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Abstra
t

This arti
le provides a self-
ontained, purely 
ombinatorial lo
al re
ognition of the

graph on the non-interse
ting line-hyperline pairs of the proje
tive spa
e P

n

(F) for

n � 8 and F a division ring with the ex
eption of the 
ase n = 8 and F = F

2

.

Consequen
es of that result are a 
hara
terization of the hyperboli
 root group

geometry of SL

n+1

(F), F a division ring, and a lo
al re
ognition of 
ertain groups


ontaining a 
entral extension of PSL

n+1

(F), F a �eld, using 
entralizers of p-

elements.

1 Introdu
tion and Preliminaries

The 
hara
terization of graphs and geometries using 
ertain 
on�gurations that do or

do not o

ur in some graph or geometry is a 
entral problem in syntheti
 geometry.

One 
lass of su
h 
hara
terizations are the so-
alled lo
al re
ognition theorems of lo
ally

homogeneous graphs. A graph � is 
alled lo
ally homogeneous if �(x)

�

=

�(y) for

all verti
es x; y 2 �, where �(x) denotes the indu
ed subgraph on the neighbors of x in

�. A lo
ally homogeneous graph � with �(x)

�

=

� is also 
alled lo
ally �. For some

�xed graph � it is a natural question to ask for a 
lassi�
ation of all 
onne
ted graphs

� that are lo
ally �. A 
onne
ted lo
ally � graph � is lo
ally re
ognizable if, up to

isomorphism, � is the unique graph with that property. Several lo
al re
ognition results

of a lot of 
lasses of graphs 
an be found in the literature. As an example we refer to the

lo
al re
ognition of the Kneser graphs by Jonathan I. Hall [6℄; the Kneser graphs 
an be


onsidered as `thin' analogues of the graphs that are studied in this paper.

The present arti
le fo
uses on graphs on line-hyperline pairs of proje
tive spa
es; more

pre
isely, let L

n

(F) denote the graph on the non-interse
ting line-hyperline pairs of the

proje
tive spa
e P

n

(F) (where n is a natural number and F a division ring) in whi
h two

verti
es are adja
ent if the line of one vertex is 
ontained in the hyperline of the other

vertex and vi
e versa. Then the following holds.

1
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Theorem 1

Let n � 7 and let F be a division ring, or let n � 6 and let F be a division ring of order

at least three. If � is a 
onne
ted, lo
ally L

n

(F) graph, then � is isomorphi
 to L

n+2

(F).

I believe that the ex
eption n = 6 and F = F

2

in Theorem 1 merely arises as an

ex
eption of my parti
ular proof, and is not a real ex
eption. Note that, besides this

ex
eption, Theorem 1 is in a sense optimal. Indeed, if F is a �eld, besides the graph

L

7

(F) also the graph on the fundamental SL

2

's of the group E

6

(F) with 
ommuting as

adja
en
y is 
onne
ted and lo
ally L

5

(F), as 
an be read o� the extended Dynkin diagram

of type E

6

. In fa
t, the graph L

n

(F) 
an be des
ribed as a `
ommuting fundamental SL

2

'

graph as well. There is a one-to-one 
orresponden
e between the non-interse
ting line-

hyperline pairs of P

n

(F) and the fundamental SL

2

's of the group SL

n+1

(F) by assigning a

fundamental SL

2

to the pair 
onsisting of its 
ommutator and its 
entralizer in the natural

module of SL

n+1

(F); two fundamental SL

2

's 
ommute if and only if the 
ommutator of one

is 
ontained in the 
entralizer of the other and vi
e versa. The root subgroups of SL

n+1

(F)

together with the fundamental SL

2

's (and symmetrized 
ontainment as in
iden
e) form

a point-line geometry, 
alled the hyperboli
 root group geometry. This geometry is


hara
terized in the following theorem as a 
onsequen
e of Theorem 1.

Theorem 2

Let n � 8 and let F be a division ring, or let n � 7 and let F be a division ring of order

at least three. Moreover, let (P;L;?) be a partial linear spa
e endowed with a symmetri


relation ? on the point set su
h that x ? p and x ? q, for distin
t points p, q on some line

l and an arbitrary point x, implies x ? y for all points y of l. Furthermore, suppose that,

for any line k 2 L, the spa
e k

?

is isomorphi
 to the hyperboli
 root group geometry of

SL

n

(F) with l ? m if and only if [l; m℄ = 1 for lines l, m inside k

?

. If the graph (L;?) is


onne
ted, then (P;L) is isomorphi
 to the hyperboli
 root group geometry of SL

n+2

(F).

The proofs of Theorem 1 and Theorem 2 are based on the re
onstru
tion of the

proje
tive spa
e P

n

(F) from an arbitrary graph � isomorphi
 to L

n

(F), 
alled the interior

proje
tive spa
e on �, 
f. Se
tion 3. The following theorem relates the automorphism

group of L

n

(F) to the automorphism group of P

n

(F) and is an immediate 
onsequen
e of

that re
onstru
tion.

Theorem 3

Let n � 5, and let � be a graph isomorphi
 to L

n

(F). Then the interior proje
tive spa
e

on � is isomorphi
 to P

n

(F) or P

n

(F)

dual

. In parti
ular, the automorphism group of �

is of the form P�L

n+1

(F):2 or P�L

n+1

(F) depending on whether or not the spa
e P

n

(F)

admits a duality.

In 
ase P

n

(F) admits a duality, it is not 
lear whether P�L

n+1

(F):2 a
tually is a

semidire
t produ
t or not. Of 
ourse, this problem is equivalent to the famous open

problem whether a proje
tive spa
e that admits a duality also admits a polarity.
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The �nal two results of this arti
le are appli
ations of Theorem 1 to group theory. If

a lo
ally re
ognizable graph � admits a group G of automorphisms that a
ts transitively

on the set of all ordered triangles of �, then the lo
al re
ognition of � implies a lo
al

re
ognition of G. The lo
al re
ognition of the Kneser graphs in [6℄, for example, implies a

lo
al re
ognition of the symmetri
 groups along the lines of Theorem 27.1 of [3℄ or Theorem

2.5.5 of [5℄. Line-hyperline graphs also admit a highly transitive group of automorphisms

by Theorem 3.

If the division ring F has 
hara
teristi
 distin
t from two, then SL

2

(F) admits a 
entral

involution, and one 
an prove the following lo
al re
ognition theorem.

Theorem 4

Let n � 7, and let F be a division ring of 
hara
teristi
 distin
t from 2. Let G be a group

with subgroups A and B isomorphi
 to SL

2

(F), and denote the 
entral involution of A by

x and the 
entral involution of B by y. Furthermore, assume the following holds:

� C

G

(x) = X �K with K

�

=

GL

n

(F) and A � X;

� C

G

(y) = Y � J with J

�

=

GL

n

(F) and B � Y ;

� A is a fundamental SL

2

of J ;

� B is a fundamental SL

2

of K; and

� there exists an involution in J \ K that is the 
entral involution of a fundamental

SL

2

of both J and K.

If G = hJ;Ki, then (up to isomorphism) PSL

n+2

(F) � G=Z(G) � PGL

n+2

(F).

If the division ring F is �nite, then L

n

(F) is �nite and so is its automorphism group.

In order to state the �nal theorem re
all some terminology from �nite group theory, see,

e.g., Se
tion B of [4℄. A �nite group G is 
alled quasisimple if and only if G=Z(G) is

simple and G = [G;G℄; it is semisimple if and only if G = G

1

� � �G

r

with G

i

quasisimple

and [G

i

; G

j

℄ = 1 for distin
t 1 � i; j � r. A 
omponent of a group G is a quasisimple

subnormal subgroup of G. The layer of G is the subgroup E(G) generated by all the


omponents of G, with the understanding that E(G) = 1 if G does not have a 
omponent.

By Theorem 3.5 of [4℄, the 
omponents of a group G 
ommute pairwise, the layer E(G)

is the unique maximal normal semisimple subgroup of G, and any automorphism of G

permutes the set of 
omponents of G.

Theorem 5

Let n � 8 and let F be a �nite �eld, or let n � 7 and let F be a �nite �eld of order at

least three. If q denotes the order of F, let p be a prime divisor of q

2

� 1. Furthermore let

G be a group 
ontaining p-elements x and y, and assume the following holds:

� C

G

(x) has a 
hara
teristi
 
omponent K with K=Z(K)

�

=

PSL

n

(F);
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� C

G

(y) has a 
hara
teristi
 
omponent J with J=Z(J)

�

=

PSL

n

(F);

� x is 
ontained in a subgroup A of J whi
h is a fundamental SL

2

of J ;

� y is 
ontained in a subgroup B of K whi
h is a fundamental SL

2

of K;

� the groups A and B 
ommute with E(J \K);

� there exists a group C

�

=

SL

2

(F) in E(J \K) whi
h is a fundamental SL

2

of both

J and K; and

� there exist k 2 K, j 2 J , and a p-element z 2 C su
h that 
onjugation with j

inter
hanges hzi and hxi and 
onjugation with k inter
hanges hzi and hyi.

If G = hJ;Ki, then G=Z(G)

�

=

PSL

n+2

(F).

This arti
le is organized as follows. Se
tion 2 is a preliminary se
tion, introdu
ing

some basi
 notation and providing some elementary fa
ts. The purpose of Se
tion 3 is

to re
onstru
t the proje
tive spa
e P

n

(F) from an arbitrary graph isomorphi
 to L

n

(F)

and to give a proof of Theorem 3, whereas Se
tion 4 deals with the re
onstru
tion of the

(hyperboli
) root group geometry of SL

n+1

(F). Theorem 1 is proved in Se
tion 5, and

Theorem 2 is proved in Se
tion 6. Finally, Se
tion 7 provides proofs of Theorem 4 and

Theorem 5.

A weaker version of Theorem 1 (for n � 7) 
an be found as Theorem 2.5.1 in the

author's PhD thesis [5℄. Analogues on graphs on 
ommuting fundamental SL

2

's of sym-

ple
ti
 and unitary groups are 
ontained in [5℄ as well, see Theorem 4.4.22 (lo
ally Sp

2n

(F)

for n � 4 and F a �eld) and Theorem 4.5.3 (lo
ally SU

n

(K ) for n � 8 and K a quadrati


extension of some �nite �eld F); while Theorem 4.4.22 is optimal (the 
entralizer of a

fundamental SL

2

of F

4

(F) is isomorphi
 to Sp

6

(F)), there is still room for improvement of

Theorem 4.5.3 (the 
entralizer of a fundamental SL

2

of

2

E

6

(K ) is isomorphi
 to SU

6

(K )).

Similar questions for graphs on re
e
tion tori of linear groups are answered in [1℄ (Theorem

1.1) or [5℄ (Theorem 1.3.21), whereas graphs on re
e
tion tori of unitary and orthogo-

nal groups are treated in [2℄. Noti
e that the methods used to prove Theorem 1.1 of [1℄

(or Theorem 1.3.21 of [5℄) 
an be literally transs
ribed into a proof of Theorem 1 of the

present arti
le for n � 7. The 
ase n = 6 needs a slightly di�erent approa
h, whi
h also


overs the 
ase n � 7. This approa
h is presented in this arti
le.

2 Line-hyperline graphs of proje
tive spa
es

This se
tion introdu
es pre
ise notation and provides some general properties of line-

hyperline graphs that are used throughout the whole arti
le.
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De�nition 2.1 Let n 2 N , and let F be a division ring. Consider the proje
tive spa
e

P

n

(F) of (proje
tive) dimension n over F. The line-hyperline graph L(P

n

(F)) = L

n

(F)

of P

n

(F) is the graph whose verti
es are the non-interse
ting line-hyperline pairs of P

n

(F)

and in whi
h a vertex (a; A) is adja
ent to another vertex (b; B) (in symbols, (a; A) ?

(b; B)) if and only if a � B and b � A.

For a vertex x of L

n

(F) let x

?

denote the set of all verti
es at distan
e one from x;

for a set X of verti
es, de�ne the perp of X as X

?

:=

T

x2X

x

?

and the double perp

of X as X

??

:= (X

?

)

?

. Sometimes L

n

is used to denote L

n

(F) if F is obvious or not

important.

The proje
tive spa
e P

n

(F) indu
es a Grassmann spa
e of lines on L

n

(F) whose points

are of the form v

l

= f(a; A) 2 L

n

(F) j a = lg for a proje
tive line l while its lines are of the

form v

p;�

= f(l; L) 2 L

n

(F) j p 2 l 2 �g for an in
ident point-plane pair (p; �) of P

n

(F).

The sets of verti
es v

l

are 
alled exterior lines. The dual 
onstru
tion yields exterior

hyperlines. A point-line geometry on L

n

(F) isomorphi
 to P

n

(F) is de�ned as follows.

Its lines are the exterior lines and its points are the full line pen
ils of exterior lines, i.e.,

a point is of the form v

p

= f(l; L) 2 L

n

(F) j p 2 lg for a point p of P

n

(F). A point v

p

is 
alled an exterior point, the resulting point-line geometry the exterior proje
tive

spa
e. Dually, de�ne exterior hyperplanes and the resulting dual exterior proje
-

tive spa
e. Besides the above geometries one 
an also indu
e root subgroup geometries

of SL

n+1

(F) on L

n

(F). The set v

p;H

= f(l; L) 2 L

n

(F) j p 2 l; L � Hg, for a �xed point

p and a �xed hyperplane H 3 p of P

n

(F), is 
alled an exterior root point of L

n

(F).

Likewise, an exterior root line is de�ned as the union v

l;H

=

S

p2l

v

p;H

, for a �xed line

l and a �xed hyperplane H � l, or as the union v

p;L

=

S

H�L

v

p;H

, for a �xed hyperline

L and a �xed point p 2 L. The geometry of the exterior root points and the exterior

root lines of L

n

(F) is isomorphi
 to the root group geometry of SL

n+1

(F) and 
alled the

exterior root group geometry on L

n

(F). Similarly, 
onsider the geometry on the ex-

terior root points of L

n

(F) as points and the verti
es of L

n

(F) as lines. That geometry is

isomorphi
 to the hyperboli
 root group geometry of SL

n+1

(F) and is 
alled the exterior

hyperboli
 root group geometry on L

n

(F).

Proposition 2.2

Let n � 3. The graph L

n

(F) is lo
ally L

n�2

(F).

Proof. Let x = (x;X) be a vertex of L

n

(F). Then X

�

=

P

n�2

(F). Identifying X with

P

n�2

(F) by means of this isomorphism, we establish an isomorphism x

?

�

=

L(X). For any

vertex y = (y; Y ) adja
ent to x, we have x � Y , y � Xn(X\Y ), and dim(X\Y ) = n�4,

so (y;X\Y ) belongs to L(X)

�

=

L

n�2

(F). Conversely, for any vertex of L(X), i.e., for any

non-interse
ting pair (z; Z) 
onsisting of a line and an (n�4)-spa
e of P

n

(F) with z � X,

Z � X, the pair (z; hZ; xi) is a vertex of x

?

. (Indeed, z \ hZ; xi = ;, sin
e x \X = ;.)

Clearly, the maps (y; Y ) 7! (y;X \ Y ) and (z; Z) 7! (z; hZ; xi) are ea
h other's inverses.

Moreover, these maps preserve adja
en
y, when
e the 
laim. 2
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Proposition 2.3

L

1


onsists of pre
isely one point; L

2

is the disjoint union of singletons; L

3

is the disjoint

union of 
liques of size two; the graphs L

4

, L

5

, and L

6

are 
onne
ted; the diameter of L

n

,

n � 7, equals two.

Proof. The �rst four statements are obvious. For n � 7 let (x;X), (y; Y ) be non-adja
ent

verti
es of L

n

. The interse
tion X \Y has dimension at least three. Sin
e x\X = ; and

y\Y = ;, the interse
tion hx; yi\X \Y has at most dimension one, when
e we 
an �nd

a line z � (X \ Y )n hx; yi. Moreover the dimension of hx; yi is at most three, and there

is a hyperline Z � hx; yi with z \ Z = ;. 2

Lemma 2.4

Let n � 4. Let x = (x;X), y = (y; Y ) be verti
es of L

n

with fx;yg

?

6= ;. Then the double

perp fx;yg

??

equals the set of verti
es z = (z; Z) of L

n

with z � hx; yi and Z � X \ Y .

Proof. The verti
es of fx;yg

?

are pre
isely the non-interse
ting line-hyperline pairs

(a; A) with a � X \ Y and A � hx; yi. Let f(a

i

; A

i

) 2 fx;yg

?

j i 2 Ig be the set of all

these verti
es, indexed by some set I. If fx;yg

?

6= ;, then fx;yg

??


onsists of pre
isely

those verti
es (z; Z) with z �

T

i2I

A

i

and Z � h(a

i

)

i2I

i. But obviously

T

i2I

A

i

= hx; yi

and h(a

i

)

i2I

i = X \ Y . 2

The rest of this se
tion is dedi
ated to the development of means to re
over the

proje
tive spa
es from graphs � isomorphi
 to L

n

without making use of a parti
ular

isomorphism and 
oordinization. Re
all that the proje
tive 
odimension of a subspa
e

X of P

n

(F) is de�ned as the length of a maximal 
hain of proper subspa
es of P

n

(F) stri
tly


ontaining X and stri
tly 
ontaining ea
h other.

De�nition 2.5 Verti
es x = (x;X) and y = (y; Y ) of L

n

are in relative position

(i; j), if i = dim hx; yi and j = 
odim(X \ Y), where dim denotes proje
tive dimension

and 
odim proje
tive 
odimension. Let x, y be distin
t verti
es of L

n

with fx;yg

?

6= ;.

The double perp fx;yg

??

is 
alled nth minimal if there exist verti
es a

i

, b

i

, a

i

6= b

i

,

1 � i � n, with fa

i

;b

i

g

?

6= ; for all i and fa

1

;b

1

g

??

( � � � ( fa

n

;b

n

g

??

= fx;yg

??

and there does not exist a longer 
hain of stri
t in
lusions.

Clearly, verti
es x and y of L

n

have to be in relative positions (1; 1), (1; 2), (2; 1),

(2; 2), (2; 3), (3; 2), or (3; 3). The following three lemmas will distinguish those 
ases up

to duality.

Lemma 2.6

Let n � 4, and let x, y be verti
es of L

n

.

(i) x and y are in relative position (1; 1) if and only if they are equal.

(ii) x and y are in relative position (1; 2) or (2; 1) if and only if they are distin
t, the

perp fx;yg

?

is non-empty, and the double perp fx;yg

??

is �rst minimal.
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(iii) x and y are in relative position (1; 3), (3; 1), (2; 2), (2; 3), (3; 2), or (3; 3) if and

only if they are distin
t and the perp fx;yg

?

is empty or the double perp fx;yg

??

is not �rst minimal.

Proof. The �rst statement is obvious. Let the relative position of x and y be (1; 2)

or (2; 1). Then fx;yg

?

6= ;. Indeed, up to duality we 
an assume that x = (x;X)

and y = (y; Y ) are in relative position (1; 2), so x = y, sin
e x and y span a line. The

interse
tion X \Y 
ontains a spa
e of 
odimension 2, whi
h is at least a line sin
e n � 4.

Hen
e there exists a 
ommon neighbor of x and y. If a, b are distin
t verti
es 
ontained

in fx;yg

??

, then, by Lemma 2.4, a and b are in relative position (1; 2) or (2; 1) and, thus,

fa;bg

?

6= ;. Again by Lemma 2.4, the double perps fx;yg

??

and fa;bg

??


oin
ide. If

x and y are in any other relative position and fx;yg

?

is empty, then there is nothing to

prove. So let us assume fx;yg

?

6= ;. Then the double perp fx;yg

??

is given by Lemma

2.4 and it follows immediately that it 
ontains verti
es a and b in relative position (1; 2)

or (2; 1). But, again by Lemma 2.4, this gives rise to a stri
tly smaller double perp. Hen
e

fx;yg

??

is not minimal. Statements (ii) and (iii) follow. 2

Lemma 2.7

Let n � 5, and let x and y be verti
es of L

n

in relative position (1; 3) or (3; 1). Then

fx;yg

?

6= ;.

Proof. Let x = (x;X) and y = (y; Y ). Up to duality we have x = y. The interse
tion

X \ Y 
ontains a spa
e of 
odimension 3, whi
h is at least a line, as n � 5. So there

exists a 
ommon neighbor of x and y. 2

Lemma 2.8

Let n � 5, and let x and y be verti
es of L

n

. The property `x and y are in relative position

(1; 3) or (3; 1)' is 
hara
terized by

� the perp fx;yg

?

is non-empty,

� the double perp fx;yg

??

is se
ond minimal, and

� there do not exist verti
es a;b; 
;d 2 fx;yg

??

with a 6= b and 
 6= d su
h that

fa;bg

??

\ f
;dg

??

= ;.

Proof. Up to duality we 
an assume that x and y are in relative position (3; 1). Then,

by Lemma 2.7, the perp fx;yg

?

is non-empty. The double perp fx;yg

??

is des
ribed by

Lemma 2.4. From that des
ription it is obvious that fx;yg

??

is se
ond minimal. Now

let a, b, 
, d be verti
es as stated in the hypothesis. By Lemma 2.4, the verti
es a and

b, respe
tively 
 and d, 
an only be in relative positions (2; 1) or (3; 1). But then Lemma

2.6 and Lemma 2.7 imply fa;bg

?

6= ; and f
;dg

?

6= ;. There is a 
ommon vertex in

fa;bg

??

and f
;dg

??

if one pair is in relative position (3; 1). So suppose both pairs are
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in relative position (2; 1). Let a = (a; A), b = (b; B), 
 = (
; C), d = (d;D). We have

A = B = C = D, sin
e x and y are at relative position (3; 1), 
f. Lemma 2.4. Moreover,

both a, b and 
, d span planes inside a 3-spa
e, by Lemma 2.4. Two planes in a 3-spa
e

have to interse
t in at least a line, and we have found a 
ommon vertex of fa;bg

??

and

f
;dg

??

.

Conversely, let x and y be in arbitrary relative position. Suppose fx;yg

?

6= ;. Then

another appli
ation of Lemma 2.4 shows, that fx;yg

??

only 
an be se
ond minimal if x

and y are in relative position (1; 3), (3; 1), or (2; 2). But if they are in relative position

(2; 2), then we 
an �nd verti
es a = (a; A), b = (b; B) in relative position (1; 2) and


 = (
; C), d = (d;D) in relative position (1; 2) 
ontained in fx;yg

??

and su
h that

fa;bg

??

\ f
;dg

??

= ;. (Note that fa;bg

?

6= ; and f
;dg

?

6= ; by Lemma 2.6.)

Indeed, we have a = b and 
 = d. But sin
e we 
an 
hoose both a = b and 
 = d freely in

a plane, they only have to interse
t in a point, and we have fa;bg

??

\ f
;dg

??

= ;. 2

Lemma 2.9

Let n � 5. Let k, l, and m be distin
t exterior lines of L

n

(F). They interse
t in a 
ommon

exterior point (i.e., they are 
ontained in a line pen
il), if there exist verti
es a 2 k, b 2 l,


 2 m that are pairwise in relative position (2; 1) su
h that fa;b; 
g

??


ontains verti
es

x, y in relative position (3; 1) with fx;yg

??

= fa;b; 
g

??

.

Proof. Suppose a = (k;K), b = (l; L), 
 = (m;M) with K = L = M . The lines k, l, m

mutually interse
t, sin
e (k;K), (l; L), and (m;M) are in mutual relative position (2; 1).

But, by Lemma 2.4, the lines k, l, and m together span a proje
tive 3-spa
e, be
ause

fa;b; 
g

??


ontains verti
es x, y in relative position (3; 1) with fx;yg

??

= fa;b; 
g

??

.

The 
laim follows, be
ause three mutually interse
ting lines spanning a 3-spa
e ne
essarily

interse
t in one point. 2

Lemma 2.10

Let n � 5, and let a and b be verti
es in relative position (2; 1). Then there exists a third

vertex 
 in relative position (2; 1) to both a and b su
h that fa;b; 
g

??


ontains verti
es

x, y in relative position (3; 1) with fx;yg

??

= fa;b; 
g

??

.

Proof. Suppose a = (a; A), b = (b; B) with A = B. The lines a and b interse
t in

a point, p say. Let q be a point outside the plane ha; bi su
h that the line pq does not

interse
t the hyperline A. Then 
 = (pq; A) is a vertex with the required properties. 2

3 The interior proje
tive spa
e

The purpose of this se
tion is to re
onstru
t the proje
tive spa
e P

n

(F) from an arbitrary

graph isomorphi
 to L

n

(F), and to provide a proof of Theorem 3. The notation introdu
ed
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in Se
tion 2 will be used freely and without referen
e. Throughout this se
tion let n 2 N

and let � be isomorphi
 to L

n

(F).

De�nition 3.1 Let n � 5. De�ne a re
exive relation � on the vertex set of a graph �

isomorphi
 to L

n

where for two distin
t verti
es x, y with fx;yg

?

6= ; we have x � y if

� the double perp fx;yg

??

is �rst or se
ond minimal, and

� there do not exist verti
es a;b; 
;d 2 fx;yg

??

with a 6= b and 
 6= d su
h that

fa;bg

??

\ f
;dg

??

= ;.

Lemma 3.2

Let n � 5. On the vertex set of � there are unique equivalen
e relations �

l

and �

h

su
h

that � = �

l

[ �

h

, and �

l

\ �

h

is the identity relation. Moreover, for a �xed isomorphism

�

�

=

L

n

(F), we either have

� �

l

is the relation `equal, in relative position (1; 2), or in relative position (1; 3)' and

�

h

is the relation `equal, in relative position (2; 1), or in relative position (3; 1)', or

� �

l

is the relation `equal, in relative position (2; 1), or in relative position (3; 1)' and

�

h

is the relation `equal, in relative position (1; 2), or in relative position (1; 3)'.

Proof. Verti
es x, y of � are in relation � if and only if their images (x;X) and (y; Y )

in L

n

(F) under some isomorphism �! L

n

(F) are in relative position (1; 1), (1; 2), (1; 3),

(2; 1), or (3; 1). Let us 
onsider equivalen
e relations that are subrelations of�. Obviously,

the identity relation is su
h an equivalen
e relation. Moreover, the relations `equal, in

relative position (1; 2), or in relative position (1; 3)' and `equal, in relative position (2; 1),

or in relative position (3; 1)' are equivalen
e relations. If we have verti
es x = (x;X),

y = (y; Y ), z = (z; Z) of �

�

=

L

n

(F) su
h that x, y are in relative position (1; �) and x,

z are in relative position (�; 1), then y 6= z and Y 6= Z and y, z 
annot be in relative

position (1; �) or (�; 1). Consequently, if we want to �nd two sub-equivalen
e relations �

l

and �

h

of � whose union equals �, then either of �

l

and �

h

has to be a subrelation

of `equal, in relative position (1; 2), or in relative position (1; 3)' or of `equal, in relative

position (2; 1), or in relative position (3; 1)'. It follows that the equivalen
e relations �

l

and �

h

have to be of the form as given in the lemma. 2

De�nition 3.3 Let n � 5, and let x be a vertex of �. With �

l

and �

h

on � as in Lemma

3.2, write [x℄

l

to denote the equivalen
e 
lass of �

l


ontaining x and [x℄

h

to denote the

equivalen
e 
lass of �

h


ontaining x. Refer to [x℄

l

as the interior line on x and to [x℄

h

as the interior hyperline on x of �.

Proposition 3.4

Let n � 5. There is a one-to-one 
orresponden
e between interior lines of � and exterior

lines of L

n

. In parti
ular, any isomorphism � : �! L

n

indu
es su
h a 
orresponden
e up
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to duality; the image under � of an interior line is an exterior line. A similar statement

is true for interior hyperlines of �.

Proof. This follows dire
tly from Lemma 3.2. 2

De�nition 3.5 Let n � 5. For distin
t verti
es x, y of � denote by x �

h

1

y that x �

h

y

and fx;yg

??

is minimal, and by x �

h

2

y that x �

h

y and fx;yg

??

is se
ond minimal.

De�nition 3.6 Let n � 5. A set S of interior lines of � is 
alled full if

(i) jSj � 2;

(ii) for distin
t interior lines k; l 2 S there exist verti
es a 2 k, b 2 l with a �

h

1

b;

(iii) for verti
es a, b with [a℄

l

, [b℄

l

2 S and a �

h

1

b, there exists a vertex 
 satisfying

a �

h

1


 and b �

h

1


 su
h that fa;b; 
g

??


ontains verti
es x, y with x �

h

2

y and

fa;b; 
g

??

= fx;yg

??

; and

(iv) any interior line [
℄

l


ontaining a vertex 
 as in (iii) is also 
ontained in S.

Proposition 3.7

Let n � 5. Up to duality, any isomorphism �! L

n

maps a full set of interior lines of �

onto a full line pen
il of exterior lines of L

n

and vi
e versa.

Proof. By Lemma 2.9 and up to inter
hange of �

l

and �

h

, the image �(S), where �

denotes an isomorphism � ! L

n

, of a full set S of interior lines of � is 
ontained in a

pen
il of exterior lines of L

n

, through some exterior point p, say. Let l be an exterior line

of L

n

in
ident with p. The full set S 
ontains distin
t lines a and b. If �(a), �(b), and l

span a 3-spa
e, then �

�1

(l) is 
ontained in the full set by de�nition. So suppose l lies in

the plane h�(a); �(b)i. Then the full set 
ontain a some line 
 su
h that �(a), �(b), �(
)

span a 3-spa
e, by Lemma 2.10 and the de�nition of a full set. But then also l, �(b) and

�(
) span a 3-spa
e, and �

�1

(l) is 
ontained in the full set. 2

De�nition 3.8 Let n � 5. Let S be a full set of interior lines of �. The interior point

p(S) of � is the union

S

l2S

l over all interior lines in the full set S. The geometry of

interior points and interior lines with symmetrized 
ontainment as in
iden
e is 
alled the

interior proje
tive spa
e on �. Dually, de�ne interior hyperplanes and the dual

interior proje
tive spa
e.

Proposition 3.9

Let n � 5. Up to duality there exists an isomorphism between the interior proje
tive spa
e

on � and the exterior proje
tive spa
e on L

n

(F). The same statement holds true for the

dual interior proje
tive spa
e. 2

Theorem 3 follows immediately from Proposition 3.9.
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4 Geometries on interior root points

This se
tion provides 
onstru
tions of the exterior (hyperboli
) root group geometries

on L

n

(F) in terms of exterior points, exterior lines, exterior hyperplanes, and exterior

hyperlines. Then Propositions 3.4 and 3.7 will give us means to des
ribe these geometries

intrinsi
ally on an arbitrary graph � isomorphi
 to L

n

(F). Throughout this se
tion let

n 2 N and let � be isomorphi
 to L

n

(F).

Lemma 4.1

Let n � 5, and let v

p;H

and v

q;I

be two distin
t exterior root points of L

n

(F). Then we

have jv

p;H

\ v

q;I

j � 1. More pre
isely, the points p and q and the hyperplanes H and I are

distin
t and the line pq does not interse
t the hyperline H\I if and only if jv

p;H

\v

q;I

j = 1.

Proof. Suppose jv

p;H

\ v

q;I

j 6= ;, i.e., in P

n

(F) there exist a line l and a hyperline L with

l � hp; qi, L � H \ I, and l \ L = ;. Assume there exists another line-hyperline pair

(m;M) satisfying these 
onditions. If it is distin
t from (l; L), then l 6= m or L 6= M . Up

to duality, we may assume L 6= M . Then immediately H = I, when
e p 6= q. But then

l = m = pq is 
ontained in H = I, whi
h have hyperplanes L and M . Hen
e l \ L 6= ;, a


ontradi
tion.

If p 6= q, H 6= I and pq \H \ I = ;, then (pq;H \ I) is a vertex of L

n

(F) 
ontained

in v

p;H

\ v

q;I

. Conversely, suppose there exists su
h a vertex. This implies p 6= q and

H 6= I. But then the only 
andidate for being 
ontained in v

p;H

\ v

q;I

is (pq;H \ I),

when
e pq \H \ I = ;. 2

For the next lemma noti
e that an exterior hyperplane of L

n

(F) is not a hyperplane

of the exterior proje
tive spa
e on L

n

(F). However, there is an obvious one-to-one 
orres-

ponden
e between exterior hyperplanes and hyperplanes of the exterior proje
tive spa
e,

by the map

v

H

= f(l; L) 2 L

n

(F) j L � Hg 7!

[

p2H

v

p

=

[

p2H

f(l; L) 2 L

n

(F) j p 2 lg :

Therefore there is no harm done if one speaks of in
iden
e between exterior points and

exterior hyperplanes and rather means in
iden
e between exterior points and the images

of exterior hyperplanes by means of this map.

Lemma 4.2

Let n � 5. An exterior point v

p

and an exterior hyperplane v

H

of L

n

(F) are non-in
ident if

and only if any exterior line v

l

in
ident with v

p


ontains a vertex 
ontained in an exterior

hyperline v

L

in
ident with v

H

and vi
e versa.

Proof. Suppose v

p

and v

H

are non-in
ident and let v

l

be an exterior line in
ident with

v

p

. The set v

l


onsists of all verti
es of L

n

(F) having l as the �rst 
oordinate. The se
ond


oordinate ranges over all hyperlines L that do not interse
t l. By the isomorphism
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between the exterior proje
tive spa
e on L

n

(F) and P

n

(F) that maps v

p

onto p, v

l

onto

l, v

H

onto H, also p is in
ident with l and non-in
ident with H. Hen
e l interse
ts H in

a unique point. But then there exists a hyperline M non-interse
ting l that is 
ontained

in H. The vertex (l;M) is 
ontained in the exterior hyperline v

M

, whi
h is in
ident with

v

H

. Similarly, any exterior hyperline in
ident with v

H


ontains a vertex 
ontained in an

exterior line in
ident with v

p

. Conversely, suppose v

p

and v

H

are in
ident. Choose an

exterior line v

l

through v

p

su
h that l is 
ontained in H. Now, a hyperline that does not

interse
t l 
annot be 
ontained in H. 2

In view of the pre
eding lemma, in a graph � isomorphi
 to L

n

(F), an interior point

p and an interior hyperplane H are 
alled non-in
ident if and only if any interior line l

in
ident with p 
ontains a vertex of � 
ontained in an interior hyperline L in
ident with

H and vi
e versa. Conversely, an interior point and an interior hyperplane are in
ident

if they are not non-in
ident.

De�nition 4.3 Let n � 5. An interior root point of � is the interse
tion of an interior

point with an in
ident interior hyperplane. An interior root line is of the form

[

interior point p2l

p \H

for a �xed interior line l 
ontained in the �xed interior hyperplane H or

[

interior hyperplane H�L

p \H

for a �xed interior hyperline L 
ontaining the �xed interior point p.

Proposition 4.4

Let n � 5. The following hold.

(i) The geometry of exterior root points and exterior root lines on L

n

(F) with sym-

metrized 
ontainment as in
iden
e is isomorphi
 to the root group geometry of

SL

n+1

(F).

(ii) The geometry of exterior root points and verti
es of L

n

(F) with symmetrized 
ontain-

ment as in
iden
e is isomorphi
 to the hyperboli
 root group geometry of SL

n+1

(F).

(iii) The geometry of interior root points and interior root lines on � with symmetrized


ontainment as in
iden
e is isomorphi
 to the root group geometry of SL

n+1

(F).

(iv) The geometry of interior root points and verti
es of � with symmetrized 
ontainment

as in
iden
e is isomorphi
 to the hyperboli
 root group geometry of SL

n+1

(F).
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In parti
ular, there is a one-to-one 
orresponden
e between the verti
es of � and the lines

of the hyperboli
 root group geometry of SL

n+1

(F). The interior root points of � 
orrespond

to the full line pen
ils of the (hyperboli
) root group geometry.

Proof. Noti
e that by Propositions 3.4 and 3.7 plus the De�nition 4.3 of interior root

points and interior root lines, Statement (i) is equivalent to Statement (iii) and Statement

(ii) is equivalent to Statement (iv). However, the �rst two statements follow the de�nition

of exterior root points and exterior root lines in Se
tion 2.

The additional 
laim about the verti
es of � follows from the isomorphism between

� and L

n

(F) and the fa
t that lines of the hyperboli
 root group geometry of SL

n+1

(F)


orrespond to non-interse
ting line-hyperline pairs of the proje
tive spa
e P

n

(F) by as-

signing the fundamental SL

2

to the pair 
onsisting of its 
ommutator and its 
entralizer

on the natural module of SL

n+1

(F). The 
laim about the line pen
ils follows from the fa
t

that interior points 
orrespond to full line pen
ils of interior lines (
f. Proposition 3.7),

similarly interior hyperplanes 
orrespond to full pen
ils of interior hyperlines; interse
ting

an interior point with an in
ident interior hyperplane, we get a full line pen
il of the

hyperboli
 root group geometry. 2

The geometries of interior obje
ts as in the theorem are 
alled the interior (hyper-

boli
) root group geometry on �, respe
tively.

5 Lo
ally line-hyperline graphs

In this se
tion we prove Theorem 1. Throughout the whole se
tion let n � 7 and let F

be a division ring, or let n � 6 and let F be a division ring of order at least three; let

� be a simply 
onne
ted, lo
ally L

n

(F) graph. We re
all that a graph is 
alled simply


onne
ted if it is 
onne
ted and any 
y
le in � 
an be de
omposed into triangles.

Noti
e that interior points and interior lines only exist on the perps of � and may

di�er on di�erent perps; it is one task of this se
tion to show that there exist well-de�ned

notions of global points and global lines. To avoid 
onfusion, we will index ea
h interior

point and ea
h interior line by the vertex whose perp it belongs to. We 
all those points

and lines lo
al points and lo
al lines; similarly, we use the notion of lo
al equivalen
e

relations.

Lemma 5.1

Let x and y be adja
ent verti
es of �. Then there exists a 
hoi
e of lo
al equivalen
e

relations �

l

x

and �

l

y

su
h that the interse
tions of �

l

x

and �

l

y

to x

?

\ y

?


oin
ide.

Proof. Choose a lo
al equivalen
e relation �

l

x

on x

?

. This indu
es 
oordinates on x

?

, so

we 
an identify x

?

with L

n

(F), indu
ing 
oordinates on x

?

\y

?

�

=

L

n�2

(F), whi
h in turn

indu
es 
oordinates of y

?

�

=

L

n

(F) using Lemma 2.6(ii). A 
hoi
e of �

l

y

in a

ordan
e

with the 
oordinates on y

?

�nishes the proof. 2
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Lemma 5.2

There is a 
hoi
e of lo
al equivalen
e relations (�

l

x

)

x2�

su
h that for any two adja
ent

verti
es x and y the restri
tions of �

l

x

and of �

l

y

to x

?

\ y

?


oin
ide.

Proof. Suppose that x, y, z is a triangle of �. In view of Lemma 5.1 we may assume

that �

l

x

and �

l

y

have the same restri
tion to x

?

\ y

?

and that �

l

x

and �

l

z

have the same

restri
tion to x

?

\ z

?

. Let l

x

be an interior line of x

?

su
h that l

x

\ y

?

\ z

?

6= ;. By

analysis of x

?

we �nd two verti
es, say u and v, of l

x

\y

?

\z

?

. The above 
hoi
es of lo
al

equivalen
e relations imply that u and v belong to both �

l

y

and �

l

z

, whi
h implies that

�

l

y

and �

l

z

have the same restri
tion to y

?

\ z

?

by Lemma 2.6(ii). Sin
e � is assumed to

be simply 
onne
ted, the lemma follows immediately from the triangle analysis. 2

De�nition 5.3 Fix a 
hoi
e of (�

l

x

)

x2�

as given in Lemma 5.2 and de�ne �

l

:=

S

x2�

�

l

x

.

Lemma 5.4

Let x be a vertex of �. Then the restri
tion of �

l

to x

?


oin
ides with �

l

x

. In parti
ular,

suppose that x and y are verti
es of � su
h that x �

l

u

y for some vertex u 2 fx;yg

?

.

Then x �

l

v

y for every vertex v 2 fx;yg

?

.

Proof. Obviously, �

l

jv

?

�v

?

��

l

v

. Conversely assume there exist x;y 2 v

?

with x �

l

y.

Sin
e �

l

:=

S

x2�

�

l

x

, there exists a vertex u 2 fx;yg

?

with x �

l

u

y. In y

?

denote the

interse
tion of hu

y

; v

y

i with U

y

by b

y

; similarly, denote in x

?

the interse
tion of hu

x

; v

x

i

with U

x

by 


x

. First we will prove that we 
an assume that b

y

\ V

y

= ; and 


x

\ V

x

= ;,

or, equivalently, hv

x

; u

x

i \ V

x

\ U

x

= ; and hv

y

; u

y

i \ V

y

\ U

y

= ;. Indeed, 
onsider u

?

;

the spa
es b

y

and 


x

arise as b

u

, respe
tively 


u

. Choose some line u

0

u

in X

u

\ Y

u

. This

line o

urs as the line u

0

x

in x

?

and as the line u

0

y

in y

?

. De�ne 


0

x

:= hv

x

; u

0

x

i \ V

x

and




00

x

:= hu

x

; 


0

x

i \ U

x

. Similary, let b

0

y

:=




v

y

; u

0

y

�

\ V

y

and b

00

y

:=




u

y

; b

0

y

�

\ U

y

. The spa
es

b

00

y

and 


00

x

arise as b

00

u

, respe
tively 


00

u

in u

?

. Let b

000

u

:= hx

u

; b

00

u

i \X

u

. Choose a hyperline

U

0

u

that 
ontains x

u

and does not interse
t 


00

u

, b

000

u

, or u

0

u

, whi
h is possible if F 6= F

2

.

Then the vertex u

0

:= (u

0

u

; U

0

u

) is adja
ent to x, u, y, and we have hv

x

; u

0

x

i \ V

x

\U

0

x

= ;

and




v

y

; u

0

y

�

\ V

y

\ U

0

y

= ;.

So now assume that b

y

\V

y

= ; and 


x

\V

x

= ;. Choose a hyperlineW

u

that 
ontains

b

u

and 


u

, but not x

u

, if su
h a 
hoi
e is possible. Then let w := (x

u

;W

u

). There exists

a hyperline W

1

u


ontaining b

u

but not x

u

that interse
ts both W

u

and Y

u

in a hyperplane

of either. Let w

1

:= (x

u

;W

1

u

). In y

?

denote U

y

\ V

y

by UV

y

. This spa
e arises as a

spa
e UV

u

in u

?

. The interse
tion UV

u

\ W

1

u


ontains a proje
tive line l

u

. The span

hx

u

; b

u

i does not interse
t l

u

, so we 
an �nd a hyperline L

u

that does not interse
t l

u

but


ontains hx

u

; b

u

i. The vertex l := (l

u

; L

u

) is adja
ent to u, w

1

, y, and v. Lo
al analysis

of l

?

shows that w

1

? v. The fa
t w

1

�

l

u

y implies w

1

�

l

l

y, whi
h implies w

1

�

l

v

y.

Similarly, we �nd a vertex l

0

adja
ent to w, u, w

1

, v, and establish w ? v. This implies

w �

l

v

y. By symmetry we also have w �

l

v

x, so transitivity of �

l

v

yields x �

l

v

y. If the
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hoi
e of the hyperline W

u


ontaining b

u

and 


u

but not x

u

is not possible, then there

exists a hyperline T

u

that 
ontains b

u

and 


u

as well as x

u

. Let t

u

� UV

u

be a line that

does not interse
t T

u

. Then 
ontinue the above argument with verti
es w := (x

u

;W

u

)

and w

0

:= (x

u

;W

0

u

) su
h that W

u


ontains t

u

and b

u

and W

0

u


ontains t

u

and 


u

.

If F = F

2

we 
an assume n � 7, and the proof of the lemma is straightforward; 
f.

Lemma 4.7 of [1℄ or Lemma 1.3.9 of [5℄. 2

Lemma 5.5

The relation �

l

is an equivalen
e relation. In parti
ular, distin
t verti
es x �

l

y are at

distan
e two in �.

Proof. Re
exivity and symmetry follow from re
exivity and symmetry of ea
h �

l

x

. In

order to prove transitivity suppose x �

l

u

y and y �

l

v

z. In y

?

we 
an assume that v

y

6� U

y

and u

y

6� V

y

. Fix a hyperline W

y

that 
ontains U

y

\ V

y

, that interse
ts both U

y

and

V

y

in a hyperplane of W

y

, and that does not interse
t u

y

or v

y

. The line-hyperline pairs

(u

y

;W

y

) and (v

y

;W

y

) give rise to verti
es u

0

, respe
tively v

0

that are both adja
ent to y.

Let us now study the path x ? u ? y ? u

0

. In u

?

denote the interse
tion X

u

\ Y

u

by

XY

u

. This spa
e indu
es a spa
e XY

y

of y

?

. The interse
tion U

y

\W

y

is a hyperplane of

U

y

, so U

y

\W

y

\XY

y


ontains a proje
tive line, l

y

say. Choosing any hyperline L

y

� u

y

that does not interse
t l

y

, we �nd a vertex a = (l

y

; L

y

) that is adja
ent to u, u

0

, y, and x.

In a

?

we see that x ? u

0

; moreover x �

l

a

y, and, thus, x �

l

u

0

y. Similarly one establishes

z ? v

0

and y �

l

v

0

z. In v

0

?

we 
an �nd a vertex z

0

in the same �

l

v

0

equivalen
e 
lass as y

and z su
h that the hyperline of z

0

interse
ts the hyperlines of y and z in hyperplanes of

the hyperline. Denote the interse
tion Y

v

0

\Z

0

v

0

by Y Z

0

v

0

and the interse
tion X

u

0

\Y

u

0

by

XY

u

0

. Both spa
es indu
es subspa
es Y Z

0

y

, respe
tively XY

y

of W

y

in y

?

. Inside y

?

, the

interse
tion Y Z

0

y

\XY

y


ontains a proje
tive line, m

y

say. If hu

y

; v

y

i does not interse
t

m

y

, then we 
an �nd a hyperline M

y

that together with m

y

forms a vertex m of � that

is adja
ent to y, u

0

, x, v

0

, and z

0

. If hu

y

; v

y

i does interse
t m

y

, then we 
an 
hoose a

line n

y

� Y Z

0

y

nm

y

and a non-interse
ting hyperline N

y

� hv

y

; m

y

i, whi
h gives rise to

a vertex n = (n

y

; N

y

) adja
ent to y, v

0

, and z

0

. Moreover, the spa
e hn

y

; u

y

i does not

interse
t m

y

, and as above we �nd a vertex m of � that is adja
ent to x, u

0

, y, n, and

z

0

. The fa
ts x �

l

u

0

y and y �

l

v

0

z

0

imply x �

l

m

y and y �

l

m

z

0

, be
ause m ? u

0

and

either m ? v

0

or m ? n ? v

0

, so transitivity of �

l

m

yields x �

l

m

z

0

. We have redu
ed the

problem to the path x ? m ? z

0

? v

0

? z. However, in v

0

?

the hyperlines of z

0

and z

interse
t in a hyperplane of either hyperline, so by 
onsiderations as above we 
an �nd a

vertex m

0

adja
ent to x, z

0

, and z, yielding x �

l

m

0

z and, thus, x �

l

z.

The se
ond statement follows from the above 
onsiderations and Lemma 5.4. 2

De�nition 5.6 A global line of � is an equivalen
e 
lass of �

l

. Dually, a global

hyperline is an equivalen
e 
lass of �

h

. By Lemma 5.4 the lo
al interse
tion of a global

line is either empty or a lo
al line.
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Lemma 5.7

Let l be a global line of �. Then L \ x

?

6= ; if and only if L \ y

?

6= ; for an arbitrary

global hyperline L and x;y 2 l. The dual statement holds as well.

Proof. By Lemma 5.5 there exists a vertex z adja
ent to x and y. Let h

1

be some

neighbor of y. We have to prove that there exists a neighbor of x 
ontained in the same

�

h

equivalen
e 
lass as h

1

. Denote this �

h

equivalen
e 
lass by H. First of all, we 
an

assume that in z

?

the interse
tion X

z

\ Y

z

is a hyperplane of X

z

and Y

z

. Indeed, there

always exists a neighbor y

0

of z with y �

l

y

0

su
h that X

z

\Y

0

z

and Y

0

z

\Y

z

are hyperplanes

of Y

0

z

, so we 
an �rst 
onsider the path y

0

? z ? y ? h

1

to establish a neighbor h

0

1

of y

0

with h

1

�

h

h

0

1

, and subsequently 
onsider the path x ? z ? y

0

? h

0

1

.

So now assume that in z

?

the interse
tion X

z

\ Y

z

is a hyperplane of X

z

and Y

z

.

Denote this interse
tion X

z

\Y

z

by XY

z

, whi
h indu
es a subspa
e XY

y

of Z

y

in y

?

. The

interse
tion XY

y

\H

y


ontains a proje
tive line, v

y

say. Choose a hyperline V

y

� z

y

that

does not interse
t v

y

, whi
h yields a vertex v = (v

y

; V

y

) that is adja
ent to y, z, and x.

Sin
e v

y

� H

y

, there exists a neighbor h

2

of y with h

1

�

h

h

2

and h

2

? v. In v

?

we have

l

v

� H

v

. Choosing a line in X

v

nH

v

we have found a vertex h

3

adja
ent to v and x with

h

3

�

h

h

2

. Therefore h

3

�

h

h

1

by Lemma 5.5, and the lemma is proved. 2

Lemma 5.8

Let l ? x ? y ? m be a path of verti
es with l �

l

m. Then there exists a vertex

k 2 fx;yg

?

with l �

l

k �

l

m.

Proof. Consider x

?

. If l

x

� Y

x

, then there is nothing to prove. If l

x

\ Y

x

= ;, then let

y

0

:= (l

x

; Y

x

). Note that l �

l

x

y

0

. The fa
t y

0

�

h

x

y implies, by Lemma 5.7, the existen
e

of a vertex m

0

adja
ent to y

0

with m

0

�

l

m. But m

0

�

l

m �

l

l �

l

y

0

yields m

0

�

l

y

0

, a


ontradi
tion to m

0

? y

0

and Lemma 5.4.

The above 
onsiderations and symmetry of x

?

and y

?

leave the following 
ase: In x

?

assume that l

x

interse
ts Y

x

in the point p

x

, while in y

?

assume that m

y

interse
ts X

y

in the point q

y

. The point q

y

arises as the point q

x

in x

?

; let a

y

:= hx

y

; m

y

i \X

y

, whi
h

arises as a

x

in x

?

. If hl

x

; y

x

i 3 q

x

, then ha

x

; l

x

; y

x

i is 
ontained in a hyperline, so we 
an

�nd a vertex u adja
ent to x and y 
ontaining l

u

andm

u

. Lemma 5.4 implies l

u

= m

u

, and

we are done. So assume that hl

x

; y

x

i 63 q

x

. Then there exists a hyperline W

x


ontaining

hl

x

; y

x

i and a line w

x


ontaining q

x

that does not interse
t W

x

. Let w := (w

x

;W

x

). Then

by Lemma 5.7 there exists a vertex l

0

adja
ent to w with l �

l

l

0

. Denote hl

w

; y

w

i \ Y

w

by

b

w

. This spa
e translates to a spa
e b

y

of y

?

. The lo
al line w

y

interse
ts the lo
al line

m

y

, so hb

y

; m

y

; w

y

i is 
ontained in a hyperline. Hen
e we 
an �nd a neighbor v of w and

y that 
ontains l

v

and m

v

, thus yielding l

v

= m

v

. However, while w

v

interse
ts with m

v

,

the hyperline W

v


ontains l

v

, a 
ontradi
tion to w

v

\W

v

= ;. 2
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Lemma 5.9

Let h

1

�

h

h

2

and i

1

�

h

i

2

be su
h that there exist verti
es x 2 fh

1

; i

1

g

?

and y 2 fh

2

; i

2

g

?

.

Then there exist verti
es h

3

; i

3

2 y

?

with h

2

�

h

h

3

and i

2

�

h

i

3

and a vertex x

0

2 fh

3

; i

3

g

?

in the same 
onne
ted 
omponent of fh

3

; i

3

g

?

as y with x �

l

x

0

.

Proof. Suppose that H

y

\I

y

is a hyperline of both H

y

and I

y

. Then we 
an �nd adja
ent

verti
es h

3

and i

3

in y

?

with h

3

�

h

h

2

and i

3

�

h

i

2

. By Lemma 5.7 there exist verti
es

x

1

? h

3

and x

2

? i

3

with x

1

�

l

x �

l

x

2

. But now by Lemma 5.8 there exists a vertex

x

0

2 fh

3

; i

3

g

?

with x

1

�

l

x

0

�

l

x

2

and, thus, x �

l

x

0

.

So now we 
an suppose that H

y

\ I

y

is a hyperplane of both H

y

and I

y

. Denote this

interse
tion by HI

y

; it indu
es a spa
e HI

h

2

of h

?

2

. Additionally we 
an assume that

h

2

y

= i

2

y

. By Lemma 5.7 there exist verti
es x

1

? h

2

and x

2

? i

2

with x

1

�

l

x �

l

x

2

. In

h

?

2

we 
an assume that the hyperlineX

1

h

2


ontains the line y

h

2

, if x

1

h

2

does not interse
t y

h

2

.

Otherwise we 
an assume that the hyperline X

1

h

2

interse
ts the line y

h

2

. Now in h

?

2

the

interse
tion HI

h

2

\X

1

h

2


ontains a proje
tive line. Moreover,




x

1

h

2

; y

h

2

�

\HI

h

2

\X

1

h

2

= ;,

by the above assumptions on X

1

h

2

and y

h

2

. Therefore there exists a vertex v adja
ent to

x

1

, h

2

, y, and i

2

. By Lemma 5.8 there exists a vertex x

3

2 fv; i

2

g

?

with x

1

�

l

x

3

�

l

x

2

and, thus, x �

l

x

3

. Lo
al analysis of v

?

yields a vertex x

4

2 fh

2

; i

2

g

?

with x

4

�

l

x

3

�

l

x.

2

Lemma 5.10

Let l and m be global lines of �. Then there exist verti
es of l and m at mutual distan
e

at most two.

Proof. Assume there exist verti
es l 2 l and m 2 m at distan
e three and let l ? x ?

y ? m be a path from l to m. In y

?

denote hx

y

; m

y

i \ X

y

by a

y

. This line indu
es a

line a

x

of x

?

. If hl

x

; a

x

; y

x

i is 
ontained in a hyperline, then we 
an 
hoose a hyperline

Y

0

x

� hl

x

; a

x

; y

x

i and a non-interse
ting line y

0

x

� Y

x

. This yields a vertex y

0

adja
ent to

x and y whi
h has a neighbor m

0

�

l

m. Moreover, y

0

is adja
ent to a vertex l

0

�

l

l. By

Lemma 5.7 the vertex l is adja
ent to some vertex z �

h

y

0

, whi
h in turn is adja
ent to

a vertex m

00

�m, and we have found l 2 l and m

00

2 m at distan
e two.

So now suppose that hl

x

; a

x

; y

x

i is not 
ontained in a hyperline. Then we 
an 
hoose

a hyperline Y

0

x

that 
ontains ha

x

; y

x

i and interse
ts l

x

in a point, and we 
an 
hoose a

non-interse
ting line y

0

x

in Y

x

. If hl

x

; a

x

; y

0

x

i is 
ontained in a hyperline, then we are in

the situation of the above paragraph, so assume that hl

x

; a

x

; y

0

x

i is not 
ontained in a

hyperline. Then we 
an 
hoose any hyperline Y

00

x


ontaining ha

x

; y

0

x

i but not l

x

and a

non-interse
ting line y

00

x

inside Y

0

x

that interse
ts l

x

. Now hl

x

; a

x

; y

00

x

i is 
ontained in a

hyperline and, by the above paragraph, we 
an �nd verti
es of l and m at distan
e two.

The lemma follows by indu
tion on the length of some path from some element of l

to some element of m. 2
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De�nition 5.11 Let l and m be distin
t global lines of �, let l 2 l, m 2 m be at distan
e

at most two, and let x be adja
ent to l and m. Then hl; mi 
onsists of those global lines

k with k \ x

?

6= ; su
h that k

x

lies in the span of l

x

and m

x

. If l

x

interse
ts m

x

, then

hl; mi is 
alled a global plane, and otherwise a global 3-spa
e. Dually one de�nes

interse
tions of global hyperplanes.

Lemma 5.12

The notion of global planes and global 3-spa
es is well de�ned. The same holds for the

dual statement.

Proof. We will prove the dual statement instead. Let h

1

�

h

h

2

and i

1

�

h

i

2

be su
h that

there exists verti
es x 2 fh

1

; i

1

g

?

and y 2 fh

2

; i

2

g

?

. By Lemma 5.9 there exist verti
es

h

3

; i

3

2 y

?

with h

2

�

h

h

3

and i

2

�

h

i

3

and a vertex w 2 fh

3

; i

3

g

?

with x �

l

w and a

path from y to w in fh

3

; i

3

g

?

. By Lemma 5.5 there exists a vertex z adja
ent to x and

w. We 
an assume that X

z

\W

z

is a hyperplane in both X

z

and W

z

. For, there exists a

vertex w

0

�

l

x;w adja
ent to z su
h that X

z

\W

0

z

and W

0

z

\W

z

are hyperplanes of W

0

z

.

By Lemma 5.7 there are verti
es h

0

3

; i

0

3

2 w

0

?

with h

3

�

h

h

0

3

and i

3

�

h

i

0

3

.

So now assume that X

z

\W

z

is a hyperplane in both X

z

and W

z

. Denote this inter-

se
tion by XW

z

, whi
h indu
es a spa
e XW

w

. Up to passing to a neighbor of x, z, w we


an assume that in w

?

the hyperline Z

w


ontains H

w

\ I

w

. Therefore XW

w

\H

w

\ I

w


ontains a proje
tive line, and we 
an �nd a neighbor v of x, z, w whose line in w

?

is 
ontained in H

w

\ I

w

. Therefore there exist verti
es h

4

; i

4

2 v

?

with h

3

�

h

h

4

and

i

3

�

h

i

4

. Four appli
ations of Lemma 5.8 �nish the proof. 2

De�nition 5.13 Denote by L

�

the set of global lines of �. A global pre-point is

de�ned as the union

S

l2S

l of global lines 
ontained in some set S su
h that any pair l,

m of distin
t global lines 
ontained in S spans a global plane and for any triple k, l, m

of distin
t global lines 
ontained in S there exists a global line n in S that spans a global

plane with any of k, l, or m distin
t from n and a global 3-spa
e with any pair of k, l,

or m not 
ontaining n. A maximal global pre-point is 
alled a global point. Denote the

set of global points by P

�

.

Proposition 5.14

The point-line geometry (P

�

;L

�

) is a proje
tive spa
e.

Proof. Let p and q be points of (P

�

;L

�

). Then there exists lines l through p and m

through q. By Lemma 5.10 there exists verti
es l 2 l and m 2 m at distan
e at most two,

so there exists a vertex x adja
ent to both l and m. The interse
tions p \ x

?

and q \ x

?

are lo
al points of x, so there exists a lo
al line k

x


onne
ting p

x

and q

x

. Hen
e we have

found a global line k joining p and q, so (P

�

;L

�

) is a linear spa
e.

It remains to prove Pas
h's axiom. Let l and m be interse
ting lines. By Lemma 5.10

there exists a vertex z adja
ent to some verti
es l 2 l andm 2 m. In z

?

the plane hl

z

; m

z

i
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is a proje
tive plane, hen
e so is the global plane spanned by l and m, and the proof is

�nished. 2

Proposition 5.15

The graph � is isomorphi
 to the line-hyperline graph of P

�

= (P

�

;L

�

).

Proof. Denote by




x

?

�

the set of global lines of � that have a non-empty interse
tion

with x

?

. This set obviously is a hyperline of (P

�

;L

�

). Therefore the map � ! L(P

�

)

de�ned by x 7! ([x℄

�

l

;




x

?

�

) de�nes an isomorphism between � and the line-hyperline

graph of (P

�

;L

�

). 2

Proof of Theorem 1. Assuming � to be simply 
onne
ted, Proposition 5.15 implies that

� is isomorphi
 to L

n+2

(F). Therefore, if � is not ne
essarily simply 
onne
ted, then �

is isomorphi
 to a quotient of L

n+2

(F). However, by Lemma 2.3 the diameter of L

n+2

(F)

equals two, so L

n+2

(F) does not admit any proper quotients that are lo
ally L

n

(F), and

the theorem follows. 2

6 Hyperboli
 root group geometries

This se
tion gives a proof of Theorem 2. Throughout the whole se
tion, let � be a


onne
ted, lo
ally L

n�1

(F) graph for a division ring F and n � 6.

De�nition 6.1 Let � = (V;?) be a 
onne
ted, lo
ally L

n�1

(F) graph. � is geometriz-

able if there exists a family S of subsets of V su
h that

� for any S 2 S and any vertex x 2 V the interse
tion S \ x

?

is either empty or an

interior root point of x

?

, and

� for any interior root point p

x

of x

?

, x 2 V, there exists a unique set S 2 S 
ontaining

p

x

.

The point-line geometry (S;V) with symmetrized 
ontainment as in
iden
e is 
alled a

geometrization of �. An element of S is 
alled a global root point.

Lemma 6.2

Let � be geometrizable and let x and y be two verti
es of �. If p, q are two verti
es

adja
ent to both x and y that belong to a 
ommon interior root point of x

?

, then they

also belong to a 
ommon interior root point of y

?

.

Proof. Let (S;V) be a geometry on �. Then there is a unique S 2 S 
ontaining p and

q. But sin
e p;q 2 S \ y

?

, they also belong to an interior root point of y

?

. 2
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Lemma 6.3

Let � be geometrizable. Then, up to isomorphism, there is at most one geometrization of

� with the property that any two verti
es 
ontained in the same global point are at distan
e

two in �.

Proof. Suppose su
h a geometry on � exists. Fix a vertex x and 
onsider the interior

hyperboli
 root group geometry on x

?

�

=

L

n�1

(F). Let a, b be two distin
t verti
es of

an interior root point p of x

?

. Note that a and b uniquely determine this interior root

point, by Lemma 4.1. Now let y be an arbitrary vertex of �. The proposition is proved,

if it is determined whether y belongs to the set S 2 S that 
ontains p or not.

We may assume that there exists a vertex z adja
ent to y and a, sin
e otherwise

y 
annot be 
ontained in S by hypothesis. By Proposition 2.3 there exists a 
hain of

verti
es in a

?

�

=

L

n�1

(F) 
onne
ting x and z. Denote the vertex 
losest to x by w. By

lo
al analysis of x

?

we 
an �nd another vertex 
 in x

?

\ w

?

belonging to the interior

root point p aside from a. By Lemma 6.2 the verti
es a and 
 are 
ontained in a 
ommon

interior root point q of w

?

. Obviously the interior root point q of w

?

has also to be


ontained in S. Using indu
tion, we see that it is determined whether y is 
ontained in

the set S or not. 2

Proposition 6.4

Let n � 6, let F be a division ring, and let (P;L;?) be a partial linear spa
e endowed

with a symmetri
 relation ? on the point set su
h that x ? p and x ? q for distin
t points

p, q on some line l and any point x implies x ? y for all points y of l. Moreover suppose

for any line k 2 L the spa
e k

?

is isomorphi
 to the hyperboli
 root group geometry of

PSL

n

(F) with l ? m if and only if [l; m℄ = 1 for lines l, m inside k

?

.

(i) If any two interse
ting lines of (P;L) are at distan
e two in (L;?), then (L;?) is

geometrizable, a geometrization of (L;?) as given in Lemma 6.3 exists, and (P;L)

is isomorphi
 to that geometry.

(ii) If the graph (L;?) is isomorphi
 to L

n+1

(F), then (P;L) is isomorphi
 to the hy-

perboli
 root group geometry of PSL

n+2

(F).

Proof. Let us start with a proof of Statement (i). The graph (L;?) is lo
ally L

n�1

(F).

Consider the family of all full line pen
ils of (P;L). This family gives rise to a geometry

on (L;?) in the sense of De�nition 6.1. Indeed, any interse
tion of a full line pen
il

with k

?

for an arbitrary line k is either empty or a full line pen
il of the subspa
e k

?

.

But by Proposition 4.4 a full line pen
il of k

?


orresponds to an interior root point.

Conversely, any interior root point of a perp of a line 
orresponds to a full line pen
il of

this perp, whi
h is 
ontained in a unique full line pen
il of the whole geometry. Hen
e

(L;?) is geometrizable. Moreover, sin
e any two interse
ting lines are demanded to be at

distan
e two in (L;?), the global geometry on (L;?) we just have 
onstru
ted satis�es

the hypothesis of Proposition 6.3. The last 
laim follows from the fa
t that (P;L) is
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isomorphi
 to the geometry on the full line pen
ils as points and the line set L. Statement

(ii) follows from Proposition 2.3, Proposition 4.4, and Statement (i). 2

Theorem 2 follows from Theorem 1 and Statement (ii) of Proposition 6.4. Noti
e that

the restri
tion of n to be greater or equal to 7 in Theorem 2 is 
ru
ial. In 
ase n = 6, the

point-line geometry on the long root subgroups and the fundamental SL

2

's of the group

E

6

(F) with ? being the 
ommutation relation satis�es the hypothesis of the theorem.

7 Group-theoreti
 
onsequen
es

Finally, we will prove Theorem 4 and Theorem 5.

Proof of Theorem 4. Choose an involution z 2 J \ K that is the 
entral involution

of some group isomorphi
 to SL

2

(F) whi
h is a fundamental SL

2

in both J and K.

Note that z 
ommutes with x and y. The elements y and z are 
onjugate in K by an

involution, when
e they are 
onjugate in G. Similarly, x and z are 
onjugate in J by

an involution. Therefore the 
onjugation a
tion of the group G indu
es an a
tion as the

group Sym

3

on the set fx; y; zg and as the group Sym

2

on the set fx; yg. Consider the

graph � on all 
onjugates of x in G. A pair a, b of verti
es of � is adja
ent if there

exists an element g 2 G su
h that (x

g

; y

g

) = (a; b). Sin
e G indu
es the a
tion of Sym

2

on fx; yg, this de�nition of adja
en
y is symmetri
, and we have de�ned an undire
ted

graph. Moreover, the elements x, y, and z are pairwise adja
ent and, thus, form a 3-
lique

of �. De�ne U

1

as the stabilizer in G of the vertex x and U

2

as the stabilizer in G of

the edge fx; yg. The stabilizer of fx; yg permutes x and y and therefore inter
hanges

C

G

(x) � K and C

G

(y) � J . Hen
e the stabilizer of x together with the stabilizer of

fx; yg generates G, as G = hJ;Ki � hU

1

; U

2

i. Consequently, the graph � is 
onne
ted.

Also, � is lo
ally L

n�1

(F) by 
onstru
tion. To prove this, it is enough to show that any

triangle in � is a 
onjugate of (x; y; z). Let (a; b; 
) be a triangle, whi
h means there exist

verti
es d, e, f of � su
h that (a; b; d), (a; 
; e), and (b; 
; f) are 
onjugates of (x; y; z) in

G. Let g 2 G with (x

g

; y

g

; z

g

) = (a; b; d). Noti
e that b; d 2 K

g

are 
ommuting 
entral

involutions of fundamental SL

2

's of K

g

. The triangles (a; b; d) and (a; 
; e) are 
onjugate

in C

G

(a) = X

g

�K

g

. Choose h 2 C

G

(a) su
h that (a

h

; b

h

; d

h

) = (a; 
; e). Then h = h

X

h

K

with h

X

2 X

g

, h

K

2 K

g

. The element h

X


entralizes b and d, sin
e b; d 2 K

g

. Therefore


 = b

h

= b

h

K

2 K

g

is the 
entral involution of a fundamental SL

2

of K

g

. The elements x

and y 
ommute and so do b and 
 be
ause the triangle (b; 
; f) is 
onjugate to the triangle

(x; y; z). Hen
e (a; b; d) and (a; b; 
) are 
onjugate in K

g

. Therefore (a; b; 
) and (x; y; z)

are 
onjugate in G.

By Theorem 1 the graph � is isomorphi
 to L

n+1

(F), so, by Theorem 3, the group G

modulo the kernel N of its a
tion on � 
an be embedded in P�L

n+2

(F):2 or P�L

n+2

(F).

To determine N 
hoose a g 2 N . Then g a
ts trivially on �, in parti
ular it 
entralizes

x and y, so we have g 2 X � K and g 2 Y � J . Let g

X

2 X and g

K

2 K be su
h that
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g = g

X

g

K

. The element g

X


ommutes with K, and therefore also 
entralizes all neighbors

of x. Consequently, also g

K

= g

�1

X

g 
entralizes all neighbors of x, and hen
e lies in the


enter of K. We have proved that g 
ommutes with K. Similarly, g 
ommutes with J .

This implies that g 
ommutes with G = hJ;Ki, and, thus, g 2 Z(G). Certainly, Z(G)

a
ts trivially on �, when
e N = Z(G). The statement about the isomorphism type of

G=Z(G) follows from the isomorphism type of J and K. 2

The proof of Theorem 5 
onsists of a series of lemmas.

Lemma 7.1

Under the assumptions of Theorem 5 any 
onjugate y

g

, g 2 C

G

(x), of y lies in K; its


entralizer C

G

(y

g

) has a 
omponent J

g

with A � J

g

. Moreover, [A;B

g

℄ = 1. In parti
ular,

[A;K℄ = 1.

Proof. Let F be a fundamental SL

2

of J , and let f be a p-element of F . Let V be the

natural module of J . Then we 
an de
ompose V as [V; F ℄ � C

V

(F ) = [V; f ℄ � C

V

(f).

Certainly C

V

(F ) � C

V

(f) and [V; F ℄ � [V; f ℄. If C

V

(f) is stri
tly larger than C

V

(F ), then

C

V

(f) is a hyperplane, so f is an axial 
ollineation. It 
annot be a translation, sin
e the

order of f is does not divide the order of the �eld, so it has to be a re
e
tion. However,

F does not 
ontain re
e
tions of J , so C

V

(f) = C

V

(F ) and, thus, [V; f ℄ = [V; F ℄, so the

p-element f is 
ontained in a unique fundamental SL

2

of J .

We have x

jk

= y, so C

G

(x)

�

=

C

G

(y). The group K is 
hara
teristi
 in C

G

(x); in

parti
ular K is normal in C

G

(x). Therefore K

jk

= J or, equivalently, K

j

= J

k

. We

have B = C

k

� J

k

and A = C

j

� K

j

. Certainly we also have A

k

2 J

k

and B

j

2 K

j

.

Moreover, x 2 A \ A

k

and y 2 B \ B

j

, so K

j

= J

k

implies A = A

k

and B = B

j

.

Now let g 2 C

G

(x) with z

g

= z. Then y is mapped onto y

g

, and B is mapped onto

B

g

. We have 1 = [A;B℄ = [A

g

; B

g

℄. The group J

k

is normal in C

G

(z), so J

kg

= J

k

.

Sin
e A � J

k

and A

g

� J

kg

= J

k

, we have A = A

g

, so [A;B

g

℄ = 1. Moreover, A = A

g

and A

g

� J

g

implies A � J

g

. We have established the lemma for any 
onjugate of

y in C

G

(x) \ C

G

(z). Conne
tedness of the graph on the fundamental SL

2

's of K with


ommuting as adja
en
y �nishes the proof; noti
e that K is generated by the set of

fundamental SL

2

's of K. 2

Lemma 7.2

Under the assumptions of Theorem 5 de�ne � to be the set of p-groups generated by


onjugates of x in G and de�ne an adja
en
y relation ? on � where hai ? hbi if and

only if there exists a g 2 G with (hai ; hbi) = (hxi

g

; hyi

g

). Then (�;?) is an undire
ted

graph in whi
h every triangle is 
onjugate to (hxi ; hyi ; hzi). In parti
ular, � is lo
ally

homogeneous.

Proof. The verti
es hxi, hyi are obviously adja
ent. Conjugation with k stabilizes

hxi while inter
hanging hyi and hzi, so hxi and hzi are adja
ent. Conjugation with

j 
entralizes hyi and inter
hanges hxi and hzi, yielding the adja
en
y of hzi and hyi.
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Conjugation with jkj inter
hanges hxi and hyi, so � is undire
ted. All neighbors of hxi

are 
ontained inK by Lemma 7.1. (Note that C

G

(x) is normal inN

G

(x), soK is normal in

N

G

(x).) Moreover, if hai = hxi

g

is a neighbor of hxi, then A � K

g

. So if (hai ; hbi ; h
i) is a

triangle of �, then there exist g

1

; g

2

2 G with hai = hxi

g

1

= hxi

g

2

, hbi = hyi

g

1

, h
i = hyi

g

2

.

Without loss of generality we 
an assume hai = hxi and hbi = hyi. Then A

g

1

= A = A

g

2

and B

g

1

= B; moreover [A;B

g

2

℄ = 1 and B

g

2

� K by Lemma 7.1; similarly B

g

2

� J .

Therefore B

g

2

� J \ K, a
tually B

g

2

� E(J \ K). Hen
e there exists a g 2 K with

hyi

g

= hyi and hzi

g

= h
i, so the triangle (hxi ; hyi ; h
i) is 
onjugate to (hxi ; hyi ; hzi) in

K, when
e in G. 2

Lemma 7.3

Under the assumptions of Theorem 5 let (�;?) be the graph de�ned in Lemma 7.2. De�ne

� on � by hai � hbi if and only if hai

?

= hbi

?

. Then � is an equivalen
e relation of �

and �= � is isomorphi
 to L

n+1

(F).

Proof. The graph � is lo
ally homogeneous by Lemma 7.2, so it is enough to investigate

the neighbors of hxi, whi
h are 
onjugates of hyi in K. Sin
e any edge of � in K is


onjugate to (hyi ; hzi) by Lemma 7.2, the graph hxi

?

is isomorphi
 to the graph on the p-

subgroups of K generated by the 
onjugates of y in whi
h distin
t p-groups are adja
ent if

and only if the fundamental SL

2

's 
ontaining them 
ommute. So, if�

hxi

is the equivalen
e

relation on hxi

?

with hai �

hxi

hbi if and only if hai

?

= hbi

?

for neighbors hai, hbi of hxi,

then hxi

?

= �

hxi

is isomorphi
 to L

n�1

(F). Therefore the lemma follows from Theorem

1 and 
onne
tedness of � (it is 
onne
ted, be
ause G = hJ;Ki), if hxi

?

\ � = �

hxi

. So


onsider hai

?

, whi
h is 
onne
ted and 
ontains more than one element. If hbi has pre
isely

the same set of neighbors, then we 
an 
hoose some h
i 2 hai

?

= hbi

?

, and h
i

?

\ hai

?

is equal to h
i

?

\ hbi

?

. Conversely, if h
i is adja
ent to hai and hbi and h
i

?

\ hai

?

is

equal to h
i

?

\ hbi

?

, then by 
onne
tedness of hai

?

and symmetry it is enough to show

that any vertex hdi 2 h
i

?

\ hai

?

satis�es hdi

?

\ hai

?

= hdi

?

\ hbi

?

. But inside h
i

?

the

verti
es hai and hbi lie inside the same fundamental SL

2

, so they have to lie in the same

fundamental SL

2

of hdi

?

as well, and we have established hdi

?

\ hai

?

= hdi

?

\ hbi

?

. 2

Proof of Theorem 5. The group G a
ts via 
onjugation on �. In parti
ular, if two verti
es

have the same set of neighbors, then their images under G also have the same set of

neighbors, so G a
ts on �= � as well. Therefore the group G modulo the kernel N of its

a
tion on �= � 
an be embedded in P�L

n+2

(F). However, any element of N 
entralizes

K and J , so it 
entralizes G. Conversely, any element in the 
enter of N a
ts trivially on

�= �, and the theorem is proved. 2
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