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Abstract

This article provides a self-contained, purely combinatorial local recognition of the
graph on the non-intersecting line-hyperline pairs of the projective space P, (F) for
n > 8 and F a division ring with the exception of the case n = 8 and F = Fs.
Consequences of that result are a characterization of the hyperbolic root group
geometry of SL,41(F), F a division ring, and a local recognition of certain groups
containing a central extension of PSL,1(F), F a field, using centralizers of p-
elements.

1 Introduction and Preliminaries

The characterization of graphs and geometries using certain configurations that do or
do not occur in some graph or geometry is a central problem in synthetic geometry.
One class of such characterizations are the so-called local recognition theorems of locally
homogeneous graphs. A graph I' is called locally homogeneous if I'(x) = I'(y) for
all vertices x,y € T', where ['(x) denotes the induced subgraph on the neighbors of x in
[. A locally homogeneous graph I'" with I'(z) = A is also called locally A. For some
fixed graph A it is a natural question to ask for a classification of all connected graphs
I’ that are locally A. A connected locally A graph I is locally recognizable if, up to
isomorphism, I' is the unique graph with that property. Several local recognition results
of a lot of classes of graphs can be found in the literature. As an example we refer to the
local recognition of the Kneser graphs by Jonathan I. Hall [6]; the Kneser graphs can be
considered as ‘thin’ analogues of the graphs that are studied in this paper.

The present article focuses on graphs on line-hyperline pairs of projective spaces; more
precisely, let L, (F) denote the graph on the non-intersecting line-hyperline pairs of the
projective space P, (F) (where n is a natural number and F a division ring) in which two
vertices are adjacent if the line of one vertex is contained in the hyperline of the other
vertex and vice versa. Then the following holds.
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Theorem 1
Let n > 7 and let F be a division ring, or let n > 6 and let F be a division ring of order
at least three. If T is a connected, locally L, (F) graph, then U is isomorphic to Ly, o(F).

I believe that the exception n = 6 and F = Fy in Theorem 1 merely arises as an
exception of my particular proof, and is not a real exception. Note that, besides this
exception, Theorem 1 is in a sense optimal. Indeed, if F is a field, besides the graph
L;(F) also the graph on the fundamental SLy’s of the group Eg(F) with commuting as
adjacency is connected and locally L;(F), as can be read off the extended Dynkin diagram
of type Eg. In fact, the graph L, (F) can be described as a ‘commuting fundamental S L’
graph as well. There is a one-to-one correspondence between the non-intersecting line-
hyperline pairs of P, (F) and the fundamental SLy’s of the group SL,(F) by assigning a
fundamental S L, to the pair consisting of its commutator and its centralizer in the natural
module of SL,, 1 (F); two fundamental SLy’s commute if and only if the commutator of one
is contained in the centralizer of the other and vice versa. The root subgroups of SL,,; (F)
together with the fundamental SLy’s (and symmetrized containment as incidence) form
a point-line geometry, called the hyperbolic root group geometry. This geometry is
characterized in the following theorem as a consequence of Theorem 1.

Theorem 2

Let n > 8 and let F be a division ring, or let n > 7 and let F be a division ring of order
at least three. Moreover, let (P, L, L) be a partial linear space endowed with a symmetric
relation L on the point set such that x L p and x L q, for distinct points p, q on some line
[ and an arbitrary point x, implies x L y for all points y of [. Furthermore, suppose that,
for any line k € L, the space k* is isomorphic to the hyperbolic oot group geometry of
SL,(F) with I L m if and only if [I,m] = 1 for lines [, m inside k*. If the graph (L, L) is
connected, then (P, L) is isomorphic to the hyperbolic root group geometry of SL, . 2(F).

The proofs of Theorem 1 and Theorem 2 are based on the reconstruction of the
projective space P, (F) from an arbitrary graph I" isomorphic to L, (F), called the interior
projective space on I', cf. Section 3. The following theorem relates the automorphism
group of L, (F) to the automorphism group of P, (F) and is an immediate consequence of
that reconstruction.

Theorem 3

Let n > 5, and let T be a graph isomorphic to L, (F). Then the interior projective space
on I is isomorphic to P, (F) or ]P’n(]F)dual. In particular, the automorphism group of T’
is of the form PT Ly,,1(F).2 or PTL,1(F) depending on whether or not the space P, (F)
admits a duality.

In case P,(F) admits a duality, it is not clear whether PI'L, ;(F).2 actually is a
semidirect product or not. Of course, this problem is equivalent to the famous open
problem whether a projective space that admits a duality also admits a polarity.
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The final two results of this article are applications of Theorem 1 to group theory. If
a locally recognizable graph [' admits a group G of automorphisms that acts transitively
on the set of all ordered triangles of I', then the local recognition of I'" implies a local
recognition of G. The local recognition of the Kneser graphs in [6], for example, implies a
local recognition of the symmetric groups along the lines of Theorem 27.1 of [3] or Theorem
2.5.5 of [5]. Line-hyperline graphs also admit a highly transitive group of automorphisms
by Theorem 3.

If the division ring IF has characteristic distinct from two, then SLy(F) admits a central
involution, and one can prove the following local recognition theorem.

Theorem 4

Let n > 7, and let F be a division ring of characteristic distinct from 2. Let G be a group
with subgroups A and B isomorphic to SLy(F), and denote the central involution of A by
x and the central involution of B by y. Furthermore, assume the following holds:

e Cu(r) =X x K with K =2 GL,(F) and A < X;

Cely) =Y x J with J =2 GL,(F) and B <Y;

A is a fundamental SLy of J;

B is a fundamental SLy of K; and

there exists an involution in J N K that is the central involution of a fundamental

SLy of both J and K.
If G = (J,K), then (up to isomorphism) PSL,2(F) < G/Z(G) < PGL,2(F).

If the division ring F is finite, then L, (F) is finite and so is its automorphism group.
In order to state the final theorem recall some terminology from finite group theory, see,
e.g., Section B of [4]. A finite group G is called quasisimple if and only if G/Z(G) is
simple and G = |G, G]; it is semisimple if and only if G = G| - - - G, with G; quasisimple
and [G;,G,] =1 for distinct 1 < 4,7 < r. A component of a group G is a quasisimple
subnormal subgroup of G. The layer of G is the subgroup F(G) generated by all the
components of G, with the understanding that E(G) = 1 if G does not have a component.
By Theorem 3.5 of [4], the components of a group G commute pairwise, the layer E(G)
is the unique maximal normal semisimple subgroup of G, and any automorphism of G
permutes the set of components of G.

Theorem 5

Let n > 8 and let F be a finite field, or let n > 7 and let F be a finite field of order at
least three. If q denotes the order of F, let p be a prime divisor of ¢> — 1. Furthermore let
G be a group containing p-elements v and y, and assume the following holds:

e Cq(z) has a characteristic component K with K/Z(K) = PSL,(F);
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e Cq(y) has a characteristic component J with J/Z(J) = PSL,(F);

e 1 is contained in a subgroup A of J which is a fundamental SLy of J;

y 18 contained in a subgroup B of K which is a fundamental SLy of K;

the groups A and B commute with E(J N K);

there exists a group C = SLy(F) in E(J N K) which is a fundamental SLy of both
J and K; and

there exist k € K, j € J, and a p-element z € C such that conjugation with j
interchanges (z) and (x) and conjugation with k interchanges (z) and (y).

IfG = (J,K), then G/Z(G) = PSL,.,(F).

This article is organized as follows. Section 2 is a preliminary section, introducing
some basic notation and providing some elementary facts. The purpose of Section 3 is
to reconstruct the projective space P, (F) from an arbitrary graph isomorphic to Ly, (F)
and to give a proof of Theorem 3, whereas Section 4 deals with the reconstruction of the
(hyperbolic) root group geometry of SL, 1(F). Theorem 1 is proved in Section 5, and
Theorem 2 is proved in Section 6. Finally, Section 7 provides proofs of Theorem 4 and
Theorem 5.

A weaker version of Theorem 1 (for n > 7) can be found as Theorem 2.5.1 in the
author’s PhD thesis [5]. Analogues on graphs on commuting fundamental SL,’s of sym-
plectic and unitary groups are contained in [5] as well, see Theorem 4.4.22 (locally Spa, (F)
for n > 4 and F a field) and Theorem 4.5.3 (locally SU,(K) for n > 8 and K a quadratic
extension of some finite field F); while Theorem 4.4.22 is optimal (the centralizer of a
fundamental SLsy of Fy(F) is isomorphic to Sps(F)), there is still room for improvement of
Theorem 4.5.3 (the centralizer of a fundamental SLy of 2Fg(K) is isomorphic to SUs(K)).
Similar questions for graphs on reflection tori of linear groups are answered in [1] (Theorem
1.1) or [5] (Theorem 1.3.21), whereas graphs on reflection tori of unitary and orthogo-
nal groups are treated in [2]. Notice that the methods used to prove Theorem 1.1 of [1]
(or Theorem 1.3.21 of [5]) can be literally transscribed into a proof of Theorem 1 of the
present article for n > 7. The case n = 6 needs a slightly different approach, which also
covers the case n > 7. This approach is presented in this article.

2 Line-hyperline graphs of projective spaces

This section introduces precise notation and provides some general properties of line-
hyperline graphs that are used throughout the whole article.
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Definition 2.1 Let n € N, and let I be a division ring. Consider the projective space
P, (F) of (projective) dimension n over F. The line-hyperline graph L(P,(F)) = L, (TF)
of P, (IF) is the graph whose vertices are the non-intersecting line-hyperline pairs of P, (F)
and in which a vertex (a, A) is adjacent to another vertex (b, B) (in symbols, (a, A) L
(b, B)) if and only if a C B and b C A.

For a vertex x of Ly, (F) let x* denote the set of all vertices at distance one from x;
for a set X of vertices, define the perp of X as X+:= MNkex x* and the double perp
of X as X++:= (X+)L. Sometimes L, is used to denote L, (F) if F is obvious or not
important.

The projective space P, (F) induces a Grassmann space of lines on L, (F) whose points
are of the form v; = {(a, A) € L, (F) | a = [} for a projective line [ while its lines are of the
form v, . = {({,L) € L,(F) | p € € n} for an incident point-plane pair (p, ) of P, (F).
The sets of vertices v, are called exterior lines. The dual construction yields exterior
hyperlines. A point-line geometry on L, (F) isomorphic to P, (F) is defined as follows.
Its lines are the exterior lines and its points are the full line pencils of exterior lines, i.e.,
a point is of the form v, = {(I,L) € L,(F) | p € [} for a point p of P, (F). A point v,
is called an exterior point, the resulting point-line geometry the exterior projective
space. Dually, define exterior hyperplanes and the resulting dual exterior projec-
tive space. Besides the above geometries one can also induce root subgroup geometries
of SL,41(F) on L, (F). The set v,y = {({,L) € L,(F) |pe(,L C H}, for a fixed point
p and a fixed hyperplane H > p of P,(F), is called an exterior root point of L, (F).
Likewise, an exterior root line is defined as the union v,y = Upez Up. i, for a fixed line
[ and a fixed hyperplane H D [, or as the union v, = Uy Up,u, for a fixed hyperline
L and a fixed point p € L. The geometry of the exterior root points and the exterior
root lines of L, (FF) is isomorphic to the root group geometry of SL, . (F) and called the
exterior root group geometry on L, (F). Similarly, consider the geometry on the ex-
terior root points of L, (F) as points and the vertices of L, (F) as lines. That geometry is
isomorphic to the hyperbolic root group geometry of SL, . (F) and is called the exterior
hyperbolic root group geometry on L, (F).

Proposition 2.2
Let n > 3. The graph L, (F) is locally L,, o(TF).

Proof. Let x = (x, X) be a vertex of L,(F). Then X = P, ,(F). Identifying X with
P,,_>(IF) by means of this isomorphism, we establish an isomorphism x* = L(X). For any
vertex y = (y, Y) adjacent to x, we have x C Y,y C X\ (XNY), and dim(XNY) = n—4,
so (y, XNY') belongs to L(X) = L,,_5(F). Conversely, for any vertex of L(X), i.e., for any
non-intersecting pair (z, Z) consisting of a line and an (n — 4)-space of P, (F) with z C X
Z C X, the pair (z,(Z,z)) is a vertex of x*. (Indeed, z N (Z,z) =, since z N X = ().)
Clearly, the maps (y,Y) — (y, X NY) and (z,Z) — (z,(Z, x)) are each other’s inverses.
Moreover, these maps preserve adjacency, whence the claim. O
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Proposition 2.3
L, consists of precisely one point; Ly is the disjoint union of singletons; L is the disjoint
unton of cliques of size two; the graphs Ly, Ls, and Lg are connected; the diameter of L,
n > 7, equals two.

Proof. The first four statements are obvious. For n > 7 let (x, X), (y,Y’) be non-adjacent
vertices of L,,. The intersection X NY has dimension at least three. Since z N X = () and
yNY =, the intersection (x,y) N X NY has at most dimension one, whence we can find
a line z C (X NY)\ (z,y). Moreover the dimension of (z,y) is at most three, and there
is a hyperline Z D (z,y) with 2N Z = 0. O

Lemma 2.4
Letn>4. Letx = (,X), y = (y,Y) be vertices of L,, with {x, y}L # (. Then the double

perp {x,y}"" equals the set of vertices z = (z,Z) of Ly, with z C (z,y) and Z D X NY.

Proof.  The vertices of {X,y}L are precisely the non-intersecting line-hyperline pairs
(a,A) with e C X NY and A D (x,y). Let {(a;, 4;) € {x,y}" | i € I} be the set of all
these vertices, indexed by some set I. If {x, y}L # (), then {x, y}LL consists of precisely
those vertices (2, Z) with 2 C (,.; A; and Z D ((a;)ier). But obviously (., A; = (z,v)
and <(ai)i€[> =XnNnY. (|

The rest of this section is dedicated to the development of means to recover the
projective spaces from graphs I' isomorphic to L, without making use of a particular
isomorphism and coordinization. Recall that the projective codimension of a subspace
X of P, (F) is defined as the length of a maximal chain of proper subspaces of P, (F) strictly
containing X and strictly containing each other.

Definition 2.5 Vertices x = (z,X) and y = (y,Y) of L, are in relative position
(1,7), if i = dim (x,y) and j = codim(X N'Y), where dim denotes projective dimension
and codim projective codimension. Let x, y be distinct vertices of L, with {x,y}" # 0.
The double perp {x,y}LL is called nth minimal if there exist vertices a;, b;, a; # b,
1 < i < n, with {a;, b;}" # 0 for all ¢ and {a;,b;}* C --- C {a,,b,}"" = {x,y}**
and there does not exist a longer chain of strict inclusions.

Clearly, vertices x and y of L, have to be in relative positions (1,1), (1,2), (2,1),
(2,2), (2,3), (3,2), or (3,3). The following three lemmas will distinguish those cases up
to duality.

Lemma 2.6
Let n > 4, and let x, y be vertices of L,,.

(i) x and y are in relative position (1,1) if and only if they are equal.

(ii) x and y are in relative position (1,2) or (2,1) if and only if they are distinct, the
perp {x,y}" is non-empty, and the double perp {x,y} = is first minimal.



2 LINE-HYPERLINE GRAPHS OF PROJECTIVE SPACES 7

(iii) x and y are in relative position (1,3), (3,1), (2,2), (2,3), (3,2), or (3,3) if and
only if they are distinct and the perp {x, y}L is empty or the double perp {x, y}LL
s not first minimal.

Proof.  The first statement is obvious. Let the relative position of x and y be (1,2)
or (2,1). Then {x,y}" # 0. Indeed, up to duality we can assume that x = (z, X)
and y = (y,Y) are in relative position (1,2), so x = y, since x and y span a line. The
intersection X NY contains a space of codimension 2, which is at least a line since n > 4.
Hence there exists a common neighbor of x and y. If a, b are distinct vertices contained
in {x, y}LL, then, by Lemma 2.4, a and b are in relative position (1,2) or (2, 1) and, thus,
{a,b}" # 0. Again by Lemma 2.4, the double perps {x,y}** and {a,b}™" coincide. If
x and y are in any other relative position and {x, y}L is empty, then there is nothing to
prove. So let us assume {x, y}L # (). Then the double perp {x, y}LL is given by Lemma,
2.4 and it follows immediately that it contains vertices a and b in relative position (1,2)
or (2,1). But, again by Lemma 2.4, this gives rise to a strictly smaller double perp. Hence
{x,y}"" is not minimal. Statements (ii) and (iii) follow. O

Lemma 2.7
Let n > 5, and let x and y be vertices of L,, in relative position (1,3) or (3,1). Then

{x,y}" #0.

Proof. Let x = (z,X) and y = (y,Y). Up to duality we have x = y. The intersection
X NY contains a space of codimension 3, which is at least a line, as n > 5. So there
exists a common neighbor of x and y. O

Lemma 2.8

Letn > 5, and let x and 'y be vertices of L,. The property x andy are in relative position
(1,3) or (3,1) is characterized by

e the perp {x,y}L is non-empty,
e the double perp {x, y}LL is second minimal, and

e there do not exist vertices a,b,c,d € {x,y}LL with a # b and ¢ # d such that
{a,b}** N {c,d}** =0.

Proof.  Up to duality we can assume that x and y are in relative position (3,1). Then,
by Lemma 2.7, the perp {x, y}L is non-empty. The double perp {x, y}LL is described by
Lemma 2.4. From that description it is obvious that {x,y}" " is second minimal. Now
let a, b, c, d be vertices as stated in the hypothesis. By Lemma 2.4, the vertices a and
b, respectively ¢ and d, can only be in relative positions (2,1) or (3,1). But then Lemma
2.6 and Lemma 2.7 imply {a,b}" # 0 and {c,d}" # 0. There is a common vertex in
{a, b}LL and {c, d}LL if one pair is in relative position (3, 1). So suppose both pairs are
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in relative position (2,1). Let a = (a,A), b = (b,B), ¢ = (¢,C), d = (d, D). We have
A =B =C =D, since x and y are at relative position (3, 1), cf. Lemma 2.4. Moreover,
both a, b and ¢, d span planes inside a 3-space, by Lemma 2.4. Two planes in a 3-space
have ti)jntersect in at least a line, and we have found a common vertex of {a,b}™" and
{c,d} .

Conversely, let x and y be in arbitrary relative position. Suppose {x,y}" # 0. Then
another application of Lemma 2.4 shows, that {x, y}LL only can be second minimal if x
and y are in relative position (1,3), (3,1), or (2,2). But if they are in relative position
(2,2), then we can find vertices a = (a, A), b = (b, B) in relative position (1,2) and
¢ = (¢,C), d = (d, D) in relative position (1,2) contained in ix,y}LL and such that
{a,b}*" N {c,d}"" = 0. (Note that {a,b}" # 0 and {c,d}" # 0 by Lemma 2.6.)
Indeed, we have ¢ = b and ¢ = d. But since we can choose both ¢ = b and ¢ = d freely in
a plane, they only have to intersect in a point, and we have {a, b}LL N {c, d}LL =0. O

Lemma 2.9

Letn > 5. Let k, I, and m be distinct exterior lines of L, (F). They intersect in a common
exterior point (i.e., they are contained in a line pencil), if there exist verticesa € k, b € [,
c € m that are pairwise in relative position (2,1) such that {a,b, c}LL contains vertices
X, y in relative position (3,1) with {x,y}LL = {a, b, C}LL.

Proof. Suppose a = (k,K), b= (l,L), c=(m, M) with K = L = M. The lines k, [, m
mutually intersect, since (k, K), (I, L), and (m, M) are in mutual relative position (2, 1).
But, by Lemma 2.4, the lines k, [, and m together span a projective 3-space, because
{a, b, c}LL contains vertices x, y in relative position (3,1) with {x, y}LL = {a, b, c}LL.
The claim follows, because three mutually intersecting lines spanning a 3-space necessarily
intersect in one point. O

Lemma 2.10

Let n > 5, and let a and b be vertices in relative position (2,1). Then there exists a third
vertex ¢ in relative position (2,1) to both a and b such that {a, b, c}™" contains vertices
X, y in relative position (3,1) with {x,y}LL = {a, b, C}LL.

Proof.  Suppose a = (a,A), b = (b,B) with A = B. The lines a and b intersect in
a point, p say. Let ¢ be a point outside the plane (a,b) such that the line pg does not
intersect the hyperline A. Then ¢ = (pg, A) is a vertex with the required properties. 0O

3 The interior projective space

The purpose of this section is to reconstruct the projective space P, (F) from an arbitrary
graph isomorphic to L, (F), and to provide a proof of Theorem 3. The notation introduced
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in Section 2 will be used freely and without reference. Throughout this section let n € N
and let I be isomorphic to L, (TF).

Definition 3.1 Let n > 5. Define a reflexive relation =~ on the vertex set of a graph I’
isomorphic to L, where for two distinct vertices x, y with {x,y}" # 0 we have x ~ y if

e the double perp {x, y}LL is first or second minimal, and

e there do not exist vertices a,b,c,d € {x,y}LL with a # b and ¢ # d such that
{a,b}"" N {c,d} " =0.

Lemma 3.2

Let n > 5. On the vertex set of I' there are unique equivalence relations ~' and ~" such
that ~ = ~' U =", and ~' N =" is the identity relation. Moreover, for a fized isomorphism
I' 2 L,(F), we either have

o = is the relation ‘equal, in relative position (1,2), or in relative position (1,3)” and
~M" is the relation ‘equal, in relative position (2,1), or in relative position (3,1)’, or
o = is the relation ‘equal, in relative position (2,1), or in relative position (3,1) and

R

3,1)
" is the relation ‘equal, in relative position (1,2), or in relative position (1,3)’
(

Proof. Vertices x, y of ' are in relation & if and only if their images (z, X') and (y,Y)
in L, (F) under some isomorphism I' — L, (F) are in relative position (1,1), (1,2), (1, 3),
(2,1),0r (3,1). Let us consider equivalence relations that are subrelations of . Obviously,
the identity relation is such an equivalence relation. Moreover, the relations ‘equal, in
relative position (1,2), or in relative position (1,3)" and ‘equal, in relative position (2, 1),
or in relative position (3,1)” are equivalence relations. If we have vertices x = (z, X),
y= (YY), z=(272)of I' 2 L,(F) such that x, y are in relative position (1,-) and x,
z are in relative position (-, 1), then y # z and Y # Z and y, z cannot be in relative
position (1,-) or (-,1). Consequently, if we want to find two sub-equivalence relations =
and ~" of ~ whose union equals ~, then either of ~' and ~" has to be a subrelation
of ‘equal, in relative position (1,2), or in relative position (1,3)” or of ‘equal, in relative
position (2, 1), or in relative position (3,1)’. It follows that the equivalence relations a2
and ~" have to be of the form as given in the lemma. O

Definition 3.3 Let n > 5, and let x be a vertex of I'. With ~! and ~" on I as in Lemma,
3.2, write [x]' to denote the equivalence class of ~! containing x and [x]" to denote the
equivalence class of ~" containing x. Refer to [x]' as the interior line on x and to [x]"
as the interior hyperline on x of I'.

Proposition 3.4
Let n > 5. There is a one-to-one correspondence between interior lines of I' and exterior
lines of L,,. In particular, any isomorphism ¢ : I' — L,, induces such a correspondence up
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to duality; the image under ¢ of an interior line is an exterior line. A similar statement
15 true for interior hyperlines of T'.

Proof. 'This follows directly from Lemma 3.2. O

Definition 3.5 Let n > 5. For distinct vertices x, y of I denote by x ~" y that x ~" y
and {x,y}"" is minimal, and by x ~% y that x ~" y and {x,y}"" is second minimal.

Definition 3.6 Let n > 5. A set S of interior lines of I' is called full if
(i) |S]=> 2
(ii) for distinct interior lines k,l € S there exist vertices a € k, b € [ with a ~? b;

iii) for vertices a, b with [a]’, [b]! € S and a & b, there exists a vertex c satisfyin
et g
a ~" ¢ and b =" ¢ such that {a,b,c} — contains vertices x, y with x ~! y and

{a,b,c}™" = {x,y}""; and
(iv) any interior line [c]’ containing a vertex c as in (iii) is also contained in S.

Proposition 3.7
Let n > 5. Up to duality, any isomorphism I' — L,, maps a full set of interior lines of I'
onto a full line pencil of exterior lines of L, and vice versa.

Proof. By Lemma 2.9 and up to interchange of ~! and ~", the image ¢(S), where ¢
denotes an isomorphism [I' — L, of a full set S of interior lines of I' is contained in a
pencil of exterior lines of L,,, through some exterior point p, say. Let [ be an exterior line
of L,, incident with p. The full set S contains distinct lines a and b. If ¢(a), ¢(b), and I
span a 3-space, then ¢~'(I) is contained in the full set by definition. So suppose [ lies in
the plane (¢(a), ¢(b)). Then the full set contain a some line ¢ such that ¢(a), ¢(b), ¢(c)
span a 3-space, by Lemma 2.10 and the definition of a full set. But then also [, ¢(b) and
#(c) span a 3-space, and ¢~ ([) is contained in the full set. a

Definition 3.8 Let n > 5. Let S be a full set of interior lines of I'. The interior point
p(S) of T is the union (J,.4! over all interior lines in the full set S. The geometry of
interior points and interior lines with symmetrized containment as incidence is called the
interior projective space on I'. Dually, define interior hyperplanes and the dual
interior projective space.

Proposition 3.9

Let n > 5. Up to duality there exists an isomorphism between the interior projective space
on I' and the exterior projective space on L, (F). The same statement holds true for the
dual interior projective space. O

Theorem 3 follows immediately from Proposition 3.9.
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4 Geometries on interior root points

This section provides constructions of the exterior (hyperbolic) root group geometries
on L, (F) in terms of exterior points, exterior lines, exterior hyperplanes, and exterior
hyperlines. Then Propositions 3.4 and 3.7 will give us means to describe these geometries
intrinsically on an arbitrary graph I' isomorphic to Ly, (F). Throughout this section let
n € N and let I" be isomorphic to L, (F).

Lemma 4.1

Let n > 5, and let vy, g and v,y be two distinct exterior root points of L, (F). Then we
have |v, g Ny | < 1. More precisely, the points p and q and the hyperplanes H and I are
distinct and the line pg does not intersect the hyperline HN1I if and only if |v, g Nvg,r| = 1.

Proof. Suppose |v, g Nvg 1| # 0, i.e., in P, (F) there exist a line [ and a hyperline L with
I D {p,q), LC HNI,and INL = (). Assume there exists another line-hyperline pair
(m, M) satisfying these conditions. If it is distinct from ([, L), then [ # m or L # M. Up
to duality, we may assume L # M. Then immediately H = I, whence p # ¢. But then
[ = m = pq is contained in H = I, which have hyperplanes L and M. Hence INL # (), a
contradiction.

Ifp#q, H#Iand pgn HNI =1, then (pg, HNI) is a vertex of L, (F) contained
in v, g Nvg . Conversely, suppose there exists such a vertex. This implies p # ¢ and
H # I. But then the only candidate for being contained in v, g N v, is (pg, H N 1),
whence pg " HNI = (). O

For the next lemma notice that an exterior hyperplane of L, (F) is not a hyperplane
of the exterior projective space on L, (F). However, there is an obvious one-to-one corres-
pondence between exterior hyperplanes and hyperplanes of the exterior projective space,
by the map

vp ={(LL) €L,(F) [LCH} —» | Jv, = |J{(.L) e L,(F) | pel}.

pEH peEH

Therefore there is no harm done if one speaks of incidence between exterior points and
exterior hyperplanes and rather means incidence between exterior points and the images
of exterior hyperplanes by means of this map.

Lemma 4.2

Letn > 5. An exterior point v, and an exterior hyperplane vy of Ly, (F) are non-incident if
and only iof any exterior line v; incident with v, contains a vertex contained in an exterior
hyperline vy, incident with vy and vice versa.

Proof. Suppose v, and vy are non-incident and let v; be an exterior line incident with
v,. The set v; consists of all vertices of L,,(F) having [ as the first coordinate. The second
coordinate ranges over all hyperlines L that do not intersect [. By the isomorphism
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between the exterior projective space on L, (F) and P, (F) that maps v, onto p, v; onto
[, vy onto H, also p is incident with [ and non-incident with H. Hence [ intersects H in
a unique point. But then there exists a hyperline M non-intersecting [ that is contained
in H. The vertex (I, M) is contained in the exterior hyperline vy, which is incident with
vy. Similarly, any exterior hyperline incident with vy contains a vertex contained in an
exterior line incident with v,. Conversely, suppose v, and vy are incident. Choose an
exterior line v; through v, such that [ is contained in H. Now, a hyperline that does not
intersect [ cannot be contained in H. O

In view of the preceding lemma, in a graph I" isomorphic to L, (F), an interior point
p and an interior hyperplane H are called non-incident if and only if any interior line [
incident with p contains a vertex of [ contained in an interior hyperline L incident with
H and vice versa. Conversely, an interior point and an interior hyperplane are incident
if they are not non-incident.

Definition 4.3 Let n > 5. An interior root point of I' is the intersection of an interior
point with an incident interior hyperplane. An interior root line is of the form

U pNH
interior point p€l
for a fixed interior line [ contained in the fixed interior hyperplane H or

U pNH

interior hyperplane HDL
for a fixed interior hyperline L containing the fixed interior point p.

Proposition 4.4
Let n > 5. The following hold.

(i) The geometry of exterior root points and exterior root lines on L, (F) with sym-
metrized containment as incidence s tsomorphic to the root group geometry of

SLyi (F).

(ii) The geometry of exterior root points and vertices of L, (F) with symmetrized contain-
ment as incidence is isomorphic to the hyperbolic root group geometry of S Ly 1(TF).

(iii) The geometry of interior root points and interior root lines on T with symmetrized
containment as incidence is isomorphic to the root group geometry of SLy,1(F).

(iv) The geometry of interior root points and vertices of I' with symmetrized containment
as incidence is isomorphic to the hyperbolic root group geometry of SLy.1(F).
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In particular, there is a one-to-one correspondence between the vertices of I' and the lines
of the hyperbolic root group geometry of S Ly, 1(F). The interior root points of T’ correspond
to the full line pencils of the (hyperbolic) root group geometry.

Proof.  Notice that by Propositions 3.4 and 3.7 plus the Definition 4.3 of interior root
points and interior root lines, Statement (i) is equivalent to Statement (iii) and Statement
(ii) is equivalent to Statement (iv). However, the first two statements follow the definition
of exterior root points and exterior root lines in Section 2.

The additional claim about the vertices of I" follows from the isomorphism between
[ and L, (F) and the fact that lines of the hyperbolic root group geometry of SL, ;(F)
correspond to non-intersecting line-hyperline pairs of the projective space P, (F) by as-
signing the fundamental SLs to the pair consisting of its commutator and its centralizer
on the natural module of SL,,.(F). The claim about the line pencils follows from the fact
that interior points correspond to full line pencils of interior lines (cf. Proposition 3.7),
similarly interior hyperplanes correspond to full pencils of interior hyperlines; intersecting
an interior point with an incident interior hyperplane, we get a full line pencil of the
hyperbolic root group geometry. O

The geometries of interior objects as in the theorem are called the interior (hyper-
bolic) root group geometry on I', respectively.

5 Locally line-hyperline graphs

In this section we prove Theorem 1. Throughout the whole section let n > 7 and let F
be a division ring, or let n > 6 and let F be a division ring of order at least three; let
[' be a simply connected, locally L, (F) graph. We recall that a graph is called simply
connected if it is connected and any cycle in [ can be decomposed into triangles.

Notice that interior points and interior lines only exist on the perps of I' and may
differ on different perps; it is one task of this section to show that there exist well-defined
notions of global points and global lines. To avoid confusion, we will index each interior
point and each interior line by the vertex whose perp it belongs to. We call those points
and lines local points and local lines; similarly, we use the notion of local equivalence
relations.

Lemma 5.1
Let x and y be adjacent vertices of I'. Then there exists a choice of local equivalence

relations ~. and %é, such that the intersections of &' and %é, to xt Nyt coincide.

Proof. Choose a local equivalence relation ~, on x*. This induces coordinates on x*, so

we can identify x* with L, (F), inducing coordinates on x*Ny+ 22 L, _,(F), which in turn
induces coordinates of y* = L, (F) using Lemma 2.6(ii). A choice of ~ in accordance
with the coordinates on y* finishes the proof. O



5 LOCALLY LINE-HYPERLINE GRAPHS 14

Lemma 5.2
There is a choice of local equivalence relations (=L )xer such that for any two adjacent

vertices x and 'y the restrictions of & and of %é, to x* Nyt coincide.

Proof. Suppose that x, y, z is a triangle of ['. In view of Lemma 5.1 we may assume
that ~ and &~ have the same restriction to x Ny" and that ~% and ~}, have the same
restriction to x* N zt. Let I, be an interior line of x* such that I, Ny* Nzt # 0. By
analysis of x* we find two vertices, say u and v, of [Ny *-Nz*. The above choices of local
equivalence relations imply that u and v belong to both &, and %, which implies that
~! and &, have the same restriction to y* Nz* by Lemma 2.6(ii). Since I' is assumed to
be simply connected, the lemma follows immediately from the triangle analysis. a

Definition 5.3 Fix a choice of (=4 )xcr as given in Lemma 5.2 and define == J, . ~L.

Lemma 5.4
Let x be a vertex of I'. Then the restriction of =' to x coincides with ~.. In particular,

suppose that x and y are vertices of T' such that x ~! y for some verter u € {x,y}L.
Then x =L y for every verter v € {x, y}L.

Proof.  Obviously, %vaXVLQ%i,. Conversely assume there exist x,y € v with x ~' y.

Since ~h:= J p AL, there exists a vertex u € {x,y}" with x ~! y. In y* denote the
intersection of (uy, vy) with Uy, by by; similarly, denote in x* the intersection of (ux, vy)
with Ux by ¢x. First we will prove that we can assume that by N'Vy = () and ¢x N Vi = 0,
or, equivalently, (vy, ux) N Vi N Ux = 0 and (vy, uy) NV, N Uy = 0. Indeed, consider ut;
the spaces by and ¢y arise as by, respectively ¢,. Choose some line u}, in X, NY,. This
line occurs as the line u} in x* and as the line u}, in y*. Define ¢} := (vy, u}) N Vy and
= (ux, ) N Ux. Similary, let b, := <vy,u;,> N Vy and by := <uy,b;,> N Uy. The spaces
by and ¢} arise as b}, respectively cj; in ut. Let b}y := (x4, b4) N Xyu. Choose a hyperline
U, that contains x, and does not intersect ¢, bl), or u,,, which is possible if F # F,.
Then the vertex ug := (ul,, U}) is adjacent to x, u, y, and we have (vy,ul)NViNUL =0
and (vy,ul) NV, NU;, = 0.

So now assume that by NV;, = () and ¢x NV = 0. Choose a hyperline W, that contains
by and ¢y, but not x,, if such a choice is possible. Then let w := (z,, Wy). There exists
a hyperline W} containing b, but not z, that intersects both W, and Yy in a hyperplane
of either. Let wy := (x4, W}). In y* denote U, NV, by UV,. This space arises as a
space UV, in ut. The intersection UV, N W/} contains a projective line [,. The span
(%, by) does not intersect l,, so we can find a hyperline L,, that does not intersect [,, but
contains (y, by). The vertex 1:= (I, Ly,) is adjacent to u, wy, y, and v. Local analysis
of 1+ shows that w; L v. The fact w; ~!, y implies w; ~} y, which implies w; ~, y.
Similarly, we find a vertex 1’ adjacent to w, u, wy, v, and establish w L v. This implies

w ~. y. By symmetry we also have w ! x, so transitivity of ~ yields x ~! y. If the
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choice of the hyperline W, containing b, and ¢, but not x, is not possible, then there
exists a hyperline 7} that contains b, and ¢, as well as x,. Let t, C UV, be a line that
does not intersect T,,. Then continue the above argument with vertices w := (z,, W)
and w' := (24, W!) such that W, contains ¢, and b, and W/ contains t, and c,.

If F =F, we can assume n > 7, and the proof of the lemma is straightforward; cf.
Lemma 4.7 of [1] or Lemma 1.3.9 of [5]. O

Lemma 5.5
The relation ~' is an equivalence relation. In particular, distinct vertices x ='y are at
distance two in L.

l

Proof. Reflexivity and symmetry follow from reflexivity and symmetry of each ~.. In
order to prove transitivity suppose x ~, y and y &/, z. In y* we can assume that vy ¢ Uy
and uy ¢ Vi. Fix a hyperline W, that contains Uy, N V;, that intersects both Uy and
Vy in a hyperplane of Wy, and that does not intersect u, or vy. The line-hyperline pairs
(uy, Wy) and (vy, Wy) give rise to vertices u’, respectively v/ that are both adjacent to y.
Let us now study the path x L u Ly L u’. In u' denote the intersection X, NY, by
XY,. This space induces a space XY, of y*=. The intersection Uy N Wy is a hyperplane of
Uy, so Uy N W, N XY, contains a projective line, [, say. Choosing any hyperline Ly D uy
that does not intersect Iy, we find a vertex a = (ly, Ly) that is adjacent to u, v, y, and x.
In a' we see that x | u’; moreover x &, y, and, thus, x ~!, y. Similarly one establishes
z !l vandy~! z In v/* we can find a vertex z' in the same ~!, equivalence class as y
and z such that the hyperline of z’ intersects the hyperlines of y and z in hyperplanes of
the hyperline. Denote the intersection Y- N Z., by Y Z!, and the intersection X,y NY, by
XYy. Both spaces induces subspaces YZ;,, respectively XY, of Wy in y*. Inside y*, the
intersection Y ZZ N XYy contains a projective line, my say. If (uy, vy) does not intersect
my, then we can find a hyperline My that together with m, forms a vertex m of I' that
is adjacent to y, u’, x, v/, and z'. If (uy,vy) does intersect m,, then we can choose a
line ny C Y'Z;\my and a non-intersecting hyperline Ny D (vy,my), which gives rise to
a vertex n = (ny, Ny) adjacent to y, v/, and z’. Moreover, the space (ny,uy) does not
intersect m,, and as above we find a vertex m of I that is adjacent to x, u’, y, n, and
z/. The facts x ~!, y and y ~!, z’ imply x ~!| y and y ~! 2z, because m L u’ and
either m L v or m L n L v/, so transitivity of ~!  yields x ~! z'. We have reduced the
problem to the path x L m L z’ L v/ L z. However, in v'* the hyperlines of z’ and z
intersect in a hyperplane of either hyperline, so by considerations as above we can find a
vertex m’ adjacent to x, z’, and z, yielding x ! , z and, thus, x &' z.

The second statement follows from the above considerations and Lemma 5.4. O

Definition 5.6 A global line of I' is an equivalence class of ~!. Dually, a global
hyperline is an equivalence class of ~". By Lemma, 5.4 the local intersection of a global
line is either empty or a local line.
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Lemma 5.7
Let | be a global line of I'. Then LN x* # 0 if and only if LN y* # O for an arbitrary
global hyperline L and x,y € [. The dual statement holds as well.

Proof. By Lemma 5.5 there exists a vertex z adjacent to x and y. Let h; be some
neighbor of y. We have to prove that there exists a neighbor of x contained in the same
~" equivalence class as h;. Denote this ~" equivalence class by H. First of all, we can
assume that in z* the intersection X, N'Y, is a hyperplane of X, and Y,. Indeed, there
always exists a neighbor y’ of z with y ! y’ such that X,NY, and Y/NY, are hyperplanes
of Y, so we can first consider the path y’ L z L y 1 h; to establish a neighbor h/ of y’
with h; ~" h/, and subsequently consider the path x 1L z 1y’ 1L h/.

So now assume that in z* the intersection X, N'Y, is a hyperplane of X, and Y.
Denote this intersection X,NY, by XY, which induces a subspace XY} of Z, in y*. The
intersection XYy N Hy, contains a projective line, vy say. Choose a hyperline V D z, that
does not intersect vy, which yields a vertex v = (vy, V) that is adjacent to y, z, and x.
Since vy C Hy, there exists a neighbor hy of y with h; ~" hy, and hy L v. In v we have
ly C Hy. Choosing a line in X\ H, we have found a vertex hy adjacent to v and x with
h; ~" h,. Therefore hy ~" h; by Lemma 5.5, and the lemma is proved. O

Lemma 5.8
Let1 1 x Ly L m be a path of vertices with 1 ~' m. Then there exists a vertex

k e {x,y} withl~'k~'m.

Proof. Consider x*. If [, C Yy, then there is nothing to prove. If Iy N Yy = 0, then let
y' = (I, Yx). Note that 1 &, y’. The fact y’ ~" y implies, by Lemma 5.7, the existence
of a vertex m’ adjacent to y’ with m’ ~' m. But m’' &' m ~' 1 & y' yields m' ~' y', a
contradiction to m' Ly’ and Lemma 5.4.

The above considerations and symmetry of x* and y* leave the following case: In x*
assume that [, intersects Yy in the point py, while in y* assume that m, intersects X,
in the point gy. The point ¢, arises as the point ¢, in x*; let ay := (zy, my) N Xy, which
arises as ay in xt. If (Ix, yx) D ¢x, then {(ay, Iy, yx) is contained in a hyperline, so we can
find a vertex u adjacent to x and y containing [, and m,. Lemma 5.4 implies [, = m,, and
we are done. So assume that (Ix, yx) Z gx. Then there exists a hyperline Wy containing
(Ix, yx) and a line wy containing ¢, that does not intersect Wy. Let w := (wx, Wx). Then
by Lemma 5.7 there exists a vertex I’ adjacent to w with 12! I'. Denote {ly, yw) N Yy by
bw. This space translates to a space by of y-. The local line wy intersects the local line
my, 0 (by, My, wy) is contained in a hyperline. Hence we can find a neighbor v of w and
y that contains [, and my, thus yielding [, = m,. However, while w, intersects with m.,,
the hyperline W, contains [,, a contradiction to w, N W, = (. O
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Lemma 5.9
Let hy ~" hy and i, =" i, be such that there exist vertices x € {hy, il}L andy € {hy, ig}L.

Then there exist vertices hs, i3 € y= with hy ~" hy and iy &" i3 and a vertex x' € {hs, i3}L

in the same connected component of {hs, ig}L as'y with x ~' x'.

Proof. Suppose that Hy NI, is a hyperline of both Hy and I,. Then we can find adjacent
vertices hs and iz in y* with hy ~" h, and i3 " i,. By Lemma 5.7 there exist vertices
x; L hs and x, L i3 with x; ~' x /&' x,. But now by Lemma 5.8 there exists a vertex
x' € {hs,iz}" with x; &' X' & x, and, thus, x &~/ x'.

So now we can suppose that Hy, N I is a hyperplane of both Hy and I,. Denote this
intersection by HIy; it induces a space HIy, of hy. Additionally we can assume that
h%, =i%,. By Lemma 5.7 there exist vertices x; L hy and x, L i, with x; ~/ x ~! x,. In
hy we can assume that the hyperline Xi. contains the line yp,, if z},, does not intersect yp,.
Otherwise we can assume that the hyperline Xi intersects the line yn,. Now in hy the
intersection H Iy, N X} contains a projective line. Moreover, (a}, ,yn,) N HIn, N X}, =0,
by the above assumptions on Xll12 and yp,. Therefore there exists a vertex v adjacent to

x1, hy, y, and iy. By Lemma 5.8 there exists a vertex x3 € {v,i,}= with x; ~! x3 ~! x,

and, thus, x ~! x5. Local analysis of v* yields a vertex x4 € {hy,i,}" with x4 ~ x5 & x.
[l

Lemma 5.10
Let [ and m be global lines of I'. Then there exist vertices of | and m at mutual distance
at most two.

Proof. Assume there exist vertices 1 € [ and m € m at distance three and let 1 1 x |
y L m be a path from 1 to m. In y* denote (zy, my) N Xy by ay. This line induces a
line ayx of xt. If (Iy,ax,yx) is contained in a hyperline, then we can choose a hyperline
Y] D (lx, ax, yx) and a non-intersecting line y. C Yx. This yields a vertex y' adjacent to
x and y which has a neighbor m’ ~/ m. Moreover, y' is adjacent to a vertex I’ ~! 1. By
Lemma 5.7 the vertex 1is adjacent to some vertex z ~" y’, which in turn is adjacent to
a vertex m” ~ m, and we have found 1 € [ and m” € m at distance two.

So now suppose that (ly, ax, yx) is not contained in a hyperline. Then we can choose
a hyperline Y] that contains (ayx, yx) and intersects Iy in a point, and we can choose a
non-intersecting line vyl in Yy. If (Ix, ax, y) is contained in a hyperline, then we are in
the situation of the above paragraph, so assume that (lx,ax,y.) is not contained in a
hyperline. Then we can choose any hyperline Y] containing (ay,y.) but not I, and a
non-intersecting line y inside Y] that intersects Iy. Now (Ix,ax,ys) is contained in a
hyperline and, by the above paragraph, we can find vertices of [ and m at distance two.

The lemma follows by induction on the length of some path from some element of [
to some element of m. O
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Definition 5.11 Let [ and m be distinct global lines of I', let 1 € [, m € m be at distance
at most two, and let x be adjacent to 1 and m. Then (I, m) consists of those global lines
k with k& N x*+ # 0 such that ky lies in the span of Iy and my. If [, intersects my, then
(l,m) is called a global plane, and otherwise a global 3-space. Dually one defines
intersections of global hyperplanes.

Lemma 5.12
The notion of global planes and global 3-spaces is well defined. The same holds for the
dual statement.

Proof. We will prove the dual statement instead. Let h; ~" hy, and i; =" i, be such that
there exists vertices x € {hy,i;}" and y € {hy,i,}". By Lemma 5.9 there exist vertices
hy,i3 € y* with hy ~" hy and iy &" i3 and a vertex w € {hs, i3} with x &~/ w and a
path from y to w in {hs,i3}". By Lemma 5.5 there exists a vertex z adjacent to x and
w. We can assume that X, N W, is a hyperplane in both X, and W,. For, there exists a
vertex w' ~! x, w adjacent to z such that X, N W/ and W) N W, are hyperplanes of W,
By Lemma 5.7 there are vertices hy, if € w' with hy &~ hj and i ~" i},

So now assume that X, N W, is a hyperplane in both X, and W,. Denote this inter-
section by X W,, which induces a space XWy,. Up to passing to a neighbor of x, z, w we
can assume that in w* the hyperline Zy, contains Hy, N Iy,. Therefore X Wy, N Hy N Iy
contains a projective line, and we can find a neighbor v of x, z, w whose line in w+
is contained in Hy N Iy. Therefore there exist vertices hy,i, € v+ with hy ~" hy and
iz ~" i,. Four applications of Lemma 5.8 finish the proof. O

Definition 5.13 Denote by Lr the set of global lines of I A global pre-point is
defined as the union | J,.¢ ! of global lines contained in some set S such that any pair [,
m of distinct global lines contained in S spans a global plane and for any triple k&, [, m
of distinct global lines contained in S there exists a global line n in S that spans a global
plane with any of £, [, or m distinct from n and a global 3-space with any pair of k, [,
or m not containing n. A maximal global pre-point is called a global point. Denote the
set of global points by Pr.

Proposition 5.14
The point-line geometry (Pr, Lr) is a projective space.

Proof.  Let p and ¢ be points of (Pr,Lr). Then there exists lines [ through p and m
through ¢. By Lemma 5.10 there exists vertices 1 € [ and m € m at distance at most two,
so there exists a vertex x adjacent to both 1 and m. The intersections p N x* and ¢ N x*
are local points of x, so there exists a local line £y connecting px and ¢x. Hence we have
found a global line & joining p and ¢, so (Pr, Lr) is a linear space.

It remains to prove Pasch’s axiom. Let [ and m be intersecting lines. By Lemma 5.10
there exists a vertex z adjacent to some vertices 1 € [ and m € m. In z' the plane (I, m,)
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is a projective plane, hence so is the global plane spanned by [ and m, and the proof is
finished. O

Proposition 5.15
The graph T is isomorphic to the line-hyperline graph of Pr = (Pr, Lr).

Proof. Denote by <XJ‘> the set of global lines of I that have a non-empty intersection
with xt. This set obviously is a hyperline of (Pr, Lr). Therefore the map I' — L(Pr)
defined by x — ([x].:, (x*)) defines an isomorphism between I' and the line-hyperline
graph of (PF; E[‘) O

Proof of Theorem 1. Assuming I' to be simply connected, Proposition 5.15 implies that
" is isomorphic to L, ;2(F). Therefore, if I' is not necessarily simply connected, then T
is isomorphic to a quotient of L, o(F). However, by Lemma 2.3 the diameter of L, 5 (F)
equals two, so L, 1(F) does not admit any proper quotients that are locally L, (F), and
the theorem follows. O

6 Hyperbolic root group geometries

This section gives a proof of Theorem 2. Throughout the whole section, let I' be a
connected, locally L,,_;(F) graph for a division ring F and n > 6.

Definition 6.1 Let I' = (V, L) be a connected, locally L,_;(F) graph. I" is geometriz-
able if there exists a family S of subsets of V such that

e for any S € S and any vertex x € V the intersection S N x* is either empty or an
interior root point of x*, and

e for any interior root point py of x*, x € V, there exists a unique set S € S containing
Px-

The point-line geometry (S,V) with symmetrized containment as incidence is called a
geometrization of I'. An element of § is called a global root point.

Lemma 6.2

Let I' be geometrizable and let x and y be two vertices of I'. If p, q are two vertices
adjacent to both x and y that belong to a common interior root point of x*, then they
also belong to a common interior root point of y*.

Proof. Let (S,V) be a geometry on I'. Then there is a unique S € S containing p and
q. But since p,q € SN y*, they also belong to an interior root point of y*. O
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Lemma 6.3

Let T be geometrizable. Then, up to isomorphism, there is at most one geometrization of
[ with the property that any two vertices contained in the same global point are at distance
two in I,

Proof.  Suppose such a geometry on [' exists. Fix a vertex x and consider the interior
hyperbolic root group geometry on x* = L, |(F). Let a, b be two distinct vertices of
an interior root point p of x*. Note that a and b uniquely determine this interior root
point, by Lemma 4.1. Now let y be an arbitrary vertex of ['. The proposition is proved,
if it is determined whether y belongs to the set S € S that contains p or not.

We may assume that there exists a vertex z adjacent to y and a, since otherwise
y cannot be contained in S by hypothesis. By Proposition 2.3 there exists a chain of
vertices in at = L, () connecting x and z. Denote the vertex closest to x by w. By
local analysis of x+ we can find another vertex ¢ in x* N w belonging to the interior
root point p aside from a. By Lemma 6.2 the vertices a and c are contained in a common
interior root point ¢ of wt. Obviously the interior root point ¢ of w* has also to be
contained in S. Using induction, we see that it is determined whether y is contained in
the set S or not. O

Proposition 6.4

Let n > 6, let F be a division ring, and let (P,L, L) be a partial linear space endowed
with a symmetric relation L on the point set such that x L p and x L q for distinct points
P, q on some line | and any point x implies x L y for all points y of [. Moreover suppose
for any line k € L the space k* is isomorphic to the hyperbolic root group geometry of
PSL,(F) with | L m if and only if [[,m] = 1 for lines |, m inside k*.

i any two intersecting lines of (P, L) are at distance two in (L, L), then (£, L) is

) If any two intersecting lines of (P, L t distance two in (L, L), then (£, 1) i
geometrizable, a geometrization of (L, L) as given in Lemma 6.3 exists, and (P, L)
15 tsomorphic to that geometry.

(i) If the graph (L, 1) is isomorphic to L, 1(F), then (P, L) is isomorphic to the hy-
perbolic root group geometry of PSL, o(F).

Proof. Let us start with a proof of Statement (i). The graph (£, L) is locally L,,_; (F).
Consider the family of all full line pencils of (P, £). This family gives rise to a geometry
on (£,1) in the sense of Definition 6.1. Indeed, any intersection of a full line pencil
with k* for an arbitrary line k is either empty or a full line pencil of the subspace k™.
But by Proposition 4.4 a full line pencil of k* corresponds to an interior root point.
Conversely, any interior root point of a perp of a line corresponds to a full line pencil of
this perp, which is contained in a unique full line pencil of the whole geometry. Hence
(L, 1) is geometrizable. Moreover, since any two intersecting lines are demanded to be at
distance two in (£, L), the global geometry on (£, L) we just have constructed satisfies
the hypothesis of Proposition 6.3. The last claim follows from the fact that (P, L) is
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isomorphic to the geometry on the full line pencils as points and the line set £. Statement
(ii) follows from Proposition 2.3, Proposition 4.4, and Statement (i). O

Theorem 2 follows from Theorem 1 and Statement (ii) of Proposition 6.4. Notice that
the restriction of n to be greater or equal to 7 in Theorem 2 is crucial. In case n = 6, the
point-line geometry on the long root subgroups and the fundamental SLjy’s of the group
Es(F) with L being the commutation relation satisfies the hypothesis of the theorem.

7 Group-theoretic consequences

Finally, we will prove Theorem 4 and Theorem 5.

Proof of Theorem 4. Choose an involution z € J N K that is the central involution
of some group isomorphic to SLy(F) which is a fundamental SL, in both J and K.
Note that z commutes with = and y. The elements y and z are conjugate in K by an
involution, whence they are conjugate in G. Similarly, x and z are conjugate in J by
an involution. Therefore the conjugation action of the group G induces an action as the
group Symg on the set {z,y, 2z} and as the group Syms on the set {z,y}. Consider the
graph [' on all conjugates of z in GG. A pair a, b of vertices of I' is adjacent if there
exists an element g € G such that (z9,49) = (a,b). Since G induces the action of Symy
on {z,y}, this definition of adjacency is symmetric, and we have defined an undirected
graph. Moreover, the elements x, y, and z are pairwise adjacent and, thus, form a 3-clique
of I'. Define U; as the stabilizer in G of the vertex x and U, as the stabilizer in G of
the edge {z,y}. The stabilizer of {z,y} permutes x and y and therefore interchanges
Ce(z) > K and Cg(y) > J. Hence the stabilizer of x together with the stabilizer of
{z,y} generates G, as G = (J, K) < (Up,U,). Consequently, the graph I' is connected.
Also, I is locally L,,_;(F) by construction. To prove this, it is enough to show that any
triangle in I is a conjugate of (z,y, z). Let (a,b, ¢) be a triangle, which means there exist
vertices d, e, f of I such that (a,b,d), (a,c,e), and (b, ¢, f) are conjugates of (z,y,z) in
G. Let g € G with (29,y9,29) = (a,b,d). Notice that b,d € K9 are commuting central
involutions of fundamental SLy’s of K9. The triangles (a, b, d) and (a, ¢, e) are conjugate
in Cg(a) = X9x K9. Choose h € Cg(a) such that (a”,b", d") = (a,c,e). Then h = hxhg
with hx € X9, hg € K9. The element hy centralizes b and d, since b,d € K9. Therefore
¢ = b =b'"s € K9 is the central involution of a fundamental SL, of K9. The elements x
and y commute and so do b and ¢ because the triangle (b, ¢, f) is conjugate to the triangle
(x,y,z). Hence (a,b,d) and (a,b,c) are conjugate in K9. Therefore (a,b,c) and (x,y, 2)
are conjugate in G.

By Theorem 1 the graph I' is isomorphic to L, (F), so, by Theorem 3, the group G
modulo the kernel N of its action on ' can be embedded in PT'L,5(F).2 or PT'L,,.(TF).
To determine N choose a ¢ € N. Then ¢ acts trivially on I', in particular it centralizes
x and y, so we have g € X X K and g € Y x J. Let gy € X and gx € K be such that
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g = gxgk. The element gy commutes with K, and therefore also centralizes all neighbors
of z. Consequently, also gx = gy'g centralizes all neighbors of z, and hence lies in the
center of K. We have proved that g commutes with K. Similarly, ¢ commutes with .J.
This implies that g commutes with G = (J, K), and, thus, ¢ € Z(G). Certainly, Z(G)
acts trivially on I', whence N = Z(G). The statement about the isomorphism type of
G/Z (@) follows from the isomorphism type of J and K. O

The proof of Theorem 5 consists of a series of lemmas.

Lemma 7.1

Under the assumptions of Theorem 5 any conjugate y?, g € Cg(x), of y lies in K its
centralizer Cg(y?) has a component J9 with A < J9. Moreover, [A, BY] = 1. In particular,
[A, K] =1.

Proof. Let F be a fundamental SL, of J, and let f be a p-element of F'. Let V be the
natural module of J. Then we can decompose V as [V, F| & Cy(F) = [V, f] ® Cv(f).
Certainly Cy (F) C Cy(f) and [V, F| D [V, f]. If Cy(f) is strictly larger than C (F), then
Cy(f) is a hyperplane, so f is an axial collineation. It cannot be a translation, since the
order of f is does not divide the order of the field, so it has to be a reflection. However,
F does not contain reflections of .J, so Cy(f) = Cy(F) and, thus, [V, f] = [V, F], so the
p-element f is contained in a unique fundamental SL, of J.

We have 2% = y, so Cg(r) = Cg(y). The group K is characteristic in Cg(x); in
particular K is normal in Cg(z). Therefore K% = J or, equivalently, K/ = J*. We
have B = C* Cc J¥ and A = C7 C K’. Certainly we also have A* € J* and B’ € K.
Moreover, z € AN A*¥ and y € BN B’, so K7 = J* implies A = A*¥ and B = B/.

Now let g € Cg(x) with 29 = z. Then y is mapped onto 39, and B is mapped onto
BY. We have 1 = [A, B] = [AY, BY). The group J* is normal in Cg(z), so Jk = Jk
Since A < J* and A9 < J*¥ = J* we have A = A9, so [A, B = 1. Moreover, A = AY
and A9 < J9 implies A < J9. We have established the lemma for any conjugate of
y in Cg(x) N Cg(z). Connectedness of the graph on the fundamental SLy’s of K with
commuting as adjacency finishes the proof; notice that K is generated by the set of
fundamental SLy’s of K. O

Lemma 7.2
Under the assumptions of Theorem 5 define I' to be the set of p-groups generated by
conjugates of x in G and define an adjacency relation L on T where {(a) L (b) if and
only if there exists a g € G with ({(a), (b)) = ((x)?,(y)?). Then (T, L) is an undirected
graph in which every triangle is conjugate to ((x),{(y),(2)). In particular, T" is locally
homogeneous.

Proof.  The vertices (), (y) are obviously adjacent. Conjugation with k stabilizes
(x) while interchanging (y) and (z), so (z) and (z) are adjacent. Conjugation with
j centralizes (y) and interchanges (z) and (z), yielding the adjacency of (z) and (y).
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Conjugation with jkj interchanges (x) and (y), so I' is undirected. All neighbors of (z)
are contained in K by Lemma 7.1. (Note that Cg(z) is normal in Ng(x), so K is normal in
Ng(x).) Moreover, if (a) = (z)? is a neighbor of (), then A < K9. Soif ((a), (b), (c)) is a
triangle of I', then there exist g1, g2 € G with {(a) = ()7 = (x)%, (b) = (y)*', (c) = (y)**.
Without loss of generality we can assume (a) = (z) and (b) = (y). Then A% = A = A%
and BY = B; moreover [A, B?] = 1 and B> < K by Lemma 7.1; similarly B < J.
Therefore B> < J N K, actually B < E(J N K). Hence there exists a ¢ € K with
(y)? = (y) and (2)? = (¢}, so the triangle ({x), (y),(c)) is conjugate to ((z), (y),(z)) in
K, whence in G. O

Lemma 7.3

Under the assumptions of Theorem 5 let (I, L) be the graph defined in Lemma 7.2. Define
~ on T by (a) ~ (b) if and only if (a)™ = (BY". Then ~ is an equivalence relation of T
and T'/ = is isomorphic to Ly, (F).

Proof. The graph I is locally homogeneous by Lemma 7.2, so it is enough to investigate
the neighbors of (x), which are conjugates of (y) in K. Since any edge of ' in K is
conjugate to ((y), (z)) by Lemma 7.2, the graph (z)" is isomorphic to the graph on the p-
subgroups of K generated by the conjugates of y in which distinct p-groups are adjacent if
and only if the fundamental SL,’s containing them commute. So, if ~, is the equivalence
relation on (z)" with (a) ~(z) (b) if and only if (a)" = (b)™" for nelghbors (a), (b) of (x),

then ()" / ~(z) is isomorphic to L,_;(F). Therefore the lemma follows from Theorem
1 and connectedness of T (it is connected, because G = (J, K)), if (z)"' N ~ = R(z)- SO
consider (a)™, which is connected and contains more than one element. If (b) has precisely
the same set of neighbors, then we can choose some (¢) € (a)" = (b)", and (¢)" N (a)™
is equal to ( > N (b)". Conversely, if (c) is adjacent to (a) and (b) and (c)™ N (a)" is
equal to (¢)" N (b)", then by connectedness of (a)" and symmetry it is enough to show
that any vertex (d) € (¢)" N (a)" satisfies (d)" N (a)" = (d)" N (B)". But inside ()" the
vertices (a) and (b) lie inside the same fundamental SL,, so they have to lie in the same
fundamental SL, of (d)" as well, and we have established (d)" N (a)" = (d)" N (B)*. O

Proof of Theorem 5. The group G acts via conjugation on I'. In particular, if two vertices
have the same set of neighbors, then their images under G also have the same set of
neighbors, so G acts on I'/ ~ as well. Therefore the group G modulo the kernel N of its
action on I'/ =~ can be embedded in PI'L, 5(F). However, any element of N centralizes
K and J, so it centralizes G. Conversely, any element in the center of NV acts trivially on
['/ ~, and the theorem is proved. O



REFERENCES 24

Acknowledgment

The author is pleased to acknowledge several discussions with Richard Lyons and Ronald
Solomon concerning Section 7.

References

[1] A. M. Cohen, H. Cuypers, R. Gramlich, Local recognition of non-incident point-
hyperplane graphs, submitted to Trans. Amer. Math. Soc.

[2] H. Cuypers, Nonsingular points of polarities, internal report, Technische Universiteit
Eindhoven 1999; in preparation as an article.

(3] D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups,
Number 1, Mathematical Surveys and Monographs 40.1, American Mathematical
Society, Providence 1994.

[4] D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups,
Number 2, Mathematical Surveys and Monographs 40.2, American Mathematical
Society, Providence 1996.

[5] R. Gramlich, On Graphs, Geometries, and Groups of Lie Type, PhD thesis, Techni-
sche Universiteit Eindhoven 2002.

6] J. I. Hall, A local characterization of the Johnson scheme, Combinatorica 7 (1987),
pp. 77-85.

Address of the author:

TU Darmstadt

Fachbereich Mathematik / AG 5
Schlofgartenstrafle 7

64289 Darmstadt

Germany

e-mail: gramlich@mathematik.tu-darmstadt.de



