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Abstrat

In this paper we prove unique solvability of the generalized Stokes resolvent

equations in an in�nite layer 


0

= R

n�1

� (�1; 1), n � 2, in L

q

-Sobolev spaes,

1 < q < 1, with slip boundary ondition on the �upper boundary� �


+

=

R

n�1

� f1g and non-slip boundary ondition on the �lower boundary� �


�

=

R

n�1

� f�1g. The solution operator to the Stokes system will be expressed

with the aid of the solution operators of the Laplae resolvent equation and a

Mikhlin multiplier operator ating on the boundary. The present result is the

�rst step to establish an L

q

-theory for the free boundary value problem studied

by Beale [8℄ and Sylvester [21℄ in L

2

-spaes.

Key words: Stokes equations, free boundary value problems, boundary value

problems for pseudodi�erential operators

AMS-Classi�ation: 35 Q 30, 76 D 07, 35 R 35, 35 S 15

1 Introdution

Let 


0

= R

n�1

� (�1; 1), n � 2, be an in�nite layer and let � 2 C n (�1; 0). We

study the generalized Stokes resolvent equations with mixed boundary onditions

(���)u+rp = f in 


0

; (1.1)

div u = g in 


0

; (1.2)

T

+

1

(u; p) = a

+

on �


+

0

; (1.3)



�

0

u = 0 on �


�

0

; (1.4)

where

T

+

1

(u; p) = � � S(u)� �pj

�


+

0

; S(u) = ru+ (ru)

T

; 

�

0

u = uj

�


�

0

;

�

The present ontribution is part of the author's PhD-thesis and was partially supported by the

German Aademi Exhange Servie (DAAD).
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�


�

0

= R

n�1

� f�1g and � denotes the exterior normal vetor on �


0

. This system

arises in the study of an in�nite oean of water under the fore of gravity leading to

a free boundary value problem for the instationary Navier-Stokes equations. Passing

to Lagrangian oordinates, linearizing the transformed system, and applying Laplae

transformation, one ends up with the generalized Stokes system (1.1)-(1.4) in a layer-

like domain 




:= f(x

0

; x

n

) 2 R

n

: 

�

(x

0

) < x

n

< 

+

(x

0

)g, where 

+

and 

�

are

suitable funtions desribing the upper and the lower boundary. Having proved

unique solvability of (1.1)-(1.4) of an in�nite layer, the results an be extended to

asymptotially �at layers, whih are layer-like domains that are lose to an in�nite

layer �at in�nity�, by means of perturbation arguments and ut-o� tehniques. This

extension is arried out in [5℄. Using pseudodi�erential operator tehniques, we will

show in [6℄ the existene of a bounded H

1

-alulus of the assoiated (redued) Stokes

operator, see Remark 4.2, whih implies the maximal regularity of the orresponding

instationary (redued) Stokes equations. Using these results, one an solve the free

boundary value problem � studied up to now in L

2

-Sobolev spaes in [8, 21℄ � in

the setting of L

q

-Sobolev spaes by a method similar to [19℄. The advantage of

the L

q

-theory is that the regularity assumptions an be redued in omparison to

[8, 21℄ sine one an use the embedding W

1

q

(


0

) ,! L

1

(


0

) for q > n instead of

W

m

2

(


0

) ,! L

1

(


0

) for m >

n

2

, f. [4℄ or [19℄ for bounded domains. Of ourse the

L

q

-theory is more demanding than the L

2

-theory based on Hilbert spae methods.

Therefore it is divided into several parts.

Our main result is:

THEOREM 1.1 Let 1 < q < 1, Æ 2 (0; �), and � 2 �

Æ

[ f0g. Then for every

(f; g) 2 L

q

(


0

)

n

�W

1

q;�

(


0

) and a

+

2 W

1�

1

q

q;�

(�


+

0

)

n

there is a unique solution (u; p) 2

W

2

q;�

(


0

)

n

�W

1

q

(


0

) of (1.1)-(1.4). Moreover,

(1 + j�j)kuk

q

+ (1 + j�j)

1

2

kruk

q

+ kr

2

uk

q

+ krpk

q

+ k

+

0

pk

1�

1

q

;q;�

� C

Æ

�

k(f;rg)k

q

+ (1 + j�j)

1

2

kgk

q

+ (1 + j�j)kgk

0

W

�1

q

+ ka

+

k

1�

1

q

;q;�

�

(1.5)

uniformly in � 2 �

Æ

[ f0g. If additionally (f; g) 2 L

r

(


0

)

n

� W

1

r;�

(


0

) and a

+

2

W

1�

1

r

r;�

(�


+

0

)

n

for an 1 < r <1, then (u; p) 2 W

2

r;�

(


0

)

n

�W

1

r

(


0

).

Here W

s

q;�

denotes a parameter-dependent variant of the usual Sobolev-Slobodekij

spaes. These variants and

0

W

�1

q

are de�ned in Setion 2.2 below. Moreover, �

Æ

=

fz 2 C n f0g : j arg(z)j < Æg.

The unique solvability of the system (1.1)-(1.2) with (pure) non-slip ondition,

uj

�


0

= 0, has been studied by Wiegner [23℄ using expliit solution formulas obtained

by partial Fourier transformation. Moreover, Abe and Shibata [1, 2℄ solved the Stokes

resolvent equations, where g = 0, with non-slip boundary ondition.

As in [23℄ we use partial Fourier transformation to alulate the solution operator,

but we do not solve (1.1)-(1.4) diretly. Using the approah of Grubb and Solonnikov
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[15℄, we redue the Stokes system to a pseudodi�erential boundary value problem,

whih is alled redued Stokes equations. Using the idea of Grubb [13, Setion 3℄, the

solution operator an be expressed with aid of the solution operator of the Laplae re-

solvent equation with mixed Neumann-Dirihlet boundary ondition and the inverse

of a Mikhlin multiplier operator ating on the boundary. The latter inverse exists

on W

1�

1

q

q;�

(�


0

), 1 < q < 1, i� the generalized or equivalently the redued Stokes

equations are uniquely solvable for q = 2. Therefore Theorem 1.1 an be redued to

the ase q = 2, f. Corollary 4.7 below.

The struture of the artile is as follows:

In Setion 2, we introdue basi notations, funtion spaes, and some fundamental

results on salar and operator-valued Mikhlin multiplier operators. In Setion 3,

we study the Laplae resolvent equation with mixed Neumann-Dirihlet boundary

onditions, whih is fundamental for the redution of the generalized Stokes equations

done in Setion 4.1 and the redution to the boundary in Setion 4.2. As a byprodut

of the results in Setion 3, we obtain the Helmholtz deomposition of L

q

(


0

)

n

in a

form with mixed boundary onditions, f. Corollary 3.2 below. Finally in Setion

4.3, we prove the unique solvability for q = 2, whih implies Theorem 1.1 beause of

the results obtained by the redution to the boundary, f. Corollary 4.7 below.

Remark 1.2 The present approah an be adapted to the ase of pure Dirihlet

boundary onditions, whih is done in [7, Setion 5℄. The same is true for all ombi-

nations of the boundary onditions studied in [15℄. For all these boundary onditions

there is an analogous redution of the generalized Stokes equations, f. [15, Setion

4 and 5℄. Sine the orresponding redued Stokes equations have the same struture,

the redution to the boundary done in Setion 4.2 and all other arguments work by

the same way, see also [13℄.

But there may arise some di�ulties for the ase � = 0 whih an be an ex-

eptional ase. In the ase of pure Dirihlet boundary onditions, the equivalene

of unique solvability of the redued and the generalized Stokes equations does not

hold for � = 0 if the equations are onsidered in the L

q

-Sobolev spaes used in [23℄

and in the present ontribution. In these spaes the generalized Stokes equations are

uniquely solvable although the redued Stokes equations are not, f. [7, Remark 5.4℄.

2 Preliminaries

2.1 Notation

In the following N denotes the set of natural numbers (without 0), N

0

= N [ f0g, Z,

R, and C are the sets of integers, real numbers, and omplex numbers, respetively.

If � 2 N

n

0

is a multi-index, j�j := �

1

+ : : : + �

n

, �! := �

1

! � : : : � �

n

!. Moreover,

x

�

:= x

�

1

1

� : : : � x

�

n

n

for x 2 R

n

and D

�

x

:= D

�

1

x

1

: : :D

�

n

x

n

, where D

x

j

=

1

i

�

x

j

and �

x

j

f is

the partial derivative with respet to x

j

. For s 2 R let [s℄ be the largest integer � s

and set fsg := s� [s℄ 2 [0; 1).
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If � 2 C , � 2 R

n

, then

h�i = (1 + j�j

2

)

1

2

; h�; �i := (1 + j�j+ j�j

2

)

1

2

; j�; �j := (j�j+ j�j

2

)

1

2

;

where j�j is the Eulidean length of �. Moreover, �

Æ

:= fz 2 C : j arg zj < Æg,

Æ 2 (0; �), where arg z 2 (��; �℄. We will use the simple inequalities



Æ

(j�j

1

2

+ s) �

�

�

�

(�+ s

2

)

1

2

�

�

�

� C

Æ

(j�j

1

2

+ s); (2.1)

Re(�+ s

2

)

1

2

� 

Æ

j(�+ s

2

)

1

2

j; (2.2)

whih hold uniformly in � 2 �

Æ

; s � 0, where (� + s

2

)

1

2

is de�ned as the unique

square root of �+ s

2

in �

Æ=2

.

If M � R

n

is measurable and X is a Banah spae, then L

q

(M), 1 � q � 1

denotes the usual Lebesgue-spae and L

q

(M ;X) its vetor-valued variant. Moreover,

if ! : M ! R is a measurable funtion and !(x) > 0 a.e., then L

q

(M ;!) indiates the

Lebesgue-spae with respet to the measure d� = !(x)dx. For an open set 
 � R

n

let L

q

lo

(
), 1 � q � 1, be the vetor spae of all measurable funtions f : 
 ! K ,

K = R or K = C , suh that f 2 L

q

(B \
) for all balls B with B \
 6= ;. Moreover,

S(R

n

) is the set of all smooth and rapidly dereasing funtion on R

n

and S(R

n

;X)

its vetor-valued variant. If 
 � R

n

is a domain, C

1

0

(
) is the set of all smooth

funtions suh that supp f � 
 is ompat. Furthermore,

C

1

(0)

(
) := ff : 
! R : f = uj




;where u 2 C

1

0

(R

n

)g:

The dual of a topologial vetor spae V is denoted by V

0

. If v 2 V and v

0

2 V

0

, then

hv; v

0

i := v

0

(v) is the duality produt. If A : V ! W is a ontinuous linear operator,

A

0

: W

0

! V

0

denotes its adjoint. Moreover, R(A) and N (A) are the range and the

kernel of A, resp.

The Fourier transformation F = F

x7!�

is de�ned as

F

x7!�

[f ℄(�) :=

^

f(�) :=

Z

R

n

e

�ix��

f(x)dx

for a suitable funtion f : R

n

! C and F

�1

denotes its inverse. If x 2 R

n

, n � 2, then

we use the deomposition x = (x

0

; x

n

), where x

0

denotes the �rst n� 1 omponents.

Moreover, we will use the partial Fourier transformation

~

f(�

0

; x

n

) := F

x

0

7!�

0

[f ℄(�

0

; x

n

):

Finally, 


0

= R

n�1

� (�1; 1) and R

n

+

:= R

n�1

� (0;1). If f and g are de�ned on

R

n

and 


0

, r




0

f := f j




0

and e




0

g denote the restrition to 


0

and extension by 0 to

R

n

of f; g, resp.

2.2 Parameter-Dependent Funtion Spaes

As in Grubb and Kokholm [14, Setion 1℄, we introdue funtion spaes with parameter-

dependent norm. Let 
 � R

n

be a domain and � 2 C . Then W

m

q;�

(
) = ff 2 L

q

(
) :

4



D

�

f 2 L

q

(
); j�j � mg is the usual Sobolev spae normed by

kfk

q

m;q;�

:=

X

j�j�m

(1 + j�j)

q

m�j�j

2

kD

�

x

fk

q

q

for m 2 N

0

, 1 < q < 1. Moreover, W

m

q;0;�

(
) denotes the losure of C

1

0

(
) in

W

m

q;�

(
), W

�m

q;�

:= W

m

q

0

;0;�

(
)

0

, where

1

q

+

1

q

0

= 1, its dual, and W

m

q

(
) := W

m

q;�

j

�=0

,

W

m

q;0

(
) :=W

m

q;0;�

j

�=0

denote the Sobolev spaes equipped with the usual parameter-

independent norm.

If u 2 W

m

q

(
),m � 1+j, j 2 N

0

, then 

j

u := �

j

�

uj

�


, where � denotes the exterior

normal vetor. Beause of [14, Theorem 1.1℄, 

j

: W

m

q;�

(R

n

+

) ! W

m�j�

1

q

q;�

(R

n�1

) with

k

j

uk

m�j�

1

q

;q;�

� Ckuk

m;q;�

uniformly in � 2 C , where

W

s

q;�

(R

n�1

) := B

s

qq;�

(R

n�1

) = fa 2 W

[s℄

q

(R

n�1

) : kak

s;q;�

<1g;

kak

q

s;q;�

:= (1 + j�j)

fsg

2

kak

q

[s℄;q;�

+

Z

R

n�1

Z

R

n�1

ja(x)� a(y)j

q

jx� yj

n�1+fsgq

dydx

for s 2 R

+

n N

0

. Sine �


0

is the disjoint union of �


�

0

, we an identify a funtion

a : �


0

! C with its values on the upper boundary a

+

and the lower boundary a

�

.

Hene we identify the orresponding trae spae W

m�

1

q

q;�

(�


0

) with W

m�

1

q

q;�

(R

n�1

) �

W

m�

1

q

q;�

(R

n�1

).

Lemma 2.1 Let 1 < q <1, m 2 N. Then

(

0

; : : : ; 

m�1

) : W

m

q;�

(


0

)!

m�1

Y

j=0

W

m�j�

1

q

q;�

(�


0

)

is a surjetive and ontinuous linear mapping with operator norm independent of �.

Moreover, W

m

q;0;�

(


0

) = ff 2 W

m

q;�

(


0

) : 

j

f = 0 for j = 0; : : : ; m� 1g.

Proof: Using a partition of unity on 


0

, the statements are easily redued to the

orresponding statements for the half-spaes R

n

+

, f. [14, Theorem 1.1℄.

Moreover, we de�ne homogeneous and parameter-dependent variants of the Bessel

potential and Besov spaes de�ned in [14℄. Let

_

H

s

q;�

(R

n

) =

�

u 2 S

0

(R

n

) : F

�1

[j�; �j

s

û℄ 2 L

q

(R

n

)

	

; kuk

_

H

s

q;�

:= kj�;D

x

j

s

uk

q

;

for s 2 R, 1 < q <1, � 6= 0,

_

W

m

q;�

(R

n

) :=

_

H

m

q;�

(R

n

) for m 2 Z,

_

B

s

q;�

(R

n

) :=

_

B

s

qq;�

(R

n

) := fa 2

_

W

fsg

q

(R

n

) : kak

�;s;q;�

<1g

kak

q

�;s;q;�

:= j�j

q[s℄

2

kak

q

_

W

fsg

q;�

+

Z

R

n�1

Z

R

n�1

ja(x)� a(y)j

q

jx� yj

n+q[s℄

dydx;
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and B

�s

q;�

(R

n

) := (B

s

q;�

(R

n

))

0

, where 0 < s 62 N and 1 < q <1.

If � = 0, then

_

H

s

q;�

(R

n

),

_

W

m

q

(R

n

), and dotB

s

q;�

are de�ned as the usual homo-

geneous Bessel potential

_

H

s

q

(R

n

), Sobolev

_

W

s

q

(R

n

), and Besov spae

_

B

s

q

(R

n

), resp.;

f. Bergh and Löfström [9, Setion 6.3℄ or Triebel [22℄ for the de�nition of the lat-

ter spaes. If � 6= 0, the spaes oinide with the usual (non-homogeneous) spaes

H

s

q

(R

n

), B

s

q

(R

n

), and W

m

q

(R

n

), respetively, as sets, but with di�erent norms. These

parameter-dependent spaes are well adapted to the Laplae resolvent equation in

R

n

+

and similar problems.

Using the saling operator (M

�

f)(x) = f(j�j

�

1

2

x); � 6= 0; we an onlude simi-

larly to [14, Setion 1℄ that

kuk

_

H

s

q;�

= j�j

�

1

2

(

n

q

+s)

kM

�

fk

H

s

q

; kuk

_

B

s

q;�

= j�j

�

1

2

(

n

q

+s)

kM

�

fk

B

s

q

:

Hene we obtain as in [14, Setion 1℄:

Lemma 2.2 Let 1 < q <1, s

0

; s

1

2 R, s

0

6= s

1

, and � 2 (0; 1). Then

(

_

B

s

0

q;�

(R

n

);

_

B

s

1

q;�

(R

n

))

�;q

=

_

B

s

q;�

(R

n

); (

_

H

s

0

q;�

(R

n

);

_

H

s

1

q;�

(R

n

))

�;q

=

_

B

s

q;�

(R

n

);

(

_

B

s

0

q;�

(R

n

);

_

B

s

1

q;�

(R

n

))

[�℄

=

_

B

s

q;�

(R

n

); (

_

H

s

0

q;�

(R

n

);

_

H

s

1

q;�

(R

n

))

[�℄

=

_

H

s

q;�

(R

n

);

where s = (1� �)s

0

+ �s

1

and (:; :)

�;q

denotes the real and (:; :)

[�℄

the omplex inter-

polation spae, f. [9℄. Moreover, the norm of the interpolation spaes and the norm

of

_

B

s

q;�

(R

n

),

_

H

s

q;�

(R

n

), resp., are equivalent with onstants independent of � 6= 0.

Beause of the analogous interpolation properties of the usual homogeneous Besov

and Bessel potential spaes, f. [9, Chapter 6.3℄, the statements of the latter lemma

are also true for � = 0.

In order to onsider mixed boundary onditions, we de�ne

0

W

m

q

(


0

) := fu 2 W

m

q

(


0

) : 

+

j

u = 0; j = 0; : : : ; m� 1g;

where 

+

j

u = �

j

�

uj

�


+

0

, 1 < q < 1, and m 2 N . Analogously,

0

W

m

q

(


0

) is de�ned.

Moreover,

0

W

�m

q

(


0

) := (

0

W

m

q

0

(


0

))

0

; and

0

W

�m

q

(


0

) := (

0

W

m

q

0

(


0

))

0

:

If f 2 L

q

lo

(


0

) and

supfj(f; v)




0

j : v 2 C

1

(0)

(


0

) \

0

W

1

q

0

(


0

); krvk

q

0

= 1g <1;

then f extends to a unique funtional on

0

W

1

q

0

(


0

). In this ase we write f 2

L

q

lo

(


0

) \

0

W

�1

q

(


0

) for short.

If u 2 L

q

(


0

)

n

with div u 2 L

q

lo

(


0

)\

0

W

�1

q

(


0

), then we de�ne the trae 

+

�

u =

� � uj

�


+

0

2 W

�

1

q

q

(�


+

0

) as

h

+

�

u; vi = (u;rV ) + (div u; V ); (2.3)

6



where v 2 W

1�

1

q

0

q

0

(�


+

0

) and V 2

0

W

1

q

0

(


0

) with 

+

0

V = v. As in the ase of the usual

de�nition of the weak trae 

�

u = � � uj

�


, the de�nition does not depend on the

hoie of V . Moreover,

k

+

�

uk

�

1

q

;q

� C

�

kuk

q

+ k div uk

0

W

�1

q

(


0

)

�

: (2.4)

In the same way we an de�ne 

�

�

u 2 W

�

1

q

q

(�


�

0

).

Lemma 2.3 Let 1 < q <1 and 


0

� R

n

, n � 2, be an in�nite layer. Then

kuk

L

q

(


0

)

� C

q

kruk

L

q

(


0

)

for all u 2

0

W

1

q

(


0

) and u 2

0

W

1

q

(


0

).

Proof: The lemma is an easy onsequene of Poinaré's inequality on the interval

(�1; 1).

Moreover, we will need Korn's inequality sine we also treat the boundary ondi-

tion of seond kind T

+

1

(u; p) = 0, see Setion 4 below.

Lemma 2.4 Let 1 < q <1 and 


0

� R

n

, n � 2, be an in�nite layer. Then

kuk

1;q

� C

q

kS(u)k

q

for all u 2

0

W

1

q

(


0

)

n

and u 2

0

W

1

q

(


0

)

n

, where S(u) = ru+ru

T

.

Proof: The proof is given in [8, Lemma 2.6℄.

Lemma 2.5 Let 


0

� R

n

, n � 2, be an in�nite layer. Then

k

0

vk

1

2

;2;�

� Ck�

n

vk

1

2

2

k((1 + j�j)v;r

0

v)k

1

2

2

for all v 2 W

1

2;�

(R

n

+

);

k

�

0

vk

1

2

;2;�

� Ck(v; �

n

v)k

1

2

2

k((1 + j�j)v;r

0

v)k

1

2

2

for all v 2 W

1

2;�

(


0

): (2.5)

Proof: First let v 2 W

1

2;�

(R

n

+

). As in the parameter-independent ase,

B

1

2

2;�

(R

n�1

) = H

1

2

2;�

(R

n�1

) := fa 2 S

0

(R

n�1

) : h�; �

0

i

1

2

~a(�

0

) 2 L

2

(R

n�1

)g

with equivalent norms, where the onstants in the equivalene an be hosen inde-

pendently of �, f. [14, (1.11)℄. Then

k

0

vk

2

1

2

;2;�

=

Z

R

n�1

h�; �

0

ijev(�

0

; 0)j

2

��

0

= �

Z

R

n�1

2

Z

1

0

(�

n

ev(�

0

; x

n

))h�; �

0

iev(�

0

; x

n

)dx

n

��

0

� Ck�

n

vk

2

k((1 + j�j)v;r

0

v)k

2

beause of Planherel's theorem. If v 2 W

1

2;�

(


0

), the statement easily redues to the

statement for R

n

+

by the use of suitable ut-o� funtions.

7



2.3 Mikhlin-Multiplier Operator

De�nition 2.6 Let H

0

and H

1

be two Hilbert spaes, d 2 R, and k be the smallest

integers >

n

2

. A funtion m 2 C

k

(R

n

n f0g;L(H

0

; H

1

)) is alled an L(H

0

; H

1

)-valued

Mikhlin multiplier of order d if it satis�es

kD

�

�

m(�)k

L(H

0

;H

1

)

� Cj�j

d�j�j

; � 2 R

n

n f0g;

for all � 2 N

n

0

with j�j � k. Moreover, we set

[m℄

(d)

M

= sup

j�j�k

�

kD

�

�

m(�)k

L(H

0

;H

1

)

j�j

�d+j�j

: � 2 R

n

n f0g

	

and, if d = 0, [m℄

M

= [m℄

(0)

M

.

The Mikhlin multipliers of order 0 are the usual Mikhlin multipliers. Ifm is a Mikhlin

multiplier, we denote by

m(D

x

)u = OP(m)u = F

�1

[m(�)û(�)℄; u 2 S(R

n

;H

0

);

the orresponding multiplier operator. If m(�

0

) is a Mikhlin multiplier in n � 1

variables, then OP

0

(m) = m(D

x

0

) denotes the assoiated operator.

THEOREM 2.7 (Vetor-valued Mikhlin-multiplier theorem)

Let 1 < q < 1, H

0

, H

1

be two Hilbert spaes, and let m be a Mikhlin multiplier

(of order 0) with values in L(H

0

; H

1

). Then m(D

x

) extends to a bounded and linear

operator m(D

x

) : L

q

(R

n

;H

0

)! L

q

(R

n

;H

1

) with

km(D

x

)uk

L

q

(R

n

;H

1

)

� C

q

[m℄

M

kuk

L

q

(R

n

;H

0

)

for all u 2 L

q

(R

n

;H

0

).

It is easy to observe that the produt m

1

(�)m

2

(�) of two Mikhlin multipliers m

1

(�)

and m

2

(�) of order d

1

and d

2

, resp., is a again a Mikhlin multiplier of order d

1

+ d

2

if the produt is de�ned. Then of ourse OP (m

1

)OP (m

2

) = OP (m

1

m

2

). More-

over, if m is a multiplier of order d, and if m(�)

�1

2 L(H

1

; H

0

) exists and satis�es

km(�)

�1

k

L(H

1

;H

0

)

� Cj�j

�d

for all � 2 R

n

n f0g, then m(�)

�1

is an L(H

1

; H

0

)-

valued multiplier of order �d. This statement is a onsequene of �

j

m

�1

(�) =

�m(�)

�1

(�

j

m(�))m(�)

�1

and the hain rule. This yields a nie haraterization:

Lemma 2.8 Let m be an L(R

k

)-valued Mikhlin multiplier of order 0 with k 2 N.

Then m(D

x

) : L

q

(R

n

;R

k

)! L

q

(R

n

;R

k

) is invertible for 1 < q <1 i� it is invertible

for q = 2. Moreover, if the operator is invertible, m

�1

(�) exists for all � 2 R

n

n f0g

and is again a Mikhlin multiplier with m(D

x

)

�1

= OP(m

�1

(�)). If km(:)

�1

k

1

=

km(D

x

)

�1

k

L(L

2

(R

n

;R

k

))

� R and [m℄

M

� R for R > 0, then [m(:)

�1

℄

M

� C; where C

depends only on n; k, and R.
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Proof: Let m(D

x

) : L

2

(R

n

;R

k

) ! L

2

(R

n

;R

k

) be invertible. Then the inverse

m(D

x

)

�1

is again a translation invariant operator. Beause of Stein [20, Chapter

2, 1.4, Proposition 2℄, m(D

x

)

�1

= OP(m

0

(�)) for a bounded measurable funtion

m

0

: R

n

! L(R

k

). Sine m(D

x

)OP(m

0

(�)) = OP(m(�)m

0

(�)) = I, m

0

(�) = m

�1

(�)

a.e. Hene m

�1

(�) is a bounded ontinuous funtion for � 6= 0, whih implies, as seen

above, that m

�1

(�) is a Mikhlin multiplier. Therefore (m(D

x

))

�1

: L

q

(R

n

;R

k

) !

L

q

(R

n

;R

k

) exists. The onverse is trivial.

In the following, we will deal with operators of the form

Ka := OP

0

(

~

k(�

0

; x

n

))a and Tf :=

Z

I

OP

0

(

~

t(�

0

; y

n

))f(:; y

n

)dy

n

;

where a is a funtion de�ned on R

n�1

and f is a funtion de�ned on R

n�1

� I with

I = R

+

or I = (�1; 1). Usually K and T will be alled Poisson operator and

trae operator (of lass 0), resp., and

~

k(�

0

; x

n

) and

~

t(�

0

; y

n

) are the so alled symbol-

kernels of K and T , resp. We also write k(�

0

; D

n

) : C ! L

2

(R

+

) : a 7!

~

k(�

0

; x

n

)a and

t(�

0

; D

n

) : L

2

(R

+

) ! C : f 7!

R

1

�1

~

t(�

0

; y

n

)f(y

n

)dy

n

for the orresponding operator-

valued symbols.

A fundamental example isK

�

:= OP

0

(e

�(�+j�

0

j

2

)

1

2

x

n

), whih is the Poisson operator

to the Laplae resolvent equation with Dirihlet boundary ondition in R

n

+

. An

important example of a trae operator is

T

�

j;�

f := 

�

j

(���)e




0

f = (�1)

j

Z

1

�1

OP

0

 

e

�(�+j�

0

j

2

)

1

2

(1�y

n

)

2(�+ j�

0

j

2

)

1

2

1�j

!

f(:; y

n

)dy

n

; (2.6)

whih is part of the resolvent of the Laplaian in 


0

. Both examples an be onsidered

as operator-valued Mikhlin multipliers beause of the next lemma.

Lemma 2.9 Let s > �

1

2

, Æ 2 (0; �), and �

�

= (�+ j�

0

j

2

)

1

2

. Then







D

�

0

�

0

e

��

�

x

n







L

2

(R

+

;x

2s

n

)

� C

Æ;�

0

;s

j�; �

0

j

�

1

2

�s�j�

0

j

uniformly in � 2 �

Æ

[ f0g, �

0

2 R

n�1

with (�; �) 6= 0 for all �

0

2 N

n�1

0

.

Proof: Obviously,

~

k

�

(�

0

; x

n

) = e

��

�

x

n

, x

n

� 0, is quasi-homogeneous of degree �1

in the sense that

~

k

r

2

�

(r�

0

;

1

r

x

n

) =

~

k

�

(�

0

; x

n

) for all r > 0. Hene D

�

0

�

0

~

k

�

(�

0

; x

n

) is

quasi-homogeneous of degree �1� j�

0

j. More preisely, it is easy to verify that

D

�

0

�

0

~

k

�

(�

0

; x

n

) =

j�

0

j

X

j=0

m

�

0

;j

(�

0

; �)x

j

n

e

��

�

x

n

;

where m

�

0

;j

(�

0

; �) are homogeneous funtions of degree �j�

0

j + j in (�

1

2

; �

0

), whih

are smooth in (�; �

0

) 2 (�

Æ

� R

n�1

) n f0g. Therefore jm

�

0

;j

(�

0

; �)j � C

Æ;�

0

j�; �

0

j

�j�

0

j+j

,
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whih implies







D

�

0

�

0

e

��

�

(1�x

n

)







2

L

2

(R

+

;x

2s

n

)

� C

Æ;�

0

j�

0

j

X

j=0

j�; �

0

j

�2j�

0

j+2j

Z

1

0

x

2s+2j

n

e

�

Æ

j�;�

0

jx

n

dx

n

� C

Æ;�

0

j�; �

0

j

�1�2s�2j�

0

j

beause of (2.1) and (2.2).

Corollary 2.10 Let 1 < q <1, Æ 2 (0; �), s > �

1

2

, " 2 (0;

1

q

0

), b > 0, and � 2 N

0

.

Then K

�

:= OP

0

(e

��

�

x

n

) and D

�

x

K

�

, � 2 N

n

0

, de�ned on S(R

n�1

) extend to bounded

operators

K

�

:

_

H

�

1

2

�s

q;�

(R

n�1

)! L

q

(R

n�1

;L

2

(R

+

; x

2s

n

)); K

�

:

_

B

�

1

q

q;�

(R

n�1

)! L

q

(R

n

+

);

D

�

x

K

�

:

_

B

�

1

2

�"

q;�

(R

n�1

)! L

q

(R

n�1

;L

2

(b;1)); " > 0:

Proof: The �rst statement is a diret onsequene of Lemma 2.9 and the vetor-

valued Mikhlin multiplier theorem. The seond part is obtained via interpolation

similarly as in [14, Theorem 1.8℄: Firstly, let q � 2. Then

(L

2

(R

+

; x

2s

0

n

); L

2

(R

+

; x

2s

n

))

�;q

� L

q

(R

+

);

where s

0

<

1

q

�

1

2

< s and � = (

1

q

�

1

2

� s

0

)=(s � s

0

), f. [14, Theorem 1.8℄. Hene

real interpolation yields the seond ontinuity. Seondly, let q > 2. Sine �

n

K =

OP

0

(e

��

�

x

n

)OP

0

(��

�

) and OP

0

(��

�

) :

_

H

1

2

q;�

(R

n�1

)!

_

H

�

1

2

q;�

(R

n�1

), we onlude

K :

_

H

1

2

q;�

(R

n�1

)! L

q

(R

n�1

;

_

H

1

2

(R

+

)):

Beause of

(

_

H

1

2

(R

+

); L

2

(R

+

))

1

q

�

1

2

;q

=

_

B

1

2

�

1

q

2;q

(R

+

) �

_

B

0

q;2

(R

+

) �

_

H

0

q

(R

+

) = L

q

(R

+

);

(

_

H

1

2

q;�

(R

n�1

);

_

H

�

1

2

q;�

(R

n�1

))

1

q

�

1

2

;q

=

_

B

�

1

q

q;�

(R

n�1

);

f. Lemma 2.2 and the homogeneous ounterpart of [9, Theorem 6.4.4℄, real interpo-

lation yields the seond part as before.

It is easy to see that K

�

= OP

0

(e

��

�

(x

n

�b=2)

)OP

0

(e

��

�

b=2

), where OP

0

(e

��

�

b=2

) is

a smoothing operator, that D

�

x

K

�

= OP

0

(�

�

0

(i�

�

)

�

n

)K

�

, and that L

2

(

b

2

;1; (x

n

�

b

2

)

2"

) ,! L

2

(b;1) if " > 0. Hene we get from the previous statements by a simple

translation in x

n

kD

�

x

K

�

ak

L

q

(R

n�1

;L

2

(b;1))

� C

"

kD

�

x

K

�

ak

L

q

(R

n�1

;L

2

(

b

2

;1;(x

n

�

b

2

)

2s

))

� C

";�;Æ

kOP

0

(e

��

�

(x

n

�b=2)

)ak

L

q

(R

n�1

;L

2

(

b

2

;1;(x

n

�

b

2

)

2s

))

� C

";�;Æ

kak

_

H

�

1

2

�s

(R

n�1

)

:

Real interpolation with di�erent values of " �nishes the proof.
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3 Laplae Resolvent Equation in an In�nite Layer

We onsider the Laplae resolvent equation with mixed Neumann-Dirihlet boundary

onditions.

(���)u = f in 


0

; (3.1)



+

1

u = a

+

on �


+

0

; (3.2)



�

0

u = a

�

on �


�

0

: (3.3)

First let f = 0. Using partial Fourier transformation, a alulation yields u(x

0

; x

n

) =

F

�1

�

0

7!x

0

[k

10;�

(�

0

; D

n

)~a(�

0

)℄, where

k

10;�

(�

0

; D

n

)~a :=

e

��

�

(1�x

n

)

1 + e

�4�

�

�

~a

+

�

�

+ e

�2�

�

~a

�

�

+

e

��

�

(1+x

n

)

1 + e

�4�

�

�

~a

�

� e

�2�

�

~a

+

�

�

�

(3.4)

for given a

�

2 C

1

0

(R

n�1

) and with �

�

= (�+ j�

0

j

2

)

1

2

. It is easy to see that m

�

(�

0

) :=

(1 + e

�4�

�

)

�1

is a Mikhlin multiplier with [m

�

(�

0

)℄

M

� C

Æ

uniformly in � 2 �

Æ

[ 0,

f. [3, Proof of Lemma 4.1℄. Therefore and beause of Corollary 2.10, K

10;�

=

OP

0

(k

10;�

(�

0

; D

n

)) extends to a bounded operator

K

10;�

:

_

B

m�

1

q

q;�

(R

n�1

)�

_

B

m+1�

1

q

q;�

(R

n�1

)! r




0

_

W

m+1

q;�

(R

n

) (3.5)

form 2 N

0

. Note that r




0

_

W

m+1

q

(R

n

) 6=

_

W

m+1

q

(


0

), f. [7, Remarks 2.7℄ for details. If

the boundary onditions in (3.2)-(3.3) are interhanged, we get the analogous result

for the orresponding Poisson operator K

01;�

.

Now we onsider a weak formulation, whih will be fundamental for the redution

of the generalized Stokes equation in Setion 4.1 below.

(���)u = � div f in 


0

; (3.6)



+

1

u = 

+

�

f on �


+

0

; (3.7)



�

0

u = 0 on �


�

0

(3.8)

for f 2 L

q

(


0

)

n

, where (3.6) is understood in the sense of distributions, (3.8) shall

hold in the sense of usual traes, and (3.7) is understood as 

+

�

(ru�f) = 0, whih is

de�ned in (2.3). Beause of the de�nition of 

+

�

(ru� f) = 0, the system (3.6)-(3.8)

is equivalent to the variational problem

�(u; v) + (ru;rv) = hF; vi for all v 2

0

W

1

q

0

(


0

); (3.9)

where hF; vi := (f;rv); v 2

0

W

1

q

0

(


0

), is an element of

0

W

�1

q

(


0

).

Lemma 3.1 Let 1 < q; r < 1, Æ 2 (0; �), and � 2 �

Æ

[ f0g. Then for every

F 2

0

W

�1

q

(


0

) there is a unique solution u 2

0

W

1

q;�

(


0

) of (3.9), whih satis�es

(1 + j�j)kuk

0

W

�1

q

+ kuk

1;q;�

� C

Æ;q

kFk

0

W

�1

q

(3.10)

uniformly in � 2 �

Æ

[ f0g. If additionally F 2

0

W

�1

r

(


0

), then u 2

0

W

1

r

(


0

).

11



Proof: Identifying

0

W

�1

q

(


0

) with a losed subspae of L

q

(


0

)

n

and using the Hahn-

Banah theorem, for F 2

0

W

�1

q

(


0

) there is an f 2 L

q

(


0

)

n

suh that hF; vi =

(f;rv) for all v 2

0

W

1

q

0

(


0

) and kfk

q

� CkFk

0

W

�1

q

. Hene it is su�ient to prove

the lemma for funtionals of the latter form.

Let g 2 C

1

(0)

(
). Then we set

R

10;�

g := r




0

(���)

�1

e




0

g �K

10;�

�



+

1

(���)

�1

e




0

g



�

0

(���)

�1

e




0

g

�

:

R

01;�

is de�ned analogously. If we set v = ��

n

R

01;�

g, then v solves

(���)v = ��

n

g in 


0

;



+

1

v = 

+

0

(�(���

0

)v + g) = 

+

0

g on �


+

0

;



�

0

v = 0 on �


�

0

:

Thus we de�ne u := � div

0

R

10;�

f

0

� �

n

R

01;�

f

n

for f 2 C

1

(0)

(


0

)

n

. Using integration

by parts, u solves (3.9).

Sine r




0

(���)

�1

e




0

: L

q

(


0

)! r




0

_

B

2

q;�

(R

n

), 

�

j

(���)

�1

e




0

g 2

_

W

2�j�

1

q

q;�

(�


�

0

)

for j = 0; 1. Thus, beause of (3.5),

k(j�j

1

2

u;ru)k

q

� C

q;Æ

kfk

q

� C

q;Æ

kFk

0

W

�1

q

uniformly in � 2 �

Æ

[ f0g. Beause of 

�

0

u = 0 and Poinaré's inequality j�j

1

2

an

be replaed by (1 + j�j)

1

2

. Hene we an extend the solution operator by ontinuity

suh that (3.9) holds. Therefore the mapping

A

�;q

:

0

W

1

q

(


0

)!

0

W

�1

q

(


0

) : u 7! �(u; :) + (ru;r:)

is surjetive for 1 < q <1. Sine A

0

�;q

= A

�;q

0

, A

�;q

is also injetive.

Moreover, (3.9) and the estimate of kruk

q

imply the estimate of j�jkuk

0

W

�1

q

. Fi-

nally, the regularity assertion holds sine the solution operators for q and r oinide

in the dense subset C

1

(0)

(


0

).

Corollary 3.2 (Helmholtz deomposition)

Let 1 < q <1, n � 2, and 


0

� R

n

be an in�nite layer. Then there is a ontinuous

projetion P

q

: L

q

(


0

)

n

! L

q

(


0

)

n

suh that

R(P

q

) =

0

J

q

(


0

) := fu 2 L

q

(


0

)

n

: div u = 0; 

+

1

u = 0g;

N (P

q

) =

0

G

q

(


0

) := frp 2 L

q

(


0

)

n

: p 2

0

W

1

q

(


0

)g:

Proof: The proof is an easy modi�ation of the standard proof, f. [18℄. The pro-

jetion P

q

is de�ned as P

q

f = f�rp, where p is the solution of (3.6)-(3.8) for � = 0.
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Lemma 3.3 Let 1 < q; r < 1, Æ 2 (0; �), m 2 N

0

, and � 2 �

Æ

[ f0g. Then for

every f 2 W

m

q;�

(


0

) there is a unique solution u = R

10;�

f 2 W

m+2

q;�

(


0

) of (3.1)-(3.3)

with a

�

= 0. Moreover, kuk

m+2;q;�

� C

Æ;m;q

kfk

m;q;�

uniformly in � 2 �

Æ

[ f0g. If

additionally f 2 W

m

r;�

(


0

), then u 2 W

m+2

r;�

(


0

).

Proof: W.l.o.g. let m = 0. Beause of Lemma 3.1, there is a unique solution u 2

0

W

1

q

(


0

) of (3.9) with right-hand side hF; vi := (f; v). Di�erentiating in tangential

diretion, it is easy to observe that �

j

u 2

0

W

1

q

(


0

) solves (3.9) with right-hand side

hF

j

; vi := (f; �

j

v), j = 1; : : : ; n� 1. Using (3.9), we obtain ��

2

n

u = f � (���

0

)u in

the sense of distributions, where f � (���

0

)u 2 L

q

(


0

). Hene u 2 W

2

q

(


0

). Sine

(3.9) implies (���)u = f a.e. in 


0

,

(

+

1

u; 

+

0

v) = (ru;rv) + (�u; v) = (f; v)� �(u; v) + (�u; v) = 0

for all v 2

0

W

1

q

0

(


0

), whih implies 

+

1

u = 0.

Finally, for � = 0, we ompare the Poisson operator K

10

:= K

10;�

j

�=0

with the

loalized parametrix

e

K

10

a :=  

+

K

+

1

a

+

+  

�

K

�

0

a

�

; (3.11)

where K

�

j

a

�

= OP

0

�

j�

0

j

�j

e

�j�

0

j(1�x

n

)

�

a, j = 0; 1, denotes the Poisson operator of the

Dirihlet (j = 0) or the Neumann problem (j = 1), resp., in R

n

<1

= f(x

0

; x

n

) : x

n

< 1g

or in R

n

>�1

= f(x

0

; x

n

) : x

n

> �1g, resp. Furthermore,  

�

2 C

1

(0)

([�1; 1℄) with

 

�

(x

n

) = 1 if dist(x

n

;�1) �

1

2

, supp 

+

� (�1; 1℄, and supp 

�

� [�1; 1).

The following result, whih will be needed for the analysis of the redued Stokes

equations in 


0

, shows that the error of this loalization is of lower order.

Lemma 3.4 Let 0 < " <

1

2

, and let

e

K

10

be de�ned as above. Then

k(rK

10

�r

e

K

10

)ak

2

� C

�

ka

+

k

_

B

�

1

2

�"

2

+ ka

�

k

W

1

2

�"

2

�

for all a

+

2

_

B

�

1

2

�"

2

(R

n�1

) and a

�

2 W

1

2

�"

2

(R

n�1

).

Proof: First of all, note that W

1

2

�"

2

(R

n�1

) ,!

_

W

1

2

�"

2

(R

n�1

) and

_

B

�

1

2

�"

2

(R

n�1

) ,!

W

�

1

2

2

(R

n�1

). Hene rK

10

a and

e

K

10

a are well de�ned.

We use that

��(K

10

�

e

K

10

)a = S

e

K

10

a;



+

1

(K

10

�

e

K

10

)a = 0; 

�

0

(K

10

�

e

K

10

)a = 0;

where S is a di�erential operator of order 1 with oe�ients supported in suppr 

+

[

suppr 

�

. Hene r(K

10

�

e

K

10

)a = rR

10

S

e

K

10

a, where R

10

is the solution operator
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of (3.1)-(3.3) with a

�

= 0 and � = 0. Sine the oe�ients of S are supported in

R

n�1

� (�a; a) for an a < 1, Corollary 2.10 and Lemma 3.3 imply

kr(K

10

�

e

K

10

)ak

2

� CkS

e

K

10

ak

2

� C

�

ka

+

k

_

B

�

1

2

�"

2

+ ka

�

k

W

1

2

�"

2

�

:

Remark 3.5 It is obvious that all statements remain true if we interhange the

boundary onditions of the upper and the lower boundary, i.e. onsider mixed

Dirihlet-Neumann onditions. The orresponding solution operators will be denoted

by K

01;�

, R

01;�

, K

01

, R

01

, and

e

K

01

.

Moreover, we an add an a

�

2 W

1�

1

q

q;�

(�


�

0

) in (3.8) or onsider a general (a

+

; a

�

) 2

W

m+1�

1

q

q;�

(�


+

0

)�W

m+2�

1

q

q;�

(�


�

0

) in Lemma 3.3 and get analogous statements.

4 Stokes Equations in an In�nite Layer

4.1 The Redued Stokes Equations

In the following redution, whih is an adaption of the redution used in [15℄, the

pressure p will be expressed in dependene on the data (f; g) and the (unknown)

solution u. Therefore we will end up with a pseudodi�erential equation, where p is

replaed by a non-loal operator applied to u, whih is also alled singular Green

operator in the theory of pseudodi�erential boundary value problems, f. [12℄.

Let (u; p) 2 W

2

q;�

(


0

)

n

�W

1

q;�

(


0

) be a solution of (1.1)-(1.4) with

f 2 L

q

(


0

)

n

; a

+

2 W

1�

1

q

q;�

(�


+

0

)

n

; g 2 W

1

q;�

(


0

): (4.1)

Applying � div and 

�

�

to the equation (1.1) and using (1.2), p solves

��p = � div f + (���)g in 


0

;



+

0

p = 2

+

1

u

�

� a

+

�

on �


+

0

;



�

1

p = 

+

�

f on �


�

0

:

Now we split p = p

1

+ p

2

suh that p

1

depends only on u and p

2

depends only on

(f; g; a

+

). Then we end up with the redued Stokes equations

(���)u+G

10

u = f

r

in 


0

; (4.2)

T

0

1

+

u = a

+

r

on �


+

0

; (4.3)



�

0

u = 0 on �


�

0

(4.4)
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with

G

10

u = rK

01

�

2

+

1

u

�



�

�

(��r div)u

�

; T

0

1

+

u =

�

(

+

0

� � S(u))

�



+

0

div u

�

; a

+

r

=

�

a

+

�



+

0

g

�

;

f

r

= f �rp

2

= f �rR

01

(� div f + (���)g)�rK

01

�

�a

+

�



�

�

f + 

�

1

g

�

;

where v = (v

�

; v

�

) denotes the deomposition of a vetor �eld v de�ned on �


0

into

the tangential and normal omponents. Moreover, K

01

and R

01

are de�ned as in

Remark 3.5.

Beause of Lemma 3.1,

krp

1

k

q

� C

q

�

k

�

�

(��r div)uk

�

1

q

;q

+ k

+

1

u

�

k

1�

1

q

;q

�

; (4.5)

krp

2

k

q

� C

q

�

kfk

q

+ kgk

1;q;�

+ j�jkgk

0

W

�1

q

(


0

)

+ ka

+

k

1�

1

q

;q;�

�

; (4.6)

where we have used that hF; vi := ((� �r div)u;rv) = h

�

�

(��r div)u; 

�

0

vi for

all v 2

0

W

1

q

0

(


0

) beause of (2.3) and therefore kFk

0

W

�1

q

� Ck

�

�

(��r div)uk

�

1

q

;q

.

The most important fat about this redution is that we may drop the equation

div u = g: If u solves the equations (4.2)-(4.4) with f

r

de�ned as above, then

(���)div u = (���)g in 


0

;



+

0

div u = 

+

0

g on �


+

0

;



�

1

div u = 

�

1

g on �


�

0

beause of the onstrution and the de�nition of the operators in the redued Stokes

equations. Sine these equations are uniquely solvable, div u = g.

Hene the generalized Stokes equations (1.1)-(1.4) with right-hand side as in (4.1)

are uniquely solvable if the redued Stokes equations (4.2)-(4.4) are uniquely solvable

for f

r

2 L

q

(


0

)

n

and a

+

r

2 W

1�

1

q

q

(�


+

0

)

n

. Moreover, if the solution u of the redued

Stokes equations an be estimated by

kuk

2;q;�

� C

q;Æ

�

kf

r

k

q

+ ka

+

r

k

1�

1

q

;q;�

�

(4.7)

uniformly in � 2 �

Æ

[ f0g, Æ 2 (0; �), then the solution (u; p) of the generalized

Stokes equations satis�es (1.5) beause of (4.5)-(4.6).

The onverse impliation is also true: If f

r

2 L

q

(


0

)

n

and a

+

r

2 W

1�

1

q

q;�

(�


+

0

)

n

,

then we get a solution u of the redued Stokes equations (4.2)-(4.4) as follows: We

solve the generalized Stokes equations (1.1)-(1.4) with right-hand side (f; g; a

+

) with

a

+

= ((a

+

r

)

�

; 0), where g is determined as solution of

(���)g = div f

r

in 


0

;



+

0

g = (a

+

r

)

�

on �


+

0

;



�

1

g = 

�

�

f

r

on �


�

0

:
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Then, beause of Lemma 3.1,

(1 + j�j)kgk

0

W

�1

q

+ kgk

1;q;�

� C

q;Æ

�

kf

r

k

q

+ ka

+

r

k

1�

1

q

;q;�

�

and the solution (u; p) of the generalized Stokes equations satis�es

kuk

2;q;�

+ krpk

q

� C

q;Æ

�

kfk

q

+ ka

+

�

k

1�

1

q

;q;�

�

for all � 2 �

Æ

[ f0g:

Moreover, p solves ��p = 0 with 

�

1

p = 

�

�

(� � r div)u and 

+

0

p = 2

+

1

u

�

. Thus

rp = G

10

u and u solve the redued Stokes equations. Hene we have proved:

Lemma 4.1 Let 1 < q < 1, Æ 2 (0; �), and � 2 �

Æ

[ f0g. Then the generalized

Stokes equations (1.1)-(1.4) are uniquely solvable for given data as in (4.1) i� the

redued Stokes equations (4.2)-(4.4) are uniquely solvable for every f

r

2 L

q

(


0

)

n

and a

+

r

2 W

1�

1

q

q;�

(�


+

0

)

n

. Moreover, the solutions of the generalized Stokes equations

satisfy (1.5) i� the solutions of the redued Stokes equations satisfy (4.7).

Remark 4.2 Beause of (4.2)-(4.4), it is natural to de�ne the redued Stokes operator

A

q

:= ��+G

10

on L

q

(


0

)

n

with domain

D(A

q

) = fu 2 W

2

q

(




)

n

: 

�

0

u = 0; T

0

1

+

u = 0g:

Then Theorem 1.1 and Lemma 4.1 imply that A

q

is invertible and is the generator

of a bounded analyti semi-group. Moreover, it is proved in [6℄ that A

q

admits a

bounded H

1

-alulus, f. [16℄. Hene it possesses bounded imaginary powers and

therefore has maximal regularity in L

q

-Sobolev spaes due to Dore and Venni [10℄.

The redution desribed above an be done in many types of domains. In the

following we will need the unique solvability of the redued Stokes equation in R

n

+

:

(���)u+G

j

u = f in R

n

+

; (4.8)

T

0

j

u = a on �R

n

+

(4.9)

for j = 0; 1 with

G

1

= rK

0

2

1

u

�

; T

0

1

u =

�

(

0

� � S(u))

�



0

div u

�

;

G

0

= rK

1



�

(��r div)u; T

0

0

u = 

0

u:

Lemma 4.3 Let 1 < q <1, Æ 2 (0; �), � 2 �

Æ

, and j = 0 or j = 1. Then for every

(f; a) 2 L

q

(R

n

+

)

n

�

_

B

2�j�

1

q

q;�

(R

n�1

)

n

there is a unique solution u 2

_

W

2

q;�

(R

n

+

)

n

of the

redued Stokes equations (4.8)-(4.9). Moreover,

j�jkuk

q

+ j�j

1

2

kruk

q

+ kr

2

uk

q

� C

Æ

(kfk

q

+ kak

�;2�j�

1

q

;q;�

)

uniformly in � 2 �

Æ

.
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Proof: The lemma is a onsequene of [15, Theorem 6.1℄. It an also be proved

using the unique solvability of the generalized Stokes equations in R

n

+

, f. Farwig

and Sohr [11, Theorem 1.3℄ for the Dirihlet ase and Shibata and Shimizu [17, The-

orem 4.3℄ for the ase j = 1, and an analogous equivalene statement of Lemma 4.1.

4.2 Redution to the Boundary

Using the produt struture of the term G

10

in the redued Stokes equations, we will

obtain a representation of the solution operator to the Stokes equations in terms of

the solution operator of the Laplae resolvent equation and an operator ating only

on the boundary. The idea of this redution goes bak to [13, Setion 3℄.

Let

A

10;�

=

�

(���)I



+

1

�

: W

2

q;�

(


0

)

n

\

0

W

1

q;�

(


0

)

n

!

L

q

(


0

)

n

�

W

1�

1

q

q;�

(�


+

0

)

n

be the operator assoiated to the Laplae resolvent equation (3.1)-(3.3) with a

�

= 0

(in n omponents). Then we an express the redued Stokes equations (4.2)-(4.4) as

perturbation of the Laplae resolvent equation

A

r

10;�

= A

10;�

+B

10

with

B

10

=

�

K

r

10

T

r

10

T

0

1

+

� 

+

1

�

; K

r

10

a = rK

01

�

a

+

� div

0

a

�

�

; T

r

10

u =

�

2

+

1

u

�



�

1

u

0

�

;

where we have used that 

�

�

(� �r div)u = �

�

1

div

0

u

0

if 

�

0

u = 0. Here div

0

a

�

=

�

1

a

�

1

+ : : :+ �

n�1

a

�

n�1

.

Remark 4.4 Note that we have de�ned K

r

10

and T

r

10

suh that all operators are of

order 1 in the sense of mapping properties in Sobolev-Slobodekij spaes. Moreover,

we note that W

1�

1

q

q;�

(R

n�1

) ,! W

1�

1

q

q

(R

n�1

) with norms uniformly bounded in �.

Hene

K

r

10

: W

1�

1

q

q;�

(�


+

0

)�W

1�

1

q

q;�

(�


�

0

)

n�1

�

=

W

1�

1

q

q;�

(R

n�1

)

n

! L

q

(


0

)

n

with norms uniformly bounded in �.

Sine A

�1

10;�

= (R

10;�

; K

10;�

) exists for all � 2 �

Æ

[ f0g, A

r

10;�

is invertible i�

I + A

�1

10;�

B

10

� I +K

10;�

T

10

17



is invertible, where

K

10;�

�

a

b

+

�

= R

10;�

K

r

10

a +K

10;�

(b

+

; 0)

T

; T

10

=

�

T

r

10

T

0

1

+

� 

+

1

�

:

Now we use the following simple lemma, f. [13, Lemma 3.1℄:

Lemma 4.5 Let V;W be vetor spaes and let A : V ! W , B : W ! V be linear

mappings. Then I + AB : W ! W is bijetive if and only if I + BA : V ! V is

bijetive. Moreover,

(I +BA)

�1

= I �B(I + AB)

�1

A and (I + AB)

�1

= I � A(I +BA)

�1

B

if the inverses exist.

Hene I +K

10;�

T

10

(and therefore A

r

10;�

) is invertible i�

S

10;�

= I + T

10

K

10;�

: W

1�

1

q

q;�

(R

n�1

)

n

!W

1�

1

q

q;�

(R

n�1

)

n

is invertible. The ruial observation is:

Lemma 4.6 S

10;�

= OP

0

(s

10;�

(�

0

)) is a Mikhlin multiplier operator with [s

10;�

℄

M

�

C

Æ

for all � 2 �

Æ

[ f0g, Æ 2 (0; �).

Proof: This lemma relies on the fat that all operators an be onsidered as

L(H

0

; H

1

)-valued Mikhlin multipliers of a ertain order for suitable Hilbert spaes H

0

,

H

1

. Moreover, all Mikhlin multiplier norms are uniformly bounded in � 2 �

Æ

[ f0g.

We have

S

10;�

�

a

b

+

�

=

�

a+ T

r

10

(R

10;�

K

r

10

a +K

10;�

(b

+

; 0))

b

+

+ (T

0

1

+

� 

+

1

)(R

10;�

K

r

10

a +K

10;�

(b

+

; 0))

�

Let T = T

r

10

or T = T

0

1

+

� 

+

1

. All entries in T onsist of di�erential trae operators

of order 1, whih are of the form 

�

1

+OP

0

(a ��

0

)

�

0

, a 2 C

n�1

. Therefore, it is easy to

observe from (3.4) that TK

10;�

(b

+

; 0) = OP

0

(m

�

(�

0

))b

+

with [m

�

℄

M

� C

Æ

. Moreover,

R

10;�

f = r




0

(���)

�1

e




0

f �K

10;�

�



+

1

(���)

�1

e




0

f



�

0

(���)

�1

e




0

f;

�

:

Beause of (2.6), T (���)

�1

e




0

has a symbol-kernel of the formm

�

(�

0

)e

��

�

(1�y

n

)

with

[m

�

℄

M

� C

Æ

. The same is true for TK

10;�

(

+

1

(���)

�1

e




0

; 

�

0

(���)

�1

e




0

) beause

of (2.6) and (3.4) again. Hene TR

10;�

= OP

0

(t

�

(�

0

; D

n

)) with [t

�

(:; D

n

)℄

(�

1

2

)

M

� C

Æ

as L(C ; L

2

(�1; 1))-valued Mikhlin multiplier beause of Lemma 2.9. Similarly, it

is easy to observe with the aid of (3.4) for � = 0 and Lemma 2.9 that K

r

10

an

be onsidered as L(C ; L

2

(�1; 1))-valued multiplier operator with symbol k

r

10

(�

0

; D

n

)

of order

1

2

. Hene T

10

K

10;�

is an matrix-valued Mikhlin multiplier of order 0 with

18



[T

10

K

10;�

℄

M

� C

Æ

:

Therefore S

10;�

is an invertible mapping on W

1�

1

q

q

(R

n�1

)

N

i� it is invertible on

L

q

(R

n�1

)

N

. Beause of Lemma 2.8, this is the ase i� the operator is invertible on

L

2

(R

n�1

)

N

. Moreover,

kS

�1

10;�

k

L(W

1�

1

q

q

(R

n�1

)

N

)

� C

Æ;q

; uniformly in � 2 �

Æ

[ f0g;

i� the statement is true for q = 2.

Corollary 4.7 Theorem 1.1 holds for 1 < q; r <1 i� it holds for q = r = 2.

4.3 Unique Solvability for q = 2

We start by proving an a priori estimate.

Lemma 4.8 Let Æ 2 (0; �) and � 2 �

Æ

[ f0g. If (u; p) 2 W

2

2;�

(


0

)

n

� W

1

2

(


0

)

is a solution of the generalized Stokes equations (1.1)-(1.4) with right-hand side

(f; g; a

+

) 2 L

2

(


0

)

n

�W

1

2;�

(


0

)�W

1

2

2;�

(�


+

0

)

n

, then

kuk

2;2;�

+ krpk

2

+ k

+

0

pk

1

2

;2;�

� C

Æ

�

kfk

2

+ kgk

1;2;�

+ (1 + j�j)kgk

0

W

�1

2

(


0

)

+ ka

+

k

1

2

;2;�

�

: (4.10)

Proof: If a

+

6= 0, we an hoose a funtion v 2

0

W

2

2;�

(


0

)

n

with 

+

0

v = 0, 

+

1

v

�

= a

+

�

,

2

+

1

v

�

= a

+

�

, and kvk

2;2;�

� Cka

+

k

1

2

;2;�

beause of Lemma 2.1. Then u � v is a

solution of the generalized Stokes equations (1.1)-(1.4) with T

+

1

(u; p) = 0. Hene we

an assume w.l.o.g a

+

= 0.

Let E(u; v) =

1

2

(S(u); S(v)), where S(u) = ru +ru

T

. Using the inherent sym-

metry and Green's formula

E(u; v) = (S(u);rv) = �(�u; v)� (r div u; v) + (

�

S(u); 

0

v): (4.11)

Sine (u; p) is a solution of the Stokes resolvent equation,

(f �rg; u) = �kuk

2

2

+ E(u; u)� (p; g)� (

0

(S(u) � � � p�); 

0

u)

�


0

:

The last term vanishes, sine T

+

1

(u; p) = 

+

0

(S(u)���p�) = 0 and 

�

0

u = 0. Therefore

we obtain by using Korn's inequality, see Lemma 2.4, and maxfRe�; j Im�jg � 

Æ

j�j

for � 2 �

Æ

[ f0g,

(1 + j�j)kuk

2

2

+ kruk

2

2

� C

Æ

(kf �rgk

2

kuk

2

+ j(g; p)j) : (4.12)
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Let ~p 2

0

W

1

2;�

(


0

) be an extension of 

+

0

p with kpk

1;2;�

� Ck

+

0

pk

1

2

;2;�

. Then

(1 + j�j)j(g; p)j � (1 + j�j)kgk

0

W

�1

2

kr(p� ~p)k

2

+ (1 + j�j)

1

2

kgk

2

(1 + j�j)

1

2

k~pk

2

� C

�

(1 + j�j)kgk

0

W

�1

2

+ kgk

1;2;�

��

krpk+ k

+

0

pk

1

2

;2;�

�

Therefore, multiplying (4.12) by (1 + j�j) and using Young's inequality,

(1 + j�j)

2

kuk

2

2

+ (1 + j�j)kruk

2

2

� C

Æ

�

k(f;rg)k

2

2

+

�

(1 + j�j)kgk

0

W

�1

2

+ kgk

1;2;�

��

krpk

2

+ k

+

0

pk

1

2

;2;�

��

: (4.13)

If we set v = �

2

i

u, i = 1; : : : ; n� 1, in (4.11) and integrate by parts, we get

(1 + j�j)k�

i

uk

2

2

+ kr�

i

uk

2

2

� C

Æ

�

k(f;rg)k

2

2

+ k�

i

gk

2

k�

i

pk

2

�

: (4.14)

Expressing p = p

1

+ p

2

by u and the data (f; g), f. Setion 4.1, using (4.5), (4.6),

and the boundary onditions, we get

krpk

2

+ k

+

0

pk

1

2

;2;�

� C

Æ

�

kfk

2

+ kgk

1;2;�

+ (1 + j�j)kgk

0

W

�1

2

+ k

�

1

div

0

u

0

k

�

1

2

;2

+ k

1

u

n

k

1

2

;2;�

�

� C

Æ

�

kfk

2

+ kgk

1;2;�

+ (1 + j�j)kgk

0

W

�1

2

+ k

1

uk

1

2

;2;�

�

: (4.15)

Moreover, beause of Lemma 2.5,

k

1

uk

1

2

;2;�

� Ck(�

n

u; �

2

n

u)k

1

2

2

k((1 + j�j)

1

2

�

n

u;r

0

�

n

u)k

1

2

2

:

Combining this with �

2

n

u = f � (���

0

)u�rp and (4.15), yields

krpk

2

+ k

+

0

pk

1

2

;2;�

� C

Æ

�

kfk

2

+ krgk

2

+ (1 + j�j)kgk

0

W

�1

2

+ k(j�ju; (1 + j�j)

1

2

�

n

u;rr

0

u)k

2

�

:

Finally, if we ombine the latter estimate with (4.13) and (4.14), we are led to

kuk

1;2;�

+ krr

0

uk

2

+ krpk

2

+ k

+

0

pk

1

2

;2;�

� C

Æ

�

kfk

2

+ kgk

1;2;�

+ (1 + j�j)kgk

0

W

�1

2

�

:

Using (1.1), we get the estimate for k�

2

n

uk

2

.

In the next step we onstrut a solution operator for large �.

Lemma 4.9 Let Æ 2 (0; �). Then there is an R > 0 suh that for every � 2 �

Æ

with

j�j � R and for (f; g; a

+

) as in (4.1) the generalized Stokes equations (1.1)-(1.4)

have a unique solution (u; p) 2 W

2

2;�

(


0

)

n

�W

1

2;�

(


0

).

20



Proof: As in the proof of Lemma 4.8 we an assume w.l.o.g. a

+

= 0. Let R

�

0;�

be the

solution operators of the redued Stokes resolvent equations in R

n�1

� (�1;1) with

Dirihlet boundary ondition 

�

0

u = 0 and let R

+

1;�

be the orresponding operators

in R

n�1

� (�1; 1) for the boundary ondition T

0

1

�

(u) = 0. Now we de�ne

e

R

10;�

f =  

+

R

+

1;�

'

+

f +  

�

R

�

0;�

'

�

f;

where '

+

; '

�

is a partition of unity for [�1; 1℄ with '

+

� 1 on [

1

2

; 1℄ and '

�

� 1 on

[�1;�

1

2

℄ and  

�

2 C

1

(0)

([�1; 1℄) with  

�

� 1 on supp'

�

and 0 �  

�

� 1. As usual

we extend '

�

f by zero where it is not de�ned.

Then u =

e

R

10;�

f satis�es

(���)u+G

10

u = f + S

10

u+ S

0

10

u

where S

10

u = �P

+

R

+

1;�

'

+

f � P

�

R

�

0;�

'

�

f with P

�

= 2r 

�

� r+� 

�

and

S

0

10

u = rK

01

(2

+

1

u

�

;�

�

1

div

0

u

0

)�  

+

rK

+

0

2

+

1

u

�

+  

�

rK

�

1



�

1

div

0

u

0

= r(K

01

�

e

K

01

)(2

+

1

u

�

;�

�

1

div

0

u

0

) + (r 

+

)K

+

0

2

+

1

u

�

� (r 

�

)K

�

1



�

1

div

0

u

0

:

Here

e

K

01

is de�ned as in (3.11), see also Remark 3.5. Sine P

�

is a di�erential

operator of order 1 and beause of Lemma 4.3, kS

10

uk

2

� C

Æ

j�j

�

1

2

kfk

2

for � 2

�

Æ

; j�j � 1. Due to Lemma 3.4,

kr(K

01

�

e

K

01

)(2

+

1

u

�

;�

�

1

div

0

u

0

)k

2

� C

"

�

k

+

1

u

�

k

W

1

2

�2"

2

+ k

�

1

div

0

u

0

k

_

B

�

1

2

�2"

2

�

� C

"

k

1

uk

W

1

2

�2"

2

� C

"

kuk

2�2";2

for 0 < " <

1

4

. Here kuk

2�2";2

denotes the B

2�2"

2

(


0

)-norm of u. Sine je

�j�

0

j(1�x

n

)

j �

1, we get sup

jx

n

j�1

k(K

+

0

a)(:; x

n

)k

2

� kak

2

. Thus

k(r 

+

)

e

K

+

0

2

+

1

u

�

k

2

� C

"

k

+

1

u

�

k

1

2

�2";2;R

n�1

� C

"

kuk

2�2";2

:

SineK

�

1

div

0

= K

�

0

OP

0

(i�

0

T

=j�

0

j), we get the same estimate with (r 

�

)

~

K

�

1



�

1

div

0

u

0

on the left-hand side. Beause of kuk

2

� C

Æ

j�j

�1

kfk

2

and kuk

2;2

� C

Æ

kfk

2

, we get

by real interpolation kS

0

01

uk

2

� C

"

kuk

2�2";2

� C

Æ;"

j�j

�"

kfk

2

uniformly in � 2 �

Æ

,

j�j � 1, with 0 < " <

1

4

.

Hene there is an R > 0 suh that I+S

�

is invertible in L(L

q

(


0

)) for � 2 �

Æ

with

j�j � R. Therefore R

10;�

=

e

R

10;�

(I + S

�

)

�1

is the solution operator of the redued

Stokes equation. Beause of Lemma 4.1, the unique solvability of the redued Stokes

equations (for a �xed �) is equivalent to unique solvability of the generalized Stokes

equations.

Lemma 4.10 Theorem 1.1 holds for q = r = 2.
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Proof: Lemma 4.8 implies that the linear operator A

10;�

: X

10;2

! Y

10;2

,

A

10;�

(u; p) := ((���)u+rp; div u; T

+

1

(u; p));

X

10;2

:= (W

2

2;�

(


0

)

n

\

0

W

1

2;�

(


0

)

n

)� fp 2

_

W

1

2

(


0

) : 

+

0

p 2 W

1

2

2;�

(�


+

0

)g;

Y

10;2

:= L

2

(


0

)

n

�W

1

2;�

(


0

)�W

1

2

2;�

(�


+

0

)

n

;

whih orresponds to the generalized Stokes equations, is injetive and has a losed

range for every � 62 (�1; 0). Hene it is a semi-Fredholm operator. Moreover,

Lemma 4.9 implies that A

�1

10;�

exists for all � 2 �

Æ

, j�j � R, for a suitable large

R > 0. Beause of the homotopy invariane of the Fredholm index, A

10;�

has index 0

for every � 62 (�1; 0). Sine A

10;�

is injetive for every � 62 (�1; 0) due to Lemma

4.8, A

10;�

is invertible for these �. Finally, (1.5) for q = 2 is just the statement of

Lemma 4.8.

Hene Theorem 1.1 is an immediate onsequene of Corollary 4.7 and Lemma 4.10.
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