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Abstrat. Double Boolean algebras form the variety generated by protoonept algebras

whih are one of the fundamental strutures of Contextual Logi. Every double Boolean

algebra ontains two Boolean algebras. In this paper it is shown that ongruene relations

on pure double Boolean algebras may be haraterized by pairs onsisting of an ideal in

one Boolean algebra and a �lter in the other. We explain how this haraterization an be

generalized for double Boolean algebras. Moreover, these results are applied to protoonept

algebras in order to obtain a diret deomposition in simple protoonept algebras. Finally,

it is shown that every �nite subdiretly irreduible double Boolean algebra is simple.

The de�nition and investigation of double Boolean algebras arose from the devel-

opment of Contextual Logi at TU Darmstadt during the last years. Contextual

Logi is intended to be a mathematization of the traditional philosophial logi with

its dotrines of onepts, judgments and onlusions. A survey of the basi ideas

and results of this approah an be found in [Wi00b℄, for more detailed information

see [Pr98℄, [GW99a℄, [Wi00a℄, [Kl01℄ and [Da02℄. This paper fouses on ongruene

relations on double Boolean algebras. In the �rst setion basi de�nitions and prop-

erties of double Boolean algebras, semionept algebras and protoonept algebras

are given. The seond setion deals with the ongruene relations. It is divided into

�ve parts. First, operational equivalene as the most basi non trivial ongruene is

introdued. The seond part fouses on pure double Boolean algebras. It is shown

how they an be haraterized by pairs onsisting of an ideal and a �lter in the two

Boolean algebras ontained in the double Boolean algebra. Moreover, we explain

how the neessary onditions an be reformulated for semionept algebras and

for their ontexts. As every double Boolean algebra ontains a pure subalgebra,

in the third part this haraterization an be applied to double Boolean algebras

in general. It is shown that a ongruene relation on a double Boolean algebra is

determined to a large extent by its restrition to the pure subalgebra. This yields

a deomposition of �nite protoonept algebras in simple protoonept algebras

whih is given in part four. In the �fth part it is shown that every �nite subdiretly

irreduible double Boolean algebra is simple. Finally, setion three desribes some

perspetives for further researh.

1991 Mathematis Subjet Classi�ation: Primary: 03G25; Seondary: 06E99, 06F99, 68T30.

Key words and phrases: Double Boolean algebra, protoonept algebra, ongruene, diret

deomposition, subdiret deomposition.
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1. Double Boolean Algebras and Protoonept Algebras

Double Boolean algebras were introdued in [Wi00a℄.

De�nition 1.1. A double Boolean algebra is an algebra D := (D;u;t;:;:;?;>)

of type (2,2,1,1,0,0), satisfying the equations

1a) (x u x) u y = x u y 1b) (x t x) t y = x t y

2a) x u y = y u x 2b) x t y = y t x

3a) x u (y u z) = (x u y) u z 3b) x t (y t z) = (x t y) t z

4a) x u (x t y) = x u x 4b) x t (x u y) = x t x

5a) x u (xty) = x u x 5b) x t (xuy) = x t x

6a) x u (ytz) = (x u y)t(x u z) 6b) x t (yuz) = (x t y)u(x t z)

7a) ::(x u y) = x u y 7b) ::(x t y) = x t y

8a) :(x u x) = :x 8b) :(x t x) = :x

9a) x u :x = ? 9b) x t :x = >

10a) :? = > u > 10b) :> = ? t ?

11a) :> = ? 11b) :? = >

12) (x u x) t (x u x) = (x t x) u (x t x)

with the operations t;u;>;? de�ned by

xty := :(:x u :y)

xuy := :(:x t :y)

> := :?

? := :>

A pure double Boolean algebra is a double Boolean algebra that satis�es the addi-

tional ondition

13) x = x u x or x = x t x.

To shorten notation we write x

u

for xu x and x

t

for xtx, and de�ne D

u

:= fx

u

j

x 2 Dg, D

t

:= fx

t

jx 2 Dg and D

p

:= D

u

[D

t

. The restrition of D to D

p

is a

pure subalgebra of D.

We de�ne a binary relation v on double Boolean algebras by:

x v y :, x u y = x

u

and x t y = y

t

Some properties of double Boolean algebras were disussed in [HLSW00℄:

Theorem 1.2. Let D := (D;u;t;:;:;?;>) be a double Boolean algebra. Then

the following onditions are satis�ed:

(1) (D;v) is a quasi-ordered set.

(2) D

u

:= (D

u

;u;t;:;?;>) is a Boolean algebra whose order relation

is the restrition of v to D

u

.

(3) D

t

:= (D

t

;u;t;:;?;>) is a Boolean algebra whose order relation

is the restrition of v to D

t

.

(4) y v x

u

, y v x for x 2 D and y 2 D

u

.

(5) x

t

v y , x v y for x 2 D and y 2 D

t

.

(6) x v y , x

u

v y

u

and x

t

v y

t

for x; y 2 D.
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A lass of examples for double Boolean algebras are so-alled protoonept algebras.

Introdued in [Wi00a℄ as an extension of the theory of Formal Conept Analysis,

they serve as the starting point for the inlusion of negation to ontextual logi.

For a detailed introdution to Formal Conept Analysis see [GW99b℄.

De�nition 1.3. A formal ontext K := (G;M; I) onsists of two sets G and M

and a relation I between G and M . The elements of G are alled the objets and

the elements of M are alled the attributes of the ontext. In order to express that

an objet g is in relation I with an attribute m, we write gIm or (g;m) 2 I and

read it as "the objet g has the attribute m".

De�nition 1.4. For a set A � G of objets we de�ne

A

0

:= fm 2M j gIm for all g 2 Ag

(the set of attributes ommon to the objets in A). Correspondingly, for a set B of

attributes we de�ne

B

0

:= fg 2 G j gIm for all m 2 Bg

(the set of objets whih have all attributes in B).

De�nition 1.5. A protoonept of a formal ontext K := (G;M; I) is a pair (A;B)

with A � G and B � M suh that A

0

= B

00

or, equivalently, A

00

= B

0

. We denote

the set of all protoonepts of a ontext K by P(K ) and de�ne on P(K ) operations

u, t, :, :, > and ? by:

(A

1

; B

1

) u (A

2

; B

2

) := (A

1

\ A

2

; (A

1

\A

2

)

0

)

(A

1

; B

1

) t (A

2

; B

2

) := ((B

1

\ B

2

)

0

; B

1

\ B

2

)

:(A;B) := (G nA; (G nA)

0

)

:(A;B) := ((M nB)

0

;M nB)

> := (G; ;)

? := (;;M)

The set of all protoonepts of a ontext K together with these operations is alled

the protoonept algebra of K and denoted by P(K ).

For protoonepts the quasi-order v is an order and

(A

1

; B

1

) v (A

2

; B

2

) :, A

1

� A

2

and B

1

� B

2

, (A

1

; B

1

) u (A

2

; B

2

) = (A

1

; B

1

) u (A

1

; B

1

)

and (A

1

; B

1

) t (A

2

; B

2

) = (A

2

; B

2

) t (A

2

; B

2

):

Note that the result of any operation in a protoonept algebra is a protoonept

of the form (A;A

0

) or (B

0

; B). These protoonepts are alled u-semionepts or t-

semionepts, respetively. The set of all u-semionepts of a protoonept algebra

P(K )(= D) is denoted by P(K )

u

(= D

u

) and the set of all t-semionepts by

P(K )

t

(= D

t

). As before, the set H(K ) := P(K )

u

[ P(K )

t

of all semionepts
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Figure 1. A ontext and its protoonept algebra

of K , together with the operations of P(K ) is a subalgebra of P(K ). We all this

subalgebra the semionept algebra of the ontext K .

An element of the intersetion P(K )

u

\ P(K )

t

is alled a formal onept. For a

formal onept (A;B) holds A

0

= B and B

0

= A.

Example 1.6. Figure 1 depits a ontext and its protoonept algebra. The ele-

ments represented by �lled irles are formal onepts. The irles with the upper

half �lled represent t-semionepts, those with the lower half �lled represent u-

semionepts.

2. Congruene Relations on Double Boolean Algebras

2.1. Operational Equivalene. The most basi non-trivial ongruene relation

is operational equivalene:

De�nition 2.1. We say that two elements x; y of a double Boolean algebra D are

operationally equivalent (or an equivalent pair) if and only if x v y and y v x and

denote this by x vw y.

Lemma 2.2. Let D be a double Boolean algebra. For elements x; y 2 D holds:

xvw y , x

u

= y

u

and x

t

= y

t
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Proof: This follows immediately from the de�nition of v:

x v y and y v x , x

u

= x u y = y u x = y

u

and x

t

= x t y = y t x = y

t

De�nition 2.3. A double Boolean algebra D satisfying for all x; y 2 D:

xvw y(:, x v y and y v x) ) x = y

is alled a ontextual double Boolean algebra.

Theorem 2.4. Let D be a double Boolean algebra, let x; y 2 D be an equivalent

pair and let �

D

:= f(x; x) j x 2 Dg. The relation � := �

D

[ f(x; y); (y; x)g is a

ongruene relation on D.

Proof: Obviously � is an equivalene relation. We have to show that :x�:y,

:x�:y and a u x� a u y, a t x� a t y for arbitrary a 2 D. Lemma 2.2 yields

x

u

= y

u

and thus

:x

8a

= :(x u x) = :(y u y)

8a

= :y;

so :x�:y, and dually :x�:y. Likewise,

x u a

1a

= (x u x) u a = (y u y) u a

1a

= y u a

so x u a� y u a and dually x t a� y t a. 2

Corollary 2.5. Operational equivalene vw := f(x; y) 2 D �D j xvw yg is a on-

gruene relation in every double Boolean algebra.

Proof: It is easy to see that vw is a reexive and symmetri relation. In order to

hek the transitivity of vw let xvw y and yvw z. Lemma 2.2 yields x

u

= y

u

= z

u

and

x

t

= y

t

= z

t

, thus xvw z. The proof of Theorem 2.4 shows that from xvwy follows

:x�:y, :x�:y, x u a� y u a and x t a� y t a. Therefore vw is a ongruene

relation. 2

2.2. Congruene Relations on pure Double Boolean Algebras. In this sub-

setion we fous our investigation on pure double Boolean algebras beause their

fator algebras do not ontain equivalent pairs. This restrition allows us to give

a haraterization of ongruenes on pure double Boolean algebras. This har-

aterization will be extended to double Boolean algebras in general in the next

subsetion.

Lemma 2.6. Let D be a pure double Boolean algebra and let � be a ongruene

relation on D. Then the fator algebra D=� is ontextual.

Proof: Let x; y 2 D, let x

u

� y

u

and let x

t

� y

t

. In the ases x; y 2 D

u

and

x; y 2 D

t

the result is immediate. Assume x = x

u

and y = y

t

. We on-

lude from x

t

� y

t

= y that x

t

u x

t

� y

u

and hene x

t

� y

u

. This implies

x = x

u

� y

u

�x

t

� y

t

= y, hene the ongruene lasses of x and y in D=� are

equal. 2

Note that if a double Boolean algebra D is not pure there always exists a proper

ongruene relation � suh that D=� onsists only of equivalent pairs. To see this
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we set � := �

D

[ (D

p

�D

p

). Then x� y holds for all x; y 2 D

p

. We onlude from

x

t

, y

t

, x

u

, y

u

2 D

p

for arbitrary x; y 2 D:

x

t

� y

t

�x

u

� y

u

:

So the ongruene lasses [x℄ and [y℄ of x and y form an equivalent pair in D=�.

Moreover, D=� ontains at least two di�erent ongruene lasses: For all elements

x; y 2 D nD

p

and z 2 D

p

holds [x℄ 6= [y℄ and [x℄ 6= [z℄. By assumption there exists

at least one x 2 D nD

p

. It follows that D=� onsists only of equivalent pairs.

De�nition 2.7. For double Boolean algebras D we de�ne two funtions

t: D �D ! D and b:D �D ! D by:

t(x; y) := (x t :y)u(:x t y),

b(x; y) := (x u :y)t(:x u y).

Lemma 2.8. For a ongruene relation � on a double Boolean algebra D and

elements x; y 2 D holds:

x� y ) t(x; y) 2 [>℄ and b(x; y) 2 [?℄:

Proof: Let x; y 2 D and x� y. Then >

9b

= x t :x�x t :y and >� y t :x. Thus

> = >u>�(x t :y)u(y t :x) = t(x; y). Duality gives b(x; y) 2 [?℄. 2

Theorem 2.9. In a pure double Boolean algebra D holds:

t(x; y) 2 [>℄ and b(x; y) 2 [?℄, x� y:

Proof: We onlude from t(x; y) = (x t :y)u(y t :x)�> that

(x t :y) = (x t :y)

t

5b

= (x t :y) t ((x t :y)u(y t :x))� (x t :y) t > = >

and likewise (y t :x)�>. From x

t

; y

t

and > 2 D

t

follows:

x

t

= x

t

u>�x

t

u(:x t y)

8b

= x

t

u(:x

t

t y

t

) = (x

t

u:x

t

) t (x

t

uy

t

)

= x

t

uy

t

= xuy:

Analogously we obtain y

t

�xuy and thus y

t

�x

t

and x

u

� y

u

, i.e. [x℄vw[y℄. By

Lemma 2.6 D=� is ontextual and we onlude x� y. The onverse impliation

was shown in Lemma 2.8. 2

This theorem shows that in pure double Boolean algebras all ongruene lasses

are determined by the lasses of > and ?. In addition, the funtions t(x; y) and

b(x; y) enable us to ompute these ongruene lasses.

For an ideal I in D

u

and a �lter F in D

t

we de�ne

I

�

:= I [ fx 2 D

t

j x

u

2 I and:x 2 Fg

and

F

�

:= F [ fx 2 D

u

j x

t

2 F and:x 2 Ig:

Lemma 2.10. Let D be a double Boolean algebra and � a ongruene relation on

D. The set F := [>℄\D

t

is a �lter in D

t

and the set I := [?℄\D

u

is an ideal in

D

u

. If D is pure then F

�

= [>℄ and I

�

= [?℄.
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Proof: It is easy to hek that F is a �lter. By de�nition holds F � [>℄. Now

let D be a pure double Boolean algebra and let x 2 [>℄ n F . It follows that

> = > t >�x

t

2 [>℄ \ D

t

= F and :x�:> = ?, so x 2 F

�

. Conversely, let

x 2 F

�

n F . By de�nition holds :x 2 I � [?℄ and we obtain

x u x

7a

= :(:(x u x))

8a

= :(:x)�:?

10a

= > u>:

We onlude from x t x 2 [>℄ \D

t

that x t x�> = >t> so x vw > and Lemma

2.6 yields x�>. The rest follows dually. 2

For a ongruene relation � and sets F and I as in Lemma 2.10, obviously holds

:F

�

� I and dually :I

�

� F . If we searh for pairs (I; F ) onsisting of an ideal

in D

u

and a �lter in D

t

that an de�ne a ongruene relation we have to demand

this ondition. It follows from the de�nition of F

�

and I

�

that it is suÆient to

demand :F � I and :I � F .

We need four more lemmas to prove the main theorem of this paper.

Lemma 2.11. In a double Boolean algebra holds:

(1) x u y v x v x t y

(2) the map x 7! x u y preserves v and u,

(3) the map x 7! x t y preserves v and t.

See [Wi00a℄ for a proof.

Lemma 2.12. In double Boolean algebras holds:

(1) For x; y 2 D

t

is x u y v xuy

(2) For x; y 2 D

u

is xty v x t y

Proof: By 1.2.(5) holds x u y v xuy , (x u y) t (x u y) v xuy. Lemma 2.11.(1)

and(3) yield x u y v x ) (x u y)

t

v x t (x u y)

4b

= x t x = x. Likewise we obtain

(x u y)

t

v y and onlude from (x u y)

t

2 D

t

that (x u y)

t

v xuy, hene (1).

Dually we obtain (2). 2

Lemma 2.13. In a double Boolean algebra D holds for elements x; y 2 D

u

:

(xty)

t

= x t y. Dually, for x; y 2 D

t

holds (xuy)

u

= x u y.

Proof: Let x; y 2 D

u

. Lemma 2.12 yields x v xty v x t y. From Lemma 2.11 it

follows that

x t (xty) v (xty) t (xty) v (x t y) t (xty) = (x t y)

t

= (x t y);

sine xty v xt y. We onlude from y v xty that xt y v xt (xty) and therefore

x t y v (xty)

t

v x t y. As v is an order in D

t

we have equality. 2

Lemma 2.14. Let D be a double Boolean algebra, let I be an ideal in D

u

and let

F be a �lter in D

t

suh that :F � I and :I � F . Then holds:

(1) x; y 2 D

u

and b(x; y) 2 I ) t(x; y) 2 F ,

(2) x; y 2 D

t

and t(x; y) 2 F ) b(x; y) 2 I.
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Proof: We proof (1), then (2) follows dually. Let x; y 2 D

u

. Lemma 2.13 yields

x

t

= ((x u y)t(x u :y))

t

= (x u y) t (x u :y)

and y

t

= (x u y) t (:x u y). By assumption, both (x u :y) and (:x u y) are in I .

From this we obtain

t(x; y) = (x t :y)u(y t :x)

= ((x u y) t (x u :y) t :((x u y) t (:x u y)))

u((x u y) t (:x u y) t :((x u y) t (x u :y)))

= ((x u :y) t (:(x u y)u:(:x u y)) t (x u y))

u((:x u y) t (:(x u y)u:(x u :y)) t (x u y))

= ((x u :y) t :(:x u y) t (x u y))u((:x u y) t :(x u :y) t (x u y))

= (x u y) t t((x u :y); (:x u y)):

As for u; v 2 I holds :u;:v 2 F , we have t(u; v) = (u t :v)u(:u t v) 2 F and

therefore

t((x u :y); (:x u y)) v (x u y) t t((x u :y); (:x u y)) 2 F:

Thus we have t(x; y) 2 F . 2

Theorem 2.15. Let D be a pure double Boolean algebra, let I be an ideal in D

u

and let F be a �lter in D

t

, suh that :F � I and :I � F . Then

x� y :, t(x; y) 2 F and b(x; y) 2 I

de�nes a ongruene relation on D. Moreover, [>℄ = F

�

and [?℄ = I

�

.

Proof: We �rst prove that � is an equivalene relation. Clearly, � is reexive and

symmetri. To hek transitivity onsider x; y; z 2 D and t(x; y) 2 F , t(y; z) 2 F .

Sine F is a �lter, (xt:y) and (:xty) have to be in F . From x

t

= (xty)u(xt:y)

we obtain

x t :z = ((x t y)u(x t :y)) t :z = (x t (y t :z))u((x t :y) t :z):

By assumption y t :z 2 F and x t :y 2 F , hene x t :z 2 F and :x t z 2 F and

we onlude t(x; z) 2 F . Dually it follows from b(x; y) 2 I and b(y; z) 2 I that

b(x; z) 2 I . Thus � is an equivalene relation.

Lemma 2.14 yields that it is suÆient to hek for x; y; a 2 D and x� y that

b(x u a; y u a) = b(x; y) u a and t(x t a; y t a) = t(x; y) t a in order to see that

� respets the operations u and t. This an be easily veri�ed. Moreover, an easy

omputation shows that b(:x;:y) = b(x; y) and dually t(:x;:y) = t(x; y). Hene

� is a ongruene relation.

Finally, F

�

= [>℄ and I

�

= [?℄ an be easily veri�ed as well. 2

Theorem 2.15 is the main result of this paper. It provides a haraterization of all

pairs onsisting of an ideal in D

u

and a �lter in D

t

that an generate a ongruene

relation on a pure double Boolean algebra D.
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De�nition 2.16. In a double Boolean algebra D we all a pair (I; F ) where I is

an ideal in D

u

, F is a �lter in D

t

and :F � I, :I � F a ongruene generating

pair.

Lemma 2.17. In a double Boolean algebra D, it holds for all x; y 2 D:

(1) x v y ) :y v :x

(2) x v y ) :y v :x

The proof of this lemma is straightforward.

Theorem 2.18. Let (I; F ) be a ongruene generating pair in a double Boolean

algebra D. If I is a prinipal ideal (i℄ with greatest element i in D

u

and if F is a

prinipal �lter [f) with smallest element f in D

t

, then I := fj 2 D

u

j j v :ig and

F := fg 2 D

t

j :f v gg form another ongruene generating pair (I; F ) whih we

all the orthogonal ongruene generating pair.

Proof: By the de�nition of ongruene generating pairs we have :f v i and f v :i.

Lemma 2.17 gives i

t

= ::i v :f and therefore :(:f) v :i

t

. From i v i

t

we

onlude that :(:f) v :i

t

v :i. Hene :F � I and dually :I � F . 2

PSfrag replaements

(G,;)

(23,b)

(13,a)

(1,a)

(3,ab)

(13,a)

(23,b)

(G,)

(;,ab)

(3,M)

(1,a)

(;,M)

(2,b)

(12,)

(2,b)

(12,;)

Figure 2. A ongruene relation on a pure double Boolean algebra

In semionept algebras, D

u

and D

t

are isomorphi to the powerset latties P(G)

and P(M) respetively, hene omplete. Obviously, all ideals and �lters are prin-

ipal in �nite semionept algebras. Thus, in this ase there exists for every on-

gruene generating pair (I; F ) the orthogonal ongruene generating pair (I; F ).
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PSfrag replaements

(G,;)

(23,b)

(13,a)

(1,a)

(3,ab)

(13,a)

(23,b)

(G,)

(;,ab)

(3,M)

(1,a)

(;,M)

(2,b)

(12,)

(2,b)

(12,;)

Figure 3. The ongruene relation that is orthogonal to the one

in Fig. 2

Moreover, in �nite semionept algebras the ongruene generating pairs an be

found in the ontext K :

Theorem 2.19. In a �nite semionept algebra H(K ) with ontext K := (G;M; I)

there is a one-to-one orrespondene between the ongruene generating pairs (J; F )

in H(K ) and pairs (

~

A;

~

B) 2 P(G)�P(M) satisfying

G n

~

B

0

�

~

A and M n

~

A

0

�

~

B: (1)

Proof: Let (J; F ) be a ongruene generating pair in H(K ). Let a denote the greatest

element of J in H(K )

u

and let b denote the smallest element of F in H(K )

t

. As a

and b are semionepts there exist sets

~

A � G and

~

B � M with a = (

~

A;

~

A

0

) and

b = (

~

B

0

;

~

B). We onlude from :F � J that

:(

~

B

0

;

~

B) v (

~

A;

~

A

0

) , (G n

~

B

0

; (G n

~

B

0

)

0

) v (

~

A;

~

A

0

)

, G n

~

B

0

�

~

A

and duallyM n

~

A

0

�

~

B. The map � : (I; F ) 7! (

~

A;

~

B) from the set of all ongruene

generating pairs in H(K ) to Q := f(A;B) 2 G�M j G n

~

B

0

�

~

A und M n

~

A �

~

Bg

is injetive. Conversely, we an de�ne for eah pair (

~

A;

~

B) satisfying (1) an ideal by

J := f(A;A

0

) 2 H(K )

u

j A �

~

Ag and a �lter by F := f(B

0

; B) 2 H(K )

t

j B �

~

Bg.

For an element (A;A

0

) 2 J we obtain :(

~

A;

~

A

0

) v :(A;A

0

) and

(

~

B

0

;

~

B) v ((M n

~

A

0

)

0

;M n

~

A

0

) = :(

~

A;

~

A

0

) v :(A;A

0

):
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Hene :J � F and dually :F � J , i.e. (J; F ) is a ongruene generating pair and

the map � is bijetive. 2

Note that in �nite semionept algebras holds � (J; F ) = (G n

~

A;M n

~

B). Hene, if

for a �nite semionept algebra the sets

~

A,

~

B and their omplements are nonempty

then the ontext K is the diret sum of two subontexts K

1

and K

2

, i.e. for

K

1

= (G

1

;M

1

; I

1

) and K

2

= (G

2

;M

2

; I

2

) we have K = (G

1

_

[G

2

;M

1

_

[M

2

; I

1

_

[I

2

[

(G

1

�M

2

) [ (G

2

�M

1

)).

PSfrag replaements

K

1

~

A

~

B

M n

~

B

G n

~

A

K

2

Sine G n

~

B �

~

A, every objet g that has not all attributes of

~

B is in

~

A, and we

have that

~

B � (M n

~

A

0

). Dually,

~

A � (M n

~

B

0

).

As ongruene generating pairs are de�ned as pairs onsisting of an ideal J in

D

u

and a �lter F in D

t

, the ongruene generating pairs of a double Boolean

algebraD are determined by its pure subalgebra D

p

. Thus, if there exists a ontext

K := (G;M; I) suh that D

p

�

=

H(K ) and if � : D

p

! H(K ) is an isomorphism

then � maps ongruene generating pairs in D

p

to ongruene generating pairs

in H(K ). Conversely, for every ongruene generating pair (J; P ) in H(K ) the pair

(�

�1

(J); �

�1

(F )) is a ongruene generating pair in D

p

. Therefore, whenever D

p

�

=

H(K ) holds, the ontext K an be used to �nd the ongruene generating pairs in

D. Sine for protoonept algebras holds P(K )

p

= H(K ) this result will be useful

in Setion 2.4 where ongruenes on protoonept algebras are investigated.

2.3. Congruene Relations on Double Boolean Algebras. In this setion

we apply our results to double Boolean algebras in general. It is evident that for a

double Boolean algebra D and a ongruene relation � on D the restrition � j

D

p

of � to the pure subalgebra D

p

is a ongruene on D

p

. There are various ways to

extend a ongruene on D

p

to D, but Theorem 2.22 shows that they annot di�er

very muh.

Theorem 2.20. If D is a double Boolean algebra and � a ongruene relation on

D

p

then �

0

:= � [�

D

is a ongruene relation on D.

Proof: Clearly �

0

is an equivalene relation. For (a; b) 2 �

0

holds a = b or a; b 2 D

p

.

In any ase we have that

a

u

= a u a� b u b = b

u



12 BJ

�

ORN VORMBROCK

and therefore (a

u

; b

u

) 2 � � �

0

. In the same manner we an see that (a

t

; b

t

),

(:a;:b) and (:a;:b) are elements of �

0

. 2

Obviously, �

0

is the smallest possible extension of �.

Theorem 2.21. Let � be a ongruene relation on D

p

. Then �

�

de�ned by

(x; y) 2 �

�

:, t(x; y) 2 [>℄

�

and b(x; y) 2 [?℄

�

is a ongruene relation on D whih extends �. The fator algebra D=�

�

is on-

textual.

Proof: Theorem 2.15 immediately yields that �

�

j

D

p

is a ongruene relation on

D

p

. Moreover, �

�

j

D

p

= �. Reexivity and symmetry of �

�

are easy to hek.

Now suppose (x; y); (y; z) 2 �

�

. We have t(x; y) = t(x

t

; y

t

) 2 [>℄

�

and t(y; z) =

t(y

t

; z

t

) 2 [>℄

�

. Then Theorem 2.15 yields x

t

� y

t

� z

t

. The transitivity of �

implies t(x; z) = t(x

t

; z

t

) 2 [>℄

�

. Dually we obtain b(y; z) 2 [?℄

�

.

In order to see that �

�

respets the operations we hoose (u; v); (x; y) 2 �

�

. As

above b(u

t

; v

t

) 2 [?℄

�

, and sine t(u

t

; v

t

) 2 [>℄

�

we have u

t

� v

t

. Likewise, we

have that x

t

� y

t

and therefore u

t

t x

t

� v

t

t y

t

. This yields

u

t

t x

t

� v

t

t y

t

) t(u

t

t x

t

; v

t

t y

t

) 2 [>℄

�

) t(u t x; v t y) 2 [>℄

�

and

u

t

t x

t

� v

t

t y

t

) b(u

t

t x

t

� v

t

t y

t

) 2 [?℄

�

) b(u t x; v t y) 2 [?℄

�

;

hene (utx; vty) 2 �

�

. In the same manner we �nd that the remaining operations

are respeted by �

�

.

Finally, we show that D=�

�

ontains no equivalent pairs. Let x; y 2 D suh that

[x℄

�

�

vw [y℄

�

�

. We onlude from [x

u

℄

�

�

= [y

u

℄

�

�

that b(x; y) 2 [?℄

�

�

and from

[x

t

℄

�

�

= [y

t

℄

�

�

that t(x; y) 2 [>℄

�

�

. This gives [x℄

�

�

= [y℄

�

�

and D=�

�

ontains

no equivalent pairs. 2

The next theorem shows that the struture of a fator algebra depends to a large

extent on the ongruene relation on D

p

.

Theorem 2.22. Let �;	 be two ongruene relations on a double Boolean algebra

D satisfying �j

D

p

= 	j

D

p

. Then there exists a natural isomorphism

� : (D=�)=vw! (D=	)=vw; � : [x℄

�=vw

7! [x℄

	=vw

:

Proof: First we show that � is indeed a map. Let y 2 [x℄

�=vw

. From [y℄

�

vw[x℄

�

we

onlude that

[x

u

℄

�

= ([x℄

�

)

u

= ([y℄

�

)

u

= [y

u

℄

�

and

[x

t

℄

�

= ([x℄

�

)

t

= ([y℄

�

)

t

= [y

t

℄

�

.

Sine �j

D

p

= 	j

D

p

, the ongruenes x

u

� y

u

and x

t

� y

t

imply x

u

	 y

u

and

x

t

	 y

t

. This yields [x

u

℄

	

= [y

u

℄

	

and [x

t

℄

	

= [y

t

℄

	

, i.e. [x℄

	

vw[y℄

	

and

[x℄

	=vw

= [y℄

	=vw

.



CONGRUENCE RELATIONS ON DOUBLE BOOLEAN ALGEBRAS 13

It is easy to verify that � is a homomorphism. We only give the proof for u:

�([x℄

�=vw

u [y℄

�=vw

) = �([x u y℄

�=vw

)

= [x u y℄

	=vw

= [x℄

	=vw

u [y℄

	=vw

= �([x℄

�=vw

) u �([y℄

�=vw

):

We obtain surjetivity from �

�1

([x℄

	=vw

) = [x℄

�=vw

. Now let [x℄

�=vw

6= [y℄

�=vw

. We

have

[x

u

℄

�

6= [y

u

℄

�

or [x

t

℄

�

6= [y

t

℄

�

, not (x

u

	 y

u

) or not (x

t

	 y

t

)

, not ([x℄

	

vw [y℄

	

)

, [x℄

	=vw

6= [y℄

	=vw

:

Hene � is an isomorphism. 2

Corollary 2.23. Let � be a ongruene relation on D. Then

(D=�)=vw

�

=

D=(�j

D

p

)

�

2.4. Diret Deomposition of Protoonept Algebras. In this setion we

apply our results to the speial ase of �nite protoonept algebras. This yields a

diret deomposition to diretly irreduible protoonept algebras. Moreover, we

show how the ongruenes on and the deompositions of these algebras orrespond

to strutures and deompositions of their ontexts.

Theorem 2.24. Let D := P(K ) be a �nite protoonept algebra with ontext K :=

(G;M; I) and let � be a ongruene relation on D

p

:= H(K ). Then the fator

algebra D=�

�

is isomorphi to the protoonept algebra of a subontext.

Proof: Let (I; F ) be the ongruene generating pair that orresponds to � and let

(

~

A;

~

B) be the pair onsisting of a set of objets and a set of attributes orresponding

to (I; F ) as in Theorem 2.19. Note that in protoonept algebras the funtions

t(x; y) and b(x; y) alulate the symmetri di�erene of the sets of objets of x and

y and the sets of attributes of x and y respetively. Therefore, two elements of D

are in relation � if and only if their sets of objets di�er only by elements of

~

A and

their sets of attributes di�er only by elements of

~

B. We set H := Gn

~

A, N :=M n

~

B

and

~

K = (H;N; I \ (H �N)) and de�ne

� : D=�

�

! P(

~

K );

�([(A;B)℄

�

) 7! (A n

~

A;B n

~

B):

We prove that � is an isomorphism. First we show that � is well-de�ned, i.e. that

�([(A;B)℄

�

) is in P(

~

K ). Let ()

I

denote the derivation in

~

K and let ()

0

denote the

derivation in K . From M n

~

A

0

�

~

B (Theorem 2.19) we onlude that N =

~

A

0

n

~

B
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and dually H =

~

B

0

n

~

A. If (A;B) 2 P(K ) then (A n

~

A)

I

= (A n

~

A)

0

n

~

B. This yields

(A n

~

A)

I

= (A n

~

A)

I

\N

= (A n

~

A)

I

\ (

~

A

0

n

~

B)

= ((A n

~

A)

0

n

~

B) \ ((

~

A \A)

0

n

~

B)

= A

0

n

~

B

and dually (B n

~

B)

I

= B

0

n

~

A. We obtain

(A n

~

A)

II

= (A

0

n

~

B)

I

= (A

0

n

~

B)

0

n

~

A

= (A

0

n

~

B)

0

\H

= (A

0

n

~

B)

0

\ ((A

0

\

~

B)

0

n

~

A)

= A

00

n

~

A

= (B n

~

B)

I

:

hene (An

~

A;Bn

~

B) is a protoonept inP(

~

K ). Now an easy omputation yields that

� is a homomorphism. Finally, we show that � is bijetive. Suppose [(A

1

; B

1

)℄

�

6=

[(A

2

; B

2

)℄

�

. We onlude that A

1

n

~

A 6= A

2

n

~

A or B

1

n

~

B 6= B

2

n

~

B, hene

�([(A

1

; B

1

)℄

�

) 6= �([(A

2

; B

2

)℄

�

). If (A;B) is a protoonept in

~

K onsider

(A [

~

A)

0

= A

0

\

~

A

0

= (A

I

[

~

B) \ (N [G

0

)

= A

I

[G

0

and

(A [

~

A)

00

= (A

I

[G

0

)

0

= (A

I

)

0

\G

00

= (A

II

[

~

A) \G

= A

II

[

~

A

Sine dually holds B

0

= B

I

[

~

A = A

II

[

~

A, the pair (A [

~

A;B) is a protoonept

in K satisfying �(A [

~

A;B) = (A;B). Therefore � is bijetive. 2

Corollary 2.25. If D := P(K ) is a �nite protoonept algebra with ontext K :=

(G;M; I) and if � is a ongruene relation on D then (D=�)=vw is isomorphi to

the protoonept algebra of a subontext.

Theorem 2.26. Let D := P(K ) be a �nite protoonept algebra with ontext K :=

(G;M; I) and let �

�

be the ongruene relation de�ned by a ongruene generating

pair suh that D=�

�

is ontextual. By 	

�

we denote the ongruene relation de�ned

by (I; F ) suh that D=	

�

is ontextual. Then

D

�

=

D=�

�

�D=	

�

Proof: As before, let (

~

A;

~

B) 2 P(G)�P(M) orrespond to (I; F ). Then (Gn

~

A;M n

~

B) orresponds to (I; F ). Thus, K is the diret sum of K

1

:= (G n

~

A;M n

~

B; I

1

:=

I \ ((G n

~

A) � (M n

~

B))) and K

2

:= (

~

A;

~

B; I

2

:= I \ (

~

A �

~

B). The preeding
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theorem yields D=�

�

�

=

P(K

1

) and D=	

�

�

=

P(K

2

). Let �

�

denote the projetion

D ! P(K

1

) and let �

	

denote the projetion D ! P(K

2

). We laim that the

following funtion is an isomorphism:

� : D ! P(K

1

)�P(K

2

)

�(A;B) = (�

�

(A;B); �

	

(A;B))

= ((A n

~

A;B n

~

B); (A \

~

A;B \

~

B))

As �

�

and �

	

are homomorphisms, so is �. It is easy to hek that � is injetive.

Note that for a set of objets C � G holds:

C

0

\

~

B = ((C \

~

A) [ (C \G n

~

A))

0

\

~

B

= (C \

~

A)

0

\ (C \G n

~

A)

0

\

~

B

= (C \

~

A)

0

\

~

B

= (C \

~

A)

I

2

and likewise

C

0

\ (M n

~

B) = (C \ (G n

~

A))

I

1

:

Dually, for D �M we obtain

D

0

\

~

A = (D \

~

B)

I

2

and

D

0

\ (G n

~

A) = (D \ (M n

~

B))

I

1

:

Now onsider (A

1

; B

1

) 2 P(K

1

) and (A

2

; B

2

) 2 P(K

2

). The inverse image of

((A

1

; B

1

); (A

2

; B

2

)) is �

�1

((A

1

; B

1

); (A

2

; B

2

)) = (A

1

[ A

2

; B

1

[ B

2

). We set C :=

A

1

[A

2

and D := B

1

[ B

2

) and obtain

C

0

= (C

0

\

~

B) [ (C

0

\ (M n

~

B))

= (C \

~

A)

I

2

[ (C \ (G n

~

A))

I

1

= (A

2

)

I

2

[ (A

1

)

I

1

:

and, dually D

0

= (B

2

)

I

2

[ (B

1

)

I

1

. This gives

C

00

= (C

0

\

~

B)

I

2

[ (C

0

\ (M n

~

B))

I

1

= A

I

2

I

2

2

[ A

I

1

I

1

1

= B

I

2

2

[ B

I

1

1

= D

0

:

Hene (C;D) is a protoonept in D and � is surjetive. 2

Obviously, iteration of this deomposition yields a diret deomposition of �nite

protoonept algebras in diretly irreduible protoonept algebras.

Example 2.27. We an write the ontext K from Example 1.6 as the diret sum of

the ontexts K

0

:= (f1g; fbg; ;), K

1

:= (f2g; fag; ;) and K

2

:= (f3g; fg; f(3; )g),

where K

2

itself is the diret sum of K

2a

:= (f3g; ;; ;) and K

2b

:= (;; fg; ;).



16 BJ

�

ORN VORMBROCK

PSfrag replaements

1

2

3

b a 

K

0

K

1

K

2

Thus the protoonept algebra from Example 1.6 is the diret produt of the proto-

onept algebras in Figure 4.

PSfrag replaements

(G,;)

(23,b)

(13,a)

(1,a)

(3,ab)

(13,a)

(23,b)

(G,)

(;,ab)

(3,M)

(1,a)

(;,M)

(2,b)

(12,)

(2,b)

(12,;)

(1; ;)

(;; b)

(2; ;)

(;; a)

(3; ;)

(;; ;)

(;; ;)

(;; )

�

=

Figure 4. A deomposition of a protoonept algebra in diretly

irreduible protoonept algebras

2.5. Subdiretly Irreduible Double Boolean Algebras. For the more gen-

eral ase of �nite double Boolean algebras we obtain a result similar to that for

�nite protoonept algebras. While we have a diret deomposition of �nite pro-

toonept algebras in simple protoonept algebras, �nite double Boolean algebras

are subdiret produts of simple double Boolean algebras.

Theorem 2.28. A �nite ontextual double Boolean algebra D is subdiretly irre-

duible if and only if D is simple.

Proof: Obviously, every simple double Boolean algebra is subdiretly irreduible.

Let D be a �nite ontextual double Boolean algebra. Theorem 2.22 yields that if

D is ontextual and not simple then there exists a non-trivial ongruene on D

p

.
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Let (I; F ) be a non-trivial ongruene generating pair in D

p

, and let � be the

ongruene relation de�ned by

(x; y) 2 � , b(x; y) 2 I and t(x; y) 2 F:

Sine D is �nite, (I; F ) has an orthogonal ongruene generating pair (I; F ). Let

	 be the ongruene relation de�ned by

(x; y) 2 	 , b(x; y) 2 I and t(x; y) 2 F :

We show that in the ongruene lattie of D holds � ^ 	 = �

D

: Let i := t I

denote the greatest element of I and let f := uF denote the smallest element of

F . For x; y 2 D with x� y and x	 y we obtain

x� y , b(x; y) 2 I and t(x; y) 2 F

, b(x; y) v i and f v t(x; y)

and

x	 y , b(x; y) 2 I and t(x; y) 2 F

, b(x; y) v :i and :f v t(x; y)

Therefore we have that > = f t :f v t(x; y) and b(x; y) v i u :i = ?. This yields

> = t(x; y) = (x

t

t:y

t

)u(y

t

t:x

t

), and sine D

t

is a Boolean algebra, we obtain

x

t

= y

t

and dually x

u

= y

u

. As D is ontextual we onlude x = y and thus

� ^ 	 = �

D

. It follows that D is isomorphi to a subdiret produt of D=� and

D=	 (f. [G68℄ p.123). 2

Theorem 2.29. Let D be a double Boolean algebra. If D is not ontextual, then

D is not subdiretly irreduible.

Proof: Let xvw y, x 6= y be an equivalent pair in D. We set � := �

D

[f(x; y); (y; x)g

and 	 := fD n fyg �D n fygg [ f(y; y)g and show that � and 	 are ongruene

relations satisfying � ^ 	 = �

D

. Obviously, � and 	 are equivalene relations

and Theorem 2.4 yields that � is a ongruene relation. Note that from xvw y and

x 6= y it follows that y 6= y

u

and y 6= y

t

. This yields that for a; b 2 D we have

a

u

	 b

u

	 b

t

	 a

t

, hene 	 is a ongruene relation. Now assume that for a; b 2 D

holds a� b and a	 b. From a	 b we onlude a; b 2 D n fyg or a = b = y. Then

a� b yields a = b, hene � ^	 = �

D

. 2

This result immediately yields a generalization of Theorem 2.28:

Corollary 2.30. A �nite double Boolean algebra D is subdiretly irreduible if and

only if D is simple.

3. Further researh

This paper is one of the �rst steps towards a theory of double Boolean algebras.

Next steps in the �eld of onstrution and deomposition of suh algebras should

inlude the investigation of tolerane relations and tensor produts.
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As the number of elements of protoonept algebras grows rapidly with inreasing

number of attributes and objets in the ontext, fast algorithms to ompute the

protoonepts and good ways to obtain a diagrammati representation are needed.

The equational theory of double Boolean algebras and the investigation of free

double Boolean algebras are of great importane for appliations in Contextual

Logi. This inludes algorithmi solutions of word problems. Contextual Judgment

Logi should be developed in parallel to Boolean Conept Logi, espeially the

theory of protoonept graphs. This approah will bene�t from insights into the

theory of double Boolean algebras and inspire new investigation.
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