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Abstra
t

The present arti
le provides a 
lassi�
ation of non-
ollapsing Phan amalgams of

type C

n

and of shape S � S

2

over �nite �elds of odd square order. Together with

the results of [4℄ this 
ompletes the proof of a Phan-type theorem for the group

Sp

2n

(q) for suÆ
iently large n and q.

1 Introdu
tion

The modern approa
h to Phan-type theorems, as outlined in [1℄, falls into two parts. On

one hand one has to prove the simple 
onne
tedness of some suitable geometry, on the

other hand one has to 
lassify related amalgams. The so-
alled 
ip
op geometry � of type

C

n

over �nite �elds of square order has been introdu
ed and studied in [4℄. The Main

Theorem of that paper states that this 
ip
op geometry is 2-simply 
onne
ted for n � 3

and q � 8. By Tits' lemma (Corollaire 1 of [7℄) this implies that the amalgam 
onsisting

of the rank-1- and rank-2-paraboli
s of some 
ag-transitive group G of automorphisms of

� admits G as its universal 
ompletion. We refer to [4℄ for details; see also Se
tion 2 for

a de�nition of � and a short summary of the setting.

The purpose of the present paper is to 
lassify the non-
ollapsing Phan amalgams of

type C

n

and of shape S � S

2

, whi
h is a
hieved in the following theorem. For de�nitions

we again refer to Se
tion 2.

Theorem 1

Let n � 3, let q be odd, and let A be a non-
ollapsing Phan amalgam of type C

n

and of

shape S � S

2

over F

q

2

. Then the unique unambiguous 
overing

~

A of A is isomorphi
 to

the standard Phan amalgam

^

A

S

.

The above theorem 
onstitutes the �nal step of the proof of the Phan-type Theorem

2. The latter is an immediate 
onsequen
e of Theorem 1 and the results of [4℄, espe
ially

Part (1) of Theorem 2.

1
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Theorem 2

Let n � 3, let q � 8, and let G be a group that admits a weak Phan system of type C

n

over F

q

2

. Then G is a homomorphi
 image of Sp

2n

(q) (the universal Chevalley group of

type C

n

(q)).

The bound on q in Theorem 2 
omes from the results of [4℄. The parti
ular proof of

2-simple 
onne
tedness fails for q � 7. Currently it is only known that � is not 2-simply


onne
ted for q = 2; nothing is known for 3 � q � 7.

This arti
le is organized as follows. In Se
tion 2 we provide all ne
essary de�nitions

and a number of results on Phan systems and Phan amalgams. In Se
tion 3 we give the

proof of Theorem 1.

Remark: Analogues of Theorem 1 should hold for any non-
ollapsing Phan amalgam of

type � (and level two), where � is an arbitrary Dynkin diagram admitting single and

double edges.

A
knowledgement: The author wants to express his gratitude to Curt Bennett and Sergey

Shpe
torov for a preprint version of [2℄.

2 Phan systems and Phan amalgams

Let G = Sp

2n

(q

2

) and let V be the natural symple
ti
 spa
e for G. Following Se
tion

3 of [4℄, denote by (�; �) the 
orresponding alternating form. Let the bar denote the

involutory �eld automorphism of F

q

2

and let � be a 
ip, i.e., (�v)

�

=

�

�v

�

, (u

�

; v

�

) =

(u; v), and �

2

= �id. Then, by Proposition 3.1 of [4℄, we 
an �nd a 
anoni
al basis

B = fe

1

; : : : ; e

n

; f

1

; : : : ; f

n

g satisfying (e

i

; e

j

) = (f

i

; f

j

) = 0, (e

i

; f

j

) = Æ

ij

and e

�

i

= f

i

,

f

�

i

= �e

i

for 1 � i; j � n. The 
entralizer G

�

of � in G is isomorphi
 to Sp

2n

(q)

(Proposition 3.8 of [4℄) and a
ts 
ag-transitively on the geometry � whi
h 
onsists of

the subspa
es U of V that are totally isotropi
 with respe
t to (�; �) and that satisfy

V = U

?

� U

�

(Proposition 4.2 of [4℄).

Let B = fe

1

; f

1

; : : : ; e

n

; f

n

g be a 
anoni
al basis of V and let F be the 
ag he

1

; f

1

i,

he

1

; f

1

; e

2

; f

2

i, : : : , he

1

; f

1

; : : : ; e

n

; f

n

i. A de
omposition V = �

k

i=0

V

i

is 
alled 
ompatible

with B if ea
h V

i

is spanned by a subset of B of the form fe

j

; f

j

; e

j+1

; f

j+1

; : : : ; e

t

; f

t

g

for some 1 � j � t � n. The 
ompatible de
ompositions are indexed by subsets J of

the set I = f1; : : : ; ng. We denote the de
omposition 
orresponding to the set J by

�

J

. For J = fi

1

< i

2

< � � � < i

k

g this de
omposition �

J

is V

0

= he

1

; f

1

; : : : ; e

i

1

; f

i

1

i,

V

1

= he

i

1

+1

; f

i

1

+1

; : : : ; e

i

2

; f

i

2

i, : : : , V

k

= he

i

k

+1

; f

i

k

+1

; : : : ; e

n

; f

n

i. Note that V

k

= f0g if

i

k

= n.

For a nondegenerate �-invariant subspa
e U of V , let Sp(U) denote the full subgroup

of G

�

that preserves the form ��(�; �)j

U

�

�U

�

(
f. Lemma 3.6, Lemma 3.7, Proposition 3.8 of

[4℄) and a
ts trivially on U

?

; let SU(U) denote the spe
ial unitary group that is embedded

naturally into Sp(U). Clearly, Sp(U)

�

=

Sp(2m; q) and SU(U)

�

=

SU(m; q

2

) where 2m is



2 PHAN SYSTEMS AND PHAN AMALGAMS 3

the dimension of U . For J � I let L

J

= Sp(V

k

)

Q

k�1

i=0

SU(V

i

) where V = �

k

i=0

V

i

is the

de
omposition �

J

(and with the understanding that Sp(V

k

) is the trivial group in 
ase

V

k

= f0g). If F

0

is the sub
ag of F of type J , then the paraboli
 of G

�


orresponding

to F

0

is equal to L

J

D where D is the Borel subgroup 
orresponding to F . The level of

a subgroup L

J

is n � jJ j, the 
orank of J in I. The level of L

J


oin
ides with the rank

of the paraboli
 L

J

D. In 
ase n = 2, the groups L

f2g

�

=

SU

2

(q

2

) and L

f1g

�

=

Sp

2

(q) are


alled a standard pair in G

�

�

=

Sp

4

(q). Following [2℄, we say that subgroups L

1

and

L

2

of SU

3

(q

2

) form a standard pair whenever ea
h L

i

is the stabilizer in SU

3

(q

2

) of

a nonsingular ve
tor v

i

of the natural module of SU

3

(q

2

) and, moreover, v

1

and v

2

are

perpendi
ular.

Let S be a subset of the power set of I = f1; :::; ng that is 
losed under taking

supersets. The standard Phan amalgam of type C

n

and of shape S is the amalgam

^

A

S

= [

J2S

L

J

. In the parti
ular 
ase where S = S

k


onsists of all subsets J � I with

jInJ j � k, we will 
all

^

A

S

the standard Phan amalgam of type C

n

and of level k

and rank n; it is denoted by

^

A

k

=

^

A(n; k; q). The shape S

k

will be 
alled the straight

level k shape. If S � S

k

then we say that S is of level k.

By an arbitrary Phan amalgam of type C

n

and of shape S we will understand

an amalgam A = [

J2S

K

J

where K

J

is a group isomorphi
 to a quotient of L

J

over

a subgroup of the 
enter of L

J

. Furthermore, if J � J

0

, then we require that K

J

0

be


ontained in K

J

, namely that K

J

0

be the image of L

J

0

under the natural homomorphism

from L

J

onto K

J

.

The de�nition of a Phan amalgam leaves some ambiguity as to what is the exa
t

stru
ture of ea
h K

J

. For example, in the straight level two 
ase, when j � i > 1, either

K

Infig

and K

Infjg

have trivial interse
tion or they have a 
ommon 
entral involution.

Similarly, when j�i = 1, the groupK

Infi;jg

may be any quotient of L

Infi;jg

over a subgroup

of Z(L

Infi;jg

). Finally, the interse
tions of the members of the amalgam might be larger

than expe
ted. We 
all a Phan amalgam unambiguous if every K

J

is isomorphi
 to the


orresponding L

J

and if K

J

\ K

J

0

= K

J[J

0

for all J and J

0

. By a 
overing of a Phan

amalgam A = [

J2S

K

J

of shape S we mean a se
ond Phan amalgam

~

A = [

J2S

~

K

J

of

the same shape S, together with an amalgam homomorphism � :

~

A ! A, su
h that �

indu
es a surje
tive homomorphism of

~

K

J

onto K

J

for every J 2 S. We 
all two 
overings

(

~

A

1

; �

1

) and (

~

A

2

; �

2

) of A equivalent if there is an isomorphism � of A

1

onto A

2

su
h

that �

1

= �

2

�.

De�nition 2.1 Let n � 2, let � be the Dynkin diagram C

n

, and let I = f1; : : : ; ng.

A group G admits a weak Phan system of type C

n

if G 
ontains subgroups U

i

�

=

SL

2

(q)

�

=

Sp

2

(q)

�

=

SU

2

(q

2

), i 2 I, and U

i;j

, i 6= j 2 I, so that the following hold:

(wP1) If (i; j) is not an edge of �, then U

i;j

is a 
entral produ
t of U

i

and U

j

;

(wP2) if (i; j) is an edge of �, then U

i

and U

j

are 
ontained in U

i;j

whi
h is isomorphi


to a quotient of SU

3

(q

2

) over a subgroup of its 
enter if (i; j) is a single edge and
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isomorphi
 to a quotient of Sp

4

(q) over a subgroup of its 
enter if (i; j) is a double

edge; moreover, U

i

and U

j

form a standard pair in U

i;j

; and

(wP3) the subgroups U

i;j

, i 6= j 2 I, generate G.

If a group G 
ontains a weak Phan system U

1

, : : : , U

n

, then A = [

i 6=j2I

U

i;j

is a Phan

amalgam of level two. This amalgam does not 
ollapse, be
ause G is a quotient of its

universal 
ompletion. The 
onverse is proved in the following lemma:

Lemma 2.2

Suppose A is a Phan amalgam of type C

n

and of shape S � S

2

. Suppose further that G

is a nontrivial 
ompletion of A via some map �. Then �j

K

Infig

is inje
tive. In parti
ular,

�(K

Inf1g

); : : : ; �(K

Infng

) form a weak Phan system in G.

Proof. By way of 
ontradi
tion suppose 1 6= u 2 K

Infig

and �(u) = 1. Let j be equal

to i � 1 or i + 1. By Lemma 2.3 of [2℄ and Lemma 4.6 of [4℄ (i.e., 
onne
tedness of the

respe
tive geometries) we have




K

Infig

; K

Infjg

�

equal to a quotient of SU

3

(q

2

) or Sp

4

(q)

over a subgroup of the 
enter. As 1 6= u 2 K

Infig

, we have u 62 Z(




K

Infig

; K

Infjg

�

), when
e

�(




K

Infig

; K

Infjg

�

) = 1 and, thus, �(K

Infig

) = 1 = �(K

Infjg

). It follows that �(G) = 1, a


ontradi
tion. 2

The following results deal with 
hara
teristi
 
ompletions of amalgams. Suppose A

is an amalgam. A 
ompletion G of A is 
alled 
hara
teristi
 if and only if every auto-

morphism of A extends to an automorphism of G. In [2℄ the following has been proved.

(Roughly speaking, a Phan amalgam of type A

n

is what one gets if one throws away all

members of a Phan amalgam of type C

n+1

that are of the form K

InJ

with n+ 1 2 J . For

a pre
ise de�nition see [2℄.)

Proposition 2.3 (see [2℄)

Let n � 2. The group G

�

=

SU(n + 1; q

2

) is a 
hara
teristi
 
ompletion of the standard

Phan amalgam of type A

n

for any shape S � S

2

.

Lemma 2.4 (see [2℄)

Let G

�

=

SU

3

(q

2

), let U

1

�

=

SU

2

(q

2

), U

2

�

=

SU

2

(q

2

) be a standard pair in G, and let T be

the joint stabilizer in Aut(G) of U

1

and U

2

. Then T is an extension of a group of order

(q+1)

2

by the �eld automorphisms. Moreover, the 
entralizer in T of U

1

is of order q+1.

The next lemma is the C

2

-analogue of Lemma 2.4.

Lemma 2.5

Let G

�

=

Sp

4

(q) and let U

1

�

=

SU

2

(q

2

), U

2

�

=

Sp

2

(q) be a standard pair in G. Then the

joint stabilizer T in Aut(G) of U

1

and U

2

is an extension of a group of order (q + 1)

2

by

the �eld automorphisms.
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Proof. This follows immediately from the fa
t that the Borel subgroup of G with respe
t

to the geometry � (
f. [4℄) has order (q + 1)

2

. The only additional automorphisms are

indu
ed by the �eld automorphisms. 2

Proposition 2.6

Let n � 2. The group G

�

=

Sp

2n

(q) is a 
hara
teristi
 
ompletion of the standard Phan

amalgam

^

A

S

of type C

n

for any shape S � S

2

.

Proof. We will only prove the proposition for S = S

2

, the general 
ase being a straight-

forward indu
tion on the size of S (
f. the proof of Proposition 6.1 of [2℄). We want to

show that the group A of automorphisms of

^

A

2

is of order (q + 1)

n

f where q = p

f

, p a

prime. Pro
eed by indu
tion on n. The 
ase n = 2 is implied by Lemma 2.5. Now, for

arbitrary n, 
onsider the amalgam B of all members of

^

A

2

that are 
ontained in the lower

right (2n � 2) � (2n � 2)-blo
k of G. The 
laim will follow if we prove that C

A

(B) has

order at most q + 1. Let L = L

Inf1;2g

�

=

SU

3

(q

2

) be the member of

^

A

2


ontaining L

Inf1g

and L

Inf2g

. Sin
e C

A

(B) a
ts trivially on L

Inf2g

and stabilizes L

Inf1g

we 
an apply Lemma

2.4, so C

A

(B) indu
es on L a group of order at most q+1. The other members of

^

A

2

that

are not in B are dire
t produ
ts of L

Inf1g

and a member of B. But 
learly every element

of C

A

(B) that a
ts trivially on L

Inf1g

a
ts trivially on every su
h dire
t produ
t. We have

shown that the group of automorphisms of

^

A

2

is of order at most (q+1)

n

f . This �nishes

the proof be
ause G indu
es (q + 1)

n

f automorphisms of

^

A

2

. 2

Corollary 2.7

Let J � I with jInJ j � 3. Then the group L

J

is a 
hara
teristi
 
ompletion of the

amalgam [

J

0

�J

L

J

0

. 2

Lemma 2.8

Let A

i

be an amalgam and let G

i

be a 
ompletion of A

i

via the map �

i

, i = 1; 2. Suppose

there exist isomorphisms  : A

1

! A

2

and � : G

1

! G

2

su
h that ��

1

= �

2

 . If G

1

is

a 
hara
teristi
 
ompletion of A

1

, then for any isomorphism  

0

: A

1

! A

2

there exists a

unique isomorphism �

0

: G

1

! G

2

su
h that �

0

�

1

= �

2

 

0

.

Proof. Consider � = ( 

0

)

�1

 . This is an automorphism ofA

1

. Sin
eG

1

is a 
hara
teristi



ompletion, � extends to an automorphism of G

1

; that is, there is an automorphism �

of G

1

su
h that �

1

� = ��

1

. (Noti
e that � is the unique automorphism of G

1

with that

property, be
ause A

1

generates G

1

.) The map �

0

= ��

�1

has the required properties. 2

3 Proof of Theorem 1

We begin the proof of Theorem 1 with the following proposition.
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Proposition 3.1

Every non-
ollapsing Phan amalgam A has a unique (up to equivalen
e) unambiguous

(non-
ollapsing) 
overing

~

A.

Proof. The proof is by indu
tion on jSj where S is the shape of A = [

J2S

K

J

. The


laim holds in 
ase S = ;, whi
h 
orresponds to the empty amalgam. Suppose that

S is a non-empty shape, and that the 
laim holds for every shape S

0

� S. Let J be

a minimal (under in
lusion) element of S and set S

0

= SnfJg and A

0

= [

J

0

2S

0

K

J

0

.

Then S

0

is a shape, and A

0

is a Phan sub-amalgam in A of shape S

0

. By the indu
tive

assumption there is a (unique) unambiguous 
overing Phan amalgam (

~

A

0

= [

J

0

2S

0

K

0

J

0

; �

0

)

of A

0

. We will 
onstru
t an unambiguous 
overing (

~

A; �) of A by gluing a 
opy of L

J

to

~

A

0

and by extending �

0

to the new member of the amalgam. To glue L

J

to the

amalgam

~

A

0

we need to 
onstru
t an isomorphism from the sub-amalgam B = [

J

0

�J

K

0

J

0

of

~

A

0

onto the 
orresponding amalgam C = [

J

0

�J

L

J

0

of proper subgroups of L

J

. By the

de�nition of a Phan amalgam there is a homomorphism  from L

J

onto K

J

mapping

C onto D = [

J

0

�J

K

J

0

. Note that D is a Phan amalgam of shape fJ

0

j J

0

� Jg. Note

further that (B; �

0

j

B

) and (C;  ) are two unambiguous 
overings of D. By indu
tion, the

uniqueness of the unambiguous 
overing holds so that there is an amalgam isomorphism

� from B onto C su
h that  � = �

0

j

B

. The map � tells us how to glue L

J

to

~

A

0

to produ
e

~

A, and furthermore, as � we 
an take the union of  and �

0

. The 
ondition  � = �

0

j

B

guarantees that  and �

0

agree on the interse
tion B = C (identi�ed via �). Finally,

noti
e that

~

A is an unambiguous Phan amalgam of type S, so (

~

A; �) is an unambiguous


overing of A.

This 
ompletes the proof of the existen
e of an unambiguous 
overing

~

A. Now we will

prove the uniqueness. Suppose we have two su
h 
overings

~

B = [

J2S

B

J

and

~

C = [

J2S

C

J

with 
orresponding amalgam homomorphism �

1

and �

2

ontoA. Sele
t J as in the previous

paragraph, and de�ne S

0

= S n fJg. Let A

0

,

~

B

0

and

~

C

0

be the sub-amalgams of shape S

0

in A,

~

B and

~

C, respe
tively. By indu
tion, there exists an isomorphism � from

~

B

0

onto

~

C

0

su
h that �

1

j

~

B

0

= �

2

j

~

C

0

�. It suÆ
es to extend � to B

J

.

We have two 
ases: First, let us assume that the de
omposition �

J

has more than one

summand of dimension greater than two. In this 
ase, B

J

�

=

C

J

�

=

L

J

is isomorphi
 to a

dire
t produ
t of L

J

0

and L

J

00

for suitable supersets J

0

and J

00

of J . Clearly � is already

known on B

J

0

and B

J

00

, and so � extends uniquely to B

J

. Sin
e every member B

K

with

K � J is a dire
t produ
t of its interse
tions with B

J

0

and B

J

00

, this extension, whi
h

we will also denote by �, will be a well-de�ned amalgam isomorphism from B to C, and

furthermore, �

2

= �

1

�.

In the se
ond 
ase, �

J

has a unique summand of dimension m greater than two. In

this 
ase B

J

�

=

C

J

�

=

L

J

is isomorphi
 to SU(m; q

2

) or Sp(2m; q). Choose an arbitrary

isomorphism  : B

J

�! C

J

, and 
onsider the following map � from K

J

to K

J

: For

u 2 K

J

, �(u) is de�ned to be �

2

 �

�1

1

(u). Noti
e that � is a well-de�ned automorphism

of K

J

, be
ause the �bers of �

1

are 
osets of the kernel of �

1

, and  takes them to
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osets of the kernel of �

2

(sin
e  takes the kernel of �

1

to the kernel of �

2

|those being

subgroups of equal order in the 
y
li
 
enters of B

J

and C

J

, respe
tively). Noti
e that

every automorphism of K

J

lifts to a unique automorphism of L

J

whi
h is isomorphi
 to

SU(m; q

2

) or Sp(2m; q). Thus, there is an automorphism � of C

J

su
h that �

2

j

C

J

� =

��

2

j

C

J

. De�ne � : B

J

! C

J

as �

�1

 . First of all we have �

1

j

B

J

= �

2

j

C

J

�. Indeed,

�

2

j

C

J

� = �

2

j

C

J

�

�1

 = �

�1

�

2

j

C

J

 = �

1

j

B

J

 

�1

�

�1

2

j

K

J

�

2

j

C

J

 = �

1

j

B

J

. Se
ond, for every

J

0

� J we have that �

�1

�j

B

J

0

is a lifting to B

J

0

of the identity automorphism of K

J

0

,

and hen
e it is the identity. For, �

�1

� =  

�1

�� =  

�1

�

�1

2

��

2

� =  

�1

�

�1

2

�

2

 �

�1

1

�

2

� =

�

�1

1

�

2

� = id (to enhan
e legibility we omitted the restri
tions). This shows that � and �

agree on every subgroup B

J

0

, whi
h allows us to extend � to the entire

~

B by de�ning it

on B

J

as �. 2

In view of the pre
eding proposition let A = [

fi;jg2I

K

Infi;jg

be a non-
ollapsing,

unambiguous Phan amalgam of shape S

2

. We will prove the uniqueness of A (up to

isomorphism) in a series of lemmas. Clearly, when n = 2 the amalgam is unique by

de�nition.

The 
ase n = 3

Sin
eA is unambiguous, ea
h subgroupK

Infig


oin
ides withK

Infi;jg

\K

Infi;kg

for fi; j; kg =

f1; 2; 3g. De�ne D

1

= N

K

f2;3g

(K

f1;3g

) (both groups K

f1;3g

, K

f2;3g


onsidered as subgroups

of K

f3g

) and D

3

= N

K

f1;2g

(K

f1;3g

). Sin
e K

f1;3g

and K

f2;3g

form a standard pair in

K

f3g

, it follows that D

1

has order q + 1, and it is a maximal torus in K

f2;3g

�

=

SU

2

(q

2

).

Similarly, D

3

is a maximal torus of order q + 1 in K

f1;2g

�

=

Sp

2

(q). We also de�ne

D

1

2

= N

K

f1;3g

(K

f2;3g

) and D

3

2

= N

K

f1;3g

(K

f1;2g

). Again, these are two maximal tori of size

q + 1 in K

f1;3g

�

=

SU

2

(q

2

). The following lemma gives us an extra 
ondition on A that

holds be
ause A does not 
ollapse.

Lemma 3.2

We have D

1

2

= D

3

2

.

Proof. Let G be a non-trivial 
ompletion of A and let � be the 
orresponding map from

A to G. Sin
e A is non-
ollapsing, we may assume that � is inje
tive on every K

Infig

, by

Lemma 2.2. Observe that D

i

2

= C

K

f1;3g

(D

i

) for i = 1; 3. Thus, �(D

i

2

) = C

�(K

f1;3g

)

(�(D

i

)).

Sin
e D

1

and D

3


ommute elementwise in K

f2g

, we have that �(D

1

) and �(D

3

) 
ommute

elementwise as well. Sin
e K

f1;3g

is invariant under D

3

= N

K

f1;2g

(K

f1;3g

) (in K

f1g

) and

sin
e � is inje
tive on K

f1;3g

(by Lemma 2.2), it follows that D

1

2

= C

K

f1;3g

(D

1

) is invariant

under D

3

(again as subgroups of K

f1g

). Hen
e �(D

1

2

) = C

�(K

f1;3g

)

(�(D

1

)) is invariant

under �(D

3

). Similarly, �(D

3

2

) = C

�(K

f1;3g

)

(�(D

3

)) is invariant under �(D

1

). Noti
e that

D

3

2

and D

1

are both 
y
li
 of order q + 1. Sin
e the order of Aut(C

q+1

) equals Euler's

'(q+1) whi
h is smaller than q+1, the group D

1


ontains a non-trivial element d a
ting

trivially on D

3

2

. Analysis of K

f3g

�

=

SU

3

(q

2

) shows that the only elements 
ommuting
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with d in K

f1;3g

are those 
ontained in D

1

2

. Hen
e D

1

2

= D

3

2

as both groups are of order

q + 1. 2

In view of the lemma we write D

2

for D

1

2

= D

3

2

.

We want to prove the uniqueness of the amalgam A. Assume there exists another

amalgam A

0

= K

0

f1g

[ K

0

f2g

[ K

0

f3g

. A

ording to Golds
hmidt's lemma 2.7 of [3℄ the

amalgams B = K

f1g

[ K

f3g

and B

0

= K

0

f1g

[ K

0

f3g

are isomorphi
 via some amalgam

isomorphism  . Clearly,  (K

f1;3g

) =  (K

f1g

\K

f3g

) = K

0

f1g

\K

0

f3g

= K

0

f1;3g

. Also, by [2℄,

we 
an assume that  (K

f2;3g

) = K

0

f2;3g

. Let W be the natural module of K

f3g

�

=

SU

3

(q

2

)


onsidered as an F

q

-ve
tor spa
e. Denote the basis ofW by fe

1

; f

1

; e

2

; f

2

; e

3

; f

3

g. Note that

K

f1g

a
ts on the subspa
e of W spanned by fe

2

; f

2

; e

3

; f

3

g (although it does not preserve

the unitary form on that spa
e). As N

K

f1;3g

(K

f1;2g

) = D

2

= N

K

f1;3g

(K

f2;3g

) we have

N

K

0

f1;3g

( (K

f1;2g

)) =  (D

2

) = N

K

0

f1;3g

(K

0

f2;3g

). Moreover,  (K

f1;2g

) �  (K

f1g

) = K

0

f1g

.

Via the isomorphism  , the groups K

0

f3g

and K

0

f1g

a
t on W . In parti
ular, the latter

also a
ts on he

2

; f

2

; e

3

; f

3

i. Furthermore note that D

2

and  (D

2

) a
t on he

2

; f

2

; e

3

; f

3

i.

The only two-dimensional subspa
es of he

2

; f

2

; e

3

; f

3

i that are stabilized by K

f1;2g

and by

D

2

= N

K

f1;3g

(K

f1;2g

) are he

2

; f

2

i and he

3

; f

3

i. Therefore the same holds true for  (D

2

) and

 (K

f1;2g

). But the only two-dimensional subspa
e ofW that is 
entralized by K

f2;3g

is the

spa
e he

3

; f

3

i. This 
oin
ides with the unique two-dimensional subspa
e of he

2

; f

2

; e

3

; f

3

i

that is normalized (and not 
entralized) by K

f1;2g

. Therefore also  (K

f1;2g

) normalizes

he

3

; f

3

i and 
entralizes he

2

; f

2

i. We have proved the following:

Proposition 3.3

If n = 3, then the unambiguous, non-
ollapsing Phan amalgam A of shape S

2

is unique

up to isomorphism. 2

The 
ase n > 3

We will pro
eed by indu
tion, using the 
ase n = 3 as basis. Let n > 3 and let A be an

unambiguous, non-
ollapsing Phan amalgam of type C

n

and of shape S

2

.

Lemma 3.4

There exists a unique amalgam B = A[H

1

[H

2

where H

1

�

=

SU

n

(q

2

) is generated by the

subgroups K

Infi;jg

, 1 � i < j � n� 1, and H

2

�

=

Sp

2n�2

(q) is generated by the subgroups

K

Infi;jg

, 2 � i < j � n.

Proof. Let B

1

= [

1�i<j�n�1

K

Infi;jg

, B

2

= [

2�i<j�n

K

Infi;jg

, and C = B

1

\ B

2

. By

the indu
tive assumption, B

1

is isomorphi
 to the amalgam found in SU

n

(q

2

) and B

2

is

isomorphi
 to the amalgam found in Sp

2n�2

(q). Furthermore, by Propositions 2.3 and 2.6

the groups SU

n

(q

2

) and Sp

2n�2

(q) are 
hara
teristi
 
ompletions of B

1

, resp. B

2

, when
e

there exist inje
tive amalgam homomorphisms �

1

: B

1

! H

1

and �

2

: B

2

! H

2

. We

want to glue H

1

and H

2

to A via the maps �

1

and �

2

. Noti
e that �

1

and �

2

send
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C into subgroups K

1

� H

1

, resp. K

2

� H

2

that are isomorphi
 to SU

n�1

(q

2

). Sin
e

the 
opies of C in K

1

and K

2

are standard Phan amalgams of type A

n�2

, there is an

isomorphism � : K

1

! K

2

that takes �

1

(C) to �

2

(C). Let  be the restri
tion of � to C.

Consider A

1

= �

1

(C) and A

2

= �

2

(C) together with their embeddings into K

1

, resp. K

2

.

Applying Lemma 2.8 with � and  as above and  

0

= �

2

j

C

(�

1

j

C

)

�1

, there exists a unique

isomorphism �

0

: K

1

! K

2

su
h that �

0

j

A

1

=  

0

. Thus, �

0

j

A

1

�

1

j

C

= �

2

j

C

. Identifying K

1

with K

2

via �

0

we obtain our unique amalgam B. 2

Let us now turn to the uniqueness of the amalgam A. Suppose we have two non-


ollapsing, unambiguous Phan amalgams A and A

0

of type C

n

and of shape S

2

. Extend

A and A

0

to amalgams B = A[H

1

[H

2

and B

0

= A

0

[H

0

1

[H

0

2

as in Lemma 3.4. Observe

that by Golds
hmidt's lemma 2.7 of [3℄ there exists an isomorphism � from H

1

[H

2

onto

H

0

1

[H

0

2

. By the indu
tive assumption, the K

Infi;jg

, 2 � i < j � n� 1, form a standard

Phan amalgam of type A

n�2

in H

1

\ H

2

; similarly the K

0

Infi;jg

, 2 � i < j � n � 1, form

a standard Phan amalgam of type A

n�2

in H

0

1

\H

0

2

. This implies that [

2�i<j�n�1

K

0

Infi;jg

and [

2�i<j�n�1

�(K

Infi;jg

) are standard Phan amalgams of type A

n�2

in H

0

1

\ H

0

2

. The

two amalgams 
orrespond to two 
hoi
es of an orthonormal basis in the natural unitary

spa
e for H

0

1

\ H

0

2

. Corre
ting �, if ne
essary, by an inner automorphism of H

0

1

\ H

0

2

,

we may assume that �(K

Infi;jg

) = K

0

Infi;jg

for 2 � i < j � n � 1. Studying 
entralizers

in H

1

and H

2

we see that �(K

Inf1g

) = K

0

Inf1g

and �(K

Infng

) = K

0

Infng

. Therefore �

extends to an isomorphism from A to A

0

. Indeed, � is already de�ned on all K

Infi;jg

with 2 � i < j � n � 1. Also, inside H

0

1

we see that �(K

Inf1;ig

), i < n, is K

0

Inf1;ig

, sin
e

K

Inf1;ig

=




K

Inf1g

; K

Infig

�

. Similarly, in H

0

2

we see that �(K

Infi;ng

), 1 < i, is K

0

Infi;ng

.

It remains to noti
e that K

Inf1;ng

is the dire
t produ
t of K

Inf1g

and K

Infng

so that �

extends to an isomorphism of A to A

0

. Thus we have shown:

Proposition 3.5

If n > 3, then the amalgam A is unique up to isomorphism. 2

We leave the proof of uniqueness for arbitrary shape to the reader. Theorem 1 follows.
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