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Abstra
t

In this paper we prove unique solvability of the generalized Stokes resolvent

equations in an in�nite layer 


0

= R

n�1

� (�1; 1), n � 2, in L

q

-Sobolev spa
es,

1 < q < 1, with slip boundary 
ondition on the �upper boundary� �


+

=

R

n�1

� f1g and non-slip boundary 
ondition on the �lower boundary� �


�

=

R

n�1

� f�1g. The solution operator to the Stokes system will be expressed

with the aid of the solution operators of the Lapla
e resolvent equation and a

Mikhlin multiplier operator a
ting on the boundary. The present result is the

�rst step to establish an L

q

-theory for the free boundary value problem studied

by Beale [8℄ and Sylvester [21℄ in L

2

-spa
es.

Key words: Stokes equations, free boundary value problems, boundary value

problems for pseudodi�erential operators
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1 Introdu
tion

Let 


0

= R

n�1

� (�1; 1), n � 2, be an in�nite layer and let � 2 C n (�1; 0). We

study the generalized Stokes resolvent equations with mixed boundary 
onditions

(���)u+rp = f in 


0

; (1.1)

div u = g in 


0

; (1.2)

T

+

1

(u; p) = a

+

on �


+

0

; (1.3)




�

0

u = 0 on �


�

0

; (1.4)

where

T

+

1

(u; p) = � � S(u)� �pj

�


+

0

; S(u) = ru+ (ru)

T

; 


�

0

u = uj

�


�

0

;

�
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�


�

0

= R

n�1

� f�1g and � denotes the exterior normal ve
tor on �


0

. This system

arises in the study of an in�nite o
ean of water under the for
e of gravity leading to

a free boundary value problem for the instationary Navier-Stokes equations. Passing

to Lagrangian 
oordinates, linearizing the transformed system, and applying Lapla
e

transformation, one ends up with the generalized Stokes system (1.1)-(1.4) in a layer-

like domain 





:= f(x

0

; x

n

) 2 R

n

: 


�

(x

0

) < x

n

< 


+

(x

0

)g, where 


+

and 


�

are

suitable fun
tions des
ribing the upper and the lower boundary. Having proved

unique solvability of (1.1)-(1.4) of an in�nite layer, the results 
an be extended to

asymptoti
ally �at layers, whi
h are layer-like domains that are 
lose to an in�nite

layer �at in�nity�, by means of perturbation arguments and 
ut-o� te
hniques. This

extension is 
arried out in [5℄. Using pseudodi�erential operator te
hniques, we will

show in [6℄ the existen
e of a bounded H

1

-
al
ulus of the asso
iated (redu
ed) Stokes

operator, see Remark 4.2, whi
h implies the maximal regularity of the 
orresponding

instationary (redu
ed) Stokes equations. Using these results, one 
an solve the free

boundary value problem � studied up to now in L

2

-Sobolev spa
es in [8, 21℄ � in

the setting of L

q

-Sobolev spa
es by a method similar to [19℄. The advantage of

the L

q

-theory is that the regularity assumptions 
an be redu
ed in 
omparison to

[8, 21℄ sin
e one 
an use the embedding W

1

q

(


0

) ,! L

1

(


0

) for q > n instead of

W

m

2

(


0

) ,! L

1

(


0

) for m >

n

2

, 
f. [4℄ or [19℄ for bounded domains. Of 
ourse the

L

q

-theory is more demanding than the L

2

-theory based on Hilbert spa
e methods.

Therefore it is divided into several parts.

Our main result is:

THEOREM 1.1 Let 1 < q < 1, Æ 2 (0; �), and � 2 �

Æ

[ f0g. Then for every

(f; g) 2 L

q

(


0

)

n

�W

1

q;�

(


0

) and a

+

2 W

1�

1

q

q;�

(�


+

0

)

n

there is a unique solution (u; p) 2

W

2

q;�

(


0

)

n

�W

1

q

(


0

) of (1.1)-(1.4). Moreover,

(1 + j�j)kuk

q

+ (1 + j�j)

1

2

kruk

q

+ kr

2

uk

q

+ krpk

q

+ k


+

0

pk

1�

1

q

;q;�

� C

Æ

�

k(f;rg)k

q

+ (1 + j�j)

1

2

kgk

q

+ (1 + j�j)kgk

0

W

�1

q

+ ka

+

k

1�

1

q

;q;�

�

(1.5)

uniformly in � 2 �

Æ

[ f0g. If additionally (f; g) 2 L

r

(


0

)

n

� W

1

r;�

(


0

) and a

+

2

W

1�

1

r

r;�

(�


+

0

)

n

for an 1 < r <1, then (u; p) 2 W

2

r;�

(


0

)

n

�W

1

r

(


0

).

Here W

s

q;�

denotes a parameter-dependent variant of the usual Sobolev-Slobode
kij

spa
es. These variants and

0

W

�1

q

are de�ned in Se
tion 2.2 below. Moreover, �

Æ

=

fz 2 C n f0g : j arg(z)j < Æg.

The unique solvability of the system (1.1)-(1.2) with (pure) non-slip 
ondition,

uj

�


0

= 0, has been studied by Wiegner [23℄ using expli
it solution formulas obtained

by partial Fourier transformation. Moreover, Abe and Shibata [1, 2℄ solved the Stokes

resolvent equations, where g = 0, with non-slip boundary 
ondition.

As in [23℄ we use partial Fourier transformation to 
al
ulate the solution operator,

but we do not solve (1.1)-(1.4) dire
tly. Using the approa
h of Grubb and Solonnikov
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[15℄, we redu
e the Stokes system to a pseudodi�erential boundary value problem,

whi
h is 
alled redu
ed Stokes equations. Using the idea of Grubb [13, Se
tion 3℄, the

solution operator 
an be expressed with aid of the solution operator of the Lapla
e re-

solvent equation with mixed Neumann-Diri
hlet boundary 
ondition and the inverse

of a Mikhlin multiplier operator a
ting on the boundary. The latter inverse exists

on W

1�

1

q

q;�

(�


0

), 1 < q < 1, i� the generalized or equivalently the redu
ed Stokes

equations are uniquely solvable for q = 2. Therefore Theorem 1.1 
an be redu
ed to

the 
ase q = 2, 
f. Corollary 4.7 below.

The stru
ture of the arti
le is as follows:

In Se
tion 2, we introdu
e basi
 notations, fun
tion spa
es, and some fundamental

results on s
alar and operator-valued Mikhlin multiplier operators. In Se
tion 3,

we study the Lapla
e resolvent equation with mixed Neumann-Diri
hlet boundary


onditions, whi
h is fundamental for the redu
tion of the generalized Stokes equations

done in Se
tion 4.1 and the redu
tion to the boundary in Se
tion 4.2. As a byprodu
t

of the results in Se
tion 3, we obtain the Helmholtz de
omposition of L

q

(


0

)

n

in a

form with mixed boundary 
onditions, 
f. Corollary 3.2 below. Finally in Se
tion

4.3, we prove the unique solvability for q = 2, whi
h implies Theorem 1.1 be
ause of

the results obtained by the redu
tion to the boundary, 
f. Corollary 4.7 below.

Remark 1.2 The present approa
h 
an be adapted to the 
ase of pure Diri
hlet

boundary 
onditions, whi
h is done in [7, Se
tion 5℄. The same is true for all 
ombi-

nations of the boundary 
onditions studied in [15℄. For all these boundary 
onditions

there is an analogous redu
tion of the generalized Stokes equations, 
f. [15, Se
tion

4 and 5℄. Sin
e the 
orresponding redu
ed Stokes equations have the same stru
ture,

the redu
tion to the boundary done in Se
tion 4.2 and all other arguments work by

the same way, see also [13℄.

But there may arise some di�
ulties for the 
ase � = 0 whi
h 
an be an ex-


eptional 
ase. In the 
ase of pure Diri
hlet boundary 
onditions, the equivalen
e

of unique solvability of the redu
ed and the generalized Stokes equations does not

hold for � = 0 if the equations are 
onsidered in the L

q

-Sobolev spa
es used in [23℄

and in the present 
ontribution. In these spa
es the generalized Stokes equations are

uniquely solvable although the redu
ed Stokes equations are not, 
f. [7, Remark 5.4℄.

2 Preliminaries

2.1 Notation

In the following N denotes the set of natural numbers (without 0), N

0

= N [ f0g, Z,

R, and C are the sets of integers, real numbers, and 
omplex numbers, respe
tively.

If � 2 N

n

0

is a multi-index, j�j := �

1

+ : : : + �

n

, �! := �

1

! � : : : � �

n

!. Moreover,

x

�

:= x

�

1

1

� : : : � x

�

n

n

for x 2 R

n

and D

�

x

:= D

�

1

x

1

: : :D

�

n

x

n

, where D

x

j

=

1

i

�

x

j

and �

x

j

f is

the partial derivative with respe
t to x

j

. For s 2 R let [s℄ be the largest integer � s

and set fsg := s� [s℄ 2 [0; 1).
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If � 2 C , � 2 R

n

, then

h�i = (1 + j�j

2

)

1

2

; h�; �i := (1 + j�j+ j�j

2

)

1

2

; j�; �j := (j�j+ j�j

2

)

1

2

;

where j�j is the Eu
lidean length of �. Moreover, �

Æ

:= fz 2 C : j arg zj < Æg,

Æ 2 (0; �), where arg z 2 (��; �℄. We will use the simple inequalities




Æ

(j�j

1

2

+ s) �

�

�

�

(�+ s

2

)

1

2

�

�

�

� C

Æ

(j�j

1

2

+ s); (2.1)

Re(�+ s

2

)

1

2

� 


Æ

j(�+ s

2

)

1

2

j; (2.2)

whi
h hold uniformly in � 2 �

Æ

; s � 0, where (� + s

2

)

1

2

is de�ned as the unique

square root of �+ s

2

in �

Æ=2

.

If M � R

n

is measurable and X is a Bana
h spa
e, then L

q

(M), 1 � q � 1

denotes the usual Lebesgue-spa
e and L

q

(M ;X) its ve
tor-valued variant. Moreover,

if ! : M ! R is a measurable fun
tion and !(x) > 0 a.e., then L

q

(M ;!) indi
ates the

Lebesgue-spa
e with respe
t to the measure d� = !(x)dx. For an open set 
 � R

n

let L

q

lo


(
), 1 � q � 1, be the ve
tor spa
e of all measurable fun
tions f : 
 ! K ,

K = R or K = C , su
h that f 2 L

q

(B \
) for all balls B with B \
 6= ;. Moreover,

S(R

n

) is the set of all smooth and rapidly de
reasing fun
tion on R

n

and S(R

n

;X)

its ve
tor-valued variant. If 
 � R

n

is a domain, C

1

0

(
) is the set of all smooth

fun
tions su
h that supp f � 
 is 
ompa
t. Furthermore,

C

1

(0)

(
) := ff : 
! R : f = uj




;where u 2 C

1

0

(R

n

)g:

The dual of a topologi
al ve
tor spa
e V is denoted by V

0

. If v 2 V and v

0

2 V

0

, then

hv; v

0

i := v

0

(v) is the duality produ
t. If A : V ! W is a 
ontinuous linear operator,

A

0

: W

0

! V

0

denotes its adjoint. Moreover, R(A) and N (A) are the range and the

kernel of A, resp.

The Fourier transformation F = F

x7!�

is de�ned as

F

x7!�

[f ℄(�) :=

^

f(�) :=

Z

R

n

e

�ix��

f(x)dx

for a suitable fun
tion f : R

n

! C and F

�1

denotes its inverse. If x 2 R

n

, n � 2, then

we use the de
omposition x = (x

0

; x

n

), where x

0

denotes the �rst n� 1 
omponents.

Moreover, we will use the partial Fourier transformation

~

f(�

0

; x

n

) := F

x

0

7!�

0

[f ℄(�

0

; x

n

):

Finally, 


0

= R

n�1

� (�1; 1) and R

n

+

:= R

n�1

� (0;1). If f and g are de�ned on

R

n

and 


0

, r




0

f := f j




0

and e




0

g denote the restri
tion to 


0

and extension by 0 to

R

n

of f; g, resp.

2.2 Parameter-Dependent Fun
tion Spa
es

As in Grubb and Kokholm [14, Se
tion 1℄, we introdu
e fun
tion spa
es with parameter-

dependent norm. Let 
 � R

n

be a domain and � 2 C . Then W

m

q;�

(
) = ff 2 L

q

(
) :

4



D

�

f 2 L

q

(
); j�j � mg is the usual Sobolev spa
e normed by

kfk

q

m;q;�

:=

X

j�j�m

(1 + j�j)

q

m�j�j

2

kD

�

x

fk

q

q

for m 2 N

0

, 1 < q < 1. Moreover, W

m

q;0;�

(
) denotes the 
losure of C

1

0

(
) in

W

m

q;�

(
), W

�m

q;�

:= W

m

q

0

;0;�

(
)

0

, where

1

q

+

1

q

0

= 1, its dual, and W

m

q

(
) := W

m

q;�

j

�=0

,

W

m

q;0

(
) :=W

m

q;0;�

j

�=0

denote the Sobolev spa
es equipped with the usual parameter-

independent norm.

If u 2 W

m

q

(
),m � 1+j, j 2 N

0

, then 


j

u := �

j

�

uj

�


, where � denotes the exterior

normal ve
tor. Be
ause of [14, Theorem 1.1℄, 


j

: W

m

q;�

(R

n

+

) ! W

m�j�

1

q

q;�

(R

n�1

) with

k


j

uk

m�j�

1

q

;q;�

� Ckuk

m;q;�

uniformly in � 2 C , where

W

s

q;�

(R

n�1

) := B

s

qq;�

(R

n�1

) = fa 2 W

[s℄

q

(R

n�1

) : kak

s;q;�

<1g;

kak

q

s;q;�

:= (1 + j�j)

fsg

2

kak

q

[s℄;q;�

+

Z

R

n�1

Z

R

n�1

ja(x)� a(y)j

q

jx� yj

n�1+fsgq

dydx

for s 2 R

+

n N

0

. Sin
e �


0

is the disjoint union of �


�

0

, we 
an identify a fun
tion

a : �


0

! C with its values on the upper boundary a

+

and the lower boundary a

�

.

Hen
e we identify the 
orresponding tra
e spa
e W

m�

1

q

q;�

(�


0

) with W

m�

1

q

q;�

(R

n�1

) �

W

m�

1

q

q;�

(R

n�1

).

Lemma 2.1 Let 1 < q <1, m 2 N. Then

(


0

; : : : ; 


m�1

) : W

m

q;�

(


0

)!

m�1

Y

j=0

W

m�j�

1

q

q;�

(�


0

)

is a surje
tive and 
ontinuous linear mapping with operator norm independent of �.

Moreover, W

m

q;0;�

(


0

) = ff 2 W

m

q;�

(


0

) : 


j

f = 0 for j = 0; : : : ; m� 1g.

Proof: Using a partition of unity on 


0

, the statements are easily redu
ed to the


orresponding statements for the half-spa
es R

n

+

, 
f. [14, Theorem 1.1℄.

Moreover, we de�ne homogeneous and parameter-dependent variants of the Bessel

potential and Besov spa
es de�ned in [14℄. Let

_

H

s

q;�

(R

n

) =

�

u 2 S

0

(R

n

) : F

�1

[j�; �j

s

û℄ 2 L

q

(R

n

)

	

; kuk

_

H

s

q;�

:= kj�;D

x

j

s

uk

q

;

for s 2 R, 1 < q <1, � 6= 0,

_

W

m

q;�

(R

n

) :=

_

H

m

q;�

(R

n

) for m 2 Z,

_

B

s

q;�

(R

n

) :=

_

B

s

qq;�

(R

n

) := fa 2

_

W

fsg

q

(R

n

) : kak

�;s;q;�

<1g

kak

q

�;s;q;�

:= j�j

q[s℄

2

kak

q

_

W

fsg

q;�

+

Z

R

n�1

Z

R

n�1

ja(x)� a(y)j

q

jx� yj

n+q[s℄

dydx;
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and B

�s

q;�

(R

n

) := (B

s

q;�

(R

n

))

0

, where 0 < s 62 N and 1 < q <1.

If � = 0, then

_

H

s

q;�

(R

n

),

_

W

m

q

(R

n

), and dotB

s

q;�

are de�ned as the usual homo-

geneous Bessel potential

_

H

s

q

(R

n

), Sobolev

_

W

s

q

(R

n

), and Besov spa
e

_

B

s

q

(R

n

), resp.;


f. Bergh and Löfström [9, Se
tion 6.3℄ or Triebel [22℄ for the de�nition of the lat-

ter spa
es. If � 6= 0, the spa
es 
oin
ide with the usual (non-homogeneous) spa
es

H

s

q

(R

n

), B

s

q

(R

n

), and W

m

q

(R

n

), respe
tively, as sets, but with di�erent norms. These

parameter-dependent spa
es are well adapted to the Lapla
e resolvent equation in

R

n

+

and similar problems.

Using the s
aling operator (M

�

f)(x) = f(j�j

�

1

2

x); � 6= 0; we 
an 
on
lude simi-

larly to [14, Se
tion 1℄ that

kuk

_

H

s

q;�

= j�j

�

1

2

(

n

q

+s)

kM

�

fk

H

s

q

; kuk

_

B

s

q;�

= j�j

�

1

2

(

n

q

+s)

kM

�

fk

B

s

q

:

Hen
e we obtain as in [14, Se
tion 1℄:

Lemma 2.2 Let 1 < q <1, s

0

; s

1

2 R, s

0

6= s

1

, and � 2 (0; 1). Then

(

_

B

s

0

q;�

(R

n

);

_

B

s

1

q;�

(R

n

))

�;q

=

_

B

s

q;�

(R

n

); (

_

H

s

0

q;�

(R

n

);

_

H

s

1

q;�

(R

n

))

�;q

=

_

B

s

q;�

(R

n

);

(

_

B

s

0

q;�

(R

n

);

_

B

s

1

q;�

(R

n

))

[�℄

=

_

B

s

q;�

(R

n

); (

_

H

s

0

q;�

(R

n

);

_

H

s

1

q;�

(R

n

))

[�℄

=

_

H

s

q;�

(R

n

);

where s = (1� �)s

0

+ �s

1

and (:; :)

�;q

denotes the real and (:; :)

[�℄

the 
omplex inter-

polation spa
e, 
f. [9℄. Moreover, the norm of the interpolation spa
es and the norm

of

_

B

s

q;�

(R

n

),

_

H

s

q;�

(R

n

), resp., are equivalent with 
onstants independent of � 6= 0.

Be
ause of the analogous interpolation properties of the usual homogeneous Besov

and Bessel potential spa
es, 
f. [9, Chapter 6.3℄, the statements of the latter lemma

are also true for � = 0.

In order to 
onsider mixed boundary 
onditions, we de�ne

0

W

m

q

(


0

) := fu 2 W

m

q

(


0

) : 


+

j

u = 0; j = 0; : : : ; m� 1g;

where 


+

j

u = �

j

�

uj

�


+

0

, 1 < q < 1, and m 2 N . Analogously,

0

W

m

q

(


0

) is de�ned.

Moreover,

0

W

�m

q

(


0

) := (

0

W

m

q

0

(


0

))

0

; and

0

W

�m

q

(


0

) := (

0

W

m

q

0

(


0

))

0

:

If f 2 L

q

lo


(


0

) and

supfj(f; v)




0

j : v 2 C

1

(0)

(


0

) \

0

W

1

q

0

(


0

); krvk

q

0

= 1g <1;

then f extends to a unique fun
tional on

0

W

1

q

0

(


0

). In this 
ase we write f 2

L

q

lo


(


0

) \

0

W

�1

q

(


0

) for short.

If u 2 L

q

(


0

)

n

with div u 2 L

q

lo


(


0

)\

0

W

�1

q

(


0

), then we de�ne the tra
e 


+

�

u =

� � uj

�


+

0

2 W

�

1

q

q

(�


+

0

) as

h


+

�

u; vi = (u;rV ) + (div u; V ); (2.3)
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where v 2 W

1�

1

q

0

q

0

(�


+

0

) and V 2

0

W

1

q

0

(


0

) with 


+

0

V = v. As in the 
ase of the usual

de�nition of the weak tra
e 


�

u = � � uj

�


, the de�nition does not depend on the


hoi
e of V . Moreover,

k


+

�

uk

�

1

q

;q

� C

�

kuk

q

+ k div uk

0

W

�1

q

(


0

)

�

: (2.4)

In the same way we 
an de�ne 


�

�

u 2 W

�

1

q

q

(�


�

0

).

Lemma 2.3 Let 1 < q <1 and 


0

� R

n

, n � 2, be an in�nite layer. Then

kuk

L

q

(


0

)

� C

q

kruk

L

q

(


0

)

for all u 2

0

W

1

q

(


0

) and u 2

0

W

1

q

(


0

).

Proof: The lemma is an easy 
onsequen
e of Poin
aré's inequality on the interval

(�1; 1).

Moreover, we will need Korn's inequality sin
e we also treat the boundary 
ondi-

tion of se
ond kind T

+

1

(u; p) = 0, see Se
tion 4 below.

Lemma 2.4 Let 1 < q <1 and 


0

� R

n

, n � 2, be an in�nite layer. Then

kuk

1;q

� C

q

kS(u)k

q

for all u 2

0

W

1

q

(


0

)

n

and u 2

0

W

1

q

(


0

)

n

, where S(u) = ru+ru

T

.

Proof: The proof is given in [8, Lemma 2.6℄.

Lemma 2.5 Let 


0

� R

n

, n � 2, be an in�nite layer. Then

k


0

vk

1

2

;2;�

� Ck�

n

vk

1

2

2

k((1 + j�j)v;r

0

v)k

1

2

2

for all v 2 W

1

2;�

(R

n

+

);

k


�

0

vk

1

2

;2;�

� Ck(v; �

n

v)k

1

2

2

k((1 + j�j)v;r

0

v)k

1

2

2

for all v 2 W

1

2;�

(


0

): (2.5)

Proof: First let v 2 W

1

2;�

(R

n

+

). As in the parameter-independent 
ase,

B

1

2

2;�

(R

n�1

) = H

1

2

2;�

(R

n�1

) := fa 2 S

0

(R

n�1

) : h�; �

0

i

1

2

~a(�

0

) 2 L

2

(R

n�1

)g

with equivalent norms, where the 
onstants in the equivalen
e 
an be 
hosen inde-

pendently of �, 
f. [14, (1.11)℄. Then

k


0

vk

2

1

2

;2;�

=

Z

R

n�1

h�; �

0

ijev(�

0

; 0)j

2

��

0

= �

Z

R

n�1

2

Z

1

0

(�

n

ev(�

0

; x

n

))h�; �

0

iev(�

0

; x

n

)dx

n

��

0

� Ck�

n

vk

2

k((1 + j�j)v;r

0

v)k

2

be
ause of Plan
herel's theorem. If v 2 W

1

2;�

(


0

), the statement easily redu
es to the

statement for R

n

+

by the use of suitable 
ut-o� fun
tions.
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2.3 Mikhlin-Multiplier Operator

De�nition 2.6 Let H

0

and H

1

be two Hilbert spa
es, d 2 R, and k be the smallest

integers >

n

2

. A fun
tion m 2 C

k

(R

n

n f0g;L(H

0

; H

1

)) is 
alled an L(H

0

; H

1

)-valued

Mikhlin multiplier of order d if it satis�es

kD

�

�

m(�)k

L(H

0

;H

1

)

� Cj�j

d�j�j

; � 2 R

n

n f0g;

for all � 2 N

n

0

with j�j � k. Moreover, we set

[m℄

(d)

M

= sup

j�j�k

�

kD

�

�

m(�)k

L(H

0

;H

1

)

j�j

�d+j�j

: � 2 R

n

n f0g

	

and, if d = 0, [m℄

M

= [m℄

(0)

M

.

The Mikhlin multipliers of order 0 are the usual Mikhlin multipliers. Ifm is a Mikhlin

multiplier, we denote by

m(D

x

)u = OP(m)u = F

�1

[m(�)û(�)℄; u 2 S(R

n

;H

0

);

the 
orresponding multiplier operator. If m(�

0

) is a Mikhlin multiplier in n � 1

variables, then OP

0

(m) = m(D

x

0

) denotes the asso
iated operator.

THEOREM 2.7 (Ve
tor-valued Mikhlin-multiplier theorem)

Let 1 < q < 1, H

0

, H

1

be two Hilbert spa
es, and let m be a Mikhlin multiplier

(of order 0) with values in L(H

0

; H

1

). Then m(D

x

) extends to a bounded and linear

operator m(D

x

) : L

q

(R

n

;H

0

)! L

q

(R

n

;H

1

) with

km(D

x

)uk

L

q

(R

n

;H

1

)

� C

q

[m℄

M

kuk

L

q

(R

n

;H

0

)

for all u 2 L

q

(R

n

;H

0

).

It is easy to observe that the produ
t m

1

(�)m

2

(�) of two Mikhlin multipliers m

1

(�)

and m

2

(�) of order d

1

and d

2

, resp., is a again a Mikhlin multiplier of order d

1

+ d

2

if the produ
t is de�ned. Then of 
ourse OP (m

1

)OP (m

2

) = OP (m

1

m

2

). More-

over, if m is a multiplier of order d, and if m(�)

�1

2 L(H

1

; H

0

) exists and satis�es

km(�)

�1

k

L(H

1

;H

0

)

� Cj�j

�d

for all � 2 R

n

n f0g, then m(�)

�1

is an L(H

1

; H

0

)-

valued multiplier of order �d. This statement is a 
onsequen
e of �

j

m

�1

(�) =

�m(�)

�1

(�

j

m(�))m(�)

�1

and the 
hain rule. This yields a ni
e 
hara
terization:

Lemma 2.8 Let m be an L(R

k

)-valued Mikhlin multiplier of order 0 with k 2 N.

Then m(D

x

) : L

q

(R

n

;R

k

)! L

q

(R

n

;R

k

) is invertible for 1 < q <1 i� it is invertible

for q = 2. Moreover, if the operator is invertible, m

�1

(�) exists for all � 2 R

n

n f0g

and is again a Mikhlin multiplier with m(D

x

)

�1

= OP(m

�1

(�)). If km(:)

�1

k

1

=

km(D

x

)

�1

k

L(L

2

(R

n

;R

k

))

� R and [m℄

M

� R for R > 0, then [m(:)

�1

℄

M

� C; where C

depends only on n; k, and R.
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Proof: Let m(D

x

) : L

2

(R

n

;R

k

) ! L

2

(R

n

;R

k

) be invertible. Then the inverse

m(D

x

)

�1

is again a translation invariant operator. Be
ause of Stein [20, Chapter

2, 1.4, Proposition 2℄, m(D

x

)

�1

= OP(m

0

(�)) for a bounded measurable fun
tion

m

0

: R

n

! L(R

k

). Sin
e m(D

x

)OP(m

0

(�)) = OP(m(�)m

0

(�)) = I, m

0

(�) = m

�1

(�)

a.e. Hen
e m

�1

(�) is a bounded 
ontinuous fun
tion for � 6= 0, whi
h implies, as seen

above, that m

�1

(�) is a Mikhlin multiplier. Therefore (m(D

x

))

�1

: L

q

(R

n

;R

k

) !

L

q

(R

n

;R

k

) exists. The 
onverse is trivial.

In the following, we will deal with operators of the form

Ka := OP

0

(

~

k(�

0

; x

n

))a and Tf :=

Z

I

OP

0

(

~

t(�

0

; y

n

))f(:; y

n

)dy

n

;

where a is a fun
tion de�ned on R

n�1

and f is a fun
tion de�ned on R

n�1

� I with

I = R

+

or I = (�1; 1). Usually K and T will be 
alled Poisson operator and

tra
e operator (of 
lass 0), resp., and

~

k(�

0

; x

n

) and

~

t(�

0

; y

n

) are the so 
alled symbol-

kernels of K and T , resp. We also write k(�

0

; D

n

) : C ! L

2

(R

+

) : a 7!

~

k(�

0

; x

n

)a and

t(�

0

; D

n

) : L

2

(R

+

) ! C : f 7!

R

1

�1

~

t(�

0

; y

n

)f(y

n

)dy

n

for the 
orresponding operator-

valued symbols.

A fundamental example isK

�

:= OP

0

(e

�(�+j�

0

j

2

)

1

2

x

n

), whi
h is the Poisson operator

to the Lapla
e resolvent equation with Diri
hlet boundary 
ondition in R

n

+

. An

important example of a tra
e operator is

T

�

j;�

f := 


�

j

(���)e




0

f = (�1)

j

Z

1

�1

OP

0

 

e

�(�+j�

0

j

2

)

1

2

(1�y

n

)

2(�+ j�

0

j

2

)

1

2

1�j

!

f(:; y

n

)dy

n

; (2.6)

whi
h is part of the resolvent of the Lapla
ian in 


0

. Both examples 
an be 
onsidered

as operator-valued Mikhlin multipliers be
ause of the next lemma.

Lemma 2.9 Let s > �

1

2

, Æ 2 (0; �), and �

�

= (�+ j�

0

j

2

)

1

2

. Then










D

�

0

�

0

e

��

�

x

n










L

2

(R

+

;x

2s

n

)

� C

Æ;�

0

;s

j�; �

0

j

�

1

2

�s�j�

0

j

uniformly in � 2 �

Æ

[ f0g, �

0

2 R

n�1

with (�; �) 6= 0 for all �

0

2 N

n�1

0

.

Proof: Obviously,

~

k

�

(�

0

; x

n

) = e

��

�

x

n

, x

n

� 0, is quasi-homogeneous of degree �1

in the sense that

~

k

r

2

�

(r�

0

;

1

r

x

n

) =

~

k

�

(�

0

; x

n

) for all r > 0. Hen
e D

�

0

�

0

~

k

�

(�

0

; x

n

) is

quasi-homogeneous of degree �1� j�

0

j. More pre
isely, it is easy to verify that

D

�

0

�

0

~

k

�

(�

0

; x

n

) =

j�

0

j

X

j=0

m

�

0

;j

(�

0

; �)x

j

n

e

��

�

x

n

;

where m

�

0

;j

(�

0

; �) are homogeneous fun
tions of degree �j�

0

j + j in (�

1

2

; �

0

), whi
h

are smooth in (�; �

0

) 2 (�

Æ

� R

n�1

) n f0g. Therefore jm

�

0

;j

(�

0

; �)j � C

Æ;�

0

j�; �

0

j

�j�

0

j+j

,
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whi
h implies










D

�

0

�

0

e

��

�

(1�x

n

)










2

L

2

(R

+

;x

2s

n

)

� C

Æ;�

0

j�

0

j

X

j=0

j�; �

0

j

�2j�

0

j+2j

Z

1

0

x

2s+2j

n

e

�


Æ

j�;�

0

jx

n

dx

n

� C

Æ;�

0

j�; �

0

j

�1�2s�2j�

0

j

be
ause of (2.1) and (2.2).

Corollary 2.10 Let 1 < q <1, Æ 2 (0; �), s > �

1

2

, " 2 (0;

1

q

0

), b > 0, and � 2 N

0

.

Then K

�

:= OP

0

(e

��

�

x

n

) and D

�

x

K

�

, � 2 N

n

0

, de�ned on S(R

n�1

) extend to bounded

operators

K

�

:

_

H

�

1

2

�s

q;�

(R

n�1

)! L

q

(R

n�1

;L

2

(R

+

; x

2s

n

)); K

�

:

_

B

�

1

q

q;�

(R

n�1

)! L

q

(R

n

+

);

D

�

x

K

�

:

_

B

�

1

2

�"

q;�

(R

n�1

)! L

q

(R

n�1

;L

2

(b;1)); " > 0:

Proof: The �rst statement is a dire
t 
onsequen
e of Lemma 2.9 and the ve
tor-

valued Mikhlin multiplier theorem. The se
ond part is obtained via interpolation

similarly as in [14, Theorem 1.8℄: Firstly, let q � 2. Then

(L

2

(R

+

; x

2s

0

n

); L

2

(R

+

; x

2s

n

))

�;q

� L

q

(R

+

);

where s

0

<

1

q

�

1

2

< s and � = (

1

q

�

1

2

� s

0

)=(s � s

0

), 
f. [14, Theorem 1.8℄. Hen
e

real interpolation yields the se
ond 
ontinuity. Se
ondly, let q > 2. Sin
e �

n

K =

OP

0

(e

��

�

x

n

)OP

0

(��

�

) and OP

0

(��

�

) :

_

H

1

2

q;�

(R

n�1

)!

_

H

�

1

2

q;�

(R

n�1

), we 
on
lude

K :

_

H

1

2

q;�

(R

n�1

)! L

q

(R

n�1

;

_

H

1

2

(R

+

)):

Be
ause of

(

_

H

1

2

(R

+

); L

2

(R

+

))

1

q

�

1

2

;q

=

_

B

1

2

�

1

q

2;q

(R

+

) �

_

B

0

q;2

(R

+

) �

_

H

0

q

(R

+

) = L

q

(R

+

);

(

_

H

1

2

q;�

(R

n�1

);

_

H

�

1

2

q;�

(R

n�1

))

1

q

�

1

2

;q

=

_

B

�

1

q

q;�

(R

n�1

);


f. Lemma 2.2 and the homogeneous 
ounterpart of [9, Theorem 6.4.4℄, real interpo-

lation yields the se
ond part as before.

It is easy to see that K

�

= OP

0

(e

��

�

(x

n

�b=2)

)OP

0

(e

��

�

b=2

), where OP

0

(e

��

�

b=2

) is

a smoothing operator, that D

�

x

K

�

= OP

0

(�

�

0

(i�

�

)

�

n

)K

�

, and that L

2

(

b

2

;1; (x

n

�

b

2

)

2"

) ,! L

2

(b;1) if " > 0. Hen
e we get from the previous statements by a simple

translation in x

n

kD

�

x

K

�

ak

L

q

(R

n�1

;L

2

(b;1))

� C

"

kD

�

x

K

�

ak

L

q

(R

n�1

;L

2

(

b

2

;1;(x

n

�

b

2

)

2s

))

� C

";�;Æ

kOP

0

(e

��

�

(x

n

�b=2)

)ak

L

q

(R

n�1

;L

2

(

b

2

;1;(x

n

�

b

2

)

2s

))

� C

";�;Æ

kak

_

H

�

1

2

�s

(R

n�1

)

:

Real interpolation with di�erent values of " �nishes the proof.
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3 Lapla
e Resolvent Equation in an In�nite Layer

We 
onsider the Lapla
e resolvent equation with mixed Neumann-Diri
hlet boundary


onditions.

(���)u = f in 


0

; (3.1)




+

1

u = a

+

on �


+

0

; (3.2)




�

0

u = a

�

on �


�

0

: (3.3)

First let f = 0. Using partial Fourier transformation, a 
al
ulation yields u(x

0

; x

n

) =

F

�1

�

0

7!x

0

[k

10;�

(�

0

; D

n

)~a(�

0

)℄, where

k

10;�

(�

0

; D

n

)~a :=

e

��

�

(1�x

n

)

1 + e

�4�

�

�

~a

+

�

�

+ e

�2�

�

~a

�

�

+

e

��

�

(1+x

n

)

1 + e

�4�

�

�

~a

�

� e

�2�

�

~a

+

�

�

�

(3.4)

for given a

�

2 C

1

0

(R

n�1

) and with �

�

= (�+ j�

0

j

2

)

1

2

. It is easy to see that m

�

(�

0

) :=

(1 + e

�4�

�

)

�1

is a Mikhlin multiplier with [m

�

(�

0

)℄

M

� C

Æ

uniformly in � 2 �

Æ

[ 0,


f. [3, Proof of Lemma 4.1℄. Therefore and be
ause of Corollary 2.10, K

10;�

=

OP

0

(k

10;�

(�

0

; D

n

)) extends to a bounded operator

K

10;�

:

_

B

m�

1

q

q;�

(R

n�1

)�

_

B

m+1�

1

q

q;�

(R

n�1

)! r




0

_

W

m+1

q;�

(R

n

) (3.5)

form 2 N

0

. Note that r




0

_

W

m+1

q

(R

n

) 6=

_

W

m+1

q

(


0

), 
f. [7, Remarks 2.7℄ for details. If

the boundary 
onditions in (3.2)-(3.3) are inter
hanged, we get the analogous result

for the 
orresponding Poisson operator K

01;�

.

Now we 
onsider a weak formulation, whi
h will be fundamental for the redu
tion

of the generalized Stokes equation in Se
tion 4.1 below.

(���)u = � div f in 


0

; (3.6)




+

1

u = 


+

�

f on �


+

0

; (3.7)




�

0

u = 0 on �


�

0

(3.8)

for f 2 L

q

(


0

)

n

, where (3.6) is understood in the sense of distributions, (3.8) shall

hold in the sense of usual tra
es, and (3.7) is understood as 


+

�

(ru�f) = 0, whi
h is

de�ned in (2.3). Be
ause of the de�nition of 


+

�

(ru� f) = 0, the system (3.6)-(3.8)

is equivalent to the variational problem

�(u; v) + (ru;rv) = hF; vi for all v 2

0

W

1

q

0

(


0

); (3.9)

where hF; vi := (f;rv); v 2

0

W

1

q

0

(


0

), is an element of

0

W

�1

q

(


0

).

Lemma 3.1 Let 1 < q; r < 1, Æ 2 (0; �), and � 2 �

Æ

[ f0g. Then for every

F 2

0

W

�1

q

(


0

) there is a unique solution u 2

0

W

1

q;�

(


0

) of (3.9), whi
h satis�es

(1 + j�j)kuk

0

W

�1

q

+ kuk

1;q;�

� C

Æ;q

kFk

0

W

�1

q

(3.10)

uniformly in � 2 �

Æ

[ f0g. If additionally F 2

0

W

�1

r

(


0

), then u 2

0

W

1

r

(


0

).
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Proof: Identifying

0

W

�1

q

(


0

) with a 
losed subspa
e of L

q

(


0

)

n

and using the Hahn-

Bana
h theorem, for F 2

0

W

�1

q

(


0

) there is an f 2 L

q

(


0

)

n

su
h that hF; vi =

(f;rv) for all v 2

0

W

1

q

0

(


0

) and kfk

q

� CkFk

0

W

�1

q

. Hen
e it is su�
ient to prove

the lemma for fun
tionals of the latter form.

Let g 2 C

1

(0)

(
). Then we set

R

10;�

g := r




0

(���)

�1

e




0

g �K

10;�

�




+

1

(���)

�1

e




0

g




�

0

(���)

�1

e




0

g

�

:

R

01;�

is de�ned analogously. If we set v = ��

n

R

01;�

g, then v solves

(���)v = ��

n

g in 


0

;




+

1

v = 


+

0

(�(���

0

)v + g) = 


+

0

g on �


+

0

;




�

0

v = 0 on �


�

0

:

Thus we de�ne u := � div

0

R

10;�

f

0

� �

n

R

01;�

f

n

for f 2 C

1

(0)

(


0

)

n

. Using integration

by parts, u solves (3.9).

Sin
e r




0

(���)

�1

e




0

: L

q

(


0

)! r




0

_

B

2

q;�

(R

n

), 


�

j

(���)

�1

e




0

g 2

_

W

2�j�

1

q

q;�

(�


�

0

)

for j = 0; 1. Thus, be
ause of (3.5),

k(j�j

1

2

u;ru)k

q

� C

q;Æ

kfk

q

� C

q;Æ

kFk

0

W

�1

q

uniformly in � 2 �

Æ

[ f0g. Be
ause of 


�

0

u = 0 and Poin
aré's inequality j�j

1

2


an

be repla
ed by (1 + j�j)

1

2

. Hen
e we 
an extend the solution operator by 
ontinuity

su
h that (3.9) holds. Therefore the mapping

A

�;q

:

0

W

1

q

(


0

)!

0

W

�1

q

(


0

) : u 7! �(u; :) + (ru;r:)

is surje
tive for 1 < q <1. Sin
e A

0

�;q

= A

�;q

0

, A

�;q

is also inje
tive.

Moreover, (3.9) and the estimate of kruk

q

imply the estimate of j�jkuk

0

W

�1

q

. Fi-

nally, the regularity assertion holds sin
e the solution operators for q and r 
oin
ide

in the dense subset C

1

(0)

(


0

).

Corollary 3.2 (Helmholtz de
omposition)

Let 1 < q <1, n � 2, and 


0

� R

n

be an in�nite layer. Then there is a 
ontinuous

proje
tion P

q

: L

q

(


0

)

n

! L

q

(


0

)

n

su
h that

R(P

q

) =

0

J

q

(


0

) := fu 2 L

q

(


0

)

n

: div u = 0; 


+

1

u = 0g;

N (P

q

) =

0

G

q

(


0

) := frp 2 L

q

(


0

)

n

: p 2

0

W

1

q

(


0

)g:

Proof: The proof is an easy modi�
ation of the standard proof, 
f. [18℄. The pro-

je
tion P

q

is de�ned as P

q

f = f�rp, where p is the solution of (3.6)-(3.8) for � = 0.
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Lemma 3.3 Let 1 < q; r < 1, Æ 2 (0; �), m 2 N

0

, and � 2 �

Æ

[ f0g. Then for

every f 2 W

m

q;�

(


0

) there is a unique solution u = R

10;�

f 2 W

m+2

q;�

(


0

) of (3.1)-(3.3)

with a

�

= 0. Moreover, kuk

m+2;q;�

� C

Æ;m;q

kfk

m;q;�

uniformly in � 2 �

Æ

[ f0g. If

additionally f 2 W

m

r;�

(


0

), then u 2 W

m+2

r;�

(


0

).

Proof: W.l.o.g. let m = 0. Be
ause of Lemma 3.1, there is a unique solution u 2

0

W

1

q

(


0

) of (3.9) with right-hand side hF; vi := (f; v). Di�erentiating in tangential

dire
tion, it is easy to observe that �

j

u 2

0

W

1

q

(


0

) solves (3.9) with right-hand side

hF

j

; vi := (f; �

j

v), j = 1; : : : ; n� 1. Using (3.9), we obtain ��

2

n

u = f � (���

0

)u in

the sense of distributions, where f � (���

0

)u 2 L

q

(


0

). Hen
e u 2 W

2

q

(


0

). Sin
e

(3.9) implies (���)u = f a.e. in 


0

,

(


+

1

u; 


+

0

v) = (ru;rv) + (�u; v) = (f; v)� �(u; v) + (�u; v) = 0

for all v 2

0

W

1

q

0

(


0

), whi
h implies 


+

1

u = 0.

Finally, for � = 0, we 
ompare the Poisson operator K

10

:= K

10;�

j

�=0

with the

lo
alized parametrix

e

K

10

a :=  

+

K

+

1

a

+

+  

�

K

�

0

a

�

; (3.11)

where K

�

j

a

�

= OP

0

�

j�

0

j

�j

e

�j�

0

j(1�x

n

)

�

a, j = 0; 1, denotes the Poisson operator of the

Diri
hlet (j = 0) or the Neumann problem (j = 1), resp., in R

n

<1

= f(x

0

; x

n

) : x

n

< 1g

or in R

n

>�1

= f(x

0

; x

n

) : x

n

> �1g, resp. Furthermore,  

�

2 C

1

(0)

([�1; 1℄) with

 

�

(x

n

) = 1 if dist(x

n

;�1) �

1

2

, supp 

+

� (�1; 1℄, and supp 

�

� [�1; 1).

The following result, whi
h will be needed for the analysis of the redu
ed Stokes

equations in 


0

, shows that the error of this lo
alization is of lower order.

Lemma 3.4 Let 0 < " <

1

2

, and let

e

K

10

be de�ned as above. Then

k(rK

10

�r

e

K

10

)ak

2

� C

�

ka

+

k

_

B

�

1

2

�"

2

+ ka

�

k

W

1

2

�"

2

�

for all a

+

2

_

B

�

1

2

�"

2

(R

n�1

) and a

�

2 W

1

2

�"

2

(R

n�1

).

Proof: First of all, note that W

1

2

�"

2

(R

n�1

) ,!

_

W

1

2

�"

2

(R

n�1

) and

_

B

�

1

2

�"

2

(R

n�1

) ,!

W

�

1

2

2

(R

n�1

). Hen
e rK

10

a and

e

K

10

a are well de�ned.

We use that

��(K

10

�

e

K

10

)a = S

e

K

10

a;




+

1

(K

10

�

e

K

10

)a = 0; 


�

0

(K

10

�

e

K

10

)a = 0;

where S is a di�erential operator of order 1 with 
oe�
ients supported in suppr 

+

[

suppr 

�

. Hen
e r(K

10

�

e

K

10

)a = rR

10

S

e

K

10

a, where R

10

is the solution operator
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of (3.1)-(3.3) with a

�

= 0 and � = 0. Sin
e the 
oe�
ients of S are supported in

R

n�1

� (�a; a) for an a < 1, Corollary 2.10 and Lemma 3.3 imply

kr(K

10

�

e

K

10

)ak

2

� CkS

e

K

10

ak

2

� C

�

ka

+

k

_

B

�

1

2

�"

2

+ ka

�

k

W

1

2

�"

2

�

:

Remark 3.5 It is obvious that all statements remain true if we inter
hange the

boundary 
onditions of the upper and the lower boundary, i.e. 
onsider mixed

Diri
hlet-Neumann 
onditions. The 
orresponding solution operators will be denoted

by K

01;�

, R

01;�

, K

01

, R

01

, and

e

K

01

.

Moreover, we 
an add an a

�

2 W

1�

1

q

q;�

(�


�

0

) in (3.8) or 
onsider a general (a

+

; a

�

) 2

W

m+1�

1

q

q;�

(�


+

0

)�W

m+2�

1

q

q;�

(�


�

0

) in Lemma 3.3 and get analogous statements.

4 Stokes Equations in an In�nite Layer

4.1 The Redu
ed Stokes Equations

In the following redu
tion, whi
h is an adaption of the redu
tion used in [15℄, the

pressure p will be expressed in dependen
e on the data (f; g) and the (unknown)

solution u. Therefore we will end up with a pseudodi�erential equation, where p is

repla
ed by a non-lo
al operator applied to u, whi
h is also 
alled singular Green

operator in the theory of pseudodi�erential boundary value problems, 
f. [12℄.

Let (u; p) 2 W

2

q;�

(


0

)

n

�W

1

q;�

(


0

) be a solution of (1.1)-(1.4) with

f 2 L

q

(


0

)

n

; a

+

2 W

1�

1

q

q;�

(�


+

0

)

n

; g 2 W

1

q;�

(


0

): (4.1)

Applying � div and 


�

�

to the equation (1.1) and using (1.2), p solves

��p = � div f + (���)g in 


0

;




+

0

p = 2


+

1

u

�

� a

+

�

on �


+

0

;




�

1

p = 


+

�

f on �


�

0

:

Now we split p = p

1

+ p

2

su
h that p

1

depends only on u and p

2

depends only on

(f; g; a

+

). Then we end up with the redu
ed Stokes equations

(���)u+G

10

u = f

r

in 


0

; (4.2)

T

0

1

+

u = a

+

r

on �


+

0

; (4.3)




�

0

u = 0 on �


�

0

(4.4)
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with

G

10

u = rK

01

�

2


+

1

u

�




�

�

(��r div)u

�

; T

0

1

+

u =

�

(


+

0

� � S(u))

�




+

0

div u

�

; a

+

r

=

�

a

+

�




+

0

g

�

;

f

r

= f �rp

2

= f �rR

01

(� div f + (���)g)�rK

01

�

�a

+

�




�

�

f + 


�

1

g

�

;

where v = (v

�

; v

�

) denotes the de
omposition of a ve
tor �eld v de�ned on �


0

into

the tangential and normal 
omponents. Moreover, K

01

and R

01

are de�ned as in

Remark 3.5.

Be
ause of Lemma 3.1,

krp

1

k

q

� C

q

�

k


�

�

(��r div)uk

�

1

q

;q

+ k


+

1

u

�

k

1�

1

q

;q

�

; (4.5)

krp

2

k

q

� C

q

�

kfk

q

+ kgk

1;q;�

+ j�jkgk

0

W

�1

q

(


0

)

+ ka

+

k

1�

1

q

;q;�

�

; (4.6)

where we have used that hF; vi := ((� �r div)u;rv) = h


�

�

(��r div)u; 


�

0

vi for

all v 2

0

W

1

q

0

(


0

) be
ause of (2.3) and therefore kFk

0

W

�1

q

� Ck


�

�

(��r div)uk

�

1

q

;q

.

The most important fa
t about this redu
tion is that we may drop the equation

div u = g: If u solves the equations (4.2)-(4.4) with f

r

de�ned as above, then

(���)div u = (���)g in 


0

;




+

0

div u = 


+

0

g on �


+

0

;




�

1

div u = 


�

1

g on �


�

0

be
ause of the 
onstru
tion and the de�nition of the operators in the redu
ed Stokes

equations. Sin
e these equations are uniquely solvable, div u = g.

Hen
e the generalized Stokes equations (1.1)-(1.4) with right-hand side as in (4.1)

are uniquely solvable if the redu
ed Stokes equations (4.2)-(4.4) are uniquely solvable

for f

r

2 L

q

(


0

)

n

and a

+

r

2 W

1�

1

q

q

(�


+

0

)

n

. Moreover, if the solution u of the redu
ed

Stokes equations 
an be estimated by

kuk

2;q;�

� C

q;Æ

�

kf

r

k

q

+ ka

+

r

k

1�

1

q

;q;�

�

(4.7)

uniformly in � 2 �

Æ

[ f0g, Æ 2 (0; �), then the solution (u; p) of the generalized

Stokes equations satis�es (1.5) be
ause of (4.5)-(4.6).

The 
onverse impli
ation is also true: If f

r

2 L

q

(


0

)

n

and a

+

r

2 W

1�

1

q

q;�

(�


+

0

)

n

,

then we get a solution u of the redu
ed Stokes equations (4.2)-(4.4) as follows: We

solve the generalized Stokes equations (1.1)-(1.4) with right-hand side (f; g; a

+

) with

a

+

= ((a

+

r

)

�

; 0), where g is determined as solution of

(���)g = div f

r

in 


0

;




+

0

g = (a

+

r

)

�

on �


+

0

;




�

1

g = 


�

�

f

r

on �


�

0

:
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Then, be
ause of Lemma 3.1,

(1 + j�j)kgk

0

W

�1

q

+ kgk

1;q;�

� C

q;Æ

�

kf

r

k

q

+ ka

+

r

k

1�

1

q

;q;�

�

and the solution (u; p) of the generalized Stokes equations satis�es

kuk

2;q;�

+ krpk

q

� C

q;Æ

�

kfk

q

+ ka

+

�

k

1�

1

q

;q;�

�

for all � 2 �

Æ

[ f0g:

Moreover, p solves ��p = 0 with 


�

1

p = 


�

�

(� � r div)u and 


+

0

p = 2


+

1

u

�

. Thus

rp = G

10

u and u solve the redu
ed Stokes equations. Hen
e we have proved:

Lemma 4.1 Let 1 < q < 1, Æ 2 (0; �), and � 2 �

Æ

[ f0g. Then the generalized

Stokes equations (1.1)-(1.4) are uniquely solvable for given data as in (4.1) i� the

redu
ed Stokes equations (4.2)-(4.4) are uniquely solvable for every f

r

2 L

q

(


0

)

n

and a

+

r

2 W

1�

1

q

q;�

(�


+

0

)

n

. Moreover, the solutions of the generalized Stokes equations

satisfy (1.5) i� the solutions of the redu
ed Stokes equations satisfy (4.7).

Remark 4.2 Be
ause of (4.2)-(4.4), it is natural to de�ne the redu
ed Stokes operator

A

q

:= ��+G

10

on L

q

(


0

)

n

with domain

D(A

q

) = fu 2 W

2

q

(





)

n

: 


�

0

u = 0; T

0

1

+

u = 0g:

Then Theorem 1.1 and Lemma 4.1 imply that A

q

is invertible and is the generator

of a bounded analyti
 semi-group. Moreover, it is proved in [6℄ that A

q

admits a

bounded H

1

-
al
ulus, 
f. [16℄. Hen
e it possesses bounded imaginary powers and

therefore has maximal regularity in L

q

-Sobolev spa
es due to Dore and Venni [10℄.

The redu
tion des
ribed above 
an be done in many types of domains. In the

following we will need the unique solvability of the redu
ed Stokes equation in R

n

+

:

(���)u+G

j

u = f in R

n

+

; (4.8)

T

0

j

u = a on �R

n

+

(4.9)

for j = 0; 1 with

G

1

= rK

0

2


1

u

�

; T

0

1

u =

�

(


0

� � S(u))

�




0

div u

�

;

G

0

= rK

1




�

(��r div)u; T

0

0

u = 


0

u:

Lemma 4.3 Let 1 < q <1, Æ 2 (0; �), � 2 �

Æ

, and j = 0 or j = 1. Then for every

(f; a) 2 L

q

(R

n

+

)

n

�

_

B

2�j�

1

q

q;�

(R

n�1

)

n

there is a unique solution u 2

_

W

2

q;�

(R

n

+

)

n

of the

redu
ed Stokes equations (4.8)-(4.9). Moreover,

j�jkuk

q

+ j�j

1

2

kruk

q

+ kr

2

uk

q

� C

Æ

(kfk

q

+ kak

�;2�j�

1

q

;q;�

)

uniformly in � 2 �

Æ

.
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Proof: The lemma is a 
onsequen
e of [15, Theorem 6.1℄. It 
an also be proved

using the unique solvability of the generalized Stokes equations in R

n

+

, 
f. Farwig

and Sohr [11, Theorem 1.3℄ for the Diri
hlet 
ase and Shibata and Shimizu [17, The-

orem 4.3℄ for the 
ase j = 1, and an analogous equivalen
e statement of Lemma 4.1.

4.2 Redu
tion to the Boundary

Using the produ
t stru
ture of the term G

10

in the redu
ed Stokes equations, we will

obtain a representation of the solution operator to the Stokes equations in terms of

the solution operator of the Lapla
e resolvent equation and an operator a
ting only

on the boundary. The idea of this redu
tion goes ba
k to [13, Se
tion 3℄.

Let

A

10;�

=

�

(���)I




+

1

�

: W

2

q;�

(


0

)

n

\

0

W

1

q;�

(


0

)

n

!

L

q

(


0

)

n

�

W

1�

1

q

q;�

(�


+

0

)

n

be the operator asso
iated to the Lapla
e resolvent equation (3.1)-(3.3) with a

�

= 0

(in n 
omponents). Then we 
an express the redu
ed Stokes equations (4.2)-(4.4) as

perturbation of the Lapla
e resolvent equation

A

r

10;�

= A

10;�

+B

10

with

B

10

=

�

K

r

10

T

r

10

T

0

1

+

� 


+

1

�

; K

r

10

a = rK

01

�

a

+

� div

0

a

�

�

; T

r

10

u =

�

2


+

1

u

�




�

1

u

0

�

;

where we have used that 


�

�

(� �r div)u = �


�

1

div

0

u

0

if 


�

0

u = 0. Here div

0

a

�

=

�

1

a

�

1

+ : : :+ �

n�1

a

�

n�1

.

Remark 4.4 Note that we have de�ned K

r

10

and T

r

10

su
h that all operators are of

order 1 in the sense of mapping properties in Sobolev-Slobode
kij spa
es. Moreover,

we note that W

1�

1

q

q;�

(R

n�1

) ,! W

1�

1

q

q

(R

n�1

) with norms uniformly bounded in �.

Hen
e

K

r

10

: W

1�

1

q

q;�

(�


+

0

)�W

1�

1

q

q;�

(�


�

0

)

n�1

�

=

W

1�

1

q

q;�

(R

n�1

)

n

! L

q

(


0

)

n

with norms uniformly bounded in �.

Sin
e A

�1

10;�

= (R

10;�

; K

10;�

) exists for all � 2 �

Æ

[ f0g, A

r

10;�

is invertible i�

I + A

�1

10;�

B

10

� I +K

10;�

T

10

17



is invertible, where

K

10;�

�

a

b

+

�

= R

10;�

K

r

10

a +K

10;�

(b

+

; 0)

T

; T

10

=

�

T

r

10

T

0

1

+

� 


+

1

�

:

Now we use the following simple lemma, 
f. [13, Lemma 3.1℄:

Lemma 4.5 Let V;W be ve
tor spa
es and let A : V ! W , B : W ! V be linear

mappings. Then I + AB : W ! W is bije
tive if and only if I + BA : V ! V is

bije
tive. Moreover,

(I +BA)

�1

= I �B(I + AB)

�1

A and (I + AB)

�1

= I � A(I +BA)

�1

B

if the inverses exist.

Hen
e I +K

10;�

T

10

(and therefore A

r

10;�

) is invertible i�

S

10;�

= I + T

10

K

10;�

: W

1�

1

q

q;�

(R

n�1

)

n

!W

1�

1

q

q;�

(R

n�1

)

n

is invertible. The 
ru
ial observation is:

Lemma 4.6 S

10;�

= OP

0

(s

10;�

(�

0

)) is a Mikhlin multiplier operator with [s

10;�

℄

M

�

C

Æ

for all � 2 �

Æ

[ f0g, Æ 2 (0; �).

Proof: This lemma relies on the fa
t that all operators 
an be 
onsidered as

L(H

0

; H

1

)-valued Mikhlin multipliers of a 
ertain order for suitable Hilbert spa
es H

0

,

H

1

. Moreover, all Mikhlin multiplier norms are uniformly bounded in � 2 �

Æ

[ f0g.

We have

S

10;�

�

a

b

+

�

=

�

a+ T

r

10

(R

10;�

K

r

10

a +K

10;�

(b

+

; 0))

b

+

+ (T

0

1

+

� 


+

1

)(R

10;�

K

r

10

a +K

10;�

(b

+

; 0))

�

Let T = T

r

10

or T = T

0

1

+

� 


+

1

. All entries in T 
onsist of di�erential tra
e operators

of order 1, whi
h are of the form 


�

1

+OP

0

(a ��

0

)


�

0

, a 2 C

n�1

. Therefore, it is easy to

observe from (3.4) that TK

10;�

(b

+

; 0) = OP

0

(m

�

(�

0

))b

+

with [m

�

℄

M

� C

Æ

. Moreover,

R

10;�

f = r




0

(���)

�1

e




0

f �K

10;�

�




+

1

(���)

�1

e




0

f




�

0

(���)

�1

e




0

f;

�

:

Be
ause of (2.6), T (���)

�1

e




0

has a symbol-kernel of the formm

�

(�

0

)e

��

�

(1�y

n

)

with

[m

�

℄

M

� C

Æ

. The same is true for TK

10;�

(


+

1

(���)

�1

e




0

; 


�

0

(���)

�1

e




0

) be
ause

of (2.6) and (3.4) again. Hen
e TR

10;�

= OP

0

(t

�

(�

0

; D

n

)) with [t

�

(:; D

n

)℄

(�

1

2

)

M

� C

Æ

as L(C ; L

2

(�1; 1))-valued Mikhlin multiplier be
ause of Lemma 2.9. Similarly, it

is easy to observe with the aid of (3.4) for � = 0 and Lemma 2.9 that K

r

10


an

be 
onsidered as L(C ; L

2

(�1; 1))-valued multiplier operator with symbol k

r

10

(�

0

; D

n

)

of order

1

2

. Hen
e T

10

K

10;�

is an matrix-valued Mikhlin multiplier of order 0 with
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[T

10

K

10;�

℄

M

� C

Æ

:

Therefore S

10;�

is an invertible mapping on W

1�

1

q

q

(R

n�1

)

N

i� it is invertible on

L

q

(R

n�1

)

N

. Be
ause of Lemma 2.8, this is the 
ase i� the operator is invertible on

L

2

(R

n�1

)

N

. Moreover,

kS

�1

10;�

k

L(W

1�

1

q

q

(R

n�1

)

N

)

� C

Æ;q

; uniformly in � 2 �

Æ

[ f0g;

i� the statement is true for q = 2.

Corollary 4.7 Theorem 1.1 holds for 1 < q; r <1 i� it holds for q = r = 2.

4.3 Unique Solvability for q = 2

We start by proving an a priori estimate.

Lemma 4.8 Let Æ 2 (0; �) and � 2 �

Æ

[ f0g. If (u; p) 2 W

2

2;�

(


0

)

n

� W

1

2

(


0

)

is a solution of the generalized Stokes equations (1.1)-(1.4) with right-hand side

(f; g; a

+

) 2 L

2

(


0

)

n

�W

1

2;�

(


0

)�W

1

2

2;�

(�


+

0

)

n

, then

kuk

2;2;�

+ krpk

2

+ k


+

0

pk

1

2

;2;�

� C

Æ

�

kfk

2

+ kgk

1;2;�

+ (1 + j�j)kgk

0

W

�1

2

(


0

)

+ ka

+

k

1

2

;2;�

�

: (4.10)

Proof: If a

+

6= 0, we 
an 
hoose a fun
tion v 2

0

W

2

2;�

(


0

)

n

with 


+

0

v = 0, 


+

1

v

�

= a

+

�

,

2


+

1

v

�

= a

+

�

, and kvk

2;2;�

� Cka

+

k

1

2

;2;�

be
ause of Lemma 2.1. Then u � v is a

solution of the generalized Stokes equations (1.1)-(1.4) with T

+

1

(u; p) = 0. Hen
e we


an assume w.l.o.g a

+

= 0.

Let E(u; v) =

1

2

(S(u); S(v)), where S(u) = ru +ru

T

. Using the inherent sym-

metry and Green's formula

E(u; v) = (S(u);rv) = �(�u; v)� (r div u; v) + (


�

S(u); 


0

v): (4.11)

Sin
e (u; p) is a solution of the Stokes resolvent equation,

(f �rg; u) = �kuk

2

2

+ E(u; u)� (p; g)� (


0

(S(u) � � � p�); 


0

u)

�


0

:

The last term vanishes, sin
e T

+

1

(u; p) = 


+

0

(S(u)���p�) = 0 and 


�

0

u = 0. Therefore

we obtain by using Korn's inequality, see Lemma 2.4, and maxfRe�; j Im�jg � 


Æ

j�j

for � 2 �

Æ

[ f0g,

(1 + j�j)kuk

2

2

+ kruk

2

2

� C

Æ

(kf �rgk

2

kuk

2

+ j(g; p)j) : (4.12)
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Let ~p 2

0

W

1

2;�

(


0

) be an extension of 


+

0

p with kpk

1;2;�

� Ck


+

0

pk

1

2

;2;�

. Then

(1 + j�j)j(g; p)j � (1 + j�j)kgk

0

W

�1

2

kr(p� ~p)k

2

+ (1 + j�j)

1

2

kgk

2

(1 + j�j)

1

2

k~pk

2

� C

�

(1 + j�j)kgk

0

W

�1

2

+ kgk

1;2;�

��

krpk+ k


+

0

pk

1

2

;2;�

�

Therefore, multiplying (4.12) by (1 + j�j) and using Young's inequality,

(1 + j�j)

2

kuk

2

2

+ (1 + j�j)kruk

2

2

� C

Æ

�

k(f;rg)k

2

2

+

�

(1 + j�j)kgk

0

W

�1

2

+ kgk

1;2;�

��

krpk

2

+ k


+

0

pk

1

2

;2;�

��

: (4.13)

If we set v = �

2

i

u, i = 1; : : : ; n� 1, in (4.11) and integrate by parts, we get

(1 + j�j)k�

i

uk

2

2

+ kr�

i

uk

2

2

� C

Æ

�

k(f;rg)k

2

2

+ k�

i

gk

2

k�

i

pk

2

�

: (4.14)

Expressing p = p

1

+ p

2

by u and the data (f; g), 
f. Se
tion 4.1, using (4.5), (4.6),

and the boundary 
onditions, we get

krpk

2

+ k


+

0

pk

1

2

;2;�

� C

Æ

�

kfk

2

+ kgk

1;2;�

+ (1 + j�j)kgk

0

W

�1

2

+ k


�

1

div

0

u

0

k

�

1

2

;2

+ k


1

u

n

k

1

2

;2;�

�

� C

Æ

�

kfk

2

+ kgk

1;2;�

+ (1 + j�j)kgk

0

W

�1

2

+ k


1

uk

1

2

;2;�

�

: (4.15)

Moreover, be
ause of Lemma 2.5,

k


1

uk

1

2

;2;�

� Ck(�

n

u; �

2

n

u)k

1

2

2

k((1 + j�j)

1

2

�

n

u;r

0

�

n

u)k

1

2

2

:

Combining this with �

2

n

u = f � (���

0

)u�rp and (4.15), yields

krpk

2

+ k


+

0

pk

1

2

;2;�

� C

Æ

�

kfk

2

+ krgk

2

+ (1 + j�j)kgk

0

W

�1

2

+ k(j�ju; (1 + j�j)

1

2

�

n

u;rr

0

u)k

2

�

:

Finally, if we 
ombine the latter estimate with (4.13) and (4.14), we are led to

kuk

1;2;�

+ krr

0

uk

2

+ krpk

2

+ k


+

0

pk

1

2

;2;�

� C

Æ

�

kfk

2

+ kgk

1;2;�

+ (1 + j�j)kgk

0

W

�1

2

�

:

Using (1.1), we get the estimate for k�

2

n

uk

2

.

In the next step we 
onstru
t a solution operator for large �.

Lemma 4.9 Let Æ 2 (0; �). Then there is an R > 0 su
h that for every � 2 �

Æ

with

j�j � R and for (f; g; a

+

) as in (4.1) the generalized Stokes equations (1.1)-(1.4)

have a unique solution (u; p) 2 W

2

2;�

(


0

)

n

�W

1

2;�

(


0

).
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Proof: As in the proof of Lemma 4.8 we 
an assume w.l.o.g. a

+

= 0. Let R

�

0;�

be the

solution operators of the redu
ed Stokes resolvent equations in R

n�1

� (�1;1) with

Diri
hlet boundary 
ondition 


�

0

u = 0 and let R

+

1;�

be the 
orresponding operators

in R

n�1

� (�1; 1) for the boundary 
ondition T

0

1

�

(u) = 0. Now we de�ne

e

R

10;�

f =  

+

R

+

1;�

'

+

f +  

�

R

�

0;�

'

�

f;

where '

+

; '

�

is a partition of unity for [�1; 1℄ with '

+

� 1 on [

1

2

; 1℄ and '

�

� 1 on

[�1;�

1

2

℄ and  

�

2 C

1

(0)

([�1; 1℄) with  

�

� 1 on supp'

�

and 0 �  

�

� 1. As usual

we extend '

�

f by zero where it is not de�ned.

Then u =

e

R

10;�

f satis�es

(���)u+G

10

u = f + S

10

u+ S

0

10

u

where S

10

u = �P

+

R

+

1;�

'

+

f � P

�

R

�

0;�

'

�

f with P

�

= 2r 

�

� r+� 

�

and

S

0

10

u = rK

01

(2


+

1

u

�

;�


�

1

div

0

u

0

)�  

+

rK

+

0

2


+

1

u

�

+  

�

rK

�

1




�

1

div

0

u

0

= r(K

01

�

e

K

01

)(2


+

1

u

�

;�


�

1

div

0

u

0

) + (r 

+

)K

+

0

2


+

1

u

�

� (r 

�

)K

�

1




�

1

div

0

u

0

:

Here

e

K

01

is de�ned as in (3.11), see also Remark 3.5. Sin
e P

�

is a di�erential

operator of order 1 and be
ause of Lemma 4.3, kS

10

uk

2

� C

Æ

j�j

�

1

2

kfk

2

for � 2

�

Æ

; j�j � 1. Due to Lemma 3.4,

kr(K

01

�

e

K

01

)(2


+

1

u

�

;�


�

1

div

0

u

0

)k

2

� C

"

�

k


+

1

u

�

k

W

1

2

�2"

2

+ k


�

1

div

0

u

0

k

_

B

�

1

2

�2"

2

�

� C

"

k


1

uk

W

1

2

�2"

2

� C

"

kuk

2�2";2

for 0 < " <

1

4

. Here kuk

2�2";2

denotes the B

2�2"

2

(


0

)-norm of u. Sin
e je

�j�

0

j(1�x

n

)

j �

1, we get sup

jx

n

j�1

k(K

+

0

a)(:; x

n

)k

2

� kak

2

. Thus

k(r 

+

)

e

K

+

0

2


+

1

u

�

k

2

� C

"

k


+

1

u

�

k

1

2

�2";2;R

n�1

� C

"

kuk

2�2";2

:

Sin
eK

�

1

div

0

= K

�

0

OP

0

(i�

0

T

=j�

0

j), we get the same estimate with (r 

�

)

~

K

�

1




�

1

div

0

u

0

on the left-hand side. Be
ause of kuk

2

� C

Æ

j�j

�1

kfk

2

and kuk

2;2

� C

Æ

kfk

2

, we get

by real interpolation kS

0

01

uk

2

� C

"

kuk

2�2";2

� C

Æ;"

j�j

�"

kfk

2

uniformly in � 2 �

Æ

,

j�j � 1, with 0 < " <

1

4

.

Hen
e there is an R > 0 su
h that I+S

�

is invertible in L(L

q

(


0

)) for � 2 �

Æ

with

j�j � R. Therefore R

10;�

=

e

R

10;�

(I + S

�

)

�1

is the solution operator of the redu
ed

Stokes equation. Be
ause of Lemma 4.1, the unique solvability of the redu
ed Stokes

equations (for a �xed �) is equivalent to unique solvability of the generalized Stokes

equations.

Lemma 4.10 Theorem 1.1 holds for q = r = 2.

21



Proof: Lemma 4.8 implies that the linear operator A

10;�

: X

10;2

! Y

10;2

,

A

10;�

(u; p) := ((���)u+rp; div u; T

+

1

(u; p));

X

10;2

:= (W

2

2;�

(


0

)

n

\

0

W

1

2;�

(


0

)

n

)� fp 2

_

W

1

2

(


0

) : 


+

0

p 2 W

1

2

2;�

(�


+

0

)g;

Y

10;2

:= L

2

(


0

)

n

�W

1

2;�

(


0

)�W

1

2

2;�

(�


+

0

)

n

;

whi
h 
orresponds to the generalized Stokes equations, is inje
tive and has a 
losed

range for every � 62 (�1; 0). Hen
e it is a semi-Fredholm operator. Moreover,

Lemma 4.9 implies that A

�1

10;�

exists for all � 2 �

Æ

, j�j � R, for a suitable large

R > 0. Be
ause of the homotopy invarian
e of the Fredholm index, A

10;�

has index 0

for every � 62 (�1; 0). Sin
e A

10;�

is inje
tive for every � 62 (�1; 0) due to Lemma

4.8, A

10;�

is invertible for these �. Finally, (1.5) for q = 2 is just the statement of

Lemma 4.8.

Hen
e Theorem 1.1 is an immediate 
onsequen
e of Corollary 4.7 and Lemma 4.10.
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