
A Two{dimensional Moving Finite Element

Method with Lo
al Re�nement Based on

A Posteriori Error Estimates

Jens Lang

�

Weiming Cao

y

Weizhang Huang

z

Robert D. Russell

x

November 14, 2002

Abstra
t

In this paper, we 
onsider the numeri
al solution of time{dependent

PDEs using a �nite element method based upon rh{adaptivity. An adap-

tive horizontal method of lines strategy equipped with a posteriori error

estimates to 
ontrol the dis
retization through variable time steps and

spatial grid adaptations is used. Our approa
h 
ombines an r{re�nement

method based upon solving so{
alled moving mesh PDEs with h{re�nement.

Numeri
al results are presented to demonstrate the 
apabilities and ben-

e�ts of 
ombining mesh movement and lo
al re�nement.

1 Introdu
tion

In the numeri
al simulation of multis
ale dynami
 pro
esses an important aspe
t

is to generate grids, or meshes, adapted to the solutions. Numerous examples

demonstrate that adaptive mesh strategies 
an greatly redu
e the errors and

the 
omputational e�ort for �nite element methods (FEMs). This approa
h has

been applied in a wide range of important physi
al and industrial 
ontexts su
h

as problems in 
uid dynami
s (e.g., rea
tive 
ow in a piston engine and 
ow

around a pit
hing airfoil or moving bodies) and semi
ondu
tor devi
e fabri
ation

(e.g., modeling oxide 
ow, 
rystal growth, or phase 
hange). Traditionally, the

quite robust h{method is applied, where the mesh is lo
ally re�ned or 
oarsened
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by adding or deleting mesh points. This is often 
ombined with the p{method,

for whi
h the polynomial degree in ea
h element is sele
ted in a

ordan
e with

the smoothness properties of the solution. The hp{adaptive FEM has proven

su

essful at a

urately resolving and following important solution features for

a wide variety of pra
ti
al problems [5, 36℄.

Our goal here is to 
omplement the h-adaptive strategy with an r{method,

whi
h dynami
ally redistributes the mesh points in time. As is well{known,

moving mesh methods are superior at redu
ing dispersive errors in the vi
inity

of wave fronts while lo
al re�nement methods 
an, in prin
iple, add enough

degrees of freedom to resolve any �ne s
ale stru
ture. We expe
t that 
ombining

mesh movement with lo
al re�nement generally will not only make the global

error 
ontrol possible for the r{method, but also avoid the need for ex
essive

lo
al re�nements (
f. Fig. 1 below), and produ
e grids that are better aligned

with and 
losely follow the solution features.

Not surprisingly, rh{adaptive methods have been 
onsidered to some extent

in previous studies. Adjerid and Flaherty [2℄ present a one{dimensional

moving mesh FEM with lo
al re�nement for paraboli
 PDEs. Their approa
h

is extended by Arney and Flaherty [1℄ to the two{dimensional 
ase, where


lusters of mesh points are built up and moved with an error{dependent speed.

To prevent mesh tangling, Gropp [17℄ introdu
es a lo
al uniform re�nement

strategy with moving grids. Several te
hniques for the 
reation and annihila-

tion of moving nodes have been advo
ated by Kuprat [28℄. Although no lo
al

re�nement is utilized in the two{ and three{dimensional mesh update strate-

gies proposed by Johnson and Tezduyar [27℄ and Nkonga and Guillard

[32℄, they are also of spe
ial interest sin
e they show the usefulness of moving

te
hniques for industrial appli
ations. Finally, in re
ent work Habashi and


oworkers [13, 20℄ have investigated the potential of a so-
alled mesh optimiza-

tion methodology (MOM), whi
h has both r{ and h{re�nement 
omponents, for

higher dimensional CFD problems.

A general and robust rh{method requires a well{posed general pro
edure

to determine the movement of the mesh points smoothly in time, espe
ially in

higher spatial dimensions. Miller, who �rst introdu
ed a type of moving FEM

[31℄, and his 
o{workers propose using the �nite element residuals to steer the

mesh movement [12℄. Similar ideas are utilized by Baines [6℄. We present in

this paper an rh{method that inter
onne
ts the h{re�nement with a general

moving mesh method developed re
ently in [25, 26℄. This r{method is based on

the gradient 
ow equation of a fun
tional whi
h measures the approximation

diÆ
ulty of the physi
al solution. It has been shown general and reliable for a

variety of pra
ti
al model problems [9, 11℄.

The basi
 idea of our rh-adaptive strategy is as follows: we �rst dis
retize

both the physi
al and moving mesh PDEs in time by a Rosenbro
k{Wanner{

type s
heme. Then a �nite element approximation is applied in ea
h time step.

A hierar
hi
al error estimator developed in [30℄ is used to 
onstru
t the monitor

fun
tion for the moving mesh PDE and to move the grid a

ordingly. After

moving the mesh, we re
al
ulate the physi
al solution and estimate the error.

For elements with error estimates ex
eeding the toleran
e, lo
al re�nements are
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Figure 1: Approximation of the hyperboli
 fun
tion u=se
h ( 50 (x

2

+y

2

�0:09))

on 
=f(x; y) 2 R

2

: x

2

+ y

2

� 1g: r{re�nement with N = 817 yields an error

kek

L

2

(
)

=3:55E�2 (left), h{re�nement with N = 541 yields kek

L

2

(
)

=1:91E�2

(middle), and rh{re�nement with N = 541 yields kek

L

2

(
)

=1:57E�2 (right).

While the r{method wastes too many nodes, the 
ombined rh{method results

in a mesh well{�tted to the exponentional behaviour of the fun
tion and shows

its potential 
ompared to the pure h{method.

applied until the toleran
e is 
ompletely satis�ed. In regions with errors far less

than the toleran
e, grid points are deleted. We test su
h an adaptive strategy

with nonlinear PDEs from 
uid 
ow and 
ombustion. Numeri
al results show

that the 
ombined rh{method redu
es signi�
antly the number of degree of

freedoms to a
hieve a pres
ribed error toleran
e.

The paper is organized as follows. In se
tion 2 the basi
 physi
al PDEs

and moving mesh PDEs are des
ribed. The temporal and spatial dis
retiza-

tion s
hemes are introdu
ed in se
tion 3. After des
ribing the error estimation

te
hnique whi
h is in turn used to de�ne the monitor fun
tion in se
tion 4, the

adaptive algorithm based upon the rh{method is des
ribed in se
tion 5. We then

give two numeri
al examples to demonstrate the performan
e of the algorithm,

followed by some 
on
lusions.

2 Model Problem and Moving Mesh Method

2.1 Model Problem

We shall 
onsider a system of physi
al PDEs of the form

8

>

>

>

>

>

<

>

>

>

>

>

:

H(x; t;u;ru) �

t

u = r � (D(x; t;u;ru)ru) + F (x; t;u;ru)

in 
� I;

B(x; t;u;ru)u = b(x; t;u) on �
� I;

u(x; t

0

) = u

0

(x) in 
;

(1)
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where I = (t

0

; t

E

℄ is a given time interval, 
 � RI

2

is a bounded open domain

with smooth boundary �
, and r = (�

x

; �

y

)

T

is the gradient operator. The

boundary operator B de�nes an appropriate system of boundary 
onditions

su
h that there exists a unique isolated ve
tor{valued solution u(x; t) for all

time t 2 I . Equation (1) is quite general and 
overs a wide variety of pra
ti
ally

relevant problems su
h as rea
tion{di�usion and Navier{Stokes equations.

2.2 Moving Mesh PDEs

To dis
retize (1) with an adaptive �nite element method, we need to 
onstru
t

a time dependent mesh, denoted as 


h

(t), on the domain 
. It 
an be gener-

ated for ea
h time level t with any of a variety of mesh generators, su
h as a

Delaunnay triangulation or front advan
ing method. An alternative approa
h is

to start with an auxiliary domain 





and a �xed mesh 


h




on it, and then take




h

(t) as the image of 


h




under a suitably de�ned mapping x(�; t) : 





! 
 {

see Fig. 2.







?

x(�; t)




Figure 2: The moving mesh is the image of a referen
e mesh given on







(top) through a time{dependent 
oordinate transformation x(�; t) :







! 
.

To determine the time{dependent mapping x(�; t), Huang and Russell

[25, 26℄ propose using a time dependent PDE system, the so-
alled Moving Mesh

PDEs (MMPDEs), whi
h are based on the ellipti
 mesh generation methods.
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Following [22℄, x(�; t) is determined by solving the MMPDEs

S(x; G) �

t

x =

X

i;j=1;2

D

ij

(x; G)

�

2

x

��

i

��

j

+

X

i=1;2

C

i

(x; G)

�x

��

i

in 





� I ; (2)

where

D

ij

(x; G) = r�

i

�G

�1

r�

j

; and C

i

(x; G) = �r�

i

� (r �G

�1

);

and the so{
alled monitor fun
tion G=G(u(x; t)) is a 2� 2 symmetri
 positive

de�nite matrix. The 
oeÆ
ient S(x; G) is used to adjust the time s
ale of mesh

movement. Following Huang [22℄, we 
hoose

S(x; G) = � �

p

(D

11

)

2

+ (D

22

)

2

+ (C

1

)

2

+ (C

2

)

2

; (3)

where � is a user de�ned smoothing parameter. The smaller � is, the faster

the adaptive mesh responds to 
hanges of the monitor fun
tion, and the larger

� is, the smoother the mesh movement.

It is 
lear from (2) that the monitor fun
tion is the link between the solution

of the physi
al PDEs and the adaptive mesh de�ned by x(�; t). A proper de�ni-

tion of G is 
ru
ial for the 
onstru
tion of a mesh well{adapted to the solution.

Typi
ally, one expe
ts to have higher mesh density in regions where the solution

is steep or the error of the approximation is large. There are various forms of

possible monitor fun
tions whi
h emphasize di�erent aspe
ts of mesh qualities,

su
h as 
on
entration, orthogonality, or alignment [9, 25℄. Here we 
hoose the

monitor fun
tion G to depend upon an a-posteriori error estimate of the lo
al

spatial dis
retization. Its spe
i�
 de�nition is given in se
tion 4.2.

The MMPDEs (2) have to be supplemented with suitable boundary 
on-

ditions. Diri
hlet-type boundary 
onditions are a straightforward and robust


hoi
e. They are used to �x 
orner points and to in
orporate temporal variations

of the physi
al domain. We use Diri
hlet boundary 
onditions for x(�; t) deter-

mined from the solution of a one dimensional MMPDE. More pre
isely, given

a boundary segment � of �
, let �




be the 
orresponding boundary segment

of �





. Parameterize � and �




by ar
length 
oordinates � and s, respe
tively.

Then the mapping x(�; t) on � is determined by the solution �(s; t) of the one

dimensional MMPDE

��

t

� = [M�

s

�℄

�2

(M�

2

s

� + �

s

M �

s

�) ;

where M is the proje
tion of the two dimensional monitor fun
tion G along

the boundary, i.e., if ~s is the unit tangent ve
tor along the boundary then

M(s; t) = ~s

T

G~s.
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2.3 Coupled Physi
al and Moving Mesh PDEs

Under the mapping x(�; t), we 
an transform the physi
al PDEs (1) into a

system involving the 
omputational 
oordinate �, viz.,

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

H(x; t; û; J

�T

^

rû) (�

t

û� �

t

x � J

�T

^

rû) =

jJ j

�1

^

r � (jJ jJ

�1

D(x; t; û; J

�T

^

rû) J

�T

^

rû) + F (x; t; û; J

�T

^

rû)

in 





� I;

B(x; t; û; J

�T

^

rû) û = b(x; t; û) on �





� I;

û(�; t

0

) = u

0

(x(�; t

0

)) in 





;

(4)

where û = û(�; t) = u(x(�; t); t),

^

r is the gradient operator with respe
t to

� = (�

1

; �

2

)

T

, and J = �x=�� is the Ja
obian of the mapping x(�; t). The

additional term �

t

x �J

�T

^

rû on the left{hand side 
an be viewed as a 
orre
tion

for the 
onve
tive e�e
ts of the mesh motion.

Re
all that x(�; t) and û(x; t) are inter
onne
ted through the monitor fun
-

tion G in the MMPDEs (2). Both of them are time dependent unknown fun
-

tions. Introdu
ing a new solution ve
tor U =(û;x)

T

, we rewrite equations (2)

and (4) as an expanded system

(

P (t;U ) �

t

U = f(t;U ); t 2 I;

U (�; t

0

) = U

0

(x(�; t

0

));

(5)

where

P (t;U ) =

0

�

H(t;U ) �H(t;U)J(x)

�T

^

rû

0 S(x; G)

1

A

and

f(t;U) =

0

B

B

�

jJ j

�1

^

r � (jJ jJ

�1

D(x; t; û; J

�T

^

rû) J

�T

^

rû) + F (x; t; û; J

�T

^

rû)

X

i;j=1;2

D

ij

(x; G)

�

2

x

��

i

��

j

+

X

i=1;2

C

i

(x; G)

�x

��

i

1

C

C

A

:

The initial and boundary 
onditions for U are taken from those in (1) and (2),

respe
tively. This system is highly nonlinear and sti� in general.

3 Time{Spa
e Dis
retization

Equation (5) is dis
retized �rst in time and then in spa
e, an approa
h whi
h is

known as Rothe's method or the horizontal method of lines. After dis
retizing in

time we end up with a system of spatial problems whi
h are solved by the �nite

element method. The spatial dis
retization error 
an be assessed by standard
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error estimators for stationary problems [7, 30℄. We note that the adaptive

Rothe's method di�ers from the 
ommonly used adaptive method of lines (MOL)

approa
h (for a 
omparison see [14℄).

3.1 Time Dis
retization

Sin
e we will in
orporate the h{re�nement into our spatial dis
retization, a

suitable time integration method for (5) should be able to easily and a

urately

handle the addition and deletion of unknowns asso
iated with the h{re�nement.

In this regard, one{step time integrators are preferred over multi{step meth-

ods su
h as ba
kward di�erentiation formulas (BDFs). When mesh points are

added or deleted, a multi{step method must usually be restarted at lower order,

whereas a one{step method 
an 
ontinue at higher order. Among the 
lass of

one{step methods, linearly impli
it Rosenbro
k{Wanner{type s
hemes (ROW)

are attra
tive sin
e they 
ompletely avoid the solution of nonlinear problems,

so no Newton{like iteration need to be 
ontrolled. Working the Ja
obian or an

approximation of it dire
tly into the integration formula, ROW{methods pos-

sess optimal linear stability properties for sti� equations [33, 21℄. We apply the

ROW{methods given in Lang [30℄, whi
h are suitable for an error{
ontrolled

solution of paraboli
 PDEs. Applied to the initial{value problem (5) with step

size �

n

>0 an s{stage ROW{method has the re
ursive form

8

>

>

<

>

>

:

�

1

�

n




P (t

n

;U

n

)�A

n

�

U

0

ni

= f(t

ni

;U

ni

)� P (t

n

;U

n

)

i�1

X

j=1




ij

�

n

U

0

nj

+

+(P (t

n

;U

n

)� P (t

ni

;U

ni

))Z

ni

+ �

n




i

C

n

; i = 1; : : : ; s;

(6)

where the internal values are given by

t

ni

= t

n

+ �

i

�

n

; U

ni

= U

n

+

i�1

X

j=1

a

ij

U

0

nj

; Z

ni

= (1� �

i

)Z

n

+

i�1

X

j=1

s

ij

�

n

U

0

nj

;

and

A

n

� �

u

(f(t;U )� P (t;U)Z)

jt=t

n

;U=U

n

;Z=Z

n

;

C

n

� �

t

(f(t;U )� P (t;U )Z)

jt=t

n

;U=U

n

;Z=Z

n

:

The approximation U

n

to the solution U(t

n

) is used to 
ompute a new approx-

imate solution at time level t

n+1

:= t

n

+ �

n

using a linear 
ombination of U

n

and the solutions of (6), viz.,

U

n+1

= U

n

+

s

X

i=1

m

i

U

0

ni

: (7)
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An approximation to the temporal derivation �

t

U for the next time step is


onstru
ted by 
omputing

Z

n+1

= Z

n

+

s

X

i=1

m

i

0

�

i

X

j=1




ij

� s

ij

�

n

U

0

ni

+ (�

i

� 1)Z

n

1

A

: (8)

To start the above ROW{method, an approximationZ

0

of �

t

U at t

0

is required.

The stage number s and the formula 
oeÆ
ients are 
hosen to obtain a desired

order of 
onsisten
y and good stability properties for sti� equations. A ni
e

feature of linearly impli
it ROW{methods is that all linear systems for the

intermediate values U

0

ni

; i = 1; : : : ; s, involve the same operator. The boundary


onditions for U

0

ni

are readily obtained applying the ROW{method (6) to the

boundary 
onditions for U , whi
h are understood as algebrai
 equations of the

form (5) with P (t;U )�0 [30℄.

Various ROW{methods have been 
onstru
ted in [30℄ to integrate systems

of the form (5). In our 
omputations, we use the solver Ros2 [34℄ (see Tab. 1

for the de�ning formula 
oeÆ
ients), whi
h has se
ond{order a

ura
y for ar-

bitrary A

n

and C

n

. This property allows us to freeze the 
oeÆ
ients in the

MMPDEs (2) during one time step without order redu
tion. Spe
i�
ally, for

all t 2 (t

n

; t

n+1

) we use D

ij

(x

n

; G(u

n

)) instead of D

ij

(x(t); G(u(x(t); t))) and

C

i

(x

n

; G(u

n

)) instead of C

i

(x(t); G(u(x(t); t))) for i; j = 1; 2. Here, x

n

and u

n

denote approximations of the mapping x and the solution u at t

n

. Sin
e the

position of mesh points need not to be determined as pre
isely as the solution

of the physi
al PDE, it is generally unne
essary to solve the MMPDEs to very

high a

ura
y. We have found the approa
h of freezing the 
oeÆ
ients to be

quite eÆ
ient and robust with respe
t to the 
hoi
e of the 
onstant parameter

� in (3).

The time step size is also adapted in order to 
ontrol the temporal error.

For ROW{methods, a se
ond solution of lower order, say p̂, 
an be 
omputed

by an embedded formula

^

U

n+1

= U

n

+

s

X

i=1

m̂

i

U

0

ni

;

^

Z

n+1

= Z

n

+

s

X

i=1

m̂

i

0

�

i

X

j=1




ij

� s

ij

�

n

U

ni

+ (�

i

� 1)Z

n

1

A

;

where the original weights m

i

in (7) and (8) are simply repla
ed by m̂

i

. If p is

the order of U

n+1

, we 
all su
h a pair of formulas of order p(p̂). The di�eren
e

between these solutions is used to 
ompute the lo
al error estimator

r

n+1

= kU

n+1

�

^

U

n+1

k ; (9)

where k�k is a weighted norm de�ned for ve
tor{valued fun
tions v=(v

1

; : : : ; v

q

)

T



9

as

kvk =

 

1

q

q

X

i=1

�

kv

i

k

L

2

(





)

ATOL

i

+ kU

n+1;i

k

L

2

(





)

� RTOL

i

�

2

!

1=2

: (10)

The toleran
es ATOL

i

and RTOL

i

are sele
ted to a

urately re
e
t the s
ale of

the problem. The predi
ted new time step is

�

n+1

= min

 

10 ; max

 

0:1 ;

�

n

�

n�1

�

TOLT � r

n

r

n+1

� r

n+1

�

1=(p̂+1)

!!

�

n

; (11)

where TOLT is the pres
ribed error toleran
e. This formula is related to a

dis
rete PI{
ontroller �rst established in the pioneering work of Gustaffson,

Lundh, and S

�

oderlind [18, 19℄.


 = 1:707106781186547e + 00

a

11

= 0:000000000000000e + 00 �

1

= 0:000000000000000e + 00

a

21

= 5:857864376269050e � 01 �

2

= 1:000000000000000e + 00

a

22

= 0:000000000000000e + 00




11

= 5:857864376269050e � 01 s

11

= 0:000000000000000e + 00




21

= 1:171572875253810e + 00 s

21

= 3:431457505076198e � 01




22

= 5:857864376269050e � 01 s

22

= 0:000000000000000e + 00




1

= 1:707106781186547e + 00 �

1

= 0:000000000000000e + 00




2

= �1:707106781186547e + 00 �

2

= 5:857864376269050e � 01

m

1

= 8:786796564403575e � 01 m̂

1

= 5:857864376269050e � 01

m

2

= 2:928932188134525e � 01 m̂

2

= 0:000000000000000e + 00

Table 1: Set of 
oeÆ
ients for Ros2, whi
h is of order 2(1).

3.2 Spa
e Dis
retization

Having dis
retized in time, we use the �nite element method to solve equa-

tion (6) supplemented with the dis
retized boundary 
onditions. Let T

h

be

an admissible �nite element mesh on 





at t = t

n

, and S

q

h

� H

1

(





) be the

asso
iated �nite dimensional spa
e 
onsisting of all 
ontinuous fun
tions that

are polynomials of order q on ea
h �nite element T 2 T

h

and that vanish on

boundaries where Diri
hlet{type 
onditions are given. Taking the L

2

(





){inner

produ
t of (6) with test fun
tions � 2 S

q

h

, the standard Galerkin �nite element

approximation U

0

h;ni

2 S

q

h

for the intermediate values U

0

ni

is required to satisfy

(L

n

U

0

h;ni

;�) = (r

ni

;�) for all � 2 S

q

h

: (12)
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Here, L

n

is the weak representation of the di�erential operator on the left{hand

side in (6) and r

ni

= r

ni

(U

0

h;n1

; : : : ;U

0

h;ni�1

) stands for the entire right{hand

side in (6). Sin
e L

n

is independent of the index i, its 
al
ulation is required

only on
e ea
h time step. The �nite element solution at the time level t

n+1

is


omputed as

U

h;n+1

= U

h;n

+

s

X

i=1

m

i

U

0

h;ni

; (13)

with U

h;n

being an approximation to U (t

n

). The linear systems (12) are solved

by a pre
onditioned Krylov subspa
e method, viz., an eÆ
ient 
ombination of

Bi
gstab [35℄ and an in
omplete LU{fa
torization.

4 Error Estimates and Monitor Fun
tions

4.1 Error Estimates

On
e all U

0

h;ni

2 S

q

h

have been 
omputed, an a-posteriori error estimate 
an be

employed to assess the spatial error distribution. We adopt here a te
hnique

known as hierar
hi
al error estimation | see, e.g., Bornemann, Erdmann,

and Kornhuber [8℄, Deuflhard, Leinen and Yserentant [15℄, Bank and

Smith [4℄. More pre
isely, let the approximation subspa
e S

q+1

h

admit a de-


omposition

S

q+1

h

= S

q

h

� Z

q+1

h

; (14)

where Z

q+1

h

is the subspa
e spanned by all additional basis fun
tions that are

required to extend the spa
e S

q

h

to the higher order spa
e S

q+1

h

. Hierar
hi
al

error estimates are used to 
al
ulate the bound on the spatial error by evaluating


omponents in the spa
e Z

q+1

h

only. In Lang [30℄, this te
hnique has been


arried over to time{dependent nonlinear problems. Following the approa
h

developed there, an a posteriori error estimator E

n+1

(�) 2 Z

q+1

h

for the �nite

element solution U

h;n+1

is de�ned as a linear 
ombination of terms of the form

E

n+1

(�) = E

n0

(�) +

s

X

i=1

m

i

E

ni

(�) ; (15)

where E

n0

2 Z

q+1

h

measures the proje
tion error of the initial value U

h;n

and

E

ni

estimates the spatial error of the intermediate value U

0

h;ni

. More pre
isely,

we 
ompute E

n0

from the equation

(L

n

E

n0

;�) = (L

n

(

�

U

h;n

�U

h;n

);�) for all � 2 Z

q+1

h

; (16)

with

�

U

h;n

representing the initial solution 
omputed on a well{�tted mesh at

time t

n

, and U

h;n

being its proje
tion onto S

q

h

. (Were the 
omputational mesh




h




to be 
oarsened, E

n0

estimates the resulting loss of resolution for the pre-

vious �nite element solution

�

U

h;n

.) The stage error estimator E

ni

2 Z

q+1

h

satis�es

(L

n

E

ni

;�) = (r

ni

(U

0

h;n1

+E

n1

; : : : ;U

0

h;ni�1

+E

ni�1

);�)� (L

n

U

0

h;ni

;�) (17)
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for all � 2 Z

q+1

h

. The 
omputation of the error estimator E

n+1

only requires

the solution of linear systems. The expense of the error estimation 
an be

further redu
ed by repla
ing system (17) with a blo
k diagonal approximation

in a standard way [15, 30℄. The stage error estimators E

ni

are used su

essively

to improve the approximation of the nonlinear term r

ni

. Here, we apply linear

�nite elements on triangular meshes and measure the spatial errors in the spa
e

of quadrati
 fun
tions.

In our 
ontext of rh{re�nement, the error estimates E

n

(�) are in fa
t s
aled

su
h that we basi
ally only use spatial error estimates for the û{
omponent of

solution U =(û;x)

T

and not the nodes x. That is, we set RTOL

i

=1 for all

x{
omponents in (10). As dis
ussed previously, this is be
ause our experien
e

has shown that 
ontrol of spatial errors for û is generally suÆ
ient to maintain

adequate pre
ision for grid pla
ement as well.

4.2 Monitor Fun
tion

To 
onstru
t the monitor fun
tion G, we follow [11℄ and �rst de�ne an error

fun
tion E

n+1

whi
h des
ribes the estimated error per unit area at ea
h node of

the physi
al domain. Spe
i�
ally, letting x

p

be a mesh point in 


h

(t

n+1

) and

�

p

=�(x

p

; t

n+1

) the 
orresponding mesh point in 





, we de�ne

E

n+1

(x

p

) =

kE

n+1

k

C(�

p

)

R

C(�

p

)

d�

; (18)

where C(�

p

) � 





is the union of neighbouring grid 
ells having �

p

as one of their

verti
es. Clearly, regions with larger E

n+1

need higher mesh 
on
entration. To

avoid over
rowding the mesh points in regions of maximum errors, we introdu
e

a 
ut{o� fun
tion of E

n+1

as follows

�

E

n+1

(x

p

) =

(

0:8 �max

x

p

E

n+1

(x

p

) if E

n+1

(x

p

) > 0:8 �max

x

p

E

n+1

(x

p

)

E

n+1

(x

p

) otherwise :

The monitor fun
tion is then de�ned as

G(x

p

; t

n+1

) =

s

1 + �

�

�

E

n+1

(x

p

)

max

x

p

�

E

n+1

(x

p

)

�

2

� I (19)

for all mesh points x

p

in 


h

(t

n+1

), where � is an intensity parameter used to


ontrol the in
uen
e of the error fun
tion

�

E

n+1

on the mesh 
on
entration. The

monitor fun
tion de�ned pointwise is extended to a fun
tion G(x; t

n+1

) for all

x 2 


h

(t

n+1

) by linear interpolation.

To in
rease the smoothness of the mesh distribution and also to redu
e the

sti�ness of the MMPDEs (2), it is 
ommon pra
ti
e to smooth the monitor

fun
tion by a lo
al averaging. Given a non{negative integer M , we use the
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monitor fun
tion G

(M)

(x; t

n+1

) de�ned by the iterative pro
ess

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

G

(0)

(x

p

; t

n+1

) := G(x

p

; t

n+1

) for all x

p

;

m = 0; 1; : : : ;M � 1 :

G

(m+1)

(x

p

; t

n+1

) :=

R

C(�

p

)

G

(m)

(x(�; t

n+1

); t

n+1

) d�

R

C(�

p

)

d�

for all x

p

:

(20)

This smoothing algorithm has proven to work quite satisfa
torily in pra
ti
e.

In our 
omputations, we take M=6.

5 rh{Adaptive Algorithm

In this se
tion, we des
ribe the 
oupling of the r{method whi
h involves solving

system (5) with the monitor fun
tion de�ned in (20) and the h{method whi
h

is based upon using a posteriori error estimates introdu
ed in (15).

Our re�nement strategy 
onsists of �rst 
al
ulating a preliminary �nite ele-

ment solution U

h;n+1

and its approximate errorE

n+1

on a given mesh T

(0)

h

for a

time step �

n

. If kE

n+1

k > TOLX, the lo
al quantities �

T

:=kE

n+1

k

T

; T 2 T

(0)

h

,

are used to lo
ate regions where greater resolution is needed. To this end, we

de�ne a lo
al error barrier �

bar

:= 
 � max

T

�

T

, where 0 < 
 < 1 is a param-

eter. All elements T 2 T

(0)

h

with �

T

larger than the barrier �

bar

are sele
ted

for re�nement. To ensure that at least a 
ertain per
entage of elements is re-

�ned, we iteratively redu
e �

bar

by the fa
tor 
. In our 
omputations, we set


 = 0:8 and repeat the sele
tion pro
ess until at least 10% of all elements are

marked for re�nement. Then a �ner grid T

(1)

h

is 
reated by lo
ally re�ning

ea
h of the marked elements into four 
ongruent triangles, and applying bise
-

tion afterwards to avoid slave nodes. This is the standard red{green re�nement


ommonly used in two{dimensional adaptive 
odes [3, 16℄. The solution and er-

ror estimator are 
omputed anew on T

(1)

h

. This re
ursive pro
ess leads naturally

to a sequen
e of improved spatial meshes

T

(0)

h

� T

(1)

h

� : : : � T

(d)

h

:

It is stopped when kE

n+1

k < TOLX on a 
ertain T

(d)

h

. Clearly, a goal is that the

automati
 mesh moving te
hnique should avoid ex
essive re�nement. Moreover,

if h{re�nement is ne
essary, the depth d should at least be small.

If the time step 
annot be a

epted due to insuÆ
ient temporal a

ura
y,

i.e., r

n+1

> TOLT in (9), the time step is reje
ted, all re�nements done in this

step are deleted, and the 
omputation is repeated with a redu
ed value of �

n

given by formula (11). Otherwise, we pro
eed in time, 
ontinuing until the �nal

time t

E

is rea
hed.

If kE

n+1

k <

1

3

TOLX or h{re�nement took pla
e during a time step, mesh


oarsening is performed after the time step has been a

epted. This pro
ess
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helps to redu
e degrees of freedom in regions where they are no longer needed.

More pre
isely, an element T 2 T

(d)

h

is removed only if �

T

is below

1

10

�

bar

for

the triangle and the three 
orresponding triangular elements 
reated by a lo
al

re�nement step (see [29℄ for more details). To 
ontrol the global error, mesh

movement, lo
al re�nement and unre�nement are repeated until the pres
ribed

spatial toleran
e TOLX is 
ompletely satis�ed. This algorithm is summarized

in a 
ow 
hart in Fig. 3.

We allow also for a 
omplete remeshing whenever the mesh is severely dis-

torted at a spe
i�
 time. The 
reation of a new base mesh is similar to the

generation of a suitable initial mesh. We �rst 
reate a quasi{uniform mesh and

solve system (5) with a small s
aling parameter � = �

meshing

, whi
h 
auses

a sequen
e of small time steps due to a fast mesh movement. Then the error

estimates are 
omputed, and lo
al mesh re�nement is performed as des
ribed

above. In 
ontrast to the original rh{adaptive algorithm, we 
oarsen the mesh

after ea
h time step in order to approximately equidistribute the error estima-

tors. If the integration results in ex
essive re�nement, the 
omputation is redone

with a �ner base mesh. The parameter �

meshing

for a remeshing at t

n

has to be


hosen in su
h a way that the auxiliary integration is �nished before the time

t

n+1

= t

n

+�

n

determined by (11). We have found that �

meshing

= 0:01 � � is

generally quite suÆ
ient.

On
e a new base mesh has been 
onstru
ted, the solution and the error esti-

mator on it are determined using linear interpolation, and the time integration

pro
eeds. In order to provide data for the 
omputation of the proje
tion error

E

n0

in (16), we save the solution at the previous grid until it is no longer needed

be
ause advan
ement to a subsequent time level has been su

essful.

6 Numeri
al Examples

6.1 Burgers' Equation

Our �rst test is for the well-known Burgers' equation

�

t

u = �r

2

u� u�

x

u� u�

y

u; in 
� (0:25; 1:5℄

where 
 is the unit square. The initial and Diri
hlet boundary 
onditions are


hosen su
h that the exa
t solution is

u(x; y; t) = 1=[1 + e

(x+y�t)=(2�)

℄:

We 
onsider the 
ase of a moderately small di�usion 
oeÆ
ient � = 0:005.

With this example we shall mainly demonstrate the bene�ts of the 
ombined

rh{method des
ribed in se
tion 5 over the pure h{ and r{method by 
omparing

the number of degree of freedoms required by the three methods to attain a

similar solution a

ura
y. Our results for the r{method are from [9℄, where a

linear �nite element approximation on a 2048{triangular mesh and a 
onstant

time step size �=1E-3 are employed. For su
h an r{adaptive approa
h, the L

1

{

norm of the solution error varies between 1E-4 and 1E-3 over the entire time
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Figure 3: Flow 
hart of the entire rh{adaptive algorithm.
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interval. To rea
h a 
omparable solution a

ura
y, we 
hoose the toleran
es

TOLT=TOLX=5E-4 for the h{ and r{method (see Fig. 4). In addition, we set

ATOL

i

=1E-6 and RTOL

i

=1.0 in (10). Re
all that x and y are not utilized for

spatial error 
ontrol as des
ribed in se
tion 4. The mesh movement is 
ontrolled

by �=10:0 in (3) and �=50:0 in (19).

1e-05

0.0001

0.001

0.01

0.4 0.6 0.8 1 1.2 1.4

L1
-E

R
R

O
R

TIME

RH-METHOD, TOL=1E-3

 H-METHOD, TOL=1E-3

R-METHOD, step=1E-3

Figure 4: Burgers' equation: Temporal evolution of lo
al L

1

{errors for linear

�nite elements. All 
omputations give 
omparable lo
al error. The r{method

in [9℄ is applied with a 
onstant time step 0.001.

In Fig. 5, we plot the evolution of the number of grid points needed to

rea
h the required a

ura
y. Not surprisingly, the h{method needs signi�
antly

more nodes than the other methods. The rh{method does a better job than

the r{method, espe
ially at the beginning and the end of the 
omputation.

There the length of the moving solution front is shorter than in the middle

of the time interval, as shown in Fig. 7. The rh{method is able to adapt to

in
reasing and de
reasing nonuniformities through moving the mesh towards

an error distribution rather than devoting ex
essive e�ort to adding too many

points. A 
loser examination of the results for the time interval [0:9; 1:1℄ in

Fig. 6 shows the main advantage of the rh{method: First the r{method moves

the nodes into regions of insuÆ
ient a

ura
y to ensure the required toleran
e is

satis�ed. Then, when this is no longer possible, the h{method helps by re�ning

(or 
oarsening) afterwards. In 
ontrast, the pure h{method 
onstantly re�nes

and 
oarsens the mesh.

6.2 Flame problem

Our se
ond example is a more pra
ti
ally relevant 
ombustion problem mod-

eling the propagation of a laminar 
ame through a heat absorbing obsta
le
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Figure 5: Burgers' equation: Number of grid points (for linear �nite elements)

needed to rea
h the a

ura
ies shown in Fig. 4.
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Figure 6: Burgers' equation: Temporal evolution of the number of grid points

for linear �nite elements in the time interval [0.9,1.1℄. Whereas the rh{method

keeps the number of grid points 
onstant over a longer period, the h{method

has to re�ne and 
oarse 
onstantly due to the moving solution.

(see [30℄). The equations for the dimensionless temperature T and the spe
ies
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Figure 7: Burgers' equation: Sele
tion of moving grids at di�erent time points.
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on
entration C read

�

t

T �r

2

T = !;

�

t

C �

1

Le

r

2

C = �!;

where ! is determined by an Arrhenius law

! =

�

2

2Le

C e

�(T�1)

1+�(T�1)

:

We set Le= 1, � = 10, and �= 0:8. The physi
al domain 
 = [0; 60℄ � [0; 16℄

is 
overed by two parallel 
ooled rods with re
tangular 
ross se
tion of length

L=15 and width H =4 (see also Fig. 8). The absorption of heat is modeled

by the boundary 
ondition �

n

T = ��T ; where the heat loss parameter � is set

to 0:1. On the left boundary Diri
hlet 
onditions 
orresponding to the burnt

state T =1 and C =0 are pres
ribed. The remaining boundary 
onditions are

of homogeneous Neumann type. The initial solution is a right{travelling 
ame

lo
ated left of the obsta
le:

T (x; y; 0) =

�

1 for x � 9 ;

e

9�x

for x > 9 ;

C(x; y; 0) =

�

0 for x � 9 ;

1� e

Le (9�x)

for x > 9 :

For the given �, the 
ame speed slows down in the interior of the 
hannel. The


ame be
omes 
urved, but manages to pass through.

We 
hoose the toleran
es for the h{ and rh{method as TOLX=TOLT=5E-4

and set ATOL

i

=1E-6 and RTOL

i

=1.0 for all 
omponents in (10). Sin
e the

time s
ale of the underlying 
ombustion pro
ess demands fast mesh adaptation,

we use �=0:1 in (3) and �=50:0 in (19). In both 
ases, linear �nite elements

are used.

In Fig. 8 and Fig. 9, the moving meshes and the 
orresponding temperature

level lines are depi
ted at various times. The moving grids follow the dynami
s

of the problem. Grid points lying at the front as well as at the ba
k of the 
ame

move towards the main 
ombustion region. As before, the rh{method needs

fewer points than the h{method to ensure 
omparable resolution. A redu
tion

in the number of mesh points by up to a fa
tor four 
an be observed from Fig.

10. The number of time steps 
hosen by the integrator ROS2 are 429 and

499 for the h{ and rh{method, respe
tively. Closer examination reveals that in

numerous instan
es the moving te
hnique uses small time integration steps due

to a sudden 
hange in the lo
al grid dynami
s from 
oarsening | see Fig. 11

for 
ases where the time integrator is for
ed to redu
e the time step.

7 Con
lusion

We have presented a �nite element method based on a 
ombined rh{mesh re�ne-

ment strategy. Major purposes are (i) to in
orporate an r{re�nement strategy
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Figure 8: Propagating Flame: Sele
tion of moving grids at various times. Top

to bottom: t=2:27; 5:43; 19:1; 35:4; 50:0.
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Figure 9: Propagating Flame: Sele
tion of temperature level lines at various

times. Top to bottom: t=2:27; 5:43; 19:1; 35:4; 50:0.
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Figure 10: Propagating Flame: Number of grid points 
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22

into an h{re�nement �nite element 
ode [30℄ to provide more eÆ
ien
y by hav-

ing better mesh alignment and (ii) to enhan
e an e�e
tive r{method (as used,

e.g., in [11℄) with global error 
ontrol using h{re�nement. The �nite element

method is based upon the horizontal method of lines. For it, the physi
al PDEs

are integrated in time with a Rosenbro
k{Wanner{type method. Hierar
hi
al

error estimates are used to guide both the mesh movement and lo
al re�nement.

The general r{re�nement method, originally developed in [25, 26℄, is based on

solving a set of moving mesh PDEs.

The implementation of r{re�nement here is fairly straightforward and has

not been extensively tested to see that parameters are optimized for this well-

tested h{re�nement 
ode. In addition, there has not as yet been a rigorous

theoreti
al analysis of the method. Nevertheless, the overall feasibility of the

general rh{re�nement approa
h in this 
ontext is apparent. The numeri
al

results are quite promising, demonstrating that a 
ombined mesh re�nement

method 
an signi�
antly redu
e the number of degree of freedoms needed to

rea
h a pres
ribed error toleran
e. We anti
ipate that a 
onsiderably more ef-

�
ient implementation of this method 
an be developed whi
h will be ideal for

solving a large 
lass of time dependent problems with multiple-s
ales. The task

of �nding the most eÆ
ient rh{re�nement method for time-dependent PDEs 
an

be daunting given the number inter
onne
ted parameters and possible strate-

gies for 
omputing the solution and grid as the solution evolves. For example,

r{movement 
an be done for only a relatively 
oarse mesh. Another approa
h

worth investigating is to modify the form of the MMPDE as re
ently introdu
ed

in [23, 24℄. Appropriately 
hoosing the monitor fun
tion, the error during the

r{re�nement steps 
an be better 
oordinated with the error form for the �nite

element method with h{re�nement. For steady state solutions, this 
ould pro-

vide a mesh optimization analogous in prin
iple to that in [13, 20℄. Finally, it

is natural and straightforward to apply su
h an rh{method to problems with

moving boundaries. These are all issues whi
h will be investigated in the future.
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