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Abstract

We study the Fredholmness on LP(D) of operators of convolution type.
Here D is an unbounded measurable domain in RY, and an operator A on
L?(D) is of convolution type if it is constituted by operators of the form
aC(k)bI where C(k) is the operator of convolution by the L'(R™)-function
k and where a and b are bounded and uniformly continuous functions. The
domains under consideration include, for example, curved layers, curved cylin-
ders, and cones with angular or cuspidal edges. The criterion for the Fred-
holmness of the operator A is formulated in terms of limit operators of A.

The topic of this paper is the Fredholmness of compressions of operators of convolu-
tion type. An operator of convolution type is an operator on L? (R ) which belongs
to the smallest norm-closed subalgebra of L(LP(RY)) which contains the identity
operator, all compact operators, and all operators of the form aC(k)bI where C(k)
is the operator of convolution by the L!'(RY)-function k¥ and where a and b are
bounded and uniformly continuous functions on RY. For an unbounded measur-
able subset D of RV, the compression of the operator A onto D is the operator

B := XDAXDI|LP(D) . LP(D) — LP(D) (1)

where yp is the characteristic function of the set D.

There are many papers which are devoted to the Fredholmness of compressions
of operators of convolution type for concrete classes of coefficients a, b and concrete
domains D; see, e.g., [2, 3, 5, 6, 7, 14]. For example, the multidimensional Wiener-
Hopf operators

o (T + CUNXDI|1o(py : LP(D) = LP(D)

where v € C and k € L*(RY) are considered in [3] for D being a half-space and in
[14] in case D a cone in RY with smooth cross section, whereas the quarter plane
case is the topic of [2, 5, 7]. Operators on 3D wedge shaped domains are studied in
[6].

We will consider the Fredholm problem for these operators, for example, in case
when D is a curved layer, a curved cylinder, a cone with angular or cuspidal edges,
or the epigraph of a certain function. In each of these cases, our solution to the
Fredholm problem will be as follows. We associate with the operator B in (1) its
so-called operator spectrum. This is a family of operators on LP(RY) which de-
scribes the behaviour of the operator B at infinity. Then the main result says that
the operator B is Fredholm if and only if each operator in its operator spectrum is
invertible, and if the norms of these inverses are uniformly bounded. Moreover, it
turns out that in many cases (for example, if the coefficients a, b are slowly oscil-
lating functions) the operators in the operator spectrum are much simpler objects
than the operator B itself. This fact allows us to study their invertibility effectively.
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It will also turn out that the condition of uniform invertibility is redundant in many
cases.

We will prove these Fredholm criteria by having recourse to the results of [8, 9].
In these papers we considered band-dominated operators on discrete IP-spaces of
sequences with values in a Banach space X. We showed that a band-dominated
operator is invertible at infinity (in case X has finite dimension this simply means
that the operator is Fredholm, i.e. that its kernel and cokernel have finite dimension)
if the operators in its operator spectrum are uniformly invertible. Thus, the proof
of the desired Fredholm criteria for compressions of operators of convolution type
rests on two basic steps: we prove that a suitable discretization of that operator
leads to a band-dominated operator on an discrete [P-space, and we compute its
operator spectrum.

The paper is organized as follows. In its first two sections we recall some basic
definitions and facts on operators of convolution type as well as on band-dominated
operators. Then we study discretizations of operators of convolution type. In
particular, we show that the discretization of every convolution type operator B is
band-dominated and that this discretization is invertible at infinity if and only if
B is Fredholm. Finally, we specify the general Fredholm criterion to the concrete
cases mentioned above where the operator spectrum can be explicitely computed.

Throughout this paper, we let 1 < p < o0, ¢ := p/(p — 1), and N a positive
integer.

1 Operators of convolution

In this section, we collect some basic facts on convolution operators on LP-spaces.
Theorem 1.2 goes back to [15], and the compactness of commutators of operators
of multiplication by slowly oscillating function with convolution operators has been
verified in [1]. Our presentation follows [11] where the results mentioned in this
section are proved in the more general context of operators on locally compact
groups.

Let k € L'(RY) and v € LP(RY). Then Young’s inequality implies that the
convolution

(k*xu)(x) = k(x —y)u(y)dy, = eRY, (2)
RN

belongs to LP(RY), and that ||k xul|, < ||k||1 ||u||, ([10], IX.4). Hence, the operator
C(k)u := k * u of convolution by k € L*(R") acts boundedly on LP(R"), and

IC R L@y < K- 3)

Let C, denote the closure in L(LP(RY)) of the set of all convolution operators C (k)
with kernels k& € L*(RY). Then C, is a closed and commutative subalgebra of
L(LP(RYN)) without identity. Its maximal ideal space can be identified with RV
(with its usual topology) in such a way that the Gelfand transform C of C € Cp
coincides with the Fourier transform of k if C' = C(k) (see [14]). Consequently, an
operator vI + C in the unitization CI + C, of C, is invertible if and only if

Jof, b+ C(©)|>o. (4)

Note that v + Cis just the Gelfand transform of vI 4+ C in CI +C,.

A semi-commutator is an operator of the form aC(k) or C(k)al where k is in
LY(RY) and a € L*°(RY). The functions a for which the semi-commutators aC'(k)
and C(k)al are compact for every function k € L'(RY) can be characterized as
follows.



Definition 1.1 Let Qsc(RYN) refer to the set of all functions a € L>®(RN) such
that

limsup/ la(t + s)|ds =0
M

t—o00

for every compact subset M of RN .

For example, the class Qsc(RY) contains all functions a € L>®(RY) with
RILIHOO ess sup,>gla(z)] =0

and, in particular, all compactly supported functions. The characteristic function
of the set Up>2[n — %, n+ %] C R is an example of a function in Qsc(RY) which
does not vanish at infinity.

Theorem 1.2 The following conditions are equivalent for a bounded measurable
function a:

(a) the operators Bal and aB are compact on LP(RN) for every B € C, and every
1<p<oo,

(b) a € QSC(RN)J

(¢) There is a bounded open set D C RN such that limy o [, |a(t + s)|ds = 0.

Consequently, Qsc(RY) is a closed ideal in L (RY).

The next goal is to characterize those functions a € L*(RY) for which the
commutators aC (k) — C(k)al are compact for every function k € L' (RY). We start
with defining two related subclasses of functions in L>(RY).

Definition 1.3 Let SO(RY) denote the set of all bounded continuous functions a
on RN such that, for every compact subset M of RY,

lim sup |a(t) —a(t + k)| = 0.
t—o00 heM

The class SO(RY) is a unital commutative C*-subalgebra of BUC(RY), the algebra
of the bounded and uniformly continuous functions on R . Functions in SO(RY)
are called slowly oscillating on RY. Examples of slowly oscillating functions are
provided by the continuous functions which possess a finite limit at infinity and by
the differentiable functions the derivative of which tends to zero at infinity.

Definition 1.4 A function a € L= (RN ) belongs to the class Qc(RY) if, for every
open and bounded subset M of RY, the function

t— /M(a(t) —a(t+s))ds

lies in Qsc(RY).

The following result does not only solve the commutator problem; it moreover
verifies the relation between the classes Qsc(RY), SO(RY) and Q¢ (RV).
Theorem 1.5 The following assertions are equivalent for a € L= (RN):

(a) the operators Bal — aB are compact on LP(RN) for every B € Cp,

(b) the function a belongs to Qc(RY),

() the function a belongs to Qsc(RY) + SO(RY).

As a consequence one gets that Qc(RY) = Qsc(RY) + SO(RY) is a unital com-
mutative C*-subalgebra of L>°(RY) and that Qsc(RY) is a closed ideal of that

algebra. Moreover, one can show that the intersection Qsc(RY)NSO(RY) consists
of all continuous functions which tend to zero at infinity.



2 Band-dominated operators on [P-spaces

Given a complex Banach space X, consider the Banach spaces IP(Z", X) and
1°°(ZN, X) of all functions f : Z~ — X such that

1£llp = 2 @k <00 and [Iflla:= sup [If@llx < oo,

zeZN

respectively. Let E stand for one of the spaces [P(Z", X) with p € (1, 00). Every
function a € [*°(Z", L(X)) gives rise to a multiplication operator on E on defining

(af)(z) := a(x)f(x), =€Z".

We denote this operator by al. Evidently, al € L(E) and |lal||y(g) = [|alloc-
Finally, for a € Z%, let V, refer to the shift operator

(Vaf)(z) = fz —a), ze€ZN,
which also belongs to L(E) and has norm 1.

Definition 2.1 A band operator on E is a finite sum of the form )  a.Vy where
a € ZN and a, € 1°(Z",L(X)). A band-dominated operator on E is the norm
limit of a sequence of band operators.

The band-dominated operators on E form a closed subalgebra of L(E) which we
denote by Ag. One can show that an operator A € L(E) is band-dominated if and
only if, for every function ¢ € BUC(RY),

}iH(l) APt I — Pt rAllL(ey) =0 uniformly with respect to r € RN
e
where, for r, t, z € RV,

orr(x) = (z —r) and ¢i(x) = @(tz) = p(t12z1,..., tNTN)

and where @ refers to the restriction of the function a : RN — C onto Z%. For this
and the following facts we refer to [8, 9].
For n > 0, define P, : E — E by

e ={ 3 s

set Q,, := I — P,, and let P refer to the family (Pn)
Definition 2.2 An operator K € L(E) is P-compact if

||KQn|| —0 and ||QnK|| —0 asn — oo.

By K(E, P) we denote the set of all P-compact operators on E, and by L(E, P) the
set of all operators A € L(E) for which both AK and K A are P-compact whenever
K is P-compact.

It turns out that L(E, P) is a closed subalgebra of L(E), K(E, P) a closed two-
sided ideal of L(E, P), and K(E, P) C Ap C L(E, P). Operators A € L(E, P) for
which the coset A+ K (FE, P) is invertible in the quotient algebra L(E, P)/K(E P)
are called P-Fredholm. If X is a finite-dimensional space, then L(E, P) = L(E),
K(E, 73) is the ideal of the compact operators on E, and the P-Fredholm operators
are just the Fredholm operators in the common sense.
Let H stand for the set of all sequences h : N — Z~ which tend to infinity.



Definition 2.3 Let A € L(E, P) and h € H. The operator A, € L(E) is called
the limit operator of A with respect to h if

lm (|(V () AVi(ny — An) Pl = Jim 1P (Voh(my AVimy — A =0 (5)

n—oo

for every P, € P. The set oop(A) of all limit operators of A is called the operator
spectrum of A.

Let finally refer £i°" to the set of all operators A € L(E, P) enjoying the following
property: every sequence h € H possesses a subsequence g for which the limit
operator A, exists. Set AR := Ap N L5". Then the main result of [9] can be
stated as follows.

Theorem 2.4 An operator A € A%k s P-Fredholm if and only if all of its limit
operators are invertible and if

sup{[|(An) Il - An € g0p(A)} < 0. (6)

The condition of uniform invertibility can be weakened by employing local tech-
niques. To describe some typical ideas and results we have to introduce some more
notations. Let S 1 denote the unit sphere {n € RY : |n| = 1} where || stands
for the Euklidean norm of 5. Given a ‘radius’ R > 0, a ‘direction’ n € SV~1, and a
neighborhood U C SV~ of 7, we set

Wro :={2€Z" :|2| > Rand z/|z| € U,} (7

and we call Wg y a neighborhood at infinity of n. A sequence h € H is said to tend
into the direction of n € SN~1 if, for every neighborhood at infinity W of 7, there
is an myg such that h(m) € W for all m > my.

Definition 2.5 Let n € SN ! and A € L(E, P).

(a) The local operator spectrum o, (A) of A at n is the set of all limit operators A,
of A with respect to sequences h tending into the direction of 7.

(b) The operator A is locally invertible at n if there are operators B, C € L(E, 75)
and a neighborhood at infinity W of n such that

BAXwI = xwAC = xwl
where xw refers to the characteristic function of W.

Theorem 2.6 Let A € A% andn € SN~L. Then the operator A is locally invert-
ible at n if and only if all limit operators in 0, (A) are invertible and if

sup{[|(4n) 7| - An € 74(A)} < 0.

Corollary 2.7 An operator A € Ak s P-Fredholm if and only if all of its limit
operators are invertible, and if

sup{||(4n) 7| : Ap € 0, (A)} < 0 for all n € SNTL.

This result is indeed a generalization of Theorem 2.4: It does not require that the
suprema are uniformly bounded with respect to 7.



3 Band-dominated operators on L’(RY) and their
discretizations

P-Fredholmness. We start with adapting the notion of P-Fredholmness intro-
duced in the previous section to the context of LP-spaces.

Let P, stand for the operator of multiplication by the characteristic function
of the cube [-n, n]V acting on LP(RY), and set P := (P,)%%; and Q,, :== I — P,.
Further we introduce the set K (L?(RY), P) of the P-compact operators, i.e., of the
operators K € L(LP(RY)) such that

lim [|KQyl| = lim ||Q,K]| =0,
n—00 n—oo

and the set L(LP(RY), P) of all operators A € L(LP(RY)) such that AK and KA
are P-compact whenever K is P-compact. Then L(LP(RY), P) is a closed unital
subalgebra of L(LP(RY)) which contains K (LP(RY), P) as its closed ideal. Further,
since both the operators P, and their adjoints converge strongly to the identity op-
erators on LP(RY) and LY(RY), respectively, one gets that K (L?(RY), P) contains
the ideal K(LP(RY)) of the compact operators on LP(RY) (but K(LP(RN), P) is
strictly larger than K (LP(RY)) since the operators P, are not compact).

Our earlier definitions of generalized Fredholmness, invertibility at infinity and
local invertibility at infinity specify as follows to the present context.

Definition 3.1 The operator A € L(LP(RY), P) is P-Fredholm if the coset A +
K(LP(RN), P) is invertible in the quotient algebra L(LP(RN), P)/K(L?(RN), P),
that is if there exist operators B, C € L(LP(RN), P) such that

BA-Te€ K(L*(RY),P) and AC —1I¢€ K(L*(RY), P). (8)

Equivalently, an operator A € L(LP(RY), P) is P-Fredholm if and only if it is
invertible at infinity in the sense that there exist an m € N and operators B, C' €
L(LP(RN), P) such that

BAQy = Qp and QnAC = Q.

Local invertibility. There is also an adequate notion of local invertibility at an
infinitely distant point n € SV~1. Given R > 0 and a neighborhood U C S¥~! of
7, we set

Veu :={z € RY :|z| > Rand z/|z| € U}
and call Vg y again a neighborhood at infinity of n. Then an operator A is called

locally invertible at 7 if there exist a neighborhood V' at infinity of 1 and operators
B, C € L(L?(RY), P) such that

BAxyI =xyI and xyAC = xvl.

Shifts and limit operators. For a € Z", we consider the operator
Ua : IP(RY) = LP(RY),  (Uaf)(t) := f(t — )
of shift by . In accordance with the definitions from Section 2, we call the operator
Ay, a limit operator of A € L(LP(RY), P) with respect to the sequence h € H if
li |[(U—nm) AUn(m) = An) Pl = T [ Poy (U () AUn(m) = An)l[ = 0

m—00

for every P, € P. The set o,,(A) of all limit operators of A is the operator spectrum
of A. Further we denote by £;7" the subalgebra of L(L?(RY), P) which consists
of all operators with rich operator spectrum. The latter means for an operator
A € L(LP(RN), P), that every sequence h € H has a subsequence g such that the
limit operator A, with respect to g exists.



Discretization. Let y( denote the characteristic function of the cube I :=
[0, )Y, and set X := LP(Iy) and E := [P(Z",X). Then the mapping G which
maps the function f € LP(RY) to the sequence

Gf= ((Gf)a)ozell\’ with (G f)a = xoU-af 9)

is an isometry from LP(RY) onto I?(Z", X), the inverse of which is given by

G™' ru = (Ua)aczy = Z UataXo (10)
a€ZN

where the series converges in the norm in LP(RV). Thus, the mapping
[: L(LP(RY)) — L(P(ZN, X)), Aw GAG™!

is an isometric algebra isomorphism. Obviously, I'(P,,) is the projection Pm, and
['(U,) is the shift V,,, both introduced in Section 2.

Proposition 3.2 The isometry T maps the ideal K (LP(RY), P) onto K (E, P) and
the algebra L(LP(RY), P) onto L(E, P).

Proof. Since
|K — KP,|| = ||IT(K — KP,)|| = |[[(K) — [(K)P,||

and [|[K — P,K|| = |T(K) — P.I(K)||, we get T(K(LP(RY), P)) = K(E, P).
Similarly, the second assertion follows if one takes into account that an operator
A € L(L?(RY)) belongs to L(L?(RY), P) if and only if

|PrAQyn|| = 0 and ||QnAP]| =0 asn— oo

and that an analogous result holds for operators on E. [

A consequence is that an operator A € L(LP(RY), P) is P-Fredholm if and only if
['(A) is P-Fredholm. A similar result holds for the local invertibility at n € SN=1,
However, here the situation is a little bit more involved since, if V' C RN is a
neighborhood at infinity of 5, then T'(xvI) # Xynz~I in general. Nevertheless,
the local invertibility of A at n is equivalent to that of I'(4), which can be seen
as follows. Given a neighborhood V' C RY at infinity of 7, there is evidently a
neighborhood W C Z at infinity of n such that T'(xyvI)XwI = YwI. Thus, if
BAxvyI = xvI, then
LB)L(AL(xvI) = T(xvi),

and after multiplication by ywI from the right hand side we get
LB)L(A)xwl = xwl,

whence the local invertibility at i of I'(A). The reverse implication follows similarly.
The next result shows that also the limit operators behave nicely under dis-
cretization.

Proposition 3.3 Let A € L(LP(RYN), P) and h € H. Then the limit operator Ay,
of A exists (with respect to P) if and only if the limit operator (I'(A))n of T'(A)
exists (with respect to I'(P) = P), and

I'(An) = (D(A))n- (11)

In particular, A belongs to L5 if and only if T(A) belongs to L.



Proof. Let the limit operator A, of A exist, i.e. let

Jim |[(U—p(n) AUn(m) — An) Pral| = 1| P (U () AUp(m) — An)|| = 0

for all m. Since I'(U,) = V,, and I'(P,,) = P,,, and since I is an isometrical algebra
isomorphism, we conclude that

Jim IC((U—n(n) AUn(m) — An) Pl = Jim NVt D(A) Vigmy — L(AR)) P = 0

and, analogously, Pm(H(V_h(n)F(A)Vh(m) —TI'(Ap))|| — 0 for every m. Thus, the
limit operator of I'(A) with respect to h exists and (11) holds. The reverse impli-
cation follows analogously. (]

In particular, an operator B belongs to the operator spectrum of A if and only if
the operator I'(B) belongs to the operator spectrum of I'(4). An analogous relation
holds for the local operator spectra.

Band-dominated operators on L?(R"). The following definition is motivated
by the characterization of band-dominated operators on [?(Z, X) mentioned in
Section 2.

Definition 3.4 An operator A € L(LP(RY)) is band-dominated if, for every func-
tion ¢ € BUC(RY),

}in(l) [Ape I — i r AllpLryy) = 0 uniformly with respect tor € RN . (12)
5

The set of all band-dominated operators in L(LP(RN)) will be denoted by B,, and
we write B*" instead of B, N Ly".

Clearly, B, and Bji" are closed unital subalgebras of L(LP(RY)), and the set
K(LP(RY), P) is a closed two-sided ideal of both algebras. The latter can be
checked, for example, by means of the following proposition.

Proposition 3.5 I'(B,) coincides with the algebra Ag of the band-dominated op-
erators on B = [P(ZN, LP(Iy)), and D(Byih) = Ajich.

Proof. If A € B, then, for every function ¢ € BUC(RY),
lim W[4, oer Il (Lr@yy) =0

(with [., .] referring to the commutator) and, consequently,

lim [|[T(4), (e, D) = 0 (13)

-0
uniformly with respect to r € RY. We claim that
lim [|pe,r L = D(pe,rDlnim) = 0 (14)
uniformly with respect to » € RV . Indeed,
sup [|(Pe,r] — Dot Dllomy = sup sup sup [@rr(a) — (D(pt,rd)a) (7))

reRN reRN qeZN zely

= sup sup sup [p(t(a — 1)) — p(t(x + a — 7))
reRN aezZN z€ly

sup sup |p(t3) — ¢(t(z + B))] = 0
BERN zely

IN



as t — 0 due to the uniform continuity of p. By (14) and (13),
tim [[0(4), 0, 1]llz(e) = 0

uniformly with respect to r € RY. Thus, I'(B,) C Ag. The reverse inclusion follows
analogously. The second assertion is a consequence of the first one, together with
Proposition 3.3. ]

As an immediate consequence of Theorems 2.4 and 2.6 and of Propositions 3.3 and
3.5 we finally get the following result.

Theorem 3.6 Let A € B;ic". Then the operator A is

(a) locally invertible at point n € SN~ if and only if all limit operators Ay, € o, (A)
are uniformly invertible.

(b) invertible at infinity if and only if, for every n €
Ay, € 0,(A) are uniformly invertible.

SN=1 all limit operators

4 Fredholmness of convolution type operators

Now we will apply the results of the preceding sections to examine the Fredholm
properties of operators on LP(RY) which are constituted by convolution operators
with kernels in L*(RY) and by operators of multiplication by functions in suitable
subclasses of L (RY).

4.1 Operators of convolution type

Given a subalgebra £ of L®(RY), we let A(E, C,) denote the smallest closed sub-
algebra of L(LP(RY)) which contains the identity operator, all compact operators,
and all operators of the form

aKbl where a,be & and K € Cp, (15)

and we call the elements of A(L>(RY), C,) convolution type operators. Thus, every
convolution type operator can be approximated as closely as desired by operators
of the form

A:=~I+ Z H a,-jKijbijI +T (16)

where a;j, bj; € L¥(RY), K;; € Cp, v € C and T is compact, and where the sum
and all products are finite.

Proposition 4.1 A(L*(RY), C,) C B,.

The proof is based on the following norm estimate which is known as Schur’s lemma
([16], Appendix A, Proposition 5.1).

Proposition 4.2 Let | be a measurable function on RY x RN with

M, = sup/ [l(z,y)|dy < 0o and Ms:= sup/ [l(z,y)|dx < oo.
ze€RN JRN yeRN JRN

Then the operator
(Lu)(x) ¢=/ l(z,y)u(y)dy, «eRY
RN

acts boundedly on LP(RY ), and ||L||p(1rmny) < Mll/qM;/p.



Proof of Proposition 4.1. The algebra B, contains the ideal K (LP(RY), P) and,
hence, the ideal of the compact operators. Clearly, this algebra also contains all
operators of multiplication by a bounded measurable function. Thus, and since B,
is a closed algebra, the result will follow once we have shown that B, also contains
a dense subset of Cp,. Actually, we will check that

fim sup il ORI = 0 ()

for every function k € L'(RV) with compact support and every ¢ € BUC(RY).
For definiteness, let the support of k£ be contained in a ball with center 0 and radius
R. Since

([pe,nl, C(R)u)(z) = / (o1 () = @1,n(y)) k(x — y)uly) dy,

RN

Proposition 4.2 implies

e, CR)llLeey < lklh sup lot,n(z) = oe,n(y)l
z,yeRN:|z—y|<R
= |lklh sup lp(t(z — h)) =ty — h))I.

z, yERN:[z—y|<R
For |z — y| < R, we have
[t(x —h) —t(y —h)| <|{{R—0 as t—0.
Since ¢ € BUC(RY), we obtain (17). "

A striking property of operators of convolution type is that their P-Fredholmness
coincides with common Fredholmness.

Proposition 4.3 An operator in A(L®(RN), Cp) is Fredholm if and only if it is
P-Fredholm.

Proof. Let J refer to the closed ideal of A(L*°(RY), C,) which contains all opera-
tors in Cp, and all compact operators. It is easy to check that, whenever J € J, the
operator J Py, is compact for every k. Indeed, every operator J € J can be approx-
imated as closely as desired by a sum of a compact operator 7" and of products of
operators of the form aKbl where a and b are bounded measurable functions and
K € C,. Then TP, is compact, and the compactness of aKKbP, = aK P;bI follows
from Theorem 1.2.

Since Py, fails to be compact, we have I € 7, and the algebra A(L>(RY), C,)
decomposes into the direct sum CI + 7. In particular, every operator A in this
algebra can be uniquely written as y4I + K4 where v4 € C and K4 € J, and it
turns out that the mapping A — ~v4 is a continuous algebra homomorphism.

In the next step we will show that

TNELMEY), P) = K(L'(®V)).

The inclusion D follows from the definitions. If, conversely, J € JNK(L?(RY), P),
then JPj is compact for every k as we have just seen. On the other hand, since
J € K(LP(RN), P), one has ||J — JPg|| — 0 as k — oo. Thus, being the norm limit
of compact operators, the operator .J is compact.

Since K(LP(RY)) C K(LP(RN), P), it is clear that every Fredholm operator is
also P-Fredholm. Let, conversely, A € A(L>(RY), C,) be a P-Fredholm operator.
Then there are an operator L' € B, and an operator T € K (LP(RY), P) such
that L’A = I +T. We claim that v4 # 0. Contrary to what we want, assume that

10



¥4 =0. Then A € J. Choose m > 0 and n € Z¥ such that || Pp,U_,TU, Pp,|| < 1/2
(which can be done since T' can be approximated by an operator of the form P,T
as closely as desired). Then, by Neumann series, the right hand side of

P, U_,L'AU,P,, = P, + P, U_,TU,P,,
is an invertible operator on the range of P,,, whence
P, = (Pn+ P,U_,TU,P,,) ' P, U_,L' AU, P,,. (18)

Since U, P,,U_,, is the operator of multiplication by a compactly supported function,
the operator AU, P,, = A(U,,P,,U_,,)U,, and, hence, the operator on the right hand
side of (18) are compact. But P,, is not compact, and this contradiction proves the
claim.

Now write A as y4l + K4 and set L := K4L' + I. Then

LA —yal =yaL'A— AL'A+ A — yal = (yal — A)(L'A - 1).

Since L'A — I € K(LP(RN), P) and yal — A = K4 € J, the operator LA — yal
is compact. Similarly, one shows that AR — y4[I is compact for a certain operator
R € B,,. Hence, and because of y4 # 0, the operator A is Fredholm. [

Corollary 4.4 A(L*(RN), C,) N K(LP(RN), P) = K(LP(RY)).
There are operators in A(L>(RY), C,) which do not possess a rich operator spec-

trum. The next result identifies a subalgebra of A(L>(RY), C,) N Byi" which
contains sufficiently many interesting operators.

Proposition 4.5 A(BUC(RY), C,) C B;ich'

Proof. It is easy to see that every compact operator 1" belongs to B;iCh and that
the limit operator T}, exists with respect to every sequence h € H and is equal to
ZET0.

Next, let a € BUC(RY), and let h be a sequence which tends to infinity. The
family of all functions x — a(z + h(m)) is bounded and equicontinuous on every
compact subset M of RY. Hence, by the Arzela-Ascoli theorem, there are a sub-
sequence g of h and a continuous bounded function a; on RV such that, for every
compact M C RV,

lim sup |a(z + g(m)) — ap(z)| = 0.
Thus, the operators U_ g (,,)aUy(yy,) of multiplication by the function = — a(x+g(m))
converge *-strongly to the operator of multiplication by the function ay,.

Let A be an operator of the form (16), but with a;j, b;; € BUC. As we have
just seen, given a sequence h tending to infinity, we can choose a subsequence g of
h such that the operators U_;(,)aijUy(m) and U_g(,)bijUym) converge x-strongly
to certain multiplication operators (a;;)nl and (b;j)nl, respectively. Then

U_g(m)AUg(m)Pk
= (/I + Y T gmy@i5Ug(m)) Kis (U—g(m)bii Ug(my) + U—g(m) TUqm)) P
=P+ Y U= gm)@i5Ug(m)) Kij Pe(U— gy bi3Ug(my) + U—gm) TU () P
converges in the norm to
P+ > [ @i nKijPe(bi)n) I = (v + > [ [(@ij)nKej (bij)n) P

for every Py and that the operators K;; P, are compact due to Theorem 1.2).
Hence, all operators of the form (16) with a;;, b;; € BUC possess a rich operator

spectrum. Since the operators of this form lie densely in A(BUC(RY), C,), and

since B;iCh is a closed algebra, this yields the assertion. [
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4.2 Fredholmness

Due to Proposition 4.5, the operators in A(BUC(RY), C,) are subject to Theorem
3.6. In combination with Proposition 4.3, we obtain the following result.

Theorem 4.6 Let A € A(BUC(RY), Cp). Then A is

(a) Fredholm (i.e. locally invertible at infinity) if and only if all limit operators of
A are uniformly invertible.

(b) locally invertible at the infinitely distant point n € SN7 if and only if all
operators in the local operator spectrum o, (A) are uniformly invertible.

Corollary 4.7 An operator A € A(BUC(RN), C,) is a Fredholm operator if and
only if, for each point n € SN=1, all operators in o,(A) are uniformly invertible.

We are going to specialize these results to operators with coefficients in certain
subalgebras of L (RN).

Slowly oscillating coefficients. Since slowly oscillating functions are uniformly
continuous, one has A(SO(RY), C,) C A(BUC(RY), Cp), and Theorem 4.6 and
its corollary apply to operators in the algebra A(SO(RM), C,). Limit operators of
operators in A(SO(RY), C,) are of a particularly simple form which allows us to
check their invertibility effectively via (4).

Proposition 4.8 Every limit operator of an operator in A(SO(RN), Cp) lies in
CI +¢,.

Proof. Every operator in A(SO(RY), C,) can be uniformly approximated by op-
erators of the form (16) where a;;, b;; € SO(RYN). If K € C, then, clearly, the limit
operator K, exists with respect to every sequence h € H, and K}, = K. Further, if
T is compact, then the limit operator T}, also exists with respect to every sequence
h € H, and T, = 0. Thus, in view of the proof of Proposition 4.5, it remains to
check the following: If a € SO(RY), and if h € H is a sequence such that the oper-
ators of multiplication U_j,,)aUp(,) converge *-strongly to ajl as n — oo, then ay
is a constant function. This can be done as follows. Let a € SO(RY). Then

lim (a(z' + h(k)) — a(z" + h(k))) =0

k—o0
for all sequences h tending to infinity and for all 2', 2" € RY. Hence, if h is
a sequence such that the limit operator (al);, exists, then limy_, o a(z + hy) is
independent of z € RV [

Corollary 4.9 Let A be an operator of the form (16) with a;j, bij € SO(RN).
Then A is Fredholm if and only if all limit operators of A are invertible.

Thus, the uniformity of the invertibility is not required.

Proof. We conclude from the previous proposition that every limit operator of A
is a linear combination of the operators H;L:1 K;; with i =1, ..., n. Thus, g,,(4)
lies in a finite dimensional subspace of L(LP(RV)). Then a simple compactness
argument yields the assertion. [

Remark. The algebra A(Qc(RY), C,) which is apparently larger than the algebra
A(SO(RY), Cp) actually coincides with the latter algebra. Indeed, by Theorem
1.5, every operator aK with a € Q¢(RY) and K € C, is the sum of an operator
a1 K with a; € SO(RY) and an operator ax K with ay € Qsc(RY). Since slowly
oscillating functions are uniformly continuous and since a2 K is compact (Theorem
1.2), one has aK € A(SO(RY), Cp).
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Coefficients stabilizing at infinity. Theorem 4.6 and its corollary attain their
most simple form for operators with coefficients which stabilize at infinity in the
following sense. This class has been introduced in [4] in case N = 1.

Definition 4.10 We say that the function a € L>®(RY) stabilizes at infinity if, for
every infinitely distant point n € SN, there is a constant y € C such that, for
every € > 0, there exists a neighborhood U = U, . at infinity of n such that

mes{z € U, . :|a(z) —y| > e} <e. (19)
The class of all functions which stabilize at infinity will be denoted by L;’?ab(lRN).

If a stabilizes at infinity and 7 is an infinitely distant point, then the constant y
which satisfies (19) is uniquely determined. We denote it by a(n).

Lemma 4.11 Leta € L%, (RY) andn € SN ~1 be an infinitely distant point. Then
|a(n)] < llalloo-

Proof. Let € > 0 and choose a neighborhood U of infinity such that
mes {z € U : |a(z) — a(n)| > e} <e.

Then
mes {z € U : ||a(z)| — |a(n)|| > e} <e.

Since the measure of U is infinite, there is a subset M C U of measure 1 such that
la(z)| —e < |a(n)| < la(z)|+¢e forallz € M.

This yields the assertion. [
Theorem 4.12 L%, (RYN) is a C*-subalgebra of Qc(RY).

Proof. First we will show that L, (RV) is closed in L (RY ). Let a,, € L%, (RY)
and a € L= (R"Y) such that lim ||a,, — al|cc = 0. Fix € > 0, and choose ng € N such
that

llan — am|leo <€ foralln, m > ng.

Further, let U, . ., be a neighborhood at infinity of n such that

mes{x € Uy ¢ n : |lan(z) — an(n)| > e} <e,

and set
Upe,n =12 €Upeont lan(z) —an(n)] < e}
Then, forz € U, . ,NU; . ,, and m, n > ny,

|an(m) = am)] < lan() = an(@)] + lan(z) = am(@)] + lam () — am ()] < 3e.

Thus, (@n(7))nen is a Cauchy sequence, and we let a(n) denote its limit.
Now we fix n > ng such that

llan —alloo <e/3 and l|an(n) —a(n)| <e/3.
The estimate
|an(z) — dn(n)| > la(z) — a(n)| — |a(z) — an(@)] — |an (@) — an(n)|

implies that |a,(z) — a,(n)| > ¢/3 whenever |a(xz) — a(n)| > €. Since a,, stabilizes
at infinity, there is a neighborhood U, . /3, , such that

mes {z € Uy c/3,p * |an(x) — an(n)| > e/3} <e/3.

13



Thus,
mes {z € U, c/3,n : |a(z) —a(n)| > e} <e/3 <e,

whence a € L%, (RV).

In the next step we show that L3, (RY) is a *-algebra. The symmetry is obvi-
ous. Let a, b € Lstab(]R ), and let n be an infinitely distant point. We choose
neighborhoods at infinity U, /2 , and Uy, ¢ 2 of 1 such that

mes {x € U, .24 : |a(x) —a(n)| > e/2} <e/2 (20)

and
mes {z € U, .25 : [b(x) — b(n)] > &/2} < /2. (21)

Set Wy, := U, c/2,a NUy, c/2,5- Then Wy, is a neighborhood at infinity of n, and it
follows from

{e € Wy : |a(z) + b(x) — a(n) — b(n)| > e}
C {z € Wy |a(x) — a(n)| > £/2} U {w € Wy : [b() — b(m)| > =/2}
and from (20), (21) that
mes {z € W, : |a(z) + b(z) — a(n) — b(n)| > e} < e.

Thus, a +b € L%, (RY) and

—

(a +b)(n) = a(n) + b(y) forally e SN~

In order to show that ab € L%, (RY), too, we can assume that a, b # 0 (otherwise
the assertion is obvious). Choose m € N such that m||a|lcc > 1 and m||b||cc > 1.
Given an infinitely distant point n and € > 0 a, choose neighborhoods at infinity of
7 such that

mes {z € Uy, o : la(x) —a(n)| > &/2m||blleo)} < e/(2m||b]|0)

and
mes {z € U,y : [b(x) — b(n)| > £/(2mllalloo)} < £/(2mllal|c)-

Set Wy, := Uy o NUy,p. Then W), is a neighborhood at infinity of n, and

mes {z € W, : |(ab)(z) — a(n)b(n)| > ¢}

= mes {z € W, : |(a(z) — a(n)b(z) + a(n))(b(z) - b(n)| > £}
< mes {& € W, : [a(e) — ()] 8]l + llallo [bx) — ()| > e}
< mes {& € W, : [a(e) — a(n)| [Bllos > £/2}

+mes{z €W, :|bz)— ( N llalleo > €/2}
<mes{z € Up,q : |a(z) —a(n)|||bllsc > &/(2m)}

+mes {z € Uy, : [b(x) — b(n)| |lallsc >e/(2m)}
<mes{z € Up,q : |a(z) —a(n)| > e/(2m]|b]|s) }

+mes {z € Uy, : [b(x) — b(n)| > &/(2ml|al|oc) }
<e/(2m|bllw) +€/(2m|lalle) < e/24+¢/2=¢.

Consequently, ab € L (RV) and

—

(ab)(n) = a(n) b(n) for allp e SN

14



It remains to show the inclusion L (RV) C Q¢ (RN). Thus, if a € L%, (RY), we

have to show that, for every open bounded set A/ C RV, there is an open bounded
set D C RN such that

t—o00

lim /D ‘/M(a(t+h) —a(t+h+s))ds|dh =0 (22)

(Definition 1.4). Let M C RY be open and bounded, choose D as the open unit
disk in RV, and let d > 0 be the radius of a disk with center 0 which contains
M + D. Let further € > 0. Then, for every infinitely distant point 7, there is a
neighborhood at infinity of n such that

mes{z € Uy, . : |a(z) —a(n)| > e} <e.
Each neighborhood U, . is of the form
Upe={yeRY :|y| >R, .and y/ly| € W, .}

where R, . > 0 and W), . C SN=1 is an open neighborhood of 7. In particular,
{Wy, e }nes~—1 is an open cover of the unit sphere, from which we can choose a finite
subcover {W,, -}¥ ;. Set

Ry :=max{R,, - :i=1,..., k}+d.
Further, since the function f: SN—! — RV,
f(z) == max{dist (z, SN\ W,, ) :i=1,..., k},

is positive for every x (every x belongs to one of the sets W, .) and continuous on
the compact set SV, there is a § > 0 such that f(z) > § for all z € SN~!. Thus,
for every z € SN~!, thereis an i € {1, ..., k} such that

x €W, . and dist(x, OW,, ) > 4.

Consequently, there is an Ry > Ry such that, for every y € RY with |y| > Ry, there
isanie {1, ..., k} such that

yeU,, - and dist(y, OU,, ) >d.

Let now t € RV with |t| > R;. By what we have just seen, thereisani € {1, ..., k}
such that ¢t + D and ¢t + M + D are contained in Uy, .. Thus,

mes{z €t+ D :|a(z) —a(n)| >e} <e
and
mes{z €t+ D+ M :|a(z) —a(n)| > e} <e.
This implies

J,

/ (a(t+h) —a(t+h+s))ds|dh
M

g/D/M|a(t+h)—a(n)|dsdh+/D/M|a(t+h+s)—a(n)|dsdh

< mesD |a(h) — a(n)| dh + mes D la(h) — a(n)| dh
t+M t+D+M

< mesD (mes M - € + 2¢||al|co) + mes D (mes (D + M) - € + 2¢||al| )
<emes D (mes M + mes (D + M) + 4||al|oo),

whence the assertion (22). ]

15



Proposition 4.13 Let a € L%, (RY), and let h be a sequence which tends to

infinity into the direction of n € SN~1. Then
V_h(n)@Viny = a(n)l  strongly on LP(RN) asn — oo.
Proof. Given ¢ > 0, we find a neighborhood U, . at infinity of n such that
mes{z € Uy . : |a(z) —a(n)| > e} <e.
Let f be a continuous function with compact support. Then

I(V=r(m)aVhin) = a(m) fllp = [[(@ = a(n))Vin) fllp-

Clearly, there exists an ng such that supp (Vi(»)f) C Uy, - for all n > ng. Thus, if
n > ng, then

(V- n)@Vaimy = @) fllp < ell Fllp + 2llallsollelloos™?.

This proves the strong convergence on a dense subset of LP(RY). Since the opera-
tors V_j(n)aVh(n) are uniformly bounded, we get the assertion. [

An obvious consequence of this proposition is that the local operator spectrum
0, (A) for operators A € A(LS,, (RN), C,) is a singleton for every infinitely distant
point n € SN71, say 0,(4) = {A,}. Moreover, every limit operator A, belongs to
CI + C, since A(L%,,(RN), C,) is a subalgebra of A(SO(RY), C,), and by Propo-

sition 4.8. Thus, the invertibility of A, can be effectively checked via (4).

Corollary 4.14 An operator A € A(L%,,(RN), C,) is Fredholm if and only if every
limit operator A, (with n € SN~1) of A is invertible.

5 Compressions of operators of convolution type

In this section we are going to study the Fredholm properties of compressions of
operators of convolution type. If A is a linear bounded operator on LP(RY) and D
is a measurable subset of R, then the compression of A onto D is the operator

XpAXxDI|prwny : LP(D) — LP(D).

The archetypical example is the Wiener-Hopf operator W (k) on LP(RT) which is
the compression of the convolution operator vI + C(k) with k € L'(R) onto RT.
Thus,

W(k) = x+(vI + C(k))x+I|rr(m+),

where x. refers to the characteristic function of RT. Clearly, this operator is
Fredholm on LP(RT) is and only if the operator v + xC(k)x4 I is Fredholm on
LP(R). Let f be the function with f(z) = 0if x < 0, f(z) = = on [0, 1] and
f(z) =1 for x > 1. Then the function x4 — f has a compact support. Thus,
the operator x4+ C(k)x+I — fC(k)fI is compact on LP(R), and the operator W (k)
is Fredholm on LP(RT) if and only if the operator vI + fC(k)fI is Fredholm on
LP(R). The latter operator is subject to Corollary 4.9 which says that this operator
(hence, the Wiener-Hopf operator W (k)) is Fredholm if and only if the convolution
operator yI + C'(k) is invertible. This simple reduction is no longer possible for for
compressions of operators onto more involved sets.
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5.1 Compressions of operators in A(BUC(R"Y), C,)

Let 1 < p < oo, and let D be a measurable subset of RV whose associated multi-
plication operator belongs to B;ic". Such subsets will be called rich .

We will consider compressions of operators in A(BUC(RY), C,) onto the rich
set D. Clearly, the compression xpAxpl is invertible (Fredholm) on LP(D) if and
only if its extension (1 — xp)I + xpAxpl is an invertible (Fredholm) operator
on LP(RN). Each such extension can be considered as an element of the alge-
bra A(BUC(RYM), xp, Cp) which is the smallest closed subalgebra of the algebra
L(LP(RY)) which contains the algebra A(BUC(RY), C,) as well as the multiplica-
tion operator xplI. As a consequence of Proposition 4.5 we get

A(BUC(RY), xp, Cp) C By, (23)

and from Proposition 4.3 we conclude that an operator A € A(BUC(RY), xp, Cp)
is Fredholm if and only if it is P-Fredholm. Thus, Theorem 3.6 (b) implies the
following result.

Theorem 5.1 Let A € A(BUC(RY), C,), and let D be a rich subset of RY . Then
the compression of A onto D is Fredholm on LP(D) if and only if, for each point
n € SN=1, all limit operators in o,((1 — xp)I + xpAxpI) are uniformly invertible
on LP(RN).

In the following subsections we will give some examples of unbounded rich domains
D for which the limit operators of xpI can be explicitely calculated and for which,
thus, explicit criteria for the Fredholmness of the compressions of operators from
A(BUC(RN), C,) onto D can be derived.

5.2 Compressions to a half space

Given a non-zero vector a € RV, consider the half space
H(a) := {z ¢ RV : (z, a) > 0}. (24)

Let further h € H be a sequence which tends to infinity into the direction of
n € SN~L. We distinguish several cases.

e If (n, a) > 0, then (h(n), a) — +o0, and the limit operator of x4/ exists
and is equal to the identity operator.

e If (n, a) <0, then (h(n), a) — —oo, and the limit operator of xg()/ exists
and is equal to the zero operator.

e If (n, a) = 0, then h has a subsequence g € H such that either the numbers
(g9(n), a) tend to 400, or to —oco, or to a finite limit b, € R. In each of these
cases, the limit operator of xp(,) I with respect to g exists, and it is equal
to the identity operator in the first case, to the zero operator in the second
case and to the operator of multiplication by the characteristic function of the
shifted half space

H(a, b,) == {x € RY : (z, a) > —b,}
in the third case.

Let #,(A) stand for the set of all sequences h € H which tend to infinity into
the direction of n € SV~! and for which the limit operator A; exists. Further,
we denote by H,, o (A) and H,, 5(A) the set of all sequences h € H,(A) such that
(h(n), a) = oo and (h(n), a) — b € RV respectively. Then Theorem 5.1 gives the
following result.
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Theorem 5.2 Let A € A(BUC(RY), Cp) and D = H(a) with a € RN \ {0}. Then
the compression of A onto D is Fredholm on LP(D) if and only if the following
conditions are satisfied:

(a) for each point n € SN with (n, a) > 0, the set {A, : h € H,(A)} of limit
operators of A is uniformly invertible.

(b) for each point n € SN~Y with (n, a) = 0, the set {A : h € Hy, o(A)} of limit
operators of A is uniformly invertible.

(¢) for each point n € SN~ with (n, a) = 0 and each b € R, the set

{1 = xH(a, )] + XH(a,5) AnXH(a,5) ] : b € Hyp0(A)}

of extended compressions of limit operators of A is uniformly invertible.

5.3 Compressions to curved half spaces
Let N > 1 and f € BUC(RN~!). We consider the curved half space

P(f) :={ox= (2, zn) e RV"I x R:zx > f(z')} CRV. (25)

Let further h € H be a sequence which tends to infinity into the direction of
n=(n,nn) € SN C R¥N~! x R Again, we distinguish several cases.

e If yx > 0, then the limit operator of xp(s)/ exists and is equal to the identity
operator.

e If ny < 0, then the limit operator of xp(s)I exists and is equal to the zero
operator.

e Now let ny = 0. Then h has a subsequence g € H such that either the
numbers g(n)n tend to 400, or to —oo, or that the sequence (g(n)n)n>1 is
bounded. In the first two cases, the limit operator of xp(y)I with respect to g
exists, and it is equal to the identity operator in the first case and to the zero
operator in the second case. In the third case, there exists a subsequence k of
g, a real number by, and a function f; : R¥N~! — R such that

lim k(n)y =b; and  lim f(a' +k(n)') = fr(«')

n—oo

in the sense of the uniform convergence on compact subsets of R¥~!. In this
case, the limit operator of xp(s)I exists, too, and it is equal to the operator
of multiplication by the characteristic function of

P(fk — bk;) = {.7: € ]RN LN > fk;(m,) — bk}
in the third case.

Let #H,(A) stand for the set of all sequences h € H which tend to infinity into the
direction of 7 € SN¥~! and for which the limit operator A, exists. Further, given a
real number b and a function g : RY "1 — R, we denote by H,; o (A) and H, 4 5(A)
the set of all sequences h € H,(A) such that h(n)n — oo and

hin)y = b and f(z' + h(n)") — g(z')

uniformly on compact subsets of RV~!, respectively. If the set Hay, g,6(A) is not
empty, then we call g a limit function with respect to . Then Theorem 5.1 implies
the following result.
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Theorem 5.3 Let A € A(BUC(RN), Cp) and D = P(f) with f € BUC(RV™1).
Then the compression of A onto D is Fredholm on LP(D) if and only if the following
conditions are satisfied:

(a) for each point n € SN~Y with ny > 0, the set {A, : h € H,(A)} of limit
operators of A is uniformly invertible.

(b) for each point n € SN~1 with nny = 0, the set {An : h € Hy (A)} of limit
operators of A is uniformly invertible.

(¢) for each point n € SN—1
g:RN-1 5 R the set

{1 =xpg—n)I + xPg—b)AnXPg—t) : h € Hy 4,5(A)}

of extended compressions of limit operators of A is uniformly invertible.

with ny = 0, each b € R, and each limit function

This result gets a particular simple form if f € SO(RY). In the setting of assertion
(c) of the theorem, this hypothesis implies that all functions g are constant (their
possible values are just the partial limits of f(z') as #' — o0). Thus, all possible
limit domains P(g — b) are (uncurved) half spaces.

5.4 Compressions to curved layers

Let again N > 1, and let fi, fo € BUC(RN™!) be such that fi(z') < f2(z') for all
7' € RV~1. Then we call the set

L(fi, f2) :={z = (2/, 2n) € RV " x R: fi(2') <an < fo(2')} (26)

a curved layer. Let h € H be a sequence which tends to infinity into the direction of
n € SN=1, If ny # 0, then the limit operator of XL(f1, f-) with respect to h exists
and it is equal to 0. The same happens if nxy = 0 and the sequence (h(n)n)n>1
tends to +oco. Thus, the only non-trivial case is when ny = 0 and the sequence
(h(n)N)n>1 is bounded. Then, as in the previous subsection, there is a subsequence
k of h, a real number by, as well as functions fix, for : RY ! — R such that the limit
operator of xyy,, r,)I with respect to k exists and is equal to XL(f,, —by, for—bs) L

Let again H,(A) stand for the set of all sequences h € H which tend to infinity
into the direction of n € SN~! and for which the limit operator A, exists, and
denote by My, 4,.4.,5(A) the set of all sequences h € H,(A) such that

hin)y = b and fi(z' +h(n)") — gi(z') (=1,2)
uniformly on compact subsets of RV ~1,

Theorem 5.4 Let A € A(BUC(RY), C,) and D = L(f1, f2) with functions f1, fo
in BUC(RVN=Y) and fi < fo. Then the compression of A onto D is Fredholm on
LP(D) if and only if, for each point n € SN~1 with nxy = 0, each b € R, and all
limit functions g1, g» : RN™1 = R, the set

{(1 — XL(g1-b, gz*b))l + XL(Ql*bym*b)AhXL(gl*h gz*b)l the HU791792,b(A)}

of extended compressions of limit operators of A is uniformly invertible.

If f1, fo € SO(RV 1), then the functions fix, for, are constant, and L( fir—bg, for—
bi) is a usual layer bounded by two parallel planes.

Corollary 5.5 In addition to the hypothesis from Theorem 5.4, let
Jim (A1)~ fe) =0

el

Then all limit operators of xwv(y,,f,)I are zero, and the compression of A onto
L(f1, f2) is Fredholm on LP(L(f1, f2)).
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5.5 Compressions to curved cylinders

Let N > 1, Q C RV~! be a bounded domain, and f € BUC(R) a positive function,
and consider the curved cylinder

Zo(f):={x =@, zn) e RV xR:2' € f(an)Q}. (27)

Let h € H. If h(n)" — oo, then the limit operator of xz,(s)I with respect to h exists
and is equal to the zero operator. Thus, nontrivial limit operators of xzqs)I with
respect to h exist only if the sequence (h(n)'),>1 is bounded and h(n)y — £oo. In
this case, there is a subsequence k of h, a point by € Z~~!, and a function f; on R
such that

g(n) = by and f(zy +k(n)y) — fr(zny) asn — oo

uniformly on compact subsets of R. Then the limit operator of xz,(y)I with respect
to the sequence k exists, and it is equal to the operator of multiplication by the
characteristic function of the shifted curved cylinder

Zo(fe, br) ={z= (2, zn) e RV xR:2' € fr(zn)Q — b}

Let H,(A) denote the set of all sequences h € H which tend to infinity into the di-
rection of n € SNV =1 and for which the limit operator A, exists, and write H,, , 5(A)
for the set of all sequences h € H,(A) such that

h(n)y = b€ ZN"t and f(zn +h(n)n) = g(zN)

uniformly on compact subsets of R.

Theorem 5.6 Let A € A(BUC(RYN), C,) and D = Zq(f) with f € BUC(R).
Then the compression of A onto D is Fredholm on LP(D) if and only if, for each
point 1 € SN~1 with n' =0, each b € ZN~!, and all limit functions g : R — R, the
set

{1 = X200, 0) I + XzZa(9,0)AnXZg(g,0)] 2 h € Hyy,g,5(A)}

of extended compressions of limit operators of A is uniformly invertible.

If f € SO(R), then the function f, is constant and, thus, Zq(f,, b) is a usual
straight cylinder.

Corollary 5.7 In addition to the hypothesis from Theorem 5.6, let the ends of the
cylinder be cuspidal, i.e. let

lim f(zny) =0.

TN —Eo0

Then all limit operators of Xz, (s)I are zero, and the compression of A onto Zq(f)
is Fredholm on LP(Zq(f)).

5.6 Compressions to cones with smooth cross section

Let Q C RN be an open domain with C'-boundary 0 in case N > 2 or an open
interval in R'. By Cgq, we denote the cone in RV*! generated by €,

Cq == {(y, yn+1) € RY x [0, 00) : y € yn1Q}. (28)

Given z € RV, let n, € SV be the point which lies on the ray in RV*! starting at
the origin and passing through the point (z, 1), i.e.

(z, 1)

Ne = —F——.
VP 1
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Let h € H be a sequence which tends to infinity into the direction of n € SV. Again
there are two trivial cases: If i is not of the form 7, with some = € €, then the limit
operator of xc, ! exists and is equal to the zero operator. If n = 7, with z € Q,
then the limit operator of xc, I exists, too, and is equal to the identity operator.

Let now =z € 0 and n = n,. We denote by 7,2 the tangential space and by
v, the interior normal unit vector to 9Q at x. Further, we write H, for the closed
half space in RV which is bounded by 7, and for which v, is an interior normal
unit vector to OH, at . Finally, we let H, refer to the half space in RV*! which
is generated by H,,

H, := {(y, yv+1) €RY x R:y € Hy + (yn41 — Dz}
Further, we write the sequence h as
h(n) := a,(Ve, 0) + (1, 0) + Bn(z, 1) (29)

where r, € T,Q) and «,, 8, € R. The following lemma claims the conditions under
which the sequence (29) tends to infinity in the direction of 7,.

Lemma 5.8 The sequence h defined by (29) tends to infinity in in the direction of
Nz if and only if B, — +00 and

an/Bn =0 and r,/Bp—0 as n— oo. (30)
Proof. The sequence h tends to infinity if and only if
|on]” + [l + [Ba* — oo, (31)
and then it converges in the direction of 7, if and only if

(anyw +rp + Bz, Bn) (:L“, 1)
\/”an’/x +rp+ ﬂn$”2 + |ﬂn|2 \/H:I;“2 +1

The convergence of the last component of (32) tells us that 3,, > 0 for all sufficiently
large n. Thus, (31) implies

(32)

(F2ve + 5=+, 1) 1
Bn Bn N (z, b ) ) (33)
\/||g—:uz+g—z+m||2+1 Vel +1
From the convergence of the last component of (33) we conclude that
O o
—Vp+—+z z||.
Bn Bn
This implies for the first component of (33) that
On o Tno o
—Vp+—+zT =2
Bn Bn
whence (30) since v, L r,. Writing (31) as
ay, |? ra |I?
B2 4| = +1] o0
"\l Bn Bn
and taking into account (30), we finally get 8, — 4+00. The reverse implications
can be checked similarly. n
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In order to compute the limit operators into the direction of n, for z € 90, we
assume for simplicity that @ = 0 (which can be reached by shifting ) and that
T, =T,Q = RV~! x {0} (which can be reached by rotating the shifted 2). Then,
since Q0 has a C'-boundary, there is an open neighborhood U C R¥~! of 0, an
open interval I C R which contains 0, and a continuously differentiable function
g : U — I such that

NN xI)={(z, g(x)) e RV~ xR:z € U}

and
ANUxI)={(z,zn) €U XI:znx > g(x)}.

Thus, if 8 > 0, then the part of the boundary of B2 which lies in U x I is just
the graph of the function

BU = BI, x— By(x/B).
Let h be as in (29), and assume that the limit
0% = lm(Bng(rn/Br) — an) € RU {£o0}

exists (otherwise we pass to a suitable subsequence of h). Let further d > 0 and
KY :=[-d, d]", and set C,, o := V_h(n)Ca. We consider the intersection of the
shifted cone C,, o with RY x {0} and identify this intersection with a subset of RV .
Since (y+ry)/Bn € U forall y € Kfiv_l and for all sufficiently large n, the boundary
of CpoN (RN x {0}) can be locally described as the graph of the function

G Ky Ry Bug(y +70)/Bn) = .
Then, for every y € K} ~!, we have

lim(Gn(y) — 6%) = lim(Gn(y) — Gn(0))

with
|Gn(y) = Gn(0)] < max [|G'(§)|l]ly — O
€€l0, y]
= max |lg'((€+rn)/Bu)ll lyll-
€€l0, y]

Since g is continuously differentiable with ¢’(0) = 0, and since

1€ +70)/Bnll < (d +[Irnll)/Bn — 0

by Lemma 5.8, we conclude that G, (y) — 0* for every y € Kév_l. Thus, if
(y7 yN) € Ktjiva then

1 if yy>0*
XCn an®¥x {0} (¥) = { 0 if yy < 0"

An analogous result holds of the sequence (3,) is replaced by (8, + 8') with 8’ €
[—d, d]. This shows that

xevi(y) =y if 0" =-o00
XCna) = XHo+o%(ve,0)(y) if 0" €R
xo(y) =0 if 0" =400

almost everywhere on K év +1 By the dominated convergence theorem, this implies
that
. . _
XKCJIV+1 lf (5* = -0
XCn .a XKéV'H — XH,+0* (vz,0) XKCJIV+1 if 4 eR
0 if 0 =400
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with respect to the L'-norm and, hence, also with respect to every LP-norm with
1 < p < o (the occurring functions take values in {—1, 0, 1} almost everywhere).
Since d is arbitrary, this finally yields that

I if 0 =-00
XCnol = XH,467(v,,00f if 6" ER
0 if 0 =400

strongly on LP(RN*!),

Given A € A(BUC(RN*Y), C,(RNF1)), let H,)(A) denote the set of all sequences
h € H which tend to infinity into the direction of € SV and for which the limit
operator Ay, exists. Further, write #,, o (A) and H,, 5« (4) with 6* € R for the set
of all sequences h € H,(A) with

Um(Bng(rn/Bn) —an) = —oc0 and  Um(Bng(rn/Bn) — ayn) = 0%,

respectively. Finally, we abbreviate the shifted half space Hy + §*(v;, 0) to Hy, 5.
Then Theorem 5.1 has the following consequence.

Theorem 5.9 Let A € A(BUC(RN*L), C,(RN*1)) and D = Cq with Q@ € RY an
open domain with C' boundary. Then the compression of A onto D is Fredholm on
LP(D) if and only if the following conditions are satisfied:

(a) for each point x € Q, the set {Ay : h € H,, (A)} of limit operators of A is
uniformly invertible.

(b) for each point x € O, the set {Ay 1 h € Hy, _oc(A)} of limit operators of A is
uniformly invertible.

(c) for each point x € 0, the set

{(1=xm, s )] + X8, 5 Anxn, 5. L h € Hyp-(A), 07 € R}
of extended compressions of limit operators of A is uniformly invertible.

We still mention some special situations in which the conditions of Theorem 5.9
take a very simple form.

Let A € A(SORN*L), C,(RN+1)). Then all limit operators of A belong to
CI + Cp(RN*1). In this case, the invertibility of the compressions in condition
(c) can be effectively checked. Let, for example, Aj; be the operator vI + C(k)
with v € C and k € L*(RV*1). Since C(k) is shift invariant, the corresponding
compression (c) is invertible if and only if the operator

(1= xu ) + xu. (7] + C(k))xn. [ (34)

is invertible. Further, given an orthogonal mapping S on RN*! we write Rg for
the rotation operator (Rsf)(z) = f(Sz), and for k € LY(RN*!), we let ks be
the function ks(z) = k(STz) with ST referring to the transposed of S. Then
convolution operators are rotation invariant in the sense that

C(k)Rs = RsC(ks).

Thus, if we choose S such that it rotates H, to the half space H := {(z1, z) €
Rx RN : 2, > 0}, then the compression (34) is invertible if and only if the operator

(1 =xu)! +xu(y! + Clks))xul (35)

is invertible. Finally, the compression (35) is invertible if and only if the operator

(1= xu)l + (v + C(ks))xul
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is invertible. This follows easily from the identities AP+ Q = (PAP+Q)(I+QAP)
and (I+QAP)~! = I — QAP which hold for arbitrary operators A and idempotents
P, Q with P+Q =1.

The same results hold if C'(k) is replaced by an arbitrary operator in C, (RN +1).
For the invertibility of the resulting compressions, one has the following result from
[14] (Theorem 1.4).

Theorem 5.10 Let B € CI +C,(RN*1). Then the operator (1 — xu)I + Bxul is
invertible on LP(RNTY) is and only if the operator B is invertible on LP(RNT!),

Note once more that the invertibility of B € CI + C,(RN*!) can be effectively
checked via (4).
With these remarks, we get the following corollaries to Theorem 5.9.

Corollary 5.11 Let A € A(SORN*Y), C,(RN*1)) and D = Cq with Q € RN an
open domain with C* boundary. Then the compression of A onto D is Fredholm
on LP(D) if and only if, for each point x € U, the set {Ay : h € H,, (A)} of limit
operators of A (= the local operator spectrum at 1, ) is uniformly invertible.

Corollary 5.12 Let A € A(LS,,(RNTY), C,(RN*1)) and D = Cq with Q € RY an
open domain with C* boundary. Then the compression of A onto D is Fredholm on
LP(D) if and only if, for each point x € Q, the limit operator A,,, of A is invertible.

Remark. Let f : [0, c0) — R be a slowly oscillating function, and let Q2 € RV be
an open domain with C! boundary. We consider the slowly oscillating cone,

Co, s :={(, yn+1) €RY x [0, 00) : y € (yns1 + f(Yn+1))Q}. (36)

In a similar way as above, one can show that the limit operators of the multiplication
operator xcg, ,/ are the same as in case of the unperturbed cone Cgq, and that the
analogue of Theorem 5.9 holds.

5.7 Compressions to cones with edges

Here we are going to consider compressions of convolution operators to cones which
are allowed to have a finite number of edges. For simplicity, we restrict ourselves to
the case N = 2.
More precisely, we let Q be an open domain in R? the boundary 99 of which is
C' up to a finite set M of singular points (i.e. 9 is not C! in any neighborhood
of z € M). For each point x € M we suppose that there are an open neighborhood
U, C R? of z as well as two open domains Q, ; and €, , with C'-boundary such
that either
UsNQ=U,N(Qy, 1Ny 1) (37)

or
UsNQ = U, \ Qa0 Q). (38)

If the tangent spaces T;;Q, ; and T, , do not coincide, then we call z an outward

angular point in case of (37) and an inward angular point in case of (38). If these

tangent spaces coincide, then x is called an outward resp. inward cuspidal point.
As in the previous section, we consider the cone generated by €2,

Cq :={(y, ys) € R* x [0, 00) : y € y3Q} (39)

and, for z € R? and 6 € R, the half spaces H, and H, 5. Further we set H, _ :=
R® and H, ;oo := 0 and, for §, € € RU {£o0} and = € M,

Ka:,(ie = Hz76,l N HLe,r

where H, s.; and H, . , are half spaces belonging to 2, ; and €2, ,, respectively.
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Proposition 5.13 Let © € R*. Then the local operator spectrum o, (xcol) is
equal to

a) {0} if v € Q.

) {I} if z € Q.

) Axm, ;[ :6 € RU{£oo}} if v € 0N\ M.

d) {XK, s .1 :0, e e RU{Foo}} if x € 0QN M is an angular point.
e) {0} if x € 0NN M is an outward cuspidal point.

HAL} if e € 902N M is an inward cuspidal point.

Proof. The proof for (a) — (¢) is the same as in the previous section. The results
of the previous section also show that the local operator spectrum o,, (xcq) is
contained in the set (d) if z € 9Q N M is an angular point. That it is actually equal
to this set can be seen as follows. Since z is an angular point, we can independently
shift the half space H, o,; by a sequence which tends into the direction of n, and
comes closer and closer to 0H, ¢, and the half space H, o, by a sequence which
also tends into the direction of 1, and comes closer and closer to 0H; o,;. Since
each of these sequences influences the associated limit operators of only one of the
half spaces, we get any desired combination of shifts of the half spaces H, o,; and
H, o, » in this way. This shows (d), and (e) and (f) can be proved as in the previous
section. (See the discussion before Theorem 5.9. The obvious point is that, in case of
a cuspidal point, the half spaces H; o,; and H; o, , cannot be shifted independently
of each other.) ]

Given A € A(BUC(R?), C,(R?)), let H,(A) denote the set of all sequences h € H
which tend to infinity into the direction of € S? and for which the limit operator
Ap, exists. Further, if z € 90\ M and § € RU {£o0}, write H,, 5(A) for the set of
all sequences h € H,, (A) such that the limit operator of xc,I exists and is equal
to xm, ,I. Finally, if € 90N M is an angular point and J, € € RU{£o0}, then let
Ha.s,¢(A) stand for the set of all sequences h € H,, (A) such that the limit operator
of xcq I exists and is equal to xx, ; .I. With these notations, we have the following
consequence of Theorem 5.1.

Theorem 5.14 Let A € A(BUC(R?), C,(R?)) and D = Cq with Q € R? an open
domain with piecewise C' boundary as above. Then the compression of A onto D
is Fredholm on LP(D) if and only if the following conditions are satisfied:

(a) for each point x € Q, the set {Ay : h € H,, (A)} of limit operators of A is
uniformly invertible.

(b) for each point x € 00\ M, the set
{(1 - XHE,J)I + XHm,SAhXHm,SI the H$,5(A)7 deRU {:EOO}}

of extended compressions of limit operators of A is uniformly invertible.
(c) for each angular point x € OQ N M, the set

{(1 - XKm,S,e)I_'_ XK:E,S,eAhXKm,S,e'[ the H$,5,€(A)7 67 e€ RU {:EOO}}

of extended compressions of limit operators of A is uniformly invertible.

(d) for each inward cuspidal point x € 02N M, the set {Ap : h € H,, (A)} of limit
operators of A is uniformly invertible.

Note that the conditions in (b) and (c) get a simpler form if one of the shift param-
eters 0 and € is £0o. Let us also emphasize that, if = is an outward cuspidal point,
then the local invertibility at 7, of the compression of A onto D is trivially satisfied

25



since all limit operators of (1 — xp)I + xpAxpl with respect to sequences which
tend to infinity into the direction of 7, are equal to I.

Again we mention some special situations in which the conditions of Theorem
5.14 can be readily verified.

Corollary 5.15 Let A € A(SO(R?), C,(R?)) and D be as in Theorem 5.14. Then
the compression of A onto D is Fredholm on LP(D) if and only if the following
conditions are satisfied:

(a) for each point © € Q which is neither angular nor outward cuspidal, the set
{An : h € Hy, (A)} of limit operators of A is uniformly invertible.

(b) for each angular point x € M, the set
{(1 - XKw.O,O)I + XKm,o.oAhXKm,o.OI :he H$,576(A)7 67 €€ ]R}

of extended compressions of limit operators of A is uniformly invertible.

(c) for each angular point x € M, the set
{Ah the€ Hw,—oo,e(A) U Hw,d,—oo(A) U Hw,—oo, —oo(A) 10, €€ R}
of limit operators of A is uniformly invertible.

Here we have used the shift invariance of the limit operators of A as well as Simo-
nenko’s Theorem 5.10 again.

Corollary 5.16 Let A € A(LZ,,(R?), C,(R®)) and D be as in Theorem 5.14. Then
the compression of A onto D is Fredholm on LP(D) if and only if the following
conditions are satisfied:

(a) for each point x € Q which is neither angular nor outward cuspidal, the limit
operator A,, of A is invertible.

(b) for each angular point x € M, the extended compression
(1- XKz .0, o)[ + XKm,o,oAﬂm XKz, 0,0
of the limit operator Ay, of A is invertible.

Indeed, this result follows from the fact that each local operator spectrum is a sin-
gleton under the hypothesis of the corollary. Furthermore, one shows by choosing
suitable sequences tending to infinity that every operator in condition (¢) of Corol-
lary 5.15 is a limit operator of the operator in (b) (compare the proof of Theorem
2.33 in [9]). Thus, the invertibility of that operator already implies the invertibility
of all operators in Corollary 5.15 (c).

5.8 Compressions to epigraphs of functions

We let f: R — R be a continuously differentiable function with

lim f(t)=+c0 and lim f'(t) =0 (40)

t—doo t—too
and consider its epigraph
Ef = {(:131, :IIQ) € R? Ty > f(:vl)} (41)

Let h = (h1, ha) € H be a sequence which tends to infinity into the direction of
n = (n,n2) € S*. It is evident that the limit operator of g,/ exists and is equal
to the identity operator if 12 > 0, whereas the limit operator of xg, I exists and is
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equal to zero if 7o < 0. Now let 5 = (1, 0), and let h be a sequence for which the
limit operator of xg, exists. We write

ha(n) =: f(hi(n)) + dy,

and choose a subsequence of h (which we denote by h again) such that the sequence
(dy,) becomes convergent with limit 6 € RU {£o0}. Further, for § € RU {00}, we
let

H; = {(2131, :IIQ) S R? Ty > (5}

Then it is easy to check that the limit operator of xg,I coincides with xm,I and
that, conversely, every operator of this form appears as a limit operator of xg, /.
The same holds for n = (-1, 0).

Given A € A(BUC(R?), C,(R?)), let H,(A) denote the set of all sequences
h € H which tend to infinity into the direction of 7 € S! and for which the limit
operator A exists. Further, for 6 € RU {£oo}, write H11,5(A) for the set of all
sequences h € H(+1,0)(A) such that the limit operator of xg, I exists and is equal
to xm; {. Then Theorem 5.1 yields, for example, the following.

Theorem 5.17 Let A € ALY, ,(R?), C,(R?)), and let D = Ey be the the epigraph
of the function f satisfying (40). Then the compression of A onto D is Fredholm
on LP(D) if and only if, for each point n = (n1, n2) € S' with gy > 0, the limit
operator A, of A is invertible.

The proof is the same as for Corollaries 5.12 and 5.16. [

Finally, let f+ : R — R be continuously differentiable functions with

lim fo(t)= lim fu(t)=+c0 and lim fi(t)= lm fL()=0, (42)

t—+oo

and let
E;, ;o i={(z1, 22) € R? Cfo(m) < o < fy(zp)}- (43)

As before one can check that every limit operator of xg I I is of the form yg, I

s
with § € RU {£o0} and that, conversely, every operator of this form is a limit
operator of xm, I if h tends into the direction of (£1, 0) € S*. If h tends to infinity
into the direction of n € S with 7, # 0 then, necessarily, the limit operator of

xH; ! with respect to h exists and is equal to the zero operator.

Theorem 5.18 Let A € A(L,, (R?), C,(R?)), and let D = Ey,_ ¢ with functions
f+ satisfying (42). Then the compression of A onto D is Fredholm on LP(D) if and
only if the limit operators A, of A with n = (£1, 0) € S are invertible.

References

[1] H. O. CorDES, On compactness of commutators of multiplications and con-
volutions and boundedness of pseudodifferential operators. — J. Fctl. Anal.
18(1975), 2, 115 — 131.

[2] R. G. DouGLAS, R. HOWE, On the C*-algebra of Toeplitz operators on the
quarter plane. — Trans. Am. Math. Soc. 158(1971), 203 — 217.

[3] L. S. GOLDENSTEIN, I. C. GOHBERG, On a multidimensional integral equation
on a half-space whose kernel is a function of the difference of the arguments,
and on a discrete analogue of this equation. — Dokl. AN SSSR 131(1960), 1, 4
— 12 (Russian, Engl. transl. Sov. Math. 1(1960), 1, 173 — 176).

27



[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

N. KARAPETIANTS, S. SAMKO, Equations with Involutive Operators. —
Birkh&user, Boston, Basel, Berlin, 2001.

E. MEISTER, F.-O. SPECK, Some multidimensional Wiener-Hopf equations
with applications. — In: Trends in Applications of Pure Mathematics to Me-
chanics, Vol. II, Proc. Symp. Kozubnik, Poland, September 1977 (Ed. H.
ZORSKI), Pitman, London et al. 1979, 217 — 262.

E. MEISTER, F.-O. SPECK, Wiener-Hopf operators on three-dimensional
wedge-shaped regions. — Appl. Anal. 10(1980), 31 — 45.

E. MEISTER, F.-O. SPECK, A contribution to the quarter-plane problem in
diffraction theory. — J. Math. Anal. Appl. 130(1988), 223 — 236.

V. S. RABINOVICH, S. RoCH, B. SILBERMANN, Fredholm theory and finite
section method for band-dominated operators. — Integral Equations Oper. The-
ory 30(1998), 4, 452 — 495.

V. S. RABINOVICH, S. RocH, B. SILBERMANN, Band-dominated operators
with operator-valued coeflicients, their Fredholm properties and finite sections.
— Integral Equations Oper. Theory 40(2001), 3, 342 — 381.

M. REED, B. SiMoON, Methods of Modern Mathematical Physics, II. — Aca-
demic Press, New York, San Francisco, London 1975.

B. YA. SHTEINBERG, Operators of convolution type on locally compact groups.
— Rostov-na-Donu 1979, Dep. at VINITI 715-80, 65 p. (Russian).

B. YA. SHTEINBERG, On convolution operators on locally compact groups. —
Funkts. Anal. prilozh. 15(1981), 95 — 96 (Russian).

B. YA. SHTEINBERG, Boundedness and compactness of convolution operators
on locally compact groups. — Mat. Zametki 38(1985), 2, 278 — 292 (Russian).

I. B. SIMONENKO, Operators of convolution type in cones. — Mat. Sbornik
74 (116)(1967), 2, 567 — 586 (Russian, Engl. transl. Math. USSR-Sbornik
3(1967), 2, 279 — 293).

F.-O. SPECK, Eine Erweiterung des Satzes von Rakovsik und ihre Anwendung
in der Simonenko-Theorie. — Math. Ann. 228(1977), 2, 93 — 100.

M. E. TAYLOR, Partial Differential Equations I. — Springer-Verlag, New York
1996.

Authors’ addresses:

V. S. Rabinovich, Instituto Politechnico National, ESIME-Zacatenco, Ed.1, 2-do piso, Av.
IPN, Mexico, D.F., 07738

E-mail: rabinov@maya.esimez.ipn.mx

Steffen Roch, Technische Universitdt Darmstadt, Fachbereich Mathematik, Schlossgarten-
strasse 7, 64289 Darmstadt, Germany

E-mail: roch@mathematik.tu-darmstadt.de

28



