Weak Phan systems of type C_n

Ralf Gramlich

January 8, 2003

Abstract

The present article provides a classification of non-collapsing Phan amalgams of type C_n and of shape $S \supseteq S_2$ over finite fields of odd square order. Together with the results of [4] this completes the proof of a Phan-type theorem for the group $Sp_{2n}(q)$ for sufficiently large n and q.

1 Introduction

The modern approach to Phan-type theorems, as outlined in [1], falls into two parts. On one hand one has to prove the simple connectedness of some suitable geometry, on the other hand one has to classify related amalgams. The so-called flipflop geometry Γ of type C_n over finite fields of square order has been introduced and studied in [4]. The Main Theorem of that paper states that this flipflop geometry is 2-simply connected for $n \geq 3$ and $q \geq 8$. By Tits' lemma (Corollaire 1 of [7]) this implies that the amalgam consisting of the rank-1- and rank-2-parabolics of some flag-transitive group G of automorphisms of Γ admits G as its universal completion. We refer to [4] for details; see also Section 2 for a definition of Γ and a short summary of the setting.

The purpose of the present paper is to classify the non-collapsing Phan amalgams of type C_n and of shape $S \supseteq S_2$, which is achieved in the following theorem. For definitions we again refer to Section 2.

Theorem 1

Let $n \geq 3$, let q be odd, and let \mathcal{A} be a non-collapsing Phan amalgam of type C_n and of shape $S \supseteq S_2$ over \mathbb{F}_{q^2} . Then the unique unambiguous covering $\tilde{\mathcal{A}}$ of \mathcal{A} is isomorphic to the standard Phan amalgam $\hat{\mathcal{A}}_S$.

The above theorem constitutes the final step of the proof of the Phan-type Theorem 2. The latter is an immediate consequence of Theorem 1 and the results of [4], especially Part (1) of Theorem 2.

Theorem 2

Let $n \geq 3$, let $q \geq 8$, and let G be a group that admits a weak Phan system of type C_n over \mathbb{F}_{q^2} . Then G is a homomorphic image of $Sp_{2n}(q)$ (the universal Chevalley group of type $C_n(q)$).

The bound on q in Theorem 2 comes from the results of [4]. The particular proof of 2-simple connectedness fails for $q \leq 7$. Currently it is only known that Γ is not 2-simply connected for q = 2; nothing is known for $3 \leq q \leq 7$.

This article is organized as follows. In Section 2 we provide all necessary definitions and a number of results on Phan systems and Phan amalgams. In Section 3 we give the proof of Theorem 1.

Remark: Analogues of Theorem 1 should hold for any non-collapsing Phan amalgam of type Δ (and level two), where Δ is an arbitrary Dynkin diagram admitting single and double edges.

Acknowledgement: The author wants to express his gratitude to Curt Bennett and Sergey Shpectorov for a preprint version of [2].

2 Phan systems and Phan amalgams

Let $G = Sp_{2n}(q^2)$ and let V be the natural symplectic space for G. Following Section 3 of [4], denote by (\cdot, \cdot) the corresponding alternating form. Let the bar denote the involutory field automorphism of \mathbb{F}_{q^2} and let σ be a flip, i.e., $(\lambda v)^{\sigma} = \overline{\lambda} v^{\sigma}$, $(u^{\sigma}, v^{\sigma}) = (u, v)$, and $\sigma^2 = -id$. Then, by Proposition 3.1 of [4], we can find a canonical basis $\mathcal{B} = \{e_1, \ldots, e_n, f_1, \ldots, f_n\}$ satisfying $(e_i, e_j) = (f_i, f_j) = 0$, $(e_i, f_j) = \delta_{ij}$ and $e_i^{\sigma} = f_i$, $f_i^{\sigma} = -e_i$ for $1 \leq i, j \leq n$. The centralizer G_{σ} of σ in G is isomorphic to $Sp_{2n}(q)$ (Proposition 3.8 of [4]) and acts flag-transitively on the geometry Γ which consists of the subspaces U of V that are totally isotropic with respect to (\cdot, \cdot) and that satisfy $V = U^{\perp} \oplus U^{\sigma}$ (Proposition 4.2 of [4]).

Let $\mathcal{B} = \{e_1, f_1, \ldots, e_n, f_n\}$ be a canonical basis of V and let F be the flag $\langle e_1, f_1 \rangle$, $\langle e_1, f_1, e_2, f_2 \rangle, \ldots, \langle e_1, f_1, \ldots, e_n, f_n \rangle$. A decomposition $V = \bigoplus_{i=0}^k V_i$ is called **compatible** with \mathcal{B} if each V_i is spanned by a subset of \mathcal{B} of the form $\{e_j, f_j, e_{j+1}, f_{j+1}, \ldots, e_t, f_t\}$ for some $1 \leq j \leq t \leq n$. The compatible decompositions are indexed by subsets J of the set $I = \{1, \ldots, n\}$. We denote the decomposition corresponding to the set J by Δ_J . For $J = \{i_1 < i_2 < \cdots < i_k\}$ this decomposition Δ_J is $V_0 = \langle e_1, f_1, \ldots, e_{i_1}, f_{i_1} \rangle$, $V_1 = \langle e_{i_1+1}, f_{i_1+1}, \ldots, e_{i_2}, f_{i_2} \rangle, \ldots, V_k = \langle e_{i_k+1}, f_{i_k+1}, \ldots, e_n, f_n \rangle$. Note that $V_k = \{0\}$ if $i_k = n$.

For a nondegenerate σ -invariant subspace U of V, let Sp(U) denote the full subgroup of G_{σ} that preserves the form $\mu\lambda(\cdot, \cdot)|_{U_{\lambda}\times U_{\lambda}}$ (cf. Lemma 3.6, Lemma 3.7, Proposition 3.8 of [4]) and acts trivially on U^{\perp} ; let SU(U) denote the special unitary group that is embedded naturally into Sp(U). Clearly, $Sp(U) \cong Sp(2m, q)$ and $SU(U) \cong SU(m, q^2)$ where 2m is the dimension of U. For $J \,\subset I$ let $L_J = Sp(V_k) \prod_{i=0}^{k-1} SU(V_i)$ where $V = \bigoplus_{i=0}^k V_i$ is the decomposition Δ_J (and with the understanding that $Sp(V_k)$ is the trivial group in case $V_k = \{0\}$). If F_0 is the subflag of F of type J, then the parabolic of G_{σ} corresponding to F_0 is equal to $L_J D$ where D is the Borel subgroup corresponding to F. The **level** of a subgroup L_J is n - |J|, the corank of J in I. The level of L_J coincides with the rank of the parabolic $L_J D$. In case n = 2, the groups $L_{\{2\}} \cong SU_2(q^2)$ and $L_{\{1\}} \cong Sp_2(q)$ are called a **standard pair** in $G_{\sigma} \cong Sp_4(q)$. Following [2], we say that subgroups L_1 and L_2 of $SU_3(q^2)$ form a **standard pair** whenever each L_i is the stabilizer in $SU_3(q^2)$ of a nonsingular vector v_i of the natural module of $SU_3(q^2)$ and, moreover, v_1 and v_2 are perpendicular.

Let S be a subset of the power set of $I = \{1, ..., n\}$ that is closed under taking supersets. The **standard Phan amalgam of type** C_n and of shape S is the amalgam $\hat{\mathcal{A}}_S = \bigcup_{J \in S} L_J$. In the particular case where $S = S_k$ consists of all subsets $J \subseteq I$ with $|I \setminus J| \leq k$, we will call $\hat{\mathcal{A}}_S$ the **standard Phan amalgam of type** C_n and of level k and rank n; it is denoted by $\hat{\mathcal{A}}_k = \hat{\mathcal{A}}(n, k, q)$. The shape S_k will be called the **straight** level k shape. If $S \supseteq S_k$ then we say that S is of level k.

By an arbitrary **Phan amalgam of type** C_n **and of shape** S we will understand an amalgam $\mathcal{A} = \bigcup_{J \in S} K_J$ where K_J is a group isomorphic to a quotient of L_J over a subgroup of the center of L_J . Furthermore, if $J \subset J'$, then we require that $K_{J'}$ be contained in K_J , namely that $K_{J'}$ be the image of $L_{J'}$ under the natural homomorphism from L_J onto K_J .

The definition of a Phan amalgam leaves some ambiguity as to what is the exact structure of each K_J . For example, in the straight level two case, when j - i > 1, either $K_{I\setminus\{i\}}$ and $K_{I\setminus\{j\}}$ have trivial intersection or they have a common central involution. Similarly, when j-i = 1, the group $K_{I\setminus\{i,j\}}$ may be any quotient of $L_{I\setminus\{i,j\}}$ over a subgroup of $Z(L_{I\setminus\{i,j\}})$. Finally, the intersections of the members of the amalgam might be larger than expected. We call a Phan amalgam **unambiguous** if every K_J is isomorphic to the corresponding L_J and if $K_J \cap K_{J'} = K_{J\cup J'}$ for all J and J'. By a **covering** of a Phan amalgam $\mathcal{A} = \bigcup_{J\in S} K_J$ of shape S we mean a second Phan amalgam $\tilde{\mathcal{A}} = \bigcup_{J\in S} \tilde{K}_J$ of the same shape S, together with an amalgam homomorphism $\pi : \tilde{\mathcal{A}} \to \mathcal{A}$, such that π induces a surjective homomorphism of \tilde{K}_J onto K_J for every $J \in S$. We call two coverings $(\tilde{\mathcal{A}}_1, \pi_1)$ and $(\tilde{\mathcal{A}}_2, \pi_2)$ of \mathcal{A} equivalent if there is an isomorphism ϕ of \mathcal{A}_1 onto \mathcal{A}_2 such that $\pi_1 = \pi_2 \phi$.

Definition 2.1 Let $n \geq 2$, let Δ be the Dynkin diagram C_n , and let $I = \{1, \ldots, n\}$. A group G admits a **weak Phan system of type** C_n if G contains subgroups $U_i \cong$ $SL_2(q) \cong Sp_2(q) \cong SU_2(q^2), i \in I$, and $U_{i,j}, i \neq j \in I$, so that the following hold:

- (wP1) If (i, j) is not an edge of Δ , then $U_{i,j}$ is a central product of U_i and U_j ;
- (wP2) if (i, j) is an edge of Δ , then U_i and U_j are contained in $U_{i,j}$ which is isomorphic to a quotient of $SU_3(q^2)$ over a subgroup of its center if (i, j) is a single edge and

isomorphic to a quotient of $Sp_4(q)$ over a subgroup of its center if (i, j) is a double edge; moreover, U_i and U_j form a standard pair in $U_{i,j}$; and

(wP3) the subgroups $U_{i,j}$, $i \neq j \in I$, generate G.

If a group G contains a weak Phan system U_1, \ldots, U_n , then $\mathcal{A} = \bigcup_{i \neq j \in I} U_{i,j}$ is a Phan amalgam of level two. This amalgam does not collapse, because G is a quotient of its universal completion. The converse is proved in the following lemma:

Lemma 2.2

Suppose \mathcal{A} is a Phan amalgam of type C_n and of shape $S \supseteq S_2$. Suppose further that G is a nontrivial completion of \mathcal{A} via some map π . Then $\pi|_{K_{I\setminus\{i\}}}$ is injective. In particular, $\pi(K_{I\setminus\{1\}}), \ldots, \pi(K_{I\setminus\{n\}})$ form a weak Phan system in G.

Proof. By way of contradiction suppose $1 \neq u \in K_{I \setminus \{i\}}$ and $\pi(u) = 1$. Let j be equal to i - 1 or i + 1. By Lemma 2.3 of [2] and Lemma 4.6 of [4] (i.e., connectedness of the respective geometries) we have $\langle K_{I \setminus \{i\}}, K_{I \setminus \{j\}} \rangle$ equal to a quotient of $SU_3(q^2)$ or $Sp_4(q)$ over a subgroup of the center. As $1 \neq u \in K_{I \setminus \{i\}}$, we have $u \notin Z(\langle K_{I \setminus \{i\}}, K_{I \setminus \{j\}} \rangle)$, whence $\pi(\langle K_{I \setminus \{i\}}, K_{I \setminus \{j\}} \rangle) = 1$ and, thus, $\pi(K_{I \setminus \{i\}}) = 1 = \pi(K_{I \setminus \{j\}})$. It follows that $\pi(G) = 1$, a contradiction.

The following results deal with characteristic completions of amalgams. Suppose \mathcal{A} is an amalgam. A completion G of \mathcal{A} is called **characteristic** if and only if every automorphism of \mathcal{A} extends to an automorphism of G. In [2] the following has been proved. (Roughly speaking, a Phan amalgam of type A_n is what one gets if one throws away all members of a Phan amalgam of type C_{n+1} that are of the form $K_{I\setminus J}$ with $n+1 \in J$. For a precise definition see [2].)

Proposition 2.3 (see [2])

Let $n \geq 2$. The group $G \cong SU(n+1,q^2)$ is a characteristic completion of the standard Phan amalgam of type A_n for any shape $S \supseteq S_2$.

Lemma 2.4 (see [2])

Let $G \cong SU_3(q^2)$, let $U_1 \cong SU_2(q^2)$, $U_2 \cong SU_2(q^2)$ be a standard pair in G, and let T be the joint stabilizer in Aut(G) of U_1 and U_2 . Then T is an extension of a group of order $(q+1)^2$ by the field automorphisms. Moreover, the centralizer in T of U_1 is of order q+1.

The next lemma is the C_2 -analogue of Lemma 2.4.

Lemma 2.5

Let $G \cong Sp_4(q)$ and let $U_1 \cong SU_2(q^2)$, $U_2 \cong Sp_2(q)$ be a standard pair in G. Then the joint stabilizer T in Aut(G) of U_1 and U_2 is an extension of a group of order $(q+1)^2$ by the field automorphisms.

5

Proof. This follows immediately from the fact that the Borel subgroup of G with respect to the geometry Γ (cf. [4]) has order $(q + 1)^2$. The only additional automorphisms are induced by the field automorphisms.

Proposition 2.6

Let $n \geq 2$. The group $G \cong Sp_{2n}(q)$ is a characteristic completion of the standard Phan amalgam $\hat{\mathcal{A}}_S$ of type C_n for any shape $S \supseteq S_2$.

Proof. We will only prove the proposition for $S = S_2$, the general case being a straightforward induction on the size of S (cf. the proof of Proposition 6.1 of [2]). We want to show that the group A of automorphisms of $\hat{\mathcal{A}}_2$ is of order $(q+1)^n f$ where $q = p^f$, p a prime. Proceed by induction on n. The case n = 2 is implied by Lemma 2.5. Now, for arbitrary n, consider the amalgam \mathcal{B} of all members of $\hat{\mathcal{A}}_2$ that are contained in the lower right $(2n-2) \times (2n-2)$ -block of G. The claim will follow if we prove that $C_A(\mathcal{B})$ has order at most q + 1. Let $L = L_{I \setminus \{1,2\}} \cong SU_3(q^2)$ be the member of $\hat{\mathcal{A}}_2$ containing $L_{I \setminus \{1\}}$ and $L_{I \setminus \{2\}}$. Since $C_A(\mathcal{B})$ acts trivially on $L_{I \setminus \{2\}}$ and stabilizes $L_{I \setminus \{1\}}$ we can apply Lemma 2.4, so $C_A(\mathcal{B})$ induces on L a group of order at most q + 1. The other members of $\hat{\mathcal{A}}_2$ that are not in \mathcal{B} are direct products of $L_{I \setminus \{1\}}$ and a member of \mathcal{B} . But clearly every element of $C_A(\mathcal{B})$ that acts trivially on $L_{I \setminus \{1\}}$ acts trivially on every such direct product. We have shown that the group of automorphisms of $\hat{\mathcal{A}}_2$ is of order at most $(q+1)^n f$. This finishes the proof because G induces $(q+1)^n f$ automorphisms of $\hat{\mathcal{A}}_2$.

Corollary 2.7

Let $J \subset I$ with $|I \setminus J| \geq 3$. Then the group L_J is a characteristic completion of the amalgam $\bigcup_{J' \supset J} L_{J'}$.

Lemma 2.8

Let \mathcal{A}_i be an amalgam and let G_i be a completion of \mathcal{A}_i via the map π_i , i = 1, 2. Suppose there exist isomorphisms $\psi : \mathcal{A}_1 \to \mathcal{A}_2$ and $\phi : G_1 \to G_2$ such that $\phi \pi_1 = \pi_2 \psi$. If G_1 is a characteristic completion of \mathcal{A}_1 , then for any isomorphism $\psi' : \mathcal{A}_1 \to \mathcal{A}_2$ there exists a unique isomorphism $\phi' : G_1 \to G_2$ such that $\phi' \pi_1 = \pi_2 \psi'$.

Proof. Consider $\alpha = (\psi')^{-1}\psi$. This is an automorphism of \mathcal{A}_1 . Since G_1 is a characteristic completion, α extends to an automorphism of G_1 ; that is, there is an automorphism β of G_1 such that $\pi_1 \alpha = \beta \pi_1$. (Notice that β is the unique automorphism of G_1 with that property, because \mathcal{A}_1 generates G_1 .) The map $\phi' = \phi \beta^{-1}$ has the required properties. \Box

3 Proof of Theorem 1

We begin the proof of Theorem 1 with the following proposition.

Proposition 3.1

Every non-collapsing Phan amalgam \mathcal{A} has a unique (up to equivalence) unambiguous (non-collapsing) covering $\tilde{\mathcal{A}}$.

The proof is by induction on |S| where S is the shape of $\mathcal{A} = \bigcup_{J \in S} K_J$. The Proof. claim holds in case $S = \emptyset$, which corresponds to the empty amalgam. Suppose that S is a non-empty shape, and that the claim holds for every shape $S' \subset S$. Let J be a minimal (under inclusion) element of S and set $S' = S \setminus \{J\}$ and $\mathcal{A}' = \bigcup_{J' \in S'} K_{J'}$. Then S' is a shape, and \mathcal{A}' is a Phan sub-amalgam in \mathcal{A} of shape S'. By the inductive assumption there is a (unique) unambiguous covering Phan amalgam $(\tilde{\mathcal{A}}' = \bigcup_{J' \in S'} K'_{J'}, \pi')$ of \mathcal{A}' . We will construct an unambiguous covering (\mathcal{A}, π) of \mathcal{A} by gluing a copy of L_J to $\tilde{\mathcal{A}}'$ and by extending π' to the new member of the amalgam. To glue L_J to the amalgam $\tilde{\mathcal{A}}'$ we need to construct an isomorphism from the sub-amalgam $\mathcal{B} = \bigcup_{J' \supset J} K'_{J'}$ of $\tilde{\mathcal{A}}'$ onto the corresponding amalgam $\mathcal{C} = \bigcup_{J' \supset J} L_{J'}$ of proper subgroups of L_J . By the definition of a Phan amalgam there is a homomorphism ψ from L_{J} onto K_{J} mapping \mathcal{C} onto $\mathcal{D} = \bigcup_{J' \supset J} K_{J'}$. Note that \mathcal{D} is a Phan amalgam of shape $\{J' \mid J' \supset J\}$. Note further that $(\mathcal{B}, \pi'|_{\mathcal{B}})$ and (\mathcal{C}, ψ) are two unambiguous coverings of \mathcal{D} . By induction, the uniqueness of the unambiguous covering holds so that there is an amalgam isomorphism ϕ from \mathcal{B} onto \mathcal{C} such that $\psi \phi = \pi'|_{\mathcal{B}}$. The map ϕ tells us how to glue L_J to \mathcal{A}' to produce $\tilde{\mathcal{A}}$, and furthermore, as π we can take the union of ψ and π' . The condition $\psi \phi = \pi'|_{\mathcal{B}}$ guarantees that ψ and π' agree on the intersection $\mathcal{B} = \mathcal{C}$ (identified via ϕ). Finally, notice that $\hat{\mathcal{A}}$ is an unambiguous Phan amalgam of type S, so $(\hat{\mathcal{A}}, \pi)$ is an unambiguous covering of \mathcal{A} .

This completes the proof of the existence of an unambiguous covering \mathcal{A} . Now we will prove the uniqueness. Suppose we have two such coverings $\tilde{\mathcal{B}} = \bigcup_{J \in S} B_J$ and $\tilde{\mathcal{C}} = \bigcup_{J \in S} C_J$ with corresponding amalgam homomorphism π_1 and π_2 onto \mathcal{A} . Select J as in the previous paragraph, and define $S' = S \setminus \{J\}$. Let $\mathcal{A}', \tilde{\mathcal{B}}'$ and $\tilde{\mathcal{C}}'$ be the sub-amalgams of shape S'in $\mathcal{A}, \tilde{\mathcal{B}}$ and $\tilde{\mathcal{C}}$, respectively. By induction, there exists an isomorphism ϕ from $\tilde{\mathcal{B}}'$ onto $\tilde{\mathcal{C}}'$ such that $\pi_1|_{\tilde{\mathcal{B}}'} = \pi_2|_{\tilde{\mathcal{C}}'}\phi$. It suffices to extend ϕ to B_J .

We have two cases: First, let us assume that the decomposition Δ_J has more than one summand of dimension greater than two. In this case, $B_J \cong C_J \cong L_J$ is isomorphic to a direct product of $L_{J'}$ and $L_{J''}$ for suitable supersets J' and J'' of J. Clearly ϕ is already known on $B_{J'}$ and $B_{J''}$, and so ϕ extends uniquely to B_J . Since every member B_K with $K \supset J$ is a direct product of its intersections with $B_{J'}$ and $B_{J''}$, this extension, which we will also denote by ϕ , will be a well-defined amalgam isomorphism from \mathcal{B} to \mathcal{C} , and furthermore, $\pi_2 = \pi_1 \phi$.

In the second case, Δ_J has a unique summand of dimension m greater than two. In this case $B_J \cong C_J \cong L_J$ is isomorphic to $SU(m,q^2)$ or Sp(2m,q). Choose an arbitrary isomorphism $\psi : B_J \longrightarrow C_J$, and consider the following map α from K_J to K_J : For $u \in K_J$, $\alpha(u)$ is defined to be $\pi_2 \psi \pi_1^{-1}(u)$. Notice that α is a well-defined automorphism of K_J , because the fibers of π_1 are cosets of the kernel of π_1 , and ψ takes them to cosets of the kernel of π_2 (since ψ takes the kernel of π_1 to the kernel of π_2 —those being subgroups of equal order in the cyclic centers of B_J and C_J , respectively). Notice that every automorphism of K_J lifts to a unique automorphism of L_J which is isomorphic to $SU(m, q^2)$ or Sp(2m, q). Thus, there is an automorphism β of C_J such that $\pi_2|_{C_J}\beta =$ $\alpha\pi_2|_{C_J}$. Define $\theta : B_J \to C_J$ as $\beta^{-1}\psi$. First of all we have $\pi_1|_{B_J} = \pi_2|_{C_J}\theta$. Indeed, $\pi_2|_{C_J}\theta = \pi_2|_{C_J}\beta^{-1}\psi = \alpha^{-1}\pi_2|_{C_J}\psi = \pi_1|_{B_J}\psi^{-1}\pi_2^{-1}|_{K_J}\pi_2|_{C_J}\psi = \pi_1|_{B_J}$. Second, for every $J' \supset J$ we have that $\theta^{-1}\phi|_{B_{J'}}$ is a lifting to $B_{J'}$ of the identity automorphism of $K_{J'}$, and hence it is the identity. For, $\theta^{-1}\phi = \psi^{-1}\beta\phi = \psi^{-1}\pi_2^{-1}\alpha\pi_2\phi = \psi^{-1}\pi_2^{-1}\pi_2\psi\pi_1^{-1}\pi_2\phi =$ $\pi_1^{-1}\pi_2\phi = id$ (to enhance legibility we omitted the restrictions). This shows that ϕ and θ agree on every subgroup $B_{J'}$, which allows us to extend ϕ to the entire $\tilde{\mathcal{B}}$ by defining it on B_J as θ .

In view of the preceding proposition let $\mathcal{A} = \bigcup_{\{i,j\}\in I} K_{I\setminus\{i,j\}}$ be a non-collapsing, unambiguous Phan amalgam of shape S_2 . We will prove the uniqueness of \mathcal{A} (up to isomorphism) in a series of lemmas. Clearly, when n = 2 the amalgam is unique by definition.

The case n = 3

Since \mathcal{A} is unambiguous, each subgroup $K_{I\setminus\{i\}}$ coincides with $K_{I\setminus\{i,j\}}\cap K_{I\setminus\{i,k\}}$ for $\{i, j, k\} = \{1, 2, 3\}$. Define $D_1 = N_{K_{\{2,3\}}}(K_{\{1,3\}})$ (both groups $K_{\{1,3\}}$, $K_{\{2,3\}}$ considered as subgroups of $K_{\{3\}}$) and $D_3 = N_{K_{\{1,2\}}}(K_{\{1,3\}})$. Since $K_{\{1,3\}}$ and $K_{\{2,3\}}$ form a standard pair in $K_{\{3\}}$, it follows that D_1 has order q + 1, and it is a maximal torus in $K_{\{2,3\}} \cong SU_2(q^2)$. Similarly, D_3 is a maximal torus of order q + 1 in $K_{\{1,2\}} \cong Sp_2(q)$. We also define $D_2^1 = N_{K_{\{1,3\}}}(K_{\{2,3\}})$ and $D_2^3 = N_{K_{\{1,3\}}}(K_{\{1,2\}})$. Again, these are two maximal tori of size q + 1 in $K_{\{1,3\}} \cong SU_2(q^2)$. The following lemma gives us an extra condition on \mathcal{A} that holds because \mathcal{A} does not collapse.

Lemma 3.2

We have $D_2^1 = D_2^3$.

Proof. Let G be a non-trivial completion of \mathcal{A} and let π be the corresponding map from \mathcal{A} to G. Since \mathcal{A} is non-collapsing, we may assume that π is injective on every $K_{I\setminus\{i\}}$, by Lemma 2.2. Observe that $D_2^i = C_{K_{\{1,3\}}}(D_i)$ for i = 1, 3. Thus, $\pi(D_2^i) = C_{\pi(K_{\{1,3\}})}(\pi(D_i))$. Since D_1 and D_3 commute elementwise in $K_{\{2\}}$, we have that $\pi(D_1)$ and $\pi(D_3)$ commute elementwise as well. Since $K_{\{1,3\}}$ is invariant under $D_3 = N_{K_{\{1,2\}}}(K_{\{1,3\}})$ (in $K_{\{1\}}$) and since π is injective on $K_{\{1,3\}}$ (by Lemma 2.2), it follows that $D_2^1 = C_{K_{\{1,3\}}}(D_1)$ is invariant under D_3 (again as subgroups of $K_{\{1\}}$). Hence $\pi(D_2^1) = C_{\pi(K_{\{1,3\}})}(\pi(D_1))$ is invariant under $\pi(D_3)$. Similarly, $\pi(D_2^3) = C_{\pi(K_{\{1,3\}})}(\pi(D_3))$ is invariant under $\pi(D_1)$. Notice that D_2^3 and D_1 are both cyclic of order q + 1. Since the order of $\operatorname{Aut}(C_{q+1})$ equals Euler's $\varphi(q+1)$ which is smaller than q+1, the group D_1 contains a non-trivial element d acting trivially on D_2^3 . Analysis of $K_{\{3\}} \cong SU_3(q^2)$ shows that the only elements commuting

with d in $K_{\{1,3\}}$ are those contained in D_2^1 . Hence $D_2^1 = D_2^3$ as both groups are of order q+1.

In view of the lemma we write D_2 for $D_2^1 = D_2^3$.

We want to prove the uniqueness of the amalgam \mathcal{A} . Assume there exists another amalgam $\mathcal{A}' = K'_{\{1\}} \cup K'_{\{2\}} \cup K'_{\{3\}}$. According to Goldschmidt's lemma 2.7 of [3] the amalgams $\mathcal{B} = K'_{\{1\}} \cup K'_{\{3\}}$ and $\mathcal{B}' = K'_{\{1\}} \cup K'_{\{3\}}$ are isomorphic via some amalgam isomorphism ψ . Clearly, $\psi(K_{\{1,3\}}) = \psi(K_{\{1\}} \cap K_{\{3\}}) = K'_{\{1\}} \cap K'_{\{3\}} = K'_{\{1,3\}}$. Also, by [2], we can assume that $\psi(K_{\{2,3\}}) = K'_{\{2,3\}}$. Let W be the natural module of $K_{\{3\}} \cong SU_3(q^2)$ considered as an \mathbb{F}_q -vector space. Denote the basis of W by $\{e_1, f_1, e_2, f_2, e_3, f_3\}$. Note that $K_{\{1\}}$ acts on the subspace of W spanned by $\{e_2, f_2, e_3, f_3\}$ (although it does not preserve the unitary form on that space). As $N_{K_{\{1,3\}}}(K_{\{1,2\}}) = D_2 = N_{K_{\{1,3\}}}(K_{\{2,3\}})$ we have $N_{K'_{\{1,3\}}}(\psi(K_{\{1,2\}})) = \psi(D_2) = N_{K'_{\{1,3\}}}(K'_{\{2,3\}}).$ Moreover, $\psi(K_{\{1,2\}}) \subseteq \psi(K_{\{1\}}) = K'_{\{1\}}.$ Via the isomorphism ψ , the groups $K'_{\{3\}}$ and $K'_{\{1\}}$ act on W. In particular, the latter also acts on $\langle e_2, f_2, e_3, f_3 \rangle$. Furthermore note that D_2 and $\psi(D_2)$ act on $\langle e_2, f_2, e_3, f_3 \rangle$. The only two-dimensional subspaces of $\langle e_2, f_2, e_3, f_3 \rangle$ that are stabilized by $K_{\{1,2\}}$ and by $D_2 = N_{K_{\{1,3\}}}(K_{\{1,2\}})$ are $\langle e_2, f_2 \rangle$ and $\langle e_3, f_3 \rangle$. Therefore the same holds true for $\psi(D_2)$ and $\psi(K_{\{1,2\}})$. But the only two-dimensional subspace of W that is centralized by $K_{\{2,3\}}$ is the space $\langle e_3, f_3 \rangle$. This coincides with the unique two-dimensional subspace of $\langle e_2, f_2, e_3, f_3 \rangle$ that is normalized (and not centralized) by $K_{\{1,2\}}$. Therefore also $\psi(K_{\{1,2\}})$ normalizes $\langle e_3, f_3 \rangle$ and centralizes $\langle e_2, f_2 \rangle$. We have proved the following:

Proposition 3.3

If n = 3, then the unambiguous, non-collapsing Phan amalgam \mathcal{A} of shape S_2 is unique up to isomorphism. \Box

The case n > 3

We will proceed by induction, using the case n = 3 as basis. Let n > 3 and let \mathcal{A} be an unambiguous, non-collapsing Phan amalgam of type C_n and of shape S_2 .

Lemma 3.4

There exists a unique amalgam $\mathcal{B} = \mathcal{A} \cup H_1 \cup H_2$ where $H_1 \cong SU_n(q^2)$ is generated by the subgroups $K_{I \setminus \{i,j\}}, 1 \leq i < j \leq n-1$, and $H_2 \cong Sp_{2n-2}(q)$ is generated by the subgroups $K_{I \setminus \{i,j\}}, 2 \leq i < j \leq n$.

Proof. Let $\mathcal{B}_1 = \bigcup_{1 \leq i < j \leq n-1} K_{I \setminus \{i,j\}}$, $\mathcal{B}_2 = \bigcup_{2 \leq i < j \leq n} K_{I \setminus \{i,j\}}$, and $\mathcal{C} = \mathcal{B}_1 \cap \mathcal{B}_2$. By the inductive assumption, \mathcal{B}_1 is isomorphic to the amalgam found in $SU_n(q^2)$ and \mathcal{B}_2 is isomorphic to the amalgam found in $Sp_{2n-2}(q)$. Furthermore, by Propositions 2.3 and 2.6 the groups $SU_n(q^2)$ and $Sp_{2n-2}(q)$ are characteristic completions of \mathcal{B}_1 , resp. \mathcal{B}_2 , whence there exist injective amalgam homomorphisms $\pi_1 : \mathcal{B}_1 \to H_1$ and $\pi_2 : \mathcal{B}_2 \to H_2$. We want to glue H_1 and H_2 to \mathcal{A} via the maps π_1 and π_2 . Notice that π_1 and π_2 send \mathcal{C} into subgroups $K_1 \leq H_1$, resp. $K_2 \leq H_2$ that are isomorphic to $SU_{n-1}(q^2)$. Since the copies of \mathcal{C} in K_1 and K_2 are standard Phan amalgams of type A_{n-2} , there is an isomorphism $\phi: K_1 \to K_2$ that takes $\pi_1(\mathcal{C})$ to $\pi_2(\mathcal{C})$. Let ψ be the restriction of ϕ to \mathcal{C} . Consider $\mathcal{A}_1 = \pi_1(\mathcal{C})$ and $\mathcal{A}_2 = \pi_2(\mathcal{C})$ together with their embeddings into K_1 , resp. K_2 . Applying Lemma 2.8 with ϕ and ψ as above and $\psi' = \pi_2|_{\mathcal{C}}(\pi_1|_{\mathcal{C}})^{-1}$, there exists a unique isomorphism $\phi': K_1 \to K_2$ such that $\phi'|_{\mathcal{A}_1} = \psi'$. Thus, $\phi'|_{\mathcal{A}_1}\pi_1|_{\mathcal{C}} = \pi_2|_{\mathcal{C}}$. Identifying K_1 with K_2 via ϕ' we obtain our unique amalgam \mathcal{B} .

Let us now turn to the uniqueness of the amalgam \mathcal{A} . Suppose we have two noncollapsing, unambiguous Phan amalgams \mathcal{A} and \mathcal{A}' of type C_n and of shape S_2 . Extend \mathcal{A} and \mathcal{A}' to amalgams $\mathcal{B} = \mathcal{A} \cup H_1 \cup H_2$ and $\mathcal{B}' = \mathcal{A}' \cup H_1' \cup H_2'$ as in Lemma 3.4. Observe that by Goldschmidt's lemma 2.7 of [3] there exists an isomorphism ϕ from $H_1 \cup H_2$ onto $H'_1 \cup H'_2$. By the inductive assumption, the $K_{I \setminus \{i,j\}}$, $2 \leq i < j \leq n-1$, form a standard Phan amalgam of type A_{n-2} in $H_1 \cap H_2$; similarly the $K'_{I \setminus \{i,j\}}, 2 \leq i < j \leq n-1$, form a standard Phan amalgam of type A_{n-2} in $H'_1 \cap H'_2$. This implies that $\bigcup_{2 \le i < j \le n-1} K'_{I \setminus \{i,j\}}$ and $\bigcup_{2 \le i \le j \le n-1} \phi(K_{I \setminus \{i,j\}})$ are standard Phan amalgams of type A_{n-2} in $H'_1 \cap H'_2$. The two amalgams correspond to two choices of an orthonormal basis in the natural unitary space for $H'_1 \cap H'_2$. Correcting ϕ , if necessary, by an inner automorphism of $H'_1 \cap H'_2$, we may assume that $\phi(K_{I\setminus\{i,j\}}) = K'_{I\setminus\{i,j\}}$ for $2 \leq i < j \leq n-1$. Studying centralizers in H_1 and H_2 we see that $\phi(K_{I\setminus\{1\}}) = K'_{I\setminus\{1\}}$ and $\phi(K_{I\setminus\{n\}}) = K'_{I\setminus\{n\}}$. Therefore ϕ extends to an isomorphism from \mathcal{A} to \mathcal{A}' . Indeed, ϕ is already defined on all $K_{I\setminus\{i,j\}}$ with $2 \leq i < j \leq n-1$. Also, inside H'_1 we see that $\phi(K_{I\setminus\{1,i\}}), i < n$, is $K'_{I\setminus\{1,i\}}$, since $K_{I\setminus\{1,i\}} = \langle K_{I\setminus\{1\}}, K_{I\setminus\{i\}} \rangle$. Similarly, in H'_2 we see that $\phi(K_{I\setminus\{i,n\}}), 1 < i$, is $K'_{I\setminus\{i,n\}}$. It remains to notice that $K_{I\setminus\{1,n\}}$ is the direct product of $K_{I\setminus\{1\}}$ and $K_{I\setminus\{n\}}$ so that ϕ extends to an isomorphism of \mathcal{A} to \mathcal{A}' . Thus we have shown:

Proposition 3.5

If n > 3, then the amalgam \mathcal{A} is unique up to isomorphism. \Box

We leave the proof of uniqueness for arbitrary shape to the reader. Theorem 1 follows.

References

- [1] C.D. Bennett, R. Gramlich, C. Hoffman, S. Shpectorov, Curtis-Phan-Tits theory, to appear in the proceedings of the Durham Conference 2001 on Groups and Geometries.
- [2] C.D. Bennett, S. Shpectorov, A new proof of a theorem of Phan, submitted.
- [3] D. Goldschmidt, Automorphisms of trivalent graphs, Annals Math. 111 (1980), 377 406.
- [4] R. Gramlich, C. Hoffman, S. Shpectorov, A Phan-type theorem for Sp(2n,q), to appear in J. Algebra.

- [5] K. W. Phan, On groups generated by three-dimensional special unitary groups, I, J. Austral. Math. Soc. Ser. A 23 (1977), 67–77.
- [6] K. W. Phan, On groups generated by three-dimensional special unitary groups, II, J. Austral. Math. Soc. Ser. A 23 (1977), 129–146.
- [7] J. Tits, Ensembles Ordonnés, immeubles et sommes amalgamées, Bull. Soc. Math. Belg. Sér. A 38 (1986), 367 – 387.

Address of the author: TU Darmstadt Fachbereich Mathematik / AG 5 Schloßgartenstraße 7 64289 Darmstadt Germany e-mail: gramlich@mathematik.tu-darmstadt.de