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Abstrat

The Fredholmness of a band-dominated operator on l

2

(Z) is losely

related with the invertibility of its limit operators: the operator is Fredholm

if and only if eah of its limit operators is invertible and if the norms of

their inverses are uniformly bounded. The goal of the present note is to

show how the Fredholm index of a Fredholm band-dominated operator an

be determined in terms of its limit operators.

1 Introdution and results

We will work on the Hilbert spae l

2

(Z) and write L(l

2

(Z)) for the C

�

-algebra

of all linear bounded operators on l

2

(Z). An operator A 2 L(l

2

(Z)) with matrix

representation (a

ij

) with respet to the standard basis of l

2

(Z) is a band operator

if there is an integer k suh that a

ij

= 0 whenever ji � jj > k. The losure in

L(l

2

(Z)) of the set of all band operators is a C

�

-subalgebra of L(l

2

(Z)) whih

we denote by A(Z). This is the same as the rough algebra of the oarse spae

Z whih is disussed in [11℄. The elements of A(Z) are alled band-dominated

operators.

Reall further that an operator A 2 L(l

2

(Z)) is said to be a Fredholm operator

if its kernel kerA := fx 2 l

2

(Z) : Ax = 0g and its okernel okerA := l

2

(Z)=imA

are �nite-dimensional linear spaes, and that in this ase the number

indA := dimkerA� dimokerA

is alled the Fredholm index of A.

In [10℄, a riterion for the Fredholmness of a band-dominated operator A in

terms of the limit operators of A is derived. To restate this result, let V

k

2

L(l

2

(Z)) stand for the operator of shift by k 2 Z,

(V

k

x)(n) := x(n� k); n 2 Z:

Further, let H stand for the set of all sequenes h : N ! Z whih tend to in�nity

in the sense that, for eah R > 0, there is an N 2 N suh that jh(n)j � R

for all n � N . An operator A

h

is alled a limit operator of A 2 L(l

2

(Z)) with
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respet to the sequene h 2 H if V

�h(n)

AV

h(n)

tends

�

-strongly to A

h

as n!1.

Clearly, every operator A an have at most one limit operator with respet to a

given sequene h 2 H, whih justi�es this notation. The set �

op

(A) of all limit

operators of a given operator A is the operator spetrum of A. The operator

spetrum splits into

�

op

(A) = �

+

(A) [ �

�

(A)

where �

+

(A) and �

�

(A) stand for the sets of all limit operators of A whih

orrespond to sequenes tending to +1 and to �1, respetively. It is also lear

that every limit operator of a ompat operator is 0, and it is not hard to see

that every limit operator of a Fredholm operator is invertible (see [10℄). It is a

basi result of [10℄ that the operator spetrum of a band-dominated operator is

rih enough in order to guarantee the reverse impliations.

Theorem 1.1 Let A be a band-dominated operator. Then

(a) every sequene h 2 H possesses a subsequene g suh that the limit operator

A

g

exists.

(b) the operator A is ompat if and only if �

op

(A) = f0g.

() the operator A is Fredholm if and only if eah of its limit operators is invertible

and if the norms of their inverses are uniformly bounded.

The questions of whether and how the Fredholm index of a band-dominated

Fredholm operator an be expressed in terms of its limit operators are left open

in [10℄. It is the goal of this note to answer these questions.

Let Z

+

and Z

�

stand for the sets of the non-negative and negative integers,

and write P and Q for the orthogonal projetions from l

2

(Z) onto l

2

(Z

+

) and

l

2

(Z

�

), respetively. (We identify l

2

(Z

+

) and l

2

(Z

�

) with subspaes of l

2

(Z) in

the obvious way.) If A is a band-dominated operator, then the operators PAQ

and QAP are ompat (they are of �nite rank if A is a band operator). Hene,

the operators A � (PAP + Q)(P + QAQ) and A � (P + QAQ)(PAP + Q) are

ompat for every band-dominated operator A, and this shows that a band-

dominated operator A is Fredholm if and only if both operators PAP + Q and

P + QAQ are Fredholm. In this ase, we all ind

+

A := ind (PAP + Q) and

ind

�

A := ind (P +QAQ) the plus-index and the minus-index of A. Evidently,

indA = ind

+

A+ ind

�

A

for every Fredholm band-dominated operator A. The surprisingly simple answer

to the index questions posed above is as follows.

Theorem 1.2 Let A be a Fredholm band-dominated operator. Then

(a) for all B 2 �

�

(A),

ind

�

(B) = ind

�

(A);
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(b) all operators in �

+

(A) have the same plus-index, and all operators in �

�

(A)

have the same minus-index.

() for arbitrarily hosen operators B

+

2 �

+

(A) and B

�

2 �

�

(A),

indA = ind

+

B

+

+ ind

�

B

�

: (1)

So we an think of the plus- and the minus-index of A as loal indies at +1

and �1.

To mention at least one example in whih the identity (1) implies an expliit

and e�etive formula for the omputation of the Fredholm index, we onsider

band-dominated operators with slowly osillating oeÆients. These are the norm

limits of band operators of the form

P

k

n=�k

a

n

V

n

where the a

n

I are operators of

multipliation by slowly osillating funtions. By de�nition, a funtion a 2 l

1

(Z)

is slowly osillating if

lim

n!�1

ja(n+ 1)� a(n)j = 0;

and the operator aI of multipliation by a is de�ned by (ax)(n) := a(n)x(n). In

[10℄, it has been shown that every limit operator A

h

of a band-dominated operator

A with slowly osillating oeÆients is shift invariant. Thus, there is a ontinuous

funtion a

h

on the unit irle T suh that A

h

is just the Laurent operator L(a

h

).

Reall that every funtion a 2 C(T) indues a linear bounded Laurent operator

L(a) on l

2

(Z) by (L(a)x)(n) :=

P

k2Z

a

n�k

x(n) where a

n

refers to the nth Fourier

oeÆient of a. The Laurent operator L(a) is invertible if and only if the funtion

a is invertible in C(T). Thus, Theorem 1.1 yields an e�etive riterion for the

Fredholmness of band-dominated operators with slowly osillating oeÆients.

Moreover, the ompression PL(a)P of the Laurent operator L(a) onto l

2

(Z

+

)

is the Toeplitz operator T (a), whih is Fredholm if and only if its generating

funtion a is invertible in C(T), and whih has minus the winding number of a

with respet to the origin as its index (see [2, 3, 6℄, for example). Thus, also

the plus- and minus-index of Fredholm band-dominated operators with slowly

osillating oeÆients an be e�etively determined.

To prove Theorem 1.2 we initially attempted to show that the unitary group

of the C

�

-algebra of the band-dominated operators on l

2

(Z

+

) is path onneted.

(Notie that this is de�nitely wrong for the unitary group of the band-dominated

operators on l

2

(Z). Indeed, the plus-index of the unitary operator V

1

is -1,

whereas the plus-index of the identity operator is 0. Sine the plus-index is a

ontinuous funtion on the set of the Fredholm band-dominated operators, the

operators V

1

and I annot be onneted by a ontinuous path in that set.) Our

attempt failed (and we do not know up to now whether this group is onneted),

and the �nal proof employs instead a K-theory argument whih shows that this

unitary group is at least `stably' path onneted. However, we obtained two par-

tial results whih might be of independent interest. For, we all an operator on

l

2

(Z

+

) elementary if its matrix representation with respet to the standard basis
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of l

2

(Z

+

) is of the form

diag (A

1

; A

2

; A

3

; : : :)

with bloks A

n

of k

n

� k

n

-matries on the main diagonal.

Theorem 1.3 (a) Every unitary tridiagonal operator on l

2

(Z

+

) is elementary

with bloks of size 1� 1 or 2� 2.

(b) Every unitary band operator on l

2

(Z

+

) is the produt of two elementary uni-

tary band operators.

Observe that these results imply that every unitary band operator on l

2

(Z

+

) an

be onneted with the identity operator by a ontinuous path running through

the set of the unitary band operators. This is a simple onsequene of the path

onnetedness of the unitary group of the algebra of all omplex k � k matries.

The following setions are devoted to the proofs of Theorems 1.2 and 1.3.

2 Proof of Theorem 1.2

Our strategy to prove Theorem 1.2 is as follows. Let J

+

be the ideal of A(Z)

generated by P . If A is a Fredholm band-dominated operator, then PAP +Q is

a Fredholm operator in the unitalization A

1

of J

+

. We would like to show that

ind(PAP +Q) = ind(PA

h

P +Q)

for every sequene h tending to +1 for whih the limit operator A

h

exists; and

a simple redution shows that it is enough to prove that the right-hand side

vanishes if the left-hand side does. Suppose then that PAP +Q has zero index;

then it is a ompat perturbation of an invertible in A

1

. If we knew that the

group of invertibles in the C

�

-algebra A

1

was path onneted, then we ould

produe a ontinuous path of Fredholm operators in A

1

joining PAP +Q to the

identity. Taking limit operators (perhaps with respet to a suitable subsequene

of h) produes a ontinuous path of Fredholm operators joining PA

h

P + Q to

the identity, thus showing that the latter operator has index 0.

In fat, we do not know whether the group of invertibles of A

1

is onneted;

but we an prove that the K-theory group K

1

(A

1

) vanishes. This implies that

any invertible in A

1

an be onneted to the identity after `stabilization' (taking

the diret sum with the identity in a matrix algebra), and that is enough to arry

out the argument skethed above.

This K-theory alulation uses tehniques whih are well known in the study

of index theory on open manifolds and the oarse Baum{Connes onjeture. We

�rst show that the algebra A(Z) an be identi�ed with a rossed produt of l

1

(Z)

by the group Z. The Pimsner-Voiulesu exat sequene allows us to ompute the

K

1

-group of this rossed produt. (This alulation is essentially due to Yu [13℄;

ompare also [11℄, Leture 4.) Then we plug in this result into a Mayer-Vietoris

exat sequene to obtain that the K

1

-group of J

+

is f0g.
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2.1 The algebra A(Z) as a rossed produt

We start with realling some fats on rossed produts and redued rossed prod-

uts where we follow [1, 4, 8℄. We will exlusively onsider C

�

-dynamial systems

(B; G; �) whih onsist of a C

�

-algebraA, a disrete group G, and a group homo-

morphism � : G! AutB, s 7! �

s

. A pair (�; U) onsisting of a

�

-representation

� : B ! L(H) of B and a unitary representation U : G ! L(H), t 7! U

t

of G on the same Hilbert spae H, is alled a ovariant representation of the

C

�

-dynamial system (B; G; �) if the ovariane ondition

U

t

�(B)U

�

t

= �(�

t

(B)) for all B 2 B and t 2 G

is satis�ed. A speial lass of ovariant representations is obtained by taking the

tensor produt of a

�

-representation of B by the left regular representation of G

whih is de�ned as follows. Given a

�

-representation � : B ! L(H) of B, let

l

2

(G; H) refer to the Hilbert spae of all square summable funtions x : G! H

with norm kxk

2

:=

P

t2G

kx(t)k

2

. Then one has a ovariant representation (~�; U)

of (B; G; �) whih ats at x 2 l

2

(G; H) by

(~�(B)x)(s) := �(�

�1

s

(B))(x(s)) and (U

t

x)(s) := x(t

�1

s)

for B 2 B and s; t 2 G. If � is a faithful representation of B, then the smallest

C

�

-subalgebra of L(l

2

(G; H)) whih ontains all operators ~�(B) with B 2 B as

well as all operators U

t

with t 2 G is independent of the onrete hoie of �.

This algebra is alled the redued rossed produt of B by G and is denoted by

B�

�r

G ([8℄, Theorem 7.7.5). Moreover, if the group G is amenable (for example,

if G is ommutative), then the redued rossed produt B �

�r

G oinides with

the rossed produt B �

�

G ([8℄, Theorem 7.7.7 and [4℄, Corollary VII.2.2).

Now we onsider the speial dynamial system (l

1

(Z); Z; �) where �

k

= �(k),

k 2 Z, ats on a 2 l

1

(Z) by

(�

k

(a))(n) = a(n� k); n 2 Z: (2)

Proposition 2.1 For the dynamial system (l

1

(Z); Z; �) with � spei�ed by (2),

one has

l

1

(Z)�

�

Z = l

1

(Z)�

�r

Z

�

=

A(Z):

Proof. We have already mentioned that the �rst identity holds in general for

produts by amenable groups. So we are left with showing that the algebra A(Z)

is

�

-isomorphi to the redued rossed produt l

1

(Z)�

�r

Z.

The mapping � whih assoiates with every sequene a 2 l

1

(Z) the operator

aI 2 L(l

2

(Z)) of multipliation by a represents the C

�

-algebra l

1

(Z) faithfully.

This representation indues a ovariant representation of the dynamial system

(l

1

(Z); Z; �) on the Hilbert spae H = l

2

(Z; l

2

(Z)) via

(~�(a)x)(s) := �(�

�1

s

(a))(x(s)) and (U

t

x)(s) := x(s� t)
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where a 2 l

1

(Z) and t 2 Z. We identify l

2

(Z; l

2

(Z)) with l

2

(Z�Z) via x(s; n) :=

(x(s))(n). Then we an identify ~�(a) and U

t

with the operators

(~�(a)x)(s; n) := a(n + s)x(s; n) and (U

t

x)(s; n) := x(s� t; n): (3)

Let C refer to the smallest C

�

-subalgebra of L(l

2

(Z � Z)) whih ontains all

operators ~�(a) and U

t

with a 2 l

1

(Z) and t 2 Z, given by (3). This algebra is

�

-isomorphi to the redued rossed produt l

1

(Z)�

�r

Z as quoted above, and

we laim that it is also

�

-isomorphi to the algebra A(Z) of the band-dominated

operators on l

2

(Z). For n 2 Z, let

H

n

:= fx 2 l

2

(Z� Z) : x(s; m) = 0 whenever m 6= ng:

We identify l

2

(Z� Z) with the orthogonal sum �

n2Z

H

n

suh that x 2 l

2

(Z� Z)

is identi�ed with �h

n

2 �H

n

if x(s; n) = h

n

(s). From (3) we onlude that eah

spae H

n

is invariant with respet to eah operator C 2 C. Hene, eah operator

C 2 C orresponds to a diagonal matrix operator diag (: : : ; C

n

; C

n+1

; : : :) with

respet to the deomposition of l

2

(Z�Z) into the orthogonal sum of its subspaes

H

n

. In partiular, C

n

is nothing but the restrition of C onto H

n

. Let C

n

denote

the C

�

-algebra of all restritions of operators in C onto H

n

.

It is lear that eah of the spaes H

n

is isometri to l

2

(Z) with the isometry

given by

J

n

: H

n

! l

2

(Z); (J

n

x)(s) := x(s; n):

Thus, J

n

C

n

J

�1

n

is a C

�

-subalgebra of L(l

2

(Z)) whih we denote by B

n

. Clearly,

for a 2 l

1

(Z), the operator J

n

~�(a)J

�1

n

is just the operator �(�

n

(a)), whereas

J

n

U

t

J

�1

n

is the shift operator V

t

. Sine �(�

�n

(a)) = V

n

�(a)V

�

n

and V

t

= V

n

V

t

V

�

n

,

the mapping B 7! V

n

BV

�n

is a

�

-isomorphism from B

n

onto A(Z). Consequently,

the mapping

A(Z)! C; A 7! diag (: : : ; J

�1

n

V

�

n

AV

n

J

n

; : : :)

is a

�

-isomorphism.

2.2 The K

1

-group of A(Z).

To ompute the K

1

-group of the algebra A(Z) we will make use of the fat that

A(Z) is

�

-isomorphi to the rossed produt l

1

(Z)�

�

Z by Proposition 2.1. The

K-theory of rossed produts by Z is dominated by the Pimsner-Voiulesu exat

sequene ([9℄, see also [4℄, Theorem VIII.5.1) whih we restate below. Reall in

this onnetion that every automorphism � of a C

�

-algebra B indues a group

homomorphism from Z into AutB by n 7! �

n

whih we denote by � again.
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Theorem 2.2 (The Pimsner-Voiulesu exat sequene.) Let � be an au-

tomorphism of the C

�

-algebra B. Then there is a yli six term exat sequene

K

0

(B)

id

�

��

�

����! K

0

(B) ���! K

0

(B �

�

Z)

x

?

?

?

?

y

K

1

(B �

�

Z)  ��� K

1

(B)

id

�

��

�

 ���� K

1

(B)

(4)

We wish to apply this exat sequene to the algebraA(Z) = l

1

(Z)�

�

Z, i. e. with

B = l

1

(Z). Sine l

1

(Z) is a von Neumann algebra, one has K

1

(l

1

(Z)) = f0g

([12℄, Exerise 8.14). Thus, (4) beomes

K

0

(l

1

(Z))

id

�

��

�

����! K

0

(l

1

(Z)) ���! K

0

(A(Z))

x

?

?

?

?

y

K

1

(A(Z))  ��� f0g  ��� f0g

(5)

The K

0

-group of l

1

(Z). The K

0

-group of the algebra l

1

(Z) oinides with

the group of all bounded funtions from Z into Z whih we denote by Z

Z

b

. Sine

we have not found an expliit referene of this result, and for the reader's onve-

niene, we inlude its proof here. Again we start with realling the basi steps in

the de�nition of the K

0

-group of a C

�

-algebra, where we follow [12℄, Chapter 3.

For n a positive integer and B a unital C

�

-algebra, let P

n

(B) stand for the

set of all projetions (i.e. self-adjoint idempotents) in the algebra B

n�n

of all

n � n matries with entries in B, and set P

1

(B) := [

n

P

n

(B). One de�nes a

binary operation � and a relation � on P

1

(B) as follows. For p 2 P

n

(B) and

q 2 P

m

(B), one sets

p� q := diag (p; q) 2 P

n+m

(B);

and one writes p � q if there is an element v 2 B

m�n

suh that p = v

�

v and

q = vv

�

. Thus, if both p and q belong to P

n

(B) for some n, then p � q if

and only if p and q are Murray - von Neumann equivalent. The following is

Proposition 2.3.2 in [12℄.

Proposition 2.3 Let p; q; r; p

0

; q

0

2 P

1

(B) for some unital C

�

-algebra B. Then

(a) p � p� 0

n�n

.

(b) If p � p

0

and q � q

0

, then p� q � p

0

� q

0

.

() p� q � q � p.

(d) If p; q 2 P

n

(B) and pq = 0, then p+ q 2 P

n

(B) and p+ q � p� q.

(e) (p� q)� r � p� (q � r).

Let D(B) := P

1

(B)= �, write [p℄

�

for the equivalene lass of p 2 P

1

(B) in

D(B), and de�ne an operation + on D(B) by [p℄

�

+ [q℄

�

:= [p� q℄

�

. Then D(B)
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beomes an abelian semigroup, and the Grothendiek group of D(B) is alled the

K

0

-group of B.

Now we speify B = l

1

(Z) and let P 2 P

1

(B). Then P 2 P

k

(l

1

(Z)) =

P(l

1

(Z)

k�k

) for some k. Sine l

1

(Z)

k�k

= l

1

(Z; C

k�k

), we an think of P as

a sequene of projetions in C

k�k

. Conversely, eah sequene of projetions in

C

k�k

determines an element of P

k

(l

1

(Z)).

For P 2 P(l

1

(Z; C

k�k

)), let rankP be the sequene

Z! Z

+

; n 7! rankP (n):

Clearly, this sequene is bounded by k and, onversely, every bounded sequene

from Z into Z

+

is the rank of a ertain projetion in P

1

(l

1

(Z)).

We laim that, if P; Q 2 P

1

(l

1

(Z)), then

P � Q () rankP = rankQ: (6)

Sine � is an equivalene relation and by Proposition 2.3 (a), we an assume

without loss of generality that P; Q 2 P

k

(l

1

(Z)) with some positive integer

k. Then the impliation ( in (6) an be seen as follows. If the matries

P (n); Q(n) 2 P(C

k�k

) have rank l � k, then there are unitary operators U

n

and V

n

suh that

U

�

n

P (n)U

n

= diag (1; : : : ; 1

| {z }

l

; 0; : : : ; 0) = V

�

n

Q(n)V

n

:

De�ne W 2 l

1

(Z; C

k�k

) by W (n) := V

n

U

�

n

. Then W is a unitary element

in l

1

(Z; C

k�k

), and P = W

�

QW . Hene, the projetions P and Q are uni-

tarily equivalent, whih implies their Murray - von Neumann equivalene ([12℄,

Proposition 2.2.2).

For the reverse impliation in (6), let P; Q 2 P(l

1

(Z; C

k�k

)) and P � Q.

Then P (n) � Q(n) for every n 2 Z. By elementary linear algebra, this implies

that rankP (n) = rankQ(n) and, hene, rankP = rankQ ([12℄, Exerise 2.9).

This proves (6), and from the de�nition of the addition � in P

1

(B) we on-

lude that D(l

1

(Z)) is isomorphi to the semigroup of all bounded sequenes

from Z into Z

+

, provided with the operation of pointwise addition. Passing to

the Grothendiek group of this semigroup, we get

K

0

(l

1

(Z))

�

=

Z

Z

b

: (7)

The mapping id

�

� �

�

and its kernel. K-theory is funtorial, i.e. given

C

�

-algebras B and C and a

�

-homomorphism ' : B ! C, there is a unique group

homomorphism '

�

: K

0

(B)! K

0

(C) suh that

'

�

: [p℄

�

7! ['(p)℄

�

for p 2 P

1

:

8



Here, '(p) is de�ned as follows: the mapping ' extends to a

�

-homomorphism

from B

k�k

into C

k�k

by

' : (b

ij

)

k

i; j=1

7! ('(b

ij

))

k

i; j=1

;

and sine ' maps projetions to projetions, it maps P

1

(B) into P

1

(C).

Thus, in our onrete setting, the mapping

id

�

: K

0

(l

1

(Z))! K

0

(l

1

(Z))

whih is indued by the idential mapping on l

1

(Z) is just the idential mapping

on the assoiated K

0

-groups. It is also lear that, still under the identi�ation of

l

1

(Z)

k�k

with l

1

(Z; C

k�k

), the mapping

� : P

1

(l

1

(Z))! P

1

(l

1

(Z)) (8)

ats as the shift operator. Moreover, the equivalene (6) implies that, for P; Q 2

P

1

(l

1

(Z)),

P � Q () �(P ) � �(Q):

Thus, the mapping (8) is ompatible with the relation �, whih shows that �

indues the shift operator on D(l

1

(Z))

�

=

Z

N

b

. This �nally implies that �

�

ats

as the shift operator on K

0

(l

1

(Z))

�

=

Z

Z

b

.

Consequently, the kernel of the group homomorphism id

�

� �

�

onsists of all

shift invariant sequenes in Z

Z

b

, i.e. of all onstant sequenes. The subgroup of

Z

Z

b

of all onstant sequenes is isomorphi to Z; so what we get is

ker (id

�

� �

�

)

�

=

Z: (9)

Identi�ation of K

1

(A(Z)). The piture we have obtained so far is

Z

Z

b

id

�

��

�

����! Z

Z

b

���! K

0

(A(Z))

x

?

?

�

?

?

y

K

1

(A(Z))

�

 ��� f0g  ��� f0g:

(10)

Sine group homomorphisms map the zero element to the zero element, we have

im � = f0g, whih implies that ker � = f0g due to the exatness of (10) at

K

1

(A(Z)). Further, by (9) and sine (10) is exat at its left upper orner, we

have im�

�

=

Z. Hene, � is a injetive group homomorphism on K

1

(A(Z)) with

range Z. Summing up, we �nd that

K

1

(A(Z))

�

=

Z: (11)

9



2.3 The K

1

-group of A

�

.

Following [7℄ we now split the algebra A(Z) into two subalgebras A

�

whih

essentially ontain the band-dominated operators on Z

�

, and we ompute their

respetive K

1

-groups. The basi devie for this omputation is the Mayer-Vietoris

exat sequene whih an be found in the following form in [7℄, Setion 3, lemma

1 (for instane).

Theorem 2.4 (The Mayer-Vietoris exat sequene.) Let B be a C

�

-algebra

and let I and J be losed ideals of B suh that I+J = B. Then there is a yli

six term exat sequene

K

0

(I \ J ) ���! K

0

(I)�K

0

(J ) ���! K

0

(B)

x

?

?

?

?

y

K

1

(B)  ��� K

1

(I)�K

1

(J )  ��� K

1

(I \ J ):

(12)

Let J

+

denote the smallest losed subalgebra of the algebra A(Z) of all band-

dominated operators on Z whih ontains the algebra PA(Z)P and the ideal

K of the ompat operators on l

2

(Z). We further de�ne J

�

by replaing P by

Q in that de�nition. Then J

+

and J

�

are losed ideals of A(Z) whih satisfy

J

+

+ J

�

= A(Z) and J

+

\ J

�

= K. Indeed, the inlusion K � J

+

\ J

�

follows from the de�nitions. Conversely, if K 2 J

+

\ J

�

, then PKQ, QKP and

QKQ are ompat sine K 2 J

+

, and PKP is ompat sine K 2 J

�

. Hene,

K = PKP + PKQ+QKP +QKQ is ompat.

Let further A

+

:= J

�

+ CQ and A

�

:= J

�

+ C P . Then A

+

and A

�

are

C

�

-subalgebras of A(Z) whih are

�

-isomorphi to the (minimal) unitizations of

the ideals J

+

and J

�

, respetively. For, one easily heks that every operator

A 2 A

+

an be written as A = PAP +K +�Q where PAP +K 2 PA(Z)P +K

and � 2 C are uniquely determined, and that

A

+

! J

+

� C ; PAP +K + �Q 7! (PAP +K � �P; �)

is a

�

-isomorphism from A

+

onto the unitization J

+

� C of the ideal J

+

.

Thus, we an apply the Mayer-Vietoris exat sequene with A(Z); J

+

; J

�

and K in plae of B; I; J and I \ J . The K-theory of K is well known,

K

0

(K)

�

=

Z and K

1

(K) = f0g

(Corollary 6.4.2 and Example 8.2.9 in [12℄). Thus, and by (11), the general exat

sequene (12) spei�es to

Z ���! K

0

(J

+

)�K

0

(J

�

) ���! K

0

(A(Z))

x

?

?

?

?

y

Z

�

 ��� K

1

(J

+

)�K

1

(J

�

)



 ��� f0g

10



with ertain group homomorphisms � and . From im = f0g we onlude

that � is injetive. Hene, K

1

(J

+

) � K

1

(J

�

) is isomorphi to a subgroup of

Z. But eah subgroup of Z is either isomorphi to Z or equal to f0g. Suppose

for a moment that K

1

(J

+

) � K

1

(J

�

)

�

=

Z. Sine the ideals J

+

and J

�

are

�

-

isomorphi (a

�

-isomorphism is given by K 7! JKJ where J : l

2

(Z) ! l

2

(Z) is

given by (Jx)(n) := x(�n� 1)), their K

1

-groups are isomorphi, too:

K

1

(J

+

)

�

=

K

1

(J

�

) =: �:

Thus, Z is isomorphi to ���, the diret sum of two opies of �. But Z is singly

generated (by 1, for example), whereas � � � annot be generated by a single

element. This ontradition shows that

K

1

(J

+

)�K

1

(J

�

)

�

=

�� � = f0g;

whene

K

1

(J

+

) = K

1

(J

�

) = f0g:

Finally, the K

1

-groups of a C

�

-algebra and of its unitization oinide (Proposition

8.1.6 and Equality (8.4) in [12℄) whih implies that

K

1

(A

+

)

�

=

K

1

(A

�

) = f0g: (13)

2.4 Indies of band-dominated operators

In this setion, we will prove assertion (a) of Theorem 1.2, whih has assertions

(b) and () as its orollaries. In the ourse of the proof, we will make use of some

of the following elementary properties of the plus- and minus-indies of Fredholm

band-dominated operators.

Proposition 2.5 Let A and B be Fredholm operators in A(Z). Then

(a) ind

�

A is invariant with respet to small perturbations.

(b) ind

�

A is invariant with respet to ompat perturbations.

() ind

�

A

�

= �ind

�

A.

(d) ind

�

AB = ind

�

A+ ind

�

A.

The latter property follows from

PABP +Q = (PAP +Q)(PBP +Q) + ompat:

Further we need the following ontinuity property of limit operators whih is

proved in [10℄.

Proposition 2.6 Let C

n

; C 2 L(l

2

(Z)) be operators with kC

n

�Ck ! 0, and let

the limit operators (C

n

)

g

exist with respet to a given sequene g and for all n.

Then the limit operator C

g

exists, too, and k(C

n

)

g

� C

g

k ! 0.

11



Proof of Theorem 1.2 (a). We abbreviate the C

�

-algebra of all k� k matries

with entries in A(Z)

+

to A

k

and write P

k

and Q

k

for the operators

diag (P; : : : ; P ); diag (Q; : : : ; Q) : A

k

!A

k

:

It is learly suÆient to prove the theorem for the plus-ase where it reads as

follows:

ind

+

A = ind

+

A

h

for all A

h

2 �

+

(A): (14)

It is further suÆient to prove (14) only in the ase when ind

+

A = 0. Indeed, for

the shift operator V

1

one has ind

+

V

1

= �1 and ind

�

V

1

= 1. Thus, if A 2 A(Z)

is a Fredholm operator with plus-index r, then AV

r

1

is a Fredholm operator with

plus-index 0. If the identity (14) holds for all Fredholm operators with vanishing

plus-index, then this implies that

ind

+

(AV

r

1

)

h

= 0 for every limit operator of AV

r

1

:

But, evidently, every limit operator of AV

r

1

is of the form A

h

V

r

1

sine V

1

is shift

invariant. Thus,

ind

+

(A

h

V

r

1

) = 0 for every A

h

2 �

+

(A);

whene, by Proposition 2.5 (d),

0 = ind

+

(A

h

V

r

1

) = ind

+

A

h

+ ind

+

V

r

1

= ind

+

A

h

� r

and, �nally, ind

+

A

h

= r for every limit operator of A in �

+

(A).

So, what we really have to hek is that, for all Fredholm band-dominated

operators A,

ind

+

A = 0 =) ind

+

A

h

= 0 for all A

h

2 �

+

(A): (15)

Let ind

+

A = 0, i.e. ind (PAP + Q) = 0. Let further K be a ompat operator

suh that B := PAP +Q +K 2 A

+

is invertible, and let B = UR be the polar

deomposition of B, i.e. U is a unitary operator inA

1

, and R is a positive de�nite

operator in A

1

. A onsequene of the vanishing of the K

1

-group of A

1

(aording

to (13)) is that U is stably path onneted with the identity operator (see the

De�nition 8.1.3 of the K

1

-group in [12℄). Thus, there is a positive integer k suh

that

�

U 0

0 I

k�1

�

�

h

�

I 0

0 I

k�1

�

in the set of the unitary operators ofA

k

. Here, �

h

denotes homotopy equivalene,

and I

k�1

refers to the identity operator in A

k�1

.

Choose a ontinuous unitary-valued funtion

f

1

: [0; 1℄! A

k

with f

1

(0) =

�

U 0

0 I

k�1

�

; f

1

(1) =

�

I 0

0 I

k�1

�

:

12



Further, let

f

2

: [0; 1℄!A

k

; t 7! (1� t)

�

R 0

0 I

k�1

�

+ t

�

I 0

0 I

k�1

�

and

f

3

: [0; 1℄!A

k

; t 7! (1� t)

�

K 0

0 0

k�1

�

:

Then f

2

is a ontinuous funtion having only positive de�nite operators as its

values, and f

3

is a ontinuous funtion with ompat values. Hene,

f := f

1

f

2

� f

3

: [0; 1℄!A

k

is a ontinuous funtion with

f(0) =

�

U 0

0 I

k�1

��

R 0

0 I

k�1

�

�

�

K 0

0 0

k�1

�

=

�

PAP +Q 0

0 I

k�1

�

and

f(1) =

�

I 0

0 I

k�1

�

;

and all values of that funtion are Fredholm operators (with index 0).

Let now h : N ! Z be a sequene whih tends to +1 and for whih the limit

operator A

h

exists. Then, obviously, the limit operator of P with respet to h

exists, and P

h

= I. Hene, the limit operator of f(0) with respet to h exists,

and

f(0)

h

=

�

A

h

0

0 I

k�1

�

:

We use a Cantor diagonal argument in order to produe a subsequene g of h suh

that the limit operator f(q)

g

exists for every rational number q in [0; 1℄. For, let

q

1

; q

2

; : : : be an enumeration of Q \ [0; 1℄. Then one an �nd a subsequene g

1

of

h suh that f(q

1

)

g

1

exists (reall Theorem 1.1 (a)), further a subsequene g

2

of

g

1

suh that f(q

2

)

g

2

exists, et. The sequene de�ned by g(n) := g

n

(n) has the

desired property.

Sine Q \ [0; 1℄ is dense in [0; 1℄, we onlude from Proposition 2.6 that the

limit operator f(t)

g

exists for every t 2 [0; 1℄ and that

[0; 1℄! A

k

; t 7! f(t)

g

(16)

is a ontinuous funtion with

f(0)

g

=

�

A

h

0

0 I

k�1

�

and f(1)

g

=

�

I 0

0 I

k�1

�

:

Moreover, all values of the funtion (16) are invertible operators (beause limit

operators of Fredholm operators are invertible). Thus,

F : [0; 1℄! A

k

; t 7! P

k

f(t)

g

P

k

+Q

k

13



is a ontinuous funtion with

F (0) =

�

PA

h

P +Q 0

0 I

k�1

�

and F (1) =

�

I 0

0 I

k�1

�

all values of whih are Fredholm operators (reall that P

k

BQ

k

and Q

k

BP

k

are

ompat for all band-dominated operators B). From the ontinuity of the index

we �nally onlude that

indF (0) = ind

�

PA

h

P +Q 0

0 I

k�1

�

= ind

�

I 0

0 I

k�1

�

= indF (1);

whene ind (PA

h

P +Q) = ind

+

A

h

= 0.

Remark: The argument of this setion an also be expressed in K-theoreti

terms. Namely, onsider the quotient algebra A

1

=K. Sine K

1

(A

1

) = 0, the six

term exat sequene of K-theory shows that K

1

(A

1

=K) = Z, with the isomor-

phism being implemented by the Fredholm index. The ontinuity of the limit

operation expressed by Proposition 2.6 shows that the assignment

U 7! plus-index of a plus-limit operator of U

gives a homomorphism K

1

(A

1

=K) ! Z, and to hek that it agrees with the

Fredholm index it suÆes to hek one example, the generator of K

1

(A

1

=K)

given by [V

1

℄.

3 Proof of Theorem 1.3

Assertion (a). Let A be a tridiagonal unitary operator on l

2

(Z

+

) with matrix

representation

A =

0

B

B

�

a

0

b

1



1

a

1

b

2



2

a

2

b

3

.

.

.

.

.

.

.

.

.

1

C

C

A

with respet to the standard basis of l

2

(Z

+

).

We hoose unimodular numbers u

n

and v

n

suh that u

1

a

0

v

1

as well as all num-

bers u

n+1



n

v

n

and u

n

b

n

v

n+1

are non-negative, and we set U := diag (u

1

; u

2

; : : :)

and V := diag (v

1

; v

2

; : : :). Then U and V are unitary operators, and T := UAV

is a unitary tridiagonal operator

T =

0

B

B

�

�

0

�

1



1

�

1

�

2



2

�

2

�

3

.

.

.

.

.

.

.

.

.

1

C

C

A

14



with �

0

; �

n

; 

n

2 R

+

for all positive integers n.

Consider the entries of the main diagonals of TT

�

= I and T

�

T = I. The

�rst of these entries are equal to

�

2

0

+ �

2

1

= 1 = �

2

0

+ 

2

1

;

whene �

1

= 

1

due to the non-negativity of �

1

and 

1

. The seond pair of these

entries is



2

1

+ j�

1

j

2

+ �

2

2

= 1 = �

2

1

+ j�

1

j

2

+ 

2

2

;

whene �

2

= 

2

. Proeeding in this way we see that T is neessarily of the form

T =

0

B

B

�

�

0

�

1

�

1

�

1

�

2

�

2

�

2

�

3

.

.

.

.

.

.

.

.

.

1

C

C

A

:

We laim that, if �

1

6= 0, then �

2

= 0. Indeed, the 12-entry of TT

�

= I equals

�

0

�

1

+ �

1

�

1

= 0, whene �

1

= ��

0

. Thus, the �rst and the seond entry

on the main diagonal of TT

�

= I are atually given by j�

0

j

2

+ �

2

1

= 1 and

�

2

1

+ j�

1

j

2

+ �

2

2

= �

2

1

+ j�

0

j

2

+ �

2

2

= 1, respetively. These equalities imply that

�

2

= 0.

Consequently, there is either a unitary 1 � 1-blok (if �

1

= 0) or a unitary

2� 2-blok (if �

1

6= 0 and hene �

2

= 0) in the upper left orner of T . Applying

the same arguments to the remaining part of T (whih evidently also an be

identi�ed with a unitary tridiagonal operator on l

2

(Z

+

)), we obtain assertion (a)

of Theorem 1.3.

Assertion (b). Let A be a unitary band operator on l

2

(Z

+

) with matrix repre-

sentation

A =

0

B

B

�

A

0

B

1

C

1

A

1

B

2

C

2

A

2

B

3

.

.

.

.

.

.

.

.

.

1

C

C

A

with respet to the standard basis of l

2

(Z

+

) where the A

n

; B

n

and C

n

are k� k-

bloks of the same blok size k.

We hoose unitary k�k matries U

n

and V

n

suh that the matrix U

1

A

0

V

1

and

all matries U

n+1

C

n

V

n

and U

n

B

n

V

n+1

with n � 1 beome non-negative (hoose

U

1

:= I and use the polar deomposition to de�ne suessively V

1

; U

2

; V

2

; U

3

; : : :)

and set U

(1)

:= diag (U

1

; U

2

; : : :) and V

(1)

:= diag (V

1

; V

2

; : : :). Then U

(1)

and V

(1)

are unitary operators, and T

1

:= U

(1)

AV

(1)

is a unitary tridiagonal operator, the
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k � k blok entries of whih we denote by A

n

; B

n

and C

n

again, i.e.

T

1

=

0

B

B

�

A

0

B

1

C

1

A

1

B

2

C

2

A

2

B

3

.

.

.

.

.

.

.

.

.

1

C

C

A

;

where now A

0

, B

n

and C

n

are self-adjoint and non-negative. The upper left

N �N orner of T

1

T

�

1

= I is A

2

0

+B

2

1

= I. Hene, the matrix A

0

is a ontration,

B

1

is equal to S

0

:= (I � A

2

0

)

1=2

, and the operator

W

1

:=

0

B

B

�

A

0

S

0

0

S

0

�A

0

0

0 0 I

.

.

.

1

C

C

A

is unitary. Further we get as in the proof of part (a) that C

1

= B

1

. Thus, we

have

A

(1)

:= W

1

T

1

=

0

B

B

�

A

0

S

0

0

S

0

�A

0

0

0 0 I

.

.

.

1

C

C

A

0

B

B

�

A

0

S

0

S

0

A

1

B

2

C

2

A

2

B

3

.

.

.

.

.

.

.

.

.

1

C

C

A

=

0

B

B

�

I A

0

S

0

+ S

0

A

1

S

0

B

2

0

0 I � A

2

0

� A

0

A

1

�A

0

B

2

0

0 C

2

A

2

B

3

.

.

.

.

.

.

.

.

.

1

C

C

A

Being the produt of unitary operators, the operator A

(1)

is unitary, too. Thus,

multiplying the �rst row of this operator by the �rst olumn of its adjoint, we

get

I + (A

0

S

0

+ S

0

A

1

)(A

0

S

0

+ S

0

A

1

)

�

+ (S

0

B

2

)(S

0

B

2

)

�

= I

whene

A

0

S

0

+ S

0

A

1

= 0 and S

0

B

2

= 0:

Thus, A

(1)

is atually a unitary operator of the form

0

B

B

�

I 0 0 0

0 A

0

1

B

0

2

0

0 C

2

A

2

B

3

.

.

.

.

.

.

.

.

.

1

C

C

A

with A

0

1

:= I �A

2

0

�A

0

A

1

and B

0

2

:= �A

0

B

2

, and the operator A an be written

as

A = U

�

(1)

W

�

1

A

(1)

V

�

(1)

:
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Now we repeat the same arguments to the seond blok olumn of the unitary

operator A

(1)

. That is, we hoose unitary k�k blok operators U

(2)

and V

(2)

suh

that

T

2

:= U

(2)

A

(1)

V

(2)

=

0

B

B

�

I 0 0 0

0 A

0

1

B

0

2

0

0 C

2

A

2

B

3

.

.

.

.

.

.

.

.

.

1

C

C

A

with non-negative matries A

0

1

, B

0

2

, B

n

and C

n

, and we set S

1

:= (I � (A

0

1

)

2

)

1=2

and

W

2

:=

0

B

B

�

A

0

1

S

1

0

S

1

�A

0

1

0

0 0 I

.

.

.

1

C

C

A

:

Then W

2

is an elementary unitary operator, A

(2)

:= T

2

W

2

is a unitary operator

of the form

0

B

B

B

B

�

I 0 0 0 0 0

0 I 0 0 0 0

0 0 A

0

2

B

3

0 0

0 0 C

0

3

A

3

B

4

0

.

.

.

.

.

.

.

.

.

1

C

C

C

C

A

;

and

A = U

�

(1)

W

�

1

U

�

(2)

A

(2)

W

�

2

V

�

(2)

V

�

(1)

:

Now we deal with the third row of A

(2)

(by operating from the left hand side

again), after this with its forth olumn (from the right hand side) et. What we

�nally get is that A =

~

U

~

V where

~

U and

~

V are diagonal operators

~

U := diag (

~

U

1

;

~

U

2

; : : :) and

~

V := diag (

~

V

1

;

~

V

2

; : : :)

with a unitary k � k matrix

~

V

1

and with unitary 2k � 2k matries

~

U

n

(n � 1)

and

~

V

n

(n � 2). Thus,

~

U and

~

V are elementary unitary operators on l

2

(Z

+

).
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