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Abstrat

The lassial Priniple of Equivalene ensures that a life insurane om-

pany an aomplish that the mean balane per ontrat onverges to

zero almost surely for an inreasing number of lients. In an axiomati

approah, this idea is adapted to the general ase of stohasti �nanial

markets. In aordane with existing results, the implied minimum fair

prie of general life insurane produts is then uniquely determined by

the produt of the given equivalent martingale measure of the �nanial

market with the probability measure of the biometri state spae. A

detailed historial example onerning ontrat priing and valuation is

given.
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1 Introdution

In traditional life insurane mathematis, �nanial markets are assumed to

be deterministi. Under this assumption, the philosophy behind the lassial

Priniple of Equivalene is that a life insurane ompany should be able to a-

omplish that the mean balane per ontrat onverges to zero almost surely

for an inreasing number of lients. Roughly speaking, premiums are hosen

�
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suh that inomes and losses are \balaned in the mean". This idea leads to

a valuation method usually alled \Expetation Priniple" and relies on two

important ingredients: the stohasti independene of individual lifes and the

Strong Law of Large Numbers. In modern life insurane mathematis, where

�nanial markets are sensibly assumed to be stohasti and where more gen-

eral produts (e.g. unit-linked ones) are taken into onsideration, the valuation

priniple whih is widely aepted is also an expetation priniple. However,

the respetive probability measure is di�erent as the minimum fair prie (or

present value) of an insurane laim is determined by the no-arbitrage priing

method as it is known from �nanial mathematis. The respetive equiv-

alent martingale measure (EMM) is the produt of the given EMM of the

�nanial market with the probability measure of the biometri state spae.

Although researh on the valuation of unit-linked produts already started in

the late 1960s, one of the �rst results (for a partiular ontrat) that was in

its ore idential to the mentioned produt measure approah was Brennan

and Shwartz (1976). The most reent papers mainly dediated to valuation

by this approah are (for the Blak-Sholes model) Aase and Persson (1994)

and (for a simple stohasti interest rate model) Persson (1998). A brief his-

tory of valuation in (life) insurane an be found in M�ller (2002) (the works

M�ller (2002, 2003a and 2003b) also onsider valuation, but fous on hedging,

resp. advaned premium priniples). Again, one should have a look at the

assumptions onerning the onsidered valuation priniple. Aase and Persson

(1994), but also other authors, a priori suppose independene of �nanial and

biometri events. An arbitrage-free and omplete �nanial market ensures the

uniqueness of the (�nanial) EMM. The use of the produt measure as men-

tioned above is usually explained by the risk-neutrality of the insurer towards

biometri risks (f. Aase and Persson, 1994; Persson, 1998). In M�ller (2001),

a further good reason an be found: the produt measure oinides trivially

with the so-alled minimal martingale measure (f. Shweizer, 1995).

Apart from these reasons for the onsidered produt measure approah,

the aim of this paper is the dedution of a valuation priniple by an adaption

of the lassial demand for onvergene of mean balanes due to the Law of

Large Numbers. This idea seems to be new. In a disrete �nite time frame-

work, it is arried out by an axiomati approah whih mainly reets the

ommonly aepted assumptions in the modern theory of life insurane (as al-

ready mentioned: independene of individuals, independene of biometri and
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�nanial events, no-arbitrage priing et.). The resulting valuation priniple

is in aordane with the above mentioned results sine the implied mini-

mum fair prie for general life insurane produts is uniquely determined by

the equivalent martingale measure that is given by the produt of the EMM

of the �nanial market with the probability measure of the biometri state

spae. In fat, due to the no-arbitrage priing, the omplete prie proess is

determined. Under the mentioned axioms, it is shown how a life insurane

ompany an aomplish that the mean balane per ontrat at any future

time t onverges to zero almost surely for an inreasing number of ustomers.

The respetive (purely �nanial and self-�naning) hedging strategy an be

�naned (the initial osts, of ourse) by the minimum fair premiums. The

onsidered hedging method is di�erent from the risk-minimizing and mean-

variane hedging strategies onsidered e.g. in M�ller (1998, 2001 and 2002).

In fat, the method is a (disrete) generalization of the mathing approah

in Aase and Persson (1994). Even though that this hedging method is less

sophistiated than e.g. risk minimizing strategies (whih are unfortunately not

self-�naning), it surely is of pratial use sine it is easier to realize (not every

single life has to be observed over the whole time axis). Examples for the

priing and hedging of di�erent types of ontrats are given. A more detailed

example shows for a traditional life insurane and an endowment ontrat the

historial development of the ratio of the minimum fair annual premium per

bene�t. Assuming that premiums are alulated by a onservatively hosen

onstant tehnial rate of interest, the example also onsiders the development

of the present values of these ontrats.

Although the model onsidered in this paper is restrited to a �nite set

of points of time, the approah is quite general in the sense that it does not

propose partiular models for the dynamis of the �nanial seurities or the

biometri events. The onept of a life insurane ontrat is introdued in a

very general way and the presented methods are not restrited to a partiular

type of ontrat. Further, all methods and results of the paper an be applied

to non-life insurane as long as the assumptions are also appropriate in the

onsidered ases.

The setion ontent is as follows. In Setion 2, the priniples whih are

onsidered to be reasonable for a modern theory of life insurane are briey

disussed in an enumerated list. Setion 3 introdues the onsidered model

and some �rst axioms onerning the ommon probability spae of �nanial
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and biometri risks. Setion 4 ontains a de�nition of general life insurane

ontrats and the statement of a generalized Priniple of Equivalene. (The

paper makes a di�erene between the lassial Expetation Priniple, whih

is a valuation method, and the Priniple of Equivalene, whih is an eo-

nomi \fairness" argument.) In Setion 5, the ase of lassial life insurane

mathematis is briey reviewed. Setion 6 ontains the axiomati approah

to valuation in the general ase and the dedution of the minimum fair prie.

Setion 7 is on the topi of hedging, i.e. on the onvergene of the mean bal-

anes. Examples are given in this setion, too. In Setion 8, it is shown how

parts of the results an be adapted to the ase of inomplete markets, even

for markets with arbitrage opportunities something an be resued. The last

setion is dediated to the numerial priing example mentioned above and

on�rms the importane of modern valuation priniples.

2 Priniples of life insurane mathematis

In the author's opinion, the following eight assumptions are ruial for a

modern theory of life insurane mathematis. The priniples are given in an

informal manner, the mathematially preise formulation follows later.

1. Independene of tehnial and �nanial events. One of the basi as-

sumptions is that the tehnial (biometri) events, for instane death or injury

of persons, are independent of the events of the �nanial markets (f. Aase and

Persson, 1994). In ontrast to reinsurane ompanies, where the movements

on the �nanial markets an be highly orrelated to the payments of the in-

surer, it is ommon sense that suh e�ets an be negleted in the ase of life

insurane.

2. Complete, arbitrage-free �nanial markets. Exept for Setion 8,

where inomplete markets are examined, omplete, arbitrage-free �nanial

markets are onsidered throughout the paper. Even though this might be

an unrealisti assumption from the viewpoint of �nane, it is a realisti one

from the perspetive of life insurane. The reason is that a life insurane

ompany usually does not invent purely �nanial produts as this is the work-

ing �eld of banks. Therefore, it an be assumed that all onsidered �nanial

produts are either traded on the market, an be bought from banks or an

be repliated by self-�naning strategies. Nonetheless, it is self-evident that
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a laim whih also depends on a tehnial event (e.g. the death of a person)

annot be hedged by �nanial seurities. Hene, the joint market of �nanial

and tehnial risks is not omplete. In the literature, ompleteness of �nanial

markets is often assumed by the use of the Blak-Sholes model (f. Aase and

Persson, 1994; M�ller, 1998). It �gures out that parts of the results of the

paper are also valid in the ase of inomplete �nanial markets - whih allows

for more models. However, in this ase �nanial portfolios will be restrited to

repliable ones and also the onsidered life insurane ontrats are restrited

in a similar way.

3. Biometri states of individuals are independent.

4. Large lasses of similar individuals. Conerning the Law of Large Num-

bers as applied in lassial life insurane mathematis, an impliit assumption

is a large number of persons under ontrat in a partiular ompany. Even

stronger, it an be assumed that lasses of \similar" persons, e.g. of the same

age, are large. An insurane ompany should be able to ope with suh a large

lass of similar persons even if all members of the lass have the same kind of

ontrat (f. Priniple 7 below).

5. Similar individuals annot be distinguished. For fairness reasons, any

two individuals with similar biometri development to be expeted should pay

the same prie for the same kind of ontrat. Further, any ativity (e.g. hedg-

ing) of an insurane ompany due to two individuals having the same kind of

ontrat is assumed to be idential as long as their probable future biometri

development is independently idential from the stohasti point of view.

6. No-arbitrage priing. As we know from the theory of �nanial markets,

an important property of a reasonable priing system is the absene of arbi-

trage, i.e. the absene of riskless wins. In partiular, it should not be possible

to beat the market by selling and buying (life) insurane produts in an ex-

isting or hypothetial reinsurane market (see e.g. Delbaen and Haezendonk,

1989). Hene, any produt and ashow will be pried by the no-arbitrage

priniple.

7. Minimum fair pries allow hedging suh that mean balanes on-

verge to zero a.s. The priniple of independene of the biometri state

spaes is losely related to the Expetation Priniple of lassial life insurane

mathematis. In the lassial ase, where �nanial markets are assumed to

be deterministi, this priniple states that the present value of a ashow is

the expetation of the sum of its disounted payo�s. The onnetion between
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the two priniples is the Law of Large Numbers. Present values or pries are

determined suh that for a large number of ontrats due to independent in-

dividuals the insurer an aomplish that the mean �nal balane per ontrat,

but also the mean balane at any time t, onverges to zero almost surely. In

analogy to the lassial ase, we generally demand that the minimum fair prie

of any ontrat (from the viewpoint of the insurer) should at least over the

prie of a purely �nanial hedging strategy that lets the mean balane per

ontrat onverge to zero a.s. for an inreasing number of lients.

8. Priniple of Equivalene. Under a reasonable valuation priniple

(f. Priniple 7), the Priniple of Equivalene demands that the future

payments to the insurer (premiums) should be determined suh that their

present value equals the present value of the future payments to the insured

(bene�ts). The idea is that the liabilities (bene�ts) an somehow be hedged

by working with the premiums. This onept will be onsidered in detail in

the oming setions.

Conerning premium alulation, the lassial Expetation Priniple (f.

Priniple 7) is usually seen as a minimum premium priniple sine any insur-

ane ompany must be able to ope with higher expenses than the expeted

(f. Embrehts, 2000). We refer to the literature for more information on

the topi (e.g. Delbaen and Haezendonk, 1989; Gerber, 1997; Goovaerts, De

Vylder and Haezendonk, 1984; but also M�ller, 2002-2003b; Shweizer, 2001).

3 The model

Let (F;F

T

; F) be a probability spae equipped with the �ltration (F

t

)

t2T

, where

T = f0; 1; 2; : : : ; Tg denotes the disrete �nite time axis. Assume that F

0

is

trivial, i.e. F

0

= f;; Fg. Let the prie dynamis of d seurities of a fritionless

�nanial market be given by an adapted R

d

-valued proess S = (S

t

)

t2T

. The

d assets with prie proesses S

0

; S

1

; : : : ; S

d�1

are traded at times t 2 T �

f0g. The �rst asset with prie proess S

0

is alled the money aount and

has the properties S

0

0

= 1 a.s. and S

0

t

> 0 for t 2 T. The tuple M

F

=

(F; (F

t

)

t2T

; F;T; S) is alled a seurities market model. A portfolio due to

M

F

is given by a d-dimensional vetor � of real-valued random variables on

(F;F

T

; F). A t-portfolio is a portfolio �

t

whih is F

t

-measurable. As usual, F

t

is interpreted as the information available at time t. As an eonomi agent
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takes deisions due to the available information, a trading strategy is a vetor

�

T

= (�

t

)

t2T

of t-portfolios �

t

. The disounted total gain (or loss) of suh a

strategy is given by

P

T�1

t=0

h�

t

; S

t+1

� S

t

i, where S := (S

t

=S

0

t

)

t2T

denotes the

prie proess disounted by the money aount and h: ; :i denotes the inner

produt on R

d

. We an now de�ne the set of all disounted gains

G =

(

T�1

X

t=0

h�

t

; S

t+1

� S

t

i : �

t

is a t-portfolio for t 2 T � fTg

)

: (1)

G is a subspae of the spae of all real-valued random variables L

0

(F;F

T

; F)

where two elements are identi�ed if they are equal F-a.s. The proess S sat-

is�es the so-alled no-arbitrage ondition (NA) if G \ L

0

+

= f0g, where L

0

+

are the non-negative elements of L

0

(F;F

T

; F) (the notation follows Delbaen,

1999). The Fundamental Theorem of Asset Priing (Dalang, Morton and Will-

inger, 1990) states that the prie proess S satis�es (NA) if and only if there is

a probability measure Q equivalent to F suh that under Q the proess S is a

martingale. Moreover, Q an be found with bounded Radon-Nikodym deriva-

tive dQ=dF . A very readable overview onerning some of the existing proofs

of the theorem is Delbaen (1999). The probability measure Q as onsidered

above is alled (risk-neutral) equivalent martingale measure (EMM).

DEFINITION 3.1. A valuation priniple �

F

on a set � of portfolios due

to M

F

is a linear mapping whih maps eah � 2 � to an adapted stohasti

proess (prie proess) �

F

(�) = (�

F

t

(�))

t2T

suh that

�

F

t

(�) = h�; S

t

i =

d�1

X

i=0

�

i

S

i

t

(2)

for any t 2 T for whih � is F

t

-measurable.

For the moment, the set � is not spei�ed any further.

Consider an arbitrage-free market with prie proess S as given above and

a portfolio � with prie proess �

F

(�). Assume that �'s prie is not determined

by the market. From the Fundamental Theorem it is known that the enlarged

market with prie dynamis S

0

= (S

0

; : : : ; S

d�1

; �

F

(�)) is arbitrage-free if and

only if there exists an EMM Q suh that S

0

beomes a Q -martingale. Hene,

one obtains the valuation priniple

�

F

t

(�) = S

0

t

�E

Q

[h�; S

T

i=S

0

T

jF

t

℄: (3)
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As is well-known, the no-arbitrage ondition does not imply a unique prie

proess for � when it annot be repliated by a self-�naning strategy �

T

, i.e. a

strategy suh that h�

t�1

; S

t

i = h�

t

; S

t

i for eah t > 0 and �

T

= �. However, in

a omplete marketM

F

, i.e. a market whih features a self-�naning repliating

strategy for any portfolio �, the no-arbitrage ondition implies for jF

T

j < 1

a unique EMM Q and therefore unique pries (Taqqu and Willinger, 1987).

DEFINITION 3.2. A t-laim with payo� C

t

at time t is a t-portfolio of the

form

C

t

S

0

t

e

0

where C

t

is a F

t

-measurable random variable and e

0

denotes the �rst

anonial base vetor in R

d

. A ashow over the time period T is a vetor

(

C

t

S

0

t

e

0

)

t2T

of t-laims.

A t-laim is interpreted as the right on the amount C

t

of ash on the money

aount S

0

at time t. That means the owner is atually given C

t

in ash at t.

The interpretation of a ashow is obvious.

We will now introdue axioms whih onern the properties of market mod-

els (not of valuation priniples) that inlude biometri events (Priniples 1 to

4 of Setion 2). Assume to be given a �ltered probability spae (B; (B

t

)

t2T

; B )

whih desribes the development of the biologial states of all onsidered hu-

man beings. No partiular model for the development of the biometri infor-

mation is hosen.

AXIOM 1. A ommon �ltered probability spae

(M; (M

t

)

t2T

;P) = (F; (F

t

)

t2T

; F) 
 (B; (B

t

)

t2T

; B ) (4)

of �nanial and biometri events is given, i.e. M = F � B,M

t

= F

t


 B

t

and

P = F 
 B .

AXIOM 2. A omplete �nanial market

M

F

= (F; (F

t

)

t2T

; F;T;

F

S) (5)

together with a unique equivalent martingale measure Q is given. The ommon

market of �nanial and biometri risks is denoted by

M

C

= (M; (M

t

)

t2T

;P;T; S); (6)

where S(f; b) =

F

S(f) for all (f; b) 2M .
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In the following, M

C

is understood as a seurities market model. The

notions portfolio, no-arbitrage et. are used as above. Usually, a non-

deterministi �nanial market will be onsidered, i.e. 2 < jF

T

j < 1 an be

assumed.

REMARK 3.3. S is the anonial embedding of

F

S into (M; (M

t

)

t2T

;P).

In the following, we will often use the same symbol for a random variable

X in (F; F) and a random variable Y in (M;P) when we have that Y is the

embedding of X into (M;P), i.e. Y (f; b) = X(f) for all (f; b) 2 M . Now, any

portfolio � of the omplete �nanial market M

F

an be repliated by some

self-�naning trading strategy �

T

= (�

t

)

t2T

. The unique prie proess �

F

(�) of

the portfolio is given by

�

F

t

(�) =

F

S

0

t

�E

Q

[h�;

F

S

T

i=

F

S

0

T

jF

t

℄: (7)

As S is the embedding of

F

S into (M; (M

t

)

t2T

;P), the (embedded) portfolio

� in M

C

is also repliated by the (embedded) trading strategy �

T

= (�

t

)

t2T

in

M

C

. Hene, to avoid arbitrage opportunities, the prie proess �(�) in M

C

must ful�ll �

t

(�) = �

F

t

(�) P-a.s. for any t 2 T. Sine E

Q

[XjF

t

℄ = E

Q
B

[XjF

t




B

0

℄ P-a.s. for any random variable X in (F; F), we must have P-a.s.

�

t

(�) = S

0

t

�E

Q
B

[h�; S

T

i=S

0

T

jF

t


 B

0

℄: (8)

AXIOM 3. There are in�nitely many human individuals and we have

(B; (B

t

)

t2T

; B ) =

1

O

i=1

(B

i

; (B

i

t

)

t2T

; B

i

); (9)

where B

H

= f(B

i

; (B

i

t

)

t2T

; B

i

); i 2 N

+

g is the set of probability spaes desrib-

ing the state of the i-th individual (N

+

:= N n f0g). Eah B

i

0

is trivial.

It follows that B

0

is also trivial, i.e. B

0

= f;; Bg.

AXIOM 4. For any spae (B

i

; (B

i

t

)

t2T

; B

i

) in B

H

there are in�nitely many

isomorphi (idential exept for the index) ones in B

H

.

4 Life insurane ontrats

By de�nition, the biometri development has no inuene on the prie proess

S of the �nanial market. A portfolio � that ontains tehnial risk - that is a

portfolio whih is not of the form �(f; b) =

F

�(f) a.s. with

F

� an M

F

-portfolio
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- annot be repliated by purely �nanial produts. Hene, relative priing of

life insurane produts due to M

F

is not possible. In general, life insurane

poliies are not traded and the possibility of a valuation of suh ontrats by

the market is not given. The market M

C

of �nanial and biometri risks is

inomplete. Nonetheless, the produts have to be pried as the insured usually

have the right to dissolve any ontrat at any time of its duration. We are

therefore in the need of a reasonable valuation priniple � for the onsidered

portfolios � of the market M

C

and in partiular for general life insurane

produts.

DEFINITION 4.1. A general life insurane ontrat is a vetor (

t

; Æ

t

)

t2T

of pairs (

t

; Æ

t

) of t-portfolios out of �. For any t 2 T, the portfolio 

t

is

interpreted as a payment of the insurer to the insurant (bene�t) and Æ

t

as a

payment of the insurant to the insurer (premium), respetively taking plae

at t. The notation (

i



t

;

i

Æ

t

)

t2T

means that the ontrat depends on the i-th

individual's life, i.e. for all (f; x); (f; y) 2M

(

i



t

(f; x);

i

Æ

t

(f; x))

t2T

= (

i



t

(f; y);

i

Æ

t

(f; y))

t2T

(10)

whenever p

i

(x) = p

i

(y), p

i

being the projetion from B onto B

i

.

For any ontrat (

t

; Æ

t

)

t2T

between a life insurane ompany and an individ-

ual, this stream of payments is from the viewpoint of the insurer equivalent

to holding the portfolios (Æ

t

� 

t

)

t2T

. Even though that there has not been

onsidered any partiular valuation priniple until now, it is assumed that a

suitable priniple � is a minimum fair prie in the heuristi sense given in

Setion 2, Priniple 7. The properties of a minimum fair prie will be further

developed in Setion 6.

AXIOM 5. Consider a suitable valuation priniple � on �. For any life

insurane ontrat (

t

; Æ

t

)

t2T

the Priniple of Equivalene demands that

�

0

 

T

X

t=0



t

!

= �

0

 

T

X

t=0

Æ

t

!

: (11)

As already mentioned in Setion 2 (Priniple 8), the idea of equation (11)

is that the liabilities (

t

)

t2T

an somehow be hedged by working with the

premiums (Æ

t

)

t2T

sine their present values are idential. For the lassial

ase, this idea is explained in the setion below.
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5 Valuation I - The lassial ase

In lassial life insurane mathematis, the �nanial market is assumed to be

deterministi. We realize the assumption by jF

T

j = 2, i.e. F

T

= f;; Fg, and

identify (M; (M

t

)

t2T

;P) with (B; (B

t

)

t2T

; B ). As the market is assumed to be

free of arbitrage, all assets must show the same dynamis. We therefore have

S = (S

0

), i.e. d = 1 and the only asset is the money aount as a deterministi

funtion of time. In the lassial framework, it is ommon sense that the fair

present value of a B -integrable payo� C

t

at t is the (onditional) expetation

of the disounted payo�, i.e. for a t-laim C

t

=S

0

t

(f. De�nition 3.2) we have

�

s

(C

t

=S

0

t

) := S

0

s

�E

B

[C

t

=S

0

t

jB

s

℄; s 2 T: (12)

Under the Expetation Priniple (12), the well-known lassial Priniple of

Equivalene is given by (11). As the disounted prie proesses are B -

martingales, the lassial �nanial market together with a �nite number of

(lassial) prie proesses of life insurane poliies is free of arbitrage opportu-

nities.

Let us have a loser look at the logi behind valuation priniple (12). As-

sume that � is given by the B -integrable portfolios. Suppose Axiom 1 to 3

and onsider a set of portfolios f(

i



t

)

t2T

: i 2 N

+

g where

i



t

depends on the

i-th individual's life, only (f. De�nition 4.1). Suppose that for all t 2 T there

is a 

t

2 R

+

suh that

jj

i



t

jj

2

� 

t

(13)

for all i 2 N

+

, where jj:jj

2

denotes the norm on the Hilbert spae L

2

(M;M

T

;P).

Now, buy for all i 2 N

+

and all t 2 T the portfolios �E

B

[

i



t

℄, where �E

B

[

i



t

℄

is interpreted as a �nanial produt (a t-portfolio) whih matures at time t,

i.e. the right on E

B

[

i



t

℄ in ash at t is sold at 0. Consider the balane of wins

and losses at time t. The mean total payo� at t for the �rst m ontrats is

given by

1

m

m

X

i=1

(

i



t

� E

B

[

i



t

℄) � S

0

t

: (14)

Clearly, (14) onverges B -a.s. to 0 as we an apply the Strong Law of Large

Numbers by Kolmogorov's Criterion. Furthermore, it follows diretly from

(12) that we have �

0

(�E

B

[

i



t

℄) = ��

0

(

i



t

) for all i 2 N

+

. Hene, in the

lassial ase, the fair present value of any laim equals the prie of a hedge
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at time 0 suh that for an inreasing number of independent laims the mean

balane of laims and hedges onverges to zero almost surely.

Now, onsider the set of life insurane ontrats f(

i



t

;

i

Æ

t

)

t2T

: i 2 N

+

g with

the deltas being de�ned in analogy to the gammas above. Sine for the om-

pany a ontrat an be onsidered as a vetor (

i

Æ

t

�

i



t

)

t2T

of portfolios, the

analogous hedge is given by (E

B

[

i



t

℄�E

B

[

i

Æ

t

℄)

t2T

. Under Axiom 5, the Equiv-

alene Priniple (11) states that the ontrat itself has value zero. From the

Expetation Priniple (12) we therefore obtain for all i 2 N

+

T

X

t=0

�

0

(E

B

[

i

Æ

t

℄�E

B

[

i



t

℄) =

T

X

t=0

�

0

(

i

Æ

t

�

i



t

) = 0: (15)

Hene, under (12) and Axiom 1, 2, 3 and 5, a life insurane ompany an

(without any osts at time 0) buy a hedge suh that the mean balane per

ontrat at any time t onverges to zero almost surely for an inreasing number

of individual ontrats:

1

m

m

X

i=1

(

i

Æ

t

�

i



t

� E

B

[

i

Æ

t

℄ +E

B

[

i



t

℄) � S

0

t

m!1

�! 0 B -a.s. (16)

As a diret onsequene, the mean of the �nal balane onverges, too:

1

m

m

X

i=1

T

X

t=0

(

i

Æ

t

�

i



t

� E

B

[

i

Æ

t

℄ +E

B

[

i



t

℄) � S

0

T

m!1

�! 0 B -a.s. (17)

REMARK 5.1. Roughly speaking, the Expetation Priniple (12) implies

that the prie of any laim at least overs the osts of a purely �nanial hedge

suh that for an inreasing number of independent laims the mean balane of

laims and hedges onverges to zero almost surely. The Equivalene Priniple

(11) indues that the hedge of any insurane ontrat osts nothing at time 0,

whih is important as the ontrat itself is for free, too (f. equation (15)).

6 Valuation II - The general ase

Before it omes to the topi of valuation in the general ase, two tehnial

lemmas have to be proven and some further notion has to be introdued.

Let the set R := R [ f�1;+1g be equipped with the usual Borel-�-

algebra and reall that a funtion g into R is alled numeri.

LEMMA 6.1. Consider n > 1 measurable numeri funtions g

1

to g

n

on the

produt (M;M;P) = (F;F ; F) 
 (B;B; B ) of two probability spaes. Then

g

1

= : : : = g

n

P-a.s. if and only if F-a.s. g

1

(f; :) = : : : = g

n

(f; :) B -a.s.
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Proof. For any Q 2 M it is well-known that P(Q) =

R

B (Q

f

)dF, where Q

f

=

fb 2 B : (f; b) 2 Qg and the funtion B (Q

f

) on F is F -measurable. As for

i 6= j the di�erene g

i;j

:= g

i

� g

j

is measurable, the set Q :=

T

i 6=j

g

�1

i;j

(0) is

M-measurable. Now, g

1

= : : : = g

n

a.s. is equivalent to P(Q) = 1 and this

again is equivalent to B (Q

f

) = 1 F-a.s. However, B (Q

f

) = 1 is equivalent to

g

1

(f; :) = : : : = g

n

(f; :) B -a.s.

LEMMA 6.2. Let (g

n

)

n2N

and g be a sequene, respetively a funtion out of

L

0

(M;M;P), i.e. the real valued measurable funtions onM , where (M;M;P)

is as above. Then g

n

! g P-a.s. if and only if F-a.s. g

n

(f; :)! g(f; :) B -a.s.

Proof. The elements of L

0

(M;M;P) are also numeri measurable funtions.

Now, reall that for any sequene of real numbers (h

n

)

n2N

and any h 2 R the

property h

n

! h is equivalent to lim suph

n

= lim inf h

n

= h. As the limes

superior and the limes inferior of a measurable numeri funtion always exist

and are measurable, one obtains from Lemma 6.1 that

lim sup

n!1

g

n

= lim inf

n!1

g

n

= g P-a.s. (18)

if and only if F-a.s.

lim sup

n!1

g

n

(f; :) = lim inf

n!1

g

n

(f; :) = g(f; :) B -a.s. (19)

As we have seen in Setion 4, there is the need for a suitable set � of

portfolios on whih a partiular valuation priniple should work. Further, a

mathematial preise desription of what was alled \similar" in Setion 2,

Priniple 5 has to be introdued.

DEFINITION 6.3.

(i) De�ne

� = (L

1

(M;M

T

;P))

d

(20)

and

�

F

= (L

1

(F;F

T

; F))

d

; (21)

where �

F

an be interpreted as a subset of � by the usual embedding.
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(ii) A set �

0

� � of portfolios in M

C

is alled independently identially

distributed due to (B;B

T

; B ), abbreviated B-i.i.d., when for almost all

f 2 F the random variables f�(f; :) : � 2 �

0

g are i.i.d. on (B;B

T

; B ).

Under Axiom 4, suh sets exist and an be ountably in�nite.

(iii) Under the Axioms 1 to 3, a set �

0

� � satis�es property (K) if for

almost all f 2 F the elements of f�(f; :) : � 2 �

0

g are stohastially

independent on (B;B

T

; B ) and jj�

j

(f; :)jj

2

< (f) 2 R

+

for all � 2 �

0

and all j 2 f0; : : : ; d� 1g.

Sets ful�lling property (B-i.i.d.) or (K) are indexed with the respetive

symbol. A disussion of the Kolmogorov-Criterion-like (K)-ondition an be

found below (Remark 7.5). The ondition �gures out to be quite weak.

Now, the remaining axioms whih onern valuation an be stated. The

next axiom is motivated by the demand that whenever the market with the

original d seurities with pries S is enlarged by a �nite number of prie pro-

esses �(�) due to general portfolios � 2 �, the no-arbitrage ondition (NA)

should hold on the new market. This axiom orresponds to the sixth priniple

of setion 2.

AXIOM 6. For any t 2 T and � 2 �

�

t

(�) = S

0

t

�E

M

[h�; S

T

i=S

0

T

jF

t


 B

t

℄ (22)

for a probability measure M � P.

The following axiom is due to the �fth and the seventh priniple.

AXIOM 7. Under the Axioms 1 - 4 and 6, the minimum fair prie � on

� is for any � 2 � given by

�

0

(�) = �

F

0

(H(�)) (23)

where

H : � �! �

F

(24)

is suh that

(i) H(

1

�) = H(

2

�) for B-i.i.d. portfolios

1

� and

2

�.



6 VALUATION II - THE GENERAL CASE 15

(ii) for t-portfolios f

i

�; i 2 N

+

g

B�i:i:d:

or f

i

�; i 2 N

+

g

K

one has

1

m

m

X

i=1

h

i

� �H(

i

�); S

t

i

m!1

�! 0 P-a.s. (25)

Relation (24) means that the hedge H(�) is a portfolio of the �nanial market.

Reall, that the �nanial market M

F

is omplete and any portfolio features a

self-�naning repliating strategy. However, (24) also implies that the hedging

strategy does not reat on biometri events happening after time 0. Due to

(i), as in the lassial ase, the hedging method H annot distinguish between

similar (B-i.i.d.) individuals (f. Priniple 5, Setion 2). Property (ii) is also

adopted from the lassial ase, where pointwise onvergene is ensured by

the Expetation Priniple for appropriate insurane produts ombined with

respetive hedges (f. Priniple 7, Setion 2 and Setion 5). Property (ii) is

also related to Priniple 4 in Setion 2 as insurane ompanies should be able

to ope with large lasses of similar ontrats.

Now, the main result of this paper an be stated.

PROPOSITION 6.4. Under the Axioms 1 - 4, 6 and 7, the minimum fair

prie � on � is uniquely determined by M = Q 
 B , i.e. for � 2 � and t 2 T

�

t

(�) = S

0

t

�E

Q
B

[h�; S

T

i=S

0

T

jF

t


 B

t

℄: (26)

As already mentioned, this produt measure approah is quite well established

in the existing literature. However, the dedution by an axiomati approah

as well as the generality of the above result seem to be new.

Clearly, (12) is the speial ase of (26) in the presene of a deterministi

�nanial market (jF

T

j = 2). As � is unique, it is at the same time the minimal

valuation priniple with the demanded properties. Atually, property (ii) of

Axiom 7 ensures that insurane ompanies do not harge more than the osts

of an aeptable purely �nanial hedge for eah produt whih is sold. So to

speak, the minimum fair prie is fair from the viewpoint of the insured, as well

as from the viewpoint of the ompanies.

The following lemmas are needed in order to prove the proposition.

LEMMA 6.5. Under Axiom 1 and 2, one has for any � 2 �

H

�

(�) := E

B

[�℄ 2 �

F

: (27)
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There is a self-�naning strategy repliating H

�

(�) and under Axiom 6

�

t

(H

�

(�)) = S

0

t

�E

Q
B

[h�; S

T

i=S

0

T

jF

t


 B

0

℄ (28)

for t 2 T. If � is a t-portfolio, then so is H

�

(�). Moreover, H

�

ful�lls properties

(i) and (ii) of Axiom 7.

Proof. By Fubini's Theorem, E

B

[�(f; :)℄ exists F-a.s. and is F-integrable.

Hene, by the ompleteness of M

F

and uniqueness of Q , the portfolio (27)

an be hedged by the �nanial seurities in M

F

and has (due to Remark 3.3)

the prie proess

�

t

(E

B

[�℄) = S

0

t

�E

Q

[hE

B

[�℄; S

T

i=S

0

T

jF

t


 B

0

℄: (29)

Sine E

Q

[E

B

[X℄jF

t

℄ = E

Q
B

[XjF

t


B

0

℄ P-a.s. for any X 2 �, (29) is idential

to (28) P-a.s. As we also have E

B

[�℄ = E

F
B

[�jF

T


 B

0

℄ P-a.s., H

�

(�) is a t-

portfolio. Let us prove the last statement. Property (i) of Axiom 7 is obviously

ful�lled. For any t-portfolios f

i

�; i 2 N

+

g

K

or f

i

�; i 2 N

+

g

B�i:i:d:

, the Strong

Law of Large Numbers (in the �rst ase by Kolmogorov's Criterion) implies

for almost all f 2 F that

1

m

m

X

i=1

h

i

�(f; :)�H

�

(

i

�)(f); S

t

(f)i

m!1

�! 0 B -a.s. (30)

Lemma 6.2 ompletes the proof.

LEMMA 6.6. Under Axiom 1 and 2, one obtains that for any � 2 �, any

t 2 T and for M 2 fF 
 B ;Q 
 B g

E

M

[h� �H

�

(�); S

t

i℄ = 0: (31)

Proof. By Fubini's Theorem.

LEMMA 6.7. Under the Axioms 1 - 4 and 6, any H : �! �

F

ful�lling (i)

and (ii) of Axiom 7 ful�lls for any � out of some �

B�i:i:d:

�

t

(H(�)) = S

0

t

�E

Q
B

[h�; S

T

i=S

0

T

jF

t


 B

0

℄; t 2 T: (32)

Roughly speaking, Lemma 6.7 states that there is no reasonable purely �-

nanial hedging method (for the relevant portfolios) with better onvergene

properties than (27) has. Even a hedging method with stronger than pointwise

onvergene, e.g. an additional L

p

-onvergene (p � 1), must follow (32) and

has the same prie proess as (27).
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Proof of Lemma 6.7. Consider to be given suh an H as in Lemma 6.7 and a

set f

i

�; i 2 N

+

g

B�i:i:d:

of t-portfolios that ontains a given t-portfolio �. From

Lemma 6.2, one has F-a.s.

1

m

m

X

i=1

h

i

�(f; :)�H(�)(f); S

t

(f)i

m!1

�! 0 B -a.s. (33)

and by the Law of Large Numbers

hE

B

[

i

�(f; :)℄; S

t

(f)i = hH(�)(f); S

t

(f)i: (34)

Condition (NA) and Remark 3.3 imply �

t

(H(�)) = �

t

(E

B

[

i

�℄) for i 2 N

+

and

t 2 T. Lemma 6.5 ompletes the proof.

Proof of Proposition 6.4. From the Fundamental Theorem we know that Q �

F. A diret onsequene of Lemma 6.1 and the Radon-Nikodym Theorem is

Q
B � F
B . From Lemma 6.5 we obtain that (26) exists. Hene, (26) ful�lls

Axiom 6. The same lemma implies that (26) is a minimum fair prie in the

sense of Axiom 7. Now, uniqueness will be shown. Suppose that � is a mini-

mum fair prie in the sense of Axiom 7 and onsider some f

i

�; i 2 N

+

g

B�i:i:d:

.

From Lemma 6.7 it is known that �

0

(

i

�) = �

0

(H

�

(

i

�)) = E

Q
B

[h

i

�; S

T

i=S

0

T

℄

for all i 2 N

+

. One an surely hoose a set f

i

�; i 2 N

+

g

B�i:i:d:

suh that

1

� = (1

Z

; 0; : : : ; 0), where 1

Z

is the indiator funtion of a ylinder set

Z = (F

0

; B

1

; B

2

; : : : ) with F

0

2 F

T

and B

j

2 B

j

T

for j 2 N

+

where B

j

6= B

j

for only �nitely many j (Axiom 4 is ruial for the possibility of this hoie!).

Clearly, these ylinders form a \-stable generator for M

T

, the �-algebra of

the produt spae, and M itself is an element of this generator. One obtains

�

0

(

1

�) = Q 
 B (Z) = M (Z) from (28) and (22). M = Q 
 B follows from the

oinidene of the measures on the generator.

Axiom 7 (together with 6) ould be interpreted as a strong no-arbitrage

priniple that ful�lls (NA) and also preludes arbitrage-like strategies that

have their origin in the Law of Large Numbers.

EXAMPLE 6.8 (Arbitrage-like trading opportunities). Consider a set

f

i

�; i 2 N

+

g

B�i:i:d:

of portfolios. The minimum fair prie for eah portfolio is

given by (26) (t = 0). If an insurane ompany sells the produts f

1

�; : : : ;

m

�g

at that pries, it an buy hedging portfolios suh that the mean balane on-

verges to zero almost surely with m (f. Axiom 7, (ii)). However, if the om-

pany harges �

0

(

i

�) + �, where � > 0 is an additional fee and � is as in (26),
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there still is the hedge as explained above, but the gain � per ontrat was

made at t = 0. Hene, the safety load � makes in the limit a deterministi

money making mahine out of the insurane ompany.

Example 6.8 diretly points at the main di�erene between priing in life

insurane mathematis and �nanial mathematis. On �nanial markets suh

arbitrage-like strategies are not possible as there usually are not enough in-

dependent stoks. Furthermore, the stohasti behaviour of seurities is by

far not as good known as the stohastis of biometri events. Indeed, pra-

titioners say that the probabilities from the biometri probability spae are

almost known for sure. Hene, biometri expetations an be omputed with

high auray whereas expetations on �nanial markets have the harater

of speulation. From this point of view, any possible EMM M

0

on the market

M

C

obtained by the free trading of portfolios in M

C

should be expeted to

be lose to Q 
 B . Any systemati deviation ould give rise to arbitrage-like

trading opportunities, as we have seen above.

REMARK 6.9 (Quadrati hedging). Consider an L

2

-framework, i.e. the

payo� h�

t

; S

t

i of any onsidered t-portfolio �

t

lies in L

2

(M;M

t

;P). As

P = F 
 B , it an easily be shown that E

B

[:℄ is the orthogonal projetion

of L

2

(M;M

t

;P) onto its (purely �nanial) subspae L

2

(F;F

t

; F). Standard

Hilbert spae theory implies that the payo� hE

B

[�

t

℄; S

t

i = E

B

[h�

t

; S

t

i℄ of the

hedge H

�

(�

t

) is the best L

2

-approximation of the payo� h�

t

; S

t

i of the port-

folio �

t

by a purely �nanial portfolio out of M

F

. Further, it an easily

be shown that M = Q 
 B minimizes jjdM =dP � 1jj

2

under the onstraint

E

B

[dM =dP℄ = dQ=dF . Under some additional tehnial assumptions, this

property is a haraterization of the so-alled minimal martingale measure in

the time ontinuous ase (f. Shweizer, 1995; M�ller, 2001). Hene, Q 
 B

an be interpreted as the EMM whih lies \next" to P = F 
 B due to the

L

2

-metri. Beside the onvergene properties disussed in this paper, these are

the most important (and \natural") reasons for the use of (26). The hedging

method H

�

onsidered in this paper is not really the so-alled mean-variane

hedge as it is known from the literature (f. Bouleau and Lamberton, 1989;

DuÆe and Rihardson, 1991). The di�erene is that the mean-variane ap-

proah generally allows for all self-�naning trading strategies in M

C

, i.e. also

biometri events an have inuene on the strategy in this ase. However, the

ideas are of ourse quite similar. An overview onerning hedging approahes

in insurane an be found in M�ller (2002).
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7 Hedging

In this setion, it is shown under quite weak assumptions that a big insurane

ompany is able to hedge in the mean almost all of its risk by produts of the

�nanial market.

Suppose Axiom 1 to 4 and a not further spei�ed valuation priniple �

on � (� is de�ned as in (20)). Consider a set of life insurane ontrats

f(

i



t

;

i

Æ

t

)

t2T

: i 2 N

+

g with f

i



t

: i 2 N

+

g

K

and f

i

Æ

t

: i 2 N

+

g

K

for all t 2 T.

Following hedging method H

�

of Lemma (6.5), the portfolios (or strategies

repliating) E

B

[

i



t

℄ and �E

B

[

i

Æ

t

℄ are bought at time 0 for all i 2 N

+

and all

t 2 T. Consider the balane of wins and losses at any time t 2 T. For the

mean total payo� per ontrat at time t we have

1

m

m

X

i=1

h

i

Æ

t

�

i



t

� E

B

[

i

Æ

t

�

i



t

℄; S

t

i

m!1

�! 0 P-a.s. (35)

due to Lemma 6.5. In analogy to Setion 5, also the mean �nal balane

onverges to zero a.s., i.e.

1

m

m

X

i=1

T

X

t=0

h

i

Æ

t

�

i



t

�E

B

[

i

Æ

t

�

i



t

℄; S

T

i

m!1

�! 0 P-a.s. (36)

This kind of risk management is stati in the sense that no trading strategy

reats on biometri events happening after time 0. This orresponds to the

onsiderations in the lassial ase whih have taken plae in Setion 5. It was

already mentioned in Remark 6.9 that the onsidered hedging method is not

exatly the so-alled mean-variane hedging. Another (more omprehensive,

but not self-�naning) hedging approah is given by so-alled risk-minimizing

strategies (e.g. M�ller, 1998 and 2001).

REMARK 7.1. Due to Lemma 6.6, any of the balanes in (35) and (36) has

expetation 0 under the physial probability measure P = F 
 B .

Until now, premium alulation has not played any role in this setion.

However, if the Priniple of Equivalene (11) is applied under the minimum

fair prie (26), one obtains for all i 2 N

+

T

X

t=0

�

0

(E

B

[�

i

Æ

t

+

i



t

℄) =

T

X

t=0

�

0

(

i

Æ

t

�

i



t

) = 0: (37)
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REMARK 7.2. Under (11) and (26), a life insurane ompany an without

any osts at time 0 (!) pursue a trading strategy suh that the mean balane

per ontrat at any time t onverges to zero almost surely for an inreasing

number of individual ontrats.

Remark 7.2 is perhaps the result with the strongest pratial impat. In

ontrast to other, more omprehensive hedging methods, the presented method

has the advantage that there is no need for the hedger to take into aount

the biometri development of eah individual. The information available at

the time of ontrat underwriting (t = 0) is suÆient and all strategies are

self-�naning.

EXAMPLE 7.3 (Traditional ontrats with stohasti interest rates).

Consider a life insurane ontrat whih is for the i-th individual given by two

ashows (

i



t

)

t2T

= (

i

C

t

S

0

t

e

0

)

t2T

and (

i

Æ

t

)

t2T

= (

i

D

t

S

0

t

e

0

)

t2T

with T = f0; 1; : : : ; Tg

in years. Assume that eah

i

C

t

is given by

i

C

t

(f; b) =

i



i

�



t

(b

i

) for all

(f; b) 2 M where

i

 is a positive onstant. Let (

i

Æ

t

)

t2T

be de�ned analogously

with the variables

i

D

t

;

i

d and

i

�

Æ

t

. Suppose that

i

�

(Æ)

t

is B

i

t

-measurable with

i

�

(Æ)

t

2 f0; 1g for all b

i

2 B

i

. The portfolio e

0

=S

0

t

an be interpreted as

the guaranteed payo� of one urreny unit at time t. This kind of ontrat

is alled a zero-oupon bond with maturity t and its prie at time s < t is

denoted by p(s; t � s) = �

s

(e

0

=S

0

t

) where t � s is the time to maturity and

p(s; 0) := 1 for all s 2 T.

1. Traditional life insurane. Suppose that

i

�



t

= 1 if and only if the i-th

individual has died in (t � 1; t℄ and for t < T that

i

�

Æ

t

= 1 if and only if the

i-th individual is still alive at t, but

i

�

Æ

T

� 0. Assume that i is alive at t = 0.

Clearly, this ontrat is a life insurane with �xed annual premiums

i

d and the

bene�t

i

 in the ase of death. E

B

[

i

�



t

℄ and E

B

[

i

�

Æ

t

℄ are mortality, respetively

survival probabilities. This data an be obtained from so-alled mortality

tables. Usually, the notation is

t�1j1

q

x

= E

B

[

i

�



t

℄ (t > 0) and

t

p

x

= E

B

[

i

�

Æ

t

℄

(0 < t < T ) for an individual of age x (f. Gerber, 1997; for onveniene

reasons, the notation

�1j1

q

x

= 0 and

0

p

x

= 1 is used in the following). By

Fubini's Theorem, the hedge H

�

for

i

Æ

t

�

i



t

is for t < T given by the number

of (

i



t�1j1

q

x

�

i

d

t

p

x

) zero-oupon bonds with maturity t, and for t = T by

i



T�1j1

q

x

zero-oupon bonds with maturity T .

2. Endowment. Assume for t < T that

i

�



t

= 1 if and only if the i-th

individual has died in (t � 1; t℄, but

i

�



T

= 1 if and only if i has died in

(T � 1; T ℄ or is still alive at T . Further,

i

�

Æ

t

= 1 if and only if the i-th
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individual is still alive at t < T , but

i

�

Æ

T

� 0. Assume that i is alive at t = 0.

This ontrat is a so-alled endowment that features �xed annual premiums

i

d and the bene�t

i

 in the ase of death, but also the payo�

i

 when i is

alive at T . The hedge H

�

due to

i

Æ

t

�

i



t

is for t < T given by the number

of (

i



t�1j1

q

x

�

i

d

t

p

x

) zero-oupon bonds with maturity t, and for t = T by

i

 (

T�1j1

q

x

+

T

p

x

) zero-oupon bonds with maturity T .

Atually, in the ase of traditional ontrats, all hedging an be done by

zero-oupon bonds (whih is also alled mathing).

EXAMPLE 7.4 (Unit-linked produts). The ase of a unit-linked prod-

ut is interesting if and only if the produt is not the sum of a traditional life

insurane ontrat and a simple funds poliy (whih is often the ase in pra-

tie). So, let us assume that the ontrat is given by a ashow of onstant

premiums (

i

Æ

t

)

t2T

as in Example 7.3 and a ow of bene�ts (

i



t

)

t2T

suh that

i



t

(f; b) =

i

�

t

�

i



i

�



t

(b

i

) for all (f; b) 2M where

i

�

t

2 �

F

is an arbitrary �nan-

ial t-portfolio and all other notations are the same as in the introdution of

Example 7.3. For instane, one ould onsider a number of shares of an index,

or a number of assets together with the respetive European Puts whih ensure

a ertain level of bene�t (i.e. a \unit-linked produt with guarantee"). The

strategy due to

i

Æ

t

�

i



t

is given by

i

 � E

B

[

i

�



t

℄ times the repliating strategy

of

i

�

t

minus (

i

d �E

B

[

i

�

Æ

t

℄) zero-oupon bonds maturing at time t. In partiular,

for

i

�

t

being a onstant portfolio, the strategy is obviously very simple as the

portfolio must not be repliated, but an be bought diretly.

REMARK 7.5. The tehnial assumption (K) whih is suÆient for the on-

vergene of (35) (f. De�nition 6.3 (iii)) and whih is demanded at the very

beginning of the setion will be disussed now. In the ase of traditional life

insuranes as in Example 7.3, the realisti ondition

i

;

i

d �  2 R

+

for all

i 2 N

+

implies (K). In the ase of unit-linked produts, suppose that there

are only �nitely many possible portfolios

i

�

t

for eah t 2 T (whih is also

quite realisti as often shares of one single funds are onsidered). Under this

assumption, again

i

;

i

d �  2 R

+

for all i 2 N

+

implies (K). Hene, (K) is no

drawbak for pratial purposes.

8 Inomplete �nanial markets

Until now, the theory presented in this paper assumed omplete and arbitrage-

free markets (f. Axiom 2), whih redues the number of expliit market models
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that an be onsidered. However, some of the onepts work (under some

restritions) with inomplete market models.

In partiular, it is now assumed that in Axiom 2 ompleteness of the market

modelM

F

and uniqueness of the EMM Q is not demanded. Let us enumerate

the altered axiom by 2' and de�ne

�

F

= f� : � repliable by a self-�naning strategy in M

F

g (38)

� = f� : � is an M

C

-portfolio and E

B

[�℄ 2 �

F

g: (39)

It is well-known from the theory of �nanial markets that any EMM Q ful�lls

priing formula (3) for any repliable portfolio � 2 �

F

. Now, with �

F

and �

as de�ned above and Axiom 2 replaed by 2', it an easily be heked that the

Lemmas 6.5, 6.6 and 6.7 still hold. Conerning Proposition 6.4, � as de�ned

in (26) is for any �nanial EMM Q a minimum fair prie. Hene, uniqueness

gets lost. However, for any minimum fair prie one still has that �

0

is unique

(on the new set �). The reason is that for any � 2 � and any two EMM Q

and Q of M

F

E

Q
B

[h�; S

T

i=S

0

T

℄ = E

Q
B

[h�; S

T

i=S

0

T

℄ (40)

due to Fubini's Theorem and the (NA)-ondition. Hene, priing at time

t = 0 (i.e. present values) and hedging (f. Setion 7) still work as in the ase

of omplete �nanial markets.

In the presene of arbitrage opportunities, the existene of an equivalent

martingale measure gets lost. Nonetheless, assume a �nanial market model

M

F

whih is neither neessarily arbitrage-free, nor omplete and suppose that

there is a valuation priniple �

F

used in M

F

on a set �

F

of purely �nanial

portfolios whih are taken into onsideration (this does not mean absene of

arbitrage). Under the onsidered �

F

, de�ne � by (39) and for any � 2 �

�

0

(�) = �

F

0

(E

B

[�℄); (41)

whih is the prie of the hedge H

�

at time 0 (ompare with (23) and (28)

for t = 0). In a L

2

-framework as in Remark 6.9, i.e. if we have for any t

that H

t

(�

F

) = h�

F

; S

t

i is a losed subspae of L

2

(F;F

T

; F), the operator

E

B

[:℄ is again the orthogonal projetion of the subspae H

t

(�) = h�; S

t

i of

L

2

(M;M

T

;P) onto its (purely �nanial) subspae H

t

(�

F

). Thus, E

B

[�℄ is the

best approximation to any � 2 � in the L

2

-sense (f. Remark 6.9). Even if we
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do not assume the L

2

-framework, the properties (i) and (ii) of Axiom 7 are

still ful�lled for the above de�ned � and for H

�

as in (27). Hene, �

0

satis�es

the demand for onverging balanes as stated in Priniple 7 of Setion 2 and

the expressions (35) and (36) are still valid. For these two reasons, (41) is a

quite sensible valuation priniple.

9 Historial priing example

Let us onsider the traditional ontrats as desribed in Example 7.3. Due to

the Equivalene Priniple (11), we demand

�

0

 

T

X

t=0

i



i

�



t

e

0

=S

0

t

!

= �

0

 

T

X

t=0

i

d

i

�

Æ

t

e

0

=S

0

t

!

: (42)

Now, suppose that the minimum fair prie � from (26), respetively the valu-

ation priniple (41), is applied for premium alulation. Clearly,

i

d

i



=

T

X

t=0

p(0; t) �E

B

[

i

�



t

℄

.

T

X

t=0

p(0; t) �E

B

[

i

�

Æ

t

℄ (43)

where p(0; t) is the prie of a zero-oupon bond as de�ned in Setion 7. An

important onsequene of (43) is that the quotient

i

d=

i

 (minimum fair pre-

mium/bene�t) depends on the zero-oupon bond pries (or yield urve) at time

0. As the term struture of interest rates indeed varies from day to day, this

in partiular means that

i

d=

i

 varies from day to day and therefore depends

on the day of underwriting (atually, it depends on the exat time). Insurane

ompanies do not determine the pries for produts daily. Hene, they give

rise to �nanial risks as the ontrats may be over-valued.

Now, assume that any time value is given in frations of years. The so-

alled spot (interest) rate R(t; �) for the time interval [t; t+ � ℄ is de�ned by

R(t; �) = �

log p(t; �)

�

: (44)

The short rate r(t) at t is de�ned by r(t) = lim

�!0

R(t; �), where the limit is

assumed to exist. The yield urve at time t is the mapping with � 7! R(t; t+�)

for � > 0 and 0 7! r(t). Figure 5 on page 32 shows the historial yield

struture (i.e. the set of yield urves) of the German debt seurities market

from September 1972 to February 2003 (the 366 values are taken from the

end of eah month). The maturities' range is 0 to 28 years. The values
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for � > 0 were omputed via a parametri presentation of yield urves (the

so-alled Svensson-method; f. Shih, 1997) for whih the parameters an

be taken from the internet page of the German Federal Reserve (Deutshe

Bundesbank; http://www.bundesbank.de). The implied Bundesbank values

R

0

are estimates of disrete interest rates on notional zero-oupon bonds based

on German Federal bonds and treasuries (f. Shih, 1997) and have to be

onverted to ontinuous interest rates (as impliitly used in (44)) by R = ln(1+

R

0

). As an approximation for the short rate, the day-to-day money rates from

the Frankfurt market (Monatsdurhshnitt des Geldmarktsatzes f�ur Tagesgeld

am Frankfurter Bankplatz; also available at the Bundesbank homepage) are

taken and onverted into ontinuous rates.

Equation (44) shows that interest rates (yields) and zero-oupon bond

pries ontain the same information, namely the present value of a non-

defaultable future payo�. As there is a yield urve given for any time t of

the historial time axis, it is possible to ompute the historial value of

i

d=

i



for any t via (44). Doing so, one obtains

i

d

i



(t) =

T

X

�=0

p(t; �)

��1j1

q

x

(t)

.

T�1

X

�=0

p(t; �)

�

p

x

(t) (45)

for the traditional life insurane and

i

d

i



(t) =

 

p(t; T )

T

p

x

(t) +

T

X

�=0

p(t; �)

��1j1

q

x

(t)

!

.

T�1

X

�=0

p(t; �)

�

p

x

(t) (46)

for the endowment. In this example, the values

��1j1

q

x

(� > 0) and

�

p

x

(0 < � < T ) are taken from (or omputed by) the DAV (Deutshe Aktuarvere-

inigung) mortality table \1994 T" (Loebus, 1994), the value

T

p

x

is omputed

by the table \1994 R" (Shmithals and Sh�utz, 1995). The reason for the dif-

ferent tables is that in atuarial pratie mortality tables ontain safety loads

whih depend on whether the death of a person is in (�nanial) favour of the

insurane ompany, or not. All probabilities mentioned above are onsidered

to be onstant in time. Espeially, to make things easier, there is no \aging

shift" applied to table \1994 R".

Now, onsider a man of age x = 30 years and the time axis T =

f0; 1; : : : ; 10g (in years). In Figure 1, the resaled quotients (45) and (46) are

plotted for the above setup. For omparison reasons: the absolute values at

the starting point (September 1972) are

i

d=

i

 = 0:063792 for the endowment,

respetively

i

d=

i

 = 0:001587 for the life insurane. The plot niely shows the
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dynamis of the quotients and hene of the minimum fair premiums

i

d if the

bene�t

i

 is assumed to be onstant. The premiums of the endowment seem

to be muh more subjet to the utuations of the interest rates than the pre-

miums of the traditional life insurane. For instane, the minimum fair annual

premium

i

d for the 10-years endowment with a bene�t of

i

 = 100; 000 Euros

was 5,285.55 Euros at the 31st July 1974 and 8,072.26 at the 31st January

1999. For the traditional life insurane (with the same bene�t), one obtains

i

d = 152:46 Euros at the 31st July 1974 and 168.11 at the 31st January 1999.

If one assumes a disrete tehnial rate of interest R

0

teh

, e.g. 0.035, whih

is the legally guaranteed rate of interest by German life insurers, one an

ompute \tehnial" quotients

i

d

teh

=

i

 by omputing the \tehnial" values of

zero-oupon bonds, i.e. p

teh

(t; �) = (1+R

0

teh

)

��

, and plugging them into (45),

resp. (46). If a life insurane ompany harges the \tehnial" premiums

i

d

teh

instead of the minimum fair premiums

i

d and if one onsiders the valuation

priniple (26), respetively (41), to be a reasonable hoie, the present value

of the onsidered insurane ontrat is

i

V = (

i

d

teh

�

i

d) �

T�1

X

�=0

p(t; �)

�

p

x

(t) (47)

due to the Priniple of Equivalene, respetively (42). In partiular, this means

that the insurane ompany an book the gain or loss (47) in the limit, mean

or expetation (f. Example 6.8 and Remark 7.1) at time 0 as long as proper

risk management (as desribed in Setion 7) takes plae afterwards. Thus, the

present value (47) is a measure for the pro�t, or simply the expeted disounted

pro�t of the onsidered ontrat. Figure 2 shows the historial development of

i

V =

i

 (present value/bene�t) for the 10-years endowment as desribed above

(solid line). For instane, the present value

i

V of a 10-years endowment with

a bene�t of

i

 = 100; 000 Euros was 20,398.70 Euros at July 31, 1974. At the

31st January 1999, it was worth 2,578.55 Euros, only. The situation gets even

worse in the ase of a tehnial (or promised) rate of interest R

0

teh

= 0:050

(dashed line) - whih is quite little in ontrast to formerly promised returns

of e.g. German life insurers. At the 31st January 1999, suh a ontrat was

worth -3,141.95 Euros, i.e. the ontrat atually produed a loss in the mean.

More reent values from February 28, 2003 are 4,592.69 Euros for a tehnial

interest of 0.035 and -1,127.39 Euros in the other ase. Some present values of

the 10-years traditional life insurane an be found in Table 1 on page 29.

All omputations from above have also been arried out for a 25-years



9 HISTORICAL PRICING EXAMPLE 26

endowment, respetively life insurane (f. Table 1). The orresponding

�gures are 3 and 4. Conerning Figure 3, the absolute values at the starting

point (September 1972) are

i

d=

i

 = 0:013893 for the endowment, respetively

i

d=

i

 = 0:002553 for the life insurane. The minimum fair premium

i

d

for the 25-years endowment with bene�t

i

 = 100; 000 Euros was 808.39

Euros at the 31st July 1974 and 2,177.32 Euros at the 31st January 1999.

For the traditional life insurane (with the same bene�t), one obtains

i

d = 216:37 Euros at the 31st July 1974 and 303.90 at the 31st January

1999. Hene, the premium-to-bene�t ratio for both types of ontrats

seems to be more dependent on the yield struture than in the 10-years

ase. However, ompared to the 10-years ontrats, the longer running

time seems to stabilize the present values of the ontrats (f. Table 1 and

Figure 4). Nonetheless, they are still strongly depending on the yield struture.

The examples have shown the importane of realisti valuation priniples

in life insurane. Any premium alulation method and all related parameters

(like e.g. tehnial rates of interest, whih have to be determined in some

way) should be arefully examined in order to be properly prepared for the

utuations of �nanial markets. There is no doubt that many of the �nanial

problems of life insurane ompanies that have arisen in the past few years

ould have been avoided by a proper use of modern valuation priniples and -

perhaps even more important - modern �nanial hedging strategies.
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A Figures and tables

Date 1974/07/31 1999/01/31

Traditional life insurane: 10 years

Tehn. premium

i

d

teh

(R

0

teh

= 0:035) 168.94

Tehn. premium

i

d

teh

(R

0

teh

= 0:050) 165.45

Minimum fair annual premium

i

d 152.46 168.11

Present value

i

V (R

0

teh

= 0:035) 108.90 7.17

Present value

i

V (R

0

teh

= 0:050) 85.84 -22.80

Traditional life insurane: 25 years

Tehn. premium

i

d

teh

(R

0

teh

= 0:035) 328.02

Tehn. premium

i

d

teh

(R

0

teh

= 0:050) 303.27

Minimum fair annual premium

i

d 216.37 303.90

Present value

i

V (R

0

teh

= 0:035) 1,009.56 376.84

Present value

i

V (R

0

teh

= 0:050) 785.80 -9.83

Endowment: 10 years

Tehn. premium

i

d

teh

(R

0

teh

= 0:035) 8,372.65

Tehn. premium

i

d

teh

(R

0

teh

= 0:050) 7,706.24

Minimum fair annual premium

i

d 5,285.55 8,072.26

Present value

i

V (R

0

teh

= 0:035) 20,398.70 2,578.55

Present value

i

V (R

0

teh

= 0:050) 15,995.27 -3,141.95

Endowment: 25 years

Tehn. premium

i

d

teh

(R

0

teh

= 0:035) 2,760.85

Tehn. premium

i

d

teh

(R

0

teh

= 0:050) 2,255.93

Minimum fair annual premium

i

d 808.39 2,177.32

Present value

i

V (R

0

teh

= 0:035) 17,655.42 9,118.39

Present value

i

V (R

0

teh

= 0:050) 13,089.53 1,228.34

Table 1: Seleted (extreme) values due to di�erent ontrats for a 30 year old

man (�xed bene�t:

i

 = 100; 000 Euros)
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Count of months since September 1972
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Figure 1: Resaled plot of the quotient

i

d=

i

 (minimum fair annual pre-

mium/bene�t) for the 10-years endowment (solid), resp. life insurane

(dashed), for a 30 year old man

Count of months since September 1972

35030025020015010050
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Figure 2:

i

V =

i

 (present value/bene�t) for the 10-years endowment under a

tehnial interest rate of 0:035 (solid) and 0:050 (dashed)
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Count of months since September 1972
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Figure 3: Resaled plot of the quotient

i

d=

i

 (minimum fair annual pre-

mium/bene�t) for the 25-years endowment (solid), resp. life insurane

(dashed), for a 30 year old man
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Figure 4:

i

V =

i

 (present value/bene�t) for the 25-years endowment under a

tehnial interest rate of 0:035 (solid) and 0:050 (dashed)
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Figure 5: Historial yields of the German debt seurities market


