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1 Introdution

In the physial papers [1℄{[4℄ there are some interesting propositions about operators

ating in Hilbert spaes. For example in [3℄ there were onsidered all bijetive mappings

on B

s

(H), whih preserve the order in both diretions. These mappings have been

haraterized with the help of elementary operators of length 1. In the present paper

we will generalize these results.

It is well known that the order properties of operators in Hilbert spaes are very

important in mathematial physis, beause they are related to symmetry properties.

If one onsiders B

s

(H), the set of all bounded self-adjoint operators in a Hilbert spae

H, then B

s

(H) is partially ordered by the relation A � B , (Ax; x) � (Bx; x)

for all x 2 H. Also we an onsider the set of all positive operators 0 � A � I,

also ordered by the same relation, with the additional mapping A

?

= I � A (the

so-alled e�ets). There is a question how to haraterize the order relation in B

s

(H).

In [4℄ there is desribed the form of all bijetive maps on B

s

(H) whih preserve the

order � in both diretions. Also in [3℄ it is shown that for dimH = 2 the ?-order

authomorphisms of the e�ets on H are indued by unitary or antiunitary operators,

namely as �(A) = U

�

AU (for dimH � 3 this was shown by Wigner).
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Another question to be onsidered is to haraterize operators whih map vetors

to parallel or to orthogonal ones. For unitary or antiunitary operators this was solved

in [2℄, where it is shown that for unitary operators they must be of the form U = zI,

for antiunitary they must satisfy the equality V

2

= �I. In the present paper we would

like to onsider these properies for a wider lass of operators. First, in Chapter 3 we

haraterize the elementary operators of length 1. In Chapter 4 for T 2 B(H) we

onsider the maps of the form �(A) = T

�

AT for all A 2 B(H) (� is an elementary

operator of length 1). We show that � preserves the order in both diretions if and

only if the range of T is dense in H, T (H) = H. We also haraterize ommutativity

of A and B by showing that AB = BA is equivalent to �(A)�(B) = �(B) � �(A)

if and only if TT

�

= �I (� > 0). We also show that A�(A) = �(A)A if and only

if T = �I (� 2 C ). Finally we show that if T 2 B(H) maps vetors to orthogonal

ones (Tx; x) = 0, or to parallel ones Tx = �x (� 2 C ), then T = zI. This is a

haraterization of identity operator, generalizing the main result of [3℄.

Finally in Chapter 5 we onsider some order intervals of self adjoint operators in

Hilbert spae. We show that for A;B 2 B

s

(H) with AB = BA and

C :=

1

2

(A+B � jA� Bj)

we have [C;A℄ \ [C;B℄ = fCg. Here [C;A℄ denotes the interval fX : C � X � Ag

(similarly for [C;B℄), and

jDj :=

p

D

�

D for D 2 B

s

(H).

In partiular, this implies that for A 2 B

s

(H) A

+

:=

1

2

(A + jAj) is the only positive

element in the order interval [A;A

+

℄. This generalizes the results of [1℄ to in�nite

dimensional ase.

2 Notation and terminology

In the sequel let H denote a Hilbert spae. By B(H) we denote the vetor spae of

all bounded endomorphisms on H, and B

s

(H) denotes the vetor spae of all bounded

self{adjoint operators on H, equiped with the anonial partial order.

For x; y 2 H, let x
 y 2 B(H) be de�ned as

x
 y(z) = (z; x)y for all z 2 H;

where (�; �) denotes the inner produt in H.

For U , V 2 B(H) on the operator algebra B(H) there is de�ned the elementary

operator �

U;V

of length 1 as follows

�

U;V

(A) = UAV for all A 2 B(H):

It is known that �

U;V

2 B(B(H)).
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3 A haraterization of the elementary operators

of length 1

Let U; V 2 B(H). By an easy alulation we an show that

�

U;V

(x
 y) = V

�

x
 Uy

for all x; y 2 H, where V

�

is the adjoint of V .

Let H

b


H := fx
 y : x; y 2 Hg. It is lear that

�

U;V

(H

b


H) � H

b


H:

However, this inlusion relation does not haraterize the elementary operators of

length 1, whih is shown by the following example.

Let H be the Eulidean vetor spae C

2

. Then the algebra B(H) an be indenti�ed

with the algebra M

2

of all square matries 2 � 2. Let the mapping � 2 B(B(H)) be

de�ned as follows: For A = [

a

11

a

12

a

21

a

22

℄ let

�(A) = (a

11

+ 2a

12

+ 3a

21

+ 4a

22

�

"

1 0

0 0

#

= (a

11

+ 2a

12

+ 3a

21

+ 4a

22

)e

1


 e

1

2 H

b


H:

Then obviously �(H

b


H) � H

b


H. Suppose that there would exist R; S 2 M

2

with

�(A) = RAS for all A 2 M

2

. Then we would have

(r

11

a

11

+ r

12

a

21

)s

11

+ (r

11

a

12

+ r

12

a

22

)s

21

= a

11

+ 2a

12

+ 3a

21

+ 4a

22

:

This would imply

r

11

s

11

= 1; r

12

� s

11

= 3)

r

11

r

12

=

1

3

; r

11

� s

21

= 2; r

12

� s

21

= 4;

r

11

r

12

=

2

4

=

1

2

;

whih is a ontradition. Therefore, the mapping � is not an elementary operator of

length 1.

With the help of H

b


H one an haraterize the elementary operators of length 1

as follows.

Theorem 1. Let 0 6= � 2 B(B(H)). Then there are U; V 2 B(H) with � = �

U;V

if and only if the following onditions hold

(i) � is ontinuous in the topology of pointwise onvergene on B(H)

(ii) There are mappings �

1

, �

2

: H ! H and x

0

; y

0

2 H with �

1

(x

0

) 6= 0,

�

2

(y

0

) 6= 0 and

�(x
 y) = �

1

(x)
 �

2

(y)

for all x; y 2 H.
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Proof. ) Let � = �

U;V

with U; V 2 B(H). Moreover, let S 2 B(H) and let (S

�

)

be a net in B(H) with S = lim

�

S

�

in the topology of pointwise onvergene in B(H).

Then for x 2 H we have

SV x = lim

�

S

�

V x and USV x = lim

�

US

�

V x:

Hene we also have �(S)x = lim

�

�(S

�

)x.

Therefore � is ontinuous in the topology of pointwise onvergene in B(H). Sine

� 6= 0, we have U 6= 0 and V 6= 0. Hene there are x

0

; y

0

2 H with Ux

0

6= 0 and

V y

0

6= 0. Consequently, ondition (ii) holds with �

1

= V

�

and �

2

= U .

( First we show that the mappings �

1

and �

2

are linear. Let y

0

2 H with

�

2

(y

0

) 6= 0. Hene for � 2 C and z

1

; z

2

2 H we have:

�((�z

1

)
 y

0

) = �

1

(�z

1

)
 �

2

(y

0

):

Sine (�z

1

)
 y

0

= �(z

1


 y

0

), we have also �((�z

1

)
 y

0

) = ��(z

1


 y

0

) = �(�

1

(z

1

)


�

2

(y

0

)), and we obtain for all x 2 H

(x;�

1

(�z

1

))�

2

(y

0

) = �(x;�

1

(z

1

))�

2

(y

0

) = (x; ��

1

(z

1

))�

2

(y

0

):

Hene it follows that �

1

(�z

1

) = ��

1

(z

1

). We have

�(z

1


 y

0

) = �

1

(z

1

)
 �

2

(y

0

);

�(z

2


 y

0

) = �

1

(z

2

)
 �

2

(y

0

)

and

�((z

1

+ z

2

)
 y

0

) = �

1

(z

1

+ z

2

)
 �

2

(y

0

)

Sine � is additive and

z

1


 y

0

+ z

2


 y

0

= (z

1

+ z

2

)
 y

0

;

we obtain

�

1

(z

1

+ z

2

)
 �

2

(y

0

) = �

1

(z

1

)
 �

2

(y

0

) + �

1

(z

2

)
 �

2

(y

0

):

Hene it follows that

�

1

(z

1

+ z

2

) = �

1

(z

1

) + �

1

(z

2

):

The mapping �

1

is also linear. We an show analogously the linearity of �

2

. The

mappings �

1

and �

2

are bounded. Namely for x; y 2 H we have:

kx
 yk = supfk(z; x)yk : z 2 H; kzk � 1g

= supfj(z; x)j : z 2 H; kzk � 1g � kyk = kxk � kyk

Therefore we obtain

k�

1

(x)k k�

2

(y

0

)k = k�(x
 y

0

)k � k�k kxk � ky

0

k:
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Hene it follows that

k�

1

(x)k �

k�k ky

0

k

k�

2

(y

0

)k

kxk

for all x 2 H.

Hene �

1

is bounded. Analogously we show that �

2

is also bounded. Now we put

V := �

�

1

and U := �

2

. Clearly U; V 2 B(H). Moreover, let

e

� : B(H)! B(H)

be de�ned by

e

�(A) = UAV for all A 2 B(H):

Then we have

e

�(x
 y) = V

�

x
 Uy = �

1

(x)
 �

2

(y) = �(x
 y)

for all x; y 2 H.

It is known that, in the topology of pointwise onvergene the tensor produt

H 
 H, whih is the linear span of H

b


H, is dense in B(H) (see [6℄ p.108 and 109).

Hene the mappings � and

e

� oinide on the dense subset H 
 H. Sine they are

ontinuous in the topology of pointwise onvergene, we have

� =

e

� = �

U;V

: 2

4 Equivalene in both diretions

Let 0 6= T 2 B(H). In the sequel let � be the elementary operator on B(H) with

�(A) = T

�

AT for all A 2 B(H). As it is easy to prove, we have

�(B

s

(H)) � B

s

(H) and �(A) � 0

for all positive A 2 B

s

(H).

For invertible operators T , the following theorem an be derived from [4℄, Th. 2:

Theorem 2. Let A;B 2 B

s

(H). The following onditions are equivalent

(i) A � B , �(A) � �(B)

(ii) The range of T is dense in H.

Proof. (i))(ii). Assume that T (H) 6= H. Then there is y 2 H with kyk = 1 and

y ? T (H). Let P be the orthogonal projetion onto the linear span hyi of y, i.e. we

have P (x) = (x; y)y for all x 2 H. Then there holds

0 = T

�

(2P )T � T

�

IT

and onsequently �(2P ) � �(I), where I is the indentity on H.

Now we have

(2Py; y) = 2 and (Iy; y) = 1
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This means that 2P 6� I, whih is a ontradition with (i). Hene T (H) = H.

(ii)! (i). Sine � is positive, from A � B it follows that �(A) � �(B).

Now let �(A) � �(B). Then for all x 2 H there holds

(T

�

ATx; x) � (T

�

BTx; x), and onsequently (ATx; Tx) � (BTx; Tx):

Let y 2 H. Sine we have

T (H) = H;

there exists a sequene (x

n

) in H suh that y = lim

n!1

Tx

n

.

Hene we have

(ATx

n

; Tx

n

) � (BTx

n

; Tx

n

)

for all n 2 N . This implies for n!1 : (Ay; y) � (By; y). Hene A � B. 2

The following theorem for unitary operators is known (see [4℄, Th 2, Cor 3).

Theorem 3. Let TT

�

= �I with 0 < � 2 R. Then for all A;B 2 B(H) we have

AB = BA, �(A)�(B) = �(B)�(A)

Proof. ) Let AB = BA. Then it follows that

�(A)�(B) = T

�

ATT

�

BT = �T

�

ABT

and

�(B)�(A) = T

�

BTT

�

AT = �T

�

BAT = �T

�

ABT

Hene we infer that

�(A)�(B) = �(A)�(B):

( Let now �(A)�(B) = �(B)�(A). Then we have

T

�

ATT

�

BT = T

�

BTT

�

AT

Multiplying by T on the left and by T

�

on the right be obtain

TT

�

ATT

�

BTT

�

= TT

�

BTT

�

ATT

�

This implies

�

3

AB = �

3

BA) AB = BA: 2

Corollary 4. From TT

�

= �I it follows that T (H) = H. Hene by Theorem 2 the

operator � preserves in both diretions the order relations.
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Example. Let H be the sequene spae `

2

and T the left{shift operator on H:

T (x

1

; x

2

; : : :) = (x

2

; x

3

; : : :)

for all (x

n

) 2 `

2

.

Then T 2 B(H). As it is easy to prove, we have

T

�

(x

1

; x

2

; : : :) = (0; x

1

; x

2

: : :)

for all (x

n

) 2 `

2

and TT

�

= I. But T is not invertible.

The next theorem generalizes a proposition about the unitary operators (see [2℄,

Theorem 2.3).

Theorem 5. Let 0 6= S 2 B(H), and let S have the following property:

For 0 6= x 2 H there holds (Sx; x) = 0 or Sx = �

x

x with 0 6= �

x

2 C .

Then there exists � 2 C suh that S = �I.

Proof. From (Sx; x) = 0 for all x 2 H it follows that S = 0. Hene there exists an

eigenvalue � 6= 0 and an eigenvetor x

0

6= 0 with Sx

0

= �x

0

.

Next we show that � is the unique eigenvalue of S. Namely, let Sy = �y with

0 6= y 2 H and � 6= �. Then for all n 2 N the vetor y + nx

0

is not an eigenvetor

of S. In fat, assume that S(y +mx

0

) = (y +mx

0

) for an m 2 N .

Then it follows that �y +m�x

0

= y +mx

0

, (� � )y = m( � �)x

0

. Sine x

0

and y

0

are lineary independent, we infer that � = , � = , hene � = �, whih is a

ontradition. Sine for all n 2 N the vetor y + nx

0

is not an eigenvetor of S, there

holds the assumption

(S(y + nx

0

); y + nx

0

) = 0

�y + n�x

0

; y + nx

0

) = 0

�(y; y) + n�(x

0

; y) + �n(y; x

0

) + n

2

�(x

0

; x

0

) = 0

for all n 2 N . From the last equation it follows that � = 0, whih is a ontradition.

Let M = fx 2 H : Sx = �xg. Then we have H = M �M

?

. Let us assume that

there exists 0 6= u 2M

?

. Then we have for all n 2 N :

S(nu+ x

0

) 6= �(nu+ x

0

):

Let us assume that there is m 2 N suh that

S(mu+ x

0

) = �(mu+ x

0

):

Hene it follows that

mSu+ �x

0

= �mu+ �x

0

;

and onsequently u = 0, whih is a ontradition.
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Sine � is the unique eigenvalue, we have for all n 2 N

(S(nu+ x

0

); nu+ x

0

) = 0; whih implies

(nSu+ �x

0

; nu+ x

0

) = 0; and onsequently

n

2

(Su; u) + n�(x

0

; u) + n(Su; x

0

) + �(x

0

; x

0

) = 0:

Sine the last equation holds for all n 2 N , it follows that � = 0, whih is a ontradi-

tion with � 6= 0. Hene M

?

= f0g, M = H, and S = �I. 2

From the previously proved theorems we an derive the following ommutativity

property of the operator �.

Theorem 6. For the elementary operator � we have A�(A) = �(A)A for all

A 2 B(H) if and only if T = �I with � 2 C .

Proof. ) Let z 2 H, kzk = 1 and let P be the orthogonal projetion from H onto

the linear span hzi of z. Then the following equation holds:

(�) PT

�

PT = T

�

PTP:

We will show that T

�

satis�es the assumptions of Theorem 5. We have to show that

if (T

�

z; z) 6= 0, there is �

z

2 C with T

�

z = �

z

z. Let (T

�

z; z) 6= 0.

Then we have

(PTz; z) = (Tz; Pz) = (Tz; z) = (z; T

�

z) 6= 0:

This implies PTz 6= 0.

Hene PTz = �z with � 6= 0. Therefore it follows that

PTPz = �z; (T

�

PTP )(z) = T

�

(�z) = �T

�

z:

Aording to (�) we have

�T

�

z = z:

This means that T

�

z =



�

z.

Aording to the theorem we have T

�

= �I. Hene T = �I.

( Let T = �I. Then we have

�(A) = T

�

AT = �IA�I = j�j

2

A) � = j�jI

for all A 2 B(H). Hene �(A) ommutes with A. 2

With the help of Theorem 5 we an prove the onverse of Theorem 3.

Theorem 7. Let the operator � have the property:

For A; B 2 B(H) there holds AB = BA, �(A)�(B) = �(B)�(A).

Then there exists � > 0 suh that

TT

�

= �I:
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Proof. First we show that T

�

is injetive, whih is neessary for the validitity of

the theorem. Let us suppose that F = fx 2 H : T

�

x = 0g 6= f0g. Let P be the

orthogonal projetion from H onto F . Then we have P 6= 0,

�(P ) = T

�

PT = 0 �(P )�(A) = �(A)�(P )

and onsequently PA = AP for all A 2 B(H).

Hene, in partiular, the orthogonal projetion P ommutes with all orthogonal

projetions on H. But this implies P = I. Hene F = H, T

�

= 0, and onsequently

T = 0. But this is a ontradition. Hene T

�

is injetive.

Aording to [5℄, 12.10, there holds T (H)

?

= f0g and onsequently T (H) = H.

For all 0 6= x 2 H the operators x
x and I ommute. Hene �(I) ommutes with

all �(x
 x) and onsequently T

�

T ommutes with all T

�

x
 T

�

x := A

x

. Hene there

holds for all z 2 H:

A

x

(z) = (Tz; x)T

�

x;

A

x

T

�

T (z) = (TT

�

Tz; x)T

�

x

and

T

�

TA

x

(z) = (Tz; x)T

�

TT

�

x

Hene we obtain

(TT

�

Tz; x)T

�

x = (Tz; x)T

�

TT

�

x;

T

�

f(TT

�

Tz; x)x� (Tz; x)TT

�

xg = 0

Sine T

�

is injetive, it follows that

(Tz; x)TT

�

x = (T

�

Tz; T

�

x)x:

Sine T (H) = H, there is z

0

2 H with (Tz

0

; x) 6= 0.

Hene

TT

�

x =

(T

�

Tz

0

; T

�

x)

(Tz

0

; x)

x

Aording to Theorem 5, there exists � 2 C with TT

�

= �I. Sine TT

�

> 0, we also

have � > 0. 2

5 On the order intervals of self{adjoint operators

Here B

s

(H) denotes the set of all bounded self{adjoint operators on H. In the paper

[1℄ the following fat on the order intervals in B

s

(H) (in the �nite{dimensional ase)

has been proved:

Let H be a Hilbert spae with dimH <1.

Let A;B 2 B

s

(H) with A � 0, B � 0 and AB = BA. Moreover, let

C :=

1

2

(A+B � jA�Bj);
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where jDj =

p

D

�

D for D 2 B

s

(H). Then there holds in B

s

(H)

[C;A℄ \ [C;B℄ = fCg

As usual, [C;A℄ denotes the order interval

[C;A℄ := fX 2 B

s

(H)j : C � X � Ag

and similarly [C;B℄.

This theorem an be generalized for in�nite{dimensional spaes as follows.

Theorem 8. Let H be a Hilbert spae and A;B 2 B

s

(H) with AB = BA. More-

over, let

C :=

1

2

(A+B � jA� Bj)

Then there holds

[C;A℄ \ [C;B℄ = fCg:

Proof. First we onsider the ase A � 0, B � 0 and C = 0. Let T 2 B

s

(H) with

0 � T � A and 0 � T � B. We show that kerA � ker T and kerB � ker T . Let

x 2 H and Ax = 0. Then there holds

0 � (Tx; x) � (Ax; x) = 0:

Then we have

0 = (Tx; x) = ((

p

T )

2

x; x) = (

p

Tx;

p

Tx) and

p

Tx = 0:

Sine kerT = ker

p

T (see [5℄,12.28) we infer that

kerA � ker T

Analogously we show that

kerB � kerT:

Let now B

�

be the smallest losed subalgebra of B(H), whih ontains A, B and

the identity I. Hene B

�

is a ommutative B

�

{algebra. LetM be the spae of maximal

ideals of B

�

. Then there exists a unique deomposition of the identity E on the �{

algebra of the Borel sets of M and there holds (see [5℄, 12.22):

(1) T =

R

M

b

TdE for all T 2 B

�

, where

b

T is the Gelfand transform of T .

(2) E(!)A = AE(!) for all Borel sets ! in M and A 2 B

�

.

C = 0 means that in C(M)min(

b

A;

b

B) = 0.

Let !

1

:= ft 2M :

b

A(t) = 0g and !

2

= ft 2M :

b

B(t) = 0g. Then we obtain

M = !

1

[ !

2

= !

1

[ (!

2

n !

1

) and I = E(!

1

) + E(!

2

n !

1

):



11

Furthermore there holds

A � E(!

1

) =

Z

M

b

A � �

!

1

dE = 0

and

B � E(!

2

n !

1

) =

Z

M

b

B�

!

2

n!

1

dE = 0

where �

!

1

and �

!

2

n!

1

are the harateristi funtions of !

1

and !

2

n !

1

.

Hene there follows

E(!

1

)(H) � kerA

and

E(!

2

n !

1

)(H) � kerB:

For x 2 H we have

x = E(!

1

)x+ E(!

2

n !

1

)x

Tx = T (E(!

1

)x) + T (E(!

2

n !

1

)x) = 0 + 0 = 0

Hene T = 0, whih was to be proved.

By translation we obtain the statement of the theorem.

Let

T 2 B

s

(H) with C � T � A and C � T � B:

We put

e

T := T � C,

e

A := A � C and

e

B := B � C. Then we obtain 0 �

e

T �

e

A,

0 �

e

T �

e

B,

e

A

e

B =

e

B

e

A and

1

2

(

e

A+

e

B � j

e

A�

e

Bj) = 0. We have proved previously that

e

T = 0, hene T = C. Also there holds

[C;A℄ \ [C;B℄ = fCg:

Corollary 9. For A 2 B

s

(H) let A

+

:=

1

2

(A+ jAj). Then A

+

is the unique positive

element in the order interval [A;A

+

℄.

Proof. There holds

�A

+

=

1

2

(�A+ 0� j � A� 0j)

and onsequently

[�A

+

;�A℄ \ [�A

+

; 0℄ = f�A

+

g:

Hene we obtain

[A;A

+

℄ \ [0; A

+

℄ = fA

+

g: 2

The onlusion of the theorem holds in every vetor lattie. It is astonishing that

it also holds in the antilattie B

s

(H).
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