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Abstra
t

The 
lassi
al Prin
iple of Equivalen
e ensures that a life insuran
e 
om-

pany 
an a

omplish that the mean balan
e per 
ontra
t 
onverges to

zero almost surely for an in
reasing number of 
lients. In an axiomati


approa
h, this idea is adapted to the general 
ase of sto
hasti
 �nan
ial

markets. In a

ordan
e with existing results, the implied minimum fair

pri
e of general life insuran
e produ
ts is then uniquely determined by

the produ
t of the given equivalent martingale measure of the �nan
ial

market with the probability measure of the biometri
 state spa
e. A

detailed histori
al example 
on
erning 
ontra
t pri
ing and valuation is

given.
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1 Introdu
tion

In traditional life insuran
e mathemati
s, �nan
ial markets are assumed to

be deterministi
. Under this assumption, the philosophy behind the 
lassi
al

Prin
iple of Equivalen
e is that a life insuran
e 
ompany should be able to a
-


omplish that the mean balan
e per 
ontra
t 
onverges to zero almost surely

for an in
reasing number of 
lients. Roughly speaking, premiums are 
hosen

�
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su
h that in
omes and losses are \balan
ed in the mean". This idea leads to

a valuation method usually 
alled \Expe
tation Prin
iple" and relies on two

important ingredients: the sto
hasti
 independen
e of individual lifes and the

Strong Law of Large Numbers. In modern life insuran
e mathemati
s, where

�nan
ial markets are sensibly assumed to be sto
hasti
 and where more gen-

eral produ
ts (e.g. unit-linked ones) are taken into 
onsideration, the valuation

prin
iple whi
h is widely a

epted is also an expe
tation prin
iple. However,

the respe
tive probability measure is di�erent as the minimum fair pri
e (or

present value) of an insuran
e 
laim is determined by the no-arbitrage pri
ing

method as it is known from �nan
ial mathemati
s. The respe
tive equiv-

alent martingale measure (EMM) is the produ
t of the given EMM of the

�nan
ial market with the probability measure of the biometri
 state spa
e.

Although resear
h on the valuation of unit-linked produ
ts already started in

the late 1960s, one of the �rst results (for a parti
ular 
ontra
t) that was in

its 
ore identi
al to the mentioned produ
t measure approa
h was Brennan

and S
hwartz (1976). The most re
ent papers mainly dedi
ated to valuation

by this approa
h are (for the Bla
k-S
holes model) Aase and Persson (1994)

and (for a simple sto
hasti
 interest rate model) Persson (1998). A brief his-

tory of valuation in (life) insuran
e 
an be found in M�ller (2002) (the works

M�ller (2002, 2003a and 2003b) also 
onsider valuation, but fo
us on hedging,

resp. advan
ed premium prin
iples). Again, one should have a look at the

assumptions 
on
erning the 
onsidered valuation prin
iple. Aase and Persson

(1994), but also other authors, a priori suppose independen
e of �nan
ial and

biometri
 events. An arbitrage-free and 
omplete �nan
ial market ensures the

uniqueness of the (�nan
ial) EMM. The use of the produ
t measure as men-

tioned above is usually explained by the risk-neutrality of the insurer towards

biometri
 risks (
f. Aase and Persson, 1994; Persson, 1998). In M�ller (2001),

a further good reason 
an be found: the produ
t measure 
oin
ides trivially

with the so-
alled minimal martingale measure (
f. S
hweizer, 1995).

Apart from these reasons for the 
onsidered produ
t measure approa
h,

the aim of this paper is the dedu
tion of a valuation prin
iple by an adaption

of the 
lassi
al demand for 
onvergen
e of mean balan
es due to the Law of

Large Numbers. This idea seems to be new. In a dis
rete �nite time frame-

work, it is 
arried out by an axiomati
 approa
h whi
h mainly re
e
ts the


ommonly a

epted assumptions in the modern theory of life insuran
e (as al-

ready mentioned: independen
e of individuals, independen
e of biometri
 and
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�nan
ial events, no-arbitrage pri
ing et
.). The resulting valuation prin
iple

is in a

ordan
e with the above mentioned results sin
e the implied mini-

mum fair pri
e for general life insuran
e produ
ts is uniquely determined by

the equivalent martingale measure that is given by the produ
t of the EMM

of the �nan
ial market with the probability measure of the biometri
 state

spa
e. In fa
t, due to the no-arbitrage pri
ing, the 
omplete pri
e pro
ess is

determined. Under the mentioned axioms, it is shown how a life insuran
e


ompany 
an a

omplish that the mean balan
e per 
ontra
t at any future

time t 
onverges to zero almost surely for an in
reasing number of 
ustomers.

The respe
tive (purely �nan
ial and self-�nan
ing) hedging strategy 
an be

�nan
ed (the initial 
osts, of 
ourse) by the minimum fair premiums. The


onsidered hedging method is di�erent from the risk-minimizing and mean-

varian
e hedging strategies 
onsidered e.g. in M�ller (1998, 2001 and 2002).

In fa
t, the method is a (dis
rete) generalization of the mat
hing approa
h

in Aase and Persson (1994). Even though that this hedging method is less

sophisti
ated than e.g. risk minimizing strategies (whi
h are unfortunately not

self-�nan
ing), it surely is of pra
ti
al use sin
e it is easier to realize (not every

single life has to be observed over the whole time axis). Examples for the

pri
ing and hedging of di�erent types of 
ontra
ts are given. A more detailed

example shows for a traditional life insuran
e and an endowment 
ontra
t the

histori
al development of the ratio of the minimum fair annual premium per

bene�t. Assuming that premiums are 
al
ulated by a 
onservatively 
hosen


onstant te
hni
al rate of interest, the example also 
onsiders the development

of the present values of these 
ontra
ts.

Although the model 
onsidered in this paper is restri
ted to a �nite set

of points of time, the approa
h is quite general in the sense that it does not

propose parti
ular models for the dynami
s of the �nan
ial se
urities or the

biometri
 events. The 
on
ept of a life insuran
e 
ontra
t is introdu
ed in a

very general way and the presented methods are not restri
ted to a parti
ular

type of 
ontra
t. Further, all methods and results of the paper 
an be applied

to non-life insuran
e as long as the assumptions are also appropriate in the


onsidered 
ases.

The se
tion 
ontent is as follows. In Se
tion 2, the prin
iples whi
h are


onsidered to be reasonable for a modern theory of life insuran
e are brie
y

dis
ussed in an enumerated list. Se
tion 3 introdu
es the 
onsidered model

and some �rst axioms 
on
erning the 
ommon probability spa
e of �nan
ial
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and biometri
 risks. Se
tion 4 
ontains a de�nition of general life insuran
e


ontra
ts and the statement of a generalized Prin
iple of Equivalen
e. (The

paper makes a di�eren
e between the 
lassi
al Expe
tation Prin
iple, whi
h

is a valuation method, and the Prin
iple of Equivalen
e, whi
h is an e
o-

nomi
 \fairness" argument.) In Se
tion 5, the 
ase of 
lassi
al life insuran
e

mathemati
s is brie
y reviewed. Se
tion 6 
ontains the axiomati
 approa
h

to valuation in the general 
ase and the dedu
tion of the minimum fair pri
e.

Se
tion 7 is on the topi
 of hedging, i.e. on the 
onvergen
e of the mean bal-

an
es. Examples are given in this se
tion, too. In Se
tion 8, it is shown how

parts of the results 
an be adapted to the 
ase of in
omplete markets, even

for markets with arbitrage opportunities something 
an be res
ued. The last

se
tion is dedi
ated to the numeri
al pri
ing example mentioned above and


on�rms the importan
e of modern valuation prin
iples.

2 Prin
iples of life insuran
e mathemati
s

In the author's opinion, the following eight assumptions are 
ru
ial for a

modern theory of life insuran
e mathemati
s. The prin
iples are given in an

informal manner, the mathemati
ally pre
ise formulation follows later.

1. Independen
e of te
hni
al and �nan
ial events. One of the basi
 as-

sumptions is that the te
hni
al (biometri
) events, for instan
e death or injury

of persons, are independent of the events of the �nan
ial markets (
f. Aase and

Persson, 1994). In 
ontrast to reinsuran
e 
ompanies, where the movements

on the �nan
ial markets 
an be highly 
orrelated to the payments of the in-

surer, it is 
ommon sense that su
h e�e
ts 
an be negle
ted in the 
ase of life

insuran
e.

2. Complete, arbitrage-free �nan
ial markets. Ex
ept for Se
tion 8,

where in
omplete markets are examined, 
omplete, arbitrage-free �nan
ial

markets are 
onsidered throughout the paper. Even though this might be

an unrealisti
 assumption from the viewpoint of �nan
e, it is a realisti
 one

from the perspe
tive of life insuran
e. The reason is that a life insuran
e


ompany usually does not invent purely �nan
ial produ
ts as this is the work-

ing �eld of banks. Therefore, it 
an be assumed that all 
onsidered �nan
ial

produ
ts are either traded on the market, 
an be bought from banks or 
an

be repli
ated by self-�nan
ing strategies. Nonetheless, it is self-evident that
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a 
laim whi
h also depends on a te
hni
al event (e.g. the death of a person)


annot be hedged by �nan
ial se
urities. Hen
e, the joint market of �nan
ial

and te
hni
al risks is not 
omplete. In the literature, 
ompleteness of �nan
ial

markets is often assumed by the use of the Bla
k-S
holes model (
f. Aase and

Persson, 1994; M�ller, 1998). It �gures out that parts of the results of the

paper are also valid in the 
ase of in
omplete �nan
ial markets - whi
h allows

for more models. However, in this 
ase �nan
ial portfolios will be restri
ted to

repli
able ones and also the 
onsidered life insuran
e 
ontra
ts are restri
ted

in a similar way.

3. Biometri
 states of individuals are independent.

4. Large 
lasses of similar individuals. Con
erning the Law of Large Num-

bers as applied in 
lassi
al life insuran
e mathemati
s, an impli
it assumption

is a large number of persons under 
ontra
t in a parti
ular 
ompany. Even

stronger, it 
an be assumed that 
lasses of \similar" persons, e.g. of the same

age, are large. An insuran
e 
ompany should be able to 
ope with su
h a large


lass of similar persons even if all members of the 
lass have the same kind of


ontra
t (
f. Prin
iple 7 below).

5. Similar individuals 
annot be distinguished. For fairness reasons, any

two individuals with similar biometri
 development to be expe
ted should pay

the same pri
e for the same kind of 
ontra
t. Further, any a
tivity (e.g. hedg-

ing) of an insuran
e 
ompany due to two individuals having the same kind of


ontra
t is assumed to be identi
al as long as their probable future biometri


development is independently identi
al from the sto
hasti
 point of view.

6. No-arbitrage pri
ing. As we know from the theory of �nan
ial markets,

an important property of a reasonable pri
ing system is the absen
e of arbi-

trage, i.e. the absen
e of riskless wins. In parti
ular, it should not be possible

to beat the market by selling and buying (life) insuran
e produ
ts in an ex-

isting or hypotheti
al reinsuran
e market (see e.g. Delbaen and Haezendon
k,

1989). Hen
e, any produ
t and 
ash
ow will be pri
ed by the no-arbitrage

prin
iple.

7. Minimum fair pri
es allow hedging su
h that mean balan
es 
on-

verge to zero a.s. The prin
iple of independen
e of the biometri
 state

spa
es is 
losely related to the Expe
tation Prin
iple of 
lassi
al life insuran
e

mathemati
s. In the 
lassi
al 
ase, where �nan
ial markets are assumed to

be deterministi
, this prin
iple states that the present value of a 
ash
ow is

the expe
tation of the sum of its dis
ounted payo�s. The 
onne
tion between
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the two prin
iples is the Law of Large Numbers. Present values or pri
es are

determined su
h that for a large number of 
ontra
ts due to independent in-

dividuals the insurer 
an a

omplish that the mean �nal balan
e per 
ontra
t,

but also the mean balan
e at any time t, 
onverges to zero almost surely. In

analogy to the 
lassi
al 
ase, we generally demand that the minimum fair pri
e

of any 
ontra
t (from the viewpoint of the insurer) should at least 
over the

pri
e of a purely �nan
ial hedging strategy that lets the mean balan
e per


ontra
t 
onverge to zero a.s. for an in
reasing number of 
lients.

8. Prin
iple of Equivalen
e. Under a reasonable valuation prin
iple

(
f. Prin
iple 7), the Prin
iple of Equivalen
e demands that the future

payments to the insurer (premiums) should be determined su
h that their

present value equals the present value of the future payments to the insured

(bene�ts). The idea is that the liabilities (bene�ts) 
an somehow be hedged

by working with the premiums. This 
on
ept will be 
onsidered in detail in

the 
oming se
tions.

Con
erning premium 
al
ulation, the 
lassi
al Expe
tation Prin
iple (
f.

Prin
iple 7) is usually seen as a minimum premium prin
iple sin
e any insur-

an
e 
ompany must be able to 
ope with higher expenses than the expe
ted

(
f. Embre
hts, 2000). We refer to the literature for more information on

the topi
 (e.g. Delbaen and Haezendon
k, 1989; Gerber, 1997; Goovaerts, De

Vylder and Haezendon
k, 1984; but also M�ller, 2002-2003b; S
hweizer, 2001).

3 The model

Let (F;F

T

; F) be a probability spa
e equipped with the �ltration (F

t

)

t2T

, where

T = f0; 1; 2; : : : ; Tg denotes the dis
rete �nite time axis. Assume that F

0

is

trivial, i.e. F

0

= f;; Fg. Let the pri
e dynami
s of d se
urities of a fri
tionless

�nan
ial market be given by an adapted R

d

-valued pro
ess S = (S

t

)

t2T

. The

d assets with pri
e pro
esses S

0

; S

1

; : : : ; S

d�1

are traded at times t 2 T �

f0g. The �rst asset with pri
e pro
ess S

0

is 
alled the money a

ount and

has the properties S

0

0

= 1 a.s. and S

0

t

> 0 for t 2 T. The tuple M

F

=

(F; (F

t

)

t2T

; F;T; S) is 
alled a se
urities market model. A portfolio due to

M

F

is given by a d-dimensional ve
tor � of real-valued random variables on

(F;F

T

; F). A t-portfolio is a portfolio �

t

whi
h is F

t

-measurable. As usual, F

t

is interpreted as the information available at time t. As an e
onomi
 agent
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takes de
isions due to the available information, a trading strategy is a ve
tor

�

T

= (�

t

)

t2T

of t-portfolios �

t

. The dis
ounted total gain (or loss) of su
h a

strategy is given by

P

T�1

t=0

h�

t

; S

t+1

� S

t

i, where S := (S

t

=S

0

t

)

t2T

denotes the

pri
e pro
ess dis
ounted by the money a

ount and h: ; :i denotes the inner

produ
t on R

d

. We 
an now de�ne the set of all dis
ounted gains

G =

(

T�1

X

t=0

h�

t

; S

t+1

� S

t

i : �

t

is a t-portfolio for t 2 T � fTg

)

: (1)

G is a subspa
e of the spa
e of all real-valued random variables L

0

(F;F

T

; F)

where two elements are identi�ed if they are equal F-a.s. The pro
ess S sat-

is�es the so-
alled no-arbitrage 
ondition (NA) if G \ L

0

+

= f0g, where L

0

+

are the non-negative elements of L

0

(F;F

T

; F) (the notation follows Delbaen,

1999). The Fundamental Theorem of Asset Pri
ing (Dalang, Morton and Will-

inger, 1990) states that the pri
e pro
ess S satis�es (NA) if and only if there is

a probability measure Q equivalent to F su
h that under Q the pro
ess S is a

martingale. Moreover, Q 
an be found with bounded Radon-Nikodym deriva-

tive dQ=dF . A very readable overview 
on
erning some of the existing proofs

of the theorem is Delbaen (1999). The probability measure Q as 
onsidered

above is 
alled (risk-neutral) equivalent martingale measure (EMM).

DEFINITION 3.1. A valuation prin
iple �

F

on a set � of portfolios due

to M

F

is a linear mapping whi
h maps ea
h � 2 � to an adapted sto
hasti


pro
ess (pri
e pro
ess) �

F

(�) = (�

F

t

(�))

t2T

su
h that

�

F

t

(�) = h�; S

t

i =

d�1

X

i=0

�

i

S

i

t

(2)

for any t 2 T for whi
h � is F

t

-measurable.

For the moment, the set � is not spe
i�ed any further.

Consider an arbitrage-free market with pri
e pro
ess S as given above and

a portfolio � with pri
e pro
ess �

F

(�). Assume that �'s pri
e is not determined

by the market. From the Fundamental Theorem it is known that the enlarged

market with pri
e dynami
s S

0

= (S

0

; : : : ; S

d�1

; �

F

(�)) is arbitrage-free if and

only if there exists an EMM Q su
h that S

0

be
omes a Q -martingale. Hen
e,

one obtains the valuation prin
iple

�

F

t

(�) = S

0

t

�E

Q

[h�; S

T

i=S

0

T

jF

t

℄: (3)
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As is well-known, the no-arbitrage 
ondition does not imply a unique pri
e

pro
ess for � when it 
annot be repli
ated by a self-�nan
ing strategy �

T

, i.e. a

strategy su
h that h�

t�1

; S

t

i = h�

t

; S

t

i for ea
h t > 0 and �

T

= �. However, in

a 
omplete marketM

F

, i.e. a market whi
h features a self-�nan
ing repli
ating

strategy for any portfolio �, the no-arbitrage 
ondition implies for jF

T

j < 1

a unique EMM Q and therefore unique pri
es (Taqqu and Willinger, 1987).

DEFINITION 3.2. A t-
laim with payo� C

t

at time t is a t-portfolio of the

form

C

t

S

0

t

e

0

where C

t

is a F

t

-measurable random variable and e

0

denotes the �rst


anoni
al base ve
tor in R

d

. A 
ash
ow over the time period T is a ve
tor

(

C

t

S

0

t

e

0

)

t2T

of t-
laims.

A t-
laim is interpreted as the right on the amount C

t

of 
ash on the money

a

ount S

0

at time t. That means the owner is a
tually given C

t

in 
ash at t.

The interpretation of a 
ash
ow is obvious.

We will now introdu
e axioms whi
h 
on
ern the properties of market mod-

els (not of valuation prin
iples) that in
lude biometri
 events (Prin
iples 1 to

4 of Se
tion 2). Assume to be given a �ltered probability spa
e (B; (B

t

)

t2T

; B )

whi
h des
ribes the development of the biologi
al states of all 
onsidered hu-

man beings. No parti
ular model for the development of the biometri
 infor-

mation is 
hosen.

AXIOM 1. A 
ommon �ltered probability spa
e

(M; (M

t

)

t2T

;P) = (F; (F

t

)

t2T

; F) 
 (B; (B

t

)

t2T

; B ) (4)

of �nan
ial and biometri
 events is given, i.e. M = F � B,M

t

= F

t


 B

t

and

P = F 
 B .

AXIOM 2. A 
omplete �nan
ial market

M

F

= (F; (F

t

)

t2T

; F;T;

F

S) (5)

together with a unique equivalent martingale measure Q is given. The 
ommon

market of �nan
ial and biometri
 risks is denoted by

M

C

= (M; (M

t

)

t2T

;P;T; S); (6)

where S(f; b) =

F

S(f) for all (f; b) 2M .
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In the following, M

C

is understood as a se
urities market model. The

notions portfolio, no-arbitrage et
. are used as above. Usually, a non-

deterministi
 �nan
ial market will be 
onsidered, i.e. 2 < jF

T

j < 1 
an be

assumed.

REMARK 3.3. S is the 
anoni
al embedding of

F

S into (M; (M

t

)

t2T

;P).

In the following, we will often use the same symbol for a random variable

X in (F; F) and a random variable Y in (M;P) when we have that Y is the

embedding of X into (M;P), i.e. Y (f; b) = X(f) for all (f; b) 2 M . Now, any

portfolio � of the 
omplete �nan
ial market M

F


an be repli
ated by some

self-�nan
ing trading strategy �

T

= (�

t

)

t2T

. The unique pri
e pro
ess �

F

(�) of

the portfolio is given by

�

F

t

(�) =

F

S

0

t

�E

Q

[h�;

F

S

T

i=

F

S

0

T

jF

t

℄: (7)

As S is the embedding of

F

S into (M; (M

t

)

t2T

;P), the (embedded) portfolio

� in M

C

is also repli
ated by the (embedded) trading strategy �

T

= (�

t

)

t2T

in

M

C

. Hen
e, to avoid arbitrage opportunities, the pri
e pro
ess �(�) in M

C

must ful�ll �

t

(�) = �

F

t

(�) P-a.s. for any t 2 T. Sin
e E

Q

[XjF

t

℄ = E

Q
B

[XjF

t




B

0

℄ P-a.s. for any random variable X in (F; F), we must have P-a.s.

�

t

(�) = S

0

t

�E

Q
B

[h�; S

T

i=S

0

T

jF

t


 B

0

℄: (8)

AXIOM 3. There are in�nitely many human individuals and we have

(B; (B

t

)

t2T

; B ) =

1

O

i=1

(B

i

; (B

i

t

)

t2T

; B

i

); (9)

where B

H

= f(B

i

; (B

i

t

)

t2T

; B

i

); i 2 N

+

g is the set of probability spa
es des
rib-

ing the state of the i-th individual (N

+

:= N n f0g). Ea
h B

i

0

is trivial.

It follows that B

0

is also trivial, i.e. B

0

= f;; Bg.

AXIOM 4. For any spa
e (B

i

; (B

i

t

)

t2T

; B

i

) in B

H

there are in�nitely many

isomorphi
 (identi
al ex
ept for the index) ones in B

H

.

4 Life insuran
e 
ontra
ts

By de�nition, the biometri
 development has no in
uen
e on the pri
e pro
ess

S of the �nan
ial market. A portfolio � that 
ontains te
hni
al risk - that is a

portfolio whi
h is not of the form �(f; b) =

F

�(f) a.s. with

F

� an M

F

-portfolio
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- 
annot be repli
ated by purely �nan
ial produ
ts. Hen
e, relative pri
ing of

life insuran
e produ
ts due to M

F

is not possible. In general, life insuran
e

poli
ies are not traded and the possibility of a valuation of su
h 
ontra
ts by

the market is not given. The market M

C

of �nan
ial and biometri
 risks is

in
omplete. Nonetheless, the produ
ts have to be pri
ed as the insured usually

have the right to dissolve any 
ontra
t at any time of its duration. We are

therefore in the need of a reasonable valuation prin
iple � for the 
onsidered

portfolios � of the market M

C

and in parti
ular for general life insuran
e

produ
ts.

DEFINITION 4.1. A general life insuran
e 
ontra
t is a ve
tor (


t

; Æ

t

)

t2T

of pairs (


t

; Æ

t

) of t-portfolios out of �. For any t 2 T, the portfolio 


t

is

interpreted as a payment of the insurer to the insurant (bene�t) and Æ

t

as a

payment of the insurant to the insurer (premium), respe
tively taking pla
e

at t. The notation (

i




t

;

i

Æ

t

)

t2T

means that the 
ontra
t depends on the i-th

individual's life, i.e. for all (f; x); (f; y) 2M

(

i




t

(f; x);

i

Æ

t

(f; x))

t2T

= (

i




t

(f; y);

i

Æ

t

(f; y))

t2T

(10)

whenever p

i

(x) = p

i

(y), p

i

being the proje
tion from B onto B

i

.

For any 
ontra
t (


t

; Æ

t

)

t2T

between a life insuran
e 
ompany and an individ-

ual, this stream of payments is from the viewpoint of the insurer equivalent

to holding the portfolios (Æ

t

� 


t

)

t2T

. Even though that there has not been


onsidered any parti
ular valuation prin
iple until now, it is assumed that a

suitable prin
iple � is a minimum fair pri
e in the heuristi
 sense given in

Se
tion 2, Prin
iple 7. The properties of a minimum fair pri
e will be further

developed in Se
tion 6.

AXIOM 5. Consider a suitable valuation prin
iple � on �. For any life

insuran
e 
ontra
t (


t

; Æ

t

)

t2T

the Prin
iple of Equivalen
e demands that

�

0

 

T

X

t=0




t

!

= �

0

 

T

X

t=0

Æ

t

!

: (11)

As already mentioned in Se
tion 2 (Prin
iple 8), the idea of equation (11)

is that the liabilities (


t

)

t2T


an somehow be hedged by working with the

premiums (Æ

t

)

t2T

sin
e their present values are identi
al. For the 
lassi
al


ase, this idea is explained in the se
tion below.
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5 Valuation I - The 
lassi
al 
ase

In 
lassi
al life insuran
e mathemati
s, the �nan
ial market is assumed to be

deterministi
. We realize the assumption by jF

T

j = 2, i.e. F

T

= f;; Fg, and

identify (M; (M

t

)

t2T

;P) with (B; (B

t

)

t2T

; B ). As the market is assumed to be

free of arbitrage, all assets must show the same dynami
s. We therefore have

S = (S

0

), i.e. d = 1 and the only asset is the money a

ount as a deterministi


fun
tion of time. In the 
lassi
al framework, it is 
ommon sense that the fair

present value of a B -integrable payo� C

t

at t is the (
onditional) expe
tation

of the dis
ounted payo�, i.e. for a t-
laim C

t

=S

0

t

(
f. De�nition 3.2) we have

�

s

(C

t

=S

0

t

) := S

0

s

�E

B

[C

t

=S

0

t

jB

s

℄; s 2 T: (12)

Under the Expe
tation Prin
iple (12), the well-known 
lassi
al Prin
iple of

Equivalen
e is given by (11). As the dis
ounted pri
e pro
esses are B -

martingales, the 
lassi
al �nan
ial market together with a �nite number of

(
lassi
al) pri
e pro
esses of life insuran
e poli
ies is free of arbitrage opportu-

nities.

Let us have a 
loser look at the logi
 behind valuation prin
iple (12). As-

sume that � is given by the B -integrable portfolios. Suppose Axiom 1 to 3

and 
onsider a set of portfolios f(

i




t

)

t2T

: i 2 N

+

g where

i




t

depends on the

i-th individual's life, only (
f. De�nition 4.1). Suppose that for all t 2 T there

is a 


t

2 R

+

su
h that

jj

i




t

jj

2

� 


t

(13)

for all i 2 N

+

, where jj:jj

2

denotes the norm on the Hilbert spa
e L

2

(M;M

T

;P).

Now, buy for all i 2 N

+

and all t 2 T the portfolios �E

B

[

i




t

℄, where �E

B

[

i




t

℄

is interpreted as a �nan
ial produ
t (a t-portfolio) whi
h matures at time t,

i.e. the right on E

B

[

i




t

℄ in 
ash at t is sold at 0. Consider the balan
e of wins

and losses at time t. The mean total payo� at t for the �rst m 
ontra
ts is

given by

1

m

m

X

i=1

(

i




t

� E

B

[

i




t

℄) � S

0

t

: (14)

Clearly, (14) 
onverges B -a.s. to 0 as we 
an apply the Strong Law of Large

Numbers by Kolmogorov's Criterion. Furthermore, it follows dire
tly from

(12) that we have �

0

(�E

B

[

i




t

℄) = ��

0

(

i




t

) for all i 2 N

+

. Hen
e, in the


lassi
al 
ase, the fair present value of any 
laim equals the pri
e of a hedge
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at time 0 su
h that for an in
reasing number of independent 
laims the mean

balan
e of 
laims and hedges 
onverges to zero almost surely.

Now, 
onsider the set of life insuran
e 
ontra
ts f(

i




t

;

i

Æ

t

)

t2T

: i 2 N

+

g with

the deltas being de�ned in analogy to the gammas above. Sin
e for the 
om-

pany a 
ontra
t 
an be 
onsidered as a ve
tor (

i

Æ

t

�

i




t

)

t2T

of portfolios, the

analogous hedge is given by (E

B

[

i




t

℄�E

B

[

i

Æ

t

℄)

t2T

. Under Axiom 5, the Equiv-

alen
e Prin
iple (11) states that the 
ontra
t itself has value zero. From the

Expe
tation Prin
iple (12) we therefore obtain for all i 2 N

+

T

X

t=0

�

0

(E

B

[

i

Æ

t

℄�E

B

[

i




t

℄) =

T

X

t=0

�

0

(

i

Æ

t

�

i




t

) = 0: (15)

Hen
e, under (12) and Axiom 1, 2, 3 and 5, a life insuran
e 
ompany 
an

(without any 
osts at time 0) buy a hedge su
h that the mean balan
e per


ontra
t at any time t 
onverges to zero almost surely for an in
reasing number

of individual 
ontra
ts:

1

m

m

X

i=1

(

i

Æ

t

�

i




t

� E

B

[

i

Æ

t

℄ +E

B

[

i




t

℄) � S

0

t

m!1

�! 0 B -a.s. (16)

As a dire
t 
onsequen
e, the mean of the �nal balan
e 
onverges, too:

1

m

m

X

i=1

T

X

t=0

(

i

Æ

t

�

i




t

� E

B

[

i

Æ

t

℄ +E

B

[

i




t

℄) � S

0

T

m!1

�! 0 B -a.s. (17)

REMARK 5.1. Roughly speaking, the Expe
tation Prin
iple (12) implies

that the pri
e of any 
laim at least 
overs the 
osts of a purely �nan
ial hedge

su
h that for an in
reasing number of independent 
laims the mean balan
e of


laims and hedges 
onverges to zero almost surely. The Equivalen
e Prin
iple

(11) indu
es that the hedge of any insuran
e 
ontra
t 
osts nothing at time 0,

whi
h is important as the 
ontra
t itself is for free, too (
f. equation (15)).

6 Valuation II - The general 
ase

Before it 
omes to the topi
 of valuation in the general 
ase, two te
hni
al

lemmas have to be proven and some further notion has to be introdu
ed.

Let the set R := R [ f�1;+1g be equipped with the usual Borel-�-

algebra and re
all that a fun
tion g into R is 
alled numeri
.

LEMMA 6.1. Consider n > 1 measurable numeri
 fun
tions g

1

to g

n

on the

produ
t (M;M;P) = (F;F ; F) 
 (B;B; B ) of two probability spa
es. Then

g

1

= : : : = g

n

P-a.s. if and only if F-a.s. g

1

(f; :) = : : : = g

n

(f; :) B -a.s.
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Proof. For any Q 2 M it is well-known that P(Q) =

R

B (Q

f

)dF, where Q

f

=

fb 2 B : (f; b) 2 Qg and the fun
tion B (Q

f

) on F is F -measurable. As for

i 6= j the di�eren
e g

i;j

:= g

i

� g

j

is measurable, the set Q :=

T

i 6=j

g

�1

i;j

(0) is

M-measurable. Now, g

1

= : : : = g

n

a.s. is equivalent to P(Q) = 1 and this

again is equivalent to B (Q

f

) = 1 F-a.s. However, B (Q

f

) = 1 is equivalent to

g

1

(f; :) = : : : = g

n

(f; :) B -a.s.

LEMMA 6.2. Let (g

n

)

n2N

and g be a sequen
e, respe
tively a fun
tion out of

L

0

(M;M;P), i.e. the real valued measurable fun
tions onM , where (M;M;P)

is as above. Then g

n

! g P-a.s. if and only if F-a.s. g

n

(f; :)! g(f; :) B -a.s.

Proof. The elements of L

0

(M;M;P) are also numeri
 measurable fun
tions.

Now, re
all that for any sequen
e of real numbers (h

n

)

n2N

and any h 2 R the

property h

n

! h is equivalent to lim suph

n

= lim inf h

n

= h. As the limes

superior and the limes inferior of a measurable numeri
 fun
tion always exist

and are measurable, one obtains from Lemma 6.1 that

lim sup

n!1

g

n

= lim inf

n!1

g

n

= g P-a.s. (18)

if and only if F-a.s.

lim sup

n!1

g

n

(f; :) = lim inf

n!1

g

n

(f; :) = g(f; :) B -a.s. (19)

As we have seen in Se
tion 4, there is the need for a suitable set � of

portfolios on whi
h a parti
ular valuation prin
iple should work. Further, a

mathemati
al pre
ise des
ription of what was 
alled \similar" in Se
tion 2,

Prin
iple 5 has to be introdu
ed.

DEFINITION 6.3.

(i) De�ne

� = (L

1

(M;M

T

;P))

d

(20)

and

�

F

= (L

1

(F;F

T

; F))

d

; (21)

where �

F


an be interpreted as a subset of � by the usual embedding.
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(ii) A set �

0

� � of portfolios in M

C

is 
alled independently identi
ally

distributed due to (B;B

T

; B ), abbreviated B-i.i.d., when for almost all

f 2 F the random variables f�(f; :) : � 2 �

0

g are i.i.d. on (B;B

T

; B ).

Under Axiom 4, su
h sets exist and 
an be 
ountably in�nite.

(iii) Under the Axioms 1 to 3, a set �

0

� � satis�es property (K) if for

almost all f 2 F the elements of f�(f; :) : � 2 �

0

g are sto
hasti
ally

independent on (B;B

T

; B ) and jj�

j

(f; :)jj

2

< 
(f) 2 R

+

for all � 2 �

0

and all j 2 f0; : : : ; d� 1g.

Sets ful�lling property (B-i.i.d.) or (K) are indexed with the respe
tive

symbol. A dis
ussion of the Kolmogorov-Criterion-like (K)-
ondition 
an be

found below (Remark 7.5). The 
ondition �gures out to be quite weak.

Now, the remaining axioms whi
h 
on
ern valuation 
an be stated. The

next axiom is motivated by the demand that whenever the market with the

original d se
urities with pri
es S is enlarged by a �nite number of pri
e pro-


esses �(�) due to general portfolios � 2 �, the no-arbitrage 
ondition (NA)

should hold on the new market. This axiom 
orresponds to the sixth prin
iple

of se
tion 2.

AXIOM 6. For any t 2 T and � 2 �

�

t

(�) = S

0

t

�E

M

[h�; S

T

i=S

0

T

jF

t


 B

t

℄ (22)

for a probability measure M � P.

The following axiom is due to the �fth and the seventh prin
iple.

AXIOM 7. Under the Axioms 1 - 4 and 6, the minimum fair pri
e � on

� is for any � 2 � given by

�

0

(�) = �

F

0

(H(�)) (23)

where

H : � �! �

F

(24)

is su
h that

(i) H(

1

�) = H(

2

�) for B-i.i.d. portfolios

1

� and

2

�.
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(ii) for t-portfolios f

i

�; i 2 N

+

g

B�i:i:d:

or f

i

�; i 2 N

+

g

K

one has

1

m

m

X

i=1

h

i

� �H(

i

�); S

t

i

m!1

�! 0 P-a.s. (25)

Relation (24) means that the hedge H(�) is a portfolio of the �nan
ial market.

Re
all, that the �nan
ial market M

F

is 
omplete and any portfolio features a

self-�nan
ing repli
ating strategy. However, (24) also implies that the hedging

strategy does not rea
t on biometri
 events happening after time 0. Due to

(i), as in the 
lassi
al 
ase, the hedging method H 
annot distinguish between

similar (B-i.i.d.) individuals (
f. Prin
iple 5, Se
tion 2). Property (ii) is also

adopted from the 
lassi
al 
ase, where pointwise 
onvergen
e is ensured by

the Expe
tation Prin
iple for appropriate insuran
e produ
ts 
ombined with

respe
tive hedges (
f. Prin
iple 7, Se
tion 2 and Se
tion 5). Property (ii) is

also related to Prin
iple 4 in Se
tion 2 as insuran
e 
ompanies should be able

to 
ope with large 
lasses of similar 
ontra
ts.

Now, the main result of this paper 
an be stated.

PROPOSITION 6.4. Under the Axioms 1 - 4, 6 and 7, the minimum fair

pri
e � on � is uniquely determined by M = Q 
 B , i.e. for � 2 � and t 2 T

�

t

(�) = S

0

t

�E

Q
B

[h�; S

T

i=S

0

T

jF

t


 B

t

℄: (26)

As already mentioned, this produ
t measure approa
h is quite well established

in the existing literature. However, the dedu
tion by an axiomati
 approa
h

as well as the generality of the above result seem to be new.

Clearly, (12) is the spe
ial 
ase of (26) in the presen
e of a deterministi


�nan
ial market (jF

T

j = 2). As � is unique, it is at the same time the minimal

valuation prin
iple with the demanded properties. A
tually, property (ii) of

Axiom 7 ensures that insuran
e 
ompanies do not 
harge more than the 
osts

of an a

eptable purely �nan
ial hedge for ea
h produ
t whi
h is sold. So to

speak, the minimum fair pri
e is fair from the viewpoint of the insured, as well

as from the viewpoint of the 
ompanies.

The following lemmas are needed in order to prove the proposition.

LEMMA 6.5. Under Axiom 1 and 2, one has for any � 2 �

H

�

(�) := E

B

[�℄ 2 �

F

: (27)
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There is a self-�nan
ing strategy repli
ating H

�

(�) and under Axiom 6

�

t

(H

�

(�)) = S

0

t

�E

Q
B

[h�; S

T

i=S

0

T

jF

t


 B

0

℄ (28)

for t 2 T. If � is a t-portfolio, then so is H

�

(�). Moreover, H

�

ful�lls properties

(i) and (ii) of Axiom 7.

Proof. By Fubini's Theorem, E

B

[�(f; :)℄ exists F-a.s. and is F-integrable.

Hen
e, by the 
ompleteness of M

F

and uniqueness of Q , the portfolio (27)


an be hedged by the �nan
ial se
urities in M

F

and has (due to Remark 3.3)

the pri
e pro
ess

�

t

(E

B

[�℄) = S

0

t

�E

Q

[hE

B

[�℄; S

T

i=S

0

T

jF

t


 B

0

℄: (29)

Sin
e E

Q

[E

B

[X℄jF

t

℄ = E

Q
B

[XjF

t


B

0

℄ P-a.s. for any X 2 �, (29) is identi
al

to (28) P-a.s. As we also have E

B

[�℄ = E

F
B

[�jF

T


 B

0

℄ P-a.s., H

�

(�) is a t-

portfolio. Let us prove the last statement. Property (i) of Axiom 7 is obviously

ful�lled. For any t-portfolios f

i

�; i 2 N

+

g

K

or f

i

�; i 2 N

+

g

B�i:i:d:

, the Strong

Law of Large Numbers (in the �rst 
ase by Kolmogorov's Criterion) implies

for almost all f 2 F that

1

m

m

X

i=1

h

i

�(f; :)�H

�

(

i

�)(f); S

t

(f)i

m!1

�! 0 B -a.s. (30)

Lemma 6.2 
ompletes the proof.

LEMMA 6.6. Under Axiom 1 and 2, one obtains that for any � 2 �, any

t 2 T and for M 2 fF 
 B ;Q 
 B g

E

M

[h� �H

�

(�); S

t

i℄ = 0: (31)

Proof. By Fubini's Theorem.

LEMMA 6.7. Under the Axioms 1 - 4 and 6, any H : �! �

F

ful�lling (i)

and (ii) of Axiom 7 ful�lls for any � out of some �

B�i:i:d:

�

t

(H(�)) = S

0

t

�E

Q
B

[h�; S

T

i=S

0

T

jF

t


 B

0

℄; t 2 T: (32)

Roughly speaking, Lemma 6.7 states that there is no reasonable purely �-

nan
ial hedging method (for the relevant portfolios) with better 
onvergen
e

properties than (27) has. Even a hedging method with stronger than pointwise


onvergen
e, e.g. an additional L

p

-
onvergen
e (p � 1), must follow (32) and

has the same pri
e pro
ess as (27).
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Proof of Lemma 6.7. Consider to be given su
h an H as in Lemma 6.7 and a

set f

i

�; i 2 N

+

g

B�i:i:d:

of t-portfolios that 
ontains a given t-portfolio �. From

Lemma 6.2, one has F-a.s.

1

m

m

X

i=1

h

i

�(f; :)�H(�)(f); S

t

(f)i

m!1

�! 0 B -a.s. (33)

and by the Law of Large Numbers

hE

B

[

i

�(f; :)℄; S

t

(f)i = hH(�)(f); S

t

(f)i: (34)

Condition (NA) and Remark 3.3 imply �

t

(H(�)) = �

t

(E

B

[

i

�℄) for i 2 N

+

and

t 2 T. Lemma 6.5 
ompletes the proof.

Proof of Proposition 6.4. From the Fundamental Theorem we know that Q �

F. A dire
t 
onsequen
e of Lemma 6.1 and the Radon-Nikodym Theorem is

Q
B � F
B . From Lemma 6.5 we obtain that (26) exists. Hen
e, (26) ful�lls

Axiom 6. The same lemma implies that (26) is a minimum fair pri
e in the

sense of Axiom 7. Now, uniqueness will be shown. Suppose that � is a mini-

mum fair pri
e in the sense of Axiom 7 and 
onsider some f

i

�; i 2 N

+

g

B�i:i:d:

.

From Lemma 6.7 it is known that �

0

(

i

�) = �

0

(H

�

(

i

�)) = E

Q
B

[h

i

�; S

T

i=S

0

T

℄

for all i 2 N

+

. One 
an surely 
hoose a set f

i

�; i 2 N

+

g

B�i:i:d:

su
h that

1

� = (1

Z

; 0; : : : ; 0), where 1

Z

is the indi
ator fun
tion of a 
ylinder set

Z = (F

0

; B

1

; B

2

; : : : ) with F

0

2 F

T

and B

j

2 B

j

T

for j 2 N

+

where B

j

6= B

j

for only �nitely many j (Axiom 4 is 
ru
ial for the possibility of this 
hoi
e!).

Clearly, these 
ylinders form a \-stable generator for M

T

, the �-algebra of

the produ
t spa
e, and M itself is an element of this generator. One obtains

�

0

(

1

�) = Q 
 B (Z) = M (Z) from (28) and (22). M = Q 
 B follows from the


oin
iden
e of the measures on the generator.

Axiom 7 (together with 6) 
ould be interpreted as a strong no-arbitrage

prin
iple that ful�lls (NA) and also pre
ludes arbitrage-like strategies that

have their origin in the Law of Large Numbers.

EXAMPLE 6.8 (Arbitrage-like trading opportunities). Consider a set

f

i

�; i 2 N

+

g

B�i:i:d:

of portfolios. The minimum fair pri
e for ea
h portfolio is

given by (26) (t = 0). If an insuran
e 
ompany sells the produ
ts f

1

�; : : : ;

m

�g

at that pri
es, it 
an buy hedging portfolios su
h that the mean balan
e 
on-

verges to zero almost surely with m (
f. Axiom 7, (ii)). However, if the 
om-

pany 
harges �

0

(

i

�) + �, where � > 0 is an additional fee and � is as in (26),
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there still is the hedge as explained above, but the gain � per 
ontra
t was

made at t = 0. Hen
e, the safety load � makes in the limit a deterministi


money making ma
hine out of the insuran
e 
ompany.

Example 6.8 dire
tly points at the main di�eren
e between pri
ing in life

insuran
e mathemati
s and �nan
ial mathemati
s. On �nan
ial markets su
h

arbitrage-like strategies are not possible as there usually are not enough in-

dependent sto
ks. Furthermore, the sto
hasti
 behaviour of se
urities is by

far not as good known as the sto
hasti
s of biometri
 events. Indeed, pra
-

titioners say that the probabilities from the biometri
 probability spa
e are

almost known for sure. Hen
e, biometri
 expe
tations 
an be 
omputed with

high a

ura
y whereas expe
tations on �nan
ial markets have the 
hara
ter

of spe
ulation. From this point of view, any possible EMM M

0

on the market

M

C

obtained by the free trading of portfolios in M

C

should be expe
ted to

be 
lose to Q 
 B . Any systemati
 deviation 
ould give rise to arbitrage-like

trading opportunities, as we have seen above.

REMARK 6.9 (Quadrati
 hedging). Consider an L

2

-framework, i.e. the

payo� h�

t

; S

t

i of any 
onsidered t-portfolio �

t

lies in L

2

(M;M

t

;P). As

P = F 
 B , it 
an easily be shown that E

B

[:℄ is the orthogonal proje
tion

of L

2

(M;M

t

;P) onto its (purely �nan
ial) subspa
e L

2

(F;F

t

; F). Standard

Hilbert spa
e theory implies that the payo� hE

B

[�

t

℄; S

t

i = E

B

[h�

t

; S

t

i℄ of the

hedge H

�

(�

t

) is the best L

2

-approximation of the payo� h�

t

; S

t

i of the port-

folio �

t

by a purely �nan
ial portfolio out of M

F

. Further, it 
an easily

be shown that M = Q 
 B minimizes jjdM =dP � 1jj

2

under the 
onstraint

E

B

[dM =dP℄ = dQ=dF . Under some additional te
hni
al assumptions, this

property is a 
hara
terization of the so-
alled minimal martingale measure in

the time 
ontinuous 
ase (
f. S
hweizer, 1995; M�ller, 2001). Hen
e, Q 
 B


an be interpreted as the EMM whi
h lies \next" to P = F 
 B due to the

L

2

-metri
. Beside the 
onvergen
e properties dis
ussed in this paper, these are

the most important (and \natural") reasons for the use of (26). The hedging

method H

�


onsidered in this paper is not really the so-
alled mean-varian
e

hedge as it is known from the literature (
f. Bouleau and Lamberton, 1989;

DuÆe and Ri
hardson, 1991). The di�eren
e is that the mean-varian
e ap-

proa
h generally allows for all self-�nan
ing trading strategies in M

C

, i.e. also

biometri
 events 
an have in
uen
e on the strategy in this 
ase. However, the

ideas are of 
ourse quite similar. An overview 
on
erning hedging approa
hes

in insuran
e 
an be found in M�ller (2002).
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7 Hedging

In this se
tion, it is shown under quite weak assumptions that a big insuran
e


ompany is able to hedge in the mean almost all of its risk by produ
ts of the

�nan
ial market.

Suppose Axiom 1 to 4 and a not further spe
i�ed valuation prin
iple �

on � (� is de�ned as in (20)). Consider a set of life insuran
e 
ontra
ts

f(

i




t

;

i

Æ

t

)

t2T

: i 2 N

+

g with f

i




t

: i 2 N

+

g

K

and f

i

Æ

t

: i 2 N

+

g

K

for all t 2 T.

Following hedging method H

�

of Lemma (6.5), the portfolios (or strategies

repli
ating) E

B

[

i




t

℄ and �E

B

[

i

Æ

t

℄ are bought at time 0 for all i 2 N

+

and all

t 2 T. Consider the balan
e of wins and losses at any time t 2 T. For the

mean total payo� per 
ontra
t at time t we have

1

m

m

X

i=1

h

i

Æ

t

�

i




t

� E

B

[

i

Æ

t

�

i




t

℄; S

t

i

m!1

�! 0 P-a.s. (35)

due to Lemma 6.5. In analogy to Se
tion 5, also the mean �nal balan
e


onverges to zero a.s., i.e.

1

m

m

X

i=1

T

X

t=0

h

i

Æ

t

�

i




t

�E

B

[

i

Æ

t

�

i




t

℄; S

T

i

m!1

�! 0 P-a.s. (36)

This kind of risk management is stati
 in the sense that no trading strategy

rea
ts on biometri
 events happening after time 0. This 
orresponds to the


onsiderations in the 
lassi
al 
ase whi
h have taken pla
e in Se
tion 5. It was

already mentioned in Remark 6.9 that the 
onsidered hedging method is not

exa
tly the so-
alled mean-varian
e hedging. Another (more 
omprehensive,

but not self-�nan
ing) hedging approa
h is given by so-
alled risk-minimizing

strategies (e.g. M�ller, 1998 and 2001).

REMARK 7.1. Due to Lemma 6.6, any of the balan
es in (35) and (36) has

expe
tation 0 under the physi
al probability measure P = F 
 B .

Until now, premium 
al
ulation has not played any role in this se
tion.

However, if the Prin
iple of Equivalen
e (11) is applied under the minimum

fair pri
e (26), one obtains for all i 2 N

+

T

X

t=0

�

0

(E

B

[�

i

Æ

t

+

i




t

℄) =

T

X

t=0

�

0

(

i

Æ

t

�

i




t

) = 0: (37)
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REMARK 7.2. Under (11) and (26), a life insuran
e 
ompany 
an without

any 
osts at time 0 (!) pursue a trading strategy su
h that the mean balan
e

per 
ontra
t at any time t 
onverges to zero almost surely for an in
reasing

number of individual 
ontra
ts.

Remark 7.2 is perhaps the result with the strongest pra
ti
al impa
t. In


ontrast to other, more 
omprehensive hedging methods, the presented method

has the advantage that there is no need for the hedger to take into a

ount

the biometri
 development of ea
h individual. The information available at

the time of 
ontra
t underwriting (t = 0) is suÆ
ient and all strategies are

self-�nan
ing.

EXAMPLE 7.3 (Traditional 
ontra
ts with sto
hasti
 interest rates).

Consider a life insuran
e 
ontra
t whi
h is for the i-th individual given by two


ash
ows (

i




t

)

t2T

= (

i

C

t

S

0

t

e

0

)

t2T

and (

i

Æ

t

)

t2T

= (

i

D

t

S

0

t

e

0

)

t2T

with T = f0; 1; : : : ; Tg

in years. Assume that ea
h

i

C

t

is given by

i

C

t

(f; b) =

i




i

�




t

(b

i

) for all

(f; b) 2 M where

i


 is a positive 
onstant. Let (

i

Æ

t

)

t2T

be de�ned analogously

with the variables

i

D

t

;

i

d and

i

�

Æ

t

. Suppose that

i

�


(Æ)

t

is B

i

t

-measurable with

i

�


(Æ)

t

2 f0; 1g for all b

i

2 B

i

. The portfolio e

0

=S

0

t


an be interpreted as

the guaranteed payo� of one 
urren
y unit at time t. This kind of 
ontra
t

is 
alled a zero-
oupon bond with maturity t and its pri
e at time s < t is

denoted by p(s; t � s) = �

s

(e

0

=S

0

t

) where t � s is the time to maturity and

p(s; 0) := 1 for all s 2 T.

1. Traditional life insuran
e. Suppose that

i

�




t

= 1 if and only if the i-th

individual has died in (t � 1; t℄ and for t < T that

i

�

Æ

t

= 1 if and only if the

i-th individual is still alive at t, but

i

�

Æ

T

� 0. Assume that i is alive at t = 0.

Clearly, this 
ontra
t is a life insuran
e with �xed annual premiums

i

d and the

bene�t

i


 in the 
ase of death. E

B

[

i

�




t

℄ and E

B

[

i

�

Æ

t

℄ are mortality, respe
tively

survival probabilities. This data 
an be obtained from so-
alled mortality

tables. Usually, the notation is

t�1j1

q

x

= E

B

[

i

�




t

℄ (t > 0) and

t

p

x

= E

B

[

i

�

Æ

t

℄

(0 < t < T ) for an individual of age x (
f. Gerber, 1997; for 
onvenien
e

reasons, the notation

�1j1

q

x

= 0 and

0

p

x

= 1 is used in the following). By

Fubini's Theorem, the hedge H

�

for

i

Æ

t

�

i




t

is for t < T given by the number

of (

i




t�1j1

q

x

�

i

d

t

p

x

) zero-
oupon bonds with maturity t, and for t = T by

i




T�1j1

q

x

zero-
oupon bonds with maturity T .

2. Endowment. Assume for t < T that

i

�




t

= 1 if and only if the i-th

individual has died in (t � 1; t℄, but

i

�




T

= 1 if and only if i has died in

(T � 1; T ℄ or is still alive at T . Further,

i

�

Æ

t

= 1 if and only if the i-th
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individual is still alive at t < T , but

i

�

Æ

T

� 0. Assume that i is alive at t = 0.

This 
ontra
t is a so-
alled endowment that features �xed annual premiums

i

d and the bene�t

i


 in the 
ase of death, but also the payo�

i


 when i is

alive at T . The hedge H

�

due to

i

Æ

t

�

i




t

is for t < T given by the number

of (

i




t�1j1

q

x

�

i

d

t

p

x

) zero-
oupon bonds with maturity t, and for t = T by

i


 (

T�1j1

q

x

+

T

p

x

) zero-
oupon bonds with maturity T .

A
tually, in the 
ase of traditional 
ontra
ts, all hedging 
an be done by

zero-
oupon bonds (whi
h is also 
alled mat
hing).

EXAMPLE 7.4 (Unit-linked produ
ts). The 
ase of a unit-linked prod-

u
t is interesting if and only if the produ
t is not the sum of a traditional life

insuran
e 
ontra
t and a simple funds poli
y (whi
h is often the 
ase in pra
-

ti
e). So, let us assume that the 
ontra
t is given by a 
ash
ow of 
onstant

premiums (

i

Æ

t

)

t2T

as in Example 7.3 and a 
ow of bene�ts (

i




t

)

t2T

su
h that

i




t

(f; b) =

i

�

t

�

i




i

�




t

(b

i

) for all (f; b) 2M where

i

�

t

2 �

F

is an arbitrary �nan-


ial t-portfolio and all other notations are the same as in the introdu
tion of

Example 7.3. For instan
e, one 
ould 
onsider a number of shares of an index,

or a number of assets together with the respe
tive European Puts whi
h ensure

a 
ertain level of bene�t (i.e. a \unit-linked produ
t with guarantee"). The

strategy due to

i

Æ

t

�

i




t

is given by

i


 � E

B

[

i

�




t

℄ times the repli
ating strategy

of

i

�

t

minus (

i

d �E

B

[

i

�

Æ

t

℄) zero-
oupon bonds maturing at time t. In parti
ular,

for

i

�

t

being a 
onstant portfolio, the strategy is obviously very simple as the

portfolio must not be repli
ated, but 
an be bought dire
tly.

REMARK 7.5. The te
hni
al assumption (K) whi
h is suÆ
ient for the 
on-

vergen
e of (35) (
f. De�nition 6.3 (iii)) and whi
h is demanded at the very

beginning of the se
tion will be dis
ussed now. In the 
ase of traditional life

insuran
es as in Example 7.3, the realisti
 
ondition

i


;

i

d � 
 2 R

+

for all

i 2 N

+

implies (K). In the 
ase of unit-linked produ
ts, suppose that there

are only �nitely many possible portfolios

i

�

t

for ea
h t 2 T (whi
h is also

quite realisti
 as often shares of one single funds are 
onsidered). Under this

assumption, again

i


;

i

d � 
 2 R

+

for all i 2 N

+

implies (K). Hen
e, (K) is no

drawba
k for pra
ti
al purposes.

8 In
omplete �nan
ial markets

Until now, the theory presented in this paper assumed 
omplete and arbitrage-

free markets (
f. Axiom 2), whi
h redu
es the number of expli
it market models
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that 
an be 
onsidered. However, some of the 
on
epts work (under some

restri
tions) with in
omplete market models.

In parti
ular, it is now assumed that in Axiom 2 
ompleteness of the market

modelM

F

and uniqueness of the EMM Q is not demanded. Let us enumerate

the altered axiom by 2' and de�ne

�

F

= f� : � repli
able by a self-�nan
ing strategy in M

F

g (38)

� = f� : � is an M

C

-portfolio and E

B

[�℄ 2 �

F

g: (39)

It is well-known from the theory of �nan
ial markets that any EMM Q ful�lls

pri
ing formula (3) for any repli
able portfolio � 2 �

F

. Now, with �

F

and �

as de�ned above and Axiom 2 repla
ed by 2', it 
an easily be 
he
ked that the

Lemmas 6.5, 6.6 and 6.7 still hold. Con
erning Proposition 6.4, � as de�ned

in (26) is for any �nan
ial EMM Q a minimum fair pri
e. Hen
e, uniqueness

gets lost. However, for any minimum fair pri
e one still has that �

0

is unique

(on the new set �). The reason is that for any � 2 � and any two EMM Q

and Q of M

F

E

Q
B

[h�; S

T

i=S

0

T

℄ = E

Q
B

[h�; S

T

i=S

0

T

℄ (40)

due to Fubini's Theorem and the (NA)-
ondition. Hen
e, pri
ing at time

t = 0 (i.e. present values) and hedging (
f. Se
tion 7) still work as in the 
ase

of 
omplete �nan
ial markets.

In the presen
e of arbitrage opportunities, the existen
e of an equivalent

martingale measure gets lost. Nonetheless, assume a �nan
ial market model

M

F

whi
h is neither ne
essarily arbitrage-free, nor 
omplete and suppose that

there is a valuation prin
iple �

F

used in M

F

on a set �

F

of purely �nan
ial

portfolios whi
h are taken into 
onsideration (this does not mean absen
e of

arbitrage). Under the 
onsidered �

F

, de�ne � by (39) and for any � 2 �

�

0

(�) = �

F

0

(E

B

[�℄); (41)

whi
h is the pri
e of the hedge H

�

at time 0 (
ompare with (23) and (28)

for t = 0). In a L

2

-framework as in Remark 6.9, i.e. if we have for any t

that H

t

(�

F

) = h�

F

; S

t

i is a 
losed subspa
e of L

2

(F;F

T

; F), the operator

E

B

[:℄ is again the orthogonal proje
tion of the subspa
e H

t

(�) = h�; S

t

i of

L

2

(M;M

T

;P) onto its (purely �nan
ial) subspa
e H

t

(�

F

). Thus, E

B

[�℄ is the

best approximation to any � 2 � in the L

2

-sense (
f. Remark 6.9). Even if we
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do not assume the L

2

-framework, the properties (i) and (ii) of Axiom 7 are

still ful�lled for the above de�ned � and for H

�

as in (27). Hen
e, �

0

satis�es

the demand for 
onverging balan
es as stated in Prin
iple 7 of Se
tion 2 and

the expressions (35) and (36) are still valid. For these two reasons, (41) is a

quite sensible valuation prin
iple.

9 Histori
al pri
ing example

Let us 
onsider the traditional 
ontra
ts as des
ribed in Example 7.3. Due to

the Equivalen
e Prin
iple (11), we demand

�

0

 

T

X

t=0

i




i

�




t

e

0

=S

0

t

!

= �

0

 

T

X

t=0

i

d

i

�

Æ

t

e

0

=S

0

t

!

: (42)

Now, suppose that the minimum fair pri
e � from (26), respe
tively the valu-

ation prin
iple (41), is applied for premium 
al
ulation. Clearly,

i

d

i




=

T

X

t=0

p(0; t) �E

B

[

i

�




t

℄

.

T

X

t=0

p(0; t) �E

B

[

i

�

Æ

t

℄ (43)

where p(0; t) is the pri
e of a zero-
oupon bond as de�ned in Se
tion 7. An

important 
onsequen
e of (43) is that the quotient

i

d=

i


 (minimum fair pre-

mium/bene�t) depends on the zero-
oupon bond pri
es (or yield 
urve) at time

0. As the term stru
ture of interest rates indeed varies from day to day, this

in parti
ular means that

i

d=

i


 varies from day to day and therefore depends

on the day of underwriting (a
tually, it depends on the exa
t time). Insuran
e


ompanies do not determine the pri
es for produ
ts daily. Hen
e, they give

rise to �nan
ial risks as the 
ontra
ts may be over-valued.

Now, assume that any time value is given in fra
tions of years. The so-


alled spot (interest) rate R(t; �) for the time interval [t; t+ � ℄ is de�ned by

R(t; �) = �

log p(t; �)

�

: (44)

The short rate r(t) at t is de�ned by r(t) = lim

�!0

R(t; �), where the limit is

assumed to exist. The yield 
urve at time t is the mapping with � 7! R(t; t+�)

for � > 0 and 0 7! r(t). Figure 5 on page 32 shows the histori
al yield

stru
ture (i.e. the set of yield 
urves) of the German debt se
urities market

from September 1972 to February 2003 (the 366 values are taken from the

end of ea
h month). The maturities' range is 0 to 28 years. The values
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for � > 0 were 
omputed via a parametri
 presentation of yield 
urves (the

so-
alled Svensson-method; 
f. S
hi
h, 1997) for whi
h the parameters 
an

be taken from the internet page of the German Federal Reserve (Deuts
he

Bundesbank; http://www.bundesbank.de). The implied Bundesbank values

R

0

are estimates of dis
rete interest rates on notional zero-
oupon bonds based

on German Federal bonds and treasuries (
f. S
hi
h, 1997) and have to be


onverted to 
ontinuous interest rates (as impli
itly used in (44)) by R = ln(1+

R

0

). As an approximation for the short rate, the day-to-day money rates from

the Frankfurt market (Monatsdur
hs
hnitt des Geldmarktsatzes f�ur Tagesgeld

am Frankfurter Bankplatz; also available at the Bundesbank homepage) are

taken and 
onverted into 
ontinuous rates.

Equation (44) shows that interest rates (yields) and zero-
oupon bond

pri
es 
ontain the same information, namely the present value of a non-

defaultable future payo�. As there is a yield 
urve given for any time t of

the histori
al time axis, it is possible to 
ompute the histori
al value of

i

d=

i




for any t via (44). Doing so, one obtains

i

d

i




(t) =

T

X

�=0

p(t; �)

��1j1

q

x

(t)

.

T�1

X

�=0

p(t; �)

�

p

x

(t) (45)

for the traditional life insuran
e and

i

d

i




(t) =

 

p(t; T )

T

p

x

(t) +

T

X

�=0

p(t; �)

��1j1

q

x

(t)

!

.

T�1

X

�=0

p(t; �)

�

p

x

(t) (46)

for the endowment. In this example, the values

��1j1

q

x

(� > 0) and

�

p

x

(0 < � < T ) are taken from (or 
omputed by) the DAV (Deuts
he Aktuarvere-

inigung) mortality table \1994 T" (Loebus, 1994), the value

T

p

x

is 
omputed

by the table \1994 R" (S
hmithals and S
h�utz, 1995). The reason for the dif-

ferent tables is that in a
tuarial pra
ti
e mortality tables 
ontain safety loads

whi
h depend on whether the death of a person is in (�nan
ial) favour of the

insuran
e 
ompany, or not. All probabilities mentioned above are 
onsidered

to be 
onstant in time. Espe
ially, to make things easier, there is no \aging

shift" applied to table \1994 R".

Now, 
onsider a man of age x = 30 years and the time axis T =

f0; 1; : : : ; 10g (in years). In Figure 1, the res
aled quotients (45) and (46) are

plotted for the above setup. For 
omparison reasons: the absolute values at

the starting point (September 1972) are

i

d=

i


 = 0:063792 for the endowment,

respe
tively

i

d=

i


 = 0:001587 for the life insuran
e. The plot ni
ely shows the
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dynami
s of the quotients and hen
e of the minimum fair premiums

i

d if the

bene�t

i


 is assumed to be 
onstant. The premiums of the endowment seem

to be mu
h more subje
t to the 
u
tuations of the interest rates than the pre-

miums of the traditional life insuran
e. For instan
e, the minimum fair annual

premium

i

d for the 10-years endowment with a bene�t of

i


 = 100; 000 Euros

was 5,285.55 Euros at the 31st July 1974 and 8,072.26 at the 31st January

1999. For the traditional life insuran
e (with the same bene�t), one obtains

i

d = 152:46 Euros at the 31st July 1974 and 168.11 at the 31st January 1999.

If one assumes a dis
rete te
hni
al rate of interest R

0

te
h

, e.g. 0.035, whi
h

is the legally guaranteed rate of interest by German life insurers, one 
an


ompute \te
hni
al" quotients

i

d

te
h

=

i


 by 
omputing the \te
hni
al" values of

zero-
oupon bonds, i.e. p

te
h

(t; �) = (1+R

0

te
h

)

��

, and plugging them into (45),

resp. (46). If a life insuran
e 
ompany 
harges the \te
hni
al" premiums

i

d

te
h

instead of the minimum fair premiums

i

d and if one 
onsiders the valuation

prin
iple (26), respe
tively (41), to be a reasonable 
hoi
e, the present value

of the 
onsidered insuran
e 
ontra
t is

i

V = (

i

d

te
h

�

i

d) �

T�1

X

�=0

p(t; �)

�

p

x

(t) (47)

due to the Prin
iple of Equivalen
e, respe
tively (42). In parti
ular, this means

that the insuran
e 
ompany 
an book the gain or loss (47) in the limit, mean

or expe
tation (
f. Example 6.8 and Remark 7.1) at time 0 as long as proper

risk management (as des
ribed in Se
tion 7) takes pla
e afterwards. Thus, the

present value (47) is a measure for the pro�t, or simply the expe
ted dis
ounted

pro�t of the 
onsidered 
ontra
t. Figure 2 shows the histori
al development of

i

V =

i


 (present value/bene�t) for the 10-years endowment as des
ribed above

(solid line). For instan
e, the present value

i

V of a 10-years endowment with

a bene�t of

i


 = 100; 000 Euros was 20,398.70 Euros at July 31, 1974. At the

31st January 1999, it was worth 2,578.55 Euros, only. The situation gets even

worse in the 
ase of a te
hni
al (or promised) rate of interest R

0

te
h

= 0:050

(dashed line) - whi
h is quite little in 
ontrast to formerly promised returns

of e.g. German life insurers. At the 31st January 1999, su
h a 
ontra
t was

worth -3,141.95 Euros, i.e. the 
ontra
t a
tually produ
ed a loss in the mean.

More re
ent values from February 28, 2003 are 4,592.69 Euros for a te
hni
al

interest of 0.035 and -1,127.39 Euros in the other 
ase. Some present values of

the 10-years traditional life insuran
e 
an be found in Table 1 on page 29.

All 
omputations from above have also been 
arried out for a 25-years
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endowment, respe
tively life insuran
e (
f. Table 1). The 
orresponding

�gures are 3 and 4. Con
erning Figure 3, the absolute values at the starting

point (September 1972) are

i

d=

i


 = 0:013893 for the endowment, respe
tively

i

d=

i


 = 0:002553 for the life insuran
e. The minimum fair premium

i

d

for the 25-years endowment with bene�t

i


 = 100; 000 Euros was 808.39

Euros at the 31st July 1974 and 2,177.32 Euros at the 31st January 1999.

For the traditional life insuran
e (with the same bene�t), one obtains

i

d = 216:37 Euros at the 31st July 1974 and 303.90 at the 31st January

1999. Hen
e, the premium-to-bene�t ratio for both types of 
ontra
ts

seems to be more dependent on the yield stru
ture than in the 10-years


ase. However, 
ompared to the 10-years 
ontra
ts, the longer running

time seems to stabilize the present values of the 
ontra
ts (
f. Table 1 and

Figure 4). Nonetheless, they are still strongly depending on the yield stru
ture.

The examples have shown the importan
e of realisti
 valuation prin
iples

in life insuran
e. Any premium 
al
ulation method and all related parameters

(like e.g. te
hni
al rates of interest, whi
h have to be determined in some

way) should be 
arefully examined in order to be properly prepared for the


u
tuations of �nan
ial markets. There is no doubt that many of the �nan
ial

problems of life insuran
e 
ompanies that have arisen in the past few years


ould have been avoided by a proper use of modern valuation prin
iples and -

perhaps even more important - modern �nan
ial hedging strategies.



REFERENCES 27

Referen
es

[1℄ Aase, K.K., Persson, S.-A. (1994) - Pri
ing of Unit-linked Life Insuran
e

Poli
ies, S
andinavian A
tuarial Journal 1, 26-52

[2℄ Bouleau, N., Lamberton, D. (1989) - Residual risks and hedging strategies

in Markovian markets, Sto
hasti
 Pro
esses and their Appli
ations 33,

131-150

[3℄ Brennan, M.J., S
hwartz, E.S. (1976) - The pri
ing of equity-linked life

insuran
e poli
ies with an asset value guarantee, Journal of Finan
ial E
o-

nomi
s 3, 195-213

[4℄ Dalang, R.C., Morton, A., Willinger, W. (1990) - Equivalent martingale

measures and no-arbitrage in sto
hasti
 se
urities market models, Sto
has-

ti
s and Sto
hasti
s Reports 29 (2), 185-201

[5℄ Delbaen, F. (1999) - The Dalang-Morton-Willinger Theorem, ETH Z�uri
h,

http://www.math.ethz.
h/~delbaen/ftp/tea
hing/DMW-Theorem.pdf

[6℄ Delbaen, F., Haezendon
k, J. (1989) - A martingale approa
h to premium


al
ulation prin
iples in an arbitrage free market, Insuran
e: Mathemati
s

and E
onomi
s 8, 269-277

[7℄ DuÆe, D., Ri
hardson, H.R. (1991) -Mean-varian
e hedging in 
ontinuous

time, Annals of Applied Probability 1, 1-15

[8℄ Embre
hts, P. (2000) - A
tuarial versus �nan
ial pri
ing of insuran
e, Risk

Finan
e 1 (4), 17-26

[9℄ Gerber, H.U. (1997) - Life Insuran
e Mathemati
s, 3rd ed., Springer

[10℄ Goovaerts, M., De Vylder, E., Haezendon
k, J. (1984) - Insuran
e Premi-

ums, North-Holland, Amsterdam

[11℄ Loebus, N. (1994) - Bestimmung einer angemessenen Sterbetafel

f�ur Lebensversi
herungen mit Todesfall
harakter, Bl�atter der DGVM,

Bd. XXI

[12℄ M�ller, T. (1998) - Risk-minimizing hedging strategies for unit-linked life

insuran
e 
ontra
ts, ASTIN Bulletin 28, 17-47



REFERENCES 28

[13℄ M�ller, T. (2001) - Risk-minimizing hedging strategies for insuran
e pay-

ment pro
esses, Finan
e and Sto
hasti
s 5, 419-446

[14℄ M�ller, T. (2002) - On valuation and risk management at the interfa
e of

insuran
e and �nan
e, British A
tuarial Journal 8 (4), 787-828.

[15℄ M�ller, T. (2003a) - Indi�eren
e pri
ing of insuran
e 
ontra
ts in a prod-

u
t spa
e model, Finan
e and Sto
hasti
s 7(2), 197-217

[16℄ M�ller, T. (2003b) - Indi�eren
e pri
ing of insuran
e 
ontra
ts in a prod-

u
t spa
e model: Appli
ations, to appear in Insuran
e: Mathemati
s and

E
onomi
s

[17℄ Persson, S.-A. (1998) - Sto
hasti
 Interest Rate in Life Insuran
e: The

Prin
iple of Equivalen
e Revisited, S
andinavian A
tuarial Journal 2, 97-

112

[18℄ S
hi
h, S.T. (1997) - S
h�atzung der deuts
hen Zinsstrukturkurve, Diskus-

sionspapier 4/97, Volkswirts
haftli
he Fors
hungsgruppe der Deuts
hen

Bundesbank

[19℄ S
hmithals, B., S
h�utz, U. (1995) - Herleitung der DAV-Sterbetafel 1994

R f�ur Rentenversi
herungen, Bl�atter der DGVM, Bd. XXI

[20℄ S
hweizer, M. (1995) - On the Minimal Martingale Measure and the

F�ollmer-S
hweizer De
omposition, Sto
hasti
 Analysis and Appli
ations

13, 573-599

[21℄ S
hweizer, M. (2001) - From a
tuarial to �nan
ial valuation prin
iples,

Insuran
e: Mathemati
s and E
onomi
s 28, 31-47

[22℄ Taqqu, M.S., Willinger, W. (1987) - The analysis of �nite se
urity markets

using martingales, Advan
es in Applied Probability 19, 1-25



A FIGURES AND TABLES 29

A Figures and tables

Date 1974/07/31 1999/01/31

Traditional life insuran
e: 10 years

Te
hn. premium

i

d

te
h

(R

0

te
h

= 0:035) 168.94

Te
hn. premium

i

d

te
h

(R

0

te
h

= 0:050) 165.45

Minimum fair annual premium

i

d 152.46 168.11

Present value

i

V (R

0

te
h

= 0:035) 108.90 7.17

Present value

i

V (R

0

te
h

= 0:050) 85.84 -22.80

Traditional life insuran
e: 25 years

Te
hn. premium

i

d

te
h

(R

0

te
h

= 0:035) 328.02

Te
hn. premium

i

d

te
h

(R

0

te
h

= 0:050) 303.27

Minimum fair annual premium

i

d 216.37 303.90

Present value

i

V (R

0

te
h

= 0:035) 1,009.56 376.84

Present value

i

V (R

0

te
h

= 0:050) 785.80 -9.83

Endowment: 10 years

Te
hn. premium

i

d

te
h

(R

0

te
h

= 0:035) 8,372.65

Te
hn. premium

i

d

te
h

(R

0

te
h

= 0:050) 7,706.24

Minimum fair annual premium

i

d 5,285.55 8,072.26

Present value

i

V (R

0

te
h

= 0:035) 20,398.70 2,578.55

Present value

i

V (R

0

te
h

= 0:050) 15,995.27 -3,141.95

Endowment: 25 years

Te
hn. premium

i

d

te
h

(R

0

te
h

= 0:035) 2,760.85

Te
hn. premium

i

d

te
h

(R

0

te
h

= 0:050) 2,255.93

Minimum fair annual premium

i

d 808.39 2,177.32

Present value

i

V (R

0

te
h

= 0:035) 17,655.42 9,118.39

Present value

i

V (R

0

te
h

= 0:050) 13,089.53 1,228.34

Table 1: Sele
ted (extreme) values due to di�erent 
ontra
ts for a 30 year old

man (�xed bene�t:

i


 = 100; 000 Euros)
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Count of months since September 1972

360340320300280260240220200180160140120100806040200

1.3

1.2

1.1

1

0.9

Figure 1: Res
aled plot of the quotient

i

d=

i


 (minimum fair annual pre-

mium/bene�t) for the 10-years endowment (solid), resp. life insuran
e

(dashed), for a 30 year old man

Count of months since September 1972

35030025020015010050

0.2

0.15

0.1

0.05

0

Figure 2:

i

V =

i


 (present value/bene�t) for the 10-years endowment under a

te
hni
al interest rate of 0:035 (solid) and 0:050 (dashed)
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Count of months since September 1972

350300250200150100500

1.6

1.4

1.2

1

0.8

0.6

Figure 3: Res
aled plot of the quotient

i

d=

i


 (minimum fair annual pre-

mium/bene�t) for the 25-years endowment (solid), resp. life insuran
e

(dashed), for a 30 year old man

Count of months since September 1972

36034032030028026024022020018016014012010080604020

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Figure 4:

i

V =

i


 (present value/bene�t) for the 25-years endowment under a

te
hni
al interest rate of 0:035 (solid) and 0:050 (dashed)
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Rate
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Maturity (in years)
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0Count of months since September 1972 360340320300280260240220200180160140120100806040200

Figure 5: Histori
al yields of the German debt se
urities market


