
Contextual Boolean Logi: How did it develop?

Julia Klinger and Bj�orn Vormbrok

Tehnishe Universit�at Darmstadt, Fahbereih Mathematik

Shlo�gartenstr. 7, D-64289 Darmstadt,

fjklinger,vormbrokg�mathematik.tu-darmstadt.de

Abstrat. The aim of this paper is to explain the fundamental notions

of Boolean Conept Logi and, based on this theory, to ompare various

approahes to Contextual Judgment Logi. First we motivate the basi

de�nitions of semionept algebras and show how semionept algebras

generalize to protoonept algebras and double Boolean algebras. This

enables us to give a brief presentation of the theories of onept graphs,

semionept graphs, protoonept graphs and onept graphs with uts

as spei� approahes to a mathematial judgment logi. In addition,

di�erenes and ommon grounds of these ontributions are disussed.

1 Introdution

In this paper, the development of Contextual Boolean Logi, in partiular of

Boolean Conept Logi and Boolean Judgment Logi is desribed. In the part

dealing with Boolean Conept Logi it is shown how the basi de�nitions of

algebras of semionept arise naturally from problems in pratie. Based on this

it is studied how and to what extent various approahes to Contextual Judgment

Logi were developed. This paper onsists of three more setions. In the seond

setion an example of pratial interest is used to illustrate the fundamental

notions of semionept algebras. Furthermore, protoonept algebras and double

Boolean algebras are disussed. In the third setion the logi systems of onept

graphs, semionept graphs, protoonept graphs and onept graphs with uts

are summarized. Finally, we give some perspetives for further researh in the

last setion.

2 Boolean Conept Logi

In this setion the expressiveness of Boolean Conept Logi as introdued in

[Wi00℄ is demonstrated. By onsidering the problem of hotel seletion, the fun-

damental de�nitions of semionept algebras are motivated and de�ned. This

enables us to explain some advantages of Boolean Conept Logi in ontrast to

Formal Conept Analysis.
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2.1 The problem of hoosing a suitable hotel

We assume that we want to stay in Dresden for a few days and look for aom-

modation that meets our needs. One approah to ompare and to �nd suitable

hotels would be to enode the information we obtain in a formal ontext and to

use Formal Conept Analysis. The ontext in Figure 1 is based on a brohure

of the Dresden tourist information oÆe. Its objets are some of the hotels and

guest houses in Dresden. The attributes `guest house' and `hotel' refer to the

type of the aommodation. In partiular, `standard', `First Class' and `Luxus'

are di�erent ategories for hotels. The attribute `telephone' states that there

are telephones in the rooms. If an objet is inident to `sauna', `hotel ar park'

or `overed parking spae' then the orresponding servies are o�ered. Pries in

Euro are per night and for single rooms.

Now suppose we want to �nd the set H

1

of all hotels that are at least of

ategory `standard' and have a sauna. The onept lattie in Figure 1 shows

that H

1

= fHilton, Kempinski and Astrong, as these hotels form the extension

of the formal onept generated by the attributes `hotel' and `sauna'. In addition

we an derive that a night in any of these hotels osts at least 75 Euro, beause

the intent of this onept onsists of `hotel', `sauna', `telephone', `overed parking

spae', `prie � 50', and `prie � 75'. However, we might as well want to exlude

properties, for instane a prie of 150 Euro or more. If we want to �nd the set

H

2

of all hotels that are at least of ategory `standard' and ost less than 150

Euro per night, it is natural to alulate the intersetion of the derivation of



`standard' and the omplement of the derivation of `prie � 150':

H

2

= standard

I

\ (G n (prie � 150)

I

) = fIbis Bastei, Astrong:

Hene, we �nd that the hotels `Ibis Bastei' and `Astron' are the only hotels in the

ontext that satisfy our request. As before, the derivation fIbis Bastei, Astrong

I

= ftelephone, hotel, standard, prie � 50g yields that every hotel with the

properties `ategory standard' and `prie � 150' also has telephone in eah room

and osts at least 50 Euro per night.

The set fIbis Bastei, Astrong is not the extension of a formal onept of K

0

.

In order to obtain this set by means of Formal Conept Analysis the original

multi-valued ontext would have to be saled inter-ordinally. The following two

examples show reasonable questions where there is no natural way of saling the

original multi-valued ontext suh that the answer may be expressed as the intent

or the extent of a formal onept. In Setion 2.2 it is shown how Boolean Conept

Logi provides a language and the means to answer these questions. Therefore the

introdution of negation and opposition to Formal Conept Analysis inreases

its expressiveness.

A di�erent question ould be: `Whih attributes has the Kempinski that dis-

tinguish it from the Hilton?'. Let H

3

denote the set of these attributes. In order

to ompute H

3

, the derivation of `Kempinski' is interseted with the omplement

of the derivation of `Hilton':

H

3

= Kempinski

I

\ (M nHilton

I

) = fluxus, prie � 200g:

As a third example we take the following problem: If in a �rst step the set

H

4

of all hotels and guest houses inident with `telephone' is onsidered and in

a seond step H

5

is de�ned as the set of all elements of H

4

with a prie of less

than 50 Euro then we ould ask whih additional attributes are implied in the

seond step. Let H

6

denote this set of attributes. As above, the intersetion of

the derivation of `telephone' and the omplement of the derivation of `prie �

50' is alulated:

telephone

I

\ (G n (prie � 50)

I

) = fPension Reiheg:

Then we obtain H

6

as the intersetion of the derivation of `Pension Reihe' and

the omplement of the derivation of `telephone':

H

6

= Pension Reihe

I

\ (M n telephone

I

) = fguest house, hotel ar park,

prie � 50g.

2.2 The ontributions of Boolean Conept Logi

In [Wi00℄ the set H(K ) of semionepts of a ontext K = (G;M; I) is de�ned as

the set of all pairs (A;B) with A � G and B �M satisfying A

I

= B or B

I

= A.



On this set the following operations are introdued:

(A

1

; B

1

) u (A

2

; B

2

) := (A

1

\ A

2

; (A

1

\ A

2

)

0

)

(A

1

; B

1

) t (A

2

; B

2

) := ((B

1

\ B

2

)

0

; B

1

\ B

2

)

:(A

1

; B

1

) := (G nA

1

; (G nA

1

)

0

)

:(A

1

; B

1

) := ((M nB

1

)

0

;M nB

1

)

? := (;;M)

> := (G; ;)

The set H(K ) with the operations u;t;:;:;>;? is alled the semionept

algebra of K and denoted by H(K ). Note that for a semionept x holds xux = x

or x t x = x. Semionepts having the �rst property are alled u-semionepts,

those ful�lling the seond are alled t-semionepts. A semionept is a onept

if and only if it is both a t- and a u-semionept. On semionept algebras an

order relation v is de�ned by

(A

1

; B

1

) v (A

2

; B

2

) :, A

1

� A

2

and B

1

� B

2

.

The ideas used above to address our requests an easily be expressed in

terms of semionepts. The set H

2

from 2.1 was obtained as the extension of the

following semionept:

(fstandardg

I

; fstandardg) u : (fprie � 150g

I

; fprie � 150g) =

(fIbis Bastei, Astrong; fhotel, standard, telephone, prie � 50g)

The sets H

3

and H

6

are the respetive intents of the semionepts given by:

(fKempinskig; fKempinskig

I

t : (fHiltong; fHiltong

I

) =

(fKempinskig; fluxus, prie � 200g)

and

((telephone

I

; telephone) u :(prie � 150

I

; prie � 150))

t:(telephone

I

; telephone)

=(fISSY, Pension Reiheg; fguest house, hotel ar park, prie � 50g)

Thus Boolean Conept Logi provides an adequate language to express and

to formalize the intuitive approah we used to deal with these problems. A

development of this theory and an improvement of its methods will thereby

enable us to understand and answer more omplex problems as well.

Sine semionept algebras are ordered sets, they an be represented as Hasse

diagrams. Unfortunately, the number of semionepts of a onept with n objets

and m attributes an be up to 2

n+m

. In our example the semionept algebra

onsists of 2

18

� 14 elements. As a smaller example, Figure 2 depits the dia-

gram of the subontext onsisting of all objets of K

0

and the attributes `guest

house', `hotel, standard', `First Class' and `Luxus'. The elements represented as

�lled irles are the onepts. The irles with the upper half �lled stand for

t-semionepts, those with �lled lower half represent u-semionepts. The semi-

onepts generated by single objets or attributes are labelled as well as their

negations or oppositions.
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Fig. 2. Semionepts of the ontext restrited to the attributes `guest house', `hotel,

standard', `First Class' and `Luxus'

2.3 Protoonept algebras and double Boolean algebras

In order to develop the logi of semionept algebras, the variety generated

by these algebras is needed. This variety must ontain all diret produts of

semionept algebras. However, a diret produt of semionept algebras is not

neessarily a semionept algebra itself: Let (x; y) be an element of the produt

(H(K

1

);H(K

2

)) of the semionept algebras H(K

1

) and H(K

2

), and let x be a

u-semionept of H(K

1

) and y a t-semionept of H(K

2

). Then (x; y) does not

satisfy the ondition (x; y)u (x; y) = (x; y) or (x; y)t (x; y) = (x; y) whih holds

in every semionept algebra. For two semionept algebras H(K

1

) and H(K

2

)

the elements of the produt H(K

1

) � H(K

2

) an be understood as pairs (A;B)

onsisting of a set of objets and a set of attributes of the ontext K := K

1

+K

2

satisfying A

II

= B

I

. This leads to the de�nition of protoonept algebras. In

[Wi00℄ the set P(K ) of protoonepts of the ontext K := (G;M; I) is introdued



as the set of all pairs (A;B) with A � G and B � M satisfying A

II

= B

I

. On

these sets the same operations as on semionept algebras are de�ned.

Nevertheless, protoonept algebras do not form a variety either. The equa-

tional lass generated by these algebras is the lass of double Boolean algebras

(f. [Wi00℄). These are de�ned as algebras D := (D;u;t;:;:;?;>) of type

(2,2,1,1,0,0) satisfying the equations

1a) (x u x) u y = x u y 1b) (x t x) t y = x t y

2a) x u y = y u x 2b) x t y = y t x

3a) x u (y u z) = (x u y) u z 3b) x t (y t z) = (x t y) t z

4a) x u (x t y) = x u x 4b) x t (x u y) = x t x

5a) x u (xty) = x u x 5b) x t (xuy) = x t x

6a) x u (ytz) = (x u y)t(x u z) 6b) x t (yuz) = (x t y)u(x t z)

7a) ::(x u y) = x u y 7b) ::(x t y) = x t y

8a) :(x u x) = :x 8b) :(x t x) = :x

9a) x u :x = ? 9b) x t :x = >

10a) :? = > u > 10b) :> = ? t ?

11a) :> = ? 11b) :? = >

12) (x u x) t (x u x) = (x t x) u (x t x)

with the operations t;u;>;? de�ned as xty := :(:xu:y), xuy := :(:xt:y),

> := :? and ? := :>.

Information on the struture of double Boolean algebras an be found in

[HLSW00℄ and [Wi00℄. Congruene relations on these were investigated in [Vo02℄.

3 Contextual Judgment Logi

Taking the traditional philosophial understanding into aount, we regard judg-

ments as valid propositions, hene as meaningful ombinations of onepts. This

shall be reeted in the theory of onept graphs as our formalization of the

dotrine of judgments: We demand that the graphs are satis�able, and therefore

that the de�nition does not allow the onstrution of a self-ontraditory graph.

Three of the theories summarized in this setion support this understanding,

namely the logi systems of onept graphs, semionept graphs and protoon-

ept graphs. Moreover, these theories extend eah other: the system of onept

graphs is the most fundamental and the best developed theory, based on it is

the theory of semionept graphs, and �nally protoonept graphs are the most

general entities. The theory of onept graphs with uts, however, has a di�erent

fous. The aim is equivalene to �rst order prediate logi, hene the introdu-

tion of a global negation is needed. Obviously, one of the onsequenes of this

approah is that the onstrution of self-ontraditory graphs is possible.

The following four approahes are, di�erent to Wille's view of graphs as

semantial strutures, based on the separation of syntax and semantis as it is

ommon in mathematial logi. This is reeted by the manner the theories are

developed: First an alphabet is de�ned, then syntatial graphs are introdued



G := fkempinski, hilton, astron, bastei,
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�
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Fig. 3. Example for a

basi alphabet

Fig. 4. The ontext K

2

as mathematial strutures and afterwards the semantis is de�ned via ontext-

interpretations of alphabets and the notion of validity. In eah of the following

four subsetions, we will briey summarize one theory, however, we will restrit

ourselves to the non-existential ases.

There are several strutures ourring in eah of the theories. In order to stay

as informal as possible in the following paragraphs, we name some of them here:

First of all, the underlying struture for syntatial onept graphs and its two

extensions is that of a relational graph, whih is a triple (V;E; �) onsisting of two

disjoint sets V and E whose elements are alled verties and edges, respetively,

and a funtion � : E !

S

k2N

V

k

whih maps eah edge to the ordered tuple of

its adjaent verties. Moreover, the notion of a power ontext family is basi for

all four approahes: A power ontext family

�!

K := (K

0

;K

1

;K

2

; : : : ) is a family

of ontexts K

k

:= (G

k

;M

k

; I

k

) with G

0

6= ; and G

k

� (G

0

)

k

for eah k 2 N.

In order to explain the di�erent approahes to judgment logi, we ontinue the

example from Setion 2. To distinguish the syntatial names from the elements

of the power ontext family used for the interpretation, we employ di�erent

apitalizations.

3.1 Conept Graphs

The approah in [Wi97℄ was adopted and both modi�ed and extended by Predi-

ger. In [Pr98b℄, she introdued onept graphs as syntatial onstruts and

equipped them with an expliit ontextual semantis instead of the traditional

impliit semantis via a translation into prediate logi (see for instane [So84℄).



1. Conept graph:

closer to airportSTANDARD: bastei     GUEST HOUSE: pension reiche

a 1 a 2e 1

1 2

2. Semionept Graph:

closer to airport

f 1

| |
1 2

STANDARD: bastei     issy GUEST HOUSE: pension reiche      {kempinski, hilton}

1b 2b

3. Protoonept Graph:

closer to airport

=

c 2cg 1

3c

g 2

|
2

T |

1

2

1

|
1

STANDARD: bastei     issy GUEST HOUSE: pension reiche        {kempinski, hilton}

: ibis bastei     

4. Conept Graph with Cuts:

closer to airport

=

GUEST HOUSE: pension reiche

d 6

d 1 h 1 d 2

h 2

3d

closer to airport

d 4 d 5h 3

    : issyT     : kempinskiT
1 2

k 1

k 2    : ibis bastei     

GUEST HOUSE: kempinski

STANDARD: bastei     
1 2

1

2

T

Fig. 5. Examples for graphs

The �rst step towards a syntatial implementation of onept graphs was the

de�nition of an alphabet A := (G; C;R) onsisting of a set G of objet names,

an ordered set C of onept names and a family R of ordered sets of relation

names. In Figure 3 a sample for suh an alphabet is given. Syntatial onept

graphs over an alphabet were then introdued as mathematial strutures of the

form G := (V;E; �; �; �), onsisting of a relational graph, a funtion � assigning

onept names to verties and relation names to edges, and a funtion � whih

assigns non-empty sets of objet names to the verties (as referenes). Figure 5.1

shows an example for a syntatial onept graph over the alphabet depited in

Figure 3.

For the semantis, the names of the alphabet are interpreted in a given power

ontext family

�!

K := (K

0

;K

1

; : : : ) via a so alled interpretation �: This inter-



pretation spei�es how the syntatial elements of the alphabet are related to

elements of

�!

K : objet names are mapped to objets of K

0

, onept names to

onepts of K

0

and relation names to elements of B(K

k

). Moreover, the or-

ders spei�ed in the alphabet are preserved. The resulting strutures (

�!

K ; �)

are alled ontext-interpretations. As an example onsider the power ontext

family (K

0

;K

2

) onsisting of the ontexts in Figure 1 and Figure 4. An inter-

pretation of the alphabet shown in Figure 3 may be de�ned as follows: the

objet names exept for `bastei' are mapped to the objets with the same name,

`bastei' is mapped to the the objet `Ibis Bastei'. Eah onept name is in-

terpreted as the attribute onept generated (negleting apitalization) by the

same name. For instane, the name `STANDARD' is mapped to �(standard).

The relation name `loser to airport' is interpreted as the attribute onept

�(loser to Dresden Airport), and `loser to train station' as �(loser to a train

station). Now we say that a onept graph is valid in a ontext-interpretation

(

�!

K ; �) (and all (

�!

K ; �) a model for the graph) if the so alled vertex- and edge

ondition for the verties respetively edges are both satis�ed. The vertex on-

dition for a vertex v is ful�lled if the interpreted objet names of v belong to

the extent of the interpreted onept name of that vertex. Similarly, the edge

ondition for an edge e holds if the objets along e are in the relation onept

assigned to that edge. It is easy to see that the onept graph in Figure 5.1 is

valid in ((K

0

;K

2

); �).

The de�nition of onept graphs yields their satis�ability as well as deid-

ability: For eah two graphs over the same alphabet one an deide whether one

entails the other or not. Moreover, Prediger disussed several extensions of sim-

ple onept graphs. She inluded generi markers and nestings into the theory

(see [Pr98b℄, [Pr00℄; for the semanti approah see [Wi98℄). With respet to on-

lusion logi a sound and omplete alulus for non-existential onept graphs

and eah of the extensions was provided. Moreover, for eah onept graph a

standard model was de�ned whih odes exatly the same information as the

graph, and, vie versa, the so alled standard graph of a power ontext family

was introdued.

3.2 Semionept Graphs

Semionept graphs were proposed in [Wi01℄. They extend the theory of onept

graphs by inluding negation on the level of onepts and relations. Again, the

graphs were de�ned as semantial strutures. Similarly to Prediger's approah,

in [Kl01a℄ a strit separation in syntax and semantis was introdued. First the

notion of an alphabet A := (G;S;R) is provided, whih extends the de�nition

of alphabets from the previous setion by replaing the set C of onept names

by a set S of semionept names. Setting S := C, the alphabet in Figure 3 may

serve as an example for an alphabet for semionept graphs as well. Then a

syntatial semionept graph is de�ned in aordane to onept graphs as a

tuple (V;E; �; �; �) suh that (V;E; �) is a relational graph and � maps semi-

onept names and relation names to the verties and edges, respetively. Now

� maps to eah vertex two sets of objet names, namely one set of positive and



one set of negative referenes. There are four onditions for �, ensuring that

for both verties and edges there is at least one referene and that the graph

is not self-ontraditory. Hene, in omparison with onept graphs the main

di�erene lies in the de�nition of �. This is resembled by the rule of how these

graphs are read: The semionept graph in Figure 5.2 represents that `bastei' is

STANDARD and `issy' is not, `pension reihe' is `GUEST HOUSE' while both

`kempinski' and `hilton' are not, and `bastei' is `loser to airport' than `pension

reihe' while `issy' is not `loser to airport' than both `kempinski' and `hilton'.

For the semantis, the alphabet is interpreted in a power ontext family

�!

K

by an interpretation �. As before, objet names are mapped to objets of K

0

,

however, semionept names are interpreted as u-semionepts of K

0

instead

of onepts. Moreover, k-ary relation names are interpreted as u-semionepts

of K

k

. Sine eah onept is a u-semionept, the interpretation de�ned in the

previous setion may serve as an example for semionept graphs as well. For

de�ning the validity of a semionept graph in a ontext-interpretation (

�!

K ; �),

we have to modify the vertex and the edge ondition in order to apture the

negation. Therefore, instead of just heking if the interpreted positive refer-

enes of a vertex are in the interpreted semionept name, we additionally hek

whether the objets assigned to the negative referenes are in the negation of

that semionept. Similarly, the edge ondition onsists of a positive and a neg-

ative part. We may now hek if the sample graph in Figure 5.2 is valid in

((K

0

;K

2

); �): It is easy to see that the positive vertex- and edge ondition are

satis�ed. The negative onditions are satis�ed as well. Consider for instane the

vertex b

1

: We have to hek that the image of the objet name `issy' (thus the

objet ISSY) is in the extension of the semionept :�(Standard), whih is equal

to fPension Reihe, ISSYg.

The de�nition of semionept graphs yields their satis�ability. Furthermore,

it was shown via so alled standard power ontext families that deidability is

guaranteed. As an extension, variables were introdued as referents, yielding ex-

istential quanti�ation (f. [Kl01b℄,[Kl02℄). Again, satis�ability and deidability

were shown. Finally, for eah power ontext family the graph representing the

same information was provided.

3.3 Protoonept Graphs

The goal was to develop a theory of onept graphs with negation omprising

onept graphs, semionept graphs and suitable syntatial elements of on-

ept graphs with uts in suh a way that our understanding of judgments as

valid propositions remains supported. As semantial strutures, protoonepts

graphs were introdued in [Wi02℄. Based on this, the separation of syntax from

semantis was desribed: Similar to the previous two approahes, �rst an alpha-

bet A := (G;P ;R) is de�ned. This time, however, the set P of protoonept

names ontains a well-distinguished smallest element ? and a greatest element

>. Moreover, R inludes a speial binary relation name =. Therefore, the al-

phabet in Figure 3 has to be modi�ed in order to obtain a suitable example:

We take A

0

:= (G;P ;R

0

) with P := C [ f?;>g and R

0

:= R [ f=g. Moreover,



the orders on C and R are extended to orders on P and R

0

in a natural way.

Syntatial protoonept graphs are de�ned essentially in the same way as semi-

onept graphs, though the use of the relation name = gives rise to di�erent

and more omplex onditions for � in order to ensure satis�ability. Figure 5.3

shows a syntatial protoonept graph, whih an be read in the same way

as the graph in 5.2. In addition, it states that `bastei' is equal to `ibis bastei'.

The semantis follows the same priniples as in the previous setions. First an

interpretation � maps objet names to objets, protoonept names to proto-

onepts of K

0

and relation names to protoonepts of ontexts K

k

. Moreover,

the speial syntatial elements of the alphabet have to be respeted by the

interpretation: ? and > are mapped to the smallest and the greatest element

of P(K

0

), respetively, and the relation name = is mapped to a protoonept

whose extension is f(g; g) j g 2 G

0

g. Then validity of a protoonept graph is

heked in the same way as for semionept graphs. Again, the graph depited

in 5.3 is a protoonept graph of ((K

0

;K

2

); �).

Via so alled standard power ontext families, satis�ability and deidabil-

ity were shown. Moreover, a sound and omplete alulus was introdued. Up

till now, no syntatial extensions for protoonept graphs have been studied.

However, in [Wi02℄ (semantial) existential protoonept graphs were de�ned as

protoonept graphs of free X-extensions of power ontext families (where X is

a set of variables).

3.4 Conept Graphs with Cuts

Conept graphs with uts were introdued in [Da02℄ with the goal to obtain a

logi system of onept graphs whose expressiveness mathes �rst order prediate

logi. This requires negation to be treated as a logial operator on the level of

propositions, whih was done by adopting so alled uts from Peire's theory of

existential graphs. After introduing non-existential onept graphs with uts,

Dau extended the theory by inluding existential quanti�ers and was then able

to show the desired equivalene (see [Da01℄,[Da02℄).

In a similar way as for onept graphs, an alphabet is de�ned as a triple

A := (G; C;R) suh that there is a speial onept name > whih is the greatest

element of C and a well-distinguished relation name = of arity 2. Hene, the

alphabet in Figure 3, modi�ed by inluding > in C, the binary relation name

= in R, and extending the orders on the sets of onept and of relation names

aordingly, yields an example of an alphabet for onept graphs with uts.

Next, a relational graph with uts is de�ned as a tuple (V;E; �;>;Cut; area)

where (V;E; �) is a relational graph, > is a single element alled the sheet of

assertion (whih, thinking diagrammatially, an be understood as the sheet on

whih the graph is drawn), Cut is the set of uts and area is a map whih de�nes

for eah ut  the elements of the graph (thus the verties, edges and other uts)

whih are `within' . When pituring a onept graph, the uts of the onept

graph are usually drawn as bold ovals. Hene, if we onsider the graph depited

in Figure 5.4 as an example, we have Cut:= fk

1

; k

2

g, area(k

1

) = fh

3

g and

area(k

2

) = fd

6

g. Relational graphs with uts satisfy several onditions, whih



an be reread in [Da02℄. Most importantly, uts do not interset. A syntatial

onept graph with uts is then de�ned as a relational graph with uts equipped

with two funtions � and �. Again, the funtion � maps onept names to the

verties and relation names to the edges, however, � does not map sets of objet

names to the verties but single elements of G. As already mentioned, Figure 5.4

depits a sample graph. The subgraphs not ontaining uts are read in the same

way as onept graphs. However, eah ut negates everything within it, so the

bottommost graph is read: `kempinski' and `issy' are `>' and `kempinski' is not

`loser to airport' than `issy'.

For the semantis, interpretations of alphabets in power ontext families are

de�ned in the same way as in Setion 3.1, exept for the speial elements >

and =. Similar to the approah in 3.3, � maps > to the greatest element of

B(K

0

) and = is mapped to a onept whose extension is f(g; g) j g 2 G

0

g. Next,

validity is de�ned: In ontrast to the graphs disussed in the previous setions,

a onept graph (V;E; �;>;Cut; area; �; �) is evaluated indutively in a ontext-

interpretation. The indution is arried out on the tree Cut [ f>g. The main

idea of this approah, whih is losely related to the endoporeuti method of

Peire, is that in order for everything enlosed by a ut to be valid in a power

ontext family, all uts diretly enlosed by it are not allowed to be valid (this is

alled the ut ondition). Therefore, for eah ut, the vertex, the edge and the

ut ondition are heked. If the sheet of assertion is valid, then the graph is,

too. It is easy to hek that the graph of Figure 5.4 is indeed valid in (K

0

;K

2

).

A sound and omplete alulus based on Peire's work was de�ned for onept

graphs with uts both with and without generi markers. Moreover, in [Da01℄,

translations of existential onept graphs with uts to �rst order prediate logi

and vie versa were given, yielding the equivalene of these two logi systems

(see also [Da02℄). Obviously, this implies that we have neither satis�ability nor

deidability.

3.5 Disussion

First we note that the theories presented in the Setions 3.1 to 3.3 are indeed

suessively extending eah other

1

:

Eah non-existential onept graph G = (V;E; �; �; �) over the alphabet

A = (G; C;R) an be understood as a semionept graph G = (V;E; �; �; �

0

)

with �

0

(v) = (�(v); ;) over the alphabet A

0

= (G;S;R) with S := C. Every in-

terpretation of A yields an interpretation of A

0

simply by extending the ranges

of the interpretation mapping � for C and R from the onept latties to the

semionept algebras of the orresponding ontexts. This interpretation of A

0

is

denoted by �

0

. Thus, whenever G is valid in a ontext-interpretation (

�!

K ; �), the

graph G

0

is valid in (

�!

K ; �

0

).

1

We say that a theory is extended by another one if eah graph of the �rst theory an

be translated to a graph of the extension, suh that the new graph represents the

same relationships, and whenever the �rst graph is valid in a ontext-interpretation

(

�!

K ; �), the graph in the extension is valid in (

�!

K ; �

0

) (where �

0

is derived from � in

a natural way).



Similarly, we obtain that eah non-existential semionept graph G over an

alphabet A = (G;S;R) orresponds to a protoonept graph: We set A

0

:=

(G;P ;R

0

) with P := S [ f>;?g and R

0

:= R [ f=g, G

0

:= G and extend

the ranges of the interpretation funtions aordingly while mapping the new

syntatial elements to the orresponding protoonepts.

The theory of onept graphs with uts, however, does not generalize the

theory of protoonept graphs: Syntatially, for a given protoonept graph we

an onstrut a onept graph with uts expressing the same information. In

general, it will have more verties and edges, beause Dau's theory allows only

single objets names as referene, whereas sets of objet names are assigned to

verties of protoonept graphs. Semantially, however, the fat that ontext-

interpretations for protoonept graphs map protoonept names to protoon-

epts and interpretations for onept graphs with uts assign onepts to the

orresponding elements of the alphabet poses a problem. Consider for instane

the protoonept graph [P : g j h℄ and a ontext K

0

:= (G;M; I) with fg; hg � G

and g

I

= h

I

. We now de�ne the interpretation � suh that P is mapped to the

protoonept (g; g

I

), and both g and h are mapped to the objet with the same

name. Then the protoonept graph is valid in (K

0

; �). However, every onept

whose extension inludes g automatially ontains h as well. Hene, there annot

be a ontext-interpretation for a onept graph with uts whih expresses the

same as the graph above. Thus, though the protoonept graph is a graph of

(K

0

; �), the orresponding onept graph with uts would not be.

Sine the existential quanti�ers are formalized di�erently in these approahes

(either by introduing the generi marker � or by allowing variables as refer-

enes), this disussion was restrited to non-existential graphs.

4 Work in Progress

Presently, methods for the diagrammati representation of semionept algebras

are developed and the algebrai theory of double Boolean algebras is investi-

gated further. Moreover, there are several extensions for onept graphs whih

are urrently worked on. In [DH03a℄ and [DH03b℄, Dau and Hereth Correia dis-

uss nested onept graphs with uts as query graphs. These graphs an serve

as queries for relational databases and have the whole expressiveness of SQL,

inluding set-funtions like AVG and COUNT. Moreover, protoonept graphs are

about to be extended by introduing variables as referents in order to obtain

existential quanti�ation. The next step would then be to introdue nestings.

Finally, in [SW03℄, a semanti approah for onept graphs with subdivision

(generalizing nested onept graphs) is introdued.
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