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Abstrat

We study the Fredholmness on L

p

(D) of operators of onvolution type.

Here D is an unbounded measurable domain in R

N

, and an operator A on

L

p

(D) is of onvolution type if it is onstituted by operators of the form

aC(k)bI where C(k) is the operator of onvolution by the L

1

(R

N

)-funtion

k and where a and b are bounded and uniformly ontinuous funtions. The

domains under onsideration inlude, for example, urved layers, urved ylin-

ders, and ones with angular or uspidal edges. The riterion for the Fred-

holmness of the operator A is formulated in terms of limit operators of A.

The topi of this paper is the Fredholmness of ompressions of operators of onvolu-

tion type. An operator of onvolution type is an operator on L

p

(R

N

) whih belongs

to the smallest norm-losed subalgebra of L(L

p

(R

N

)) whih ontains the identity

operator, all ompat operators, and all operators of the form aC(k)bI where C(k)

is the operator of onvolution by the L

1

(R

N

)-funtion k and where a and b are

bounded and uniformly ontinuous funtions on R

N

. For an unbounded measur-

able subset D of R

N

, the ompression of the operator A onto D is the operator

B := �

D

A�

D

I j

L

p

(D)

: L

p

(D)! L

p

(D) (1)

where �

D

is the harateristi funtion of the set D.

There are many papers whih are devoted to the Fredholmness of ompressions

of operators of onvolution type for onrete lasses of oeÆients a; b and onrete

domains D; see, e.g., [2, 3, 5, 6, 7, 14℄. For example, the multidimensional Wiener-

Hopf operators

�

D

(I + C(k))�

D

I j

L

p

(D)

: L

p

(D)! L

p

(D)

where  2 C and k 2 L

1

(R

N

) are onsidered in [3℄ for D being a half-spae and in

[14℄ in ase D a one in R

N

with smooth ross setion, whereas the quarter plane

ase is the topi of [2, 5, 7℄. Operators on 3D wedge shaped domains are studied in

[6℄.

We will onsider the Fredholm problem for these operators, for example, in ase

when D is a urved layer, a urved ylinder, a one with angular or uspidal edges,

or the epigraph of a ertain funtion. In eah of these ases, our solution to the

Fredholm problem will be as follows. We assoiate with the operator B in (1) its

so-alled operator spetrum. This is a family of operators on L

p

(R

N

) whih de-

sribes the behaviour of the operator B at in�nity. Then the main result says that

the operator B is Fredholm if and only if eah operator in its operator spetrum is

invertible, and if the norms of these inverses are uniformly bounded. Moreover, it

turns out that in many ases (for example, if the oeÆients a; b are slowly osil-

lating funtions) the operators in the operator spetrum are muh simpler objets

than the operator B itself. This fat allows us to study their invertibility e�etively.
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It will also turn out that the ondition of uniform invertibility is redundant in many

ases.

We will prove these Fredholm riteria by having reourse to the results of [8, 9℄.

In these papers we onsidered band-dominated operators on disrete l

p

-spaes of

sequenes with values in a Banah spae X . We showed that a band-dominated

operator is invertible at in�nity (in ase X has �nite dimension this simply means

that the operator is Fredholm, i.e. that its kernel and okernel have �nite dimension)

if the operators in its operator spetrum are uniformly invertible. Thus, the proof

of the desired Fredholm riteria for ompressions of operators of onvolution type

rests on two basi steps: we prove that a suitable disretization of that operator

leads to a band-dominated operator on an disrete l

p

-spae, and we ompute its

operator spetrum.

The paper is organized as follows. In its �rst two setions we reall some basi

de�nitions and fats on operators of onvolution type as well as on band-dominated

operators. Then we study disretizations of operators of onvolution type. In

partiular, we show that the disretization of every onvolution type operator B is

band-dominated and that this disretization is invertible at in�nity if and only if

B is Fredholm. Finally, we speify the general Fredholm riterion to the onrete

ases mentioned above where the operator spetrum an be expliitely omputed.

Throughout this paper, we let 1 < p < 1, q := p=(p � 1), and N a positive

integer.

1 Operators of onvolution

In this setion, we ollet some basi fats on onvolution operators on L

p

-spaes.

Theorem 1.2 goes bak to [15℄, and the ompatness of ommutators of operators

of multipliation by slowly osillating funtion with onvolution operators has been

veri�ed in [1℄. Our presentation follows [11℄ where the results mentioned in this

setion are proved in the more general ontext of operators on loally ompat

groups.

Let k 2 L

1

(R

N

) and u 2 L

p

(R

N

). Then Young's inequality implies that the

onvolution

(k � u)(x) :=

Z

R

N

k(x� y)u(y)dy; x 2 R

N

; (2)

belongs to L

p

(R

N

), and that kk �uk

p

� kkk

1

kuk

p

([10℄, IX.4). Hene, the operator

C(k)u := k � u of onvolution by k 2 L

1

(R

N

) ats boundedly on L

p

(R

N

), and

kC(k)k

L

p

(R

N

)

� kkk

1

: (3)

Let C

p

denote the losure in L(L

p

(R

N

)) of the set of all onvolution operators C(k)

with kernels k 2 L

1

(R

N

). Then C

p

is a losed and ommutative subalgebra of

L(L

p

(R

N

)) without identity. Its maximal ideal spae an be identi�ed with R

N

(with its usual topology) in suh a way that the Gelfand transform

^

C of C 2 C

p

oinides with the Fourier transform of k if C = C(k) (see [14℄). Consequently, an

operator I + C in the unitization C I + C

p

of C

p

is invertible if and only if

inf

�2R

N

j +

^

C(�)j > 0: (4)

Note that  +

^

C is just the Gelfand transform of I + C in C I + C

p

.

A semi-ommutator is an operator of the form aC(k) or C(k)aI where k is in

L

1

(R

N

) and a 2 L

1

(R

N

). The funtions a for whih the semi-ommutators aC(k)

and C(k)aI are ompat for every funtion k 2 L

1

(R

N

) an be haraterized as

follows.
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De�nition 1.1 Let Q

SC

(R

N

) refer to the set of all funtions a 2 L

1

(R

N

) suh

that

lim sup

t!1

Z

M

ja(t+ s)j ds = 0

for every ompat subset M of R

N

.

For example, the lass Q

SC

(R

N

) ontains all funtions a 2 L

1

(R

N

) with

lim

R!1

ess sup

jxj�R

ja(x)j = 0

and, in partiular, all ompatly supported funtions. The harateristi funtion

of the set [

n�2

[n �

1

n

; n +

1

n

℄ � R is an example of a funtion in Q

SC

(R

N

) whih

does not vanish at in�nity.

Theorem 1.2 The following onditions are equivalent for a bounded measurable

funtion a:

(a) the operators BaI and aB are ompat on L

p

(R

N

) for every B 2 C

p

and every

1 < p <1,

(b) a 2 Q

SC

(R

N

),

() There is a bounded open set D � R

N

suh that lim

t!1

R

D

ja(t+ s)j ds = 0.

Consequently, Q

SC

(R

N

) is a losed ideal in L

1

(R

N

).

The next goal is to haraterize those funtions a 2 L

1

(R

N

) for whih the

ommutators aC(k)�C(k)aI are ompat for every funtion k 2 L

1

(R

N

). We start

with de�ning two related sublasses of funtions in L

1

(R

N

).

De�nition 1.3 Let SO(R

N

) denote the set of all bounded ontinuous funtions a

on R

N

suh that, for every ompat subset M of R

N

,

lim

t!1

sup

h2M

ja(t)� a(t+ h)j = 0:

The lass SO(R

N

) is a unital ommutative C

�

-subalgebra of BUC(R

N

), the algebra

of the bounded and uniformly ontinuous funtions on R

N

. Funtions in SO(R

N

)

are alled slowly osillating on R

N

. Examples of slowly osillating funtions are

provided by the ontinuous funtions whih possess a �nite limit at in�nity and by

the di�erentiable funtions the derivative of whih tends to zero at in�nity.

De�nition 1.4 A funtion a 2 L

1

(R

N

) belongs to the lass Q

C

(R

N

) if, for every

open and bounded subset M of R

N

, the funtion

t 7!

Z

M

(a(t)� a(t+ s)) ds

lies in Q

SC

(R

N

).

The following result does not only solve the ommutator problem; it moreover

veri�es the relation between the lasses Q

SC

(R

N

); SO(R

N

) and Q

C

(R

N

).

Theorem 1.5 The following assertions are equivalent for a 2 L

1

(R

N

):

(a) the operators BaI � aB are ompat on L

p

(R

N

) for every B 2 C

p

,

(b) the funtion a belongs to Q

C

(R

N

),

() the funtion a belongs to Q

SC

(R

N

) + SO(R

N

).

As a onsequene one gets that Q

C

(R

N

) = Q

SC

(R

N

) + SO(R

N

) is a unital om-

mutative C

�

-subalgebra of L

1

(R

N

) and that Q

SC

(R

N

) is a losed ideal of that

algebra. Moreover, one an show that the intersetion Q

SC

(R

N

)\SO(R

N

) onsists

of all ontinuous funtions whih tend to zero at in�nity.
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2 Band-dominated operators on l

p

-spaes

Given a omplex Banah spae X , onsider the Banah spaes l

p

(Z

N

; X) and

l

1

(Z

N

; X) of all funtions f : Z

N

! X suh that

kfk

p

p

:=

X

x2Z

N

kf(x)k

p

X

<1 and kfk

1

:= sup

x2Z

N

kf(x)k

X

<1;

respetively. Let E stand for one of the spaes l

p

(Z

N

; X) with p 2 (1; 1). Every

funtion a 2 l

1

(Z

N

; L(X)) gives rise to a multipliation operator on E on de�ning

(af)(x) := a(x)f(x); x 2 Z

N

:

We denote this operator by aI . Evidently, aI 2 L(E) and kaIk

L(E)

= kak

1

.

Finally, for � 2 Z

N

, let V

�

refer to the shift operator

(V

�

f)(x) := f(x� �); x 2 Z

N

;

whih also belongs to L(E) and has norm 1.

De�nition 2.1 A band operator on E is a �nite sum of the form

P

�

a

�

V

�

where

� 2 Z

N

and a

�

2 l

1

(Z

N

; L(X)). A band-dominated operator on E is the norm

limit of a sequene of band operators.

The band-dominated operators on E form a losed subalgebra of L(E) whih we

denote by A

E

. One an show that an operator A 2 L(E) is band-dominated if and

only if, for every funtion ' 2 BUC(R

N

),

lim

t!0

kA'̂

t;r

I � '̂

t;r

Ak

L(E))

= 0 uniformly with respet to r 2 R

N

where, for r; t; x 2 R

N

,

'

t;r

(x) := '

t

(x� r) and '

t

(x) := '(tx) := '(t

1

x

1

; : : : ; t

N

x

N

)

and where â refers to the restrition of the funtion a : R

N

! C onto Z

N

. For this

and the following fats we refer to [8, 9℄.

For n � 0, de�ne

^

P

n

: E ! E by

(

^

P

n

f)(x) =

�

f(x) if jxj

1

� n

0 if jxj

1

> n;

set

^

Q

n

:= I �

^

P

n

, and let

^

P refer to the family (

^

P

n

).

De�nition 2.2 An operator K 2 L(E) is

^

P-ompat if

kK

^

Q

n

k ! 0 and k

^

Q

n

Kk ! 0 as n!1:

By K(E;

^

P) we denote the set of all

^

P-ompat operators on E, and by L(E;

^

P) the

set of all operators A 2 L(E) for whih both AK and KA are

^

P-ompat whenever

K is

^

P-ompat.

It turns out that L(E;

^

P) is a losed subalgebra of L(E), K(E;

^

P) a losed two-

sided ideal of L(E;

^

P), and K(E;

^

P) � A

E

� L(E;

^

P). Operators A 2 L(E;

^

P) for

whih the oset A+K(E;

^

P) is invertible in the quotient algebra L(E;

^

P)=K(E;

^

P)

are alled

^

P-Fredholm. If X is a �nite-dimensional spae, then L(E;

^

P) = L(E),

K(E;

^

P) is the ideal of the ompat operators on E, and the

^

P-Fredholm operators

are just the Fredholm operators in the ommon sense.

Let H stand for the set of all sequenes h : N ! Z

N

whih tend to in�nity.
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De�nition 2.3 Let A 2 L(E;

^

P) and h 2 H. The operator A

h

2 L(E) is alled

the limit operator of A with respet to h if

lim

n!1

k(V

�h(n)

AV

h(n)

�A

h

)

^

P

m

k = lim

n!1

k

^

P

m

(V

�h(n)

AV

h(n)

�A

h

)k = 0 (5)

for every

^

P

m

2

^

P. The set �

op

(A) of all limit operators of A is alled the operator

spetrum of A.

Let �nally refer L

rih

E

to the set of all operators A 2 L(E; P) enjoying the following

property: every sequene h 2 H possesses a subsequene g for whih the limit

operator A

g

exists. Set A

rih

E

:= A

E

\ L

rih

E

. Then the main result of [9℄ an be

stated as follows.

Theorem 2.4 An operator A 2 A

rih

E

is

^

P-Fredholm if and only if all of its limit

operators are invertible and if

supfk(A

h

)

�1

k : A

h

2 �

op

(A)g <1: (6)

The ondition of uniform invertibility an be weakened by employing loal teh-

niques. To desribe some typial ideas and results we have to introdue some more

notations. Let S

N�1

denote the unit sphere f� 2 R

N

: j�j = 1g where j�j stands

for the Euklidean norm of �. Given a `radius' R > 0, a `diretion' � 2 S

N�1

, and a

neighborhood U � S

N�1

of �, we set

W

R;U

:= fz 2 Z

N

: jzj > R and z=jzj 2 U; g (7)

and we all W

R;U

a neighborhood at in�nity of �. A sequene h 2 H is said to tend

into the diretion of � 2 S

N�1

if, for every neighborhood at in�nity W of �, there

is an m

0

suh that h(m) 2 W for all m � m

0

.

De�nition 2.5 Let � 2 S

N�1

and A 2 L(E;

^

P).

(a) The loal operator spetrum �

�

(A) of A at � is the set of all limit operators A

h

of A with respet to sequenes h tending into the diretion of �.

(b) The operator A is loally invertible at � if there are operators B; C 2 L(E;

^

P)

and a neighborhood at in�nity W of � suh that

BA�̂

W

I = �̂

W

AC = �̂

W

I

where �̂

W

refers to the harateristi funtion of W .

Theorem 2.6 Let A 2 A

rih

E

and � 2 S

N�1

. Then the operator A is loally invert-

ible at � if and only if all limit operators in �

�

(A) are invertible and if

supfk(A

h

)

�1

k : A

h

2 �

�

(A)g <1:

Corollary 2.7 An operator A 2 A

rih

E

is

^

P-Fredholm if and only if all of its limit

operators are invertible, and if

supfk(A

h

)

�1

k : A

h

2 �

�

(A)g <1 for all � 2 S

N�1

:

This result is indeed a generalization of Theorem 2.4: It does not require that the

suprema are uniformly bounded with respet to �.
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3 Band-dominated operators on L

p

(R

N

) and their

disretizations

P-Fredholmness. We start with adapting the notion of

^

P-Fredholmness intro-

dued in the previous setion to the ontext of L

p

-spaes.

Let P

n

stand for the operator of multipliation by the harateristi funtion

of the ube [�n; n℄

N

ating on L

p

(R

N

), and set P := (P

n

)

1

n=1

and Q

n

:= I � P

n

.

Further we introdue the set K(L

p

(R

N

); P) of the P-ompat operators, i.e., of the

operators K 2 L(L

p

(R

N

)) suh that

lim

n!1

kKQ

n

k = lim

n!1

kQ

n

Kk = 0;

and the set L(L

p

(R

N

); P) of all operators A 2 L(L

p

(R

N

)) suh that AK and KA

are P-ompat whenever K is P-ompat. Then L(L

p

(R

N

); P) is a losed unital

subalgebra of L(L

p

(R

N

)) whih ontainsK(L

p

(R

N

); P) as its losed ideal. Further,

sine both the operators P

n

and their adjoints onverge strongly to the identity op-

erators on L

p

(R

N

) and L

q

(R

N

), respetively, one gets that K(L

p

(R

N

); P) ontains

the ideal K(L

p

(R

N

)) of the ompat operators on L

p

(R

N

) (but K(L

p

(R

N

); P) is

stritly larger than K(L

p

(R

N

)) sine the operators P

n

are not ompat).

Our earlier de�nitions of generalized Fredholmness, invertibility at in�nity and

loal invertibility at in�nity speify as follows to the present ontext.

De�nition 3.1 The operator A 2 L(L

p

(R

N

); P) is P-Fredholm if the oset A +

K(L

p

(R

N

); P) is invertible in the quotient algebra L(L

p

(R

N

); P)=K(L

p

(R

N

); P),

that is if there exist operators B; C 2 L(L

p

(R

N

); P) suh that

BA� I 2 K(L

p

(R

N

); P) and AC � I 2 K(L

p

(R

N

); P): (8)

Equivalently, an operator A 2 L(L

p

(R

N

); P) is P-Fredholm if and only if it is

invertible at in�nity in the sense that there exist an m 2 N and operators B; C 2

L(L

p

(R

N

); P) suh that

BAQ

m

= Q

m

and Q

m

AC = Q

m

:

Loal invertibility. There is also an adequate notion of loal invertibility at an

in�nitely distant point � 2 S

N�1

. Given R > 0 and a neighborhood U � S

N�1

of

�, we set

V

R;U

:= fx 2 R

N

: jxj > R and x=jxj 2 Ug

and all V

R;U

again a neighborhood at in�nity of �. Then an operator A is alled

loally invertible at � if there exist a neighborhood V at in�nity of � and operators

B; C 2 L(L

p

(R

N

); P) suh that

BA�

V

I = �

V

I and �

V

AC = �

V

I:

Shifts and limit operators. For � 2 Z

N

, we onsider the operator

U

�

: L

p

(R

N

)! L

p

(R

N

); (U

�

f)(t) := f(t� �)

of shift by �. In aordane with the de�nitions from Setion 2, we all the operator

A

h

a limit operator of A 2 L(L

p

(R

N

); P) with respet to the sequene h 2 H if

lim

m!1

k(U

�h(m)

AU

h(m)

�A

h

)P

m

k = lim

m!1

kP

m

(U

�h(m)

AU

h(m)

�A

h

)k = 0

for every P

m

2 P . The set �

op

(A) of all limit operators of A is the operator spetrum

of A. Further we denote by L

rih

p

the subalgebra of L(L

p

(R

N

); P) whih onsists

of all operators with rih operator spetrum. The latter means for an operator

A 2 L(L

p

(R

N

); P), that every sequene h 2 H has a subsequene g suh that the

limit operator A

g

with respet to g exists.
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Disretization. Let �

0

denote the harateristi funtion of the ube I

0

:=

[0; 1)

N

, and set X := L

p

(I

0

) and E := l

p

(Z

N

; X). Then the mapping G whih

maps the funtion f 2 L

p

(R

N

) to the sequene

Gf = ((Gf)

�

)

�2Z

N with (Gf)

�

:= �

0

U

��

f (9)

is an isometry from L

p

(R

N

) onto l

p

(Z

N

; X), the inverse of whih is given by

G

�1

: u = (u

�

)

�2Z

N 7!

X

�2Z

N

U

�

u

�

�

0

(10)

where the series onverges in the norm in L

p

(R

N

). Thus, the mapping

� : L(L

p

(R

N

))! L(l

p

(Z

N

; X)); A 7! GAG

�1

is an isometri algebra isomorphism. Obviously, �(P

m

) is the projetion

^

P

m

, and

�(U

�

) is the shift V

�

, both introdued in Setion 2.

Proposition 3.2 The isometry � maps the ideal K(L

p

(R

N

); P) onto K(E;

^

P) and

the algebra L(L

p

(R

N

); P) onto L(E;

^

P ).

Proof. Sine

kK �KP

n

k = k�(K �KP

n

)k = k�(K)� �(K)

^

P

n

k

and kK � P

n

Kk = k�(K) �

^

P

n

�(K)k, we get �(K(L

p

(R

N

); P)) = K(E;

^

P).

Similarly, the seond assertion follows if one takes into aount that an operator

A 2 L(L

p

(R

N

)) belongs to L(L

p

(R

N

); P) if and only if

kP

k

AQ

n

k ! 0 and kQ

n

AP

k

k ! 0 as n!1

and that an analogous result holds for operators on E.

A onsequene is that an operator A 2 L(L

p

(R

N

); P) is P-Fredholm if and only if

�(A) is

^

P-Fredholm. A similar result holds for the loal invertibility at � 2 S

N�1

.

However, here the situation is a little bit more involved sine, if V � R

N

is a

neighborhood at in�nity of �, then �(�

V

I) 6= �̂

V \Z

NI in general. Nevertheless,

the loal invertibility of A at � is equivalent to that of �(A), whih an be seen

as follows. Given a neighborhood V � R

N

at in�nity of �, there is evidently a

neighborhood W � Z

N

at in�nity of � suh that �(�

V

I)�̂

W

I = �̂

W

I . Thus, if

BA�

V

I = �

V

I , then

�(B)�(A)�(�

V

I) = �(�

V

I);

and after multipliation by �̂

W

I from the right hand side we get

�(B)�(A)�̂

W

I = �̂

W

I;

whene the loal invertibility at � of �(A). The reverse impliation follows similarly.

The next result shows that also the limit operators behave niely under dis-

retization.

Proposition 3.3 Let A 2 L(L

p

(R

N

); P) and h 2 H. Then the limit operator A

h

of A exists (with respet to P) if and only if the limit operator (�(A))

h

of �(A)

exists (with respet to �(P) =

^

P), and

�(A

h

) = (�(A))

h

: (11)

In partiular, A belongs to L

rih

p

if and only if �(A) belongs to L

rih

E

.
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Proof. Let the limit operator A

h

of A exist, i.e. let

lim

n!1

k(U

�h(n)

AU

h(m)

�A

h

)P

m

k = lim

n!1

kP

m

(U

�h(n)

AU

h(m)

�A

h

)k = 0

for all m. Sine �(U

�

) = V

�

and �(P

m

) =

^

P

m

, and sine � is an isometrial algebra

isomorphism, we onlude that

lim

n!1

k�((U

�h(n)

AU

h(m)

�A

h

)P

m

)k = lim

n!1

k(V

�h(n)

�(A)V

h(m)

� �(A

h

))

^

P

m

k = 0

and, analogously,

^

P

m

(k(V

�h(n)

�(A)V

h(m)

� �(A

h

))k ! 0 for every m. Thus, the

limit operator of �(A) with respet to h exists and (11) holds. The reverse impli-

ation follows analogously.

In partiular, an operator B belongs to the operator spetrum of A if and only if

the operator �(B) belongs to the operator spetrum of �(A). An analogous relation

holds for the loal operator spetra.

Band-dominated operators on L

p

(R

N

). The following de�nition is motivated

by the haraterization of band-dominated operators on l

p

(Z

N

; X) mentioned in

Setion 2.

De�nition 3.4 An operator A 2 L(L

p

(R

N

)) is band-dominated if, for every fun-

tion ' 2 BUC(R

N

),

lim

t!0

kA'

t;r

I � '

t;r

Ak

L(L

p

(R

N

))

= 0 uniformly with respet to r 2 R

N

: (12)

The set of all band-dominated operators in L(L

p

(R

N

)) will be denoted by B

p

, and

we write B

rih

p

instead of B

p

\ L

rih

p

.

Clearly, B

p

and B

rih

p

are losed unital subalgebras of L(L

p

(R

N

)), and the set

K(L

p

(R

N

); P) is a losed two-sided ideal of both algebras. The latter an be

heked, for example, by means of the following proposition.

Proposition 3.5 �(B

p

) oinides with the algebra A

E

of the band-dominated op-

erators on E = l

p

(Z

N

; L

p

(I

0

)), and �(B

rih

p

) = A

rih

E

.

Proof. If A 2 B

p

then, for every funtion ' 2 BUC(R

N

),

lim

t!0

k[A; '

t;r

I ℄k

L(L

p

(R

N

))

= 0

(with [:; :℄ referring to the ommutator) and, onsequently,

lim

t!0

k[�(A); �('

t;r

I)℄k

L(E)

= 0 (13)

uniformly with respet to r 2 R

N

. We laim that

lim

t!0

k'̂

t;r

I � �('

t;r

I)k

L(E)

= 0 (14)

uniformly with respet to r 2 R

N

. Indeed,

sup

r2R

N

k('̂

t;r

I � �('

t;r

I)k

L(E)

= sup

r2R

N

sup

�2Z

N

sup

x2I

0

j'̂

t;r

(�)� (�('

t;r

I)

�

)(x)j

= sup

r2R

N

sup

�2Z

N

sup

x2I

0

j'(t(�� r)) � '(t(x + �� r))j

� sup

�2R

N

sup

x2I

0

j'(t�) � '(t(x+ �))j ! 0

8



as t! 0 due to the uniform ontinuity of '. By (14) and (13),

lim

t!0

k[�(A); '̂

t;r

I ℄k

L(E)

= 0

uniformly with respet to r 2 R

N

. Thus, �(B

p

) � A

E

. The reverse inlusion follows

analogously. The seond assertion is a onsequene of the �rst one, together with

Proposition 3.3.

As an immediate onsequene of Theorems 2.4 and 2.6 and of Propositions 3.3 and

3.5 we �nally get the following result.

Theorem 3.6 Let A 2 B

rih

p

. Then the operator A is

(a) loally invertible at point � 2 S

N�1

if and only if all limit operators A

h

2 �

�

(A)

are uniformly invertible.

(b) invertible at in�nity if and only if, for every � 2 S

N�1

, all limit operators

A

h

2 �

�

(A) are uniformly invertible.

4 Fredholmness of onvolution type operators

Now we will apply the results of the preeding setions to examine the Fredholm

properties of operators on L

p

(R

N

) whih are onstituted by onvolution operators

with kernels in L

1

(R

N

) and by operators of multipliation by funtions in suitable

sublasses of L

1

(R

N

).

4.1 Operators of onvolution type

Given a subalgebra E of L

1

(R

N

), we let A(E ; C

p

) denote the smallest losed sub-

algebra of L(L

p

(R

N

)) whih ontains the identity operator, all ompat operators,

and all operators of the form

aKbI where a; b 2 E and K 2 C

p

; (15)

and we all the elements of A(L

1

(R

N

); C

p

) onvolution type operators. Thus, every

onvolution type operator an be approximated as losely as desired by operators

of the form

A := I +

XY

a

ij

K

ij

b

ij

I + T (16)

where a

ij

; b

ij

2 L

1

(R

N

), K

ij

2 C

p

,  2 C and T is ompat, and where the sum

and all produts are �nite.

Proposition 4.1 A(L

1

(R

N

); C

p

) � B

p

.

The proof is based on the following norm estimate whih is known as Shur's lemma

([16℄, Appendix A, Proposition 5.1).

Proposition 4.2 Let l be a measurable funtion on R

N

� R

N

with

M

1

:= sup

x2R

N

Z

R

N

jl(x; y)jdy <1 and M

2

:= sup

y2R

N

Z

R

N

jl(x; y)jdx <1:

Then the operator

(Lu)(x) :=

Z

R

N

l(x; y)u(y)dy; x 2 R

N

ats boundedly on L

p

(R

N

), and kLk

L(L

p

(R

N

))

�M

1=q

1

M

1=p

2

.
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Proof of Proposition 4.1. The algebra B

p

ontains the ideal K(L

p

(R

N

); P) and,

hene, the ideal of the ompat operators. Clearly, this algebra also ontains all

operators of multipliation by a bounded measurable funtion. Thus, and sine B

p

is a losed algebra, the result will follow one we have shown that B

p

also ontains

a dense subset of C

p

. Atually, we will hek that

lim

t!0

sup

h2R

N

k['

t;h

I; C(k)℄k = 0 (17)

for every funtion k 2 L

1

(R

N

) with ompat support and every ' 2 BUC(R

N

).

For de�niteness, let the support of k be ontained in a ball with enter 0 and radius

R. Sine

(['

t;h

I; C(k)℄u)(x) =

Z

R

N

('

t;h

(x)� '

t;h

(y)) k(x� y)u(y) dy;

Proposition 4.2 implies

k['

t;h

I; C(k)℄k

L(L

p

)

� kkk

1

sup

x; y2R

N

:jx�yj�R

j'

t;h

(x) � '

t;h

(y)j

= kkk

1

sup

x; y2R

N

:jx�yj�R

j'(t(x � h))� '(t(y � h))j:

For jx� yj � R, we have

jt(x� h)� t(y � h)j � jtjR! 0 as t! 0:

Sine ' 2 BUC(R

N

), we obtain (17).

A striking property of operators of onvolution type is that their P-Fredholmness

oinides with ommon Fredholmness.

Proposition 4.3 An operator in A(L

1

(R

N

); C

p

) is Fredholm if and only if it is

P-Fredholm.

Proof. Let J refer to the losed ideal of A(L

1

(R

N

); C

p

) whih ontains all opera-

tors in C

p

and all ompat operators. It is easy to hek that, whenever J 2 J , the

operator JP

k

is ompat for every k. Indeed, every operator J 2 J an be approx-

imated as losely as desired by a sum of a ompat operator T and of produts of

operators of the form aKbI where a and b are bounded measurable funtions and

K 2 C

p

. Then TP

k

is ompat, and the ompatness of aKbP

k

= aKP

k

bI follows

from Theorem 1.2.

Sine P

k

fails to be ompat, we have I 62 J , and the algebra A(L

1

(R

N

); C

p

)

deomposes into the diret sum C I + J . In partiular, every operator A in this

algebra an be uniquely written as 

A

I +K

A

where 

A

2 C and K

A

2 J , and it

turns out that the mapping A 7! 

A

is a ontinuous algebra homomorphism.

In the next step we will show that

J \K(L

p

(R

N

); P) = K(L

p

(R

N

)):

The inlusion � follows from the de�nitions. If, onversely, J 2 J \K(L

p

(R

N

); P),

then JP

k

is ompat for every k as we have just seen. On the other hand, sine

J 2 K(L

p

(R

N

); P), one has kJ �JP

k

k ! 0 as k !1. Thus, being the norm limit

of ompat operators, the operator J is ompat.

Sine K(L

p

(R

N

)) � K(L

p

(R

N

); P), it is lear that every Fredholm operator is

also P-Fredholm. Let, onversely, A 2 A(L

1

(R

N

); C

p

) be a P-Fredholm operator.

Then there are an operator L

0

2 B

p

and an operator T 2 K(L

p

(R

N

); P) suh

that L

0

A = I + T . We laim that 

A

6= 0. Contrary to what we want, assume that
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A

= 0. Then A 2 J . Choosem > 0 and n 2 Z

N

suh that kP

m

U

�n

TU

n

P

m

k < 1=2

(whih an be done sine T an be approximated by an operator of the form P

k

T

as losely as desired). Then, by Neumann series, the right hand side of

P

m

U

�n

L

0

AU

n

P

m

= P

m

+ P

m

U

�n

TU

n

P

m

is an invertible operator on the range of P

m

, whene

P

m

= (P

m

+ P

m

U

�n

TU

n

P

m

)

�1

P

m

U

�n

L

0

AU

n

P

m

: (18)

Sine U

n

P

m

U

�n

is the operator of multipliation by a ompatly supported funtion,

the operator AU

n

P

m

= A(U

n

P

m

U

�n

)U

n

and, hene, the operator on the right hand

side of (18) are ompat. But P

m

is not ompat, and this ontradition proves the

laim.

Now write A as 

A

I +K

A

and set L := K

A

L

0

+ I . Then

LA� 

A

I = 

A

L

0

A�AL

0

A+A� 

A

I = (

A

I � A)(L

0

A� I):

Sine L

0

A � I 2 K(L

p

(R

N

); P) and 

A

I � A = K

A

2 J , the operator LA � 

A

I

is ompat. Similarly, one shows that AR � 

A

I is ompat for a ertain operator

R 2 B

p

. Hene, and beause of 

A

6= 0, the operator A is Fredholm.

Corollary 4.4 A(L

1

(R

N

); C

p

) \K(L

p

(R

N

); P) = K(L

p

(R

N

)).

There are operators in A(L

1

(R

N

); C

p

) whih do not possess a rih operator spe-

trum. The next result identi�es a subalgebra of A(L

1

(R

N

); C

p

) \ B

rih

p

whih

ontains suÆiently many interesting operators.

Proposition 4.5 A(BUC(R

N

); C

p

) � B

rih

p

.

Proof. It is easy to see that every ompat operator T belongs to B

rih

p

and that

the limit operator T

h

exists with respet to every sequene h 2 H and is equal to

zero.

Next, let a 2 BUC(R

N

), and let h be a sequene whih tends to in�nity. The

family of all funtions x 7! a(x + h(m)) is bounded and equiontinuous on every

ompat subset M of R

N

. Hene, by the Arzel�a-Asoli theorem, there are a sub-

sequene g of h and a ontinuous bounded funtion a

h

on R

N

suh that, for every

ompat M � R

N

,

lim

m!1

sup

x2M

ja(x+ g(m))� a

h

(x)j = 0:

Thus, the operatorsU

�g(m)

aU

g(m)

of multipliation by the funtion x 7! a(x+g(m))

onverge �-strongly to the operator of multipliation by the funtion a

h

.

Let A be an operator of the form (16), but with a

ij

; b

ij

2 BUC. As we have

just seen, given a sequene h tending to in�nity, we an hoose a subsequene g of

h suh that the operators U

�g(m)

a

ij

U

g(m)

and U

�g(m)

b

ij

U

g(m)

onverge �-strongly

to ertain multipliation operators (a

ij

)

h

I and (b

ij

)

h

I , respetively. Then

U

�g(m)

AU

g(m)

P

k

= (I +

XY

(U

�g(m)

a

ij

U

g(m)

)K

ij

(U

�g(m)

b

ij

U

g(m)

) + U

�g(m)

TU

g(m)

)P

k

= P

k

+

XY

(U

�g(m)

a

ij

U

g(m)

)K

ij

P

k

(U

�g(m)

b

ij

U

g(m)

) + U

�g(m)

TU

g(m)

P

k

onverges in the norm to

P

k

+

XY

(a

ij

)

h

K

ij

P

k

(b

ij

)

h

)I = (I +

XY

(a

ij

)

h

K

ij

(b

ij

)

h

I)P

k

for every P

k

and that the operators K

ij

P

k

are ompat due to Theorem 1.2).

Hene, all operators of the form (16) with a

ij

; b

ij

2 BUC possess a rih operator

spetrum. Sine the operators of this form lie densely in A(BUC(R

N

); C

p

), and

sine B

rih

p

is a losed algebra, this yields the assertion.
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4.2 Fredholmness

Due to Proposition 4.5, the operators in A(BUC(R

N

); C

p

) are subjet to Theorem

3.6. In ombination with Proposition 4.3, we obtain the following result.

Theorem 4.6 Let A 2 A(BUC(R

N

); C

p

). Then A is

(a) Fredholm (i.e. loally invertible at in�nity) if and only if all limit operators of

A are uniformly invertible.

(b) loally invertible at the in�nitely distant point � 2 S

N�1

if and only if all

operators in the loal operator spetrum �

�

(A) are uniformly invertible.

Corollary 4.7 An operator A 2 A(BUC(R

N

); C

p

) is a Fredholm operator if and

only if, for eah point � 2 S

N�1

, all operators in �

�

(A) are uniformly invertible.

We are going to speialize these results to operators with oeÆients in ertain

subalgebras of L

1

(R

N

).

Slowly osillating oeÆients. Sine slowly osillating funtions are uniformly

ontinuous, one has A(SO(R

N

); C

p

) � A(BUC(R

N

); C

p

), and Theorem 4.6 and

its orollary apply to operators in the algebra A(SO(R

N

); C

p

). Limit operators of

operators in A(SO(R

N

); C

p

) are of a partiularly simple form whih allows us to

hek their invertibility e�etively via (4).

Proposition 4.8 Every limit operator of an operator in A(SO(R

N

); C

p

) lies in

C I + C

p

.

Proof. Every operator in A(SO(R

N

); C

p

) an be uniformly approximated by op-

erators of the form (16) where a

ij

; b

ij

2 SO(R

N

). If K 2 C

p

then, learly, the limit

operator K

h

exists with respet to every sequene h 2 H, and K

h

= K. Further, if

T is ompat, then the limit operator T

h

also exists with respet to every sequene

h 2 H, and T

h

= 0. Thus, in view of the proof of Proposition 4.5, it remains to

hek the following: If a 2 SO(R

N

), and if h 2 H is a sequene suh that the oper-

ators of multipliation U

�h(n)

aU

h(n)

onverge

�

-strongly to a

h

I as n!1, then a

h

is a onstant funtion. This an be done as follows. Let a 2 SO(R

N

). Then

lim

k!1

(a(x

0

+ h(k))� a(x

00

+ h(k))) = 0

for all sequenes h tending to in�nity and for all x

0

; x

00

2 R

N

. Hene, if h is

a sequene suh that the limit operator (aI)

h

exists, then lim

k!1

a(x + h

k

) is

independent of x 2 R

N

.

Corollary 4.9 Let A be an operator of the form (16) with a

ij

; b

ij

2 SO(R

N

).

Then A is Fredholm if and only if all limit operators of A are invertible.

Thus, the uniformity of the invertibility is not required.

Proof. We onlude from the previous proposition that every limit operator of A

is a linear ombination of the operators

Q

n

i

j=1

K

ij

with i = 1; : : : ; n. Thus, �

op

(A)

lies in a �nite dimensional subspae of L(L

p

(R

N

)). Then a simple ompatness

argument yields the assertion.

Remark. The algebra A(Q

C

(R

N

); C

p

) whih is apparently larger than the algebra

A(SO(R

N

); C

p

) atually oinides with the latter algebra. Indeed, by Theorem

1.5, every operator aK with a 2 Q

C

(R

N

) and K 2 C

p

is the sum of an operator

a

1

K with a

1

2 SO(R

N

) and an operator a

2

K with a

2

2 Q

SC

(R

N

). Sine slowly

osillating funtions are uniformly ontinuous and sine a

2

K is ompat (Theorem

1.2), one has aK 2 A(SO(R

N

); C

p

).
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CoeÆients stabilizing at in�nity. Theorem 4.6 and its orollary attain their

most simple form for operators with oeÆients whih stabilize at in�nity in the

following sense. This lass has been introdued in [4℄ in ase N = 1.

De�nition 4.10 We say that the funtion a 2 L

1

(R

N

) stabilizes at in�nity if, for

every in�nitely distant point � 2 S

N�1

, there is a onstant y 2 C suh that, for

every " > 0, there exists a neighborhood U = U

�; "

at in�nity of � suh that

mes fx 2 U

�; "

: ja(x)� yj > "g < ": (19)

The lass of all funtions whih stabilize at in�nity will be denoted by L

1

stab

(R

N

).

If a stabilizes at in�nity and � is an in�nitely distant point, then the onstant y

whih satis�es (19) is uniquely determined. We denote it by â(�).

Lemma 4.11 Let a 2 L

1

stab

(R

N

) and � 2 S

N�1

be an in�nitely distant point. Then

jâ(�)j � kak

1

.

Proof. Let " > 0 and hoose a neighborhood U of in�nity suh that

mes fx 2 U : ja(x) � â(�)j > "g < ":

Then

mes fx 2 U : j ja(x)j � jâ(�)j j > "g < ":

Sine the measure of U is in�nite, there is a subset M � U of measure 1 suh that

ja(x)j � " < jâ(�)j < ja(x)j + " for all x 2M:

This yields the assertion.

Theorem 4.12 L

1

stab

(R

N

) is a C

�

-subalgebra of Q

C

(R

N

).

Proof. First we will show that L

1

stab

(R

N

) is losed in L

1

(R

N

). Let a

n

2 L

1

stab

(R

N

)

and a 2 L

1

(R

N

) suh that lim ka

n

� ak

1

= 0. Fix " > 0, and hoose n

0

2 N suh

that

ka

n

� a

m

k

1

< " for all n; m � n

0

:

Further, let U

�; "; n

be a neighborhood at in�nity of � suh that

mes fx 2 U

�; "; n

: ja

n

(x) �a

n

(�)j > "g < ";

and set

U

0

�; "; n

:= fx 2 U

�; "; n

: ja

n

(x) �a

n

(�)j � "g:

Then, for x 2 U

0

�; "; n

\ U

0

�; ";m

and m; n > n

0

,

ja

n

(�)� a

m

(�)j � ja

n

(�) � a

n

(x)j+ ja

n

(x) � a

m

(x)j+ ja

m

(x) � a

m

(�)j � 3 ":

Thus, (a

n

(�))

n2N

is a Cauhy sequene, and we let â(�) denote its limit.

Now we �x n > n

0

suh that

ka

n

� ak

1

< "=3 and ja

n

(�) � â(�)j < "=3:

The estimate

ja

n

(x) � â

n

(�)j � ja(x) � â(�)j � ja(x) � a

n

(x)j � ja

n

(x) �a

n

(�)j

implies that ja

n

(x) �a

n

(�)j > "=3 whenever ja(x) � â(�)j > ". Sine a

n

stabilizes

at in�nity, there is a neighborhood U

�; "=3; n

suh that

mes fx 2 U

�; "=3; n

: ja

n

(x)�a

n

(�)j > "=3g < "=3:

13



Thus,

mes fx 2 U

�; "=3; n

: ja(x)� â(�)j > "g < "=3 < ";

whene a 2 L

1

stab

(R

N

).

In the next step we show that L

1

stab

(R

N

) is a

�

-algebra. The symmetry is obvi-

ous. Let a; b 2 L

1

stab

(R

N

), and let � be an in�nitely distant point. We hoose

neighborhoods at in�nity U

�; "=2; a

and U

�; "=2; b

of � suh that

mes fx 2 U

�; "=2; a

: ja(x)� â(�)j > "=2g < "=2 (20)

and

mes fx 2 U

�; "=2; b

: jb(x)�

^

b(�)j > "=2g < "=2: (21)

Set W

�

:= U

�; "=2; a

\ U

�; "=2; b

. Then W

�

is a neighborhood at in�nity of �, and it

follows from

fx 2W

�

: ja(x) + b(x)� â(�)�

^

b(�)j > "g

� fx 2 W

�

: ja(x)� â(�)j > "=2g [ fx 2 W

�

: jb(x)�

^

b(�)j > "=2g

and from (20), (21) that

mes fx 2W

�

: ja(x) + b(x)� â(�)�

^

b(�)j > "g < ":

Thus, a+ b 2 L

1

stab

(R

N

) and

\

(a+ b)(�) = â(�) +

^

b(�) for all � 2 S

N�1

:

In order to show that ab 2 L

1

stab

(R

N

), too, we an assume that a; b 6= 0 (otherwise

the assertion is obvious). Choose m 2 N suh that mkak

1

> 1 and mkbk

1

> 1.

Given an in�nitely distant point � and " > 0 a, hoose neighborhoods at in�nity of

� suh that

mes fx 2 U

�; a

: ja(x)� â(�)j > "=(2mkbk

1

)g < "=(2mkbk

1

)

and

mes fx 2 U

�; b

: jb(x)�

^

b(�)j > "=(2mkak

1

)g < "=(2mkak

1

):

Set W

�

:= U

�; a

\ U

�; b

. Then W

�

is a neighborhood at in�nity of �, and

mes fx 2 W

�

: j(ab)(x)� â(�)

^

b(�)j > "g

= mes fx 2W

�

: j(a(x) � â(�))b(x) + â(�))(b(x) �

^

b(�))j > "g

� mes fx 2W

�

: ja(x) � â(�)j kbk

1

+ kak

1

jb(x)�

^

b(�)j > "g

� mes fx 2W

�

: ja(x) � â(�)j kbk

1

> "=2g

+mes fx 2W

�

: jb(x)�

^

b(�)j kak

1

> "=2g

� mes fx 2 U

�; a

: ja(x)� â(�)j kbk

1

> "=(2m)g

+mes fx 2 U

�; b

: jb(x)�

^

b(�)j kak

1

> "=(2m)g

� mes fx 2 U

�; a

: ja(x)� â(�)j > "=(2mkbk

1

)g

+mes fx 2 U

�; b

: jb(x)�

^

b(�)j > "=(2mkak

1

)g

< "=(2mkbk

1

) + "=(2mkak

1

) < "=2 + "=2 = ":

Consequently, ab 2 L

1

stab

(R

N

) and

d

(ab)(�) = â(�)

^

b(�) for all � 2 S

N�1

:
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It remains to show the inlusion L

1

stab

(R

N

) � Q

C

(R

N

). Thus, if a 2 L

1

stab

(R

N

), we

have to show that, for every open bounded set M � R

N

, there is an open bounded

set D � R

N

suh that

lim

t!1

Z

D

�

�

�

�

Z

M

(a(t+ h)� a(t+ h+ s)) ds

�

�

�

�

dh = 0 (22)

(De�nition 1.4). Let M � R

N

be open and bounded, hoose D as the open unit

disk in R

N

, and let d > 0 be the radius of a disk with enter 0 whih ontains

M + D. Let further " > 0. Then, for every in�nitely distant point �, there is a

neighborhood at in�nity of � suh that

mes fx 2 U

�; "

: ja(x) � â(�)j > "g < ":

Eah neighborhood U

�; "

is of the form

U

�; "

= fy 2 R

N

: jyj > R

�; "

and y=jyj 2W

�; "

g

where R

�; "

� 0 and W

�; "

� S

N�1

is an open neighborhood of �. In partiular,

fW

�; "

g

�2S

N�1 is an open over of the unit sphere, from whih we an hoose a �nite

subover fW

�

i

; "

g

k

i=1

. Set

R

0

:= maxfR

�

i

; "

: i = 1; : : : ; kg+ d:

Further, sine the funtion f : S

N�1

! R

N

,

f(x) := maxfdist (x; S

N�1

nW

�

i

; "

) : i = 1; : : : ; kg;

is positive for every x (every x belongs to one of the sets W

�

i

; "

) and ontinuous on

the ompat set S

N�1

, there is a Æ > 0 suh that f(x) � Æ for all x 2 S

N�1

. Thus,

for every x 2 S

N�1

, there is an i 2 f1; : : : ; kg suh that

x 2 W

�

i

; "

and dist (x; �W

�

i

; "

) � Æ:

Consequently, there is an R

1

� R

0

suh that, for every y 2 R

N

with jyj � R

1

, there

is an i 2 f1; : : : ; kg suh that

y 2 U

�

i

; "

and dist (y; �U

�

i

; "

) � d:

Let now t 2 R

N

with jtj � R

1

. By what we have just seen, there is an i 2 f1; : : : ; kg

suh that t+D and t+M +D are ontained in U

�

i

; "

. Thus,

mes fx 2 t+D : ja(x) � â(�)j > "g < "

and

mes fx 2 t+D +M : ja(x) � â(�)j > "g < ":

This implies

Z

D

�

�

�

�

Z

M

(a(t+ h)� a(t+ h+ s)) ds

�

�

�

�

dh

�

Z

D

Z

M

ja(t+ h)� â(�)j ds dh+

Z

D

Z

M

ja(t+ h+ s)� â(�)j ds dh

� mesD

Z

t+M

ja(h)� â(�)j dh+mesD

Z

t+D+M

ja(h)� â(�)j dh

� mesD (mesM � "+ 2"kak

1

) + mesD (mes (D +M) � "+ 2"kak

1

)

� "mesD (mesM +mes (D +M) + 4kak

1

);

whene the assertion (22).
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Proposition 4.13 Let a 2 L

1

stab

(R

N

), and let h be a sequene whih tends to

in�nity into the diretion of � 2 S

N�1

. Then

V

�h(n)

aV

h(n)

! â(�)I strongly on L

p

(R

N

) as n!1:

Proof. Given " > 0, we �nd a neighborhood U

�; "

at in�nity of � suh that

mes fx 2 U

�; "

: ja(x) � â(�)j > "g < ":

Let f be a ontinuous funtion with ompat support. Then

k(V

�h(n)

aV

h(n)

� â(�))fk

p

= k(a� â(�))V

h(n)

fk

p

:

Clearly, there exists an n

0

suh that supp (V

h(n)

f) � U

�; "

for all n � n

0

. Thus, if

n � n

0

, then

k(V

�h(n)

aV

h(n)

� â(�))fk

p

� "kfk

p

+ 2kak

1

kuk

1

"

1=p

:

This proves the strong onvergene on a dense subset of L

p

(R

N

). Sine the opera-

tors V

�h(n)

aV

h(n)

are uniformly bounded, we get the assertion.

An obvious onsequene of this proposition is that the loal operator spetrum

�

�

(A) for operators A 2 A(L

1

stab

(R

N

); C

p

) is a singleton for every in�nitely distant

point � 2 S

N�1

, say �

�

(A) = fA

�

g. Moreover, every limit operator A

�

belongs to

C I + C

p

sine A(L

1

stab

(R

N

); C

p

) is a subalgebra of A(SO(R

N

); C

p

), and by Propo-

sition 4.8. Thus, the invertibility of A

�

an be e�etively heked via (4).

Corollary 4.14 An operator A 2 A(L

1

stab

(R

N

); C

p

) is Fredholm if and only if every

limit operator A

�

(with � 2 S

N�1

) of A is invertible.

5 Compressions of operators of onvolution type

In this setion we are going to study the Fredholm properties of ompressions of

operators of onvolution type. If A is a linear bounded operator on L

p

(R

N

) and D

is a measurable subset of R

N

, then the ompression of A onto D is the operator

�

D

A�

D

I j

L

p

(R

N

)

: L

p

(D)! L

p

(D):

The arhetypial example is the Wiener-Hopf operator W (k) on L

p

(R

+

) whih is

the ompression of the onvolution operator I + C(k) with k 2 L

1

(R) onto R

+

.

Thus,

W (k) = �

+

(I + C(k))�

+

I j

L

p

(R

+

)

;

where �

+

refers to the harateristi funtion of R

+

. Clearly, this operator is

Fredholm on L

p

(R

+

) is and only if the operator I + �

+

C(k)�

+

I is Fredholm on

L

p

(R). Let f be the funtion with f(x) = 0 if x < 0, f(x) = x on [0; 1℄ and

f(x) = 1 for x > 1. Then the funtion �

+

� f has a ompat support. Thus,

the operator �

+

C(k)�

+

I � fC(k)fI is ompat on L

p

(R), and the operator W (k)

is Fredholm on L

p

(R

+

) if and only if the operator I + fC(k)fI is Fredholm on

L

p

(R). The latter operator is subjet to Corollary 4.9 whih says that this operator

(hene, the Wiener-Hopf operator W (k)) is Fredholm if and only if the onvolution

operator I +C(k) is invertible. This simple redution is no longer possible for for

ompressions of operators onto more involved sets.
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5.1 Compressions of operators in A(BUC(R

N

); C

p

)

Let 1 < p < 1, and let D be a measurable subset of R

N

whose assoiated multi-

pliation operator belongs to B

rih

p

. Suh subsets will be alled rih .

We will onsider ompressions of operators in A(BUC(R

N

); C

p

) onto the rih

set D. Clearly, the ompression �

D

A�

D

I is invertible (Fredholm) on L

p

(D) if and

only if its extension (1 � �

D

)I + �

D

A�

D

I is an invertible (Fredholm) operator

on L

p

(R

N

). Eah suh extension an be onsidered as an element of the alge-

bra A(BUC(R

N

); �

D

; C

p

) whih is the smallest losed subalgebra of the algebra

L(L

p

(R

N

)) whih ontains the algebra A(BUC(R

N

); C

p

) as well as the multiplia-

tion operator �

D

I . As a onsequene of Proposition 4.5 we get

A(BUC(R

N

); �

D

; C

p

) � B

rih

p

; (23)

and from Proposition 4.3 we onlude that an operator A 2 A(BUC(R

N

); �

D

; C

p

)

is Fredholm if and only if it is P-Fredholm. Thus, Theorem 3.6 (b) implies the

following result.

Theorem 5.1 Let A 2 A(BUC(R

N

); C

p

), and let D be a rih subset of R

N

. Then

the ompression of A onto D is Fredholm on L

p

(D) if and only if, for eah point

� 2 S

N�1

, all limit operators in �

�

((1� �

D

)I + �

D

A�

D

I) are uniformly invertible

on L

p

(R

N

).

In the following subsetions we will give some examples of unbounded rih domains

D for whih the limit operators of �

D

I an be expliitely alulated and for whih,

thus, expliit riteria for the Fredholmness of the ompressions of operators from

A(BUC(R

N

); C

p

) onto D an be derived.

5.2 Compressions to a half spae

Given a non-zero vetor a 2 R

N

, onsider the half spae

H(a) := fx 2 R

N

: hx; ai > 0g: (24)

Let further h 2 H be a sequene whih tends to in�nity into the diretion of

� 2 S

N�1

. We distinguish several ases.

� If h�; ai > 0, then hh(n); ai ! +1, and the limit operator of �

H(a)

I exists

and is equal to the identity operator.

� If h�; ai < 0, then hh(n); ai ! �1, and the limit operator of �

H(a)

I exists

and is equal to the zero operator.

� If h�; ai = 0, then h has a subsequene g 2 H suh that either the numbers

hg(n); ai tend to +1, or to �1, or to a �nite limit b

g

2 R. In eah of these

ases, the limit operator of �

H(a)

I with respet to g exists, and it is equal

to the identity operator in the �rst ase, to the zero operator in the seond

ase and to the operator of multipliation by the harateristi funtion of the

shifted half spae

H(a; b

g

) := fx 2 R

N

: hx; ai > �b

g

g

in the third ase.

Let H

�

(A) stand for the set of all sequenes h 2 H whih tend to in�nity into

the diretion of � 2 S

N�1

and for whih the limit operator A

h

exists. Further,

we denote by H

�;1

(A) and H

�; b

(A) the set of all sequenes h 2 H

�

(A) suh that

hh(n); ai ! 1 and hh(n); ai ! b 2 R

N

, respetively. Then Theorem 5.1 gives the

following result.
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Theorem 5.2 Let A 2 A(BUC(R

N

); C

p

) and D = H(a) with a 2 R

N

n f0g. Then

the ompression of A onto D is Fredholm on L

p

(D) if and only if the following

onditions are satis�ed:

(a) for eah point � 2 S

N�1

with h�; ai > 0, the set fA

h

: h 2 H

�

(A)g of limit

operators of A is uniformly invertible.

(b) for eah point � 2 S

N�1

with h�; ai = 0, the set fA

h

: h 2 H

�;1

(A)g of limit

operators of A is uniformly invertible.

() for eah point � 2 S

N�1

with h�; ai = 0 and eah b 2 R

N

, the set

f(1� �

H(a; b)

)I + �

H(a; b)

A

h

�

H(a; b)

I : h 2 H

�; b

(A)g

of extended ompressions of limit operators of A is uniformly invertible.

5.3 Compressions to urved half spaes

Let N > 1 and f 2 BUC(R

N�1

). We onsider the urved half spae

P(f) := fx = (x

0

; x

N

) 2 R

N�1

� R : x

N

> f(x

0

)g � R

N

: (25)

Let further h 2 H be a sequene whih tends to in�nity into the diretion of

� = (�

0

; �

N

) 2 S

N�1

� R

N�1

� R. Again, we distinguish several ases.

� If �

N

> 0, then the limit operator of �

P(f)

I exists and is equal to the identity

operator.

� If �

N

< 0, then the limit operator of �

P(f)

I exists and is equal to the zero

operator.

� Now let �

N

= 0. Then h has a subsequene g 2 H suh that either the

numbers g(n)

N

tend to +1, or to �1, or that the sequene (g(n)

N

)

n�1

is

bounded. In the �rst two ases, the limit operator of �

P(f)

I with respet to g

exists, and it is equal to the identity operator in the �rst ase and to the zero

operator in the seond ase. In the third ase, there exists a subsequene k of

g, a real number b

k

and a funtion f

k

: R

N�1

! R suh that

lim

n!1

k(n)

N

= b

k

and lim

n!1

f(x

0

+ k(n)

0

) = f

k

(x

0

)

in the sense of the uniform onvergene on ompat subsets of R

N�1

. In this

ase, the limit operator of �

P(f)

I exists, too, and it is equal to the operator

of multipliation by the harateristi funtion of

P(f

k

� b

k

) = fx 2 R

N

: x

N

> f

k

(x

0

)� b

k

g

in the third ase.

Let H

�

(A) stand for the set of all sequenes h 2 H whih tend to in�nity into the

diretion of � 2 S

N�1

and for whih the limit operator A

h

exists. Further, given a

real number b and a funtion g : R

N�1

! R, we denote by H

�;1

(A) and H

�; g; b

(A)

the set of all sequenes h 2 H

�

(A) suh that h(n)

N

!1 and

h(n)

N

! b and f(x

0

+ h(n)

0

)! g(x

0

)

uniformly on ompat subsets of R

N�1

, respetively. If the set H

�; g; b

(A) is not

empty, then we all g a limit funtion with respet to �. Then Theorem 5.1 implies

the following result.
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Theorem 5.3 Let A 2 A(BUC(R

N

); C

p

) and D = P(f) with f 2 BUC(R

N�1

).

Then the ompression of A onto D is Fredholm on L

p

(D) if and only if the following

onditions are satis�ed:

(a) for eah point � 2 S

N�1

with �

N

> 0, the set fA

h

: h 2 H

�

(A)g of limit

operators of A is uniformly invertible.

(b) for eah point � 2 S

N�1

with �

N

= 0, the set fA

h

: h 2 H

�;1

(A)g of limit

operators of A is uniformly invertible.

() for eah point � 2 S

N�1

with �

N

= 0, eah b 2 R, and eah limit funtion

g : R

N�1

! R, the set

f(1� �

P(g�b)

)I + �

P(g�b)

A

h

�

P(g�b)

I : h 2 H

�; g; b

(A)g

of extended ompressions of limit operators of A is uniformly invertible.

This result gets a partiular simple form if f 2 SO(R

N

). In the setting of assertion

() of the theorem, this hypothesis implies that all funtions g are onstant (their

possible values are just the partial limits of f(x

0

) as x

0

! 1). Thus, all possible

limit domains P(g � b) are (unurved) half spaes.

5.4 Compressions to urved layers

Let again N > 1, and let f

1

; f

2

2 BUC(R

N�1

) be suh that f

1

(x

0

) < f

2

(x

0

) for all

x

0

2 R

N�1

. Then we all the set

L(f

1

; f

2

) := fx = (x

0

; x

N

) 2 R

N�1

� R : f

1

(x

0

) < x

N

< f

2

(x

0

)g (26)

a urved layer. Let h 2 H be a sequene whih tends to in�nity into the diretion of

� 2 S

N�1

. If �

N

6= 0, then the limit operator of �

L(f

1

; f

2

)

I with respet to h exists

and it is equal to 0. The same happens if �

N

= 0 and the sequene (h(n)

N

)

n�1

tends to �1. Thus, the only non-trivial ase is when �

N

= 0 and the sequene

(h(n)

N

)

n�1

is bounded. Then, as in the previous subsetion, there is a subsequene

k of h, a real number b

k

as well as funtions f

1k

; f

2k

: R

N�1

! R suh that the limit

operator of �

L(f

1

; f

2

)

I with respet to k exists and is equal to �

L(f

1k

�b

k

; f

2k

�b

k

)

I .

Let again H

�

(A) stand for the set of all sequenes h 2 H whih tend to in�nity

into the diretion of � 2 S

N�1

and for whih the limit operator A

h

exists, and

denote by H

�; g

1

; g

2

; b

(A) the set of all sequenes h 2 H

�

(A) suh that

h(n)

N

! b and f

i

(x

0

+ h(n)

0

)! g

i

(x

0

) (i = 1; 2)

uniformly on ompat subsets of R

N�1

.

Theorem 5.4 Let A 2 A(BUC(R

N

); C

p

) and D = L(f

1

; f

2

) with funtions f

1

, f

2

in BUC(R

N�1

) and f

1

< f

2

. Then the ompression of A onto D is Fredholm on

L

p

(D) if and only if, for eah point � 2 S

N�1

with �

N

= 0, eah b 2 R, and all

limit funtions g

1

; g

2

: R

N�1

! R, the set

f(1� �

L(g

1

�b; g

2

�b)

)I + �

L(g

1

�b; g

2

�b)

A

h

�

L(g

1

�b; g

2

�b)

I : h 2 H

�; g

1

; g

2

; b

(A)g

of extended ompressions of limit operators of A is uniformly invertible.

If f

1

; f

2

2 SO(R

N�1

), then the funtions f

1k

; f

2k

are onstant, and L(f

1k

�b

k

; f

2k

�

b

k

) is a usual layer bounded by two parallel planes.

Corollary 5.5 In addition to the hypothesis from Theorem 5.4, let

lim

x

0

!1

(f

1

(x

0

)� f

2

(x

0

)) = 0:

Then all limit operators of �

L(f

1

; f

2

)

I are zero, and the ompression of A onto

L(f

1

; f

2

) is Fredholm on L

p

(L(f

1

; f

2

)).
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5.5 Compressions to urved ylinders

Let N > 1, 
 � R

N�1

be a bounded domain, and f 2 BUC(R) a positive funtion,

and onsider the urved ylinder

Z




(f) := fx = (x

0

; x

N

) 2 R

N�1

� R : x

0

2 f(x

N

)
g: (27)

Let h 2 H. If h(n)

0

!1, then the limit operator of �

Z




(f)

I with respet to h exists

and is equal to the zero operator. Thus, nontrivial limit operators of �

Z




(f)

I with

respet to h exist only if the sequene (h(n)

0

)

n�1

is bounded and h(n)

N

! �1. In

this ase, there is a subsequene k of h, a point b

k

2 Z

N�1

, and a funtion f

k

on R

suh that

g(n)

0

! b

k

and f(x

N

+ k(n)

N

)! f

k

(x

N

) as n!1

uniformly on ompat subsets of R. Then the limit operator of �

Z




(f)

I with respet

to the sequene k exists, and it is equal to the operator of multipliation by the

harateristi funtion of the shifted urved ylinder

Z




(f

k

; b

k

) := fx = (x

0

; x

N

) 2 R

N�1

� R : x

0

2 f

k

(x

N

)
� b

k

g:

Let H

�

(A) denote the set of all sequenes h 2 H whih tend to in�nity into the di-

retion of � 2 S

N�1

and for whih the limit operator A

h

exists, and write H

�; g; b

(A)

for the set of all sequenes h 2 H

�

(A) suh that

h(n)

N

! b 2 Z

N�1

and f(x

N

+ h(n)

N

)! g(x

N

)

uniformly on ompat subsets of R.

Theorem 5.6 Let A 2 A(BUC(R

N

); C

p

) and D = Z




(f) with f 2 BUC(R).

Then the ompression of A onto D is Fredholm on L

p

(D) if and only if, for eah

point � 2 S

N�1

with �

0

= 0, eah b 2 Z

N�1

, and all limit funtions g : R ! R, the

set

f(1� �

Z




(g; b)

)I + �

Z




(g; b)

A

h

�

Z




(g; b)

I : h 2 H

�; g; b

(A)g

of extended ompressions of limit operators of A is uniformly invertible.

If f 2 SO(R), then the funtion f

g

is onstant and, thus, Z




(f

g

; b) is a usual

straight ylinder.

Corollary 5.7 In addition to the hypothesis from Theorem 5.6, let the ends of the

ylinder be uspidal, i.e. let

lim

x

N

!�1

f(x

N

) = 0:

Then all limit operators of �

Z




(f)

I are zero, and the ompression of A onto Z




(f)

is Fredholm on L

p

(Z




(f)).

5.6 Compressions to ones with smooth ross setion

Let 
 � R

N

be an open domain with C

1

-boundary �
 in ase N � 2 or an open

interval in R

1

. By C




, we denote the one in R

N+1

generated by 
,

C




:= f(y; y

N+1

) 2 R

N

� [0; 1) : y 2 y

N+1


g: (28)

Given x 2 R

N

, let �

x

2 S

N

be the point whih lies on the ray in R

N+1

starting at

the origin and passing through the point (x; 1), i.e.

�

x

=

(x; 1)

p

kxk

2

+ 1

:
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Let h 2 H be a sequene whih tends to in�nity into the diretion of � 2 S

N

. Again

there are two trivial ases: If � is not of the form �

x

with some x 2 
, then the limit

operator of �

C




I exists and is equal to the zero operator. If � = �

x

with x 2 
,

then the limit operator of �

C




I exists, too, and is equal to the identity operator.

Let now x 2 �
 and � = �

x

. We denote by T

x


 the tangential spae and by

�

x

the interior normal unit vetor to �
 at x. Further, we write H

x

for the losed

half spae in R

N

whih is bounded by T

x


 and for whih �

x

is an interior normal

unit vetor to �H

x

at x. Finally, we let H

x

refer to the half spae in R

N+1

whih

is generated by H

x

,

H

x

:= f(y; y

N+1

) 2 R

N

� R : y 2 H

x

+ (y

N+1

� 1)xg:

Further, we write the sequene h as

h(n) := �

n

(�

x

; 0) + (r

n

; 0) + �

n

(x; 1) (29)

where r

n

2 T

x


 and �

n

; �

n

2 R. The following lemma laims the onditions under

whih the sequene (29) tends to in�nity in the diretion of �

x

.

Lemma 5.8 The sequene h de�ned by (29) tends to in�nity in in the diretion of

�

x

if and only if �

n

! +1 and

�

n

=�

n

! 0 and r

n

=�

n

! 0 as n!1: (30)

Proof. The sequene h tends to in�nity if and only if

j�

n

j

2

+ kr

n

k

2

+ j�

n

j

2

!1; (31)

and then it onverges in the diretion of �

x

if and only if

(�

n

�

x

+ r

n

+ �

n

x; �

n

)

p

k�

n

�

x

+ r

n

+ �

n

xk

2

+ j�

n

j

2

!

(x; 1)

p

kxk

2

+ 1

: (32)

The onvergene of the last omponent of (32) tells us that �

n

> 0 for all suÆiently

large n. Thus, (31) implies

(

�

n

�

n

�

x

+

r

n

�

n

+ x; 1)

q

k

�

n

�

n

�

x

+

r

n

�

n

+ xk

2

+ 1

!

(x; 1)

p

kxk

2

+ 1

: (33)

From the onvergene of the last omponent of (33) we onlude that









�

n

�

n

�

x

+

r

n

�

n

+ x









! kxk:

This implies for the �rst omponent of (33) that

�

n

�

n

�

x

+

r

n

�

n

+ x! x

whene (30) sine �

x

? r

n

. Writing (31) as

�

2

n

 

�

�

�

�

�

n

�

n

�

�

�

�

2

+









r

n

�

n









2

+ 1

!

!1

and taking into aount (30), we �nally get �

n

! +1. The reverse impliations

an be heked similarly.
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In order to ompute the limit operators into the diretion of �

x

for x 2 �
, we

assume for simpliity that x = 0 (whih an be reahed by shifting 
) and that

T

x


 = T

0


 = R

N�1

�f0g (whih an be reahed by rotating the shifted 
). Then,

sine 
 has a C

1

-boundary, there is an open neighborhood U � R

N�1

of 0, an

open interval I � R whih ontains 0, and a ontinuously di�erentiable funtion

g : U ! I suh that

�
 \ (U � I) = f(x; g(x)) 2 R

N�1

� R : x 2 Ug

and


 \ (U � I) = f(x; x

N

) 2 U � I : x

N

> g(x)g:

Thus, if � > 0, then the part of the boundary of �
 whih lies in �U � �I is just

the graph of the funtion

�U ! �I; x 7! �g(x=�):

Let h be as in (29), and assume that the limit

Æ

�

:= lim(�

n

g(r

n

=�

n

)� �

n

) 2 R [ f�1g

exists (otherwise we pass to a suitable subsequene of h). Let further d > 0 and

K

N

d

:= [�d; d℄

N

, and set C

n;


:= V

�h(n)

C




. We onsider the intersetion of the

shifted one C

n;


with R

N

�f0g and identify this intersetion with a subset of R

N

.

Sine (y+r

n

)=�

n

2 U for all y 2 K

N�1

d

and for all suÆiently large n, the boundary

of C

n;


\ (R

N

� f0g) an be loally desribed as the graph of the funtion

G

n

: K

N�1

d

! R; y 7! �

n

g((y + r

n

)=�

n

)� �

n

:

Then, for every y 2 K

N�1

d

, we have

lim(G

n

(y)� Æ

�

) = lim(G

n

(y)�G

n

(0))

with

jG

n

(y)�G

n

(0)j � max

�2[0; y℄

kG

0

(�)k ky � 0k

= max

�2[0; y℄

kg

0

((� + r

n

)=�

n

)k kyk:

Sine g is ontinuously di�erentiable with g

0

(0) = 0, and sine

k(� + r

n

)=�

n

k � (d+ kr

n

k)=�

n

! 0

by Lemma 5.8, we onlude that G

n

(y) ! Æ

�

for every y 2 K

N�1

d

. Thus, if

(y; y

N

) 2 K

N

d

, then

�

C

n;


\(R

N

�f0g)

(y)!

�

1 if y

N

> Æ

�

0 if y

N

< Æ

�

An analogous result holds of the sequene (�

n

) is replaed by (�

n

+ �

0

) with �

0

2

[�d; d℄. This shows that

�

C

n;


(y)!

8

<

:

�

R

N+1(y) = y if Æ

�

= �1

�

H

x

+Æ

�

(�

x

; 0)

(y) if Æ

�

2 R

�

;

(y) = 0 if Æ

�

= +1

almost everywhere on K

N+1

d

. By the dominated onvergene theorem, this implies

that

�

C

n;


�

K

N+1

d

!

8

>

<

>

:

�

K

N+1

d

if Æ

�

= �1

�

H

x

+Æ

�

(�

x

; 0)

�

K

N+1

d

if Æ

�

2 R

0 if Æ

�

= +1
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with respet to the L

1

-norm and, hene, also with respet to every L

p

-norm with

1 � p < 1 (the ourring funtions take values in f�1; 0; 1g almost everywhere).

Sine d is arbitrary, this �nally yields that

�

C

n;


I !

8

<

:

I if Æ

�

= �1

�

H

x

+Æ

�

(�

x

; 0)

I if Æ

�

2 R

0 if Æ

�

= +1

strongly on L

p

(R

N+1

).

Given A 2 A(BUC(R

N+1

); C

p

(R

N+1

)), let H

�

(A) denote the set of all sequenes

h 2 H whih tend to in�nity into the diretion of � 2 S

N

and for whih the limit

operator A

h

exists. Further, write H

�;�1

(A) and H

�;Æ

�

(A) with Æ

�

2 R for the set

of all sequenes h 2 H

�

(A) with

lim(�

n

g(r

n

=�

n

)� �

n

) = �1 and lim(�

n

g(r

n

=�

n

)� �

n

) = Æ

�

;

respetively. Finally, we abbreviate the shifted half spae H

x

+ Æ

�

(�

x

; 0) to H

x;Æ

�

.

Then Theorem 5.1 has the following onsequene.

Theorem 5.9 Let A 2 A(BUC(R

N+1

); C

p

(R

N+1

)) and D = C




with 
 2 R

N

an

open domain with C

1

boundary. Then the ompression of A onto D is Fredholm on

L

p

(D) if and only if the following onditions are satis�ed:

(a) for eah point x 2 
, the set fA

h

: h 2 H

�

x

(A)g of limit operators of A is

uniformly invertible.

(b) for eah point x 2 �
, the set fA

h

: h 2 H

�

x

;�1

(A)g of limit operators of A is

uniformly invertible.

() for eah point x 2 �
, the set

f(1� �

H

x;Æ

�

)I + �

H

x;Æ

�

A

h

�

H

x;Æ

�

I : h 2 H

�;Æ

�

(A); Æ

�

2 Rg

of extended ompressions of limit operators of A is uniformly invertible.

We still mention some speial situations in whih the onditions of Theorem 5.9

take a very simple form.

Let A 2 A(SO(R

N+1

); C

p

(R

N+1

)). Then all limit operators of A belong to

C I + C

p

(R

N+1

). In this ase, the invertibility of the ompressions in ondition

() an be e�etively heked. Let, for example, A

h

be the operator I + C(k)

with  2 C and k 2 L

1

(R

N+1

). Sine C(k) is shift invariant, the orresponding

ompression () is invertible if and only if the operator

(1� �

H

x

)I + �

H

x

(I + C(k))�

H

x

I (34)

is invertible. Further, given an orthogonal mapping S on R

N+1

, we write R

S

for

the rotation operator (R

S

f)(x) = f(Sx), and for k 2 L

1

(R

N+1

), we let k

S

be

the funtion k

S

(x) = k(S

T

x) with S

T

referring to the transposed of S. Then

onvolution operators are rotation invariant in the sense that

C(k)R

S

= R

S

C(k

S

):

Thus, if we hoose S suh that it rotates H

x

to the half spae H := f(x

1

; x) 2

R�R

N

: x

1

� 0g, then the ompression (34) is invertible if and only if the operator

(1� �

H

)I + �

H

(I + C(k

S

))�

H

I (35)

is invertible. Finally, the ompression (35) is invertible if and only if the operator

(1� �

H

)I + (I + C(k

S

))�

H

I
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is invertible. This follows easily from the identities AP +Q = (PAP +Q)(I+QAP )

and (I+QAP )

�1

= I�QAP whih hold for arbitrary operators A and idempotents

P; Q with P +Q = I .

The same results hold if C(k) is replaed by an arbitrary operator in C

p

(R

N+1

).

For the invertibility of the resulting ompressions, one has the following result from

[14℄ (Theorem 1.4).

Theorem 5.10 Let B 2 C I + C

p

(R

N+1

). Then the operator (1� �

H

)I +B�

H

I is

invertible on L

p

(R

N+1

) is and only if the operator B is invertible on L

p

(R

N+1

).

Note one more that the invertibility of B 2 C I + C

p

(R

N+1

) an be e�etively

heked via (4).

With these remarks, we get the following orollaries to Theorem 5.9.

Corollary 5.11 Let A 2 A(SO(R

N+1

); C

p

(R

N+1

)) and D = C




with 
 2 R

N

an

open domain with C

1

boundary. Then the ompression of A onto D is Fredholm

on L

p

(D) if and only if, for eah point x 2 
, the set fA

h

: h 2 H

�

x

(A)g of limit

operators of A (= the loal operator spetrum at �

x

) is uniformly invertible.

Corollary 5.12 Let A 2 A(L

1

stab

(R

N+1

); C

p

(R

N+1

)) and D = C




with 
 2 R

N

an

open domain with C

1

boundary. Then the ompression of A onto D is Fredholm on

L

p

(D) if and only if, for eah point x 2 
, the limit operator A

�

x

of A is invertible.

Remark. Let f : [0; 1) ! R be a slowly osillating funtion, and let 
 2 R

N

be

an open domain with C

1

boundary. We onsider the slowly osillating one,

C


; f

:= f(y; y

N+1

) 2 R

N

� [0; 1) : y 2 (y

N+1

+ f(y

N+1

))
g: (36)

In a similar way as above, one an show that the limit operators of the multipliation

operator �

C


; f

I are the same as in ase of the unperturbed one C




, and that the

analogue of Theorem 5.9 holds.

5.7 Compressions to ones with edges

Here we are going to onsider ompressions of onvolution operators to ones whih

are allowed to have a �nite number of edges. For simpliity, we restrit ourselves to

the ase N = 2.

More preisely, we let 
 be an open domain in R

2

the boundary �
 of whih is

C

1

up to a �nite set M of singular points (i.e. �
 is not C

1

in any neighborhood

of x 2M). For eah point x 2M we suppose that there are an open neighborhood

U

x

� R

2

of x as well as two open domains 


x; l

and 


x; r

with C

1

-boundary suh

that either

U

x

\ 
 = U

x

\ (


x; l

\ 


x; r

) (37)

or

U

x

\ 
 = U

x

n (


x; l

\ 


x; r

): (38)

If the tangent spaes T

x




x; l

and T

x




x; r

do not oinide, then we all x an outward

angular point in ase of (37) and an inward angular point in ase of (38). If these

tangent spaes oinide, then x is alled an outward resp. inward uspidal point.

As in the previous setion, we onsider the one generated by 
,

C




:= f(y; y

3

) 2 R

2

� [0; 1) : y 2 y

3


g (39)

and, for x 2 R

2

and Æ 2 R, the half spaes H

x

and H

x; Æ

. Further we set H

x;�1

:=

R

3

and H

x;+1

:= ; and, for Æ; � 2 R [ f�1g and x 2M ,

K

x; Æ; �

:= H

x; Æ; l

\H

x; �; r

where H

x; Æ; l

and H

x; �; r

are half spaes belonging to 


x; l

and 


x; r

, respetively.
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Proposition 5.13 Let x 2 R

2

. Then the loal operator spetrum �

�

x

(�

C




I) is

equal to

(a) f0g if x 62 
.

(b) fIg if x 2 
.

() f�

H

x; Æ

I : Æ 2 R [ f�1gg if x 2 �
 nM .

(d) f�

K

x; Æ; �

I : Æ; � 2 R [ f�1gg if x 2 �
 \M is an angular point.

(e) f0g if x 2 �
 \M is an outward uspidal point.

(f) fIg if x 2 �
 \M is an inward uspidal point.

Proof. The proof for (a) { () is the same as in the previous setion. The results

of the previous setion also show that the loal operator spetrum �

�

x

(�

C




) is

ontained in the set (d) if x 2 �
\M is an angular point. That it is atually equal

to this set an be seen as follows. Sine x is an angular point, we an independently

shift the half spae H

x; 0; l

by a sequene whih tends into the diretion of �

x

and

omes loser and loser to �H

x; 0; r

and the half spae H

x; 0; r

by a sequene whih

also tends into the diretion of �

x

and omes loser and loser to �H

x; 0; l

. Sine

eah of these sequenes inuenes the assoiated limit operators of only one of the

half spaes, we get any desired ombination of shifts of the half spaes H

x; 0; l

and

H

x; 0; r

in this way. This shows (d), and (e) and (f) an be proved as in the previous

setion. (See the disussion before Theorem 5.9. The obvious point is that, in ase of

a uspidal point, the half spaesH

x; 0; l

and H

x; 0; r

annot be shifted independently

of eah other.)

Given A 2 A(BUC(R

3

); C

p

(R

3

)), let H

�

(A) denote the set of all sequenes h 2 H

whih tend to in�nity into the diretion of � 2 S

2

and for whih the limit operator

A

h

exists. Further, if x 2 �
 nM and Æ 2 R [ f�1g, write H

x; Æ

(A) for the set of

all sequenes h 2 H

�

x

(A) suh that the limit operator of �

C




I exists and is equal

to �

H

x; Æ

I . Finally, if x 2 �
\M is an angular point and Æ; � 2 R[f�1g, then let

H

x; Æ; �

(A) stand for the set of all sequenes h 2 H

�

x

(A) suh that the limit operator

of �

C




I exists and is equal to �

K

x; Æ; �

I . With these notations, we have the following

onsequene of Theorem 5.1.

Theorem 5.14 Let A 2 A(BUC(R

3

); C

p

(R

3

)) and D = C




with 
 2 R

2

an open

domain with pieewise C

1

boundary as above. Then the ompression of A onto D

is Fredholm on L

p

(D) if and only if the following onditions are satis�ed:

(a) for eah point x 2 
, the set fA

h

: h 2 H

�

x

(A)g of limit operators of A is

uniformly invertible.

(b) for eah point x 2 �
 nM , the set

f(1� �

H

x;Æ

)I + �

H

x; Æ

A

h

�

H

x; Æ

I : h 2 H

x; Æ

(A); Æ 2 R [ f�1gg

of extended ompressions of limit operators of A is uniformly invertible.

() for eah angular point x 2 �
 \M , the set

f(1� �

K

x;Æ; �

)I + �

K

x; Æ; �

A

h

�

K

x; Æ; �

I : h 2 H

x; Æ; �

(A); Æ; � 2 R [ f�1gg

of extended ompressions of limit operators of A is uniformly invertible.

(d) for eah inward uspidal point x 2 �
 \M , the set fA

h

: h 2 H

�

x

(A)g of limit

operators of A is uniformly invertible.

Note that the onditions in (b) and () get a simpler form if one of the shift param-

eters Æ and � is �1. Let us also emphasize that, if x is an outward uspidal point,

then the loal invertibility at �

x

of the ompression of A onto D is trivially satis�ed
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sine all limit operators of (1 � �

D

)I + �

D

A�

D

I with respet to sequenes whih

tend to in�nity into the diretion of �

x

are equal to I .

Again we mention some speial situations in whih the onditions of Theorem

5.14 an be readily veri�ed.

Corollary 5.15 Let A 2 A(SO(R

3

); C

p

(R

3

)) and D be as in Theorem 5.14. Then

the ompression of A onto D is Fredholm on L

p

(D) if and only if the following

onditions are satis�ed:

(a) for eah point x 2 
 whih is neither angular nor outward uspidal, the set

fA

h

: h 2 H

�

x

(A)g of limit operators of A is uniformly invertible.

(b) for eah angular point x 2M , the set

f(1� �

K

x;0; 0

)I + �

K

x; 0; 0

A

h

�

K

x; 0; 0

I : h 2 H

x; Æ; �

(A); Æ; � 2 Rg

of extended ompressions of limit operators of A is uniformly invertible.

() for eah angular point x 2M , the set

fA

h

: h 2 H

x;�1; �

(A) [ H

x; Æ;�1

(A) [ H

x;�1;�1

(A) : Æ; � 2 Rg

of limit operators of A is uniformly invertible.

Here we have used the shift invariane of the limit operators of A as well as Simo-

nenko's Theorem 5.10 again.

Corollary 5.16 Let A 2 A(L

1

stab

(R

3

); C

p

(R

3

)) and D be as in Theorem 5.14. Then

the ompression of A onto D is Fredholm on L

p

(D) if and only if the following

onditions are satis�ed:

(a) for eah point x 2 
 whih is neither angular nor outward uspidal, the limit

operator A

�

x

of A is invertible.

(b) for eah angular point x 2M , the extended ompression

(1� �

K

x;0; 0

)I + �

K

x; 0; 0

A

�

x

�

K

x; 0; 0

of the limit operator A

h

of A is invertible.

Indeed, this result follows from the fat that eah loal operator spetrum is a sin-

gleton under the hypothesis of the orollary. Furthermore, one shows by hoosing

suitable sequenes tending to in�nity that every operator in ondition () of Corol-

lary 5.15 is a limit operator of the operator in (b) (ompare the proof of Theorem

2.33 in [9℄). Thus, the invertibility of that operator already implies the invertibility

of all operators in Corollary 5.15 ().

5.8 Compressions to epigraphs of funtions

We let f : R ! R be a ontinuously di�erentiable funtion with

lim

t!�1

f(t) = +1 and lim

t!�1

f

0

(t) = 0 (40)

and onsider its epigraph

E

f

:= f(x

1

; x

2

) 2 R

2

: x

2

> f(x

1

)g: (41)

Let h = (h

1

; h

2

) 2 H be a sequene whih tends to in�nity into the diretion of

� = (�

1

; �

2

) 2 S

1

. It is evident that the limit operator of �

E

f

I exists and is equal

to the identity operator if �

2

> 0, whereas the limit operator of �

E

f

I exists and is
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equal to zero if �

2

< 0. Now let � = (1; 0), and let h be a sequene for whih the

limit operator of �

E

f

exists. We write

h

2

(n) =: f(h

1

(n)) + d

n

and hoose a subsequene of h (whih we denote by h again) suh that the sequene

(d

n

) beomes onvergent with limit Æ 2 R [ f�1g. Further, for Æ 2 R [ f�1g, we

let

H

Æ

:= f(x

1

; x

2

) 2 R

2

: x

2

> Æg:

Then it is easy to hek that the limit operator of �

E

f

I oinides with �

H

Æ

I and

that, onversely, every operator of this form appears as a limit operator of �

E

f

I .

The same holds for � = (�1; 0).

Given A 2 A(BUC(R

2

); C

p

(R

2

)), let H

�

(A) denote the set of all sequenes

h 2 H whih tend to in�nity into the diretion of � 2 S

1

and for whih the limit

operator A

h

exists. Further, for Æ 2 R [ f�1g, write H

�1; Æ

(A) for the set of all

sequenes h 2 H

(�1; 0)

(A) suh that the limit operator of �

E

f

I exists and is equal

to �

H

Æ

I . Then Theorem 5.1 yields, for example, the following.

Theorem 5.17 Let A 2 A(L

1

stab

(R

2

); C

p

(R

2

)), and let D = E

f

be the the epigraph

of the funtion f satisfying (40). Then the ompression of A onto D is Fredholm

on L

p

(D) if and only if, for eah point � = (�

1

; �

2

) 2 S

1

with �

2

� 0, the limit

operator A

�

of A is invertible.

The proof is the same as for Corollaries 5.12 and 5.16.

Finally, let f

�

: R ! R be ontinuously di�erentiable funtions with

lim

t!+1

f

�

(t) = lim

t!�1

f

�

(t) = �1 and lim

t!+1

f

0

�

(t) = lim

t!�1

f

0

�

(t) = 0; (42)

and let

E

f

+

; f

�

:= f(x

1

; x

2

) 2 R

2

: f

�

(x

1

) < x

2

< f

+

(x

1

)g: (43)

As before one an hek that every limit operator of �

E

f

+

; f

�

I is of the form �

H

Æ

I

with Æ 2 R [ f�1g and that, onversely, every operator of this form is a limit

operator of �

H

Æ

I if h tends into the diretion of (�1; 0) 2 S

1

. If h tends to in�nity

into the diretion of � 2 S

1

with �

2

6= 0 then, neessarily, the limit operator of

�

H

Æ

I with respet to h exists and is equal to the zero operator.

Theorem 5.18 Let A 2 A(L

1

stab

(R

2

); C

p

(R

2

)), and let D = E

f

+

; f

�

with funtions

f

�

satisfying (42). Then the ompression of A onto D is Fredholm on L

p

(D) if and

only if the limit operators A

�

of A with � = (�1; 0) 2 S

1

are invertible.
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