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Abstrat. Let P be a projetive spae. By H(P) we denote the graph whose

verties are the non-inident point-hyperplane pairs of P, two verties (p;H)

and (q; I) being adjaent if and only if p 2 I and q 2 H. In this paper we give

a haraterization of the graph H(P) (as well as of some related graphs) by its

loal struture. We apply this result by two haraterizations of groups G with

PSL

n

(F) � G � PGL

n

(F), by properties of entralizers of some (generalized)

reetions. Here F is the (skew) �eld of oordinates of P.

1. Introdution

Loal reognition of graphs is a problem desribed, for example, in [2℄. The

general idea is the following. Choose your favorite graph � and try to �nd all

onneted graphs � that are loally �, i.e., graphs whose indued subgraph on the

set of all neighbors of an arbitrary vertex of � is isomorphi to �. One restrits

the searh to onneted graphs, beause a graph is loally � if and only if all of its

onneted omponents are loally �. There has already been done a lot of work in

this diretion, see, e.g., [1, 6, 7, 8, 10, 11℄.

Suppose P is a projetive spae of (projetive) dimension n (possibly in�nite).

Then by H(P) we denote the graph with as verties the non-inident point-hy-

perplane pairs and with two verties (p;H) and (q; I), with p; q points and H; I

hyperplanes suh that p 62 H and q 62 I , being adjaent if and only if p 2 I and

q 2 H .

For eah vertex of the graph H(P), the indued subgraph on the neighbors of

this vertex is isomorphi to H(P

0

), where P

0

is a hyperplane of P. In this paper we

give a haraterization of the graphs H(P) by their loal struture.

In fat, we onsider a slightly larger lass of graphs. Let H be a subspae of

the dual P

dual

of P with the property that the intersetion of all the hyperplanes

H 2 H is trivial (we say H has a trivial annihilator in P). If P is �nite-dimensional,

then H equals P

dual

, but for in�nite dimensional P the spae H an be a proper

subspae of P

dual

. The subgraph H(P; H ) of H(P) indued on the verties (p;H)

with H 2 H , has the property that for eah vertex v the indued subgraph on the

neighbors of v is isomorphi to H(P

0

; H

0

) for some hyperplanes P

0

of P and H

0

of

H . Indeed, if v = (x;X), then with P

0

the projetive spae indued on X and H

0

the set of hyperplanes K of P

0

suh that the subspae of P generated by x and K

belongs to H , we �nd the indued subgraph on the neighbors of v to be isomorphi

to H(P

0

; H

0

). Moreover, as

T

H2H;x2H

H = fxg, we have

T

H2H

0

H = ;. Our

main result reads as follows.
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Theorem 1.1. Let P

0

be a projetive spae of dimension at least 3 and H

0

a sub-

spae of P

0

dual

with trivial annihilator in P

0

. Suppose � is a onneted graph whih

is loally H(P

0

; H

0

). Then � is isomorphi to H(P; H ) for some projetive spae P

and some subspae H of P

dual

with trivial annihilator in P.

The ondition dim(P

0

) � 3 in our loal reognition result is sharp as is shown

by an example in Setion 5 of a onneted, loally H(P(F

3

2

)) graph that is not

isomorphi to H(P(F

4

2

)).

Our proof of Theorem 1.1 is partly motivated by the methods developed in [4℄,

where loal reognition results are obtained for subgraphs of H(P) �xed under

polarities of P.

If P is the projetive spae P(V ) of some vetor spae V de�ned over a �eld

F of order at least 3, then the graphs H(P; H ) an be desribed as graphs on the

reetion tori in subgroups of GL(V ). Let V be a left vetor spae over a (possibly

ommutative) skew �eld F. For g 2 GL(V ), we set

[V; g℄ = fvg � v j v 2 V g and C

V

(g) = fv 2 V j vg � v = 0g;

and all these subspaes the enter and axis of g. A transformation g 2 GL(V )

satisfying dim([V; g℄) = 1 is alled a reetion if [V; g℄ 6� C

V

(g). Observe that C

V

(g)

is a hyperplane if g is a reetion.

If we speify a hyperplaneH and a one-dimensional subspae, that is, a projetive

point, p of V , then by T

p;H

we denote the subgroup of GL(V ) generated by all

g 2 GL(V ) with p = [V; g℄ and H = C

V

(g). If p 62 H , the subgroup T

p;H

onsists of

the identity and all reetions with enter p and axis H . The group is isomorphi

with F

�

and is alled a reetion torus. All reetion tori in GL(V ) generate the

full �nitary general group FGL(V ) of V , i.e., the subgroup of GL(V ) onsisting

of all elements g 2 GL(V ) with [V; g℄ �nite dimensional. Below we will desribe

more examples of groups generated by reetion tori, losely related to the graphs

appearing in Theorem 1.1.

Let � be a subspae of V

�

. By R(V;�) we denote the subgroup G of GL(V )

generated by the reetions with enter in V and axis in �. If � = V

�

, then G is

equal to the full �nitary general linear group FGL(V ). If � 6= V

�

but fv 2 V j

v� = 0 for all � 2 �g = 0 (i.e., the annihilator of � in V is trivial), then R(V;�)

still ats irreduibly on V , see [3℄.

If T

(p;H)

and T

(q;I)

are two distint reetion tori in GL(V ), then T

(p;H)

and

T

(q;I)

ommute if and only if p 2 I and q 2 H . Hene, if G is one of the groups

R(V;�), where the annihilator of � in V is trivial, then the graph with as vertex

set the reetion tori in G, two tori being adjaent if and only if they ommute, is

isomorphi to the graph H(P(V );P(�)).

If C is a onjugay lass of reetions in GL

n+1

(F), then eah reetion torus of

GL

n+1

(F) meets C in a unique element. So, the ommuting graph on C, i.e., the

graph with vertex set C and in whih two distint verties are adjaent if and only

if they ommute, is isomorphi to H

n

(F).

In view of these observations we an use Theorem 1.1 in order to loally reognize

linear groups. We state two suh results. I

Theorem 1.2. Let n � 3 be �nite, and let F be a skew �eld of order � 3. Let G

be a group with distint elements x, y and subgroups X, Y suh that

(i) C

G

(x) = X �K with K

�

=

GL

n+1

(F);

(ii) C

G

(y) = Y � J with J

�

=

GL

n+1

(F);
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(iii) there exists an element in J\K that is a reetion of both J and K onjugate

to x in J and y in K, respetively.

If G = hJ;Ki, then (up to isomorphism) PSL

n+2

(F) � G=Z(G) � PGL

n+2

(F).

Our seond appliations deals with �nite groups. Let n be �nite and F a �eld.

An element r of SL

n+1

(F) is alled a generalized reetion if, up to a salar fator,

r is a reetion in GL

n+1

(F)) , i.e., if there exists a reetion in rZ(GL

n+1

(F)).

The axis and enter of a generalized reetion are, by de�nition, its eigenspaes of

dimension n and 1, respetively, in the natural module. They are the axis and enter

of the unique reetion in rZ(GL

n+1

(F)). The group generated by all generalized

reetions with a given axis and enter is alled a generalized reetion torus and

is isomorphi to F

�

=h� 2 F

�

j �

n+1

= 1i.

With this notion we have the following result for �nite groups.

Theorem 1.3. Let n � 3 be �nite, and let F be a �nite �eld of order q � 3. Let p

be a prime dividing q � 1. Let G be a group with distint elements x, y of order p

suh that

(i) C

G

(x) ontains a harateristi subgroup K with K

�

=

SL

n+1

(F);

(ii) C

G

(y) ontains a harateristi subgroup J with J

�

=

SL

n+1

(F);

(iii) there exists an element z in J\K onjugate to x in J and y in K, respetively.

Moreover, z is a generalized reetion of both K and J .

If G = hJ;Ki, then G=Z(G)

�

=

PSL

n+2

(F).

The latter theorem is the kind of result that is useful in the lassi�ation of �nite

simple groups in that a quasi-simple group is reognized from a omponent in the

entralizer of an element about whih some fusion information is given.

The remainder of this paper is organized as follows. In the next two setions

we derive various properties of the graphs H(P; H ). In partiular, we show that

both P and H an be reovered from the graph H(P; H ). As a onsequene we are

able to determine the full automorphism group of H(P; H ). Then in Setion 4 we

prove Theorem 1.1. As mentioned before, in Setion 5 a family of graphs whih

are loally H(P(F

3

2

)) is disussed and �nally in Setion 6 the two group-theoretial

appliations, Theorem 1.2 and 1.3, of Theorem 1.1 are disussed.

Aknowledgment. The authors want to thank Andries Brouwer, Rihard Lyons,

Sergey Shpetorov and Ronald Solomon for various helpful remarks onerning the

topis of this paper. An earlier version of this paper forms part of the PhD thesis

of the last author, see [5℄.

2. The point-hyperplane graph

De�nition 2.1. Consider a projetive spae P and a subspae H of the dual P

dual

of P with

T

H2H

H = ;. The point-hyperplane graph H(P; H ) is the graph whose

verties are the non-inident point-hyperplane pairs of P with the hyperplanes in H ,

in whih a vertex (a;A) is adjaent to another vertex (b; B) (in symbols, (a;A) ?

(b; B)) if and only if a 2 B and b 2 A.

By de�nition, we have x 6? x, so the perp x

?

of x of all verties of H(P; H ) in ?

relation to x is the set of verties inH(P; H ) at distane one from x. Moreover, for a

setX of verties, we de�ne the perp of X asX

?

:=

T

x2X

x

?

with the understanding

that ;

?

= H(P; H ). The double perp of X is X

??

:= (X

?

)

?

.



4 ARJEH M. COHEN, HANS CUYPERS, RALF GRAMLICH

The graph H(P;P

dual

) is also denoted by H(P). Moreover, if P = P(V ) for some

(n+1)-dimensional vetor spae V over a (skew) �eld F, then we also write H

n

(F)

for H(P). If the �eld F is �nite of order q, then we write H

n

(q). Finally, if the �eld

F is irrelevant, then we also write H

n

instead of H

n

(F).

Let P be a projetive spae and H a subspae of the dual of P suh that the

intersetion over all hyperplanes in H is empty. A point p of the projetive spae

P = (P ;L) determines the set of verties v

p

= f(x;X) 2 H(P; H ) j x = pg of the

graph H(P; H ). A line l of P determines the union v

l

of all sets v

p

of verties for

p 2 l. Clearly the map v : P [ L ! 2

H(P;H)

: x 7! v

x

is injetive, and p 2 l if

and only if v

p

� v

l

, so we an identify the projetive spae with its image under v

in the olletion of all subsets of the vertex set of H(P; H ). We shall refer to this

image in 2

H(P;H)

as the exterior projetive spae on H(P; H ). Similarly, one an

map points � and lines � of H onto subsets of verties of H(P; H ) of the form w

�

=

f(x;X) 2 H(P; H ) j X = �g and w

�

=

S

���

w

�

for � running over all points of

P

dual

ontaining �. This gives rise to the dual exterior projetive spae on H(P; H ).

The subsets v

p

, v

l

, w

�

and w

�

so obtained are alled exterior points, exterior lines,

exterior hyperlines, and exterior hyperplanes of H(P; H ), respetively. Note that,

if the projetive spae P is isomorphi to H , there is an automorphism of H(P; H )

mapping the image under v onto the image under w. (If � is an isomorphism from

P to H , then (x;X) 7! (�(X); �(x)) is an automorphism of H(P; H ) as required.)

Also, if P is a subspae of H

dual

with trivial annihilator in H (in partiular, if

P and H have the same �nite dimension), then H(P; H ))

�

=

H(H ;P) by the map

(x;X) 7! (X; x). So, in general it will not be possible to distinguish exterior points

from exterior hyperplanes if one tries to reonstrut the projetive spae from the

graph. Another useful observation is that the exterior points partition the vertex

set of H(P; H ). In other words, eah vertex of H(P; H ) belongs to a unique exterior

point. The same holds for exterior hyperplanes.

One of our goals is to haraterize the graph H(P; H ) by its loal struture. In

this light the following two observations are important.

Proposition 2.2. Let P have dimension at least one. The graph H(P; H ) is loally

H(P

0

; H

0

) for some hyperplanes P

0

of P and H

0

of H .

Proof. Let x = (x;X) be a vertex of H(P; H ). Identify X with P

0

. For any vertex

y = (y; Y ) adjaent to x, we have x 2 Y , y 2 X n Y , and X \ Y a hyperplane in

both X and Y , so (y;X \ Y ) belongs to H(X). We an identify the spae of all

hyperplanes of the form X \ Y of X where x 2 Y 2 H with a hyperplane H

0

of H .

Hene, (y;X \ Y ) belongs to H(P

0

; H

0

).

Conversely, for any vertex of H(P

0

; H

0

), i.e., for any non-inident pair (z; Z)

onsisting of a point z and a hyperline Z of P with z 2 X , Z � X , the pair

(z; hZ; xi) is a vertex of x

?

. (Indeed, z 62 hZ; xi, sine x 62 X .)

Clearly, the maps (y; Y ) 7! (y;X \ Y ) and (z; Z) 7! (z; hZ; xi) are eah other's

inverses. Moreover, the maps preserve adjaeny and the proposition follows.

Proposition 2.3. H

0

onsists of preisely one point; H

1

is the disjoint union of

liques of size two; the diameter of H

2

equals three; the diameter of H(P; H ), where

dim(P) � 3, equals two. In partiular, H(P; H ) is onneted for dim(P) � 2.

Proof. The statements about H

0

and H

1

are obvious. Let x = (x;X), y = (y; Y )

be two non-adjaent verties of H

2

. The intersetion X\Y is a point or a line, and
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xy is a point or a line. The verties x and y have a ommon neighbor, i.e., they

are at distane two, if and only if X \ Y 6� xy. If X \ Y � xy, however, it is easily

seen, that they are at distane three. Indeed, hoose a 2 Xn fyg and b 2 Y n fxg

with ay 63 b and bx 63 a. Then (x;X), (a; bx), (b; ay), (y; Y ) establishes a path of

length three.

Now let x = (x;X), y = (y; Y ) be two non-adjaent verties of H(P; H ), where

dim(P) � 3. The intersetion X \ Y ontains a line. Sine x 62 X and y 62 Y , we

�nd a point z 2 X \ Y and a hyperplane Z � xy with z 62 Z and, thus, a vertex

(z; Z) adjaent to both x and y.

Our �rst main result will be a reonstrution theorem of the projetive spae from

graphs isomorphi to the point-hyperplane graphH = H(P; H ) without making use

of the oordinates, see the next setion. This goal will be ahieved by the study

of double perps of two verties, i.e., subsets of H =H(P; H ) of the form fx;yg

??

.

By n we denote the dimension of P.

Lemma 2.4. Let x = (x;X), y = (y; Y ) be distint verties of H with fx;yg

?

6= ;.

Then the double perp fx;yg

??

equals the set of verties z = (z; Z) of H with z 2 xy

and Z � X \ Y .

Proof. Distint verties with non-empty perp only exist for n � 2. The verties of

fx;yg

?

are preisely the non-inident point-hyperplane pairs (p;H) with p 2 X\Y

andH � xy. Let

�

(p

i

; H

i

) 2 fx;yg

?

j i 2 I

	

be the set of all these verties, indexed

by some set I . Now fx;yg

??

= (fx;yg

?

)

?

onsists of preisely those verties

(z; Z) 2 H with z 2

T

i2I

H

i

and Z � h(p

i

)

i2I

i. But sine fx;yg

?

6= ;, we have

T

i2I

H

i

= xy and h(p

i

)

i2I

i = X \ Y , thus proving the laim.

In order to reover the projetive spaes P and H from the information ontained

in a graph �

�

�

=

H, we have to reognize verties x, y of � with x = y or, dually,

X = Y , if �(x) = (x;X), �(y) = (y; Y ). Clearly, x = y and X = Y if and only

if the verties x, y are equal. To reognize the other ases, we make use of the

following de�nition and lemma.

Reall that the (projetive) odimension of a subspae X of a projetive spae

P is the number of elements in a maximal hain of proper inlusions of subspaes

properly ontaining X and properly ontained in P. For example, the odimension

of a hyperplane of P equals 0.

De�nition 2.5. Let n � 2. Verties x = (x;X), y = (y; Y ) of H(P; H ) are in

relative position (i; j) if

i = dim hx; yi and j = odim(X \ Y)

where dim denotes the projetive dimension and odim the projetive odimension.

Note that i; j 2 f0; 1g.

Lemma 2.6. Let n � 2, and let x, y 2 H. Then the following assertions hold.

(i) The verties x and y are in relative position (0; 0) if and only if they are equal.

(ii) The verties x and y are in relative position (0; 1) or (1; 0) if and only if

they are distint and the double perp fx;yg

??

is minimal with respet to

ontainment, i.e., it does not ontain two verties with a non-empty stritly

smaller double perp.



6 ARJEH M. COHEN, HANS CUYPERS, RALF GRAMLICH

(iii) The verties x and y are in relative position (1; 1) if and only if they are

distint and the double perp fx;yg

??

is not minimal.

Proof. Statement (i) is obvious. Suppose x and y are in relative position (0; 1).

Then fx;yg

?

6= ; (sine n � 2), and we an apply Lemma 2.4. We obtain

fx;yg

??

= f(z; Z) 2 H j z = x = y; Z � X \ Y g, whene any pair of distint ver-

ties ontained in fx;yg

??

is in relative position (0; 1) and gives rise to the same

double perp. Symmetry handles the ase (1; 0). If x and y are in relative po-

sition (1; 1) and fx;yg

?

= ;, then fx;yg

??

= H, whih is learly not mini-

mal. So let us assume fx;yg

?

6= ;. Again by Lemma 2.4, we have fx;yg

??

=

f(z; Z) 2 H j z 2 xy; Z � X \ Y g. This double perp ontains a vertex that is at

relative position (0; 1) to x, and we obtain a double perp stritly ontained in

fx;yg

??

. Statements (ii) and (iii) now follow from the fat that distint verties

x = (x;X) and y = (y; Y ) are in relative position (0; 1), (1; 0), or (1; 1).

We onlude this setion with a lemma that will be needed later.

Lemma 2.7. Let x = (x;X) and y = (y; Y ) be two adjaent verties in H. If x is

adjaent to a vertex (z; Z

1

) and y adjaent to a vertex (z; Z

2

), then there exists a

vertex (z; Z

3

) adjaent to both x and y.

Proof. The statement of the lemma is empty for n < 2, and we an assume n � 2.

We have z 2 X \Y . Sine x and y are adjaent, x 2 Y and y 2 X are distint and

the line xy does not ontain z. Hene the hoie of a hyperplane Z

3

that ontains

xy and does not ontain z is possible, and we have found a vertex (z; Z

3

) adjaent

to both x and y.

3. Reonstrution of the projetive spae

This setion will onentrate on the reonstrution of the projetive spaes P and

H from a graph � isomorphi to H(P; H ). Abusing notation to some extent, we will

sometimes speak of relative positions on �, but only if we have �xed a partiular

isomorphism �

�

=

H(P; H ). Throughout the whole setion, let n = dim(P) � 2.

Furthermore, let F be a division ring and �

�

=

H =H(P; H ).

De�nition 3.1. Let x, y be verties of �. Write x � y to denote that x, y are

equal or the double perp fx;yg

??

is minimal with respet to inlusion (in the lass

of double perps fu;vg

??

for verties u, v with u 6= v).

For a �xed isomorphism �

�

=

H the relation � oinides with the relation `being

equal or in relative position (1; 0) or (0; 1)' by Lemma 2.6(ii). What remains is the

problem of distinguishing the dual ases (0; 1) and (1; 0).

Lemma 3.2. On the vertex set of �, there are unique equivalene relations �

p

and

�

h

suh that � equals �

p

[ �

h

and �

p

\ �

h

is the identity relation. Moreover,

for a �xed isomorphism �

�

=

H

n

, we either have

� �

p

is the relation `being equal or in relative position (0; 1)', and �

h

is the

relation `being equal or in relative position (1; 0)', or

� �

p

is the relation `being equal or in relative position (1; 0)', and �

h

is the

relation `being equal or in relative position (0; 1)'.
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In other words, for a �xed isomorphism �

�

=

H(P; H ) and up to interhanging

�

p

and �

h

, we may assume that �

p

stands for being equal or in relative position

(0; 1) and �

h

stands for being equal or in relative position (1; 0).

Proof. As we have notied after De�nition 3.1, verties x, y of � are in relation �

if and only if their images (x;X) and (y; Y ) in H are equal or in relative positions

(0; 1) or (1; 0). Let us onsider equivalene relations that are subrelations of �.

Obviously, the identity relation is an equivalene relation. Moreover, the relation

`equal or in relative position (0; 1)' and the relation `equal or in relative position

(1; 0)' are equivalene relations. Now let us assume we have verties x = (x;X),

y = (y; Y ), z = (z; Z) of �

�

=

H suh that x, y are in relative position (0; 1)

and x, z are in relative position (1; 0). Then y 6= z and Y 6= Z and y, z annot

be in relative position (0; 1) or (1; 0). Consequently, if we want to �nd two sub-

equivalene relations �

p

and �

h

of � whose union equals �, then either of �

p

and

�

h

has to be a subrelation of the relation `equal or in relative position (0; 1)' or of

the relation `equal or in relative position (1; 0)'. The lemma is proved.

Convention 3.3. From now on, we will always assume that, as soon as we �x an

isomorphism �

�

=

H, the relation �

p

orresponds to `equal or in relative position

(0; 1)'.

De�nition 3.4. Let x be a vertex of �. With �

p

and �

h

as in Lemma 3.2, we

shall write [x℄

p

to denote the equivalene lass of �

p

ontaining x, and similarly we

shall write [x℄

h

to denote the equivalene lass of �

h

ontaining x. We shall refer

to [x℄

p

as the interior point on x and to [x℄

h

as the interior hyperplane on x.

Lemma 3.5. For a �xed isomorphism �

�

=

H(P; H ), an interior point of � is the

image of an exterior point of H(P; H ) under this isomorphism, and vie versa. The

same orrespondene exists between interior hyperplanes of � and exterior hyper-

planes of H(P; H ).

Proof. This is diret from the above.

Note that an exterior point and an exterior hyperplane of H(P; H ) are disjoint

if and only if the orresponding point and hyperplane of P

n

(F) are inident. The

above lemma motivates us to all a pair (p;H) of an interior point and an interior

hyperplane of � inident if and only if p\H = ;. This enables us to de�ne interior

lines.

De�nition 3.6. Let p and q be distint interior points of �. The interior line l of

� spanned by p and q is the union of all interior points disjoint from every interior

hyperplane disjoint from both p and q. In other words, the interior line pq onsists

of exatly those interior points whih are inident with every interior hyperplane

inident with both p and q.

Dually, one an de�ne the interior hyperline spanned by distint interior hyper-

planes H and I as the union of all interior hyperplanes disjoint from every interior

point disjoint from both H and I .

Lemma 3.7. For a �xed isomorphism �

�

=

H(P; H ), eah interior line of � is the

image of an exterior line of H(P; H ) under this isomorphism, and vie versa. The

analogue holds for interior hyperlines.
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Proof. The proof is straightforward.

The geometry (P ;L;�) on � where P is the set of interior points of � and L is

the set of interior lines of � is alled the interior projetive spae on �. By Lemma

3.5 and Lemma 3.7, this interior projetive spae is isomorphi to the exterior

projetive spae on H(P; H ). Proeeding with �

h

as we did for �

p

, the same holds

for the dual of the interior projetive spae on �. We summarize the �ndings in

the following proposition.

Proposition 3.8. Let n � 2. Up to interhanging �

p

and �

h

every isomorphism

�

�

=

H(P; H ) indues an isomorphism between the interior projetive spae on � and

the exterior projetive spae on H(P; H ). The analogue holds for the dual interior

projetive spae on �. �

Corollary 3.9. Let n � 2, and let � be isomorphi to H(P; H ). Then the interior

projetive spae on � is isomorphi to P or H . �

Corollary 3.10. Let n � 2, and let � be isomorphi to H(P). If P and P

dual

are

isomorphi, then the automorphism group of � is of the form Aut(P):2. Otherwise,

it is isomorphi to Aut(P).

Proof. Indeed, every automorphism of P indues an automorphism of �. Conversely,

every automorphism of � that preserves the interior projetive spae gives rise to

a unique automorphism of P, by the theorem. Moreover, every automorphism of

� either preserves the interior projetive spae or maps it onto the dual interior

projetive spae, again by the theorem. Finally, an outer automorphism is indued

on � by the map (p;H) 7! (Æ(H); Æ(p)) for a duality Æ of the projetive spae, and

the map (p;H) 7! (Æ

2

(p); Æ

2

(H)) preserves the interior projetive spae on �.

Remark 3.11. Now might be an appropriate moment to address the problem of

duality. Although, by Convention 3.3, as soon as we �x an isomorphism �

�

=

H,

we also hoose the equivalene relation �

p

to orrespond to the relation `equal or

in relative position (0; 1)' of H, there is a subtle problem|mainly of notation|

oming with this: Suppose �

�

=

H

n

(F) with F 6

�

=

F

opp

. Then, by the onvention,

the interior projetive spae on � will always be isomorphi to P

n

(F). If one wants

the interior projetive spae to be isomorphi to P

n

(F)

dual

, then one will have to �x

an isomorphism �

�

=

H

n

(F

opp

), although H

n

(F)

�

=

H

n

(F

opp

) by means of the map

(p;H) 7! (H; p). The reason for this is that we have de�ned the graphH

n

(F) as the

point-hyperplane graph of the spae P

n

(F), whih by Convention 3.3 determines

the isomorphism lass of the interior projetive spae on �.

The remainder of this setion serves as a olletion of results to be used later on.

First omes a useful result on subspaes of the interior projetive spae of �.

Lemma 3.12. Let U be a �nite dimensional subspae of the interior projetive

spae on �. For any projetive basis of U there exists a lique of verties in � suh

that the interior points ontaining these verties are the basis elements.

Proof. Fix an isomorphism � : � ! H(P; H ). By Proposition 3.8, we an as

well argue with exterior points of H(P; H ). Let x

i

, for i = 1; : : : ;m, be exterior

points forming a (projetive) basis for �(U). Let K be a omplement to �(U)

in P, whih is the intersetion of hyperplanes in H . Notie that suh subspae

K exists as

T

H2H

H is empty. Moreover, as K has �nite odimension in V , all
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hyperplanes of V ontaining K are in H . If for eah i 2 f1; : : : ;mg we have x

i

=

f(p

i

; H) 2 H(P; H ) j H 2 H g, then the verties (p

i

; hK; fp

j

j j 2 f1; : : : ;mgn figgi) 2

x

i

, with i = 1; : : : ;m, form the lique we are looking for.

Notation 3.13. Let n � 3. For a vertex x of �

�

=

H(P; H ), we write �

x

for the

relation � de�ned on x

?

(bear in mind that the latter is isomorphi to H(P

0

; H

0

)

by Proposition 2.2, where P

0

and H

0

are hyperplanes of P and H , respetively).

Lemma 3.14. Let n � 3. Let x be a vertex of �. Then �

x

is the restrition of �

to x

?

.

In partiular, if p is an interior point of � with p \ x

?

6= ;, then p \ x

?

is an

interior point or an interior hyperplane of x

?

, and onversely, if q is an interior point

of x

?

, then there exists an interior point or hyperplane q

0

of � with q

0

\ x

?

= q.

Proof. Fix an isomorphism � : �! H. As above, we argue in H rather than in �.

Let �(x) = (x;X). Now the statement follows from the fat that, for a;b 2 x

?

,

with a �

x

b and �(a) = (a;A), �(b) = (b; B), the statements A \X = B \X and

A = B are equivalent.

Notation 3.15. In view of the lemma, we an hoose the equivalene relation �

p

x

on x

?

in suh a way that (�

x

)

p

= (�

p

)

x

. In that ase, there is no harm in writing

�

p

x

to denote this relation. In partiular, there is a one-to-one map from the set of

interior points of x

?

into the set of interior points of �.

Lemma 3.16. Let n � 3 and let x be a vertex of �. Then the interior projetive

spae on x

?

is a hyperplane of the interior projetive spae on �.

Proof. Fix an isomorphism �

�

=

H(P; H ). By Proposition 3.8 this isomorphism

of graphs indues an isomorphism between the interior projetive spae on � and

the exterior projetive spae on H(P; H ). The vertex x 2 � is mapped onto a

non-inident point-hyperplane pair of H(P; H ), say (x;X). The neighbors of x are

mapped onto point-hyperplane pairs (y; Y ) with y 2 X , induing a map of the set

of interior points of � that meet x

?

non-trivially onto the set of exterior points

of H(P; H ) that interset (x;X)

?

non-trivially. But that set of exterior points

form a hyperplane of the exterior projetive spae on H(P; H ), and the lemma is

proved.

4. Loally point-hyperplane graphs

Throughout the whole setion, we take n � 3, and � a onneted, loallyH(P; H )

graph for some projetive spae P of dimension n (possibly in�nite) and subspae H

of P

dual

with trivial annihilator in P. Thus, the fat that � is loallyH(P; H ) means

that, for eah vertex x of �, there is an isomorphism x

?

! H(P; H ). Consequently,

by Corollary 3.9, the interior projetive spae on x

?

is isomorphi to P or H . The

goal of this setion is, by use of these isomorphisms, to show that � is isomorphi

to the non-inident point-hyperplane graphH(P

1

; H

1

) for some projetive spae P

1

and subspae H

1

of P

1

dual

. This will establish Theorem 1.1.

Notie that the de�nitions of interior points and lines are only loal and may

di�er on di�erent perps. It is one task of this setion to show that there is a

well-de�ned notion of global points and global lines on the whole graph. To avoid
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onfusion, we will index eah interior point p and eah interior line l by the vertex

x whose perp it belongs to, so we write p

x

and l

x

instead of p and l. These interior

points and lines are alled loal points and loal lines, respetively. We do the same

for the relations �, �

p

, �

h

obtaining the loal relations �

x

, �

p

x

, �

h

x

.

Lemma 4.1. Let x and y be two adjaent verties of �. Then there is a hoie of

loal equivalene relations �

p

x

and �

p

y

suh that the restritions of �

p

x

and �

p

y

to

x

?

\ y

?

oinide.

Proof. This follows immediately from a repeated appliation of Lemma 3.14 to

x

?

�

=

H(P; H ) and x

?

\ y

?

and to y

?

�

=

H(P; H ) and x

?

\ y

?

.

The preeding lemma allows us to transfer points from x

?

to y

?

. Indeed, if

there is a loal point p

x

in x

?

that lies in the hyperplane Y

x

indued by the vertex

y on x

?

, the point p

x

orresponds to a point p

y

of y

?

. That point p

y

is simply

the �

p

y

equivalene lass that ontains the set p

x

\ y

?

.

In the next two lemmas we prove some tehnial statements enabling us to prove

simple onnetedness of �. (A graph is simply onneted if it is onneted and

every yle in an be triangulated.)

Lemma 4.2. Let w ? x ? y ? z be a path of verties in �. Then for x = (x

y

; X

y

)

and z = (z

y

; Z

y

) inside y

?

, if X

y

\ Z

y

\ x

y

z

y

= ; or if X

y

= Z

y

, there is a path

of verties in x

?

\ z

?

from y to a vertex in fw;x; zg

?

.

Notie that, for example, we have X

y

\ Z

y

\ hx

y

; z

y

i = ;, in ase x

y

= z

y

.

Proof. Choose loal equivalene relations �

p

w

, �

p

x

, �

p

y

, and �

p

z

suh that �

p

w

and

�

p

x

oinide on w

?

\ x

?

, suh that �

p

x

and �

p

y

oinide on x

?

\ y

?

, and suh

that �

p

y

and �

p

z

oinide on y

?

\ z

?

as indiated in Lemma 4.1. Appliation

of Lemma 3.16 to the interior projetive spae of y

?

�

=

H(P; H ) shows that the

interior projetive spaes of x

?

\ y

?

and of y

?

\ z

?

orrespond to hyperplanes

of y

?

�

=

H(P; H ). We have to investigate x

?

\ y

?

\ z

?

. We have x = (x

y

; X

y

)

and z = (z

y

; Z

y

) inside y

?

. Then the graph x

?

\ y

?

\ z

?

(onsidered inside y

?

)

onsists of the non-inident point-hyperplane pairs whose points are ontained in

X

y

\ Z

y

and whose hyperplanes ontain the subspae hx

y

; z

y

i.

First, let us assume X

y

\ Z

y

\ hx

y

; z

y

i = ;. Also assume that x

y

6= z

y

and

denote the intersetion x

y

z

y

\X

y

by a

y

. Inside x

?

denote w by (w

x

;W

x

) and y

by (y

x

; Y

x

). Consider x

?

, in whih the point a

y

2 X

y

arises as a

x

inside Y

x

. Inside

y

?

, the intersetion X

y

\ Z

y

ontains a line l

y

. This line l

y

arises as a subspae

l

x

of x

?

that is ontained in Y

x

. As there exists a y

0

in fx;y; zg

?

, we an assume,

up to a hange of y into y

0

, that w

x

is also ontained in Y

x

. (Indeed, hoose a

hyperplane H

x

that ontains a

x

, w

x

, and y

x

but not l

x

, and hoose a point p

x

on l

x

o� H

x

. The vertex (p

x

; H

x

) gives rise to a vertex y

0

that is adjaent to x

and y. Loal analysis of y

?

shows that the hyperplane of the vertex y

0

ontains

the point x

y

and the point a

y

, whene also the point z

y

. Moreover, the point of

y

0

is ontained in l

y

, whene also in Z

y

, and y

0

is a neighbor of z.) Inside x

?

we have now the following setting. The hyperplane Y

x

ontains the points w

x

and

a

x

as well as the line l

x

. Note that l

x

has to interset the hyperplane W

x

. If

ha

x

; w

x

i does not interset l

x

\ W

x

, then we an hoose a point inside l

x

\ W

x

and a non-inident hyperplane that ontains ha

x

; w

x

; y

x

i, yielding a vertex that is
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adjaent to w, x, y, and|after loal analysis of y

?

|also to z. Therefore assume

that ha

x

; w

x

i does interset l

x

\W

x

. Then �x the point u

x

:= ha

x

; w

x

i \ l

x

\W

x

and hoose a hyperplane U

x

that ontains a

x

and y

x

but not u

x

. The pair (u

x

; U

x

)

desribes another vertex, u say, that is adjaent to x, y, and z. Inside u

?

we have

a hyperplane X

u

of x, a line k

u

in X

u

that arises from a line k

x

ontained in the

intersetion U

x

\W

x

of the hyperplanes of the verties u and w inside x

?

, and

the hyperplane Z

u

of z. Choose a point v

u

in k

u

\ Z

u

and a hyperplane V

u

on

x

u

z

u

that does not ontain v

u

. Obviously, this vertex v = (v

u

; V

u

) is adjaent to

x, u and z. In x

?

, however, we see v as (v

x

; V

x

) whose hyperplane V

x

ontains the

points a

x

and u

x

, therefore also w

x

. Moreover, v

x

is ontained in k

x

, whene also

in W

x

, and v is the required vertex.

If X

y

\ Z

y

\ hx

y

; z

y

i = ; and x

y

= z

y

, then similar arguments yield a proof.

Also the ase that X

y

= Z

y

runs along the same lines and is, in fat, easier to

prove.

Lemma 4.3. For every path w ? x ? y ? z in � there is a vertex x

0

2 fxg [

fw;x;yg

?

suh that, with x

0

= (x

0

y

; X

0

y

) and z = (z

y

; Z

y

) inside y

?

, we have

hx

0

y

; z

y

i \X

0

y

\ Z

y

= ;.

Proof. Choose a path w ? x ? y ? z of verties in �, and �x loal equivalene

relations �

p

w

, �

p

x

, �

p

y

, and �

p

z

as in the proof of the preeding lemma. Inside

y

?

, let x orrespond to (x

y

; X

y

) and z orrespond to (z

y

; Z

y

). Suppose that

X

y

\Z

y

\hx

y

; z

y

i 6= ;. Then X

y

\Z

y

\hx

y

; z

y

i is a point; X

y

\Z

y

nx

y

z

y

ontains

(the point set of) an aÆne line, for n = 3, and (the point set of) a dual aÆne plane,

for n � 4; it may be even bigger if X

y

= Z

y

. The set of ommon neighbors of x and

z in y

?

orresponds to the set of all non-inident point-hyperplane pairs (p

y

; H

y

)

with p

y

2 X

y

\ Z

y

and H

y

� x

y

z

y

inside y

?

. This implies that for any point

p

y

2 X

y

\Z

y

nx

y

z

y

we an �nd a vertex (p

y

; H

y

) in y

?

adjaent to both x and z.

Now onsider x

?

. Let w = (w

x

;W

x

) and y = (y

x

; Y

x

). Any vertex x

0

= (x

0

x

; X

0

x

)

adjaent to w, x, y onsists of a point x

0

x

2W

x

\Y

x

and a non-inident hyperplane

X

0

x

� w

x

y

x

. Hene, as above in y

?

, we an hoose x

0

x

freely on an aÆne line for

n = 3 or a dual aÆne plane for n � 4. This translates to y

?

as follows. The line

w

x

y

x

intersets Y

x

in a point, a

x

say, whih gives rise to a point a

y

2 X

y

of y

?

. So

all these hyperplanes X

0

x

arise as hyperplanes X

0

y

in y

?

that ontain the line x

y

a

y

.

Notie that this line x

y

a

y

is the largest subspae of y

?

that is ontained in all these

hyperplanes X

0

y

. If for some �xed hoie of x

0

y

, there exists a hyperplane X

0

y

of

y

?

suh that X

0

y

\ Z

y

\ hx

0

y

; z

y

i = ;, we are done. Hene, for a �xed x

0

y

, suppose

all hoies for X

0

y

ontain the point hx

0

y

; z

y

i \ Z

y

. But in this ase, we an hoose

another x

1

y

instead of x

0

y

and �nd an X

0

y

with X

0

y

\Z

y

\hx

1

y

; z

y

i = ;. For, suppose

for a hoie x

1

y

distint from x

0

y

still X

0

y

\Z

y

\hx

1

y

; z

y

i 6= ; for all possible X

0

y

inside

y

?

. Then the points u

y

:= hx

0

y

; z

y

i \ Z

y

and v

y

:= hx

1

y

; z

y

i \ Z

y

span a line as

z

y

62 Z

y

. But this line u

y

v

y

has to oinide with the line x

y

a

y

. In partiular, x

y

is

ontained in Z

y

. But this ontradits our assumption that X

y

\Z

y

\ hx

y

; z

y

i 6= ;.

Hene we an �nd an x

1

y

62 X

0

y

with X

0

y

\ Z

y

\ hx

1

y

; z

y

i = ;, and so the vertex

(x

1

y

; X

0

y

) is as required.

We owe the following proposition to Andries Brouwer, who observed that the

ombination of the two preeding lemmas yields simple onnetedness.
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Proposition 4.4. The graph �, onsidered as a two-dimensional simpliial om-

plex whose two-simplies are its triangles, is simply onneted. Moreover, the di-

ameter of � equals two.

Proof. Lemma 4.3 shows that for every path of distint verties w, x, y, z in �

there exists a vertex x

0

2 fw;x;yg

?

with x

0

= (x

0

y

; X

0

y

) in y

?

suh that hx

0

y

; z

y

i\

X

0

y

\ Z

y

= ;. Lemma 4.2, on the other hand, implies that there exists a path of

verties inside x

?

0

\z

?

from y to a vertex v that is adjaent to w, x

0

, and z. Simple

onnetedness of � follows.

As for the seond statement, suppose w ? x ? y ? z is a path in �, then by

by the above arguments there is a vertex v in w

?

\ z

?

. Hene z is at distane at

most two from w. This implies that the diameter of � is at most two and settles

the proof of the proposition.

Lemma 4.5. There is a hoie of loal equivalene relations �

p

x

for all x 2 � suh

that, for any two adjaent verties x and y, the restritions of �

p

x

and �

p

y

to x

?

\y

?

oinide.

Proof. Suppose that x, y, z is a triangle. In view of Lemma 4.1, we may assume

that �

p

x

and �

p

y

have the same restrition to x

?

\ y

?

and that �

p

x

and �

p

z

have

the same restrition to x

?

\ z

?

. Let p

x

be an interior point of x

?

suh that

p

x

\ y

?

\ z

?

6= ;. By analysis of x

?

, we an �nd two verties, say u and v, in

p

x

\y

?

\z

?

. Now the above hoies of loal equivalene relations imply that (u;v)

belongs to �

p

y

\ �

p

z

(indeed, (u;v) belongs to both �

p

x

\ �

p

y

and �

p

x

\ �

p

z

). By

Lemma 3.2 this fores that �

p

y

and �

p

z

have the same restrition to y

?

\ z

?

. Sine

� is simply onneted (by Proposition 4.4), the lemma follows immediately from

the triangle analysis.

Notation 4.6. Fix a hoie of �

p

x

, for all verties x of �, as in Lemma 4.5 and set

�

p

=

S

x2�

�

p

x

.

Lemma 4.7. Let x and y be verties of � suh that x �

p

u

y for some vertex u in

fx;yg

?

. Then x �

p

v

y for every vertex v in fx;yg

?

.

Proof. Let u, x, y be as in the hypothesis and let v 2 fx;yg

?

be an additional

vertex. If u ? v, then the laim is true by Lemma 4.5.

Thus, it is suÆient to show that the indued subgraph fx;yg

?

of � is onneted.

In x

?

we have u = (u

x

; U

x

) and v = (v

x

; V

x

). Moreover, the intersetion X

u

\ Y

u

from u

?

arises as a hyperplaneW

x

of U

x

in x

?

. Therefore the intersetionW

x

\V

x

ontains a point p

x

. If in x

?

the line u

x

v

x

does not ontain p

x

, we an �nd a

hyperplane H

x

� u

x

v

x

that does not ontain p

x

, and (p

x

; H

x

) is a vertex of x

?

whih is adjaent to both u and v. But inside u

?

this vertex also orresponds to

some point-hyperplane pair, whose point is ontained in Y

u

and whose hyperplane

ontains y

u

= x

u

. In partiular, this vertex is also adjaent to y, and we are done.

So assume we have p

x

2 u

x

v

x

in x

?

. Then hoose any hyperplane H

x

that

ontains u

x

but not p

x

. Then the vertex t := (p

x

; H

x

) is adjaent to x, u, and

y, but not v. Inside t

?

we have hyperplanes X

t

and Y

t

oming from x and y.

The intersetion X

t

\Y

t

orresponds to a subspae S

x

of H

x

(the hyperplane of the

vertex t) in x

?

. The intersetion S

x

\V

x

in x

?

ontains some point q

x

. If q

x

lies on

the line p

x

v

x

, then q

x

= p

x

v

x

\H

x

= p

x

u

x

\H

x

= u

x

, and we have u

x

2 V

x

. But

this ontradits p

x

2 u

x

v

x

, as p

x

2 V

x

\ U

x

, v

x

62 V

x

and u

x

2 V

x

nU

x

. Therefore
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we have q

x

62 p

x

v

x

and we are in the situation of the preeding paragraph with the

vertex t instead of u.

We are now ready to show that there exists a well-de�ned notion of global points

on �, whih will then allow us to study a geometry on �.

Lemma 4.8. The relation �

p

on the verties of � is an equivalene relation.

Proof. Reexivity and symmetry follow from reexivity and symmetry of eah �

p

x

.

To prove transitivity, assume that x �

p

y and y �

p

z. Then there exist verties

u, v with x �

p

u

y and y �

p

v

z. By Proposition 4.4, there also exists a vertex

a 2 fx; zg

?

. We will prove that x �

p

a

z. In view of the Lemma 4.2 (applied to the

the hains a ? x ? u ? y and a ? z ? v ? y) there are verties b 2 fa;x;yg

?

and  2 fa; z;yg

?

. Lemma 4.7 implies x �

p

b

y and y �

p



z. Set b = (b

a

; B

a

),

 = (

a

; C

a

), x = (x

a

; X

a

), and z = (z

a

; Z

a

) in a

?

. Notie that z

a

2 C

a

. We

an additionally assume that x

a

2 C

a

and 

a

62 b

a

x

a

. (Indeed, set a = (a



; A



),

y = (y



; Y



), z = (z



; Z



) in 

?

. The intersetion A



\ Y



ontains a line l



.

Moreover, y



= z



, as y �

p



z. Loally in a

?

the line l



arises as a line l

a

� C

a

. Fix

a hyperplane H

a

that ontains h

a

; x

a

; z

a

i and �x a point p

a

on l

a

o� h

a

; x

a

; z

a

i

and hb

a

; x

a

i; suh a hoie is always possible as x

a

62 l

a

and 

a

62 C

a

and l

a

ontains

at least three points. This gives a new vertex 

0

= (p

a

; H

a

) that is adjaent to a,

, and y. Loal analysis of 

?

shows that we an �nd a vertex z

0

in �

p



relation

to z that is adjaent to 

0

and a.) But now, we an �nd a vertex d = (x

a

; D

a

)

in a

?

that is adjaent to b = (b

a

; B

a

) and  = (

a

; C

a

) (notie that by the above

we an assume 

a

62 b

a

x

a

, whene x

a

62 b

a



a

). By onstrution we have d �

p

b

x,

so d �

p

a

x by Lemma 4.7, and as x �

p

b

y we also have d �

p

b

y. Now Lemma 4.7

implies d �

p



y. But also y �

p



z. Transitivity of �

p



implies d �

p



z and, again

Lemma 4.7 yields d �

p

a

z. Finally, transitivity of �

p

a

gives x �

p

a

z, yielding x �

p

z.

Hene �

p

is transitive.

All statements and results about the loal relations �

p

x

are also true for the loal

relations �

h

x

, and we an de�ne a global relation �

h

=

S

x2�

�

h

x

with the same nie

properties on the loal intersetions.

De�nition 4.9. A global point of � is de�ned as an equivalene lass of �

p

. Dually,

de�ne a global hyperplane as an equivalene lass of �

h

.

We already have a loal notion of inidene as de�ned before De�nition 3.6. A

global notion also exists.

Lemma 4.10. A global point p and a global hyperplane H are inident if and only

if p \H = ;.

Proof. One impliation is trivial. To prove the other, suppose there exists a vertex

y 2 p \ H . Then, any vertex x for whih p

x

and H

x

exist is at distane at most

two to y, by Proposition 4.4, and there exists a vertex z adjaent to both y and

x. The loal elements p

z

and H

z

exist, as y is a representative of both. But then

p

x

\ z

?

6= ; as well as H

x

\ z

?

6= ;. Now inside x

?

\ z

?

we see that p

x

and H

x

have a non-empy intersetion.

De�nition 4.11. Let p and q be distint global points and let x be a vertex suh

that p

x

and q

x

exist. Then the global line of � spanned by p and q is the set of

those global points a suh that a

x

exists and is ontained in the loal line p

x

q

x

.
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Let P

�

= (P

�

;L

�

;�) be the point-line geometry onsisting of the point set P

�

of

global points of � and the line set L

�

of global lines of �.

Lemma 4.12. The notion of a global line is well-de�ned.

Proof. Let p and q be global points and suppose x and y are distint verties suh

that p

x

, q

x

, p

y

, and q

y

exist. We prove that for any global point r for whih r

x

exists and is ontained in the loal line on p

x

and q

x

, the loal point r

y

also exists

and is on the loal line on p

y

, and q

y

.

If x ? y, then p

x

\ p

y

6= ; and q

x

\ q

y

6= ;, and the laim follows from Lemma

3.16 applied to x

?

.

Choose verties a 2 p

x

, b 2 q

x

,  2 q

y

, and d 2 p

y

. By Lemma 3.12 we an

assume that  and d are adjaent. By Proposition 4.4 there exists a vertex z

1

adjaent to both x and . By Lemma 4.2 (applied to the path a, x, z

1

, ) we an

�nd a vertex z

2

adjaent to a, x, and  (indeed, inside z

?

1

the point 

z

1

of  has

to lie in the hyperplane X

z

1

of x. So, the ondition of the lemma is satis�ed and

we an apply that lemma). Loal analysis of  yields a vertex z

3

that is adjaent

to z

2

, , and d. The indued subgraph f;dg

?

of � is isomorphi to H(P

0

; H

0

) for

some hyperplane P

0

of P. Aording to Proposition 2.3, it is onneted. Therefore,

we an �nd a path from y to z

3

inside f;dg

?

. This establishes the lemma.

Proposition 4.13. The spae P

�

is a linear spae with thik lines.

Proof. This is an immediate onsequene of Lemma 4.12.

As ustomary in linear spaes, for distint global points p and q we denote by

pq the unique global line on p and q.

Proposition 4.14. The spae P

�

is a projetive spae.

Proof. In view of Proposition 4.13 we only have to verify Pash's Axiom. Let a,

b, , d be four global points suh that ab intersets d in the global point e. Then

ab = ae and d = e. By Proposition 4.4 and Lemma 3.12, there are verties a in

a and e in e suh that a ? e. Choose a vertex  in . Now, by Proposition 4.4,

there is a vertex y adjaent to e and . After suitable replaements of e in e and

 in , we an assume that inside y

?

we have  = (

y

; C

y

) and e = (e

y

; E

y

) with

C

y

\ E

y

\ h

y

; e

y

i = ;. Lemma 4.2 implies the existene of x 2 fa; ; eg

?

. The

global lines ae and e meet x

?

in interior lines. In partiular, by Pash's Axiom

applied to the interior projetive spae of x

?

, there is an interior point w

x

on both

the interior lines (a)

x

and (bd)

x

of x

?

. Consequently, the global lines a and bd

meet in a global point, whene Pash's Axiom holds.

Notation 4.15. Denote by




x

?

�

the set of global points interseting x

?

. Notie

that this set is a subspae of P

�

.

Lemma 4.16. Let x;y 2 � with x �

h

y. Then




x

?

�

=




y

?

�

.

Proof. By symmetry of �

h

it suÆes to show




x

?

�

�




y

?

�

. To this end, let

p 2




x

?

�

, so that there exists a vertex p 2 p with p ? x. By Proposition 4.4, we

an �nd a vertex z with x ? z ? y. If x = (x

z

; X

z

), y = (y

z

; Y

z

) inside z

?

, we

have X

z

= Y

z

, as x �

h

y. Applying Lemma 4.2, we obtain a vertex a 2 fp;x;yg

?

.

Writing p = (p

a

; H

a

) in a

?

, we see p

a

2 X

a

, whene p

a

2 Y

a

by x �

h

a

y. But now

we an �nd a vertex p

1

= (p

a

; H

1

a

) with y

a

2 H

1

a

and onsequently p 2




y

?

�

.
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We are ready to give a nie desription of the hyperplanes of the projetive spae

P

�

appearing in verties of �. To this end, denote by




x

?

�

the set of global points

that meet x

?

; it will turn out to be a hyperplane.

Lemma 4.17. The set




x

?

�

does not ontain the global point that ontains x.

Proof. Otherwise x

?

ontains a vertex y that belongs to the same global point.

But then there exists a third vertex z adjaent to both x and y, so x and y are two

adjaent verties belonging to the same interior point in z

?

, a ontradition.

Lemma 4.18. Let x be a vertex of �. Then




x

?

�

is a hyperplane of P

�

.

Proof. Suppose l is a global line of �. We have to show that it intersets




x

?

�

. Let

a 6= b be two global points on l and hoose verties a 2 a, b 2 b. By Lemma 3.12

we may assume a ? b. By Proposition 4.4, there exists a vertex y with b ? y ? x.

Changing b inside b \ a

?

\ y

?

and x inside y

?

while leaving




x

?

�

invariant, we

an assume B

y

\ X

y

\ hb

y

; x

y

i = ; (for b = (b

y

; B

y

), x = (x

y

; X

y

), inside y

?

);

notie that, by Lemma 4.16, hanging x as indiated basially means hanging the

point x

y

. Consequently, by Lemma 4.2, there exists a vertex  2 fa;b;xg

?

. Now

loal analysis of 

?

shows that l has to interset




x

?

�

. Lemma 4.17 shows that




x

?

�

is not the whole spae, and




x

?

�

is a hyperplane.

By H

�

we denote the set of all subsets




x

?

�

, where x runs through the vertex

set of �.

Lemma 4.19. The set H

�

is a subspae of P

�

dual

suh that H

�

has trivial annihi-

lator in P

�

.

Proof. Let x and y be two points of � with




x

?

�

6=




y

?

�

. Denote by x and y

the global points and by X and Y the global hyperplanes ontaining x and y,

respetively. By Proposition 4.4 there exists a third vertex adjaent to x and y.

Then, by Lemma 3.12, there exist adjaent verties x

1

2 X and y

1

2 Y with




x

?

�

=




x

?

1

�

and




y

?

�

=




y

?

1

�

. We will show that the hyperpline on




x

?

�

and




y

?

�

is ontained in H

�

. By the above we an assume that x and y are adjaent.

We show that for every global point u, there is a point z suh that




x

?

�

\




y

?

�

�




z

?

�

and u 2




z

?

�

.

Let � be the hyperplane of P

�

ontaining




x

?

�

\




y

?

�

and u. The global line on

x and y meets � in a point outside




x

?

�

\




y

?

�

. So, without loss we may assume

this intersetion point to be u.

Let w be adjaent to both x and y. Then both x and y are global points in




w

?

�

and hene so is u. So, inside w

?

�

=

H(P; H ) we �nd a point z suh that

z

?

meets all global points meeting x

?

\ y

?

\ w

?

and u. Indeed, inside w

?

the

hyperplane




z

?

�

of P

�

is the hyperplane ontaining




x

?

�

\




y

?

�

\




w

?

�

and u.

But then




z

?

�

ontains




x

?

�

\




y

?

�

\




w

?

�

and w, the global point on w, and

hene




x

?

�

\




y

?

�

. Moreover, as z

?

meets u, it ontains � and hene oinides

with �.

It remains to show that the intersetion of all elements in H

�

is empty. However,

that easily follows from Lemma 4.17.

Lemma 4.20. Suppose x is a global point in P

�

and H 2 H

�

is a hyperplane not

ontaining x. Then there is a vertex x 2 x with




x

?

�

= H.
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Proof. Suppose x 2 x and y is a vertex of � with




y

?

�

= H . Then in z

?

, for some

ommon neighbor z of x and y, we �nd a vertex x

0

2 x \ Y , where Y is the global

hyperplane on y. But then, by Lemma 4.16,

D

x

0

?

E

= H .

Proposition 4.21. Let � be a onneted, loally H(P; H ) graph. Then � is iso-

morphi to H(P

�

; H

�

).

Proof. Consider the map � ! H(P

�

; H

�

) : x 7!

�

x;




x

?

��

where x is the global

point of � ontaining x. We want to show that this is an isomorphism of graphs.

Surjetivity follows from Lemma 4.18 and Lemma 4.20, sine any point x of P

�

is

a global point of � and any hyperplane in H

�

not ontaining it is of the form




x

?

�

for a vertex x 2 x. Injetivity is obtained as follows. Suppose the global point x

ontains two verties x

1

, x

2

with




x

?

1

�

=




x

?

2

�

. By Proposition 4.4 there exists a

vertex y adjaent to both x

1

and x

2

. Sine




x

?

1

�

=




x

?

2

�

, both verties desribe the

same hyperplane in y

?

. But they also desribe the same point and hene have to be

equal. Finally, if x ? y, then, letting x and y be the global points of � ontaining x

and y, respetively, we �nd x 2




y

?

�

and y 2




x

?

�

, so (x; hx

?

i) ? (y; hy

?

i).

Theorem 1.1 is an immediate onsequene of the above proposition and the

Lemmas 4.19 and 4.20.

5. Small dimensions

In view of Proposition 2.3, any onneted, loally H

0

graph is isomorphi to a

lique of size two. Furthermore, it is easily seen that any onneted, loally H

1

graph admits an in�nite universal over and we obtain in�nitely many ounterex-

amples to loal reognition of H

2

. The ase of a loally H

2

graph proves to be a

bit more ompliated. We an only o�er a ounterexample for F = F

2

. The proof

of its existene is based on a omputation with the omputer algebra pakage GAP

[9℄.

Proposition 5.1. There exists a onneted graph on 128�120 verties that is loally

H

2

(2).

Proof. We determine the stabilizers of a vertex, an edge, and a 3-lique of the graph

H

3

(2) inside the anonial group (P)SL

4

(2) and let GAP determine the order of the

universal ompletion of the amalgam of these groups and their intersetions. This

universal ompletion is the group G with a presentation by the generators w, u, b,

a and the relations

w

2

= u

2

= b

2

= a

2

= 1;

(wu)

3

= (ab)

3

= 1;

(bw)

3

= (bu)

4

= 1;

(wub)

7

= (wa)

2

= (ua)

2

= 1:

The stabilizers of a vertex, an edge, and a 3-lique of H

3

(2), respetively, are of the

form

hw; u; bi

�

=

SL

3

(2);

hw; u; ai

�

=

SL

2

(2)� 2;

ha; bi

�

=

Sym

3

;
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with the intersetions

hw; u; bi \ hw; u; ai = hw; ui

�

=

SL

2

(2);

hw; u; ai \ ha; bi = hai

�

=

2;

ha; bi \ hw; u; bi = hbi

�

=

2:

A oset enumeration in GAP shows that the order of G is 128 � jSL

4

(2)j, and that

there exists a normal subgroup N

�

=

2

1+6

of G. Hene H

3

(2) admits a 128-fold

over � with the same loal struture.

This proposition shows that the bound on n in Theorem 1.1 is sharp. Besides the

above universal over of the anonial graph H

3

(2) nothing is known to us about

loally H

2

(F) graphs. The methods that we have presented for n � 3 do not apply

in this ase.

6. Group-theoreti onsequenes

In this setion we study group-theoreti onsequenes of our loal reognition

Theorem 1.1 of the point-hyperplane graphs H

n

(F), where n � 3 is a �nite integer

and F a skew �eld. In partiular, we prove Theorem 1.2 and Theorem 1.3.

Proposition 6.1. Let G be a group as in the hypothesis of Theorem 1.2. Then

PSL

n+2

(F) � G=Z(G) � PGL

n+2

(F).

Proof. We use the notation of Theorem 1.2. By (iii) of Theorem 1.2, we an hoose

an element z 2 J \K that is a reetion in the groups J and K onjugate to x and

y, respetively. Hene x is a reetion in J and y is a reetion in K. Note that

z ommutes with x and y. As, by (i), K

�

=

GL

n+1

(F), we �nd the elements y and

z to be onjugate in K by an involution. Similarly, by (ii), x and z are onjugate

in J by an involution. Therefore the onjugation ation of the group G indues an

ation as the group Sym

3

on the set fx; y; zg and as the group Sym

2

on the set

fx; yg. Consider the graph � on all onjugates of x in G. A pair a, b of verties of �

is adjaent if there exists an element g 2 G suh that (gxg

�1

; gyg

�1

) = (a; b). Sine

G indues the ation of Sym

3

on fx; y; zg, this de�nition of adjaeny is ompletely

symmetri, and we have de�ned an undireted graph. The elements x, y, z form

a 3-lique of �. De�ne U

1

to be the stabilizer in G of the vertex x, and de�ne

U

2

to be the stabilizer in G of the edge fx; yg. The stabilizer of fx; yg permutes

x and y and therefore interhanges C

G

(x) � K and C

G

(y) � J , see (i) and (ii).

Hene the stabilizer of x together with the stabilizer of fx; yg generates G, as

G = hJ;Ki � hU

1

; U

2

i. Consequently, the graph � is onneted. Also, � is loally

H

n

(F) by onstrution. To prove this, it is enough to show that any triangle in � is

a onjugate of (x; y; z). Let (a; b; ) be a triangle. Let g 2 G with (gxg

�1

; gyg

�1

) =

(a; b). Notie that b; d = gzg

�1

2 gKg

�1

are ommuting reetions of gKg

�1

.

The edges (a; b) and (a; ) are onjugate in C

G

(a) = gXg

�1

� gKg

�1

(use (i)

of Theorem 1.2). Choose h 2 C

G

(a) suh that (hah

�1

; hbh

�1

) = (a; ). Then

h = h

X

h

K

with h

X

2 gXg

�1

, h

K

2 gKg

�1

. The element h

X

entralizes b and

d, sine b; d 2 gKg

�1

. Therefore  = hbh

�1

= h

K

bh

�1

K

2 gKg

�1

is a reetion of

gKg

�1

. Hene (a; b; d) and (a; b; ) are onjugate in gKg

�1

�

=

GL

n

(F). Therefore

(a; b; ) and (x; y; z) are onjugate in G.

Thus, by Theorem 1.1, the graph � is isomorphi to H

n+1

(F). Moreover, there

is a kernel N of the ation of G on �, suh that G=N an be embedded in Aut(�),

whih has been determined in Corollary 3.10. Sine G=N is transitive on � and the
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stabilizer in G=N of the vertex x indues PGL

n+1

(F) on the neighbors of x, we �nd

that PSL

n+2

(F) � G=N . Furthermore, as G is generated by C

G

(x) and C

G

(y), we

�nd that G=N embeds in PGL

n+2

(F).

Let g 2 N . Then g ats trivially on �, in partiular it entralizes x and y, so we

have g 2 X �K and g 2 Y � J . Let g

X

2 X and g

K

2 K be suh that g = g

X

g

K

.

The element g

X

ommutes with K, and therefore also entralizes all neighbors of x.

Consequently, also g

K

= g

�1

X

g entralizes all neighbors of x, and hene lies in the

enter of K. We have proved that g ommutes with K. Similarly, g ommutes with

J . This implies that g ommutes with G = hJ;Ki, and, thus, g 2 Z(G). Certainly,

Z(G) ats trivially on �, whene N = Z(G).

The above proves Theorem 1.2. It only remains to prove Theorem 1.3. This will

be done in the next proposition. Its proof proeeds along the lines of the proof of

Theorem 1.2.

Proposition 6.2. Let G be a group as in the hypothesis of Theorem 1.3. Then

G=Z(G)

�

=

PGL

n+2

(F).

Proof. With the notation as in the hypothesis of Theorem 1.3 we have the following.

The element z is onjugate to both x and y, so, also x and y are onjugate.

Moreover, x and y are generalized reetions in J and K, respetively. Note that

z ommutes with x and y. As K

�

=

SL

n+1

(F), we �nd the elements y and z to

be onjugate in K by an involution. Similarly, x and z are onjugate in J by

an involution. Therefore the onjugation ation of the group G indues an ation

as the group Sym

3

on the set fx; y; zg and as the group Sym

2

on the set fx; yg.

Consider the graph � on all onjugates of hxi in G. A pair a, b of verties of � is

adjaent if there exists an element g 2 G suh that (ghxig

�1

; ghyig

�1

) = (a; b). As

in the proof of Proposition 6.1, the graph � is onneted.

Let (a; b; ) be a triangle of �. We will show that (a; b; ) is also onjugate to

(hxi; hyi; hzi). Without loss of generality, we an assume that a = hxi and b = hyi.

The edges (a; b) and (a; ) are onjugate in N

G

(a). Choose h 2 N

G

(a) suh that

(hah

�1

; hbh

�1

) = (a; ). Sine C

G

(a) is normal in N

G

(a), and K is harateristi

in C

G

(x), we �nd that h normalizes K. Therefore  = hbh

�1

is a group of order p

generated by a generalized reetion of K. But then (b; hzi) and (b; ) are onjugate

insideK

�

=

SL

n+1

(F). AsK � C

G

(a) we �nd the triangles (a; b; ) and (hxi; hyi; hzi)

to be onjugate in G.

As eah generalized reetion torus is yli and thus ontains a unique subgroup

of order p, we �nd � to be loally H

n

(F). But that implies, by Theorem 1.1, that

the graph � is isomorphi to H

n+1

(F).

LetN be the kernel of the ation of G on �. Then, as in the proof of Theorem 1.2,

we see that G=N � PGL

n+2

(F). In partiular, K\N = 1 and, sine G is generated

by J and K, we even have G=N = PSL

n+2

(F). Moreover, as N � N

G

(hxi) and K

is normal in N

G

(hxi), we �nd [N;K℄ � K \N = 1. Similarly, [N; J ℄ = 1 and hene

N � Z(hK; Ji) = Z(G), whih ompletes the proof of the proposition, as Z(G) is

in the kernel of the ation by onstrution of �.
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