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Abstrat

The present artile provides a lassi�ation of non-ollapsing Phan amalgams of

type C

n

and of shape S � S

2

over �nite �elds of odd square order. Together with

the results of [4℄ this ompletes the proof of a Phan-type theorem for the group

Sp

2n

(q) for suÆiently large n and q.

1 Introdution

The modern approah to Phan-type theorems, as outlined in [1℄, falls into two parts. On

one hand one has to prove the simple onnetedness of some suitable geometry, on the

other hand one has to lassify related amalgams. The so-alled ipop geometry � of type

C

n

over �nite �elds of square order has been introdued and studied in [4℄. The Main

Theorem of that paper states that this ipop geometry is 2-simply onneted for n � 3

and q � 8. By Tits' lemma (Corollaire 1 of [7℄) this implies that the amalgam onsisting

of the rank-1- and rank-2-parabolis of some ag-transitive group G of automorphisms of

� admits G as its universal ompletion. We refer to [4℄ for details; see also Setion 2 for

a de�nition of � and a short summary of the setting.

The purpose of the present paper is to lassify the non-ollapsing Phan amalgams of

type C

n

and of shape S � S

2

, whih is ahieved in the following theorem. For de�nitions

we again refer to Setion 2.

Theorem 1

Let n � 3, let q be odd, and let A be a non-ollapsing Phan amalgam of type C

n

and of

shape S � S

2

over F

q

2

. Then the unique unambiguous overing

~

A of A is isomorphi to

the standard Phan amalgam

^

A

S

.

The above theorem onstitutes the �nal step of the proof of the Phan-type Theorem

2. The latter is an immediate onsequene of Theorem 1 and the results of [4℄, espeially

Part (1) of Theorem 2.

1
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Theorem 2

Let n � 3, let q � 8, and let G be a group that admits a weak Phan system of type C

n

over F

q

2

. Then G is a homomorphi image of Sp

2n

(q) (the universal Chevalley group of

type C

n

(q)).

The bound on q in Theorem 2 omes from the results of [4℄. The partiular proof of

2-simple onnetedness fails for q � 7. Currently it is only known that � is not 2-simply

onneted for q = 2; nothing is known for 3 � q � 7.

This artile is organized as follows. In Setion 2 we provide all neessary de�nitions

and a number of results on Phan systems and Phan amalgams. In Setion 3 we give the

proof of Theorem 1.

Remark: Analogues of Theorem 1 should hold for any non-ollapsing Phan amalgam of

type � (and level two), where � is an arbitrary Dynkin diagram admitting single and

double edges.

Aknowledgement: The author wants to express his gratitude to Curt Bennett and Sergey

Shpetorov for a preprint version of [2℄.

2 Phan systems and Phan amalgams

Let G = Sp

2n

(q

2

) and let V be the natural sympleti spae for G. Following Setion

3 of [4℄, denote by (�; �) the orresponding alternating form. Let the bar denote the

involutory �eld automorphism of F

q

2

and let � be a ip, i.e., (�v)

�

=

�

�v

�

, (u

�

; v

�

) =

(u; v), and �

2

= �id. Then, by Proposition 3.1 of [4℄, we an �nd a anonial basis

B = fe

1

; : : : ; e

n

; f

1

; : : : ; f

n

g satisfying (e

i

; e

j

) = (f

i

; f

j

) = 0, (e

i

; f

j

) = Æ

ij

and e

�

i

= f

i

,

f

�

i

= �e

i

for 1 � i; j � n. The entralizer G

�

of � in G is isomorphi to Sp

2n

(q)

(Proposition 3.8 of [4℄) and ats ag-transitively on the geometry � whih onsists of

the subspaes U of V that are totally isotropi with respet to (�; �) and that satisfy

V = U

?

� U

�

(Proposition 4.2 of [4℄).

Let B = fe

1

; f

1

; : : : ; e

n

; f

n

g be a anonial basis of V and let F be the ag he

1

; f

1

i,

he

1

; f

1

; e

2

; f

2

i, : : : , he

1

; f

1

; : : : ; e

n

; f

n

i. A deomposition V = �

k

i=0

V

i

is alled ompatible

with B if eah V

i

is spanned by a subset of B of the form fe

j

; f

j

; e

j+1

; f

j+1

; : : : ; e

t

; f

t

g

for some 1 � j � t � n. The ompatible deompositions are indexed by subsets J of

the set I = f1; : : : ; ng. We denote the deomposition orresponding to the set J by

�

J

. For J = fi

1

< i

2

< � � � < i

k

g this deomposition �

J

is V

0

= he

1

; f

1

; : : : ; e

i

1

; f

i

1

i,

V

1

= he

i

1

+1

; f

i

1

+1

; : : : ; e

i

2

; f

i

2

i, : : : , V

k

= he

i

k

+1

; f

i

k

+1

; : : : ; e

n

; f

n

i. Note that V

k

= f0g if

i

k

= n.

For a nondegenerate �-invariant subspae U of V , let Sp(U) denote the full subgroup

of G

�

that preserves the form ��(�; �)j

U

�

�U

�

(f. Lemma 3.6, Lemma 3.7, Proposition 3.8 of

[4℄) and ats trivially on U

?

; let SU(U) denote the speial unitary group that is embedded

naturally into Sp(U). Clearly, Sp(U)

�

=

Sp(2m; q) and SU(U)

�

=

SU(m; q

2

) where 2m is
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the dimension of U . For J � I let L

J

= Sp(V

k

)

Q

k�1

i=0

SU(V

i

) where V = �

k

i=0

V

i

is the

deomposition �

J

(and with the understanding that Sp(V

k

) is the trivial group in ase

V

k

= f0g). If F

0

is the subag of F of type J , then the paraboli of G

�

orresponding

to F

0

is equal to L

J

D where D is the Borel subgroup orresponding to F . The level of

a subgroup L

J

is n � jJ j, the orank of J in I. The level of L

J

oinides with the rank

of the paraboli L

J

D. In ase n = 2, the groups L

f2g

�

=

SU

2

(q

2

) and L

f1g

�

=

Sp

2

(q) are

alled a standard pair in G

�

�

=

Sp

4

(q). Following [2℄, we say that subgroups L

1

and

L

2

of SU

3

(q

2

) form a standard pair whenever eah L

i

is the stabilizer in SU

3

(q

2

) of

a nonsingular vetor v

i

of the natural module of SU

3

(q

2

) and, moreover, v

1

and v

2

are

perpendiular.

Let S be a subset of the power set of I = f1; :::; ng that is losed under taking

supersets. The standard Phan amalgam of type C

n

and of shape S is the amalgam

^

A

S

= [

J2S

L

J

. In the partiular ase where S = S

k

onsists of all subsets J � I with

jInJ j � k, we will all

^

A

S

the standard Phan amalgam of type C

n

and of level k

and rank n; it is denoted by

^

A

k

=

^

A(n; k; q). The shape S

k

will be alled the straight

level k shape. If S � S

k

then we say that S is of level k.

By an arbitrary Phan amalgam of type C

n

and of shape S we will understand

an amalgam A = [

J2S

K

J

where K

J

is a group isomorphi to a quotient of L

J

over

a subgroup of the enter of L

J

. Furthermore, if J � J

0

, then we require that K

J

0

be

ontained in K

J

, namely that K

J

0

be the image of L

J

0

under the natural homomorphism

from L

J

onto K

J

.

The de�nition of a Phan amalgam leaves some ambiguity as to what is the exat

struture of eah K

J

. For example, in the straight level two ase, when j � i > 1, either

K

Infig

and K

Infjg

have trivial intersetion or they have a ommon entral involution.

Similarly, when j�i = 1, the groupK

Infi;jg

may be any quotient of L

Infi;jg

over a subgroup

of Z(L

Infi;jg

). Finally, the intersetions of the members of the amalgam might be larger

than expeted. We all a Phan amalgam unambiguous if every K

J

is isomorphi to the

orresponding L

J

and if K

J

\ K

J

0

= K

J[J

0

for all J and J

0

. By a overing of a Phan

amalgam A = [

J2S

K

J

of shape S we mean a seond Phan amalgam

~

A = [

J2S

~

K

J

of

the same shape S, together with an amalgam homomorphism � :

~

A ! A, suh that �

indues a surjetive homomorphism of

~

K

J

onto K

J

for every J 2 S. We all two overings

(

~

A

1

; �

1

) and (

~

A

2

; �

2

) of A equivalent if there is an isomorphism � of A

1

onto A

2

suh

that �

1

= �

2

�.

De�nition 2.1 Let n � 2, let � be the Dynkin diagram C

n

, and let I = f1; : : : ; ng.

A group G admits a weak Phan system of type C

n

if G ontains subgroups U

i

�

=

SL

2

(q)

�

=

Sp

2

(q)

�

=

SU

2

(q

2

), i 2 I, and U

i;j

, i 6= j 2 I, so that the following hold:

(wP1) If (i; j) is not an edge of �, then U

i;j

is a entral produt of U

i

and U

j

;

(wP2) if (i; j) is an edge of �, then U

i

and U

j

are ontained in U

i;j

whih is isomorphi

to a quotient of SU

3

(q

2

) over a subgroup of its enter if (i; j) is a single edge and
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isomorphi to a quotient of Sp

4

(q) over a subgroup of its enter if (i; j) is a double

edge; moreover, U

i

and U

j

form a standard pair in U

i;j

; and

(wP3) the subgroups U

i;j

, i 6= j 2 I, generate G.

If a group G ontains a weak Phan system U

1

, : : : , U

n

, then A = [

i 6=j2I

U

i;j

is a Phan

amalgam of level two. This amalgam does not ollapse, beause G is a quotient of its

universal ompletion. The onverse is proved in the following lemma:

Lemma 2.2

Suppose A is a Phan amalgam of type C

n

and of shape S � S

2

. Suppose further that G

is a nontrivial ompletion of A via some map �. Then �j

K

Infig

is injetive. In partiular,

�(K

Inf1g

); : : : ; �(K

Infng

) form a weak Phan system in G.

Proof. By way of ontradition suppose 1 6= u 2 K

Infig

and �(u) = 1. Let j be equal

to i � 1 or i + 1. By Lemma 2.3 of [2℄ and Lemma 4.6 of [4℄ (i.e., onnetedness of the

respetive geometries) we have




K

Infig

; K

Infjg

�

equal to a quotient of SU

3

(q

2

) or Sp

4

(q)

over a subgroup of the enter. As 1 6= u 2 K

Infig

, we have u 62 Z(




K

Infig

; K

Infjg

�

), whene

�(




K

Infig

; K

Infjg

�

) = 1 and, thus, �(K

Infig

) = 1 = �(K

Infjg

). It follows that �(G) = 1, a

ontradition. 2

The following results deal with harateristi ompletions of amalgams. Suppose A

is an amalgam. A ompletion G of A is alled harateristi if and only if every auto-

morphism of A extends to an automorphism of G. In [2℄ the following has been proved.

(Roughly speaking, a Phan amalgam of type A

n

is what one gets if one throws away all

members of a Phan amalgam of type C

n+1

that are of the form K

InJ

with n+ 1 2 J . For

a preise de�nition see [2℄.)

Proposition 2.3 (see [2℄)

Let n � 2. The group G

�

=

SU(n + 1; q

2

) is a harateristi ompletion of the standard

Phan amalgam of type A

n

for any shape S � S

2

.

Lemma 2.4 (see [2℄)

Let G

�

=

SU

3

(q

2

), let U

1

�

=

SU

2

(q

2

), U

2

�

=

SU

2

(q

2

) be a standard pair in G, and let T be

the joint stabilizer in Aut(G) of U

1

and U

2

. Then T is an extension of a group of order

(q+1)

2

by the �eld automorphisms. Moreover, the entralizer in T of U

1

is of order q+1.

The next lemma is the C

2

-analogue of Lemma 2.4.

Lemma 2.5

Let G

�

=

Sp

4

(q) and let U

1

�

=

SU

2

(q

2

), U

2

�

=

Sp

2

(q) be a standard pair in G. Then the

joint stabilizer T in Aut(G) of U

1

and U

2

is an extension of a group of order (q + 1)

2

by

the �eld automorphisms.
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Proof. This follows immediately from the fat that the Borel subgroup of G with respet

to the geometry � (f. [4℄) has order (q + 1)

2

. The only additional automorphisms are

indued by the �eld automorphisms. 2

Proposition 2.6

Let n � 2. The group G

�

=

Sp

2n

(q) is a harateristi ompletion of the standard Phan

amalgam

^

A

S

of type C

n

for any shape S � S

2

.

Proof. We will only prove the proposition for S = S

2

, the general ase being a straight-

forward indution on the size of S (f. the proof of Proposition 6.1 of [2℄). We want to

show that the group A of automorphisms of

^

A

2

is of order (q + 1)

n

f where q = p

f

, p a

prime. Proeed by indution on n. The ase n = 2 is implied by Lemma 2.5. Now, for

arbitrary n, onsider the amalgam B of all members of

^

A

2

that are ontained in the lower

right (2n � 2) � (2n � 2)-blok of G. The laim will follow if we prove that C

A

(B) has

order at most q + 1. Let L = L

Inf1;2g

�

=

SU

3

(q

2

) be the member of

^

A

2

ontaining L

Inf1g

and L

Inf2g

. Sine C

A

(B) ats trivially on L

Inf2g

and stabilizes L

Inf1g

we an apply Lemma

2.4, so C

A

(B) indues on L a group of order at most q+1. The other members of

^

A

2

that

are not in B are diret produts of L

Inf1g

and a member of B. But learly every element

of C

A

(B) that ats trivially on L

Inf1g

ats trivially on every suh diret produt. We have

shown that the group of automorphisms of

^

A

2

is of order at most (q+1)

n

f . This �nishes

the proof beause G indues (q + 1)

n

f automorphisms of

^

A

2

. 2

Corollary 2.7

Let J � I with jInJ j � 3. Then the group L

J

is a harateristi ompletion of the

amalgam [

J

0

�J

L

J

0

. 2

Lemma 2.8

Let A

i

be an amalgam and let G

i

be a ompletion of A

i

via the map �

i

, i = 1; 2. Suppose

there exist isomorphisms  : A

1

! A

2

and � : G

1

! G

2

suh that ��

1

= �

2

 . If G

1

is

a harateristi ompletion of A

1

, then for any isomorphism  

0

: A

1

! A

2

there exists a

unique isomorphism �

0

: G

1

! G

2

suh that �

0

�

1

= �

2

 

0

.

Proof. Consider � = ( 

0

)

�1

 . This is an automorphism ofA

1

. SineG

1

is a harateristi

ompletion, � extends to an automorphism of G

1

; that is, there is an automorphism �

of G

1

suh that �

1

� = ��

1

. (Notie that � is the unique automorphism of G

1

with that

property, beause A

1

generates G

1

.) The map �

0

= ��

�1

has the required properties. 2

3 Proof of Theorem 1

We begin the proof of Theorem 1 with the following proposition.
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Proposition 3.1

Every non-ollapsing Phan amalgam A has a unique (up to equivalene) unambiguous

(non-ollapsing) overing

~

A.

Proof. The proof is by indution on jSj where S is the shape of A = [

J2S

K

J

. The

laim holds in ase S = ;, whih orresponds to the empty amalgam. Suppose that

S is a non-empty shape, and that the laim holds for every shape S

0

� S. Let J be

a minimal (under inlusion) element of S and set S

0

= SnfJg and A

0

= [

J

0

2S

0

K

J

0

.

Then S

0

is a shape, and A

0

is a Phan sub-amalgam in A of shape S

0

. By the indutive

assumption there is a (unique) unambiguous overing Phan amalgam (

~

A

0

= [

J

0

2S

0

K

0

J

0

; �

0

)

of A

0

. We will onstrut an unambiguous overing (

~

A; �) of A by gluing a opy of L

J

to

~

A

0

and by extending �

0

to the new member of the amalgam. To glue L

J

to the

amalgam

~

A

0

we need to onstrut an isomorphism from the sub-amalgam B = [

J

0

�J

K

0

J

0

of

~

A

0

onto the orresponding amalgam C = [

J

0

�J

L

J

0

of proper subgroups of L

J

. By the

de�nition of a Phan amalgam there is a homomorphism  from L

J

onto K

J

mapping

C onto D = [

J

0

�J

K

J

0

. Note that D is a Phan amalgam of shape fJ

0

j J

0

� Jg. Note

further that (B; �

0

j

B

) and (C;  ) are two unambiguous overings of D. By indution, the

uniqueness of the unambiguous overing holds so that there is an amalgam isomorphism

� from B onto C suh that  � = �

0

j

B

. The map � tells us how to glue L

J

to

~

A

0

to produe

~

A, and furthermore, as � we an take the union of  and �

0

. The ondition  � = �

0

j

B

guarantees that  and �

0

agree on the intersetion B = C (identi�ed via �). Finally,

notie that

~

A is an unambiguous Phan amalgam of type S, so (

~

A; �) is an unambiguous

overing of A.

This ompletes the proof of the existene of an unambiguous overing

~

A. Now we will

prove the uniqueness. Suppose we have two suh overings

~

B = [

J2S

B

J

and

~

C = [

J2S

C

J

with orresponding amalgam homomorphism �

1

and �

2

ontoA. Selet J as in the previous

paragraph, and de�ne S

0

= S n fJg. Let A

0

,

~

B

0

and

~

C

0

be the sub-amalgams of shape S

0

in A,

~

B and

~

C, respetively. By indution, there exists an isomorphism � from

~

B

0

onto

~

C

0

suh that �

1

j

~

B

0

= �

2

j

~

C

0

�. It suÆes to extend � to B

J

.

We have two ases: First, let us assume that the deomposition �

J

has more than one

summand of dimension greater than two. In this ase, B

J

�

=

C

J

�

=

L

J

is isomorphi to a

diret produt of L

J

0

and L

J

00

for suitable supersets J

0

and J

00

of J . Clearly � is already

known on B

J

0

and B

J

00

, and so � extends uniquely to B

J

. Sine every member B

K

with

K � J is a diret produt of its intersetions with B

J

0

and B

J

00

, this extension, whih

we will also denote by �, will be a well-de�ned amalgam isomorphism from B to C, and

furthermore, �

2

= �

1

�.

In the seond ase, �

J

has a unique summand of dimension m greater than two. In

this ase B

J

�

=

C

J

�

=

L

J

is isomorphi to SU(m; q

2

) or Sp(2m; q). Choose an arbitrary

isomorphism  : B

J

�! C

J

, and onsider the following map � from K

J

to K

J

: For

u 2 K

J

, �(u) is de�ned to be �

2

 �

�1

1

(u). Notie that � is a well-de�ned automorphism

of K

J

, beause the �bers of �

1

are osets of the kernel of �

1

, and  takes them to
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osets of the kernel of �

2

(sine  takes the kernel of �

1

to the kernel of �

2

|those being

subgroups of equal order in the yli enters of B

J

and C

J

, respetively). Notie that

every automorphism of K

J

lifts to a unique automorphism of L

J

whih is isomorphi to

SU(m; q

2

) or Sp(2m; q). Thus, there is an automorphism � of C

J

suh that �

2

j

C

J

� =

��

2

j

C

J

. De�ne � : B

J

! C

J

as �

�1

 . First of all we have �

1

j

B

J

= �

2

j

C

J

�. Indeed,

�

2

j

C

J

� = �

2

j

C

J

�

�1

 = �

�1

�

2

j

C

J

 = �

1

j

B

J

 

�1

�

�1

2

j

K

J

�

2

j

C

J

 = �

1

j

B

J

. Seond, for every

J

0

� J we have that �

�1

�j

B

J

0

is a lifting to B

J

0

of the identity automorphism of K

J

0

,

and hene it is the identity. For, �

�1

� =  

�1

�� =  

�1

�

�1

2

��

2

� =  

�1

�

�1

2

�

2

 �

�1

1

�

2

� =

�

�1

1

�

2

� = id (to enhane legibility we omitted the restritions). This shows that � and �

agree on every subgroup B

J

0

, whih allows us to extend � to the entire

~

B by de�ning it

on B

J

as �. 2

In view of the preeding proposition let A = [

fi;jg2I

K

Infi;jg

be a non-ollapsing,

unambiguous Phan amalgam of shape S

2

. We will prove the uniqueness of A (up to

isomorphism) in a series of lemmas. Clearly, when n = 2 the amalgam is unique by

de�nition.

The ase n = 3

SineA is unambiguous, eah subgroupK

Infig

oinides withK

Infi;jg

\K

Infi;kg

for fi; j; kg =

f1; 2; 3g. De�ne D

1

= N

K

f2;3g

(K

f1;3g

) (both groups K

f1;3g

, K

f2;3g

onsidered as subgroups

of K

f3g

) and D

3

= N

K

f1;2g

(K

f1;3g

). Sine K

f1;3g

and K

f2;3g

form a standard pair in

K

f3g

, it follows that D

1

has order q + 1, and it is a maximal torus in K

f2;3g

�

=

SU

2

(q

2

).

Similarly, D

3

is a maximal torus of order q + 1 in K

f1;2g

�

=

Sp

2

(q). We also de�ne

D

1

2

= N

K

f1;3g

(K

f2;3g

) and D

3

2

= N

K

f1;3g

(K

f1;2g

). Again, these are two maximal tori of size

q + 1 in K

f1;3g

�

=

SU

2

(q

2

). The following lemma gives us an extra ondition on A that

holds beause A does not ollapse.

Lemma 3.2

We have D

1

2

= D

3

2

.

Proof. Let G be a non-trivial ompletion of A and let � be the orresponding map from

A to G. Sine A is non-ollapsing, we may assume that � is injetive on every K

Infig

, by

Lemma 2.2. Observe that D

i

2

= C

K

f1;3g

(D

i

) for i = 1; 3. Thus, �(D

i

2

) = C

�(K

f1;3g

)

(�(D

i

)).

Sine D

1

and D

3

ommute elementwise in K

f2g

, we have that �(D

1

) and �(D

3

) ommute

elementwise as well. Sine K

f1;3g

is invariant under D

3

= N

K

f1;2g

(K

f1;3g

) (in K

f1g

) and

sine � is injetive on K

f1;3g

(by Lemma 2.2), it follows that D

1

2

= C

K

f1;3g

(D

1

) is invariant

under D

3

(again as subgroups of K

f1g

). Hene �(D

1

2

) = C

�(K

f1;3g

)

(�(D

1

)) is invariant

under �(D

3

). Similarly, �(D

3

2

) = C

�(K

f1;3g

)

(�(D

3

)) is invariant under �(D

1

). Notie that

D

3

2

and D

1

are both yli of order q + 1. Sine the order of Aut(C

q+1

) equals Euler's

'(q+1) whih is smaller than q+1, the group D

1

ontains a non-trivial element d ating

trivially on D

3

2

. Analysis of K

f3g

�

=

SU

3

(q

2

) shows that the only elements ommuting



3 PROOF OF THEOREM 1 8

with d in K

f1;3g

are those ontained in D

1

2

. Hene D

1

2

= D

3

2

as both groups are of order

q + 1. 2

In view of the lemma we write D

2

for D

1

2

= D

3

2

.

We want to prove the uniqueness of the amalgam A. Assume there exists another

amalgam A

0

= K

0

f1g

[ K

0

f2g

[ K

0

f3g

. Aording to Goldshmidt's lemma 2.7 of [3℄ the

amalgams B = K

f1g

[ K

f3g

and B

0

= K

0

f1g

[ K

0

f3g

are isomorphi via some amalgam

isomorphism  . Clearly,  (K

f1;3g

) =  (K

f1g

\K

f3g

) = K

0

f1g

\K

0

f3g

= K

0

f1;3g

. Also, by [2℄,

we an assume that  (K

f2;3g

) = K

0

f2;3g

. Let W be the natural module of K

f3g

�

=

SU

3

(q

2

)

onsidered as an F

q

-vetor spae. Denote the basis ofW by fe

1

; f

1

; e

2

; f

2

; e

3

; f

3

g. Note that

K

f1g

ats on the subspae of W spanned by fe

2

; f

2

; e

3

; f

3

g (although it does not preserve

the unitary form on that spae). As N

K

f1;3g

(K

f1;2g

) = D

2

= N

K

f1;3g

(K

f2;3g

) we have

N

K

0

f1;3g

( (K

f1;2g

)) =  (D

2

) = N

K

0

f1;3g

(K

0

f2;3g

). Moreover,  (K

f1;2g

) �  (K

f1g

) = K

0

f1g

.

Via the isomorphism  , the groups K

0

f3g

and K

0

f1g

at on W . In partiular, the latter

also ats on he

2

; f

2

; e

3

; f

3

i. Furthermore note that D

2

and  (D

2

) at on he

2

; f

2

; e

3

; f

3

i.

The only two-dimensional subspaes of he

2

; f

2

; e

3

; f

3

i that are stabilized by K

f1;2g

and by

D

2

= N

K

f1;3g

(K

f1;2g

) are he

2

; f

2

i and he

3

; f

3

i. Therefore the same holds true for  (D

2

) and

 (K

f1;2g

). But the only two-dimensional subspae ofW that is entralized by K

f2;3g

is the

spae he

3

; f

3

i. This oinides with the unique two-dimensional subspae of he

2

; f

2

; e

3

; f

3

i

that is normalized (and not entralized) by K

f1;2g

. Therefore also  (K

f1;2g

) normalizes

he

3

; f

3

i and entralizes he

2

; f

2

i. We have proved the following:

Proposition 3.3

If n = 3, then the unambiguous, non-ollapsing Phan amalgam A of shape S

2

is unique

up to isomorphism. 2

The ase n > 3

We will proeed by indution, using the ase n = 3 as basis. Let n > 3 and let A be an

unambiguous, non-ollapsing Phan amalgam of type C

n

and of shape S

2

.

Lemma 3.4

There exists a unique amalgam B = A[H

1

[H

2

where H

1

�

=

SU

n

(q

2

) is generated by the

subgroups K

Infi;jg

, 1 � i < j � n� 1, and H

2

�

=

Sp

2n�2

(q) is generated by the subgroups

K

Infi;jg

, 2 � i < j � n.

Proof. Let B

1

= [

1�i<j�n�1

K

Infi;jg

, B

2

= [

2�i<j�n

K

Infi;jg

, and C = B

1

\ B

2

. By

the indutive assumption, B

1

is isomorphi to the amalgam found in SU

n

(q

2

) and B

2

is

isomorphi to the amalgam found in Sp

2n�2

(q). Furthermore, by Propositions 2.3 and 2.6

the groups SU

n

(q

2

) and Sp

2n�2

(q) are harateristi ompletions of B

1

, resp. B

2

, whene

there exist injetive amalgam homomorphisms �

1

: B

1

! H

1

and �

2

: B

2

! H

2

. We

want to glue H

1

and H

2

to A via the maps �

1

and �

2

. Notie that �

1

and �

2

send
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C into subgroups K

1

� H

1

, resp. K

2

� H

2

that are isomorphi to SU

n�1

(q

2

). Sine

the opies of C in K

1

and K

2

are standard Phan amalgams of type A

n�2

, there is an

isomorphism � : K

1

! K

2

that takes �

1

(C) to �

2

(C). Let  be the restrition of � to C.

Consider A

1

= �

1

(C) and A

2

= �

2

(C) together with their embeddings into K

1

, resp. K

2

.

Applying Lemma 2.8 with � and  as above and  

0

= �

2

j

C

(�

1

j

C

)

�1

, there exists a unique

isomorphism �

0

: K

1

! K

2

suh that �

0

j

A

1

=  

0

. Thus, �

0

j

A

1

�

1

j

C

= �

2

j

C

. Identifying K

1

with K

2

via �

0

we obtain our unique amalgam B. 2

Let us now turn to the uniqueness of the amalgam A. Suppose we have two non-

ollapsing, unambiguous Phan amalgams A and A

0

of type C

n

and of shape S

2

. Extend

A and A

0

to amalgams B = A[H

1

[H

2

and B

0

= A

0

[H

0

1

[H

0

2

as in Lemma 3.4. Observe

that by Goldshmidt's lemma 2.7 of [3℄ there exists an isomorphism � from H

1

[H

2

onto

H

0

1

[H

0

2

. By the indutive assumption, the K

Infi;jg

, 2 � i < j � n� 1, form a standard

Phan amalgam of type A

n�2

in H

1

\ H

2

; similarly the K

0

Infi;jg

, 2 � i < j � n � 1, form

a standard Phan amalgam of type A

n�2

in H

0

1

\H

0

2

. This implies that [

2�i<j�n�1

K

0

Infi;jg

and [

2�i<j�n�1

�(K

Infi;jg

) are standard Phan amalgams of type A

n�2

in H

0

1

\ H

0

2

. The

two amalgams orrespond to two hoies of an orthonormal basis in the natural unitary

spae for H

0

1

\ H

0

2

. Correting �, if neessary, by an inner automorphism of H

0

1

\ H

0

2

,

we may assume that �(K

Infi;jg

) = K

0

Infi;jg

for 2 � i < j � n � 1. Studying entralizers

in H

1

and H

2

we see that �(K

Inf1g

) = K

0

Inf1g

and �(K

Infng

) = K

0

Infng

. Therefore �

extends to an isomorphism from A to A

0

. Indeed, � is already de�ned on all K

Infi;jg

with 2 � i < j � n � 1. Also, inside H

0

1

we see that �(K

Inf1;ig

), i < n, is K

0

Inf1;ig

, sine

K

Inf1;ig

=




K

Inf1g

; K

Infig

�

. Similarly, in H

0

2

we see that �(K

Infi;ng

), 1 < i, is K

0

Infi;ng

.

It remains to notie that K

Inf1;ng

is the diret produt of K

Inf1g

and K

Infng

so that �

extends to an isomorphism of A to A

0

. Thus we have shown:

Proposition 3.5

If n > 3, then the amalgam A is unique up to isomorphism. 2

We leave the proof of uniqueness for arbitrary shape to the reader. Theorem 1 follows.
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