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Abstrat

In this paper, we onsider the numerial solution of time{dependent

PDEs using a �nite element method based upon rh{adaptivity. An adap-

tive horizontal method of lines strategy equipped with a posteriori error

estimates to ontrol the disretization through variable time steps and

spatial grid adaptations is used. Our approah ombines an r{re�nement

method based upon solving so{alled moving mesh PDEs with h{re�nement.

Numerial results are presented to demonstrate the apabilities and ben-

e�ts of ombining mesh movement and loal re�nement.

1 Introdution

In the numerial simulation of multisale dynami proesses an important aspet

is to generate grids, or meshes, adapted to the solutions. Numerous examples

demonstrate that adaptive mesh strategies an greatly redue the errors and

the omputational e�ort for �nite element methods (FEMs). This approah has

been applied in a wide range of important physial and industrial ontexts suh

as problems in uid dynamis (e.g., reative ow in a piston engine and ow

around a pithing airfoil or moving bodies) and semiondutor devie fabriation

(e.g., modeling oxide ow, rystal growth, or phase hange). Traditionally, the

quite robust h{method is applied, where the mesh is loally re�ned or oarsened
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by adding or deleting mesh points. This is often ombined with the p{method,

for whih the polynomial degree in eah element is seleted in aordane with

the smoothness properties of the solution. The hp{adaptive FEM has proven

suessful at aurately resolving and following important solution features for

a wide variety of pratial problems [5, 36℄.

Our goal here is to omplement the h-adaptive strategy with an r{method,

whih dynamially redistributes the mesh points in time. As is well{known,

moving mesh methods are superior at reduing dispersive errors in the viinity

of wave fronts while loal re�nement methods an, in priniple, add enough

degrees of freedom to resolve any �ne sale struture. We expet that ombining

mesh movement with loal re�nement generally will not only make the global

error ontrol possible for the r{method, but also avoid the need for exessive

loal re�nements (f. Fig. 1 below), and produe grids that are better aligned

with and losely follow the solution features.

Not surprisingly, rh{adaptive methods have been onsidered to some extent

in previous studies. Adjerid and Flaherty [2℄ present a one{dimensional

moving mesh FEM with loal re�nement for paraboli PDEs. Their approah

is extended by Arney and Flaherty [1℄ to the two{dimensional ase, where

lusters of mesh points are built up and moved with an error{dependent speed.

To prevent mesh tangling, Gropp [17℄ introdues a loal uniform re�nement

strategy with moving grids. Several tehniques for the reation and annihila-

tion of moving nodes have been advoated by Kuprat [28℄. Although no loal

re�nement is utilized in the two{ and three{dimensional mesh update strate-

gies proposed by Johnson and Tezduyar [27℄ and Nkonga and Guillard

[32℄, they are also of speial interest sine they show the usefulness of moving

tehniques for industrial appliations. Finally, in reent work Habashi and

oworkers [13, 20℄ have investigated the potential of a so-alled mesh optimiza-

tion methodology (MOM), whih has both r{ and h{re�nement omponents, for

higher dimensional CFD problems.

A general and robust rh{method requires a well{posed general proedure

to determine the movement of the mesh points smoothly in time, espeially in

higher spatial dimensions. Miller, who �rst introdued a type of moving FEM

[31℄, and his o{workers propose using the �nite element residuals to steer the

mesh movement [12℄. Similar ideas are utilized by Baines [6℄. We present in

this paper an rh{method that interonnets the h{re�nement with a general

moving mesh method developed reently in [25, 26℄. This r{method is based on

the gradient ow equation of a funtional whih measures the approximation

diÆulty of the physial solution. It has been shown general and reliable for a

variety of pratial model problems [9, 11℄.

The basi idea of our rh-adaptive strategy is as follows: we �rst disretize

both the physial and moving mesh PDEs in time by a Rosenbrok{Wanner{

type sheme. Then a �nite element approximation is applied in eah time step.

A hierarhial error estimator developed in [30℄ is used to onstrut the monitor

funtion for the moving mesh PDE and to move the grid aordingly. After

moving the mesh, we realulate the physial solution and estimate the error.

For elements with error estimates exeeding the tolerane, loal re�nements are
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Figure 1: Approximation of the hyperboli funtion u=seh ( 50 (x

2

+y

2

�0:09))

on 
=f(x; y) 2 R

2

: x

2

+ y

2

� 1g: r{re�nement with N = 817 yields an error

kek

L

2

(
)

=3:55E�2 (left), h{re�nement with N = 541 yields kek

L

2

(
)

=1:91E�2

(middle), and rh{re�nement with N = 541 yields kek

L

2

(
)

=1:57E�2 (right).

While the r{method wastes too many nodes, the ombined rh{method results

in a mesh well{�tted to the exponentional behaviour of the funtion and shows

its potential ompared to the pure h{method.

applied until the tolerane is ompletely satis�ed. In regions with errors far less

than the tolerane, grid points are deleted. We test suh an adaptive strategy

with nonlinear PDEs from uid ow and ombustion. Numerial results show

that the ombined rh{method redues signi�antly the number of degree of

freedoms to ahieve a presribed error tolerane.

The paper is organized as follows. In setion 2 the basi physial PDEs

and moving mesh PDEs are desribed. The temporal and spatial disretiza-

tion shemes are introdued in setion 3. After desribing the error estimation

tehnique whih is in turn used to de�ne the monitor funtion in setion 4, the

adaptive algorithm based upon the rh{method is desribed in setion 5. We then

give two numerial examples to demonstrate the performane of the algorithm,

followed by some onlusions.

2 Model Problem and Moving Mesh Method

2.1 Model Problem

We shall onsider a system of physial PDEs of the form

8

>

>

>

>

>

<

>

>

>

>

>

:

H(x; t;u;ru) �

t

u = r � (D(x; t;u;ru)ru) + F (x; t;u;ru)

in 
� I;

B(x; t;u;ru)u = b(x; t;u) on �
� I;

u(x; t

0

) = u

0

(x) in 
;

(1)
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where I = (t

0

; t

E

℄ is a given time interval, 
 � RI

2

is a bounded open domain

with smooth boundary �
, and r = (�

x

; �

y

)

T

is the gradient operator. The

boundary operator B de�nes an appropriate system of boundary onditions

suh that there exists a unique isolated vetor{valued solution u(x; t) for all

time t 2 I . Equation (1) is quite general and overs a wide variety of pratially

relevant problems suh as reation{di�usion and Navier{Stokes equations.

2.2 Moving Mesh PDEs

To disretize (1) with an adaptive �nite element method, we need to onstrut

a time dependent mesh, denoted as 


h

(t), on the domain 
. It an be gener-

ated for eah time level t with any of a variety of mesh generators, suh as a

Delaunnay triangulation or front advaning method. An alternative approah is

to start with an auxiliary domain 




and a �xed mesh 


h



on it, and then take




h

(t) as the image of 


h



under a suitably de�ned mapping x(�; t) : 




! 
 {

see Fig. 2.






?

x(�; t)




Figure 2: The moving mesh is the image of a referene mesh given on






(top) through a time{dependent oordinate transformation x(�; t) :






! 
.

To determine the time{dependent mapping x(�; t), Huang and Russell

[25, 26℄ propose using a time dependent PDE system, the so-alled Moving Mesh

PDEs (MMPDEs), whih are based on the ellipti mesh generation methods.



5

Following [22℄, x(�; t) is determined by solving the MMPDEs

S(x; G) �

t

x =

X

i;j=1;2

D

ij

(x; G)

�

2

x

��

i

��

j

+

X

i=1;2

C

i

(x; G)

�x

��

i

in 




� I ; (2)

where

D

ij

(x; G) = r�

i

�G

�1

r�

j

; and C

i

(x; G) = �r�

i

� (r �G

�1

);

and the so{alled monitor funtion G=G(u(x; t)) is a 2� 2 symmetri positive

de�nite matrix. The oeÆient S(x; G) is used to adjust the time sale of mesh

movement. Following Huang [22℄, we hoose

S(x; G) = � �

p

(D

11

)

2

+ (D

22

)

2

+ (C

1

)

2

+ (C

2

)

2

; (3)

where � is a user de�ned smoothing parameter. The smaller � is, the faster

the adaptive mesh responds to hanges of the monitor funtion, and the larger

� is, the smoother the mesh movement.

It is lear from (2) that the monitor funtion is the link between the solution

of the physial PDEs and the adaptive mesh de�ned by x(�; t). A proper de�ni-

tion of G is ruial for the onstrution of a mesh well{adapted to the solution.

Typially, one expets to have higher mesh density in regions where the solution

is steep or the error of the approximation is large. There are various forms of

possible monitor funtions whih emphasize di�erent aspets of mesh qualities,

suh as onentration, orthogonality, or alignment [9, 25℄. Here we hoose the

monitor funtion G to depend upon an a-posteriori error estimate of the loal

spatial disretization. Its spei� de�nition is given in setion 4.2.

The MMPDEs (2) have to be supplemented with suitable boundary on-

ditions. Dirihlet-type boundary onditions are a straightforward and robust

hoie. They are used to �x orner points and to inorporate temporal variations

of the physial domain. We use Dirihlet boundary onditions for x(�; t) deter-

mined from the solution of a one dimensional MMPDE. More preisely, given

a boundary segment � of �
, let �



be the orresponding boundary segment

of �




. Parameterize � and �



by arlength oordinates � and s, respetively.

Then the mapping x(�; t) on � is determined by the solution �(s; t) of the one

dimensional MMPDE

��

t

� = [M�

s

�℄

�2

(M�

2

s

� + �

s

M �

s

�) ;

where M is the projetion of the two dimensional monitor funtion G along

the boundary, i.e., if ~s is the unit tangent vetor along the boundary then

M(s; t) = ~s

T

G~s.
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2.3 Coupled Physial and Moving Mesh PDEs

Under the mapping x(�; t), we an transform the physial PDEs (1) into a

system involving the omputational oordinate �, viz.,

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

H(x; t; û; J

�T

^

rû) (�

t

û� �

t

x � J

�T

^

rû) =

jJ j

�1

^

r � (jJ jJ

�1

D(x; t; û; J

�T

^

rû) J

�T

^

rû) + F (x; t; û; J

�T

^

rû)

in 




� I;

B(x; t; û; J

�T

^

rû) û = b(x; t; û) on �




� I;

û(�; t

0

) = u

0

(x(�; t

0

)) in 




;

(4)

where û = û(�; t) = u(x(�; t); t),

^

r is the gradient operator with respet to

� = (�

1

; �

2

)

T

, and J = �x=�� is the Jaobian of the mapping x(�; t). The

additional term �

t

x �J

�T

^

rû on the left{hand side an be viewed as a orretion

for the onvetive e�ets of the mesh motion.

Reall that x(�; t) and û(x; t) are interonneted through the monitor fun-

tion G in the MMPDEs (2). Both of them are time dependent unknown fun-

tions. Introduing a new solution vetor U =(û;x)

T

, we rewrite equations (2)

and (4) as an expanded system

(

P (t;U ) �

t

U = f(t;U ); t 2 I;

U (�; t

0

) = U

0

(x(�; t

0

));

(5)

where

P (t;U ) =

0

�

H(t;U ) �H(t;U)J(x)

�T

^

rû

0 S(x; G)

1

A

and

f(t;U) =

0

B

B

�

jJ j

�1

^

r � (jJ jJ

�1

D(x; t; û; J

�T

^

rû) J

�T

^

rû) + F (x; t; û; J

�T

^

rû)

X

i;j=1;2

D

ij

(x; G)

�

2

x

��

i

��

j

+

X

i=1;2

C

i

(x; G)

�x

��

i

1

C

C

A

:

The initial and boundary onditions for U are taken from those in (1) and (2),

respetively. This system is highly nonlinear and sti� in general.

3 Time{Spae Disretization

Equation (5) is disretized �rst in time and then in spae, an approah whih is

known as Rothe's method or the horizontal method of lines. After disretizing in

time we end up with a system of spatial problems whih are solved by the �nite

element method. The spatial disretization error an be assessed by standard
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error estimators for stationary problems [7, 30℄. We note that the adaptive

Rothe's method di�ers from the ommonly used adaptive method of lines (MOL)

approah (for a omparison see [14℄).

3.1 Time Disretization

Sine we will inorporate the h{re�nement into our spatial disretization, a

suitable time integration method for (5) should be able to easily and aurately

handle the addition and deletion of unknowns assoiated with the h{re�nement.

In this regard, one{step time integrators are preferred over multi{step meth-

ods suh as bakward di�erentiation formulas (BDFs). When mesh points are

added or deleted, a multi{step method must usually be restarted at lower order,

whereas a one{step method an ontinue at higher order. Among the lass of

one{step methods, linearly impliit Rosenbrok{Wanner{type shemes (ROW)

are attrative sine they ompletely avoid the solution of nonlinear problems,

so no Newton{like iteration need to be ontrolled. Working the Jaobian or an

approximation of it diretly into the integration formula, ROW{methods pos-

sess optimal linear stability properties for sti� equations [33, 21℄. We apply the

ROW{methods given in Lang [30℄, whih are suitable for an error{ontrolled

solution of paraboli PDEs. Applied to the initial{value problem (5) with step

size �

n

>0 an s{stage ROW{method has the reursive form

8

>

>

<

>

>

:

�

1

�

n



P (t

n

;U

n

)�A

n

�

U

0

ni

= f(t

ni

;U

ni

)� P (t

n

;U

n

)

i�1

X

j=1



ij

�

n

U

0

nj

+

+(P (t

n

;U

n

)� P (t

ni

;U

ni

))Z

ni

+ �

n



i

C

n

; i = 1; : : : ; s;

(6)

where the internal values are given by

t

ni

= t

n

+ �

i

�

n

; U

ni

= U

n

+

i�1

X

j=1

a

ij

U

0

nj

; Z

ni

= (1� �

i

)Z

n

+

i�1

X

j=1

s

ij

�

n

U

0

nj

;

and

A

n

� �

u

(f(t;U )� P (t;U)Z)

jt=t

n

;U=U

n

;Z=Z

n

;

C

n

� �

t

(f(t;U )� P (t;U )Z)

jt=t

n

;U=U

n

;Z=Z

n

:

The approximation U

n

to the solution U(t

n

) is used to ompute a new approx-

imate solution at time level t

n+1

:= t

n

+ �

n

using a linear ombination of U

n

and the solutions of (6), viz.,

U

n+1

= U

n

+

s

X

i=1

m

i

U

0

ni

: (7)
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An approximation to the temporal derivation �

t

U for the next time step is

onstruted by omputing

Z

n+1

= Z

n

+

s

X

i=1

m

i

0

�

i

X

j=1



ij

� s

ij

�

n

U

0

ni

+ (�

i

� 1)Z

n

1

A

: (8)

To start the above ROW{method, an approximationZ

0

of �

t

U at t

0

is required.

The stage number s and the formula oeÆients are hosen to obtain a desired

order of onsisteny and good stability properties for sti� equations. A nie

feature of linearly impliit ROW{methods is that all linear systems for the

intermediate values U

0

ni

; i = 1; : : : ; s, involve the same operator. The boundary

onditions for U

0

ni

are readily obtained applying the ROW{method (6) to the

boundary onditions for U , whih are understood as algebrai equations of the

form (5) with P (t;U )�0 [30℄.

Various ROW{methods have been onstruted in [30℄ to integrate systems

of the form (5). In our omputations, we use the solver Ros2 [34℄ (see Tab. 1

for the de�ning formula oeÆients), whih has seond{order auray for ar-

bitrary A

n

and C

n

. This property allows us to freeze the oeÆients in the

MMPDEs (2) during one time step without order redution. Spei�ally, for

all t 2 (t

n

; t

n+1

) we use D

ij

(x

n

; G(u

n

)) instead of D

ij

(x(t); G(u(x(t); t))) and

C

i

(x

n

; G(u

n

)) instead of C

i

(x(t); G(u(x(t); t))) for i; j = 1; 2. Here, x

n

and u

n

denote approximations of the mapping x and the solution u at t

n

. Sine the

position of mesh points need not to be determined as preisely as the solution

of the physial PDE, it is generally unneessary to solve the MMPDEs to very

high auray. We have found the approah of freezing the oeÆients to be

quite eÆient and robust with respet to the hoie of the onstant parameter

� in (3).

The time step size is also adapted in order to ontrol the temporal error.

For ROW{methods, a seond solution of lower order, say p̂, an be omputed

by an embedded formula

^

U

n+1

= U

n

+

s

X

i=1

m̂

i

U

0

ni

;

^

Z

n+1

= Z

n

+

s

X

i=1

m̂

i

0

�

i

X

j=1



ij

� s

ij

�

n

U

ni

+ (�

i

� 1)Z

n

1

A

;

where the original weights m

i

in (7) and (8) are simply replaed by m̂

i

. If p is

the order of U

n+1

, we all suh a pair of formulas of order p(p̂). The di�erene

between these solutions is used to ompute the loal error estimator

r

n+1

= kU

n+1

�

^

U

n+1

k ; (9)

where k�k is a weighted norm de�ned for vetor{valued funtions v=(v

1

; : : : ; v

q

)

T



9

as

kvk =

 

1

q

q

X

i=1

�

kv

i

k

L

2

(




)

ATOL

i

+ kU

n+1;i

k

L

2

(




)

� RTOL

i

�

2

!

1=2

: (10)

The toleranes ATOL

i

and RTOL

i

are seleted to aurately reet the sale of

the problem. The predited new time step is

�

n+1

= min

 

10 ; max

 

0:1 ;

�

n

�

n�1

�

TOLT � r

n

r

n+1

� r

n+1

�

1=(p̂+1)

!!

�

n

; (11)

where TOLT is the presribed error tolerane. This formula is related to a

disrete PI{ontroller �rst established in the pioneering work of Gustaffson,

Lundh, and S

�

oderlind [18, 19℄.

 = 1:707106781186547e + 00

a

11

= 0:000000000000000e + 00 �

1

= 0:000000000000000e + 00

a

21

= 5:857864376269050e � 01 �

2

= 1:000000000000000e + 00

a

22

= 0:000000000000000e + 00



11

= 5:857864376269050e � 01 s

11

= 0:000000000000000e + 00



21

= 1:171572875253810e + 00 s

21

= 3:431457505076198e � 01



22

= 5:857864376269050e � 01 s

22

= 0:000000000000000e + 00



1

= 1:707106781186547e + 00 �

1

= 0:000000000000000e + 00



2

= �1:707106781186547e + 00 �

2

= 5:857864376269050e � 01

m

1

= 8:786796564403575e � 01 m̂

1

= 5:857864376269050e � 01

m

2

= 2:928932188134525e � 01 m̂

2

= 0:000000000000000e + 00

Table 1: Set of oeÆients for Ros2, whih is of order 2(1).

3.2 Spae Disretization

Having disretized in time, we use the �nite element method to solve equa-

tion (6) supplemented with the disretized boundary onditions. Let T

h

be

an admissible �nite element mesh on 




at t = t

n

, and S

q

h

� H

1

(




) be the

assoiated �nite dimensional spae onsisting of all ontinuous funtions that

are polynomials of order q on eah �nite element T 2 T

h

and that vanish on

boundaries where Dirihlet{type onditions are given. Taking the L

2

(




){inner

produt of (6) with test funtions � 2 S

q

h

, the standard Galerkin �nite element

approximation U

0

h;ni

2 S

q

h

for the intermediate values U

0

ni

is required to satisfy

(L

n

U

0

h;ni

;�) = (r

ni

;�) for all � 2 S

q

h

: (12)
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Here, L

n

is the weak representation of the di�erential operator on the left{hand

side in (6) and r

ni

= r

ni

(U

0

h;n1

; : : : ;U

0

h;ni�1

) stands for the entire right{hand

side in (6). Sine L

n

is independent of the index i, its alulation is required

only one eah time step. The �nite element solution at the time level t

n+1

is

omputed as

U

h;n+1

= U

h;n

+

s

X

i=1

m

i

U

0

h;ni

; (13)

with U

h;n

being an approximation to U (t

n

). The linear systems (12) are solved

by a preonditioned Krylov subspae method, viz., an eÆient ombination of

Bigstab [35℄ and an inomplete LU{fatorization.

4 Error Estimates and Monitor Funtions

4.1 Error Estimates

One all U

0

h;ni

2 S

q

h

have been omputed, an a-posteriori error estimate an be

employed to assess the spatial error distribution. We adopt here a tehnique

known as hierarhial error estimation | see, e.g., Bornemann, Erdmann,

and Kornhuber [8℄, Deuflhard, Leinen and Yserentant [15℄, Bank and

Smith [4℄. More preisely, let the approximation subspae S

q+1

h

admit a de-

omposition

S

q+1

h

= S

q

h

� Z

q+1

h

; (14)

where Z

q+1

h

is the subspae spanned by all additional basis funtions that are

required to extend the spae S

q

h

to the higher order spae S

q+1

h

. Hierarhial

error estimates are used to alulate the bound on the spatial error by evaluating

omponents in the spae Z

q+1

h

only. In Lang [30℄, this tehnique has been

arried over to time{dependent nonlinear problems. Following the approah

developed there, an a posteriori error estimator E

n+1

(�) 2 Z

q+1

h

for the �nite

element solution U

h;n+1

is de�ned as a linear ombination of terms of the form

E

n+1

(�) = E

n0

(�) +

s

X

i=1

m

i

E

ni

(�) ; (15)

where E

n0

2 Z

q+1

h

measures the projetion error of the initial value U

h;n

and

E

ni

estimates the spatial error of the intermediate value U

0

h;ni

. More preisely,

we ompute E

n0

from the equation

(L

n

E

n0

;�) = (L

n

(

�

U

h;n

�U

h;n

);�) for all � 2 Z

q+1

h

; (16)

with

�

U

h;n

representing the initial solution omputed on a well{�tted mesh at

time t

n

, and U

h;n

being its projetion onto S

q

h

. (Were the omputational mesh




h



to be oarsened, E

n0

estimates the resulting loss of resolution for the pre-

vious �nite element solution

�

U

h;n

.) The stage error estimator E

ni

2 Z

q+1

h

satis�es

(L

n

E

ni

;�) = (r

ni

(U

0

h;n1

+E

n1

; : : : ;U

0

h;ni�1

+E

ni�1

);�)� (L

n

U

0

h;ni

;�) (17)
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for all � 2 Z

q+1

h

. The omputation of the error estimator E

n+1

only requires

the solution of linear systems. The expense of the error estimation an be

further redued by replaing system (17) with a blok diagonal approximation

in a standard way [15, 30℄. The stage error estimators E

ni

are used suessively

to improve the approximation of the nonlinear term r

ni

. Here, we apply linear

�nite elements on triangular meshes and measure the spatial errors in the spae

of quadrati funtions.

In our ontext of rh{re�nement, the error estimates E

n

(�) are in fat saled

suh that we basially only use spatial error estimates for the û{omponent of

solution U =(û;x)

T

and not the nodes x. That is, we set RTOL

i

=1 for all

x{omponents in (10). As disussed previously, this is beause our experiene

has shown that ontrol of spatial errors for û is generally suÆient to maintain

adequate preision for grid plaement as well.

4.2 Monitor Funtion

To onstrut the monitor funtion G, we follow [11℄ and �rst de�ne an error

funtion E

n+1

whih desribes the estimated error per unit area at eah node of

the physial domain. Spei�ally, letting x

p

be a mesh point in 


h

(t

n+1

) and

�

p

=�(x

p

; t

n+1

) the orresponding mesh point in 




, we de�ne

E

n+1

(x

p

) =

kE

n+1

k

C(�

p

)

R

C(�

p

)

d�

; (18)

where C(�

p

) � 




is the union of neighbouring grid ells having �

p

as one of their

verties. Clearly, regions with larger E

n+1

need higher mesh onentration. To

avoid overrowding the mesh points in regions of maximum errors, we introdue

a ut{o� funtion of E

n+1

as follows

�

E

n+1

(x

p

) =

(

0:8 �max

x

p

E

n+1

(x

p

) if E

n+1

(x

p

) > 0:8 �max

x

p

E

n+1

(x

p

)

E

n+1

(x

p

) otherwise :

The monitor funtion is then de�ned as

G(x

p

; t

n+1

) =

s

1 + �

�

�

E

n+1

(x

p

)

max

x

p

�

E

n+1

(x

p

)

�

2

� I (19)

for all mesh points x

p

in 


h

(t

n+1

), where � is an intensity parameter used to

ontrol the inuene of the error funtion

�

E

n+1

on the mesh onentration. The

monitor funtion de�ned pointwise is extended to a funtion G(x; t

n+1

) for all

x 2 


h

(t

n+1

) by linear interpolation.

To inrease the smoothness of the mesh distribution and also to redue the

sti�ness of the MMPDEs (2), it is ommon pratie to smooth the monitor

funtion by a loal averaging. Given a non{negative integer M , we use the
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monitor funtion G

(M)

(x; t

n+1

) de�ned by the iterative proess

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

G

(0)

(x

p

; t

n+1

) := G(x

p

; t

n+1

) for all x

p

;

m = 0; 1; : : : ;M � 1 :

G

(m+1)

(x

p

; t

n+1

) :=

R

C(�

p

)

G

(m)

(x(�; t

n+1

); t

n+1

) d�

R

C(�

p

)

d�

for all x

p

:

(20)

This smoothing algorithm has proven to work quite satisfatorily in pratie.

In our omputations, we take M=6.

5 rh{Adaptive Algorithm

In this setion, we desribe the oupling of the r{method whih involves solving

system (5) with the monitor funtion de�ned in (20) and the h{method whih

is based upon using a posteriori error estimates introdued in (15).

Our re�nement strategy onsists of �rst alulating a preliminary �nite ele-

ment solution U

h;n+1

and its approximate errorE

n+1

on a given mesh T

(0)

h

for a

time step �

n

. If kE

n+1

k > TOLX, the loal quantities �

T

:=kE

n+1

k

T

; T 2 T

(0)

h

,

are used to loate regions where greater resolution is needed. To this end, we

de�ne a loal error barrier �

bar

:=  � max

T

�

T

, where 0 <  < 1 is a param-

eter. All elements T 2 T

(0)

h

with �

T

larger than the barrier �

bar

are seleted

for re�nement. To ensure that at least a ertain perentage of elements is re-

�ned, we iteratively redue �

bar

by the fator . In our omputations, we set

 = 0:8 and repeat the seletion proess until at least 10% of all elements are

marked for re�nement. Then a �ner grid T

(1)

h

is reated by loally re�ning

eah of the marked elements into four ongruent triangles, and applying bise-

tion afterwards to avoid slave nodes. This is the standard red{green re�nement

ommonly used in two{dimensional adaptive odes [3, 16℄. The solution and er-

ror estimator are omputed anew on T

(1)

h

. This reursive proess leads naturally

to a sequene of improved spatial meshes

T

(0)

h

� T

(1)

h

� : : : � T

(d)

h

:

It is stopped when kE

n+1

k < TOLX on a ertain T

(d)

h

. Clearly, a goal is that the

automati mesh moving tehnique should avoid exessive re�nement. Moreover,

if h{re�nement is neessary, the depth d should at least be small.

If the time step annot be aepted due to insuÆient temporal auray,

i.e., r

n+1

> TOLT in (9), the time step is rejeted, all re�nements done in this

step are deleted, and the omputation is repeated with a redued value of �

n

given by formula (11). Otherwise, we proeed in time, ontinuing until the �nal

time t

E

is reahed.

If kE

n+1

k <

1

3

TOLX or h{re�nement took plae during a time step, mesh

oarsening is performed after the time step has been aepted. This proess
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helps to redue degrees of freedom in regions where they are no longer needed.

More preisely, an element T 2 T

(d)

h

is removed only if �

T

is below

1

10

�

bar

for

the triangle and the three orresponding triangular elements reated by a loal

re�nement step (see [29℄ for more details). To ontrol the global error, mesh

movement, loal re�nement and unre�nement are repeated until the presribed

spatial tolerane TOLX is ompletely satis�ed. This algorithm is summarized

in a ow hart in Fig. 3.

We allow also for a omplete remeshing whenever the mesh is severely dis-

torted at a spei� time. The reation of a new base mesh is similar to the

generation of a suitable initial mesh. We �rst reate a quasi{uniform mesh and

solve system (5) with a small saling parameter � = �

meshing

, whih auses

a sequene of small time steps due to a fast mesh movement. Then the error

estimates are omputed, and loal mesh re�nement is performed as desribed

above. In ontrast to the original rh{adaptive algorithm, we oarsen the mesh

after eah time step in order to approximately equidistribute the error estima-

tors. If the integration results in exessive re�nement, the omputation is redone

with a �ner base mesh. The parameter �

meshing

for a remeshing at t

n

has to be

hosen in suh a way that the auxiliary integration is �nished before the time

t

n+1

= t

n

+�

n

determined by (11). We have found that �

meshing

= 0:01 � � is

generally quite suÆient.

One a new base mesh has been onstruted, the solution and the error esti-

mator on it are determined using linear interpolation, and the time integration

proeeds. In order to provide data for the omputation of the projetion error

E

n0

in (16), we save the solution at the previous grid until it is no longer needed

beause advanement to a subsequent time level has been suessful.

6 Numerial Examples

6.1 Burgers' Equation

Our �rst test is for the well-known Burgers' equation

�

t

u = �r

2

u� u�

x

u� u�

y

u; in 
� (0:25; 1:5℄

where 
 is the unit square. The initial and Dirihlet boundary onditions are

hosen suh that the exat solution is

u(x; y; t) = 1=[1 + e

(x+y�t)=(2�)

℄:

We onsider the ase of a moderately small di�usion oeÆient � = 0:005.

With this example we shall mainly demonstrate the bene�ts of the ombined

rh{method desribed in setion 5 over the pure h{ and r{method by omparing

the number of degree of freedoms required by the three methods to attain a

similar solution auray. Our results for the r{method are from [9℄, where a

linear �nite element approximation on a 2048{triangular mesh and a onstant

time step size �=1E-3 are employed. For suh an r{adaptive approah, the L

1

{

norm of the solution error varies between 1E-4 and 1E-3 over the entire time
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Figure 3: Flow hart of the entire rh{adaptive algorithm.
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interval. To reah a omparable solution auray, we hoose the toleranes

TOLT=TOLX=5E-4 for the h{ and r{method (see Fig. 4). In addition, we set

ATOL

i

=1E-6 and RTOL

i

=1.0 in (10). Reall that x and y are not utilized for

spatial error ontrol as desribed in setion 4. The mesh movement is ontrolled

by �=10:0 in (3) and �=50:0 in (19).

1e-05

0.0001

0.001

0.01

0.4 0.6 0.8 1 1.2 1.4

L1
-E

R
R

O
R

TIME

RH-METHOD, TOL=1E-3

 H-METHOD, TOL=1E-3

R-METHOD, step=1E-3

Figure 4: Burgers' equation: Temporal evolution of loal L

1

{errors for linear

�nite elements. All omputations give omparable loal error. The r{method

in [9℄ is applied with a onstant time step 0.001.

In Fig. 5, we plot the evolution of the number of grid points needed to

reah the required auray. Not surprisingly, the h{method needs signi�antly

more nodes than the other methods. The rh{method does a better job than

the r{method, espeially at the beginning and the end of the omputation.

There the length of the moving solution front is shorter than in the middle

of the time interval, as shown in Fig. 7. The rh{method is able to adapt to

inreasing and dereasing nonuniformities through moving the mesh towards

an error distribution rather than devoting exessive e�ort to adding too many

points. A loser examination of the results for the time interval [0:9; 1:1℄ in

Fig. 6 shows the main advantage of the rh{method: First the r{method moves

the nodes into regions of insuÆient auray to ensure the required tolerane is

satis�ed. Then, when this is no longer possible, the h{method helps by re�ning

(or oarsening) afterwards. In ontrast, the pure h{method onstantly re�nes

and oarsens the mesh.

6.2 Flame problem

Our seond example is a more pratially relevant ombustion problem mod-

eling the propagation of a laminar ame through a heat absorbing obstale
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Figure 5: Burgers' equation: Number of grid points (for linear �nite elements)

needed to reah the auraies shown in Fig. 4.
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Figure 6: Burgers' equation: Temporal evolution of the number of grid points

for linear �nite elements in the time interval [0.9,1.1℄. Whereas the rh{method

keeps the number of grid points onstant over a longer period, the h{method

has to re�ne and oarse onstantly due to the moving solution.

(see [30℄). The equations for the dimensionless temperature T and the speies
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Figure 7: Burgers' equation: Seletion of moving grids at di�erent time points.
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onentration C read

�

t

T �r

2

T = !;

�

t

C �

1

Le

r

2

C = �!;

where ! is determined by an Arrhenius law

! =

�

2

2Le

C e

�(T�1)

1+�(T�1)

:

We set Le= 1, � = 10, and �= 0:8. The physial domain 
 = [0; 60℄ � [0; 16℄

is overed by two parallel ooled rods with retangular ross setion of length

L=15 and width H =4 (see also Fig. 8). The absorption of heat is modeled

by the boundary ondition �

n

T = ��T ; where the heat loss parameter � is set

to 0:1. On the left boundary Dirihlet onditions orresponding to the burnt

state T =1 and C =0 are presribed. The remaining boundary onditions are

of homogeneous Neumann type. The initial solution is a right{travelling ame

loated left of the obstale:

T (x; y; 0) =

�

1 for x � 9 ;

e

9�x

for x > 9 ;

C(x; y; 0) =

�

0 for x � 9 ;

1� e

Le (9�x)

for x > 9 :

For the given �, the ame speed slows down in the interior of the hannel. The

ame beomes urved, but manages to pass through.

We hoose the toleranes for the h{ and rh{method as TOLX=TOLT=5E-4

and set ATOL

i

=1E-6 and RTOL

i

=1.0 for all omponents in (10). Sine the

time sale of the underlying ombustion proess demands fast mesh adaptation,

we use �=0:1 in (3) and �=50:0 in (19). In both ases, linear �nite elements

are used.

In Fig. 8 and Fig. 9, the moving meshes and the orresponding temperature

level lines are depited at various times. The moving grids follow the dynamis

of the problem. Grid points lying at the front as well as at the bak of the ame

move towards the main ombustion region. As before, the rh{method needs

fewer points than the h{method to ensure omparable resolution. A redution

in the number of mesh points by up to a fator four an be observed from Fig.

10. The number of time steps hosen by the integrator ROS2 are 429 and

499 for the h{ and rh{method, respetively. Closer examination reveals that in

numerous instanes the moving tehnique uses small time integration steps due

to a sudden hange in the loal grid dynamis from oarsening | see Fig. 11

for ases where the time integrator is fored to redue the time step.

7 Conlusion

We have presented a �nite element method based on a ombined rh{mesh re�ne-

ment strategy. Major purposes are (i) to inorporate an r{re�nement strategy
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Figure 8: Propagating Flame: Seletion of moving grids at various times. Top

to bottom: t=2:27; 5:43; 19:1; 35:4; 50:0.
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Figure 9: Propagating Flame: Seletion of temperature level lines at various

times. Top to bottom: t=2:27; 5:43; 19:1; 35:4; 50:0.
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into an h{re�nement �nite element ode [30℄ to provide more eÆieny by hav-

ing better mesh alignment and (ii) to enhane an e�etive r{method (as used,

e.g., in [11℄) with global error ontrol using h{re�nement. The �nite element

method is based upon the horizontal method of lines. For it, the physial PDEs

are integrated in time with a Rosenbrok{Wanner{type method. Hierarhial

error estimates are used to guide both the mesh movement and loal re�nement.

The general r{re�nement method, originally developed in [25, 26℄, is based on

solving a set of moving mesh PDEs.

The implementation of r{re�nement here is fairly straightforward and has

not been extensively tested to see that parameters are optimized for this well-

tested h{re�nement ode. In addition, there has not as yet been a rigorous

theoretial analysis of the method. Nevertheless, the overall feasibility of the

general rh{re�nement approah in this ontext is apparent. The numerial

results are quite promising, demonstrating that a ombined mesh re�nement

method an signi�antly redue the number of degree of freedoms needed to

reah a presribed error tolerane. We antiipate that a onsiderably more ef-

�ient implementation of this method an be developed whih will be ideal for

solving a large lass of time dependent problems with multiple-sales. The task

of �nding the most eÆient rh{re�nement method for time-dependent PDEs an

be daunting given the number interonneted parameters and possible strate-

gies for omputing the solution and grid as the solution evolves. For example,

r{movement an be done for only a relatively oarse mesh. Another approah

worth investigating is to modify the form of the MMPDE as reently introdued

in [23, 24℄. Appropriately hoosing the monitor funtion, the error during the

r{re�nement steps an be better oordinated with the error form for the �nite

element method with h{re�nement. For steady state solutions, this ould pro-

vide a mesh optimization analogous in priniple to that in [13, 20℄. Finally, it

is natural and straightforward to apply suh an rh{method to problems with

moving boundaries. These are all issues whih will be investigated in the future.
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