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1 Introduction

In the physical papers [1]-[4] there are some interesting propositions about operators
acting in Hilbert spaces. For example in [3] there were considered all bijective mappings
on Bs(H), which preserve the order in both directions. These mappings have been
characterized with the help of elementary operators of length 1. In the present paper
we will generalize these results.

It is well known that the order properties of operators in Hilbert spaces are very
important in mathematical physics, because they are related to symmetry properties.
If one considers Bs(H ), the set of all bounded self-adjoint operators in a Hilbert space
H, then B,(H) is partially ordered by the relation A < B < (Axz,z) < (Bz,x)
for all x € H. Also we can consider the set of all positive operators 0 < A < I,
also ordered by the same relation, with the additional mapping At = I — A (the
so-called effects). There is a question how to characterize the order relation in B,(H).
In [4] there is described the form of all bijective maps on By(H) which preserve the
order < in both directions. Also in [3] it is shown that for dim H = 2 the L-order
authomorphisms of the effects on H are induced by unitary or antiunitary operators,
namely as ®(A) = U*AU (for dim H < 3 this was shown by Wigner).



Another question to be considered is to characterize operators which map vectors
to parallel or to orthogonal ones. For unitary or antiunitary operators this was solved
in [2], where it is shown that for unitary operators they must be of the form U = 21,
for antiunitary they must satisfy the equality V2 = —I. In the present paper we would
like to consider these properies for a wider class of operators. First, in Chapter 3 we
characterize the elementary operators of length 1. In Chapter 4 for T € B(H) we
consider the maps of the form ®(A) = T*AT for all A € B(H) (® is an elementary
operator of length 1). We show that ® preserves the order in both directions if and
only if the range of T is dense in H, m = H. We also characterize commutativity
of A and B by showing that AB = BA is equivalent to ®(A)®(B) = ®(B) - ®(A)
if and only if T7* = ol (a > 0). We also show that A®(A) = ®(A)A if and only
if T = al (o« € C). Finally we show that if 7 € B(H) maps vectors to orthogonal
ones (Txz,xz) = 0, or to parallel ones T = az (o € C), then T = zI. This is a
characterization of identity operator, generalizing the main result of [3].

Finally in Chapter 5 we consider some order intervals of self adjoint operators in
Hilbert space. We show that for A, B € B;(H) with AB = BA and

1
Ci=3(A+B—|A-B|

we have [C, A] N [C,B] = {C}. Here [C, A] denotes the interval {X : C' < X < A}
(similarly for [C, B]), and

|D|:=vD*D for D € By(H).

In particular, this implies that for A € By(H) A" := (A + |A]) is the only positive
element in the order interval [A, A*]. This generalizes the results of [1] to infinite
dimensional case.

2 Notation and terminology

In the sequel let H denote a Hilbert space. By B(H) we denote the vector space of
all bounded endomorphisms on H, and B,(H) denotes the vector space of all bounded
self-adjoint operators on H, equiped with the canonical partial order.

For z,y € H, let x ® y € B(H) be defined as

r®y(z) = (z,2)y for all z € H,

where (-, -) denotes the inner product in H.
For U, V € B(H) on the operator algebra B(H) there is defined the elementary
operator @y of length 1 as follows

(I)U,V(A) =UAV for all A € B(H)
It is known that @y € B(B(H)).



3 A characterization of the elementary operators
of length 1

Let U,V € B(H). By an easy calculation we can show that
Ppy(r®y)=VeaUy

for all =,y € H, where V* is the adjoint of V.
Let HRH :={x ®y :x,y € H}. It is clear that

Py (HRH) C HRH.

However, this inclusion relation does not characterize the elementary operators of
length 1, which is shown by the following example.

Let H be the Euclidean vector space C?. Then the algebra B(H) can be indentified
with the algebra M of all square matrices 2 x 2. Let the mapping ® € B(B(H)) be
defined as follows: For A = ["'* “2] ]et

a21 a22

10
®(A) = (au +2a12 + 3ag + 4azs - [ 00 ]

= (a11 + 2@12 + 30,21 + 4@22)61 X e € H@H

Then obviously ®(H®H) C H®H. Suppose that there would exist R, S € M, with
®(A) = RAS for all A € M,. Then we would have

(r11a11 + r12021) 811 + (r11012 + r12G22) S21 = @11 + 2a12 + 3a9; + dags.

This would imply

11 1 11 2 1

rusuu =1, rp-snu=3=—=<, ru-sun =2, ra2-su =4, — ==,

12 3 19 4 2
which is a contradiction. Therefore, the mapping ® is not an elementary operator of
length 1.

With the help of H®H one can characterize the elementary operators of length 1
as follows.

Theorem 1. Let 0 # ® € B(B(H)). Then there are U,V € B(H) with ® = ®yy
iof and only if the following conditions hold
(i) @ is continuous in the topology of pointwise convergence on B(H )
(ii) There are mappings ®1, ®s : H — H and xo,yo € H with ®1(xy) # 0,
P2 (yo) # 0 and
Oz @y) = d1(r) @ Py(y)

for all x,y € H.



Proof. = Let ® = &y with U,V € B(H). Moreover, let S € B(H) and let (S,)
be a net in B(H) with S = lim,, S, in the topology of pointwise convergence in B(H).
Then for x € H we have

SV = licryn SVe and USVz = lién Us,Vx.

Hence we also have ®(S)z = lim, ®(S,)z.

Therefore ® is continuous in the topology of pointwise convergence in B(H). Since
® £ 0, we have U # 0 and V # 0. Hence there are z¢,yo € H with Uzy # 0 and
Vyo # 0. Consequently, condition (ii) holds with ®; = V* and &, = U.

< First we show that the mappings ®; and ®, are linear. Let y, € H with
®5(yp) # 0. Hence for A € C and 21, 2z € H we have:

(I)(()\Zl) X yo) = (1)1()\21) X @2(y0).

Since (Az1) ® yo = (21 ® yo), we have also ®((Az1) ® yo) = AP (21 @ yo) = A(P1(21) ®
®5(yp)), and we obtain for all x € H

(2, @1(A21))@2(y0) = A, @1(21)) P2 (yo) = (2, AP1(21)) Pa(y0)-
Hence it follows that ®;(Az;) = A®1(z;). We have
P (21 @ yo) = P1(21) ® P2(p0),
D (22 @ yo) = P1(22) ® P2(yo)

and
P((21 + 22) ® yo) = P1(21 + 22) @ P2(y0)

Since ® is additive and
21 @Yo+ 22 @ Yo = (21 + 22) @ Yo,
we obtain
D1 (21 + 22) @ P2(yo) = P1(21) ® Pa(yo) + Pr(22) ® D2(o).

Hence it follows that
@1 (Z]_ + 22) = (I)]_(Zl) + @1 (22).

The mapping @, is also linear. We can show analogously the linearity of ®5. The
mappings ®; and P, are bounded. Namely for x,y € H we have:

le@yll = sup{ll(z,z)yll: z € H, |lz]| <1}
= sup{[(z,2)|: z € H, ||| < 1} - [ly]l = l[=]| - Iy

Therefore we obtain

1@1 ()] [|®2(y0) | = [[@(z @ yo)l| < @[] [|]] - [Iyoll



Hence it follows that

] Iyl
[@1(2)]| < T—— Il
12 (yo)
forall z € H.
Hence ®; is bounded. Analogously we show that ®, is also bounded. Now we put

V= ®] and U := ®,. Clearly U,V € B(H). Moreover, let
®: B(H) — B(H)

be defined by B
O(A) =UAV for all A € B(H).

Then we have

Przey)=VaeaUy=>o(r)®@ P(y) = P(r®y)

forall z,y € H.

It is known that, in the topology of pointwise convergence the tensor product
H ® H, which is the linear span of H®H, is dense in B(H) (see [6] p.108 and 109).
Hence the mappings ® and ® coincide on the dense subset H ® H. Since they are
continuous in the topology of pointwise convergence, we have

q):é:q)av. a

4 Equivalence in both directions

Let 0 # T € B(H). In the sequel let ® be the elementary operator on B(H) with
O(A) =T*AT for all A € B(H). As it is easy to prove, we have

®(B,(H)) C B,(H) and &(A) >0

for all positive A € B,(H).
For invertible operators T, the following theorem can be derived from [4], Th. 2:

Theorem 2. Let A, B € Bs(H). The following conditions are equivalent
(i) A< B< ®(A) < P(B)
(ii) The range of T is dense in H.

Proof. (i)=-(ii). Assume that T(H) # H. Then there is y € H with ||y|| = 1 and
y L T(H). Let P be the orthogonal projection onto the linear span (y) of y, i.e. we
have P(z) = (z,y)y for all z € H. Then there holds

0="T*(2P)T < T*IT

and consequently ®(2P) < ®(I), where I is the indentity on H.

Now we have
(2Py,y) =2 and (Iy,y) =1



This means that 2P £ I, which is a contradiction with (i). Hence T'(H)
(ii)— (i). Since @ is positive, from A < B it follows that ®(A) < &(
Now let ®(A) < ®(B). Then for all € H there holds

H.

= |l

(I'"ATz,z) < (I'"BTx,x), and consequently (ATz,Tz) < (BTz,Tx).
Let y € H. Since we have
T(H) = H,

there exists a sequence (z,,) in H such that y = lim,, o, T'x,,.
Hence we have
(ATx,, Tx,) < (BTxy,, Txy,)

for all n € N. This implies for n — 0o : (Ay,y) < (By,y). Hence A < B. O

The following theorem for unitary operators is known (see [4], Th 2, Cor 3).

Theorem 3. Let TT* = ol with 0 < a € R. Then for all A, B € B(H) we have
AB = BA < ®(A)®(B) = ®(B)®(A)

Proof. = Let AB = BA. Then it follows that
®(A)®(B) = T*ATT*BT = oT*ABT

and
®(B)®(A) =T*BTT*AT = oT*BAT = oT*ABT

Hence we infer that
O(A)®(B) = ®(A)P(B).

< Let now ®(A)®(B) = ®(B)®(A). Then we have
T*ATT*BT =T*BTT*AT
Multiplying by 71" on the left and by 7™ on the right be obtain

TT*ATT*BTT* =TT*BTT*ATT"

This implies
o’AB = o®’BA = AB=BA. O

Corollary 4. From TT* = ol it follows that T(H) = H. Hence by Theorem 2 the
operator ® preserves in both directions the order relations.



Example. Let H be the sequence space ¢? and 7' the left-shift operator on H:

T(lEl,ZI)g, .. ) = (ZL‘2,£I73, .. )

for all (z,,) € ¢2.
Then T € B(H). As it is easy to prove, we have

T*(CCl,.T,'z, .. ) = (O,CCl,CCQ .. )

for all (x,) € £ and TT* = I. But T is not invertible.
The next theorem generalizes a proposition about the unitary operators (see [2],
Theorem 2.3).

Theorem 5. Let 0 # S € B(H), and let S have the following property:
For 0 # z € H there holds (Sz,z) =0 or St = a,x with 0 # «, € C.
Then there exists a € C such that S = al.

Proof. From (Sz,z) =0 for all x € H it follows that S = 0. Hence there exists an
eigenvalue a # 0 and an eigenvector xy # 0 with Sxy = axy.

Next we show that « is the unique eigenvalue of S. Namely, let Sy = pfy with
0 #y € H and 8 # a. Then for all n € N the vector y + nxzq is not an eigenvector
of S. In fact, assume that S(y + mxy) = v(y + max) for an m € N.

Then it follows that Sy + maxy = vy + myxy, (8 —v)y = m(y — a)zy. Since xg
and gy, are lineary independent, we infer that 8 = v, a = v, hence a = /3, which is a
contradiction. Since for all n € N the vector y + nz is not an eigenvector of S, there
holds the assumption

(S(y + nzy),y + nxy) =0
By + naxy, y + nxy) =0

B(y.y) + nalzo,y) + Bn(y, zo) + n*a(xg, zo) = 0

for all n € N. From the last equation it follows that o = 0, which is a contradiction.
Let M = {x € H : Sz = ar}. Then we have H = M & M*. Let us assume that
there exists 0 # « € M*. Then we have for all n € N:

S(nu + xg) # a(nu + o).
Let us assume that there is m € N such that
S(mu + o) = a(mu + x).

Hence it follows that
mSu + axry = amu + oy,

and consequently u = 0, which is a contradiction.



Since « is the unique eigenvalue, we have for all n € N

(S(nu+ xp),nu+x9) = 0, which implies
(nSu + azg,nu +xy) = 0, and consequently
n?(Su, u) + na(wg, u) + n(Su, x9) + a(rg, 2) = 0.

Since the last equation holds for all n € N, it follows that o = 0, which is a contradic-
tion with « # 0. Hence M+ = {0}, M = H, and S = /. O

From the previously proved theorems we can derive the following commutativity
property of the operator ®.

Theorem 6. For the elementary operator ® we have ADP(A) = ®(A)A for all
A€ B(H) if and only if T = ol with a € C.

Proof. = Let z € H, ||z|| = 1 and let P be the orthogonal projection from H onto
the linear span (z) of z. Then the following equation holds:

(%) PT*PT = T*PTP.

We will show that 7™ satisfies the assumptions of Theorem 5. We have to show that
if (T*z,z) # 0, there is a, € C with 7"z = «,z. Let (T%z, z) # 0.
Then we have

(PTz,z) = (Tz,Pz) = (Tz,2z) = (2,T"z) # 0.

This implies PTz # 0.
Hence PTz = [z with 8 # 0. Therefore it follows that

PTPz=pz, (T*"PTP)(z)=T"(Bz) = BT"z.
According to (%) we have
BTz =z.

This means that 7%z = %z
According to the theorem we have T* = af. Hence T = @l.
< Let T'= al. Then we have

®(A) = T*AT = alAal = |a]?A = & = |a|l

for all A € B(H). Hence ®(A) commutes with A. O

With the help of Theorem 5 we can prove the converse of Theorem 3.

Theorem 7. Let the operator ® have the property:
For A, B € B(H) there holds AB = BA < ®(A)®(B) = ®(B)®(A).
Then there exists a > 0 such that

TT" = al.



Proof. First we show that 1™ is injective, which is necessary for the validitity of
the theorem. Let us suppose that F' = {& € H : T*z = 0} # {0}. Let P be the
orthogonal projection from H onto F'. Then we have P # 0,

®P)=T"PT=0 &P)d(A)=o(A)®(P)

and consequently PA = AP for all A € B(H).

Hence, in particular, the orthogonal projection P commutes with all orthogonal
projections on H. But this implies P = I. Hence F' = H, T* = 0, and consequently
T = 0. But this is a contradiction. Hence T™ is injective.

According to [5], 12.10, there holds 7'(H)* = {0} and consequently T'(H) = H.

For all 0 # = € H the operators z ® x and I commute. Hence ®(/) commutes with
all ®(z ® x) and consequently T*T commutes with all 7%z ® T*z := A,. Hence there
holds for all z € H:

A (2) = (Tz,2)T"x,

AT (2) = (TT Tz, )T x
and
T*TA,(2) = (Tz,x)T"TT x
Hence we obtain
(ITT*'Tz,2)T"x = (Tz,x)T"TT"x,
T"{(TT*Tz,x)x — (Tz,x)TT 'z} =0

Since T™ is injective, it follows that

(Tz,2)TT s = (T"T2,T"z)x.

Since T'(H) = H, there is zy € H with (T2, x) # 0.

Hence
(T*T'z, T*x)

(T'zp, )
According to Theorem 5, there exists « € C with 7T = af. Since TT* > 0, we also
have o > 0. O

TT r =

5 On the order intervals of self-adjoint operators

Here B;(H) denotes the set of all bounded self-adjoint operators on H. In the paper
[1] the following fact on the order intervals in Bs(H) (in the finite-dimensional case)
has been proved:

Let H be a Hilbert space with dim H < oo.

Let A, B € Bs(H) with A >0, B> 0 and AB = BA. Moreover, let

1
Ci=(A+B—|A-B|)
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where |D| = +/D*D for D € B,(H). Then there holds in B,(H)
[C, AIN[C, Bl = {C}
As usual, [C, A] denotes the order interval
[C, Al ={X e B;(H)| : C < X < A}

and similarly [C, B].
This theorem can be generalized for infinite-dimensional spaces as follows.

Theorem 8. Let H be a Hilbert space and A, B € By,(H) with AB = BA. More-
over, let

1
Ci=3(A+B—|A-B|

Then there holds
[C,AlN[C,B] = {C}.

Proof. First we consider the case A > 0, B > 0 and C = 0. Let T € B,(H) with
0<T < Aand 0 <T < B. We show that ker A C ker7T and ker B C ker7T. Let
x € H and Az = 0. Then there holds

0<(Tz,z) < (Az,z) =0.
Then we have
0= (Tz,z) = ((VT)*x,z) = (VTz,V/Tz) and VTz = 0.
Since ker T = ker /T (see [5],12.28) we infer that
ker A C ker T

Analogously we show that
ker B C kerT'.

Let now B* be the smallest closed subalgebra of B(H), which contains A, B and
the identity /. Hence B* is a commutative B*—algebra. Let M be the space of maximal
ideals of B*. Then there exists a unique decomposition of the identity £ on the o—
algebra of the Borel sets of M and there holds (see [5], 12.22):

(1) T = [y, TdE for all T € B*, where T is the Gelfand transform of 7.

(2) E(w)A = AE(w) for all Borel sets w in M and A € B*.

C = 0 means that in C'(M)min(A, B) = 0.

Let wy == {t € M : A(t) =0} and wy = {t € M : B(t) = 0}. Then we obtain

M=wUw, =w; U (ws \wy) and [ = E(w;) + E(ws \ wy).
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Furthermore there holds
A E(wy) :/ A X dE =0
M

and ~
B-E(ws\ w) :/ B dE =0
M

where x,,, and x,,\.,are the characteristic functions of w; and wy \ wi.
Hence there follows
E(wi)(H) Cker A

and
E(wy \w1)(H) C ker B.

For x € H we have
T =Ew)r+ E(ws \ wy)zx

Te =T(E(w)z)+T(E(ws \w1)r) =04+0=0

Hence T = 0, which was to be proved.

By translation we obtain the statement of the theorem.
Let
TeBs(H) withC<T<A and C<T<B.

We put TN:ZNT — Q,Nﬁ = A - C’Nandﬁ := B — (. Then we obtain 0 < T < A,
0<T<B,AB=BAand (A+ B —|A— B|) =0. We have proved previously that

T =0, hence T'= C'. Also there holds
[C, AN [C, B ={C}.

Corollary 9. For A € B,(H) let AT :=
element in the order interval [A, AT].

Proof. There holds

(A+]|A]). Then AT is the unique positive

N[

1
—At = 5(—A+O— | — A—0])
and consequently
[_A+7 _A] N [_A+7 0] = {_A+}‘

Hence we obtain
[A,AT]N[0,AT]={A"}. O

The conclusion of the theorem holds in every vector lattice. It is astonishing that
it also holds in the antilattice By(H).
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