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Abstra
t

In the present paper we determine the universal 
entral extension of the Lie algebra O(X; k) of

holomorphi
 fun
tions of a 
omplex manifold X whi
h is a Riemannian domain over a Stein manifold

with values in a �nite-dimensional 
omplex simple Lie algebra k. In view of the abstra
t des
ription

of the universal 
entral extensions, this amounts to determine the universal di�erential module of

the Fr�e
het algebra O(X) of holomorphi
 fun
tions on X. We show that the de Rham di�erential

into the spa
e 


1

(X) of holomorphi
 1-forms on X is universal. Therefore the kernel of the universal


entral extension is the quotient spa
e 


1

(X)=dO(X).

Introdu
tion

Let A be a unital 
omplex 
ommutative Fr�e
het algebra, i.e., a 
omplex Fr�e
het spa
e together with a


ontinuous bilinear 
ommutative asso
iative unital multipli
ation. Then an important invariant of A is

its universal di�erential module 


1

(A). This is a Fr�e
het spa
e with a 
ontinuous A-module stru
ture

A � 


1

(A) ! 


1

(A) and a derivation d : A ! 


1

(A) whi
h is universal in the sense that for any other

Fr�e
het module M of A and any derivation D : A ! M , there exists a unique 
ontinuous morphism

� : 


1

(A) ! M of A-modules with D = � Æ d ([13℄). If we 
onsider the spe
trum �(A) := Hom(A; C )

of A, i.e., the spa
e of all 
ontinuous algebra homomorphisms A ! C , as a topologi
al invariant of A,

then the module 


1

(A) is a di�erential invariant of A. The information 
ontained in 


1

(A) is in some

sense �ner than the information 
ontained in �(A), and this makes it often harder to determine 


1

(A)

in 
on
rete terms for 
on
rete algebras A.

If X is a 
omplex manifold, then the algebra O(X) of holomorphi
 
omplex-valued fun
tions on X

is a 
ommutative Fr�e
het algebra. The main result of the present paper is that for this algebra the de

Rham di�erential

d : O(X)! 


1

(X)

1



into the Fr�e
het O(X)-module 


1

(X) of holomorphi
 1-forms on X is universal whenever X is a Rie-

mannian domain over a Stein manifold, hen
e in parti
ular for any open subset of C

n

. Our result is that




1

(O(X)) is isomorphi
 to the spa
e 


1

(X) of holomorphi
 1-forms on X , and that the di�erential

d : O(X)! 


1

(X); f 7! df

is the universal di�erential. The methods we use are based on the theory of 
oherent sheaves on Stein

manifolds. For the proof we pro
eed in two steps. First we prove the result for Stein manifolds, where

we 
ru
ially apply the vanishing of the 
ohomology of 
oherent sheaves in degrees greater than one. As a

se
ond step, we extend the result to Riemannian domains over Stein manifolds by using results of H. Rossi,

showing that if X is a Riemannian domain over a Stein manifold, then the spe
trum

b

X := �(O(X)) of

the algebra O(X) of holomorphi
 fun
tions on X 
arries a natural 
omplex manifold stru
ture turning

it into a Stein manifold. We thus obtain a natural open embedding i

X

: X ,!

b

X , and ea
h holomorphi


fun
tion on X extends uniquely to

b

X. In this sense

b

X is the envelope of holomorphy of X . As the

algebras O(X) and O(

b

X) are naturally isomorphi
, their universal di�erential modules are isomorphi
,

and we then derive that




1

(O(X))

�

=




1

(O(

b

X))

�

=




1

(

b

X)

�

=




1

(X):

Similar results are well-known in several other 
ontexts: In the algebrai
 
ontext, where X is a non-

singular aÆne 
omplex variety, then the algebrai
 universal di�erential module of the algebra of regular

fun
tions on X 
an be identi�ed with the spa
e of regular 1-forms on X ([17℄), result due to Blo
h

([1℄), Loday-Kassel ([12℄). If M is a smooth �nite-dimensional manifold, then the universal di�erential

module of the Fr�e
het algebra C

1

(M;R ) of smooth fun
tions on M is the spa
e 


1

(M;R ) of smooth

1-forms on M , result due (in some similar form to Connes ([2℄), Pressley-Segal ([15℄) and) Maier ([13℄),

who introdu
ed Fr�e
het{K�ahler di�erentials in this 
ontext. Leaving the 
ontext of Fr�e
het algebras and


onsidering more general lo
ally 
onvex algebras, one 
an even show that for a non-
ompa
t manifold M

the universal di�erential module of the algebra C

1




(M;R ) of 
ompa
tly supported smooth fun
tions is

the spa
e of 
ompa
tly supported smooth 1-forms ([13℄, [14℄).

Our motivation to get pre
ise information on the universal di�erential module 


1

(X) of O(X) was to

determine the universal 
entral extension of the Lie algebras O(X; k) of holomorphi
 maps X ! k, where

k is a simple �nite-dimensional 
omplex Lie algebra. In [13℄ P. Maier shows on an abstra
t level that for

any Fr�e
het algebra A the Fr�e
het-Lie algebra g := A
 k has a universal 
entral extension

e

g of the form

0! HC

1

(A) ,!

e

g!! g! 0;

where

HC

1

(A) := 


1

(A)=dA

is the quotient of 


1

(A) modulo the 
losed subspa
e generated by all di�erentials.

For any 
omplex manifold X the image of d, the spa
e of exa
t 1-forms, is 
losed in 


1

(X) be
ause it


onsists of all 
losed 1-forms for whi
h all integrals over loops in X vanish. Therefore our identi�
ation

of 


1

(O(X)) with 


1

(X) implies that

HC

1

(O(X))

�

=




1

(X)=dO(X)

is the kernel of the universal 
entral extension of O(X; k):

For an open submanifold X of a Stein manifold, our identi�
ation of 


1

(O(X)) with 


1

(X) implies

that the image of d, the spa
e of exa
t 1-forms, is 
losed, so that

HC

1

(O(X))

�

=




1

(X)=dO(X)
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is the kernel of the universal 
entral extension of O(X; k):

The universal 
entral extension of the holomorphi
 
urrent algebra takes an important intermediate

pla
e between Kri
hever-Novikov algebras, whi
h are Lie algebras of meromorphi
 fun
tions on a 
ompa
t


omplex surfa
e with �xed polar set and values in k, and algebras of smooth maps. For example, in the


ase of Riemann surfa
es, the spa
e of meromorphi
 fun
tions with values in k on the Riemann sphere S

2

with poles only in f0;1g is dense in the spa
e of holomorphi
 fun
tions on S

2

n f0;1g whi
h itself lies

in the spa
e of di�erentiable fun
tions on the equator of S

2

(all three with values in k). We proje
t to

explore the 
onsequen
es of this situation in the representations theory of 
urrent algebras via 
oadjoint

orbits (
f. [4℄). Another dire
tion for further resear
h is the question under whi
h 
onditions Lie groups


orrespond to the universal 
entral extension of O(X; k).

A
knowledgements: The se
ond named author thanks Matthias Borer for usefull dis
ussions, and

the TU Darmstadt for hospitality. Both authors thank Peter Heinzer for helpfull remarks 
on
erning

Se
tion 4.

1 Preliminairies

De�nition 1.1 If E and F are 
omplete lo
ally 
onvex spa
es, then we denote by E

b


F the 
ompleted

proje
tive tensor produ
t of E and F . It has the universal property that the 
ontinuous bilinear maps

E�F ! G into any 
omplete lo
ally 
onvex spa
eG are in one-to-one 
orresponden
e with the 
ontinuous

linear maps E

b


F ! G. The algebrai
 tensor produ
t E 
 F is a dense subspa
e of E

b


G.

Let A be a unital 
ommutative asso
iative 
omplete lo
ally 
onvex algebra, i.e., a 
omplete lo
ally


onvex spa
e with a 
ontinuous bilinear asso
iative 
ommutative unital multipli
ation. Then A

b


A also


arries a natural algebra stru
ture whi
h is uniquely determined by

(a
 b) � (a

0


 b

0

) = aa

0


 bb

0

; a; a

0

; b; b

0

2 A;

and the multipli
ation map

�

A

: A

b


A! A

is a morphism of lo
ally 
onvex algebras. It follows in parti
ular that its kernel I

A

:= ker�

A

is an ideal

of A

b


A.

We now de�ne 


1

(A) as the 
ompletion of the quotient I

A

=I

2

A

, whi
h 
arries a natural A-module

stru
ture inherited from the left multipli
ation a
tion of A

�

=

A
 1 on the tensor produ
t A

b


A. There

is a 
ontinuous derivation

d

A

: A! 


1

(A); a 7! [1
 a� a
 1℄;

where [x℄ denotes the 
lass of x 2 I

A

in I

A

=I

2

A

. The pair (


1

(A); d

A

) is uniquely determined by the

property that 


1

(A) is a 
omplete lo
ally 
onvex A-module and that the derivation d

A

has the universal

property that for ea
h pair (V;D) of a 
omplete lo
ally 
onvex A-module V and a 
ontinuous derivation

D : A! V , there is a unique 
ontinuous morphism of A-modules � : 


1

(A)! V with D = � Æ d

A

.

Note that the uniqueness requirement in the universal property of d

A

implies that the submodule of




1

(A) generated by d

A

(A) is dense, so that A � d

A

(A) is dense in 


1

(A).

De�nition 1.2 Let X be a (se
ond 
ountable) 
omplex manifold and O(X) the 
omplex algebra of

holomorphi
 fun
tions on X . Then O(X) is a Fr�e
het spa
e, i.e., a lo
ally 
onvex, metrizable 
omplete

topologi
al ve
tor spa
e, with respe
t to the topology of uniform 
onvergen
e on 
ompa
t subsets of X .

The natural algebra stru
ture now turns O(X) into a unital 
ommutative asso
iative Fr�e
het algebra. We

3



write 


1

(X) for the spa
e of holomorphi
 1-forms on X . This spa
e also has a natural Fr�e
het stru
ture

given by the uniform 
onvergen
e on 
ompa
t subsets of X , turning it into a Fr�e
het module of O(X).

Moreover, the (de Rham) di�erential

d : O(X)! 


1

(X)

is a 
ontinuous derivation of O(X)-modules, hen
e gives rise to a unique morphism of O(X)-modules




X

: 


1

(O(X))! 


1

(X) with 


X

Æ d

O(X)

= d:

In Se
tion 3 we shall prove in our main theorem that 


X

is a homeomorphism if X is a Riemannian

domain over a Stein manifold, whi
h is equivalent to being an open subset of a Stein manifold.

Remark 1.3 A more expli
it form of 


X


an be obtained as follows. Thanks to Grothendie
k ([9℄, Ch.

II, x3, no. 3, Ex. 2 after Theorem 13), the tensor produ
t spa
e O(X)

b


O(X) and the Fr�e
het spa
e

O(X;O(X)) of O(X)-valued holomorphi
 fun
tions on X are naturally isomorphi
, and sin
e the latter

spa
e 
an easily seen to be isomorphi
 to O(X �X), we have an isomorphism of Fr�e
het algebras

�

X

: O(X)

b


O(X)! O(X �X) with �

X

(f 
 g)(x; y) = f(x)g(y):

In this sense we identify the elements of the tensor produ
t O(X)

b


O(X) with holomorphi
 fun
tions on

the produ
t manifold X �X .

We have a natural map

e


X

: O(X �X)! 


1

(X); e


X

(F )(x)(v) := dF (x; x)(0; v):

For F = f 
 g we then have

e


X

(f 
 g) = f � dg;

and e


X

is a 
ontinuous morphism of O(X)-modules, where O(X) a
ts on O(X �X) by (f:F )(x; y) :=

f(x)F (x; y): The restri
tion of e


X

to the ideal I

X

satis�es

e


X

(d

O(X)

(f)) = e


X

(1
 f � f 
 1) = df;

and therefore the uniqueness of 


X

implies that 


X

= e


X

j

I

X

, i.e.,




X

(F ) = dF (x; x)(0; v):

De�nition 1.4 For a sheaf F of O(X)-modules, we will write F

x

for the spa
e of germs at x 2 X . Given

a morphism of sheaves � : F ! G on X , we shall for ea
h open set U � X write �

U

: F(U) ! G(U) for

the 
orresponding map between spa
es of se
tions over U . For �

X

, we simply write �.

Let 4 : X ! X�X be the diagonal map. It embeds X as a 
omplex submanifold 4(X) into X�X .

It indu
es a morphism between stru
ture sheaves

4

℄

: O

X�X

!4

�

O

X

;

given on an open set U � X �X by

4

℄

U

(f) = f Æ 4; for f 2 O

X�X

(U):

4



Here 4

�

O

X

denotes the usual dire
t image sheaf, i.e., the sheaf of O

X�X

-modules given on U � X �X

by

(4

�

O

X

)(U) = O

X

(4

�1

(U));

where the module stru
ture is given by f:v := (f Æ �):v: As 4

�

O

X

is a 
oherent analyti
 sheaf, i.e., a


oherent sheaf of O

X�X

-modules (
f. [8℄, p.20), the kernel I

X

:= ker(4

℄

) is a 
oherent sheaf of O

X�X

-

modules (
f. [8℄, p.237). One has

I

X

(U) = ff 2 O

X�X

(U) j f Æ 4j

�

�1

(U)

= 0 g;

be
ause the se
tions on U of ker(4

℄

) are the kernel of 4

℄

U

: O

X�X

(U)! 4

�

O

X

(U) = O

X

(�

�1

(U)) by

left-exa
tness of the global se
tion fun
tor.

Lemma 1.5 For any open subset U � X, let �

U

:= �

O(U)

: O(U)

b


O(U) ! O(U) be the multipli
ation

map of O(U). Then we have

I

X

(U � U)

�

=

I

O(U)

= ker(�

U

):

Proof. It is easy to see that for the isomorphism �

U

from Remark 1.3 the following diagramm 
om-

mutes:

O(U)

b


O(U)

�

U

//

�

U

''O

O

O

O

O

O

O

O

O

O

O

O(U � U)

4

℄

U�U

��

O(U)

.

This implies that I

X

(U � U) = ker (4

℄

U�U

)

�

=

ker�

U

.

Remark 1.6 The pre
eding lemma provides a sheaf version of the ideal I

X

:= I

O(X)

= ker�

X

be
ause

it identi�es for ea
h open subset U of X the ideal I

U

with the spa
e of se
tions of the sheaf I

X

over

U � U .

Lemma 1.7 Let n := dim

C

X and (x; y) 2 X �X. Let x

1

; : : : ; x

n

be 
oordinate fun
tions of the �rst

fa
tor in X�X and y

1

; : : : ; y

n

for the se
ond fa
tor around the point (x; y), whose 
oordinates are (0; 0).

Then the ideal (I

X

)

(x;y)

= ker (4

℄

)

(x;y)

� (O

X�X

)

(x;y)

is generated by the germs of the fun
tions

(x

1

� y

1

); : : : ; (x

n

� y

n

):

Proof. First we pass from the 
oordinate fun
tions x

1

; : : : ; x

n

; y

1

; : : : ; y

n

on X � X to 
oordinate

fun
tions ex

1

; : : : ; ex

n

; ey

1

; : : : ; ey

n

de�ned by ex

i

= x

i

and ey

i

= x

i

� y

i

for i = 1; : : : ; n. Then the diagonal

4(X) is the vanishing set of the ideal hey

1

; : : : ; ey

n

i = hey

1

i + : : : + hey

n

i; generated by the fun
tions

ey

1

; : : : ; ey

n

. In our 
oordinate system the 
ondition F (ex; ey) Æ4 = 0, i.e., F (ex; ey)j

4(X)

= 0, on the level of

germs in (x; y) is equivalent to F (ex; ey) 2 hey

1

; : : : ; ey

n

i, i.e., F (ex; ey) = ey

1

F

1

(ex; ey) + : : :+ ey

n

F

n

(ex; ey).

De�nition 1.8 Let us now re
all the de�nition of the analyti
 inverse image fun
tor ([8℄, p. 18): Let

f : X ! Y be a holomorphi
 map and F a sheaf of O

Y

-modules. We de�ne

F �

Y

X := f(a

y

; x) 2 F �X j y = f(x); a

y

2 F

y

g:

5



Here F

y

is the spa
e of germs or se
tions of F at y 2 Y , and F�

Y

X is a sheaf on X . This �bered produ
t

is just the restri
tion Fj

X

of F to X in 
ase f : X ,! Y is the in
lusion of a submanifold. Continuing

with the general 
onstru
tion, F �

Y

X is a sheaf of O

Y

�

Y

X-modules. Moreover, O

X

is a sheaf of

O

Y

�

Y

X-modules by

(a

y

; x) � '

x

:= (a

y

Æ f)

x

� '

x

:

One then de�nes

f

�

(F) := (F �

Y

X)


O

Y�

Y

X

O

X

:

This 
onstru
tion de�nes a right exa
t fun
tor sending 
oherent sheaves of O

Y

-modules to 
oherent

sheaves of O

X

-modules satisfying f

�

O

Y

= O

X

([8℄, p. 18-19).

For Y = X � X and the embedding f := 4 : X ,! X � X we see in parti
ular that 4

�

(I

X

) is a


oherent analyti
 sheaf of O

X

-modules. The germs of this sheaf in x 2 X are the germs of holomorphi


fun
tions on X �X in (x; x) 2 X �X vanishing on the diagonal of X �X . In parti
ular, we have

4

�

(I

X

) = (I

X

j

4(X)

)


O

X�X

j

4(X)

O

X

:

Lemma 1.9 Let X be a Stein manifold. Then the global se
tion module of the sheaf 4

�

(I

X

) admits a

�nite presentation as an O

X

(X)-module.

Proof. We re
all that a 
oherent analyti
 sheaf F of O

X

-modules is a sheaf su
h that for ea
h point

x 2 X , there is an open set U , integers n

x

and m

x

and an exa
t sequen
e

(O

X

j

U

)

n

x

! (O

X

j

U

)

m

x

! Fj

U

! 0:

We want to show that the sheaf F posesses a �nite presentation

(O

X

)

n

! (O

X

)

m

! F ! 0:

Applying the global se
tion fun
tor, whi
h is right exa
t for 
oherent analyti
 sheaves on Stein manifolds,

the assertion of the lemma follows.

As 4

�

is a right exa
t fun
tor (
f. [8℄, p. 19), a �nite presentation of 4

�

(I

X

) 
an be obtained by a

�nite presentation of I

X

as a sheaf of O

X�X

-modules (re
all that for a holomorphi
 map f : X ! Y , we

have O

X

�

=

f

�

(O

Y

) by [8℄, p. 19).

Re
all that the sheaf I

X

is de�ned by

I

X

= ker (4

℄

: O

X�X

!4

�

O

X

):

Furthermore, one 
an use Grauert's Embedding Theorem to embed i : X ,! C

n

. Then i

�

O

C

n

= O

X

implies

(i� i)

�

I

C

n

= I

X

;

so that, in view of the right exa
tness of (i� i)

�

([8℄, p. 18), it suÆ
es to obtain a �nite presentation of

I

C

n

.

We may therefore assume that X = C

n

and that x = y = 0. We then have to �nd a �nite presentation

of the sheaf I

C

n

whi
h is the sheaf of ideals of the (
omplex analyti
) diagonal subvariety C

n

,! C

n

�C

n

.

A

ording to Lemma 1.7, it is generated by the fun
tions x

1

� y

1

, : : : , x

n

� y

n

, where the x

i

are the


oordinate fun
tions of the �rst fa
tor in the produ
t C

n

� C

n

, and y

i

are those on the se
ond fa
tor.

De�ne a map

� : O

n

C

n

�C

n

! I

C

n

; �(f

1

; : : : ; f

n

) :=

n

X

i=1

(x

i

� y

i

)f

i

;

6



where for an open subset U � C

n

� C

n

, f

1

; : : : ; f

n

are elements of O

C

n

�C

n

(U) = O(U), and write

hen
eforth z

k

:= x

k

� y

k

for k = 1; : : : ; n. We want to determine generators and relations for I

C

n

. Let

F = (f

1

; : : : ; f

n

) 2 ker (�), i.e., z

1

f

1

+ : : :+ z

n

f

n

= 0. Then f

1

vanishes on the 
ommon set of zeros of

the fun
tions z

2

; : : : ; z

n

, hen
e is of the form f

1

=

P

n

i=2

z

i

f

1i

. Then the fun
tion

H :=

n

X

i=2

(z

i

f

1i

; 0; : : : ; 0;�z

1

f

1i

; 0; : : : ; 0) =

n

X

i=2

f

1i

(z

i

; 0; : : : ; 0;�z

1

; 0; : : : ; 0)

is 
ontained in I

C

n

and satis�es

e

F := F �H = (0;

e

f

2

; : : : ;

e

f

n

):

Now we use indu
tion to see that the ideal ker (�) is generated by the

n(n�1)

2

fun
tions

(0; : : : ; 0; z

i

; 0; : : : ; 0;�z

j

; 0; : : : ; 0);

where z

i

is at the j-th, and �z

j

is at the i-th position.

In 
on
lusion, we obtain a �nite presentation:

O

n(n�1)

2

C

n

�C

n

! O

n

C

n

�C

n

! I

C

n

! 0:

This 
ompletes the proof of the lemma.

2 Universal di�erentials and holomorphi
 1-forms

Theorem 2.1 Let X be a Stein manifold. Then the map




X

: 


1

(O(X))! 


1

(X)

from De�nition 1.2 is an isomorphism of topologi
al O(X)-modules.

The proof of Theorem 2.1 will be 
omplete at the end of this se
tion.

Remark 2.2 The Stein 
ondition is essential in the theorem, but will be weakened in the next se
tion.

There exist 
ounterexamples in the general 
ase, for example X = C =(Z+ iZ). In this 
ase O(X)

�

=

C ,

the 
onstant fun
tions, thus 


1

(O(X)) = 0, but 


1

(X)

�

=

C is generated by the global holomorphi


1-form dz. Thus 


X

is not inje
tive in this 
ase.

The following lemma 
ontains already a spe
ial 
ase of our main theorem.

Lemma 2.3 Let U be an open subset of C

n

su
h that the restri
tions of polynomials to U form a dense

subspa
e of O(U). Then




U

: 


1

(O(U))! 


1

(U)

is an isomorphism of Fr�e
het O(U)-modules.
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Proof. For the proof we have to verify that the di�erential d : O(U) ! 


1

(U) has the universal

property. Let V be a 
ontinuous O(U)-module and D : O(U)! V a 
ontinuous derivation.

Let z

1

; : : : ; z

n

: U ! C denote the 
oordinate fun
tions. Sin
e the tangent bundle of the open subset

U � C

n

is trivial, the O(U)-module 


1

(U) is free with basis dz

1

; : : : ; dz

n

. Hen
e there exists a unique


ontinuous morphism of O(U)-modules � : 


1

(U)! V with �(dz

i

) = D(z

i

), namely

�

�

n

X

j=1

f

j

dz

j

�

=

n

X

j=1

f

j

:D(z

j

):

We then have �Æd = D on z

1

; : : : ; z

n

2 O(U), and sin
e �Æd and D are derivations O(U)! V , they also


oin
ide on the subalgebra of O(U) generated by z

1

; : : : ; z

n

. By our assumption on U , this subalgebra is

dense, so that the 
ontinuity of � Æ d and D entails that both maps 
oin
ide on the whole spa
e O(U).

This proves the existen
e of �, and sin
e the relation � Æ d = D determines the image of dz

j

under �, the

module morphism � is uniquely determined by the 
ondition �Æd = D. Hen
e (


1

(U); d) is the universal

di�erential module of the Fr�e
het algebra O(U).

Remark 2.4 For ea
h point x in a 
omplex manifold X there exists an open neighborhood U whi
h is

isomorphi
 to a polydis
. Sin
e the polynomials are dense in O(U), Lemma 2.3 applies to U .

De�nition 2.5 We now de�ne a relative of the map 


X

(
f. De�nition 1.2) on sheaf level. Let I

X

denote

the kernel of the sheaf homomorphism 4

℄

(
f. De�nition 1.4). Then the ideal sheaf I

X

is a 
oherent

sheaf of O

X�X

-modules. Its 
oherent inverse image sheaf (
onstru
ted in De�nition 1.8) 4

�

I

X

is the


orresponding sheaf on X . We want to de�ne

' : 4

�

(I

X

) = I

X

j

4(X)




O

X�X

j

4(X)

O

X

! 


1

X

:

The �rst step is to de�ne '

U

for an open subset U � X . We �rst de�ne

e'

U

: I

X

j

4(X)

(U)


C

O

X

(U)! 


1

(U) by e'

U

(F 
 1)(x; v) := dF (x; x)(0; v);

where F is a holomorphi
 fun
tion on U � U � X �X vanishing on the diagonal, x 2 U and v 2 T

x

(U)

a tangent ve
tor at x. Here it is understood that e'

U

is extended as a map of O

X

(U)-modules from

I

X

j

4(X)

(U)


C

1 to all of I

X

j

4(X)

(U)


C

O

X

(U), letting O

X

(U) a
t on the right hand side of the tensor

produ
t. We then show that this de�nition fa
tors to

'

U

: I

X

j

4(X)

(U)


O

X�X

j

4(X)

(U)

O

X

(U)! 


1

(U):

Lemma 2.6 The map e'

U

: I

X

j

4(X)

(U)


C

O

X

(U)! 


1

(U) fa
tors through a map

'

U

: 4

�

(I

X

)(U) =

�

I

X

j

4(X)

(U)

�




O

X�X

j

4(X)

(U)

O

X

(U)! 


1

(U):

As '

U

is obviously 
ompatible with the restri
tion maps, it indu
es a sheaf map

' : 4

�

(I

X

)! 


1

X

:

On the level of germs, the kernel of ' in x equals 4

�

(I

X

)

2

x

.
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Proof. The sheaf of algebras O

X�X

j

4(X)

a
ts on O

X

by

(f

(x;x)

; x) � g

x

= (f

(x;x)

Æ 4)

x

� g

x

:

Here f

(x;x)

denotes the germ of f 2 O

X�X

(U � U) at (x; x) = 4(x), and (f

(x;x)

Æ 4)

x

is the germ at x

of f

(x;x)

Æ 4 in O

X

. Thus, an element (f

(x;x)

; x) passes through the tensor produ
t, a
ting on the left

hand side by multipli
ation with f

(x;x)

, and on the right hand side by multipli
ation with (f

(x;x)

Æ 4)

x

.

Thanks to the formula

e'

U

(FG) = 4

℄

U

(F )e'

U

(G) +4

℄

U

(G)e'

U

(F );

for germs F;G, we have (using that e'

U

is an O

X

(U)-module homomorphism)

e'

U

(h

(x;x)

f

(x;x)


 g

x

) = e'

U

(h

(x;x)

f

(x;x)

)g

x

= (4

℄

U

(h

(x;x)

)e'

U

(f

(x;x)

) +4

℄

U

(f

(x;x)

)e'

U

(h

(x;x)

))g

x

= 4

℄

U

(f

(x;x)

)e'

U

(h

(x;x)

)g

x

= e'

U

(h

(x;x)

)(f

(x;x)

Æ 4)

x

g

x

= e'

U

(h

(x;x)


 (f

(x;x)

Æ 4)

x

g

x

):

Thus '

U

is well-de�ned on the tensor produ
t. The above mentioned formula shows 4

�

(I

X

)

2

� ker (').

On the other hand, Lemma 1.7 shows that a germ F in ker(4

℄

)

x


an be written

F =

n

X

k=1

(x

k

� y

k

)F

k

for the 
oordinate fun
tions x

k

and y

k

on the two fa
tors in C

n

� C

n

, k = 1; : : : ; n. Hen
e, appli
ation

of ' gives

'(F )(x) = �

n

X

k=1

F

k

(x; x)dx

k

;

where we use x

1

; : : : ; x

n

as 
oordinates on X , and now it is obvious that F 2 ker(') means that the F

k

vanish on the diagonal, hen
e F 2 4

�

(I

X

)

2

x

.

To prove the inje
tivity of 


X

in Theorem 2.1, we shall need the following lemma.

Lemma 2.7 �(X;4

�

(I

X

)

2

)

�

=

I

2

X

= I

2

X

for I

X

:= I

O(X)

:

Proof. In order to show the assertion of the pre
eding remark, we note that if M and N are two


oherent sheaves of O

X

-modules su
h that their global se
tion modulesM = �(X;M) and N = �(X;N )

are �nitely presented O

X

(X)-modules, one has

M 


O

X

(X)

N

�

=

�(X;M


O

X

N )

(see e.g. [5℄, p. 403). Here it is not ne
essary to pass to the 
ompletions be
ause the left hand side is


omplete owing to the �niteness of the presentation. Denote by  the multipli
ation map

 : 4

�

(I

X

)
4

�

(I

X

)!4

�

(I

X

)

2

= im( );
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and note that im( ) as an image sheaf, and ker ( ) as a kernel sheaf are 
oherent ([7℄). Then we 
onsider

the two short exa
t sequen
es:

0! �(X; ker ( ))! �(X;4

�

(I

X

)
4

�

(I

X

))! �(X;4

�

(I

X

)

2

)! 0

(owing to the Stein property H

1

(X; ker ( )) = 0) and

0! ker(�(X; ))! �(X;4

�

(I

X

))


O(X)

�(X;4

�

(I

X

))! �(X;4

�

(I

X

))

2

! 0

where on
e again �(X;4

�

(I

X

))

2

= im(�(X; )). By the left exa
tness of the global se
tion fun
tor �,

the �rst terms of the two sequen
es 
oin
ide, and the se
ond terms (and thus �a fortiori the third terms)

are isomorphi
 be
ause the global se
tion module of 4

�

(I

X

) is �nitely presented by Lemma 1.9. We


on
lude with Lemma 2.6 that

ker' = �(X; ker') = �(X;�

�

(I

X

)

2

) = �(X;�

�

(I

X

))

2

= I

2

O(X)

:

Therefore the assertion follows from the 
losedness of ker' in O(X �X).

Lemma 2.8 If X is a Stein manifold, then the sheaf 


1

X

of germs of holomorphi
 se
tions of T

�

(X) is


oherent.

Proof. The stru
ture sheaf O

X

of X is 
oherent be
ause X is non-singular and 
oheren
e is a lo
al

property. Hen
e the same is true for O

�k

X

for ea
h k 2 N. Sin
e 
oheren
e is a lo
al property and 


1

X

is

lo
ally free, it is 
oherent.

Proposition 2.9 For every Stein manifold X there exist �nitely many fun
tions f

1

; : : : ; f

N

su
h that

the O(X)-module 


1

(X) is generated by df

1

; : : : ; df

N

.

Proof. We 
onsider an embedding

F : X ! C

N

; F = (f

1

; : : : ; f

N

)

of X as a 
losed submanifold of C

N

([11℄). If dimX = n and p 2 X , then there exist i

1

; : : : ; i

n

su
h

that df

i

j

(p), j = 1; : : : ; n, form a basis of T

p

(X)

�

. Let U denote an open neighborhood of p on whi
h the

1-forms df

i

j

are linearly independent. Then T

�

(X)j

U

is a trivial bundle, hen
e 


1

X

j

U

is a free sheaf. It

follows in parti
ular that the map

' : 


1

C

N

j

X

! 


1

X

is a surje
tive morphism of sheaves. As the sheaf 


1

C

N

j

X

is free and 


1

X

is 
oherent (Lemma 2.8), the

sheaf ker' is 
oherent ([7℄). From Theorem B ([7℄) we now derive that

H

1

(X; ker') = f0g;

whi
h means that the restri
tion map 


1

(C

N

) ! 


1

(X) is surje
tive. If z

1

; : : : ; z

N

are the 
anoni
al


oordinate fun
tions on C

N

, then 


1

(C

N

) is generated by the di�erentials dz

j

as a module of O(C

N

),

and after restri
tion to X , we see that the restri
tions df

j

= d(z

j

j

X

) generate 


1

(X) as a module of

O(X) = O(C

N

)j

X

. Here we use that the restri
tion map O(C

N

)! O(X) is surje
tive ([7℄, Theorem 4,

Ch. V, x4).
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Now we 
omplete the proof of Theorem 2.1: Left-exa
tness of the global se
tion fun
tor � implies

that � and ker 
ommute:

�(X; ker(')) = ker(�(X;')) = ker('

X

);

where

'

X

:= '

X

: �(X;�

�

(I

X

))! 


1

(X):

By Lemma 2.6, ker' and 4

�

(I)

2


oin
ide as sheaves, so that Lemma 2.7 leads to

ker('

X

)

�

=

�(X;4

�

(I

X

)

2

) = I

2

X

:

Sin
e the map 


X

: I

X

=I

2

X

! 


1

(X) 
oin
ides with the map indu
ed by fa
torization of the map

'

X

: I

X

! 


1

(X), it follows that 


X

is inje
tive.

In view of Proposition 2.9, the O(X)-module 


1

(X) is generated by df

1

; : : : df

N

for some holomorphi


fun
tions f

i

2 O(X). Therefore 


X

(d

O(X)

u(f

i

)) = df

i

implies that 


X

is surje
tive, hen
e bije
tive. The

map 


X

is 
ontinuous by 
onstru
tion, so that it is open by the Open Mapping Theorem. This 
ompletes

the proof of Theorem 2.1. �

3 Extension to Riemannian domains over Stein manifolds

De�nition 3.1 Let Y be a Stein manifold. A 
omplex manifold X together with a holomorphi
 map

p : X ! Y whi
h is everywhere regular will be 
alled a Riemannian domain over Y .

One often 
onsiders arbitrary 
omplex spa
es X instead of manifolds in the pre
eding de�nition, but

in order to have di�erential forms and therefore tangent spa
es having everywhere the same dimension,

we need manifolds.

The aim of this se
tion is to generalize Theorem 2.1 to Riemannian domains over Stein manifolds.

Lemma 3.2 If X is a Stein manifold, then its 
otangent bundle T

�

X is a Stein manifold.

Proof. A

ording to Grauert's Embedding Theorem, we may w.l.o.g. assume that X is a 
losed

submanifold of some C

n

. Let p 2 X and U � C

n

an open subset for whi
h there exists a holomorphi


fun
tion F : U ! C

k

of 
onstant rank k with

X \ U = F

�1

(0) and T

x

(X) = ker dF (x); x 2 X:

A

ording to [3℄ (
f. also [16℄, Th. 4.1), the exa
t sequen
e of holomorphi
 ve
tor bundles

0! TX ,! T C

n

j

X

�

=

X � C

n

! N ! 0;

where N is the normal bundle of X in C

n

, splits. Let ! : N ! X � C

n

be a holomorphi
 ve
tor bundle

map with

X � C

n

�

=

TX � !(N):

Then we 
an identify T

�

X with

f(x; v) 2 X � C

n

: hv; !(N

x

)i = f0gg;

where hz; wi =

P

n

j=1

z

j

w

j

. This implies that T

�

X 
an be identi�ed with a 
losed submanifold of C

n

�C

n

,

and thereore that T

�

X is a Stein manifold.
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Theorem 3.3 Let X be a Riemann domain over a Stein manifold. Then the map




X

: 


1

(O(X))! 


1

(X); d

O(X)

f 7! df

is an isomorphism of Fr�e
het O(X)-modules.

Proof. The spe
trum

b

X := �(O(X)) := Hom(O(X); C ) of the algebraO(X) of holomorphi
 fun
tions

on X 
arries a natural 
omplex manifold stru
ture turning it into a Riemannian domain over X whi
h is

a Stein manifold ([16℄, Th. 4.6). The restri
tion map

R : O(

b

X)! O(X)

is an isomorphism of Fr�e
het algebras, whi
h in turn indu
es a natural isomorphism

� : 


1

(O(

b

X))! 


1

(O(X)):

On the other hand, we have a 
ontinuous restri
tion map � : 


1

(

b

X)! 


1

(X); whi
h leads to a 
ommu-

tative diagram




1

(O(

b

X))

�

����! 


1

(O(X))

?

?

y







X

?

?

y




X




1

(

b

X)

�

����! 


1

(X)

We know from Theorem 2.1 that 


b

X

is an isomorphism. It therefore suÆ
es to show that � is an

isomorphism to see that 


X

is an isomorphism, too. Sin
e � is a 
ontinuous linear map between Fr�e
het

spa
es, it suÆ
es to show that it is surje
tive, and then apply the Open Mapping Theorem. This means

that we have to show that ea
h holomorphi
 1-form ! 2 


1

(X) is the restri
tion of a holomorphi
 1-form

b! on

b

X.

The envelope of holomorphy

b

X has the property that all holomorphi
 fun
tions on X with values in an

arbitrary Stein manifold S extend uniquely to holomorphi
 fun
tions from

b

X to S. In fa
t, we may embed

S as a 
losed submanifold of C

n

, and then extend the fun
tion f : X ! S to a fun
tion F :

b

X ! C

n

.

Sin
e F maps the open subset X into S, it follows by analyti
 
ontinuation that F (

b

X) � S.

Let ! 2 


1

(X) be a holomorphi
 1-form. We 
onsider ! as a se
tion of the 
otangent bundle:

! : X ! T

�

X . We may identify T

�

X

�

=

T

�

b

X j

X

as an open submanifold of the Stein manifold T

�

b

X

(Lemma 3.2). Therefore ! admits a unique extension to a holomorphi
 fun
tion b! :

b

X ! T

�

b

X. If

� : T

�

b

X !

b

X is the bundle proje
tion, then � Æ ! = id

X

, so that � Æ b!j

X

= id

X

, and therefore the

uniqueness of the extension implies that � Æ b! = id

b

X

. This means that b! is a se
tion of the 
otangent

bundle of

b

X, i.e., a holomorphi
 1-form.

Remark 3.4 The 
ondition that a 
omplex manifoldX is an open subset of a Stein manifold is equivalent

to the 
ondition that it is a Riemannian domain over a Stein manifold. In fa
t, ea
h open subset is trivially

a Riemannian domain. Conversely, ea
h Riemannian domain X over a Stein manifold embeds as an open

subset X ,!

b

X, where

b

X is its envelope of holomorphy, whi
h is a Stein manifold ([16℄, Th. 4.6).

Corollary 3.5 If X is a Riemannian domain over a Stein manifold, then the image of the universal

di�erential d : O(X)! 


1

(O(X)) is 
losed, and

HC

1

(O(X))

�

=




1

(X)=dO(X):
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Proof. In view of Theorem 3.3, we may identify 


1

(O(X)) with the Fr�e
het spa
e 


1

(X) of holomor-

phi
 1-forms on X and d with the de Rham di�erential. Its image 
onsists of the exa
t 1-forms. That the

spa
e of exa
t 1-forms is 
losed follows from the fa
t that it is de�ned by the equations

R




! = 0, where


 is a pie
ewise smooth 
losed path in X , and the integration maps




1

(X)! C ; ! 7!

Z




!

are 
ontinuous linear fun
tionals.

The following result was our initial motivation for the present work:

Theorem 3.6 Let k be a simple 
omplex �nite-dimensional Lie algebra and X a Riemann domain over

a Stein manifold. Then g := O(X; k)

�

=

O(X) 
 k is a Fr�e
het{Lie algebra with respe
t to the pointwise

bra
ket:

[f 
 x; g 
 y℄ := fg 
 [x; y℄:

If � is the Cartan{Killing form of k, then


(f 
 x; g 
 y) := �(x; y)(f � dg) mod d(O(X))

de�nes a 
ontinuous Lie algebra 
o
y
le


 : g� g! HC

1

(O(X))

�

=




1

(X)=d(O(X));

and the 
orresponding 
entral extension

HC

1

(O(X)) ,!

b

g!! g

is universal.

Proof. It is shown in [13℄ that for ea
h Fr�e
het algebra A the universal 
entral extension of g := A
 k

is given by the 
o
y
le


(a
 x; b
 y) := �(x; y)[a � d

A

b℄ 2 HC

1

(A):

Therefore the assertion follows from our identi�
ation of HC

1

(O(X)) in Theorem 3.3.

4 The algebra of germs of holomorphi
 fun
tions

In this se
tion we 
onsider a 
ompa
t subset K � C

n

. We write O(K) for the 
omplex algebra of all

germs of holomorphi
 fun
tions onK, whi
h is the dire
t limit of all algebrasO(U), where U runs through

the set of all open neighborhoods of K. Let i

U

: O(U) ! O(K); f 7! [f ℄ denote the map assigning to

f 2 O(U) its germ on K and, for U � V , write

i

U;V

: O(V )! O(U); f 7! f j

U

for the restri
tion map.
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Ea
h of the algebrasO(U) is a Fr�e
het algebra, and we 
onsider onO(K) the lo
ally 
onvex dire
t limit

topology, whi
h is de�ned by all seminorms p on O(K) for whi
h all 
ompositions p Æ i

U

are 
ontinuous

seminorms on O(U). Then all the maps

i

U

: O(U)! O(K)

are 
ontinuous and O(K) has the universal property of the dire
t limit: a linear map ' : O(K) ! V to

a lo
ally 
onvex spa
e V is 
ontinuous if and only if all 
ompositions ' Æ i

U

are 
ontinuous. That the

topology on O(K) is Hausdor� and the group multipli
ation is 
ontinuous is shown by H. Gl�o
kner in

Theorem 6.1 of [6℄.

Now O(K) is a lo
ally 
onvex unital algebra to whi
h we 
an asso
iate the universal di�erential

module 


1

(O(K)) together with the universal di�erential d

O(K)

: O(K)! 


1

(O(K)). We write




1

(K) := lim

�!




1

(U)

for the spa
e of germs of holomorphi
 1-forms on K.

The main result of this se
tion is the following:

Theorem 4.1 The de Rham di�erential

d : O(K)! 


1

(K)

is universal, when 


1

(K) is endowed with the lo
ally 
onvex dire
t limit topology of the spa
es 


1

(U), U

a neighborhood of K. In parti
ular 


1

(K)

�

=




1

(O(K)).

Proof. Sin
e the 
otangent bundle of any open subset U � C

n

is trivial, it follows that




1

(K)

�

=

n

M

j=1

O(K):[dz

j

℄;

where [�℄ denotes the germ of the holomorphi
 1-form � whi
h is de�ned on a neighborhood of K. In

parti
ular 


1

(K) is a free O(K)-module of rank n, and we see that the module stru
ture

O(K)� 


1

(K)! 


1

(K); ([f ℄; [�℄) 7! [f�℄

is 
ontinuous be
ause the multipli
ation in the algebra O(K) is 
ontinuous.

To prove the universality of d, let M be a 
ontinuous O(K)-module and D : O(K)!M a 
ontinuous

derivation. Sin
e the maps i

U

are 
ontinuous, M inherits a natural stru
ture of an O(U)-module via

f:m := i

U

(f):m; f 2 O(U);m 2M:

For ea
h open neighborhood U � K the map

D

U

: = D Æ i

U

: O(U)!M

is a 
ontinuous derivation, and our main Theorem 3.3 therefore implies the existen
e of a unique 
ontin-

uous linear map

�

U

: 


1

(U)!M with �

U

Æ d

U

= D

U

;
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where d

U

: O(U)! 


1

(U) is the de Rham di�erential.

Let j

U

: 


1

(U)! 


1

(K); � 7! [�℄ be the natural map, and for U � V , we write

j

U;V

: 


1

(V )! 


1

(U); � 7! �j

U

for the restri
tion map. We 
learly have d

U

Æ i

U;V

= j

U;V

Æ d

V

: For U � V we now have i

V

= i

U

Æ i

U;V

,

so that D

V

= D

U

Æ i

U;V

. Therefore

�

U

Æ j

U;V

Æ d

V

= �

U

Æ d

U

Æ i

U;V

= D

U

Æ i

U;V

= D Æ i

U

Æ i

U;V

= D Æ i

V

= D

V

;

so that the uniqueness of �

V

leads to

�

V

= �

U

Æ j

U;V

:

Hen
e the universal property of 


1

(K) as a lo
ally 
onvex dire
t limit spa
e implies the existen
e of a


ontinuous linear map

� : 


1

(K)!M

with � Æ j

U

= �

U

for ea
h open neighborhood U of K.

We 
laim that � is a morphism of O(K)-modules. For ea
h f 2 O(V ) we 
hoose U � V and obtain

for � 2 


1

(U):

f:�([�℄) = f:�

U

(�) = i

U;V

(f):�

U

(�) = �

U

(i

U;V

(f)�) = � Æ j

U

(i

U;V

(f)�) = �([f ℄:[�℄):

The uniqueness of � follows from the fa
t that 


1

(K) is generated as a O(K)-module by the image of d,

whi
h 
ontains the 
lasses [dz

1

℄; : : : ; [dz

n

℄.

Remark 4.2 In view of the pre
eding theorem, Theorem 3.6 generalizes in the obvious way to the Lie

algebra O(K; k) of germs of k-valued holomorphi
 fun
tions on K.

5 Further remarks

Suppose the Stein manifold X is the 
omplex analyti
 manifold 
orresponding to a 
omplex smooth

aÆne algebrai
 variety X

a�

su
h that X

a�

� P for a 
omplex smooth proje
tive algebrai
 variety P and

D := P n X

a�

is an ample divisor on P . In this situation, some density theorem applies to show that

(usual) K�ahler 1-forms 


1

alg

(X

a�

) on X

a�

are dense in (usual holomorphi
) 1-forms 


1

(X) on X in the

subspa
e topology (
f. [19℄). Re
all that for usual K�ahler 1-forms, one has




1

alg

(X

a�

) = 


1

(Reg(X)) = J

2

=J;

where

J := ker(� : Reg(X

a�

)
Reg(X

a�

)! Reg(X

a�

))

the kernel of the multipli
ation map on the spa
e Reg(X

a�

) of regular fun
tions on the aÆne variety X

a�

(
f. [17℄). Here, the density of 


1

alg

(X

a�

) in the spa
e of 1-forms 


1

(X) 
an be independently dedu
ed

from Theorem 2.1, be
ause of the following lemma.

Lemma 5.1 


1

alg

(X

a�

) is a dense subspa
e of 


1

(O(X)).
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Proof. It is well-known (
f. for example [19℄) that B := Reg(X

a�

) � O(X) is a dense subspa
e. We


onsider J = ker(�

X

\ (B 
B)) as a subspa
e of the ideal I

X

= ker�

X

� O(X �X). Then the map

f 
 g 7! f 
 g � fg 
 1; F 7! F � �

X

(F )
 1

is a 
ontinuous surje
tion O(X �X)! I

X

whi
h maps B onto J (
f. [13℄, Lemma 5), so that the density

of B in O(X) implies the density of J in I

X

. The map

'

X

: I

X

! 


1

(X)

whose kernel is I

2

X

maps J onto 


1

alg

(X), whi
h is isomorphi
 to J=J

2

. Therefore the density of J in I

X

implies the density of 


1

alg

(X) in 


1

(X).
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