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Abstract

The classical Principle of Equivalence ensures that a life insurance com-
pany can accomplish that the mean balance per contract converges to
zero almost surely for an increasing number of clients. In an axiomatic
approach, this idea is adapted to the general case of stochastic financial
markets. In accordance with existing results, the implied minimum fair
price of general life insurance products is then uniquely determined by
the product of the given equivalent martingale measure of the financial
market with the probability measure of the biometric state space. A
detailed historical example concerning contract pricing and valuation is
given.
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1 Introduction

In traditional life insurance mathematics, financial markets are assumed to
be deterministic. Under this assumption, the philosophy behind the classical
Principle of Equivalence is that a life insurance company should be able to ac-
complish that the mean balance per contract converges to zero almost surely

for an increasing number of clients. Roughly speaking, premiums are chosen
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such that incomes and losses are “balanced in the mean”. This idea leads to
a valuation method usually called “Expectation Principle” and relies on two
important ingredients: the stochastic independence of individual lifes and the
Strong Law of Large Numbers. In modern life insurance mathematics, where
financial markets are sensibly assumed to be stochastic and where more gen-
eral products (e.g. unit-linked ones) are taken into consideration, the valuation
principle which is widely accepted is also an expectation principle. However,
the respective probability measure is different as the minimum fair price (or
present value) of an insurance claim is determined by the no-arbitrage pricing
method as it is known from financial mathematics. The respective equiv-
alent martingale measure (EMM) is the product of the given EMM of the
financial market with the probability measure of the biometric state space.
Although research on the valuation of unit-linked products already started in
the late 1960s, one of the first results (for a particular contract) that was in
its core identical to the mentioned product measure approach was Brennan
and Schwartz (1976). The most recent papers mainly dedicated to valuation
by this approach are (for the Black-Scholes model) Aase and Persson (1994)
and (for a simple stochastic interest rate model) Persson (1998). A brief his-
tory of valuation in (life) insurance can be found in Mgller (2002) (the works
Mgller (2002, 2003a and 2003b) also consider valuation, but focus on hedging,
resp. advanced premium principles). Again, one should have a look at the
assumptions concerning the considered valuation principle. Aase and Persson
(1994), but also other authors, a priori suppose independence of financial and
biometric events. An arbitrage-free and complete financial market ensures the
uniqueness of the (financial) EMM. The use of the product measure as men-
tioned above is usually explained by the risk-neutrality of the insurer towards
biometric risks (cf. Aase and Persson, 1994; Persson, 1998). In Mgller (2001),
a further good reason can be found: the product measure coincides trivially
with the so-called minimal martingale measure (cf. Schweizer, 1995).

Apart from these reasons for the considered product measure approach,
the aim of this paper is the deduction of a valuation principle by an adaption
of the classical demand for convergence of mean balances due to the Law of
Large Numbers. This idea seems to be new. In a discrete finite time frame-
work, it is carried out by an axiomatic approach which mainly reflects the
commonly accepted assumptions in the modern theory of life insurance (as al-

ready mentioned: independence of individuals, independence of biometric and
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financial events, no-arbitrage pricing etc.). The resulting valuation principle
is in accordance with the above mentioned results since the implied mini-
mum fair price for general life insurance products is uniquely determined by
the equivalent martingale measure that is given by the product of the EMM
of the financial market with the probability measure of the biometric state
space. In fact, due to the no-arbitrage pricing, the complete price process is
determined. Under the mentioned axioms, it is shown how a life insurance
company can accomplish that the mean balance per contract at any future
time ¢ converges to zero almost surely for an increasing number of customers.
The respective (purely financial and self-financing) hedging strategy can be
financed (the initial costs, of course) by the minimum fair premiums. The
considered hedging method is different from the risk-minimizing and mean-
variance hedging strategies considered e.g. in Mgller (1998, 2001 and 2002).
In fact, the method is a (discrete) generalization of the matching approach
in Aase and Persson (1994). Even though that this hedging method is less
sophisticated than e.g. risk minimizing strategies (which are unfortunately not
self-financing), it surely is of practical use since it is easier to realize (not every
single life has to be observed over the whole time axis). Examples for the
pricing and hedging of different types of contracts are given. A more detailed
example shows for a traditional life insurance and an endowment contract the
historical development of the ratio of the minimum fair annual premium per
benefit. Assuming that premiums are calculated by a conservatively chosen
constant technical rate of interest, the example also considers the development
of the present values of these contracts.

Although the model considered in this paper is restricted to a finite set
of points of time, the approach is quite general in the sense that it does not
propose particular models for the dynamics of the financial securities or the
biometric events. The concept of a life insurance contract is introduced in a
very general way and the presented methods are not restricted to a particular
type of contract. Further, all methods and results of the paper can be applied
to non-life insurance as long as the assumptions are also appropriate in the
considered cases.

The section content is as follows. In Section 2, the principles which are
considered to be reasonable for a modern theory of life insurance are briefly
discussed in an enumerated list. Section 3 introduces the considered model

and some first axioms concerning the common probability space of financial
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and biometric risks. Section 4 contains a definition of general life insurance
contracts and the statement of a generalized Principle of Equivalence. (The
paper makes a difference between the classical Expectation Principle, which
is a valuation method, and the Principle of Equivalence, which is an eco-
nomic “fairness” argument.) In Section 5, the case of classical life insurance
mathematics is briefly reviewed. Section 6 contains the axiomatic approach
to valuation in the general case and the deduction of the minimum fair price.
Section 7 is on the topic of hedging, i.e. on the convergence of the mean bal-
ances. Examples are given in this section, too. In Section 8, it is shown how
parts of the results can be adapted to the case of incomplete markets, even
for markets with arbitrage opportunities something can be rescued. The last
section is dedicated to the numerical pricing example mentioned above and

confirms the importance of modern valuation principles.

2 Principles of life insurance mathematics

In the author’s opinion, the following eight assumptions are crucial for a
modern theory of life insurance mathematics. The principles are given in an

informal manner, the mathematically precise formulation follows later.

1. Independence of technical and financial events. One of the basic as-
sumptions is that the technical (biometric) events, for instance death or injury
of persons, are independent of the events of the financial markets (cf. Aase and
Persson, 1994). In contrast to reinsurance companies, where the movements
on the financial markets can be highly correlated to the payments of the in-
surer, it is common sense that such effects can be neglected in the case of life
insurance.

2. Complete, arbitrage-free financial markets. Except for Section 8,
where incomplete markets are examined, complete, arbitrage-free financial
markets are considered throughout the paper. Even though this might be
an unrealistic assumption from the viewpoint of finance, it is a realistic one
from the perspective of life insurance. The reason is that a life insurance
company usually does not invent purely financial products as this is the work-
ing field of banks. Therefore, it can be assumed that all considered financial
products are either traded on the market, can be bought from banks or can

be replicated by self-financing strategies. Nonetheless, it is self-evident that
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a claim which also depends on a technical event (e.g. the death of a person)
cannot be hedged by financial securities. Hence, the joint market of financial
and technical risks is not complete. In the literature, completeness of financial
markets is often assumed by the use of the Black-Scholes model (cf. Aase and
Persson, 1994; Mgller, 1998). It figures out that parts of the results of the
paper are also valid in the case of incomplete financial markets - which allows
for more models. However, in this case financial portfolios will be restricted to
replicable ones and also the considered life insurance contracts are restricted
in a similar way.

3. Biometric states of individuals are independent.

4. Large classes of similar individuals. Concerning the Law of Large Num-
bers as applied in classical life insurance mathematics, an implicit assumption
is a large number of persons under contract in a particular company. Even
stronger, it can be assumed that classes of “similar” persons, e.g. of the same
age, are large. An insurance company should be able to cope with such a large
class of similar persons even if all members of the class have the same kind of
contract (cf. Principle 7 below).

5. Similar individuals cannot be distinguished. For fairness reasons, any
two individuals with similar biometric development to be expected should pay
the same price for the same kind of contract. Further, any activity (e.g. hedg-
ing) of an insurance company due to two individuals having the same kind of
contract is assumed to be identical as long as their probable future biometric
development is independently identical from the stochastic point of view.

6. No-arbitrage pricing. As we know from the theory of financial markets,
an important property of a reasonable pricing system is the absence of arbi-
trage, i.e. the absence of riskless wins. In particular, it should not be possible
to beat the market by selling and buying (life) insurance products in an ex-
isting or hypothetical reinsurance market (see e.g. Delbaen and Haezendonck,
1989). Hence, any product and cashflow will be priced by the no-arbitrage
principle.

7. Minimum fair prices allow hedging such that mean balances con-
verge to zero a.s. The principle of independence of the biometric state
spaces is closely related to the Expectation Principle of classical life insurance
mathematics. In the classical case, where financial markets are assumed to
be deterministic, this principle states that the present value of a cashflow is

the expectation of the sum of its discounted payoffs. The connection between



3 THE MODEL 6

the two principles is the Law of Large Numbers. Present values or prices are
determined such that for a large number of contracts due to independent in-
dividuals the insurer can accomplish that the mean final balance per contract,
but also the mean balance at any time ¢, converges to zero almost surely. In
analogy to the classical case, we generally demand that the minimum fair price
of any contract (from the viewpoint of the insurer) should at least cover the
price of a purely financial hedging strategy that lets the mean balance per
contract converge to zero a.s. for an increasing number of clients.

8. Principle of Equivalence. Under a reasonable valuation principle
(cf. Principle 7), the Principle of Equivalence demands that the future
payments to the insurer (premiums) should be determined such that their
present value equals the present value of the future payments to the insured
(benefits). The idea is that the liabilities (benefits) can somehow be hedged
by working with the premiums. This concept will be considered in detail in

the coming sections.

Concerning premium calculation, the classical Expectation Principle (cf.
Principle 7) is usually seen as a minimum premium principle since any insur-
ance company must be able to cope with higher expenses than the expected
(cf. Embrechts, 2000). We refer to the literature for more information on
the topic (e.g. Delbaen and Haezendonck, 1989; Gerber, 1997; Goovaerts, De
Vylder and Haezendonck, 1984; but also Moller, 2002-2003b; Schweizer, 2001).

3 The model

Let (F, Fr,F) be a probability space equipped with the filtration (F;)cr, where
T ={0,1,2,...,T} denotes the discrete finite time axis. Assume that Fy is
trivial, i.e. Fo = {0, F'}. Let the price dynamics of d securities of a frictionless
financial market be given by an adapted R?-valued process S = (S;);er. The
d assets with price processes S° S', ..., S% ! are traded at times t € T —
{0}. The first asset with price process S° is called the money account and
has the properties S) = 1 a.s. and S? > 0 for t € T. The tuple M =
(F, (Fi)ier, F, T, S) is called a securities market model. A portfolio due to
M is given by a d-dimensional vector 6 of real-valued random variables on
(F, Fr,F). A t-portfolio is a portfolio 6, which is Fi-measurable. As usual, F;

is interpreted as the information available at time ¢. As an economic agent
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takes decisions due to the available information, a trading strategy is a vector
Or = (0;)ier of t-portfolios ;. The discounted total gain (or loss) of such a
strategy is given by Y1 (8, Sy11 — S;), where S := (S;/S?)ier denotes the
price process discounted by the money account and (.,.) denotes the inner

product on RY. We can now define the set of all discounted gains

T-1
G = {Z(Gt,§t+1 —S,) : 0, is a t-portfolio for t € T — {T}} : (1)
t=0
G is a subspace of the space of all real-valued random variables L°(F, Fr, F)
where two elements are identified if they are equal F-a.s. The process S sat-
isfies the so-called no-arbitrage condition (NA) if G N LY = {0}, where L%
are the non-negative elements of L°(F, Fr,F) (the notation follows Delbaen,
1999). The Fundamental Theorem of Asset Pricing (Dalang, Morton and Will-
inger, 1990) states that the price process S satisfies (NA) if and only if there is
a probability measure Q equivalent to F such that under Q the process S is a
martingale. Moreover, Q can be found with bounded Radon-Nikodym deriva-
tive dQ/dF. A very readable overview concerning some of the existing proofs
of the theorem is Delbaen (1999). The probability measure Q as considered

above is called (risk-neutral) equivalent martingale measure (EMM).

DEFINITION 3.1. A valuation principle 7/ on a set © of portfolios due
to MY is a linear mapping which maps each 0 € © to an adapted stochastic

process (price process) wF(0) = (7' (0))ier such that

d—1
T (0) = (6,5) =) _0'S; (2)
i=0
for any t € T for which 0 is Fy-measurable.

For the moment, the set © is not specified any further.

Consider an arbitrage-free market with price process S as given above and
a portfolio # with price process 7/ (). Assume that 6’s price is not determined
by the market. From the Fundamental Theorem it is known that the enlarged
market with price dynamics S’ = (S°,...,S% 1 7' (9)) is arbitrage-free if and
only if there exists an EMM Q such that S’ becomes a Q-martingale. Hence,

one obtains the valuation principle

m (0) = S - Eq[(0, Sr)/ Sy 7). (3)
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As is well-known, the no-arbitrage condition does not imply a unique price
process for # when it cannot be replicated by a self-financing strategy fOr, i.e. a
strategy such that (6, 1,S;) = (04, S;) for each t > 0 and 07 = 0. However, in
a complete market M* | i.e. a market which features a self-financing replicating
strategy for any portfolio 6, the no-arbitrage condition implies for |Fp| < oo

a unique EMM Q and therefore unique prices (Taqqu and Willinger, 1987).

DEFINITION 3.2. A t-claim with payoff C; at time t is a t-portfolio of the

form %60 where Cy is a F;-measurable random variable and ey denotes the first
t

canonical base vector in R*. A cashflow owver the time period T is a vector

(g_ﬁeo)teﬂ‘ of t-claims.

A t-claim is interpreted as the right on the amount C; of cash on the money
account SY at time ¢. That means the owner is actually given C; in cash at t.

The interpretation of a cashflow is obvious.

We will now introduce axioms which concern the properties of market mod-
els (not of valuation principles) that include biometric events (Principles 1 to
4 of Section 2). Assume to be given a filtered probability space (B, (B;)ier, B)
which describes the development of the biological states of all considered hu-
man beings. No particular model for the development of the biometric infor-

mation 1s chosen.

AXIOM 1. A common filtered probability space
(Ma (Mt)telra ]P) = (F; (ft)te’ﬂ‘a F) ® (B7 (Bt)te'ﬂ'a B) (4)

of financial and biometric events is given, i.e. M = F X B, M; = F; ® By and
P=F®B.

AXIOM 2. A complete financial market
MF = (Fa (ft)tETalFaT;FS) (5)

together with a unique equivalent martingale measure Q is given. The common

market of financial and biometric risks is denoted by
M® = (M,(My)er, P, T, ), (6)

where S(f,b) = pS(f) for all (f,b) € M.
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In the following, M¢ is understood as a securities market model. The
notions portfolio, no-arbitrage etc. are used as above. Usually, a non-
deterministic financial market will be considered, i.e. 2 < |Fp| < oo can be

assumed.

REMARK 3.3. S is the canonical embedding of S into (M, (M;)er, P).
In the following, we will often use the same symbol for a random variable
X in (F,F) and a random variable Y in (M,P) when we have that Y is the
embedding of X into (M,P), i.e. Y(f,b) = X(f) for all (f,b) € M. Now, any
portfolio # of the complete financial market M’ can be replicated by some
self-financing trading strategy 0t = (6;);cr. The unique price process 7' (6) of

the portfolio is given by
. (0) = pS; - Eql(0, #Sr)/rSp|F. (7)

As S is the embedding of gS into (M, (M;)ser, P), the (embedded) portfolio
0 in MC is also replicated by the (embedded) trading strategy 1 = ()it in
M€, Hence, to avoid arbitrage opportunities, the price process 7(#) in M¢
must fulfill m,(0) = 7' (0) P-a.s. for any ¢ € T. Since Eg[X|F;] = Egen[X |F®

By| P-a.s. for any random variable X in (F,F), we must have P-a.s.
m(0) = S} - Boes[(0, S1)/Sp|F: ® Bo]. (8)

AXIOM 3. There are infinitely many human individuals and we have

o0

(B, (B)ier, B) = Q)(B', (B)ier, B), (9)

1=1

where By = {(B', (B!)ier, B'),7 € Nt} is the set of probability spaces describ-
ing the state of the i-th individual (N* := N\ {0}). Each B} is trivial.

It follows that By is also trivial, i.e. By = {0}, B}.

AXIOM 4. For any space (B, (B!)cr,B') in By there are infinitely many

isomorphic (identical except for the index) ones in By.

4 Life insurance contracts

By definition, the biometric development has no influence on the price process
S of the financial market. A portfolio # that contains technical risk - that is a
portfolio which is not of the form 6(f,b) = pf(f) a.s. with g0 an M*-portfolio
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- cannot be replicated by purely financial products. Hence, relative pricing of
life insurance products due to MY is not possible. In general, life insurance
policies are not traded and the possibility of a valuation of such contracts by
the market is not given. The market A ¢ of financial and biometric risks is
incomplete. Nonetheless, the products have to be priced as the insured usually
have the right to dissolve any contract at any time of its duration. We are
therefore in the need of a reasonable valuation principle 7 for the considered
portfolios © of the market M¢ and in particular for general life insurance

products.

DEFINITION 4.1. A general life insurance contract is a vector (7, 8;)ier
of pairs (v, 0:) of t-portfolios out of ©. For any t € T, the portfolio v, is
interpreted as a payment of the insurer to the insurant (benefit) and §; as a
payment of the insurant to the insurer (premium), respectively taking place

at t. The notation (‘“y,,"8;)ier means that the contract depends on the i-th
individual’s life, i.e. for all (f,x),(f,y) € M

(if)/t(fa .’L‘), Z'(St(fa :I“))tET = (l’yt(fa y)a Z'(St(fa y))tET (10)
whenever p'(z) = p'(y), p' being the projection from B onto B'.

For any contract (7, §;)ier between a life insurance company and an individ-
ual, this stream of payments is from the viewpoint of the insurer equivalent
to holding the portfolios (§; — 7¢)ier. Even though that there has not been
considered any particular valuation principle until now, it is assumed that a
suitable principle 7 is a minimum fair price in the heuristic sense given in
Section 2, Principle 7. The properties of a minimum fair price will be further

developed in Section 6.

AXIOM 5. Consider a suitable valuation principle @ on ©. For any life

insurance contract (v, 0;)ier the Principle of Equivalence demands that

T T
0 (Z’Yt> =Ty (Z 5t> . (11)

=0 t=0
As already mentioned in Section 2 (Principle 8), the idea of equation (11)
is that the liabilities (7;)ier can somehow be hedged by working with the

premiums (;)er since their present values are identical. For the classical

case, this idea is explained in the section below.
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5 Valuation I - The classical case

In classical life insurance mathematics, the financial market is assumed to be
deterministic. We realize the assumption by |Fr| = 2, i.e. Fr = {0, F'}, and
identify (M, (My)er, P) with (B, (B;)er, B). As the market is assumed to be
free of arbitrage, all assets must show the same dynamics. We therefore have
S = (8%, i.e. d =1 and the only asset is the money account as a deterministic
function of time. In the classical framework, it is common sense that the fair
present value of a B-integrable payoff C; at t is the (conditional) expectation
of the discounted payoff, i.e. for a t-claim C}/S} (cf. Definition 3.2) we have

75(C/SY) = S° - Ey[C,/S|B,], s€T. (12)

Under the Ezpectation Principle (12), the well-known classical Principle of
Equivalence is given by (11). As the discounted price processes are B-
martingales, the classical financial market together with a finite number of
(classical) price processes of life insurance policies is free of arbitrage opportu-
nities.

Let us have a closer look at the logic behind valuation principle (12). As-
sume that © is given by the B-integrable portfolios. Suppose Axiom 1 to 3
and consider a set of portfolios {(*y,)ier : @ € NT} where *y, depends on the
i-th individual’s life, only (cf. Definition 4.1). Suppose that for all ¢ € T there
is a ¢; € RT such that

Fvelle < e (13)

for all i € N*, where ||.||, denotes the norm on the Hilbert space L*(M, M, P).
Now, buy for all ¢ € N* and all ¢t € T the portfolios —Eg['7,], where —Eg['v,]
is interpreted as a financial product (a t-portfolio) which matures at time ¢,
i.e. the right on Eg['y,] in cash at ¢ is sold at 0. Consider the balance of wins
and losses at time t. The mean total payoff at ¢ for the first m contracts is
given by

m

1 i i

— > (7~ Es[)) - 5. (14)
i=1

Clearly, (14) converges B-a.s. to 0 as we can apply the Strong Law of Large

Numbers by Kolmogorov’s Criterion. Furthermore, it follows directly from

(12) that we have mo(—Eg[y,]) = —mo(*y,) for all i € N*. Hence, in the

classical case, the fair present value of any claim equals the price of a hedge
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at time 0 such that for an increasing number of independent claims the mean
balance of claims and hedges converges to zero almost surely.

Now, consider the set of life insurance contracts {(*y,, “0¢)ser : ¢ € NT} with
the deltas being defined in analogy to the gammas above. Since for the com-
pany a contract can be considered as a vector (‘6; — ‘7,)ser of portfolios, the
analogous hedge is given by (Eg[*y,] — Eg['0;])ser- Under Axiom 5, the Equiv-
alence Principle (11) states that the contract itself has value zero. From the

Expectation Principle (12) we therefore obtain for all 7 € N*

S mo(Esl'5] — Esly]) = D w6, — ) =0. (15)

Hence, under (12) and Axiom 1, 2, 3 and 5, a life insurance company can
(without any costs at time 0) buy a hedge such that the mean balance per
contract at any time t converges to zero almost surely for an increasing number

of individual contracts:

— Z(Z(St — iy, — Eg['§,] + Eg['y,]) - S? =% 0 Bas. (16)
i=1
As a direct consequence, the mean of the final balance converges, too:

m T
— E E ("6; — "y, — Eg['6;) + Es['v,]) - S5 ™= 0 B-a.s. (17)

i=1 t=0

REMARK 5.1. Roughly speaking, the Expectation Principle (12) implies
that the price of any claim at least covers the costs of a purely financial hedge
such that for an increasing number of independent claims the mean balance of
claims and hedges converges to zero almost surely. The Equivalence Principle
(11) induces that the hedge of any insurance contract costs nothing at time 0,

which is important as the contract itself is for free, too (cf. equation (15)).

6 Valuation II - The general case

Before it comes to the topic of valuation in the general case, two technical
lemmas have to be proven and some further notion has to be introduced.
Let the set R := RU {—o00,+00} be equipped with the usual Borel-o-

algebra and recall that a function g into R is called numeric.

LEMMA 6.1. Consider n > 1 measurable numeric functions g, to g, on the
product (M, M,P) = (F,F,F) ® (B,B,B) of two probability spaces. Then
g1 =...= gy P-a.s. if and only if F-a.s. ¢g:(f,.) =...=gn(f,.) B-a.s.
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Proof. For any @ € M it is well-known that P(Q) = [ B(Q)dF, where Q =
{b € B:(f,b) € @} and the function B(Qs) on F is F-measurable. As for
i # j the difference g;; := g; — g; is measurable, the set @) := ﬂi# gi_’jl(O) is
M-measurable. Now, g; = ... = g, a.s. is equivalent to P(Q)) = 1 and this
again is equivalent to B(Q);) = 1 F-a.s. However, B(Q);) = 1 is equivalent to

a(f,)=...=g.(f,.) Bas. .

LEMMA 6.2. Let (g,)nen and g be a sequence, respectively a function out of
LOY(M, M, P), i.e. the real valued measurable functions on M, where (M, M, P)
is as above. Then g, — g P-a.s. if and only if F-a.s. ¢,(f,.) — g(f,.) B-a.s.

Proof. The elements of L°(M, M,P) are also numeric measurable functions.
Now, recall that for any sequence of real numbers (h,)nen and any h € R the
property h, — h is equivalent to limsuph, = liminfh, = h. As the limes
superior and the limes inferior of a measurable numeric function always exist

and are measurable, one obtains from Lemma 6.1 that

limsup g, = liminfg, =g P-as. (18)
n—00 n—00
if and only if F-a.s.
limsup g,(f,.) = liminfg,(f,.) = g(f,.) Bas. (19)
n— o0 n—00
0

As we have seen in Section 4, there is the need for a suitable set © of
portfolios on which a particular valuation principle should work. Further, a
mathematical precise description of what was called “similar” in Section 2,

Principle 5 has to be introduced.
DEFINITION 6.3.
(1) Define
O = (L'(M, My, P))* (20)
and
oF = (L'(F, Fr,F))", (21)

where OF can be interpreted as a subset of © by the usual embedding.
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(it) A set © C © of portfolios in MC is called independently identically
distributed due to (B,Br,B), abbreviated B-i.i.d., when for almost all
f € F the random variables {0(f,.) : 6 € ©'} are i.i.d. on (B, Br,B).

Under Aziom 4, such sets exist and can be countably infinite.

(¢7i) Under the Azioms 1 to 3, a set © C O satisfies property (K) if for
almost all f € F the elements of {0(f,.) : 8 € ©'} are stochastically
independent on (B, Br,B) and ||07(f,.)||2 < c(f) € R" for all 0 € ©
and all j €{0,...,d—1}.

Sets fulfilling property (B-iid.) or (K) are indexed with the respective
symbol. A discussion of the Kolmogorov-Criterion-like (K)-condition can be

found below (Remark 7.5). The condition figures out to be quite weak.

Now, the remaining axioms which concern valuation can be stated. The
next axiom is motivated by the demand that whenever the market with the
original d securities with prices S is enlarged by a finite number of price pro-
cesses () due to general portfolios § € ©, the no-arbitrage condition (NA)
should hold on the new market. This axiom corresponds to the sixth principle

of section 2.
AXIOM 6. Foranyt €T and § € ©
m(0) = S) - Enl(0, Sr)/S7|F @ Bi] (22)
for a probability measure M ~ P.
The following axiom is due to the fifth and the seventh principle.

AXIOM 7. Under the Azioms 1 - 4 and 6, the minimum fair price 7 on
O is for any 6 € O given by

mo(0) = m (H(9)) (23)
where
H:0 — 0" (24)
is such that

(i) H('0) = H(%0) for B-i.i.d. portfolios *0 and *6.
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(ii) for t-portfolios {*0,i € N*}p_;;q or {%0,i € N" }x one has

m
%Z(ie _H(9),5) "% 0 P-as. (25)
i=1

Relation (24) means that the hedge H(#) is a portfolio of the financial market.
Recall, that the financial market M¥ is complete and any portfolio features a
self-financing replicating strategy. However, (24) also implies that the hedging
strategy does not react on biometric events happening after time 0. Due to
(i), as in the classical case, the hedging method H cannot distinguish between
similar (B-i.i.d.) individuals (cf. Principle 5, Section 2). Property (ii) is also
adopted from the classical case, where pointwise convergence is ensured by
the Expectation Principle for appropriate insurance products combined with
respective hedges (cf. Principle 7, Section 2 and Section 5). Property (ii) is
also related to Principle 4 in Section 2 as insurance companies should be able
to cope with large classes of similar contracts.

Now, the main result of this paper can be stated.

PROPOSITION 6.4. Under the Azioms 1 - 4, 6 and 7, the minimum fair
price m on © s uniquely determined by M = Q ® B, i.e. for0 € © andt € T

m(0) = S} - Eqss[(0, S1)/Sr|Ft ® By]. (26)

As already mentioned, this product measure approach is quite well established
in the existing literature. However, the deduction by an axiomatic approach
as well as the generality of the above result seem to be new.

Clearly, (12) is the special case of (26) in the presence of a deterministic
financial market (|Fr| = 2). As 7 is unique, it is at the same time the minimal
valuation principle with the demanded properties. Actually, property (ii) of
Axiom 7 ensures that insurance companies do not charge more than the costs
of an acceptable purely financial hedge for each product which is sold. So to
speak, the minimum fair price is fair from the viewpoint of the insured, as well
as from the viewpoint of the companies.

The following lemmas are needed in order to prove the proposition.

LEMMA 6.5. Under Aziom 1 and 2, one has for any 6 € ©

H*(0) := B[] € ©F. (27)
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There is a self-financing strategy replicating H*(6) and under Aziom 6
m(H*(0)) = S - Eqes[(0, S1)/Sp|F: ® By (28)

fort € T. If0 is a t-portfolio, then so is H*(0). Moreover, H* fulfills properties
(1) and (ii) of Aziom 7.

Proof. By Fubini’s Theorem, Eg[f(f,.)] exists F-a.s. and is F-integrable.
Hence, by the completeness of MY and uniqueness of Q, the portfolio (27)
can be hedged by the financial securities in M* and has (due to Remark 3.3)

the price process
m(Es[0]) = S’ - Eo[(Es(0], Sr)/S7|F: ® Bol. (29)

Since Eg[Ep[X||F:] = Eqgi X |F: ® By] P-a.s. for any X € ©, (29) is identical
to (28) P-a.s. As we also have Eg[0] = Epgp[0|Fr ® By P-a.s., H*(0) is a t-
portfolio. Let us prove the last statement. Property (i) of Axiom 7 is obviously
fulfilled. For any t-portfolios {‘0,i € N*}x or {0, € N"}5 ;;4, the Strong
Law of Large Numbers (in the first case by Kolmogorov’s Criterion) implies
for almost all f € F' that

RN . mosco
—> (0(f,) = H'(0)(f), S(f)) =5 0 Bas. (30)
=1
Lemma 6.2 completes the proof. O

LEMMA 6.6. Under Aziom 1 and 2, one obtains that for any 0 € O, any
teT and for M € {F®B,Q @ B}

Ey[(0 — H*(0), S:)] = 0. (31)
Proof. By Fubini’s Theorem. O

LEMMA 6.7. Under the Azioms 1 - 4 and 6, any H : © — O fulfilling (i)
and (ii) of Aziom 7 fulfills for any 6 out of some Op_; ;4.

ﬂt(H(g)) = Sto . EQ@IB%Kg; ST>/S%|ft X B()], teT. (32)

Roughly speaking, Lemma 6.7 states that there is no reasonable purely fi-
nancial hedging method (for the relevant portfolios) with better convergence
properties than (27) has. Even a hedging method with stronger than pointwise
convergence, e.g. an additional LP-convergence (p > 1), must follow (32) and

has the same price process as (27).
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Proof of Lemma 6.7. Consider to be given such an H as in Lemma 6.7 and a
set {'0,7 € NT}p ;4 of t-portfolios that contains a given t-portfolio §. From

Lemma 6.2, one has F-a.s.

m

LS, ~ HOG)S0) F 0 Bas (33)

=1

and by the Law of Large Numbers

(Es['0(f, )], Se(f)) = (HO)(f), Se(f))- (34)

Condition (NA) and Remark 3.3 imply m,(H(0)) = m,(Eg['0]) for i € N* and
t € T. Lemma 6.5 completes the proof. O

Proof of Proposition 6.4. From the Fundamental Theorem we know that Q ~
F. A direct consequence of Lemma 6.1 and the Radon-Nikodym Theorem is
Q®B ~ F®B. From Lemma 6.5 we obtain that (26) exists. Hence, (26) fulfills
Axiom 6. The same lemma implies that (26) is a minimum fair price in the
sense of Axiom 7. Now, uniqueness will be shown. Suppose that 7 is a mini-
mum fair price in the sense of Axiom 7 and consider some {0, i € N*}p ;4.
From Lemma 6.7 it is known that m("0) = mo(H*(*0)) = Eqes[('0, S1)/S%]
for all i € N*. One can surely choose a set {'0, i € N"}z_;;q such that
9 = (14,0,...,0), where 1z is the indicator function of a cylinder set
Z = (F',By, By,...) with F' € Fp and B; € B), for j € N* where B; # B
for only finitely many j (Axiom 4 is crucial for the possibility of this choice!).
Clearly, these cylinders form a N-stable generator for My, the o-algebra of
the product space, and M itself is an element of this generator. One obtains
m0('0) = Q@ B(Z) = M(Z) from (28) and (22). M = Q ® B follows from the

coincidence of the measures on the generator. O

Axiom 7 (together with 6) could be interpreted as a strong no-arbitrage
principle that fulfills (NA) and also precludes arbitrage-like strategies that

have their origin in the Law of Large Numbers.

EXAMPLE 6.8 (Arbitrage-like trading opportunities). Consider a set
{*0,i € N*}p_; ;4. of portfolios. The minimum fair price for each portfolio is
given by (26) (t = 0). If an insurance company sells the products {'6,... ,™0}
at that prices, it can buy hedging portfolios such that the mean balance con-
verges to zero almost surely with m (cf. Axiom 7, (i7)). However, if the com-

pany charges 7o('0) + €, where € > 0 is an additional fee and 7 is as in (26),
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there still is the hedge as explained above, but the gain € per contract was
made at ¢ = 0. Hence, the safety load ¢ makes in the limit a deterministic

money making machine out of the insurance company.

Example 6.8 directly points at the main difference between pricing in life
insurance mathematics and financial mathematics. On financial markets such
arbitrage-like strategies are not possible as there usually are not enough in-
dependent stocks. Furthermore, the stochastic behaviour of securities is by
far not as good known as the stochastics of biometric events. Indeed, prac-
titioners say that the probabilities from the biometric probability space are
almost known for sure. Hence, biometric expectations can be computed with
high accuracy whereas expectations on financial markets have the character
of speculation. From this point of view, any possible EMM M’ on the market
M€ obtained by the free trading of portfolios in M¢ should be expected to
be close to Q ® B. Any systematic deviation could give rise to arbitrage-like

trading opportunities, as we have seen above.

REMARK 6.9 (Quadratic hedging). Consider an L?-framework, i.e. the
payoff (0;,S;) of any considered t-portfolio 0; lies in L*(M, M, P). As
P = F ® B, it can easily be shown that Eg.] is the orthogonal projection
of L*(M, M,,P) onto its (purely financial) subspace L*(F,F;,F). Standard
Hilbert space theory implies that the payoff (Eg[6,], S;) = Eg[(0:, S;)] of the
hedge H*(6;) is the best L?-approximation of the payoff (f;,S;) of the port-
folio 6, by a purely financial portfolio out of M¥. Further, it can easily
be shown that M = Q ® B minimizes ||[dM/dP — 1|| under the constraint
Eg[dM/dP] = dQ/dF. Under some additional technical assumptions, this
property is a characterization of the so-called minimal martingale measure in
the time continuous case (cf. Schweizer, 1995; Mgller, 2001). Hence, Q ® B
can be interpreted as the EMM which lies “next” to P = F® B due to the
L?-metric. Beside the convergence properties discussed in this paper, these are
the most important (and “natural”) reasons for the use of (26). The hedging
method H* considered in this paper is not really the so-called mean-variance
hedge as it is known from the literature (cf. Bouleau and Lamberton, 1989;
Duffie and Richardson, 1991). The difference is that the mean-variance ap-
proach generally allows for all self-financing trading strategies in M, i.e. also
biometric events can have influence on the strategy in this case. However, the
ideas are of course quite similar. An overview concerning hedging approaches

in insurance can be found in Mgller (2002).
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7 Hedging

In this section, it is shown under quite weak assumptions that a big insurance
company is able to hedge in the mean almost all of its risk by products of the
financial market.

Suppose Axiom 1 to 4 and a not further specified valuation principle =
on O (O is defined as in (20)). Consider a set of life insurance contracts
{(",,"04)ter - 4 € Nt} with {*y,:i € N*} . and {0, :i e N*} . for all ¢t € T.
Following hedging method H* of Lemma (6.5), the portfolios (or strategies
replicating) Eg['v,] and —Eg['d;] are bought at time 0 for all i € N* and all
t € T. Consider the balance of wins and losses at any time ¢t € T. For the
mean total payoff per contract at time t we have

1 i i i i m—qo
EZM_ v, —Eg['6, —7,],8) ™3 0 P-as. (35)
i=1
due to Lemma 6.5. In analogy to Section 5, also the mean final balance
converges to zero a.s., i.e.
1o o .
—~ > (16 — 'y, — Eg['6y —"7,],Sr) "= 0 P-as. (36)
i=1 t=0
This kind of risk management is static in the sense that no trading strategy
reacts on biometric events happening after time 0. This corresponds to the
considerations in the classical case which have taken place in Section 5. It was
already mentioned in Remark 6.9 that the considered hedging method is not
exactly the so-called mean-variance hedging. Another (more comprehensive,
but not self-financing) hedging approach is given by so-called risk-minimizing
strategies (e.g. Moller, 1998 and 2001).

REMARK 7.1. Due to Lemma 6.6, any of the balances in (35) and (36) has
expectation 0 under the physical probability measure P = F ® B.

Until now, premium calculation has not played any role in this section.
However, if the Principle of Equivalence (11) is applied under the minimum

fair price (26), one obtains for all i € N*

T T

S molBal=d+ ]) = 3 mo((d — ) =0. (37

t=0 t=0
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REMARK 7.2. Under (11) and (26), a life insurance company can without
any costs at time 0 (!) pursue a trading strategy such that the mean balance
per contract at any time ¢ converges to zero almost surely for an increasing

number of individual contracts.

Remark 7.2 is perhaps the result with the strongest practical impact. In
contrast to other, more comprehensive hedging methods, the presented method
has the advantage that there is no need for the hedger to take into account
the biometric development of each individual. The information available at
the time of contract underwriting (¢ = 0) is sufficient and all strategies are

self-financing.

EXAMPLE 7.3 (Traditional contracts with stochastic interest rates).
Consider a life insurance contract which is for the i-th individual given by two
cashflows (7, ),e = (is%eo)tET and (10,)ier = (%eo)tET with T = {0,1,... , T}
in years. Assume that each 'C, is given by ‘Cy(f,b) = ‘c‘8](b%) for all
(f,b) € M where ‘c is a positive constant. Let (*0;)ser be defined analogously
with the variables Dy, ‘d and ‘3?. Suppose that iﬁz(‘s) is Bi-measurable with
Zﬂz(a) € {0,1} for all ¥ € B'. The portfolio ¢y/S? can be interpreted as
the guaranteed payoff of one currency unit at time ¢. This kind of contract
is called a zero-coupon bond with maturity t and its price at time s < ¢ is
denoted by p(s,t — s) = ms(eo/Sy) where ¢ — s is the time to maturity and
p(s,0) ;=1 for all s € T.

1. Traditional life insurance. Suppose that ‘3] = 1 if and only if the i-th
individual has died in (¢t — 1,#] and for ¢ < T that 3 = 1 if and only if the
i-th individual is still alive at ¢, but iﬁi} = 0. Assume that 7 is alive at t = 0.
Clearly, this contract is a life insurance with fixed annual premiums ‘d and the
benefit ‘c in the case of death. Eg['3]] and Eg[i3)] are mortality, respectively
survival probabilities. This data can be obtained from so-called mortality
tables. Usually, the notation is ;_11¢, = Es['3}] (¢ > 0) and ,p, = Es['8)]
(0 < t < T) for an individual of age = (cf. Gerber, 1997; for convenience
reasons, the notation _1¢, = 0 and gp, = 1 is used in the following). By
Fubini’s Theorem, the hedge H* for ‘6, — ‘v, is for t < T given by the number
of (“ci—111¢x — "d4py) zero-coupon bonds with maturity ¢, and for ¢ = T by
ic T—114x zero-coupon bonds with maturity 7.

2. Endowment. Assume for ¢ < T that {3/ = 1 if and only if the i-th
individual has died in (¢ — 1,¢], but {87 = 1 if and only if i has died in
(T — 1,T] or is still alive at 7. Further, Zﬁf = 1 if and only if the ¢-th
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individual is still alive at ¢ < T', but lﬂg’ = 0. Assume that 7 is alive at ¢ = 0.
This contract is a so-called endowment that features fixed annual premiums
‘d and the benefit ‘c in the case of death, but also the payoff ‘c when i is
alive at 7. The hedge H* due to ‘§; — *v, is for t < T given by the number
of (“ci—111¢; — "dpy) zero-coupon bonds with maturity ¢, and for ¢ = T by

ic (r-1)19x + TP2) zero-coupon bonds with maturity 7.

Actually, in the case of traditional contracts, all hedging can be done by

zero-coupon bonds (which is also called matching).

EXAMPLE 7.4 (Unit-linked products). The case of a unit-linked prod-
uct is interesting if and only if the product is not the sum of a traditional life
insurance contract and a simple funds policy (which is often the case in prac-
tice). So, let us assume that the contract is given by a cashflow of constant
premiums (“d;)icr as in Example 7.3 and a flow of benefits (*v,);er such that
iy, (f,b) =10, ctB](b°) for all (f,b) € M where 9, € OF is an arbitrary finan-
cial ¢t-portfolio and all other notations are the same as in the introduction of
Example 7.3. For instance, one could consider a number of shares of an index,
or a number of assets together with the respective European Puts which ensure
a certain level of benefit (i.e. a “unit-linked product with guarantee”). The
strategy due to ‘5; — ¥y, is given by ‘c - Eg['3/] times the replicating strategy
of i, minus (*d-Ez['B]]) zero-coupon bonds maturing at time ¢. In particular,
for 4, being a constant portfolio, the strategy is obviously very simple as the

portfolio must not be replicated, but can be bought directly.

REMARK 7.5. The technical assumption (K) which is sufficient for the con-
vergence of (35) (cf. Definition 6.3 (iii)) and which is demanded at the very
beginning of the section will be discussed now. In the case of traditional life
insurances as in Example 7.3, the realistic condition ‘c,’d < ¢ € RT for all
i € N* implies (K). In the case of unit-linked products, suppose that there
are only finitely many possible portfolios ‘4, for each ¢+ € T (which is also
quite realistic as often shares of one single funds are considered). Under this
assumption, again ‘c,’d < ¢ € RT for all i € NT implies (K). Hence, (K) is no

drawback for practical purposes.

8 Incomplete financial markets

Until now, the theory presented in this paper assumed complete and arbitrage-

free markets (cf. Axiom 2), which reduces the number of explicit market models
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that can be considered. However, some of the concepts work (under some
restrictions) with incomplete market models.

In particular, it is now assumed that in Axiom 2 completeness of the market
model M* and uniqueness of the EMM Q is not demanded. Let us enumerate

the altered axiom by 2’ and define

O = {0 : 0 replicable by a self-financing strategy in M} (38)

© = {0 : 0 is an M-portfolio and Eg[f] € O}, (39)

It is well-known from the theory of financial markets that any EMM Q fulfills
pricing formula (3) for any replicable portfolio § € ©F. Now, with ©F and ©
as defined above and Axiom 2 replaced by 2, it can easily be checked that the
Lemmas 6.5, 6.6 and 6.7 still hold. Concerning Proposition 6.4, m as defined
in (26) is for any financial EMM Q a minimum fair price. Hence, uniqueness
gets lost. However, for any minimum fair price one still has that 7 is unique
(on the new set ©). The reason is that for any # € © and any two EMM Q
and Q of M*

Eqes[(0, S7)/S7] = Egen((6, St)/S7] (40)

due to Fubini’s Theorem and the (NA)-condition. Hence, pricing at time
t = 0 (i.e. present values) and hedging (cf. Section 7) still work as in the case
of complete financial markets.

In the presence of arbitrage opportunities, the existence of an equivalent
martingale measure gets lost. Nonetheless, assume a financial market model
M* which is neither necessarily arbitrage-free, nor complete and suppose that

F

there is a valuation principle 7! used in M* on a set © of purely financial

portfolios which are taken into consideration (this does not mean absence of
arbitrage). Under the considered ©F, define © by (39) and for any 6 € ©

mo(0) = g (Es[0]), (41)

which is the price of the hedge H* at time 0 (compare with (23) and (28)
for t = 0). In a L?-framework as in Remark 6.9, i.e. if we have for any ¢
that Hy(©F) = (©F,S,) is a closed subspace of L?(F,Fr,F), the operator
Eg[.] is again the orthogonal projection of the subspace Hy(©) = (©,S;) of
L*(M, My, P) onto its (purely financial) subspace H;(©%). Thus, Eg[f] is the

best approximation to any 6 € © in the L?-sense (cf. Remark 6.9). Even if we
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do not assume the L-framework, the properties (i) and (ii) of Axiom 7 are
still fulfilled for the above defined © and for H* as in (27). Hence, 7, satisfies
the demand for converging balances as stated in Principle 7 of Section 2 and
the expressions (35) and (36) are still valid. For these two reasons, (41) is a

quite sensible valuation principle.

9 Historical pricing example

Let us consider the traditional contracts as described in Example 7.3. Due to

the Equivalence Principle (11), we demand

T T
To <Zi0i5360/5t0> = To (Zidiﬁfeo/sto) : (42)
t=0 t=0
Now, suppose that the minimum fair price 7 from (26), respectively the valu-
ation principle (41), is applied for premium calculation. Clearly,
ig T - T -
= =3 p(0.0) Bal'5]]/ 3 p(0.)  Bal'5)] (43)
t=0 t=0
where p(0,t) is the price of a zero-coupon bond as defined in Section 7. An
important consequence of (43) is that the quotient ‘d/'c (minimum fair pre-
mium /benefit) depends on the zero-coupon bond prices (or yield curve) at time
0. As the term structure of interest rates indeed varies from day to day, this
in particular means that ‘d/‘c varies from day to day and therefore depends
on the day of underwriting (actually, it depends on the exact time). Insurance
companies do not determine the prices for products daily. Hence, they give
rise to financial risks as the contracts may be over-valued.
Now, assume that any time value is given in fractions of years. The so-
called spot (interest) rate R(t,7) for the time interval [t,t + 7] is defined by

_logp(t,7)
e

R(t,7) = (44)

The short rate r(t) at ¢ is defined by r(¢) = lim,_,o R(¢,7), where the limit is
assumed to exist. The yield curve at time ¢ is the mapping with 7 — R(¢,t+7)
for 7 > 0 and 0 — r(t). Figure 5 on page 32 shows the historical yield
structure (i.e. the set of yield curves) of the German debt securities market
from September 1972 to February 2003 (the 366 values are taken from the

end of each month). The maturities” range is 0 to 28 years. The values
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for 7 > 0 were computed via a parametric presentation of yield curves (the
so-called Svensson-method; cf. Schich, 1997) for which the parameters can
be taken from the internet page of the German Federal Reserve (Deutsche
Bundesbank; http://www.bundesbank.de). The implied Bundesbank values
R’ are estimates of discrete interest rates on notional zero-coupon bonds based
on German Federal bonds and treasuries (cf. Schich, 1997) and have to be
converted to continuous interest rates (as implicitly used in (44)) by R = In(1+
R'). As an approximation for the short rate, the day-to-day money rates from
the Frankfurt market (Monatsdurchschnitt des Geldmarktsatzes fir Tagesgeld
am Frankfurter Bankplatz; also available at the Bundesbank homepage) are
taken and converted into continuous rates.

Equation (44) shows that interest rates (yields) and zero-coupon bond
prices contain the same information, namely the present value of a non-
defaultable future payoff. As there is a yield curve given for any time ¢ of
the historical time axis, it is possible to compute the historical value of *d/’c

for any ¢ via (44). Doing so, one obtains

L) =30t ) ) St 1) e (4

for the traditional life insurance and

ig T T-1

(1) = (p(t, 1) apalt) + 3o ple7) quxu)) [ ptenme) o
for the endowment. In this example, the values , i1¢; (7 > 0) and ,p,
(0 < 7 < T) are taken from (or computed by) the DAV (Deutsche Aktuarvere-
inigung) mortality table “1994 T” (Loebus, 1994), the value rp, is computed
by the table “1994 R” (Schmithals and Schiitz, 1995). The reason for the dif-
ferent tables is that in actuarial practice mortality tables contain safety loads
which depend on whether the death of a person is in (financial) favour of the
insurance company, or not. All probabilities mentioned above are considered
to be constant in time. Especially, to make things easier, there is no “aging
shift” applied to table “1994 R”.

Now, consider a man of age x = 30 years and the time axis T =
{0,1,...,10} (in years). In Figure 1, the rescaled quotients (45) and (46) are
plotted for the above setup. For comparison reasons: the absolute values at
the starting point (September 1972) are ‘d/'c = 0.063792 for the endowment,
respectively ‘d/'c = 0.001587 for the life insurance. The plot nicely shows the
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dynamics of the quotients and hence of the minimum fair premiums °d if the
benefit ‘c is assumed to be constant. The premiums of the endowment seem
to be much more subject to the fluctuations of the interest rates than the pre-
miums of the traditional life insurance. For instance, the minimum fair annual
premium °d for the 10-years endowment with a benefit of ‘c = 100,000 Euros
was 9,285.55 Euros at the 31st July 1974 and 8,072.26 at the 31st January
1999. For the traditional life insurance (with the same benefit), one obtains
id = 152.46 Euros at the 31st July 1974 and 168.11 at the 31st January 1999.

If one assumes a discrete technical rate of interest Ry, e.g. 0.035, which
is the legally guaranteed rate of interest by German life insurers, one can
compute “technical” quotients *di.q, /*c by computing the “technical” values of
zero-coupon bonds, i.e. piecn (t, 7) = (1+ R{,,) ", and plugging them into (45),
resp. (46). If a life insurance company charges the “technical” premiums ‘dyee
instead of the minimum fair premiums ‘d and if one considers the valuation
principle (26), respectively (41), to be a reasonable choice, the present value

of the considered insurance contract is
T—1
Vo= (dieen —'d) - Y p(t,7) palt (47)
7=0

due to the Principle of Equivalence, respectively (42). In particular, this means
that the insurance company can book the gain or loss (47) in the limit, mean
or expectation (cf. Example 6.8 and Remark 7.1) at time 0 as long as proper
risk management (as described in Section 7) takes place afterwards. Thus, the
present value (47) is a measure for the profit, or simply the expected discounted
profit of the considered contract. Figure 2 shows the historical development of
'V /'c (present value/benefit) for the 10-years endowment as described above
(solid line). For instance, the present value ‘V of a 10-years endowment with
a benefit of ‘c = 100,000 Euros was 20,398.70 Euros at July 31, 1974. At the
31st January 1999, it was worth 2,578.55 Euros, only. The situation gets even
, = 0.050

(dashed line) - which is quite little in contrast to formerly promised returns

worse in the case of a technical (or promised) rate of interest R,
of e.g. German life insurers. At the 31st January 1999, such a contract was
worth -3,141.95 Euros, i.e. the contract actually produced a loss in the mean.
More recent values from February 28, 2003 are 4,592.69 Euros for a technical
interest of 0.035 and -1,127.39 Euros in the other case. Some present values of
the 10-years traditional life insurance can be found in Table 1 on page 29.

All computations from above have also been carried out for a 25-years
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endowment, respectively life insurance (cf. Table 1). The corresponding
figures are 3 and 4. Concerning Figure 3, the absolute values at the starting
point (September 1972) are ‘d/'c = 0.013893 for the endowment, respectively
‘d/'c = 0.002553 for the life insurance. The minimum fair premium °‘d
for the 25-years endowment with benefit ‘c = 100,000 Euros was 808.39
Euros at the 31st July 1974 and 2,177.32 Euros at the 31st January 1999.
For the traditional life insurance (with the same benefit), one obtains
‘d = 216.37 Euros at the 31st July 1974 and 303.90 at the 31st January
1999. Hence, the premium-to-benefit ratio for both types of contracts
seems to be more dependent on the yield structure than in the 10-years
case. However, compared to the 10-years contracts, the longer running
time seems to stabilize the present values of the contracts (cf. Table 1 and

Figure 4). Nonetheless, they are still strongly depending on the yield structure.

The examples have shown the importance of realistic valuation principles
in life insurance. Any premium calculation method and all related parameters
(like e.g. technical rates of interest, which have to be determined in some
way) should be carefully examined in order to be properly prepared for the
fluctuations of financial markets. There is no doubt that many of the financial
problems of life insurance companies that have arisen in the past few years
could have been avoided by a proper use of modern valuation principles and -

perhaps even more important - modern financial hedging strategies.
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A Figures and tables

Date | 1974/07/31 | 1999/01/31 |
Traditional life insurance: 10 years

Techn. premium “dyee, (Rioq, = 0.035) 168.94

Techn. premium ‘diec, (R}, = 0.050) 165.45
Minimum fair annual premium *‘d 152.46 168.11
Present value ‘V (R],.., = 0.035) 108.90 7.17
Present value 'V (R],, = 0.050) 85.84 -22.80

Traditional life insurance: 25 years

Techn. premium “dyeey, (Rioq, = 0.035) 328.02

Techn. premium ‘diecr, (R}, = 0.050) 303.27
Minimum fair annual premium *d 216.37 303.90
Present value 'V (R, = 0.035) 1,009.56 376.84
Present value ‘V (R[,., = 0.050) 785.80 -9.83

Endowment: 10 years

Techn. premium “dyeey, (Rioq, = 0.035) 8,372.65

Techn. premium ‘diec, (R}, = 0.050) 7,706.24
Minimum fair annual premium d 9,285.55 8,072.26
Present value ‘V (R],., = 0.035) 20,398.70 2,578.55
Present value ‘V (R, = 0.050) 15,995.27 -3,141.95

Endowment: 25 years

Techn. premium “dyeey, (Rioq, = 0.035) 2,760.85

Techn. premium ‘diec, (R}, = 0.050) 2,255.93
Minimum fair annual premium *d 808.39 2,177.32
Present value ‘V (R[,., = 0.035) 17,655.42 9,118.39
Present value ‘V (R, = 0.050) 13,089.53 1,228.34

29

Table 1: Selected (extreme) values due to different contracts for a 30 year old
man (fixed benefit: ‘c = 100,000 Euros)
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Figure 1: Rescaled plot of the quotient ‘d/‘c (minimum fair annual pre-
mium/benefit) for the 10-years endowment (solid), resp. life insurance
(dashed), for a 30 year old man
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Figure 2: 'V /'c (present value/benefit) for the 10-years endowment under a
technical interest rate of 0.035 (solid) and 0.050 (dashed)
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Figure 3: Rescaled plot of the quotient ‘d/‘¢c (minimum fair annual pre-

mium/benefit) for the 25-years endowment (solid), resp. life insurance
(dashed), for a 30 year old man

0.27

T T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
Count of months since September 1972

Figure 4: 'V /'c (present value/benefit) for the 25-years endowment under a
technical interest rate of 0.035 (solid) and 0.050 (dashed)
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Historical yields of the German debt securities market

Figure 5



