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Abstra
t

The Fredholmness of a band-dominated operator on l

2

(Z) is 
losely

related with the invertibility of its limit operators: the operator is Fredholm

if and only if ea
h of its limit operators is invertible and if the norms of

their inverses are uniformly bounded. The goal of the present note is to

show how the Fredholm index of a Fredholm band-dominated operator 
an

be determined in terms of its limit operators.

1 Introdu
tion and results

We will work on the Hilbert spa
e l

2

(Z) and write L(l

2

(Z)) for the C

�

-algebra

of all linear bounded operators on l

2

(Z). An operator A 2 L(l

2

(Z)) with matrix

representation (a

ij

) with respe
t to the standard basis of l

2

(Z) is a band operator

if there is an integer k su
h that a

ij

= 0 whenever ji � jj > k. The 
losure in

L(l

2

(Z)) of the set of all band operators is a C

�

-subalgebra of L(l

2

(Z)) whi
h

we denote by A(Z). This is the same as the rough algebra of the 
oarse spa
e

Z whi
h is dis
ussed in [11℄. The elements of A(Z) are 
alled band-dominated

operators.

Re
all further that an operator A 2 L(l

2

(Z)) is said to be a Fredholm operator

if its kernel kerA := fx 2 l

2

(Z) : Ax = 0g and its 
okernel 
okerA := l

2

(Z)=imA

are �nite-dimensional linear spa
es, and that in this 
ase the number

indA := dimkerA� dim
okerA

is 
alled the Fredholm index of A.

In [10℄, a 
riterion for the Fredholmness of a band-dominated operator A in

terms of the limit operators of A is derived. To restate this result, let V

k

2

L(l

2

(Z)) stand for the operator of shift by k 2 Z,

(V

k

x)(n) := x(n� k); n 2 Z:

Further, let H stand for the set of all sequen
es h : N ! Z whi
h tend to in�nity

in the sense that, for ea
h R > 0, there is an N 2 N su
h that jh(n)j � R

for all n � N . An operator A

h

is 
alled a limit operator of A 2 L(l

2

(Z)) with
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respe
t to the sequen
e h 2 H if V

�h(n)

AV

h(n)

tends

�

-strongly to A

h

as n!1.

Clearly, every operator A 
an have at most one limit operator with respe
t to a

given sequen
e h 2 H, whi
h justi�es this notation. The set �

op

(A) of all limit

operators of a given operator A is the operator spe
trum of A. The operator

spe
trum splits into

�

op

(A) = �

+

(A) [ �

�

(A)

where �

+

(A) and �

�

(A) stand for the sets of all limit operators of A whi
h


orrespond to sequen
es tending to +1 and to �1, respe
tively. It is also 
lear

that every limit operator of a 
ompa
t operator is 0, and it is not hard to see

that every limit operator of a Fredholm operator is invertible (see [10℄). It is a

basi
 result of [10℄ that the operator spe
trum of a band-dominated operator is

ri
h enough in order to guarantee the reverse impli
ations.

Theorem 1.1 Let A be a band-dominated operator. Then

(a) every sequen
e h 2 H possesses a subsequen
e g su
h that the limit operator

A

g

exists.

(b) the operator A is 
ompa
t if and only if �

op

(A) = f0g.

(
) the operator A is Fredholm if and only if ea
h of its limit operators is invertible

and if the norms of their inverses are uniformly bounded.

The questions of whether and how the Fredholm index of a band-dominated

Fredholm operator 
an be expressed in terms of its limit operators are left open

in [10℄. It is the goal of this note to answer these questions.

Let Z

+

and Z

�

stand for the sets of the non-negative and negative integers,

and write P and Q for the orthogonal proje
tions from l

2

(Z) onto l

2

(Z

+

) and

l

2

(Z

�

), respe
tively. (We identify l

2

(Z

+

) and l

2

(Z

�

) with subspa
es of l

2

(Z) in

the obvious way.) If A is a band-dominated operator, then the operators PAQ

and QAP are 
ompa
t (they are of �nite rank if A is a band operator). Hen
e,

the operators A � (PAP + Q)(P + QAQ) and A � (P + QAQ)(PAP + Q) are


ompa
t for every band-dominated operator A, and this shows that a band-

dominated operator A is Fredholm if and only if both operators PAP + Q and

P + QAQ are Fredholm. In this 
ase, we 
all ind

+

A := ind (PAP + Q) and

ind

�

A := ind (P +QAQ) the plus-index and the minus-index of A. Evidently,

indA = ind

+

A+ ind

�

A

for every Fredholm band-dominated operator A. The surprisingly simple answer

to the index questions posed above is as follows.

Theorem 1.2 Let A be a Fredholm band-dominated operator. Then

(a) for all B 2 �

�

(A),

ind

�

(B) = ind

�

(A);

2



(b) all operators in �

+

(A) have the same plus-index, and all operators in �

�

(A)

have the same minus-index.

(
) for arbitrarily 
hosen operators B

+

2 �

+

(A) and B

�

2 �

�

(A),

indA = ind

+

B

+

+ ind

�

B

�

: (1)

So we 
an think of the plus- and the minus-index of A as lo
al indi
es at +1

and �1.

To mention at least one example in whi
h the identity (1) implies an expli
it

and e�e
tive formula for the 
omputation of the Fredholm index, we 
onsider

band-dominated operators with slowly os
illating 
oeÆ
ients. These are the norm

limits of band operators of the form

P

k

n=�k

a

n

V

n

where the a

n

I are operators of

multipli
ation by slowly os
illating fun
tions. By de�nition, a fun
tion a 2 l

1

(Z)

is slowly os
illating if

lim

n!�1

ja(n+ 1)� a(n)j = 0;

and the operator aI of multipli
ation by a is de�ned by (ax)(n) := a(n)x(n). In

[10℄, it has been shown that every limit operator A

h

of a band-dominated operator

A with slowly os
illating 
oeÆ
ients is shift invariant. Thus, there is a 
ontinuous

fun
tion a

h

on the unit 
ir
le T su
h that A

h

is just the Laurent operator L(a

h

).

Re
all that every fun
tion a 2 C(T) indu
es a linear bounded Laurent operator

L(a) on l

2

(Z) by (L(a)x)(n) :=

P

k2Z

a

n�k

x(n) where a

n

refers to the nth Fourier


oeÆ
ient of a. The Laurent operator L(a) is invertible if and only if the fun
tion

a is invertible in C(T). Thus, Theorem 1.1 yields an e�e
tive 
riterion for the

Fredholmness of band-dominated operators with slowly os
illating 
oeÆ
ients.

Moreover, the 
ompression PL(a)P of the Laurent operator L(a) onto l

2

(Z

+

)

is the Toeplitz operator T (a), whi
h is Fredholm if and only if its generating

fun
tion a is invertible in C(T), and whi
h has minus the winding number of a

with respe
t to the origin as its index (see [2, 3, 6℄, for example). Thus, also

the plus- and minus-index of Fredholm band-dominated operators with slowly

os
illating 
oeÆ
ients 
an be e�e
tively determined.

To prove Theorem 1.2 we initially attempted to show that the unitary group

of the C

�

-algebra of the band-dominated operators on l

2

(Z

+

) is path 
onne
ted.

(Noti
e that this is de�nitely wrong for the unitary group of the band-dominated

operators on l

2

(Z). Indeed, the plus-index of the unitary operator V

1

is -1,

whereas the plus-index of the identity operator is 0. Sin
e the plus-index is a


ontinuous fun
tion on the set of the Fredholm band-dominated operators, the

operators V

1

and I 
annot be 
onne
ted by a 
ontinuous path in that set.) Our

attempt failed (and we do not know up to now whether this group is 
onne
ted),

and the �nal proof employs instead a K-theory argument whi
h shows that this

unitary group is at least `stably' path 
onne
ted. However, we obtained two par-

tial results whi
h might be of independent interest. For, we 
all an operator on

l

2

(Z

+

) elementary if its matrix representation with respe
t to the standard basis
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of l

2

(Z

+

) is of the form

diag (A

1

; A

2

; A

3

; : : :)

with blo
ks A

n

of k

n

� k

n

-matri
es on the main diagonal.

Theorem 1.3 (a) Every unitary tridiagonal operator on l

2

(Z

+

) is elementary

with blo
ks of size 1� 1 or 2� 2.

(b) Every unitary band operator on l

2

(Z

+

) is the produ
t of two elementary uni-

tary band operators.

Observe that these results imply that every unitary band operator on l

2

(Z

+

) 
an

be 
onne
ted with the identity operator by a 
ontinuous path running through

the set of the unitary band operators. This is a simple 
onsequen
e of the path


onne
tedness of the unitary group of the algebra of all 
omplex k � k matri
es.

The following se
tions are devoted to the proofs of Theorems 1.2 and 1.3.

2 Proof of Theorem 1.2

Our strategy to prove Theorem 1.2 is as follows. Let J

+

be the ideal of A(Z)

generated by P . If A is a Fredholm band-dominated operator, then PAP +Q is

a Fredholm operator in the unitalization A

1

of J

+

. We would like to show that

ind(PAP +Q) = ind(PA

h

P +Q)

for every sequen
e h tending to +1 for whi
h the limit operator A

h

exists; and

a simple redu
tion shows that it is enough to prove that the right-hand side

vanishes if the left-hand side does. Suppose then that PAP +Q has zero index;

then it is a 
ompa
t perturbation of an invertible in A

1

. If we knew that the

group of invertibles in the C

�

-algebra A

1

was path 
onne
ted, then we 
ould

produ
e a 
ontinuous path of Fredholm operators in A

1

joining PAP +Q to the

identity. Taking limit operators (perhaps with respe
t to a suitable subsequen
e

of h) produ
es a 
ontinuous path of Fredholm operators joining PA

h

P + Q to

the identity, thus showing that the latter operator has index 0.

In fa
t, we do not know whether the group of invertibles of A

1

is 
onne
ted;

but we 
an prove that the K-theory group K

1

(A

1

) vanishes. This implies that

any invertible in A

1


an be 
onne
ted to the identity after `stabilization' (taking

the dire
t sum with the identity in a matrix algebra), and that is enough to 
arry

out the argument sket
hed above.

This K-theory 
al
ulation uses te
hniques whi
h are well known in the study

of index theory on open manifolds and the 
oarse Baum{Connes 
onje
ture. We

�rst show that the algebra A(Z) 
an be identi�ed with a 
rossed produ
t of l

1

(Z)

by the group Z. The Pimsner-Voi
ules
u exa
t sequen
e allows us to 
ompute the

K

1

-group of this 
rossed produ
t. (This 
al
ulation is essentially due to Yu [13℄;


ompare also [11℄, Le
ture 4.) Then we plug in this result into a Mayer-Vietoris

exa
t sequen
e to obtain that the K

1

-group of J

+

is f0g.
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2.1 The algebra A(Z) as a 
rossed produ
t

We start with re
alling some fa
ts on 
rossed produ
ts and redu
ed 
rossed prod-

u
ts where we follow [1, 4, 8℄. We will ex
lusively 
onsider C

�

-dynami
al systems

(B; G; �) whi
h 
onsist of a C

�

-algebraA, a dis
rete group G, and a group homo-

morphism � : G! AutB, s 7! �

s

. A pair (�; U) 
onsisting of a

�

-representation

� : B ! L(H) of B and a unitary representation U : G ! L(H), t 7! U

t

of G on the same Hilbert spa
e H, is 
alled a 
ovariant representation of the

C

�

-dynami
al system (B; G; �) if the 
ovarian
e 
ondition

U

t

�(B)U

�

t

= �(�

t

(B)) for all B 2 B and t 2 G

is satis�ed. A spe
ial 
lass of 
ovariant representations is obtained by taking the

tensor produ
t of a

�

-representation of B by the left regular representation of G

whi
h is de�ned as follows. Given a

�

-representation � : B ! L(H) of B, let

l

2

(G; H) refer to the Hilbert spa
e of all square summable fun
tions x : G! H

with norm kxk

2

:=

P

t2G

kx(t)k

2

. Then one has a 
ovariant representation (~�; U)

of (B; G; �) whi
h a
ts at x 2 l

2

(G; H) by

(~�(B)x)(s) := �(�

�1

s

(B))(x(s)) and (U

t

x)(s) := x(t

�1

s)

for B 2 B and s; t 2 G. If � is a faithful representation of B, then the smallest

C

�

-subalgebra of L(l

2

(G; H)) whi
h 
ontains all operators ~�(B) with B 2 B as

well as all operators U

t

with t 2 G is independent of the 
on
rete 
hoi
e of �.

This algebra is 
alled the redu
ed 
rossed produ
t of B by G and is denoted by

B�

�r

G ([8℄, Theorem 7.7.5). Moreover, if the group G is amenable (for example,

if G is 
ommutative), then the redu
ed 
rossed produ
t B �

�r

G 
oin
ides with

the 
rossed produ
t B �

�

G ([8℄, Theorem 7.7.7 and [4℄, Corollary VII.2.2).

Now we 
onsider the spe
ial dynami
al system (l

1

(Z); Z; �) where �

k

= �(k),

k 2 Z, a
ts on a 2 l

1

(Z) by

(�

k

(a))(n) = a(n� k); n 2 Z: (2)

Proposition 2.1 For the dynami
al system (l

1

(Z); Z; �) with � spe
i�ed by (2),

one has

l

1

(Z)�

�

Z = l

1

(Z)�

�r

Z

�

=

A(Z):

Proof. We have already mentioned that the �rst identity holds in general for

produ
ts by amenable groups. So we are left with showing that the algebra A(Z)

is

�

-isomorphi
 to the redu
ed 
rossed produ
t l

1

(Z)�

�r

Z.

The mapping � whi
h asso
iates with every sequen
e a 2 l

1

(Z) the operator

aI 2 L(l

2

(Z)) of multipli
ation by a represents the C

�

-algebra l

1

(Z) faithfully.

This representation indu
es a 
ovariant representation of the dynami
al system

(l

1

(Z); Z; �) on the Hilbert spa
e H = l

2

(Z; l

2

(Z)) via

(~�(a)x)(s) := �(�

�1

s

(a))(x(s)) and (U

t

x)(s) := x(s� t)
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where a 2 l

1

(Z) and t 2 Z. We identify l

2

(Z; l

2

(Z)) with l

2

(Z�Z) via x(s; n) :=

(x(s))(n). Then we 
an identify ~�(a) and U

t

with the operators

(~�(a)x)(s; n) := a(n + s)x(s; n) and (U

t

x)(s; n) := x(s� t; n): (3)

Let C refer to the smallest C

�

-subalgebra of L(l

2

(Z � Z)) whi
h 
ontains all

operators ~�(a) and U

t

with a 2 l

1

(Z) and t 2 Z, given by (3). This algebra is

�

-isomorphi
 to the redu
ed 
rossed produ
t l

1

(Z)�

�r

Z as quoted above, and

we 
laim that it is also

�

-isomorphi
 to the algebra A(Z) of the band-dominated

operators on l

2

(Z). For n 2 Z, let

H

n

:= fx 2 l

2

(Z� Z) : x(s; m) = 0 whenever m 6= ng:

We identify l

2

(Z� Z) with the orthogonal sum �

n2Z

H

n

su
h that x 2 l

2

(Z� Z)

is identi�ed with �h

n

2 �H

n

if x(s; n) = h

n

(s). From (3) we 
on
lude that ea
h

spa
e H

n

is invariant with respe
t to ea
h operator C 2 C. Hen
e, ea
h operator

C 2 C 
orresponds to a diagonal matrix operator diag (: : : ; C

n

; C

n+1

; : : :) with

respe
t to the de
omposition of l

2

(Z�Z) into the orthogonal sum of its subspa
es

H

n

. In parti
ular, C

n

is nothing but the restri
tion of C onto H

n

. Let C

n

denote

the C

�

-algebra of all restri
tions of operators in C onto H

n

.

It is 
lear that ea
h of the spa
es H

n

is isometri
 to l

2

(Z) with the isometry

given by

J

n

: H

n

! l

2

(Z); (J

n

x)(s) := x(s; n):

Thus, J

n

C

n

J

�1

n

is a C

�

-subalgebra of L(l

2

(Z)) whi
h we denote by B

n

. Clearly,

for a 2 l

1

(Z), the operator J

n

~�(a)J

�1

n

is just the operator �(�

n

(a)), whereas

J

n

U

t

J

�1

n

is the shift operator V

t

. Sin
e �(�

�n

(a)) = V

n

�(a)V

�

n

and V

t

= V

n

V

t

V

�

n

,

the mapping B 7! V

n

BV

�n

is a

�

-isomorphism from B

n

onto A(Z). Consequently,

the mapping

A(Z)! C; A 7! diag (: : : ; J

�1

n

V

�

n

AV

n

J

n

; : : :)

is a

�

-isomorphism.

2.2 The K

1

-group of A(Z).

To 
ompute the K

1

-group of the algebra A(Z) we will make use of the fa
t that

A(Z) is

�

-isomorphi
 to the 
rossed produ
t l

1

(Z)�

�

Z by Proposition 2.1. The

K-theory of 
rossed produ
ts by Z is dominated by the Pimsner-Voi
ules
u exa
t

sequen
e ([9℄, see also [4℄, Theorem VIII.5.1) whi
h we restate below. Re
all in

this 
onne
tion that every automorphism � of a C

�

-algebra B indu
es a group

homomorphism from Z into AutB by n 7! �

n

whi
h we denote by � again.
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Theorem 2.2 (The Pimsner-Voi
ules
u exa
t sequen
e.) Let � be an au-

tomorphism of the C

�

-algebra B. Then there is a 
y
li
 six term exa
t sequen
e

K

0

(B)

id

�

��

�

����! K

0

(B) ���! K

0

(B �

�

Z)

x

?

?

?

?

y

K

1

(B �

�

Z)  ��� K

1

(B)

id

�

��

�

 ���� K

1

(B)

(4)

We wish to apply this exa
t sequen
e to the algebraA(Z) = l

1

(Z)�

�

Z, i. e. with

B = l

1

(Z). Sin
e l

1

(Z) is a von Neumann algebra, one has K

1

(l

1

(Z)) = f0g

([12℄, Exer
ise 8.14). Thus, (4) be
omes

K

0

(l

1

(Z))

id

�

��

�

����! K

0

(l

1

(Z)) ���! K

0

(A(Z))

x

?

?

?

?

y

K

1

(A(Z))  ��� f0g  ��� f0g

(5)

The K

0

-group of l

1

(Z). The K

0

-group of the algebra l

1

(Z) 
oin
ides with

the group of all bounded fun
tions from Z into Z whi
h we denote by Z

Z

b

. Sin
e

we have not found an expli
it referen
e of this result, and for the reader's 
onve-

nien
e, we in
lude its proof here. Again we start with re
alling the basi
 steps in

the de�nition of the K

0

-group of a C

�

-algebra, where we follow [12℄, Chapter 3.

For n a positive integer and B a unital C

�

-algebra, let P

n

(B) stand for the

set of all proje
tions (i.e. self-adjoint idempotents) in the algebra B

n�n

of all

n � n matri
es with entries in B, and set P

1

(B) := [

n

P

n

(B). One de�nes a

binary operation � and a relation � on P

1

(B) as follows. For p 2 P

n

(B) and

q 2 P

m

(B), one sets

p� q := diag (p; q) 2 P

n+m

(B);

and one writes p � q if there is an element v 2 B

m�n

su
h that p = v

�

v and

q = vv

�

. Thus, if both p and q belong to P

n

(B) for some n, then p � q if

and only if p and q are Murray - von Neumann equivalent. The following is

Proposition 2.3.2 in [12℄.

Proposition 2.3 Let p; q; r; p

0

; q

0

2 P

1

(B) for some unital C

�

-algebra B. Then

(a) p � p� 0

n�n

.

(b) If p � p

0

and q � q

0

, then p� q � p

0

� q

0

.

(
) p� q � q � p.

(d) If p; q 2 P

n

(B) and pq = 0, then p+ q 2 P

n

(B) and p+ q � p� q.

(e) (p� q)� r � p� (q � r).

Let D(B) := P

1

(B)= �, write [p℄

�

for the equivalen
e 
lass of p 2 P

1

(B) in

D(B), and de�ne an operation + on D(B) by [p℄

�

+ [q℄

�

:= [p� q℄

�

. Then D(B)
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be
omes an abelian semigroup, and the Grothendie
k group of D(B) is 
alled the

K

0

-group of B.

Now we spe
ify B = l

1

(Z) and let P 2 P

1

(B). Then P 2 P

k

(l

1

(Z)) =

P(l

1

(Z)

k�k

) for some k. Sin
e l

1

(Z)

k�k

= l

1

(Z; C

k�k

), we 
an think of P as

a sequen
e of proje
tions in C

k�k

. Conversely, ea
h sequen
e of proje
tions in

C

k�k

determines an element of P

k

(l

1

(Z)).

For P 2 P(l

1

(Z; C

k�k

)), let rankP be the sequen
e

Z! Z

+

; n 7! rankP (n):

Clearly, this sequen
e is bounded by k and, 
onversely, every bounded sequen
e

from Z into Z

+

is the rank of a 
ertain proje
tion in P

1

(l

1

(Z)).

We 
laim that, if P; Q 2 P

1

(l

1

(Z)), then

P � Q () rankP = rankQ: (6)

Sin
e � is an equivalen
e relation and by Proposition 2.3 (a), we 
an assume

without loss of generality that P; Q 2 P

k

(l

1

(Z)) with some positive integer

k. Then the impli
ation ( in (6) 
an be seen as follows. If the matri
es

P (n); Q(n) 2 P(C

k�k

) have rank l � k, then there are unitary operators U

n

and V

n

su
h that

U

�

n

P (n)U

n

= diag (1; : : : ; 1

| {z }

l

; 0; : : : ; 0) = V

�

n

Q(n)V

n

:

De�ne W 2 l

1

(Z; C

k�k

) by W (n) := V

n

U

�

n

. Then W is a unitary element

in l

1

(Z; C

k�k

), and P = W

�

QW . Hen
e, the proje
tions P and Q are uni-

tarily equivalent, whi
h implies their Murray - von Neumann equivalen
e ([12℄,

Proposition 2.2.2).

For the reverse impli
ation in (6), let P; Q 2 P(l

1

(Z; C

k�k

)) and P � Q.

Then P (n) � Q(n) for every n 2 Z. By elementary linear algebra, this implies

that rankP (n) = rankQ(n) and, hen
e, rankP = rankQ ([12℄, Exer
ise 2.9).

This proves (6), and from the de�nition of the addition � in P

1

(B) we 
on-


lude that D(l

1

(Z)) is isomorphi
 to the semigroup of all bounded sequen
es

from Z into Z

+

, provided with the operation of pointwise addition. Passing to

the Grothendie
k group of this semigroup, we get

K

0

(l

1

(Z))

�

=

Z

Z

b

: (7)

The mapping id

�

� �

�

and its kernel. K-theory is fun
torial, i.e. given

C

�

-algebras B and C and a

�

-homomorphism ' : B ! C, there is a unique group

homomorphism '

�

: K

0

(B)! K

0

(C) su
h that

'

�

: [p℄

�

7! ['(p)℄

�

for p 2 P

1

:

8



Here, '(p) is de�ned as follows: the mapping ' extends to a

�

-homomorphism

from B

k�k

into C

k�k

by

' : (b

ij

)

k

i; j=1

7! ('(b

ij

))

k

i; j=1

;

and sin
e ' maps proje
tions to proje
tions, it maps P

1

(B) into P

1

(C).

Thus, in our 
on
rete setting, the mapping

id

�

: K

0

(l

1

(Z))! K

0

(l

1

(Z))

whi
h is indu
ed by the identi
al mapping on l

1

(Z) is just the identi
al mapping

on the asso
iated K

0

-groups. It is also 
lear that, still under the identi�
ation of

l

1

(Z)

k�k

with l

1

(Z; C

k�k

), the mapping

� : P

1

(l

1

(Z))! P

1

(l

1

(Z)) (8)

a
ts as the shift operator. Moreover, the equivalen
e (6) implies that, for P; Q 2

P

1

(l

1

(Z)),

P � Q () �(P ) � �(Q):

Thus, the mapping (8) is 
ompatible with the relation �, whi
h shows that �

indu
es the shift operator on D(l

1

(Z))

�

=

Z

N

b

. This �nally implies that �

�

a
ts

as the shift operator on K

0

(l

1

(Z))

�

=

Z

Z

b

.

Consequently, the kernel of the group homomorphism id

�

� �

�


onsists of all

shift invariant sequen
es in Z

Z

b

, i.e. of all 
onstant sequen
es. The subgroup of

Z

Z

b

of all 
onstant sequen
es is isomorphi
 to Z; so what we get is

ker (id

�

� �

�

)

�

=

Z: (9)

Identi�
ation of K

1

(A(Z)). The pi
ture we have obtained so far is

Z

Z

b

id

�

��

�

����! Z

Z

b

���! K

0

(A(Z))

x

?

?

�

?

?

y

K

1

(A(Z))

�

 ��� f0g  ��� f0g:

(10)

Sin
e group homomorphisms map the zero element to the zero element, we have

im � = f0g, whi
h implies that ker � = f0g due to the exa
tness of (10) at

K

1

(A(Z)). Further, by (9) and sin
e (10) is exa
t at its left upper 
orner, we

have im�

�

=

Z. Hen
e, � is a inje
tive group homomorphism on K

1

(A(Z)) with

range Z. Summing up, we �nd that

K

1

(A(Z))

�

=

Z: (11)

9



2.3 The K

1

-group of A

�

.

Following [7℄ we now split the algebra A(Z) into two subalgebras A

�

whi
h

essentially 
ontain the band-dominated operators on Z

�

, and we 
ompute their

respe
tive K

1

-groups. The basi
 devi
e for this 
omputation is the Mayer-Vietoris

exa
t sequen
e whi
h 
an be found in the following form in [7℄, Se
tion 3, lemma

1 (for instan
e).

Theorem 2.4 (The Mayer-Vietoris exa
t sequen
e.) Let B be a C

�

-algebra

and let I and J be 
losed ideals of B su
h that I+J = B. Then there is a 
y
li


six term exa
t sequen
e

K

0

(I \ J ) ���! K

0

(I)�K

0

(J ) ���! K

0

(B)

x

?

?

?

?

y

K

1

(B)  ��� K

1

(I)�K

1

(J )  ��� K

1

(I \ J ):

(12)

Let J

+

denote the smallest 
losed subalgebra of the algebra A(Z) of all band-

dominated operators on Z whi
h 
ontains the algebra PA(Z)P and the ideal

K of the 
ompa
t operators on l

2

(Z). We further de�ne J

�

by repla
ing P by

Q in that de�nition. Then J

+

and J

�

are 
losed ideals of A(Z) whi
h satisfy

J

+

+ J

�

= A(Z) and J

+

\ J

�

= K. Indeed, the in
lusion K � J

+

\ J

�

follows from the de�nitions. Conversely, if K 2 J

+

\ J

�

, then PKQ, QKP and

QKQ are 
ompa
t sin
e K 2 J

+

, and PKP is 
ompa
t sin
e K 2 J

�

. Hen
e,

K = PKP + PKQ+QKP +QKQ is 
ompa
t.

Let further A

+

:= J

�

+ CQ and A

�

:= J

�

+ C P . Then A

+

and A

�

are

C

�

-subalgebras of A(Z) whi
h are

�

-isomorphi
 to the (minimal) unitizations of

the ideals J

+

and J

�

, respe
tively. For, one easily 
he
ks that every operator

A 2 A

+


an be written as A = PAP +K +�Q where PAP +K 2 PA(Z)P +K

and � 2 C are uniquely determined, and that

A

+

! J

+

� C ; PAP +K + �Q 7! (PAP +K � �P; �)

is a

�

-isomorphism from A

+

onto the unitization J

+

� C of the ideal J

+

.

Thus, we 
an apply the Mayer-Vietoris exa
t sequen
e with A(Z); J

+

; J

�

and K in pla
e of B; I; J and I \ J . The K-theory of K is well known,

K

0

(K)

�

=

Z and K

1

(K) = f0g

(Corollary 6.4.2 and Example 8.2.9 in [12℄). Thus, and by (11), the general exa
t

sequen
e (12) spe
i�es to

Z ���! K

0

(J

+

)�K

0

(J

�

) ���! K

0

(A(Z))

x

?

?

?

?

y

Z

�

 ��� K

1

(J

+

)�K

1

(J

�

)




 ��� f0g

10



with 
ertain group homomorphisms � and 
. From im
 = f0g we 
on
lude

that � is inje
tive. Hen
e, K

1

(J

+

) � K

1

(J

�

) is isomorphi
 to a subgroup of

Z. But ea
h subgroup of Z is either isomorphi
 to Z or equal to f0g. Suppose

for a moment that K

1

(J

+

) � K

1

(J

�

)

�

=

Z. Sin
e the ideals J

+

and J

�

are

�

-

isomorphi
 (a

�

-isomorphism is given by K 7! JKJ where J : l

2

(Z) ! l

2

(Z) is

given by (Jx)(n) := x(�n� 1)), their K

1

-groups are isomorphi
, too:

K

1

(J

+

)

�

=

K

1

(J

�

) =: �:

Thus, Z is isomorphi
 to ���, the dire
t sum of two 
opies of �. But Z is singly

generated (by 1, for example), whereas � � � 
annot be generated by a single

element. This 
ontradi
tion shows that

K

1

(J

+

)�K

1

(J

�

)

�

=

�� � = f0g;

when
e

K

1

(J

+

) = K

1

(J

�

) = f0g:

Finally, the K

1

-groups of a C

�

-algebra and of its unitization 
oin
ide (Proposition

8.1.6 and Equality (8.4) in [12℄) whi
h implies that

K

1

(A

+

)

�

=

K

1

(A

�

) = f0g: (13)

2.4 Indi
es of band-dominated operators

In this se
tion, we will prove assertion (a) of Theorem 1.2, whi
h has assertions

(b) and (
) as its 
orollaries. In the 
ourse of the proof, we will make use of some

of the following elementary properties of the plus- and minus-indi
es of Fredholm

band-dominated operators.

Proposition 2.5 Let A and B be Fredholm operators in A(Z). Then

(a) ind

�

A is invariant with respe
t to small perturbations.

(b) ind

�

A is invariant with respe
t to 
ompa
t perturbations.

(
) ind

�

A

�

= �ind

�

A.

(d) ind

�

AB = ind

�

A+ ind

�

A.

The latter property follows from

PABP +Q = (PAP +Q)(PBP +Q) + 
ompa
t:

Further we need the following 
ontinuity property of limit operators whi
h is

proved in [10℄.

Proposition 2.6 Let C

n

; C 2 L(l

2

(Z)) be operators with kC

n

�Ck ! 0, and let

the limit operators (C

n

)

g

exist with respe
t to a given sequen
e g and for all n.

Then the limit operator C

g

exists, too, and k(C

n

)

g

� C

g

k ! 0.

11



Proof of Theorem 1.2 (a). We abbreviate the C

�

-algebra of all k� k matri
es

with entries in A(Z)

+

to A

k

and write P

k

and Q

k

for the operators

diag (P; : : : ; P ); diag (Q; : : : ; Q) : A

k

!A

k

:

It is 
learly suÆ
ient to prove the theorem for the plus-
ase where it reads as

follows:

ind

+

A = ind

+

A

h

for all A

h

2 �

+

(A): (14)

It is further suÆ
ient to prove (14) only in the 
ase when ind

+

A = 0. Indeed, for

the shift operator V

1

one has ind

+

V

1

= �1 and ind

�

V

1

= 1. Thus, if A 2 A(Z)

is a Fredholm operator with plus-index r, then AV

r

1

is a Fredholm operator with

plus-index 0. If the identity (14) holds for all Fredholm operators with vanishing

plus-index, then this implies that

ind

+

(AV

r

1

)

h

= 0 for every limit operator of AV

r

1

:

But, evidently, every limit operator of AV

r

1

is of the form A

h

V

r

1

sin
e V

1

is shift

invariant. Thus,

ind

+

(A

h

V

r

1

) = 0 for every A

h

2 �

+

(A);

when
e, by Proposition 2.5 (d),

0 = ind

+

(A

h

V

r

1

) = ind

+

A

h

+ ind

+

V

r

1

= ind

+

A

h

� r

and, �nally, ind

+

A

h

= r for every limit operator of A in �

+

(A).

So, what we really have to 
he
k is that, for all Fredholm band-dominated

operators A,

ind

+

A = 0 =) ind

+

A

h

= 0 for all A

h

2 �

+

(A): (15)

Let ind

+

A = 0, i.e. ind (PAP + Q) = 0. Let further K be a 
ompa
t operator

su
h that B := PAP +Q +K 2 A

+

is invertible, and let B = UR be the polar

de
omposition of B, i.e. U is a unitary operator inA

1

, and R is a positive de�nite

operator in A

1

. A 
onsequen
e of the vanishing of the K

1

-group of A

1

(a

ording

to (13)) is that U is stably path 
onne
ted with the identity operator (see the

De�nition 8.1.3 of the K

1

-group in [12℄). Thus, there is a positive integer k su
h

that

�

U 0

0 I

k�1

�

�

h

�

I 0

0 I

k�1

�

in the set of the unitary operators ofA

k

. Here, �

h

denotes homotopy equivalen
e,

and I

k�1

refers to the identity operator in A

k�1

.

Choose a 
ontinuous unitary-valued fun
tion

f

1

: [0; 1℄! A

k

with f

1

(0) =

�

U 0

0 I

k�1

�

; f

1

(1) =

�

I 0

0 I

k�1

�

:

12



Further, let

f

2

: [0; 1℄!A

k

; t 7! (1� t)

�

R 0

0 I

k�1

�

+ t

�

I 0

0 I

k�1

�

and

f

3

: [0; 1℄!A

k

; t 7! (1� t)

�

K 0

0 0

k�1

�

:

Then f

2

is a 
ontinuous fun
tion having only positive de�nite operators as its

values, and f

3

is a 
ontinuous fun
tion with 
ompa
t values. Hen
e,

f := f

1

f

2

� f

3

: [0; 1℄!A

k

is a 
ontinuous fun
tion with

f(0) =

�

U 0

0 I

k�1

��

R 0

0 I

k�1

�

�

�

K 0

0 0

k�1

�

=

�

PAP +Q 0

0 I

k�1

�

and

f(1) =

�

I 0

0 I

k�1

�

;

and all values of that fun
tion are Fredholm operators (with index 0).

Let now h : N ! Z be a sequen
e whi
h tends to +1 and for whi
h the limit

operator A

h

exists. Then, obviously, the limit operator of P with respe
t to h

exists, and P

h

= I. Hen
e, the limit operator of f(0) with respe
t to h exists,

and

f(0)

h

=

�

A

h

0

0 I

k�1

�

:

We use a Cantor diagonal argument in order to produ
e a subsequen
e g of h su
h

that the limit operator f(q)

g

exists for every rational number q in [0; 1℄. For, let

q

1

; q

2

; : : : be an enumeration of Q \ [0; 1℄. Then one 
an �nd a subsequen
e g

1

of

h su
h that f(q

1

)

g

1

exists (re
all Theorem 1.1 (a)), further a subsequen
e g

2

of

g

1

su
h that f(q

2

)

g

2

exists, et
. The sequen
e de�ned by g(n) := g

n

(n) has the

desired property.

Sin
e Q \ [0; 1℄ is dense in [0; 1℄, we 
on
lude from Proposition 2.6 that the

limit operator f(t)

g

exists for every t 2 [0; 1℄ and that

[0; 1℄! A

k

; t 7! f(t)

g

(16)

is a 
ontinuous fun
tion with

f(0)

g

=

�

A

h

0

0 I

k�1

�

and f(1)

g

=

�

I 0

0 I

k�1

�

:

Moreover, all values of the fun
tion (16) are invertible operators (be
ause limit

operators of Fredholm operators are invertible). Thus,

F : [0; 1℄! A

k

; t 7! P

k

f(t)

g

P

k

+Q

k

13



is a 
ontinuous fun
tion with

F (0) =

�

PA

h

P +Q 0

0 I

k�1

�

and F (1) =

�

I 0

0 I

k�1

�

all values of whi
h are Fredholm operators (re
all that P

k

BQ

k

and Q

k

BP

k

are


ompa
t for all band-dominated operators B). From the 
ontinuity of the index

we �nally 
on
lude that

indF (0) = ind

�

PA

h

P +Q 0

0 I

k�1

�

= ind

�

I 0

0 I

k�1

�

= indF (1);

when
e ind (PA

h

P +Q) = ind

+

A

h

= 0.

Remark: The argument of this se
tion 
an also be expressed in K-theoreti


terms. Namely, 
onsider the quotient algebra A

1

=K. Sin
e K

1

(A

1

) = 0, the six

term exa
t sequen
e of K-theory shows that K

1

(A

1

=K) = Z, with the isomor-

phism being implemented by the Fredholm index. The 
ontinuity of the limit

operation expressed by Proposition 2.6 shows that the assignment

U 7! plus-index of a plus-limit operator of U

gives a homomorphism K

1

(A

1

=K) ! Z, and to 
he
k that it agrees with the

Fredholm index it suÆ
es to 
he
k one example, the generator of K

1

(A

1

=K)

given by [V

1

℄.

3 Proof of Theorem 1.3

Assertion (a). Let A be a tridiagonal unitary operator on l

2

(Z

+

) with matrix

representation

A =

0

B

B

�

a

0

b

1




1

a

1

b

2




2

a

2

b

3

.

.

.

.

.

.

.

.

.

1

C

C

A

with respe
t to the standard basis of l

2

(Z

+

).

We 
hoose unimodular numbers u

n

and v

n

su
h that u

1

a

0

v

1

as well as all num-

bers u

n+1




n

v

n

and u

n

b

n

v

n+1

are non-negative, and we set U := diag (u

1

; u

2

; : : :)

and V := diag (v

1

; v

2

; : : :). Then U and V are unitary operators, and T := UAV

is a unitary tridiagonal operator

T =

0

B

B

�

�

0

�

1




1

�

1

�

2




2

�

2

�

3

.

.

.

.

.

.

.

.

.

1

C

C

A
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with �

0

; �

n

; 


n

2 R

+

for all positive integers n.

Consider the entries of the main diagonals of TT

�

= I and T

�

T = I. The

�rst of these entries are equal to

�

2

0

+ �

2

1

= 1 = �

2

0

+ 


2

1

;

when
e �

1

= 


1

due to the non-negativity of �

1

and 


1

. The se
ond pair of these

entries is




2

1

+ j�

1

j

2

+ �

2

2

= 1 = �

2

1

+ j�

1

j

2

+ 


2

2

;

when
e �

2

= 


2

. Pro
eeding in this way we see that T is ne
essarily of the form

T =

0

B

B

�

�

0

�

1

�

1

�

1

�

2

�

2

�

2

�

3

.

.

.

.

.

.

.

.

.

1

C

C

A

:

We 
laim that, if �

1

6= 0, then �

2

= 0. Indeed, the 12-entry of TT

�

= I equals

�

0

�

1

+ �

1

�

1

= 0, when
e �

1

= ��

0

. Thus, the �rst and the se
ond entry

on the main diagonal of TT

�

= I are a
tually given by j�

0

j

2

+ �

2

1

= 1 and

�

2

1

+ j�

1

j

2

+ �

2

2

= �

2

1

+ j�

0

j

2

+ �

2

2

= 1, respe
tively. These equalities imply that

�

2

= 0.

Consequently, there is either a unitary 1 � 1-blo
k (if �

1

= 0) or a unitary

2� 2-blo
k (if �

1

6= 0 and hen
e �

2

= 0) in the upper left 
orner of T . Applying

the same arguments to the remaining part of T (whi
h evidently also 
an be

identi�ed with a unitary tridiagonal operator on l

2

(Z

+

)), we obtain assertion (a)

of Theorem 1.3.

Assertion (b). Let A be a unitary band operator on l

2

(Z

+

) with matrix repre-

sentation

A =

0

B

B

�

A

0

B

1

C

1

A

1

B

2

C

2

A

2

B

3

.

.

.

.

.

.

.

.

.

1

C

C

A

with respe
t to the standard basis of l

2

(Z

+

) where the A

n

; B

n

and C

n

are k� k-

blo
ks of the same blo
k size k.

We 
hoose unitary k�k matri
es U

n

and V

n

su
h that the matrix U

1

A

0

V

1

and

all matri
es U

n+1

C

n

V

n

and U

n

B

n

V

n+1

with n � 1 be
ome non-negative (
hoose

U

1

:= I and use the polar de
omposition to de�ne su

essively V

1

; U

2

; V

2

; U

3

; : : :)

and set U

(1)

:= diag (U

1

; U

2

; : : :) and V

(1)

:= diag (V

1

; V

2

; : : :). Then U

(1)

and V

(1)

are unitary operators, and T

1

:= U

(1)

AV

(1)

is a unitary tridiagonal operator, the
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k � k blo
k entries of whi
h we denote by A

n

; B

n

and C

n

again, i.e.

T

1

=

0

B

B

�

A

0

B

1

C

1

A

1

B

2

C

2

A

2

B

3

.

.

.

.

.

.

.

.

.

1

C

C

A

;

where now A

0

, B

n

and C

n

are self-adjoint and non-negative. The upper left

N �N 
orner of T

1

T

�

1

= I is A

2

0

+B

2

1

= I. Hen
e, the matrix A

0

is a 
ontra
tion,

B

1

is equal to S

0

:= (I � A

2

0

)

1=2

, and the operator

W

1

:=

0

B

B

�

A

0

S

0

0

S

0

�A

0

0

0 0 I

.

.

.

1

C

C

A

is unitary. Further we get as in the proof of part (a) that C

1

= B

1

. Thus, we

have

A

(1)

:= W

1

T

1

=

0

B

B

�

A

0

S

0

0

S

0

�A

0

0

0 0 I

.

.

.

1

C

C

A

0

B

B

�

A

0

S

0

S

0

A

1

B

2

C

2

A

2

B

3

.

.

.

.

.

.

.

.

.

1

C

C

A

=

0

B

B

�

I A

0

S

0

+ S

0

A

1

S

0

B

2

0

0 I � A

2

0

� A

0

A

1

�A

0

B

2

0

0 C

2

A

2

B

3

.

.

.

.

.

.

.

.

.

1

C

C

A

Being the produ
t of unitary operators, the operator A

(1)

is unitary, too. Thus,

multiplying the �rst row of this operator by the �rst 
olumn of its adjoint, we

get

I + (A

0

S

0

+ S

0

A

1

)(A

0

S

0

+ S

0

A

1

)

�

+ (S

0

B

2

)(S

0

B

2

)

�

= I

when
e

A

0

S

0

+ S

0

A

1

= 0 and S

0

B

2

= 0:

Thus, A

(1)

is a
tually a unitary operator of the form

0

B

B

�

I 0 0 0

0 A

0

1

B

0

2

0

0 C

2

A

2

B

3

.

.

.

.

.

.

.

.

.

1

C

C

A

with A

0

1

:= I �A

2

0

�A

0

A

1

and B

0

2

:= �A

0

B

2

, and the operator A 
an be written

as

A = U

�

(1)

W

�

1

A

(1)

V

�

(1)

:
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Now we repeat the same arguments to the se
ond blo
k 
olumn of the unitary

operator A

(1)

. That is, we 
hoose unitary k�k blo
k operators U

(2)

and V

(2)

su
h

that

T

2

:= U

(2)

A

(1)

V

(2)

=

0

B

B

�

I 0 0 0

0 A

0

1

B

0

2

0

0 C

2

A

2

B

3

.

.

.

.

.

.

.

.

.

1

C

C

A

with non-negative matri
es A

0

1

, B

0

2

, B

n

and C

n

, and we set S

1

:= (I � (A

0

1

)

2

)

1=2

and

W

2

:=

0

B

B

�

A

0

1

S

1

0

S

1

�A

0

1

0

0 0 I

.

.

.

1

C

C

A

:

Then W

2

is an elementary unitary operator, A

(2)

:= T

2

W

2

is a unitary operator

of the form

0

B

B

B

B

�

I 0 0 0 0 0

0 I 0 0 0 0

0 0 A

0

2

B

3

0 0

0 0 C

0

3

A

3

B

4

0

.

.

.

.

.

.

.

.

.

1

C

C

C

C

A

;

and

A = U

�

(1)

W

�

1

U

�

(2)

A

(2)

W

�

2

V

�

(2)

V

�

(1)

:

Now we deal with the third row of A

(2)

(by operating from the left hand side

again), after this with its forth 
olumn (from the right hand side) et
. What we

�nally get is that A =

~

U

~

V where

~

U and

~

V are diagonal operators

~

U := diag (

~

U

1

;

~

U

2

; : : :) and

~

V := diag (

~

V

1

;

~

V

2

; : : :)

with a unitary k � k matrix

~

V

1

and with unitary 2k � 2k matri
es

~

U

n

(n � 1)

and

~

V

n

(n � 2). Thus,

~

U and

~

V are elementary unitary operators on l

2

(Z

+

).
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