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Abstract

In this contribution we investigate the regularizing properties of generalized con-
tinua of Cosserat micropolar type in the elasto-plastic case. We propose an exten-
sion of classical infinitesimal elasto-plasticity to include consistently non-dissipative
micropolar effects.

It is shown that the new model is thermodynamically admissible and allows
for unique, global in-time solution of the corresponding rate-independent initial
boundary value problem. The method of choice are the Yosida-approximation and
a passage to the limit.
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1 Notation

Let Q C R® be a bounded domain with Lipschitz boundary 0 and let I' be a smooth
subset of 00 with non-vanishing 2-dimensional Hausdorff measure. We denote by M3*3
the set of real 3 x 3 second order tensors, written with capital letters. The standard
Euclidean scalar product on M**® is given by (X,Y)sxs = tr [XY”], and thus the
Frobenius tensor norm is || X ||* = (X, X )pxs. The identity tensor on M*** will be denoted
by 1, so that tr [X] = (X, ). We let Sym and PSym denote the symmetric and positive
definite symmetric tensors respectively. We adopt the usual abbreviations of Lie-algebra
theory, i.e. s0(3) := {X € M**® | X7 = —X} are skew symmetric second order tensors
and sl(3) := {X € M |tr[X] = 0} are traceless tensors. We set sym(X) = 1(X” + X)
and skew (X)) = (X — X7) such that X = sym(X) + skew(X). For X € M**3 we set for
the deviatoric part dev X = X — 1 tr [X] 1 € sl(3).
For a second order tensor X we define the third order tensor

b = DX (2) = (V(X(2)-e1), V(X (2)-c0), V(X (2)-c0)) = (B,52,0%) € (MP3)%. For b
we set [|b]|2 = 320, ||b7||? together with sym(h) := (sym b',sym b2, sym h?) and tr [h] :=
(tr[h], tr [H2], tr [h%]) € R®. The first and second differential of a scalar valued function
W (F) are written DpW (F).H and D%W (F).(H, H), respectively. Sometimes we use also
OxW (X) to denote the first derivative of W with respect to X. We employ the standard
notation of Sobolev spaces, i.e. L*(Q), HY*(Q), HY*(Q), which we use indifferently for
scalar-valued functions as well as for vector-valued and tensor-valued functions.

2 Introduction

This article addresses the modelling and mathematical analysis of geometrically linear
generalized continua of Cosserat micropolar type in the elastic as well as elasto-plastic
case. General continuum models involving independent rotations have been introduced
by the Cosserat brothers [CC09]. In fact, their original motivation came from the theory
of surfaces, where the moving three-frame (Gauss frame) had been used successfully.

Their development has been largely forgotten for decades only to be rediscovered in
the beginning of the sixties [Oshb5, Giin58, AK61, ES64, Eri68, Tou62, Tou64, GR64,
MT62, Sch67, TN65]. At that time theoretical investigations of non-classical continuum
theories were the main motivation [Kr668]. The Cosserat concept has been generalized in
various directions, for an overview of these so called microcontinuum theories look at
[EK76, Eri99, Cap89].

Among the first contributions extending the Cosserat framework to infinitesimal elasto-
plasticity we have to mention [Saw67, Lip69, Bes74]. More recent infinitesimal elastic-
plastic formulations have been investigated in [dB92, DSW93, IW98, RV96]. These models
directly comprise joint elastic and plastic Cosserat effects. Lately, the models have been
extended to a finite elastic-plastic setting as well, see e.g. [GT01, San99, Ste94, Gra03,
FCS97] and references therein. Most of these extensions directly comprise joint elastic
and plastic Cosserat effects as well but we pretend that their physical and mathematical
significance is at present much more difficult to asses than models where Cosserat effects
are restricted to the elastic response of the material [FCS97] and references therein. Our



own contribution will be of the second type.

Apart from the theoretical development, the Cosserat type models are today increas-
ingly advocated as a means to regularize the pathological mesh size dependence of lo-
calization computations where shear failure mechanisms [CH85, MV87, Miih89, BP91,
Bar94| play a dominant role, for applications in plasticity see the non-exhaustive list
[IW98, DSW93, RV96, dB91, dBS91, dB92]. The occurring mathematical difficulties re-
flect the physical fact that upon localization the validity limit of the classical models is
reached. In models without any internal length the deformation should be homogeneous
on the scale of a representative volume element of the material [MA91].

The incorporation of a length scale, which is natural in a Cosserat theory, in principal
has the power to remove the mesh sensitivity. The presence of the internal length scale
causes the localization zones to have finite width. However, the actual length scale of
a material is difficult to establish experimentally and theoretically [Lak95] and remains
basically an open question as is the determination of other additionally appearing material
constants in the Cosserat framework. It is also not entirely clear, how the shear band
width depends on the characteristic length.

The mathematical analysis of Cosserat micropolar models is at present restricted to the
infinitesimal, linear elastic models, see e.g. [Duv70, HH69, Ghe74a, Ghe74b]. The elasto-
plastic situation has not been dealt with mathematically to the best of our knowledge.

As far as classical rate-independent elasto-plasticity is concerned we remark that global
existence for the displacement has been shown only in a very weak, measure-valued sense,
while the stresses could be shown to remain in L?*(€2). For this results we refer for example
to [AL87, Che02, Tem86]. If hardening or viscosity is added, then global classical solution
are found see e.g. [AIb98, CheOlb, CheOla]. A complete theory for the classical rate-
independent case remains elusive, see also the remarks in [Che02].

While the infinitesimal Cosserat micropolar elasto-plasticity model in its various ver-
sions is interesting mathematically in its own right we rather concentrate on its possible
regularizing properties. We emphasize that our non-dissipative formulation seems to pro-
vide just the correct amount of regularization missing in the classical elasto-plastic prob-
lem. This being our main thrust, we do not investigate Cosserat models where additional
Cosserat effects have been introduced for the plastic behaviour as well.

Our contribution is organized as follows: first, we review the basic concepts of the geo-
metrically linear elastic Cosserat micropolar theories in a variational context and present
various existence results.

The formulation is then consistently extended to infinitesimal elasto-plasticity with
non-dissipative micropolar effects. The decisive stress tensor is nothing else than the
linearized elastic Eshelby energy momentum tensor.

Subsequently, we mathematically study the obtained rate-independent case and show,
by means of the Yosida approximation and a passage to the limit, that the rate-independent
problem admits a unique, global in-time solution for displacements and microrotations in
standard Sobolev spaces under fairly mild assumptions on the data.



3 The infinitesimal elastic Cosserat model

Let us start by recalling the infinitesimal Cosserat approach. First, in the purely elas-
tic case, an infinitesimal Cosserat theory can be obtained by introducing the additive
decomposition of the macroscopic displacement gradient Vu into infinitesimal microro-
tation A € s0(3,R) (infinitesimal Cosserat rotation tensor) and infinitesimal micropolar
stretch tensor (or first Cosserat deformation tensor) £ € MP*? with

Vu=%2+A (3.1)

where £ ¢ Sym(3), such that (3.1) is not necessarily the decomposition of Vu into in-
finitesimal continuum stretch sym(Vu) and infinitesimal continuum rotation skew(Vu).

In the quasistatic case, the Cosserat theory is then obtained from a variational principle
[San99, p.51] or [Ste97] for the infinitesimal displacement u : [0,7] x Q — R?* and the
independent infinitesimal microrotation A : Q — s0(3, R):

£ (u, A) :/W(VU,Z, DA) — (f,u) — (M, A)dV

- / (N, u) dS — / (M,, A) dS v min. wort. (u,7), (3.2)
I's I'c
Z‘F:Zd, u. =g(t,x) —x.

Here W represents the elastic energy density and Q C R? is a domain with boundary 92
and [ C 09 is that part of the boundary, where Dirichlet conditions g, Aq for infinitesimal
displacements and rotations, respectively, are prescribed while I'g C 02 is a part of the
boundary, where traction boundary conditions N are applied with I'NI'g = ). In addition,
['c C 09 is the part of the boundary where external surface couples M, are applied with
I'NT¢ = 0. The classical volume force is denoted by f and the additional volume couple
by M. Variation of the action £ with respect to u yields the equation for linearized
balance of linear momentum and variation of £& with respect to A yields the linearized
version of balance of angular momentum.

3.1 Infinitesimal elastic Cosserat theory

It remains to specify the analytic form of the energy density W. A linearized version of
material frame-indifference implies the reduction

W (Vu, A, DyA) = W(g,DA), (3.3)

and for infinitesimal displacements « and small curvature D, A a quadratic ansatz is ap-
propriate:
curv

W (g, DcA) = Wiin(z) + Wimal(DA) (3.4)

with an additive decomposition of the energy density into microstretch and curvature
parts.



In the isotropic case we assume for the stretch energy
infin )\ —
Wi () = | sym@)I[* + pe | skew @)|I* + 3 tr [sym @)’
)\
= || sym Vul[® + pic || skew (Va) — A|* + 2 tr [sym(Vu)]”, (3.5)

where the Cosserat couple modulus p. > 0 is an additional material parameter, com-
plementing the two Lame constants p, A > 0.
For the curvature term we assume

211+ \ L2 _ _ .
a —(a5||symeA||2+a6||skewaA||2+a7tr[DXA]2). (3.6)

Wsmall(DXA) 5 T

curv

Here, L. > 0 with units of length introduces a specific internal characteristic length into
the elastic formulation. In general we assume a5 > 0, ag, a7 > 0.

Two observations are essential. First, if u. = 0, the infinitesimal problem completely
decouples - the infinitesimal microrotations A have no influence at all on the macroscopic
behaviour of the infinitesimal displacements and classical infinitesimal elasticity results.

Second, the choice ag, 7 = 0 is possible, since coercivity of the reduced curvature
expression can still be concluded on account of the classical Korn’s first inequality applied
to sym D A. !

In the limit of zero internal length scale L. = 0, balance of angular momentum

DiWhp(Vu, A) € Sym < D W (Vu, A) =0, (3.7)

implies already that infinitesimal continuum rotations and infinitesimal microrotations
coincide: skew(Vu) = A, and this in turn is equivalent to the symmetry of the infinitesimal
Cauchy stress o or the so called Boltzmann axiom.

If we consider now pu. > 0, it is standard to prove that the corresponding minimization
problem admits a unique minimizing pair (u, A) € H*(Q,R?) x H*(Q,s0(3)). Existence
results of this type have been obtained e.g. in [Duv70, HH69, Ghe74a, Ghe74b].

IFor A € s0(3,R) we have

0 a B Iy 0y oy o
A= (—a 0 7) ,axl(A) = (5) , Vaxl(4) = (r@w By Bz)
-8 -y 0 5y Yo Yy Tz

oy +Be Az +Ya
2

— Xz 2
symV axl(4) = _O‘ygﬁw B2 _BZJQFW

afle Bl 2
lsymV axd(@|? = a2 + 52 + 12 + {2 ;B”")Z G 2%)2 L B 2%’)2
| sym Dy Al|? = || sym VA.eq||* + || sym VA.es||? + || sym VA.es]||?
:7+%2+ +ﬂ§+%+ai+%§+7j+ﬁ+w+ﬂz+ +/3—2+ 5 +M

Now it is easy to see that for some ¢t > 0 it holds || sym Dy A||? > ¢ || sym V ax1(A)||? since || sym D A||* =
0 implies || sym V axl(A4)||> = 0. Hence, the standard Korn’s inequality applied to || sym V axl(A)||? yields
unique existence.



Theorem 3.1 (Existence for infinitesimal elastic Cosserat model)

Let Q C R® be a bounded Lipschitz domain and assume for the boundary data

g € HY(Q,R®) and Ay € H'(Q,50(3,R)). Moreover, let f € L?>(,R®) and suppose
N € L*(T's,R?) together with M, € L*(I'¢,s0(3,R)). Then models based on (3.5) and
(3.6) admit a unique minimizing solution pair (u, A) € H'(2,R*) x H*(Q,s0(3)). The
solution is smoother if the data are smoother.

Proof. We apply the direct methods of variations. First we observe that infimizing se-
quences (ug, Ax) exist and

curv

00 > / Winin (Vuy — Ag) + Wamd(DeAy) — (f, u) AV

> / pe Ve = A P QY = 2 s o 33)
Q

— [ e llsvan(Fae = )7 e skere(Tug = )P 2V = £l el
Q

> [ e llsvm Tl 4V = 17 e s
Q

> pre cxc |unllir oy — I ez Nuslla @)

showing that w is bounded in H'(2). We have used that sym is orthogonal to skew
and the classical Korn’s first inequality together with the boundary conditions for wy.
Moreover, again by the classical Korn’s first inequality (if ag = 0) or directly pointwise,
we obtain boundedness of A; in H'(2,s0(3)). We can choose a subsequence of (uy, Ay)
converging strongly in L*(2) and weakly in H'(Q2). By overall convexity of the energy
density in (Vu, DyA) the limit pair is a minimizer.
For the uniqueness we consider the second derivative of the strains
Dy, oW (Vu —A).(V$,64), (V6,04)) > |V — 7A|

= el sym Vo |* + pc|| skew (Vo — 6 A)||* > pe|| sym Vg||*. (3.9)

By the classical Korn’s first inequality we obtain uniform positivity of the second derivative
upon integration. The functional is strictly convex, the solution is unique.

Since the resulting field equations of force balance and balance of angular momentum
are linear, uniformly elliptic with constants coefficients the standard elliptic regularity the-
ory applies such that for pure Dirichlet boundary conditions the solution is the smoother
the smoother the data. [

The corresponding infinitesimal gradient constrained Cosserat micropolar model
(or indeterminate couple stress model) has the form (simplified curvature term:



as =ag =1, ay =0)

A %A
[ s Tl 4 sy vt 4 22 Ly skew (Vu) |7 — (£, up av
Q

_ / (N, u) dS — / (M, skew (V) dS > min . w.r.t. u (3.10)

s
0 = 2 sym(Vu) + Atr [sym(Vu)] - 1L € Sym, constitutive stress
U)o () = g(x) — 2, skew(Vu)),, = skew(Vyg)

loc log -

Using the same methods as before we obtain

Theorem 3.2 (Existence for infinitesimal gradient case)

Let Q C R® be a bounded domain with smooth boundary of class C' and assume for the
boundary data g € H*(Q2, R*). Moreover, let f € L*(Q2,R*) and suppose N € L*(T's, R?)
together with M, € L*(T'¢,50(3)). Then a model based on (3.10) admits a unique mini-
mizing solution uw € H'(Q) N {V curlu € L*(Q)}, cf. [Duv70].

4 Infinitesimal Cosserat micropolar elasto-plasticity

4.1 Non-dissipative extension to micropolar elasto-plasticity

Now we extend the formulation of micropolar elasticity to cover infinitesimal elasto-
plasticity as well. It should be clear that there exists various ways of obtaining such
an extension, for an overview of the competing models we refer to the instructive survey
article [FS03]. Incidentally, the Cosserats themselves [CC09, p.5] already envisaged the
application of their general theory to plasticity and fracture. Without restricting gener-
ality we base the following considerations on a simplified curvature expression by setting
as =ag =1, a; = 0.

The basic idea of a non-dissipative extension is quite simple. Consider the addititive
decomposition of the total micropolar stretch into elastic and plastic parts

E=F,+5p, (4.11)

and assume that rotational effects remain elastic: A, := A. Now we replace Z in (3.5)
with g, which yields (note that ||D A.||? = 2||V ax1(4,)||?)

2,u—|—)\L

5 — ||V ax1(A4,)[|* dV (4.12)

_ _ A
/ pllsymEd P + g | skew(E) |” + 5 tr el +2
Q
— 112 X — 2 A — 12
plle = sym |12 + g | skew(Vu — A, — )| + 5 trfe — 5 +2
Q

2+ A L2
2

o IV axl(A)[[F dv



as thermodynamic potential. We need to supply a consistent flow rule for £, (note again
that A, acts solely elastically). By choosing

&(t) € f(Tp), Tp:=—0,Whi(z,), (4.13)
. _ _ _ A _
W;‘ff“(se) = 1| symZ||* + . || skew (Z,)[|* + B tr [58]2 ,

with a constitutive multifunction f such that (f(E),E> > 0,VY # 0 the reduced
dissipation inequality

d —

—&(e, A, Ep) <0 (4.14)

dt

at fixed in time (Vu, A,) is satisfied, thus ensuring the second law of thermodynamics.
For simplicity we choose the multifunction f to take trace free symmetric values only,

ie. f(TE) € Sym(3)Nsl(3,R). This sets the infinitesimal plastic spin skew(g,) to zero
and restricts attention to incompressible plasticity as in classical formulations. Since then
gp € Sym(3) we may identify , = £,. We have thus obtained our infinitesimal model:

4.2 Infinitesimal elasto-plastic Cosserat model

The infinitesimal system in variational form with non-dissipative Cosserat effects reads

— A 2u+ A\ L7 —
Jlle = + el skew(Fu = TP + 5 er el + 22552 29 axl () ()
Q
— (M, A.)dV — / (N,u)dS — [ (M., A.)dS + min. w.r.t. (u,A.) at constant ¢,
s e
&) € f(Te),  To=2u(c—¢) (4.15)

up =g(t,x) —z, A, =skew(Vg(t, z)),.

8‘1‘*

The corresponding weak system of equations for pure Dirichlet conditions is given by
(note that || A.||* = 2[| axl(A4.)||? for A, € s0(3,R))

Dive=—f, z€{

o=2u(e—¢ep) +2p. (skew(Vu) — Ae) + Atrfe] - 1L (4.16)

2 \L? — 3T
_ ,u2+ 1_5 Aaxl(Ae) = p. axl(skew(Vu) — Ag) + 2 axl(skew (M))

ep(t) € f(TE), Tp =2p (e — &)

U (t,x) = g(t,x) —z, x€0Q,A,,, =skew(Vyg(t,z))

€loq loq -

tr[e,(0)] =0, ¢£,(0) € Sym(3).



We remark that the derivation of this model is intrinsically correct but that it can
also be obtained as the linearized version of a corresponding geometrically exact model
[Nef03] based on the multiplicative decomposition of the deformation gradient into elastic
and plastic parts, which, as it were, was prior to this linearized model.

In [DSW93, p.815] an elasto-plastic model based on the infinitesimal theory with
dissipative Cosserat effects has been investigated by means of localized considerations.
They show that the Cosserat couple modulus p. > 0 has a decisive influence on localization
effects, essentially excluding mode II shear failure. In light of our development with non-
dissipative Cosserat effects, however, it is difficult to transfer this insight directly.

4.3 Mathematical analysis of the infinitesimal model

For brevity of notation we write in this part A instead of A, and c instead of the positive
constant 2““‘ L . Moreover, we study general Dirichlet boundary conditions, this means
that the boundary data for the displacement and for the microrotation may be prescribed
independently. Without loss of generality we consider M = 0.

The goal of this subsection is to prove that the following initial boundary-value problem

Dive = —f,
o = 2u(e—¢p) +2p (skew(Vu) — A) + Atre] - 1L,
—cAaxl(A) = p. axl(skew(Vu) — A), (4.17)
& € f(Tw), Tu=2u(e—5),
Uy — UD, A|an = Ap, 517(0) = 52 )

possesses global in time L?-solutions, assuming that the given data f,up, Ap, 52 satisfy
some natural restrictions and f : D(f) C Sym(3) — P(Sym(3)) is a maximal monotone
mapping with 0 € f(O) This mapping defines the maximal monotone operator f :
L*(Q,Sym(3)) — P(L*(Q,Sym(3))) with the domain D(f) {T € L2(Q Sym(3)) :
T(z) € D(f) a.e. in Q and there exists S € L*(2, Sym(3)) with s(z) € f (T(z)) a.c.in Q}.
System (4.17) contains only one physical nonlinearity, the constitutive mult1funct10n f,
which is assumed maximal monotone. Such a nonlinear mapping can be approximated
nicely by single-valued, global Lipschitz functions fn’ in the literature called the Yosida
approximation (see for example [AC84]). Hence, our idea is quite natural: we rewrite
(4.17) with f77 instead off and try to pass to the limit n — 0.

Thus, for all n > 0 we study first the following approximated initial boundary-value
problem

Dive" = —f,
o = 2u(e" —e}) + 2 pc (skew(Vu') — A) + Atr[e"] - 1,
—cAaxl(A") = —p. axl(A") + pe axl(skew (VuT)), (4.18)
g o= LOD, Ti=2( -2,
u, = up, Al =Ap, £(0)= £y

10



Theorem 4.1 (Global existence and uniqueness for approximated problem)
Let us assume that the given data possess the following regularity: for all times T > 0

Fec(o,T], LA R)), up € C(0,T], H2 (09, R®)), Ap € C([0,T], H2 (9, 50(3,R)))

and the initial data ¢) belongs to L*(€2, Sym(3)). Then the approximated problem has a
global in time, unique solution (u",€", e, A") with the regularity

un € O([0,T], H{(Q, R?)), e e C([0,T], L*(%, Sym(3))),
e1 e CY([0, 7], LA, Sym(3))), A" € C([0,T], HX(Q, 50(3,R))).

If the given data are more regular in time, more precisely if

fec(o,T], L2, R)), ap € C([0,T], H2 (09, R?)),
Ap € C([0,T], H2 (8, 50(3,R))), (4.19)

then the unique solution is also C* in time.

Proof. We give a sketch of the proof, which is otherwise standard. Note that the approx-
imated system of equations contains only global Lipschitz nonlinearities. Hence, we use
Banach s Fix Point Theorem. For a fixed time 7" > 0 let us denote by X the Banach
space C'([0,T], L*(€2,Sym(3))). We define an operator P : X — X as follows: for e € X
we solve the integral equation

e, (1) = / J,@ue(r) — &y(r))) dr + 5. (4.20)

By the regularity of fn it follows that this equation is uniquely solvable in X. Then for
the solution €, we study the following elliptic boundary-value problem

Div (241 (e — £p) + 2 pe (skew (Vu) = A) + Atr[e] - 1) = — f
—cAaxl(A) = —p. axl(A) + p. axl(skew(Vu)),
U"BQ =up, z4|3Q :AD

for the pair (u, A) of unknown functions. This problem has a unique solution u with the
regularity C([0,T], H'(Q,R?®)) and A € C([0,T], H*(2,s0(3,R))). Finally, we set

P(e) = %(vu + V7%u).

It is not difficult to see that for short times 7', the operator P is a contraction. Moreover,
the contraction constant depends on the Lipschitz constant of the function f77 and on
T only. Hence, for small 7" the mapping P possesses a unique fix point in X and this
function defines a local in time solution of the approximated system. Next, using the
fact that the length of the existence interval does not depend on the given data we

11



may extend the solution with the same time step and obtain a global in time, unique
solution. Finally, we see that the solution €, is even more regular in time, this means
g, € CH([0,T7], L*(£2, Sym(3))). Then for given data satisfying (4.19) we conclude that the
solution is C'* in time. |
The main idea of the last proof was based on the global Lipschitz property of the nonlinear
function fn' However, we did not yet use the physical structure of the problem. Next,
we prove that the energy associated with the problem is bounded independently of the
parameter 7. The energy is defined by

A
E(u,e,e,,A)(t) = /(u“e — sp||2 + §tr [6]2 + pcl| skew(Vu) — A||2 +2¢||V axl(A)||2) dx
Q

This function is elastically coercive with respect to Vu: for A > 0 the part tr [5]2 yields
the boundedness of the divergence Div u of the displacement v and the term

|| skew(Vu) — A||?> together with the control of V axl(A) implies the boundedness of the
rotation curl u of u. This property of the energy is the crucial one in our existence theory.
In classical rate-independent plasticity, curl v is not controlled.

Theorem 4.2 (Energy estimate for the approximate sequence)

Let us assume that the given data satisty (4.19) and {(u",", €], A")} is the solution of
the approximate problem. Then for all times T > 0 there exists a positive constant C'(T)
independent of 1 such that

E(u",e"e), AN)(t) < C(T) forall tel0,T). (4.21)
Proof. Calculating the time derivative of the energy we obtain
E(un, e, ep, AM)(t) = / <2u<6’7 — e e —el) + Atr [¢"]tr [£7]

0
+2p1.(skew (Vu') — A7, skew (V") — A") + 4¢(V ax1(A"), Vaxl(A"))) dr =
—/(Tg,ég>dx+/(0" Vilydx — 2,uc/ (skew (Vu") — A", A")dx

0 0 Q

+4c/(V axl(A"), V axl(A"))dz .

The first integral on the right hand side of the last equality is nonnegative. In the second
and in the fourth integral we integrate partially to obtain

E(u, 2, <1 AM)(t) < /(f, aydx + /(a".n,u">ds

Q onN

—4uc/<axl skew (Vu') — axl(A"), axl(A"))da

—40/<A axl(A”),axl(A”)>da;+4c/(V axl(A").n, ax1(A"))ds .

o

12



Using the equation for the microrotations and the boundary conditions we finally have

S(u",S",SZ,A")(t) < /(f, u">dx+/(0".n,u[)>ds
e / (Vaxl(A").n, axl(Ap))ds.  (4.22)

o0

Note that the boundary integrals are defined in the sense of the duality between the spaces
H2(09,R?) and H~2(9, R®). Integrating (4.22) in time we arrive at the inequality

¢
E(u",e", ], AT)(t) < E(u",e", ], AT)(0) + //(f, u")dx
0 0

+ /t / (o".n,1p)ds + 4¢ / / (V ax1(A").n, axl(Ap))ds . (4.23)

0 090 0 o0

By the continuity with respect to time we conclude that the initial values u”(0),"(0), A"(0)
are solutions of the following linear elliptic boundary-value problem
Divo"(0) = —f,
a"(0) = 2 (7(0) — £7(0)) + 2 pie (skew(Vu"(0)) — A"(0)) + Atr[g"(0)] - 1L,
—cA axl(A"(0)) = —p. ax1(A7(0)) + p. axl(skew(Vu"(0))),
u"(0)jpq = up, A"(0),q = Ap,

(4.24)

loa

where £7(0) = 1/2(Vu"(0) + VTu"(0)). The unique solution of (4.24) satisfies u"(0) €
HY(Q,R?), €7(0) € L*(2,Sym(3))), A7(0) € H?*(Q,50(3,R))) and it independent of 7
and the initial energy value €(u",&",¢7, A")(0) is a constant. Next, we analyse the first
integral from the right hand side of (4.23). Integrating partially in time we obtain

//(f, udx dr = —//(f,u">da;dT+/(f(t),u"(t)>da; — /(f(O),u"(O))dx
<3 [ 1fdr+ 3 [ 1aladr + 17O el )le + Ul Ol

By Poincaré“s inequality we conclude that
[ (@)l < [[u" ()=t ()| 2+ ap(E)|| 2 < diam(Q)([|Vu"(8)]| 2+ Vip (8)] 2)+ap (E)]| L2

where @p is a function from H'(Q, R*) with @ppsq = up. By the coercivity of the energy
with respect to the gradient of u” there exists a positive constant C'g independent of n
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such that ||Vu"(t)||r: < Cp &2 (u”, e, el, A)(t). Using the last results we have

t t
‘//(f,wdxm‘ < c/g(uﬂ,gﬂ,gg,An)(T) dr
0 Q 0

+C|f ()12 E3 (u", ", 2, AN (1) + C(1)  (4.25)

)’ p)

where the constants C, C'(¢) do not depend on 7 and C(t) depends on the given data only.
The second integral in (4.23) is estimated as follows

t t
[ [tornivyas| < [llonall, ylisll,yar
0 90 0

(by the trace theorem in the space L2(Div) [Tem83, Chapterl]) <

/ o2+ | Div o),y dr < C / Il (1.26)

)T po

+0/5(un o e AT)(r )dT+c/||uD||H%dT
0

where C' > 0 does not depend on 7. To estimate the last integral in (4.23) we use
H?-regularity of the microrotations

‘/t/<vaX1(A")-n, axl(Ap))ds

< C’/(||V axl(A") ||z + ||A ax1(A")]|z2)]] axl(AD)HH% dr (4.27)

§/||Vaxl(A").n|| Ly laxl(Ap)| 4 dr
0

t

= C/(||Vaxl(A")||Lz + £ skew(Va) — A7)|12) | axl(Ap)]|, dr

< é/S(Unjgn,gg,An)(T) dT+C~'/||aXl(AD)||iI%dT,
0

where again the constants C, C' do not depend on 7. Inserting (4.25), (4.26) and (4.27)
into (4.23) we obtain the following inequality

) po »pr

E(u", ", ep, AM)(1) < Chlf (1)1 €2 (u”, ", 1, A7) )+02/5(u",5" ey, AN)(7) dT+Cs(1),

where Cy, Cy, C3(t) do not depend on n and C3(t) depends on the given data only. Next,
we separate in the first term on the right hand side the energy with a small factor and
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absorb this expression by the left hand side. Finally, the Lemma of Gronwall completes
the proof. [ |
The energy estimate proved in the last theorem yields boundedness of the stresses {o"}
in the space L*>((0,T),L*(2,Sym(3))) and of the microrotations {A"} in the space
L>((0,T), H(Q,s0(3,R))). Moreover, using that the energy controls the gradient of
the displacement the sequence {u"} is bounded in the space L*°((0,T), H' (2, R?)) and
consequently the sequence of strains {€"} and the sequence of inelastic strains {¢]} are
bounded in the space L>((0,7'), L*(2,Sym(3))). Hence, for a subsequence (again denoted
using the superscript 1) we have: for all T > 0

0" S in L%((0,T), LA(2,Sym(3))),
A" XN A in L™
u =y in L™
el Ne  in L™
6g N gp in L™

and the limit functions satisfy
1
€= 5(Vu+ V), o=2u(s—ep) +2 . (skew(Vu) — A) + Atr[e] - 1.

Moreover, we see that the sequence {Divo"} is constant with respect to n and con-
sequently bounded in the space L*((0,7), L*(2,R3)) and the sequence {Aaxl(A")} is
bounded in the space L*°((0,7T'), L*(2,R?)). Using the closedness of the differential oper-
ators in Sobolev spaces the limit functions satisfy the system

Dive = —f,
—cAaxl(A) = —p. axl(A) + p. axl(skew(Vu)),

_ _ _ -0
Ujpe = UD, Alzm = Ap, 51)(0) =E&p-

Thus, to end the existence theory for the infinitesimal elasto-plastic Cosserat model we
should prove only that the limit functions satisfy the differential inclusion (4.17-4). The
sequence T = 2u(e"” — €]) converges weakly-+ to Ty = 2u (e — ) and the sequence

I8 fn(Tg)dT = ¢)] — &) converges also weakly-x to , — ). To conclude that the limit
functions €, and Ty satisfy the differential inclusion we need estimates for the sequence
{fn(Tg)} Hence, the next step in our existence theory is an estimate for time derivatives

of the approximate sequence.

Theorem 4.3 (Energy estimate for time derivatives)
Suppose that the given data possess more time regularity as in the last theorem and
satisfy additionally: for all times T > 0

FeL2((0,7) x QR , ip € L2((0,

) 0,7) x 99, R?),
Ap € L*((0,T) x 09,50(3,R)) .

(4.28)

Moreover, assume that the initial data 52 € L*(Q,Sym(3)) is chosen such that the initial
value of the reduced Eshelby tensor Typ(0) = 2u(g(0) — &) defined by system (4.24)
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belongs to the domain of the maximal monotone operatorf. Then there exists a positive
constant C(T') independent of the parameter 1 such that

E(u", €M &N A" (t) < C(T) forall te0,T).

)’ p)

Proof. For i > 0 let us denote by (u(t), e} (t), e, ,(t), A} (t)) the shifted functions (u”(t+
h),e"(t + h),ep(t + h), A"(t + h)) and calculate the energy evaluated on the differences
(uf —u",...). Then for the time derivative we have

Sl — 2 2 2N o AT AT - n_n_ N noan _ozn 20 1)
E(upy —u' ey — e e), —ep, Ay — A")(t) = /Q;L (en —e"—epptepep—cl—e), +ehda
Q

+241, / (skew(Vu] — Vu'l) — Al + A" skew (Vi) — Vi) — Al + A")dx

0
+A / tre] —e"tr [] — €7 dx + 4c/(V axl(A] — A"), Vaxl(A] — A"))dx (4.29)
0 Q
—— [T~ 1L - pdn+ [ (0] - 07 Vi~ Vi)da
0 0

+4uc/ (axl skew (Vu]! — Vu") — axl(A] — A"), axl skew (Vi) — Vi) — axl(A] — A"))dx
0
+4c/ (Vaxl(A] — A"), V ax1(A] — A"))dx
0

where T3, (t) = Tp(t + h) and o}/(t) = o"(t + h). By the monotonicity of the Yosida
approximation the first term on the right hand side of (4.29) is non positive. Similar to
the energy estimate in Theorem 4.2 we integrate partially in the second and in the fourth
integral and use the equation for microrotations. Hence, we arrive at the inequality

E(u] e = el — e AL~ AN < [ = foi] - i
Q
+ /((o—,’; — o)., lip, — Up)ds + 4c/<v axl(A] — A").n, ax1(Ap,, — Ap)ds (4.30)
o0 o0

where f,(t) = f(t+h), upu(t) = up(t+ h) and App(t) = Ap(t + h). Next, we integrate
(4.30) in time and obtain

E(uy —ulye) —e" el —ep, Aj — AN)(t) < E(uy, —u',e) — &gl —ep, Af — A7)(0)

7ph

+0/Q/<fh — fyu) —a"ydx dr + 0/@{((02 —o").n,upp — p)dsdr (4.31)

+4c / / (Vaxl(A] — A").n, axl(Ap, — Ap)ds dr.
0 900
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Before we divide (4.31) by h? we should shift in the integral terms the shift operator onto
given data. We calculate this with details for the first integral only.

/t/<fh_f’uz_mmxdT://t(f(TﬂLh)—f(T)aﬂ"(T+h)>drdx

- / /(f(T +h) — f(r),d"(7))dr dx = (T + h = s in the first integral) =

t+h

// F(s — Y, (s dsdx—// Fls+h) — f(s), @(s))ds da

t+h

—//(f(s+h)—2f(s)+f(s—h),u"(s)>dsdx—//h (s + h) — f(s),id(s))dz ds

t+h

¥ / / (Fls+h) — £(s), 0(s))ds da. (4:32)

In the same manner we transform the second and the third integral term from (4.31).
Next, we insert (4.32) and the results for other terms into (4.31), divide by h? and pass
to the limit A — 07. Hence, we conclude with the following inequality

E(un, e M AN (1) < E(uM, €M, &N, Am)( )—//(f,ic”)dxdT

1 Cpy 1 Cpy

- [t onds + [ (i), o) (4.33)

~ [ [t asivyasar— [0, in s+ [ (000 in(0)ds

e / / (V axI(A").n, axI(Ap))ds dr — 4c / (V axl(AT)(0).n, axl(Ap) (0))ds
+4c / (V ax1(A")(t).n, ax1(Ap)(t))ds .

0N

To obtain the initial energy for time derivatives we observe that ¢](0) = f (T7(0)) =
f"(TE(O)). By assumption Tx(0) € D(f) we have that the sequence {f (Tr(0))} is

bounded in L2(2, Sym(3)). The other initial values %7(0),£7(0) and A”(0) are solutions
of (4.24) with £7(0) instead of ). Consequently, the initial energy for time derivatives is
bounded. The integral term on the right hand side of (4.33) can be estimated in the same
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manner as in the proof of Theorem 4.2. Thus we arrive at the following inequality

) po »p)

t
E(an, &M e AM)(t) < Cu|| ()] 12 €3 (a7, 7, €7 A")(t)+02/5(u",é" en AM)(1) dr + Cs(t)
0

where C, Cy, C5(t) do not depend on 1 and C3(t) depends on the given data only. Similar
as in the proof of Theorem 4.2 this concludes the statement. [
The energy estimate for time derivatives yields that the sequence {fn(Tg)} is bounded in
L>(0,T), L*(€2,Sym(3))). Hence, we can select a subsequence (denoted again with the
superscript ) with [, (T7) = f in L=((0,T), L*(2, Sym(3))). This shows that the limit
function Ty = 2 (¢ — €,) belongs to D(f) To end our existence theory we need only to
prove that

fit,2) e f(Tu(t,z)) aein (0,7)xQ. (4.34)

From the definition of a maximal monotone operator it is easy to see that its graph is
weakly-strongly closed. Thus we have to improve the weak convergence of the sequence

{1}

Theorem 4.4 (Strong convergence of the stresses)
Let us assume that the given data satisfy all requirements of Theorem 4.3.3. Then & (u" —
u’,e" —¢e¥,e) — ey, A" — A¥)(t) — 0 for n,v — 0T uniformly on bounded time intervals.

Proof. Calculating the time derivative of the energy evaluated on the differences of two
approximation steps we obtain

E(u — u’, e — ¥, el — el AT — A¥)(t) = 2,u/<5" —e" —elte, e =" —g)+e))da

Q

+)\/tr [e" — e”Jtr [ — €¥]dx + 40/(V axl(A" — AY), V axl(A" — AY))dx
Q Q

e / (skew (V' — V') — A7+ A skew (Vi — Vi*) — A" + A”)da .

Q

Using that the given data for both approximation steps are the same we conclude that

E(u" —u” e — e e — ey, AT — AY)(t) = — /(Tg - Tg,fn(Tg) — fy(TE»da;. (4.35)

Q

Next, we estimate the right hand side of (4.35). This estimation is a standard one in the
theory of maximal monotone operators (compare with the proof of Theorem 1 p. 147 in
[AC84]). Nevertheless, for completeness of the proof we insert it here. By definition of
the Yosida approximation we have

[Ty e f(I(Th) where Ji(Th) = Th —if ,(Th) and i =1, v (4.36)
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is the resolvent of the operator f Hence, be (4.36) we have

- [mn =T f, @~ fpde = - [ - @, fm - fL @)

Q

- [ - vf @) fTD - f T8

Q
n v v AT V.
< DUF T2 + S T 12 = Tl + 20

Inserting the last result into (4.35) and integrating in time we finally obtain

E(u" —u",e"—e" e} —ep, A" — A")(t) < ~(n+v)C(T) forallt €[0,T),

where the constant C(7') is from the statement of Theorem 4.3. The last inequality
immediately completes the proof. [ |
Using (4.36) and the fact that the resolvent J, is a global Lipschitz operator with the
Lipschitz constant less or equal to 1, we see that the sequence {J,(T}%)} converges strongly

to the function T (note that the sequence {fn(Tg)} is bounded). Thus, the weak limit
f”(Tg) A f* belongs to the set f(TE) and the limit functions (u, e, ¢,, A) satisfy (4.17).

Theorem 4.5 (Uniqueness of solutions)
Let us assume that the given data f,up, Ap, 52 satisfy all requirements of Theorem 4.3
Then system (4.17) possesses a unique, global in time solution (u, ¢, &,, A).

Proof. Assume that (u',e', e, A') and (u? £, ¢, A%) are two solutions of (4.17) for the
same given data. Then for the energy function evaluated on differences of these solutions

we have

; 1 2 1 2 1 2 1 2 _ 1 2 1 2 -1 -2 -1 -2
E(u —ue —e%e,— ¢, A —A)(t)—2,u/(5 —e"—¢g, e, —& —&,+¢E)d

)
+\ / tr [ — e"]tr [ — &¥]dx + 4c/(V axl(A' — A?),V aux:l(A1 — A2)>d$
Q )

+24e / (skew (Vu! — Vu?) — A' + A2 skew(Va! — Vi) — AL + A%)dx
Q

= —/(Té—Té,é;—éf))d:p <0.
Q

This yields immediately, that
1,2 1 2 1 _ 2 g4l 2 1.2 1 .2 1 _ 2 4l 2Y(()) —
E(u —u e —e% g, — e, A= A%)(t) < E(u —u’e” —e%,g, — g, A" — A%)(0) =0

and the statement follows from coerciveness of the energy function. |
Finally we formulate the existence theorem, which we have proved:

19



Theorem 4.6 (Existence for the infinitesimal elasto-plastic Cosserat model)
Suppose that the given data f,up, Ap satisfy: for all times T > 0

fec(0,T], L*(Q,R?)), feL?((0,T) x O, R,
up € CL([0,T], Hz (9, R?)), ip € L2((0,T) x 8, R3),
Ap € CY([0,T], H2(09,50(3,R))), Ap e L2((0,T) x 99,50(3,R)) .

Moreover, assume that the initial data ) € L*(Q, Sym(3)) is chosen such that the initial
value of the reduced Eshelby tensor T (0) = 21 (£(0)—¢)) defined by system (4.24) belongs

to the domain of the maximal monotone operatorf. Then system (4.17) possesses a global
in time, unique solution (u,e,&,, A) with the regularity: for all times T > 0

ue HY((0,T), H'(Q,R?)), e,ep € HY°((0,T), L*(Q2, Sym(3))),
A€ H'((0,T), HX(Q, 50(3, R))) .

Remark In the analysis part we did not assume that the values of the constitutive
multifunction f are trace free. This means that the existence theory developed so far
works as well without this requirement. For constitutive multifunctions possessing trace
free values, assuming additionally that the initial inelastic strain 52 is also trace free, we
conclude that tr[,](t) = 0 during the whole deformation process.

Note that for the model to be well-posed in the rate-independent case, we did not need
a so called safe load condition, otherwise unavoidable.

5 Discussion and concluding remarks

The infinitesimal Cosserat model has been extended to elasto-plasticity where Cosserat
effects remain, in contrast to standard approaches, non-dissipative. As only difference
to classical rate-independent infinitesimal plasticity we have introduced an additional in-
finitesimal microrotation A,, influencing only the elastic behaviour of the model. This mi-
nor change is shown to completely regularize the pathological behaviour of rate-independent
classical plasticity theory. Decisive in our analysis is the observation that the microro-
tations provide an independent control of curlu, otherwise not present in the theory.
This extra resistance against elastic shear is also a welcome feature from a modelling and
numerical point of view.

Since this modification of classical rate-independent plasticity is not operative in uni-
axial tension/compression we may arguably say that the provided regularization is opti-
mal. Numerical calculations based on this modification are “cheap”, in the sense that the
resulting system remains of second order.
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