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Abstra
t

We study the generalized Stokes equations in asymptoti
ally �at layers,

whi
h 
an be 
onsidered as 
ompa
t perturbations of an in�nite (�at) layer




0

= R

n�1

� (�1; 1). Besides standard non-slip boundary 
onditions, we 
on-

sider a mixture of slip and non-slip boundary 
onditions on the upper and

lower boundary, respe
tively. In the �rst part we prove the unique solvabil-

ity in L

q

-Sobolev spa
es, 1 < q < 1, by extending the known results in the


ase of an in�nite layer 


0

via a perturbation argument to asymptoti
ally �at

layers whi
h are su�
iently 
lose to 


0

. Combining this result with standard


ut-o� te
hniques and the parametrix 
onstru
ted in the se
ond part, we prove

the unique solvability for an arbitrary asymptoti
ally �at layer. Moreover, we

show equivalen
e of unique solvability of the generalized and the redu
ed Stokes

resolvent equations, whi
h is essential for the se
ond part of this 
ontribution.

Key words: Stokes equations, free boundary value problems, boundary value prob-

lems for pseudodi�erential operators, non-smooth pseudodi�erential operators

AMS-Classi�
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1 Introdu
tion

We 
onsider the generalized Stokes resolvent equations

(���)u+rp = f in 





; (1.1)

div u = g in 





; (1.2)

T

+

j

(u; p) = a

+

on �


+




; (1.3)

uj

�


�




= 0 on �


�




(1.4)

with two kinds of boundary 
onditions, j = 0 or j = 1, where

T

+

0

(u; p) = uj

�


+




; T

+

1

(u; p) = (� � S(u)� �p)j

�


+




; S(u) = ru+ (ru)

T

;

1



and � 2 �

Æ

[ f0g. Here 





� R

n

, n � 2, is an asymptoti
ally �at layer, whi
h is

a domain bounded by two surfa
es �


+




and �


�




, whi
h get �
lose� to two parallel

hyper-planes at in�nity, see De�nition 2.1 below.
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Figure 1: An asymptoti
ally �at layer

The 
ase j = 0 
orresponds to standard non-slip boundary 
onditions. The mixed


ase j = 1 is important for appli
ation to free boundary value problems. Beale [7℄

and Sylvester [18℄ studied this 
ase in a similar 
lass of domains in L

2

-Sobolev spa
es.

They applied their result to solve a free boundary value problem for the instationary

Navier-Stokes equations, whi
h des
ribes the motion of an in�nite o
ean of water

under for
e of gravity.

In the present 
ontribution, we prove unique solvability of the system (1.1)-(1.4)

in L

q

-Sobolev spa
es. The more general L

q

-theory has many advantages for further

appli
ations to the non-linear Navier-Stokes equations. In the mixed 
ase, the regu-

larity assumptions on the data for the problem studied in [7, 18℄ 
an be redu
ed by

using the embedding W

1

q

(
) ,! L

1

(
) for q > n instead of W

m

2

(
) ,! L

1

(
) for

m >

n

2

, 
f. Solonnikov [17℄ for bounded domains and Abels [4℄. Moreover, the fol-

lowing results in the 
ase j = 0 imply that the Stokes operator generates a bounded

analyti
 semi-group, whi
h de
ays exponentially as t!1. These properties 
an be

used to 
onstru
t strong solutions lo
ally in time, 
f. [14, 2℄.

Our main result is:

THEOREM 1.1 Let 1 < q < 1, j = 0; 1, � 2 C n (�1; 0), and let 





� R

n

,

n � 2, be an asymptoti
ally �at C

1;1

-layer. Then for every (f; g; a

+

) 2 L

q

(





)

n

�

W

1

q;�

(





) � W

2�j�

1

q

q;�

(�


+




)

n

with g 2

_

W

�1

q;0

(





) if j = 0 there is a unique solution

(u; p) 2 W

2

q;�

(





)

n

�

_

W

1

q

(





) of (1.1)-(1.4). Moreover,

(1 + j�j)kuk

q

+ kr

2

uk

q

+ krpk

q

� C

Æ

�

kfk

q
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1;q;�
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q
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(1.5)
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if j = 0 and

(1 + j�j)kuk

q

+ kr

2

uk

q

+ krpk

q

+ kpj
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+
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1�

1

q

;q;�

� C

Æ

�

kfk
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0
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q
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k

1�

1

q
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(1.6)

if j = 1 uniformly in � 2 �

Æ

[ f0g. If additionally (f; g; a

+

) 2 L

r

(





)

n

�W

1

r

(





)�

W

2�j�

1

r

r

(�


+




)

n

with g 2

_

W

�1

r;0

(





) if j = 0, then (u; p) 2 W

2

r

(





)

n

�

_

W

1

r

(





).

The used fun
tion spa
es are de�ned in Se
tion 2 below.

In the 
ase of an in�nite layer 


0

= R

n�1

� (�1; 1), Theorem 1.1 was proved by

Wiegner [19℄ in the 
ase j = 0 and by Abels [3℄ in the 
ase j = 1. Therefore we 
an

use these results to obtain the unique solvability for asymptoti
ally �at layers whi
h

are �su�
iently� 
lose to an in�nite layer. This will done by a similar perturbation

argument as in Farwig and Sohr [10, Se
tion 3℄. Combining this result with 
ut-o�

te
hniques and the parametrix 
onstru
ted in the se
ond part, we prove Theorem 1.1

for arbitrary asymptoti
ally �at layers.

The stru
ture of the thesis is as follows:

In Se
tion 2, we dis
uss some fundamental properties of L

q

-Sobolev spa
es on

layer-like domains in parameter-dependent and homogeneous versions. In parti
ular,

the 
hara
terization of the homogeneous Sobolev spa
e

_

W

1

q

(





) plays a 
entral role.

Then in Se
tion 3 we prove equivalen
e of unique solvability of the generalized Stokes

resolvent equations and a pseudodi�erential boundary value problem � the redu
ed

Stokes resolvent equations. This equivalen
e is fundamental for the parametrix 
on-

stru
tion in [5℄. The main theorem is proved in Se
tion 4 by the method des
ribed

above. Finally, we prove the unique solvability of the weak Lapla
e resolvent equation

with Neumann and mixed Neumann-Diri
hlet boundary 
onditions in the appendix.

These results are needed in Se
tion 3. As a byprodu
t, we obtain the existen
e of

the Helmholtz de
omposition of L

q

(





)

n

in the 
lassi
al and a modi�ed version with

mixed boundary 
onditions.
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2 Preliminaries

2.1 Notation

In the following N denotes the set of natural numbers (without 0), N

0

= N [ f0g, R

the real numbers, and C denotes the set of 
omplex numbers.
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For s 2 R we denote by [s℄ the largest integer � s, set fsg := s� [s℄ 2 [0; 1), and

de�ne [s℄

+

= maxfs; 0g. Moreover, �

Æ

:= fz 2 C n f0g : j arg zj < Æg, Æ 2 (0; �),

denotes a se
tor with angle Æ in C , where arg z 2 (��; �℄, z 6= 0, denotes the angle

of z in polar 
oordinates.

If M � R

n

is measurable L

q

(M), 1 � q � 1 denotes the usual Lebesgue-spa
e

and k:k

q

its norm. If 
 � R

n

is an open set, then L

q

lo


(
), 1 � q � 1, denotes the

ve
tor spa
e of all measurable fun
tions f : 
 ! K , K = R or K = C , su
h that

f 2 L

q

(B \ 
) for all balls B with B \ 
 6= ;. If f 2 L

q

(M), g 2 L

q

0

(M), where

1

q

+

1

q

0

= 1, then

(f; g)

M

:=

Z

M

f(x)g(x)dx:

The set of all smooth bounded fun
tions f : R

n

! R with bounded derivatives is

denoted by C

1

(R

n

). If 
 � R

n

is a domain, C

1

0

(
) = D(
) is the set of all fun
tions

f 2 C

1

(R

n

) su
h that supp f � 
 is 
ompa
t. Furthermore,

C

1

(0)

(
) := ff : 
! R : f = uj




;where u 2 C

1

0

(R

n

)g:

The Bana
h spa
e of all fun
tions f : R

n

! R that are k-times di�erentiable and

have Lips
hitz 
ontinuous k-th derivatives is denoted by C

k;1

(R

n

), k 2 N

0

.

The dual of a topologi
al ve
tor spa
e V is denoted by V

0

. If v 2 V and v

0

2 V

0

,

then hv; v

0

i := v

0

(v) denotes the duality produ
t. If A : V ! W is a 
ontinuous linear

operator, A

0

: W

0

! V

0

denotes its adjoint.

Finally, if x 2 R

n

, n � 2, then we use the de
omposition x = (x

0

; x

n

), where x

0

denotes the �rst n� 1 
omponents.

2.2 Layer-Like Domains

De�nition 2.1 Let k 2 N

0

and n � 2. If 
 = (


+

; 


�

) 2 C

k;1

(R

n�1

)

2

with 


+

(x

0

)�




�

(x

0

) � 
 > 0 for all x

0

2 R

n�1

, then







= f(x

0

; x

n

) 2 R

n

: 


�

(x

0

) < x

n

< 


+

(x

0

)g

is 
alled a layer-like domain with C

k;1

-boundary. If additionally lim

jx

0

j!1




�

(x

0

) =




�

1

for some 
onstants 


�

1

2 R and lim

jx

0

j!1

D

�

x

0




�

(x

0

) = 0 for all j�j � k + 1, then







is 
alled an asymptoti
ally �at layer, 
f. Figure 1. In the 
ase that 


�

(x

0

) � 


�

1

are 
onstant, 





is 
alled in�nite (�at) layer.

We will assume w.l.o.g. that 


�

1

= �1 and denote by 


0

= R

n�1

� (�1; 1) the


orresponding in�nite layer.

If 





is a layer-like domain with C

k;1

-boundary, then we will use the C

k;1

-

di�eomorphism F : 


0

! 





de�ned by

F (x) =

�

x

0




+

(x

0

)�


�

(x

0

)

2

x

n

+




+

(x

0

)+


�

(x

0

)

2

�

; x 2 


0

;
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to redu
e problems to the in�nite layer 


0

. If u : 





! C , then F

�

(u)(x) = u(F (x))

de�nes the pull-ba
k of u to 


0

. Similarly, if v : 


0

! C , F

�;�1

(v) = v(F

�1

(x))

de�nes the push-forward of v.

We denote by �


�




= f(x

0

; 


�

(x

0

)) : x

0

2 R

n�1

g the upper and lower boundary,

respe
tively. In order to lo
alize the domain around the upper and lower boundary,

we 
hoose a partition of unity '

�

0

2 C

1

([�1; 1℄) with '

�

0

� 1 on [�1;�

1

2

℄ and

'

+

0

� 1 on [

1

2

; 1℄. Then '

�

= F

�;�1

('

�

0

) is a partition of unity on 





with '

�

� 1 in

a neighborhood of �


�




. Be
ause of the 
onstru
tion, '

�

2 C

k;1

(





). By 
onvolution

with a suitable smooth fun
tion, we 
an a
hieve '

�

2 C

1

(





).

2.3 Non-Homogeneous Spa
es

Let 
 � R

n

be a domain. Studying resolvent equations, it is natural to 
onsider the

usual Sobolev spa
e with parameter-dependent norm

W

m

q;�

(
) = fu 2 L

q

(
) : D

�

u 2 L

q

(
); j�j � m; kuk

m;q;�

<1g;

kuk

m;q;�

=

X

j�j�m

(1 + j�j)

1

2

(m�j�j)

kD

�

uk

q

;

for 1 � q � 1, m 2 N

0

, 
f. [11, Se
tion 1℄. Moreover, W

m

q;0;�

(
) denotes the 
losure

of C

1

0

(
) in W

m

q;�

(
) and

W

�m

q;�

(
) :=

�

W

m

q

0

;0;�

(
)

�

0

; W

�m

q;0;�

(
) :=

�

W

m

q

0

;�

(
)

�

0

:

ThenW

m

q

(
) :=W

m

q;�

(
)j

�=0


oin
ides with the usual parameter-independent Sobolev

spa
e.

Lemma 2.2 Let k 2 N

0

, m 2 f0; 1; : : : ; k + 1g, 1 < q < 1, and let 





� R

n

be

a layer-like domain with C

k;1

-boundary. Then F

�

is a linear isomorphism in the

following settings:

F

�

: W

m

q;�

(





)!W

m

q;�

(


0

); F

�

: L

q

lo


(





) \W

�1

q;0

(





)! L

q

lo


(


0

) \W

�1

q;0

(


0

):

Here L

q

lo


(
) \W

�1

q;0

(
) is understood as the topologi
al ve
tor spa
e of all fun
tions

f 2 L

q

lo


(
) that extend to fun
tionals in W

�1

q;0

(
) if the fun
tions are identi�ed with

fun
tionals in the 
anoni
al way.

Proof: The �rst part is a dire
t 
onsequen
e of the 
hain rule, the transformation

formula, and 0 < 
 � detDF =

1

2

(


+

� 


�

) � C. Sin
e

Z




0

(F

�

f)(x)g(x)dx =

Z







f(x)(F

�;�1

g)(x) detDF

�1

(x)dx;

we get j(F

�

f; g)




0

j � Ckfk

W

�1

q;0

(





)

kgk

W

1

q

0

(


0

)

for all g 2 W

1

q

(


0

), whi
h implies the

se
ond part.
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The natural parameter-dependent Sobolev-Slobode
kij spa
es are de�ned as

W

s

q;�

(M) = ff 2 L

q

(M) : kfk

s;q;�

<1g;

kfk

s;q;�

= (1 + j�j)

s�[s℄

2

kfk

W

[s℄

q;�

+

X

j�j=[s℄

�

Z

M

Z

M

jD

�

f(x)�D

�

f(y)j

q

jx� yj

n�1+qfsg

d�

x

d�

y

�

1

q

;

for a given (n � 1)-dimensional C

k;1

-sub-manifold M of R

n

without boundary and

0 < s 62 N with s < k + 1.

If 





is a layer-like domain with C

k;1

-boundary, �





is the disjoint union of two

C

k;1

-manifolds. Therefore we identify a fun
tion a : �





! C with the tuple (a

+

; a

�

),

where a

�

= aj

�


�

.

Let F

0

= F j

�


0

be the restri
tion of F to the boundary. Then

F

�

0

: W

s

q;�

(�





)!W

s

q;�

(�


0

); F

�;�1

0

: W

s

q;�

(�


0

)!W

s

q;�

(�





)

are 
ontinuous, if 0 � s < k + 1, with operator norms uniformly bounded in � 2 C .

We denote by 


0

u = uj

�


the Diri
hlet tra
e and by 


j

u = (


+

j

u; 


�

j

u) the tra
e

of the j-th normal derivative 


j

u = 


0

(�

�

)

j

u, where � denotes the exterior normal

ve
tor on the boundary. Moreover, if u : 
 ! C

n

is a ve
tor �eld, we also use the

tra
e of the normal 
omponent 


�

u = � � 


0

u and 


�

�

u = � � 


�

0

u. Similarly, a

�

and a

�

denote the normal and the tangential 
omponents, resp., of a ve
tor �eld

a : �
! C

n

.

Lemma 2.3 Let 1 < q <1, m 2 N, and let 
 � R

n

, n � 2, be a layer-like domain

with C

m�1;1

-boundary. Then:

1. (


0

; : : : ; 


m�1

) : W

m

q;�

(
) !

Q

m�1

j=0

W

m�j�

1

q

q;�

(�
) is a surje
tive and 
ontinuous

linear mapping.

2. W

m

q;0;�

(





) = ff 2 W

m

q;�

(





) : 


j

f = 0 for j = 0; : : : ; m� 1g

Proof: Using the 
oordinate transformation F : 





! 


0

, the statements are easily

redu
ed to the 
ase of an in�nite layer 


0

. Using a partition of unity on 


0

, the

statements are easily redu
ed to the 
orresponding statements for the half-spa
es

R

n

+

, 
f. [11, Theorem 1.1℄.

Sin
e we will 
onsider di�erential equations with mixed Diri
hlet-Neumann bound-

ary 
onditions, it is natural to 
onsider

0

W

m

q

(





) = fu 2 W

m

q

(





) : 


+

j

u = 0 for j = 0; : : : ; m� 1g;

0

W

m

q

(





) = fu 2 W

m

q

(





) : 


�

j

u = 0 for j = 0; : : : ; m� 1g:

Similarly to the notation above, we de�ne

0

W

�m

q

(





) =

�

0

W

m

q

0

(





)

�

0

;

0

W

�m

q

(





) =

�

0

W

m

q

0

(





)

�

0

for m 2 N . Moreover, Lemma 2.2 holds if W

m

q

and W

�1

q;0

are repla
es by

0

W

m

q

and

0

W

�1

q

, resp.
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2.4 Homogeneous Sobolev Spa
es

Although the usual (non-homogeneous) Sobolev, Besov, and Bessel potential spa
es

for a layer-like domain, de�ned in the last se
tion, have the usual properties, the

analysis of the homogeneous spa
es 
auses more problems.

Let 
 � R

n

be a domain and let

_

W

m

q

(
) = ff 2 L

q

lo


(
) : D

�

f 2 L

q

(
) for all j�j = mg

be the usual homogeneous Sobolev spa
e of order m 2 N

0

. If we identify fun
tions

whi
h di�er by a polynomial of order m� 1, then

_

W

m

q

(
) is a Bana
h spa
e. At �rst

sight it is surprising that

_

W

1

q

(





) 6= r







_

W

1

q

(R

n

) (2.1)

if 





is a layer-like domain, where r







f = f j







. Of 
ourse r







:

_

W

1

q

(R

n

) !

_

W

1

q

(





)

is 
ontinuous. But there is no 
ontinuous extension operator e :

_

W

1

q

(





)!

_

W

1

q

(R

n

).

This 
an easily be seen with the aid of the next important 
hara
terization.

Lemma 2.4 Let 1 < q < 1 and let 





� R

n

, n � 2, be a Lips
hitz layer-like

domain. Then

_

W

1

q

(





) = fu 2 L

q

lo


(





) : u(x) = u

1

(x) + u

2

(x

0

); u

1

2 W

1

q

(





); u

2

2

_

W

1

q

(R

n�1

)g;

where u

1

and u

2

in the de
omposition of u 2

_

W

1

q

(





) 
an be 
hosen su
h that

ku

1

k

1;q

; kr

0

u

2

k

q

� Ckruk

q

. Finally, C

1

(0)

(





) is dense in

_

W

1

q

(





).

Proof: First of all, we note that F

�

:

_

W

1

q

(





)!

_

W

1

q

(


0

) sin
e

rF

�

(u) = (D

x

F

T

)F

�

(ru);

where D

x

F 2 L

1

(


0

)

n�n

if 
 is Lips
hitz. Now we set

u

2

(x

0

) =

1




+

� 


�

Z




+




�

u(x

0

; y

n

)dy

n

=

1

2

Z

1

�1

u(F (x

0

; y

n

))dy

n

= F

�

(u)

[�1;1℄

(x

0

)

and u

1

:= u� u

2

. Here f

B

denotes the mean-value of f on the set B. Then

kr

0

u

2

k

L

q

(R

n�1

)

�

1

2

Z

1

�1

kr

0

F

�

(u)(:; y

n

)k

q

dy

n

� Ckruk

L

q

(





)

;

ku

1

k

q

L

q

(





)

� C

Z

R

n�1

kF

�

(u)� F

�

(u)

[�1;1℄

k

q

L

q

(�1;1)

dx

0

� Ckruk

q

L

q

(





)

;

where we have used Poin
aré's inequality on (�1; 1) for fun
tions with vanishing

mean-value.
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Corollary 2.5 Let 1 < q <1 and let 





� R

n

, n � 2, be a layer-like domain with

C

0;1

-boundary. Then F

�

is a linear isomorphism in the following settings:

F

�

:

_

W

1

q

(





)!

_

W

1

q

(


0

); F

�

: L

q

lo


(





) \

_

W

�1

q;0

(





)! L

q

lo


(


0

) \

_

W

�1

q;0

(


0

):

Here L

q

lo


(
) \

_

W

�1

q;0

(
) is understood as the topologi
al ve
tor spa
e of all fun
tions

f 2 L

q

lo


(
) that extend to fun
tionals in

_

W

�1

q;0

(
) if the fun
tions are identi�ed with

fun
tionals in the 
anoni
al way.

Proof: The �rst mapping property was proved in the proof of Lemma 2.4.

Due to the 
hara
terization of

_

W

1

q

0

(





), g 2 L

q

lo


(





)\

_

W

�1

q;0

(





) i� g 2 L

q

lo


(





)\

W

�1

q;0

(





) and

1




+

� 


�

Z




+




�

g(x

0

; x

n

)dx

n

2 L

q

lo


(R

n�1

) \

_

W

�1

q

(R

n�1

):

Repla
ing 


�

with �1, we get the 
orresponding 
hara
terization of L

q

lo


(


0

) \

_

W

�1

q;0

(


0

).

Sin
e F

�

: W

�1

q

(





)!W

�1

q

(


0

), it remains to show that

1

2

Z

1

�1

(F

�

g)(x

0

; x

n

)dx

n

2 L

q

lo


(R

n�1

) \

_

W

�1

q

(R

n�1

):

Using detDF

�1

(x

0

) =

2

(


+

�


�

)(x

0

)

, we 
on
lude

Z

R

n�1

1

2

Z

1

�1

(F

�

g)(x

0

; x

n

)dx

n

'(x

0

)dx

0

=

Z

R

n�1

1




+

� 


�

Z




+




�

g(x

0

; x

n

)dx

n

'(x

0

)dx

0

for all ' 2 C

1

0

(R

n�1

) \

_

W

1

q

0

(R

n�1

). Hen
e

1

2

R

1

�1

(F

�

g)(x

0

; x

n

)dx

n

2

_

W

�1

q

(R

n�1

).

Remarks 2.6 1. To prove (2.1), let u 2

_

W

1

q

(R

n�1

) n

_

W

1�

1

q

q

(R

n�1

). Considering

u as a fun
tion in

_

W

1

q

(





) independent of x

n

, u does not have an extension

U 2

_

W

1

q

(R

n

) sin
e U j

x

n

=0

= u 2

_

W

1�

1

q

q

(R

n�1

) would 
ontradi
t the assumption.

Here

_

W

1�

1

q

q

(R

n�1

) =

_

B

1�

1

q

q

(R

n�1

) is de�ned as in [8, Se
tion 6.3℄.

2. We 
an modify the de
omposition Lemma 2.4 as follows: If u

2

(x

0

) 2

_

W

1

q

(R

n�1

)

as above, we split u

2

= u

0

2

+ u

00

2

with u

0

2

= F

�1

�

0

7!x

0

['(�

0

)~u

2

(�

0

)℄ where ' 2

C

1

0

(R

n�1

), ' � 1 on B

1

(0). Then u

0

2

2 L

q

lo


(R

n�1

) with r

0

u

0

2

2 W

1

q

(R

n�1

), and

u

00

2

2 W

1

q

(R

n�1

). Hen
e we get a de
omposition of u 2

_

W

1

q

(


0

) with

u(x) = u

0

1

(x) + u

0

2

(x

0

); ku

0

1

k

W

1

q

(


0

)

+ kr

0

u

0

2

k

W

1

q

(R

n�1

)

� Ckruk

L

q

(


0

)

:
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3. Although

_

W

1

q

(





) does not have the extension property to R

n

, there is a 
on-

tinuous extension operator e :

_

W

1

q

(





)!

_

W

1

q

(





0

) where 





0

� 





is a se
ond

layer-like domain.

As for the non-homogeneous spa
es we set

_

W

�1

q;0

(
) = (

_

W

1

q

0

(
))

0

: Note that L

q

(





) is

not 
ontinuously embedded in

_

W

�1

q;0

(





), if we identify a fun
tion with a distribution

in the usual sense. The norm

kuk

�;�1;q;0

:= sup

(

�

�

�

�

�

Z







uvdx

�

�

�

�

�

: v 2 C

1

(0)

(





); krvk

q

0

= 1

)

does not have to be �nite for u 2 L

q

(





). If u 2 L

q

lo


(





) and kuk

�;�1;q;0

< 1, then

we 
an extend v 7!

R







uvdx, v 2 C

1

(0)

(





), uniquely to a fun
tional on

_

W

1

q

0

(





). In

this sense we understand u 2 L

q

lo


(





)\

_

W

�1

q;0

(





). In parti
ular, W

1

q

(





)\

_

W

1

q;0

(





)

has to be understood in this sense.

Remark 2.7 Using Lemma 2.4 again and L

q

(R

n�1

) �

_

W

�1

q

(R

n�1

) \

_

W

1

q

(R

n�1

),

it 
an be shown that W

1

q

(





) \

_

W

�1

q;0

(





) =

_

W

1

q

(





) \

_

W

�1

q;0

(





) algebrai
ally and

topologi
ally, 
f. [6, Lemma 2.8℄.

The 
ompa
tly supported elements of L

q

(
)\

_

W

�1

q;0

(
) 
an be 
hara
terized as follows.

Lemma 2.8 Let n � 2 and let 
 = 





� R

n

be a layer-like Lips
hitz domain or let


 = R

n�1

.

1. If n = 2 and 1 < q < 1 or n � 3 and 1 < q �

n�1

n�2

, then every g 2

L

q

(
) \

_

W

�1

q;0

(
) with 
ompa
t support satis�es

Z

supp g

gdx = 0:

2. If n � 3 and q >

n�1

n�2

, then g 2 L

q

(
) and supp g 
ompa
t implies g 2

_

W

�1

q;0

(
).

Proof: First let 
 = 





be a layer-like domain.

1. Let M > 0 be so large that supp g � fx 2 





: jx

0

j � Mg =: D

M

. Moreover,

let '

R

2 C

1

0

(R

n�1

) be su
h that '

R

(x

0

) � 1 on B

M

(0), supp'

R

� B

M+R

(0),

and jr

0

'

R

(x

0

)j � CR

�1

. Then kr

0

'

R

k

q

0

q

0

� CR

n�1�q

0

; whi
h is bounded as

R!1 if q

0

� n� 1. If n � 3, the latter 
ondition is equivalent to q �

n�1

n�2

. If

n = 2, the 
ondition is satis�ed for all 1 < q <1. Hen
e there is subsequen
e

r

0

'

R

j

, j 2 N , that 
onverges weakly in L

q

0

(R

n�1

). Sin
e (r

0

'

R

)

R>0


onverges

pointwise to 0 as R ! 1, the only possible weak a

umulation point is 0.

Hen
e r

0

'

R

* 0 as R!1.
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Be
ause of the Lemma of Mazur, there is a sequen
e of 
onvex 
ombinations

 

R

of '

R

su
h that r

0

 

R

! 0 in L

q

0

(R

n�1

) as R!1. Therefore

�

�

�

�

Z

supp g

gdx

�

�

�

�

=

�

�

�

�

�

Z







g 

R

dx

�

�

�

�

�

� Ckr

0

 

R

k

q

0

! 0 as R!1:

2. Let ' 2

_

W

1

q

0

(





) and let ' = '

1

+ '

2

, '

1

2 W

1

q

0

(





), '

2

2

_

W

1

q

0

(R

n�1

), be its

de
omposition due to Lemma 2.4. Using the Sobolev embedding

_

W

1

q

0

(R

n�1

) ,!

L

r

(R

n�1

) with

1

r

=

1

q

0

�

1

n�1

, we obtain '

2

2 L

r

(R

n�1

), where the 
ondition

q >

n�1

n�2

is equivalent to

1

r

=

1

q

0

�

1

n�1

> 0. Therefore

j(g; ')







j � kgk

q

k'k

q

0

;D

M

� Ckgk

q

(k'

1

k

q

0

;D

M

+ k'

2

k

r;D

M

)

� Ckgk

q

(k'

1

k

1;q

0

+ kr

0

'

2

k

q

0

) � Ckgk

q

kr'k

q

0

for arbitrary ' 2

_

W

1

q

0

(





), where B := supp g. Hen
e g 2

_

W

�1

q;0

(





).

The arguments for the proof in the 
ase 
 = R

n�1

are 
ontained in the proof for a

layer-like domain.

If f 2 L

q

(





)

n

with div f 2 L

q

lo


(





) \

_

W

�1

q;0

(





), we 
an de�ne a weak tra
e 


�

f as

h


�

f; vi

�





:= (f;rV ) + (div f; V ); (2.2)

where v 2 


0

(

_

W

1

q

0

(





)) and V 2

_

W

1

q

0

(





) is an arbitrary extension of v. If f 2

C

1

(0)

(





), the de�nition 
oin
ides with the usual tra
e. Moreover, the de�nition does

not depend on the 
hoi
e of V . Hen
e




�

f 2 (


0

_

W

1

q

0

(





))

0

=: W

�

1

q

q;�

(�





)

and k


�

fk

W

�

1

q

q;�

� C

�

kfk

L

q

+ k div fk

_

W

�1

q;0

�

: In parti
ular, 


�

f is de�ned for f 2

L

q

(





)

n

with div f = 0.

Remark 2.9 Using Lemma 2.4, we 
an 
hara
terize 


0

(

_

W

1

q

0

(





))

0

as follows:

W

�

1

q

q;�

(�





) = fa 2 W

�

1

q

q

(�





) : (F

�

0

a)

+

�

+

+ (F

�

0

a)

�

�

�

2

_

W

�1

q

(R

n�1

)g;

where �

�

(x

0

) =

p

1 + jr

0




�

(x

0

)j

2

, 
f. [6, Lemma 2.11℄ for details.

Similarly, if u 2 L

q

(





)

n

with div u 2 L

q

lo


(





)\

0

W

�1

q

(





), then we de�ne the tra
e




+

�

u 2 W

�

1

q

q

(�


+




) as

h


+

�

u; vi = (u;rV ) + (div u; V ); (2.3)

where v 2 W

1�

1

q

0

q

0

(�


+




) and V 2

0

W

1

q

0

(





) with 


+

0

V = v. As in the 
ase of 


�

u, the

de�nition does not depend on the 
hoi
e of V . Moreover,

k


+

�

uk

�

1

q

;q

� C

�

kuk

q

+ k div uk

0

W

�1

q

�

:

In the same way we 
an de�ne 


�

�

u 2 W

�

1

q

q

(�


�




).
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3 Redu
ed Stokes Equations and Weak Lapla
e Re-

solvent Equations

The following redu
tion is a modi�
ation of the redu
tion introdu
ed by Grubb and

Solonnikov [12℄.

First we 
onsider the Diri
hlet 
ase j = 0. Let (u; p) 2 W

2

q

(





)

n

�

_

W

1

q

(





) be a

solution of (1.1)-(1.4) with

f 2 L

q

(





)

n

; a

+

= 0; g 2 W

1

q

(





) \

_

W

�1

q;0

(





): (3.1)

Applying �rst � div to (1.1) then 


�

, the pressure p is determined by

��p = � div f + (���)g in 





; (3.2)




1

p = 


�

(f +rg) + 


�

(��r div)u on �





:

Provided we have proved unique solvability of this weak Neumann problem, see

Theorem 3.1 below, we 
an split p = p

1

+ p

2

su
h that p

1

depends only on u and p

2

depends only on (f; g). Then we end up with the redu
ed Stokes equations

(���)u+G

0

u = f

r

in 





; (3.3)




0

u = 0 on �





(3.4)

where G

0

u = rK

1




�

(��r div)u and f

r

= f �rp

2

. Here K

1

denotes the Poisson

operator for the Lapla
e equation.

The most important fa
t is that we 
an drop the equation div u = g: If u solves

the equations (3.3)-(3.4) with f

r

de�ned as above, then

(���)div u = (���)g in 





;




1

div u = 


1

g on �





be
ause of the 
onstru
tion. Sin
e these equations are uniquely solvable, we 
on
lude

div u = g.

THEOREM 3.1 Let 1 < q; r <1, Æ 2 (0; �), and 





, n � 2, be an asymptoti
ally

�at layer with C

0;1

-boundary. Then for every f 2 L

q

(





)

n

and � 2 �

Æ

[ f0g there

is a unique solution u 2

_

W

1

q

(





) with �u 2

_

W

�1

q;0

(





) of the weak Lapla
e resolvent

equation

(���)u = � div f in 





; (3.5)




1

u = 


�

f on �





; (3.6)

where (3.6) is understood as 


�

(ru � f) = 0, 
f. (2.2). Moreover, u is uniquely

determined by

�(u; v) + (ru;rv) = (f;rv) for all v 2

_

W

1

q

0

(





) (3.7)
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and satis�es

j�jkuk

_

W

�1

q;0

+ j�j

1

2

kuk

q

+ kruk

q

� C

q;Æ;"

kfk

q

(3.8)

uniformly in � 2 �

Æ

with j�j � " > 0 and for � = 0. If additionally f 2 L

r

(





)

n

,

then u 2

_

W

1

r

(





) and �u 2

_

W

�1

r;0

(





).

Hen
e the generalized Stokes equations (1.1)-(1.4) with right-hand side as in (3.1)

are uniquely solvable if the redu
ed Stokes equations (3.3)-(3.4) are uniquely solvable

for f

r

2 L

q

(





)

n

.

In the 
ase � 6= 0, the 
onverse impli
ation is also true: If f

r

2 L

q

(





)

n

, then we

get a solution u of the redu
ed Stokes equations (3.3)-(3.4) as follows: Let (u; p) 2

W

2

q

(





) �

_

W

1

q

(





) be solution of the generalized Stokes equations (1.1)-(1.4) with

right-hand side (f

r

; g; 0), where g is determined as solution of (3.5)-(3.6) with right-

hand side f

r

. Then rp = G

0

u sin
e ��p = 0 and 


1

p = 


�

(� �r div)u. Hen
e u

solves the redu
ed Stokes equations.

Therefore we have proved

Lemma 3.2 Let 1 < q < 1, � 2 �

Æ

, Æ 2 (0; �), j = 0, and let 





� R

n

, n �

2, be an asymptoti
ally �at layer with C

0;1

-boundary. Then the generalized Stokes

equations (1.1)-(1.4) are uniquely solvable for given data as in (3.1) i� the redu
ed

Stokes equations (3.3)-(3.4) are uniquely solvable for every f

r

2 L

q

(





)

n

. Moreover,

the solutions of the generalized Stokes equations satisfy (1.5) for all � 2 �

Æ

with

j�j � " > 0 i� the solutions of redu
ed Stokes equations satisfy

j�jkuk

q

+ j�j

1

2

kruk

q

+ kr

2

uk

q

� C

q;Æ;"

kf

r

k

q

(3.9)

for all � 2 �

Æ

with j�j � " > 0.

Remark 3.3 We 
an 
onsider A

0

:= ��+G

0

as unbounded operators with domain

D(A

0

) := D(�

D

)

n

= W

2

q

(





)

n

\ W

1

q;0

(





)

n

. We 
all this operator redu
ed Stokes

operator. Then A

0

j

J

q;0

= A

q

, where A

q

= �P

q

�

D

is the usual Stokes operator and

P

q

: L

q

(





)

n

! J

q;0

(





) is the Helmholtz proje
tion, 
f. Corollary A.3 below. This

statement 
an be seen as follows: If u 2 D(�

D

)

n

\J

q;0

(





), then div(��u+G

0

u) = 0

and




�

(��u +G

0

u) = �


�

�u+ 


1

K

1




�

(��r div)u = 0:

Hen
e ��u = (�� + G

0

)u � G

0

u is the Helmholtz de
omposition of ��u, i.e.,

(��+G

0

)u = P

q

(��)u = A

q

u.

Moreover, if f 2 J

q;0

(





) and u = (���+G

0

)

�1

f , then div u = 0 and therefore

u 2 J

q;0

(





) sin
e (� ��)div u = 0 and 


1

div u = 0. Hen
e (��� + G

0

)

�1

j

J

q;0

=

(�+ A

q

)

�1

if (����G

0

)

�1

exists and � 62 (�1; 0).

Remark 3.4 Although the Stokes operator A

q

is known to be invertible, 
f. [19℄

and [1, 2℄, the redu
ed Stokes operator A

0

is not, whi
h 
an be proved as follows: Let

f = rp with p 2

_

W

1

q

(





) n L

q

(





). Then p+ 
 62

_

W

�1

q;0

(





) for any 
 2 R be
ause of
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Remark 2.7. Thus there is no u 2 W

2

q

(





)

n

whi
h solves (3.3)-(3.4) for � = 0 sin
e

the redu
ed Stokes equations imply

��div u = ��p in 








1

div u = 


1

p on �





and therefore div u = p+
 62

_

W

�1

q;0

(





) whi
h 
ontradi
ts the 
ompatibility 
ondition

g = div u 2

_

W

�1

q;0

(





) \W

1

q

(





).

In the mixed 
ase, j = 1, there is an analogous redu
tion of (1.1)-(1.4) to the system

(���)u+G

10

u = f

r

in 


0

; (3.10)

T

0

1

+

u = a

+

r

on �


+

0

; (3.11)




�

0

u = 0 on �


�

0

(3.12)

with

G

10

u = rK

01

�

2


+

1

u

�




�

�

(��r div)u

�

; (T

0

1

+

u)

�

= (


+

�

S(u))

�

; (T

0

1

+

u)

�

= 


+

0

div u;

f

r

= f � rp

2

, (a

+

r

)

�

= a

+

�

, and a

+

�

= 


+

0

g, where p

2

solves (3.2) with boundary


onditions 


+

0

p

2

= �a

+

�

and 


�

1

p

2

= 


�

�

f + 


�

1

g.

Lemma 3.5 Let 1 < q < 1, Æ 2 (0; �), j = 1, and let 





� R

n

, n � 2, be an

asymptoti
ally �at layer with C

0;1

-boundary. Then the generalized Stokes equations

(1.1)-(1.4) are uniquely solvable for (f; g; a

+

) 2 L

q

(





)

n

�W

1

q;�

(





)�W

1�

1

q

q;�

(�


+




)

n

i� the redu
ed Stokes equations (3.10)-(3.12) are uniquely solvable for every f

r

2

L

q

(





)

n

and a

+

r

2 W

1�

1

q

q;�

(�


+




)

n

. Moreover, the solutions of the generalized Stokes

equations satisfy (1.6) for all � 2 �

Æ

[f0g i� the solutions of redu
ed Stokes equations

satisfy

(1 + j�j)kuk

q

+ kr

2

uk

q

� C

q;Æ

�

kf

r

k

q

+ ka

+

r

k

1�

1

q

;q;�

�

(3.13)

for all � 2 �

Æ

[ f0g.

Proof: The proof is done in the same way as in the Diri
hlet 
ase, j = 0, using

Theorem 3.6 below instead of Theorem 3.1 and 
hanging the boundary 
onditions in

the obvious way. Details 
an be found in [3, Se
tion 4.1℄, where 


0

has to be repla
ed

by 





.

THEOREM 3.6 Let 1 < q; r < 1, Æ 2 (0; �), and 





� R

n

, n � 2, be an

asymptoti
ally �at layer with C

0;1

-boundary. Then for every f 2 L

q

(





)

n

and � 2

�

Æ

[f0g there is a unique solution u 2

0

W

1

q

(





) of the weak Lapla
e resolvent equation

(���)u = � div f in 





; (3.14)




+

0

u = 0 on �


+




; (3.15)




�

1

u = 


�

�

f on �


�




; (3.16)
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where (3.16) is understood as 


�

�

(ru � f) = 0, 
f. (2.3). Moreover, u is uniquely

determined by

�(u; v) + (ru;rv) = (f;rv) for all v 2

0

W

1

q

0

(





): (3.17)

and satis�es (1 + j�j)kuk

0

W

�1

q

+ kuk

1;q;�

� C

q;Æ

kfk

q

uniformly in � 2 �

Æ

[ f0g. If

additionally f 2 L

r

(





)

n

, then u 2

0

W

1

r

(





).

4 Stokes Equations in Asymptoti
ally Flat Layers

4.1 Small Global Perturbations

Let 





� R

n

, n � 2, be an asymptoti
ally �at layer with C

1;1

-boundary, 


0

the

in�nite layer, and F : 


0

! 





be the di�eomorphism de�ned in Se
tion 2.2. In the

following we will denote by all variables, fun
tions, and operators a
ting in 


0

,

e.g. x; u(x);r;�. For the variables, fun
tions, and operators on 





will use simple

letters as x; u(x);r;�.

In order to apply a similar perturbation argument as in [10, Se
tion 3℄, we observe

rF

�

u =

�

I

0

r

0

a(x)

0 �

n

a(x)

�

F

�

ru;

�F

�

u = F

�

�

0

u+

�

(�

n

a)

2

+ jr

0

aj

2

�

F

�

(�

2

n

u) + 2r

0

aF

�

(�

n

r

0

u) + �

0

aF

�

(�

n

u)

with a(x) =

1

2

(


+

(x

0

)� 


�

(x

0

))x

n

+

1

2

(


+

(x

0

) + 


�

(x

0

)). Hen
e

F

�;�1

rF

�

u = ru+R

1

u; F

�;�1

divF

�

u = div u+R

2

u; (4.1)

F

�;�1

�F

�

u = �u+R

3

u; (4.2)

with

kR

1

uk

q

� C(
)kruk

q

; kR

2

uk

1;q;�

� C(
)kruk

2;q;�

; kR

3

uk

q

� C(
)kuk

2;q;�

;

where C(
)! 0 if k(r

0




�

;r

0

2




�

; 


+

� 


�

� 2)k

1

! 0.

THEOREM 4.1 Let 1 < q; r < 1, � 2 �

Æ

[ f0g, Æ 2 (0; �), n � 2, and j = 0

or j = 1. Then there is a 
onstant K = K(q; r; Æ) > 0 su
h that Theorem 1.1 holds

under the additional assumption k(r

0




�

;r

0

2




�

; 


+

+ 


�

� 2)k

1

� K.

Proof: First let j = 0. To apply the perturbation argument we introdu
e the

operator

S

0;�

: X

0

! Y

0

; S

0;�

(u; p) = (�u��u+rp; div u)

on the Bana
h spa
es X

0

=

�

W

2

q;�

(


0

)

n

\W

1

q;0;�

(


0

)

n

�

�

_

W

1

q

(


0

) and Y

0

= L

q

(


0

)

n

�

(W

1

q;�

(


0

)\

_

W

�1

q;0

(


0

)), where k(u; p)k

X

0

:= kuk

2;q;�

+krpk

q

and k(f; g)k

Y

0

:= kfk

q

+

14



kgk

1;q;�

+(1+ j�j)kgk

_

W

�1

q;0

(


0

)

. The 
orresponding operator and fun
tion spa
es on 





are denoted by S


;�

, X




, and Y




.

Be
ause of the unique solvability of the generalized Stokes equations in 


0

and the

resolvent estimate, 
f. [19℄, S

0;�

: X

0

! Y

0

is an isomorphism with norms uniformly

bounded in �

Æ

[ f0g. Due to Lemma 2.2 and Corollary 2.5, F

�;�1

S

0;�

F

�

: X




! Y




is an isomorphism. Using the identities (4.1)-(4.2), we get

F

�;�1

S

0;�

F

�

= S


;�

+R


;�

;

where R


;�

(u; p) = (�R

3

u + R

1

p; R

2

u) satisfying kR


;�

(u; p)k

L(X




;Y




)

� C(
) with a


onstant C(
) whi
h gets arbitrarily small if K > 0 in the assumption of the lemma

is su�
iently small. Hen
e there is a K > 0 su
h that

kR


;�

(u; p)k

Y




� �kF

�;�1

S

0;�

F

�

(u; p)k

Y




uniformly in � 2 �

Æ

[f0g with � < 1. Thus R


;�

is relatively bounded with respe
t to

the isomorphism F

�;�1

S

0;�

F

�

(u; p) and we 
an apply Kato's perturbation 
riterion,


f. [13, Chapter 4, Theorem 1.16℄. Therefore S


;�

: X




! Y




is an isomorphism for

all � 2 �

Æ

[ f0g and kS


;�

k

L(X




;Y




)

� C

Æ

.

For the mixed 
ase j = 1 we repla
e the spa
es by

X

10

= (W

2

q;�

(


0

)

n

\

0

W

1

q;�

(


0

)

n

)�

�

p 2

_

W

1

q

(


0

) : 


+

0

p 2 W

1�

1

q

q;�

(�


+

0

)

�

;

k(u; p)k

X

10

= kuk

2;q;�

+ krpk

q

+ k


+

0

pk

1�

1

q

;q;�

;

Y

10

= L

q

(


0

)

n

�W

1

q;�

(


0

)�W

1�

1

q

q;�

(�


+

0

)

n

;

k(f; g; a

+

)k

Y

10

= kfk

q

+ kgk

1;q;�

+ (1 + j�j)kgk

0

W

�1

q

(


0

)

+ ka

+

k

1�

1

q

;q;�

and the operator by

S

10;�

: X

10

! Y

10

; S

10;�

(u; p) = (�u��u+rp; div u; T

+

1

(u; p))

and 
arry on in the same way as in the Diri
hlet 
ase j = 0 with the additional

perturbation term

R

4

u = 


+

0

(�

+

0

� �

+




) � S(u)� 


+

0

(�

+

0

� �

+




)p+ 


0

�

+




� (R

1

u+ (R

1

u)

T

)

in the boundary 
ondition on �


+




. Here �

+




= (�r

0




+

(x

0

); 1)=

p

1 + jr

0




+

(x

0

)j

2

denotes the exterior normal ve
tor on �


+




and �

+

0

= e

n

the exterior normal ve
tor

on �


+

0

. This term 
an be estimated in the same way as before using additionally

k�

+




� �

+

0

k

C

0;1

(R

n�1

)

� Ck(r

0




+

;r

0

2




+

)k

1

:
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4.2 Large Lo
al Perturbations

Let K > 0 be the 
onstant in Theorem 4.1 for given 1 < q < 1 and r = 2. If







� R

n

, n � 2, is an arbitrary asymptoti
ally �at layer with C

1;1

-boundary, we 
an

�nd an asymptoti
ally �at domain 





0

su
h that k(r


�

0

;r

2




�

0

; 


+

0

�


�

0

� 2)k

1

� K

and whi
h 
oin
ides with 





on R

n

n B

R

(0). Moreover, let 


+

and 


�

be bounded

C

1;1

-domains with







= (





0

nB

R+1

(0)) [ 


+

[ 


�

and dist(


�

; �


�




) > 0:

Now let '

0

; '

�

be a partition of unity on 





and  

0

;  

�

2 C

1

(0)

(





) su
h that  

�

= 1

on supp'

�

, � = 0;�, supp 

0

� R

n

nB

R

(0), and supp 

�

� 


�

.

Lemma 4.2 Let � 2 C n (�1; 0). Then S

0;�

and S

10;�

de�ned as in the proof of

Theorem 4.1 are Fredholm operators with trivial kernel.

Proof: First let j = 0 and w.l.o.g. a

+

= 0. We set g

0

=  

0

g � h

0

, where h

0

2

C

1

0

(





0

\ 





) with supp h

0

\ supp 

0

= ; and kh

0

k

q

� Ckgk

q

is 
hosen su
h that

Z

supp(1� 

0

)\





((1�  

0

)g � h

0

)dx = 0:

Then g

0

2

_

W

�1

q;0

(





) with supp g

0

� 





\ 





0

. Hen
e g

0

2

_

W

�1

q;0

(





0

). Similarly, we


hoose g

�

=  

�

g�h

�

, where h

�

2 C

1

0

(


�

) is 
hosen su
h that supp h

�

\supp'

�

= ;

and

R




�

g

�

dx = 0: Moreover, let f

�

= '

�

f , � 2 I := f0;+;�g, and D

�

:= supp'

�

.

Now let (u

�

; p

�

), � 2 I, be the solution of the generalized Stokes equations in 





0

;


�

,

resp., with right-hand side (f

�

; g

�

) and non-slip boundary 
ondition, where p

0

and

p

�

are 
hosen su
h that

Z







0

\


�

p

0

dx =

Z







0

\


�

p

�

dx: (4.3)

Then (u; p) :=

P

�2I

 

�

(u

�

; p

�

) 2 W

2

q;�

(





)

n

�

_

W

1

q

(





) depends 
ontinuously on (f; g)

and solves

(���)u+rp = f + S

1

u+ S

2

p in 





;

div u = g + S

3

u in 





;




0

u = 0 on �





;

where S

1

is a di�erential operator of order 1 with 
oe�
ients supported in suppr'

0

=

suppr'

+

[ suppr'

�

, S

2

p = r'

0

(p

0

� p

�

) in 


�

, and S

3

u = r'

0

� (u

0

�u

�

) in 


�

.

Sin
e all error terms are supported in the bounded set D

+

[D

�

and possess higher

regularity, the operator K

�

(f; g) := (S

1

u + S

2

p; S

3

u) is 
ompa
t from L

q

� (W

1

q;�

\

_

W

�1

q;0

) to L

q

�W

1

q;�

.
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Be
ause of g; div u 2

_

W

�1

q;0

(





), also S

3

u 2

_

W

�1

q;0

(





). Sin
e suppS

3

u � D

+

[D

�

,

this is equivalent to

Z

D

+

[D

�

S

3

udx = 0

if n = 2 or n � 3, 1 < q �

n�1

n�2

, due to Lemma 2.8. If n � 3 and q >

n�1

n�2

, every


ompa
tly supported L

q

fun
tion is in

_

W

�1

q;0

(





). Hen
e kS

3

uk

�;�1;q;0

� CkS

3

uk

q

and

K

�

is a 
ompa
t mapping on L

q

�(W

1

q

\

_

W

�1

q;0

). Thus S

0;�

is a semi-Fredholm operator

with �nite 
o-dimension of R(S

0;�

).

Finally, let (u; p) 2 W

2

q;�

(





)

n

�

_

W

1

q

(





) be a zero-solution. If q = 2, testing the

equation (1.1) with u and integrating by parts immediately implies that u = 0 and

therefore rp = 0. If q 6= 2, then (v; ~p) = ('

0

u; '

0

p) solves the generalized Stokes

equations in 





0

with 
ompa
tly supported right-hand side in W

1

q

(





0

)

n

�W

2

q

(





0

).

Therefore, if q > 2, (v; ~p) 2 W

2

2

(





0

)

n

�

_

W

1

2

(





0

) be
ause of the regularity assertion of

Theorem 4.1 for r = 2. Thus (u; p) 2 W

2

2

(





)

n

�

_

W

1

2

(





), whi
h implies (u;rp) = 0.

In the 
ase 1 < q < 2, we use Sobolev's embedding W

1

q

(





0

) ,! L

r

(





0

),

1

r

=

1

q

�

1

n

,

to obtain (v; ~p) 2 W

2

r

(





0

)

n

�

_

W

1

r

(





0

). Repeating this argument �nitely many times

and 
hoosing K > 0 a priori su�
iently small, we obtain (u; p) 2 W

2

s

(





)

n

�

_

W

1

s

(





)

for some s > 2, whi
h implies (u;rp) = 0.

Now we 
onsider the 
ase j = 1. In this 
ase we repla
e 


�

by bounded domains




1

; : : : ;


N

;


�

with C

1;1

-boundary su
h that







= (





0

nB

R+1

(0)) [

N

[

k=1




k

[ 


�

; dist(

N

[

k=1




k

; �


�




); dist(


�

; �


+




) > 0:

Moreover, we assume that 


k

, k = 1; : : : ; N , are 
hosen su
h that there are asymp-

toti
ally �at layers 





k

� 


k

, k = 1; : : : ; N , (possibly rotated) satisfying the assump-

tions of Theorem 4.1 and �


+




\ �


k

= �


+




\ �


+




k

. Moreover, let '

0

; : : : ; '

N

; '

�

and  

0

; : : : ;  

N

;  

�

be asso
iated 
ut-o� fun
tions 
hosen su
h that supp 

k

� 


k

,

k = 0; : : : ; N , and supp 

�

� 


�

.

As before we set f

�

= '

�

f , � 2 I := f0; : : : ; N;�g. Moreover, let g

�

= '

�

g if

� = 0; : : : ; N and let g

�

be de�ned as before. Finally, we set a

+

k

= '

k

a

+

, k = 0; : : : ; N .

Now let (u

k

; p

k

), k = 0; : : : ; N be the solution of (1.1)-(1.4) in 





k

, k = 0; : : : ; N ,

with right-hand side (f

k

; g

k

; a

+

k

) and j = 1. Moreover, let (u

�

; p

�

) be the solution

of the Stokes resolvent equations in the bounded domain 


�

with non-slip boundary


ondition and right-hand side (f

�

; g

�

) where p

�

is 
hosen as in (4.3).

Similarly to the Diri
hlet 
ase, we set (u; p) :=

P

�2I

 

�

(u

�

; p

�

). As before we get a

solution of the generalized Stokes equations with 
ompa
tly supported perturbations

of higher order. Then we pro
eed in the same way as before, showing inje
tivity.

Lemma 4.3 Let 1 < q < 1, Æ 2 (0; �), and 





� R

n

, n � 2, be an asymptoti-


ally �at layer with C

1;1

-boundary. Then there is an R = R(q; Æ; 
) > 0 su
h that

Theorem 1.1 holds for all � 2 �

Æ

with j�j � R > 0 and q = r.
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Proof: The lemma is a 
onsequen
e of Lemma 5.18 in the se
ond part of this


ontribution [5℄, whi
h is proved independently of the result obtained in the present

�rst part.

We 
an assume w.l.o.g. a

+

= 0. Firstly, let j = 0. Then [5, Lemma 5.18℄ implies

that there is an approximate solution operator R

0;�

su
h that

(���+G

0

)R

0;�

f = (I + S

1;�

)f in 





;




0

R

0;�

f = 0 on �





for f 2 L

q

(





)

n

with kS

1;�

fk

q

� C

Æ

(1 + j�j)

�"

kfk

q

, " > 0, � 2 �

Æ

[ f0g. Hen
e

there is an R > 0 su
h that I + S

1;�

is invertible for all � 2 �

Æ

, j�j � R. Thus

the redu
ed Stokes equations are uniquely solvable for � 2 �

Æ

, j�j � R. Be
ause of

Lemma 3.2, the same is true for the generalized Stokes equations. Moreover, (1.5)

is a 
onsequen
e of kR

0;�

fk

2;q;�

� C

q;Æ

kfk

q

and k(I + S

1;�

)

�1

fk

q

� kfk

q

for � 2 �

Æ

with j�j � R.

In the 
ase j = 1, there is an R

10;�

su
h that

(���+G

10

)R

10;�

f = (I + S

2;�

)f in 





;

T

0

1

+

R

10;�

f = S

3;�

f on �


+




;




�

0

R

10;�

f = 0 on �


�




for all f 2 L

q

(





)

n

and

kS

2;�

k

L(L

q

(





))

+ kS

3;�

k

L(L

q

(





);W

1�

1

q

q;�

(�





))

� C

q;Æ

(1 + j�j)

�"

;


f. [5, Lemma 5.18℄. Choosing v 2 W

2

q;�

(





)

n

with T

0

1

+

v = S

3;�

f and kvk

2;q;�

�

CkS

3;�

fk

1�

1

q

;q;�

, we 
an modify R

10;�

su
h that T

0

1

+

R

10;�

f = 0 and the estimate of

S

2;�

is preserved. The rest of the proof is done in the same way as before.

Proof of Theorem 1.1: Be
ause of Lemma 4.2, the unique solvability of the gener-

alized Stokes equations (1.1)-(1.4) is a 
onsequen
e of Lemma 4.3. This implies that

S

0;�

and S

10;�

have index zero for all � 2 C n(�1; 0) be
ause of the homotopy invari-

an
e of the Fredholm index. Moreover, it is su�
ient to prove the a priori estimates

(1.5) and (1.6) for large �, whi
h is also a 
onsequen
e of Lemma 4.3 below.

Alternatively, one 
an prove that the range of S

0;�

and S

10;�

are dense, whi
h 
an

be done analogously to the proof of Lemma 4.1 (iii) in [10℄. Moreover, the a priori

estimate 
an be proved similarly to [10, Lemma 4.2℄.

Finally, the regularity assertion is proved by 
onsidering ('

0

u; '

0

p) in 





0

and

applying similar arguments as in Lemma 4.2.

A Proof of Theorem 3.1 and Theorem 3.6

Lemma A.1 Theorem 3.1 holds if 





= 


0

is an in�nite layer.
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Proof: If � = 0, the unique solvability of the weak Neumann problem is equivalent

to the existen
e of the 
lassi
al Helmholtz de
omposition of L

q

(


0

)

n

, whi
h was

proved by Miyakawa [15℄ and by Farwig [9℄. For � 2 �

Æ

with j�j � " > 0, the

proof 
an be done in the same way as [3, Lemma 3.1℄ using the Poisson operator

K

1;�

= OP

0

(k

1;�

(�

0

; D

n

)) with

k

1;�

(�

0

; D

n

)~a :=


osh(�

�

x

n

)

�

�

sinh �

�

~a

+

+ ~a

�

2

+

sinh(�

�

x

n

)

�

�


osh �

�

~a

+

� ~a

�

2

;

�

�

= (�+ j�

0

j

2

)

1

2

, instead of K

10;�

. Details 
an be found in [6, Se
tion 4℄. Finally, the

regularity assertion holds sin
e the solution operators for di�erent q and r 
oin
ide

on the dense subset C

1

(0)

(


0

).

Lemma A.2 Let 1 < q; r <1 and Æ 2 (0; �). Then there is a K = K(q; r; Æ) su
h

that Theorem 3.1 and Theorem 3.6 hold for all layer-like domains 





� R

n

, n � 2,

su
h that k(r

0




�

;r

0

2




�

; 


+

+ 


�

� 2)k

1

� K.

Proof: The proof is done with the same perturbation argument used in the proof

of Theorem 4.1.

Proof of Theorem 3.6: Let 





0

be an asymptoti
ally �at layer with Lips
hitz-

boundary 
hosen in the same way as in Se
tion 4.2. Moreover, let 


1;�

; : : : ;


N;�

, 


b

be bounded Lips
hitz-domains su
h that







= (





0

nB

R+1

(0)) [

N

[

k=1

(


k;+

[ 


k;�

) [ 


b

; dist(

N

[

k=1




k;+

; �


�




) > 0

dist(

N

[

k=1




k;�

; �


+




) > 0; dist(


b

; �





) > 0:

Moreover, we assume that 


k;�

, k = 1; : : : ; N , are 
hosen su
h that there are asymp-

toti
ally �at layers 





k;�

� 


k;�

, k = 1; : : : ; N , (possibly rotated) satisfying the as-

sumptions of Lemma A.2 and �


�




\�


k;�

= �


�




\�


�




k;�

. Furthermore, let 





b

be an

in�nite layer 
ontaining 


b

. Finally, let '

�

;  

�

, � 2 I := f0; (k;�); b : k = 1; : : : ; Ng,

be 
hosen in the same way as before.

Then, be
ause of Lemma A.2 there are u

�

, � 2 I, whi
h solve

�(u

�

; v)







�

+ (ru

�

;rv)







�

= (f;r('

�

v))







�

for all v 2

0

W

1

q

0

(





�

): (A.1)

Now we de�ne R

�

f =

P

�2I

 

�

u

�

: Be
ause of the 
onstru
tion, R

�

f 2

0

W

1

q;�

(





) and

kR

�

fk

1;q;�

� C

Æ;q

kfk

q

. Moreover,

(R

�

f; v)







=

X

�2I

(u

�

;  

�

v)







�

; (A.2)
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where  

�

v 2

0

W

1

q

0

(





�

), � 2 I. Hen
e by Lemma A.2, (1 + j�j)kRfk

0

W

�1

q

(





)

�

C

q;Æ

kfk

q

. Furthermore,

(rR

�

f;rv)







=

X

�2I

(ru

�

;r( 

�

v))







�

+ hS

�

f; vi; (A.3)

where hS

�

f; vi is the sum of the terms

hS

�;1;�

f; vi := ((r 

�

)u

�

;rv)







�

; hS

�;2;�

f; vi = �(ru

�

; (r 

�

)v)







�

; � 2 I:

Sin
e the mapping A : L

q

(





) !

0

W

�1

q

(





) with hAu

�

; vi = ((r 

�

)u

�

;rv), v 2

0

W

1

q

0

(





), is 
ontinuous, supp 

�

is 
ompa
t, and sin
e u

�

2

0

W

1

q

(





�

) depends


ontinuously on f 2 L

q

(





)

n

, we 
on
lude that S

�;1;�

: L

q

(





)

n

!

0

W

�1

q

(





) is a


ompa
t mapping. The same is true for S

�;j;�

by duality. Moreover,

jhS

�;j;�

f; vij � C

Æ

(1 + j�j)

�

1

2

kfk

q

kvk

1;q

0

;�

; j = 1; 2;

sin
e ku

�

k

1;q;�

� C

Æ

kfk

q

.

Representing the fun
tional S

�

f 2

0

W

�1

q

(





) by

hS

�

f; vi = (g;rv)







for all v 2

0

W

1

q

0

(





);

where g 2 L

q

(





)

n

and kgk

q

� CkS

�

fk

0

W

�1

q;�

(





)

� C

Æ

(1 + j�j)

1

2

kfk

q

, we 
an 
onsider

S

�

as a 
ompa
t operator on L

q

(





)

n

with S

�

= O(j�j

�

1

2

) as j�j ! 1 in �

Æ

.

Combining (A.1), (A.2), and (A.3) and using '

�

 

�

= '

�

, we get

�(R

�

f; v)







+ (rR

�

f;rv)







=

X

�2I

(f;r('

�

 

�

v))







�

+ hS

�

f; vi = (f;rv)







+ hS

�

; vi

for all v 2

0

W

1

q

0

(





). Hen
e R

�

is a solution operator modulo a 
ompa
t operator S

�

2

L(L

q

(





)), whi
h tends to zero as j�j ! 1. Therefore (3.14)-(3.16) are uniquely

solvable for all � 2 �

Æ

, j�j � R and Fredholm solvable for all � 2 �

Æ

[f0g with index

0.

Next we show that the kernel is trivial. Let u 2 W

1

q

(





) be a zero-solution. If

q = 2, we immediately get u = 0 by (3.17). In the 
ase q 6= 2 we 
onsider '

0

u and


on
lude in the same way as in the proof of Lemma 4.2 that u 2 W

1

2

(





).

Finally, the a priori estimate is a 
onsequen
e of

kuk

1;q;�

= kR

�

(1 + S

�

)

�1

fk

1;q;�

� C

q;Æ

k(1 + S

�

)

�1

fk

q

� C

q;Æ

kfk

q

for all � 2 �

Æ

, j�j � R, R > 0.

Proof of Theorem 3.1: The proof is done in the same way as in the mixed 
ase. But

in the Neumann 
ase we have to deal with homogeneous Sobolev spa
es, whi
h 
ause

more problems. Nevertheless, this 
ase 
an be proved in the same way sin
e all error

terms are supported in a ball B

R

(0) for an R > 0 and we 
an 
hoose v 2

_

W

1

q

(





�

)

su
h that kvk

L

q

(B

R

(0)\





)

� Ckrvk

q

.
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The main problem is that the solution for � = 0 is an element of

_

W

1

q

(





) but

the solution for � 6= 0 is in the set

_

W

1

q

(
) \

_

W

�1

q;0

(
). Therefore we 
annot use

the argument that the Fredholm index is lo
ally 
onstant for � = 0 sin
e the spa
e


hanges. Hen
e we have to treat this 
ase separately. Nevertheless, the equation is

still Fredholm solvable sin
e the parametrix 
onstru
tion also holds in the 
ase � = 0.

If q = 2, it is well-known that the weak Neumann equation is uniquely solvable

for any domain 
. If q > 2, we 
an show that the kernel is trivial by the same

lo
alization te
hnique as in the mixed 
ase. Sin
e the range of the equation is 
losed,

it is su�
ient to prove that the range is dense in L

q

(





) in the 
ase q > 2. Then by

duality the same is true for 1 < q < 2.

If f 2 L

2

(





)

n

\L

q

(





)

n

, q > 2, there is a unique solution u 2

_

W

1

2

(





). Then '

0

u

solves a weak Neumann problem in 





0

with right-hand side in L

q

(





0

) \ L

2

(





0

).

Hen
e '

0

u 2

_

W

1

q

(





0

) and therefore u 2

_

W

1

q

(





).

Corollary A.3 (Helmholtz de
omposition)

Let 1 < q < 1, n � 2, and 





� R

n

be an asymptoti
ally �at layer with C

0;1

-

boundary. Then there are 
ontinuous proje
tions P

q

;

0

P

q

: L

q

(





)

n

! L

q

(





)

n

with

R(P

q

) = J

q;0

(





) := fu 2 L

q

(
)

n

: div u = 0; 


�

u = 0g;

N (P

q

) = G

q

(





) := frp : p 2

_

W

1

q

(
)g;

R(

0

P

q

) =

0

J

q

(





) := fu 2 L

q

(





)

n

: div u = 0; 


�

�

u = 0g;

N (

0

P

q

) =

0

G

q

(





) := frp : p 2

0

W

1

q

(





)g:

Proof: It is well-known that the existen
e of the (
lassi
al) Helmholtz proje
tion P

q

is equivalent to the unique solvability of (3.5)-(3.6) for � = 0 and f 2 L

q

(





)

n

, 
f.

e.g. [16℄. The proof for the mixed 
ase

0

P

q

is an easy modi�
ation. If f 2 L

q

(





)

n

,

then

0

P

q

f := f �rp, where p solves (3.14)-(3.16) for � = 0.
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