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Loally onvex root graded Lie algebras

Karl-Hermann Neeb

Abstrat. In the present paper we start to build a bridge from the algebrai theory of root graded

Lie algebras to the global Lie theory of in�nite-dimensional Lie groups by showing how root graded

Lie algebras an be de�ned and analyzed in the ontext of loally onvex Lie algebras. Our main

results onern the desription of loally onvex root graded Lie algebras in terms of a loally onvex

oordinate algebra and its universal overing algebra, whih has to be de�ned appropriately in the

topologial ontext. Although the struture of the isogeny lasses is muh more ompliated in the

topologial ontext, we give an expliit desription of the universal overing Lie algebra whih implies

in partiular that it depends only on the root system and the oordinate algebra. Not every root

graded loally onvex Lie algebra is integrable in the sense that it is the Lie algebra of a Lie group.

In a forthoming paper we will disuss riteria for the integrability of root graded Lie algebras.

Introdution

Let K be a �eld of harateristi zero and � a �nite redued irreduible root system. We write

g

�

for the orresponding �nite-dimensional split simple K -Lie algebra and �x a splitting Cartan

subalgebra h of g

�

. In the algebrai ontext, a Lie algebra g is said to be �-graded if it ontains

g

�

and g deomposes as follows as a diret sum of simultaneous ad h-eigenspaes

g = g

0

�

M

�2�

g

�

; and g

0

=

X

�2�

[g

�

; g

��

℄:

It is easy to see that the latter requirement is equivalent to g being generated by the root

spaes g

�

, � 2 �, and that it implies in partiular that g = [g; g℄ , i.e., that g is a perfet

Lie algebra. Reall that two perfet Lie algebras g

1

and g

2

are alled (entrally) isogenous

if g

1

=z(g

1

)

�

=

g

2

=z(g

2

). A perfet Lie algebra g has a unique universal entral extension

e

g ,

alled its universal overing algebra ([We95, Th. 7.9.2℄). Two isogenous perfet Lie algebras have

isomorphi universal entral extensions, so that the isogeny lass of g onsists of all quotients of

e

g by entral subspaes.

The systemati study of root graded Lie algebras was initiated by S. Berman and R. Moody

in [BM92℄, where they studied Lie algebras graded by simply laed root systems, i.e., types A ,

D and E . The lassi�ation of �-graded Lie algebras proeeds in two steps. First one onsiders

isogeny lasses of �-graded Lie algebras and then desribes the elements of a �xed isogeny lass as

quotients of the orresponding universal overing Lie algebra. Berman and Moody show that for

a �xed simply laed root system of type � the isogeny lasses are in one-to-one orrespondene

with ertain lasses of unital oordinate algebras whih are

(1) ommutative assoiate algebras for types D

r

, r � 4, E

6

, E

7

and E

8

,

(2) assoiative algebras for type A

r

, r � 3, and

(3) alternative algebras for type A

2

.

The orresponding result for type A

1

is that the oordinate algebra is a Jordan algebra,

whih goes bak to results of J. Tits ([Ti62℄).

Corresponding results for non-simply laed root systems have been obtain by G. Benkart

and E. Zelmanov in [BZ96℄, where they also deal with the A

1

-ase. In these ases the isogeny
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lasses are determined by a lass of oordinate algebras, whih mostly is endowed with an

involution, where the deomposition of the algebra into eigenspaes of the involution orresponds

to the division of roots into short and long ones. Based on the observation that all root systems

exept E

8

, F

4

, and G

2

are 3-graded, E. Neher obtains in [Neh96℄ a uniform desription of the

oordinate algebras of 3-graded Lie algebras by Jordan theoreti methods. Neher's approah is

based on the observation that if � is 3-graded, then eah �-graded Lie algebra an also be

onsidered as an A

1

-graded Lie algebra, whih leads to a unital Jordan algebra as oordinate

algebra. Then one has to identify the types of Jordan algebras orresponding to the di�erent

root systems.

The lassi�ation of root graded Lie algebras was ompleted by B. Allison, G. Benkart

and Y. Gao in [ABG00℄. They give a uniform desription of the isogeny lasses as quotients

of a unique Lie algebra

e

g(�;A), depending only on the root system � and the oordinate

algebra A , by entral subspaes. Their onstrution implies in partiular the existene of a

funtor A 7!

e

g(�;A) from the ategory of oordinate algebras assoiated to � to entrally

losed �-graded Lie algebras.

Apart from split simple Lie algebras, there are two prominent lasses of root graded Lie

algebras, whih have been studied in the literature from a di�erent point of view. The �rst

lass are the aÆne Ka{Moody algebras whih an be desribed as root graded Lie algebras

([Ka90, Ch. 6℄ and Example I.11 below). The other large lass are the isotropi �nite-dimensional

simple Lie algebras g over �elds of harateristi zero. These Lie algebras have a restrited root

deomposition with respet to a maximal toral subalgebra h

1

. The orresponding root system

� is irreduible, but it may also be non-redued, i.e., of type BC

r

([Se76℄). If it is redued,

then g is �-graded in the sense de�ned above. In the general ase, one needs the notion of

BC

r

-graded Lie algebras whih has been developed by B. Allison, G. Benkart and Y. Gao in

[ABG02℄. Sine three di�erent root lengths our in BC

r

, we all the shortest ones the short

roots, the longest ones the extra-long roots, and the other roots long. The main di�erene to the

redued ase is that there annot be any grading subalgebra of type BC

r

, so that one has to

distinguish between di�erent types, where the grading subalgebra is either of type B

r

(the short

and the long roots), type C

r

(the long and the extra-long roots), or of type D

r

(the long roots).

The theory of root graded Lie algebras has a very geometri avor beause the oordinati-

zation theorems for the di�erent types of root systems are very similar to ertain oordinatization

results in syntheti geometry. That the Lie algebra g under onsideration is simple implies that

the oordinate algebra is simple, too. In geometri ontexts, in addition, the oordinate algebras

are mostly division algebras or forms of division algebras. For a nie aount on the geometry of

groups orresponding to the root systems A

2

, B

2

�

=

C

2

and G

2

we refer to the memoir [Fa77℄

of J. R. Faulkner. Here type A

2

orresponds to generalized triangles, type B

2

to generalized

quadrangles and G

2

to generalized hexagons.

An important motivation for the algebrai theory of root graded Lie algebras was to �nd a

lass of Lie algebras ontaining aÆne Ka{Moody algebras ([Ka90℄), isotropi �nite-dimensional

simple Lie algebras ([Se76℄), ertain ones of Slodowy's intersetion matrix algebras ([Sl86℄), and

extended aÆne Lie algebras (EALAs) ([AABGP97℄), whih an roughly be onsidered as those

root graded Lie algebras with a root deomposition. Sine a general struture theory of in�nite-

dimensional Lie algebras does not exist, it is important to single out large lasses with a uniform

struture theory. The lass of root graded Lie algebras satis�es all these requirements in a

very natural fashion. It is the main point of the present paper to show that root graded Lie

algebras an also be dealt with in a natural fashion in a topologial ontext, where it overs

many important lasses of Lie algebras, arising in suh diverse ontexts as mathematial physis,

operator theory and geometry.

With the present paper we start a projet whih onnets the rih theory of root graded Lie

algebras, whih has been developed so far on a purely algebrai level, to the theory of in�nite-

dimensional Lie groups. A Lie group G is a manifold modeled on a loally onvex spae g whih

arries a group struture for whih the multipliation and the inversion map are smooth ([Mi83℄,

[Gl01a℄, [Ne02b℄). Identifying elements of the tangent spae g := T

1

(G) of G in the identity 1

1

We all a subalgebra t of a Lie algebra g toral if ad t�der(g) onsists of diagonalizable endomorphisms.
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with left invariant vetor �elds, we obtain on g the struture of a loally onvex Lie algebra, i.e.,

a Lie algebra whih is a loally onvex spae and whose Lie braket is ontinuous. Therefore

the ategory of loally onvex Lie algebras is the natural setup for the \in�nitesimal part" of

in�nite-dimensional Lie theory. In addition, it is an important strutural feature of loally onvex

spaes that they have natural tensor produts.

In Setion I we explain how the onept of a root graded Lie algebra an be adapted to

the lass of loally onvex Lie algebras. The main di�erene to the algebrai onept is that

one replaes the ondition that

P

�2�

[g

�

; g

��

℄ oinides with g

0

by the requirement that it is

a dense subspae of g

0

. This turns out to make the theory of loally onvex root graded Lie

algebras somewhat harder than the algebrai theory, but it is natural, as a loser inspetion

of the topologial versions of the Lie algebras sl

n

(A) for loally onvex assoiative algebras A

shows. In Setion I we also disuss some natural lasses of \lassial" loally onvex root graded

Lie algebras suh as sympleti and orthogonal Lie algebras and the Tits{Kantor{Koeher{Lie

algebras assoiated to Jordan algebras.

In Setion II we undertake a detailed analysis of loally onvex root graded Lie algebras.

Here the main point is that the ation of the grading subalgebra g

�

on g is semisimple with

at most three isotypial omponents, into whih g deomposes topologially. The orresponding

simple modules are the trivial module K 2 fR; C g , the adjoint module g

�

and the simple module

V

s

whose highest weight is the maximal short root with respet to a positive system �

+

� �.

In the algebrai ontext, the deomposition of g is a diret onsequene of Weyl's Theorem, but

here we need that the isotypial projetions are ontinuous operators, a fat whih an be derived

from the fat that they ome from the enter of the enveloping algebra U(g

�

). The underlying

algebrai arguments are provided in Appendix A. If A , B , resp., D , are the multipliity spaes

with respet to g

�

, V

s

, resp., K , then g deomposes topologially as

g = (A
 g

�

)� (B 
 V

s

)�D:

A entral point in our strutural analysis is that the diret sum A := A � B arries a natural

(not neessarily assoiative) unital loally onvex algebra struture, that D ats by derivations

on A , and that we have a ontinuous alternating map Æ

D

:A � A ! D satisfying a ertain

oyle ondition. Here the type of the root system � ditates ertain identities for the mul-

tipliation on A , whih leads to the oordinatization results mentioned above ([BM92℄, [BZ96℄

and [Neh96℄). The main new point here is that A inherits a natural loally onvex struture,

that the multipliation is ontinuous and that all the related maps suh as Æ

D

are ontinuous.

In the algebrai ontext, the oordinate algebra A and the root system � lassify the

isogeny lasses. The isogeny lass of g ontains a unique entrally losed Lie algebra

e

g and

a unique enter-free Lie algebra g=z(g). In the loally onvex ontext, the situation is more

subtle beause we have to work with generalized entral extensions instead of ordinary entral

extensions: a morphism q:

b

g ! g of loally onvex Lie algebras is alled a generalized entral

extension if it has dense range and there exists a ontinuous bilinear map b: g� g!

b

g for whih

b Æ (q � q) is the Lie braket on

b

g . The subtlety of this onept is that q need not be surjetive

and if it is surjetive, it does not need to be a quotient map. Fortunately these diÆulties are

ompensated by the nie fat that eah topologially perfet Lie algebra g , meaning that the

ommutator algebra is dense, has a universal generalized entral extension, alled the universal

overing Lie algebra

e

g . The basi results on generalized entral extensions are developed in

Setion III.

In Setion IV we apply this onept to loally onvex root graded Lie algebras and show

that the desription of the universal overing Lie algebra an be translated from the algebrai

ontext ([ABG00℄) to the loally onvex ontext without extra tehnial work. Here a entral

point is that for any generalized entral extension q:

b

g! g the Lie algebra

b

g is �-graded if and

only if g is �-graded. This means that generalized isogeny lasses ontain a �-graded element if

and only if they entirely onsist of �-graded Lie algebras. Moreover, we show that the universal

overing Lie algebra of a �-graded Lie algebra only depends on the root system � and the

oordinate algebra A . Therefore the universal overing Lie algebra deserves the name

e

g(�;A),

and it turns out that the assignment A 7!

e

g(�;A) is funtorial.
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We thus obtain a loally onvex version of isogeny lasses. They still have the property

that they ontain a unique entrally losed member beause all Lie algebras in the lass have

the same universal overing, but unfortunately there might be several enter-free Lie algebras

with the same universal overing. This is due to the fat that the Lie algebras of the lass are

obtained from the entrally losed Lie algebra

e

g by generalized entral extensions q

g

:

e

g! g . As

q

g

is not neessarily a quotient map, the topology on g is not determined by the topology on

e

g

(Example III.15, Example IV.16).

A Lie group G is said to be �-graded if its Lie algebra L(G) is �-graded. It is a natural

question whih root graded loally onvex Lie algebras g are integrable in the sense that they

are the Lie algebra of a Lie group G . Although this question always has an aÆrmative answer if

g is �nite-dimensional, it turns out to be a diÆult problem to deide integrability for in�nite-

dimensional Lie algebras. These global questions will be pursued in another paper ([Ne03b℄, see

also [Ne03a℄). In Setion V we give an outline of the global side of the theory and explain how it

is related to K -theory and non-ommutative geometry. One of the main points is that, in view

of the results of Setion V, it mainly boils down to showing that at least one member g of an

isogeny lass is integrable and then analyze the situation for the universal overing Lie algebra

e

g .

Aknowledgement: I am grateful to B. Allison for several extremely useful remarks on-

erning the struture of root graded Lie algebras. I further thank H. Biller, H. Gl�okner and

R. Gramlih for their ritial and areful proof reading of the paper.

Preliminaries and notation

The theory of root graded Lie algebras is a subjet with great aestheti appeal and rih

onnetions to many other �elds of mathematis. We therefore tried to keep the exposition

of the present paper as self-ontained as possible to make it aessible to readers from di�erent

mathematial subultures. In partiular we inlude proofs for those results on the struture of the

oordinate algebras whih an be obtained by short elementary arguments; for the more re�ned

struture theory related to the exeptional and the low rank algebras we refer to the literature.

On the algebrai level we essentially build on the representation theory of �nite-dimensional

semisimple split Lie algebras (f. [Dix74℄ or [Hum72℄); the required Jordan theoreti results are

elementary and provided in Appendies B and C. On the funtional analyti level we do not

need muh more than some elementary fats on loally onvex spaes suh as the existene of

the projetive tensor produt.

All loally onvex spaes in this paper are vetor spaes over K 2 fR; C g . If X and Y are

loally onvex spaes, then we write Lin(X;Y ) for the spae of ontinuous linear maps X ! Y .

A loally onvex algebra A is a loally onvex topologial vetor spae together with a

ontinuous bilinear map A�A ! A . In partiular a loally onvex Lie algebra g is a Lie algebra

whih is a loally onvex spae for whih the Lie braket is a ontinuous bilinear map g� g! g .

The assumption that the topologial Lie algebras we onsider are loally onvex spaes is

motivated by the fat that suh Lie algebras arise naturally as Lie algebras of Lie groups and

by the existene of tensor produts, whih will be used in Setion III to onstrut the universal

overing Lie algebra. Tensor produts of loally onvex spaes are de�ned as follows.

Let E and F be loally onvex spaes. On the tensor produt E
F there exists a natural

loally onvex topology, alled the projetive topology. It is de�ned by the seminorms

(p
 q)(x) = inf

n

n

X

j=1

p(y

j

)q(z

j

):x =

X

j

y

j


 z

j

o

;

where p , resp., q are ontinuous seminorms on E , resp., F (f. [Tr67, Prop. 43.4℄). We write

E


�

F for the loally onvex spae obtained by endowing E
F with the loally onvex topology

de�ned by this family of seminorms. It is alled the projetive tensor produt of E and F . It has

the universal property that for a loally onvex spae G the ontinuous bilinear maps E�F ! G

are in one-to-one orrespondene with the ontinuous linear maps E


�

F ! G . We write E

b




�

F
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for the ompletion of the projetive tensor produt of E and F . If E and F are Fr�ehet spaes,

their topology is de�ned by a ountable family of seminorms, and this property is inherited by

E

b




�

F . Hene this spae is also Fr�ehet.

If E and F are Fr�ehet spaes, then every element � of the ompletion E

b




�

F an be

written as � =

P

1

n=1

�

n

x

n


 y

n

; where � 2 `

1

(N;K ) and lim

n!1

x

n

= lim

n!1

y

n

= 0 ([Tr67,

Th. 45.1℄). If, in addition, E and F are Banah spaes, then the tensor produt of the two

norms is a norm de�ning the topology on E
F and E

b




�

F also is a Banah spae. For k�k < 1

we then obtain a representation with k�k

1

< 1 and kx

n

k; ky

n

k < 1 for all n 2 N ([Tr67, p.465℄).

I. Root graded Lie algebras

In this setion we introdue loally onvex root graded Lie algebras. In the algebrai setting it

is natural to require that root graded Lie algebras are generated by their root spaes, but in the

topologial ontext this ondition would be unnaturally strong. Therefore it is weakened to the

requirement that the root spaes generate the Lie algebra topologially. As we will see below,

this weaker ondition auses several diÆulties whih are not present in the algebrai setting,

but this defet is ompensated by the well behaved theory of generalized entral extensions (see

Setion IV).

De�nition I.1. Let � be a �nite irreduible redued root system and g

�

the orresponding

�nite-dimensional omplex simple Lie algebra.

A loally onvex Lie algebra g is said to be �-graded if the following onditions are satis�ed:

(R1) g is a diret sum g = g

0

�

L

�2�

g

�

.

(R2)There exist elements x

�

2 g

�

, � 6= 0, and a subspae h � g

0

with g

�

�

=

h+

P

�2�

Kx

�

.

(R3)For � 2 � [ f0g we have g

�

= fx 2 g: (8h 2 h) [h; x℄ = �(x)hg , where we identify � with

a subset of h

�

.

(R4)

P

�2�

[g

�

; g

��

℄ is dense in g

0

.

The subalgebra g

�

of g is alled a grading subalgebra. We say that g is root graded if g is

�-graded for some �.

A slight variation of the onept of a �-graded Lie algebra is obtained by replaing (R2)

by

(R2') There exist a sub-root system �

0

� � and elements x

�

2 g

�

, � 2 �

0

, and a subspae

h � g

0

with g

�

0

�

=

h+

P

�2�

0

Kx

�

.

A Lie algebra satisfying (R1), (R2'), (R3) and (R4) is alled (�;�

0

)-graded.

Remark I.2. (a) Suppose that a loally onvex Lie algebra g satis�es (R1)-(R3). Then the

subspae

X

�2�

g

�

+

X

�2�

[g

�

; g

��

℄

is invariant under eah root spae g

�

and also under g

0

, hene an ideal. Therefore its losure

satis�es (R1)-(R4), hene is a �-graded Lie algebra.

(b) Sometimes one starts with the subalgebra h � g and the orresponding weight spae

deomposition, so that we have (R1) and (R3). Let � be a basis of the root system � � h

�

and �� ,

� 2 �, the oroots. If there exist elements x

��

2 g

��

for � 2 � suh that [x

�

; x

��

℄ = ��; then

we onsider the subalgebra g

�

� g generated by fx

��

:� 2 �g . Then the weight deomposition

of g with weight set � [ f0g easily implies that the generators x

��

, � 2 �; satisfy the Serre

relations, and therefore that g

�

is a split simple Lie algebra with root system � satisfying (R2).

Remark I.3. (a) In the algebrai ontext one replaes (R4) by the requirement that g

0

=

P

�2�

[g

�

; g

��

℄ . This is equivalent to g being generated by the spaes g

�

, � 2 �.

(b) The onept of a �-graded Lie algebra an be de�ned over any �eld of harateristi 0.

Here it already ours in the lassi�ation theory of simple Lie algebras as follows. Let g be
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a simple Lie algebra whih is isotropi in the sense that it ontains non-zero elements x for

whih adx is diagonalizable. The latter ondition is equivalent to the existene of a subalgebra

isomorphi to sl

2

(K ) . Let h � g be a maximal toral subalgebra h � g . Then g has an h-

weight deomposition, and the orresponding set of weights � � h

�

is a not neessarily redued

irreduible root system (f. [Se76, pp.10/11℄). If this root system is redued, then one an use

the method from Remark I.2(b) to show that g is �-graded in the sense de�ned above. For

restrited root systems of type BC

r

this argument produes grading subalgebras of type C

r

,

hene (BC

r

; C

r

)-graded Lie algebras ([Se76℄).

() (R4) implies in partiular that g is topologially perfet, i.e., that g

0

:= [g; g℄ = g .

(d) Suppose that g is �-graded and

d � der

�

(g) := fD 2 der(g): (8� 2 �)D:g

�

� g

�

g

is a Lie subalgebra with a loally onvex struture for whih the ation d� g! g is ontinuous.

Then go d satis�es (R1){(R3) with (go d)

0

= g

0

o d .

Examples of root graded Lie algebras

Example I.4. Let � be a redued �nite root system and g

�

be the orresponding simple

split K -Lie algebra. If A is a loally onvex assoiative ommutative algebra with unit 1 , then

g := A
 g

�

is a loally onvex �-graded Lie algebra with respet to the braket

[a
 x; a

0


 x

0

℄ := aa

0


 [x; x

0

℄:

The embedding g

�

,! g is given by x 7! 1
 x .

Example I.5. Now let A be an assoiative unital loally onvex algebra. Then the (n � n)-

matrix algebra M

n

(A)

�

=

A
M

n

(K ) also is a loally onvex assoiative algebra. We write gl

n

(A)

for this algebra, endowed with the ommutator braket and

g := [gl

n

(A); gl

n

(A)℄

for the losure of the ommutator algebra of gl

n

(A). We laim that this is an A

n�1

-graded Lie

algebra with grading subalgebra g

�

= 1
 sl

n

(K ) . It is lear that g

�

is a subalgebra of g . Let

h :=

n

diag(x

1

; : : : ; x

n

):x

1

; : : : ; x

n

2 K ;

X

j

x

j

= 0

o

� g

�

denote the anonial Cartan subalgebra and de�ne linear funtionals "

j

on h by

"

j

(diag(x

1

; : : : ; x

n

)) = x

j

:

Then the weight spae deomposition of g satis�es

g

"

i

�"

j

= A
E

ij

; i 6= j;

where E

ij

is the matrix with one non-zero entry 1 in position (i; j). From

[aE

ij

; bE

kl

℄ = abÆ

jk

E

il

� baÆ

li

E

kj

we derive that

[aE

ij

; bE

ji

℄ = abE

ii

� baE

jj

2 [a; b℄
E

ii

+A
 sl

n

(K ) 2

1

n

[a; b℄
 1+A
 sl

n

(K ):
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In view of A
 sl

n

(K ) = [g

�

; g℄ � [g; g℄ , it is now easy to see that

g

0

=

n

diag(a

1

; : : : ; a

n

):

X

j

a

j

2 [A;A℄

o

= (A
 h)� ([A;A℄ 
 1):

From the formulas above, we also see that (R4) is satis�ed, so that g is an A

n�1

-graded loally

onvex Lie algebra.

We have a natural non-ommutative trae map

Tr: gl

n

(A)! A=[A;A℄; x 7!

h

n

X

j=1

x

jj

i

;

where [a℄ denotes the lass of a 2 A in A=[A;A℄ . Then the disussion above implies that

sl

n

(A) := kerTr = g = (A
 sl

n

(K )) � ([A;A℄ 
 1):

To prepare the disussion in Setion II below, we desribe the Lie braket in sl

n

(A) in terms of

the above diret sum deomposition. First we note that in gl

n

(A) we have

[a
 x; a

0


 x

0

℄ = aa

0


 xx

0

� a

0

a
 x

0

x =

aa

0

+ a

0

a

2


 [x; x

0

℄ +

1

2

[a; a

0

℄
 (xx

0

+ x

0

x):

For x; x

0

2 sl

n

(K ) we have

x � x

0

:= xx

0

+ x

0

x� 2

tr(xx

0

)

n

1 2 sl

n

(K );

so that for a; a

0

2 A and x; x

0

2 sl

n

(K ) we have

(1:1) [a
 x; a

0


 x

0

℄ =

�

aa

0

+ a

0

a

2


 [x; x

0

℄ +

1

2

[a; a

0

℄
 x � x

0

�

+ [a; a

0

℄


tr(xx

0

)

n

1;

aording to the diret sum deomposition sl

n

(K ) = (A
 sl

n

(K )) � ([A;A℄
 1); and

[d
 1; a
 x℄ = [d; a℄
 x; a; d 2 A; x 2 sl

n

(K ):

Remark I.6. A Lie algebra g an be root graded in several di�erent ways. Let s � g be a

subalgebra with s = spanfh; e; fg

�

=

sl

2

(K ) and the relations

[h; e℄ = 2e; [h; f ℄ = �2f and [e; f ℄ = h:

If ad

g

h is diagonalizable with Spe(ad

g

h) = f2; 0;�2g , then the eigenspaes of ad

g

h yield on

g the struture of an A

1

-grading with g

�

:= s . This shows in partiular that for any assoiative

algebra A the Lie algebra sl

n

(A), n � 3; has many di�erent A

1

-gradings in addition to its

natural A

n�1

-grading.

Example I.7. Let A be a loally onvex unital assoiative algebra with a ontinuous involution

�: a 7! a

�

, i.e., � is a ontinuous involutive linear antiautomorphism:

(ab)

�

= b

�

a

�

and (a

�

)

�

= a; a; b 2 A:

If � = id

A

, then A is ommutative. We write

A

��

:= fa 2 A: a

�

= �ag

and observe that A = A

�

�A

��

, where A

�

is a subalgebra.
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The involution � extends in a natural way to an involution of the loally onvex algebra

M

n

(A) of n�n-matries with entries in A by (x

ij

)

�

:= (x

�

ji

): If � = id

A

, then x

�

= x

>

is just

the transposed matrix.

(a) Let 1 2M

n

(A) be the identity matrix and de�ne

J :=

�

0 �1

1 0

�

2M

2n

(A):

Then J

2

= �1 , and

sp

2n

(A; �) := fx 2 gl

2n

(A): Jx

�

J

�1

= �xg

is a losed Lie subalgebra of gl

2n

(A). Writing x as a (2 � 2)-matrix

�

a b

 d

�

2 M

2

(M

n

(A));

this means that

sp

2n

(A; �) =

n

�

a b

 �a

�

�

2 gl

2n

(A): b

�

= b; 

�

= 

o

:

For A = K we have � = id, and we obtain sp

2n

(K ; id

K

) = sp

2n

(K ) . With the identity

element 1 2 A we obtain an embedding K

�

=

K1 ,! A , and hene an embedding

sp

2n

(K ) ,! sp

2n

(A; �):

Let

h := fdiag(x

1

; : : : ; x

n

;�x

1

; : : : ;�x

n

):x

1

; : : : ; x

n

2 Kg

denote the anonial Cartan subalgebra of sp

2n

(K ). Then the h-weights with respet to the

adjoint ation of h on sp

2n

(A; �) oinide with the set

� = f�"

i

� "

j

: i; j = 1; : : : ; ng

of roots of sp

2n

(K ), where "

j

(diag(x

1

; : : : ; x

n

;�x

1

; : : : ;�x

n

)) = x

j

for j = 1; : : : ; n . Typial

root spaes are

g

"

i

�"

j

= A
 (E

ij

�E

j+n;i+n

); g

"

i

+"

j

= faE

i;j+n

+ a

�

E

j;i+n

: a 2 Ag; i 6= j;

g

2"

j

= A

�

E

j;j+n

; and g

0

= fdiag(a

1

; : : : ; a

n

;�a

�

1

; : : : ;�a

�

n

): a

1

; : : : ; a

n

2 Ag:

The entralizer of the subalgebra sp

2n

(K ) is

z

sp

2n

(A;�)

(sp

2n

(K )) = A

��

1;

and therefore

sp

2n

(A; �) = [sp

2n

(K ); sp

2n

(A; �)℄�A

��

1:

From Example I.5 we know that a neessary ondition for an element a1 to be ontained in the

ommutator algebra of gl

2n

(A) is a 2 [A;A℄ . On the other hand, the embedding

sl

n

(A) ,! sp

2n

(A; �); a 7!

�

a 0

0 �a

�

�

implies that the elements

�

a 0

0 �a

�

�

; a 2 [A;A℄

are ontained in the losure sp

2n

(A; �)

0

of the ommutator algebra of sp

2n

(A; �). This proves

that

sp

2n

(A; �)

0

= [sp

2n

(K ); sp

2n

(A; �)℄ � [A;A℄

��


 1:

Using Example I.5 again, we now obtain (R4), and therefore that sp

2n

(A; �)

0

is a C

n

-graded Lie

algebra with grading subalgebra sp

2n

(K ) .
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The preeding desription of the ommutator algebra shows that eah element x =

�

a b

 �a

�

�

2 sp

2n

(A; �)

0

satis�es

tr(x) = tr(a� a

�

) = tr(a)� tr(a)

�

2 [A;A℄:

That the latter ondition is suÆient for x being ontained in sp

2n

(A; �)

0

follows from

sp

2n

(A; �) = [sp

2n

(K ); sp

2n

(A)℄�A

��


 1:

The Lie algebra sp

2n

(A; �) also has a natural 3-grading

sp

2n

(A; �) = sp

2n

(A; �)

+

� sp

2n

(A; �)

0

� sp

2n

(A; �)

�

with

sp

2n

(A; �)

�

�

=

Herm

n

(A; �) := fx 2M

n

(A):x

�

= xg and sp

2n

(A; �)

0

�

=

gl

n

(A);

obtained from the (2� 2)-matrix struture.

(b) Now we onsider the symmetri matrix

I :=

�

0 1

1 0

�

2M

2n

(A);

whih satis�es I

2

= 1 . We de�ne the assoiate losed Lie subalgebra of gl

2n

(A) by

o

n;n

(A; �) := fx 2 gl

2n

(A): Ix

�

I

�1

= �xg =

n

�

a b

 �a

�

�

2 gl

2n

(A): b

�

= �b; 

�

= �

o

:

For A = K we have � = id, and we obtain o

n;n

(K ; id

K

) = o

n;n

(K ). With the identity

element 1 2 A we obtain an embedding K

�

=

K1 ,! A , and hene an embedding

o

n;n

(K ) ,! o

n;n

(A; �):

Again,

h := fdiag(x

1

; : : : ; x

n

;�x

1

; : : : ;�x

n

):x

1

; : : : ; x

n

2 Kg

is the anonial Cartan subalgebra of o

n;n

(K ) . The h-weights with respet to the adjoint ation

of h on o

n;n

(A; �) oinide with the set

� = f�"

i

� "

j

: i; j = 1; : : : ; ng:

Typial root spaes are

g

"

i

�"

j

= A
 (E

ij

�E

j+n;i+n

); g

"

i

+"

j

= faE

i;j+n

� a

�

E

j;i+n

: a 2 Ag; i 6= j;

g

2"

j

= A

��

E

j;j+n

; and g

0

= fdiag(a

1

; : : : ; a

n

;�a

�

1

; : : : ;�a

�

n

): a

1

; : : : ; a

n

2 Ag:

The root spaes g

2"

j

are non-zero if and only if A

��

6= f0g , whih is equivalent to � 6= id

A

.

As in (a), we obtain

z

o

n;n

(A)

(o

n;n

(K )) = A

��


 1; o

n;n

(A) = [o

n;n

(K ); o

n;n

(A)℄ �A

��


 1;

and

o

n;n

(A)

0

= [o

n;n

(K ); o

n;n

(A)℄� [A;A℄

��


 1:

If �

A

= id

A

, then � is of type D

n

, the root system of o

n;n

(K ), and o

n;n

(A) := o

n;n

(A; id

A

) is

a D

n

-graded Lie algebra. In this ase A = A

�

, and

o

n;n

(A)

�

=

A
 o

n;n

(K );

so that this ase is also overed by Example I.4.

If �

A

6= id

A

, then we obtain a (C

n

; D

n

)-graded Lie algebra with grading subalgebra

o

n;n

(K ) of type D

n

.
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Lemma I.8. Let K be a �eld with 2 2 K

�

. For x; y; z 2 sl

2

(K ) we have the relations

(1:2) xy + yx = tr(xy)1;

and

(1:3) [x; [y; z℄℄ = 2 tr(xy)z � 2 tr(xz)y:

Proof. For x 2 sl

2

(K ) let

p(t) = det(t1� x) = t

2

� trx � t+ detx = t

2

+ detx

denote the harateristi polynomial of x . Then the Cayley{Hamilton Theorem implies

0 = p(x) = x

2

+ (det x)1:

On the other hand �2 detx = trx

2

follows by onsideration of eigenvalues �� of x in

a quadrati extension of K . We therefore obtain 2x

2

� tr(x

2

)1 = 2x

2

+ 2(detx)1 = 0: By

polarization (taking derivatives in diretion y ), we obtain from 2x

2

= tr(x

2

)1 the relation

2xy + 2yx = tr(xy + yx)1 = 2 tr(xy)1 , whih leads to

xy + yx = tr(xy)1:

We further get

tr(xy)z � tr(xz)y = (xy + yx)z � y(xz + zx) = xyz � yzx = [x; yz℄ =

1

2

[x; [y; z℄ + (yz + zy)℄

=

1

2

[x; [y; z℄ + tr(yz)1℄ =

1

2

[x; [y; z℄℄:

Example I.9. (a) Let J be a loally onvex Jordan algebra with identity 1 (f. Appendix B).

We endow the spae J 
 J with the projetive tensor produt topology and de�ne

hJ; Ji := (J 
 J)=I;

where I � J 
 J is the losed subspae generated by the elements of the form a
 a and

ab
 + b
 a+ a
 b; a; b;  2 J:

We write ha; bi for the image of a
 b in hJ; Ji . Then

ha; bi = �hb; ai and hab; i+ hb; ai+ ha; bi = 0; a; b;  2 J:

It follows in partiular that h1; i+ 2h;1i = 0, whih implies h1; i = 0 for eah  2 J .

Let L(a)b := ab denote the left multipliation in J . From the identity

[L(a); L(b)℄ + [L(b); L(a)℄ + [L(); L(ab)℄ = 0

(Proposition B.2(1)) and the ontinuity of the maps (a; b; x) 7! [L(a); L(b)℄:x we derive that the

map

Æ

J

: J 
 J ! der(J); (a; b) 7! [L(a); L(b)℄

(f. Corollary B.3 for the fat that it maps into der(J)) fators through a map

Æ

J

: hJ; Ji ! der(J):
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It therefore makes sense to de�ne

(1:4) ha; bi:x := 2[L(a); L(b)℄:x; a; b; x 2 J:

We now de�ne a bilinear ontinuous braket on

℄

TKK(J) := (J 
 sl

2

(K )) � hJ; Ji

by

[a
 x; a

0


 x

0

℄ := aa
 [x; x

0

℄ + ha; a

0

i tr(xx

0

); [ha; bi; 
 x℄ := ha; bi:
 x

[ha; bi; h; di℄ := hha; bi:; di+ h; ha; bi:di:

The label TKK refers to Tits, Kantor and Koeher who studied the relation between Jordan

algebras and Lie algebras from various viewpoints (see Appendies B and C). It is lear from

the de�nitions that if we endow

℄

TKK(J) with the natural loally onvex topology turning it

into a topologial diret sum of J 
 sl

2

(K ) and hJ; Ji , then

℄

TKK(J) is a loally onvex spae

with a ontinuous braket. That the braket is alternating follows for the hJ; Ji-term from the

alulation in Example III.10(3) below. To see that

℄

TKK(J) is a Lie algebra, it remains to verify

the Jaobi identity. The trilinear map

J(�; �; ) := [[�; �℄; ℄ + [[�; ℄; �℄ + [[; �℄; �℄ =:

X

yl:

[[�; �℄; ℄

is alternating. Therefore we only have to show that it vanishes for entries in J 
 sl

2

(K ) and

hJ; Ji . The essential ase is where all elements are in J
sl

2

(K ) . In the last step of the following

alulation we use Lemma I.8:

[[a
 x; b
 y℄; 
 z℄ = [ab
 [x; y℄ + tr(xy)ha; bi; 
 z℄

= (ab)
 [[x; y℄; z℄ + tr([x; y℄z)hab; i+ ha; bi:
 tr(xy)z

= 2(ab)
 (tr(zy)x� tr(zx)y) + ha; bi:
 tr(xy)z + tr([x; y℄z)hab; i:

Now the vanishing of J(a
 x; b
 y; 
 z) follows from

X

yl:

tr([x; y℄z)hab; i = tr([x; y℄z)

X

yl:

hab; i = 0

and

(ha; bi:� 2(b)a+ 2(a)b)
 tr(xy)z = 0:

Note that this also explains the fator 2 in (1.4).

That the expression J(�; �; ) vanishes if one entry is in hJ; Ji follows easily from the fat

that Æ(a; b) := 2[L(a); L(b)℄ 2 der(J). The ase where two entries are in hJ; Ji orresponds to

the relation

[Æ(a; b); Æ(; d)℄ = Æ(ha; bi:; d) + Æ(; ha; bi:d)

in der(J), whih in turn follows from the fat that for any D 2 der(J) we have

[D; Æ(; d) = 2[D; [L(); L(d)℄℄ = 2[[D;L()℄; L(d)℄ + 2[L(); [D;L(d)℄℄

= 2[L(D:); L(d)℄ + 2[L(); L(D:d)℄ = Æ(D:; d) + Æ(;D:d):

The ase where all entries of J(�; �; ) are in hJ; Ji follows easily from the fat that the

representation of der(J) on J 
 J fators through a Lie algebra representation on hJ; Ji given

by D:ha; bi = hD:a; bi + ha;D:bi . In this sense the latter three ases are diret onsequenes of

the derivation property of the Æ(a; b)'s.

This proves that the braket de�ned above is a Lie braket on

℄

TKK(J). The assignment

J 7!

℄

TKK(J) is funtorial. It is lear that eah derivation of J indues a natural derivation on
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℄

TKK(J) and that eah morphism of unital loally onvex Jordan algebras ': J

1

! J

2

de�nes a

morphism

℄

TKK(J

1

)!

℄

TKK(J

2

) of loally onvex Lie algebras.

It is interesting to observe that in general tensor produts A 
 k of an algebra A and a

Lie algebra k arry only a natural Lie algebra struture if A is ommutative and assoiative

(Example I.4). For more general algebras one has to add an extra spae suh as hJ; Ji for a

Jordan algebra J and k = sl

2

(K ) . The Jaobi identity for

℄

TKK(J) very muh relies on the

identity for triple brakets in sl

2

(K ) from Lemma I.8 and the de�nition of the ation of ha; bi as

2[L(a); L(b)℄ .

We have a natural embedding of sl

2

(K ) into g as g

�

:= K1 
 sl

2

(K ) . Let h; e; f 2 sl

2

(K )

be a basis with

[h; e℄ = 2e; [h; f ℄ = �2f and [e; f ℄ = h:

Then h = Kh is a Cartan subalgebra of sl

2

(K ); and the orresponding eigenspae deomposition

of g is given by

g

2

= J 
 e; g

�2

= J 
 f and g

0

= J 
 h� hJ; Ji:

In view of [g

�

; g℄ = J
sl

2

(K ) , the formula for the braket implies that hJ; Ji � [g; g℄ , and hene

that g is an A

1

-graded loally onvex Lie algebra.

(b) If A is a loally onvex unital assoiative algebra, then A also arries the struture of a

loally onvex unital Jordan algebra A

J

with respet to the produt

a Æ b :=

1

2

(ab+ ba):

It is interesting to ompare

℄

TKK(A

J

) with the loally onvex Lie algebra sl

2

(A) disussed in

Example I.5, where we have seen that with respet to the deomposition

sl

2

(A) =

�

A
 sl

2

(K )

�

�

�

[A;A℄
 1

�

;

the Lie braket is given by

[a
 x; b
 y℄ =

ab+ ba

2


 [x; y℄ +

1

2

[a; b℄
 x � y + [a; b℄


tr(xy)

n

1:

In view of (1.2), we have x � y = 0, so that we obtain the simpler formula

[a
 x; b
 y℄ = (a Æ b)
 [x; y℄ +

1

2

[a; b℄
 tr(xy)1:

Let L

a

(b) := ab and R

a

(b) := ba . Then the left multipliation in the Jordan algebra is

L(a) =

1

2

(L

a

+R

a

), and therefore ha; bi ats on A

J

as

2[L(a); L(b)℄ =

1

2

[L

a

+R

a

; L

b

+R

b

℄ =

1

2

([L

a

; L

b

℄ + [R

a

; R

b

℄) =

1

2

(L

[a;b℄

�R

[a;b℄

) =

1

2

ad([a; b℄):

From this it easily follows that

':

℄

TKK(A)! sl

2

(A); a
 x 7! a
 x; ha; bi 7!

1

2

[a; b℄
 1

de�nes a morphism of loally onvex Lie algebras.

From the disussion of the examples in Setion IV below, we will see that this homomor-

phism is in general neither injetive nor surjetive.

() From the ontinuity of the map

hJ; Ji � J ! J; (ha; bi; x) 7! Æ

J

(a; b):x = ha; bi:x
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it follows that ker Æ

J

is a losed subspae of hJ; Ji . Hene the spae ider(J) := im(Æ

J

)

�

=

hJ; Ji= ker(Æ

J

) arries a natural loally onvex topology as the quotient spae hJ; Ji= ker(Æ

J

).

The losed subspae ker(Æ

J

) � hJ; Ji also is a losed ideal of

℄

TKK(J). The quotient Lie

algebra

TKK(J) :=

℄

TKK(J)= ker(Æ

J

) = (J 
 sl

2

(K )) � ider(J)

is alled the topologial Tits{Kantor{Koeher{Lie algebra assoiated to the loally onvex unital

Jordan algebra J . The braket of this Lie algebra is given by

[a
 x; a

0


 x

0

℄ := aa
 [x; x

0

℄ + 2 tr(xx

0

)[L(a); L(a

0

)℄; [d; 
 x℄ := d:
 x

[d; d

0

℄ := dd

0

� d

0

d:

Mostly TKK(J) is written in a di�erent form, as J � istr(J) � J , where istr(J) :=

L(J) + ider(J) is the inner struture Lie algebra of J . The orrespondene between the two

pitures is given by the map

�:TKK(J)! J � istr(J)� J; a
 e+ b
 h+ 
 f + d 7! (a; 2L(b) + d; ):

To understand the braket in the produt piture, we observe that

(L(a) + [L(b); L()℄):1 = a+ b(1)� (b1) = a

implies

istr(J) = L(J)� [L(J); L(J)℄

�

=

J � [L(J); L(J)℄:

For eah derivation d of J we have [d; L(a)℄ = L(d:a), whih implies that

�(L(x) + [L(y); L(z)℄) = �L(x) + [L(y); L(z)℄

de�nes an involutive Lie algebra automorphism on istr(J). Now the braket on J � istr(J)� J

an be desribed as

[(a; d; ); (a

0

; d

0

; 

0

)℄

= (d:a

0

� d

0

:a; 2L(a

0

) + 2[L(a); L(

0

)℄� 2L(a

0

)� 2[L(a

0

); L()℄; �(d):

0

� �(d

0

):):

From this formula it is lear that the map �(a; d; ) := (; �(d); a) de�nes an involutive automor-

phism of TKK(J).

Twisted loop algebras

There are also so-alled twisted versions of the Lie algebras A
g

�

from Example I.4. The

onstrution is based on the following observation.

Let k be a split simple K -Lie algebra, h

k

� k a splitting Cartan subalgebra, and � a group

of automorphisms of k �xing a regular element of k in h

k

. Typial groups of this type arise

from the outer automorphisms of k , whih an be realised by automorphisms of k preserving the

root deomposition and a positive system of roots (see Example I.10 below). Let k

�

denote the

subalgebra of all elements of k �xed by �. Then k

�

ontains a regular element x

0

of h

k

, and

therefore � preserves z

k

(x

0

) = h

k

. It follows in partiular that � permutes the h

k

-root spaes

of k .

As h

�

:= h

k

\k

�

= h

�

k

ontains a regular element of k , it also is a splitting Cartan subalgebra

of k

�

. If �

k

is the root system of k and �

0

the root system of k

�

, then learly �

0

� �

k

j

h

� ,

but it may happen that the latter set still is a root system.
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Example I.10. Let � be a �nite group of automorphisms of k preserving the Cartan subalgebra

h

k

and suh that the ation on the dual spae preserves a positive system �

+

k

of roots. By

averaging over the orbit of an element x 2 h

k

on whih all positive roots are positive, we then

obtain an element �xed by � on whih all positive roots are positive, so that this element is

regular in k .

Typial examples for this situation ome from yli groups of diagram automorphisms:

(a) For type A

2r�1

we have

�

k

= f�("

i

� "

j

): i 6= j 2 f1; : : : ; 2rgg

on h

k

�

=

K

2r

: The non-trivial diagram automorphism � is an involution satisfying

�(x

1

; : : : ; x

2r

) = (�x

2r

; : : : ;�x

1

) and �("

i

) = �"

2r+1�i

:

We identify

h

�

= f(x

1

; : : : ; x

r

;�x

r

; : : : ;�x

1

):x

i

2 Kg

with K

r

by forgetting the last r entries. If R: h

�

k

! (h

�

)

�

is the restrition map, then

�

j

:= R("

j

� "

j+1

); j = 1; : : : ; r;

is a basis for the root system

R(�

k

) = f�"

i

� "

j

;�2"

j

: 1 � j < i � r; 1 � j � rg

of type C

r

.

(b) For type D

r+1

, r � 4, we have

�

k

= f�("

i

� "

j

): i 6= j 2 f1; : : : ; r + 1gg

on h

k

�

=

K

r+1

. A non-trivial diagram automorphism � is the involution

�(x

1

; : : : ; x

r+1

) = (x

1

; : : : ; x

r

;�x

r+1

):

We identify h

�

= f(x

1

; : : : ; x

r

; 0g with K

r

by forgetting the last entry. Then

R(�

k

) = f�("

i

� "

j

): i 6= j 2 f1; : : : ; rgg [ f"

j

: j = 1; : : : ; rg

is a root system of type B

r

.

() For the triality automorphism of D

4

of order 3, we obtain a root system �

0

of type G

2

.

(d) For the diagram involution of E

6

we obtain a root system �

0

of type F

4

.

It is not hard to verify that in all ases R(�

k

) is the root system of k

0

.

Now let k and � be as above and assume, in addition, that k

0

is simple with root system

�. We write g

�

:= k

�

, h := h

�

and assume that � oinides with R(�

k

), whih is the ase for

all yli groups of diagram automorphisms.

Further let A be a loally onvex ommutative unital assoiative algebra on whih � ats by

ontinuous automorphisms. Then � also ats on the Lie algebra A
 k via :(a
x) := :a
:x .

We onsider the Lie subalgebra

g := (A
 k)

�

of �-�xed points in A 
 k . We learly have g � A

�


 g

�

� 1 
 g

�

. Moreover, the ation of

h = h

�

k

on A
 k ommutes with the ation of �, and our assumption implies that the h-weights

of h on A 
 k oinide with the root system �. This implies that g satis�es (R1){(R3) with

respet to the subalgebra g

�

, and therefore that the losure of the subalgebra generated by the

root spaes is �-graded.

Example I.11. This onstrution overs in partiular all twisted loop algebras. In this ase

A = C

1

(T; C ), T = fz 2 C : jzj = 1g , and if � = h�i is generated by a diagram automorphism

� of order m , then we de�ne the ation of � on A by �(f)(z) = f(z�), where � is a primitive

m-th root of unity.

For �

k

of type A

2r�1

; D

r+1

; E

6

and D

4

, we thus obtain the twisted loop algebras of

type A

(2)

2r�1

; D

(2)

r+1

; E

(2)

6

and D

(3)

4

, and the orresponding root systems � are of type B

r

; C

r

; F

4

and G

2

([Ka90℄).
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(�;�

0

)-graded Lie algebras

Let � be a redued irreduible root system and �

l

� � be the subset of long roots.

Suppose that �; � 2 �

l

with  := � + � 2 �. Then  2 �

l

. Sine � and � generate a

subsystem of � whose rank is at most two, this an be veri�ed by diret inspetion of the ases

A

2

, B

2

�

=

C

2

and G

2

. Alternatively, we an observe that if (�; �) denote the eulidean salar

produt on span

R

� � h

�

, then

�(��) = 2

(�; �)

(�; �)

= 2

(�; �)

p

(�; �)

p

(�; �)

equals 2 � os Æ , where Æ is the angle between � and � . On the other hand �(��) 2 Z , so that

the only possible values are f0;�1;�2g , where �2 only arises for � = �� whih is exluded if

�+ � 2 �. Therefore

(�; �) � (; ) = (�; �) + (�; �) + 2(�; �) = 2(�; �) + 2(�; �) = 2(�; �)� (�; �)

implies (�; �) = (; ), hene that  is long.

We onlude that �

l

satis�es

(�

l

+�

l

) \� � �

l

;

and hene that we have an inlusion

g

�

l

,! g

�

:

It follows in partiular that eah �-graded Lie algebra g an also be viewed as a (�;�

l

)-graded

Lie algebra and that eah �-graded Lie algebra ontains the �

l

-graded Lie algebra

g

0

+

X

�2�

l

g

�

:

The following table desribes the systems �

l

for the non-simply laed root systems.

� B

r

C

r

F

4

G

2

�

l

D

r

(A

1

)

r

D

4

A

2

In many ases the subalgebra g

�

l

of g

�

also has a desription as the �xed point algebra

of an automorphism  �xing h pointwise. Suh an automorphism is given by a morphism

�:Z[�℄! K

�

of abelian groups via

:x

�

= �(�)x

�

; x

�

2 (g

�

)

�

:

For

� = B

r

= f�("

i

� "

j

): i 6= j 2 f1; : : : ; rgg [ f"

j

: j = 1; : : : ; rg

we de�ne

e�:Z[�℄! Z;

X

i

n

i

"

i

7!

X

i

n

i

:

Then

e�

�1

(0)

�

=

A

r�1

; �

s

= e�

�1

(2Z+ 1) and �

l

= e�

�1

(2Z):

Therefore � := (�1)

e�

yields an involution 

�

of g

�

whose �xed point set is the subalgebra g

�

l

.

We likewise obtain for � = G

2

a homomorphism e�:Z[�℄! Z with

�

l

= e�

�1

(3Z):

If 1 6= � 2 K

�

satis�es �

3

= 1, we then obtain via � := �

e�

an automorphism 

�

of order 3

whose �xed point set is g

�

l

�

=

sl

3

(K ) .

Problem I. Determine a systemati theory of (�;�

0

)-graded Lie algebras for suitable lasses

of pairs (�;�

0

).



16 Loally onvex root graded Lie algebras Deember 19, 2002

II. The oordinate algebra of a root graded Lie algebra

After having seen various examples of root graded loally onvex Lie algebras in Setion I, we

now take a more systemati look at the struture of root graded Lie algebras. The main point

of the present setion is to assoiate to a �-graded Lie algebra g a loally onvex algebra A ,

its oordinate algebra, together with a ontinuous bilinear map Æ

A

:A�A ! der(A). The type

of this oordinate algebra (assoiative, alternative, Jordan et.) and the map Æ

A

is determined

by the type of the root system �. We will see that, together with the entralizer D of g

�

in

g , whih ats by derivations on A , the algebra A and the map Æ

A

ompletely enode the Lie

braket of g . These results will be re�ned in Setion IV, where we disuss isogeny lasses of

loally onvex root graded Lie algebras and show that the universal overing Lie algebra of g is

already determined by the pair (�;A), resp., (A; Æ

A

).

The algebrai results of this setion are known; new is only that they still remain true in

the ontext of loally onvex Lie algebras, whih requires additions arguments in several plaes

and, in addition, a more oordinate free approah, beause in the topologial ontext we an

never argue with bases of vetor spaes. We also tried to put an emphasis on those arguments

whih an be given for general root graded Lie algebras without any ase by ase analysis, as

f.i. in Theorem II.13. We do not go into the details of the exeptional and the low-dimensional

ases. For the arguments leading to the oordinate algebra, we essentially follow the expositions

in [ABG00℄, [BZ96℄ (see also [Se76℄ whih already ontains many of the key ideas and arguments).

Let g be a loally onvex root graded Lie algebra over K 2 fR; C g and g

�

a grading

subalgebra. We onsider the adjoint representation of g

�

on g . From (R3) we immediately

derive that g is a g

�

-weight module in the sense that the ation of h is diagonalized by the

�-grading. Moreover, the set of weights is �[ f0g and therefore �nite, so that Proposition A.2

leads to:

Theorem II.1. The Lie algebra g is a semisimple g

�

-weight module with respet to h . All

simple submodules are �nite-dimensional highest weight modules. There are only �nitely many

isotypi omponents g

1

; : : : ; g

n

, and for eah isotypi omponent the projetion p

i

: g ! g

i

an

be realized by an element of the enter of U(g

�

) . In partiular, eah p

i

is ontinuous.

Now we take a loser look at the isotypi omponents of the Lie algebra g . Let �

l

� �

denote the subset of long roots and �

s

� � the subset of short roots, where we put �

l

:= �

if all roots have the same length. Then the Weyl group W of � ats transitively on the sets of

short and long roots, so that it has at most three orbits in � [ f0g . Hene only three types of

simple g

�

-modules may ontribute to g . First we have the adjoint module g

�

, and eah root

vetor in g

�

for a long root � generates a highest weight module isomorphi to g

�

. Therefore

the weight set of eah other type of non-trivial simple g

�

-module ourring in g must be smaller

than � [ f0g , whih already implies that it oinides with �

s

[ f0g . The orresponding simple

g

�

-module is the small adjoint module V

s

�

=

L(�

s

; g

�

), i.e., the simple module whose highest

weight is the highest short root �

s

with respet to a positive system �

+

. In view of Theorem II.1,

we therefore have a g

�

-module deomposition

(2:1) g

�

=

(A
 g

�

)� (B 
 V

s

)�D;

where

A := Hom

g

�

(g

�

; g); B := Hom

g

�

(V

s

; g); and D := z

g

(g

�

)

�

=

Hom

g

�

(K ; g)

are multipliity spaes. We have

g

�

�

=

�

A for � 2 �

l

A�B for � 2 �

s

.



17 rograla.tex Deember 19, 2002

Our next goal is to onstrut an algebra struture on the topologial diret sum A := A � B .

This oordinate algebra will turn turn out be an important strutural feature of g .

For eah �nite-dimensional g

�

-module M the spae Hom

g

�

(M; g) is a losed subspae of

Hom(M; g)

�

=

M

�


 g

�

=

g

dimM

, hene inherits a natural loally onvex topology from the one

on g , and the evaluation map

Hom

g

�

(M; g)
M ! g; '
m 7! '(m)

is an embedding of loally onvex spaes onto the M -isotypi omponent of g . In this sense we

think of A
 g

�

and B 
 V

s

as topologial subspaes of g . We onlude that the addition map

(A
 g

�

)� (B 
 V

s

)�D ! g; (a
 x; b
 y; d) 7! a
 x+ b
 y + d

is a ontinuous bijetion of loally onvex spaes. That its inverse is also ontinuous follows

from Theorem II.1 whih ensures that the isotypi projetions of g are ontinuous linear maps.

Therefore the deomposition (2.1) is a diret sum deomposition of loally onvex spaes. If g

is a Fr�ehet spae, we do not have to use Theorem II.1 beause we an argue with the Open

Mapping Theorem.

It is lear that the subspae D = z

g

(g

�

) is a losed Lie subalgebra. To obtain an algebra

struture on A�B . The following lemma is ruial for our analysis.

Lemma II.2. Let M

j

, j = 1; 2; 3; be �nite-dimensional simple g

�

-modules and V

j

, j = 1; 2; 3;

loally onvex spaes onsidered as trivial g

�

-modules. We onsider the loally onvex spaes

V

j


M

j

as g

�

-modules. Let �

1

; : : : ; �

k

be a basis of Hom

g

�

(M

1


M

2

;M

3

) and

�:V

1


M

1

� V

2


M

2

! V

3


M

3

a ontinuous equivariant bilinear map. Then there exist ontinuous bilinear maps



1

; : : : ; 

k

:V

1

� V

2

! V

3

with

�(v

1


m

1

; v

2


m

2

) =

k

X

i=1



i

(v

1

; v

2

)
 �

i

(m

1

;m

2

):

Proof. Fix v

1

2 V

1

and v

2

2 V

2

. Then the map

�

v

1

;v

2

: (m

1

;m

2

) 7! �(v

1


m

1

; v

2


m

2

)

is an equivariant bilinear map M

1

�M

2

! V

3


M

3

. As the image of �

v

1

;v

2

is �nite-dimensional,

there exist w

1

; : : : ; w

m

2 V

3

suh that

�

v

1

;v

2

=

m

X

j=1

k

X

i=1

w

j


 �

i

=

k

X

i=1

m

X

j=1

w

j


 �

i

:

This show that there are bilinear maps 

1

; : : : ; 

k

:V

1

� V

2

! V

3

with � =

P

k

i=1



i


 �

i

: For

eah i there exists an element a

i

:=

P

j

m

j

1


m

j

2

2 M

1


M

2

with �

i

(a

i

) 6= 0 and �

j

(a

i

) = 0

for i 6= j . Then

X

j

�(v

1


m

j

1

; v

2


m

j

2

) = 

i

(v

1

; v

2

)
 �

i

(a

i

)

shows that eah map 

i

is ontinuous.
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Remark II.3. If M

1

:= g

�

, M

2

:= V

s

, M

3

= K and V

i

:= Hom

g

�

(M

i

; g), then the Lie

braket on g indues a family of g

�

-equivariant ontinuous bilinear maps

V

i


M

i

� V

j


M

j

!M

k


 V

k

:

To apply Lemma II.2, we therefore have to analyze the spaes Hom

g

�

(M

i


M

j

;M

k

):

The ase 3 2 fi; jg is trivial beause D = z

g

(g

�

) ommutes with the ation of g

�

, so that

the braket map indues ontinuous bilinear maps

D �A! A; (d; a) 7! d:a and D �B ! B; (d; b) 7! d:b

with

[d; a
 x℄ = d:a
 x and [d; b
 y℄ = d:b
 y:

Interpreting A as the spae Hom

g

�

(g

�

; g), the ation of D on this spae orresponds to

d:' := (ad d) Æ ';

and likewise for B = Hom

g

�

(V

s

; g).

We may therefore assume that i; j 2 f1; 2g . For k = 3, i.e., M

k

= K , the spae

Hom

g

�

(M

i


M

j

;K )

�

=

Hom

g

�

(M

i

;M

�

j

)

is trivial for i 6= j beause M

1

and M

2

have di�erent dimensions. For M

1

= g

�

we have

Hom

g

�

(g

�


 g

�

;K ) = K�;

where � is the Cartan-Killing form. As V

s

and V

�

s

have the same weight set �

s

= ��

s

, they

are isomorphi, and [Bou90, Ch. VII, x7, no. 5, Prop. 12℄ implies that

dimHom

g

�

(V

s


 V

s

;K ) = K�

V

s

for a non-zero invariant symmetri bilinear form �

V

s

on V

s

. The symmetry of the form follows

from the fat that the highest weight �

s

of V

s

is an integral linear ombination of the base roots

of �.

The omplete information on the relevant Hom-spaes is given in Theorem II.6 below. We

have to prepare the statement of this theorem with the disussion of some speial ases.

De�nition II.4. (a) On the spae M

n

(K ) of n�n-matries the matrix produt is equivariant

with respet to the adjoint ation of the Lie algebra gl

n

(K ). Hene the produt (x; y) 7! xy+yx

does also have this property, and therefore the map

sl

n

(K ) � sl

n

(K ) ! sl

n

(K ); (x; y) 7! x � y := xy + yx�

2 tr(xy)

n

1

is equivariant with respet to the adjoint ation of sl

n

(K ). In the following x � y will always

denote this produt.

(b) Let 
 be the non-degenerate alternating form on K

2r

given by 
(x; y) = (x; y)J(x; y)

>

,

where J =

�

0 �1

1 0

�

(f. Example I.7). For X

℄

:= JX

>

J

�1

we then have

sp

2r

(K )

�

=

fX 2 gl

2r

(K ):X

℄

= �Xg and V

s

�

=

fX 2 gl

2r

(K ):X

℄

= X; trX = 0g:

This follows easily by deomposing gl

2r

(K ) into weight spaes with respet to a Cartan subalgebra

of sp

2r

(K ) . Here we use (XY )

℄

= Y

℄

X

℄

to see that V

s

is invariant under brakets with sp

2r

(K )

and satis�es [V

s

; V

s

℄ � sp

2r

(K ). Moreover, the �-produt restrits to sp

2r

(K )-equivariant

symmetri bilinear maps

�

V

g

: sp

2r

(K ) � sp

2r

(K ) ! V

s

and �

V

V

:V

s

� V

s

! V

s

:

Remark II.5. For � = A

r

, r � 2, the produt � is an equivariant symmetri produt on

g

�

= sl

r+1

(K ). Of ourse, the same formula also yields for r = 1 a symmetri produt, but in

this ase we have x � y = 0 (Lemma I.8).
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Theorem II.6. For the Hom-spaes of the di�erent kinds of Lie algebras we have:

(1) For � not of type A

r

, r � 2 , the spae Hom

g

�

(g

�


 g

�

; g

�

) is one-dimensional and

generated by the Lie braket. For � of type A

r

, r � 2 , this spae is two-dimensional and a

seond generator is the symmetri produt � on g

�

�

=

sl

r+1

(K ) .

(2) If � is not of type C

r

, r � 2 , then Hom

g

�

(g

�


 g

�

; V

s

)

�

=

Hom

g

�

(g

�


 V

s

; g

�

) = f0g .

For � of type C

r

, r � 2 , and g

�

�

=

sp

2r

(K ) the spae Hom

g

�

(g

�


 g

�

; V

s

) is generated

by the �-produt.

(3) Hom

g

�

(V

s


V

s

; g

�

)

�

=

Hom

g

�

(g

�


V

s

; V

s

) is one-dimensional and generated by the module

struture on V

s

. For � of type C

r

, a basis of the �rst spae is given by the braket map on

gl

2r

(K ) , restrited to V

s

.

(4) Hom

g

�

(V

s


 V

s

; V

s

) is one-dimensional for C

n

, n � 3 , F

4

and G

2

, and vanishes for B

n

,

n � 2 . For � of type C

n

, a basis of this spae is given by the �-produt.

Proof. All these statements follow from De�nition II.4 and the expliit deomposition of the

tensor produts, whih are worked out in detail in [Se76, xA.2℄ (see also the Appendix of [BZ96℄

for a list of the deompositions).

Before we turn to a more expliit desription of the Lie braket on g , we have to �x a

notation for the basis elements of the Hom-spaes mentioned above.

De�nition II.7. First we reall the symmetri invariant bilinear form �

V

s

on V

s

from

Remark II.3. Let �

V

g

be a basis element of Hom

g

�

(g

�


 g

�

; V

s

) if this spae is non-zero,

and �

g

g;V

the orresponding basis element of Hom

g

�

(g

�


V

s

; g

�

) whih is related to �

V

g

by the

relation

�

V

s

(�

V

g

(x; y); v) = �(�

g

g;V

(x; v); y); x; y 2 g

�

; v 2 V

s

:

Let �

g

V

:V

s


 V

s

! g

�

be the equivariant map de�ned by

�

V

s

(x:v; v

0

) = �(�

g

V

(v; v

0

); x); v; v

0

2 V

s

; x 2 g

�

:

Then

�

V

s

(x:v; v

0

) = ��

V

s

(v; x:v

0

) = ��

V

s

(x:v

0

; v)

(f. Remark II.3 for the symmetry of �

V

s

) implies that �

g

V

is skew-symmetri . We further write

�

V

V

for a basis element of Hom

g

�

(V

s


 V

s

; V

s

).

For � of type C

r

, r � 2, we take

�

V

s

(v; w) = � tr(vw);

where the fator � = 2(r+1) is determined by �(x; y) = � tr(xy) ([Bou90, Ch. VIII℄). We further

put

�

V

g

(x; y) := x � y; �

g

g;V

(x; v) = x � v; �

g

V

(v; w) = [v; w℄; �

V

V

(v; w) = v � w;

and observe that from the embedding sp

2r

(K ) ,! sl

2r

(K ) we get for v 2 V

s

:

�

V

s

(�

V

g

(x; y); v) = � tr(x � y; v) = � tr(xy + yx; v)

= � tr(vx + xv; y) = � tr(x � v; y) = �(�

g

g;V

(x; v); y):

This alulation implies that our speial de�nitions for type C

r

are ompatible with the general

requirements on the relation between �

V

g

and �

g

g;V

.

In view of Lemma II.2 and Theorem II.6, there exist ontinuous bilinear maps



A

�

:A�A! A; 

B

A

:A�A! B; 

A

A;B

:A�B ! A; 

B

A;B

:A�B ! B;



A

B

:B �B ! A; 

B

B

:B �B ! B; Æ

D

A

:A�A! D; Æ

D

B

:B � B ! D;

suh that the Lie braket on

g = (A
 g

�

)� (B 
 V

s

)�D
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satis�es

(B1) [a
x; a

0


x

0

℄ = 

A

+

(a; a

0

)
[x; x

0

℄+

A

�

(a; a

0

)
x�x

0

+

B

A

(a; a

0

)
�

V

g

(x; x

0

)+�(x; x

0

)Æ

D

A

(a; a

0

);

for a; a

0

2 A; x; x

0

2 g

�

,

(B2) [a
x; b
v℄ = 

A

A;B

(a; b)
�

g

g;V

(x; v)+

B

A;B

(a; b)
x:v; for a 2 A; b 2 B; x 2 g

�

; v 2 V

s

;

and for b; b

0

2 B and v; v

0

2 V

s

:

(B3) [b
 v; b

0


 v

0

℄ = 

A

B

(b; b

0

)
 �

g

V

(v; v

0

) + 

B

B

(b; b

0

)
 �

V

V

(v; v

0

) + �

V

s

(v; v

0

)Æ

D

B

(b; b

0

):

From the skew-symmetry of the Lie braket and the symmetry of � , it follows that 

A

+

is symmetri and 

A

�

is alternating. Further the symmetry of � and �

V

s

implies that Æ

D

A

and

Æ

D

B

are alternating. The skew-symmetry of �

g

V

implies that 

A

B

is symmetri and likewise the

symmetry of �

V

g

entails that 

B

A

is skew-symmetri.

If � is not of type A

r

; r � 2, then we put 

A

�

= 0. In all ases where the � -map vanishes,

we de�ne the orresponding  -map to be zero.

De�nition II.8. (The oordinate algebra A of g) (a) On A we de�ne an algebra struture

by

ab := 

A

+

(a; b) + 

A

�

(a; b);

and observe that



A

+

(a; b) =

ab+ ba

2

and 

A

�

(a; b) =

ab� ba

2

:

We de�ne a (not neessarily assoiative) algebra struture on A := A�B by de�ning the

produt on A�A by 

A

+

+ 

A

�

+ 

B

A

, on A�B by 

A

A;B

+ 

B

A;B

, on B�B by 

A

B

+ 

B

B

, and on

B �A by

ba := 

B

A;B

(a; b)� 

A

A;B

(a; b) = ab� 2

A

A;B

(a; b):

Then



A

A;B

(a; b) =

1

2

[a; b℄ =

1

2

(ab� ba) and 

B

A;B

(a; b) =

1

2

(ab+ ba):

(b) The spae D = z

g

(g

�

) is a Lie subalgebra of g whih ats by derivations on A preserving

both subspaes A and B . This easily follows from the fat that the ations of D and g

�

on g

ommute.

We ombine the two maps Æ

D

A

and Æ

D

B

to an alternating bilinear map

Æ

D

:A�A ! D; (a+ b; a

0

+ b

0

) 7! Æ

D

A

(a; a

0

) + Æ

D

B

(b; b

0

)

vanishing on A�B .

Example II.9. Below we briey explain how the relations (B1){(B3) simplify for the two

lasses of Lie algebras that we obtain if we distinguish Lie algebras of type A

r

or C

r

and all

others. In some sense the information is more expliit for A

r

and C

r

. We �rst disuss the other

ases.

(a) For � not of type A

r

, r � 2, we have 

A

�

= 0, and for � not of type C

r

, r � 2, we have



B

A

= 

A

A;B

= 0 (Theorem II.6.(2)). If these two onditions are satis�ed, then the produt on A

is given by

(a; b) � (a

0

; b

0

) = (

A

+

(a; a

0

) + 

A

B

(b; b

0

); 

B

A;B

(a; b

0

) + 

B

A;B

(a

0

; b) + 

B

B

(b; b

0

))

= (aa

0

+ 

A

B

(b; b

0

); ab

0

+ ba

0

+ 

B

B

(b; b

0

)):

In this ase the Lie braket in g an be written as

[a
 x; a

0


 x

0

℄ = aa

0


 [x; x

0

℄ + �(x; x

0

)Æ

D

A

(a; a

0

); a; a

0

2 A; x; x

0

2 g

�

;
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[a
 x; b
 v℄ = ab
 x:v; a 2 A; b 2 B; x 2 g

�

; v 2 V

s

;

and

[b
 v; b

0


 v

0

℄ = 

A

B

(b; b

0

)
 �

g

V

(v; v

0

) + 

B

B

(b; b

0

)
 �

V

V

(v; v

0

) + �

V

s

(v; v

0

)Æ

D

B

(b; b

0

):

(b) If � is of type A

r

, r � 1, then B = f0g and A = A .

For � of type C

r

, r � 2, we have �

V

V

(v; v

0

) = v � v

0

, whih is symmetri. Therefore 

B

B

is

skew-symmetri. In view of

bb

0

= 

A

B

(b; b

0

) + 

B

B

(b; b

0

);

this implies



A

B

(b; b

0

) =

bb

0

+ b

0

b

2

and 

B

B

(b; b

0

) =

1

2

[b; b

0

℄ :=

bb

0

� b

0

b

2

:

For r = 2 we have �

V

V

= 0 and therefore 

B

B

= 0 (Theorem II.6(4)). In this ase C

2

�

=

B

2

implies that V

s

an be viewed as the representation of so

3;2

(K ) on K

5

.

In ontrast to the formulas under (a), we have for � of type A

r

and C

r

the unifying

formulas

[a
 x; a

0


 x

0

℄ =

aa

0

+ a

0

a

2


 [x; x

0

℄ + 

A

�

(a; a

0

)

| {z }

=0 for C

r


x � x

0

+ 

B

A

(a; a

0

)

| {z }

=0 for A

r


x � x

0

+ �(x; x

0

)Æ

D

A

(a; a

0

);

=

aa

0

+ a

0

a

2


 [x; x

0

℄ +

1

2

[a; a

0

℄
 x � x

0

+ �(x; x

0

)Æ

D

A

(a; a

0

)

for a; a

0

2 A; x; x

0

2 g

�

, where we use that

[a; a

0

℄ = aa

0

� a

0

a = 2(

A

�

+ 

B

A

)(a; a

0

); a; a

0

2 A:

We further have for C

r

:

[a
 x; b
 v℄ =

1

2

[a; b℄
 x � v +

1

2

(ab+ ba)
 [x; v℄; a 2 A; b 2 B; x 2 g

�

; v 2 V

s

;

and

[b
 v; b

0


 v

0

℄ =

1

2

(bb

0

+ b

0

b)
 [v; v

0

℄ +

1

2

[b; b

0

℄
 v � v

0

+ �

V

s

(v; v

0

)Æ

D

B

(b; b

0

):

Remark II.10. (Involution on A) On the spae A = A � B we have a natural ontinuous

involution �(a; b) := (a;�b) with

A = A

�

:= fa 2 A: a

�

= ag and B = A

��

:= fa 2 A: a

�

= �ag:

The map � is an algebra involution, i.e., �(xx

0

) = �(x

0

)�(x) for x; x

0

2 A , if and only if

(I1) �(aa

0

) = a

0

a for a; a

0

2 A , i.e., 

A

�

= 0,

(I2) �(ab) = �ba for a 2 A , b 2 B , whih is always the ase beause [a; b℄ 2 B , and

(I3) �(bb

0

) = b

0

b for b; b

0

2 B , whih means that 

A

B

is symmetri and 

B

B

is skew-symmetri.

Condition (I1) is satis�ed for any � not of type A

r

, r � 2. For ondition (I3), we reall that



A

B

is symmetri beause �

g

V

is skew-symmetri (De�nition II.7). That 

B

B

is skew-symmetri

means that �

V

V

is symmetri, whih is the ase for � of type C

n

, where �

V

V

(v; v

0

) = v � v

0

. It

is also the ase for � of type F

4

, but not for type G

2

, where it is the Malev produt on the

pure otonions (f. [ABG00, p.521℄).

Remark II.11. (a) (The identity in A) The inlusion g

�

,! g is an element of Hom

g

�

(g

�

; g) =

A � A whih we all 1 . It satis�es

[1
 x; a
 y℄ = x:(a
 y) = a
 [x; y℄; and [1
 x; b
 v℄ = b
 x:v:

This means that

1a = a1 = a and Æ

D

(1; a) = 0 for all a 2 A:

In partiular, 1 is an identity element in A .

(b) The subspae A is a subalgebra of A if and only if 

B

A

= 0. If this map is non-zero, then

�

V

g

6= 0 and � is of type C

r

, r � 2 (Theorem II.6(2)). In all other ases A is a subalgebra of

A , and this subalgebra is ommutative if and only if 

A

�

vanishes, whih in turn is the ase if �

is not of type A

r

or C

r

; r � 2.
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Remark II.12. (a) Axiom (R4) for a loally onvex root graded Lie algebra is equivalent to

the ondition that the D -parts of the brakets [g

�

; g

��

℄ span a dense subspae of D . First

we observe that only brakets of the type (B1) and (B3) have a non-zero D -part. Using

the oordinate struture (B1){(B3) of g , we an therefore translate (R4) into the fat that

im(Æ

D

A

) + im(Æ

D

B

) = im(Æ

D

) spans a dense subspae of D .

(b) Reall from Remark II.5 that for eah root � we have x

�

� x

��

= 0, and therefore, for all

a; a

0

2 A , the simpli�ation

[a
 x

�

; a

0


 x

��

℄ = 

A

+

(a; a

0

)
 [x

�

; x

��

℄ + �(x

�

; x

��

)Æ

D

A

(a; a

0

):

Hene

[a
 x

�

; a

0


 x

��

℄� [a

0


 x

�

; a
 x

��

℄ = 2�(x

�

; x

��

)Æ

D

A

(a; a

0

):

Theorem II.13. The alternating map Æ

D

:A�A ! D satis�es the oyle ondition

(2:2) Æ

D

(aa

0

; a

00

) + Æ

D

(a

0

a

00

; a) + Æ

D

(a

00

a; a

0

) = 0; a; a

0

; a

00

2 A;

and

(2:3) Æ

D

(d:a; a

0

) + Æ

D

(a; d:a

0

) = [d; Æ

D

(a; a

0

)℄ d 2 D; a; a

0

2 A:

Proof. The plan of the proof is as follows. We will use the fat that (B1){(B3) satisfy the

Jaobi identity to obtain four relations for Æ

D

, whih then will lead to the required oyle

ondition for Æ

D

, where 0; 1; 2; 3 elements among a; a

0

; a

00

are ontained in A , and the others

in B .

Step 1: For a; a

0

; a

00

2 A and x; x

0

; x

00

2 g

�

, we use (B1) to see that the D -omponent of

[[a
 x; a

0


 x

0

℄; a

00


 x

00

℄

is

(2:4) �([x; x

0

℄; x

00

)Æ

D

A

(

A

+

(a; a

0

); a

00

) + �(x � x

0

; x

00

)Æ

D

A

(

A

�

(a; a

0

); a

00

):

From the invariane and the symmetry of � , we derive

�([x; x

0

℄; x

00

) = �(x; [x

0

; x

00

℄) = �([x

0

; x

00

℄; x);

i.e., the yli invariane of �([x; x

0

℄; x

00

). If � is not of type A

r

, r � 2, then x � x

0

= 0, and

the seond summand in (2.4) vanishes. But for � of type A

r

we have �(x; x

0

) = 2(r+1) tr(xx

0

)

and therefore

�(x � x

0

; x

00

) = 2(r + 1) tr

�

�

xx

0

+ x

0

x�

2 tr(xx

0

)

r + 1

1

�

� x

00

�

= 2(r + 1)

�

tr(xx

0

x

00

) + tr(x

0

xx

00

)

�

:

Hene we get in all ases the yli invariane of �(x�x

0

; x

00

). Therefore the Jaobi identity in g ,

applied to the D -omponents of the form (2.4), leads to

0 =

X

yl:

�([x; x

0

℄; x

00

)Æ

D

A

(

A

+

(a; a

0

); a

00

) + �(x � x

0

; x

00

)Æ

D

A

(

A

�

(a; a

0

); a

00

)

= �([x; x

0

℄; x

00

)

X

yl:

Æ

D

A

(

A

+

(a; a

0

); a

00

) + �(x � x

0

; x

00

)

X

yl:

Æ

D

A

(

A

�

(a; a

0

); a

00

):

For x 2 g

�

and x

0

2 g

��

with [x; x

0

℄ = �� we have x � x

0

= 0 (Remark II.5), and we thus obtain

X

yl:

Æ

D

A

(

A

+

(a; a

0

); a

00

) = 0:
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Choosing x; x

0

; x

00

suh that �(x�x

0

; x

00

) 6= 0, we also obtain

P

yl:

Æ

D

A

(

A

�

(a; a

0

); a

00

) = 0: Adding

these two identities leads to

X

yl:

Æ

D

A

(aa

0

; a

00

) = 0:

Step 2: For a; a

0

2 A , b 2 B , and x; x

0

2 g

�

, v 2 V

s

, we get for the D -omponent of

0 = [[a
 x; a

0


 x

0

℄; b
 v℄ + [[a

0


 x

0

; b
 v℄; a
 x℄ + [[b
 v; a
 x℄; a

0


 x

0

℄

the relation

0 = �

V

s

(�

V

g

(x; x

0

); v)Æ

D

B

(

B

A

(a; a

0

); b) + �(�

g

g;V

(x

0

; v); x)Æ

D

A

(

A

A;B

(a

0

; b); a)

� �(�

g

g;V

(x; v); x

0

)Æ

D

A

(

A

A;B

(a; b); a

0

)

= �(�

g

g;V

(x; v); x

0

)

�

Æ

D

B

(

B

A

(a; a

0

); b) + Æ

D

A

(

A

A;B

(a

0

; b); a)� Æ

D

A

(

A

A;B

(a; b); a

0

)

�

= �(�

g

g;V

(x; v); x

0

)

�

Æ(aa

0

; b) + Æ(a

0

b; a) + Æ(ba; a

0

)

�

beause Æ

D

vanishes on A�B , the A-omponent 

A

A;B

(a; b) of ab is skew-symmetri in a and

b , and

�(�

g

g;V

(x; v); x

0

) = �

V

s

(�

V

g

(x; x

0

); v)

is symmetri in x and x

0

(De�nition II.7). We onlude that

Æ

D

(aa

0

; b) + Æ

D

(a

0

b; a) + Æ

D

(ba; a

0

) = 0:

Step 3: For a 2 A , b; b

0

2 B , and x 2 g

�

, v; v

0

2 V

s

, we get from the D -omponents of

0 = [[b
 v; b

0


 v

0

℄; a
 x℄ + [[b

0


 v

0

; a
 x℄; b
 v℄ + [[a
 x; b
 v℄; b

0


 v

0

℄

the relation

0 = �(�

g

V

(v; v

0

); x)Æ

D

A

(

A

B

(b; b

0

); a)� �

V

s

(x:v

0

; v)Æ

D

B

(

B

A;B

(a; b

0

); b)

+ �

V

s

(x:v; v

0

)Æ

D

B

(

B

A;B

(a; b); b

0

)

= �

V

s

(x:v; v

0

)

�

Æ

D

A

(

A

B

(b; b

0

); a) + Æ

D

B

(

B

A;B

(a; b

0

); b) + Æ

D

B

(

B

A;B

(a; b); b

0

)

�

= �

V

s

(x:v; v

0

)

�

Æ

D

(bb

0

; a) + Æ

D

(b

0

a; b) + Æ

D

(ab; b

0

)

�

beause Æ

D

vanishes on A � B and the B -omponent 

B

A;B

(a; b) of ab is symmetri in a and

b . We onlude that

0 = Æ

D

(bb

0

; a) + Æ

D

(b

0

a; b) + Æ

D

(ab; b

0

):

Step 4: For b; b

0

; b

00

2 A and v; v

0

; v

00

2 V

s

, the D -omponent of [[b
v; b

0


v

0

℄; b

00


v

00

℄ is

�

V

s

(�

V

V

(v; v

0

); v

00

)Æ

D

B

(

B

B

(b; b

0

); b

00

):

We laim that F (v; v

0

; v

00

) := �

V

s

(�

V

V

(v; v

0

); v

00

) satis�es

F (v; v

0

; v

00

) = F (v

0

; v

00

; v) for v; v

0

; v

00

2 V

s

:

Fix v

0

; v

00

2 V

s

. Then the map

V

s

! K ; v 7! �

V

s

(�

V

V

(v; v

0

); v

00

) = F (v; v

0

; v

00

)

an be written as

V

s

! K ; v 7! �

V

s

(T (v

0

; v

00

); v)

for a unique element T (v

0

; v

00

) 2 V

s

. From the g

�

-equivariane properties and the uniqueness,

we derive that T :V

s

� V

s

! V

s

is g

�

-equivariant, hene of the form ��

V

V

for some � 2 K
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(Theorem II.6). As F is symmetri in the �rst two arguments, F is an eigenvetor for the ation

of S

3

on Lin(V � V � V;K ). Then F is �xed by the ommutator subgroup of S

3

, hene �xed

under yli rotations, and this implies � = 1.

Therefore the Jaobi identity in g , applied to the D -omponents above, leads to

0 =

X

yl:

Æ

D

B

(

B

B

(b; b

0

); b

00

) =

X

yl:

Æ

D

(bb

0

; b

00

):

Combining all four ase, we see that Æ

D

satis�es the oyle identity (2.2) beause the

funtion

G:A

3

! D; (a; b; ) 7! Æ

D

(ab; ) + Æ

D

(b; a) + Æ

D

(a; b)

is ylially invariant and trilinear, so that it suÆes to verify it in the four ases we dealt with

above.

To verify the relation (2.3), we �rst use (B1) and (B3) to see that a omparison of the

D -omponents of the brakets

[d; [a
 x; a

0


 x

0

℄℄ = [d:a
 x; a

0


 x

0

℄ + [a
 x; d:a

0


 x

0

℄; a; a

0

2 A; x; x

0

2 g

�

and

[d; [b
 v; b

0


 v

0

℄℄ = [d:b
 v; b

0


 v

0

℄ + [b
 v; d:b

0


 v

0

℄; b; b

0

2 B; v; v

0

2 V

s

leads to (2.3).

De�nition II.14. Let g be a �-graded Lie algebra. From the isotypi deomposition of g

with respet to g

�

, we then obtain three items whih, in view of (B1){(B3), ompletely enode

the struture of g :

(1) the oordinate algebra A = A�B ,

(2) the Lie algebra D and its representation by derivations on A preserving the subspaes A

and B , and

(3) the oyle Æ

D

:A�A ! D (Theorem II.13).

All other data that enter the desription of the braket in g only depends on the Lie algebra

g

�

and the module V

s

(Theorem II.6). We therefore all the triple (A; D; Æ

D

) the oordinate

struture of the �-graded Lie algebra g .

Theorem II.15. Let g be a root graded Lie algebra with oordinate struture (A; D; Æ

D

) .

Further let

b

D be a loally onvex Lie algebra ating by derivations preserving A and B on A ,

and

Æ

b

D

:A�A !

b

D

a ontinuous bilinear map suh that

(1) Æ

b

D

(aa

0

; a

00

) + Æ

b

D

(a

0

a

00

; a) + Æ

b

D

(a

00

a; a

0

) = 0 for a; a

0

; a

00

2 A ,

(2) the map

b

D �A ! A; (d; a) 7! d:a is ontinuous,

(3) d:Æ

b

D

(a; a

0

) = Æ

b

D

(d:a; a

0

) + Æ

b

D

(a; d:a

0

) for a; a

0

2 A , d 2

b

D , and

(4) Æ

b

D

(a; a

0

):a

00

= Æ

D

(a; a

0

):a

00

for a; a

0

; a

00

2 A , and

(5) Æ

b

D

(A�B) = f0g .

Then we obtain on

b

g := (A
 g

�

)� (B 
 V

s

)�

b

D

a Lie braket by

[d; a
 x+ b
 v + d

0

℄ = d:a
 x+ d:b
 v + [d; d

0

℄;

and

[a
 x; a

0


 x

0

℄ = 

A

+

(a; a

0

)
 [x; x

0

℄ + 

A

�

(a; a

0

)
 x � x

0

+ 

B

A

(a; a

0

)
 �

V

g

(x; x

0

) + �(x; x

0

)Æ

b

D

(a; a

0

);
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[a
 x; b
 v℄ =

ab� ba

2


 �

g

g;V

(x; v) +

ab+ ba

2


 x:v;

[b
 v; b

0


 v

0

℄ = 

A

B

(b; b

0

)
 �

g

V

(v; v

0

) + 

B

B

(b; b

0

)
 �

V

V

(v; v

0

) + �

V

s

(v; v

0

)Æ

b

D

(b; b

0

):

If im(Æ

b

D

) is dense in

b

D , then

b

g is a �-graded Lie algebra with oordinate struture (A;

b

D; Æ

b

D

) .

Proof. From the de�nition and ondition (3) it diretly follows that the operators ad d , d 2

b

D ,

are derivations for the braket. Therefore it remains to verify the Jaobi identity for triples of

elements in A
g

�

or B
V

s

. In view of (4) and the fat that the Jaobi identity is satis�ed in g ,

it suÆes to onsider the

b

D -omponents of triple brakets. Reading the proof of Theorem II.13

bakwards, it is easy to see that (1) and (4), applied to the four ases orresponding to how many

among the a; a

0

; a

00

are ontained in A , resp., B , leads to the Jaobi identity for triple brakets

of elements in A
 g

�

, resp., B 
 V

s

.

For this argument one has to observe that in the ase a; a

0

; a

00

2 A the relation (1) for all

a; a

0

; a

00

also implies

X

yl:

Æ

b

D

(

A

+

(a; a

0

); a

00

) + Æ

b

D

(

A

+

(a

0

; a

00

); a) + Æ

b

D

(

A

+

(a

00

; a); a

0

)

= Æ

b

D

(aa

0

; a

00

) + Æ

b

D

(a

0

a

00

; a) + Æ

b

D

(a

00

a; a

0

) + Æ

b

D

(a

0

a; a

00

) + Æ

b

D

(aa

00

; a

0

) + Æ

b

D

(a

00

a

0

; a) = 0

and

Æ

b

D

(

A

�

(a; a

0

); a

00

) + Æ

b

D

(

A

�

(a

0

; a

00

); a) + Æ

b

D

(

A

�

(a

00

; a); a

0

)

= Æ

b

D

(aa

0

; a

00

) + Æ

b

D

(a

0

a

00

; a) + Æ

b

D

(a

00

a; a

0

)� Æ

b

D

(a

0

a; a

00

)� Æ

b

D

(aa

00

; a

0

)� Æ

b

D

(a

00

a

0

; a) = 0:

Examples II.16. We now take a seond look at the examples in Setion I.

(a) For the algebras of the type g = A 
 g

�

(Example I.4), it is lear that A = A is the

orresponding oordinate algebra, and B = D = f0g .

(b) For g = sl

n

(A) (Example I.5), formula (1.1) for the braket shows that A = A is the

oordinate algebra of g , D = [A;A℄
 1

�

=

[A;A℄ , and

Æ

D

(a; b) =

1

2n

2

[a; b℄

beause �(x; y) = 2n tr(xy) for x; y 2 sl

n

(K ) .

() For g = sp

2n

(A; �) (Example I.7), whih is of type C

n

, we see with the formula in Exam-

ple II.9(b) that A = A

�

, B = A

��

, D = [A;A℄

��


1

�

=

[A;A℄

��

, and that A is the oordinate

algebra. In this ase we have 

B

A

= 0 beause A = A

�

is a subalgebra of A .

From �(x; y) = � tr(xy), �

V

s

(x; y) = � tr(xy) (� = 2(n+ 1)), and

�(x; x

0

)Æ

D

A

(a; a

0

) = [a; a

0

℄


tr(xx

0

)

2n

1 and �

V

s

(v; v

0

)Æ

D

B

(b; b

0

) = [b; b

0

℄


tr(vv

0

)

2n

1;

we get

Æ

D

(�; �) =

1

2�n

1

2

([�; �℄� [�; �℄

�

)
 1 =

1

4�n

([�; �℄ + [�

�

; �

�

℄)
 1;

beause

[a+ b; a

0

+ b

0

℄ = [a; a

0

℄ + [b; b

0

℄

| {z }

2A

��

+ [a; b

0

℄ + [b; a

0

℄

| {z }

2A

�

; a 2 A

�

; b 2 A

��

:

(d) For g = TKK(J) for a Jordan algebra J (Example I.9), we also see diretly from the

de�nition that J is the oordinate algebra of g and D = hJ; Ji . We have �(x; y) = 4 tr(xy) for

x; y 2 sl

2

(K ), and therefore

Æ

D

(a; b) = Æ

J

(a; b) =

1

4

ha; bi:

The following proposition deals with the speial ase where B is trivial and the root

system is not of type A

r

. In this ase it ontains omplete information on the possibilities of

the oordinate algebra. For the root systems � of type D

r

, r � 4, and E

r

, it provides a full

desription of all �-graded Lie algebras (f. [BM92℄ for the algebrai version of this result).
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Proposition II.17. (a) If B = f0g and � is not of type A

r

, r � 1 , then the braket of g is

of the form

[a
 x; a

0


 x

0

℄ = ab
 [x; x

0

℄ + �(x; x

0

)Æ

D

(a; a

0

);

where A is a ommutative assoiative unital algebra and D is entral in g , i.e., D ats trivially

on A .

(b) If, onversely,

b

D is a loally onvex spae, A a loally onvex unital ommutative assoiative

algebra and the ontinuous alternating bilinear map Æ

b

D

:A�A!

b

D satis�es

Æ

b

D

(aa

0

; a

00

) + Æ

b

D

(a

0

a

00

; a) + Æ

b

D

(a

00

a; a

0

) = 0; a; a

0

; a

00

2 A;

then

b

g := (A
 g

�

)�

b

D

is a Lie algebra with respet to the braket

[a
 x+ d; a

0


 x

0

+ d

0

℄ = aa

0


 [x; x

0

℄ + �(x; x

0

)Æ

b

D

(a; a

0

):

Proof. (a) Our assumption that � is not of type A

1

means that dim h � 2, so that there

exist roots � and � with � 6= �� . Moreover, the exlusion of A

r

, r � 2, implies 

A

�

= 0, so

that by onsideration of the A
 g

�

-omponent of the yli sum

P

yl:

[[a
x; a

0


x

0

℄; a

00


x

00

℄ ,

the Jaobi identity in g implies

(2:6)

X

yl:

(aa

0

)a

00


 [[x; x

0

℄; x

00

℄ + Æ

D

(a; a

0

):a

00


 �(x; x

0

)x

00

= 0

for a; a

0

; a

00

2 A and x; x

0

; x

00

2 g

�

.

Let x 2 g

�

, x

0

2 g

�

, and x

00

2 h . Then �(x; x

0

) = �(x

0

; x

00

) = �(x

00

; x) = 0, and therefore

(aa

0

)a

00


 [[x; x

0

℄; x

00

℄ + (a

0

a

00

)a
 [[x

0

; x

00

℄; x℄ + (a

00

a)a

0


 [[x

00

; x℄; x

0

℄

= �(�+ �)(x

00

)(aa

0

)a

00


 [x; x

0

℄� �(x

00

)(a

0

a

00

)a
 [x

0

; x℄ + �(x

00

)(a

00

a)a

0


 [x; x

0

℄

=

�

� (�+ �)(x

00

)(aa

0

)a

00

+ �(x

00

)(a

0

a

00

)a+ �(x

00

)(a

00

a)a

0

�


 [x; x

0

℄:

For �(x

00

) = 0 and �(x

00

) = 1, we now get

(aa

0

)a

00

= (a

0

a

00

)a = a(a

0

a

00

):

Therefore the ommutative algebra A is assoiative.

It remains to see that D is entral. We onsider the identity (2.6) with x 2 g

�

, x

0

2 g

��

and x

00

= �� . Then �(x; x

0

) 6= 0 = �(x; x

00

) = �(x

0

; x

00

). Further

X

yl:

(aa

0

)a

00


 [[x; x

0

℄; x

00

℄ = (aa

0

)a

00




X

yl:

[[x; x

0

℄; x

00

℄ = 0

follows from the fat that A is ommutative and assoiative, and the Jaobi identity in g

�

.

Hene (2.6) leads to Æ

D

(a; a

0

):a

00

= 0. This means that Æ

D

(A;A) is entral in g , and sine this

set spans a dense subspae of D (Remark II.12(a)), the subalgebra D of g is entral.

(b) For the onverse, we �rst observe that the map

!: (A
 g

�

)� (A
 g

�

)!

b

D; !(a
 x; a

0


 x

0

)! �(x; x

0

)Æ

b

D

(a; a

0

)

is a Lie algebra oyle beause

X

yl:

!([a
 x; a

0


 x

0

℄; a

00


 x

00

) =

X

yl:

�([x; x

0

℄; x

00

)Æ

b

D

(aa

0

; a

00

) = �([x; x

0

℄; x

00

)

X

yl:

Æ

b

D

(aa

0

; a

00

) = 0:

From this the Jaobi identity of

b

g follows easily, and the map

b

g! A
g

�

with kernel

b

D de�nes

a entral extension of the Lie algebra A
 g

�

by

b

D (f. Example I.4).
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De�nition II.18. (The Weyl group of g) Let � 2 � and x

��

2 g

��

with [x

�

; x

��

℄ = �� .

We onsider the automorphism

�

�

:= e

adx

�

e

� adx

��

e

adx

�

2 Aut(g)

whih is de�ned beause the operators adx

��

are nilpotent. If h 2 ker� � h , then h ommutes

with x

��

, so that �

�

:h = h . We laim that �

�

:�� = ��� .

In SL

2

(K ) we have

S :=

�

1 1

0 1

��

1 0

�1 1

��

1 1

0 1

�

=

�

0 1

�1 0

�

:

As �

�

j

g

�

orresponds to onjugation with S in sl

2

(K ) , we obtain

�

�

:�� = ���; �

�

:x

�

= �x

��

and �

�

:x

��

= �x

�

:

We onlude that �

�

j

h

oinides with the reetion in the hyperplane ��

?

:

�

�

(h) = h� �(h)�� for h 2 h

(f. [MP95, Props. 4.1.3, 6.1.8℄). The orresponding reetion on h

�

is given by

r

�

: h

�

! h

�

; � 7! � � �(��)�:

This leads to

�

�

(g

�

) = g

r

�

:�

; � 2 � [ f0g:

We all

W := hr

�

:� 2 �i � GL(h)

the Weyl group of g .

From the preeding alulation we obtain in partiular that �

�

2 Aut(g; h) := N

Aut(g)

(h) :=

f' 2 Aut(g):'(h) = hg . This group ontains the subgroup

Z

Aut(g)

(h) = f' 2 Aut(g):' j

h

= id

h

g

�

=

Hom(Z[�℄;K

�

)

�

=

(K

�

)

r

:

We therefore have a group extension

(K

�

)

r

,!



W !!W ;

where



W � Aut(g; h) is the inverse image of W under the restrition homomorphism to h . This

extension does not split for �(

�

�) 6� 2Z beause in this ase there exists a root � with 1 2 �(��),

whih implies that �

�

is of order 4.

Example II.19. (f. [Ti62℄) We take a loser look at the ase � = A

1

= f��g . We write

g

�

= spanf��; x

�

; x

��

g

with

x

�

2 g

�

; x

��

2 g

��

; �� = [x

�

; x

��

℄:

Then formula (B1) for the produt on A leads to

[a
 x

�

; [1
 x

��

; b
 x

�

℄℄ = [a
 x

�

;�b
 h℄ = ab
 [h; x

�

℄ = 2ab
 x

�

;

and hene to

ab
 x

�

=

1

2

[a
 x

�

; [1
 x

��

; b
 x

�

℄℄ =

1

2

[a
 x

�

; [x

��

; b
 x

�

℄℄:
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Identifying A via the map a 7! a
 x

�

with g

�

, the produt on A is given by

ab :=

1

2

[a; [x

��

; b℄℄:

We reall from De�nition II.18 the automorphism �

�

of g . From the g

�

-module deompo-

sition of g it follows diretly that �

2

�

= id

g

beause the restrition of �

�

to g

�

is an involution.

Moreover, �

�

(x

�

) = �x

��

. To see that the produt on g

�

de�nes a Jordan algebra struture

on A , we �rst observe that Theorem C.3 implies that

fx; y; zg :=

1

2

[[x; �

�

:y℄; z℄

de�nes a Jordan triple struture, and hene that ab = fa;�x

�

; bg de�nes a Jordan algebra

struture by Theorem C.4(b).

The quadrati operators of the Jordan triple struture are given by

P (x):y = fx; y; xg = �

1

2

(adx)

2

Æ �

�

:y:

We laim that

P (�x

�

) = �

1

2

(adx

�

)

2

Æ �

�

= � id

g

�

:

Sine the ation of adx

�

and �

�

is given by the g

�

-module struture of g = (A
 g

�

)�D , the

laim follows from

�

1

2

(adx

�

)

2

Æ �

�

:x

�

=

1

2

(adx

�

)

2

:x

��

=

1

2

[x

�

; ��℄ = �x

�

:

We now onlude from Theorem C.4(b) that the Jordan triple struture assoiated to the Jordan

algebra struture is given by �f�; �; �g .

This permits us to determine Æ

A

. First we reall that

[a
 x

�

; a

0


 x

��

℄ = aa

0


 ��+ Æ

D

(a; a

0

)�(x

�

; x

��

) = aa

0


 ��+ 4Æ

D

(a; a

0

);

whih leads to

2(aa

0

)a

00


 x

�

+ 4Æ

A

(a; a

0

):a

00


 x

�

=

�

[a
 x

�

; a

0


 x

��

℄; a

00


 x

�

�

= �

�

[a
 x

�

; �

�

(a

0


 x

��

)℄; a

00


 x

�

�

= �2fa; a

0

; a

00

g 
 x

�

= 2((aa

0

)a

00

+ a(a

0

a

00

)� a

0

(aa

00

))
 x

�

:

From that we immediately get

Æ

A

(a; a

0

) =

1

2

[L

a

; L

a

0

℄:

The following theorem ontains some re�ned information on the type of the oordinate

algebras. We de�ne

Æ

A

(�; �): := Æ

D

(�; �):; �; �;  2 A:

Theorem II.20. (Coordinatization Theorem) The oordinate algebra A of a �-graded Lie

algebra g is:

(1) a Jordan algebra for � of type A

1

, and

Æ

A

(�; �) =

1

2

[L

�

; L

�

℄:

(2) an alternative algebra for � of type A

2

, and

Æ

A

(�; �) =

1

3

(L

[�;�℄

�R

[�;�℄

� 3[L

�

; R

�

℄):
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(3) an assoiative algebra for � of type A

r

, r � 3 , and

Æ

A

(�; �) =

1

r + 1

ad[�; �℄:

(4) an assoiative ommutative algebra for � of type D

r

, r � 4 , and E

6

; E

7

and E

8

, and

Æ

A

(�; �) = 0 .

(5) an assoiative algebra (A; �) with involution for � of type C

r

, r � 4 , and

Æ

A

(�; �) =

1

4r

(ad[�; �℄ + ad[�

�

; �

�

℄):

(6) a Jordan algebra assoiated to a symmetri bilinear form �:B �B ! A for � of type B

r

,

r � 3 , and Æ

A

(�; �) = �[L

�

; L

�

℄ .

Proof. (1) follows from the disussion in Example II.19 (see also [Ti62℄ and [BZ96℄).

(2){(4) [BM92℄; see also Appendix B for some information on alternative algebras and Proposi-

tion II.17 for a proof of (4).

(5), (6) [BZ96℄ (f. Lemma B.7 for Jordan algebras assoiated to symmetri bilinear forms).

The salar fators in the formulas for Æ

A

are due to the normalization of the invariant

bilinear forms � and �

V

s

.

For the details on the oordinate algebras for � of type C

3

(an alternative algebra with

involution ontaining A in the assoiative enter (the nuleus), i.e., left, resp., right multiplia-

tions with elements of A ommute with all other right, resp., left multipliations), C

2

(a Peire

half spae of a unital Jordan algebra ontaining a triangle), F

4

(an alternative algebra over A

with normalized trae mapping satisfying the Cayley{Hamilton identity h

2

) and G

2

(a Jordan

algebra over A with a normalized trae mapping satisfying the Cayley-Hamilton identity h

3

),

we refer to [ABG00℄, [BZ96℄ and [Neh96℄. For all these types of oordinate algebras one has

natural derivations Æ

A

(�; �) given by expliit formulas.

III. Universal overing Lie algebras and isogeny lasses

In this setion we disuss the onept of a generalized entral extension of a loally onvex Lie

algebra. It generalizes entral extensions

b

g! g , i.e., quotient maps with entral kernel. Its main

advantage is that it permits us to onstrut for a topologially perfet loally onvex Lie algebra g

a universal generalized entral extension q

g

:

e

g! g . This is remarkable beause universal entral

extensions do not always exist, not even for topologially perfet Banah{Lie algebras.

De�nition III.1. Let g and

b

g be loally onvex Lie algebras. A ontinuous Lie algebra

homomorphism q:

b

g! g with dense range is alled a generalized entral extension if there exists

a ontinuous bilinear map b: g� g!

b

g with

(3:1) b(q(x); q(y)) = [x; y℄ for x; y 2 g:

We observe that, sine q has dense range, the map b is uniquely determined by (3.1).

Remark III.2. If q:

b

g ! g is a quotient homomorphism of loally onvex Lie algebras with

entral kernel, i.e., a entral extension, then q � q:

b

g �

b

g ! g � g also is a quotient map.

Therefore the Lie braket of

b

g fators through a ontinuous bilinear map b: g � g !

b

g with

b(q(x); q(y)) = [x; y℄ for x; y 2

b

g , showing that q is a generalized entral extension of g .
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De�nition III.3. (a) Let z be a loally onvex spae and g a loally onvex Lie algebra.

A ontinuous z-valued Lie algebra 2-oyle is a ontinuous skew-symmetri bilinear funtion

!: g� g! z satisfying

!([x; y℄; z) + !([y; z℄; x) + !([z; x℄; y) = 0; x; y; z 2 g:

It is alled a oboundary if there exists a ontinuous linear map � 2 Lin(g; z) with !(x; y) =

�([x; y℄) for all x; y 2 g . We write Z

2

(g; z) for the spae of ontinuous z-valued 2-oyles

and B

2

(g; z) for the subspae of oboundaries. We de�ne the seond ontinuous Lie algebra

ohomology spae as

H

2

(g; z) := Z

2

(g; z)=B

2

(g; z):

(b) If ! is a ontinuous z-valued 2-oyle on g , then we write g �

!

z for the loally onvex

Lie algebra whose underlying loally onvex spae is the topologial produt g � z , and whose

braket is de�ned by

[(x; z); (x

0

; z

0

)℄ =

�

[x; x

0

℄; !(x; x

0

)

�

:

Then q: g�

!

z! g; (x; z) 7! x is a entral extension and �: g! g�

!

z; x 7! (x; 0) is a ontinuous

linear setion of q .

Lemma III.4. For a generalized entral extension q:

b

g ! g with the orresponding map b the

following assertions hold:

(1) [x; y℄ = q(b(x; y)) for all x; y 2 g .

(2) [g; g℄ � im(q) .

(3) b 2 Z

2

(g;

b

g) , i.e., b([x; y℄; z) + b([y; z℄; x) + b([z; x℄; y) = 0 for x; y; z 2 g .

(4) For x 2 g we de�ne



ad(x):

b

g !

b

g; y 7! b(x; q(y)):

Then



ad de�nes a ontinuous representation of g on

b

g by derivations for whih q is

equivariant with respet to the adjoint representation of g on g .

(5) If

b

g is topologially perfet, then q

�1

(z(g)) = z(

b

g) .

Proof. (1) If x = q(a) and y = q(b) holds for a; b 2

b

g , then

[x; y℄ = [q(a); q(b)℄ = q([a; b℄) = q(b(x; y)):

Therefore the Lie braket on g oinides on the dense subset im(q) � im(q) of g � g with the

ontinuous map q Æ b , so that (1) follows from the ontinuity of both maps.

(2) follows from (1).

(3) In view of (3.1), the Jaobi identity in

b

g leads to

0 = [[x; y℄; z℄ + [[y; z℄; x℄ + [[z; x℄; y℄

= b(q([x; y℄); q(z)) + b(q([y; z℄); q(x)) + b(q([z; x℄); q(y))

= b([q(x); q(y)℄; q(z)) + b([q(y); q(z)℄; q(x)) + b([q(z); q(x)℄; q(y)):

Therefore the restrition of b to im(q) is a Lie algebra oyle, and sine im(q) is dense and b

is ontinuous, it is a Lie algebra oyle on g .

(4) First we observe that the bilinear map g�

b

g!

b

g; (x; y) 7! b(x; q(y)) is ontinuous. Moreover,

(1) implies

q(



ad(x):y) = q(b(x; q(y))) = [x; q(y)℄;

i.e., q Æ



ad(x) = adx Æ q .

From the oyle identity

b([x; y℄; z) + b([y; z℄; x) + b([z; x℄; y) = 0; x; y; z 2 g;
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we derive in partiular for x 2 g and y; z 2

b

g :

0 = b([x; q(y)℄; q(z)) + b([q(y); q(z)℄; x) + b([q(z); x℄; q(y))

= b(q(



ad(x)y); q(z)) + b(q([y; z℄); x)� b(q(



ad(x):z); q(y))

= [



ad(x)y; z℄�



ad(x)[y; z℄� [



ad(x)z; y℄:

Therefore eah



ad(x) is a derivation of

b

g . On the other hand, the oyle identity for b leads

for x; y 2 g and z 2

b

g to

0 = b([x; y℄; q(z)) + b([y; q(z)℄; x) + b([q(z); x℄; y)

=



ad([x; y℄)z + b(q(



ad(y)z); x)� b(q(



ad(x)z); y) =



ad([x; y℄)z �



ad(x)



ad(y)z +



ad(y)



ad(x)z;

so that



ad: g! der(

b

g) is a representation of g by derivations of

b

g , and the map q is equivariant

with respet to the adjoint representation of g on g .

(5) Let

b

z(g) := q

�1

(z(g)). We �rst observe that [

b

z(g);

b

g℄ is ontained in ker q � z(

b

g) beause

q([

b

z(g);

b

g℄) � [z(g); g℄ = f0g:

This leads to

[

b

z(g); [

b

g;

b

g℄℄ � [

b

g; [

b

z(g);

b

g℄℄ � [

b

g; ker q℄ = f0g:

If

b

g is topologially perfet, we obtain

b

z(g) � z(

b

g). The other inlusion follows from the density

of the image of q .

The following proposition shows that generalized entral extensions an be haraterized

as ertain losed subalgebras of entral extensions de�ned by oyles.

Proposition III.5. (a) If q:

b

g ! g is a generalized entral extension and b: g � g !

b

g the

orresponding oyle, then the map

 :

b

g! g�

b

b

g; x 7! (q(x); x)

is a is a topologial embedding of

b

g onto a losed Lie subalgebra of g�

b

b

g .

(b) If ! 2 Z

2

(g; z) is a ontinuous 2-oyle, p: g �

!

z ! g the projetion onto g of the

orresponding entral extension, and

b

g � g �

!

z is a losed subalgebra for whih p(

b

g) is dense

in g , then q := p j

bg

:

b

g ! g is a generalized entral extension with b(x; y) = ([x; y℄; !(x; y)) for

x; y 2 g .

Proof. (a) We reall from De�nition III.3 that the braket in g�

b

b

g is given by

[(x; y); (x

0

; y

0

)℄ = ([x; x

0

℄; b(x; x

0

)):

Now

[ (x);  (x

0

)℄ = [(q(x); x); (q(x

0

); x

0

)℄ = ([q(x); q(x

0

)℄; b(q(x); q(x

0

)))

= (q([x; x

0

℄); [x; x

0

℄) =  ([x; x

0

℄)

implies that the ontinuous linear map  is a morphism of Lie algebras. As the graph of

ontinuous linear map q , the image of  is a losed subspae of g�

b

b

g , and the projetion onto

the seond fator is a ontinuous linear map. Therefore  is a topologial embedding onto a

losed subalgebra.

(b) The range of q is dense by the assumption that p(

b

g) is dense in g . It is also lear that

b Æ (p� p) is the braket on g�

!

z , but it remains to show that im(b) �

b

g .

For x = q(x

0

); y = q(y

0

) in im(q) = p(

b

g) we have

b(x; y) = b(q(x

0

); q(y

0

)) = [x

0

; y

0

℄ = ([x; y℄; !(x; y)) 2

b

g:

Now the ontinuity of b , the density of im(q) in g , and the losedness of

b

g imply that im(b) �

b

g .
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Full yli homology of loally onvex algebras

In this subsetion we de�ne yli 1-oyles for loally onvex algebras A whih are not

neessarily assoiative. This inludes in partiular Lie algebras, where yli 1-oyles are Lie

algebra 2-oyles. It also overs the more general oordinate algebras of root graded loally

onvex Lie algebras (see Setion IV). In partiular we assoiate to A a loally onvex spae hA;Ai

in suh a way that ontinuous yli 1-oyles are in one-to-one orrespondene to linear maps

on hA;Ai . Moreover, we will disuss a method to obtain Lie algebra strutures on hA;Ai , whih

will be ruial in Setion IV for the onstrution of the universal overing algebra of a root graded

Lie algebra.

De�nition III.6. (a) Let A be a loally onvex algebra (not neessarily assoiative or with

unit). We endow the tensor produt A 
 A with the projetive tensor produt topology and

denote this spae by A


�

A . Let

I := spanfa
 a; ab
 + b
 a+ a
 b : a; b;  2 Ag � A


�

A:

We de�ne

hA;Ai := (A


�

A)=I;

endowed with the quotient topology, whih turns it into a loally onvex spae. We write ha; bi

for the image of a
 b in the quotient spae hA;Ai .

(b) Our de�nition of hA;Ai in (a) is the one orresponding to the ategory of loally onvex

spaes, resp., algebras. In the ategory of omplete loally onvex spaes we write hA;Ai for the

ompletion of the quotient spae (A


�

A)=I; and in the ategory of sequentially omplete spaes

for the smallest sequentially losed subspae of the ompletion, i.e., its sequential ompletion.

In the ategory of Fr�ehet spaes, the ompleted version of hA;Ai an be obtained more

diretly by �rst replaing A


�

A by its ompletion A

b




�

A . If I denotes the losure of I in the

ompletion A

b




�

A , then the quotient spae A

b




�

A=I is automatially omplete, hene a Fr�ehet

spae.

() For a loally onvex spae z the ontinuous linear maps hA;Ai ! z orrespond to those

alternating ontinuous bilinear maps !:A�A ! z satisfying

!(ab; ) + !(b; a) + !(b; a) = 0; a; b;  2 A:

These maps are alled yli 1-oyles. We write Z

1

(A; z) for the spae of ontinuous yli

1-oyles A�A ! z and note that

Z

1

(A; z)

�

=

Lin(hA;Ai; z):

The identity id

hA;Ai

orresponds to the universal oyle

!

u

:A�A ! hA;Ai; (a; b) 7! ha; bi:

Remark III.7. Lie algebra 2-oyles !: g � g ! z (De�nition III.3) are the same as yli

1-oyles of the algebra g .

In partiular we have

Z

2

(g; z)

�

=

Lin(hg; gi; z)

for any loally onvex spae z .
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Remark III.8. Let A be a loally onvex assoiative algebra, A

L

the orresponding Lie

algebra with the ommutator braket [a; b℄ = ab� ba , and A

J

the orresponding Jordan algebra

with the produt a Æ b :=

1

2

(ab+ ba). In A
A we have the relations

[a; b℄
 + [b; ℄
 a+ [; a℄
 b = ab
 + b
 a+ a
 b� (ba
 + b
 a+ a
 b)

and

2(a Æ b
 + b Æ 
 a+  Æ a
 b) = ab
 + b
 a+ a
 b+ ba
 + b
 a+ a
 b:

Therefore we have natural ontinuous linear maps

hA

L

;A

L

i ! hA;Ai; ha; bi 7! ha; bi and hA

J

;A

J

i ! hA;Ai; ha; bi 7! ha; bi:

A remarkable point of the following proposition is that it applies without any assumption

on the algebra A , suh as assoiativity et.

Proposition III.9. Let A be a loally onvex algebra and

Æ: hA;Ai ! der(A); ha; bi 7! Æ(a; b)

be a yli 1-oyle for whih the map A � A �A ! A; (a; b; ) 7! Æ(a; b): is ontinuous. As

der(A) ats naturally on hA;Ai by

d:ha; bi = hd:a; bi+ ha; d:bi; d 2 der(A); a; b 2 A;

we obtain a well-de�ned ontinuous bilinear map

[�; �℄: hA;Ai � hA;Ai ! hA;Ai; [ha; bi; h; di℄ 7! Æ(a; b):h; di = hÆ(a; b):; di+ h; Æ(a; b):di:

Suppose that

(1) Æ(Æ(a; b):h; di) = [Æ(a; b); Æ(; d)℄ , and

(2) Æ(a; b):h; di = �Æ(; d):ha; bi for a; b; ; d 2 A .

Then [�; �℄ de�nes on hA;Ai the struture of a loally onvex Lie algebra and Æ is a homomor-

phism of Lie algebras.

Proof. Aording to our ontinuity assumption on Æ , the quadrilinear map

A�A�A�A ! hA;Ai; (a; b; ; d) 7! Æ(a; b):h; di = hÆ(a; b):; di+ h; Æ(a; b):di

is ontinuous. That Æ is a yli oyle implies that it fators through a ontinuous bilinear

map

[�; �℄: hA;Ai � hA;Ai ! hA;Ai; (ha; bi; h; di) 7! Æ(a; b):h; di:

Condition (2) means that the braket on hA;Ai is alternating. In view of (1), the Jaobi identity

follows from

[[ha; bi; h; di℄; hu; vi℄ = Æ(Æ(a; b):h; di):hu; vi = [Æ(a; b); Æ(; d)℄:hu; vi

= [ha; bi; [h; di; hu; vi℄℄� [h; di; [ha; bi; hu; vi℄℄:

Finally, we observe that (1) means that Æ is a homomorphism of Lie algebras.
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Example III.10. Typial examples where Proposition III.9 applies are

(1) Lie algebras: If g is a loally onvex Lie algebra and Æ(x; y) = ad[x; y℄ , then the Jaobi

identity implies that Æ is a oyle. That Æ is equivariant with respet to the ation of der(g)

follows for d 2 der(g) and x; y 2 g from

Æ(d:x; y) + Æ(x; d:y) = ad([d:x; y℄ + [x; d:y℄) = ad(d:[x; y℄) = [d; ad[x; y℄℄ = [d; Æ(x; y)℄:

We also have in hg; gi :

Æ(x; y):hx

0

; y

0

i = h[[x; y℄; x

0

℄; y

0

i+ hx

0

; [[x; y℄; y

0

℄i

= �h[x

0

; y

0

℄; [x; y℄i � h[y

0

; [x; y℄℄; x

0

i+ hx

0

; [[x; y℄; y

0

℄i = h[x; y℄; [x

0

; y

0

℄i;

whih implies Æ(x; y):hx

0

; y

0

i = �Æ(x

0

; y

0

):hx; yi .

(2) Assoiative algebras: If A is an assoiative algebra, then the ommutator braket

A�A ! A; (a; b) 7! [a; b℄ = ab� ba

is a yli oyle beause

[ab; ℄ + [b; a℄ + [a; b℄ = ab� ab+ ba� ab+ ab� ba = 0:

Therefore Æ(x; y) = ad[x; y℄ de�nes a oyle A � A ! der(A). That Æ is equivariant with

respet to the ation of der(A) follows with the same alulations as in (1) above. Alternatively,

we an observe that if A

L

denotes the Lie algebra A with the ommutator braket, then hA;Ai

is a quotient of hA

L

;A

L

i (Remark III.8).

(3) If A is a Jordan algebra and Æ

A

(a; b) = [L(a); L(b)℄ , then we have

Æ

A

(d:ha; bi) = [d; Æ

A

(a; b)℄

for all derivations d 2 der(A), hene (1) in Proposition III.9. To verify (2), we alulate

Æ

A

(a; a

0

):hb; b

0

i = hÆ

A

(a; a

0

):b; b

0

i+ hb; Æ

A

(a; a

0

):b

0

i

= ha(a

0

b)� a

0

(ab); b

0

i+ hb; a(a

0

b

0

)� a

0

(ab

0

)i

= ha(a

0

b); b

0

i � ha

0

(ab); b

0

i+ hb; a(a

0

b

0

)i � hb; a

0

(ab

0

)i

= �h(a

0

b)b

0

; ai � hb

0

a; a

0

bi+ h(ab)b

0

; a

0

i+ hb

0

a

0

; abi

� ha; (a

0

b

0

)bi � ha

0

b

0

; bai+ ha

0

; (ab

0

)bi+ hab

0

; ba

0

i

= �hb

0

(ba

0

); ai � hb

0

a; a

0

bi+ hb

0

(ba); a

0

i+ hb

0

a

0

; abi

� ha; b(b

0

a

0

)i � hb

0

a

0

; abi+ ha

0

; b(b

0

a)i+ hb

0

a; a

0

bi

= �hb

0

(ba

0

); ai+ hb

0

(ba); a

0

i � ha; b(b

0

a

0

)i+ ha

0

; b(b

0

a)i

= hÆ

A

(b

0

; b):a; a

0

i+ ha; Æ

A

(b

0

; b):a

0

i

= �Æ

A

(b; b

0

):ha; a

0

i:

The universal overing of a loally onvex Lie algebra

We all a generalized entral extension q

g

:

e

g! g of a loally onvex Lie algebra g universal

if for any generalized entral extension q:

b

g! g there exists a unique morphism of loally onvex

Lie algebras �:

e

g !

b

g with q Æ � = q

g

.
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Theorem III.11. A loally onvex Lie algebra g has a universal generalized entral extension

if and only if it is topologially perfet. If this is the ase, then the universal generalized entral

extension is given by the natural Lie algebra struture on

e

g := hg; gi satisfying

(3:2) [hx; x

0

i; hy; y

0

i℄ = h[x; x

0

℄; [y; y

0

℄i for x; x

0

; y; y

0

2 g;

and the natural homomorphism

q

g

:

e

g! g; hx; yi 7! [x; y℄

is given by the Lie braket on g .

Proof. Suppose �rst that q

g

:

e

g ! g is a universal generalized entral extension. We onsider

the trivial entral extension

b

g := g � K with q(x; t) = x . Aording to the universal property,

there exists a unique morphism of loally onvex Lie algebras �:

e

g! g�K with q Æ� = q

g

. For

eah Lie algebra homomorphism �:

e

g! K the sum �+�:

e

g! g�K also is a homomorphism of

Lie algebras with qÆ(�+�) = q

g

. Hene the uniqueness implies that � = 0. That all morphisms

e

g! K are trivial means that

e

g is topologially perfet, and therefore g is topologially perfet.

Conversely, we assume that g is topologially perfet and onstrut a universal generalized

entral extension. Using Proposition III.9 and Example III.10(1), we see that hg; gi arries a

loally onvex Lie algebra struture with

[hx; yi; hz; ui℄ = h[x; y℄; [z; u℄i; x; y; z; u 2 g:

Next we observe that im(q

g

) is dense beause [g; g℄ is dense in g . The orresponding

braket map on

e

g is given by the universal oyle

!

u

: g� g!

e

g; (x; y) 7! hx; yi:

In fat, for x; x

0

; y; y

0

2 g we have

!

u

(q

g

(hx; x

0

i); q

g

(hy; y

0

i)) = !

u

([x; x

0

℄; [y; y

0

℄) = h[x; x

0

℄; [y; y

0

℄i = [hx; x

0

i; hy; y

0

i℄:

Sine the elements of the form hx; x

0

i span a dense subspae of

e

g , equation (3.1) holds for q = q

g

.

Now let q:

b

g ! g be another generalized entral extension with the orresponding map

b: g � g !

b

g . Then Lemma III.4(3) implies the existene of a unique ontinuous linear map

�:

e

g = hg; gi !

b

g with

b(x; y) = �(hx; yi); x; y 2 g:

For x = q(a), x

0

= q(a

0

), y = q(b) and y

0

= q(b

0

) we then have

�([hx; x

0

i; hy; y

0

i℄) = �(h[x; x

0

℄; [y; y

0

℄i) = b([x; x

0

℄; [y; y

0

℄) = b(q([a; a

0

℄); q([b; b

0

℄))

= [[a; a

0

℄; [b; b

0

℄℄ = [b(x; x

0

); b(y; y

0

)℄ = [�(hx; x

0

i); �(hy; y

0

i)℄:

Now the fat that im(q) is dense in g implies that � is a homomorphism of Lie algebras. Further,

q(�(hx; yi)) = q(b(x; y)) = [x; y℄ = q

g

(hx; yi);

again with the density of im(q) in g , leads to q Æ � = q

g

:

To see that � is unique, we �rst observe that

e

g is topologially perfet beause g is

topologially perfet. If �:

e

g!

b

g is another homomorphism with q Æ � = q

g

, then  := � � � is

a ontinuous linear map

e

g! ker q � z(

b

g). Moreover,

([x; y℄) = �([x; y℄)� �([x; y℄) = [�(x); �(y)℄ � [�(x); �(y)℄

= [�(x)� �(x); �(y)℄ + [�(x); �(y)℄ � [�(x); �(y)℄

= [(x); �(y)℄ + [�(x); (y)℄ = 0

beause the values of  are entral. Now  = 0 follows from the topologial perfetness of

e

g .
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De�nition III.12. For a topologially perfet loally onvex Lie algebra g the Lie algebra

e

g = hg; gi is alled the universal generalized entral extension of g or the (topologial) universal

overing Lie algebra of g .

We all two topologially perfet Lie algebras g

1

and g

2

entrally isogenous if

e

g

1

�

=

e

g

2

.

In the ategory of sequentially omplete, resp., omplete loally onvex Lie algebras we

de�ne

e

g as hg; gi in the sense of De�nition III.6(b). Then the same arguments as in the proof

of Theorem III.11 show that

e

g is a universal generalized entral extension in the orresponding

ategory.

We all a entral extension q:

b

g ! g of a loally onvex Lie algebra g universal if for

any entral extension q

0

:

b

g

0

! g there exists a unique morphism of loally onvex Lie algebras

�:

b

g!

b

g

0

with q

0

Æ� = q . The following orollary lari�es the relation between universal entral

extensions and generalized universal entral extensions. In partiular it implies that the existene

of a universal entral extension is a quite rare phenomenon.

Corollary III.13. A loally onvex Lie algebra g has a universal entral extension if and only

if it is topologially perfet and the universal overing map q

g

:

e

g ! g is a quotient map. Then

q

g

is a universal entral extension.

Proof. Suppose �rst that q:

b

g! g is a universal entral extension. Then the same argument

as in the proof of Theorem III.11 implies that

b

g is topologially perfet, whih implies that g

is topologiall perfet. Therefore the universal generalized entral extension q

g

:

e

g ! g exists by

Theorem III.11. Its universal property implies the existene of a unique morphism eq:

e

g!

b

g with

q Æ eq = q

g

. If

b

b: g � g !

b

g is the unique ontinuous bilinear map for whih

b

b Æ (q � q) is the

braket on

b

g , the onstrution in the proof of Theorem III.11 implies that

eq Æ !

u

=

b

b

for the universal oyle !

u

(x; y) = hx; yi .

Now let q

u

: g�

!

u

e

g ! g be the entral extension of g by

e

g , onsidered as an abelian Lie

algebra, de�ned by the universal oyle. Then the universal property of

b

g implies the existene

of a unique morphism

 :

b

g! g�

!

u

e

g

with q

u

Æ  = q . This means that  (x) = (q(x); �(x)); where �:

b

g !

e

g is a ontinuous linear

map. That  is a Lie algebra homomorphism means that

(q([x; y℄); �([x; y℄)) =  ([x; y℄) = [ (x);  (y)℄ = ([q(x); q(y)℄; hq(x); q(y)i);

whih implies that

�(

b

b(q(x); q(y))) = �([x; y℄) = hq(x); q(y)i; x; y 2

b

g;

and hene

� Æ

b

b = !

u

:

For the ontinuous linear maps

e

g!

e

g orresponding to these oyles, we obtain

� Æ eq = id

eg

:

We also have

eq Æ � Æ

b

b = eq Æ !

u

=

b

b;

and sine im(

b

b) spans a dense subspae of the topologially perfet Lie algebra

b

g , it follows that

eq Æ � = id

bg

:

Therefore eq is an isomorphism of loally onvex spaes, hene an isomorphism of loally onvex

Lie algebras, and this implies that q

g

is a entral extension.

If, onversely, g is topologially perfet and q

g

is a entral extension, its universal property

as a generalized entral extension implies that it is a universal entral extension.
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Comparing the onstrution above with the universal entral extensions investigated in

[Ne02℄, it appears that generalized entral extensions are more natural in the topologial ontext

beause one does not have to struggle with the problem that losed subspaes of loally onvex

spaes do not always have losed omplements, whih auses many problems if one works only

with entral extensions de�ned by oyles (f. De�nition III.3). Moreover, universal generalized

entral extensions do always exist for topologially perfet loally onvex algebras, whereas there

are Banah{Lie algebras whih do not admit a universal entral extension ([Ne01, Ex. II.18, III.9℄

and Proposition III.18 below, ombined with Corollary III.13). The typial example is the Lie

algebra of Hilbert{Shmidt operators on an in�nite-dimensional Hilbert spae disussed in some

detail below.

We now address the question for whih Lie algebra the universal overing morphism q

g

:

e

g!

g is an isomorphism. At the end of this setion we will in partiular desribe examples, where

q

eg

:

e

e

g!

e

g is not an isomorphism.

Proposition III.14. For a topologially perfet loally onvex Lie algebra g the following are

equivalent:

(1) q

g

:

e

g! g is an isomorphism of Lie algebras.

(2) H

2

(g; z) = f0g for eah loally onvex spae z .

Proof. (1) ) (2): Let ! 2 Z

2

(g; z) be a ontinuous Lie algebra oyle g�g! z . Aording

to Remark III.7, there exists a ontinuous linear map �:

e

g! z with

!(x; y) = �(hx; yi) = � Æ q

�1

g

([x; y℄)

for x; y 2 g , and this means that ! is a oboundary.

(2) ) (1): The triviality of H

2

(g;

e

g) implies that there exists a ontinuous linear map �: g!

e

g

with

(3:3) hx; yi = �([x; y℄); x; y 2 g:

Then

(q

g

Æ �)([x; y℄) = q

g

(hx; yi) = [x; y℄;

so that the density of [g; g℄ in g leads to q

g

Æ� = id

g

. On the other hand, (3.3) an also be read

as � Æ q

g

= id

eg

. Therefore q

g

is an isomorphism of loally onvex spaes, hene of loally onvex

Lie algebras.

A topologially perfet loally onvex Lie algebra satisfying the two equivalent onditions

of Proposition III.14 is alled entrally losed. This means that g is its own universal overing

algebra, or, equivalently, that the Lie braket g� g! g is a universal Lie algebra oyle.

Remark III.15. (a) Let g

1

; g

2

and g

3

be topologially perfet loally onvex Lie algebras and

q

1

: g

1

! g

2

, q

2

: g

2

! g

3

generalized entral extensions. Then q := q

2

Æq

1

: g

1

! g

3

is a morphism

of loally onvex Lie algebras with dense range. Moreover, Lemma III.4(5) implies that

ker q = q

�1

1

(ker q

2

) � q

�1

1

(z(g

2

)) = z(g

1

):

Unfortunately, we annot onlude in general that q is a generalized entral extension. The

bilinear map b

1

: g

2

� g

2

! g

1

for whih b

1

Æ (q

1

� q

1

) is the Lie braket of g

1

is a Lie algebra

oyle, whih implies that

b

1

(ker q

2

; g

2

) � b

1

(z(g

2

); [g

2

; g

2

℄) = f0g:

Therefore b

1

fators through a bilinear map

b: im(q

2

)� im(q

2

)! g

1

; (q

2

(x); q

2

(y)) 7! b

1

(x; y)
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with

b(q(x); q(y)) = b

1

(q

1

(x); q

1

(y)) = [x; y℄; x; y 2 g

1

:

If b is ontinuous, it extends to a ontinuous bilinear map g

3

� g

3

! g

1

with the required

properties, and q is a generalized entral extension, but unfortunately, there is no reason for this

to be the ase.

(b) If q

2

is a quotient map, i.e., a entral extension, then b is ontinuous. This shows that in the

ontext of topologially perfet loally onvex Lie algebras a generalized entral extension of a

entral extension is a generalized entral extension. This means in partiular that if the universal

overing map q

g

:

e

g! g is a quotient map, then

e

g is entrally losed.

Lemma III.16. Let H be a Hilbert spae and sl

0

(H) the Lie algebra of all ontinuous �nite

rank operators of zero trae on H . For eah derivation

�: sl

0

(H)! sl

0

(H)

there exists a ontinous operator D 2 B(H) with �(x) = [D; x℄ for eah x 2 sl

0

(H) . The

operator D is unique up to an element in K1 .

Proof. ([dlH72℄) Step 1: For eah �nite subset F of sl

0

(H) there exists a �nite-dimensional

subspae E � H suh that

F � sl(E) := f' 2 sl

0

(H):'(E) � E;'(E

?

) = f0gg:

The Lie algebra sl(E)

�

=

sl

jEj

(K ) is simple and the restrition �

E

of � to sl(E) is a linear map

sl(E)! sl

0

(H) satisfying

�

E

([x; y℄) = [�

E

(x); y℄ + [x;�

E

(y)℄:

This means that �

E

2 Z

1

(sl(E); sl

0

(H)), where sl(E) ats on sl

0

(H) by the adjoint ation.

Sine this ation turns sl

0

(H) into a loally �nite module, Lemma A.3 implies that the oyle

�

E

is trivial, i.e., there exists an element D

E

2 sl

0

(H) with �

E

(x) = [D

E

; x℄ for all x 2 sl(E).

Suppose that D

0

E

is another element in sl

0

(H) with this property. Then we write

D

E

�D

0

E

=

�

a b

 d

�

as a blok matrix aording to the deomposition H = E � E

?

. As D

E

�D

0

E

ommutes with

sl(E), it preserves the subspaes sl(E):H = E and E

?

= fx 2 H : sl(E):x = f0gg . Therefore

b =  = 0, and a 2 K id

E

. This proves that D

E

j

E

�D

0

E

j

E

2 K id

E

. If we require, in addition,

D

E

:v?v for some non-zero vetor v 2 E , then the restrition of D

E

to E is uniquely determined.

Step 2: We may assume that dimH � 2, otherwise the assertion is trivial. Fix 0 6= v 2 H .

As in Step 1, we �nd for eah �nite-dimensional subspae E � H an operator D

E

as above with

D

E

:v?v . For E � E

0

the operator D

E

0

also satis�es D

E

0

:v?v and �

E

(x) = [D

E

0

; x℄ for

x 2 sl(E) � sl(E

0

). Therefore D

E

0

j

E

= D

E

, so that we obtain a well-de�ned operator

D:H ! H; D:w := D

E

:w for w 2 E:

This operator satis�es

�(x) = [D; x℄ for all x 2 sl

0

(H):

Step 3: D is ontinuous: For x; y 2 H we onsider the rank-one-operator P

x;y

:v = hv; yix .

Then trP

x;y

= hx; yi vanishes if x?y . Then P

x;y

2 sl

0

(H), and

[D;P

x;y

℄(v) = P

D:x;y

:v � hD:v; yix:

As for eah y 2 H there exists an element x orthogonal to y , it follows that all funtionals

v 7! hD:v; yi

are ontinuous, i.e., that the adjoint operator D

�

of the unbounded operator D is everywhere

de�ned, and therefore that D has a losed graph ([Ne99, Th. A.II.8℄). Now the Closed Graph

Theorem implies that D is ontinuous.

Step 4: Uniqueness: We have to show that if an operator D on H ommutes with sl

0

(H),

then it is a multiple of the identity. The ondition [D;P

x;y

℄ = 0 for x?y implies that

hv; yiD:x = hD:v; yix; v 2 H:

It follows in partiular that eah x 2 H is an eigenvetor, and hene that D 2 K1 .
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De�nition III.17. Let H be an in�nite-dimensional Hilbert spae. For eah p 2 [1;1℄ we

write B

p

(H) for the orresponding Shatten ideal in B(H), where B

1

(H) denotes the spae

of ompat operators (f. [dlH72℄, [GGK00℄). Eah operator A 2 B

p

(H) is ompat, and if we

write the non-zero eigenvalues of the positive operator

p

A

�

A (ounted with multipliity) in a

sequene (�

n

)

n2N

(whih might also ontain zeros), the norm on B

p

(H) is given by

kAk

p

=

�

X

n2N

�

p

n

�

1

p

:

Aording to [GGK00, Th. IV.11.2℄, we then have the estimate

kABk

p

� kAk

p

1

kBk

p

2

for

1

p

�

1

p

1

+

1

p

2

:

It follows in partiular that eah B

p

(H) is a Banah algebra. We also have

kABCk � kAkkBk

p

kCk; B 2 B

p

(H); A; C 2 B(H):

For 1 < p � 1 and

1

p

+

1

q

= 1 we have

B

p

(H)

0

�

=

B

q

(H);

where the pairing is indued by the trae hx; yi = tr(xy): Here we use that B

p

(H)B

q

(H) �

B

1

(H), and that the trae extends to a ontinuous linear funtional tr:B

1

(H)! K (f. [dlH72,

p.113℄). We have

B

1

(H) � B

p

(H) � B

p

0

(H) � B

1

(H)

for p � p

0

.

For p = 1 the elements of B

1

(H) are the trae lass operators and for p = 2 the elements

of B

2

(H) are the Hilbert-Shmidt operators. As the trae is a ontinuous linear funtional on

B

1

(H) vanishing on all ommutators, the subspae

sl(H) := fx 2 B

1

(H): trx = 0g

is a Lie algebra hyperplane ideal.

Proposition III.18. Let gl

p

(H) be the Banah-Lie algebra obtained from B

p

(H) with the

ommutator braket. Then gl

p

(H) is topologially perfet if and only if p > 1 . The universal

overing map is given by the inlusions maps

sl(H) ,! gl

p

(H) for 1 < p � 2 ; and gl

p

2

(H) ,! gl

p

(H) for p > 2 :

Proof. That gl

1

(H) is not topologially perfet follows from the fat that the trae vanishes

on all brakets. Assume that p > 1. Then an elementary argument with diagonal matries

implies that sl

0

(H) is dense in B

p

(H) with respet to k � k

p

. Sine sl

0

(H) is a perfet Lie

algebra, gl

p

(H) is topologially perfet.

Let !: gl

p

(H) � gl

p

(H) ! K be a ontinuous Lie algebra oyle. Then there exists a

unique ontinuous linear map

�: gl

p

(H)! gl

q

(H)

�

=

gl

p

(H)

0

with tr(�(x)y) = !(x; y) for all x; y 2 gl

p

(H), and the oyle identity for ! implies that � is

a derivation, i.e.,

�([x; y℄) = [�(x); y℄ + [x;�(y)℄; x; y 2 gl

p

(H):

The Lie algebra sl

0

(H) is a perfet ideal in gl(H) and hene in eah gl

p

(H). Therefore

it is invariant under �, and Lemma III.16 implies the existene of a ontinuous operator
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D 2 B(H) with �(x) = [D; x℄ for all x 2 sl

0

(H). As both sides desribe ontinuous linear

maps gl

p

(H) ! gl(H) whih oinide on the dense subspae sl

0

(H), we have � = adD on

gl

p

(H).

For 1 � p � 2 we have q � 2 � p , so that eah bounded operator D 2 B(H) satis�es

adD(gl

p

(H)) � gl

p

(H) � gl

q

(H). For p > 2 the dual spae gl

q

(H) is a proper subspae of

gl

p

(H), and it is shown in [dlH72, p.141℄ that

fD 2 gl(H): [D; gl

p

(H)℄ � gl

q

(H)g = gl

r

(H) for

1

r

=

1

q

�

1

p

= 1�

2

p

=

p� 2

p

:

The oyle assoiated to an operator D is given by

!(x; y) = tr([D; x℄y) = tr(D[x; y℄); x; y 2 gl

p

(H):

That the trae on the right hand side makes sense follows from B

p

(H)B

p

(H) � B

1

(H) for p � 2

and B

p

(H)B

p

(H) � B

p

2

(H) and D 2 B

p

2

(H)

0

for p > 2.

For p � 2 we have

[gl

p

(H); gl

p

(H)℄ � [gl

2

(H); gl

2

(H)℄ � [sl

0

(H); sl

0

(H)℄ = sl

0

(H) = sl(H);

where the losure refers to the trae norm k � k

1

. An operator D 2 gl(H)

�

=

gl

1

(H)

0

represents

the oyle 0 if and only if it is orthogonal to the hyperplane sl(H), whih means that D 2 K1 .

For p > 2 an operator D 2 gl

r

(H) is never a multiple of 1 , so that we obtain

(3:4) Z

2

(gl

p

(H);K )

�

=

�

pgl(H) := gl(H)=K1 for 1 � p � 2

gl

p

2

(H)

0

�

=

gl

r

(H) for 2 < p.

Now let q(hx; yi) = [x; y℄ denote the braket map

q:

e

gl

p

(H)

�

=

hgl

p

(H); gl

p

(H)i !

�

sl(H) for 1 � p � 2

gl

p

2

(H) for 2 < p.

Then q is a ontinuous morphism of Banah{Lie algebras. Further

Z

2

(gl

p

(H);K )

�

=

Lin(

e

gl

p

(H);K );

and (3.4) imply that the adjoint map q

�

is bijetive. That q

�

is injetive implies that q has

dense range and the surjetivity of q

�

implies in partiular that q is injetive. Further the Closed

Range Theorem ([Ru73, Th. 4.14℄) implies that the image of q is losed, and hene that q is

bijetive. Finally the Open Mapping Theorem implies that q is an isomorphism.

Remark III.19. From the preeding proposition, we obtain in partiular examples of Lie

algebras where the universal overing algebra is not entrally losed. For example eah gl

p

(H)

with p > 2 has this property. For p < 2 � 4 we have

e

gl

p

(H)

�

=

gl

p

2

(H) and

^

e

gl

p

(H)

�

=

sl(H);

but for 2

k

< p � 2

k+1

we need to pass k + 1-times to the universal overing Lie algebra until

we reah sl(H) whih is entrally losed.

In Setion IV below we shall see many other onrete examples of universal entral exten-

sions, when we disuss root graded loally onvex Lie algebras. In partiular, we shall see that

universal overings of root graded Lie algebras are always entrally losed.
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IV. Universal overings of loally onvex root graded Lie algebras

In this setion we desribe the universal overing Lie algebra of a loally onvex root graded Lie

algebra. In partiular, we shall see that it only depends on the root system and the oordinate

algebra. Several results in this setion are topologial versions of algebrai results in [ABG00℄. A

key point is that the onept of a generalized entral extensions provides the natural framework to

translate the algebrai struture of the universal overing algebra into the loally onvex ontext.

Proposition IV.1. Let q:

b

g! g be a generalized entral extension for whih

b

g is topologially

perfet. If g is �-graded, then

b

g is �-graded and vie versa.

Proof. (a) First we assume that g is �-graded. On

b

g we onsider the g

�

-module struture

given by



ad (Lemma III.4). Then the orestrition

b

g ! im(q) is an extension of the loally

�nite g

�

-module im(q) by the trivial module ker q , hene a trivial extension (Proposition A.4).

It follows in partiular that

b

g is an h-weight module. The weights ourring in this module are

idential with those ourring in im(q) � [g; g℄ (Lemma III.4(1)). This implies that we have an

h-weight deomposition

b

g =

b

g

0

�

M

�2�

b

g

�

with q(

b

g

�

) = g

�

for � 6= 0. As the entral Lie algebra extension q

�1

(g

�

) !! g

�

is trivial, its

ommutator algebra

b

g

�

is a subalgebra whih is mapped by q isomorphially onto g

�

. Therefore

(R1){(R3) are satis�ed for

b

g

�

as a grading subalgebra in

b

g .

As the braket in

b

g is given by [x; y℄ = b(q(x); q(y)), the topologial perfetness of

b

g implies

that the image of b spans a dense subspae of

b

g . Therefore

b(g

0

; g

0

) +

X

0 6=�

b(g

�

; g

��

) = b(g

0

; g

0

) +

X

0 6=�

[

b

g

�

;

b

g

��

℄

is dense in

b

g

0

. For x

��

2

b

g

��

and x

��

2

b

g

��

we further have

b([q(x

�

); q(x

��

)℄; [q(x

�

); q(x

��

)℄) = [[x

�

; x

��

℄; [x

�

; x

��

℄℄ � [

b

g

0

; [

b

g

�

;

b

g

��

℄℄ � [

b

g

�

;

b

g

��

℄:

Hene

b([g

�

; g

��

℄; [g

�

; g

��

℄) � [

b

g

�

;

b

g

��

℄;

so that (R4) holds for g , and the relation q(

b

g

�

) = g

�

for � 6= 0 imply that b(g

0

; g

0

) is ontained

in the losure of the sum of the spaes [

b

g

�

;

b

g

��

℄ , � 6= 0. This implies (R4) for

b

g .

(b) Now we assume that

b

g is �-graded with grading subalgebra

b

g

�

. Then ker q � z(

b

g), so that

g

�

:= q(

b

g

�

)

�

=

b

g

�

. Clearly g arries a natural g

�

-module struture.

From [g; g℄ � im(q) (Lemma III.4(2)) we derive that g= im(q) is a trivial g

�

-module.

Moreover, im(q)

�

=

b

g= ker(q) is a loally �nite g

�

-module. Therefore Proposition A.4 implies

that g is a loally �nite g

�

-module whih is a diret sum of q(

b

g) and a trivial module Z . This

immediately leads to a weight deomposition of g with weight system �, and it is obvious that

(R1){(R3) are satis�ed.

As h ats on g by ontinuous operators, the projetion g! g

0

along the sum of the other

root spaes is ontinuous, so that the density of the image of q in g implies that q(

b

g

0

) is dense

in g

0

. We further have

[g

�

; g

��

℄ = q(b(g

�

; g

��

)) = q(b(q(

b

g

�

); q(

b

g

��

))) = q([

b

g

�

;

b

g

��

℄);

so that (R4) for

b

g implies (R4) for g .

Corollary IV.2. If g is �-graded with grading subalgebra g

�

, then z(g) � z

g

(g

�

) � z

g

(h) =

g

0

, and g=z(g)

�

=

ad g is a �-graded Lie algebra. The quotient map ad: g! g=z(g) is a morphism

of �-graded Lie algebras.
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Lemma IV.3. Let g

1

and g

2

be loally onvex �-graded Lie algebras with oordinate strutures

(A

i

= A

i

�B

i

; D

i

; Æ

D

i

) and �

i

: g

�

! g the orresponding embeddings that we use to identify g

�

with a subalgebra of g

1

and g

2

. If ': g

1

! g

2

is a morphism of loally onvex Lie algebra with

' Æ �

1

= �

2

, then there exist ontinuous linear maps

'

A

:A

1

! A

2

; '

B

:B

1

! B

2

and '

D

:D

1

! D

2

suh that

(4:1) '(a
 x+ b
 v + d) = '

A

(a)
 x+ '

B

(b)
 v + '

D

(d)

for a 2 A

1

; b 2 B

1

; d 2 D

1

; x 2 g

�

and v 2 V

s

, and

'

A

:= '

A

� '

B

:A

1

! A

2

is a ontinuous algebra homomorphism with

(4:2) Æ

D

2

Æ ('

A

� '

A

) = '

D

Æ Æ

D

1

:

Proof. The ondition ' Æ �

1

= �

2

means that ' is equivariant with respet to the represen-

tations of g

�

on g

1

and g

2

. Identifying A

1

with Hom

g

�

(g

�

; g

1

), the equivariane of ' with

respet to the g

�

permits us to de�ne '

A

(a) := ' Æ a . We likewise de�ne '

B

and '

D

. Then

(4.1) is satis�ed. Now (4.2) and that '

A

de�nes an algebra homomorphism follow diretly from

(B1){(B3), beause the algebra struture on A

1

, resp., A

2

is ompletely determined by the Lie

braket.

Remark IV.4. The preeding lemma applies in partiular to generalized entral extensions

q:

b

g! g . In this ase the proof of Proposition IV.1 implies that q

A

is a topologial isomorphism,

hene an isomorphism of loally onvex algebras. We therefore may assume that g and

e

g have

the same oordinate algebra A . In this sense we write

g = (A
 g

�

)� (B 
 V

s

)�D and

b

g = (A
 g

�

)� (B 
 V

s

)�

b

D;

and q

D

:

b

D ! D is a map with dense range and q

D

Æ Æ

b

D

= Æ

D

.

This applies in partiular to the universal overing algebra, whih we write as

e

g = (A
 g

�

)� (B 
 V

s

)�

e

D:

In the following subsetion we will see how

e

D an be desribed diretly in terms of the oordinate

algebra A and Æ

A

.

The universal overing of a �-graded loally onvex Lie algebra

To desribe the universal overing Lie algebra

e

g of a loally onvex root graded Lie algebra

g , we �rst onsider its oordinate struture (A = A�B;D; Æ

D

) (De�nition II.14). We onsider

the loally onvex spae

hA;Ai

�

:= hA;Ai=hA;Bi

and write the image of ha; bi 2 hA;Ai in hA;Ai

�

also as ha; bi .
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Theorem IV.5. For eah root system � , the orresponding oordinate algebra A , and the

natural map Æ

A

:A � A ! der(A) , the derivations Æ

A

(a; b) preserve the subspae hA;Bi of

hA;Ai , and we obtain on hA;Ai

�

the struture of a loally onvex Lie algebra by

[ha; a

0

i; hb; b

0

i℄ := Æ

A

(a; a

0

):hb; b

0

i:

Proof. Sine the map A

3

! A; (a; b; ) 7! Æ

D

(a; b): is ontinuous, and Æ

D

is a yli 1-

oyle vanishing on A�B (Theorem II.13), it de�nes a ontinuous linear map

hA;Ai

�

! D; ha; bi 7! Æ

D

(a; b):

Now de�ne

Æ

A

: hA;Ai

�

! der(A); Æ

A

(a; b): := Æ

D

(a; b):;

and observe that the bilinear map

hA;Ai

�

�A ! A; (ha; bi; ) 7! Æ

A

(a; b):

is ontinuous.

From (2.3) in Theorem II.13 we further derive that

(4:3) Æ

A

(Æ

A

(a; b):h; di) = Æ

A

(Æ

A

(a; b):; d) + Æ

A

(; Æ

A

(a; b):d) = [Æ

A

(a; b); Æ

A

(; d)℄

for a; b; ; d 2 A .

As the operators Æ(a; b) 2 der(A) all preserve the subspaes A and B of A , the subspae

hA;Bi � hA;Ai is invariant under all these operators with respet to the natural ation of der(A)

on hA;Ai , and we therefore obtain a well-de�ned braket on hA;Ai

�

with

[ha; a

0

i; hb; b

0

i℄ := Æ

A

(a; a

0

):hb; b

0

i:

As in Proposition III.9, the Jaobi identity for this braket is a diret onsequene of (4.3).

That the braket is alternating is equivalent to the relation

(4:4) Æ

A

(a; a

0

):hb; b

0

i = �Æ

A

(b; b

0

):ha; a

0

i

for a; a

0

; b; b

0

2 A . This relation an be veri�ed ase by ase for the oordinate algebras assoiated

to the di�erent types of root systems (see [ABG00, p.521℄; f. also Theorem II.20 and the

subsequent omments).

For the ase where A is an assoiative or a Jordan algebra, (4.4) an be obtained as in

Example III.10(2), (3). In this ase we already have on hA;Ai a natural Lie algebra struture,

and sine hA;Bi is invariant under the operators Æ

A

(a; b), it is a Lie algebra ideal, so that

hA;Ai

�

simply is the quotient Lie algebra.

The following theorem is the loally onvex version of the desription of the universal

overing Lie algebra (f. [ABG00℄ for the algebrai ase).

Theorem IV.6. The Lie algebra

e

g := (A
 g

�

)� (B 
 V

s

)� hA;Ai

�

with the Lie braket given by

[d; a
 x+ b
 v + d

0

℄ = d:a
 x+ d:b
 v + [d; d

0

℄;

and

[a
 x; a

0


 x

0

℄ = 

A

+

(a; a

0

)
 [x; x

0

℄ + 

A

�

(a; a

0

)
 x � x

0

+ 

B

A

(a; a

0

)
 �

V

g

(x; x

0

) + �(x; x

0

)Æ

A

(a; a

0

);
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[a
 x; b
 v℄ =

ab+ ba

2


 �

g

g;V

(x; v) +

ab� ba

2


 x:v; ;

[b
 v; b

0


 v

0

℄ = 

A

B

(b; b

0

)
 �

g

V

(v; v

0

) + 

B

B

(b; b

0

)
 �

V

V

(v; v

0

) + �

V

s

(v; v

0

)Æ

A

(b; b

0

)

is a universal overing Lie algebra of g with universal overing map

q

g

(a
 x+ b
 v + d) = a
 x+ b
 v + Æ

D

A

(d);

where Æ

D

A

(ha; bi) = Æ

D

(a; b) for a; b 2 A .

Proof. The Lie algebra hA;Ai

�

together with the map Æ

A

: hA;Ai

�

! der(A) satisfy all

assumptions of Theorem II.15, and we obtain on

e

g := (A
 g

�

)� (B 
 V

s

)� hA;Ai

�

a Lie braket as desribed above. Now

e

g is a �-graded Lie algebra with oordinate struture

(A; hA;Ai

�

; Æ

A

). Let q:

b

g! g be a generalized entral extension, where we write

b

g as

b

g = (A
 g

�

)� (B 
 V

s

)�

b

D

(Remark IV.4). Then the orresponding map Æ

b

D

A

: hA;Ai

�

!

b

D is a ontinuous homomorphism

of Lie algebras beause

Æ

b

D

A

([ha; bi; h; di℄) = Æ

b

D

A

(Æ

A

(a; b):h; di) = [Æ

b

D

A

(a; b); Æ

b

D

A

(; d)℄

(Theorem II.13). We now obtain a ontinuous linear map

eq:

e

g!

b

g; a
 x+ b
 v + d 7! a
 x+ b
 v + Æ

b

D

A

(d);

and (B1){(B3) together with the relation q

D

Æ Æ

b

D

= Æ

D

(Lemma IV.3) imply that this map is a

homomorphism of Lie algebras satisfying qÆeq = q

g

, where q

g

:

e

g! g is the natural homomorphism

indued by the Lie algebra homomorphism Æ

D

A

: hA;Ai

�

! D .

Corollary IV.7. If g is a �-graded loally onvex Lie algebra, then its universal overing

Lie algebra

e

g only depends on the pair (A; Æ

A

) , whih in turn is ompletely determined by the

oordinate algebra A and the type of � . If we write

e

g(�;A) for

e

g , then the assignment

A 7!

e

g(�;A)

de�nes a funtor from the ategory of loally onvex algebras determined by the root system �

to the ategory of loally onvex Lie algebras.

Corollary IV.8. Eah Lie algebra

e

g(�;A) , i.e., the universal overing Lie algebra of a

�-graded Lie algebra g , is entrally losed.

Proof. From the expliit desription of the universal overing Lie algebra

e

g in Theorem IV.6

and the fat that it has the same oordinate algebra as g , it follows that the map

e

e

g !

e

g is an

isomorphism beause for both algebras the D -part is hA;Ai

�

.
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Lie algebra oyles on root graded Lie algebras

Proposition IV.9. Every ontinuous Lie algebra oyle on a root graded Lie algebra g is

equivalent to a g

�

-invariant one.

Proof. As a module of g

�

, the Lie algebra g deomposes topologially as

g = (A
 g

�

)� (B 
 V

s

)�D;

and therefore

g
 g

�

=

(g

�


 g

�

)
 (A
A)� (g

�


M)
 (A
B) + � � �

is the deomposition of g 
 g as a g

�

-module, where A , B and D are onsidered as trivial

modules. We onlude that for eah trivial loally onvex g

�

-module z we have

Lin(g
 g; z)

�

=

(g

�


 g

�

)

�


 Lin(A
A; z) � (g

�


 V

s

)

�


 Lin(A
B; z) + � � �

Sine g

�

and V

s

are �nite-dimensional, Lin(g 
 g; z) is a loally �nite g

�

-module, hene

semisimple. This property is in partiular inherited by the submodule Z

2

(g; z) � Lin(g
 g; z) of

ontinuous Lie algebra oyles. Hene the deomposition into trivial and e�etive part yields

Z

2

(g; z) = Z

2

(g; z)

g

�

� g

�

:Z

2

(g; z):

For the representation � of g on the spae C

2

(g; z) of ontinuous Lie algebra 2-ohains we have

the Cartan formula

�(x) = i

x

Æ d+ d Æ i

x

; x 2 g;

whih implies that on 2-oyles we have �(x):! = d(i

x

:!) and hene g:Z

2

(g; z) � B

2

(g; z). We

onlude that eah element of H

2

(g; z) has a g

�

-invariant representative.

Proposition IV.10. The invariant Lie algebra oyles ! 2 Z

2

(g; z)

g

�

are in one-to-

one orrespondene with the elements of the spae Lin(hA;Ai

�

; z) , where we obtain from ! 2

Z

2

(g; z)

g

� �

=

Lin(

e

g; z)

g

�

a funtion !

A

on hA;Ai

�

by restriting to the subspae hA;Ai

�

of

e

g .

The oyle ! is a oboundary if and only if !

A

an be written as � Æ Æ

D

A

for an � 2

Lin(D; z) , so that

H

2

(g; z)

�

=

Lin(hA;Ai

�

; z)=Lin(D; z) Æ Æ

D

A

:

Proof. If q

g

:

e

g

�

=

hg; gi ! g is the universal overing Lie algebra, then we have for eah loally

onvex spae z a natural isomorphism Z

2

(g; z)

�

=

Lin(

e

g; z) (Remark III.7). As q

g

is equivariant

with respet to the ation of g

�

, this leads to

Z

2

(g; z)

g

�

�

=

Lin(

e

g; z)

g

�

for the invariant Lie algebra oyles. On the other hand

e

g = (A
 g

�

)� (B 
 V

s

)� hA;Ai

�

implies that Lin(

e

g; z)

g

� �

=

Lin(hA;Ai

�

; z):

If � 2 Lin(D; z), then we extend � to a ontinuous linear map �

g

: g ! z by zero on the

subspaes A 
 g

�

and B 
 V

s

. Then d�(x; y) = �([y; x℄) is a g

�

-invariant oyle on g , and

the orresponding funtion (d�)

eg

on

e

g

�

=

hg; gi satis�es (d�)

eg

= �� Æ b

g

whih implies that

(d�)

A

= �� Æ b

g

j

hA;Ai

�
= �� Æ Æ

D

A

:

If, onversely, ! = d� is a g

�

-invariant oboundary, then the same argument as in the proof of

Proposition IV.7 implies that we may hoose � as a g

�

-invariant funtion on g , whih means

that � vanishes on A
 g

�

and B
 V

s

, hene is of the form disussed above. We onlude that

Lin(D; z) Æ Æ

D

A

� Lin(hA;Ai

�

; z)

orresponds to the g

�

-invariant oboundaries. This ompletes the proof.

The preeding proposition desribes the ohomology of g with values in a trivial module z

in terms of the oordinate algebra. For the topologial homology spae we get

H

2

(g) := ker q

g

�

=

ker Æ

D

A

� hA;Ai

�

;

whih desribes H

2

(g) ompletely in terms of the oordinate algebra and D .
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De�nition IV.11. Motivated by the orresponding onept for assoiative algebras with

involution (Appendix D), we de�ne the full skew dihedral homology of A , resp., the pair (A; Æ

A

)

as

HF (A) := ker Æ

A

� hA;Ai

�

:

Proposition IV.12. If g is a �-graded loally onvex Lie algebra, then the enterfree Lie

algebra g=z(g) is also �-graded with the same oordinate algebra and the same universal overing

algebra, and

H

2

(g=z(g))

�

=

HF (A):

Proof. The �rst two assertions follow from Corollary IV.2 and Remark III.15(b).

With respet to the g

�

-isotypial deomposition of g , we have

z(g) = fd 2 D: (8a 2 A) d:a = 0g;

whih implies that

H

2

(g=z(g)) = ker q

g=z(g)

= q

�1

g

(z(g)) = z(

e

g) = ker Æ

A

= HF (A):

Example IV.13. (a) Let n � 4. If g = sl

n

(A) for a loally onvex unital assoiative algebra,

then the preeding onsiderations imply that

(4:5) H

2

(sl

n

(A))

�

=

HC

1

(A) and H

2

(psl

n

(A))

�

=

HF (A);

where

psl

n

(A) := sl

n

(A)=z(sl

n

(A))

�

=

sl

n

(A)=(Z(A) \ [A;A℄):

If n = 3, then g is A

3

-graded, and we have to onsider A as an alternative algebra. Sine

A is assoiative, the left and right multipliations L

a

and R

b

on A ommute, so that

L

[a;b℄

�R

[a;b℄

� 3[L

a

; R

b

℄ = ad[a; b℄:

This implies that hA;Ai arries the same Lie algebra struture, regardless of whether we onsider

it as an assoiative or an alternative algebra. We onlude that (4.5) remains true for n = 3.

For n = 2 the oordinate algebra of sl

2

(A) is the Jordan algebra A = A

J

with the produt

a Æ b =

ab+ba

2

. Let L

a

(x) = ax and R

a

(x) = xa denote the left and right multipliations in

the assoiative algebra A , and L

J

a

(x) =

1

2

(L

a

+R

a

) the left multipliation in the orresponding

Jordan algebra. Then

8Æ

A

J

(a; b) = 4[L

J

a

; L

J

b

℄ = [L

a

+R

a

; L

b

+R

b

℄ = [L

a

; L

b

℄ + [R

a

; R

b

℄ = L

[a;b℄

�R

[a;b℄

= ad[a; b℄:

For g = sl

2

(A) we also have D = [A;A℄ and

Æ

D

A

J

(a; b) =

1

2

[a; b℄

(Example II.16(b)). We therefore obtain

H

2

(sl

2

(A))

�

=

ker Æ

D

A

J

and H

2

(psl

2

(A))

�

=

HF (A

J

):

In the algebrai ontext, the preeding results have been obtained for n = 2 by Gao

([Gao93℄), and for n � 3 by Kassel and Loday ([KL82℄).

(b) For g = sp

2n

(A; �) (Example I.7, Example II.16()) the oordinate algebra is an assoiative

algebra A with involution. For

psp

2n

(A; �) := sp

2n

(A; �)=z(sp

2n

(A; �));

we therefore obtain

H

2

(psp

2n

(A; �))

�

=

HF (A)

and H

2

(sp

2n

(A; �)) is isomorphi to the kernel of the map

hA;Ai

�

! [A;A℄

��

; ha; bi 7! [a; b℄ + [a

�

; b

�

℄:

() If J is a Jordan algebra, then it follows from the onstrution in Example I.9 and our

expliit desription of the entrally losed �-graded Lie algebras in this setion that

℄

TKK(J)

is entrally losed, hene the notation. In the sense of Corollary IV.7, we ould also write

℄

TKK(J) =

e

g(A

2

; J).
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Example IV.14. (a) Let A be an assoiative algebra with involution � , A := A

�

, B := A

��

,

and onsider the modi�ed braket map de�ned by

b

�

(x; y) := [x; y℄� [x; y℄

�

= [x; y℄� [y

�

; x

�

℄ = [x; y℄ + [x

�

; y

�

℄:

Then b

�

de�nes a ontinuous linear map hA;Ai

�

! A

��

, and

HD

0

1

(A; �) := ker b

�

� hA;Ai

�

is alled the �rst skew-dihedral homology spae of (A; �) (see Appendix D for more information

on skew-dihedral homology). The orresponding full dihedral homology spae is

HF (A) = b

�1

�

(Z(A)) = fx 2 hA;Ai

�

: ad(b

�

(x)) = 0g:

(b) If A = A is an assoiative algebra, B = f0g , and Æ

A

(a; b) = ad([a; b℄) , then

hA;Ai

�

= hA;Ai

with the Lie algebra struture

[ha; bi; h; di℄ = h[a; b℄; [; d℄i

de�ned in Example III.10(2). If b

A

: hA;Ai ! A; ha; bi 7! [a; b℄ is the ommutator braket, then

HC

1

(A) := ker b

A

is the �rst yli homology of A , and in this ase the full skew-dihedral homology spae is the

full yli homology spae:

HF (A) = b

�1

A

(Z(A)) � HC

1

(A);

where Z(A) is the enter of A .

By orestrition of the braket map b

A

, we obtain a generalized entral extension of loally

onvex Lie algebras

HC

1

(A) ,! hA;Ai ! [A;A℄:

We also have a generalized entral extension of loally onvex Lie algebras

HF (A) ,! hA;Ai ! [A;A℄=

�

Z(A) \ [A;A℄):

() If A is ommutative and assoiative, then b

A

= 0, so that

HF (A) = HC

1

(A) = hA;Ai:

A more diret desription of this spae an be given as follows. Let M be a loally onvex

A-module in the sense that the module struture A �M ! M is ontinuous. A derivation

D:A!M is a ontinuous linear map with D(ab) = a:D(b)+ b:D(a) for a; b 2 A . One an show

that for eah loally onvex assoiative algebra there exists a universal di�erential module 


1

(A),

whih is endowed with a derivation d:A! 


1

(A) whih has the universal property that for eah

derivation D:A ! M there exists a ontinuous linear module homomorphism ': 


1

(A) ! M

with 'Æd = D (f. [Ma02℄). We onsider the quotient spae 


1

(A)=dA endowed with the loally

onvex quotient topology. Then we have a natural isomorphism

hA;Ai ! 


1

(A)=dA; ha; bi 7! [a � db℄:

Example IV.15. In general it is not always easy to determine the spae HC

1

(A) for a onrete

ommutative loally onvex algebra. The following ases are of partiular interest for appliations:

(1) 


1

(A) = f0g for any ommutative C

�

-algebra A (Johnson, 1972; see [BD73, Prop. VI.14℄).
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(2) If M is a onneted �nite-dimensional smooth manifold and A = C

1

(M;K ) for K 2 fR; C g ,

then A is a Fr�ehet algebra (a Fr�ehet spae with ontinuous algebra multipliation). If 


1

(M;K )

is the spae of smooth K -valued 1-forms on M , then the di�erential

d:C

1

(M;K ) ! 


1

(M;K ); f 7! df

has the universal property, and therefore




1

(A)

�

=




1

(M;K ) and HC

1

(A)

�

=




1

(M;K )=dC

1

(M;K )

([Ma02℄).

A similar result holds for the loally onvex algebra A = C

1



(M;K ) of smooth funtions

with ompat support, endowed with the loally onvex diret limit topology with respet to the

Fr�ehet spaes C

1

K

(M;K ) of all those funtions whose support is ontained in a �xed ompat

subset K �M . In this ase we have




1

(A)

�

=




1



(M;K ) and HC

1

(A)

�

=




1



(M;K )=dC

1



(M;K )

([Ma02℄, [Ne02d℄).

(3) If M is a omplex manifold, then the algebra A := O(M) of C -valued holomorphi

funtions is a Fr�ehet algebra with respet to the topology of uniform onvergene on ompat

subsets of M . Assume that M an be realized as an open submanifold of a losed submanifold

of some C

n

, i.e., as an open subset of a Stein manifold. Let 


1

O

(M) be the spae of holomorphi

1-forms on M . Then it is shown in [NW03℄ that the di�erential

d:O(M)! 


1

O

(M); f 7! df

has the universal property, and therefore




1

(A)

�

=




1

O

(M) and HC

1

(A)

�

=




1

O

(M)=dO(M):

Example IV.16. We onstrut two root graded Lie algebras g

1

and g

2

whih are isogenous,

non-isomorphi, but have trivial enter.

Let A be a loally onvex assoiative unital algebra with A = [A;A℄�K1 . Then the enter

of

sl

n

(A)

�

=

A
 sl

n

(K ) � [A;A℄
 1

is trivial.

For the assoiative Banah algebra B

2

(H) of Hilbert-Shmidt operators on an in�nite-

dimensional Hilbert spae H we onsider the assoiated unital Banah algebra A := B

2

(H)+K1 .

Then

hA;Ai = hB

2

(H); B

2

(H)i

follows from hA;1i = f0g . If gl

2

(H) := B

2

(H)

L

is the Lie algebra obtained from B

2

(H) via the

ommutator braket, then we have seen in Proposition III.18 that

e

gl

2

(H) = hgl

2

(H); gl

2

(H)i

�

=

sl(H), and the universal Lie algebra oyle is the ommutator braket

!

u

: gl

2

(H)� gl

2

(H)! sl(H):

On the other hand the disussion in Example III.10(2) shows that the spae hB

2

(H); B

2

(H)i

obtained from the assoiative algebra struture is a quotient of hgl

2

(H); gl

2

(H)i . As the braket

map q

gl

2

(H)

: hgl

2

(H); gl

2

(H)i ! gl

2

(H) is injetive, hB

2

(H); B

2

(H)i must be the quotient by

the trivial subspae, and therefore the braket map

hB

2

(H); B

2

(H)i ! sl

(

H); ha; bi 7! [a; b℄

is an isomorphism of Banah spaes.

Let n � 3. Then the natural morphism

e

sl

n

(A)

�

=

(A
 sl

n

(K )) � hA;Ai ! sl

n

(A)

is injetive, and hene

e

sl

n

(A) has trivial enter. As the map sl(H)! B

2

(H) is not surjetive, the

two A

n�1

-graded Lie algebras

e

sl

n

(A) and sl

n

(A) both have trivial enter but are not isomorphi.
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V. Perspetives: Root graded Lie groups

In this setion we briey disuss some aspets of the global Lie theory of root graded Lie algebras,

namely root graded Lie groups.

An in�nite-dimensional Lie group G is a manifold modeled on a loally onvex spae g

whih arries a group struture for whih the multipliation and the inversion map are smooth

([Mi83℄, [Gl01a℄, [Ne02b℄). The spae of left invariant vetor �elds on G is losed under the

Lie braket of vetor �elds, hene inherits a Lie algebra struture. Identifying elements of the

tangent spae g := T

1

(G) of G in the identity 1 with left invariant vetor �elds, we obtain on

g the struture of a loally onvex Lie algebra L(G). That the so obtained Lie braket on g is

ontinuous follows most easily from the observation that if we onsider the group multipliation

in loal oordinates, where the identity element 1 2 G orresponds to 0 2 g , then the �rst two

terms of its Taylor expansion are given by

x � y = x+ y + b(x; y) + � � � ;

where the quadrati term b: g� g! g is bilinear with

[x; y℄ = b(x; y)� b(y; x):

We all a loally onvex Lie algebra g integrable if there exists a Lie group G with L(G) = g .

A Lie group G is said to be �-graded if its Lie algebra L(G) is �-graded. The question when

a root graded Lie algebra g is integrable an be quite diÆult.

Aording to Lie's Third Theorem, every �nite-dimensional Lie algebra is integrable, but

this is no longer true for in�nite-dimensional loally onvex Lie algebras. If g is a Banah{Lie

algebra, then the Lie algebra g=z(g) always is integrable. Let PG(g) denote a orresponding

onneted Lie group. Then there is a natural homomorphism of abelian groups, alled the period

homomorphism

per

g

:�

2

(PG(g))! z(g);

and g is integrable if and only if the image of per

g

is disrete. For general loally onvex Lie

algebras the situation is more ompliated, but if q:

b

g! g = L(G) is a entral extension with a

sequentially omplex loally onvex spae z as kernel and a ontinuous linear setion, then there

is a period homomorphism

per:�

2

(G)! z;

and the existene of a Lie group

b

G with L(

b

G) =

b

g depends on the disreteness of the image

of per ([Ne02a℄, [Ne03a℄). For �nite-dimensional groups these obstrutions are vauous beause

�

2

(G) always vanishes by a theorem of

�

E. Cartan ([Mim95, Th. 3.7℄).

For the lass of root graded Banah{Lie algebras the situation an be desribed very well

by period maps. In this ase the Lie algebra g is integrable if and only if the image of per

g

is disrete. As the universal overing

e

g of g also is a universal overing of g=z(g)

�

=

e

g=z(

e

g)

(Remark III.15), we obtain a similar riterion for the integrability of

e

g via a period map

per

eg

:�

2

(PG(g))! z(

e

g) = HF (A);

where A is the oordinate algebra of g and HF (A) is its full skew-dihedral homology. If g

1

is

a quotient of

e

g by a entral subspae and

e

g is integrable, then g

1

is integrable if and only if the

period map

per

g

1

:�

2

(PG(g))! z(g

1

)

obtained by omposing per

eg

with the natural map z(

e

g)! z(g

1

) has disrete image.

For general loally onvex root graded Lie algebras whih are not Banah{Lie algebras

the situation is less lear, but there are many important lasses of loally onvex root graded
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Lie algebras, to whih many results from the Banah ontext an be extended, namely the Lie

algebras related to matrix algebras over ontinuous inverse algebras. A unital ontinuous inverse

algebra (CIA) is a unital loally onvex algebra A for whih the unit group A

�

is open and the

inversion is a ontinuous map A

�

! A; a 7! a

�1

. Typial assoiated root graded Lie algebras

are the A

n�1

-graded Lie algebra sl

n

(A), and for a ommutative CIA the Lie algebras of the

type g = A
 g

�

(f. [Gl01b℄). Further examples are the Lie algebras sp

2n

(A; �) and o

n;n

(A; �)

disussed in Setion I. For Jordan algebras the situation is more ompliated, but in this ontext

there also is a natural onept of a ontinuous inverse Jordan algebra, whih is studied in [BN03℄,

and an be applied to show that ertain related Lie algebras are integrable.

Both lasses lead to interesting questions in non-ommutative geometry beause for a

sequentially omplete CIA the disreteness of the image of the period map for

e

sl

n

(A) follows

from the disreteness of the image of a natural homomorphism

P

3

A

:K

3

(A)! HC

1

(A)

�

=

H

2

(sl

n

(A));

where K

3

(A) := lim

�!

�

2

(GL

n

(A)) is the third topologial K -group of the algebra A . If, in

addition, A is omplex, Bott periodiity implies that

K

3

(A)

�

=

K

1

(A) := lim

�!

�

0

(GL

n

(A));

and the latter group is muh better aessible. In partiular, we get a period map

P

1

A

:K

1

(A)! HC

1

(A):

One an show that this homomorphism is uniquely determined as a natural transformation

between the funtors K

1

and HC

1

, whih permits us to evaluate it for many onrete CIAs

([Ne03a℄). If P

A

has disrete image, then

e

sl

n

(A) is integrable, but the onverse is not lear and

might even be false. Nevertheless, one an onstrut ertain Fr�ehet CIAs whih are quantum

tori of dimension three, for whih the Lie algebra

e

sl

n

(A) is not integrable. For the details of

these onstrutions we refer to [Ne03a℄.

There is also a purely algebrai approah to groups orresponding to root graded Lie

algebras. Here we assoiate to a root graded Lie algebra g the orresponding projetive group

PG

alg

(g) := he

ad g

�

:� 2 �i � Aut(g):

As eah derivation adx , x 2 g

�

, of g is nilpotent, the operator e

adx

is a well-de�ned automor-

phism of g (f. [Ti96℄, [Ze94℄). The group PG

alg

(g) an easily seen to be perfet, so that it has

a universal overing group (a universal entral extension)

e

G

alg

(g). Let PG(g) be a Lie group

with Lie algebra g=z(g). There are many interesting problems assoiated with these groups:

(1) Desribe

e

G

alg

(g) by generators and relations.

(2) Show that PG(g) is a topologially perfet group. When is it perfet?

(3) Suppose that

e

G

(g) is a Lie group with Lie algebra

e

g . Desribe the kernel of the universal

overing

e

G

(g)! PG(g) in terms of the oordinate algebra.

(4) Is there a homomorphism PG

alg

(g)! PG(g)?

(5) Is there a homomorphism

e

G

alg

(g)!

e

G

(g)?

It is an interesting projet to larify the preise relation between the Lie theoreti (analyti)

approah to root graded groups and the algebrai one.
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Appendix A. Some generalities on representations

In this setion we ollet some material on �nite-dimensional representations of redutive Lie

algebras, whih is used in Setions II and III of this paper. All results in this appendix are valid

over any �eld K of harateristi zero.

Let r be a �nite-dimensional split redutive Lie algebra over the �eld K of harateristi

zero and h � r a splitting Cartan subalgebra. We �x a positive system �

+

of roots of r with

respet to h and write L(�) for the simple r-module of highest weight � 2 h

�

with respet to

�

+

. We write Z := Z(U(r)) for the enter of the enveloping algebra U(r) of r . Reall that

for eah highest weight module V we have End

r

(V ) = K1 beause the highest weight spae is

one-dimensional and yli. Therefore Z ats by salar multiples of the identity on L(�), and we

obtain for eah � an algebra homomorphism �

�

:Z ! K , the orresponding entral harater.

The following theorem permits us to see immediately that ertain modules are loally �nite.

We all an r-module an h-weight module if it is the diret sum of the ommon h-eigenspaes.

An h-weight module V of a split redutive Lie algebra r is alled integrable if for eah x

�

2 r

�

the operator adx

�

is loally nilpotent.

Theorem A.1. For an h-weight module V of the �nite-dimensional split redutive Lie algebra

r with splitting Cartan subalgebra h the following assertions hold:

(1) If V is integrable, then V is loally �nite and semisimple.

(2) If supp(V ) := f� 2 h

�

:V

�

6= f0gg is �nite, then V is integrable.

Proof. (1) Let V be an integrable r-module and � := f�

1

; : : : ; �

m

g . Then

r = h� r

�

1

� : : :� r

�

m

;

so that the Poinar�e{Birkho�{Witt Theorem implies

U(r) = U(h)U(r

�

1

) � � �U(r

�

m

):

Sine V is integrable, it is by de�nition a loally �nite module for eah of the one-dimensional

Lie algebras r

�

, � 2 �. Hene for eah vetor v 2 V we see indutively that the spae

U(r

�

j

) � � �U(r

�

m

):v

is �nite-dimensional for j = m;m � 1; : : : ; 1, and �nally that U(r):v is �nite-dimensional.

Therefore V is a loally �nite r-module.

Let F � V be a �nite-dimensional submodule. Sine F is a weight module, it is a

diret sum of the ommon eigenspaes for z(r) � h , whih are r-submodules. Aording to

Weyl's Theorem, these ommon eigenspaes are semisimple modules of the semisimple Lie algebra

r

0

:= [r; r℄ , hene also of r = r

0

+ z(r). Therefore F is a sum of simple submodules, and the same

onlusion holds for the loally �nite module V . As a sum of simple submodules, the module V

is semisimple ([La93, XVII, x2℄).

(2) If supp(V ) is �nite, then x

�

:V

�

� V

�+�

for � 2 supp(V ) and � 2 � imply that the root

vetors x

�

at as loally nilpotent operators on V .

The preeding theorem is a speial ase of a muh deeper theorem on Ka{Moody algebras.

Aording to the Ka{Peterson Theorem, eah integrable module in ategory O is semisimple

([MP95, Th. 6.5.1℄). This implies in partiular that integrable modules of �nite-dimensional split

redutive Lie algebras are semisimple.

Proposition A.2. Let V be an h-weight module of r for whih supp(V ) is �nite. Then the

following assertions hold:

(1) V is a semisimple r-module with �nitely many isotypi omponents V

1

; : : : ; V

n

.
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(2) The simple submodules of V are �nite-dimensional highest weight modules L(�

1

); : : : ; L(�

n

) .

(3) For eah j 2 f1; : : : ; ng there exists a entral element z

j

in U(g

�

) with �

�

k

(z

j

) = Æ

jk

. In

partiular, z

j

ats on V as the projetion onto the isotypi omponent V

j

.

Proof. (1), (2) First Theorem A.1 implies that V is semisimple. Moreover, eah simple

submodule is a �nite-dimensional weight module, hene isomorphi to some L(�). As supp(V )

is �nite, there are only �nitely many possibilities for the highest weights � .

(3) Aording to Harish-Chandra's Theorem ([Dix74, Prop. 7.4.7℄), for �; � 2 h

�

we have

�

�

= �

�

, �+ � 2 W :(�+ �);

where W is the Weyl group of (r; h) and � =

1

2

P

�2�

+

� . If L(�) and L(�) are �nite-

dimensional, then � and � are dominant integral. Therefore � + � and � + � are dominant,

so that �+ � 2 W :(�+ �) implies � = � . Hene two non-isomorphi �nite-dimensional highest

weight modules L(�) and L(�) have di�erent entral haraters.

This proves that the entral haraters �

�

1

; : : : ; �

�

n

orresponding to the isotypi ompo-

nents of V are pairwise di�erent. As the kernel of a harater is a hyperplane ideal, this means

that for i 6= j we have

ker�

�

i

+ ker�

�

j

= Z:

Now the Chinese Remainder Theorem ([La93, Th. II.2.1℄) implies that the map

�:Z ! K

n

; z 7! (�

�

1

(z); : : : ; �

�

n

(z))

is surjetive. Finally (3) follows with z

i

:= �

�1

(e

i

), where e

1

; : : : ; e

n

2 K

n

are the standard

basis vetors.

For the following lemma, we reall the de�nition of Lie algebra ohomology from [We95℄.

Lemma A.3. If s is a �nite-dimensional semisimple Lie algebra and V a loally �nite s-

module, then

H

p

(s; V ) = f0g for p = 1; 2:

Proof. As V is a diret sum of �nite-dimensional modules V

j

, j 2 J , the relations

C

p

(s; V )

�

=

M

j2J

C

p

(s; V

j

) easily lead to H

p

(s; V )

�

=

M

j2J

H

p

(s; V

j

);

so that the assertion follows from the Whitehead Lemmas ([We95, Cor. 7.8.10/12℄), saying that

H

p

(s; V

j

) vanishes for eah j and p = 1; 2.

Proposition A.4. Let s be a semisimple �nite-dimensional Lie algebra s .

(1) Eah extension Z ,!



M

q

��!M of a loally �nite s-module M by a trivial module Z is

trivial.

(2) Eah extension M ,!



M

q

��!Z of a trivial s-module Z by a loally �nite s-module M is

trivial.

Proof. (1) If



M is loally �nite, then Weyl's Theorem implies that it is semisimple, and

therefore that the extension of M by Z splits. Hene it suÆes to show that



M is loally

�nite. Let v 2



M . We have to show that v generates a �nite-dimensional submodule. Sine the

s-submodule of M generated by q(v) is �nite-dimensional, we may replae M by this module

and hene assume that M is �nite-dimensional. Now

Ext(M;Z)

�

=

H

1

(s;Hom(M;Z))

([We95, Ex. 7.4.5℄), and Hom(M;Z)

�

=

M

�


 Z is a loally �nite module, so that

H

1

(s;Hom(M;Z)) = f0g
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(Lemma A.3). Therefore the module extension splits, and in partiular



M is loally �nite.

(2) First we show that



M is loally �nite. Let v 2



M . To see that v generates a �nite-

dimensional submodule, we may assume that Z is one-dimensional. Then Hom(Z;M)

�

=

M

is a loally �nite s-module, and the same argument as in (1) above implies that the extension



M ! Z is trivial. In partiular, we onlude that



M is loally �nite.

Returning to the general situation, we obtain from Weyl's Theorem that the loally �nite

module



M is semisimple, hene in partiular that



M = g:



M �



M

g

. As Z is trivial, we have

g:



M � M , so that eah subspae of



M

g

omplementing M \



M

g

yields a module omplement

to M .

Appendix B. Jordan algebras and alternative algebras

In this appendix we ollet some elementary results on Jordan algebras.

Jordan algebras

De�nition B.1. A �nite dimensional vetor spae J over a �eld K is said to be a Jordan

algebra if it is endowed with a bilinear map J � J ! J satisfying:

(JA1) xy = yx .

(JA2) x(x

2

y) = x

2

(xy).

In this setion J denotes a Jordan algebra and (a; b) 7! L(a)b := ab = ba the multipliation

of J . Then (JA2) means that

[L(a); L(a

2

)℄ = 0 for all a 2 J:

Proposition B.2. For a Jordan algebra J over a �eld K with f2; 3g � K

�

the following

assertions hold for x; y; z 2 J .

(1) [L(x); L(yz)℄ + [L(y); L(zx)℄ + [L(z); L(xy)℄ = 0 .

(2) L(x(yz)� y(xz)) = [[L(x); L(y)℄; L(z)℄ .

Proof. Passing to the �rst derivative of (JA2) with respet to x in the diretion of z leads to

z(x

2

y) + 2x((xz)y) = 2(xz)(xy) + x

2

(zy)

for x; y; z 2 J . Passing again to the derivative with respet to x in the diretion of u leads to

z((xu)y) + u((xz)y) + x((uz)y) = (uz)(xy) + (xz)(uy) + (xu)(zy)

for u; x; y; z 2 J . This means that

[L(z); L(xu)℄ + [L(u); L(xz)℄ + [L(x); L(uz)℄ = 0;

or

L(xy)L(z) + L(zx)L(y) + L(yz)L(x) = L(z)L(y)L(x) + L

�

(zx)y

�

+ L(x)L(y)L(z):

Note that the expression

L(xy)L(z) + L(zx)L(y) + L(yz)L(x)

is invariant under any permutation of x; y; z . By exhanging x and y and subtrating, we

therefore obtain

[[L(x); L(y)℄; L(z)℄ = L

�

(zy)x

�

� L

�

(zx)y

�

= L

�

x(yz)� y(xz)

�

:

Corollary B.3. [L(J); L(J)℄ � der(J) .

Proof. This means that for x; y 2 J the operator D := [L(x); L(y)℄ is a derivation of J ,

whih in turn means that

[D;L(z)℄ = L(D:z); z 2 J:

This is a reformulation of Proposition B.2(2).
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Jordan algebras assoiated to bilinear forms

Lemma B.4. Let A be a ommutative assoiative algebra, B an A-module and �:B�B ! A

a symmetri bilinear form whih is invariant in the sense that

a�(b; b

0

) = �(ab; b

0

) = �(b; ab

0

); a 2 A; b; b

0

2 B:

Then A := A�B is a Jordan algebra with respet to

(a; b)(a

0

; b

0

) := (aa

0

+ �(b; b

0

); ab

0

+ a

0

b):

Proof. First we note that

L(a; 0)(a

0

; b

0

) = (aa

0

; ab

0

) and L(0; b)(a

0

; b

0

) = (�(b; b

0

); a

0

b):

The set L(A; 0) � End(A) is ommutative beause A is a ommutative algebra. Further

L(0; b)L(a; 0)(a

0

; b

0

) = (�(b; ab

0

); aa

0

b) = L(a; 0)L(0; b)(a

0

; b

0

)

implies that L(A; 0) ommutes with L(0; B), so that L(A; 0) is entral in the subspae L(A) of

End(A).

It is lear that A is ommutative. To see that it is a Jordan algebra, we have to verify that

eah L(a; b) ommutes with

L((a; b)

2

) = L(a

2

+ �(b; b); 2ab):

As L(A; 0) is entral in L(A), it suÆes to show that L(0; b) ommutes with L(0; ab), whih

follows from

L(0; b)L(0; ab)(x; y) = L(0; b)(�(ab; y); xab) = (�(b; xab); �(ab; y)b)

= (�(xb; ab); �(b; y)ab) = L(0; ab)(�(b; y); xb) = L(0; ab)L(0; b)(x; y):

Alternative algebras

Lemma B.5. Let A be a (non-assoiative) algebra. For a; b;  2 A we de�ne the assoiator

(a; b; ) := (ab)� a(b):

Then the assoiator is an alternating funtion if and only if for a; b 2 A we have

(B:1) a

2

b = a(ab) and ab

2

= (ab)b:

Proof. First we assume that the assoiator is alternating. Then

a

2

b� a(ab) = (a; a; b) = 0 and ab

2

� (ab)b = (a; b; b) = 0:

Suppose, onversely, that (B.1) is satis�ed. The derivative of the funtion

f



(a) := a

2

� a(a)

in the diretion of b is given by

df



(a)(b) = (ab+ ba)� b(a)� a(b);

whih leads to the identity

(a; b; ) = (ab)� a(b) = b(a)� (ba) = �(b; a; ):

We likewise obtain from a(

2

) = (a) the identity

(a; b; ) = (ab)� a(b) = a(b)� (a)b = �(a; ; b):

As the group S

3

is generated by the transpositions (12) and (23), the assoiator is an alternating

funtion.
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We all an algebra A alternative if the onditions from Lemma B.5 are satis�ed. For

L

a

(b) := ab =: R

b

(a) this means that

L

2

a

= L

a

2

and R

b

2

= R

2

b

:

Theorem B.6. (Artin) An algebra is alternative if every subalgebra generated by two elements

is assoiative.

Proof. In view of (B.1), the algebra A is alternative if any pair (a; b) of elements generates

an assoiative subalgebra. For the onverse we refer to [Sh66, Th. 3.1℄.

Lemma B.7. Eah alternative algebra is a Jordan algebra with respet to a Æ b :=

1

2

(ab+ ba):

Proof. Let L

J

a

(b) := a Æ b , L

a

(b) = ab and R

a

(b) := ba . Sine A is alternative, we have

0 = (a; b; a) = (ab)a� a(ba)

whih means that [L

a

; R

a

℄ = 0. Therefore the assoiative subalgebra of End(A) generated by

L

a

and R

a

is ommutative. Sine L

J

a

=

1

2

(L

a

+R

a

) ommutes with

L

J

a

2

=

1

2

�

L

a

2

+R

a

2

�

=

1

2

�

L

2

a

+R

2

a

�

;

(A; Æ) is a Jordan algebra.

Appendix C. Jordan triple systems

The natural bridge between Lie algebras and Jordan algebras is formed by Jordan triple systems.

In this appendix we briey reall how this bridge works. We are using this orrespondene in

partiular in Setion III to see that for eah A

1

-graded Lie algebra the oordinate algebra is a

Jordan algebra.

De�nition C.1. (a) A �nite dimensional vetor spae V over a �eld K is said to be a Jordan

triple system (JTS) if it is endowed with a trilinear map f�g:V � V � V ! V satisfying:

(JT1) fx; y; zg = fz; y; xg .

(JT2) fa; b; fx; y; zgg = ffa; b; xg; y; zg� fx; fb; a; yg; zg+ fx; y; fa; b; zgg for all a; b; x; y; z 2 V .

For x; y 2 V we de�ne the operator x�y by (x�y):z := fx; y; zg and put P (x)(y) := fx; y; xg .

Then (JT2) is equivalent to

(JT2

0

) [a�b; x�y℄ =

�

(a�b):x

�

�y � x�

�

(b�a):y

�

:

It follows in partiular that the subspae V�V � End

K

(V ) spanned by the elements x�y is a

Lie algebra. This Lie algebra is denoted istr(V ) and alled the inner struture algebra of V .

If 2 2 K

�

, then (JT1) implies that the trilinear map f�; �; �g an be reonstruted from

the quadrati maps P (x) via polarization of P (x):y = fx; y; xg , i.e., by taking derivatives w.r.t.

x in the diretion of z . Therefore the Jordan triple struture is ompletely determined by the

maps P (x), x 2 V .

Lemma C.2. If 3 2 K

�

and (V; f�; �; �g) is a Jordan triple system, then the following formulas

hold for x; y; z 2 V :

(1) P (x):fy; x; zg = fP (x):y; z; xg = fx; y; P (x):zg .

(2) P (x)(y�x) = (x�y)P (x) .

(3) [P (x)P (y); x�y℄ = 0 .

Proof. (1) From the Jordan triple identity

x�y:fa; b; g = fx�y:a; b; g� fa; y�x:b; g+ fa; b; x�y:g
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we derive

fx; y; fx; z; xgg = ffx; y; xg; z; xg� fx; fy; x; zg; xg+ fx; z; fx; y; xgg

= 2ffx; y; xg; z; xg� fx; fy; x; zg; xg

= 2fx; y; fx; z; xgg� 2fx; fy; x; zg; xg+ 2ffx; z; xg; y; xg� fx; fy; x; zg; xg

= 4fx; y; fx; z; xgg� 3fx; fy; x; zg; xg:

This implies

3fx; y; fx; z; xgg = 3fx; fy; x; zg; xg;

so that 3 2 K

�

leads to

fx; y; fx; z; xgg = fx; fy; x; zg; xg:

This is the seond equality we had to prove. The �rst one follows from the seond one, whih

implies that fx; y; fx; z; xgg is symmetri in y and z .

(2) follows diretly from (1).

(3) is an immediate onsequene of (2).

Theorem C.3. (a) If g = g

1

� g

0

� g

�1

is a 3-graded Lie algebra with an involutive

automorphism � satisfying �(g

j

) = g

�j

for j = 0;�1 , then V := g

1

is a Jordan triple system

with respet to fx; y; zg :=

�

[x; �:y℄; z

�

.

(b) If, onversely, V is a Jordan triple system for whih there exists an involution � on istr(V )

with �(a�b) = �b�a for a; b 2 V , then g := V � istr(V ) � V is a Lie algebra with respet to

the braket

[(a; x; d); (a

0

; x

0

; d

0

)℄ = (x:a

0

� x

0

:a; a�d

0

� a

0

�d+ [x; x

0

℄; �(x):d

0

� �(x

0

):d)

and �(a; b; ) := (; �(b); a) is an involutive automorphism of g .

Proof. (a) Sine g is graded, we have [g

1

; g

1

℄ = f0g , and this implies that [adx; ad y℄ = 0 for

x; y 2 g

1

, hene (JT1). To verify (JT2), we �rst observe that a�b = ad[x; �:y℄ . We have

�

[a; �:b℄; [; �:d℄

�

=

�

[[a; �:b℄; ℄; �:d

�

+

�

; [[a; �:b℄; �:d℄

�

=

�

[[a; �:b℄; ℄; �:d

�

+

�

; �:[[�:a; b℄; d℄

�

=

�

[[a; �:b℄; ℄; �:d

�

�

�

; �:[[b; �:a℄; d℄

�

:

Therefore (JT2) follows from

[a�b; �d℄ = ad

�

[a; �:b℄; [; �:d℄

�

= ad

�

[[a; �:b℄; ℄; �:d

�

� ad

�

; �:[[b; �:a℄; d℄

�

= (a�b):�d� �(b�a):d:

(b) One observes diretly that � is an involution preserving the braket. It is lear that the

braket is skew symmetri, so that

J(x; y; z) :=

�

[x; y℄; z

�

+

�

[y; z℄; x

�

+

�

[z; x℄; y

�

is an alternating trilinear funtion on g . We have to show that J vanishes.

Let g

1

:= V � f(0; 0)g , g

0

= f0g � istr(V ) � f0g , and g

�1

:= f(0; 0)g � V . It is easy to

hek that J(x; y; z) = 0 if no entry is ontained in g

1

or no entry is ontained in g

�1

. We

identify x 2 V with (x; 0; 0) and write ex = (0; 0; x) for the orresponding element of g

�1

. Then

we may assume that the �rst entry is x 2 g

1

and the seond one is ey 2 g

�1

. For z 2 V

�

=

g

1

we

then obtain

J(x; ey; z) =

�

[ey; z℄; x

�

+

�

[x; ey℄; z

�

= (x�y):z � (z�y):x = fx; y; zg � fz; y; xg = 0:

If z 2 g

�1

, the assertion follows from �:J(x; ey; z) = J(�:x; �:ey; �:z) = 0: Finally, let z 2 g

0

. We

may assume that z = a�b . Then (JT2) implies that [z; x�y℄ = [z; x℄�y+ x��(z):y . This leads

to

J(x; ey; z) =

�

[ey; z℄; x

�

+

�

[z; x℄; ey

�

+

�

[x; ey℄; z

�

= �[(�(z):y)e; x℄ + [z:x; ey℄ + [x�y; z℄

= x�(�(z):y) + (z:x)�y � [z; x�z℄ = 0:

We onlude this setion with the onnetion between Jordan algebras and Jordan triple

systems.
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Theorem C.4. (a) If J is a Jordan algebra, then J is a Jordan triple system with respet to

(C:1) fx; y; zg = (xy)z + x(yz)� y(xz); i.e., x�y = L(xy) + [L(x); L(y)℄;

where we write L(x)y := xy for the left multipliations in J .

(b) If V is a JTS and a 2 V , then

x �

a

y := fx; a; yg

de�nes on V the struture of a Jordan algebra. The Jordan triple struture determined by the

Jordan produt �

a

is given by

fx; y; zg

a

= fx; fa; y; ag; zg = fx; P (a):y; zg:

It oinides with the original one if P (a) = 1 .

() Let J be a Jordan algebra whih we endow with the Jordan triple struture from (a). If e 2 J

is an identity element, then x �

e

y = xy reonstruts the Jordan algebra struture from the Jordan

triple struture.

Proof. (a) From (JA1) it immediately follows that (C.1) satis�es (JT1). The proof of (JT2)

requires Lemma B.2.

In view of Corollary B.3, D := [L(x); L(y)℄ is a derivation of J , so that

D:fa; b; g = fD:a; b; g+ fa;D:b; g+ fa; b;D:g:

Therefore (C.1) shows that to prove (JT2), it suÆes to show that for eah x 2 J we have

L(x):fa; b; g = fL(x):a; b; g � fa; L(x):b; g+ fa; b; L(x):g;

i.e.,

L(x):(a�b) = (xa)�b� a�(xb) + (a�b)L(x);

whih in turn means that

L(x)L(ab) + L(x)[L(a); L(b)℄

= L((xa)b) + [L(xa); L(b)℄� L(a(bx))� [L(a); L(xb)℄ + L(ab)L(x) + [L(a); L(b)℄L(x);

i.e.,

[L(x); L(ab)℄ + [L(a); L(xb)℄ + [L(b); L(ax)℄ = [[L(a); L(b)℄; L(x)℄ + L((xa)b)� L(a(bx)):

This identity follows from Lemma B.2, beause both sides of this equation vanish separately.

(b) Put xy := x �

a

y , so that L(x) = x�a . The identity (JA1) follows diretly from (JT1). To

verify (JA2), we observe that

L(x

2

):y = ffx; a; xg; a; yg = fy; a; fx; a; xgg

= ffy; a; xg; a; xg � fx; fa; y; ag; xg+ fx; a; fy; a; xgg

= 2(x�a)

2

:y � P (x)P (a):y:

Therefore Lemma C.2(3) implies

[L(x

2

); L(x)℄ = [2(x�a)

2

� P (x)P (a); x�a℄ = [x�a; P (x)P (a)℄ = 0:

The quadrati operator P

a

(x) assoiated to the Jordan triple struture de�ned by �

a

in

the sense of (a) is given by

P

a

(x) = 2L(x)

2

� L(x

2

) = 2(x�a)

2

�

�

2(x�a)

2

� P (x)P (a)

�

= P (x)P (a):

Therefore the Jordan triple struture assoiated to �

a

is given by fx; y; zg

a

= fx; P (a):y; zg .

() is trivial.
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Appendix D. Skew dihedral ohomology

In this setion we briey reall the de�nition of skew dihedral ohomology of assoiative algebras,

whih is the bakground for the de�nition of the full skew-dihedral homology spaes de�ned in

Setion IV.

De�nition D.1. Let A be a unital assoiative algebra and C

n

(A) := A


(n+1)

the (n+1)-fold

tensor produt of A with itself. We de�ne a boundary operator

b

n

:C

n

(A)! C

n�1

(A) for n 2 N

and b

0

:C

0

(A)! f0g by

b

n

(a

0


 : : :
 a

n

)

:=

n�1

X

i=0

(�1)

i

a

0


 a

1


 � � � 
 a

i

a

i+1


 � � � 
 a

n

+ (�1)

n

a

n

a

0


 a

1


 � � � 
 a

n�1

:

Then b

n

b

n+1

= 0 for eah n 2 N

0

, and the orresponding homology spaes HH

�

(A) are alled

the Hohshild homology of A .

Of partiular interest for Lie algebras is the �rst Hohshild homology group HH

1

(A).

The map b

1

:C

1

(A) = A
A ! C

0

(A)

�

=

A is given by

b

1

(x
 y) = xy � yx = [x; y℄;

so that Z

1

(A) = ker b � C

1

(A) is the kernel of the braket map. The spae B

1

(A) of boundaries

is spanned by elements of the type

b

2

(x 
 y 
 z) = xy 
 z � x
 yz + zx
 y:

Note in partiular that b

2

(x
 1
 1) = x
 1; so that A
 1 � B

1

(A).

De�nition D.2. Let (A; �) be an assoiative algebra with involution �:A ! A; a 7! a

�

.

Then we obtain a natural ation of the dihedral group D

n+1

on the spae C

n

(A) as follows. We

present D

n+1

as the group generated by x

n

and y

n

subjet to the relations

x

n+1

n

= y

2

n

= 1 and y

n

x

n

y

�1

n

= x

�1

n

;

and de�ne the ation of x

n

and y

n

on C

n

(A) by

x

n

(a

0


 : : :
 a

n

) := (�1)

n

a

n


 a

0


 : : :
 a

n�1

and

y

n

(a

0


 : : :
 a

n

) := �(�1)

n(n+1)

2

a

�

0


 a

�

n


 a

�

n�1

: : :
 a

�

2


 a

�

1

:

These operators are ompatible with the boundary operators in the sense that the operators b

n

indue on the spaes C

0

n

(A) of oinvariants for the D

n+1

-ation boundary operators

b

0

n

:C

0

n

(A)! C

0

n�1

(A):

The orresponding homology is alled the skew-dihedral homology HD

0

n

(A; �) of the algebra with

involution (A; �) (f. [Lo98, 10.5.4; Th. 5.2.8℄).

In the present paper we only need the spae HD

0

1

(A; �). We observe that

x

1

:(a

0


 a

1

) = �a

1


 a

0

and y

1

:(a

0


 a

1

) = a

�

0


 a

�

1

:

Writing the image of a

0


 a

1

in C

0

1

(A) as ha; bi , this means that

ha

0

; a

1

i = �ha

1

; a

0

i = ha

�

0

; a

�

1

i; a

0

; a

1

2 A:

It follows in partiular that hA

�

;A

��

i = f0g , and further that

C

0

1

(A)

�

=

�

2

(A

�

)� �

2

(A

��

):

Moreover,

b

0

2

(ha

0

; a

1

; a

2

i) = ha

0

a

1

; a

2

i � ha

0

; a

1

a

2

i+ ha

2

a

0

; a

1

i = ha

0

a

1

; a

2

i+ ha

1

a

2

; a

0

i+ ha

2

a

0

; a

1

i;

and these elements span the spae B

0

1

(A) � C

0

1

(A) of skew-dihedral 1-boundaries.
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