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Abstra
t. The aim of this paper is to explain the fundamental notions

of Boolean Con
ept Logi
 and, based on this theory, to 
ompare various

approa
hes to Contextual Judgment Logi
. First we motivate the basi


de�nitions of semi
on
ept algebras and show how semi
on
ept algebras

generalize to proto
on
ept algebras and double Boolean algebras. This

enables us to give a brief presentation of the theories of 
on
ept graphs,

semi
on
ept graphs, proto
on
ept graphs and 
on
ept graphs with 
uts

as spe
i�
 approa
hes to a mathemati
al judgment logi
. In addition,

di�eren
es and 
ommon grounds of these 
ontributions are dis
ussed.

1 Introdu
tion

In this paper, the development of Contextual Boolean Logi
, in parti
ular of

Boolean Con
ept Logi
 and Boolean Judgment Logi
 is des
ribed. In the part

dealing with Boolean Con
ept Logi
 it is shown how the basi
 de�nitions of

algebras of semi
on
ept arise naturally from problems in pra
ti
e. Based on this

it is studied how and to what extent various approa
hes to Contextual Judgment

Logi
 were developed. This paper 
onsists of three more se
tions. In the se
ond

se
tion an example of pra
ti
al interest is used to illustrate the fundamental

notions of semi
on
ept algebras. Furthermore, proto
on
ept algebras and double

Boolean algebras are dis
ussed. In the third se
tion the logi
 systems of 
on
ept

graphs, semi
on
ept graphs, proto
on
ept graphs and 
on
ept graphs with 
uts

are summarized. Finally, we give some perspe
tives for further resear
h in the

last se
tion.

2 Boolean Con
ept Logi


In this se
tion the expressiveness of Boolean Con
ept Logi
 as introdu
ed in

[Wi00℄ is demonstrated. By 
onsidering the problem of hotel sele
tion, the fun-

damental de�nitions of semi
on
ept algebras are motivated and de�ned. This

enables us to explain some advantages of Boolean Con
ept Logi
 in 
ontrast to

Formal Con
ept Analysis.
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Fig. 1. The 
ontext K

0

of hotels and guest houses and its 
orresponding 
on
ept latti
e

2.1 The problem of 
hoosing a suitable hotel

We assume that we want to stay in Dresden for a few days and look for a

om-

modation that meets our needs. One approa
h to 
ompare and to �nd suitable

hotels would be to en
ode the information we obtain in a formal 
ontext and to

use Formal Con
ept Analysis. The 
ontext in Figure 1 is based on a bro
hure

of the Dresden tourist information oÆ
e. Its obje
ts are some of the hotels and

guest houses in Dresden. The attributes `guest house' and `hotel' refer to the

type of the a

ommodation. In parti
ular, `standard', `First Class' and `Luxus'

are di�erent 
ategories for hotels. The attribute `telephone' states that there

are telephones in the rooms. If an obje
t is in
ident to `sauna', `hotel 
ar park'

or `
overed parking spa
e' then the 
orresponding servi
es are o�ered. Pri
es in

Euro are per night and for single rooms.

Now suppose we want to �nd the set H

1

of all hotels that are at least of


ategory `standard' and have a sauna. The 
on
ept latti
e in Figure 1 shows

that H

1

= fHilton, Kempinski and Astrong, as these hotels form the extension

of the formal 
on
ept generated by the attributes `hotel' and `sauna'. In addition

we 
an derive that a night in any of these hotels 
osts at least 75 Euro, be
ause

the intent of this 
on
ept 
onsists of `hotel', `sauna', `telephone', `
overed parking

spa
e', `pri
e � 50', and `pri
e � 75'. However, we might as well want to ex
lude

properties, for instan
e a pri
e of 150 Euro or more. If we want to �nd the set

H

2

of all hotels that are at least of 
ategory `standard' and 
ost less than 150

Euro per night, it is natural to 
al
ulate the interse
tion of the derivation of



`standard' and the 
omplement of the derivation of `pri
e � 150':

H

2

= standard

I

\ (G n (pri
e � 150)

I

) = fIbis Bastei, Astrong:

Hen
e, we �nd that the hotels `Ibis Bastei' and `Astron' are the only hotels in the


ontext that satisfy our request. As before, the derivation fIbis Bastei, Astrong

I

= ftelephone, hotel, standard, pri
e � 50g yields that every hotel with the

properties `
ategory standard' and `pri
e � 150' also has telephone in ea
h room

and 
osts at least 50 Euro per night.

The set fIbis Bastei, Astrong is not the extension of a formal 
on
ept of K

0

.

In order to obtain this set by means of Formal Con
ept Analysis the original

multi-valued 
ontext would have to be s
aled inter-ordinally. The following two

examples show reasonable questions where there is no natural way of s
aling the

original multi-valued 
ontext su
h that the answer may be expressed as the intent

or the extent of a formal 
on
ept. In Se
tion 2.2 it is shown how Boolean Con
ept

Logi
 provides a language and the means to answer these questions. Therefore the

introdu
tion of negation and opposition to Formal Con
ept Analysis in
reases

its expressiveness.

A di�erent question 
ould be: `Whi
h attributes has the Kempinski that dis-

tinguish it from the Hilton?'. Let H

3

denote the set of these attributes. In order

to 
ompute H

3

, the derivation of `Kempinski' is interse
ted with the 
omplement

of the derivation of `Hilton':

H

3

= Kempinski

I

\ (M nHilton

I

) = fluxus, pri
e � 200g:

As a third example we take the following problem: If in a �rst step the set

H

4

of all hotels and guest houses in
ident with `telephone' is 
onsidered and in

a se
ond step H

5

is de�ned as the set of all elements of H

4

with a pri
e of less

than 50 Euro then we 
ould ask whi
h additional attributes are implied in the

se
ond step. Let H

6

denote this set of attributes. As above, the interse
tion of

the derivation of `telephone' and the 
omplement of the derivation of `pri
e �

50' is 
al
ulated:

telephone

I

\ (G n (pri
e � 50)

I

) = fPension Rei
heg:

Then we obtain H

6

as the interse
tion of the derivation of `Pension Rei
he' and

the 
omplement of the derivation of `telephone':

H

6

= Pension Rei
he

I

\ (M n telephone

I

) = fguest house, hotel 
ar park,

pri
e � 50g.

2.2 The 
ontributions of Boolean Con
ept Logi


In [Wi00℄ the set H(K ) of semi
on
epts of a 
ontext K = (G;M; I) is de�ned as

the set of all pairs (A;B) with A � G and B �M satisfying A

I

= B or B

I

= A.



On this set the following operations are introdu
ed:

(A

1

; B

1

) u (A

2

; B

2

) := (A

1

\ A

2

; (A

1

\ A

2

)

0

)

(A

1

; B

1

) t (A

2

; B

2

) := ((B

1

\ B

2

)

0

; B

1

\ B

2

)

:(A

1

; B

1

) := (G nA

1

; (G nA

1

)

0

)

:(A

1

; B

1

) := ((M nB

1

)

0

;M nB

1

)

? := (;;M)

> := (G; ;)

The set H(K ) with the operations u;t;:;:;>;? is 
alled the semi
on
ept

algebra of K and denoted by H(K ). Note that for a semi
on
ept x holds xux = x

or x t x = x. Semi
on
epts having the �rst property are 
alled u-semi
on
epts,

those ful�lling the se
ond are 
alled t-semi
on
epts. A semi
on
ept is a 
on
ept

if and only if it is both a t- and a u-semi
on
ept. On semi
on
ept algebras an

order relation v is de�ned by

(A

1

; B

1

) v (A

2

; B

2

) :, A

1

� A

2

and B

1

� B

2

.

The ideas used above to address our requests 
an easily be expressed in

terms of semi
on
epts. The set H

2

from 2.1 was obtained as the extension of the

following semi
on
ept:

(fstandardg

I

; fstandardg) u : (fpri
e � 150g

I

; fpri
e � 150g) =

(fIbis Bastei, Astrong; fhotel, standard, telephone, pri
e � 50g)

The sets H

3

and H

6

are the respe
tive intents of the semi
on
epts given by:

(fKempinskig; fKempinskig

I

t : (fHiltong; fHiltong

I

) =

(fKempinskig; fluxus, pri
e � 200g)

and

((telephone

I

; telephone) u :(pri
e � 150

I

; pri
e � 150))

t:(telephone

I

; telephone)

=(fISSY, Pension Rei
heg; fguest house, hotel 
ar park, pri
e � 50g)

Thus Boolean Con
ept Logi
 provides an adequate language to express and

to formalize the intuitive approa
h we used to deal with these problems. A

development of this theory and an improvement of its methods will thereby

enable us to understand and answer more 
omplex problems as well.

Sin
e semi
on
ept algebras are ordered sets, they 
an be represented as Hasse

diagrams. Unfortunately, the number of semi
on
epts of a 
on
ept with n obje
ts

and m attributes 
an be up to 2

n+m

. In our example the semi
on
ept algebra


onsists of 2

18

� 14 elements. As a smaller example, Figure 2 depi
ts the dia-

gram of the sub
ontext 
onsisting of all obje
ts of K

0

and the attributes `guest

house', `hotel, standard', `First Class' and `Luxus'. The elements represented as

�lled 
ir
les are the 
on
epts. The 
ir
les with the upper half �lled stand for

t-semi
on
epts, those with �lled lower half represent u-semi
on
epts. The semi-


on
epts generated by single obje
ts or attributes are labelled as well as their

negations or oppositions.



hotel, standard

first class

luxus

guest house

ibis

Hilton

ISSY

Kempinski

(G,0)

not Hilton

not Kempinski not ibis

not ISSY

opp. guest house

opp. luxus

opp. hotel

opp. first class

(0,M)

Fig. 2. Semi
on
epts of the 
ontext restri
ted to the attributes `guest house', `hotel,

standard', `First Class' and `Luxus'

2.3 Proto
on
ept algebras and double Boolean algebras

In order to develop the logi
 of semi
on
ept algebras, the variety generated

by these algebras is needed. This variety must 
ontain all dire
t produ
ts of

semi
on
ept algebras. However, a dire
t produ
t of semi
on
ept algebras is not

ne
essarily a semi
on
ept algebra itself: Let (x; y) be an element of the produ
t

(H(K

1

);H(K

2

)) of the semi
on
ept algebras H(K

1

) and H(K

2

), and let x be a

u-semi
on
ept of H(K

1

) and y a t-semi
on
ept of H(K

2

). Then (x; y) does not

satisfy the 
ondition (x; y)u (x; y) = (x; y) or (x; y)t (x; y) = (x; y) whi
h holds

in every semi
on
ept algebra. For two semi
on
ept algebras H(K

1

) and H(K

2

)

the elements of the produ
t H(K

1

) � H(K

2

) 
an be understood as pairs (A;B)


onsisting of a set of obje
ts and a set of attributes of the 
ontext K := K

1

+K

2

satisfying A

II

= B

I

. This leads to the de�nition of proto
on
ept algebras. In

[Wi00℄ the set P(K ) of proto
on
epts of the 
ontext K := (G;M; I) is introdu
ed



as the set of all pairs (A;B) with A � G and B � M satisfying A

II

= B

I

. On

these sets the same operations as on semi
on
ept algebras are de�ned.

Nevertheless, proto
on
ept algebras do not form a variety either. The equa-

tional 
lass generated by these algebras is the 
lass of double Boolean algebras

(
f. [Wi00℄). These are de�ned as algebras D := (D;u;t;:;:;?;>) of type

(2,2,1,1,0,0) satisfying the equations

1a) (x u x) u y = x u y 1b) (x t x) t y = x t y

2a) x u y = y u x 2b) x t y = y t x

3a) x u (y u z) = (x u y) u z 3b) x t (y t z) = (x t y) t z

4a) x u (x t y) = x u x 4b) x t (x u y) = x t x

5a) x u (xty) = x u x 5b) x t (xuy) = x t x

6a) x u (ytz) = (x u y)t(x u z) 6b) x t (yuz) = (x t y)u(x t z)

7a) ::(x u y) = x u y 7b) ::(x t y) = x t y

8a) :(x u x) = :x 8b) :(x t x) = :x

9a) x u :x = ? 9b) x t :x = >

10a) :? = > u > 10b) :> = ? t ?

11a) :> = ? 11b) :? = >

12) (x u x) t (x u x) = (x t x) u (x t x)

with the operations t;u;>;? de�ned as xty := :(:xu:y), xuy := :(:xt:y),

> := :? and ? := :>.

Information on the stru
ture of double Boolean algebras 
an be found in

[HLSW00℄ and [Wi00℄. Congruen
e relations on these were investigated in [Vo02℄.

3 Contextual Judgment Logi


Taking the traditional philosophi
al understanding into a

ount, we regard judg-

ments as valid propositions, hen
e as meaningful 
ombinations of 
on
epts. This

shall be re
e
ted in the theory of 
on
ept graphs as our formalization of the

do
trine of judgments: We demand that the graphs are satis�able, and therefore

that the de�nition does not allow the 
onstru
tion of a self-
ontradi
tory graph.

Three of the theories summarized in this se
tion support this understanding,

namely the logi
 systems of 
on
ept graphs, semi
on
ept graphs and proto
on-


ept graphs. Moreover, these theories extend ea
h other: the system of 
on
ept

graphs is the most fundamental and the best developed theory, based on it is

the theory of semi
on
ept graphs, and �nally proto
on
ept graphs are the most

general entities. The theory of 
on
ept graphs with 
uts, however, has a di�erent

fo
us. The aim is equivalen
e to �rst order predi
ate logi
, hen
e the introdu
-

tion of a global negation is needed. Obviously, one of the 
onsequen
es of this

approa
h is that the 
onstru
tion of self-
ontradi
tory graphs is possible.

The following four approa
hes are, di�erent to Wille's view of graphs as

semanti
al stru
tures, based on the separation of syntax and semanti
s as it is


ommon in mathemati
al logi
. This is re
e
ted by the manner the theories are

developed: First an alphabet is de�ned, then synta
ti
al graphs are introdu
ed



G := fkempinski, hilton, astron, bastei,

ibis bastei, issy, pension rei
heg

C := fHOTEL, STANDARD,

FIRST CLASS,LUXUS,

GUEST HOUSEg

R := f
loser to airport,


loser to train stationg

�

C

:=

FIRST CLASS

STANDARD

HOTEL

LUXUS

GUEST HOUSE

�

R

:= id

R

Fig. 3. Example for a

basi
 alphabet

Fig. 4. The 
ontext K

2

as mathemati
al stru
tures and afterwards the semanti
s is de�ned via 
ontext-

interpretations of alphabets and the notion of validity. In ea
h of the following

four subse
tions, we will brie
y summarize one theory, however, we will restri
t

ourselves to the non-existential 
ases.

There are several stru
tures o

urring in ea
h of the theories. In order to stay

as informal as possible in the following paragraphs, we name some of them here:

First of all, the underlying stru
ture for synta
ti
al 
on
ept graphs and its two

extensions is that of a relational graph, whi
h is a triple (V;E; �) 
onsisting of two

disjoint sets V and E whose elements are 
alled verti
es and edges, respe
tively,

and a fun
tion � : E !

S

k2N

V

k

whi
h maps ea
h edge to the ordered tuple of

its adja
ent verti
es. Moreover, the notion of a power 
ontext family is basi
 for

all four approa
hes: A power 
ontext family

�!

K := (K

0

;K

1

;K

2

; : : : ) is a family

of 
ontexts K

k

:= (G

k

;M

k

; I

k

) with G

0

6= ; and G

k

� (G

0

)

k

for ea
h k 2 N.

In order to explain the di�erent approa
hes to judgment logi
, we 
ontinue the

example from Se
tion 2. To distinguish the synta
ti
al names from the elements

of the power 
ontext family used for the interpretation, we employ di�erent


apitalizations.

3.1 Con
ept Graphs

The approa
h in [Wi97℄ was adopted and both modi�ed and extended by Predi-

ger. In [Pr98b℄, she introdu
ed 
on
ept graphs as synta
ti
al 
onstru
ts and

equipped them with an expli
it 
ontextual semanti
s instead of the traditional

impli
it semanti
s via a translation into predi
ate logi
 (see for instan
e [So84℄).



1. Con
ept graph:

closer to airportSTANDARD: bastei     GUEST HOUSE: pension reiche

a 1 a 2e 1

1 2

2. Semi
on
ept Graph:

closer to airport

f 1

| |
1 2

STANDARD: bastei     issy GUEST HOUSE: pension reiche      {kempinski, hilton}

1b 2b

3. Proto
on
ept Graph:

closer to airport

=

c 2cg 1

3c

g 2

|
2

T |

1

2

1

|
1

STANDARD: bastei     issy GUEST HOUSE: pension reiche        {kempinski, hilton}

: ibis bastei     

4. Con
ept Graph with Cuts:

closer to airport

=

GUEST HOUSE: pension reiche

d 6

d 1 h 1 d 2

h 2

3d

closer to airport

d 4 d 5h 3

    : issyT     : kempinskiT
1 2

k 1

k 2    : ibis bastei     

GUEST HOUSE: kempinski

STANDARD: bastei     
1 2

1

2

T

Fig. 5. Examples for graphs

The �rst step towards a synta
ti
al implementation of 
on
ept graphs was the

de�nition of an alphabet A := (G; C;R) 
onsisting of a set G of obje
t names,

an ordered set C of 
on
ept names and a family R of ordered sets of relation

names. In Figure 3 a sample for su
h an alphabet is given. Synta
ti
al 
on
ept

graphs over an alphabet were then introdu
ed as mathemati
al stru
tures of the

form G := (V;E; �; �; �), 
onsisting of a relational graph, a fun
tion � assigning


on
ept names to verti
es and relation names to edges, and a fun
tion � whi
h

assigns non-empty sets of obje
t names to the verti
es (as referen
es). Figure 5.1

shows an example for a synta
ti
al 
on
ept graph over the alphabet depi
ted in

Figure 3.

For the semanti
s, the names of the alphabet are interpreted in a given power


ontext family

�!

K := (K

0

;K

1

; : : : ) via a so 
alled interpretation �: This inter-



pretation spe
i�es how the synta
ti
al elements of the alphabet are related to

elements of

�!

K : obje
t names are mapped to obje
ts of K

0

, 
on
ept names to


on
epts of K

0

and relation names to elements of B(K

k

). Moreover, the or-

ders spe
i�ed in the alphabet are preserved. The resulting stru
tures (

�!

K ; �)

are 
alled 
ontext-interpretations. As an example 
onsider the power 
ontext

family (K

0

;K

2

) 
onsisting of the 
ontexts in Figure 1 and Figure 4. An inter-

pretation of the alphabet shown in Figure 3 may be de�ned as follows: the

obje
t names ex
ept for `bastei' are mapped to the obje
ts with the same name,

`bastei' is mapped to the the obje
t `Ibis Bastei'. Ea
h 
on
ept name is in-

terpreted as the attribute 
on
ept generated (negle
ting 
apitalization) by the

same name. For instan
e, the name `STANDARD' is mapped to �(standard).

The relation name `
loser to airport' is interpreted as the attribute 
on
ept

�(
loser to Dresden Airport), and `
loser to train station' as �(
loser to a train

station). Now we say that a 
on
ept graph is valid in a 
ontext-interpretation

(

�!

K ; �) (and 
all (

�!

K ; �) a model for the graph) if the so 
alled vertex- and edge


ondition for the verti
es respe
tively edges are both satis�ed. The vertex 
on-

dition for a vertex v is ful�lled if the interpreted obje
t names of v belong to

the extent of the interpreted 
on
ept name of that vertex. Similarly, the edge


ondition for an edge e holds if the obje
ts along e are in the relation 
on
ept

assigned to that edge. It is easy to see that the 
on
ept graph in Figure 5.1 is

valid in ((K

0

;K

2

); �).

The de�nition of 
on
ept graphs yields their satis�ability as well as de
id-

ability: For ea
h two graphs over the same alphabet one 
an de
ide whether one

entails the other or not. Moreover, Prediger dis
ussed several extensions of sim-

ple 
on
ept graphs. She in
luded generi
 markers and nestings into the theory

(see [Pr98b℄, [Pr00℄; for the semanti
 approa
h see [Wi98℄). With respe
t to 
on-


lusion logi
 a sound and 
omplete 
al
ulus for non-existential 
on
ept graphs

and ea
h of the extensions was provided. Moreover, for ea
h 
on
ept graph a

standard model was de�ned whi
h 
odes exa
tly the same information as the

graph, and, vi
e versa, the so 
alled standard graph of a power 
ontext family

was introdu
ed.

3.2 Semi
on
ept Graphs

Semi
on
ept graphs were proposed in [Wi01℄. They extend the theory of 
on
ept

graphs by in
luding negation on the level of 
on
epts and relations. Again, the

graphs were de�ned as semanti
al stru
tures. Similarly to Prediger's approa
h,

in [Kl01a℄ a stri
t separation in syntax and semanti
s was introdu
ed. First the

notion of an alphabet A := (G;S;R) is provided, whi
h extends the de�nition

of alphabets from the previous se
tion by repla
ing the set C of 
on
ept names

by a set S of semi
on
ept names. Setting S := C, the alphabet in Figure 3 may

serve as an example for an alphabet for semi
on
ept graphs as well. Then a

synta
ti
al semi
on
ept graph is de�ned in a

ordan
e to 
on
ept graphs as a

tuple (V;E; �; �; �) su
h that (V;E; �) is a relational graph and � maps semi-


on
ept names and relation names to the verti
es and edges, respe
tively. Now

� maps to ea
h vertex two sets of obje
t names, namely one set of positive and



one set of negative referen
es. There are four 
onditions for �, ensuring that

for both verti
es and edges there is at least one referen
e and that the graph

is not self-
ontradi
tory. Hen
e, in 
omparison with 
on
ept graphs the main

di�eren
e lies in the de�nition of �. This is resembled by the rule of how these

graphs are read: The semi
on
ept graph in Figure 5.2 represents that `bastei' is

STANDARD and `issy' is not, `pension rei
he' is `GUEST HOUSE' while both

`kempinski' and `hilton' are not, and `bastei' is `
loser to airport' than `pension

rei
he' while `issy' is not `
loser to airport' than both `kempinski' and `hilton'.

For the semanti
s, the alphabet is interpreted in a power 
ontext family

�!

K

by an interpretation �. As before, obje
t names are mapped to obje
ts of K

0

,

however, semi
on
ept names are interpreted as u-semi
on
epts of K

0

instead

of 
on
epts. Moreover, k-ary relation names are interpreted as u-semi
on
epts

of K

k

. Sin
e ea
h 
on
ept is a u-semi
on
ept, the interpretation de�ned in the

previous se
tion may serve as an example for semi
on
ept graphs as well. For

de�ning the validity of a semi
on
ept graph in a 
ontext-interpretation (

�!

K ; �),

we have to modify the vertex and the edge 
ondition in order to 
apture the

negation. Therefore, instead of just 
he
king if the interpreted positive refer-

en
es of a vertex are in the interpreted semi
on
ept name, we additionally 
he
k

whether the obje
ts assigned to the negative referen
es are in the negation of

that semi
on
ept. Similarly, the edge 
ondition 
onsists of a positive and a neg-

ative part. We may now 
he
k if the sample graph in Figure 5.2 is valid in

((K

0

;K

2

); �): It is easy to see that the positive vertex- and edge 
ondition are

satis�ed. The negative 
onditions are satis�ed as well. Consider for instan
e the

vertex b

1

: We have to 
he
k that the image of the obje
t name `issy' (thus the

obje
t ISSY) is in the extension of the semi
on
ept :�(Standard), whi
h is equal

to fPension Rei
he, ISSYg.

The de�nition of semi
on
ept graphs yields their satis�ability. Furthermore,

it was shown via so 
alled standard power 
ontext families that de
idability is

guaranteed. As an extension, variables were introdu
ed as referents, yielding ex-

istential quanti�
ation (
f. [Kl01b℄,[Kl02℄). Again, satis�ability and de
idability

were shown. Finally, for ea
h power 
ontext family the graph representing the

same information was provided.

3.3 Proto
on
ept Graphs

The goal was to develop a theory of 
on
ept graphs with negation 
omprising


on
ept graphs, semi
on
ept graphs and suitable synta
ti
al elements of 
on-


ept graphs with 
uts in su
h a way that our understanding of judgments as

valid propositions remains supported. As semanti
al stru
tures, proto
on
epts

graphs were introdu
ed in [Wi02℄. Based on this, the separation of syntax from

semanti
s was des
ribed: Similar to the previous two approa
hes, �rst an alpha-

bet A := (G;P ;R) is de�ned. This time, however, the set P of proto
on
ept

names 
ontains a well-distinguished smallest element ? and a greatest element

>. Moreover, R in
ludes a spe
ial binary relation name =. Therefore, the al-

phabet in Figure 3 has to be modi�ed in order to obtain a suitable example:

We take A

0

:= (G;P ;R

0

) with P := C [ f?;>g and R

0

:= R [ f=g. Moreover,



the orders on C and R are extended to orders on P and R

0

in a natural way.

Synta
ti
al proto
on
ept graphs are de�ned essentially in the same way as semi-


on
ept graphs, though the use of the relation name = gives rise to di�erent

and more 
omplex 
onditions for � in order to ensure satis�ability. Figure 5.3

shows a synta
ti
al proto
on
ept graph, whi
h 
an be read in the same way

as the graph in 5.2. In addition, it states that `bastei' is equal to `ibis bastei'.

The semanti
s follows the same prin
iples as in the previous se
tions. First an

interpretation � maps obje
t names to obje
ts, proto
on
ept names to proto-


on
epts of K

0

and relation names to proto
on
epts of 
ontexts K

k

. Moreover,

the spe
ial synta
ti
al elements of the alphabet have to be respe
ted by the

interpretation: ? and > are mapped to the smallest and the greatest element

of P(K

0

), respe
tively, and the relation name = is mapped to a proto
on
ept

whose extension is f(g; g) j g 2 G

0

g. Then validity of a proto
on
ept graph is


he
ked in the same way as for semi
on
ept graphs. Again, the graph depi
ted

in 5.3 is a proto
on
ept graph of ((K

0

;K

2

); �).

Via so 
alled standard power 
ontext families, satis�ability and de
idabil-

ity were shown. Moreover, a sound and 
omplete 
al
ulus was introdu
ed. Up

till now, no synta
ti
al extensions for proto
on
ept graphs have been studied.

However, in [Wi02℄ (semanti
al) existential proto
on
ept graphs were de�ned as

proto
on
ept graphs of free X-extensions of power 
ontext families (where X is

a set of variables).

3.4 Con
ept Graphs with Cuts

Con
ept graphs with 
uts were introdu
ed in [Da02℄ with the goal to obtain a

logi
 system of 
on
ept graphs whose expressiveness mat
hes �rst order predi
ate

logi
. This requires negation to be treated as a logi
al operator on the level of

propositions, whi
h was done by adopting so 
alled 
uts from Peir
e's theory of

existential graphs. After introdu
ing non-existential 
on
ept graphs with 
uts,

Dau extended the theory by in
luding existential quanti�ers and was then able

to show the desired equivalen
e (see [Da01℄,[Da02℄).

In a similar way as for 
on
ept graphs, an alphabet is de�ned as a triple

A := (G; C;R) su
h that there is a spe
ial 
on
ept name > whi
h is the greatest

element of C and a well-distinguished relation name = of arity 2. Hen
e, the

alphabet in Figure 3, modi�ed by in
luding > in C, the binary relation name

= in R, and extending the orders on the sets of 
on
ept and of relation names

a

ordingly, yields an example of an alphabet for 
on
ept graphs with 
uts.

Next, a relational graph with 
uts is de�ned as a tuple (V;E; �;>;Cut; area)

where (V;E; �) is a relational graph, > is a single element 
alled the sheet of

assertion (whi
h, thinking diagrammati
ally, 
an be understood as the sheet on

whi
h the graph is drawn), Cut is the set of 
uts and area is a map whi
h de�nes

for ea
h 
ut 
 the elements of the graph (thus the verti
es, edges and other 
uts)

whi
h are `within' 
. When pi
turing a 
on
ept graph, the 
uts of the 
on
ept

graph are usually drawn as bold ovals. Hen
e, if we 
onsider the graph depi
ted

in Figure 5.4 as an example, we have Cut:= fk

1

; k

2

g, area(k

1

) = fh

3

g and

area(k

2

) = fd

6

g. Relational graphs with 
uts satisfy several 
onditions, whi
h




an be reread in [Da02℄. Most importantly, 
uts do not interse
t. A synta
ti
al


on
ept graph with 
uts is then de�ned as a relational graph with 
uts equipped

with two fun
tions � and �. Again, the fun
tion � maps 
on
ept names to the

verti
es and relation names to the edges, however, � does not map sets of obje
t

names to the verti
es but single elements of G. As already mentioned, Figure 5.4

depi
ts a sample graph. The subgraphs not 
ontaining 
uts are read in the same

way as 
on
ept graphs. However, ea
h 
ut negates everything within it, so the

bottommost graph is read: `kempinski' and `issy' are `>' and `kempinski' is not

`
loser to airport' than `issy'.

For the semanti
s, interpretations of alphabets in power 
ontext families are

de�ned in the same way as in Se
tion 3.1, ex
ept for the spe
ial elements >

and =. Similar to the approa
h in 3.3, � maps > to the greatest element of

B(K

0

) and = is mapped to a 
on
ept whose extension is f(g; g) j g 2 G

0

g. Next,

validity is de�ned: In 
ontrast to the graphs dis
ussed in the previous se
tions,

a 
on
ept graph (V;E; �;>;Cut; area; �; �) is evaluated indu
tively in a 
ontext-

interpretation. The indu
tion is 
arried out on the tree Cut [ f>g. The main

idea of this approa
h, whi
h is 
losely related to the endoporeuti
 method of

Peir
e, is that in order for everything en
losed by a 
ut to be valid in a power


ontext family, all 
uts dire
tly en
losed by it are not allowed to be valid (this is


alled the 
ut 
ondition). Therefore, for ea
h 
ut, the vertex, the edge and the


ut 
ondition are 
he
ked. If the sheet of assertion is valid, then the graph is,

too. It is easy to 
he
k that the graph of Figure 5.4 is indeed valid in (K

0

;K

2

).

A sound and 
omplete 
al
ulus based on Peir
e's work was de�ned for 
on
ept

graphs with 
uts both with and without generi
 markers. Moreover, in [Da01℄,

translations of existential 
on
ept graphs with 
uts to �rst order predi
ate logi


and vi
e versa were given, yielding the equivalen
e of these two logi
 systems

(see also [Da02℄). Obviously, this implies that we have neither satis�ability nor

de
idability.

3.5 Dis
ussion

First we note that the theories presented in the Se
tions 3.1 to 3.3 are indeed

su

essively extending ea
h other

1

:

Ea
h non-existential 
on
ept graph G = (V;E; �; �; �) over the alphabet

A = (G; C;R) 
an be understood as a semi
on
ept graph G = (V;E; �; �; �

0

)

with �

0

(v) = (�(v); ;) over the alphabet A

0

= (G;S;R) with S := C. Every in-

terpretation of A yields an interpretation of A

0

simply by extending the ranges

of the interpretation mapping � for C and R from the 
on
ept latti
es to the

semi
on
ept algebras of the 
orresponding 
ontexts. This interpretation of A

0

is

denoted by �

0

. Thus, whenever G is valid in a 
ontext-interpretation (

�!

K ; �), the

graph G

0

is valid in (

�!

K ; �

0

).

1

We say that a theory is extended by another one if ea
h graph of the �rst theory 
an

be translated to a graph of the extension, su
h that the new graph represents the

same relationships, and whenever the �rst graph is valid in a 
ontext-interpretation

(

�!

K ; �), the graph in the extension is valid in (

�!

K ; �

0

) (where �

0

is derived from � in

a natural way).



Similarly, we obtain that ea
h non-existential semi
on
ept graph G over an

alphabet A = (G;S;R) 
orresponds to a proto
on
ept graph: We set A

0

:=

(G;P ;R

0

) with P := S [ f>;?g and R

0

:= R [ f=g, G

0

:= G and extend

the ranges of the interpretation fun
tions a

ordingly while mapping the new

synta
ti
al elements to the 
orresponding proto
on
epts.

The theory of 
on
ept graphs with 
uts, however, does not generalize the

theory of proto
on
ept graphs: Synta
ti
ally, for a given proto
on
ept graph we


an 
onstru
t a 
on
ept graph with 
uts expressing the same information. In

general, it will have more verti
es and edges, be
ause Dau's theory allows only

single obje
ts names as referen
e, whereas sets of obje
t names are assigned to

verti
es of proto
on
ept graphs. Semanti
ally, however, the fa
t that 
ontext-

interpretations for proto
on
ept graphs map proto
on
ept names to proto
on-


epts and interpretations for 
on
ept graphs with 
uts assign 
on
epts to the


orresponding elements of the alphabet poses a problem. Consider for instan
e

the proto
on
ept graph [P : g j h℄ and a 
ontext K

0

:= (G;M; I) with fg; hg � G

and g

I

= h

I

. We now de�ne the interpretation � su
h that P is mapped to the

proto
on
ept (g; g

I

), and both g and h are mapped to the obje
t with the same

name. Then the proto
on
ept graph is valid in (K

0

; �). However, every 
on
ept

whose extension in
ludes g automati
ally 
ontains h as well. Hen
e, there 
annot

be a 
ontext-interpretation for a 
on
ept graph with 
uts whi
h expresses the

same as the graph above. Thus, though the proto
on
ept graph is a graph of

(K

0

; �), the 
orresponding 
on
ept graph with 
uts would not be.

Sin
e the existential quanti�ers are formalized di�erently in these approa
hes

(either by introdu
ing the generi
 marker � or by allowing variables as refer-

en
es), this dis
ussion was restri
ted to non-existential graphs.

4 Work in Progress

Presently, methods for the diagrammati
 representation of semi
on
ept algebras

are developed and the algebrai
 theory of double Boolean algebras is investi-

gated further. Moreover, there are several extensions for 
on
ept graphs whi
h

are 
urrently worked on. In [DH03a℄ and [DH03b℄, Dau and Hereth Correia dis-


uss nested 
on
ept graphs with 
uts as query graphs. These graphs 
an serve

as queries for relational databases and have the whole expressiveness of SQL,

in
luding set-fun
tions like AVG and COUNT. Moreover, proto
on
ept graphs are

about to be extended by introdu
ing variables as referents in order to obtain

existential quanti�
ation. The next step would then be to introdu
e nestings.

Finally, in [SW03℄, a semanti
 approa
h for 
on
ept graphs with subdivision

(generalizing nested 
on
ept graphs) is introdu
ed.
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