A Two—dimensional Moving Finite Element,
Method with Local Refinement Based on
A Posteriori Error Estimates

Jens Lang *  Weiming Cao Weizhang Huang ¥
Robert D. Russell

November 14, 2002

Abstract

In this paper, we consider the numerical solution of time—dependent
PDEs using a finite element method based upon rh—adaptivity. An adap-
tive horizontal method of lines strategy equipped with a posteriori error
estimates to control the discretization through variable time steps and
spatial grid adaptations is used. Our approach combines an r-refinement
method based upon solving so—called moving mesh PDEs with h-refinement.
Numerical results are presented to demonstrate the capabilities and ben-
efits of combining mesh movement and local refinement.

1 Introduction

In the numerical simulation of multiscale dynamic processes an important aspect
is to generate grids, or meshes, adapted to the solutions. Numerous examples
demonstrate that adaptive mesh strategies can greatly reduce the errors and
the computational effort for finite element methods (FEMs). This approach has
been applied in a wide range of important physical and industrial contexts such
as problems in fluid dynamics (e.g., reactive flow in a piston engine and flow
around a pitching airfoil or moving bodies) and semiconductor device fabrication
(e.g., modeling oxide flow, crystal growth, or phase change). Traditionally, the
quite robust h—method is applied, where the mesh is locally refined or coarsened
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by adding or deleting mesh points. This is often combined with the p—method,
for which the polynomial degree in each element is selected in accordance with
the smoothness properties of the solution. The hp—adaptive FEM has proven
successful at accurately resolving and following important solution features for
a wide variety of practical problems [5, 36].

Our goal here is to complement the h-adaptive strategy with an r-method,
which dynamically redistributes the mesh points in time. As is well-known,
moving mesh methods are superior at reducing dispersive errors in the vicinity
of wave fronts while local refinement methods can, in principle, add enough
degrees of freedom to resolve any fine scale structure. We expect that combining
mesh movement with local refinement generally will not only make the global
error control possible for the r—method, but also avoid the need for excessive
local refinements (cf. Fig. 1 below), and produce grids that are better aligned
with and closely follow the solution features.

Not surprisingly, rh-adaptive methods have been considered to some extent
in previous studies. ADJERID and FLAHERTY [2] present a one—dimensional
moving mesh FEM with local refinement for parabolic PDEs. Their approach
is extended by ARNEY and FLAHERTY [1] to the two—dimensional case, where
clusters of mesh points are built up and moved with an error—dependent speed.
To prevent mesh tangling, GROPP [17] introduces a local uniform refinement
strategy with moving grids. Several techniques for the creation and annihila-
tion of moving nodes have been advocated by KUPRAT [28]. Although no local
refinement is utilized in the two— and three—-dimensional mesh update strate-
gies proposed by JOHNSON and TEZDUYAR [27] and NKONGA and GUILLARD
[32], they are also of special interest since they show the usefulness of moving
techniques for industrial applications. Finally, in recent work HABASHI and
coworkers [13, 20] have investigated the potential of a so-called mesh optimiza-
tion methodology (MOM), which has both r— and h-refinement components, for
higher dimensional CFD problems.

A general and robust rh-method requires a well-posed general procedure
to determine the movement of the mesh points smoothly in time, especially in
higher spatial dimensions. MILLER, who first introduced a type of moving FEM
[31], and his co-workers propose using the finite element residuals to steer the
mesh movement [12]. Similar ideas are utilized by BAINES [6]. We present in
this paper an rh—-method that interconnects the h-refinement with a general
moving mesh method developed recently in [25, 26]. This r—method is based on
the gradient flow equation of a functional which measures the approximation
difficulty of the physical solution. It has been shown general and reliable for a
variety of practical model problems [9, 11].

The basic idea of our rh-adaptive strategy is as follows: we first discretize
both the physical and moving mesh PDEs in time by a Rosenbrock—Wanner—
type scheme. Then a finite element approximation is applied in each time step.
A hierarchical error estimator developed in [30] is used to construct the monitor
function for the moving mesh PDE and to move the grid accordingly. After
moving the mesh, we recalculate the physical solution and estimate the error.
For elements with error estimates exceeding the tolerance, local refinements are
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{(z,y) € R? : 2* + y*> < 1}: rrefinement with N = 817 yields an error

llell2(q) =3.55E-2 (left), h-refinement with N = 541 yields [le][2(q) =1.91E-2

(middle), and rh-refinement with N = 541 yields |le||12(q) =1.57TE—2 (right).

Figure 1: Approximation of the hyperbolic function u =sech ( 50 (z2+y?—0.09))

on

While the r—method wastes too many nodes, the combined rh-method results
in a mesh well-fitted to the exponentional behaviour of the function and shows

its potential compared to the pure h—-method.

than the tolerance, grid points are deleted. We test such an adaptive strategy

with nonlinear PDEs from fluid flow and combustion. Numerical results show
that the combined rh-method reduces significantly the number of degree of

applied until the tolerance is completely satisfied. In regions with errors far less
freedoms to achieve a prescribed error tolerance.

In section 2 the basic physical PDEs

The paper is organized as follows.
and moving mesh PDEs are described. The temporal and spatial discretiza-

tion schemes are introduced in section 3. After describing the error estimation
technique which is in turn used to define the monitor function in section 4, the

adaptive algorithm based upon the rh—method is described in section 5. We then

give two numerical examples to demonstrate the performance of the algorithm,

followed by some conclusions.

2 Model Problem and Moving Mesh Method

Model Problem
We shall consider a system of physical PDEs of the form

2.1
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where I = (t,t5] is a given time interval, @ C IR? is a bounded open domain
with smooth boundary 02, and V = (9,,8,)? is the gradient operator. The
boundary operator B defines an appropriate system of boundary conditions
such that there exists a unique isolated vector—valued solution w(x,t) for all
time ¢ € I. Equation (1) is quite general and covers a wide variety of practically
relevant problems such as reaction—diffusion and Navier—Stokes equations.

2.2 Moving Mesh PDEs

To discretize (1) with an adaptive finite element method, we need to construct
a time dependent mesh, denoted as Q,(t), on the domain Q. It can be gener-
ated for each time level ¢ with any of a variety of mesh generators, such as a
Delaunnay triangulation or front advancing method. An alternative approach is
to start with an auxiliary domain Q. and a fixed mesh Q" on it, and then take
Qn(t) as the image of Q" under a suitably defined mapping x(&,t) : Q. — Q —
see Fig. 2.

Figure 2: The moving mesh is the image of a reference mesh given on
Q. (top) through a time-dependent coordinate transformation x(&,t) :
Q. — Q.

To determine the time-dependent mapping x(£€,t), HUANG and RUSSELL
[25, 26] propose using a time dependent PDE system, the so-called Moving Mesh
PDEs (MMPDEs), which are based on the elliptic mesh generation methods.



Following [22], (&, t) is determined by solving the MMPDEs

0’z

S(x,G) o = Y Dij(x,G) 5E, OF,

i,j=1,2

oxr .
+ZC¢($,G)6—& inQ.xI, (2)

i=1,2
where
Dyj(x,G) = V& - G7IVE;, and Ci(x,G) = V& - (V-G

and the so—called monitor function G=G(u(z,t)) is a 2 X 2 symmetric positive
definite matrix. The coefficient S(x, G) is used to adjust the time scale of mesh
movement. Following HUANG [22], we choose

S(@,G) = 0 -/ (D11)? + (D2)? + (C1)* + (Ca)?, (3)

where O is a user defined smoothing parameter. The smaller © is, the faster
the adaptive mesh responds to changes of the monitor function, and the larger
O is, the smoother the mesh movement.

It is clear from (2) that the monitor function is the link between the solution
of the physical PDEs and the adaptive mesh defined by x(&,t¢). A proper defini-
tion of G is crucial for the construction of a mesh well-adapted to the solution.
Typically, one expects to have higher mesh density in regions where the solution
is steep or the error of the approximation is large. There are various forms of
possible monitor functions which emphasize different aspects of mesh qualities,
such as concentration, orthogonality, or alignment [9, 25]. Here we choose the
monitor function G to depend upon an a-posteriori error estimate of the local
spatial discretization. Its specific definition is given in section 4.2.

The MMPDEs (2) have to be supplemented with suitable boundary con-
ditions. Dirichlet-type boundary conditions are a straightforward and robust
choice. They are used to fix corner points and to incorporate temporal variations
of the physical domain. We use Dirichlet boundary conditions for x(&,t) deter-
mined from the solution of a one dimensional MMPDE. More precisely, given
a boundary segment I' of 09, let I'. be the corresponding boundary segment
of 0€).. Parameterize I" and I'; by arclength coordinates ¢ and s, respectively.
Then the mapping x(€,t) on I' is determined by the solution ((s,t) of the one
dimensional MMPDE

eatc = [Masdiz(Magc + 0, M as() ;

where M is the projection of the two dimensional monitor function G along
the boundary, i.e., if § is the unit tangent vector along the boundary then
M(s,t) = §*'GS.



2.3 Coupled Physical and Moving Mesh PDEs

Under the mapping x(£,t), we can transform the physical PDEs (1) into a
system involving the computational coordinate &, viz.,

(H(x,t,a,] 'Va) (0 — 8- J TVa) =

|J|7V - (|J| T D(x, t, 6, J-TVaA) J-TVa) + F(x,t, @, J-TVa)

in Q. x I,
B(w,t,ﬁ,J—T@ﬁ)a = b(x,t,4) on ON.x I,
\ a(€,to) = wuo(x(§,t0)) in Q,

(4)
where @ = 4(€,t) = u(x(€,t),1), V is the gradient operator with respect to
€= (6,6)T, and J = 9z /0€ is the Jacobian of the mapping x(€,t). The
additional term Oz - J ~TV/4 on the left-hand side can be viewed as a correction
for the convective effects of the mesh motion.

Recall that x(&,t) and 4 (x,t) are interconnected through the monitor func-
tion G in the MMPDEs (2). Both of them are time dependent unknown func-
tions. Introducing a new solution vector U = (@i, x)?, we rewrite equations (2)
and (4) as an expanded system

P(t7U)atU = f(taU)a tel,
{ (5)

U to) = Uo(x(&,t0)),

where .
H(t,U) —H(t,U)J(x) TVa
P(t,U) =
0 S(x,G)
and
|J| IV - (|J]J 1D (e, t, @, J - TVa) J-IVa) + F(x, t,4, ] TVa)
ft,U) = 0%z Ox
Dij(®,G) 57— i(@,G) 5=
> Di(x,G) 5EOE, + 3 Ciz,G) 3.

i,j=1,2 i=1,2

The initial and boundary conditions for U are taken from those in (1) and (2),
respectively. This system is highly nonlinear and stiff in general.

3 Time—Space Discretization

Equation (5) is discretized first in time and then in space, an approach which is
known as Rothe’s method or the horizontal method of lines. After discretizing in
time we end up with a system of spatial problems which are solved by the finite
element method. The spatial discretization error can be assessed by standard



error estimators for stationary problems [7, 30]. We note that the adaptive
Rothe’s method differs from the commonly used adaptive method of lines (MOL)
approach (for a comparison see [14]).

3.1 Time Discretization

Since we will incorporate the h-refinement into our spatial discretization, a
suitable time integration method for (5) should be able to easily and accurately
handle the addition and deletion of unknowns associated with the h-refinement.
In this regard, one—step time integrators are preferred over multi—step meth-
ods such as backward differentiation formulas (BDFs). When mesh points are
added or deleted, a multi—step method must usually be restarted at lower order,
whereas a one—step method can continue at higher order. Among the class of
one-step methods, linearly implicit Rosenbrock—Wanner—type schemes (ROW)
are attractive since they completely avoid the solution of nonlinear problems,
so no Newton-like iteration need to be controlled. Working the Jacobian or an
approximation of it directly into the integration formula, ROW-methods pos-
sess optimal linear stability properties for stiff equations [33, 21]. We apply the
ROW-methods given in LANG [30], which are suitable for an error—controlled
solution of parabolic PDEs. Applied to the initial-value problem (5) with step
size 7, >0 an s—stage ROW-method has the recursive form

i—1

1 e
—P(tn,Un) = An | Uri = f(tnisUni) = P(ta,Un) Y LU,
<Tn'7 ( ’ ) > ni f( iy z) ( y )j:1 - n]+

+ (P(tn: Un) - P(tni: Unz)) Zpi + i Chn, 1=1,...,s,

where the internal values are given by

and
Ay

X

au (f(t7 U) - P(t7 U)Z)\t:tn,U:Un,ZZZn )
C ~ O ULU) =Py U U 27,

The approximation U, to the solution U (t,,) is used to compute a new approx-
imate solution at time level ¢, :=t, + 7, using a linear combination of U,
and the solutions of (6), viz.,

Upir =U,+ Y miU,,. (7)

i=1



An approximation to the temporal derivation 9;U for the next time step is
constructed by computing

s i
Cii — 8
Znt1 ZZn-i-Zmi ZMU;”+(U¢—1)Z,L i (8)

.
i=1 j=1 n

To start the above ROW-method, an approximation Z, of 3;U at tg is required.
The stage number s and the formula coefficients are chosen to obtain a desired
order of consistency and good stability properties for stiff equations. A nice
feature of linearly implicit ROW-methods is that all linear systems for the
intermediate values U';,i = 1,...,s, involve the same operator. The boundary
conditions for U',; are readily obtained applying the ROW-method (6) to the
boundary conditions for U, which are understood as algebraic equations of the
form (5) with P(¢,U)=0 [30].

Various ROW-methods have been constructed in [30] to integrate systems
of the form (5). In our computations, we use the solver R0s2 [34] (see Tab. 1
for the defining formula coefficients), which has second-order accuracy for ar-
bitrary A, and C,. This property allows us to freeze the coefficients in the
MMPDEs (2) during one time step without order reduction. Specifically, for
all t € (tn,tne1) we use Djj(x,, G(u,)) instead of Dj;(x(t), G(u(x(t),t))) and
Ci(xn,G(uy)) instead of C;(z(t), G(u(x(t),t))) for i,j = 1,2. Here, z,, and u,
denote approximations of the mapping @ and the solution w at ¢,. Since the
position of mesh points need not to be determined as precisely as the solution
of the physical PDE, it is generally unnecessary to solve the MMPDEs to very
high accuracy. We have found the approach of freezing the coefficients to be
quite efficient and robust with respect to the choice of the constant parameter
© in (3).

The time step size is also adapted in order to control the temporal error.
For ROW-methods, a second solution of lower order, say p, can be computed
by an embedded formula

S
Upr = Un+ ) mUy,
i=1
i Z c.._s..
Zngy = Znt+) | Y AU+ (0 -1)Z0 |,
i=1 j=1 n

where the original weights m; in (7) and (8) are simply replaced by m;. If p is
the order of U,, 11, we call such a pair of formulas of order p(p). The difference
between these solutions is used to compute the local error estimator

T4+l = ||Un+1 - fjn+1||7 (9)

where ||-|| is a weighted norm defined for vector—valued functions v =(v1, ..., v,



as

1/2
o] = lzq: l|vill L. 0.) 2 o)
q ATOL; + ||Un+17i||L2(Qc) -RTOL; )

i=1
The tolerances ATOL; and RTOL; are selected to accurately reflect the scale of
the problem. The predicted new time step is

TOLT . . \ Y/ 5+
Tos1 = min <10, max <0.1, Tn ( 0 r”) T, (11)
Tn—1 \Tn+1 " Tn+1

where TOLT is the prescribed error tolerance. This formula is related to a
discrete PI-controller first established in the pioneering work of GUSTAFFSON,
LuNDH, and SODERLIND [18, 19].

v = 1.707106781186547¢ + 00

a11 = 0.000000000000000e 4+ 00 | c1 = 0.000000000000000e + 00
az21 = 5.857864376269050e — 01 | a2 = 1.000000000000000e + 00
az2 = 0.000000000000000e + 00

ci1 = 5.857864376269050e — 01 | s11 = 0.000000000000000e + 00
c21 = 1.171572875253810e + 00 | s21 = 3.431457505076198e — 01
c22 = 5.857864376269050e — 01 | s22 = 0.000000000000000e + 00
v1 = 1.707106781186547¢ 4+ 00 | o1 = 0.000000000000000e + 00
v2 = —1.707106781186547¢ + 00 | o2 = 5.857864376269050e — 01

m1 = 8.786796564403575e — 01 | 1 = 5.857864376269050e — 01
me = 2.928932188134525e¢ — 01 | 12 = 0.000000000000000e + 00

Table 1: Set of coefficients for R0s2, which is of order 2(1).

3.2 Space Discretization

Having discretized in time, we use the finite element method to solve equa-
tion (6) supplemented with the discretized boundary conditions. Let 7, be
an admissible finite element mesh on Q. at ¢ =t,, and S{ C H'(Q.) be the
associated finite dimensional space consisting of all continuous functions that
are polynomials of order ¢ on each finite element T" € 7, and that vanish on
boundaries where Dirichlet—type conditions are given. Taking the Ly ({2.)—inner
product of (6) with test functions ¢ € S}, the standard Galerkin finite element
approximation U}, ,,; € S} for the intermediate values U',; is required to satisfy

h,ni

(LU}, 1ir @) = (rni, @) for all ¢ € Y. (12)
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Here, L,, is the weak representation of the differential operator on the left—hand
side in (6) and 7y; = 7ni (U}, 1, - -, Ul pi1) stands for the entire right-hand
side in (6). Since L, is independent of the index i, its calculation is required
only once each time step. The finite element solution at the time level ¢, is
computed as

s
Uint1t =Unppn + Zmi honi » (13)
i=1
with U}, , being an approximation to U (¢,). The linear systems (12) are solved
by a preconditioned Krylov subspace method, viz., an efficient combination of
B1cGsTAB [35] and an incomplete LU—factorization.

4 Error Estimates and Monitor Functions

4.1 Error Estimates

Once all U;l’m» € S} have been computed, an a-posteriori error estimate can be
employed to assess the spatial error distribution. We adopt here a technique
known as hierarchical error estimation — see, e.g., BORNEMANN, ERDMANN,
and KORNHUBER (8], DEUFLHARD, LEINEN and YSERENTANT [15], BANK and
SMITH [4]. More precisely, let the approximation subspace SZH admit a de-
composition

Sitt=siezZi, (14)

where ZZH is the subspace spanned by all additional basis functions that are
required to extend the space SY to the higher order space S?™'. Hierarchical
error estimates are used to calculate the bound on the spatial error by evaluating
components in the space ZZH only. In LANG [30], this technique has been
carried over to time-dependent nonlinear problems. Following the approach
developed there, an a posteriori error estimator E,1(§) € ZZ+1 for the finite
element solution U}, 41 is defined as a linear combination of terms of the form

En+1 (5) = EnO(&) + Zmi Enl(g) ) (15)

where F,o € Zg“ measures the projection error of the initial value Uy, ,, and
E,,; estimates the spatial error of the intermediate value Uy}, ,,;. More precisely,
we compute E,o from the equation

(LyEno,d) = (L (Upy —Upy), @) forall p € ZIH (16)

with Uh,n representing the initial solution computed on a well-fitted mesh at
time ¢,,, and Uy, being its projection onto S{. (Were the computational mesh
Q" to be coarsened, E, estimates the resulting loss of resolution for the pre-
vious finite element solution U}, ,.) The stage error estimator E,; € Z,’i“
satisfies

(LnBni, @) = (rni(Uh 1 + Bty Ul iy + Bnic1), @) = (LaUl i @) (17)
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for all ¢ € ZZH. The computation of the error estimator E,,;; only requires
the solution of linear systems. The expense of the error estimation can be
further reduced by replacing system (17) with a block diagonal approximation
in a standard way [15, 30]. The stage error estimators E,; are used successively
to improve the approximation of the nonlinear term r,;. Here, we apply linear
finite elements on triangular meshes and measure the spatial errors in the space
of quadratic functions.

In our context of rh-—refinement, the error estimates E,,(€) are in fact scaled
such that we basically only use spatial error estimates for the é4t—component of
solution U = (@, )" and not the nodes x. That is, we set RTOL; = oo for all
x—components in (10). As discussed previously, this is because our experience
has shown that control of spatial errors for @ is generally sufficient to maintain
adequate precision for grid placement as well.

4.2 Monitor Function

To construct the monitor function G, we follow [11] and first define an error
function &,41 which describes the estimated error per unit area at each node of
the physical domain. Specifically, letting @, be a mesh point in Qy(¢,+1) and
£,=&(xp, tny1) the corresponding mesh point in ., we define

||En+1||c(£p)
Joe,) @€

where C'(§,,) C . is the union of neighbouring grid cells having £, as one of their
vertices. Clearly, regions with larger £,+1 need higher mesh concentration. To
avoid overcrowding the mesh points in regions of maximum errors, we introduce
a cut—off function of &,4; as follows

Ent1(zp) = (18)

_ 0.8 - maxg, Eny1(xp) if Engi(xp) > 0.8 -maxg, Enyi(x))
Entr1(mp) =

Ent1(xp) otherwise.

The monitor function is then defined as

R

maxa;p gn+1 (

for all mesh points @, in Q(¢p41), where « is an intensity parameter used to
control the influence of the error function &, on the mesh concentration. The
monitor function defined pointwise is extended to a function G(z,t,,41) for all
« € Qp(tp+1) by linear interpolation.

To increase the smoothness of the mesh distribution and also to reduce the
stiffness of the MMPDEs (2), it is common practice to smooth the monitor
function by a local averaging. Given a non-negative integer M, we use the
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monitor function G™) (x,t,1) defined by the iterative process
GOz, tyr1) = G(xp,tyr1) foralx,,

m=0,1,...,M —1:

Jeie s G (@€, tng), toyr) dE
G (zy,tyr1) = CEy) for all ,, .

Jo,)

(20)
This smoothing algorithm has proven to work quite satisfactorily in practice.
In our computations, we take M =6.

5 rh—Adaptive Algorithm

In this section, we describe the coupling of the r—-method which involves solving
system (5) with the monitor function defined in (20) and the h-method which
is based upon using a posteriori error estimates introduced in (15).

Our refinement strategy consists of first calculating a preliminary finite ele-
ment solution Uy, ,,+1 and its approximate error E, 1 on a given mesh 7;(0) for a
time step 7y, If | E,41]| > TOLX, the local quantities 5y :=||Ept1l|7, T € 7;(0),
are used to locate regions where greater resolution is needed. To this end, we
define a local error barrier 9pq, :=y - maxyp ny, where 0 < v < 1 is a param-
eter. All elements T € 7;(0) with nr larger than the barrier 7., are selected
for refinement. To ensure that at least a certain percentage of elements is re-
fined, we iteratively reduce 14, by the factor . In our computations, we set
~v=0.8 and repeat the selection process until at least 10% of all elements are
marked for refinement. Then a finer grid 771(1) is created by locally refining
each of the marked elements into four congruent triangles, and applying bisec-
tion afterwards to avoid slave nodes. This is the standard red—green refinement
commonly used in two—dimensional adaptive codes [3, 16]. The solution and er-

ror estimator are computed anew on 7751). This recursive process leads naturally
to a sequence of improved spatial meshes

7O cV ... cTi?.

It is stopped when || E,,11]| < TOLX on a certain 771(‘1). Clearly, a goal is that the
automatic mesh moving technique should avoid excessive refinement. Moreover,
if h-refinement is necessary, the depth d should at least be small.

If the time step cannot be accepted due to insufficient temporal accuracy,
i.e., rpp1 > TOLT in (9), the time step is rejected, all refinements done in this
step are deleted, and the computation is repeated with a reduced value of 7,
given by formula (11). Otherwise, we proceed in time, continuing until the final
time tg is reached.

If ||[Epq1]| < $TOLX or h-refinement took place during a time step, mesh
coarsening is performed after the time step has been accepted. This process
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helps to reduce degrees of freedom in regions where they are no longer needed.
More precisely, an element 7' € 77l(d) is removed only if nr is below %lear for
the triangle and the three corresponding triangular elements created by a local
refinement step (see [29] for more details). To control the global error, mesh
movement, local refinement and unrefinement are repeated until the prescribed
spatial tolerance TOLX is completely satisfied. This algorithm is summarized
in a flow chart in Fig. 3.

We allow also for a complete remeshing whenever the mesh is severely dis-
torted at a specific time. The creation of a new base mesh is similar to the
generation of a suitable initial mesh. We first create a quasi—uniform mesh and
solve system (5) with a small scaling parameter © = Oy,csning, Which causes
a sequence of small time steps due to a fast mesh movement. Then the error
estimates are computed, and local mesh refinement is performed as described
above. In contrast to the original rh—adaptive algorithm, we coarsen the mesh
after each time step in order to approximately equidistribute the error estima-
tors. If the integration results in excessive refinement, the computation is redone
with a finer base mesh. The parameter ©,,csning for a remeshing at ¢,, has to be
chosen in such a way that the auxiliary integration is finished before the time
tn+1 =ty +7, determined by (11). We have found that ©pesping =0.01 - © is
generally quite sufficient.

Once a new base mesh has been constructed, the solution and the error esti-
mator on it are determined using linear interpolation, and the time integration
proceeds. In order to provide data for the computation of the projection error
E o in (16), we save the solution at the previous grid until it is no longer needed
because advancement to a subsequent time level has been successful.

6 Numerical Examples

6.1 Burgers’ Equation
Our first test is for the well-known Burgers’ equation
ou = vViu — udyu — ulyu, in  x (0.25,1.5]

where 2 is the unit square. The initial and Dirichlet boundary conditions are
chosen such that the exact solution is

u(z,y,t) = 1/[1 + e@Hv=0/Cv)],

We consider the case of a moderately small diffusion coefficient v = 0.005.
With this example we shall mainly demonstrate the benefits of the combined
rh—method described in section 5 over the pure h— and r—method by comparing
the number of degree of freedoms required by the three methods to attain a
similar solution accuracy. Our results for the r—method are from [9], where a
linear finite element approximation on a 2048-triangular mesh and a constant
time step size 7=1E-3 are employed. For such an r-adaptive approach, the L'
norm of the solution error varies between 1E-4 and 1E-3 over the entire time
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Figure 3: Flow chart of the entire rh-adaptive algorithm.
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interval. To reach a comparable solution accuracy, we choose the tolerances
TOLT=TOLX=5E-4 for the h— and r-method (see Fig. 4). In addition, we set
ATOL;=1E-6 and RTOL;=1.0 in (10). Recall that z and y are not utilized for
spatial error control as described in section 4. The mesh movement is controlled
by ©=10.0 in (3) and a=50.0 in (19).

0.01

RH-METHOD, TOL=1E-3 ——
H-METHOD, TOL=1E-3
R-METHOD, step=1E-3

0.001

L1-ERROR

0.0001 |7

1e-05 ! ! ! ! ! !
0.4 0.6 0.8 1 1.2 1.4

TIME

Figure 4: Burgers’ equation: Temporal evolution of local L!-errors for linear
finite elements. All computations give comparable local error. The r—method
in [9] is applied with a constant time step 0.001.

In Fig. 5, we plot the evolution of the number of grid points needed to
reach the required accuracy. Not surprisingly, the h—method needs significantly
more nodes than the other methods. The rh—method does a better job than
the r—method, especially at the beginning and the end of the computation.
There the length of the moving solution front is shorter than in the middle
of the time interval, as shown in Fig. 7. The rh—method is able to adapt to
increasing and decreasing nonuniformities through moving the mesh towards
an error distribution rather than devoting excessive effort to adding too many
points. A closer examination of the results for the time interval [0.9,1.1] in
Fig. 6 shows the main advantage of the rh-method: First the r-method moves
the nodes into regions of insufficient accuracy to ensure the required tolerance is
satisfied. Then, when this is no longer possible, the h-method helps by refining
(or coarsening) afterwards. In contrast, the pure h-method constantly refines
and coarsens the mesh.

6.2 Flame problem

Our second example is a more practically relevant combustion problem mod-
eling the propagation of a laminar flame through a heat absorbing obstacle
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10000 ‘ ‘ ‘
RH-METHOD, TOL=1E-3 -
H-METHOD, TOL=1E-3 ——
8000 ¢ R-METHOD, N=2048 -~ 1
6000 | ]

4000

DEGREES OF FREEDOM

2000

Figure 5: Burgers’ equation: Number of grid points (for linear finite elements)
needed to reach the accuracies shown in Fig. 4.

10000 ‘ |
RH-METHOD, TOL=1E-3 e
H-METHOD, TOL=1E-3 ——
8000 | |
6000

4000

DEGREES OF FREEDOM

2000

0.9 0.95 1 1.05 11

Figure 6: Burgers’ equation: Temporal evolution of the number of grid points
for linear finite elements in the time interval [0.9,1.1]. Whereas the rh-method
keeps the number of grid points constant over a longer period, the h-method
has to refine and coarse constantly due to the moving solution.

(see [30]). The equations for the dimensionless temperature T" and the species
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Figure 7: Burgers’ equation: Selection of moving grids at different time points.
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concentration C read .
8tT - VZT = w,

6t0 - LLCVZC = —Ww,
where w is determined by an Arrhenius law

w = 5Te C eTHa(T-1

We set Le =1, =10, and o =0.8. The physical domain 2 =[0,60] x [0, 16]
is covered by two parallel cooled rods with rectangular cross section of length
L =15 and width H =4 (see also Fig. 8). The absorption of heat is modeled
by the boundary condition 9,7 = —xT, where the heat loss parameter & is set
to 0.1. On the left boundary Dirichlet conditions corresponding to the burnt
state T'=1 and C =0 are prescribed. The remaining boundary conditions are
of homogeneous Neumann type. The initial solution is a right—travelling flame
located left of the obstacle:

1 for <9,

T(,y,0) = {69_z for z>9

0 for <9,
C(z,y,0) = {1_6L6(9$) for z>9.

For the given &, the flame speed slows down in the interior of the channel. The
flame becomes curved, but manages to pass through.

We choose the tolerances for the h— and rh-method as TOLX=TOLT=5E-4
and set ATOL;=1E-6 and RTOL;=1.0 for all components in (10). Since the
time scale of the underlying combustion process demands fast mesh adaptation,
we use ©=0.1in (3) and a=50.0 in (19). In both cases, linear finite elements
are used.

In Fig. 8 and Fig. 9, the moving meshes and the corresponding temperature
level lines are depicted at various times. The moving grids follow the dynamics
of the problem. Grid points lying at the front as well as at the back of the flame
move towards the main combustion region. As before, the rh-method needs
fewer points than the h—method to ensure comparable resolution. A reduction
in the number of mesh points by up to a factor four can be observed from Fig.
10. The number of time steps chosen by the integrator ROS2 are 429 and
499 for the h— and rh—method, respectively. Closer examination reveals that in
numerous instances the moving technique uses small time integration steps due
to a sudden change in the local grid dynamics from coarsening — see Fig. 11
for cases where the time integrator is forced to reduce the time step.

7 Conclusion

We have presented a finite element method based on a combined rh—mesh refine-
ment strategy. Major purposes are (i) to incorporate an r-refinement strategy
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Figure 8: Propagating Flame: Selection of moving grids at various times. Top

to bottom: t=2.27,5.43,19.1, 35.4, 50.0.



Figure 9: Propagating Flame: Selection of temperature level lines at various
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Figure 10: Propagating Flame: Number of grid points chosen for the h— and
rh—-method.
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Figure 11: Propagating Flame: History of time steps chosen by ROS2 for the
h— and rh—-method.
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into an h—refinement finite element code [30] to provide more efficiency by hav-
ing better mesh alignment and (ii) to enhance an effective r—-method (as used,
e.g., in [11]) with global error control using h-refinement. The finite element
method is based upon the horizontal method of lines. For it, the physical PDEs
are integrated in time with a Rosenbrock—Wanner—type method. Hierarchical
error estimates are used to guide both the mesh movement and local refinement.
The general r—refinement method, originally developed in [25, 26], is based on
solving a set of moving mesh PDEs.

The implementation of r—refinement here is fairly straightforward and has
not been extensively tested to see that parameters are optimized for this well-
tested h-refinement code. In addition, there has not as yet been a rigorous
theoretical analysis of the method. Nevertheless, the overall feasibility of the
general rh-refinement approach in this context is apparent. The numerical
results are quite promising, demonstrating that a combined mesh refinement
method can significantly reduce the number of degree of freedoms needed to
reach a prescribed error tolerance. We anticipate that a considerably more ef-
ficient implementation of this method can be developed which will be ideal for
solving a large class of time dependent problems with multiple-scales. The task
of finding the most efficient rh—refinement method for time-dependent PDEs can
be daunting given the number interconnected parameters and possible strate-
gies for computing the solution and grid as the solution evolves. For example,
r—movement can be done for only a relatively coarse mesh. Another approach
worth investigating is to modify the form of the MMPDE as recently introduced
in [23, 24]. Appropriately choosing the monitor function, the error during the
r—refinement steps can be better coordinated with the error form for the finite
element method with h-refinement. For steady state solutions, this could pro-
vide a mesh optimization analogous in principle to that in [13, 20]. Finally, it
is natural and straightforward to apply such an rh—-method to problems with
moving boundaries. These are all issues which will be investigated in the future.
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