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Abstra
t

We study the Fredholmness on L

p

(D) of operators of 
onvolution type.

Here D is an unbounded measurable domain in R

N

, and an operator A on

L

p

(D) is of 
onvolution type if it is 
onstituted by operators of the form

aC(k)bI where C(k) is the operator of 
onvolution by the L

1

(R

N

)-fun
tion

k and where a and b are bounded and uniformly 
ontinuous fun
tions. The

domains under 
onsideration in
lude, for example, 
urved layers, 
urved 
ylin-

ders, and 
ones with angular or 
uspidal edges. The 
riterion for the Fred-

holmness of the operator A is formulated in terms of limit operators of A.

The topi
 of this paper is the Fredholmness of 
ompressions of operators of 
onvolu-

tion type. An operator of 
onvolution type is an operator on L

p

(R

N

) whi
h belongs

to the smallest norm-
losed subalgebra of L(L

p

(R

N

)) whi
h 
ontains the identity

operator, all 
ompa
t operators, and all operators of the form aC(k)bI where C(k)

is the operator of 
onvolution by the L

1

(R

N

)-fun
tion k and where a and b are

bounded and uniformly 
ontinuous fun
tions on R

N

. For an unbounded measur-

able subset D of R

N

, the 
ompression of the operator A onto D is the operator

B := �

D

A�

D

I j

L

p

(D)

: L

p

(D)! L

p

(D) (1)

where �

D

is the 
hara
teristi
 fun
tion of the set D.

There are many papers whi
h are devoted to the Fredholmness of 
ompressions

of operators of 
onvolution type for 
on
rete 
lasses of 
oeÆ
ients a; b and 
on
rete

domains D; see, e.g., [2, 3, 5, 6, 7, 14℄. For example, the multidimensional Wiener-

Hopf operators

�

D

(
I + C(k))�

D

I j

L

p

(D)

: L

p

(D)! L

p

(D)

where 
 2 C and k 2 L

1

(R

N

) are 
onsidered in [3℄ for D being a half-spa
e and in

[14℄ in 
ase D a 
one in R

N

with smooth 
ross se
tion, whereas the quarter plane


ase is the topi
 of [2, 5, 7℄. Operators on 3D wedge shaped domains are studied in

[6℄.

We will 
onsider the Fredholm problem for these operators, for example, in 
ase

when D is a 
urved layer, a 
urved 
ylinder, a 
one with angular or 
uspidal edges,

or the epigraph of a 
ertain fun
tion. In ea
h of these 
ases, our solution to the

Fredholm problem will be as follows. We asso
iate with the operator B in (1) its

so-
alled operator spe
trum. This is a family of operators on L

p

(R

N

) whi
h de-

s
ribes the behaviour of the operator B at in�nity. Then the main result says that

the operator B is Fredholm if and only if ea
h operator in its operator spe
trum is

invertible, and if the norms of these inverses are uniformly bounded. Moreover, it

turns out that in many 
ases (for example, if the 
oeÆ
ients a; b are slowly os
il-

lating fun
tions) the operators in the operator spe
trum are mu
h simpler obje
ts

than the operator B itself. This fa
t allows us to study their invertibility e�e
tively.

�
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It will also turn out that the 
ondition of uniform invertibility is redundant in many


ases.

We will prove these Fredholm 
riteria by having re
ourse to the results of [8, 9℄.

In these papers we 
onsidered band-dominated operators on dis
rete l

p

-spa
es of

sequen
es with values in a Bana
h spa
e X . We showed that a band-dominated

operator is invertible at in�nity (in 
ase X has �nite dimension this simply means

that the operator is Fredholm, i.e. that its kernel and 
okernel have �nite dimension)

if the operators in its operator spe
trum are uniformly invertible. Thus, the proof

of the desired Fredholm 
riteria for 
ompressions of operators of 
onvolution type

rests on two basi
 steps: we prove that a suitable dis
retization of that operator

leads to a band-dominated operator on an dis
rete l

p

-spa
e, and we 
ompute its

operator spe
trum.

The paper is organized as follows. In its �rst two se
tions we re
all some basi


de�nitions and fa
ts on operators of 
onvolution type as well as on band-dominated

operators. Then we study dis
retizations of operators of 
onvolution type. In

parti
ular, we show that the dis
retization of every 
onvolution type operator B is

band-dominated and that this dis
retization is invertible at in�nity if and only if

B is Fredholm. Finally, we spe
ify the general Fredholm 
riterion to the 
on
rete


ases mentioned above where the operator spe
trum 
an be expli
itely 
omputed.

Throughout this paper, we let 1 < p < 1, q := p=(p � 1), and N a positive

integer.

1 Operators of 
onvolution

In this se
tion, we 
olle
t some basi
 fa
ts on 
onvolution operators on L

p

-spa
es.

Theorem 1.2 goes ba
k to [15℄, and the 
ompa
tness of 
ommutators of operators

of multipli
ation by slowly os
illating fun
tion with 
onvolution operators has been

veri�ed in [1℄. Our presentation follows [11℄ where the results mentioned in this

se
tion are proved in the more general 
ontext of operators on lo
ally 
ompa
t

groups.

Let k 2 L

1

(R

N

) and u 2 L

p

(R

N

). Then Young's inequality implies that the


onvolution

(k � u)(x) :=

Z

R

N

k(x� y)u(y)dy; x 2 R

N

; (2)

belongs to L

p

(R

N

), and that kk �uk

p

� kkk

1

kuk

p

([10℄, IX.4). Hen
e, the operator

C(k)u := k � u of 
onvolution by k 2 L

1

(R

N

) a
ts boundedly on L

p

(R

N

), and

kC(k)k

L

p

(R

N

)

� kkk

1

: (3)

Let C

p

denote the 
losure in L(L

p

(R

N

)) of the set of all 
onvolution operators C(k)

with kernels k 2 L

1

(R

N

). Then C

p

is a 
losed and 
ommutative subalgebra of

L(L

p

(R

N

)) without identity. Its maximal ideal spa
e 
an be identi�ed with R

N

(with its usual topology) in su
h a way that the Gelfand transform

^

C of C 2 C

p


oin
ides with the Fourier transform of k if C = C(k) (see [14℄). Consequently, an

operator 
I + C in the unitization C I + C

p

of C

p

is invertible if and only if

inf

�2R

N

j
 +

^

C(�)j > 0: (4)

Note that 
 +

^

C is just the Gelfand transform of 
I + C in C I + C

p

.

A semi-
ommutator is an operator of the form aC(k) or C(k)aI where k is in

L

1

(R

N

) and a 2 L

1

(R

N

). The fun
tions a for whi
h the semi-
ommutators aC(k)

and C(k)aI are 
ompa
t for every fun
tion k 2 L

1

(R

N

) 
an be 
hara
terized as

follows.
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De�nition 1.1 Let Q

SC

(R

N

) refer to the set of all fun
tions a 2 L

1

(R

N

) su
h

that

lim sup

t!1

Z

M

ja(t+ s)j ds = 0

for every 
ompa
t subset M of R

N

.

For example, the 
lass Q

SC

(R

N

) 
ontains all fun
tions a 2 L

1

(R

N

) with

lim

R!1

ess sup

jxj�R

ja(x)j = 0

and, in parti
ular, all 
ompa
tly supported fun
tions. The 
hara
teristi
 fun
tion

of the set [

n�2

[n �

1

n

; n +

1

n

℄ � R is an example of a fun
tion in Q

SC

(R

N

) whi
h

does not vanish at in�nity.

Theorem 1.2 The following 
onditions are equivalent for a bounded measurable

fun
tion a:

(a) the operators BaI and aB are 
ompa
t on L

p

(R

N

) for every B 2 C

p

and every

1 < p <1,

(b) a 2 Q

SC

(R

N

),

(
) There is a bounded open set D � R

N

su
h that lim

t!1

R

D

ja(t+ s)j ds = 0.

Consequently, Q

SC

(R

N

) is a 
losed ideal in L

1

(R

N

).

The next goal is to 
hara
terize those fun
tions a 2 L

1

(R

N

) for whi
h the


ommutators aC(k)�C(k)aI are 
ompa
t for every fun
tion k 2 L

1

(R

N

). We start

with de�ning two related sub
lasses of fun
tions in L

1

(R

N

).

De�nition 1.3 Let SO(R

N

) denote the set of all bounded 
ontinuous fun
tions a

on R

N

su
h that, for every 
ompa
t subset M of R

N

,

lim

t!1

sup

h2M

ja(t)� a(t+ h)j = 0:

The 
lass SO(R

N

) is a unital 
ommutative C

�

-subalgebra of BUC(R

N

), the algebra

of the bounded and uniformly 
ontinuous fun
tions on R

N

. Fun
tions in SO(R

N

)

are 
alled slowly os
illating on R

N

. Examples of slowly os
illating fun
tions are

provided by the 
ontinuous fun
tions whi
h possess a �nite limit at in�nity and by

the di�erentiable fun
tions the derivative of whi
h tends to zero at in�nity.

De�nition 1.4 A fun
tion a 2 L

1

(R

N

) belongs to the 
lass Q

C

(R

N

) if, for every

open and bounded subset M of R

N

, the fun
tion

t 7!

Z

M

(a(t)� a(t+ s)) ds

lies in Q

SC

(R

N

).

The following result does not only solve the 
ommutator problem; it moreover

veri�es the relation between the 
lasses Q

SC

(R

N

); SO(R

N

) and Q

C

(R

N

).

Theorem 1.5 The following assertions are equivalent for a 2 L

1

(R

N

):

(a) the operators BaI � aB are 
ompa
t on L

p

(R

N

) for every B 2 C

p

,

(b) the fun
tion a belongs to Q

C

(R

N

),

(
) the fun
tion a belongs to Q

SC

(R

N

) + SO(R

N

).

As a 
onsequen
e one gets that Q

C

(R

N

) = Q

SC

(R

N

) + SO(R

N

) is a unital 
om-

mutative C

�

-subalgebra of L

1

(R

N

) and that Q

SC

(R

N

) is a 
losed ideal of that

algebra. Moreover, one 
an show that the interse
tion Q

SC

(R

N

)\SO(R

N

) 
onsists

of all 
ontinuous fun
tions whi
h tend to zero at in�nity.
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2 Band-dominated operators on l

p

-spa
es

Given a 
omplex Bana
h spa
e X , 
onsider the Bana
h spa
es l

p

(Z

N

; X) and

l

1

(Z

N

; X) of all fun
tions f : Z

N

! X su
h that

kfk

p

p

:=

X

x2Z

N

kf(x)k

p

X

<1 and kfk

1

:= sup

x2Z

N

kf(x)k

X

<1;

respe
tively. Let E stand for one of the spa
es l

p

(Z

N

; X) with p 2 (1; 1). Every

fun
tion a 2 l

1

(Z

N

; L(X)) gives rise to a multipli
ation operator on E on de�ning

(af)(x) := a(x)f(x); x 2 Z

N

:

We denote this operator by aI . Evidently, aI 2 L(E) and kaIk

L(E)

= kak

1

.

Finally, for � 2 Z

N

, let V

�

refer to the shift operator

(V

�

f)(x) := f(x� �); x 2 Z

N

;

whi
h also belongs to L(E) and has norm 1.

De�nition 2.1 A band operator on E is a �nite sum of the form

P

�

a

�

V

�

where

� 2 Z

N

and a

�

2 l

1

(Z

N

; L(X)). A band-dominated operator on E is the norm

limit of a sequen
e of band operators.

The band-dominated operators on E form a 
losed subalgebra of L(E) whi
h we

denote by A

E

. One 
an show that an operator A 2 L(E) is band-dominated if and

only if, for every fun
tion ' 2 BUC(R

N

),

lim

t!0

kA'̂

t;r

I � '̂

t;r

Ak

L(E))

= 0 uniformly with respe
t to r 2 R

N

where, for r; t; x 2 R

N

,

'

t;r

(x) := '

t

(x� r) and '

t

(x) := '(tx) := '(t

1

x

1

; : : : ; t

N

x

N

)

and where â refers to the restri
tion of the fun
tion a : R

N

! C onto Z

N

. For this

and the following fa
ts we refer to [8, 9℄.

For n � 0, de�ne

^

P

n

: E ! E by

(

^

P

n

f)(x) =

�

f(x) if jxj

1

� n

0 if jxj

1

> n;

set

^

Q

n

:= I �

^

P

n

, and let

^

P refer to the family (

^

P

n

).

De�nition 2.2 An operator K 2 L(E) is

^

P-
ompa
t if

kK

^

Q

n

k ! 0 and k

^

Q

n

Kk ! 0 as n!1:

By K(E;

^

P) we denote the set of all

^

P-
ompa
t operators on E, and by L(E;

^

P) the

set of all operators A 2 L(E) for whi
h both AK and KA are

^

P-
ompa
t whenever

K is

^

P-
ompa
t.

It turns out that L(E;

^

P) is a 
losed subalgebra of L(E), K(E;

^

P) a 
losed two-

sided ideal of L(E;

^

P), and K(E;

^

P) � A

E

� L(E;

^

P). Operators A 2 L(E;

^

P) for

whi
h the 
oset A+K(E;

^

P) is invertible in the quotient algebra L(E;

^

P)=K(E;

^

P)

are 
alled

^

P-Fredholm. If X is a �nite-dimensional spa
e, then L(E;

^

P) = L(E),

K(E;

^

P) is the ideal of the 
ompa
t operators on E, and the

^

P-Fredholm operators

are just the Fredholm operators in the 
ommon sense.

Let H stand for the set of all sequen
es h : N ! Z

N

whi
h tend to in�nity.
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De�nition 2.3 Let A 2 L(E;

^

P) and h 2 H. The operator A

h

2 L(E) is 
alled

the limit operator of A with respe
t to h if

lim

n!1

k(V

�h(n)

AV

h(n)

�A

h

)

^

P

m

k = lim

n!1

k

^

P

m

(V

�h(n)

AV

h(n)

�A

h

)k = 0 (5)

for every

^

P

m

2

^

P. The set �

op

(A) of all limit operators of A is 
alled the operator

spe
trum of A.

Let �nally refer L

ri
h

E

to the set of all operators A 2 L(E; P) enjoying the following

property: every sequen
e h 2 H possesses a subsequen
e g for whi
h the limit

operator A

g

exists. Set A

ri
h

E

:= A

E

\ L

ri
h

E

. Then the main result of [9℄ 
an be

stated as follows.

Theorem 2.4 An operator A 2 A

ri
h

E

is

^

P-Fredholm if and only if all of its limit

operators are invertible and if

supfk(A

h

)

�1

k : A

h

2 �

op

(A)g <1: (6)

The 
ondition of uniform invertibility 
an be weakened by employing lo
al te
h-

niques. To des
ribe some typi
al ideas and results we have to introdu
e some more

notations. Let S

N�1

denote the unit sphere f� 2 R

N

: j�j = 1g where j�j stands

for the Euklidean norm of �. Given a `radius' R > 0, a `dire
tion' � 2 S

N�1

, and a

neighborhood U � S

N�1

of �, we set

W

R;U

:= fz 2 Z

N

: jzj > R and z=jzj 2 U; g (7)

and we 
all W

R;U

a neighborhood at in�nity of �. A sequen
e h 2 H is said to tend

into the dire
tion of � 2 S

N�1

if, for every neighborhood at in�nity W of �, there

is an m

0

su
h that h(m) 2 W for all m � m

0

.

De�nition 2.5 Let � 2 S

N�1

and A 2 L(E;

^

P).

(a) The lo
al operator spe
trum �

�

(A) of A at � is the set of all limit operators A

h

of A with respe
t to sequen
es h tending into the dire
tion of �.

(b) The operator A is lo
ally invertible at � if there are operators B; C 2 L(E;

^

P)

and a neighborhood at in�nity W of � su
h that

BA�̂

W

I = �̂

W

AC = �̂

W

I

where �̂

W

refers to the 
hara
teristi
 fun
tion of W .

Theorem 2.6 Let A 2 A

ri
h

E

and � 2 S

N�1

. Then the operator A is lo
ally invert-

ible at � if and only if all limit operators in �

�

(A) are invertible and if

supfk(A

h

)

�1

k : A

h

2 �

�

(A)g <1:

Corollary 2.7 An operator A 2 A

ri
h

E

is

^

P-Fredholm if and only if all of its limit

operators are invertible, and if

supfk(A

h

)

�1

k : A

h

2 �

�

(A)g <1 for all � 2 S

N�1

:

This result is indeed a generalization of Theorem 2.4: It does not require that the

suprema are uniformly bounded with respe
t to �.
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3 Band-dominated operators on L

p

(R

N

) and their

dis
retizations

P-Fredholmness. We start with adapting the notion of

^

P-Fredholmness intro-

du
ed in the previous se
tion to the 
ontext of L

p

-spa
es.

Let P

n

stand for the operator of multipli
ation by the 
hara
teristi
 fun
tion

of the 
ube [�n; n℄

N

a
ting on L

p

(R

N

), and set P := (P

n

)

1

n=1

and Q

n

:= I � P

n

.

Further we introdu
e the set K(L

p

(R

N

); P) of the P-
ompa
t operators, i.e., of the

operators K 2 L(L

p

(R

N

)) su
h that

lim

n!1

kKQ

n

k = lim

n!1

kQ

n

Kk = 0;

and the set L(L

p

(R

N

); P) of all operators A 2 L(L

p

(R

N

)) su
h that AK and KA

are P-
ompa
t whenever K is P-
ompa
t. Then L(L

p

(R

N

); P) is a 
losed unital

subalgebra of L(L

p

(R

N

)) whi
h 
ontainsK(L

p

(R

N

); P) as its 
losed ideal. Further,

sin
e both the operators P

n

and their adjoints 
onverge strongly to the identity op-

erators on L

p

(R

N

) and L

q

(R

N

), respe
tively, one gets that K(L

p

(R

N

); P) 
ontains

the ideal K(L

p

(R

N

)) of the 
ompa
t operators on L

p

(R

N

) (but K(L

p

(R

N

); P) is

stri
tly larger than K(L

p

(R

N

)) sin
e the operators P

n

are not 
ompa
t).

Our earlier de�nitions of generalized Fredholmness, invertibility at in�nity and

lo
al invertibility at in�nity spe
ify as follows to the present 
ontext.

De�nition 3.1 The operator A 2 L(L

p

(R

N

); P) is P-Fredholm if the 
oset A +

K(L

p

(R

N

); P) is invertible in the quotient algebra L(L

p

(R

N

); P)=K(L

p

(R

N

); P),

that is if there exist operators B; C 2 L(L

p

(R

N

); P) su
h that

BA� I 2 K(L

p

(R

N

); P) and AC � I 2 K(L

p

(R

N

); P): (8)

Equivalently, an operator A 2 L(L

p

(R

N

); P) is P-Fredholm if and only if it is

invertible at in�nity in the sense that there exist an m 2 N and operators B; C 2

L(L

p

(R

N

); P) su
h that

BAQ

m

= Q

m

and Q

m

AC = Q

m

:

Lo
al invertibility. There is also an adequate notion of lo
al invertibility at an

in�nitely distant point � 2 S

N�1

. Given R > 0 and a neighborhood U � S

N�1

of

�, we set

V

R;U

:= fx 2 R

N

: jxj > R and x=jxj 2 Ug

and 
all V

R;U

again a neighborhood at in�nity of �. Then an operator A is 
alled

lo
ally invertible at � if there exist a neighborhood V at in�nity of � and operators

B; C 2 L(L

p

(R

N

); P) su
h that

BA�

V

I = �

V

I and �

V

AC = �

V

I:

Shifts and limit operators. For � 2 Z

N

, we 
onsider the operator

U

�

: L

p

(R

N

)! L

p

(R

N

); (U

�

f)(t) := f(t� �)

of shift by �. In a

ordan
e with the de�nitions from Se
tion 2, we 
all the operator

A

h

a limit operator of A 2 L(L

p

(R

N

); P) with respe
t to the sequen
e h 2 H if

lim

m!1

k(U

�h(m)

AU

h(m)

�A

h

)P

m

k = lim

m!1

kP

m

(U

�h(m)

AU

h(m)

�A

h

)k = 0

for every P

m

2 P . The set �

op

(A) of all limit operators of A is the operator spe
trum

of A. Further we denote by L

ri
h

p

the subalgebra of L(L

p

(R

N

); P) whi
h 
onsists

of all operators with ri
h operator spe
trum. The latter means for an operator

A 2 L(L

p

(R

N

); P), that every sequen
e h 2 H has a subsequen
e g su
h that the

limit operator A

g

with respe
t to g exists.
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Dis
retization. Let �

0

denote the 
hara
teristi
 fun
tion of the 
ube I

0

:=

[0; 1)

N

, and set X := L

p

(I

0

) and E := l

p

(Z

N

; X). Then the mapping G whi
h

maps the fun
tion f 2 L

p

(R

N

) to the sequen
e

Gf = ((Gf)

�

)

�2Z

N with (Gf)

�

:= �

0

U

��

f (9)

is an isometry from L

p

(R

N

) onto l

p

(Z

N

; X), the inverse of whi
h is given by

G

�1

: u = (u

�

)

�2Z

N 7!

X

�2Z

N

U

�

u

�

�

0

(10)

where the series 
onverges in the norm in L

p

(R

N

). Thus, the mapping

� : L(L

p

(R

N

))! L(l

p

(Z

N

; X)); A 7! GAG

�1

is an isometri
 algebra isomorphism. Obviously, �(P

m

) is the proje
tion

^

P

m

, and

�(U

�

) is the shift V

�

, both introdu
ed in Se
tion 2.

Proposition 3.2 The isometry � maps the ideal K(L

p

(R

N

); P) onto K(E;

^

P) and

the algebra L(L

p

(R

N

); P) onto L(E;

^

P ).

Proof. Sin
e

kK �KP

n

k = k�(K �KP

n

)k = k�(K)� �(K)

^

P

n

k

and kK � P

n

Kk = k�(K) �

^

P

n

�(K)k, we get �(K(L

p

(R

N

); P)) = K(E;

^

P).

Similarly, the se
ond assertion follows if one takes into a

ount that an operator

A 2 L(L

p

(R

N

)) belongs to L(L

p

(R

N

); P) if and only if

kP

k

AQ

n

k ! 0 and kQ

n

AP

k

k ! 0 as n!1

and that an analogous result holds for operators on E.

A 
onsequen
e is that an operator A 2 L(L

p

(R

N

); P) is P-Fredholm if and only if

�(A) is

^

P-Fredholm. A similar result holds for the lo
al invertibility at � 2 S

N�1

.

However, here the situation is a little bit more involved sin
e, if V � R

N

is a

neighborhood at in�nity of �, then �(�

V

I) 6= �̂

V \Z

NI in general. Nevertheless,

the lo
al invertibility of A at � is equivalent to that of �(A), whi
h 
an be seen

as follows. Given a neighborhood V � R

N

at in�nity of �, there is evidently a

neighborhood W � Z

N

at in�nity of � su
h that �(�

V

I)�̂

W

I = �̂

W

I . Thus, if

BA�

V

I = �

V

I , then

�(B)�(A)�(�

V

I) = �(�

V

I);

and after multipli
ation by �̂

W

I from the right hand side we get

�(B)�(A)�̂

W

I = �̂

W

I;

when
e the lo
al invertibility at � of �(A). The reverse impli
ation follows similarly.

The next result shows that also the limit operators behave ni
ely under dis-


retization.

Proposition 3.3 Let A 2 L(L

p

(R

N

); P) and h 2 H. Then the limit operator A

h

of A exists (with respe
t to P) if and only if the limit operator (�(A))

h

of �(A)

exists (with respe
t to �(P) =

^

P), and

�(A

h

) = (�(A))

h

: (11)

In parti
ular, A belongs to L

ri
h

p

if and only if �(A) belongs to L

ri
h

E

.
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Proof. Let the limit operator A

h

of A exist, i.e. let

lim

n!1

k(U

�h(n)

AU

h(m)

�A

h

)P

m

k = lim

n!1

kP

m

(U

�h(n)

AU

h(m)

�A

h

)k = 0

for all m. Sin
e �(U

�

) = V

�

and �(P

m

) =

^

P

m

, and sin
e � is an isometri
al algebra

isomorphism, we 
on
lude that

lim

n!1

k�((U

�h(n)

AU

h(m)

�A

h

)P

m

)k = lim

n!1

k(V

�h(n)

�(A)V

h(m)

� �(A

h

))

^

P

m

k = 0

and, analogously,

^

P

m

(k(V

�h(n)

�(A)V

h(m)

� �(A

h

))k ! 0 for every m. Thus, the

limit operator of �(A) with respe
t to h exists and (11) holds. The reverse impli-


ation follows analogously.

In parti
ular, an operator B belongs to the operator spe
trum of A if and only if

the operator �(B) belongs to the operator spe
trum of �(A). An analogous relation

holds for the lo
al operator spe
tra.

Band-dominated operators on L

p

(R

N

). The following de�nition is motivated

by the 
hara
terization of band-dominated operators on l

p

(Z

N

; X) mentioned in

Se
tion 2.

De�nition 3.4 An operator A 2 L(L

p

(R

N

)) is band-dominated if, for every fun
-

tion ' 2 BUC(R

N

),

lim

t!0

kA'

t;r

I � '

t;r

Ak

L(L

p

(R

N

))

= 0 uniformly with respe
t to r 2 R

N

: (12)

The set of all band-dominated operators in L(L

p

(R

N

)) will be denoted by B

p

, and

we write B

ri
h

p

instead of B

p

\ L

ri
h

p

.

Clearly, B

p

and B

ri
h

p

are 
losed unital subalgebras of L(L

p

(R

N

)), and the set

K(L

p

(R

N

); P) is a 
losed two-sided ideal of both algebras. The latter 
an be


he
ked, for example, by means of the following proposition.

Proposition 3.5 �(B

p

) 
oin
ides with the algebra A

E

of the band-dominated op-

erators on E = l

p

(Z

N

; L

p

(I

0

)), and �(B

ri
h

p

) = A

ri
h

E

.

Proof. If A 2 B

p

then, for every fun
tion ' 2 BUC(R

N

),

lim

t!0

k[A; '

t;r

I ℄k

L(L

p

(R

N

))

= 0

(with [:; :℄ referring to the 
ommutator) and, 
onsequently,

lim

t!0

k[�(A); �('

t;r

I)℄k

L(E)

= 0 (13)

uniformly with respe
t to r 2 R

N

. We 
laim that

lim

t!0

k'̂

t;r

I � �('

t;r

I)k

L(E)

= 0 (14)

uniformly with respe
t to r 2 R

N

. Indeed,

sup

r2R

N

k('̂

t;r

I � �('

t;r

I)k

L(E)

= sup

r2R

N

sup

�2Z

N

sup

x2I

0

j'̂

t;r

(�)� (�('

t;r

I)

�

)(x)j

= sup

r2R

N

sup

�2Z

N

sup

x2I

0

j'(t(�� r)) � '(t(x + �� r))j

� sup

�2R

N

sup

x2I

0

j'(t�) � '(t(x+ �))j ! 0
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as t! 0 due to the uniform 
ontinuity of '. By (14) and (13),

lim

t!0

k[�(A); '̂

t;r

I ℄k

L(E)

= 0

uniformly with respe
t to r 2 R

N

. Thus, �(B

p

) � A

E

. The reverse in
lusion follows

analogously. The se
ond assertion is a 
onsequen
e of the �rst one, together with

Proposition 3.3.

As an immediate 
onsequen
e of Theorems 2.4 and 2.6 and of Propositions 3.3 and

3.5 we �nally get the following result.

Theorem 3.6 Let A 2 B

ri
h

p

. Then the operator A is

(a) lo
ally invertible at point � 2 S

N�1

if and only if all limit operators A

h

2 �

�

(A)

are uniformly invertible.

(b) invertible at in�nity if and only if, for every � 2 S

N�1

, all limit operators

A

h

2 �

�

(A) are uniformly invertible.

4 Fredholmness of 
onvolution type operators

Now we will apply the results of the pre
eding se
tions to examine the Fredholm

properties of operators on L

p

(R

N

) whi
h are 
onstituted by 
onvolution operators

with kernels in L

1

(R

N

) and by operators of multipli
ation by fun
tions in suitable

sub
lasses of L

1

(R

N

).

4.1 Operators of 
onvolution type

Given a subalgebra E of L

1

(R

N

), we let A(E ; C

p

) denote the smallest 
losed sub-

algebra of L(L

p

(R

N

)) whi
h 
ontains the identity operator, all 
ompa
t operators,

and all operators of the form

aKbI where a; b 2 E and K 2 C

p

; (15)

and we 
all the elements of A(L

1

(R

N

); C

p

) 
onvolution type operators. Thus, every


onvolution type operator 
an be approximated as 
losely as desired by operators

of the form

A := 
I +

XY

a

ij

K

ij

b

ij

I + T (16)

where a

ij

; b

ij

2 L

1

(R

N

), K

ij

2 C

p

, 
 2 C and T is 
ompa
t, and where the sum

and all produ
ts are �nite.

Proposition 4.1 A(L

1

(R

N

); C

p

) � B

p

.

The proof is based on the following norm estimate whi
h is known as S
hur's lemma

([16℄, Appendix A, Proposition 5.1).

Proposition 4.2 Let l be a measurable fun
tion on R

N

� R

N

with

M

1

:= sup

x2R

N

Z

R

N

jl(x; y)jdy <1 and M

2

:= sup

y2R

N

Z

R

N

jl(x; y)jdx <1:

Then the operator

(Lu)(x) :=

Z

R

N

l(x; y)u(y)dy; x 2 R

N

a
ts boundedly on L

p

(R

N

), and kLk

L(L

p

(R

N

))

�M

1=q

1

M

1=p

2

.
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Proof of Proposition 4.1. The algebra B

p


ontains the ideal K(L

p

(R

N

); P) and,

hen
e, the ideal of the 
ompa
t operators. Clearly, this algebra also 
ontains all

operators of multipli
ation by a bounded measurable fun
tion. Thus, and sin
e B

p

is a 
losed algebra, the result will follow on
e we have shown that B

p

also 
ontains

a dense subset of C

p

. A
tually, we will 
he
k that

lim

t!0

sup

h2R

N

k['

t;h

I; C(k)℄k = 0 (17)

for every fun
tion k 2 L

1

(R

N

) with 
ompa
t support and every ' 2 BUC(R

N

).

For de�niteness, let the support of k be 
ontained in a ball with 
enter 0 and radius

R. Sin
e

(['

t;h

I; C(k)℄u)(x) =

Z

R

N

('

t;h

(x)� '

t;h

(y)) k(x� y)u(y) dy;

Proposition 4.2 implies

k['

t;h

I; C(k)℄k

L(L

p

)

� kkk

1

sup

x; y2R

N

:jx�yj�R

j'

t;h

(x) � '

t;h

(y)j

= kkk

1

sup

x; y2R

N

:jx�yj�R

j'(t(x � h))� '(t(y � h))j:

For jx� yj � R, we have

jt(x� h)� t(y � h)j � jtjR! 0 as t! 0:

Sin
e ' 2 BUC(R

N

), we obtain (17).

A striking property of operators of 
onvolution type is that their P-Fredholmness


oin
ides with 
ommon Fredholmness.

Proposition 4.3 An operator in A(L

1

(R

N

); C

p

) is Fredholm if and only if it is

P-Fredholm.

Proof. Let J refer to the 
losed ideal of A(L

1

(R

N

); C

p

) whi
h 
ontains all opera-

tors in C

p

and all 
ompa
t operators. It is easy to 
he
k that, whenever J 2 J , the

operator JP

k

is 
ompa
t for every k. Indeed, every operator J 2 J 
an be approx-

imated as 
losely as desired by a sum of a 
ompa
t operator T and of produ
ts of

operators of the form aKbI where a and b are bounded measurable fun
tions and

K 2 C

p

. Then TP

k

is 
ompa
t, and the 
ompa
tness of aKbP

k

= aKP

k

bI follows

from Theorem 1.2.

Sin
e P

k

fails to be 
ompa
t, we have I 62 J , and the algebra A(L

1

(R

N

); C

p

)

de
omposes into the dire
t sum C I + J . In parti
ular, every operator A in this

algebra 
an be uniquely written as 


A

I +K

A

where 


A

2 C and K

A

2 J , and it

turns out that the mapping A 7! 


A

is a 
ontinuous algebra homomorphism.

In the next step we will show that

J \K(L

p

(R

N

); P) = K(L

p

(R

N

)):

The in
lusion � follows from the de�nitions. If, 
onversely, J 2 J \K(L

p

(R

N

); P),

then JP

k

is 
ompa
t for every k as we have just seen. On the other hand, sin
e

J 2 K(L

p

(R

N

); P), one has kJ �JP

k

k ! 0 as k !1. Thus, being the norm limit

of 
ompa
t operators, the operator J is 
ompa
t.

Sin
e K(L

p

(R

N

)) � K(L

p

(R

N

); P), it is 
lear that every Fredholm operator is

also P-Fredholm. Let, 
onversely, A 2 A(L

1

(R

N

); C

p

) be a P-Fredholm operator.

Then there are an operator L

0

2 B

p

and an operator T 2 K(L

p

(R

N

); P) su
h

that L

0

A = I + T . We 
laim that 


A

6= 0. Contrary to what we want, assume that
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A

= 0. Then A 2 J . Choosem > 0 and n 2 Z

N

su
h that kP

m

U

�n

TU

n

P

m

k < 1=2

(whi
h 
an be done sin
e T 
an be approximated by an operator of the form P

k

T

as 
losely as desired). Then, by Neumann series, the right hand side of

P

m

U

�n

L

0

AU

n

P

m

= P

m

+ P

m

U

�n

TU

n

P

m

is an invertible operator on the range of P

m

, when
e

P

m

= (P

m

+ P

m

U

�n

TU

n

P

m

)

�1

P

m

U

�n

L

0

AU

n

P

m

: (18)

Sin
e U

n

P

m

U

�n

is the operator of multipli
ation by a 
ompa
tly supported fun
tion,

the operator AU

n

P

m

= A(U

n

P

m

U

�n

)U

n

and, hen
e, the operator on the right hand

side of (18) are 
ompa
t. But P

m

is not 
ompa
t, and this 
ontradi
tion proves the


laim.

Now write A as 


A

I +K

A

and set L := K

A

L

0

+ I . Then

LA� 


A

I = 


A

L

0

A�AL

0

A+A� 


A

I = (


A

I � A)(L

0

A� I):

Sin
e L

0

A � I 2 K(L

p

(R

N

); P) and 


A

I � A = K

A

2 J , the operator LA � 


A

I

is 
ompa
t. Similarly, one shows that AR � 


A

I is 
ompa
t for a 
ertain operator

R 2 B

p

. Hen
e, and be
ause of 


A

6= 0, the operator A is Fredholm.

Corollary 4.4 A(L

1

(R

N

); C

p

) \K(L

p

(R

N

); P) = K(L

p

(R

N

)).

There are operators in A(L

1

(R

N

); C

p

) whi
h do not possess a ri
h operator spe
-

trum. The next result identi�es a subalgebra of A(L

1

(R

N

); C

p

) \ B

ri
h

p

whi
h


ontains suÆ
iently many interesting operators.

Proposition 4.5 A(BUC(R

N

); C

p

) � B

ri
h

p

.

Proof. It is easy to see that every 
ompa
t operator T belongs to B

ri
h

p

and that

the limit operator T

h

exists with respe
t to every sequen
e h 2 H and is equal to

zero.

Next, let a 2 BUC(R

N

), and let h be a sequen
e whi
h tends to in�nity. The

family of all fun
tions x 7! a(x + h(m)) is bounded and equi
ontinuous on every


ompa
t subset M of R

N

. Hen
e, by the Arzel�a-As
oli theorem, there are a sub-

sequen
e g of h and a 
ontinuous bounded fun
tion a

h

on R

N

su
h that, for every


ompa
t M � R

N

,

lim

m!1

sup

x2M

ja(x+ g(m))� a

h

(x)j = 0:

Thus, the operatorsU

�g(m)

aU

g(m)

of multipli
ation by the fun
tion x 7! a(x+g(m))


onverge �-strongly to the operator of multipli
ation by the fun
tion a

h

.

Let A be an operator of the form (16), but with a

ij

; b

ij

2 BUC. As we have

just seen, given a sequen
e h tending to in�nity, we 
an 
hoose a subsequen
e g of

h su
h that the operators U

�g(m)

a

ij

U

g(m)

and U

�g(m)

b

ij

U

g(m)


onverge �-strongly

to 
ertain multipli
ation operators (a

ij

)

h

I and (b

ij

)

h

I , respe
tively. Then

U

�g(m)

AU

g(m)

P

k

= (
I +

XY

(U

�g(m)

a

ij

U

g(m)

)K

ij

(U

�g(m)

b

ij

U

g(m)

) + U

�g(m)

TU

g(m)

)P

k

= 
P

k

+

XY

(U

�g(m)

a

ij

U

g(m)

)K

ij

P

k

(U

�g(m)

b

ij

U

g(m)

) + U

�g(m)

TU

g(m)

P

k


onverges in the norm to


P

k

+

XY

(a

ij

)

h

K

ij

P

k

(b

ij

)

h

)I = (
I +

XY

(a

ij

)

h

K

ij

(b

ij

)

h

I)P

k

for every P

k

and that the operators K

ij

P

k

are 
ompa
t due to Theorem 1.2).

Hen
e, all operators of the form (16) with a

ij

; b

ij

2 BUC possess a ri
h operator

spe
trum. Sin
e the operators of this form lie densely in A(BUC(R

N

); C

p

), and

sin
e B

ri
h

p

is a 
losed algebra, this yields the assertion.
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4.2 Fredholmness

Due to Proposition 4.5, the operators in A(BUC(R

N

); C

p

) are subje
t to Theorem

3.6. In 
ombination with Proposition 4.3, we obtain the following result.

Theorem 4.6 Let A 2 A(BUC(R

N

); C

p

). Then A is

(a) Fredholm (i.e. lo
ally invertible at in�nity) if and only if all limit operators of

A are uniformly invertible.

(b) lo
ally invertible at the in�nitely distant point � 2 S

N�1

if and only if all

operators in the lo
al operator spe
trum �

�

(A) are uniformly invertible.

Corollary 4.7 An operator A 2 A(BUC(R

N

); C

p

) is a Fredholm operator if and

only if, for ea
h point � 2 S

N�1

, all operators in �

�

(A) are uniformly invertible.

We are going to spe
ialize these results to operators with 
oeÆ
ients in 
ertain

subalgebras of L

1

(R

N

).

Slowly os
illating 
oeÆ
ients. Sin
e slowly os
illating fun
tions are uniformly


ontinuous, one has A(SO(R

N

); C

p

) � A(BUC(R

N

); C

p

), and Theorem 4.6 and

its 
orollary apply to operators in the algebra A(SO(R

N

); C

p

). Limit operators of

operators in A(SO(R

N

); C

p

) are of a parti
ularly simple form whi
h allows us to


he
k their invertibility e�e
tively via (4).

Proposition 4.8 Every limit operator of an operator in A(SO(R

N

); C

p

) lies in

C I + C

p

.

Proof. Every operator in A(SO(R

N

); C

p

) 
an be uniformly approximated by op-

erators of the form (16) where a

ij

; b

ij

2 SO(R

N

). If K 2 C

p

then, 
learly, the limit

operator K

h

exists with respe
t to every sequen
e h 2 H, and K

h

= K. Further, if

T is 
ompa
t, then the limit operator T

h

also exists with respe
t to every sequen
e

h 2 H, and T

h

= 0. Thus, in view of the proof of Proposition 4.5, it remains to


he
k the following: If a 2 SO(R

N

), and if h 2 H is a sequen
e su
h that the oper-

ators of multipli
ation U

�h(n)

aU

h(n)


onverge

�

-strongly to a

h

I as n!1, then a

h

is a 
onstant fun
tion. This 
an be done as follows. Let a 2 SO(R

N

). Then

lim

k!1

(a(x

0

+ h(k))� a(x

00

+ h(k))) = 0

for all sequen
es h tending to in�nity and for all x

0

; x

00

2 R

N

. Hen
e, if h is

a sequen
e su
h that the limit operator (aI)

h

exists, then lim

k!1

a(x + h

k

) is

independent of x 2 R

N

.

Corollary 4.9 Let A be an operator of the form (16) with a

ij

; b

ij

2 SO(R

N

).

Then A is Fredholm if and only if all limit operators of A are invertible.

Thus, the uniformity of the invertibility is not required.

Proof. We 
on
lude from the previous proposition that every limit operator of A

is a linear 
ombination of the operators

Q

n

i

j=1

K

ij

with i = 1; : : : ; n. Thus, �

op

(A)

lies in a �nite dimensional subspa
e of L(L

p

(R

N

)). Then a simple 
ompa
tness

argument yields the assertion.

Remark. The algebra A(Q

C

(R

N

); C

p

) whi
h is apparently larger than the algebra

A(SO(R

N

); C

p

) a
tually 
oin
ides with the latter algebra. Indeed, by Theorem

1.5, every operator aK with a 2 Q

C

(R

N

) and K 2 C

p

is the sum of an operator

a

1

K with a

1

2 SO(R

N

) and an operator a

2

K with a

2

2 Q

SC

(R

N

). Sin
e slowly

os
illating fun
tions are uniformly 
ontinuous and sin
e a

2

K is 
ompa
t (Theorem

1.2), one has aK 2 A(SO(R

N

); C

p

).
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CoeÆ
ients stabilizing at in�nity. Theorem 4.6 and its 
orollary attain their

most simple form for operators with 
oeÆ
ients whi
h stabilize at in�nity in the

following sense. This 
lass has been introdu
ed in [4℄ in 
ase N = 1.

De�nition 4.10 We say that the fun
tion a 2 L

1

(R

N

) stabilizes at in�nity if, for

every in�nitely distant point � 2 S

N�1

, there is a 
onstant y 2 C su
h that, for

every " > 0, there exists a neighborhood U = U

�; "

at in�nity of � su
h that

mes fx 2 U

�; "

: ja(x)� yj > "g < ": (19)

The 
lass of all fun
tions whi
h stabilize at in�nity will be denoted by L

1

stab

(R

N

).

If a stabilizes at in�nity and � is an in�nitely distant point, then the 
onstant y

whi
h satis�es (19) is uniquely determined. We denote it by â(�).

Lemma 4.11 Let a 2 L

1

stab

(R

N

) and � 2 S

N�1

be an in�nitely distant point. Then

jâ(�)j � kak

1

.

Proof. Let " > 0 and 
hoose a neighborhood U of in�nity su
h that

mes fx 2 U : ja(x) � â(�)j > "g < ":

Then

mes fx 2 U : j ja(x)j � jâ(�)j j > "g < ":

Sin
e the measure of U is in�nite, there is a subset M � U of measure 1 su
h that

ja(x)j � " < jâ(�)j < ja(x)j + " for all x 2M:

This yields the assertion.

Theorem 4.12 L

1

stab

(R

N

) is a C

�

-subalgebra of Q

C

(R

N

).

Proof. First we will show that L

1

stab

(R

N

) is 
losed in L

1

(R

N

). Let a

n

2 L

1

stab

(R

N

)

and a 2 L

1

(R

N

) su
h that lim ka

n

� ak

1

= 0. Fix " > 0, and 
hoose n

0

2 N su
h

that

ka

n

� a

m

k

1

< " for all n; m � n

0

:

Further, let U

�; "; n

be a neighborhood at in�nity of � su
h that

mes fx 2 U

�; "; n

: ja

n

(x) �
a

n

(�)j > "g < ";

and set

U

0

�; "; n

:= fx 2 U

�; "; n

: ja

n

(x) �
a

n

(�)j � "g:

Then, for x 2 U

0

�; "; n

\ U

0

�; ";m

and m; n > n

0

,

j
a

n

(�)� 
a

m

(�)j � j
a

n

(�) � a

n

(x)j+ ja

n

(x) � a

m

(x)j+ ja

m

(x) � 
a

m

(�)j � 3 ":

Thus, (
a

n

(�))

n2N

is a Cau
hy sequen
e, and we let â(�) denote its limit.

Now we �x n > n

0

su
h that

ka

n

� ak

1

< "=3 and j
a

n

(�) � â(�)j < "=3:

The estimate

ja

n

(x) � â

n

(�)j � ja(x) � â(�)j � ja(x) � a

n

(x)j � ja

n

(x) �
a

n

(�)j

implies that ja

n

(x) �
a

n

(�)j > "=3 whenever ja(x) � â(�)j > ". Sin
e a

n

stabilizes

at in�nity, there is a neighborhood U

�; "=3; n

su
h that

mes fx 2 U

�; "=3; n

: ja

n

(x)�
a

n

(�)j > "=3g < "=3:
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Thus,

mes fx 2 U

�; "=3; n

: ja(x)� â(�)j > "g < "=3 < ";

when
e a 2 L

1

stab

(R

N

).

In the next step we show that L

1

stab

(R

N

) is a

�

-algebra. The symmetry is obvi-

ous. Let a; b 2 L

1

stab

(R

N

), and let � be an in�nitely distant point. We 
hoose

neighborhoods at in�nity U

�; "=2; a

and U

�; "=2; b

of � su
h that

mes fx 2 U

�; "=2; a

: ja(x)� â(�)j > "=2g < "=2 (20)

and

mes fx 2 U

�; "=2; b

: jb(x)�

^

b(�)j > "=2g < "=2: (21)

Set W

�

:= U

�; "=2; a

\ U

�; "=2; b

. Then W

�

is a neighborhood at in�nity of �, and it

follows from

fx 2W

�

: ja(x) + b(x)� â(�)�

^

b(�)j > "g

� fx 2 W

�

: ja(x)� â(�)j > "=2g [ fx 2 W

�

: jb(x)�

^

b(�)j > "=2g

and from (20), (21) that

mes fx 2W

�

: ja(x) + b(x)� â(�)�

^

b(�)j > "g < ":

Thus, a+ b 2 L

1

stab

(R

N

) and

\

(a+ b)(�) = â(�) +

^

b(�) for all � 2 S

N�1

:

In order to show that ab 2 L

1

stab

(R

N

), too, we 
an assume that a; b 6= 0 (otherwise

the assertion is obvious). Choose m 2 N su
h that mkak

1

> 1 and mkbk

1

> 1.

Given an in�nitely distant point � and " > 0 a, 
hoose neighborhoods at in�nity of

� su
h that

mes fx 2 U

�; a

: ja(x)� â(�)j > "=(2mkbk

1

)g < "=(2mkbk

1

)

and

mes fx 2 U

�; b

: jb(x)�

^

b(�)j > "=(2mkak

1

)g < "=(2mkak

1

):

Set W

�

:= U

�; a

\ U

�; b

. Then W

�

is a neighborhood at in�nity of �, and

mes fx 2 W

�

: j(ab)(x)� â(�)

^

b(�)j > "g

= mes fx 2W

�

: j(a(x) � â(�))b(x) + â(�))(b(x) �

^

b(�))j > "g

� mes fx 2W

�

: ja(x) � â(�)j kbk

1

+ kak

1

jb(x)�

^

b(�)j > "g

� mes fx 2W

�

: ja(x) � â(�)j kbk

1

> "=2g

+mes fx 2W

�

: jb(x)�

^

b(�)j kak

1

> "=2g

� mes fx 2 U

�; a

: ja(x)� â(�)j kbk

1

> "=(2m)g

+mes fx 2 U

�; b

: jb(x)�

^

b(�)j kak

1

> "=(2m)g

� mes fx 2 U

�; a

: ja(x)� â(�)j > "=(2mkbk

1

)g

+mes fx 2 U

�; b

: jb(x)�

^

b(�)j > "=(2mkak

1

)g

< "=(2mkbk

1

) + "=(2mkak

1

) < "=2 + "=2 = ":

Consequently, ab 2 L

1

stab

(R

N

) and

d

(ab)(�) = â(�)

^

b(�) for all � 2 S

N�1

:
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It remains to show the in
lusion L

1

stab

(R

N

) � Q

C

(R

N

). Thus, if a 2 L

1

stab

(R

N

), we

have to show that, for every open bounded set M � R

N

, there is an open bounded

set D � R

N

su
h that

lim

t!1

Z

D

�

�

�

�

Z

M

(a(t+ h)� a(t+ h+ s)) ds

�

�

�

�

dh = 0 (22)

(De�nition 1.4). Let M � R

N

be open and bounded, 
hoose D as the open unit

disk in R

N

, and let d > 0 be the radius of a disk with 
enter 0 whi
h 
ontains

M + D. Let further " > 0. Then, for every in�nitely distant point �, there is a

neighborhood at in�nity of � su
h that

mes fx 2 U

�; "

: ja(x) � â(�)j > "g < ":

Ea
h neighborhood U

�; "

is of the form

U

�; "

= fy 2 R

N

: jyj > R

�; "

and y=jyj 2W

�; "

g

where R

�; "

� 0 and W

�; "

� S

N�1

is an open neighborhood of �. In parti
ular,

fW

�; "

g

�2S

N�1 is an open 
over of the unit sphere, from whi
h we 
an 
hoose a �nite

sub
over fW

�

i

; "

g

k

i=1

. Set

R

0

:= maxfR

�

i

; "

: i = 1; : : : ; kg+ d:

Further, sin
e the fun
tion f : S

N�1

! R

N

,

f(x) := maxfdist (x; S

N�1

nW

�

i

; "

) : i = 1; : : : ; kg;

is positive for every x (every x belongs to one of the sets W

�

i

; "

) and 
ontinuous on

the 
ompa
t set S

N�1

, there is a Æ > 0 su
h that f(x) � Æ for all x 2 S

N�1

. Thus,

for every x 2 S

N�1

, there is an i 2 f1; : : : ; kg su
h that

x 2 W

�

i

; "

and dist (x; �W

�

i

; "

) � Æ:

Consequently, there is an R

1

� R

0

su
h that, for every y 2 R

N

with jyj � R

1

, there

is an i 2 f1; : : : ; kg su
h that

y 2 U

�

i

; "

and dist (y; �U

�

i

; "

) � d:

Let now t 2 R

N

with jtj � R

1

. By what we have just seen, there is an i 2 f1; : : : ; kg

su
h that t+D and t+M +D are 
ontained in U

�

i

; "

. Thus,

mes fx 2 t+D : ja(x) � â(�)j > "g < "

and

mes fx 2 t+D +M : ja(x) � â(�)j > "g < ":

This implies

Z

D

�

�

�

�

Z

M

(a(t+ h)� a(t+ h+ s)) ds

�

�

�

�

dh

�

Z

D

Z

M

ja(t+ h)� â(�)j ds dh+

Z

D

Z

M

ja(t+ h+ s)� â(�)j ds dh

� mesD

Z

t+M

ja(h)� â(�)j dh+mesD

Z

t+D+M

ja(h)� â(�)j dh

� mesD (mesM � "+ 2"kak

1

) + mesD (mes (D +M) � "+ 2"kak

1

)

� "mesD (mesM +mes (D +M) + 4kak

1

);

when
e the assertion (22).
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Proposition 4.13 Let a 2 L

1

stab

(R

N

), and let h be a sequen
e whi
h tends to

in�nity into the dire
tion of � 2 S

N�1

. Then

V

�h(n)

aV

h(n)

! â(�)I strongly on L

p

(R

N

) as n!1:

Proof. Given " > 0, we �nd a neighborhood U

�; "

at in�nity of � su
h that

mes fx 2 U

�; "

: ja(x) � â(�)j > "g < ":

Let f be a 
ontinuous fun
tion with 
ompa
t support. Then

k(V

�h(n)

aV

h(n)

� â(�))fk

p

= k(a� â(�))V

h(n)

fk

p

:

Clearly, there exists an n

0

su
h that supp (V

h(n)

f) � U

�; "

for all n � n

0

. Thus, if

n � n

0

, then

k(V

�h(n)

aV

h(n)

� â(�))fk

p

� "kfk

p

+ 2kak

1

kuk

1

"

1=p

:

This proves the strong 
onvergen
e on a dense subset of L

p

(R

N

). Sin
e the opera-

tors V

�h(n)

aV

h(n)

are uniformly bounded, we get the assertion.

An obvious 
onsequen
e of this proposition is that the lo
al operator spe
trum

�

�

(A) for operators A 2 A(L

1

stab

(R

N

); C

p

) is a singleton for every in�nitely distant

point � 2 S

N�1

, say �

�

(A) = fA

�

g. Moreover, every limit operator A

�

belongs to

C I + C

p

sin
e A(L

1

stab

(R

N

); C

p

) is a subalgebra of A(SO(R

N

); C

p

), and by Propo-

sition 4.8. Thus, the invertibility of A

�


an be e�e
tively 
he
ked via (4).

Corollary 4.14 An operator A 2 A(L

1

stab

(R

N

); C

p

) is Fredholm if and only if every

limit operator A

�

(with � 2 S

N�1

) of A is invertible.

5 Compressions of operators of 
onvolution type

In this se
tion we are going to study the Fredholm properties of 
ompressions of

operators of 
onvolution type. If A is a linear bounded operator on L

p

(R

N

) and D

is a measurable subset of R

N

, then the 
ompression of A onto D is the operator

�

D

A�

D

I j

L

p

(R

N

)

: L

p

(D)! L

p

(D):

The ar
hetypi
al example is the Wiener-Hopf operator W (k) on L

p

(R

+

) whi
h is

the 
ompression of the 
onvolution operator 
I + C(k) with k 2 L

1

(R) onto R

+

.

Thus,

W (k) = �

+

(
I + C(k))�

+

I j

L

p

(R

+

)

;

where �

+

refers to the 
hara
teristi
 fun
tion of R

+

. Clearly, this operator is

Fredholm on L

p

(R

+

) is and only if the operator 
I + �

+

C(k)�

+

I is Fredholm on

L

p

(R). Let f be the fun
tion with f(x) = 0 if x < 0, f(x) = x on [0; 1℄ and

f(x) = 1 for x > 1. Then the fun
tion �

+

� f has a 
ompa
t support. Thus,

the operator �

+

C(k)�

+

I � fC(k)fI is 
ompa
t on L

p

(R), and the operator W (k)

is Fredholm on L

p

(R

+

) if and only if the operator 
I + fC(k)fI is Fredholm on

L

p

(R). The latter operator is subje
t to Corollary 4.9 whi
h says that this operator

(hen
e, the Wiener-Hopf operator W (k)) is Fredholm if and only if the 
onvolution

operator 
I +C(k) is invertible. This simple redu
tion is no longer possible for for


ompressions of operators onto more involved sets.
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5.1 Compressions of operators in A(BUC(R

N

); C

p

)

Let 1 < p < 1, and let D be a measurable subset of R

N

whose asso
iated multi-

pli
ation operator belongs to B

ri
h

p

. Su
h subsets will be 
alled ri
h .

We will 
onsider 
ompressions of operators in A(BUC(R

N

); C

p

) onto the ri
h

set D. Clearly, the 
ompression �

D

A�

D

I is invertible (Fredholm) on L

p

(D) if and

only if its extension (1 � �

D

)I + �

D

A�

D

I is an invertible (Fredholm) operator

on L

p

(R

N

). Ea
h su
h extension 
an be 
onsidered as an element of the alge-

bra A(BUC(R

N

); �

D

; C

p

) whi
h is the smallest 
losed subalgebra of the algebra

L(L

p

(R

N

)) whi
h 
ontains the algebra A(BUC(R

N

); C

p

) as well as the multipli
a-

tion operator �

D

I . As a 
onsequen
e of Proposition 4.5 we get

A(BUC(R

N

); �

D

; C

p

) � B

ri
h

p

; (23)

and from Proposition 4.3 we 
on
lude that an operator A 2 A(BUC(R

N

); �

D

; C

p

)

is Fredholm if and only if it is P-Fredholm. Thus, Theorem 3.6 (b) implies the

following result.

Theorem 5.1 Let A 2 A(BUC(R

N

); C

p

), and let D be a ri
h subset of R

N

. Then

the 
ompression of A onto D is Fredholm on L

p

(D) if and only if, for ea
h point

� 2 S

N�1

, all limit operators in �

�

((1� �

D

)I + �

D

A�

D

I) are uniformly invertible

on L

p

(R

N

).

In the following subse
tions we will give some examples of unbounded ri
h domains

D for whi
h the limit operators of �

D

I 
an be expli
itely 
al
ulated and for whi
h,

thus, expli
it 
riteria for the Fredholmness of the 
ompressions of operators from

A(BUC(R

N

); C

p

) onto D 
an be derived.

5.2 Compressions to a half spa
e

Given a non-zero ve
tor a 2 R

N

, 
onsider the half spa
e

H(a) := fx 2 R

N

: hx; ai > 0g: (24)

Let further h 2 H be a sequen
e whi
h tends to in�nity into the dire
tion of

� 2 S

N�1

. We distinguish several 
ases.

� If h�; ai > 0, then hh(n); ai ! +1, and the limit operator of �

H(a)

I exists

and is equal to the identity operator.

� If h�; ai < 0, then hh(n); ai ! �1, and the limit operator of �

H(a)

I exists

and is equal to the zero operator.

� If h�; ai = 0, then h has a subsequen
e g 2 H su
h that either the numbers

hg(n); ai tend to +1, or to �1, or to a �nite limit b

g

2 R. In ea
h of these


ases, the limit operator of �

H(a)

I with respe
t to g exists, and it is equal

to the identity operator in the �rst 
ase, to the zero operator in the se
ond


ase and to the operator of multipli
ation by the 
hara
teristi
 fun
tion of the

shifted half spa
e

H(a; b

g

) := fx 2 R

N

: hx; ai > �b

g

g

in the third 
ase.

Let H

�

(A) stand for the set of all sequen
es h 2 H whi
h tend to in�nity into

the dire
tion of � 2 S

N�1

and for whi
h the limit operator A

h

exists. Further,

we denote by H

�;1

(A) and H

�; b

(A) the set of all sequen
es h 2 H

�

(A) su
h that

hh(n); ai ! 1 and hh(n); ai ! b 2 R

N

, respe
tively. Then Theorem 5.1 gives the

following result.
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Theorem 5.2 Let A 2 A(BUC(R

N

); C

p

) and D = H(a) with a 2 R

N

n f0g. Then

the 
ompression of A onto D is Fredholm on L

p

(D) if and only if the following


onditions are satis�ed:

(a) for ea
h point � 2 S

N�1

with h�; ai > 0, the set fA

h

: h 2 H

�

(A)g of limit

operators of A is uniformly invertible.

(b) for ea
h point � 2 S

N�1

with h�; ai = 0, the set fA

h

: h 2 H

�;1

(A)g of limit

operators of A is uniformly invertible.

(
) for ea
h point � 2 S

N�1

with h�; ai = 0 and ea
h b 2 R

N

, the set

f(1� �

H(a; b)

)I + �

H(a; b)

A

h

�

H(a; b)

I : h 2 H

�; b

(A)g

of extended 
ompressions of limit operators of A is uniformly invertible.

5.3 Compressions to 
urved half spa
es

Let N > 1 and f 2 BUC(R

N�1

). We 
onsider the 
urved half spa
e

P(f) := fx = (x

0

; x

N

) 2 R

N�1

� R : x

N

> f(x

0

)g � R

N

: (25)

Let further h 2 H be a sequen
e whi
h tends to in�nity into the dire
tion of

� = (�

0

; �

N

) 2 S

N�1

� R

N�1

� R. Again, we distinguish several 
ases.

� If �

N

> 0, then the limit operator of �

P(f)

I exists and is equal to the identity

operator.

� If �

N

< 0, then the limit operator of �

P(f)

I exists and is equal to the zero

operator.

� Now let �

N

= 0. Then h has a subsequen
e g 2 H su
h that either the

numbers g(n)

N

tend to +1, or to �1, or that the sequen
e (g(n)

N

)

n�1

is

bounded. In the �rst two 
ases, the limit operator of �

P(f)

I with respe
t to g

exists, and it is equal to the identity operator in the �rst 
ase and to the zero

operator in the se
ond 
ase. In the third 
ase, there exists a subsequen
e k of

g, a real number b

k

and a fun
tion f

k

: R

N�1

! R su
h that

lim

n!1

k(n)

N

= b

k

and lim

n!1

f(x

0

+ k(n)

0

) = f

k

(x

0

)

in the sense of the uniform 
onvergen
e on 
ompa
t subsets of R

N�1

. In this


ase, the limit operator of �

P(f)

I exists, too, and it is equal to the operator

of multipli
ation by the 
hara
teristi
 fun
tion of

P(f

k

� b

k

) = fx 2 R

N

: x

N

> f

k

(x

0

)� b

k

g

in the third 
ase.

Let H

�

(A) stand for the set of all sequen
es h 2 H whi
h tend to in�nity into the

dire
tion of � 2 S

N�1

and for whi
h the limit operator A

h

exists. Further, given a

real number b and a fun
tion g : R

N�1

! R, we denote by H

�;1

(A) and H

�; g; b

(A)

the set of all sequen
es h 2 H

�

(A) su
h that h(n)

N

!1 and

h(n)

N

! b and f(x

0

+ h(n)

0

)! g(x

0

)

uniformly on 
ompa
t subsets of R

N�1

, respe
tively. If the set H

�; g; b

(A) is not

empty, then we 
all g a limit fun
tion with respe
t to �. Then Theorem 5.1 implies

the following result.
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Theorem 5.3 Let A 2 A(BUC(R

N

); C

p

) and D = P(f) with f 2 BUC(R

N�1

).

Then the 
ompression of A onto D is Fredholm on L

p

(D) if and only if the following


onditions are satis�ed:

(a) for ea
h point � 2 S

N�1

with �

N

> 0, the set fA

h

: h 2 H

�

(A)g of limit

operators of A is uniformly invertible.

(b) for ea
h point � 2 S

N�1

with �

N

= 0, the set fA

h

: h 2 H

�;1

(A)g of limit

operators of A is uniformly invertible.

(
) for ea
h point � 2 S

N�1

with �

N

= 0, ea
h b 2 R, and ea
h limit fun
tion

g : R

N�1

! R, the set

f(1� �

P(g�b)

)I + �

P(g�b)

A

h

�

P(g�b)

I : h 2 H

�; g; b

(A)g

of extended 
ompressions of limit operators of A is uniformly invertible.

This result gets a parti
ular simple form if f 2 SO(R

N

). In the setting of assertion

(
) of the theorem, this hypothesis implies that all fun
tions g are 
onstant (their

possible values are just the partial limits of f(x

0

) as x

0

! 1). Thus, all possible

limit domains P(g � b) are (un
urved) half spa
es.

5.4 Compressions to 
urved layers

Let again N > 1, and let f

1

; f

2

2 BUC(R

N�1

) be su
h that f

1

(x

0

) < f

2

(x

0

) for all

x

0

2 R

N�1

. Then we 
all the set

L(f

1

; f

2

) := fx = (x

0

; x

N

) 2 R

N�1

� R : f

1

(x

0

) < x

N

< f

2

(x

0

)g (26)

a 
urved layer. Let h 2 H be a sequen
e whi
h tends to in�nity into the dire
tion of

� 2 S

N�1

. If �

N

6= 0, then the limit operator of �

L(f

1

; f

2

)

I with respe
t to h exists

and it is equal to 0. The same happens if �

N

= 0 and the sequen
e (h(n)

N

)

n�1

tends to �1. Thus, the only non-trivial 
ase is when �

N

= 0 and the sequen
e

(h(n)

N

)

n�1

is bounded. Then, as in the previous subse
tion, there is a subsequen
e

k of h, a real number b

k

as well as fun
tions f

1k

; f

2k

: R

N�1

! R su
h that the limit

operator of �

L(f

1

; f

2

)

I with respe
t to k exists and is equal to �

L(f

1k

�b

k

; f

2k

�b

k

)

I .

Let again H

�

(A) stand for the set of all sequen
es h 2 H whi
h tend to in�nity

into the dire
tion of � 2 S

N�1

and for whi
h the limit operator A

h

exists, and

denote by H

�; g

1

; g

2

; b

(A) the set of all sequen
es h 2 H

�

(A) su
h that

h(n)

N

! b and f

i

(x

0

+ h(n)

0

)! g

i

(x

0

) (i = 1; 2)

uniformly on 
ompa
t subsets of R

N�1

.

Theorem 5.4 Let A 2 A(BUC(R

N

); C

p

) and D = L(f

1

; f

2

) with fun
tions f

1

, f

2

in BUC(R

N�1

) and f

1

< f

2

. Then the 
ompression of A onto D is Fredholm on

L

p

(D) if and only if, for ea
h point � 2 S

N�1

with �

N

= 0, ea
h b 2 R, and all

limit fun
tions g

1

; g

2

: R

N�1

! R, the set

f(1� �

L(g

1

�b; g

2

�b)

)I + �

L(g

1

�b; g

2

�b)

A

h

�

L(g

1

�b; g

2

�b)

I : h 2 H

�; g

1

; g

2

; b

(A)g

of extended 
ompressions of limit operators of A is uniformly invertible.

If f

1

; f

2

2 SO(R

N�1

), then the fun
tions f

1k

; f

2k

are 
onstant, and L(f

1k

�b

k

; f

2k

�

b

k

) is a usual layer bounded by two parallel planes.

Corollary 5.5 In addition to the hypothesis from Theorem 5.4, let

lim

x

0

!1

(f

1

(x

0

)� f

2

(x

0

)) = 0:

Then all limit operators of �

L(f

1

; f

2

)

I are zero, and the 
ompression of A onto

L(f

1

; f

2

) is Fredholm on L

p

(L(f

1

; f

2

)).
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5.5 Compressions to 
urved 
ylinders

Let N > 1, 
 � R

N�1

be a bounded domain, and f 2 BUC(R) a positive fun
tion,

and 
onsider the 
urved 
ylinder

Z




(f) := fx = (x

0

; x

N

) 2 R

N�1

� R : x

0

2 f(x

N

)
g: (27)

Let h 2 H. If h(n)

0

!1, then the limit operator of �

Z




(f)

I with respe
t to h exists

and is equal to the zero operator. Thus, nontrivial limit operators of �

Z




(f)

I with

respe
t to h exist only if the sequen
e (h(n)

0

)

n�1

is bounded and h(n)

N

! �1. In

this 
ase, there is a subsequen
e k of h, a point b

k

2 Z

N�1

, and a fun
tion f

k

on R

su
h that

g(n)

0

! b

k

and f(x

N

+ k(n)

N

)! f

k

(x

N

) as n!1

uniformly on 
ompa
t subsets of R. Then the limit operator of �

Z




(f)

I with respe
t

to the sequen
e k exists, and it is equal to the operator of multipli
ation by the


hara
teristi
 fun
tion of the shifted 
urved 
ylinder

Z




(f

k

; b

k

) := fx = (x

0

; x

N

) 2 R

N�1

� R : x

0

2 f

k

(x

N

)
� b

k

g:

Let H

�

(A) denote the set of all sequen
es h 2 H whi
h tend to in�nity into the di-

re
tion of � 2 S

N�1

and for whi
h the limit operator A

h

exists, and write H

�; g; b

(A)

for the set of all sequen
es h 2 H

�

(A) su
h that

h(n)

N

! b 2 Z

N�1

and f(x

N

+ h(n)

N

)! g(x

N

)

uniformly on 
ompa
t subsets of R.

Theorem 5.6 Let A 2 A(BUC(R

N

); C

p

) and D = Z




(f) with f 2 BUC(R).

Then the 
ompression of A onto D is Fredholm on L

p

(D) if and only if, for ea
h

point � 2 S

N�1

with �

0

= 0, ea
h b 2 Z

N�1

, and all limit fun
tions g : R ! R, the

set

f(1� �

Z




(g; b)

)I + �

Z




(g; b)

A

h

�

Z




(g; b)

I : h 2 H

�; g; b

(A)g

of extended 
ompressions of limit operators of A is uniformly invertible.

If f 2 SO(R), then the fun
tion f

g

is 
onstant and, thus, Z




(f

g

; b) is a usual

straight 
ylinder.

Corollary 5.7 In addition to the hypothesis from Theorem 5.6, let the ends of the


ylinder be 
uspidal, i.e. let

lim

x

N

!�1

f(x

N

) = 0:

Then all limit operators of �

Z




(f)

I are zero, and the 
ompression of A onto Z




(f)

is Fredholm on L

p

(Z




(f)).

5.6 Compressions to 
ones with smooth 
ross se
tion

Let 
 � R

N

be an open domain with C

1

-boundary �
 in 
ase N � 2 or an open

interval in R

1

. By C




, we denote the 
one in R

N+1

generated by 
,

C




:= f(y; y

N+1

) 2 R

N

� [0; 1) : y 2 y

N+1


g: (28)

Given x 2 R

N

, let �

x

2 S

N

be the point whi
h lies on the ray in R

N+1

starting at

the origin and passing through the point (x; 1), i.e.

�

x

=

(x; 1)

p

kxk

2

+ 1

:
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Let h 2 H be a sequen
e whi
h tends to in�nity into the dire
tion of � 2 S

N

. Again

there are two trivial 
ases: If � is not of the form �

x

with some x 2 
, then the limit

operator of �

C




I exists and is equal to the zero operator. If � = �

x

with x 2 
,

then the limit operator of �

C




I exists, too, and is equal to the identity operator.

Let now x 2 �
 and � = �

x

. We denote by T

x


 the tangential spa
e and by

�

x

the interior normal unit ve
tor to �
 at x. Further, we write H

x

for the 
losed

half spa
e in R

N

whi
h is bounded by T

x


 and for whi
h �

x

is an interior normal

unit ve
tor to �H

x

at x. Finally, we let H

x

refer to the half spa
e in R

N+1

whi
h

is generated by H

x

,

H

x

:= f(y; y

N+1

) 2 R

N

� R : y 2 H

x

+ (y

N+1

� 1)xg:

Further, we write the sequen
e h as

h(n) := �

n

(�

x

; 0) + (r

n

; 0) + �

n

(x; 1) (29)

where r

n

2 T

x


 and �

n

; �

n

2 R. The following lemma 
laims the 
onditions under

whi
h the sequen
e (29) tends to in�nity in the dire
tion of �

x

.

Lemma 5.8 The sequen
e h de�ned by (29) tends to in�nity in in the dire
tion of

�

x

if and only if �

n

! +1 and

�

n

=�

n

! 0 and r

n

=�

n

! 0 as n!1: (30)

Proof. The sequen
e h tends to in�nity if and only if

j�

n

j

2

+ kr

n

k

2

+ j�

n

j

2

!1; (31)

and then it 
onverges in the dire
tion of �

x

if and only if

(�

n

�

x

+ r

n

+ �

n

x; �

n

)

p

k�

n

�

x

+ r

n

+ �

n

xk

2

+ j�

n

j

2

!

(x; 1)

p

kxk

2

+ 1

: (32)

The 
onvergen
e of the last 
omponent of (32) tells us that �

n

> 0 for all suÆ
iently

large n. Thus, (31) implies

(

�

n

�

n

�

x

+

r

n

�

n

+ x; 1)

q

k

�

n

�

n

�

x

+

r

n

�

n

+ xk

2

+ 1

!

(x; 1)

p

kxk

2

+ 1

: (33)

From the 
onvergen
e of the last 
omponent of (33) we 
on
lude that













�

n

�

n

�

x

+

r

n

�

n

+ x













! kxk:

This implies for the �rst 
omponent of (33) that

�

n

�

n

�

x

+

r

n

�

n

+ x! x

when
e (30) sin
e �

x

? r

n

. Writing (31) as

�

2

n

 

�

�

�

�

�

n

�

n

�

�

�

�

2

+













r

n

�

n













2

+ 1

!

!1

and taking into a

ount (30), we �nally get �

n

! +1. The reverse impli
ations


an be 
he
ked similarly.
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In order to 
ompute the limit operators into the dire
tion of �

x

for x 2 �
, we

assume for simpli
ity that x = 0 (whi
h 
an be rea
hed by shifting 
) and that

T

x


 = T

0


 = R

N�1

�f0g (whi
h 
an be rea
hed by rotating the shifted 
). Then,

sin
e 
 has a C

1

-boundary, there is an open neighborhood U � R

N�1

of 0, an

open interval I � R whi
h 
ontains 0, and a 
ontinuously di�erentiable fun
tion

g : U ! I su
h that

�
 \ (U � I) = f(x; g(x)) 2 R

N�1

� R : x 2 Ug

and


 \ (U � I) = f(x; x

N

) 2 U � I : x

N

> g(x)g:

Thus, if � > 0, then the part of the boundary of �
 whi
h lies in �U � �I is just

the graph of the fun
tion

�U ! �I; x 7! �g(x=�):

Let h be as in (29), and assume that the limit

Æ

�

:= lim(�

n

g(r

n

=�

n

)� �

n

) 2 R [ f�1g

exists (otherwise we pass to a suitable subsequen
e of h). Let further d > 0 and

K

N

d

:= [�d; d℄

N

, and set C

n;


:= V

�h(n)

C




. We 
onsider the interse
tion of the

shifted 
one C

n;


with R

N

�f0g and identify this interse
tion with a subset of R

N

.

Sin
e (y+r

n

)=�

n

2 U for all y 2 K

N�1

d

and for all suÆ
iently large n, the boundary

of C

n;


\ (R

N

� f0g) 
an be lo
ally des
ribed as the graph of the fun
tion

G

n

: K

N�1

d

! R; y 7! �

n

g((y + r

n

)=�

n

)� �

n

:

Then, for every y 2 K

N�1

d

, we have

lim(G

n

(y)� Æ

�

) = lim(G

n

(y)�G

n

(0))

with

jG

n

(y)�G

n

(0)j � max

�2[0; y℄

kG

0

(�)k ky � 0k

= max

�2[0; y℄

kg

0

((� + r

n

)=�

n

)k kyk:

Sin
e g is 
ontinuously di�erentiable with g

0

(0) = 0, and sin
e

k(� + r

n

)=�

n

k � (d+ kr

n

k)=�

n

! 0

by Lemma 5.8, we 
on
lude that G

n

(y) ! Æ

�

for every y 2 K

N�1

d

. Thus, if

(y; y

N

) 2 K

N

d

, then

�

C

n;


\(R

N

�f0g)

(y)!

�

1 if y

N

> Æ

�

0 if y

N

< Æ

�

An analogous result holds of the sequen
e (�

n

) is repla
ed by (�

n

+ �

0

) with �

0

2

[�d; d℄. This shows that

�

C

n;


(y)!

8

<

:

�

R

N+1(y) = y if Æ

�

= �1

�

H

x

+Æ

�

(�

x

; 0)

(y) if Æ

�

2 R

�

;

(y) = 0 if Æ

�

= +1

almost everywhere on K

N+1

d

. By the dominated 
onvergen
e theorem, this implies

that

�

C

n;


�

K

N+1

d

!

8

>

<

>

:

�

K

N+1

d

if Æ

�

= �1

�

H

x

+Æ

�

(�

x

; 0)

�

K

N+1

d

if Æ

�

2 R

0 if Æ

�

= +1
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with respe
t to the L

1

-norm and, hen
e, also with respe
t to every L

p

-norm with

1 � p < 1 (the o

urring fun
tions take values in f�1; 0; 1g almost everywhere).

Sin
e d is arbitrary, this �nally yields that

�

C

n;


I !

8

<

:

I if Æ

�

= �1

�

H

x

+Æ

�

(�

x

; 0)

I if Æ

�

2 R

0 if Æ

�

= +1

strongly on L

p

(R

N+1

).

Given A 2 A(BUC(R

N+1

); C

p

(R

N+1

)), let H

�

(A) denote the set of all sequen
es

h 2 H whi
h tend to in�nity into the dire
tion of � 2 S

N

and for whi
h the limit

operator A

h

exists. Further, write H

�;�1

(A) and H

�;Æ

�

(A) with Æ

�

2 R for the set

of all sequen
es h 2 H

�

(A) with

lim(�

n

g(r

n

=�

n

)� �

n

) = �1 and lim(�

n

g(r

n

=�

n

)� �

n

) = Æ

�

;

respe
tively. Finally, we abbreviate the shifted half spa
e H

x

+ Æ

�

(�

x

; 0) to H

x;Æ

�

.

Then Theorem 5.1 has the following 
onsequen
e.

Theorem 5.9 Let A 2 A(BUC(R

N+1

); C

p

(R

N+1

)) and D = C




with 
 2 R

N

an

open domain with C

1

boundary. Then the 
ompression of A onto D is Fredholm on

L

p

(D) if and only if the following 
onditions are satis�ed:

(a) for ea
h point x 2 
, the set fA

h

: h 2 H

�

x

(A)g of limit operators of A is

uniformly invertible.

(b) for ea
h point x 2 �
, the set fA

h

: h 2 H

�

x

;�1

(A)g of limit operators of A is

uniformly invertible.

(
) for ea
h point x 2 �
, the set

f(1� �

H

x;Æ

�

)I + �

H

x;Æ

�

A

h

�

H

x;Æ

�

I : h 2 H

�;Æ

�

(A); Æ

�

2 Rg

of extended 
ompressions of limit operators of A is uniformly invertible.

We still mention some spe
ial situations in whi
h the 
onditions of Theorem 5.9

take a very simple form.

Let A 2 A(SO(R

N+1

); C

p

(R

N+1

)). Then all limit operators of A belong to

C I + C

p

(R

N+1

). In this 
ase, the invertibility of the 
ompressions in 
ondition

(
) 
an be e�e
tively 
he
ked. Let, for example, A

h

be the operator 
I + C(k)

with 
 2 C and k 2 L

1

(R

N+1

). Sin
e C(k) is shift invariant, the 
orresponding


ompression (
) is invertible if and only if the operator

(1� �

H

x

)I + �

H

x

(
I + C(k))�

H

x

I (34)

is invertible. Further, given an orthogonal mapping S on R

N+1

, we write R

S

for

the rotation operator (R

S

f)(x) = f(Sx), and for k 2 L

1

(R

N+1

), we let k

S

be

the fun
tion k

S

(x) = k(S

T

x) with S

T

referring to the transposed of S. Then


onvolution operators are rotation invariant in the sense that

C(k)R

S

= R

S

C(k

S

):

Thus, if we 
hoose S su
h that it rotates H

x

to the half spa
e H := f(x

1

; x) 2

R�R

N

: x

1

� 0g, then the 
ompression (34) is invertible if and only if the operator

(1� �

H

)I + �

H

(
I + C(k

S

))�

H

I (35)

is invertible. Finally, the 
ompression (35) is invertible if and only if the operator

(1� �

H

)I + (
I + C(k

S

))�

H

I

23



is invertible. This follows easily from the identities AP +Q = (PAP +Q)(I+QAP )

and (I+QAP )

�1

= I�QAP whi
h hold for arbitrary operators A and idempotents

P; Q with P +Q = I .

The same results hold if C(k) is repla
ed by an arbitrary operator in C

p

(R

N+1

).

For the invertibility of the resulting 
ompressions, one has the following result from

[14℄ (Theorem 1.4).

Theorem 5.10 Let B 2 C I + C

p

(R

N+1

). Then the operator (1� �

H

)I +B�

H

I is

invertible on L

p

(R

N+1

) is and only if the operator B is invertible on L

p

(R

N+1

).

Note on
e more that the invertibility of B 2 C I + C

p

(R

N+1

) 
an be e�e
tively


he
ked via (4).

With these remarks, we get the following 
orollaries to Theorem 5.9.

Corollary 5.11 Let A 2 A(SO(R

N+1

); C

p

(R

N+1

)) and D = C




with 
 2 R

N

an

open domain with C

1

boundary. Then the 
ompression of A onto D is Fredholm

on L

p

(D) if and only if, for ea
h point x 2 
, the set fA

h

: h 2 H

�

x

(A)g of limit

operators of A (= the lo
al operator spe
trum at �

x

) is uniformly invertible.

Corollary 5.12 Let A 2 A(L

1

stab

(R

N+1

); C

p

(R

N+1

)) and D = C




with 
 2 R

N

an

open domain with C

1

boundary. Then the 
ompression of A onto D is Fredholm on

L

p

(D) if and only if, for ea
h point x 2 
, the limit operator A

�

x

of A is invertible.

Remark. Let f : [0; 1) ! R be a slowly os
illating fun
tion, and let 
 2 R

N

be

an open domain with C

1

boundary. We 
onsider the slowly os
illating 
one,

C


; f

:= f(y; y

N+1

) 2 R

N

� [0; 1) : y 2 (y

N+1

+ f(y

N+1

))
g: (36)

In a similar way as above, one 
an show that the limit operators of the multipli
ation

operator �

C


; f

I are the same as in 
ase of the unperturbed 
one C




, and that the

analogue of Theorem 5.9 holds.

5.7 Compressions to 
ones with edges

Here we are going to 
onsider 
ompressions of 
onvolution operators to 
ones whi
h

are allowed to have a �nite number of edges. For simpli
ity, we restri
t ourselves to

the 
ase N = 2.

More pre
isely, we let 
 be an open domain in R

2

the boundary �
 of whi
h is

C

1

up to a �nite set M of singular points (i.e. �
 is not C

1

in any neighborhood

of x 2M). For ea
h point x 2M we suppose that there are an open neighborhood

U

x

� R

2

of x as well as two open domains 


x; l

and 


x; r

with C

1

-boundary su
h

that either

U

x

\ 
 = U

x

\ (


x; l

\ 


x; r

) (37)

or

U

x

\ 
 = U

x

n (


x; l

\ 


x; r

): (38)

If the tangent spa
es T

x




x; l

and T

x




x; r

do not 
oin
ide, then we 
all x an outward

angular point in 
ase of (37) and an inward angular point in 
ase of (38). If these

tangent spa
es 
oin
ide, then x is 
alled an outward resp. inward 
uspidal point.

As in the previous se
tion, we 
onsider the 
one generated by 
,

C




:= f(y; y

3

) 2 R

2

� [0; 1) : y 2 y

3


g (39)

and, for x 2 R

2

and Æ 2 R, the half spa
es H

x

and H

x; Æ

. Further we set H

x;�1

:=

R

3

and H

x;+1

:= ; and, for Æ; � 2 R [ f�1g and x 2M ,

K

x; Æ; �

:= H

x; Æ; l

\H

x; �; r

where H

x; Æ; l

and H

x; �; r

are half spa
es belonging to 


x; l

and 


x; r

, respe
tively.
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Proposition 5.13 Let x 2 R

2

. Then the lo
al operator spe
trum �

�

x

(�

C




I) is

equal to

(a) f0g if x 62 
.

(b) fIg if x 2 
.

(
) f�

H

x; Æ

I : Æ 2 R [ f�1gg if x 2 �
 nM .

(d) f�

K

x; Æ; �

I : Æ; � 2 R [ f�1gg if x 2 �
 \M is an angular point.

(e) f0g if x 2 �
 \M is an outward 
uspidal point.

(f) fIg if x 2 �
 \M is an inward 
uspidal point.

Proof. The proof for (a) { (
) is the same as in the previous se
tion. The results

of the previous se
tion also show that the lo
al operator spe
trum �

�

x

(�

C




) is


ontained in the set (d) if x 2 �
\M is an angular point. That it is a
tually equal

to this set 
an be seen as follows. Sin
e x is an angular point, we 
an independently

shift the half spa
e H

x; 0; l

by a sequen
e whi
h tends into the dire
tion of �

x

and


omes 
loser and 
loser to �H

x; 0; r

and the half spa
e H

x; 0; r

by a sequen
e whi
h

also tends into the dire
tion of �

x

and 
omes 
loser and 
loser to �H

x; 0; l

. Sin
e

ea
h of these sequen
es in
uen
es the asso
iated limit operators of only one of the

half spa
es, we get any desired 
ombination of shifts of the half spa
es H

x; 0; l

and

H

x; 0; r

in this way. This shows (d), and (e) and (f) 
an be proved as in the previous

se
tion. (See the dis
ussion before Theorem 5.9. The obvious point is that, in 
ase of

a 
uspidal point, the half spa
esH

x; 0; l

and H

x; 0; r


annot be shifted independently

of ea
h other.)

Given A 2 A(BUC(R

3

); C

p

(R

3

)), let H

�

(A) denote the set of all sequen
es h 2 H

whi
h tend to in�nity into the dire
tion of � 2 S

2

and for whi
h the limit operator

A

h

exists. Further, if x 2 �
 nM and Æ 2 R [ f�1g, write H

x; Æ

(A) for the set of

all sequen
es h 2 H

�

x

(A) su
h that the limit operator of �

C




I exists and is equal

to �

H

x; Æ

I . Finally, if x 2 �
\M is an angular point and Æ; � 2 R[f�1g, then let

H

x; Æ; �

(A) stand for the set of all sequen
es h 2 H

�

x

(A) su
h that the limit operator

of �

C




I exists and is equal to �

K

x; Æ; �

I . With these notations, we have the following


onsequen
e of Theorem 5.1.

Theorem 5.14 Let A 2 A(BUC(R

3

); C

p

(R

3

)) and D = C




with 
 2 R

2

an open

domain with pie
ewise C

1

boundary as above. Then the 
ompression of A onto D

is Fredholm on L

p

(D) if and only if the following 
onditions are satis�ed:

(a) for ea
h point x 2 
, the set fA

h

: h 2 H

�

x

(A)g of limit operators of A is

uniformly invertible.

(b) for ea
h point x 2 �
 nM , the set

f(1� �

H

x;Æ

)I + �

H

x; Æ

A

h

�

H

x; Æ

I : h 2 H

x; Æ

(A); Æ 2 R [ f�1gg

of extended 
ompressions of limit operators of A is uniformly invertible.

(
) for ea
h angular point x 2 �
 \M , the set

f(1� �

K

x;Æ; �

)I + �

K

x; Æ; �

A

h

�

K

x; Æ; �

I : h 2 H

x; Æ; �

(A); Æ; � 2 R [ f�1gg

of extended 
ompressions of limit operators of A is uniformly invertible.

(d) for ea
h inward 
uspidal point x 2 �
 \M , the set fA

h

: h 2 H

�

x

(A)g of limit

operators of A is uniformly invertible.

Note that the 
onditions in (b) and (
) get a simpler form if one of the shift param-

eters Æ and � is �1. Let us also emphasize that, if x is an outward 
uspidal point,

then the lo
al invertibility at �

x

of the 
ompression of A onto D is trivially satis�ed
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sin
e all limit operators of (1 � �

D

)I + �

D

A�

D

I with respe
t to sequen
es whi
h

tend to in�nity into the dire
tion of �

x

are equal to I .

Again we mention some spe
ial situations in whi
h the 
onditions of Theorem

5.14 
an be readily veri�ed.

Corollary 5.15 Let A 2 A(SO(R

3

); C

p

(R

3

)) and D be as in Theorem 5.14. Then

the 
ompression of A onto D is Fredholm on L

p

(D) if and only if the following


onditions are satis�ed:

(a) for ea
h point x 2 
 whi
h is neither angular nor outward 
uspidal, the set

fA

h

: h 2 H

�

x

(A)g of limit operators of A is uniformly invertible.

(b) for ea
h angular point x 2M , the set

f(1� �

K

x;0; 0

)I + �

K

x; 0; 0

A

h

�

K

x; 0; 0

I : h 2 H

x; Æ; �

(A); Æ; � 2 Rg

of extended 
ompressions of limit operators of A is uniformly invertible.

(
) for ea
h angular point x 2M , the set

fA

h

: h 2 H

x;�1; �

(A) [ H

x; Æ;�1

(A) [ H

x;�1;�1

(A) : Æ; � 2 Rg

of limit operators of A is uniformly invertible.

Here we have used the shift invarian
e of the limit operators of A as well as Simo-

nenko's Theorem 5.10 again.

Corollary 5.16 Let A 2 A(L

1

stab

(R

3

); C

p

(R

3

)) and D be as in Theorem 5.14. Then

the 
ompression of A onto D is Fredholm on L

p

(D) if and only if the following


onditions are satis�ed:

(a) for ea
h point x 2 
 whi
h is neither angular nor outward 
uspidal, the limit

operator A

�

x

of A is invertible.

(b) for ea
h angular point x 2M , the extended 
ompression

(1� �

K

x;0; 0

)I + �

K

x; 0; 0

A

�

x

�

K

x; 0; 0

of the limit operator A

h

of A is invertible.

Indeed, this result follows from the fa
t that ea
h lo
al operator spe
trum is a sin-

gleton under the hypothesis of the 
orollary. Furthermore, one shows by 
hoosing

suitable sequen
es tending to in�nity that every operator in 
ondition (
) of Corol-

lary 5.15 is a limit operator of the operator in (b) (
ompare the proof of Theorem

2.33 in [9℄). Thus, the invertibility of that operator already implies the invertibility

of all operators in Corollary 5.15 (
).

5.8 Compressions to epigraphs of fun
tions

We let f : R ! R be a 
ontinuously di�erentiable fun
tion with

lim

t!�1

f(t) = +1 and lim

t!�1

f

0

(t) = 0 (40)

and 
onsider its epigraph

E

f

:= f(x

1

; x

2

) 2 R

2

: x

2

> f(x

1

)g: (41)

Let h = (h

1

; h

2

) 2 H be a sequen
e whi
h tends to in�nity into the dire
tion of

� = (�

1

; �

2

) 2 S

1

. It is evident that the limit operator of �

E

f

I exists and is equal

to the identity operator if �

2

> 0, whereas the limit operator of �

E

f

I exists and is
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equal to zero if �

2

< 0. Now let � = (1; 0), and let h be a sequen
e for whi
h the

limit operator of �

E

f

exists. We write

h

2

(n) =: f(h

1

(n)) + d

n

and 
hoose a subsequen
e of h (whi
h we denote by h again) su
h that the sequen
e

(d

n

) be
omes 
onvergent with limit Æ 2 R [ f�1g. Further, for Æ 2 R [ f�1g, we

let

H

Æ

:= f(x

1

; x

2

) 2 R

2

: x

2

> Æg:

Then it is easy to 
he
k that the limit operator of �

E

f

I 
oin
ides with �

H

Æ

I and

that, 
onversely, every operator of this form appears as a limit operator of �

E

f

I .

The same holds for � = (�1; 0).

Given A 2 A(BUC(R

2

); C

p

(R

2

)), let H

�

(A) denote the set of all sequen
es

h 2 H whi
h tend to in�nity into the dire
tion of � 2 S

1

and for whi
h the limit

operator A

h

exists. Further, for Æ 2 R [ f�1g, write H

�1; Æ

(A) for the set of all

sequen
es h 2 H

(�1; 0)

(A) su
h that the limit operator of �

E

f

I exists and is equal

to �

H

Æ

I . Then Theorem 5.1 yields, for example, the following.

Theorem 5.17 Let A 2 A(L

1

stab

(R

2

); C

p

(R

2

)), and let D = E

f

be the the epigraph

of the fun
tion f satisfying (40). Then the 
ompression of A onto D is Fredholm

on L

p

(D) if and only if, for ea
h point � = (�

1

; �

2

) 2 S

1

with �

2

� 0, the limit

operator A

�

of A is invertible.

The proof is the same as for Corollaries 5.12 and 5.16.

Finally, let f

�

: R ! R be 
ontinuously di�erentiable fun
tions with

lim

t!+1

f

�

(t) = lim

t!�1

f

�

(t) = �1 and lim

t!+1

f

0

�

(t) = lim

t!�1

f

0

�

(t) = 0; (42)

and let

E

f

+

; f

�

:= f(x

1

; x

2

) 2 R

2

: f

�

(x

1

) < x

2

< f

+

(x

1

)g: (43)

As before one 
an 
he
k that every limit operator of �

E

f

+

; f

�

I is of the form �

H

Æ

I

with Æ 2 R [ f�1g and that, 
onversely, every operator of this form is a limit

operator of �

H

Æ

I if h tends into the dire
tion of (�1; 0) 2 S

1

. If h tends to in�nity

into the dire
tion of � 2 S

1

with �

2

6= 0 then, ne
essarily, the limit operator of

�

H

Æ

I with respe
t to h exists and is equal to the zero operator.

Theorem 5.18 Let A 2 A(L

1

stab

(R

2

); C

p

(R

2

)), and let D = E

f

+

; f

�

with fun
tions

f

�

satisfying (42). Then the 
ompression of A onto D is Fredholm on L

p

(D) if and

only if the limit operators A

�

of A with � = (�1; 0) 2 S

1

are invertible.
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