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Abstract

In this paper we prove unique solvability of the generalized Stokes resolvent
equations in an infinite layer Qg = R*~! x (=1,1), n > 2, in L?-Sobolev spaces,
1 < g < oo, with slip boundary condition on the “upper boundary” Q" =
R*~! x {1} and non-slip boundary condition on the “lower boundary” 9Q~ =
R* ! x {~1}. The solution operator to the Stokes system will be expressed
with the aid of the solution operators of the Laplace resolvent equation and a
Mikhlin multiplier operator acting on the boundary. The present result is the
first step to establish an L%-theory for the free boundary value problem studied
by Beale [8] and Sylvester [21] in L?-spaces.
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1 Introduction

Let Qp = R x (=1,1), n > 2, be an infinite layer and let A € C\ (—00,0). We
study the generalized Stokes resolvent equations with mixed boundary conditions
A=ANu+Vp=f inQ,
divu=g¢ in §,

T (u,p) = a* on 09,

Yo u=0 ondQ,

e N N
—_ = = =
= W N =
~— — ~— ~—

where

Ti(u,p) = v+ S(u) = vplogs, S(u) =Vu+(Vu)', 75u =ty

*The present contribution is part of the author’s PhD-thesis and was partially supported by the
German Academic Exchange Service (DAAD).



00F = R* ! x {£1} and v denotes the exterior normal vector on 9. This system
arises in the study of an infinite ocean of water under the force of gravity leading to
a free boundary value problem for the instationary Navier-Stokes equations. Passing
to Lagrangian coordinates, linearizing the transformed system, and applying Laplace
transformation, one ends up with the generalized Stokes system (1.1)-(1.4) in a layer-
like domain Q, = {(2',z,) € R* : v (2') < z, < 7y"(2")}, where v© and 7~ are
suitable functions describing the upper and the lower boundary. Having proved
unique solvability of (1.1)-(1.4) of an infinite layer, the results can be extended to
asymptotically flat layers, which are layer-like domains that are close to an infinite
layer “at infinity”, by means of perturbation arguments and cut-off techniques. This
extension is carried out in [5]. Using pseudodifferential operator techniques, we will
show in [6] the existence of a bounded H.,-calculus of the associated (reduced) Stokes
operator, see Remark 4.2, which implies the maximal regularity of the corresponding
instationary (reduced) Stokes equations. Using these results, one can solve the free
boundary value problem — studied up to now in L?-Sobolev spaces in [8, 21| — in
the setting of L?-Sobolev spaces by a method similar to [19]. The advantage of
the L9-theory is that the regularity assumptions can be reduced in comparison to
8, 21] since one can use the embedding W,/ (Q) < L>(Q) for ¢ > n instead of
W3 (Qo) < L>(Qp) for m > %, cf. [4] or [19] for bounded domains. Of course the
Li-theory is more demanding than the L?-theory based on Hilbert space methods.
Therefore it is divided into several parts.
Our main result is:

THEOREM 1.1 Let 1 < ¢ < 00, § € (0,7), and A € ¥5U {0}. Then for every

1
(f,9) € LY(Q20)" x W, () and a™ € qu,)\q (0Q4)™ there is a unique solution (u,p) €
W2\ (Q0)™ x W/ () of (1.1)-(1.4). Moreover,

1
(1 ADellg + (0 + DIVl + 12l + [l + 11 Pl
< G5 (1, V)l + (1 1D Hlglly + (0 DN s + T2 ) (1)

uniformly in X € X5 U{0}. If additionally (f,g) € L"(Q)" x W', (Q) and a* €
W,},;%(an)n for an 1 <r < oo, then (u,p) € W72\ (Q0)" x W, ().

Here W/, denotes a parameter-dependent variant of the usual Sobolev-Slobodeckij
spaces. These variants and OI/Vq*1 are defined in Section 2.2 below. Moreover, Y5 =
{z € C\ {0} : |arg(2)| < 6}.

The unique solvability of the system (1.1)-(1.2) with (pure) non-slip condition,
uloa, = 0, has been studied by Wiegner [23] using explicit solution formulas obtained
by partial Fourier transformation. Moreover, Abe and Shibata [1, 2] solved the Stokes
resolvent equations, where ¢ = 0, with non-slip boundary condition.

As in [23| we use partial Fourier transformation to calculate the solution operator,
but we do not solve (1.1)-(1.4) directly. Using the approach of Grubb and Solonnikov



[15], we reduce the Stokes system to a pseudodifferential boundary value problem,
which is called reduced Stokes equations. Using the idea of Grubb |13, Section 3|, the
solution operator can be expressed with aid of the solution operator of the Laplace re-
solvent equation with mixed Neumann-Dirichlet boundary condition and the inverse
of a Mikhlin multiplier operator acting on the boundary. The latter inverse exists

1
on W;;E(BQO), 1 < q < oo, iff the generalized or equivalently the reduced Stokes
equations are uniquely solvable for ¢ = 2. Therefore Theorem 1.1 can be reduced to
the case ¢ = 2, cf. Corollary 4.7 below.

The structure of the article is as follows:

In Section 2, we introduce basic notations, function spaces, and some fundamental
results on scalar and operator-valued Mikhlin multiplier operators. In Section 3,
we study the Laplace resolvent equation with mixed Neumann-Dirichlet boundary
conditions, which is fundamental for the reduction of the generalized Stokes equations
done in Section 4.1 and the reduction to the boundary in Section 4.2. As a byproduct
of the results in Section 3, we obtain the Helmholtz decomposition of L9(€2)" in a
form with mixed boundary conditions, cf. Corollary 3.2 below. Finally in Section
4.3, we prove the unique solvability for ¢ = 2, which implies Theorem 1.1 because of
the results obtained by the reduction to the boundary, cf. Corollary 4.7 below.

Remark 1.2 The present approach can be adapted to the case of pure Dirichlet
boundary conditions, which is done in |7, Section 5]. The same is true for all combi-
nations of the boundary conditions studied in [15]. For all these boundary conditions
there is an analogous reduction of the generalized Stokes equations, cf. |15, Section
4 and 5|. Since the corresponding reduced Stokes equations have the same structure,
the reduction to the boundary done in Section 4.2 and all other arguments work by
the same way, see also |13].

But there may arise some difficulties for the case A = 0 which can be an ex-
ceptional case. In the case of pure Dirichlet boundary conditions, the equivalence
of unique solvability of the reduced and the generalized Stokes equations does not
hold for A = 0 if the equations are considered in the L9-Sobolev spaces used in [23]
and in the present contribution. In these spaces the generalized Stokes equations are
uniquely solvable although the reduced Stokes equations are not, cf. |7, Remark 5.4].

2 Preliminaries

2.1 Notation

In the following N denotes the set of natural numbers (without 0), Ny = NU {0}, Z,
R, and C are the sets of integers, real numbers, and complex numbers, respectively.
If @« € Ny is a multi-index, |o| == a1 + ... + ap, a! == ! - ... - a,!. Moreover,
a® =t - af for £ € R and DY := D' ... D¢, where D, = 19, and 9,,f is
the partial derivative with respect to ;. For s € R let [s] be the largest integer < s
and set {s} :=s—[s] €[0,1).



IfAeC & e R, then

€ =A+IEPE, e = A+ +IEPE,  [NE = (A + [EP)?,

where [£| is the Euclidean length of £&. Moreover, X5 := {z € C : |argz| < 0},
d € (0,7), where arg z € (—m,w]. We will use the simple inequalities

(M +5) < |+ s < ColAE + ), (2.1)

Re(A+s%)2 > cs(A+ s?)z], (2.2)

which hold uniformly in A € 5,5 > 0, where (A + 32)% is defined as the unique
square root of A + s* in Y.

If M C R" is measurable and X is a Banach space, then LI(M), 1 < ¢ < o0
denotes the usual Lebesgue-space and L?(M; X) its vector-valued variant. Moreover,
if w: M — R is a measurable function and w(x) > 0 a.e., then LY(M;w) indicates the
Lebesgue-space with respect to the measure dy = w(z)dz. For an open set 2 C R
let L (Q), 1 < ¢ < oo, be the vector space of all measurable functions f: Q — K
K =R or K = C, such that f € LY(BNQ) for all balls B with BNQ # (). Moreover,
S(R™) is the set of all smooth and rapidly decreasing function on R* and S(R"; X)
its vector-valued variant. If Q C R” is a domain, C§°(2) is the set of all smooth
functions such that supp f C €2 is compact. Furthermore,

C'(“(j)(ﬁ) = {f: Q= R: f=ulg, where u € C{°(R")}.

The dual of a topological vector space V' is denoted by V'. If v € V and v’ € V', then
(v,v") :=v'(v) is the duality product. If A: V' — W is a continuous linear operator,
A": W' — V' denotes its adjoint. Moreover, R(A) and N (A) are the range and the
kernel of A, resp.

The Fourier transformation F = F,, ;¢ is defined as

Fandl €)= 1(©) = [ e ")
for a suitable function f: R* — C and F ! denotes its inverse. If z € R*, n > 2, then
we use the decomposition x = (2', x,), where z’ denotes the first n — 1 components.
Moreover, we will use the partial Fourier transformation f(&', z,,) := Foroe [ fIE, xn).
Finally, Qy = R"™! x (—1,1) and R} :=R""" x (0,00). If f and g are defined on
R™ and Qq, ro,f := f|a, and eq,g denote the restriction to {2y and extension by 0 to
R" of f, g, resp.

2.2 Parameter-Dependent Function Spaces

Asin Grubb and Kokholm [14, Section 1|, we introduce function spaces with parameter-
dependent norm. Let 2 C R" be a domain and A € C. Then W4 (Q) = {f € L(Q) :
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Def € L9(Q),|a| < m} is the usual Sobolev space normed by

m—|a|
1 g = D (L+[ADT

la|<m

for m € Ny, 1 < ¢ < co. Moreover, W \(§2) denotes the closure of C5°(Q2) in
W), W "= Wi \(Q), where %+$ = 1, its dual, and W (Q) := W[ =0,
W75(82) := W7 a=0 denote the Sobolev spaces equipped with the usual parameter-

a
independent norm.

Ifue Wr(Q), m>1+j, j € Ny, then vju := dIulpq, where v denotes the exterior

1
normal vector. Because of [14, Theorem 1.1], v;: W (R}) — W:/\ T (R*~') with
1Viull 1 gx < Clltflmgx uniformly in A € C, where

q7 k)

WeL(RYY) = B

a9,A
_ q W
lelfgn = )P halty [ [ OO by

for s € Ry \ Ny. Since 09 is the disjoint union of 9QF, we can identify a function
a: 09y — C with its values on the upper boundary a™ and the lower boundary a™.

(R") = {a e WSR") ||a||sqx<00}

m L mo L
Hence we identify the corresponding trace space W, , *(05%) with W, *(R*') x
mo L
Wq,)\ q (Rnfl)‘

Lemma 2.1 Let 1 < g < oo, meN. Then

m—1 1
(Y0r -+ s Y1) s W) = [ Won ' * (0%)
j=0

15 a surjective and continuous linear mapping with operator norm independent of \.

Moreover, W (%) = {f € W/\(S%) : vjf =0 for j=0,...,m—1}.

Proof: Using a partition of unity on €, the statements are easily reduced to the
corresponding statements for the half-spaces R , cf. [14, Theorem 1.1]. ]
Moreover, we define homogeneous and parameter-dependent variants of the Bessel
potential and Besov spaces defined in [14]. Let

H\(®) = {u e S'(RY): F7 X&) € LR,

irs = 1A DaPull,
for s € R, 1 <q<oo, A#0, W (R) := H™ (R") for m € Z,

B;\(R") = B, ,(R"):={a€ W{S}(R")' ||a|| qu < oo}

= Wl + lotw) = sl g
SEA T “ L rn—1 Jgn—1 |x—y|“+q yar,
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and B_}(R") := (B; ,(R"))", where 0 < s ¢ N and 1 < ¢ < oo.

If A =0, then H;y/\(R"), qu(R"), and dotBj , are defined as the usual homo-
geneous Bessel potential H;(]R”), Sobolev qu (R™), and Besov space B; (R™), resp.;
cf. Bergh and Lofstrom [9, Section 6.3] or Triebel [22] for the definition of the lat-
ter spaces. If A # 0, the spaces coincide with the usual (non-homogeneous) spaces
H(R"), B;(R"), and W*(R"), respectively, as sets, but with different norms. These
parameter-dependent spaces are well adapted to the Laplace resolvent equation in
R} and similar problems.

Using the scaling operator (M, f)(z) = f(|A| 2a),A # 0, we can conclude simi-
larly to |14, Section 1] that

_Lln g
i, = Al 2G| My f|

_Llng g
B, = 2G| My f|

ul wy o lul B3

Hence we obtain as in |14, Section 1]:

Lemma 2.2 Let 1 < ¢ < 00, sg,51 € R, 59 # s1, and 0 € (0,1). Then
(BA(R"), BIA(R"))o = BiA(RY),  (H3(R"), Hy\(R))o = By \(R),
(Bia(R"), By (R))ig) = Boa(RY),  (HyA(RY), Hy (R*))ig) = Hy A (R"),
where s = (1 — 0)sg + 0sy and (.,.)g,q denotes the real and (.,.)r the complex inter-

polation space, cf. [9]. Moreover, the norm of the interpolation spaces and the norm
of B; \(R"), H, \(R"), resp., are equivalent with constants independent of A # 0.

Because of the analogous interpolation properties of the usual homogeneous Besov
and Bessel potential spaces, cf. |9, Chapter 6.3|, the statements of the latter lemma
are also true for A = 0.

In order to consider mixed boundary conditions, we define

W () = {u e W (Q): 7u=0,j=0,...,m—1},

where v u = 8£u|3%+, 1 < ¢ < oo, and m € N. Analogously, ¢W;"() is defined.
Moreover,

W) = (W), and oW, () = W ()"
If f € Lj, () and
sup{|(f, v)a,|: v € CF)(Q0) N oWy (), [Volly = 1} < o0,
then f extends to a unique functional on (Wj;(€). In this case we write f €

L} (Q) NOW, () for short.

loc

If u e LY(Q)™ with divu € L]

1e(Q0) W1 (), then we define the trace v,fu =

(vfu,v)y = (u, VV)+ (divu, V), (2.3)

v
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1— . :
where v € W, * (0Qq) and V' € (W (€) with 7§’V = v. As in the case of the usual
definition of the weak trace vy,u = v - ulspq, the definition does not depend on the
choice of V. Moreover,

Il sy < € (Il + 11 div a0, - (2.4)
In the same way we can define v, u € W, “ (09 ).

Lemma 2.3 Let 1 < g < o0 and Q9 CR", n > 2, be an infinite layer. Then
[ullLae) < Coll VullLaa)
for all w € "W (Q) and u € oW, ().
Proof: The lemma is an easy consequence of Poincaré’s inequality on the interval
(—1,1). |
Moreover, we will need Korn’s inequality since we also treat the boundary condi-

tion of second kind T} (u, p) = 0, see Section 4 below.

Lemma 2.4 Let 1 < g < oo and Qy CR", n > 2, be an infinite layer. Then
Jullng < CollS(u)llg
for all w € "W}(Q)" and u € W} (Q0)", where S(u) = Vu+ VuT,

Proof: The proof is given in [8, Lemma 2.6|. |

Lemma 2.5 Let Qo C R™, n > 2, be an infinite layer. Then

ool on < ClORIR I+ N0, T0)IE for all v e Wi, (),

15 0lls 2 < Cllw, 020) I3 1L+ Mo, V'O I3 for all v € Wy\(Qo). (2.5)
Proof: First let v € W, ,(R7}). As in the parameter-independent case,

B, (R = Hj\ (R = {a € SR : (h€)Ha(e) € LR}

with equivalent norms, where the constants in the equivalence can be chosen inde-
pendently of A, cf. [14, (1.11)]. Then

holta, = [ e 0
Rn—l

- - / 2 / (O (€, 7)) (N €YT(E, 20z dE'
Re-1 Jo
< Clawllall((1 + o, )]l

because of Plancherel’s theorem. If v € WZ{/\(QO), the statement easily reduces to the
statement for R} by the use of suitable cut-off functions. [



2.3 Mikhlin-Multiplier Operator

Definition 2.6 Let Hy, and H; be two Hilbert spaces, d € R, and k be the smallest
integers > 2. A function m € C*(R" \ {0}; L(Hy, Hy)) is called an L(Hy, Hy)-valued
Mikhlin multiplier of order d if it satisfies

IDEM(E)|cero iy < ClEI*, € e R\ {0},

for all & € Nj with |«| < k. Moreover, we set

mwzgngm@MMMMMﬂfewxmw

and, if d = 0, [m]y = [m]Q).

The Mikhlin multipliers of order 0 are the usual Mikhlin multipliers. If m is a Mikhlin
multiplier, we denote by

m(Dg)u = OP(m)u = F [m(§)a(§)],  u€ SR";Hy),

the corresponding multiplier operator. If m(£') is a Mikhlin multiplier in n — 1
variables, then OP'(m) = m(D,) denotes the associated operator.

THEOREM 2.7 (Vector-valued Mikhlin-multiplier theorem)

Let 1 < q < oo, Hy, Hy be two Hilbert spaces, and let m be a Mikhlin multiplier
(of order 0) with values in L(Hy, Hy). Then m(D,) extends to a bounded and linear
operator m(D,): L1(R"; Hy) — L1(R"; H,) with

[m(De)ullpanimy < Colm]mllull an;mo)

for all w € LY(R™; Hy).

It is easy to observe that the product my(£)ms(§) of two Mikhlin multipliers mq (&)
and my(€) of order dy and ds, resp., is a again a Mikhlin multiplier of order d; + dy
if the product is defined. Then of course OP(m;)OP(my) = OP(mymy). More-
over, if m is a multiplier of order d, and if m(£)™' € L(H,, Hy) exists and satisfies
(&) ey < CIEI for all € € RY\ (0}, then m(€)~" is an L(Hy, Ho)
valued multiplier of order —d. This statement is a consequence of 9;m () =
—m(&) 1 (0;m(&))m (&) ! and the chain rule. This yields a nice characterization:

Lemma 2.8 Let m be an L(RF)-valued Mikhlin multiplier of order 0 with k € N.
Then m(D,) : L4(R"; R¥) — LY(R™; RF) is invertible for 1 < q < oo iff it is invertible
for ¢ = 2. Moreover, if the operator is invertible, m=*(§) exists for all £ € R* \ {0}
and is again a Mikhlin multiplier with m(D,)™" = OP(m~'(&)). If [|m() e =
Im(Dy) Ml c2@nmryy < R and [m]p < R for R >0, then [m(.)"'|m < C, where C
depends only on n, k, and R.



Proof: Let m(D,): L>(R*;R*) — L?(R";R*) be invertible. Then the inverse
m(D,)~" is again a translation invariant operator. Because of Stein [20, Chapter
2, 1.4, Proposition 2|, m(D,)~" = OP(m/(€)) for a bounded measurable function
m' : R* — L(R¥). Since m(D,) OP(m/(§)) = OP(m(&)m'(£)) = I, m'(€) = m~*(€)
a.e. Hence m~1(£) is a bounded continuous function for £ # 0, which implies, as seen
above, that m !(£) is a Mikhlin multiplier. Therefore (m(D,)) ': LY(R";R*) —
L(R™; R¥) exists. The converse is trivial. |
In the following, we will deal with operators of the form

Ka:= OP'(I%({',:E”))CL and Tf := /IOP'(f(fl,yn))f(-,yn)dyn;

where @ is a function defined on R* ! and f is a function defined on R* ! x I with

= R; or I = (—1,1). Usually K and T will be called Poisson operator and
trace operator (of class 0), resp., and l%(f’,a;n) and #(£',y,) are the so called symbol-
kernels of K and T, resp. We also write k(€',Dy): C— L*(Ry): a v k(€' x,)a and

t&, D,): L*(Ry) — C: f — f t(€', ) f (yn)dy, for the corresponding operator-
valued symbols.

A fundamental example is K := OP'(e~ AHET )”") which is the Poisson operator
to the Laplace resolvent equation with Dirichlet boundary condition in R}. An
important example of a trace operator is

. . e OHER 2 ()
Tj,)\f = 7j ()‘ - A)eﬂof = (_1)]/ oP 11—5 f(a yn)dyna (26)
-1 2(A +[¢'7)2

which is part of the resolvent of the Laplacian in £25. Both examples can be considered
as operator-valued Mikhlin multipliers because of the next lemma.

Lemma 2.9 Let s > —1, 6 € (0,7), and ¢, = (A + |€')?)2. Then

HDgxeigkwn < Caaalzs|)\;§l|7%757‘a"

L2 (Ry;23°)

uniformly in A € L; U {0}, & € R*™ with (A, &) #0 for all o' € Ny *.

Proof: Obviously, kr(€ x,) = e ~Gn g, >0, is quasi-homogeneous of degree —1
in the sense that ky2y(r€, Lr,) = k(€' ) for all > 0. Hence Dg‘, k(€ ) is
quasi-homogeneous of degree —1 — |o/|. More precisely, it is easy to verify that

o]
DEEA(E  mn) =D mar (€, Nade™0,
7=0

where my (£, A) are homogeneous functions of degree —|o/| + j in (Az,€"), which
are smooth in (A, ') € (X; x Rr=1)\ {0}. Therefore |mq (€', N)| < Cyor|A; €711,
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which implies

o]

0o
e —( (1xzn) , .| —2|af |25 25425 ,—c5| A€ |zn
HD ’ LZ(RJr x25) S 0670‘ ]2; |)\’ 6 | /0 .’Ifn € d.’lfn
S 0670/|)\; §I|—1—25—2|a"
because of (2.1) and (2.2). |

Corollary 2.10 Let 1 < ¢ < o0, d € (0,m), s > —3, ¢ € (0, %), b>0, and a € Ny.

Then Ky := OP'(e=%") and D¢K,, o € N§, defined on S(R*™!) extend to bounded
operators

P L1
Ky: H?(RVY) — LYRT G LA(R,;2%)),  Ky: B, {(R™Y) — LY(RY),

DYKy: B3 “(R"™") = LYR"™; L*(b,0)), &> 0.

Proof: The first statement is a direct consequence of Lemma 2.9 and the vector-
valued Mikhlin multiplier theorem. The second part is obtained via interpolation
similarly as in [14, Theorem 1.8]: Firstly, let ¢ < 2. Then

(L*(Re307"), L (Ry;277))og C LA(Ry),
where s’ < % — s <sandf = (E — 1 —§)/(s— &), cf. |14, Theorem 1.8]. Hence
real 1nterp01at10n yields the second Contlnulty Secondly, let ¢ > 2. Since 0,K =

OP'(e=%) OP'(—(,) and OP'(—()): H;A(R" ) —)HqA(R" 1), we conclude

K: HZ,\(R™™Y) = LR FL(R,)).

Because of
(3R, (R, ))1_y, = B, " (Ry) € BY,R,) € HIR,) = LU(R,),
(@) AR, = B iR

cf. Lemma 2.2 and the homogeneous counterpart of |9, Theorem 6.4.4], real interpo-
lation yields the second part as before.

It is easy to see that Ky = OP'(e~@n=0/2)) OP’(e=b/2) where OP'(e~t/2) is
a smoothing operator, that DYK, = OP'(£¥(i(,)*) Ky, and that L*(%,00; (2, —
2)2¢) — L*(b,00) if ¢ > 0. Hence we get from the previous statements by a simple

translation in x,
||D§KAG||Lq(R"*1;L2(b,oo < C.||DFKxal| (Rn=1;L2(5 oos(mn—8)29))

<C: a6|| OP’ ( ~Gan= b/2))a’||Lq(R”—1;L2(

< Cga,s“aH ~1o

%,005(@n—5)%))

*(Rn-1)”
Real interpolation with different values of ¢ finishes the proof. [
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3 Laplace Resolvent Equation in an Infinite Layer

We consider the Laplace resolvent equation with mixed Neumann-Dirichlet boundary
conditions.

A=ANu=f inQ, (3.1)
Yiu=a"t on 0Qf,
You=a" on 08). (3.3)

First let f = 0. Using partial Fourier transformation, a calculation yields u(z', z,) =
Fal,wlkoa (€, Dyp)a(g')], where

ngwl

e—a(=an) /Gt = (1+zn) at
. B Y - (g e
kw’/\(f , Dn)a = i 016, (C)\ +e a > + 1+ e—40 (CL e C)\> (34)

for given a* € C°(R* 1) and with ¢, = (A + |€[2)=. It is casy to see that my(€') :

(1 4+ e=**)~1 is a Mikhlin multiplier with [my(¢')]xm < Cs uniformly in A € 35 U 0,
cf. |3, Proof of Lemma 4.1|. Therefore and because of Corollary 2.10, Ky, =
OP'(k191 (€', D,,)) extends to a bounded operator
.m—1 _ cmt+1—1L e s m n
Kiop: By, "(R*) x B,y “(R"™") = rq, W/ (R") (3.5)

for m € Ny. Note that ro, W 1(R") # W +(Q), cf. [7, Remarks 2.7] for details. If
the boundary conditions in (3.2)-(3.3) are interchanged, we get the analogous result
for the corresponding Poisson operator Ko .

Now we consider a weak formulation, which will be fundamental for the reduction
of the generalized Stokes equation in Section 4.1 below.

(A= A)u=—div f in €y, (3.6)
nu=7f  ondy, (3.7)
You=0 on 08}y (3.8)

for f € L))", where (3.6) is understood in the sense of distributions, (3.8) shall
hold in the sense of usual traces, and (3.7) is understood as v, (Vu— f) = 0, which is
defined in (2.3). Because of the definition of v} (Vu — f) = 0, the system (3.6)-(3.8)
is equivalent to the variational problem

Au,v) + (Vu, Vo) = (F,v) forall ve oWy (Q), (3.9)
where (F,v) := (f, Vv),v € ¢(W;(S), is an element of “W,"*(£).

Lemma 3.1 Let 1 < ¢,r < oo, 6 € (0,7), and A € X5 U {0}. Then for every
F € "W (Qo) there is a unique solution u € oW, () of (3.9), which satisfies

(L4 [ADulloy -+ + llullrgr < CagllEllow (3.10)

uniformly in A € X5 U {0}. If additionally F € "W1(Qp), then u € ¢W ().
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Proof: Identifying °W () with a closed subspace of L(£2)" and using the Hahn-
Banach theorem, for F' € "W (Qp) there is an f € L9(Q)" such that (F,v) =
(f, Vv) for all v € (W) () and [|f|l, < C||Flloy-1 Hence it is sufficient to prove
the lemma for functionals of the latter form.

Let g € Cg) (Q). Then we set

- A—A)
Rigpng = r0,(A = A)eq,g — Ko ( E)\ A; cor > .

BQO
Ry 5 is defined analogously. If we set v = —0,, Ry1,1g, then v solves
(A — Ao =—0,9 in €2,
Nnv=7%(-A-ANW+g) =g ondQy,
Yov=0 on 09 .

Thus we define u := —div’' Ryjg»f' — 0, Ro1\fn for f € C’(‘”(j) (Q)". Using integration
by parts, u solves (3.9).

Since ra,(A— A)teq,: L4(Q) = ro, B2, (R"), 7 (A=A)teqg € W;;jﬁ(aszgt)
for j = 0,1. Thus, because of (3.5),

1
I(A[Zu, V)l < Cgs

f“q < Cq,tF

F“Om;1

uniformly in A € X5 U {0}. Because of v;u = 0 and Poincaré’s inequality [A|2 can
be replaced by (1+ |A|)2. Hence we can extend the solution operator by continuity
such that (3.9) holds. Therefore the mapping

A)\,q: Oqu(QO) — Oqul(Qo)i U +—r )\(U, ) + (VU, V)

is surjective for 1 < ¢ < co. Since A} , = A5/, Ay, is also injective.

Moreover, (3.9) and the estimate of ||Vu||q imply the estimate of [A[||u|oy-1. Fi-
nally, the regularity assertion holds since the solution operators for ¢ and r coincide
in the dense subset Cf; (Qo) |

Corollary 3.2 (Helmholtz decomposition)
Let1 < g <oo,n>2, and Qy C R™ be an infinite layer. Then there is a continuous
projection Py: L1(Qy)™ — L1(Qp)™ such that

R(P,) =T, (Q) = {u € LI(Q)" : divu = 0,7 u = 0},
N(P) = oGy(S0) = {Vp € LUQ)" : p € W)}

Proof: The proof is an easy modification of the standard proof, cf. [18]. The pro-
jection P, is defined as P, f = f—Vp, where p is the solution of (3.6)-(3.8) for A = 0. m
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Lemma 3.3 Let 1 < q,r < o0, § € (0,7), m € Ny, and A € X5 U {0}. Then for
every f € W () there is a unique solution u = Ryg\f € W(;")\”(QO) of (3.1)-(3.3)
with a* = 0 Moreover, ||u||m+2.4x < Comgll fllmgr uniformly in A\ € 50 {0}. If
additionally f € W(), then u € W5 (Qq).

Proof: W.lo.g. let m = 0. Because of Lemma 3.1, there is a unique solution u €
oW, (Q) of (3.9) with right-hand side (F,v) := (f,v). Differentiating in tangential
direction, it is easy to observe that d;u € (W, (€) solves (3.9) with right-hand side
(Fj,v) :=(f,0;v),j=1,...,n—1. Using (3.9), we obtain —02u = f — (A — A')u in
the sense of distributions, where f — (A — A")u € L%(€). Hence u € W}(€). Since
(3.9) implies (A — A)u = f a.e. in §y,

(f)/ii—ua ’VS_U) = (VU,, VU) + (AU,, U) = (fa U) o )\(U, ’U) + (AU,, U) =0
for all v € (W (€), which implies 7, u = 0.
]

Finally, for A = 0, we compare the Poisson operator Ko := Kjga|x=0 with the
localized parametrix

Kyo = TKta® +¢~Kja™, (3.11)

where Ki + = OP' (|§’| —Je=I€'I( 1”")) a, 7 = 0,1, denotes the Poisson operator of the
Dlrlchlet (7 = 0) or the Neumann problem (j = 1), resp., in R”l ={(,z,) 12, <1}
orin Rt | = {(a/,2,) : &, > —1}, resp. Furthermore, ¢* € C)([=1,1]) with
v (x,) = 1if dist(zy,, £1) < 3, supp ™ C (—1,1], and supp¢p~ C [—1, 1).

The following result, which will be needed for the analysis of the reduced Stokes
equations in €2y, shows that the error of this localization is of lower order.

Lemma 3.4 Let 0 < e < —, and let I?w be defined as above. Then
- . B
(VK — VKp)all, < C <||a ”B;%_E + |la ||W2%—E>

forallat € By? “(R"') and = € W2 ~(R*').

Proof: First of all, note that W2 “(R* 1) — W2 (R* ') and B, * "(R*!) —

_1 ~
W, ?(R*™'). Hence VKpa and Kjpa are well defined.
We use that

—A(Kw—kw)a = Sf(iwa,
Vi (K — Ki)a = 0, Yo (K10 — Kip)a =0,

where S is a differential operator of order 1 with coefficients supported in supp V¢)*U
supp V¢o~. Hence V(Ko — K19)a = VR10SKioa, where Ry is the solution operator
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of (3.1)-(3.3) with a* = 0 and A = 0. Since the coefficients of S are supported in
]R ~! x (—a,a) for an a < 1, Corollary 2.10 and Lemma 3.3 imply

IV (K10 — Kio)allz < C||SKypallz < C <||a+||3—%—e + ||a_||W%—f> :

Remark 3.5 It is obvious that all statements remain true if we interchange the
boundary conditions of the upper and the lower boundary, i.e. consider mixed
Dirichlet-Neumann conditions. The corresponding solution operators will be denoted
by K(n,)\, R01,/\, Ko, Ry, and Ky;.
1-1
Moreover, we can add an a™ € W, ,*(0€Y; ) in (3.8) or consider a general (a™,a~) €

m—l—l—% + m+2—% N .
W 1(095) x W, “(99) in Lemma 3.3 and get analogous statements.

4 Stokes Equations in an Infinite Layer

4.1 The Reduced Stokes Equations

In the following reduction, which is an adaption of the reduction used in [15], the
pressure p will be expressed in dependence on the data (f,¢) and the (unknown)
solution u. Therefore we will end up with a pseudodifferential equation, where p is
replaced by a non-local operator applied to u, which is also called singular Green
operator in the theory of pseudodifferential boundary value problems, cf. [12].

Let (u,p) € W2 \(Q0)" x W, ,(Q0) be a solution of (1.1)-(1.4) with

_1
f € LUQ)", at € W, "(0Q5)", g € WL (Q). (4.1)
Applying — div and 7, to the equation (1.1) and using (1.2), p solves

—Ap=—divf+(A=A)g in Qo,
Yop =27 u, —a) on 082,
np="7f on 9 .

Now we split p = p; + ps such that p; depends only on u and p, depends only on
(f,g,a™). Then we end up with the reduced Stokes equations

()\ - A)U, + G10U = fr in Qo, (42)
T u=a on 09, (4.3)
You=0 on 0% (4.4)
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with

_ AR v (v S(w), v
GlOU—VKt)l(%(A_VdiV)u)a T U—< : 4, = + )

fr=f—=Vpr=f—VRy(—divf+(A-A)g) - VK < 'y,,f_j—j'yfg );

where v = (v;,v,) denotes the decomposition of a vector field v defined on 0 into
the tangential and normal components. Moreover, Ky and Ry, are defined as in
Remark 3.5.

Because of Lemma 3.1,

1901l < Cy (I (A = Vdiv)ull s, + I s, ) (45)
19021l < Cy (I11ly + lollgn + Mgl 1 + e it gn) . (46)

where we have used that (F,v) := ((A — Vdiv)u, Vo) = (v, (A — Vdiv)u, v, v) for
all v € "W, () because of (2.3) and therefore [F gt < Clly, (A = Vdiv)u”_%’q.

The most important fact about this reduction is that we may drop the equation
divu = g: If u solves the equations (4.2)-(4.4) with f, defined as above, then

(A= A)dive = (A= A)g in Q,
Yo dive =g on 0Q,

v, divue =7, g on 02,

because of the construction and the definition of the operators in the reduced Stokes
equations. Since these equations are uniquely solvable, divu = g¢.

Hence the generalized Stokes equations (1.1)-(1.4) with right-hand side as in (4.1)
are uniquely solvable if the reduced Stokes equations (4.2)-(4.4) are uniquely solvable

for f, € L1(Q)" and af € quia(ﬁﬁar)". Moreover, if the solution u of the reduced
Stokes equations can be estimated by

san < Cas (1elly + 1l 121,40 (4.7)

uniformly in A € X5 U {0}, § € (0,7), then the solution (u,p) of the generalized
Stokes equations satisfies (1.5) because of (4.5)-(4.6).

The converse implication is also true: If f, € L?(2)" and af € quf(a(z;)”,
then we get a solution u of the reduced Stokes equations (4.2)-(4.4) as follows: We

solve the generalized Stokes equations (1.1)-(1.4) with right-hand side (f, g,a™) with
at = ((a));,0), where g is determined as solution of

lu

(A =A)g =div f, in Qp,
’7(—)'_9 = (a:_),, on aQ(—)'_7
Yg=1,fr ondQ.
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Then, because of Lemma 3.1,
(L4 A llwy =+ llgllan < Cas (I elly + 0 N2 4,)
and the solution (u,p) of the generalized Stokes equations satisfies

lu

s + IVl < Cos (171 + e s ) for all A€ S50 {0},

Moreover, p solves —Ap = 0 with v;p = v, (A — Vdiv)u and v p = 27, u,. Thus
Vp = Gpu and u solve the reduced Stokes equations. Hence we have proved:

Lemma 4.1 Let 1 < ¢ < 0o, § € (0,7), and A € X5 U {0}. Then the generalized
Stokes equations (1.1)-(1.4) are uniquely solvable for given data as in (4.1) iff the
reduced Stokes equatzons (4.2)-(4.4) are uniquely solvable for every f, € L(Qg)"

and af € W (89+) Moreover, the solutions of the generalized Stokes equations
satisfy (1.5) zﬁ the solutions of the reduced Stokes equations satisfy (4.7).

Remark 4.2 Because of (4.2)-(4.4), it is natural to define the reduced Stokes operator
A, = —A+ Gy on LI()" with domain

D(A,) = {u € W2Z(Q,)" : ypu=0,T] u =0}

Then Theorem 1.1 and Lemma 4.1 imply that A, is invertible and is the generator
of a bounded analytic semi-group. Moreover, it is proved in [6] that A, admits a
bounded Hy,-calculus, cf. [16]. Hence it possesses bounded imaginary powers and
therefore has maximal regularity in L?-Sobolev spaces due to Dore and Venni [10].

The reduction described above can be done in many types of domains. In the
following we will need the unique solvability of the reduced Stokes equation in R :

A=Au+Gju=f inRY, (4.8)
Tiu=a on IR} (4.9)
for j = 0,1 with
— ( (ov - S(u)s
G1 = VKy2viu,, Tiu = ( o divu :

Gy = VK17, (A — Vdiv)u, Toyu = You.

Lemma 4.3 Let1<q<oo d€(0,m), A€ X5, and j =0 or j =1. Then for every

(f,a) € LYRY})" x Bq)\ C(R1) there is a unique solution u € WQ)\(R”)" of the
reduced Stokes equations (4.8)-(4.9). Moreover,

Mllullg + A= IVullg + 1V%ully < Csllg + lall. a—j-1 )

uniformly in X € 3s.
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Proof: The lemma is a consequence of [15, Theorem 6.1|. It can also be proved
using the unique solvability of the generalized Stokes equations in R, cf. Farwig
and Sohr [11, Theorem 1.3| for the Dirichlet case and Shibata and Shimizu |17, The-
orem 4.3] for the case j = 1, and an analogous equivalence statement of Lemma 4.1. m

4.2 Reduction to the Boundary

Using the product structure of the term GGy in the reduced Stokes equations, we will
obtain a representation of the solution operator to the Stokes equations in terms of
the solution operator of the Laplace resolvent equation and an operator acting only
on the boundary. The idea of this reduction goes back to [13, Section 3|.

Let

A A )
Ay = < (- ,3+ ) :qu,)\(QO) ﬁOI/VlA(Qo) . 1X
; _1
qu/\q (BQ(T)”

be the operator associated to the Laplace resolvent equation (3.1)-(3.3) with a= =0
(in n components). Then we can express the reduced Stokes equations (4.2)-(4.4) as
perturbation of the Laplace resolvent equation

A{O,A = Ao + By

with

_( EKiTh - at o

1

where we have used that 7, (A — Vdiv)u = —y; div' v/ if 75 u = 0. Here div'a™ =
alaf + ...+ an_la;l.

Remark 4.4 Note that we have defined K7, and 77, such that all operators are of
order 1 in the sense of mapping proper’mes in Sobolev-Slobodeckij spaces. Moreover,

we note that Wq)\ (]R” D — W “(R*~!) with norms uniformly bounded in \.
Hence

1-3 1-3 —\n—1 ~ l_é n—1\n n
Kiy: W, (095) x W, (0Q0)" " = W, " (R"1)" — LY(Qy)

q’
with norms uniformly bounded in .

Since A10 y = (Rio,x, Kip,0) exists for all A € ¥; U {0}, A] To.x is invertible iff

I + Al_[)l’)\BlO =17 + K:IO,/\7.10
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is invertible, where

a r Tr
Ko <b+> = RipKipa + Kipa (0", 0)7, Tio = (T’+ E)VJr) .
1 1

Now we use the following simple lemma, cf. [13, Lemma 3.1]|:

Lemma 4.5 Let V,W be vector spaces and let A: V — W, B: W — V be linear
mappings. Then I + AB: W — W is bijective if and only iof [ + BA:V — V s
bijective. Moreover,

(I+BA)'=I-BI+AB)'A and (I+AB)'=I1-A(I+BA)'B
iof the inverses exist.

Hence I + K970 (and therefore A7, ,) is invertible iff

1-1 11
810,)\ =1 + 7'10’(:107/\; Wq,)\ q (Rn—l)n N qu}\ q (Rn—l)n
is invertible. The crucial observation is:

Lemma 4.6 Sy, = OP'(s10.(£)) is a Mikhlin multiplier operator with [s1o\]pm <
Cs for all A € X5 U {0}, 6 € (0,7).

Proof: This lemma relies on the fact that all operators can be considered as

L(Hy, Hy)-valued Mikhlin multipliers of a certain order for suitable Hilbert spaces Hy,

H,. Moreover, all Mikhlin multiplier norms are uniformly bounded in A € ¥5 U {0}.
We have

S (CL) _ ( CL+T{0(R107/\KIOCL+K107,\(b+,0)) )
A bt 4+ (T7" = 4) (RioaKTya + Kioa (b7, 0))

Let T =17 or T =T!" —~;. All entries in T consist of differential trace operators
of order 1, which are of the form 7 +OP'(a-&')vs, a € C" . Therefore, it is easy to
observe from (3.4) that T K9 (b",0) = OP'(my(£'))b" with [my]am < Cs. Moreover,

+ —1
- . -1 - ’yl ()\ - A) eQOf
RIO,)\f = 7“90()‘ A) eﬂof Klo’)‘ (’yo_()\ - A)fleﬂof; '

Because of (2.6), T(A—A)eq, has a symbol-kernel of the form m, (£')e=1#¥7) with
[ma]m < Cs. The same is true for TKip (77 (A — A) Leqy, 75 (A — A) Leq,) because

of (2.6) and (3.4) again. Hence TRy, = OP'(ty(€', D,)) with [t(., Do)l'y? < Cs

as L(C,L?(—1,1))-valued Mikhlin multiplier because of Lemma 2.9. Similarly, it

is easy to observe with the aid of (3.4) for A = 0 and Lemma 2.9 that K7, can

be considered as £(C, L?(—1, 1))-valued multiplier operator with symbol k7,(¢’, D,,)
1

of order ;. Hence TioKig,x is an matrix-valued Mikhlin multiplier of order 0 with
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[TioKropJm < Cs. u

1-1
Therefore Sy is an invertible mapping on W, *(R" 1)V iff it is invertible on
LYR" )N, Because of Lemma 2.8, this is the case iff the operator is invertible on
L*(R"1)N. Moreover,

||5fof>\

< Csgq, uniformly in A € 35 U {0},

| -1
Lwy 1 (Rr=1HN)

iff the statement is true for ¢ = 2.

Corollary 4.7 Theorem 1.1 holds for 1 < q,r < oo iff it holds for g =1r = 2.

4.3 Unique Solvability for ¢ = 2
We start by proving an a priori estimate.

Lemma 4.8 Let 6 € (0,7) and A € S5 U{0}. If (u,p) € W3,(Q0)" x W5 ()
is a solution of the generalized Stokes equations (1.1)-(1.4) with right-hand side

1
(f,g9,a™) € L*(Q0)™ x W3, (Qo) x W, (09g)", then
lullazp + 19812 + 1Pl 2.
< Cs (I + llgllizn + L+ DNy ) +lla 1120) - (410)

Proof: If a™ # 0, we can choose a function v € (W3, (Q)" with ygv = 0, 7 v, = af,

27y, = af, and [|v]jaon < C’||a+||%’27>\ because of Lemma 2.1. Then u — v is a
solution of the generalized Stokes equations (1.1)-(1.4) with 7} (u,p) = 0. Hence we
can assume w.l.o.g a™ = 0.

Let E(u,v) = 3(S(u), S(v)), where S(u) = Vu + Vu?. Using the inherent sym-

metry and Green’s formula
E(u,v) = (S(u),Vv) =—(Au,v) — (Vdivu,v) + (7,S(uw), vv). (4.11)
Since (u, p) is a solution of the Stokes resolvent equation,
(f = Vg,u) = Ml + E(u,u) = (p,9) = (0(S(u) - v = pv), you)an,-

The last term vanishes, since T} (u, p) = 74 (S(u)-v—pr) = 0 and v, u = 0. Therefore
we obtain by using Korn’s inequality, see Lemma 2.4, and max{Re A, | Im A|} > ¢;|A|
for A € B5 U {0},

(L4 [AD[ullz + 1Vl < Cs (I1f = Vgllllull + (g, p)]) - (4.12)
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Let p € oW3,(€0) be an extension of ~5'p with [|p[li2x < Cll7g plly 2,5 Then

L+ D) < (L4 Dl 1V (0 = )l + (14 1AD* glla(1 + M) 3]
< C((0+ ADglwyr + lolhizn) (1920 + 15 Pl )
Therefore, multiplying (4.12) by (1 + |A|) and using Young’s inequality,
(L A2l + (1 + ADIul3
< Cs (15, V)l + (1 + M) gllws + g

122) (195l + 10§l sa0) ) - (413)
If we set v=0%u,i=1,...,n—1,in (4.11) and integrate by parts, we get
L+ DNz + IVoullz < Cs (I(F, Va)liz + 0igllzllompll2) - (4.14)

Expressing p = p; + py by u and the data (f,g), cf. Section 4.1, using (4.5), (4.6),
and the boundary conditions, we get

VP2 + 79 Pl 20
< Cs (1712 + llgllizn + (L4 DNz + 11 div' @]y + [ty 0.)

Cs (7112 + llgllizn + L+ ADllgllw, + + Il 20 ) (4.15)

IN

Moreover, because of Lemma 2.5,
Inullsan < (G, B2u) 31 + XY 200, V'),
Combining this with 92u = f — (A — A")u — Vp and (4.15), yields
VD2 + 17 Pl 1 2.8
< Cs (171l + 19lle + (1 IADllgllywss + A, (1 4+ [AD 0,0, VF0)])
Finally, if we combine the latter estimate with (4.13) and (4.14), we are led to
ullizn + IVVullz + 1Vpll2 + [Pl 2 2.0

< G5 (11l + oz + L+ IADllgllws) -

Using (1.1), we get the estimate for [|02u]|s. u
In the next step we construct a solution operator for large \.

Lemma 4.9 Let 6 € (0, 7). Then there is an R > 0 such that for every A € X5 with
Al > R and for (f,g,a") as in (4.1) the generalized Stokes equations (1.1)-(1.4)
have a unique solution (u,p) € W5 ,(Q0)™ x Wy, (o).
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Proof: Asin the proof of Lemma 4.8 we can assume w.l.o.g. a™ = 0. Let Ry, be the
solution operators of the reduced Stokes resolvent equations in R"™! x (-1, 00) with
Dirichlet boundary condition v, u = 0 and let Rf’)\ be the corresponding operators
in R*~! x (—o0, 1) for the boundary condition T7*(u) = 0. Now we define

Riopf =V "R\ o" f+19 Ryyo f,
1

where ¢, ¢~ is a partition of unity for [—1,1] with ¢* =1 on [5,1] and ¢~ =1 on
[~1,—3] and ¢* € CF ([~1,1]) with ¢»* =1 on supp ¢* and 0 < ¢* < 1. As usual
we extend ¢* f by zero where it is not defined.

Then u = Ry f satisfies
(A= A)u+ Gpu = f+ Sjou + Sjyu
where Sjou = —PT R, 0" f — P™ Ry ¢~ f with P* =2V¢* - V + A¢y™ and
Stou = VKo (27, uy,, =y, div'u') — VK 2y u, + ¢ VK] v div' o
= V(Ko — Kot ) (29w, =y, div' ') + (Vo) K 29w, — (Vi) K]~ div' o

Here Ky is defined as in (3.11), see also Remark 3.5. Since P* is a differential

operator of order 1 and because of Lemma 4.3, ||Syulls < Cs|A| 2| f]|2 for A €
Y5, |A| > 1. Due to Lemma 3.4,

IV (Kor — Kou) (29w, =y div' )], < C. <||71+Uu||W52e + [l div’ U'||B%2e>
2 2

< CE”’YIU”W%_QE < Celufla—ge 2
2

for 0 < e < 1. Here |Jul[s_o.2 denotes the B5~**({)-norm of u. Since |e~ ¢ 11=en)] <
1, we get sup|, <1 [[(Kqa)(,, zn)|l2 < l|allo. Thus

IV K 29 unlle < Cellyy |l e pen-1 < Cellulla—2c -

Since K7 div' = K5 OP'(i€""/|€]), we get the same estimate with (Vi) K] 77 div' o’
on the left-hand side. Because of [[ulla < Cs|A|7||f]l2 and [Jullae < Cs||f]]2, we get
by real interpolation ||Sjulls < Ccllu|l2—2:2 < CselA|78||f||2 uniformly in A € Xy,
Al >1, with 0 < e < 1.

Hence there is an R > 0 such that I+S), is invertible in £(L?(£2)) for A € £ with
|A| > R. Therefore Ry, = ﬁwy,\(] + S,) ! is the solution operator of the reduced
Stokes equation. Because of Lemma 4.1, the unique solvability of the reduced Stokes
equations (for a fixed \) is equivalent to unique solvability of the generalized Stokes
equations. [ |

Lemma 4.10 Theorem 1.1 holds for g =r = 2.
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Proof: Lemma 4.8 implies that the linear operator A : Xip2 — Y102,

Alo,)\(u,p) = (()‘ - A)U’ + Vpa div Uu, Tl—i—(uap))a
. 1
Xiog = (W5,(Q0)" N oWy s (R0)") x {p € Wy () : 752 € WL (094}
Yipp = L*(Q0)" x Wy, () x Wi, (007)",

which corresponds to the generalized Stokes equations, is injective and has a closed
range for every A ¢ (—o00,0). Hence it is a semi-Fredholm operator. Moreover,
Lemma 4.9 implies that Al’ol,)\ exists for all A € X5, |A\| > R, for a suitable large
R > 0. Because of the homotopy invariance of the Fredholm index, Ao 5 has index 0
for every A ¢ (—00,0). Since Ajp, is injective for every A ¢ (—o0,0) due to Lemma
4.8, Ay, is invertible for these A. Finally, (1.5) for ¢ = 2 is just the statement of
Lemma 4.8. [ |
Hence Theorem 1.1 is an immediate consequence of Corollary 4.7 and Lemma 4.10.
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