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Abstract

The Fredholmness of a band-dominated operator on [?(Z) is closely
related with the invertibility of its limit operators: the operator is Fredholm
if and only if each of its limit operators is invertible and if the norms of
their inverses are uniformly bounded. The goal of the present note is to
show how the Fredholm index of a Fredholm band-dominated operator can
be determined in terms of its limit operators.

1 Introduction and results

We will work on the Hilbert space [2(Z) and write L(I*(Z)) for the C*-algebra
of all linear bounded operators on [?(Z). An operator A € L(I*(Z)) with matrix
representation (a;;) with respect to the standard basis of [*(Z) is a band operator
if there is an integer k such that a;; = 0 whenever |i — j| > k. The closure in
L(I*(Z)) of the set of all band operators is a C*-subalgebra of L(I*(Z)) which
we denote by A(Z). This is the same as the rough algebra of the coarse space
Z which is discussed in [11]. The elements of A(Z) are called band-dominated
operators.

Recall further that an operator A € L({*(Z)) is said to be a Fredholm operator
if its kernel ker A := {z € [*(Z) : Ax = 0} and its cokernel coker A := [*(Z)/im A
are finite-dimensional linear spaces, and that in this case the number

ind A := dimker A — dim coker A

is called the Fredholm index of A.

In [10], a criterion for the Fredholmness of a band-dominated operator A in
terms of the limit operators of A is derived. To restate this result, let V, €
L(I*(Z)) stand for the operator of shift by k € Z,

(Viz)(n) :==z(n—k), ne€L.

Further, let H stand for the set of all sequences h : N — Z which tend to infinity
in the sense that, for each R > 0, there is an N € N such that |h(n)| > R
for all n > N. An operator Ay is called a limit operator of A € L(I1*(Z)) with



respect to the sequence h € H if V_p(,)AVj(n) tends *-strongly to Ay, as n — oo.
Clearly, every operator A can have at most one limit operator with respect to a
given sequence h € H, which justifies this notation. The set o,,(A) of all limit
operators of a given operator A is the operator spectrum of A. The operator
spectrum splits into

oop(A) = 04 (4) Uo_(A)

where 0, (A) and o_(A) stand for the sets of all limit operators of A which
correspond to sequences tending to 400 and to —oo, respectively. It is also clear
that every limit operator of a compact operator is 0, and it is not hard to see
that every limit operator of a Fredholm operator is invertible (see [10]). It is a
basic result of [10] that the operator spectrum of a band-dominated operator is
rich enough in order to guarantee the reverse implications.

Theorem 1.1 Let A be a band-dominated operator. Then

(a) every sequence h € H possesses a subsequence g such that the limit operator
Ay emists.

(b) the operator A is compact if and only if o,,(A) = {0}.
(¢) the operator A is Fredholm if and only if each of its limit operators is invertible
and if the norms of their inverses are uniformly bounded.

The questions of whether and how the Fredholm index of a band-dominated
Fredholm operator can be expressed in terms of its limit operators are left open
in [10]. It is the goal of this note to answer these questions.

Let Z, and Z_ stand for the sets of the non-negative and negative integers,
and write P and @ for the orthogonal projections from [*(Z) onto [*(Z,) and
I>(Z_), respectively. (We identify [*(Z,) and [*(Z_) with subspaces of [*(Z) in
the obvious way.) If A is a band-dominated operator, then the operators PAQ)
and QAP are compact (they are of finite rank if A is a band operator). Hence,
the operators A — (PAP 4+ Q)(P 4+ QAQ) and A — (P 4+ QAQ)(PAP + Q) are
compact for every band-dominated operator A, and this shows that a band-
dominated operator A is Fredholm if and only if both operators PAP + ) and
P + QAQ are Fredholm. In this case, we call ind; A := ind (PAP + @) and
ind_A :=ind (P + QAQ) the plus-index and the minus-index of A. Evidently,

indA=ind;A+ind_A

for every Fredholm band-dominated operator A. The surprisingly simple answer
to the index questions posed above is as follows.

Theorem 1.2 Let A be a Fredholm band-dominated operator. Then

(a) for all B € 04(A),
iIld:t (B) == indi(A),



(b) all operators in o, (A) have the same plus-index, and all operators in o_(A)
have the same minus-indexz.

(¢) for arbitrarily chosen operators By € o (A) and B_ € 0_(A),
indA =indyB; +ind_B_. (1)

So we can think of the plus- and the minus-index of A as local indices at 400
and —oo.

To mention at least one example in which the identity (1) implies an explicit
and effective formula for the computation of the Fredholm index, we consider
band-dominated operators with slowly oscillating coefficients. These are the norm
limits of band operators of the form Zz:_k a,V, where the a,l are operators of
multiplication by slowly oscillating functions. By definition, a function a € [*°(Z)
is slowly oscillating if

im fa(n+1) —a(n)| =0,

and the operator al of multiplication by «a is defined by (az)(n) := a(n)z(n). In
[10], it has been shown that every limit operator A, of a band-dominated operator
A with slowly oscillating coefficients is shift invariant. Thus, there is a continuous
function aj, on the unit circle T such that Ay is just the Laurent operator L(ay).
Recall that every function @ € C'(T) induces a linear bounded Laurent operator
L(a) on I*(Z) by (L(a)z)(n) :== >,y nrx(n) where a, refers to the nth Fourier
coefficient of a. The Laurent operator L(a) is invertible if and only if the function
a is invertible in C(T). Thus, Theorem 1.1 yields an effective criterion for the
Fredholmness of band-dominated operators with slowly oscillating coefficients.
Moreover, the compression PL(a)P of the Laurent operator L(a) onto [*(Z.)
is the Toeplitz operator T'(a), which is Fredholm if and only if its generating
function a is invertible in C(T), and which has minus the winding number of a
with respect to the origin as its index (see [2, 3, 6], for example). Thus, also
the plus- and minus-index of Fredholm band-dominated operators with slowly
oscillating coefficients can be effectively determined.

To prove Theorem 1.2 we initially attempted to show that the unitary group
of the C*-algebra of the band-dominated operators on [*(Z, ) is path connected.
(Notice that this is definitely wrong for the unitary group of the band-dominated
operators on [%(Z). Indeed, the plus-index of the unitary operator V; is -1,
whereas the plus-index of the identity operator is 0. Since the plus-index is a
continuous function on the set of the Fredholm band-dominated operators, the
operators V; and I cannot be connected by a continuous path in that set.) Our
attempt failed (and we do not know up to now whether this group is connected),
and the final proof employs instead a K-theory argument which shows that this
unitary group is at least ‘stably’ path connected. However, we obtained two par-
tial results which might be of independent interest. For, we call an operator on
I>(Z.) elementary if its matrix representation with respect to the standard basis



of 1(Z,) is of the form
diag (A1, Ay, As, ...)

with blocks A,, of k, x k,-matrices on the main diagonal.

Theorem 1.3 (a) Every unitary tridiagonal operator on 1*(Z.) is elementary
with blocks of size 1 x 1 or 2 x 2.

(b) Every unitary band operator on [*(Z.) is the product of two elementary uni-
tary band operators.

Observe that these results imply that every unitary band operator on [(Z,) can
be connected with the identity operator by a continuous path running through
the set of the unitary band operators. This is a simple consequence of the path
connectedness of the unitary group of the algebra of all complex k£ x k£ matrices.
The following sections are devoted to the proofs of Theorems 1.2 and 1.3.

2 Proof of Theorem 1.2

Our strategy to prove Theorem 1.2 is as follows. Let J; be the ideal of A(Z)
generated by P. If A is a Fredholm band-dominated operator, then PAP + @ is
a Fredholm operator in the unitalization A; of J,. We would like to show that

ind(PAP + Q) = ind(PA,P + Q)

for every sequence h tending to +oo for which the limit operator A, exists; and
a simple reduction shows that it is enough to prove that the right-hand side
vanishes if the left-hand side does. Suppose then that PAP + () has zero index;
then it is a compact perturbation of an invertible in A;. If we knew that the
group of invertibles in the C*-algebra A; was path connected, then we could
produce a continuous path of Fredholm operators in A; joining PAP + @ to the
identity. Taking limit operators (perhaps with respect to a suitable subsequence
of h) produces a continuous path of Fredholm operators joining PA,P + @ to
the identity, thus showing that the latter operator has index 0.

In fact, we do not know whether the group of invertibles of A; is connected;
but we can prove that the K-theory group K;(A;) vanishes. This implies that
any invertible in A; can be connected to the identity after ‘stabilization’ (taking
the direct sum with the identity in a matrix algebra), and that is enough to carry
out the argument sketched above.

This K-theory calculation uses techniques which are well known in the study
of index theory on open manifolds and the coarse Baum-Connes conjecture. We
first show that the algebra A(Z) can be identified with a crossed product of *°(Z)
by the group Z. The Pimsner-Voiculescu exact sequence allows us to compute the
K;-group of this crossed product. (This calculation is essentially due to Yu [13];
compare also [11], Lecture 4.) Then we plug in this result into a Mayer-Vietoris
exact sequence to obtain that the Ki-group of [J, is {0}.
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2.1 The algebra A(Z) as a crossed product

We start with recalling some facts on crossed products and reduced crossed prod-
ucts where we follow [1, 4, 8]. We will exclusively consider C*-dynamical systems
(B, G, «) which consist of a C*-algebra A, a discrete group G, and a group homo-
morphism « : G — Aut B, s — «,. A pair (7, U) consisting of a *-representation
m: B — L(H) of B and a unitary representation U : G — L(H), t — U,
of G on the same Hilbert space H, is called a covariant representation of the
C*-dynamical system (B, G, «) if the covariance condition

U (B)U} = m(oy(B)) forall Be Bandted

is satisfied. A special class of covariant representations is obtained by taking the
tensor product of a *-representation of B by the left regular representation of G
which is defined as follows. Given a *-representation = : B — L(H) of B, let
I>(G, H) refer to the Hilbert space of all square summable functions = : G — H
with norm ||z||* :== 37, [|[z(¢)[|*. Then one has a covariant representation (7, U)
of (B, G, ) which acts at x € I*(G, H) by

(7(B)x)(s) := w(a; (B))(x(s)) and (Uw)(s) = x(t™'s)

S

for B € B and s, t € G. If 7 is a faithful representation of B, then the smallest
C*-subalgebra of L(I*(G, H)) which contains all operators 7(B) with B € B as
well as all operators U; with t € G is independent of the concrete choice of 7.
This algebra is called the reduced crossed product of B by G and is denoted by
B X or G ([8], Theorem 7.7.5). Moreover, if the group G is amenable (for example,
if G is commutative), then the reduced crossed product B X, G coincides with
the crossed product B x, G ([8], Theorem 7.7.7 and [4], Corollary VIL.2.2).

Now we consider the special dynamical system (I°°(Z), Z, «) where oy, = a(k),
k € Z, acts on a € 1*°(Z) by

(ag(a))(n) =a(n —k), ne€Z. (2)

Proposition 2.1 For the dynamical system (I°°(Z), Z, o) with « specified by (2),
one has
1°(Z) %o Z = [®(Z) Xor 2 A(Z).

Proof. We have already mentioned that the first identity holds in general for
products by amenable groups. So we are left with showing that the algebra A(Z)
is *-isomorphic to the reduced crossed product I*°(Z) X4, Z.

The mapping m which associates with every sequence a € [*°(Z) the operator
al € L(I*(Z)) of multiplication by a represents the C*-algebra [*°(Z) faithfully.
This representation induces a covariant representation of the dynamical system
(I®(Z), Z, a) on the Hilbert space H = [*(Z, [*(Z)) via

(7(a)x)(s) = m(a; " (a))(x(s)) and (Uwx)(s) :=a(s — 1)
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where a € [*(Z) and t € Z. We identify [2(Z, [*(Z)) with [>(Z x Z) via x(s, n) :=
(x(s))(n). Then we can identify 7(a) and U, with the operators

(7(a)z)(s, n) :=a(n+ s)z(s,n) and (Uwx)(s, n) :=z(s—1t,n). (3)

Let C refer to the smallest C*-subalgebra of L(I*(Z x Z)) which contains all
operators 7(a) and U; with a € [*°(Z) and t € Z, given by (3). This algebra is
*-isomorphic to the reduced crossed product [*°(Z) X, Z as quoted above, and
we claim that it is also *-isomorphic to the algebra A(Z) of the band-dominated
operators on [*(Z). For n € Z, let

H, = {x € *(Z x Z) : x(s, m) = 0 whenever m # n}.

We identify [?(Z x Z) with the orthogonal sum @,z H, such that z € [*(Z x Z)
is identified with ®h,, € ®H, if z(s, n) = h,(s). From (3) we conclude that each
space H,, is invariant with respect to each operator C' € C. Hence, each operator
C' € C corresponds to a diagonal matrix operator diag (..., C,, Cy41, ...) with
respect to the decomposition of [?(Z x Z) into the orthogonal sum of its subspaces
H,. In particular, C, is nothing but the restriction of C' onto H,,. Let C,, denote
the C*-algebra of all restrictions of operators in C onto H,.
It is clear that each of the spaces H,, is isometric to [?(Z) with the isometry
given by
Jo: Hy — P(Z), (Jx)(s) = x(s, n).

Thus, J,C,J,; ! is a C*-subalgebra of L(I*(Z)) which we denote by B,,. Clearly,
for a € [*(Z), the operator J,m(a)J, ! is just the operator 7(cy,(a)), whereas
JoUpJ s the shift operator V;. Since m(a_,(a)) = V,m(a)VF and V, =V, V, V¥,
the mapping B — V,,BV_,, is a *-isomorphism from B,, onto .A(Z). Consequently,

the mapping
A(Z) = C, Awdiag(..., J, VAV, J,, ...)

is a *-isomorphism. [

2.2 The K;-group of A(Z).

To compute the K;-group of the algebra A(Z) we will make use of the fact that
A(Z) is *-isomorphic to the crossed product [*°(Z) X, Z by Proposition 2.1. The
K-theory of crossed products by Z is dominated by the Pimsner-Voiculescu exact
sequence ([9], see also [4], Theorem VIIL.5.1) which we restate below. Recall in
this connection that every automorphism « of a C*-algebra B induces a group
homomorphism from Z into Aut B by n — «" which we denote by « again.



Theorem 2.2 (The Pimsner-Voiculescu exact sequence.) Let o be an au-
tomorphism of the C*-algebra B. Then there is a cyclic siz term exact sequence

Ko(B) 2 Ko(B) —— Ko(B %o Z)

w | 2

Ki(BxoZ) +«—— K(B) &=  K,(B)

We wish to apply this exact sequence to the algebra A(Z) = [*°(Z) X, Z, i. e. with
B = [*°(Z). Since [*(Z) is a von Neumann algebra, one has K;(I*(Z)) = {0}
([12], Exercise 8.14). Thus, (4) becomes

Ko(1°(Z) 7% Ko(1°(Z)) — Ko(A(Z))

w 1 »

Ki(AZ) «— {0} «—— {0}

The Ky-group of [*°(Z). The Ky-group of the algebra [*°(Z) coincides with
the group of all bounded functions from Z into Z which we denote by ZZ. Since
we have not found an explicit reference of this result, and for the reader’s conve-
nience, we include its proof here. Again we start with recalling the basic steps in
the definition of the Ky-group of a C*-algebra, where we follow [12], Chapter 3.

For n a positive integer and B a unital C*-algebra, let P,(B) stand for the
set of all projections (i.e. self-adjoint idempotents) in the algebra B, of all
n X n matrices with entries in B, and set Py (B) := U,P,(B). One defines a
binary operation @ and a relation ~ on P (B) as follows. For p € P,(B) and
q € P,(B), one sets

p ® q :=diag (p, ¢) € Ppim(B),

and one writes p ~ ¢ if there is an element v € B,,«, such that p = v*v and
g = vv*. Thus, if both p and ¢ belong to P,(B) for some n, then p ~ ¢ if
and only if p and ¢ are Murray - von Neumann equivalent. The following is
Proposition 2.3.2 in [12].

Proposition 2.3 Letp, q, r, p', ¢ € Px(B) for some unital C*-algebra B. Then

(CL) p~p® 0n><n-

(b) Ifp~p and g~ q, thenp®q~p' & q.

() p®S g~ qgop.

(d) If p, g € Pn(B) and pg =0, then p+q € Pn(B) andp+q ~p & q.

() p@g®r~p®d(¢®T)

Let D(B) := Px(B)/ ~, write [p]. for the equivalence class of p € P (B) in
D(B), and define an operation + on D(B) by [p]~ + [¢]~ := [p® ¢]~. Then D(B)



becomes an abelian semigroup, and the Grothendieck group of D(B) is called the
Ky-group of B.

Now we specify B = [*°(Z) and let P € P, (B). Then P € Py(I*°(Z)) =
P(1°(Z)gxk) for some k. Since [°°(Z)gxr = 1*°(Z, Ckxy), we can think of P as
a sequence of projections in Cpy,. Conversely, each sequence of projections in
Crxr determines an element of Py (I°°(Z)).

For P € P(I>°(Z, Cyxi)), let rank P be the sequence

Z— Z,, n+~— rankP(n).

Clearly, this sequence is bounded by &k and, conversely, every bounded sequence
from Z into Z, is the rank of a certain projection in Py (I°(Z)).
We claim that, if P, Q € Px(I*°(Z)), then

P~(@ <= rankP =rank@Q. (6)

Since ~ is an equivalence relation and by Proposition 2.3 (a), we can assume
without loss of generality that P, Q € Px(I*°(Z)) with some positive integer
k. Then the implication <= in (6) can be seen as follows. If the matrices
P(n), Q(n) € P(Cixy) have rank [ < k, then there are unitary operators U,
and V,, such that

U*P(n)U, = diag(1, ..., 1,0, ..., 0) = V*Q(n)V,.
[

Define W € [*°(Z, Cyxr,) by  Wi(n) := V,U:. Then W is a unitary element
in [*°(Z, Cxxr), and P = W*QW. Hence, the projections P and () are uni-
tarily equivalent, which implies their Murray - von Neumann equivalence ([12],
Proposition 2.2.2).

For the reverse implication in (6), let P, @ € P(I*°(Z, Cyxx)) and P ~ Q.
Then P(n) ~ Q(n) for every n € Z. By elementary linear algebra, this implies
that rank P(n) = rank Q(n) and, hence, rank P = rank @) ([12], Exercise 2.9).

This proves (6), and from the definition of the addition @ in P (B) we con-
clude that D(I*°(Z)) is isomorphic to the semigroup of all bounded sequences
from Z into Z., provided with the operation of pointwise addition. Passing to
the Grothendieck group of this semigroup, we get

Ko (1°(2)) = Zy. (7)
The mapping id, — a, and its kernel. K-theory is functorial, i.e. given
C*-algebras B and C and a *-homomorphism ¢ : B — C, there is a unique group

homomorphism ¢, : Ky(B) — Ky(C) such that

@« t [plw = [p(p)]~ for p € Pu.



Here, ¢(p) is defined as follows: the mapping ¢ extends to a *-homomorphism
from kak into Ckxk by

. k k
@ 1 (bij)i =1 = (0(ig))i j=1s
and since ¢ maps projections to projections, it maps Py (B) into Py (C).
Thus, in our concrete setting, the mapping

id, : Ko(I®(Z2)) — Ko(I%(2))

which is induced by the identical mapping on [*°(Z) is just the identical mapping
on the associated Ky-groups. It is also clear that, still under the identification of
[°(Z) gxx, with [°(Z, Cyxy), the mapping

a: Po(I®(Z)) = P (I°(Z)) (8)

acts as the shift operator. Moreover, the equivalence (6) implies that, for P, Q) €
Poo(1°(2Z2)),
P~Q@Q <= «afP)~aQ).

Thus, the mapping (8) is compatible with the relation ~, which shows that «
induces the shift operator on D(I°(Z)) = ZJ. This finally implies that a, acts
as the shift operator on K,(I>°(Z)) = ZZ.

Consequently, the kernel of the group homomorphism id, — «, consists of all
shift invariant sequences in ZZ, i.e. of all constant sequences. The subgroup of
ZE of all constant sequences is isomorphic to Z; so what we get is

ker (id, — o) = Z. (9)

Identification of K;(A(Z)). The picture we have obtained so far is

AN s Ko(A(Z))
Tﬂ l (10)
K\(A(Z)) +— {0} < {0}.

Since group homomorphisms map the zero element to the zero element, we have
im¢ = {0}, which implies that ker 5 = {0} due to the exactness of (10) at
K,(A(Z)). Further, by (9) and since (10) is exact at its left upper corner, we
have im 3 = Z. Hence, 3 is a injective group homomorphism on K, (A(Z)) with
range Z. Summing up, we find that

112

K (A(Z)) 2 Z. (11)



2.3 The K;j-group of A..

Following [7] we now split the algebra A(Z) into two subalgebras AL which
essentially contain the band-dominated operators on Z., and we compute their
respective Kj-groups. The basic device for this computation is the Mayer-Vietoris
exact sequence which can be found in the following form in [7], Section 3, lemma
1 (for instance).

Theorem 2.4 (The Mayer-Vietoris exact sequence.) Let B be a C*-algebra
and let T and J be closed ideals of B such that T+ J = B. Then there is a cyclic
siz term exact sequence

Ko(INJ) — Ko(T) ® Ko(J) ——  Ky(B)

w L

Let J, denote the smallest closed subalgebra of the algebra A(Z) of all band-
dominated operators on Z which contains the algebra PA(Z)P and the ideal
K of the compact operators on [?(Z). We further define J_ by replacing P by
@ in that definition. Then J, and J_ are closed ideals of A(Z) which satisfy
Jr+J. = AZ) and J. N J- = K. Indeed, the inclusion X C J, N J_
follows from the definitions. Conversely, if K € J, N J_, then PKQ, QK P and
QK@) are compact since K € J,, and PKP is compact since K € J_. Hence,
K =PKP+ PKQ+ QKP + QK(@ is compact.

Let further A, := J_ 4+ CQ and A_ := J_+ CP. Then A, and A_ are
C*-subalgebras of A(Z) which are *-isomorphic to the (minimal) unitizations of
the ideals J, and J_, respectively. For, one easily checks that every operator
A € A, can be written as A = PAP + K + a@Q where PAP+ K € PA(Z)P+ K
and « € C are uniquely determined, and that

Ay = Jo xC, PAP+ K +aQ— (PAP+ K — aP, o)

is a *-isomorphism from A, onto the unitization J; x C of the ideal 7.
Thus, we can apply the Mayer-Vietoris exact sequence with A(Z), J., J-
and K in place of B,Z, J and Z N J. The K-theory of K is well known,

Ky(K)=2Z and K,(K)={0}

(Corollary 6.4.2 and Example 8.2.9 in [12]). Thus, and by (11), the general exact
sequence (12) specifies to

Z —— Ko(Jp) @ Ko(T-) —— Ko(A(Z))

T l

Z L K(T)eK(T) «—— {0}
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with certain group homomorphisms § and . From im~y = {0} we conclude
that f is injective. Hence, K;(J;) @ K;(J-) is isomorphic to a subgroup of
Z. But each subgroup of Z is either isomorphic to Z or equal to {0}. Suppose
for a moment that K;(J.) & K1(J_) = Z. Since the ideals J, and J_ are *-
isomorphic (a *-isomorphism is given by K + JK.J where J : [*(Z) — [*(Z) is
given by (Jz)(n) := x(—n — 1)), their K;-groups are isomorphic, too:

Ky(J4) = Ki(J-) =:T.

Thus, Z is isomorphic to '@ T, the direct sum of two copies of I'. But Z is singly
generated (by 1, for example), whereas I' @ I' cannot be generated by a single
element. This contradiction shows that

Ki(Jy) @ Ki(J-) =TT = {0},
whence
Ki(J4) = Ki(J-) = {0}.

Finally, the K;-groups of a C*-algebra and of its unitization coincide (Proposition
8.1.6 and Equality (8.4) in [12]) which implies that

Ki(Ay) = Ki(A) = {0} (13)

2.4 Indices of band-dominated operators

In this section, we will prove assertion (a) of Theorem 1.2, which has assertions
(b) and (c) as its corollaries. In the course of the proof, we will make use of some
of the following elementary properties of the plus- and minus-indices of Fredholm
band-dominated operators.

Proposition 2.5 Let A and B be Fredholm operators in A(Z). Then

(a) indtA is invariant with respect to small perturbations.

(b) ind+ A is invariant with respect to compact perturbations.
(¢) indL A* = —ind4 A.
(d) 1ndiAB == indiA + indiA.

The latter property follows from
PABP +Q = (PAP + Q)(PBP + Q) + compact.

Further we need the following continuity property of limit operators which is
proved in [10].

Proposition 2.6 Let C,,, C € L(I>(Z)) be operators with ||C,, — C|| — 0, and let
the limit operators (C,,), exist with respect to a given sequence g and for all n.
Then the limit operator C, exists, too, and ||(Cy)y — Cy|| — 0.
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Proof of Theorem 1.2 (a). We abbreviate the C*-algebra of all k& x k matrices
with entries in A(Z), to A and write P, and @y for the operators

diag (P, ..., P), diag(Q, ..., Q) : Ay — As.

It is clearly sufficient to prove the theorem for the plus-case where it reads as
follows:
ind;y A =ind; A, forall A, € o (A). (14)

It is further sufficient to prove (14) only in the case when ind; A = 0. Indeed, for
the shift operator V; one has ind; V; = —1 and ind_Vj; = 1. Thus, if A € A(Z)
is a Fredholm operator with plus-index r, then AV[ is a Fredholm operator with
plus-index 0. If the identity (14) holds for all Fredholm operators with vanishing
plus-index, then this implies that

indy (AV]"), =0 for every limit operator of AVY'.

But, evidently, every limit operator of AV]" is of the form A,V since V] is shift
invariant. Thus,

ind, (A,V)) =0 for every A, € 04 (A),
whence, by Proposition 2.5 (d),
0 =ind; (A,V)) =indy Ay +ind V] =ind Ay — 7

and, finally, ind; A, = r for every limit operator of A in o, (A).
So, what we really have to check is that, for all Fredholm band-dominated
operators A,

indj)A=0 = ind;A,=0 forall A, € o (A). (15)

Let indyA = 0, i.e. ind (PAP + Q) = 0. Let further K be a compact operator
such that B := PAP + @ + K € A, is invertible, and let B = UR be the polar
decomposition of B, i.e. U is a unitary operator in A;, and R is a positive definite
operator in 4;. A consequence of the vanishing of the Kj-group of A; (according
to (13)) is that U is stably path connected with the identity operator (see the
Definition 8.1.3 of the Kj-group in [12]). Thus, there is a positive integer k such

that
U o\ _ (I 0
0 I,/) "\o 1,4

in the set of the unitary operators of A;. Here, ~;, denotes homotopy equivalence,
and I;_; refers to the identity operator in Aj_;.
Choose a continuous unitary-valued function

fi:00, 1) A, with fl(o):@' Ik01>, f1(1):<é [k()l)'

12



Further, let

R 0 I 0
f2.[0,1]—>Ak, tH(l_t)<0 [k1>+t<0 [k1>
and

Fii00,1] = Ayt (1—1) ([0( 0k0_1>.

Then f, is a continuous function having only positive definite operators as its
values, and f3 is a continuous function with compact values. Hence,

f=ffo—f3:00,1] = A

is a continuous function with

(U 0 R 0 K 0\ [(PAP+@Q 0
f(o)_<0 [k1><0 Ik1>_<0 0k1>_< 0 Ikl)

and I
f(]'):<0 Ik1>7

and all values of that function are Fredholm operators (with index 0).

Let now h : N — Z be a sequence which tends to 400 and for which the limit
operator Aj, exists. Then, obviously, the limit operator of P with respect to h
exists, and P, = I. Hence, the limit operator of f(0) with respect to h exists,

and ) 0
f(0), = ( Oh Ikl) )

We use a Cantor diagonal argument in order to produce a subsequence g of A such
that the limit operator f(q), exists for every rational number ¢ in [0, 1]. For, let
¢1, q2, - .. be an enumeration of QN [0, 1]. Then one can find a subsequence ¢; of
h such that f(q),, exists (recall Theorem 1.1 (a)), further a subsequence g, of
g1 such that f(g2),, exists, etc. The sequence defined by g(n) := g,(n) has the
desired property.

Since Q N [0, 1] is dense in [0, 1], we conclude from Proposition 2.6 that the
limit operator f(t), exists for every ¢ € [0, 1] and that

0, 1] = A, t— f(t), (16)

is a continuous function with

f(0)9:<f(1)h Ik01> and f(l)-q:(é Ik01>'

Moreover, all values of the function (16) are invertible operators (because limit
operators of Fredholm operators are invertible). Thus,

F:[0,1] = A, t— Bof(t),Pe + Q

13



is a continuous function with

F(o):<PAh§+Q fk()_1> and F(1):<é fk()_1>

all values of which are Fredholm operators (recall that P,BQy and Q;BP; are
compact for all band-dominated operators B). From the continuity of the index
we finally conclude that

ind F(0) =ind | TR 0 g (1 0 ) Sharq),
0 I 0 Iy

whence ind (PA,P + Q) =ind; A, = 0. ]

Remark: The argument of this section can also be expressed in K-theoretic
terms. Namely, consider the quotient algebra A; /K. Since Ki(A;) = 0, the six
term exact sequence of K-theory shows that K;(A;/K) = Z, with the isomor-
phism being implemented by the Fredholm index. The continuity of the limit
operation expressed by Proposition 2.6 shows that the assignment

U +— plus-index of a plus-limit operator of U

gives a homomorphism K;(A;/K) — Z, and to check that it agrees with the
Fredholm index it suffices to check one example, the generator of Ki(A;/K)
given by [V1].

3 Proof of Theorem 1.3

Assertion (a). Let A be a tridiagonal unitary operator on [?(Z,) with matrix
representation
ap b
a a b
o az by

A=

with respect to the standard basis of [*(Z.).

We choose unimodular numbers u,, and v,, such that u;agv; as well as all num-
bers wy,1¢,v, and u,b,v, 11 are non-negative, and we set U := diag (uy, us, ...)
and V := diag (vq, ve, ...). Then U and V are unitary operators, and 7' := UAV
is a unitary tridiagonal operator

ag B
Mmoo B
I'= Yo g [

14



with ay, Bn, 7, € Ry for all positive integers n.
Consider the entries of the main diagonals of 77" = I and T*1" = I. The
first of these entries are equal to

ap+ B =1 =05+,

whence ; = 7; due to the non-negativity of 5, and 7;. The second pair of these
entries is
Vi laal* + By =1 =B +|oa " + 73,

whence 3 = v5. Proceeding in this way we see that 7" is necessarily of the form

ag B
B ar [y

I= B2 a2 B3

We claim that, if 8; # 0, then 5 = 0. Indeed, the 12-entry of 77T = I equals
a8y + Biar = 0, whence @y = —ag. Thus, the first and the second entry
on the main diagonal of TT* = I are actually given by |ap|?> + 7 = 1 and
B% + |ar|? + B2 = B2 + |aw|® + B2 = 1, respectively. These equalities imply that
By = 0.

Consequently, there is either a unitary 1 x 1-block (if 5; = 0) or a unitary
2 x 2-block (if 5 # 0 and hence , = 0) in the upper left corner of T'. Applying
the same arguments to the remaining part of 7' (which evidently also can be
identified with a unitary tridiagonal operator on [*(Z,)), we obtain assertion (a)
of Theorem 1.3.

Assertion (b). Let A be a unitary band operator on [?(Z) with matrix repre-
sentation

AO Bl
Cl Al BZ

A= C, A, Bs

with respect to the standard basis of [*(Z,) where the A, B, and C,, are k X k-
blocks of the same block size k.

We choose unitary k x k matrices U,, and V,, such that the matrix U; AgV; and
all matrices U,1C,,V,, and U, B, V;+1 with n > 1 become non-negative (choose
Uy := I and use the polar decomposition to define successively V1, Us, V3, Us, ...)
and set Upy) := diag (Uy, Uy, ...) and V{yy := diag (V4, V3, ...). Then Uy and V)
are unitary operators, and Ty := U(1)AV/y) is a unitary tridiagonal operator, the

15



k x k block entries of which we denote by A,,, B, and C,, again, i.e.

AO Bl
Cl Al BZ

I = 02 Ag Bs ’

where now Ay, B, and C, are self-adjoint and non-negative. The upper left
N x N corner of T1 T} = I is A3+ B? = I. Hence, the matrix Ay is a contraction,
By is equal to Sy := (I — A2)'/2, and the operator

A4 Sy 0
s —40 0
Wi=119 o 1

is unitary. Further we get as in the proof of part (a) that C; = B;. Thus, we
have

A[) SO 0 AO SO
So —4p O So A1 B

1 .— —

I A()S() + S()Al SOBZ 0
0 [—A2— AgA; —AyBy 0
0 02 A2 B3

Being the product of unitary operators, the operator A(!) is unitary, too. Thus,
multiplying the first row of this operator by the first column of its adjoint, we
get

I+ (ApSo + SoA1)(AoSo + SoA1)" + (SoB2)(SeB2)" =1

whence

A()S[) + S[)Al =0 and SOB2 =0.

Thus, AD is actually a unitary operator of the form

I 0 0 0
0 A, B, 0

0 Cy Ay Bj

with A} := T — A2 — AygA; and B}, := —A(Bs, and the operator A can be written
as
_TT* * A(1 *
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Now we repeat the same arguments to the second block column of the unitary
operator A, That is, we choose unitary k x k block operators Uz) and V(3) such
that

I 0 0 0
0 A B, 0
Ty = U AWV = A

0 Cy Ay Bj

with non-negative matrices A}, B}, B, and C,, and we set S; := (I — (A})?)"/?
and

A S0
s o—ar o
War=1 4o o 1

Then W, is an elementary unitary operator, A® := T,, is a unitary operator
of the form

I 00 0 0 0
07 0 0 0 0
00 A B 0 0 |
00 Cy A; By 0

and
. * X T Tk 2 kY Sk %
A = Uy WU AP WV V).

Now we deal with the third row of A® (by operating from the left hand side
again), after this with its forth column (from the right hand side) etc. What we
finally get is that A = UV where U and V' are diagonal operators

U :=diag(Uy, Uy, ...) and V :=diag(V;, V5, ...)

with a unitary k x k matrix \N/NI and with unitary 2k x 2k matrices U, (n > 1)
and V;, (n > 2). Thus, U and V are elementary unitary operators on [*(Z.).
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