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Abstra
t. Double Boolean algebras form the variety generated by proto
on
ept algebras

whi
h are one of the fundamental stru
tures of Contextual Logi
. Every double Boolean

algebra 
ontains two Boolean algebras. In this paper it is shown that 
ongruen
e relations

on pure double Boolean algebras may be 
hara
terized by pairs 
onsisting of an ideal in

one Boolean algebra and a �lter in the other. We explain how this 
hara
terization 
an be

generalized for double Boolean algebras. Moreover, these results are applied to proto
on
ept

algebras in order to obtain a dire
t de
omposition in simple proto
on
ept algebras. Finally,

it is shown that every �nite subdire
tly irredu
ible double Boolean algebra is simple.

The de�nition and investigation of double Boolean algebras arose from the devel-

opment of Contextual Logi
 at TU Darmstadt during the last years. Contextual

Logi
 is intended to be a mathematization of the traditional philosophi
al logi
 with

its do
trines of 
on
epts, judgments and 
on
lusions. A survey of the basi
 ideas

and results of this approa
h 
an be found in [Wi00b℄, for more detailed information

see [Pr98℄, [GW99a℄, [Wi00a℄, [Kl01℄ and [Da02℄. This paper fo
uses on 
ongruen
e

relations on double Boolean algebras. In the �rst se
tion basi
 de�nitions and prop-

erties of double Boolean algebras, semi
on
ept algebras and proto
on
ept algebras

are given. The se
ond se
tion deals with the 
ongruen
e relations. It is divided into

�ve parts. First, operational equivalen
e as the most basi
 non trivial 
ongruen
e is

introdu
ed. The se
ond part fo
uses on pure double Boolean algebras. It is shown

how they 
an be 
hara
terized by pairs 
onsisting of an ideal and a �lter in the two

Boolean algebras 
ontained in the double Boolean algebra. Moreover, we explain

how the ne
essary 
onditions 
an be reformulated for semi
on
ept algebras and

for their 
ontexts. As every double Boolean algebra 
ontains a pure subalgebra,

in the third part this 
hara
terization 
an be applied to double Boolean algebras

in general. It is shown that a 
ongruen
e relation on a double Boolean algebra is

determined to a large extent by its restri
tion to the pure subalgebra. This yields

a de
omposition of �nite proto
on
ept algebras in simple proto
on
ept algebras

whi
h is given in part four. In the �fth part it is shown that every �nite subdire
tly

irredu
ible double Boolean algebra is simple. Finally, se
tion three des
ribes some

perspe
tives for further resear
h.
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1. Double Boolean Algebras and Proto
on
ept Algebras

Double Boolean algebras were introdu
ed in [Wi00a℄.

De�nition 1.1. A double Boolean algebra is an algebra D := (D;u;t;:;:;?;>)

of type (2,2,1,1,0,0), satisfying the equations

1a) (x u x) u y = x u y 1b) (x t x) t y = x t y

2a) x u y = y u x 2b) x t y = y t x

3a) x u (y u z) = (x u y) u z 3b) x t (y t z) = (x t y) t z

4a) x u (x t y) = x u x 4b) x t (x u y) = x t x

5a) x u (xty) = x u x 5b) x t (xuy) = x t x

6a) x u (ytz) = (x u y)t(x u z) 6b) x t (yuz) = (x t y)u(x t z)

7a) ::(x u y) = x u y 7b) ::(x t y) = x t y

8a) :(x u x) = :x 8b) :(x t x) = :x

9a) x u :x = ? 9b) x t :x = >

10a) :? = > u > 10b) :> = ? t ?

11a) :> = ? 11b) :? = >

12) (x u x) t (x u x) = (x t x) u (x t x)

with the operations t;u;>;? de�ned by

xty := :(:x u :y)

xuy := :(:x t :y)

> := :?

? := :>

A pure double Boolean algebra is a double Boolean algebra that satis�es the addi-

tional 
ondition

13) x = x u x or x = x t x.

To shorten notation we write x

u

for xu x and x

t

for xtx, and de�ne D

u

:= fx

u

j

x 2 Dg, D

t

:= fx

t

jx 2 Dg and D

p

:= D

u

[D

t

. The restri
tion of D to D

p

is a

pure subalgebra of D.

We de�ne a binary relation v on double Boolean algebras by:

x v y :, x u y = x

u

and x t y = y

t

Some properties of double Boolean algebras were dis
ussed in [HLSW00℄:

Theorem 1.2. Let D := (D;u;t;:;:;?;>) be a double Boolean algebra. Then

the following 
onditions are satis�ed:

(1) (D;v) is a quasi-ordered set.

(2) D

u

:= (D

u

;u;t;:;?;>) is a Boolean algebra whose order relation

is the restri
tion of v to D

u

.

(3) D

t

:= (D

t

;u;t;:;?;>) is a Boolean algebra whose order relation

is the restri
tion of v to D

t

.

(4) y v x

u

, y v x for x 2 D and y 2 D

u

.

(5) x

t

v y , x v y for x 2 D and y 2 D

t

.

(6) x v y , x

u

v y

u

and x

t

v y

t

for x; y 2 D.
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A 
lass of examples for double Boolean algebras are so-
alled proto
on
ept algebras.

Introdu
ed in [Wi00a℄ as an extension of the theory of Formal Con
ept Analysis,

they serve as the starting point for the in
lusion of negation to 
ontextual logi
.

For a detailed introdu
tion to Formal Con
ept Analysis see [GW99b℄.

De�nition 1.3. A formal 
ontext K := (G;M; I) 
onsists of two sets G and M

and a relation I between G and M . The elements of G are 
alled the obje
ts and

the elements of M are 
alled the attributes of the 
ontext. In order to express that

an obje
t g is in relation I with an attribute m, we write gIm or (g;m) 2 I and

read it as "the obje
t g has the attribute m".

De�nition 1.4. For a set A � G of obje
ts we de�ne

A

0

:= fm 2M j gIm for all g 2 Ag

(the set of attributes 
ommon to the obje
ts in A). Correspondingly, for a set B of

attributes we de�ne

B

0

:= fg 2 G j gIm for all m 2 Bg

(the set of obje
ts whi
h have all attributes in B).

De�nition 1.5. A proto
on
ept of a formal 
ontext K := (G;M; I) is a pair (A;B)

with A � G and B � M su
h that A

0

= B

00

or, equivalently, A

00

= B

0

. We denote

the set of all proto
on
epts of a 
ontext K by P(K ) and de�ne on P(K ) operations

u, t, :, :, > and ? by:

(A

1

; B

1

) u (A

2

; B

2

) := (A

1

\ A

2

; (A

1

\A

2

)

0

)

(A

1

; B

1

) t (A

2

; B

2

) := ((B

1

\ B

2

)

0

; B

1

\ B

2

)

:(A;B) := (G nA; (G nA)

0

)

:(A;B) := ((M nB)

0

;M nB)

> := (G; ;)

? := (;;M)

The set of all proto
on
epts of a 
ontext K together with these operations is 
alled

the proto
on
ept algebra of K and denoted by P(K ).

For proto
on
epts the quasi-order v is an order and

(A

1

; B

1

) v (A

2

; B

2

) :, A

1

� A

2

and B

1

� B

2

, (A

1

; B

1

) u (A

2

; B

2

) = (A

1

; B

1

) u (A

1

; B

1

)

and (A

1

; B

1

) t (A

2

; B

2

) = (A

2

; B

2

) t (A

2

; B

2

):

Note that the result of any operation in a proto
on
ept algebra is a proto
on
ept

of the form (A;A

0

) or (B

0

; B). These proto
on
epts are 
alled u-semi
on
epts or t-

semi
on
epts, respe
tively. The set of all u-semi
on
epts of a proto
on
ept algebra

P(K )(= D) is denoted by P(K )

u

(= D

u

) and the set of all t-semi
on
epts by

P(K )

t

(= D

t

). As before, the set H(K ) := P(K )

u

[ P(K )

t

of all semi
on
epts
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Figure 1. A 
ontext and its proto
on
ept algebra

of K , together with the operations of P(K ) is a subalgebra of P(K ). We 
all this

subalgebra the semi
on
ept algebra of the 
ontext K .

An element of the interse
tion P(K )

u

\ P(K )

t

is 
alled a formal 
on
ept. For a

formal 
on
ept (A;B) holds A

0

= B and B

0

= A.

Example 1.6. Figure 1 depi
ts a 
ontext and its proto
on
ept algebra. The ele-

ments represented by �lled 
ir
les are formal 
on
epts. The 
ir
les with the upper

half �lled represent t-semi
on
epts, those with the lower half �lled represent u-

semi
on
epts.

2. Congruen
e Relations on Double Boolean Algebras

2.1. Operational Equivalen
e. The most basi
 non-trivial 
ongruen
e relation

is operational equivalen
e:

De�nition 2.1. We say that two elements x; y of a double Boolean algebra D are

operationally equivalent (or an equivalent pair) if and only if x v y and y v x and

denote this by x vw y.

Lemma 2.2. Let D be a double Boolean algebra. For elements x; y 2 D holds:

xvw y , x

u

= y

u

and x

t

= y

t
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Proof: This follows immediately from the de�nition of v:

x v y and y v x , x

u

= x u y = y u x = y

u

and x

t

= x t y = y t x = y

t

De�nition 2.3. A double Boolean algebra D satisfying for all x; y 2 D:

xvw y(:, x v y and y v x) ) x = y

is 
alled a 
ontextual double Boolean algebra.

Theorem 2.4. Let D be a double Boolean algebra, let x; y 2 D be an equivalent

pair and let �

D

:= f(x; x) j x 2 Dg. The relation � := �

D

[ f(x; y); (y; x)g is a


ongruen
e relation on D.

Proof: Obviously � is an equivalen
e relation. We have to show that :x�:y,

:x�:y and a u x� a u y, a t x� a t y for arbitrary a 2 D. Lemma 2.2 yields

x

u

= y

u

and thus

:x

8a

= :(x u x) = :(y u y)

8a

= :y;

so :x�:y, and dually :x�:y. Likewise,

x u a

1a

= (x u x) u a = (y u y) u a

1a

= y u a

so x u a� y u a and dually x t a� y t a. 2

Corollary 2.5. Operational equivalen
e vw := f(x; y) 2 D �D j xvw yg is a 
on-

gruen
e relation in every double Boolean algebra.

Proof: It is easy to see that vw is a re
exive and symmetri
 relation. In order to


he
k the transitivity of vw let xvw y and yvw z. Lemma 2.2 yields x

u

= y

u

= z

u

and

x

t

= y

t

= z

t

, thus xvw z. The proof of Theorem 2.4 shows that from xvwy follows

:x�:y, :x�:y, x u a� y u a and x t a� y t a. Therefore vw is a 
ongruen
e

relation. 2

2.2. Congruen
e Relations on pure Double Boolean Algebras. In this sub-

se
tion we fo
us our investigation on pure double Boolean algebras be
ause their

fa
tor algebras do not 
ontain equivalent pairs. This restri
tion allows us to give

a 
hara
terization of 
ongruen
es on pure double Boolean algebras. This 
har-

a
terization will be extended to double Boolean algebras in general in the next

subse
tion.

Lemma 2.6. Let D be a pure double Boolean algebra and let � be a 
ongruen
e

relation on D. Then the fa
tor algebra D=� is 
ontextual.

Proof: Let x; y 2 D, let x

u

� y

u

and let x

t

� y

t

. In the 
ases x; y 2 D

u

and

x; y 2 D

t

the result is immediate. Assume x = x

u

and y = y

t

. We 
on-


lude from x

t

� y

t

= y that x

t

u x

t

� y

u

and hen
e x

t

� y

u

. This implies

x = x

u

� y

u

�x

t

� y

t

= y, hen
e the 
ongruen
e 
lasses of x and y in D=� are

equal. 2

Note that if a double Boolean algebra D is not pure there always exists a proper


ongruen
e relation � su
h that D=� 
onsists only of equivalent pairs. To see this
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we set � := �

D

[ (D

p

�D

p

). Then x� y holds for all x; y 2 D

p

. We 
on
lude from

x

t

, y

t

, x

u

, y

u

2 D

p

for arbitrary x; y 2 D:

x

t

� y

t

�x

u

� y

u

:

So the 
ongruen
e 
lasses [x℄ and [y℄ of x and y form an equivalent pair in D=�.

Moreover, D=� 
ontains at least two di�erent 
ongruen
e 
lasses: For all elements

x; y 2 D nD

p

and z 2 D

p

holds [x℄ 6= [y℄ and [x℄ 6= [z℄. By assumption there exists

at least one x 2 D nD

p

. It follows that D=� 
onsists only of equivalent pairs.

De�nition 2.7. For double Boolean algebras D we de�ne two fun
tions

t: D �D ! D and b:D �D ! D by:

t(x; y) := (x t :y)u(:x t y),

b(x; y) := (x u :y)t(:x u y).

Lemma 2.8. For a 
ongruen
e relation � on a double Boolean algebra D and

elements x; y 2 D holds:

x� y ) t(x; y) 2 [>℄ and b(x; y) 2 [?℄:

Proof: Let x; y 2 D and x� y. Then >

9b

= x t :x�x t :y and >� y t :x. Thus

> = >u>�(x t :y)u(y t :x) = t(x; y). Duality gives b(x; y) 2 [?℄. 2

Theorem 2.9. In a pure double Boolean algebra D holds:

t(x; y) 2 [>℄ and b(x; y) 2 [?℄, x� y:

Proof: We 
on
lude from t(x; y) = (x t :y)u(y t :x)�> that

(x t :y) = (x t :y)

t

5b

= (x t :y) t ((x t :y)u(y t :x))� (x t :y) t > = >

and likewise (y t :x)�>. From x

t

; y

t

and > 2 D

t

follows:

x

t

= x

t

u>�x

t

u(:x t y)

8b

= x

t

u(:x

t

t y

t

) = (x

t

u:x

t

) t (x

t

uy

t

)

= x

t

uy

t

= xuy:

Analogously we obtain y

t

�xuy and thus y

t

�x

t

and x

u

� y

u

, i.e. [x℄vw[y℄. By

Lemma 2.6 D=� is 
ontextual and we 
on
lude x� y. The 
onverse impli
ation

was shown in Lemma 2.8. 2

This theorem shows that in pure double Boolean algebras all 
ongruen
e 
lasses

are determined by the 
lasses of > and ?. In addition, the fun
tions t(x; y) and

b(x; y) enable us to 
ompute these 
ongruen
e 
lasses.

For an ideal I in D

u

and a �lter F in D

t

we de�ne

I

�

:= I [ fx 2 D

t

j x

u

2 I and:x 2 Fg

and

F

�

:= F [ fx 2 D

u

j x

t

2 F and:x 2 Ig:

Lemma 2.10. Let D be a double Boolean algebra and � a 
ongruen
e relation on

D. The set F := [>℄\D

t

is a �lter in D

t

and the set I := [?℄\D

u

is an ideal in

D

u

. If D is pure then F

�

= [>℄ and I

�

= [?℄.
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Proof: It is easy to 
he
k that F is a �lter. By de�nition holds F � [>℄. Now

let D be a pure double Boolean algebra and let x 2 [>℄ n F . It follows that

> = > t >�x

t

2 [>℄ \ D

t

= F and :x�:> = ?, so x 2 F

�

. Conversely, let

x 2 F

�

n F . By de�nition holds :x 2 I � [?℄ and we obtain

x u x

7a

= :(:(x u x))

8a

= :(:x)�:?

10a

= > u>:

We 
on
lude from x t x 2 [>℄ \D

t

that x t x�> = >t> so x vw > and Lemma

2.6 yields x�>. The rest follows dually. 2

For a 
ongruen
e relation � and sets F and I as in Lemma 2.10, obviously holds

:F

�

� I and dually :I

�

� F . If we sear
h for pairs (I; F ) 
onsisting of an ideal

in D

u

and a �lter in D

t

that 
an de�ne a 
ongruen
e relation we have to demand

this 
ondition. It follows from the de�nition of F

�

and I

�

that it is suÆ
ient to

demand :F � I and :I � F .

We need four more lemmas to prove the main theorem of this paper.

Lemma 2.11. In a double Boolean algebra holds:

(1) x u y v x v x t y

(2) the map x 7! x u y preserves v and u,

(3) the map x 7! x t y preserves v and t.

See [Wi00a℄ for a proof.

Lemma 2.12. In double Boolean algebras holds:

(1) For x; y 2 D

t

is x u y v xuy

(2) For x; y 2 D

u

is xty v x t y

Proof: By 1.2.(5) holds x u y v xuy , (x u y) t (x u y) v xuy. Lemma 2.11.(1)

and(3) yield x u y v x ) (x u y)

t

v x t (x u y)

4b

= x t x = x. Likewise we obtain

(x u y)

t

v y and 
on
lude from (x u y)

t

2 D

t

that (x u y)

t

v xuy, hen
e (1).

Dually we obtain (2). 2

Lemma 2.13. In a double Boolean algebra D holds for elements x; y 2 D

u

:

(xty)

t

= x t y. Dually, for x; y 2 D

t

holds (xuy)

u

= x u y.

Proof: Let x; y 2 D

u

. Lemma 2.12 yields x v xty v x t y. From Lemma 2.11 it

follows that

x t (xty) v (xty) t (xty) v (x t y) t (xty) = (x t y)

t

= (x t y);

sin
e xty v xt y. We 
on
lude from y v xty that xt y v xt (xty) and therefore

x t y v (xty)

t

v x t y. As v is an order in D

t

we have equality. 2

Lemma 2.14. Let D be a double Boolean algebra, let I be an ideal in D

u

and let

F be a �lter in D

t

su
h that :F � I and :I � F . Then holds:

(1) x; y 2 D

u

and b(x; y) 2 I ) t(x; y) 2 F ,

(2) x; y 2 D

t

and t(x; y) 2 F ) b(x; y) 2 I.
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Proof: We proof (1), then (2) follows dually. Let x; y 2 D

u

. Lemma 2.13 yields

x

t

= ((x u y)t(x u :y))

t

= (x u y) t (x u :y)

and y

t

= (x u y) t (:x u y). By assumption, both (x u :y) and (:x u y) are in I .

From this we obtain

t(x; y) = (x t :y)u(y t :x)

= ((x u y) t (x u :y) t :((x u y) t (:x u y)))

u((x u y) t (:x u y) t :((x u y) t (x u :y)))

= ((x u :y) t (:(x u y)u:(:x u y)) t (x u y))

u((:x u y) t (:(x u y)u:(x u :y)) t (x u y))

= ((x u :y) t :(:x u y) t (x u y))u((:x u y) t :(x u :y) t (x u y))

= (x u y) t t((x u :y); (:x u y)):

As for u; v 2 I holds :u;:v 2 F , we have t(u; v) = (u t :v)u(:u t v) 2 F and

therefore

t((x u :y); (:x u y)) v (x u y) t t((x u :y); (:x u y)) 2 F:

Thus we have t(x; y) 2 F . 2

Theorem 2.15. Let D be a pure double Boolean algebra, let I be an ideal in D

u

and let F be a �lter in D

t

, su
h that :F � I and :I � F . Then

x� y :, t(x; y) 2 F and b(x; y) 2 I

de�nes a 
ongruen
e relation on D. Moreover, [>℄ = F

�

and [?℄ = I

�

.

Proof: We �rst prove that � is an equivalen
e relation. Clearly, � is re
exive and

symmetri
. To 
he
k transitivity 
onsider x; y; z 2 D and t(x; y) 2 F , t(y; z) 2 F .

Sin
e F is a �lter, (xt:y) and (:xty) have to be in F . From x

t

= (xty)u(xt:y)

we obtain

x t :z = ((x t y)u(x t :y)) t :z = (x t (y t :z))u((x t :y) t :z):

By assumption y t :z 2 F and x t :y 2 F , hen
e x t :z 2 F and :x t z 2 F and

we 
on
lude t(x; z) 2 F . Dually it follows from b(x; y) 2 I and b(y; z) 2 I that

b(x; z) 2 I . Thus � is an equivalen
e relation.

Lemma 2.14 yields that it is suÆ
ient to 
he
k for x; y; a 2 D and x� y that

b(x u a; y u a) = b(x; y) u a and t(x t a; y t a) = t(x; y) t a in order to see that

� respe
ts the operations u and t. This 
an be easily veri�ed. Moreover, an easy


omputation shows that b(:x;:y) = b(x; y) and dually t(:x;:y) = t(x; y). Hen
e

� is a 
ongruen
e relation.

Finally, F

�

= [>℄ and I

�

= [?℄ 
an be easily veri�ed as well. 2

Theorem 2.15 is the main result of this paper. It provides a 
hara
terization of all

pairs 
onsisting of an ideal in D

u

and a �lter in D

t

that 
an generate a 
ongruen
e

relation on a pure double Boolean algebra D.
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De�nition 2.16. In a double Boolean algebra D we 
all a pair (I; F ) where I is

an ideal in D

u

, F is a �lter in D

t

and :F � I, :I � F a 
ongruen
e generating

pair.

Lemma 2.17. In a double Boolean algebra D, it holds for all x; y 2 D:

(1) x v y ) :y v :x

(2) x v y ) :y v :x

The proof of this lemma is straightforward.

Theorem 2.18. Let (I; F ) be a 
ongruen
e generating pair in a double Boolean

algebra D. If I is a prin
ipal ideal (i℄ with greatest element i in D

u

and if F is a

prin
ipal �lter [f) with smallest element f in D

t

, then I := fj 2 D

u

j j v :ig and

F := fg 2 D

t

j :f v gg form another 
ongruen
e generating pair (I; F ) whi
h we


all the orthogonal 
ongruen
e generating pair.

Proof: By the de�nition of 
ongruen
e generating pairs we have :f v i and f v :i.

Lemma 2.17 gives i

t

= ::i v :f and therefore :(:f) v :i

t

. From i v i

t

we


on
lude that :(:f) v :i

t

v :i. Hen
e :F � I and dually :I � F . 2
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Figure 2. A 
ongruen
e relation on a pure double Boolean algebra

In semi
on
ept algebras, D

u

and D

t

are isomorphi
 to the powerset latti
es P(G)

and P(M) respe
tively, hen
e 
omplete. Obviously, all ideals and �lters are prin-


ipal in �nite semi
on
ept algebras. Thus, in this 
ase there exists for every 
on-

gruen
e generating pair (I; F ) the orthogonal 
ongruen
e generating pair (I; F ).
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(13,a
)
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)
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Figure 3. The 
ongruen
e relation that is orthogonal to the one

in Fig. 2

Moreover, in �nite semi
on
ept algebras the 
ongruen
e generating pairs 
an be

found in the 
ontext K :

Theorem 2.19. In a �nite semi
on
ept algebra H(K ) with 
ontext K := (G;M; I)

there is a one-to-one 
orresponden
e between the 
ongruen
e generating pairs (J; F )

in H(K ) and pairs (

~

A;

~

B) 2 P(G)�P(M) satisfying

G n

~

B

0

�

~

A and M n

~

A

0

�

~

B: (1)

Proof: Let (J; F ) be a 
ongruen
e generating pair in H(K ). Let a denote the greatest

element of J in H(K )

u

and let b denote the smallest element of F in H(K )

t

. As a

and b are semi
on
epts there exist sets

~

A � G and

~

B � M with a = (

~

A;

~

A

0

) and

b = (

~

B

0

;

~

B). We 
on
lude from :F � J that

:(

~

B

0

;

~

B) v (

~

A;

~

A

0

) , (G n

~

B

0

; (G n

~

B

0

)

0

) v (

~

A;

~

A

0

)

, G n

~

B

0

�

~

A

and duallyM n

~

A

0

�

~

B. The map � : (I; F ) 7! (

~

A;

~

B) from the set of all 
ongruen
e

generating pairs in H(K ) to Q := f(A;B) 2 G�M j G n

~

B

0

�

~

A und M n

~

A �

~

Bg

is inje
tive. Conversely, we 
an de�ne for ea
h pair (

~

A;

~

B) satisfying (1) an ideal by

J := f(A;A

0

) 2 H(K )

u

j A �

~

Ag and a �lter by F := f(B

0

; B) 2 H(K )

t

j B �

~

Bg.

For an element (A;A

0

) 2 J we obtain :(

~

A;

~

A

0

) v :(A;A

0

) and

(

~

B

0

;

~

B) v ((M n

~

A

0

)

0

;M n

~

A

0

) = :(

~

A;

~

A

0

) v :(A;A

0

):
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Hen
e :J � F and dually :F � J , i.e. (J; F ) is a 
ongruen
e generating pair and

the map � is bije
tive. 2

Note that in �nite semi
on
ept algebras holds � (J; F ) = (G n

~

A;M n

~

B). Hen
e, if

for a �nite semi
on
ept algebra the sets

~

A,

~

B and their 
omplements are nonempty

then the 
ontext K is the dire
t sum of two sub
ontexts K

1

and K

2

, i.e. for

K

1

= (G

1

;M

1

; I

1

) and K

2

= (G

2

;M

2

; I

2

) we have K = (G

1

_

[G

2

;M

1

_

[M

2

; I

1

_

[I

2

[

(G

1

�M

2

) [ (G

2

�M

1

)).

PSfrag repla
ements

K

1

~

A

~

B

M n

~

B

G n

~

A

K

2

Sin
e G n

~

B �

~

A, every obje
t g that has not all attributes of

~

B is in

~

A, and we

have that

~

B � (M n

~

A

0

). Dually,

~

A � (M n

~

B

0

).

As 
ongruen
e generating pairs are de�ned as pairs 
onsisting of an ideal J in

D

u

and a �lter F in D

t

, the 
ongruen
e generating pairs of a double Boolean

algebraD are determined by its pure subalgebra D

p

. Thus, if there exists a 
ontext

K := (G;M; I) su
h that D

p

�

=

H(K ) and if � : D

p

! H(K ) is an isomorphism

then � maps 
ongruen
e generating pairs in D

p

to 
ongruen
e generating pairs

in H(K ). Conversely, for every 
ongruen
e generating pair (J; P ) in H(K ) the pair

(�

�1

(J); �

�1

(F )) is a 
ongruen
e generating pair in D

p

. Therefore, whenever D

p

�

=

H(K ) holds, the 
ontext K 
an be used to �nd the 
ongruen
e generating pairs in

D. Sin
e for proto
on
ept algebras holds P(K )

p

= H(K ) this result will be useful

in Se
tion 2.4 where 
ongruen
es on proto
on
ept algebras are investigated.

2.3. Congruen
e Relations on Double Boolean Algebras. In this se
tion

we apply our results to double Boolean algebras in general. It is evident that for a

double Boolean algebra D and a 
ongruen
e relation � on D the restri
tion � j

D

p

of � to the pure subalgebra D

p

is a 
ongruen
e on D

p

. There are various ways to

extend a 
ongruen
e on D

p

to D, but Theorem 2.22 shows that they 
annot di�er

very mu
h.

Theorem 2.20. If D is a double Boolean algebra and � a 
ongruen
e relation on

D

p

then �

0

:= � [�

D

is a 
ongruen
e relation on D.

Proof: Clearly �

0

is an equivalen
e relation. For (a; b) 2 �

0

holds a = b or a; b 2 D

p

.

In any 
ase we have that

a

u

= a u a� b u b = b

u
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and therefore (a

u

; b

u

) 2 � � �

0

. In the same manner we 
an see that (a

t

; b

t

),

(:a;:b) and (:a;:b) are elements of �

0

. 2

Obviously, �

0

is the smallest possible extension of �.

Theorem 2.21. Let � be a 
ongruen
e relation on D

p

. Then �

�

de�ned by

(x; y) 2 �

�

:, t(x; y) 2 [>℄

�

and b(x; y) 2 [?℄

�

is a 
ongruen
e relation on D whi
h extends �. The fa
tor algebra D=�

�

is 
on-

textual.

Proof: Theorem 2.15 immediately yields that �

�

j

D

p

is a 
ongruen
e relation on

D

p

. Moreover, �

�

j

D

p

= �. Re
exivity and symmetry of �

�

are easy to 
he
k.

Now suppose (x; y); (y; z) 2 �

�

. We have t(x; y) = t(x

t

; y

t

) 2 [>℄

�

and t(y; z) =

t(y

t

; z

t

) 2 [>℄

�

. Then Theorem 2.15 yields x

t

� y

t

� z

t

. The transitivity of �

implies t(x; z) = t(x

t

; z

t

) 2 [>℄

�

. Dually we obtain b(y; z) 2 [?℄

�

.

In order to see that �

�

respe
ts the operations we 
hoose (u; v); (x; y) 2 �

�

. As

above b(u

t

; v

t

) 2 [?℄

�

, and sin
e t(u

t

; v

t

) 2 [>℄

�

we have u

t

� v

t

. Likewise, we

have that x

t

� y

t

and therefore u

t

t x

t

� v

t

t y

t

. This yields

u

t

t x

t

� v

t

t y

t

) t(u

t

t x

t

; v

t

t y

t

) 2 [>℄

�

) t(u t x; v t y) 2 [>℄

�

and

u

t

t x

t

� v

t

t y

t

) b(u

t

t x

t

� v

t

t y

t

) 2 [?℄

�

) b(u t x; v t y) 2 [?℄

�

;

hen
e (utx; vty) 2 �

�

. In the same manner we �nd that the remaining operations

are respe
ted by �

�

.

Finally, we show that D=�

�


ontains no equivalent pairs. Let x; y 2 D su
h that

[x℄

�

�

vw [y℄

�

�

. We 
on
lude from [x

u

℄

�

�

= [y

u

℄

�

�

that b(x; y) 2 [?℄

�

�

and from

[x

t

℄

�

�

= [y

t

℄

�

�

that t(x; y) 2 [>℄

�

�

. This gives [x℄

�

�

= [y℄

�

�

and D=�

�


ontains

no equivalent pairs. 2

The next theorem shows that the stru
ture of a fa
tor algebra depends to a large

extent on the 
ongruen
e relation on D

p

.

Theorem 2.22. Let �;	 be two 
ongruen
e relations on a double Boolean algebra

D satisfying �j

D

p

= 	j

D

p

. Then there exists a natural isomorphism

� : (D=�)=vw! (D=	)=vw; � : [x℄

�=vw

7! [x℄

	=vw

:

Proof: First we show that � is indeed a map. Let y 2 [x℄

�=vw

. From [y℄

�

vw[x℄

�

we


on
lude that

[x

u

℄

�

= ([x℄

�

)

u

= ([y℄

�

)

u

= [y

u

℄

�

and

[x

t

℄

�

= ([x℄

�

)

t

= ([y℄

�

)

t

= [y

t

℄

�

.

Sin
e �j

D

p

= 	j

D

p

, the 
ongruen
es x

u

� y

u

and x

t

� y

t

imply x

u

	 y

u

and

x

t

	 y

t

. This yields [x

u

℄

	

= [y

u

℄

	

and [x

t

℄

	

= [y

t

℄

	

, i.e. [x℄

	

vw[y℄

	

and

[x℄

	=vw

= [y℄

	=vw

.
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It is easy to verify that � is a homomorphism. We only give the proof for u:

�([x℄

�=vw

u [y℄

�=vw

) = �([x u y℄

�=vw

)

= [x u y℄

	=vw

= [x℄

	=vw

u [y℄

	=vw

= �([x℄

�=vw

) u �([y℄

�=vw

):

We obtain surje
tivity from �

�1

([x℄

	=vw

) = [x℄

�=vw

. Now let [x℄

�=vw

6= [y℄

�=vw

. We

have

[x

u

℄

�

6= [y

u

℄

�

or [x

t

℄

�

6= [y

t

℄

�

, not (x

u

	 y

u

) or not (x

t

	 y

t

)

, not ([x℄

	

vw [y℄

	

)

, [x℄

	=vw

6= [y℄

	=vw

:

Hen
e � is an isomorphism. 2

Corollary 2.23. Let � be a 
ongruen
e relation on D. Then

(D=�)=vw

�

=

D=(�j

D

p

)

�

2.4. Dire
t De
omposition of Proto
on
ept Algebras. In this se
tion we

apply our results to the spe
ial 
ase of �nite proto
on
ept algebras. This yields a

dire
t de
omposition to dire
tly irredu
ible proto
on
ept algebras. Moreover, we

show how the 
ongruen
es on and the de
ompositions of these algebras 
orrespond

to stru
tures and de
ompositions of their 
ontexts.

Theorem 2.24. Let D := P(K ) be a �nite proto
on
ept algebra with 
ontext K :=

(G;M; I) and let � be a 
ongruen
e relation on D

p

:= H(K ). Then the fa
tor

algebra D=�

�

is isomorphi
 to the proto
on
ept algebra of a sub
ontext.

Proof: Let (I; F ) be the 
ongruen
e generating pair that 
orresponds to � and let

(

~

A;

~

B) be the pair 
onsisting of a set of obje
ts and a set of attributes 
orresponding

to (I; F ) as in Theorem 2.19. Note that in proto
on
ept algebras the fun
tions

t(x; y) and b(x; y) 
al
ulate the symmetri
 di�eren
e of the sets of obje
ts of x and

y and the sets of attributes of x and y respe
tively. Therefore, two elements of D

are in relation � if and only if their sets of obje
ts di�er only by elements of

~

A and

their sets of attributes di�er only by elements of

~

B. We set H := Gn

~

A, N :=M n

~

B

and

~

K = (H;N; I \ (H �N)) and de�ne

� : D=�

�

! P(

~

K );

�([(A;B)℄

�

) 7! (A n

~

A;B n

~

B):

We prove that � is an isomorphism. First we show that � is well-de�ned, i.e. that

�([(A;B)℄

�

) is in P(

~

K ). Let ()

I

denote the derivation in

~

K and let ()

0

denote the

derivation in K . From M n

~

A

0

�

~

B (Theorem 2.19) we 
on
lude that N =

~

A

0

n

~

B
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and dually H =

~

B

0

n

~

A. If (A;B) 2 P(K ) then (A n

~

A)

I

= (A n

~

A)

0

n

~

B. This yields

(A n

~

A)

I

= (A n

~

A)

I

\N

= (A n

~

A)

I

\ (

~

A

0

n

~

B)

= ((A n

~

A)

0

n

~

B) \ ((

~

A \A)

0

n

~

B)

= A

0

n

~

B

and dually (B n

~

B)

I

= B

0

n

~

A. We obtain

(A n

~

A)

II

= (A

0

n

~

B)

I

= (A

0

n

~

B)

0

n

~

A

= (A

0

n

~

B)

0

\H

= (A

0

n

~

B)

0

\ ((A

0

\

~

B)

0

n

~

A)

= A

00

n

~

A

= (B n

~

B)

I

:

hen
e (An

~

A;Bn

~

B) is a proto
on
ept inP(

~

K ). Now an easy 
omputation yields that

� is a homomorphism. Finally, we show that � is bije
tive. Suppose [(A

1

; B

1

)℄

�

6=

[(A

2

; B

2

)℄

�

. We 
on
lude that A

1

n

~

A 6= A

2

n

~

A or B

1

n

~

B 6= B

2

n

~

B, hen
e

�([(A

1

; B

1

)℄

�

) 6= �([(A

2

; B

2

)℄

�

). If (A;B) is a proto
on
ept in

~

K 
onsider

(A [

~

A)

0

= A

0

\

~

A

0

= (A

I

[

~

B) \ (N [G

0

)

= A

I

[G

0

and

(A [

~

A)

00

= (A

I

[G

0

)

0

= (A

I

)

0

\G

00

= (A

II

[

~

A) \G

= A

II

[

~

A

Sin
e dually holds B

0

= B

I

[

~

A = A

II

[

~

A, the pair (A [

~

A;B) is a proto
on
ept

in K satisfying �(A [

~

A;B) = (A;B). Therefore � is bije
tive. 2

Corollary 2.25. If D := P(K ) is a �nite proto
on
ept algebra with 
ontext K :=

(G;M; I) and if � is a 
ongruen
e relation on D then (D=�)=vw is isomorphi
 to

the proto
on
ept algebra of a sub
ontext.

Theorem 2.26. Let D := P(K ) be a �nite proto
on
ept algebra with 
ontext K :=

(G;M; I) and let �

�

be the 
ongruen
e relation de�ned by a 
ongruen
e generating

pair su
h that D=�

�

is 
ontextual. By 	

�

we denote the 
ongruen
e relation de�ned

by (I; F ) su
h that D=	

�

is 
ontextual. Then

D

�

=

D=�

�

�D=	

�

Proof: As before, let (

~

A;

~

B) 2 P(G)�P(M) 
orrespond to (I; F ). Then (Gn

~

A;M n

~

B) 
orresponds to (I; F ). Thus, K is the dire
t sum of K

1

:= (G n

~

A;M n

~

B; I

1

:=

I \ ((G n

~

A) � (M n

~

B))) and K

2

:= (

~

A;

~

B; I

2

:= I \ (

~

A �

~

B). The pre
eding
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theorem yields D=�

�

�

=

P(K

1

) and D=	

�

�

=

P(K

2

). Let �

�

denote the proje
tion

D ! P(K

1

) and let �

	

denote the proje
tion D ! P(K

2

). We 
laim that the

following fun
tion is an isomorphism:

� : D ! P(K

1

)�P(K

2

)

�(A;B) = (�

�

(A;B); �

	

(A;B))

= ((A n

~

A;B n

~

B); (A \

~

A;B \

~

B))

As �

�

and �

	

are homomorphisms, so is �. It is easy to 
he
k that � is inje
tive.

Note that for a set of obje
ts C � G holds:

C

0

\

~

B = ((C \

~

A) [ (C \G n

~

A))

0

\

~

B

= (C \

~

A)

0

\ (C \G n

~

A)

0

\

~

B

= (C \

~

A)

0

\

~

B

= (C \

~

A)

I

2

and likewise

C

0

\ (M n

~

B) = (C \ (G n

~

A))

I

1

:

Dually, for D �M we obtain

D

0

\

~

A = (D \

~

B)

I

2

and

D

0

\ (G n

~

A) = (D \ (M n

~

B))

I

1

:

Now 
onsider (A

1

; B

1

) 2 P(K

1

) and (A

2

; B

2

) 2 P(K

2

). The inverse image of

((A

1

; B

1

); (A

2

; B

2

)) is �

�1

((A

1

; B

1

); (A

2

; B

2

)) = (A

1

[ A

2

; B

1

[ B

2

). We set C :=

A

1

[A

2

and D := B

1

[ B

2

) and obtain

C

0

= (C

0

\

~

B) [ (C

0

\ (M n

~

B))

= (C \

~

A)

I

2

[ (C \ (G n

~

A))

I

1

= (A

2

)

I

2

[ (A

1

)

I

1

:

and, dually D

0

= (B

2

)

I

2

[ (B

1

)

I

1

. This gives

C

00

= (C

0

\

~

B)

I

2

[ (C

0

\ (M n

~

B))

I

1

= A

I

2

I

2

2

[ A

I

1

I

1

1

= B

I

2

2

[ B

I

1

1

= D

0

:

Hen
e (C;D) is a proto
on
ept in D and � is surje
tive. 2

Obviously, iteration of this de
omposition yields a dire
t de
omposition of �nite

proto
on
ept algebras in dire
tly irredu
ible proto
on
ept algebras.

Example 2.27. We 
an write the 
ontext K from Example 1.6 as the dire
t sum of

the 
ontexts K

0

:= (f1g; fbg; ;), K

1

:= (f2g; fag; ;) and K

2

:= (f3g; f
g; f(3; 
)g),

where K

2

itself is the dire
t sum of K

2a

:= (f3g; ;; ;) and K

2b

:= (;; f
g; ;).
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PSfrag repla
ements

1

2

3

b a 


K

0

K

1

K

2

Thus the proto
on
ept algebra from Example 1.6 is the dire
t produ
t of the proto-


on
ept algebras in Figure 4.

PSfrag repla
ements

(G,;)

(23,b)

(13,a)

(1,a)

(3,ab)

(13,a
)

(23,b
)

(G,
)

(;,ab)

(3,M)

(1,a
)

(;,M)

(2,b
)

(12,
)

(2,b)

(12,;)

(1; ;)

(;; b)

(2; ;)

(;; a)

(3; ;)

(;; ;)

(;; ;)

(;; 
)

�

=

Figure 4. A de
omposition of a proto
on
ept algebra in dire
tly

irredu
ible proto
on
ept algebras

2.5. Subdire
tly Irredu
ible Double Boolean Algebras. For the more gen-

eral 
ase of �nite double Boolean algebras we obtain a result similar to that for

�nite proto
on
ept algebras. While we have a dire
t de
omposition of �nite pro-

to
on
ept algebras in simple proto
on
ept algebras, �nite double Boolean algebras

are subdire
t produ
ts of simple double Boolean algebras.

Theorem 2.28. A �nite 
ontextual double Boolean algebra D is subdire
tly irre-

du
ible if and only if D is simple.

Proof: Obviously, every simple double Boolean algebra is subdire
tly irredu
ible.

Let D be a �nite 
ontextual double Boolean algebra. Theorem 2.22 yields that if

D is 
ontextual and not simple then there exists a non-trivial 
ongruen
e on D

p

.
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Let (I; F ) be a non-trivial 
ongruen
e generating pair in D

p

, and let � be the


ongruen
e relation de�ned by

(x; y) 2 � , b(x; y) 2 I and t(x; y) 2 F:

Sin
e D is �nite, (I; F ) has an orthogonal 
ongruen
e generating pair (I; F ). Let

	 be the 
ongruen
e relation de�ned by

(x; y) 2 	 , b(x; y) 2 I and t(x; y) 2 F :

We show that in the 
ongruen
e latti
e of D holds � ^ 	 = �

D

: Let i := t I

denote the greatest element of I and let f := uF denote the smallest element of

F . For x; y 2 D with x� y and x	 y we obtain

x� y , b(x; y) 2 I and t(x; y) 2 F

, b(x; y) v i and f v t(x; y)

and

x	 y , b(x; y) 2 I and t(x; y) 2 F

, b(x; y) v :i and :f v t(x; y)

Therefore we have that > = f t :f v t(x; y) and b(x; y) v i u :i = ?. This yields

> = t(x; y) = (x

t

t:y

t

)u(y

t

t:x

t

), and sin
e D

t

is a Boolean algebra, we obtain

x

t

= y

t

and dually x

u

= y

u

. As D is 
ontextual we 
on
lude x = y and thus

� ^ 	 = �

D

. It follows that D is isomorphi
 to a subdire
t produ
t of D=� and

D=	 (
f. [G68℄ p.123). 2

Theorem 2.29. Let D be a double Boolean algebra. If D is not 
ontextual, then

D is not subdire
tly irredu
ible.

Proof: Let xvw y, x 6= y be an equivalent pair in D. We set � := �

D

[f(x; y); (y; x)g

and 	 := fD n fyg �D n fygg [ f(y; y)g and show that � and 	 are 
ongruen
e

relations satisfying � ^ 	 = �

D

. Obviously, � and 	 are equivalen
e relations

and Theorem 2.4 yields that � is a 
ongruen
e relation. Note that from xvw y and

x 6= y it follows that y 6= y

u

and y 6= y

t

. This yields that for a; b 2 D we have

a

u

	 b

u

	 b

t

	 a

t

, hen
e 	 is a 
ongruen
e relation. Now assume that for a; b 2 D

holds a� b and a	 b. From a	 b we 
on
lude a; b 2 D n fyg or a = b = y. Then

a� b yields a = b, hen
e � ^	 = �

D

. 2

This result immediately yields a generalization of Theorem 2.28:

Corollary 2.30. A �nite double Boolean algebra D is subdire
tly irredu
ible if and

only if D is simple.

3. Further resear
h

This paper is one of the �rst steps towards a theory of double Boolean algebras.

Next steps in the �eld of 
onstru
tion and de
omposition of su
h algebras should

in
lude the investigation of toleran
e relations and tensor produ
ts.
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As the number of elements of proto
on
ept algebras grows rapidly with in
reasing

number of attributes and obje
ts in the 
ontext, fast algorithms to 
ompute the

proto
on
epts and good ways to obtain a diagrammati
 representation are needed.

The equational theory of double Boolean algebras and the investigation of free

double Boolean algebras are of great importan
e for appli
ations in Contextual

Logi
. This in
ludes algorithmi
 solutions of word problems. Contextual Judgment

Logi
 should be developed in parallel to Boolean Con
ept Logi
, espe
ially the

theory of proto
on
ept graphs. This approa
h will bene�t from insights into the

theory of double Boolean algebras and inspire new investigation.
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