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1 Notation

Let 
 � R

3

be a bounded domain with Lipshitz boundary �
 and let � be a smooth

subset of �
 with non-vanishing 2-dimensional Hausdor� measure. We denote by M

3�3

the set of real 3 � 3 seond order tensors, written with apital letters. The standard

Eulidean salar produt on M

3�3

is given by hX; Y i

M

3�3

= tr

�

XY

T

�

, and thus the

Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. The identity tensor on M

3�3

will be denoted

by 11, so that tr [X℄ = hX; 11i. We let Sym and PSym denote the symmetri and positive

de�nite symmetri tensors respetively. We adopt the usual abbreviations of Lie-algebra

theory, i.e. so(3) := fX 2 M

3�3

jX

T

= �Xg are skew symmetri seond order tensors

and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g are traeless tensors. We set sym(X) =

1

2

(X

T

+X)

and skew(X) =

1

2

(X �X

T

) suh that X = sym(X) + skew(X). For X 2 M

3�3

we set for

the deviatori part devX = X �

1

3

tr [X℄ 11 2 sl(3).

For a seond order tensor X we de�ne the third order tensor

h = D

x

X(x) = (r(X(x):e

1

);r(X(x):e

2

);r(X(x):e

3

)) = (h

1

; h

2

; h

3

) 2 (M

3�3

)

3

. For h

we set khk

2

=

P

3

i=1

kh

i

k

2

together with sym(h) := (sym h

1

; sym h

2

; sym h

3

) and tr [h℄ :=

(tr [h

1

℄; tr [h

2

℄; tr [h

3

℄) 2 R

3

. The �rst and seond di�erential of a salar valued funtion

W (F ) are written D

F

W (F ):H and D

2

F

W (F ):(H;H), respetively. Sometimes we use also

�

X

W (X) to denote the �rst derivative of W with respet to X. We employ the standard

notation of Sobolev spaes, i.e. L

2

(
); H

1;2

(
); H

1;2

Æ

(
), whih we use indi�erently for

salar-valued funtions as well as for vetor-valued and tensor-valued funtions.

2 Introdution

This artile addresses the modelling and mathematial analysis of geometrially linear

generalized ontinua of Cosserat miropolar type in the elasti as well as elasto-plasti

ase. General ontinuum models involving independent rotations have been introdued

by the Cosserat brothers [CC09℄. In fat, their original motivation ame from the theory

of surfaes, where the moving three-frame (Gauss frame) had been used suessfully.

Their development has been largely forgotten for deades only to be redisovered in

the beginning of the sixties [Osh55, G�un58, AK61, ES64, Eri68, Tou62, Tou64, GR64,

MT62, Sh67, TN65℄. At that time theoretial investigations of non-lassial ontinuum

theories were the main motivation [Kr�o68℄. The Cosserat onept has been generalized in

various diretions, for an overview of these so alled miroontinuum theories look at

[EK76, Eri99, Cap89℄.

Among the �rst ontributions extending the Cosserat framework to in�nitesimal elasto-

plastiity we have to mention [Saw67, Lip69, Bes74℄. More reent in�nitesimal elasti-

plasti formulations have been investigated in [dB92, DSW93, IW98, RV96℄. These models

diretly omprise joint elasti and plasti Cosserat e�ets. Lately, the models have been

extended to a �nite elasti-plasti setting as well, see e.g. [GT01, San99, Ste94, Gra03,

FCS97℄ and referenes therein. Most of these extensions diretly omprise joint elasti

and plasti Cosserat e�ets as well but we pretend that their physial and mathematial

signi�ane is at present muh more diÆult to asses than models where Cosserat e�ets

are restrited to the elasti response of the material [FCS97℄ and referenes therein. Our
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own ontribution will be of the seond type.

Apart from the theoretial development, the Cosserat type models are today inreas-

ingly advoated as a means to regularize the pathologial mesh size dependene of lo-

alization omputations where shear failure mehanisms [CH85, MV87, M�uh89, BP91,

Bar94℄ play a dominant role, for appliations in plastiity see the non-exhaustive list

[IW98, DSW93, RV96, dB91, dBS91, dB92℄. The ourring mathematial diÆulties re-

et the physial fat that upon loalization the validity limit of the lassial models is

reahed. In models without any internal length the deformation should be homogeneous

on the sale of a representative volume element of the material [MA91℄.

The inorporation of a length sale, whih is natural in a Cosserat theory, in prinipal

has the power to remove the mesh sensitivity. The presene of the internal length sale

auses the loalization zones to have �nite width. However, the atual length sale of

a material is diÆult to establish experimentally and theoretially [Lak95℄ and remains

basially an open question as is the determination of other additionally appearing material

onstants in the Cosserat framework. It is also not entirely lear, how the shear band

width depends on the harateristi length.

The mathematial analysis of Cosserat miropolar models is at present restrited to the

in�nitesimal, linear elasti models, see e.g. [Duv70, HH69, Ghe74a, Ghe74b℄. The elasto-

plasti situation has not been dealt with mathematially to the best of our knowledge.

As far as lassial rate-independent elasto-plastiity is onerned we remark that global

existene for the displaement has been shown only in a very weak, measure-valued sense,

while the stresses ould be shown to remain in L

2

(
). For this results we refer for example

to [AL87, Che02, Tem86℄. If hardening or visosity is added, then global lassial solution

are found see e.g. [Alb98, Che01b, Che01a℄. A omplete theory for the lassial rate-

independent ase remains elusive, see also the remarks in [Che02℄.

While the in�nitesimal Cosserat miropolar elasto-plastiity model in its various ver-

sions is interesting mathematially in its own right we rather onentrate on its possible

regularizing properties. We emphasize that our non-dissipative formulation seems to pro-

vide just the orret amount of regularization missing in the lassial elasto-plasti prob-

lem. This being our main thrust, we do not investigate Cosserat models where additional

Cosserat e�ets have been introdued for the plasti behaviour as well.

Our ontribution is organized as follows: �rst, we review the basi onepts of the geo-

metrially linear elasti Cosserat miropolar theories in a variational ontext and present

various existene results.

The formulation is then onsistently extended to in�nitesimal elasto-plastiity with

non-dissipative miropolar e�ets. The deisive stress tensor is nothing else than the

linearized elasti Eshelby energy momentum tensor.

Subsequently, we mathematially study the obtained rate-independent ase and show,

by means of the Yosida approximation and a passage to the limit, that the rate-independent

problem admits a unique, global in-time solution for displaements and mirorotations in

standard Sobolev spaes under fairly mild assumptions on the data.
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3 The in�nitesimal elasti Cosserat model

Let us start by realling the in�nitesimal Cosserat approah. First, in the purely elas-

ti ase, an in�nitesimal Cosserat theory an be obtained by introduing the additive

deomposition of the marosopi displaement gradient ru into in�nitesimal miroro-

tation A 2 so(3;R) (in�nitesimal Cosserat rotation tensor) and in�nitesimalmiropolar

streth tensor (or �rst Cosserat deformation tensor) " 2 M

3�3

with

ru = "+ A (3.1)

where " 62 Sym(3), suh that (3.1) is not neessarily the deomposition of ru into in-

�nitesimal ontinuum streth sym(ru) and in�nitesimal ontinuum rotation skew(ru).

In the quasistati ase, the Cosserat theory is then obtained from a variational priniple

[San99, p.51℄ or [Ste97℄ for the in�nitesimal displaement u : [0; T ℄ � 
 7! R

3

and the

independent in�nitesimal mirorotation A : 
 7! so(3;R):

E(u;A) =

Z




W (ru;A;D

x

A)� hf; ui � hM;AidV

�

Z

�

S

hN; uidS�

Z

�

C

hM



; Ai dS 7! min : w.r.t. (u;A); (3.2)

A

j

�

= A

d

; u

j

�

= g(t; x)� x :

Here W represents the elasti energy density and 
 � R

3

is a domain with boundary �


and � � �
 is that part of the boundary, where Dirihlet onditions g; A

d

for in�nitesimal

displaements and rotations, respetively, are presribed while �

S

� �
 is a part of the

boundary, where tration boundary onditionsN are applied with �\�

S

= ;. In addition,

�

C

� �
 is the part of the boundary where external surfae ouples M



are applied with

�\ �

C

= ;. The lassial volume fore is denoted by f and the additional volume ouple

by M . Variation of the ation E with respet to u yields the equation for linearized

balane of linear momentum and variation of E with respet to A yields the linearized

version of balane of angular momentum.

3.1 In�nitesimal elasti Cosserat theory

It remains to speify the analyti form of the energy density W . A linearized version of

material frame-indi�erene implies the redution

W (ru;A;D

x

A) = W (";D

x

A) ; (3.3)

and for in�nitesimal displaements u and small urvature D

x

A a quadrati ansatz is ap-

propriate:

W (";D

x

A) =W

in�n

mp

(") +W

small

urv

(D

x

A) ; (3.4)

with an additive deomposition of the energy density into mirostreth and urvature

parts.
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In the isotropi ase we assume for the streth energy

W

in�n

mp

(") = � k sym(")k

2

+ �



k skew(")k

2

+

�

2

tr [sym(")℄

2

= � k symruk

2

+ �



k skew(ru)� Ak

2

+

�

2

tr [sym(ru)℄

2

; (3.5)

where the Cosserat ouple modulus �



� 0 is an additional material parameter, om-

plementing the two Lam�e onstants �; � > 0.

For the urvature term we assume

W

small

urv

(D

x

A) =

2�+ �

2

L

2



12

�

�

5

k symD

x

Ak

2

+ �

6

k skewD

x

Ak

2

+ �

7

tr

�

D

x

A

�

2

�

: (3.6)

Here, L



> 0 with units of length introdues a spei� internal harateristi length into

the elasti formulation. In general we assume �

5

> 0; �

6

; �

7

� 0.

Two observations are essential. First, if �



= 0, the in�nitesimal problem ompletely

deouples - the in�nitesimal mirorotations A have no inuene at all on the marosopi

behaviour of the in�nitesimal displaements and lassial in�nitesimal elastiity results.

Seond, the hoie �

6

; �

7

= 0 is possible, sine oerivity of the redued urvature

expression an still be onluded on aount of the lassial Korn's �rst inequality applied

to symD

x

A.

1

In the limit of zero internal length sale L



= 0, balane of angular momentum

D

A

W

mp

(ru;A) 2 Sym, D

A

W

mp

(ru;A) = 0 ; (3.7)

implies already that in�nitesimal ontinuum rotations and in�nitesimal mirorotations

oinide: skew(ru) = A, and this in turn is equivalent to the symmetry of the in�nitesimal

Cauhy stress � or the so alled Boltzmann axiom.

If we onsider now �



> 0, it is standard to prove that the orresponding minimization

problem admits a unique minimizing pair (u;A) 2 H

1

(
;R

3

) � H

1

(
; so(3)). Existene

results of this type have been obtained e.g. in [Duv70, HH69, Ghe74a, Ghe74b℄.

1

For A 2 so(3;R) we have

A =

0

�

0 � �

�� 0 

�� � 0

1

A

; axl(A) =

0

�

�

�



1

A

; r axl(A) =

0

�

�

x

�

y

�

z

�

x

�

y

�

z



x



y



z

1

A

symr axl(A) =

0

B

�

�

x

�

y

+�

x

2

�

z

+

x

2

�

y

+�

x

2

�

2

y

�

z

+

y

2

�

z

+

x

2

�

z

+

y

2



2

z

1

C

A

k symr axl(Ak

2

= �

2

x

+ �

2

y

+ 

2

z

+

(�

y

+ �

x

)

2

2

+

(�

z

+ 

x

)

2

2

+

(�

z

+ 

y

)

2

2

k sym D

x

Ak

2

= k symrA:e

1

k

2

+ k symrA:e

2

k

2

+ k symrA:e

3

k

2

=

�

2

x

2

+

�

2

x

2

+ �

2

y

+ �

2

z

+

(�

x

+ �

y

)

2

2

+ �

2

x

+

�

2

y

2

+ 

2

y

+ 

2

z

+

(�

z

+ 

x

)

2

2

+ �

2

x

+ 

2

y

+

�

2

z

2

+



2

z

2

+

(�

y

+ 

x

)

2

2

Now it is easy to see that for some 

+

> 0 it holds k sym D

x

Ak

2

� 

+

k symr axl(A)k

2

sine k sym D

x

Ak

2

=

0 implies k symr axl(A)k

2

= 0. Hene, the standard Korn's inequality applied to k symr axl(A)k

2

yields

unique existene.
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Theorem 3.1 (Existene for in�nitesimal elasti Cosserat model)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data

g 2 H

1

(
;R

3

) and A

d

2 H

1

(
; so(3;R)). Moreover, let f 2 L

2

(
;R

3

) and suppose

N 2 L

2

(�

S

;R

3

) together with M



2 L

2

(�

C

; so(3;R)). Then models based on (3.5) and

(3.6) admit a unique minimizing solution pair (u;A) 2 H

1

(
;R

3

) � H

1

(
; so(3)). The

solution is smoother if the data are smoother.

Proof. We apply the diret methods of variations. First we observe that in�mizing se-

quenes (u

k

; A

k

) exist and

1 >

Z




W

in�n

mp

(ru

k

� A

k

) +W

small

urv

(D

x

A

k

)� hf; u

k

idV

�

Z




�



kru

k

� A

k

k

2

dV � kfk

L

2

ku

k

k

H

1

(
)

(3.8)

=

Z




�



k sym(ru

k

� A

k

)k

2

+ �



k skew(ru

k

� A

k

)k

2

dV � kfk

L

2

ku

k

k

H

1

(
)

�

Z




�



k symru

k

k

2

dV � kfk

L

2

ku

k

k

H

1

(
)

� �





K

ku

k

k

2

H

1

(
)

� kfk

L

2

ku

k

k

H

1

(
)

;

showing that u

k

is bounded in H

1

(
). We have used that sym is orthogonal to skew

and the lassial Korn's �rst inequality together with the boundary onditions for u

k

.

Moreover, again by the lassial Korn's �rst inequality (if �

6

= 0) or diretly pointwise,

we obtain boundedness of A

k

in H

1

(
; so(3)). We an hoose a subsequene of (u

k

; A

k

)

onverging strongly in L

2

(
) and weakly in H

1

(
). By overall onvexity of the energy

density in (ru;D

x

A) the limit pair is a minimizer.

For the uniqueness we onsider the seond derivative of the strains

D

2

(ru;A)

W (ru� A):((r�; ÆA); (r�; ÆA)) � �



kr�� ÆAk

2

= �



k symr�k

2

+ �



k skew(r�� ÆA)k

2

� �



k symr�k

2

: (3.9)

By the lassial Korn's �rst inequality we obtain uniform positivity of the seond derivative

upon integration. The funtional is stritly onvex, the solution is unique.

Sine the resulting �eld equations of fore balane and balane of angular momentum

are linear, uniformly ellipti with onstants oeÆients the standard ellipti regularity the-

ory applies suh that for pure Dirihlet boundary onditions the solution is the smoother

the smoother the data. �

The orresponding in�nitesimal gradient onstrained Cosserat miropolarmodel

(or indeterminate ouple stress model) has the form (simpli�ed urvature term:

7



�

5

= �

6

= 1; �

7

= 0)

Z




�k symruk

2

+

�

2

tr [symru℄

2

+

2�+ �

2

L

2



12

kD

x

skew(ru)k

2

� hf; uidV

�

Z

�

S

hN; uidS�

Z

�

C

hM



; skew(ru)idS 7! min : w.r.t. u (3.10)

�

lo

= 2� sym(ru) + � tr [sym(ru)℄ � 11 2 Sym; onstitutive stress

u

j

�


(x) = g(x)� x ; skew(ru)

j

�


= skew(rg)

j

�


:

Using the same methods as before we obtain

Theorem 3.2 (Existene for in�nitesimal gradient ase)

Let 
 � R

3

be a bounded domain with smooth boundary of lass C

1

and assume for the

boundary data g 2 H

2

(
;R

3

). Moreover, let f 2 L

2

(
;R

3

) and suppose N 2 L

2

(�

S

;R

3

)

together with M



2 L

2

(�

C

; so(3)). Then a model based on (3.10) admits a unique mini-

mizing solution u 2 H

1

(
) \ fr urlu 2 L

2

(
)g, f. [Duv70℄.

4 In�nitesimal Cosserat miropolar elasto-plastiity

4.1 Non-dissipative extension to miropolar elasto-plastiity

Now we extend the formulation of miropolar elastiity to over in�nitesimal elasto-

plastiity as well. It should be lear that there exists various ways of obtaining suh

an extension, for an overview of the ompeting models we refer to the instrutive survey

artile [FS03℄. Inidentally, the Cosserats themselves [CC09, p.5℄ already envisaged the

appliation of their general theory to plastiity and frature. Without restriting gener-

ality we base the following onsiderations on a simpli�ed urvature expression by setting

�

5

= �

6

= 1; �

7

= 0.

The basi idea of a non-dissipative extension is quite simple. Consider the addititive

deomposition of the total miropolar streth into elasti and plasti parts

" = "

e

+ "

p

; (4.11)

and assume that rotational e�ets remain elasti: A

e

:= A. Now we replae " in (3.5)

with "

e

whih yields (note that kD

x

A

e

k

2

= 2kr axl(A

e

)k

2

)

Z




� k sym "

e

k

2

+ �



k skew("

e

)k

2

+

�

2

tr ["

e

℄

2

+ 2

2�+ �

2

L

2



12

kr axl(A

e

)k

2

dV (4.12)

Z




� k"� sym "

p

k

2

+ �



k skew(ru� A

e

� "

p

)k

2

+

�

2

tr ["� "

p

℄

2

+ 2

2�+ �

2

L

2



12

kr axl(A

e

)k

2

dV

8



as thermodynami potential. We need to supply a onsistent ow rule for "

p

(note again

that A

e

ats solely elastially). By hoosing

_"

p

(t) 2 f (T

E

); T

E

:= ��

"

p

W

in�n

mp

("

e

) ; (4.13)

W

in�n

mp

("

e

) = � k sym "

e

k

2

+ �



k skew("

e

)k

2

+

�

2

tr ["

e

℄

2

;

with a onstitutive multifuntion f suh that hf (�);�i � 0; 8� 6= 0 the redued

dissipation inequality

d

dt

E("

e

; A

e

; "

p

) � 0 (4.14)

at �xed in time (ru;A

e

) is satis�ed, thus ensuring the seond law of thermodynamis.

For simpliity we hoose the multifuntion f to take trae free symmetri values only,

i.e. f (T

E

) 2 Sym(3)\sl(3;R). This sets the in�nitesimal plasti spin skew("

p

) to zero

and restrits attention to inompressible plastiity as in lassial formulations. Sine then

"

p

2 Sym(3) we may identify "

p

= "

p

. We have thus obtained our in�nitesimal model:

4.2 In�nitesimal elasto-plasti Cosserat model

The in�nitesimal system in variational form with non-dissipative Cosserat e�ets reads

Z




� k"� "

p

k

2

+ �



k skew(ru� A

e

)k

2

+

�

2

tr ["℄

2

+ 2

2�+ �

2

L

2



12

kr axl(A

e

)k

2

� hf; ui

� hM;A

e

idV �

Z

�

S

hN; uidS�

Z

�

C

hM



; A

e

i dS 7! min : w.r.t. (u;A

e

) at onstant "

p

_"

p

(t) 2 f (T

E

); T

E

= 2� ("� "

p

) (4.15)

u

j

�

= g(t; x)� x; A

e

j

�

= skew(rg(t; x))

j

�

:

The orresponding weak system of equations for pure Dirihlet onditions is given by

(note that kA

e

k

2

= 2k axl(A

e

)k

2

for A

e

2 so(3;R))

Div � = �f; x 2 


� = 2� ("� "

p

) + 2�



(skew(ru)� A

e

) + � tr ["℄ � 11 (4.16)

�

2�+ �

2

L

2



12

�axl(A

e

) = �



axl(skew(ru)� A

e

) + 2 axl(skew(M))

_"

p

(t) 2 f (T

E

); T

E

= 2� ("� "

p

)

u

j

�


(t; x) = g(t; x)� x; x 2 �
 ; A

e

j

�


= skew(rg(t; x))

j

�


:

tr ["

p

(0)℄ = 0 ; "

p

(0) 2 Sym(3) :

9



We remark that the derivation of this model is intrinsially orret but that it an

also be obtained as the linearized version of a orresponding geometrially exat model

[Nef03℄ based on the multipliative deomposition of the deformation gradient into elasti

and plasti parts, whih, as it were, was prior to this linearized model.

In [DSW93, p.815℄ an elasto-plasti model based on the in�nitesimal theory with

dissipative Cosserat e�ets has been investigated by means of loalized onsiderations.

They show that the Cosserat ouple modulus �



> 0 has a deisive inuene on loalization

e�ets, essentially exluding mode II shear failure. In light of our development with non-

dissipative Cosserat e�ets, however, it is diÆult to transfer this insight diretly.

4.3 Mathematial analysis of the in�nitesimal model

For brevity of notation we write in this part A instead of A

e

and  instead of the positive

onstant

2�+�

2

L

2



12

. Moreover, we study general Dirihlet boundary onditions, this means

that the boundary data for the displaement and for the mirorotation may be presribed

independently. Without loss of generality we onsider M = 0.

The goal of this subsetion is to prove that the following initial boundary-value problem

Div � = �f ;

� = 2� ("� "

p

) + 2�



(skew(ru)� A) + � tr ["℄ � 11 ;

��axl(A) = �



axl(skew(ru)� A) ; (4.17)

_"

p

2 f (T

E

) ; T

E

= 2� ("� "

p

) ;

u

j

�


= u

D

; A

j

�


= A

D

; "

p

(0) = "

0

p

;

possesses global in time L

2

-solutions, assuming that the given data f; u

D

; A

D

; "

0

p

satisfy

some natural restritions and f : D(f ) � Sym(3)! P(Sym(3)) is a maximal monotone

mapping with 0 2 f (0). This mapping de�nes the maximal monotone operator f :

L

2

(
; Sym(3)) ! P(L

2

(
; Sym(3))) with the domain D(f ) = fT 2 L

2

(
; Sym(3)) :

T (x) 2 D(f ) a:e: in 
 and there exists S 2 L

2

(
; Sym(3)) with s(x) 2 f (T (x)) a:e:in 
g.

System (4.17) ontains only one physial nonlinearity, the onstitutive multifuntion f ,

whih is assumed maximal monotone. Suh a nonlinear mapping an be approximated

niely by single-valued, global Lipshitz funtions f

�

, in the literature alled the Yosida

approximation (see for example [AC84℄). Hene, our idea is quite natural: we rewrite

(4.17) with f

�

instead of f and try to pass to the limit � ! 0

+

.

Thus, for all � > 0 we study �rst the following approximated initial boundary-value

problem

Div �

�

= �f ;

�

�

= 2� ("

�

� "

�

p

) + 2�



(skew(ru

�

)� A) + � tr ["

�

℄ � 11 ;

��axl(A

�

) = ��



axl(A

�

) + �



axl(skew(ru

�

)) ; (4.18)

_"

�

p

= f

�

(T

�

E

) ; T

�

E

= 2� ("

�

� "

�

p

) ;

u

�

j

�


= u

D

; A

�

j

�


= A

D

; "

�

p

(0) = "

0

p

:

10



Theorem 4.1 (Global existene and uniqueness for approximated problem)

Let us assume that the given data possess the following regularity: for all times T > 0

f 2 C([0; T ℄; L

2

(
;R

3

)) ; u

D

2 C([0; T ℄; H

1

2

(�
;R

3

)) ; A

D

2 C([0; T ℄; H

3

2

(�
; so(3;R)))

and the initial data "

0

p

belongs to L

2

(
; Sym(3)). Then the approximated problem has a

global in time, unique solution (u

�

; "

�

; "

�

p

; A

�

) with the regularity

u

�

2 C([0; T ℄; H

1

(
;R

3

)) ; "

�

2 C([0; T ℄; L

2

(
; Sym(3))) ;

"

�

p

2 C

1

([0; T ℄; L

2

(
; Sym(3))) ; A

�

2 C([0; T ℄; H

2

(
; so(3;R))) :

If the given data are more regular in time, more preisely if

_

f 2 C([0; T ℄; L

2

(
;R

3

)) ; _u

D

2 C([0; T ℄; H

1

2

(�
;R

3

)) ;

_

A

D

2 C([0; T ℄; H

3

2

(�
; so(3;R))) ; (4.19)

then the unique solution is also C

1

in time.

Proof. We give a sketh of the proof, whih is otherwise standard. Note that the approx-

imated system of equations ontains only global Lipshitz nonlinearities. Hene, we use

Banah�s Fix Point Theorem. For a �xed time T > 0 let us denote by X the Banah

spae C([0; T ℄; L

2

(
; Sym(3))). We de�ne an operator P : X ! X as follows: for " 2 X

we solve the integral equation

"

p

(t) =

t

Z

0

f

�

(2� ("(�)� "

p

(�))) d� + "

0

p

: (4.20)

By the regularity of f

�

it follows that this equation is uniquely solvable in X. Then for

the solution "

p

we study the following ellipti boundary-value problem

Div

�

2� ("� "

p

) + 2�



(skew(ru)� A) + � tr ["℄ � 11

�

= �f ;

��axl(A) = ��



axl(A) + �



axl(skew(ru)) ;

u

j

�


= u

D

; A

j

�


= A

D

for the pair (u;A) of unknown funtions. This problem has a unique solution u with the

regularity C([0; T ℄; H

1

(
;R

3

)) and A 2 C([0; T ℄; H

2

(
; so(3;R))). Finally, we set

P (") =

1

2

(ru+r

T

u) :

It is not diÆult to see that for short times T , the operator P is a ontration. Moreover,

the ontration onstant depends on the Lipshitz onstant of the funtion f

�

and on

T only. Hene, for small T the mapping P possesses a unique �x point in X and this

funtion de�nes a loal in time solution of the approximated system. Next, using the

fat that the length of the existene interval does not depend on the given data we

11



may extend the solution with the same time step and obtain a global in time, unique

solution. Finally, we see that the solution "

p

is even more regular in time, this means

"

p

2 C

1

([0; T ℄; L

2

(
; Sym(3))). Then for given data satisfying (4.19) we onlude that the

solution is C

1

in time. �

The main idea of the last proof was based on the global Lipshitz property of the nonlinear

funtion f

�

. However, we did not yet use the physial struture of the problem. Next,

we prove that the energy assoiated with the problem is bounded independently of the

parameter �. The energy is de�ned by

E(u; "; "

p

; A)(t) =

Z




�

�k"� "

p

k

2

+

�

2

tr ["℄

2

+ �



k skew(ru)� Ak

2

+ 2 kr axl(A)k

2

�

dx :

This funtion is elastially oerive with respet to ru: for � > 0 the part tr ["℄

2

yields

the boundedness of the divergene Div u of the displaement u and the term

k skew(ru)� Ak

2

together with the ontrol of r axl(A) implies the boundedness of the

rotation urlu of u. This property of the energy is the ruial one in our existene theory.

In lassial rate-independent plastiity, url u is not ontrolled.

Theorem 4.2 (Energy estimate for the approximate sequene)

Let us assume that the given data satisfy (4.19) and f(u

�

; "

�

; "

�

p

; A

�

)g is the solution of

the approximate problem. Then for all times T > 0 there exists a positive onstant C(T )

independent of � suh that

E(u

�

; "

�

; "

�

p

; A

�

)(t) � C(T ) for all t 2 [0; T ) : (4.21)

Proof. Calulating the time derivative of the energy we obtain

_

E(u

�

; "

�

; "

�

p

; A

�

)(t) =

Z




�

2�h"

�

� "

�

p

; _"

�

� _"

�

p

i+ �tr ["

�

℄tr [ _"

�

℄

+2�



hskew(ru

�

)� A

�

; skew(r _u

�

)�

_

A

�

i+ 4hr axl(A

�

);r axl(

_

A

�

)i

�

dx =

�

Z




hT

�

E

; _"

�

p

idx+

Z




h�

�

;r _u

�

idx� 2�



Z




hskew(ru

�

)� A

�

;

_

A

�

idx

+4

Z




hr axl(A

�

);r axl(

_

A

�

)idx :

The �rst integral on the right hand side of the last equality is nonnegative. In the seond

and in the fourth integral we integrate partially to obtain

_

E(u

�

; "

�

; "

�

p

; A

�

)(t) �

Z




hf; _u

�

idx+

Z

�


h�

�

:n; _u

�

ids

�4�



Z




haxl skew(ru

�

)� axl(A

�

); axl(

_

A

�

)idx

�4

Z




h�axl(A

�

); axl(

_

A

�

)idx+ 4

Z

�


hr axl(A

�

):n; axl(

_

A

�

)ids :

12



Using the equation for the mirorotations and the boundary onditions we �nally have

_

E(u

�

; "

�

; "

�

p

; A

�

)(t) �

Z




hf; _u

�

idx+

Z

�


h�

�

:n; _u

D

ids

+4

Z

�


hr axl(A

�

):n; axl(

_

A

D

)ids : (4.22)

Note that the boundary integrals are de�ned in the sense of the duality between the spaes

H

1

2

(�
;R

3

) and H

�

1

2

(�
;R

3

). Integrating (4.22) in time we arrive at the inequality

E(u

�

; "

�

; "

�

p

; A

�

)(t) � E(u

�

; "

�

; "

�

p

; A

�

)(0) +

t

Z

0

Z




hf; _u

�

idx

+

t

Z

0

Z

�


h�

�

:n; _u

D

ids+ 4

t

Z

0

Z

�


hr axl(A

�

):n; axl(

_

A

D

)ids : (4.23)

By the ontinuity with respet to time we onlude that the initial values u

�

(0); "

�

(0); A

�

(0)

are solutions of the following linear ellipti boundary-value problem

Div �

�

(0) = �f ;

�

�

(0) = 2� ("

�

(0)� "

�

p

(0)) + 2�



(skew(ru

�

(0))� A

�

(0)) + � tr ["

�

(0)℄ � 11 ;

��axl(A

�

(0)) = ��



axl(A

�

(0)) + �



axl(skew(ru

�

(0))) ;

u

�

(0)

j

�


= u

D

; A

�

(0)

j

�


= A

D

;

(4.24)

where "

�

(0) = 1=2(ru

�

(0) + r

T

u

�

(0)). The unique solution of (4.24) satis�es u

�

(0) 2

H

1

(
;R

3

), "

�

(0) 2 L

2

(
; Sym(3))), A

�

(0) 2 H

2

(
; so(3;R))) and it independent of �

and the initial energy value E(u

�

; "

�

; "

�

p

; A

�

)(0) is a onstant. Next, we analyse the �rst

integral from the right hand side of (4.23). Integrating partially in time we obtain

t

Z

0

Z




hf; _u

�

idx d� = �

t

Z

0

Z




h

_

f; u

�

idx d� +

Z




hf(t); u

�

(t)idx�

Z




hf(0); u

�

(0)idx

�

1

2

t

Z

0

k

_

fk

2

L

2

d� +

1

2

t

Z

0

ku

�

k

2

L

2

d� + kf(0)k

L

2

ku

�

(0)k

L

2

+ kf(t)k

L

2

ku

�

(t)k

L

2

:

By Poinar�e�s inequality we onlude that

ku

�

(t)k

L

2

� ku

�

(t)�~u

D

(t)k

L

2

+k~u

D

(t)k

L

2

� diam(
)(kru

�

(t)k

L

2

+kr~u

D

(t)k

L

2

)+k~u

D

(t)k

L

2

where ~u

D

is a funtion from H

1

(
;R

3

) with ~u

Dj�


= u

D

. By the oerivity of the energy

with respet to the gradient of u

�

there exists a positive onstant C

E

independent of �

13



suh that kru

�

(t)k

L

2

� C

E

E

1

2

(u

�

; "

�

; "

�

p

; A

�

)(t). Using the last results we have

�

�

�

t

Z

0

Z




hf; _u

�

idx d�

�

�

�

� C

t

Z

0

E(u

�

; "

�

; "

�

p

; A

�

)(�) d�

+Ckf(t)k

L

2

E

1

2

(u

�

; "

�

; "

�

p

; A

�

)(t) + C(t) (4.25)

where the onstants C;C(t) do not depend on � and C(t) depends on the given data only.

The seond integral in (4.23) is estimated as follows

�

�

�

t

Z

0

Z

�


h�

�

:n; _u

D

ids

�

�

�

�

t

Z

0

k�

�

:nk

H

�

1

2

k _u

D

k

H

1

2

d�

� (by the trae theorem in the spae L

2

(Div) [Tem83;Chapter1℄) �

C

t

Z

0

(k�

�

k

L

2

+ kDiv �

�

k

L

2

)k _u

D

k

H

1

2

d� � C

t

Z

0

kfk

L

2

k _u

D

k

H

1

2

d� (4.26)

+C

t

Z

0

E(u

�

; "

�

; "

�

p

; A

�

)(�) d� + C

t

Z

0

k _u

D

k

2

H

1

2

d�

where C > 0 does not depend on �. To estimate the last integral in (4.23) we use

H

2

-regularity of the mirorotations

�

�

�

t

Z

0

Z

�


hr axl(A

�

):n; axl(

_

A

D

)ids

�

�

�

�

t

Z

0

kr axl(A

�

):nk

H

�

1

2

k axl(

_

A

D

)k

H

1

2

d�

� C

t

Z

0

(kr axl(A

�

)k

L

2

+ k�axl(A

�

)k

L

2

)k axl(

_

A

D

)k

H

1

2

d� (4.27)

= C

t

Z

0

(kr axl(A

�

)k

L

2

+

�





k skew(ru

�

)� A

�

k

L

2

)k axl(

_

A

D

)k

H

1

2

d�

�

~

C

t

Z

0

E(u

�

; "

�

; "

�

p

; A

�

)(�) d� +

~

C

t

Z

0

k axl(

_

A

D

)k

2

H

1

2

d� ;

where again the onstants C;

~

C do not depend on �. Inserting (4.25), (4.26) and (4.27)

into (4.23) we obtain the following inequality

E(u

�

; "

�

; "

�

p

; A

�

)(t) � C

1

kf(t)k

L

2

E

1

2

(u

�

; "

�

; "

�

p

; A

�

)(t)+C

2

t

Z

0

E(u

�

; "

�

; "

�

p

; A

�

)(�) d�+C

3

(t);

where C

1

; C

2

; C

3

(t) do not depend on � and C

3

(t) depends on the given data only. Next,

we separate in the �rst term on the right hand side the energy with a small fator and

14



absorb this expression by the left hand side. Finally, the Lemma of Gronwall ompletes

the proof. �

The energy estimate proved in the last theorem yields boundedness of the stresses f�

�

g

in the spae L

1

((0; T ); L

2

(
; Sym(3))) and of the mirorotations fA

�

g in the spae

L

1

((0; T ); H

1

(
; so(3;R))). Moreover, using that the energy ontrols the gradient of

the displaement the sequene fu

�

g is bounded in the spae L

1

((0; T ); H

1

(
;R

3

)) and

onsequently the sequene of strains f"

�

g and the sequene of inelasti strains f"

�

p

g are

bounded in the spae L

1

((0; T ); L

2

(
; Sym(3))). Hene, for a subsequene (again denoted

using the supersript �) we have: for all T > 0

�

�

�

* � in L

1

((0; T ); L

2

(
; Sym(3))) ;

A

�

�

* A in L

1

((0; T ); H

1

(
; so(3;R))) ;

u

�

�

* u in L

1

((0; T ); H

1

(
;R

3

)) ;

"

�

�

* " in L

1

((0; T ); L

2

(
; Sym(3))) ;

"

�

p

�

* "

p

in L

1

((0; T ); L

2

(
; Sym(3)))

and the limit funtions satisfy

" =

1

2

(ru+r

T

u) ; � = 2� ("� "

p

) + 2�



(skew(ru)� A) + � tr ["℄ � 11 :

Moreover, we see that the sequene fDiv �

�

g is onstant with respet to � and on-

sequently bounded in the spae L

1

((0; T ); L

2

(
;R

3

)) and the sequene f�axl(A

�

)g is

bounded in the spae L

1

((0; T ); L

2

(
;R

3

)). Using the losedness of the di�erential oper-

ators in Sobolev spaes the limit funtions satisfy the system

Div � = �f ;

��axl(A) = ��



axl(A) + �



axl(skew(ru)) ;

u

j

�


= u

D

; A

j

�


= A

D

; "

p

(0) = "

0

p

:

Thus, to end the existene theory for the in�nitesimal elasto-plasti Cosserat model we

should prove only that the limit funtions satisfy the di�erential inlusion (4.17-4). The

sequene T

�

E

= 2�("

�

� "

�

p

) onverges weakly-� to T

E

= 2� (" � "

p

) and the sequene

R

t

0

f

�

(T

�

E

)d� = "

�

p

� "

0

p

onverges also weakly-� to "

p

� "

0

p

. To onlude that the limit

funtions "

p

and T

E

satisfy the di�erential inlusion we need estimates for the sequene

ff

�

(T

�

E

)g. Hene, the next step in our existene theory is an estimate for time derivatives

of the approximate sequene.

Theorem 4.3 (Energy estimate for time derivatives)

Suppose that the given data possess more time regularity as in the last theorem and

satisfy additionally: for all times T > 0

�

f 2 L

2

((0; T )� 
;R

3

) ; �u

D

2 L

2

((0; T )� �
;R

3

) ;

�

A

D

2 L

2

((0; T )� �
; so(3;R)) :

(4.28)

Moreover, assume that the initial data "

0

p

2 L

2

(
; Sym(3)) is hosen suh that the initial

value of the redued Eshelby tensor T

E

(0) = 2� ("(0) � "

0

p

) de�ned by system (4.24)
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belongs to the domain of the maximal monotone operator f . Then there exists a positive

onstant C(T ) independent of the parameter � suh that

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t) � C(T ) for all t 2 [0; T ) :

Proof. For h > 0 let us denote by (u

�

h

(t); "

�

h

(t); "

�

p;h

(t); A

�

h

(t)) the shifted funtions (u

�

(t+

h); "

�

(t + h); "

�

p

(t + h); A

�

(t + h)) and alulate the energy evaluated on the di�erenes

(u

�

h

� u

�

; : : : ). Then for the time derivative we have

_

E(u

�

h

� u

�

; "

�

h

� "

�

; "

�

p;h

� "

�

p

; A

�

h

� A

�

)(t) =

Z




2� h"

�

h

� "

�

� "

�

p;h

+ "

�

p

; _"

�

h

� _"

�

� _"

�

p;h

+ _"

�

p

idx

+2�



Z




hskew(ru

�

h

�ru

�

)� A

�

h

+ A

�

; skew(r _u

�

h

�r _u

�

)�

_

A

�

h

+

_

A

�

idx

+�

Z




tr ["

�

h

� "

�

℄tr [ _"

�

h

� _"

�

℄ dx + 4

Z




hr axl(A

�

h

� A

�

);r axl(

_

A

�

h

�

_

A

�

)idx (4.29)

= �

Z




hT

�

E;h

� T

�

E

; _"

�

p;h

� _"

�

p

idx+

Z




h�

�

h

� �

�

;r _u

�

h

�r _u

�

idx

+4�



Z




haxl skew(ru

�

h

�ru

�

)� axl(A

�

h

� A

�

); axl skew(r _u

�

h

�r _u

�

)� axl(

_

A

�

h

�

_

A

�

)idx

+4

Z




hr axl(A

�

h

� A

�

);r axl(

_

A

�

h

�

_

A

�

)idx

where T

�

E;h

(t) = T

�

E

(t + h) and �

�

h

(t) = �

�

(t + h). By the monotoniity of the Yosida

approximation the �rst term on the right hand side of (4.29) is non positive. Similar to

the energy estimate in Theorem 4.2 we integrate partially in the seond and in the fourth

integral and use the equation for mirorotations. Hene, we arrive at the inequality

_

E(u

�

h

� u

�

; "

�

h

� "

�

; "

�

p;h

� "

�

p

; A

�

h

� A

�

)(t) �

Z




hf

h

� f; _u

�

h

� _u

�

idx

+

Z

�


h(�

�

h

� �

�

):n; _u

D;h

� _u

D

ids+ 4

Z

�


hr axl(A

�

h

� A

�

):n; axl(

_

A

D;h

�

_

A

D

ids (4.30)

where f

h

(t) = f(t+ h), u

D;h

(t) = u

D

(t+ h) and A

D;h

(t) = A

D

(t+ h). Next, we integrate

(4.30) in time and obtain

E(u

�

h

� u

�

; "

�

h

� "

�

; "

�

p;h

� "

�

p

; A

�

h

� A

�

)(t) � E(u

�

h

� u

�

; "

�

h

� "

�

; "

�

p;h

� "

�

p

; A

�

h

� A

�

)(0)

+

t

Z

0

Z




hf

h

� f; _u

�

h

� _u

�

idx d� +

t

Z

0

Z

�


h(�

�

h

� �

�

):n; _u

D;h

� _u

D

ids d� (4.31)

+4

t

Z

0

Z

�


hr axl(A

�

h

� A

�

):n; axl(

_

A

D;h

�

_

A

D

ids d� :
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Before we divide (4.31) by h

2

we should shift in the integral terms the shift operator onto

given data. We alulate this with details for the �rst integral only.

t

Z

0

Z




hf

h

� f; _u

�

h

� _u

�

idx d� =

Z




t

Z

0

hf(� + h)� f(�); _u

�

(� + h)id� dx

�

Z




t

Z

0

hf(� + h)� f(�); _u

�

(�)id� dx = (� + h = s in the �rst integral) =

=

Z




t+h

Z

h

hf(s)� f(s� h); _u

�

(s)ids dx�

Z




t

Z

0

hf(s+ h)� f(s); _u

�

(s)ids dx

= �

Z




t+h

Z

h

hf(s+ h)� 2f(s) + f(s� h); _u

�

(s)ids dx�

Z




h

Z

0

hf(s+ h)� f(s); _u

�

(s)idx ds

+

Z




t+h

Z

t

hf(s+ h)� f(s); _u

�

(s)ids dx : (4.32)

In the same manner we transform the seond and the third integral term from (4.31).

Next, we insert (4.32) and the results for other terms into (4.31), divide by h

2

and pass

to the limit h! 0

+

. Hene, we onlude with the following inequality

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t) � E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(0)�

t

Z

0

Z




h

�

f; _u

�

idx d�

�

Z




h

_

f(0); _u

�

(0)idx+

Z




h

_

f(t); _u

�

(t)idx (4.33)

�

t

Z

0

Z

�


h�

�

:n; �u

D

ids d� �

Z

�


h�

�

(0):n; _u

D

(0)ids+

Z

�


h�

�

(t):n; _u

D

(t)ids

�4

t

Z

0

Z

�


hr axl(A

�

):n; axl(

�

A

D

)ids d� � 4

Z

�


hr axl(A

�

)(0):n; axl(

_

A

D

)(0)ids

+4

Z

�


hr axl(A

�

)(t):n; axl(

_

A

D

)(t)ids :

To obtain the initial energy for time derivatives we observe that _"

�

p

(0) = f

�

(T

�

E

(0)) =

f

�

(T

E

(0)) : By assumption T

E

(0) 2 D(f ) we have that the sequene ff

�

(T

E

(0))g is

bounded in L

2

(
; Sym(3)). The other initial values _u

�

(0); _"

�

(0) and

_

A

�

(0) are solutions

of (4.24) with _"

�

p

(0) instead of "

0

p

. Consequently, the initial energy for time derivatives is

bounded. The integral term on the right hand side of (4.33) an be estimated in the same
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manner as in the proof of Theorem 4.2. Thus we arrive at the following inequality

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t) � C

1

k

_

f(t)k

L

2

E

1

2

( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t)+C

2

t

Z

0

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(�) d� +C

3

(t)

where C

1

; C

2

; C

3

(t) do not depend on � and C

3

(t) depends on the given data only. Similar

as in the proof of Theorem 4.2 this onludes the statement. �

The energy estimate for time derivatives yields that the sequene ff

�

(T

�

E

)g is bounded in

L

1

(0; T ); L

2

(
; Sym(3))). Hene, we an selet a subsequene (denoted again with the

supersript �) with f

�

(T

�

E

)

�

* f

�

in L

1

((0; T ); L

2

(
; Sym(3))). This shows that the limit

funtion T

E

= 2� ("� "

p

) belongs to D(f ). To end our existene theory we need only to

prove that

f

�

(t; x) 2 f (T

E

(t; x)) a:e: in (0; T )� 
 : (4.34)

From the de�nition of a maximal monotone operator it is easy to see that its graph is

weakly-strongly losed. Thus we have to improve the weak onvergene of the sequene

fT

�

E

g.

Theorem 4.4 (Strong onvergene of the stresses)

Let us assume that the given data satisfy all requirements of Theorem 4.3.3. Then E(u

�

�

u

�

; "

�

� "

�

; "

�

p

� "

�

p

; A

�

� A

�

)(t)! 0 for �; � ! 0

+

uniformly on bounded time intervals.

Proof. Calulating the time derivative of the energy evaluated on the di�erenes of two

approximation steps we obtain

_

E(u

�

� u

�

; "

�

� "

�

; "

�

p

� "

�

p

; A

�

� A

�

)(t) = 2�

Z




h"

�

� "

�

� "

�

p

+ "

�

p

; _"

�

� _"

�

� _"

�

p

+ _"

�

p

idx

+�

Z




tr ["

�

� "

�

℄tr [ _"

�

� _"

�

℄dx + 4

Z




hr axl(A

�

� A

�

);r axl(

_

A

�

�

_

A

�

)idx

+2�



Z




hskew(ru

�

�ru

�

)� A

�

+ A

�

; skew(r _u

�

�r _u

�

)�

_

A

�

+

_

A

�

idx :

Using that the given data for both approximation steps are the same we onlude that

_

E(u

�

� u

�

; "

�

� "

�

; "

�

p

� "

�

p

; A

�

� A

�

)(t) = �

Z




hT

�

E

� T

�

E

; f

�

(T

�

E

)� f

�

(T

�

E

)idx : (4.35)

Next, we estimate the right hand side of (4.35). This estimation is a standard one in the

theory of maximal monotone operators (ompare with the proof of Theorem 1 p. 147 in

[AC84℄). Nevertheless, for ompleteness of the proof we insert it here. By de�nition of

the Yosida approximation we have

f

i

(T

i

E

) 2 f (J

i

(T

i

E

)) where J

i

(T

i

E

) = T

i

E

� if

i

(T

i

E

) and i = �; � (4.36)
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is the resolvent of the operator f . Hene, be (4.36) we have

�

Z




hT

�

E

� T

�

E

; f

�

(T

�

E

)� f

�

(T

�

E

)idx = �

Z




hJ

�

(T

�

E

)� J

�

(T

�

E

); f

�

(T

�

E

)� f

�

(T

�

E

)idx

�

Z




h�f

�

(T

�

E

)� �f

�

(T

�

E

); f

�

(T

�

E

)� f

�

(T

�

E

)idx

�

�

4

kf

�

(T

�

E

)k

2

L

2

+

�

4

kf

�

(T

�

E

)k

2

L

2

=

�

4

k _"

�

p

k

2

L

2

+

�

4

k _"

�

p

k

2

L

2

:

Inserting the last result into (4.35) and integrating in time we �nally obtain

E(u

�

� u

�

; "

�

� "

�

; "

�

p

� "

�

p

; A

�

� A

�

)(t) �

t

4

(� + �)C(T ) for all t 2 [0; T ) ;

where the onstant C(T ) is from the statement of Theorem 4.3. The last inequality

immediately ompletes the proof. �

Using (4.36) and the fat that the resolvent J

�

is a global Lipshitz operator with the

Lipshitz onstant less or equal to 1, we see that the sequene fJ

�

(T

�

E

)g onverges strongly

to the funtion T

E

(note that the sequene ff

�

(T

�

E

)g is bounded). Thus, the weak limit

f

�

(T

�

E

)

�

* f

�

belongs to the set f (T

E

) and the limit funtions (u; "; "

p

; A) satisfy (4.17).

Theorem 4.5 (Uniqueness of solutions)

Let us assume that the given data f; u

D

; A

D

; "

0

p

satisfy all requirements of Theorem 4.3

Then system (4.17) possesses a unique, global in time solution (u; "; "

p

; A).

Proof. Assume that (u

1

; "

1

; "

1

p

; A

1

) and (u

2

; "

2

; "

2

p

; A

2

) are two solutions of (4.17) for the

same given data. Then for the energy funtion evaluated on di�erenes of these solutions

we have

_

E(u

1

� u

2

; "

1

� "

2

; "

1

p

� "

2

p

; A

1

� A

2

)(t) = 2�

Z




h"

1

� "

2

� "

1

p

+ "

2

p

; _"

1

� _"

2

� _"

1

p

+ _"

2

p

idx

+�

Z




tr ["

�

� "

�

℄tr [ _"

�

� _"

�

℄dx+ 4

Z




hr axl(A

1

� A

2

);r axl(

_

A

1

�

_

A

2

)idx

+2�



Z




hskew(ru

1

�ru

2

)� A

1

+ A

2

; skew(r _u

1

�r _u

2

)�

_

A

1

+

_

A

2

idx

= �

Z




hT

1

E

� T

2

E

; _"

1

p

� _"

2

p

idx � 0 :

This yields immediately, that

E(u

1

� u

2

; "

1

� "

2

; "

1

p

� "

2

p

; A

1

� A

2

)(t) � E(u

1

� u

2

; "

1

� "

2

; "

1

p

� "

2

p

; A

1

� A

2

)(0) = 0

and the statement follows from oeriveness of the energy funtion. �

Finally we formulate the existene theorem, whih we have proved:
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Theorem 4.6 (Existene for the in�nitesimal elasto-plasti Cosserat model)

Suppose that the given data f; u

D

; A

D

satisfy: for all times T > 0

f 2 C

1

([0; T ℄; L

2

(
;R

3

)) ;

�

f 2 L

2

((0; T )� 
;R

3

) ;

u

D

2 C

1

([0; T ℄; H

1

2

(�
;R

3

)) ; �u

D

2 L

2

((0; T )� �
;R

3

) ;

A

D

2 C

1

([0; T ℄; H

3

2

(�
; so(3;R))) ;

�

A

D

2 L

2

((0; T )� �
; so(3;R)) :

Moreover, assume that the initial data "

0

p

2 L

2

(
; Sym(3)) is hosen suh that the initial

value of the redued Eshelby tensor T

E

(0) = 2� ("(0)�"

0

p

) de�ned by system (4.24) belongs

to the domain of the maximal monotone operator f . Then system (4.17) possesses a global

in time, unique solution (u; "; "

p

; A) with the regularity: for all times T > 0

u 2 H

1;1

((0; T ); H

1

(
;R

3

)) ; "; "

p

2 H

1;1

((0; T ); L

2

(
; Sym(3))) ;

A 2 H

1;1

((0; T ); H

2

(
; so(3;R))) :

Remark In the analysis part we did not assume that the values of the onstitutive

multifuntion f are trae free. This means that the existene theory developed so far

works as well without this requirement. For onstitutive multifuntions possessing trae

free values, assuming additionally that the initial inelasti strain "

0

p

is also trae free, we

onlude that tr ["

p

℄(t) = 0 during the whole deformation proess.

Note that for the model to be well-posed in the rate-independent ase, we did not need

a so alled safe load ondition, otherwise unavoidable.

5 Disussion and onluding remarks

The in�nitesimal Cosserat model has been extended to elasto-plastiity where Cosserat

e�ets remain, in ontrast to standard approahes, non-dissipative. As only di�erene

to lassial rate-independent in�nitesimal plastiity we have introdued an additional in-

�nitesimal mirorotation A

e

, inuening only the elasti behaviour of the model. This mi-

nor hange is shown to ompletely regularize the pathologial behaviour of rate-independent

lassial plastiity theory. Deisive in our analysis is the observation that the miroro-

tations provide an independent ontrol of url u, otherwise not present in the theory.

This extra resistane against elasti shear is also a welome feature from a modelling and

numerial point of view.

Sine this modi�ation of lassial rate-independent plastiity is not operative in uni-

axial tension/ompression we may arguably say that the provided regularization is opti-

mal. Numerial alulations based on this modi�ation are \heap", in the sense that the

resulting system remains of seond order.
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