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Lo
ally 
onvex root graded Lie algebras

Karl-Hermann Neeb

Abstra
t. In the present paper we start to build a bridge from the algebrai
 theory of root graded

Lie algebras to the global Lie theory of in�nite-dimensional Lie groups by showing how root graded

Lie algebras 
an be de�ned and analyzed in the 
ontext of lo
ally 
onvex Lie algebras. Our main

results 
on
ern the des
ription of lo
ally 
onvex root graded Lie algebras in terms of a lo
ally 
onvex


oordinate algebra and its universal 
overing algebra, whi
h has to be de�ned appropriately in the

topologi
al 
ontext. Although the stru
ture of the isogeny 
lasses is mu
h more 
ompli
ated in the

topologi
al 
ontext, we give an expli
it des
ription of the universal 
overing Lie algebra whi
h implies

in parti
ular that it depends only on the root system and the 
oordinate algebra. Not every root

graded lo
ally 
onvex Lie algebra is integrable in the sense that it is the Lie algebra of a Lie group.

In a forth
oming paper we will dis
uss 
riteria for the integrability of root graded Lie algebras.

Introdu
tion

Let K be a �eld of 
hara
teristi
 zero and � a �nite redu
ed irredu
ible root system. We write

g

�

for the 
orresponding �nite-dimensional split simple K -Lie algebra and �x a splitting Cartan

subalgebra h of g

�

. In the algebrai
 
ontext, a Lie algebra g is said to be �-graded if it 
ontains

g

�

and g de
omposes as follows as a dire
t sum of simultaneous ad h-eigenspa
es

g = g

0

�

M

�2�

g

�

; and g

0

=

X

�2�

[g

�

; g

��

℄:

It is easy to see that the latter requirement is equivalent to g being generated by the root

spa
es g

�

, � 2 �, and that it implies in parti
ular that g = [g; g℄ , i.e., that g is a perfe
t

Lie algebra. Re
all that two perfe
t Lie algebras g

1

and g

2

are 
alled (
entrally) isogenous

if g

1

=z(g

1

)

�

=

g

2

=z(g

2

). A perfe
t Lie algebra g has a unique universal 
entral extension

e

g ,


alled its universal 
overing algebra ([We95, Th. 7.9.2℄). Two isogenous perfe
t Lie algebras have

isomorphi
 universal 
entral extensions, so that the isogeny 
lass of g 
onsists of all quotients of

e

g by 
entral subspa
es.

The systemati
 study of root graded Lie algebras was initiated by S. Berman and R. Moody

in [BM92℄, where they studied Lie algebras graded by simply la
ed root systems, i.e., types A ,

D and E . The 
lassi�
ation of �-graded Lie algebras pro
eeds in two steps. First one 
onsiders

isogeny 
lasses of �-graded Lie algebras and then des
ribes the elements of a �xed isogeny 
lass as

quotients of the 
orresponding universal 
overing Lie algebra. Berman and Moody show that for

a �xed simply la
ed root system of type � the isogeny 
lasses are in one-to-one 
orresponden
e

with 
ertain 
lasses of unital 
oordinate algebras whi
h are

(1) 
ommutative asso
iate algebras for types D

r

, r � 4, E

6

, E

7

and E

8

,

(2) asso
iative algebras for type A

r

, r � 3, and

(3) alternative algebras for type A

2

.

The 
orresponding result for type A

1

is that the 
oordinate algebra is a Jordan algebra,

whi
h goes ba
k to results of J. Tits ([Ti62℄).

Corresponding results for non-simply la
ed root systems have been obtain by G. Benkart

and E. Zelmanov in [BZ96℄, where they also deal with the A

1

-
ase. In these 
ases the isogeny
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lasses are determined by a 
lass of 
oordinate algebras, whi
h mostly is endowed with an

involution, where the de
omposition of the algebra into eigenspa
es of the involution 
orresponds

to the division of roots into short and long ones. Based on the observation that all root systems

ex
ept E

8

, F

4

, and G

2

are 3-graded, E. Neher obtains in [Neh96℄ a uniform des
ription of the


oordinate algebras of 3-graded Lie algebras by Jordan theoreti
 methods. Neher's approa
h is

based on the observation that if � is 3-graded, then ea
h �-graded Lie algebra 
an also be


onsidered as an A

1

-graded Lie algebra, whi
h leads to a unital Jordan algebra as 
oordinate

algebra. Then one has to identify the types of Jordan algebras 
orresponding to the di�erent

root systems.

The 
lassi�
ation of root graded Lie algebras was 
ompleted by B. Allison, G. Benkart

and Y. Gao in [ABG00℄. They give a uniform des
ription of the isogeny 
lasses as quotients

of a unique Lie algebra

e

g(�;A), depending only on the root system � and the 
oordinate

algebra A , by 
entral subspa
es. Their 
onstru
tion implies in parti
ular the existen
e of a

fun
tor A 7!

e

g(�;A) from the 
ategory of 
oordinate algebras asso
iated to � to 
entrally


losed �-graded Lie algebras.

Apart from split simple Lie algebras, there are two prominent 
lasses of root graded Lie

algebras, whi
h have been studied in the literature from a di�erent point of view. The �rst


lass are the aÆne Ka
{Moody algebras whi
h 
an be des
ribed as root graded Lie algebras

([Ka90, Ch. 6℄ and Example I.11 below). The other large 
lass are the isotropi
 �nite-dimensional

simple Lie algebras g over �elds of 
hara
teristi
 zero. These Lie algebras have a restri
ted root

de
omposition with respe
t to a maximal toral subalgebra h

1

. The 
orresponding root system

� is irredu
ible, but it may also be non-redu
ed, i.e., of type BC

r

([Se76℄). If it is redu
ed,

then g is �-graded in the sense de�ned above. In the general 
ase, one needs the notion of

BC

r

-graded Lie algebras whi
h has been developed by B. Allison, G. Benkart and Y. Gao in

[ABG02℄. Sin
e three di�erent root lengths o

ur in BC

r

, we 
all the shortest ones the short

roots, the longest ones the extra-long roots, and the other roots long. The main di�eren
e to the

redu
ed 
ase is that there 
annot be any grading subalgebra of type BC

r

, so that one has to

distinguish between di�erent types, where the grading subalgebra is either of type B

r

(the short

and the long roots), type C

r

(the long and the extra-long roots), or of type D

r

(the long roots).

The theory of root graded Lie algebras has a very geometri
 
avor be
ause the 
oordinati-

zation theorems for the di�erent types of root systems are very similar to 
ertain 
oordinatization

results in syntheti
 geometry. That the Lie algebra g under 
onsideration is simple implies that

the 
oordinate algebra is simple, too. In geometri
 
ontexts, in addition, the 
oordinate algebras

are mostly division algebras or forms of division algebras. For a ni
e a

ount on the geometry of

groups 
orresponding to the root systems A

2

, B

2

�

=

C

2

and G

2

we refer to the memoir [Fa77℄

of J. R. Faulkner. Here type A

2


orresponds to generalized triangles, type B

2

to generalized

quadrangles and G

2

to generalized hexagons.

An important motivation for the algebrai
 theory of root graded Lie algebras was to �nd a


lass of Lie algebras 
ontaining aÆne Ka
{Moody algebras ([Ka90℄), isotropi
 �nite-dimensional

simple Lie algebras ([Se76℄), 
ertain ones of Slodowy's interse
tion matrix algebras ([Sl86℄), and

extended aÆne Lie algebras (EALAs) ([AABGP97℄), whi
h 
an roughly be 
onsidered as those

root graded Lie algebras with a root de
omposition. Sin
e a general stru
ture theory of in�nite-

dimensional Lie algebras does not exist, it is important to single out large 
lasses with a uniform

stru
ture theory. The 
lass of root graded Lie algebras satis�es all these requirements in a

very natural fashion. It is the main point of the present paper to show that root graded Lie

algebras 
an also be dealt with in a natural fashion in a topologi
al 
ontext, where it 
overs

many important 
lasses of Lie algebras, arising in su
h diverse 
ontexts as mathemati
al physi
s,

operator theory and geometry.

With the present paper we start a proje
t whi
h 
onne
ts the ri
h theory of root graded Lie

algebras, whi
h has been developed so far on a purely algebrai
 level, to the theory of in�nite-

dimensional Lie groups. A Lie group G is a manifold modeled on a lo
ally 
onvex spa
e g whi
h


arries a group stru
ture for whi
h the multipli
ation and the inversion map are smooth ([Mi83℄,

[Gl01a℄, [Ne02b℄). Identifying elements of the tangent spa
e g := T

1

(G) of G in the identity 1

1

We 
all a subalgebra t of a Lie algebra g toral if ad t�der(g) 
onsists of diagonalizable endomorphisms.
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with left invariant ve
tor �elds, we obtain on g the stru
ture of a lo
ally 
onvex Lie algebra, i.e.,

a Lie algebra whi
h is a lo
ally 
onvex spa
e and whose Lie bra
ket is 
ontinuous. Therefore

the 
ategory of lo
ally 
onvex Lie algebras is the natural setup for the \in�nitesimal part" of

in�nite-dimensional Lie theory. In addition, it is an important stru
tural feature of lo
ally 
onvex

spa
es that they have natural tensor produ
ts.

In Se
tion I we explain how the 
on
ept of a root graded Lie algebra 
an be adapted to

the 
lass of lo
ally 
onvex Lie algebras. The main di�eren
e to the algebrai
 
on
ept is that

one repla
es the 
ondition that

P

�2�

[g

�

; g

��

℄ 
oin
ides with g

0

by the requirement that it is

a dense subspa
e of g

0

. This turns out to make the theory of lo
ally 
onvex root graded Lie

algebras somewhat harder than the algebrai
 theory, but it is natural, as a 
loser inspe
tion

of the topologi
al versions of the Lie algebras sl

n

(A) for lo
ally 
onvex asso
iative algebras A

shows. In Se
tion I we also dis
uss some natural 
lasses of \
lassi
al" lo
ally 
onvex root graded

Lie algebras su
h as symple
ti
 and orthogonal Lie algebras and the Tits{Kantor{Koe
her{Lie

algebras asso
iated to Jordan algebras.

In Se
tion II we undertake a detailed analysis of lo
ally 
onvex root graded Lie algebras.

Here the main point is that the a
tion of the grading subalgebra g

�

on g is semisimple with

at most three isotypi
al 
omponents, into whi
h g de
omposes topologi
ally. The 
orresponding

simple modules are the trivial module K 2 fR; C g , the adjoint module g

�

and the simple module

V

s

whose highest weight is the maximal short root with respe
t to a positive system �

+

� �.

In the algebrai
 
ontext, the de
omposition of g is a dire
t 
onsequen
e of Weyl's Theorem, but

here we need that the isotypi
al proje
tions are 
ontinuous operators, a fa
t whi
h 
an be derived

from the fa
t that they 
ome from the 
enter of the enveloping algebra U(g

�

). The underlying

algebrai
 arguments are provided in Appendix A. If A , B , resp., D , are the multipli
ity spa
es

with respe
t to g

�

, V

s

, resp., K , then g de
omposes topologi
ally as

g = (A
 g

�

)� (B 
 V

s

)�D:

A 
entral point in our stru
tural analysis is that the dire
t sum A := A � B 
arries a natural

(not ne
essarily asso
iative) unital lo
ally 
onvex algebra stru
ture, that D a
ts by derivations

on A , and that we have a 
ontinuous alternating map Æ

D

:A � A ! D satisfying a 
ertain


o
y
le 
ondition. Here the type of the root system � di
tates 
ertain identities for the mul-

tipli
ation on A , whi
h leads to the 
oordinatization results mentioned above ([BM92℄, [BZ96℄

and [Neh96℄). The main new point here is that A inherits a natural lo
ally 
onvex stru
ture,

that the multipli
ation is 
ontinuous and that all the related maps su
h as Æ

D

are 
ontinuous.

In the algebrai
 
ontext, the 
oordinate algebra A and the root system � 
lassify the

isogeny 
lasses. The isogeny 
lass of g 
ontains a unique 
entrally 
losed Lie algebra

e

g and

a unique 
enter-free Lie algebra g=z(g). In the lo
ally 
onvex 
ontext, the situation is more

subtle be
ause we have to work with generalized 
entral extensions instead of ordinary 
entral

extensions: a morphism q:

b

g ! g of lo
ally 
onvex Lie algebras is 
alled a generalized 
entral

extension if it has dense range and there exists a 
ontinuous bilinear map b: g� g!

b

g for whi
h

b Æ (q � q) is the Lie bra
ket on

b

g . The subtlety of this 
on
ept is that q need not be surje
tive

and if it is surje
tive, it does not need to be a quotient map. Fortunately these diÆ
ulties are


ompensated by the ni
e fa
t that ea
h topologi
ally perfe
t Lie algebra g , meaning that the


ommutator algebra is dense, has a universal generalized 
entral extension, 
alled the universal


overing Lie algebra

e

g . The basi
 results on generalized 
entral extensions are developed in

Se
tion III.

In Se
tion IV we apply this 
on
ept to lo
ally 
onvex root graded Lie algebras and show

that the des
ription of the universal 
overing Lie algebra 
an be translated from the algebrai



ontext ([ABG00℄) to the lo
ally 
onvex 
ontext without extra te
hni
al work. Here a 
entral

point is that for any generalized 
entral extension q:

b

g! g the Lie algebra

b

g is �-graded if and

only if g is �-graded. This means that generalized isogeny 
lasses 
ontain a �-graded element if

and only if they entirely 
onsist of �-graded Lie algebras. Moreover, we show that the universal


overing Lie algebra of a �-graded Lie algebra only depends on the root system � and the


oordinate algebra A . Therefore the universal 
overing Lie algebra deserves the name

e

g(�;A),

and it turns out that the assignment A 7!

e

g(�;A) is fun
torial.
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We thus obtain a lo
ally 
onvex version of isogeny 
lasses. They still have the property

that they 
ontain a unique 
entrally 
losed member be
ause all Lie algebras in the 
lass have

the same universal 
overing, but unfortunately there might be several 
enter-free Lie algebras

with the same universal 
overing. This is due to the fa
t that the Lie algebras of the 
lass are

obtained from the 
entrally 
losed Lie algebra

e

g by generalized 
entral extensions q

g

:

e

g! g . As

q

g

is not ne
essarily a quotient map, the topology on g is not determined by the topology on

e

g

(Example III.15, Example IV.16).

A Lie group G is said to be �-graded if its Lie algebra L(G) is �-graded. It is a natural

question whi
h root graded lo
ally 
onvex Lie algebras g are integrable in the sense that they

are the Lie algebra of a Lie group G . Although this question always has an aÆrmative answer if

g is �nite-dimensional, it turns out to be a diÆ
ult problem to de
ide integrability for in�nite-

dimensional Lie algebras. These global questions will be pursued in another paper ([Ne03b℄, see

also [Ne03a℄). In Se
tion V we give an outline of the global side of the theory and explain how it

is related to K -theory and non-
ommutative geometry. One of the main points is that, in view

of the results of Se
tion V, it mainly boils down to showing that at least one member g of an

isogeny 
lass is integrable and then analyze the situation for the universal 
overing Lie algebra

e

g .

A
knowledgement: I am grateful to B. Allison for several extremely useful remarks 
on-


erning the stru
ture of root graded Lie algebras. I further thank H. Biller, H. Gl�o
kner and

R. Gramli
h for their 
riti
al and 
areful proof reading of the paper.

Preliminaries and notation

The theory of root graded Lie algebras is a subje
t with great aestheti
 appeal and ri
h


onne
tions to many other �elds of mathemati
s. We therefore tried to keep the exposition

of the present paper as self-
ontained as possible to make it a

essible to readers from di�erent

mathemati
al sub
ultures. In parti
ular we in
lude proofs for those results on the stru
ture of the


oordinate algebras whi
h 
an be obtained by short elementary arguments; for the more re�ned

stru
ture theory related to the ex
eptional and the low rank algebras we refer to the literature.

On the algebrai
 level we essentially build on the representation theory of �nite-dimensional

semisimple split Lie algebras (
f. [Dix74℄ or [Hum72℄); the required Jordan theoreti
 results are

elementary and provided in Appendi
es B and C. On the fun
tional analyti
 level we do not

need mu
h more than some elementary fa
ts on lo
ally 
onvex spa
es su
h as the existen
e of

the proje
tive tensor produ
t.

All lo
ally 
onvex spa
es in this paper are ve
tor spa
es over K 2 fR; C g . If X and Y are

lo
ally 
onvex spa
es, then we write Lin(X;Y ) for the spa
e of 
ontinuous linear maps X ! Y .

A lo
ally 
onvex algebra A is a lo
ally 
onvex topologi
al ve
tor spa
e together with a


ontinuous bilinear map A�A ! A . In parti
ular a lo
ally 
onvex Lie algebra g is a Lie algebra

whi
h is a lo
ally 
onvex spa
e for whi
h the Lie bra
ket is a 
ontinuous bilinear map g� g! g .

The assumption that the topologi
al Lie algebras we 
onsider are lo
ally 
onvex spa
es is

motivated by the fa
t that su
h Lie algebras arise naturally as Lie algebras of Lie groups and

by the existen
e of tensor produ
ts, whi
h will be used in Se
tion III to 
onstru
t the universal


overing Lie algebra. Tensor produ
ts of lo
ally 
onvex spa
es are de�ned as follows.

Let E and F be lo
ally 
onvex spa
es. On the tensor produ
t E
F there exists a natural

lo
ally 
onvex topology, 
alled the proje
tive topology. It is de�ned by the seminorms

(p
 q)(x) = inf

n

n

X

j=1

p(y

j

)q(z

j

):x =

X

j

y

j


 z

j

o

;

where p , resp., q are 
ontinuous seminorms on E , resp., F (
f. [Tr67, Prop. 43.4℄). We write

E


�

F for the lo
ally 
onvex spa
e obtained by endowing E
F with the lo
ally 
onvex topology

de�ned by this family of seminorms. It is 
alled the proje
tive tensor produ
t of E and F . It has

the universal property that for a lo
ally 
onvex spa
e G the 
ontinuous bilinear maps E�F ! G

are in one-to-one 
orresponden
e with the 
ontinuous linear maps E


�

F ! G . We write E

b




�

F
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for the 
ompletion of the proje
tive tensor produ
t of E and F . If E and F are Fr�e
het spa
es,

their topology is de�ned by a 
ountable family of seminorms, and this property is inherited by

E

b




�

F . Hen
e this spa
e is also Fr�e
het.

If E and F are Fr�e
het spa
es, then every element � of the 
ompletion E

b




�

F 
an be

written as � =

P

1

n=1

�

n

x

n


 y

n

; where � 2 `

1

(N;K ) and lim

n!1

x

n

= lim

n!1

y

n

= 0 ([Tr67,

Th. 45.1℄). If, in addition, E and F are Bana
h spa
es, then the tensor produ
t of the two

norms is a norm de�ning the topology on E
F and E

b




�

F also is a Bana
h spa
e. For k�k < 1

we then obtain a representation with k�k

1

< 1 and kx

n

k; ky

n

k < 1 for all n 2 N ([Tr67, p.465℄).

I. Root graded Lie algebras

In this se
tion we introdu
e lo
ally 
onvex root graded Lie algebras. In the algebrai
 setting it

is natural to require that root graded Lie algebras are generated by their root spa
es, but in the

topologi
al 
ontext this 
ondition would be unnaturally strong. Therefore it is weakened to the

requirement that the root spa
es generate the Lie algebra topologi
ally. As we will see below,

this weaker 
ondition 
auses several diÆ
ulties whi
h are not present in the algebrai
 setting,

but this defe
t is 
ompensated by the well behaved theory of generalized 
entral extensions (see

Se
tion IV).

De�nition I.1. Let � be a �nite irredu
ible redu
ed root system and g

�

the 
orresponding

�nite-dimensional 
omplex simple Lie algebra.

A lo
ally 
onvex Lie algebra g is said to be �-graded if the following 
onditions are satis�ed:

(R1) g is a dire
t sum g = g

0

�

L

�2�

g

�

.

(R2)There exist elements x

�

2 g

�

, � 6= 0, and a subspa
e h � g

0

with g

�

�

=

h+

P

�2�

Kx

�

.

(R3)For � 2 � [ f0g we have g

�

= fx 2 g: (8h 2 h) [h; x℄ = �(x)hg , where we identify � with

a subset of h

�

.

(R4)

P

�2�

[g

�

; g

��

℄ is dense in g

0

.

The subalgebra g

�

of g is 
alled a grading subalgebra. We say that g is root graded if g is

�-graded for some �.

A slight variation of the 
on
ept of a �-graded Lie algebra is obtained by repla
ing (R2)

by

(R2') There exist a sub-root system �

0

� � and elements x

�

2 g

�

, � 2 �

0

, and a subspa
e

h � g

0

with g

�

0

�

=

h+

P

�2�

0

Kx

�

.

A Lie algebra satisfying (R1), (R2'), (R3) and (R4) is 
alled (�;�

0

)-graded.

Remark I.2. (a) Suppose that a lo
ally 
onvex Lie algebra g satis�es (R1)-(R3). Then the

subspa
e

X

�2�

g

�

+

X

�2�

[g

�

; g

��

℄

is invariant under ea
h root spa
e g

�

and also under g

0

, hen
e an ideal. Therefore its 
losure

satis�es (R1)-(R4), hen
e is a �-graded Lie algebra.

(b) Sometimes one starts with the subalgebra h � g and the 
orresponding weight spa
e

de
omposition, so that we have (R1) and (R3). Let � be a basis of the root system � � h

�

and �� ,

� 2 �, the 
oroots. If there exist elements x

��

2 g

��

for � 2 � su
h that [x

�

; x

��

℄ = ��; then

we 
onsider the subalgebra g

�

� g generated by fx

��

:� 2 �g . Then the weight de
omposition

of g with weight set � [ f0g easily implies that the generators x

��

, � 2 �; satisfy the Serre

relations, and therefore that g

�

is a split simple Lie algebra with root system � satisfying (R2).

Remark I.3. (a) In the algebrai
 
ontext one repla
es (R4) by the requirement that g

0

=

P

�2�

[g

�

; g

��

℄ . This is equivalent to g being generated by the spa
es g

�

, � 2 �.

(b) The 
on
ept of a �-graded Lie algebra 
an be de�ned over any �eld of 
hara
teristi
 0.

Here it already o

urs in the 
lassi�
ation theory of simple Lie algebras as follows. Let g be
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a simple Lie algebra whi
h is isotropi
 in the sense that it 
ontains non-zero elements x for

whi
h adx is diagonalizable. The latter 
ondition is equivalent to the existen
e of a subalgebra

isomorphi
 to sl

2

(K ) . Let h � g be a maximal toral subalgebra h � g . Then g has an h-

weight de
omposition, and the 
orresponding set of weights � � h

�

is a not ne
essarily redu
ed

irredu
ible root system (
f. [Se76, pp.10/11℄). If this root system is redu
ed, then one 
an use

the method from Remark I.2(b) to show that g is �-graded in the sense de�ned above. For

restri
ted root systems of type BC

r

this argument produ
es grading subalgebras of type C

r

,

hen
e (BC

r

; C

r

)-graded Lie algebras ([Se76℄).

(
) (R4) implies in parti
ular that g is topologi
ally perfe
t, i.e., that g

0

:= [g; g℄ = g .

(d) Suppose that g is �-graded and

d � der

�

(g) := fD 2 der(g): (8� 2 �)D:g

�

� g

�

g

is a Lie subalgebra with a lo
ally 
onvex stru
ture for whi
h the a
tion d� g! g is 
ontinuous.

Then go d satis�es (R1){(R3) with (go d)

0

= g

0

o d .

Examples of root graded Lie algebras

Example I.4. Let � be a redu
ed �nite root system and g

�

be the 
orresponding simple

split K -Lie algebra. If A is a lo
ally 
onvex asso
iative 
ommutative algebra with unit 1 , then

g := A
 g

�

is a lo
ally 
onvex �-graded Lie algebra with respe
t to the bra
ket

[a
 x; a

0


 x

0

℄ := aa

0


 [x; x

0

℄:

The embedding g

�

,! g is given by x 7! 1
 x .

Example I.5. Now let A be an asso
iative unital lo
ally 
onvex algebra. Then the (n � n)-

matrix algebra M

n

(A)

�

=

A
M

n

(K ) also is a lo
ally 
onvex asso
iative algebra. We write gl

n

(A)

for this algebra, endowed with the 
ommutator bra
ket and

g := [gl

n

(A); gl

n

(A)℄

for the 
losure of the 
ommutator algebra of gl

n

(A). We 
laim that this is an A

n�1

-graded Lie

algebra with grading subalgebra g

�

= 1
 sl

n

(K ) . It is 
lear that g

�

is a subalgebra of g . Let

h :=

n

diag(x

1

; : : : ; x

n

):x

1

; : : : ; x

n

2 K ;

X

j

x

j

= 0

o

� g

�

denote the 
anoni
al Cartan subalgebra and de�ne linear fun
tionals "

j

on h by

"

j

(diag(x

1

; : : : ; x

n

)) = x

j

:

Then the weight spa
e de
omposition of g satis�es

g

"

i

�"

j

= A
E

ij

; i 6= j;

where E

ij

is the matrix with one non-zero entry 1 in position (i; j). From

[aE

ij

; bE

kl

℄ = abÆ

jk

E

il

� baÆ

li

E

kj

we derive that

[aE

ij

; bE

ji

℄ = abE

ii

� baE

jj

2 [a; b℄
E

ii

+A
 sl

n

(K ) 2

1

n

[a; b℄
 1+A
 sl

n

(K ):
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In view of A
 sl

n

(K ) = [g

�

; g℄ � [g; g℄ , it is now easy to see that

g

0

=

n

diag(a

1

; : : : ; a

n

):

X

j

a

j

2 [A;A℄

o

= (A
 h)� ([A;A℄ 
 1):

From the formulas above, we also see that (R4) is satis�ed, so that g is an A

n�1

-graded lo
ally


onvex Lie algebra.

We have a natural non-
ommutative tra
e map

Tr: gl

n

(A)! A=[A;A℄; x 7!

h

n

X

j=1

x

jj

i

;

where [a℄ denotes the 
lass of a 2 A in A=[A;A℄ . Then the dis
ussion above implies that

sl

n

(A) := kerTr = g = (A
 sl

n

(K )) � ([A;A℄ 
 1):

To prepare the dis
ussion in Se
tion II below, we des
ribe the Lie bra
ket in sl

n

(A) in terms of

the above dire
t sum de
omposition. First we note that in gl

n

(A) we have

[a
 x; a

0


 x

0

℄ = aa

0


 xx

0

� a

0

a
 x

0

x =

aa

0

+ a

0

a

2


 [x; x

0

℄ +

1

2

[a; a

0

℄
 (xx

0

+ x

0

x):

For x; x

0

2 sl

n

(K ) we have

x � x

0

:= xx

0

+ x

0

x� 2

tr(xx

0

)

n

1 2 sl

n

(K );

so that for a; a

0

2 A and x; x

0

2 sl

n

(K ) we have

(1:1) [a
 x; a

0


 x

0

℄ =

�

aa

0

+ a

0

a

2


 [x; x

0

℄ +

1

2

[a; a

0

℄
 x � x

0

�

+ [a; a

0

℄


tr(xx

0

)

n

1;

a

ording to the dire
t sum de
omposition sl

n

(K ) = (A
 sl

n

(K )) � ([A;A℄
 1); and

[d
 1; a
 x℄ = [d; a℄
 x; a; d 2 A; x 2 sl

n

(K ):

Remark I.6. A Lie algebra g 
an be root graded in several di�erent ways. Let s � g be a

subalgebra with s = spanfh; e; fg

�

=

sl

2

(K ) and the relations

[h; e℄ = 2e; [h; f ℄ = �2f and [e; f ℄ = h:

If ad

g

h is diagonalizable with Spe
(ad

g

h) = f2; 0;�2g , then the eigenspa
es of ad

g

h yield on

g the stru
ture of an A

1

-grading with g

�

:= s . This shows in parti
ular that for any asso
iative

algebra A the Lie algebra sl

n

(A), n � 3; has many di�erent A

1

-gradings in addition to its

natural A

n�1

-grading.

Example I.7. Let A be a lo
ally 
onvex unital asso
iative algebra with a 
ontinuous involution

�: a 7! a

�

, i.e., � is a 
ontinuous involutive linear antiautomorphism:

(ab)

�

= b

�

a

�

and (a

�

)

�

= a; a; b 2 A:

If � = id

A

, then A is 
ommutative. We write

A

��

:= fa 2 A: a

�

= �ag

and observe that A = A

�

�A

��

, where A

�

is a subalgebra.
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The involution � extends in a natural way to an involution of the lo
ally 
onvex algebra

M

n

(A) of n�n-matri
es with entries in A by (x

ij

)

�

:= (x

�

ji

): If � = id

A

, then x

�

= x

>

is just

the transposed matrix.

(a) Let 1 2M

n

(A) be the identity matrix and de�ne

J :=

�

0 �1

1 0

�

2M

2n

(A):

Then J

2

= �1 , and

sp

2n

(A; �) := fx 2 gl

2n

(A): Jx

�

J

�1

= �xg

is a 
losed Lie subalgebra of gl

2n

(A). Writing x as a (2 � 2)-matrix

�

a b


 d

�

2 M

2

(M

n

(A));

this means that

sp

2n

(A; �) =

n

�

a b


 �a

�

�

2 gl

2n

(A): b

�

= b; 


�

= 


o

:

For A = K we have � = id, and we obtain sp

2n

(K ; id

K

) = sp

2n

(K ) . With the identity

element 1 2 A we obtain an embedding K

�

=

K1 ,! A , and hen
e an embedding

sp

2n

(K ) ,! sp

2n

(A; �):

Let

h := fdiag(x

1

; : : : ; x

n

;�x

1

; : : : ;�x

n

):x

1

; : : : ; x

n

2 Kg

denote the 
anoni
al Cartan subalgebra of sp

2n

(K ). Then the h-weights with respe
t to the

adjoint a
tion of h on sp

2n

(A; �) 
oin
ide with the set

� = f�"

i

� "

j

: i; j = 1; : : : ; ng

of roots of sp

2n

(K ), where "

j

(diag(x

1

; : : : ; x

n

;�x

1

; : : : ;�x

n

)) = x

j

for j = 1; : : : ; n . Typi
al

root spa
es are

g

"

i

�"

j

= A
 (E

ij

�E

j+n;i+n

); g

"

i

+"

j

= faE

i;j+n

+ a

�

E

j;i+n

: a 2 Ag; i 6= j;

g

2"

j

= A

�

E

j;j+n

; and g

0

= fdiag(a

1

; : : : ; a

n

;�a

�

1

; : : : ;�a

�

n

): a

1

; : : : ; a

n

2 Ag:

The 
entralizer of the subalgebra sp

2n

(K ) is

z

sp

2n

(A;�)

(sp

2n

(K )) = A

��

1;

and therefore

sp

2n

(A; �) = [sp

2n

(K ); sp

2n

(A; �)℄�A

��

1:

From Example I.5 we know that a ne
essary 
ondition for an element a1 to be 
ontained in the


ommutator algebra of gl

2n

(A) is a 2 [A;A℄ . On the other hand, the embedding

sl

n

(A) ,! sp

2n

(A; �); a 7!

�

a 0

0 �a

�

�

implies that the elements

�

a 0

0 �a

�

�

; a 2 [A;A℄

are 
ontained in the 
losure sp

2n

(A; �)

0

of the 
ommutator algebra of sp

2n

(A; �). This proves

that

sp

2n

(A; �)

0

= [sp

2n

(K ); sp

2n

(A; �)℄ � [A;A℄

��


 1:

Using Example I.5 again, we now obtain (R4), and therefore that sp

2n

(A; �)

0

is a C

n

-graded Lie

algebra with grading subalgebra sp

2n

(K ) .
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The pre
eding des
ription of the 
ommutator algebra shows that ea
h element x =

�

a b


 �a

�

�

2 sp

2n

(A; �)

0

satis�es

tr(x) = tr(a� a

�

) = tr(a)� tr(a)

�

2 [A;A℄:

That the latter 
ondition is suÆ
ient for x being 
ontained in sp

2n

(A; �)

0

follows from

sp

2n

(A; �) = [sp

2n

(K ); sp

2n

(A)℄�A

��


 1:

The Lie algebra sp

2n

(A; �) also has a natural 3-grading

sp

2n

(A; �) = sp

2n

(A; �)

+

� sp

2n

(A; �)

0

� sp

2n

(A; �)

�

with

sp

2n

(A; �)

�

�

=

Herm

n

(A; �) := fx 2M

n

(A):x

�

= xg and sp

2n

(A; �)

0

�

=

gl

n

(A);

obtained from the (2� 2)-matrix stru
ture.

(b) Now we 
onsider the symmetri
 matrix

I :=

�

0 1

1 0

�

2M

2n

(A);

whi
h satis�es I

2

= 1 . We de�ne the asso
iate 
losed Lie subalgebra of gl

2n

(A) by

o

n;n

(A; �) := fx 2 gl

2n

(A): Ix

�

I

�1

= �xg =

n

�

a b


 �a

�

�

2 gl

2n

(A): b

�

= �b; 


�

= �


o

:

For A = K we have � = id, and we obtain o

n;n

(K ; id

K

) = o

n;n

(K ). With the identity

element 1 2 A we obtain an embedding K

�

=

K1 ,! A , and hen
e an embedding

o

n;n

(K ) ,! o

n;n

(A; �):

Again,

h := fdiag(x

1

; : : : ; x

n

;�x

1

; : : : ;�x

n

):x

1

; : : : ; x

n

2 Kg

is the 
anoni
al Cartan subalgebra of o

n;n

(K ) . The h-weights with respe
t to the adjoint a
tion

of h on o

n;n

(A; �) 
oin
ide with the set

� = f�"

i

� "

j

: i; j = 1; : : : ; ng:

Typi
al root spa
es are

g

"

i

�"

j

= A
 (E

ij

�E

j+n;i+n

); g

"

i

+"

j

= faE

i;j+n

� a

�

E

j;i+n

: a 2 Ag; i 6= j;

g

2"

j

= A

��

E

j;j+n

; and g

0

= fdiag(a

1

; : : : ; a

n

;�a

�

1

; : : : ;�a

�

n

): a

1

; : : : ; a

n

2 Ag:

The root spa
es g

2"

j

are non-zero if and only if A

��

6= f0g , whi
h is equivalent to � 6= id

A

.

As in (a), we obtain

z

o

n;n

(A)

(o

n;n

(K )) = A

��


 1; o

n;n

(A) = [o

n;n

(K ); o

n;n

(A)℄ �A

��


 1;

and

o

n;n

(A)

0

= [o

n;n

(K ); o

n;n

(A)℄� [A;A℄

��


 1:

If �

A

= id

A

, then � is of type D

n

, the root system of o

n;n

(K ), and o

n;n

(A) := o

n;n

(A; id

A

) is

a D

n

-graded Lie algebra. In this 
ase A = A

�

, and

o

n;n

(A)

�

=

A
 o

n;n

(K );

so that this 
ase is also 
overed by Example I.4.

If �

A

6= id

A

, then we obtain a (C

n

; D

n

)-graded Lie algebra with grading subalgebra

o

n;n

(K ) of type D

n

.
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Lemma I.8. Let K be a �eld with 2 2 K

�

. For x; y; z 2 sl

2

(K ) we have the relations

(1:2) xy + yx = tr(xy)1;

and

(1:3) [x; [y; z℄℄ = 2 tr(xy)z � 2 tr(xz)y:

Proof. For x 2 sl

2

(K ) let

p(t) = det(t1� x) = t

2

� trx � t+ detx = t

2

+ detx

denote the 
hara
teristi
 polynomial of x . Then the Cayley{Hamilton Theorem implies

0 = p(x) = x

2

+ (det x)1:

On the other hand �2 detx = trx

2

follows by 
onsideration of eigenvalues �� of x in

a quadrati
 extension of K . We therefore obtain 2x

2

� tr(x

2

)1 = 2x

2

+ 2(detx)1 = 0: By

polarization (taking derivatives in dire
tion y ), we obtain from 2x

2

= tr(x

2

)1 the relation

2xy + 2yx = tr(xy + yx)1 = 2 tr(xy)1 , whi
h leads to

xy + yx = tr(xy)1:

We further get

tr(xy)z � tr(xz)y = (xy + yx)z � y(xz + zx) = xyz � yzx = [x; yz℄ =

1

2

[x; [y; z℄ + (yz + zy)℄

=

1

2

[x; [y; z℄ + tr(yz)1℄ =

1

2

[x; [y; z℄℄:

Example I.9. (a) Let J be a lo
ally 
onvex Jordan algebra with identity 1 (
f. Appendix B).

We endow the spa
e J 
 J with the proje
tive tensor produ
t topology and de�ne

hJ; Ji := (J 
 J)=I;

where I � J 
 J is the 
losed subspa
e generated by the elements of the form a
 a and

ab
 
+ b

 a+ 
a
 b; a; b; 
 2 J:

We write ha; bi for the image of a
 b in hJ; Ji . Then

ha; bi = �hb; ai and hab; 
i+ hb
; ai+ h
a; bi = 0; a; b; 
 2 J:

It follows in parti
ular that h1; 
i+ 2h
;1i = 0, whi
h implies h1; 
i = 0 for ea
h 
 2 J .

Let L(a)b := ab denote the left multipli
ation in J . From the identity

[L(a); L(b
)℄ + [L(b); L(
a)℄ + [L(
); L(ab)℄ = 0

(Proposition B.2(1)) and the 
ontinuity of the maps (a; b; x) 7! [L(a); L(b)℄:x we derive that the

map

Æ

J

: J 
 J ! der(J); (a; b) 7! [L(a); L(b)℄

(
f. Corollary B.3 for the fa
t that it maps into der(J)) fa
tors through a map

Æ

J

: hJ; Ji ! der(J):
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It therefore makes sense to de�ne

(1:4) ha; bi:x := 2[L(a); L(b)℄:x; a; b; x 2 J:

We now de�ne a bilinear 
ontinuous bra
ket on

℄

TKK(J) := (J 
 sl

2

(K )) � hJ; Ji

by

[a
 x; a

0


 x

0

℄ := aa
 [x; x

0

℄ + ha; a

0

i tr(xx

0

); [ha; bi; 

 x℄ := ha; bi:

 x

[ha; bi; h
; di℄ := hha; bi:
; di+ h
; ha; bi:di:

The label TKK refers to Tits, Kantor and Koe
her who studied the relation between Jordan

algebras and Lie algebras from various viewpoints (see Appendi
es B and C). It is 
lear from

the de�nitions that if we endow

℄

TKK(J) with the natural lo
ally 
onvex topology turning it

into a topologi
al dire
t sum of J 
 sl

2

(K ) and hJ; Ji , then

℄

TKK(J) is a lo
ally 
onvex spa
e

with a 
ontinuous bra
ket. That the bra
ket is alternating follows for the hJ; Ji-term from the


al
ulation in Example III.10(3) below. To see that

℄

TKK(J) is a Lie algebra, it remains to verify

the Ja
obi identity. The trilinear map

J(�; �; 
) := [[�; �℄; 
℄ + [[�; 
℄; �℄ + [[
; �℄; �℄ =:

X


y
l:

[[�; �℄; 
℄

is alternating. Therefore we only have to show that it vanishes for entries in J 
 sl

2

(K ) and

hJ; Ji . The essential 
ase is where all elements are in J
sl

2

(K ) . In the last step of the following


al
ulation we use Lemma I.8:

[[a
 x; b
 y℄; 

 z℄ = [ab
 [x; y℄ + tr(xy)ha; bi; 

 z℄

= (ab)

 [[x; y℄; z℄ + tr([x; y℄z)hab; 
i+ ha; bi:

 tr(xy)z

= 2(ab)

 (tr(zy)x� tr(zx)y) + ha; bi:

 tr(xy)z + tr([x; y℄z)hab; 
i:

Now the vanishing of J(a
 x; b
 y; 

 z) follows from

X


y
l:

tr([x; y℄z)hab; 
i = tr([x; y℄z)

X


y
l:

hab; 
i = 0

and

(ha; bi:
� 2(b
)a+ 2(
a)b)
 tr(xy)z = 0:

Note that this also explains the fa
tor 2 in (1.4).

That the expression J(�; �; 
) vanishes if one entry is in hJ; Ji follows easily from the fa
t

that Æ(a; b) := 2[L(a); L(b)℄ 2 der(J). The 
ase where two entries are in hJ; Ji 
orresponds to

the relation

[Æ(a; b); Æ(
; d)℄ = Æ(ha; bi:
; d) + Æ(
; ha; bi:d)

in der(J), whi
h in turn follows from the fa
t that for any D 2 der(J) we have

[D; Æ(
; d) = 2[D; [L(
); L(d)℄℄ = 2[[D;L(
)℄; L(d)℄ + 2[L(
); [D;L(d)℄℄

= 2[L(D:
); L(d)℄ + 2[L(
); L(D:d)℄ = Æ(D:
; d) + Æ(
;D:d):

The 
ase where all entries of J(�; �; 
) are in hJ; Ji follows easily from the fa
t that the

representation of der(J) on J 
 J fa
tors through a Lie algebra representation on hJ; Ji given

by D:ha; bi = hD:a; bi + ha;D:bi . In this sense the latter three 
ases are dire
t 
onsequen
es of

the derivation property of the Æ(a; b)'s.

This proves that the bra
ket de�ned above is a Lie bra
ket on

℄

TKK(J). The assignment

J 7!

℄

TKK(J) is fun
torial. It is 
lear that ea
h derivation of J indu
es a natural derivation on
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℄

TKK(J) and that ea
h morphism of unital lo
ally 
onvex Jordan algebras ': J

1

! J

2

de�nes a

morphism

℄

TKK(J

1

)!

℄

TKK(J

2

) of lo
ally 
onvex Lie algebras.

It is interesting to observe that in general tensor produ
ts A 
 k of an algebra A and a

Lie algebra k 
arry only a natural Lie algebra stru
ture if A is 
ommutative and asso
iative

(Example I.4). For more general algebras one has to add an extra spa
e su
h as hJ; Ji for a

Jordan algebra J and k = sl

2

(K ) . The Ja
obi identity for

℄

TKK(J) very mu
h relies on the

identity for triple bra
kets in sl

2

(K ) from Lemma I.8 and the de�nition of the a
tion of ha; bi as

2[L(a); L(b)℄ .

We have a natural embedding of sl

2

(K ) into g as g

�

:= K1 
 sl

2

(K ) . Let h; e; f 2 sl

2

(K )

be a basis with

[h; e℄ = 2e; [h; f ℄ = �2f and [e; f ℄ = h:

Then h = Kh is a Cartan subalgebra of sl

2

(K ); and the 
orresponding eigenspa
e de
omposition

of g is given by

g

2

= J 
 e; g

�2

= J 
 f and g

0

= J 
 h� hJ; Ji:

In view of [g

�

; g℄ = J
sl

2

(K ) , the formula for the bra
ket implies that hJ; Ji � [g; g℄ , and hen
e

that g is an A

1

-graded lo
ally 
onvex Lie algebra.

(b) If A is a lo
ally 
onvex unital asso
iative algebra, then A also 
arries the stru
ture of a

lo
ally 
onvex unital Jordan algebra A

J

with respe
t to the produ
t

a Æ b :=

1

2

(ab+ ba):

It is interesting to 
ompare

℄

TKK(A

J

) with the lo
ally 
onvex Lie algebra sl

2

(A) dis
ussed in

Example I.5, where we have seen that with respe
t to the de
omposition

sl

2

(A) =

�

A
 sl

2

(K )

�

�

�

[A;A℄
 1

�

;

the Lie bra
ket is given by

[a
 x; b
 y℄ =

ab+ ba

2


 [x; y℄ +

1

2

[a; b℄
 x � y + [a; b℄


tr(xy)

n

1:

In view of (1.2), we have x � y = 0, so that we obtain the simpler formula

[a
 x; b
 y℄ = (a Æ b)
 [x; y℄ +

1

2

[a; b℄
 tr(xy)1:

Let L

a

(b) := ab and R

a

(b) := ba . Then the left multipli
ation in the Jordan algebra is

L(a) =

1

2

(L

a

+R

a

), and therefore ha; bi a
ts on A

J

as

2[L(a); L(b)℄ =

1

2

[L

a

+R

a

; L

b

+R

b

℄ =

1

2

([L

a

; L

b

℄ + [R

a

; R

b

℄) =

1

2

(L

[a;b℄

�R

[a;b℄

) =

1

2

ad([a; b℄):

From this it easily follows that

':

℄

TKK(A)! sl

2

(A); a
 x 7! a
 x; ha; bi 7!

1

2

[a; b℄
 1

de�nes a morphism of lo
ally 
onvex Lie algebras.

From the dis
ussion of the examples in Se
tion IV below, we will see that this homomor-

phism is in general neither inje
tive nor surje
tive.

(
) From the 
ontinuity of the map

hJ; Ji � J ! J; (ha; bi; x) 7! Æ

J

(a; b):x = ha; bi:x
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it follows that ker Æ

J

is a 
losed subspa
e of hJ; Ji . Hen
e the spa
e ider(J) := im(Æ

J

)

�

=

hJ; Ji= ker(Æ

J

) 
arries a natural lo
ally 
onvex topology as the quotient spa
e hJ; Ji= ker(Æ

J

).

The 
losed subspa
e ker(Æ

J

) � hJ; Ji also is a 
losed ideal of

℄

TKK(J). The quotient Lie

algebra

TKK(J) :=

℄

TKK(J)= ker(Æ

J

) = (J 
 sl

2

(K )) � ider(J)

is 
alled the topologi
al Tits{Kantor{Koe
her{Lie algebra asso
iated to the lo
ally 
onvex unital

Jordan algebra J . The bra
ket of this Lie algebra is given by

[a
 x; a

0


 x

0

℄ := aa
 [x; x

0

℄ + 2 tr(xx

0

)[L(a); L(a

0

)℄; [d; 

 x℄ := d:

 x

[d; d

0

℄ := dd

0

� d

0

d:

Mostly TKK(J) is written in a di�erent form, as J � istr(J) � J , where istr(J) :=

L(J) + ider(J) is the inner stru
ture Lie algebra of J . The 
orresponden
e between the two

pi
tures is given by the map

�:TKK(J)! J � istr(J)� J; a
 e+ b
 h+ 

 f + d 7! (a; 2L(b) + d; 
):

To understand the bra
ket in the produ
t pi
ture, we observe that

(L(a) + [L(b); L(
)℄):1 = a+ b(
1)� 
(b1) = a

implies

istr(J) = L(J)� [L(J); L(J)℄

�

=

J � [L(J); L(J)℄:

For ea
h derivation d of J we have [d; L(a)℄ = L(d:a), whi
h implies that

�(L(x) + [L(y); L(z)℄) = �L(x) + [L(y); L(z)℄

de�nes an involutive Lie algebra automorphism on istr(J). Now the bra
ket on J � istr(J)� J


an be des
ribed as

[(a; d; 
); (a

0

; d

0

; 


0

)℄

= (d:a

0

� d

0

:a; 2L(a


0

) + 2[L(a); L(


0

)℄� 2L(a

0


)� 2[L(a

0

); L(
)℄; �(d):


0

� �(d

0

):
):

From this formula it is 
lear that the map �(a; d; 
) := (
; �(d); a) de�nes an involutive automor-

phism of TKK(J).

Twisted loop algebras

There are also so-
alled twisted versions of the Lie algebras A
g

�

from Example I.4. The


onstru
tion is based on the following observation.

Let k be a split simple K -Lie algebra, h

k

� k a splitting Cartan subalgebra, and � a group

of automorphisms of k �xing a regular element of k in h

k

. Typi
al groups of this type arise

from the outer automorphisms of k , whi
h 
an be realised by automorphisms of k preserving the

root de
omposition and a positive system of roots (see Example I.10 below). Let k

�

denote the

subalgebra of all elements of k �xed by �. Then k

�


ontains a regular element x

0

of h

k

, and

therefore � preserves z

k

(x

0

) = h

k

. It follows in parti
ular that � permutes the h

k

-root spa
es

of k .

As h

�

:= h

k

\k

�

= h

�

k


ontains a regular element of k , it also is a splitting Cartan subalgebra

of k

�

. If �

k

is the root system of k and �

0

the root system of k

�

, then 
learly �

0

� �

k

j

h

� ,

but it may happen that the latter set still is a root system.
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Example I.10. Let � be a �nite group of automorphisms of k preserving the Cartan subalgebra

h

k

and su
h that the a
tion on the dual spa
e preserves a positive system �

+

k

of roots. By

averaging over the orbit of an element x 2 h

k

on whi
h all positive roots are positive, we then

obtain an element �xed by � on whi
h all positive roots are positive, so that this element is

regular in k .

Typi
al examples for this situation 
ome from 
y
li
 groups of diagram automorphisms:

(a) For type A

2r�1

we have

�

k

= f�("

i

� "

j

): i 6= j 2 f1; : : : ; 2rgg

on h

k

�

=

K

2r

: The non-trivial diagram automorphism � is an involution satisfying

�(x

1

; : : : ; x

2r

) = (�x

2r

; : : : ;�x

1

) and �("

i

) = �"

2r+1�i

:

We identify

h

�

= f(x

1

; : : : ; x

r

;�x

r

; : : : ;�x

1

):x

i

2 Kg

with K

r

by forgetting the last r entries. If R: h

�

k

! (h

�

)

�

is the restri
tion map, then

�

j

:= R("

j

� "

j+1

); j = 1; : : : ; r;

is a basis for the root system

R(�

k

) = f�"

i

� "

j

;�2"

j

: 1 � j < i � r; 1 � j � rg

of type C

r

.

(b) For type D

r+1

, r � 4, we have

�

k

= f�("

i

� "

j

): i 6= j 2 f1; : : : ; r + 1gg

on h

k

�

=

K

r+1

. A non-trivial diagram automorphism � is the involution

�(x

1

; : : : ; x

r+1

) = (x

1

; : : : ; x

r

;�x

r+1

):

We identify h

�

= f(x

1

; : : : ; x

r

; 0g with K

r

by forgetting the last entry. Then

R(�

k

) = f�("

i

� "

j

): i 6= j 2 f1; : : : ; rgg [ f"

j

: j = 1; : : : ; rg

is a root system of type B

r

.

(
) For the triality automorphism of D

4

of order 3, we obtain a root system �

0

of type G

2

.

(d) For the diagram involution of E

6

we obtain a root system �

0

of type F

4

.

It is not hard to verify that in all 
ases R(�

k

) is the root system of k

0

.

Now let k and � be as above and assume, in addition, that k

0

is simple with root system

�. We write g

�

:= k

�

, h := h

�

and assume that � 
oin
ides with R(�

k

), whi
h is the 
ase for

all 
y
li
 groups of diagram automorphisms.

Further let A be a lo
ally 
onvex 
ommutative unital asso
iative algebra on whi
h � a
ts by


ontinuous automorphisms. Then � also a
ts on the Lie algebra A
 k via 
:(a
x) := 
:a

:x .

We 
onsider the Lie subalgebra

g := (A
 k)

�

of �-�xed points in A 
 k . We 
learly have g � A

�


 g

�

� 1 
 g

�

. Moreover, the a
tion of

h = h

�

k

on A
 k 
ommutes with the a
tion of �, and our assumption implies that the h-weights

of h on A 
 k 
oin
ide with the root system �. This implies that g satis�es (R1){(R3) with

respe
t to the subalgebra g

�

, and therefore that the 
losure of the subalgebra generated by the

root spa
es is �-graded.

Example I.11. This 
onstru
tion 
overs in parti
ular all twisted loop algebras. In this 
ase

A = C

1

(T; C ), T = fz 2 C : jzj = 1g , and if � = h�i is generated by a diagram automorphism

� of order m , then we de�ne the a
tion of � on A by �(f)(z) = f(z�), where � is a primitive

m-th root of unity.

For �

k

of type A

2r�1

; D

r+1

; E

6

and D

4

, we thus obtain the twisted loop algebras of

type A

(2)

2r�1

; D

(2)

r+1

; E

(2)

6

and D

(3)

4

, and the 
orresponding root systems � are of type B

r

; C

r

; F

4

and G

2

([Ka90℄).
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(�;�

0

)-graded Lie algebras

Let � be a redu
ed irredu
ible root system and �

l

� � be the subset of long roots.

Suppose that �; � 2 �

l

with 
 := � + � 2 �. Then 
 2 �

l

. Sin
e � and � generate a

subsystem of � whose rank is at most two, this 
an be veri�ed by dire
t inspe
tion of the 
ases

A

2

, B

2

�

=

C

2

and G

2

. Alternatively, we 
an observe that if (�; �) denote the eu
lidean s
alar

produ
t on span

R

� � h

�

, then

�(��) = 2

(�; �)

(�; �)

= 2

(�; �)

p

(�; �)

p

(�; �)

equals 2 � 
os Æ , where Æ is the angle between � and � . On the other hand �(��) 2 Z , so that

the only possible values are f0;�1;�2g , where �2 only arises for � = �� whi
h is ex
luded if

�+ � 2 �. Therefore

(�; �) � (
; 
) = (�; �) + (�; �) + 2(�; �) = 2(�; �) + 2(�; �) = 2(�; �)� (�; �)

implies (�; �) = (
; 
), hen
e that 
 is long.

We 
on
lude that �

l

satis�es

(�

l

+�

l

) \� � �

l

;

and hen
e that we have an in
lusion

g

�

l

,! g

�

:

It follows in parti
ular that ea
h �-graded Lie algebra g 
an also be viewed as a (�;�

l

)-graded

Lie algebra and that ea
h �-graded Lie algebra 
ontains the �

l

-graded Lie algebra

g

0

+

X

�2�

l

g

�

:

The following table des
ribes the systems �

l

for the non-simply la
ed root systems.

� B

r

C

r

F

4

G

2

�

l

D

r

(A

1

)

r

D

4

A

2

In many 
ases the subalgebra g

�

l

of g

�

also has a des
ription as the �xed point algebra

of an automorphism 
 �xing h pointwise. Su
h an automorphism is given by a morphism

�:Z[�℄! K

�

of abelian groups via


:x

�

= �(�)x

�

; x

�

2 (g

�

)

�

:

For

� = B

r

= f�("

i

� "

j

): i 6= j 2 f1; : : : ; rgg [ f"

j

: j = 1; : : : ; rg

we de�ne

e�:Z[�℄! Z;

X

i

n

i

"

i

7!

X

i

n

i

:

Then

e�

�1

(0)

�

=

A

r�1

; �

s

= e�

�1

(2Z+ 1) and �

l

= e�

�1

(2Z):

Therefore � := (�1)

e�

yields an involution 


�

of g

�

whose �xed point set is the subalgebra g

�

l

.

We likewise obtain for � = G

2

a homomorphism e�:Z[�℄! Z with

�

l

= e�

�1

(3Z):

If 1 6= � 2 K

�

satis�es �

3

= 1, we then obtain via � := �

e�

an automorphism 


�

of order 3

whose �xed point set is g

�

l

�

=

sl

3

(K ) .

Problem I. Determine a systemati
 theory of (�;�

0

)-graded Lie algebras for suitable 
lasses

of pairs (�;�

0

).
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II. The 
oordinate algebra of a root graded Lie algebra

After having seen various examples of root graded lo
ally 
onvex Lie algebras in Se
tion I, we

now take a more systemati
 look at the stru
ture of root graded Lie algebras. The main point

of the present se
tion is to asso
iate to a �-graded Lie algebra g a lo
ally 
onvex algebra A ,

its 
oordinate algebra, together with a 
ontinuous bilinear map Æ

A

:A�A ! der(A). The type

of this 
oordinate algebra (asso
iative, alternative, Jordan et
.) and the map Æ

A

is determined

by the type of the root system �. We will see that, together with the 
entralizer D of g

�

in

g , whi
h a
ts by derivations on A , the algebra A and the map Æ

A


ompletely en
ode the Lie

bra
ket of g . These results will be re�ned in Se
tion IV, where we dis
uss isogeny 
lasses of

lo
ally 
onvex root graded Lie algebras and show that the universal 
overing Lie algebra of g is

already determined by the pair (�;A), resp., (A; Æ

A

).

The algebrai
 results of this se
tion are known; new is only that they still remain true in

the 
ontext of lo
ally 
onvex Lie algebras, whi
h requires additions arguments in several pla
es

and, in addition, a more 
oordinate free approa
h, be
ause in the topologi
al 
ontext we 
an

never argue with bases of ve
tor spa
es. We also tried to put an emphasis on those arguments

whi
h 
an be given for general root graded Lie algebras without any 
ase by 
ase analysis, as

f.i. in Theorem II.13. We do not go into the details of the ex
eptional and the low-dimensional


ases. For the arguments leading to the 
oordinate algebra, we essentially follow the expositions

in [ABG00℄, [BZ96℄ (see also [Se76℄ whi
h already 
ontains many of the key ideas and arguments).

Let g be a lo
ally 
onvex root graded Lie algebra over K 2 fR; C g and g

�

a grading

subalgebra. We 
onsider the adjoint representation of g

�

on g . From (R3) we immediately

derive that g is a g

�

-weight module in the sense that the a
tion of h is diagonalized by the

�-grading. Moreover, the set of weights is �[ f0g and therefore �nite, so that Proposition A.2

leads to:

Theorem II.1. The Lie algebra g is a semisimple g

�

-weight module with respe
t to h . All

simple submodules are �nite-dimensional highest weight modules. There are only �nitely many

isotypi
 
omponents g

1

; : : : ; g

n

, and for ea
h isotypi
 
omponent the proje
tion p

i

: g ! g

i


an

be realized by an element of the 
enter of U(g

�

) . In parti
ular, ea
h p

i

is 
ontinuous.

Now we take a 
loser look at the isotypi
 
omponents of the Lie algebra g . Let �

l

� �

denote the subset of long roots and �

s

� � the subset of short roots, where we put �

l

:= �

if all roots have the same length. Then the Weyl group W of � a
ts transitively on the sets of

short and long roots, so that it has at most three orbits in � [ f0g . Hen
e only three types of

simple g

�

-modules may 
ontribute to g . First we have the adjoint module g

�

, and ea
h root

ve
tor in g

�

for a long root � generates a highest weight module isomorphi
 to g

�

. Therefore

the weight set of ea
h other type of non-trivial simple g

�

-module o

urring in g must be smaller

than � [ f0g , whi
h already implies that it 
oin
ides with �

s

[ f0g . The 
orresponding simple

g

�

-module is the small adjoint module V

s

�

=

L(�

s

; g

�

), i.e., the simple module whose highest

weight is the highest short root �

s

with respe
t to a positive system �

+

. In view of Theorem II.1,

we therefore have a g

�

-module de
omposition

(2:1) g

�

=

(A
 g

�

)� (B 
 V

s

)�D;

where

A := Hom

g

�

(g

�

; g); B := Hom

g

�

(V

s

; g); and D := z

g

(g

�

)

�

=

Hom

g

�

(K ; g)

are multipli
ity spa
es. We have

g

�

�

=

�

A for � 2 �

l

A�B for � 2 �

s

.
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Our next goal is to 
onstru
t an algebra stru
ture on the topologi
al dire
t sum A := A � B .

This 
oordinate algebra will turn turn out be an important stru
tural feature of g .

For ea
h �nite-dimensional g

�

-module M the spa
e Hom

g

�

(M; g) is a 
losed subspa
e of

Hom(M; g)

�

=

M

�


 g

�

=

g

dimM

, hen
e inherits a natural lo
ally 
onvex topology from the one

on g , and the evaluation map

Hom

g

�

(M; g)
M ! g; '
m 7! '(m)

is an embedding of lo
ally 
onvex spa
es onto the M -isotypi
 
omponent of g . In this sense we

think of A
 g

�

and B 
 V

s

as topologi
al subspa
es of g . We 
on
lude that the addition map

(A
 g

�

)� (B 
 V

s

)�D ! g; (a
 x; b
 y; d) 7! a
 x+ b
 y + d

is a 
ontinuous bije
tion of lo
ally 
onvex spa
es. That its inverse is also 
ontinuous follows

from Theorem II.1 whi
h ensures that the isotypi
 proje
tions of g are 
ontinuous linear maps.

Therefore the de
omposition (2.1) is a dire
t sum de
omposition of lo
ally 
onvex spa
es. If g

is a Fr�e
het spa
e, we do not have to use Theorem II.1 be
ause we 
an argue with the Open

Mapping Theorem.

It is 
lear that the subspa
e D = z

g

(g

�

) is a 
losed Lie subalgebra. To obtain an algebra

stru
ture on A�B . The following lemma is 
ru
ial for our analysis.

Lemma II.2. Let M

j

, j = 1; 2; 3; be �nite-dimensional simple g

�

-modules and V

j

, j = 1; 2; 3;

lo
ally 
onvex spa
es 
onsidered as trivial g

�

-modules. We 
onsider the lo
ally 
onvex spa
es

V

j


M

j

as g

�

-modules. Let �

1

; : : : ; �

k

be a basis of Hom

g

�

(M

1


M

2

;M

3

) and

�:V

1


M

1

� V

2


M

2

! V

3


M

3

a 
ontinuous equivariant bilinear map. Then there exist 
ontinuous bilinear maps




1

; : : : ; 


k

:V

1

� V

2

! V

3

with

�(v

1


m

1

; v

2


m

2

) =

k

X

i=1




i

(v

1

; v

2

)
 �

i

(m

1

;m

2

):

Proof. Fix v

1

2 V

1

and v

2

2 V

2

. Then the map

�

v

1

;v

2

: (m

1

;m

2

) 7! �(v

1


m

1

; v

2


m

2

)

is an equivariant bilinear map M

1

�M

2

! V

3


M

3

. As the image of �

v

1

;v

2

is �nite-dimensional,

there exist w

1

; : : : ; w

m

2 V

3

su
h that

�

v

1

;v

2

=

m

X

j=1

k

X

i=1

w

j


 �

i

=

k

X

i=1

m

X

j=1

w

j


 �

i

:

This show that there are bilinear maps 


1

; : : : ; 


k

:V

1

� V

2

! V

3

with � =

P

k

i=1




i


 �

i

: For

ea
h i there exists an element a

i

:=

P

j

m

j

1


m

j

2

2 M

1


M

2

with �

i

(a

i

) 6= 0 and �

j

(a

i

) = 0

for i 6= j . Then

X

j

�(v

1


m

j

1

; v

2


m

j

2

) = 


i

(v

1

; v

2

)
 �

i

(a

i

)

shows that ea
h map 


i

is 
ontinuous.
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Remark II.3. If M

1

:= g

�

, M

2

:= V

s

, M

3

= K and V

i

:= Hom

g

�

(M

i

; g), then the Lie

bra
ket on g indu
es a family of g

�

-equivariant 
ontinuous bilinear maps

V

i


M

i

� V

j


M

j

!M

k


 V

k

:

To apply Lemma II.2, we therefore have to analyze the spa
es Hom

g

�

(M

i


M

j

;M

k

):

The 
ase 3 2 fi; jg is trivial be
ause D = z

g

(g

�

) 
ommutes with the a
tion of g

�

, so that

the bra
ket map indu
es 
ontinuous bilinear maps

D �A! A; (d; a) 7! d:a and D �B ! B; (d; b) 7! d:b

with

[d; a
 x℄ = d:a
 x and [d; b
 y℄ = d:b
 y:

Interpreting A as the spa
e Hom

g

�

(g

�

; g), the a
tion of D on this spa
e 
orresponds to

d:' := (ad d) Æ ';

and likewise for B = Hom

g

�

(V

s

; g).

We may therefore assume that i; j 2 f1; 2g . For k = 3, i.e., M

k

= K , the spa
e

Hom

g

�

(M

i


M

j

;K )

�

=

Hom

g

�

(M

i

;M

�

j

)

is trivial for i 6= j be
ause M

1

and M

2

have di�erent dimensions. For M

1

= g

�

we have

Hom

g

�

(g

�


 g

�

;K ) = K�;

where � is the Cartan-Killing form. As V

s

and V

�

s

have the same weight set �

s

= ��

s

, they

are isomorphi
, and [Bou90, Ch. VII, x7, no. 5, Prop. 12℄ implies that

dimHom

g

�

(V

s


 V

s

;K ) = K�

V

s

for a non-zero invariant symmetri
 bilinear form �

V

s

on V

s

. The symmetry of the form follows

from the fa
t that the highest weight �

s

of V

s

is an integral linear 
ombination of the base roots

of �.

The 
omplete information on the relevant Hom-spa
es is given in Theorem II.6 below. We

have to prepare the statement of this theorem with the dis
ussion of some spe
ial 
ases.

De�nition II.4. (a) On the spa
e M

n

(K ) of n�n-matri
es the matrix produ
t is equivariant

with respe
t to the adjoint a
tion of the Lie algebra gl

n

(K ). Hen
e the produ
t (x; y) 7! xy+yx

does also have this property, and therefore the map

sl

n

(K ) � sl

n

(K ) ! sl

n

(K ); (x; y) 7! x � y := xy + yx�

2 tr(xy)

n

1

is equivariant with respe
t to the adjoint a
tion of sl

n

(K ). In the following x � y will always

denote this produ
t.

(b) Let 
 be the non-degenerate alternating form on K

2r

given by 
(x; y) = (x; y)J(x; y)

>

,

where J =

�

0 �1

1 0

�

(
f. Example I.7). For X

℄

:= JX

>

J

�1

we then have

sp

2r

(K )

�

=

fX 2 gl

2r

(K ):X

℄

= �Xg and V

s

�

=

fX 2 gl

2r

(K ):X

℄

= X; trX = 0g:

This follows easily by de
omposing gl

2r

(K ) into weight spa
es with respe
t to a Cartan subalgebra

of sp

2r

(K ) . Here we use (XY )

℄

= Y

℄

X

℄

to see that V

s

is invariant under bra
kets with sp

2r

(K )

and satis�es [V

s

; V

s

℄ � sp

2r

(K ). Moreover, the �-produ
t restri
ts to sp

2r

(K )-equivariant

symmetri
 bilinear maps

�

V

g

: sp

2r

(K ) � sp

2r

(K ) ! V

s

and �

V

V

:V

s

� V

s

! V

s

:

Remark II.5. For � = A

r

, r � 2, the produ
t � is an equivariant symmetri
 produ
t on

g

�

= sl

r+1

(K ). Of 
ourse, the same formula also yields for r = 1 a symmetri
 produ
t, but in

this 
ase we have x � y = 0 (Lemma I.8).
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Theorem II.6. For the Hom-spa
es of the di�erent kinds of Lie algebras we have:

(1) For � not of type A

r

, r � 2 , the spa
e Hom

g

�

(g

�


 g

�

; g

�

) is one-dimensional and

generated by the Lie bra
ket. For � of type A

r

, r � 2 , this spa
e is two-dimensional and a

se
ond generator is the symmetri
 produ
t � on g

�

�

=

sl

r+1

(K ) .

(2) If � is not of type C

r

, r � 2 , then Hom

g

�

(g

�


 g

�

; V

s

)

�

=

Hom

g

�

(g

�


 V

s

; g

�

) = f0g .

For � of type C

r

, r � 2 , and g

�

�

=

sp

2r

(K ) the spa
e Hom

g

�

(g

�


 g

�

; V

s

) is generated

by the �-produ
t.

(3) Hom

g

�

(V

s


V

s

; g

�

)

�

=

Hom

g

�

(g

�


V

s

; V

s

) is one-dimensional and generated by the module

stru
ture on V

s

. For � of type C

r

, a basis of the �rst spa
e is given by the bra
ket map on

gl

2r

(K ) , restri
ted to V

s

.

(4) Hom

g

�

(V

s


 V

s

; V

s

) is one-dimensional for C

n

, n � 3 , F

4

and G

2

, and vanishes for B

n

,

n � 2 . For � of type C

n

, a basis of this spa
e is given by the �-produ
t.

Proof. All these statements follow from De�nition II.4 and the expli
it de
omposition of the

tensor produ
ts, whi
h are worked out in detail in [Se76, xA.2℄ (see also the Appendix of [BZ96℄

for a list of the de
ompositions).

Before we turn to a more expli
it des
ription of the Lie bra
ket on g , we have to �x a

notation for the basis elements of the Hom-spa
es mentioned above.

De�nition II.7. First we re
all the symmetri
 invariant bilinear form �

V

s

on V

s

from

Remark II.3. Let �

V

g

be a basis element of Hom

g

�

(g

�


 g

�

; V

s

) if this spa
e is non-zero,

and �

g

g;V

the 
orresponding basis element of Hom

g

�

(g

�


V

s

; g

�

) whi
h is related to �

V

g

by the

relation

�

V

s

(�

V

g

(x; y); v) = �(�

g

g;V

(x; v); y); x; y 2 g

�

; v 2 V

s

:

Let �

g

V

:V

s


 V

s

! g

�

be the equivariant map de�ned by

�

V

s

(x:v; v

0

) = �(�

g

V

(v; v

0

); x); v; v

0

2 V

s

; x 2 g

�

:

Then

�

V

s

(x:v; v

0

) = ��

V

s

(v; x:v

0

) = ��

V

s

(x:v

0

; v)

(
f. Remark II.3 for the symmetry of �

V

s

) implies that �

g

V

is skew-symmetri
 . We further write

�

V

V

for a basis element of Hom

g

�

(V

s


 V

s

; V

s

).

For � of type C

r

, r � 2, we take

�

V

s

(v; w) = � tr(vw);

where the fa
tor � = 2(r+1) is determined by �(x; y) = � tr(xy) ([Bou90, Ch. VIII℄). We further

put

�

V

g

(x; y) := x � y; �

g

g;V

(x; v) = x � v; �

g

V

(v; w) = [v; w℄; �

V

V

(v; w) = v � w;

and observe that from the embedding sp

2r

(K ) ,! sl

2r

(K ) we get for v 2 V

s

:

�

V

s

(�

V

g

(x; y); v) = � tr(x � y; v) = � tr(xy + yx; v)

= � tr(vx + xv; y) = � tr(x � v; y) = �(�

g

g;V

(x; v); y):

This 
al
ulation implies that our spe
ial de�nitions for type C

r

are 
ompatible with the general

requirements on the relation between �

V

g

and �

g

g;V

.

In view of Lemma II.2 and Theorem II.6, there exist 
ontinuous bilinear maps




A

�

:A�A! A; 


B

A

:A�A! B; 


A

A;B

:A�B ! A; 


B

A;B

:A�B ! B;




A

B

:B �B ! A; 


B

B

:B �B ! B; Æ

D

A

:A�A! D; Æ

D

B

:B � B ! D;

su
h that the Lie bra
ket on

g = (A
 g

�

)� (B 
 V

s

)�D



20 Lo
ally 
onvex root graded Lie algebras De
ember 19, 2002

satis�es

(B1) [a
x; a

0


x

0

℄ = 


A

+

(a; a

0

)
[x; x

0

℄+


A

�

(a; a

0

)
x�x

0

+


B

A

(a; a

0

)
�

V

g

(x; x

0

)+�(x; x

0

)Æ

D

A

(a; a

0

);

for a; a

0

2 A; x; x

0

2 g

�

,

(B2) [a
x; b
v℄ = 


A

A;B

(a; b)
�

g

g;V

(x; v)+


B

A;B

(a; b)
x:v; for a 2 A; b 2 B; x 2 g

�

; v 2 V

s

;

and for b; b

0

2 B and v; v

0

2 V

s

:

(B3) [b
 v; b

0


 v

0

℄ = 


A

B

(b; b

0

)
 �

g

V

(v; v

0

) + 


B

B

(b; b

0

)
 �

V

V

(v; v

0

) + �

V

s

(v; v

0

)Æ

D

B

(b; b

0

):

From the skew-symmetry of the Lie bra
ket and the symmetry of � , it follows that 


A

+

is symmetri
 and 


A

�

is alternating. Further the symmetry of � and �

V

s

implies that Æ

D

A

and

Æ

D

B

are alternating. The skew-symmetry of �

g

V

implies that 


A

B

is symmetri
 and likewise the

symmetry of �

V

g

entails that 


B

A

is skew-symmetri
.

If � is not of type A

r

; r � 2, then we put 


A

�

= 0. In all 
ases where the � -map vanishes,

we de�ne the 
orresponding 
 -map to be zero.

De�nition II.8. (The 
oordinate algebra A of g) (a) On A we de�ne an algebra stru
ture

by

ab := 


A

+

(a; b) + 


A

�

(a; b);

and observe that




A

+

(a; b) =

ab+ ba

2

and 


A

�

(a; b) =

ab� ba

2

:

We de�ne a (not ne
essarily asso
iative) algebra stru
ture on A := A�B by de�ning the

produ
t on A�A by 


A

+

+ 


A

�

+ 


B

A

, on A�B by 


A

A;B

+ 


B

A;B

, on B�B by 


A

B

+ 


B

B

, and on

B �A by

ba := 


B

A;B

(a; b)� 


A

A;B

(a; b) = ab� 2


A

A;B

(a; b):

Then




A

A;B

(a; b) =

1

2

[a; b℄ =

1

2

(ab� ba) and 


B

A;B

(a; b) =

1

2

(ab+ ba):

(b) The spa
e D = z

g

(g

�

) is a Lie subalgebra of g whi
h a
ts by derivations on A preserving

both subspa
es A and B . This easily follows from the fa
t that the a
tions of D and g

�

on g


ommute.

We 
ombine the two maps Æ

D

A

and Æ

D

B

to an alternating bilinear map

Æ

D

:A�A ! D; (a+ b; a

0

+ b

0

) 7! Æ

D

A

(a; a

0

) + Æ

D

B

(b; b

0

)

vanishing on A�B .

Example II.9. Below we brie
y explain how the relations (B1){(B3) simplify for the two


lasses of Lie algebras that we obtain if we distinguish Lie algebras of type A

r

or C

r

and all

others. In some sense the information is more expli
it for A

r

and C

r

. We �rst dis
uss the other


ases.

(a) For � not of type A

r

, r � 2, we have 


A

�

= 0, and for � not of type C

r

, r � 2, we have




B

A

= 


A

A;B

= 0 (Theorem II.6.(2)). If these two 
onditions are satis�ed, then the produ
t on A

is given by

(a; b) � (a

0

; b

0

) = (


A

+

(a; a

0

) + 


A

B

(b; b

0

); 


B

A;B

(a; b

0

) + 


B

A;B

(a

0

; b) + 


B

B

(b; b

0

))

= (aa

0

+ 


A

B

(b; b

0

); ab

0

+ ba

0

+ 


B

B

(b; b

0

)):

In this 
ase the Lie bra
ket in g 
an be written as

[a
 x; a

0


 x

0

℄ = aa

0


 [x; x

0

℄ + �(x; x

0

)Æ

D

A

(a; a

0

); a; a

0

2 A; x; x

0

2 g

�

;
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[a
 x; b
 v℄ = ab
 x:v; a 2 A; b 2 B; x 2 g

�

; v 2 V

s

;

and

[b
 v; b

0


 v

0

℄ = 


A

B

(b; b

0

)
 �

g

V

(v; v

0

) + 


B

B

(b; b

0

)
 �

V

V

(v; v

0

) + �

V

s

(v; v

0

)Æ

D

B

(b; b

0

):

(b) If � is of type A

r

, r � 1, then B = f0g and A = A .

For � of type C

r

, r � 2, we have �

V

V

(v; v

0

) = v � v

0

, whi
h is symmetri
. Therefore 


B

B

is

skew-symmetri
. In view of

bb

0

= 


A

B

(b; b

0

) + 


B

B

(b; b

0

);

this implies




A

B

(b; b

0

) =

bb

0

+ b

0

b

2

and 


B

B

(b; b

0

) =

1

2

[b; b

0

℄ :=

bb

0

� b

0

b

2

:

For r = 2 we have �

V

V

= 0 and therefore 


B

B

= 0 (Theorem II.6(4)). In this 
ase C

2

�

=

B

2

implies that V

s


an be viewed as the representation of so

3;2

(K ) on K

5

.

In 
ontrast to the formulas under (a), we have for � of type A

r

and C

r

the unifying

formulas

[a
 x; a

0


 x

0

℄ =

aa

0

+ a

0

a

2


 [x; x

0

℄ + 


A

�

(a; a

0

)

| {z }

=0 for C

r


x � x

0

+ 


B

A

(a; a

0

)

| {z }

=0 for A

r


x � x

0

+ �(x; x

0

)Æ

D

A

(a; a

0

);

=

aa

0

+ a

0

a

2


 [x; x

0

℄ +

1

2

[a; a

0

℄
 x � x

0

+ �(x; x

0

)Æ

D

A

(a; a

0

)

for a; a

0

2 A; x; x

0

2 g

�

, where we use that

[a; a

0

℄ = aa

0

� a

0

a = 2(


A

�

+ 


B

A

)(a; a

0

); a; a

0

2 A:

We further have for C

r

:

[a
 x; b
 v℄ =

1

2

[a; b℄
 x � v +

1

2

(ab+ ba)
 [x; v℄; a 2 A; b 2 B; x 2 g

�

; v 2 V

s

;

and

[b
 v; b

0


 v

0

℄ =

1

2

(bb

0

+ b

0

b)
 [v; v

0

℄ +

1

2

[b; b

0

℄
 v � v

0

+ �

V

s

(v; v

0

)Æ

D

B

(b; b

0

):

Remark II.10. (Involution on A) On the spa
e A = A � B we have a natural 
ontinuous

involution �(a; b) := (a;�b) with

A = A

�

:= fa 2 A: a

�

= ag and B = A

��

:= fa 2 A: a

�

= �ag:

The map � is an algebra involution, i.e., �(xx

0

) = �(x

0

)�(x) for x; x

0

2 A , if and only if

(I1) �(aa

0

) = a

0

a for a; a

0

2 A , i.e., 


A

�

= 0,

(I2) �(ab) = �ba for a 2 A , b 2 B , whi
h is always the 
ase be
ause [a; b℄ 2 B , and

(I3) �(bb

0

) = b

0

b for b; b

0

2 B , whi
h means that 


A

B

is symmetri
 and 


B

B

is skew-symmetri
.

Condition (I1) is satis�ed for any � not of type A

r

, r � 2. For 
ondition (I3), we re
all that




A

B

is symmetri
 be
ause �

g

V

is skew-symmetri
 (De�nition II.7). That 


B

B

is skew-symmetri


means that �

V

V

is symmetri
, whi
h is the 
ase for � of type C

n

, where �

V

V

(v; v

0

) = v � v

0

. It

is also the 
ase for � of type F

4

, but not for type G

2

, where it is the Mal
ev produ
t on the

pure o
tonions (
f. [ABG00, p.521℄).

Remark II.11. (a) (The identity in A) The in
lusion g

�

,! g is an element of Hom

g

�

(g

�

; g) =

A � A whi
h we 
all 1 . It satis�es

[1
 x; a
 y℄ = x:(a
 y) = a
 [x; y℄; and [1
 x; b
 v℄ = b
 x:v:

This means that

1a = a1 = a and Æ

D

(1; a) = 0 for all a 2 A:

In parti
ular, 1 is an identity element in A .

(b) The subspa
e A is a subalgebra of A if and only if 


B

A

= 0. If this map is non-zero, then

�

V

g

6= 0 and � is of type C

r

, r � 2 (Theorem II.6(2)). In all other 
ases A is a subalgebra of

A , and this subalgebra is 
ommutative if and only if 


A

�

vanishes, whi
h in turn is the 
ase if �

is not of type A

r

or C

r

; r � 2.
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Remark II.12. (a) Axiom (R4) for a lo
ally 
onvex root graded Lie algebra is equivalent to

the 
ondition that the D -parts of the bra
kets [g

�

; g

��

℄ span a dense subspa
e of D . First

we observe that only bra
kets of the type (B1) and (B3) have a non-zero D -part. Using

the 
oordinate stru
ture (B1){(B3) of g , we 
an therefore translate (R4) into the fa
t that

im(Æ

D

A

) + im(Æ

D

B

) = im(Æ

D

) spans a dense subspa
e of D .

(b) Re
all from Remark II.5 that for ea
h root � we have x

�

� x

��

= 0, and therefore, for all

a; a

0

2 A , the simpli�
ation

[a
 x

�

; a

0


 x

��

℄ = 


A

+

(a; a

0

)
 [x

�

; x

��

℄ + �(x

�

; x

��

)Æ

D

A

(a; a

0

):

Hen
e

[a
 x

�

; a

0


 x

��

℄� [a

0


 x

�

; a
 x

��

℄ = 2�(x

�

; x

��

)Æ

D

A

(a; a

0

):

Theorem II.13. The alternating map Æ

D

:A�A ! D satis�es the 
o
y
le 
ondition

(2:2) Æ

D

(aa

0

; a

00

) + Æ

D

(a

0

a

00

; a) + Æ

D

(a

00

a; a

0

) = 0; a; a

0

; a

00

2 A;

and

(2:3) Æ

D

(d:a; a

0

) + Æ

D

(a; d:a

0

) = [d; Æ

D

(a; a

0

)℄ d 2 D; a; a

0

2 A:

Proof. The plan of the proof is as follows. We will use the fa
t that (B1){(B3) satisfy the

Ja
obi identity to obtain four relations for Æ

D

, whi
h then will lead to the required 
o
y
le


ondition for Æ

D

, where 0; 1; 2; 3 elements among a; a

0

; a

00

are 
ontained in A , and the others

in B .

Step 1: For a; a

0

; a

00

2 A and x; x

0

; x

00

2 g

�

, we use (B1) to see that the D -
omponent of

[[a
 x; a

0


 x

0

℄; a

00


 x

00

℄

is

(2:4) �([x; x

0

℄; x

00

)Æ

D

A

(


A

+

(a; a

0

); a

00

) + �(x � x

0

; x

00

)Æ

D

A

(


A

�

(a; a

0

); a

00

):

From the invarian
e and the symmetry of � , we derive

�([x; x

0

℄; x

00

) = �(x; [x

0

; x

00

℄) = �([x

0

; x

00

℄; x);

i.e., the 
y
li
 invarian
e of �([x; x

0

℄; x

00

). If � is not of type A

r

, r � 2, then x � x

0

= 0, and

the se
ond summand in (2.4) vanishes. But for � of type A

r

we have �(x; x

0

) = 2(r+1) tr(xx

0

)

and therefore

�(x � x

0

; x

00

) = 2(r + 1) tr

�

�

xx

0

+ x

0

x�

2 tr(xx

0

)

r + 1

1

�

� x

00

�

= 2(r + 1)

�

tr(xx

0

x

00

) + tr(x

0

xx

00

)

�

:

Hen
e we get in all 
ases the 
y
li
 invarian
e of �(x�x

0

; x

00

). Therefore the Ja
obi identity in g ,

applied to the D -
omponents of the form (2.4), leads to

0 =

X


y
l:

�([x; x

0

℄; x

00

)Æ

D

A

(


A

+

(a; a

0

); a

00

) + �(x � x

0

; x

00

)Æ

D

A

(


A

�

(a; a

0

); a

00

)

= �([x; x

0

℄; x

00

)

X


y
l:

Æ

D

A

(


A

+

(a; a

0

); a

00

) + �(x � x

0

; x

00

)

X


y
l:

Æ

D

A

(


A

�

(a; a

0

); a

00

):

For x 2 g

�

and x

0

2 g

��

with [x; x

0

℄ = �� we have x � x

0

= 0 (Remark II.5), and we thus obtain

X


y
l:

Æ

D

A

(


A

+

(a; a

0

); a

00

) = 0:
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Choosing x; x

0

; x

00

su
h that �(x�x

0

; x

00

) 6= 0, we also obtain

P


y
l:

Æ

D

A

(


A

�

(a; a

0

); a

00

) = 0: Adding

these two identities leads to

X


y
l:

Æ

D

A

(aa

0

; a

00

) = 0:

Step 2: For a; a

0

2 A , b 2 B , and x; x

0

2 g

�

, v 2 V

s

, we get for the D -
omponent of

0 = [[a
 x; a

0


 x

0

℄; b
 v℄ + [[a

0


 x

0

; b
 v℄; a
 x℄ + [[b
 v; a
 x℄; a

0


 x

0

℄

the relation

0 = �

V

s

(�

V

g

(x; x

0

); v)Æ

D

B

(


B

A

(a; a

0

); b) + �(�

g

g;V

(x

0

; v); x)Æ

D

A

(


A

A;B

(a

0

; b); a)

� �(�

g

g;V

(x; v); x

0

)Æ

D

A

(


A

A;B

(a; b); a

0

)

= �(�

g

g;V

(x; v); x

0

)

�

Æ

D

B

(


B

A

(a; a

0

); b) + Æ

D

A

(


A

A;B

(a

0

; b); a)� Æ

D

A

(


A

A;B

(a; b); a

0

)

�

= �(�

g

g;V

(x; v); x

0

)

�

Æ(aa

0

; b) + Æ(a

0

b; a) + Æ(ba; a

0

)

�

be
ause Æ

D

vanishes on A�B , the A-
omponent 


A

A;B

(a; b) of ab is skew-symmetri
 in a and

b , and

�(�

g

g;V

(x; v); x

0

) = �

V

s

(�

V

g

(x; x

0

); v)

is symmetri
 in x and x

0

(De�nition II.7). We 
on
lude that

Æ

D

(aa

0

; b) + Æ

D

(a

0

b; a) + Æ

D

(ba; a

0

) = 0:

Step 3: For a 2 A , b; b

0

2 B , and x 2 g

�

, v; v

0

2 V

s

, we get from the D -
omponents of

0 = [[b
 v; b

0


 v

0

℄; a
 x℄ + [[b

0


 v

0

; a
 x℄; b
 v℄ + [[a
 x; b
 v℄; b

0


 v

0

℄

the relation

0 = �(�

g

V

(v; v

0

); x)Æ

D

A

(


A

B

(b; b

0

); a)� �

V

s

(x:v

0

; v)Æ

D

B

(


B

A;B

(a; b

0

); b)

+ �

V

s

(x:v; v

0

)Æ

D

B

(


B

A;B

(a; b); b

0

)

= �

V

s

(x:v; v

0

)

�

Æ

D

A

(


A

B

(b; b

0

); a) + Æ

D

B

(


B

A;B

(a; b

0

); b) + Æ

D

B

(


B

A;B

(a; b); b

0

)

�

= �

V

s

(x:v; v

0

)

�

Æ

D

(bb

0

; a) + Æ

D

(b

0

a; b) + Æ

D

(ab; b

0

)

�

be
ause Æ

D

vanishes on A � B and the B -
omponent 


B

A;B

(a; b) of ab is symmetri
 in a and

b . We 
on
lude that

0 = Æ

D

(bb

0

; a) + Æ

D

(b

0

a; b) + Æ

D

(ab; b

0

):

Step 4: For b; b

0

; b

00

2 A and v; v

0

; v

00

2 V

s

, the D -
omponent of [[b
v; b

0


v

0

℄; b

00


v

00

℄ is

�

V

s

(�

V

V

(v; v

0

); v

00

)Æ

D

B

(


B

B

(b; b

0

); b

00

):

We 
laim that F (v; v

0

; v

00

) := �

V

s

(�

V

V

(v; v

0

); v

00

) satis�es

F (v; v

0

; v

00

) = F (v

0

; v

00

; v) for v; v

0

; v

00

2 V

s

:

Fix v

0

; v

00

2 V

s

. Then the map

V

s

! K ; v 7! �

V

s

(�

V

V

(v; v

0

); v

00

) = F (v; v

0

; v

00

)


an be written as

V

s

! K ; v 7! �

V

s

(T (v

0

; v

00

); v)

for a unique element T (v

0

; v

00

) 2 V

s

. From the g

�

-equivarian
e properties and the uniqueness,

we derive that T :V

s

� V

s

! V

s

is g

�

-equivariant, hen
e of the form ��

V

V

for some � 2 K
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(Theorem II.6). As F is symmetri
 in the �rst two arguments, F is an eigenve
tor for the a
tion

of S

3

on Lin(V � V � V;K ). Then F is �xed by the 
ommutator subgroup of S

3

, hen
e �xed

under 
y
li
 rotations, and this implies � = 1.

Therefore the Ja
obi identity in g , applied to the D -
omponents above, leads to

0 =

X


y
l:

Æ

D

B

(


B

B

(b; b

0

); b

00

) =

X


y
l:

Æ

D

(bb

0

; b

00

):

Combining all four 
ase, we see that Æ

D

satis�es the 
o
y
le identity (2.2) be
ause the

fun
tion

G:A

3

! D; (a; b; 
) 7! Æ

D

(ab; 
) + Æ

D

(b
; a) + Æ

D

(
a; b)

is 
y
li
ally invariant and trilinear, so that it suÆ
es to verify it in the four 
ases we dealt with

above.

To verify the relation (2.3), we �rst use (B1) and (B3) to see that a 
omparison of the

D -
omponents of the bra
kets

[d; [a
 x; a

0


 x

0

℄℄ = [d:a
 x; a

0


 x

0

℄ + [a
 x; d:a

0


 x

0

℄; a; a

0

2 A; x; x

0

2 g

�

and

[d; [b
 v; b

0


 v

0

℄℄ = [d:b
 v; b

0


 v

0

℄ + [b
 v; d:b

0


 v

0

℄; b; b

0

2 B; v; v

0

2 V

s

leads to (2.3).

De�nition II.14. Let g be a �-graded Lie algebra. From the isotypi
 de
omposition of g

with respe
t to g

�

, we then obtain three items whi
h, in view of (B1){(B3), 
ompletely en
ode

the stru
ture of g :

(1) the 
oordinate algebra A = A�B ,

(2) the Lie algebra D and its representation by derivations on A preserving the subspa
es A

and B , and

(3) the 
o
y
le Æ

D

:A�A ! D (Theorem II.13).

All other data that enter the des
ription of the bra
ket in g only depends on the Lie algebra

g

�

and the module V

s

(Theorem II.6). We therefore 
all the triple (A; D; Æ

D

) the 
oordinate

stru
ture of the �-graded Lie algebra g .

Theorem II.15. Let g be a root graded Lie algebra with 
oordinate stru
ture (A; D; Æ

D

) .

Further let

b

D be a lo
ally 
onvex Lie algebra a
ting by derivations preserving A and B on A ,

and

Æ

b

D

:A�A !

b

D

a 
ontinuous bilinear map su
h that

(1) Æ

b

D

(aa

0

; a

00

) + Æ

b

D

(a

0

a

00

; a) + Æ

b

D

(a

00

a; a

0

) = 0 for a; a

0

; a

00

2 A ,

(2) the map

b

D �A ! A; (d; a) 7! d:a is 
ontinuous,

(3) d:Æ

b

D

(a; a

0

) = Æ

b

D

(d:a; a

0

) + Æ

b

D

(a; d:a

0

) for a; a

0

2 A , d 2

b

D , and

(4) Æ

b

D

(a; a

0

):a

00

= Æ

D

(a; a

0

):a

00

for a; a

0

; a

00

2 A , and

(5) Æ

b

D

(A�B) = f0g .

Then we obtain on

b

g := (A
 g

�

)� (B 
 V

s

)�

b

D

a Lie bra
ket by

[d; a
 x+ b
 v + d

0

℄ = d:a
 x+ d:b
 v + [d; d

0

℄;

and

[a
 x; a

0


 x

0

℄ = 


A

+

(a; a

0

)
 [x; x

0

℄ + 


A

�

(a; a

0

)
 x � x

0

+ 


B

A

(a; a

0

)
 �

V

g

(x; x

0

) + �(x; x

0

)Æ

b

D

(a; a

0

);
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[a
 x; b
 v℄ =

ab� ba

2


 �

g

g;V

(x; v) +

ab+ ba

2


 x:v;

[b
 v; b

0


 v

0

℄ = 


A

B

(b; b

0

)
 �

g

V

(v; v

0

) + 


B

B

(b; b

0

)
 �

V

V

(v; v

0

) + �

V

s

(v; v

0

)Æ

b

D

(b; b

0

):

If im(Æ

b

D

) is dense in

b

D , then

b

g is a �-graded Lie algebra with 
oordinate stru
ture (A;

b

D; Æ

b

D

) .

Proof. From the de�nition and 
ondition (3) it dire
tly follows that the operators ad d , d 2

b

D ,

are derivations for the bra
ket. Therefore it remains to verify the Ja
obi identity for triples of

elements in A
g

�

or B
V

s

. In view of (4) and the fa
t that the Ja
obi identity is satis�ed in g ,

it suÆ
es to 
onsider the

b

D -
omponents of triple bra
kets. Reading the proof of Theorem II.13

ba
kwards, it is easy to see that (1) and (4), applied to the four 
ases 
orresponding to how many

among the a; a

0

; a

00

are 
ontained in A , resp., B , leads to the Ja
obi identity for triple bra
kets

of elements in A
 g

�

, resp., B 
 V

s

.

For this argument one has to observe that in the 
ase a; a

0

; a

00

2 A the relation (1) for all

a; a

0

; a

00

also implies

X


y
l:

Æ

b

D

(


A

+

(a; a

0

); a

00

) + Æ

b

D

(


A

+

(a

0

; a

00

); a) + Æ

b

D

(


A

+

(a

00

; a); a

0

)

= Æ

b

D

(aa

0

; a

00

) + Æ

b

D

(a

0

a

00

; a) + Æ

b

D

(a

00

a; a

0

) + Æ

b

D

(a

0

a; a

00

) + Æ

b

D

(aa

00

; a

0

) + Æ

b

D

(a

00

a

0

; a) = 0

and

Æ

b

D

(


A

�

(a; a

0

); a

00

) + Æ

b

D

(


A

�

(a

0

; a

00

); a) + Æ

b

D

(


A

�

(a

00

; a); a

0

)

= Æ

b

D

(aa

0

; a

00

) + Æ

b

D

(a

0

a

00

; a) + Æ

b

D

(a

00

a; a

0

)� Æ

b

D

(a

0

a; a

00

)� Æ

b

D

(aa

00

; a

0

)� Æ

b

D

(a

00

a

0

; a) = 0:

Examples II.16. We now take a se
ond look at the examples in Se
tion I.

(a) For the algebras of the type g = A 
 g

�

(Example I.4), it is 
lear that A = A is the


orresponding 
oordinate algebra, and B = D = f0g .

(b) For g = sl

n

(A) (Example I.5), formula (1.1) for the bra
ket shows that A = A is the


oordinate algebra of g , D = [A;A℄
 1

�

=

[A;A℄ , and

Æ

D

(a; b) =

1

2n

2

[a; b℄

be
ause �(x; y) = 2n tr(xy) for x; y 2 sl

n

(K ) .

(
) For g = sp

2n

(A; �) (Example I.7), whi
h is of type C

n

, we see with the formula in Exam-

ple II.9(b) that A = A

�

, B = A

��

, D = [A;A℄

��


1

�

=

[A;A℄

��

, and that A is the 
oordinate

algebra. In this 
ase we have 


B

A

= 0 be
ause A = A

�

is a subalgebra of A .

From �(x; y) = � tr(xy), �

V

s

(x; y) = � tr(xy) (� = 2(n+ 1)), and

�(x; x

0

)Æ

D

A

(a; a

0

) = [a; a

0

℄


tr(xx

0

)

2n

1 and �

V

s

(v; v

0

)Æ

D

B

(b; b

0

) = [b; b

0

℄


tr(vv

0

)

2n

1;

we get

Æ

D

(�; �) =

1

2�n

1

2

([�; �℄� [�; �℄

�

)
 1 =

1

4�n

([�; �℄ + [�

�

; �

�

℄)
 1;

be
ause

[a+ b; a

0

+ b

0

℄ = [a; a

0

℄ + [b; b

0

℄

| {z }

2A

��

+ [a; b

0

℄ + [b; a

0

℄

| {z }

2A

�

; a 2 A

�

; b 2 A

��

:

(d) For g = TKK(J) for a Jordan algebra J (Example I.9), we also see dire
tly from the

de�nition that J is the 
oordinate algebra of g and D = hJ; Ji . We have �(x; y) = 4 tr(xy) for

x; y 2 sl

2

(K ), and therefore

Æ

D

(a; b) = Æ

J

(a; b) =

1

4

ha; bi:

The following proposition deals with the spe
ial 
ase where B is trivial and the root

system is not of type A

r

. In this 
ase it 
ontains 
omplete information on the possibilities of

the 
oordinate algebra. For the root systems � of type D

r

, r � 4, and E

r

, it provides a full

des
ription of all �-graded Lie algebras (
f. [BM92℄ for the algebrai
 version of this result).
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Proposition II.17. (a) If B = f0g and � is not of type A

r

, r � 1 , then the bra
ket of g is

of the form

[a
 x; a

0


 x

0

℄ = ab
 [x; x

0

℄ + �(x; x

0

)Æ

D

(a; a

0

);

where A is a 
ommutative asso
iative unital algebra and D is 
entral in g , i.e., D a
ts trivially

on A .

(b) If, 
onversely,

b

D is a lo
ally 
onvex spa
e, A a lo
ally 
onvex unital 
ommutative asso
iative

algebra and the 
ontinuous alternating bilinear map Æ

b

D

:A�A!

b

D satis�es

Æ

b

D

(aa

0

; a

00

) + Æ

b

D

(a

0

a

00

; a) + Æ

b

D

(a

00

a; a

0

) = 0; a; a

0

; a

00

2 A;

then

b

g := (A
 g

�

)�

b

D

is a Lie algebra with respe
t to the bra
ket

[a
 x+ d; a

0


 x

0

+ d

0

℄ = aa

0


 [x; x

0

℄ + �(x; x

0

)Æ

b

D

(a; a

0

):

Proof. (a) Our assumption that � is not of type A

1

means that dim h � 2, so that there

exist roots � and � with � 6= �� . Moreover, the ex
lusion of A

r

, r � 2, implies 


A

�

= 0, so

that by 
onsideration of the A
 g

�

-
omponent of the 
y
li
 sum

P


y
l:

[[a
x; a

0


x

0

℄; a

00


x

00

℄ ,

the Ja
obi identity in g implies

(2:6)

X


y
l:

(aa

0

)a

00


 [[x; x

0

℄; x

00

℄ + Æ

D

(a; a

0

):a

00


 �(x; x

0

)x

00

= 0

for a; a

0

; a

00

2 A and x; x

0

; x

00

2 g

�

.

Let x 2 g

�

, x

0

2 g

�

, and x

00

2 h . Then �(x; x

0

) = �(x

0

; x

00

) = �(x

00

; x) = 0, and therefore

(aa

0

)a

00


 [[x; x

0

℄; x

00

℄ + (a

0

a

00

)a
 [[x

0

; x

00

℄; x℄ + (a

00

a)a

0


 [[x

00

; x℄; x

0

℄

= �(�+ �)(x

00

)(aa

0

)a

00


 [x; x

0

℄� �(x

00

)(a

0

a

00

)a
 [x

0

; x℄ + �(x

00

)(a

00

a)a

0


 [x; x

0

℄

=

�

� (�+ �)(x

00

)(aa

0

)a

00

+ �(x

00

)(a

0

a

00

)a+ �(x

00

)(a

00

a)a

0

�


 [x; x

0

℄:

For �(x

00

) = 0 and �(x

00

) = 1, we now get

(aa

0

)a

00

= (a

0

a

00

)a = a(a

0

a

00

):

Therefore the 
ommutative algebra A is asso
iative.

It remains to see that D is 
entral. We 
onsider the identity (2.6) with x 2 g

�

, x

0

2 g

��

and x

00

= �� . Then �(x; x

0

) 6= 0 = �(x; x

00

) = �(x

0

; x

00

). Further

X


y
l:

(aa

0

)a

00


 [[x; x

0

℄; x

00

℄ = (aa

0

)a

00




X


y
l:

[[x; x

0

℄; x

00

℄ = 0

follows from the fa
t that A is 
ommutative and asso
iative, and the Ja
obi identity in g

�

.

Hen
e (2.6) leads to Æ

D

(a; a

0

):a

00

= 0. This means that Æ

D

(A;A) is 
entral in g , and sin
e this

set spans a dense subspa
e of D (Remark II.12(a)), the subalgebra D of g is 
entral.

(b) For the 
onverse, we �rst observe that the map

!: (A
 g

�

)� (A
 g

�

)!

b

D; !(a
 x; a

0


 x

0

)! �(x; x

0

)Æ

b

D

(a; a

0

)

is a Lie algebra 
o
y
le be
ause

X


y
l:

!([a
 x; a

0


 x

0

℄; a

00


 x

00

) =

X


y
l:

�([x; x

0

℄; x

00

)Æ

b

D

(aa

0

; a

00

) = �([x; x

0

℄; x

00

)

X


y
l:

Æ

b

D

(aa

0

; a

00

) = 0:

From this the Ja
obi identity of

b

g follows easily, and the map

b

g! A
g

�

with kernel

b

D de�nes

a 
entral extension of the Lie algebra A
 g

�

by

b

D (
f. Example I.4).
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De�nition II.18. (The Weyl group of g) Let � 2 � and x

��

2 g

��

with [x

�

; x

��

℄ = �� .

We 
onsider the automorphism

�

�

:= e

adx

�

e

� adx

��

e

adx

�

2 Aut(g)

whi
h is de�ned be
ause the operators adx

��

are nilpotent. If h 2 ker� � h , then h 
ommutes

with x

��

, so that �

�

:h = h . We 
laim that �

�

:�� = ��� .

In SL

2

(K ) we have

S :=

�

1 1

0 1

��

1 0

�1 1

��

1 1

0 1

�

=

�

0 1

�1 0

�

:

As �

�

j

g

�


orresponds to 
onjugation with S in sl

2

(K ) , we obtain

�

�

:�� = ���; �

�

:x

�

= �x

��

and �

�

:x

��

= �x

�

:

We 
on
lude that �

�

j

h


oin
ides with the re
e
tion in the hyperplane ��

?

:

�

�

(h) = h� �(h)�� for h 2 h

(
f. [MP95, Props. 4.1.3, 6.1.8℄). The 
orresponding re
e
tion on h

�

is given by

r

�

: h

�

! h

�

; � 7! � � �(��)�:

This leads to

�

�

(g

�

) = g

r

�

:�

; � 2 � [ f0g:

We 
all

W := hr

�

:� 2 �i � GL(h)

the Weyl group of g .

From the pre
eding 
al
ulation we obtain in parti
ular that �

�

2 Aut(g; h) := N

Aut(g)

(h) :=

f' 2 Aut(g):'(h) = hg . This group 
ontains the subgroup

Z

Aut(g)

(h) = f' 2 Aut(g):' j

h

= id

h

g

�

=

Hom(Z[�℄;K

�

)

�

=

(K

�

)

r

:

We therefore have a group extension

(K

�

)

r

,!




W !!W ;

where




W � Aut(g; h) is the inverse image of W under the restri
tion homomorphism to h . This

extension does not split for �(

�

�) 6� 2Z be
ause in this 
ase there exists a root � with 1 2 �(��),

whi
h implies that �

�

is of order 4.

Example II.19. (
f. [Ti62℄) We take a 
loser look at the 
ase � = A

1

= f��g . We write

g

�

= spanf��; x

�

; x

��

g

with

x

�

2 g

�

; x

��

2 g

��

; �� = [x

�

; x

��

℄:

Then formula (B1) for the produ
t on A leads to

[a
 x

�

; [1
 x

��

; b
 x

�

℄℄ = [a
 x

�

;�b
 h℄ = ab
 [h; x

�

℄ = 2ab
 x

�

;

and hen
e to

ab
 x

�

=

1

2

[a
 x

�

; [1
 x

��

; b
 x

�

℄℄ =

1

2

[a
 x

�

; [x

��

; b
 x

�

℄℄:
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Identifying A via the map a 7! a
 x

�

with g

�

, the produ
t on A is given by

ab :=

1

2

[a; [x

��

; b℄℄:

We re
all from De�nition II.18 the automorphism �

�

of g . From the g

�

-module de
ompo-

sition of g it follows dire
tly that �

2

�

= id

g

be
ause the restri
tion of �

�

to g

�

is an involution.

Moreover, �

�

(x

�

) = �x

��

. To see that the produ
t on g

�

de�nes a Jordan algebra stru
ture

on A , we �rst observe that Theorem C.3 implies that

fx; y; zg :=

1

2

[[x; �

�

:y℄; z℄

de�nes a Jordan triple stru
ture, and hen
e that ab = fa;�x

�

; bg de�nes a Jordan algebra

stru
ture by Theorem C.4(b).

The quadrati
 operators of the Jordan triple stru
ture are given by

P (x):y = fx; y; xg = �

1

2

(adx)

2

Æ �

�

:y:

We 
laim that

P (�x

�

) = �

1

2

(adx

�

)

2

Æ �

�

= � id

g

�

:

Sin
e the a
tion of adx

�

and �

�

is given by the g

�

-module stru
ture of g = (A
 g

�

)�D , the


laim follows from

�

1

2

(adx

�

)

2

Æ �

�

:x

�

=

1

2

(adx

�

)

2

:x

��

=

1

2

[x

�

; ��℄ = �x

�

:

We now 
on
lude from Theorem C.4(b) that the Jordan triple stru
ture asso
iated to the Jordan

algebra stru
ture is given by �f�; �; �g .

This permits us to determine Æ

A

. First we re
all that

[a
 x

�

; a

0


 x

��

℄ = aa

0


 ��+ Æ

D

(a; a

0

)�(x

�

; x

��

) = aa

0


 ��+ 4Æ

D

(a; a

0

);

whi
h leads to

2(aa

0

)a

00


 x

�

+ 4Æ

A

(a; a

0

):a

00


 x

�

=

�

[a
 x

�

; a

0


 x

��

℄; a

00


 x

�

�

= �

�

[a
 x

�

; �

�

(a

0


 x

��

)℄; a

00


 x

�

�

= �2fa; a

0

; a

00

g 
 x

�

= 2((aa

0

)a

00

+ a(a

0

a

00

)� a

0

(aa

00

))
 x

�

:

From that we immediately get

Æ

A

(a; a

0

) =

1

2

[L

a

; L

a

0

℄:

The following theorem 
ontains some re�ned information on the type of the 
oordinate

algebras. We de�ne

Æ

A

(�; �):
 := Æ

D

(�; �):
; �; �; 
 2 A:

Theorem II.20. (Coordinatization Theorem) The 
oordinate algebra A of a �-graded Lie

algebra g is:

(1) a Jordan algebra for � of type A

1

, and

Æ

A

(�; �) =

1

2

[L

�

; L

�

℄:

(2) an alternative algebra for � of type A

2

, and

Æ

A

(�; �) =

1

3

(L

[�;�℄

�R

[�;�℄

� 3[L

�

; R

�

℄):
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(3) an asso
iative algebra for � of type A

r

, r � 3 , and

Æ

A

(�; �) =

1

r + 1

ad[�; �℄:

(4) an asso
iative 
ommutative algebra for � of type D

r

, r � 4 , and E

6

; E

7

and E

8

, and

Æ

A

(�; �) = 0 .

(5) an asso
iative algebra (A; �) with involution for � of type C

r

, r � 4 , and

Æ

A

(�; �) =

1

4r

(ad[�; �℄ + ad[�

�

; �

�

℄):

(6) a Jordan algebra asso
iated to a symmetri
 bilinear form �:B �B ! A for � of type B

r

,

r � 3 , and Æ

A

(�; �) = �[L

�

; L

�

℄ .

Proof. (1) follows from the dis
ussion in Example II.19 (see also [Ti62℄ and [BZ96℄).

(2){(4) [BM92℄; see also Appendix B for some information on alternative algebras and Proposi-

tion II.17 for a proof of (4).

(5), (6) [BZ96℄ (
f. Lemma B.7 for Jordan algebras asso
iated to symmetri
 bilinear forms).

The s
alar fa
tors in the formulas for Æ

A

are due to the normalization of the invariant

bilinear forms � and �

V

s

.

For the details on the 
oordinate algebras for � of type C

3

(an alternative algebra with

involution 
ontaining A in the asso
iative 
enter (the nu
leus), i.e., left, resp., right multipli
a-

tions with elements of A 
ommute with all other right, resp., left multipli
ations), C

2

(a Peir
e

half spa
e of a unital Jordan algebra 
ontaining a triangle), F

4

(an alternative algebra over A

with normalized tra
e mapping satisfying the Cayley{Hamilton identity 
h

2

) and G

2

(a Jordan

algebra over A with a normalized tra
e mapping satisfying the Cayley-Hamilton identity 
h

3

),

we refer to [ABG00℄, [BZ96℄ and [Neh96℄. For all these types of 
oordinate algebras one has

natural derivations Æ

A

(�; �) given by expli
it formulas.

III. Universal 
overing Lie algebras and isogeny 
lasses

In this se
tion we dis
uss the 
on
ept of a generalized 
entral extension of a lo
ally 
onvex Lie

algebra. It generalizes 
entral extensions

b

g! g , i.e., quotient maps with 
entral kernel. Its main

advantage is that it permits us to 
onstru
t for a topologi
ally perfe
t lo
ally 
onvex Lie algebra g

a universal generalized 
entral extension q

g

:

e

g! g . This is remarkable be
ause universal 
entral

extensions do not always exist, not even for topologi
ally perfe
t Bana
h{Lie algebras.

De�nition III.1. Let g and

b

g be lo
ally 
onvex Lie algebras. A 
ontinuous Lie algebra

homomorphism q:

b

g! g with dense range is 
alled a generalized 
entral extension if there exists

a 
ontinuous bilinear map b: g� g!

b

g with

(3:1) b(q(x); q(y)) = [x; y℄ for x; y 2 g:

We observe that, sin
e q has dense range, the map b is uniquely determined by (3.1).

Remark III.2. If q:

b

g ! g is a quotient homomorphism of lo
ally 
onvex Lie algebras with


entral kernel, i.e., a 
entral extension, then q � q:

b

g �

b

g ! g � g also is a quotient map.

Therefore the Lie bra
ket of

b

g fa
tors through a 
ontinuous bilinear map b: g � g !

b

g with

b(q(x); q(y)) = [x; y℄ for x; y 2

b

g , showing that q is a generalized 
entral extension of g .
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De�nition III.3. (a) Let z be a lo
ally 
onvex spa
e and g a lo
ally 
onvex Lie algebra.

A 
ontinuous z-valued Lie algebra 2-
o
y
le is a 
ontinuous skew-symmetri
 bilinear fun
tion

!: g� g! z satisfying

!([x; y℄; z) + !([y; z℄; x) + !([z; x℄; y) = 0; x; y; z 2 g:

It is 
alled a 
oboundary if there exists a 
ontinuous linear map � 2 Lin(g; z) with !(x; y) =

�([x; y℄) for all x; y 2 g . We write Z

2

(g; z) for the spa
e of 
ontinuous z-valued 2-
o
y
les

and B

2

(g; z) for the subspa
e of 
oboundaries. We de�ne the se
ond 
ontinuous Lie algebra


ohomology spa
e as

H

2

(g; z) := Z

2

(g; z)=B

2

(g; z):

(b) If ! is a 
ontinuous z-valued 2-
o
y
le on g , then we write g �

!

z for the lo
ally 
onvex

Lie algebra whose underlying lo
ally 
onvex spa
e is the topologi
al produ
t g � z , and whose

bra
ket is de�ned by

[(x; z); (x

0

; z

0

)℄ =

�

[x; x

0

℄; !(x; x

0

)

�

:

Then q: g�

!

z! g; (x; z) 7! x is a 
entral extension and �: g! g�

!

z; x 7! (x; 0) is a 
ontinuous

linear se
tion of q .

Lemma III.4. For a generalized 
entral extension q:

b

g ! g with the 
orresponding map b the

following assertions hold:

(1) [x; y℄ = q(b(x; y)) for all x; y 2 g .

(2) [g; g℄ � im(q) .

(3) b 2 Z

2

(g;

b

g) , i.e., b([x; y℄; z) + b([y; z℄; x) + b([z; x℄; y) = 0 for x; y; z 2 g .

(4) For x 2 g we de�ne




ad(x):

b

g !

b

g; y 7! b(x; q(y)):

Then




ad de�nes a 
ontinuous representation of g on

b

g by derivations for whi
h q is

equivariant with respe
t to the adjoint representation of g on g .

(5) If

b

g is topologi
ally perfe
t, then q

�1

(z(g)) = z(

b

g) .

Proof. (1) If x = q(a) and y = q(b) holds for a; b 2

b

g , then

[x; y℄ = [q(a); q(b)℄ = q([a; b℄) = q(b(x; y)):

Therefore the Lie bra
ket on g 
oin
ides on the dense subset im(q) � im(q) of g � g with the


ontinuous map q Æ b , so that (1) follows from the 
ontinuity of both maps.

(2) follows from (1).

(3) In view of (3.1), the Ja
obi identity in

b

g leads to

0 = [[x; y℄; z℄ + [[y; z℄; x℄ + [[z; x℄; y℄

= b(q([x; y℄); q(z)) + b(q([y; z℄); q(x)) + b(q([z; x℄); q(y))

= b([q(x); q(y)℄; q(z)) + b([q(y); q(z)℄; q(x)) + b([q(z); q(x)℄; q(y)):

Therefore the restri
tion of b to im(q) is a Lie algebra 
o
y
le, and sin
e im(q) is dense and b

is 
ontinuous, it is a Lie algebra 
o
y
le on g .

(4) First we observe that the bilinear map g�

b

g!

b

g; (x; y) 7! b(x; q(y)) is 
ontinuous. Moreover,

(1) implies

q(




ad(x):y) = q(b(x; q(y))) = [x; q(y)℄;

i.e., q Æ




ad(x) = adx Æ q .

From the 
o
y
le identity

b([x; y℄; z) + b([y; z℄; x) + b([z; x℄; y) = 0; x; y; z 2 g;
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we derive in parti
ular for x 2 g and y; z 2

b

g :

0 = b([x; q(y)℄; q(z)) + b([q(y); q(z)℄; x) + b([q(z); x℄; q(y))

= b(q(




ad(x)y); q(z)) + b(q([y; z℄); x)� b(q(




ad(x):z); q(y))

= [




ad(x)y; z℄�




ad(x)[y; z℄� [




ad(x)z; y℄:

Therefore ea
h




ad(x) is a derivation of

b

g . On the other hand, the 
o
y
le identity for b leads

for x; y 2 g and z 2

b

g to

0 = b([x; y℄; q(z)) + b([y; q(z)℄; x) + b([q(z); x℄; y)

=




ad([x; y℄)z + b(q(




ad(y)z); x)� b(q(




ad(x)z); y) =




ad([x; y℄)z �




ad(x)




ad(y)z +




ad(y)




ad(x)z;

so that




ad: g! der(

b

g) is a representation of g by derivations of

b

g , and the map q is equivariant

with respe
t to the adjoint representation of g on g .

(5) Let

b

z(g) := q

�1

(z(g)). We �rst observe that [

b

z(g);

b

g℄ is 
ontained in ker q � z(

b

g) be
ause

q([

b

z(g);

b

g℄) � [z(g); g℄ = f0g:

This leads to

[

b

z(g); [

b

g;

b

g℄℄ � [

b

g; [

b

z(g);

b

g℄℄ � [

b

g; ker q℄ = f0g:

If

b

g is topologi
ally perfe
t, we obtain

b

z(g) � z(

b

g). The other in
lusion follows from the density

of the image of q .

The following proposition shows that generalized 
entral extensions 
an be 
hara
terized

as 
ertain 
losed subalgebras of 
entral extensions de�ned by 
o
y
les.

Proposition III.5. (a) If q:

b

g ! g is a generalized 
entral extension and b: g � g !

b

g the


orresponding 
o
y
le, then the map

 :

b

g! g�

b

b

g; x 7! (q(x); x)

is a is a topologi
al embedding of

b

g onto a 
losed Lie subalgebra of g�

b

b

g .

(b) If ! 2 Z

2

(g; z) is a 
ontinuous 2-
o
y
le, p: g �

!

z ! g the proje
tion onto g of the


orresponding 
entral extension, and

b

g � g �

!

z is a 
losed subalgebra for whi
h p(

b

g) is dense

in g , then q := p j

bg

:

b

g ! g is a generalized 
entral extension with b(x; y) = ([x; y℄; !(x; y)) for

x; y 2 g .

Proof. (a) We re
all from De�nition III.3 that the bra
ket in g�

b

b

g is given by

[(x; y); (x

0

; y

0

)℄ = ([x; x

0

℄; b(x; x

0

)):

Now

[ (x);  (x

0

)℄ = [(q(x); x); (q(x

0

); x

0

)℄ = ([q(x); q(x

0

)℄; b(q(x); q(x

0

)))

= (q([x; x

0

℄); [x; x

0

℄) =  ([x; x

0

℄)

implies that the 
ontinuous linear map  is a morphism of Lie algebras. As the graph of


ontinuous linear map q , the image of  is a 
losed subspa
e of g�

b

b

g , and the proje
tion onto

the se
ond fa
tor is a 
ontinuous linear map. Therefore  is a topologi
al embedding onto a


losed subalgebra.

(b) The range of q is dense by the assumption that p(

b

g) is dense in g . It is also 
lear that

b Æ (p� p) is the bra
ket on g�

!

z , but it remains to show that im(b) �

b

g .

For x = q(x

0

); y = q(y

0

) in im(q) = p(

b

g) we have

b(x; y) = b(q(x

0

); q(y

0

)) = [x

0

; y

0

℄ = ([x; y℄; !(x; y)) 2

b

g:

Now the 
ontinuity of b , the density of im(q) in g , and the 
losedness of

b

g imply that im(b) �

b

g .
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Full 
y
li
 homology of lo
ally 
onvex algebras

In this subse
tion we de�ne 
y
li
 1-
o
y
les for lo
ally 
onvex algebras A whi
h are not

ne
essarily asso
iative. This in
ludes in parti
ular Lie algebras, where 
y
li
 1-
o
y
les are Lie

algebra 2-
o
y
les. It also 
overs the more general 
oordinate algebras of root graded lo
ally


onvex Lie algebras (see Se
tion IV). In parti
ular we asso
iate to A a lo
ally 
onvex spa
e hA;Ai

in su
h a way that 
ontinuous 
y
li
 1-
o
y
les are in one-to-one 
orresponden
e to linear maps

on hA;Ai . Moreover, we will dis
uss a method to obtain Lie algebra stru
tures on hA;Ai , whi
h

will be 
ru
ial in Se
tion IV for the 
onstru
tion of the universal 
overing algebra of a root graded

Lie algebra.

De�nition III.6. (a) Let A be a lo
ally 
onvex algebra (not ne
essarily asso
iative or with

unit). We endow the tensor produ
t A 
 A with the proje
tive tensor produ
t topology and

denote this spa
e by A


�

A . Let

I := spanfa
 a; ab
 
+ b

 a+ 
a
 b : a; b; 
 2 Ag � A


�

A:

We de�ne

hA;Ai := (A


�

A)=I;

endowed with the quotient topology, whi
h turns it into a lo
ally 
onvex spa
e. We write ha; bi

for the image of a
 b in the quotient spa
e hA;Ai .

(b) Our de�nition of hA;Ai in (a) is the one 
orresponding to the 
ategory of lo
ally 
onvex

spa
es, resp., algebras. In the 
ategory of 
omplete lo
ally 
onvex spa
es we write hA;Ai for the


ompletion of the quotient spa
e (A


�

A)=I; and in the 
ategory of sequentially 
omplete spa
es

for the smallest sequentially 
losed subspa
e of the 
ompletion, i.e., its sequential 
ompletion.

In the 
ategory of Fr�e
het spa
es, the 
ompleted version of hA;Ai 
an be obtained more

dire
tly by �rst repla
ing A


�

A by its 
ompletion A

b




�

A . If I denotes the 
losure of I in the


ompletion A

b




�

A , then the quotient spa
e A

b




�

A=I is automati
ally 
omplete, hen
e a Fr�e
het

spa
e.

(
) For a lo
ally 
onvex spa
e z the 
ontinuous linear maps hA;Ai ! z 
orrespond to those

alternating 
ontinuous bilinear maps !:A�A ! z satisfying

!(ab; 
) + !(b
; a) + !(b
; a) = 0; a; b; 
 2 A:

These maps are 
alled 
y
li
 1-
o
y
les. We write Z

1

(A; z) for the spa
e of 
ontinuous 
y
li


1-
o
y
les A�A ! z and note that

Z

1

(A; z)

�

=

Lin(hA;Ai; z):

The identity id

hA;Ai


orresponds to the universal 
o
y
le

!

u

:A�A ! hA;Ai; (a; b) 7! ha; bi:

Remark III.7. Lie algebra 2-
o
y
les !: g � g ! z (De�nition III.3) are the same as 
y
li


1-
o
y
les of the algebra g .

In parti
ular we have

Z

2

(g; z)

�

=

Lin(hg; gi; z)

for any lo
ally 
onvex spa
e z .
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Remark III.8. Let A be a lo
ally 
onvex asso
iative algebra, A

L

the 
orresponding Lie

algebra with the 
ommutator bra
ket [a; b℄ = ab� ba , and A

J

the 
orresponding Jordan algebra

with the produ
t a Æ b :=

1

2

(ab+ ba). In A
A we have the relations

[a; b℄
 
+ [b; 
℄
 a+ [
; a℄
 b = ab
 
+ b

 a+ 
a
 b� (ba
 
+ 
b
 a+ a

 b)

and

2(a Æ b
 
+ b Æ 

 a+ 
 Æ a
 b) = ab
 
+ b

 a+ 
a
 b+ ba
 
+ 
b
 a+ a

 b:

Therefore we have natural 
ontinuous linear maps

hA

L

;A

L

i ! hA;Ai; ha; bi 7! ha; bi and hA

J

;A

J

i ! hA;Ai; ha; bi 7! ha; bi:

A remarkable point of the following proposition is that it applies without any assumption

on the algebra A , su
h as asso
iativity et
.

Proposition III.9. Let A be a lo
ally 
onvex algebra and

Æ: hA;Ai ! der(A); ha; bi 7! Æ(a; b)

be a 
y
li
 1-
o
y
le for whi
h the map A � A �A ! A; (a; b; 
) 7! Æ(a; b):
 is 
ontinuous. As

der(A) a
ts naturally on hA;Ai by

d:ha; bi = hd:a; bi+ ha; d:bi; d 2 der(A); a; b 2 A;

we obtain a well-de�ned 
ontinuous bilinear map

[�; �℄: hA;Ai � hA;Ai ! hA;Ai; [ha; bi; h
; di℄ 7! Æ(a; b):h
; di = hÆ(a; b):
; di+ h
; Æ(a; b):di:

Suppose that

(1) Æ(Æ(a; b):h
; di) = [Æ(a; b); Æ(
; d)℄ , and

(2) Æ(a; b):h
; di = �Æ(
; d):ha; bi for a; b; 
; d 2 A .

Then [�; �℄ de�nes on hA;Ai the stru
ture of a lo
ally 
onvex Lie algebra and Æ is a homomor-

phism of Lie algebras.

Proof. A

ording to our 
ontinuity assumption on Æ , the quadrilinear map

A�A�A�A ! hA;Ai; (a; b; 
; d) 7! Æ(a; b):h
; di = hÆ(a; b):
; di+ h
; Æ(a; b):di

is 
ontinuous. That Æ is a 
y
li
 
o
y
le implies that it fa
tors through a 
ontinuous bilinear

map

[�; �℄: hA;Ai � hA;Ai ! hA;Ai; (ha; bi; h
; di) 7! Æ(a; b):h
; di:

Condition (2) means that the bra
ket on hA;Ai is alternating. In view of (1), the Ja
obi identity

follows from

[[ha; bi; h
; di℄; hu; vi℄ = Æ(Æ(a; b):h
; di):hu; vi = [Æ(a; b); Æ(
; d)℄:hu; vi

= [ha; bi; [h
; di; hu; vi℄℄� [h
; di; [ha; bi; hu; vi℄℄:

Finally, we observe that (1) means that Æ is a homomorphism of Lie algebras.
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Example III.10. Typi
al examples where Proposition III.9 applies are

(1) Lie algebras: If g is a lo
ally 
onvex Lie algebra and Æ(x; y) = ad[x; y℄ , then the Ja
obi

identity implies that Æ is a 
o
y
le. That Æ is equivariant with respe
t to the a
tion of der(g)

follows for d 2 der(g) and x; y 2 g from

Æ(d:x; y) + Æ(x; d:y) = ad([d:x; y℄ + [x; d:y℄) = ad(d:[x; y℄) = [d; ad[x; y℄℄ = [d; Æ(x; y)℄:

We also have in hg; gi :

Æ(x; y):hx

0

; y

0

i = h[[x; y℄; x

0

℄; y

0

i+ hx

0

; [[x; y℄; y

0

℄i

= �h[x

0

; y

0

℄; [x; y℄i � h[y

0

; [x; y℄℄; x

0

i+ hx

0

; [[x; y℄; y

0

℄i = h[x; y℄; [x

0

; y

0

℄i;

whi
h implies Æ(x; y):hx

0

; y

0

i = �Æ(x

0

; y

0

):hx; yi .

(2) Asso
iative algebras: If A is an asso
iative algebra, then the 
ommutator bra
ket

A�A ! A; (a; b) 7! [a; b℄ = ab� ba

is a 
y
li
 
o
y
le be
ause

[ab; 
℄ + [b
; a℄ + [
a; b℄ = ab
� 
ab+ b
a� ab
+ 
ab� b
a = 0:

Therefore Æ(x; y) = ad[x; y℄ de�nes a 
o
y
le A � A ! der(A). That Æ is equivariant with

respe
t to the a
tion of der(A) follows with the same 
al
ulations as in (1) above. Alternatively,

we 
an observe that if A

L

denotes the Lie algebra A with the 
ommutator bra
ket, then hA;Ai

is a quotient of hA

L

;A

L

i (Remark III.8).

(3) If A is a Jordan algebra and Æ

A

(a; b) = [L(a); L(b)℄ , then we have

Æ

A

(d:ha; bi) = [d; Æ

A

(a; b)℄

for all derivations d 2 der(A), hen
e (1) in Proposition III.9. To verify (2), we 
al
ulate

Æ

A

(a; a

0

):hb; b

0

i = hÆ

A

(a; a

0

):b; b

0

i+ hb; Æ

A

(a; a

0

):b

0

i

= ha(a

0

b)� a

0

(ab); b

0

i+ hb; a(a

0

b

0

)� a

0

(ab

0

)i

= ha(a

0

b); b

0

i � ha

0

(ab); b

0

i+ hb; a(a

0

b

0

)i � hb; a

0

(ab

0

)i

= �h(a

0

b)b

0

; ai � hb

0

a; a

0

bi+ h(ab)b

0

; a

0

i+ hb

0

a

0

; abi

� ha; (a

0

b

0

)bi � ha

0

b

0

; bai+ ha

0

; (ab

0

)bi+ hab

0

; ba

0

i

= �hb

0

(ba

0

); ai � hb

0

a; a

0

bi+ hb

0

(ba); a

0

i+ hb

0

a

0

; abi

� ha; b(b

0

a

0

)i � hb

0

a

0

; abi+ ha

0

; b(b

0

a)i+ hb

0

a; a

0

bi

= �hb

0

(ba

0

); ai+ hb

0

(ba); a

0

i � ha; b(b

0

a

0

)i+ ha

0

; b(b

0

a)i

= hÆ

A

(b

0

; b):a; a

0

i+ ha; Æ

A

(b

0

; b):a

0

i

= �Æ

A

(b; b

0

):ha; a

0

i:

The universal 
overing of a lo
ally 
onvex Lie algebra

We 
all a generalized 
entral extension q

g

:

e

g! g of a lo
ally 
onvex Lie algebra g universal

if for any generalized 
entral extension q:

b

g! g there exists a unique morphism of lo
ally 
onvex

Lie algebras �:

e

g !

b

g with q Æ � = q

g

.
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Theorem III.11. A lo
ally 
onvex Lie algebra g has a universal generalized 
entral extension

if and only if it is topologi
ally perfe
t. If this is the 
ase, then the universal generalized 
entral

extension is given by the natural Lie algebra stru
ture on

e

g := hg; gi satisfying

(3:2) [hx; x

0

i; hy; y

0

i℄ = h[x; x

0

℄; [y; y

0

℄i for x; x

0

; y; y

0

2 g;

and the natural homomorphism

q

g

:

e

g! g; hx; yi 7! [x; y℄

is given by the Lie bra
ket on g .

Proof. Suppose �rst that q

g

:

e

g ! g is a universal generalized 
entral extension. We 
onsider

the trivial 
entral extension

b

g := g � K with q(x; t) = x . A

ording to the universal property,

there exists a unique morphism of lo
ally 
onvex Lie algebras �:

e

g! g�K with q Æ� = q

g

. For

ea
h Lie algebra homomorphism �:

e

g! K the sum �+�:

e

g! g�K also is a homomorphism of

Lie algebras with qÆ(�+�) = q

g

. Hen
e the uniqueness implies that � = 0. That all morphisms

e

g! K are trivial means that

e

g is topologi
ally perfe
t, and therefore g is topologi
ally perfe
t.

Conversely, we assume that g is topologi
ally perfe
t and 
onstru
t a universal generalized


entral extension. Using Proposition III.9 and Example III.10(1), we see that hg; gi 
arries a

lo
ally 
onvex Lie algebra stru
ture with

[hx; yi; hz; ui℄ = h[x; y℄; [z; u℄i; x; y; z; u 2 g:

Next we observe that im(q

g

) is dense be
ause [g; g℄ is dense in g . The 
orresponding

bra
ket map on

e

g is given by the universal 
o
y
le

!

u

: g� g!

e

g; (x; y) 7! hx; yi:

In fa
t, for x; x

0

; y; y

0

2 g we have

!

u

(q

g

(hx; x

0

i); q

g

(hy; y

0

i)) = !

u

([x; x

0

℄; [y; y

0

℄) = h[x; x

0

℄; [y; y

0

℄i = [hx; x

0

i; hy; y

0

i℄:

Sin
e the elements of the form hx; x

0

i span a dense subspa
e of

e

g , equation (3.1) holds for q = q

g

.

Now let q:

b

g ! g be another generalized 
entral extension with the 
orresponding map

b: g � g !

b

g . Then Lemma III.4(3) implies the existen
e of a unique 
ontinuous linear map

�:

e

g = hg; gi !

b

g with

b(x; y) = �(hx; yi); x; y 2 g:

For x = q(a), x

0

= q(a

0

), y = q(b) and y

0

= q(b

0

) we then have

�([hx; x

0

i; hy; y

0

i℄) = �(h[x; x

0

℄; [y; y

0

℄i) = b([x; x

0

℄; [y; y

0

℄) = b(q([a; a

0

℄); q([b; b

0

℄))

= [[a; a

0

℄; [b; b

0

℄℄ = [b(x; x

0

); b(y; y

0

)℄ = [�(hx; x

0

i); �(hy; y

0

i)℄:

Now the fa
t that im(q) is dense in g implies that � is a homomorphism of Lie algebras. Further,

q(�(hx; yi)) = q(b(x; y)) = [x; y℄ = q

g

(hx; yi);

again with the density of im(q) in g , leads to q Æ � = q

g

:

To see that � is unique, we �rst observe that

e

g is topologi
ally perfe
t be
ause g is

topologi
ally perfe
t. If �:

e

g!

b

g is another homomorphism with q Æ � = q

g

, then 
 := � � � is

a 
ontinuous linear map

e

g! ker q � z(

b

g). Moreover,


([x; y℄) = �([x; y℄)� �([x; y℄) = [�(x); �(y)℄ � [�(x); �(y)℄

= [�(x)� �(x); �(y)℄ + [�(x); �(y)℄ � [�(x); �(y)℄

= [
(x); �(y)℄ + [�(x); 
(y)℄ = 0

be
ause the values of 
 are 
entral. Now 
 = 0 follows from the topologi
al perfe
tness of

e

g .
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De�nition III.12. For a topologi
ally perfe
t lo
ally 
onvex Lie algebra g the Lie algebra

e

g = hg; gi is 
alled the universal generalized 
entral extension of g or the (topologi
al) universal


overing Lie algebra of g .

We 
all two topologi
ally perfe
t Lie algebras g

1

and g

2


entrally isogenous if

e

g

1

�

=

e

g

2

.

In the 
ategory of sequentially 
omplete, resp., 
omplete lo
ally 
onvex Lie algebras we

de�ne

e

g as hg; gi in the sense of De�nition III.6(b). Then the same arguments as in the proof

of Theorem III.11 show that

e

g is a universal generalized 
entral extension in the 
orresponding


ategory.

We 
all a 
entral extension q:

b

g ! g of a lo
ally 
onvex Lie algebra g universal if for

any 
entral extension q

0

:

b

g

0

! g there exists a unique morphism of lo
ally 
onvex Lie algebras

�:

b

g!

b

g

0

with q

0

Æ� = q . The following 
orollary 
lari�es the relation between universal 
entral

extensions and generalized universal 
entral extensions. In parti
ular it implies that the existen
e

of a universal 
entral extension is a quite rare phenomenon.

Corollary III.13. A lo
ally 
onvex Lie algebra g has a universal 
entral extension if and only

if it is topologi
ally perfe
t and the universal 
overing map q

g

:

e

g ! g is a quotient map. Then

q

g

is a universal 
entral extension.

Proof. Suppose �rst that q:

b

g! g is a universal 
entral extension. Then the same argument

as in the proof of Theorem III.11 implies that

b

g is topologi
ally perfe
t, whi
h implies that g

is topologi
all perfe
t. Therefore the universal generalized 
entral extension q

g

:

e

g ! g exists by

Theorem III.11. Its universal property implies the existen
e of a unique morphism eq:

e

g!

b

g with

q Æ eq = q

g

. If

b

b: g � g !

b

g is the unique 
ontinuous bilinear map for whi
h

b

b Æ (q � q) is the

bra
ket on

b

g , the 
onstru
tion in the proof of Theorem III.11 implies that

eq Æ !

u

=

b

b

for the universal 
o
y
le !

u

(x; y) = hx; yi .

Now let q

u

: g�

!

u

e

g ! g be the 
entral extension of g by

e

g , 
onsidered as an abelian Lie

algebra, de�ned by the universal 
o
y
le. Then the universal property of

b

g implies the existen
e

of a unique morphism

 :

b

g! g�

!

u

e

g

with q

u

Æ  = q . This means that  (x) = (q(x); �(x)); where �:

b

g !

e

g is a 
ontinuous linear

map. That  is a Lie algebra homomorphism means that

(q([x; y℄); �([x; y℄)) =  ([x; y℄) = [ (x);  (y)℄ = ([q(x); q(y)℄; hq(x); q(y)i);

whi
h implies that

�(

b

b(q(x); q(y))) = �([x; y℄) = hq(x); q(y)i; x; y 2

b

g;

and hen
e

� Æ

b

b = !

u

:

For the 
ontinuous linear maps

e

g!

e

g 
orresponding to these 
o
y
les, we obtain

� Æ eq = id

eg

:

We also have

eq Æ � Æ

b

b = eq Æ !

u

=

b

b;

and sin
e im(

b

b) spans a dense subspa
e of the topologi
ally perfe
t Lie algebra

b

g , it follows that

eq Æ � = id

bg

:

Therefore eq is an isomorphism of lo
ally 
onvex spa
es, hen
e an isomorphism of lo
ally 
onvex

Lie algebras, and this implies that q

g

is a 
entral extension.

If, 
onversely, g is topologi
ally perfe
t and q

g

is a 
entral extension, its universal property

as a generalized 
entral extension implies that it is a universal 
entral extension.
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Comparing the 
onstru
tion above with the universal 
entral extensions investigated in

[Ne02
℄, it appears that generalized 
entral extensions are more natural in the topologi
al 
ontext

be
ause one does not have to struggle with the problem that 
losed subspa
es of lo
ally 
onvex

spa
es do not always have 
losed 
omplements, whi
h 
auses many problems if one works only

with 
entral extensions de�ned by 
o
y
les (
f. De�nition III.3). Moreover, universal generalized


entral extensions do always exist for topologi
ally perfe
t lo
ally 
onvex algebras, whereas there

are Bana
h{Lie algebras whi
h do not admit a universal 
entral extension ([Ne01, Ex. II.18, III.9℄

and Proposition III.18 below, 
ombined with Corollary III.13). The typi
al example is the Lie

algebra of Hilbert{S
hmidt operators on an in�nite-dimensional Hilbert spa
e dis
ussed in some

detail below.

We now address the question for whi
h Lie algebra the universal 
overing morphism q

g

:

e

g!

g is an isomorphism. At the end of this se
tion we will in parti
ular des
ribe examples, where

q

eg

:

e

e

g!

e

g is not an isomorphism.

Proposition III.14. For a topologi
ally perfe
t lo
ally 
onvex Lie algebra g the following are

equivalent:

(1) q

g

:

e

g! g is an isomorphism of Lie algebras.

(2) H

2

(g; z) = f0g for ea
h lo
ally 
onvex spa
e z .

Proof. (1) ) (2): Let ! 2 Z

2

(g; z) be a 
ontinuous Lie algebra 
o
y
le g�g! z . A

ording

to Remark III.7, there exists a 
ontinuous linear map �:

e

g! z with

!(x; y) = �(hx; yi) = � Æ q

�1

g

([x; y℄)

for x; y 2 g , and this means that ! is a 
oboundary.

(2) ) (1): The triviality of H

2

(g;

e

g) implies that there exists a 
ontinuous linear map �: g!

e

g

with

(3:3) hx; yi = �([x; y℄); x; y 2 g:

Then

(q

g

Æ �)([x; y℄) = q

g

(hx; yi) = [x; y℄;

so that the density of [g; g℄ in g leads to q

g

Æ� = id

g

. On the other hand, (3.3) 
an also be read

as � Æ q

g

= id

eg

. Therefore q

g

is an isomorphism of lo
ally 
onvex spa
es, hen
e of lo
ally 
onvex

Lie algebras.

A topologi
ally perfe
t lo
ally 
onvex Lie algebra satisfying the two equivalent 
onditions

of Proposition III.14 is 
alled 
entrally 
losed. This means that g is its own universal 
overing

algebra, or, equivalently, that the Lie bra
ket g� g! g is a universal Lie algebra 
o
y
le.

Remark III.15. (a) Let g

1

; g

2

and g

3

be topologi
ally perfe
t lo
ally 
onvex Lie algebras and

q

1

: g

1

! g

2

, q

2

: g

2

! g

3

generalized 
entral extensions. Then q := q

2

Æq

1

: g

1

! g

3

is a morphism

of lo
ally 
onvex Lie algebras with dense range. Moreover, Lemma III.4(5) implies that

ker q = q

�1

1

(ker q

2

) � q

�1

1

(z(g

2

)) = z(g

1

):

Unfortunately, we 
annot 
on
lude in general that q is a generalized 
entral extension. The

bilinear map b

1

: g

2

� g

2

! g

1

for whi
h b

1

Æ (q

1

� q

1

) is the Lie bra
ket of g

1

is a Lie algebra


o
y
le, whi
h implies that

b

1

(ker q

2

; g

2

) � b

1

(z(g

2

); [g

2

; g

2

℄) = f0g:

Therefore b

1

fa
tors through a bilinear map

b: im(q

2

)� im(q

2

)! g

1

; (q

2

(x); q

2

(y)) 7! b

1

(x; y)
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with

b(q(x); q(y)) = b

1

(q

1

(x); q

1

(y)) = [x; y℄; x; y 2 g

1

:

If b is 
ontinuous, it extends to a 
ontinuous bilinear map g

3

� g

3

! g

1

with the required

properties, and q is a generalized 
entral extension, but unfortunately, there is no reason for this

to be the 
ase.

(b) If q

2

is a quotient map, i.e., a 
entral extension, then b is 
ontinuous. This shows that in the


ontext of topologi
ally perfe
t lo
ally 
onvex Lie algebras a generalized 
entral extension of a


entral extension is a generalized 
entral extension. This means in parti
ular that if the universal


overing map q

g

:

e

g! g is a quotient map, then

e

g is 
entrally 
losed.

Lemma III.16. Let H be a Hilbert spa
e and sl

0

(H) the Lie algebra of all 
ontinuous �nite

rank operators of zero tra
e on H . For ea
h derivation

�: sl

0

(H)! sl

0

(H)

there exists a 
ontinous operator D 2 B(H) with �(x) = [D; x℄ for ea
h x 2 sl

0

(H) . The

operator D is unique up to an element in K1 .

Proof. ([dlH72℄) Step 1: For ea
h �nite subset F of sl

0

(H) there exists a �nite-dimensional

subspa
e E � H su
h that

F � sl(E) := f' 2 sl

0

(H):'(E) � E;'(E

?

) = f0gg:

The Lie algebra sl(E)

�

=

sl

jEj

(K ) is simple and the restri
tion �

E

of � to sl(E) is a linear map

sl(E)! sl

0

(H) satisfying

�

E

([x; y℄) = [�

E

(x); y℄ + [x;�

E

(y)℄:

This means that �

E

2 Z

1

(sl(E); sl

0

(H)), where sl(E) a
ts on sl

0

(H) by the adjoint a
tion.

Sin
e this a
tion turns sl

0

(H) into a lo
ally �nite module, Lemma A.3 implies that the 
o
y
le

�

E

is trivial, i.e., there exists an element D

E

2 sl

0

(H) with �

E

(x) = [D

E

; x℄ for all x 2 sl(E).

Suppose that D

0

E

is another element in sl

0

(H) with this property. Then we write

D

E

�D

0

E

=

�

a b


 d

�

as a blo
k matrix a

ording to the de
omposition H = E � E

?

. As D

E

�D

0

E


ommutes with

sl(E), it preserves the subspa
es sl(E):H = E and E

?

= fx 2 H : sl(E):x = f0gg . Therefore

b = 
 = 0, and a 2 K id

E

. This proves that D

E

j

E

�D

0

E

j

E

2 K id

E

. If we require, in addition,

D

E

:v?v for some non-zero ve
tor v 2 E , then the restri
tion of D

E

to E is uniquely determined.

Step 2: We may assume that dimH � 2, otherwise the assertion is trivial. Fix 0 6= v 2 H .

As in Step 1, we �nd for ea
h �nite-dimensional subspa
e E � H an operator D

E

as above with

D

E

:v?v . For E � E

0

the operator D

E

0

also satis�es D

E

0

:v?v and �

E

(x) = [D

E

0

; x℄ for

x 2 sl(E) � sl(E

0

). Therefore D

E

0

j

E

= D

E

, so that we obtain a well-de�ned operator

D:H ! H; D:w := D

E

:w for w 2 E:

This operator satis�es

�(x) = [D; x℄ for all x 2 sl

0

(H):

Step 3: D is 
ontinuous: For x; y 2 H we 
onsider the rank-one-operator P

x;y

:v = hv; yix .

Then trP

x;y

= hx; yi vanishes if x?y . Then P

x;y

2 sl

0

(H), and

[D;P

x;y

℄(v) = P

D:x;y

:v � hD:v; yix:

As for ea
h y 2 H there exists an element x orthogonal to y , it follows that all fun
tionals

v 7! hD:v; yi

are 
ontinuous, i.e., that the adjoint operator D

�

of the unbounded operator D is everywhere

de�ned, and therefore that D has a 
losed graph ([Ne99, Th. A.II.8℄). Now the Closed Graph

Theorem implies that D is 
ontinuous.

Step 4: Uniqueness: We have to show that if an operator D on H 
ommutes with sl

0

(H),

then it is a multiple of the identity. The 
ondition [D;P

x;y

℄ = 0 for x?y implies that

hv; yiD:x = hD:v; yix; v 2 H:

It follows in parti
ular that ea
h x 2 H is an eigenve
tor, and hen
e that D 2 K1 .
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De�nition III.17. Let H be an in�nite-dimensional Hilbert spa
e. For ea
h p 2 [1;1℄ we

write B

p

(H) for the 
orresponding S
hatten ideal in B(H), where B

1

(H) denotes the spa
e

of 
ompa
t operators (
f. [dlH72℄, [GGK00℄). Ea
h operator A 2 B

p

(H) is 
ompa
t, and if we

write the non-zero eigenvalues of the positive operator

p

A

�

A (
ounted with multipli
ity) in a

sequen
e (�

n

)

n2N

(whi
h might also 
ontain zeros), the norm on B

p

(H) is given by

kAk

p

=

�

X

n2N

�

p

n

�

1

p

:

A

ording to [GGK00, Th. IV.11.2℄, we then have the estimate

kABk

p

� kAk

p

1

kBk

p

2

for

1

p

�

1

p

1

+

1

p

2

:

It follows in parti
ular that ea
h B

p

(H) is a Bana
h algebra. We also have

kABCk � kAkkBk

p

kCk; B 2 B

p

(H); A; C 2 B(H):

For 1 < p � 1 and

1

p

+

1

q

= 1 we have

B

p

(H)

0

�

=

B

q

(H);

where the pairing is indu
ed by the tra
e hx; yi = tr(xy): Here we use that B

p

(H)B

q

(H) �

B

1

(H), and that the tra
e extends to a 
ontinuous linear fun
tional tr:B

1

(H)! K (
f. [dlH72,

p.113℄). We have

B

1

(H) � B

p

(H) � B

p

0

(H) � B

1

(H)

for p � p

0

.

For p = 1 the elements of B

1

(H) are the tra
e 
lass operators and for p = 2 the elements

of B

2

(H) are the Hilbert-S
hmidt operators. As the tra
e is a 
ontinuous linear fun
tional on

B

1

(H) vanishing on all 
ommutators, the subspa
e

sl(H) := fx 2 B

1

(H): trx = 0g

is a Lie algebra hyperplane ideal.

Proposition III.18. Let gl

p

(H) be the Bana
h-Lie algebra obtained from B

p

(H) with the


ommutator bra
ket. Then gl

p

(H) is topologi
ally perfe
t if and only if p > 1 . The universal


overing map is given by the in
lusions maps

sl(H) ,! gl

p

(H) for 1 < p � 2 ; and gl

p

2

(H) ,! gl

p

(H) for p > 2 :

Proof. That gl

1

(H) is not topologi
ally perfe
t follows from the fa
t that the tra
e vanishes

on all bra
kets. Assume that p > 1. Then an elementary argument with diagonal matri
es

implies that sl

0

(H) is dense in B

p

(H) with respe
t to k � k

p

. Sin
e sl

0

(H) is a perfe
t Lie

algebra, gl

p

(H) is topologi
ally perfe
t.

Let !: gl

p

(H) � gl

p

(H) ! K be a 
ontinuous Lie algebra 
o
y
le. Then there exists a

unique 
ontinuous linear map

�: gl

p

(H)! gl

q

(H)

�

=

gl

p

(H)

0

with tr(�(x)y) = !(x; y) for all x; y 2 gl

p

(H), and the 
o
y
le identity for ! implies that � is

a derivation, i.e.,

�([x; y℄) = [�(x); y℄ + [x;�(y)℄; x; y 2 gl

p

(H):

The Lie algebra sl

0

(H) is a perfe
t ideal in gl(H) and hen
e in ea
h gl

p

(H). Therefore

it is invariant under �, and Lemma III.16 implies the existen
e of a 
ontinuous operator
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D 2 B(H) with �(x) = [D; x℄ for all x 2 sl

0

(H). As both sides des
ribe 
ontinuous linear

maps gl

p

(H) ! gl(H) whi
h 
oin
ide on the dense subspa
e sl

0

(H), we have � = adD on

gl

p

(H).

For 1 � p � 2 we have q � 2 � p , so that ea
h bounded operator D 2 B(H) satis�es

adD(gl

p

(H)) � gl

p

(H) � gl

q

(H). For p > 2 the dual spa
e gl

q

(H) is a proper subspa
e of

gl

p

(H), and it is shown in [dlH72, p.141℄ that

fD 2 gl(H): [D; gl

p

(H)℄ � gl

q

(H)g = gl

r

(H) for

1

r

=

1

q

�

1

p

= 1�

2

p

=

p� 2

p

:

The 
o
y
le asso
iated to an operator D is given by

!(x; y) = tr([D; x℄y) = tr(D[x; y℄); x; y 2 gl

p

(H):

That the tra
e on the right hand side makes sense follows from B

p

(H)B

p

(H) � B

1

(H) for p � 2

and B

p

(H)B

p

(H) � B

p

2

(H) and D 2 B

p

2

(H)

0

for p > 2.

For p � 2 we have

[gl

p

(H); gl

p

(H)℄ � [gl

2

(H); gl

2

(H)℄ � [sl

0

(H); sl

0

(H)℄ = sl

0

(H) = sl(H);

where the 
losure refers to the tra
e norm k � k

1

. An operator D 2 gl(H)

�

=

gl

1

(H)

0

represents

the 
o
y
le 0 if and only if it is orthogonal to the hyperplane sl(H), whi
h means that D 2 K1 .

For p > 2 an operator D 2 gl

r

(H) is never a multiple of 1 , so that we obtain

(3:4) Z

2

(gl

p

(H);K )

�

=

�

pgl(H) := gl(H)=K1 for 1 � p � 2

gl

p

2

(H)

0

�

=

gl

r

(H) for 2 < p.

Now let q(hx; yi) = [x; y℄ denote the bra
ket map

q:

e

gl

p

(H)

�

=

hgl

p

(H); gl

p

(H)i !

�

sl(H) for 1 � p � 2

gl

p

2

(H) for 2 < p.

Then q is a 
ontinuous morphism of Bana
h{Lie algebras. Further

Z

2

(gl

p

(H);K )

�

=

Lin(

e

gl

p

(H);K );

and (3.4) imply that the adjoint map q

�

is bije
tive. That q

�

is inje
tive implies that q has

dense range and the surje
tivity of q

�

implies in parti
ular that q is inje
tive. Further the Closed

Range Theorem ([Ru73, Th. 4.14℄) implies that the image of q is 
losed, and hen
e that q is

bije
tive. Finally the Open Mapping Theorem implies that q is an isomorphism.

Remark III.19. From the pre
eding proposition, we obtain in parti
ular examples of Lie

algebras where the universal 
overing algebra is not 
entrally 
losed. For example ea
h gl

p

(H)

with p > 2 has this property. For p < 2 � 4 we have

e

gl

p

(H)

�

=

gl

p

2

(H) and

^

e

gl

p

(H)

�

=

sl(H);

but for 2

k

< p � 2

k+1

we need to pass k + 1-times to the universal 
overing Lie algebra until

we rea
h sl(H) whi
h is 
entrally 
losed.

In Se
tion IV below we shall see many other 
on
rete examples of universal 
entral exten-

sions, when we dis
uss root graded lo
ally 
onvex Lie algebras. In parti
ular, we shall see that

universal 
overings of root graded Lie algebras are always 
entrally 
losed.
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IV. Universal 
overings of lo
ally 
onvex root graded Lie algebras

In this se
tion we des
ribe the universal 
overing Lie algebra of a lo
ally 
onvex root graded Lie

algebra. In parti
ular, we shall see that it only depends on the root system and the 
oordinate

algebra. Several results in this se
tion are topologi
al versions of algebrai
 results in [ABG00℄. A

key point is that the 
on
ept of a generalized 
entral extensions provides the natural framework to

translate the algebrai
 stru
ture of the universal 
overing algebra into the lo
ally 
onvex 
ontext.

Proposition IV.1. Let q:

b

g! g be a generalized 
entral extension for whi
h

b

g is topologi
ally

perfe
t. If g is �-graded, then

b

g is �-graded and vi
e versa.

Proof. (a) First we assume that g is �-graded. On

b

g we 
onsider the g

�

-module stru
ture

given by




ad (Lemma III.4). Then the 
orestri
tion

b

g ! im(q) is an extension of the lo
ally

�nite g

�

-module im(q) by the trivial module ker q , hen
e a trivial extension (Proposition A.4).

It follows in parti
ular that

b

g is an h-weight module. The weights o

urring in this module are

identi
al with those o

urring in im(q) � [g; g℄ (Lemma III.4(1)). This implies that we have an

h-weight de
omposition

b

g =

b

g

0

�

M

�2�

b

g

�

with q(

b

g

�

) = g

�

for � 6= 0. As the 
entral Lie algebra extension q

�1

(g

�

) !! g

�

is trivial, its


ommutator algebra

b

g

�

is a subalgebra whi
h is mapped by q isomorphi
ally onto g

�

. Therefore

(R1){(R3) are satis�ed for

b

g

�

as a grading subalgebra in

b

g .

As the bra
ket in

b

g is given by [x; y℄ = b(q(x); q(y)), the topologi
al perfe
tness of

b

g implies

that the image of b spans a dense subspa
e of

b

g . Therefore

b(g

0

; g

0

) +

X

0 6=�

b(g

�

; g

��

) = b(g

0

; g

0

) +

X

0 6=�

[

b

g

�

;

b

g

��

℄

is dense in

b

g

0

. For x

��

2

b

g

��

and x

��

2

b

g

��

we further have

b([q(x

�

); q(x

��

)℄; [q(x

�

); q(x

��

)℄) = [[x

�

; x

��

℄; [x

�

; x

��

℄℄ � [

b

g

0

; [

b

g

�

;

b

g

��

℄℄ � [

b

g

�

;

b

g

��

℄:

Hen
e

b([g

�

; g

��

℄; [g

�

; g

��

℄) � [

b

g

�

;

b

g

��

℄;

so that (R4) holds for g , and the relation q(

b

g

�

) = g

�

for � 6= 0 imply that b(g

0

; g

0

) is 
ontained

in the 
losure of the sum of the spa
es [

b

g

�

;

b

g

��

℄ , � 6= 0. This implies (R4) for

b

g .

(b) Now we assume that

b

g is �-graded with grading subalgebra

b

g

�

. Then ker q � z(

b

g), so that

g

�

:= q(

b

g

�

)

�

=

b

g

�

. Clearly g 
arries a natural g

�

-module stru
ture.

From [g; g℄ � im(q) (Lemma III.4(2)) we derive that g= im(q) is a trivial g

�

-module.

Moreover, im(q)

�

=

b

g= ker(q) is a lo
ally �nite g

�

-module. Therefore Proposition A.4 implies

that g is a lo
ally �nite g

�

-module whi
h is a dire
t sum of q(

b

g) and a trivial module Z . This

immediately leads to a weight de
omposition of g with weight system �, and it is obvious that

(R1){(R3) are satis�ed.

As h a
ts on g by 
ontinuous operators, the proje
tion g! g

0

along the sum of the other

root spa
es is 
ontinuous, so that the density of the image of q in g implies that q(

b

g

0

) is dense

in g

0

. We further have

[g

�

; g

��

℄ = q(b(g

�

; g

��

)) = q(b(q(

b

g

�

); q(

b

g

��

))) = q([

b

g

�

;

b

g

��

℄);

so that (R4) for

b

g implies (R4) for g .

Corollary IV.2. If g is �-graded with grading subalgebra g

�

, then z(g) � z

g

(g

�

) � z

g

(h) =

g

0

, and g=z(g)

�

=

ad g is a �-graded Lie algebra. The quotient map ad: g! g=z(g) is a morphism

of �-graded Lie algebras.
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Lemma IV.3. Let g

1

and g

2

be lo
ally 
onvex �-graded Lie algebras with 
oordinate stru
tures

(A

i

= A

i

�B

i

; D

i

; Æ

D

i

) and �

i

: g

�

! g the 
orresponding embeddings that we use to identify g

�

with a subalgebra of g

1

and g

2

. If ': g

1

! g

2

is a morphism of lo
ally 
onvex Lie algebra with

' Æ �

1

= �

2

, then there exist 
ontinuous linear maps

'

A

:A

1

! A

2

; '

B

:B

1

! B

2

and '

D

:D

1

! D

2

su
h that

(4:1) '(a
 x+ b
 v + d) = '

A

(a)
 x+ '

B

(b)
 v + '

D

(d)

for a 2 A

1

; b 2 B

1

; d 2 D

1

; x 2 g

�

and v 2 V

s

, and

'

A

:= '

A

� '

B

:A

1

! A

2

is a 
ontinuous algebra homomorphism with

(4:2) Æ

D

2

Æ ('

A

� '

A

) = '

D

Æ Æ

D

1

:

Proof. The 
ondition ' Æ �

1

= �

2

means that ' is equivariant with respe
t to the represen-

tations of g

�

on g

1

and g

2

. Identifying A

1

with Hom

g

�

(g

�

; g

1

), the equivarian
e of ' with

respe
t to the g

�

permits us to de�ne '

A

(a) := ' Æ a . We likewise de�ne '

B

and '

D

. Then

(4.1) is satis�ed. Now (4.2) and that '

A

de�nes an algebra homomorphism follow dire
tly from

(B1){(B3), be
ause the algebra stru
ture on A

1

, resp., A

2

is 
ompletely determined by the Lie

bra
ket.

Remark IV.4. The pre
eding lemma applies in parti
ular to generalized 
entral extensions

q:

b

g! g . In this 
ase the proof of Proposition IV.1 implies that q

A

is a topologi
al isomorphism,

hen
e an isomorphism of lo
ally 
onvex algebras. We therefore may assume that g and

e

g have

the same 
oordinate algebra A . In this sense we write

g = (A
 g

�

)� (B 
 V

s

)�D and

b

g = (A
 g

�

)� (B 
 V

s

)�

b

D;

and q

D

:

b

D ! D is a map with dense range and q

D

Æ Æ

b

D

= Æ

D

.

This applies in parti
ular to the universal 
overing algebra, whi
h we write as

e

g = (A
 g

�

)� (B 
 V

s

)�

e

D:

In the following subse
tion we will see how

e

D 
an be des
ribed dire
tly in terms of the 
oordinate

algebra A and Æ

A

.

The universal 
overing of a �-graded lo
ally 
onvex Lie algebra

To des
ribe the universal 
overing Lie algebra

e

g of a lo
ally 
onvex root graded Lie algebra

g , we �rst 
onsider its 
oordinate stru
ture (A = A�B;D; Æ

D

) (De�nition II.14). We 
onsider

the lo
ally 
onvex spa
e

hA;Ai

�

:= hA;Ai=hA;Bi

and write the image of ha; bi 2 hA;Ai in hA;Ai

�

also as ha; bi .
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Theorem IV.5. For ea
h root system � , the 
orresponding 
oordinate algebra A , and the

natural map Æ

A

:A � A ! der(A) , the derivations Æ

A

(a; b) preserve the subspa
e hA;Bi of

hA;Ai , and we obtain on hA;Ai

�

the stru
ture of a lo
ally 
onvex Lie algebra by

[ha; a

0

i; hb; b

0

i℄ := Æ

A

(a; a

0

):hb; b

0

i:

Proof. Sin
e the map A

3

! A; (a; b; 
) 7! Æ

D

(a; b):
 is 
ontinuous, and Æ

D

is a 
y
li
 1-


o
y
le vanishing on A�B (Theorem II.13), it de�nes a 
ontinuous linear map

hA;Ai

�

! D; ha; bi 7! Æ

D

(a; b):

Now de�ne

Æ

A

: hA;Ai

�

! der(A); Æ

A

(a; b):
 := Æ

D

(a; b):
;

and observe that the bilinear map

hA;Ai

�

�A ! A; (ha; bi; 
) 7! Æ

A

(a; b):


is 
ontinuous.

From (2.3) in Theorem II.13 we further derive that

(4:3) Æ

A

(Æ

A

(a; b):h
; di) = Æ

A

(Æ

A

(a; b):
; d) + Æ

A

(
; Æ

A

(a; b):d) = [Æ

A

(a; b); Æ

A

(
; d)℄

for a; b; 
; d 2 A .

As the operators Æ(a; b) 2 der(A) all preserve the subspa
es A and B of A , the subspa
e

hA;Bi � hA;Ai is invariant under all these operators with respe
t to the natural a
tion of der(A)

on hA;Ai , and we therefore obtain a well-de�ned bra
ket on hA;Ai

�

with

[ha; a

0

i; hb; b

0

i℄ := Æ

A

(a; a

0

):hb; b

0

i:

As in Proposition III.9, the Ja
obi identity for this bra
ket is a dire
t 
onsequen
e of (4.3).

That the bra
ket is alternating is equivalent to the relation

(4:4) Æ

A

(a; a

0

):hb; b

0

i = �Æ

A

(b; b

0

):ha; a

0

i

for a; a

0

; b; b

0

2 A . This relation 
an be veri�ed 
ase by 
ase for the 
oordinate algebras asso
iated

to the di�erent types of root systems (see [ABG00, p.521℄; 
f. also Theorem II.20 and the

subsequent 
omments).

For the 
ase where A is an asso
iative or a Jordan algebra, (4.4) 
an be obtained as in

Example III.10(2), (3). In this 
ase we already have on hA;Ai a natural Lie algebra stru
ture,

and sin
e hA;Bi is invariant under the operators Æ

A

(a; b), it is a Lie algebra ideal, so that

hA;Ai

�

simply is the quotient Lie algebra.

The following theorem is the lo
ally 
onvex version of the des
ription of the universal


overing Lie algebra (
f. [ABG00℄ for the algebrai
 
ase).

Theorem IV.6. The Lie algebra

e

g := (A
 g

�

)� (B 
 V

s

)� hA;Ai

�

with the Lie bra
ket given by

[d; a
 x+ b
 v + d

0

℄ = d:a
 x+ d:b
 v + [d; d

0

℄;

and

[a
 x; a

0


 x

0

℄ = 


A

+

(a; a

0

)
 [x; x

0

℄ + 


A

�

(a; a

0

)
 x � x

0

+ 


B

A

(a; a

0

)
 �

V

g

(x; x

0

) + �(x; x

0

)Æ

A

(a; a

0

);
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[a
 x; b
 v℄ =

ab+ ba

2


 �

g

g;V

(x; v) +

ab� ba

2


 x:v; ;

[b
 v; b

0


 v

0

℄ = 


A

B

(b; b

0

)
 �

g

V

(v; v

0

) + 


B

B

(b; b

0

)
 �

V

V

(v; v

0

) + �

V

s

(v; v

0

)Æ

A

(b; b

0

)

is a universal 
overing Lie algebra of g with universal 
overing map

q

g

(a
 x+ b
 v + d) = a
 x+ b
 v + Æ

D

A

(d);

where Æ

D

A

(ha; bi) = Æ

D

(a; b) for a; b 2 A .

Proof. The Lie algebra hA;Ai

�

together with the map Æ

A

: hA;Ai

�

! der(A) satisfy all

assumptions of Theorem II.15, and we obtain on

e

g := (A
 g

�

)� (B 
 V

s

)� hA;Ai

�

a Lie bra
ket as des
ribed above. Now

e

g is a �-graded Lie algebra with 
oordinate stru
ture

(A; hA;Ai

�

; Æ

A

). Let q:

b

g! g be a generalized 
entral extension, where we write

b

g as

b

g = (A
 g

�

)� (B 
 V

s

)�

b

D

(Remark IV.4). Then the 
orresponding map Æ

b

D

A

: hA;Ai

�

!

b

D is a 
ontinuous homomorphism

of Lie algebras be
ause

Æ

b

D

A

([ha; bi; h
; di℄) = Æ

b

D

A

(Æ

A

(a; b):h
; di) = [Æ

b

D

A

(a; b); Æ

b

D

A

(
; d)℄

(Theorem II.13). We now obtain a 
ontinuous linear map

eq:

e

g!

b

g; a
 x+ b
 v + d 7! a
 x+ b
 v + Æ

b

D

A

(d);

and (B1){(B3) together with the relation q

D

Æ Æ

b

D

= Æ

D

(Lemma IV.3) imply that this map is a

homomorphism of Lie algebras satisfying qÆeq = q

g

, where q

g

:

e

g! g is the natural homomorphism

indu
ed by the Lie algebra homomorphism Æ

D

A

: hA;Ai

�

! D .

Corollary IV.7. If g is a �-graded lo
ally 
onvex Lie algebra, then its universal 
overing

Lie algebra

e

g only depends on the pair (A; Æ

A

) , whi
h in turn is 
ompletely determined by the


oordinate algebra A and the type of � . If we write

e

g(�;A) for

e

g , then the assignment

A 7!

e

g(�;A)

de�nes a fun
tor from the 
ategory of lo
ally 
onvex algebras determined by the root system �

to the 
ategory of lo
ally 
onvex Lie algebras.

Corollary IV.8. Ea
h Lie algebra

e

g(�;A) , i.e., the universal 
overing Lie algebra of a

�-graded Lie algebra g , is 
entrally 
losed.

Proof. From the expli
it des
ription of the universal 
overing Lie algebra

e

g in Theorem IV.6

and the fa
t that it has the same 
oordinate algebra as g , it follows that the map

e

e

g !

e

g is an

isomorphism be
ause for both algebras the D -part is hA;Ai

�

.
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Lie algebra 
o
y
les on root graded Lie algebras

Proposition IV.9. Every 
ontinuous Lie algebra 
o
y
le on a root graded Lie algebra g is

equivalent to a g

�

-invariant one.

Proof. As a module of g

�

, the Lie algebra g de
omposes topologi
ally as

g = (A
 g

�

)� (B 
 V

s

)�D;

and therefore

g
 g

�

=

(g

�


 g

�

)
 (A
A)� (g

�


M)
 (A
B) + � � �

is the de
omposition of g 
 g as a g

�

-module, where A , B and D are 
onsidered as trivial

modules. We 
on
lude that for ea
h trivial lo
ally 
onvex g

�

-module z we have

Lin(g
 g; z)

�

=

(g

�


 g

�

)

�


 Lin(A
A; z) � (g

�


 V

s

)

�


 Lin(A
B; z) + � � �

Sin
e g

�

and V

s

are �nite-dimensional, Lin(g 
 g; z) is a lo
ally �nite g

�

-module, hen
e

semisimple. This property is in parti
ular inherited by the submodule Z

2

(g; z) � Lin(g
 g; z) of


ontinuous Lie algebra 
o
y
les. Hen
e the de
omposition into trivial and e�e
tive part yields

Z

2

(g; z) = Z

2

(g; z)

g

�

� g

�

:Z

2

(g; z):

For the representation � of g on the spa
e C

2

(g; z) of 
ontinuous Lie algebra 2-
o
hains we have

the Cartan formula

�(x) = i

x

Æ d+ d Æ i

x

; x 2 g;

whi
h implies that on 2-
o
y
les we have �(x):! = d(i

x

:!) and hen
e g:Z

2

(g; z) � B

2

(g; z). We


on
lude that ea
h element of H

2

(g; z) has a g

�

-invariant representative.

Proposition IV.10. The invariant Lie algebra 
o
y
les ! 2 Z

2

(g; z)

g

�

are in one-to-

one 
orresponden
e with the elements of the spa
e Lin(hA;Ai

�

; z) , where we obtain from ! 2

Z

2

(g; z)

g

� �

=

Lin(

e

g; z)

g

�

a fun
tion !

A

on hA;Ai

�

by restri
ting to the subspa
e hA;Ai

�

of

e

g .

The 
o
y
le ! is a 
oboundary if and only if !

A


an be written as � Æ Æ

D

A

for an � 2

Lin(D; z) , so that

H

2

(g; z)

�

=

Lin(hA;Ai

�

; z)=Lin(D; z) Æ Æ

D

A

:

Proof. If q

g

:

e

g

�

=

hg; gi ! g is the universal 
overing Lie algebra, then we have for ea
h lo
ally


onvex spa
e z a natural isomorphism Z

2

(g; z)

�

=

Lin(

e

g; z) (Remark III.7). As q

g

is equivariant

with respe
t to the a
tion of g

�

, this leads to

Z

2

(g; z)

g

�

�

=

Lin(

e

g; z)

g

�

for the invariant Lie algebra 
o
y
les. On the other hand

e

g = (A
 g

�

)� (B 
 V

s

)� hA;Ai

�

implies that Lin(

e

g; z)

g

� �

=

Lin(hA;Ai

�

; z):

If � 2 Lin(D; z), then we extend � to a 
ontinuous linear map �

g

: g ! z by zero on the

subspa
es A 
 g

�

and B 
 V

s

. Then d�(x; y) = �([y; x℄) is a g

�

-invariant 
o
y
le on g , and

the 
orresponding fun
tion (d�)

eg

on

e

g

�

=

hg; gi satis�es (d�)

eg

= �� Æ b

g

whi
h implies that

(d�)

A

= �� Æ b

g

j

hA;Ai

�
= �� Æ Æ

D

A

:

If, 
onversely, ! = d� is a g

�

-invariant 
oboundary, then the same argument as in the proof of

Proposition IV.7 implies that we may 
hoose � as a g

�

-invariant fun
tion on g , whi
h means

that � vanishes on A
 g

�

and B
 V

s

, hen
e is of the form dis
ussed above. We 
on
lude that

Lin(D; z) Æ Æ

D

A

� Lin(hA;Ai

�

; z)


orresponds to the g

�

-invariant 
oboundaries. This 
ompletes the proof.

The pre
eding proposition des
ribes the 
ohomology of g with values in a trivial module z

in terms of the 
oordinate algebra. For the topologi
al homology spa
e we get

H

2

(g) := ker q

g

�

=

ker Æ

D

A

� hA;Ai

�

;

whi
h des
ribes H

2

(g) 
ompletely in terms of the 
oordinate algebra and D .
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De�nition IV.11. Motivated by the 
orresponding 
on
ept for asso
iative algebras with

involution (Appendix D), we de�ne the full skew dihedral homology of A , resp., the pair (A; Æ

A

)

as

HF (A) := ker Æ

A

� hA;Ai

�

:

Proposition IV.12. If g is a �-graded lo
ally 
onvex Lie algebra, then the 
enterfree Lie

algebra g=z(g) is also �-graded with the same 
oordinate algebra and the same universal 
overing

algebra, and

H

2

(g=z(g))

�

=

HF (A):

Proof. The �rst two assertions follow from Corollary IV.2 and Remark III.15(b).

With respe
t to the g

�

-isotypi
al de
omposition of g , we have

z(g) = fd 2 D: (8a 2 A) d:a = 0g;

whi
h implies that

H

2

(g=z(g)) = ker q

g=z(g)

= q

�1

g

(z(g)) = z(

e

g) = ker Æ

A

= HF (A):

Example IV.13. (a) Let n � 4. If g = sl

n

(A) for a lo
ally 
onvex unital asso
iative algebra,

then the pre
eding 
onsiderations imply that

(4:5) H

2

(sl

n

(A))

�

=

HC

1

(A) and H

2

(psl

n

(A))

�

=

HF (A);

where

psl

n

(A) := sl

n

(A)=z(sl

n

(A))

�

=

sl

n

(A)=(Z(A) \ [A;A℄):

If n = 3, then g is A

3

-graded, and we have to 
onsider A as an alternative algebra. Sin
e

A is asso
iative, the left and right multipli
ations L

a

and R

b

on A 
ommute, so that

L

[a;b℄

�R

[a;b℄

� 3[L

a

; R

b

℄ = ad[a; b℄:

This implies that hA;Ai 
arries the same Lie algebra stru
ture, regardless of whether we 
onsider

it as an asso
iative or an alternative algebra. We 
on
lude that (4.5) remains true for n = 3.

For n = 2 the 
oordinate algebra of sl

2

(A) is the Jordan algebra A = A

J

with the produ
t

a Æ b =

ab+ba

2

. Let L

a

(x) = ax and R

a

(x) = xa denote the left and right multipli
ations in

the asso
iative algebra A , and L

J

a

(x) =

1

2

(L

a

+R

a

) the left multipli
ation in the 
orresponding

Jordan algebra. Then

8Æ

A

J

(a; b) = 4[L

J

a

; L

J

b

℄ = [L

a

+R

a

; L

b

+R

b

℄ = [L

a

; L

b

℄ + [R

a

; R

b

℄ = L

[a;b℄

�R

[a;b℄

= ad[a; b℄:

For g = sl

2

(A) we also have D = [A;A℄ and

Æ

D

A

J

(a; b) =

1

2

[a; b℄

(Example II.16(b)). We therefore obtain

H

2

(sl

2

(A))

�

=

ker Æ

D

A

J

and H

2

(psl

2

(A))

�

=

HF (A

J

):

In the algebrai
 
ontext, the pre
eding results have been obtained for n = 2 by Gao

([Gao93℄), and for n � 3 by Kassel and Loday ([KL82℄).

(b) For g = sp

2n

(A; �) (Example I.7, Example II.16(
)) the 
oordinate algebra is an asso
iative

algebra A with involution. For

psp

2n

(A; �) := sp

2n

(A; �)=z(sp

2n

(A; �));

we therefore obtain

H

2

(psp

2n

(A; �))

�

=

HF (A)

and H

2

(sp

2n

(A; �)) is isomorphi
 to the kernel of the map

hA;Ai

�

! [A;A℄

��

; ha; bi 7! [a; b℄ + [a

�

; b

�

℄:

(
) If J is a Jordan algebra, then it follows from the 
onstru
tion in Example I.9 and our

expli
it des
ription of the 
entrally 
losed �-graded Lie algebras in this se
tion that

℄

TKK(J)

is 
entrally 
losed, hen
e the notation. In the sense of Corollary IV.7, we 
ould also write

℄

TKK(J) =

e

g(A

2

; J).
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Example IV.14. (a) Let A be an asso
iative algebra with involution � , A := A

�

, B := A

��

,

and 
onsider the modi�ed bra
ket map de�ned by

b

�

(x; y) := [x; y℄� [x; y℄

�

= [x; y℄� [y

�

; x

�

℄ = [x; y℄ + [x

�

; y

�

℄:

Then b

�

de�nes a 
ontinuous linear map hA;Ai

�

! A

��

, and

HD

0

1

(A; �) := ker b

�

� hA;Ai

�

is 
alled the �rst skew-dihedral homology spa
e of (A; �) (see Appendix D for more information

on skew-dihedral homology). The 
orresponding full dihedral homology spa
e is

HF (A) = b

�1

�

(Z(A)) = fx 2 hA;Ai

�

: ad(b

�

(x)) = 0g:

(b) If A = A is an asso
iative algebra, B = f0g , and Æ

A

(a; b) = ad([a; b℄) , then

hA;Ai

�

= hA;Ai

with the Lie algebra stru
ture

[ha; bi; h
; di℄ = h[a; b℄; [
; d℄i

de�ned in Example III.10(2). If b

A

: hA;Ai ! A; ha; bi 7! [a; b℄ is the 
ommutator bra
ket, then

HC

1

(A) := ker b

A

is the �rst 
y
li
 homology of A , and in this 
ase the full skew-dihedral homology spa
e is the

full 
y
li
 homology spa
e:

HF (A) = b

�1

A

(Z(A)) � HC

1

(A);

where Z(A) is the 
enter of A .

By 
orestri
tion of the bra
ket map b

A

, we obtain a generalized 
entral extension of lo
ally


onvex Lie algebras

HC

1

(A) ,! hA;Ai ! [A;A℄:

We also have a generalized 
entral extension of lo
ally 
onvex Lie algebras

HF (A) ,! hA;Ai ! [A;A℄=

�

Z(A) \ [A;A℄):

(
) If A is 
ommutative and asso
iative, then b

A

= 0, so that

HF (A) = HC

1

(A) = hA;Ai:

A more dire
t des
ription of this spa
e 
an be given as follows. Let M be a lo
ally 
onvex

A-module in the sense that the module stru
ture A �M ! M is 
ontinuous. A derivation

D:A!M is a 
ontinuous linear map with D(ab) = a:D(b)+ b:D(a) for a; b 2 A . One 
an show

that for ea
h lo
ally 
onvex asso
iative algebra there exists a universal di�erential module 


1

(A),

whi
h is endowed with a derivation d:A! 


1

(A) whi
h has the universal property that for ea
h

derivation D:A ! M there exists a 
ontinuous linear module homomorphism ': 


1

(A) ! M

with 'Æd = D (
f. [Ma02℄). We 
onsider the quotient spa
e 


1

(A)=dA endowed with the lo
ally


onvex quotient topology. Then we have a natural isomorphism

hA;Ai ! 


1

(A)=dA; ha; bi 7! [a � db℄:

Example IV.15. In general it is not always easy to determine the spa
e HC

1

(A) for a 
on
rete


ommutative lo
ally 
onvex algebra. The following 
ases are of parti
ular interest for appli
ations:

(1) 


1

(A) = f0g for any 
ommutative C

�

-algebra A (Johnson, 1972; see [BD73, Prop. VI.14℄).
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(2) If M is a 
onne
ted �nite-dimensional smooth manifold and A = C

1

(M;K ) for K 2 fR; C g ,

then A is a Fr�e
het algebra (a Fr�e
het spa
e with 
ontinuous algebra multipli
ation). If 


1

(M;K )

is the spa
e of smooth K -valued 1-forms on M , then the di�erential

d:C

1

(M;K ) ! 


1

(M;K ); f 7! df

has the universal property, and therefore




1

(A)

�

=




1

(M;K ) and HC

1

(A)

�

=




1

(M;K )=dC

1

(M;K )

([Ma02℄).

A similar result holds for the lo
ally 
onvex algebra A = C

1




(M;K ) of smooth fun
tions

with 
ompa
t support, endowed with the lo
ally 
onvex dire
t limit topology with respe
t to the

Fr�e
het spa
es C

1

K

(M;K ) of all those fun
tions whose support is 
ontained in a �xed 
ompa
t

subset K �M . In this 
ase we have




1

(A)

�

=




1




(M;K ) and HC

1

(A)

�

=




1




(M;K )=dC

1




(M;K )

([Ma02℄, [Ne02d℄).

(3) If M is a 
omplex manifold, then the algebra A := O(M) of C -valued holomorphi


fun
tions is a Fr�e
het algebra with respe
t to the topology of uniform 
onvergen
e on 
ompa
t

subsets of M . Assume that M 
an be realized as an open submanifold of a 
losed submanifold

of some C

n

, i.e., as an open subset of a Stein manifold. Let 


1

O

(M) be the spa
e of holomorphi


1-forms on M . Then it is shown in [NW03℄ that the di�erential

d:O(M)! 


1

O

(M); f 7! df

has the universal property, and therefore




1

(A)

�

=




1

O

(M) and HC

1

(A)

�

=




1

O

(M)=dO(M):

Example IV.16. We 
onstru
t two root graded Lie algebras g

1

and g

2

whi
h are isogenous,

non-isomorphi
, but have trivial 
enter.

Let A be a lo
ally 
onvex asso
iative unital algebra with A = [A;A℄�K1 . Then the 
enter

of

sl

n

(A)

�

=

A
 sl

n

(K ) � [A;A℄
 1

is trivial.

For the asso
iative Bana
h algebra B

2

(H) of Hilbert-S
hmidt operators on an in�nite-

dimensional Hilbert spa
e H we 
onsider the asso
iated unital Bana
h algebra A := B

2

(H)+K1 .

Then

hA;Ai = hB

2

(H); B

2

(H)i

follows from hA;1i = f0g . If gl

2

(H) := B

2

(H)

L

is the Lie algebra obtained from B

2

(H) via the


ommutator bra
ket, then we have seen in Proposition III.18 that

e

gl

2

(H) = hgl

2

(H); gl

2

(H)i

�

=

sl(H), and the universal Lie algebra 
o
y
le is the 
ommutator bra
ket

!

u

: gl

2

(H)� gl

2

(H)! sl(H):

On the other hand the dis
ussion in Example III.10(2) shows that the spa
e hB

2

(H); B

2

(H)i

obtained from the asso
iative algebra stru
ture is a quotient of hgl

2

(H); gl

2

(H)i . As the bra
ket

map q

gl

2

(H)

: hgl

2

(H); gl

2

(H)i ! gl

2

(H) is inje
tive, hB

2

(H); B

2

(H)i must be the quotient by

the trivial subspa
e, and therefore the bra
ket map

hB

2

(H); B

2

(H)i ! sl

(

H); ha; bi 7! [a; b℄

is an isomorphism of Bana
h spa
es.

Let n � 3. Then the natural morphism

e

sl

n

(A)

�

=

(A
 sl

n

(K )) � hA;Ai ! sl

n

(A)

is inje
tive, and hen
e

e

sl

n

(A) has trivial 
enter. As the map sl(H)! B

2

(H) is not surje
tive, the

two A

n�1

-graded Lie algebras

e

sl

n

(A) and sl

n

(A) both have trivial 
enter but are not isomorphi
.
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V. Perspe
tives: Root graded Lie groups

In this se
tion we brie
y dis
uss some aspe
ts of the global Lie theory of root graded Lie algebras,

namely root graded Lie groups.

An in�nite-dimensional Lie group G is a manifold modeled on a lo
ally 
onvex spa
e g

whi
h 
arries a group stru
ture for whi
h the multipli
ation and the inversion map are smooth

([Mi83℄, [Gl01a℄, [Ne02b℄). The spa
e of left invariant ve
tor �elds on G is 
losed under the

Lie bra
ket of ve
tor �elds, hen
e inherits a Lie algebra stru
ture. Identifying elements of the

tangent spa
e g := T

1

(G) of G in the identity 1 with left invariant ve
tor �elds, we obtain on

g the stru
ture of a lo
ally 
onvex Lie algebra L(G). That the so obtained Lie bra
ket on g is


ontinuous follows most easily from the observation that if we 
onsider the group multipli
ation

in lo
al 
oordinates, where the identity element 1 2 G 
orresponds to 0 2 g , then the �rst two

terms of its Taylor expansion are given by

x � y = x+ y + b(x; y) + � � � ;

where the quadrati
 term b: g� g! g is bilinear with

[x; y℄ = b(x; y)� b(y; x):

We 
all a lo
ally 
onvex Lie algebra g integrable if there exists a Lie group G with L(G) = g .

A Lie group G is said to be �-graded if its Lie algebra L(G) is �-graded. The question when

a root graded Lie algebra g is integrable 
an be quite diÆ
ult.

A

ording to Lie's Third Theorem, every �nite-dimensional Lie algebra is integrable, but

this is no longer true for in�nite-dimensional lo
ally 
onvex Lie algebras. If g is a Bana
h{Lie

algebra, then the Lie algebra g=z(g) always is integrable. Let PG(g) denote a 
orresponding


onne
ted Lie group. Then there is a natural homomorphism of abelian groups, 
alled the period

homomorphism

per

g

:�

2

(PG(g))! z(g);

and g is integrable if and only if the image of per

g

is dis
rete. For general lo
ally 
onvex Lie

algebras the situation is more 
ompli
ated, but if q:

b

g! g = L(G) is a 
entral extension with a

sequentially 
omplex lo
ally 
onvex spa
e z as kernel and a 
ontinuous linear se
tion, then there

is a period homomorphism

per:�

2

(G)! z;

and the existen
e of a Lie group

b

G with L(

b

G) =

b

g depends on the dis
reteness of the image

of per ([Ne02a℄, [Ne03a℄). For �nite-dimensional groups these obstru
tions are va
uous be
ause

�

2

(G) always vanishes by a theorem of

�

E. Cartan ([Mim95, Th. 3.7℄).

For the 
lass of root graded Bana
h{Lie algebras the situation 
an be des
ribed very well

by period maps. In this 
ase the Lie algebra g is integrable if and only if the image of per

g

is dis
rete. As the universal 
overing

e

g of g also is a universal 
overing of g=z(g)

�

=

e

g=z(

e

g)

(Remark III.15), we obtain a similar 
riterion for the integrability of

e

g via a period map

per

eg

:�

2

(PG(g))! z(

e

g) = HF (A);

where A is the 
oordinate algebra of g and HF (A) is its full skew-dihedral homology. If g

1

is

a quotient of

e

g by a 
entral subspa
e and

e

g is integrable, then g

1

is integrable if and only if the

period map

per

g

1

:�

2

(PG(g))! z(g

1

)

obtained by 
omposing per

eg

with the natural map z(

e

g)! z(g

1

) has dis
rete image.

For general lo
ally 
onvex root graded Lie algebras whi
h are not Bana
h{Lie algebras

the situation is less 
lear, but there are many important 
lasses of lo
ally 
onvex root graded
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Lie algebras, to whi
h many results from the Bana
h 
ontext 
an be extended, namely the Lie

algebras related to matrix algebras over 
ontinuous inverse algebras. A unital 
ontinuous inverse

algebra (CIA) is a unital lo
ally 
onvex algebra A for whi
h the unit group A

�

is open and the

inversion is a 
ontinuous map A

�

! A; a 7! a

�1

. Typi
al asso
iated root graded Lie algebras

are the A

n�1

-graded Lie algebra sl

n

(A), and for a 
ommutative CIA the Lie algebras of the

type g = A
 g

�

(
f. [Gl01b℄). Further examples are the Lie algebras sp

2n

(A; �) and o

n;n

(A; �)

dis
ussed in Se
tion I. For Jordan algebras the situation is more 
ompli
ated, but in this 
ontext

there also is a natural 
on
ept of a 
ontinuous inverse Jordan algebra, whi
h is studied in [BN03℄,

and 
an be applied to show that 
ertain related Lie algebras are integrable.

Both 
lasses lead to interesting questions in non-
ommutative geometry be
ause for a

sequentially 
omplete CIA the dis
reteness of the image of the period map for

e

sl

n

(A) follows

from the dis
reteness of the image of a natural homomorphism

P

3

A

:K

3

(A)! HC

1

(A)

�

=

H

2

(sl

n

(A));

where K

3

(A) := lim

�!

�

2

(GL

n

(A)) is the third topologi
al K -group of the algebra A . If, in

addition, A is 
omplex, Bott periodi
ity implies that

K

3

(A)

�

=

K

1

(A) := lim

�!

�

0

(GL

n

(A));

and the latter group is mu
h better a

essible. In parti
ular, we get a period map

P

1

A

:K

1

(A)! HC

1

(A):

One 
an show that this homomorphism is uniquely determined as a natural transformation

between the fun
tors K

1

and HC

1

, whi
h permits us to evaluate it for many 
on
rete CIAs

([Ne03a℄). If P

A

has dis
rete image, then

e

sl

n

(A) is integrable, but the 
onverse is not 
lear and

might even be false. Nevertheless, one 
an 
onstru
t 
ertain Fr�e
het CIAs whi
h are quantum

tori of dimension three, for whi
h the Lie algebra

e

sl

n

(A) is not integrable. For the details of

these 
onstru
tions we refer to [Ne03a℄.

There is also a purely algebrai
 approa
h to groups 
orresponding to root graded Lie

algebras. Here we asso
iate to a root graded Lie algebra g the 
orresponding proje
tive group

PG

alg

(g) := he

ad g

�

:� 2 �i � Aut(g):

As ea
h derivation adx , x 2 g

�

, of g is nilpotent, the operator e

adx

is a well-de�ned automor-

phism of g (
f. [Ti96℄, [Ze94℄). The group PG

alg

(g) 
an easily seen to be perfe
t, so that it has

a universal 
overing group (a universal 
entral extension)

e

G

alg

(g). Let PG(g) be a Lie group

with Lie algebra g=z(g). There are many interesting problems asso
iated with these groups:

(1) Des
ribe

e

G

alg

(g) by generators and relations.

(2) Show that PG(g) is a topologi
ally perfe
t group. When is it perfe
t?

(3) Suppose that

e

G

(g) is a Lie group with Lie algebra

e

g . Des
ribe the kernel of the universal


overing

e

G

(g)! PG(g) in terms of the 
oordinate algebra.

(4) Is there a homomorphism PG

alg

(g)! PG(g)?

(5) Is there a homomorphism

e

G

alg

(g)!

e

G

(g)?

It is an interesting proje
t to 
larify the pre
ise relation between the Lie theoreti
 (analyti
)

approa
h to root graded groups and the algebrai
 one.
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Appendix A. Some generalities on representations

In this se
tion we 
olle
t some material on �nite-dimensional representations of redu
tive Lie

algebras, whi
h is used in Se
tions II and III of this paper. All results in this appendix are valid

over any �eld K of 
hara
teristi
 zero.

Let r be a �nite-dimensional split redu
tive Lie algebra over the �eld K of 
hara
teristi


zero and h � r a splitting Cartan subalgebra. We �x a positive system �

+

of roots of r with

respe
t to h and write L(�) for the simple r-module of highest weight � 2 h

�

with respe
t to

�

+

. We write Z := Z(U(r)) for the 
enter of the enveloping algebra U(r) of r . Re
all that

for ea
h highest weight module V we have End

r

(V ) = K1 be
ause the highest weight spa
e is

one-dimensional and 
y
li
. Therefore Z a
ts by s
alar multiples of the identity on L(�), and we

obtain for ea
h � an algebra homomorphism �

�

:Z ! K , the 
orresponding 
entral 
hara
ter.

The following theorem permits us to see immediately that 
ertain modules are lo
ally �nite.

We 
all an r-module an h-weight module if it is the dire
t sum of the 
ommon h-eigenspa
es.

An h-weight module V of a split redu
tive Lie algebra r is 
alled integrable if for ea
h x

�

2 r

�

the operator adx

�

is lo
ally nilpotent.

Theorem A.1. For an h-weight module V of the �nite-dimensional split redu
tive Lie algebra

r with splitting Cartan subalgebra h the following assertions hold:

(1) If V is integrable, then V is lo
ally �nite and semisimple.

(2) If supp(V ) := f� 2 h

�

:V

�

6= f0gg is �nite, then V is integrable.

Proof. (1) Let V be an integrable r-module and � := f�

1

; : : : ; �

m

g . Then

r = h� r

�

1

� : : :� r

�

m

;

so that the Poin
ar�e{Birkho�{Witt Theorem implies

U(r) = U(h)U(r

�

1

) � � �U(r

�

m

):

Sin
e V is integrable, it is by de�nition a lo
ally �nite module for ea
h of the one-dimensional

Lie algebras r

�

, � 2 �. Hen
e for ea
h ve
tor v 2 V we see indu
tively that the spa
e

U(r

�

j

) � � �U(r

�

m

):v

is �nite-dimensional for j = m;m � 1; : : : ; 1, and �nally that U(r):v is �nite-dimensional.

Therefore V is a lo
ally �nite r-module.

Let F � V be a �nite-dimensional submodule. Sin
e F is a weight module, it is a

dire
t sum of the 
ommon eigenspa
es for z(r) � h , whi
h are r-submodules. A

ording to

Weyl's Theorem, these 
ommon eigenspa
es are semisimple modules of the semisimple Lie algebra

r

0

:= [r; r℄ , hen
e also of r = r

0

+ z(r). Therefore F is a sum of simple submodules, and the same


on
lusion holds for the lo
ally �nite module V . As a sum of simple submodules, the module V

is semisimple ([La93, XVII, x2℄).

(2) If supp(V ) is �nite, then x

�

:V

�

� V

�+�

for � 2 supp(V ) and � 2 � imply that the root

ve
tors x

�

a
t as lo
ally nilpotent operators on V .

The pre
eding theorem is a spe
ial 
ase of a mu
h deeper theorem on Ka
{Moody algebras.

A

ording to the Ka
{Peterson Theorem, ea
h integrable module in 
ategory O is semisimple

([MP95, Th. 6.5.1℄). This implies in parti
ular that integrable modules of �nite-dimensional split

redu
tive Lie algebras are semisimple.

Proposition A.2. Let V be an h-weight module of r for whi
h supp(V ) is �nite. Then the

following assertions hold:

(1) V is a semisimple r-module with �nitely many isotypi
 
omponents V

1

; : : : ; V

n

.
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(2) The simple submodules of V are �nite-dimensional highest weight modules L(�

1

); : : : ; L(�

n

) .

(3) For ea
h j 2 f1; : : : ; ng there exists a 
entral element z

j

in U(g

�

) with �

�

k

(z

j

) = Æ

jk

. In

parti
ular, z

j

a
ts on V as the proje
tion onto the isotypi
 
omponent V

j

.

Proof. (1), (2) First Theorem A.1 implies that V is semisimple. Moreover, ea
h simple

submodule is a �nite-dimensional weight module, hen
e isomorphi
 to some L(�). As supp(V )

is �nite, there are only �nitely many possibilities for the highest weights � .

(3) A

ording to Harish-Chandra's Theorem ([Dix74, Prop. 7.4.7℄), for �; � 2 h

�

we have

�

�

= �

�

, �+ � 2 W :(�+ �);

where W is the Weyl group of (r; h) and � =

1

2

P

�2�

+

� . If L(�) and L(�) are �nite-

dimensional, then � and � are dominant integral. Therefore � + � and � + � are dominant,

so that �+ � 2 W :(�+ �) implies � = � . Hen
e two non-isomorphi
 �nite-dimensional highest

weight modules L(�) and L(�) have di�erent 
entral 
hara
ters.

This proves that the 
entral 
hara
ters �

�

1

; : : : ; �

�

n


orresponding to the isotypi
 
ompo-

nents of V are pairwise di�erent. As the kernel of a 
hara
ter is a hyperplane ideal, this means

that for i 6= j we have

ker�

�

i

+ ker�

�

j

= Z:

Now the Chinese Remainder Theorem ([La93, Th. II.2.1℄) implies that the map

�:Z ! K

n

; z 7! (�

�

1

(z); : : : ; �

�

n

(z))

is surje
tive. Finally (3) follows with z

i

:= �

�1

(e

i

), where e

1

; : : : ; e

n

2 K

n

are the standard

basis ve
tors.

For the following lemma, we re
all the de�nition of Lie algebra 
ohomology from [We95℄.

Lemma A.3. If s is a �nite-dimensional semisimple Lie algebra and V a lo
ally �nite s-

module, then

H

p

(s; V ) = f0g for p = 1; 2:

Proof. As V is a dire
t sum of �nite-dimensional modules V

j

, j 2 J , the relations

C

p

(s; V )

�

=

M

j2J

C

p

(s; V

j

) easily lead to H

p

(s; V )

�

=

M

j2J

H

p

(s; V

j

);

so that the assertion follows from the Whitehead Lemmas ([We95, Cor. 7.8.10/12℄), saying that

H

p

(s; V

j

) vanishes for ea
h j and p = 1; 2.

Proposition A.4. Let s be a semisimple �nite-dimensional Lie algebra s .

(1) Ea
h extension Z ,!




M

q

��!M of a lo
ally �nite s-module M by a trivial module Z is

trivial.

(2) Ea
h extension M ,!




M

q

��!Z of a trivial s-module Z by a lo
ally �nite s-module M is

trivial.

Proof. (1) If




M is lo
ally �nite, then Weyl's Theorem implies that it is semisimple, and

therefore that the extension of M by Z splits. Hen
e it suÆ
es to show that




M is lo
ally

�nite. Let v 2




M . We have to show that v generates a �nite-dimensional submodule. Sin
e the

s-submodule of M generated by q(v) is �nite-dimensional, we may repla
e M by this module

and hen
e assume that M is �nite-dimensional. Now

Ext(M;Z)

�

=

H

1

(s;Hom(M;Z))

([We95, Ex. 7.4.5℄), and Hom(M;Z)

�

=

M

�


 Z is a lo
ally �nite module, so that

H

1

(s;Hom(M;Z)) = f0g
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(Lemma A.3). Therefore the module extension splits, and in parti
ular




M is lo
ally �nite.

(2) First we show that




M is lo
ally �nite. Let v 2




M . To see that v generates a �nite-

dimensional submodule, we may assume that Z is one-dimensional. Then Hom(Z;M)

�

=

M

is a lo
ally �nite s-module, and the same argument as in (1) above implies that the extension




M ! Z is trivial. In parti
ular, we 
on
lude that




M is lo
ally �nite.

Returning to the general situation, we obtain from Weyl's Theorem that the lo
ally �nite

module




M is semisimple, hen
e in parti
ular that




M = g:




M �




M

g

. As Z is trivial, we have

g:




M � M , so that ea
h subspa
e of




M

g


omplementing M \




M

g

yields a module 
omplement

to M .

Appendix B. Jordan algebras and alternative algebras

In this appendix we 
olle
t some elementary results on Jordan algebras.

Jordan algebras

De�nition B.1. A �nite dimensional ve
tor spa
e J over a �eld K is said to be a Jordan

algebra if it is endowed with a bilinear map J � J ! J satisfying:

(JA1) xy = yx .

(JA2) x(x

2

y) = x

2

(xy).

In this se
tion J denotes a Jordan algebra and (a; b) 7! L(a)b := ab = ba the multipli
ation

of J . Then (JA2) means that

[L(a); L(a

2

)℄ = 0 for all a 2 J:

Proposition B.2. For a Jordan algebra J over a �eld K with f2; 3g � K

�

the following

assertions hold for x; y; z 2 J .

(1) [L(x); L(yz)℄ + [L(y); L(zx)℄ + [L(z); L(xy)℄ = 0 .

(2) L(x(yz)� y(xz)) = [[L(x); L(y)℄; L(z)℄ .

Proof. Passing to the �rst derivative of (JA2) with respe
t to x in the dire
tion of z leads to

z(x

2

y) + 2x((xz)y) = 2(xz)(xy) + x

2

(zy)

for x; y; z 2 J . Passing again to the derivative with respe
t to x in the dire
tion of u leads to

z((xu)y) + u((xz)y) + x((uz)y) = (uz)(xy) + (xz)(uy) + (xu)(zy)

for u; x; y; z 2 J . This means that

[L(z); L(xu)℄ + [L(u); L(xz)℄ + [L(x); L(uz)℄ = 0;

or

L(xy)L(z) + L(zx)L(y) + L(yz)L(x) = L(z)L(y)L(x) + L

�

(zx)y

�

+ L(x)L(y)L(z):

Note that the expression

L(xy)L(z) + L(zx)L(y) + L(yz)L(x)

is invariant under any permutation of x; y; z . By ex
hanging x and y and subtra
ting, we

therefore obtain

[[L(x); L(y)℄; L(z)℄ = L

�

(zy)x

�

� L

�

(zx)y

�

= L

�

x(yz)� y(xz)

�

:

Corollary B.3. [L(J); L(J)℄ � der(J) .

Proof. This means that for x; y 2 J the operator D := [L(x); L(y)℄ is a derivation of J ,

whi
h in turn means that

[D;L(z)℄ = L(D:z); z 2 J:

This is a reformulation of Proposition B.2(2).
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Jordan algebras asso
iated to bilinear forms

Lemma B.4. Let A be a 
ommutative asso
iative algebra, B an A-module and �:B�B ! A

a symmetri
 bilinear form whi
h is invariant in the sense that

a�(b; b

0

) = �(ab; b

0

) = �(b; ab

0

); a 2 A; b; b

0

2 B:

Then A := A�B is a Jordan algebra with respe
t to

(a; b)(a

0

; b

0

) := (aa

0

+ �(b; b

0

); ab

0

+ a

0

b):

Proof. First we note that

L(a; 0)(a

0

; b

0

) = (aa

0

; ab

0

) and L(0; b)(a

0

; b

0

) = (�(b; b

0

); a

0

b):

The set L(A; 0) � End(A) is 
ommutative be
ause A is a 
ommutative algebra. Further

L(0; b)L(a; 0)(a

0

; b

0

) = (�(b; ab

0

); aa

0

b) = L(a; 0)L(0; b)(a

0

; b

0

)

implies that L(A; 0) 
ommutes with L(0; B), so that L(A; 0) is 
entral in the subspa
e L(A) of

End(A).

It is 
lear that A is 
ommutative. To see that it is a Jordan algebra, we have to verify that

ea
h L(a; b) 
ommutes with

L((a; b)

2

) = L(a

2

+ �(b; b); 2ab):

As L(A; 0) is 
entral in L(A), it suÆ
es to show that L(0; b) 
ommutes with L(0; ab), whi
h

follows from

L(0; b)L(0; ab)(x; y) = L(0; b)(�(ab; y); xab) = (�(b; xab); �(ab; y)b)

= (�(xb; ab); �(b; y)ab) = L(0; ab)(�(b; y); xb) = L(0; ab)L(0; b)(x; y):

Alternative algebras

Lemma B.5. Let A be a (non-asso
iative) algebra. For a; b; 
 2 A we de�ne the asso
iator

(a; b; 
) := (ab)
� a(b
):

Then the asso
iator is an alternating fun
tion if and only if for a; b 2 A we have

(B:1) a

2

b = a(ab) and ab

2

= (ab)b:

Proof. First we assume that the asso
iator is alternating. Then

a

2

b� a(ab) = (a; a; b) = 0 and ab

2

� (ab)b = (a; b; b) = 0:

Suppose, 
onversely, that (B.1) is satis�ed. The derivative of the fun
tion

f




(a) := a

2


� a(a
)

in the dire
tion of b is given by

df




(a)(b) = (ab+ ba)
� b(a
)� a(b
);

whi
h leads to the identity

(a; b; 
) = (ab)
� a(b
) = b(a
)� (ba)
 = �(b; a; 
):

We likewise obtain from a(


2

) = (a
)
 the identity

(a; b; 
) = (ab)
� a(b
) = a(
b)� (a
)b = �(a; 
; b):

As the group S

3

is generated by the transpositions (12) and (23), the asso
iator is an alternating

fun
tion.
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We 
all an algebra A alternative if the 
onditions from Lemma B.5 are satis�ed. For

L

a

(b) := ab =: R

b

(a) this means that

L

2

a

= L

a

2

and R

b

2

= R

2

b

:

Theorem B.6. (Artin) An algebra is alternative if every subalgebra generated by two elements

is asso
iative.

Proof. In view of (B.1), the algebra A is alternative if any pair (a; b) of elements generates

an asso
iative subalgebra. For the 
onverse we refer to [S
h66, Th. 3.1℄.

Lemma B.7. Ea
h alternative algebra is a Jordan algebra with respe
t to a Æ b :=

1

2

(ab+ ba):

Proof. Let L

J

a

(b) := a Æ b , L

a

(b) = ab and R

a

(b) := ba . Sin
e A is alternative, we have

0 = (a; b; a) = (ab)a� a(ba)

whi
h means that [L

a

; R

a

℄ = 0. Therefore the asso
iative subalgebra of End(A) generated by

L

a

and R

a

is 
ommutative. Sin
e L

J

a

=

1

2

(L

a

+R

a

) 
ommutes with

L

J

a

2

=

1

2

�

L

a

2

+R

a

2

�

=

1

2

�

L

2

a

+R

2

a

�

;

(A; Æ) is a Jordan algebra.

Appendix C. Jordan triple systems

The natural bridge between Lie algebras and Jordan algebras is formed by Jordan triple systems.

In this appendix we brie
y re
all how this bridge works. We are using this 
orresponden
e in

parti
ular in Se
tion III to see that for ea
h A

1

-graded Lie algebra the 
oordinate algebra is a

Jordan algebra.

De�nition C.1. (a) A �nite dimensional ve
tor spa
e V over a �eld K is said to be a Jordan

triple system (JTS) if it is endowed with a trilinear map f�g:V � V � V ! V satisfying:

(JT1) fx; y; zg = fz; y; xg .

(JT2) fa; b; fx; y; zgg = ffa; b; xg; y; zg� fx; fb; a; yg; zg+ fx; y; fa; b; zgg for all a; b; x; y; z 2 V .

For x; y 2 V we de�ne the operator x�y by (x�y):z := fx; y; zg and put P (x)(y) := fx; y; xg .

Then (JT2) is equivalent to

(JT2

0

) [a�b; x�y℄ =

�

(a�b):x

�

�y � x�

�

(b�a):y

�

:

It follows in parti
ular that the subspa
e V�V � End

K

(V ) spanned by the elements x�y is a

Lie algebra. This Lie algebra is denoted istr(V ) and 
alled the inner stru
ture algebra of V .

If 2 2 K

�

, then (JT1) implies that the trilinear map f�; �; �g 
an be re
onstru
ted from

the quadrati
 maps P (x) via polarization of P (x):y = fx; y; xg , i.e., by taking derivatives w.r.t.

x in the dire
tion of z . Therefore the Jordan triple stru
ture is 
ompletely determined by the

maps P (x), x 2 V .

Lemma C.2. If 3 2 K

�

and (V; f�; �; �g) is a Jordan triple system, then the following formulas

hold for x; y; z 2 V :

(1) P (x):fy; x; zg = fP (x):y; z; xg = fx; y; P (x):zg .

(2) P (x)(y�x) = (x�y)P (x) .

(3) [P (x)P (y); x�y℄ = 0 .

Proof. (1) From the Jordan triple identity

x�y:fa; b; 
g = fx�y:a; b; 
g� fa; y�x:b; 
g+ fa; b; x�y:
g
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we derive

fx; y; fx; z; xgg = ffx; y; xg; z; xg� fx; fy; x; zg; xg+ fx; z; fx; y; xgg

= 2ffx; y; xg; z; xg� fx; fy; x; zg; xg

= 2fx; y; fx; z; xgg� 2fx; fy; x; zg; xg+ 2ffx; z; xg; y; xg� fx; fy; x; zg; xg

= 4fx; y; fx; z; xgg� 3fx; fy; x; zg; xg:

This implies

3fx; y; fx; z; xgg = 3fx; fy; x; zg; xg;

so that 3 2 K

�

leads to

fx; y; fx; z; xgg = fx; fy; x; zg; xg:

This is the se
ond equality we had to prove. The �rst one follows from the se
ond one, whi
h

implies that fx; y; fx; z; xgg is symmetri
 in y and z .

(2) follows dire
tly from (1).

(3) is an immediate 
onsequen
e of (2).

Theorem C.3. (a) If g = g

1

� g

0

� g

�1

is a 3-graded Lie algebra with an involutive

automorphism � satisfying �(g

j

) = g

�j

for j = 0;�1 , then V := g

1

is a Jordan triple system

with respe
t to fx; y; zg :=

�

[x; �:y℄; z

�

.

(b) If, 
onversely, V is a Jordan triple system for whi
h there exists an involution � on istr(V )

with �(a�b) = �b�a for a; b 2 V , then g := V � istr(V ) � V is a Lie algebra with respe
t to

the bra
ket

[(a; x; d); (a

0

; x

0

; d

0

)℄ = (x:a

0

� x

0

:a; a�d

0

� a

0

�d+ [x; x

0

℄; �(x):d

0

� �(x

0

):d)

and �(a; b; 
) := (
; �(b); a) is an involutive automorphism of g .

Proof. (a) Sin
e g is graded, we have [g

1

; g

1

℄ = f0g , and this implies that [adx; ad y℄ = 0 for

x; y 2 g

1

, hen
e (JT1). To verify (JT2), we �rst observe that a�b = ad[x; �:y℄ . We have

�

[a; �:b℄; [
; �:d℄

�

=

�

[[a; �:b℄; 
℄; �:d

�

+

�


; [[a; �:b℄; �:d℄

�

=

�

[[a; �:b℄; 
℄; �:d

�

+

�


; �:[[�:a; b℄; d℄

�

=

�

[[a; �:b℄; 
℄; �:d

�

�

�


; �:[[b; �:a℄; d℄

�

:

Therefore (JT2) follows from

[a�b; 
�d℄ = ad

�

[a; �:b℄; [
; �:d℄

�

= ad

�

[[a; �:b℄; 
℄; �:d

�

� ad

�


; �:[[b; �:a℄; d℄

�

= (a�b):
�d� 
�(b�a):d:

(b) One observes dire
tly that � is an involution preserving the bra
ket. It is 
lear that the

bra
ket is skew symmetri
, so that

J(x; y; z) :=

�

[x; y℄; z

�

+

�

[y; z℄; x

�

+

�

[z; x℄; y

�

is an alternating trilinear fun
tion on g . We have to show that J vanishes.

Let g

1

:= V � f(0; 0)g , g

0

= f0g � istr(V ) � f0g , and g

�1

:= f(0; 0)g � V . It is easy to


he
k that J(x; y; z) = 0 if no entry is 
ontained in g

1

or no entry is 
ontained in g

�1

. We

identify x 2 V with (x; 0; 0) and write ex = (0; 0; x) for the 
orresponding element of g

�1

. Then

we may assume that the �rst entry is x 2 g

1

and the se
ond one is ey 2 g

�1

. For z 2 V

�

=

g

1

we

then obtain

J(x; ey; z) =

�

[ey; z℄; x

�

+

�

[x; ey℄; z

�

= (x�y):z � (z�y):x = fx; y; zg � fz; y; xg = 0:

If z 2 g

�1

, the assertion follows from �:J(x; ey; z) = J(�:x; �:ey; �:z) = 0: Finally, let z 2 g

0

. We

may assume that z = a�b . Then (JT2) implies that [z; x�y℄ = [z; x℄�y+ x��(z):y . This leads

to

J(x; ey; z) =

�

[ey; z℄; x

�

+

�

[z; x℄; ey

�

+

�

[x; ey℄; z

�

= �[(�(z):y)e; x℄ + [z:x; ey℄ + [x�y; z℄

= x�(�(z):y) + (z:x)�y � [z; x�z℄ = 0:

We 
on
lude this se
tion with the 
onne
tion between Jordan algebras and Jordan triple

systems.
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Theorem C.4. (a) If J is a Jordan algebra, then J is a Jordan triple system with respe
t to

(C:1) fx; y; zg = (xy)z + x(yz)� y(xz); i.e., x�y = L(xy) + [L(x); L(y)℄;

where we write L(x)y := xy for the left multipli
ations in J .

(b) If V is a JTS and a 2 V , then

x �

a

y := fx; a; yg

de�nes on V the stru
ture of a Jordan algebra. The Jordan triple stru
ture determined by the

Jordan produ
t �

a

is given by

fx; y; zg

a

= fx; fa; y; ag; zg = fx; P (a):y; zg:

It 
oin
ides with the original one if P (a) = 1 .

(
) Let J be a Jordan algebra whi
h we endow with the Jordan triple stru
ture from (a). If e 2 J

is an identity element, then x �

e

y = xy re
onstru
ts the Jordan algebra stru
ture from the Jordan

triple stru
ture.

Proof. (a) From (JA1) it immediately follows that (C.1) satis�es (JT1). The proof of (JT2)

requires Lemma B.2.

In view of Corollary B.3, D := [L(x); L(y)℄ is a derivation of J , so that

D:fa; b; 
g = fD:a; b; 
g+ fa;D:b; 
g+ fa; b;D:
g:

Therefore (C.1) shows that to prove (JT2), it suÆ
es to show that for ea
h x 2 J we have

L(x):fa; b; 
g = fL(x):a; b; 
g � fa; L(x):b; 
g+ fa; b; L(x):
g;

i.e.,

L(x):(a�b) = (xa)�b� a�(xb) + (a�b)L(x);

whi
h in turn means that

L(x)L(ab) + L(x)[L(a); L(b)℄

= L((xa)b) + [L(xa); L(b)℄� L(a(bx))� [L(a); L(xb)℄ + L(ab)L(x) + [L(a); L(b)℄L(x);

i.e.,

[L(x); L(ab)℄ + [L(a); L(xb)℄ + [L(b); L(ax)℄ = [[L(a); L(b)℄; L(x)℄ + L((xa)b)� L(a(bx)):

This identity follows from Lemma B.2, be
ause both sides of this equation vanish separately.

(b) Put xy := x �

a

y , so that L(x) = x�a . The identity (JA1) follows dire
tly from (JT1). To

verify (JA2), we observe that

L(x

2

):y = ffx; a; xg; a; yg = fy; a; fx; a; xgg

= ffy; a; xg; a; xg � fx; fa; y; ag; xg+ fx; a; fy; a; xgg

= 2(x�a)

2

:y � P (x)P (a):y:

Therefore Lemma C.2(3) implies

[L(x

2

); L(x)℄ = [2(x�a)

2

� P (x)P (a); x�a℄ = [x�a; P (x)P (a)℄ = 0:

The quadrati
 operator P

a

(x) asso
iated to the Jordan triple stru
ture de�ned by �

a

in

the sense of (a) is given by

P

a

(x) = 2L(x)

2

� L(x

2

) = 2(x�a)

2

�

�

2(x�a)

2

� P (x)P (a)

�

= P (x)P (a):

Therefore the Jordan triple stru
ture asso
iated to �

a

is given by fx; y; zg

a

= fx; P (a):y; zg .

(
) is trivial.
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Appendix D. Skew dihedral 
ohomology

In this se
tion we brie
y re
all the de�nition of skew dihedral 
ohomology of asso
iative algebras,

whi
h is the ba
kground for the de�nition of the full skew-dihedral homology spa
es de�ned in

Se
tion IV.

De�nition D.1. Let A be a unital asso
iative algebra and C

n

(A) := A


(n+1)

the (n+1)-fold

tensor produ
t of A with itself. We de�ne a boundary operator

b

n

:C

n

(A)! C

n�1

(A) for n 2 N

and b

0

:C

0

(A)! f0g by

b

n

(a

0


 : : :
 a

n

)

:=

n�1

X

i=0

(�1)

i

a

0


 a

1


 � � � 
 a

i

a

i+1


 � � � 
 a

n

+ (�1)

n

a

n

a

0


 a

1


 � � � 
 a

n�1

:

Then b

n

b

n+1

= 0 for ea
h n 2 N

0

, and the 
orresponding homology spa
es HH

�

(A) are 
alled

the Ho
hs
hild homology of A .

Of parti
ular interest for Lie algebras is the �rst Ho
hs
hild homology group HH

1

(A).

The map b

1

:C

1

(A) = A
A ! C

0

(A)

�

=

A is given by

b

1

(x
 y) = xy � yx = [x; y℄;

so that Z

1

(A) = ker b � C

1

(A) is the kernel of the bra
ket map. The spa
e B

1

(A) of boundaries

is spanned by elements of the type

b

2

(x 
 y 
 z) = xy 
 z � x
 yz + zx
 y:

Note in parti
ular that b

2

(x
 1
 1) = x
 1; so that A
 1 � B

1

(A).

De�nition D.2. Let (A; �) be an asso
iative algebra with involution �:A ! A; a 7! a

�

.

Then we obtain a natural a
tion of the dihedral group D

n+1

on the spa
e C

n

(A) as follows. We

present D

n+1

as the group generated by x

n

and y

n

subje
t to the relations

x

n+1

n

= y

2

n

= 1 and y

n

x

n

y

�1

n

= x

�1

n

;

and de�ne the a
tion of x

n

and y

n

on C

n

(A) by

x

n

(a

0


 : : :
 a

n

) := (�1)

n

a

n


 a

0


 : : :
 a

n�1

and

y

n

(a

0


 : : :
 a

n

) := �(�1)

n(n+1)

2

a

�

0


 a

�

n


 a

�

n�1

: : :
 a

�

2


 a

�

1

:

These operators are 
ompatible with the boundary operators in the sense that the operators b

n

indu
e on the spa
es C

0

n

(A) of 
oinvariants for the D

n+1

-a
tion boundary operators

b

0

n

:C

0

n

(A)! C

0

n�1

(A):

The 
orresponding homology is 
alled the skew-dihedral homology HD

0

n

(A; �) of the algebra with

involution (A; �) (
f. [Lo98, 10.5.4; Th. 5.2.8℄).

In the present paper we only need the spa
e HD

0

1

(A; �). We observe that

x

1

:(a

0


 a

1

) = �a

1


 a

0

and y

1

:(a

0


 a

1

) = a

�

0


 a

�

1

:

Writing the image of a

0


 a

1

in C

0

1

(A) as ha; bi , this means that

ha

0

; a

1

i = �ha

1

; a

0

i = ha

�

0

; a

�

1

i; a

0

; a

1

2 A:

It follows in parti
ular that hA

�

;A

��

i = f0g , and further that

C

0

1

(A)

�

=

�

2

(A

�

)� �

2

(A

��

):

Moreover,

b

0

2

(ha

0

; a

1

; a

2

i) = ha

0

a

1

; a

2

i � ha

0

; a

1

a

2

i+ ha

2

a

0

; a

1

i = ha

0

a

1

; a

2

i+ ha

1

a

2

; a

0

i+ ha

2

a

0

; a

1

i;

and these elements span the spa
e B

0

1

(A) � C

0

1

(A) of skew-dihedral 1-boundaries.
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