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Abstra
t

In this 
ontribution we investigate the regularizing properties of generalized 
on-

tinua of Cosserat mi
ropolar type in the elasto-plasti
 
ase. We propose an exten-

sion of 
lassi
al in�nitesimal elasto-plasti
ity to in
lude 
onsistently non-dissipative

mi
ropolar e�e
ts.

It is shown that the new model is thermodynami
ally admissible and allows

for unique, global in-time solution of the 
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hoi
e are the Yosida-approximation and

a passage to the limit.
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1 Notation

Let 
 � R

3

be a bounded domain with Lips
hitz boundary �
 and let � be a smooth

subset of �
 with non-vanishing 2-dimensional Hausdor� measure. We denote by M

3�3

the set of real 3 � 3 se
ond order tensors, written with 
apital letters. The standard

Eu
lidean s
alar produ
t on M

3�3

is given by hX; Y i

M

3�3

= tr

�

XY

T

�

, and thus the

Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. The identity tensor on M

3�3

will be denoted

by 11, so that tr [X℄ = hX; 11i. We let Sym and PSym denote the symmetri
 and positive

de�nite symmetri
 tensors respe
tively. We adopt the usual abbreviations of Lie-algebra

theory, i.e. so(3) := fX 2 M

3�3

jX

T

= �Xg are skew symmetri
 se
ond order tensors

and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g are tra
eless tensors. We set sym(X) =

1

2

(X

T

+X)

and skew(X) =

1

2

(X �X

T

) su
h that X = sym(X) + skew(X). For X 2 M

3�3

we set for

the deviatori
 part devX = X �

1

3

tr [X℄ 11 2 sl(3).

For a se
ond order tensor X we de�ne the third order tensor

h = D

x

X(x) = (r(X(x):e

1

);r(X(x):e

2

);r(X(x):e

3

)) = (h

1

; h

2

; h

3

) 2 (M

3�3

)

3

. For h

we set khk

2

=

P

3

i=1

kh

i

k

2

together with sym(h) := (sym h

1

; sym h

2

; sym h

3

) and tr [h℄ :=

(tr [h

1

℄; tr [h

2

℄; tr [h

3

℄) 2 R

3

. The �rst and se
ond di�erential of a s
alar valued fun
tion

W (F ) are written D

F

W (F ):H and D

2

F

W (F ):(H;H), respe
tively. Sometimes we use also

�

X

W (X) to denote the �rst derivative of W with respe
t to X. We employ the standard

notation of Sobolev spa
es, i.e. L

2

(
); H

1;2

(
); H

1;2

Æ

(
), whi
h we use indi�erently for

s
alar-valued fun
tions as well as for ve
tor-valued and tensor-valued fun
tions.

2 Introdu
tion

This arti
le addresses the modelling and mathemati
al analysis of geometri
ally linear

generalized 
ontinua of Cosserat mi
ropolar type in the elasti
 as well as elasto-plasti



ase. General 
ontinuum models involving independent rotations have been introdu
ed

by the Cosserat brothers [CC09℄. In fa
t, their original motivation 
ame from the theory

of surfa
es, where the moving three-frame (Gauss frame) had been used su

essfully.

Their development has been largely forgotten for de
ades only to be redis
overed in

the beginning of the sixties [Osh55, G�un58, AK61, ES64, Eri68, Tou62, Tou64, GR64,

MT62, S
h67, TN65℄. At that time theoreti
al investigations of non-
lassi
al 
ontinuum

theories were the main motivation [Kr�o68℄. The Cosserat 
on
ept has been generalized in

various dire
tions, for an overview of these so 
alled mi
ro
ontinuum theories look at

[EK76, Eri99, Cap89℄.

Among the �rst 
ontributions extending the Cosserat framework to in�nitesimal elasto-

plasti
ity we have to mention [Saw67, Lip69, Bes74℄. More re
ent in�nitesimal elasti
-

plasti
 formulations have been investigated in [dB92, DSW93, IW98, RV96℄. These models

dire
tly 
omprise joint elasti
 and plasti
 Cosserat e�e
ts. Lately, the models have been

extended to a �nite elasti
-plasti
 setting as well, see e.g. [GT01, San99, Ste94, Gra03,

FCS97℄ and referen
es therein. Most of these extensions dire
tly 
omprise joint elasti


and plasti
 Cosserat e�e
ts as well but we pretend that their physi
al and mathemati
al

signi�
an
e is at present mu
h more diÆ
ult to asses than models where Cosserat e�e
ts

are restri
ted to the elasti
 response of the material [FCS97℄ and referen
es therein. Our
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own 
ontribution will be of the se
ond type.

Apart from the theoreti
al development, the Cosserat type models are today in
reas-

ingly advo
ated as a means to regularize the pathologi
al mesh size dependen
e of lo-


alization 
omputations where shear failure me
hanisms [CH85, MV87, M�uh89, BP91,

Bar94℄ play a dominant role, for appli
ations in plasti
ity see the non-exhaustive list

[IW98, DSW93, RV96, dB91, dBS91, dB92℄. The o

urring mathemati
al diÆ
ulties re-


e
t the physi
al fa
t that upon lo
alization the validity limit of the 
lassi
al models is

rea
hed. In models without any internal length the deformation should be homogeneous

on the s
ale of a representative volume element of the material [MA91℄.

The in
orporation of a length s
ale, whi
h is natural in a Cosserat theory, in prin
ipal

has the power to remove the mesh sensitivity. The presen
e of the internal length s
ale


auses the lo
alization zones to have �nite width. However, the a
tual length s
ale of

a material is diÆ
ult to establish experimentally and theoreti
ally [Lak95℄ and remains

basi
ally an open question as is the determination of other additionally appearing material


onstants in the Cosserat framework. It is also not entirely 
lear, how the shear band

width depends on the 
hara
teristi
 length.

The mathemati
al analysis of Cosserat mi
ropolar models is at present restri
ted to the

in�nitesimal, linear elasti
 models, see e.g. [Duv70, HH69, Ghe74a, Ghe74b℄. The elasto-

plasti
 situation has not been dealt with mathemati
ally to the best of our knowledge.

As far as 
lassi
al rate-independent elasto-plasti
ity is 
on
erned we remark that global

existen
e for the displa
ement has been shown only in a very weak, measure-valued sense,

while the stresses 
ould be shown to remain in L

2

(
). For this results we refer for example

to [AL87, Che02, Tem86℄. If hardening or vis
osity is added, then global 
lassi
al solution

are found see e.g. [Alb98, Che01b, Che01a℄. A 
omplete theory for the 
lassi
al rate-

independent 
ase remains elusive, see also the remarks in [Che02℄.

While the in�nitesimal Cosserat mi
ropolar elasto-plasti
ity model in its various ver-

sions is interesting mathemati
ally in its own right we rather 
on
entrate on its possible

regularizing properties. We emphasize that our non-dissipative formulation seems to pro-

vide just the 
orre
t amount of regularization missing in the 
lassi
al elasto-plasti
 prob-

lem. This being our main thrust, we do not investigate Cosserat models where additional

Cosserat e�e
ts have been introdu
ed for the plasti
 behaviour as well.

Our 
ontribution is organized as follows: �rst, we review the basi
 
on
epts of the geo-

metri
ally linear elasti
 Cosserat mi
ropolar theories in a variational 
ontext and present

various existen
e results.

The formulation is then 
onsistently extended to in�nitesimal elasto-plasti
ity with

non-dissipative mi
ropolar e�e
ts. The de
isive stress tensor is nothing else than the

linearized elasti
 Eshelby energy momentum tensor.

Subsequently, we mathemati
ally study the obtained rate-independent 
ase and show,

by means of the Yosida approximation and a passage to the limit, that the rate-independent

problem admits a unique, global in-time solution for displa
ements and mi
rorotations in

standard Sobolev spa
es under fairly mild assumptions on the data.
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3 The in�nitesimal elasti
 Cosserat model

Let us start by re
alling the in�nitesimal Cosserat approa
h. First, in the purely elas-

ti
 
ase, an in�nitesimal Cosserat theory 
an be obtained by introdu
ing the additive

de
omposition of the ma
ros
opi
 displa
ement gradient ru into in�nitesimal mi
roro-

tation A 2 so(3;R) (in�nitesimal Cosserat rotation tensor) and in�nitesimalmi
ropolar

stret
h tensor (or �rst Cosserat deformation tensor) " 2 M

3�3

with

ru = "+ A (3.1)

where " 62 Sym(3), su
h that (3.1) is not ne
essarily the de
omposition of ru into in-

�nitesimal 
ontinuum stret
h sym(ru) and in�nitesimal 
ontinuum rotation skew(ru).

In the quasistati
 
ase, the Cosserat theory is then obtained from a variational prin
iple

[San99, p.51℄ or [Ste97℄ for the in�nitesimal displa
ement u : [0; T ℄ � 
 7! R

3

and the

independent in�nitesimal mi
rorotation A : 
 7! so(3;R):

E(u;A) =

Z




W (ru;A;D

x

A)� hf; ui � hM;AidV

�

Z

�

S

hN; uidS�

Z

�

C

hM




; Ai dS 7! min : w.r.t. (u;A); (3.2)

A

j

�

= A

d

; u

j

�

= g(t; x)� x :

Here W represents the elasti
 energy density and 
 � R

3

is a domain with boundary �


and � � �
 is that part of the boundary, where Diri
hlet 
onditions g; A

d

for in�nitesimal

displa
ements and rotations, respe
tively, are pres
ribed while �

S

� �
 is a part of the

boundary, where tra
tion boundary 
onditionsN are applied with �\�

S

= ;. In addition,

�

C

� �
 is the part of the boundary where external surfa
e 
ouples M




are applied with

�\ �

C

= ;. The 
lassi
al volume for
e is denoted by f and the additional volume 
ouple

by M . Variation of the a
tion E with respe
t to u yields the equation for linearized

balan
e of linear momentum and variation of E with respe
t to A yields the linearized

version of balan
e of angular momentum.

3.1 In�nitesimal elasti
 Cosserat theory

It remains to spe
ify the analyti
 form of the energy density W . A linearized version of

material frame-indi�eren
e implies the redu
tion

W (ru;A;D

x

A) = W (";D

x

A) ; (3.3)

and for in�nitesimal displa
ements u and small 
urvature D

x

A a quadrati
 ansatz is ap-

propriate:

W (";D

x

A) =W

in�n

mp

(") +W

small


urv

(D

x

A) ; (3.4)

with an additive de
omposition of the energy density into mi
rostret
h and 
urvature

parts.
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In the isotropi
 
ase we assume for the stret
h energy

W

in�n

mp

(") = � k sym(")k

2

+ �




k skew(")k

2

+

�

2

tr [sym(")℄

2

= � k symruk

2

+ �




k skew(ru)� Ak

2

+

�

2

tr [sym(ru)℄

2

; (3.5)

where the Cosserat 
ouple modulus �




� 0 is an additional material parameter, 
om-

plementing the two Lam�e 
onstants �; � > 0.

For the 
urvature term we assume

W

small


urv

(D

x

A) =

2�+ �

2

L

2




12

�

�

5

k symD

x

Ak

2

+ �

6

k skewD

x

Ak

2

+ �

7

tr

�

D

x

A

�

2

�

: (3.6)

Here, L




> 0 with units of length introdu
es a spe
i�
 internal 
hara
teristi
 length into

the elasti
 formulation. In general we assume �

5

> 0; �

6

; �

7

� 0.

Two observations are essential. First, if �




= 0, the in�nitesimal problem 
ompletely

de
ouples - the in�nitesimal mi
rorotations A have no in
uen
e at all on the ma
ros
opi


behaviour of the in�nitesimal displa
ements and 
lassi
al in�nitesimal elasti
ity results.

Se
ond, the 
hoi
e �

6

; �

7

= 0 is possible, sin
e 
oer
ivity of the redu
ed 
urvature

expression 
an still be 
on
luded on a

ount of the 
lassi
al Korn's �rst inequality applied

to symD

x

A.

1

In the limit of zero internal length s
ale L




= 0, balan
e of angular momentum

D

A

W

mp

(ru;A) 2 Sym, D

A

W

mp

(ru;A) = 0 ; (3.7)

implies already that in�nitesimal 
ontinuum rotations and in�nitesimal mi
rorotations


oin
ide: skew(ru) = A, and this in turn is equivalent to the symmetry of the in�nitesimal

Cau
hy stress � or the so 
alled Boltzmann axiom.

If we 
onsider now �




> 0, it is standard to prove that the 
orresponding minimization

problem admits a unique minimizing pair (u;A) 2 H

1

(
;R

3

) � H

1

(
; so(3)). Existen
e

results of this type have been obtained e.g. in [Duv70, HH69, Ghe74a, Ghe74b℄.

1

For A 2 so(3;R) we have

A =

0

�

0 � �

�� 0 


�� �
 0

1

A

; axl(A) =

0

�

�

�




1

A

; r axl(A) =

0

�

�

x

�

y

�

z

�

x

�

y

�

z




x




y




z

1

A

symr axl(A) =

0

B

�

�

x

�

y

+�

x

2

�

z

+


x

2

�

y

+�

x

2

�

2

y

�

z

+


y

2

�

z

+


x

2

�

z

+


y

2




2

z

1

C

A

k symr axl(Ak

2

= �

2

x

+ �

2

y

+ 


2

z

+

(�

y

+ �

x

)

2

2

+

(�

z

+ 


x

)

2

2

+

(�

z

+ 


y

)

2

2

k sym D

x

Ak

2

= k symrA:e

1

k

2

+ k symrA:e

2

k

2

+ k symrA:e

3

k

2

=

�

2

x

2

+

�

2

x

2

+ �

2

y

+ �

2

z

+

(�

x

+ �

y

)

2

2

+ �

2

x

+

�

2

y

2

+ 


2

y

+ 


2

z

+

(�

z

+ 


x

)

2

2

+ �

2

x

+ 


2

y

+

�

2

z

2

+




2

z

2

+

(�

y

+ 


x

)

2

2

Now it is easy to see that for some 


+

> 0 it holds k sym D

x

Ak

2

� 


+

k symr axl(A)k

2

sin
e k sym D

x

Ak

2

=

0 implies k symr axl(A)k

2

= 0. Hen
e, the standard Korn's inequality applied to k symr axl(A)k

2

yields

unique existen
e.
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Theorem 3.1 (Existen
e for in�nitesimal elasti
 Cosserat model)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data

g 2 H

1

(
;R

3

) and A

d

2 H

1

(
; so(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose

N 2 L

2

(�

S

;R

3

) together with M




2 L

2

(�

C

; so(3;R)). Then models based on (3.5) and

(3.6) admit a unique minimizing solution pair (u;A) 2 H

1

(
;R

3

) � H

1

(
; so(3)). The

solution is smoother if the data are smoother.

Proof. We apply the dire
t methods of variations. First we observe that in�mizing se-

quen
es (u

k

; A

k

) exist and

1 >

Z




W

in�n

mp

(ru

k

� A

k

) +W

small


urv

(D

x

A

k

)� hf; u

k

idV

�

Z




�




kru

k

� A

k

k

2

dV � kfk

L

2

ku

k

k

H

1

(
)

(3.8)

=

Z




�




k sym(ru

k

� A

k

)k

2

+ �




k skew(ru

k

� A

k

)k

2

dV � kfk

L

2

ku

k

k

H

1

(
)

�

Z




�




k symru

k

k

2

dV � kfk

L

2

ku

k

k

H

1

(
)

� �







K

ku

k

k

2

H

1

(
)

� kfk

L

2

ku

k

k

H

1

(
)

;

showing that u

k

is bounded in H

1

(
). We have used that sym is orthogonal to skew

and the 
lassi
al Korn's �rst inequality together with the boundary 
onditions for u

k

.

Moreover, again by the 
lassi
al Korn's �rst inequality (if �

6

= 0) or dire
tly pointwise,

we obtain boundedness of A

k

in H

1

(
; so(3)). We 
an 
hoose a subsequen
e of (u

k

; A

k

)


onverging strongly in L

2

(
) and weakly in H

1

(
). By overall 
onvexity of the energy

density in (ru;D

x

A) the limit pair is a minimizer.

For the uniqueness we 
onsider the se
ond derivative of the strains

D

2

(ru;A)

W (ru� A):((r�; ÆA); (r�; ÆA)) � �




kr�� ÆAk

2

= �




k symr�k

2

+ �




k skew(r�� ÆA)k

2

� �




k symr�k

2

: (3.9)

By the 
lassi
al Korn's �rst inequality we obtain uniform positivity of the se
ond derivative

upon integration. The fun
tional is stri
tly 
onvex, the solution is unique.

Sin
e the resulting �eld equations of for
e balan
e and balan
e of angular momentum

are linear, uniformly ellipti
 with 
onstants 
oeÆ
ients the standard ellipti
 regularity the-

ory applies su
h that for pure Diri
hlet boundary 
onditions the solution is the smoother

the smoother the data. �

The 
orresponding in�nitesimal gradient 
onstrained Cosserat mi
ropolarmodel

(or indeterminate 
ouple stress model) has the form (simpli�ed 
urvature term:

7



�

5

= �

6

= 1; �

7

= 0)

Z




�k symruk

2

+

�

2

tr [symru℄

2

+

2�+ �

2

L

2




12

kD

x

skew(ru)k

2

� hf; uidV

�

Z

�

S

hN; uidS�

Z

�

C

hM




; skew(ru)idS 7! min : w.r.t. u (3.10)

�

lo


= 2� sym(ru) + � tr [sym(ru)℄ � 11 2 Sym; 
onstitutive stress

u

j

�


(x) = g(x)� x ; skew(ru)

j

�


= skew(rg)

j

�


:

Using the same methods as before we obtain

Theorem 3.2 (Existen
e for in�nitesimal gradient 
ase)

Let 
 � R

3

be a bounded domain with smooth boundary of 
lass C

1

and assume for the

boundary data g 2 H

2

(
;R

3

). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

)

together with M




2 L

2

(�

C

; so(3)). Then a model based on (3.10) admits a unique mini-

mizing solution u 2 H

1

(
) \ fr 
urlu 2 L

2

(
)g, 
f. [Duv70℄.

4 In�nitesimal Cosserat mi
ropolar elasto-plasti
ity

4.1 Non-dissipative extension to mi
ropolar elasto-plasti
ity

Now we extend the formulation of mi
ropolar elasti
ity to 
over in�nitesimal elasto-

plasti
ity as well. It should be 
lear that there exists various ways of obtaining su
h

an extension, for an overview of the 
ompeting models we refer to the instru
tive survey

arti
le [FS03℄. In
identally, the Cosserats themselves [CC09, p.5℄ already envisaged the

appli
ation of their general theory to plasti
ity and fra
ture. Without restri
ting gener-

ality we base the following 
onsiderations on a simpli�ed 
urvature expression by setting

�

5

= �

6

= 1; �

7

= 0.

The basi
 idea of a non-dissipative extension is quite simple. Consider the addititive

de
omposition of the total mi
ropolar stret
h into elasti
 and plasti
 parts

" = "

e

+ "

p

; (4.11)

and assume that rotational e�e
ts remain elasti
: A

e

:= A. Now we repla
e " in (3.5)

with "

e

whi
h yields (note that kD

x

A

e

k

2

= 2kr axl(A

e

)k

2

)

Z




� k sym "

e

k

2

+ �




k skew("

e

)k

2

+

�

2

tr ["

e

℄

2

+ 2

2�+ �

2

L

2




12

kr axl(A

e

)k

2

dV (4.12)

Z




� k"� sym "

p

k

2

+ �




k skew(ru� A

e

� "

p

)k

2

+

�

2

tr ["� "

p

℄

2

+ 2

2�+ �

2

L

2




12

kr axl(A

e

)k

2

dV

8



as thermodynami
 potential. We need to supply a 
onsistent 
ow rule for "

p

(note again

that A

e

a
ts solely elasti
ally). By 
hoosing

_"

p

(t) 2 f (T

E

); T

E

:= ��

"

p

W

in�n

mp

("

e

) ; (4.13)

W

in�n

mp

("

e

) = � k sym "

e

k

2

+ �




k skew("

e

)k

2

+

�

2

tr ["

e

℄

2

;

with a 
onstitutive multifun
tion f su
h that hf (�);�i � 0; 8� 6= 0 the redu
ed

dissipation inequality

d

dt

E("

e

; A

e

; "

p

) � 0 (4.14)

at �xed in time (ru;A

e

) is satis�ed, thus ensuring the se
ond law of thermodynami
s.

For simpli
ity we 
hoose the multifun
tion f to take tra
e free symmetri
 values only,

i.e. f (T

E

) 2 Sym(3)\sl(3;R). This sets the in�nitesimal plasti
 spin skew("

p

) to zero

and restri
ts attention to in
ompressible plasti
ity as in 
lassi
al formulations. Sin
e then

"

p

2 Sym(3) we may identify "

p

= "

p

. We have thus obtained our in�nitesimal model:

4.2 In�nitesimal elasto-plasti
 Cosserat model

The in�nitesimal system in variational form with non-dissipative Cosserat e�e
ts reads

Z




� k"� "

p

k

2

+ �




k skew(ru� A

e

)k

2

+

�

2

tr ["℄

2

+ 2

2�+ �

2

L

2




12

kr axl(A

e

)k

2

� hf; ui

� hM;A

e

idV �

Z

�

S

hN; uidS�

Z

�

C

hM




; A

e

i dS 7! min : w.r.t. (u;A

e

) at 
onstant "

p

_"

p

(t) 2 f (T

E

); T

E

= 2� ("� "

p

) (4.15)

u

j

�

= g(t; x)� x; A

e

j

�

= skew(rg(t; x))

j

�

:

The 
orresponding weak system of equations for pure Diri
hlet 
onditions is given by

(note that kA

e

k

2

= 2k axl(A

e

)k

2

for A

e

2 so(3;R))

Div � = �f; x 2 


� = 2� ("� "

p

) + 2�




(skew(ru)� A

e

) + � tr ["℄ � 11 (4.16)

�

2�+ �

2

L

2




12

�axl(A

e

) = �




axl(skew(ru)� A

e

) + 2 axl(skew(M))

_"

p

(t) 2 f (T

E

); T

E

= 2� ("� "

p

)

u

j

�


(t; x) = g(t; x)� x; x 2 �
 ; A

e

j

�


= skew(rg(t; x))

j

�


:

tr ["

p

(0)℄ = 0 ; "

p

(0) 2 Sym(3) :

9



We remark that the derivation of this model is intrinsi
ally 
orre
t but that it 
an

also be obtained as the linearized version of a 
orresponding geometri
ally exa
t model

[Nef03℄ based on the multipli
ative de
omposition of the deformation gradient into elasti


and plasti
 parts, whi
h, as it were, was prior to this linearized model.

In [DSW93, p.815℄ an elasto-plasti
 model based on the in�nitesimal theory with

dissipative Cosserat e�e
ts has been investigated by means of lo
alized 
onsiderations.

They show that the Cosserat 
ouple modulus �




> 0 has a de
isive in
uen
e on lo
alization

e�e
ts, essentially ex
luding mode II shear failure. In light of our development with non-

dissipative Cosserat e�e
ts, however, it is diÆ
ult to transfer this insight dire
tly.

4.3 Mathemati
al analysis of the in�nitesimal model

For brevity of notation we write in this part A instead of A

e

and 
 instead of the positive


onstant

2�+�

2

L

2




12

. Moreover, we study general Diri
hlet boundary 
onditions, this means

that the boundary data for the displa
ement and for the mi
rorotation may be pres
ribed

independently. Without loss of generality we 
onsider M = 0.

The goal of this subse
tion is to prove that the following initial boundary-value problem

Div � = �f ;

� = 2� ("� "

p

) + 2�




(skew(ru)� A) + � tr ["℄ � 11 ;

�
�axl(A) = �




axl(skew(ru)� A) ; (4.17)

_"

p

2 f (T

E

) ; T

E

= 2� ("� "

p

) ;

u

j

�


= u

D

; A

j

�


= A

D

; "

p

(0) = "

0

p

;

possesses global in time L

2

-solutions, assuming that the given data f; u

D

; A

D

; "

0

p

satisfy

some natural restri
tions and f : D(f ) � Sym(3)! P(Sym(3)) is a maximal monotone

mapping with 0 2 f (0). This mapping de�nes the maximal monotone operator f :

L

2

(
; Sym(3)) ! P(L

2

(
; Sym(3))) with the domain D(f ) = fT 2 L

2

(
; Sym(3)) :

T (x) 2 D(f ) a:e: in 
 and there exists S 2 L

2

(
; Sym(3)) with s(x) 2 f (T (x)) a:e:in 
g.

System (4.17) 
ontains only one physi
al nonlinearity, the 
onstitutive multifun
tion f ,

whi
h is assumed maximal monotone. Su
h a nonlinear mapping 
an be approximated

ni
ely by single-valued, global Lips
hitz fun
tions f

�

, in the literature 
alled the Yosida

approximation (see for example [AC84℄). Hen
e, our idea is quite natural: we rewrite

(4.17) with f

�

instead of f and try to pass to the limit � ! 0

+

.

Thus, for all � > 0 we study �rst the following approximated initial boundary-value

problem

Div �

�

= �f ;

�

�

= 2� ("

�

� "

�

p

) + 2�




(skew(ru

�

)� A) + � tr ["

�

℄ � 11 ;

�
�axl(A

�

) = ��




axl(A

�

) + �




axl(skew(ru

�

)) ; (4.18)

_"

�

p

= f

�

(T

�

E

) ; T

�

E

= 2� ("

�

� "

�

p

) ;

u

�

j

�


= u

D

; A

�

j

�


= A

D

; "

�

p

(0) = "

0

p

:

10



Theorem 4.1 (Global existen
e and uniqueness for approximated problem)

Let us assume that the given data possess the following regularity: for all times T > 0

f 2 C([0; T ℄; L

2

(
;R

3

)) ; u

D

2 C([0; T ℄; H

1

2

(�
;R

3

)) ; A

D

2 C([0; T ℄; H

3

2

(�
; so(3;R)))

and the initial data "

0

p

belongs to L

2

(
; Sym(3)). Then the approximated problem has a

global in time, unique solution (u

�

; "

�

; "

�

p

; A

�

) with the regularity

u

�

2 C([0; T ℄; H

1

(
;R

3

)) ; "

�

2 C([0; T ℄; L

2

(
; Sym(3))) ;

"

�

p

2 C

1

([0; T ℄; L

2

(
; Sym(3))) ; A

�

2 C([0; T ℄; H

2

(
; so(3;R))) :

If the given data are more regular in time, more pre
isely if

_

f 2 C([0; T ℄; L

2

(
;R

3

)) ; _u

D

2 C([0; T ℄; H

1

2

(�
;R

3

)) ;

_

A

D

2 C([0; T ℄; H

3

2

(�
; so(3;R))) ; (4.19)

then the unique solution is also C

1

in time.

Proof. We give a sket
h of the proof, whi
h is otherwise standard. Note that the approx-

imated system of equations 
ontains only global Lips
hitz nonlinearities. Hen
e, we use

Bana
h�s Fix Point Theorem. For a �xed time T > 0 let us denote by X the Bana
h

spa
e C([0; T ℄; L

2

(
; Sym(3))). We de�ne an operator P : X ! X as follows: for " 2 X

we solve the integral equation

"

p

(t) =

t

Z

0

f

�

(2� ("(�)� "

p

(�))) d� + "

0

p

: (4.20)

By the regularity of f

�

it follows that this equation is uniquely solvable in X. Then for

the solution "

p

we study the following ellipti
 boundary-value problem

Div

�

2� ("� "

p

) + 2�




(skew(ru)� A) + � tr ["℄ � 11

�

= �f ;

�
�axl(A) = ��




axl(A) + �




axl(skew(ru)) ;

u

j

�


= u

D

; A

j

�


= A

D

for the pair (u;A) of unknown fun
tions. This problem has a unique solution u with the

regularity C([0; T ℄; H

1

(
;R

3

)) and A 2 C([0; T ℄; H

2

(
; so(3;R))). Finally, we set

P (") =

1

2

(ru+r

T

u) :

It is not diÆ
ult to see that for short times T , the operator P is a 
ontra
tion. Moreover,

the 
ontra
tion 
onstant depends on the Lips
hitz 
onstant of the fun
tion f

�

and on

T only. Hen
e, for small T the mapping P possesses a unique �x point in X and this

fun
tion de�nes a lo
al in time solution of the approximated system. Next, using the

fa
t that the length of the existen
e interval does not depend on the given data we

11



may extend the solution with the same time step and obtain a global in time, unique

solution. Finally, we see that the solution "

p

is even more regular in time, this means

"

p

2 C

1

([0; T ℄; L

2

(
; Sym(3))). Then for given data satisfying (4.19) we 
on
lude that the

solution is C

1

in time. �

The main idea of the last proof was based on the global Lips
hitz property of the nonlinear

fun
tion f

�

. However, we did not yet use the physi
al stru
ture of the problem. Next,

we prove that the energy asso
iated with the problem is bounded independently of the

parameter �. The energy is de�ned by

E(u; "; "

p

; A)(t) =

Z




�

�k"� "

p

k

2

+

�

2

tr ["℄

2

+ �




k skew(ru)� Ak

2

+ 2
 kr axl(A)k

2

�

dx :

This fun
tion is elasti
ally 
oer
ive with respe
t to ru: for � > 0 the part tr ["℄

2

yields

the boundedness of the divergen
e Div u of the displa
ement u and the term

k skew(ru)� Ak

2

together with the 
ontrol of r axl(A) implies the boundedness of the

rotation 
urlu of u. This property of the energy is the 
ru
ial one in our existen
e theory.

In 
lassi
al rate-independent plasti
ity, 
url u is not 
ontrolled.

Theorem 4.2 (Energy estimate for the approximate sequen
e)

Let us assume that the given data satisfy (4.19) and f(u

�

; "

�

; "

�

p

; A

�

)g is the solution of

the approximate problem. Then for all times T > 0 there exists a positive 
onstant C(T )

independent of � su
h that

E(u

�

; "

�

; "

�

p

; A

�

)(t) � C(T ) for all t 2 [0; T ) : (4.21)

Proof. Cal
ulating the time derivative of the energy we obtain

_

E(u

�

; "

�

; "

�

p

; A

�

)(t) =

Z




�

2�h"

�

� "

�

p

; _"

�

� _"

�

p

i+ �tr ["

�

℄tr [ _"

�

℄

+2�




hskew(ru

�

)� A

�

; skew(r _u

�

)�

_

A

�

i+ 4
hr axl(A

�

);r axl(

_

A

�

)i

�

dx =

�

Z




hT

�

E

; _"

�

p

idx+

Z




h�

�

;r _u

�

idx� 2�




Z




hskew(ru

�

)� A

�

;

_

A

�

idx

+4


Z




hr axl(A

�

);r axl(

_

A

�

)idx :

The �rst integral on the right hand side of the last equality is nonnegative. In the se
ond

and in the fourth integral we integrate partially to obtain

_

E(u

�

; "

�

; "

�

p

; A

�

)(t) �

Z




hf; _u

�

idx+

Z

�


h�

�

:n; _u

�

ids

�4�




Z




haxl skew(ru

�

)� axl(A

�

); axl(

_

A

�

)idx

�4


Z




h�axl(A

�

); axl(

_

A

�

)idx+ 4


Z

�


hr axl(A

�

):n; axl(

_

A

�

)ids :

12



Using the equation for the mi
rorotations and the boundary 
onditions we �nally have

_

E(u

�

; "

�

; "

�

p

; A

�

)(t) �

Z




hf; _u

�

idx+

Z

�


h�

�

:n; _u

D

ids

+4


Z

�


hr axl(A

�

):n; axl(

_

A

D

)ids : (4.22)

Note that the boundary integrals are de�ned in the sense of the duality between the spa
es

H

1

2

(�
;R

3

) and H

�

1

2

(�
;R

3

). Integrating (4.22) in time we arrive at the inequality

E(u

�

; "

�

; "

�

p

; A

�

)(t) � E(u

�

; "

�

; "

�

p

; A

�

)(0) +

t

Z

0

Z




hf; _u

�

idx

+

t

Z

0

Z

�


h�

�

:n; _u

D

ids+ 4


t

Z

0

Z

�


hr axl(A

�

):n; axl(

_

A

D

)ids : (4.23)

By the 
ontinuity with respe
t to time we 
on
lude that the initial values u

�

(0); "

�

(0); A

�

(0)

are solutions of the following linear ellipti
 boundary-value problem

Div �

�

(0) = �f ;

�

�

(0) = 2� ("

�

(0)� "

�

p

(0)) + 2�




(skew(ru

�

(0))� A

�

(0)) + � tr ["

�

(0)℄ � 11 ;

�
�axl(A

�

(0)) = ��




axl(A

�

(0)) + �




axl(skew(ru

�

(0))) ;

u

�

(0)

j

�


= u

D

; A

�

(0)

j

�


= A

D

;

(4.24)

where "

�

(0) = 1=2(ru

�

(0) + r

T

u

�

(0)). The unique solution of (4.24) satis�es u

�

(0) 2

H

1

(
;R

3

), "

�

(0) 2 L

2

(
; Sym(3))), A

�

(0) 2 H

2

(
; so(3;R))) and it independent of �

and the initial energy value E(u

�

; "

�

; "

�

p

; A

�

)(0) is a 
onstant. Next, we analyse the �rst

integral from the right hand side of (4.23). Integrating partially in time we obtain

t

Z

0

Z




hf; _u

�

idx d� = �

t

Z

0

Z




h

_

f; u

�

idx d� +

Z




hf(t); u

�

(t)idx�

Z




hf(0); u

�

(0)idx

�

1

2

t

Z

0

k

_

fk

2

L

2

d� +

1

2

t

Z

0

ku

�

k

2

L

2

d� + kf(0)k

L

2

ku

�

(0)k

L

2

+ kf(t)k

L

2

ku

�

(t)k

L

2

:

By Poin
ar�e�s inequality we 
on
lude that

ku

�

(t)k

L

2

� ku

�

(t)�~u

D

(t)k

L

2

+k~u

D

(t)k

L

2

� diam(
)(kru

�

(t)k

L

2

+kr~u

D

(t)k

L

2

)+k~u

D

(t)k

L

2

where ~u

D

is a fun
tion from H

1

(
;R

3

) with ~u

Dj�


= u

D

. By the 
oer
ivity of the energy

with respe
t to the gradient of u

�

there exists a positive 
onstant C

E

independent of �

13



su
h that kru

�

(t)k

L

2

� C

E

E

1

2

(u

�

; "

�

; "

�

p

; A

�

)(t). Using the last results we have

�

�

�

t

Z

0

Z




hf; _u

�

idx d�

�

�

�

� C

t

Z

0

E(u

�

; "

�

; "

�

p

; A

�

)(�) d�

+Ckf(t)k

L

2

E

1

2

(u

�

; "

�

; "

�

p

; A

�

)(t) + C(t) (4.25)

where the 
onstants C;C(t) do not depend on � and C(t) depends on the given data only.

The se
ond integral in (4.23) is estimated as follows

�

�

�

t

Z

0

Z

�


h�

�

:n; _u

D

ids

�

�

�

�

t

Z

0

k�

�

:nk

H

�

1

2

k _u

D

k

H

1

2

d�

� (by the tra
e theorem in the spa
e L

2

(Div) [Tem83;Chapter1℄) �

C

t

Z

0

(k�

�

k

L

2

+ kDiv �

�

k

L

2

)k _u

D

k

H

1

2

d� � C

t

Z

0

kfk

L

2

k _u

D

k

H

1

2

d� (4.26)

+C

t

Z

0

E(u

�

; "

�

; "

�

p

; A

�

)(�) d� + C

t

Z

0

k _u

D

k

2

H

1

2

d�

where C > 0 does not depend on �. To estimate the last integral in (4.23) we use

H

2

-regularity of the mi
rorotations

�

�

�

t

Z

0

Z

�


hr axl(A

�

):n; axl(

_

A

D

)ids

�

�

�

�

t

Z

0

kr axl(A

�

):nk

H

�

1

2

k axl(

_

A

D

)k

H

1

2

d�

� C

t

Z

0

(kr axl(A

�

)k

L

2

+ k�axl(A

�

)k

L

2

)k axl(

_

A

D

)k

H

1

2

d� (4.27)

= C

t

Z

0

(kr axl(A

�

)k

L

2

+

�







k skew(ru

�

)� A

�

k

L

2

)k axl(

_

A

D

)k

H

1

2

d�

�

~

C

t

Z

0

E(u

�

; "

�

; "

�

p

; A

�

)(�) d� +

~

C

t

Z

0

k axl(

_

A

D

)k

2

H

1

2

d� ;

where again the 
onstants C;

~

C do not depend on �. Inserting (4.25), (4.26) and (4.27)

into (4.23) we obtain the following inequality

E(u

�

; "

�

; "

�

p

; A

�

)(t) � C

1

kf(t)k

L

2

E

1

2

(u

�

; "

�

; "

�

p

; A

�

)(t)+C

2

t

Z

0

E(u

�

; "

�

; "

�

p

; A

�

)(�) d�+C

3

(t);

where C

1

; C

2

; C

3

(t) do not depend on � and C

3

(t) depends on the given data only. Next,

we separate in the �rst term on the right hand side the energy with a small fa
tor and

14



absorb this expression by the left hand side. Finally, the Lemma of Gronwall 
ompletes

the proof. �

The energy estimate proved in the last theorem yields boundedness of the stresses f�

�

g

in the spa
e L

1

((0; T ); L

2

(
; Sym(3))) and of the mi
rorotations fA

�

g in the spa
e

L

1

((0; T ); H

1

(
; so(3;R))). Moreover, using that the energy 
ontrols the gradient of

the displa
ement the sequen
e fu

�

g is bounded in the spa
e L

1

((0; T ); H

1

(
;R

3

)) and


onsequently the sequen
e of strains f"

�

g and the sequen
e of inelasti
 strains f"

�

p

g are

bounded in the spa
e L

1

((0; T ); L

2

(
; Sym(3))). Hen
e, for a subsequen
e (again denoted

using the supers
ript �) we have: for all T > 0

�

�

�

* � in L

1

((0; T ); L

2

(
; Sym(3))) ;

A

�

�

* A in L

1

((0; T ); H

1

(
; so(3;R))) ;

u

�

�

* u in L

1

((0; T ); H

1

(
;R

3

)) ;

"

�

�

* " in L

1

((0; T ); L

2

(
; Sym(3))) ;

"

�

p

�

* "

p

in L

1

((0; T ); L

2

(
; Sym(3)))

and the limit fun
tions satisfy

" =

1

2

(ru+r

T

u) ; � = 2� ("� "

p

) + 2�




(skew(ru)� A) + � tr ["℄ � 11 :

Moreover, we see that the sequen
e fDiv �

�

g is 
onstant with respe
t to � and 
on-

sequently bounded in the spa
e L

1

((0; T ); L

2

(
;R

3

)) and the sequen
e f�axl(A

�

)g is

bounded in the spa
e L

1

((0; T ); L

2

(
;R

3

)). Using the 
losedness of the di�erential oper-

ators in Sobolev spa
es the limit fun
tions satisfy the system

Div � = �f ;

�
�axl(A) = ��




axl(A) + �




axl(skew(ru)) ;

u

j

�


= u

D

; A

j

�


= A

D

; "

p

(0) = "

0

p

:

Thus, to end the existen
e theory for the in�nitesimal elasto-plasti
 Cosserat model we

should prove only that the limit fun
tions satisfy the di�erential in
lusion (4.17-4). The

sequen
e T

�

E

= 2�("

�

� "

�

p

) 
onverges weakly-� to T

E

= 2� (" � "

p

) and the sequen
e

R

t

0

f

�

(T

�

E

)d� = "

�

p

� "

0

p


onverges also weakly-� to "

p

� "

0

p

. To 
on
lude that the limit

fun
tions "

p

and T

E

satisfy the di�erential in
lusion we need estimates for the sequen
e

ff

�

(T

�

E

)g. Hen
e, the next step in our existen
e theory is an estimate for time derivatives

of the approximate sequen
e.

Theorem 4.3 (Energy estimate for time derivatives)

Suppose that the given data possess more time regularity as in the last theorem and

satisfy additionally: for all times T > 0

�

f 2 L

2

((0; T )� 
;R

3

) ; �u

D

2 L

2

((0; T )� �
;R

3

) ;

�

A

D

2 L

2

((0; T )� �
; so(3;R)) :

(4.28)

Moreover, assume that the initial data "

0

p

2 L

2

(
; Sym(3)) is 
hosen su
h that the initial

value of the redu
ed Eshelby tensor T

E

(0) = 2� ("(0) � "

0

p

) de�ned by system (4.24)
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belongs to the domain of the maximal monotone operator f . Then there exists a positive


onstant C(T ) independent of the parameter � su
h that

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t) � C(T ) for all t 2 [0; T ) :

Proof. For h > 0 let us denote by (u

�

h

(t); "

�

h

(t); "

�

p;h

(t); A

�

h

(t)) the shifted fun
tions (u

�

(t+

h); "

�

(t + h); "

�

p

(t + h); A

�

(t + h)) and 
al
ulate the energy evaluated on the di�eren
es

(u

�

h

� u

�

; : : : ). Then for the time derivative we have

_

E(u

�

h

� u

�

; "

�

h

� "

�

; "

�

p;h

� "

�

p

; A

�

h

� A

�

)(t) =

Z




2� h"

�

h

� "

�

� "

�

p;h

+ "

�

p

; _"

�

h

� _"

�

� _"

�

p;h

+ _"

�

p

idx

+2�




Z




hskew(ru

�

h

�ru

�

)� A

�

h

+ A

�

; skew(r _u

�

h

�r _u

�

)�

_

A

�

h

+

_

A

�

idx

+�

Z




tr ["

�

h

� "

�

℄tr [ _"

�

h

� _"

�

℄ dx + 4


Z




hr axl(A

�

h

� A

�

);r axl(

_

A

�

h

�

_

A

�

)idx (4.29)

= �

Z




hT

�

E;h

� T

�

E

; _"

�

p;h

� _"

�

p

idx+

Z




h�

�

h

� �

�

;r _u

�

h

�r _u

�

idx

+4�




Z




haxl skew(ru

�

h

�ru

�

)� axl(A

�

h

� A

�

); axl skew(r _u

�

h

�r _u

�

)� axl(

_

A

�

h

�

_

A

�

)idx

+4


Z




hr axl(A

�

h

� A

�

);r axl(

_

A

�

h

�

_

A

�

)idx

where T

�

E;h

(t) = T

�

E

(t + h) and �

�

h

(t) = �

�

(t + h). By the monotoni
ity of the Yosida

approximation the �rst term on the right hand side of (4.29) is non positive. Similar to

the energy estimate in Theorem 4.2 we integrate partially in the se
ond and in the fourth

integral and use the equation for mi
rorotations. Hen
e, we arrive at the inequality

_

E(u

�

h

� u

�

; "

�

h

� "

�

; "

�

p;h

� "

�

p

; A

�

h

� A

�

)(t) �

Z




hf

h

� f; _u

�

h

� _u

�

idx

+

Z

�


h(�

�

h

� �

�

):n; _u

D;h

� _u

D

ids+ 4


Z

�


hr axl(A

�

h

� A

�

):n; axl(

_

A

D;h

�

_

A

D

ids (4.30)

where f

h

(t) = f(t+ h), u

D;h

(t) = u

D

(t+ h) and A

D;h

(t) = A

D

(t+ h). Next, we integrate

(4.30) in time and obtain

E(u

�

h

� u

�

; "

�

h

� "

�

; "

�

p;h

� "

�

p

; A

�

h

� A

�

)(t) � E(u

�

h

� u

�

; "

�

h

� "

�

; "

�

p;h

� "

�

p

; A

�

h

� A

�

)(0)

+

t

Z

0

Z




hf

h

� f; _u

�

h

� _u

�

idx d� +

t

Z

0

Z

�


h(�

�

h

� �

�

):n; _u

D;h

� _u

D

ids d� (4.31)

+4


t

Z

0

Z

�


hr axl(A

�

h

� A

�

):n; axl(

_

A

D;h

�

_

A

D

ids d� :
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Before we divide (4.31) by h

2

we should shift in the integral terms the shift operator onto

given data. We 
al
ulate this with details for the �rst integral only.

t

Z

0

Z




hf

h

� f; _u

�

h

� _u

�

idx d� =

Z




t

Z

0

hf(� + h)� f(�); _u

�

(� + h)id� dx

�

Z




t

Z

0

hf(� + h)� f(�); _u

�

(�)id� dx = (� + h = s in the �rst integral) =

=

Z




t+h

Z

h

hf(s)� f(s� h); _u

�

(s)ids dx�

Z




t

Z

0

hf(s+ h)� f(s); _u

�

(s)ids dx

= �

Z




t+h

Z

h

hf(s+ h)� 2f(s) + f(s� h); _u

�

(s)ids dx�

Z




h

Z

0

hf(s+ h)� f(s); _u

�

(s)idx ds

+

Z




t+h

Z

t

hf(s+ h)� f(s); _u

�

(s)ids dx : (4.32)

In the same manner we transform the se
ond and the third integral term from (4.31).

Next, we insert (4.32) and the results for other terms into (4.31), divide by h

2

and pass

to the limit h! 0

+

. Hen
e, we 
on
lude with the following inequality

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t) � E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(0)�

t

Z

0

Z




h

�

f; _u

�

idx d�

�

Z




h

_

f(0); _u

�

(0)idx+

Z




h

_

f(t); _u

�

(t)idx (4.33)

�

t

Z

0

Z

�


h�

�

:n; �u

D

ids d� �

Z

�


h�

�

(0):n; _u

D

(0)ids+

Z

�


h�

�

(t):n; _u

D

(t)ids

�4


t

Z

0

Z

�


hr axl(A

�

):n; axl(

�

A

D

)ids d� � 4


Z

�


hr axl(A

�

)(0):n; axl(

_

A

D

)(0)ids

+4


Z

�


hr axl(A

�

)(t):n; axl(

_

A

D

)(t)ids :

To obtain the initial energy for time derivatives we observe that _"

�

p

(0) = f

�

(T

�

E

(0)) =

f

�

(T

E

(0)) : By assumption T

E

(0) 2 D(f ) we have that the sequen
e ff

�

(T

E

(0))g is

bounded in L

2

(
; Sym(3)). The other initial values _u

�

(0); _"

�

(0) and

_

A

�

(0) are solutions

of (4.24) with _"

�

p

(0) instead of "

0

p

. Consequently, the initial energy for time derivatives is

bounded. The integral term on the right hand side of (4.33) 
an be estimated in the same

17



manner as in the proof of Theorem 4.2. Thus we arrive at the following inequality

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t) � C

1

k

_

f(t)k

L

2

E

1

2

( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t)+C

2

t

Z

0

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(�) d� +C

3

(t)

where C

1

; C

2

; C

3

(t) do not depend on � and C

3

(t) depends on the given data only. Similar

as in the proof of Theorem 4.2 this 
on
ludes the statement. �

The energy estimate for time derivatives yields that the sequen
e ff

�

(T

�

E

)g is bounded in

L

1

(0; T ); L

2

(
; Sym(3))). Hen
e, we 
an sele
t a subsequen
e (denoted again with the

supers
ript �) with f

�

(T

�

E

)

�

* f

�

in L

1

((0; T ); L

2

(
; Sym(3))). This shows that the limit

fun
tion T

E

= 2� ("� "

p

) belongs to D(f ). To end our existen
e theory we need only to

prove that

f

�

(t; x) 2 f (T

E

(t; x)) a:e: in (0; T )� 
 : (4.34)

From the de�nition of a maximal monotone operator it is easy to see that its graph is

weakly-strongly 
losed. Thus we have to improve the weak 
onvergen
e of the sequen
e

fT

�

E

g.

Theorem 4.4 (Strong 
onvergen
e of the stresses)

Let us assume that the given data satisfy all requirements of Theorem 4.3.3. Then E(u

�

�

u

�

; "

�

� "

�

; "

�

p

� "

�

p

; A

�

� A

�

)(t)! 0 for �; � ! 0

+

uniformly on bounded time intervals.

Proof. Cal
ulating the time derivative of the energy evaluated on the di�eren
es of two

approximation steps we obtain

_

E(u

�

� u

�

; "

�

� "

�

; "

�

p

� "

�

p

; A

�

� A

�

)(t) = 2�

Z




h"

�

� "

�

� "

�

p

+ "

�

p

; _"

�

� _"

�

� _"

�

p

+ _"

�

p

idx

+�

Z




tr ["

�

� "

�

℄tr [ _"

�

� _"

�

℄dx + 4


Z




hr axl(A

�

� A

�

);r axl(

_

A

�

�

_

A

�

)idx

+2�




Z




hskew(ru

�

�ru

�

)� A

�

+ A

�

; skew(r _u

�

�r _u

�

)�

_

A

�

+

_

A

�

idx :

Using that the given data for both approximation steps are the same we 
on
lude that

_

E(u

�

� u

�

; "

�

� "

�

; "

�

p

� "

�

p

; A

�

� A

�

)(t) = �

Z




hT

�

E

� T

�

E

; f

�

(T

�

E

)� f

�

(T

�

E

)idx : (4.35)

Next, we estimate the right hand side of (4.35). This estimation is a standard one in the

theory of maximal monotone operators (
ompare with the proof of Theorem 1 p. 147 in

[AC84℄). Nevertheless, for 
ompleteness of the proof we insert it here. By de�nition of

the Yosida approximation we have

f

i

(T

i

E

) 2 f (J

i

(T

i

E

)) where J

i

(T

i

E

) = T

i

E

� if

i

(T

i

E

) and i = �; � (4.36)
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is the resolvent of the operator f . Hen
e, be (4.36) we have

�

Z




hT

�

E

� T

�

E

; f

�

(T

�

E

)� f

�

(T

�

E

)idx = �

Z




hJ

�

(T

�

E

)� J

�

(T

�

E

); f

�

(T

�

E

)� f

�

(T

�

E

)idx

�

Z




h�f

�

(T

�

E

)� �f

�

(T

�

E

); f

�

(T

�

E

)� f

�

(T

�

E

)idx

�

�

4

kf

�

(T

�

E

)k

2

L

2

+

�

4

kf

�

(T

�

E

)k

2

L

2

=

�

4

k _"

�

p

k

2

L

2

+

�

4

k _"

�

p

k

2

L

2

:

Inserting the last result into (4.35) and integrating in time we �nally obtain

E(u

�

� u

�

; "

�

� "

�

; "

�

p

� "

�

p

; A

�

� A

�

)(t) �

t

4

(� + �)C(T ) for all t 2 [0; T ) ;

where the 
onstant C(T ) is from the statement of Theorem 4.3. The last inequality

immediately 
ompletes the proof. �

Using (4.36) and the fa
t that the resolvent J

�

is a global Lips
hitz operator with the

Lips
hitz 
onstant less or equal to 1, we see that the sequen
e fJ

�

(T

�

E

)g 
onverges strongly

to the fun
tion T

E

(note that the sequen
e ff

�

(T

�

E

)g is bounded). Thus, the weak limit

f

�

(T

�

E

)

�

* f

�

belongs to the set f (T

E

) and the limit fun
tions (u; "; "

p

; A) satisfy (4.17).

Theorem 4.5 (Uniqueness of solutions)

Let us assume that the given data f; u

D

; A

D

; "

0

p

satisfy all requirements of Theorem 4.3

Then system (4.17) possesses a unique, global in time solution (u; "; "

p

; A).

Proof. Assume that (u

1

; "

1

; "

1

p

; A

1

) and (u

2

; "

2

; "

2

p

; A

2

) are two solutions of (4.17) for the

same given data. Then for the energy fun
tion evaluated on di�eren
es of these solutions

we have

_

E(u

1

� u

2

; "

1

� "

2

; "

1

p

� "

2

p

; A

1

� A

2

)(t) = 2�

Z




h"

1

� "

2

� "

1

p

+ "

2

p

; _"

1

� _"

2

� _"

1

p

+ _"

2

p

idx

+�

Z




tr ["

�

� "

�

℄tr [ _"

�

� _"

�

℄dx+ 4


Z




hr axl(A

1

� A

2

);r axl(

_

A

1

�

_

A

2

)idx

+2�




Z




hskew(ru

1

�ru

2

)� A

1

+ A

2

; skew(r _u

1

�r _u

2

)�

_

A

1

+

_

A

2

idx

= �

Z




hT

1

E

� T

2

E

; _"

1

p

� _"

2

p

idx � 0 :

This yields immediately, that

E(u

1

� u

2

; "

1

� "

2

; "

1

p

� "

2

p

; A

1

� A

2

)(t) � E(u

1

� u

2

; "

1

� "

2

; "

1

p

� "

2

p

; A

1

� A

2

)(0) = 0

and the statement follows from 
oer
iveness of the energy fun
tion. �

Finally we formulate the existen
e theorem, whi
h we have proved:
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Theorem 4.6 (Existen
e for the in�nitesimal elasto-plasti
 Cosserat model)

Suppose that the given data f; u

D

; A

D

satisfy: for all times T > 0

f 2 C

1

([0; T ℄; L

2

(
;R

3

)) ;

�

f 2 L

2

((0; T )� 
;R

3

) ;

u

D

2 C

1

([0; T ℄; H

1

2

(�
;R

3

)) ; �u

D

2 L

2

((0; T )� �
;R

3

) ;

A

D

2 C

1

([0; T ℄; H

3

2

(�
; so(3;R))) ;

�

A

D

2 L

2

((0; T )� �
; so(3;R)) :

Moreover, assume that the initial data "

0

p

2 L

2

(
; Sym(3)) is 
hosen su
h that the initial

value of the redu
ed Eshelby tensor T

E

(0) = 2� ("(0)�"

0

p

) de�ned by system (4.24) belongs

to the domain of the maximal monotone operator f . Then system (4.17) possesses a global

in time, unique solution (u; "; "

p

; A) with the regularity: for all times T > 0

u 2 H

1;1

((0; T ); H

1

(
;R

3

)) ; "; "

p

2 H

1;1

((0; T ); L

2

(
; Sym(3))) ;

A 2 H

1;1

((0; T ); H

2

(
; so(3;R))) :

Remark In the analysis part we did not assume that the values of the 
onstitutive

multifun
tion f are tra
e free. This means that the existen
e theory developed so far

works as well without this requirement. For 
onstitutive multifun
tions possessing tra
e

free values, assuming additionally that the initial inelasti
 strain "

0

p

is also tra
e free, we


on
lude that tr ["

p

℄(t) = 0 during the whole deformation pro
ess.

Note that for the model to be well-posed in the rate-independent 
ase, we did not need

a so 
alled safe load 
ondition, otherwise unavoidable.

5 Dis
ussion and 
on
luding remarks

The in�nitesimal Cosserat model has been extended to elasto-plasti
ity where Cosserat

e�e
ts remain, in 
ontrast to standard approa
hes, non-dissipative. As only di�eren
e

to 
lassi
al rate-independent in�nitesimal plasti
ity we have introdu
ed an additional in-

�nitesimal mi
rorotation A

e

, in
uen
ing only the elasti
 behaviour of the model. This mi-

nor 
hange is shown to 
ompletely regularize the pathologi
al behaviour of rate-independent


lassi
al plasti
ity theory. De
isive in our analysis is the observation that the mi
roro-

tations provide an independent 
ontrol of 
url u, otherwise not present in the theory.

This extra resistan
e against elasti
 shear is also a wel
ome feature from a modelling and

numeri
al point of view.

Sin
e this modi�
ation of 
lassi
al rate-independent plasti
ity is not operative in uni-

axial tension/
ompression we may arguably say that the provided regularization is opti-

mal. Numeri
al 
al
ulations based on this modi�
ation are \
heap", in the sense that the

resulting system remains of se
ond order.
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