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Abstra
t. Let V be a ve
tor spa
e over a �eld K of 
hara
teristi
 zero and V

�

be a spa
e of

linear fun
tionals on V whi
h separate the points of V . We 
onsider V
V

�

as a Lie algebra of �nite

rank operators on V , and set gl(V;V

�

):=V
V

�

. We de�ne a Cartan subalgebra of gl(V;V

�

) as the


entralizer of a maximal subalgebra every element of whi
h is semisimple, and then give the following

des
ription of all Cartan subalgebras of gl(V;V

�

) under the assumption that K is algebrai
ally 
losed.

A subalgebra of gl(V;V

�

) is a Cartan subalgebra if and only if it equals �

j

(V

j


(V

j

)

�

)�(V

0


V

0

�

) for

some one-dimensional subspa
es V

j

�V and (V

j

)

�

�V

�

with (V

i

)

�

(V

j

)=Æ

ij

K and su
h that the spa
es

V

0

�

=\

j

(V

j

)

?

�V

�

and V

0

=\

j

((V

j

)

�

)

?

�V satisfy V

0

�

(V

0

)=f0g . We then dis
uss expli
it 
onstru
-

tions of subspa
es V

j

and (V

j

)

�

as above. Our se
ond main result 
laims that a Cartan subalgebra

of gl(V;V

�

) 
an be des
ribed alternatively as a lo
ally nilpotent self-normalizing subalgebra whose

adjoint representation is lo
ally �nite, or as a subalgebra h whi
h 
oin
ides with the maximal lo
ally

nilpotent h -submodule of gl(V;V

�

) , and su
h that the adjoint representation of h is lo
ally �nite.

AMS Subje
t Classi�
ation 2000: Primary 17B65, Se
ondary 17B20.

Introdu
tion

It is an interesting question whi
h 
lass of subalgebras of an in�nite-dimensional Lie algebra, over

a �eld K of 
hara
teristi
 zero, play a role similar to Cartan subalgebras of a �nite-dimensional

Lie algebra. Despite the fa
t that in�nite-dimensional Lie algebras have been studied extensively

in the last 30 years, there is no de�nitive answer to this question. The best understood 
ases are

those of Ka
{Moody algebras and extended aÆne Lie algebras (see [BP95℄, [PK83℄, [AABGP97℄

and the referen
es therein), whose spe
i�
 is that their Cartan subalgebras are �nite-dimensional.

The simplest example of an in�nite-dimensional Lie algebra whose Cartan subalgebras are no

longer �nite-dimensional, is the Lie algebra gl

1

of in�nite matri
es with �nitely many non-zero

entries in K , and in the literature there is no systemati
 investigation of all Cartan subalgebras

of gl

1

. The purpose of the present paper is to �ll in this gap for gl

1

and to the larger 
lass of

Lie algebras gl(V; V

�

) de�ned below.

The following three de�nitions of a Cartan subalgebra h of a �nite-dimensional Lie algebra

g are equivalent:

(C1) h is a lo
ally nilpotent self-normalizing subalgebra;

(C2) h 
oin
ides with the maximal lo
ally nilpotent h-submodule of g , i.e., h = g

0

(h), where

g

0

(h) = fx 2 g: (9n 2 N) (ad h)

n

(x) = f0gg;

(C3) h is a lo
ally nilpotent subalgebra whi
h 
oin
ides with the set of all elements x 2 g for

whi
h adx 
ommutes with the abelian subalgebra (ad h)

s


onsisting of all semisimple parts

(adh)

s

in the Jordan de
omposition adh = (adh)

s

+ (adh)

n

of adh for elements h 2 h

((ad h)

n

stands for the nilpotent part).
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Sin
e g is assumed �nite-dimensional, \lo
ally nilpotent" in the 
onditions (C1)-(C3) is of


ourse equivalent to \nilpotent", but we have stated (C1)-(C3) in a form suitable also for the

more general 
lass of lo
ally �nite Lie algebras we 
onsider in this paper. The fa
t that (C1) is

equivalent to (C2) is well-known ([Bou90, Ch. VII℄). The equivalen
e of (C2) and (C3) follows

from the equalities

g

0

(h) =

\

h2h

g

0

(adh) =

\

h2h

ker(adh)

s

= z

g

((ad h)

s

):

If g is redu
tive over an algebrai
ally 
losed �eld, every Cartan subalgebra h is maximal

toral, i.e., for every 0 6= h 2 h , adh is diagonalizable, and h is maximal with this property. This

is the key to one of the most important properties of a Cartan subalgebra h of a redu
tive Lie

algebra g : that (after a possible �eld extension) h yields a root de
omposition of g .

Let V be a �xed (arbitrary) ve
tor spa
e over K and V

�

be its dual spa
e. In what

follows we set g = gl(V; V

�

) := V 
 V

�

, 
onsidered as a Lie algebra of �nite rank operators

on V , where V

�

� V

�

is a subspa
e separating the points of V . If J is a set, we write K

(J)

for the ve
tor spa
e with a �xed basis (e

j

)

j2J

labeled by the elements of J . The standard

pairing K

(J)

� K

(J)

! K indu
es an inje
tion K

(J)

,! (K

(J)

)

�

�

=

K

J

, and for V = V

�

= K

(J)

,

g = gl(J;K ) := gl(V; V

�

) is the Lie algebra of J�J -matri
es with �nitely many non-zero entries.

We set also gl

1

:= gl(N;K ) .

All Cartan subalgebras yielding a root de
omposition of gl

1

, i.e., the so 
alled splitting

Cartan subalgebras, are well understood, see [NS01℄, [St01℄ and [PS03℄. It is also known that there

are maximal toral subalgebras of gl

1

whi
h do not yield a root de
omposition, and therefore also

no generalized root de
omposition ([PS03℄). In parti
ular, even if K is algebrai
ally 
losed, none

of the 
onditions (C1)-(C3) implies the existen
e of a generalized root de
omposition related to

h . In this paper we put the 
ondition (C3) in the spotlight, as it relates h in a most transparent

way with the abelian subalgebra h

s

, 
onsisting of the semisimple parts of all h 2 h , and in this

way 
arries the most resemblan
e with the �nite-dimensional 
ase. More pre
isely, we de�ne a

Cartan subalgebra of gl(V; V

�

) as a subalgebra satisfying (C3).

Our main result is a des
ription, in terms of linear algebra, of all Cartan subalgebras of

g = gl(V; V

�

) for whi
h h

s

is toral. (The latter 
ondition is automati
 if K algebrai
ally 
losed.)

In parti
ular we prove that all Cartan subalgebras are abelian. As a 
orollary we obtain that

there are at most three types of Cartan subalgebras for whi
h h

s

is toral: the ones for whi
h the

in
lusion h

s

� h is proper, the toral ones, i.e. those for whi
h h = h

s

, and �nally, the splitting

ones for whi
h h = h

s

and g has a root de
omposition with respe
t to h . We 
onsider examples

of pairs V , V

�

for whi
h not all types of Cartan subalgebras o

ur, and we show that all three

types do o

ur for gl(J;K ).

As ea
h Cartan subalgebra of gl(V; V

�

) is abelian, its adjoint module is trivial and in

parti
ular lo
ally �nite. It is not 
lear if this latter property holds for any subalgebra of gl(V; V

�

)

(in parti
ular of gl

1

) whi
h satis�es (C1) or (C2). However, our se
ond main result 
laims that

if one strengthens (C1) and (C2) by the very natural additional requirement that the adjoint

module of h be lo
ally �nite, then the so obtained new 
onditions (C1') and (C2') are equivalent

to (C3) for subalgebras of g = gl(V; V

�

).

A
knowledgments. We thank Helmut Strade for sharing an inspiring idea about des
rib-

ing the toral Cartan subalgebras of gl

1

. We thank also Ivan Dimitrov and Gregg Zu
kerman

for the permission to present in the Appendix a proposition they re
ently proved.

I. Preliminaries and notation

All ve
tor spa
es (and Lie algebras) are de�ned over K and K stands for the algebrai
 
losure

of K . The supers
ript � denotes dual spa
e. The ve
tor spa
es V and V

�

are �xed as above,

and the sign ? always refers to the pairing V � V

�

! K . If k is a Lie algebra, U(k) stands for

the enveloping algebra of k . In this paper N := f1; 2; 3; :::g .
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We 
all a Lie algebra k lo
ally �nite (resp., lo
ally nilpotent) if every �nite subset of k is


ontained in a �nite-dimensional (resp., nilpotent) subalgebra. We 
all an k-module M lo
ally

�nite if ea
h element m 2 M is 
ontained in a �nite-dimensional submodule, and we 
all M

lo
ally nilpotent if for any m 2M there exists an i 2 N with k

i

�m = f0g . Furthermore, we say

that an k-module is a generalized weight k-module if M =

L

�2k

�

M

�

(k), where

M

�

(k) := fm 2M : (9i 2 N)(8x 2 k) (x� �(x)1)

i

�m = 0g:

We de�ne M to be a weight module, if, in addition,

M

�

(k) =M

�

(k) := fm 2M : (8x 2 k) x �m = �(x)mg

for ea
h � 2 k

�

. The support in k

�

of a module M is the set

suppM := f� 2 k

�

:M

�

(k) 6= f0gg:

If k is any Lie algebra and h � k is a lo
ally nilpotent Lie subalgebra, we say that k

admits a generalized h-root de
omposition (resp., an h-root de
omposition) if k is a generalized

h-weight module (resp., an h-weight module) with respe
t to the adjoint a
tion, and, in addition,

h 
oin
ides with the maximal lo
ally nilpotent h-submodule of k , i.e., h = k

0

(h).

In this paper we denote by g a �xed Lie algebra of the form gl(V; V

�

), where V

�

� V

�

is

a subspa
e separating the points of V . Typi
al examples of this situation are as follows.

(a) V

�

= V

�

. Then gl(V; V

�

) is the Lie algebra of �nite rank operators on V .

(b) V = K

(J)

= V

�

for a set J . Then gl(V; V

�

)

�

=

gl(J;K ) .

(
) V is a lo
ally 
onvex real or 
omplex ve
tor spa
e and V

�

is the spa
e of 
ontinuous linear

fun
tionals. As a 
onsequen
e of the Hahn-Bana
h Extension Theorem, V

�

separates the

points of V . Here gl(V; V

�

) is the Lie algebra of 
ontinuous �nite rank operators on V .

In general, the stru
ture of the Lie algebra gl(V; V

�

) depends essentially on the 
hoi
e of

the subspa
e V

�

. As the following proposition shows, this is not the 
ase when V and V

�

are of


ountable dimension.

Proposition I.1. If V and V

�

are of 
ountable dimension, then gl(V; V

�

)

�

=

gl

1

.

Proof. We have to �nd a basis (f

n

)

n2N

of V for whi
h the dual basis (f

�

n

)

n2N

� V

�

spans

V

�

.

Fix a basis (e

n

)

n2N

of V and a basis ('

n

)

n2N

of V

�

. We �rst 
hange the enumeration

of the basis ('

n

)

n2N

by a permution �:N ! N a

ording to the following rule. Put V

n

:=

spanfe

1

; : : : ; e

n

g for n 2 N , and let �

1

be the minimal number j with '

j

(e

1

) 6= 0. Indu
tively

we pro
eed as follows. If �

1

; : : : ; �

k

are 
hosen su
h that the restri
tions of '

�

1

; : : : ; '

�

k

to V

k

are

linearly independent, then we 
hoose �

k+1

as the minimal element in N n f�

1

; : : : ; �

k

g for whi
h

the restri
tion of '

�

k+1

to V

k+1

is linearly independent from the restri
tions of '

�

1

; : : : ; '

�

k

. As

the sequen
e ('

n

)

n2N

separates the points of V , the above pro
edure never stops and de�nes an

inje
tion �:N ! N . To see that � is surje
tive, hen
e a permutation, we argue by 
ontradi
tion.

Assume that � is not surje
tive and pi
k the minimal element m 2 N n �(N) . Suppose that

f1; : : : ;m� 1g � f�

1

; : : : ; �

k

g . Then there exist �

1

; : : : ; �

k

su
h that the linear fun
tional

'

0

m

:= '

m

�

k

X

j=1

�

j

'

�

j

vanishes on e

1

; : : : ; e

k

. From the linear independen
e of the sequen
e ('

n

)

n2N

we infer that '

0

m

is non-zero, so that there exists a minimal N 2 N with '

m

(e

N

) 6= 0. Then the restri
tions of

'

�

1

; : : : ; '

�

N�1

; '

0

m

to V

N

are linearly independent, hen
e the restri
tions of '

�

1

; : : : ; '

�

N�1

; '

m

to V

N

are linearly independent. Thus �

N

= m , in 
ontradi
tion with the 
hoi
e of m . This

proves that � is a permutation, and hen
e that the fun
tionals '

�

k

form a basis of V

�

.

Let (V

�

)

n

:= spanf'

�

1

; : : : ; '

�

n

g . Then (V

�

)

n

j

V

n

= V

�

n

, and we 
an 
hoose indu
tively a

basis (f

n

)

n2N

for whi
h V

n

= spanff

1

; : : : ; f

n

g for n 2 N , and '

�

j

(f

i

) = Æ

ij

for i � j . In the

next step we alterate the basis ('

�

n

)

n2N

of V

�

to a basis (�

n

)

n2N

with (V

�

)

n

= spanf�

1

; : : : ; �

n

g

and �

j

(f

i

) = Æ

ij

for all i; j 2 N , i.e., (�

n

)

n2N

is the dual basis to (f

n

)

n2N

. This proves that the

pair V; V

�

is equivalent to the pair K

(N)

;K

(N)

with the standard pairing.
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The next proposition shows that the requirement dimV = dimV

�

does not always lead to

a pairing equivalent to the standard pairing K

(J)

� K

(J)

! K for some J .

Proposition I.2. Let K = R; C , and V be an in�nite-dimensional Hilbert spa
e and V

�

be

the spa
e of 
ontinuous linear fun
tionals on V . Then there is no (ve
tor spa
e) basis of V su
h

that the dual basis belongs to V

�

.

Proof. We argue by 
ontradi
tion and assume that (f

j

)

j2J

is a (ve
tor spa
e) basis of V for

whi
h the dual basis belongs to V

�

. Let (e

s

)

s2S

be an orthonormal Hilbert basis of V . Ea
h

e

s

is a �nite linear 
ombination e

s

=

P

j2J

a

js

f

j

. Let S

0

� S be an in�nite 
ountable subset.

Then the set J

0

:= fj 2 J : (9s 2 S

0

)a

js

6= 0g is also 
ountable. Furthermore,

H :=

\

j2JnJ

0

ker f

�

j

is a 
losed subspa
e of V with (f

j

)

j2J

0

as a (ve
tor spa
e) basis. On the other hand, Baire's

Category Theorem implies that H is not the union of an as
ending 
hain of �nite-dimensional

subspa
es, hen
e not of 
ountable dimension. Contradi
tion.

Any element x 2 g = gl(V; V

�

) is a �nite rank operator on V , hen
e has a Jordan

de
omposition x = x

s

+ x

n

into a semisimple part x

s

and a nilpotent part x

n

. As g is lo
ally

�nite, the operator adx is lo
ally �nite for any x 2 g , and has a Jordan de
omposition adx =

(adx)

s

+ (adx)

n

. As adx

s

is semisimple and adx

n

is nilpotent, both Jordan de
ompositions

are 
ompatible, i.e., (adx)

s

= adx

s

, (adx)

n

= adx

n

.

We 
all a subalgebra t of a Lie algebra k toral if for every element x 2 t the operator

adx : k ! k is diagonalizable. In parti
ular, every non-zero element of a toral subalgebra of

gl(V; V

�

) is semisimple (and if K is algebrai
ally 
losed, a subalgebra is toral if and only if all its

nonzero elements are diagonalizable).

Lemma I.3. Every toral subalgebra of a Lie algebra is abelian.

Proof. Let x; y 2 t . Sin
e adx j

t

is diagonalizable, we 
an write y as y =

P

�

y

�

with

[x; y

�

℄ = �y

�

for � 2 K . Then, for any � , (ad y

�

)

2

(x) = 0, and as ad y

�

is also diagonalizable,

[y

�

; x℄ = (ad y

�

)(x) = 0. Therefore [y; x℄ =

P

�

[y

�

; x℄ = 0.

For any subalgebra a � g , we denote by z

g

(a) the 
entralizer of a in g , by z(a) - the 
enter

of a , and by n

g

(a) - the normalizer of a in g .

Lemma I.4. Let h � g = gl(V; V

�

) be a lo
ally nilpotent subalgebra, and h

s

= fh

s

:h 2 hg be

the set of semisimple Jordan 
omponents of elements of h . Then the following assertions hold:

(1) h

s

is an abelian Lie algebra;

(2) z

g

(h

s

) is a self-normalizing subalgebra of g ;

(3) h � n

g

(h) � z

g

(h

s

) .

Proof. (1) For ea
h �nite-dimensional nilpotent Lie algebra k the set (ad k)

s


ommutes with

ad k , whi
h implies [h

s

; h℄ � z(h). Hen
e (ad h

s

)

2

(h) = f0g , and the semisimpli
ity of the

elements of h

s

leads to [h

s

; h℄ = f0g . Therefore, for x; y 2 h , we have [y

s

; x℄ = [y

s

; x

s

℄ = 0. This

implies that x

s

+y

s

is semisimple and [x

s

+y

s

; x

n

+y

n

℄ = 0. From the �nite-dimensional 
ase we

derive that x

n

+ y

n

is nilpotent, thus x+ y = (x

s

+ y

s

) + (x

n

+ y

n

) is the Jordan de
omposition

of x+ y . Therefore h

s

is a subspa
e, hen
e, in view of the equality [y

s

; x

s

℄ = 0, an abelian Lie

algebra.

(2) If x 2 g , y 2 h

s

and [x; y℄ 6= 0 then the semisimpli
ity of y implies [[x; y℄; y℄ 6= 0.

Therefore [x; y℄ 2 z

g

(h

s

) leads to [x; y℄ = 0, i.e. to x 2 z

g

(h

s

).

(3) The in
lusion h � n

g

(h) is tautologi
al, so we only need to establish the in
lusion

n

g

(h) � z

g

(h

s

). Note that the argument in the proof of (1) implies h � z

g

(h

s

). Furtermore,

by de�nition we have the relation [h; x℄ 2 h for ea
h x 2 n

g

(h). Sin
e the semisimple part

(adh)

s

= adh

s

of adh 
an be obtained by applying a polynomial without 
onstant term to

adh , we also obtain (adh

s

)(x) 2 h , so the in
lusion h � z

g

(h

s

) leads to (adh

s

)

2

(x) = 0. As

adh

s

is semisimple, we obtain [h

s

; x℄ = 0, i.e. n

g

(h) � z

g

(h

s

).



Cartan subalgebras of gl

1

5

II. Maximal toral subalgebras

Lemma II.1. An element x 2 g is ad-diagonalizable if and only if x is diagonalizable as an

operator on V .

Proof. Clearly, one 
an de
ompose V and V

�

as V = U �W , V

�

= X � Y , where U and

X are �nite-dimensional x-invariant subspa
es su
h that X ' U

�

, and x �W = 0, x � Y = 0.

Therefore we 
an assume that x 2 gl(U;X) ' U 
 U

�

.

If x is diagonalizable as an operator on V , then adx is diagonalizable with eigenvalues

�

i

� �

j

, where �

i

are the eigenvalues of x .

Assume now that adx is diagonalizable and observe that this implies that adx j

gl(U;X)

is

diagonlizable. This implies that x is semisimple. Let �

1

; : : : ; �

n

denote the eigenvalues of x

in K . Then �

i

� �

j

are the eigenvalues of adx , and �

i

� �

j

2 K . We may therefore write

�

i

= �+ �

i

with �

i

2 K . As the set of all �

i

is invariant under the Galois group Aut

K

(K ), the

aÆne spa
e generated by all �

i


ontains a �xed point, i.e., an element of K . On the other hand,

this aÆne spa
e is 
ontained in � + K , whi
h gives � 2 K . Therefore �

1

; : : : ; �

n

2 K , i.e., x is

diagonalizable on U , and therefore on V .

In this se
tion we 
onsider a �xed toral subalgebra t � g = gl(V; V

�

). We write V

0

(resp.,

V

0

�

, g

0

) for the maximal lo
ally �nite t-submodule of V (resp., V

�

, g). Sin
e ea
h element

x 2 t is diagonalizable (Lemma II.1), the a
tion of t on the lo
ally �nite modules V

0

and V

0

�

is

simultaneously diagonalizable, i.e., V

0

and V

0

�

are weight t-modules. Let

V

0

=

M

�2suppV

V

�

and V

0

�

=

M

�2suppV

�

V

�

�

be the 
orresponding weight de
ompositions.

Lemma II.2.

(1) t � V � V

0

and t � V

�

� V

0

�

.

(2) g

0

= V

0


 V

0

�

.

(3) g

0

= V

0


 V

0

�

is an asso
iative subalgebra of g = V 
 V

�

and a weight t-module with respe
t

to the adjoint a
tion. w

Proof. (1) For x 2 t , x � V is a �nite-dimensional subspa
e of V whi
h is y -invariant for

every y 2 t as t is abelian. Hen
e x � V � V

0

. Similarly x � V

�

� V

0

�

.

(2) is a dire
t 
onsequen
e of Proposition A in the Appendix.

(3) V

0


V

0

�

is obviously an asso
iative subalgebra of V 
V

�

. Furthermore, V

0


V

0

�

is the tensor

produ
t of the weight t-modules V

0

and V

0

�

, and is thus itself a weight t-module.

In view of Lemma II.2(3), the weight de
ompositions of V

0

and V

0

�

yield the root de
om-

position

g

0

=

M

�;�

V

�


 V

�

�

= z

g

(t)� (

M


 6=0

g




); where g




=

M

�+�=


V

�


 V

�

�

:

Furthermore, z

g

(t) � g

0

implies

t � z

g

(t) = g

0

=

M

�2(suppV )\(� suppV

�

)

V

�


 V

��

�

:

In the sequel we are mainly interested in the 
entralizers of maximal toral subalgebras. We

start by a des
ription of maximal toral subalgebras in terms of their a
tion on V and V

�

.
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Proposition II.3. The subalgebra t is maximal toral if and only if the following 
onditions

are satis�ed:

(M1) (suppV ) n f0g = �(suppV

�

) n f0g and dimV

�

= dimV

��

�

= 1 for any � 2 suppV n f0g ;

(M2) V

0

�

(V

0

) = f0g and (V

0


 V

0

�

) \ t = f0g ;

(M3) t =

L

0 6=�2suppV

V

�


 V

��

�

;

(M4) V

0

�

=

T

0 6=�2suppV

(V

�

)

?

and V

0

=

T

0 6=�2suppV

�

(V

�

�

)

?

.

If these 
onditions are satis�ed, then

z

g

(t) = t� (V

0


 V

0

�

):

Proof. Assume �rst that t is maximal toral.

(M1) From t �

L

�2(suppV )\(� suppV

�

)

V

�


 V

��

�

, V

�

�

(V

�

) = f0g for � 6= �� , and t � V

�

6= f0g

for � 6= 0, it follows that V

��

�

(V

�

) 6= f0g . Pi
k v 2 V

�

and ' 2 V

��

�

with '(v) = 1. Then

v 
 ' 2 z

g

(t) is diagonalizable, hen
e 
ontained in t by maximality. Therefore

f0g = [v 
 '; V

�


 V

��

�

℄:

This implies in parti
ular

f0g = [v 
 '; (ker' \ V

�

)
 V

��

�

℄ = (ker' \ V

�

)
 ':

Thus ker' \ V

�

= f0g , whi
h yields V

�

= Kv for 0 6= � 2 (supp V ) \ (� suppV

�

). We

likewise see that V

��

�

= K' . In parti
ular, V

�


 V

��

�

� t . As t � V

0

=

L

0 6=�2suppV

V

�

and

t � V

0

�

=

L

0 6=�2suppV

�

V

�

�

, we further see that suppV

�

n f0g = � suppV n f0g .

(M2) Suppose that there exists ' 2 V

0

�

and v 2 V

0

with '(v) = 1. As above, we see that

v 
 ' 2 t , 
ontradi
ting (v 
 ') � v = v and v 2 V

0

. Therefore V

0

�

(V

0

) = f0g , whi
h in turn

implies that ea
h element in V

0


 V

0

�

is nilpotent. Hen
e t \ (V

0


 V

0

�

) = f0g .

(M3) Sin
e t 
ontains all the spa
es V

�


V

��

�

for � 6= 0 and is 
ontained in

L

�2suppV

V

�


V

��

�

,

we obtain

t = (t \ (V

0


 V

0

�

))� (

M

0 6=�2suppV

V

�


 V

��

�

):

Now (M3) follows from (M2).

(M4) follows from the equality V

0

= fv 2 V : t � v = f0gg as, in view of (M3), the spa
e

fv 2 V : t � v = f0gg 
oin
ides with the 
ommon annihilator of the spa
es V

��

�

, � 6= 0. A similar

argument applies to V

0

�

.

Conversely, assume that (M1)-(M4) are satis�ed. Then dimV

�


 V

��

�

= 1 for 0 6= � 2

suppV , and V

�

�

(V

�

) 6= f0g for � 6= �� imply that t is abelian and that ea
h element of t is

diagonalizable. Therefore t is a toral subalgebra of g = V 
V

�

(Lemma II.1). The 
entralizer of

t in g is 
ontained in g

0

and 
oin
ides with t� (V

0


 V

0

�

): Now (M2) implies that ea
h element

in V

0


 V

0

�

is nilpotent, so t is maximal toral.

Finally,

z

g

(t) = g

0

(t) =

M

�+�=0

V

�


 V

�

�

= t� (V

0


 V

0

�

):

Corollary II.4. If t is a maximal toral subalgebra, then (suppV ) n f0g � t

�

is a linearly

independent set.

Proof. The statement follows from the equality t =

L

0 6=�2suppV

V

�


 V

��

�

and from the

fa
t that � vanishes on

L

Æ 6=�2suppV

V

Æ


 V

�Æ

�

.

The next proposition shows that for a maximal toral subalgebra t the spa
es V

�

for � 6= 0

determine the spa
e V

0

(resp., V

�

�

for � 6= 0 determine V

0

�

).
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Proposition II.5. Let t � g be a maximal toral subalgebra. Then

V

0

=

\

0 6=�2suppV

(

\

� 6=Æ2supp V

(V

Æ

)

?

)

?

and V

0

�

=

\

0 6=�2suppV

�

(

\

� 6=�2suppV

�

(V

�

�

)

?

)

?

:

Proof. By Proposition II.3, V

0

�

=

T

0 6=�2suppV

(V

�

)

?

. Fix 0 6= � 2 suppV and pi
k

f

�

2 V

�

and f

�

�

2 V

��

�

with f

�

�

(f

�

) = 1. Consider an element ' 2

T

� 6=Æ2suppV

(V

Æ

)

?

.

Then '� '(f

�

)f

�

�

2 V

0

�

leads to ' 2 V

0

�

+ V

��

�

, and therefore to

V

0

�

+ V

��

�

=

\

� 6=Æ2suppV

(V

Æ

)

?

:

As V

0

�

(V

0

) = f0g , we have

V

0

=

\

0 6=�2suppV

(V

��

�

)

?

=

\

0 6=�2suppV

(V

0

�

+ V

��

�

)

?

=

\

0 6=�2suppV

\

� 6=Æ2suppV

(V

Æ

)

?

:

The se
ond equality is established in a similar way.

III. The stru
ture of Cartan subalgebras

De�nition III.1. (a) We de�ne a Cartan subalgebra h � g = gl(V; V

�

) as a lo
ally nilpotent

subalgebra h with h = z

g

(h

s

).

(b) A toral Cartan subalgebra of g is a toral subalgebra t � g with z

g

(t) = t .

(
) A generalized splitting Cartan subalgebra of g is a subalgebra h � g for whi
h g has a

generalized root de
omposition g = h � (

L

�2�

g

�

), where � := (supp g) n f0g . The Cartan

subalgebra h is splitting if, in addition, g is a weight h-module.

As all toral subalgebras are abelian by Lemma I.3, toral Cartan subalgebras are in parti
ular

Cartan subalgebras. For the same reason, toral Cartan subalgebras are maximal abelian, hen
e

in parti
ular maximal toral subalgebras of g , and are therefore 
overed by Proposition II.3.

Moreover, if h is a generalized splitting Cartan subalgebra, then the generalized root spa
es

are 
ommon eigenspa
es of (ad h)

s

= ad h

s


orresponding to non-zero eigenfun
tionals. This

immediately implies that z

g

(h

s

) = g

0

(h) = g

0

(h

s

) = h . Therefore h is a Cartan subalgebra in

the sense of De�nition III.1(a).

Lemma III.2. For a maximal toral subalgebra t � g the following are equivalent:

(1) t is a toral Cartan subalgebra.

(2) V

0

= f0g or V

0

�

= f0g .

Proof. This follows from the equality z

g

(t) = t� (V

0


 V

0

�

) (Proposition II.3).

Proposition III.3. For any maximal toral subalgebra t � g , h := z

g

(t) is an abelian self-

normalizing subalgebra of g with h = g

0

(h) = z

g

(h

s

) , and in parti
ular a Cartan subalgebra.

Proof. By Proposition II.3,

h = t� (V

0


 V

0

�

):

Furthermore, the equality V

0

�

(V

0

) = f0g implies that V

0


 V

0

�

is an abelian Lie algebra

su
h that (V

0


 V

0

�

)

2

= f0g , and thus h is an abelian subalgebra of g with h

s

= t and

h

n

= V

0


 V

0

�

. Hen
e h = z

g

(h

s

), and Lemma I.4 implies that h is self-normalizing. Finally,

h � g

0

(h) � g

0

(t) = z

g

(t) = h shows that h = g

0

(h).

The following theorem is our �rst main result. It implies that if K is algebrai
ally 
losed,

all Cartan subalgebras of g are 
entralizers of maximal toral subalgebras, and hen
e are as in

Proposition III.3.
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Theorem III.4. (Stru
ture Theorem for Cartan Subalgebras) Let h � g = gl(V; V

�

) be a

Cartan subalgebra for whi
h the abelian subalgebra h

s

� g is toral. (The latter is automati
 when

K = K .) Then

(1) h

s

is a maximal toral subalgebra of g with h = z

g

(h

s

) ;

(2) h = h

s

� (V

0


 V

0

�

) = (

L

0 6=�2suppV

V

�


 V

��

�

) � (V

0


 V

0

�

) , where V

0

=

L

�2suppV

V

�

and V

�

=

L

�2suppV

�

V

�

�

are the h

s

-module weight de
ompositions of V

0

and V

0

�

;

(3) h is abelian;

(4) if h is a generalized splitting Cartan subalgebra, then h is splitting.

Proof. (1) Let t � h

s

be a toral subalgebra. Then t is abelian (Lemma I.3) and therefore

t � z

g

(h

s

) = h , i.e., t � h

s

.

(2) follows from (1) and Proposition II.3.

(3) is a dire
t 
onsequen
e of (1), (2), and the equality V

0

�

(V

0

) = f0g (Proposition II.3(M2)).

(4) If g has a generalized h-root de
omposition, then g is a lo
ally �nite h

s

-module. Therefore

g =

M

�;�

V

�


 V

�

�

= V

0


 V

0

�

by Lemma II.2, and V

0

= V and V

0

�

= V

�

. Furthermore, V

0

�

(V

0

) = f0g and V

0

�

(V

�

) = f0g for

� 6= 0, i.e., V

0

�

(V ) = f0g . Hen
e V

0

�

= f0g (and similarly V

0

= f0g). This implies that h = h

s

,

i.e., that h is splitting.

In [PS03℄ a statement similar to Theorem III.4(4) is established. Namely the main result of

[PS03℄ 
laims that, for K = K , any subalgebra h whi
h yields a generalized root de
omposition

of g is a splitting Cartan subalgebra.

Corollary III.5. Any Cartan subalgebra h � g is abelian.

Proof. If K = K the statement is proved in Theorem III.4. Let

g := g


K

K = gl(V 


K

K ; V

�




K

K ):

Then h := h


K

K is a lo
ally nilpotent subalgebra of g and h

s

= h

s




K

K , whi
h dire
tly implies

that

z

g

(h

s

) = z

g

(h

s

) = z

g

(h

s

)


K

K = h:

Therefore h is a Cartan subalgebra of g . Hen
e h is abelian by Theorem III.4, and 
onsequently

h is abelian.

If K is algebrai
ally 
losed, Theorem III.4 enables us to give a des
ription of all Cartan

subalgebras of gl(V; V

�

) in terms of pure linear algebra.

We de�ne a dual system of one-dimensional subspa
es to be a family (V

j

)

j2J

of one-

dimensional subspa
es of V , together with a family of one-dimensional subspa
es ((V

j

)

�

)

j2J

of

V

�

su
h that (V

i

)

�

(V

j

) = Æ

ij

K .

Lemma III.6. Let (V

j

)

j2J

, ((V

j

)

�

)

j2J

be a dual system of one-dimensional subspa
es. Then

it is maximal if and only if the spa
es V

0

�

:= \

j

(V

j

)

?

� V

�

and V

0

:= \

j

((V

j

)

�

)

?

� V satisfy

V

0

�

(V

0

) = f0g .

Proof. If V

0

�

(V

0

) 6= f0g , there is an element e 2 V

0

and an element e

�

2 V

0

�

with e

�

(e) = 1,

therefore the dual system (V

j

)

j2J

, ((V

j

)

�

)

j2J


an be extended by the pair of one-dimensional

spa
es K e , K e

�

. Thus the maximality of the system (V

j

)

j2J

, ((V

j

)

�

)

j2J

implies V

0

�

(V

0

) = f0g .

Conversely, it is 
lear that V

0

�

(V

0

) 6= f0g if the dual system is not maximal.

The existen
e of maximal dual systems of one-dimensional subspa
es follows easily from

Zorn's Lemma. Proposition II.3, Theorem III.4, and Lemma III.6 imply immediately the follow-

ing proposition.
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Proposition III.7. Let (V

j

)

j2J

, ((V

j

)

�

)

j2J

be a dual system of one-dimensional subspa
es

with V

0

�

(V

0

) = f0g , or equivalently, a maximal dual system of one-dimensional subspa
es (see

Lemma III.6). Then t :=

L

j2J

V

j


 (V

j

)

�

� g is a maximal toral subalgebra and h := z

g

(t) is

a Cartan subalgebra of gl(V; V

�

) . If K = K , every Cartan subalgebra of g is obtained by this


onstru
tion.

Theorem III.4 and Proposition III.7 imply that, there are the following (mutually ex
lusive)

alternatives for a Cartan subalgebra h � g with toral h

s

:

(I) h 6= h

s

;

(II) h = h

s

is toral but not splitting;

(III) h = h

s

is splitting.

Clearly not all 
ases will always o

ur, as for instan
e 
ase (III) implies that the dimensions

of V and V

�


oin
ide, while for an in�nite-dimensional V they a priori need not 
oin
ide.

Moreover, Proposition I.2 shows that, when dimV is un
ountable, equality of the dimensions of

V and V

�

is not suÆ
ient for the o

uren
e of 
ase (III). The next three propositions des
ribe

pre
isely whi
h 
ases among (I)-(III) o

ur in the following situations: when V = V

�

= K

(J)

for an in�nite set J , when V is a Hilbert spa
e (here K = R; C ) and V

�

is the spa
e of


ontinuous linear fun
tionals on V , and when V is an arbitrary in�nite-dimensional ve
tor

spa
e and V

�

= V

�

.

Proposition III.8. Let J be an in�nite set. Then in g = gl(J;K ) all three types (I){(III) of

Cartan subalgebras, and, moreover, all dimensions of the spa
es V

0

� V and V

0

�

� V

�

do o

ur.

Proof. Here V = K

(J)

= V

�

. Write J as a disjoint union J = J

0

t J

1

and assume that

�: J

0

! J

1

is a surje
tion su
h that the inverse image of every element in J

1

is in�nite. Fix

a de
omposition into two disjoint subsets J

1

= J

+

1

t J

�

1

and put J

�

0

:= �

�1

(J

�

1

). If (e

j

)

j2J

denotes the 
anoni
al basis of V , set

V

j

:=

�

K (e

j

+ e

�(j)

); j 2 J

+

0

Ke

j

; j 2 J

�

0

and

(V

j

)

�

:=

�

Ke

j

; j 2 J

+

0

K (e

j

+ e

�(j)

); j 2 J

�

0

.

The families (V

j

)

j2J

0

; and ((V

�

)

j

)

j2J

0

; satisfy (V

i

)

�

(V

j

) = Æ

ij

K for i; j 2 J

0

and thus form

a dual system of one-dimensional subspa
es. Furthermore, if � 2 V

�

vanishes on all V

j

, then

�(e

j

) = ��(e

�(j)

) holds for ea
h j 2 J

+

0

. For i := �(j) we then have �(e

i

) = �(e

j

) for in�nitely

many indi
es j with �(j) = i . This implies that �(e

i

) = 0 for i 2 J

+

1

, and likewise �(e

j

) = 0

for j 2 J

+

0

. We also have �(e

j

) = 0 for j 2 J

�

0

, and therefore

V

0

�

= \

j

(V

j

)

?

= spanfe

j

: j 2 J

�

1

g

�

=

K

J

�

1

:

In a similar way we obtain

V

0

= \

j

((V

j

)

�

)

?

= spanfe

j

: j 2 J

+

1

g

�

=

K

J

+

1

:

In parti
ular, V

0

�

(V

0

) = 0, i.e. the dual system (V

j

)

j2J

0

, ((V

�

)

j

)

j2J

0

is maximal. Consequently,

for any in�nite 
ountable set J the spa
es V

0

and V

0

�


an have arbitrary pres
ribed dimensions

less or equal jJ j .

Proposition III.9. Let K = R; C , and V be an in�nite-dimensional Hilbert spa
e and V

�

be

the spa
e of 
ontinuous linear fun
tionals on V . Then any Cartan subalgebra h � g = gl(V; V

�

)

with toral h

s

has type (I) or (II), and both 
ases are possible.

Proof. Proposition I.2 implies that 
ase (III) does not o

ur. To 
onstru
t a Cartan subalgebra

of type (II), �x an orthonormal Hilbert basis (e

j

)

j2J

of V . Set V

j

:= K e

j

, and (V

j

)

�

= K e

�

j

,
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where v

�

(x) := hx; vi is the linear fun
tional 
orresponding to v 2 V . Then (V

j

)

j2J

, ((V

j

)

�

)

j2J

is a dual system of one-dimensional subspa
es with V

0

= f0g = V

0

�

, and it de�nes a Cartan

subalgebra of gl(V; V

�

) of type (II).

A Cartan subalgebra of type (I) 
an be 
onstru
ted as follows. Here we assume that J = N

and set f

n

:= e

�

1

+e

�

n+1

�2e

�

n+2

for n 2 N . Let V

n

:= Ke

n+1

and (V

n

)

�

:= Kf

n

. Then V

0

�

= Ke

�

1

and

V

0

=

\

n2N

ker f

n

= K

X

n�2

2

�n

e

n

� (V

0

�

)

?

:

Hen
e the maximal dual system of one-dimensional spa
es (V

n

)

n2N

, ((V

n

)

�

)

n2N

de�nes a Cartan

subalgebra of gl(V; V

�

) of type (I).

Proposition III.10. Let V be an in�nite-dimensional ve
tor spa
e and V

�

= V

�

. Then any

Cartan subalgebra h � g = gl(V; V

�

) with toral h

s

has type (II).

Proof. The o

uren
e of type (III) implies equality of the dimensions of V and V

�

, whi
h is

not the 
ase when V

�

= V

�

. It remains to show that a Cartan subalgebra 
annot have type (I).

Assume to the 
ontrary that, for some J , (V

j

)

j2J

, ((V

j

)

�

)

j2J

form a maximal dual system of

one-dimensional spa
es for whi
h V

0

6= f0g , V

0

�

6= f0g . Fix 0 6= e 2 V

0

. Then, sin
e V

�

= V

�

,

there is a linear fun
tional e

�

2 V

0

�

with e

�

(e) = 0. Consequently V

0

�

(V

0

) 6= f0g , whi
h is a


ontradi
tion.

We 
omplete this se
tion by addressing the problem of 
onjuga
y for maximal toral subal-

gebras and thus also for Cartan subalgebras.

Proposition III.11. All splitting Cartan subalgebras of g = gl(V; V

�

) are 
onjugate under the

group GL(V; V

�

) := fg 2 GL(V ): g

�

� V

�

= V

�

g . In general GL(V; V

�

)-
onjugate maximal toral

subalgebras have equal respe
tive dimensions of the subspa
es V

0

and V

0

�

, but equality of those

dimensions is not suÆ
ient for GL(V; V

�

)-
ojuga
y.

Proof. If h is a splitting Cartan subalgebra, Proposition II.3 implies that there is a basis

(v

�

)

�2A

of V and a dual basis (v

�

�

)

�2A

in V

�

su
h that

h =

M

�2A

(K v

�


 K v

�

�

):

In other words, h is the set of all elements of g whi
h are represented by diagonal matri
es with

respe
t to the basis (v

�

)

�2A

. This implies immediately the 
onjuga
y of all splitting Cartan

subalgebras of V 
 V

�

under GL(V; V

�

) (
f. [NS01℄ for the 
ase gl(J;K )).

It is 
lear that, if two maximal toral subalgebras are GL(V; V

�

)-
onjugate, their respe
tive

dimensions of the spa
es V

0

and V

0

�


oin
ide. The following example shows that this is not

suÆ
ient for GL(V; V

�

)-
onjuga
y.

Set V = V

�

:= K

(N)

. Fix an inje
tive map �:N ! N with �(n) > n for ea
h n 2 N , and

let S:V ! V; e

n

7! e

�(n)

be the 
orresponding shift operator (where (e

n

)

n2N

is the standard

basis of K

(N)

). Then the endomorphism A := 1 � S 2 End(V ) is inje
tive be
ause S has no

eigenve
tors in V , and is obviously not surje
tive as e

n

=2 A(V ) for any n . Furthermore, the

matrix A

>

:= 1� S

>

, 
onsidered as an operator on V

�

, is lo
ally unipotent with inverse given

by

P

n2N

0

(S

>

)

n

, and 
onsequently A

�

j

V

�

is an automorphism of V

�

.

As A is inje
tive, the one-dimensional subspa
es V

n

:= A(K e

n

) satisfy the 
onditions of

Proposition III.7 with (V

n

)

�

:= A

�

j

V

�

(K e

n

) and

V

0

=

\

n2N

(V

�

n

)

?

= V

?

�

= f0g and V

0

�

=

\

V

?

n

= kerA

�

j

V

�

= f0g:

Sin
e A is not surje
tive, V

0

= spanfV

n

: n 2 Ng 6= V . Therefore the toral subalgebra h is not

splitting and is not 
onjugate to any splitting Cartan subalgebra.
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IV. Alternative 
hara
terizations of Cartan subalgebras

In this and in the se
tion we 
onsider g = gl(V; V

�

) for an arbitrary subspa
e V

�

� V

�

separating

the points of V .

The following theorem is our se
ond main result.

Theorem IV.1. A subalgebra h � g is a Cartan subalgebra if and only if it satis�es one of

the following two equivalent 
onditions:

(C1') h is a lo
ally nilpotent self-normalizing subalgebra whose adjoint module is lo
ally �nite;

(C2') h 
oin
ides with the maximal lo
ally nilpotent h-submodule of g and the adjoint module of

h is lo
ally �nite.

First we observe that 
onditions (C1'), (C2') and (C3) are satis�ed for a subalgebra h � g

if and only if they are satis�ed for the subalgebra h � g , where k = k


K

K . Therefore, without

restri
ting generality, we will assume throughout this se
tion that K is algebrai
ally 
losed.

The fa
t that (C1') and (C2') are satis�ed for a Cartan subalgebra follows immediately

from Proposition III.3 and Theorem III.4. The following Lemma IV.2 and Proposition IV.4

imply that any subalgebra h satisfying (C1') or (C2') is a Cartan subalgebra. Note that, sin
e

K = K , the subalgebra h

s

� h of any subalgebra h satisfying (C1') or (C2') is toral.

Lemma IV.2. The 
onditions (C1') and (C2') are equivalent.

Proof. Assume that (C1') is satis�ed. Consider the maximal lo
ally nilpotent h-submodule

g

0

(h) � g . Sin
e the adjoint representation of h is lo
ally �nite, we have h � g

0

(h). Indeed,

otherwise for some h 2 h the �nite-dimensional submodule U(h) �h would have an h-eigenve
tor

of non-zero eigenvalue, whi
h would 
ontradi
t the lo
al nilpoten
e of h . To prove that h = g

0

(h),

assume to the 
ontrary that h 2 g

0

(h) is su
h that h

n

� h 2 h for a minimal n > 0. Then

h

n�1

� h 2 n

g

(h) = h , 
ontradi
ting the minimality of n . This shows that h = g

0

(h), i.e., that

(C1') implies (C2').

Conversely, let (C2') be satis�ed. Sin
e h �n

g

(h) � h and h is a lo
ally nilpotent h-module,

n

g

(h) is also a lo
ally nilpotent h-module. Therefore n

g

(h) � g

0

(h). Sin
e g

0

(h) = h , this gives

n

g

(h) � h , i.e., n

g

(h) = h .

Lemma IV.3. Condition (C2)' implies V

0

�

(V

0

) = f0g , where V

0

:= V

0

(h

s

) , V

0

�

:= V

0

�

(h

s

) .

Proof. By Proposition A in the Appendix, g

0

= V

0


 V

0

�

; where the supers
ript

0

indi
ates

maximal lo
ally �nite h

s

-submodule. Furthermore, the assumption that the adjoint a
tion of h

on h is lo
ally �nite implies h � g

0

. Hen
e the generalized weight h

s

-module de
omposition of

V

0

and V

0

�

and the equality h = g

0

(h) yield

h =

M

�2suppV

(V

�


 V

��

) = h

s

� (V

0


 V

0

�

):

The lo
al nilpoten
e of h implies now V

0

�

(V

0

) = f0g .

Proposition IV.4. Condition (C2') implies that h is a Cartan subalgebra.

Proof. The equality h = g

0

(h) implies that h is lo
ally nilpotent. Therefore Lemma I.4 yields

the in
lusion h � z

g

(h

s

). It remains to establish the opposite in
lusion z

g

(h

s

) � h .

For h 2 h

s

put U := h � V and

e

V := fv 2 V : h � v = 0g . Then U is a �nite-dimensional

spa
e and V = U �

e

V , V

�

=

e

V

?

�

e

V

�

, where

e

V

�

:= fv

�

2 V

�

: h � v

�

= 0g and

e

V

?

' U

�

. As

h � z

g

(h

s

), h preserves the four spa
es U;

e

V ;

e

V

�

, and

e

V

?

. Therefore the proje
tion

p

U

: g = V 
 V

�

! U 


e

V

?

�

=

gl(U;

e

V

?

)



12 Karl-Hermann Neeb * and Ivan Penkov **

with kernel V 


e

V

�

+

e

V 
 V

�

is h-equivariant. This gives

p

U

(h) = p

U

(g

0

(h)) = gl(U;

e

V

?

)

0

(h) = h \ gl(U;

e

V

?

) =: h

U

:

The 
entralizer of h in g = V 
 V

�

, and therefore the subalgebra h , is 
ontained in U 


e

V

?

+

e

V 


e

V

�

, thus

h = h

U

+ (h \ ker p

U

) = h

U

+ h \ gl(

e

V ;

e

V

�

):

As gl(

e

V ;

e

V

�

) 
ommutes with gl(U;

e

V

?

), we 
on
lude that

gl(U;

e

V

?

)

0

(h

U

) = gl(U;

e

V

?

)

0

(h) = h

U

;

and hen
e that h

U

is a Cartan subalgebra of gl(U;

e

V

?

)

�

=

gl(U). As gl(U) is redu
tive, we have

h

U

� h

s

and h

n

� U = f0g .

By 
onsidering h

U

� gl(U;

e

V

?

), we now see that the weight spa
es of h

s

in V and V

�

with

non-zero weights are one-dimensional. From the pre
eding argument we further 
on
lude that

h

n

Æ h

s

= f0g in EndV , whi
h, in view of [h

s

; h

n

℄ = f0g , implies h

n

�V � V

0

. By Proposition A

in the Appendix,

g

0

= (V 
 V

�

)

0

= V

0


 V

0

�

=

M

�;�

V

�


 V

�

�

:

In parti
ular h � z

g

(h

s

) � g

0

; and therefore

h �

M

�

V

�


 V

��

�

:

For 0 6= � we have seen above that dimV

�

= dim V

��

�

= 1; so that

M

� 6=0

V

�


 V

��

�

� h

s

;

be
ause h

s

� V

�

6= f0g implies V

��

�

(V

�

) 6= f0g . If A 2 h

s

\

�

V

0


 V

0

�

�

, then A annihilates

all weight spa
es V

�

with � 6= 0, and it also annihilates V

0

. Therefore A � V � V

0

leads to

A

2

= f0g ,k and hen
e to A = 0 as h

s


onsists of semisimple elements (Lemma II.1). This proves

h

s

=

M

� 6=0

V

�


 V

��

�

;

whi
h in turn yields

V

0

=

\

0 6=�

(V

��

�

)

?

and V

0

�

=

\

0 6=�

(V

�

)

?

:

Sin
e V

0

�

(V

0

) = f0g by Lemma IV.3, Proposition II.3 implies that h

s

is maximal toral and

z

g

(h

s

) = h

s


 (V

0


 V

0

�

) is abelian. Therefore

V

0


 V

0

�

� z

g

(h) � g

0

(h) = h;

in parti
ular z

g

(h

s

) � h .

It is an interesting open problem whether 
onditions (C1), (C2) and (C3) are equivalent for

gl(V; V

�

). Our results redu
e the problem to the question of existen
e for subalgebras of gl(V; V

�

)

satisfying (C1) or (C2) and su
h that their adjoint representation is not lo
ally �nite.
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V. The stru
ture of g

0

In this se
tion t is a �xed maximal toral subalgebra of g = gl(V; V

�

), h := z

g

(t) = t� (V

0


V

0

�

),

and the supers
ript ' indi
ates maximal lo
ally �nite t-submodule.

Lemma V.1. The subalgebra h � g

0

is a maximal toral Cartan subalgebra of g

0

with z(g

0

) =

V

0


V

0

�

. Furthermore, the de
omposition g

0

= h� (

L

�2�

g

�

) is a root de
omposition of g

0

with

respe
t to h .

Proof. The fa
t that the de
omposition g

0

= h�(

L

�2�

g

�

) is an h-root de
omposition is 
lear

from the very de�nition of this de
omposition and from the equality h = g

0

(h) (Proposition III.3).

The equality

[V

0


 V

0

�

; V

�


 V

�

�

℄ = f0g

for all �; � (Proposition II.3) implies that V

0


 V

0

�

� z(g

0

). Conversely, the in
lusion z(g

0

) �

z

g

(t) = h implies easily that z(g

0

) is not larger than V

0


 V

0

�

. Furthermore, the equality

h = t + z(g

0

) shows that the adjoint a
tion on g

0

of every element x 2 h is diagonalizable, i.e.,

that h is a toral Cartan subalgebra of g

0

. The maximality of g is an immediate 
orollary of the

equallity h = g

0

(h).

As a 
onsequen
e of Lemma V.1, the following theorem ([St99, Th. I.4℄) applies to the pair

(g

0

; h). If k is a lo
ally �nite Lie algebra whi
h admits a root de
omposition with respe
t to some

subalgebra h

k

, we 
all a root � integrable if the subalgebra of k generated by the root spa
es

k

��

is isomorphi
 to sl

2

(K ) .

Theorem V.2. (Levi de
omposition of lo
ally �nite split Lie algebras) Let k be a lo
ally

�nite Lie algebra with root de
omposition k = h

k

� (

L

�2�(k)

k

�

) with respe
t to a toral Cartan

subalgebra h

k

. Denote the set of integrable root by �

i

(k) � �(k) .

(1) The subspa
e s = span

�

�

i

(k) +

L

�2�

i

(k)

k

�

is a semisimple subalgebra of k .

(2) Let �

n

(k) := �(k) n�

i

(k) . The subspa
e r := z

h

k

(s) +

L

�2�

n

(k)

k

�

is the unique maximal

lo
ally solvable ideal of k , and u := z(k) +

L

�2�

n

(k)

k

�

is the unique maximal lo
ally nilpotent

ideal of k .

(3) If a is a ve
tor spa
e 
omplement to the subspa
e z(k) + span

�

�

i

(k) in h

k

, we have k

�

=

uo(soa) , where the Lie algebra l := soa is almost redu
tive, i.e., has a semisimple 
ommutator

algebra.

Lemma V.3. The subspa
es V

0


 V

0

�

and V

0


 V

0

�

are abelian ideals of g

0

with

[V

0


 V

0

�

; V

0


 V

0

�

℄ = V

0


 V

0

�

= z(g

0

):

Proof. The statement follows from the equalities

[V

0


 V

0

�

; V

0


 V

0

�

℄ = (V

0


 V

0

�

) � (V

0


 V

0

�

) = V

0


 V

0

�

;

[V

0


 V

0

�

; V

0


 V

0

�

℄ = (V

0


 V

0

�

) � (V

0


 V

0

�

) = V

0


 V

0

�

and

[V

0


 V

0

�

; V

0


 V

0

�

℄ = f0g = [V

0


 V

0

�

; V

0


 V

0

�

℄;

whi
h in turn follow from the equality V

0

�

(V

0

) = f0g .
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Proposition V.4. If 0 6= �; Æ 2 suppV , then the fun
tional �� Æ 2 h

�

is an integrable root

of g

0

with

g

0

��Æ

= V

�


 V

�Æ

�

:

If V

0

�

6= f0g , then a fun
tional 0 6= � 2 suppV is a non-integrable root with

g

0

�

= V

�


 V

0

�

;

and if V

0

6= f0g , a fun
tional 0 6= �� 2 suppV

�

is a non-integrable root with

g

0

��

= V

0


 V

��

�

:

The spa
e

u := V

0


 V

0

�

+ V

0


 V

�

=

M

0 6=�2suppV

(V

0


 V

��

�

+ V

�


 V

0

�

)

is the maximal lo
ally nilpotent ideal of g

0

.

Proof. For 0 6= �; Æ 2 suppV we have a root � � Æ 2 � with g

0

��Æ

� V

�


 V

�Æ

�

: Let

0 6= f

�

2 V

�

, � 6= 0. De�ne f

�

�

2 V

��

�

by f

�

�

(f

�

) = 1. Then

h

�;Æ

:= [f

�


 f

�

Æ

; f

Æ


 f

�

�

℄ = f

�


 f

�

�

� f

Æ


 f

�

Æ

satis�es �(h

�;Æ

) = 1 and Æ(h

�;Æ

) = �1. Therefore the roots �� Æ are integrable, whi
h implies

in parti
ular that g

0

��Æ

is one-dimensional, so that g

0

��Æ

= V

�


 V

Æ

:

Furthermore, Lemma V.3 implies that the root spa
es g

0

�

= V

�


 V

0

�

+ V

0


 V

��

�

, for

0 6= � 2 suppV , are 
ontained in the maximal lo
ally nilpotent ideal of g

0

.

The remaining assertions are dire
t 
onsequen
es of Theorem V.2.

The following theorem is a dire
t 
orollary of Theorem V.2 via the information provided

by Lemma V.3 and Proposition V.4.

Theorem V.5. (Stru
ture Theorem for g

0

) The Lie algebra g

0

is isomorphi
 to the semidire
t

produ
t uo l , where

u := V

0


 V

0

�

+ V

0


 V

0

�

is the Lie algebra with bra
ket

[(v 
 '); (y 
  )℄ = '(y) � v 
 v

�

;

and l

�

=

W

0


W

�

= gl(W;W

�

) for W := t � V and W

�

:= t � V

�

.

Appendix. A useful general proposition

The following proposition was 
ommuni
ated to us by I. Dimitrov and G. Zu
kerman and

is a generalized version of a proposition whi
h we had proved in a preliminary version of the

paper.

Let U and W be ve
tor spa
es. To any element x 2 U 
W we assign a subspa
e U

x

� U

in the following way. Write x as

P

j

u

j


 w

j

with linearly independent w

j

2 W , and set

U

x

:= spanfu

i

g . In a similar way we assign to x a subspa
e W

x

� W . To 
he
k that U

x

(and

similarly W

x

) does not depend on the presentation of x as

P

j

u

j


w

j

, it suÆ
es to identify U

x

with the image of the linear operator  (x) 2 Hom(W

�

; U), where  is the 
anoni
al in
lusion

U 
W ,! Hom(W

�

; U);  (u
 w)(�) := �(w)u:

This is a straightforward 
he
king whi
h we omit.

It is 
lear that dimU

x

<1 . Note also that for any subspa
e Y � U we have

Y 
W = fx 2 U 
W : U

x

� Y g;

and similarly for any z 2W ,

U 
 Z = fx 2 U 
W : W

x

� Zg:

Let now k be a Lie algebra. For any k-module Q , we denote by Q

0

the maximal lo
ally

�nite k-submodule of Q .
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Proposition A. For any k-modules M and N , we have

M

0


N

0

= (M 
N)

0

:

Proof. The in
lusion M

0


N

0

� (M 
N)

0

is obvious.

Fix 0 6= x 2 (M 
 N)

0

and a basis x

1

; : : : ; x

n

of U(k) � x with x

1

= x . Set Y :=

M

x

1

+ : : :+M

x

n

and Z := N

x

1

+ : : :+N

x

n

. Sin
e x 2M

x


N

x

� Y 
Z , it suÆ
es to prove that

Y � M

0

and Z � N

0

. We will show that Z � N

0

(the argument for Y is 
ompletely similar),

whi
h will follows from U(k) � Z � Z . For this it is enough to verify that k �N

x

i

� Z for any i

and any k 2 k .

Fix k and i and write x

i

as

P

j

m

j


 n

j

with linearly independent m

j

2 M . Then

k � x

i

=

P

j

k �m

j


 n

j

+

P

j

m

j


 k � n

j

. Sin
e k � x

i

2 Y 
Z and

P

j

k �m

j


 n

j

2M 
Z , we

have

P

j

m

j


 k �n

j

2M 
Z . Therefore N

P

j

m

j


k�n

j

� Z , i.e., k �n

j

2 Z . As the n

j

generate

N

x

i

, this implies k �N

x

i

2 Z .
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