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Abstract

In the present paper we determine the universal central extension of the Lie algebra O(X,€) of
holomorphic functions of a complex manifold X which is a Riemannian domain over a Stein manifold
with values in a finite-dimensional complex simple Lie algebra £. In view of the abstract description
of the universal central extensions, this amounts to determine the universal differential module of
the Fréchet algebra O(X) of holomorphic functions on X. We show that the de Rham differential
into the space Q'(X) of holomorphic 1-forms on X is universal. Therefore the kernel of the universal
central extension is the quotient space Q'(X)/dO(X).

Introduction

Let A be a unital complex commutative Fréchet algebra, i.e., a complex Fréchet space together with a
continuous bilinear commutative associative unital multiplication. Then an important invariant of A is
its universal differential module Q'(A4). This is a Fréchet space with a continuous A-module structure
A x QY (A) - Q1(A) and a derivation d: A — Q'(A) which is universal in the sense that for any other
Fréchet module M of A and any derivation D: A — M, there exists a unique continuous morphism
a: Q(A) - M of A-modules with D = a od ([13]). If we consider the spectrum I'(4) := Hom(A4,C)
of A, i.e., the space of all continuous algebra homomorphisms A — C, as a topological invariant of A,
then the module Q' (A) is a differential invariant of A. The information contained in Q!(A) is in some
sense finer than the information contained in I'(4), and this makes it often harder to determine Q'(A)
in concrete terms for concrete algebras A.

If X is a complex manifold, then the algebra O(X) of holomorphic complex-valued functions on X
is a commutative Fréchet algebra. The main result of the present paper is that for this algebra the de
Rham differential

d: O(X) = Q' (X)



into the Fréchet O(X)-module Q!(X) of holomorphic 1-forms on X is universal whenever X is a Rie-
mannian domain over a Stein manifold, hence in particular for any open subset of C™. Our result is that
Q' (O(X)) is isomorphic to the space Q' (X) of holomorphic 1-forms on X, and that the differential

d: O(X) = QYX), fredf

is the universal differential. The methods we use are based on the theory of coherent sheaves on Stein
manifolds. For the proof we proceed in two steps. First we prove the result for Stein manifolds, where
we crucially apply the vanishing of the cohomology of coherent sheaves in degrees greater than one. As a
second step, we extend the result to Riemannian domains over Stein manifolds by using results of H. Rossi,
showing that if X is a Riemannian domain over a Stein manifold, then the spectrum X := I'(O(X)) of
the algebra O(X) of holomorphic functions on X carries a natural complex manifold structure turning
it into a Stein manifold. We thus obtain a natural open embedding ix: X < X , and each holomorphic
function on X extends uniquely to X. In this sense X is the envelope of holomorphy of X. As the
algebras O(X) and O(X) are naturally isomorphic, their universal differential modules are isomorphic,
and we then derive that R N
QHOX)) = 2N O(X)) =o' (X) =l (X).

Similar results are well-known in several other contexts: In the algebraic context, where X is a non-
singular affine complex variety, then the algebraic universal differential module of the algebra of regular
functions on X can be identified with the space of regular 1-forms on X ([17]), result due to Bloch
([1]), Loday-Kassel ([12]). If M is a smooth finite-dimensional manifold, then the universal differential
module of the Fréchet algebra C>°(M,R) of smooth functions on M is the space Q'(M,R) of smooth
1-forms on M, result due (in some similar form to Connes ([2]), Pressley-Segal ([15]) and) Maier ([13]),
who introduced Fréchet—Kéhler differentials in this context. Leaving the context of Fréchet algebras and
considering more general locally convex algebras, one can even show that for a non-compact manifold M
the universal differential module of the algebra C°(M,R) of compactly supported smooth functions is
the space of compactly supported smooth 1-forms ([13], [14]).

Our motivation to get precise information on the universal differential module Q! (X) of O(X) was to
determine the universal central extension of the Lie algebras O(X, €) of holomorphic maps X — €, where
t is a simple finite-dimensional complex Lie algebra. In [13] P. Maier shows on an abstract level that for
any Fréchet algebra A the Fréchet-Lie algebra g := A ® € has a universal central extension g of the form

0— HCi(A) —>g—»g—0,
where _
HCL(A) :=0Q'(A)/dA

is the quotient of Q!(A4) modulo the closed subspace generated by all differentials.

For any complex manifold X the image of d, the space of exact 1-forms, is closed in Q!(X) because it
consists of all closed 1-forms for which all integrals over loops in X vanish. Therefore our identification
of Q'(O(X)) with Q!(X) implies that

HC1(0(X)) = Q'(X)/dO(X)

is the kernel of the universal central extension of O(X, ).
For an open submanifold X of a Stein manifold, our identification of Q!'(O(X)) with Q!(X) implies
that the image of d, the space of exact 1-forms, is closed, so that

HC,(O(X)) = Q' (X)/dO(X)



is the kernel of the universal central extension of O(X,£).

The universal central extension of the holomorphic current algebra takes an important intermediate
place between Krichever-Novikov algebras, which are Lie algebras of meromorphic functions on a compact
complex surface with fixed polar set and values in €, and algebras of smooth maps. For example, in the
case of Riemann surfaces, the space of meromorphic functions with values in £ on the Riemann sphere S2
with poles only in {0,000} is dense in the space of holomorphic functions on S?\ {0, 00} which itself lies
in the space of differentiable functions on the equator of S? (all three with values in £). We project to
explore the consequences of this situation in the representations theory of current algebras via coadjoint
orbits (cf. [4]). Another direction for further research is the question under which conditions Lie groups
correspond to the universal central extension of O(X,£).

Acknowledgements: The second named author thanks Matthias Borer for usefull discussions, and
the TU Darmstadt for hospitality. Both authors thank Peter Heinzer for helpfull remarks concerning
Section 4.

1 Preliminairies

Definition 1.1 If F and F are complete locally convex spaces, then we denote by E®F the completed
projective tensor product of £ and F. It has the universal property that the continuous bilinear maps
ExF — (G into any complete locally convex space G are in one-to-one correspondence with the continuous
linear maps EQF — G. The algebraic tensor product E ® F' is a dense subspace of E®G.

Let A be a unital commutative associative complete locally convex algebra, i.e., a complete locally
convex space with a continuous bilinear associative commutative unital multiplication. Then A®A also
carries a natural algebra structure which is uniquely determined by

(a®b)-(a ®b)=uad @b, a,a b €A,

and the multiplication map
A ARA — A

is a morphism of locally convex algebras. It follows in particular that its kernel 4 := ker 4 is an ideal
of ARA. o
We now define Q'(A4) as the completion of the quotient I4/I3, which carries a natural A-module
structure inherited from the left multiplication action of A =~ A ® 1 on the tensor product A®A. There
is a continuous derivation
da:A—=Q'(4), a~[1®a—a®l],

where [z] denotes the class of z € I4 in I4/I%. The pair (Q'(4),d4) is uniquely determined by the
property that Q!(A) is a complete locally convex A-module and that the derivation d4 has the universal
property that for each pair (V, D) of a complete locally convex A-module V' and a continuous derivation
D : A — V, there is a unique continuous morphism of A-modules o : Q'(A4) — V with D = aoda.

Note that the uniqueness requirement in the universal property of d4 implies that the submodule of
QL(A) generated by d4(A) is dense, so that A -d4(A) is dense in Q!(A).

Definition 1.2 Let X be a (second countable) complex manifold and O(X) the complex algebra of
holomorphic functions on X. Then O(X) is a Fréchet space, i.e., a locally convex, metrizable complete
topological vector space, with respect to the topology of uniform convergence on compact subsets of X.
The natural algebra structure now turns @(X) into a unital commutative associative Fréchet algebra. We



write Q' (X) for the space of holomorphic 1-forms on X. This space also has a natural Fréchet structure
given by the uniform convergence on compact subsets of X, turning it into a Fréchet module of O(X).
Moreover, the (de Rham) differential

d:O(X) = Q'(X)

is a continuous derivation of O(X)-modules, hence gives rise to a unique morphism of O(X)-modules
Yx - Q! (O(X)) — Ql(X) with  yx o dO(X) =d.

In Section 3 we shall prove in our main theorem that yx is a homeomorphism if X is a Riemannian
domain over a Stein manifold, which is equivalent to being an open subset of a Stein manifold.

Remark 1.3 A more explicit form of yx can be obtained as follows. Thanks to Grothendieck ([9], Ch.
II, §3, no. 3, Ex. 2 after Theorem 13), the tensor product space O(X)®O(X) and the Fréchet space
O(X,0(X)) of O(X)-valued holomorphic functions on X are naturally isomorphic, and since the latter
space can easily seen to be isomorphic to O(X x X), we have an isomorphism of Fréchet algebras

Ox : O(X)RO(X) = O(X x X)  with 0x(f®g)(z,y) = f(2)g(y)-

In this sense we identify the elements of the tensor product O(X)®O(X) with holomorphic functions on
the product manifold X x X.
We have a natural map

Fx: O(X x X) = QHX), Fx(F)(z)(v) := dF(z,2)(0,v).

For F' = f ® g we then have

and Jx is a continuous morphism of O(X)-modules, where O(X) acts on O(X x X) by (f.F)(z,y) :=
f(x)F(z,y). The restriction of ¥x to the ideal I'x satisfies

Yx (dox)(f) =x(1® f = f@1) = df,
and therefore the uniqueness of yx implies that yx = Yx|ry, i-e.,
vx (F) = dF (z,z)(0,v).

Definition 1.4 For a sheaf F of O(X)-modules, we will write F, for the space of germs at z € X. Given
a morphism of sheaves ¢ : F — G on X, we shall for each open set U C X write (7 : F(U) = G(U) for
the corresponding map between spaces of sections over U. For (x, we simply write (.

Let A : X — X x X be the diagonal map. It embeds X as a complex submanifold A(X) into X x X.
It induces a morphism between structure sheaves

Aﬂ : OX><X — A*Ox,
given on an open set U C X x X by

AG(f)y=fod, for feOxux(U).



Here A.Ox denotes the usual direct image sheaf, i.e., the sheaf of Ox « x-modules given on U C X x X
by

(ALOx)(U) = Ox (AN D)),
where the module structure is given by f.v := (f o A).v. As A.Ox is a coherent analytic sheaf, i.e., a
coherent sheaf of Oxy x-modules (cf. [8], p.20), the kernel Zx := ker(AF) is a coherent sheaf of Oxy x-
modules (cf. [8], p.237). One has

Ix(U) = {f € Oxxx(U) | fo Ala-1@) =0},

because the sections on U of ker(AF) are the kernel of AﬁU 1 0xxx(U) = AOx(U) = Ox(A7L(U)) by
left-exactness of the global section functor.

Lemma 1.5 For any open subset U C X, let i := po(v) : O(U)ROU) = O(U) be the multiplication
map of O(U). Then we have
Ix (U xU) = Ipw) = ker(ur).

Proof. It is easy to see that for the isomorphism 6 from Remark 1.3 the following diagramm com-

mutes:
OWUBOW) L= OU x U) -
~ Aﬁwl
o)
This implies that Zx (U x U) = ker (A}, ;) 2 ker pup. n

Remark 1.6 The preceding lemma provides a sheaf version of the ideal Ix := I x) = ker ux because
it identifies for each open subset U of X the ideal Iy with the space of sections of the sheaf Tx over
UxU.

Lemma 1.7 Let n := dime X and (z,y) € X x X. Let xy,...,z, be coordinate functions of the first
factor in X x X and y1, ... ,yn for the second factor around the point (x,y), whose coordinates are (0,0).
Then the ideal (Ix)(y,y) = ker (A%) () C (Oxxx)(2,y) is generated by the germs of the functions

(1 —=y1)s-- 5 (Tn — Yn)-

Proof. First we pass from the coordinate functions z1,... ,Zn,y1,.--,¥n on X X X to coordinate
functions Z1,... ,Zp,Y1,--- ,yn defined by z; = z; and y; = x; —y; for i = 1,... ,n. Then the diagonal
A(X) is the vanishing set of the ideal (y1,...,9,) = (1) + ... + (Un), generated by the functions
Y1,--- »Yn- In our coordinate system the condition F(Z,y) o A =0, i.e., F(Z,)|a(x) = 0, on the level of

germs in (x,y) is equivalent to F(Z,) € (U1,... ,Un), 1.€., F(Z,9) =01 F1(Z,9) + ... + UnFn(Z, 7). ]

Definition 1.8 Let us now recall the definition of the analytic inverse image functor ([8], p. 18): Let
f X =Y be a holomorphic map and F a sheaf of Oy-modules. We define

Fxy X :={(ay,z) € Fx X |y = f(x),ay € Fy}.



Here F, is the space of germs or sections of F at y € Y, and F Xy X is a sheaf on X. This fibered product
is just the restriction F|x of F to X in case f : X — Y is the inclusion of a submanifold. Continuing
with the general construction, F Xy X is a sheaf of Oy Xy X-modules. Moreover, Ox is a sheaf of
Oy xy X-modules by
(ay, ) - @z = (ay o fz - Pa-
One then defines
f*(f) = (.7: Xy X) ®OY><yX Ox.

This construction defines a right exact functor sending coherent sheaves of Oy-modules to coherent
sheaves of Ox-modules satisfying f*Oy = Ox ([8], p. 18-19).

For Y = X x X and the embedding f := A : X < X x X we see in particular that A*(Zx) is a
coherent analytic sheaf of Ox-modules. The germs of this sheaf in z € X are the germs of holomorphic
functions on X x X in (z,z) € X x X vanishing on the diagonal of X x X. In particular, we have

A (Ix) = (IX|A(X‘)) QOxxx|ax) Ox.

Lemma 1.9 Let X be a Stein manifold. Then the global section module of the sheaf A*(Ix) admits a
finite presentation as an Ox(X)-module.

Proof. We recall that a coherent analytic sheaf F of Ox-modules is a sheaf such that for each point
x € X, there is an open set U, integers n, and m, and an exact sequence

(Ox|U)n”” — (Ox|U)m”” — -7'-|U — 0.
We want to show that the sheaf F posesses a finite presentation
(Ox)n — (Ox)m - F = 0.

Applying the global section functor, which is right exact for coherent analytic sheaves on Stein manifolds,
the assertion of the lemma follows.

As A* is a right exact functor (cf. [8], p. 19), a finite presentation of A*(Zx) can be obtained by a
finite presentation of Zx as a sheaf of Ox x x-modules (recall that for a holomorphic map f: X =Y, we
have Ox = f*(Oy) by [8], p- 19).

Recall that the sheaf Tx is defined by

IX = ker (Aﬂ : OXXX — A*Ox).

Furthermore, one can use Grauert’s Embedding Theorem to embed 7 : X — C™. Then i*O¢» = Ox
implies

(i X i)*ZCn = Ix,
so that, in view of the right exactness of (i x ¢)* ([8], p. 18), it suffices to obtain a finite presentation of
I(C n.

We may therefore assume that X = C™ and that z = y = 0. We then have to find a finite presentation
of the sheaf Z¢» which is the sheaf of ideals of the (complex analytic) diagonal subvariety C™ — C™ xC™.
According to Lemma 1.7, it is generated by the functions =y — y1, ..., £, — Yn, where the z; are the
coordinate functions of the first factor in the product C™ x C™, and y; are those on the second factor.

Define a map
n

C:Ofnyen 2 Ien, C(frree i fa) = (i —yi)fi,

i=1



where for an open subset U C C™ x C", fi,..., fn are elements of Oc¢nxc»(U) = O(U), and write

henceforth zj := 2 —yi for k = 1,... ,n. We want to determine generators and relations for Z¢». Let
F=(fi,...,fn) € ker ((), i.e., 21f1 + ...+ 2nfn = 0. Then f; vanishes on the common set of zeros of
the functions z», ... , z,, hence is of the form f; = 3", z; fi;. Then the function

n

H = > (2if10,...,0,=21f1,0,...,0) = Y _ f1:(2:,0,...,0,~21,0,...,0)
=2

=2
is contained in Z¢» and satisfies B B B
F:=F-H= (Oaf27 :fn)

n(n—1

Now we use induction to see that the ideal ker (¢) is generated by the == ) functions

0,...,0,2:,0,...,0,—2;,0,...,0),

where z; is at the j-th, and —z; is at the i-th position.
In conclusion, we obtain a finite presentation:

n(n—1)

Ocnion = Ofnyen = Ien — 0.

This completes the proof of the lemma. ]

2 Universal differentials and holomorphic 1-forms
Theorem 2.1 Let X be a Stein manifold. Then the map
T Q1O(X)) = QL(X)
from Definition 1.2 is an isomorphism of topological O(X)-modules.
The proof of Theorem 2.1 will be complete at the end of this section.

Remark 2.2 The Stein condition is essential in the theorem, but will be weakened in the next section.
There exist counterexamples in the general case, for example X = C/(Z +iZ). In this case O(X) = C,
the constant functions, thus Q!(O(X)) = 0, but Q}(X) = C is generated by the global holomorphic
1-form dz. Thus yx is not injective in this case.

The following lemma contains already a special case of our main theorem.

Lemma 2.3 Let U be an open subset of C™ such that the restrictions of polynomials to U form a dense
subspace of O(U). Then
o : QHOU)) = Q1)

is an isomorphism of Fréchet O(U)-modules.



Proof. For the proof we have to verify that the differential d: O(U) — Q' (U) has the universal
property. Let V' be a continuous O(U)-module and D: O(U) — V a continuous derivation.

Let z1,... ,2zp: U — C denote the coordinate functions. Since the tangent bundle of the open subset
U C C™ is trivial, the O(U)-module Q' (U) is free with basis dz,... ,dz,. Hence there exists a unique
continuous morphism of O(U)-modules a: QY (U) — V with a(dz;) = D(z;), namely

a(i fjdzj) = i fi-D(2;)-

We then have cod = D on 21, ... ,2z, € O(U), and since aod and D are derivations O(U) — V, they also
coincide on the subalgebra of O(U) generated by z1,... ,2,. By our assumption on U, this subalgebra is
dense, so that the continuity of a o d and D entails that both maps coincide on the whole space O(U).
This proves the existence of a, and since the relation a od = D determines the image of dz; under o, the
module morphism « is uniquely determined by the condition aod = D. Hence (Q!(U), d) is the universal
differential module of the Fréchet algebra O(U). [

Remark 2.4 For each point = in a complex manifold X there exists an open neighborhood U which is
isomorphic to a polydisc. Since the polynomials are dense in O(U), Lemma 2.3 applies to U.

Definition 2.5 We now define a relative of the map yx (cf. Definition 1.2) on sheaf level. Let Zx denote
the kernel of the sheaf homomorphism At (cf. Definition 1.4). Then the ideal sheaf Zx is a coherent
sheaf of Oxxx-modules. Its coherent inverse image sheaf (constructed in Definition 1.8) A*Zx is the
corresponding sheaf on X. We want to define

$ A*(IX):IX|A(X) ®OX><X|A(X) Ox — Q}(

The first step is to define Yy for an open subset U C X. We first define
Py Ix|ax)(U) @c Ox(U) — Q' (U) by @U(FQ@ 1)(z,v) := dF(z,2)(0,v),

where F' is a holomorphic function on U x U C X x X vanishing on the diagonal, z € U and v € T, (U)
a tangent vector at z. Here it is understood that @ . is extended as a map of Ox(U)-modules from
Ix|ax)(U) ®c 1to all of Ix |a(x)(U) ®¢c Ox (U), letting Ox (U) act on the right hand side of the tensor
product. We then show that this definition factors to

0 Ixax) (U) @0y, x| a @) Ox (U) = QH(U).
Lemma 2.6 The map ¢, : Ix|a(x)(U) ®c Ox(U) = QY(U) factors through a map

@y AIx)(U) = (Zx]a(x)(U)) 0% x| ax,@) Ox(U) = Q'(U).

As Yy is obviously compatible with the restriction maps, it induces a sheaf map

0 A (Ix) — QL.

On the level of germs, the kernel of ¢ in x equals N*(Tx)32.



Proof. The sheaf of algebras OXXX|A(X) acts on Ox by

(f(acmc)ax) "G = (f(xmc) o A)z g

Here f(, ) denotes the germ of f € Oxyx (U x U) at (z,z) = A(x), and (f(4,2) © ), is the germ at
of f(z,z) © A in Ox. Thus, an element (f(, ,),2) passes through the tensor product, acting on the left
hand side by multiplication with f, ,y, and on the right hand side by multiplication with (f(; ) 0 A)s.
Thanks to the formula

8y (FG) = DMy(F)p

for germs F, GG, we have (using that p,; is an Ox (U

#
Py (@) + By (@), (F),
)-module homomorphism)
gU(h(m,m)f(z,z) ® ga:) = ( (z z)f z,z))gz
= (Aﬁ ( (z x))‘pU( (z 1:)) + Agj(f(xm))g(](h(zm)))gz

= U(f(z7z))£U( (x,x))gm
= gU(h(z,z))(f(z,z) ° A)xgx
= gU(h(z,z) by (f(z,z) o A)xgx)

Thus ¢, is well-defined on the tensor product. The above mentioned formula shows A*(Ix)? C ker (p).
On the other hand, Lemma 1.7 shows that a germ F in ker(A*), can be written

n
E (zr — yi) F)
k=1

for the coordinate functions z and y; on the two factors in C" x C™, k =1,...,n. Hence, application
of ¢ gives
n
Z (z, z)dzy,
where we use 1, ... ,2, as coordinates on X, and now it is obvious that F' € ker(yp) means that the F},
vanish on the diagonal, hence F' € A*(Zx)2. ]

To prove the injectivity of vx in Theorem 2.1, we shall need the following lemma.

Lemma 2.7 T'(X,A*(Ix)?) 2 I} = Iy for Ix := Iox)-

Proof. In order to show the assertion of the preceding remark, we note that if M and A are two
coherent sheaves of Ox-modules such that their global section modules M = T'(X, M) and N = T'(X, \)
are finitely presented Ox (X )-modules, one has

M®o,(xy N=ZT(X,M®0, N)

(see e.g. [5], p. 403). Here it is not necessary to pass to the completions because the left hand side is
complete owing to the finiteness of the presentation. Denote by ¢ the multiplication map

¥ A*(Ix) ® A*(Ix) = A*(Ix)? = im(y),



and note that im(¢) as an image sheaf, and ker (¢)) as a kernel sheaf are coherent ([7]). Then we consider
the two short exact sequences:

0 — T(X, ker () = T(X, A*(Ix) ® A*(Tx)) = T(X, A*(Ix)?) = 0
(owing to the Stein property H'(X, ker (1)) = 0) and
0 — ker(I'(X,v)) = I['(X, A*(Zx)) ®o(x) T'(X, A" (Zx)) = T(X, A (Ix))* =0

where once again ['(X, A*(Zx))? = im(T'(X,)). By the left exactness of the global section functor T,
the first terms of the two sequences coincide, and the second terms (and thus @ fortiori the third terms)
are isomorphic because the global section module of A*(Zx) is finitely presented by Lemma 1.9. We
conclude with Lemma 2.6 that

kerp = T'(X,kerp) = T(X,A*(Zx)?) = [(X,A*(Ix))* = I?o(x)-

Therefore the assertion follows from the closedness of ker ¢ in O(X x X). ]

Lemma 2.8 If X is a Stein manifold, then the sheaf Q% of germs of holomorphic sections of T*(X) is
coherent.

Proof.  The structure sheaf Ox of X is coherent because X is non-singular and coherence is a local
property. Hence the same is true for O?@k for each k € N. Since coherence is a local property and QY is
locally free, it is coherent. ]

Proposition 2.9 For every Stein manifold X there exist finitely many functions fi,..., fn such that
the O(X)-module Q' (X) is generated by dfy,... ,dfn.

Proof.  We consider an embedding
F:X_)(CNa F:(flaafN)

of X as a closed submanifold of CV ([11]). If dim X = n and p € X, then there exist 4y,... ,i, such
that df;, (p), j = 1,... ,n, form a basis of T,(X)*. Let U denote an open neighborhood of p on which the
1-forms df;; are linearly independent. Then T*(X)|v is a trivial bundle, hence Q% |v is a free sheaf. It
follows in particular that the map

p: Qenlx = O

is a surjective morphism of sheaves. As the sheaf Qf y|x is free and Q% is coherent (Lemma 2.8), the
sheaf ker ¢ is coherent ([7]). From Theorem B ([7]) we now derive that

H'(X,ker ) = {0},

which means that the restriction map Q'(CV) — Q'(X) is surjective. If z,...,zn are the canonical
coordinate functions on C¥, then Q!(C¥) is generated by the differentials dz; as a module of O(CY),
and after restriction to X, we see that the restrictions df; = d(z;|x) generate Q!(X) as a module of
O(X) = O(C"V)|x. Here we use that the restriction map O(C") — O(X) is surjective ([7], Theorem 4,
Ch. V, §4). (]

10



Now we complete the proof of Theorem 2.1: Left-exactness of the global section functor I" implies
that I' and ker commute:
I'(X, ker(p)) = ker(I'(X, ¢)) = ker(px),

where
Px 1=yt IX,A*"(Zx)) — Ql(X).

By Lemma, 2.6, ker p and A*(Z)? coincide as sheaves, so that Lemma 2.7 leads to
ker(px) = T(X, A*(Ix)?) = I%.

Since the map vx: Ix/I% — QYX) coincides with the map induced by factorization of the map
ox: Ix = QY(X), it follows that yx is injective.

In view of Proposition 2.9, the O(X)-module Q' (X) is generated by dfi, ... dfn for some holomorphic
functions f; € O(X). Therefore vx(do(x)u(fi)) = df; implies that vyx is surjective, hence bijective. The
map yx is continuous by construction, so that it is open by the Open Mapping Theorem. This completes
the proof of Theorem 2.1. [

3 Extension to Riemannian domains over Stein manifolds

Definition 3.1 Let Y be a Stein manifold. A complex manifold X together with a holomorphic map
p: X — Y which is everywhere regular will be called a Riemannian domain over Y.

One often considers arbitrary complex spaces X instead of manifolds in the preceding definition, but
in order to have differential forms and therefore tangent spaces having everywhere the same dimension,
we need manifolds.

The aim of this section is to generalize Theorem 2.1 to Riemannian domains over Stein manifolds.

Lemma 3.2 If X is a Stein manifold, then its cotangent bundle T*X is a Stein manifold.

Proof. According to Grauert’s Embedding Theorem, we may w.l.o.g. assume that X is a closed
submanifold of some C™. Let p € X and U C C™ an open subset for which there exists a holomorphic
function F': U — C* of constant rank k with

XNU=F1*0) and T,(X)=kerdF(z), z¢€X.
According to [3] (cf. also [16], Th. 4.1), the exact sequence of holomorphic vector bundles
0>TX S TC"x=2XxC" > N —=0,

where N is the normal bundle of X in C", splits. Let w: N — X x C™ be a holomorphic vector bundle
map with
XxC"=TX ®dw(N).

Then we can identify T*X with
{(z,0) € X x C": (v,0(N,)) = {0}},
where (z,w) = z;;l zjw;. This implies that T*X can be identified with a closed submanifold of C* xC",

and thereore that T*X is a Stein manifold. n
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Theorem 3.3 Let X be a Riemann domain over a Stein manifold. Then the map
vx: Q(OX)) = QY(X), dox)f — df
is an isomorphism of Fréchet O(X)-modules.

Proof.  The spectrum X := [(O(X)) := Hom(O(X), C) of the algebra O(X) of holomorphic functions
on X carries a natural complex manifold structure turning it into a Riemannian domain over X which is
a Stein manifold ([16], Th. 4.6). The restriction map

R: O(X) - O(X)
is an isomorphism of Fréchet algebras, which in turn induces a natural isomorphism
a: QY(O(X)) = QH(O(X)).

On the other hand, we have a continuous restriction map f: Ql()/(\') — QY(X), which leads to a commu-
tative diagram R
Q'(O0X)) —— QY(0(X))

I’Y? l’YX
a(x) ——  o(x)

We know from Theorem 2.1 that 7y is an isomorphism. It therefore suffices to show that 3 is an
isomorphism to see that yx is an isomorphism, too. Since ( is a continuous linear map between Fréchet
spaces, it suffices to show that it is surjective, and then apply the Open Mapping Theorem. This means
that we have to show that each holomorphic 1-form w € Q'(X) is the restriction of a holomorphic 1-form
&on X. R

The envelope of holomorphy X has the property that all holomorphic functions on X with values in an
arbitrary Stein manifold S extend uniquely to holomorphic functions from X to S. In fact, we may embed
S as a closed submanifold of C™, and then extend the function f: X — S to a function F': X — C".
Since F maps the open subset X into S, it follows by analytic continuation that F(X ) CS.

Let w € Q'(X) be a holomorphic 1-form. We consider w as a section of the cotangent bundle:
w: X — T"X. We may identify T*X = T*)?|x as an open submanifold of the Stein manifold T*X
(Lemma 3.2). Therefore w admits a unique extension to a holomorphic function &: X — T*X. If
m: T*X — X is the bundle projection, then mow = idx, so that m o &|x = idx, and therefore the
uniqueness of the extension implies that m o @ = id ;. This means that @ is a section of the cotangent
bundle of )?, i.e., a holomorphic 1-form. [ ]

Remark 3.4 The condition that a complex manifold X is an open subset of a Stein manifold is equivalent
to the condition that it is a Riemannian domain over a Stein manifold. In fact, each open subset is trivially
a Riemannian domain. Conversely, each Riemannian domain X over a Stein mamfold embeds as an open
subset X < X, where X is its envelope of holomorphy, which is a Stein manifold ([16], Th. 4.6).

Corollary 3.5 If X is a Riemannian domain over a Stein manifold, then the image of the universal
differential d: O(X) — Q'(O(X)) is closed, and

HC1(0(X)) = 0'(X)/dO(X).
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Proof. In view of Theorem 3.3, we may identify Q!(O(X)) with the Fréchet space Q!(X) of holomor-
phic 1-forms on X and d with the de Rham differential. Its image consists of the exact 1-forms. That the
space of exact 1-forms is closed follows from the fact that it is defined by the equations fv w = 0, where
v is a piecewise smooth closed path in X, and the integration maps

Q'N(X)=C, we / w
¥
are continuous linear functionals. n

The following result was our initial motivation for the present work:

Theorem 3.6 Let € be a simple complex finite-dimensional Lie algebra and X a Riemann domain over
a Stein manifold. Then g := O(X,t) 2 O(X) ® t is a Fréchet-Lie algebra with respect to the pointwise
bracket:

[foz,g®y|=fg®[z,y].

If k is the Cartan—Killing form of €, then
o(f ©@w,g®y) =k, y)(f-dg) mod d(O(X))
defines a continuous Lie algebra cocycle
c: g x g — HCI(O(X)) = Q'(X)/d(O(X)),
and the corresponding central extension
HC(O(X)) =g —»g
is universal.

Proof. It is shown in [13] that for each Fréchet algebra A the universal central extension of g := A® ¢
is given by the cocycle
cla®xz,b®y) :=k(z,y)a-dabl € HC1(A).

Therefore the assertion follows from our identification of HC}(O(X)) in Theorem 3.3. m

4 The algebra of germs of holomorphic functions

In this section we consider a compact subset K C C". We write O(K) for the complex algebra of all
germs of holomorphic functions on K, which is the direct limit of all algebras O(U), where U runs through
the set of all open neighborhoods of K. Let iy: O(U) — O(K), f — [f] denote the map assigning to
f € O(U) its germ on K and, for U C V, write

ivy: O(V) = OW), f— flu

for the restriction map.
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Each of the algebras O(U) is a Fréchet algebra, and we consider on O(K) the locally convex direct limit
topology, which is defined by all seminorms p on O(K) for which all compositions p o iy are continuous
seminorms on O(U). Then all the maps

iv: OU) = O(K)

are continuous and O(K) has the universal property of the direct limit: a linear map ¢: O(K) — V to
a locally convex space V' is continuous if and only if all compositions ¢ o iy are continuous. That the
topology on O(K) is Hausdorff and the group multiplication is continuous is shown by H. Glockner in
Theorem 6.1 of [6].

Now O(K) is a locally convex unital algebra to which we can associate the universal differential
module Q' (O(K)) together with the universal differential do(x): O(K) = Q' (O(K)). We write

Q!(K) := lim Q' (1)

for the space of germs of holomorphic 1-forms on K.
The main result of this section is the following:

Theorem 4.1 The de Rham differential
d: O(K) - QY(K)

is universal, when Q(K) is endowed with the locally convex direct limit topology of the spaces Q' (U), U
a neighborhood of K. In particular Q'(K) = Q' (O(K)).

Proof.  Since the cotangent bundle of any open subset U C C" is trivial, it follows that
0N K) = P O(K).[dz],
j=1
where [a] denotes the germ of the holomorphic 1-form a which is defined on a neighborhood of K. In
particular Q! (K) is a free O(K)-module of rank n, and we see that the module structure
O(K) x Q'(K) = Q'(K), ([f],[o]) = [fa]

is continuous because the multiplication in the algebra O(K) is continuous.
To prove the universality of d, let M be a continuous O(K)-module and D: O(K) — M a continuous
derivation. Since the maps iy are continuous, M inherits a natural structure of an O(U)-module via

fm:=iy(f)m, feOU),me M.
For each open neighborhood U C K the map
Dy: =Doiyg: O(U) - M

is a continuous derivation, and our main Theorem 3.3 therefore implies the existence of a unique contin-
uous linear map
ary: Q' (U) = M with apody = Dy,
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where diy: O(U) — QY(U) is the de Rham differential.
Let ju: QY(U) » QY(K),a = [a] be the natural map, and for U C V, we write

jU,V: Ql(V) — Ql (U), o= a|U

for the restriction map. We clearly have dyy o iy y = ju,v ody. For U C V we now have iy =iy oipy,
so that Dy = Dy oiy,y. Therefore

ayojyuyvody =ayodyoiyy =Dyoiyy =Doigoiyy =Doiy = Dy,

so that the uniqueness of ay leads to
ay = ay o jy,v-
Hence the universal property of Q!(K) as a locally convex direct limit space implies the existence of a
continuous linear map
a: QNK) = M
with «a o jy = ay for each open neighborhood U of K.

We claim that « is a morphism of O(K)-modules. For each f € O(V) we choose U C V and obtain
for g € QY(U):

fa([Bl) = fav(B) = ivv(f).au(B) = avliv,y (f)B) = ao juliv,y (f)B) = a([f].[B]).

The uniqueness of a follows from the fact that Q!(K) is generated as a O(K)-module by the image of d,
which contains the classes [dz1], ..., [dzn]. ]

Remark 4.2 In view of the preceding theorem, Theorem 3.6 generalizes in the obvious way to the Lie
algebra O(K, ) of germs of ¢-valued holomorphic functions on K.

5 Further remarks

Suppose the Stein manifold X is the complex analytic manifold corresponding to a complex smooth
affine algebraic variety X% such that X*T C P for a complex smooth projective algebraic variety P and
D := P\ X* is an ample divisor on P. In this situation, some density theorem applies to show that
(usual) Kéhler 1-forms Q! (X?T) on X2 are dense in (usual holomorphic) 1-forms Q'(X) on X in the
subspace topology (cf. [19]). Recall that for usual Kahler 1-forms, one has

Ql

alg

(x*7) = Q' (Reg(X)) = J*/J,

where
J := ker(p : Reg(X?T) ® Reg(X?*T) = Reg(X?"))

the kernel of the multiplication map on the space Reg(X?") of reqular functions on the affine variety X2
(cf. [17]). Here, the density of Q) (X aff) in the space of 1-forms Q!(X) can be independently deduced
from Theorem 2.1, because of the following lemma.

Lemma 5.1 Q;lg(XaH) is a dense subspace of Q' (O(X)).
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Proof. It is well-known (cf. for example [19]) that B := Reg(X?") c O(X) is a dense subspace. We
consider J = ker(ux N (B ® B)) as a subspace of the ideal Ix = kerux C O(X x X). Then the map

feg feg—fgol, F—F—-—ux(F)®1

is a continuous surjection O(X x X) — Ix which maps B onto J (cf. [13], Lemma 5), so that the density
of B in O(X) implies the density of J in Ix. The map

Yx: IX — Ql(X)

whose kernel is I3 maps J onto Qy,,(X), which is isomorphic to J/.J?. Therefore the density of .J in Ix

implies the density of 0 (X) in Q'(X). ]
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