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Locally convex root graded Lie algebras

Karl-Hermann Neeb

Abstract. In the present paper we start to build a bridge from the algebraic theory of root graded
Lie algebras to the global Lie theory of infinite-dimensional Lie groups by showing how root graded
Lie algebras can be defined and analyzed in the context of locally convex Lie algebras. Our main
results concern the description of locally convex root graded Lie algebras in terms of a locally convex
coordinate algebra and its universal covering algebra, which has to be defined appropriately in the
topological context. Although the structure of the isogeny classes is much more complicated in the
topological context, we give an explicit description of the universal covering Lie algebra which implies
in particular that it depends only on the root system and the coordinate algebra. Not every root
graded locally convex Lie algebra is integrable in the sense that it is the Lie algebra of a Lie group.
In a forthcoming paper we will discuss criteria for the integrability of root graded Lie algebras.

Introduction

Let K be a field of characteristic zero and A a finite reduced irreducible root system. We write
g for the corresponding finite-dimensional split simple K-Lie algebra and fix a splitting Cartan
subalgebra § of ga . In the algebraic context, a Lie algebra g is said to be A-graded if it contains
gAa and g decomposes as follows as a direct sum of simultaneous ad h-eigenspaces

9=00® P oa, and go= ) [ga:0-0al-

aEA a€EA

It is easy to see that the latter requirement is equivalent to g being generated by the root
spaces go, @ € A, and that it implies in particular that g = [g,g], i.e., that g is a perfect
Lie algebra. Recall that two perfect Lie algebras g; and go are called (centrally) isogenous
if g1/3(91) = g2/3(g2). A perfect Lie algebra g has a unique universal central extension g,
called its universal covering algebra ([We95, Th. 7.9.2]). Two isogenous perfect Lie algebras have
isomorphic universal central extensions, so that the isogeny class of g consists of all quotients of
g by central subspaces.

The systematic study of root graded Lie algebras was initiated by S. Berman and R. Moody
in [BM92], where they studied Lie algebras graded by simply laced root systems, i.e., types A,
D and E. The classification of A-graded Lie algebras proceeds in two steps. First one considers
isogeny classes of A-graded Lie algebras and then describes the elements of a fixed isogeny class as
quotients of the corresponding universal covering Lie algebra. Berman and Moody show that for
a fixed simply laced root system of type A the isogeny classes are in one-to-one correspondence
with certain classes of unital coordinate algebras which are
(1) commutative associate algebras for types D,., r > 4, Eg, F; and Ejg,
(2) associative algebras for type A,, r > 3, and
(3) alternative algebras for type As.

The corresponding result for type A; is that the coordinate algebra is a Jordan algebra,
which goes back to results of J. Tits ([Ti62]).

Corresponding results for non-simply laced root systems have been obtain by G. Benkart
and E. Zelmanov in [BZ96], where they also deal with the A;-case. In these cases the isogeny
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classes are determined by a class of coordinate algebras, which mostly is endowed with an
involution, where the decomposition of the algebra into eigenspaces of the involution corresponds
to the division of roots into short and long ones. Based on the observation that all root systems
except Fg, Fy, and G are 3-graded, E. Neher obtains in [Neh96] a uniform description of the
coordinate algebras of 3-graded Lie algebras by Jordan theoretic methods. Neher’s approach is
based on the observation that if A is 3-graded, then each A-graded Lie algebra can also be
considered as an A;-graded Lie algebra, which leads to a unital Jordan algebra as coordinate
algebra. Then one has to identify the types of Jordan algebras corresponding to the different
root systems.

The classification of root graded Lie algebras was completed by B. Allison, G. Benkart
and Y. Gao in [ABGO00]. They give a uniform description of the isogeny classes as quotients
of a unique Lie algebra g(A,.A), depending only on the root system A and the coordinate
algebra A, by central subspaces. Their construction implies in particular the existence of a
functor A — g(A, A) from the category of coordinate algebras associated to A to centrally
closed A-graded Lie algebras.

Apart from split simple Lie algebras, there are two prominent classes of root graded Lie
algebras, which have been studied in the literature from a different point of view. The first
class are the affine Kac—-Moody algebras which can be described as root graded Lie algebras
([Ka90, Ch. 6] and Example I.11 below). The other large class are the isotropic finite-dimensional
simple Lie algebras g over fields of characteristic zero. These Lie algebras have a restricted root
decomposition with respect to a maximal toral subalgebra h'. The corresponding root system
A is irreducible, but it may also be non-reduced, i.e., of type BC, ([Se76]). If it is reduced,
then g is A-graded in the sense defined above. In the general case, one needs the notion of
B(.-graded Lie algebras which has been developed by B. Allison, G. Benkart and Y. Gao in
[ABGO2]. Since three different root lengths occur in BC,, we call the shortest ones the short
roots, the longest ones the eztra-long roots, and the other roots long. The main difference to the
reduced case is that there cannot be any grading subalgebra of type BC,, so that one has to
distinguish between different types, where the grading subalgebra is either of type B, (the short
and the long roots), type C,. (the long and the extra-long roots), or of type D, (the long roots).

The theory of root graded Lie algebras has a very geometric flavor because the coordinati-
zation theorems for the different types of root systems are very similar to certain coordinatization
results in synthetic geometry. That the Lie algebra g under consideration is simple implies that
the coordinate algebra is simple, too. In geometric contexts, in addition, the coordinate algebras
are mostly division algebras or forms of division algebras. For a nice account on the geometry of
groups corresponding to the root systems Ay, By = Cy and G2 we refer to the memoir [Fa77]
of J. R. Faulkner. Here type As corresponds to generalized triangles, type Bs to generalized
quadrangles and G5 to generalized hexagons.

An important motivation for the algebraic theory of root graded Lie algebras was to find a
class of Lie algebras containing affine Kac-Moody algebras ([Ka90]), isotropic finite-dimensional
simple Lie algebras ([Se76]), certain ones of Slodowy’s intersection matrix algebras ([S186]), and
extended affine Lie algebras (EALAs) ([AABGP97]), which can roughly be considered as those
root graded Lie algebras with a root decomposition. Since a general structure theory of infinite-
dimensional Lie algebras does not exist, it is important to single out large classes with a uniform
structure theory. The class of root graded Lie algebras satisfies all these requirements in a
very natural fashion. It is the main point of the present paper to show that root graded Lie
algebras can also be dealt with in a natural fashion in a topological context, where it covers
many important classes of Lie algebras, arising in such diverse contexts as mathematical physics,
operator theory and geometry.

With the present paper we start a project which connects the rich theory of root graded Lie
algebras, which has been developed so far on a purely algebraic level, to the theory of infinite-
dimensional Lie groups. A Lie group G is a manifold modeled on a locally convex space g which
carries a group structure for which the multiplication and the inversion map are smooth ([Mi83],
[Gl01a], [Ne02b]). Identifying elements of the tangent space g := T1(G) of G in the identity 1

I We call a subalgebra t of a Lie algebra g toral if ad tCder(g) consists of diagonalizable endomorphisms.
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with left invariant vector fields, we obtain on g the structure of a locally convex Lie algebra, i.e.,
a Lie algebra which is a locally convex space and whose Lie bracket is continuous. Therefore
the category of locally convex Lie algebras is the natural setup for the “infinitesimal part” of
infinite-dimensional Lie theory. In addition, it is an important structural feature of locally convex
spaces that they have natural tensor products.

In Section I we explain how the concept of a root graded Lie algebra can be adapted to
the class of locally convex Lie algebras. The main difference to the algebraic concept is that
one replaces the condition that ) - [ga,8-a] coincides with go by the requirement that it is
a dense subspace of go. This turns out to make the theory of locally convex root graded Lie
algebras somewhat harder than the algebraic theory, but it is natural, as a closer inspection
of the topological versions of the Lie algebras sl,(A) for locally convex associative algebras A
shows. In Section I we also discuss some natural classes of “classical” locally convex root graded
Lie algebras such as symplectic and orthogonal Lie algebras and the Tits—Kantor—Koecher—Lie
algebras associated to Jordan algebras.

In Section IT we undertake a detailed analysis of locally convex root graded Lie algebras.
Here the main point is that the action of the grading subalgebra ga on g is semisimple with
at most three isotypical components, into which g decomposes topologically. The corresponding
simple modules are the trivial module K € {R, C }, the adjoint module ga and the simple module
V, whose highest weight is the maximal short root with respect to a positive system AT C A.
In the algebraic context, the decomposition of g is a direct consequence of Weyl’s Theorem, but
here we need that the isotypical projections are continuous operators, a fact which can be derived
from the fact that they come from the center of the enveloping algebra U(ga). The underlying
algebraic arguments are provided in Appendix A. If A, B, resp., D, are the multiplicity spaces
with respect to ga, Vs, resp., K, then g decomposes topologically as

g=(A®ga)d (B V;)® D.

A central point in our structural analysis is that the direct sum A4 := A @ B carries a natural
(not necessarily associative) unital locally convex algebra structure, that D acts by derivations
on A, and that we have a continuous alternating map 6”: A x A — D satisfying a certain
cocycle condition. Here the type of the root system A dictates certain identities for the mul-
tiplication on 4, which leads to the coordinatization results mentioned above ([BM92], [BZ96]
and [Neh96]). The main new point here is that A inherits a natural locally convex structure,
that the multiplication is continuous and that all the related maps such as §° are continuous.

In the algebraic context, the coordinate algebra 4 and the root system A classify the
isogeny classes. The isogeny class of g contains a unique centrally closed Lie algebra g and
a unique center-free Lie algebra g/3(g). In the locally convex context, the situation is more
subtle because we have to work with generalized central extensions instead of ordinary central
extensions: a morphism q:g — g of locally convex Lie algebras is called a generalized central
extension if it has dense range and there exists a continuous bilinear map b:g x g — g for which
bo (g x q) is the Lie bracket on g. The subtlety of this concept is that ¢ need not be surjective
and if it is surjective, it does not need to be a quotient map. Fortunately these difficulties are
compensated by the nice fact that each topologically perfect Lie algebra g, meaning that the
commutator algebra is dense, has a universal generalized central extension, called the universal
covering Lie algebra g. The basic results on generalized central extensions are developed in
Section III.

In Section IV we apply this concept to locally convex root graded Lie algebras and show
that the description of the universal covering Lie algebra can be translated from the algebraic
context ([ABGOO]) to the locally convex context without extra technical work. Here a central
point is that for any generalized central extension ¢:g — g the Lie algebra g is A-graded if and
only if g is A-graded. This means that generalized isogeny classes contain a A-graded element if
and only if they entirely consist of A-graded Lie algebras. Moreover, we show that the universal
covering Lie algebra of a A-graded Lie algebra only depends on the root system A and the
coordinate algebra A. Therefore the universal covering Lie algebra deserves the name g(A, A),
and it turns out that the assignment A — g(A, A) is functorial.
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We thus obtain a locally convex version of isogeny classes. They still have the property
that they contain a unique centrally closed member because all Lie algebras in the class have
the same universal covering, but unfortunately there might be several center-free Lie algebras
with the same universal covering. This is due to the fact that the Lie algebras of the class are
obtained from the centrally closed Lie algebra g by generalized central extensions gq:g — g. As
qg is not necessarily a quotient map, the topology on g is not determined by the topology on g
(Example I11.15, Example IV.16).

A Lie group G is said to be A-graded if its Lie algebra L(G) is A-graded. It is a natural
question which root graded locally convex Lie algebras g are integrable in the sense that they
are the Lie algebra of a Lie group G. Although this question always has an affirmative answer if
g is finite-dimensional, it turns out to be a difficult problem to decide integrability for infinite-
dimensional Lie algebras. These global questions will be pursued in another paper ([Ne03b], see
also [Ne03a]). In Section V we give an outline of the global side of the theory and explain how it
is related to K -theory and non-commutative geometry. One of the main points is that, in view
of the results of Section V, it mainly boils down to showing that at least one member g of an
isogeny class is integrable and then analyze the situation for the universal covering Lie algebra g.

Acknowledgement: T am grateful to B. Allison for several extremely useful remarks con-
cerning the structure of root graded Lie algebras. I further thank H. Biller, H. Glockner and
R. Gramlich for their critical and careful proof reading of the paper.

Preliminaries and notation

The theory of root graded Lie algebras is a subject with great aesthetic appeal and rich
connections to many other fields of mathematics. We therefore tried to keep the exposition
of the present paper as self-contained as possible to make it accessible to readers from different
mathematical subcultures. In particular we include proofs for those results on the structure of the
coordinate algebras which can be obtained by short elementary arguments; for the more refined
structure theory related to the exceptional and the low rank algebras we refer to the literature.
On the algebraic level we essentially build on the representation theory of finite-dimensional
semisimple split Lie algebras (cf. [Dix74] or [Hum?72]); the required Jordan theoretic results are
elementary and provided in Appendices B and C. On the functional analytic level we do not
need much more than some elementary facts on locally convex spaces such as the existence of
the projective tensor product.

All locally convex spaces in this paper are vector spaces over K € {R,C}. If X and Y are
locally convex spaces, then we write Lin(X,Y") for the space of continuous linear maps X — Y.

A locally convez algebra A is a locally convex topological vector space together with a
continuous bilinear map A x A — A. In particular a locally convex Lie algebra g is a Lie algebra
which is a locally convex space for which the Lie bracket is a continuous bilinear map g x g — g.

The assumption that the topological Lie algebras we consider are locally convex spaces is
motivated by the fact that such Lie algebras arise naturally as Lie algebras of Lie groups and
by the existence of tensor products, which will be used in Section III to construct the universal
covering Lie algebra. Tensor products of locally convex spaces are defined as follows.

Let E and F be locally convex spaces. On the tensor product E® F' there exists a natural
locally convex topology, called the projective topology. 1t is defined by the seminorms

(v a)() =inf { 3 ply)az)e = v 0%},

where p, resp., ¢ are continuous seminorms on E, resp., F' (cf. [Tr67, Prop. 43.4]). We write
E®, F for the locally convex space obtained by endowing E® F' with the locally convex topology
defined by this family of seminorms. It is called the projective tensor product of E and F'. It has
the universal property that for a locally convex space GG the continuous bilinear maps ExX F — G
are in one-to-one correspondence with the continuous linear maps E®, F — G. We write EQ, F
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for the completion of the projective tensor product of E and F'. If E and F are Fréchet spaces,
their topology is defined by a countable family of seminorms, and this property is inherited by
E®,F. Hence this space is also Fréchet.

If £ and F are Fréchet spaces, then every element 6 of the completion E®,F can be
written as 6 = Y2 | \p@p ® Yy, where X € £ (N,K) and lim, 0 7, = limp_yo0 yn = 0 ([Tr67,
Th. 45.1]). If, in addition, F and F are Banach spaces, then the tensor product of the two
norms is a norm defining the topology on E® F and E®,F also is a Banach space. For ||0]] < 1

we then obtain a representation with [|A||; < 1 and ||z,], [|lyn|| < 1 for all n € N ([Tr67, p.465]).

I. Root graded Lie algebras

In this section we introduce locally convex root graded Lie algebras. In the algebraic setting it
is natural to require that root graded Lie algebras are generated by their root spaces, but in the
topological context this condition would be unnaturally strong. Therefore it is weakened to the
requirement that the root spaces generate the Lie algebra topologically. As we will see below,
this weaker condition causes several difficulties which are not present in the algebraic setting,
but this defect is compensated by the well behaved theory of generalized central extensions (see
Section IV).

Definition I.1. Let A be a finite irreducible reduced root system and ga the corresponding
finite-dimensional complex simple Lie algebra.

A locally convex Lie algebra g is said to be A -graded if the following conditions are satisfied:
(R1) g is a direct sum g = go © D, cp Jo-
(R2) There exist elements z, € go, @ # 0, and a subspace h C go with ga = b+ > A Kz, .
(R3)For o € AU {0} we have g, = {z € g: (Vh € ) [h,z] = a(x)h}, where we identify A with

a subset of h*.

(R4) > acalfa, g o] is dense in go.

The subalgebra ga of g is called a grading subalgebra. We say that g is root graded if g is
A-graded for some A.

A slight variation of the concept of a A-graded Lie algebra is obtained by replacing (R2)
by
(R2’) There exist a sub-root system Ay C A and elements z, € go, @ € Ag, and a subspace

h Cgo with ga, b+, ca, Koo

A Lie algebra satisfying (R1), (R2%), (R3) and (R4) is called (A, Ag)-graded. ]

Remark 1.2. (a) Suppose that a locally convex Lie algebra g satisfies (R1)-(R3). Then the

subspace
> tat Y [0ar0-0l

a€EA aEA

is invariant under each root space g, and also under gy, hence an ideal. Therefore its closure
satisfies (R1)-(R4), hence is a A-graded Lie algebra.

(b) Sometimes one starts with the subalgebra § C g and the corresponding weight space
decomposition, so that we have (R1) and (R3). Let II be a basis of the root system A C h* and &,
a € A, the coroots. If there exist elements z1, € g+, for a € I such that [z,,2_,] = &, then
we consider the subalgebra ga C ¢ generated by {z+,:a € II}. Then the weight decomposition
of g with weight set A U {0} easily implies that the generators z1,, a € II, satisfy the Serre
relations, and therefore that ga is a split simple Lie algebra with root system A satisfying (R2).m

Remark I.3. (a) In the algebraic context one replaces (R4) by the requirement that go =
Y acalfa,g-a]. This is equivalent to g being generated by the spaces go, a € A.

(b) The concept of a A-graded Lie algebra can be defined over any field of characteristic 0.
Here it already occurs in the classification theory of simple Lie algebras as follows. Let g be
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a simple Lie algebra which is isotropic in the sense that it contains non-zero elements z for
which adz is diagonalizable. The latter condition is equivalent to the existence of a subalgebra
isomorphic to sly(K). Let h C g be a maximal toral subalgebra h C g. Then g has an h-
weight decomposition, and the corresponding set of weights A C h* is a not necessarily reduced
irreducible root system (cf. [Se76, pp.10/11]). If this root system is reduced, then one can use
the method from Remark I.2(b) to show that g is A-graded in the sense defined above. For
restricted root systems of type BC, this argument produces grading subalgebras of type C,,
hence (BC,,C,)-graded Lie algebras ([Se76]).

(c¢) (R4) implies in particular that g is topologically perfect, i.e., that g’ := m =g.

(d) Suppose that g is A-graded and

0 Cdera(g) :={D € der(g): Vo € A)D.go C ga}

is a Lie subalgebra with a locally convex structure for which the action d x g — g is continuous.
Then g x 0 satisfies (R1)-(R3) with (g % 0)g =go X 0. [

Examples of root graded Lie algebras
Example I.4. Let A be a reduced finite root system and ga be the corresponding simple
split K-Lie algebra. If A is a locally convex associative commutative algebra with unit 1, then
g:= A®ga is alocally convex A-graded Lie algebra with respect to the bracket
[a®z,a @1 :=ad @ [z,2].
The embedding gan — g isgiven by z - 1 ® z. ]
Example 1.5. Now let A be an associative unital locally convex algebra. Then the (n x n)-

matrix algebra M, (A4) = A® M, (K) also is a locally convex associative algebra. We write gl,,(A)
for this algebra, endowed with the commutator bracket and

for the closure of the commutator algebra of gl,,(A). We claim that this is an A,,_; -graded Lie
algebra with grading subalgebra ga = 1 ® sl,,(K). It is clear that ga is a subalgebra of g. Let

h:= {diag(xl,...,xn):xl,...,xn E]K,ij 20} Cga
J

denote the canonical Cartan subalgebra and define linear functionals €; on b by
gj(diag(zi, ..., zn)) = ;.
Then the weight space decomposition of g satisfies
Oei—e; = AR Eyj, 1# ],
where E;; is the matrix with one non-zero entry 1 in position (4,7). From
[aE;;, bEy] = abdjrEy — bad; Eyj
we derive that

1
a,b] ®1 + A @ sl,(K).

[CLEZ']', bEN] = abE;; — ba,E]']' € [a, b] QFE; +A® S[n(K) € E[
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In view of A ® sl,,(K) = [ga,g] C [g¢,g], it is now easy to see that

g = {diag(al,...,an):Zaj € [A,A]} —(Aap o (4 Ae1).

From the formulas above, we also see that (R4) is satisfied, so that g is an A,,_;-graded locally
convex Lie algebra.
We have a natural non-commutative trace map

n

Tr:gl,(A) —» A/[AA], =+ [Zxﬂ]

j=1
where [a] denotes the class of a € A in A/[A, A]. Then the discussion above implies that
slp(A) :=kerTr = g = (A ® sl,(K)) ® ([4, 4] ® 1).

To prepare the discussion in Section IT below, we describe the Lie bracket in s, (A) in terms of
the above direct sum decomposition. First we note that in gl,(A4) we have

ad +a'a

1
5 ® [z, 2] + i[a, a'l ® (zz' + 2'z).

[a®@z,a @1z =ad @z’ —daw 2’z =
For z,2' € sl,,(K) we have
t !
rxx =xr +12'w — QMI € sl,(K),
n

so that for a,a’ € A and z,2' € s[,,(K) we have

aa' +ad'a
2

(z2')

1 t
(1.1) [a®z,d @)= ( ®[m,m']+§[a,a']®m*m') +[a,a']®rT1

according to the direct sum decomposition sl,(K) = (4 ® s[,,(K)) @ ([4, A] ® 1), and
[dol,a®z]=[dad®z, a,deAzcsl,(K). m

Remark 1.6. A Lie algebra g can be root graded in several different ways. Let s C g be a
subalgebra with s = span{h, e, f} 2 sl2(K) and the relations

[h,e] =2e, [h,f]=-2f and [e, f]=nh.
If adg h is diagonalizable with Spec(adg h) = {2,0,—2}, then the eigenspaces of adg h yield on
g the structure of an A, -grading with ga := s. This shows in particular that for any associative
algebra A the Lie algebra sl,(A4), n > 3, has many different A;-gradings in addition to its

natural A, _;-grading. ]

Example I.7. Let A be alocally convex unital associative algebra with a continuous involution
o:a +— a?, i.e., o is a continuous involutive linear antiautomorphism:

(ab)” =b7a” and (a’)” =a, a,be A
If o =idy4, then A is commutative. We write
AT = {a € A:a” = +a}

and observe that A = A7 & A7, where A7 is a subalgebra.
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The involution o extends in a natural way to an involution of the locally convex algebra
M,,(A) of n x n-matrices with entries in A by (z;;)7 := (7). If 0 =id4, then 27 =27 is just
the transposed matrix.

(a) Let 1 € M,,(A) be the identity matrix and define

J = (‘1’ _01> € My, (A).

Then J2 = —]_, and
sp,, (A, 0) = {z € gl,, (A): Ja® ' = —z}
is a closed Lie subalgebra of gl,,(A). Writing z as a (2 x 2)-matrix <‘cl Z) € Mo (Man(A)),

this means that
a

b
5p2n(~'470-) = { (C _aa> eg[Qn(A)Iba:b,CU:c}_

For A = K we have ¢ = id, and we obtain sp,,(K,idg) = sp,,,(K). With the identity
element 1 € A we obtain an embedding K =2 K1 < A, and hence an embedding

5p2n (K) — 5p2n ("47 U)‘

Let
h = {diag(z1,...,Tpn,—T1,...,—Typ): T1,..., T, € K}

denote the canonical Cartan subalgebra of sp,, (K). Then the h-weights with respect to the
adjoint action of h on sp,, (A, o) coincide with the set

A:{:I:ai:lzsj:i,jz 1,...,7’L}

of roots of sp,,(K), where ¢;(diag(z1,...,2n, —21,...,—25)) = z; for j = 1,...,n. Typical
root, spaces are
Oei—e; = AR (Bij = Ejynitn),  Geite; = {aBijin + 0" Ejiynia € A}, i #

g

g2e; = A"Ejjyn, and go = {diag(ai,...,an, —af,...,—ay):a1,...,a, € A}.

The centralizer of the subalgebra sp,,, (K) is

Fsps, (A0) (5P2, (K)) = A7,

and therefore

5p2n(~'47 U) = [5p2n(K)75p2n(A7 U)] S A_Ul‘

From Example .5 we know that a necessary condition for an element al to be contained in the
commutator algebra of gl,,(A) is a € [4, A]. On the other hand, the embedding

0
() = sp(A), s (50, )

implies that the elements
a 0 —
<0 —a")’ a € [A, A

are contained in the closure sp,, (A,0)" of the commutator algebra of sp,,, (A,o). This proves
that
2, (A, 0)" = [5p2,(K), 8D, (A, 0)] & [A, A] @ 1.

Using Example 1.5 again, we now obtain (R4), and therefore that sp,,(A,0)" is a C), -graded Lie
algebra with grading subalgebra sp,,, (K).
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The preceding description of the commutator algebra shows that each element x =

a b , )
<c _acr> € 5Py, (A, o) satisfies

tr(z) = tr(a — a) = tr(a) — tr(a)” € [A, AJ.
That the latter condition is sufficient for = being contained in sp,,, (A, 0)" follows from
5Pan (A, 0) = [8p5,(K), spo, (A)] B A7 @ 1.
The Lie algebra sp,,(A,0) also has a natural 3-grading
5Po (A, 0) = 8p3, (A, 0)+ ® 8ps,, (A, 0)0 © 6Py, (A, 0)—
with
8Py, (A, 0)x = Herm, (A, 0) :={z € M,(A):2° =z} and sp,y,(A,0) = gl,(A),

obtained from the (2 x 2)-matrix structure.
(b) Now we consider the symmetric matrix

= (‘1’ (1)> € Man(A),

which satisfies I? = 1. We define the associate closed Lie subalgebra of gl,,,(A) by

b

0nn(A,0) = {x € gy, (A): [27T = -3} = { (Z _aa> € aly, (A): b = —b,c” = —c}.

For A = K we have o = id, and we obtain 0, »(K idg) = 0 »(K). With the identity
element 1 € A we obtain an embedding K = K1 < A, and hence an embedding

0n.n(K) = 0,0(A4,0).
Again,
h:= {diag(x1, ..., Tn,—T1,...,—Tp): T1,..., 2y € K}

is the canonical Cartan subalgebra of 0, ,(K). The h-weights with respect to the adjoint action
of h on 0, ,(A,0) coincide with the set

A={te;+e;:i,j=1,...,n}.
Typical root spaces are
gei—e; = A® (Eij — Ejynjitn)s  Geite; = {aBijin —a”Ejipnia € A}, i # J,
g2e; = A "Ejjyn, and go = {diag(ai,...,an, —af,...,—ay):a1,...,a, € A}.

The root spaces ga.; are non-zero if and only if A~7 # {0}, which is equivalent to o # id4.
Asin (a), we obtain

3on,n(A)(°n7n(K)) =AT7®1, onn(A) = [0nn(K),0nn(A)] DA™ @1,

and L
0n,n(A) = [00,n(K), 000 (A)]®[A, A @1
If 04 =id4, then A is of type D,,, the root system of o0, ,(K), and 0,,,(A) := 05,n(A,id4) is
a D, -graded Lie algebra. In this case 4 = A7, and
onn(A) 2 A® o0, ,(K),

so that this case is also covered by Example 1.4.
If o4 # id4, then we obtain a (C,,D,)-graded Lie algebra with grading subalgebra
on,n(K) of type Dy,. [
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Lemma 1.8. Let K be a field with 2 € K* . For z,y,z € slo(K) we have the relations

(1.2) zy + yz = tr(zy)1,
and
(1.3) [z, [y, 2]] = 2tr(zy)z — 2tr(z2)y.

Proof. For z € slr(K) let
p(t) =det(tl —x) =t* —tra -t + detz = t* + det z
denote the characteristic polynomial of z. Then the Cayley—Hamilton Theorem implies
0=p(z) = 2> + (det z)1.

On the other hand —2detz = tra? follows by consideration of eigenvalues £\ of z in
a quadratic extension of K. We therefore obtain 272 — tr(z%)1 = 22> + 2(detz)1 = 0. By
polarization (taking derivatives in direction y), we obtain from 2z? = tr(z?)1 the relation
2zy + 2yx = tr(zy + yx)1 = 2tr(xy)1, which leads to

zy + yx = tr(zy)1.

We further get

tr(zy)z — tr(z2)y = (zy +yz)z — y(z2 + 22) = 2yz — yzo = [z,yz] = %[w’ 21+ lyz+ 2)
= ol + ()] = Lo [,
|

Example 1.9. (a) Let J be a locally convex Jordan algebra with identity 1 (cf. Appendix B).
We endow the space J ® J with the projective tensor product topology and define

(J,J) == (J & J)/I,
where I C J ® J is the closed subspace generated by the elements of the form a ® a and
ab@c+bc®a+ca®b, a,b,ceEJ.
We write (a,b) for the image of a ® b in (J,.J). Then
(a,b) = —(b,a) and (ab,c)+ (be,a) + (ca,by =0, a,b,ce J.

It follows in particular that (1,c¢) 4+ 2(c,1) = 0, which implies (1,¢) = 0 for each ¢ € .J.
Let L(a)b:= ab denote the left multiplication in J. From the identity

[L(a), L(be)] + [L(b), L(ca)] + [L(c), L(ab)] = 0

(Proposition B.2(1)) and the continuity of the maps (a,b,z) — [L(a), L(b)].x we derive that the
map
dp:J®J—der(J), (a,b) — [L(a), L(b)]

(cf. Corollary B.3 for the fact that it maps into der(JJ)) factors through a map

05:(J, J) — der(J).
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It therefore makes sense to define
(1.4) (a,b).x :=2[L(a), L(b)].z, a,bz € J
We now define a bilinear continuous bracket on
TKK(J) := (J @ sly(K)) @ (J, J)

by
[a®z,d ®2]:=aa®[r,2'] + (a,d) tr(zz’), [(a,b),c®x]:=(a,b).c®x
[{a,b), {c,d)] := {{a,b).c,d) + (¢, (a,b).d).
The label TKK refers to Tits, Kantor and Koecher who studied the relation between Jordan
algebras and Lie algebras from various viewpoints (see Appendices B and C). It is clear from

the definitions that if we endow ’ﬁ\(T((J ) with the natural locally convex topology turning it

into a topological direct sum of J ® sl2(K) and (J,J), then ’ﬁ\(T((J) is a locally convex space
with a continuous bracket. That the bracket is alternating follows for the (J, J)-term from the

calculation in Example IT1.10(3) below. To see that ﬁ(_I/{(J) is a Lie algebra, it remains to verify
the Jacobi identity. The trilinear map

J(a, 8,7) := [[o, B1,7] + [18,7), o] + [y, ], 8] =2 Y _[[ev, B1,]

cycl.

is alternating. Therefore we only have to show that it vanishes for entries in J ® sl>(K) and
(J,J). The essential case is where all elements are in J® sl (K). In the last step of the following
calculation we use Lemma L.8:

[a®z,boyl,c® 2] =[abo [z,y] + tr(zy)(a, b),c @ 2]
= (ab)e ® [[z,y], 2] + tr([z, y]2)(ab, ) + (a, b).c ® tr(zy)z

2(ab)e ® (tr(zy)x — tr(zz)y) + (a,b).c ® tr(zy)z + tr([z,y]z)(ab, c).

Now the vanishing of J(a ® 2,0 ® y,c® z) follows from

Z tr([z, y]z)(ab, c) = tr([z,y]z) Z(ab, c)=0

cycl. cycl.

and
({a,b).c — 2(bc)a + 2(ca)b) ® tr(zy)z = 0.
Note that this also explains the factor 2 in (1.4).
That the expression J(a, 3,7) vanishes if one entry is in (J, J) follows easily from the fact
that 0(a,b) := 2[L(a), L(b)] € der(J). The case where two entries are in (J,.J) corresponds to

the relation
[6(a,b),d(c,d)] = 5(a, b).c,d) + 6(c, (a, b).d)

in der(J), which in turn follows from the fact that for any D € der(J) we have

[D,é(c,d) =2[D,[L(c), L(d)] = 2[[D, L(c)], L(d)] + 2[L(c), [D, L(d)]]
= 9[L(D.c), L(d)] + 2[L(c), L(D.d)] = §(D.c,d) + 8(c, D.d).

The case where all entries of J(a,8,7) are in (J,J) follows easily from the fact that the
representation of der(J) on J ® J factors through a Lie algebra representation on (J,.J) given
by D.{a,b) = (D.a,b) + {a,D.b). In this sense the latter three cases are direct consequences of
the derivation property of the d(a,b)’s.

This proves that the bracket defined above is a Lie bracket on ﬁ(_I/((J ). The assignment,
J = ﬁ(_l/((J ) is functorial. Tt is clear that each derivation of J induces a natural derivation on
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ﬁ(_I/((J ) and that each morphism of unital locally convex Jordan algebras ¢:J; — J» defines a
morphism ’ff(_f{(Jl) — ﬁ{_f((Jg) of locally convex Lie algebras.

It is interesting to observe that in general tensor products A ® ¢ of an algebra A and a
Lie algebra ¢ carry only a natural Lie algebra structure if A is commutative and associative
(Example 1.4). For more general algebras one has to add an extra space such as (J,J) for a
Jordan algebra J and ¢ = sl3(K). The Jacobi identity for "fIEI/((J) very much relies on the
identity for triple brackets in sl5(K) from Lemma 1.8 and the definition of the action of (a,b) as
2[L(a), L(b)].

We have a natural embedding of sl>(K) into g as ga := K1 @ sl5(K). Let h,e, f € sl2(K)
be a basis with

[h,e] =2e, [h,f]=-2f and [e, f]=nh.

Then h = Kh is a Cartan subalgebra of sl, (K), and the corresponding eigenspace decomposition
of g is given by

=J®e, go=Jf and go=JRh& (], J).
In view of [ga, g] = J ®sl3(K), the formula for the bracket implies that (.J,.J) C [g, g], and hence
that g is an Aj-graded locally convex Lie algebra.

(b) If A is a locally convex unital associative algebra, then A also carries the structure of a
locally convex unital Jordan algebra Aj; with respect to the product

1
aob:= E(ab+ba).

It is interesting to compare ’ﬁ\(T{(A 7) with the locally convex Lie algebra sly(A) discussed in
Example .5, where we have seen that with respect to the decomposition

slh(4) = (A0 sh(K) @ (4, 4] © 1),

the Lie bracket is given by

1.

ab + ba 1 tr(zy)
n

[bez,b®y] = —F—[z,y]+Sab@rry+[a,b]© —=

In view of (1.2), we have x x y = 0, so that we obtain the simpler formula
1
[a®z,b@y] = (acb)® [z,y] + E[a,b] ® tr(zy)1.

Let L,(b) := ab and R,(b) := ba. Then the left multiplication in the Jordan algebra is
L(a) = $(Lq + R,), and therefore (a,b) acts on A; as

1

2AL(a), L)) = 1L+ Ras Ly + Bi] = 3 (1L L] + [Ras Ba]) = 5 (Lpasy — Biagy) = 3 ([, ).

N | =

From this it easily follows that
— 1
¢: TKK(A) > slb(4), a®@z—a®z, (ab)— §[a,b]®1

defines a morphism of locally convex Lie algebras.

From the discussion of the examples in Section IV below, we will see that this homomor-
phism is in general neither injective nor surjective.
(c) From the continuity of the map

(J,Jy x J = J, ({(a,b),z) — d5(a,b).x = (a,b).x
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~

it follows that kerd; is a closed subspace of (J,J). Hence the space ider(J) := im(dy) =
(J,J)/ ker(ds) carries a natural locally convex topology as the quotient space (.J, J)/ker(dys).

The closed subspace ker(d;) C (J,J) also is a closed ideal of "FIEI/((J ). The quotient Lie
algebra
TKK(J) := TKK(J)/ ker(5;) = (J @ sl (K)) & ider(J)

is called the topological Tits—Kantor—Koecher—Lie algebra associated to the locally convex unital
Jordan algebra .J. The bracket of this Lie algebra is given by

[a®z,d @2 :=aa®[z,2'] +2tr(z2")[L(a), L(a")], [d,c®x]:=dc®x
d,d] = dd' — d'd.

Mostly TKK(J) is written in a different form, as J x iste(J) x J, where iste(J) :=
L(J) + ider(J) is the inner structure Lie algebra of J. The correspondence between the two
pictures is given by the map

O:TKK(J) = J xiste(J) xJ, aQ@e+b®h+c® f+d— (a,2L(b) + d,c).
To understand the bracket in the product picture, we observe that
(L(a) + [L(b), L(c)])-1 = a + b(c1) — ¢(b1) = a

implies
iste(J) = L(J) @ [L(J),L(J)] = J & [L(J), L(J)].

For each derivation d of .J we have [d, L(a)] = L(d.a), which implies that

o(L(z) +[L(y), L(2)]) = —L(z) + [L(y), L()]

defines an involutive Lie algebra automorphism on iste(.JJ). Now the bracket on J X iste(J) x J
can be described as

[(a,d,c), (a',d', )]
= (d.a' —d'.a,2L(ac') + 2[L(a), L(c')] — 2L(a'c) — 2[L(a), L(c)],o(d).c' — o (d').c).

From this formula it is clear that the map 7(a,d, ¢) := (¢,0(d),a) defines an involutive automor-
phism of TKK(.J). ]

Twisted loop algebras

There are also so-called twisted versions of the Lie algebras A ® ga from Example 1.4. The
construction is based on the following observation.

Let € be a split simple K-Lie algebra, he C € a splitting Cartan subalgebra, and I' a group
of automorphisms of ¢ fixing a regular element of € in he. Typical groups of this type arise
from the outer automorphisms of €, which can be realised by automorphisms of ¢ preserving the
root decomposition and a positive system of roots (see Example 1.10 below). Let € denote the
subalgebra, of all elements of € fixed by I'. Then €' contains a regular element xy of he, and
therefore T' preserves 3¢(zo) = he. It follows in particular that T' permutes the he-root spaces
of €.

As bl = penE" = hg contains a regular element of €, it also is a splitting Cartan subalgebra
of €. If A¢ is the root system of & and Ag the root system of €', then clearly Ag C Ag|yr,
but it may happen that the latter set still is a root system.
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Example I.10. Let T" be a finite group of automorphisms of £ preserving the Cartan subalgebra
he and such that the action on the dual space preserves a positive system A; of roots. By
averaging over the orbit of an element x € he on which all positive roots are positive, we then
obtain an element fixed by I' on which all positive roots are positive, so that this element is
regular in €.

Typical examples for this situation come from cyclic groups of diagram automorphisms:
(a) For type As.—_; we have

Ag={x(e; —gj)i#je{l,...,2r}}
on he =2 K27, The non-trivial diagram automorphism o is an involution satisfying
o(x1,...,x2) = (—T2p,...,—x1) and o(g;) = —€2pr1—i-
We identify
b" = {(z1,..., 20, —Zp,...,—x1):2; € K}
with K™ by forgetting the last r entries. If R:h; — (h7)* is the restriction map, then
aj:=R(ej —egj11), j=1,...,r
is a basis for the root system
R(Ay) ={te;xej,22e:1<j<i<r,1<j<r}

of type C,.
(b) For type D,11, r >4, we have

A = {:l:(é‘i:i:&?j):i 75] € {].,...,7‘+ 1}}
on he =K'+, A non-trivial diagram automorphism ¢ is the involution

o(x1,. o Tpg1) = (T1y e ooy Ty —Tpg1).
We identify b = {(zy,...,z,,0} with K" by forgetting the last entry. Then
R(A¢) ={£(e; £ej)ii#je{l,...,r}}U{e;:i=1,...,r}
is a root system of type B,..
(c) For the triality automorphism of D4 of order 3, we obtain a root system Aj of type G».

(d) For the diagram involution of Eg we obtain a root system Ag of type Fy.
It is not hard to verify that in all cases R(Ag) is the root system of €. ]

Now let € and T be as above and assume, in addition, that £ is simple with root system
A. We write ga := €', b := hT and assume that A coincides with R(A¢), which is the case for
all cyclic groups of diagram automorphisms.

Further let A be a locally convex commutative unital associative algebra on which T' acts by
continuous automorphisms. Then T' also acts on the Lie algebra A® ¢ via v.(a®z) :== v.a®y.x.
We consider the Lie subalgebra

g:=(Aoe"
of T-fixed points in A ® &. We clearly have g D A" ® ga D 1 ® ga. Moreover, the action of
h=0bl on A®E commutes with the action of ', and our assumption implies that the h-weights
of h on A® ¢t coincide with the root system A. This implies that g satisfies (R1)—(R3) with
respect to the subalgebra ga , and therefore that the closure of the subalgebra generated by the
root spaces is A-graded.

Example I.11. This construction covers in particular all twisted loop algebras. In this case
A=C"(T,C), T={z€C:|z] =1}, and if T = (o) is generated by a diagram automorphism
o of order m, then we define the action of T' on A by o(f)(z) = f(z(), where ( is a primitive
m-th root of unity.

For Ay of type As._1,D.11,E¢ and Dy, we thus obtain the twisted loop algebras of
type Ag)_l,ijzl, Eé2) and fo), and the corresponding root systems A are of type B,,C,, F4
and Gy ([Ka90]). ]
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(A, Ap)-graded Lie algebras

Let A be a reduced irreducible root system and A; C A be the subset of long roots.
Suppose that a,8 € A; with v := a+ 5 € A. Then v € A;. Since a and [ generate a
subsystem of A whose rank is at most two, this can be verified by direct inspection of the cases
As, By =2 Cy and Go. Alternatively, we can observe that if (-,-) denote the euclidean scalar
product on spany A C h*, then

(@) \/(a,0)\/(8,8)
equals 2 - cosd, where § is the angle between « and . On the other hand B(&) € Z, so that
the only possible values are {0,+1,+2}, where £2 only arises for f = ta which is excluded if
a+ € A. Therefore

(a,0) > (v,7) = (a,a) + (8, 8) + 2(a, B) = 2(a, @) + 2(av, B) = 2(ev, @) £ (e, @)
implies (a, @) = (7,7), hence that ~ is long.
We conclude that A; satisfies

(Al +Al) NnA C Al,
and hence that we have an inclusion
gA; = A

It follows in particular that each A-graded Lie algebra g can also be viewed as a (A, A;)-graded
Lie algebra and that each A-graded Lie algebra contains the A;-graded Lie algebra

9o + Z Ja-
a€EA;

The following table describes the systems A; for the non-simply laced root systems.

A Br C’r‘ F4 G2
Al DT (A1 )r D4 A2

In many cases the subalgebra ga, of ga also has a description as the fixed point algebra
of an automorphism ~ fixing h pointwise. Such an automorphism is given by a morphism

x: Z|A] —» K*
of abelian groups via
VTa = X(a)xaa Ta € (gA)a-
For
A=B,={x(e;te)i#je{l,...,r}}U{e;:i=1,...,r}
we define
%2Z[A]—>Z, anszHan
i i
Then
XN P0)=A._, As=x'2Z+1) and A =X '(272).
Therefore x := (—1); yields an involution v, of ga whose fixed point set is the subalgebra ga, .
We likewise obtain for A = G3 a homomorphism ¥:Z[A] — Z with
A= Y71(3Z)

If 1 # ¢ e KX satisfies (* = 1, we then obtain via y := C; an automorphism v, of order 3
whose fixed point set is ga, = sl3(K).

Problem I. Determine a systematic theory of (A, Ag)-graded Lie algebras for suitable classes
of pairs (A, Ag). u
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II. The coordinate algebra of a root graded Lie algebra

After having seen various examples of root graded locally convex Lie algebras in Section I, we
now take a more systematic look at the structure of root graded Lie algebras. The main point
of the present section is to associate to a A-graded Lie algebra g a locally convex algebra A,
its coordinate algebra, together with a continuous bilinear map d4: 4 x A — der(A). The type
of this coordinate algebra (associative, alternative, Jordan etc.) and the map 04 is determined
by the type of the root system A. We will see that, together with the centralizer D of ga in
g, which acts by derivations on A, the algebra A and the map J4 completely encode the Lie
bracket of g. These results will be refined in Section IV, where we discuss isogeny classes of
locally convex root graded Lie algebras and show that the universal covering Lie algebra of g is
already determined by the pair (A, A), resp., (A,d5.4).

The algebraic results of this section are known; new is only that they still remain true in
the context of locally convex Lie algebras, which requires additions arguments in several places
and, in addition, a more coordinate free approach, because in the topological context we can
never argue with bases of vector spaces. We also tried to put an emphasis on those arguments
which can be given for general root graded Lie algebras without any case by case analysis, as
fi. in Theorem II.13. We do not go into the details of the exceptional and the low-dimensional
cases. For the arguments leading to the coordinate algebra, we essentially follow the expositions
in [ABGO00], [BZ96] (see also [Se76] which already contains many of the key ideas and arguments).

Let g be a locally convex root graded Lie algebra over K € {R,C} and ga a grading
subalgebra. We consider the adjoint representation of ga on g. From (R3) we immediately
derive that g is a ga-weight module in the sense that the action of h is diagonalized by the
A-grading. Moreover, the set of weights is A U {0} and therefore finite, so that Proposition A.2
leads to:

Theorem I1.1.  The Lie algebra g is a semisimple ga -weight module with respect to . All
simple submodules are finite-dimensional highest weight modules. There are only finitely many
isotypic components gi,...,89n, and for each isotypic component the projection p;:g — g; can
be realized by an element of the center of U(ga). In particular, each p; is continuous. ]

Now we take a closer look at the isotypic components of the Lie algebra g. Let A; C A
denote the subset of long roots and Ay C A the subset of short roots, where we put A; := A
if all roots have the same length. Then the Weyl group W of A acts transitively on the sets of
short and long roots, so that it has at most three orbits in A U {0}. Hence only three types of
simple ga-modules may contribute to g. First we have the adjoint module ga, and each root
vector in g, for a long root a generates a highest weight module isomorphic to ga . Therefore
the weight set of each other type of non-trivial simple ga-module occurring in g must be smaller
than A U {0}, which already implies that it coincides with A; U {0}. The corresponding simple
ga-module is the small adjoint module Vi =2 L(As,9A), i.e., the simple module whose highest
weight is the highest short root A, with respect to a positive system AT . In view of Theorem II.1,
we therefore have a ga-module decomposition

(2.1) g (A®ga)® (B Vs) @ D,
where
A = HomGA (gAag)a B = HomgA (Vs,g), and D = Zg(gA) = HomgA (Kag)

are multiplicity spaces. We have

1%

{A for a € Ay
fa

A® B for ac A;.
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Our next goal is to construct an algebra structure on the topological direct sum A := A ® B.
This coordinate algebra will turn turn out be an important structural feature of g.

For each finite-dimensional ga-module M the space Homg, (M, g) is a closed subspace of
Hom(M,g) = M* @ g = g@mM | hence inherits a natural locally convex topology from the one
on g, and the evaluation map

Homgy, (M,g) @ M — g, @ ®@m — @(m)

is an embedding of locally convex spaces onto the M -isotypic component of g. In this sense we
think of A ® ga and B ® V; as topological subspaces of g. We conclude that the addition map

(Aga)x (BRVs)xD —g, (a®z,bxy,d—aex+by+d

is a continuous bijection of locally convex spaces. That its inverse is also continuous follows
from Theorem II.1 which ensures that the isotypic projections of g are continuous linear maps.
Therefore the decomposition (2.1) is a direct sum decomposition of locally convex spaces. If g
is a Fréchet space, we do not have to use Theorem II.1 because we can argue with the Open
Mapping Theorem.

It is clear that the subspace D = 34(ga) is a closed Lie subalgebra. To obtain an algebra
structure on A @ B. The following lemma is crucial for our analysis.

LemmaIl.2. Let M;, j =1,2,3, be finite-dimensional simple ga -modules and V;, j =1,2,3,
locally convex spaces considered as trivial ga-modules. We consider the locally convex spaces
Vi ® M as ga -modules. Let Bi,..., B be a basis of Homg, (M1 ® M>, Ms) and

a:V1®M1 ><V2®M2—>V3®M3
a continuous equivariant bilinear map. Then there exist continuous bilinear maps
717"‘7716:‘/1 X VZ — ‘/3

with
k

a(vy @ my, vy ® ma) = Z%’(Ul,vz) ® Bi(my,my).
i=1

Proof. Fix vy € V] and vy € V5. Then the map
Qlyy st (m17m2) = 04(7)1 ®my,v2 ® mg)

is an equivariant bilinear map M; x M> — V3® Ms. As the image of ay, v, is finite-dimensional,
there exist wq,...,w, € V3 such that

m k

k m
Qo0 :Zzwj(gﬂi :Zzwj ®Bi-

j=11i=1 i=1 j=1

This show that there are bilinear maps v1,...,7: V1 X Vo — V3 with a = Zle ~v; ® B;. For
each i there exists an element a; := ), mj @ ml € My ® My with B;(a;) # 0 and B;(a;) =0
for i # j. Then

Z a(vi @ mi,ve @ my) = vi(vi,v2) @ Bi(a;)

J

shows that each map ~y; is continuous. ]
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Remark IL1.3. If M; := ga, My :=V,, M3 = K and V; := Homg, (M;,g), then the Lie
bracket on g induces a family of ga -equivariant continuous bilinear maps

Vio My xV; @ Mj — My ® V.

To apply Lemma II.2, we therefore have to analyze the spaces Homg, (M; ® M;, My,).
The case 3 € {i, j} is trivial because D = 34(ga) commutes with the action of ga , so that
the bracket map induces continuous bilinear maps

DxA— A, (da)—~da and DxB—B, (db)—db
with
[dia®z]=da®zr and [d,bRy]=dbxy.
Interpreting A as the space Homg, (ga,g), the action of D on this space corresponds to
d.p := (add) o ¢,

and likewise for B = Homg, (Vs, g).
We may therefore assume that i,j € {1,2}. For k£ =3, i.e., My = K, the space

Homg, (Mz ® Mj, K) = Homg, (Mi, M;)
is trivial for 7 # j because M; and M; have different dimensions. For M; = ga we have
Homg, (ga ® ga,K) = Kk,

where k is the Cartan-Killing form. As V; and V. have the same weight set Ay = —A,, they
are isomorphic, and [Bou90, Ch. VII, §7, no. 5, Prop. 12] implies that

dim Homg, (Vs ® V5, K) = Kky,

for a non-zero invariant symmetric bilinear form kv, on Vs. The symmetry of the form follows
from the fact that the highest weight As of Vs is an integral linear combination of the base roots
of A. ]

The complete information on the relevant Hom-spaces is given in Theorem I1.6 below. We
have to prepare the statement of this theorem with the discussion of some special cases.

Definition IT.4.  (a) On the space M, (K) of n X n-matrices the matrix product is equivariant
with respect to the adjoint action of the Lie algebra gl,,(K). Hence the product (z,y) — zy+yx
does also have this property, and therefore the map

1

2t
50, (K) x sl,(K) = sl,,(K), (z,9)— z%y:=2y+yz— réxy)

is equivariant with respect to the adjoint action of sl,(K). In the following z x y will always
denote this product.
(b) Let Q be the non-degenerate alternating form on K" given by Q(z,y) = (z,y)J(z,y)",

where J = ((1) _01> (cf. Example 1.7). For X*:= JXTJ~! we then have

sp,, (K) 2 {X € gl (K): X* = —X} and V,={X € gl,(K):X* = X,tr X =0}.

This follows easily by decomposing gl,,.(K) into weight spaces with respect to a Cartan subalgebra
of sp,,.(K). Here we use (XY)* = Y¥X¥ to see that V; is invariant under brackets with sp,,.(IK)
and satisfies [V;, V5] C sp,,.(K). Moreover, the x-product restricts to sp,,(K)-equivariant
symmetric bilinear maps

BY 15y, (K) x 8p,, (K) =V, and  By:V, x V, = V. "

Remark IL.5. For A = A, r > 2, the product * is an equivariant symmetric product on
ga = sl11(K). Of course, the same formula also yields for r = 1 a symmetric product, but in
this case we have z xy =0 (Lemma L.8). ]
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Theorem II.6.  For the Hom -spaces of the different kinds of Lie algebras we have:

(1) For A not of type A,, r > 2, the space Homg, (ga ® ga,ga) is one-dimensional and
generated by the Lie bracket. For A of type A, r > 2, this space is two-dimensional and a
second generator is the symmetric product * on ga =2 sl,11(K).

(2) If A is not of type Cr, r > 2, then Homg, (ga ® ga,Vs) = Homg, (ga ® V;,9a) = {0}.
For A of type Cy, r > 2, and ga = sp,,.(K) the space Homg, (ga ® ga,Vs) is generated
by the x-product.

(3) Homg, (V;®Vs,ga) = Homg, (ga ® Vs, Vs) is one-dimensional and generated by the module
structure on Vs. For A of type C,, a basis of the first space is given by the bracket map on
gly,.(K), restricted to V.

(4) Homg, (Vs ® V5, V;) is one-dimensional for C,,, n >3, Fy and G2, and vanishes for B,
n > 2. For A of type C,,, a basis of this space is given by the % -product.

Proof. All these statements follow from Definition I1.4 and the explicit decomposition of the

tensor products, which are worked out in detail in [Se76, §A.2] (see also the Appendix of [BZ96]

for a list of the decompositions). ]

Before we turn to a more explicit description of the Lie bracket on g, we have to fix a

notation for the basis elements of the Hom-spaces mentioned above.

Definition II.7. First we recall the symmetric invariant bilinear form ky, on V; from
Remark II.3. Let ﬂ: be a basis element of Homg, (ga ® ga,Vs) if this space is non-zero,

and Bg,v the corresponding basis element of Homg, (ga ® Vs, ga) which is related to [3;/ by the
relation

kv, (By (z,y),v) = k(B v (z,v),y), z,y € ga,v € V.

Let 8:V, ® Vs — ga be the equivariant map defined by
kv, (@0, 0') = K(BY(v,0"),2), 0" € V5,2 € ga.

Then
kv, (z.0,0") = —ky, (v,2.0") = —ky, (z.0', V)

(cf. Remark IL.3 for the symmetry of sy, ) implies that 3} is skew-symmetric . We further write
BV for a basis element of Homg, (Vs ® Vs, V5).
For A of type C,, r > 2, we take

kv, (v,w) = ftr(vw),

where the factor § = 2(r+1) is determined by «(z,y) = 0 tr(zy) ([Bou90, Ch. VIII]). We further
put
B;/(x,y) =xxy, fBiy@0)=zx0, By (v,w)=[v,w], By (v,w) = v * w,

and observe that from the embedding sp,,(K) < sl,,(K) we get for v € Vj:
kv, (By (2,y),v) = Otr(z *y,v) = O tr(zy + yz,v)
= ftr(ve + zv,y) = 0tr(z xv,y) = n(ﬂg’v(x, v),Y).

This calculation implies that our special definitions for type C, are compatible with the general
requirements on the relation between ﬂ: and [33 V- ]

In view of Lemma I1.2 and Theorem II.6, there exist continuous bilinear maps
A, B, A B
"}/:t.AXA—)A, "}/A.AXA—)B, "}/A’B.AXB—)A, '}/A’B.AXB—)B,
v8:BxB— A, 4E:BxB—B, 0:AxA-D, 68:BxB—-D,

such that the Lie bracket on
g=(A®ga)® (B V,)®D
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satisfies

(B1) [a®z,d'®2'] = v{(a,d")®[z,2|+7" (a, a") @zxa'+75 (a,a') @B (x,2) +k(x,2')5] (a,d'),
for a,a’ € A,z,z' € ga,

(B2) [a®z,b®v] = 72,3((1,6)®ﬂ§’v(ac,v)+fyf’3(a,b)®x.v, fora€e A,be B,x € ga,v € Vg,
and for b,b' € B and v,v' € V,:

(B3) b®v,b @v']=v5(b,0) @ B (0,0") + 75 (b,0) @ By (0,0") + kv, (v,0)85 (b, ).

From the skew-symmetry of the Lie bracket and the symmetry of *, it follows that fyf
is symmetric and y* is alternating. Further the symmetry of x and ky, implies that 6§ and
6D are alternating. The skew-symmetry of By implies that vg is symmetric and likewise the
symmetry of [3;’ entails that 7% is skew-symmetric.

If A is not of type A,,r > 2, then we put 74 = 0. In all cases where the 3-map vanishes,
we define the corresponding y-map to be zero.

Definition I1.8.  (The coordinate algebra A of g) (a) On A we define an algebra structure
by
ab := v{(a,b) + 72 (a,b),

and observe that bt b b_b
@+ oa and  ~y?(a,b) = @
2 2

We define a (not necessarily associative) algebra structure on A := A @ B by defining the
product on A x A by y{ +72 ++%,on Ax B by 74 g +75 5, on Bx B by 75 +75, and on
B x A by

v (a,b) =

ba := 7E,B(aa b) — 72,3(‘17 b) = ab - 2’72,3(@, b).
Then
1
2
(b) The space D = 34(ga) is a Lie subalgebra of g which acts by derivations on A preserving
both subspaces A and B. This easily follows from the fact that the actions of D and ga on g
commute.

We combine the two maps 6§ and 65 to an alternating bilinear map

1 1
YA 5(a,b) = 5la,b] = i(ab —ba) and 7% p(a,b) = §(ab + ba).

P Ax A= D, (a+bd +b)— 6% (a,a)+55(b,0)
vanishing on A x B. ]

Example II.9. Below we briefly explain how the relations (B1)—(B3) simplify for the two
classes of Lie algebras that we obtain if we distinguish Lie algebras of type A, or C, and all
others. In some sense the information is more explicit for A, and C,. We first discuss the other
cases.

(a) For A not of type A,, r > 2, we have v* = 0, and for A not of type C,, r > 2, we have
v = 7£7B =0 (Theorem II.6.(2)). If these two conditions are satisfied, then the product on A
is given by

(a,b) - (a',b) = (v (a,a') + v5(0,6), 75 p(a,b) + 75 p(a’,b) + v (b,1'))
= (aa' + v (b,b'),ab’ + ba' +~E(b,1")).

In this case the Lie bracket in g can be written as

[a®z,d @2z =ad @ [z,2']+ &(z,2')07 (a,d'), a,d' € A,z,2' € ga,
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[a@z,bv]=ab®zv, a€AbEB,x€ga,veV,
and
[b@w,b ©v'] =95(b,0) @ B (v,0") + 75 (b, V) ® By (v,0") + kv, (v,0)85 (b, b).
(b) If A is of type A,., r > 1, then B = {0} and A= A.
For A of type C,, r > 2, we have 3} (v,v') = v *v', which is symmetric. Therefore 5 is
skew-symmetric. In view of
o' = 5 (b, b') + 75 (0,0),
this implies

bb' +b'd 1 bb' —b'd
WO = Z and 9B GY) = 5 Y] = T

For r = 2 we have 3}/ = 0 and therefore ¥ = 0 (Theorem I1.6(4)). In this case Cy = B,
implies that V; can be viewed as the representation of soz2(K) on K5.

In contrast to the formulas under (a), we have for A of type A, and C, the unifying
formulas

aa' +ada

[e@z,a' @] = —— @ [x,2]+ 72 (a,0) @+ 2’ + 35 (0,0') 02 52" + K(z,2')5% (a,0),
—o for ¢, =o for A,
_ad' +da

1
L e, 0)+ Sla ] 9w 57’ + (e,2)08 (0, )

for a,a’ € A,z,z’ € ga, where we use that
[a,a'] = ad’ —d'a = 2(v* +75)(a,d), a,d’ € A.
We further have for C,.:

1 1
[a®z,b®v] = §[a,b]®w*v+§(ab+ba)®[az,v], a€ Abe B,z € ga,v € Vs,

and
1 1
bRuvb )= i(bb' +b'b) @ [v,0'] + §[b, V@ vxv' + kv, (v,0)65 (b, b'). L]

Remark II.10. (Involution on A) On the space A = A @ B we have a natural continuous
involution o(a,b) := (a, —b) with
A=A ={a€A:a”=a} and B=A"7:={a€ A:a” = —a}.

The map o is an algebra involution, i.e., o(zz') = o(z')o(z) for z,z’ € A, if and only if
(I1) o(aa') =a'a for a,a’ € A, ie., v4 =0,
(I2) o(ab) = —ba for a € A, b € B, which is always the case because [a,b] € B, and
(13) o(bb') = b'b for b,b' € B, which means that v# is symmetric and 5 is skew-symmetric.

Condition (I1) is satisfied for any A not of type A,., r > 2. For condition (I3), we recall that
'yg is symmetric because 3y, is skew-symmetric (Definition I1.7). That 7B is skew-symmetric
means that 3}, is symmetric, which is the case for A of type C,,, where BV (v,v') = v*v'. It

is also the case for A of type Fy, but not for type G2, where it is the Malcev product on the
pure octonions (cf. [ABG00, p.521]). (]

Remark II.11. (a) (Theidentity in .4) The inclusion ga < g is an element of Homg, (ga,g) =
A C A which we call 1. It satisfies

lez,a®y]=z(a®y)=a®z,y], and [1®z,dbRv]=>b1& ..
This means that
la=al=a and 6”(1,a)=0 forall ac A
In particular, 1 is an identity element in A.
(b) The subspace A is a subalgebra of A if and only if ¥ = 0. If this map is non-zero, then
Bg‘{ # 0 and A is of type Cp, 7 > 2 (Theorem I1.6(2)). In all other cases A is a subalgebra of

A, and this subalgebra is commutative if and only if v vanishes, which in turn is the case if A
is not of type A, or C.,r > 2. [
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Remark II.12. (a) Axiom (R4) for a locally convex root graded Lie algebra is equivalent to
the condition that the D-parts of the brackets [gn,8_o] span a dense subspace of D. First
we observe that only brackets of the type (B1l) and (B3) have a non-zero D-part. Using
the coordinate structure (B1)—(B3) of g, we can therefore translate (R4) into the fact that
im(6%) +im(65) = im(6”) spans a dense subspace of D.

(b) Recall from Remark II.5 that for each root o we have z, * z_, = 0, and therefore, for all
a,a’ € A, the simplification

[a®zq,a @z_o] =72 (a,d) @ [2a,2_0] + K(Ta,T—a)07 (a,a’).

Hence
(0@ Ta,a' @2 o] — [0/ @Ta,a @z o] =26(T0,z_4)05 (a,a'). (]

Theorem I1.13.  The alternating map 6°: A x A — D satisfies the cocycle condition

(2.2) 6P (aa',a") + 6P (a'a",a) + 6P (a"a,a’) =0, a,d’,a" € A,
and
(2.3) 6P(d.a,a"y + 6P (a,d.a’) = [d, 6 (a,a')] d e D,a,a" € A.

Proof.  The plan of the proof is as follows. We will use the fact that (B1)—(B3) satisfy the
Jacobi identity to obtain four relations for 67, which then will lead to the required cocycle
condition for 67, where 0,1,2,3 elements among a,a’,a” are contained in A, and the others
in B.

Step 1: For a,a',a"” € A and z,2',2" € ga, we use (B1) to see that the D-component of

[[a ® x,al ® xl],all ® xll]
is
(2.4) k(fz,2'],2")08 (v (a,a'),a") + k(z x 2',2")6F (Y2 (a,a'),a").

From the invariance and the symmetry of x, we derive

k([z,2'],2") = k(z,[2', 2"]) = k([z',2"], z),

i.e., the cyclic invariance of k([z,z'],z"). If A is not of type A,, r > 2, then z * 2’ =0, and
the second summand in (2.4) vanishes. But for A of type A, we have k(z,2') = 2(r + 1) tr(z2’)
and therefore

2tr(zx’)

*I n :2 ]_t( ! ! _
k(xxx' ") (r+1)tr( (z2' +2'z Y

1)- ac") =2(r + 1) (tr(zz'2") + tr(z'z2")).

Hence we get in all cases the cyclic invariance of k(z*z',z"). Therefore the Jacobi identity in g,
applied to the D-components of the form (2.4), leads to

0="3 w(le,2],2")6% (v (a,a'),a") + k(z x ', 2")57 (v (a,d'),a")

cycl.

= k([z,2'],z 26A7+aa "N+ k(zxa,z") 26A (a,a’),a").

cycl. cycl.

For z € g4 and 2’ € g_, with [z,2'] = & we have z x2’ =0 (Remark IL.5), and we thus obtain

> 68 (v (a,a).a") =0,

cycl.
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Choosing z,z', 2" such that x(z*2',2") # 0, we also obtain ., 0 R(yA(a,a’),a") = 0. Adding
these two identities leads to

Z 6% (ad ") =

cycl.

Step 2: For a,a' € A, b€ B, and z,z' € ga, v € Vi, we get for the D-component of
O0=[lea®z,d @x',b@v]+[d @z, b@v],a®@z]+[bRv,a®x],d @ z']

the relation
0= kv, (B (z,2"),0)08 (V% (a,d"),b) + k(B (2, 0), 2)8% (v4 5 (d', ), )
— k(Bg v (z, U),x')ﬁ(m B(a b),a’)
= K(BY v (,0),2') (65 (v4 (a, a'), b) + 6% (74 p(a',1),a) — 07 (4 p(a,b),a"))
= k(Bg v (2,v),2")((aa’, b) + a'b,a)-l-&(ba a'))
because 67 vanishes on A x B, the A-component fyiB(a,b) of ab is skew-symmetric in a and

b, and
H( gv(l' ’U) T ) = HVS(BQ“/(CE,:EI),U)

is symmetric in 2 and 2’ (Definition II.7). We conclude that
6P (aa',b) + 67 (a'b,a) + 67 (ba,a’) = 0.
Step 3: Fora€ A, b’ € B, and = € ga, v,v' € V;, we get from the D-components of
=[b@v,b @v],a@z]+[b @v,a@z],b@v]+[[a®z,b®v],b @]

the relation

0= k(B}(v,0"),2)85 (v5 (b, 1), a) — kv, (2.0",0)05 (v4 p(a, V'), b)

+ Ky, (ZL”.’U, vl)(slB?(’YE (a'a b)v v )

73(1)7 bl)a a) + 63("}/53(0, b ) b) + (53(’}/5’3((1, b)a bl))
)

= Ky, (1‘.1},1}’)((5£
Dby, a) + 67 (b'a,b) + 67 (ab, b))

(
= &y, (z.v,0") (67(

because 67 vanishes on A x B and the B-component 'yE,B(a,b) of ab is symmetric in a and
b. We conclude that
0=06"b',a)+ 6P ' a,b) + 67 (ab,b').

Step 4: For b,V',0" € A and v,v',v" € V;, the D-component of [[b®v,b ®v'],b" @v"] is
kv, (BY (v,0'),v")0F (vE (b,'),b").
We claim that F(v,v',v") := kv, (B) (v,0'),v") satisfies
Fw,o' 0"y = F@' v"v) for wv,0" 0" €V,
Fix v',v"” € V. Then the map
Vi =2 K, vy (6Y (v,0),0") = Fv,v',0")

can be written as
Vs =K, v sy (TW,0"),0)

for a unique element T'(v',v") € V;. From the ga-equivariance properties and the uniqueness,
we derive that T:Vs x Vy — V; is ga-equivariant, hence of the form /\BK for some A € K
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(Theorem IL.6). As F' is symmetric in the first two arguments, F' is an eigenvector for the action
of S3 on Lin(V x V x V,K). Then F is fixed by the commutator subgroup of Ss, hence fixed
under cyclic rotations, and this implies A = 1.

Therefore the Jacobi identity in g, applied to the D-components above, leads to

0= 6B(vAEb,Y),b") =Y 670, b").

cycl. cycl.

Combining all four case, we see that §” satisfies the cocycle identity (2.2) because the
function
G:A*> - D, (a,b,c)— 67 (ab,c) + 67 (be,a) + 67 (ca, b)

is cyclically invariant and trilinear, so that it suffices to verify it in the four cases we dealt with
above.

To verify the relation (2.3), we first use (B1) and (B3) to see that a comparison of the
D -components of the brackets

[da®z,d @2 =[dae®r,d @2'|+[a®2,da @2'], a,a € Ax,2' €gn

and
[d,pb@0v,b @v']]=[db@v,b @v' ]|+ [bv,db @], b €B,v,v €V

leads to (2.3). ]

Definition I1.14. Let g be a A-graded Lie algebra. From the isotypic decomposition of g
with respect to ga, we then obtain three items which, in view of (B1)—(B3), completely encode
the structure of g:
(1) the coordinate algebra A = A @ B,
(2) the Lie algebra D and its representation by derivations on A preserving the subspaces A
and B, and

(3) the cocycle 6”: A x A — D (Theorem II.13).

All other data that enter the description of the bracket in g only depends on the Lie algebra
ga and the module V; (Theorem I1.6). We therefore call the triple (A, D,d§") the coordinate
structure of the A-graded Lie algebra ¢. ]

Theorem IL.15.  Let g be a root graded Lie algebra with coordinate structure (A, D,57).

Further let D be a locally convex Lie algebra acting by derivations preserving A and B on A,
and R R
P:Ax A= D
a continuous bilinear map such that
(1) 5B(aa’,a”) + 5B(a’a”,a) +§B(a”a,a’) =0 for a,a’,a" € A,
(2) the map Dx A A, (d,a) — d.a is continuous,
(3) d.5B(a,a’) = 5B(d.a,a’) + 6B(a,d.a’) for a,a’ € A, d e ﬁ, and
(4) 6B(a,a’).a” =6P(a,a").a" for a,a’,a" € A, and
(5) 6P(Ax B) = {0}.
Then we obtain on

§:=(A®gr) @ (BaV,)®D

a Lie bracket by
[da@z+bov+d]=da®z+dbov+[dd],

and

~

[a®z,d @2'] = 'yf(a, a)® [z, 2]+ A (a,a") @z x 2’ + vB(a,a") ® BX(:U, ') + k(z,2")0P (a,a’),
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abgba ®/897V(w7v) N ab—;—ba

g
b@v,b @0 =75(b,b) @ B%(v,0") +vE([D,b) @ BV (v,0") + Ky, (v,0")57 (b, ).
If im(67) is dense in ﬁ, then g is a A-graded Lie algebra with coordinate structure (A,ﬁ, 6P).
Proof. From the definition and condition (3) it directly follows that the operators ad d, d € lA),
are derivations for the bracket. Therefore it remains to verify the Jacobi identity for triples of
elements in A®ga or BeV;. In view of (4) and the fact that the Jacobi identity is satisfied in g,
it suffices to consider the ﬁ—components of triple brackets. Reading the proof of Theorem I11.13
backwards, it is easy to see that (1) and (4), applied to the four cases corresponding to how many
among the a,a’,a” are contained in A, resp., B, leads to the Jacobi identity for triple brackets
of elements in A ® ga , resp., B® V.
For this argument one has to observe that in the case a,a’,a” € A the relation (1) for all
a,a’,a” also implies

S 6P (v (a,a),a") + 60 (A (!, a"), 0) + 60 (vA (@, a), )
cycl.

=6P(ad',a") + 6P (a'a",a) + 67 (a"a,d’) + 6" (d'a,a") + 67 (aad",a') + 67 (a"a',a) = 0

and

[a®z,bRv] =

® .0,

)

8P (A (@, '), a") + 67 (vA(a',a"), a) + 0P (v*(a", a), ')

= 55(aa', a") + §B(a'a”, a) + 6B(a”a, a') — 6B(a'a, a") — 55(aa”, a') — 6B(a"a', a) = 0.

Examples I1.16. We now take a second look at the examples in Section I.

(a) For the algebras of the type g = A ® ga (Example 1.4), it is clear that A = A is the
corresponding coordinate algebra, and B = D = {0}.

(b) For g = sl,(A) (Example 1.5), formula (1.1) for the bracket shows that A = A is the
coordinate algebra of g, D =[4,A] ® 1 = [A, 4], and

1
(SD ((l, b) = ﬁ [a, b]

because k(z,y) = 2ntr(zy) for z,y € sl,(K).
(c) For g = sp,,, (A, o) (Example 1.7), which is of type C,, we see with the formula in Exam-

ple IL.9(b) that A=A, B=A"7,D = [A,A]_a ®1=2][A, A ?, and that A is the coordinate
algebra. In this case we have 7§ = 0 because A = A7 is a subalgebra of A.
From k(z,y) = 0tr(zy), kv, (z,y) = 0tr(zy) (6 =2(n+ 1)), and

(e, @')0% (a,d) = [o, ] @ %1 and Ky, (v,0")35 (b, 1) = [b,b] tr(;z;’) 1,
we get . 1
(SD(aaﬂ) = %5([aaﬂ] - [a,ﬂ]a) ®1= E([a,ﬂ] + [aa,ﬂ”]) ®1,
because

[a+b,a +V]=][a,a]+[bb]+[a,b]+[ba'], a€ A7,be A°.
e e
(d) For g = TKK(J) for a Jordan algebra J (Example 1.9), we also see directly from the

definition that J is the coordinate algebra of g and D = (J,J). We have k(z,y) = 4tr(zy) for
z,y € sl (K), and therefore

5D(a,b):6l](a,b):i(a,b). ]

The following proposition deals with the special case where B is trivial and the root
system is not of type A,. In this case it contains complete information on the possibilities of
the coordinate algebra. For the root systems A of type D,, r > 4, and E,, it provides a full
description of all A-graded Lie algebras (cf. [BM92] for the algebraic version of this result).
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Proposition I1.17.  (a) If B = {0} and A is not of type A,, r > 1, then the bracket of ¢ is
of the form

[a®z,d @2 =ab® [z,2'] + k(z,2')6" (a,d),
where A is a commutative associative unital algebra and D is central in g, i.e., D acts trivially

on A.
(b) If, conversely, Disa locally convex space, A a locally convexr unital commutative associative

algebra and the continuous alternating bilinear map 67: A x A — D satisfies

~

6P (aa',a") + 6P (a'a",a) + 6P (a"a,a’) =0, a,d',d" € A,

then R
g=(A®ga)® D

is a Lie algebra with respect to the bracket

~

[a®z+dad @2 +d]=ad @[z, 2]+ k(z,z)o" (a,d).

Proof. (a) Our assumption that A is not of type A; means that dimb > 2, so that there
exist roots o and B with 3 # +a. Moreover, the exclusion of A,, r > 2, implies ¥4 = 0, so
that by consideration of the A ® ga-component of the cyclic sum > [[a®z,d @ 2'],d" @ z"],
the Jacobi identity in g implies

cycl.

(2.6) Z(aa')a” @ [[z,2'],2"] + 6P (a,d').a" @ k(z,2")z" =0
cycl.
for a,a’,a” € A and z,z',z" € ga .
Let = € go, 2" € g3, and 2" € h. Then k(z,2') = w(2’,2") = k(2" ,2) = 0, and therefore

(aa")a" @ [[z,2],2"] + (d'a")a @ [z, 2"], 2] + (a"a)a’ @ [[2", 2], 2]
= —(a+B)(a")(ad)a" ® [z,2] = B(z")(d'a")a @ [2", 2] + a(2") (a"a)d’ @ [z,2"]
= (= (a+ ) (@")(aa")a" + B(z")(d'a")a + a(z")(a"a)a’) @ [, 2"].

For p(z") =0 and a(z”) =1, we now get
(aa')a" = (a'a")a = a(a'a").
Therefore the commutative algebra A is associative.

It remains to see that D is central. We consider the identity (2.6) with = € g, ' € g_o
and 2" = &. Then k(z,z') #0 = k(z,2") = k(z',2"). Further

> (ad)d" @ [[z,2'],2"] = (ad')a" ® Y _[[z,2'],2"] =0

cycl. cycl.

follows from the fact that A is commutative and associative, and the Jacobi identity in ga .
Hence (2.6) leads to d7(a,a’).a” = 0. This means that 67 (A, A) is central in g, and since this
set spans a dense subspace of D (Remark I1.12(a)), the subalgebra D of g is central.

(b) For the converse, we first observe that the map

wi(A®ga) x (A®ga) > D, wla®z,d @) — k(z,2')0°(a,a’)

is a Lie algebra cocycle because

~

Z w(le®z,a ®1'],d" @x") = Z &([z, 2", 2")6P (ad',a") = k([z,2'],z") Z 6B(aa',a”) =0.

cycl. cycl. cycl.

From this the Jacobi identity of g follows easily, and the map g — A®ga with kernel D defines
a central extension of the Lie algebra A ® ga by D (cf. Example 1.4). ]
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Definition II.18.  (The Weyl group of g) Let « € A and x4, € g+, with [z4,2_,] = @&.
We consider the automorphism

0y 1= eTapm2dT o padTa o Aut(g)

which is defined because the operators ad x4, are nilpotent. If h € kera C b, then A commutes
with 4., so that o,.h = h. We claim that o,.6¢ = —a.
In SLy(K) we have

g (1 Y[ 1 o\ (L 1)_(0 1
—\0 1 -1 1 0 1) \-1 0/
As 04 |ga corresponds to conjugation with S in sl>(K), we obtain

Oq-&=—q, 04T =—T_n and 0y4.T_ 4= —2T4.

We conclude that o, | coincides with the reflection in the hyperplane at:

oo(h) =h—a(h)a for heh
(cf. [MP95, Props. 4.1.3, 6.1.8]). The corresponding reflection on h* is given by
raih* = 4%, B B —B(d)a.

This leads to
0a(08) = Or,.5, B € AU{0}.

We call
W= (ro:a € Ay C GL(h)

the Weyl group of g.
From the preceding calculation we obtain in particular that o, € Aut(g,h) := Nay(g)(h) :=
{¢ € Aut(g): p(h) = h}. This group contains the subgroup

Zaus(g)(h) = {¢ € Aut(g): ¢ly = idy} = Hom(Z[A],K*) = (K*)".
We therefore have a group extension
(KX)o W = W,

where W C Aut(g, b) is the inverse image of W under the restriction homomorphism to k. This

extension does not split for A(A) ¢ 27Z because in this case there exists a root a with 1 € A(&),
which implies that o, is of order 4. [

Example I1.19. (cf. [Ti62]) We take a closer look at the case A = 4; = {£a}. We write
ga = span{d, Ta, T—a}

with
To €E0ay Teoq €EG—q, A= [iEa,iL”_a].

Then formula (B1) for the product on A leads to
[a® 20, [1 R 2_0,bR2,]] = [a® xa, bR K] =ab® [h,z,] = 2ab ® x4,
and hence to

1 1
ab® xq = §[a®ma,[1 RT_q,bRx4]] = §[a®ma,[az_a,b®ma]].
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Identifying A via the map a — a ® x, with g, the product on A is given by
b 1[ (2o, 0]]
ab := =[a,[r_q,b]]
2 )

We recall from Definition I1.18 the automorphism o, of g. From the ga -module decompo-
sition of g it follows directly that o2 = id, because the restriction of o, to ga is an involution.
Moreover, 0, (2s) = —%—q- To see that the product on g, defines a Jordan algebra structure
on A, we first observe that Theorem C.3 implies that

(2,02} = 3ll7,00.41,7]

defines a Jordan triple structure, and hence that ab = {a,—xz4,b} defines a Jordan algebra
structure by Theorem C.4(b).

The quadratic operators of the Jordan triple structure are given by
1 2
P(z).y ={z,y,z} = —§(ada:) 0 04.Y.

We claim that 1
P(—z,) = —§(ad To)? 00, = —idy, .

Since the action of ad z, and o, is given by the ga-module structure of g = (A ®ga) ® D, the
claim follows from

1 1 1
_§(adl’a)2 O00n.To = i(adma)Q_;[;_a = i[wo“d] = —Tq-

We now conclude from Theorem C.4(b) that the Jordan triple structure associated to the Jordan
algebra structure is given by —{-,-,-}.
This permits us to determine d4. First we recall that
[04®Ty,a' @2 o] =ad @a+0P(a,d)k(ze, 2 o) =ad @ a+ 46 (a,d),
which leads to
2(aa’)a" @ xo +404(a,a’).a" @ 24

- [[a ® To,a @ T_y],a" @ a:a]

= —[[a®za,00(a' ®2_4)],a" ® za] = —2{a,d',a"} ® x4

=2((aa")a" +a(a'a") —ad'(ad")) ® z,.
From that we immediately get

da(a,a’) = %[LQ,LQI]. ]

The following theorem contains some refined information on the type of the coordinate
algebras. We define

dale, B).y =0 (a, B)y, @, B,7 € A
Theorem II.20.  (Coordinatization Theorem) The coordinate algebra A of a A-graded Lie

algebra g 1is:
(1) a Jordan algebra for A of type Ay, and

54(0,8) = 5[Las Lol

(2) an alternative algebra for A of type As, and

(L{a,8] — Bla,5) — 3[La, Ra])-

Wl =

(S_A(Ol, 6) =
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(3) an associative algebra for A of type A,, r >3, and

Sala ) = - LI

+1

(4) an associative commutative algebra for A of type D,, r > 4, and FEg, E; and Eg, and
(S.A (aa B) =0.
(5) an associative algebra (A, o) with involution for A of type C., r > 4, and

(0 ) = - (ad[o, B] + adlo”, 7).

r

(6) a Jordan algebra associated to a symmetric bilinear form (3: B x B — A for A of type B,
r >3, and d4(e, ) = —[La, Lg].

Proof. (1) follows from the discussion in Example I1.19 (see also [Ti62] and [BZ96]).

(2)—(4) [BM92]; see also Appendix B for some information on alternative algebras and Proposi-
tion I1.17 for a proof of (4).

(5), (6) [BZ96] (cf. Lemma B.7 for Jordan algebras associated to symmetric bilinear forms). =

The scalar factors in the formulas for § 4 are due to the normalization of the invariant
bilinear forms « and Ky, .

For the details on the coordinate algebras for A of type C3 (an alternative algebra with
involution containing A in the associative center (the nucleus), i.e., left, resp., right multiplica-
tions with elements of A commute with all other right, resp., left multiplications), Cy (a Peirce
half space of a unital Jordan algebra containing a triangle), Fy (an alternative algebra over A
with normalized trace mapping satisfying the Cayley—Hamilton identity chs) and G2 (a Jordan
algebra over A with a normalized trace mapping satisfying the Cayley-Hamilton identity chs),
we refer to [ABGOO0], [BZ96] and [Neh96]. For all these types of coordinate algebras one has
natural derivations §4(a, 3) given by explicit formulas.

III. Universal covering Lie algebras and isogeny classes

In this section we discuss the concept of a generalized central extension of a locally convex Lie
algebra. It generalizes central extensions g — g, i.e., quotient maps with central kernel. Its main
advantage is that it permits us to construct for a topologically perfect locally convex Lie algebra g
a universal generalized central extension ¢q: g — g. This is remarkable because universal central
extensions do not always exist, not even for topologically perfect Banach—Lie algebras.

Definition ITI.1. Let g and g be locally convex Lie algebras. A continuous Lie algebra
homomorphism ¢:g — g with dense range is called a generalized central extension if there exists
a continuous bilinear map b:g X g — g with

(3.1) b(q(x),q(y)) = [z,y] for =z,y€g.

We observe that, since ¢ has dense range, the map b is uniquely determined by (3.1). ]

Remark IIL1.2. If ¢:g — g is a quotient homomorphism of locally convex Lie algebras with
central kernel, i.e., a central extension, then ¢ X ¢:g x g — g X g also is a quotient map.
Therefore the Lie bracket of g factors through a continuous bilinear map b:g x g — g with
b(q(z),q(y)) = [z,y] for =,y € g, showing that ¢ is a generalized central extension of g. ]



30 Locally convex root graded Lie algebras December 19, 2002

Definition IIL.3. (a) Let 3 be a locally convex space and g a locally convex Lie algebra.
A continuous j-valued Lie algebra 2-cocycle is a continuous skew-symmetric bilinear function
w: g X g — 3 satisfying

w([z,y],2) + w(ly, 2], 2) + w(lz,2],9) =0, =,y,2€g.

It is called a coboundary if there exists a continuous linear map « € Lin(g,3) with w(z,y) =
a([z,y]) for all z,y € g. We write Z%(g,3) for the space of continuous j3-valued 2-cocycles
and B?(g,3) for the subspace of coboundaries. We define the second continuous Lie algebra
cohomology space as

H?(g,3) := Z%(g,3)/B*(g,3)-

(b) If w is a continuous j3-valued 2-cocycle on g, then we write g @, 3 for the locally convex
Lie algebra whose underlying locally convex space is the topological product g % 3, and whose
bracket is defined by

[(z,2), (2", 2")] = ([z,2'],w(z,z")).

Then q:g®,3 — @, (z,2) — x is a central extension and o:g — g®, 3, — (z,0) is a continuous
linear section of g. ]

Lemma II1.4. For a generalized central extension q:g — g with the corresponding map b the
following assertions hold:
1) [z,y] = q(b(z,y)) for all z,y € g.
(2) [g,0] Cim(q).
(3) be Z%(g,9), i-e., b([x,y],2) +b([y, 2], z) + b([z,2],y) =0 for z,y,2 € g.
(4) For x € g we define
ad(z):g =9, y+r b(z,q(y))-

Then ad defines a continuous representation of g on g by derivations for which q is
equivariant with respect to the adjoint representation of g on g.

(5) If g is topologically perfect, then q~(3(g)) = 3(g).
Proof. (1) If z = q(a) and y = ¢(b) holds for a,b € g, then

[z,y] = [q(a), ¢(b)] = q([a, b]) = q(b(z,y)).

Therefore the Lie bracket on g coincides on the dense subset im(q) x im(q) of g x g with the
continuous map ¢ o b, so that (1) follows from the continuity of both maps.

(2) follows from (1).

(3) In view of (3.1), the Jacobi identity in g leads to

([, 9], 2] + [ly, 2], 2] + [z, 2], 9]
(¢([z,91),4(2)) + blq([y, 21), 4(2)) + bg([2, 7]), 4(v))
([q(=),q()], a(2)) + b(la(w), a(2)); a(=)) + b((g(2), ¢(2)], 4(y))-

b
b

Therefore the restriction of b to im(q) is a Lie algebra cocycle, and since im(q) is dense and b
is continuous, it is a Lie algebra cocycle on g.

(4) First we observe that the bilinear map gxg — g, (z,y) — b(z, ¢(y)) is continuous. Moreover,
(1) implies

¢(ad(2).y) = q(b(z, a(y))) = [z, a(y)],

ie., qo @(m) =adzog.
From the cocycle identity

b([z, 4], 2) + b([y, 2], 2) + b([z,2],y) =0, z,y,z € g,
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we derive in particular for x € g and y,z € g:

0 = b([z, ()], a(2)) + b([a(y), a(2)], ) + b([a(=), 2], a(y))
= b(g(ad(z)y), a(2)) + b(a([y, 2]), ) — bla(ad(z).2), q(y))
= [ad(2)y, ] — ad(2)[y, 2] — [ad(z)z, y].

Therefore each ga(a:) is a derivation of g. On the other hand, the cocycle identity for b leads
for z,y € g and z €9 to

0 = b([z,y],a(2)) + b([y, a(2)], 2) + b([a(2), 2], v)
= ad([z,y])z + b(g(ad(y)2), ) — b(g(ad(2)2),y) = ad([z,y])z — ad(2)ad(y)= + ad(y)ad(z)z,

so that ad: g — der(g) is a representation of g by derivations of g, and the map ¢ is equivariant
with respect to the adjoint representation of g on g.
(5) Let 3(g) := ¢ 1(3(g)). We first observe that [3(g),g] is contained in ker q C 3(g) because

q([3(g),8]) < [3(9),9] = {0}

This leads to
[3(0), [, 9]] € [9,[3(a), 8l] C [g, kerq] = {0}.
C

If g is topologically perfect, we obtain ( ) C 3(@). The other inclusion follows from the density
of the image of ¢. ]

The following proposition shows that generalized central extensions can be characterized
as certain closed subalgebras of central extensions defined by cocycles.

Proposition II1.5. (a) If ¢:g — g is a generalized central extension and b:g x g — g the
corresponding cocycle, then the map

Vg gdrg, = (¢(x),)

is a is a topological embedding of § onto a closed Lie subalgebra of g ®yg.

(b) If w € Z%(g,3) is a continuous 2-cocycle, p:g ®, 3 — @ the projection onto g of the
corresponding central extension, and g C g @, 3 is a closed subalgebra for which p(g) is dense
in g, then q := p|a 1@ — ¢ is a generalized central extension with b(z,y) = ([z,y],w(z,y)) for
T,yEg.

Proof. (a) We recall from Definition IT1.3 that the bracket in g ®; g is given by

[(z,9), (2",y")] = ([, 2], b(z, "))

Now

[Y(z),4(2")] = [(a(z),2), (q(z"),2")] = ([a(), a(2")], bg (@), a(z")))
= (Q([maml])a [wvwl]) = "p([m:ml])

implies that the continuous linear map @ is a morphism of Lie algebras. As the graph of
continuous linear map ¢, the image of v is a closed subspace of g @ g, and the projection onto
the second factor is a continuous linear map. Therefore 1 is a topological embedding onto a
closed subalgebra.

(b) The range of ¢ is dense by the assumption that p(g) is dense in g. It is also clear that

~

bo (p x p) is the bracket on g @, 3, but it remains to show that im(b) C g.
For z = q(a'),y = q(y') in im(q) = p(g) we have

b(z,y) = blq(z'),q(y") = [¢',y'] = ([z,y],w(z,y)) € 3.

Now the continuity of b, the density of im(q) in g, and the closedness of g imply that im(b) C g.
[
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Full cyclic homology of locally convex algebras

In this subsection we define cyclic 1-cocycles for locally convex algebras 4 which are not
necessarily associative. This includes in particular Lie algebras, where cyclic 1-cocycles are Lie
algebra 2-cocycles. It also covers the more general coordinate algebras of root graded locally
convex Lie algebras (see Section IV). In particular we associate to A a locally convex space (A, A)
in such a way that continuous cyclic 1-cocycles are in one-to-one correspondence to linear maps
on (A, A). Moreover, we will discuss a method to obtain Lie algebra structures on (A, A), which
will be crucial in Section IV for the construction of the universal covering algebra of a root graded
Lie algebra.

Definition III.6. (a) Let A be a locally convex algebra (not necessarily associative or with
unit). We endow the tensor product A ® A with the projective tensor product topology and
denote this space by A ®, A. Let

I'=span{a®a,ab@c+bc®a+ca®b:a,bcec A} C AR, A.

We define
(A, A) = (Aer A)/I,

endowed with the quotient topology, which turns it into a locally convex space. We write (a, b)
for the image of a ® b in the quotient space (A, A).
(b) Our definition of (A, A) in (a) is the one corresponding to the category of locally convex
spaces, resp., algebras. In the category of complete locally convex spaces we write (A, A) for the
completion of the quotient space (A®,.4)/I, and in the category of sequentially complete spaces
for the smallest sequentially closed subspace of the completion, i.e., its sequential completion.
In the category of Fréchet spaces, the completed version of (A, A) can be obtained more
directly by first replacing A ®, A by its completion A®,.A. If T denotes the closure of I in the
completion A®,.A, then the quotient space A®,.A/T is automatically complete, hence a Fréchet
space.
(c) For a locally convex space 3 the continuous linear maps (A, A) — 3 correspond to those
alternating continuous bilinear maps w: 4 x A — 3 satisfying

w(ab,c) + w(be,a) + w(bc,a) =0, a,b,ce A

These maps are called cyclic 1-cocycles. We write Z'(A,3) for the space of continuous cyclic
1-cocycles A x A — 3 and note that

Z'(A,3) = Lin((A, A), ).
The identity id 4, 4y corresponds to the universal cocycle
Wy Ax A= (A A), (a,b) — {(a,b). m
Remark ITL.7. Lie algebra 2-cocycles w:g X g — 3 (Definition II1.3) are the same as cyclic

1-cocycles of the algebra g.
In particular we have

Z*(g,3) = Lin((g, 9),3)

for any locally convex space 3. ]
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Remark IIL.8. Let A4 be a locally convex associative algebra, Aj the corresponding Lie

algebra with the commutator bracket [a,b] = ab—ba, and A; the corresponding Jordan algebra
with the product aob:= L(ab+ba). In A® A we have the relations

[a,D]@c+ [bc]®a+[c,al @®b=ab@c+bc®a+ca®b— (ba®c+cb®a+ ac® b)
and

2@ob®c+boc®a+coa®b)=ab®@c+bcRa+ca@b+ba®Rc+cb®a+ac®b.
Therefore we have natural continuous linear maps

(Ar, Ar)y = (A, A), (a,b) — (a,b) and (A, As) = (A, A), (a,b)— (a,b). n

A remarkable point of the following proposition is that it applies without any assumption
on the algebra A, such as associativity etc.

Proposition IT1.9.  Let A be a locally convex algebra and
5: (A, Ay — der(A), (a,b) > d(a,d)

be a cyclic 1-cocycle for which the map Ax Ax A — A, (a,b,¢c) — 6(a,b).c is continuous. As
der(A) acts naturally on (A, A) by

d.{a,b) = (d.a,b) + (a,d.b), d € der(A),a,be A,
we obtain a well-defined continuous bilinear map
['7 ] <A7 A> X <A7 A> - <~Aa A)7 [(aa b>a (C, d)] = §(aa b)'<ca d> = (5(0/7 b)'ca d) + (C, §(aa b)d>

Suppose that

(1) 6(6(a,b).{c,d)) =[6(a,b),d(c,d)], and

(2) d(a,b).{c,d) = —d(c,d).{a,b) for a,b,c,d € A.

Then [-,-] defines on (A, A) the structure of a locally convex Lie algebra and 6 is a homomor-
phism of Lie algebras.

Proof. According to our continuity assumption on §, the quadrilinear map
Ax Ax AxA— (A A, (a,bed) — d(a,b).(c,d) =(d(a,b).c,dy + (c,I(a,b).d)

is continuous. That § is a cyclic cocycle implies that it factors through a continuous bilinear
map

[o]i (A A) x (AL A) = (AL A, ((a,b), (¢, d)) — 6(a,b).(c,d).

Condition (2) means that the bracket on (A, .A) is alternating. In view of (1), the Jacobi identity
follows from

[[{a, b}, (¢, d)], (u, v)] = 6(6(a,b).(c,d)).(u,v) = [6(a,b),d(c, d)]-(u, v)
= [(aa b)7 [(C, d)7 <ua U>]] - [(C, d)7 [ a, b>a (U, U)]]

Finally, we observe that (1) means that ¢ is a homomorphism of Lie algebras. ]
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Example IT1.10. Typical examples where Proposition II1.9 applies are
(1) Lie algebras: If g is a locally convex Lie algebra and §(z,y) = ad[z,y], then the Jacobi

identity implies that ¢ is a cocycle. That § is equivariant with respect to the action of der(g)
follows for d € der(g) and z,y € g from

(d.z,y) +0(z,d.y) = ad([d.x,y] + [z, d.y]) = ad(d.[z,y]) = [d,ad[z,y]] = [d, 6(x, y)].
We also have in (g, g):

o(@,y)-(=",y") = (l[z,y],2'],y") + (2", [z, 4] ¥'])
= _<[x,7yl]a [xayD ([ [xay]]a ) + (1,/, [[l‘,y],yl]) = <[xay]a [xlayl]>a

which implies §(z,y).(z',y") = —d0(z',y')(z,y).
(2) Associative algebras: If A is an associative algebra, then the commutator bracket

Ax A=A, (a,b)— [a,b] =ab—ba
is a cyclic cocycle because
[ab, c] + [be, a] + [ca, b] = abe — cab + bea — abe + cab — bea = 0.

Therefore 6(z,y) = ad[z,y] defines a cocycle A x A — der(A). That 0 is equivariant with
respect to the action of der(A) follows with the same calculations as in (1) above. Alternatively,
we can observe that if Aj, denotes the Lie algebra A with the commutator bracket, then (A, A)
is a quotient of (Ar, Ar) (Remark IIL.8).

(3) If A is a Jordan algebra and d4(a,b) = [L(a), L(b)], then we have

5A(d'<a7 b)) = [da 5A(a’v b)]

for all derivations d € der(.A), hence (1) in Proposition III.9. To verify (2), we calculate

da(a,a’).(b,b') = (da(a,a’).b,b') + (b,04(a,a’).b")

= (a(a'b) — a'(ab),b') + (b,a(a’t)) — d'(ad"))

(a(a b),b') — (a'(ab), ') + (b, a(a'd")) — (b,a’(ab'))
—{(a'b)V',a) — (t'a,a'b) + ((ab)V',a’) + (b'd’, ab)
—{a, (a'V")b) — (a'V’,ba) + (a', (ab')b) + (ab',ba’)
—(b'(ba'),a) — (b'a,a'b) + (b'(ba),a’) + (b'a’, ab)
—{a,b(t'a")y — (V'a',ab) + (a',b(b'a)) + (V'a,a’b)

= —(b'(ba’), a) + (V' (ba), a’) — (a,b(b'a")) + (a’,b(b'a))

= (04(V',b).a,a") + (a,04(V',b).a")

= —0a(b,b').a,a’).

The universal covering of a locally convex Lie algebra

We call a generalized central extension ¢q: g — g of a locally convex Lie algebra g universal
if for any generalized central extension ¢q:g — g there exists a unique morphism of locally convex
Lie algebras a:g — g with goa =¢q.
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Theorem III.11. A locally convex Lie algebra g has a universal generalized central extension
if and only if it is topologically perfect. If this is the case, then the universal generalized central
extension is given by the natural Lie algebra structure on g := (g, g) satisfying

(3.2) [(z,2"), .y )] = ([, 2] [y, 9]y for  z2'sy,y €,

and the natural homomorphism
78— g, (2,9) — [z,9]

is given by the Lie bracket on g.

Proof. Suppose first that ¢;: g — g is a universal generalized central extension. We consider
the trivial central extension g := g x K with ¢(x,t) = . According to the universal property,
there exists a unique morphism of locally convex Lie algebras a:g — g x K with goa = ¢4. For
each Lie algebra homomorphism 3:g — K the sum o+ 3:g — g x K also is a homomorphism of
Lie algebras with go (a+3) = g4. Hence the uniqueness implies that 8 = 0. That all morphisms
g — K are trivial means that g is topologically perfect, and therefore g is topologically perfect.

Conversely, we assume that g is topologically perfect and construct a universal generalized
central extension. Using Proposition III.9 and Example II1.10(1), we see that (g,g) carries a
locally convex Lie algebra structure with

[(z,9), (z,w)] = ([z,y],[2,u]), =,9,2,u€g.

Next we observe that im(gy) is dense because [g,g] is dense in g. The corresponding
bracket map on g is given by the universal cocycle

Weig X g =g, (z,y) = (z,y).

In fact, for z,2',y,y" € g we have

wu(gg((z,2")), 45 ((y,y"))) = wullz, 2], [y, ¥']) = ([, 2'), [y, ¥']) = [z, 2"), (v, 9")].

Since the elements of the form (z,z') span a dense subspace of g, equation (3.1) holds for ¢ = ¢4 .
Now let q:g — g be another generalized central extension with the corresponding map
b:g x g — g. Then Lemma I11.4(3) implies the existence of a unique continuous linear map
a:g = (g,g) = ¢ with
b(z,y) = a((z,y)), =y¢€ag.

!

For z = q(a), ' =q(a’), y = q(b) and y' = ¢q(b') we then have
a([(z, '), (y,y")]) = a(([z, 2], [y,¥'])) = b([z,2'], [y, 4']) = blq([a,a]), q([b,b']))
= [[a, '], [b,b']] = [b(=,2"), b(y, y")] = [a((z,2")), a({y, y"))]-

Now the fact that im(q) is dense in g implies that « is a homomorphism of Lie algebras. Further,

again with the density of im(q) in g, leads to ¢ o a = ¢4.

To see that a is unique, we first observe that g is topologically perfect because g is
topologically perfect. If 3:g — g is another homomorphism with go 8 = g4, then v:= 3 —« is
a continuous linear map g — kerq C 3(g). Moreover,

Y[z, y]) = B([z,y]) — a(lz, y]) = [6(z), B(y)]
= [8(z) — a(z), B(y)] + [a(=), B(y)]
= (@), BW)] + [a(x), v(y)] = 0

because the values of v are central. Now ~ = 0 follows from the topological perfectness of g. m
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Definition III.12.  For a topologically perfect locally convex Lie algebra g the Lie algebra
g = (g, qg) is called the universal generalized central extension of g or the (topological) universal
covering Lie algebra of g.

We call two topologically perfect Lie algebras g; and gz centrally isogenous if g1 = gs.

In the category of sequentially complete, resp., complete locally convex Lie algebras we
define g as (g,g) in the sense of Definition IT1.6(b). Then the same arguments as in the proof
of Theorem III.11 show that g is a universal generalized central extension in the corresponding
category. [ ]

We call a central extension q:g — g of a locally convex Lie algebra g wuniversal if for
any central extension ¢':g’ — g there exists a unique morphism of locally convex Lie algebras
a:g — ¢ with ¢’ oa = ¢. The following corollary clarifies the relation between universal central
extensions and generalized universal central extensions. In particular it implies that the existence
of a universal central extension is a quite rare phenomenon.

Corollary T11.13. A locally convex Lie algebra g has a universal central extension if and only
if it is topologically perfect and the universal covering map qg:g — g is a quotient map. Then
qq 15 @ universal central extension.

Proof. Suppose first that ¢: g — g is a universal central extension. Then the same argument
as in the proof of Theorem III.11 implies that g is topologically perfect, which implies that g
is topologicall perfect. Therefore the universal generalized central extension ¢q:g — g exists by
Theorem IIT.11. Tts universal property implies the existence of a unique morphism g¢: 9 — g with
goq =qq. If b:g x g — @ is the unique continuous bilinear map for which bo (¢ x ¢) is the
bracket on g, the construction in the proof of Theorem III.11 implies that

Ejowu:g

for the universal cocycle wy(z,y) = (z,y).

Now let ¢,:g®., g = g be the central extension of g by g, considered as an abelian Lie
algebra, defined by the universal cocycle. Then the universal property of g implies the existence
of a unique morphism

¢2ﬁ —+ g Du, g
with ¢, o+ = ¢. This means that (z) = (¢(x),a(z)), where a:g — g is a continuous linear
map. That ¢ is a Lie algebra homomorphism means that

(q([z,y]), e[z, ])) = ¥([z,y]) = [¥(2), ¥ ()] = (la(2), a(W)], (a(2), a(¥))),

which implies that

and hence

For the continuous linear maps g — g corresponding to these cocycles, we obtain
aoq= ldE'

We also have R R
goaob=gqow, =b,

and since im(b) spans a dense subspace of the topologically perfect Lie algebra g, it follows that
goa = 1d3.

Therefore ¢ is an isomorphism of locally convex spaces, hence an isomorphism of locally convex
Lie algebras, and this implies that ¢4 is a central extension.

If, conversely, g is topologically perfect and gq is a central extension, its universal property
as a generalized central extension implies that it is a universal central extension. ]
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Comparing the construction above with the universal central extensions investigated in
[Ne02c], it appears that generalized central extensions are more natural in the topological context
because one does not have to struggle with the problem that closed subspaces of locally convex
spaces do not always have closed complements, which causes many problems if one works only
with central extensions defined by cocycles (cf. Definition I11.3). Moreover, universal generalized
central extensions do always exist for topologically perfect locally convex algebras, whereas there
are Banach-Lie algebras which do not admit a universal central extension ([Ne01, Ex. I1.18, II1.9]
and Proposition II1.18 below, combined with Corollary IT1.13). The typical example is the Lie
algebra of Hilbert—Schmidt operators on an infinite-dimensional Hilbert space discussed in some
detail below.

We now address the question for which Lie algebra the universal covering morphism ¢gg:g —
g is an isomorphism. At the end of this section we will in particular describe examples, where
qg:ﬁ — g is not an isomorphism.

Proposition II1.14.  For a topologically perfect locally convex Lie algebra g the following are
equivalent:

(1) qg:g — g is an isomorphism of Lie algebras.

(2) H?(g,3) = {0} for each locally convex space ;.

Proof. (1) = (2): Let w € Z2(g,3) be a continuous Lie algebra cocycle g x g — 3. According
to Remark II1.7, there exists a continuous linear map a:g — 3 with

w(z,y) = a((z,y) = aoqy ([z,y])

for z,y € g, and this means that w is a coboundary.
(2) = (1): The triviality of H?(g,g) implies that there exists a continuous linear map a:g — g
with

(33) (a:,y) = a([x,y]), T,y €g.
Then

(gq 0 @) ([z,9]) = ¢a((z,9)) = [z, ],

so that the density of [g,g] in g leads to g 0 = idg. On the other hand, (3.3) can also be read
as aoqy = idAg«. Therefore gq4 is an isomorphism of locally convex spaces, hence of locally convex
Lie algebras. ]

A topologically perfect locally convex Lie algebra satisfying the two equivalent conditions
of Proposition III.14 is called centrally closed. This means that g is its own universal covering
algebra, or, equivalently, that the Lie bracket g x g — g is a universal Lie algebra cocycle.

Remark IT1.15. (a) Let g1, g2 and g3 be topologically perfect locally convex Lie algebras and

qi1: 91 = g2, g2: g2 — g3 generalized central extensions. Then ¢ := g20¢1: g1 — g3 is a morphism
of locally convex Lie algebras with dense range. Moreover, Lemma IT1.4(5) implies that

kerg = q; ' (ker g2) C ¢; ' (3(82)) = 3(g1)-
Unfortunately, we cannot conclude in general that ¢ is a generalized central extension. The

bilinear map b1:g2 X go — g1 for which by o (¢1 x ¢1) is the Lie bracket of g; is a Lie algebra
cocycle, which implies that

bi(ker g2, g2) C b1(3(92), [92,82]) = {0}.

Therefore b; factors through a bilinear map

b:im(gz) x im(g2) = g1, (q2(%), q2(y)) = b1 (2, y)
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with
b(q(2),q(y)) =bi(ar(2), a1 (y) = [z,y], 2,y € g

If b is continuous, it extends to a continuous bilinear map gz X gz — @; with the required
properties, and ¢ is a generalized central extension, but unfortunately, there is no reason for this
to be the case.

(b) If g5 is a quotient map, i.e., a central extension, then b is continuous. This shows that in the
context of topologically perfect locally convex Lie algebras a generalized central extension of a
central extension is a generalized central extension. This means in particular that if the universal
covering map ¢q:g — ¢ is a quotient map, then g is centrally closed. ]

Lemma IT1.16. Let H be a Hilbert space and slo(H) the Lie algebra of all continuous finite
rank operators of zero trace on H . For each derivation
A:H[O(H) — 5[0(H)
there exists a continous operator D € B(H) with A(z) = [D,x] for each z € slo(H). The
operator D is unique up to an element in K1.
Proof. ([dIH72]) Step 1: For each finite subset F' of sly(H) there exists a finite-dimensional
subspace E C H such that
F Csl(E) := {yp € slo(H):p(E) C E,p(B*) = {0}}.
The Lie algebra sl(E) = sl;|(KK) is simple and the restriction Ax of A to sl(E) is a linear map
sl(E) — slo(H) satisfying
Ap([z,y]) = [Ap(2),y] + [z, Ap(y)].
This means that Ap € Z'(sl(E),slo(H)), where sl(E) acts on slo(H) by the adjoint action.
Since this action turns sly(H) into a locally finite module, Lemma A.3 implies that the cocycle
Ap is trivial, i.e., there exists an element Dg € slo(H) with Ag(z) = [Dg,z] for all z € sl(E).
Suppose that D' is another element in slo(H) with this property. Then we write

o= (2 1)

as a block matrix according to the decomposition H = E ® E+. As Dy — DY, commutes with
sl(E), it preserves the subspaces sl(E).H = E and E+ = {x € H:sl(E).x = {0}}. Therefore
b=c=0, and a € Kidg. This proves that Dg|g — D |g € Kidg. If we require, in addition,
Dpg.v 1w for some non-zero vector v € E | then the restriction of D to E is uniquely determined.

Step 2: We may assume that dim H > 2, otherwise the assertion is trivial. Fix 0 v € H.
As in Step 1, we find for each finite-dimensional subspace E C H an operator Dg as above with
Dgwlv. For E C E' the operator Dg also satisfies Dgr.wlv and Ag(z) = [Dgr,z] for
x € sl(E) Csl(E"). Therefore Dgr |g = Dg, so that we obtain a well-defined operator

D:H—~H, Dw:=Dgpw for wEe€eE.

This operator satisfies

A(z) =[D,z] forall =z €sly(H).

Step 3: D is continuous: For =,y € H we consider the rank-one-operator P, ,.v = (v,y)z.
Then tr P, , = (z,y) vanishes if 1y. Then P, , € slo(H), and
[D, Py y](v) = Pp.gy.v— (D, y)x.
As for each y € H there exists an element z orthogonal to y, it follows that all functionals
v (Do, y)

are continuous, i.e., that the adjoint operator D* of the unbounded operator D is everywhere
defined, and therefore that D has a closed graph ([Ne99, Th. A.I1.8]). Now the Closed Graph
Theorem implies that D is continuous.
Step 4: Uniqueness: We have to show that if an operator D on H commutes with sly(H),
then it is a multiple of the identity. The condition [D, P, ,] =0 for zLly implies that
(v,y)D.x = (D.v,y)x, v € H.

It follows in particular that each x € H is an eigenvector, and hence that D € K1. ]



39 rograla.tex December 19, 2002

Definition IT1.17. Let H be an infinite-dimensional Hilbert space. For each p € [1,00] we
write B,(H) for the corresponding Schatten ideal in B(H), where B (H) denotes the space
of compact operators (cf. [dIH72], [GGKO00]). Each operator A € B,(H) is compact, and if we
write the non-zero eigenvalues of the positive operator v/ A*A (counted with multiplicity) in a
sequence (A, )nen (which might also contain zeros), the norm on B,(H) is given by

4l = ()

neN
According to [GGKO00, Th. IV.11.2], we then have the estimate

1 1

_I__

1
AB||, < ||A B for — .
1By < 14l 1Bl —

It follows in particular that each B,(H) is a Banach algebra. We also have
IABC| < [[AlllIBIlICIl, B € By(H),A,C € B(H).

For1<p§ooand%+%=1wehave

where the pairing is induced by the trace (z,y) = tr(zy). Here we use that B,(H)B,(H) C
By (H), and that the trace extends to a continuous linear functional tr: By (H) — K (cf. [dIHT72,
p.113]). We have

for p<p'.

For p =1 the elements of Bi(H) are the trace class operators and for p = 2 the elements
of Bo(H) are the Hilbert-Schmidt operators. As the trace is a continuous linear functional on
B;(H) vanishing on all commutators, the subspace

sl(H):={z € By(H):trz = 0}
is a Lie algebra hyperplane ideal. ]

Proposition I11.18.  Let gl,(H) be the Banach-Lie algebra obtained from B,(H) with the
commutator bracket. Then gl,(H) is topologically perfect if and only if p > 1. The universal
covering map is given by the inclusions maps

sl(H) = gl,(H) for 1<p<2, and gly(H)<gl,(H) forp>2.

Proof. That gl,(H) is not topologically perfect follows from the fact that the trace vanishes
on all brackets. Assume that p > 1. Then an elementary argument with diagonal matrices
implies that slg(H) is dense in B,(H) with respect to || - ||,. Since slo(H) is a perfect Lie
algebra, gl,(H) is topologically perfect.

Let w:gl,(H) x gl,(H) — K be a continuous Lie algebra cocycle. Then there exists a
unique continuous linear map

A:gl,(H) — gl,(H) = gl,(H)'

with tr(A(z)y) = w(z,y) for all z,y € gl,(H), and the cocycle identity for w implies that A is
a derivation, i.e.,

A(lz,y]) = [A2), ¥l + [2, Ay)l, 2,y € ol (H).

The Lie algebra slo(H) is a perfect ideal in gI(H) and hence in each gl,(H). Therefore
it is invariant under A, and Lemma III.16 implies the existence of a continuous operator
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D € B(H) with A(z) = [D,z] for all = € slo(H). As both sides describe continuous linear
maps gl,(H) — gl(H) which coincide on the dense subspace slo(H), we have A = adD on

al,(H).

For 1 < p < 2 we have ¢ > 2 > p, so that each bounded operator D € B(H) satisfies
ad D(gl,(H)) Q ( ) € gl,(H). For p > 2 the dual space gl,(H) is a proper subspace of
gl,(H), and it hown in [dIH72, p.141] that

1 1 1 2 p—2
Degl(H):[D,gl (H)] Cgl,(H)}=9gl.(H) for -=—-——-=1——-=——
{ (H):[D,gl,(H)] € gl,(H)} = gl,.(H) i PR

The cocycle associated to an operator D is given by

w(z,y) = te([D,zly) = tr(D[z,y]), =,y € gl,(H).

That the trace on the right hand side makes sense follows from B, (H)B,(H) C By(H) for p <2
and By,(H)B,(H) C Bg(H) and D € Bg (H)' for p > 2.
For p <2 we have

[at,(H), gL, (H)] C [gly(H), gly(H)] C [slo(H), slo(H)] = slo(H) = sl(H),

where the closure refers to the trace norm || -||;. An operator D € gl(H) = gl,(H)" represents
the cocycle 0 if and only if it is orthogonal to the hyperplane s{(H), which means that D € K1.
For p > 2 an operator D € gl,.(H) is never a multiple of 1, so that we obtain

(3.4) Z(gl,(H),K) = {z?;( )) :ggg[( (121/)K1 g ; iﬁ =

Now let q({(z,y)) = [z,y] denote the bracket map

q: gL, (H) = (gl (H), gl,(H)) — {Z[[(_}(IJ)LI) igi ; fﬁ.g i

Then ¢ is a continuous morphism of Banach—Lie algebras. Further

Z%(gl,(H), K) = Lin(gl,(H),K),

and (3.4) imply that the adjoint map ¢* is bijective. That ¢* is injective implies that ¢ has
dense range and the surjectivity of ¢* implies in particular that ¢ is injective. Further the Closed
Range Theorem ([Ru73, Th. 4.14]) implies that the image of ¢ is closed, and hence that ¢ is
bijective. Finally the Open Mapping Theorem implies that ¢ is an isomorphism. ]

Remark IIL.19. From the preceding proposition, we obtain in particular examples of Lie
algebras where the universal covering algebra is not centrally closed. For example each gl,(H)
with p > 2 has this property. For p < 2 <4 we have

—_~

ol,(H) =gl (H) and gl,(H) = sl(H),

but for 2¥ < p < 25+ we need to pass k + 1-times to the universal covering Lie algebra until
we reach s[(H) which is centrally closed. ]

In Section IV below we shall see many other concrete examples of universal central exten-
sions, when we discuss root graded locally convex Lie algebras. In particular, we shall see that
universal coverings of root graded Lie algebras are always centrally closed.
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IV. Universal coverings of locally convex root graded Lie algebras

In this section we describe the universal covering Lie algebra of a locally convex root graded Lie
algebra. In particular, we shall see that it only depends on the root system and the coordinate
algebra. Several results in this section are topological versions of algebraic results in [ABGO00]. A
key point is that the concept of a generalized central extensions provides the natural framework to
translate the algebraic structure of the universal covering algebra into the locally convex context.

Proposition IV.1. Let q:g — g be a generalized central extension for which g is topologically
perfect. If g is A-graded, then g is A-graded and vice versa.

Proof. (a) First we assume that g is A-graded. On g we consider the ga-module structure
given by ad (Lemma I11.4). Then the corestriction g — im(q) is an extension of the locally
finite ga -module im(q) by the trivial module kerq, hence a trivial extension (Proposition A.4).
It follows in particular that g is an h-weight module. The weights occurring in this module are
identical with those occurring in im(q) D [g,g] (Lemma I11.4(1)). This implies that we have an

h-weight decomposition
ﬁ = ﬁo D @ aa

with ¢(ga) = go for a # 0. As the central Lie algebra extension ¢ (ga) — ga is trivial, its
commutator algebra ga is a subalgebra which is mapped by ¢ isomorphically onto ga . Therefore
(R1)—(R3) are satisfied for ga as a grading subalgebra in g.

As the bracket in g is given by [z,y] = b(q(z), ¢(y)), the topological perfectness of g implies
that the image of b spans a dense subspace of g. Therefore

b(QOago) + Z b(ga,g—a) = b(go,go) + Z[ﬁaa/g\—a]
0#«a 0#«

is dense in gy. For 214 € gio and x4 € gip we further have

b([q(ma)aq(m—a)]v [q(mﬁ)aq(m—ﬁ)]) = [[:L”a,l”_a], [w37m—3]] - [ﬁO: [ﬁﬁ:a—ﬁ” - [ﬁﬁ:a—ﬁ]'

Hence
b([8a>9-al; (95, 8-5]) C [85,8-5];

so that (R4) holds for g, and the relation q(ga) = g for a # 0 imply that b(go, go) is contained
in the closure of the sum of the spaces [ga, @ o], @ # 0. This implies (R4) for g.

(b) Now we assume that g is A-graded with grading subalgebra ga. Then kerq C 3(g), so that
ga = q(da) = ga. Clearly g carries a natural ga-module structure.

From [g,¢] C im(q) (Lemma II[.4(2)) we derive that g/im(q) is a trivial ga-module.
Moreover, im(q) = g/ ker(q) is a locally finite ga-module. Therefore Proposition A.4 implies
that g is a locally finite ga-module which is a direct sum of ¢(g) and a trivial module Z. This
immediately leads to a weight decomposition of g with weight system A, and it is obvious that
(R1)-(R3) are satisfied.

As b acts on g by continuous operators, the projection g — go along the sum of the other
root spaces is continuous, so that the density of the image of ¢ in g implies that ¢(gp) is dense
in gg. We further have

[60s 8—a] = 4(b(8a, 8-0)) = a(b(a(8a), 4(8-0))) = ¢([a>8-0]),
so that (R4) for g implies (R4) for g. [

Corollary IV.2. If g is A-graded with grading subalgebra ga , then 3(g) C 34(g9a) C 34(h) =
do, and g/3(g) =2 adg is a A-graded Lie algebra. The quotient map ad: g — g/3(g) is a morphism
of A-graded Lie algebras. [
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Lemma IV.3. Let g, and go be locally convex A -graded Lie algebras with coordinate structures
(A; = A; ® B;, D;,6P) and n;:ga — @ the corresponding embeddings that we use to identify ga
with a subalgebra of g1 and go. If p:g1 — g2 is a morphism of locally convex Lie algebra with
pomn =1, then there exist continuous linear maps

pa:Ay = As, pp:By - By and @pp:Dy — Dy
such that
(4.1) vla@zr+b@v+d) =pala) ®z+ ¢p(b) @ v+ ¢p(d)
for a € A1,b€ By,d € D,z € gan and v € Vy, and
pA=paDppr AL = A2
s a continuous algebra homomorphism with

(4.2) 672 0 (o4 X pa) = pp 06”1

Proof. The condition ¢ on; = 12 means that ¢ is equivariant with respect to the represen-
tations of ga on g1 and go. Identifying A; with Homg, (ga,g1), the equivariance of ¢ with
respect to the ga permits us to define p4(a) := ¢ o a. We likewise define pp and ¢p. Then
(4.1) is satisfied. Now (4.2) and that ¢4 defines an algebra homomorphism follow directly from
(B1)—(B3), because the algebra structure on Aj;, resp., As is completely determined by the Lie
bracket. ]

Remark IV.4. The preceding lemma applies in particular to generalized central extensions
¢: 9 — g. In this case the proof of Proposition IV.1 implies that ¢4 is a topological isomorphism,
hence an isomorphism of locally convex algebras. We therefore may assume that g and g have
the same coordinate algebra A. In this sense we write

and ¢p: D—=Disa map with dense range and gp o 6 = 7.
This applies in particular to the universal covering algebra, which we write as

I=(A®ga)®(BoV,) & D.

In the following subsection we will see how D can be described directly in terms of the coordinate
algebra A and d.4. [

The universal covering of a A-graded locally convex Lie algebra

To describe the universal covering Lie algebra g of a locally convex root graded Lie algebra,
g, we first consider its coordinate structure (A = A ® B, D, ) (Definition I1.14). We consider
the locally convex space

(A, A)7 = (A, A)/(A, B)

and write the image of (a,b) € (A, A) in (A, A)? also as (a,b).



43 rograla.tex December 19, 2002

Theorem IV.5.  For each root system A, the corresponding coordinate algebra A, and the
natural map d4: A x A — der(A), the derivations d4(a,b) preserve the subspace (A,B) of
(A, A), and we obtain on (A, A)? the structure of a locally convex Lie algebra by

[(aa al>7 <ba bl>] =04 (aa al)'<b7 bl)

Proof.  Since the map A% — A, (a,b,c) = 6 (a,b).c is continuous, and ¢ is a cyclic 1-
cocycle vanishing on A x B (Theorem II.13), it defines a continuous linear map

(A, A — D, {a,b) > 6 (a,b).

Now define
64: (A, A7 — der(A), 6d4(a,b).c:=(a,b).c,

and observe that the bilinear map
(A, A7 x A=A, ({a,b),c) = d4(a,b).c

is continuous.
From (2.3) in Theorem II.13 we further derive that

(4.3) 04(04(a,b).(c,d)) =d4(0.4(a,b).c,d) +da(c,da(a,b).d) =[da(a,b),da(c,d)]

for a,b,c,d € A.

As the operators d(a,b) € der(A) all preserve the subspaces A and B of A, the subspace
(A, B) C (A, A) is invariant under all these operators with respect to the natural action of der(.A)
on (A, A), and we therefore obtain a well-defined bracket on (A, A)” with

[(aa al>7 <ba bl)] =04 (aa a,)'<b7 bl)

As in Proposition I11.9, the Jacobi identity for this bracket is a direct consequence of (4.3).
That the bracket is alternating is equivalent to the relation

(4.4) da(a,a’).(b,b)y = —64(b,b").{a,a’)

for a,a’,b,b' € A. This relation can be verified case by case for the coordinate algebras associated
to the different types of root systems (see [ABGO00, p.521]; cf. also Theorem I1.20 and the
subsequent comments).

For the case where A is an associative or a Jordan algebra, (4.4) can be obtained as in
Example IT1.10(2), (3). In this case we already have on (A, A) a natural Lie algebra structure,
and since (A, B) is invariant under the operators d.4(a,b), it is a Lie algebra ideal, so that
(A, Ay simply is the quotient Lie algebra. [

The following theorem is the locally convex version of the description of the universal
covering Lie algebra (cf. [ABGO00] for the algebraic case).

Theorem IV.6. The Lie algebra
g:=(A®ga) ®(BaV,) @ (A A
with the Lie bracket given by
[diapr+bov+d]=da®z+dbxv+[dd],
and

[a®z,d @z = 'yf(a, a) @ [z,z'] + A (a,a) @z x 2’ + vB(a,a") ® B:(w, ')+ k(z,2")64(a,d’),
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b+ b b—b
[a®w,b®v]=a ;— % ;V(:U,v)—i—a 5 -

b®v,b v =v5(6,0) @ B (0,0") + 75 (0,0) @ B (v,0) + kv, (v,0)d.4(b,0)

is a universal covering Lie algebra of g with universal covering map

®rT.v,,

Gla®z+bov+d =a®z+bouv+05(d),

where 65 ((a,b)) = 6P (a,b) for a,be A.

Proof. The Lie algebra (A, A)? together with the map d4: (A, A)° — der(A) satisfy all
assumptions of Theorem II.15, and we obtain on

3:=(A®ar) @ (BaV,) @ (A, A)°

a Lie bracket as described above. Now g is a A-graded Lie algebra with coordinate structure
(A, (A, A)7,64). Let q:g — g be a generalized central extension, where we write g as

i=(A®ga)®(BaV,)®D

Remark TV.4). Then the corresponding map 56 (A, AT — D is a continuous homomorphism
( g A
of Lie algebras because

52 ([(a, ), (e, d)]) = 62 (3.4(a,b).-(c, d)) = [0 (a,b), 08 (c, d)]

(Theorem I1.13). We now obtain a continuous linear map
T8—0 a@r+bovtd—az+bov+65(d),

and (B1)-(B3) together with the relation ¢p o gD = §P (Lemma IV.3) imply that this map is a
homomorphism of Lie algebras satisfying gog = ¢4, where gq: g — g is the natural homomorphism
induced by the Lie algebra homomorphism 674 (A, A)* — D. n

Corollary IV.7. If g is a A-graded locally convex Lie algebra, then its universal covering
Lie algebra g only depends on the pair (A,04), which in turn is completely determined by the
coordinate algebra A and the type of A. If we write g(A, A) for g, then the assignment

A= g(A,A)

defines a functor from the category of locally convex algebras determined by the root system A
to the category of locally convex Lie algebras. ]

Corollary IV.8. FEach Lie algebra g(A, A), i.e., the universal covering Lie algebra of a
A -graded Lie algebra g, is centrally closed.
Proof. From the explicit description of the universal covering Lie algebra g in Theorem IV.6

and the fact that it has the same coordinate algebra as g, it follows that the map g — g is an
isomorphism because for both algebras the D-part is (A, A)7. ]
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Lie algebra cocycles on root graded Lie algebras

Proposition IV.9.  FEvery continuous Lie algebra cocycle on a root graded Lie algebra g is
equivalent to a ga -invariant one.

Proof. As a module of ga, the Lie algebra g decomposes topologically as
g=(A®ga)®(BaVs) @ D,
and therefore
900=(0a0ga) @ (AR A) S (ga®M)® (A0 B) +---
is the decomposition of g ® g as a ga-module, where A, B and D are considered as trivial
modules. We conclude that for each trivial locally convex ga-module 3 we have
Lin(g ® g,3) = (ga ® ga)" @ Lin(A® A,3) & (ga © V5)" @ Lin(A® B,3) + -

Since ga and V; are finite-dimensional, Lin(g ® g,3) is a locally finite ga-module, hence
semisimple. This property is in particular inherited by the submodule Z2(g,3) C Lin(g®g,3) of
continuous Lie algebra cocycles. Hence the decomposition into trivial and effective part yields

Z%(9,3) = Z°(8,3)* ® ga.Z%(9,3)-
For the representation p of g on the space C?(g,3) of continuous Lie algebra 2-cochains we have
the Cartan formula
p(z) =iyod+doi,, z€uy,
which implies that on 2-cocycles we have p(z).w = d(i,.w) and hence g.Z%(g,3) C B*(g,3). We
conclude that each element of H2(g,3) has a ga-invariant representative. ]

Proposition IV.10. The invariant Lie algebra cocycles w € Z2(g,3)%~ are in one-to-
one correspondence with the elements of the space Lin({A, A)?,3), where we obtain from w €
7Z%(g,3)% 2 Lin(g,3)% a function wy on (A, A) by restricting to the subspace (A, A)° of g.

The cocycle w is a coboundary if and only if w4 can be written as « o 52 for an a €
Lin(D,3), so that

H?(g,3) = Lin((4,4)7,3)/ Lin(D, 3) 0 6%.
Proof. If g5:g = (g,g) — g is the universal covering Lie algebra, then we have for each locally
convex space 3 a natural isomorphism Z?(g,3) = Lin(g,3) (Remark IIL.7). As g, is equivariant
with respect to the action of ga, this leads to
Z%(g,5)"* = Lin(g, 5)%*
for the invariant Lie algebra cocycles. On the other hand
g=(A®ga) @ (BaVs)® (A A)°
implies that Lin(g,3)?2 = Lin((A4, A)7,3).

If o € Lin(D,3), then we extend « to a continuous linear map ag:g — 3 by zero on the
subspaces A ® ga and B ® V;. Then da(z,y) = o[y, z]) is a ga-invariant cocycle on g, and
the corresponding function (da)g on g = (g,g) satisfies (da)g = —a o by which implies that

(da)a = —aobg|iaayr = —aodh.
If, conversely, w = da is a ga -invariant coboundary, then the same argument as in the proof of
Proposition IV.7 implies that we may choose a as a ga -invariant function on g, which means
that « vanishes on A ® ga and B ® Vy, hence is of the form discussed above. We conclude that

Lin(D,3) o 6% C Lin((A, A)7,3)
corresponds to the ga -invariant coboundaries. This completes the proof. ]

The preceding proposition describes the cohomology of g with values in a trivial module
in terms of the coordinate algebra. For the topological homology space we get

H,(g) := kerqq = ker 65 C (A, A)7,

which describes H>(g) completely in terms of the coordinate algebra and D.



46 Locally convex root graded Lie algebras December 19, 2002

Definition IV.11. Motivated by the corresponding concept for associative algebras with
involution (Appendix D), we define the full skew dihedral homology of A, resp., the pair (A,J.4)
as

HF(A) :=kerds C (A, A)°. [

Proposition IV.12.  If g is a A-graded locally convex Lie algebra, then the centerfree Lie
algebra g/3(g) is also A -graded with the same coordinate algebra and the same universal covering
algebra, and

H>(g/5(9)) = HE(A).
Proof. The first two assertions follow from Corollary IV.2 and Remark III.15(b).
With respect to the ga -isotypical decomposition of g, we have
3(g) ={d € D:(Va € A) d.a =0},
which implies that

Hy(g/3(9)) = kerqg/s() = 45 (3(9)) = 3(8) = kerda = HF(A). =
Example IV.13. (a) Let n > 4. If g =sl,,(A) for a locally convex unital associative algebra,
then the preceding considerations imply that
(4.5) Hy(sl,(A)) =2 HC1(A) and Hy(psl,(A)) = HF(A),

where

psl, (A) := sl (A)/3(s1n(A)) = s, (A)/(Z(A) N [A, A]).
If n =3, then g is Az-graded, and we have to consider A as an alternative algebra. Since
A is associative, the left and right multiplications L, and R, on A commute, so that
L[a,b] - R[a7b] - 3[La7 Rb] = ad[aa b]

This implies that (A, A) carries the same Lie algebra structure, regardless of whether we consider
it as an associative or an alternative algebra. We conclude that (4.5) remains true for n = 3.

For n = 2 the coordinate algebra of sly(A) is the Jordan algebra A = Ay with the product
aob =2t Tet L,(z) = az and R,(z) = za denote the left and right multiplications in
the associative algebra A, and LJ(z) = 1(L, + R,) the left multiplication in the corresponding
Jordan algebra. Then

864, (a,b) = 4[L],Lj]] = [La + R, Ly + Ry) = [La, L] + [Ra, Ry] = Liap) — Riap = ad[a, b).

For g = sl3(A) we also have D = [A, A] and
1
D _

(SA] (aa b) - 5[0’7 b]

(Example I1.16(b)). We therefore obtain
Hs(slo(A)) 2 kerd?, and  Ha(psly(A)) = HF(Ay).
In the algebraic context, the preceding results have been obtained for n = 2 by Gao

([Gao93]), and for n > 3 by Kassel and Loday ([KL82]).

(b) For g = sp,,,(A,0) (Example 1.7, Example I1.16(c)) the coordinate algebra is an associative
algebra A with involution. For

pspy, (A, 0) := 8y, (A, 0) /3(sp5, (A, 0)),
we therefore obtain
Hy(psp,, (A, 0)) = HF(A)
and Hs(sp,, (A, 0)) is isomorphic to the kernel of the map

(A, A S TAA] 7, (a,b) = [a,b] + [a”,b7].

(c) If J is a Jordan algebra, then it follows from the construction in Example 1.9 and our

explicit description of the centrally closed A-graded Lie algebras in this section that ﬁ(_l/((J )
is centrally closed, hence the notation. In the sense of Corollary IV.7, we could also write
TKK(J) =g(As, J). u
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Example IV.14. (a) Let A be an associative algebra with involution o, A:= A7, B:= A7,
and consider the modified bracket map defined by

ba(xay) = [l',y] - [x,y]a = [xay] - [ya,xa] = [ac,y] + [l.a,ya]‘
Then b, defines a continuous linear map (A4, A)” — A7, and
HD}(A, o) :=kerb, C (A, A)°

is called the first skew-dihedral homology space of (A, o) (see Appendix D for more information
on skew-dihedral homology). The corresponding full dihedral homology space is

HF(A) = b7 (Z(A)) = {z € (4, A)?:ad(b, (z)) = 0}.

(b) If A= A is an associative algebra, B = {0}, and d4(a,b) = ad([a, b]), then
(A, A)7 = (4, 4)
with the Lie algebra structure

[(a,b), (c,d)] = ([a,b],[c,d])
defined in Example TI1.10(2). If ba: (A, A) — A, (a,b) — [a,b] is the commutator bracket, then
HCy(A) :=kerby

is the first cyclic homology of A, and in this case the full skew-dihedral homology space is the
full cyclic homology space:
HF(A) =b,"(Z(A)) D HC,(A),

where Z(A) is the center of A.

By corestriction of the bracket map b4, we obtain a generalized central extension of locally
convex Lie algebras

HC,(A) — (A A) — [A, 4]

We also have a generalized central extension of locally convex Lie algebras

HF(4) < (A, 4) = [4,A]/(Z(4) n[4, 4]).

(c) If A is commutative and associative, then bs = 0, so that
HF(A) = HCi(A) = (4, A).

A more direct description of this space can be given as follows. Let M be a locally convex
A-module in the sense that the module structure A x M — M is continuous. A derivation
D: A — M is a continuous linear map with D(ab) = a.D(b) +b.D(a) for a,b € A. One can show
that for each locally convex associative algebra there exists a universal differential module Q*(A),
which is endowed with a derivation d: A — Q'(A) which has the universal property that for each
derivation D: A — M there exists a continuous linear module homomorphism ¢: Q!(4) — M
with pod = D (cf. [Ma02]). We consider the quotient space Q!(A)/dA endowed with the locally
convex quotient topology. Then we have a natural isomorphism

(A, A) = Q(A)/dA, (a,b) — [a - db]. -

Example IV.15. In general it is not always easy to determine the space HC,(A) for a concrete
commutative locally convex algebra. The following cases are of particular interest for applications:
(1) Q'(A) = {0} for any commutative C*-algebra A (Johnson, 1972; see [BD73, Prop. VI.14]).
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(2) If M is a connected finite-dimensional smooth manifold and A = C*(M,K) for K € {R,C},
then A is a Fréchet algebra (a Fréchet space with continuous algebra multiplication). If Q! (M, K)
is the space of smooth K-valued 1-forms on M , then the differential

d:C*®(M,K) — Q' (M,K), f+~df
has the universal property, and therefore
Q'(A) =Y (M,K) and HC;(A) =0 (M, K)/dC™ (M,K)

([Ma02]).

A similar result holds for the locally convex algebra A = C°(M,K) of smooth functions
with compact support, endowed with the locally convex direct limit topology with respect to the
Fréchet spaces C2(M,K) of all those functions whose support is contained in a fixed compact
subset K C M . In this case we have

Q'(A) =2l (M,K) and HC;(A)=QL(M,K)/dC> (M,K)

([Ma02], [Ne02d]).

(3) If M is a complex manifold, then the algebra A := O(M) of C-valued holomorphic
functions is a Fréchet algebra with respect to the topology of uniform convergence on compact
subsets of M. Assume that M can be realized as an open submanifold of a closed submanifold
of some C", i.e., as an open subset of a Stein manifold. Let Q) (M) be the space of holomorphic
1-forms on M. Then it is shown in [NWO03] that the differential

d:O(M) = QH(M), frdf
has the universal property, and therefore
QA =0L(M) and HCi(A) = Q4H(M)/dO(M). [

Example IV.16. We construct two root graded Lie algebras g; and g, which are isogenous,
non-isomorphic, but have trivial center.

Let A be a locally convex associative unital algebra with A = [4, A]®K1. Then the center
of

slh(A) 2 A®shL,(K) e [4,4]®1
is trivial.

For the associative Banach algebra Bs(H) of Hilbert-Schmidt operators on an infinite-
dimensional Hilbert space H we consider the associated unital Banach algebra A := Bo(H)+K1.
Then

(4,4) = (B2 (H), Bo(H))
follows from (A, 1) = {0}. If gl,(H) := B2(H)y, is the Lie algebra obtained from Bo(H) via the
commutator bracket, then we have seen in Proposition III.18 that gl,(H) = (gl,(H), gl,(H)) =
sl(H), and the universal Lie algebra cocycle is the commutator bracket

wu: gl (H) % gly,(H) — sl(H).

On the other hand the discussion in Example II1.10(2) shows that the space (B2(H),B2(H))
obtained from the associative algebra structure is a quotient of (gl,(H), gl,(H)). As the bracket
map qqi,(r): (9l (H), gl (H)) — gly(H) is injective, (B2(H), B2(H)) must be the quotient by
the trivial subspace, and therefore the bracket map

<B2(H)7B2(H)> - 5[(H)7 <aab> = [aab]

is an isomorphism of Banach spaces.
Let n > 3. Then the natural morphism

sl (A) 2 (A ®sl,(K) @ (4, A) — sl,(A)

is injective, and hence sl,, (4) has trivial center. As the map s[(H) — By(H) is not surjective, the

two A,_1-graded Lie algebras sl,(A) and sl,(A) both have trivial center but are not isomorphic.
[
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V. Perspectives: Root graded Lie groups

In this section we briefly discuss some aspects of the global Lie theory of root graded Lie algebras,
namely root graded Lie groups.

An infinite-dimensional Lie group G is a manifold modeled on a locally convex space g
which carries a group structure for which the multiplication and the inversion map are smooth
([Mi83], [Gl0la], [Ne02b]). The space of left invariant vector fields on G is closed under the
Lie bracket of vector fields, hence inherits a Lie algebra structure. Identifying elements of the
tangent space g := T1(G) of G in the identity 1 with left invariant vector fields, we obtain on
g the structure of a locally convex Lie algebra L(G). That the so obtained Lie bracket on g is
continuous follows most easily from the observation that if we consider the group multiplication
in local coordinates, where the identity element 1 € G corresponds to 0 € g, then the first two
terms of its Taylor expansion are given by

rxy=z+y+bzy) +--,
where the quadratic term b:g x g — g is bilinear with
[x,y] = b(l‘,y) - b(yax)

We call a locally convex Lie algebra g integrableif there exists a Lie group G with L(G) = g.
A Lie group G is said to be A-graded if its Lie algebra L(G) is A-graded. The question when
a root graded Lie algebra g is integrable can be quite difficult.

According to Lie’s Third Theorem, every finite-dimensional Lie algebra is integrable, but
this is no longer true for infinite-dimensional locally convex Lie algebras. If g is a Banach—Lie
algebra, then the Lie algebra g/3(g) always is integrable. Let PG(g) denote a corresponding
connected Lie group. Then there is a natural homomorphism of abelian groups, called the period
homomorphism

pery: T (PG(g)) — 3(9),

and g is integrable if and only if the image of per, is discrete. For general locally convex Lie
algebras the situation is more complicated, but if ¢: g — g = L(G) is a central extension with a
sequentially complex locally convex space 3 as kernel and a continuous linear section, then there
is a period homomorphism

per:m2(G) — 3,

and the existence of a Lie group G with L((A}’) = g depends on the discreteness of the image
of per ([Ne02a], [Ne03a]). For finite-dimensional groups these obstructions are vacuous because
75(G) always vanishes by a theorem of E. Cartan ([Mim95, Th. 3.7]).

For the class of root graded Banach—Lie algebras the situation can be described very well
by period maps. In this case the Lie algebra g is integrable if and only if the image of per
is discrete. As the universal covering g of g also is a universal covering of g/3(g) = ¢/3(9)
(Remark IT1.15), we obtain a similar criterion for the integrability of g via a period map

pery:m2(PG(g)) — 3(8) = HF (A),

where A is the coordinate algebra of g and HF(A) is its full skew-dihedral homology. If g; is
a quotient of g by a central subspace and g is integrable, then g; is integrable if and only if the
period map

perg, :m2(PG(g)) — 3(g1)
obtained by composing perz with the natural map 3(g) — 3(g1) has discrete image.

For general locally convex root graded Lie algebras which are not Banach-Lie algebras
the situation is less clear, but there are many important classes of locally convex root graded
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Lie algebras, to which many results from the Banach context can be extended, namely the Lie
algebras related to matrix algebras over continuous inverse algebras. A unital continuous inverse
algebra (CTA) is a unital locally convex algebra, A for which the unit group A* is open and the
inversion is a continuous map A* — A,a — a~'. Typical associated root graded Lie algebras
are the A,_;-graded Lie algebra sl,(A4), and for a commutative CIA the Lie algebras of the
type g = A®ga (cf. [Gl01Db]). Further examples are the Lie algebras sp,,,(4,0) and o, ,(4,0)
discussed in Section I. For Jordan algebras the situation is more complicated, but in this context
there also is a natural concept of a continuous inverse Jordan algebra, which is studied in [BN03],
and can be applied to show that certain related Lie algebras are integrable.

Both classes lead to interesting questions in non-commutative geometry because for a
sequentially complete CTA the discreteness of the image of the period map for sl,(A) follows
from the discreteness of the image of a natural homomorphism

P3:K3(A) — HCy(A) 2 Ha(sl,(A)),

where K3(A) := h_r)n m2(GL,(A)) is the third topological K-group of the algebra A. If) in
addition, A is complex, Bott periodicity implies that

K3(A) = K (A) = hj)l mo(GL,(A4)),
and the latter group is much better accessible. In particular, we get a period map
Pl K (A) — HC,(A).

One can show that this homomorphism is uniquely determined as a natural transformation
between the functors K; and HC), which permits us to evaluate it for many concrete CIAs
([Ne03a]). If P4 has discrete image, then sl,(A) is integrable, but the converse is not clear and
might even be false. Nevertheless, one can construct certain Fréchet CIAs which are quantum
tori of dimension three, for which the Lie algebra sl,(A) is not integrable. For the details of
these constructions we refer to [Ne03a].

There is also a purely algebraic approach to groups corresponding to root graded Lie
algebras. Here we associate to a root graded Lie algebra g the corresponding projective group

PG¥8(g) := (e*99: 0 € A) C Aut(g).

As each derivation adz, x € g,, of g is nilpotent, the operator e*1* is a well-defined automor-

phism of g (cf. [Ti96], [Ze94]). The group PG &(g) can easily seen to be perfect, so that it has

a universal covering group (a universal central extension) éalg (g). Let PG(g) be a Lie group
with Lie algebra g/3(g). There are many interesting problems associated with these groups:

(1) Describe éalg (g) by generators and relations.

(2) Show that PG(g) is a topologically perfect group. When is it perfect?

(3) Suppose t~hat G(g) is a Lie group with Lie algebra g. Describe the kernel of the universal
covering G(g) = PG(g) in terms of the coordinate algebra.

(4) TIs there a homomorphism PG#(g) — PG(g)?

(5) Is there a homomorphism Ge (g) = G(g)?
It is an interesting project to clarify the precise relation between the Lie theoretic (analytic)
approach to root graded groups and the algebraic one.
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Appendix A. Some generalities on representations

In this section we collect some material on finite-dimensional representations of reductive Lie
algebras, which is used in Sections IT and III of this paper. All results in this appendix are valid
over any field K of characteristic zero.

Let t be a finite-dimensional split reductive Lie algebra over the field K of characteristic
zero and b C v a splitting Cartan subalgebra. We fix a positive system A™ of roots of t with
respect to h and write L(\) for the simple t-module of highest weight A\ € h* with respect to
AT, We write Z := Z(U(x)) for the center of the enveloping algebra U(r) of r. Recall that
for each highest weight module V' we have End.(V) = K1 because the highest weight space is
one-dimensional and cyclic. Therefore Z acts by scalar multiples of the identity on L()), and we
obtain for each A an algebra homomorphism xy: Z — K, the corresponding central character.

The following theorem permits us to see immediately that certain modules are locally finite.
We call an t-module an §-weight module if it is the direct sum of the common h-eigenspaces.
An h-weight module V' of a split reductive Lie algebra v is called integrable if for each z, € t,
the operator ad z, is locally nilpotent.

Theorem A.1.  For an h-weight module V' of the finite-dimensional split reductive Lie algebra
v with splitting Cartan subalgebra b the following assertions hold:

(1) If V is integrable, then V is locally finite and semisimple.

(2) If supp(V) := {a € h*:V,, # {0}} is finite, then V is integrable.

Proof. (1) Let V be an integrable t-module and A := {ay,...,amn}. Then

t=hPry, ... Py,
so that the Poincaré—Birkhoff-Witt Theorem implies
U(t) =U0O)U(ta,) -~ Ulra,,)-

Since V is integrable, it is by definition a locally finite module for each of the one-dimensional
Lie algebras t,, a € A. Hence for each vector v € V' we see inductively that the space

Ulta;) - Ulta,,)v

is finite-dimensional for j = m,m — 1,...,1, and finally that U(r).v is finite-dimensional.
Therefore V is a locally finite r-module.

Let FF C V be a finite-dimensional submodule. Since F' is a weight module, it is a
direct sum of the common eigenspaces for 3(t) C b, which are t-submodules. According to
Weyl’s Theorem, these common eigenspaces are semisimple modules of the semisimple Lie algebra
t' := [t,t], hence also of ¢t = t' + 3(t). Therefore F' is a sum of simple submodules, and the same
conclusion holds for the locally finite module V. As a sum of simple submodules, the module V'
is semisimple ([La93, XVII, §2]).

(2) If supp(V) is finite, then z,.V3 C Vgiq for § € supp(V) and o € A imply that the root
vectors x, act as locally nilpotent operators on V. ]

The preceding theorem is a special case of a much deeper theorem on Kac—-Moody algebras.
According to the Kac—Peterson Theorem, each integrable module in category O is semisimple
(IMP95, Th. 6.5.1]). This implies in particular that integrable modules of finite-dimensional split
reductive Lie algebras are semisimple.

Proposition A.2. Let V be an h-weight module of v for which supp(V') is finite. Then the
following assertions hold:

(1) V is a semisimple v-module with finitely many isotypic components Vy,...,V,.
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(2) The simple submodules of V' are finite-dimensional highest weight modules L(A1), ..., L()\,).

(3) For each j € {1,...,n} there exists a central element z; in U(ga) with xx,(z;) = 0j&. In
particular, z; acts on V as the projection onto the isotypic component V;.

Proof. (1), (2) First Theorem A.l implies that V is semisimple. Moreover, each simple

submodule is a finite-dimensional weight module, hence isomorphic to some L(X). As supp(V)

is finite, there are only finitely many possibilities for the highest weights .

(3) According to Harish-Chandra’s Theorem ([Dix74, Prop. 7.4.7]), for A, u € h* we have

XA=Xu & p+peW.(A+p),

where W is the Weyl group of (r,h) and p = £ ca+ . If L(X) and L(p) are finite-
dimensional, then A\ and p are dominant integral. Therefore A + p and p + p are dominant,
so that p+ p € W.(A + p) implies A = u. Hence two non-isomorphic finite-dimensional highest
weight modules L(A) and L(u) have different central characters.

This proves that the central characters xa,,..., X, corresponding to the isotypic compo-
nents of V' are pairwise different. As the kernel of a character is a hyperplane ideal, this means
that for 7 # j we have

ker xx; + kerxx, = Z.

Now the Chinese Remainder Theorem ([La93, Th. I1.2.1]) implies that the map

x:Z =K ze (g (2),--,x0, (2)

is surjective. Finally (3) follows with z; := x " !(e;), where ey,...,e, € K" are the standard
basis vectors. ]

For the following lemma, we recall the definition of Lie algebra cohomology from [We95].

Lemma A.3. If s is a finite-dimensional semisimple Lie algebra and V a locally finite s-
module, then
H?(s,V)={0} for p=1,2.

Proof. As V is a direct sum of finite-dimensional modules V;, j € J, the relations

CP(s,V) =P CP(s,V;) easily lead to  H”(s,V) = P H"(s,V}),
jeJ JjEJ

so that the assertion follows from the Whitehead Lemmas ([We95, Cor. 7.8.10/12]), saying that
HP?(s,V;) vanishes for each j and p=1,2. [

Proposition A.4. Let s be a semisimple finite-dimensional Lie algebra s.

(1) FEach extension Z — M-LsM of a locally finite s-module M by a trivial module Z is
trivial.

(2) FEach extension M — M-1s7 of a trivial s-module Z by a locally finite s-module M is
trivial.

Proof. (1) If M is locally finite, then Weyl’s Theorem implies that it is semisimple, and

therefore that the extension of M by Z splits. Hence it suffices to show that M is locally
finite. Let v € M. We have to show that v generates a finite-dimensional submodule. Since the
s-submodule of M generated by ¢(v) is finite-dimensional, we may replace M by this module
and hence assume that M is finite-dimensional. Now

Ext(M, Z) = H'(s, Hom(M, 7))
([We95, Ex. 7.4.5]), and Hom(M, Z) = M* ® Z is a locally finite module, so that

H'(s,Hom(M, 7)) = {0}
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(Lemma A.3). Therefore the module extension splits, and in particular M is locally finite.

(2) First we show that M is locally finite. Let v € M. To see that v generates a finite-
dimensional submodule, we may assume that Z is one-dimensional. Then Hom(Z, M) = M
is a locally finite s-module, and the same argument as in (1) above implies that the extension
M — Z is trivial. In particular, we conclude that M is locally finite.

Returning to the general situation, we obtain from Weyl’s Theorem that the locally finite
module M is semisimple, hence in particular that M = g.M @ M¢. As Z is trivial, we have
g.M C M, so that each subspace of M¢ complementing M N M? yields a module complement
to M. ]

Appendix B. Jordan algebras and alternative algebras

In this appendix we collect some elementary results on Jordan algebras.

Jordan algebras

Definition B.1. A finite dimensional vector space J over a field K is said to be a Jordan
algebra if it is endowed with a bilinear map J x J — J satisfying:
(JA1) zy = yz.
(JA2) z(z%y) = 2°(zy). ]

In this section J denotes a Jordan algebra and (a,b) — L(a)b := ab = ba the multiplication
of J. Then (JA2) means that

[L(a),L(a®)]=0 forall acJ.
Proposition B.2.  For a Jordan algebra J over a field K with {2,3} C K* the following
assertions hold for x,y,z € J.
(1) [L(z), L(yz)] + [L(y), L(zx)] + [L(2), L(zy)] = 0.
(2) L(xz(yz) — y(xz)) = [L(z), L(y)], L(2)]-
Proof. Passing to the first derivative of (JA2) with respect to 2 in the direction of z leads to
2(2%y) + 22((22)y) = 2(w2)(2y) + 2 (2y)
for z,y,z € J. Passing again to the derivative with respect to z in the direction of u leads to
2((zw)y) + u((z2)y) + z((u2)y) = (uz)(zy) + (z2)(uy) + (zu)(zy)
for u,z,y,z € J. This means that
[L(2), L(zu)] + [L(u), L(x2)] + [L(x), L(uz)] = 0,
or
L(zy)L(2) + L(zz)L(y) + L(yz)L(z) = L(2)L(y) L(z) + L((22)y) + L(z)L(y)L(2).
Note that the expression
L(zy)L(z) + L(zz)L(y) + L(yz)L(x)

is invariant under any permutation of x,y,z. By exchanging z and y and subtracting, we
therefore obtain

[L(), Ly)], L(2)] = L((2y)x) — L((22)y) = L(z(y2) — y(x2)).

Corollary B.3. [L(J),L(J)] C der(J).
Proof.  This means that for x,y € J the operator D := [L(z), L(y)] is a derivation of .J,

which in turn means that
[D,L(z)] = L(D.z), z€.J.

This is a reformulation of Proposition B.2(2). ]
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Jordan algebras associated to bilinear forms

Lemma B.4. Let A be a commutative associative algebra, B an A-module and 3: Bx B — A
a symmetric bilinear form which is invariant in the sense that

aB(b,b') = B(ab,b') = B(b,ad’), a€ A,bb € B.
Then A:= A @ B is a Jordan algebra with respect to
(a,b)(a',b") := (aa’ + B(b,b'),ab’ + a'b).
Proof. First we note that
L(a,0)(a',V") = (aa’,ab’) and L(0,b)(a’,b") = (B(b,b'),a'b).
The set L(A,0) C End(A) is commutative because A is a commutative algebra. Further
L(0,b)L(a,0)(a’,b") = (B(b,ab"),aa’b) = L(a,0)L(0,b)(a’,b")

implies that L(A,0) commutes with L(0, B), so that L(A,0) is central in the subspace L(A) of
End(A).

Tt is clear that A is commutative. To see that it is a Jordan algebra, we have to verify that
each L(a,b) commutes with

L((a,)*) = L(a® + B(b,b), 2ab).

As L(A,0) is central in L(A), it suffices to show that L(0,b) commutes with L(0,ab), which
follows from

L(0,b)L(0, ab)(x,y) = L(0,b)(S(ab,y), xab) = (B(b, xab), B(ab,y)b)
= (B(xb,ab), B(b,y)ab) = L(0,ab)(B(b,y), zb) = L(0,ab)L(0,b)(z,y).

Alternative algebras

Lemma B.5. Let A be a (non-associative) algebra. For a,b,c € A we define the associator
(a,b,c) := (ab)e — a(be).
Then the associator is an alternating function if and only if for a,b € A we have
(B.1) a’b=a(ab) and ab® = (ab)b.
Proof. First we assume that the associator is alternating. Then
a’b — a(ab) = (a,a,b) =0 and ab® — (ab)b = (a,b,b) = 0.
Suppose, conversely, that (B.1) is satisfied. The derivative of the function
fe(a) == a*c — a(ac)
in the direction of b is given by
dfe(a)(b) = (ab+ ba)c — b(ac) — a(be),

which leads to the identity

(a,b,c) = (ab)c — a(bc) = b(ac) — (ba)ec = —(b, a,c).
We likewise obtain from a(c?) = (ac)c the identity

(a,b,c) = (ab)c — a(bc) = a(cb) — (ac)b = —(a,c,b).

As the group S3 is generated by the transpositions (12) and (23), the associator is an alternating
function. -
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We call an algebra A alternative if the conditions from Lemma B.5 are satisfied. For
L, (b) := ab =: Ry(a) this means that

L’=1L,, and Ry =R}

a

Theorem B.6. (Artin) An algebra is alternative if every subalgebra generated by two elements
18 associative.

Proof. In view of (B.1), the algebra A is alternative if any pair (a,b) of elements generates
an associative subalgebra. For the converse we refer to [Sch66, Th. 3.1]. |

Lemma B.7. Fach alternative algebra is a Jordan algebra with respect to aob := %(ab + ba).
Proof. Let LJ(b):=aob, L,(b) =ab and R,(b) := ba. Since A is alternative, we have

0 = (a,b,a) = (ab)a — a(ba)

which means that [L,, R,] = 0. Therefore the associative subalgebra of End(A) generated by
L, and R, is commutative. Since L] = 1(L, + R,) commutes with

Lo = H(Lor + Biz) = H(12 + B2),

(A,0) is a Jordan algebra. [

Appendix C. Jordan triple systems

The natural bridge between Lie algebras and Jordan algebras is formed by Jordan triple systems.
In this appendix we briefly recall how this bridge works. We are using this correspondence in
particular in Section IIT to see that for each A;-graded Lie algebra the coordinate algebra is a
Jordan algebra.

Definition C.1. (a) A finite dimensional vector space V over a field K is said to be a Jordan
triple system (JTS) if it is endowed with a trilinear map {-}:V x V x V' — V satisfying:

(IT1) {z,y,2} = {29, 2}

(JT2) {a7 b7 {x7 y7 2}} = {{a7 b7 x}) y’ Z} - {x7 {b7 a’ y}7 2} + {x7 y7 {a7 b7 2}} for all a’ b7 x’ y’ z 6 V -
For z,y € V we define the operator 0y by (20y).z := {z,y, 2} and put P(z)(y) := {z,y,x}.
Then (JT2) is equivalent to

(JT2") [a0b, 20y] = ((a0b).z) Oy — z0((b0a).y).

It follows in particular that the subspace VOV C Endg(V') spanned by the elements zOy is a
Lie algebra. This Lie algebra is denoted iste(V') and called the inner structure algebra of V.

If 2 € K*, then (JT1) implies that the trilinear map {-,-,-} can be reconstructed from
the quadratic maps P(x) via polarization of P(z).y = {z,y,z}, i.e., by taking derivatives w.r.t.
z in the direction of z. Therefore the Jordan triple structure is completely determined by the
maps P(z), z € V. ]

Lemma C.2. If3 € K* and (V,{:,-,-}) is a Jordan triple system, then the following formulas
hold for z,y,z € V:

(1) Px){y,z,2} = {P(x)y,z x} = {z,y, P(x).z}.
(2) P(z)(yOx) = (20y) P(z).

3) [P(z)P(y),20y] = 0.

Proof. (1) From the Jordan triple identity

z0y.{a,b,c} = {zOy.a,b,c} — {a,y0z.b,c} + {a,b,z0y.c}
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we derive
{z,y Az, 2z,2}} = {z,y, 2}, 2,2} — {2 {y, 2, 2}, 2} + {2, 2, {z,y, 2}}

= 2{{3553/737}7'2737} - {:E, {vav Z},ZE}

= 2{35’?/7 {:E,Z,:E}} - 2{377 {vav Z},ZE} + 2{{35’ Z,iL”},y,CE} - {:E, {vav Z},ZE}

=4{z,y,{z,z,2}} — 3{z,{y,z, 2}, x}.
This implies

3{1')% {xazax}} = 3{1‘, {y,x,z},a:},
so that 3 € K* leads to
{$, Y, {1‘, 2, 1‘}} = {1‘, {ya T, Z}7 x}

This is the second equality we had to prove. The first one follows from the second one, which
implies that {z,y,{z,z,2}} is symmetric in y and z.
(2) follows directly from (1).
(3) is an immediate consequence of (2). ]

Theorem C.3. (a) If g = g1 ® go ® g—1 is a 3-graded Lie algebra with an involutive
automorphism T satisfying 7(g;) = 9—; for j = 0,£1, then V := g1 is a Jordan triple system
with respect to {z,y,z}:= [[a:,T.y],z] :
(b) If, conversely, V is a Jordan triple system for which there exists an involution o on iste(V)
with o(aOb) = —b0a for a,b € V, then g :=V x iste(V) x V is a Lie algebra with respect to
the bracket
[(a,z,d),(a',2',d")] = (z.a' —2'.a,a0d" — d'0Od + [z,2'],0(z).d — o(z').d)
and 7(a,b,c) := (¢,0(b),a) is an involutive automorphism of g.
Proof. (a) Since g is graded, we have [g1,91] = {0}, and this implies that [ad z,ady] = 0 for
x,y € g1, hence (JT1). To verify (JT2), we first observe that aOb = ad[z, 7.y]. We have
[[a, 7.8], [c, 7.d]] = [[[a,.b],c], 7.d] + [c,[[a, T.b], .d]]
= [[[a,7.b],¢],7.d] + [c,7.[[T.a,b],d]]
= [[la,7.b],¢],7.d] — [c,7.[[b,7.a],d]].
Therefore (JT2) follows from
[a0b, cOd] = ad [[a, 7.b], [c, 7.d]] = ad [[[a, 7.b],c],7.d] — ad [c, 7.[[b, T.a],d]]
= (a0b).c0d — cO(b0a).d.
(b) One observes directly that 7 is an involution preserving the bracket. It is clear that the
bracket is skew symmetric, so that

J(z,y,2) = [[z,y], 2] + [ly, 2], 2] + [[2, 2], 9]
is an alternating trilinear function on g. We have to show that .J vanishes.

Let g1 :=V x {(0,0)}, go = {0} x iste(V) x {0}, and gy := {(0,0)} x V. It is easy to
check that J(z,y,z) = 0 if no entry is contained in g; or no entry is contained in g_;. We
identify = € V' with (z,0,0) and write Z = (0,0, z) for the corresponding element of g_;. Then
we may assume that the first entry is = € g; and the second oneis gy € g_1. For 2z € V 2 g, we
then obtain

J(@,7,2) = [[U, 2], 2] + [[2,7], 2] = (20y).2 = (:0y).x = {z,y,2} = {z,y,2} = 0.
If z € g_1, the assertion follows from 7.J(x,¥,2) = J(r.z,7.y,7.2) = 0. Finally, let z € go. We

may assume that z = aTb. Then (JT2) implies that [z, 20y] = [z, 2]0y + 00 (z).y. This leads
to

J (2,5, 2) = [[§, 2], 2] + [[2,2],9] + [[2,7],2] = —[(0(2).y)3 2] + [z.2,7] + [20y, 2]
=20(0(2).y) + (z.2)0y — [z,20z2] = 0.
(]

We conclude this section with the connection between Jordan algebras and Jordan triple
systems.
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Theorem C.4. (a) If J is a Jordan algebra, then J is a Jordan triple system with respect to

(C.1) {z,y,2} = (wy)z + x(yz) —y(wz), e, 20y = L(zy) +[L(z), L(y)],

where we write L(x)y := zy for the left multiplications in J.
(b) If V is a JTS and a € V, then

T-qly = {x,a,y}

defines on V' the structure of a Jordan algebra. The Jordan triple structure determined by the
Jordan product -, is given by

{xayaz}a = {xa {aayaa}az} = {x,P(a).y,z}.

It coincides with the original one if P(a) = 1.

(c) Let J be a Jordan algebra which we endow with the Jordan triple structure from (a). If e € J
is an identity element, then -,y = xy reconstructs the Jordan algebra structure from the Jordan
triple structure.

Proof. (a) From (JA1) it immediately follows that (C.1) satisfies (JT1). The proof of (JT2)
requires Lemma B.2.
In view of Corollary B.3, D := [L(z), L(y)] is a derivation of J, so that

DAa,b,c} = {D.a,b,c} +{a,D.b,c} + {a,b,D.c}.
Therefore (C.1) shows that to prove (JT2), it suffices to show that for each z € J we have
L(z){a,b,c} = {L(x).a,b,c} = {a, L(z).b, c} + {a, b, L(z).c},

ie.,

L(z).(a0b) = (za)Ob — aO(zb) + (aOb)L(z),
which in turn means that

L(z)L(ab) + L(x)[L(a), L(D)]
= L((za)b) + [L(za), L(b)] — L(a(bx)) — [L(a), L(xb)] + L(ab)L(x) + [L(a), L(b)|L(x),

ie.,
[L(x), L(ab)] + [L(a), L(xb)] + [L(b), L(ax)] = [[L(a), L(D)], L(z)] + L((xa)b) — L(a(bz)).

This identity follows from Lemma B.2, because both sides of this equation vanish separately.
(b) Put zy := z -, y, so that L(z) = z0a. The identity (JA1) follows directly from (JT1). To
verify (JA2), we observe that

L(#?).y = {{z,a,2},a,y} = {y, 0, {2,0,2}}
= {{y,a,az}, a,m} - {:L”, {a'ayv a},x} + {m,a, {yaavw}}
= 2(z0a)?.y — P(z)P(a).y.

Therefore Lemma C.2(3) implies
[L(z?), L(z)] = [2(z0a)? — P(x)P(a),z0a] = [z0a, P(z)P(a)] = 0.

The quadratic operator P%(z) associated to the Jordan triple structure defined by -, in
the sense of (a) is given by

P*(z) = 2L(z)* — L(z*) = 2(20a)” — (2(z0a)* — P(z)P(a)) = P(z)P(a).

Therefore the Jordan triple structure associated to -, is given by {z,y,z2}, = {z, P(a).y, z}.
(c) is trivial. ]
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Appendix D. Skew dihedral cohomology

In this section we briefly recall the definition of skew dihedral cohomology of associative algebras,
which is the background for the definition of the full skew-dihedral homology spaces defined in
Section IV.

Definition D.1.  Let A be a unital associative algebra and C,,(A) := A®"+1) the (n+1)-fold
tensor product of A with itself. We define a boundary operator
bp: Cp(A) = Cp_1(A) for neN

and by: Co(A) = {0} by

bn(ao & ...®an)

n—1

= (—D'ag® a1 @+ Q41 ® - ap + (—1)"anap ® a1 @ -+ - @ ap_1.

i=0
Then bpb,11 = 0 for each n € Ny, and the corresponding homology spaces H H.(A) are called
the Hochschild homology of A. ]

Of particular interest for Lie algebras is the first Hochschild homology group HH;(A).
The map b;:C1(A) = A® A = Cy(A) = A is given by
bi(z @y) = ay —yx = [z,y],
so that Z;(A) = kerb C C1(A) is the kernel of the bracket map. The space B (A) of boundaries
is spanned by elements of the type
bhzy®z)=2yRz—rQyz+ 22 QY.
Note in particular that b2(z ® 1® 1) =2 ® 1, so that A® 1 C B;(A).

Definition D.2.  Let (A,0) be an associative algebra with involution o: A — A,a — a”.
Then we obtain a natural action of the dihedral group D11 on the space C,,(A) as follows. We
present D, as the group generated by z, and y, subject to the relations
P =2 =1 and  yaray,' =z,
and define the action of z, and y, on C,(A) by
Tp(ag ®...Qay) :=(—1)"a, ®ap ... 0 an_1
and
’n.(n+1) o o o o o

(a0 ®...®ap):=—(-1)" 2 aql®a;®a)_,...Q0a; Qai.
These operators are compatible with the boundary operators in the sense that the operators b,
induce on the spaces C,(A) of coinvariants for the D, -action boundary operators

bl C(A) = C) 1 (A).

The corresponding homology is called the skew-dihedral homology HD) (A, o) of the algebra with
involution (A, o) (cf. [Lo98, 10.5.4; Th. 5.2.8]). [

In the present paper we only need the space HD](A,o). We observe that

z1.(ap ®a1) = —a; ®ap  and  y1.(ag ® a1) = af ® af.
Writing the image of ap ® a1 in C](A) as (a,b), this means that
(ap,ar) = —(a1,a0) = (ad,a]), ag,a1 € A.

It follows in particular that (A7, A~7) = {0}, and further that

O (A) 2 A (A7) @ A*(A).
Moreover,

by ((ag, a1, a2)) = (apai, as) — (ag, aras) + (asag,a1) = (apar,az) + (ara2,a0) + (azap, a1},

and these elements span the space Bj(A) C C](A) of skew-dihedral 1-boundaries.



59

[AABGP97]

[ABG00]
[ABGO2]
[Be9g]
[BZ96]
[BN02]

[BNO3]
[BD73]

[Bou90]

[Dix74]
[Fa77]

[Gao93]

[Gl01a]

[GI01b]

[GGKOO]

[dIH72]

[Hum?72]

[Ka90]

[Ka84)

[K1.82]
[KMO7]

[La93]

rograla.tex December 19, 2002

References

Allison, B. N.,; Azam, S., Berman, S., Gao, Y., and A. Pianzola, “Extended
Affine Lie Algebras and Their Root Systems,” Memoirs of the Amer. Math.
Soc. 603, Providence R.I., 1997.

Allison, B. N.,; Benkart, G., and Y. Gao, Central ezxtensions of root graded Lie
algebras, Math. Ann. 316 (2000), 499-527.

—, “Lie Algebras graded by the Root System BC,, r > 2,” Memoirs of the
Amer. Math. Soc. 751, Providence R.I., 2002.

Benkart, G., Derivations and invariant forms of Lie algebras graded by finite
root systems, Canad. J. Math. 50 (1998), 225-241.

Benkart, G., and E. Zelmanov, Lie algebras graded by finite root systems and
intersection matriz algebras, Invent. Math. 126 (1996), 1-45.

Bertram, W., and K.-H. Neeb, Projective completions of Jordan pairs 1. Alge-
braic theory, in preparation.

—, Projective completions of Jordan pairs II. Analytic theory, in preparation.

Bonsall , F. F., and J. D. Duncan, “Complete Normed Algebras,” Ergebnisse
der Math. und ihrer Grenzgebiete 80, Springer-Verlga, 1973.

Bourbaki, N., “Groupes et algebres de Lie, Chapitres VII-VIIL,” Masson, Paris,
1990.

Dixmier, J., “Algebres enveloppantes,” Gauthiers-Villars, Paris, 1974.

Faulkner, J. R., “Groups with Steinberg Relations and Coordinatization,” Mem-
oirs of the Amer. Math. Soc. 185, Providence R.I., 1977.

Gao, Y., On the Steinberg-Lie algebras sta(R), Comm. in Alg. 21 (1993), 3691
3706.

Glockner, H., Infinite-dimensional Lie groups without completeness restrictions,
in “Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups,”
A. Strasburger et al Eds., Banach Center Publications 55, Warszawa 2002; 43—
59.

—, Algebras whose groups of units are Lie groups, Studia Math. 153:2 (2002),
147-177.

Gohberg, 1., S. Goldberg, and N. Kupnick, “Traces and Determinants of Lin-
ear Operators,” Operator Theory, Advances and Applications 116, Birkh&user
Verlag, Boston, 2000.

de la Harpe, P., “Classical Banach—Lie Algebras and Banach-Lie Groups of
Operators in Hilbert Space,” Lecture Notes in Math. 285, Springer-Verlag,
Berlin, 1972.

Humphreys, J. E., “Introduction to Lie Algebras and Representation Theory,”
Springer-Verlag, 1972.

Kac, V. G., “Infinite Dimensional Lie Algebras,” Cambridge University Press,
1990.

Kassel, C., Kdhler differentials and coverings of complex simple Lie algebras
extended over a commutative ring, J. Pure and Applied Alg. 34 (1984), 265—
275.

Kassel, C., and J.-L. Loday, Extensions centrales d’algébres de Lie, Ann. Inst.
Fourier 32 (1982), 119-142.

Kriegl, A., and P. Michor, “The Convenient Setting of Global Analysis,” Math.
Surveys and Monographs 53, Amer. Math. Soc., 1997.

Lang, S., “Algebra,” 3rd ed., Addison Wesley Publ. Comp., London, 1993.



60

[Lo98]

[Ma02]

[Mil83]
[Mim95]

[MP95]

[Ne02a]
[Ne99]
[Ne02a)

[Ne02c]

[Ne02d]

[Ne03a]
[Ne03b]
[NW03]

[Neh96]

[Ru73]
[Sch66]

[Se76)

[S186]

[Ti62]
[Ti96]
[Tr67]
[We95]

[Ze94]

Locally convex root graded Lie algebras December 19, 2002

Loday, J.-L., “Cyclic Homology,” Grundlehren der math. Wissenschaften 301,
Springer-Verlag, Berlin, 1998.
Maier, P., Central extensions of topological current algebras, in “Geometry and

Analysis on Finite- and Infinite-Dimensional Lie Groups,” A. Strasburger et al
Eds., Banach Center Publications 55, Warszawa 2002; 61-76.

Milnor, J., Remarks on infinite-dimensional Lie groups, Proc. Summer School
on Quantum Gravity, B. DeWitt Ed., Les Houches, 1983.

Mimura, M., Homotopy theory of Lie groups, in “Handbook of Algebraic Topol-
ogy,” I. M. James Ed., North Holland, 1995.

Moody, R., and A. Pianzola, “Lie Algebras with Triangular Decompositions,”
Canad. Math. Soc. Series of Monographs and Advanced Texts, Wiley-Intersci-
ence, 1995.

Neeb, K. — H., Central extensions of infinite-dimensional Lie groups, Annales
de 'Inst. Fourier 52 (2002), 1365-1442.

Neeb, K. — H., “Holomorphy and Convexity in Lie Theory,” Expositions in
Mathematics 28, de Gruyter Verlag, Berlin, 1999.

—, Central extensions of infinite-dimensional Lie groups, Annales de 1'Inst.
Fourier, to appear.

—, Universal central extensions of Lie groups, Acta Appl. Math. 73:1,2 (2002),
175-219.

—, Current groups for non-compact manifolds and their central extensions,
to appear in “Infinite dimensional groups and manifolds, in mathematics and
quantum physics,” T. Wurzbacher, Ed., Strasbourg, Mai 2002..

—, Lie theoretic K-groups and Steinberg—Lie groups, in preparation.

—, Root graded Lie groups, in preparation.

Neeb, K.-H., and F. Wagemann, The universal central extensions of holomorphic
current Lie algebras, in preparation.

Neher, E., Lie algebras graded by 3 -graded root systems and Jordan pairs covered
by grids, Amer. J. Math. 118 (1996), 439-491.

Rudin, W., “Functional Analysis,” McGraw Hill, 1973.

Schafer, R. D., “An Introduction to Nonassociative Algebras,” Pure and Appl.
Math. 22, Acad. Press, 1966.

Seligman, G. B., “Rational Methods in Lie Algebras,” Lecture Notes in Pure
and Applied Math. 17, Marcel Dekker, New York, 1976.

Slodowy, P., Beyond Kac—Moody algebras and inside, in “Lie Algebras and
Related Topics,” Canad. Math. Soc. Conf. Proc. 5, Britten, Lemire, Moody
Eds., 1986; 361-371.

Tits, J., Une classe d’algébres de Lie en relation avec les algébres de Jordan,
Indag. Math. 24 (1962), 530-535.

—, Classification of algebraic simple groups, Proc. Symp. Pure Math. IX, Amer.
Math. Soc., Providence, 1996, 33-62.

Treves, F., “Topological Vector Spaces, Distributions, and Kernels,” Academic
Press, New York, 1967.

Weibel, C. A., “An Introduction to Homological Algebra,” Cambridge Studies
in Advanced Math. 38, Cambridge Univ. Press, 1995.

Zelmanov, E., On linear groups and Lie algebras over arbitrary rings of coef-
ficients, in “Jordan Algebras,” Proc. Conf. Oberwolfach, 1992, W. Kaup, K.
McGrimmon, and H. P. Peterssen Eds., de Gruyter, 1994.



61 rograla.tex

Karl-Hermann Neeb

Technische Universitdt Darmstadt
Schlossgartenstrasse 7

D-64289 Darmstadt

Deutschland

neeb@mathematik.tu-darmstadt.de

December 19, 2002



