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Abstra
t. We prove that the proje
tive 
ompletion (X

+

; X

�

) of the Jordan pair (g

1

; g

�1

)


orresponding to a 3-graded Lie algebra g = g

1

� g

0

� g

�1


an be realized inside the spa
e F

of inner 3-�ltrations of g in su
h a way that the remoteness relation on X

+

�X

�


orresponds

to transversality of 
ags. This realization is used to give geometri
 proofs of stru
ture results

whi
h will be used in Part II of this work in order to de�ne on X

+

and X

�

the stru
ture of a

smooth manifold (in arbitrary dimension and over general base �elds or -rings).
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Introdu
tion

A basi
 
onstru
tion in linear algebra permits to imbed an aÆne spa
e V into a proje
tive

spa
e X as the 
omplement of a \hyperplane at in�nity" { let us assume here for simpli
ity that

everything is de�ned over a 
ommutative �eld K , so that X may be seen as the proje
tive spa
e

P(W ) with W

�

=

V � K . In the real or 
omplex 
ase, if the dimension is �nite or if V is e.g. a

Bana
h spa
e, the proje
tive spa
e X is a smooth manifold with V as a typi
al 
hart domain.

An atlas of X is obtained by taking all aÆne parts of X (all 
omplements of hyperplanes

of X ); as is well-known, 
hange of 
harts is then given by rational and hen
e di�erentiable

expressions. Similar 
onstru
tions are known for other manifolds X su
h as Grassmannians,

spa
es of Lagrangians or 
onformal quadri
s.

In the present work we will 
onstru
t su
h manifolds in a very general 
ontext, in arbitrary

dimension and over general base �elds or -rings instead of R or C . The present and �rst part


ontains the algebrai
 theory, and Part II ([BN03℄) 
ontains the analyti
 theory. For the 
ase of

base �elds other than R or C , we use in Part II suitable 
on
epts of di�erential 
al
ulus and

of smooth manifolds developed in [BGN03℄ whi
h, in the 
ase of lo
ally 
onvex real or 
omplex
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model spa
es { in parti
ular, for Bana
h and Fr�e
het spa
es {, agree with the usual 
on
epts

(but work more generally for manifolds modeled on any Hausdor� topologi
al ve
tor spa
e).

The present Part I is of independent interest sin
e indeed a good deal of the above mentioned


onstru
tions is purely algebrai
 and admits a beautiful Lie- and Jordan theoreti
 interpretation.

Geometri
ally, we work in the 
ontext of generalized proje
tive geometries (introdu
ed in [Be02℄),

and algebrai
ally, in the 
ontext of 3-graded Lie algebras whi
h in turn 
orrespond to Jordan

pairs (however, the paper is self-
ontained, and we assume only basi
 knowledge of Lie-algebras).

As in the ordinary proje
tive 
ase, it is a purely algebrai
 problem to de�ne the 
hart domains, to

give the pre
ise des
ription of the interse
tion of 
hart domains and and to �nd expli
it formulas

for the transition maps between di�erent 
harts. On
e this is established, di�erential 
al
ulus


an be applied in order to show in Part II that these stru
tures are di�erentiable under some

suitable and natural assumptions. In this way we not only obtain e.g. Grassmannian manifolds,

Lagrangian manifolds or 
onformal quadri
s in arbitrary dimension over K = R; C ;Q

p

; : : : , but

also a wealth of symmetri
 spa
es (over K ) whi
h generalize the symmetri
 Bana
h manifolds (see

the monograph [Up85℄) but in
lude many 
ompletely new examples that had not been a

essible

before. The symmetri
 spa
es thus 
onstru
ted are pre
isely those whi
h are in the image of the

Jordan-Lie fun
tor (
f. [Be02℄, [Be00℄).

Let us now des
ribe the 
ontents in some more detail. Our basi
 obje
ts are on the one

hand 3-graded Lie algebras, i.e. Lie algebras of the form g = g

1

�g

0

�g

�1

satisfying the relations

[g

�

; g

�

℄ � g

�+�

, and on the other hand 3-�ltered Lie algebras, i.e. Lie algebras g with a 
ag

f : 0 = f

2

� f

1

� f

0

� g of subalgebras su
h that [f

�

; f

�

℄ � f

�+�

. For simpli
ity we shall also write

these 
ags as pairs f = (f

1

; f

0

). If g is 3-graded, then D(X) = iX (X 2 g

i

) de�nes a derivation

of g su
h that D

3

= D , 
alled the 
hara
teristi
 element, and if D is inner, D = ad(E), E will

be 
alled an Euler operator. The spa
e of inner 3-gradings of g is

G = fad(E) : E 2 g; ad(E)

3

= ad(E)g:

As usual in algebra, graded stru
tures have underlying �ltered stru
tures. However, for every

3-grading, there are two naturally asso
iated �ltrations, f

+

:= f

+

(D) : g

1

� g

1

� g

0

� g and

f

�

:= f

�

(D) = f

+

(�D) : g

�1

� g

�1

� g

0

� g . If

F = ff

+

(D) : D 2 Gg

denotes the spa
e of inner 3-�ltrations of g , then we have an inje
tion

G ,! F �F ; D 7! (f

+

(D); f

�

(D)):

The spa
es G and F 
arry many interesting geometri
 stru
tures; one may say that the

pair (F � F ;G) is a \universal model of the generalized proje
tive geometry asso
iated to g".

On F �F there is a natural relation of being transversal: two 
ags e = (e

1

; e

0

) and f = (f

1

; f

0

)

are transversal if

g = e

1

� f

0

= f

1

� e

0

:

Our key result on the stru
ture of 3-graded Lie algebras (Theorem 1.6) aÆrms that G � F �F

is exa
tly the set of pairs of transversal inner 3-�ltrations of g , and the set f

>

of �ltrations

transversal to a given �ltration f 
arries 
anoni
ally the stru
ture of an aÆne spa
e over K with

translation group (f

1

;+). The elementary proje
tive group G = G(D) of the 3-graded Lie algebra

(g; D) is the group of automorphisms of g generated by the abelian groups U

�

= e

ad(g

�1

)

; it

a
ts on F and on G . We realize the proje
tive 
ompletion (X

+

; X

�

) of the pair (g

1

; g

�1

) as

the G-orbits in F of the base points f

�

and f

+

su
h that V

�

:= U

�

:f

�

= (f

�

)

>

are \aÆne

parts of X

�

" (Theorem 1.12). Summing up, the \generalized proje
tive geometry (X

+

; X

�

)"

is imbedded as a subgeometry in (F ;F).

Using this model, we have a natural de�nition of the \tangent bundle" TF of F and

of a \stru
ture bundle" T

0

F (taking the rôle of a 
otangent bundle), and of se
tions of these

bundles. Thus we 
an de�ne, in a purely algebrai
 
ontext, ve
tor �elds on F as well as a


ertain operator between T

0

F and TF 
alled the 
anoni
al kernel (Chapter 2). Over the aÆne
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parts V

�

, the bundles and their se
tions 
an be trivialized, and it is seen that our ve
tor �elds

are a
tually quadrati
 polynomial and that the 
anoni
al kernel 
oin
ides with the well-known

Bergman operator from Jordan theory (see below). Thus we get a very natural interpretation

of the \Koe
her 
onstru
tion" whi
h 
onsists of realizing a 3-graded Lie algebra by quadrati


polyomial ve
tor �elds (
f. also [Be00, Ch. VII℄, where in the �nite-dimensional real 
ase another

natural interpretation of this 
onstru
tion is given by using the integrability of almost (para-)


omplex stru
tures). This approa
h naturally leads to one of the main results to be used in

[BN03℄, namely the 
hart des
ription of the a
tion of Aut(g) by \fra
tional quadrati
 maps"

(Theorem 2.8) .

In Chapter 3 we explain the link of the pre
eding results with Jordan theory: the pair

(V

+

; V

�

) = (g

1

; g

�1

) together with the trilinear maps T

�

: V

�

� V

�

� V

�

! V

�

given by

triple Lie bra
kets is a (linear) Jordan pair, and one 
an express in a straightforward way all

relevant formulas from the pre
eding 
hapter by these maps. Thus we obtain in a 
al
ulation-free

way the Bergman-operator, the quasi-inverse and many of their fundamental relations and thus

get new and \geometri
" proofs of many Jordan theoreti
 results.

In Chapter 4 we add a new stru
ture feature, namely an involution of the 3-graded Lie

algebra. It leads to a bije
tion p : X

+

! X

�

whi
h is 
alled a polarity in 
ase that there

exist non-isotropi
 points x (i.e., p(x)>x). Then the spa
e of all non-isotropi
 points 
arries

the stru
ture of symmetri
 spa
e over K . We prove that the stru
ture maps of this symmetri


spa
e are given by suitable Jordan-theoreti
 formulas (Theorem 4.4), whi
h will allow to 
on
lude

in Part II of this work that these stru
ture maps are di�erentiable and so we really deal with

symmetri
 spa
es in the 
ategory of smooth manifolds.

Chapters 5 up to 8 
ontain further material that is not stri
tly ne
essary for Part II of

this work: in Chapter 5 we dis
uss those geometries that 
orrespond to unital Jordan algebras:

using our realization of X

�

as G-orbits in F , they are 
hara
terized by the simple property

that V

+

\ V

�

is non-empty; in parti
ular, X

+

= X

�

. An axiomati
 
hara
terization of the

\
anoni
al identi�
ation of X

+

and X

�

" has been given in [Be03℄; thanks to our model, things

are 
onsiderably easier here than in the axiomati
 approa
h.

In Chapter 6 some fun
torial aspe
ts of our 
onstru
tions are investigated. It is shown that

surje
tive homomorphisms of 3-graded Lie algebras indu
e equivariant maps of the asso
iated

geometries and we also show that in
lusions of inner 3-graded subalgebras 
ontaining g

1

+ g

�1

indu
e isomorphisms of the 
orresponding geometries.

In Chapter 7 we dis
uss 
entral extensions of inner 3-graded Lie algebras. We show that

for ea
h 
entral extension q:

b

g! g of an inner 3-graded Lie algebra g the extended Lie algebra

b

g 
arries a natural stru
ture of an inner 3-graded Lie algebra for whi
h q is a morphism of

3-graded Lie algebras. We further 
onstru
t a universal inner 3-graded 
entral extension of g .

We know from Chapter 6 that quotient maps indu
e maps on the level of geometries. For 
entral

extensions we show that these maps are isomorphisms.

In the �nal Chapter 8, we look at an important 
lass of geometries, the Grassmannian

geometries: let R be an asso
iative algebra over the 
ommutative ring K , V be a right R -

module, P the spa
e of all R -linear proje
tors V ! V and C be the spa
e of all R -submodules

of V that admit a 
omplement. Then, by elementary linear algebra, the pair (C � C;P) has the

main features of a generalized proje
tive geometry (Prop. 8.2, 
f. also [Be01℄), and in fa
t there

is a homomorphism into the geometry (F �F ;G) with g = gl

R

(V ) whi
h indu
es isomorphisms

on subgeometries that are homogeneous under the elementary proje
tive groups (Theorem 8.4).

Su
h geometries, 
alled Grassmannian geometries, 
orrespond to spe
ial Jordan pairs, i.e., to

subpairs of asso
iative pairs. In parti
ular, if V = R , then the Grassmannian geometry 
an also

be 
alled the \geometry of right ideals of the asso
iative algebra R"; it 
orresponds to R , seen

as a Jordan algebra over K .

Finally, we would like to add some 
omments on related work and on some open problems.

The elementary proje
tive group and the proje
tive 
ompletion of a general Jordan pair have

been introdu
ed by J. Faulkner ([Fa83℄), and results 
losely related to ours have been obtained

by O. Loos ([Lo95℄). Their results are based on the axiomati
 theory of Jordan pairs ([Lo75℄) and

hen
e work even for base rings in whi
h 2 is not invertible. In 
ontrast, we work in the 
ontext of
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general 3-graded Lie algebras and hen
e assume throughout that 2 is invertible in K . However,

it is possible to extend our approa
h also to the 
ase of a general base ring K { see Remark

3.9. Our results are more general in the sense that they apply to general 3-graded Lie algebras

(not only to the Tits-Kantor-Koe
her algebra of a Jordan pair) and to the general automorphism

group Aut(g) (and not only to the important spe
ial 
ase given by transformations 
orresponding

to quasi-inverses). As a by-produ
t, we get new proofs of many Jordan theoreti
 results. It is

in interesting open problem wether it is possible to derive \all" Jordan theoreti
 formulas in a

similar geometri
 way { in parti
ular, we would like to have in our model a \geometri
" proof of

the fundamental identity (PG2) of a generalized proje
tive geometry (
f. [Be02℄) whi
h is very


losely related to the famous fundamental formula of Jordan theory.

Closely related results have also been obtained by Kaup ([Ka83℄) and Upmeier ([Up85℄)

in the 
omplex 
ase in presen
e of a Jordan-Bana
h stru
ture. In fa
t, some arguments used to

prove our Stru
ture Theorem 1.6 have been used by Kaup in the proof of his Riemann Mapping

Theorem (see the proof of [Kau83, Prop. (2.14)℄ and the detailed version of this in [Up85, Lemma

9.16℄). Our proofs are mu
h simpler sin
e we work dire
tly with the 3-graded Lie algebra, whereas

Kaup and Upmeier always use its homomorphi
 image realized by quadrati
 polynomial ve
tor

�elds (
alled binary Lie algebras in [Up85℄).

The spe
ial 
ase of Grassmannians, espe
ially in the 
ontext of Bana
h manifolds, has

attra
ted mu
h attention sin
e it plays an important rôle in di�erential geometetry and is related

to several interesting di�erential equations { see, e.g., [D92℄, [DNS87℄; our 
onstru
tions are

similar to, but mu
h more general than the ones des
ribed there. For further referen
es to


onstru
tions of manifolds in 
ontexts related to Jordan theory see Part II ([BN03℄); 
f. also

[Io03℄ for an extensive bibliography.

A
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during the time of prepration of a �rst draft of the present paper.

Notation. throughout this paper, K is a 
ommutative ring with unit 1 su
h that 2 is invertible

in K . In Chapter 8, R denotes a possibly non-
ommutative ring whi
h is a K -algebra.

1. Three-graded and three-�ltered Lie algebras

1.1. Three-graded Lie algebras. A 3-graded Lie algebra (over K ) is a Lie algebra over K

of the form g = g

1

� g

0

� g

�1

su
h that [g

k

; g

l

℄ � g

k+l

, i.e., g

�1

are abelian subalgebras whi
h

are g

0

-modules, in the following often denoted by V

�

or g

�

, and [g

1

; g

�1

℄ � g

0

. The map

D : g ! g de�ned by DX = iX for X 2 g

i

is a derivation of g , 
alled the 
hara
teristi
 element

of the grading. It satis�es the relation (D � id)D(D + id) = 0, i.e., D

3

= D ; we say that it

is a tripotent derivation. Conversely, any tripotent derivation D : g ! g is diagonizable with

possible eigenvalues �1; 0; 1 and 
orresponding de
omposition of X 2 g :

X = X

1

+X

0

+X

�1

; X

0

= X �D

2

X; X

1

=

DX +D

2

X

2

; X

�1

=

�DX +D

2

X

2

: (1:1)

Sin
e D is a derivation, this eigenspa
e de
omposition is a 3-grading. Therefore we may identify

the spa
e of 3-gradings of g with the set

e

G := fD 2 der(g) : D

3

= Dg

of tripotent derivations. If D = ad(E) is an inner tripotent derivation, then E is 
alled an Euler

operator, and we denote by

G := fad(E) : E 2 g; ad(E)

3

= ad(E)g (1:2)

the spa
e of inner 3-gradings of g . The odd part of the 3-graded Lie algebra (g; D) is g

�1

� g

1

,

and we say that (g; D) is minimal if it is generated by its odd part, that is, g

0

is generated by

the bra
kets [g

1

; g

�1

℄ .
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The following degenerate 
ases may arise: D

2

= id, then g must be abelian, and we have

merely a de
omposition of a K -module into 
omplementary subspa
es; D

2

= D , then g = g

0

�g

1

is nothing but a g

0

-module g

1

, in parti
ular, D = 0 
orresponds to the 
ase g

1

= f0g .

1.2. The proje
tive elementary group. Let (g; D) be a 3-graded Lie algebra over K . For

x 2 g

�1

, the operator e

adx

= 1 + adx +

1

2

(adx)

2

is a well de�ned automorphism of g . The

group generated by these operators,

G := G(D) := PE(g; D) := he

adx

:x 2 g

�1

i � Aut(g);

is 
alled the proje
tive elementary group of (g; D) (see Se
tion 3.2 for the relation with the

proje
tive elementary group de�ned in Jordan theoreti
 terms, as in [Fa83℄, [Lo95℄). Sometimes

it will be useful to have a matrix notation for elements of G : if g 2 Aut(g), we let, with respe
t

to the �xed 3-grading,

g

ij

:= pr

i

Æg Æ �

j

: g

j

! g

i

; i; j = 1; 0;�1;

where �

j

: g

j

! g are the in
lusion maps and pr

i

: = pr

i

(D) : g! g

i

the proje
tions, given by

pr

1

=

D +D

2

2

; pr

0

= 1�D

2

; pr

�1

=

D

2

�D

2

; (1:3)

and write g in \matrix form"

g =

0

�

g

11

g

10

g

1;�1

g

01

g

00

g

0;�1

g

�1;1

g

�1;0

g

�1;�1

1

A

: (1:4)

The subgroups U

�

:= U

�

(D) := e

adg

�

of G are abelian and generate G . If the grading

derivation is inner, D = ad(E), then

exp : g

�1

! U

�

; X 7! e

ad(X)

is inje
tive sin
e v 2 g

�

implies e

ad v

:E = E�v . In the general 
ase, we de�ne the automorphism

group of (g; D) to be

Aut(g; D) = fg 2 Aut(g) : g ÆD = D Æ gg;

and we further de�ne subgroups H := H(D) and P

�

:= P

�

(D) of G via

H := G(D) \ Aut(g; D) and P

�

:= HU

�

= U

�

H: (1:5)

(If D is inner, D = ad(E), then H = fh 2 G:hÆadEÆh

�1

= adEg = fh 2 G:h:E�E 2 z(g)g .)

The groups U

�

are abelian, and sin
e the group H 
ommutes with D , it preserves the grading,

hen
e normalizes U

�

, so that P

�

are subgroups of G . Using notation from Equation (1.4), the

generators of G are represented by the following matri
es (where x 2 g

1

, y 2 g

�1

, h 2 H ):

e

adx

=

0

�

1 adx

1

2

ad(x)

2

0 1 adx

0 0 1

1

A

; e

ad y

=

0

�

1 0 0

ad y 1 0

1

2

ad(y)

2

ad y 1

1

A

; h =

0

�

h

11

h

00

h

�1;�1

1

A

:

More information on the group G(D) for inner 3-gradings D is given in Theorem 1.12.

Sometimes it will be useful to repla
e G by a slightly bigger group: if D 2

e

G and r 2 K

�

,

then, using the matrix notation (1.4),

h

(D;r)

:=

0

�

r

1

r

�1

1

A

= r pr

1

+pr

0

+r

�1

pr

�1

; (1:6)
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with the pr

i

as in Equation (1.3), de�nes an automorphism of (g; D) normalizing U

�

and


ommuting with all elements of the group Aut(g; D). The group G

ext

generated by G and the

group fh

(D;r)

: r 2 K

�

g will be 
alled the extended proje
tive elementary group.

1.3. Three-�ltered Lie algebras. A 3-�ltration of a Lie algebra g is a 
ag of subspa
es

0 = f

2

� f

1

� f

0

� f

�1

= g

su
h that

[f

k

; f

l

℄ � f

k+l

: (1:7)

Supressing the trivial parts f

2

and f

�1

in the notation, we will denote su
h a 
ag by f = (f

1

; f

0

)

or f : (f

1

� f

0

). Let

e

F be the set of su
h 
ags f , 
alled the spa
e of 3-�ltrations of g . Conditions

(1.7) are equivalent to the following requirements:

� f

0

is a subalgebra, and f

1

is an abelian subalgebra of g ,

� f

1

is an ideal in f

0

, and [g; f

1

℄ � f

0

.

It follows that the operators ad(X) with X 2 f

1

are 3-step nilpotent and hen
e the automorphism

e

ad(X)

of g is well-de�ned. We denote by

U(f) := e

ad(f

1

)

= fe

ad(X)

jX 2 f

1

g � Aut(g) (1:8)

the 
orresponding abelian group. From (1.7) it follows that U(f) preserves the �ltration f . The

�ltration f is also stable under the a
tion of the subalgebra f

0

.

1.4. Relation between 3-gradings and 3-�ltrations. To any 3-grading g = g

1

� g

0

� g

�1

of g with 
hara
teristi
 derivation D 2

e

G we may asso
iate two 3-�ltrations of g , 
alled the

asso
iated plus- and minus-�ltration, given by the two 
ags

f

+

(D) := (g

1

; g

0

� g

1

); f

�

(D) := (g

�1

; g

0

� g

�1

): (1:9)

Clearly, f

�

(D) = f

�

(�D). We will say that a 3-�ltration is inner if it is of the form f =

f

+

(ad(E)) = f

�

(ad(�E)) for some Euler operator E , and the spa
e of inner 3-�ltrations will be

denoted by

F := ff

+

(D) : D 2 Gg: (1:10)

By these de�nitions, the maps G ! F , D 7! f

�

(D) are surje
tive, and the map

G ! F �F ; D 7! (f

+

(D); f

�

(D)) (1:11)

is inje
tive (sin
e g

�1

are re
overed by the �ltration and g

0

= (g

0

� g

1

) \ (g

0

� g

�1

)).

1.5. Transversality. Two 
ags e = (e

1

; e

0

) and f = (f

1

; f

0

) as above are 
alled transversal if

g = e

1

� f

0

= f

1

� e

0

:

It is 
lear by 
onstru
tion that the two �ltrations f

+

(D) and f

�

(D) asso
iated to a 3-grading

D of g are transversal. We will prove that, 
onversely, any pair of transversal inner 3-�ltrations

arises in this way. If f 2 F , we will use the notation

f

>

:= fe 2 F : e>fg (1:12)

for the set of inner 3-�ltrations that are transversal to f , and

(F �F)

>

= f(e; f) 2 F �F : e>fg (1:13)

for the set of transversal pairs.
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Theorem 1.6. (Stru
ture Theorem for the spa
e of 3-�ltrations.) With the notation intro-

du
ed above, the following holds for any Lie algebra g over K :

(1) The spa
e of inner 3-gradings 
an be 
anoni
ally identi�ed with the spa
e of transversal

pairs of inner 3-�ltrations:

G = (F �F)

>

In other words, two inner 3-�ltrations e and f are transversal if and only if there exists

an Euler operator E su
h that f = f

+

(ad(E)) and e = f

�

(ad(E)) .

(2) For any inner 3-�ltration f , the spa
e f

>


arries a natural stru
ture of an aÆne spa
e

over K with translation group (f

1

;+) . The group f

1

a
ts simply transitively on f

>

by

x:e := e

adx

:e .

Proof. (1) We have already remarked that G � (F � F)

>

. In order to prover the other

in
lusion, let us assume that (e; f) is transversal. We have to show that (e; f) 2 G .

Sin
e f is inner, there exists an Euler operator E 2 g su
h that f = f

+

(ad(E)). We also


hoose a 3-grading

g = g

1

� g

0

� g

�1

with e

1

= g

1

; e

0

= g

1

� g

0

: (1:14)

Let pr

j

: g ! g

j

, j = �1; 0; 1, denote the 
orresponding proje
tions. Our assumption that e

and f are transversal means that

g = e

1

� f

0

= g

1

� f

0

and g = f

1

� e

0

= f

1

� (g

0

� g

1

): (1:15)

From (1.14) together with the �rst of these 
onditions we see that the restri
ted proje
tion

pr

�1

: f

1

! g

�1

is surje
tive. Thus there exists a Z 2 f

1

su
h that pr

�1

(Z) = pr

�1

(E), i.e.

Z �E 2 kerpr

�1

= e

0

. Then [Z;E℄ = �Z leads to

E

0

:= e

ad(Z)

E = E + [Z;E℄ = E � Z 2 e

0

:

On the other hand, sin
e Z 2 f

1

, the automorphism e

ad(Z)

stabilizes the 
ag f , and hen
e

f

+

(ad(E

0

)) = e

ad(Z)

f

+

(ad(E)) = e

ad(Z)

:f = f:

We may therefore, after repla
ing E by E

0

, assume that E 2 e

0

. This implies that e

1

is

invariant under adE , and sin
e adE a
ts by � id on the quotient spa
e g=f

0

�

=

e

1

, it follows

that [E;X ℄ = �X for ea
h X 2 e

1

, hen
e

e

1

= fX 2 g: [E;X ℄ = �Xg:

Further e

0

� f

1

= g , and f

1

is the 1-eigenspa
e of adE , so that the invariant subspa
e e

0

must

be the sum of the 0- and �1-eigenspa
e of adE , and thus e = f

�

(adE).

(2) Assume e>f . The group U(f) = e

ad(f

1

)

preserves both the 
ag f and the relation of

being transversal. Therefore, for all X 2 f

1

, f = e

ad(X)

f is transversal to e

ad(X)

e , and hen
e we

have an a
tion of the abelian group U(f)

�

=

f

1

on f

>

.

Let us prove that this a
tion is transitive. We assume that e

0

>f and e>f . By Part (1),

there exists an Euler operator E su
h that f = f

+

(ad(E)) and e

0

= f

�

(ad(E)). As in the proof

of Part (1), we �nd Y 2 f

1

su
h that

E

0

:= e

ad(Y )

E = E � Y 2 e

0

:

Then the argument in (1) implies that adE

0

is a 
hara
teristi
 element of the 3-grading

g

1

:= f

1

; g

0

:= f

0

\ e

0

; g

�1

:= e

1

de�ned by the pair (f; e). Therefore

e = f

�

(ad(E

0

)) = e

adY

:f

�

(ad(E)) = e

adY

:e

0

:
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Hen
e e

0

and e are 
onjugate under the group U(f).

Finally, we prove that the a
tion is simply transitive. Assume that e 2 f

>

and X 2 f

1

are

su
h that e

ad(X)

e = e . Then e

ad(X)

�xes the transversal pair (e; f) and hen
e 
ommutes with

ad(E), where E is an Euler operator su
h that (f; e) = (f

+

(ad(E)); f

�

(ad(E))). Applying this

to the element E 2 g , we get, sin
e [E;X ℄ = �X ,

0 = e

ad(X)

adE(E) = adE Æ e

ad(X)

(E) = [E;E �X ℄ = �X:

Corollary 1.7. Let D

1

= ad(E

1

); D

2

= ad(E

2

) 2 G and g

1

:= fX 2 gj [E

1

; X ℄ = Xg . Then

the following are equivalent:

(1) E

1

and E

2

have the same asso
iated +-�ltration: f

+

(ad(E

1

)) = f

+

(ad(E

2

)) .

(2) D

1

�D

2

2 ad(g

1

) .

(3) [D

1

; D

2

℄ = D

2

�D

1

.

(4) There is v 2 g

1

su
h that D

2

= e

ad v

D

1

e

� ad(v)

.

Proof. (4) implies (1) sin
e U(f

+

(D

1

)) preserves f

+

(D

1

). Conversely, if (1) holds, then

f

�

(D

2

) is transversal to f

+

(D

2

) = f

+

(D

1

), and now (4) follows from Part (2) of Theorem 1.6.

From (4) it follows that ad(E

2

) = ad(E

1

+[v; E

1

℄+

1

2

[v; [v; E

1

℄℄) = ad(E

1

� v), when
e (2),

and from this it follows that [D

1

; D

2

℄ = ad([E

1

; E

2

℄) = ad([E

1

;�v℄) = ad(v) = ad(E

1

� E

2

),

when
e (3), and �nally from (3) we get (4) by letting v := E

1

� E

2

, whi
h leads to e

ad v

:E

1

=

E

1

+ [v; E

1

℄ = E

1

+E

2

�E

1

= E

2

.

Next we state a \matrix version" of Part (1) of Theorem 1.6, using the matrix notation

introdu
ed in Equation (1.4).

Corollary 1.8. With respe
t to a �xed inner 3-grading given by the Euler operator E , with


orresponding pair of 3-�ltrations (f

�

; f

+

) = (f

�

(D); f

+

(D)) = ((g

�1

; g

0

+ g

�1

); (g

1

; g

0

+ g

1

)) ,

the following statements are equivalent:

(1) (g:f

�

; f

+

) 2 G .

(2) f

+

and g:f

�

are transversal.

(3) g

�1;�1

and (g

�1

)

11

are invertible in End(g

�1

) , resp., in End(g

1

) .

Proof. The equivalen
e of (1) and (2) is given by Theorem 1.6(1). Now, (2) is equivalent to

(4) and (5):

(4) g(g

�1

) is a 
omplement of g

1

� g

0

and g(g

�1

� g

0

) is a 
omplement of g

1

,

(5) g(g

�1

) is a 
omplement of g

1

� g

0

and g

�1

(g

1

) is a 
omplement of g

�1

� g

0

,

and 
learly (5) is equivalent to (3).

De�nition 1.9. For x 2 g

1

and g 2 Aut(g), we de�ne

d

g

(x) := (e

� ad(x)

g

�1

)

11

; 


g

(x) := (ge

ad(x)

)

�1;�1

:

Then

d

+

g

:= d

g

: g

1

! End(g

1

); 


+

g

:= 


g

: g

1

! End(g

�1

)

are quadrati
 polynomial maps, 
alled the denominator and 
o-denominator of g (w.r.t. the �xed

inner grading de�ned by ad(E)). In a similar way, d

�

g

and 


�

g

are de�ned.

Writing g and e

ad(x)

in matrix form (1.4), the denominator for g

�1

is given by

d

g

�1
(x) = g

11

� ad(x) Æ g

01

+

1

2

ad(x)

2

Æ g

�1;1

;

and similarly for the 
o-denominator. For the generators of G we get the following (
o-)

denominators (where v 2 g

1

, w 2 g

�1

):

g = e

ad(v)

: d

g

(x) = id

g

1

; 


g

(x) = id

g

�1

g = e

ad(w)

: d

g

(x) = id

g

1

+ad(x) ad(w) +

1

4

ad(x)

2

ad(w)

2

;




g

(x) = id

g

�1

+ad(w) ad(x) +

1

4

ad(w)

2

ad(x)

2

g = h 2 H : d

h

(x) = (h

11

)

�1

= (h

�1

)

11

; 


h

(x) = h

�1;�1

:

(1:16)



9 Proje
tive 
ompletions of Jordan pairs 27.5.2003

For g = e

ad(w)

as in the se
ond equation, we introdu
e the notation

B

+

(x;w) := d

g

(x); B

�

(w; x) := 


g

(x): (1:17)

These linear maps de�ne the Bergman operator, see Se
tion 3.3.

Corollary 1.10. With respe
t to a �xed inner 3-grading given by the Euler operator E , we

identify V

+

:= g

1

with the set (f

+

)

>

= e

ad(V

+

)

f

�

. Then for x 2 V

+

the following statements

are equivalent:

(1) (g:x; f

+

) 2 G .

(2) f

+

and g:x are transversal, i.e., g:x 2 V

+

.

(3) 


g

(x) and d

g

(x) are invertible in End(g

�1

) , resp., in End(g

1

) .

Proof. This follows by applying Corollary 1.8 to the element ge

ad(x)

2 Aut(g).

In parti
ular, for g = e

ad(w)

with w 2 g

�1

, it follows that g:x 2 V

+

if and only if B

+

(x;w)

and B

�

(w; x) are invertible.

1.11. The proje
tive geometry of a 3-graded Lie algebra. Re
all from Se
tion 1.2

the de�nition of the proje
tive elementary group G := G(D). Using Theorem 1.6(1), we may

identify an inner grading D = ad(E) with the 
orresponding pair (f; e) = (f

+

(D); f

�

(D)) of inner

�ltrations; hen
e we may also write G(f; e) for the elementary group G(D), and similarly for

H(D) and P

�

(D). If f; e; e

0

are inner 3-�ltrations su
h that e>f and e

0

>f , then Theorem 1.6(2)

implies that e and e

0

are 
onjugate under G(f; e), and hen
e we have G(f; e) = G(f; e

0

). Therefore

we may de�ne the proje
tive elementary group of the inner 3-�ltration f to be G(f) := G(f; e),

where e 2 F is any �ltration that is transversal to f . Note that

U

+

(f; e) = U

+

(f)

is the abelian group de�ned by Eqn. (1.8) and hen
e is independent of e , whereas the groups

U

�

= U

�

(f; e), H = H(f; e) and P

�

= P

�

(f; e) depend on the 
hoi
e of e . (We will see below

that P

+

does not depend on e .) We de�ne the following homogeneous spa
es:

X

�

:= G=P

�

; M := G=H: (1:18)

For reasons that will be explained below, the data (X

+

; X

�

;M) are 
alled the (generalized)

proje
tive geometry asso
iated to the graded Lie algebra (g; D). The base point (P

�

; P

+

) in

X

+

�X

�

will often be denoted by (o

+

; o

�

).

Theorem 1.12. (Stru
ture theorem for the proje
tive geometry of a 3-graded Lie algebra)

With the notation introdu
ed above, the following holds:

(1) The orbits of D := ad(E) 2 G , resp., of f

�

2 F , under the a
tion of G are isomorphi
 to

M , resp., to X

�

. In other words,

H = fg 2 G(D) : g:(f

�

; f

+

) = (f

�

; f

+

)g and P

�

= fg 2 G(D) : g:f

�

= f

�

g:

Moreover, P

+

\ P

�

= H , P

�

\ U

�

= f1g and

P

�

= fg 2 G : gDg

�1

�D 2 ad(g

�1

)g = fg 2 G: g:E �E 2 z(g) + g

�1

g:

(2) If we identify X

�

with the 
orresponding orbits in F , then

G \ (X

+

�X

�

) =M:

(3) For every element e 2 X

�

, the set e

>

is 
ontained in X

+

and 
arries a well-de�ned

stru
ture of an aÆne spa
e over K with translation group e

1

= g

1

. In parti
ular, (o

�

)

>

is 
anoni
ally identi�ed with V

+

= e

ad(g

1

)

:o

+

.
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(4) Consider the set 


+

of elements of G sending the base point o

+

2 X

+

to a point of the

aÆne part V

+

� X

+

,




+

:= fg 2 G : g:o

+

2 V

+

g:

Then the map

g

1

�H � g

�1

! 


+

; (v; h; w) 7! e

ad(v)

he

ad(w)

is a bije
tion, and moreover




+

= fg 2 G : d

g

(o

+

) 2 GL(g

1

); 


g

(o

+

) 2 GL(g

�1

)g:

(5) The spa
es X

�

� F and M � G are stable under the a
tion of the automorphism group

Aut(g; D) and of the extended proje
tive elementary group G

ext

.

Proof. (1) An element g 2 G stabilizes (f

+

; f

�

) if and only if it 
ommutes with D = ad(E)

whi
h means that it belongs to H .

It is 
lear that P

+

stabilizes f

+

. Conversely, assume that g 2 G satis�es g:f

+

= f

+

.

Then g:f

+

= f

+

is transversal to g:f

�

, and hen
e by Theorem 1.6(2) there exists v 2 g

1

su
h

that g:f

�

= e

ad(v)

f

�

. Then h := e

� ad(v)

g preserves (f

+

; f

�

) and thus belongs to H . Therefore

g = e

ad(v)

h belongs to P

+

. Hen
e P

+

is the stabilizer of f

+

. Similarly for P

�

.

It follows that P

+

\P

�

is the stabilizer of (f

+

; f

�

) whi
h is H . Next, assume g 2 P

+

\U

�

.

Write g = e

ad(v)

with v 2 g

�1

. Sin
e v 7! e

ad(v)

f

+

is inje
tive (Theorem 1.6(2)), it follows from

gf

+

= f

+

that v = 0 and hen
e g = 1 .

Finally, g stabilizes f

+

if and only if D and gDg

�1

have the same asso
iated +-�ltration,

if and only if gDg

�1

�D belongs to ad(g

1

) (Corollary 1.7), when
e the last 
laim of Part (1)

for P

+

, and similarly for P

�

.

(2) It is 
lear that the G-orbit G:(f

+

; f

�

) belongs both to X

+

�X

�

and to G . In order

to prove the 
onverse, let (f; e) 2 (X

+

�X

�

)\G . We may write f = g:f

+

for some g 2 G . Then

g

�1

(f; e) = (f

+

; g

�1

e) again belongs to (X

+

�X

�

) \ G . A

ording to Theorem 1.6, there exists

v 2 g

1

su
h that g

�1

e = e

ad(v)

f

�

. It follows that (f; e) = ge

ad(v)

(f

+

; f

�

) belongs to the G-orbit

G:(f

+

; f

�

).

(3) As in the proof of (2), we translate by an element g 2 G su
h that ge = f

�

, and then

the 
laim is pre
isely the one of Part (2) of Theorem 1.6.

(4) Assume g 2 


+

and let v := g:o

+

2 V

+

. Then e

� ad(v)

g:o

+

= o

+

, and a

ording

to Part (1), it follows that then p := e

� ad(v)

g 2 P

�

, when
e the de
omposition g = e

ad(v)

p =

e

ad(v)

he

ad(w)

. Uniqueness follows from the fa
t that P

+

\ P

�

= H . Also, it is 
lear that any

element g 2 U

+

P

�

belongs to 


+

.

The se
ond 
laim is a reformulation of Corollary 1.10.

(5) Assume h 2 Aut(g; D). From the relation he

ad(x)

h

�1

= e

ad(hx)

(x 2 g

�

) it follows

that h normalizes G . Sin
e h stabilizes f

�

, it follows that, for all g 2 G , hg:f

�

= hgh

�1

:f

�

2

G:f

�

= X

+

. It follows that X

+

; X

�

and M are stable under h . Sin
e G

ext

is generated by G

and all h

(D;r)

(
f. Eqn. (1.6)), stability under G

ext

also follows.

Sin
e P

+

\ P

�

= H ,

M ! X

+

�X

�

; gH 7! (gP

�

; gP

+

) (1:19)

is a well-de�ned imbedding, and the following diagram 
ommutes:

G=H ,! G=P

�

�G=P

+

# #

G ,! F �F

: (1:20)

Thus we may say that the data (X

+

; X

�

;M) forms a subspa
e of (F ;F ;G) on whi
h the

elementary proje
tive group G a
ts transitively.

1.13. The stru
ture maps of the proje
tive geometry. Assume (f

1

; f

2

; f

3

) is a \generi


triple" of inner 3-�ltrations; by this we mean that it belongs to the spa
e

(F �F �F)

>

:= f(f

1

; f

2

; f

3

) 2 F �F �F : f

1

>f

2

; f

3

>f

2

g: (1:21)
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Sin
e f

>

2


arries a natural stru
ture of an aÆne spa
e over K (Theorem 1.6(2)), we may take f

1

as origin in f

>

2

, i.e., we turn f

>

2

into a K -module with zero ve
tor f

1

. Let r 2 K and rf

3

be the

ordinary multiple of f

3

in this K -module. Sin
e it depends on f

1

and on f

2

, we write

�

r

(f

1

; f

2

; f

3

) := r

f

1

;f

2

(f

3

) := rf

3

= (1� r)f

1

+ rf

3

;

where the latter expression only refers to the aÆne stru
ture. The map

�

r

: (F �F �F)

>

! F ; (f

1

; f

2

; f

3

) 7! �

r

(f

1

; f

2

; f

3

) (1:22)

is 
alled the stru
ture map of the proje
tive geometry (F ;F ;G). By restri
tion to the subgeometry

(X

+

; X

�

;M), we get in a similar way two stru
ture maps

�

�

r

: (X

�

�X

�

�X

�

)

>

! X

�

be
ause for f

2

2 X

�

we have f

>

2

� X

�

by Theorem 1.12(3). In [Be02, Th. 10.1℄ it is shown

that these maps satisfy two remarkable identities (PG1) and (PG2) whi
h axiomati
ally de�ne

the 
ategory of generalized proje
tive geometries. If r 2 K

�

, then we have

�

r

(f

1

; f

2

; f

3

) = h

(D;r)

� f

3

; (1:23)

where h

(D;r)

is the automorphism de�ned by Equation (1.6) and D 
orresponds to the 3-grading

de�ned by the transversal pair (f

1

; f

2

). The 
ase r = �1 is of parti
ular interest sin
e it leads

to asso
iated symmetri
 spa
es, see Chapter 4.

2. Tangent bundle, stru
ture bundle and the 
anoni
al kernel

2.1. Tangent bundle and stru
ture bundle. We 
ontinue to use the notation G , resp.

F , for the spa
e of inner 3-gradings (resp. 3-�ltrations) of a Lie algebra g . For a 3-�ltration

f = (f

1

; f

0

), we de�ne K -modules by

T

f

F := g=f

0

; T

0

f

F := f

1

; (2:1)


alled the tangent spa
e of F at f , resp., the stru
tural spa
e of F at f . If f = f

�

(ad(E)) is the

minus-�ltration w.r.t. an Euler operator E , then f

0

= g

0

� g

�1

, and hen
e

T

f

F

�

=

g

1

; T

0

f

F = g

�1

:

It is not misleading to think of T

0

f

F as a sort of \
otangent spa
e" of F at f . We let

TF :=

[

f2F

T

f

F ; T

0

F :=

[

f2F

T

0

f

F (2:2)

(disjoint union), 
alled the tangent bundle of F , resp., the stru
ture bundle of F . The group

Aut(g) a
ts on G and on F , and for any g 2 Aut(G), the following maps are well-de�ned and

linear:

T

f

g : T

f

F ! T

g:f

F ; Y mod f

0

7! gY mod gf

0

;

T

0

f

g : T

0

f

F ! T

0

g:f

F ; Y 7! gY;

(2:3)

and if we de�ne now Tg : TF ! TF , T

0

g : T

0

F ! T

0

F in the obvious way, then 
learly the

fun
torial properties T (g Æ h) = T (g) Æ T (h), and T

0

(g Æ h) = T

0

(g) Æ T

0

(h) hold. Finally, if a

base point D 2 G is �xed and X

�

� F are as in Cor. 1.10, then the tangent spa
es T

f

X

�

,

T

0

f

X

�

and the 
orresponding bundles TX

�

, T

0

X

�

are de�ned. The natural group a
ting on

these spa
es is the normalizer of G(D) in Aut(g).
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2.2. Ve
tor �elds and the 
anoni
al kernel. If Y 2 g and f 2 F is as above, we say that

Y

f

:= Y mod f

0

2 T

f

F (2:4)

is the value of Y at f , and the assignment

e

Y : F ! TF , f 7! Y

f

de�nes a ve
tor �eld on F .

The spa
e of ve
tor �elds on F is denoted by X(F); it is a K -module in the obvious way su
h

that the surje
tion

g ! X(F); Y 7!

e

Y

be
omes a K -linear map whi
h is equivariant w.r.t. the natural a
tions of Aut(g) on both spa
es.

In parti
ular, the stru
tural spa
es T

0

f

F are subspa
es of g and hen
e give rise to ve
tor �elds.

Composing with evaluation at another point, we are lead to de�ne, for (f; e) 2 F �F , a K -linear

map by

K

f;e

: T

0

e

F = e

1

! T

f

F = g=f

0

; Y 7! Y

f

= Y mod f

0

: (2:5)

The 
olle
tion of maps (K

e;f

;K

f;e

), (f; e) 2 F �F , is 
alled the 
anoni
al kernel. Note that K

f;e

is bije
tive if and only if e

1

is a K -module 
omplement of f

0

in g . In parti
ular, if f = f

�

(ad(E)),

e = f

+

(ad(E)), then K

f;e

is identi�ed with a linear map g

1

! g

1

whi
h is simply the identity.

Theorem 2.3. For e; f 2 F the following statements are equivalent:

(1) (e; f) 2 G ,

(2) K

f;e

: T

0

e

F ! T

f

F and K

e;f

: T

0

f

F ! T

e

F are bije
tive.

Proof. The se
ond 
ondition 
learly is equivalent to saying that e and f are transversal, and

therefore Theorem 2.3 is a restatement of Part (1) of Theorem 1.6.

2.4. Trivialization over aÆne parts, and quadrati
 polynomial ve
tor �elds. In the

following we will often �x an Euler operator E , the asso
iated 3-grading of g and the asso
iated

pair (f

�

; f

+

) = (f

�

(ad(E)); f

+

(ad(E))) of �ltrations. The pair (f

�

; f

+

) then serves as a base point

in G and in the homogeneous spa
e G:(f

�

; f

+

)

�

=

G=H � X

+

�X

�

(
f. Th. 1.12) and will also

often be denoted by (o

+

; o

�

). The spa
es V

�

:= g

�1

are imbedded into X

�

= G:f

�

�

=

G=P

�

via X 7! e

ad(X)

f

�

; this imbedding will be 
onsidered as an in
lusion, so that, for x 2 X

+

, the


ondition x 2 V

+

means that (x; o

�

) 2 G .

The reader may think of X

�

as a kind of \manifolds" modeled on the K -modules V

�

: we

will say that

A := f(g(V

+

); g) : g 2 Gg; '

g

: g(V

+

)! V

+

; g:x 7! x (2:6)

is the natural atlas of X

+

. Having this in mind, a natural question is to des
ribe the stru
tures

introdu
ed so far by a \trivialized pi
ture" in the 
harts of the atlas A . Sin
e the spa
es

X

�

are homogeneous under G , one 
an des
ribe TX

�

and T

0

X

�

as asso
iated bundles: if

� : P

�

! GL(W ) is a homomorphism of P

�

into the linear group of a K -module W , let

G�

P

�
W = G�W= �

with (g; w) � (gp; �(p)

�1

w) for p 2 P

�

. If � is the natural representation of P

�

on W :=

g=(g

0

� g

�1

)

�

=

g

1

given by

�(p) := p

11

: g

1

! g

1

; X 7! pr

1

(pX) (2:7)

(this is the a
tion of P

�

on T

f

�
X

+

), then

G�

P

�
g

1

! TX

+

; [g;X ℄ 7! (T

o

+
g)(X) (2:8)

is a G-equivariant bije
tion. Similarly, if � is the natural representation of P

�

on W := g

�1

given simply by �(p)X = pX = p

�1;�1

X , then

G�

P

�
g

�1

! T

0

X

+

; [g;X ℄ 7! gX (2:9)
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is a G-equivariant bije
tion. For TX

�

and T

0

X

�

we have similar formulas. If f : G!W is a

fun
tion su
h that f(gp) = �(p)

�1

:f(g) for all g 2 G and p 2 P

�

, then via

s

f

(gP

�

) = [g; f(g)℄:

we get a well de�ned se
tion of the natural proje
tion G �

P

�
W ! G=P

�

, and every se
tion

arises in this way. For instan
e, for Y 2 g , the 
orresponding ve
tor �eld

e

Y on X

+

is given by

the fun
tion

e

Y

G

: G! g

1

; g 7! g

�1

Y mod(g

0

� g

�1

) = pr

1

(g

�1

Y ); (2:10)

where for the last equality we identi�ed g=(g

0

� g

�1

) and g

1

. In fa
t, 
onsidering (2.8) as an

identi�
ation, we have

e

Y

g:o

+
= Y mod(g(g

0

� g

�1

)) = g(g

�1

Y mod(g

0

� g

�1

)) = [g; g

�1

Y mod(g

0

� g

�1

)℄ = [g;

e

Y

G

(g)℄:

We 
onsider the spe
ial 
ase g = e

ad(v)

with v 2 g

1

. We identify the restri
tion of

e

Y to

V

+

� X

+

with the map

e

Y

+

: V

+

! V

+

; v 7! pr

1

(e

� ad v

:Y ) = pr

1

(Y � [v; Y ℄ +

1

2

[v; [v; Y ℄℄): (2:11)

Note that the map

e

Y

+

is a quadrati
 map from V

+

to V

+

. In parti
ular, it immediately follows

from this formula that for Y 2 g

1

this map is 
onstant, for Y 2 g

0

it is linear and for Y 2 g

�1

it is homogeneous quadrati
:

e

Y

+

(v) =

8

<

:

Y for Y 2 g

1

,

[Y; v℄ for Y 2 g

0

,

1

2

[v; [v; Y ℄℄ for Y 2 g

�1

.

(2:12)

Similarly, Y 2 g gives rise to a quadrati
 map

e

Y

�

: V

�

! V

�

. Summing up, asso
iating

to Y 2 g the quadrati
 polynomial map

e

Y

+

�

e

Y

�

: V

+

� V

�

! V

+

� V

�

gives rise to a

trivialization map

g ! Pol

2

(V

+

; V

+

)� Pol

2

(V

�

; V

�

)

where Pol

2

(W;W ) is spa
e of polynomial selfmappings of degree at most two of a K -module

w . Elements of g

0

are mapped onto linear polynomials; in parti
ular, the Euler operator E is

mapped onto (id

V

+
;� id

V

�
). The following result will not be used in the sequel, but is re
orded

here for the sake of 
ompleteness.

Proposition 2.5. Assume 3 is invertible in K . Then the trivialization map be
omes a

homomorphism of Lie algebras if we de�ne the bra
ket of two quadrati
 polynomial maps p; q :

W !W on a K -module W by

[p; q℄(x) = dp(x)q(x) � dq(x)p(x)

where the (algebrai
) di�erentials dp(x) , dq(x) of a (quadrati
) polynomial mapping are de�ned

in the usual way.

Proof. The 
ommutator relations are dire
tly 
he
ked by 
hoosing p; q in the homogeneous

parts g

1

; g

0

; g

�1

of g .

For the 
orresponding result on the group level, re
all from De�nition 1.9 the nominator

and 
o-denominator of an element g 2 G .
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Proposition 2.6. If g 2 Aut(g) and x 2 V

+

� X

+

are su
h that d

g

(x) and 


g

(x) are

invertible (equivalently, if g:x 2 V

+

), then for all Y 2 g ,

^

(g

�1

Y )

+

(x) = d

g

(x)

e

Y

+

(g:x):

In parti
ular, for Y = v 2 g

1

we have

^

(g

�1

v)

+

(x) = d

g

(x)v:

If x; g

1

:x and g

1

g

2

:x belong to V

+

, then the 
o
y
le relation

d

g

1

g

2

(x) = d

g

2

(x) Æ d

g

1

(g

2

:x)

holds.

Proof. The assumption that g:x 2 V

+

means that g Æ e

ad(x)

belongs to the set 


+

� G

de�ned in Theorem 1.12, Part (4). Therefore, a

ording to this theorem, there exists a unique

element p(g; x) 2 P

�

su
h that ge

ad(x)

= e

ad(g:x)

p(g; x) and hen
e p(g; x) = e

� ad(g:x)

ge

ad(x)

.

From this we get

(p(g; x)

�1

)

11

= (e

� ad(x)

g

�1

e

ad(g:x)

)

11

= pr

1

Æe

� ad(x)

g

�1

e

ad(g:x)

Æ �

1

= pr

1

Æe

� ad(x)

g

�1

Æ �

1

= (e

� ad(x)

g

�1

)

11

= d

g

(x):

This will be used in the last line of the following 
al
ulation (
f. also [Be00, VIII.B.2℄ for the

general framework):

^

(g

�1

Y )

+

(x) =

e

Y

G

(ge

ad(x)

) =

e

Y

G

(e

ad(g:x)

p(g; x))

= �(p(g; x))

�1

e

Y

G

(e

ad(g:x)

) = (p(g; x)

�1

)

11

e

Y

G

(e

ad(g:x)

) = d

g

(x)

e

Y

+

(g:x):

The se
ond assertion follows sin
e ev

+

is a 
onstant ve
tor �eld on V

+

, see Equation (2.12). The


o
y
le relation now follows:

d

g

1

g

2

(x)v =

^

(g

�1

2

g

�1

1

v)

+

(x) = d

g

2

(x)

^

(g

�1

1

v)

+

(g

2

:x) = d

g

2

(x) Æ d

g

1

(g

2

:x)v:

Proposition 2.6 implies in parti
ular that the a
tion of g on the tangent bundle TX

+

is

given in the 
anoni
al trivialization on V

+

by the expression T

x

g � v = d

g

(x)

�1

v ; in Part II of

this work we will show that, in presen
e of a di�erentiable stru
ture, this really 
orresponds to

the di�erential dg(x) of g at x , applied to v . { Similarly as in the proof of Prop. 2.6, it is seen

that the a
tion of g on T

0

X

+

is, in the trivialization T

0

(V

+

)

�

=

V

+

� V

�

over the aÆne part

V

+

� X

+

, given by

T

0

x

g � w = 


g

(x)w;

and that the 
o-denominators also satisfy a 
o
y
le relation 


g

1

g

2

(x) = 


g

1

(g

2

:x) Æ 


g

2

(x).

2.7. Nominators. We apply the pre
eding proposition in the 
ase where Y is an Euler operator

E indu
ing the �xed 3-grading of g : for g 2 Aut(g) 
onsider the ve
tor �eld

^

g

�1

E on X

+

and

de�ne the nominator of g to be the quadrati
 polynomial map

n

g

: V

+

! V

+

; x 7!

^

g

�1

:E

+

(x) = pr

1

(e

� ad(x)

g

�1

E) = (e

� ad(x)

g

�1

)

10

:E: (2:13)

Using the matrix notation (1.4), we 
an also write

n

g

�1
(x) = (g

10

� ad(x) Æ g

00

+

1

2

ad(x)

2

Æ g

�1;0

)(E):

For the generators of G we get the following nominators: if v 2 g

1

, w 2 g

�1

, h 2 H ,

n

g

(x) =

8

<

:

x+ v for g = e

ad(v)

x�

1

2

ad(x)

2

w for g = e

ad(w)

x for g = h

(2:14)

Note that the nominators will not depend on the Euler operator E su
h that ad(E) = D as

long as g a
ts trivially on the 
enter of g ; this is the 
ase for all elements g 2 G . For general

g 2 Aut(g) su
h that g:x 2 V

+

, we 
an apply the pre
eding proposition and get, using that

e

E

+

(z) = z for all z 2 V

+

,

n

g

(x) = d

g

(x)

e

E

+

(g:x) = d

g

(x)(g:x):

Sin
e d

g

(x) is invertible, it follows that g:x = d

g

(x)

�1

n

g

(x).
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Theorem 2.8. Let g 2 Aut(g) and x 2 V

+

. Then g:x 2 V

+

if and only if d

g

(x) and 


g

(x)

are invertible, and then the value g:x 2 V

+

is given by

g:x = d

g

(x)

�1

n

g

(x):

Using matrix notation (1:4) and repla
ing g by g

�1

, this 
an expli
itly be written as an a
tion

of Aut(g) on V

+

by \fra
tional quadrati
 maps": if g

�1

:x 2 V

+

, then

g

�1

:x = (g

11

� ad(x) Æ g

01

+

1

2

ad(x)

2

Æ g

�1;1

)

�1

�

g

10

� ad(x) Æ g

00

+

1

2

ad(x)

2

Æ g

�1;0

�

(E):

Proof. For the �rst 
laim, see Corollary 1.10, and the se
ond 
laim is proved by the 
al
ulation

pre
eding the statement of the theorem.

Using the formulas (1.16) for the denominators and (2.14) for the nominators, we 
an now

expli
itly des
ribe the fra
tional quadrati
 a
tion of the generators of G :

g = e

ad(v)

: g(x) = x+ v

g = e

ad(w)

: g(x) =

�

id

V

+
+ad(x) ad(w) +

1

4

ad(x)

2

ad(w)

2

�

�1

(x�

1

2

ad(x)

2

w)

g = h : g(x) = h

11

x:

2.9. The automorphism group. The group Aut(g; D) a
ts on V

+

� V

�

by

Aut(g; D)! GL(V

+

)�GL(V

�

);

h 7! (h

11

; h

�1;�1

) = (d

h

�1
(o

+

); 


h

(o

�

)) = (d

h

(o

+

)

�1

; 


h

(o

�

)):

We denote by Aut

g

(V

+

; V

�

) � GL(V

+

) � GL(V

�

) the image of this homomorphism (this is

the automorphism group of the asso
iated Jordan pair, see Se
tion 3.1), and by Str(V

+

) :=

pr

1

ÆAut

g

(V

+

; V

�

) Æ �

1

its proje
tion to the �rst fa
tor (sometimes 
alled the stru
ture group of

V

+

).

Theorem 2.10. If x 2 V

+

and g 2 Aut(g) satisfy g:x 2 V

+

, then d

g

(x) 2 Str(V

+

) ; more

pre
isely,

(d

g

(x)

�1

; 


g

(x)) 2 Aut

g

(V

+

; V

�

):

Proof. If g:x 2 V

+

, then g

0

:= ge

ad(x)

belongs to the set 


+

� G de�ned in Theorem 1.12.

A

ording to Part (4) of this theorem, we de
ompose

g

0

= e

ad(v)

he

ad(w)

(2:15)

with a unique h = h(g; x) 2 H depending on g and x . From the de�nition of the (
o-)

denominators it follows then that

d

g

(x) = d

g

0

(0) = h

�1

11

; 


g

(x) = 


g

0

(0) = h

�1;�1

;

and hen
e (d

g

(x)

�1

; 


g

(x)) = (h

11

; h

�1;�1

) 2 Aut

g

(V

+

; V

�

).

As remarked after Proposition 2.6, the linear map d

g

(x)

�1


an be intepreted as the tangent

map of g at x , and so Theorem 2.10 means that Aut(g) a
ts on X

+

by mappings that are


onformal with respe
t to the linear group Str(V

+

) (in the sense de�ned in [Be00, Se
tion

VIII.1.2℄). In some 
ases this already 
hara
terizes the group Aut(g) as \the 
onformal group of

X

+

"; this is the 
ontent of the Liouville theorem, see [Be00, Ch. IX℄.
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3. The Jordan theoreti
 formulation

3.1. Jordan pairs. If (g; D) is a 3-graded Lie algebra and V

�

= g

�1

, the following K -trilinear

maps are well-de�ned:

T

�

:V

�

� V

�

� V

�

! V

�

;

(X;Y; Z) 7! T

�

(X;Y; Z) := �[[X;Y ℄; Z℄ = ad(Z) ad(X)Y;

(3:1)

and they satisfy the following identities, where we use the notation T

�

(X;Y )Z := T

�

(X;Y; Z):

T

�

(X;Y; Z) = T

�

(Z; Y;X);

T

�

(X;Y )T

�

(U; V;W ) = T

�

(T

�

(X;Y; U); V;W )

� T

�

(U; T

�

(Y;X; V );W ) + T

�

(U; V; T

�

(X;Y;W ));

(3:2)

whi
h mean that ((V

+

; V

�

); (T

+

; T

�

)) is a linear Jordan pair over K (if 2 and 3 are invertible

in K , these two identities imply all other identities valid in Jordan pairs, 
f. [Lo75, Prop. 2.2(b)℄).

In the following we shall omit the adje
tive linear, when dealing with Jordan pairs. Conversely,

if (V

�

; T

�

) is a Jordan pair over K , then for v 2 V

�

and w 2 V

�

we de�ne the operator

(v; w) 2 End(V

�

) by T

�

(v; w):x := T

�

(v; w; x) and let ider(V

+

; V

�

) � gl(V

+

) � gl(V

�

) be

the Lie subalgebra generated by the operators (�T

+

(v; w); T

�

(w; v)), v 2 V

+

, w 2 V

�

. The

elements of this Lie algebra are 
alled inner derivations. The algebra of derivations of (V

+

; V

�

)

is de�ned by

der(V

+

; V

�

) = f(A

+

; A

�

) 2 End

K

(V

+

)� End

K

(V

+

) : (8u; v; w)

A

�

T

�

(u; v; w) = T

�

(A

�

u; v; w) + T

�

(u;A

�

v; w) + T

�

(u; v; A

�

w)g;

(3:3)

and it follows from (3.2) that it 
ontains ider(V

+

; V

�

). Clearly, it 
ontains also the element

E := (id

V

+
;� id

V

�
); (3:4)


alled the Euler operator of the Jordan pair V

�

.

If we are given a Jordan pair (V

+

; V

�

), and g

0

� der(V

+

; V

�

) is a Lie subalgebra


ontaining all inner derivations, then there is a unique stru
ture of a 3-graded Lie algebra on

V

+

� g

0

� V

�

whose asso
iated Jordan pair is (V

�

; V

+

), and where the bra
ket satis�es

[v; w℄ = (�T

+

(v; w); T

�

(w; v)); v 2 V

+

; w 2 V

�

(3:5)

and the grading element is the Euler operator E given by (3.4). The subalgebra

TKK(V

+

; V

�

) := V

+

� (ider(V

+

; V

�

) + KE) � V

�

is 
alled the Tits{Kantor{Koe
her algebra of the Jordan pair (V

+

; V

�

). This 
hoi
e for the

3-graded Lie algebra asso
iated to (V

+

; V

�

) has the advantage that z(g) = 0.

The pre
eding 
onstru
tion may also be interpreted in the 
ontext of Lie triple systems

(
f. e.g. [Be00, Se
t. III.3℄): it is essentially the standard imbedding of the (polarized) Lie triple

system q := V

+

�V

�

into the 
orresponding Lie algebra g = q� [q; q℄ . The standard imbedding

yields a bije
tion between Lie triple systems and Lie algebras with involution, generated by

the �1-eigenspa
e of the involution. See Chapter 6 
on
erning fun
torial properties of these


onstru
tions.

For any g

0

as above, the representation of g

0

on g

�1

� g

1

will be faithful, so that

z(g) \ g

0

= f0g . It may happen for 
entral extensions

b

g of g that the 
orresponding subalgebra

b

g

0

does not a
t faithfully on

b

g

�1

�

b

g

1

�

=

g

�1

� g

1

(see Chapter 7).
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3.2. Proje
tive elementary group and proje
tive 
ompletion. For the rest of Chapter 3,

we �x a Jordan pair (V

+

; V

�

) and let g := TKK(V

+

; V

�

). The proje
tive elementary group

PE(V

+

; V

�

) := G(ad(E)) is de�ned as in Se
tion 1.2. Using the notation, with x; y 2 V

�

,

v 2 V

�

,

Q

�

(x)v :=

1

2

ad(x)

2

v =

1

2

[x; [x; v℄℄

Q

�

(x; y) := Q

�

(x + y)�Q

�

(x)�Q

�

(y) = ad(x) ad(y) : V

�

! V

�

;

(3:6)

the operators e

adx

= 1 + adx +

1

2

(adx)

2

(x 2 V

�

) are given in matrix notation by Equation

(1.5), with

1

2

ad(x)

2

repla
ed by Q

+

(x) and

1

2

ad(y)

2

repla
ed by Q

�

(y). Our de�nition of

PE(V

+

; V

�

) follows the one by O. Loos from [Lo95℄. The proje
tive linear group of a Jordan

pair has been introdu
ed by Faulkner in [Fa83℄ in a slightly di�erent 
ontext (without Euler

operator). The groups P

�

and the spa
es X

�

= G=P

�

are de�ned as in Se
tion 1.11; the

embedding V

+

�V

�

! X

+

�X

�

is 
alled the proje
tive 
ompletion of the Jordan pair (V

+

; V

�

).

3.3. The Bergman operator. Re
all from Se
tion 2.2 the 
anoni
al kernel: for (x; y) 2

X

+

�X

�

,

K

x;y

: T

0

y

X

�

! T

x

X

+

; Y 7! Y

x

:

Of 
ourse, there is a similarly de�ned map K

y;x

; we will also use the notation (K

+

x;y

;K

�

y;x

) for

(K

x;y

;K

y;x

). Using the des
ription via asso
iated bundles, the kernel is given by

K

g

1

P

�

;g

2

P

+
:T

0

g

2

P

+

X

�

! T

g

1

P

�
X

+

; [g

2

; v℄ 7! [g

1

; pr

1

(g

�1

1

g

2

:v)℄; (3:8)

and hen
e the trivialized pi
ture is

K

+

x;y

= (e

� adx

e

ad y

)

11

= d

exp�y

(x):V

+

! V

+

: (3:9)

In matrix form,

e

� adx

e

ad y

=

0

�

1 � ad(x) Q

+

(x)

0 1 � ad(x)

0 0 1

1

A

�

0

�

1 0 0

ad(y) 1 0

Q

�

(y) ad(y) 1

1

A

;

so that we get for the 
oeÆ
ient with index 11, using that on V

+

we have for x 2 V

+

and

y 2 V

�

the relation adx ad y = ad[x; y℄ = �T

+

(x; y):

K

+

x;�y

= B

+

(x; y) = id

V

+ �T

+

(x; y) +Q

+

(x)Q

�

(y): (3:10)

We likewise get

K

�

x;�y

= B

�

(y; x) = id

V

�
�T

�

(y; x) +Q

�

(y)Q

+

(x)

(
f. the de�nition in (1.17)). This expression is known as the Bergman operator of the Jordan

pair (V

+

; V

�

). Theorem 2.3 now implies that the pair (v; w) is transversal if and only if

(B

+

(v;�w); B

�

(�w; v)) is invertible in End(V

+

) � End(V

�

) . It is known in Jordan theory

that B

+

(v;�w) is invertible if and only if so is B

�

(�w; v) (the symmetry prin
iple, 
f. [Lo75,

Prop. I.3.3℄), and hen
e (v; w) is transversal if and only if B

+

(v;�w) is invertible. So far we do

not know a \Lie theoreti
" proof of this fa
t.

3.4. The quasi-inverse. Let y 2 g

�1

. Then for g = e

ad(y)

and x 2 V

+

, Formulae (1.16) and

(2.14) show that denominator and nominator of g are given by

d

g

(x) = B

+

(x; y); n

g

(x) = x�Q

+

(x)y (3:11)

and hen
e, a

ording to Theorem 2.8, g(x) 2 V

+

if and only if (B

+

(x; y); B

�

(y; x)) is invertible,

and then

g:x = B

+

(x; y)

�1

(x�Q

+

(x)y): (3:12)
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Following [Lo77℄, we will use also the notation t

v

(x) = x+ v for translations on V

+

and

e

t

w

(x) := e

ad(w)

:x = B

+

(x;w)

�1

(x �Q

+

(x)w) (3:13)

for \dual translations" or \quasi-inverses". In Jordan theory the notation x

y

:= e

ad y

:x is also

widely used (
f. [Lo75℄), and one says that (x; y) is quasi-invertible if (B

+

(x; y); B

�

(y; x)) is

invertible, i.e., if (x;�y) is a transversal pair. Our de�nitions of the Bergman operator via

the 
anoni
al kernel and of the quasi-inverse are natural in the sense that they have natural

transformation properties with respe
t to elements g of the group Aut(g); taking for g typi
al

generators of G , we get Jordan theoreti
 results su
h as the \shifting prin
iple" (see [Be00,

Se
tion VIII.A℄ for the pre
ise form of the argument).

3.5. Automorphism and stru
ture group. The group Aut

g

(V

+

; V

�

) de�ned in Se
tion

2.9 
oin
ides for g = TKK(V

+

; V

�

) with the automorphism group Aut(V

+

; V

�

) of (V

+

; V

�

)

in the Jordan theoreti
 sense. It follows from Theorem 2.10 that if (x;�y) is transversal, then

�(x; y) := (B

+

(x; y); B

�

(y; x)

�1

) belongs to Aut(V

+

; V

�

). The subgroup generated by these

elements is 
alled the inner automorphism group. Proje
ting to the �rst fa
tor, one gets the

stru
ture group, resp. the inner stru
ture group of V

+

.

3.6. Jordan fra
tional quadrati
 transformations. An End(V

+

)-valued Jordan matrix


oeÆ
ient (of type (1; 1) , resp. of type (1; 0)) is a map of the type

q : V

�

� V

�

! End(V

+

); (x; y) 7! (e

ad(x)

ge

ad(y)

h)

11

;

where �; � 2 f�g and g; h belong to the extended elementary proje
tive group G

ext

(
f. Se
tion

1.2), resp.

p : V

�

� V

�

! V

+

; (x; y) 7! (e

ad(x)

ge

ad(y)

h)

10

E:

These maps are quadrati
 polynomial in x and in y . Nominators and denominators of elements

of G are partial maps of maps of the type of p or q by �xing one of the arguments to be zero.

A Jordan fra
tional quadrati
 map is a map of the form

f : V

�

� V

�

� U ! V

+

; (x; y) 7! q(x; y)

�1

p(x; y);

where q; p are Jordan matrix 
oeÆ
ients of type (1,1), resp. (1,0), and U = f(x; y) 2 V

�

� V

�

:

q(x; y) 2 GL(V

+

)g . In the following, we also use the notation exp(x) := e

ad(x)

for x 2 V

�

.

Theorem 3.7. The a
tions

V

+

�X

+

! X

+

and V

�

�X

+

! X

+

are given, with respe
t to all 
harts from the atlas A (
f. Eqn. (2.6)), by Jordan fra
tional

quadrati
 maps. In other words, for all g; h 2 G , the maps

(v; y) 7! (h Æ exp(v) Æ g):y; (w; y) 7! (h Æ exp(w) Æ g):y

are Jordan fra
tional quadrati
.

Proof. As to the �rst a
tion, we write

(h Æ exp(v) Æ g):y = (d

hÆexp(v)Æg

(y))

�1

n

hÆexp(v)Æg

(y) = q(v; y)

�1

p(v; y)

with

q(v; y) = d

hÆexp(v)Æg

(y) = (e

� ad(y)

g

�1

e

� ad(v)

h

�1

)

11

and

p(v; y) = n

hÆexp(v)Æg

(y) = (e

� ad(y)

g

�1

e

� ad(v)

h

�1

)

10

E;

and hen
e the a
tion is Jordan fra
tional quadrati
. For the a
tion of e

ad(V

�

)

, we use the same

arguments.

We may say that H

1

:= X

+

n V

+

is the \hyperplane at in�nity"; then H

1

is stable

under the a
tion of V

+

. In 
ase (X

+

; X

�

) = (KP

n

; (KP

n

)

�

) is an ordinary proje
tive geometry,

the a
tion of the translation group on the hyperplane at in�nity is the trivial a
tion. However,

already in the 
ase of more general Grassmannian geometries this is no longer true, as 
an be

seen from the expli
it formulas for this 
ase given in [Be01℄.
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Corollary 3.8. With respe
t to the 
harts from the atlas A , the stru
ture maps �

r

for

r 2 K

�

de�ned in Se
tion 1.14 are given by a 
omposition of Jordan fra
tional quadrati
 maps

and diagonal maps Æ(x) = (x; x) .

Proof. A

ording to [Be02, Cor. 5.8℄, the multipli
ation maps 
an be written as a 
omposition

of maps of the type des
ribed in the pre
eding theorem, diagonal maps and one dilation h

(D;r)

(de�ned in Se
tion 1.2). But this dilation 
omes from an element of G

ext

and hen
e the


omposition with su
h a dilation is again Jordan fra
tional quadrati
.

3.9. Case of a base ring in whi
h 2 is not invertible. Even if K is a general base ring,

there is a 3-graded Lie algebra TKK(V

+

; V

�

) and a group PE(V

+

; V

�

) asso
iated to a general

(quadrati
) Jordan pair, 
f. [Lo95℄. The main di�eren
e is that in the matrix expression of e

ad(x)

(x 2 g

1

) the term

1

2

ad(x)

2

has to be repla
ed by Q

+

(x). On
e one has 
he
ked that the abelian

groups U

�

obtained in this way are well-de�ned, one 
an essentially pro
eed as we did in Chapter

1, repla
ing the spa
e G by the PE(V

+

; V

�

)-orbit of ad(E) in der(g) and the spa
e F by the

spa
e of inner �ltrations belonging to gradings from G .

4. Involutions, symmetri
 spa
es, and Jordan triple systems

4.1. Symmetri
 spa
es atta
hed to a Lie algebra. An (abstra
t) re
e
tion spa
e is a set

S together with a map � : S � S ! S su
h that, if we let �

x

(y) := �(x; y),

(S1) �(x; x) = x

(S2) �

2

x

= id

S

(S3) �

x

is an automorphism of � , i.e. �

x

(�(y; z)) = �(�

x

(y); �

x

(z)).

(Di�erentiable re
e
tion spa
es, i.e. manifolds with a smooth re
e
tion spa
e stru
ture � , have

been introdu
ed by O. Loos in [Lo67℄). In Part II ([BN03℄) of this work we de�ne a symmetri


spa
e (over K ) to be a re
e
tion spa
e (S; �) su
h that S is a smooth manifold over K (in the

sense of [BGN03℄) and � is smooth and satis�es

(S4) the tangent map T

x

�

x

of �

x

at x is given by � id

T

x

S

.

(See [BN03℄ for the basi
 theory of symmetri
 spa
es and for a 
omparison with the approa
h

by O. Loos [Lo69℄.) To any Lie algebra g over K we may asso
iate a re
e
tion spa
e as follows.

Let S =

e

G = fD 2 der(g) : D

3

= Dg be the spa
e of 3-gradings of g and re
all from Se
tion 1.2

the de�nition of the extended proje
tive elementary group G

ext

whi
h is generated by its normal

subgroup G and the subgroup fh

(D;r)

j r 2 K

�

g . Taking r = �1, we get the re
e
tion elements

�

(D)

:= h

(D;�1)

= 1� 2D

2

2 Aut(g; D): (4:1)

We de�ne the map � by

� : S � S ! S; �(D;D

0

) := �

(D)

D

0

�

(D)

= (1� 2D)D

0

(1� 2D): (4:2)

Then (S1) follows from the fa
t that D and �

(D)


ommute, (S2) holds be
ause �

(D)

is an

involution, and (S3) follows from the fa
t that Aut(g) 
learly a
ts as a group of automorphisms

of � , and all re
e
tion elements �

(D)

belong to Aut(g). It is 
lear that the subset G �

e

G is

stable under � . Also, M � G is stable under � be
ause M is stable under the a
tion of G

ext

(Theorem 1.12 (5)), and G

ext


ontains the re
e
tion element �

(D)


orresponding to the base

point and hen
e 
ontains also all re
e
tion elements 
orresponding to points of M . Property

(S4) is also satis�ed in a purely algebrai
 sense: sin
e �

(D)

a
ts by �1 on the 
omplement g

�

of g

�

� g

0

, it follows readily from the de�nition of the tangent map in Se
tion 2.1 that

T

f

+

(D)

�

(D)

= � id

T

f

+

(D)

F ; T

f

�

(D)

�

(D)

= � id

T

f

�

(D)

F ;
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and hen
e the tangent map T

D

(�

(D)

) will be minus one if we de�ne tangent map and tangent

spa
e at D to be the dire
t produ
t of the ones de�ned with respe
t to f

+

(D) and f

�

(D).

The restri
tion of � to G � G is related to the ternary map �

�1

from Se
tion 1.13 as

follows: assume D

1


orresponds to the transversal pair (f

1

; f

2

) and D

2

to the transversal pair

(f

3

; f

4

). Then

�((f

1

; f

2

); (f

3

; f

4

)) = (�

�1

(f

1

; f

2

; f

3

); �

�1

(f

1

; f

2

; f

4

));= (h

(D;�1)

:f

3

; h

(D;�1)

:f

4

); (4:3)

whi
h is the same as the produ
t map on M 
onsidered in [Be02, Cor. 4.4℄.

4.2. Involutions and symmetri
 subspa
es. An involution of a 3-graded Lie algebra is

a Lie algebra automorphism � of order 2 reversing the grading, i.e., su
h that �(g

�1

) = g

�1

and �(g

0

) = g

0

. An involution � indu
es by 
onjugation an automorphism of the elementary

proje
tive group G , again denoted by � , su
h that �(P

�

) = P

+

. Therefore it indu
es a bije
tion

p : X

+

! X

�

; gP

�

7! �(g)P

+

; (4:4)


ompatible with the map F ! F , f 7! �(f), and su
h that p(o

+

) = o

�

. We say that f 2 F is

non-isotropi
 (with respe
t to � ) if �(f)>f . In parti
ular, the base point o

+

= f

�

is non-isotropi
;

thus there exist non-isotropi
 points, and p is a polarity in the sense of [Be02℄. Sin
e � is an

automorphism normalizing G , the spa
es G and M � G are stable under � , and the naturality

of the produ
t � implies that � is an automorphism of � . Therefore the � -�xed subspa
e M

�

is a symmetri
 subspa
e of M , whi
h as a set is in bije
tion with the set of non-isotropi
 points

of X

+

, i.e.

M

(p)

:= ff 2 X

+

: f non� isotropi
w:r:t: �g !M

�

; f 7! (f; �)f)

is a bije
tion. By forward transport of stru
ture, the symmetri
 spa
e stru
ture of M

�


orre-

sponds to the stru
ture on M

(p)

given by

�(x; y) = �

�1

(x; p(x); y) (4:5)

(this is the formula used in [Be02℄ to de�ne the symmetri
 spa
e stru
ture). The symmetry

w.r.t. the point x is now indu
ed by the element �

(D)

, where D 2 G 
orresponds to the point

(x; �(x)) 2 G ; as noti
ed above, the algebrai
ally de�ned tangent map T

x

(�

(D)

) equals minus

the identity, and hen
e (S4) is again satis�ed in an algebrai
 sense.

Theorem 4.3. For a �xed polarity p : X

+

! X

�

, we identify X

+

and X

�

via p . Then the

multipli
ation map � on M

(p)

is a 
omposition of Jordan fra
tional quadrati
 maps and diagonal

maps Æ(x) = (x; x) .

Proof. By Corollary 3.8, the map �

�1

is of the form mentioned in the 
laim. A

ording to

Formula (4.5), � is related to �

�1

via

�(x; y) = �

�1

(x; x; y); i:e: � = �

�1

Æ (Æ � id);

whi
h proves the 
laim.

In [BN03℄ it will be shown that Theorem 4.3 implies, in very general situations, smoothness

of � .

4.4. Involutions and Jordan triple systems. If � is an involution of the 3-graded Lie

algebra g , the trilinear map on V

+

de�ned by

T (X;Y; Z) := �[[X; �(Y )℄; Z℄ (4:6)

is a Jordan triple produ
t, i.e., it satis�es the identities (3.1) with the supers
ripts � omitted.

Conversely, given a Jordan triple system over K (abbreviated JTS) (i.e., a K -module with a

K -trilinear map satisfying the above mentioned identities), we 
an de�ne an involution on the

Lie algebra V

+

� der(V

+

; V

�

)� V

�

by

�(v; (A;B); w) = (w; (B;A); v); (4:7)

and the asso
iated JTS is the one we started with. In this way we get a bije
tion between Jordan

triple systems over K and minimal 3-graded Lie algebras with involution (see Se
tion 1.1).
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5. Self-dual geometries and Jordan algebras

5.1. Self-dual geometries. We �x a 3-graded Lie algebra g with grading indu
ed by the Euler

operator E . Re
all our realization of X

+

and X

�

as G-orbits in the spa
e F of 3-�ltrations

of g . Two 
ases 
an arise: either X

+

\ X

�

is empty, or X

+

= X

�

. In the latter 
ase we let

X := X

+

= X

�

, and again two 
ases are possible: either

(a) V

+

\ V

�

is empty, or

(b) V

+

\ V

�

is not empty; then we say that the geometry given by (g; E) is self-dual, and we

let V

�

:= V

+

\ V

�

.

An equivalent 
harara
terization of self-dual geometries is: there are three points f

1

; f

2

; f

3

2 X

+

su
h that f

1

>f

2

, f

2

>f

3

, f

3

>f

1

(namely, take (f

1

; f

2

) = (f

�

; f

+

) to be the base point and f

3

some

element of V

+

\ V

�

).

5.2. The Jordan inverse. Assume that (g; E) is self-dual and �x some point f 2 V

+

\V

�

. We


laim that there exists an involution j of g (
f. Se
tion 4.2) su
h that j(V

+

)\V

+

6= �. In fa
t, let

W := f

>

; then W � X 
arries a natural stru
ture of an aÆne spa
e over K (Theorem 1.12(3)),

and by assumption o

+

and o

�

belong to W . Let e 2 W be the midpoint of o

+

and o

�

in the

aÆne spa
e W . Sin
e e 2 W , the pair (e; f) is transversal and hen
e 
orresponds to a 3-grading

g = g

0

1

�g

0

0

�g

0

�1

, i.e. to an element D

0

2 G . Let j := h

(D

0

;�1)

2 G

ext

be the automorphism that

is minus one on g

0

1

� g

0

�1

and one on g

0

0

. Then j �xes (e; f) and a
ts by the s
alar minus one

on the K -module W with zero ve
tor e . Sin
e e is the midpoint of o

�

and o

+

, it follows that

j(o

�

) = o

+

, and sin
e obviously j is of order two, it is an involution. The 
ondition j(f

�

) = f

+

implies that j(V

+

) = j((f

+

)

>

) = (f

�

)

>

= V

�

. In parti
ular, V

+

\ j(V

+

) = V

+

\ V

�

= V

�

is

non-empty by assumption. It 
ontains the point e = j(e).

Now we apply Theorem 2.8 in order to derive an expli
it formula for j in the 
hart V

+

:

for v 2 g

1

, let v = jv 2 g

�1

; by Equation (2.12), v gives rise to the homogeneous quadrati


ve
tor �eld v

+

(x) = Q

+

(x)v on V

+

. From Proposition 2.6 we now get

d

j

(x)v = (j

�1

v)(x) = v

+

(x) = Q

+

(x)v:

In a similar way we see that 


j

(x) = Q

�

(x)v . (In fa
t, sin
e j is an involution, 


j

(x) =

jd

j

(�x)j = jd

j

(x)j , and this is invertible if and only if so is d

j

(x).) Corollary 1.10 now shows

that j(x) 2 V

+

if and only if x belongs to the set

V

�

= fx 2 V

+

: Q

+

(x) invertible g;

whi
h is 
alled the set of invertible elements in V

+

. The nominator of j is n

j

(x) = �x sin
e

j reverses the grading (i.e. jE + E 2 z(g)). Now Theorem 2.8 shows that, for x 2 V

�

,

j(x) = �Q

+

(x)

�1

x . The map

V

�

! V

�

; x 7! j(x) := �Q

+

(x)

�1

x

is known as the Jordan inverse.

5.3. Jordan algebras. Notation being as above, note that by 
onstru
tion e is a �xed point of

j , i.e., we have e = j(e) = �Q(e)e . The tangent map T

e

j is � id

T

e

X

+
. Now 2.11 implies that

also

d

j

(e) = T

e

(� id

W

) = � id

V

+
:

In 
on
lusion, we have a Jordan triple system with an element e su
h that Q(e) = � id

V

. It is

is known that then

x � y := �

1

2

T (x; e; y)
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de�nes a Jordan algebra stru
ture on V with unit element e . Conversely, every unital Jordan

algebra arises in this way (
f. [Lo75, I.1.10℄).

5.4. The self dual geometry asso
iated to a unital Jordan algebra. Now assume that

(g; E) is 3-graded and there exists e

�

2 g

�1

su
h that Q

�

(e

�

) : V

+

! V

�

is a bije
tion. Let

g := e

ad(e

�

)

. We 
laim that the 
ag f

+

: g

1

� g

0

� g

1

is transversal to the 
ag g(f

+

): �rst of

all, for v 2 g

1

,

pr

�1

(g(v)) = pr

�1

(v + [e

�

; v℄ +Q

�

(e

�

)v) = Q

�

(e

�

)v;

hen
e pr

�1

Æg Æ �

1

is bije
tive and thus g(g

1

) is a 
omplement of g

1

� g

0

. Next, g(g

1

� g

0

) is a


omplement of g

1

: equivalently, e

� ad(e

�

)

g

1

is a 
omplement of g

0

�g

1

, whi
h is true by the same

argument. Hen
e, gf

+

>f

+

. With (o

+

; o

�

) = (f

�

; f

+

), this means that g:o

�

2 V

+

� X

+

; but

sin
e g 2 G , this means that X

�

= X

+

. Moreover, o

�

2 V

�

, and e

ad(e

�

)

a
ts as a translation

on V

�

; therefore g:o

�

2 V

�

\V

+

, and it follows that the geometry is self-dual. { Summing up:

Theorem 5.5. For a Lie algebra g with Euler operator E , the following are equivalent:

(1) The geometry given by (g; E) is self-dual.

(2) There is an involution j of (g; E) su
h that j(V

+

) \ V

+

6= � .

(3) The Jordan pair (V

+

; V

�

) 
ontains invertible elements.

(4) The Jordan pair (V

+

; V

�

) 
omes from a unital Jordan algebra (V;E) .

Proof. (1) ) (2) ) (3) has been shown in 5.2, and (3) ) (1) has been shown in 5.4. The

equivalen
e of (3) and (4) is well-known (
f. [Lo75, I.1.10℄; see 5.3).

We do not know wether the 
ondition X

+

= X

�

alone already implies that V

+

\V

�

6= �

{ in the �nite-dimensional 
ase over a �eld this 
ertainly is true sin
e then the \hyperplane at

in�nity" X

+

nV

+

is an algebrai
 hypersurfa
e, and hen
e V

+

and V

�

must interse
t if they are

both in
luded in X

+

. However, in in�nite dimension the \hyperplane at in�nity" may be
ome

rather \big" and may very well 
ontain some aÆne parts { this problem is also dis
ussed in

[Be03℄.

6. Fun
torial properties

6.1. Fun
toriality problems. So far we have 
onsidered the following 
ategories: Jordan

pairs (V

+

; V

�

) over K ; 3-graded Lie algebras (g; D) over K ; generalized proje
tive geometries

(X

+

; X

�

) (these may be de�ned here simply as the geometries (X

+

; X

�

) asso
iated to a 3-

graded Lie algebra); asso
iated re
e
tion spa
es (M;�); elementary proje
tive groups G =

G(g; D) asso
iated to 3-graded Lie algebras. What are the fun
torial relations between these


ategories? It is obvious that homomorphisms of 3-graded Lie algebras indu
e, by restri
tion to

the pair (g

1

; g

�1

), homomorphisms of Jordan pairs. Other fun
torialily problems are less trivial:

(FP1) When does a homomorphism of Jordan pairs indu
e a homomorphism of the asso
iated

Tits-Kantor-Koe
her algebras?

(FP2) When does a homomorphism of Jordan pairs indu
e a homomorphism of the asso
iated

generalized proje
tive geometries, resp. of the asso
iated re
e
tion spa
es?

(FP3) When does a homomorphism of Tits-Kantor-Koe
her algebras indu
e a homomorphism of

the asso
iated elementary proje
tive groups?

(FP4) When does a homomorphism of general 3-graded Lie algebras indu
e a homomorphism of

the asso
iated elementary proje
tive groups?

6.2. Fun
toriality of the Tits-Kantor-Koe
her algebra. In general, a homomorphism of

Jordan pairs does not indu
e a homomorphism of the asso
iated Tits-Kantor-Koe
her algebra.

In fa
t, as remarked in Se
tion 3.1, the Tits-Kantor-Koe
her algebra TKK(V

+

; V

�

) may be

seen as the standard imbedding of the polarized Lie triple system V

+

� V

�

; but the standard

imbedding of a Lie triple system does in general not depend fun
torially on the Lie triple system.
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However, for surje
tive homomorphisms this is the 
ase (
f. [Lo95, Prop. 1.6℄), and it is also true

for �nite-dimensional semisimple Lie triple systems over �elds (
f. [Be00, Th. V.1.9℄).

6.3. Fun
torialiy of the proje
tive geometry and of the re
e
tion spa
es. Any Jordan

pair homomorphism '

�

: V

�

! (V

0

)

�

indu
es, in a fun
torial way, a well-de�ned map of

geometries

e'

�

:X

�

! (X

0

)

�

;

e

ad(v

1

)

e

ad(w

1

)

� � � e

ad(v

k

)

e

ad(w

k

)

:o

+

7! e

ad('

+

(v

1

))

e

ad('

�

(w

1

))

� � � e

ad('

+

(v

k

))

e

ad('

�

(w

k

))

:(o

0

)

+

;

where v

i

2 V

+

; w

i

2 V

�

, i = 1; : : : ; k , k 2 N ([Be02, Th. 10.1℄); the main point here is

that the geometry (X

+

; X

�

) 
an be des
ribed by generators (namely (V

+

; V

�

)) and relations

(with respe
t to the produ
t maps �

r

from Se
tion 1.13), and Jordan pair homomorphisms

are 
ompatible with the relations. (If the geometry is stable in the sense of [Lo95℄, then these

relations are given by proje
tive equivalen
e, 
f. [Lo77℄, [Lo95℄.) A homomorphism of geometries

in the sense of [Be02℄ indu
es a homomorphism of the 
orresponding re
e
tion spa
es (be
ause

the re
e
tion spa
e stru
ture is de�ned via the maps �

r

); therefore Jordan pair homomorphisms

always indu
e homomorphisms of asso
iated re
e
tion spa
es.

In parti
ular, an isomorphism of Jordan pairs indu
es a bije
tion of geometries. Therefore,

if two 3-graded Lie algebras have the same Jordan pair (g

1

; g

�1

), then there is a 
anoni
al

bije
tion between the asso
iated geometries. (Cf. Th. 6.6 below for another, elementary proof.)

In parti
ular, as long as we are only interested in the asso
iated geometry (X

+

; X

�

) (e.g., in

Part II of this work) we may without loss of generality assume that g is a Tits-Kantor-Koe
her

algebra.

6.4. Fun
toriality problem for the proje
tive elementary group. Let ' : g ! g

0

be

a morphism of 3-graded Lie algebras. One would like to de�ne a homomorphism e' : G ! G

0

of the asso
iated elementary proje
tive groups by requiring that e'(e

ad(v

�

)

) = e

ad('v

�

)

, but in

general this will not be well-de�ned. Therefore we introdu
e the group

G(') := fg = (g

1

; g

2

) 2 G�G

0

: (8X 2 g) g

2

'(X) = '(g

1

X)g:

Then the proje
tion pr

1

: G(') ! G onto the �rst fa
tor is surje
tive: in fa
t, the image of pr

1


ontains the generators of G be
ause all g

1

:= e

ad(x)

, x 2 g

�

, preserve the ideal ker('), and

so with g

2

:= e

ad('(x))

the pair (g

1

; g

2

) belongs to G('). Sin
e G is generated by e

ad(g

�

)

, it

follows that the proje
tion pr

1

is surje
tive. The kernel of the proje
tion pr

1

is given by all

elements of the form (1; g

2

) where g

2

a
ts trivially on the subalgebra '(g) � g

0

. Therefore, if

' is surje
tive, then pr

1

is a bije
tion, and pr

2

Æ(pr

1

)

�1

: G ! G

0

is the desired homorphism

(see [Be00, Se
tion I.3℄ for similar 
onsiderations on the level of symmetri
 spa
es). Combining

with 6.2, we see that surje
tive Jordan pair homomorphisms indu
e (surje
tive) homomorphisms

of asso
iated elementary proje
tive groups (this result is also 
ontained in [Lo95, Prop. 1.6℄).

The fun
toriality problem is now redu
ed to the 
ase of inje
tive homomorphisms. In good


ases, one may then hope to re
ognize pr

1

: G(') ! G as a sort of 
overing of G , and thus to

view pr

2

as a sort of lift of the desired homomorphism to a 
overing group.

6.5. Problem (FP4) for isomorphisms of Jordan pairs. Let g be a 3-graded Lie algebra

g with grading element E and g � g an inner 3-graded subalgebra 
ontaining g

�

. We denote

by G , resp. by G the asso
iated elementary proje
tive groups. In the present se
tion we will see

that the inje
tive homomorphism g ! g (whi
h indu
es an isomorphism of asso
iated Jordan

pairs) indu
es a surje
tive homomorphism \in the opposite sense": G ! G . In parti
ular we

shall give another and more elementary proof of the fa
t that the asso
iated homogeneous spa
es

are the same (
f. 6.3). As g 
ontains g

�

, it is invariant under the group G generated by e

adg

�

.

Moreover, G a
ts trivially on the quotient spa
e g=g , be
ause its generators have this property,

i.e., g:x� x 2 g for ea
h x 2 g and g 2 G .

Theorem 6.6. There is a surje
tive restri
tion homomorphism

R:G! G; g 7! g j

g

with R

�1

(H) = H and R

�1

(P

�

) = P

�

:
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For the 
orresponding homogeneous spa
es, we have

G=P

�

�

=

G=P

�

and G=H

�

=

G=H

as homogeneous spa
es of G .

Proof. First we observe that R(U

�

) = U

�

implies that R is surje
tive.

Let ad

g

: g ! der(g) be given by ad

g

(x) := adx j

g

and let E be an Euler operator de�ning

the grading of g , resp., an Euler operator E 2 g de�ning the grading on g . Then the ideal

ker ad

g

of g is invariant under adE , hen
e adapted to the grading. For x 2 g

�

we have

ad

g

(x)(E

0

) = [x;E

0

℄ = �x , so that

ker ad

g

� g

0

;

and in parti
ular ad

g

is inje
tive on g

+

+ g

�

. For x = x

+

+x

0

+x

�

with x

�

2 g

�

and x

0

2 g

0

we have

[ad

g

E; ad

g

x℄ = ad

g

[E; x℄ = ad

g

(x

+

� x

�

):

If this bra
ket vanishes, then x

+

� x

�

2 ker ad

g

� g

0

implies x = x

0

2 g

0

, i.e., we obtain the

re�ned information

ker ad

g

� ad

�1

g

(z

ad

g

(ad

g

E)) = g

0

:

Now let g 2 G with R(g) 2 H . For x 2 g

0

we then have

ad

g

(g:x) = R(g) Æ ad

g

(x) ÆR(g)

�1

;

and all three fa
tors on the right hand side 
ommute with the grading derivation ad

g

E of g .

Hen
e ad

g

(g:x) 
ommutes with ad

g

E , and the argument from above implies that g:x 2 g

0

. On

the other hand R(g) preserves the grading of g , and hen
e in parti
ular the subspa
es g

�

. This

means that g preserves all eigenspa
es of adE on g , and therefore that g 
ommutes with adE ,

so that g 2 H . We 
on
lude that R

�1

(H) � H; and the 
onverse in
lusion follows from the fa
t

that the a
tion of H on g preserves the grading g = g

+

� (g \ g

0

)� g

�

of g .

From P = HU

�

and R(U

�

) = U

�

, we obtain

R

�1

(P

�

) = R

�1

(H)U

�

� HU

�

= P

�

:

Sin
e R(P

�

) = R(H)R(U

�

) � HU

�

= P

�

, the �rst assertion follows.

For the homogeneous spa
es, we now get

G=P

�

�

=

G=R

�1

(P

�

) = G=P

�

and G=H

�

=

G=R

�1

(H) = G=H:

7. Central extensions of three-graded Lie algebras

In this se
tion K denotes a �eld with 2; 3 2 K

�

.

7.1. Let g be a 3-graded Lie algebra with grading element E . In this se
tion we assume that

g is generated by E and g

�

, i.e., that

g

0

= KE + [g

+

; g

�

℄: (7:1)

We shall show that the homogeneous spa
es asso
iated of the elementary proje
tive group of g

do not 
hange for 
entral extensions. Combining these results with those of the pre
eding se
tion,

it follows that they only depend on the Jordan pair (g

+

; g

�

).
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Lemma 7.2. Let q:

b

g ! g be a 
entral extension of g , i.e., q is surje
tive and ker q is a 
entral

subspa
e of

b

g . We pi
k an element

b

E 2

b

g with q(

b

E) = E . Then ad

b

E is diagonalizable with the

eigenvalues f�1; 0g and de�nes a 3-grading

b

g =

b

g

+

�

b

g

0

� g

�

su
h that q is a morphism of 3-graded Lie algebras.

Proof. First we observe that q Æad

b

E = adE Æ q . From the relation (adE)

3

= adE we derive

that

0 =

�

(adE)

3

� adE

�

Æ q = q Æ

�

(ad

b

E)

3

� ad

b

E

�

;

and hen
e that

�

ad

b

E)

3

� ad

b

E

�

(

b

g) � ker q � z(

b

g):

Applying ad

b

E , we see that

(ad

b

E)

4

= (ad

b

E)

2

;

i.e.,

(ad

b

E)

2

(ad

b

E � 1)(ad

b

E + 1) = 0:

Let

b

g =

b

g

+

�

b

g

0

�

b

g

�1

be the generalized eigenspa
e de
omposition for ad

b

E . Then

ad

b

E j

bg

�

= � id

bg

�

and (ad

b

E)

2

:

b

g

0

= f0g:

From ker q � z(

b

g) �

b

g

0

, we derive that q j

bg

�

is inje
tive and maps

b

g

�

bije
tively onto g

�

.

Therefore g

0

= KE + [g

+

; g

�

℄ leads to

b

g

0

= q

�1

(g

0

) = ker q + K

b

E + [

b

g

+

;

b

g

�

℄:

As [

b

g

+

;

b

g

�

℄ � ker ad

b

E , we 
on
lude that

b

g

0

� ker ad

b

E;

and hen
e that

b

E is a grading element for the 3-grading

b

g =

b

g

+

�

b

g

0

�

b

g

�

:

7.3. If g is 3-graded with grading element E and z � g is a 
entral subspa
e, then z �

ker adE = g

0

, and the quotient map q: g ! g=z is a 
entral extension whi
h is a morphism of

3-graded Lie algebras.

This implies that for a 
entral extension q:

b

g ! g for whi
h

b

g is 3-graded with grading

element

b

E , the Lie algebra g is 3-graded with grading element E := q(

b

E), and Lemma 7.2

provides the 
onverse information, that if g is 3-graded with grading element E and generated

by E and g

�

, then the Lie algebra

b

g has a natural 3-grading de�ned by an element

b

E

with q(

b

E) = E and q is a morphism of 3-graded Lie algebra. Passing to the subalgebra

generated by

b

E and

b

g

�

, we even obtain a 3-grading satisfying the same 
ondition as g . In

fa
t, h :=

b

g

+

+

b

g

�

+ [

b

g

+

;

b

g

�

℄ + K

b

E �

b

g is a 3-graded subalgebra with q(h) = g , so that

g � h+ ker q � h+ z(

b

g). In parti
ular, h is an ideal of

b

g .

These 
onsideration show that to understand 
entral extensions of 3-graded Lie algebras,

a natural 
ontext is given by those 
entral extensions q:

b

g ! g whi
h are morphisms of 3-graded

Lie algebras with grading element satisfying (7.1).
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Lemma 7.4. Let q:

b

g ! g be a 
entral extension of 3-graded Lie algebras with grading elements

b

E and E = q(

b

E) satisfying (7.1). Then

q

�1

(z(g)) = z(

b

g)

and therefore g=z(g)

�

=

b

g=z(

b

g):

Proof. Sin
e q is surje
tive, we have z(

b

g) � q

�1

(z(g)). If, 
onversely, q(x) 2 z(g), then

[x;

b

g℄ � ker q � z(

b

g) �

b

g

0

. In parti
ular, we obtain [x;

b

E℄ 2

b

g

0

and therefore x 2

b

g

0

. This

in turn implies [x;

b

g

�

℄ �

b

g

�

. As q j

bg

�

is inje
tive, [x;

b

g

�

℄ � ker q \

b

g

�

= f0g: Therefore x


ommutes with

b

g

�

and

b

E , hen
e is 
entral be
ause

b

g is generated by

b

E and

b

g

�

.

Corollary 7.5. If g satis�es (7.1), then z(g=z(g)) = f0g .

Proof. The adjoint representation ad: g ! ad g

�

=

g=z(g) is a 
entral extension satisfying the

assumptions of Lemma 6.3. Therefore ker ad = z(g) = ad

�1

(z(ad g)) implies z(ad g) = f0g .

Remark 7.6. (a) Let g a 3-graded Lie algebra with grading element E and g E g the ideal

g generated by E and g

�

(see Se
tion 6.5). We 
onsider the Lie algebra homomorphism

ad: g ! der(g); x 7! adx j

g

:

In view of Corollary 7.5, (ad)(g)

�

=

ad g

�

=

g=z(g) is a 
enter-free 3-graded Lie algebra satisfying

(7.1).

(b) If g is a 
enter-free 3-graded Lie algebra satisfying (7.1) and (V

+

; V

�

) = (g

+

; g

�

) is the


orresponding Jordan pair, then the representation

ad

V

�
: g

0

! der(V

+

; V

�

); x 7! (adx j

V

+
; adx j

V

�
)

is inje
tive, and

g! V

+

� der(V

+

; V

�

)� V

�

; x

+

+ x

0

+ x

�

7! (x

+

; ad

V

�
x

0

; x

�

)

is an embedding of Lie algebras, where the right hand side 
arries the bra
ket de�ned in Se
-

tion 3.1.

On the other hand, the subalgebra of g generated by g

�

is isomorphi
 to the 
orresponding

subalgebra of V

+

� der(V

+

; V

�

)� V

�

, whi
h is TKK(V

+

; V

�

).

De�nition 7.7. Let g be a Lie algebra. We write hg; gi for the quotient of �

2

(g) by the

subspa
e generated by the elements of the form

[x; y℄ ^ z + [y; z℄ ^ x+ [z; x℄ ^ y;

and write hx; yi for the image of x ^ y in hg; gi . Then hg; gi 
arries a natural Lie algebra

stru
ture satisfying

[hx; yi; hx

0

; y

0

i℄ = h[x; y℄; [x

0

; y

0

℄i;

and the map

b

g

: hg; gi ! g; hx; yi 7! [x; y℄

is a homomorphism of Lie algebras.
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Theorem 7.8. Suppose that g is 3-graded with grading element E satisfying (7.1). If g is

perfe
t, then we put

e

g := hg; gi , and if g is not perfe
t, then we de�ne

e

g := hg; gio K

e

E;

where ad

e

E satis�es

(7:2) [

e

E; hx; yi℄ := h[E; x℄; yi+ hx; [E; y℄i = hE; [x; y℄i:

Then there is a unique Lie algebra homomorphism

q

g

:

e

g! g with q

g

(hx; yi) = [x; y℄ and q

g

(

e

E) = E:

This homomorphism is surje
tive with 
entral kernel, hen
e a 
entral extension of g . Moreover,

it is weakly universal in the sense that for any 
entral extension q:

b

g ! g with a 3-graded Lie

algebra

b

g with grading element

b

E 2

b

g there exists a unique Lie algebra homomorphism �:

e

g !

b

g

with q Æ � = q

g

and, if g is not perfe
t, with �(

e

E) =

b

E .

Proof. First we observe that g = [g; g℄ + KE . If g is perfe
t, then

b

g

:

e

g := hg; gi ! g

is the universal 
entral extension of g . If g is not perfe
t, then E 62 [g; g℄ = im(b

g

). Therefore

g

�

=

[g; g℄o KE .

The Lie algebra der(g) a
ts in a natural way by derivations on hg; gi via

d:hx; yi = hd:x; yi+ hx; d:yi:

We may therefore form the Lie algebra

e

g := hg; gio K

e

E; where ad

e

E satis�es (7.2).

In both 
ases we obtain quotient homomorphisms q

g

:

e

g ! g with ker q

g

= ker b

g

� z(hg; gi).

From (7.2) we derive that the a
tion of E on hg; gi annihilates ker b

g

, so that ker q

g

is 
entral in

both 
ases. This means that q

g

is a 
entral extension, and Lemma 7.2 implies that

e

g is 3-graded

with grading element

e

E . Moreover,

e

g :=

e

g

+

+

e

g

�

+ [

e

g

+

;

e

g

�

℄ + K

e

E

is an ideal of

e

g with

e

g+ ker q

g

=

e

g . In view of hE;Ei = 0, we have

[

e

g;

e

g℄ = h[g; g℄; [g; g℄i+ hE; [g; g℄i = hg; [g; g℄i+ h[g; g℄; Ei = hg; gi:

Therefore [

e

g;

e

g℄ �

e

g implies that

e

g satis�es (7.1).

We 
laim that q

g

is weakly universal as a 
entral extension of 3-graded Lie algebras

satisfying (7.1). So let q:

b

g ! g be a 
entral extension. Then the bra
ket map

b

g �

b

g !

b

g

fa
tors through an alternating bilinear map

b: g� g !

b

g with b(q(x); q(y)) = [x; y℄; x; y 2

b

g:

Then the Ja
obi identity in

b

g implies that b satis�es the 
o
y
le 
ondition

b([x; y℄; z) + b([y; z℄; x) + b([z; x℄; y) = 0:

Hen
e there exists a unique linear map

': hg; gi !

b

g with '(hx; yi) = b(x; y);

and it is easy to see that ' is a homomorphism of Lie algebras. Moreover, ' is a morphism of

3-graded Lie algebras, be
ause the grading on

b

g is indu
ed by the map x 7! b(E; q(x)). If g is

not perfe
t, then

b

g is not perfe
t, and no grading element

b

E 2

b

g is 
ontained in [

b

g;

b

g℄ . We may

therefore extend ' to a Lie algebra homomorphism

':

e

g !

b

g with '(

e

E) =

b

E:

This proves the weak universality of

e

g as a 3-graded Lie algebra with grading element

e

E . The

map ':

e

g !

b

g is not uniquely determined by the requirement that q Æ ' = q

g

be
ause we may

add any Lie algebra homomorphism  :

e

g ! ker q , whi
h 
orresponds to the ambiguity in the


hoi
e of the grading element

b

E 2

b

g . Note that the 
ommutator algebra of

e

g is a hyperplane,

so that  is determined by  (

e

E).



28 Proje
tive 
ompletions of Jordan pairs 27.5.2003

7.9. Central extensions have isomorphi
 geometries. Next we 
ompare the groups

G � he

ad g

�

i � Aut(g) and

b

G � he

adbg

�

i � Aut(

b

g);

where q:

b

g ! g is a 
entral extension of 3-graded Lie algebras satisfying (7.1). Sin
e ea
h element

of

b

G �xes the kernel z := ker q pointwise, it indu
es an automorphism of g , and we thus obtain

a group homomorphism

q

G

:

b

G! G with q

G

(g) Æ q = q Æ g; g 2

b

G;

be
ause e

adbg

�

is mapped onto e

ad g

�

. The following theorem provides a short dire
t argument

for the isomorphy of the geometries asso
iated to 
entral extensions. Sin
e the 
orresponding

Jordan pairs are the same, this 
ould also be dedu
ed from the general result mentioned in

Se
tion 6.2.

Theorem 7.10. We have q

�1

G

(H) =

b

H and q

�1

G

(P

�

) =

b

P

�

. For the 
orresponding homoge-

neous spa
es, we have

b

G=

b

P

�

�

=

G=P

�

and

b

G=

b

H

�

=

G=H

as homogeneous spa
es of

b

G .

Proof. Sin
e q

G

maps a generating subset of

b

G onto a generating subset of G , it is surje
tive.

First we observe that for any h 2

b

G we have

(7:3) q

G

(h):E �E = q(h:

b

E �

b

E):

If h 2

b

H , then h:

b

E �

b

E 2 z(

b

g), and (7.3) leads to

q

G

(h):E �E = q(h:

b

E �

b

E) 2 q(z(

b

g)) = z(g);

and hen
e q

G

(h) 2 H . Suppose, 
onversely, that q

G

(h) 2 H . Then (7.3) implies

h:

b

E �

b

E 2 q

�1

(z(g)) = z(

b

g);

so that h 2

b

H .

Sin
e

b

P =

b

H

b

U

�

and q

G

(

b

U

�

) = U

�

, we have

q

�1

G

(P

�

) = q

�1

G

(H)

b

U

�

�

b

H

b

U

�

=

b

P

�

:

Further q

G

(

b

P

�

) = q

G

(

b

H)q

G

(

b

U

�

) � HU

�

= P

�

, and we obtain q

�1

G

(P

�

) =

b

P

�

.

For the homogeneous spa
es, we now get

G=P

�

�

=

b

G=q

�1

G

(

b

P

�

) =

b

G=

b

P

�

and G=H

�

=

b

G=q

�1

G

(

b

H) =

b

G=

b

H:

Remark 7.11. We take a 
loser look at the kernel of q

G

. Let g 2 ker q

G

�

b

H . Then g

preserves the grading of

b

g . Sin
e q j

bg

�

is inje
tive, we 
on
lude that g j

bg

�

= id

bg

�

, and hen
e

that g� id

bg

vanishes on the subalgebra generated by

b

g

�

. Moreover, im(g� id

bg

) � ker q = z , so

that

g = 1+D;

where D:

b

g ! z is a linear map. As g is an automorphism, it follows that D 2 der(

b

g), and hen
e

that [

b

g;

b

g℄ � kerD . If

b

g is perfe
t, then D vanishes, but if

b

E 62 [

b

g;

b

g℄ , then

Hom

Lie

(

b

g; z) = Hom(K

b

E; z)

�

=

z

des
ribes the possibilities for D , whi
h is determined by D(

b

E) 2 z .

Sin
e, for h 2

b

H and v 2 g

�

we have he

ad v

h

�1

= e

adh:v

, the 
ondition g j

bg

�

= id

bg

�

implies that h 
ommutes with the generating subset e

ad g

�

, and hen
e that

ker q

G

� Z(

b

G):

This means that q

G

:

b

G! G is a 
entral extension of groups.
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Example 7.12. We 
onsider the 
ase of a trivial Jordan pair (V

+

; V

�

), i.e., all the maps T

�

vanish. Then the 
orresponding 3-graded Lie algebra is the semidire
t sum

g = (V

+

� V

�

)o KE;

where

[E; (v

+

; v

�

)℄ = (v

+

;�v

�

) and [V

+

; V

�

℄ = f0g:

Let �:V

+

� V

�

! z be any bilinear map. Then

!((v

+

; v

�

; �E); (w

+

; w

�

; �E)) := �(v

+

; w

�

)� �(v

�

; w

+

)

is a Lie algebra 
o
y
le whi
h de�nes a 
entral extension

b

g = g�

!

z

with the bra
ket

[(x; z); (x

0

; z

0

)℄ := ([x; x

0

℄; !(x; x

0

)); x; x

0

2 g; z; z

0

2 z:

The subalgebra of

b

g generated by V

�

is 2-step nilpotent and

b

g is solvable. In

b

g we have

[adV

+

; adV

�

℄ = ad[V

+

; V

�

℄ � ad z = f0g;

so that the groups

b

G and G are both abelian. Considering the orbit of the grading element, it

is easy to see that

b

G

�

=

V

+

� V

�

�

=

G:

Remark 7.13. Let g be a 3-graded Lie algebra with grading element E . We have seen in

Chaper 5 that the homogeneous spa
es G=H and G=P

�

are isomorphi
 to those asso
iated to

the subalgebra g generated by E and g

�

. Furthermore, the results in this se
tion imply that

the same holds for the homogeneous spa
es asso
iated to the 
enter-free Lie algebra g=z(g). The

latter Lie algebra is isomorphi
 to the Tits{Kantor{Koe
her Lie algebra

TKK(g

+

; g

�

) = g

+

� (ider(g

+

; g

�

) + KE) � g

�

of the Jordan pair (g

+

; g

�

). For that we only have to observe that the triviality of the 
enter

implies that g

0

=z(g) embeds into der(g

+

; g

�

). We therefore obtain a natural identi�
ation of

the homogeneous spa
e G=H and G=P

�

with a spa
e of 3-gradings of TKK(g

+

; g

�

), resp., a

spa
e of �ltrations of this Lie algebra.

8. Grassmannian geometries and asso
iative stru
tures

8.1. Grassmannian geometries. Let R be an asso
iative algebra with unit 1 over the


ommutative unital ring K and let V be a right R -module. The 
omplemented Grassmannian

(of V over R) is the spa
e

C := fE � V : 9F : V = E � F (E;F : submodules of V )g (8:1)

of R -submodules of V that have a 
omplement. For V = R this is the spa
e of 
omplemented

right ideals of R (
f. Se
tion 8.6 below). For E;F 2 C we write E>F if V = E � F ; we let

E

>

= fF 2 C : F>Eg be the set of 
omplementary submodules of E and

(C � C)

>

= f(E;F ) 2 C � C : V = E � Fg: (8:2)

Let

P := fp 2 End

R

(V ) : p

2

= pg = Idem(End

R

(V )) (8:3)

be the spa
e of proje
tors, resp., idempotents in V . Taking I := 2p � id

V

instead of p , we

may also work with the 
ondition I

2

= id

V

instead of p

2

= p and view P as the spa
e of

polarizations of V . In this framework, the following analog of Theorem 1.6 is an easy exer
ise

in Linear Algebra:
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Proposition 8.2.

(i) The map P ! (C � C)

>

, p 7! (im(p); ker(p)) = (im(p); im(1� p)) is a bije
tion.

(ii) For all E 2 C , E

>


arries 
anoni
ally the stru
ture of an aÆne spa
e over K (not over

R in general), modeled on the K -module Hom

R

(V=E;E) .

Moreover, P 
learly is stable under the binary map � de�ned by �(p; q) = (2p � 1)q(2p � 1)

whi
h de�nes on P the stru
ture of a re
e
tion spa
e (
f. 4.1). Using s
alar extension by dual

numbers over K , one may also de�ne tangent bundles of P and C , and then Property (S4) will

also hold for � ; but we will not pursue this 
onstru
tion here.

8.3. Flags and elementary group. We are going to des
ribe the relation between this simple

linear algebra model and the model from Theorem 1.6. Let g := End

R

(V ) with the usual


ommutator as Lie bra
ket. Note that the 
ommutator is not R -bilinear in general, but it is

bilinear over the 
enter of R ; hen
e g is a K -Lie algebra. An element p 2 P de�nes a derivation

ad(p) of g whi
h is tripotent; with respe
t to the de
omposition V = E � F := im(p)� ker(p),

i.e., (in the obvious matrix notation) p =

�

1

0

0

0

�

, and the grading of g is des
ribed by

g

�1

=

n

�

0 0

� 0

�

: � 2 Hom

R

(E;F )

o

;

g

1

=

n

�

0 �

0 0

�

: � 2 Hom

R

(F;E)

o

;

g

0

=

n

�

A 0

0 B

�

: A 2 End

R

(E); B 2 End

R

(F )

o

:

(8:4)

Thus we have a well-de�ned map from P to the spa
e G of inner 3-gradings of g :

'

P

: P ! G; p 7! ad(p): (8:5)

On the other hand, if E 2 C , then to the \short 
ag" 0 � E � V we may asso
iate a \long 
ag"

f

E

: 0 � f

1

� f

0

� g by letting

f

1

:= fX 2 g : X(V ) � E; X(E) = 0g � f

0

:= fX 2 g : X(E) � Eg � g; (8:6)

in matrix form:

�

0 �

0 0

�

�

�

� �

0 �

�

�

�

� �

� �

�

:

It is 
lear that this is a 3-�ltration of g (even in an asso
iative sense). Thus we have a well-de�ned

map

'

C

: C ! F ; E 7! f

E

; (8:7)

and it follows from the de�nitions that the diagram

C � C � P

# #

F � F � G

(8:8)


ommutes. All maps in this diagram are obviously equivariant with respe
t to the natural a
tion

of the group GL

R

(V ) on all spa
es that are involved.

If E 2 C is �xed, then the elements X 2 f

1

(with f

1

as in (8.6)) are 2-step nilpotent; thus

e

X

= 1+X . Let

U

E

:= e

f

1

= 1+ f

1

=

n

�

1 �

0 1

�

: � 2 Hom

R

(F;E)

o

; (8:9)

where the latter matrix representation is with respe
t to a �xed 
omplement F of E . The group

U

E

a
ts simply transitively on the set E

>

of 
omplements of E . Therefore, if for su
h a �xed

de
omposition V = E � F , we let

G(E;F ) := hU

E

; U

F

i � GL

R

(V ) (8:10)
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be the group generated by U

E

and U

F

, 
alled the elementary group of (V;E; F ), then G(E;F ) =

G(E;F

0

) for any two 
omplements F; F

0

of E , and we may write also G

E

for G(E;F ). We let

P

E

:= fg 2 G

E

: g(E) = Eg; (8:11)

and, for a �xed 
omplement F of E ,

H(E;F ) = fg 2 G(E;F ) : g(E) = E; g(F ) = Fg = P

E

\ P

F

: (8:12)

Theorem 8.4. The equivariant maps '

P

and '

C

have the following properties:

(1) For all E 2 C , '

C

(E

>

) = '

C

(E)

>

.

(2) For all p 2 P , the restri
tion of the map '

P

to the orbit GL

R

(V ):p ,

P � GL

R

(V ):p! G; g:p 7! ad(g:p);

is inje
tive.

(3) For all E 2 C , the restri
tion of the map '

C

to the orbit GL

R

(V ):E ,

C � GL

R

(V ):E ! F ; g:E 7! f

g:E

;

is inje
tive.

(4) Let p 2 P with asso
iated de
omposition V = E � F = im(p) � ker(p) . The map '

P

indu
es a bije
tion

G(E;F )=H(E;F )

�

=

G(E;F ):p! G(ad(p)): ad(p)

�

=

G(ad(p))=H(ad(p));

and the map '

C

indu
es a bije
tion

G(E;F )=P

F

�

=

G(E;F ):E ! G(ad(p)):f

F

= G(ad(p))=P

�

:

Proof. (1) The a
tion of U

E

on g is pre
isely the a
tion of e

ad(f

1

)

on g . Sin
e U

E

a
ts

simply transitively on the set of 
omplements of E , the 
laim follows from the 
orresponding

fa
t about g (Theorem 1.6(2)).

(2) Let e 2 P and f := geg

�1

2 P with g 2 GL

R

(V ) su
h that ad(e) = ad(f). Then

z := f � e 2 Z(A) where A is the asso
iative K -algebra End

R

(V ). In parti
ular, ef = fe and

therefore

(e� f)ef = e

2

f � ef

2

= ef � ef = 0:

We have

(f � e)

2

= f

2

� 2ef + e

2

= f + e� 2ef

and

(f � e)

3

= (f � e)(f + e� 2ef) = f

2

� e

2

� 2(f � e)ef = f � e;

i.e., z

3

= z . Write z = z

1

� z

2

with

z

1

=

1

2

z(z + 1) and z

2

=

1

2

z(z � 1):

Then z

1

and z

2

are again 
entral, and z

2

1

= z

1

and z

2

2

= z

2

. This implies

z

1

=

1

2

(f � e)(f � e+ 1) =

1

2

(f + e� 2ef + f � e) =

1

2

(2f � 2ef) = f � ef = zf

and

z

2

=

1

2

(f � e)(f � e� 1) =

1

2

(f + e� 2ef � f + e) =

1

2

(2e� 2ef) = e� ef = �ze:

We further obtain

z

2

= �z

2

z = z

2

(e�geg

�1

) = z

2

e�gz

2

eg

�1

= �ze

2

+gze

2

g

�1

= �ze+gzeg

�1

= z

2

�gz

2

g

�1

= 0

be
ause z

2

is 
entral, and likewise

z

1

= z

1

z = z

1

(f � g

�1

fg) = z

1

f � g

�1

z

1

fg = zf

2

� g

�1

zf

2

g = zf � g

�1

zfg = z

1

� g

�1

z

1

g = 0:

Eventually we obtain z = z

1

� z

2

= 0 and hen
e e = f , as had to be shown.

(3) This follows by 
ombining (2) and (1) (observing that the �bers of the map P ! C ,

p 7! im(p) are of the form F

?

, F 2 C , and similarly for G ! F ).

(4) This follows from (2) and (3), observing that the a
tion of H(E;F ) on g 
oin
ides with

the a
tion of H(ad(p). For P

E

we argue similarly.
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8.5. Spe
ial Jordan pairs. If p 2 P and g = gl

R

(V ), then the asso
iated Jordan pair is

(Hom

R

(F;E);Hom

R

(E;F )); T

�

(X;Y; Z) = XY Z + ZYX:

A Jordan pair that is a sub-pair of su
h a pair is 
alled spe
ial. The Bergman operator is in this


ase given by

B(X;Y )Z = (1�XY )Z(1� Y X):

The spe
ial 
ase where V = E � E gives rise to a self-dual geometry and is related to the

K -Jordan algebra End

R

(E).

8.6. Geometry of right ideals. Now let us 
onsider the 
ase of the right R -module V = R .

In this 
ase (
omplemented) submodules are the same as (
omplemented) right ideals, and the

Grassmannian geometry should be 
alled the geometry of right ideals of R . Via the bije
tion

R ! Hom

R

(R;R), r 7! l

r

(left multipli
ation by r ), the set P of proje
tors is identi�ed with

the set of idempotents of R ,

Idem(R) := fe 2 R : e

2

= eg:

The pair (R; e) with an idempotent e is also 
alled a Morita 
ontext (
f. [Lo95, Se
tion 2.1℄).

In this 
ase, our Theorem 8.4 
orresponds essentially to results of Loos ([Lo95, Theorem 2.8℄).

The symmetri
 spa
e stru
ture on Idem(R) is des
ribed in the same way as after Prop. 8.2: it

is given by �(e; f) = (2e� 1)f(2e� 1).

8.7. Geometry of the proje
tive line. Another interesting 
ase is V = R � R , taking this

de
omposition as base point p 2 P . This gives rise to a self-dual geometry (belonging to R

seen as a Jordan algebra over K ) whi
h is the proje
tive line over the ring R , see [He95℄ and

the re
ent work [BlHa01℄. The 
orresponding 3-graded Lie algebra is g = gl

2

(R), resp., its

subalgebra e

2

(R) generated by the stri
t upper and lower triangular matri
es.

Finally, let us remark that there exist rings R su
h that R � R

�

=

R as right R -modules

(personal 
ommuni
ation by P.-Y. Gaillard, 
f. [Ga03℄), so that the 
ases 8.6 and 8.7 have non-

empty interse
tion.
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