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Abstrat

This artile provides a self-ontained, purely ombinatorial loal reognition of the

graph on the non-interseting line-hyperline pairs of the projetive spae P

n

(F) for

n � 8 and F a division ring with the exeption of the ase n = 8 and F = F

2

.

Consequenes of that result are a haraterization of the hyperboli root group

geometry of SL

n+1

(F), F a division ring, and a loal reognition of ertain groups

ontaining a entral extension of PSL

n+1

(F), F a �eld, using entralizers of p-

elements.

1 Introdution and Preliminaries

The haraterization of graphs and geometries using ertain on�gurations that do or

do not our in some graph or geometry is a entral problem in syntheti geometry.

One lass of suh haraterizations are the so-alled loal reognition theorems of loally

homogeneous graphs. A graph � is alled loally homogeneous if �(x)

�

=

�(y) for

all verties x; y 2 �, where �(x) denotes the indued subgraph on the neighbors of x in

�. A loally homogeneous graph � with �(x)

�

=

� is also alled loally �. For some

�xed graph � it is a natural question to ask for a lassi�ation of all onneted graphs

� that are loally �. A onneted loally � graph � is loally reognizable if, up to

isomorphism, � is the unique graph with that property. Several loal reognition results

of a lot of lasses of graphs an be found in the literature. As an example we refer to the

loal reognition of the Kneser graphs by Jonathan I. Hall [6℄; the Kneser graphs an be

onsidered as `thin' analogues of the graphs that are studied in this paper.

The present artile fouses on graphs on line-hyperline pairs of projetive spaes; more

preisely, let L

n

(F) denote the graph on the non-interseting line-hyperline pairs of the

projetive spae P

n

(F) (where n is a natural number and F a division ring) in whih two

verties are adjaent if the line of one vertex is ontained in the hyperline of the other

vertex and vie versa. Then the following holds.

1
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Theorem 1

Let n � 7 and let F be a division ring, or let n � 6 and let F be a division ring of order

at least three. If � is a onneted, loally L

n

(F) graph, then � is isomorphi to L

n+2

(F).

I believe that the exeption n = 6 and F = F

2

in Theorem 1 merely arises as an

exeption of my partiular proof, and is not a real exeption. Note that, besides this

exeption, Theorem 1 is in a sense optimal. Indeed, if F is a �eld, besides the graph

L

7

(F) also the graph on the fundamental SL

2

's of the group E

6

(F) with ommuting as

adjaeny is onneted and loally L

5

(F), as an be read o� the extended Dynkin diagram

of type E

6

. In fat, the graph L

n

(F) an be desribed as a `ommuting fundamental SL

2

'

graph as well. There is a one-to-one orrespondene between the non-interseting line-

hyperline pairs of P

n

(F) and the fundamental SL

2

's of the group SL

n+1

(F) by assigning a

fundamental SL

2

to the pair onsisting of its ommutator and its entralizer in the natural

module of SL

n+1

(F); two fundamental SL

2

's ommute if and only if the ommutator of one

is ontained in the entralizer of the other and vie versa. The root subgroups of SL

n+1

(F)

together with the fundamental SL

2

's (and symmetrized ontainment as inidene) form

a point-line geometry, alled the hyperboli root group geometry. This geometry is

haraterized in the following theorem as a onsequene of Theorem 1.

Theorem 2

Let n � 8 and let F be a division ring, or let n � 7 and let F be a division ring of order

at least three. Moreover, let (P;L;?) be a partial linear spae endowed with a symmetri

relation ? on the point set suh that x ? p and x ? q, for distint points p, q on some line

l and an arbitrary point x, implies x ? y for all points y of l. Furthermore, suppose that,

for any line k 2 L, the spae k

?

is isomorphi to the hyperboli root group geometry of

SL

n

(F) with l ? m if and only if [l; m℄ = 1 for lines l, m inside k

?

. If the graph (L;?) is

onneted, then (P;L) is isomorphi to the hyperboli root group geometry of SL

n+2

(F).

The proofs of Theorem 1 and Theorem 2 are based on the reonstrution of the

projetive spae P

n

(F) from an arbitrary graph � isomorphi to L

n

(F), alled the interior

projetive spae on �, f. Setion 3. The following theorem relates the automorphism

group of L

n

(F) to the automorphism group of P

n

(F) and is an immediate onsequene of

that reonstrution.

Theorem 3

Let n � 5, and let � be a graph isomorphi to L

n

(F). Then the interior projetive spae

on � is isomorphi to P

n

(F) or P

n

(F)

dual

. In partiular, the automorphism group of �

is of the form P�L

n+1

(F):2 or P�L

n+1

(F) depending on whether or not the spae P

n

(F)

admits a duality.

In ase P

n

(F) admits a duality, it is not lear whether P�L

n+1

(F):2 atually is a

semidiret produt or not. Of ourse, this problem is equivalent to the famous open

problem whether a projetive spae that admits a duality also admits a polarity.
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The �nal two results of this artile are appliations of Theorem 1 to group theory. If

a loally reognizable graph � admits a group G of automorphisms that ats transitively

on the set of all ordered triangles of �, then the loal reognition of � implies a loal

reognition of G. The loal reognition of the Kneser graphs in [6℄, for example, implies a

loal reognition of the symmetri groups along the lines of Theorem 27.1 of [3℄ or Theorem

2.5.5 of [5℄. Line-hyperline graphs also admit a highly transitive group of automorphisms

by Theorem 3.

If the division ring F has harateristi distint from two, then SL

2

(F) admits a entral

involution, and one an prove the following loal reognition theorem.

Theorem 4

Let n � 7, and let F be a division ring of harateristi distint from 2. Let G be a group

with subgroups A and B isomorphi to SL

2

(F), and denote the entral involution of A by

x and the entral involution of B by y. Furthermore, assume the following holds:

� C

G

(x) = X �K with K

�

=

GL

n

(F) and A � X;

� C

G

(y) = Y � J with J

�

=

GL

n

(F) and B � Y ;

� A is a fundamental SL

2

of J ;

� B is a fundamental SL

2

of K; and

� there exists an involution in J \ K that is the entral involution of a fundamental

SL

2

of both J and K.

If G = hJ;Ki, then (up to isomorphism) PSL

n+2

(F) � G=Z(G) � PGL

n+2

(F).

If the division ring F is �nite, then L

n

(F) is �nite and so is its automorphism group.

In order to state the �nal theorem reall some terminology from �nite group theory, see,

e.g., Setion B of [4℄. A �nite group G is alled quasisimple if and only if G=Z(G) is

simple and G = [G;G℄; it is semisimple if and only if G = G

1

� � �G

r

with G

i

quasisimple

and [G

i

; G

j

℄ = 1 for distint 1 � i; j � r. A omponent of a group G is a quasisimple

subnormal subgroup of G. The layer of G is the subgroup E(G) generated by all the

omponents of G, with the understanding that E(G) = 1 if G does not have a omponent.

By Theorem 3.5 of [4℄, the omponents of a group G ommute pairwise, the layer E(G)

is the unique maximal normal semisimple subgroup of G, and any automorphism of G

permutes the set of omponents of G.

Theorem 5

Let n � 8 and let F be a �nite �eld, or let n � 7 and let F be a �nite �eld of order at

least three. If q denotes the order of F, let p be a prime divisor of q

2

� 1. Furthermore let

G be a group ontaining p-elements x and y, and assume the following holds:

� C

G

(x) has a harateristi omponent K with K=Z(K)

�

=

PSL

n

(F);
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� C

G

(y) has a harateristi omponent J with J=Z(J)

�

=

PSL

n

(F);

� x is ontained in a subgroup A of J whih is a fundamental SL

2

of J ;

� y is ontained in a subgroup B of K whih is a fundamental SL

2

of K;

� the groups A and B ommute with E(J \K);

� there exists a group C

�

=

SL

2

(F) in E(J \K) whih is a fundamental SL

2

of both

J and K; and

� there exist k 2 K, j 2 J , and a p-element z 2 C suh that onjugation with j

interhanges hzi and hxi and onjugation with k interhanges hzi and hyi.

If G = hJ;Ki, then G=Z(G)

�

=

PSL

n+2

(F).

This artile is organized as follows. Setion 2 is a preliminary setion, introduing

some basi notation and providing some elementary fats. The purpose of Setion 3 is

to reonstrut the projetive spae P

n

(F) from an arbitrary graph isomorphi to L

n

(F)

and to give a proof of Theorem 3, whereas Setion 4 deals with the reonstrution of the

(hyperboli) root group geometry of SL

n+1

(F). Theorem 1 is proved in Setion 5, and

Theorem 2 is proved in Setion 6. Finally, Setion 7 provides proofs of Theorem 4 and

Theorem 5.

A weaker version of Theorem 1 (for n � 7) an be found as Theorem 2.5.1 in the

author's PhD thesis [5℄. Analogues on graphs on ommuting fundamental SL

2

's of sym-

pleti and unitary groups are ontained in [5℄ as well, see Theorem 4.4.22 (loally Sp

2n

(F)

for n � 4 and F a �eld) and Theorem 4.5.3 (loally SU

n

(K ) for n � 8 and K a quadrati

extension of some �nite �eld F); while Theorem 4.4.22 is optimal (the entralizer of a

fundamental SL

2

of F

4

(F) is isomorphi to Sp

6

(F)), there is still room for improvement of

Theorem 4.5.3 (the entralizer of a fundamental SL

2

of

2

E

6

(K ) is isomorphi to SU

6

(K )).

Similar questions for graphs on reetion tori of linear groups are answered in [1℄ (Theorem

1.1) or [5℄ (Theorem 1.3.21), whereas graphs on reetion tori of unitary and orthogo-

nal groups are treated in [2℄. Notie that the methods used to prove Theorem 1.1 of [1℄

(or Theorem 1.3.21 of [5℄) an be literally transsribed into a proof of Theorem 1 of the

present artile for n � 7. The ase n = 6 needs a slightly di�erent approah, whih also

overs the ase n � 7. This approah is presented in this artile.

2 Line-hyperline graphs of projetive spaes

This setion introdues preise notation and provides some general properties of line-

hyperline graphs that are used throughout the whole artile.
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De�nition 2.1 Let n 2 N , and let F be a division ring. Consider the projetive spae

P

n

(F) of (projetive) dimension n over F. The line-hyperline graph L(P

n

(F)) = L

n

(F)

of P

n

(F) is the graph whose verties are the non-interseting line-hyperline pairs of P

n

(F)

and in whih a vertex (a; A) is adjaent to another vertex (b; B) (in symbols, (a; A) ?

(b; B)) if and only if a � B and b � A.

For a vertex x of L

n

(F) let x

?

denote the set of all verties at distane one from x;

for a set X of verties, de�ne the perp of X as X

?

:=

T

x2X

x

?

and the double perp

of X as X

??

:= (X

?

)

?

. Sometimes L

n

is used to denote L

n

(F) if F is obvious or not

important.

The projetive spae P

n

(F) indues a Grassmann spae of lines on L

n

(F) whose points

are of the form v

l

= f(a; A) 2 L

n

(F) j a = lg for a projetive line l while its lines are of the

form v

p;�

= f(l; L) 2 L

n

(F) j p 2 l 2 �g for an inident point-plane pair (p; �) of P

n

(F).

The sets of verties v

l

are alled exterior lines. The dual onstrution yields exterior

hyperlines. A point-line geometry on L

n

(F) isomorphi to P

n

(F) is de�ned as follows.

Its lines are the exterior lines and its points are the full line penils of exterior lines, i.e.,

a point is of the form v

p

= f(l; L) 2 L

n

(F) j p 2 lg for a point p of P

n

(F). A point v

p

is alled an exterior point, the resulting point-line geometry the exterior projetive

spae. Dually, de�ne exterior hyperplanes and the resulting dual exterior proje-

tive spae. Besides the above geometries one an also indue root subgroup geometries

of SL

n+1

(F) on L

n

(F). The set v

p;H

= f(l; L) 2 L

n

(F) j p 2 l; L � Hg, for a �xed point

p and a �xed hyperplane H 3 p of P

n

(F), is alled an exterior root point of L

n

(F).

Likewise, an exterior root line is de�ned as the union v

l;H

=

S

p2l

v

p;H

, for a �xed line

l and a �xed hyperplane H � l, or as the union v

p;L

=

S

H�L

v

p;H

, for a �xed hyperline

L and a �xed point p 2 L. The geometry of the exterior root points and the exterior

root lines of L

n

(F) is isomorphi to the root group geometry of SL

n+1

(F) and alled the

exterior root group geometry on L

n

(F). Similarly, onsider the geometry on the ex-

terior root points of L

n

(F) as points and the verties of L

n

(F) as lines. That geometry is

isomorphi to the hyperboli root group geometry of SL

n+1

(F) and is alled the exterior

hyperboli root group geometry on L

n

(F).

Proposition 2.2

Let n � 3. The graph L

n

(F) is loally L

n�2

(F).

Proof. Let x = (x;X) be a vertex of L

n

(F). Then X

�

=

P

n�2

(F). Identifying X with

P

n�2

(F) by means of this isomorphism, we establish an isomorphism x

?

�

=

L(X). For any

vertex y = (y; Y ) adjaent to x, we have x � Y , y � Xn(X\Y ), and dim(X\Y ) = n�4,

so (y;X\Y ) belongs to L(X)

�

=

L

n�2

(F). Conversely, for any vertex of L(X), i.e., for any

non-interseting pair (z; Z) onsisting of a line and an (n�4)-spae of P

n

(F) with z � X,

Z � X, the pair (z; hZ; xi) is a vertex of x

?

. (Indeed, z \ hZ; xi = ;, sine x \X = ;.)

Clearly, the maps (y; Y ) 7! (y;X \ Y ) and (z; Z) 7! (z; hZ; xi) are eah other's inverses.

Moreover, these maps preserve adjaeny, whene the laim. 2
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Proposition 2.3

L

1

onsists of preisely one point; L

2

is the disjoint union of singletons; L

3

is the disjoint

union of liques of size two; the graphs L

4

, L

5

, and L

6

are onneted; the diameter of L

n

,

n � 7, equals two.

Proof. The �rst four statements are obvious. For n � 7 let (x;X), (y; Y ) be non-adjaent

verties of L

n

. The intersetion X \Y has dimension at least three. Sine x\X = ; and

y\Y = ;, the intersetion hx; yi\X \Y has at most dimension one, whene we an �nd

a line z � (X \ Y )n hx; yi. Moreover the dimension of hx; yi is at most three, and there

is a hyperline Z � hx; yi with z \ Z = ;. 2

Lemma 2.4

Let n � 4. Let x = (x;X), y = (y; Y ) be verties of L

n

with fx;yg

?

6= ;. Then the double

perp fx;yg

??

equals the set of verties z = (z; Z) of L

n

with z � hx; yi and Z � X \ Y .

Proof. The verties of fx;yg

?

are preisely the non-interseting line-hyperline pairs

(a; A) with a � X \ Y and A � hx; yi. Let f(a

i

; A

i

) 2 fx;yg

?

j i 2 Ig be the set of all

these verties, indexed by some set I. If fx;yg

?

6= ;, then fx;yg

??

onsists of preisely

those verties (z; Z) with z �

T

i2I

A

i

and Z � h(a

i

)

i2I

i. But obviously

T

i2I

A

i

= hx; yi

and h(a

i

)

i2I

i = X \ Y . 2

The rest of this setion is dediated to the development of means to reover the

projetive spaes from graphs � isomorphi to L

n

without making use of a partiular

isomorphism and oordinization. Reall that the projetive odimension of a subspae

X of P

n

(F) is de�ned as the length of a maximal hain of proper subspaes of P

n

(F) stritly

ontaining X and stritly ontaining eah other.

De�nition 2.5 Verties x = (x;X) and y = (y; Y ) of L

n

are in relative position

(i; j), if i = dim hx; yi and j = odim(X \ Y), where dim denotes projetive dimension

and odim projetive odimension. Let x, y be distint verties of L

n

with fx;yg

?

6= ;.

The double perp fx;yg

??

is alled nth minimal if there exist verties a

i

, b

i

, a

i

6= b

i

,

1 � i � n, with fa

i

;b

i

g

?

6= ; for all i and fa

1

;b

1

g

??

( � � � ( fa

n

;b

n

g

??

= fx;yg

??

and there does not exist a longer hain of strit inlusions.

Clearly, verties x and y of L

n

have to be in relative positions (1; 1), (1; 2), (2; 1),

(2; 2), (2; 3), (3; 2), or (3; 3). The following three lemmas will distinguish those ases up

to duality.

Lemma 2.6

Let n � 4, and let x, y be verties of L

n

.

(i) x and y are in relative position (1; 1) if and only if they are equal.

(ii) x and y are in relative position (1; 2) or (2; 1) if and only if they are distint, the

perp fx;yg

?

is non-empty, and the double perp fx;yg

??

is �rst minimal.
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(iii) x and y are in relative position (1; 3), (3; 1), (2; 2), (2; 3), (3; 2), or (3; 3) if and

only if they are distint and the perp fx;yg

?

is empty or the double perp fx;yg

??

is not �rst minimal.

Proof. The �rst statement is obvious. Let the relative position of x and y be (1; 2)

or (2; 1). Then fx;yg

?

6= ;. Indeed, up to duality we an assume that x = (x;X)

and y = (y; Y ) are in relative position (1; 2), so x = y, sine x and y span a line. The

intersetion X \Y ontains a spae of odimension 2, whih is at least a line sine n � 4.

Hene there exists a ommon neighbor of x and y. If a, b are distint verties ontained

in fx;yg

??

, then, by Lemma 2.4, a and b are in relative position (1; 2) or (2; 1) and, thus,

fa;bg

?

6= ;. Again by Lemma 2.4, the double perps fx;yg

??

and fa;bg

??

oinide. If

x and y are in any other relative position and fx;yg

?

is empty, then there is nothing to

prove. So let us assume fx;yg

?

6= ;. Then the double perp fx;yg

??

is given by Lemma

2.4 and it follows immediately that it ontains verties a and b in relative position (1; 2)

or (2; 1). But, again by Lemma 2.4, this gives rise to a stritly smaller double perp. Hene

fx;yg

??

is not minimal. Statements (ii) and (iii) follow. 2

Lemma 2.7

Let n � 5, and let x and y be verties of L

n

in relative position (1; 3) or (3; 1). Then

fx;yg

?

6= ;.

Proof. Let x = (x;X) and y = (y; Y ). Up to duality we have x = y. The intersetion

X \ Y ontains a spae of odimension 3, whih is at least a line, as n � 5. So there

exists a ommon neighbor of x and y. 2

Lemma 2.8

Let n � 5, and let x and y be verties of L

n

. The property `x and y are in relative position

(1; 3) or (3; 1)' is haraterized by

� the perp fx;yg

?

is non-empty,

� the double perp fx;yg

??

is seond minimal, and

� there do not exist verties a;b; ;d 2 fx;yg

??

with a 6= b and  6= d suh that

fa;bg

??

\ f;dg

??

= ;.

Proof. Up to duality we an assume that x and y are in relative position (3; 1). Then,

by Lemma 2.7, the perp fx;yg

?

is non-empty. The double perp fx;yg

??

is desribed by

Lemma 2.4. From that desription it is obvious that fx;yg

??

is seond minimal. Now

let a, b, , d be verties as stated in the hypothesis. By Lemma 2.4, the verties a and

b, respetively  and d, an only be in relative positions (2; 1) or (3; 1). But then Lemma

2.6 and Lemma 2.7 imply fa;bg

?

6= ; and f;dg

?

6= ;. There is a ommon vertex in

fa;bg

??

and f;dg

??

if one pair is in relative position (3; 1). So suppose both pairs are
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in relative position (2; 1). Let a = (a; A), b = (b; B),  = (; C), d = (d;D). We have

A = B = C = D, sine x and y are at relative position (3; 1), f. Lemma 2.4. Moreover,

both a, b and , d span planes inside a 3-spae, by Lemma 2.4. Two planes in a 3-spae

have to interset in at least a line, and we have found a ommon vertex of fa;bg

??

and

f;dg

??

.

Conversely, let x and y be in arbitrary relative position. Suppose fx;yg

?

6= ;. Then

another appliation of Lemma 2.4 shows, that fx;yg

??

only an be seond minimal if x

and y are in relative position (1; 3), (3; 1), or (2; 2). But if they are in relative position

(2; 2), then we an �nd verties a = (a; A), b = (b; B) in relative position (1; 2) and

 = (; C), d = (d;D) in relative position (1; 2) ontained in fx;yg

??

and suh that

fa;bg

??

\ f;dg

??

= ;. (Note that fa;bg

?

6= ; and f;dg

?

6= ; by Lemma 2.6.)

Indeed, we have a = b and  = d. But sine we an hoose both a = b and  = d freely in

a plane, they only have to interset in a point, and we have fa;bg

??

\ f;dg

??

= ;. 2

Lemma 2.9

Let n � 5. Let k, l, and m be distint exterior lines of L

n

(F). They interset in a ommon

exterior point (i.e., they are ontained in a line penil), if there exist verties a 2 k, b 2 l,

 2 m that are pairwise in relative position (2; 1) suh that fa;b; g

??

ontains verties

x, y in relative position (3; 1) with fx;yg

??

= fa;b; g

??

.

Proof. Suppose a = (k;K), b = (l; L),  = (m;M) with K = L = M . The lines k, l, m

mutually interset, sine (k;K), (l; L), and (m;M) are in mutual relative position (2; 1).

But, by Lemma 2.4, the lines k, l, and m together span a projetive 3-spae, beause

fa;b; g

??

ontains verties x, y in relative position (3; 1) with fx;yg

??

= fa;b; g

??

.

The laim follows, beause three mutually interseting lines spanning a 3-spae neessarily

interset in one point. 2

Lemma 2.10

Let n � 5, and let a and b be verties in relative position (2; 1). Then there exists a third

vertex  in relative position (2; 1) to both a and b suh that fa;b; g

??

ontains verties

x, y in relative position (3; 1) with fx;yg

??

= fa;b; g

??

.

Proof. Suppose a = (a; A), b = (b; B) with A = B. The lines a and b interset in

a point, p say. Let q be a point outside the plane ha; bi suh that the line pq does not

interset the hyperline A. Then  = (pq; A) is a vertex with the required properties. 2

3 The interior projetive spae

The purpose of this setion is to reonstrut the projetive spae P

n

(F) from an arbitrary

graph isomorphi to L

n

(F), and to provide a proof of Theorem 3. The notation introdued
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in Setion 2 will be used freely and without referene. Throughout this setion let n 2 N

and let � be isomorphi to L

n

(F).

De�nition 3.1 Let n � 5. De�ne a reexive relation � on the vertex set of a graph �

isomorphi to L

n

where for two distint verties x, y with fx;yg

?

6= ; we have x � y if

� the double perp fx;yg

??

is �rst or seond minimal, and

� there do not exist verties a;b; ;d 2 fx;yg

??

with a 6= b and  6= d suh that

fa;bg

??

\ f;dg

??

= ;.

Lemma 3.2

Let n � 5. On the vertex set of � there are unique equivalene relations �

l

and �

h

suh

that � = �

l

[ �

h

, and �

l

\ �

h

is the identity relation. Moreover, for a �xed isomorphism

�

�

=

L

n

(F), we either have

� �

l

is the relation `equal, in relative position (1; 2), or in relative position (1; 3)' and

�

h

is the relation `equal, in relative position (2; 1), or in relative position (3; 1)', or

� �

l

is the relation `equal, in relative position (2; 1), or in relative position (3; 1)' and

�

h

is the relation `equal, in relative position (1; 2), or in relative position (1; 3)'.

Proof. Verties x, y of � are in relation � if and only if their images (x;X) and (y; Y )

in L

n

(F) under some isomorphism �! L

n

(F) are in relative position (1; 1), (1; 2), (1; 3),

(2; 1), or (3; 1). Let us onsider equivalene relations that are subrelations of�. Obviously,

the identity relation is suh an equivalene relation. Moreover, the relations `equal, in

relative position (1; 2), or in relative position (1; 3)' and `equal, in relative position (2; 1),

or in relative position (3; 1)' are equivalene relations. If we have verties x = (x;X),

y = (y; Y ), z = (z; Z) of �

�

=

L

n

(F) suh that x, y are in relative position (1; �) and x,

z are in relative position (�; 1), then y 6= z and Y 6= Z and y, z annot be in relative

position (1; �) or (�; 1). Consequently, if we want to �nd two sub-equivalene relations �

l

and �

h

of � whose union equals �, then either of �

l

and �

h

has to be a subrelation

of `equal, in relative position (1; 2), or in relative position (1; 3)' or of `equal, in relative

position (2; 1), or in relative position (3; 1)'. It follows that the equivalene relations �

l

and �

h

have to be of the form as given in the lemma. 2

De�nition 3.3 Let n � 5, and let x be a vertex of �. With �

l

and �

h

on � as in Lemma

3.2, write [x℄

l

to denote the equivalene lass of �

l

ontaining x and [x℄

h

to denote the

equivalene lass of �

h

ontaining x. Refer to [x℄

l

as the interior line on x and to [x℄

h

as the interior hyperline on x of �.

Proposition 3.4

Let n � 5. There is a one-to-one orrespondene between interior lines of � and exterior

lines of L

n

. In partiular, any isomorphism � : �! L

n

indues suh a orrespondene up
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to duality; the image under � of an interior line is an exterior line. A similar statement

is true for interior hyperlines of �.

Proof. This follows diretly from Lemma 3.2. 2

De�nition 3.5 Let n � 5. For distint verties x, y of � denote by x �

h

1

y that x �

h

y

and fx;yg

??

is minimal, and by x �

h

2

y that x �

h

y and fx;yg

??

is seond minimal.

De�nition 3.6 Let n � 5. A set S of interior lines of � is alled full if

(i) jSj � 2;

(ii) for distint interior lines k; l 2 S there exist verties a 2 k, b 2 l with a �

h

1

b;

(iii) for verties a, b with [a℄

l

, [b℄

l

2 S and a �

h

1

b, there exists a vertex  satisfying

a �

h

1

 and b �

h

1

 suh that fa;b; g

??

ontains verties x, y with x �

h

2

y and

fa;b; g

??

= fx;yg

??

; and

(iv) any interior line [℄

l

ontaining a vertex  as in (iii) is also ontained in S.

Proposition 3.7

Let n � 5. Up to duality, any isomorphism �! L

n

maps a full set of interior lines of �

onto a full line penil of exterior lines of L

n

and vie versa.

Proof. By Lemma 2.9 and up to interhange of �

l

and �

h

, the image �(S), where �

denotes an isomorphism � ! L

n

, of a full set S of interior lines of � is ontained in a

penil of exterior lines of L

n

, through some exterior point p, say. Let l be an exterior line

of L

n

inident with p. The full set S ontains distint lines a and b. If �(a), �(b), and l

span a 3-spae, then �

�1

(l) is ontained in the full set by de�nition. So suppose l lies in

the plane h�(a); �(b)i. Then the full set ontain a some line  suh that �(a), �(b), �()

span a 3-spae, by Lemma 2.10 and the de�nition of a full set. But then also l, �(b) and

�() span a 3-spae, and �

�1

(l) is ontained in the full set. 2

De�nition 3.8 Let n � 5. Let S be a full set of interior lines of �. The interior point

p(S) of � is the union

S

l2S

l over all interior lines in the full set S. The geometry of

interior points and interior lines with symmetrized ontainment as inidene is alled the

interior projetive spae on �. Dually, de�ne interior hyperplanes and the dual

interior projetive spae.

Proposition 3.9

Let n � 5. Up to duality there exists an isomorphism between the interior projetive spae

on � and the exterior projetive spae on L

n

(F). The same statement holds true for the

dual interior projetive spae. 2

Theorem 3 follows immediately from Proposition 3.9.
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4 Geometries on interior root points

This setion provides onstrutions of the exterior (hyperboli) root group geometries

on L

n

(F) in terms of exterior points, exterior lines, exterior hyperplanes, and exterior

hyperlines. Then Propositions 3.4 and 3.7 will give us means to desribe these geometries

intrinsially on an arbitrary graph � isomorphi to L

n

(F). Throughout this setion let

n 2 N and let � be isomorphi to L

n

(F).

Lemma 4.1

Let n � 5, and let v

p;H

and v

q;I

be two distint exterior root points of L

n

(F). Then we

have jv

p;H

\ v

q;I

j � 1. More preisely, the points p and q and the hyperplanes H and I are

distint and the line pq does not interset the hyperline H\I if and only if jv

p;H

\v

q;I

j = 1.

Proof. Suppose jv

p;H

\ v

q;I

j 6= ;, i.e., in P

n

(F) there exist a line l and a hyperline L with

l � hp; qi, L � H \ I, and l \ L = ;. Assume there exists another line-hyperline pair

(m;M) satisfying these onditions. If it is distint from (l; L), then l 6= m or L 6= M . Up

to duality, we may assume L 6= M . Then immediately H = I, whene p 6= q. But then

l = m = pq is ontained in H = I, whih have hyperplanes L and M . Hene l \ L 6= ;, a

ontradition.

If p 6= q, H 6= I and pq \H \ I = ;, then (pq;H \ I) is a vertex of L

n

(F) ontained

in v

p;H

\ v

q;I

. Conversely, suppose there exists suh a vertex. This implies p 6= q and

H 6= I. But then the only andidate for being ontained in v

p;H

\ v

q;I

is (pq;H \ I),

whene pq \H \ I = ;. 2

For the next lemma notie that an exterior hyperplane of L

n

(F) is not a hyperplane

of the exterior projetive spae on L

n

(F). However, there is an obvious one-to-one orres-

pondene between exterior hyperplanes and hyperplanes of the exterior projetive spae,

by the map

v

H

= f(l; L) 2 L

n

(F) j L � Hg 7!

[

p2H

v

p

=

[

p2H

f(l; L) 2 L

n

(F) j p 2 lg :

Therefore there is no harm done if one speaks of inidene between exterior points and

exterior hyperplanes and rather means inidene between exterior points and the images

of exterior hyperplanes by means of this map.

Lemma 4.2

Let n � 5. An exterior point v

p

and an exterior hyperplane v

H

of L

n

(F) are non-inident if

and only if any exterior line v

l

inident with v

p

ontains a vertex ontained in an exterior

hyperline v

L

inident with v

H

and vie versa.

Proof. Suppose v

p

and v

H

are non-inident and let v

l

be an exterior line inident with

v

p

. The set v

l

onsists of all verties of L

n

(F) having l as the �rst oordinate. The seond

oordinate ranges over all hyperlines L that do not interset l. By the isomorphism
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between the exterior projetive spae on L

n

(F) and P

n

(F) that maps v

p

onto p, v

l

onto

l, v

H

onto H, also p is inident with l and non-inident with H. Hene l intersets H in

a unique point. But then there exists a hyperline M non-interseting l that is ontained

in H. The vertex (l;M) is ontained in the exterior hyperline v

M

, whih is inident with

v

H

. Similarly, any exterior hyperline inident with v

H

ontains a vertex ontained in an

exterior line inident with v

p

. Conversely, suppose v

p

and v

H

are inident. Choose an

exterior line v

l

through v

p

suh that l is ontained in H. Now, a hyperline that does not

interset l annot be ontained in H. 2

In view of the preeding lemma, in a graph � isomorphi to L

n

(F), an interior point

p and an interior hyperplane H are alled non-inident if and only if any interior line l

inident with p ontains a vertex of � ontained in an interior hyperline L inident with

H and vie versa. Conversely, an interior point and an interior hyperplane are inident

if they are not non-inident.

De�nition 4.3 Let n � 5. An interior root point of � is the intersetion of an interior

point with an inident interior hyperplane. An interior root line is of the form

[

interior point p2l

p \H

for a �xed interior line l ontained in the �xed interior hyperplane H or

[

interior hyperplane H�L

p \H

for a �xed interior hyperline L ontaining the �xed interior point p.

Proposition 4.4

Let n � 5. The following hold.

(i) The geometry of exterior root points and exterior root lines on L

n

(F) with sym-

metrized ontainment as inidene is isomorphi to the root group geometry of

SL

n+1

(F).

(ii) The geometry of exterior root points and verties of L

n

(F) with symmetrized ontain-

ment as inidene is isomorphi to the hyperboli root group geometry of SL

n+1

(F).

(iii) The geometry of interior root points and interior root lines on � with symmetrized

ontainment as inidene is isomorphi to the root group geometry of SL

n+1

(F).

(iv) The geometry of interior root points and verties of � with symmetrized ontainment

as inidene is isomorphi to the hyperboli root group geometry of SL

n+1

(F).
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In partiular, there is a one-to-one orrespondene between the verties of � and the lines

of the hyperboli root group geometry of SL

n+1

(F). The interior root points of � orrespond

to the full line penils of the (hyperboli) root group geometry.

Proof. Notie that by Propositions 3.4 and 3.7 plus the De�nition 4.3 of interior root

points and interior root lines, Statement (i) is equivalent to Statement (iii) and Statement

(ii) is equivalent to Statement (iv). However, the �rst two statements follow the de�nition

of exterior root points and exterior root lines in Setion 2.

The additional laim about the verties of � follows from the isomorphism between

� and L

n

(F) and the fat that lines of the hyperboli root group geometry of SL

n+1

(F)

orrespond to non-interseting line-hyperline pairs of the projetive spae P

n

(F) by as-

signing the fundamental SL

2

to the pair onsisting of its ommutator and its entralizer

on the natural module of SL

n+1

(F). The laim about the line penils follows from the fat

that interior points orrespond to full line penils of interior lines (f. Proposition 3.7),

similarly interior hyperplanes orrespond to full penils of interior hyperlines; interseting

an interior point with an inident interior hyperplane, we get a full line penil of the

hyperboli root group geometry. 2

The geometries of interior objets as in the theorem are alled the interior (hyper-

boli) root group geometry on �, respetively.

5 Loally line-hyperline graphs

In this setion we prove Theorem 1. Throughout the whole setion let n � 7 and let F

be a division ring, or let n � 6 and let F be a division ring of order at least three; let

� be a simply onneted, loally L

n

(F) graph. We reall that a graph is alled simply

onneted if it is onneted and any yle in � an be deomposed into triangles.

Notie that interior points and interior lines only exist on the perps of � and may

di�er on di�erent perps; it is one task of this setion to show that there exist well-de�ned

notions of global points and global lines. To avoid onfusion, we will index eah interior

point and eah interior line by the vertex whose perp it belongs to. We all those points

and lines loal points and loal lines; similarly, we use the notion of loal equivalene

relations.

Lemma 5.1

Let x and y be adjaent verties of �. Then there exists a hoie of loal equivalene

relations �

l

x

and �

l

y

suh that the intersetions of �

l

x

and �

l

y

to x

?

\ y

?

oinide.

Proof. Choose a loal equivalene relation �

l

x

on x

?

. This indues oordinates on x

?

, so

we an identify x

?

with L

n

(F), induing oordinates on x

?

\y

?

�

=

L

n�2

(F), whih in turn

indues oordinates of y

?

�

=

L

n

(F) using Lemma 2.6(ii). A hoie of �

l

y

in aordane

with the oordinates on y

?

�nishes the proof. 2
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Lemma 5.2

There is a hoie of loal equivalene relations (�

l

x

)

x2�

suh that for any two adjaent

verties x and y the restritions of �

l

x

and of �

l

y

to x

?

\ y

?

oinide.

Proof. Suppose that x, y, z is a triangle of �. In view of Lemma 5.1 we may assume

that �

l

x

and �

l

y

have the same restrition to x

?

\ y

?

and that �

l

x

and �

l

z

have the same

restrition to x

?

\ z

?

. Let l

x

be an interior line of x

?

suh that l

x

\ y

?

\ z

?

6= ;. By

analysis of x

?

we �nd two verties, say u and v, of l

x

\y

?

\z

?

. The above hoies of loal

equivalene relations imply that u and v belong to both �

l

y

and �

l

z

, whih implies that

�

l

y

and �

l

z

have the same restrition to y

?

\ z

?

by Lemma 2.6(ii). Sine � is assumed to

be simply onneted, the lemma follows immediately from the triangle analysis. 2

De�nition 5.3 Fix a hoie of (�

l

x

)

x2�

as given in Lemma 5.2 and de�ne �

l

:=

S

x2�

�

l

x

.

Lemma 5.4

Let x be a vertex of �. Then the restrition of �

l

to x

?

oinides with �

l

x

. In partiular,

suppose that x and y are verties of � suh that x �

l

u

y for some vertex u 2 fx;yg

?

.

Then x �

l

v

y for every vertex v 2 fx;yg

?

.

Proof. Obviously, �

l

jv

?

�v

?

��

l

v

. Conversely assume there exist x;y 2 v

?

with x �

l

y.

Sine �

l

:=

S

x2�

�

l

x

, there exists a vertex u 2 fx;yg

?

with x �

l

u

y. In y

?

denote the

intersetion of hu

y

; v

y

i with U

y

by b

y

; similarly, denote in x

?

the intersetion of hu

x

; v

x

i

with U

x

by 

x

. First we will prove that we an assume that b

y

\ V

y

= ; and 

x

\ V

x

= ;,

or, equivalently, hv

x

; u

x

i \ V

x

\ U

x

= ; and hv

y

; u

y

i \ V

y

\ U

y

= ;. Indeed, onsider u

?

;

the spaes b

y

and 

x

arise as b

u

, respetively 

u

. Choose some line u

0

u

in X

u

\ Y

u

. This

line ours as the line u

0

x

in x

?

and as the line u

0

y

in y

?

. De�ne 

0

x

:= hv

x

; u

0

x

i \ V

x

and



00

x

:= hu

x

; 

0

x

i \ U

x

. Similary, let b

0

y

:=




v

y

; u

0

y

�

\ V

y

and b

00

y

:=




u

y

; b

0

y

�

\ U

y

. The spaes

b

00

y

and 

00

x

arise as b

00

u

, respetively 

00

u

in u

?

. Let b

000

u

:= hx

u

; b

00

u

i \X

u

. Choose a hyperline

U

0

u

that ontains x

u

and does not interset 

00

u

, b

000

u

, or u

0

u

, whih is possible if F 6= F

2

.

Then the vertex u

0

:= (u

0

u

; U

0

u

) is adjaent to x, u, y, and we have hv

x

; u

0

x

i \ V

x

\U

0

x

= ;

and




v

y

; u

0

y

�

\ V

y

\ U

0

y

= ;.

So now assume that b

y

\V

y

= ; and 

x

\V

x

= ;. Choose a hyperlineW

u

that ontains

b

u

and 

u

, but not x

u

, if suh a hoie is possible. Then let w := (x

u

;W

u

). There exists

a hyperline W

1

u

ontaining b

u

but not x

u

that intersets both W

u

and Y

u

in a hyperplane

of either. Let w

1

:= (x

u

;W

1

u

). In y

?

denote U

y

\ V

y

by UV

y

. This spae arises as a

spae UV

u

in u

?

. The intersetion UV

u

\ W

1

u

ontains a projetive line l

u

. The span

hx

u

; b

u

i does not interset l

u

, so we an �nd a hyperline L

u

that does not interset l

u

but

ontains hx

u

; b

u

i. The vertex l := (l

u

; L

u

) is adjaent to u, w

1

, y, and v. Loal analysis

of l

?

shows that w

1

? v. The fat w

1

�

l

u

y implies w

1

�

l

l

y, whih implies w

1

�

l

v

y.

Similarly, we �nd a vertex l

0

adjaent to w, u, w

1

, v, and establish w ? v. This implies

w �

l

v

y. By symmetry we also have w �

l

v

x, so transitivity of �

l

v

yields x �

l

v

y. If the



5 LOCALLY LINE-HYPERLINE GRAPHS 15

hoie of the hyperline W

u

ontaining b

u

and 

u

but not x

u

is not possible, then there

exists a hyperline T

u

that ontains b

u

and 

u

as well as x

u

. Let t

u

� UV

u

be a line that

does not interset T

u

. Then ontinue the above argument with verties w := (x

u

;W

u

)

and w

0

:= (x

u

;W

0

u

) suh that W

u

ontains t

u

and b

u

and W

0

u

ontains t

u

and 

u

.

If F = F

2

we an assume n � 7, and the proof of the lemma is straightforward; f.

Lemma 4.7 of [1℄ or Lemma 1.3.9 of [5℄. 2

Lemma 5.5

The relation �

l

is an equivalene relation. In partiular, distint verties x �

l

y are at

distane two in �.

Proof. Reexivity and symmetry follow from reexivity and symmetry of eah �

l

x

. In

order to prove transitivity suppose x �

l

u

y and y �

l

v

z. In y

?

we an assume that v

y

6� U

y

and u

y

6� V

y

. Fix a hyperline W

y

that ontains U

y

\ V

y

, that intersets both U

y

and

V

y

in a hyperplane of W

y

, and that does not interset u

y

or v

y

. The line-hyperline pairs

(u

y

;W

y

) and (v

y

;W

y

) give rise to verties u

0

, respetively v

0

that are both adjaent to y.

Let us now study the path x ? u ? y ? u

0

. In u

?

denote the intersetion X

u

\ Y

u

by

XY

u

. This spae indues a spae XY

y

of y

?

. The intersetion U

y

\W

y

is a hyperplane of

U

y

, so U

y

\W

y

\XY

y

ontains a projetive line, l

y

say. Choosing any hyperline L

y

� u

y

that does not interset l

y

, we �nd a vertex a = (l

y

; L

y

) that is adjaent to u, u

0

, y, and x.

In a

?

we see that x ? u

0

; moreover x �

l

a

y, and, thus, x �

l

u

0

y. Similarly one establishes

z ? v

0

and y �

l

v

0

z. In v

0

?

we an �nd a vertex z

0

in the same �

l

v

0

equivalene lass as y

and z suh that the hyperline of z

0

intersets the hyperlines of y and z in hyperplanes of

the hyperline. Denote the intersetion Y

v

0

\Z

0

v

0

by Y Z

0

v

0

and the intersetion X

u

0

\Y

u

0

by

XY

u

0

. Both spaes indues subspaes Y Z

0

y

, respetively XY

y

of W

y

in y

?

. Inside y

?

, the

intersetion Y Z

0

y

\XY

y

ontains a projetive line, m

y

say. If hu

y

; v

y

i does not interset

m

y

, then we an �nd a hyperline M

y

that together with m

y

forms a vertex m of � that

is adjaent to y, u

0

, x, v

0

, and z

0

. If hu

y

; v

y

i does interset m

y

, then we an hoose a

line n

y

� Y Z

0

y

nm

y

and a non-interseting hyperline N

y

� hv

y

; m

y

i, whih gives rise to

a vertex n = (n

y

; N

y

) adjaent to y, v

0

, and z

0

. Moreover, the spae hn

y

; u

y

i does not

interset m

y

, and as above we �nd a vertex m of � that is adjaent to x, u

0

, y, n, and

z

0

. The fats x �

l

u

0

y and y �

l

v

0

z

0

imply x �

l

m

y and y �

l

m

z

0

, beause m ? u

0

and

either m ? v

0

or m ? n ? v

0

, so transitivity of �

l

m

yields x �

l

m

z

0

. We have redued the

problem to the path x ? m ? z

0

? v

0

? z. However, in v

0

?

the hyperlines of z

0

and z

interset in a hyperplane of either hyperline, so by onsiderations as above we an �nd a

vertex m

0

adjaent to x, z

0

, and z, yielding x �

l

m

0

z and, thus, x �

l

z.

The seond statement follows from the above onsiderations and Lemma 5.4. 2

De�nition 5.6 A global line of � is an equivalene lass of �

l

. Dually, a global

hyperline is an equivalene lass of �

h

. By Lemma 5.4 the loal intersetion of a global

line is either empty or a loal line.
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Lemma 5.7

Let l be a global line of �. Then L \ x

?

6= ; if and only if L \ y

?

6= ; for an arbitrary

global hyperline L and x;y 2 l. The dual statement holds as well.

Proof. By Lemma 5.5 there exists a vertex z adjaent to x and y. Let h

1

be some

neighbor of y. We have to prove that there exists a neighbor of x ontained in the same

�

h

equivalene lass as h

1

. Denote this �

h

equivalene lass by H. First of all, we an

assume that in z

?

the intersetion X

z

\ Y

z

is a hyperplane of X

z

and Y

z

. Indeed, there

always exists a neighbor y

0

of z with y �

l

y

0

suh that X

z

\Y

0

z

and Y

0

z

\Y

z

are hyperplanes

of Y

0

z

, so we an �rst onsider the path y

0

? z ? y ? h

1

to establish a neighbor h

0

1

of y

0

with h

1

�

h

h

0

1

, and subsequently onsider the path x ? z ? y

0

? h

0

1

.

So now assume that in z

?

the intersetion X

z

\ Y

z

is a hyperplane of X

z

and Y

z

.

Denote this intersetion X

z

\Y

z

by XY

z

, whih indues a subspae XY

y

of Z

y

in y

?

. The

intersetion XY

y

\H

y

ontains a projetive line, v

y

say. Choose a hyperline V

y

� z

y

that

does not interset v

y

, whih yields a vertex v = (v

y

; V

y

) that is adjaent to y, z, and x.

Sine v

y

� H

y

, there exists a neighbor h

2

of y with h

1

�

h

h

2

and h

2

? v. In v

?

we have

l

v

� H

v

. Choosing a line in X

v

nH

v

we have found a vertex h

3

adjaent to v and x with

h

3

�

h

h

2

. Therefore h

3

�

h

h

1

by Lemma 5.5, and the lemma is proved. 2

Lemma 5.8

Let l ? x ? y ? m be a path of verties with l �

l

m. Then there exists a vertex

k 2 fx;yg

?

with l �

l

k �

l

m.

Proof. Consider x

?

. If l

x

� Y

x

, then there is nothing to prove. If l

x

\ Y

x

= ;, then let

y

0

:= (l

x

; Y

x

). Note that l �

l

x

y

0

. The fat y

0

�

h

x

y implies, by Lemma 5.7, the existene

of a vertex m

0

adjaent to y

0

with m

0

�

l

m. But m

0

�

l

m �

l

l �

l

y

0

yields m

0

�

l

y

0

, a

ontradition to m

0

? y

0

and Lemma 5.4.

The above onsiderations and symmetry of x

?

and y

?

leave the following ase: In x

?

assume that l

x

intersets Y

x

in the point p

x

, while in y

?

assume that m

y

intersets X

y

in the point q

y

. The point q

y

arises as the point q

x

in x

?

; let a

y

:= hx

y

; m

y

i \X

y

, whih

arises as a

x

in x

?

. If hl

x

; y

x

i 3 q

x

, then ha

x

; l

x

; y

x

i is ontained in a hyperline, so we an

�nd a vertex u adjaent to x and y ontaining l

u

andm

u

. Lemma 5.4 implies l

u

= m

u

, and

we are done. So assume that hl

x

; y

x

i 63 q

x

. Then there exists a hyperline W

x

ontaining

hl

x

; y

x

i and a line w

x

ontaining q

x

that does not interset W

x

. Let w := (w

x

;W

x

). Then

by Lemma 5.7 there exists a vertex l

0

adjaent to w with l �

l

l

0

. Denote hl

w

; y

w

i \ Y

w

by

b

w

. This spae translates to a spae b

y

of y

?

. The loal line w

y

intersets the loal line

m

y

, so hb

y

; m

y

; w

y

i is ontained in a hyperline. Hene we an �nd a neighbor v of w and

y that ontains l

v

and m

v

, thus yielding l

v

= m

v

. However, while w

v

intersets with m

v

,

the hyperline W

v

ontains l

v

, a ontradition to w

v

\W

v

= ;. 2
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Lemma 5.9

Let h

1

�

h

h

2

and i

1

�

h

i

2

be suh that there exist verties x 2 fh

1

; i

1

g

?

and y 2 fh

2

; i

2

g

?

.

Then there exist verties h

3

; i

3

2 y

?

with h

2

�

h

h

3

and i

2

�

h

i

3

and a vertex x

0

2 fh

3

; i

3

g

?

in the same onneted omponent of fh

3

; i

3

g

?

as y with x �

l

x

0

.

Proof. Suppose that H

y

\I

y

is a hyperline of both H

y

and I

y

. Then we an �nd adjaent

verties h

3

and i

3

in y

?

with h

3

�

h

h

2

and i

3

�

h

i

2

. By Lemma 5.7 there exist verties

x

1

? h

3

and x

2

? i

3

with x

1

�

l

x �

l

x

2

. But now by Lemma 5.8 there exists a vertex

x

0

2 fh

3

; i

3

g

?

with x

1

�

l

x

0

�

l

x

2

and, thus, x �

l

x

0

.

So now we an suppose that H

y

\ I

y

is a hyperplane of both H

y

and I

y

. Denote this

intersetion by HI

y

; it indues a spae HI

h

2

of h

?

2

. Additionally we an assume that

h

2

y

= i

2

y

. By Lemma 5.7 there exist verties x

1

? h

2

and x

2

? i

2

with x

1

�

l

x �

l

x

2

. In

h

?

2

we an assume that the hyperlineX

1

h

2

ontains the line y

h

2

, if x

1

h

2

does not interset y

h

2

.

Otherwise we an assume that the hyperline X

1

h

2

intersets the line y

h

2

. Now in h

?

2

the

intersetion HI

h

2

\X

1

h

2

ontains a projetive line. Moreover,




x

1

h

2

; y

h

2

�

\HI

h

2

\X

1

h

2

= ;,

by the above assumptions on X

1

h

2

and y

h

2

. Therefore there exists a vertex v adjaent to

x

1

, h

2

, y, and i

2

. By Lemma 5.8 there exists a vertex x

3

2 fv; i

2

g

?

with x

1

�

l

x

3

�

l

x

2

and, thus, x �

l

x

3

. Loal analysis of v

?

yields a vertex x

4

2 fh

2

; i

2

g

?

with x

4

�

l

x

3

�

l

x.

2

Lemma 5.10

Let l and m be global lines of �. Then there exist verties of l and m at mutual distane

at most two.

Proof. Assume there exist verties l 2 l and m 2 m at distane three and let l ? x ?

y ? m be a path from l to m. In y

?

denote hx

y

; m

y

i \ X

y

by a

y

. This line indues a

line a

x

of x

?

. If hl

x

; a

x

; y

x

i is ontained in a hyperline, then we an hoose a hyperline

Y

0

x

� hl

x

; a

x

; y

x

i and a non-interseting line y

0

x

� Y

x

. This yields a vertex y

0

adjaent to

x and y whih has a neighbor m

0

�

l

m. Moreover, y

0

is adjaent to a vertex l

0

�

l

l. By

Lemma 5.7 the vertex l is adjaent to some vertex z �

h

y

0

, whih in turn is adjaent to

a vertex m

00

�m, and we have found l 2 l and m

00

2 m at distane two.

So now suppose that hl

x

; a

x

; y

x

i is not ontained in a hyperline. Then we an hoose

a hyperline Y

0

x

that ontains ha

x

; y

x

i and intersets l

x

in a point, and we an hoose a

non-interseting line y

0

x

in Y

x

. If hl

x

; a

x

; y

0

x

i is ontained in a hyperline, then we are in

the situation of the above paragraph, so assume that hl

x

; a

x

; y

0

x

i is not ontained in a

hyperline. Then we an hoose any hyperline Y

00

x

ontaining ha

x

; y

0

x

i but not l

x

and a

non-interseting line y

00

x

inside Y

0

x

that intersets l

x

. Now hl

x

; a

x

; y

00

x

i is ontained in a

hyperline and, by the above paragraph, we an �nd verties of l and m at distane two.

The lemma follows by indution on the length of some path from some element of l

to some element of m. 2
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De�nition 5.11 Let l and m be distint global lines of �, let l 2 l, m 2 m be at distane

at most two, and let x be adjaent to l and m. Then hl; mi onsists of those global lines

k with k \ x

?

6= ; suh that k

x

lies in the span of l

x

and m

x

. If l

x

intersets m

x

, then

hl; mi is alled a global plane, and otherwise a global 3-spae. Dually one de�nes

intersetions of global hyperplanes.

Lemma 5.12

The notion of global planes and global 3-spaes is well de�ned. The same holds for the

dual statement.

Proof. We will prove the dual statement instead. Let h

1

�

h

h

2

and i

1

�

h

i

2

be suh that

there exists verties x 2 fh

1

; i

1

g

?

and y 2 fh

2

; i

2

g

?

. By Lemma 5.9 there exist verties

h

3

; i

3

2 y

?

with h

2

�

h

h

3

and i

2

�

h

i

3

and a vertex w 2 fh

3

; i

3

g

?

with x �

l

w and a

path from y to w in fh

3

; i

3

g

?

. By Lemma 5.5 there exists a vertex z adjaent to x and

w. We an assume that X

z

\W

z

is a hyperplane in both X

z

and W

z

. For, there exists a

vertex w

0

�

l

x;w adjaent to z suh that X

z

\W

0

z

and W

0

z

\W

z

are hyperplanes of W

0

z

.

By Lemma 5.7 there are verties h

0

3

; i

0

3

2 w

0

?

with h

3

�

h

h

0

3

and i

3

�

h

i

0

3

.

So now assume that X

z

\W

z

is a hyperplane in both X

z

and W

z

. Denote this inter-

setion by XW

z

, whih indues a spae XW

w

. Up to passing to a neighbor of x, z, w we

an assume that in w

?

the hyperline Z

w

ontains H

w

\ I

w

. Therefore XW

w

\H

w

\ I

w

ontains a projetive line, and we an �nd a neighbor v of x, z, w whose line in w

?

is ontained in H

w

\ I

w

. Therefore there exist verties h

4

; i

4

2 v

?

with h

3

�

h

h

4

and

i

3

�

h

i

4

. Four appliations of Lemma 5.8 �nish the proof. 2

De�nition 5.13 Denote by L

�

the set of global lines of �. A global pre-point is

de�ned as the union

S

l2S

l of global lines ontained in some set S suh that any pair l,

m of distint global lines ontained in S spans a global plane and for any triple k, l, m

of distint global lines ontained in S there exists a global line n in S that spans a global

plane with any of k, l, or m distint from n and a global 3-spae with any pair of k, l,

or m not ontaining n. A maximal global pre-point is alled a global point. Denote the

set of global points by P

�

.

Proposition 5.14

The point-line geometry (P

�

;L

�

) is a projetive spae.

Proof. Let p and q be points of (P

�

;L

�

). Then there exists lines l through p and m

through q. By Lemma 5.10 there exists verties l 2 l and m 2 m at distane at most two,

so there exists a vertex x adjaent to both l and m. The intersetions p \ x

?

and q \ x

?

are loal points of x, so there exists a loal line k

x

onneting p

x

and q

x

. Hene we have

found a global line k joining p and q, so (P

�

;L

�

) is a linear spae.

It remains to prove Pash's axiom. Let l and m be interseting lines. By Lemma 5.10

there exists a vertex z adjaent to some verties l 2 l andm 2 m. In z

?

the plane hl

z

; m

z

i



6 HYPERBOLIC ROOT GROUP GEOMETRIES 19

is a projetive plane, hene so is the global plane spanned by l and m, and the proof is

�nished. 2

Proposition 5.15

The graph � is isomorphi to the line-hyperline graph of P

�

= (P

�

;L

�

).

Proof. Denote by




x

?

�

the set of global lines of � that have a non-empty intersetion

with x

?

. This set obviously is a hyperline of (P

�

;L

�

). Therefore the map � ! L(P

�

)

de�ned by x 7! ([x℄

�

l

;




x

?

�

) de�nes an isomorphism between � and the line-hyperline

graph of (P

�

;L

�

). 2

Proof of Theorem 1. Assuming � to be simply onneted, Proposition 5.15 implies that

� is isomorphi to L

n+2

(F). Therefore, if � is not neessarily simply onneted, then �

is isomorphi to a quotient of L

n+2

(F). However, by Lemma 2.3 the diameter of L

n+2

(F)

equals two, so L

n+2

(F) does not admit any proper quotients that are loally L

n

(F), and

the theorem follows. 2

6 Hyperboli root group geometries

This setion gives a proof of Theorem 2. Throughout the whole setion, let � be a

onneted, loally L

n�1

(F) graph for a division ring F and n � 6.

De�nition 6.1 Let � = (V;?) be a onneted, loally L

n�1

(F) graph. � is geometriz-

able if there exists a family S of subsets of V suh that

� for any S 2 S and any vertex x 2 V the intersetion S \ x

?

is either empty or an

interior root point of x

?

, and

� for any interior root point p

x

of x

?

, x 2 V, there exists a unique set S 2 S ontaining

p

x

.

The point-line geometry (S;V) with symmetrized ontainment as inidene is alled a

geometrization of �. An element of S is alled a global root point.

Lemma 6.2

Let � be geometrizable and let x and y be two verties of �. If p, q are two verties

adjaent to both x and y that belong to a ommon interior root point of x

?

, then they

also belong to a ommon interior root point of y

?

.

Proof. Let (S;V) be a geometry on �. Then there is a unique S 2 S ontaining p and

q. But sine p;q 2 S \ y

?

, they also belong to an interior root point of y

?

. 2
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Lemma 6.3

Let � be geometrizable. Then, up to isomorphism, there is at most one geometrization of

� with the property that any two verties ontained in the same global point are at distane

two in �.

Proof. Suppose suh a geometry on � exists. Fix a vertex x and onsider the interior

hyperboli root group geometry on x

?

�

=

L

n�1

(F). Let a, b be two distint verties of

an interior root point p of x

?

. Note that a and b uniquely determine this interior root

point, by Lemma 4.1. Now let y be an arbitrary vertex of �. The proposition is proved,

if it is determined whether y belongs to the set S 2 S that ontains p or not.

We may assume that there exists a vertex z adjaent to y and a, sine otherwise

y annot be ontained in S by hypothesis. By Proposition 2.3 there exists a hain of

verties in a

?

�

=

L

n�1

(F) onneting x and z. Denote the vertex losest to x by w. By

loal analysis of x

?

we an �nd another vertex  in x

?

\ w

?

belonging to the interior

root point p aside from a. By Lemma 6.2 the verties a and  are ontained in a ommon

interior root point q of w

?

. Obviously the interior root point q of w

?

has also to be

ontained in S. Using indution, we see that it is determined whether y is ontained in

the set S or not. 2

Proposition 6.4

Let n � 6, let F be a division ring, and let (P;L;?) be a partial linear spae endowed

with a symmetri relation ? on the point set suh that x ? p and x ? q for distint points

p, q on some line l and any point x implies x ? y for all points y of l. Moreover suppose

for any line k 2 L the spae k

?

is isomorphi to the hyperboli root group geometry of

PSL

n

(F) with l ? m if and only if [l; m℄ = 1 for lines l, m inside k

?

.

(i) If any two interseting lines of (P;L) are at distane two in (L;?), then (L;?) is

geometrizable, a geometrization of (L;?) as given in Lemma 6.3 exists, and (P;L)

is isomorphi to that geometry.

(ii) If the graph (L;?) is isomorphi to L

n+1

(F), then (P;L) is isomorphi to the hy-

perboli root group geometry of PSL

n+2

(F).

Proof. Let us start with a proof of Statement (i). The graph (L;?) is loally L

n�1

(F).

Consider the family of all full line penils of (P;L). This family gives rise to a geometry

on (L;?) in the sense of De�nition 6.1. Indeed, any intersetion of a full line penil

with k

?

for an arbitrary line k is either empty or a full line penil of the subspae k

?

.

But by Proposition 4.4 a full line penil of k

?

orresponds to an interior root point.

Conversely, any interior root point of a perp of a line orresponds to a full line penil of

this perp, whih is ontained in a unique full line penil of the whole geometry. Hene

(L;?) is geometrizable. Moreover, sine any two interseting lines are demanded to be at

distane two in (L;?), the global geometry on (L;?) we just have onstruted satis�es

the hypothesis of Proposition 6.3. The last laim follows from the fat that (P;L) is
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isomorphi to the geometry on the full line penils as points and the line set L. Statement

(ii) follows from Proposition 2.3, Proposition 4.4, and Statement (i). 2

Theorem 2 follows from Theorem 1 and Statement (ii) of Proposition 6.4. Notie that

the restrition of n to be greater or equal to 7 in Theorem 2 is ruial. In ase n = 6, the

point-line geometry on the long root subgroups and the fundamental SL

2

's of the group

E

6

(F) with ? being the ommutation relation satis�es the hypothesis of the theorem.

7 Group-theoreti onsequenes

Finally, we will prove Theorem 4 and Theorem 5.

Proof of Theorem 4. Choose an involution z 2 J \ K that is the entral involution

of some group isomorphi to SL

2

(F) whih is a fundamental SL

2

in both J and K.

Note that z ommutes with x and y. The elements y and z are onjugate in K by an

involution, whene they are onjugate in G. Similarly, x and z are onjugate in J by

an involution. Therefore the onjugation ation of the group G indues an ation as the

group Sym

3

on the set fx; y; zg and as the group Sym

2

on the set fx; yg. Consider the

graph � on all onjugates of x in G. A pair a, b of verties of � is adjaent if there

exists an element g 2 G suh that (x

g

; y

g

) = (a; b). Sine G indues the ation of Sym

2

on fx; yg, this de�nition of adjaeny is symmetri, and we have de�ned an undireted

graph. Moreover, the elements x, y, and z are pairwise adjaent and, thus, form a 3-lique

of �. De�ne U

1

as the stabilizer in G of the vertex x and U

2

as the stabilizer in G of

the edge fx; yg. The stabilizer of fx; yg permutes x and y and therefore interhanges

C

G

(x) � K and C

G

(y) � J . Hene the stabilizer of x together with the stabilizer of

fx; yg generates G, as G = hJ;Ki � hU

1

; U

2

i. Consequently, the graph � is onneted.

Also, � is loally L

n�1

(F) by onstrution. To prove this, it is enough to show that any

triangle in � is a onjugate of (x; y; z). Let (a; b; ) be a triangle, whih means there exist

verties d, e, f of � suh that (a; b; d), (a; ; e), and (b; ; f) are onjugates of (x; y; z) in

G. Let g 2 G with (x

g

; y

g

; z

g

) = (a; b; d). Notie that b; d 2 K

g

are ommuting entral

involutions of fundamental SL

2

's of K

g

. The triangles (a; b; d) and (a; ; e) are onjugate

in C

G

(a) = X

g

�K

g

. Choose h 2 C

G

(a) suh that (a

h

; b

h

; d

h

) = (a; ; e). Then h = h

X

h

K

with h

X

2 X

g

, h

K

2 K

g

. The element h

X

entralizes b and d, sine b; d 2 K

g

. Therefore

 = b

h

= b

h

K

2 K

g

is the entral involution of a fundamental SL

2

of K

g

. The elements x

and y ommute and so do b and  beause the triangle (b; ; f) is onjugate to the triangle

(x; y; z). Hene (a; b; d) and (a; b; ) are onjugate in K

g

. Therefore (a; b; ) and (x; y; z)

are onjugate in G.

By Theorem 1 the graph � is isomorphi to L

n+1

(F), so, by Theorem 3, the group G

modulo the kernel N of its ation on � an be embedded in P�L

n+2

(F):2 or P�L

n+2

(F).

To determine N hoose a g 2 N . Then g ats trivially on �, in partiular it entralizes

x and y, so we have g 2 X � K and g 2 Y � J . Let g

X

2 X and g

K

2 K be suh that
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g = g

X

g

K

. The element g

X

ommutes with K, and therefore also entralizes all neighbors

of x. Consequently, also g

K

= g

�1

X

g entralizes all neighbors of x, and hene lies in the

enter of K. We have proved that g ommutes with K. Similarly, g ommutes with J .

This implies that g ommutes with G = hJ;Ki, and, thus, g 2 Z(G). Certainly, Z(G)

ats trivially on �, whene N = Z(G). The statement about the isomorphism type of

G=Z(G) follows from the isomorphism type of J and K. 2

The proof of Theorem 5 onsists of a series of lemmas.

Lemma 7.1

Under the assumptions of Theorem 5 any onjugate y

g

, g 2 C

G

(x), of y lies in K; its

entralizer C

G

(y

g

) has a omponent J

g

with A � J

g

. Moreover, [A;B

g

℄ = 1. In partiular,

[A;K℄ = 1.

Proof. Let F be a fundamental SL

2

of J , and let f be a p-element of F . Let V be the

natural module of J . Then we an deompose V as [V; F ℄ � C

V

(F ) = [V; f ℄ � C

V

(f).

Certainly C

V

(F ) � C

V

(f) and [V; F ℄ � [V; f ℄. If C

V

(f) is stritly larger than C

V

(F ), then

C

V

(f) is a hyperplane, so f is an axial ollineation. It annot be a translation, sine the

order of f is does not divide the order of the �eld, so it has to be a reetion. However,

F does not ontain reetions of J , so C

V

(f) = C

V

(F ) and, thus, [V; f ℄ = [V; F ℄, so the

p-element f is ontained in a unique fundamental SL

2

of J .

We have x

jk

= y, so C

G

(x)

�

=

C

G

(y). The group K is harateristi in C

G

(x); in

partiular K is normal in C

G

(x). Therefore K

jk

= J or, equivalently, K

j

= J

k

. We

have B = C

k

� J

k

and A = C

j

� K

j

. Certainly we also have A

k

2 J

k

and B

j

2 K

j

.

Moreover, x 2 A \ A

k

and y 2 B \ B

j

, so K

j

= J

k

implies A = A

k

and B = B

j

.

Now let g 2 C

G

(x) with z

g

= z. Then y is mapped onto y

g

, and B is mapped onto

B

g

. We have 1 = [A;B℄ = [A

g

; B

g

℄. The group J

k

is normal in C

G

(z), so J

kg

= J

k

.

Sine A � J

k

and A

g

� J

kg

= J

k

, we have A = A

g

, so [A;B

g

℄ = 1. Moreover, A = A

g

and A

g

� J

g

implies A � J

g

. We have established the lemma for any onjugate of

y in C

G

(x) \ C

G

(z). Connetedness of the graph on the fundamental SL

2

's of K with

ommuting as adjaeny �nishes the proof; notie that K is generated by the set of

fundamental SL

2

's of K. 2

Lemma 7.2

Under the assumptions of Theorem 5 de�ne � to be the set of p-groups generated by

onjugates of x in G and de�ne an adjaeny relation ? on � where hai ? hbi if and

only if there exists a g 2 G with (hai ; hbi) = (hxi

g

; hyi

g

). Then (�;?) is an undireted

graph in whih every triangle is onjugate to (hxi ; hyi ; hzi). In partiular, � is loally

homogeneous.

Proof. The verties hxi, hyi are obviously adjaent. Conjugation with k stabilizes

hxi while interhanging hyi and hzi, so hxi and hzi are adjaent. Conjugation with

j entralizes hyi and interhanges hxi and hzi, yielding the adjaeny of hzi and hyi.
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Conjugation with jkj interhanges hxi and hyi, so � is undireted. All neighbors of hxi

are ontained inK by Lemma 7.1. (Note that C

G

(x) is normal inN

G

(x), soK is normal in

N

G

(x).) Moreover, if hai = hxi

g

is a neighbor of hxi, then A � K

g

. So if (hai ; hbi ; hi) is a

triangle of �, then there exist g

1

; g

2

2 G with hai = hxi

g

1

= hxi

g

2

, hbi = hyi

g

1

, hi = hyi

g

2

.

Without loss of generality we an assume hai = hxi and hbi = hyi. Then A

g

1

= A = A

g

2

and B

g

1

= B; moreover [A;B

g

2

℄ = 1 and B

g

2

� K by Lemma 7.1; similarly B

g

2

� J .

Therefore B

g

2

� J \ K, atually B

g

2

� E(J \ K). Hene there exists a g 2 K with

hyi

g

= hyi and hzi

g

= hi, so the triangle (hxi ; hyi ; hi) is onjugate to (hxi ; hyi ; hzi) in

K, whene in G. 2

Lemma 7.3

Under the assumptions of Theorem 5 let (�;?) be the graph de�ned in Lemma 7.2. De�ne

� on � by hai � hbi if and only if hai

?

= hbi

?

. Then � is an equivalene relation of �

and �= � is isomorphi to L

n+1

(F).

Proof. The graph � is loally homogeneous by Lemma 7.2, so it is enough to investigate

the neighbors of hxi, whih are onjugates of hyi in K. Sine any edge of � in K is

onjugate to (hyi ; hzi) by Lemma 7.2, the graph hxi

?

is isomorphi to the graph on the p-

subgroups of K generated by the onjugates of y in whih distint p-groups are adjaent if

and only if the fundamental SL

2

's ontaining them ommute. So, if�

hxi

is the equivalene

relation on hxi

?

with hai �

hxi

hbi if and only if hai

?

= hbi

?

for neighbors hai, hbi of hxi,

then hxi

?

= �

hxi

is isomorphi to L

n�1

(F). Therefore the lemma follows from Theorem

1 and onnetedness of � (it is onneted, beause G = hJ;Ki), if hxi

?

\ � = �

hxi

. So

onsider hai

?

, whih is onneted and ontains more than one element. If hbi has preisely

the same set of neighbors, then we an hoose some hi 2 hai

?

= hbi

?

, and hi

?

\ hai

?

is equal to hi

?

\ hbi

?

. Conversely, if hi is adjaent to hai and hbi and hi

?

\ hai

?

is

equal to hi

?

\ hbi

?

, then by onnetedness of hai

?

and symmetry it is enough to show

that any vertex hdi 2 hi

?

\ hai

?

satis�es hdi

?

\ hai

?

= hdi

?

\ hbi

?

. But inside hi

?

the

verties hai and hbi lie inside the same fundamental SL

2

, so they have to lie in the same

fundamental SL

2

of hdi

?

as well, and we have established hdi

?

\ hai

?

= hdi

?

\ hbi

?

. 2

Proof of Theorem 5. The group G ats via onjugation on �. In partiular, if two verties

have the same set of neighbors, then their images under G also have the same set of

neighbors, so G ats on �= � as well. Therefore the group G modulo the kernel N of its

ation on �= � an be embedded in P�L

n+2

(F). However, any element of N entralizes

K and J , so it entralizes G. Conversely, any element in the enter of N ats trivially on

�= �, and the theorem is proved. 2
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