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ABsTRACT. Let P be a projective space. By H(P) we denote the graph whose
vertices are the non-incident point-hyperplane pairs of P, two vertices (p, H)
and (g, I) being adjacent if and only if p € I and ¢ € H. In this paper we give
a characterization of the graph H(P) (as well as of some related graphs) by its
local structure. We apply this result by two characterizations of groups G with
PSL,(F) < G < PGL, (F), by properties of centralizers of some (generalized)
reflections. Here F is the (skew) field of coordinates of P.

1. INTRODUCTION

Local recognition of graphs is a problem described, for example, in [2]. The
general idea is the following. Choose your favorite graph A and try to find all
connected graphs I' that are locally A, i.e., graphs whose induced subgraph on the
set of all neighbors of an arbitrary vertex of I' is isomorphic to A. One restricts
the search to connected graphs, because a graph is locally A if and only if all of its
connected components are locally A. There has already been done a lot of work in
this direction, see, e.g., [1, 6, 7, 8, 10, 11].

Suppose P is a projective space of (projective) dimension n (possibly infinite).
Then by H(P) we denote the graph with as vertices the non-incident point-hy-
perplane pairs and with two vertices (p, H) and (¢,I), with p,q points and H,I
hyperplanes such that p € H and ¢ ¢ I, being adjacent if and only if p € I and
qge H.

For each vertex of the graph H(IP), the induced subgraph on the neighbors of
this vertex is isomorphic to H(Py), where Py is a hyperplane of P. In this paper we
give a characterization of the graphs H(PP) by their local structure.

In fact, we consider a slightly larger class of graphs. Let H be a subspace of
the dual P4ual of P with the property that the intersection of all the hyperplanes
H € His trivial (we say H has a trivial annihilator in ). If P is finite-dimensional,
then H equals P2\ but for infinite dimensional P the space H can be a proper
subspace of P42, The subgraph H(P, H) of H(P) induced on the vertices (p, H)
with H € H, has the property that for each vertex v the induced subgraph on the
neighbors of v is isomorphic to H(IPy, Hy) for some hyperplanes Pg of P and Hy of
H. Indeed, if v = (x, X), then with Pg the projective space induced on X and Hpy
the set of hyperplanes K of Py such that the subspace of P generated by z and K
belongs to H, we find the induced subgraph on the neighbors of v to be isomorphic
to H(Po,Hy). Moreover, as \gep,enr H = {2}, we have gy H = 0. Our
main result reads as follows.
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Theorem 1.1. Let Py be a projective space of dimension at least 3 and Hy a sub-
space of Py with trivial annihilator in Py. Suppose I is a connected graph which
is locally H(Py,Hy). Then T is isomorphic to H(IP,H) for some projective space P
and some subspace H of P with trivial annihilator in IP.

The condition dim(Pg) > 3 in our local recognition result is sharp as is shown
by an example in Section 5 of a connected, locally H(P(F$)) graph that is not
isomorphic to H(P(F})).

Our proof of Theorem 1.1 is partly motivated by the methods developed in [4],
where local recognition results are obtained for subgraphs of H(P) fixed under
polarities of P.

If P is the projective space P(V) of some vector space V defined over a field
F of order at least 3, then the graphs H(IP, H) can be described as graphs on the
reflection tori in subgroups of GL(V'). Let V be a left vector space over a (possibly
commutative) skew field F. For g € GL(V), we set

[V,g] ={vg—v|veV} and Cy(9)={veV]|vg—v=0}

and call these subspaces the center and axis of g. A transformation g € GL(V)
satisfying dim([V, g]) = 1 is called a reflection if [V, g] € Cy(g). Observe that Cy (g)
is a hyperplane if g is a reflection.

If we specify a hyperplane H and a one-dimensional subspace, that is, a projective
point, p of V, then by T, g we denote the subgroup of GL(V') generated by all
g € GL(V) withp=[V,g] and H = Cy(g). If p ¢ H, the subgroup T}, i consists of
the identity and all reflections with center p and axis H. The group is isomorphic
with F* and is called a reflection torus. All reflection tori in GL(V') generate the
full finitary general group FGL(V') of V, i.e., the subgroup of GL(V') consisting
of all elements g € GL(V') with [V, g] finite dimensional. Below we will describe
more examples of groups generated by reflection tori, closely related to the graphs
appearing in Theorem 1.1.

Let ® be a subspace of V*. By R(V,®) we denote the subgroup G of GL(V)
generated by the reflections with center in V' and axis in ®. If & = V*, then G is
equal to the full finitary general linear group FGL(V). If ® # V* but {v € V|
vp = 0 for all ¢ € &} = 0 (i.e., the annihilator of ® in V is trivial), then R(V, ®)
still acts irreducibly on V, see [3].

If T, gy and T, ;) are two distinct reflection tori in GL(V'), then T\, z) and
T(4,r) commute if and only if p € I and ¢ € H. Hence, if G is one of the groups
R(V,®), where the annihilator of ® in V is trivial, then the graph with as vertex
set the reflection tori in G, two tori being adjacent if and only if they commute, is
isomorphic to the graph H(P(V),P(®)).

If C is a conjugacy class of reflections in GL;,+1 (F), then each reflection torus of
GL;,+1(F) meets C in a unique element. So, the commuting graph on C, i.e., the
graph with vertex set C and in which two distinct vertices are adjacent if and only
if they commute, is isomorphic to H,, (F).

In view of these observations we can use Theorem 1.1 in order to locally recognize
linear groups. We state two such results. I

Theorem 1.2. Let n > 3 be finite, and let F be a skew field of order > 3. Let G
be a group with distinct elements ©, y and subgroups X, Y such that

(i) Co(x) =X x K with K = GLy,41(F);

(ii) Ca(y) =Y x J with J = GLj41(F);
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(iii) there ezists an element in JNK that is a reflection of both J and K conjugate
tox in J and y in K, respectively.

If G = (J,K), then (up to isomorphism) PSLy42(F) < G/Z(G) < PGLj42(F).

Our second applications deals with finite groups. Let n be finite and F a field.
An element r of SL,,+1(F) is called a generalized reflection if, up to a scalar factor,
r is a reflection in GL,11(F)) , i.e., if there exists a reflection in rZ(GLy41(F)).
The axis and center of a generalized reflection are, by definition, its eigenspaces of
dimension n and 1, respectively, in the natural module. They are the axis and center
of the unique reflection in rZ(GLj,+1(F)). The group generated by all generalized
reflections with a given axis and center is called a generalized reflection torus and
is isomorphic to F* /(A € F* | A"T! = 1).

With this notion we have the following result for finite groups.

Theorem 1.3. Let n > 3 be finite, and let F be a finite field of order ¢ > 3. Let p
be a prime dividing q — 1. Let G be a group with distinct elements x, y of order p
such that

(i) Ca(x) contains a characteristic subgroup K with K = SLy 41 (F);
(ii) Cq(y) contains a characteristic subgroup J with J = SL,,11(F);
(iii) there exists an element z in JNK conjugate to x in J andy in K, respectively.
Moreover, z is a generalized reflection of both K and J.

If G = (J,K), then G/Z(G) = PSLy»(F).

The latter theorem is the kind of result that is useful in the classification of finite
simple groups in that a quasi-simple group is recognized from a component in the
centralizer of an element about which some fusion information is given.

The remainder of this paper is organized as follows. In the next two sections
we derive various properties of the graphs H(PP,H). In particular, we show that
both P and H can be recovered from the graph H(P,H). As a consequence we are
able to determine the full automorphism group of H(P, H). Then in Section 4 we
prove Theorem 1.1. As mentioned before, in Section 5 a family of graphs which
are locally H(P(F$)) is discussed and finally in Section 6 the two group-theoretical
applications, Theorem 1.2 and 1.3, of Theorem 1.1 are discussed.

Acknowledgment. The authors want to thank Andries Brouwer, Richard Lyons,
Sergey Shpectorov and Ronald Solomon for various helpful remarks concerning the
topics of this paper. An earlier version of this paper forms part of the PhD thesis
of the last author, see [5].

2. THE POINT-HYPERPLANE GRAPH

Definition 2.1. Consider a projective space I’ and a subspace H of the dual Pdual
of P with ey H = 0. The point-hyperplane graph H(IP,H) is the graph whose
vertices are the non-incident point-hyperplane pairs of P with the hyperplanes in H,
in which a vertex (a, A) is adjacent to another vertex (b, B) (in symbols, (a, A) L
(b,B)) if and only if a € B and b € A.

By definition, we have x f x, so the perp x* of x of all vertices of H(IP, H) in L
relation to x is the set of vertices in H(P, H) at distance one from x. Moreover, for a
set X of vertices, we define the perp of X as X +:= Nkex x* with the understanding
that ¢+ = H(P,H). The double perp of X is X++:= (X1)+.
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The graph H(P, P41a!) is also denoted by H(P). Moreover, if P = P(V) for some
(n + 1)-dimensional vector space V over a (skew) field F, then we also write H,, (F)
for H(P). If the field F is finite of order ¢, then we write H, (¢). Finally, if the field
IF is irrelevant, then we also write H,, instead of H, ().

Let P be a projective space and H a subspace of the dual of P such that the
intersection over all hyperplanes in H is empty. A point p of the projective space
P = (P, L) determines the set of vertices v, = {(z,X) € H(P,H) | x = p} of the
graph H(PP,H). A line ! of IP determines the union v; of all sets v, of vertices for
p € l. Clearly the map v : PUL — 2H®H 5y o, is injective, and p € 1 if
and only if v, C v;, so we can identify the projective space with its image under v
in the collection of all subsets of the vertex set of H(P, H). We shall refer to this
image in 2H®® a5 the exterior projective space on H(P,H). Similarly, one can
map points IT and lines A of H onto subsets of vertices of H(PP, H) of the form wy =
{(z,X) € H(P,H) | X =1II} and wy = [y, wn for II running over all points of
Pdual containing A. This gives rise to the dual exterior projective space on H(P, H).
The subsets vy, v;, wa and wi so obtained are called exterior points, exterior lines,
exterior hyperlines, and exterior hyperplanes of H(PP, H), respectively. Note that,
if the projective space PP is isomorphic to H, there is an automorphism of H (P, H)
mapping the image under v onto the image under w. (If 7 is an isomorphism from
P to H, then (z,X) — (7(X),n(z)) is an automorphism of H(P, H) as required.)
Also, if P is a subspace of H™® with trivial annihilator in H (in particular, if
P and H have the same finite dimension), then H(P,H)) = H(H, P) by the map
(z,X) — (X,z). So, in general it will not be possible to distinguish exterior points
from exterior hyperplanes if one tries to reconstruct the projective space from the
graph. Another useful observation is that the exterior points partition the vertex
set of H(P, H). In other words, each vertex of H(P, H) belongs to a unique exterior
point. The same holds for exterior hyperplanes.

One of our goals is to characterize the graph H(P, H) by its local structure. In
this light the following two observations are important.

Proposition 2.2. Let P have dimension at least one. The graph H(P,H) is locally
H(Py,Hy) for some hyperplanes Py of P and Hy of H.

Proof. Let x = (x,X) be a vertex of H(P, H). Identify X with Py. For any vertex
y = (y,Y) adjacent to x, we have z € Y, y € X \ Y, and X NY a hyperplane in
both X and Y, so (y,X NY) belongs to H(X). We can identify the space of all
hyperplanes of the form X NY of X where z € Y € H with a hyperplane Hy of H.
Hence, (y, X NY) belongs to H(PPy, Hp ).

Conversely, for any vertex of H(Py,Hp), i.e., for any non-incident pair (z, Z)
consisting of a point z and a hyperline Z of P with z € X, Z C X, the pair
(2,(Z,x)) is a vertex of x*. (Indeed, z € (Z, ), since z € X.)

Clearly, the maps (y,Y) — (y, X NY) and (2,Z2) — (z,(Z,z)) are each other’s
inverses. Moreover, the maps preserve adjacency and the proposition follows. O

Proposition 2.3. Hy consists of precisely one point; Hy is the disjoint union of
cliques of size two; the diameter of Hy equals three; the diameter of H(P, H), where
dim(P) > 3, equals two. In particular, H(P,H) is connected for dim(P) > 2.

Proof. The statements about Hy and H; are obvious. Let x = (z,X), y = (y,Y)
be two non-adjacent vertices of Ho. The intersection X NY is a point or a line, and
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zy is a point or a line. The vertices x and y have a common neighbor, i.e., they
are at distance two, if and only if X NY € zy. If X NY C zy, however, it is easily
seen, that they are at distance three. Indeed, choose a € X\ {y} and b € Y\ {z}
with ay # b and bz # a. Then (x, X), (a,bz), (b,ay), (y,Y) establishes a path of
length three.

Now let x = (z,X), y = (y,Y) be two non-adjacent vertices of H(P, H), where
dim(P) > 3. The intersection X NY contains a line. Since z ¢ X and y ¢ Y, we
find a point z € X NY and a hyperplane Z D zy with z ¢ Z and, thus, a vertex
(z,Z) adjacent to both x and y. O

Our first main result will be a reconstruction theorem of the projective space from
graphs isomorphic to the point-hyperplane graph H = H(P, H) without making use
of the coordinates, see the next section. This goal will be achieved by the study
of double perps of two vertices, i.e., subsets of H = H(P, H) of the form {x,y}+*.
By n we denote the dimension of P.

Lemma 2.4. Letx = (z,X),y = (y,Y) be distinct vertices of H with {x,y}J' #0.
Then the double perp {x, y}J‘J‘ equals the set of vertices z = (z,Z) of H with z € xy
and Z DO XNY.

Proof. Distinct vertices with non-empty perp only exist for n > 2. The vertices of
{x, y}J‘ are precisely the non-incident point-hyperplane pairs (p, H) with p € XNY
and H D wy. Let {(p;, H;) € {x,y}* | i € I'} be the set of all these vertices, indexed
by some set I. Now {x,y}™" = ({x,y}+)* consists of precisely those vertices
(2,Z) € H with 2z € ;c; Hi and Z D ((pi)ier). But since {x,y}* # 0, we have
Nicr Hi = zy and ((pi)ier) = X NY, thus proving the claim. O

In order to recover the projective spaces P and H from the information contained

in a graph I’ é H, we have to recognize vertices x, y of I' with x = y or, dually,
X =Y, if ¢(x) = (2,X), &(y) = (y,Y). Clearly, x = y and X =Y if and only
if the vertices x, y are equal. To recognize the other cases, we make use of the
following definition and lemma.

Recall that the (projective) codimension of a subspace X of a projective space
P is the number of elements in a maximal chain of proper inclusions of subspaces
properly containing X and properly contained in P. For example, the codimension
of a hyperplane of P equals 0.

Definition 2.5. Let n > 2. Vertices x = (z,X), y = (y,Y) of H(P,H) are in
relative position (i,7) if
i =dim(z,y) and j = codim(X NY)

where dim denotes the projective dimension and codim the projective codimension.
Note that 4,5 € {0,1}.
Lemma 2.6. Letn > 2, and let x, y € H. Then the following assertions hold.

(i) The vertices x and 'y are in relative position (0,0) if and only if they are equal.

(ii) The wvertices x and y are in relative position (0,1) or (1,0) if and only if

they are distinct and the double perp {x,y}LL is minimal with respect to

containment, i.e., it does not contain two vertices with a non-empty strictly
smaller double perp.
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(iii) The wvertices x and y are in relative position (1,1) if and only if they are
distinct and the double perp {x,y}J‘J‘ is not minimal.

Proof. Statement (i) is obvious. Suppose x and y are in relative position (0, 1).
Then {x,y}J‘ # 0 (since n > 2), and we can apply Lemma 2.4. We obtain
{x,y}J‘J‘ ={(z,2)eH|z=2=y,Z D XNY}, whence any pair of distinct ver-
tices contained in {x,y}*" is in relative position (0,1) and gives rise to the same
double perp. Symmetry handles the case (1,0). If x and y are in relative po-
sition (1,1) and {x,y}J‘ = (), then {x,y}J‘J‘ = H, which is clearly not mini-
mal. So let us assume {x,y}J‘ # (. Again by Lemma 2.4, we have {x,y}J‘J‘ =
{(2,Z)€eH|z€ay,Z D XNY}. This double perp contains a vertex that is at
relative position (0,1) to x, and we obtain a double perp strictly contained in
{x,y}**. Statements (ii) and (iii) now follow from the fact that distinct vertices
x = (z,X) and y = (y,Y") are in relative position (0,1), (1,0), or (1,1). O

We conclude this section with a lemma that will be needed later.

Lemma 2.7. Let x = (z,X) andy = (y,Y) be two adjacent vertices in H. If x is
adjacent to a vertex (z,Z1) and 'y adjacent to a vertex (z,Zs), then there exists a
vertex (z,Z3) adjacent to both x andy.

Proof. The statement of the lemma is empty for n < 2, and we can assume n > 2.
We have z € X NY. Since x and y are adjacent, z € Y and y € X are distinct and
the line zy does not contain z. Hence the choice of a hyperplane Z3 that contains
xy and does not contain z is possible, and we have found a vertex (z, Z3) adjacent
to both x and y. O

3. RECONSTRUCTION OF THE PROJECTIVE SPACE

This section will concentrate on the reconstruction of the projective spaces P and
H from a graph I' isomorphic to H(IP, H). Abusing notation to some extent, we will
sometimes speak of relative positions on I', but only if we have fized a particular
isomorphism I' = H(P,H). Throughout the whole section, let n = dim(P) > 2.
Furthermore, let F be a division ring and I' = H = H(P, H).

Definition 3.1. Let x, y be vertices of I'. Write x &~ y to denote that x, y are
equal or the double perp {x, y}J‘J‘ is minimal with respect to inclusion (in the class
of double perps {u, v}++ for vertices u, v with u # v).

For a fixed isomorphism I' 2 H the relation & coincides with the relation ‘being
equal or in relative position (1,0) or (0,1)’ by Lemma 2.6(ii). What remains is the
problem of distinguishing the dual cases (0,1) and (1,0).

Lemma 3.2. On the vertez set of T', there are unique equivalence relations ~P and
~P such that ~ equals ~P U =" and ~P N =" is the identity relation. Moreover,
for a fized isomorphism I’ =2 H,,, we either have

e ~P is the relation ‘being equal or in relative position (0,1)’, and =" is the
relation ‘being equal or in relative position (1,0)’, or

e ~P is the relation ‘being equal or in relative position (1,0)’, and ~" is the
relation ‘being equal or in relative position (0,1)".
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In other words, for a fixed isomorphism I' = H(P, H) and up to interchanging
~P and ~", we may assume that ~” stands for being equal or in relative position
(0,1) and ~" stands for being equal or in relative position (1,0).

Proof. As we have noticed after Definition 3.1, vertices x, y of I are in relation =
if and only if their images (z, X) and (y,Y) in H are equal or in relative positions
(0,1) or (1,0). Let us consider equivalence relations that are subrelations of =.
Obviously, the identity relation is an equivalence relation. Moreover, the relation
‘equal or in relative position (0,1)’ and the relation ‘equal or in relative position
(1,0)’ are equivalence relations. Now let us assume we have vertices x = (z, X),
y = (y,Y), z = (2,Z) of ' 2 H such that x, y are in relative position (0,1)
and x, z are in relative position (1,0). Then y # z and Y # Z and y, z cannot
be in relative position (0,1) or (1,0). Consequently, if we want to find two sub-
equivalence relations ~P and ~" of ~ whose union equals ~, then either of ~? and
~" has to be a subrelation of the relation ‘equal or in relative position (0,1)’ or of
the relation ‘equal or in relative position (1,0)’. The lemma is proved. O

Convention 3.3. From now on, we will always assume that, as soon as we fix an
isomorphism I' 2 H, the relation ~P corresponds to ‘equal or in relative position
(0,1).

Definition 3.4. Let x be a vertex of . With ~” and ~" as in Lemma 3.2, we
shall write [x]P to denote the equivalence class of &P containing x, and similarly we
shall write [x]" to denote the equivalence class of ~" containing x. We shall refer
to [x]P as the interior point on x and to [x]" as the interior hyperplane on x.

Lemma 3.5. For a fized isomorphism T' = H(IP,H), an interior point of T is the
image of an exterior point of H(P,H) under this isomorphism, and vice versa. The
same correspondence exists between interior hyperplanes of T' and exterior hyper-

planes of H(P, H).
Proof. This is direct from the above. O

Note that an exterior point and an exterior hyperplane of H(P,H) are disjoint
if and only if the corresponding point and hyperplane of P,,(F) are incident. The
above lemma motivates us to call a pair (p, H) of an interior point and an interior
hyperplane of T' incident if and only if pN H = (). This enables us to define interior
lines.

Definition 3.6. Let p and ¢ be distinct interior points of I'. The interior line [ of
I" spanned by p and ¢ is the union of all interior points disjoint from every interior
hyperplane disjoint from both p and ¢. In other words, the interior line pg consists
of exactly those interior points which are incident with every interior hyperplane
incident with both p and gq.

Dually, one can define the interior hyperline spanned by distinct interior hyper-
planes H and I as the union of all interior hyperplanes disjoint from every interior
point disjoint from both H and I.

Lemma 3.7. For a fived isomorphism I = H(P,H), each interior line of T is the
image of an exterior line of H(P,H) under this isomorphism, and vice versa. The
analogue holds for interior hyperlines.
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Proof. The proof is straightforward. O

The geometry (P, L, C) on I where P is the set of interior points of I and L is
the set of interior lines of I is called the interior projective space on I'. By Lemma
3.5 and Lemma 3.7, this interior projective space is isomorphic to the exterior
projective space on H(P, H). Proceeding with ~" as we did for ~, the same holds
for the dual of the interior projective space on I'. We summarize the findings in
the following proposition.

Proposition 3.8. Let n > 2. Up to interchanging ~P and =" every isomorphism
' =2 H(P,H) induces an isomorphism between the interior projective space on I’ and
the exterior projective space on H(P,H). The analogue holds for the dual interior
projective space on I, (|

Corollary 3.9. Let n > 2, and let T be isomorphic to H(P,H). Then the interior
projective space on I is isomorphic to P or H. (|

Corollary 3.10. Let n > 2, and let T be isomorphic to H(P). If P and P are
isomorphic, then the automorphism group of T' is of the form Aut(P).2. Otherwise,
it is isomorphic to Aut(PP).

Proof. Indeed, every automorphism of P induces an automorphism of I'. Conversely,
every automorphism of I' that preserves the interior projective space gives rise to
a unique automorphism of P, by the theorem. Moreover, every automorphism of
I" either preserves the interior projective space or maps it onto the dual interior
projective space, again by the theorem. Finally, an outer automorphism is induced
on I" by the map (p, H) — (§(H),d(p)) for a duality ¢ of the projective space, and
the map (p, H) — (62(p), 02(H)) preserves the interior projective space on I'. [

Remark 3.11. Now might be an appropriate moment to address the problem of
duality. Although, by Convention 3.3, as soon as we fix an isomorphism I' = H,
we also choose the equivalence relation ~P to correspond to the relation ‘equal or
in relative position (0,1)’ of H, there is a subtle problem—mainly of notation—
coming with this: Suppose I' = H,,(F) with F 2 F°PP. Then, by the convention,
the interior projective space on I' will always be isomorphic to P, (F). If one wants
the interior projective space to be isomorphic to P, (F)™"* then one will have to fix
an isomorphism I' = H,, (F°PP), although H,,(F) = H,,(F°PP) by means of the map
(p,H) — (H,p). The reason for this is that we have defined the graph H,,(F) as the
point-hyperplane graph of the space P, (F), which by Convention 3.3 determines
the isomorphism class of the interior projective space on I'.

The remainder of this section serves as a collection of results to be used later on.
First comes a useful result on subspaces of the interior projective space of I'.

Lemma 3.12. Let U be a finite dimensional subspace of the interior projective
space on I'. For any projective basis of U there exists a clique of vertices in I' such
that the interior points containing these vertices are the basis elements.

Proof. Fix an isomorphism ¢ : I' — H(P,H). By Proposition 3.8, we can as
well argue with exterior points of H(P,H). Let z;, for ¢ = 1,...,m, be exterior
points forming a (projective) basis for ¢(U). Let K be a complement to ¢(U)
in P, which is the intersection of hyperplanes in H. Notice that such subspace
K exists as [|ycy H is empty. Moreover, as K has finite codimension in V', all
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hyperplanes of V' containing K are in H. If for each i € {1,...,m} we have z; =
{(ps,H) € H(P,H) | H € H}, then the vertices (p;, (K, {p; | j € {1,...,m}\{i}})) €
xi, with ¢ = 1,...,m, form the clique we are looking for. O

Notation 3.13. Let n > 3. For a vertex x of I' = H(P, H), we write ~ for the
relation &~ defined on x* (bear in mind that the latter is isomorphic to H(Py, Hy)
by Proposition 2.2, where Py and Hy are hyperplanes of P and H, respectively).

Lemma 3.14. Let n > 3. Let x be a vertex of I'. Then = is the restriction of ~

to xt.

In particular, if p is an interior point of I' with p N x* # 0, then p N x* is an
interior point or an interior hyperplane of x*, and conversely, if ¢ is an interior point
of x*, then there exists an interior point or hyperplane ¢' of I' with ¢' N x*+ = q.

Proof. Fix an isomorphism ¢ : I' = H. As above, we argue in H rather than in T'.
Let ¢(x) = (z,X). Now the statement follows from the fact that, for a,b € x,
with a & b and ¢(a) = (a, 4), ¢(b) = (b, B), the statements AN X = BN X and
A = B are equivalent. |

Notation 3.15. In view of the lemma, we can choose the equivalence relation ~%
on x* in such a way that (~x)? = (=”)x. In that case, there is no harm in writing
~P to denote this relation. In particular, there is a one-to-one map from the set of

interior points of x* into the set of interior points of T

Lemma 3.16. Let n > 3 and let x be a vertex of I'. Then the interior projective
space on X+ is a hyperplane of the interior projective space on T.

Proof. Fix an isomorphism I" & H(P,H). By Proposition 3.8 this isomorphism
of graphs induces an isomorphism between the interior projective space on I' and
the exterior projective space on H(P,H). The vertex x € T' is mapped onto a
non-incident point-hyperplane pair of H(P, H), say (z, X). The neighbors of x are
mapped onto point-hyperplane pairs (y,Y") with y € X, inducing a map of the set
of interior points of I' that meet x* non-trivially onto the set of exterior points
of H(P,H) that intersect (z,X) non-trivially. But that set of exterior points
form a hyperplane of the exterior projective space on H(P,H), and the lemma is
proved. O

4. LOCALLY POINT-HYPERPLANE GRAPHS

Throughout the whole section, we take n > 3, and I a connected, locally H(IP, H)
graph for some projective space P of dimension n (possibly infinite) and subspace H
of P4ual with trivial annihilator in P. Thus, the fact that I is locally H(P, H) means
that, for each vertex x of I, there is an isomorphism x*+ — H(P, H). Consequently,
by Corollary 3.9, the interior projective space on x* is isomorphic to I or H. The
goal of this section is, by use of these isomorphisms, to show that I' is isomorphic
to the non-incident point-hyperplane graph H(IP;, H; ) for some projective space Py
and subspace H; of P;9%%. This will establish Theorem 1.1.

Notice that the definitions of interior points and lines are only local and may
differ on different perps. It is one task of this section to show that there is a
well-defined notion of global points and global lines on the whole graph. To avoid
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confusion, we will index each interior point p and each interior line [ by the vertex
x whose perp it belongs to, so we write px and [ instead of p and . These interior
points and lines are called local points and local lines, respectively. We do the same
for the relations ~, ~P, ~" obtaining the local relations ~uy, A2, ~?

x) Nx-

Lemma 4.1. Let x and y be two adjacent vertices of I'. Then there is a choice of
local equivalence relations ~% and ~% such that the restrictions of ~§ and ~¥ to

xt Nyt coincide.

Proof. This follows immediately from a repeated application of Lemma 3.14 to
xt 2 H(P,H) and x* Nyt and to yt = H(P,H) and x* Ny*. O

The preceding lemma allows us to transfer points from x* to y*. Indeed, if
there is a local point py in x* that lies in the hyperplane Yy induced by the vertex
y on x1, the point pyx corresponds to a point py of y*. That point py is simply
the ~¥ equivalence class that contains the set px N yt.

In the next two lemmas we prove some technical statements enabling us to prove
simple connectedness of I'. (A graph is simply connected if it is connected and
every cycle in can be triangulated.)

Lemma 4.2. Letw L x Ly L z be a path of vertices in I'. Then for x = (zy, Xy)
and z = (zy, Zy) inside y*, if Xy N Zy Nwyzy =0 or if Xy = Zy, there is a path
of vertices in x- Nzt fromy to a vertex in {w,x, Z}L.

Notice that, for example, we have Xy N Zy, N (zy, zy) = 0, in case zy, = zy.

Proof. Choose local equivalence relations ~%4, , ~%, ~¥, and ~f such that ~% and
~P coincide on wt N x*, such that ~2 and ~L coincide on x*t Ny*, and such
that ~f and ~% coincide on y+ Nzt as indicated in Lemma 4.1. Application
of Lemma 3.16 to the interior projective space of y* = H(P,H) shows that the
interior projective spaces of x* Ny+ and of y* Nz correspond to hyperplanes
of yt = H(P,H). We have to investigate x- N y+ Nz+. We have x = (zy, Xy)
and z = (2y, Zy) inside y*. Then the graph x* Ny! Nz (considered inside y=)
consists of the non-incident point-hyperplane pairs whose points are contained in
Xy N Zy, and whose hyperplanes contain the subspace (zy, zy).

First, let us assume Xy N Zy N (zy,2y) = 0. Also assume that zy, # z, and
denote the intersection zyzy N Xy by ay. Inside x* denote w by (wx, Wx) and y
by (yx,Yx). Consider x*, in which the point ay € Xy arises as ax inside Yx. Inside
y*, the intersection Xy N Zy contains a line ly. This line [, arises as a subspace
Ix of x* that is contained in Y. As there exists a y' in {x,y, z}L, we can assume,
up to a change of y into y’, that wx is also contained in Yx. (Indeed, choose a
hyperplane Hy that contains ax, wx, and yx but not lx, and choose a point px
on Iy off Hx. The vertex (px, Hx) gives rise to a vertex y’ that is adjacent to x
and y. Local analysis of y* shows that the hyperplane of the vertex y' contains
the point xy and the point ay, whence also the point z,. Moreover, the point of
y' is contained in Iy, whence also in Zy, and y’ is a neighbor of z.) Inside x*
we have now the following setting. The hyperplane Yy contains the points wy, and
ax as well as the line Ix. Note that Ix has to intersect the hyperplane Wx. If
(ax,wx) does not intersect Ix N Wy, then we can choose a point inside Ix N Wx
and a non-incident hyperplane that contains (ax, wx, yx), yielding a vertex that is
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adjacent to w, x, y, and—after local analysis of y-—also to z. Therefore assume
that (ax,wx) does intersect Ix N Wx. Then fix the point uyx := (ax, wx) Nilx N Wx
and choose a hyperplane Uy that contains ax and yx but not ux. The pair (ux, Ux)
describes another vertex, u say, that is adjacent to x, y, and z. Inside u' we have
a hyperplane X, of x, a line k, in Xy that arises from a line kx contained in the
intersection Uy N Wy of the hyperplanes of the vertices u and w inside x*, and
the hyperplane Z, of z. Choose a point v, in k, N Z, and a hyperplane V,, on
ZTuZu that does not contain v,,. Obviously, this vertex v = (vy, V4,) is adjacent to
x, u and z. In x*, however, we see v as (vyx, Vi) whose hyperplane Vi contains the
points ax and ux, therefore also wyx. Moreover, vy is contained in kx, whence also
in Wx, and v is the required vertex.

If Xy, NZyN(xy,z2y) =0 and zy, = zy, then similar arguments yield a proof.

Also the case that X, = Z, runs along the same lines and is, in fact, easier to
prove. O

Lemma 4.3. For every path w L x Ly L z in [ there is a vertex xo € {x} U
{w,x,y}* such that, with xo = (acg,Xg) and z = (zy,Zy) inside y*, we have
(€Y, zy) N XD N Zy = 0.

Proof. Choose a path w L x L y L z of vertices in I'; and fix local equivalence
relations ~%, ~§, =¥, and =~f as in the proof of the preceding lemma. Inside
y1, let x correspond to (zy,Xy) and z correspond to (zy,Zy). Suppose that
Xy NZyN(zy,zy) # 0. Then Xy NZy N (zy, 2y) is a point; Xy N Zy\zy 2, contains
(the point set of) an affine line, for n = 3, and (the point set of) a dual affine plane,
for n > 4; it may be even bigger if X, = Z,,. The set of common neighbors of x and
z in y* corresponds to the set of all non-incident point-hyperplane pairs (py, Hy)
with p, € Xy N Zy and Hy D zyzy inside y*. This implies that for any point
py € Xy N Zy\zyzy we can find a vertex (py, Hy) in y* adjacent to both x and z.
Now consider x1. Let w = (wx, Wyx) and y = (yx, Yx). Any vertex xo = (22, X?)
adjacent to w, x, y consists of a point z2 € Wy NYx and a non-incident hyperplane
X0 D wyyx. Hence, as above in y*, we can choose x2 freely on an affine line for
n = 3 or a dual affine plane for n > 4. This translates to y* as follows. The line
wWxYx intersects Yx in a point, ax say, which gives rise to a point ay € X, of y*. So
all these hyperplanes X2 arise as hyperplanes Xf, in y* that contain the line zyay.
Notice that this line zyay is the largest subspace of y* that is contained in all these
hyperplanes XJ. If for some fixed choice of zj, there exists a hyperplane X7 of
y* such that X9 N Zy N (2, 2y) = 0, we are done. Hence, for a fixed #9, suppose
all choices for X contain the point (z),zy) N Zy. But in this case, we can choose
another z}, instead of 2§ and find an X3 with X9 N Zy N (xy,2,) = 0. For, suppose
for a choice 3, distinct from z§ still X)NZy N(xy, zy) # O for all possible X7 inside
y*. Then the points uy := (29,2y) N Zy and vy := (z},2y) N Zy span a line as
zy & Zy. But this line uyvy has to coincide with the line zyay. In particular, zy is
contained in Zy. But this contradicts our assumption that Xy N Zy N (zy, zy) # 0.
Hence we can find an 2z, ¢ X9 with X) N Zy N (2y,2y) = 0, and so the vertex
(zy,XQ) is as required. O

We owe the following proposition to Andries Brouwer, who observed that the
combination of the two preceding lemmas yields simple connectedness.
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Proposition 4.4. The graph ', considered as a two-dimensional simplicial com-
plex whose two-simplices are its triangles, is simply connected. Moreover, the di-
ameter of T equals two.

Proof. Lemma 4.3 shows that for every path of distinct vertices w, x, y, z in '
there exists a vertex Xo € {w,x,y}" with xo = (23, X0) in y* such that (z),zy,) N
XN Zy = 0. Lemma 4.2, on the other hand, implies that there exists a path of
vertices inside xg- Nzt from y to a vertex v that is adjacent to w, xo, and z. Simple
connectedness of I' follows.

As for the second statement, suppose w L x L y | zis a path in I", then by
by the above arguments there is a vertex v in wt Nz’. Hence z is at distance at
most two from w. This implies that the diameter of I' is at most two and settles
the proof of the proposition. O

Lemma 4.5. There is a choice of local equivalence relations =% for all x € T such
that, for any two adjacent vertices x and'y, the restrictions of =% and ~% to xtnyt
coincide.

Proof. Suppose that x, y, z is a triangle. In view of Lemma 4.1, we may assume
that ~% and ~% have the same restriction to x> Ny" and that ~% and ~ have
the same restriction to x* N zt. Let px be an interior point of x* such that
px Nyt Nzt # (. By analysis of x*, we can find two vertices, say u and v, in
px Nyt Nzt. Now the above choices of local equivalence relations imply that (u, v)
belongs to ~§ N &, (indeed, (u,v) belongs to both ~§ N ~§ and ~§ N ~}). By
Lemma 3.2 this forces that ~% and ~% have the same restriction to y= Nz". Since
T is simply connected (by Proposition 4.4), the lemma follows immediately from
the triangle analysis. O

Notation 4.6. Fix a choice of =£, for all vertices x of I, as in Lemma 4.5 and set
~P=J P
xel’ x-

Lemma 4.7. Let x and 'y be vertices of I' such that x =% y for some vertex u in
{x,y}*. Then x =Ly for every vertex v in {x,y}+.

Proof. Let u, x, y be as in the hypothesis and let v € {x,y}L be an additional
vertex. If u L v, then the claim is true by Lemma 4.5.

Thus, it is sufficient to show that the induced subgraph {x, y}L of I is connected.
In x* we have u = (ux, Ux) and v = (vx, Vx). Moreover, the intersection X, N Yy
from ul arises as a hyperplane Wy of Uy in x*. Therefore the intersection Wy NV
contains a point px. If in x* the line uxvyx does not contain px, we can find a
hyperplane H, D uyvyx that does not contain py, and (px, Hy) is a vertex of x*
which is adjacent to both u and v. But inside u' this vertex also corresponds to
some point-hyperplane pair, whose point is contained in Y, and whose hyperplane
contains y, = xy- In particular, this vertex is also adjacent to y, and we are done.

So assume we have px € uxvx in x*. Then choose any hyperplane Hx that
contains ux but not px. Then the vertex t := (px, Hx) is adjacent to x, u, and
y, but not v. Inside t* we have hyperplanes X; and Y; coming from x and y.
The intersection Xy NY}; corresponds to a subspace Sx of Hy (the hyperplane of the
vertex t) in x*. The intersection Sy NV in x* contains some point gyx. If gx lies on
the line pyvx, then gx = pxvx N Hxy = pxux N Hx = ux, and we have ux € Vx. But
this contradicts px € uxvx, as px € Vx NUx, vx & Vi and ux € Vi\Ux. Therefore
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we have gx & pxvx and we are in the situation of the preceding paragraph with the
vertex t instead of u. O

We are now ready to show that there exists a well-defined notion of global points
on I') which will then allow us to study a geometry on I'.

Lemma 4.8. The relation =P on the vertices of I' is an equivalence relation.

Proof. Reflexivity and symmetry follow from reflexivity and symmetry of each ~%.
To prove transitivity, assume that x ~P y and y ~P z. Then there exist vertices
u, v with x P y and y =2 z. By Proposition 4.4, there also exists a vertex
a € {x,z}". We will prove that x ~2 z. In view of the Lemma 4.2 (applied to the
the chainsa L x L ulyanda L z 1 v L y) there are vertices b € {a,x,y}J‘
and c € {a,z,y}J‘. Lemma 4.7 implies x ~} y and y ~£ z. Set b = (ba, Ba),
¢ = (ca,Ca), X = (Ta,Xa), and z = (za, Za) in a®*. Notice that z, € Ca. We
can additionally assume that z, € C, and ¢4 & baza. (Indeed, set a = (ac, Ae),
Y = e, Ye), 2 = (2¢,Zc) in c¢t. The intersection A. N Y. contains a line .
Moreover, yo = 2, as y =2 z. Locally in al the line l. arises as a line [, C C,. Fix
a hyperplane H, that contains (ca, Ta,za) and fix a point p, on l, off {ca,Ta, za)
and (ba, a); such a choice is always possible as za & la and ¢, & Ca and [, contains
at least three points. This gives a new vertex ¢’ = (pa, Ha) that is adjacent to a,
c, and y. Local analysis of ¢+ shows that we can find a vertex z’ in /2 relation
to z that is adjacent to ¢’ and a.) But now, we can find a vertex d = (za,Da)
in at' that is adjacent to b = (ba, Ba) and ¢ = (ca, Ca) (notice that by the above
We can assume ¢, ¢ baa, whence xa & baca). By construction we have d z’t’) X,
so d &2 x by Lemma 4.7, and as x ~} y we also have d ~} y. Now Lemma 4.7
implies d ~2 y. But also y ~£ z. Transitivity of ~% implies d ~2 z and, again
Lemma 4.7 yields d ~% z. Finally, transitivity of ~2 gives x &2 z, yielding x ~* z.
Hence =P is transitive. O

All statements and results about the local relations ~% are also true for the local
relations ~%, and we can define a global relation ~"= Uxer ~I with the same nice
properties on the local intersections.

Definition 4.9. A global point of I is defined as an equivalence class of . Dually,
define a global hyperplane as an equivalence class of ~".

We already have a local notion of incidence as defined before Definition 3.6. A
global notion also exists.

Lemma 4.10. A global point p and a global hyperplane H are incident if and only
ifpN H = 0.

Proof. One implication is trivial. To prove the other, suppose there exists a vertex
y € pN H. Then, any vertex x for which p, and Hy exist is at distance at most
two to y, by Proposition 4.4, and there exists a vertex z adjacent to both y and
x. The local elements p, and H, exist, as y is a representative of both. But then
px Nzt # 0 as well as Hy N2+ # (. Now inside x* Nzt we see that px and Hy
have a non-empy intersection. O

Definition 4.11. Let p and ¢ be distinct global points and let x be a vertex such
that px and gx exist. Then the global line of I' spanned by p and ¢ is the set of
those global points a such that ax exists and is contained in the local line pxgx.



14 ARJEH M. COHEN, HANS CUYPERS, RALF GRAMLICH

Let Py = (Pr, Ly, C) be the point-line geometry consisting of the point set Pp of
global points of I' and the line set Lr of global lines of I

Lemma 4.12. The notion of a global line is well-defined.

Proof. Let p and ¢ be global points and suppose x and y are distinct vertices such
that px, ¢x, py, and gy exist. We prove that for any global point r for which rx
exists and is contained in the local line on px and gy, the local point ry also exists
and is on the local line on py, and gy .

If x Ly, then px Npy # 0 and gx N gy # 0, and the claim follows from Lemma
3.16 applied to x=*.

Choose vertices a € px, b € gx, ¢ € gy, and d € py. By Lemma 3.12 we can
assume that ¢ and d are adjacent. By Proposition 4.4 there exists a vertex z;
adjacent to both x and ¢. By Lemma 4.2 (applied to the path a, x, z;, ¢) we can
find a vertex z, adjacent to a, x, and ¢ (indeed, inside z;{ the point c,, of ¢ has
to lie in the hyperplane X,, of x. So, the condition of the lemma is satisfied and
we can apply that lemma). Local analysis of ¢ yields a vertex zg that is adjacent
to 22, ¢, and d. The induced subgraph {c, d}J‘ of T' is isomorphic to H(PPy, Hy) for
some hyperplane Py of P. According to Proposition 2.3, it is connected. Therefore,
we can find a path from y to z3 inside {c, d}J‘. This establishes the lemma. O

Proposition 4.13. The space Pr is a linear space with thick lines.
Proof. This is an immediate consequence of Lemma, 4.12. O

As customary in linear spaces, for distinct global points p and ¢ we denote by
pgq the unique global line on p and gq.

Proposition 4.14. The space Pr is a projective space.

Proof. In view of Proposition 4.13 we only have to verify Pasch’s Axiom. Let a,
b, ¢, d be four global points such that ab intersects cd in the global point e. Then
ab = ae and cd = ce. By Proposition 4.4 and Lemma 3.12, there are vertices a in
a and e in e such that a L e. Choose a vertex c¢ in ¢. Now, by Proposition 4.4,
there is a vertex y adjacent to e and c. After suitable replacements of e in e and
c in ¢, we can assume that inside y* we have ¢ = (cy, Cy) and e = (ey, Ey) with
Cy N Ey N (¢y,ey) = 0. Lemma 4.2 implies the existence of x € {a,c,e}*. The
global lines ae and ce meet x* in interior lines. In particular, by Pasch’s Axiom
applied to the interior projective space of x1, there is an interior point wy on both
the interior lines (ac)x and (bd)x of x. Consequently, the global lines ac and bd
meet in a global point, whence Pasch’s Axiom holds. O

Notation 4.15. Denote by (x*) the set of global points intersecting x-. Notice
that this set is a subspace of Pr.

Lemma 4.16. Let x,y € I’ with x &" y. Then <XJ‘> = <yL>.

Proof. By symmetry of ~" it suffices to show <XL> C <yJ->. To this end, let
pE <xl>, so that there exists a vertex p € p with p L x. By Proposition 4.4, we
can find a vertex z with x Lz L y. If x = (2,,X,), ¥ = (Vas,Ys) inside z-, we
have X, = Y,, as x " y. Applying Lemma 4.2, we obtain a vertex a € {p,x,y}".
Writing p = (pa, Ha) in a*, we see p, € Xa, whence p, € Ya by x & y. But now
we can find a vertex p; = (pa, H2) with ya € H} and consequently p € (y*). O
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We are ready to give a nice description of the hyperplanes of the projective space
Pr appearing in vertices of I'. To this end, denote by <XL> the set of global points
that meet x*; it will turn out to be a hyperplane.

Lemma 4.17. The set <XJ‘> does not contain the global point that contains x.

Proof. Otherwise x* contains a vertex y that belongs to the same global point.
But then there exists a third vertex z adjacent to both x and y, so x and y are two
adjacent vertices belonging to the same interior point in z*, a contradiction. [

Lemma 4.18. Let x be a vertex of I'. Then <XL> is a hyperplane of Pr.

Proof. Suppose [ is a global line of I'. We have to show that it intersects <XL>. Let
a # b be two global points on [ and choose vertices a € a, b € b. By Lemma 3.12
we may assume a L b. By Proposition 4.4, there exists a vertex y with b L y L x.
Changing b inside b Na* Ny* and x inside y* while leaving <xJ‘> invariant, we
can assume By N Xy N (by,zy) = O (for b = (by, By), x = (zy, Xy), inside y);
notice that, by Lemma 4.16, changing x as indicated basically means changing the
point xy. Consequently, by Lemma 4.2, there exists a vertex c € {a,b,x}J‘. Now
local analysis of ¢t shows that [ has to intersect <XL>. Lemma 4.17 shows that
<XL> is not the whole space, and <XL> is a hyperplane. [l

By H we denote the set of all subsets <xl>, where x runs through the vertex
set of T

Lemma 4.19. The set Hr is a subspace of Praual sych that Hy has trivial annihi-
lator in Pr.

Proof. Let x and y be two points of I' with (x*) # (y*). Denote by z and y
the global points and by X and Y the global hyperplanes containing x and Yy,
respectively. By Proposition 4.4 there exists a third vertex adjacent to x and y.
Then, by Lemma 3.12, there exist adjacent vertices x; € X and y; € Y with
(x*) = (x1) and (y*) = (yi"). We will show that the hyperpline on (x*) and
(y*) is contained in Hy. By the above we can assume that x and y are adjacent.

We show that for every global point u, there is a point z such that (x*)N{y*) C
<zJ-> and u € <zJ->.

Let IT be the hyperplane of Pr containing (x=)N{y*) and u. The global line on
z and y meets II in a point outside (x) N (y*). So, without loss we may assume
this intersection point to be u.

Let w be adjacent to both x and y. Then both z and y are global points in
<WL> and hence so is u. So, inside wt = H(P,H) we find a point z such that
z' meets all global points meeting x* Nyt Nw* and u. Indeed, inside w* the
hyperplane <zJ-> of Pr is the hyperplane containing <xJ‘> N <yJ‘> N <WJ‘> and wu.
But then (z) contains (x) N (y*) N (w*) and w, the global point on w, and
hence (x) N (y*). Moreover, as z* meets u, it contains II and hence coincides
with II.

It remains to show that the intersection of all elements in Hy is empty. However,
that easily follows from Lemma 4.17. |

Lemma 4.20. Suppose x is a global point in Pr and H € Hy is a hyperplane not
containing x. Then there is a vertex X € x with <XJ‘> =H.
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Proof. Suppose x € z and y is a vertex of I with (yJ-> = H. Then in z*, for some
common neighbor z of x and y, we find a vertex x’ € zNY, where Y is the global

hyperplane on y. But then, by Lemma 4.16, <X’L> =H. [l

Proposition 4.21. Let I’ be a connected, locally H(P,H) graph. Then T is iso-
morphic to H(Pp, Hy).

Proof. Consider the map I' = H(Pr,Hr) : x — (z,(x")) where z is the global
point of ' containing x. We want to show that this is an isomorphism of graphs.
Surjectivity follows from Lemma 4.18 and Lemma 4.20, since any point z of Pr is
a global point of I and any hyperplane in Hi not containing it is of the form <XL>
for a vertex x € . Injectivity is obtained as follows. Suppose the global point x
contains two vertices x;, x, with (x{-) = (x3 ). By Proposition 4.4 there exists a
vertex y adjacent to both x; and x,. Since (x{) = (x3 ), both vertices describe the
same hyperplane in y*. But they also describe the same point and hence have to be
equal. Finally, if x | y, then, letting z and y be the global points of I' containing x
and y, respectively, we find z € (yJ‘> and y € <XL>, so (x, (x)) L (y,(y*t). O

Theorem 1.1 is an immediate consequence of the above proposition and the
Lemmas 4.19 and 4.20.

5. SMALL DIMENSIONS

In view of Proposition 2.3, any connected, locally Hy graph is isomorphic to a
clique of size two. Furthermore, it is easily seen that any connected, locally H;
graph admits an infinite universal cover and we obtain infinitely many counterex-
amples to local recognition of Ha. The case of a locally Hy graph proves to be a
bit more complicated. We can only offer a counterexample for F = F». The proof
of its existence is based on a computation with the computer algebra package GAP

[9]-

Proposition 5.1. There exists a connected graph on 128-120 vertices that is locally
H,>(2).

Proof. We determine the stabilizers of a vertex, an edge, and a 3-clique of the graph
H;(2) inside the canonical group (P)SL,(2) and let GAP determine the order of the
universal completion of the amalgam of these groups and their intersections. This
universal completion is the group G with a presentation by the generators w, u, b,
a and the relations

wr=u=b=d’>=1,
(wu)* = (ab)* = 1,
(bw)? = (bu)* = 1,

(

The stabilizers of a vertex, an edge, and a 3-clique of H3(2), respectively, are of the
form

<'LU, u, b> = SL3 (2)7
SLy(2) x 2,
Sym37

1

(w,u,a)

(a,b)

1
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with the intersections

(w,u, by N (w,u,ay = (w,u) = SLa(2),
(w,u,a) N {a,b) =(a) = 2,
(a,b) N (w,u,b) =(b) = 2.

A coset enumeration in GAP shows that the order of G is 128 [SL4(2)|, and that
there exists a normal subgroup N = 2176 of G. Hence H3(2) admits a 128-fold
cover I' with the same local structure. O

This proposition shows that the bound on n in Theorem 1.1 is sharp. Besides the
above universal cover of the canonical graph H3(2) nothing is known to us about
locally Hy(F) graphs. The methods that we have presented for n > 3 do not apply
in this case.

6. GROUP-THEORETIC CONSEQUENCES

In this section we study group-theoretic consequences of our local recognition
Theorem 1.1 of the point-hyperplane graphs H,,(F), where n > 3 is a finite integer
and F a skew field. In particular, we prove Theorem 1.2 and Theorem 1.3.

Proposition 6.1. Let G be a group as in the hypothesis of Theorem 1.2. Then

Proof. We use the notation of Theorem 1.2. By (iii) of Theorem 1.2, we can choose
an element z € JN K that is a reflection in the groups J and K conjugate to z and
y, respectively. Hence z is a reflection in J and y is a reflection in K. Note that
z commutes with z and y. As, by (i), K 2 GL,11(F), we find the elements y and
z to be conjugate in K by an involution. Similarly, by (ii), z and z are conjugate
in J by an involution. Therefore the conjugation action of the group G induces an
action as the group Symg on the set {z,y,z} and as the group Sym, on the set
{z,y}. Consider the graph I" on all conjugates of « in G. A pair a, b of vertices of T
is adjacent if there exists an element g € G such that (gzg=', gyg~!) = (a,b). Since
G induces the action of Sym, on {z,y, z}, this definition of adjacency is completely
symmetric, and we have defined an undirected graph. The elements z, y, z form
a 3-clique of I'. Define U; to be the stabilizer in G of the vertex z, and define
U, to be the stabilizer in G of the edge {z,y}. The stabilizer of {z,y} permutes
x and y and therefore interchanges Cg(z) > K and Cg(y) > J, see (i) and (ii).
Hence the stabilizer of z together with the stabilizer of {x,y} generates G, as
G = (J,K) < (Uy,U,). Consequently, the graph I is connected. Also, I is locally
H,,(F) by construction. To prove this, it is enough to show that any triangle in I is
a conjugate of (z,y,z). Let (a,b,c) be a triangle. Let g € G with (gzg!,gyg™!) =
(a,b). Notice that b,d = gzg~! € gKg~' are commuting reflections of gKg~!.
The edges (a,b) and (a,c) are conjugate in Cg(a) = gXg=! x gKg=! (use (i)
of Theorem 1.2). Choose h € Cg(a) such that (hah™t, hbh™!) = (a,c). Then
h = hxhy with hy € gXg ', hg € gKg'. The element hx centralizes b and
d, since b,d € gKg~'. Therefore ¢ = hbh™! = hybh,' € gKg~' is a reflection of
gKg~!. Hence (a,b,d) and (a,b,c) are conjugate in gKg—* = GL,,(F). Therefore
(a,b,c) and (z,y, z) are conjugate in G.

Thus, by Theorem 1.1, the graph I is isomorphic to H, 1 (F). Moreover, there
is a kernel NV of the action of G on T, such that G/N can be embedded in Aut(T),
which has been determined in Corollary 3.10. Since G/N is transitive on I" and the
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stabilizer in G/N of the vertex = induces PGL,,+; (F) on the neighbors of z, we find
that PSL,,4+2(F) < G/N. Furthermore, as G is generated by Cg(z) and Cg(y), we
find that G/N embeds in PGL,,;2(F).

Let g € N. Then g acts trivially on I', in particular it centralizes z and y, so we
have g e X x Kand g€ Y x J. Let gx € X and gk € K be such that g = gxgx-
The element gx commutes with K, and therefore also centralizes all neighbors of z.
Consequently, also gx = g;(lg centralizes all neighbors of z, and hence lies in the
center of K. We have proved that g commutes with K. Similarly, g commutes with
J. This implies that g commutes with G = (J, K), and, thus, g € Z(G). Certainly,
Z(@) acts trivially on I', whence N = Z(G). O

The above proves Theorem 1.2. It only remains to prove Theorem 1.3. This will
be done in the next proposition. Its proof proceeds along the lines of the proof of
Theorem 1.2.

Proposition 6.2. Let G be a group as in the hypothesis of Theorem 1.3. Then
G/Z(G) = PGLo o (F).

Proof. With the notation as in the hypothesis of Theorem 1.3 we have the following.

The element z is conjugate to both = and y, so, also x and y are conjugate.
Moreover, z and y are generalized reflections in J and K, respectively. Note that
z commutes with x and y. As K = SL, 1 (F), we find the elements y and z to
be conjugate in K by an involution. Similarly, 2 and z are conjugate in J by
an involution. Therefore the conjugation action of the group G induces an action
as the group Syms on the set {z,y,z} and as the group Sym, on the set {z,y}.
Consider the graph I" on all conjugates of (x) in G. A pair a, b of vertices of T is
adjacent if there exists an element g € G such that (g(z)g~!,g(y)g~') = (a,b). As
in the proof of Proposition 6.1, the graph I' is connected.

Let (a,b,c) be a triangle of I'. We will show that (a,b,c) is also conjugate to
({(x), (y), (2)). Without loss of generality, we can assume that a = () and b = (y).
The edges (a,b) and (a,c) are conjugate in Ng(a). Choose h € N¢(a) such that
(hah=,hbh=') = (a,c). Since Cg(a) is normal in Ng(a), and K is characteristic
in Cg(x), we find that h normalizes K. Therefore ¢ = hbh ™! is a group of order p
generated by a generalized reflection of K. But then (b, (z)) and (b, ¢) are conjugate
inside K = SL,,4+1(F). As K < Cg(a) we find the triangles (a, b, ¢) and ((z), (y), ())
to be conjugate in G.

As each generalized reflection torus is cyclic and thus contains a unique subgroup
of order p, we find T" to be locally H, (). But that implies, by Theorem 1.1, that
the graph I is isomorphic to H,,;1 (F).

Let N be the kernel of the action of G on I'. Then, as in the proof of Theorem 1.2,
we see that G/N < PGL,,42(F). In particular, K NN =1 and, since G is generated
by J and K, we even have G/N = PSL,2(F). Moreover, as N < Ng({z)) and K
is normal in Ng({z)), we find [N, K] < KN N = 1. Similarly, [N, J] = 1 and hence
N < Z({K,J)) = Z(@G), which completes the proof of the proposition, as Z(G) is
in the kernel of the action by construction of T'.

O
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