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Abstra
t. Let P be a proje
tive spa
e. By H(P) we denote the graph whose

verti
es are the non-in
ident point-hyperplane pairs of P, two verti
es (p;H)

and (q; I) being adja
ent if and only if p 2 I and q 2 H. In this paper we give

a 
hara
terization of the graph H(P) (as well as of some related graphs) by its

lo
al stru
ture. We apply this result by two 
hara
terizations of groups G with

PSL

n

(F) � G � PGL

n

(F), by properties of 
entralizers of some (generalized)

re
e
tions. Here F is the (skew) �eld of 
oordinates of P.

1. Introdu
tion

Lo
al re
ognition of graphs is a problem des
ribed, for example, in [2℄. The

general idea is the following. Choose your favorite graph � and try to �nd all


onne
ted graphs � that are lo
ally �, i.e., graphs whose indu
ed subgraph on the

set of all neighbors of an arbitrary vertex of � is isomorphi
 to �. One restri
ts

the sear
h to 
onne
ted graphs, be
ause a graph is lo
ally � if and only if all of its


onne
ted 
omponents are lo
ally �. There has already been done a lot of work in

this dire
tion, see, e.g., [1, 6, 7, 8, 10, 11℄.

Suppose P is a proje
tive spa
e of (proje
tive) dimension n (possibly in�nite).

Then by H(P) we denote the graph with as verti
es the non-in
ident point-hy-

perplane pairs and with two verti
es (p;H) and (q; I), with p; q points and H; I

hyperplanes su
h that p 62 H and q 62 I , being adja
ent if and only if p 2 I and

q 2 H .

For ea
h vertex of the graph H(P), the indu
ed subgraph on the neighbors of

this vertex is isomorphi
 to H(P

0

), where P

0

is a hyperplane of P. In this paper we

give a 
hara
terization of the graphs H(P) by their lo
al stru
ture.

In fa
t, we 
onsider a slightly larger 
lass of graphs. Let H be a subspa
e of

the dual P

dual

of P with the property that the interse
tion of all the hyperplanes

H 2 H is trivial (we say H has a trivial annihilator in P). If P is �nite-dimensional,

then H equals P

dual

, but for in�nite dimensional P the spa
e H 
an be a proper

subspa
e of P

dual

. The subgraph H(P; H ) of H(P) indu
ed on the verti
es (p;H)

with H 2 H , has the property that for ea
h vertex v the indu
ed subgraph on the

neighbors of v is isomorphi
 to H(P

0

; H

0

) for some hyperplanes P

0

of P and H

0

of

H . Indeed, if v = (x;X), then with P

0

the proje
tive spa
e indu
ed on X and H

0

the set of hyperplanes K of P

0

su
h that the subspa
e of P generated by x and K

belongs to H , we �nd the indu
ed subgraph on the neighbors of v to be isomorphi


to H(P

0

; H

0

). Moreover, as

T

H2H;x2H

H = fxg, we have

T

H2H

0

H = ;. Our

main result reads as follows.
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Theorem 1.1. Let P

0

be a proje
tive spa
e of dimension at least 3 and H

0

a sub-

spa
e of P

0

dual

with trivial annihilator in P

0

. Suppose � is a 
onne
ted graph whi
h

is lo
ally H(P

0

; H

0

). Then � is isomorphi
 to H(P; H ) for some proje
tive spa
e P

and some subspa
e H of P

dual

with trivial annihilator in P.

The 
ondition dim(P

0

) � 3 in our lo
al re
ognition result is sharp as is shown

by an example in Se
tion 5 of a 
onne
ted, lo
ally H(P(F

3

2

)) graph that is not

isomorphi
 to H(P(F

4

2

)).

Our proof of Theorem 1.1 is partly motivated by the methods developed in [4℄,

where lo
al re
ognition results are obtained for subgraphs of H(P) �xed under

polarities of P.

If P is the proje
tive spa
e P(V ) of some ve
tor spa
e V de�ned over a �eld

F of order at least 3, then the graphs H(P; H ) 
an be des
ribed as graphs on the

re
e
tion tori in subgroups of GL(V ). Let V be a left ve
tor spa
e over a (possibly


ommutative) skew �eld F. For g 2 GL(V ), we set

[V; g℄ = fvg � v j v 2 V g and C

V

(g) = fv 2 V j vg � v = 0g;

and 
all these subspa
es the 
enter and axis of g. A transformation g 2 GL(V )

satisfying dim([V; g℄) = 1 is 
alled a re
e
tion if [V; g℄ 6� C

V

(g). Observe that C

V

(g)

is a hyperplane if g is a re
e
tion.

If we spe
ify a hyperplaneH and a one-dimensional subspa
e, that is, a proje
tive

point, p of V , then by T

p;H

we denote the subgroup of GL(V ) generated by all

g 2 GL(V ) with p = [V; g℄ and H = C

V

(g). If p 62 H , the subgroup T

p;H


onsists of

the identity and all re
e
tions with 
enter p and axis H . The group is isomorphi


with F

�

and is 
alled a re
e
tion torus. All re
e
tion tori in GL(V ) generate the

full �nitary general group FGL(V ) of V , i.e., the subgroup of GL(V ) 
onsisting

of all elements g 2 GL(V ) with [V; g℄ �nite dimensional. Below we will des
ribe

more examples of groups generated by re
e
tion tori, 
losely related to the graphs

appearing in Theorem 1.1.

Let � be a subspa
e of V

�

. By R(V;�) we denote the subgroup G of GL(V )

generated by the re
e
tions with 
enter in V and axis in �. If � = V

�

, then G is

equal to the full �nitary general linear group FGL(V ). If � 6= V

�

but fv 2 V j

v� = 0 for all � 2 �g = 0 (i.e., the annihilator of � in V is trivial), then R(V;�)

still a
ts irredu
ibly on V , see [3℄.

If T

(p;H)

and T

(q;I)

are two distin
t re
e
tion tori in GL(V ), then T

(p;H)

and

T

(q;I)


ommute if and only if p 2 I and q 2 H . Hen
e, if G is one of the groups

R(V;�), where the annihilator of � in V is trivial, then the graph with as vertex

set the re
e
tion tori in G, two tori being adja
ent if and only if they 
ommute, is

isomorphi
 to the graph H(P(V );P(�)).

If C is a 
onjuga
y 
lass of re
e
tions in GL

n+1

(F), then ea
h re
e
tion torus of

GL

n+1

(F) meets C in a unique element. So, the 
ommuting graph on C, i.e., the

graph with vertex set C and in whi
h two distin
t verti
es are adja
ent if and only

if they 
ommute, is isomorphi
 to H

n

(F).

In view of these observations we 
an use Theorem 1.1 in order to lo
ally re
ognize

linear groups. We state two su
h results. I

Theorem 1.2. Let n � 3 be �nite, and let F be a skew �eld of order � 3. Let G

be a group with distin
t elements x, y and subgroups X, Y su
h that

(i) C

G

(x) = X �K with K

�

=

GL

n+1

(F);

(ii) C

G

(y) = Y � J with J

�

=

GL

n+1

(F);
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(iii) there exists an element in J\K that is a re
e
tion of both J and K 
onjugate

to x in J and y in K, respe
tively.

If G = hJ;Ki, then (up to isomorphism) PSL

n+2

(F) � G=Z(G) � PGL

n+2

(F).

Our se
ond appli
ations deals with �nite groups. Let n be �nite and F a �eld.

An element r of SL

n+1

(F) is 
alled a generalized re
e
tion if, up to a s
alar fa
tor,

r is a re
e
tion in GL

n+1

(F)) , i.e., if there exists a re
e
tion in rZ(GL

n+1

(F)).

The axis and 
enter of a generalized re
e
tion are, by de�nition, its eigenspa
es of

dimension n and 1, respe
tively, in the natural module. They are the axis and 
enter

of the unique re
e
tion in rZ(GL

n+1

(F)). The group generated by all generalized

re
e
tions with a given axis and 
enter is 
alled a generalized re
e
tion torus and

is isomorphi
 to F

�

=h� 2 F

�

j �

n+1

= 1i.

With this notion we have the following result for �nite groups.

Theorem 1.3. Let n � 3 be �nite, and let F be a �nite �eld of order q � 3. Let p

be a prime dividing q � 1. Let G be a group with distin
t elements x, y of order p

su
h that

(i) C

G

(x) 
ontains a 
hara
teristi
 subgroup K with K

�

=

SL

n+1

(F);

(ii) C

G

(y) 
ontains a 
hara
teristi
 subgroup J with J

�

=

SL

n+1

(F);

(iii) there exists an element z in J\K 
onjugate to x in J and y in K, respe
tively.

Moreover, z is a generalized re
e
tion of both K and J .

If G = hJ;Ki, then G=Z(G)

�

=

PSL

n+2

(F).

The latter theorem is the kind of result that is useful in the 
lassi�
ation of �nite

simple groups in that a quasi-simple group is re
ognized from a 
omponent in the


entralizer of an element about whi
h some fusion information is given.

The remainder of this paper is organized as follows. In the next two se
tions

we derive various properties of the graphs H(P; H ). In parti
ular, we show that

both P and H 
an be re
overed from the graph H(P; H ). As a 
onsequen
e we are

able to determine the full automorphism group of H(P; H ). Then in Se
tion 4 we

prove Theorem 1.1. As mentioned before, in Se
tion 5 a family of graphs whi
h

are lo
ally H(P(F

3

2

)) is dis
ussed and �nally in Se
tion 6 the two group-theoreti
al

appli
ations, Theorem 1.2 and 1.3, of Theorem 1.1 are dis
ussed.

A
knowledgment. The authors want to thank Andries Brouwer, Ri
hard Lyons,

Sergey Shpe
torov and Ronald Solomon for various helpful remarks 
on
erning the

topi
s of this paper. An earlier version of this paper forms part of the PhD thesis

of the last author, see [5℄.

2. The point-hyperplane graph

De�nition 2.1. Consider a proje
tive spa
e P and a subspa
e H of the dual P

dual

of P with

T

H2H

H = ;. The point-hyperplane graph H(P; H ) is the graph whose

verti
es are the non-in
ident point-hyperplane pairs of P with the hyperplanes in H ,

in whi
h a vertex (a;A) is adja
ent to another vertex (b; B) (in symbols, (a;A) ?

(b; B)) if and only if a 2 B and b 2 A.

By de�nition, we have x 6? x, so the perp x

?

of x of all verti
es of H(P; H ) in ?

relation to x is the set of verti
es inH(P; H ) at distan
e one from x. Moreover, for a

setX of verti
es, we de�ne the perp of X asX

?

:=

T

x2X

x

?

with the understanding

that ;

?

= H(P; H ). The double perp of X is X

??

:= (X

?

)

?

.
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The graph H(P;P

dual

) is also denoted by H(P). Moreover, if P = P(V ) for some

(n+1)-dimensional ve
tor spa
e V over a (skew) �eld F, then we also write H

n

(F)

for H(P). If the �eld F is �nite of order q, then we write H

n

(q). Finally, if the �eld

F is irrelevant, then we also write H

n

instead of H

n

(F).

Let P be a proje
tive spa
e and H a subspa
e of the dual of P su
h that the

interse
tion over all hyperplanes in H is empty. A point p of the proje
tive spa
e

P = (P ;L) determines the set of verti
es v

p

= f(x;X) 2 H(P; H ) j x = pg of the

graph H(P; H ). A line l of P determines the union v

l

of all sets v

p

of verti
es for

p 2 l. Clearly the map v : P [ L ! 2

H(P;H)

: x 7! v

x

is inje
tive, and p 2 l if

and only if v

p

� v

l

, so we 
an identify the proje
tive spa
e with its image under v

in the 
olle
tion of all subsets of the vertex set of H(P; H ). We shall refer to this

image in 2

H(P;H)

as the exterior proje
tive spa
e on H(P; H ). Similarly, one 
an

map points � and lines � of H onto subsets of verti
es of H(P; H ) of the form w

�

=

f(x;X) 2 H(P; H ) j X = �g and w

�

=

S

���

w

�

for � running over all points of

P

dual


ontaining �. This gives rise to the dual exterior proje
tive spa
e on H(P; H ).

The subsets v

p

, v

l

, w

�

and w

�

so obtained are 
alled exterior points, exterior lines,

exterior hyperlines, and exterior hyperplanes of H(P; H ), respe
tively. Note that,

if the proje
tive spa
e P is isomorphi
 to H , there is an automorphism of H(P; H )

mapping the image under v onto the image under w. (If � is an isomorphism from

P to H , then (x;X) 7! (�(X); �(x)) is an automorphism of H(P; H ) as required.)

Also, if P is a subspa
e of H

dual

with trivial annihilator in H (in parti
ular, if

P and H have the same �nite dimension), then H(P; H ))

�

=

H(H ;P) by the map

(x;X) 7! (X; x). So, in general it will not be possible to distinguish exterior points

from exterior hyperplanes if one tries to re
onstru
t the proje
tive spa
e from the

graph. Another useful observation is that the exterior points partition the vertex

set of H(P; H ). In other words, ea
h vertex of H(P; H ) belongs to a unique exterior

point. The same holds for exterior hyperplanes.

One of our goals is to 
hara
terize the graph H(P; H ) by its lo
al stru
ture. In

this light the following two observations are important.

Proposition 2.2. Let P have dimension at least one. The graph H(P; H ) is lo
ally

H(P

0

; H

0

) for some hyperplanes P

0

of P and H

0

of H .

Proof. Let x = (x;X) be a vertex of H(P; H ). Identify X with P

0

. For any vertex

y = (y; Y ) adja
ent to x, we have x 2 Y , y 2 X n Y , and X \ Y a hyperplane in

both X and Y , so (y;X \ Y ) belongs to H(X). We 
an identify the spa
e of all

hyperplanes of the form X \ Y of X where x 2 Y 2 H with a hyperplane H

0

of H .

Hen
e, (y;X \ Y ) belongs to H(P

0

; H

0

).

Conversely, for any vertex of H(P

0

; H

0

), i.e., for any non-in
ident pair (z; Z)


onsisting of a point z and a hyperline Z of P with z 2 X , Z � X , the pair

(z; hZ; xi) is a vertex of x

?

. (Indeed, z 62 hZ; xi, sin
e x 62 X .)

Clearly, the maps (y; Y ) 7! (y;X \ Y ) and (z; Z) 7! (z; hZ; xi) are ea
h other's

inverses. Moreover, the maps preserve adja
en
y and the proposition follows.

Proposition 2.3. H

0


onsists of pre
isely one point; H

1

is the disjoint union of


liques of size two; the diameter of H

2

equals three; the diameter of H(P; H ), where

dim(P) � 3, equals two. In parti
ular, H(P; H ) is 
onne
ted for dim(P) � 2.

Proof. The statements about H

0

and H

1

are obvious. Let x = (x;X), y = (y; Y )

be two non-adja
ent verti
es of H

2

. The interse
tion X\Y is a point or a line, and
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xy is a point or a line. The verti
es x and y have a 
ommon neighbor, i.e., they

are at distan
e two, if and only if X \ Y 6� xy. If X \ Y � xy, however, it is easily

seen, that they are at distan
e three. Indeed, 
hoose a 2 Xn fyg and b 2 Y n fxg

with ay 63 b and bx 63 a. Then (x;X), (a; bx), (b; ay), (y; Y ) establishes a path of

length three.

Now let x = (x;X), y = (y; Y ) be two non-adja
ent verti
es of H(P; H ), where

dim(P) � 3. The interse
tion X \ Y 
ontains a line. Sin
e x 62 X and y 62 Y , we

�nd a point z 2 X \ Y and a hyperplane Z � xy with z 62 Z and, thus, a vertex

(z; Z) adja
ent to both x and y.

Our �rst main result will be a re
onstru
tion theorem of the proje
tive spa
e from

graphs isomorphi
 to the point-hyperplane graphH = H(P; H ) without making use

of the 
oordinates, see the next se
tion. This goal will be a
hieved by the study

of double perps of two verti
es, i.e., subsets of H =H(P; H ) of the form fx;yg

??

.

By n we denote the dimension of P.

Lemma 2.4. Let x = (x;X), y = (y; Y ) be distin
t verti
es of H with fx;yg

?

6= ;.

Then the double perp fx;yg

??

equals the set of verti
es z = (z; Z) of H with z 2 xy

and Z � X \ Y .

Proof. Distin
t verti
es with non-empty perp only exist for n � 2. The verti
es of

fx;yg

?

are pre
isely the non-in
ident point-hyperplane pairs (p;H) with p 2 X\Y

andH � xy. Let

�

(p

i

; H

i

) 2 fx;yg

?

j i 2 I

	

be the set of all these verti
es, indexed

by some set I . Now fx;yg

??

= (fx;yg

?

)

?


onsists of pre
isely those verti
es

(z; Z) 2 H with z 2

T

i2I

H

i

and Z � h(p

i

)

i2I

i. But sin
e fx;yg

?

6= ;, we have

T

i2I

H

i

= xy and h(p

i

)

i2I

i = X \ Y , thus proving the 
laim.

In order to re
over the proje
tive spa
es P and H from the information 
ontained

in a graph �

�

�

=

H, we have to re
ognize verti
es x, y of � with x = y or, dually,

X = Y , if �(x) = (x;X), �(y) = (y; Y ). Clearly, x = y and X = Y if and only

if the verti
es x, y are equal. To re
ognize the other 
ases, we make use of the

following de�nition and lemma.

Re
all that the (proje
tive) 
odimension of a subspa
e X of a proje
tive spa
e

P is the number of elements in a maximal 
hain of proper in
lusions of subspa
es

properly 
ontaining X and properly 
ontained in P. For example, the 
odimension

of a hyperplane of P equals 0.

De�nition 2.5. Let n � 2. Verti
es x = (x;X), y = (y; Y ) of H(P; H ) are in

relative position (i; j) if

i = dim hx; yi and j = 
odim(X \ Y)

where dim denotes the proje
tive dimension and 
odim the proje
tive 
odimension.

Note that i; j 2 f0; 1g.

Lemma 2.6. Let n � 2, and let x, y 2 H. Then the following assertions hold.

(i) The verti
es x and y are in relative position (0; 0) if and only if they are equal.

(ii) The verti
es x and y are in relative position (0; 1) or (1; 0) if and only if

they are distin
t and the double perp fx;yg

??

is minimal with respe
t to


ontainment, i.e., it does not 
ontain two verti
es with a non-empty stri
tly

smaller double perp.
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(iii) The verti
es x and y are in relative position (1; 1) if and only if they are

distin
t and the double perp fx;yg

??

is not minimal.

Proof. Statement (i) is obvious. Suppose x and y are in relative position (0; 1).

Then fx;yg

?

6= ; (sin
e n � 2), and we 
an apply Lemma 2.4. We obtain

fx;yg

??

= f(z; Z) 2 H j z = x = y; Z � X \ Y g, when
e any pair of distin
t ver-

ti
es 
ontained in fx;yg

??

is in relative position (0; 1) and gives rise to the same

double perp. Symmetry handles the 
ase (1; 0). If x and y are in relative po-

sition (1; 1) and fx;yg

?

= ;, then fx;yg

??

= H, whi
h is 
learly not mini-

mal. So let us assume fx;yg

?

6= ;. Again by Lemma 2.4, we have fx;yg

??

=

f(z; Z) 2 H j z 2 xy; Z � X \ Y g. This double perp 
ontains a vertex that is at

relative position (0; 1) to x, and we obtain a double perp stri
tly 
ontained in

fx;yg

??

. Statements (ii) and (iii) now follow from the fa
t that distin
t verti
es

x = (x;X) and y = (y; Y ) are in relative position (0; 1), (1; 0), or (1; 1).

We 
on
lude this se
tion with a lemma that will be needed later.

Lemma 2.7. Let x = (x;X) and y = (y; Y ) be two adja
ent verti
es in H. If x is

adja
ent to a vertex (z; Z

1

) and y adja
ent to a vertex (z; Z

2

), then there exists a

vertex (z; Z

3

) adja
ent to both x and y.

Proof. The statement of the lemma is empty for n < 2, and we 
an assume n � 2.

We have z 2 X \Y . Sin
e x and y are adja
ent, x 2 Y and y 2 X are distin
t and

the line xy does not 
ontain z. Hen
e the 
hoi
e of a hyperplane Z

3

that 
ontains

xy and does not 
ontain z is possible, and we have found a vertex (z; Z

3

) adja
ent

to both x and y.

3. Re
onstru
tion of the proje
tive spa
e

This se
tion will 
on
entrate on the re
onstru
tion of the proje
tive spa
es P and

H from a graph � isomorphi
 to H(P; H ). Abusing notation to some extent, we will

sometimes speak of relative positions on �, but only if we have �xed a parti
ular

isomorphism �

�

=

H(P; H ). Throughout the whole se
tion, let n = dim(P) � 2.

Furthermore, let F be a division ring and �

�

=

H =H(P; H ).

De�nition 3.1. Let x, y be verti
es of �. Write x � y to denote that x, y are

equal or the double perp fx;yg

??

is minimal with respe
t to in
lusion (in the 
lass

of double perps fu;vg

??

for verti
es u, v with u 6= v).

For a �xed isomorphism �

�

=

H the relation � 
oin
ides with the relation `being

equal or in relative position (1; 0) or (0; 1)' by Lemma 2.6(ii). What remains is the

problem of distinguishing the dual 
ases (0; 1) and (1; 0).

Lemma 3.2. On the vertex set of �, there are unique equivalen
e relations �

p

and

�

h

su
h that � equals �

p

[ �

h

and �

p

\ �

h

is the identity relation. Moreover,

for a �xed isomorphism �

�

=

H

n

, we either have

� �

p

is the relation `being equal or in relative position (0; 1)', and �

h

is the

relation `being equal or in relative position (1; 0)', or

� �

p

is the relation `being equal or in relative position (1; 0)', and �

h

is the

relation `being equal or in relative position (0; 1)'.
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In other words, for a �xed isomorphism �

�

=

H(P; H ) and up to inter
hanging

�

p

and �

h

, we may assume that �

p

stands for being equal or in relative position

(0; 1) and �

h

stands for being equal or in relative position (1; 0).

Proof. As we have noti
ed after De�nition 3.1, verti
es x, y of � are in relation �

if and only if their images (x;X) and (y; Y ) in H are equal or in relative positions

(0; 1) or (1; 0). Let us 
onsider equivalen
e relations that are subrelations of �.

Obviously, the identity relation is an equivalen
e relation. Moreover, the relation

`equal or in relative position (0; 1)' and the relation `equal or in relative position

(1; 0)' are equivalen
e relations. Now let us assume we have verti
es x = (x;X),

y = (y; Y ), z = (z; Z) of �

�

=

H su
h that x, y are in relative position (0; 1)

and x, z are in relative position (1; 0). Then y 6= z and Y 6= Z and y, z 
annot

be in relative position (0; 1) or (1; 0). Consequently, if we want to �nd two sub-

equivalen
e relations �

p

and �

h

of � whose union equals �, then either of �

p

and

�

h

has to be a subrelation of the relation `equal or in relative position (0; 1)' or of

the relation `equal or in relative position (1; 0)'. The lemma is proved.

Convention 3.3. From now on, we will always assume that, as soon as we �x an

isomorphism �

�

=

H, the relation �

p


orresponds to `equal or in relative position

(0; 1)'.

De�nition 3.4. Let x be a vertex of �. With �

p

and �

h

as in Lemma 3.2, we

shall write [x℄

p

to denote the equivalen
e 
lass of �

p


ontaining x, and similarly we

shall write [x℄

h

to denote the equivalen
e 
lass of �

h


ontaining x. We shall refer

to [x℄

p

as the interior point on x and to [x℄

h

as the interior hyperplane on x.

Lemma 3.5. For a �xed isomorphism �

�

=

H(P; H ), an interior point of � is the

image of an exterior point of H(P; H ) under this isomorphism, and vi
e versa. The

same 
orresponden
e exists between interior hyperplanes of � and exterior hyper-

planes of H(P; H ).

Proof. This is dire
t from the above.

Note that an exterior point and an exterior hyperplane of H(P; H ) are disjoint

if and only if the 
orresponding point and hyperplane of P

n

(F) are in
ident. The

above lemma motivates us to 
all a pair (p;H) of an interior point and an interior

hyperplane of � in
ident if and only if p\H = ;. This enables us to de�ne interior

lines.

De�nition 3.6. Let p and q be distin
t interior points of �. The interior line l of

� spanned by p and q is the union of all interior points disjoint from every interior

hyperplane disjoint from both p and q. In other words, the interior line pq 
onsists

of exa
tly those interior points whi
h are in
ident with every interior hyperplane

in
ident with both p and q.

Dually, one 
an de�ne the interior hyperline spanned by distin
t interior hyper-

planes H and I as the union of all interior hyperplanes disjoint from every interior

point disjoint from both H and I .

Lemma 3.7. For a �xed isomorphism �

�

=

H(P; H ), ea
h interior line of � is the

image of an exterior line of H(P; H ) under this isomorphism, and vi
e versa. The

analogue holds for interior hyperlines.
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Proof. The proof is straightforward.

The geometry (P ;L;�) on � where P is the set of interior points of � and L is

the set of interior lines of � is 
alled the interior proje
tive spa
e on �. By Lemma

3.5 and Lemma 3.7, this interior proje
tive spa
e is isomorphi
 to the exterior

proje
tive spa
e on H(P; H ). Pro
eeding with �

h

as we did for �

p

, the same holds

for the dual of the interior proje
tive spa
e on �. We summarize the �ndings in

the following proposition.

Proposition 3.8. Let n � 2. Up to inter
hanging �

p

and �

h

every isomorphism

�

�

=

H(P; H ) indu
es an isomorphism between the interior proje
tive spa
e on � and

the exterior proje
tive spa
e on H(P; H ). The analogue holds for the dual interior

proje
tive spa
e on �. �

Corollary 3.9. Let n � 2, and let � be isomorphi
 to H(P; H ). Then the interior

proje
tive spa
e on � is isomorphi
 to P or H . �

Corollary 3.10. Let n � 2, and let � be isomorphi
 to H(P). If P and P

dual

are

isomorphi
, then the automorphism group of � is of the form Aut(P):2. Otherwise,

it is isomorphi
 to Aut(P).

Proof. Indeed, every automorphism of P indu
es an automorphism of �. Conversely,

every automorphism of � that preserves the interior proje
tive spa
e gives rise to

a unique automorphism of P, by the theorem. Moreover, every automorphism of

� either preserves the interior proje
tive spa
e or maps it onto the dual interior

proje
tive spa
e, again by the theorem. Finally, an outer automorphism is indu
ed

on � by the map (p;H) 7! (Æ(H); Æ(p)) for a duality Æ of the proje
tive spa
e, and

the map (p;H) 7! (Æ

2

(p); Æ

2

(H)) preserves the interior proje
tive spa
e on �.

Remark 3.11. Now might be an appropriate moment to address the problem of

duality. Although, by Convention 3.3, as soon as we �x an isomorphism �

�

=

H,

we also 
hoose the equivalen
e relation �

p

to 
orrespond to the relation `equal or

in relative position (0; 1)' of H, there is a subtle problem|mainly of notation|


oming with this: Suppose �

�

=

H

n

(F) with F 6

�

=

F

opp

. Then, by the 
onvention,

the interior proje
tive spa
e on � will always be isomorphi
 to P

n

(F). If one wants

the interior proje
tive spa
e to be isomorphi
 to P

n

(F)

dual

, then one will have to �x

an isomorphism �

�

=

H

n

(F

opp

), although H

n

(F)

�

=

H

n

(F

opp

) by means of the map

(p;H) 7! (H; p). The reason for this is that we have de�ned the graphH

n

(F) as the

point-hyperplane graph of the spa
e P

n

(F), whi
h by Convention 3.3 determines

the isomorphism 
lass of the interior proje
tive spa
e on �.

The remainder of this se
tion serves as a 
olle
tion of results to be used later on.

First 
omes a useful result on subspa
es of the interior proje
tive spa
e of �.

Lemma 3.12. Let U be a �nite dimensional subspa
e of the interior proje
tive

spa
e on �. For any proje
tive basis of U there exists a 
lique of verti
es in � su
h

that the interior points 
ontaining these verti
es are the basis elements.

Proof. Fix an isomorphism � : � ! H(P; H ). By Proposition 3.8, we 
an as

well argue with exterior points of H(P; H ). Let x

i

, for i = 1; : : : ;m, be exterior

points forming a (proje
tive) basis for �(U). Let K be a 
omplement to �(U)

in P, whi
h is the interse
tion of hyperplanes in H . Noti
e that su
h subspa
e

K exists as

T

H2H

H is empty. Moreover, as K has �nite 
odimension in V , all
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hyperplanes of V 
ontaining K are in H . If for ea
h i 2 f1; : : : ;mg we have x

i

=

f(p

i

; H) 2 H(P; H ) j H 2 H g, then the verti
es (p

i

; hK; fp

j

j j 2 f1; : : : ;mgn figgi) 2

x

i

, with i = 1; : : : ;m, form the 
lique we are looking for.

Notation 3.13. Let n � 3. For a vertex x of �

�

=

H(P; H ), we write �

x

for the

relation � de�ned on x

?

(bear in mind that the latter is isomorphi
 to H(P

0

; H

0

)

by Proposition 2.2, where P

0

and H

0

are hyperplanes of P and H , respe
tively).

Lemma 3.14. Let n � 3. Let x be a vertex of �. Then �

x

is the restri
tion of �

to x

?

.

In parti
ular, if p is an interior point of � with p \ x

?

6= ;, then p \ x

?

is an

interior point or an interior hyperplane of x

?

, and 
onversely, if q is an interior point

of x

?

, then there exists an interior point or hyperplane q

0

of � with q

0

\ x

?

= q.

Proof. Fix an isomorphism � : �! H. As above, we argue in H rather than in �.

Let �(x) = (x;X). Now the statement follows from the fa
t that, for a;b 2 x

?

,

with a �

x

b and �(a) = (a;A), �(b) = (b; B), the statements A \X = B \X and

A = B are equivalent.

Notation 3.15. In view of the lemma, we 
an 
hoose the equivalen
e relation �

p

x

on x

?

in su
h a way that (�

x

)

p

= (�

p

)

x

. In that 
ase, there is no harm in writing

�

p

x

to denote this relation. In parti
ular, there is a one-to-one map from the set of

interior points of x

?

into the set of interior points of �.

Lemma 3.16. Let n � 3 and let x be a vertex of �. Then the interior proje
tive

spa
e on x

?

is a hyperplane of the interior proje
tive spa
e on �.

Proof. Fix an isomorphism �

�

=

H(P; H ). By Proposition 3.8 this isomorphism

of graphs indu
es an isomorphism between the interior proje
tive spa
e on � and

the exterior proje
tive spa
e on H(P; H ). The vertex x 2 � is mapped onto a

non-in
ident point-hyperplane pair of H(P; H ), say (x;X). The neighbors of x are

mapped onto point-hyperplane pairs (y; Y ) with y 2 X , indu
ing a map of the set

of interior points of � that meet x

?

non-trivially onto the set of exterior points

of H(P; H ) that interse
t (x;X)

?

non-trivially. But that set of exterior points

form a hyperplane of the exterior proje
tive spa
e on H(P; H ), and the lemma is

proved.

4. Lo
ally point-hyperplane graphs

Throughout the whole se
tion, we take n � 3, and � a 
onne
ted, lo
allyH(P; H )

graph for some proje
tive spa
e P of dimension n (possibly in�nite) and subspa
e H

of P

dual

with trivial annihilator in P. Thus, the fa
t that � is lo
allyH(P; H ) means

that, for ea
h vertex x of �, there is an isomorphism x

?

! H(P; H ). Consequently,

by Corollary 3.9, the interior proje
tive spa
e on x

?

is isomorphi
 to P or H . The

goal of this se
tion is, by use of these isomorphisms, to show that � is isomorphi


to the non-in
ident point-hyperplane graphH(P

1

; H

1

) for some proje
tive spa
e P

1

and subspa
e H

1

of P

1

dual

. This will establish Theorem 1.1.

Noti
e that the de�nitions of interior points and lines are only lo
al and may

di�er on di�erent perps. It is one task of this se
tion to show that there is a

well-de�ned notion of global points and global lines on the whole graph. To avoid
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onfusion, we will index ea
h interior point p and ea
h interior line l by the vertex

x whose perp it belongs to, so we write p

x

and l

x

instead of p and l. These interior

points and lines are 
alled lo
al points and lo
al lines, respe
tively. We do the same

for the relations �, �

p

, �

h

obtaining the lo
al relations �

x

, �

p

x

, �

h

x

.

Lemma 4.1. Let x and y be two adja
ent verti
es of �. Then there is a 
hoi
e of

lo
al equivalen
e relations �

p

x

and �

p

y

su
h that the restri
tions of �

p

x

and �

p

y

to

x

?

\ y

?


oin
ide.

Proof. This follows immediately from a repeated appli
ation of Lemma 3.14 to

x

?

�

=

H(P; H ) and x

?

\ y

?

and to y

?

�

=

H(P; H ) and x

?

\ y

?

.

The pre
eding lemma allows us to transfer points from x

?

to y

?

. Indeed, if

there is a lo
al point p

x

in x

?

that lies in the hyperplane Y

x

indu
ed by the vertex

y on x

?

, the point p

x


orresponds to a point p

y

of y

?

. That point p

y

is simply

the �

p

y

equivalen
e 
lass that 
ontains the set p

x

\ y

?

.

In the next two lemmas we prove some te
hni
al statements enabling us to prove

simple 
onne
tedness of �. (A graph is simply 
onne
ted if it is 
onne
ted and

every 
y
le in 
an be triangulated.)

Lemma 4.2. Let w ? x ? y ? z be a path of verti
es in �. Then for x = (x

y

; X

y

)

and z = (z

y

; Z

y

) inside y

?

, if X

y

\ Z

y

\ x

y

z

y

= ; or if X

y

= Z

y

, there is a path

of verti
es in x

?

\ z

?

from y to a vertex in fw;x; zg

?

.

Noti
e that, for example, we have X

y

\ Z

y

\ hx

y

; z

y

i = ;, in 
ase x

y

= z

y

.

Proof. Choose lo
al equivalen
e relations �

p

w

, �

p

x

, �

p

y

, and �

p

z

su
h that �

p

w

and

�

p

x


oin
ide on w

?

\ x

?

, su
h that �

p

x

and �

p

y


oin
ide on x

?

\ y

?

, and su
h

that �

p

y

and �

p

z


oin
ide on y

?

\ z

?

as indi
ated in Lemma 4.1. Appli
ation

of Lemma 3.16 to the interior proje
tive spa
e of y

?

�

=

H(P; H ) shows that the

interior proje
tive spa
es of x

?

\ y

?

and of y

?

\ z

?


orrespond to hyperplanes

of y

?

�

=

H(P; H ). We have to investigate x

?

\ y

?

\ z

?

. We have x = (x

y

; X

y

)

and z = (z

y

; Z

y

) inside y

?

. Then the graph x

?

\ y

?

\ z

?

(
onsidered inside y

?

)


onsists of the non-in
ident point-hyperplane pairs whose points are 
ontained in

X

y

\ Z

y

and whose hyperplanes 
ontain the subspa
e hx

y

; z

y

i.

First, let us assume X

y

\ Z

y

\ hx

y

; z

y

i = ;. Also assume that x

y

6= z

y

and

denote the interse
tion x

y

z

y

\X

y

by a

y

. Inside x

?

denote w by (w

x

;W

x

) and y

by (y

x

; Y

x

). Consider x

?

, in whi
h the point a

y

2 X

y

arises as a

x

inside Y

x

. Inside

y

?

, the interse
tion X

y

\ Z

y


ontains a line l

y

. This line l

y

arises as a subspa
e

l

x

of x

?

that is 
ontained in Y

x

. As there exists a y

0

in fx;y; zg

?

, we 
an assume,

up to a 
hange of y into y

0

, that w

x

is also 
ontained in Y

x

. (Indeed, 
hoose a

hyperplane H

x

that 
ontains a

x

, w

x

, and y

x

but not l

x

, and 
hoose a point p

x

on l

x

o� H

x

. The vertex (p

x

; H

x

) gives rise to a vertex y

0

that is adja
ent to x

and y. Lo
al analysis of y

?

shows that the hyperplane of the vertex y

0


ontains

the point x

y

and the point a

y

, when
e also the point z

y

. Moreover, the point of

y

0

is 
ontained in l

y

, when
e also in Z

y

, and y

0

is a neighbor of z.) Inside x

?

we have now the following setting. The hyperplane Y

x


ontains the points w

x

and

a

x

as well as the line l

x

. Note that l

x

has to interse
t the hyperplane W

x

. If

ha

x

; w

x

i does not interse
t l

x

\ W

x

, then we 
an 
hoose a point inside l

x

\ W

x

and a non-in
ident hyperplane that 
ontains ha

x

; w

x

; y

x

i, yielding a vertex that is
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adja
ent to w, x, y, and|after lo
al analysis of y

?

|also to z. Therefore assume

that ha

x

; w

x

i does interse
t l

x

\W

x

. Then �x the point u

x

:= ha

x

; w

x

i \ l

x

\W

x

and 
hoose a hyperplane U

x

that 
ontains a

x

and y

x

but not u

x

. The pair (u

x

; U

x

)

des
ribes another vertex, u say, that is adja
ent to x, y, and z. Inside u

?

we have

a hyperplane X

u

of x, a line k

u

in X

u

that arises from a line k

x


ontained in the

interse
tion U

x

\W

x

of the hyperplanes of the verti
es u and w inside x

?

, and

the hyperplane Z

u

of z. Choose a point v

u

in k

u

\ Z

u

and a hyperplane V

u

on

x

u

z

u

that does not 
ontain v

u

. Obviously, this vertex v = (v

u

; V

u

) is adja
ent to

x, u and z. In x

?

, however, we see v as (v

x

; V

x

) whose hyperplane V

x


ontains the

points a

x

and u

x

, therefore also w

x

. Moreover, v

x

is 
ontained in k

x

, when
e also

in W

x

, and v is the required vertex.

If X

y

\ Z

y

\ hx

y

; z

y

i = ; and x

y

= z

y

, then similar arguments yield a proof.

Also the 
ase that X

y

= Z

y

runs along the same lines and is, in fa
t, easier to

prove.

Lemma 4.3. For every path w ? x ? y ? z in � there is a vertex x

0

2 fxg [

fw;x;yg

?

su
h that, with x

0

= (x

0

y

; X

0

y

) and z = (z

y

; Z

y

) inside y

?

, we have

hx

0

y

; z

y

i \X

0

y

\ Z

y

= ;.

Proof. Choose a path w ? x ? y ? z of verti
es in �, and �x lo
al equivalen
e

relations �

p

w

, �

p

x

, �

p

y

, and �

p

z

as in the proof of the pre
eding lemma. Inside

y

?

, let x 
orrespond to (x

y

; X

y

) and z 
orrespond to (z

y

; Z

y

). Suppose that

X

y

\Z

y

\hx

y

; z

y

i 6= ;. Then X

y

\Z

y

\hx

y

; z

y

i is a point; X

y

\Z

y

nx

y

z

y


ontains

(the point set of) an aÆne line, for n = 3, and (the point set of) a dual aÆne plane,

for n � 4; it may be even bigger if X

y

= Z

y

. The set of 
ommon neighbors of x and

z in y

?


orresponds to the set of all non-in
ident point-hyperplane pairs (p

y

; H

y

)

with p

y

2 X

y

\ Z

y

and H

y

� x

y

z

y

inside y

?

. This implies that for any point

p

y

2 X

y

\Z

y

nx

y

z

y

we 
an �nd a vertex (p

y

; H

y

) in y

?

adja
ent to both x and z.

Now 
onsider x

?

. Let w = (w

x

;W

x

) and y = (y

x

; Y

x

). Any vertex x

0

= (x

0

x

; X

0

x

)

adja
ent to w, x, y 
onsists of a point x

0

x

2W

x

\Y

x

and a non-in
ident hyperplane

X

0

x

� w

x

y

x

. Hen
e, as above in y

?

, we 
an 
hoose x

0

x

freely on an aÆne line for

n = 3 or a dual aÆne plane for n � 4. This translates to y

?

as follows. The line

w

x

y

x

interse
ts Y

x

in a point, a

x

say, whi
h gives rise to a point a

y

2 X

y

of y

?

. So

all these hyperplanes X

0

x

arise as hyperplanes X

0

y

in y

?

that 
ontain the line x

y

a

y

.

Noti
e that this line x

y

a

y

is the largest subspa
e of y

?

that is 
ontained in all these

hyperplanes X

0

y

. If for some �xed 
hoi
e of x

0

y

, there exists a hyperplane X

0

y

of

y

?

su
h that X

0

y

\ Z

y

\ hx

0

y

; z

y

i = ;, we are done. Hen
e, for a �xed x

0

y

, suppose

all 
hoi
es for X

0

y


ontain the point hx

0

y

; z

y

i \ Z

y

. But in this 
ase, we 
an 
hoose

another x

1

y

instead of x

0

y

and �nd an X

0

y

with X

0

y

\Z

y

\hx

1

y

; z

y

i = ;. For, suppose

for a 
hoi
e x

1

y

distin
t from x

0

y

still X

0

y

\Z

y

\hx

1

y

; z

y

i 6= ; for all possible X

0

y

inside

y

?

. Then the points u

y

:= hx

0

y

; z

y

i \ Z

y

and v

y

:= hx

1

y

; z

y

i \ Z

y

span a line as

z

y

62 Z

y

. But this line u

y

v

y

has to 
oin
ide with the line x

y

a

y

. In parti
ular, x

y

is


ontained in Z

y

. But this 
ontradi
ts our assumption that X

y

\Z

y

\ hx

y

; z

y

i 6= ;.

Hen
e we 
an �nd an x

1

y

62 X

0

y

with X

0

y

\ Z

y

\ hx

1

y

; z

y

i = ;, and so the vertex

(x

1

y

; X

0

y

) is as required.

We owe the following proposition to Andries Brouwer, who observed that the


ombination of the two pre
eding lemmas yields simple 
onne
tedness.
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Proposition 4.4. The graph �, 
onsidered as a two-dimensional simpli
ial 
om-

plex whose two-simpli
es are its triangles, is simply 
onne
ted. Moreover, the di-

ameter of � equals two.

Proof. Lemma 4.3 shows that for every path of distin
t verti
es w, x, y, z in �

there exists a vertex x

0

2 fw;x;yg

?

with x

0

= (x

0

y

; X

0

y

) in y

?

su
h that hx

0

y

; z

y

i\

X

0

y

\ Z

y

= ;. Lemma 4.2, on the other hand, implies that there exists a path of

verti
es inside x

?

0

\z

?

from y to a vertex v that is adja
ent to w, x

0

, and z. Simple


onne
tedness of � follows.

As for the se
ond statement, suppose w ? x ? y ? z is a path in �, then by

by the above arguments there is a vertex v in w

?

\ z

?

. Hen
e z is at distan
e at

most two from w. This implies that the diameter of � is at most two and settles

the proof of the proposition.

Lemma 4.5. There is a 
hoi
e of lo
al equivalen
e relations �

p

x

for all x 2 � su
h

that, for any two adja
ent verti
es x and y, the restri
tions of �

p

x

and �

p

y

to x

?

\y

?


oin
ide.

Proof. Suppose that x, y, z is a triangle. In view of Lemma 4.1, we may assume

that �

p

x

and �

p

y

have the same restri
tion to x

?

\ y

?

and that �

p

x

and �

p

z

have

the same restri
tion to x

?

\ z

?

. Let p

x

be an interior point of x

?

su
h that

p

x

\ y

?

\ z

?

6= ;. By analysis of x

?

, we 
an �nd two verti
es, say u and v, in

p

x

\y

?

\z

?

. Now the above 
hoi
es of lo
al equivalen
e relations imply that (u;v)

belongs to �

p

y

\ �

p

z

(indeed, (u;v) belongs to both �

p

x

\ �

p

y

and �

p

x

\ �

p

z

). By

Lemma 3.2 this for
es that �

p

y

and �

p

z

have the same restri
tion to y

?

\ z

?

. Sin
e

� is simply 
onne
ted (by Proposition 4.4), the lemma follows immediately from

the triangle analysis.

Notation 4.6. Fix a 
hoi
e of �

p

x

, for all verti
es x of �, as in Lemma 4.5 and set

�

p

=

S

x2�

�

p

x

.

Lemma 4.7. Let x and y be verti
es of � su
h that x �

p

u

y for some vertex u in

fx;yg

?

. Then x �

p

v

y for every vertex v in fx;yg

?

.

Proof. Let u, x, y be as in the hypothesis and let v 2 fx;yg

?

be an additional

vertex. If u ? v, then the 
laim is true by Lemma 4.5.

Thus, it is suÆ
ient to show that the indu
ed subgraph fx;yg

?

of � is 
onne
ted.

In x

?

we have u = (u

x

; U

x

) and v = (v

x

; V

x

). Moreover, the interse
tion X

u

\ Y

u

from u

?

arises as a hyperplaneW

x

of U

x

in x

?

. Therefore the interse
tionW

x

\V

x


ontains a point p

x

. If in x

?

the line u

x

v

x

does not 
ontain p

x

, we 
an �nd a

hyperplane H

x

� u

x

v

x

that does not 
ontain p

x

, and (p

x

; H

x

) is a vertex of x

?

whi
h is adja
ent to both u and v. But inside u

?

this vertex also 
orresponds to

some point-hyperplane pair, whose point is 
ontained in Y

u

and whose hyperplane


ontains y

u

= x

u

. In parti
ular, this vertex is also adja
ent to y, and we are done.

So assume we have p

x

2 u

x

v

x

in x

?

. Then 
hoose any hyperplane H

x

that


ontains u

x

but not p

x

. Then the vertex t := (p

x

; H

x

) is adja
ent to x, u, and

y, but not v. Inside t

?

we have hyperplanes X

t

and Y

t


oming from x and y.

The interse
tion X

t

\Y

t


orresponds to a subspa
e S

x

of H

x

(the hyperplane of the

vertex t) in x

?

. The interse
tion S

x

\V

x

in x

?


ontains some point q

x

. If q

x

lies on

the line p

x

v

x

, then q

x

= p

x

v

x

\H

x

= p

x

u

x

\H

x

= u

x

, and we have u

x

2 V

x

. But

this 
ontradi
ts p

x

2 u

x

v

x

, as p

x

2 V

x

\ U

x

, v

x

62 V

x

and u

x

2 V

x

nU

x

. Therefore
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we have q

x

62 p

x

v

x

and we are in the situation of the pre
eding paragraph with the

vertex t instead of u.

We are now ready to show that there exists a well-de�ned notion of global points

on �, whi
h will then allow us to study a geometry on �.

Lemma 4.8. The relation �

p

on the verti
es of � is an equivalen
e relation.

Proof. Re
exivity and symmetry follow from re
exivity and symmetry of ea
h �

p

x

.

To prove transitivity, assume that x �

p

y and y �

p

z. Then there exist verti
es

u, v with x �

p

u

y and y �

p

v

z. By Proposition 4.4, there also exists a vertex

a 2 fx; zg

?

. We will prove that x �

p

a

z. In view of the Lemma 4.2 (applied to the

the 
hains a ? x ? u ? y and a ? z ? v ? y) there are verti
es b 2 fa;x;yg

?

and 
 2 fa; z;yg

?

. Lemma 4.7 implies x �

p

b

y and y �

p




z. Set b = (b

a

; B

a

),


 = (


a

; C

a

), x = (x

a

; X

a

), and z = (z

a

; Z

a

) in a

?

. Noti
e that z

a

2 C

a

. We


an additionally assume that x

a

2 C

a

and 


a

62 b

a

x

a

. (Indeed, set a = (a




; A




),

y = (y




; Y




), z = (z




; Z




) in 


?

. The interse
tion A




\ Y





ontains a line l




.

Moreover, y




= z




, as y �

p




z. Lo
ally in a

?

the line l




arises as a line l

a

� C

a

. Fix

a hyperplane H

a

that 
ontains h


a

; x

a

; z

a

i and �x a point p

a

on l

a

o� h


a

; x

a

; z

a

i

and hb

a

; x

a

i; su
h a 
hoi
e is always possible as x

a

62 l

a

and 


a

62 C

a

and l

a


ontains

at least three points. This gives a new vertex 


0

= (p

a

; H

a

) that is adja
ent to a,


, and y. Lo
al analysis of 


?

shows that we 
an �nd a vertex z

0

in �

p




relation

to z that is adja
ent to 


0

and a.) But now, we 
an �nd a vertex d = (x

a

; D

a

)

in a

?

that is adja
ent to b = (b

a

; B

a

) and 
 = (


a

; C

a

) (noti
e that by the above

we 
an assume 


a

62 b

a

x

a

, when
e x

a

62 b

a




a

). By 
onstru
tion we have d �

p

b

x,

so d �

p

a

x by Lemma 4.7, and as x �

p

b

y we also have d �

p

b

y. Now Lemma 4.7

implies d �

p




y. But also y �

p




z. Transitivity of �

p




implies d �

p




z and, again

Lemma 4.7 yields d �

p

a

z. Finally, transitivity of �

p

a

gives x �

p

a

z, yielding x �

p

z.

Hen
e �

p

is transitive.

All statements and results about the lo
al relations �

p

x

are also true for the lo
al

relations �

h

x

, and we 
an de�ne a global relation �

h

=

S

x2�

�

h

x

with the same ni
e

properties on the lo
al interse
tions.

De�nition 4.9. A global point of � is de�ned as an equivalen
e 
lass of �

p

. Dually,

de�ne a global hyperplane as an equivalen
e 
lass of �

h

.

We already have a lo
al notion of in
iden
e as de�ned before De�nition 3.6. A

global notion also exists.

Lemma 4.10. A global point p and a global hyperplane H are in
ident if and only

if p \H = ;.

Proof. One impli
ation is trivial. To prove the other, suppose there exists a vertex

y 2 p \ H . Then, any vertex x for whi
h p

x

and H

x

exist is at distan
e at most

two to y, by Proposition 4.4, and there exists a vertex z adja
ent to both y and

x. The lo
al elements p

z

and H

z

exist, as y is a representative of both. But then

p

x

\ z

?

6= ; as well as H

x

\ z

?

6= ;. Now inside x

?

\ z

?

we see that p

x

and H

x

have a non-empy interse
tion.

De�nition 4.11. Let p and q be distin
t global points and let x be a vertex su
h

that p

x

and q

x

exist. Then the global line of � spanned by p and q is the set of

those global points a su
h that a

x

exists and is 
ontained in the lo
al line p

x

q

x

.
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Let P

�

= (P

�

;L

�

;�) be the point-line geometry 
onsisting of the point set P

�

of

global points of � and the line set L

�

of global lines of �.

Lemma 4.12. The notion of a global line is well-de�ned.

Proof. Let p and q be global points and suppose x and y are distin
t verti
es su
h

that p

x

, q

x

, p

y

, and q

y

exist. We prove that for any global point r for whi
h r

x

exists and is 
ontained in the lo
al line on p

x

and q

x

, the lo
al point r

y

also exists

and is on the lo
al line on p

y

, and q

y

.

If x ? y, then p

x

\ p

y

6= ; and q

x

\ q

y

6= ;, and the 
laim follows from Lemma

3.16 applied to x

?

.

Choose verti
es a 2 p

x

, b 2 q

x

, 
 2 q

y

, and d 2 p

y

. By Lemma 3.12 we 
an

assume that 
 and d are adja
ent. By Proposition 4.4 there exists a vertex z

1

adja
ent to both x and 
. By Lemma 4.2 (applied to the path a, x, z

1

, 
) we 
an

�nd a vertex z

2

adja
ent to a, x, and 
 (indeed, inside z

?

1

the point 


z

1

of 
 has

to lie in the hyperplane X

z

1

of x. So, the 
ondition of the lemma is satis�ed and

we 
an apply that lemma). Lo
al analysis of 
 yields a vertex z

3

that is adja
ent

to z

2

, 
, and d. The indu
ed subgraph f
;dg

?

of � is isomorphi
 to H(P

0

; H

0

) for

some hyperplane P

0

of P. A

ording to Proposition 2.3, it is 
onne
ted. Therefore,

we 
an �nd a path from y to z

3

inside f
;dg

?

. This establishes the lemma.

Proposition 4.13. The spa
e P

�

is a linear spa
e with thi
k lines.

Proof. This is an immediate 
onsequen
e of Lemma 4.12.

As 
ustomary in linear spa
es, for distin
t global points p and q we denote by

pq the unique global line on p and q.

Proposition 4.14. The spa
e P

�

is a proje
tive spa
e.

Proof. In view of Proposition 4.13 we only have to verify Pas
h's Axiom. Let a,

b, 
, d be four global points su
h that ab interse
ts 
d in the global point e. Then

ab = ae and 
d = 
e. By Proposition 4.4 and Lemma 3.12, there are verti
es a in

a and e in e su
h that a ? e. Choose a vertex 
 in 
. Now, by Proposition 4.4,

there is a vertex y adja
ent to e and 
. After suitable repla
ements of e in e and


 in 
, we 
an assume that inside y

?

we have 
 = (


y

; C

y

) and e = (e

y

; E

y

) with

C

y

\ E

y

\ h


y

; e

y

i = ;. Lemma 4.2 implies the existen
e of x 2 fa; 
; eg

?

. The

global lines ae and 
e meet x

?

in interior lines. In parti
ular, by Pas
h's Axiom

applied to the interior proje
tive spa
e of x

?

, there is an interior point w

x

on both

the interior lines (a
)

x

and (bd)

x

of x

?

. Consequently, the global lines a
 and bd

meet in a global point, when
e Pas
h's Axiom holds.

Notation 4.15. Denote by




x

?

�

the set of global points interse
ting x

?

. Noti
e

that this set is a subspa
e of P

�

.

Lemma 4.16. Let x;y 2 � with x �

h

y. Then




x

?

�

=




y

?

�

.

Proof. By symmetry of �

h

it suÆ
es to show




x

?

�

�




y

?

�

. To this end, let

p 2




x

?

�

, so that there exists a vertex p 2 p with p ? x. By Proposition 4.4, we


an �nd a vertex z with x ? z ? y. If x = (x

z

; X

z

), y = (y

z

; Y

z

) inside z

?

, we

have X

z

= Y

z

, as x �

h

y. Applying Lemma 4.2, we obtain a vertex a 2 fp;x;yg

?

.

Writing p = (p

a

; H

a

) in a

?

, we see p

a

2 X

a

, when
e p

a

2 Y

a

by x �

h

a

y. But now

we 
an �nd a vertex p

1

= (p

a

; H

1

a

) with y

a

2 H

1

a

and 
onsequently p 2




y

?

�

.
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We are ready to give a ni
e des
ription of the hyperplanes of the proje
tive spa
e

P

�

appearing in verti
es of �. To this end, denote by




x

?

�

the set of global points

that meet x

?

; it will turn out to be a hyperplane.

Lemma 4.17. The set




x

?

�

does not 
ontain the global point that 
ontains x.

Proof. Otherwise x

?


ontains a vertex y that belongs to the same global point.

But then there exists a third vertex z adja
ent to both x and y, so x and y are two

adja
ent verti
es belonging to the same interior point in z

?

, a 
ontradi
tion.

Lemma 4.18. Let x be a vertex of �. Then




x

?

�

is a hyperplane of P

�

.

Proof. Suppose l is a global line of �. We have to show that it interse
ts




x

?

�

. Let

a 6= b be two global points on l and 
hoose verti
es a 2 a, b 2 b. By Lemma 3.12

we may assume a ? b. By Proposition 4.4, there exists a vertex y with b ? y ? x.

Changing b inside b \ a

?

\ y

?

and x inside y

?

while leaving




x

?

�

invariant, we


an assume B

y

\ X

y

\ hb

y

; x

y

i = ; (for b = (b

y

; B

y

), x = (x

y

; X

y

), inside y

?

);

noti
e that, by Lemma 4.16, 
hanging x as indi
ated basi
ally means 
hanging the

point x

y

. Consequently, by Lemma 4.2, there exists a vertex 
 2 fa;b;xg

?

. Now

lo
al analysis of 


?

shows that l has to interse
t




x

?

�

. Lemma 4.17 shows that




x

?

�

is not the whole spa
e, and




x

?

�

is a hyperplane.

By H

�

we denote the set of all subsets




x

?

�

, where x runs through the vertex

set of �.

Lemma 4.19. The set H

�

is a subspa
e of P

�

dual

su
h that H

�

has trivial annihi-

lator in P

�

.

Proof. Let x and y be two points of � with




x

?

�

6=




y

?

�

. Denote by x and y

the global points and by X and Y the global hyperplanes 
ontaining x and y,

respe
tively. By Proposition 4.4 there exists a third vertex adja
ent to x and y.

Then, by Lemma 3.12, there exist adja
ent verti
es x

1

2 X and y

1

2 Y with




x

?

�

=




x

?

1

�

and




y

?

�

=




y

?

1

�

. We will show that the hyperpline on




x

?

�

and




y

?

�

is 
ontained in H

�

. By the above we 
an assume that x and y are adja
ent.

We show that for every global point u, there is a point z su
h that




x

?

�

\




y

?

�

�




z

?

�

and u 2




z

?

�

.

Let � be the hyperplane of P

�


ontaining




x

?

�

\




y

?

�

and u. The global line on

x and y meets � in a point outside




x

?

�

\




y

?

�

. So, without loss we may assume

this interse
tion point to be u.

Let w be adja
ent to both x and y. Then both x and y are global points in




w

?

�

and hen
e so is u. So, inside w

?

�

=

H(P; H ) we �nd a point z su
h that

z

?

meets all global points meeting x

?

\ y

?

\ w

?

and u. Indeed, inside w

?

the

hyperplane




z

?

�

of P

�

is the hyperplane 
ontaining




x

?

�

\




y

?

�

\




w

?

�

and u.

But then




z

?

�


ontains




x

?

�

\




y

?

�

\




w

?

�

and w, the global point on w, and

hen
e




x

?

�

\




y

?

�

. Moreover, as z

?

meets u, it 
ontains � and hen
e 
oin
ides

with �.

It remains to show that the interse
tion of all elements in H

�

is empty. However,

that easily follows from Lemma 4.17.

Lemma 4.20. Suppose x is a global point in P

�

and H 2 H

�

is a hyperplane not


ontaining x. Then there is a vertex x 2 x with




x

?

�

= H.



16 ARJEH M. COHEN, HANS CUYPERS, RALF GRAMLICH

Proof. Suppose x 2 x and y is a vertex of � with




y

?

�

= H . Then in z

?

, for some


ommon neighbor z of x and y, we �nd a vertex x

0

2 x \ Y , where Y is the global

hyperplane on y. But then, by Lemma 4.16,

D

x

0

?

E

= H .

Proposition 4.21. Let � be a 
onne
ted, lo
ally H(P; H ) graph. Then � is iso-

morphi
 to H(P

�

; H

�

).

Proof. Consider the map � ! H(P

�

; H

�

) : x 7!

�

x;




x

?

��

where x is the global

point of � 
ontaining x. We want to show that this is an isomorphism of graphs.

Surje
tivity follows from Lemma 4.18 and Lemma 4.20, sin
e any point x of P

�

is

a global point of � and any hyperplane in H

�

not 
ontaining it is of the form




x

?

�

for a vertex x 2 x. Inje
tivity is obtained as follows. Suppose the global point x


ontains two verti
es x

1

, x

2

with




x

?

1

�

=




x

?

2

�

. By Proposition 4.4 there exists a

vertex y adja
ent to both x

1

and x

2

. Sin
e




x

?

1

�

=




x

?

2

�

, both verti
es des
ribe the

same hyperplane in y

?

. But they also des
ribe the same point and hen
e have to be

equal. Finally, if x ? y, then, letting x and y be the global points of � 
ontaining x

and y, respe
tively, we �nd x 2




y

?

�

and y 2




x

?

�

, so (x; hx

?

i) ? (y; hy

?

i).

Theorem 1.1 is an immediate 
onsequen
e of the above proposition and the

Lemmas 4.19 and 4.20.

5. Small dimensions

In view of Proposition 2.3, any 
onne
ted, lo
ally H

0

graph is isomorphi
 to a


lique of size two. Furthermore, it is easily seen that any 
onne
ted, lo
ally H

1

graph admits an in�nite universal 
over and we obtain in�nitely many 
ounterex-

amples to lo
al re
ognition of H

2

. The 
ase of a lo
ally H

2

graph proves to be a

bit more 
ompli
ated. We 
an only o�er a 
ounterexample for F = F

2

. The proof

of its existen
e is based on a 
omputation with the 
omputer algebra pa
kage GAP

[9℄.

Proposition 5.1. There exists a 
onne
ted graph on 128�120 verti
es that is lo
ally

H

2

(2).

Proof. We determine the stabilizers of a vertex, an edge, and a 3-
lique of the graph

H

3

(2) inside the 
anoni
al group (P)SL

4

(2) and let GAP determine the order of the

universal 
ompletion of the amalgam of these groups and their interse
tions. This

universal 
ompletion is the group G with a presentation by the generators w, u, b,

a and the relations

w

2

= u

2

= b

2

= a

2

= 1;

(wu)

3

= (ab)

3

= 1;

(bw)

3

= (bu)

4

= 1;

(wub)

7

= (wa)

2

= (ua)

2

= 1:

The stabilizers of a vertex, an edge, and a 3-
lique of H

3

(2), respe
tively, are of the

form

hw; u; bi

�

=

SL

3

(2);

hw; u; ai

�

=

SL

2

(2)� 2;

ha; bi

�

=

Sym

3

;
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with the interse
tions

hw; u; bi \ hw; u; ai = hw; ui

�

=

SL

2

(2);

hw; u; ai \ ha; bi = hai

�

=

2;

ha; bi \ hw; u; bi = hbi

�

=

2:

A 
oset enumeration in GAP shows that the order of G is 128 � jSL

4

(2)j, and that

there exists a normal subgroup N

�

=

2

1+6

of G. Hen
e H

3

(2) admits a 128-fold


over � with the same lo
al stru
ture.

This proposition shows that the bound on n in Theorem 1.1 is sharp. Besides the

above universal 
over of the 
anoni
al graph H

3

(2) nothing is known to us about

lo
ally H

2

(F) graphs. The methods that we have presented for n � 3 do not apply

in this 
ase.

6. Group-theoreti
 
onsequen
es

In this se
tion we study group-theoreti
 
onsequen
es of our lo
al re
ognition

Theorem 1.1 of the point-hyperplane graphs H

n

(F), where n � 3 is a �nite integer

and F a skew �eld. In parti
ular, we prove Theorem 1.2 and Theorem 1.3.

Proposition 6.1. Let G be a group as in the hypothesis of Theorem 1.2. Then

PSL

n+2

(F) � G=Z(G) � PGL

n+2

(F).

Proof. We use the notation of Theorem 1.2. By (iii) of Theorem 1.2, we 
an 
hoose

an element z 2 J \K that is a re
e
tion in the groups J and K 
onjugate to x and

y, respe
tively. Hen
e x is a re
e
tion in J and y is a re
e
tion in K. Note that

z 
ommutes with x and y. As, by (i), K

�

=

GL

n+1

(F), we �nd the elements y and

z to be 
onjugate in K by an involution. Similarly, by (ii), x and z are 
onjugate

in J by an involution. Therefore the 
onjugation a
tion of the group G indu
es an

a
tion as the group Sym

3

on the set fx; y; zg and as the group Sym

2

on the set

fx; yg. Consider the graph � on all 
onjugates of x in G. A pair a, b of verti
es of �

is adja
ent if there exists an element g 2 G su
h that (gxg

�1

; gyg

�1

) = (a; b). Sin
e

G indu
es the a
tion of Sym

3

on fx; y; zg, this de�nition of adja
en
y is 
ompletely

symmetri
, and we have de�ned an undire
ted graph. The elements x, y, z form

a 3-
lique of �. De�ne U

1

to be the stabilizer in G of the vertex x, and de�ne

U

2

to be the stabilizer in G of the edge fx; yg. The stabilizer of fx; yg permutes

x and y and therefore inter
hanges C

G

(x) � K and C

G

(y) � J , see (i) and (ii).

Hen
e the stabilizer of x together with the stabilizer of fx; yg generates G, as

G = hJ;Ki � hU

1

; U

2

i. Consequently, the graph � is 
onne
ted. Also, � is lo
ally

H

n

(F) by 
onstru
tion. To prove this, it is enough to show that any triangle in � is

a 
onjugate of (x; y; z). Let (a; b; 
) be a triangle. Let g 2 G with (gxg

�1

; gyg

�1

) =

(a; b). Noti
e that b; d = gzg

�1

2 gKg

�1

are 
ommuting re
e
tions of gKg

�1

.

The edges (a; b) and (a; 
) are 
onjugate in C

G

(a) = gXg

�1

� gKg

�1

(use (i)

of Theorem 1.2). Choose h 2 C

G

(a) su
h that (hah

�1

; hbh

�1

) = (a; 
). Then

h = h

X

h

K

with h

X

2 gXg

�1

, h

K

2 gKg

�1

. The element h

X


entralizes b and

d, sin
e b; d 2 gKg

�1

. Therefore 
 = hbh

�1

= h

K

bh

�1

K

2 gKg

�1

is a re
e
tion of

gKg

�1

. Hen
e (a; b; d) and (a; b; 
) are 
onjugate in gKg

�1

�

=

GL

n

(F). Therefore

(a; b; 
) and (x; y; z) are 
onjugate in G.

Thus, by Theorem 1.1, the graph � is isomorphi
 to H

n+1

(F). Moreover, there

is a kernel N of the a
tion of G on �, su
h that G=N 
an be embedded in Aut(�),

whi
h has been determined in Corollary 3.10. Sin
e G=N is transitive on � and the
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stabilizer in G=N of the vertex x indu
es PGL

n+1

(F) on the neighbors of x, we �nd

that PSL

n+2

(F) � G=N . Furthermore, as G is generated by C

G

(x) and C

G

(y), we

�nd that G=N embeds in PGL

n+2

(F).

Let g 2 N . Then g a
ts trivially on �, in parti
ular it 
entralizes x and y, so we

have g 2 X �K and g 2 Y � J . Let g

X

2 X and g

K

2 K be su
h that g = g

X

g

K

.

The element g

X


ommutes with K, and therefore also 
entralizes all neighbors of x.

Consequently, also g

K

= g

�1

X

g 
entralizes all neighbors of x, and hen
e lies in the


enter of K. We have proved that g 
ommutes with K. Similarly, g 
ommutes with

J . This implies that g 
ommutes with G = hJ;Ki, and, thus, g 2 Z(G). Certainly,

Z(G) a
ts trivially on �, when
e N = Z(G).

The above proves Theorem 1.2. It only remains to prove Theorem 1.3. This will

be done in the next proposition. Its proof pro
eeds along the lines of the proof of

Theorem 1.2.

Proposition 6.2. Let G be a group as in the hypothesis of Theorem 1.3. Then

G=Z(G)

�

=

PGL

n+2

(F).

Proof. With the notation as in the hypothesis of Theorem 1.3 we have the following.

The element z is 
onjugate to both x and y, so, also x and y are 
onjugate.

Moreover, x and y are generalized re
e
tions in J and K, respe
tively. Note that

z 
ommutes with x and y. As K

�

=

SL

n+1

(F), we �nd the elements y and z to

be 
onjugate in K by an involution. Similarly, x and z are 
onjugate in J by

an involution. Therefore the 
onjugation a
tion of the group G indu
es an a
tion

as the group Sym

3

on the set fx; y; zg and as the group Sym

2

on the set fx; yg.

Consider the graph � on all 
onjugates of hxi in G. A pair a, b of verti
es of � is

adja
ent if there exists an element g 2 G su
h that (ghxig

�1

; ghyig

�1

) = (a; b). As

in the proof of Proposition 6.1, the graph � is 
onne
ted.

Let (a; b; 
) be a triangle of �. We will show that (a; b; 
) is also 
onjugate to

(hxi; hyi; hzi). Without loss of generality, we 
an assume that a = hxi and b = hyi.

The edges (a; b) and (a; 
) are 
onjugate in N

G

(a). Choose h 2 N

G

(a) su
h that

(hah

�1

; hbh

�1

) = (a; 
). Sin
e C

G

(a) is normal in N

G

(a), and K is 
hara
teristi


in C

G

(x), we �nd that h normalizes K. Therefore 
 = hbh

�1

is a group of order p

generated by a generalized re
e
tion of K. But then (b; hzi) and (b; 
) are 
onjugate

insideK

�

=

SL

n+1

(F). AsK � C

G

(a) we �nd the triangles (a; b; 
) and (hxi; hyi; hzi)

to be 
onjugate in G.

As ea
h generalized re
e
tion torus is 
y
li
 and thus 
ontains a unique subgroup

of order p, we �nd � to be lo
ally H

n

(F). But that implies, by Theorem 1.1, that

the graph � is isomorphi
 to H

n+1

(F).

LetN be the kernel of the a
tion of G on �. Then, as in the proof of Theorem 1.2,

we see that G=N � PGL

n+2

(F). In parti
ular, K\N = 1 and, sin
e G is generated

by J and K, we even have G=N = PSL

n+2

(F). Moreover, as N � N

G

(hxi) and K

is normal in N

G

(hxi), we �nd [N;K℄ � K \N = 1. Similarly, [N; J ℄ = 1 and hen
e

N � Z(hK; Ji) = Z(G), whi
h 
ompletes the proof of the proposition, as Z(G) is

in the kernel of the a
tion by 
onstru
tion of �.
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