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Abstract

We study the generalized Stokes equations in asymptotically flat layers,
which can be considered as compact perturbations of an infinite (flat) layer
Qo = R"~! x (—1,1). Besides standard non-slip boundary conditions, we con-
sider a mixture of slip and non-slip boundary conditions on the upper and
lower boundary, respectively. In the first part we prove the unique solvabil-
ity in L?-Sobolev spaces, 1 < ¢ < 00, by extending the known results in the
case of an infinite layer Qg via a perturbation argument to asymptotically flat
layers which are sufficiently close to €2y. Combining this result with standard
cut-off techniques and the parametrix constructed in the second part, we prove
the unique solvability for an arbitrary asymptotically flat layer. Moreover, we
show equivalence of unique solvability of the generalized and the reduced Stokes
resolvent equations, which is essential for the second part of this contribution.

Key words: Stokes equations, free boundary value problems, boundary value prob-
lems for pseudodifferential operators, non-smooth pseudodifferential operators
AMS-Classification: 35 Q 30, 76 D 07, 35 R 35, 35 S 15

1 Introduction

We consider the generalized Stokes resolvent equations

A=Au+Vp=f inQ,,
divu=y¢ in ),
TJ-Jr (u,p) =a® on anyr,

ulgoz =0 on 08

~—~~ I/~
—_ = =
= W N =
~— — ~—— ~—

with two kinds of boundary conditions, 7 = 0 or 7 = 1, where

Ts (u,p) = ulpay,  Ti (u,p) = (v S(u) —vp)loas, S(u) = Vu+ (Vu),
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and A € X5 U {0}. Here 2, C R*, n > 2, is an asymptotically flat layer, which is
a domain bounded by two surfaces J€27 and 0Q7, which get “close” to two parallel
hyper-planes at infinity, see Definition 2.1 below.

M

2,

Figure 1: An asymptotically flat layer

The case j = 0 corresponds to standard non-slip boundary conditions. The mixed
case j = 1 is important for application to free boundary value problems. Beale 7|
and Sylvester |18] studied this case in a similar class of domains in L2-Sobolev spaces.
They applied their result to solve a free boundary value problem for the instationary
Navier-Stokes equations, which describes the motion of an infinite ocean of water
under force of gravity.

In the present contribution, we prove unique solvability of the system (1.1)-(1.4)
in L?-Sobolev spaces. The more general L?-theory has many advantages for further
applications to the non-linear Navier-Stokes equations. In the mixed case, the regu-
larity assumptions on the data for the problem studied in |7, 18] can be reduced by
using the embedding W, (Q) — L>(Q) for ¢ > n instead of Wj*(2) — L>(Q) for
m > %, cf. Solonnikov [17] for bounded domains and Abels [4]. Moreover, the fol-
lowing results in the case j = 0 imply that the Stokes operator generates a bounded
analytic semi-group, which decays exponentially as ¢ — co. These properties can be
used to construct strong solutions locally in time, cf. |14, 2].

Our main result is:

THEOREM 1.1 Let1 < ¢ < o0, j = 0,1, A € C\ (—00,0), and let Q, C R,

n > 2, be an asymptotically flat C*-layer. Then for every (f,g,a%) € LY(Q,)" %
i1 .

(O™ with g € W, () if j = 0 there is a unique solution

2—j
Woa(Qy) x W .
(u,p) € W2A(Qy)" x W) () of (1.1)-(1.4). Moreover,

(L+ XDl + [19%lly + V2,
< s (Iflly + llgllign + L+ DNgl g0+ e o n) — (15)




if 7 =0 and
(14 Dl + 192l + 198l + Lo -2 4.
< s (Iflly +llg

if 3 =1 uniformly in A € £; U {0}. If additionally (f,g,a*) € L™(2,)" x W(Q,) x
i1 . .
Wy (OO with g € W, () if § = 0, then (u,p) € WA(2,)" x W(Q,).

g+ (L4 ADllgllyw,+ + ||a+||1_;,q,x) (1.6)

The used function spaces are defined in Section 2 below.

In the case of an infinite layer Qy = R*~! x (-1, 1), Theorem 1.1 was proved by
Wiegner [19] in the case j = 0 and by Abels [3] in the case j = 1. Therefore we can
use these results to obtain the unique solvability for asymptotically flat layers which
are “sufficiently” close to an infinite layer. This will done by a similar perturbation
argument as in Farwig and Sohr [10, Section 3|. Combining this result with cut-off
techniques and the parametrix constructed in the second part, we prove Theorem 1.1
for arbitrary asymptotically flat layers.

The structure of the thesis is as follows:

In Section 2, we discuss some fundamental properties of L9-Sobolev spaces on
layer-like domains in parameter-dependent and homogeneous versions. In particular,
the characterization of the homogeneous Sobolev space W;(Qv) plays a central role.
Then in Section 3 we prove equivalence of unique solvability of the generalized Stokes
resolvent equations and a pseudodifferential boundary value problem — the reduced
Stokes resolvent equations. This equivalence is fundamental for the parametrix con-
struction in [5]. The main theorem is proved in Section 4 by the method described
above. Finally, we prove the unique solvability of the weak Laplace resolvent equation
with Neumann and mixed Neumann-Dirichlet boundary conditions in the appendix.
These results are needed in Section 3. As a byproduct, we obtain the existence of
the Helmholtz decomposition of L4(€2,)" in the classical and a modified version with
mixed boundary conditions.
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2 Preliminaries

2.1 Notation

In the following N denotes the set of natural numbers (without 0), Ny = NU {0}, R
the real numbers, and C denotes the set of complex numbers.
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For s € R we denote by [s] the largest integer < s, set {s} := s —[s] € [0,1), and
define [s]; = max{s,0}. Moreover, ¥5 := {z € C\ {0} : |argz| < ¢}, § € (0, ),
denotes a sector with angle § in C, where argz € (—m, 7|, z # 0, denotes the angle
of z in polar coordinates.

If M C R" is measurable L1(M), 1 < g < oo denotes the usual Lebesgue-space
and |[|.]|, its norm. If Q C R" is an open set, then L] (Q), 1 < ¢ < oo, denotes the
vector space of all measurable functions f: @ — K, K = R or K = C, such that
f € LY(BNQ) for all balls B with BNQ # (. If f € LI(M), g € LY (M), where
é + % =1, then

(f,9)a = /M F(2)g(@)dz.

The set of all smooth bounded functions f: R* — R with bounded derivatives is
denoted by C*°(R™). If Q C R”" is a domain, C§°(Q2) = D(1?) is the set of all functions
f € C(R™) such that supp f C Q is compact. Furthermore,

C'(O:ﬁ)(ﬁ) = {f: Q= R: f=ulg, where u € C{°(R")}.

The Banach space of all functions f: R* — R that are k-times differentiable and
have Lipschitz continuous k-th derivatives is denoted by CHL(R"), k € Nj.

The dual of a topological vector space V' is denoted by V'. If v € V and v' € V',
then (v,v’) := v'(v) denotes the duality product. If A: V' — W is a continuous linear
operator, A": W' — V' denotes its adjoint.

Finally, if x € R*, n > 2, then we use the decomposition z = (2', x,), where 2
denotes the first n — 1 components.

2.2 Layer-Like Domains

Definition 2.1 Let k € Ny and n > 2. If y = (v, y") € CHYR* )2 with v (2) —
v~ (z') > ¢ >0 for all 2/ € R*™!| then

QO ={@@" zn) €eR": 77 (&) <z <77 (2')}

is called a layer-like domain with C*'-boundary. If additionally limy,|_., v (') =
v for some constants vE € R and limy |0 D%y*(2") = 0 for all || < k + 1, then
Q, is called an asymptotically flat layer, cf. Figure 1. In the case that v*¥(a') = vZ
are constant, (), is called infinite (flat) layer.

We will assume w.l.o.g. that v = +1 and denote by Qy = R*~! x (—1,1) the
corresponding infinite layer.

If 2, is a layer-like domain with C*!-boundary, then we will use the CF!-
diffeomorphism F': {2y — €2, defined by

!/

xXr
F(.’L‘):( ) —y_ (2’ a:’-l—a:’)a .’L‘EQo,
1)@y | ) @)




to reduce problems to the infinite layer . If u: Q, — C, then F*(u)(r) = u(F(z))
defines the pull-back of u to . Similarly, if v: Qy — C, F*"'(v) = v(F~!(x))
defines the push-forward of v.

We denote by Q5 = {(z',7*(2')) : 2 € R*"'} the upper and lower boundary,
respectively. In order to localize the domain around the upper and lower boundary,
we choose a partition of unity ¢y € C*([—1,1]) with ¢y = 1 on [-1,—1] and
¢f =1on [$,1]. Then p* = F*~!(pf) is a partition of unity on Q, with ¢* =1 in
a neighborhood of 8Q$. Because of the construction, o* € C*'(€,). By convolution
with a suitable smooth function, we can achieve p* € C*°(€,).

2.3 Non-Homogeneous Spaces

Let 2 C R" be a domain. Studying resolvent equations, it is natural to consider the
usual Sobolev space with parameter-dependent norm

Wr(Q) = f{ueLQ): D e LQ),|a| < m, [ullmgn < o0},
lullmgr =Y (14 A7) D%,

laj<m

for 1 < ¢ < oo, m €N, cf. [11, Section 1]. Moreover, W7, | (2) denotes the closure
of C§°(2) in W (£2) and

WHQ) = (Wiha@), Wghi(@) = (W)

Then W;(€2) := W[ (€2)|x=o coincides with the usual parameter-independent Sobolev
space.

Lemma 2.2 Let k € Ny, m € {0,1,...,k+ 1}, 1 < ¢ < oo, and let 2, C R" be
a layer-like domain with C*'-boundary. Then F* is a linear isomorphism in the
following settings:

loc loc

F*: Wi (Qy) = W), F7r L (Q0) N Wop () = L (Q0) N W ().

Here LY ()N Wq’,ol(Q) is understood as the topological vector space of all functions

f e Ll (Q) that extend to functionals in Wq_,ol(Q) if the functions are identified with

loc
functionals in the canonical way.

Proof: The first part is a direct consequence of the chain rule, the transformation
formula, and 0 < ¢ < det DF = 1(y" —y7) < C. Since

/Q (FR@g@ds = [ F@F 9@ det DF a)da,

we get [(Ff, 9)ao| < Cllf [l 19llw g for all g € W;(S), which implies the
second part. [ |



The natural parameter-dependent Sobolev-Slobodeckij spaces are defined as

(M) = {feLli(M):|f

saqa)‘ < OO}’

D f(x) — D f ()" :
o] 1+ Z (/ / |x—y|“ Ttals} doydoy )

lal=

fllsar = (L+AD

for a given (n — 1)-dimensional C’k’l—sub—manifold M of R* without boundary and
0<s¢Nwith s <k+1.

If 2, is a layer-like domain with C*!-boundary, 92, is the disjoint union of two
C*'-manifolds. Therefore we identify a function a: 92, — C with the tuple (a*,a"),

where a® = alpaz+.
Let Fy = F|aq, be the restriction of F' to the boundary. Then
Fy e WEL(092,) — WEL(09), Fom e WEL(090) — WEL(09,)

are continuous, if 0 < s < k + 1, with operator norms umformly bounded in A € C.

We denote by vou = u|gq the Dirichlet trace and by vju = (VJ u,v; u) the trace
of the j-th normal derivative v;u = 70(9,)’u, where v denotes the exterior normal
vector on the boundary. Moreover, if u: 0 — C" is a vector field, we also use the
trace of the normal component vy,u = v - yu and Y u = v - yFu. Similarly, a,
and a, denote the normal and the tangential components, resp., of a vector field
a: 002 — C".

Lemma 2.3 Let 1 < g<oo, m€N, and let Q CR*, n > 2, be a layer-like domain
with C™ Y -boundary. Then:

1o (Yos -y Ym1): WA(Q) — TS, ! W (BQ) is a surjective and continuous
linear mapping.

2. qO)\( ) {fe ( )’Y]fZOfOTJZO,,m—l}
Proof: Using the Coordlnate transformation F': €2, — (), the statements are easily
reduced to the case of an infinite layer 5. Using a partition of unity on €, the

statements are easily reduced to the corresponding statements for the half-spaces
R?, cf. [11, Theorem 1.1]. |

Since we will consider differential equations with mixed Dirichlet-Neumann bound-
ary conditions, it is natural to consider

Oqu(QA/) = {ueW(Q,): 7;-'10 =0forj=0,...,m—1},

oW, () = {ueW(Q,):y;u=0forj=0,...,m-1}.
Similarly to the notation above, we define

W) = (W) oW M) = (W)

for m € N. Moreover, Lemma 2.2 holds if W and quol are replaces by (W™ and
0I/Vq_l, resp.



2.4 Homogeneous Sobolev Spaces

Although the usual (non-homogeneous) Sobolev, Besov, and Bessel potential spaces
for a layer-like domain, defined in the last section, have the usual properties, the
analysis of the homogeneous spaces causes more problems.

Let 2 C R™ be a domain and let

WM(Q) = {f € L, (Q) : D*f € LU(Q) for all |a| = m}

loc

be the usual homogeneous Sobolev space of order m € Ny. If we identify functions
which differ by a polynomial of order m — 1, then W;*(Q) is a Banach space. At first
sight it is surprising that

WHQ,) # ro, WARY) (2.1)

q

if 2, is a layer-like domain, where rq_f = f|q,. Of course rq_: qu (R") — qu(Qﬂ,)
is continuous. But there is no continuous extension operator e : W (,) — W, (R").
This can easily be seen with the aid of the next important characterization.

Lemma 2.4 Let 1 < q < oo and let 0, C R*, n > 2, be a Lipschitz layer-like
domain. Then

W) = {u € L, ()  u(w) = un(2) + ua(@'), uy € WD), uz € WHR™ )},

loc

where u; and uy in the decomposition of u € W;(Sl,) can be chosen such that
1 IV'us||; < C||Vullg. Finally, C'(‘”(j)(Q_v) is dense in W;(QV)

[[ur
Proof: First of all, we note that F*: W} (Q,) — W2(Q) since
VE*(u) = (D FV)F*(Vu),

where D, F € L*>®(Qy)™*™ if 7y is Lipschitz. Now we set

1 7t 1 [
uz(a') = ﬁ/ w(@', yn)dyy = _/ w(F (@', yn))dyn = F* (u)-1,1)(2)
VT Sy 2J4
and u; := u — uy. Here fp denotes the mean-value of f on the set B. Then
1 /1
|V w2l Loqrn-1y < 5/1 IV'E* () (-, yn) lgdyn < ClIVullLaa,),

q
||u1||Lq(Q,Y) < C/R

where we have used Poincaré’s inequality on (—1,1) for functions with vanishing
mean-value. |

B [ E7(u) — F*(U)[—l,l}Hqu(_Lgdx, < CHVUH%q(my
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Corollary 2.5 Let 1 < g < oo and let 2, CR", n > 2, be a layer-like domain with
C% -boundary. Then F* is a linear isomorphism in the following settings:

F*: WHQ,) = WH), F*: L]

loc

(@) N, (2,) = L

loc

() N W, ().

Here L] (Q) N quol(Q) is understood as the topological vector space of all functions

fe Ll (Q) that extend to functionals in Wq_,ol(Q) if the functions are identified with
functionals in the canonical way.

Proof: The first mapping property was proved in the proof of Lemma 2.4.
Due to the characterization of W (Q,),9€ L. (Q, )ﬂWq o () iff g € LY

W, (€2,) and

(&)

loc

vt

1 / 1 =1 mpn—1
_— g(2', xp)day, € L (R ) N W, (R* ).
o [ e € LR AR
Replacmg v% with £1, we get the corresponding characterization of Lf (Qp) N
Wq 0 (QO)

Since F*: W '(€,) — W, (), it remains to show that

% (2, x,)dz, € L (R N W, (R Y).
Using det DF~!(z') = W, we conclude
1! 1 .
/Rnl 3 /_I(F*g)(aj',a;n)dxngo(x')dx' = /Rn1 pre— /7 g(2', ) dx,p(a)da'
for all p € CP(R* 1) N qu, (R*1). Hence % f (@, xp)da, € W LR, m

Remarks 2.6 1. To prove (2.1), let u € W}(R"™1)\ quié(R"”). Considering
u as a function in W/ (,) independent of z,, u does not have an extension
Ue qu (R™) since U, =0 = u € quﬁ (R"~!) would contradict the assumption.
Here quié(R”_l) = B;ié(R”_l) is defined as in [8, Section 6.3].
2. We can modify the decomposition Lemma 2.4 as follows: If uy(2') € qu (R*1)

as above, we split uy = uh + uf with uy, = F.1 [p(€)1s(€")] where ¢ €

£’Hx,
C*(R*1), ¢ = 1 on By(0). Then vy € L (R*™') with V'uy € W/ (R*™!), and

uy € WHR" ). Hence we get a decomposition of u € W}(€) with

u(z) = ui(z) +uy(2’),  |[uillwaao) + IV ullwirn-1)y < ClIVullLag).-



3. Although W;(QV) does not have the extension property to R", there is a con-
tinuous extension operator e: W, (€,) — W, (€,) where Q,, 2 Q, is a second

layer-like domain.

As for the non-homogeneous spaces we set ijol(Q) = (qu,(Q))’ Note that L?(€,) is

not continuously embedded in quol(QV), if we identify a function with a distribution
in the usual sense. The norm
/ uvdx
Q'Y

||u||'7_17q70 = Sup {

does not have to be finite for u € LI(2,). If u € L],
we can extend v > [, uvdz, v € CF

(Q_) uniquely to a functional on W (€2,). In
this sense we understand u € L?OC(Q_) NW,¢(Q,). In particular, W(Q,) Nk (2,)
has to be understood in this sense.

10 € O (), [IVolly = 1}

(Q,) and [Ju||. 140 < o0, then

Remark 2.7 Using Lemma 2.4 again and L/(R* ') C W, '(R* 1) n WHR" 1),
it can be shown that W}(Q,) N W, (Q,) = WH(Q,) N W, 4(Q,) algebraically and
topologically, cf. |6, Lemma 2.8|.

The compactly supported elements of Lq(Q)ﬁWq_,O1 (2) can be characterized as follows.

Lemma 2.8 Let n > 2 and let Q = Q, CR" be a layer-like Lipschitz domain or let
Q=R"1,

I.Ifn:2and1<q<ooorn23and1<q§Z—:l,theneveryge

2
L1(Q) N ijol(Q) with compact support satisfies

/ gdz = 0.
supp g

2. Ifn >3 and ¢ > 2=, then g € L1(Q2) and supp g compact implies g € Wq’ol(Q)

n2’

Proof: First let {2 = (), be a layer-like domain.

1. Let M > 0 be so large that suppg C {z € Q, : |[2/| < M} =: Dy. Moreover,
let pr € CP(R" 1) be such that pr(z") = 1 on By (0), supp ¢r € By r(0),
and |V'op(2')] < CR™. Then ||V'pg||% < CR* 7, which is bounded as
R — o if ¢ >n—1. If n > 3, the latter condition is equivalent to ¢ < 2= If
n = 2, the condition is satisfied for all 1 < ¢ < co. Hence there is subsequence
V’goRj, j €N, that converges weakly in L¢ (R*~1). Since (V'pg)gso converges
pointwise to 0 as R — oo, the only possible weak accumulation point is 0.
Hence V'pr — 0 as R — o0.



Because of the Lemma of Mazur, there is a sequence of convex combinations
Vg of v such that V¢ — 0 in LY (R*~') as R — oo. Therefore

/ gdx / gYrdx
supp g Qy

2. Let o € WA(Q,) and let @ = @1 + @2, o1 € WE(Q,), w2 € WH(R'L), be its
decomposition due to Lemma 2.4. Using the Sobolev embedding qu, (R*1) —

Lr(R*") with § = & — 17, we obtain ¢, € L"(R*™"), where the condition
11

g > =L is equivalent to * = X — > (. Therefore
n—2 r q n—1

< C||V'Yg|ly =0 as R — oc.

(9 9)o, | < Nlgllallellepu < Cllglly (1@1llg,0ar + 2lr,00r)
< Clglly (lerllng + 1V'e:2lle) < Cllgllal Velly

for arbitrary ¢ € W(},(QV), where B := supp g. Hence g € Wq_yol(QV).

The arguments for the proof in the case 2 = R*~! are contained in the proof for a

layer-like domain. ‘ [
If f € L9(Q,)" with div f € L} (Q,) N W, 7 (€2,), we can define a weak trace 7, f as
(Wwfiv)oa, = (f,VV)+ (divf,V), (2.2)

where v € % (W}(Q,)) and V € W}(RQ,) is an arbitrary extension of v. If f €

C’(‘”(;)(Qv), the definition coincides with the usual trace. Moreover, the definition does
not depend on the choice of V. Hence

TS (%qu,(Qv))’ = th,ﬁ(aQA/)
and [ fl] -1 < C (||f||Lq + ||divf||W—01). In particular, v, f is defined for f €
Wq,,,q q,
L9(§2,)" with div f = 0.

Remark 2.9 Using Lemma 2.4, we can characterize vo(W,(€2,))" as follows:
Wor! (080,) = {a €W, "(0) : (Fya)'s* + (Fja) "k~ € W (R},
where % (2') = /1 + |[V/vE(2')[?, of. [6, Lemma 2.11] for details.
Similarly, if u € L9(Q2,)" with divu € L, (Q,) N "W, (2, ), then we define the trace
_1
Yiu € Wy *(092F) as

(viu, vy = (u,VV)+ (divu, V), (2.3)

-4
where v € W, * (092F) and V' € (W (Q,) with 7'V = v. As in the case of v,u, the
definition does not depend on the choice of V. Moreover,

I ull—sg < € (llully + 1l div oy, +)
1
q

In the same way we can define 7, u € W, *(9€)).
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3 Reduced Stokes Equations and Weak Laplace Re-
solvent Equations

The following reduction is a modification of the reduction introduced by Grubb and
Solonnikov [12].

First we consider the Dirichlet case j = 0. Let (u,p) € W2(Q,)" x WL(Q,) be a
solution of (1.1)-(1.4) with

feELIQ)", a" =0, g€ W;(Qn,) N Wq_ol(Qv) (3.1)
Applying first —div to (1.1) then ~,, the pressure p is determined by

—Ap=—divf+(A-A)g in Q,, (3.2)
1P =% (f +Vg) + 7 (A - Vdiv)u on 99Q,.
Provided we have proved unique solvability of this weak Neumann problem, see

Theorem 3.1 below, we can split p = p; + py such that p; depends only on u and po
depends only on (f, g). Then we end up with the reduced Stokes equations

A—=A)u+Gou=f, inQ,, (3.3)

You=0 on 0%, (3.4)

where Gou = VK17,(A — Vdiv)u and f, = f — Vps. Here K; denotes the Poisson
operator for the Laplace equation.

The most important fact is that we can drop the equation divu = ¢: If u solves
the equations (3.3)-(3.4) with f, defined as above, then

(A=A)divu=(A—A)g inQ,,
vidivu = 119 on 0f),

because of the construction. Since these equations are uniquely solvable, we conclude
divu = g.

THEOREM 3.1 Let1 < gq,r <00, 0 € (0,7), and 0, n > 2, be an asymptotically

flat layer with C’O’l—boundqry. Then for every f € LI(2,)" and A € X5 U {0} there

is a unique solution u € W) () with Au € W, §(Q,) of the weak Laplace resolvent
equation

A=A)u=—divf inQ,, (3.5)

nu =y, f on 05, (3.6)

where (3.6) is understood as v,(Vu — f) = 0, ¢f. (2.2). Moreover, u is uniquely
determined by

AMu,v) + (Vu, Vo) = (f,Vv)  forallv e qu,(Qn,) (3.7)

11



and satisfies

1
[Alllelly=s + A= llully + IVully < Cpsell £l (3-8)

uniformly in X € X5 with [\ > & > 0 and for X = 0. If additionally f € L"(Q2,)",
then w € WHS,) and Au € W5 (2,).

Hence the generalized Stokes equations (1.1)-(1.4) with right-hand side as in (3.1)
are uniquely solvable if the reduced Stokes equations (3.3)-(3.4) are uniquely solvable
for f, € L9(€2,)".

In the case A # 0, the converse implication is also true: If f, € L(€2,)", then we
get a solution u of the reduced Stokes equations (3.3)-(3.4) as follows: Let (u,p) €
W2(Q,) x WHQ,) be solution of the generalized Stokes equations (1.1)-(1.4) with
right-hand side (f,, g,0), where g is determined as solution of (3.5)-(3.6) with right-
hand side f.. Then Vp = Gou since —Ap = 0 and v1p = v, (A — Vdiv)u. Hence u
solves the reduced Stokes equations.

Therefore we have proved

Lemma 3.2 Let 1 < ¢ < 00, A € 5, 0 € (0,7), j =0, and let Q, CR*, n >
2, be an asymptotically flat layer with C%'-boundary. Then the generalized Stokes
equations (1.1)-(1.4) are uniquely solvable for given data as in (3.1) iff the reduced
Stokes equations (3.3)-(3.4) are uniquely solvable for every f, € LY(2,)". Moreover,
the solutions of the generalized Stokes equations satisfy (1.5) for all A € X5 with
|A| > € > 0 iff the solutions of reduced Stokes equations satisfy

1
Mllll + A2Vl + 11V2ully < Copell g (3.9)
for all A € X5 with |[\| > € > 0.

Remark 3.3 We can consider Ay := —A + G as unbounded operators with domain
D(Ag) := D(Ap)" = W2Q,)" N Wo(Q,)". We call this operator reduced Stokes
operator. Then Aq|;, , = Ay, where A, = —P,Ap is the usual Stokes operator and
P, L))" — J,0(€2,) is the Helmholtz projection, cf. Corollary A.3 below. This
statement can be seen as follows: If u € D(Ap)*NJ,0(€2,), then div(—Au+Gou) =0
and

Yo(=Au 4+ Gou) = —y,Au + 11 K17,(A — Vdiv)u = 0.

Hence —Au = (—A + Gy)u — Gyu is the Helmholtz decomposition of —Au, i.e.,
(—A+ Gy)u = Py(—A)u = Au.

Moreover, if f € J,0(2,) and u = (A — A+ Go) ™' f, then divu = 0 and therefore
u € Jg0(82,) since (A — A)divu = 0 and 7, divu = 0. Hence (A — A+ Go) |, , =
A+ A, tif (A=A —Gp) ! exists and A\ & (—o0,0).

Remark 3.4 Although the Stokes operator A, is known to be invertible, cf. [19]
and [1, 2, the reduced Stokes operator Ay is not, which can be proved as follows: Let
f = Vp with p € W}(,)\ LY(Q,). Then p+c & W, (Q,) for any ¢ € R because of
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Remark 2.7. Thus there is no u € W2(€2,)" which solves (3.3)-(3.4) for A = 0 since
the reduced Stokes equations imply

—Adivu = —-Ap in €2,
N dive =yp on 95,

and therefore divu = p+c ¢ Wq_yol(Qﬂ,) which contradicts the compatibility condition
g =divu € W, (Q,) NWHQ,).

In the mixed case, j = 1, there is an analogous reduction of (1.1)-(1.4) to the system

(A =A)u+Gpu=f inQ, (3.10)
T u=a on 9, (3.11)
You=0 on 0% (3.12)

with

_ 291w, 1t — (A oY — At di
GIOU' - VKOI ( ’)’;(A _ de)u ) ) (Tl U)T - (’Vu S(U))T, (Tl u)u =% div u,

fr = f =V, (&), = af, and a} = v, g, where p, solves (3.2) with boundary

T

conditions vy p; = —a;f and v, po =7, f + 71 g

Lemma 3.5 Let 1 < ¢ < o0, 6 € (0,7), j =1, and let 2, CR", n > 2, be an
asymptotically flat layer with C%'-boundary. Then the generalized Stokes equations
_I
(1.1)-(1.4) are uniquely solvable for (f,g,a™) € LI(2,)" x W, ,(Q,) x qu,)\q (oQr)"
iff the reduced Stokes equations (3.10)-(3.12) are uniquely solvable for every f, €
LY(Q,)" and o) € qu’;a(an)". Moreover, the solutions of the generalized Stokes
equations satisfy (1.6) for all A\ € SsU{0} iff the solutions of reduced Stokes equations
satisfy

(A + WD ully + 92uly < Cos (Il + e h-2.0) (3.13)
for all A € £; U {0}.

Proof: The proof is done in the same way as in the Dirichlet case, 7 = 0, using
Theorem 3.6 below instead of Theorem 3.1 and changing the boundary conditions in
the obvious way. Details can be found in [3, Section 4.1], where €2 has to be replaced
by €2,. [

THEOREM 3.6 Let 1 < ¢, < o0, 0 € (0,7), and Q, C R*, n > 2, be an
asymptotically flat layer with C%*-boundary. Then for every f € LI(2,)™ and X €
¥5U{0} there is a unique solutionu € "W () of the weak Laplace resolvent equation

A=A)u=—divf inQ,, (3.14)
You=0 on 007, (3.15)
yyu=",f on OS2, (3.16)
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where (3.16) is understood as v, (Vu — f) = 0, ¢f. (2.3). Moreover, u is uniquely
determined by

Au,v) + (Vu, Vo) = (f, Vo) for all v € W, (Q,). (3.17)

and satisfies (1 + |AD[[ulloy—1 + [[ulligr < Cysllfllg uniformly in A € X5 U{0}. If
additionally f € L"(Q,)", then u € "WH(Q,).

4 Stokes Equations in Asymptotically Flat Layers

4.1 Small Global Perturbations

Let Q, C R", n > 2, be an asymptotically flat layer with C*'-boundary, 2 the
infinite layer, and F': {29 — €2, be the diffeomorphism defined in Section 2.2. In the
following we will denote by _ all variables, functions, and operators acting in ),

letters as x, u(x), V, A.
In order to apply a similar perturbation argument as in [10, Section 3], we observe

£ _ " Via(z) |
VF*uy = ( 0 Oyalz) ) F*Vu,
AFfu = F*Au+ ((8,a)* + |V'a|*) F*(02u) + 2V'aF*(0,V'u) + A'aF*(9,u)
with a(z) = 5(v*(2') — v~ (@)z, + 3(v(2') + 7~ (2)). Hence

F*IWEF'w=Vu+ Ru, F°'divF*u =divu+ Rou, (4.1)
F* 'AF*u = Au + Ryu, (4.2)

with

[Ryullg < CONIVullg,  [1Roulligr < CONIIVu

200 [Bsully < COy)l[ullzgn,
where C(y) — 0 if ||[(V'yF, VZ9E 4t — 97 = 2)]|oe — 0.

THEOREM 4.1 Let 1 < ¢,r < o0, A € ¥5U{0}, 6 € (0,7), n > 2, and j =0
or j = 1. Then there is a constant K = K(q,r,d) > 0 such that Theorem 1.1 holds
under the additional assumption ||(V'v*, Vv 7T 4+ 9 = 2)||le < K.

Proof: First let 5 = 0. To apply the perturbation argument we introduce the
operator

Soa: Xo = Yy, Soa(u,p) = (Au— Au+ Vp,divu)

on the Banach spaces Xo = (W2, (Q0)" N W2y, (Q0)") x W) and Yy = LI(Q)"™ x
(Wyr(Q20) VW, 5 (), where [|(w, p)[[x, = [[ullogr+ VPl and [[(f, 9) Iy, = [I £l +
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lglligr+ (14 |)\|)||g||qu(}(QO). The corresponding operator and function spaces on €2,

are denoted by S, \, X,, and Y.

Because of the unique solvability of the generalized Stokes equations in {2y and the
resolvent estimate, cf. [19], Sp.x: Xo — Yp is an isomorphism with norms uniformly
bounded in ¥5 U {0}. Due to Lemma 2.2 and Corollary 2.5, F*~1Sy \F*: X, — Y,
is an isomorphism. Using the identities (4.1)-(4.2), we get

F*’flso,)\F* = 577)\+R7,)\,

where R, (u,p) = (—Rsu + Rip, Ryu) satisfying [|[R,\(u,p)| zcx,v,) < C(y) with a
constant C'(y) which gets arbitrarily small if K > 0 in the assumption of the lemma
is sufficiently small. Hence there is a K > 0 such that

Ry (u, D)y, < BIE™ SopF" (u, p)lly,
uniformly in A € ¥5U{0} with x < 1. Thus R, , is relatively bounded with respect to
the isomorphism F*~1SyF*(u,p) and we can apply Kato’s perturbation criterion,
cf. [13, Chapter 4, Theorem 1.16]. Therefore S, : X, — Y, is an isomorphism for
all \ € 25 U {0} and ||S%/\||[,(X7,y,y) < 0(5.
For the mixed case 7 = 1 we replace the spaces by
. 1—1
Xio = (V2(80)" 0 WA (@0)") x {p € 13 (00) s 5 € W, 00) ).
1w, P16 = lltll2gn + 1VPllg + 170Pll 1 g0
1-1
}/10 = Lq(Qo)n X qu’/\(QO) X Wq’)\q (896“)",
1759, a)lvio = Ifllg + gllgn + (L4 IAD gl 00y + 112 g0
and the operator by
St Xio = Yo, Swoa(u,p) = (A\u — Au + Vp,div u, Ty (u, p))

and carry on in the same way as in the Dirichlet case ;7 = 0 with the additional
perturbation term

Ryu =5 (v —vy) - S(u) =2 (v — v )p+ 00y - (Ruu+ (Riu)”)

in the boundary condition on 9QF. Here v = (=V'y*(2'),1)//1+[V'y*(2')]2
denotes the exterior normal vector on 9€2% and vy = e, the exterior normal vector
on 9€)f. This term can be estimated in the same way as before using additionally

I = 0 leoaaoy < CITY, V27
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4.2 Large Local Perturbations

Let K > 0 be the constant in Theorem 4.1 for given 1 < ¢ < oo and r = 2. If
Q, C R*, n > 2, is an arbitrary asymptotically flat layer with C"'-boundary, we can
find an asymptotically flat domain €2, such that ||(Vy5, V2, 70 — 7 —2)|leo < K
and which coincides with €, on R" \ Bg(0). Moreover, let 2, and €2_ be bounded
CY!-domains with

Q, = (2 \ Brs1(0)) UQ,UQ and  dist(Qx,00F) > 0.

Now let ¢, p+ be a partition of unity on €2, and ¢y, 9. € Co) (Q,) such that 1, =1
on supp ¢, * = 0, £, supp tyy C R" \ Bg(0), and supp ¢x. C Q.

Lemma 4.2 Let A € C\ (—00,0). Then Sy and Sy defined as in the proof of
Theorem 4.1 are Fredholm operators with trivial kernel.

Proof: First let j = 0 and w.l.o.g. at = 0. We set g9 = ¥pg — ho, where hy €
C5° (€24, N §2y) with supp ho Nsupp ¥y = 0 and ||hell, < C|lgll, is chosen such that

/ (1= do)g — ho)da: = 0.
supp(1—10)Ny

Then ¢y € Wq_,ol(Qv) with supp go € €, N Q,,. Hence g, € Wq_yol(QA,O). Similarly, we
choose g+ = 11g—h, where hy € C§°(€4) is chosen such that supp h+Nsupp o+ = ()
and fQi g+dx = 0. Moreover, let f, = p.f, * € [ :=={0,+,—}, and Dy := supp p.
Now let (u., ps), * € I, be the solution of the generalized Stokes equations in ., , Q,
resp., with right-hand side (f.,¢.) and non-slip boundary condition, where p, and
p+ are chosen such that

/ podx = / pide. (4.3)
Qg N1 QN+

Then (u,p) == 37, c; Vu (s, pu) € W2(Q2))" X W(II(QV) depends continuously on (f, g)
and solves

A=Ayu+Vp=f+ Siu+ Sop in Q,,
divu = g+ Ssu in €2,
Yo = 0 on 897,

where S is a differential operator of order 1 with coefficients supported in supp Vo =
supp Vi Usupp Vo, Sop = Vg (po — p+) in Qo and Szu = Vg - (ug — u4) in Q.

Since all error terms are supported in the bounded set D, UD _ and possess higher
regularity, the operator Kx(f,g) := (Siu 4 Syp, Ssu) is compact from L7 x (W, N
Woa) to LO x W,

¢,0
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Because of g, divu € Wq_,OI(QV), also Szu € Wq_,OI(QV). Since supp Sz3u € D, UD_,

this is equivalent to
/ Ssudr = 0
D, uD_

ifn=2o0rn>31<q< Z—:;, due to Lemma 2.8. If n > 3 and ¢ > Z—:;,every
compactly supported L? function is in quol(Qv). Hence ||Ssu||. —1,40 < C||Ssul|, and
K is a compact mapping on L7 x (qu ﬂWq_,Ol). Thus Sy  is a semi-Fredholm operator
with finite co-dimension of R(Sp.).

Finally, let (u,p) € W2,(2,)" x W(2,) be a zero-solution. If ¢ = 2, testing the
equation (1.1) with u and integrating by parts immediately implies that © = 0 and
therefore Vp = 0. If ¢ # 2, then (v,p) = (¢%u, ¢°p) solves the generalized Stokes
equations in €2, with compactly supported right-hand side in W} (€2,,)" x W2(£2,,).
Therefore, if ¢ > 2, (v, p) € WZ(Q,,)" x Wy (22,,) because of the regularity assertion of
Theorem 4.1 for v = 2. Thus (u, p) € WH(Q,)" x W} (Q,), which implies (u, Vp) = 0.
In the case 1 < ¢ < 2, we use Sobolev’s embedding W (2,,) <= L"(,,), £ = % -1,
to obtain (v, p) € W2(2,,)" x W}(Q,,). Repeating this argument finitely many times
and choosing K > 0 a priori sufficiently small, we obtain (u, p) € W2(2,)" x W1(Q2,)
for some s > 2, which implies (u, Vp) = 0.

Now we consider the case 7 = 1. In this case we replace €2, by bounded domains
Qu,...,Qn, Q_ with CH*-boundary such that

N N
Qy = (Q \ Bra (0)) U [ uQ,  dist(|J Q. 097), dist(Q_, 00F) > 0.
k=1 k=1

Moreover, we assume that €2;, £k = 1,..., N, are chosen such that there are asymp-
totically flat layers Q, D Q, k=1,..., N, (possibly rotated) satisfying the assump-
tions of Theorem 4.1 and 9927 N9y, = 00T N O . Moreover, let vy, ..., on, -
and 1y, ..., ¥n,¥_ be associated cut-off functions chosen such that supp vy, C S,
k=0,...,N, and suppty_ C Q_.

As before we set f. = ¢ f, x € I := {0,...,N,—}. Moreover, let g. = p,g if
% =0,..., N andlet g_ be defined as before. Finally, we set a = pra®, k=0,...,N.
Now let (ug,px), K = 0,...,N be the solution of (1.1)-(1.4) in Q.,, £ = 0,..., N,
with right-hand side (fg, gk, a; ) and j = 1. Moreover, let (u_,p_) be the solution
of the Stokes resolvent equations in the bounded domain €2 with non-slip boundary
condition and right-hand side (f_, g_) where p_ is chosen as in (4.3).

Similarly to the Dirichlet case, we set (u,p) := >, .; ¥ (us, pi). As before we get a
solution of the generalized Stokes equations with compactly supported perturbations
of higher order. Then we proceed in the same way as before, showing injectivity. m

Lemma 4.3 Let 1 < ¢ < 00, § € (0,7), and Q, C R*, n > 2, be an asymptoti-
cally flat layer with C™'-boundary. Then there is an R = R(q,d,7) > 0 such that
Theorem 1.1 holds for all A € X5 with |[A\| > R >0 and ¢ = r.
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Proof: The lemma is a consequence of Lemma 5.18 in the second part of this
contribution 5|, which is proved independently of the result obtained in the present
first part.

We can assume w.l.o.g. a™ = 0. Firstly, let j = 0. Then [5, Lemma 5.18] implies
that there is an approximate solution operator Ry ) such that

()\ — A+ Go)R()’,\f = (I + Sl,)\)f in QV,
YoRorf =0 on 09,

for f € LY(Q,)™ with [|[Siaf|lq < Cs(1 4+ |A)7[|fllg, € > 0, A € £5 U {0}. Hence
there is an R > 0 such that I + S is invertible for all A € X5, |\| > R. Thus
the reduced Stokes equations are uniquely solvable for A € X5, |\| > R. Because of
Lemma 3.2, the same is true for the generalized Stokes equations. Moreover, (1.5)
is a consequence of ||Roxfll2qn < Cyusllflly and |[(7 + S12)7 flly < || fll, for A € 5
with [A| > R.

In the case j = 1, there is an R ) such that

A=A+ Gr)Riopf=UT+S5,)f inQ,,

T1I+R10,>\f = S3,Af on BQ;F;
’Y&Rw’,\f =0 on 6(2;
for all f € L(S2,)" and
S ¢ + |5 1 < Cus(T4+|A]) 5,
I2allconion + 15l it < Casll+ )

cf. [5, Lemma 5.18]. Choosing v € W},(Q2,)" with T"v = Ssaf and ||v]jzgn <
CllSsaflli_1 40, we can modify Ry such that T1’+R107>\f = 0 and the estimate of
So.a 18 preseqrved. The rest of the proof is done in the same way as before. [
Proof of Theorem 1.1: Because of Lemma 4.2, the unique solvability of the gener-
alized Stokes equations (1.1)-(1.4) is a consequence of Lemma 4.3. This implies that
So,x and Sjp x have index zero for all A € C\ (—o0,0) because of the homotopy invari-
ance of the Fredholm index. Moreover, it is sufficient to prove the a priori estimates
(1.5) and (1.6) for large A, which is also a consequence of Lemma 4.3 below.

Alternatively, one can prove that the range of Sy \ and Sy, are dense, which can
be done analogously to the proof of Lemma 4.1 (iii) in [10]. Moreover, the a priori
estimate can be proved similarly to [10, Lemma 4.2].

Finally, the regularity assertion is proved by considering (pou, op) in €., and
applying similar arguments as in Lemma 4.2. [

A Proof of Theorem 3.1 and Theorem 3.6

Lemma A.1 Theorem 3.1 holds if 2, = §y is an infinite layer.
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Proof: If A =0, the unique solvability of the weak Neumann problem is equivalent
to the existence of the classical Helmholtz decomposition of L7(€2)™, which was
proved by Miyakawa [15] and by Farwig |9]. For A € ¥; with |A\| > ¢ > 0, the
proof can be done in the same way as 3, Lemma 3.1] using the Poisson operator
Kl,)\ = OP,(kl,)\(gl, Dn)) with

cosh(yxy) at +a~  sinh(Qy) @™ —a”
(xsinh () 2 (xcosh (y 2

kl,)\ (517 Dn)&

(= (A + |€']2)7, instead of Kyq. Details can be found in [6, Section 4]. Finally, the
regularity assertion holds since the solution operators for different ¢ and r coincide
on the dense subset Cf; (Qg) |

Lemma A.2 Let 1 < q,r < oo and ¢ € (0,7). Then there is a K = K(q,r,0) such
that Theorem 3.1 and Theorem 3.6 hold for all layer-like domains Q, C R*, n > 2,
such that ||(V'vF, V5 4t +97 = 2)]0 < K.

Proof: The proof is done with the same perturbation argument used in the proof
of Theorem 4.1. [

Proof of Theorem 3.6: Let (),, be an asymptotically flat layer with Lipschitz-
boundary chosen in the same way as in Section 4.2. Moreover, let 0y 4,...,Qy 1,
be bounded Lipschitz-domains such that

N N
Q, = (Qy, \ By (0 U Qe UQp ) Uy, dist(| ) v, 007) >0
k=1 k=1

N
dist(| ) k-, 007) >0,  dist(Q, 09,) > 0
k=1
Moreover, we assume that €2, ., k =1,..., N, are chosen such that there are asymp-
totically flat layers Q. , D Qg 4, k =1,..., N, (possibly rotated) satisfying the as-
sumptions of Lemma A.2 and aﬂiﬂan 4= 8Qiﬂ8§2i . Furthermore, let €2,, be an
infinite layer containing €. Flnally, let p,, v, x € I := {0 (k,£),b:k=1,...,N},
be chosen in the same way as before.
Then, because of Lemma A.2 there are u,, x € I, which solve

Mg, v)q,, + (Vus, Vo)a,, = (f, V(psv))q,, for all v e (W, (Q,,). (A1)

Now we define Ry f = >, ., ¥.u.. Because of the construction, Ry f € Oqu,)\(Q'y) and
IR f 100 < Cs4llfllq- Moreover,

(R/\f7 U)Q»y - Z(u*; w*v)ﬂw y (A2)

*xcl
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where .0 € (W5 (,.), ¥ € I. Hence by Lemma A.2, (1 + DR low; 20,y <
Cysllfll4- Furthermore,

(VRAS, V0)a, = D> (Vi, V(ih0))a,. + (Sif,0), (A.3)

where (S)f,v) is the sum of the terms

(Sxafr0) = (VY )us, Vo)o o (Sxoxf,v) = =(Vu,, (Vi )v)q,., *€1.

Since the mapping A: LY(Q,) — "W 1(Q,) with (Au.,v) = (Vi )u,, Vv), v €
OW;,(QV), is continuous, supp ), is compact, and since u, € OW(II(Q%) depends
continuously on f € L%(€,)", we conclude that Sxi,: LI(Q,)" — "W 1(Q,) is a
compact mapping. The same is true for Sy ;. by duality. Moreover,

[(Sxof )] < Col1 4 IA) 72 £lgllo

since [|u|1ga < Csllflg.
Representing the functional S\ f € "W, *(,) by

1,9" X\ ] - 1727

(Sxf,v) = (g9, Vv)a, for all v € (W, (€2,),

where g € LU(2,)" and [lgll, < ClISy oy 10, < Co(L+[AD2 ] s, we can consider

Sy as a compact operator on L?(2,)" with Sy = O(JA\|"2) as |A] = oo in ;.
Combining (A.1), (A.2), and (A.3) and using @, = ¢, we get

MBAf,v)a, + (VRAL, Vo)a, = Y (f, V(eahv))a,. + (Sxf,v) = (f, Vo)a, + (Sy,v)

x€l

forallv € qul, (€2,). Hence R, is a solution operator modulo a compact operator Sy €
L(L%(2,)), which tends to zero as |A| — oco. Therefore (3.14)-(3.16) are uniquely
solvable for all A € X5, |A\| > R and Fredholm solvable for all A € ¥5;U{0} with index
0.

Next we show that the kernel is trivial. Let u € W/(Q,) be a zero-solution. If
q = 2, we immediately get u = 0 by (3.17). In the case ¢ # 2 we consider yu and
conclude in the same way as in the proof of Lemma 4.2 that u € Wy (,).

Finally, the a priori estimate is a consequence of

lulligr = [BA(L+ S0 f Fllq

for all A € X5, [A\| > R, R > 0. [
Proof of Theorem 3.1: The proofis done in the same way as in the mixed case. But
in the Neumann case we have to deal with homogeneous Sobolev spaces, which cause
more problems. Nevertheless, this case can be proved in the same way since all error
terms are supported in a ball Bg(0) for an R > 0 and we can choose v € qu(QA,)
such that ||v||Le(BR0)ne,) < C||Voll,

Lar < Cgoll X+ 507" fllg < Cgp
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The main problem is that the solution for A = 0 is an element of W;(QV) but

the solution for A # 0 is in the set qu(Q) N quol(Q). Therefore we cannot use
the argument that the Fredholm index is locally constant for A = 0 since the space
changes. Hence we have to treat this case separately. Nevertheless, the equation is
still Fredholm solvable since the parametrix construction also holds in the case A = 0.

If ¢ = 2, it is well-known that the weak Neumann equation is uniquely solvable
for any domain 2. If ¢ > 2, we can show that the kernel is trivial by the same
localization technique as in the mixed case. Since the range of the equation is closed,
it is sufficient to prove that the range is dense in L?(€2,) in the case ¢ > 2. Then by
duality the same is true for 1 < g < 2.

If f € L*(Q,)"NLI(Q,)", ¢ > 2, there is a unique solution u € Wy (€,). Then pou
solves a weak Neumann problem in €, with right-hand side in L9($2,,) N L*(,,).
Hence pou € W2(€,,) and therefore u € W}(S,). u

Corollary A.3 (Helmholtz decomposition)
Let 1 < ¢ < 0o, n > 2, and Q, C R" be an asymptotically flat layer with C'-
boundary. Then there are continuous projections Py, °P,: L1(S,)" — L1(Q.,)" with

R(P) = Jy0(2y) :={u e LY(Q)" : divu = 0, y,u = 0},
N(P) =Gy(,) ={Vp:pe qu(Q)}a
R(P) = J,(Q,) = {u € LY Q)" : divu = 0,7, u = 0},
N(OPq) = OGq(Qv) ={Vp:pe Oqu(Qv)}-

Proof: It is well-known that the existence of the (classical) Helmholtz projection P,
is equivalent to the unique solvability of (3.5)-(3.6) for A = 0 and f € L9(Q,)", cf.
e.g. |16]. The proof for the mixed case (P, is an easy modification. If f € L9(€2,)",
then °P,f := f — Vp, where p solves (3.14)-(3.16) for A = 0. u
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