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Abstrat. Let V be a vetor spae over a �eld K of harateristi zero and V

�

be a spae of

linear funtionals on V whih separate the points of V . We onsider V
V

�

as a Lie algebra of �nite

rank operators on V , and set gl(V;V

�

):=V
V

�

. We de�ne a Cartan subalgebra of gl(V;V

�

) as the

entralizer of a maximal subalgebra every element of whih is semisimple, and then give the following

desription of all Cartan subalgebras of gl(V;V

�

) under the assumption that K is algebraially losed.

A subalgebra of gl(V;V

�

) is a Cartan subalgebra if and only if it equals �

j

(V

j


(V

j

)

�

)�(V

0


V

0

�

) for

some one-dimensional subspaes V

j

�V and (V

j

)

�

�V

�

with (V

i

)

�

(V

j

)=Æ

ij

K and suh that the spaes

V

0

�

=\

j

(V

j

)

?

�V

�

and V

0

=\

j

((V

j

)

�

)

?

�V satisfy V

0

�

(V

0

)=f0g . We then disuss expliit onstru-

tions of subspaes V

j

and (V

j

)

�

as above. Our seond main result laims that a Cartan subalgebra

of gl(V;V

�

) an be desribed alternatively as a loally nilpotent self-normalizing subalgebra whose

adjoint representation is loally �nite, or as a subalgebra h whih oinides with the maximal loally

nilpotent h -submodule of gl(V;V

�

) , and suh that the adjoint representation of h is loally �nite.

AMS Subjet Classi�ation 2000: Primary 17B65, Seondary 17B20.

Introdution

It is an interesting question whih lass of subalgebras of an in�nite-dimensional Lie algebra, over

a �eld K of harateristi zero, play a role similar to Cartan subalgebras of a �nite-dimensional

Lie algebra. Despite the fat that in�nite-dimensional Lie algebras have been studied extensively

in the last 30 years, there is no de�nitive answer to this question. The best understood ases are

those of Ka{Moody algebras and extended aÆne Lie algebras (see [BP95℄, [PK83℄, [AABGP97℄

and the referenes therein), whose spei� is that their Cartan subalgebras are �nite-dimensional.

The simplest example of an in�nite-dimensional Lie algebra whose Cartan subalgebras are no

longer �nite-dimensional, is the Lie algebra gl

1

of in�nite matries with �nitely many non-zero

entries in K , and in the literature there is no systemati investigation of all Cartan subalgebras

of gl

1

. The purpose of the present paper is to �ll in this gap for gl

1

and to the larger lass of

Lie algebras gl(V; V

�

) de�ned below.

The following three de�nitions of a Cartan subalgebra h of a �nite-dimensional Lie algebra

g are equivalent:

(C1) h is a loally nilpotent self-normalizing subalgebra;

(C2) h oinides with the maximal loally nilpotent h-submodule of g , i.e., h = g

0

(h), where

g

0

(h) = fx 2 g: (9n 2 N) (ad h)

n

(x) = f0gg;

(C3) h is a loally nilpotent subalgebra whih oinides with the set of all elements x 2 g for

whih adx ommutes with the abelian subalgebra (ad h)

s

onsisting of all semisimple parts

(adh)

s

in the Jordan deomposition adh = (adh)

s

+ (adh)

n

of adh for elements h 2 h

((ad h)

n

stands for the nilpotent part).
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Sine g is assumed �nite-dimensional, \loally nilpotent" in the onditions (C1)-(C3) is of

ourse equivalent to \nilpotent", but we have stated (C1)-(C3) in a form suitable also for the

more general lass of loally �nite Lie algebras we onsider in this paper. The fat that (C1) is

equivalent to (C2) is well-known ([Bou90, Ch. VII℄). The equivalene of (C2) and (C3) follows

from the equalities

g

0

(h) =

\

h2h

g

0

(adh) =

\

h2h

ker(adh)

s

= z

g

((ad h)

s

):

If g is redutive over an algebraially losed �eld, every Cartan subalgebra h is maximal

toral, i.e., for every 0 6= h 2 h , adh is diagonalizable, and h is maximal with this property. This

is the key to one of the most important properties of a Cartan subalgebra h of a redutive Lie

algebra g : that (after a possible �eld extension) h yields a root deomposition of g .

Let V be a �xed (arbitrary) vetor spae over K and V

�

be its dual spae. In what

follows we set g = gl(V; V

�

) := V 
 V

�

, onsidered as a Lie algebra of �nite rank operators

on V , where V

�

� V

�

is a subspae separating the points of V . If J is a set, we write K

(J)

for the vetor spae with a �xed basis (e

j

)

j2J

labeled by the elements of J . The standard

pairing K

(J)

� K

(J)

! K indues an injetion K

(J)

,! (K

(J)

)

�

�

=

K

J

, and for V = V

�

= K

(J)

,

g = gl(J;K ) := gl(V; V

�

) is the Lie algebra of J�J -matries with �nitely many non-zero entries.

We set also gl

1

:= gl(N;K ) .

All Cartan subalgebras yielding a root deomposition of gl

1

, i.e., the so alled splitting

Cartan subalgebras, are well understood, see [NS01℄, [St01℄ and [PS03℄. It is also known that there

are maximal toral subalgebras of gl

1

whih do not yield a root deomposition, and therefore also

no generalized root deomposition ([PS03℄). In partiular, even if K is algebraially losed, none

of the onditions (C1)-(C3) implies the existene of a generalized root deomposition related to

h . In this paper we put the ondition (C3) in the spotlight, as it relates h in a most transparent

way with the abelian subalgebra h

s

, onsisting of the semisimple parts of all h 2 h , and in this

way arries the most resemblane with the �nite-dimensional ase. More preisely, we de�ne a

Cartan subalgebra of gl(V; V

�

) as a subalgebra satisfying (C3).

Our main result is a desription, in terms of linear algebra, of all Cartan subalgebras of

g = gl(V; V

�

) for whih h

s

is toral. (The latter ondition is automati if K algebraially losed.)

In partiular we prove that all Cartan subalgebras are abelian. As a orollary we obtain that

there are at most three types of Cartan subalgebras for whih h

s

is toral: the ones for whih the

inlusion h

s

� h is proper, the toral ones, i.e. those for whih h = h

s

, and �nally, the splitting

ones for whih h = h

s

and g has a root deomposition with respet to h . We onsider examples

of pairs V , V

�

for whih not all types of Cartan subalgebras our, and we show that all three

types do our for gl(J;K ).

As eah Cartan subalgebra of gl(V; V

�

) is abelian, its adjoint module is trivial and in

partiular loally �nite. It is not lear if this latter property holds for any subalgebra of gl(V; V

�

)

(in partiular of gl

1

) whih satis�es (C1) or (C2). However, our seond main result laims that

if one strengthens (C1) and (C2) by the very natural additional requirement that the adjoint

module of h be loally �nite, then the so obtained new onditions (C1') and (C2') are equivalent

to (C3) for subalgebras of g = gl(V; V

�

).

Aknowledgments. We thank Helmut Strade for sharing an inspiring idea about desrib-

ing the toral Cartan subalgebras of gl

1

. We thank also Ivan Dimitrov and Gregg Zukerman

for the permission to present in the Appendix a proposition they reently proved.

I. Preliminaries and notation

All vetor spaes (and Lie algebras) are de�ned over K and K stands for the algebrai losure

of K . The supersript � denotes dual spae. The vetor spaes V and V

�

are �xed as above,

and the sign ? always refers to the pairing V � V

�

! K . If k is a Lie algebra, U(k) stands for

the enveloping algebra of k . In this paper N := f1; 2; 3; :::g .
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We all a Lie algebra k loally �nite (resp., loally nilpotent) if every �nite subset of k is

ontained in a �nite-dimensional (resp., nilpotent) subalgebra. We all an k-module M loally

�nite if eah element m 2 M is ontained in a �nite-dimensional submodule, and we all M

loally nilpotent if for any m 2M there exists an i 2 N with k

i

�m = f0g . Furthermore, we say

that an k-module is a generalized weight k-module if M =

L

�2k

�

M

�

(k), where

M

�

(k) := fm 2M : (9i 2 N)(8x 2 k) (x� �(x)1)

i

�m = 0g:

We de�ne M to be a weight module, if, in addition,

M

�

(k) =M

�

(k) := fm 2M : (8x 2 k) x �m = �(x)mg

for eah � 2 k

�

. The support in k

�

of a module M is the set

suppM := f� 2 k

�

:M

�

(k) 6= f0gg:

If k is any Lie algebra and h � k is a loally nilpotent Lie subalgebra, we say that k

admits a generalized h-root deomposition (resp., an h-root deomposition) if k is a generalized

h-weight module (resp., an h-weight module) with respet to the adjoint ation, and, in addition,

h oinides with the maximal loally nilpotent h-submodule of k , i.e., h = k

0

(h).

In this paper we denote by g a �xed Lie algebra of the form gl(V; V

�

), where V

�

� V

�

is

a subspae separating the points of V . Typial examples of this situation are as follows.

(a) V

�

= V

�

. Then gl(V; V

�

) is the Lie algebra of �nite rank operators on V .

(b) V = K

(J)

= V

�

for a set J . Then gl(V; V

�

)

�

=

gl(J;K ) .

() V is a loally onvex real or omplex vetor spae and V

�

is the spae of ontinuous linear

funtionals. As a onsequene of the Hahn-Banah Extension Theorem, V

�

separates the

points of V . Here gl(V; V

�

) is the Lie algebra of ontinuous �nite rank operators on V .

In general, the struture of the Lie algebra gl(V; V

�

) depends essentially on the hoie of

the subspae V

�

. As the following proposition shows, this is not the ase when V and V

�

are of

ountable dimension.

Proposition I.1. If V and V

�

are of ountable dimension, then gl(V; V

�

)

�

=

gl

1

.

Proof. We have to �nd a basis (f

n

)

n2N

of V for whih the dual basis (f

�

n

)

n2N

� V

�

spans

V

�

.

Fix a basis (e

n

)

n2N

of V and a basis ('

n

)

n2N

of V

�

. We �rst hange the enumeration

of the basis ('

n

)

n2N

by a permution �:N ! N aording to the following rule. Put V

n

:=

spanfe

1

; : : : ; e

n

g for n 2 N , and let �

1

be the minimal number j with '

j

(e

1

) 6= 0. Indutively

we proeed as follows. If �

1

; : : : ; �

k

are hosen suh that the restritions of '

�

1

; : : : ; '

�

k

to V

k

are

linearly independent, then we hoose �

k+1

as the minimal element in N n f�

1

; : : : ; �

k

g for whih

the restrition of '

�

k+1

to V

k+1

is linearly independent from the restritions of '

�

1

; : : : ; '

�

k

. As

the sequene ('

n

)

n2N

separates the points of V , the above proedure never stops and de�nes an

injetion �:N ! N . To see that � is surjetive, hene a permutation, we argue by ontradition.

Assume that � is not surjetive and pik the minimal element m 2 N n �(N) . Suppose that

f1; : : : ;m� 1g � f�

1

; : : : ; �

k

g . Then there exist �

1

; : : : ; �

k

suh that the linear funtional

'

0

m

:= '

m

�

k

X

j=1

�

j

'

�

j

vanishes on e

1

; : : : ; e

k

. From the linear independene of the sequene ('

n

)

n2N

we infer that '

0

m

is non-zero, so that there exists a minimal N 2 N with '

m

(e

N

) 6= 0. Then the restritions of

'

�

1

; : : : ; '

�

N�1

; '

0

m

to V

N

are linearly independent, hene the restritions of '

�

1

; : : : ; '

�

N�1

; '

m

to V

N

are linearly independent. Thus �

N

= m , in ontradition with the hoie of m . This

proves that � is a permutation, and hene that the funtionals '

�

k

form a basis of V

�

.

Let (V

�

)

n

:= spanf'

�

1

; : : : ; '

�

n

g . Then (V

�

)

n

j

V

n

= V

�

n

, and we an hoose indutively a

basis (f

n

)

n2N

for whih V

n

= spanff

1

; : : : ; f

n

g for n 2 N , and '

�

j

(f

i

) = Æ

ij

for i � j . In the

next step we alterate the basis ('

�

n

)

n2N

of V

�

to a basis (�

n

)

n2N

with (V

�

)

n

= spanf�

1

; : : : ; �

n

g

and �

j

(f

i

) = Æ

ij

for all i; j 2 N , i.e., (�

n

)

n2N

is the dual basis to (f

n

)

n2N

. This proves that the

pair V; V

�

is equivalent to the pair K

(N)

;K

(N)

with the standard pairing.
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The next proposition shows that the requirement dimV = dimV

�

does not always lead to

a pairing equivalent to the standard pairing K

(J)

� K

(J)

! K for some J .

Proposition I.2. Let K = R; C , and V be an in�nite-dimensional Hilbert spae and V

�

be

the spae of ontinuous linear funtionals on V . Then there is no (vetor spae) basis of V suh

that the dual basis belongs to V

�

.

Proof. We argue by ontradition and assume that (f

j

)

j2J

is a (vetor spae) basis of V for

whih the dual basis belongs to V

�

. Let (e

s

)

s2S

be an orthonormal Hilbert basis of V . Eah

e

s

is a �nite linear ombination e

s

=

P

j2J

a

js

f

j

. Let S

0

� S be an in�nite ountable subset.

Then the set J

0

:= fj 2 J : (9s 2 S

0

)a

js

6= 0g is also ountable. Furthermore,

H :=

\

j2JnJ

0

ker f

�

j

is a losed subspae of V with (f

j

)

j2J

0

as a (vetor spae) basis. On the other hand, Baire's

Category Theorem implies that H is not the union of an asending hain of �nite-dimensional

subspaes, hene not of ountable dimension. Contradition.

Any element x 2 g = gl(V; V

�

) is a �nite rank operator on V , hene has a Jordan

deomposition x = x

s

+ x

n

into a semisimple part x

s

and a nilpotent part x

n

. As g is loally

�nite, the operator adx is loally �nite for any x 2 g , and has a Jordan deomposition adx =

(adx)

s

+ (adx)

n

. As adx

s

is semisimple and adx

n

is nilpotent, both Jordan deompositions

are ompatible, i.e., (adx)

s

= adx

s

, (adx)

n

= adx

n

.

We all a subalgebra t of a Lie algebra k toral if for every element x 2 t the operator

adx : k ! k is diagonalizable. In partiular, every non-zero element of a toral subalgebra of

gl(V; V

�

) is semisimple (and if K is algebraially losed, a subalgebra is toral if and only if all its

nonzero elements are diagonalizable).

Lemma I.3. Every toral subalgebra of a Lie algebra is abelian.

Proof. Let x; y 2 t . Sine adx j

t

is diagonalizable, we an write y as y =

P

�

y

�

with

[x; y

�

℄ = �y

�

for � 2 K . Then, for any � , (ad y

�

)

2

(x) = 0, and as ad y

�

is also diagonalizable,

[y

�

; x℄ = (ad y

�

)(x) = 0. Therefore [y; x℄ =

P

�

[y

�

; x℄ = 0.

For any subalgebra a � g , we denote by z

g

(a) the entralizer of a in g , by z(a) - the enter

of a , and by n

g

(a) - the normalizer of a in g .

Lemma I.4. Let h � g = gl(V; V

�

) be a loally nilpotent subalgebra, and h

s

= fh

s

:h 2 hg be

the set of semisimple Jordan omponents of elements of h . Then the following assertions hold:

(1) h

s

is an abelian Lie algebra;

(2) z

g

(h

s

) is a self-normalizing subalgebra of g ;

(3) h � n

g

(h) � z

g

(h

s

) .

Proof. (1) For eah �nite-dimensional nilpotent Lie algebra k the set (ad k)

s

ommutes with

ad k , whih implies [h

s

; h℄ � z(h). Hene (ad h

s

)

2

(h) = f0g , and the semisimpliity of the

elements of h

s

leads to [h

s

; h℄ = f0g . Therefore, for x; y 2 h , we have [y

s

; x℄ = [y

s

; x

s

℄ = 0. This

implies that x

s

+y

s

is semisimple and [x

s

+y

s

; x

n

+y

n

℄ = 0. From the �nite-dimensional ase we

derive that x

n

+ y

n

is nilpotent, thus x+ y = (x

s

+ y

s

) + (x

n

+ y

n

) is the Jordan deomposition

of x+ y . Therefore h

s

is a subspae, hene, in view of the equality [y

s

; x

s

℄ = 0, an abelian Lie

algebra.

(2) If x 2 g , y 2 h

s

and [x; y℄ 6= 0 then the semisimpliity of y implies [[x; y℄; y℄ 6= 0.

Therefore [x; y℄ 2 z

g

(h

s

) leads to [x; y℄ = 0, i.e. to x 2 z

g

(h

s

).

(3) The inlusion h � n

g

(h) is tautologial, so we only need to establish the inlusion

n

g

(h) � z

g

(h

s

). Note that the argument in the proof of (1) implies h � z

g

(h

s

). Furtermore,

by de�nition we have the relation [h; x℄ 2 h for eah x 2 n

g

(h). Sine the semisimple part

(adh)

s

= adh

s

of adh an be obtained by applying a polynomial without onstant term to

adh , we also obtain (adh

s

)(x) 2 h , so the inlusion h � z

g

(h

s

) leads to (adh

s

)

2

(x) = 0. As

adh

s

is semisimple, we obtain [h

s

; x℄ = 0, i.e. n

g

(h) � z

g

(h

s

).
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II. Maximal toral subalgebras

Lemma II.1. An element x 2 g is ad-diagonalizable if and only if x is diagonalizable as an

operator on V .

Proof. Clearly, one an deompose V and V

�

as V = U �W , V

�

= X � Y , where U and

X are �nite-dimensional x-invariant subspaes suh that X ' U

�

, and x �W = 0, x � Y = 0.

Therefore we an assume that x 2 gl(U;X) ' U 
 U

�

.

If x is diagonalizable as an operator on V , then adx is diagonalizable with eigenvalues

�

i

� �

j

, where �

i

are the eigenvalues of x .

Assume now that adx is diagonalizable and observe that this implies that adx j

gl(U;X)

is

diagonlizable. This implies that x is semisimple. Let �

1

; : : : ; �

n

denote the eigenvalues of x

in K . Then �

i

� �

j

are the eigenvalues of adx , and �

i

� �

j

2 K . We may therefore write

�

i

= �+ �

i

with �

i

2 K . As the set of all �

i

is invariant under the Galois group Aut

K

(K ), the

aÆne spae generated by all �

i

ontains a �xed point, i.e., an element of K . On the other hand,

this aÆne spae is ontained in � + K , whih gives � 2 K . Therefore �

1

; : : : ; �

n

2 K , i.e., x is

diagonalizable on U , and therefore on V .

In this setion we onsider a �xed toral subalgebra t � g = gl(V; V

�

). We write V

0

(resp.,

V

0

�

, g

0

) for the maximal loally �nite t-submodule of V (resp., V

�

, g). Sine eah element

x 2 t is diagonalizable (Lemma II.1), the ation of t on the loally �nite modules V

0

and V

0

�

is

simultaneously diagonalizable, i.e., V

0

and V

0

�

are weight t-modules. Let

V

0

=

M

�2suppV

V

�

and V

0

�

=

M

�2suppV

�

V

�

�

be the orresponding weight deompositions.

Lemma II.2.

(1) t � V � V

0

and t � V

�

� V

0

�

.

(2) g

0

= V

0


 V

0

�

.

(3) g

0

= V

0


 V

0

�

is an assoiative subalgebra of g = V 
 V

�

and a weight t-module with respet

to the adjoint ation. w

Proof. (1) For x 2 t , x � V is a �nite-dimensional subspae of V whih is y -invariant for

every y 2 t as t is abelian. Hene x � V � V

0

. Similarly x � V

�

� V

0

�

.

(2) is a diret onsequene of Proposition A in the Appendix.

(3) V

0


V

0

�

is obviously an assoiative subalgebra of V 
V

�

. Furthermore, V

0


V

0

�

is the tensor

produt of the weight t-modules V

0

and V

0

�

, and is thus itself a weight t-module.

In view of Lemma II.2(3), the weight deompositions of V

0

and V

0

�

yield the root deom-

position

g

0

=

M

�;�

V

�


 V

�

�

= z

g

(t)� (

M

 6=0

g



); where g



=

M

�+�=

V

�


 V

�

�

:

Furthermore, z

g

(t) � g

0

implies

t � z

g

(t) = g

0

=

M

�2(suppV )\(� suppV

�

)

V

�


 V

��

�

:

In the sequel we are mainly interested in the entralizers of maximal toral subalgebras. We

start by a desription of maximal toral subalgebras in terms of their ation on V and V

�

.
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Proposition II.3. The subalgebra t is maximal toral if and only if the following onditions

are satis�ed:

(M1) (suppV ) n f0g = �(suppV

�

) n f0g and dimV

�

= dimV

��

�

= 1 for any � 2 suppV n f0g ;

(M2) V

0

�

(V

0

) = f0g and (V

0


 V

0

�

) \ t = f0g ;

(M3) t =

L

0 6=�2suppV

V

�


 V

��

�

;

(M4) V

0

�

=

T

0 6=�2suppV

(V

�

)

?

and V

0

=

T

0 6=�2suppV

�

(V

�

�

)

?

.

If these onditions are satis�ed, then

z

g

(t) = t� (V

0


 V

0

�

):

Proof. Assume �rst that t is maximal toral.

(M1) From t �

L

�2(suppV )\(� suppV

�

)

V

�


 V

��

�

, V

�

�

(V

�

) = f0g for � 6= �� , and t � V

�

6= f0g

for � 6= 0, it follows that V

��

�

(V

�

) 6= f0g . Pik v 2 V

�

and ' 2 V

��

�

with '(v) = 1. Then

v 
 ' 2 z

g

(t) is diagonalizable, hene ontained in t by maximality. Therefore

f0g = [v 
 '; V

�


 V

��

�

℄:

This implies in partiular

f0g = [v 
 '; (ker' \ V

�

)
 V

��

�

℄ = (ker' \ V

�

)
 ':

Thus ker' \ V

�

= f0g , whih yields V

�

= Kv for 0 6= � 2 (supp V ) \ (� suppV

�

). We

likewise see that V

��

�

= K' . In partiular, V

�


 V

��

�

� t . As t � V

0

=

L

0 6=�2suppV

V

�

and

t � V

0

�

=

L

0 6=�2suppV

�

V

�

�

, we further see that suppV

�

n f0g = � suppV n f0g .

(M2) Suppose that there exists ' 2 V

0

�

and v 2 V

0

with '(v) = 1. As above, we see that

v 
 ' 2 t , ontraditing (v 
 ') � v = v and v 2 V

0

. Therefore V

0

�

(V

0

) = f0g , whih in turn

implies that eah element in V

0


 V

0

�

is nilpotent. Hene t \ (V

0


 V

0

�

) = f0g .

(M3) Sine t ontains all the spaes V

�


V

��

�

for � 6= 0 and is ontained in

L

�2suppV

V

�


V

��

�

,

we obtain

t = (t \ (V

0


 V

0

�

))� (

M

0 6=�2suppV

V

�


 V

��

�

):

Now (M3) follows from (M2).

(M4) follows from the equality V

0

= fv 2 V : t � v = f0gg as, in view of (M3), the spae

fv 2 V : t � v = f0gg oinides with the ommon annihilator of the spaes V

��

�

, � 6= 0. A similar

argument applies to V

0

�

.

Conversely, assume that (M1)-(M4) are satis�ed. Then dimV

�


 V

��

�

= 1 for 0 6= � 2

suppV , and V

�

�

(V

�

) 6= f0g for � 6= �� imply that t is abelian and that eah element of t is

diagonalizable. Therefore t is a toral subalgebra of g = V 
V

�

(Lemma II.1). The entralizer of

t in g is ontained in g

0

and oinides with t� (V

0


 V

0

�

): Now (M2) implies that eah element

in V

0


 V

0

�

is nilpotent, so t is maximal toral.

Finally,

z

g

(t) = g

0

(t) =

M

�+�=0

V

�


 V

�

�

= t� (V

0


 V

0

�

):

Corollary II.4. If t is a maximal toral subalgebra, then (suppV ) n f0g � t

�

is a linearly

independent set.

Proof. The statement follows from the equality t =

L

0 6=�2suppV

V

�


 V

��

�

and from the

fat that � vanishes on

L

Æ 6=�2suppV

V

Æ


 V

�Æ

�

.

The next proposition shows that for a maximal toral subalgebra t the spaes V

�

for � 6= 0

determine the spae V

0

(resp., V

�

�

for � 6= 0 determine V

0

�

).



Cartan subalgebras of gl

1

7

Proposition II.5. Let t � g be a maximal toral subalgebra. Then

V

0

=

\

0 6=�2suppV

(

\

� 6=Æ2supp V

(V

Æ

)

?

)

?

and V

0

�

=

\

0 6=�2suppV

�

(

\

� 6=�2suppV

�

(V

�

�

)

?

)

?

:

Proof. By Proposition II.3, V

0

�

=

T

0 6=�2suppV

(V

�

)

?

. Fix 0 6= � 2 suppV and pik

f

�

2 V

�

and f

�

�

2 V

��

�

with f

�

�

(f

�

) = 1. Consider an element ' 2

T

� 6=Æ2suppV

(V

Æ

)

?

.

Then '� '(f

�

)f

�

�

2 V

0

�

leads to ' 2 V

0

�

+ V

��

�

, and therefore to

V

0

�

+ V

��

�

=

\

� 6=Æ2suppV

(V

Æ

)

?

:

As V

0

�

(V

0

) = f0g , we have

V

0

=

\

0 6=�2suppV

(V

��

�

)

?

=

\

0 6=�2suppV

(V

0

�

+ V

��

�

)

?

=

\

0 6=�2suppV

\

� 6=Æ2suppV

(V

Æ

)

?

:

The seond equality is established in a similar way.

III. The struture of Cartan subalgebras

De�nition III.1. (a) We de�ne a Cartan subalgebra h � g = gl(V; V

�

) as a loally nilpotent

subalgebra h with h = z

g

(h

s

).

(b) A toral Cartan subalgebra of g is a toral subalgebra t � g with z

g

(t) = t .

() A generalized splitting Cartan subalgebra of g is a subalgebra h � g for whih g has a

generalized root deomposition g = h � (

L

�2�

g

�

), where � := (supp g) n f0g . The Cartan

subalgebra h is splitting if, in addition, g is a weight h-module.

As all toral subalgebras are abelian by Lemma I.3, toral Cartan subalgebras are in partiular

Cartan subalgebras. For the same reason, toral Cartan subalgebras are maximal abelian, hene

in partiular maximal toral subalgebras of g , and are therefore overed by Proposition II.3.

Moreover, if h is a generalized splitting Cartan subalgebra, then the generalized root spaes

are ommon eigenspaes of (ad h)

s

= ad h

s

orresponding to non-zero eigenfuntionals. This

immediately implies that z

g

(h

s

) = g

0

(h) = g

0

(h

s

) = h . Therefore h is a Cartan subalgebra in

the sense of De�nition III.1(a).

Lemma III.2. For a maximal toral subalgebra t � g the following are equivalent:

(1) t is a toral Cartan subalgebra.

(2) V

0

= f0g or V

0

�

= f0g .

Proof. This follows from the equality z

g

(t) = t� (V

0


 V

0

�

) (Proposition II.3).

Proposition III.3. For any maximal toral subalgebra t � g , h := z

g

(t) is an abelian self-

normalizing subalgebra of g with h = g

0

(h) = z

g

(h

s

) , and in partiular a Cartan subalgebra.

Proof. By Proposition II.3,

h = t� (V

0


 V

0

�

):

Furthermore, the equality V

0

�

(V

0

) = f0g implies that V

0


 V

0

�

is an abelian Lie algebra

suh that (V

0


 V

0

�

)

2

= f0g , and thus h is an abelian subalgebra of g with h

s

= t and

h

n

= V

0


 V

0

�

. Hene h = z

g

(h

s

), and Lemma I.4 implies that h is self-normalizing. Finally,

h � g

0

(h) � g

0

(t) = z

g

(t) = h shows that h = g

0

(h).

The following theorem is our �rst main result. It implies that if K is algebraially losed,

all Cartan subalgebras of g are entralizers of maximal toral subalgebras, and hene are as in

Proposition III.3.
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Theorem III.4. (Struture Theorem for Cartan Subalgebras) Let h � g = gl(V; V

�

) be a

Cartan subalgebra for whih the abelian subalgebra h

s

� g is toral. (The latter is automati when

K = K .) Then

(1) h

s

is a maximal toral subalgebra of g with h = z

g

(h

s

) ;

(2) h = h

s

� (V

0


 V

0

�

) = (

L

0 6=�2suppV

V

�


 V

��

�

) � (V

0


 V

0

�

) , where V

0

=

L

�2suppV

V

�

and V

�

=

L

�2suppV

�

V

�

�

are the h

s

-module weight deompositions of V

0

and V

0

�

;

(3) h is abelian;

(4) if h is a generalized splitting Cartan subalgebra, then h is splitting.

Proof. (1) Let t � h

s

be a toral subalgebra. Then t is abelian (Lemma I.3) and therefore

t � z

g

(h

s

) = h , i.e., t � h

s

.

(2) follows from (1) and Proposition II.3.

(3) is a diret onsequene of (1), (2), and the equality V

0

�

(V

0

) = f0g (Proposition II.3(M2)).

(4) If g has a generalized h-root deomposition, then g is a loally �nite h

s

-module. Therefore

g =

M

�;�

V

�


 V

�

�

= V

0


 V

0

�

by Lemma II.2, and V

0

= V and V

0

�

= V

�

. Furthermore, V

0

�

(V

0

) = f0g and V

0

�

(V

�

) = f0g for

� 6= 0, i.e., V

0

�

(V ) = f0g . Hene V

0

�

= f0g (and similarly V

0

= f0g). This implies that h = h

s

,

i.e., that h is splitting.

In [PS03℄ a statement similar to Theorem III.4(4) is established. Namely the main result of

[PS03℄ laims that, for K = K , any subalgebra h whih yields a generalized root deomposition

of g is a splitting Cartan subalgebra.

Corollary III.5. Any Cartan subalgebra h � g is abelian.

Proof. If K = K the statement is proved in Theorem III.4. Let

g := g


K

K = gl(V 


K

K ; V

�




K

K ):

Then h := h


K

K is a loally nilpotent subalgebra of g and h

s

= h

s




K

K , whih diretly implies

that

z

g

(h

s

) = z

g

(h

s

) = z

g

(h

s

)


K

K = h:

Therefore h is a Cartan subalgebra of g . Hene h is abelian by Theorem III.4, and onsequently

h is abelian.

If K is algebraially losed, Theorem III.4 enables us to give a desription of all Cartan

subalgebras of gl(V; V

�

) in terms of pure linear algebra.

We de�ne a dual system of one-dimensional subspaes to be a family (V

j

)

j2J

of one-

dimensional subspaes of V , together with a family of one-dimensional subspaes ((V

j

)

�

)

j2J

of

V

�

suh that (V

i

)

�

(V

j

) = Æ

ij

K .

Lemma III.6. Let (V

j

)

j2J

, ((V

j

)

�

)

j2J

be a dual system of one-dimensional subspaes. Then

it is maximal if and only if the spaes V

0

�

:= \

j

(V

j

)

?

� V

�

and V

0

:= \

j

((V

j

)

�

)

?

� V satisfy

V

0

�

(V

0

) = f0g .

Proof. If V

0

�

(V

0

) 6= f0g , there is an element e 2 V

0

and an element e

�

2 V

0

�

with e

�

(e) = 1,

therefore the dual system (V

j

)

j2J

, ((V

j

)

�

)

j2J

an be extended by the pair of one-dimensional

spaes K e , K e

�

. Thus the maximality of the system (V

j

)

j2J

, ((V

j

)

�

)

j2J

implies V

0

�

(V

0

) = f0g .

Conversely, it is lear that V

0

�

(V

0

) 6= f0g if the dual system is not maximal.

The existene of maximal dual systems of one-dimensional subspaes follows easily from

Zorn's Lemma. Proposition II.3, Theorem III.4, and Lemma III.6 imply immediately the follow-

ing proposition.
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Proposition III.7. Let (V

j

)

j2J

, ((V

j

)

�

)

j2J

be a dual system of one-dimensional subspaes

with V

0

�

(V

0

) = f0g , or equivalently, a maximal dual system of one-dimensional subspaes (see

Lemma III.6). Then t :=

L

j2J

V

j


 (V

j

)

�

� g is a maximal toral subalgebra and h := z

g

(t) is

a Cartan subalgebra of gl(V; V

�

) . If K = K , every Cartan subalgebra of g is obtained by this

onstrution.

Theorem III.4 and Proposition III.7 imply that, there are the following (mutually exlusive)

alternatives for a Cartan subalgebra h � g with toral h

s

:

(I) h 6= h

s

;

(II) h = h

s

is toral but not splitting;

(III) h = h

s

is splitting.

Clearly not all ases will always our, as for instane ase (III) implies that the dimensions

of V and V

�

oinide, while for an in�nite-dimensional V they a priori need not oinide.

Moreover, Proposition I.2 shows that, when dimV is unountable, equality of the dimensions of

V and V

�

is not suÆient for the ourene of ase (III). The next three propositions desribe

preisely whih ases among (I)-(III) our in the following situations: when V = V

�

= K

(J)

for an in�nite set J , when V is a Hilbert spae (here K = R; C ) and V

�

is the spae of

ontinuous linear funtionals on V , and when V is an arbitrary in�nite-dimensional vetor

spae and V

�

= V

�

.

Proposition III.8. Let J be an in�nite set. Then in g = gl(J;K ) all three types (I){(III) of

Cartan subalgebras, and, moreover, all dimensions of the spaes V

0

� V and V

0

�

� V

�

do our.

Proof. Here V = K

(J)

= V

�

. Write J as a disjoint union J = J

0

t J

1

and assume that

�: J

0

! J

1

is a surjetion suh that the inverse image of every element in J

1

is in�nite. Fix

a deomposition into two disjoint subsets J

1

= J

+

1

t J

�

1

and put J

�

0

:= �

�1

(J

�

1

). If (e

j

)

j2J

denotes the anonial basis of V , set

V

j

:=

�

K (e

j

+ e

�(j)

); j 2 J

+

0

Ke

j

; j 2 J

�

0

and

(V

j

)

�

:=

�

Ke

j

; j 2 J

+

0

K (e

j

+ e

�(j)

); j 2 J

�

0

.

The families (V

j

)

j2J

0

; and ((V

�

)

j

)

j2J

0

; satisfy (V

i

)

�

(V

j

) = Æ

ij

K for i; j 2 J

0

and thus form

a dual system of one-dimensional subspaes. Furthermore, if � 2 V

�

vanishes on all V

j

, then

�(e

j

) = ��(e

�(j)

) holds for eah j 2 J

+

0

. For i := �(j) we then have �(e

i

) = �(e

j

) for in�nitely

many indies j with �(j) = i . This implies that �(e

i

) = 0 for i 2 J

+

1

, and likewise �(e

j

) = 0

for j 2 J

+

0

. We also have �(e

j

) = 0 for j 2 J

�

0

, and therefore

V

0

�

= \

j

(V

j

)

?

= spanfe

j

: j 2 J

�

1

g

�

=

K

J

�

1

:

In a similar way we obtain

V

0

= \

j

((V

j

)

�

)

?

= spanfe

j

: j 2 J

+

1

g

�

=

K

J

+

1

:

In partiular, V

0

�

(V

0

) = 0, i.e. the dual system (V

j

)

j2J

0

, ((V

�

)

j

)

j2J

0

is maximal. Consequently,

for any in�nite ountable set J the spaes V

0

and V

0

�

an have arbitrary presribed dimensions

less or equal jJ j .

Proposition III.9. Let K = R; C , and V be an in�nite-dimensional Hilbert spae and V

�

be

the spae of ontinuous linear funtionals on V . Then any Cartan subalgebra h � g = gl(V; V

�

)

with toral h

s

has type (I) or (II), and both ases are possible.

Proof. Proposition I.2 implies that ase (III) does not our. To onstrut a Cartan subalgebra

of type (II), �x an orthonormal Hilbert basis (e

j

)

j2J

of V . Set V

j

:= K e

j

, and (V

j

)

�

= K e

�

j

,
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where v

�

(x) := hx; vi is the linear funtional orresponding to v 2 V . Then (V

j

)

j2J

, ((V

j

)

�

)

j2J

is a dual system of one-dimensional subspaes with V

0

= f0g = V

0

�

, and it de�nes a Cartan

subalgebra of gl(V; V

�

) of type (II).

A Cartan subalgebra of type (I) an be onstruted as follows. Here we assume that J = N

and set f

n

:= e

�

1

+e

�

n+1

�2e

�

n+2

for n 2 N . Let V

n

:= Ke

n+1

and (V

n

)

�

:= Kf

n

. Then V

0

�

= Ke

�

1

and

V

0

=

\

n2N

ker f

n

= K

X

n�2

2

�n

e

n

� (V

0

�

)

?

:

Hene the maximal dual system of one-dimensional spaes (V

n

)

n2N

, ((V

n

)

�

)

n2N

de�nes a Cartan

subalgebra of gl(V; V

�

) of type (I).

Proposition III.10. Let V be an in�nite-dimensional vetor spae and V

�

= V

�

. Then any

Cartan subalgebra h � g = gl(V; V

�

) with toral h

s

has type (II).

Proof. The ourene of type (III) implies equality of the dimensions of V and V

�

, whih is

not the ase when V

�

= V

�

. It remains to show that a Cartan subalgebra annot have type (I).

Assume to the ontrary that, for some J , (V

j

)

j2J

, ((V

j

)

�

)

j2J

form a maximal dual system of

one-dimensional spaes for whih V

0

6= f0g , V

0

�

6= f0g . Fix 0 6= e 2 V

0

. Then, sine V

�

= V

�

,

there is a linear funtional e

�

2 V

0

�

with e

�

(e) = 0. Consequently V

0

�

(V

0

) 6= f0g , whih is a

ontradition.

We omplete this setion by addressing the problem of onjugay for maximal toral subal-

gebras and thus also for Cartan subalgebras.

Proposition III.11. All splitting Cartan subalgebras of g = gl(V; V

�

) are onjugate under the

group GL(V; V

�

) := fg 2 GL(V ): g

�

� V

�

= V

�

g . In general GL(V; V

�

)-onjugate maximal toral

subalgebras have equal respetive dimensions of the subspaes V

0

and V

0

�

, but equality of those

dimensions is not suÆient for GL(V; V

�

)-ojugay.

Proof. If h is a splitting Cartan subalgebra, Proposition II.3 implies that there is a basis

(v

�

)

�2A

of V and a dual basis (v

�

�

)

�2A

in V

�

suh that

h =

M

�2A

(K v

�


 K v

�

�

):

In other words, h is the set of all elements of g whih are represented by diagonal matries with

respet to the basis (v

�

)

�2A

. This implies immediately the onjugay of all splitting Cartan

subalgebras of V 
 V

�

under GL(V; V

�

) (f. [NS01℄ for the ase gl(J;K )).

It is lear that, if two maximal toral subalgebras are GL(V; V

�

)-onjugate, their respetive

dimensions of the spaes V

0

and V

0

�

oinide. The following example shows that this is not

suÆient for GL(V; V

�

)-onjugay.

Set V = V

�

:= K

(N)

. Fix an injetive map �:N ! N with �(n) > n for eah n 2 N , and

let S:V ! V; e

n

7! e

�(n)

be the orresponding shift operator (where (e

n

)

n2N

is the standard

basis of K

(N)

). Then the endomorphism A := 1 � S 2 End(V ) is injetive beause S has no

eigenvetors in V , and is obviously not surjetive as e

n

=2 A(V ) for any n . Furthermore, the

matrix A

>

:= 1� S

>

, onsidered as an operator on V

�

, is loally unipotent with inverse given

by

P

n2N

0

(S

>

)

n

, and onsequently A

�

j

V

�

is an automorphism of V

�

.

As A is injetive, the one-dimensional subspaes V

n

:= A(K e

n

) satisfy the onditions of

Proposition III.7 with (V

n

)

�

:= A

�

j

V

�

(K e

n

) and

V

0

=

\

n2N

(V

�

n

)

?

= V

?

�

= f0g and V

0

�

=

\

V

?

n

= kerA

�

j

V

�

= f0g:

Sine A is not surjetive, V

0

= spanfV

n

: n 2 Ng 6= V . Therefore the toral subalgebra h is not

splitting and is not onjugate to any splitting Cartan subalgebra.
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IV. Alternative haraterizations of Cartan subalgebras

In this and in the setion we onsider g = gl(V; V

�

) for an arbitrary subspae V

�

� V

�

separating

the points of V .

The following theorem is our seond main result.

Theorem IV.1. A subalgebra h � g is a Cartan subalgebra if and only if it satis�es one of

the following two equivalent onditions:

(C1') h is a loally nilpotent self-normalizing subalgebra whose adjoint module is loally �nite;

(C2') h oinides with the maximal loally nilpotent h-submodule of g and the adjoint module of

h is loally �nite.

First we observe that onditions (C1'), (C2') and (C3) are satis�ed for a subalgebra h � g

if and only if they are satis�ed for the subalgebra h � g , where k = k


K

K . Therefore, without

restriting generality, we will assume throughout this setion that K is algebraially losed.

The fat that (C1') and (C2') are satis�ed for a Cartan subalgebra follows immediately

from Proposition III.3 and Theorem III.4. The following Lemma IV.2 and Proposition IV.4

imply that any subalgebra h satisfying (C1') or (C2') is a Cartan subalgebra. Note that, sine

K = K , the subalgebra h

s

� h of any subalgebra h satisfying (C1') or (C2') is toral.

Lemma IV.2. The onditions (C1') and (C2') are equivalent.

Proof. Assume that (C1') is satis�ed. Consider the maximal loally nilpotent h-submodule

g

0

(h) � g . Sine the adjoint representation of h is loally �nite, we have h � g

0

(h). Indeed,

otherwise for some h 2 h the �nite-dimensional submodule U(h) �h would have an h-eigenvetor

of non-zero eigenvalue, whih would ontradit the loal nilpotene of h . To prove that h = g

0

(h),

assume to the ontrary that h 2 g

0

(h) is suh that h

n

� h 2 h for a minimal n > 0. Then

h

n�1

� h 2 n

g

(h) = h , ontraditing the minimality of n . This shows that h = g

0

(h), i.e., that

(C1') implies (C2').

Conversely, let (C2') be satis�ed. Sine h �n

g

(h) � h and h is a loally nilpotent h-module,

n

g

(h) is also a loally nilpotent h-module. Therefore n

g

(h) � g

0

(h). Sine g

0

(h) = h , this gives

n

g

(h) � h , i.e., n

g

(h) = h .

Lemma IV.3. Condition (C2)' implies V

0

�

(V

0

) = f0g , where V

0

:= V

0

(h

s

) , V

0

�

:= V

0

�

(h

s

) .

Proof. By Proposition A in the Appendix, g

0

= V

0


 V

0

�

; where the supersript

0

indiates

maximal loally �nite h

s

-submodule. Furthermore, the assumption that the adjoint ation of h

on h is loally �nite implies h � g

0

. Hene the generalized weight h

s

-module deomposition of

V

0

and V

0

�

and the equality h = g

0

(h) yield

h =

M

�2suppV

(V

�


 V

��

) = h

s

� (V

0


 V

0

�

):

The loal nilpotene of h implies now V

0

�

(V

0

) = f0g .

Proposition IV.4. Condition (C2') implies that h is a Cartan subalgebra.

Proof. The equality h = g

0

(h) implies that h is loally nilpotent. Therefore Lemma I.4 yields

the inlusion h � z

g

(h

s

). It remains to establish the opposite inlusion z

g

(h

s

) � h .

For h 2 h

s

put U := h � V and

e

V := fv 2 V : h � v = 0g . Then U is a �nite-dimensional

spae and V = U �

e

V , V

�

=

e

V

?

�

e

V

�

, where

e

V

�

:= fv

�

2 V

�

: h � v

�

= 0g and

e

V

?

' U

�

. As

h � z

g

(h

s

), h preserves the four spaes U;

e

V ;

e

V

�

, and

e

V

?

. Therefore the projetion

p

U

: g = V 
 V

�

! U 


e

V

?

�

=

gl(U;

e

V

?

)
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with kernel V 


e

V

�

+

e

V 
 V

�

is h-equivariant. This gives

p

U

(h) = p

U

(g

0

(h)) = gl(U;

e

V

?

)

0

(h) = h \ gl(U;

e

V

?

) =: h

U

:

The entralizer of h in g = V 
 V

�

, and therefore the subalgebra h , is ontained in U 


e

V

?

+

e

V 


e

V

�

, thus

h = h

U

+ (h \ ker p

U

) = h

U

+ h \ gl(

e

V ;

e

V

�

):

As gl(

e

V ;

e

V

�

) ommutes with gl(U;

e

V

?

), we onlude that

gl(U;

e

V

?

)

0

(h

U

) = gl(U;

e

V

?

)

0

(h) = h

U

;

and hene that h

U

is a Cartan subalgebra of gl(U;

e

V

?

)

�

=

gl(U). As gl(U) is redutive, we have

h

U

� h

s

and h

n

� U = f0g .

By onsidering h

U

� gl(U;

e

V

?

), we now see that the weight spaes of h

s

in V and V

�

with

non-zero weights are one-dimensional. From the preeding argument we further onlude that

h

n

Æ h

s

= f0g in EndV , whih, in view of [h

s

; h

n

℄ = f0g , implies h

n

�V � V

0

. By Proposition A

in the Appendix,

g

0

= (V 
 V

�

)

0

= V

0


 V

0

�

=

M

�;�

V

�


 V

�

�

:

In partiular h � z

g

(h

s

) � g

0

; and therefore

h �

M

�

V

�


 V

��

�

:

For 0 6= � we have seen above that dimV

�

= dim V

��

�

= 1; so that

M

� 6=0

V

�


 V

��

�

� h

s

;

beause h

s

� V

�

6= f0g implies V

��

�

(V

�

) 6= f0g . If A 2 h

s

\

�

V

0


 V

0

�

�

, then A annihilates

all weight spaes V

�

with � 6= 0, and it also annihilates V

0

. Therefore A � V � V

0

leads to

A

2

= f0g ,k and hene to A = 0 as h

s

onsists of semisimple elements (Lemma II.1). This proves

h

s

=

M

� 6=0

V

�


 V

��

�

;

whih in turn yields

V

0

=

\

0 6=�

(V

��

�

)

?

and V

0

�

=

\

0 6=�

(V

�

)

?

:

Sine V

0

�

(V

0

) = f0g by Lemma IV.3, Proposition II.3 implies that h

s

is maximal toral and

z

g

(h

s

) = h

s


 (V

0


 V

0

�

) is abelian. Therefore

V

0


 V

0

�

� z

g

(h) � g

0

(h) = h;

in partiular z

g

(h

s

) � h .

It is an interesting open problem whether onditions (C1), (C2) and (C3) are equivalent for

gl(V; V

�

). Our results redue the problem to the question of existene for subalgebras of gl(V; V

�

)

satisfying (C1) or (C2) and suh that their adjoint representation is not loally �nite.
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V. The struture of g

0

In this setion t is a �xed maximal toral subalgebra of g = gl(V; V

�

), h := z

g

(t) = t� (V

0


V

0

�

),

and the supersript ' indiates maximal loally �nite t-submodule.

Lemma V.1. The subalgebra h � g

0

is a maximal toral Cartan subalgebra of g

0

with z(g

0

) =

V

0


V

0

�

. Furthermore, the deomposition g

0

= h� (

L

�2�

g

�

) is a root deomposition of g

0

with

respet to h .

Proof. The fat that the deomposition g

0

= h�(

L

�2�

g

�

) is an h-root deomposition is lear

from the very de�nition of this deomposition and from the equality h = g

0

(h) (Proposition III.3).

The equality

[V

0


 V

0

�

; V

�


 V

�

�

℄ = f0g

for all �; � (Proposition II.3) implies that V

0


 V

0

�

� z(g

0

). Conversely, the inlusion z(g

0

) �

z

g

(t) = h implies easily that z(g

0

) is not larger than V

0


 V

0

�

. Furthermore, the equality

h = t + z(g

0

) shows that the adjoint ation on g

0

of every element x 2 h is diagonalizable, i.e.,

that h is a toral Cartan subalgebra of g

0

. The maximality of g is an immediate orollary of the

equallity h = g

0

(h).

As a onsequene of Lemma V.1, the following theorem ([St99, Th. I.4℄) applies to the pair

(g

0

; h). If k is a loally �nite Lie algebra whih admits a root deomposition with respet to some

subalgebra h

k

, we all a root � integrable if the subalgebra of k generated by the root spaes

k

��

is isomorphi to sl

2

(K ) .

Theorem V.2. (Levi deomposition of loally �nite split Lie algebras) Let k be a loally

�nite Lie algebra with root deomposition k = h

k

� (

L

�2�(k)

k

�

) with respet to a toral Cartan

subalgebra h

k

. Denote the set of integrable root by �

i

(k) � �(k) .

(1) The subspae s = span

�

�

i

(k) +

L

�2�

i

(k)

k

�

is a semisimple subalgebra of k .

(2) Let �

n

(k) := �(k) n�

i

(k) . The subspae r := z

h

k

(s) +

L

�2�

n

(k)

k

�

is the unique maximal

loally solvable ideal of k , and u := z(k) +

L

�2�

n

(k)

k

�

is the unique maximal loally nilpotent

ideal of k .

(3) If a is a vetor spae omplement to the subspae z(k) + span

�

�

i

(k) in h

k

, we have k

�

=

uo(soa) , where the Lie algebra l := soa is almost redutive, i.e., has a semisimple ommutator

algebra.

Lemma V.3. The subspaes V

0


 V

0

�

and V

0


 V

0

�

are abelian ideals of g

0

with

[V

0


 V

0

�

; V

0


 V

0

�

℄ = V

0


 V

0

�

= z(g

0

):

Proof. The statement follows from the equalities

[V

0


 V

0

�

; V

0


 V

0

�

℄ = (V

0


 V

0

�

) � (V

0


 V

0

�

) = V

0


 V

0

�

;

[V

0


 V

0

�

; V

0


 V

0

�

℄ = (V

0


 V

0

�

) � (V

0


 V

0

�

) = V

0


 V

0

�

and

[V

0


 V

0

�

; V

0


 V

0

�

℄ = f0g = [V

0


 V

0

�

; V

0


 V

0

�

℄;

whih in turn follow from the equality V

0

�

(V

0

) = f0g .
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Proposition V.4. If 0 6= �; Æ 2 suppV , then the funtional �� Æ 2 h

�

is an integrable root

of g

0

with

g

0

��Æ

= V

�


 V

�Æ

�

:

If V

0

�

6= f0g , then a funtional 0 6= � 2 suppV is a non-integrable root with

g

0

�

= V

�


 V

0

�

;

and if V

0

6= f0g , a funtional 0 6= �� 2 suppV

�

is a non-integrable root with

g

0

��

= V

0


 V

��

�

:

The spae

u := V

0


 V

0

�

+ V

0


 V

�

=

M

0 6=�2suppV

(V

0


 V

��

�

+ V

�


 V

0

�

)

is the maximal loally nilpotent ideal of g

0

.

Proof. For 0 6= �; Æ 2 suppV we have a root � � Æ 2 � with g

0

��Æ

� V

�


 V

�Æ

�

: Let

0 6= f

�

2 V

�

, � 6= 0. De�ne f

�

�

2 V

��

�

by f

�

�

(f

�

) = 1. Then

h

�;Æ

:= [f

�


 f

�

Æ

; f

Æ


 f

�

�

℄ = f

�


 f

�

�

� f

Æ


 f

�

Æ

satis�es �(h

�;Æ

) = 1 and Æ(h

�;Æ

) = �1. Therefore the roots �� Æ are integrable, whih implies

in partiular that g

0

��Æ

is one-dimensional, so that g

0

��Æ

= V

�


 V

Æ

:

Furthermore, Lemma V.3 implies that the root spaes g

0

�

= V

�


 V

0

�

+ V

0


 V

��

�

, for

0 6= � 2 suppV , are ontained in the maximal loally nilpotent ideal of g

0

.

The remaining assertions are diret onsequenes of Theorem V.2.

The following theorem is a diret orollary of Theorem V.2 via the information provided

by Lemma V.3 and Proposition V.4.

Theorem V.5. (Struture Theorem for g

0

) The Lie algebra g

0

is isomorphi to the semidiret

produt uo l , where

u := V

0


 V

0

�

+ V

0


 V

0

�

is the Lie algebra with braket

[(v 
 '); (y 
  )℄ = '(y) � v 
 v

�

;

and l

�

=

W

0


W

�

= gl(W;W

�

) for W := t � V and W

�

:= t � V

�

.

Appendix. A useful general proposition

The following proposition was ommuniated to us by I. Dimitrov and G. Zukerman and

is a generalized version of a proposition whih we had proved in a preliminary version of the

paper.

Let U and W be vetor spaes. To any element x 2 U 
W we assign a subspae U

x

� U

in the following way. Write x as

P

j

u

j


 w

j

with linearly independent w

j

2 W , and set

U

x

:= spanfu

i

g . In a similar way we assign to x a subspae W

x

� W . To hek that U

x

(and

similarly W

x

) does not depend on the presentation of x as

P

j

u

j


w

j

, it suÆes to identify U

x

with the image of the linear operator  (x) 2 Hom(W

�

; U), where  is the anonial inlusion

U 
W ,! Hom(W

�

; U);  (u
 w)(�) := �(w)u:

This is a straightforward heking whih we omit.

It is lear that dimU

x

<1 . Note also that for any subspae Y � U we have

Y 
W = fx 2 U 
W : U

x

� Y g;

and similarly for any z 2W ,

U 
 Z = fx 2 U 
W : W

x

� Zg:

Let now k be a Lie algebra. For any k-module Q , we denote by Q

0

the maximal loally

�nite k-submodule of Q .
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Proposition A. For any k-modules M and N , we have

M

0


N

0

= (M 
N)

0

:

Proof. The inlusion M

0


N

0

� (M 
N)

0

is obvious.

Fix 0 6= x 2 (M 
 N)

0

and a basis x

1

; : : : ; x

n

of U(k) � x with x

1

= x . Set Y :=

M

x

1

+ : : :+M

x

n

and Z := N

x

1

+ : : :+N

x

n

. Sine x 2M

x


N

x

� Y 
Z , it suÆes to prove that

Y � M

0

and Z � N

0

. We will show that Z � N

0

(the argument for Y is ompletely similar),

whih will follows from U(k) � Z � Z . For this it is enough to verify that k �N

x

i

� Z for any i

and any k 2 k .

Fix k and i and write x

i

as

P

j

m

j


 n

j

with linearly independent m

j

2 M . Then

k � x

i

=

P

j

k �m

j


 n

j

+

P

j

m

j


 k � n

j

. Sine k � x

i

2 Y 
Z and

P

j

k �m

j


 n

j

2M 
Z , we

have

P

j

m

j


 k �n

j

2M 
Z . Therefore N

P

j

m

j


k�n

j

� Z , i.e., k �n

j

2 Z . As the n

j

generate

N

x

i

, this implies k �N

x

i

2 Z .
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