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Abstract. Let V be a vector space over a field K of characteristic zero and V. be a space of
linear functionals on V which separate the points of V. We consider V®V, as a Lie algebra of finite
rank operators on V, and set g((V,V.):=V®V.. We define a Cartan subalgebra of gl(V,V.) as the
centralizer of a maximal subalgebra every element of which is semisimple, and then give the following
description of all Cartan subalgebras of gl(V,V.) under the assumption that K is algebraically closed.
A subalgebra of gl(V,V,) is a Cartan subalgebra if and only if it equals @;(V;®(V;).)®(V°®V?) for
some one-dimensional subspaces V;CV and (V;).CV. with (V;).(V;)=6;;K and such that the spaces
VO=n;(V;)1tCV. and V°=n;((V;).)LCV satisfy V°(V°)={0}. We then discuss explicit construc-
tions of subspaces V; and (Vj). as above. Our second main result claims that a Cartan subalgebra
of gl(V,V.) can be described alternatively as a locally nilpotent self-normalizing subalgebra whose
adjoint representation is locally finite, or as a subalgebra h which coincides with the maximal locally
nilpotent h-submodule of gi(V,V.), and such that the adjoint representation of h is locally finite.
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Introduction

It is an interesting question which class of subalgebras of an infinite-dimensional Lie algebra, over
a field K of characteristic zero, play a role similar to Cartan subalgebras of a finite-dimensional
Lie algebra. Despite the fact that infinite-dimensional Lie algebras have been studied extensively
in the last 30 years, there is no definitive answer to this question. The best understood cases are
those of Kac-Moody algebras and extended affine Lie algebras (see [BP95], [PK83], [AABGP97]
and the references therein), whose specific is that their Cartan subalgebras are finite-dimensional.
The simplest example of an infinite-dimensional Lie algebra whose Cartan subalgebras are no
longer finite-dimensional, is the Lie algebra gl of infinite matrices with finitely many non-zero
entries in K, and in the literature there is no systematic investigation of all Cartan subalgebras
of gl . The purpose of the present paper is to fill in this gap for gl and to the larger class of
Lie algebras gl(V, V.) defined below.

The following three definitions of a Cartan subalgebra h of a finite-dimensional Lie algebra
g are equivalent:
(C1) b is a locally nilpotent self-normalizing subalgebra;
(C2) b coincides with the maximal locally nilpotent h-submodule of g, i.e., h = g°(h), where

() ={z€g:(@neN) (adh)"(z) = {0}};

(C3) h is a locally nilpotent subalgebra which coincides with the set of all elements z € g for
which adz commutes with the abelian subalgebra (ad h)s consisting of all semisimple parts
(adh)s in the Jordan decomposition adh = (ad h)s + (adh), of adh for elements h € b
((ad h),, stands for the nilpotent part).

* Work supported in part by the University of California at Riverside and by a grant of the DFG.
** Work supported in part by MSRI, by an NSF grant, and by the Max Planck Institut fliir Mathematik in

Bonn.
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Since g is assumed finite-dimensional, “locally nilpotent” in the conditions (C1)-(C3) is of
course equivalent to “nilpotent”, but we have stated (C1)-(C3) in a form suitable also for the
more general class of locally finite Lie algebras we consider in this paper. The fact that (C1) is
equivalent to (C2) is well-known ([Bou90, Ch. VII]). The equivalence of (C2) and (C3) follows
from the equalities

g°(h) = () 8°(ad k) = () ker(ad ), = 34((ad b)s).

heh heb

If g is reductive over an algebraically closed field, every Cartan subalgebra b is maximal
toral, i.e., for every 0 # h € b, ad h is diagonalizable, and h is maximal with this property. This
is the key to one of the most important properties of a Cartan subalgebra h of a reductive Lie
algebra g: that (after a possible field extension) h yields a root decomposition of g.

Let V be a fixed (arbitrary) vector space over K and V* be its dual space. In what
follows we set g = gl(V,Vi) := V ® Vi, considered as a Lie algebra of finite rank operators
on V, where V, C V* is a subspace separating the points of V. If J is a set, we write K)
for the vector space with a fixed basis (e;)jes labeled by the elements of J. The standard
pairing K¥) x K) — K induces an injection K(7) — (K(/))* = K’ and for V =V, = KJ) |
g = gl(J,K) := gl(V, V,) is the Lie algebra of J x J-matrices with finitely many non-zero entries.
We set also gl := gl(N,K).

All Cartan subalgebras yielding a root decomposition of gl , i.e., the so called splitting
Cartan subalgebras, are well understood, see [NS01], [St01] and [PS03]. It is also known that there
are maximal toral subalgebras of gl., which do not yield a root decomposition, and therefore also
no generalized root decomposition ([PS03]). In particular, even if K is algebraically closed, none
of the conditions (C1)-(C3) implies the existence of a generalized root decomposition related to
b. In this paper we put the condition (C3) in the spotlight, as it relates h in a most transparent
way with the abelian subalgebra b, consisting of the semisimple parts of all h € b, and in this
way carries the most resemblance with the finite-dimensional case. More precisely, we define a
Cartan subalgebra of gl(V,V.) as a subalgebra satisfying (C3).

Our main result is a description, in terms of linear algebra, of all Cartan subalgebras of
g = gl(V, V,) for which s is toral. (The latter condition is automatic if K algebraically closed.)
In particular we prove that all Cartan subalgebras are abelian. As a corollary we obtain that
there are at most three types of Cartan subalgebras for which b, is toral: the ones for which the
inclusion hs C b is proper, the toral ones, i.e. those for which hh = b4, and finally, the splitting
ones for which h = 5 and g has a root decomposition with respect to h. We consider examples
of pairs V', V, for which not all types of Cartan subalgebras occur, and we show that all three
types do occur for gi(J,K).

As each Cartan subalgebra of gl(V,V,) is abelian, its adjoint module is trivial and in
particular locally finite. It is not clear if this latter property holds for any subalgebra of gl(V, V)
(in particular of gl ) which satisfies (C1) or (C2). However, our second main result claims that
if one strengthens (C1) and (C2) by the very natural additional requirement that the adjoint
module of h be locally finite, then the so obtained new conditions (C1’) and (C2’) are equivalent
to (C3) for subalgebras of g = gl(V, V).

Acknowledgments. We thank Helmut Strade for sharing an inspiring idea about describ-
ing the toral Cartan subalgebras of gl,,. We thank also Ivan Dimitrov and Gregg Zuckerman
for the permission to present in the Appendix a proposition they recently proved.

I. Preliminaries and notation

All vector spaces (and Lie algebras) are defined over K and K stands for the algebraic closure
of K. The superscript = denotes dual space. The vector spaces V and V, are fixed as above,
and the sign | always refers to the pairing V' x V, — K. If € is a Lie algebra, U(€) stands for
the enveloping algebra of €. In this paper N:= {1,2,3,...}.
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We call a Lie algebra € locally finite (resp., locally nilpotent) if every finite subset of £ is
contained in a finite-dimensional (resp., nilpotent) subalgebra. We call an ¢-module M locally
finite if each element m € M is contained in a finite-dimensional submodule, and we call M
locally nilpotent if for any m € M there exists an i € N with & -m = {0}. Furthermore, we say
that an E-module is a generalized weight t-module if M = @, cp. M*(E), where

M €)== {m € M:(Fi e N)(Vx € &) (z — A(z)1)" - m = 0}.
We define M to be a weight module, if, in addition,
M (&) = My(€) := {m € M:(Vz € £) x-m = \(z)m}
for each \ € €*. The support in £* of a module M is the set
supp M = {a € €*: M*(€) # {0}}.

If € is any Lie algebra and h C € is a locally nilpotent Lie subalgebra, we say that ¢
admits a generalized b-root decomposition (resp., an h-root decomposition) if ¢ is a generalized
h-weight module (resp., an h-weight module) with respect to the adjoint action, and, in addition,
b coincides with the maximal locally nilpotent h-submodule of €, i.e., h = €9(h).

In this paper we denote by ¢ a fixed Lie algebra of the form gi(V,V.), where V., C V* is
a subspace separating the points of V. Typical examples of this situation are as follows.

(a) Vi =V*. Then gl(V,V,) is the Lie algebra of finite rank operators on V.

(b) V=K =V, for aset J. Then gl(V,V,) = gl(J,K).

(¢) V is alocally convex real or complex vector space and V, is the space of continuous linear
functionals. As a consequence of the Hahn-Banach Extension Theorem, V, separates the
points of V. Here gl(V,V,) is the Lie algebra of continuous finite rank operators on V.

In general, the structure of the Lie algebra gl(V,V.) depends essentially on the choice of
the subspace Vi . As the following proposition shows, this is not the case when V' and V, are of
countable dimension.

Proposition I.1.  If V and V. are of countable dimension, then gl(V,V,) =gl .

Proof. We have to find a basis (f,)neny of V' for which the dual basis (f})nen € V* spans
V.

Fix a basis (en)neny of V' and a basis (p,)nen of Vi. We first change the enumeration
of the basis (¢n)nen by a permution o:N — N according to the following rule. Put V,, :=
span{ei,...,e,} for n € N, and let o1 be the minimal number j with ¢;(e1) # 0. Inductively

we proceed as follows. If o1, ..., 0 are chosen such that the restrictions of ¢, , ..., s, to Vj are
linearly independent, then we choose o1 as the minimal element in N\ {oy,...,0} for which
the restriction of ¢4, ,, to Vi1 is linearly independent from the restrictions of ¢, ,...,¢q, . As

the sequence (¢, )nen separates the points of V', the above procedure never stops and defines an
injection 0:N — N. To see that ¢ is surjective, hence a permutation, we argue by contradiction.
Assume that o is not surjective and pick the minimal element m € N\ o(N). Suppose that
{1,...,m =1} C {o1,...,01}. Then there exist A1,...,\; such that the linear functional

k
P = 0m — > Aj 0o
=

vanishes on ey,...,e,. From the linear independence of the sequence (p,)neny we infer that ¢!,
is non-zero, so that there exists a minimal N € N with ¢, (en) # 0. Then the restrictions of
Gors s Pon_1sPm t0 Vi are linearly independent, hence the restrictions of @g,, ..., Yon_1>Pm
to Vn are linearly independent. Thus ony = m, in contradiction with the choice of m. This
proves that o is a permutation, and hence that the functionals ¢,, form a basis of V.

Let (Vi)n :=span{@s,,...,¥s, }- Then (Vi),|v, = V,¥, and we can choose inductively a
basis (fn)nen for which Vi, = span{fi,..., fn} for n € N, and ¢, (fi) = d;; for i > j. In the
next step we alterate the basis (¢4, Jnen of Vi to a basis (vp)neny with (Vi) = span{vy,...,vn}
and v;(f;) = 0;; for all i,j € N, i.e., (Vy)nen is the dual basis to (f)nen. This proves that the
pair V,V, is equivalent to the pair K™ KN with the standard pairing. n
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The next proposition shows that the requirement dim V' = dim V, does not always lead to
a pairing equivalent to the standard pairing K(/) x K/) — K for some J.

Proposition 1.2.  Let K = R,C, and V be an infinite-dimensional Hilbert space and V, be
the space of continuous linear functionals on V. Then there is no (vector space) basis of V' such
that the dual basis belongs to Vi .

Proof. We argue by contradiction and assume that (f;);cs is a (vector space) basis of V' for
which the dual basis belongs to V.. Let (es)ses be an orthonormal Hilbert basis of V. Each
e, is a finite linear combination e, = ZjeJ ajsfi. Let Sop C S be an infinite countable subset.
Then the set Jo := {j € J:(Is € Sp)a;s # 0} is also countable. Furthermore,

H := ﬂ ker f7

Jj€J\Jo

is a closed subspace of V with (f;);es, as a (vector space) basis. On the other hand, Baire’s
Category Theorem implies that H is not the union of an ascending chain of finite-dimensional
subspaces, hence not of countable dimension. Contradiction. ]

Any element = € g = gl(V,V,) is a finite rank operator on V', hence has a Jordan
decomposition x = x5 + z, into a semisimple part x5 and a nilpotent part z, . As g is locally
finite, the operator ad z is locally finite for any x € g, and has a Jordan decomposition ad x =
(adz)s + (adx),. As adx; is semisimple and adz, is nilpotent, both Jordan decompositions
are compatible, i.e., (adz)s = adzs, (adz), = adz), .

We call a subalgebra t of a Lie algebra ¢ toral if for every element 2 € t the operator
adz : € — € is diagonalizable. In particular, every non-zero element of a toral subalgebra of
gl(V, V,) is semisimple (and if K is algebraically closed, a subalgebra is toral if and only if all its
nonzero elements are diagonalizable).

Lemma 1.3. FEvery toral subalgebra of a Lie algebra is abelian.

Proof. Let z,y € t. Since adz |¢ is diagonalizable, we can write y as y = ), yx with
[z,yx] = Ayx for A € K. Then, for any X\, (adyy)?(z) =0, and as ady, is also diagonalizable,
lyn,z] = (adyx)(z) = 0. Therefore [y,z] =3, [y, z] =0. [

For any subalgebra a C g, we denote by 34(a) the centralizer of a in g, by 3(a) - the center
of a, and by ng(a) - the normalizer of a in g.

Lemma I.4. Let h C g = gl(V, Vi) be a locally nilpotent subalgebra, and hs = {hs:h € h} be
the set of semisimple Jordan components of elements of . Then the following assertions hold:
(1) bs is an abelian Lie algebra;

(2) 34(bs) is a self-normalizing subalgebra of g;

(3) b Cng(h) C3q(hs).

Proof. (1) For each finite-dimensional nilpotent Lie algebra ¢ the set (ad£); commutes with
ad €, which implies [hs,h] C 3(h). Hence (adhs)?(h) = {0}, and the semisimplicity of the
elements of h; leads to [hs, h] = {0}. Therefore, for z,y € h, we have [ys, x] = [ys,xs] = 0. This
implies that 5+ ys is semisimple and [zs+ys, 2n +yn] = 0. From the finite-dimensional case we
derive that x, + y, is nilpotent, thus z +y = (vs +ys) + (£ + y») is the Jordan decomposition
of z +y. Therefore h; is a subspace, hence, in view of the equality [ys,zs] = 0, an abelian Lie
algebra.

(2)If z € g, y € hs and [z,y] # 0 then the semisimplicity of y implies [[z,y],y] # 0.
Therefore [z,y] € 34(hs) leads to [z,y] =0, i.e. to = € 34(hs).

(3) The inclusion h C ng4(h) is tautological, so we only need to establish the inclusion
ng(h) C 34(hs). Note that the argument in the proof of (1) implies hh C 34(h,). Furtermore,
by definition we have the relation [h,z] € h for each = € ny(fh). Since the semisimple part
(adh)s = adhs of adh can be obtained by applying a polynomial without constant term to
ad h, we also obtain (adhs)(z) € b, so the inclusion h C 34(hs) leads to (adhs)?(z) = 0. As
ad hs is semisimple, we obtain [hs,z] =0, i.e. ng(h) C 34(bs)-

[
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I1I. Maximal toral subalgebras

Lemma IL.1. An element x € g is ad-diagonalizable if and only if = is diagonalizable as an
operator on V .

Proof. Clearly, one can decompose V and V, as V=Uad W, V, = X ®Y, where U and
X are finite-dimensional z-invariant subspaces such that X ~ U*, and - W =0, z-Y = 0.
Therefore we can assume that z € gl(U, X) ~U @ U*.

If z is diagonalizable as an operator on V', then adx is diagonalizable with eigenvalues
Ai — Aj, where \; are the eigenvalues of z.

Assume now that adz is diagonalizable and observe that this implies that adz |gr,x) is
diagonlizable. This implies that z is semisimple. Let Aq,..., A, denote the eigenvalues of z
in K. Then \; — A;j are the eigenvalues of adz, and A; — A; € K. We may therefore write
Xi = A+ p; with p; € K. As the set of all ); is invariant under the Galois group Autx(K), the
affine space generated by all )\; contains a fixed point, i.e., an element of K. On the other hand,
this affine space is contained in A + K, which gives A € K. Therefore Ay,..., A\, € K, ie., x is
diagonalizable on U, and therefore on V. ]

In this section we consider a fixed toral subalgebra t C g = gl(V,V.). We write V' (resp.,
V!, ¢') for the maximal locally finite t-submodule of V' (resp., Vi, g). Since each element
x € t is diagonalizable (Lemma II.1), the action of t on the locally finite modules V' and V] is
simultaneously diagonalizable, i.e., V' and V. are weight t-modules. Let

Vi= p v oand V= §H WV

aEsupp V Besupp Vi

be the corresponding weight decompositions.

Lemma II1.2.

1) t-VCV and t-V, CV,/.

2 ¢g=V'aV!.

(3) ¢ =V'®V/! is an associative subalgebra of g =V ® V. and a weight t-module with respect
to the adjoint action. w

Proof. (1) For z € t, = -V is a finite-dimensional subspace of V' which is y-invariant for
every y € t as t is abelian. Hence -V C V'. Similarly z -V, Cc V.
(2) is a direct consequence of Proposition A in the Appendix.

(3) V' ®V/! is obviously an associative subalgebra of V ® V... Furthermore, V' ® V] is the tensor
product of the weight t-modules V' and V/, and is thus itself a weight t-module. ]

In view of Lemma I1.2(3), the weight decompositions of V' and V yield the root decom-
position
g'z@V“@Vf:gg(t)@(@g”), where g7 = @ Ve VA,
a,B ~Y#0 a+pB=v

Furthermore, 34(t) C ¢’ implies

tCs() =¢" = P Vee v, e
a€(supp V)N (—supp Vi)

In the sequel we are mainly interested in the centralizers of maximal toral subalgebras. We
start by a description of maximal toral subalgebras in terms of their action on V' and V.
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Proposition I1.3.  The subalgebra t is maximal toral if and only if the following conditions
are satisfied:

(M1) (supp V) \ {0} = —(supp Vi) \ {0} and dimV* =dimV, * =1 for any a € supp V' \ {0};
(M2) VO(V0) ={0} and (V°@V2)Nnt={0};

M3) t=Doracsuppr V@ Vi @

(M4) V*O = mO#aesuppV(Va)L and VO = ﬂO#BEsupp Vi (V*B)J_'

If these conditions are satisfied, then

) =to (Ve V).

Proof. Assume first that t is maximal toral.

(M1) From ¢ C @, ¢ eupp v)n(—supp vy VE O VY, VE(VE) = {0} for B # —a, and t- Vo # {0}
for a # 0, it follows that V,7*(V*) # {0}. Pick v € V* and ¢ € V,* with ¢(v) = 1. Then
v ® p € 34(t) is diagonalizable, hence contained in t by maximality. Therefore

{0}=vee, VeV, .
This implies in particular
{0} =@y, (kereNV*) @V = (kerpNV*) ® .

Thus kerp NV® = {0}, which yields V* = Kv for 0 # a € (suppV) N (—supp V). We
likewise see that V,”* = Kyp. In particular, V¥ @ V"> Ct. As t- V' = Py pequppv V" and
t- V! = Dossesupp v V2, we further see that supp Vi \ {0} = —supp V \ {0}.

(M2) Suppose that there exists ¢ € V2 and v € V° with ¢(v) = 1. As above, we see that
v ® ¢ € t, contradicting (v ® @) -v =v and v € V°. Therefore V2(V°) = {0}, which in turn
implies that each element in V° @ V0 is nilpotent. Hence tN (V° ® V2) = {0}.

(M3) Since t contains all the spaces V*®@V, * for a # 0 and is contained in
we obtain

a€csupp V Va®V*7Q’
t=n(V’avVha( @ Veev,?).
0#a€supp V

Now (M3) follows from (M2).

(M4) follows from the equality V° = {v € V:t-v = {0}} as, in view of (M3), the space
{v e V:t-v={0}} coincides with the common annihilator of the spaces V,”*, @ # 0. A similar
argument applies to V0.

Conversely, assume that (M1)-(M4) are satisfied. Then dimV* @ V7% =1 for 0 # a €
supp V', and V*B(V“) # {0} for B # —a imply that t is abelian and that each element of t is
diagonalizable. Therefore t is a toral subalgebra of g = V' ® V, (Lemma II.1). The centralizer of
t in g is contained in g’ and coincides with t® (V°?® V). Now (M2) implies that each element
in V° ® V2 is nilpotent, so t is maximal toral.

Finally,

3a() =g (t) = @ VeVl =te (Ve VD). [
a+B=0

Corollary IL.4.  If t is a mazimal toral subalgebra, then (supp V) \ {0} C t* is a linearly
independent set.
Proof.  The statement follows from the equality t = @y pcquppv V' ® V7% and from the

fact that o vanishes on @ equppv V° @ V0. u

The next proposition shows that for a maximal toral subalgebra t the spaces V¢ for a # 0
determine the space VO (resp., Vi’ for 8 # 0 determine V).
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Proposition I1.5. Let t C g be a mazimal toral subalgebra. Then

vVi=" C () HH" ed V?'= () ( () @HH-

0#a€suppV a#d€supp V' 0#B€Esupp V.. B#nEsupp Vi

Proof. By Proposition I1.3, V0 = ﬂO;éaEsuppV(Va)J_' Fix 0 # o € suppV and pick
fa € V* and fi € V7 with fi(fa) = 1. Consider an element ¢ € (M, 5equppv (V)"
Then ¢ — o(fa)f2 € V0 leads to ¢ € V2 + V,7®, and therefore to

V*O + V*—a — ﬂ (V(f)L-
a#dEsupp V'

As V2(V0) = {0}, we have

Ve= ] vt= ] Wevent= () N o)

0#a€supp V 0#a€supp V 0#a€suppV a#dEsupp V

The second equality is established in a similar way. ]

III. The structure of Cartan subalgebras

Definition ITI.1. (a) We define a Cartan subalgebra h C g = gl(V,V.) as a locally nilpotent
subalgebra b with b = 34(bs).

(b) A toral Cartan subalgebra of g is a toral subalgebra t C g with 34(t) = t.

(c) A generalized splitting Cartan subalgebra of g is a subalgebra h C g for which g has a
generalized root decomposition g = h @ (P, 8%), where A := (suppg) \ {0}. The Cartan
subalgebra § is splitting if, in addition, g is a weight h-module. |

As all toral subalgebras are abelian by Lemma 1.3, toral Cartan subalgebras are in particular
Cartan subalgebras. For the same reason, toral Cartan subalgebras are maximal abelian, hence
in particular maximal toral subalgebras of g, and are therefore covered by Proposition II.3.
Moreover, if § is a generalized splitting Cartan subalgebra, then the generalized root spaces
are common eigenspaces of (adh)s = adbhs corresponding to non-zero eigenfunctionals. This
immediately implies that 34(hs) = g°(h) = go(hs) = h. Therefore h is a Cartan subalgebra in
the sense of Definition III.1(a).

Lemma II1.2. For a mazimal toral subalgebra t C g the following are equivalent:

(1) t is a toral Cartan subalgebra.

(2) VO ={0} or V? ={0}.

Proof. This follows from the equality 34(t) = t® (V° ® V,?) (Proposition I1.3). ]

Proposition IIL.3.  For any mazimal toral subalgebra t C g, h := 34(t) is an abelian self-
normalizing subalgebra of g with h = g°(h) = 34(hs), and in particular a Cartan subalgebra.

Proof. By Proposition II.3,
h=ta (VO VD).

Furthermore, the equality V2(V?) = {0} implies that V° ® V? is an abelian Lie algebra
such that (V0 ® V?)> = {0}, and thus h is an abelian subalgebra of g with h; = t and
hn = VO ® V0. Hence h = 34(hs), and Lemma L4 implies that § is self-normalizing. Finally,
b C g°(h) C g°(t) = 34(t) = b shows that h = g°(h). u

The following theorem is our first main result. It implies that if K is algebraically closed,
all Cartan subalgebras of g are centralizers of maximal toral subalgebras, and hence are as in
Proposition III.3.
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Theorem III.4.  (Structure Theorem for Cartan Subalgebras) Let h C g = gl(V, Vi) be a

Cartan subalgebra for which the abelian subalgebra hs C g is toral. (The latter is automatic when

K =K.) Then

(1) bs is a mazimal toral subalgebra of g with h = 34(hs);

2 =0 (V°2V?) = (Boracsuppy V> @ Vi) & (VO @ VD), where V! = @ ycquppv V
and Ve = Djscqupp v, VE are the b, -module weight decompositions of V' and V! ;

(3) b is abelian;

(4) if b is a generalized splitting Cartan subalgebra, then b is splitting.

Proof. (1) Let t D hs be a toral subalgebra. Then t is abelian (Lemma I.3) and therefore

t g 3g(hs) = ha i'e'a t g hs-

(2) follows from (1) and Proposition II.3.

(3) is a direct consequence of (1), (2), and the equality V,2(V?) = {0} (Proposition II.3(M2)).

(4) If g has a generalized h-root decomposition, then g is a locally finite hs-module. Therefore

s=PVveevi=veV
o,

by Lemma I1.2, and V' =V and V! = V.. Furthermore, V?(V?) = {0} and V? (V%) = {0} for
a#0,ie, VO(V)={0}. Hence V! = {0} (and similarly V° = {0} ). This implies that h = b,
i.e., that b is splitting. ]

In [PS03] a statement similar to Theorem ITI.4(4) is established. Namely the main result of
[PS03] claims that, for K = KK, any subalgebra f which yields a generalized root decomposition
of g is a splitting Cartan subalgebra.

Corollary II1.5.  Any Cartan subalgebra h C g is abelian.
Proof. If K=K the statement is proved in Theorem IIL.4. Let

g:= g®KK: g[(V ®KK,V* ®KK).

Then § := h®kK is a locally nilpotent subalgebra of g and b, = b, ®x K, which directly implies
that

55(63) = 5§(hs) = 59(’]5) QK K= E

Therefore h is a Cartan subalgebra of g. Hence § is abelian by Theorem I1I.4, and consequently
b is abelian. =

If K is algebraically closed, Theorem III.4 enables us to give a description of all Cartan
subalgebras of gl(V,V.) in terms of pure linear algebra.

We define a dual system of one-dimensional subspaces to be a family (Vj);es of one-
dimensional subspaces of V', together with a family of one-dimensional subspaces ((V}).)jes of
Vi such that (V;).(V;) = §;K.

Lemma IIL.6. Let (V;)jcs, (Vj)s)jes be a dual system of one-dimensional subspaces. Then
it is mazimal if and only if the spaces V0 := N;(V;))t C Vi and VO :=n;((V;).)t CV satisfy
v2(Ve) ={o0}.

Proof. If V2 (V?) # {0}, there is an element e € V° and an element e, € V? with e.(e) =1,
therefore the dual system (Vj);jcs, ((Vj)«)jes can be extended by the pair of one-dimensional
spaces Ke, Ke, . Thus the maximality of the system (V});er, ((V})«)jes implies V2(V?) = {0}.
Conversely, it is clear that V,2(V9) # {0} if the dual system is not maximal. ]

The existence of maximal dual systems of one-dimensional subspaces follows easily from
Zorn’s Lemma. Proposition I1.3, Theorem II1.4, and Lemma II1.6 imply immediately the follow-
ing proposition.
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Proposition IIL.7.  Let (V})jcr, ((Vj)«)jes be a dual system of one-dimensional subspaces
with V2(V9) = {0}, or equivalently, a mazimal dual system of one-dimensional subspaces (see
Lemma IIL.6). Then t:=€P;c;V; ® (Vj)« C g is a mazimal toral subalgebra and b := 34(t) is
a Cartan subalgebra of gl(V,V.). If K = K, every Cartan subalgebra of g is obtained by this
construction. ]

Theorem II1.4 and Proposition ITI.7 imply that, there are the following (mutually exclusive)
alternatives for a Cartan subalgebra §h C g with toral hs:
@M b #bs;

(I) b = by is toral but not splitting;
(III) h = b, is splitting.

Clearly not all cases will always occur, as for instance case (III) implies that the dimensions
of V and V. coincide, while for an infinite-dimensional V' they a priori need not coincide.
Moreover, Proposition 1.2 shows that, when dim V' is uncountable, equality of the dimensions of
V and V. is not sufficient for the occurence of case (IIT). The next three propositions describe
precisely which cases among (I)-(IIT) occur in the following situations: when V = V, = K)
for an infinite set J, when V is a Hilbert space (here K = R,C) and V. is the space of
continuous linear functionals on V', and when V is an arbitrary infinite-dimensional vector
space and V, = V™.

Proposition IIL.8.  Let J be an infinite set. Then in g = gl(J,K) all three types (I)—(III) of
Cartan subalgebras, and, moreover, all dimensions of the spaces V° CV and V? CV, do occur.

Proof. Here V = K) = V.. Write J as a disjoint union J = Jp U J; and assume that
n:JJo — Jp is a surjection such that the inverse image of every element in J; is infinite. Fix
a decomposition into two disjoint subsets J; = J;" U J; and put Ji := n (JE). I (ej)jes
denotes the canonical basis of V', set

V; = {]K(ej + eﬂ(j))’ ] € JS_
]Kej, VRS JO_
and ' N
(Vi) :={K€j’ 7€y
K(ej +eny), € Jy -
The families (V;)jez,, and ((Vi);)jet,, satisfy (Vi).(V;) = 6;;K for 4,5 € Jo and thus form
a dual system of one-dimensional subspaces. Furthermore, if o € V. vanishes on all V;, then
a(e;) = —a(ey(j)) holds for each j € J . For i := n(j) we then have a(e;) = a(e;) for infinitely
many indices j with 7(j) = . This implies that a(e;) =0 for i € J;", and likewise a(e;) = 0
for j € J;7. We also have a(e;) = 0 for j € J; , and therefore

V0 =n;(V;)* =span{e;:j € J;} =K1 .
In a similar way we obtain
. +
V? =n;((V;)«)" =spanfe;:j € JF} =K.

In particular, V2(V?) =0, i.e. the dual system (V});ez,, ((Vi)j)jes, is maximal. Consequently,
for any infinite countable set J the spaces V° and V? can have arbitrary prescribed dimensions
less or equal |J|. ]

Proposition II1.9. Let K=R,C, and V be an infinite-dimensional Hilbert space and V, be
the space of continuous linear functionals on V. Then any Cartan subalgebra h C g = gl(V, V)
with toral bs has type (I) or (II), and both cases are possible.

Proof. Proposition 1.2 implies that case (III) does not occur. To construct a Cartan subalgebra
of type (II), fix an orthonormal Hilbert basis (ej)jes of V. Set V; := Ke;, and (V;). = Kej,
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where v*(x) := (z,v) is the linear functional corresponding to v € V. Then (V})jer, ((Vj)«)jes
is a dual system of one-dimensional subspaces with V0 = {0} = V?, and it defines a Cartan
subalgebra of gl(V,V.) of type (II).

A Cartan subalgebra of type (I) can be constructed as follows. Here we assume that J = N
and set f, 1= ef+ek, ; —2e},, for n € N. Let V,, := Ke,yq and (V,,)s := Kf,,. Then V! = Ke}
and

VO=(Nkerf, =K> 27", C (V)"
neN n>2

Hence the maximal dual system of one-dimensional spaces (V,)nen, ((Vi)«)nen defines a Cartan
subalgebra of gl(V,V,) of type (I). ]

Proposition II1.10. Let V' be an infinite-dimensional vector space and V, =V*. Then any
Cartan subalgebra h C g = gl(V, V) with toral bs has type (II).

Proof. The occurence of type (III) implies equality of the dimensions of V' and V., which is
not the case when V., = V*. It remains to show that a Cartan subalgebra cannot have type (I).
Assume to the contrary that, for some J, (Vj)jes, ((Vj)«)jes form a maximal dual system of
one-dimensional spaces for which V% # {0}, V0 # {0}. Fix 0 # e € V°. Then, since V* =V,
there is a linear functional e, € V? with e.(e) = 0. Consequently V2(V°) # {0}, which is a
contradiction. ]

We complete this section by addressing the problem of conjugacy for maximal toral subal-
gebras and thus also for Cartan subalgebras.

Proposition I11.11.  All splitting Cartan subalgebras of g = gl(V,V.) are conjugate under the
group GL(V,V,) := {g € GL(V):g* - V. = Vi.}. In general GL(V,V.)-conjugate mazimal toral
subalgebras have equal respective dimensions of the subspaces V° and VL, but equality of those
dimensions is not sufficient for GL(V,V.) -cojugacy.

Proof. If b is a splitting Cartan subalgebra, Proposition II.3 implies that there is a basis
(Va)aca of V and a dual basis (v%)aeca in Vi such that

h = P (Kva @ Ko},).

acA

In other words, h is the set of all elements of g which are represented by diagonal matrices with
respect to the basis (vy)aca - This implies immediately the conjugacy of all splitting Cartan
subalgebras of V ® V, under GL(V,V,) (cf. [NSO1] for the case gl(.J,KK)).

It is clear that, if two maximal toral subalgebras are GL(V, V. )-conjugate, their respective
dimensions of the spaces V? and V) coincide. The following example shows that this is not
sufficient for GL(V, V,)-conjugacy.

Set V =V, := KM . Fix an injective map 7:N = N with n(n) > n for each n € N, and
let S:V — V,en = e,(,) be the corresponding shift operator (where (e,)nen is the standard
basis of K™ ). Then the endomorphism A := 1 — S € End(V) is injective because S has no
eigenvectors in V', and is obviously not surjective as e, ¢ A(V) for any n. Furthermore, the
matrix AT := 1 — ST, considered as an operator on V,, is locally unipotent with inverse given
by > nen, (ST)™, and consequently A* |y, is an automorphism of V.

As A is injective, the one-dimensional subspaces V,, := A(Ke, ) satisfy the conditions of
Proposition IT1.7 with (V},). := A* |y« (Key,) and

VO=( ) =v={0} and V) =(V;"=kerA*|y, = {0}.
neN

Since A is not surjective, V' = span{V,, : n € N} # V. Therefore the toral subalgebra f is not
splitting and is not conjugate to any splitting Cartan subalgebra. ]
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IV. Alternative characterizations of Cartan subalgebras

In this and in the section we consider g = gl(V, V) for an arbitrary subspace Vi, C V* separating
the points of V.
The following theorem is our second main result.

Theorem IV.1. A subalgebra h C g is a Cartan subalgebra if and only if it satisfies one of

the following two equivalent conditions:

(C1") b is a locally nilpotent self-normalizing subalgebra whose adjoint module is locally finite;

(C2") b coincides with the mazimal locally nilpotent §-submodule of g and the adjoint module of
b is locally finite. ]

First we observe that conditions (C1’), (C2’) and (C3) are satisfied for a subalgebra h C g
if and only if they are satisfied for the subalgebra h C g, where £ = &€ ®x K. Therefore, without
restricting generality, we will assume throughout this section that K is algebraically closed.

The fact that (C1’) and (C2’) are satisfied for a Cartan subalgebra follows immediately
from Proposition IT1.3 and Theorem II1.4. The following Lemma IV.2 and Proposition IV.4
imply that any subalgebra h satisfying (C1’) or (C2’) is a Cartan subalgebra. Note that, since
K = K, the subalgebra b, C h of any subalgebra b satisfying (C1’) or (C2’) is toral.

Lemma IV.2. The conditions (C1°) and (C2’) are equivalent.

Proof. Assume that (C1’) is satisfied. Consider the maximal locally nilpotent h-submodule
g°(h) C g. Since the adjoint representation of b is locally finite, we have h C g°(h). Indeed,
otherwise for some h € f the finite-dimensional submodule U(h)-h would have an h-eigenvector
of non-zero eigenvalue, which would contradict the local nilpotence of . To prove that h = g°(p),
assume to the contrary that h € g°(f) is such that h™ - h € b for a minimal n > 0. Then
h~! - h € ng(h) = b, contradicting the minimality of n. This shows that h = g°(h), i.e., that
(C1’) implies (C27).

Conversely, let (C2’) be satisfied. Since h-ng(h) C b and h is a locally nilpotent h-module,
ng(h) is also a locally nilpotent h-module. Therefore ng(h) C g°(h). Since g°(h) = b, this gives

ng(b) g b: i'e'a ng(h) = h u

Lemma IV.3. Condition (C2) implies V)(V°®) = {0}, where VO :=VO(h5), V2 :=V2(hs).

Proof. By Proposition A in the Appendix, g’ = V' ® V!, where the superscript ' indicates
maximal locally finite hs-submodule. Furthermore, the assumption that the adjoint action of
on b is locally finite implies h C g’. Hence the generalized weight hs-module decomposition of
V' and V! and the equality h = g°(h) yield

h= P VeV )=ha( V).

a€supp V
The local nilpotence of h implies now V2(V?) = {0}. L]

Proposition IV.4.  Condition (C2’) implies that b is a Cartan subalgebra.

Proof. The equality h = g°(h) implies that b is locally nilpotent. Therefore Lemma 1.4 yields
the inclusion h C 34(hs). It remains to establish the opposite inclusion 34(hs) C b.

For h € hs put U :=h-V and V:={veV:h-v=0}. Then U is a finite-dimensional
space and V = U@V Vi —VL@V*,where V* = {v* € Vi:h-v, =0} and VL ~U*. As
h C34(hs), b preserves the four spaces U, V V*, and VL. Therefore the projection

prig=VeoV, U V:2g(U VY
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with kernel V ® ‘7* + 1% ® Vi is h-equivariant. This gives
pu () = pu(a”(h)) = sl(U,V)°(h) = h N gl(U, V") =: by,

The centralizer of h in g =V ® Vi, and therefore the subalgebra b, is contained in U ® V4
V ® Vi, thus

h = by + (h Nkerpy) = by + b N gl(V, V).

As g[(‘~/, ‘7*) commutes with gl(U, ‘7J-), we conclude that
al(U, V)  (hy) = gl(U, VH)°(h) = b,

and hence that by is a Cartan subalgebra of gl(U, VL) = gl(U). As gl(U) is reductive, we have
by Cbhs and b, -U = {0}

By considering hy C gl(U, 17”-), we now see that the weight spaces of hs in V and V, with
non-zero weights are one-dimensional. From the preceding argument we further conclude that
hnobs = {0} in End V', which, in view of [hs, h,] = {0}, implies b, -V C V°. By Proposition A
in the Appendix,

d=Vel) =VeV =PVvev’
B
In particular h C 34(hs) C g’, and therefore
hcPveav™
(e
For 0 # a we have seen above that dim V® = dim V7% = 1, so that

Pveevieco,,
a0

because hs - Ve # {0} implies V,7*(V®) # {0}. If A € h, N (VO ® V?), then A annihilates
all weight spaces V@ with a # 0, and it also annihilates V°. Therefore 4 -V C V' leads to
A% = {0} k and hence to A = 0 as b, consists of semisimple elements (Lemma IL.1). This proves

b, =PV,
a0

which in turn yields
VO= (v, and V2= () (V)L
0#a 0#a

Since V2(V?) = {0} by Lemma IV.3, Proposition IL.3 implies that b, is maximal toral and
3a(hs) = b ® (VO @ V) is abelian. Therefore

VOV Ciqe(h) Ca’(h) =,

in particular 34(hs) Cb. [

It is an interesting open problem whether conditions (C1), (C2) and (C3) are equivalent for
gl(V, V). Our results reduce the problem to the question of existence for subalgebras of gl(V, V)
satisfying (C1) or (C2) and such that their adjoint representation is not locally finite.
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V. The structure of ¢

In this section t is a fixed maximal toral subalgebra of g = gl(V, Vi), b :=34(t) =t (VO VD),
and the superscript ’ indicates maximal locally finite t-submodule.

Lemma V.1. The subalgebra h C ¢’ is a mazimal toral Cartan subalgebra of g' with 3(g') =
VO@V?. Furthermore, the decomposition g’ = h® (e a) is a root decomposition of g' with
respect to hy.

Proof.  The fact that the decomposition g’ = hd (P, A a) is an h-root decomposition is clear
from the very definition of this decomposition and from the equality h = g°(h) (Proposition I1I.3).
The equality

VO V2, Ve Ve = {0}

for all a,3 (Proposition I1.3) implies that V° ® V C 3(g’). Conversely, the inclusion 3(g') C
30(t) = b implies easily that 3(g') is not larger than V° ® V2. Furthermore, the equality
h = t+ 3(g') shows that the adjoint action on g’ of every element x € § is diagonalizable, i.e.,
that b is a toral Cartan subalgebra of g’. The maximality of g is an immediate corollary of the
equallity h = g°(b). [

As a consequence of Lemma V.1, the following theorem ([St99, Th. I.4]) applies to the pair
(¢',h). If € is alocally finite Lie algebra which admits a root decomposition with respect to some
subalgebra he, we call a root a integrable if the subalgebra of € generated by the root spaces
£, is isomorphic to sl>(K).

Theorem V.2. (Levi decomposition of locally finite split Lie algebras) Let € be a locally
finite Lie algebra with root decomposition € = b (eaaeA(e) t,) with respect to a toral Cartan
subalgebra he. Denote the set of integrable root by A;(€) C A(E).

(1) The subspace s = span A;(€) + Daca;(e) ta is a semisimple subalgebra of .

(2) Let Ay(8) := A(E) \ Ai(E). The subspace v := 34,(5) + Doca, (e b is the unique mazimal
locally solvable ideal of €, and u := 3(€) + @aeAn(e) €ty is the unique mazximal locally nilpotent
ideal of t.

(3) If a is a vector space complement to the subspace 3(€) + spanA;(£) in he, we have ¢ =
ux(sxa), where the Lie algebra [ := s X a is almost reductive, i.e., has a semisimple commutator
algebra. ]

Lemma V.3. The subspaces V' @ V0 and V°® @ V! are abelian ideals of g' with
V'V, Ve V]]=V’a V) =;(d.
Proof. The statement follows from the equalities
VeV, VieV]=V'2V) VeV)=V'aV/,

VeV, ,VeVl]=V'eV) VeV)) =V eV

and
VeV, ViV ]i={0=V'a V>V eV,

which in turn follow from the equality V?(V°) = {0}. ]
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Proposition V.4. If 0 # a,6 € supp V', then the functional « — § € h* is an integrable root
of g with
g, =V V"
If V9 # {0}, then a functional 0 # o € supp V' is a non-integrable root with
ga =V* 0V,
and if VO # {0}, a functional 0 # —a € supp Vi is a non-integrable root with
g, =V'eV, "
The space
w=Vell+V'eV.= P ('eV, +V V)
0#a€supp V
is the maximal locally nilpotent ideal of g’ .
Proof. For 0 # a,0 € suppV we have a root @ — ¢ € A with g/, ; D Ve ® V0. Let
0# fa €V, a#0. Define fX €V, * by fi(fa) =1. Then
has = [fa ® f5, fs @ fal = fa ® fo =[5 @ 5
satisfies a(hqa,s) =1 and d(hq,s) = —1. Therefore the roots o — § are integrable, which implies
in particular that g/,_s is one-dimensional, so that g/, _; =V ® V°.
Furthermore, Lemma V.3 implies that the root spaces g, = V¥ @ V0 + V° @ V72, for

0 # a € supp V, are contained in the maximal locally nilpotent ideal of g’.
The remaining assertions are direct consequences of Theorem V.2. ]

The following theorem is a direct corollary of Theorem V.2 via the information provided
by Lemma V.3 and Proposition V.4.

Theorem V.5.  (Structure Theorem for g') The Lie algebra g' is isomorphic to the semidirect
product u x [, where

u=VeV/ +vV oV
is the Lie algebra with bracket

[(v® ), (y @ )] = p(y) -v@ 0",
and [ZW' @ W, = gl(W,W,) for W:=t-V and W, :=t-V,. m

Appendix. A useful general proposition

The following proposition was communicated to us by I. Dimitrov and G. Zuckerman and
is a generalized version of a proposition which we had proved in a preliminary version of the
paper.

Let U and W be vector spaces. To any element x € U ® W we assign a subspace U, C U
in the following way. Write  as ), u; ® w; with linearly independent w; € W, and set
U, := span{u;}. In a similar way we assign to = a subspace W, C W. To check that U, (and
similarly W, ) does not depend on the presentation of z as Zj uj; ®@wj, it suffices to identify U,
with the image of the linear operator 1(z) € Hom(W*,U), where ¢ is the canonical inclusion

U@W < Hom(W*,U), ¢(u® w)(a):=alw)u.

This is a straightforward checking which we omit.
It is clear that dim U, < co. Note also that for any subspace Y C U we have

YoW={zecUW .U, CY},
and similarly for any z € W,
UZ={zcUcW: :W, CZ}.

Let now ¢ be a Lie algebra. For any €-module @, we denote by @' the maximal locally
finite £-submodule of Q.
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Proposition A. For any t-modules M and N, we have
M ®N' =(M®N)'.

Proof. The inclusion M'® N' C (M ® N)' is obvious.

Fix 0 # z € (M ® N)" and a basis z1,...,z, of U(¢) -z with z; = z. Set YV :=
My, +...+M,, and Z := Ny, +...+ N, . Since z € M, ® N, C Y ® Z, it suffices to prove that
Y C M and Z C N'. We will show that Z C N’ (the argument for Y is completely similar),
which will follows from U(€) - Z C Z. For this it is enough to verify that k- N,, C Z for any i
and any k € €.

Fix k£ and 7 and write z; as Zj m; ® n; with linearly independent m; € M. Then
kxi=3%k-mj@n;+3 ;m;®k-n;. Since k-2; €Y ®Z and ), k-m;®n; € M®Z, we
have 3, m;®@k-n; € M @ Z. Therefore sz myokn; C 25 1€, k-nj € Z. As the n; generate

N, , this implies k- N,, € Z. |
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