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Abstrat

In the present paper we determine the universal entral extension of the Lie algebra O(X; k) of

holomorphi funtions of a omplex manifold X whih is a Riemannian domain over a Stein manifold

with values in a �nite-dimensional omplex simple Lie algebra k. In view of the abstrat desription

of the universal entral extensions, this amounts to determine the universal di�erential module of

the Fr�ehet algebra O(X) of holomorphi funtions on X. We show that the de Rham di�erential

into the spae 


1

(X) of holomorphi 1-forms on X is universal. Therefore the kernel of the universal

entral extension is the quotient spae 


1

(X)=dO(X).

Introdution

Let A be a unital omplex ommutative Fr�ehet algebra, i.e., a omplex Fr�ehet spae together with a

ontinuous bilinear ommutative assoiative unital multipliation. Then an important invariant of A is

its universal di�erential module 


1

(A). This is a Fr�ehet spae with a ontinuous A-module struture

A � 


1

(A) ! 


1

(A) and a derivation d : A ! 


1

(A) whih is universal in the sense that for any other

Fr�ehet module M of A and any derivation D : A ! M , there exists a unique ontinuous morphism

� : 


1

(A) ! M of A-modules with D = � Æ d ([13℄). If we onsider the spetrum �(A) := Hom(A; C )

of A, i.e., the spae of all ontinuous algebra homomorphisms A ! C , as a topologial invariant of A,

then the module 


1

(A) is a di�erential invariant of A. The information ontained in 


1

(A) is in some

sense �ner than the information ontained in �(A), and this makes it often harder to determine 


1

(A)

in onrete terms for onrete algebras A.

If X is a omplex manifold, then the algebra O(X) of holomorphi omplex-valued funtions on X

is a ommutative Fr�ehet algebra. The main result of the present paper is that for this algebra the de

Rham di�erential

d : O(X)! 


1

(X)

1



into the Fr�ehet O(X)-module 


1

(X) of holomorphi 1-forms on X is universal whenever X is a Rie-

mannian domain over a Stein manifold, hene in partiular for any open subset of C

n

. Our result is that




1

(O(X)) is isomorphi to the spae 


1

(X) of holomorphi 1-forms on X , and that the di�erential

d : O(X)! 


1

(X); f 7! df

is the universal di�erential. The methods we use are based on the theory of oherent sheaves on Stein

manifolds. For the proof we proeed in two steps. First we prove the result for Stein manifolds, where

we ruially apply the vanishing of the ohomology of oherent sheaves in degrees greater than one. As a

seond step, we extend the result to Riemannian domains over Stein manifolds by using results of H. Rossi,

showing that if X is a Riemannian domain over a Stein manifold, then the spetrum

b

X := �(O(X)) of

the algebra O(X) of holomorphi funtions on X arries a natural omplex manifold struture turning

it into a Stein manifold. We thus obtain a natural open embedding i

X

: X ,!

b

X , and eah holomorphi

funtion on X extends uniquely to

b

X. In this sense

b

X is the envelope of holomorphy of X . As the

algebras O(X) and O(

b

X) are naturally isomorphi, their universal di�erential modules are isomorphi,

and we then derive that




1

(O(X))

�

=




1

(O(

b

X))

�

=




1

(

b

X)

�

=




1

(X):

Similar results are well-known in several other ontexts: In the algebrai ontext, where X is a non-

singular aÆne omplex variety, then the algebrai universal di�erential module of the algebra of regular

funtions on X an be identi�ed with the spae of regular 1-forms on X ([17℄), result due to Bloh

([1℄), Loday-Kassel ([12℄). If M is a smooth �nite-dimensional manifold, then the universal di�erential

module of the Fr�ehet algebra C

1

(M;R ) of smooth funtions on M is the spae 


1

(M;R ) of smooth

1-forms on M , result due (in some similar form to Connes ([2℄), Pressley-Segal ([15℄) and) Maier ([13℄),

who introdued Fr�ehet{K�ahler di�erentials in this ontext. Leaving the ontext of Fr�ehet algebras and

onsidering more general loally onvex algebras, one an even show that for a non-ompat manifold M

the universal di�erential module of the algebra C

1



(M;R ) of ompatly supported smooth funtions is

the spae of ompatly supported smooth 1-forms ([13℄, [14℄).

Our motivation to get preise information on the universal di�erential module 


1

(X) of O(X) was to

determine the universal entral extension of the Lie algebras O(X; k) of holomorphi maps X ! k, where

k is a simple �nite-dimensional omplex Lie algebra. In [13℄ P. Maier shows on an abstrat level that for

any Fr�ehet algebra A the Fr�ehet-Lie algebra g := A
 k has a universal entral extension

e

g of the form

0! HC

1

(A) ,!

e

g!! g! 0;

where

HC

1

(A) := 


1

(A)=dA

is the quotient of 


1

(A) modulo the losed subspae generated by all di�erentials.

For any omplex manifold X the image of d, the spae of exat 1-forms, is losed in 


1

(X) beause it

onsists of all losed 1-forms for whih all integrals over loops in X vanish. Therefore our identi�ation

of 


1

(O(X)) with 


1

(X) implies that

HC

1

(O(X))

�

=




1

(X)=dO(X)

is the kernel of the universal entral extension of O(X; k):

For an open submanifold X of a Stein manifold, our identi�ation of 


1

(O(X)) with 


1

(X) implies

that the image of d, the spae of exat 1-forms, is losed, so that

HC

1

(O(X))

�

=




1

(X)=dO(X)

2



is the kernel of the universal entral extension of O(X; k):

The universal entral extension of the holomorphi urrent algebra takes an important intermediate

plae between Krihever-Novikov algebras, whih are Lie algebras of meromorphi funtions on a ompat

omplex surfae with �xed polar set and values in k, and algebras of smooth maps. For example, in the

ase of Riemann surfaes, the spae of meromorphi funtions with values in k on the Riemann sphere S

2

with poles only in f0;1g is dense in the spae of holomorphi funtions on S

2

n f0;1g whih itself lies

in the spae of di�erentiable funtions on the equator of S

2

(all three with values in k). We projet to

explore the onsequenes of this situation in the representations theory of urrent algebras via oadjoint

orbits (f. [4℄). Another diretion for further researh is the question under whih onditions Lie groups

orrespond to the universal entral extension of O(X; k).

Aknowledgements: The seond named author thanks Matthias Borer for usefull disussions, and

the TU Darmstadt for hospitality. Both authors thank Peter Heinzer for helpfull remarks onerning

Setion 4.

1 Preliminairies

De�nition 1.1 If E and F are omplete loally onvex spaes, then we denote by E

b


F the ompleted

projetive tensor produt of E and F . It has the universal property that the ontinuous bilinear maps

E�F ! G into any omplete loally onvex spaeG are in one-to-one orrespondene with the ontinuous

linear maps E

b


F ! G. The algebrai tensor produt E 
 F is a dense subspae of E

b


G.

Let A be a unital ommutative assoiative omplete loally onvex algebra, i.e., a omplete loally

onvex spae with a ontinuous bilinear assoiative ommutative unital multipliation. Then A

b


A also

arries a natural algebra struture whih is uniquely determined by

(a
 b) � (a

0


 b

0

) = aa

0


 bb

0

; a; a

0

; b; b

0

2 A;

and the multipliation map

�

A

: A

b


A! A

is a morphism of loally onvex algebras. It follows in partiular that its kernel I

A

:= ker�

A

is an ideal

of A

b


A.

We now de�ne 


1

(A) as the ompletion of the quotient I

A

=I

2

A

, whih arries a natural A-module

struture inherited from the left multipliation ation of A

�

=

A
 1 on the tensor produt A

b


A. There

is a ontinuous derivation

d

A

: A! 


1

(A); a 7! [1
 a� a
 1℄;

where [x℄ denotes the lass of x 2 I

A

in I

A

=I

2

A

. The pair (


1

(A); d

A

) is uniquely determined by the

property that 


1

(A) is a omplete loally onvex A-module and that the derivation d

A

has the universal

property that for eah pair (V;D) of a omplete loally onvex A-module V and a ontinuous derivation

D : A! V , there is a unique ontinuous morphism of A-modules � : 


1

(A)! V with D = � Æ d

A

.

Note that the uniqueness requirement in the universal property of d

A

implies that the submodule of




1

(A) generated by d

A

(A) is dense, so that A � d

A

(A) is dense in 


1

(A).

De�nition 1.2 Let X be a (seond ountable) omplex manifold and O(X) the omplex algebra of

holomorphi funtions on X . Then O(X) is a Fr�ehet spae, i.e., a loally onvex, metrizable omplete

topologial vetor spae, with respet to the topology of uniform onvergene on ompat subsets of X .

The natural algebra struture now turns O(X) into a unital ommutative assoiative Fr�ehet algebra. We

3



write 


1

(X) for the spae of holomorphi 1-forms on X . This spae also has a natural Fr�ehet struture

given by the uniform onvergene on ompat subsets of X , turning it into a Fr�ehet module of O(X).

Moreover, the (de Rham) di�erential

d : O(X)! 


1

(X)

is a ontinuous derivation of O(X)-modules, hene gives rise to a unique morphism of O(X)-modules



X

: 


1

(O(X))! 


1

(X) with 

X

Æ d

O(X)

= d:

In Setion 3 we shall prove in our main theorem that 

X

is a homeomorphism if X is a Riemannian

domain over a Stein manifold, whih is equivalent to being an open subset of a Stein manifold.

Remark 1.3 A more expliit form of 

X

an be obtained as follows. Thanks to Grothendiek ([9℄, Ch.

II, x3, no. 3, Ex. 2 after Theorem 13), the tensor produt spae O(X)

b


O(X) and the Fr�ehet spae

O(X;O(X)) of O(X)-valued holomorphi funtions on X are naturally isomorphi, and sine the latter

spae an easily seen to be isomorphi to O(X �X), we have an isomorphism of Fr�ehet algebras

�

X

: O(X)

b


O(X)! O(X �X) with �

X

(f 
 g)(x; y) = f(x)g(y):

In this sense we identify the elements of the tensor produt O(X)

b


O(X) with holomorphi funtions on

the produt manifold X �X .

We have a natural map

e

X

: O(X �X)! 


1

(X); e

X

(F )(x)(v) := dF (x; x)(0; v):

For F = f 
 g we then have

e

X

(f 
 g) = f � dg;

and e

X

is a ontinuous morphism of O(X)-modules, where O(X) ats on O(X �X) by (f:F )(x; y) :=

f(x)F (x; y): The restrition of e

X

to the ideal I

X

satis�es

e

X

(d

O(X)

(f)) = e

X

(1
 f � f 
 1) = df;

and therefore the uniqueness of 

X

implies that 

X

= e

X

j

I

X

, i.e.,



X

(F ) = dF (x; x)(0; v):

De�nition 1.4 For a sheaf F of O(X)-modules, we will write F

x

for the spae of germs at x 2 X . Given

a morphism of sheaves � : F ! G on X , we shall for eah open set U � X write �

U

: F(U) ! G(U) for

the orresponding map between spaes of setions over U . For �

X

, we simply write �.

Let 4 : X ! X�X be the diagonal map. It embeds X as a omplex submanifold 4(X) into X�X .

It indues a morphism between struture sheaves

4

℄

: O

X�X

!4

�

O

X

;

given on an open set U � X �X by

4

℄

U

(f) = f Æ 4; for f 2 O

X�X

(U):

4



Here 4

�

O

X

denotes the usual diret image sheaf, i.e., the sheaf of O

X�X

-modules given on U � X �X

by

(4

�

O

X

)(U) = O

X

(4

�1

(U));

where the module struture is given by f:v := (f Æ �):v: As 4

�

O

X

is a oherent analyti sheaf, i.e., a

oherent sheaf of O

X�X

-modules (f. [8℄, p.20), the kernel I

X

:= ker(4

℄

) is a oherent sheaf of O

X�X

-

modules (f. [8℄, p.237). One has

I

X

(U) = ff 2 O

X�X

(U) j f Æ 4j

�

�1

(U)

= 0 g;

beause the setions on U of ker(4

℄

) are the kernel of 4

℄

U

: O

X�X

(U)! 4

�

O

X

(U) = O

X

(�

�1

(U)) by

left-exatness of the global setion funtor.

Lemma 1.5 For any open subset U � X, let �

U

:= �

O(U)

: O(U)

b


O(U) ! O(U) be the multipliation

map of O(U). Then we have

I

X

(U � U)

�

=

I

O(U)

= ker(�

U

):

Proof. It is easy to see that for the isomorphism �

U

from Remark 1.3 the following diagramm om-

mutes:

O(U)

b


O(U)

�

U

//

�

U

''O

O

O

O

O

O

O

O

O

O

O

O(U � U)

4

℄

U�U

��

O(U)

.

This implies that I

X

(U � U) = ker (4

℄

U�U

)

�

=

ker�

U

.

Remark 1.6 The preeding lemma provides a sheaf version of the ideal I

X

:= I

O(X)

= ker�

X

beause

it identi�es for eah open subset U of X the ideal I

U

with the spae of setions of the sheaf I

X

over

U � U .

Lemma 1.7 Let n := dim

C

X and (x; y) 2 X �X. Let x

1

; : : : ; x

n

be oordinate funtions of the �rst

fator in X�X and y

1

; : : : ; y

n

for the seond fator around the point (x; y), whose oordinates are (0; 0).

Then the ideal (I

X

)

(x;y)

= ker (4

℄

)

(x;y)

� (O

X�X

)

(x;y)

is generated by the germs of the funtions

(x

1

� y

1

); : : : ; (x

n

� y

n

):

Proof. First we pass from the oordinate funtions x

1

; : : : ; x

n

; y

1

; : : : ; y

n

on X � X to oordinate

funtions ex

1

; : : : ; ex

n

; ey

1

; : : : ; ey

n

de�ned by ex

i

= x

i

and ey

i

= x

i

� y

i

for i = 1; : : : ; n. Then the diagonal

4(X) is the vanishing set of the ideal hey

1

; : : : ; ey

n

i = hey

1

i + : : : + hey

n

i; generated by the funtions

ey

1

; : : : ; ey

n

. In our oordinate system the ondition F (ex; ey) Æ4 = 0, i.e., F (ex; ey)j

4(X)

= 0, on the level of

germs in (x; y) is equivalent to F (ex; ey) 2 hey

1

; : : : ; ey

n

i, i.e., F (ex; ey) = ey

1

F

1

(ex; ey) + : : :+ ey

n

F

n

(ex; ey).

De�nition 1.8 Let us now reall the de�nition of the analyti inverse image funtor ([8℄, p. 18): Let

f : X ! Y be a holomorphi map and F a sheaf of O

Y

-modules. We de�ne

F �

Y

X := f(a

y

; x) 2 F �X j y = f(x); a

y

2 F

y

g:

5



Here F

y

is the spae of germs or setions of F at y 2 Y , and F�

Y

X is a sheaf on X . This �bered produt

is just the restrition Fj

X

of F to X in ase f : X ,! Y is the inlusion of a submanifold. Continuing

with the general onstrution, F �

Y

X is a sheaf of O

Y

�

Y

X-modules. Moreover, O

X

is a sheaf of

O

Y

�

Y

X-modules by

(a

y

; x) � '

x

:= (a

y

Æ f)

x

� '

x

:

One then de�nes

f

�

(F) := (F �

Y

X)


O

Y�

Y

X

O

X

:

This onstrution de�nes a right exat funtor sending oherent sheaves of O

Y

-modules to oherent

sheaves of O

X

-modules satisfying f

�

O

Y

= O

X

([8℄, p. 18-19).

For Y = X � X and the embedding f := 4 : X ,! X � X we see in partiular that 4

�

(I

X

) is a

oherent analyti sheaf of O

X

-modules. The germs of this sheaf in x 2 X are the germs of holomorphi

funtions on X �X in (x; x) 2 X �X vanishing on the diagonal of X �X . In partiular, we have

4

�

(I

X

) = (I

X

j

4(X)

)


O

X�X

j

4(X)

O

X

:

Lemma 1.9 Let X be a Stein manifold. Then the global setion module of the sheaf 4

�

(I

X

) admits a

�nite presentation as an O

X

(X)-module.

Proof. We reall that a oherent analyti sheaf F of O

X

-modules is a sheaf suh that for eah point

x 2 X , there is an open set U , integers n

x

and m

x

and an exat sequene

(O

X

j

U

)

n

x

! (O

X

j

U

)

m

x

! Fj

U

! 0:

We want to show that the sheaf F posesses a �nite presentation

(O

X

)

n

! (O

X

)

m

! F ! 0:

Applying the global setion funtor, whih is right exat for oherent analyti sheaves on Stein manifolds,

the assertion of the lemma follows.

As 4

�

is a right exat funtor (f. [8℄, p. 19), a �nite presentation of 4

�

(I

X

) an be obtained by a

�nite presentation of I

X

as a sheaf of O

X�X

-modules (reall that for a holomorphi map f : X ! Y , we

have O

X

�

=

f

�

(O

Y

) by [8℄, p. 19).

Reall that the sheaf I

X

is de�ned by

I

X

= ker (4

℄

: O

X�X

!4

�

O

X

):

Furthermore, one an use Grauert's Embedding Theorem to embed i : X ,! C

n

. Then i

�

O

C

n

= O

X

implies

(i� i)

�

I

C

n

= I

X

;

so that, in view of the right exatness of (i� i)

�

([8℄, p. 18), it suÆes to obtain a �nite presentation of

I

C

n

.

We may therefore assume that X = C

n

and that x = y = 0. We then have to �nd a �nite presentation

of the sheaf I

C

n

whih is the sheaf of ideals of the (omplex analyti) diagonal subvariety C

n

,! C

n

�C

n

.

Aording to Lemma 1.7, it is generated by the funtions x

1

� y

1

, : : : , x

n

� y

n

, where the x

i

are the

oordinate funtions of the �rst fator in the produt C

n

� C

n

, and y

i

are those on the seond fator.

De�ne a map

� : O

n

C

n

�C

n

! I

C

n

; �(f

1

; : : : ; f

n

) :=

n

X

i=1

(x

i

� y

i

)f

i

;

6



where for an open subset U � C

n

� C

n

, f

1

; : : : ; f

n

are elements of O

C

n

�C

n

(U) = O(U), and write

heneforth z

k

:= x

k

� y

k

for k = 1; : : : ; n. We want to determine generators and relations for I

C

n

. Let

F = (f

1

; : : : ; f

n

) 2 ker (�), i.e., z

1

f

1

+ : : :+ z

n

f

n

= 0. Then f

1

vanishes on the ommon set of zeros of

the funtions z

2

; : : : ; z

n

, hene is of the form f

1

=

P

n

i=2

z

i

f

1i

. Then the funtion

H :=

n

X

i=2

(z

i

f

1i

; 0; : : : ; 0;�z

1

f

1i

; 0; : : : ; 0) =

n

X

i=2

f

1i

(z

i

; 0; : : : ; 0;�z

1

; 0; : : : ; 0)

is ontained in I

C

n

and satis�es

e

F := F �H = (0;

e

f

2

; : : : ;

e

f

n

):

Now we use indution to see that the ideal ker (�) is generated by the

n(n�1)

2

funtions

(0; : : : ; 0; z

i

; 0; : : : ; 0;�z

j

; 0; : : : ; 0);

where z

i

is at the j-th, and �z

j

is at the i-th position.

In onlusion, we obtain a �nite presentation:

O

n(n�1)

2

C

n

�C

n

! O

n

C

n

�C

n

! I

C

n

! 0:

This ompletes the proof of the lemma.

2 Universal di�erentials and holomorphi 1-forms

Theorem 2.1 Let X be a Stein manifold. Then the map



X

: 


1

(O(X))! 


1

(X)

from De�nition 1.2 is an isomorphism of topologial O(X)-modules.

The proof of Theorem 2.1 will be omplete at the end of this setion.

Remark 2.2 The Stein ondition is essential in the theorem, but will be weakened in the next setion.

There exist ounterexamples in the general ase, for example X = C =(Z+ iZ). In this ase O(X)

�

=

C ,

the onstant funtions, thus 


1

(O(X)) = 0, but 


1

(X)

�

=

C is generated by the global holomorphi

1-form dz. Thus 

X

is not injetive in this ase.

The following lemma ontains already a speial ase of our main theorem.

Lemma 2.3 Let U be an open subset of C

n

suh that the restritions of polynomials to U form a dense

subspae of O(U). Then



U

: 


1

(O(U))! 


1

(U)

is an isomorphism of Fr�ehet O(U)-modules.
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Proof. For the proof we have to verify that the di�erential d : O(U) ! 


1

(U) has the universal

property. Let V be a ontinuous O(U)-module and D : O(U)! V a ontinuous derivation.

Let z

1

; : : : ; z

n

: U ! C denote the oordinate funtions. Sine the tangent bundle of the open subset

U � C

n

is trivial, the O(U)-module 


1

(U) is free with basis dz

1

; : : : ; dz

n

. Hene there exists a unique

ontinuous morphism of O(U)-modules � : 


1

(U)! V with �(dz

i

) = D(z

i

), namely

�

�

n

X

j=1

f

j

dz

j

�

=

n

X

j=1

f

j

:D(z

j

):

We then have �Æd = D on z

1

; : : : ; z

n

2 O(U), and sine �Æd and D are derivations O(U)! V , they also

oinide on the subalgebra of O(U) generated by z

1

; : : : ; z

n

. By our assumption on U , this subalgebra is

dense, so that the ontinuity of � Æ d and D entails that both maps oinide on the whole spae O(U).

This proves the existene of �, and sine the relation � Æ d = D determines the image of dz

j

under �, the

module morphism � is uniquely determined by the ondition �Æd = D. Hene (


1

(U); d) is the universal

di�erential module of the Fr�ehet algebra O(U).

Remark 2.4 For eah point x in a omplex manifold X there exists an open neighborhood U whih is

isomorphi to a polydis. Sine the polynomials are dense in O(U), Lemma 2.3 applies to U .

De�nition 2.5 We now de�ne a relative of the map 

X

(f. De�nition 1.2) on sheaf level. Let I

X

denote

the kernel of the sheaf homomorphism 4

℄

(f. De�nition 1.4). Then the ideal sheaf I

X

is a oherent

sheaf of O

X�X

-modules. Its oherent inverse image sheaf (onstruted in De�nition 1.8) 4

�

I

X

is the

orresponding sheaf on X . We want to de�ne

' : 4

�

(I

X

) = I

X

j

4(X)




O

X�X

j

4(X)

O

X

! 


1

X

:

The �rst step is to de�ne '

U

for an open subset U � X . We �rst de�ne

e'

U

: I

X

j

4(X)

(U)


C

O

X

(U)! 


1

(U) by e'

U

(F 
 1)(x; v) := dF (x; x)(0; v);

where F is a holomorphi funtion on U � U � X �X vanishing on the diagonal, x 2 U and v 2 T

x

(U)

a tangent vetor at x. Here it is understood that e'

U

is extended as a map of O

X

(U)-modules from

I

X

j

4(X)

(U)


C

1 to all of I

X

j

4(X)

(U)


C

O

X

(U), letting O

X

(U) at on the right hand side of the tensor

produt. We then show that this de�nition fators to

'

U

: I

X

j

4(X)

(U)


O

X�X

j

4(X)

(U)

O

X

(U)! 


1

(U):

Lemma 2.6 The map e'

U

: I

X

j

4(X)

(U)


C

O

X

(U)! 


1

(U) fators through a map

'

U

: 4

�

(I

X

)(U) =

�

I

X

j

4(X)

(U)

�




O

X�X

j

4(X)

(U)

O

X

(U)! 


1

(U):

As '

U

is obviously ompatible with the restrition maps, it indues a sheaf map

' : 4

�

(I

X

)! 


1

X

:

On the level of germs, the kernel of ' in x equals 4

�

(I

X

)

2

x

.
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Proof. The sheaf of algebras O

X�X

j

4(X)

ats on O

X

by

(f

(x;x)

; x) � g

x

= (f

(x;x)

Æ 4)

x

� g

x

:

Here f

(x;x)

denotes the germ of f 2 O

X�X

(U � U) at (x; x) = 4(x), and (f

(x;x)

Æ 4)

x

is the germ at x

of f

(x;x)

Æ 4 in O

X

. Thus, an element (f

(x;x)

; x) passes through the tensor produt, ating on the left

hand side by multipliation with f

(x;x)

, and on the right hand side by multipliation with (f

(x;x)

Æ 4)

x

.

Thanks to the formula

e'

U

(FG) = 4

℄

U

(F )e'

U

(G) +4

℄

U

(G)e'

U

(F );

for germs F;G, we have (using that e'

U

is an O

X

(U)-module homomorphism)

e'

U

(h

(x;x)

f

(x;x)


 g

x

) = e'

U

(h

(x;x)

f

(x;x)

)g

x

= (4

℄

U

(h

(x;x)

)e'

U

(f

(x;x)

) +4

℄

U

(f

(x;x)

)e'

U

(h

(x;x)

))g

x

= 4

℄

U

(f

(x;x)

)e'

U

(h

(x;x)

)g

x

= e'

U

(h

(x;x)

)(f

(x;x)

Æ 4)

x

g

x

= e'

U

(h

(x;x)


 (f

(x;x)

Æ 4)

x

g

x

):

Thus '

U

is well-de�ned on the tensor produt. The above mentioned formula shows 4

�

(I

X

)

2

� ker (').

On the other hand, Lemma 1.7 shows that a germ F in ker(4

℄

)

x

an be written

F =

n

X

k=1

(x

k

� y

k

)F

k

for the oordinate funtions x

k

and y

k

on the two fators in C

n

� C

n

, k = 1; : : : ; n. Hene, appliation

of ' gives

'(F )(x) = �

n

X

k=1

F

k

(x; x)dx

k

;

where we use x

1

; : : : ; x

n

as oordinates on X , and now it is obvious that F 2 ker(') means that the F

k

vanish on the diagonal, hene F 2 4

�

(I

X

)

2

x

.

To prove the injetivity of 

X

in Theorem 2.1, we shall need the following lemma.

Lemma 2.7 �(X;4

�

(I

X

)

2

)

�

=

I

2

X

= I

2

X

for I

X

:= I

O(X)

:

Proof. In order to show the assertion of the preeding remark, we note that if M and N are two

oherent sheaves of O

X

-modules suh that their global setion modulesM = �(X;M) and N = �(X;N )

are �nitely presented O

X

(X)-modules, one has

M 


O

X

(X)

N

�

=

�(X;M


O

X

N )

(see e.g. [5℄, p. 403). Here it is not neessary to pass to the ompletions beause the left hand side is

omplete owing to the �niteness of the presentation. Denote by  the multipliation map

 : 4

�

(I

X

)
4

�

(I

X

)!4

�

(I

X

)

2

= im( );
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and note that im( ) as an image sheaf, and ker ( ) as a kernel sheaf are oherent ([7℄). Then we onsider

the two short exat sequenes:

0! �(X; ker ( ))! �(X;4

�

(I

X

)
4

�

(I

X

))! �(X;4

�

(I

X

)

2

)! 0

(owing to the Stein property H

1

(X; ker ( )) = 0) and

0! ker(�(X; ))! �(X;4

�

(I

X

))


O(X)

�(X;4

�

(I

X

))! �(X;4

�

(I

X

))

2

! 0

where one again �(X;4

�

(I

X

))

2

= im(�(X; )). By the left exatness of the global setion funtor �,

the �rst terms of the two sequenes oinide, and the seond terms (and thus �a fortiori the third terms)

are isomorphi beause the global setion module of 4

�

(I

X

) is �nitely presented by Lemma 1.9. We

onlude with Lemma 2.6 that

ker' = �(X; ker') = �(X;�

�

(I

X

)

2

) = �(X;�

�

(I

X

))

2

= I

2

O(X)

:

Therefore the assertion follows from the losedness of ker' in O(X �X).

Lemma 2.8 If X is a Stein manifold, then the sheaf 


1

X

of germs of holomorphi setions of T

�

(X) is

oherent.

Proof. The struture sheaf O

X

of X is oherent beause X is non-singular and oherene is a loal

property. Hene the same is true for O

�k

X

for eah k 2 N. Sine oherene is a loal property and 


1

X

is

loally free, it is oherent.

Proposition 2.9 For every Stein manifold X there exist �nitely many funtions f

1

; : : : ; f

N

suh that

the O(X)-module 


1

(X) is generated by df

1

; : : : ; df

N

.

Proof. We onsider an embedding

F : X ! C

N

; F = (f

1

; : : : ; f

N

)

of X as a losed submanifold of C

N

([11℄). If dimX = n and p 2 X , then there exist i

1

; : : : ; i

n

suh

that df

i

j

(p), j = 1; : : : ; n, form a basis of T

p

(X)

�

. Let U denote an open neighborhood of p on whih the

1-forms df

i

j

are linearly independent. Then T

�

(X)j

U

is a trivial bundle, hene 


1

X

j

U

is a free sheaf. It

follows in partiular that the map

' : 


1

C

N

j

X

! 


1

X

is a surjetive morphism of sheaves. As the sheaf 


1

C

N

j

X

is free and 


1

X

is oherent (Lemma 2.8), the

sheaf ker' is oherent ([7℄). From Theorem B ([7℄) we now derive that

H

1

(X; ker') = f0g;

whih means that the restrition map 


1

(C

N

) ! 


1

(X) is surjetive. If z

1

; : : : ; z

N

are the anonial

oordinate funtions on C

N

, then 


1

(C

N

) is generated by the di�erentials dz

j

as a module of O(C

N

),

and after restrition to X , we see that the restritions df

j

= d(z

j

j

X

) generate 


1

(X) as a module of

O(X) = O(C

N

)j

X

. Here we use that the restrition map O(C

N

)! O(X) is surjetive ([7℄, Theorem 4,

Ch. V, x4).
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Now we omplete the proof of Theorem 2.1: Left-exatness of the global setion funtor � implies

that � and ker ommute:

�(X; ker(')) = ker(�(X;')) = ker('

X

);

where

'

X

:= '

X

: �(X;�

�

(I

X

))! 


1

(X):

By Lemma 2.6, ker' and 4

�

(I)

2

oinide as sheaves, so that Lemma 2.7 leads to

ker('

X

)

�

=

�(X;4

�

(I

X

)

2

) = I

2

X

:

Sine the map 

X

: I

X

=I

2

X

! 


1

(X) oinides with the map indued by fatorization of the map

'

X

: I

X

! 


1

(X), it follows that 

X

is injetive.

In view of Proposition 2.9, the O(X)-module 


1

(X) is generated by df

1

; : : : df

N

for some holomorphi

funtions f

i

2 O(X). Therefore 

X

(d

O(X)

u(f

i

)) = df

i

implies that 

X

is surjetive, hene bijetive. The

map 

X

is ontinuous by onstrution, so that it is open by the Open Mapping Theorem. This ompletes

the proof of Theorem 2.1. �

3 Extension to Riemannian domains over Stein manifolds

De�nition 3.1 Let Y be a Stein manifold. A omplex manifold X together with a holomorphi map

p : X ! Y whih is everywhere regular will be alled a Riemannian domain over Y .

One often onsiders arbitrary omplex spaes X instead of manifolds in the preeding de�nition, but

in order to have di�erential forms and therefore tangent spaes having everywhere the same dimension,

we need manifolds.

The aim of this setion is to generalize Theorem 2.1 to Riemannian domains over Stein manifolds.

Lemma 3.2 If X is a Stein manifold, then its otangent bundle T

�

X is a Stein manifold.

Proof. Aording to Grauert's Embedding Theorem, we may w.l.o.g. assume that X is a losed

submanifold of some C

n

. Let p 2 X and U � C

n

an open subset for whih there exists a holomorphi

funtion F : U ! C

k

of onstant rank k with

X \ U = F

�1

(0) and T

x

(X) = ker dF (x); x 2 X:

Aording to [3℄ (f. also [16℄, Th. 4.1), the exat sequene of holomorphi vetor bundles

0! TX ,! T C

n

j

X

�

=

X � C

n

! N ! 0;

where N is the normal bundle of X in C

n

, splits. Let ! : N ! X � C

n

be a holomorphi vetor bundle

map with

X � C

n

�

=

TX � !(N):

Then we an identify T

�

X with

f(x; v) 2 X � C

n

: hv; !(N

x

)i = f0gg;

where hz; wi =

P

n

j=1

z

j

w

j

. This implies that T

�

X an be identi�ed with a losed submanifold of C

n

�C

n

,

and thereore that T

�

X is a Stein manifold.
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Theorem 3.3 Let X be a Riemann domain over a Stein manifold. Then the map



X

: 


1

(O(X))! 


1

(X); d

O(X)

f 7! df

is an isomorphism of Fr�ehet O(X)-modules.

Proof. The spetrum

b

X := �(O(X)) := Hom(O(X); C ) of the algebraO(X) of holomorphi funtions

on X arries a natural omplex manifold struture turning it into a Riemannian domain over X whih is

a Stein manifold ([16℄, Th. 4.6). The restrition map

R : O(

b

X)! O(X)

is an isomorphism of Fr�ehet algebras, whih in turn indues a natural isomorphism

� : 


1

(O(

b

X))! 


1

(O(X)):

On the other hand, we have a ontinuous restrition map � : 


1

(

b

X)! 


1

(X); whih leads to a ommu-

tative diagram




1

(O(

b

X))

�

����! 


1

(O(X))

?

?

y





X

?

?

y



X




1

(

b

X)

�

����! 


1

(X)

We know from Theorem 2.1 that 

b

X

is an isomorphism. It therefore suÆes to show that � is an

isomorphism to see that 

X

is an isomorphism, too. Sine � is a ontinuous linear map between Fr�ehet

spaes, it suÆes to show that it is surjetive, and then apply the Open Mapping Theorem. This means

that we have to show that eah holomorphi 1-form ! 2 


1

(X) is the restrition of a holomorphi 1-form

b! on

b

X.

The envelope of holomorphy

b

X has the property that all holomorphi funtions on X with values in an

arbitrary Stein manifold S extend uniquely to holomorphi funtions from

b

X to S. In fat, we may embed

S as a losed submanifold of C

n

, and then extend the funtion f : X ! S to a funtion F :

b

X ! C

n

.

Sine F maps the open subset X into S, it follows by analyti ontinuation that F (

b

X) � S.

Let ! 2 


1

(X) be a holomorphi 1-form. We onsider ! as a setion of the otangent bundle:

! : X ! T

�

X . We may identify T

�

X

�

=

T

�

b

X j

X

as an open submanifold of the Stein manifold T

�

b

X

(Lemma 3.2). Therefore ! admits a unique extension to a holomorphi funtion b! :

b

X ! T

�

b

X. If

� : T

�

b

X !

b

X is the bundle projetion, then � Æ ! = id

X

, so that � Æ b!j

X

= id

X

, and therefore the

uniqueness of the extension implies that � Æ b! = id

b

X

. This means that b! is a setion of the otangent

bundle of

b

X, i.e., a holomorphi 1-form.

Remark 3.4 The ondition that a omplex manifoldX is an open subset of a Stein manifold is equivalent

to the ondition that it is a Riemannian domain over a Stein manifold. In fat, eah open subset is trivially

a Riemannian domain. Conversely, eah Riemannian domain X over a Stein manifold embeds as an open

subset X ,!

b

X, where

b

X is its envelope of holomorphy, whih is a Stein manifold ([16℄, Th. 4.6).

Corollary 3.5 If X is a Riemannian domain over a Stein manifold, then the image of the universal

di�erential d : O(X)! 


1

(O(X)) is losed, and

HC

1

(O(X))

�

=




1

(X)=dO(X):
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Proof. In view of Theorem 3.3, we may identify 


1

(O(X)) with the Fr�ehet spae 


1

(X) of holomor-

phi 1-forms on X and d with the de Rham di�erential. Its image onsists of the exat 1-forms. That the

spae of exat 1-forms is losed follows from the fat that it is de�ned by the equations

R



! = 0, where

 is a pieewise smooth losed path in X , and the integration maps




1

(X)! C ; ! 7!

Z



!

are ontinuous linear funtionals.

The following result was our initial motivation for the present work:

Theorem 3.6 Let k be a simple omplex �nite-dimensional Lie algebra and X a Riemann domain over

a Stein manifold. Then g := O(X; k)

�

=

O(X) 
 k is a Fr�ehet{Lie algebra with respet to the pointwise

braket:

[f 
 x; g 
 y℄ := fg 
 [x; y℄:

If � is the Cartan{Killing form of k, then

(f 
 x; g 
 y) := �(x; y)(f � dg) mod d(O(X))

de�nes a ontinuous Lie algebra oyle

 : g� g! HC

1

(O(X))

�

=




1

(X)=d(O(X));

and the orresponding entral extension

HC

1

(O(X)) ,!

b

g!! g

is universal.

Proof. It is shown in [13℄ that for eah Fr�ehet algebra A the universal entral extension of g := A
 k

is given by the oyle

(a
 x; b
 y) := �(x; y)[a � d

A

b℄ 2 HC

1

(A):

Therefore the assertion follows from our identi�ation of HC

1

(O(X)) in Theorem 3.3.

4 The algebra of germs of holomorphi funtions

In this setion we onsider a ompat subset K � C

n

. We write O(K) for the omplex algebra of all

germs of holomorphi funtions onK, whih is the diret limit of all algebrasO(U), where U runs through

the set of all open neighborhoods of K. Let i

U

: O(U) ! O(K); f 7! [f ℄ denote the map assigning to

f 2 O(U) its germ on K and, for U � V , write

i

U;V

: O(V )! O(U); f 7! f j

U

for the restrition map.
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Eah of the algebrasO(U) is a Fr�ehet algebra, and we onsider onO(K) the loally onvex diret limit

topology, whih is de�ned by all seminorms p on O(K) for whih all ompositions p Æ i

U

are ontinuous

seminorms on O(U). Then all the maps

i

U

: O(U)! O(K)

are ontinuous and O(K) has the universal property of the diret limit: a linear map ' : O(K) ! V to

a loally onvex spae V is ontinuous if and only if all ompositions ' Æ i

U

are ontinuous. That the

topology on O(K) is Hausdor� and the group multipliation is ontinuous is shown by H. Gl�okner in

Theorem 6.1 of [6℄.

Now O(K) is a loally onvex unital algebra to whih we an assoiate the universal di�erential

module 


1

(O(K)) together with the universal di�erential d

O(K)

: O(K)! 


1

(O(K)). We write




1

(K) := lim

�!




1

(U)

for the spae of germs of holomorphi 1-forms on K.

The main result of this setion is the following:

Theorem 4.1 The de Rham di�erential

d : O(K)! 


1

(K)

is universal, when 


1

(K) is endowed with the loally onvex diret limit topology of the spaes 


1

(U), U

a neighborhood of K. In partiular 


1

(K)

�

=




1

(O(K)).

Proof. Sine the otangent bundle of any open subset U � C

n

is trivial, it follows that




1

(K)

�

=

n

M

j=1

O(K):[dz

j

℄;

where [�℄ denotes the germ of the holomorphi 1-form � whih is de�ned on a neighborhood of K. In

partiular 


1

(K) is a free O(K)-module of rank n, and we see that the module struture

O(K)� 


1

(K)! 


1

(K); ([f ℄; [�℄) 7! [f�℄

is ontinuous beause the multipliation in the algebra O(K) is ontinuous.

To prove the universality of d, let M be a ontinuous O(K)-module and D : O(K)!M a ontinuous

derivation. Sine the maps i

U

are ontinuous, M inherits a natural struture of an O(U)-module via

f:m := i

U

(f):m; f 2 O(U);m 2M:

For eah open neighborhood U � K the map

D

U

: = D Æ i

U

: O(U)!M

is a ontinuous derivation, and our main Theorem 3.3 therefore implies the existene of a unique ontin-

uous linear map

�

U

: 


1

(U)!M with �

U

Æ d

U

= D

U

;
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where d

U

: O(U)! 


1

(U) is the de Rham di�erential.

Let j

U

: 


1

(U)! 


1

(K); � 7! [�℄ be the natural map, and for U � V , we write

j

U;V

: 


1

(V )! 


1

(U); � 7! �j

U

for the restrition map. We learly have d

U

Æ i

U;V

= j

U;V

Æ d

V

: For U � V we now have i

V

= i

U

Æ i

U;V

,

so that D

V

= D

U

Æ i

U;V

. Therefore

�

U

Æ j

U;V

Æ d

V

= �

U

Æ d

U

Æ i

U;V

= D

U

Æ i

U;V

= D Æ i

U

Æ i

U;V

= D Æ i

V

= D

V

;

so that the uniqueness of �

V

leads to

�

V

= �

U

Æ j

U;V

:

Hene the universal property of 


1

(K) as a loally onvex diret limit spae implies the existene of a

ontinuous linear map

� : 


1

(K)!M

with � Æ j

U

= �

U

for eah open neighborhood U of K.

We laim that � is a morphism of O(K)-modules. For eah f 2 O(V ) we hoose U � V and obtain

for � 2 


1

(U):

f:�([�℄) = f:�

U

(�) = i

U;V

(f):�

U

(�) = �

U

(i

U;V

(f)�) = � Æ j

U

(i

U;V

(f)�) = �([f ℄:[�℄):

The uniqueness of � follows from the fat that 


1

(K) is generated as a O(K)-module by the image of d,

whih ontains the lasses [dz

1

℄; : : : ; [dz

n

℄.

Remark 4.2 In view of the preeding theorem, Theorem 3.6 generalizes in the obvious way to the Lie

algebra O(K; k) of germs of k-valued holomorphi funtions on K.

5 Further remarks

Suppose the Stein manifold X is the omplex analyti manifold orresponding to a omplex smooth

aÆne algebrai variety X

a�

suh that X

a�

� P for a omplex smooth projetive algebrai variety P and

D := P n X

a�

is an ample divisor on P . In this situation, some density theorem applies to show that

(usual) K�ahler 1-forms 


1

alg

(X

a�

) on X

a�

are dense in (usual holomorphi) 1-forms 


1

(X) on X in the

subspae topology (f. [19℄). Reall that for usual K�ahler 1-forms, one has




1

alg

(X

a�

) = 


1

(Reg(X)) = J

2

=J;

where

J := ker(� : Reg(X

a�

)
Reg(X

a�

)! Reg(X

a�

))

the kernel of the multipliation map on the spae Reg(X

a�

) of regular funtions on the aÆne variety X

a�

(f. [17℄). Here, the density of 


1

alg

(X

a�

) in the spae of 1-forms 


1

(X) an be independently dedued

from Theorem 2.1, beause of the following lemma.

Lemma 5.1 


1

alg

(X

a�

) is a dense subspae of 


1

(O(X)).
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Proof. It is well-known (f. for example [19℄) that B := Reg(X

a�

) � O(X) is a dense subspae. We

onsider J = ker(�

X

\ (B 
B)) as a subspae of the ideal I

X

= ker�

X

� O(X �X). Then the map

f 
 g 7! f 
 g � fg 
 1; F 7! F � �

X

(F )
 1

is a ontinuous surjetion O(X �X)! I

X

whih maps B onto J (f. [13℄, Lemma 5), so that the density

of B in O(X) implies the density of J in I

X

. The map

'

X

: I

X

! 


1

(X)

whose kernel is I

2

X

maps J onto 


1

alg

(X), whih is isomorphi to J=J

2

. Therefore the density of J in I

X

implies the density of 


1

alg

(X) in 


1

(X).
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