

tions of Theorem 4.1 and �


+



\ �


k

= �


+



\ �


+



k

. Moreover, let '

0

; : : : ; '

N

; '

�

and  

0

; : : : ;  

N

;  

�

be assoiated ut-o� funtions hosen suh that supp 

k

� 


k

,

k = 0; : : : ; N , and supp 

�

� 


�

.

As before we set f

�

= '

�

f , � 2 I := f0; : : : ; N;�g. Moreover, let g

�

= '

�

g if

� = 0; : : : ; N and let g

�

be de�ned as before. Finally, we set a

+

k

= '

k

a

+

, k = 0; : : : ; N .

Now let (u

k

; p

k

), k = 0; : : : ; N be the solution of (1.1)-(1.4) in 




k

, k = 0; : : : ; N ,

with right-hand side (f

k

; g

k

; a

+

k

) and j = 1. Moreover, let (u

�

; p

�

) be the solution

of the Stokes resolvent equations in the bounded domain 


�

with non-slip boundary

ondition and right-hand side (f

�

; g

�

) where p

�

is hosen as in (4.3).

Similarly to the Dirihlet ase, we set (u; p) :=

P

�2I

 

�

(u

�

; p

�

). As before we get a

solution of the generalized Stokes equations with ompatly supported perturbations

of higher order. Then we proeed in the same way as before, showing injetivity.

Lemma 4.3 Let 1 < q < 1, Æ 2 (0; �), and 




� R

n

, n � 2, be an asymptoti-

ally �at layer with C

1;1

-boundary. Then there is an R = R(q; Æ; ) > 0 suh that

Theorem 1.1 holds for all � 2 �

Æ

with j�j � R > 0 and q = r.
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Proof: The lemma is a onsequene of Lemma 5.18 in the seond part of this

ontribution [5℄, whih is proved independently of the result obtained in the present

�rst part.

We an assume w.l.o.g. a

+

= 0. Firstly, let j = 0. Then [5, Lemma 5.18℄ implies

that there is an approximate solution operator R

0;�

suh that

(���+G

0

)R

0;�

f = (I + S

1;�

)f in 




;



0

R

0;�

f = 0 on �




for f 2 L

q

(




)

n

with kS

1;�

fk

q

� C

Æ

(1 + j�j)

�"

kfk

q

, " > 0, � 2 �

Æ

[ f0g. Hene

there is an R > 0 suh that I + S

1;�

is invertible for all � 2 �

Æ

, j�j � R. Thus

the redued Stokes equations are uniquely solvable for � 2 �

Æ

, j�j � R. Beause of

Lemma 3.2, the same is true for the generalized Stokes equations. Moreover, (1.5)

is a onsequene of kR

0;�

fk

2;q;�

� C

q;Æ

kfk

q

and k(I + S

1;�

)

�1

fk

q

� kfk

q

for � 2 �

Æ

with j�j � R.

In the ase j = 1, there is an R

10;�

suh that

(���+G

10

)R

10;�

f = (I + S

2;�

)f in 




;

T

0

1

+

R

10;�

f = S

3;�

f on �


+



;



�

0

R

10;�

f = 0 on �


�



for all f 2 L

q

(




)

n

and

kS

2;�

k

L(L

q

(




))

+ kS

3;�

k

L(L

q

(




);W

1�

1

q

q;�

(�




))

� C

q;Æ

(1 + j�j)

�"

;

f. [5, Lemma 5.18℄. Choosing v 2 W

2

q;�

(




)

n

with T

0

1

+

v = S

3;�

f and kvk

2;q;�

�

CkS

3;�

fk

1�

1

q

;q;�

, we an modify R

10;�

suh that T

0

1

+

R

10;�

f = 0 and the estimate of

S

2;�

is preserved. The rest of the proof is done in the same way as before.

Proof of Theorem 1.1: Beause of Lemma 4.2, the unique solvability of the gener-

alized Stokes equations (1.1)-(1.4) is a onsequene of Lemma 4.3. This implies that

S

0;�

and S

10;�

have index zero for all � 2 C n(�1; 0) beause of the homotopy invari-

ane of the Fredholm index. Moreover, it is su�ient to prove the a priori estimates

(1.5) and (1.6) for large �, whih is also a onsequene of Lemma 4.3 below.

Alternatively, one an prove that the range of S

0;�

and S

10;�

are dense, whih an

be done analogously to the proof of Lemma 4.1 (iii) in [10℄. Moreover, the a priori

estimate an be proved similarly to [10, Lemma 4.2℄.

Finally, the regularity assertion is proved by onsidering ('

0

u; '

0

p) in 




0

and

applying similar arguments as in Lemma 4.2.

A Proof of Theorem 3.1 and Theorem 3.6

Lemma A.1 Theorem 3.1 holds if 




= 


0

is an in�nite layer.
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Proof: If � = 0, the unique solvability of the weak Neumann problem is equivalent

to the existene of the lassial Helmholtz deomposition of L

q

(


0

)

n

, whih was

proved by Miyakawa [15℄ and by Farwig [9℄. For � 2 �

Æ

with j�j � " > 0, the

proof an be done in the same way as [3, Lemma 3.1℄ using the Poisson operator

K

1;�

= OP

0

(k

1;�

(�

0

; D

n

)) with

k

1;�

(�

0

; D

n

)~a :=

osh(�

�

x

n

)

�

�

sinh �

�

~a

+

+ ~a

�

2

+

sinh(�

�

x

n

)

�

�

osh �

�

~a

+

� ~a

�

2

;

�

�

= (�+ j�

0

j

2

)

1

2

, instead of K

10;�

. Details an be found in [6, Setion 4℄. Finally, the

regularity assertion holds sine the solution operators for di�erent q and r oinide

on the dense subset C

1

(0)

(


0

).

Lemma A.2 Let 1 < q; r <1 and Æ 2 (0; �). Then there is a K = K(q; r; Æ) suh

that Theorem 3.1 and Theorem 3.6 hold for all layer-like domains 




� R

n

, n � 2,

suh that k(r

0



�

;r

0

2



�

; 

+

+ 

�

� 2)k

1

� K.

Proof: The proof is done with the same perturbation argument used in the proof

of Theorem 4.1.

Proof of Theorem 3.6: Let 




0

be an asymptotially �at layer with Lipshitz-

boundary hosen in the same way as in Setion 4.2. Moreover, let 


1;�

; : : : ;


N;�

, 


b

be bounded Lipshitz-domains suh that






= (




0

nB

R+1

(0)) [

N

[

k=1

(


k;+

[ 


k;�

) [ 


b

; dist(

N

[

k=1




k;+

; �


�



) > 0

dist(

N

[

k=1




k;�

; �


+



) > 0; dist(


b

; �




) > 0:

Moreover, we assume that 


k;�

, k = 1; : : : ; N , are hosen suh that there are asymp-

totially �at layers 




k;�

� 


k;�

, k = 1; : : : ; N , (possibly rotated) satisfying the as-

sumptions of Lemma A.2 and �


�



\�


k;�

= �


�



\�


�



k;�

. Furthermore, let 




b

be an

in�nite layer ontaining 


b

. Finally, let '

�

;  

�

, � 2 I := f0; (k;�); b : k = 1; : : : ; Ng,

be hosen in the same way as before.

Then, beause of Lemma A.2 there are u

�

, � 2 I, whih solve

�(u

�

; v)






�

+ (ru

�

;rv)






�

= (f;r('

�

v))






�

for all v 2

0

W

1

q

0

(




�

): (A.1)

Now we de�ne R

�

f =

P

�2I

 

�

u

�

: Beause of the onstrution, R

�

f 2

0

W

1

q;�

(




) and

kR

�

fk

1;q;�

� C

Æ;q

kfk

q

. Moreover,

(R

�

f; v)






=

X

�2I

(u

�

;  

�

v)






�

; (A.2)
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where  

�

v 2

0

W

1

q

0

(




�

), � 2 I. Hene by Lemma A.2, (1 + j�j)kRfk

0

W

�1

q

(




)

�

C

q;Æ

kfk

q

. Furthermore,

(rR

�

f;rv)






=

X

�2I

(ru

�

;r( 

�

v))






�

+ hS

�

f; vi; (A.3)

where hS

�

f; vi is the sum of the terms

hS

�;1;�

f; vi := ((r 

�

)u

�

;rv)






�

; hS

�;2;�

f; vi = �(ru

�

; (r 

�

)v)






�

; � 2 I:

Sine the mapping A : L

q

(




) !

0

W

�1

q

(




) with hAu

�

; vi = ((r 

�

)u

�

;rv), v 2

0

W

1

q

0

(




), is ontinuous, supp 

�

is ompat, and sine u

�

2

0

W

1

q

(




�

) depends

ontinuously on f 2 L

q

(




)

n

, we onlude that S

�;1;�

: L

q

(




)

n

!

0

W

�1

q

(




) is a

ompat mapping. The same is true for S

�;j;�

by duality. Moreover,

jhS

�;j;�

f; vij � C

Æ

(1 + j�j)

�

1

2

kfk

q

kvk

1;q

0

;�

; j = 1; 2;

sine ku

�

k

1;q;�

� C

Æ

kfk

q

.

Representing the funtional S

�

f 2

0

W

�1

q

(




) by

hS

�

f; vi = (g;rv)






for all v 2

0

W

1

q

0

(




);

where g 2 L

q

(




)

n

and kgk

q

� CkS

�

fk

0

W

�1

q;�

(




)

� C

Æ

(1 + j�j)

1

2

kfk

q

, we an onsider

S

�

as a ompat operator on L

q

(




)

n

with S

�

= O(j�j

�

1

2

) as j�j ! 1 in �

Æ

.

Combining (A.1), (A.2), and (A.3) and using '

�

 

�

= '

�

, we get

�(R

�

f; v)






+ (rR

�

f;rv)






=

X

�2I

(f;r('

�

 

�

v))






�

+ hS

�

f; vi = (f;rv)






+ hS

�

; vi

for all v 2

0

W

1

q

0

(




). Hene R

�

is a solution operator modulo a ompat operator S

�

2

L(L

q

(




)), whih tends to zero as j�j ! 1. Therefore (3.14)-(3.16) are uniquely

solvable for all � 2 �

Æ

, j�j � R and Fredholm solvable for all � 2 �

Æ

[f0g with index

0.

Next we show that the kernel is trivial. Let u 2 W

1

q

(




) be a zero-solution. If

q = 2, we immediately get u = 0 by (3.17). In the ase q 6= 2 we onsider '

0

u and

onlude in the same way as in the proof of Lemma 4.2 that u 2 W

1

2

(




).

Finally, the a priori estimate is a onsequene of

kuk

1;q;�

= kR

�

(1 + S

�

)

�1

fk

1;q;�

� C

q;Æ

k(1 + S

�

)

�1

fk

q

� C

q;Æ

kfk

q

for all � 2 �

Æ

, j�j � R, R > 0.

Proof of Theorem 3.1: The proof is done in the same way as in the mixed ase. But

in the Neumann ase we have to deal with homogeneous Sobolev spaes, whih ause

more problems. Nevertheless, this ase an be proved in the same way sine all error

terms are supported in a ball B

R

(0) for an R > 0 and we an hoose v 2

_

W

1

q

(




�

)

suh that kvk

L

q

(B

R

(0)\




)

� Ckrvk

q

.
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The main problem is that the solution for � = 0 is an element of

_

W

1

q

(




) but

the solution for � 6= 0 is in the set

_

W

1

q

(
) \

_

W

�1

q;0

(
). Therefore we annot use

the argument that the Fredholm index is loally onstant for � = 0 sine the spae

hanges. Hene we have to treat this ase separately. Nevertheless, the equation is

still Fredholm solvable sine the parametrix onstrution also holds in the ase � = 0.

If q = 2, it is well-known that the weak Neumann equation is uniquely solvable

for any domain 
. If q > 2, we an show that the kernel is trivial by the same

loalization tehnique as in the mixed ase. Sine the range of the equation is losed,

it is su�ient to prove that the range is dense in L

q

(




) in the ase q > 2. Then by

duality the same is true for 1 < q < 2.

If f 2 L

2

(




)

n

\L

q

(




)

n

, q > 2, there is a unique solution u 2

_

W

1

2

(




). Then '

0

u

solves a weak Neumann problem in 




0

with right-hand side in L

q

(




0

) \ L

2

(




0

).

Hene '

0

u 2

_

W

1

q

(




0

) and therefore u 2

_

W

1

q

(




).

Corollary A.3 (Helmholtz deomposition)

Let 1 < q < 1, n � 2, and 




� R

n

be an asymptotially �at layer with C

0;1

-

boundary. Then there are ontinuous projetions P

q

;

0

P

q

: L

q

(




)

n

! L

q

(




)

n

with

R(P

q

) = J

q;0

(




) := fu 2 L

q

(
)

n

: div u = 0; 

�

u = 0g;

N (P

q

) = G

q

(




) := frp : p 2

_

W

1

q

(
)g;

R(

0

P

q

) =

0

J

q

(




) := fu 2 L

q

(




)

n

: div u = 0; 

�

�

u = 0g;

N (

0

P

q

) =

0

G

q

(




) := frp : p 2

0

W

1

q

(




)g:

Proof: It is well-known that the existene of the (lassial) Helmholtz projetion P

q

is equivalent to the unique solvability of (3.5)-(3.6) for � = 0 and f 2 L

q

(




)

n

, f.

e.g. [16℄. The proof for the mixed ase

0

P

q

is an easy modi�ation. If f 2 L

q

(




)

n

,

then

0

P

q

f := f �rp, where p solves (3.14)-(3.16) for � = 0.
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