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Projetive ompletions of Jordan pairs

Part I. The generalized projetive geometry of a Lie algebra

Wolfgang Bertram, Karl-Hermann Neeb

Abstrat. We prove that the projetive ompletion (X

+

; X

�

) of the Jordan pair (g

1

; g

�1

)

orresponding to a 3-graded Lie algebra g = g

1

� g

0

� g

�1

an be realized inside the spae F

of inner 3-�ltrations of g in suh a way that the remoteness relation on X

+

�X

�

orresponds

to transversality of ags. This realization is used to give geometri proofs of struture results

whih will be used in Part II of this work in order to de�ne on X

+

and X

�

the struture of a

smooth manifold (in arbitrary dimension and over general base �elds or -rings).
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Introdution

A basi onstrution in linear algebra permits to imbed an aÆne spae V into a projetive

spae X as the omplement of a \hyperplane at in�nity" { let us assume here for simpliity that

everything is de�ned over a ommutative �eld K , so that X may be seen as the projetive spae

P(W ) with W

�

=

V � K . In the real or omplex ase, if the dimension is �nite or if V is e.g. a

Banah spae, the projetive spae X is a smooth manifold with V as a typial hart domain.

An atlas of X is obtained by taking all aÆne parts of X (all omplements of hyperplanes

of X ); as is well-known, hange of harts is then given by rational and hene di�erentiable

expressions. Similar onstrutions are known for other manifolds X suh as Grassmannians,

spaes of Lagrangians or onformal quadris.

In the present work we will onstrut suh manifolds in a very general ontext, in arbitrary

dimension and over general base �elds or -rings instead of R or C . The present and �rst part

ontains the algebrai theory, and Part II ([BN03℄) ontains the analyti theory. For the ase of

base �elds other than R or C , we use in Part II suitable onepts of di�erential alulus and

of smooth manifolds developed in [BGN03℄ whih, in the ase of loally onvex real or omplex
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model spaes { in partiular, for Banah and Fr�ehet spaes {, agree with the usual onepts

(but work more generally for manifolds modeled on any Hausdor� topologial vetor spae).

The present Part I is of independent interest sine indeed a good deal of the above mentioned

onstrutions is purely algebrai and admits a beautiful Lie- and Jordan theoreti interpretation.

Geometrially, we work in the ontext of generalized projetive geometries (introdued in [Be02℄),

and algebraially, in the ontext of 3-graded Lie algebras whih in turn orrespond to Jordan

pairs (however, the paper is self-ontained, and we assume only basi knowledge of Lie-algebras).

As in the ordinary projetive ase, it is a purely algebrai problem to de�ne the hart domains, to

give the preise desription of the intersetion of hart domains and and to �nd expliit formulas

for the transition maps between di�erent harts. One this is established, di�erential alulus

an be applied in order to show in Part II that these strutures are di�erentiable under some

suitable and natural assumptions. In this way we not only obtain e.g. Grassmannian manifolds,

Lagrangian manifolds or onformal quadris in arbitrary dimension over K = R; C ;Q

p

; : : : , but

also a wealth of symmetri spaes (over K ) whih generalize the symmetri Banah manifolds (see

the monograph [Up85℄) but inlude many ompletely new examples that had not been aessible

before. The symmetri spaes thus onstruted are preisely those whih are in the image of the

Jordan-Lie funtor (f. [Be02℄, [Be00℄).

Let us now desribe the ontents in some more detail. Our basi objets are on the one

hand 3-graded Lie algebras, i.e. Lie algebras of the form g = g

1

�g

0

�g

�1

satisfying the relations

[g

�

; g

�

℄ � g

�+�

, and on the other hand 3-�ltered Lie algebras, i.e. Lie algebras g with a ag

f : 0 = f

2

� f

1

� f

0

� g of subalgebras suh that [f

�

; f

�

℄ � f

�+�

. For simpliity we shall also write

these ags as pairs f = (f

1

; f

0

). If g is 3-graded, then D(X) = iX (X 2 g

i

) de�nes a derivation

of g suh that D

3

= D , alled the harateristi element, and if D is inner, D = ad(E), E will

be alled an Euler operator. The spae of inner 3-gradings of g is

G = fad(E) : E 2 g; ad(E)

3

= ad(E)g:

As usual in algebra, graded strutures have underlying �ltered strutures. However, for every

3-grading, there are two naturally assoiated �ltrations, f

+

:= f

+

(D) : g

1

� g

1

� g

0

� g and

f

�

:= f

�

(D) = f

+

(�D) : g

�1

� g

�1

� g

0

� g . If

F = ff

+

(D) : D 2 Gg

denotes the spae of inner 3-�ltrations of g , then we have an injetion

G ,! F �F ; D 7! (f

+

(D); f

�

(D)):

The spaes G and F arry many interesting geometri strutures; one may say that the

pair (F � F ;G) is a \universal model of the generalized projetive geometry assoiated to g".

On F �F there is a natural relation of being transversal: two ags e = (e

1

; e

0

) and f = (f

1

; f

0

)

are transversal if

g = e

1

� f

0

= f

1

� e

0

:

Our key result on the struture of 3-graded Lie algebras (Theorem 1.6) aÆrms that G � F �F

is exatly the set of pairs of transversal inner 3-�ltrations of g , and the set f

>

of �ltrations

transversal to a given �ltration f arries anonially the struture of an aÆne spae over K with

translation group (f

1

;+). The elementary projetive group G = G(D) of the 3-graded Lie algebra

(g; D) is the group of automorphisms of g generated by the abelian groups U

�

= e

ad(g

�1

)

; it

ats on F and on G . We realize the projetive ompletion (X

+

; X

�

) of the pair (g

1

; g

�1

) as

the G-orbits in F of the base points f

�

and f

+

suh that V

�

:= U

�

:f

�

= (f

�

)

>

are \aÆne

parts of X

�

" (Theorem 1.12). Summing up, the \generalized projetive geometry (X

+

; X

�

)"

is imbedded as a subgeometry in (F ;F).

Using this model, we have a natural de�nition of the \tangent bundle" TF of F and

of a \struture bundle" T

0

F (taking the rôle of a otangent bundle), and of setions of these

bundles. Thus we an de�ne, in a purely algebrai ontext, vetor �elds on F as well as a

ertain operator between T

0

F and TF alled the anonial kernel (Chapter 2). Over the aÆne
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parts V

�

, the bundles and their setions an be trivialized, and it is seen that our vetor �elds

are atually quadrati polynomial and that the anonial kernel oinides with the well-known

Bergman operator from Jordan theory (see below). Thus we get a very natural interpretation

of the \Koeher onstrution" whih onsists of realizing a 3-graded Lie algebra by quadrati

polyomial vetor �elds (f. also [Be00, Ch. VII℄, where in the �nite-dimensional real ase another

natural interpretation of this onstrution is given by using the integrability of almost (para-)

omplex strutures). This approah naturally leads to one of the main results to be used in

[BN03℄, namely the hart desription of the ation of Aut(g) by \frational quadrati maps"

(Theorem 2.8) .

In Chapter 3 we explain the link of the preeding results with Jordan theory: the pair

(V

+

; V

�

) = (g

1

; g

�1

) together with the trilinear maps T

�

: V

�

� V

�

� V

�

! V

�

given by

triple Lie brakets is a (linear) Jordan pair, and one an express in a straightforward way all

relevant formulas from the preeding hapter by these maps. Thus we obtain in a alulation-free

way the Bergman-operator, the quasi-inverse and many of their fundamental relations and thus

get new and \geometri" proofs of many Jordan theoreti results.

In Chapter 4 we add a new struture feature, namely an involution of the 3-graded Lie

algebra. It leads to a bijetion p : X

+

! X

�

whih is alled a polarity in ase that there

exist non-isotropi points x (i.e., p(x)>x). Then the spae of all non-isotropi points arries

the struture of symmetri spae over K . We prove that the struture maps of this symmetri

spae are given by suitable Jordan-theoreti formulas (Theorem 4.4), whih will allow to onlude

in Part II of this work that these struture maps are di�erentiable and so we really deal with

symmetri spaes in the ategory of smooth manifolds.

Chapters 5 up to 8 ontain further material that is not stritly neessary for Part II of

this work: in Chapter 5 we disuss those geometries that orrespond to unital Jordan algebras:

using our realization of X

�

as G-orbits in F , they are haraterized by the simple property

that V

+

\ V

�

is non-empty; in partiular, X

+

= X

�

. An axiomati haraterization of the

\anonial identi�ation of X

+

and X

�

" has been given in [Be03℄; thanks to our model, things

are onsiderably easier here than in the axiomati approah.

In Chapter 6 some funtorial aspets of our onstrutions are investigated. It is shown that

surjetive homomorphisms of 3-graded Lie algebras indue equivariant maps of the assoiated

geometries and we also show that inlusions of inner 3-graded subalgebras ontaining g

1

+ g

�1

indue isomorphisms of the orresponding geometries.

In Chapter 7 we disuss entral extensions of inner 3-graded Lie algebras. We show that

for eah entral extension q:

b

g! g of an inner 3-graded Lie algebra g the extended Lie algebra

b

g arries a natural struture of an inner 3-graded Lie algebra for whih q is a morphism of

3-graded Lie algebras. We further onstrut a universal inner 3-graded entral extension of g .

We know from Chapter 6 that quotient maps indue maps on the level of geometries. For entral

extensions we show that these maps are isomorphisms.

In the �nal Chapter 8, we look at an important lass of geometries, the Grassmannian

geometries: let R be an assoiative algebra over the ommutative ring K , V be a right R -

module, P the spae of all R -linear projetors V ! V and C be the spae of all R -submodules

of V that admit a omplement. Then, by elementary linear algebra, the pair (C � C;P) has the

main features of a generalized projetive geometry (Prop. 8.2, f. also [Be01℄), and in fat there

is a homomorphism into the geometry (F �F ;G) with g = gl

R

(V ) whih indues isomorphisms

on subgeometries that are homogeneous under the elementary projetive groups (Theorem 8.4).

Suh geometries, alled Grassmannian geometries, orrespond to speial Jordan pairs, i.e., to

subpairs of assoiative pairs. In partiular, if V = R , then the Grassmannian geometry an also

be alled the \geometry of right ideals of the assoiative algebra R"; it orresponds to R , seen

as a Jordan algebra over K .

Finally, we would like to add some omments on related work and on some open problems.

The elementary projetive group and the projetive ompletion of a general Jordan pair have

been introdued by J. Faulkner ([Fa83℄), and results losely related to ours have been obtained

by O. Loos ([Lo95℄). Their results are based on the axiomati theory of Jordan pairs ([Lo75℄) and

hene work even for base rings in whih 2 is not invertible. In ontrast, we work in the ontext of
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general 3-graded Lie algebras and hene assume throughout that 2 is invertible in K . However,

it is possible to extend our approah also to the ase of a general base ring K { see Remark

3.9. Our results are more general in the sense that they apply to general 3-graded Lie algebras

(not only to the Tits-Kantor-Koeher algebra of a Jordan pair) and to the general automorphism

group Aut(g) (and not only to the important speial ase given by transformations orresponding

to quasi-inverses). As a by-produt, we get new proofs of many Jordan theoreti results. It is

in interesting open problem wether it is possible to derive \all" Jordan theoreti formulas in a

similar geometri way { in partiular, we would like to have in our model a \geometri" proof of

the fundamental identity (PG2) of a generalized projetive geometry (f. [Be02℄) whih is very

losely related to the famous fundamental formula of Jordan theory.

Closely related results have also been obtained by Kaup ([Ka83℄) and Upmeier ([Up85℄)

in the omplex ase in presene of a Jordan-Banah struture. In fat, some arguments used to

prove our Struture Theorem 1.6 have been used by Kaup in the proof of his Riemann Mapping

Theorem (see the proof of [Kau83, Prop. (2.14)℄ and the detailed version of this in [Up85, Lemma

9.16℄). Our proofs are muh simpler sine we work diretly with the 3-graded Lie algebra, whereas

Kaup and Upmeier always use its homomorphi image realized by quadrati polynomial vetor

�elds (alled binary Lie algebras in [Up85℄).

The speial ase of Grassmannians, espeially in the ontext of Banah manifolds, has

attrated muh attention sine it plays an important rôle in di�erential geometetry and is related

to several interesting di�erential equations { see, e.g., [D92℄, [DNS87℄; our onstrutions are

similar to, but muh more general than the ones desribed there. For further referenes to

onstrutions of manifolds in ontexts related to Jordan theory see Part II ([BN03℄); f. also

[Io03℄ for an extensive bibliography.

Aknowledgement. The seond named author thanks the Institut Elie Cartan for its hospitality

during the time of prepration of a �rst draft of the present paper.

Notation. throughout this paper, K is a ommutative ring with unit 1 suh that 2 is invertible

in K . In Chapter 8, R denotes a possibly non-ommutative ring whih is a K -algebra.

1. Three-graded and three-�ltered Lie algebras

1.1. Three-graded Lie algebras. A 3-graded Lie algebra (over K ) is a Lie algebra over K

of the form g = g

1

� g

0

� g

�1

suh that [g

k

; g

l

℄ � g

k+l

, i.e., g

�1

are abelian subalgebras whih

are g

0

-modules, in the following often denoted by V

�

or g

�

, and [g

1

; g

�1

℄ � g

0

. The map

D : g ! g de�ned by DX = iX for X 2 g

i

is a derivation of g , alled the harateristi element

of the grading. It satis�es the relation (D � id)D(D + id) = 0, i.e., D

3

= D ; we say that it

is a tripotent derivation. Conversely, any tripotent derivation D : g ! g is diagonizable with

possible eigenvalues �1; 0; 1 and orresponding deomposition of X 2 g :

X = X

1

+X

0

+X

�1

; X

0

= X �D

2

X; X

1

=

DX +D

2

X

2

; X

�1

=

�DX +D

2

X

2

: (1:1)

Sine D is a derivation, this eigenspae deomposition is a 3-grading. Therefore we may identify

the spae of 3-gradings of g with the set

e

G := fD 2 der(g) : D

3

= Dg

of tripotent derivations. If D = ad(E) is an inner tripotent derivation, then E is alled an Euler

operator, and we denote by

G := fad(E) : E 2 g; ad(E)

3

= ad(E)g (1:2)

the spae of inner 3-gradings of g . The odd part of the 3-graded Lie algebra (g; D) is g

�1

� g

1

,

and we say that (g; D) is minimal if it is generated by its odd part, that is, g

0

is generated by

the brakets [g

1

; g

�1

℄ .
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The following degenerate ases may arise: D

2

= id, then g must be abelian, and we have

merely a deomposition of a K -module into omplementary subspaes; D

2

= D , then g = g

0

�g

1

is nothing but a g

0

-module g

1

, in partiular, D = 0 orresponds to the ase g

1

= f0g .

1.2. The projetive elementary group. Let (g; D) be a 3-graded Lie algebra over K . For

x 2 g

�1

, the operator e

adx

= 1 + adx +

1

2

(adx)

2

is a well de�ned automorphism of g . The

group generated by these operators,

G := G(D) := PE(g; D) := he

adx

:x 2 g

�1

i � Aut(g);

is alled the projetive elementary group of (g; D) (see Setion 3.2 for the relation with the

projetive elementary group de�ned in Jordan theoreti terms, as in [Fa83℄, [Lo95℄). Sometimes

it will be useful to have a matrix notation for elements of G : if g 2 Aut(g), we let, with respet

to the �xed 3-grading,

g

ij

:= pr

i

Æg Æ �

j

: g

j

! g

i

; i; j = 1; 0;�1;

where �

j

: g

j

! g are the inlusion maps and pr

i

: = pr

i

(D) : g! g

i

the projetions, given by

pr

1

=

D +D

2

2

; pr

0

= 1�D

2

; pr

�1

=

D

2

�D

2

; (1:3)

and write g in \matrix form"

g =

0

�

g

11

g

10

g

1;�1

g

01

g

00

g

0;�1

g

�1;1

g

�1;0

g

�1;�1

1

A

: (1:4)

The subgroups U

�

:= U

�

(D) := e

adg

�

of G are abelian and generate G . If the grading

derivation is inner, D = ad(E), then

exp : g

�1

! U

�

; X 7! e

ad(X)

is injetive sine v 2 g

�

implies e

ad v

:E = E�v . In the general ase, we de�ne the automorphism

group of (g; D) to be

Aut(g; D) = fg 2 Aut(g) : g ÆD = D Æ gg;

and we further de�ne subgroups H := H(D) and P

�

:= P

�

(D) of G via

H := G(D) \ Aut(g; D) and P

�

:= HU

�

= U

�

H: (1:5)

(If D is inner, D = ad(E), then H = fh 2 G:hÆadEÆh

�1

= adEg = fh 2 G:h:E�E 2 z(g)g .)

The groups U

�

are abelian, and sine the group H ommutes with D , it preserves the grading,

hene normalizes U

�

, so that P

�

are subgroups of G . Using notation from Equation (1.4), the

generators of G are represented by the following matries (where x 2 g

1

, y 2 g

�1

, h 2 H ):

e

adx

=

0

�

1 adx

1

2

ad(x)

2

0 1 adx

0 0 1

1

A

; e

ad y

=

0

�

1 0 0

ad y 1 0

1

2

ad(y)

2

ad y 1

1

A

; h =

0

�

h

11

h

00

h

�1;�1

1

A

:

More information on the group G(D) for inner 3-gradings D is given in Theorem 1.12.

Sometimes it will be useful to replae G by a slightly bigger group: if D 2

e

G and r 2 K

�

,

then, using the matrix notation (1.4),

h

(D;r)

:=

0

�

r

1

r

�1

1

A

= r pr

1

+pr

0

+r

�1

pr

�1

; (1:6)
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with the pr

i

as in Equation (1.3), de�nes an automorphism of (g; D) normalizing U

�

and

ommuting with all elements of the group Aut(g; D). The group G

ext

generated by G and the

group fh

(D;r)

: r 2 K

�

g will be alled the extended projetive elementary group.

1.3. Three-�ltered Lie algebras. A 3-�ltration of a Lie algebra g is a ag of subspaes

0 = f

2

� f

1

� f

0

� f

�1

= g

suh that

[f

k

; f

l

℄ � f

k+l

: (1:7)

Supressing the trivial parts f

2

and f

�1

in the notation, we will denote suh a ag by f = (f

1

; f

0

)

or f : (f

1

� f

0

). Let

e

F be the set of suh ags f , alled the spae of 3-�ltrations of g . Conditions

(1.7) are equivalent to the following requirements:

� f

0

is a subalgebra, and f

1

is an abelian subalgebra of g ,

� f

1

is an ideal in f

0

, and [g; f

1

℄ � f

0

.

It follows that the operators ad(X) with X 2 f

1

are 3-step nilpotent and hene the automorphism

e

ad(X)

of g is well-de�ned. We denote by

U(f) := e

ad(f

1

)

= fe

ad(X)

jX 2 f

1

g � Aut(g) (1:8)

the orresponding abelian group. From (1.7) it follows that U(f) preserves the �ltration f . The

�ltration f is also stable under the ation of the subalgebra f

0

.

1.4. Relation between 3-gradings and 3-�ltrations. To any 3-grading g = g

1

� g

0

� g

�1

of g with harateristi derivation D 2

e

G we may assoiate two 3-�ltrations of g , alled the

assoiated plus- and minus-�ltration, given by the two ags

f

+

(D) := (g

1

; g

0

� g

1

); f

�

(D) := (g

�1

; g

0

� g

�1

): (1:9)

Clearly, f

�

(D) = f

�

(�D). We will say that a 3-�ltration is inner if it is of the form f =

f

+

(ad(E)) = f

�

(ad(�E)) for some Euler operator E , and the spae of inner 3-�ltrations will be

denoted by

F := ff

+

(D) : D 2 Gg: (1:10)

By these de�nitions, the maps G ! F , D 7! f

�

(D) are surjetive, and the map

G ! F �F ; D 7! (f

+

(D); f

�

(D)) (1:11)

is injetive (sine g

�1

are reovered by the �ltration and g

0

= (g

0

� g

1

) \ (g

0

� g

�1

)).

1.5. Transversality. Two ags e = (e

1

; e

0

) and f = (f

1

; f

0

) as above are alled transversal if

g = e

1

� f

0

= f

1

� e

0

:

It is lear by onstrution that the two �ltrations f

+

(D) and f

�

(D) assoiated to a 3-grading

D of g are transversal. We will prove that, onversely, any pair of transversal inner 3-�ltrations

arises in this way. If f 2 F , we will use the notation

f

>

:= fe 2 F : e>fg (1:12)

for the set of inner 3-�ltrations that are transversal to f , and

(F �F)

>

= f(e; f) 2 F �F : e>fg (1:13)

for the set of transversal pairs.
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Theorem 1.6. (Struture Theorem for the spae of 3-�ltrations.) With the notation intro-

dued above, the following holds for any Lie algebra g over K :

(1) The spae of inner 3-gradings an be anonially identi�ed with the spae of transversal

pairs of inner 3-�ltrations:

G = (F �F)

>

In other words, two inner 3-�ltrations e and f are transversal if and only if there exists

an Euler operator E suh that f = f

+

(ad(E)) and e = f

�

(ad(E)) .

(2) For any inner 3-�ltration f , the spae f

>

arries a natural struture of an aÆne spae

over K with translation group (f

1

;+) . The group f

1

ats simply transitively on f

>

by

x:e := e

adx

:e .

Proof. (1) We have already remarked that G � (F � F)

>

. In order to prover the other

inlusion, let us assume that (e; f) is transversal. We have to show that (e; f) 2 G .

Sine f is inner, there exists an Euler operator E 2 g suh that f = f

+

(ad(E)). We also

hoose a 3-grading

g = g

1

� g

0

� g

�1

with e

1

= g

1

; e

0

= g

1

� g

0

: (1:14)

Let pr

j

: g ! g

j

, j = �1; 0; 1, denote the orresponding projetions. Our assumption that e

and f are transversal means that

g = e

1

� f

0

= g

1

� f

0

and g = f

1

� e

0

= f

1

� (g

0

� g

1

): (1:15)

From (1.14) together with the �rst of these onditions we see that the restrited projetion

pr

�1

: f

1

! g

�1

is surjetive. Thus there exists a Z 2 f

1

suh that pr

�1

(Z) = pr

�1

(E), i.e.

Z �E 2 kerpr

�1

= e

0

. Then [Z;E℄ = �Z leads to

E

0

:= e

ad(Z)

E = E + [Z;E℄ = E � Z 2 e

0

:

On the other hand, sine Z 2 f

1

, the automorphism e

ad(Z)

stabilizes the ag f , and hene

f

+

(ad(E

0

)) = e

ad(Z)

f

+

(ad(E)) = e

ad(Z)

:f = f:

We may therefore, after replaing E by E

0

, assume that E 2 e

0

. This implies that e

1

is

invariant under adE , and sine adE ats by � id on the quotient spae g=f

0

�

=

e

1

, it follows

that [E;X ℄ = �X for eah X 2 e

1

, hene

e

1

= fX 2 g: [E;X ℄ = �Xg:

Further e

0

� f

1

= g , and f

1

is the 1-eigenspae of adE , so that the invariant subspae e

0

must

be the sum of the 0- and �1-eigenspae of adE , and thus e = f

�

(adE).

(2) Assume e>f . The group U(f) = e

ad(f

1

)

preserves both the ag f and the relation of

being transversal. Therefore, for all X 2 f

1

, f = e

ad(X)

f is transversal to e

ad(X)

e , and hene we

have an ation of the abelian group U(f)

�

=

f

1

on f

>

.

Let us prove that this ation is transitive. We assume that e

0

>f and e>f . By Part (1),

there exists an Euler operator E suh that f = f

+

(ad(E)) and e

0

= f

�

(ad(E)). As in the proof

of Part (1), we �nd Y 2 f

1

suh that

E

0

:= e

ad(Y )

E = E � Y 2 e

0

:

Then the argument in (1) implies that adE

0

is a harateristi element of the 3-grading

g

1

:= f

1

; g

0

:= f

0

\ e

0

; g

�1

:= e

1

de�ned by the pair (f; e). Therefore

e = f

�

(ad(E

0

)) = e

adY

:f

�

(ad(E)) = e

adY

:e

0

:
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Hene e

0

and e are onjugate under the group U(f).

Finally, we prove that the ation is simply transitive. Assume that e 2 f

>

and X 2 f

1

are

suh that e

ad(X)

e = e . Then e

ad(X)

�xes the transversal pair (e; f) and hene ommutes with

ad(E), where E is an Euler operator suh that (f; e) = (f

+

(ad(E)); f

�

(ad(E))). Applying this

to the element E 2 g , we get, sine [E;X ℄ = �X ,

0 = e

ad(X)

adE(E) = adE Æ e

ad(X)

(E) = [E;E �X ℄ = �X:

Corollary 1.7. Let D

1

= ad(E

1

); D

2

= ad(E

2

) 2 G and g

1

:= fX 2 gj [E

1

; X ℄ = Xg . Then

the following are equivalent:

(1) E

1

and E

2

have the same assoiated +-�ltration: f

+

(ad(E

1

)) = f

+

(ad(E

2

)) .

(2) D

1

�D

2

2 ad(g

1

) .

(3) [D

1

; D

2

℄ = D

2

�D

1

.

(4) There is v 2 g

1

suh that D

2

= e

ad v

D

1

e

� ad(v)

.

Proof. (4) implies (1) sine U(f

+

(D

1

)) preserves f

+

(D

1

). Conversely, if (1) holds, then

f

�

(D

2

) is transversal to f

+

(D

2

) = f

+

(D

1

), and now (4) follows from Part (2) of Theorem 1.6.

From (4) it follows that ad(E

2

) = ad(E

1

+[v; E

1

℄+

1

2

[v; [v; E

1

℄℄) = ad(E

1

� v), whene (2),

and from this it follows that [D

1

; D

2

℄ = ad([E

1

; E

2

℄) = ad([E

1

;�v℄) = ad(v) = ad(E

1

� E

2

),

whene (3), and �nally from (3) we get (4) by letting v := E

1

� E

2

, whih leads to e

ad v

:E

1

=

E

1

+ [v; E

1

℄ = E

1

+E

2

�E

1

= E

2

.

Next we state a \matrix version" of Part (1) of Theorem 1.6, using the matrix notation

introdued in Equation (1.4).

Corollary 1.8. With respet to a �xed inner 3-grading given by the Euler operator E , with

orresponding pair of 3-�ltrations (f

�

; f

+

) = (f

�

(D); f

+

(D)) = ((g

�1

; g

0

+ g

�1

); (g

1

; g

0

+ g

1

)) ,

the following statements are equivalent:

(1) (g:f

�

; f

+

) 2 G .

(2) f

+

and g:f

�

are transversal.

(3) g

�1;�1

and (g

�1

)

11

are invertible in End(g

�1

) , resp., in End(g

1

) .

Proof. The equivalene of (1) and (2) is given by Theorem 1.6(1). Now, (2) is equivalent to

(4) and (5):

(4) g(g

�1

) is a omplement of g

1

� g

0

and g(g

�1

� g

0

) is a omplement of g

1

,

(5) g(g

�1

) is a omplement of g

1

� g

0

and g

�1

(g

1

) is a omplement of g

�1

� g

0

,

and learly (5) is equivalent to (3).

De�nition 1.9. For x 2 g

1

and g 2 Aut(g), we de�ne

d

g

(x) := (e

� ad(x)

g

�1

)

11

; 

g

(x) := (ge

ad(x)

)

�1;�1

:

Then

d

+

g

:= d

g

: g

1

! End(g

1

); 

+

g

:= 

g

: g

1

! End(g

�1

)

are quadrati polynomial maps, alled the denominator and o-denominator of g (w.r.t. the �xed

inner grading de�ned by ad(E)). In a similar way, d

�

g

and 

�

g

are de�ned.

Writing g and e

ad(x)

in matrix form (1.4), the denominator for g

�1

is given by

d

g

�1
(x) = g

11

� ad(x) Æ g

01

+

1

2

ad(x)

2

Æ g

�1;1

;

and similarly for the o-denominator. For the generators of G we get the following (o-)

denominators (where v 2 g

1

, w 2 g

�1

):

g = e

ad(v)

: d

g

(x) = id

g

1

; 

g

(x) = id

g

�1

g = e

ad(w)

: d

g

(x) = id

g

1

+ad(x) ad(w) +

1

4

ad(x)

2

ad(w)

2

;



g

(x) = id

g

�1

+ad(w) ad(x) +

1

4

ad(w)

2

ad(x)

2

g = h 2 H : d

h

(x) = (h

11

)

�1

= (h

�1

)

11

; 

h

(x) = h

�1;�1

:

(1:16)
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For g = e

ad(w)

as in the seond equation, we introdue the notation

B

+

(x;w) := d

g

(x); B

�

(w; x) := 

g

(x): (1:17)

These linear maps de�ne the Bergman operator, see Setion 3.3.

Corollary 1.10. With respet to a �xed inner 3-grading given by the Euler operator E , we

identify V

+

:= g

1

with the set (f

+

)

>

= e

ad(V

+

)

f

�

. Then for x 2 V

+

the following statements

are equivalent:

(1) (g:x; f

+

) 2 G .

(2) f

+

and g:x are transversal, i.e., g:x 2 V

+

.

(3) 

g

(x) and d

g

(x) are invertible in End(g

�1

) , resp., in End(g

1

) .

Proof. This follows by applying Corollary 1.8 to the element ge

ad(x)

2 Aut(g).

In partiular, for g = e

ad(w)

with w 2 g

�1

, it follows that g:x 2 V

+

if and only if B

+

(x;w)

and B

�

(w; x) are invertible.

1.11. The projetive geometry of a 3-graded Lie algebra. Reall from Setion 1.2

the de�nition of the projetive elementary group G := G(D). Using Theorem 1.6(1), we may

identify an inner grading D = ad(E) with the orresponding pair (f; e) = (f

+

(D); f

�

(D)) of inner

�ltrations; hene we may also write G(f; e) for the elementary group G(D), and similarly for

H(D) and P

�

(D). If f; e; e

0

are inner 3-�ltrations suh that e>f and e

0

>f , then Theorem 1.6(2)

implies that e and e

0

are onjugate under G(f; e), and hene we have G(f; e) = G(f; e

0

). Therefore

we may de�ne the projetive elementary group of the inner 3-�ltration f to be G(f) := G(f; e),

where e 2 F is any �ltration that is transversal to f . Note that

U

+

(f; e) = U

+

(f)

is the abelian group de�ned by Eqn. (1.8) and hene is independent of e , whereas the groups

U

�

= U

�

(f; e), H = H(f; e) and P

�

= P

�

(f; e) depend on the hoie of e . (We will see below

that P

+

does not depend on e .) We de�ne the following homogeneous spaes:

X

�

:= G=P

�

; M := G=H: (1:18)

For reasons that will be explained below, the data (X

+

; X

�

;M) are alled the (generalized)

projetive geometry assoiated to the graded Lie algebra (g; D). The base point (P

�

; P

+

) in

X

+

�X

�

will often be denoted by (o

+

; o

�

).

Theorem 1.12. (Struture theorem for the projetive geometry of a 3-graded Lie algebra)

With the notation introdued above, the following holds:

(1) The orbits of D := ad(E) 2 G , resp., of f

�

2 F , under the ation of G are isomorphi to

M , resp., to X

�

. In other words,

H = fg 2 G(D) : g:(f

�

; f

+

) = (f

�

; f

+

)g and P

�

= fg 2 G(D) : g:f

�

= f

�

g:

Moreover, P

+

\ P

�

= H , P

�

\ U

�

= f1g and

P

�

= fg 2 G : gDg

�1

�D 2 ad(g

�1

)g = fg 2 G: g:E �E 2 z(g) + g

�1

g:

(2) If we identify X

�

with the orresponding orbits in F , then

G \ (X

+

�X

�

) =M:

(3) For every element e 2 X

�

, the set e

>

is ontained in X

+

and arries a well-de�ned

struture of an aÆne spae over K with translation group e

1

= g

1

. In partiular, (o

�

)

>

is anonially identi�ed with V

+

= e

ad(g

1

)

:o

+

.
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(4) Consider the set 


+

of elements of G sending the base point o

+

2 X

+

to a point of the

aÆne part V

+

� X

+

,




+

:= fg 2 G : g:o

+

2 V

+

g:

Then the map

g

1

�H � g

�1

! 


+

; (v; h; w) 7! e

ad(v)

he

ad(w)

is a bijetion, and moreover




+

= fg 2 G : d

g

(o

+

) 2 GL(g

1

); 

g

(o

+

) 2 GL(g

�1

)g:

(5) The spaes X

�

� F and M � G are stable under the ation of the automorphism group

Aut(g; D) and of the extended projetive elementary group G

ext

.

Proof. (1) An element g 2 G stabilizes (f

+

; f

�

) if and only if it ommutes with D = ad(E)

whih means that it belongs to H .

It is lear that P

+

stabilizes f

+

. Conversely, assume that g 2 G satis�es g:f

+

= f

+

.

Then g:f

+

= f

+

is transversal to g:f

�

, and hene by Theorem 1.6(2) there exists v 2 g

1

suh

that g:f

�

= e

ad(v)

f

�

. Then h := e

� ad(v)

g preserves (f

+

; f

�

) and thus belongs to H . Therefore

g = e

ad(v)

h belongs to P

+

. Hene P

+

is the stabilizer of f

+

. Similarly for P

�

.

It follows that P

+

\P

�

is the stabilizer of (f

+

; f

�

) whih is H . Next, assume g 2 P

+

\U

�

.

Write g = e

ad(v)

with v 2 g

�1

. Sine v 7! e

ad(v)

f

+

is injetive (Theorem 1.6(2)), it follows from

gf

+

= f

+

that v = 0 and hene g = 1 .

Finally, g stabilizes f

+

if and only if D and gDg

�1

have the same assoiated +-�ltration,

if and only if gDg

�1

�D belongs to ad(g

1

) (Corollary 1.7), whene the last laim of Part (1)

for P

+

, and similarly for P

�

.

(2) It is lear that the G-orbit G:(f

+

; f

�

) belongs both to X

+

�X

�

and to G . In order

to prove the onverse, let (f; e) 2 (X

+

�X

�

)\G . We may write f = g:f

+

for some g 2 G . Then

g

�1

(f; e) = (f

+

; g

�1

e) again belongs to (X

+

�X

�

) \ G . Aording to Theorem 1.6, there exists

v 2 g

1

suh that g

�1

e = e

ad(v)

f

�

. It follows that (f; e) = ge

ad(v)

(f

+

; f

�

) belongs to the G-orbit

G:(f

+

; f

�

).

(3) As in the proof of (2), we translate by an element g 2 G suh that ge = f

�

, and then

the laim is preisely the one of Part (2) of Theorem 1.6.

(4) Assume g 2 


+

and let v := g:o

+

2 V

+

. Then e

� ad(v)

g:o

+

= o

+

, and aording

to Part (1), it follows that then p := e

� ad(v)

g 2 P

�

, whene the deomposition g = e

ad(v)

p =

e

ad(v)

he

ad(w)

. Uniqueness follows from the fat that P

+

\ P

�

= H . Also, it is lear that any

element g 2 U

+

P

�

belongs to 


+

.

The seond laim is a reformulation of Corollary 1.10.

(5) Assume h 2 Aut(g; D). From the relation he

ad(x)

h

�1

= e

ad(hx)

(x 2 g

�

) it follows

that h normalizes G . Sine h stabilizes f

�

, it follows that, for all g 2 G , hg:f

�

= hgh

�1

:f

�

2

G:f

�

= X

+

. It follows that X

+

; X

�

and M are stable under h . Sine G

ext

is generated by G

and all h

(D;r)

(f. Eqn. (1.6)), stability under G

ext

also follows.

Sine P

+

\ P

�

= H ,

M ! X

+

�X

�

; gH 7! (gP

�

; gP

+

) (1:19)

is a well-de�ned imbedding, and the following diagram ommutes:

G=H ,! G=P

�

�G=P

+

# #

G ,! F �F

: (1:20)

Thus we may say that the data (X

+

; X

�

;M) forms a subspae of (F ;F ;G) on whih the

elementary projetive group G ats transitively.

1.13. The struture maps of the projetive geometry. Assume (f

1

; f

2

; f

3

) is a \generi

triple" of inner 3-�ltrations; by this we mean that it belongs to the spae

(F �F �F)

>

:= f(f

1

; f

2

; f

3

) 2 F �F �F : f

1

>f

2

; f

3

>f

2

g: (1:21)
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Sine f

>

2

arries a natural struture of an aÆne spae over K (Theorem 1.6(2)), we may take f

1

as origin in f

>

2

, i.e., we turn f

>

2

into a K -module with zero vetor f

1

. Let r 2 K and rf

3

be the

ordinary multiple of f

3

in this K -module. Sine it depends on f

1

and on f

2

, we write

�

r

(f

1

; f

2

; f

3

) := r

f

1

;f

2

(f

3

) := rf

3

= (1� r)f

1

+ rf

3

;

where the latter expression only refers to the aÆne struture. The map

�

r

: (F �F �F)

>

! F ; (f

1

; f

2

; f

3

) 7! �

r

(f

1

; f

2

; f

3

) (1:22)

is alled the struture map of the projetive geometry (F ;F ;G). By restrition to the subgeometry

(X

+

; X

�

;M), we get in a similar way two struture maps

�

�

r

: (X

�

�X

�

�X

�

)

>

! X

�

beause for f

2

2 X

�

we have f

>

2

� X

�

by Theorem 1.12(3). In [Be02, Th. 10.1℄ it is shown

that these maps satisfy two remarkable identities (PG1) and (PG2) whih axiomatially de�ne

the ategory of generalized projetive geometries. If r 2 K

�

, then we have

�

r

(f

1

; f

2

; f

3

) = h

(D;r)

� f

3

; (1:23)

where h

(D;r)

is the automorphism de�ned by Equation (1.6) and D orresponds to the 3-grading

de�ned by the transversal pair (f

1

; f

2

). The ase r = �1 is of partiular interest sine it leads

to assoiated symmetri spaes, see Chapter 4.

2. Tangent bundle, struture bundle and the anonial kernel

2.1. Tangent bundle and struture bundle. We ontinue to use the notation G , resp.

F , for the spae of inner 3-gradings (resp. 3-�ltrations) of a Lie algebra g . For a 3-�ltration

f = (f

1

; f

0

), we de�ne K -modules by

T

f

F := g=f

0

; T

0

f

F := f

1

; (2:1)

alled the tangent spae of F at f , resp., the strutural spae of F at f . If f = f

�

(ad(E)) is the

minus-�ltration w.r.t. an Euler operator E , then f

0

= g

0

� g

�1

, and hene

T

f

F

�

=

g

1

; T

0

f

F = g

�1

:

It is not misleading to think of T

0

f

F as a sort of \otangent spae" of F at f . We let

TF :=

[

f2F

T

f

F ; T

0

F :=

[

f2F

T

0

f

F (2:2)

(disjoint union), alled the tangent bundle of F , resp., the struture bundle of F . The group

Aut(g) ats on G and on F , and for any g 2 Aut(G), the following maps are well-de�ned and

linear:

T

f

g : T

f

F ! T

g:f

F ; Y mod f

0

7! gY mod gf

0

;

T

0

f

g : T

0

f

F ! T

0

g:f

F ; Y 7! gY;

(2:3)

and if we de�ne now Tg : TF ! TF , T

0

g : T

0

F ! T

0

F in the obvious way, then learly the

funtorial properties T (g Æ h) = T (g) Æ T (h), and T

0

(g Æ h) = T

0

(g) Æ T

0

(h) hold. Finally, if a

base point D 2 G is �xed and X

�

� F are as in Cor. 1.10, then the tangent spaes T

f

X

�

,

T

0

f

X

�

and the orresponding bundles TX

�

, T

0

X

�

are de�ned. The natural group ating on

these spaes is the normalizer of G(D) in Aut(g).
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2.2. Vetor �elds and the anonial kernel. If Y 2 g and f 2 F is as above, we say that

Y

f

:= Y mod f

0

2 T

f

F (2:4)

is the value of Y at f , and the assignment

e

Y : F ! TF , f 7! Y

f

de�nes a vetor �eld on F .

The spae of vetor �elds on F is denoted by X(F); it is a K -module in the obvious way suh

that the surjetion

g ! X(F); Y 7!

e

Y

beomes a K -linear map whih is equivariant w.r.t. the natural ations of Aut(g) on both spaes.

In partiular, the strutural spaes T

0

f

F are subspaes of g and hene give rise to vetor �elds.

Composing with evaluation at another point, we are lead to de�ne, for (f; e) 2 F �F , a K -linear

map by

K

f;e

: T

0

e

F = e

1

! T

f

F = g=f

0

; Y 7! Y

f

= Y mod f

0

: (2:5)

The olletion of maps (K

e;f

;K

f;e

), (f; e) 2 F �F , is alled the anonial kernel. Note that K

f;e

is bijetive if and only if e

1

is a K -module omplement of f

0

in g . In partiular, if f = f

�

(ad(E)),

e = f

+

(ad(E)), then K

f;e

is identi�ed with a linear map g

1

! g

1

whih is simply the identity.

Theorem 2.3. For e; f 2 F the following statements are equivalent:

(1) (e; f) 2 G ,

(2) K

f;e

: T

0

e

F ! T

f

F and K

e;f

: T

0

f

F ! T

e

F are bijetive.

Proof. The seond ondition learly is equivalent to saying that e and f are transversal, and

therefore Theorem 2.3 is a restatement of Part (1) of Theorem 1.6.

2.4. Trivialization over aÆne parts, and quadrati polynomial vetor �elds. In the

following we will often �x an Euler operator E , the assoiated 3-grading of g and the assoiated

pair (f

�

; f

+

) = (f

�

(ad(E)); f

+

(ad(E))) of �ltrations. The pair (f

�

; f

+

) then serves as a base point

in G and in the homogeneous spae G:(f

�

; f

+

)

�

=

G=H � X

+

�X

�

(f. Th. 1.12) and will also

often be denoted by (o

+

; o

�

). The spaes V

�

:= g

�1

are imbedded into X

�

= G:f

�

�

=

G=P

�

via X 7! e

ad(X)

f

�

; this imbedding will be onsidered as an inlusion, so that, for x 2 X

+

, the

ondition x 2 V

+

means that (x; o

�

) 2 G .

The reader may think of X

�

as a kind of \manifolds" modeled on the K -modules V

�

: we

will say that

A := f(g(V

+

); g) : g 2 Gg; '

g

: g(V

+

)! V

+

; g:x 7! x (2:6)

is the natural atlas of X

+

. Having this in mind, a natural question is to desribe the strutures

introdued so far by a \trivialized piture" in the harts of the atlas A . Sine the spaes

X

�

are homogeneous under G , one an desribe TX

�

and T

0

X

�

as assoiated bundles: if

� : P

�

! GL(W ) is a homomorphism of P

�

into the linear group of a K -module W , let

G�

P

�
W = G�W= �

with (g; w) � (gp; �(p)

�1

w) for p 2 P

�

. If � is the natural representation of P

�

on W :=

g=(g

0

� g

�1

)

�

=

g

1

given by

�(p) := p

11

: g

1

! g

1

; X 7! pr

1

(pX) (2:7)

(this is the ation of P

�

on T

f

�
X

+

), then

G�

P

�
g

1

! TX

+

; [g;X ℄ 7! (T

o

+
g)(X) (2:8)

is a G-equivariant bijetion. Similarly, if � is the natural representation of P

�

on W := g

�1

given simply by �(p)X = pX = p

�1;�1

X , then

G�

P

�
g

�1

! T

0

X

+

; [g;X ℄ 7! gX (2:9)
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is a G-equivariant bijetion. For TX

�

and T

0

X

�

we have similar formulas. If f : G!W is a

funtion suh that f(gp) = �(p)

�1

:f(g) for all g 2 G and p 2 P

�

, then via

s

f

(gP

�

) = [g; f(g)℄:

we get a well de�ned setion of the natural projetion G �

P

�
W ! G=P

�

, and every setion

arises in this way. For instane, for Y 2 g , the orresponding vetor �eld

e

Y on X

+

is given by

the funtion

e

Y

G

: G! g

1

; g 7! g

�1

Y mod(g

0

� g

�1

) = pr

1

(g

�1

Y ); (2:10)

where for the last equality we identi�ed g=(g

0

� g

�1

) and g

1

. In fat, onsidering (2.8) as an

identi�ation, we have

e

Y

g:o

+
= Y mod(g(g

0

� g

�1

)) = g(g

�1

Y mod(g

0

� g

�1

)) = [g; g

�1

Y mod(g

0

� g

�1

)℄ = [g;

e

Y

G

(g)℄:

We onsider the speial ase g = e

ad(v)

with v 2 g

1

. We identify the restrition of

e

Y to

V

+

� X

+

with the map

e

Y

+

: V

+

! V

+

; v 7! pr

1

(e

� ad v

:Y ) = pr

1

(Y � [v; Y ℄ +

1

2

[v; [v; Y ℄℄): (2:11)

Note that the map

e

Y

+

is a quadrati map from V

+

to V

+

. In partiular, it immediately follows

from this formula that for Y 2 g

1

this map is onstant, for Y 2 g

0

it is linear and for Y 2 g

�1

it is homogeneous quadrati:

e

Y

+

(v) =

8

<

:

Y for Y 2 g

1

,

[Y; v℄ for Y 2 g

0

,

1

2

[v; [v; Y ℄℄ for Y 2 g

�1

.

(2:12)

Similarly, Y 2 g gives rise to a quadrati map

e

Y

�

: V

�

! V

�

. Summing up, assoiating

to Y 2 g the quadrati polynomial map

e

Y

+

�

e

Y

�

: V

+

� V

�

! V

+

� V

�

gives rise to a

trivialization map

g ! Pol

2

(V

+

; V

+

)� Pol

2

(V

�

; V

�

)

where Pol

2

(W;W ) is spae of polynomial selfmappings of degree at most two of a K -module

w . Elements of g

0

are mapped onto linear polynomials; in partiular, the Euler operator E is

mapped onto (id

V

+
;� id

V

�
). The following result will not be used in the sequel, but is reorded

here for the sake of ompleteness.

Proposition 2.5. Assume 3 is invertible in K . Then the trivialization map beomes a

homomorphism of Lie algebras if we de�ne the braket of two quadrati polynomial maps p; q :

W !W on a K -module W by

[p; q℄(x) = dp(x)q(x) � dq(x)p(x)

where the (algebrai) di�erentials dp(x) , dq(x) of a (quadrati) polynomial mapping are de�ned

in the usual way.

Proof. The ommutator relations are diretly heked by hoosing p; q in the homogeneous

parts g

1

; g

0

; g

�1

of g .

For the orresponding result on the group level, reall from De�nition 1.9 the nominator

and o-denominator of an element g 2 G .



14 Projetive ompletions of Jordan pairs 27.5.2003

Proposition 2.6. If g 2 Aut(g) and x 2 V

+

� X

+

are suh that d

g

(x) and 

g

(x) are

invertible (equivalently, if g:x 2 V

+

), then for all Y 2 g ,

^

(g

�1

Y )

+

(x) = d

g

(x)

e

Y

+

(g:x):

In partiular, for Y = v 2 g

1

we have

^

(g

�1

v)

+

(x) = d

g

(x)v:

If x; g

1

:x and g

1

g

2

:x belong to V

+

, then the oyle relation

d

g

1

g

2

(x) = d

g

2

(x) Æ d

g

1

(g

2

:x)

holds.

Proof. The assumption that g:x 2 V

+

means that g Æ e

ad(x)

belongs to the set 


+

� G

de�ned in Theorem 1.12, Part (4). Therefore, aording to this theorem, there exists a unique

element p(g; x) 2 P

�

suh that ge

ad(x)

= e

ad(g:x)

p(g; x) and hene p(g; x) = e

� ad(g:x)

ge

ad(x)

.

From this we get

(p(g; x)

�1

)

11

= (e

� ad(x)

g

�1

e

ad(g:x)

)

11

= pr

1

Æe

� ad(x)

g

�1

e

ad(g:x)

Æ �

1

= pr

1

Æe

� ad(x)

g

�1

Æ �

1

= (e

� ad(x)

g

�1

)

11

= d

g

(x):

This will be used in the last line of the following alulation (f. also [Be00, VIII.B.2℄ for the

general framework):

^

(g

�1

Y )

+

(x) =

e

Y

G

(ge

ad(x)

) =

e

Y

G

(e

ad(g:x)

p(g; x))

= �(p(g; x))

�1

e

Y

G

(e

ad(g:x)

) = (p(g; x)

�1

)

11

e

Y

G

(e

ad(g:x)

) = d

g

(x)

e

Y

+

(g:x):

The seond assertion follows sine ev

+

is a onstant vetor �eld on V

+

, see Equation (2.12). The

oyle relation now follows:

d

g

1

g

2

(x)v =

^

(g

�1

2

g

�1

1

v)

+

(x) = d

g

2

(x)

^

(g

�1

1

v)

+

(g

2

:x) = d

g

2

(x) Æ d

g

1

(g

2

:x)v:

Proposition 2.6 implies in partiular that the ation of g on the tangent bundle TX

+

is

given in the anonial trivialization on V

+

by the expression T

x

g � v = d

g

(x)

�1

v ; in Part II of

this work we will show that, in presene of a di�erentiable struture, this really orresponds to

the di�erential dg(x) of g at x , applied to v . { Similarly as in the proof of Prop. 2.6, it is seen

that the ation of g on T

0

X

+

is, in the trivialization T

0

(V

+

)

�

=

V

+

� V

�

over the aÆne part

V

+

� X

+

, given by

T

0

x

g � w = 

g

(x)w;

and that the o-denominators also satisfy a oyle relation 

g

1

g

2

(x) = 

g

1

(g

2

:x) Æ 

g

2

(x).

2.7. Nominators. We apply the preeding proposition in the ase where Y is an Euler operator

E induing the �xed 3-grading of g : for g 2 Aut(g) onsider the vetor �eld

^

g

�1

E on X

+

and

de�ne the nominator of g to be the quadrati polynomial map

n

g

: V

+

! V

+

; x 7!

^

g

�1

:E

+

(x) = pr

1

(e

� ad(x)

g

�1

E) = (e

� ad(x)

g

�1

)

10

:E: (2:13)

Using the matrix notation (1.4), we an also write

n

g

�1
(x) = (g

10

� ad(x) Æ g

00

+

1

2

ad(x)

2

Æ g

�1;0

)(E):

For the generators of G we get the following nominators: if v 2 g

1

, w 2 g

�1

, h 2 H ,

n

g

(x) =

8

<

:

x+ v for g = e

ad(v)

x�

1

2

ad(x)

2

w for g = e

ad(w)

x for g = h

(2:14)

Note that the nominators will not depend on the Euler operator E suh that ad(E) = D as

long as g ats trivially on the enter of g ; this is the ase for all elements g 2 G . For general

g 2 Aut(g) suh that g:x 2 V

+

, we an apply the preeding proposition and get, using that

e

E

+

(z) = z for all z 2 V

+

,

n

g

(x) = d

g

(x)

e

E

+

(g:x) = d

g

(x)(g:x):

Sine d

g

(x) is invertible, it follows that g:x = d

g

(x)

�1

n

g

(x).
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Theorem 2.8. Let g 2 Aut(g) and x 2 V

+

. Then g:x 2 V

+

if and only if d

g

(x) and 

g

(x)

are invertible, and then the value g:x 2 V

+

is given by

g:x = d

g

(x)

�1

n

g

(x):

Using matrix notation (1:4) and replaing g by g

�1

, this an expliitly be written as an ation

of Aut(g) on V

+

by \frational quadrati maps": if g

�1

:x 2 V

+

, then

g

�1

:x = (g

11

� ad(x) Æ g

01

+

1

2

ad(x)

2

Æ g

�1;1

)

�1

�

g

10

� ad(x) Æ g

00

+

1

2

ad(x)

2

Æ g

�1;0

�

(E):

Proof. For the �rst laim, see Corollary 1.10, and the seond laim is proved by the alulation

preeding the statement of the theorem.

Using the formulas (1.16) for the denominators and (2.14) for the nominators, we an now

expliitly desribe the frational quadrati ation of the generators of G :

g = e

ad(v)

: g(x) = x+ v

g = e

ad(w)

: g(x) =

�

id

V

+
+ad(x) ad(w) +

1

4

ad(x)

2

ad(w)

2

�

�1

(x�

1

2

ad(x)

2

w)

g = h : g(x) = h

11

x:

2.9. The automorphism group. The group Aut(g; D) ats on V

+

� V

�

by

Aut(g; D)! GL(V

+

)�GL(V

�

);

h 7! (h

11

; h

�1;�1

) = (d

h

�1
(o

+

); 

h

(o

�

)) = (d

h

(o

+

)

�1

; 

h

(o

�

)):

We denote by Aut

g

(V

+

; V

�

) � GL(V

+

) � GL(V

�

) the image of this homomorphism (this is

the automorphism group of the assoiated Jordan pair, see Setion 3.1), and by Str(V

+

) :=

pr

1

ÆAut

g

(V

+

; V

�

) Æ �

1

its projetion to the �rst fator (sometimes alled the struture group of

V

+

).

Theorem 2.10. If x 2 V

+

and g 2 Aut(g) satisfy g:x 2 V

+

, then d

g

(x) 2 Str(V

+

) ; more

preisely,

(d

g

(x)

�1

; 

g

(x)) 2 Aut

g

(V

+

; V

�

):

Proof. If g:x 2 V

+

, then g

0

:= ge

ad(x)

belongs to the set 


+

� G de�ned in Theorem 1.12.

Aording to Part (4) of this theorem, we deompose

g

0

= e

ad(v)

he

ad(w)

(2:15)

with a unique h = h(g; x) 2 H depending on g and x . From the de�nition of the (o-)

denominators it follows then that

d

g

(x) = d

g

0

(0) = h

�1

11

; 

g

(x) = 

g

0

(0) = h

�1;�1

;

and hene (d

g

(x)

�1

; 

g

(x)) = (h

11

; h

�1;�1

) 2 Aut

g

(V

+

; V

�

).

As remarked after Proposition 2.6, the linear map d

g

(x)

�1

an be intepreted as the tangent

map of g at x , and so Theorem 2.10 means that Aut(g) ats on X

+

by mappings that are

onformal with respet to the linear group Str(V

+

) (in the sense de�ned in [Be00, Setion

VIII.1.2℄). In some ases this already haraterizes the group Aut(g) as \the onformal group of

X

+

"; this is the ontent of the Liouville theorem, see [Be00, Ch. IX℄.
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3. The Jordan theoreti formulation

3.1. Jordan pairs. If (g; D) is a 3-graded Lie algebra and V

�

= g

�1

, the following K -trilinear

maps are well-de�ned:

T

�

:V

�

� V

�

� V

�

! V

�

;

(X;Y; Z) 7! T

�

(X;Y; Z) := �[[X;Y ℄; Z℄ = ad(Z) ad(X)Y;

(3:1)

and they satisfy the following identities, where we use the notation T

�

(X;Y )Z := T

�

(X;Y; Z):

T

�

(X;Y; Z) = T

�

(Z; Y;X);

T

�

(X;Y )T

�

(U; V;W ) = T

�

(T

�

(X;Y; U); V;W )

� T

�

(U; T

�

(Y;X; V );W ) + T

�

(U; V; T

�

(X;Y;W ));

(3:2)

whih mean that ((V

+

; V

�

); (T

+

; T

�

)) is a linear Jordan pair over K (if 2 and 3 are invertible

in K , these two identities imply all other identities valid in Jordan pairs, f. [Lo75, Prop. 2.2(b)℄).

In the following we shall omit the adjetive linear, when dealing with Jordan pairs. Conversely,

if (V

�

; T

�

) is a Jordan pair over K , then for v 2 V

�

and w 2 V

�

we de�ne the operator

(v; w) 2 End(V

�

) by T

�

(v; w):x := T

�

(v; w; x) and let ider(V

+

; V

�

) � gl(V

+

) � gl(V

�

) be

the Lie subalgebra generated by the operators (�T

+

(v; w); T

�

(w; v)), v 2 V

+

, w 2 V

�

. The

elements of this Lie algebra are alled inner derivations. The algebra of derivations of (V

+

; V

�

)

is de�ned by

der(V

+

; V

�

) = f(A

+

; A

�

) 2 End

K

(V

+

)� End

K

(V

+

) : (8u; v; w)

A

�

T

�

(u; v; w) = T

�

(A

�

u; v; w) + T

�

(u;A

�

v; w) + T

�

(u; v; A

�

w)g;

(3:3)

and it follows from (3.2) that it ontains ider(V

+

; V

�

). Clearly, it ontains also the element

E := (id

V

+
;� id

V

�
); (3:4)

alled the Euler operator of the Jordan pair V

�

.

If we are given a Jordan pair (V

+

; V

�

), and g

0

� der(V

+

; V

�

) is a Lie subalgebra

ontaining all inner derivations, then there is a unique struture of a 3-graded Lie algebra on

V

+

� g

0

� V

�

whose assoiated Jordan pair is (V

�

; V

+

), and where the braket satis�es

[v; w℄ = (�T

+

(v; w); T

�

(w; v)); v 2 V

+

; w 2 V

�

(3:5)

and the grading element is the Euler operator E given by (3.4). The subalgebra

TKK(V

+

; V

�

) := V

+

� (ider(V

+

; V

�

) + KE) � V

�

is alled the Tits{Kantor{Koeher algebra of the Jordan pair (V

+

; V

�

). This hoie for the

3-graded Lie algebra assoiated to (V

+

; V

�

) has the advantage that z(g) = 0.

The preeding onstrution may also be interpreted in the ontext of Lie triple systems

(f. e.g. [Be00, Set. III.3℄): it is essentially the standard imbedding of the (polarized) Lie triple

system q := V

+

�V

�

into the orresponding Lie algebra g = q� [q; q℄ . The standard imbedding

yields a bijetion between Lie triple systems and Lie algebras with involution, generated by

the �1-eigenspae of the involution. See Chapter 6 onerning funtorial properties of these

onstrutions.

For any g

0

as above, the representation of g

0

on g

�1

� g

1

will be faithful, so that

z(g) \ g

0

= f0g . It may happen for entral extensions

b

g of g that the orresponding subalgebra

b

g

0

does not at faithfully on

b

g

�1

�

b

g

1

�

=

g

�1

� g

1

(see Chapter 7).
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3.2. Projetive elementary group and projetive ompletion. For the rest of Chapter 3,

we �x a Jordan pair (V

+

; V

�

) and let g := TKK(V

+

; V

�

). The projetive elementary group

PE(V

+

; V

�

) := G(ad(E)) is de�ned as in Setion 1.2. Using the notation, with x; y 2 V

�

,

v 2 V

�

,

Q

�

(x)v :=

1

2

ad(x)

2

v =

1

2

[x; [x; v℄℄

Q

�

(x; y) := Q

�

(x + y)�Q

�

(x)�Q

�

(y) = ad(x) ad(y) : V

�

! V

�

;

(3:6)

the operators e

adx

= 1 + adx +

1

2

(adx)

2

(x 2 V

�

) are given in matrix notation by Equation

(1.5), with

1

2

ad(x)

2

replaed by Q

+

(x) and

1

2

ad(y)

2

replaed by Q

�

(y). Our de�nition of

PE(V

+

; V

�

) follows the one by O. Loos from [Lo95℄. The projetive linear group of a Jordan

pair has been introdued by Faulkner in [Fa83℄ in a slightly di�erent ontext (without Euler

operator). The groups P

�

and the spaes X

�

= G=P

�

are de�ned as in Setion 1.11; the

embedding V

+

�V

�

! X

+

�X

�

is alled the projetive ompletion of the Jordan pair (V

+

; V

�

).

3.3. The Bergman operator. Reall from Setion 2.2 the anonial kernel: for (x; y) 2

X

+

�X

�

,

K

x;y

: T

0

y

X

�

! T

x

X

+

; Y 7! Y

x

:

Of ourse, there is a similarly de�ned map K

y;x

; we will also use the notation (K

+

x;y

;K

�

y;x

) for

(K

x;y

;K

y;x

). Using the desription via assoiated bundles, the kernel is given by

K

g

1

P

�

;g

2

P

+
:T

0

g

2

P

+

X

�

! T

g

1

P

�
X

+

; [g

2

; v℄ 7! [g

1

; pr

1

(g

�1

1

g

2

:v)℄; (3:8)

and hene the trivialized piture is

K

+

x;y

= (e

� adx

e

ad y

)

11

= d

exp�y

(x):V

+

! V

+

: (3:9)

In matrix form,

e

� adx

e

ad y

=

0

�

1 � ad(x) Q

+

(x)

0 1 � ad(x)

0 0 1

1

A

�

0

�

1 0 0

ad(y) 1 0

Q

�

(y) ad(y) 1

1

A

;

so that we get for the oeÆient with index 11, using that on V

+

we have for x 2 V

+

and

y 2 V

�

the relation adx ad y = ad[x; y℄ = �T

+

(x; y):

K

+

x;�y

= B

+

(x; y) = id

V

+ �T

+

(x; y) +Q

+

(x)Q

�

(y): (3:10)

We likewise get

K

�

x;�y

= B

�

(y; x) = id

V

�
�T

�

(y; x) +Q

�

(y)Q

+

(x)

(f. the de�nition in (1.17)). This expression is known as the Bergman operator of the Jordan

pair (V

+

; V

�

). Theorem 2.3 now implies that the pair (v; w) is transversal if and only if

(B

+

(v;�w); B

�

(�w; v)) is invertible in End(V

+

) � End(V

�

) . It is known in Jordan theory

that B

+

(v;�w) is invertible if and only if so is B

�

(�w; v) (the symmetry priniple, f. [Lo75,

Prop. I.3.3℄), and hene (v; w) is transversal if and only if B

+

(v;�w) is invertible. So far we do

not know a \Lie theoreti" proof of this fat.

3.4. The quasi-inverse. Let y 2 g

�1

. Then for g = e

ad(y)

and x 2 V

+

, Formulae (1.16) and

(2.14) show that denominator and nominator of g are given by

d

g

(x) = B

+

(x; y); n

g

(x) = x�Q

+

(x)y (3:11)

and hene, aording to Theorem 2.8, g(x) 2 V

+

if and only if (B

+

(x; y); B

�

(y; x)) is invertible,

and then

g:x = B

+

(x; y)

�1

(x�Q

+

(x)y): (3:12)
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Following [Lo77℄, we will use also the notation t

v

(x) = x+ v for translations on V

+

and

e

t

w

(x) := e

ad(w)

:x = B

+

(x;w)

�1

(x �Q

+

(x)w) (3:13)

for \dual translations" or \quasi-inverses". In Jordan theory the notation x

y

:= e

ad y

:x is also

widely used (f. [Lo75℄), and one says that (x; y) is quasi-invertible if (B

+

(x; y); B

�

(y; x)) is

invertible, i.e., if (x;�y) is a transversal pair. Our de�nitions of the Bergman operator via

the anonial kernel and of the quasi-inverse are natural in the sense that they have natural

transformation properties with respet to elements g of the group Aut(g); taking for g typial

generators of G , we get Jordan theoreti results suh as the \shifting priniple" (see [Be00,

Setion VIII.A℄ for the preise form of the argument).

3.5. Automorphism and struture group. The group Aut

g

(V

+

; V

�

) de�ned in Setion

2.9 oinides for g = TKK(V

+

; V

�

) with the automorphism group Aut(V

+

; V

�

) of (V

+

; V

�

)

in the Jordan theoreti sense. It follows from Theorem 2.10 that if (x;�y) is transversal, then

�(x; y) := (B

+

(x; y); B

�

(y; x)

�1

) belongs to Aut(V

+

; V

�

). The subgroup generated by these

elements is alled the inner automorphism group. Projeting to the �rst fator, one gets the

struture group, resp. the inner struture group of V

+

.

3.6. Jordan frational quadrati transformations. An End(V

+

)-valued Jordan matrix

oeÆient (of type (1; 1) , resp. of type (1; 0)) is a map of the type

q : V

�

� V

�

! End(V

+

); (x; y) 7! (e

ad(x)

ge

ad(y)

h)

11

;

where �; � 2 f�g and g; h belong to the extended elementary projetive group G

ext

(f. Setion

1.2), resp.

p : V

�

� V

�

! V

+

; (x; y) 7! (e

ad(x)

ge

ad(y)

h)

10

E:

These maps are quadrati polynomial in x and in y . Nominators and denominators of elements

of G are partial maps of maps of the type of p or q by �xing one of the arguments to be zero.

A Jordan frational quadrati map is a map of the form

f : V

�

� V

�

� U ! V

+

; (x; y) 7! q(x; y)

�1

p(x; y);

where q; p are Jordan matrix oeÆients of type (1,1), resp. (1,0), and U = f(x; y) 2 V

�

� V

�

:

q(x; y) 2 GL(V

+

)g . In the following, we also use the notation exp(x) := e

ad(x)

for x 2 V

�

.

Theorem 3.7. The ations

V

+

�X

+

! X

+

and V

�

�X

+

! X

+

are given, with respet to all harts from the atlas A (f. Eqn. (2.6)), by Jordan frational

quadrati maps. In other words, for all g; h 2 G , the maps

(v; y) 7! (h Æ exp(v) Æ g):y; (w; y) 7! (h Æ exp(w) Æ g):y

are Jordan frational quadrati.

Proof. As to the �rst ation, we write

(h Æ exp(v) Æ g):y = (d

hÆexp(v)Æg

(y))

�1

n

hÆexp(v)Æg

(y) = q(v; y)

�1

p(v; y)

with

q(v; y) = d

hÆexp(v)Æg

(y) = (e

� ad(y)

g

�1

e

� ad(v)

h

�1

)

11

and

p(v; y) = n

hÆexp(v)Æg

(y) = (e

� ad(y)

g

�1

e

� ad(v)

h

�1

)

10

E;

and hene the ation is Jordan frational quadrati. For the ation of e

ad(V

�

)

, we use the same

arguments.

We may say that H

1

:= X

+

n V

+

is the \hyperplane at in�nity"; then H

1

is stable

under the ation of V

+

. In ase (X

+

; X

�

) = (KP

n

; (KP

n

)

�

) is an ordinary projetive geometry,

the ation of the translation group on the hyperplane at in�nity is the trivial ation. However,

already in the ase of more general Grassmannian geometries this is no longer true, as an be

seen from the expliit formulas for this ase given in [Be01℄.
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Corollary 3.8. With respet to the harts from the atlas A , the struture maps �

r

for

r 2 K

�

de�ned in Setion 1.14 are given by a omposition of Jordan frational quadrati maps

and diagonal maps Æ(x) = (x; x) .

Proof. Aording to [Be02, Cor. 5.8℄, the multipliation maps an be written as a omposition

of maps of the type desribed in the preeding theorem, diagonal maps and one dilation h

(D;r)

(de�ned in Setion 1.2). But this dilation omes from an element of G

ext

and hene the

omposition with suh a dilation is again Jordan frational quadrati.

3.9. Case of a base ring in whih 2 is not invertible. Even if K is a general base ring,

there is a 3-graded Lie algebra TKK(V

+

; V

�

) and a group PE(V

+

; V

�

) assoiated to a general

(quadrati) Jordan pair, f. [Lo95℄. The main di�erene is that in the matrix expression of e

ad(x)

(x 2 g

1

) the term

1

2

ad(x)

2

has to be replaed by Q

+

(x). One one has heked that the abelian

groups U

�

obtained in this way are well-de�ned, one an essentially proeed as we did in Chapter

1, replaing the spae G by the PE(V

+

; V

�

)-orbit of ad(E) in der(g) and the spae F by the

spae of inner �ltrations belonging to gradings from G .

4. Involutions, symmetri spaes, and Jordan triple systems

4.1. Symmetri spaes attahed to a Lie algebra. An (abstrat) reetion spae is a set

S together with a map � : S � S ! S suh that, if we let �

x

(y) := �(x; y),

(S1) �(x; x) = x

(S2) �

2

x

= id

S

(S3) �

x

is an automorphism of � , i.e. �

x

(�(y; z)) = �(�

x

(y); �

x

(z)).

(Di�erentiable reetion spaes, i.e. manifolds with a smooth reetion spae struture � , have

been introdued by O. Loos in [Lo67℄). In Part II ([BN03℄) of this work we de�ne a symmetri

spae (over K ) to be a reetion spae (S; �) suh that S is a smooth manifold over K (in the

sense of [BGN03℄) and � is smooth and satis�es

(S4) the tangent map T

x

�

x

of �

x

at x is given by � id

T

x

S

.

(See [BN03℄ for the basi theory of symmetri spaes and for a omparison with the approah

by O. Loos [Lo69℄.) To any Lie algebra g over K we may assoiate a reetion spae as follows.

Let S =

e

G = fD 2 der(g) : D

3

= Dg be the spae of 3-gradings of g and reall from Setion 1.2

the de�nition of the extended projetive elementary group G

ext

whih is generated by its normal

subgroup G and the subgroup fh

(D;r)

j r 2 K

�

g . Taking r = �1, we get the reetion elements

�

(D)

:= h

(D;�1)

= 1� 2D

2

2 Aut(g; D): (4:1)

We de�ne the map � by

� : S � S ! S; �(D;D

0

) := �

(D)

D

0

�

(D)

= (1� 2D)D

0

(1� 2D): (4:2)

Then (S1) follows from the fat that D and �

(D)

ommute, (S2) holds beause �

(D)

is an

involution, and (S3) follows from the fat that Aut(g) learly ats as a group of automorphisms

of � , and all reetion elements �

(D)

belong to Aut(g). It is lear that the subset G �

e

G is

stable under � . Also, M � G is stable under � beause M is stable under the ation of G

ext

(Theorem 1.12 (5)), and G

ext

ontains the reetion element �

(D)

orresponding to the base

point and hene ontains also all reetion elements orresponding to points of M . Property

(S4) is also satis�ed in a purely algebrai sense: sine �

(D)

ats by �1 on the omplement g

�

of g

�

� g

0

, it follows readily from the de�nition of the tangent map in Setion 2.1 that

T

f

+

(D)

�

(D)

= � id

T

f

+

(D)

F ; T

f

�

(D)

�

(D)

= � id

T

f

�

(D)

F ;
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and hene the tangent map T

D

(�

(D)

) will be minus one if we de�ne tangent map and tangent

spae at D to be the diret produt of the ones de�ned with respet to f

+

(D) and f

�

(D).

The restrition of � to G � G is related to the ternary map �

�1

from Setion 1.13 as

follows: assume D

1

orresponds to the transversal pair (f

1

; f

2

) and D

2

to the transversal pair

(f

3

; f

4

). Then

�((f

1

; f

2

); (f

3

; f

4

)) = (�

�1

(f

1

; f

2

; f

3

); �

�1

(f

1

; f

2

; f

4

));= (h

(D;�1)

:f

3

; h

(D;�1)

:f

4

); (4:3)

whih is the same as the produt map on M onsidered in [Be02, Cor. 4.4℄.

4.2. Involutions and symmetri subspaes. An involution of a 3-graded Lie algebra is

a Lie algebra automorphism � of order 2 reversing the grading, i.e., suh that �(g

�1

) = g

�1

and �(g

0

) = g

0

. An involution � indues by onjugation an automorphism of the elementary

projetive group G , again denoted by � , suh that �(P

�

) = P

+

. Therefore it indues a bijetion

p : X

+

! X

�

; gP

�

7! �(g)P

+

; (4:4)

ompatible with the map F ! F , f 7! �(f), and suh that p(o

+

) = o

�

. We say that f 2 F is

non-isotropi (with respet to � ) if �(f)>f . In partiular, the base point o

+

= f

�

is non-isotropi;

thus there exist non-isotropi points, and p is a polarity in the sense of [Be02℄. Sine � is an

automorphism normalizing G , the spaes G and M � G are stable under � , and the naturality

of the produt � implies that � is an automorphism of � . Therefore the � -�xed subspae M

�

is a symmetri subspae of M , whih as a set is in bijetion with the set of non-isotropi points

of X

+

, i.e.

M

(p)

:= ff 2 X

+

: f non� isotropiw:r:t: �g !M

�

; f 7! (f; �)f)

is a bijetion. By forward transport of struture, the symmetri spae struture of M

�

orre-

sponds to the struture on M

(p)

given by

�(x; y) = �

�1

(x; p(x); y) (4:5)

(this is the formula used in [Be02℄ to de�ne the symmetri spae struture). The symmetry

w.r.t. the point x is now indued by the element �

(D)

, where D 2 G orresponds to the point

(x; �(x)) 2 G ; as notied above, the algebraially de�ned tangent map T

x

(�

(D)

) equals minus

the identity, and hene (S4) is again satis�ed in an algebrai sense.

Theorem 4.3. For a �xed polarity p : X

+

! X

�

, we identify X

+

and X

�

via p . Then the

multipliation map � on M

(p)

is a omposition of Jordan frational quadrati maps and diagonal

maps Æ(x) = (x; x) .

Proof. By Corollary 3.8, the map �

�1

is of the form mentioned in the laim. Aording to

Formula (4.5), � is related to �

�1

via

�(x; y) = �

�1

(x; x; y); i:e: � = �

�1

Æ (Æ � id);

whih proves the laim.

In [BN03℄ it will be shown that Theorem 4.3 implies, in very general situations, smoothness

of � .

4.4. Involutions and Jordan triple systems. If � is an involution of the 3-graded Lie

algebra g , the trilinear map on V

+

de�ned by

T (X;Y; Z) := �[[X; �(Y )℄; Z℄ (4:6)

is a Jordan triple produt, i.e., it satis�es the identities (3.1) with the supersripts � omitted.

Conversely, given a Jordan triple system over K (abbreviated JTS) (i.e., a K -module with a

K -trilinear map satisfying the above mentioned identities), we an de�ne an involution on the

Lie algebra V

+

� der(V

+

; V

�

)� V

�

by

�(v; (A;B); w) = (w; (B;A); v); (4:7)

and the assoiated JTS is the one we started with. In this way we get a bijetion between Jordan

triple systems over K and minimal 3-graded Lie algebras with involution (see Setion 1.1).
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5. Self-dual geometries and Jordan algebras

5.1. Self-dual geometries. We �x a 3-graded Lie algebra g with grading indued by the Euler

operator E . Reall our realization of X

+

and X

�

as G-orbits in the spae F of 3-�ltrations

of g . Two ases an arise: either X

+

\ X

�

is empty, or X

+

= X

�

. In the latter ase we let

X := X

+

= X

�

, and again two ases are possible: either

(a) V

+

\ V

�

is empty, or

(b) V

+

\ V

�

is not empty; then we say that the geometry given by (g; E) is self-dual, and we

let V

�

:= V

+

\ V

�

.

An equivalent hararaterization of self-dual geometries is: there are three points f

1

; f

2

; f

3

2 X

+

suh that f

1

>f

2

, f

2

>f

3

, f

3

>f

1

(namely, take (f

1

; f

2

) = (f

�

; f

+

) to be the base point and f

3

some

element of V

+

\ V

�

).

5.2. The Jordan inverse. Assume that (g; E) is self-dual and �x some point f 2 V

+

\V

�

. We

laim that there exists an involution j of g (f. Setion 4.2) suh that j(V

+

)\V

+

6= �. In fat, let

W := f

>

; then W � X arries a natural struture of an aÆne spae over K (Theorem 1.12(3)),

and by assumption o

+

and o

�

belong to W . Let e 2 W be the midpoint of o

+

and o

�

in the

aÆne spae W . Sine e 2 W , the pair (e; f) is transversal and hene orresponds to a 3-grading

g = g

0

1

�g

0

0

�g

0

�1

, i.e. to an element D

0

2 G . Let j := h

(D

0

;�1)

2 G

ext

be the automorphism that

is minus one on g

0

1

� g

0

�1

and one on g

0

0

. Then j �xes (e; f) and ats by the salar minus one

on the K -module W with zero vetor e . Sine e is the midpoint of o

�

and o

+

, it follows that

j(o

�

) = o

+

, and sine obviously j is of order two, it is an involution. The ondition j(f

�

) = f

+

implies that j(V

+

) = j((f

+

)

>

) = (f

�

)

>

= V

�

. In partiular, V

+

\ j(V

+

) = V

+

\ V

�

= V

�

is

non-empty by assumption. It ontains the point e = j(e).

Now we apply Theorem 2.8 in order to derive an expliit formula for j in the hart V

+

:

for v 2 g

1

, let v = jv 2 g

�1

; by Equation (2.12), v gives rise to the homogeneous quadrati

vetor �eld v

+

(x) = Q

+

(x)v on V

+

. From Proposition 2.6 we now get

d

j

(x)v = (j

�1

v)(x) = v

+

(x) = Q

+

(x)v:

In a similar way we see that 

j

(x) = Q

�

(x)v . (In fat, sine j is an involution, 

j

(x) =

jd

j

(�x)j = jd

j

(x)j , and this is invertible if and only if so is d

j

(x).) Corollary 1.10 now shows

that j(x) 2 V

+

if and only if x belongs to the set

V

�

= fx 2 V

+

: Q

+

(x) invertible g;

whih is alled the set of invertible elements in V

+

. The nominator of j is n

j

(x) = �x sine

j reverses the grading (i.e. jE + E 2 z(g)). Now Theorem 2.8 shows that, for x 2 V

�

,

j(x) = �Q

+

(x)

�1

x . The map

V

�

! V

�

; x 7! j(x) := �Q

+

(x)

�1

x

is known as the Jordan inverse.

5.3. Jordan algebras. Notation being as above, note that by onstrution e is a �xed point of

j , i.e., we have e = j(e) = �Q(e)e . The tangent map T

e

j is � id

T

e

X

+
. Now 2.11 implies that

also

d

j

(e) = T

e

(� id

W

) = � id

V

+
:

In onlusion, we have a Jordan triple system with an element e suh that Q(e) = � id

V

. It is

is known that then

x � y := �

1

2

T (x; e; y)
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de�nes a Jordan algebra struture on V with unit element e . Conversely, every unital Jordan

algebra arises in this way (f. [Lo75, I.1.10℄).

5.4. The self dual geometry assoiated to a unital Jordan algebra. Now assume that

(g; E) is 3-graded and there exists e

�

2 g

�1

suh that Q

�

(e

�

) : V

+

! V

�

is a bijetion. Let

g := e

ad(e

�

)

. We laim that the ag f

+

: g

1

� g

0

� g

1

is transversal to the ag g(f

+

): �rst of

all, for v 2 g

1

,

pr

�1

(g(v)) = pr

�1

(v + [e

�

; v℄ +Q

�

(e

�

)v) = Q

�

(e

�

)v;

hene pr

�1

Æg Æ �

1

is bijetive and thus g(g

1

) is a omplement of g

1

� g

0

. Next, g(g

1

� g

0

) is a

omplement of g

1

: equivalently, e

� ad(e

�

)

g

1

is a omplement of g

0

�g

1

, whih is true by the same

argument. Hene, gf

+

>f

+

. With (o

+

; o

�

) = (f

�

; f

+

), this means that g:o

�

2 V

+

� X

+

; but

sine g 2 G , this means that X

�

= X

+

. Moreover, o

�

2 V

�

, and e

ad(e

�

)

ats as a translation

on V

�

; therefore g:o

�

2 V

�

\V

+

, and it follows that the geometry is self-dual. { Summing up:

Theorem 5.5. For a Lie algebra g with Euler operator E , the following are equivalent:

(1) The geometry given by (g; E) is self-dual.

(2) There is an involution j of (g; E) suh that j(V

+

) \ V

+

6= � .

(3) The Jordan pair (V

+

; V

�

) ontains invertible elements.

(4) The Jordan pair (V

+

; V

�

) omes from a unital Jordan algebra (V;E) .

Proof. (1) ) (2) ) (3) has been shown in 5.2, and (3) ) (1) has been shown in 5.4. The

equivalene of (3) and (4) is well-known (f. [Lo75, I.1.10℄; see 5.3).

We do not know wether the ondition X

+

= X

�

alone already implies that V

+

\V

�

6= �

{ in the �nite-dimensional ase over a �eld this ertainly is true sine then the \hyperplane at

in�nity" X

+

nV

+

is an algebrai hypersurfae, and hene V

+

and V

�

must interset if they are

both inluded in X

+

. However, in in�nite dimension the \hyperplane at in�nity" may beome

rather \big" and may very well ontain some aÆne parts { this problem is also disussed in

[Be03℄.

6. Funtorial properties

6.1. Funtoriality problems. So far we have onsidered the following ategories: Jordan

pairs (V

+

; V

�

) over K ; 3-graded Lie algebras (g; D) over K ; generalized projetive geometries

(X

+

; X

�

) (these may be de�ned here simply as the geometries (X

+

; X

�

) assoiated to a 3-

graded Lie algebra); assoiated reetion spaes (M;�); elementary projetive groups G =

G(g; D) assoiated to 3-graded Lie algebras. What are the funtorial relations between these

ategories? It is obvious that homomorphisms of 3-graded Lie algebras indue, by restrition to

the pair (g

1

; g

�1

), homomorphisms of Jordan pairs. Other funtorialily problems are less trivial:

(FP1) When does a homomorphism of Jordan pairs indue a homomorphism of the assoiated

Tits-Kantor-Koeher algebras?

(FP2) When does a homomorphism of Jordan pairs indue a homomorphism of the assoiated

generalized projetive geometries, resp. of the assoiated reetion spaes?

(FP3) When does a homomorphism of Tits-Kantor-Koeher algebras indue a homomorphism of

the assoiated elementary projetive groups?

(FP4) When does a homomorphism of general 3-graded Lie algebras indue a homomorphism of

the assoiated elementary projetive groups?

6.2. Funtoriality of the Tits-Kantor-Koeher algebra. In general, a homomorphism of

Jordan pairs does not indue a homomorphism of the assoiated Tits-Kantor-Koeher algebra.

In fat, as remarked in Setion 3.1, the Tits-Kantor-Koeher algebra TKK(V

+

; V

�

) may be

seen as the standard imbedding of the polarized Lie triple system V

+

� V

�

; but the standard

imbedding of a Lie triple system does in general not depend funtorially on the Lie triple system.
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However, for surjetive homomorphisms this is the ase (f. [Lo95, Prop. 1.6℄), and it is also true

for �nite-dimensional semisimple Lie triple systems over �elds (f. [Be00, Th. V.1.9℄).

6.3. Funtorialiy of the projetive geometry and of the reetion spaes. Any Jordan

pair homomorphism '

�

: V

�

! (V

0

)

�

indues, in a funtorial way, a well-de�ned map of

geometries

e'

�

:X

�

! (X

0

)

�

;

e

ad(v

1

)

e

ad(w

1

)

� � � e

ad(v

k

)

e

ad(w

k

)

:o

+

7! e

ad('

+

(v

1

))

e

ad('

�

(w

1

))

� � � e

ad('

+

(v

k

))

e

ad('

�

(w

k

))

:(o

0

)

+

;

where v

i

2 V

+

; w

i

2 V

�

, i = 1; : : : ; k , k 2 N ([Be02, Th. 10.1℄); the main point here is

that the geometry (X

+

; X

�

) an be desribed by generators (namely (V

+

; V

�

)) and relations

(with respet to the produt maps �

r

from Setion 1.13), and Jordan pair homomorphisms

are ompatible with the relations. (If the geometry is stable in the sense of [Lo95℄, then these

relations are given by projetive equivalene, f. [Lo77℄, [Lo95℄.) A homomorphism of geometries

in the sense of [Be02℄ indues a homomorphism of the orresponding reetion spaes (beause

the reetion spae struture is de�ned via the maps �

r

); therefore Jordan pair homomorphisms

always indue homomorphisms of assoiated reetion spaes.

In partiular, an isomorphism of Jordan pairs indues a bijetion of geometries. Therefore,

if two 3-graded Lie algebras have the same Jordan pair (g

1

; g

�1

), then there is a anonial

bijetion between the assoiated geometries. (Cf. Th. 6.6 below for another, elementary proof.)

In partiular, as long as we are only interested in the assoiated geometry (X

+

; X

�

) (e.g., in

Part II of this work) we may without loss of generality assume that g is a Tits-Kantor-Koeher

algebra.

6.4. Funtoriality problem for the projetive elementary group. Let ' : g ! g

0

be

a morphism of 3-graded Lie algebras. One would like to de�ne a homomorphism e' : G ! G

0

of the assoiated elementary projetive groups by requiring that e'(e

ad(v

�

)

) = e

ad('v

�

)

, but in

general this will not be well-de�ned. Therefore we introdue the group

G(') := fg = (g

1

; g

2

) 2 G�G

0

: (8X 2 g) g

2

'(X) = '(g

1

X)g:

Then the projetion pr

1

: G(') ! G onto the �rst fator is surjetive: in fat, the image of pr

1

ontains the generators of G beause all g

1

:= e

ad(x)

, x 2 g

�

, preserve the ideal ker('), and

so with g

2

:= e

ad('(x))

the pair (g

1

; g

2

) belongs to G('). Sine G is generated by e

ad(g

�

)

, it

follows that the projetion pr

1

is surjetive. The kernel of the projetion pr

1

is given by all

elements of the form (1; g

2

) where g

2

ats trivially on the subalgebra '(g) � g

0

. Therefore, if

' is surjetive, then pr

1

is a bijetion, and pr

2

Æ(pr

1

)

�1

: G ! G

0

is the desired homorphism

(see [Be00, Setion I.3℄ for similar onsiderations on the level of symmetri spaes). Combining

with 6.2, we see that surjetive Jordan pair homomorphisms indue (surjetive) homomorphisms

of assoiated elementary projetive groups (this result is also ontained in [Lo95, Prop. 1.6℄).

The funtoriality problem is now redued to the ase of injetive homomorphisms. In good

ases, one may then hope to reognize pr

1

: G(') ! G as a sort of overing of G , and thus to

view pr

2

as a sort of lift of the desired homomorphism to a overing group.

6.5. Problem (FP4) for isomorphisms of Jordan pairs. Let g be a 3-graded Lie algebra

g with grading element E and g � g an inner 3-graded subalgebra ontaining g

�

. We denote

by G , resp. by G the assoiated elementary projetive groups. In the present setion we will see

that the injetive homomorphism g ! g (whih indues an isomorphism of assoiated Jordan

pairs) indues a surjetive homomorphism \in the opposite sense": G ! G . In partiular we

shall give another and more elementary proof of the fat that the assoiated homogeneous spaes

are the same (f. 6.3). As g ontains g

�

, it is invariant under the group G generated by e

adg

�

.

Moreover, G ats trivially on the quotient spae g=g , beause its generators have this property,

i.e., g:x� x 2 g for eah x 2 g and g 2 G .

Theorem 6.6. There is a surjetive restrition homomorphism

R:G! G; g 7! g j

g

with R

�1

(H) = H and R

�1

(P

�

) = P

�

:
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For the orresponding homogeneous spaes, we have

G=P

�

�

=

G=P

�

and G=H

�

=

G=H

as homogeneous spaes of G .

Proof. First we observe that R(U

�

) = U

�

implies that R is surjetive.

Let ad

g

: g ! der(g) be given by ad

g

(x) := adx j

g

and let E be an Euler operator de�ning

the grading of g , resp., an Euler operator E 2 g de�ning the grading on g . Then the ideal

ker ad

g

of g is invariant under adE , hene adapted to the grading. For x 2 g

�

we have

ad

g

(x)(E

0

) = [x;E

0

℄ = �x , so that

ker ad

g

� g

0

;

and in partiular ad

g

is injetive on g

+

+ g

�

. For x = x

+

+x

0

+x

�

with x

�

2 g

�

and x

0

2 g

0

we have

[ad

g

E; ad

g

x℄ = ad

g

[E; x℄ = ad

g

(x

+

� x

�

):

If this braket vanishes, then x

+

� x

�

2 ker ad

g

� g

0

implies x = x

0

2 g

0

, i.e., we obtain the

re�ned information

ker ad

g

� ad

�1

g

(z

ad

g

(ad

g

E)) = g

0

:

Now let g 2 G with R(g) 2 H . For x 2 g

0

we then have

ad

g

(g:x) = R(g) Æ ad

g

(x) ÆR(g)

�1

;

and all three fators on the right hand side ommute with the grading derivation ad

g

E of g .

Hene ad

g

(g:x) ommutes with ad

g

E , and the argument from above implies that g:x 2 g

0

. On

the other hand R(g) preserves the grading of g , and hene in partiular the subspaes g

�

. This

means that g preserves all eigenspaes of adE on g , and therefore that g ommutes with adE ,

so that g 2 H . We onlude that R

�1

(H) � H; and the onverse inlusion follows from the fat

that the ation of H on g preserves the grading g = g

+

� (g \ g

0

)� g

�

of g .

From P = HU

�

and R(U

�

) = U

�

, we obtain

R

�1

(P

�

) = R

�1

(H)U

�

� HU

�

= P

�

:

Sine R(P

�

) = R(H)R(U

�

) � HU

�

= P

�

, the �rst assertion follows.

For the homogeneous spaes, we now get

G=P

�

�

=

G=R

�1

(P

�

) = G=P

�

and G=H

�

=

G=R

�1

(H) = G=H:

7. Central extensions of three-graded Lie algebras

In this setion K denotes a �eld with 2; 3 2 K

�

.

7.1. Let g be a 3-graded Lie algebra with grading element E . In this setion we assume that

g is generated by E and g

�

, i.e., that

g

0

= KE + [g

+

; g

�

℄: (7:1)

We shall show that the homogeneous spaes assoiated of the elementary projetive group of g

do not hange for entral extensions. Combining these results with those of the preeding setion,

it follows that they only depend on the Jordan pair (g

+

; g

�

).
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Lemma 7.2. Let q:

b

g ! g be a entral extension of g , i.e., q is surjetive and ker q is a entral

subspae of

b

g . We pik an element

b

E 2

b

g with q(

b

E) = E . Then ad

b

E is diagonalizable with the

eigenvalues f�1; 0g and de�nes a 3-grading

b

g =

b

g

+

�

b

g

0

� g

�

suh that q is a morphism of 3-graded Lie algebras.

Proof. First we observe that q Æad

b

E = adE Æ q . From the relation (adE)

3

= adE we derive

that

0 =

�

(adE)

3

� adE

�

Æ q = q Æ

�

(ad

b

E)

3

� ad

b

E

�

;

and hene that

�

ad

b

E)

3

� ad

b

E

�

(

b

g) � ker q � z(

b

g):

Applying ad

b

E , we see that

(ad

b

E)

4

= (ad

b

E)

2

;

i.e.,

(ad

b

E)

2

(ad

b

E � 1)(ad

b

E + 1) = 0:

Let

b

g =

b

g

+

�

b

g

0

�

b

g

�1

be the generalized eigenspae deomposition for ad

b

E . Then

ad

b

E j

bg

�

= � id

bg

�

and (ad

b

E)

2

:

b

g

0

= f0g:

From ker q � z(

b

g) �

b

g

0

, we derive that q j

bg

�

is injetive and maps

b

g

�

bijetively onto g

�

.

Therefore g

0

= KE + [g

+

; g

�

℄ leads to

b

g

0

= q

�1

(g

0

) = ker q + K

b

E + [

b

g

+

;

b

g

�

℄:

As [

b

g

+

;

b

g

�

℄ � ker ad

b

E , we onlude that

b

g

0

� ker ad

b

E;

and hene that

b

E is a grading element for the 3-grading

b

g =

b

g

+

�

b

g

0

�

b

g

�

:

7.3. If g is 3-graded with grading element E and z � g is a entral subspae, then z �

ker adE = g

0

, and the quotient map q: g ! g=z is a entral extension whih is a morphism of

3-graded Lie algebras.

This implies that for a entral extension q:

b

g ! g for whih

b

g is 3-graded with grading

element

b

E , the Lie algebra g is 3-graded with grading element E := q(

b

E), and Lemma 7.2

provides the onverse information, that if g is 3-graded with grading element E and generated

by E and g

�

, then the Lie algebra

b

g has a natural 3-grading de�ned by an element

b

E

with q(

b

E) = E and q is a morphism of 3-graded Lie algebra. Passing to the subalgebra

generated by

b

E and

b

g

�

, we even obtain a 3-grading satisfying the same ondition as g . In

fat, h :=

b

g

+

+

b

g

�

+ [

b

g

+

;

b

g

�

℄ + K

b

E �

b

g is a 3-graded subalgebra with q(h) = g , so that

g � h+ ker q � h+ z(

b

g). In partiular, h is an ideal of

b

g .

These onsideration show that to understand entral extensions of 3-graded Lie algebras,

a natural ontext is given by those entral extensions q:

b

g ! g whih are morphisms of 3-graded

Lie algebras with grading element satisfying (7.1).
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Lemma 7.4. Let q:

b

g ! g be a entral extension of 3-graded Lie algebras with grading elements

b

E and E = q(

b

E) satisfying (7.1). Then

q

�1

(z(g)) = z(

b

g)

and therefore g=z(g)

�

=

b

g=z(

b

g):

Proof. Sine q is surjetive, we have z(

b

g) � q

�1

(z(g)). If, onversely, q(x) 2 z(g), then

[x;

b

g℄ � ker q � z(

b

g) �

b

g

0

. In partiular, we obtain [x;

b

E℄ 2

b

g

0

and therefore x 2

b

g

0

. This

in turn implies [x;

b

g

�

℄ �

b

g

�

. As q j

bg

�

is injetive, [x;

b

g

�

℄ � ker q \

b

g

�

= f0g: Therefore x

ommutes with

b

g

�

and

b

E , hene is entral beause

b

g is generated by

b

E and

b

g

�

.

Corollary 7.5. If g satis�es (7.1), then z(g=z(g)) = f0g .

Proof. The adjoint representation ad: g ! ad g

�

=

g=z(g) is a entral extension satisfying the

assumptions of Lemma 6.3. Therefore ker ad = z(g) = ad

�1

(z(ad g)) implies z(ad g) = f0g .

Remark 7.6. (a) Let g a 3-graded Lie algebra with grading element E and g E g the ideal

g generated by E and g

�

(see Setion 6.5). We onsider the Lie algebra homomorphism

ad: g ! der(g); x 7! adx j

g

:

In view of Corollary 7.5, (ad)(g)

�

=

ad g

�

=

g=z(g) is a enter-free 3-graded Lie algebra satisfying

(7.1).

(b) If g is a enter-free 3-graded Lie algebra satisfying (7.1) and (V

+

; V

�

) = (g

+

; g

�

) is the

orresponding Jordan pair, then the representation

ad

V

�
: g

0

! der(V

+

; V

�

); x 7! (adx j

V

+
; adx j

V

�
)

is injetive, and

g! V

+

� der(V

+

; V

�

)� V

�

; x

+

+ x

0

+ x

�

7! (x

+

; ad

V

�
x

0

; x

�

)

is an embedding of Lie algebras, where the right hand side arries the braket de�ned in Se-

tion 3.1.

On the other hand, the subalgebra of g generated by g

�

is isomorphi to the orresponding

subalgebra of V

+

� der(V

+

; V

�

)� V

�

, whih is TKK(V

+

; V

�

).

De�nition 7.7. Let g be a Lie algebra. We write hg; gi for the quotient of �

2

(g) by the

subspae generated by the elements of the form

[x; y℄ ^ z + [y; z℄ ^ x+ [z; x℄ ^ y;

and write hx; yi for the image of x ^ y in hg; gi . Then hg; gi arries a natural Lie algebra

struture satisfying

[hx; yi; hx

0

; y

0

i℄ = h[x; y℄; [x

0

; y

0

℄i;

and the map

b

g

: hg; gi ! g; hx; yi 7! [x; y℄

is a homomorphism of Lie algebras.
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Theorem 7.8. Suppose that g is 3-graded with grading element E satisfying (7.1). If g is

perfet, then we put

e

g := hg; gi , and if g is not perfet, then we de�ne

e

g := hg; gio K

e

E;

where ad

e

E satis�es

(7:2) [

e

E; hx; yi℄ := h[E; x℄; yi+ hx; [E; y℄i = hE; [x; y℄i:

Then there is a unique Lie algebra homomorphism

q

g

:

e

g! g with q

g

(hx; yi) = [x; y℄ and q

g

(

e

E) = E:

This homomorphism is surjetive with entral kernel, hene a entral extension of g . Moreover,

it is weakly universal in the sense that for any entral extension q:

b

g ! g with a 3-graded Lie

algebra

b

g with grading element

b

E 2

b

g there exists a unique Lie algebra homomorphism �:

e

g !

b

g

with q Æ � = q

g

and, if g is not perfet, with �(

e

E) =

b

E .

Proof. First we observe that g = [g; g℄ + KE . If g is perfet, then

b

g

:

e

g := hg; gi ! g

is the universal entral extension of g . If g is not perfet, then E 62 [g; g℄ = im(b

g

). Therefore

g

�

=

[g; g℄o KE .

The Lie algebra der(g) ats in a natural way by derivations on hg; gi via

d:hx; yi = hd:x; yi+ hx; d:yi:

We may therefore form the Lie algebra

e

g := hg; gio K

e

E; where ad

e

E satis�es (7.2).

In both ases we obtain quotient homomorphisms q

g

:

e

g ! g with ker q

g

= ker b

g

� z(hg; gi).

From (7.2) we derive that the ation of E on hg; gi annihilates ker b

g

, so that ker q

g

is entral in

both ases. This means that q

g

is a entral extension, and Lemma 7.2 implies that

e

g is 3-graded

with grading element

e

E . Moreover,

e

g :=

e

g

+

+

e

g

�

+ [

e

g

+

;

e

g

�

℄ + K

e

E

is an ideal of

e

g with

e

g+ ker q

g

=

e

g . In view of hE;Ei = 0, we have

[

e

g;

e

g℄ = h[g; g℄; [g; g℄i+ hE; [g; g℄i = hg; [g; g℄i+ h[g; g℄; Ei = hg; gi:

Therefore [

e

g;

e

g℄ �

e

g implies that

e

g satis�es (7.1).

We laim that q

g

is weakly universal as a entral extension of 3-graded Lie algebras

satisfying (7.1). So let q:

b

g ! g be a entral extension. Then the braket map

b

g �

b

g !

b

g

fators through an alternating bilinear map

b: g� g !

b

g with b(q(x); q(y)) = [x; y℄; x; y 2

b

g:

Then the Jaobi identity in

b

g implies that b satis�es the oyle ondition

b([x; y℄; z) + b([y; z℄; x) + b([z; x℄; y) = 0:

Hene there exists a unique linear map

': hg; gi !

b

g with '(hx; yi) = b(x; y);

and it is easy to see that ' is a homomorphism of Lie algebras. Moreover, ' is a morphism of

3-graded Lie algebras, beause the grading on

b

g is indued by the map x 7! b(E; q(x)). If g is

not perfet, then

b

g is not perfet, and no grading element

b

E 2

b

g is ontained in [

b

g;

b

g℄ . We may

therefore extend ' to a Lie algebra homomorphism

':

e

g !

b

g with '(

e

E) =

b

E:

This proves the weak universality of

e

g as a 3-graded Lie algebra with grading element

e

E . The

map ':

e

g !

b

g is not uniquely determined by the requirement that q Æ ' = q

g

beause we may

add any Lie algebra homomorphism  :

e

g ! ker q , whih orresponds to the ambiguity in the

hoie of the grading element

b

E 2

b

g . Note that the ommutator algebra of

e

g is a hyperplane,

so that  is determined by  (

e

E).
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7.9. Central extensions have isomorphi geometries. Next we ompare the groups

G � he

ad g

�

i � Aut(g) and

b

G � he

adbg

�

i � Aut(

b

g);

where q:

b

g ! g is a entral extension of 3-graded Lie algebras satisfying (7.1). Sine eah element

of

b

G �xes the kernel z := ker q pointwise, it indues an automorphism of g , and we thus obtain

a group homomorphism

q

G

:

b

G! G with q

G

(g) Æ q = q Æ g; g 2

b

G;

beause e

adbg

�

is mapped onto e

ad g

�

. The following theorem provides a short diret argument

for the isomorphy of the geometries assoiated to entral extensions. Sine the orresponding

Jordan pairs are the same, this ould also be dedued from the general result mentioned in

Setion 6.2.

Theorem 7.10. We have q

�1

G

(H) =

b

H and q

�1

G

(P

�

) =

b

P

�

. For the orresponding homoge-

neous spaes, we have

b

G=

b

P

�

�

=

G=P

�

and

b

G=

b

H

�

=

G=H

as homogeneous spaes of

b

G .

Proof. Sine q

G

maps a generating subset of

b

G onto a generating subset of G , it is surjetive.

First we observe that for any h 2

b

G we have

(7:3) q

G

(h):E �E = q(h:

b

E �

b

E):

If h 2

b

H , then h:

b

E �

b

E 2 z(

b

g), and (7.3) leads to

q

G

(h):E �E = q(h:

b

E �

b

E) 2 q(z(

b

g)) = z(g);

and hene q

G

(h) 2 H . Suppose, onversely, that q

G

(h) 2 H . Then (7.3) implies

h:

b

E �

b

E 2 q

�1

(z(g)) = z(

b

g);

so that h 2

b

H .

Sine

b

P =

b

H

b

U

�

and q

G

(

b

U

�

) = U

�

, we have

q

�1

G

(P

�

) = q

�1

G

(H)

b

U

�

�

b

H

b

U

�

=

b

P

�

:

Further q

G

(

b

P

�

) = q

G

(

b

H)q

G

(

b

U

�

) � HU

�

= P

�

, and we obtain q

�1

G

(P

�

) =

b

P

�

.

For the homogeneous spaes, we now get

G=P

�

�

=

b

G=q

�1

G

(

b

P

�

) =

b

G=

b

P

�

and G=H

�

=

b

G=q

�1

G

(

b

H) =

b

G=

b

H:

Remark 7.11. We take a loser look at the kernel of q

G

. Let g 2 ker q

G

�

b

H . Then g

preserves the grading of

b

g . Sine q j

bg

�

is injetive, we onlude that g j

bg

�

= id

bg

�

, and hene

that g� id

bg

vanishes on the subalgebra generated by

b

g

�

. Moreover, im(g� id

bg

) � ker q = z , so

that

g = 1+D;

where D:

b

g ! z is a linear map. As g is an automorphism, it follows that D 2 der(

b

g), and hene

that [

b

g;

b

g℄ � kerD . If

b

g is perfet, then D vanishes, but if

b

E 62 [

b

g;

b

g℄ , then

Hom

Lie

(

b

g; z) = Hom(K

b

E; z)

�

=

z

desribes the possibilities for D , whih is determined by D(

b

E) 2 z .

Sine, for h 2

b

H and v 2 g

�

we have he

ad v

h

�1

= e

adh:v

, the ondition g j

bg

�

= id

bg

�

implies that h ommutes with the generating subset e

ad g

�

, and hene that

ker q

G

� Z(

b

G):

This means that q

G

:

b

G! G is a entral extension of groups.



29 Projetive ompletions of Jordan pairs 27.5.2003

Example 7.12. We onsider the ase of a trivial Jordan pair (V

+

; V

�

), i.e., all the maps T

�

vanish. Then the orresponding 3-graded Lie algebra is the semidiret sum

g = (V

+

� V

�

)o KE;

where

[E; (v

+

; v

�

)℄ = (v

+

;�v

�

) and [V

+

; V

�

℄ = f0g:

Let �:V

+

� V

�

! z be any bilinear map. Then

!((v

+

; v

�

; �E); (w

+

; w

�

; �E)) := �(v

+

; w

�

)� �(v

�

; w

+

)

is a Lie algebra oyle whih de�nes a entral extension

b

g = g�

!

z

with the braket

[(x; z); (x

0

; z

0

)℄ := ([x; x

0

℄; !(x; x

0

)); x; x

0

2 g; z; z

0

2 z:

The subalgebra of

b

g generated by V

�

is 2-step nilpotent and

b

g is solvable. In

b

g we have

[adV

+

; adV

�

℄ = ad[V

+

; V

�

℄ � ad z = f0g;

so that the groups

b

G and G are both abelian. Considering the orbit of the grading element, it

is easy to see that

b

G

�

=

V

+

� V

�

�

=

G:

Remark 7.13. Let g be a 3-graded Lie algebra with grading element E . We have seen in

Chaper 5 that the homogeneous spaes G=H and G=P

�

are isomorphi to those assoiated to

the subalgebra g generated by E and g

�

. Furthermore, the results in this setion imply that

the same holds for the homogeneous spaes assoiated to the enter-free Lie algebra g=z(g). The

latter Lie algebra is isomorphi to the Tits{Kantor{Koeher Lie algebra

TKK(g

+

; g

�

) = g

+

� (ider(g

+

; g

�

) + KE) � g

�

of the Jordan pair (g

+

; g

�

). For that we only have to observe that the triviality of the enter

implies that g

0

=z(g) embeds into der(g

+

; g

�

). We therefore obtain a natural identi�ation of

the homogeneous spae G=H and G=P

�

with a spae of 3-gradings of TKK(g

+

; g

�

), resp., a

spae of �ltrations of this Lie algebra.

8. Grassmannian geometries and assoiative strutures

8.1. Grassmannian geometries. Let R be an assoiative algebra with unit 1 over the

ommutative unital ring K and let V be a right R -module. The omplemented Grassmannian

(of V over R) is the spae

C := fE � V : 9F : V = E � F (E;F : submodules of V )g (8:1)

of R -submodules of V that have a omplement. For V = R this is the spae of omplemented

right ideals of R (f. Setion 8.6 below). For E;F 2 C we write E>F if V = E � F ; we let

E

>

= fF 2 C : F>Eg be the set of omplementary submodules of E and

(C � C)

>

= f(E;F ) 2 C � C : V = E � Fg: (8:2)

Let

P := fp 2 End

R

(V ) : p

2

= pg = Idem(End

R

(V )) (8:3)

be the spae of projetors, resp., idempotents in V . Taking I := 2p � id

V

instead of p , we

may also work with the ondition I

2

= id

V

instead of p

2

= p and view P as the spae of

polarizations of V . In this framework, the following analog of Theorem 1.6 is an easy exerise

in Linear Algebra:
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Proposition 8.2.

(i) The map P ! (C � C)

>

, p 7! (im(p); ker(p)) = (im(p); im(1� p)) is a bijetion.

(ii) For all E 2 C , E

>

arries anonially the struture of an aÆne spae over K (not over

R in general), modeled on the K -module Hom

R

(V=E;E) .

Moreover, P learly is stable under the binary map � de�ned by �(p; q) = (2p � 1)q(2p � 1)

whih de�nes on P the struture of a reetion spae (f. 4.1). Using salar extension by dual

numbers over K , one may also de�ne tangent bundles of P and C , and then Property (S4) will

also hold for � ; but we will not pursue this onstrution here.

8.3. Flags and elementary group. We are going to desribe the relation between this simple

linear algebra model and the model from Theorem 1.6. Let g := End

R

(V ) with the usual

ommutator as Lie braket. Note that the ommutator is not R -bilinear in general, but it is

bilinear over the enter of R ; hene g is a K -Lie algebra. An element p 2 P de�nes a derivation

ad(p) of g whih is tripotent; with respet to the deomposition V = E � F := im(p)� ker(p),

i.e., (in the obvious matrix notation) p =

�

1

0

0

0

�

, and the grading of g is desribed by

g

�1

=

n

�

0 0

� 0

�

: � 2 Hom

R

(E;F )

o

;

g

1

=

n

�

0 �

0 0

�

: � 2 Hom

R

(F;E)

o

;

g

0

=

n

�

A 0

0 B

�

: A 2 End

R

(E); B 2 End

R

(F )

o

:

(8:4)

Thus we have a well-de�ned map from P to the spae G of inner 3-gradings of g :

'

P

: P ! G; p 7! ad(p): (8:5)

On the other hand, if E 2 C , then to the \short ag" 0 � E � V we may assoiate a \long ag"

f

E

: 0 � f

1

� f

0

� g by letting

f

1

:= fX 2 g : X(V ) � E; X(E) = 0g � f

0

:= fX 2 g : X(E) � Eg � g; (8:6)

in matrix form:

�

0 �

0 0

�

�

�

� �

0 �

�

�

�

� �

� �

�

:

It is lear that this is a 3-�ltration of g (even in an assoiative sense). Thus we have a well-de�ned

map

'

C

: C ! F ; E 7! f

E

; (8:7)

and it follows from the de�nitions that the diagram

C � C � P

# #

F � F � G

(8:8)

ommutes. All maps in this diagram are obviously equivariant with respet to the natural ation

of the group GL

R

(V ) on all spaes that are involved.

If E 2 C is �xed, then the elements X 2 f

1

(with f

1

as in (8.6)) are 2-step nilpotent; thus

e

X

= 1+X . Let

U

E

:= e

f

1

= 1+ f

1

=

n

�

1 �

0 1

�

: � 2 Hom

R

(F;E)

o

; (8:9)

where the latter matrix representation is with respet to a �xed omplement F of E . The group

U

E

ats simply transitively on the set E

>

of omplements of E . Therefore, if for suh a �xed

deomposition V = E � F , we let

G(E;F ) := hU

E

; U

F

i � GL

R

(V ) (8:10)
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be the group generated by U

E

and U

F

, alled the elementary group of (V;E; F ), then G(E;F ) =

G(E;F

0

) for any two omplements F; F

0

of E , and we may write also G

E

for G(E;F ). We let

P

E

:= fg 2 G

E

: g(E) = Eg; (8:11)

and, for a �xed omplement F of E ,

H(E;F ) = fg 2 G(E;F ) : g(E) = E; g(F ) = Fg = P

E

\ P

F

: (8:12)

Theorem 8.4. The equivariant maps '

P

and '

C

have the following properties:

(1) For all E 2 C , '

C

(E

>

) = '

C

(E)

>

.

(2) For all p 2 P , the restrition of the map '

P

to the orbit GL

R

(V ):p ,

P � GL

R

(V ):p! G; g:p 7! ad(g:p);

is injetive.

(3) For all E 2 C , the restrition of the map '

C

to the orbit GL

R

(V ):E ,

C � GL

R

(V ):E ! F ; g:E 7! f

g:E

;

is injetive.

(4) Let p 2 P with assoiated deomposition V = E � F = im(p) � ker(p) . The map '

P

indues a bijetion

G(E;F )=H(E;F )

�

=

G(E;F ):p! G(ad(p)): ad(p)

�

=

G(ad(p))=H(ad(p));

and the map '

C

indues a bijetion

G(E;F )=P

F

�

=

G(E;F ):E ! G(ad(p)):f

F

= G(ad(p))=P

�

:

Proof. (1) The ation of U

E

on g is preisely the ation of e

ad(f

1

)

on g . Sine U

E

ats

simply transitively on the set of omplements of E , the laim follows from the orresponding

fat about g (Theorem 1.6(2)).

(2) Let e 2 P and f := geg

�1

2 P with g 2 GL

R

(V ) suh that ad(e) = ad(f). Then

z := f � e 2 Z(A) where A is the assoiative K -algebra End

R

(V ). In partiular, ef = fe and

therefore

(e� f)ef = e

2

f � ef

2

= ef � ef = 0:

We have

(f � e)

2

= f

2

� 2ef + e

2

= f + e� 2ef

and

(f � e)

3

= (f � e)(f + e� 2ef) = f

2

� e

2

� 2(f � e)ef = f � e;

i.e., z

3

= z . Write z = z

1

� z

2

with

z

1

=

1

2

z(z + 1) and z

2

=

1

2

z(z � 1):

Then z

1

and z

2

are again entral, and z

2

1

= z

1

and z

2

2

= z

2

. This implies

z

1

=

1

2

(f � e)(f � e+ 1) =

1

2

(f + e� 2ef + f � e) =

1

2

(2f � 2ef) = f � ef = zf

and

z

2

=

1

2

(f � e)(f � e� 1) =

1

2

(f + e� 2ef � f + e) =

1

2

(2e� 2ef) = e� ef = �ze:

We further obtain

z

2

= �z

2

z = z

2

(e�geg

�1

) = z

2

e�gz

2

eg

�1

= �ze

2

+gze

2

g

�1

= �ze+gzeg

�1

= z

2

�gz

2

g

�1

= 0

beause z

2

is entral, and likewise

z

1

= z

1

z = z

1

(f � g

�1

fg) = z

1

f � g

�1

z

1

fg = zf

2

� g

�1

zf

2

g = zf � g

�1

zfg = z

1

� g

�1

z

1

g = 0:

Eventually we obtain z = z

1

� z

2

= 0 and hene e = f , as had to be shown.

(3) This follows by ombining (2) and (1) (observing that the �bers of the map P ! C ,

p 7! im(p) are of the form F

?

, F 2 C , and similarly for G ! F ).

(4) This follows from (2) and (3), observing that the ation of H(E;F ) on g oinides with

the ation of H(ad(p). For P

E

we argue similarly.
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8.5. Speial Jordan pairs. If p 2 P and g = gl

R

(V ), then the assoiated Jordan pair is

(Hom

R

(F;E);Hom

R

(E;F )); T

�

(X;Y; Z) = XY Z + ZYX:

A Jordan pair that is a sub-pair of suh a pair is alled speial. The Bergman operator is in this

ase given by

B(X;Y )Z = (1�XY )Z(1� Y X):

The speial ase where V = E � E gives rise to a self-dual geometry and is related to the

K -Jordan algebra End

R

(E).

8.6. Geometry of right ideals. Now let us onsider the ase of the right R -module V = R .

In this ase (omplemented) submodules are the same as (omplemented) right ideals, and the

Grassmannian geometry should be alled the geometry of right ideals of R . Via the bijetion

R ! Hom

R

(R;R), r 7! l

r

(left multipliation by r ), the set P of projetors is identi�ed with

the set of idempotents of R ,

Idem(R) := fe 2 R : e

2

= eg:

The pair (R; e) with an idempotent e is also alled a Morita ontext (f. [Lo95, Setion 2.1℄).

In this ase, our Theorem 8.4 orresponds essentially to results of Loos ([Lo95, Theorem 2.8℄).

The symmetri spae struture on Idem(R) is desribed in the same way as after Prop. 8.2: it

is given by �(e; f) = (2e� 1)f(2e� 1).

8.7. Geometry of the projetive line. Another interesting ase is V = R � R , taking this

deomposition as base point p 2 P . This gives rise to a self-dual geometry (belonging to R

seen as a Jordan algebra over K ) whih is the projetive line over the ring R , see [He95℄ and

the reent work [BlHa01℄. The orresponding 3-graded Lie algebra is g = gl

2

(R), resp., its

subalgebra e

2

(R) generated by the strit upper and lower triangular matries.

Finally, let us remark that there exist rings R suh that R � R

�

=

R as right R -modules

(personal ommuniation by P.-Y. Gaillard, f. [Ga03℄), so that the ases 8.6 and 8.7 have non-

empty intersetion.
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