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1 Introdu
tion

In the physi
al papers [1℄{[4℄ there are some interesting propositions about operators

a
ting in Hilbert spa
es. For example in [3℄ there were 
onsidered all bije
tive mappings

on B

s

(H), whi
h preserve the order in both dire
tions. These mappings have been


hara
terized with the help of elementary operators of length 1. In the present paper

we will generalize these results.

It is well known that the order properties of operators in Hilbert spa
es are very

important in mathemati
al physi
s, be
ause they are related to symmetry properties.

If one 
onsiders B

s

(H), the set of all bounded self-adjoint operators in a Hilbert spa
e

H, then B

s

(H) is partially ordered by the relation A � B , (Ax; x) � (Bx; x)

for all x 2 H. Also we 
an 
onsider the set of all positive operators 0 � A � I,

also ordered by the same relation, with the additional mapping A

?

= I � A (the

so-
alled e�e
ts). There is a question how to 
hara
terize the order relation in B

s

(H).

In [4℄ there is des
ribed the form of all bije
tive maps on B

s

(H) whi
h preserve the

order � in both dire
tions. Also in [3℄ it is shown that for dimH = 2 the ?-order

authomorphisms of the e�e
ts on H are indu
ed by unitary or antiunitary operators,

namely as �(A) = U

�

AU (for dimH � 3 this was shown by Wigner).



2

Another question to be 
onsidered is to 
hara
terize operators whi
h map ve
tors

to parallel or to orthogonal ones. For unitary or antiunitary operators this was solved

in [2℄, where it is shown that for unitary operators they must be of the form U = zI,

for antiunitary they must satisfy the equality V

2

= �I. In the present paper we would

like to 
onsider these properies for a wider 
lass of operators. First, in Chapter 3 we


hara
terize the elementary operators of length 1. In Chapter 4 for T 2 B(H) we


onsider the maps of the form �(A) = T

�

AT for all A 2 B(H) (� is an elementary

operator of length 1). We show that � preserves the order in both dire
tions if and

only if the range of T is dense in H, T (H) = H. We also 
hara
terize 
ommutativity

of A and B by showing that AB = BA is equivalent to �(A)�(B) = �(B) � �(A)

if and only if TT

�

= �I (� > 0). We also show that A�(A) = �(A)A if and only

if T = �I (� 2 C ). Finally we show that if T 2 B(H) maps ve
tors to orthogonal

ones (Tx; x) = 0, or to parallel ones Tx = �x (� 2 C ), then T = zI. This is a


hara
terization of identity operator, generalizing the main result of [3℄.

Finally in Chapter 5 we 
onsider some order intervals of self adjoint operators in

Hilbert spa
e. We show that for A;B 2 B

s

(H) with AB = BA and

C :=

1

2

(A+B � jA� Bj)

we have [C;A℄ \ [C;B℄ = fCg. Here [C;A℄ denotes the interval fX : C � X � Ag

(similarly for [C;B℄), and

jDj :=

p

D

�

D for D 2 B

s

(H).

In parti
ular, this implies that for A 2 B

s

(H) A

+

:=

1

2

(A + jAj) is the only positive

element in the order interval [A;A

+

℄. This generalizes the results of [1℄ to in�nite

dimensional 
ase.

2 Notation and terminology

In the sequel let H denote a Hilbert spa
e. By B(H) we denote the ve
tor spa
e of

all bounded endomorphisms on H, and B

s

(H) denotes the ve
tor spa
e of all bounded

self{adjoint operators on H, equiped with the 
anoni
al partial order.

For x; y 2 H, let x
 y 2 B(H) be de�ned as

x
 y(z) = (z; x)y for all z 2 H;

where (�; �) denotes the inner produ
t in H.

For U , V 2 B(H) on the operator algebra B(H) there is de�ned the elementary

operator �

U;V

of length 1 as follows

�

U;V

(A) = UAV for all A 2 B(H):

It is known that �

U;V

2 B(B(H)).
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3 A 
hara
terization of the elementary operators

of length 1

Let U; V 2 B(H). By an easy 
al
ulation we 
an show that

�

U;V

(x
 y) = V

�

x
 Uy

for all x; y 2 H, where V

�

is the adjoint of V .

Let H

b


H := fx
 y : x; y 2 Hg. It is 
lear that

�

U;V

(H

b


H) � H

b


H:

However, this in
lusion relation does not 
hara
terize the elementary operators of

length 1, whi
h is shown by the following example.

Let H be the Eu
lidean ve
tor spa
e C

2

. Then the algebra B(H) 
an be indenti�ed

with the algebra M

2

of all square matri
es 2 � 2. Let the mapping � 2 B(B(H)) be

de�ned as follows: For A = [

a

11

a

12

a

21

a

22

℄ let

�(A) = (a

11

+ 2a

12

+ 3a

21

+ 4a

22

�

"

1 0

0 0

#

= (a

11

+ 2a

12

+ 3a

21

+ 4a

22

)e

1


 e

1

2 H

b


H:

Then obviously �(H

b


H) � H

b


H. Suppose that there would exist R; S 2 M

2

with

�(A) = RAS for all A 2 M

2

. Then we would have

(r

11

a

11

+ r

12

a

21

)s

11

+ (r

11

a

12

+ r

12

a

22

)s

21

= a

11

+ 2a

12

+ 3a

21

+ 4a

22

:

This would imply

r

11

s

11

= 1; r

12

� s

11

= 3)

r

11

r

12

=

1

3

; r

11

� s

21

= 2; r

12

� s

21

= 4;

r

11

r

12

=

2

4

=

1

2

;

whi
h is a 
ontradi
tion. Therefore, the mapping � is not an elementary operator of

length 1.

With the help of H

b


H one 
an 
hara
terize the elementary operators of length 1

as follows.

Theorem 1. Let 0 6= � 2 B(B(H)). Then there are U; V 2 B(H) with � = �

U;V

if and only if the following 
onditions hold

(i) � is 
ontinuous in the topology of pointwise 
onvergen
e on B(H)

(ii) There are mappings �

1

, �

2

: H ! H and x

0

; y

0

2 H with �

1

(x

0

) 6= 0,

�

2

(y

0

) 6= 0 and

�(x
 y) = �

1

(x)
 �

2

(y)

for all x; y 2 H.
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Proof. ) Let � = �

U;V

with U; V 2 B(H). Moreover, let S 2 B(H) and let (S

�

)

be a net in B(H) with S = lim

�

S

�

in the topology of pointwise 
onvergen
e in B(H).

Then for x 2 H we have

SV x = lim

�

S

�

V x and USV x = lim

�

US

�

V x:

Hen
e we also have �(S)x = lim

�

�(S

�

)x.

Therefore � is 
ontinuous in the topology of pointwise 
onvergen
e in B(H). Sin
e

� 6= 0, we have U 6= 0 and V 6= 0. Hen
e there are x

0

; y

0

2 H with Ux

0

6= 0 and

V y

0

6= 0. Consequently, 
ondition (ii) holds with �

1

= V

�

and �

2

= U .

( First we show that the mappings �

1

and �

2

are linear. Let y

0

2 H with

�

2

(y

0

) 6= 0. Hen
e for � 2 C and z

1

; z

2

2 H we have:

�((�z

1

)
 y

0

) = �

1

(�z

1

)
 �

2

(y

0

):

Sin
e (�z

1

)
 y

0

= �(z

1


 y

0

), we have also �((�z

1

)
 y

0

) = ��(z

1


 y

0

) = �(�

1

(z

1

)


�

2

(y

0

)), and we obtain for all x 2 H

(x;�

1

(�z

1

))�

2

(y

0

) = �(x;�

1

(z

1

))�

2

(y

0

) = (x; ��

1

(z

1

))�

2

(y

0

):

Hen
e it follows that �

1

(�z

1

) = ��

1

(z

1

). We have

�(z

1


 y

0

) = �

1

(z

1

)
 �

2

(y

0

);

�(z

2


 y

0

) = �

1

(z

2

)
 �

2

(y

0

)

and

�((z

1

+ z

2

)
 y

0

) = �

1

(z

1

+ z

2

)
 �

2

(y

0

)

Sin
e � is additive and

z

1


 y

0

+ z

2


 y

0

= (z

1

+ z

2

)
 y

0

;

we obtain

�

1

(z

1

+ z

2

)
 �

2

(y

0

) = �

1

(z

1

)
 �

2

(y

0

) + �

1

(z

2

)
 �

2

(y

0

):

Hen
e it follows that

�

1

(z

1

+ z

2

) = �

1

(z

1

) + �

1

(z

2

):

The mapping �

1

is also linear. We 
an show analogously the linearity of �

2

. The

mappings �

1

and �

2

are bounded. Namely for x; y 2 H we have:

kx
 yk = supfk(z; x)yk : z 2 H; kzk � 1g

= supfj(z; x)j : z 2 H; kzk � 1g � kyk = kxk � kyk

Therefore we obtain

k�

1

(x)k k�

2

(y

0

)k = k�(x
 y

0

)k � k�k kxk � ky

0

k:
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Hen
e it follows that

k�

1

(x)k �

k�k ky

0

k

k�

2

(y

0

)k

kxk

for all x 2 H.

Hen
e �

1

is bounded. Analogously we show that �

2

is also bounded. Now we put

V := �

�

1

and U := �

2

. Clearly U; V 2 B(H). Moreover, let

e

� : B(H)! B(H)

be de�ned by

e

�(A) = UAV for all A 2 B(H):

Then we have

e

�(x
 y) = V

�

x
 Uy = �

1

(x)
 �

2

(y) = �(x
 y)

for all x; y 2 H.

It is known that, in the topology of pointwise 
onvergen
e the tensor produ
t

H 
 H, whi
h is the linear span of H

b


H, is dense in B(H) (see [6℄ p.108 and 109).

Hen
e the mappings � and

e

� 
oin
ide on the dense subset H 
 H. Sin
e they are


ontinuous in the topology of pointwise 
onvergen
e, we have

� =

e

� = �

U;V

: 2

4 Equivalen
e in both dire
tions

Let 0 6= T 2 B(H). In the sequel let � be the elementary operator on B(H) with

�(A) = T

�

AT for all A 2 B(H). As it is easy to prove, we have

�(B

s

(H)) � B

s

(H) and �(A) � 0

for all positive A 2 B

s

(H).

For invertible operators T , the following theorem 
an be derived from [4℄, Th. 2:

Theorem 2. Let A;B 2 B

s

(H). The following 
onditions are equivalent

(i) A � B , �(A) � �(B)

(ii) The range of T is dense in H.

Proof. (i))(ii). Assume that T (H) 6= H. Then there is y 2 H with kyk = 1 and

y ? T (H). Let P be the orthogonal proje
tion onto the linear span hyi of y, i.e. we

have P (x) = (x; y)y for all x 2 H. Then there holds

0 = T

�

(2P )T � T

�

IT

and 
onsequently �(2P ) � �(I), where I is the indentity on H.

Now we have

(2Py; y) = 2 and (Iy; y) = 1
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This means that 2P 6� I, whi
h is a 
ontradi
tion with (i). Hen
e T (H) = H.

(ii)! (i). Sin
e � is positive, from A � B it follows that �(A) � �(B).

Now let �(A) � �(B). Then for all x 2 H there holds

(T

�

ATx; x) � (T

�

BTx; x), and 
onsequently (ATx; Tx) � (BTx; Tx):

Let y 2 H. Sin
e we have

T (H) = H;

there exists a sequen
e (x

n

) in H su
h that y = lim

n!1

Tx

n

.

Hen
e we have

(ATx

n

; Tx

n

) � (BTx

n

; Tx

n

)

for all n 2 N . This implies for n!1 : (Ay; y) � (By; y). Hen
e A � B. 2

The following theorem for unitary operators is known (see [4℄, Th 2, Cor 3).

Theorem 3. Let TT

�

= �I with 0 < � 2 R. Then for all A;B 2 B(H) we have

AB = BA, �(A)�(B) = �(B)�(A)

Proof. ) Let AB = BA. Then it follows that

�(A)�(B) = T

�

ATT

�

BT = �T

�

ABT

and

�(B)�(A) = T

�

BTT

�

AT = �T

�

BAT = �T

�

ABT

Hen
e we infer that

�(A)�(B) = �(A)�(B):

( Let now �(A)�(B) = �(B)�(A). Then we have

T

�

ATT

�

BT = T

�

BTT

�

AT

Multiplying by T on the left and by T

�

on the right be obtain

TT

�

ATT

�

BTT

�

= TT

�

BTT

�

ATT

�

This implies

�

3

AB = �

3

BA) AB = BA: 2

Corollary 4. From TT

�

= �I it follows that T (H) = H. Hen
e by Theorem 2 the

operator � preserves in both dire
tions the order relations.
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Example. Let H be the sequen
e spa
e `

2

and T the left{shift operator on H:

T (x

1

; x

2

; : : :) = (x

2

; x

3

; : : :)

for all (x

n

) 2 `

2

.

Then T 2 B(H). As it is easy to prove, we have

T

�

(x

1

; x

2

; : : :) = (0; x

1

; x

2

: : :)

for all (x

n

) 2 `

2

and TT

�

= I. But T is not invertible.

The next theorem generalizes a proposition about the unitary operators (see [2℄,

Theorem 2.3).

Theorem 5. Let 0 6= S 2 B(H), and let S have the following property:

For 0 6= x 2 H there holds (Sx; x) = 0 or Sx = �

x

x with 0 6= �

x

2 C .

Then there exists � 2 C su
h that S = �I.

Proof. From (Sx; x) = 0 for all x 2 H it follows that S = 0. Hen
e there exists an

eigenvalue � 6= 0 and an eigenve
tor x

0

6= 0 with Sx

0

= �x

0

.

Next we show that � is the unique eigenvalue of S. Namely, let Sy = �y with

0 6= y 2 H and � 6= �. Then for all n 2 N the ve
tor y + nx

0

is not an eigenve
tor

of S. In fa
t, assume that S(y +mx

0

) = 
(y +mx

0

) for an m 2 N .

Then it follows that �y +m�x

0

= 
y +m
x

0

, (� � 
)y = m(
 � �)x

0

. Sin
e x

0

and y

0

are lineary independent, we infer that � = 
, � = 
, hen
e � = �, whi
h is a


ontradi
tion. Sin
e for all n 2 N the ve
tor y + nx

0

is not an eigenve
tor of S, there

holds the assumption

(S(y + nx

0

); y + nx

0

) = 0

�y + n�x

0

; y + nx

0

) = 0

�(y; y) + n�(x

0

; y) + �n(y; x

0

) + n

2

�(x

0

; x

0

) = 0

for all n 2 N . From the last equation it follows that � = 0, whi
h is a 
ontradi
tion.

Let M = fx 2 H : Sx = �xg. Then we have H = M �M

?

. Let us assume that

there exists 0 6= u 2M

?

. Then we have for all n 2 N :

S(nu+ x

0

) 6= �(nu+ x

0

):

Let us assume that there is m 2 N su
h that

S(mu+ x

0

) = �(mu+ x

0

):

Hen
e it follows that

mSu+ �x

0

= �mu+ �x

0

;

and 
onsequently u = 0, whi
h is a 
ontradi
tion.



8

Sin
e � is the unique eigenvalue, we have for all n 2 N

(S(nu+ x

0

); nu+ x

0

) = 0; whi
h implies

(nSu+ �x

0

; nu+ x

0

) = 0; and 
onsequently

n

2

(Su; u) + n�(x

0

; u) + n(Su; x

0

) + �(x

0

; x

0

) = 0:

Sin
e the last equation holds for all n 2 N , it follows that � = 0, whi
h is a 
ontradi
-

tion with � 6= 0. Hen
e M

?

= f0g, M = H, and S = �I. 2

From the previously proved theorems we 
an derive the following 
ommutativity

property of the operator �.

Theorem 6. For the elementary operator � we have A�(A) = �(A)A for all

A 2 B(H) if and only if T = �I with � 2 C .

Proof. ) Let z 2 H, kzk = 1 and let P be the orthogonal proje
tion from H onto

the linear span hzi of z. Then the following equation holds:

(�) PT

�

PT = T

�

PTP:

We will show that T

�

satis�es the assumptions of Theorem 5. We have to show that

if (T

�

z; z) 6= 0, there is �

z

2 C with T

�

z = �

z

z. Let (T

�

z; z) 6= 0.

Then we have

(PTz; z) = (Tz; Pz) = (Tz; z) = (z; T

�

z) 6= 0:

This implies PTz 6= 0.

Hen
e PTz = �z with � 6= 0. Therefore it follows that

PTPz = �z; (T

�

PTP )(z) = T

�

(�z) = �T

�

z:

A

ording to (�) we have

�T

�

z = 
z:

This means that T

�

z =




�

z.

A

ording to the theorem we have T

�

= �I. Hen
e T = �I.

( Let T = �I. Then we have

�(A) = T

�

AT = �IA�I = j�j

2

A) � = j�jI

for all A 2 B(H). Hen
e �(A) 
ommutes with A. 2

With the help of Theorem 5 we 
an prove the 
onverse of Theorem 3.

Theorem 7. Let the operator � have the property:

For A; B 2 B(H) there holds AB = BA, �(A)�(B) = �(B)�(A).

Then there exists � > 0 su
h that

TT

�

= �I:
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Proof. First we show that T

�

is inje
tive, whi
h is ne
essary for the validitity of

the theorem. Let us suppose that F = fx 2 H : T

�

x = 0g 6= f0g. Let P be the

orthogonal proje
tion from H onto F . Then we have P 6= 0,

�(P ) = T

�

PT = 0 �(P )�(A) = �(A)�(P )

and 
onsequently PA = AP for all A 2 B(H).

Hen
e, in parti
ular, the orthogonal proje
tion P 
ommutes with all orthogonal

proje
tions on H. But this implies P = I. Hen
e F = H, T

�

= 0, and 
onsequently

T = 0. But this is a 
ontradi
tion. Hen
e T

�

is inje
tive.

A

ording to [5℄, 12.10, there holds T (H)

?

= f0g and 
onsequently T (H) = H.

For all 0 6= x 2 H the operators x
x and I 
ommute. Hen
e �(I) 
ommutes with

all �(x
 x) and 
onsequently T

�

T 
ommutes with all T

�

x
 T

�

x := A

x

. Hen
e there

holds for all z 2 H:

A

x

(z) = (Tz; x)T

�

x;

A

x

T

�

T (z) = (TT

�

Tz; x)T

�

x

and

T

�

TA

x

(z) = (Tz; x)T

�

TT

�

x

Hen
e we obtain

(TT

�

Tz; x)T

�

x = (Tz; x)T

�

TT

�

x;

T

�

f(TT

�

Tz; x)x� (Tz; x)TT

�

xg = 0

Sin
e T

�

is inje
tive, it follows that

(Tz; x)TT

�

x = (T

�

Tz; T

�

x)x:

Sin
e T (H) = H, there is z

0

2 H with (Tz

0

; x) 6= 0.

Hen
e

TT

�

x =

(T

�

Tz

0

; T

�

x)

(Tz

0

; x)

x

A

ording to Theorem 5, there exists � 2 C with TT

�

= �I. Sin
e TT

�

> 0, we also

have � > 0. 2

5 On the order intervals of self{adjoint operators

Here B

s

(H) denotes the set of all bounded self{adjoint operators on H. In the paper

[1℄ the following fa
t on the order intervals in B

s

(H) (in the �nite{dimensional 
ase)

has been proved:

Let H be a Hilbert spa
e with dimH <1.

Let A;B 2 B

s

(H) with A � 0, B � 0 and AB = BA. Moreover, let

C :=

1

2

(A+B � jA�Bj);
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where jDj =

p

D

�

D for D 2 B

s

(H). Then there holds in B

s

(H)

[C;A℄ \ [C;B℄ = fCg

As usual, [C;A℄ denotes the order interval

[C;A℄ := fX 2 B

s

(H)j : C � X � Ag

and similarly [C;B℄.

This theorem 
an be generalized for in�nite{dimensional spa
es as follows.

Theorem 8. Let H be a Hilbert spa
e and A;B 2 B

s

(H) with AB = BA. More-

over, let

C :=

1

2

(A+B � jA� Bj)

Then there holds

[C;A℄ \ [C;B℄ = fCg:

Proof. First we 
onsider the 
ase A � 0, B � 0 and C = 0. Let T 2 B

s

(H) with

0 � T � A and 0 � T � B. We show that kerA � ker T and kerB � ker T . Let

x 2 H and Ax = 0. Then there holds

0 � (Tx; x) � (Ax; x) = 0:

Then we have

0 = (Tx; x) = ((

p

T )

2

x; x) = (

p

Tx;

p

Tx) and

p

Tx = 0:

Sin
e kerT = ker

p

T (see [5℄,12.28) we infer that

kerA � ker T

Analogously we show that

kerB � kerT:

Let now B

�

be the smallest 
losed subalgebra of B(H), whi
h 
ontains A, B and

the identity I. Hen
e B

�

is a 
ommutative B

�

{algebra. LetM be the spa
e of maximal

ideals of B

�

. Then there exists a unique de
omposition of the identity E on the �{

algebra of the Borel sets of M and there holds (see [5℄, 12.22):

(1) T =

R

M

b

TdE for all T 2 B

�

, where

b

T is the Gelfand transform of T .

(2) E(!)A = AE(!) for all Borel sets ! in M and A 2 B

�

.

C = 0 means that in C(M)min(

b

A;

b

B) = 0.

Let !

1

:= ft 2M :

b

A(t) = 0g and !

2

= ft 2M :

b

B(t) = 0g. Then we obtain

M = !

1

[ !

2

= !

1

[ (!

2

n !

1

) and I = E(!

1

) + E(!

2

n !

1

):
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Furthermore there holds

A � E(!

1

) =

Z

M

b

A � �

!

1

dE = 0

and

B � E(!

2

n !

1

) =

Z

M

b

B�

!

2

n!

1

dE = 0

where �

!

1

and �

!

2

n!

1

are the 
hara
teristi
 fun
tions of !

1

and !

2

n !

1

.

Hen
e there follows

E(!

1

)(H) � kerA

and

E(!

2

n !

1

)(H) � kerB:

For x 2 H we have

x = E(!

1

)x+ E(!

2

n !

1

)x

Tx = T (E(!

1

)x) + T (E(!

2

n !

1

)x) = 0 + 0 = 0

Hen
e T = 0, whi
h was to be proved.

By translation we obtain the statement of the theorem.

Let

T 2 B

s

(H) with C � T � A and C � T � B:

We put

e

T := T � C,

e

A := A � C and

e

B := B � C. Then we obtain 0 �

e

T �

e

A,

0 �

e

T �

e

B,

e

A

e

B =

e

B

e

A and

1

2

(

e

A+

e

B � j

e

A�

e

Bj) = 0. We have proved previously that

e

T = 0, hen
e T = C. Also there holds

[C;A℄ \ [C;B℄ = fCg:

Corollary 9. For A 2 B

s

(H) let A

+

:=

1

2

(A+ jAj). Then A

+

is the unique positive

element in the order interval [A;A

+

℄.

Proof. There holds

�A

+

=

1

2

(�A+ 0� j � A� 0j)

and 
onsequently

[�A

+

;�A℄ \ [�A

+

; 0℄ = f�A

+

g:

Hen
e we obtain

[A;A

+

℄ \ [0; A

+

℄ = fA

+

g: 2

The 
on
lusion of the theorem holds in every ve
tor latti
e. It is astonishing that

it also holds in the antilatti
e B

s

(H).
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