Weak Phan systems of type C,

Ralf Gramlich
January 8, 2003

Abstract

The present article provides a classification of non-collapsing Phan amalgams of
type C, and of shape S D Sy over finite fields of odd square order. Together with
the results of [4] this completes the proof of a Phan-type theorem for the group
Span(q) for sufficiently large n and gq.

1 Introduction

The modern approach to Phan-type theorems, as outlined in [1], falls into two parts. On
one hand one has to prove the simple connectedness of some suitable geometry, on the
other hand one has to classify related amalgams. The so-called flipflop geometry I of type
C,, over finite fields of square order has been introduced and studied in [4]. The Main
Theorem of that paper states that this flipflop geometry is 2-simply connected for n > 3
and ¢ > 8. By Tits’ lemma (Corollaire 1 of [7]) this implies that the amalgam consisting
of the rank-1- and rank-2-parabolics of some flag-transitive group G of automorphisms of
' admits G as its universal completion. We refer to [4] for details; see also Section 2 for
a definition of I' and a short summary of the setting.

The purpose of the present paper is to classify the non-collapsing Phan amalgams of
type C, and of shape S O Sy, which is achieved in the following theorem. For definitions
we again refer to Section 2.

Theorem 1

Let n > 3, let q be odd, and let A be a non-collapsing Phan amalgam of type C,, and of
shape S O Sy over Fp2. Then the unique unambiguous covering A of A is isomorphic to
the standard Phan amalgam As.

The above theorem constitutes the final step of the proof of the Phan-type Theorem
2. The latter is an immediate consequence of Theorem 1 and the results of [4], especially
Part (1) of Theorem 2.
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Theorem 2
Letn > 3, let ¢ > 8, and let G be a group that admits a weak Phan system of type C),
over . Then G is a homomorphic image of Spa,(q) (the universal Chevalley group of

type Cn(q))-

The bound on ¢ in Theorem 2 comes from the results of [4]. The particular proof of
2-simple connectedness fails for ¢ < 7. Currently it is only known that ' is not 2-simply
connected for ¢ = 2; nothing is known for 3 < ¢ < 7.

This article is organized as follows. In Section 2 we provide all necessary definitions
and a number of results on Phan systems and Phan amalgams. In Section 3 we give the
proof of Theorem 1.

Remark: Analogues of Theorem 1 should hold for any non-collapsing Phan amalgam of
type A (and level two), where A is an arbitrary Dynkin diagram admitting single and
double edges.

Acknowledgement: The author wants to express his gratitude to Curt Bennett and Sergey
Shpectorov for a preprint version of [2].

2 Phan systems and Phan amalgams

Let G = Spy,(¢?) and let V be the natural symplectic space for G. Following Section
3 of [4], denote by (-,-) the corresponding alternating form. Let the bar denote the
involutory field automorphism of Fp and let o be a flip, i.e., (Av)? = A7, (u?,v7) =

(u,v), and 0? = —id. Then, by Proposition 3.1 of [4], we can find a canonical basis
B ={e,... en f1,..., fn} satisfying (e;,e;) = (fi, fj) = 0, (i, fj) = d;; and e = f;,
ff = —e; for 1 < 0,57 < n. The centralizer G, of ¢ in G is isomorphic to Spa,(q)

(Proposition 3.8 of [4]) and acts flag-transitively on the geometry I' which consists of
the subspaces U of V' that are totally isotropic with respect to (-,-) and that satisfy
V = U+ ® U (Proposition 4.2 of [4]).

Let B = {ey, f1,... ,€n, fu} be a canonical basis of V" and let F' be the flag (e1, f1),
{e1, fi, €2, f2), - (€1, fi,- -+ s €n, fn). A decomposition V = &F |V is called compatible
with B if each V; is spanned by a subset of B of the form {e;, fj, ej+1, fit1,--- €, fi}
for some 1 < 57 <t < n. The compatible decompositions are indexed by subsets J of
the set I = {1,...,n}. We denote the decomposition corresponding to the set J by

Ay. For J = {i; < iy < --- < i)} this decomposition Ay is Vy = (ey, f1,..., €, fi),
Vi = <ei1+17fi1+17"' 7ei27fi2>7 sy Vk - <€ik+17fik+17"' 7en7fn>- Note that ‘/k - {O} if
’ik = n.

For a nondegenerate o-invariant subspace U of V', let Sp(U) denote the full subgroup
of G, that preserves the form pA(-, -)|u, xv, (cf. Lemma 3.6, Lemma 3.7, Proposition 3.8 of
[4]) and acts trivially on U~; let SU(U) denote the special unitary group that is embedded
naturally into Sp(U). Clearly, Sp(U) = Sp(2m, q) and SU(U) = SU(m, ¢*) where 2m is
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the dimension of U. For J C I let L, = Sp(Vi) [152) SU(Vi) where V = @%_,V; is the
decomposition A; (and with the understanding that Sp(V}) is the trivial group in case
Vi, = {0}). If F} is the subflag of F' of type J, then the parabolic of G, corresponding
to Fy is equal to L;D where D is the Borel subgroup corresponding to F'. The level of
a subgroup Ly is n — |J|, the corank of J in I. The level of L, coincides with the rank
of the parabolic L;D. In case n = 2, the groups L = SUs(¢?) and L1y = Spe(q) are
called a standard pair in G, = Sps(q). Following [2], we say that subgroups L; and
L, of SU3(¢?) form a standard pair whenever each L; is the stabilizer in SU;(g?) of
a nonsingular vector v; of the natural module of SU;(¢?) and, moreover, v; and v, are
perpendicular.

Let S be a subset of the power set of I = {1,...,n} that is closed under taking
supersets. The standard Phan amalgam of type C), and of shape S is the amalgam
fls = UyesLy. In the particular case where S = Si consists of all subsets J C I with
II\J| < k, we will call Ag the standard Phan amalgam of type C, and of level k
and rank n; it is denoted by A, = fl(n, k,q). The shape Sy will be called the straight
level k shape. If S O S then we say that S is of level k.

By an arbitrary Phan amalgam of type (), and of shape S we will understand
an amalgam A = U;c5K; where K is a group isomorphic to a quotient of L; over
a subgroup of the center of L;. Furthermore, if J C .J', then we require that K; be
contained in K;, namely that K; be the image of L under the natural homomorphism
from L; onto K.

The definition of a Phan amalgam leaves some ambiguity as to what is the exact
structure of each K ;. For example, in the straight level two case, when 7 — ¢ > 1, either
Kpyiy and Kp gy have trivial intersection or they have a common central involution.
Similarly, when j—i = 1, the group K\ (; ;; may be any quotient of L j; over a subgroup
of Z(Lpy)- Finally, the intersections of the members of the amalgam might be larger
than expected. We call a Phan amalgam unambiguous if every K is isomorphic to the
corresponding L; and if K; N Ky = Ky for all J and J'. By a covering of a Phan
amalgam A = UjcsK; of shape S we mean a second Phan amalgam A= Ujegffj of
the same shape S, together with an amalgam homomorphism 7 : A — A, such that 7
induces a surjective homomorphism of K; onto K for every J € S. We call two coverings
(./11, m) and (./12, 7o) of A equivalent if there is an isomorphism ¢ of A; onto A, such
that ™ = 7T2¢.

Definition 2.1 Let n > 2, let A be the Dynkin diagram C,,, and let I = {1,... ,n}.
A group G admits a weak Phan system of type C, if G’ contains subgroups U; =
SLy(q) = Spa(q) =2 SUs(¢?), i € I, and U; 5, i # j € I, so that the following hold:

(wP1) If (4, 7) is not an edge of A, then U, ; is a central product of U; and Uj;

(wP2) if (4,7) is an edge of A, then U; and U; are contained in U;; which is isomorphic
to a quotient of SUz(¢?) over a subgroup of its center if (4, j) is a single edge and
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isomorphic to a quotient of Sp,(¢q) over a subgroup of its center if (i, j) is a double
edge; moreover, U; and U; form a standard pair in U; ;; and

(wP3) the subgroups U, ;, i # j € I, generate G.

If a group G contains a weak Phan system Uy, ..., U,, then A = Uj4jc/U; ; is a Phan
amalgam of level two. This amalgam does not collapse, because G is a quotient of its
universal completion. The converse is proved in the following lemma:

Lemma 2.2

Suppose A is a Phan amalgam of type C,, and of shape S O Sy. Suppose further that G
is a nontrivial completion of A via some map w. Then 7T|KIW} 15 tnjective. In particular,
T(Kngy),--- > m(Kpny) form a weak Phan system in G.

Proof. By way of contradiction suppose 1 # u € K\ g3 and 7(u) = 1. Let j be equal
toi—1ori+ 1. By Lemma 2.3 of [2] and Lemma 4.6 of [4] (i.e., connectedness of the
respective geometries) we have <K1\{i}, KI\{]-}> equal to a quotient of SUs(¢?) or Sps(q)
over a subgroup of the center. As 1 # u € Kp , we have u ¢ Z(<K1\{i}, KI\{j}>), whence
T((Kngy, Knggy)) = 1 and, thus, 7(Kp ) = 1 = 7(Kp ). It follows that 7(G) =1, a
contradiction. O

The following results deal with characteristic completions of amalgams. Suppose A
is an amalgam. A completion G of A is called characteristic if and only if every auto-
morphism of A extends to an automorphism of G. In [2] the following has been proved.
(Roughly speaking, a Phan amalgam of type A,, is what one gets if one throws away all
members of a Phan amalgam of type C,,,; that are of the form Kp; with n+1 € J. For
a precise definition see [2].)

Proposition 2.3 (see [2])
Let n > 2. The group G = SU(n + 1,¢?) is a characteristic completion of the standard
Phan amalgam of type A, for any shape S O Ss.

Lemma 2.4 (see [2])

Let G =2 SUs(¢?), let Uy = SUs(q?), Uy =2 SUs(¢?) be a standard pair in G, and let T be
the joint stabilizer in Aut(G) of Uy and Uy. Then T is an extension of a group of order
(g+1)% by the field automorphisms. Moreover, the centralizer in T of Uy is of order ¢+ 1.

The next lemma is the Cs-analogue of Lemma 2.4.

Lemma 2.5

Let G =2 Spy(q) and let Uy = SUs(q?), Uy = Spo(q) be a standard pair in G. Then the
joint stabilizer T in Aut(GQ) of Uy and U, is an extension of a group of order (q + 1)* by
the field automorphisms.
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Proof. This follows immediately from the fact that the Borel subgroup of G with respect
to the geometry ' (cf. [4]) has order (¢ 4+ 1)%. The only additional automorphisms are
induced by the field automorphisms. O

Proposition 2.6
Let n > 2. The group G = Spe,(q) is a characteristic completion of the standard Phan

amalgam Ag of type C,, for any shape S O Ss.

Proof. We will only prove the proposition for S = S5, the general case being a straight-
forward induction on the size of S (cf. the proof of Proposition 6.1 of [2]). We want to
show that the group A of automorphisms of Aj is of order (¢ + 1)"f where ¢ = p/, p a
prime. Proceed by induction on n. The case n = 2 is implied by Lemma 2.5. Now, for
arbitrary n, consider the amalgam B of all members of A, that are contained in the lower
right (2n — 2) x (2n — 2)-block of G. The claim will follow if we prove that C4(B) has
order at most ¢ + 1. Let L = L1293 = SUs(¢?) be the member of A, containing Lpgy
and Lp q23. Since Cy(B) acts trivially on L\ (2) and stabilizes Ly 13 we can apply Lemma
2.4, so C'4(B) induces on L a group of order at most ¢+ 1. The other members of A, that
are not in B are direct products of Lp 1y and a member of B. But clearly every element
of C'a(B) that acts trivially on L (13 acts trivially on every such direct product. We have
shown that the group of automorphisms of A, is of order at most (¢+1)"f. This finishes
the proof because G induces (¢ + 1)"f automorphisms of A,. a

Corollary 2.7
Let J C I with |[I\J| > 3. Then the group L; is a characteristic completion of the
amalgam Uy~ ;L. O

Lemma 2.8

Let A; be an amalgam and let G; be a completion of A; via the map m;, i = 1,2. Suppose
there exist isomorphisms ¢ : A1 — Ay and ¢ : Gi — Gy such that ¢my = mp. If Gy is
a characteristic completion of Ay, then for any isomorphism ' : Ay — Ajy there exists a
unique isomorphism ¢ : Gy — Gy such that ¢'m = ma1)'.

Proof. Consider a = (1')~'4. This is an automorphism of A;. Since G is a characteristic
completion, o extends to an automorphism of G; that is, there is an automorphism /3
of Gy such that mya = fm. (Notice that § is the unique automorphism of G with that
property, because A; generates G1.) The map ¢ = ¢! has the required properties. O

3 Proof of Theorem 1

We begin the proof of Theorem 1 with the following proposition.



3 PROOF OF THEOREM 1 6

Proposition 3.1
Every non-collapsing Phan amalgam A has a unique (up to equivalence) unambiguous

(non-collapsing) covering A.

Proof.  The proof is by induction on |S| where S is the shape of A = U csK ;. The
claim holds in case S = (), which corresponds to the empty amalgam. Suppose that
S is a non-empty shape, and that the claim holds for every shape S’ C S. Let J be
a minimal (under inclusion) element of S and set S’ = S\{J} and A" = Uycg K.
Then S’ is a shape, and A’ is a Phan sub-amalgam in A of shape S’. By the inductive
assumption there is a (unique) unambiguous covering Phan amalgam (A’ = Uyicg K, ')
of A’. We will construct an unambiguous covering (A, 7) of A by gluing a copy of L;
to A’ and by extending 7’ to the new member of the amalgam. To glue L; to the
amalgam A’ we need to construct an isomorphism from the sub-amalgam B = Ui~ ;K e
of A’ onto the corresponding amalgam C = Uy~ L, of proper subgroups of L. By the
definition of a Phan amalgam there is a homomorphism 1 from L; onto K; mapping
C onto D = Uy~; K. Note that D is a Phan amalgam of shape {J' | J' O J}. Note
further that (B, 7'|z) and (C, ) are two unambiguous coverings of D. By induction, the
uniqueness of the unambiguous covering holds so that there is an amalgam isomorphism
¢ from B onto C such that ¢)¢ = 7'|5. The map ¢ tells us how to glue L, to A’ to produce
A, and furthermore, as 7 we can take the union of ¢ and 7. The condition ¢ = 7’|z
guarantees that ¢ and 7’ agree on the intersection B = C (identified via ¢). Finally,
notice that A is an unambiguous Phan amalgam of type S, so (fl, 7) is an unambiguous
covering of A.

This completes the proof of the existence of an unambiguous covering A. Now we will
prove the uniqueness. Suppose we have two such coverings B= Uyes By and C = Uses Cy
with corresponding amalgam homomorphism 7; and 75 onto A. Select J as in the previous
paragraph, and define S' = S\ {J}. Let A, B’ and C' be the sub-amalgams of shape S’
in A, B and C, respectively. By induction, there exists an isomorphism ¢ from B’ onto C’
such that 7r1|3, = mo|z¢. It suffices to extend ¢ to B.

We have two cases: First, let us assume that the decomposition A ; has more than one
summand of dimension greater than two. In this case, B; = C; = L is isomorphic to a
direct product of Ly and Lj» for suitable supersets J' and J" of J. Clearly ¢ is already
known on By and Bj», and so ¢ extends uniquely to Bj;. Since every member By with
K D J is a direct product of its intersections with B, and Bj», this extension, which
we will also denote by ¢, will be a well-defined amalgam isomorphism from B to C, and
furthermore, m = 7 ¢.

In the second case, A; has a unique summand of dimension m greater than two. In
this case B; = C; = L; is isomorphic to SU(m, ¢*) or Sp(2m,q). Choose an arbitrary
isomorphism ¢ : By — (/;, and consider the following map « from K; to K;: For
u € Ky, a(u) is defined to be mytm, (u). Notice that « is a well-defined automorphism
of K;, because the fibers of m; are cosets of the kernel of 7, and ¢ takes them to
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cosets of the kernel of my (since ¢ takes the kernel of m; to the kernel of my—those being
subgroups of equal order in the cyclic centers of B, and C, respectively). Notice that
every automorphism of K; lifts to a unique automorphism of L; which is isomorphic to
SU(m,¢*) or Sp(2m,q). Thus, there is an automorphism S of C; such that m|c,8 =
ams|c,. Define 6 : By — Cj as B7'. First of all we have m|p, = ma|c,0. Indeed,
molc,0 = molc, 87 = a tmlo, ¥ = m|s, ¥ty Kk, mele, b = milp,. Second, for every
J'" O J we have that 6~ '¢[p,, is a lifting to By of the identity automorphism of K,
and hence it is the identity. For, 87'¢ = ¢ '8¢ = ¢ 'ny tamd = ¢ 'ry Mmppny M =
7, 'mep = id (to enhance legibility we omitted the restrictions). This shows that ¢ and 6
agree on every subgroup B, which allows us to extend ¢ to the entire B by defining it
on By as 6. O

In view of the preceding proposition let A = Uy jyerKn i) be a non-collapsing,
unambiguous Phan amalgam of shape S;. We will prove the uniqueness of A (up to
isomorphism) in a series of lemmas. Clearly, when n = 2 the amalgam is unique by
definition.

The case n =3

Since A is unambiguous, each subgroup Kp ;3 coincides with Kn g; jyNEKp i ey for {7, 5, k} =
{1,2,3}. Define Dy = Nk, ,, (K{1,33) (both groups Ky 33, K23 considered as subgroups
of Ky33) and Dy = NK{Lz}(K{L?’})' Since Ky 3y and K{y3 form a standard pair in
Kysy, it follows that D has order ¢ + 1, and it is a maximal torus in Ky 3y = SUs(¢?).
Similarly, D3 is a maximal torus of order ¢ + 1 in K9y = Spy(q). We also define
Dj = Ny, 5, (Kq23)) and D3 = Ng . (K1 9y). Again, these are two maximal tori of size
g+ 1in K3 = SUs(¢?). The following lemma gives us an extra condition on A that
holds because A does not collapse.

Lemma 3.2
We have D} = Ds.

Proof. Let G be a non-trivial completion of A and let m be the corresponding map from
A to G. Since A is non-collapsing, we may assume that 7 is injective on every K 3, by
Lemma 2.2. Observe that D = C,, ,,(D;) for i = 1,3. Thus, 7(D}) = Cr(x,, 4 (7(D;)).
Since Dy and D5 commute elementwise in Ky, we have that 7(D;) and 7(Ds) commute
elementwise as well. Since K{;3) is invariant under Dy = Nk, , (K{1,33) (in Kppy) and
since 7 is injective on Ky 3y (by Lemma 2.2), it follows that Dy = Ci,, ,, (D1 ) is invariant
under D3 (again as subgroups of K(1y). Hence m(Dy) = Cr(k,,,,)(7(D1)) is invariant
under 7(Ds). Similarly, 7(D3) = Cr(k,, ) (7(Ds)) is invariant under m(D;). Notice that
D3 and D; are both cyclic of order ¢ 4+ 1. Since the order of Aut(C,.;) equals Euler’s
©(q+1) which is smaller than ¢+ 1, the group D; contains a non-trivial element d acting
trivially on D3. Analysis of K3 = SU;(¢®) shows that the only elements commuting
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with d in K{j 3 are those contained in Dj. Hence D = Dj as both groups are of order
q—+1. O

In view of the lemma we write D, for D) = D3.

We want to prove the uniqueness of the amalgam A. Assume there exists another
amalgam A" = Kj,, U Kj,, U Kj;,. According to Goldschmidt’s lemma 2.7 of [3] the
amalgams B = K3 U K3y and B’ = Ki 3 U K{g} are isomorphic via some amalgam
isomorphism ¢. Clearly, ¢ (K{133) = ¢(Kpy N Ksy) = Kiyy N Kigy = K 5. Also, by [2],
we can assume that 1) (K{;33) = K{y3,. Let W be the natural module of Kz = SUs(¢?)
considered as an IF,-vector space. Denote the basis of W by {ey, f1, €2, f2, €3, f3}. Note that
K{1y acts on the subspace of W spanned by {es, f2, €3, f3} (although it does not preserve
the unitary form on that space). As NK{13}(K{1 29y) = Dy = Niga (K{2,3y) we have

K, 4 (V(Kq2)) = ¥(Dy) = NK{13} (K{2 3}) Moreover, ¥(Ky2y) C (Kpy) = K{1}
Via the isomorphism 1, the groups K{3} and K{1} act on W. In particular, the latter
also acts on (eq, fo, €3, f3). Furthermore note that Dy and ¢(Dy) act on (e, fa, €3, f3).
The only two-dimensional subspaces of (es, f2, 3, f3) that are stabilized by K, 9, and by
Dy = N, 4, (K{1,2)) are (e, f2) and (e3, f3). Therefore the same holds true for ¢)(Ds) and
Y(K{1,2;). But the only two-dimensional subspace of W that is centralized by Ky 3y is the
space (es, f3). This coincides with the unique two-dimensional subspace of (e, fa, €3, f3)
that is normalized (and not centralized) by Ky . Therefore also (K¢ 2)) normalizes
(es, f3) and centralizes (ey, f2). We have proved the following:

Proposition 3.3
If n = 3, then the unambiguous, non-collapsing Phan amalgam A of shape Sy is unique
up to isomorphism. O

The case n > 3

We will proceed by induction, using the case n = 3 as basis. Let n > 3 and let A be an
unambiguous, non-collapsing Phan amalgam of type C,, and of shape Ss.

Lemma 3.4

There exists a unique amalgam B = AU H, U Hy where H, = SU, (¢?) is generated by the
subgroups Kpgijy, 1 <1< j<n—1, and Hy = Spy,_5(q) is generated by the subgroups
KI\{ZJ}’ 2<i<j3<n.

Proof. Let B, = U1§i<j§n71KI\{i,j}, By = U2§i<j§nKI\{i,j}, and C = B; N B,. By
the inductive assumption, B; is isomorphic to the amalgam found in SU,(¢?) and Bs is
isomorphic to the amalgam found in Spy,_»(q). Furthermore, by Propositions 2.3 and 2.6
the groups SU,(¢*) and Spy,_o(q) are characteristic completions of By, resp. B, whence
there exist injective amalgam homomorphisms 7, : By — H; and 7y : By, — Hs. We
want to glue H; and H; to A via the maps m; and m,. Notice that m; and m, send
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C into subgroups K; < Hi, resp. Ko < H, that are isomorphic to SU,_;(¢?). Since
the copies of C in K; and K, are standard Phan amalgams of type A, _o, there is an
isomorphism ¢ : K1 — K, that takes 7m1(C) to m(C). Let ¢ be the restriction of ¢ to C.
Consider A; = m1(C) and Ay = m5(C) together with their embeddings into K, resp. K.
Applying Lemma 2.8 with ¢ and 1 as above and ¢/’ = my|¢(m1|c) ™", there exists a unique
isomorphism ¢’ : K1 — K, such that ¢'|4, = ¢'. Thus, ¢'|4,m1|c = m2|c. Identifying K
with K5 via ¢’ we obtain our unique amalgam B. O

Let us now turn to the uniqueness of the amalgam A. Suppose we have two non-
collapsing, unambiguous Phan amalgams A and A’ of type C,, and of shape S;. Extend
A and A’ to amalgams B = AUH,; UH, and B' = A'UH{UH/ as in Lemma 3.4. Observe
that by Goldschmidt’s lemma 2.7 of [3] there exists an isomorphism ¢ from H; U H, onto
H{ U Hj. By the inductive assumption, the Kpny j3, 2 <1< j < n—1, form a standard
Phan amalgam of type A,_, in H; N Hy; similarly the K}\{i’j}, 2<i<j<n-—1,form
a standard Phan amalgam of type A, 5 in H{ N H). This implies that U2§i<j§n,1K}\{i’j}
and Us<icj<n—10(Kp(ij)) are standard Phan amalgams of type A,_, in H{ N Hj. The
two amalgams correspond to two choices of an orthonormal basis in the natural unitary
space for H{ N Hj. Correcting ¢, if necessary, by an inner automorphism of H{ N HJ,
we may assume that ¢(K g j)) = K}\{i,j} for 2 < i < j < n—1. Studying centralizers
in Hy and H, we see that ¢(Kp ) = Kj\(y and ¢(Knmy) = K\, Therefore ¢
extends to an isomorphism from A to A'. Indeed, ¢ is already defined on all Kpny j
with 2 <7 < j < n —1. Also, inside H] we see that ¢(Kp13), 1 < n, is K\ (1> since
KI\{l,z'} = <KI\{1};KI\{z'}>- Similarly, in Hé we see that ¢(KI\{i,n}); 1 <4, is K}\{i,n}‘
It remains to notice that Kp 1,y is the direct product of Ky iy and Kp ) so that ¢
extends to an isomorphism of A to A’. Thus we have shown:

Proposition 3.5
If n > 3, then the amalgam A is unique up to isomorphism. O

We leave the proof of uniqueness for arbitrary shape to the reader. Theorem 1 follows.
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