Congruence Relations on Double Boolean Algebras
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ABSTRACT. Double Boolean algebras form the variety generated by protoconcept algebras
which are one of the fundamental structures of Contextual Logic. Every double Boolean
algebra contains two Boolean algebras. In this paper it is shown that congruence relations
on pure double Boolean algebras may be characterized by pairs consisting of an ideal in
one Boolean algebra and a filter in the other. We explain how this characterization can be
generalized for double Boolean algebras. Moreover, these results are applied to protoconcept
algebras in order to obtain a direct decomposition in simple protoconcept algebras. Finally,
it is shown that every finite subdirectly irreducible double Boolean algebra is simple.

The definition and investigation of double Boolean algebras arose from the devel-
opment of Contextual Logic at TU Darmstadt during the last years. Contextual
Logic is intended to be a mathematization of the traditional philosophical logic with
its doctrines of concepts, judgments and conclusions. A survey of the basic ideas
and results of this approach can be found in [Wi00b], for more detailed information
see [Pro98], [GW99a], [Wi00a], [K101] and [Da02]. This paper focuses on congruence
relations on double Boolean algebras. In the first section basic definitions and prop-
erties of double Boolean algebras, semiconcept algebras and protoconcept algebras
are given. The second section deals with the congruence relations. It is divided into
five parts. First, operational equivalence as the most basic non trivial congruence is
introduced. The second part focuses on pure double Boolean algebras. It is shown
how they can be characterized by pairs consisting of an ideal and a filter in the two
Boolean algebras contained in the double Boolean algebra. Moreover, we explain
how the necessary conditions can be reformulated for semiconcept algebras and
for their contexts. As every double Boolean algebra contains a pure subalgebra,
in the third part this characterization can be applied to double Boolean algebras
in general. It is shown that a congruence relation on a double Boolean algebra is
determined to a large extent by its restriction to the pure subalgebra. This yields
a decomposition of finite protoconcept algebras in simple protoconcept algebras
which is given in part four. In the fifth part it is shown that every finite subdirectly
irreducible double Boolean algebra is simple. Finally, section three describes some
perspectives for further research.
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1. Double Boolean Algebras and Protoconcept Algebras

Double Boolean algebras were introduced in [Wi00a].

Definition 1.1. A double Boolean algebra is an algebra D := (D,M,U,—,—, L, T)
of type (2,2,1,1,0,0), satisfying the equations

la) (zNz)Ny=zNy 1) (zUz)Uy=zUy

20) zNy=yNx 20) xUy=yUx

3a) xM(yMNz)=(xNy)Nz 3)zU(yUz)=(zUy)U=z
4a) xN(zUy)=xNx 4b) z U (zNy)=zUux

ba) M (zdy) =xNx 5b) x U (zAy) =z U
6a) M (ydz) = (xNy)d(xNz) 6b) zU (yFz) = (xUy)A(zUz)
7a) ~—(zNy)=2xNy ™) "—(zUy)=zUy

8a) =(zNz) =~z 8b) “(zUz) ="

9a) M-z =1 9) xU-z=T

10a) L =TNT 106) T =101

11a) =T = L 16) =1 =T

12) (zNz)U(zNez)=(zUz)N(zUz)
with the operations 4,8, T,L defined by

zy = —(-zM-y)
zAy = “(“zU-y)
T = -l
L = =T

A pure double Boolean algebra is a double Boolean algebra that satisfies the addi-
tional condition

13)x=xNxorz=xUx.

To shorten notation we write zn for Mz and x|, for z Uz, and define Dr := {zn |
z € D}, Dy :={zy|z € D} and D, := D U Dy. The restriction of D to D, is a
pure subalgebra of D.

We define a binary relation C on double Boolean algebras by:

rCy:eoeshNy=znhand z Uy =y,
Some properties of double Boolean algebras were discussed in [HLSWO0O]:

Theorem 1.2. Let D := (D,N,U,—,~, L, T) be a double Boolean algebra. Then
the following conditions are satisfied:

(1) (D,C) is a quasi-ordered set.

(2) Dq:=(Dn,M,H,—, L, T) is a Boolean algebra whose order relation
is the restriction of C to Dn.

(3) D, :=(Dy,A,U,~,L,T) is a Boolean algebra whose order relation
is the restriction of C to D,.

(4) yCzneyCzx for x€D and y € Dn.

(5) zuCysexzCy for €D and y € D,,.

(6) zCysxnCyn and vy Ty, for x,y € D.
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A class of examples for double Boolean algebras are so-called protoconcept algebras.
Introduced in [Wi0Oa] as an extension of the theory of Formal Concept Analysis,
they serve as the starting point for the inclusion of negation to contextual logic.
For a detailed introduction to Formal Concept Analysis see [GW99b].

Definition 1.3. A formal context K := (G, M,I) consists of two sets G and M
and a relation I between G and M. The elements of G are called the objects and
the elements of M are called the attributes of the context. In order to express that
an object g is in relation I with an attribute m, we write gIm or (g,m) € I and
read it as "the object g has the attribute m”.

Definition 1.4. For a set A C G of objects we define
A'i={me M | gIm for all g € A}
(the set of attributes common to the objects in A). Correspondingly, for a set B of
attributes we define
B':={g € G| gIm for all m € B}
(the set of objects which have all attributes in B).
Definition 1.5. A protoconcept of a formal context K := (G, M, I) is a pair (A, B)
with A C G and B C M such that A" = B" or, equivalently, A" = B'. We denote

the set of all protoconcepts of a context K by P(K) and define on P(K) operations
M, u, =, =, T and L by:

(A1, B1) M (A2, By) = (A1 N A, (AN A))
(A1, B1) U (A3, By) = ((BiNB:),BiNB,)
—(4,B) = (G\A(G\4))
~(4,B) = ((M\B),M\B)
T = (G0

1L = (maM)

The set of all protoconcepts of a context K together with these operations is called
the protoconcept algebra of K and denoted by P (K).

For protoconcepts the quasi-order C is an order and
(A1,B;) C (43,Bs) & A} C Ay and B; D By
< (A41,B1)N(As,By) = (Ay,B1) N (41, By)
and (A1, By) U (As, By) = (A2, B2) U (4a, Bs).

Note that the result of any operation in a protoconcept algebra is a protoconcept
of the form (A, A") or (B’, B). These protoconcepts are called M-semiconcepts or Ll-
semiconcepts, respectively. The set of all M-semiconcepts of a protoconcept algebra
PB(K)(= D) is denoted by PB(K)n (= D) and the set of all Li-semiconcepts by

PB(K), (= D). As before, the set H(K) := P(K)1 U PB(K), of all semiconcepts
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FIGURE 1. A context and its protoconcept algebra

of K, together with the operations of PB(K) is a subalgebra of R (K). We call this
subalgebra the semiconcept algebra of the context K. o

An element of the intersection PB(K)q N P(K)y is called a formal concept. For a
formal concept (A, B) holds A’ = B and B' = A.

Example 1.6. Figure 1 depicts a context and its protoconcept algebra. The ele-
ments represented by filled circles are formal concepts. The circles with the upper
half filled represent U-semiconcepts, those with the lower half filled represent M-
semiconcepts.

2. Congruence Relations on Double Boolean Algebras
2.1. Operational Equivalence. The most basic non-trivial congruence relation
is operational equivalence:

Definition 2.1. We say that two elements x,y of a double Boolean algebra D are
operationally equivalent (or an equivalent pair) if and only if t Cy and y C = and
denote this by x O y.

Lemma 2.2. Let D be a double Boolean algebra. For elements x,y € D holds:

x0y & zn=yn and x, = Y
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Proof: This follows immediately from the definition of C:
rCyandyCo S aon=axNy=yNer=ynandaxy=cxUy=yUz =y,
Definition 2.3. A double Boolean algebra D satisfying for all x,y € D:
z0y(ezCyandyCz) => =y
is called a contextual double Boolean algebra.

Theorem 2.4. Let D be a double Boolean algebra, let x,y € D be an equivalent
pair and let Ap := {(z,x) | © € D}. The relation © := Ap U {(z,y),(y,x)} is a
congruence relation on D.

Proof: Obviously © is an equivalence relation. We have to show that —z © —y,
“zO®-yand aNzO®aNy, alzO®aly for arbitrary a € D. Lemma 2.2 yields

zn = yn and thus

8 8
—z = o(@Na) ==(yny) = -,

so =z © —y, and dually ~z © —'y. Likewise,
a:l‘lalza(arl_la:)l_la: (yl‘ly)l‘lalzayl_la
soxMa®ymMaand dually z Ua©®y U a. m|

Corollary 2.5. Operational equivalence O = {(z,y) € D x D | « Oy} is a con-
gruence relation in every double Boolean algebra.

Proof: It is easy to see that O is a reflexive and symmetric relation. In order to
check the transitivity of O let Oy and y O z. Lemma, 2.2 yields xn = yq = zn and
Ty = yu = zu, thus © O z. The proof of Theorem 2.4 shows that from x Oy follows
—zO-y, “xO-y, xtMNa®yMaand x UaO®y U a. Therefore O is a congruence
relation. O

2.2. Congruence Relations on pure Double Boolean Algebras. In this sub-
section we focus our investigation on pure double Boolean algebras because their
factor algebras do not contain equivalent pairs. This restriction allows us to give
a characterization of congruences on pure double Boolean algebras. This char-
acterization will be extended to double Boolean algebras in general in the next
subsection.

Lemma 2.6. Let D be a pure double Boolean algebra and let © be a congruence
relation on D. Then the factor algebra D/O is contextual.

Proof: Let z,y € D, let xn©yn and let z,Oyy. In the cases z,y € D and
x,y € D, the result is immediate. Assume z = zn and y = y,. We con-
clude from z,0y, = y that zy Mz, O©yn and hence z, O®yn. This implies
x =2n0Oyn Oz, Oy, =y, hence the congruence classes of z and y in D/O are
equal. O

Note that if a double Boolean algebra D is not pure there always exists a proper
congruence relation © such that D/© consists only of equivalent pairs. To see this
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we set © := Ap U (Dp, x Dp). Then z © y holds for all z,y € D,. We conclude from
zu, Yu, T, Yyn € D, for arbitrary z,y € D:

Iy @yu@l'n@yn.

So the congruence classes [z] and [y] of  and y form an equivalent pair in D/O.
Moreover, D/© contains at least two different congruence classes: For all elements
z,y € D\ D, and z € D, holds [z] # [y] and [z] # [2]. By assumption there exists
at least one z € D\ D,. It follows that D/© consists only of equivalent pairs.

Definition 2.7. For double Boolean algebras D we define two functions
t: DxD— D and b:D x D — D by:

t(z,y) = (z U~y)A(-z Uy),
b(z,y) := (z N —~y)d(—z MNy).

Lemma 2.8. For a congruence relation © on a double Boolean algebra D and
elements x,y € D holds:

zOy = t(x,y) € [T] and b(z,y) € [L].
Proof: Let z,y € D and ©y. Then T LrUu-z0zU -y and T Oy LU —z. Thus
T =TATO (zU-y)A(y U—z) = t(z,y). Duality gives b(z,y) € [L]. |
Theorem 2.9. In a pure double Boolean algebra D holds:

t(z,y) € [T] and b(z,y) € [L] & 2 0Oy.
Proof: We conclude from t(z,y) = (z U-y)A(y U —~z) © T that

5b
(zU-=y)=(@U-yu=(zUu-y)U(zU-yAlU-2)O(@U-yuT=T
and likewise (y L —z) © T. From z,yy and T € D, follows:
zy = zuATOzyA(CzUY) 2 zuA(Czy Uyy) = (zuf-zy) U (zuPyy)
= zyfyy = zAy.

Analogously we obtain y,, © zRAy and thus y, © z,;, and zn © yn, i.e. [z]Qfy]. By
Lemma 2.6 D/© is contextual and we conclude 2 ©®y. The converse implication
was shown in Lemma 2.8. a

This theorem shows that in pure double Boolean algebras all congruence classes
are determined by the classes of T and L. In addition, the functions t(z,y) and
b(z,y) enable us to compute these congruence classes.

For an ideal I in D, and a filter F'in D, we define
I''=1TU{zeD,|zn€land—z € F}
and

F*=FU{zxe€D|zy€ Fand—z € [}.

Lemma 2.10. Let D be a double Boolean algebra and © a congruence relation on
D. The set F :=[T]N Dy is a filter in D, and the set I := [L]N Dn is an ideal in
Dp. If D is pure then F* =[T] and I* = [L1].
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Proof: It is easy to check that F' is a filter. By definition holds F' C [T]. Now
let D be a pure double Boolean algebra and let z € [T]\ F. It follows that
T=TUTOzy € [T]ND, =F and -zO©-T = L, so z € F*. Conversely, let
xz € F* \ F. By definition holds ~z € I C [1] and we obtain

rNe Za(a(zNa)) E (-2)O-L Z TNT.
We conclude from ¢ Uz € [T|N Dy that Uz ® T =TUT soxz O T and Lemma
2.6 yields  © T. The rest follows dually. m|

For a congruence relation © and sets F' and I as in Lemma 2.10, obviously holds
—F* C I and dually =I* C F. If we search for pairs (I, F') consisting of an ideal
in D and a filter in D, that can define a congruence relation we have to demand
this condition. It follows from the definition of F* and I* that it is sufficient to
demand —=F C I and =1 C F.

We need four more lemmas to prove the main theorem of this paper.

Lemma 2.11. In a double Boolean algebra holds:
(1) «NyCzCely

(2) the map x — x My preserves C and N,

(8) the map z — x Uy preserves C and L.

See [Wi00a] for a proof.

Lemma 2.12. In double Boolean algebras holds:
(1) Foruxz,y € D, isxNyC xfy
(2) Foruxz,y € DnhisadyCaly

Proof: By 1.2.(5) holds z My C zAy < (z Ny) U (x MNy) C 2Ay. Lemma 2.11.(1)
and(3) yield z My Cao = (zNy)u Ca U (zMNy) 2 2 Uz = 2. Likewise we obtain
(xMy)u C y and conclude from (z Ny), € D, that (xr Ny)y C zAy, hence (1).
Dually we obtain (2). a

Lemma 2.13. In a double Boolean algebra D holds for elements x,y € Dn:
(zly)y = ¢ Uy. Dually, for x,y € D, holds (xRAy)n =z Ny.

Proof: Let x,y € Dn. Lemma 2.12 yields ¢ C zldy C x Uy. From Lemma 2.11 it
follows that

z U (zdy) T (zHy) U (zdy) C (zUy) U (zHy) = (zUy)u = (z Uy),

since zy C zUy. We conclude from y C zHy that z Uy C o U (2Hy) and therefore
zUy C (zly)y CzUy. As C is an order in D, we have equality. a

Lemma 2.14. Let D be a double Boolean algebra, let I be an ideal in D and let
F be a filter in D, such that =F C I and =1 C F. Then holds:

(1) z,y € Dn and b(z,y) € I = t(z,y) € F,

(2) z,y €Dy and t(z,y) € F = b(z,y) € 1.
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Proof: We proof (1), then (2) follows dually. Let x,y € Dn. Lemma 2.13 yields
zy = ((z Ny N -y))u = (zNy) U (z 1 -y)

and y, = (z Ny) U (-z MNy). By assumption, both (z M —y) and (—z My) are in I.
From this we obtain

t(z,y) = (zU-y)A(yU-x)
= ((eny)u(n-y)u-=(zny)u(-znNy)))
A((zNy)u (e ny) U =((=Ny) U (zN-y)))
= ((zN-y)u(F(zny)f=(~zNy))U(zNy))
A((-z Ny) U (Z(z Ny)R=(z N -y)) U(zNy))
= ((enN-y)U=(mzNy)U(zNy))A((~eNy)U=(z N -y)U(Ny))
= (zny)ut((zN-y), (-zNy)).
As for u,v € I holds —u,~v € F, we have t(u,v) = (u U ~v)A(“u Uv) € F and
therefore
(@ M ~), (~ 1)) C (2 15) U t((z 1 ), (ww11y)) € F.
Thus we have t(z,y) € F. O

Theorem 2.15. Let D be a pure double Boolean algebra, let I be an ideal in Dn
and let F' be a filter in D, such that ~F C I and I C F. Then

zOy & t(x,y) € F and b(z,y) € T
defines a congruence relation on D. Moreover, [T] = F* and [L] = I*.

Proof: We first prove that © is an equivalence relation. Clearly, O is reflexive and
symmetric. To check transitivity consider z,y,z € D and t(z,y) € F, t(y,z) € F.
Since F is a filter, (zU~y) and (“zUy) have to be in F. From z, = (zUy)RA(zU-"y)
we obtain

zU-"2z=((zUy)RA(zU~y))U-2=(zU (yU—-2)R((z L ~y) U-2).

By assumption y U—2 € F and zU -y € F, hence zU—2 € F and “z Uz € F and
we conclude t(x,z) € F. Dually it follows from b(z,y) € I and b(y,z) € I that
b(xz,z) € I. Thus O is an equivalence relation.

Lemma 2.14 yields that it is sufficient to check for z,y,a € D and z©y that
b(z MNa,yMa) = b(z,y) Na and t(z Ua,y Ua) = t(z,y) Ua in order to see that
O respects the operations M and U. This can be easily verified. Moreover, an easy
computation shows that b(—z,—y) = b(x,y) and dually t(~z, ~y) = t(x,y). Hence
O is a congruence relation.

Finally, F* = [T] and I* = [1] can be easily verified as well. O

Theorem 2.15 is the main result of this paper. It provides a characterization of all
pairs consisting of an ideal in D and a filter in D, that can generate a congruence
relation on a pure double Boolean algebra D.
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Definition 2.16. In a double Boolean algebra D we call a pair (I,F) where I is
an ideal in D, F is a filter in D, and -F C I, =1 C F a congruence generating
pair.

Lemma 2.17. In a double Boolean algebra D, it holds for all x,y € D:
(1)z2Cy=>-yC-z
(2)zCy=>-yC-z

The proof of this lemma is straightforward.

Theorem 2.18. Let (I, F) be a congruence generating pair in a double Boolean
algebra D. If I is a principal ideal (i) with greatest element i in Do and if F is a
principal filter [f) with smallest element f in D, then I := {j € Dn | j C =i} and
F:={ge Dy,|-fC g} form another congruence generating pair (I, F) which we
call the orthogonal congruence generating pair.

Proof: By the definition of congruence generating pairs we have =f C ¢ and f C —4.
Lemma 2.17 gives iy = =~ C ~f and therefore =(=f) C —iy. From i C iy we
conclude that —=(=f) C —i; C —i. Hence =F C I and dually =1 C F. O

FIGURE 2. A congruence relation on a pure double Boolean algebra

In semiconcept algebras, D and D, are isomorphic to the powerset lattices P(G)
and PB(M) respectively, hence complete. Obviously, all ideals and filters are prin-
cipal in finite semiconcept algebras. Thus, in this case there exists for every con-
gruence generating pair (I, F') the orthogonal congruence generating pair (I, F).
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FI1GURE 3. The congruence relation that is orthogonal to the one
in Fig. 2

Moreover, in finite semiconcept algebras the congruence generating pairs can be
found in the context K:

Theorem 2.19. In a finite semiconcept algebra $H(K) with context K := (G, M,I)
there is a one—to—oneNCOZ‘respondence between the congruence generating pairs (J, F)
in H(K) and pairs (A, B) € P(G) x P(M) satisfying

G\B'CA and M\ 4A' C B. (1)
Proof: Let (J, F') be a congruence generating pair in $(K). Let a denote the greatest
element of J in H(K)n and let b denote the smallest element of F' in H(K),. As a
and b are semiconcepts there exist sets A C G and B C M with a = (4, A") and
b= (B', B). We conclude from =F C J that

~(B',B)C (4,A) & (G\B,(G\B))C(4,A4)
& G\B'CcA

and dually M\ A’ C B. Themap ¢ : (I, F) — (A, B) from the set of all congruence
generating pairs in H(K) to Q@ :={(A,B) e Gx M |G\B'C A und M\ AC B}
is injective. Conversely, we can define for each pair (A, B) satisfying (1) an ideal by
J:={(4,A") € H(K)n | A C A} and a filter by F := {(B',B) € H(K)y | B C B}.
For an element (A, A") € J we obtain —(A4, A") C <(A4, A’) and

(B',B) T ((M\A), M\ A') = =(4,A) C~(4, 4.
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Hence —J C F and dually —=F C J, i.e. (J,F) is a congruence generating pair and
the map ¢ is bijective. |

Note that in finite semiconcept algebras holds ¢ (J,F) = (G'\ A, M \ B). Hence, if
for a finite semiconcept algebra the sets A, B and their complements are nonempty
then the context K is the direct sum of two subcontexts K; and Ky, i.e. for
Kl = (Gl,Ml,Il) and KQ = (GQ,MQ,IQ) we have K = (GlUGQ,MlUMQ,IlU[Q U
(G1 X Mg) U (G2 X Ml))

B M\ B

N

Ky

G\ A Ko

Since G \ B C A, every object g that has not all attributes of B is in A, and we
have that B C (M \ A’). Dually, A C (M \ B).

As congruence generating pairs are defined as pairs consisting of an ideal J in
D and a filter F' in D, the congruence generating pairs of a double Boolean
algebra D are determined by its pure subalgebra D,,. Thus, if there exists a context
K := (G, M,I) such that D, = §(K) and if ¢ : D, — $H(K) is an isomorphism
then ¢ maps congruence generating pairs in D, to congruence generating pairs
in H(K). Conversely, for every congruence generating pair (.J, P) in $(K) the pair
(¢7'(J),¢~" (F)) is a congruence generating pair in D,,. Therefore, whenever D,, =
H(K) holds, the context K can be used to find the congruence generating pairs in
D. Since for protoconcept algebras holds P(K), = H(K) this result will be useful

in Section 2.4 where congruences on protoconcept algebras are investigated.

2.3. Congruence Relations on Double Boolean Algebras. In this section
we apply our results to double Boolean algebras in general. It is evident that for a
double Boolean algebra D and a congruence relation ©® on D the restriction © | D,
of © to the pure subalgebra D, is a congruence on D,,. There are various ways to
extend a congruence on D, to D, but Theorem 2.22 shows that they cannot differ
very much.

Theorem 2.20. If D is a double Boolean algebra and © a congruence relation on
D, then ©' := O U Ap is a congruence relation on D.

Proof: Clearly ©' is an equivalence relation. For (a,b) € ©" holdsa =bora,b € D,,.
In any case we have that

an=alMa®bMb=by
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and therefore (ar,bn) € © C ©'. In the same manner we can see that (ay,by),
(—a,—b) and (“a,—b) are elements of ©'. |

Obviously, ©' is the smallest possible extension of ©.
Theorem 2.21. Let © be a congruence relation on D,. Then ©* defined by
(z,y) € O" :& t(z,y) € [T]o and b(z,y) € [L]e

is a congruence relation on D which extends ©. The factor algebra D/O* is con-
textual.

Proof: Theorem 2.15 immediately yields that ©*| D, is a congruence relation on
D,. Moreover, ©7| D, = 0. Reflexivity and symmetry of ©* are easy to check.
Now suppose (z,y), (y,2) € ©*. We have t(z,y) = t(zy,yu) € [T]e and t(y,z) =
t(yu,2u) € [T]e. Then Theorem 2.15 yields x, © y, © z;. The transitivity of ©
implies t(z, z) = t(zyu, 2u) € [T]e. Dually we obtain b(y, z) € [L]e.

In order to see that ©* respects the operations we choose (u,v),(z,y) € ©*. As
above b(uy,vy) € [L]e, and since t(uy,vy) € [T]o we have u, ©vy,. Likewise, we
have that z_, © y, and therefore u, Uz, ©® vy Uyy,. This yields

uy Uz Ouy Uy, = tlup Uz, vpUyy) € [Tle = tlulz,vUy) € [Tlo
and
uy Uz ©uy Uy, = blup Uzy®uyUyy) € [L]le = bulz,vUy) € [L]o,

hence (ulz,vUy) € ©*. In the same manner we find that the remaining operations
are respected by O*.

Finally, we show that D/©* contains no equivalent pairs. Let z,y € D such that
[z]or O[yle+. We conclude from [zn]e+ = [yn]e+ that b(z,y) € [L]e+ and from
[zu]e+ = [yu]e+ that t(x,y) € [T]e-. This gives [z]o = [y]o- and D/O* contains
no equivalent pairs. O
The next theorem shows that the structure of a factor algebra depends to a large
extent on the congruence relation on D,,.

Theorem 2.22. Let O,V be two congruence relations on a double Boolean algebra
D satisfying ®|Qp = \I—'|QP. Then there exists a natural isomorphism

¢:(D/©)/8 = (D/¥)/T, ¢:[zxle/o+ [r]e/o-

Proof: First we show that ¢ is indeed a map. Let y € [z]o,g. From [yle O[r]e we
conclude that

[zn]e = ([z]le)n = ([yle)n = [yr]e

and
[zule = ([zle)u = ([¥le)u = [yule-
Since ®|Qp = \II|QP, the congruences zn © yn and z, Oy, imply zn ¥y and
zy Uy, This yields [znly = [yn]w and [zu]ly = [yulw, ie. [z]w Oly]y and

[33]\1!/ o= [Z/]\I:/ a-
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It is easy to verify that ¢ is a homomorphism. We only give the proof for MM:

o([rle/oMNyle/o) = é(zNyle,o)

= [zNyly/o

= [zly/oNle/o
¢([z]e/o) N é([Yle/o)-

We obtain surjectivity from ¢! ([z]y, o) = [z]e;g. Now let [z]o,g # [yle;o. We
have

[zn]e # [yn]e or [zule # [yule < not (zn ¥yn) or not (zu Yyu)
< not ([z]y O[y]w)
& [zle/o # Y/ o

Hence ¢ is an isomorphism. a
Corollary 2.23. Let © be a congruence relation on D. Then

(D/©)/ 0= D/(O)p,)"

2.4. Direct Decomposition of Protoconcept Algebras. In this section we
apply our results to the special case of finite protoconcept algebras. This yields a
direct decomposition to directly irreducible protoconcept algebras. Moreover, we
show how the congruences on and the decompositions of these algebras correspond
to structures and decompositions of their contexts.

Theorem 2.24. Let D := B(K) be a finite protoconcept algebra with contert K :=
(G,M,I) and let © be a congruence relation on D, = H(K). Then the factor
algebra D /O is isomorphic to the protoconcept algebra of a subcontext.

Proof: Let (I, F) be the congruence generating pair that corresponds to © and let
(A, B) be the pair consisting of a set of objects and a set of attributes corresponding
to (I, F) as in Theorem 2.19. Note that in protoconcept algebras the functions
t(z,y) and b(z,y) calculate the symmetric difference of the sets of objects of z and
y and the sets of attributes of x and y respectively. Therefore, two elements of D
are in relation O if and only if their sets of objects differ only by elements of A and
their sets of attributes differ only by elements of B. We set H := G\ A, N := M\ B
and K = (H,N,IN(H x N)) and define

¢ D/O" = P(K),
¢([(4,B)le) — (A\A4,B\B).
We prove that ¢ is an isomorphism. First we show that ¢ is well-defined, i.e. that

#([(4, B)]o) is in P(K). LetN()I denote the derivation in K and let ()’ denote the
derivation in K. From M \ A’ C B (Theorem 2.19) we conclude that N = A’ \ B
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and dually H = B'\ A. If (4, B) € PB(K) then (A\A) (A\ A)’\ B. This yields
(A\AD" = (A\4)'n
= (A\ 4! (A’\B)
((A \54) \B)n((AnA)\B)
= A'\B
and dually (B \ B)I =B\ A. We obtain
(A\AHT = A\

— AH \ A
= (B\B".
hence (4\ A, B\ B) is a protoconcept in P(K K). Now an easy computation yields that
¢ is a homomorphism. Finally, we show that ¢ is bijective. Suppose [(41, B1)]e #
[(As, By)]Je. We conclude that A; \ A # Ay \ A or B, \ B # B \ B, hence
#([(A1, B1)]e) # &([(Az, By)]e). If (A, B) is a protoconcept in K consider
(AUA) = A'nd
= A'uB)N(NUG)
= Alud and
(Aud)" = (Atuag")
— (AI)I N GII
= Atud)nag
= AlTuAd
Since dually holds B’ = B! UA = AT U A, the pair (AU A, B) is a protoconcept
in K satisfying ¢(A U A, B) = (A, B). Therefore ¢ is bijective. m|
Corollary 2.25. If D :=‘B(K) is a finite protoconcept algebra with context K :=

(G, M,I) and if © is a congruence relation on D then (D/©)/ O is isomorphic to
the protoconcept algebra of a subcontext.

Theorem 2.26. Let D := B(K) be a finite protoconcept algebra with contert K :=
(G,M,I) and let ©* be the congruence relation defined by a congruence generating
pair such that D/©* is contextual. By U* we denote the congruence relation defined
by (I, F) such that D/9* is contextual. Then

D=D/0" x D/¥*
,B) € PB(G) x P(M) correspond to (I, F). Then (G\A M\

A
F) Thus, K is the direct sum of K; := (g’\A M\ B,I, :=
B))) and Ky := (A,B,I, := I N (A x B). The preceding

Proof: As before, let (

B) corresponds to (

I
NG\ A) x (M \
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theorem yields D/©* = PB(K; ) and D/T* = PB(Kz). Let 7o denote the projection

D — P(K;) and let my denote the projection D — P(Kz). We claim that the
following function is an isomorphism:
¢:D — P(K;) x P(Ksa)
d)(A:B) = (ﬂ-e(AaB)aﬂ-‘I’(AaB))
= ((A\4,B\B),(An4,BnB))

As mg and mg are homomorphisms, so is ¢. It is easy to check that ¢ is injective.
Note that for a set of objects C' C G holds:

C'NB = (CNAUCNG\A))NB
(CNA)'Nn(CNG\A)'n B
= (CnA)'nB
(CnAE

and likewise
C'N(M\B)=(Cn(G\A)".
Dually, for D C M we obtain
D'NA=(DnB)k

and

D'n(G\A) =(Dn(M\B))".
Now consider (A4;,B;) € P(K;) and (A4z,B>) € P(Ky). The inverse image of
((A1, By), (A3, By)) is ¢~ (A1, By), (A2, By)) = (A1 U Ay, By U By). We set C :=
Ay U A and D := By U By) and obtain
c’ (C'NB)U(C'N(M\ B))
= (CndluECn(@G\A)h
= (A)2uAn.
and, dually D' = (By)!2 U (By)!. This gives

c" = (C'nB2uC' nM\B)"
— Angz UA{III
= BRuBH
= D
Hence (C, D) is a protoconcept in D and ¢ is surjective. O

Obviously, iteration of this decomposition yields a direct decomposition of finite
protoconcept algebras in directly irreducible protoconcept algebras.

Example 2.27. We can write the context K from Example 1.6 as the direct sum of

the contexts Ko := ({1},{b},@), K, := ({2},{&},@) and Ky := ({3}7{6}7{(376)})a
where Ko itself is the direct sum of Koo := ({3},0,0) and Koy := (0, {c},0).
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b la |c
1 | & XX
2 XK | X
XXk

Thus the protoconcept algebra from FExample 1.6 is the direct product of the proto-
concept algebras in Figure 4.

(1,0) &(2,0) @(3,0) a(0,0)
X X X
0,0) @0.0) @,0) @0.c)

FI1GURE 4. A decomposition of a protoconcept algebra in directly
irreducible protoconcept algebras

2.5. Subdirectly Irreducible Double Boolean Algebras. For the more gen-
eral case of finite double Boolean algebras we obtain a result similar to that for
finite protoconcept algebras. While we have a direct decomposition of finite pro-
toconcept algebras in simple protoconcept algebras, finite double Boolean algebras
are subdirect products of simple double Boolean algebras.

Theorem 2.28. A finite contextual double Boolean algebra D is subdirectly irre-
ducible if and only if D is simple.

Proof: Obviously, every simple double Boolean algebra is subdirectly irreducible.
Let D be a finite contextual double Boolean algebra. Theorem 2.22 yields that if
D is contextual and not simple then there exists a non-trivial congruence on D,,.
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Let (I, F) be a non-trivial congruence generating pair in D, and let © be the
congruence relation defined by

(x,y) € © & b(z,y) € I and t(z,y) € F.

Since D is finite, (I, F') has an orthogonal congruence generating pair (I, F). Let
¥ be the congruence relation defined by

(z,y) € ¥ & b(z,y) € I and t(z,y) € F.

We show that in the congruence lattice of D holds © A ¥ = Ap: Let i :== HI
denote the greatest element of I and let f := [T F denote the smallest element of
F. For z,y € D with 2 ©y and =z ¥y we obtain

zO®y <& b(z,y) €I and t(z,y) € F
&  b(z,y) Ciand f Ct(z,y)
and

¥y <& b(x,y)elandt(z,y) €F
& b(r,y) E—iand ~f C t(z,y)

Therefore we have that T = fU-f C t(z,y) and b(z,y) EiM—i = L. This yields
T =t(x,y) = (xuU-y,)A(yuU~zy), and since D, is a Boolean algebra, we obtain
zy = yu and dually zq = yn. As D is contextual we conclude x = y and thus
O AY = Ap. It follows that D is isomorphic to a subdirect product of D/© and
D/¥ (cf. [G68] p.123). O

Theorem 2.29. Let D be a double Boolean algebra. If D is not contextual, then
D is not subdirectly irreducible.

Proof: Let x Oy, x # y be an equivalent pair in D. We set © := ApU{(z,y), (y,x)}
and ¥ := {D\ {y} x D\ {y}} U {(y,y)} and show that © and ¥ are congruence
relations satisfying © A ¥ = Ap. Obviously, © and ¥ are equivalence relations
and Theorem 2.4 yields that © is a congruence relation. Note that from z Oy and
x # y it follows that y # yn and y # y,. This yields that for a,b € D we have
an Ubn ¥by¥ay, hence ¥ is a congruence relation. Now assume that for a,b € D
holds a© b and @ ¥ b. From a ¥ b we conclude a,b € D\ {y} or a = b = y. Then
a©b yields a = b, hence @ A ¥ = Ap. O

This result immediately yields a generalization of Theorem 2.28:
Corollary 2.30. A finite double Boolean algebra D is subdirectly irreducible if and
only if D is simple.

3. Further research

This paper is one of the first steps towards a theory of double Boolean algebras.
Next steps in the field of construction and decomposition of such algebras should
include the investigation of tolerance relations and tensor products.
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As the number of elements of protoconcept algebras grows rapidly with increasing
number of attributes and objects in the context, fast algorithms to compute the
protoconcepts and good ways to obtain a diagrammatic representation are needed.
The equational theory of double Boolean algebras and the investigation of free
double Boolean algebras are of great importance for applications in Contextual
Logic. This includes algorithmic solutions of word problems. Contextual Judgment
Logic should be developed in parallel to Boolean Concept Logic, especially the
theory of protoconcept graphs. This approach will benefit from insights into the
theory of double Boolean algebras and inspire new investigation.
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