Contextual Boolean Logic: How did it develop?

Julia Klinger and Bjorn Vormbrock

Technische Universitat Darmstadt, Fachbereich Mathematik
Schlof8gartenstr. 7, D-64289 Darmstadt,
{jklinger,vormbrock}@mathematik.tu-darmstadt.de

Abstract. The aim of this paper is to explain the fundamental notions
of Boolean Concept Logic and, based on this theory, to compare various
approaches to Contextual Judgment Logic. First we motivate the basic
definitions of semiconcept algebras and show how semiconcept algebras
generalize to protoconcept algebras and double Boolean algebras. This
enables us to give a brief presentation of the theories of concept graphs,
semiconcept graphs, protoconcept graphs and concept graphs with cuts
as specific approaches to a mathematical judgment logic. In addition,
differences and common grounds of these contributions are discussed.

1 Introduction

In this paper, the development of Contextual Boolean Logic, in particular of
Boolean Concept Logic and Boolean Judgment Logic is described. In the part
dealing with Boolean Concept Logic it is shown how the basic definitions of
algebras of semiconcept arise naturally from problems in practice. Based on this
it is studied how and to what extent various approaches to Contextual Judgment
Logic were developed. This paper consists of three more sections. In the second
section an example of practical interest is used to illustrate the fundamental
notions of semiconcept algebras. Furthermore, protoconcept algebras and double
Boolean algebras are discussed. In the third section the logic systems of concept
graphs, semiconcept graphs, protoconcept graphs and concept graphs with cuts
are summarized. Finally, we give some perspectives for further research in the
last section.

2 Boolean Concept Logic

In this section the expressiveness of Boolean Concept Logic as introduced in
[Wi00] is demonstrated. By considering the problem of hotel selection, the fun-
damental definitions of semiconcept algebras are motivated and defined. This
enables us to explain some advantages of Boolean Concept Logic in contrast to
Formal Concept Analysis.



hotel car park

hotel, standard

8
o
g
c _ =
%E }:g f=3[=} prte <% price >= 75
381yl |s| [HEaileE| bl
B ERE R
AEEREE HEEREE
HEMEEREEREEEEE
o|c|ic|J|8[w|£(5|als|a]al 5]
Kempinski R I A
Hilton I A N S I S S
Astron B X EAENES
FbisBastel L L <]
E4 KX
|[Pension Reiche|%{] E{EES

Fig. 1. The context Ky of hotels and guest houses and its corresponding concept lattice

2.1 The problem of choosing a suitable hotel

We assume that we want to stay in Dresden for a few days and look for accom-
modation that meets our needs. One approach to compare and to find suitable
hotels would be to encode the information we obtain in a formal context and to
use Formal Concept Analysis. The context in Figure 1 is based on a brochure
of the Dresden tourist information office. Its objects are some of the hotels and
guest houses in Dresden. The attributes ‘guest house’ and ‘hotel’ refer to the
type of the accommodation. In particular, ‘standard’, ‘First Class’ and ‘Luxus’
are different categories for hotels. The attribute ‘telephone’ states that there
are telephones in the rooms. If an object is incident to ‘sauna’, ‘hotel car park’
or ‘covered parking space’ then the corresponding services are offered. Prices in
Euro are per night and for single rooms.

Now suppose we want to find the set H; of all hotels that are at least of
category ‘standard’ and have a sauna. The concept lattice in Figure 1 shows
that H; = {Hilton, Kempinski and Astron}, as these hotels form the extension
of the formal concept generated by the attributes ‘hotel” and ‘sauna’. In addition
we can derive that a night in any of these hotels costs at least 75 Euro, because
the intent of this concept consists of ‘hotel’, ‘sauna’, ‘telephone’; ‘covered parking
space’, ‘price > 50°, and ‘price > 75’. However, we might as well want to exclude
properties, for instance a price of 150 Euro or more. If we want to find the set
H, of all hotels that are at least of category ‘standard’ and cost less than 150
Euro per night, it is natural to calculate the intersection of the derivation of



‘standard’ and the complement of the derivation of ‘price > 150’
H, = standard! N (G \ (price > 150)!) = {Ibis Bastei, Astron}.

Hence, we find that the hotels ‘Ibis Bastei’ and ‘Astron’ are the only hotels in the
context that satisfy our request. As before, the derivation {Ibis Bastei, Astron}!
= {telephone, hotel, standard, price > 50} yields that every hotel with the
properties ‘category standard’ and ‘price < 150’ also has telephone in each room
and costs at least 50 Euro per night.

The set {Ibis Bastei, Astron} is not the extension of a formal concept of Ky .
In order to obtain this set by means of Formal Concept Analysis the original
multi-valued context would have to be scaled inter-ordinally. The following two
examples show reasonable questions where there is no natural way of scaling the
original multi-valued context such that the answer may be expressed as the intent
or the extent of a formal concept. In Section 2.2 it is shown how Boolean Concept
Logic provides a language and the means to answer these questions. Therefore the
introduction of negation and opposition to Formal Concept Analysis increases
its expressiveness.

A different question could be: ‘Which attributes has the Kempinski that dis-
tinguish it from the Hilton?’. Let H3 denote the set of these attributes. In order
to compute Hs, the derivation of ‘Kempinski’ is intersected with the complement
of the derivation of ‘Hilton’:

Hj3 = Kempinski’ N (M \ Hilton’) = {luxus, price > 200}.

As a third example we take the following problem: If in a first step the set
H, of all hotels and guest houses incident with ‘telephone’ is considered and in
a second step Hj is defined as the set of all elements of H; with a price of less
than 50 Euro then we could ask which additional attributes are implied in the
second step. Let Hg denote this set of attributes. As above, the intersection of
the derivation of ‘telephone’ and the complement of the derivation of ‘price >
50’ is calculated:

telephone! N (G'\ (price > 50)!) = {Pension Reiche}.

Then we obtain Hg as the intersection of the derivation of ‘Pension Reiche’ and
the complement of the derivation of ‘telephone’:

Hg = Pension Reiche! N (M \ telephone’) = {guest house, hotel car park,
price < 50}.
2.2 The contributions of Boolean Concept Logic

In [Wi00] the set H(K) of semiconcepts of a context K = (G, M, I) is defined as
the set of all pairs (A, B) with A C G and B C M satisfying A/ = B or B! = A.



On this set the following operations are introduced:

M (A2, Bs) := (A1 N Az, (A1 N Ap)")
(Al,Bl) (] (AQ,BQ) = ((Bl n Bg)l,Bl n BQ)
(A1, B1) = (G\ 41, (G\ 41))
(A1, B1) == (M \ B1)", M \ By)
(
(

G0

The set H(K) with the operations M,1,—,~, T, L is called the semiconcept
algebra of K and denoted by $(K). Note that for a semiconcept z holds zMz = x
or x LIz = x. Semiconcepts having the first property are called M-semiconcepts,
those fulfilling the second are called LI-semiconcepts. A semiconcept is a concept
if and only if it is both a L- and a MM-semiconcept. On semiconcept algebras an
order relation C is defined by

(Al,Bl) C (AQ,BQ) & A - A, and B; D Bs.

The ideas used above to address our requests can easily be expressed in
terms of semiconcepts. The set Hs from 2.1 was obtained as the extension of the
following semiconcept:

({standard}’, {standard}) M — ({price > 150}/, {price > 150}) =
({Ibis Bastei, Astron}, {hotel, standard, telephone, price > 50})

The sets Hs and Hg are the respective intents of the semiconcepts given by:

({Kempinski}, { Kempinski}! U = ({Hilton}, {Hilton}!) =
({Kempinski}, {luxus, price > 200})

and

((telephone!, telephone) M = (price > 1507, price > 150))
LI~ (telephone!, telephone)
=({ISSY, Pension Reiche}, {guest house, hotel car park, price < 50})

Thus Boolean Concept Logic provides an adequate language to express and
to formalize the intuitive approach we used to deal with these problems. A
development of this theory and an improvement of its methods will thereby
enable us to understand and answer more complex problems as well.

Since semiconcept algebras are ordered sets, they can be represented as Hasse
diagrams. Unfortunately, the number of semiconcepts of a concept with n objects
and m attributes can be up to 2™, In our example the semiconcept algebra
consists of 2!8 — 14 elements. As a smaller example, Figure 2 depicts the dia-
gram of the subcontext consisting of all objects of Ky and the attributes ‘guest
house’, ‘hotel, standard’, ‘First Class’ and ‘Luxus’. The elements represented as
filled circles are the concepts. The circles with the upper half filled stand for
LI-semiconcepts, those with filled lower half represent M-semiconcepts. The semi-
concepts generated by single objects or attributes are labelled as well as their
negations or oppositions.



(G0)

hotel, standard
not ISSY

opp. guest house

Fig. 2. Semiconcepts of the context restricted to the attributes ‘guest house’, ‘hotel,
standard’; ‘First Class’ and ‘Luxus’

2.3 Protoconcept algebras and double Boolean algebras

In order to develop the logic of semiconcept algebras, the variety generated
by these algebras is needed. This variety must contain all direct products of
semiconcept algebras. However, a direct product of semiconcept algebras is not
necessarily a semiconcept algebra itself: Let (x,y) be an element of the product
(H(Ky),H(Kz)) of the semiconcept algebras H(K;) and $H(K:), and let z be a
M-semiconcept of H(K; ) and y a U-semiconcept of $H(Ks). Then (z,y) does not
satisfy the condition (x,y) N (z,y) = (z,y) or (z,y) U (z,y) = (x,y) which holds
in every semiconcept algebra. For two semiconcept algebras $)(K;) and $(Kz)
the elements of the product $H(K;) x H(Ky) can be understood as pairs (A4, B)
consisting of a set of objects and a set of attributes of the context K := K; + Ko
satisfying A/{ = B!. This leads to the definition of protoconcept algebras. In
[Wi00] the set PB(K) of protoconcepts of the context K := (G, M, I) is introduced



as the set of all pairs (A, B) with A C G and B C M satisfying A/ = Bf. On
these sets the same operations as on semiconcept algebras are defined.

Nevertheless, protoconcept algebras do not form a variety either. The equa-
tional class generated by these algebras is the class of double Boolean algebras
(cf. [Wi00]). These are defined as algebras D := (D,n,U,—-,~, L, T) of type
(2,2,1,1,0,0) satisfying the equations

la) (zNz)Ny=xzNy 1b) (zUz)Uy=2Uy
2a) xMNy=yNux 2b)y x Uy =yUux

3a) zMN(yMNz)=(zNy)Nz 3b)zU(yUz)=(zUy)U=z
da) zMN(zUy)=zNz 4b)a:|_l(a:|'|y)—a:|_la:
5a) ¢ M (zdy) =z Nz 5b) x U (zFy) =z U
6a) M (ydz) = (xMy)d(xzMNz) 6b) zU (yAz) = (z Uy)A(z U 2)
7a) = (zMNy) =z Ny 7b)44($|_|y)::1:|_|y
8a) ~(zMNx) == 8b) “(zUz) =—z

9a) zM—-x =1 9b)zU-z=T

10a) ~L=TnNT 10b) T =LUL1

1la) -T = 1 11b) =L =T

12) (zNz)U (zNe) =(xUz)N(zUx)

with the operations U, A, T, L defined as 2ty := —~(—-zM-y), Ay := ~(“zU-y),
T:=-land L :=-T.

Information on the structure of double Boolean algebras can be found in
[HLSWO00] and [Wi00]. Congruence relations on these were investigated in [Vo02].

3 Contextual Judgment Logic

Taking the traditional philosophical understanding into account, we regard judg-
ments as valid propositions, hence as meaningful combinations of concepts. This
shall be reflected in the theory of concept graphs as our formalization of the
doctrine of judgments: We demand that the graphs are satisfiable, and therefore
that the definition does not allow the construction of a self-contradictory graph.
Three of the theories summarized in this section support this understanding,
namely the logic systems of concept graphs, semiconcept graphs and protocon-
cept graphs. Moreover, these theories extend each other: the system of concept
graphs is the most fundamental and the best developed theory, based on it is
the theory of semiconcept graphs, and finally protoconcept graphs are the most
general entities. The theory of concept graphs with cuts, however, has a different
focus. The aim is equivalence to first order predicate logic, hence the introduc-
tion of a global negation is needed. Obviously, one of the consequences of this
approach is that the construction of self-contradictory graphs is possible.

The following four approaches are, different to Wille’s view of graphs as
semantical structures, based on the separation of syntax and semantics as it is
common in mathematical logic. This is reflected by the manner the theories are
developed: First an alphabet is defined, then syntactical graphs are introduced



G := {kempinski, hilton, astron, bastei, 5]
ibis bastei, issy, pension reiche} %-ﬁ
cla
cC = {HOTEL, STANDARD, ﬁ,g
FIRST CLASS,LUXUS, &l=
GUEST HOUSE} 2|8
2|8
R = {closer to airport, 35
. . TRempineki, Hilton) B
closer to train station} e <
<c = {Kempinski, ISSY) B4
- (Kempinski, Pension Reiche)| [
O HOTEL {Hiltor,, 1557 X
(Hilton, Pensicon Reiche) F
{Astron, Kempinski) K
{Astron, Hilton) E4ES
STANDARD (Astron, Ibis Bastel) kS
O GUEST HOUSE (Astron, ISSY) KK
{Astron, Pension Reiche) rdEd
{Ibis Bastei, Kempinski} >
FIRST CLASS {Ibis Bastai, Hilton) [
{|bis Bastel, Astron) ES
(Ibis Bastai, 1357} <
(Ibis Bastei, Pension Reiche) | X[
O LUXUS (1557, Kempinskil >
] {TSSY, Hiltor) i
<g :=idgr (ISSY, Ibis Bastei) |
{IS8Y, Persinn Reiche) Ed
Fig. 3. Example for a, (Pension Reiche, I88Y) Ed
basic alphabet Fig. 4. The context Ky

as mathematical structures and afterwards the semantics is defined via context-
interpretations of alphabets and the notion of validity. In each of the following
four subsections, we will briefly summarize one theory, however, we will restrict
ourselves to the non-existential cases.

There are several structures occurring in each of the theories. In order to stay
as informal as possible in the following paragraphs, we name some of them here:
First of all, the underlying structure for syntactical concept graphs and its two
extensions is that of a relational graph, which is a triple (V, E, v) consisting of two
disjoint sets V and E whose elements are called vertices and edges, respectively,
and a function v: E — J;,cy V¥ which maps each edge to the ordered tuple of
its adjacent vertices. Moreover, the notion of a power context family is basic for
all four approaches: A power context family Kp:: (Ko, Ky, Ks,...) is a family
of contexts Ky, := (G, My, I;) with Go # 0 and G}, C (Gp)* for each k € N.

In order to explain the different approaches to judgment logic, we continue the
example from Section 2. To distinguish the syntactical names from the elements
of the power context family used for the interpretation, we employ different
capitalizations.

3.1 Concept Graphs

The approach in [Wi97] was adopted and both modified and extended by Predi-
ger. In [Pr98b], she introduced concept graphs as syntactical constructs and
equipped them with an explicit contextual semantics instead of the traditional
implicit semantics via a translation into predicate logic (see for instance [So84]).



. Concept graph:

1 2
’ STANDARD: bastei }7[closertoairport)7’ GUEST HOUSE: pension reiche ‘
a, €,

ap

. Semiconcept Graph:

1 2
’STANDARD: bastei |isw Hclow to airportH GUEST HOUSE: pension reiche | {kempinski, hilton} ‘
bq fq by
. Protoconcept Graph:

1 2
’STANDARD: bastei | issy Hclow to airportH GUEST HOUSE: pension reiche | {kempinski,hilton}‘

Cl 1 gl 02
do :j
2
’ T:ibisbaste | ‘
€3

. Concept Graph with Cuts:

1 2
’ STANDARD: bastei }7’ GUEST HOUSE: pension reiche ‘
"2(=)
ﬂ GUEST HOUSE: kempinski ‘ ]

2
’ T: ibisbastei ‘ k2

ds

Fig. 5. Examples for graphs

The first step towards a syntactical implementation of concept graphs was the
definition of an alphabet A := (G,C,R) consisting of a set G of object names,
an ordered set C of concept names and a family R of ordered sets of relation
names. In Figure 3 a sample for such an alphabet is given. Syntactical concept
graphs over an alphabet were then introduced as mathematical structures of the
form & := (V, E,v, k, p), consisting of a relational graph, a function x assigning
concept names to vertices and relation names to edges, and a function p which
assigns non-empty sets of object names to the vertices (as references). Figure 5.1
shows an example for a syntactical concept graph over the alphabet depicted in
Figure 3.

For the semantics, the names of the alphabet are interpreted in a given power

context family = (Ko, Ky,...) via a so called interpretation A: This inter-



pretation specifies how the syntactical elements of the alphabet are related to
elements of : object names are mapped to objects of Ky, concept names to
concepts of Ky and relation names to elements of B(K}). Moreover, the or-
ders specified in the alphabet are preserved. The resulting structures (K,)\)
are called context-interpretations. As an example consider the power context
family (Kp,Ky) consisting of the contexts in Figure 1 and Figure 4. An inter-
pretation of the alphabet shown in Figure 3 may be defined as follows: the
object names except for ‘bastei’ are mapped to the objects with the same name,
‘bastei’ is mapped to the the object ‘Ibis Bastei’. Each concept name is in-
terpreted as the attribute concept generated (neglecting capitalization) by the
same name. For instance, the name ‘STANDARD’ is mapped to u(standard).
The relation name ‘closer to airport’ is interpreted as the attribute concept
p(closer to Dresden Airport), and ‘closer to train station’ as u(closer to a train
station). Now we say that a concept graph is valid in a context-interpretation
(K, A) (and call (K, A) a model for the graph) if the so called vertex- and edge
condition for the vertices respectively edges are both satisfied. The vertex con-
dition for a vertex v is fulfilled if the interpreted object names of v belong to
the extent of the interpreted concept name of that vertex. Similarly, the edge
condition for an edge e holds if the objects along e are in the relation concept
assigned to that edge. It is easy to see that the concept graph in Figure 5.1 is
valid in ((Ko,Kz), A).

The definition of concept graphs yields their satisfiability as well as decid-
ability: For each two graphs over the same alphabet one can decide whether one
entails the other or not. Moreover, Prediger discussed several extensions of sim-
ple concept graphs. She included generic markers and nestings into the theory
(see [Pr98b], [Pr00]; for the semantic approach see [Wi98]). With respect to con-
clusion logic a sound and complete calculus for non-existential concept graphs
and each of the extensions was provided. Moreover, for each concept graph a
standard model was defined which codes exactly the same information as the
graph, and, vice versa, the so called standard graph of a power context family
was introduced.

3.2 Semiconcept Graphs

Semiconcept graphs were proposed in [Wi01]. They extend the theory of concept
graphs by including negation on the level of concepts and relations. Again, the
graphs were defined as semantical structures. Similarly to Prediger’s approach,
in [K10la] a strict separation in syntax and semantics was introduced. First the
notion of an alphabet A := (G,S,R) is provided, which extends the definition
of alphabets from the previous section by replacing the set C of concept names
by a set S of semiconcept names. Setting S := C, the alphabet in Figure 3 may
serve as an example for an alphabet for semiconcept graphs as well. Then a
syntactical semiconcept graph is defined in accordance to concept graphs as a
tuple (V, E,v,k,p) such that (V, E,v) is a relational graph and x maps semi-
concept names and relation names to the vertices and edges, respectively. Now
p maps to each vertex two sets of object names, namely one set of positive and



one set of negative references. There are four conditions for p, ensuring that
for both vertices and edges there is at least one reference and that the graph
is not self-contradictory. Hence, in comparison with concept graphs the main
difference lies in the definition of p. This is resembled by the rule of how these
graphs are read: The semiconcept graph in Figure 5.2 represents that ‘bastei’ is
STANDARD and ‘issy’ is not, ‘pension reiche’ is ‘GUEST HOUSE’ while both
‘kempinski’ and ‘hilton’ are not, and ‘bastei’ is ‘closer to airport’ than ‘pension
reiche’ while ‘issy’ is not ‘closer to airport’ than both ‘kempinski’ and ‘hilton’.

For the semantics, the alphabet is interpreted in a power context family
by an interpretation A. As before, object names are mapped to objects of Ky,
however, semiconcept names are interpreted as M-semiconcepts of Ky instead
of concepts. Moreover, k-ary relation names are interpreted as M-semiconcepts
of K. Since each concept is a M-semiconcept, the interpretation defined in the
previous section may serve as an example for semiconcept graphs as well. For
defining the validity of a semiconcept graph in a context-interpretation (K, \),
we have to modify the vertex and the edge condition in order to capture the
negation. Therefore, instead of just checking if the interpreted positive refer-
ences of a vertex are in the interpreted semiconcept name, we additionally check
whether the objects assigned to the negative references are in the negation of
that semiconcept. Similarly, the edge condition consists of a positive and a neg-
ative part. We may now check if the sample graph in Figure 5.2 is valid in
(Ko, Kz), A): It is easy to see that the positive vertex- and edge condition are
satisfied. The negative conditions are satisfied as well. Consider for instance the
vertex by: We have to check that the image of the object name ‘issy’ (thus the
object ISSY) is in the extension of the semiconcept —u(Standard), which is equal
to {Pension Reiche, ISSY}.

The definition of semiconcept graphs yields their satisfiability. Furthermore,
it was shown via so called standard power context families that decidability is
guaranteed. As an extension, variables were introduced as referents, yielding ex-
istential quantification (cf. [K101b],[K102]). Again, satisfiability and decidability
were shown. Finally, for each power context family the graph representing the
same information was provided.

3.3 Protoconcept Graphs

The goal was to develop a theory of concept graphs with negation comprising
concept, graphs, semiconcept graphs and suitable syntactical elements of con-
cept graphs with cuts in such a way that our understanding of judgments as
valid propositions remains supported. As semantical structures, protoconcepts
graphs were introduced in [Wi02]. Based on this, the separation of syntax from
semantics was described: Similar to the previous two approaches, first an alpha-
bet A := (G,P,R) is defined. This time, however, the set P of protoconcept
names contains a well-distinguished smallest element 1 and a greatest element
T. Moreover, R includes a special binary relation name =. Therefore, the al-
phabet in Figure 3 has to be modified in order to obtain a suitable example:
We take A' := (G,P,R') with P:=CU{L, T} and R' := R U {=}. Moreover,



the orders on C and R are extended to orders on P and R’ in a natural way.
Syntactical protoconcept graphs are defined essentially in the same way as semi-
concept, graphs, though the use of the relation name = gives rise to different
and more complex conditions for p in order to ensure satisfiability. Figure 5.3
shows a syntactical protoconcept graph, which can be read in the same way
as the graph in 5.2. In addition, it states that ‘bastei’ is equal to ‘ibis bastei’.
The semantics follows the same principles as in the previous sections. First an
interpretation A maps object names to objects, protoconcept names to proto-
concepts of Ko and relation names to protoconcepts of contexts K. Moreover,
the special syntactical elements of the alphabet have to be respected by the
interpretation: L and T are mapped to the smallest and the greatest element
of P(Ky), respectively, and the relation name = is mapped to a protoconcept
whose extension is {(g,9) | g € Go}. Then validity of a protoconcept graph is
checked in the same way as for semiconcept graphs. Again, the graph depicted
in 5.3 is a protoconcept graph of ((Ko,Kz),A).

Via so called standard power context families, satisfiability and decidabil-
ity were shown. Moreover, a sound and complete calculus was introduced. Up
till now, no syntactical extensions for protoconcept graphs have been studied.
However, in [Wi02] (semantical) existential protoconcept graphs were defined as
protoconcept graphs of free X -extensions of power context families (where X is
a set of variables).

3.4 Concept Graphs with Cuts

Concept graphs with cuts were introduced in [Da02] with the goal to obtain a
logic system of concept graphs whose expressiveness matches first order predicate
logic. This requires negation to be treated as a logical operator on the level of
propositions, which was done by adopting so called cuts from Peirce’s theory of
existential graphs. After introducing non-existential concept graphs with cuts,
Dau extended the theory by including existential quantifiers and was then able
to show the desired equivalence (see [Da01],[Da02]).

In a similar way as for concept graphs, an alphabet is defined as a triple
A :=(G,C,R) such that there is a special concept name T which is the greatest
element of C and a well-distinguished relation name = of arity 2. Hence, the
alphabet in Figure 3, modified by including T in C, the binary relation name
= in R, and extending the orders on the sets of concept and of relation names
accordingly, yields an example of an alphabet for concept graphs with cuts.
Next, a relational graph with cuts is defined as a tuple (V, E,v, T, Cut, area)
where (V, E,v) is a relational graph, T is a single element called the sheet of
assertion (which, thinking diagrammatically, can be understood as the sheet on
which the graph is drawn), Cut is the set of cuts and area is a map which defines
for each cut ¢ the elements of the graph (thus the vertices, edges and other cuts)
which are ‘within’ ¢. When picturing a concept graph, the cuts of the concept
graph are usually drawn as bold ovals. Hence, if we consider the graph depicted
in Figure 5.4 as an example, we have Cut:= {ki,kz}, area(ky) = {hs} and
area(ks) = {ds}. Relational graphs with cuts satisfy several conditions, which



can be reread in [Da02]. Most importantly, cuts do not intersect. A syntactical
concept graph with cuts is then defined as a relational graph with cuts equipped
with two functions x and p. Again, the function k maps concept names to the
vertices and relation names to the edges, however, p does not map sets of object
names to the vertices but single elements of G. As already mentioned, Figure 5.4
depicts a sample graph. The subgraphs not containing cuts are read in the same
way as concept graphs. However, each cut negates everything within it, so the
bottommost graph is read: ‘kempinski’ and ‘issy’ are ‘T’ and ‘kempinski’ is not
‘closer to airport’ than ‘issy’.

For the semantics, interpretations of alphabets in power context families are
defined in the same way as in Section 3.1, except for the special elements T
and =. Similar to the approach in 3.3, A maps T to the greatest element of
B(Kp) and = is mapped to a concept whose extension is {(g,9) | ¢ € Go}. Next,
validity is defined: In contrast to the graphs discussed in the previous sections,
a concept graph (V, E,v, T, Cut, area, &, p) is evaluated inductively in a context-
interpretation. The induction is carried out on the tree CutU {T}. The main
idea of this approach, which is closely related to the endoporeutic method of
Peirce, is that in order for everything enclosed by a cut to be valid in a power
context family, all cuts directly enclosed by it are not allowed to be valid (this is
called the cut condition). Therefore, for each cut, the vertex, the edge and the
cut condition are checked. If the sheet of assertion is valid, then the graph is,
too. It is easy to check that the graph of Figure 5.4 is indeed valid in (Ko, Ko).

A sound and complete calculus based on Peirce’s work was defined for concept
graphs with cuts both with and without generic markers. Moreover, in [Da01],
translations of existential concept graphs with cuts to first order predicate logic
and vice versa were given, yielding the equivalence of these two logic systems
(see also [Da02]). Obviously, this implies that we have neither satisfiability nor
decidability.

3.5 Discussion

First we note that the theories presented in the Sections 3.1 to 3.3 are indeed
successively extending each other!:

Each non-existential concept graph & = (V,E,v,k,p) over the alphabet
A = (G,C,R) can be understood as a semiconcept graph & = (V, E, v, k,p')
with p'(v) = (p(v), D) over the alphabet A" = (G,S,R) with S := C. Every in-
terpretation of A yields an interpretation of A’ simply by extending the ranges
of the interpretation mapping A for C and R from the concept lattices to the
semiconcept algebras of the corresponding contexts. This interpretation of A’ is
denoted by A’. Thus, whenever & is valid in a context-interpretation (K, A), the
graph &’ is valid in (K, ).

! We say that a theory is extended by another one if each graph of the first theory can
be translated to a graph of the extension, such that the new graph represents the
same relationships, and whenever the first graph is valid in a context-interpretation
(K), A), the graph in the extension is valid in (K’, A’) (where X' is derived from X in
a natural way).



Similarly, we obtain that each non-existential semiconcept graph & over an
alphabet A = (G,S,R) corresponds to a protoconcept graph: We set A’ :=
(G,P,R") with P := SU{T,L} and R’ := RU{=}, & := & and extend
the ranges of the interpretation functions accordingly while mapping the new
syntactical elements to the corresponding protoconcepts.

The theory of concept graphs with cuts, however, does not generalize the
theory of protoconcept graphs: Syntactically, for a given protoconcept graph we
can construct a concept graph with cuts expressing the same information. In
general, it will have more vertices and edges, because Dau’s theory allows only
single objects names as reference, whereas sets of object names are assigned to
vertices of protoconcept graphs. Semantically, however, the fact that context-
interpretations for protoconcept graphs map protoconcept names to protocon-
cepts and interpretations for concept graphs with cuts assign concepts to the
corresponding elements of the alphabet poses a problem. Consider for instance
the protoconcept graph [P: g | h] and a context Ko := (G, M, I) with {g,h} C G
and g/ = h!. We now define the interpretation A such that P is mapped to the
protoconcept (g, g’), and both g and h are mapped to the object with the same
name. Then the protoconcept graph is valid in (Ko, ). However, every concept
whose extension includes g automatically contains h as well. Hence, there cannot
be a context-interpretation for a concept graph with cuts which expresses the
same as the graph above. Thus, though the protoconcept graph is a graph of
(Ko, A), the corresponding concept graph with cuts would not be.

Since the existential quantifiers are formalized differently in these approaches
(either by introducing the generic marker x or by allowing variables as refer-
ences), this discussion was restricted to non-existential graphs.

4 Work in Progress

Presently, methods for the diagrammatic representation of semiconcept algebras
are developed and the algebraic theory of double Boolean algebras is investi-
gated further. Moreover, there are several extensions for concept graphs which
are currently worked on. In [DHO03a] and [DHO03b], Dau and Hereth Correia dis-
cuss nested concept graphs with cuts as query graphs. These graphs can serve
as queries for relational databases and have the whole expressiveness of SQL,
including set-functions like AVG and COUNT. Moreover, protoconcept graphs are
about to be extended by introducing variables as referents in order to obtain
existential quantification. The next step would then be to introduce nestings.
Finally, in [SWO03], a semantic approach for concept graphs with subdivision
(generalizing nested concept graphs) is introduced.

References

[Da01] F. Dau: Concept Graphs and Predicate Logic. In: H. S. Delugach, G. Stumme
(Eds.): Conceptual Structures: Broadening the Base, Springer Verlag, Berlin-New
York 2001, 72-86.



[Da02] F. Dau: The Logic System of Concept Graphs with Negations (and its Rela-
tionship to Predicate Logic), Dissertation. FB Mathematik, TU Darmstadt 2002.
For the submitted version see http://www.mathematik.tu-darmstadt.de/~dau

[Da03] F. Dau: Concept Graphs without Negations: Standardmodels and Standard-
graphs. FB4-Preprint, TU Darmstadt, 2003.

[DHO03a] F. Dau, J. Hereth Correia: Nested Concept Graphs: Mathematical Founda-
tions. FB4-Preprint, TU Darmstadt, 2003.

[DHO3b] F. Dau, J. Hereth Correia: Nested Concept Graphs: Applications for
Databases. FB4-Preprint, TU Darmstadt, 2003.

[HLSW00] C. Herrmann, P. Luksch, M. Skorsky, R. Wille: Algebras of Semiconcepts
and Double Boolean Algebras. Contributions to General Algebra 13, 2000.

[K101a] J. Klinger: Simple Semiconcept Graphs: a Boolean Logic Approach. In: H.
S. Delugach, G. Stumme (Eds.): Conceptual Structures: Broadening the Base,
Springer Verlag, Berlin—-New York 2001, 115-128.

[K101b] J. Klinger: Semiconcept Graphs: Syntax and Semantics, Diplomarbeit, FB
Mathematik, TU Darmstadt 2001.

[K102] J. Klinger: Semiconcept Graphs with Variables. In: U. Priss, D. Corbett, G. An-
gelova (Eds.): Conceptual Structures: Integration and Interfaces, Springer Verlag,
Berlin—New York 2002, 382-396.

[Pr98a] S. Prediger: Kontextuelle Urteilslogik mit Begriffsgraphen, Shaker Verlag,
Aachen 1998.

[Pr98b] S. Prediger: Simple Concept Graphs: A Logic Approach. In: M.-L. Mugnier,
M. Chein (Eds): Conceptual Structures: Theory, Tools and Application, Springer
Verlag, Berlin—Heidelberg 1998, 225-239.

[Pr00] S. Prediger: Nested Concept Graphs and Triadic Power Context Families: A
Situation-Based Contextual Approach. In: B. Ganter, G. W. Mineau (Eds.): Con-
ceptual Structures: Logical, Linguistic, and Computational Issues, Springer Verlag,
Berlin—New York 2000, 249-262.

[SWO03] L. Schoolmann, R. Wille: Concept Graphs with Subdivision: a Semantic Ap-
proach. FB4-Preprint, TU Darmstadt, 2003.

[So84] J. F. Sowa: Conceptual Structures: Information Processing in Mind and Ma-
chine. Adison-Wesley, Reading 1984.

[Vo02] B. Vormbrock: Kongruenzrelationen auf doppelt-booleschen Algebren. Diplo-
marbeit, FB Mathematik, TU Darmstadt 2002.

[Wi97] R. Wille: Conceptual Graphs and Formal Concept Analysis. In D. Lukose, H.
Delugach, M. Keeler, L. Searle, J. Sowa (eds.): Conceptual Structures: Fullfilling
Peirce’s Dream. Springer, Berlin - Heidelberg - New York 1997, 290 - 303.

[Wi98] R. Wille: Triadic Concept Graphs. In: M.-L. Mugnier, M. Chein (Eds): Concep-
tual Structures: Theory, Tools and Application, Springer Verlag, Berlin—Heidelberg
1998, 194-208.

[Wi00] R. Wille: Boolean Concept Logic. In: B. Ganter, G.W. Mineau (Eds.): Concep-
tual Structures: Logical, Linguistic, and Computational Issues, Springer Verlag,
Berlin—New York 2000, 317-331.

[Wi01] R. Wille: Boolean Judgment Logic. In: H. S. Delugach, G. Stumme (Eds.):
Conceptual Structures: Broadening the Base, Springer Verlag, Berlin—-New York
2001, 115-128.

[Wi02] R. Wille: Existential Graphs of Power Context Families. In: U. Priss, D.
Corbett, G. Angelova (Eds.): Conceptual Structures: Integration and Interfaces,
Springer Verlag, Berlin-New York 2002, 382-396.



