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Abstract
The present article provides a new characterization of the geometry on the points
and hyperbolic lines of a nondegenerate symplectic polar space. This characteriza-
tion is accomplished by studying the familiy of subspaces obtained when considering
the polars of all hyperbolic lines.

1 Introduction

The geometry on the points and hyperbolic lines of a nondegenerate symplectic polar space
(or, short, hyperbolic symplectic geometry) is interesting for a number of reasons.
One observation is the fact that every pair of intersecting hyperbolic lines spans a dual
affine plane (sometimes also called a symplectic plane). With the exception of some small
cases, this observation can actually be used to characterize the hyperbolic symplectic
geometries, cf. Cuypers [2] and Hall [6]. In Section 2 we will give a short review of
the achievements of Cuypers and Hall. Another observation is the 1-1 correspondence
between the set of long root subgroups, resp. fundamental SL,’s of a symplectic group
and the points, resp. hyperbolic lines of the corresponding symplectic geometry. This
correspondence is well-known, see e.g. [8], Chapter 2, Example 1.4. So, from a group-
theoretic point of view, there also exists a natural interest in the hyperbolic symplectic
geometry. This second observation motivated the author’s research on this topic.

The first result focuses exclusively on the hyperbolic lines and their relative posi-
tions. More precisely, let Ws,, (F) denote the polar space with respect to a nondegenerate
symplectic polarity of Py, ;(F), for n > 1 and F a field. The hyperbolic line graph
S(Ws,, (F)) = So,(F) then is the graph on the hyperbolic lines of Wy, (F) where hyperbolic
line [ and m are adjacent (in symbols [ L m) if and only if all points of [ are collinear
(in Wy, (F)) to all points of m, cf. Definition 3.1. Equivalently, [ L m if and only if m is
contained in the polar of [, or, equivalently, if and only if the corresponding fundamental
SLy’s commute.

A graph T' is locally homogeneous if and only if for any pair x, y of vertices of I,
the induced subgraphs I'(x) and I'(y) on the set of neighbors of x, resp. y are isomorphic.

1



1 INTRODUCTION 2

Such a graph T is called locally A, for some graph A, if I'(x) = A for some, whence
all, vertices x of I'. It is easily seen (cf. Proposition 3.3) that the graph Sy, (F) is locally
Son_o(F). Conversely, this property is characteristic for this graph for sufficiently large n:

Theorem 1
Let n > 4, let F be a field, and let T be a connected graph that is locally S, (F). Then T’
is isomorphic to So,o(F).

The requirement in the preceding theorem that I' be connected comes from the fact
that a graph is locally A if and only if each of its connected components is locally A. So
in fact, its primary role is to provide irreducibility.

In order to state the next theorem, we have to recall the notion of a perp space. This
is a partial linear space (P, L) endowed with a symmetric relation L C P x P such that
for every point x, whenever p # ¢ are points on a line [, the fact + L p and x L ¢ implies
x Lyforallyel.

We can think of the hyperbolic symplectic geometry as a perp space, by choosing L
to be the polar relation; two objects are related by L if and only if one is in the polar of
the other. Notice that this definition of L is in accordance with our definition of L above
as the adjacency relation of the graph Sy, (F).

Theorem 2

Let n > 4, let F be a field, and let (P, L, L) be a perp space in which for any line k € L
the space k* is isomorphic to the hyperbolic symplectic geometry of Wa, (F) with I L m
if and only if m is in the polar of | for (hyperbolic) lines I, m inside k+. If the graph
(L, L) is connected, then (P, L, L) is isomorphic to the hyperbolic symplectic geometry of
W2n+2 (F)

Rephrasing Theorem 2 yields the following theorem:

Theorem 3

Let n > 4, let (P, L) be a partial linear space, and let L denote non-collinearity in that
space. Assume there exists a nondegenerate symplectic space of rank n such that for all
k € L the set k* of all points and lines of (P, L) not collinear to k is a subspace of
(P, L) that is isomorphic to the hyperbolic geometry of that symplectic space. If the graph
(L, L) is connected, then the space (P, L) is isomorphic to the geometry on the points and
hyperbolic lines of a nondegenerate symplectic polar space of rank n + 1.

We would like to point out that the lower bound on n in our theorems is sharp.
Indeed, the centralizer of a fundamental SL, in the exceptional group Fy(F) is isomorphic
to Spe(F), cf. e.g. 7.18 of the third chapter of [8], so the corresponding constructions for
the group F(F) yield counterexamples to our theorems with n = 3.

This article is organized as follows. In Section 2 we will quickly review the charac-
terizations of the hyperbolic symplectic geometries by Cuypers and by Hall. Section 3 is
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devoted to the study of graphs isomorphic to So,(F). As a side result we determine the
automorphism group of Sy, (F). In Section 4 we prove Theorem 1, whereas Theorems 2
and 3 are proved in Section 3.4. Actually, we also provide a proof for Statement 4 on
perp spaces in the author’s PhD thesis, cf. Theorem 5.1.

2 Existing Results

Several partial results have been known for quite some time, but the first complete result
was obtained by Jonathan I. Hall in [6].

Fact 2.1 (Hall [6], Main Theorem)

Let (P,L) be a finite, connected partial linear space in which each pair of intersecting
lines lies in a subspace isomorphic to a dual affine plane. Assume that (P, L) contains at
least two such planes. Then either

(i) for some prime power q and some integer n at least 3, the space (P, L) is isomorphic
to the partial linear space of hyperbolic lines of a symplectic polar space embedded
in the projective space P, (q); or

(i) all lines of L contain exactly three points.

The partial linear spaces satisfying (ii) of Theorem 2.1 are called cotriangular spaces.
Theorem 1 of [7] provides a complete classification of the spaces occuring in (ii), which
reads as follows.

Fact 2.2 (Hall [7], Theorem 1, Theorem 4)

Let (P, L) be a connected partial linear space all of whose lines contain exactly three points
and in which every pair of intersecting lines lies in a subspace isomorphic to a dual affine
plane (of order two). Then (P, L) is isomorphic to one of the following partial linear
spaces:

(i) the geometry on the non-radical points and the hyperbolic lines of some symplectic
space over IFy;

(i) the subgeometry of a space as in (i) on its non-singular points with respect to some
quadratic form q such that the symplectic form f is obtained as f(x,y) = q(x) +

q(y) +q(z,y); or

(iii) the geometry defined as follows. Let 2 be a set of cardinality at least two and
let Q' be a set disjoint from 2. The points of the geometry are the finite subsets
of QU Y that intersect Q in a set of cardinality two. The lines of the geom-
etry are those triples xy, xs, w3 of points with empty symmetric difference, i.e.,

(Ulgigg ;) \Ui<ijes (@inay) = 0.
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If additionally {y} U{peP|pelixeclec L} ={z}U{peP|pel,yecle L} implies
x =y for points x, y, then (P,L) is isomorphic to a geometry of Case (i) or (ii) with
respect to a nondegenerate form or of Case (iii) with ' = ().

Hans Cuypers has proved a version of Hall’s Main Theorem in [6] that includes infinite
point orders and infinite dimensions but disregards point order 2.

Fact 2.3 (Cuypers [2], Theorem 1.1)

Let (P,L) be a connected partial linear space in which any pair of intersecting lines is
contained in a subspace isomorphic to a dual affine plane. Assume that (P, L) contains at
least two such planes and a line with more than three points. Then (P, L) is isomorphic
to the geometry on the non-radical points and the hyperbolic lines of a symplectic polar
space embedded in some projective space of dimension at least 3.

3 The hyperbolic line graph of symplectic spaces

In this section we study graphs isomorphic to S, (F). Let us start with recalling the
definition from the introduction. Throughout this section let n > 1 and let F be a field.

Definition 3.1 Let Wy, (F) denote the polar space with respect to a nondegenerate sym-
plectic polarity of Py, ;(F). The hyperbolic line graph S(W,, (F)) = Sy, (F) is the
graph on the hyperbolic lines of Wy, (F) where hyperbolic line [ and m are adjacent (in
symbols [ L m) if and only if all points of I are collinear (in Wy, (F)) to all points of m.
For sake of brevity, instead of S, (IF)(x) for a vertex x we also write x* to denote the
induced subgraph of S, (F) on the set of neighbors of x. Moreover, X+ := Nycxx* for a
set of vertices X.

Remark 3.2 In this section we always consider the symplectic space W, (F) embedded
into its natural ambient space Py,_;(F). Spans of geometrical objectcs of Wy, (F) are to
be understood inside the ambient projective space and are denoted by (- - -),.

Proposition 3.3
Let n > 2. The graph So,(F) is connected; it has diameter two if n > 4. Moreover, it is
locally So,—o(F).

Proof.  The first assertion is straightforward. The second is immediate from the fact
that the set of points of Wy, (F) that are collinear to a given hyperbolic line [ spans a
subspace isomorphic to Wy, 5 (F), whose hyperbolic lines are precisely those hyperbolic
lines of Wy, (F) that are in relation L to the hyperbolic line [. O

Lemma 3.4
Letn >3, and let [, m be distinct hyperbolic lines of Wy, (F) with {I,m}" # 0. Then any

hyperbolic line contained in {I,m}"" is also contained in (I, m)p and vice versa.
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Proof.  Let p € (l,m)p be a point of Wy, (F). Then a vector that spans p can be
expressed as a linear combination of vectors spanning points on [ and m. But then points
collinear to these are also collinear to p. Hence a hyperbolic line contained in (I, m); is
also contained in {l,m}LL. Conversely, let ¢ be a point not contained in (I, m),. Note
that in a symplectic space any hyperplane is singular, i.e., there exists a point having
that hyperplane as its polar. The space ([, m) has at most (projective) dimension three.
Since n > 3, hyperplanes have at least dimension 4. Now consider the hyperplanes II;,
i € I for some index set, of Py, (IF) containing ([, m)p. Denote the corresponding points
by p;. If all of the p; were contained in ([, m)p, then {I, m}L = () (for, a hyperbolic line
of {I,m}" N (I, m), would have to be contained in the radical of (I,m)p, which does not
contain hyperbolic lines), whence there exists a p; outside (I, m)p. Fix such a p; and choose
a hyperline A; C II; with ([,m), C A; and p;, ¢ € A;. Let II; be any other hyperplane
of Py,_1(F) containing A;. Since p; & II; we have p; ¢ II; and p;, p; are noncollinear.
Moreover, at least one of p; and p; is not collinear with ¢ (because ¢ € I, N1I; = A;) and
we have found a hyperbolic line p;p; contained in {/, m}L that ensures that no hyperbolic
line containing ¢ is contained in {l,m}LL. This finishes the proof, because ¢ has been
chosen arbitrarily outside (I, m)p. O

Notation 3.5 Let X be a subspace of Wy, (F). Denote the set of all hyperbolic lines of
Wy, (F) contained in X by S(X).

Lemma 3.6
Let n > 3. Let k, I, m be three hyperbolic lines of Wy, (F) with {k,l,m}L # 0 that

intersect in a common point. Then S((k,1,m)) = {k,1,m}*.

Proof.  There exist hyperbolic lines ¢ and b with (a,b), = (k,I,m),. Then by the
preceding lemma we have S((a,b)p) = {a,b}"". Finally, {a,0}"" = {k,I,m}™" by
(a,b)p = (k,l,m)p and linear algebra. O

Lemma 3.7

Let n > 3. Distinct hyperbolic lines | and m of Wy, (F) intersect if and only if the perp
{I,m}" in So,(F) is non-empty and the double perp {I,m}"" in Ssn(F) does not contain
adjacent vertices (with respect to L ).

Proof. Let [ and m be two intersecting hyperbolic lines. First we will show that
{I,m}" # 0. The space (I, m)p has (projective) dimension two. Hence its polar (I, m): has
dimension two or bigger, since n > 3. (We denote the polarity by 7.) If n > 4, then (I, m)p
is not totally isotropic, so we find two noncollinear points in (I, m)p, whence we also find a
hyperbolic line adjacent to both [ and m. Now suppose n = 3. If (I, m)g does not contain
a hyperbolic line, then it is totally singular and, because of the dimensions, equal to

(I, m)p. But (I, m) is not totally singular, as it contains hyperbolic lines, a contradiction.
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The space (I, m)p is a projective plane, and the hyperbolic lines contained in which are
precisely those of {l, m}LL, by Lemma 3.4. If this plane contains two adjacent hyperbolic
lines aF+bF and ¢F+dFF then (a,b) = (a, aq;+caz+dasz) = (a, a)oq+(a, ¢)ag+(a,d)as =0
(where (-, -) denotes the alternating bilinear form), a contradiction to the fact that aF+bF
is a hyperbolic line. Conversely, suppose [ and m are non-intersecting hyperbolic lines.
Then (I, m), is a projective 3-space and (I, m), N Wy, (F) is a nondegenerate symplectic
space (the direct sum of two disjoint hyperbolic lines) or has a projective line as its
radical (and hence the space is the direct sum of a hyperbolic line and a non-intersecting
singular line). In both cases ([, m), contains adjacent hyperbolic lines. We may assume
{I,m}* # 0, and the claim follows from Lemma 3.4. O

We now want to recover the points of the polar space as pencils of hyperbolic lines.
Three mutually intersecting hyperbolic lines k, [, m intersect in one point if there exists a
fourth hyperbolic line j that intersects with the first three and spans a projective 3-space
with two of them. In terms of double perps this means that %k, [ and m are intersecting
in one point if there exists a hyperbolic line j with {£, 1} = S((k,1)z) C S({(j, k, 1)) =
{7, k,l}LL. The former equality is due to Lemma 3.4, the latter is due to Lemma 3.6.
The only problem is to ensure that {k,1}" # 0 # {j, k,1}"". The first inequality has been
shown in Lemma, 3.7, the second will be handled by the following lemma. More precisely,
we show that we can choose j in such a way that {j, k, 1} # 0 holds.

Lemma 3.8

Let n > 3. For distinct intersecting hyperbolic lines | and m of Wa, (F) there exists a
hyperbolic line j that intersects | and m such that (j,1,m)p has projective dimension 3
and {j,1,m}" in Son(F) is non-empty.

Proof. Consider the plane (I, m)p. It contains a point = as radical, which lies on neither
[ nor m. The space [ in Wy, (F) is isomorphic to Wy, _»(F) and contains a point y
that is not collinear with x, because Wy, (F) is nondegenerate. Therefore (I, zy)p is a
nondegenerate symplectic 3-space, a symplectic generalized quadrangle, and {U, a:y}L # )
as n > 3. Thus we are done, if we can find a point p of ([, zy), with (I, m, p), = (I, zy)p
that is not collinear with ¢ := [ N m. But this point p exists since (I, m), C (I, zy), and
(I, zy)p is nondegenerate, so we can choose j to be the hyperbolic line pq. O

Definition 3.9 Let n > 3. Following Lemma 3.7, distinct vertices [, m of a graph I’
isomorphic to S, (F) are said to intersect if {{,m}" # 0 and the double perp {I, m}"
in [ does not contain adjacent vertices. In view of the paragraph before Lemma 3.8 three
mutually intersecting vertices k, [, m of I' 2 S,, () are said to intersect in one point
if there exists a vertex j of I' that intersects k, [, and m and that has the property that
{j, kJZ}L 7£ @ and {kv l}J_J_ = S(<k’l>]P’) g S(<]a k’l>]P’) = {]a kal}LL'

An interior point of a graph I' isomorphic to Sy, (F) is a maximal set of mutually
intersecting vertices of I' any three elements of which intersect in one point. Denote
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the set of all interior points of I' by P. Furthermore, an interior hyperbolic line of
[' 2 S,,(F) is a vertex of I'. The set of interior hyperbolic lines of I' is denoted by H.

By the preceding lemmas we have the following.

Proposition 3.10

Let n > 3, and let T’ be isomorphic to Se,(F). The geometry (P, H,D) on the interior
points and interior hyperbolic lines of I is isomorphic to the geometry on points and
hyperbolic lines of the symplectic space Wy, (F). O

The space (P, H) is called the interior hyperbolic space on I' = S,, (F).

Corollary 3.11
Let n > 3 and let F be a field. Then the automorphism group of So,(F) is isomorphic to
the automorphism group of Wa,, (F). a

4 Locally hyperbolic line graphs

In this section let n > 4, let F be a field, and let I' be a connected graph that is locally
Son(F). By the preceding section we can reconstruct the interior hyperbolic space from
the graph x* for any vertex x € I'. Such a hyperbolic space on a perp is called local
as is any object that belongs to such a space. To avoid confusion we will index any
such local object by the vertex of I' whose perp it is defined on. We would like to point
out that in the preceding section we only reconstruct the objects of the polar geometry,
and not the objects of any ambient projective space. However, the singular lines are
easily reconstructed from the set of points and the (non-)collinearity relation given by the
hyperbolic lines. On the other hand, the set of points together with the set of singular
and hyperbolic lines forms a projective space, in which we will embed the symplectic
geometry. All spans of objects of the symplectic geometry are to be understood inside
this projective space.

[t will turn out that I is isomorphic to Sa,42(F). To obtain this result we will construct
a global geometry on I' from the interior hyperbolic spaces on the perps, which will be
shown to be isomorphic to the hyperbolic space of some symplectic polar space (using the
characterizations by Cuypers and by Hall), whose hyperbolic line graph is isomorphic to
.

Lemma 4.1

Consider I" as a two-dimensional simplicial complex whose two-simplices are its triangles.
Letw L x Ly L z bea chain of vertices in I'. Then there exists a chainw L x; Ly, Lz
that is homotopically equivalent to the former chain of vertices with wNx; Nyi Nzt # (.
In particular, the diameter of T (as a graph) is two, and T is simply connected.
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Proof.  Let us start with proving the first claim. We will distiguish the cases n > 6,
n =5, and n = 4. Suppose n > 6. Then the perp y* is isomorphic to Sa,(FF), which
can be endowed with the interior polar space isomorphic to Wy, (F) living in a projective
space Py, 1(F). By Lemma 3.3, the intersections x* Nyt and y* Nz’ are isomorphic
to So, o(F) and can be endowed with interior polar spaces isomorphic to Ws,, 5 (F) that
are subspaces of the interior polar space on y*. These subspaces live in hyperlines of the
projective space Po,_;(F). Therefore the intersection x Nyt Nzt is a subspace of the
interior polar space on y* living in a subspace of Py, |(F) of projective codimension at
most three. The polar space on x* N y* Nzt can also be considered as a subspace of
the interior polar space on x. The intersection w* N x* admits an interior polar space
isomorphic to W, _5(F), as above. Now wt Nxt Ny® Nzt can be considered as the
intersection of the interior polar space on w* Nx* with the polar space on x* Ny+nNz’.
The dimensions of the projective spaces are at least 2n — 3 and 2n — 5, whence the
dimension of the intersection is at least 2n — 7 > n — 1, since n > 6. But the largest
totally isotropic subspace of the interior projective space on wt N x* has (projective)
dimension n — 2 and we can find a hyperbolic line in wt Nx*t Nyt nzt.

Now suppose n = 4. In x* the vertices w and y correspond to hyperbolic lines, which
we denote by wy, respectively yx, their respective polars are denoted by w} and yZ. In
y*, the hyperbolic lines induced by x and z are denoted by z, and z,. The intersection
of their polars zy N z7 translates to a subspace of x*, which we denote by Uy. Note
that Uy C y%. There are three different cases: rank wl Ny = 4 and rank Ux = 4;
rank wl Nyl = 2 and rank Uy = 4; rank wl Nyl = 2 and rank Uy = 2. (We can omit the
natural fourth case by reversing the labeling of the chain w,x,y, z.)

Let us assume we are in the second case. Then we can choose a point py in UxNwZ and
a point ¢y in Uyx\w] such that pxgx has rank two. Picking linearly independent vectors
U1, Ve € Wy, V3 € Px, Uy € ¢x We obtain the following Gram matrix with respect to vy, vy,
V3, U4

0 a 0 v
—a 0 0 9
0o 0 0 g’
—y =6 =0 0

whose determinant is independent of v and §. Moreover, as «a # 0 # 3, the matrix A has
full rank. Notice that the hyperbolic line pygx corresponds to a vertex 1 adjacent to X,
y, and z, so that the chain w 1 x 1 1 1 z belongs to the first case and is homotopically
equivalent tow L x Ly 1L z.

Let us assume we are in the third case. If Uy N w} is not contained in the radical of
Uy, then an argument as in the above paragraph yields a vertex 1 adjacent to x, y, z with
rank (wy,lx) =4, and after reversing the labelling of the path we are in the second case.
Hence let us assume that Ux N wZ is contained in the radical of Ux and in the radical of
wl Nyr. Choose Iy to be any hyperbolic line in Ux\wZ. Then (I contains the radical R
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of Ux. On the other hand, the span (wy,lx) does not intersect R. The hyperbolic line I
corresponds to a vertex | adjacent to x, y, z. Replacing the chain w L x L y | z by the
chain w 1 x 1 11 z, we are in the case of the first part of this paragraph.

Consider the case rank wi NyZ = 4 and rank Uy = 4. Choose a hyperbolic line I in
Ux and let it vary through all hyperbolic lines in Ux. Then [ varies around the space
UZ. One can show that for some choice of [, this hyperbolic line corresponds to a vertex
1 adjacent to x, y, z, such that wtNxtN1tNzt £ 0.

Finally suppose n = 5. Use the notation from case n = 4 and suppose that wy
does not intersect yyx, so that (wy, yx) has (projective) dimension three whereas its polar
wy Nyz has dimension five. By arguments as in case n = 4 we can assume that wl Nyg is
nondegenerate. But then Uy N wZX cannot be totally isotropic (it has too large dimension
inside wZ NyZ) and we are done. On the other hand, if wy does intersect yyx, then Uy NwZ
cannot be totally isotropic (it has too large dimension inside wX) and we are done as well.

For the other claims, let w and z be arbitrary vertices of I'. Since I' is connected,
there exists a path from w to z. Induction on the length of such a path yields diameter
two. A similar induction with w = z yields simple connectedness. O

Lemma 4.2

Let x, y, z be vertices of I' and let 1;, 1, 15, 14 be vertices of y* with 1, L x 1 1, and
I3 L z L 1,. Moreover, assume that the l;, 1 <11 < 4, are contained in a common interior
point of y*. Then there exist vertices 15,1 € x Nzt such that 1;, 1y, 15, 15, respectively
15, 14, 15, I are contained in a common interior point of X, respectively z=.

Proof. Left to the reader as an exercise. (Observe first that x* N1l Nyt N1y # 0, and
hence reduce the problem to the case x L y | z. Then conduct local analysis of y*.) O

Definition 4.3 Let x, y be vertices of [ and let py, gy be local points of x*, respectively
yt. We define p, & ¢, if and only if there exist distinct vertices 1),1, € px N ¢,. By the
preceding lemma, the relation /P is an equivalence relation on the set of all local points.
An equivalence class of &P is called a global point. Note that the intersection of a global
point p with a perp x* is either empty or a local point pyx. Denote set of global points of
[' by Pr. Additionally, let Hr be a copy of the set of vertices of I'.

Proposition 4.4
(Pr, Hr) is a connected partial linear space.

Proof.  Let p and ¢ be two global points. Fix a vertex in each point, p and q, say. By
Lemma 4.1, there exists a vertex x adjacent to both p and q. Hence there exist local
counterparts py and ¢x. Connectedness of (Pr, Hr) now follows from connectedness of
the interior hyperbolic space on x*. Moreover, two global points p, ¢ cannot intersect in
more than one vertex, whence (Pr, Hr) is a partial linear space. For, if two global points
would intersect in two vertices x, y, then there exists a vertex z adjacent to both x, y by
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Lemma 4.1. But then pNz* and ¢Nz* are two local points that intersect in two vertices,
a contradiction. O

Proposition 4.5
The space (Pr, Hr) is isomorphic to the geometry of hyperbolic lines of a symplectic polar
space (Pr, Lr) embedded in some projective space of dimension at least 3.

Proof.  Let 1 and m be two intersecting hyperbolic lines of (Pr,Hr). By Lemma 4.1,
there exists a vertex k of I adjacent to both 1 and m. Local analysis of k* (or rather the
interior hyperbolic space on it) shows that the intersecting lines 1 and m are contained
in a dual affine plane. Certainly, (P, Hr) contains two such planes. If F # Fy, the space
(Pr, Hr) contains a line with more than three points and the claim follows from Fact
2.3 with Proposition 4.4. If F = Fy, we can invoke Fact 2.1 and Fact 2.2. It remains
to show that the geometry (Pr,Hr) does not belong to Cases (ii) or (iii) of Fact 2.2.
Case (ii) is easily excluded, as locally all symplectic points occur, not only a subset of the
symplectic points. Case (iii) is a bit more difficult. However, by the second statement
of Fact 2.2, we obtain ' = (). Indeed, for any pair x, y of points of (Pr,Hr), we find
hyperbolic lines 1 incident with £ and m incident with y. By Lemma 4.1 there exists a
hyperbolic line k that is adjacent to both 1 and m in I'. Therefore, we can consider x, y
in some local space isomorphic to Wy, (F). But if  # y, then we find a point that lies
on a common hyperbolic line with x, but not with y. Hence, in (P, Hr), the equality
{ytu{peP|polzalel} = {z}U{peP|p>3Ly>le L} implies z = y, and
Q' = 0. It follows from the size of n that (Pr, Hr) cannot belong to Case (iii) either. The
proposition is proved. O

Proposition 4.6
The hyperbolic line graph of (Pr, Lr) is isomorphic to T.

Proof. By definition the elements of Hr are precisely the vertices of I'. The preceding
proposition tells us that the elements of Hr are also precisely the hyperbolic lines of the
symplectic space (Pr, Lr), and we have a natural bijection between the hyperbolic lines
of (Pr, Lr) and the vertices of I', which preserves adjacency. O

Proposition 4.7
The space (Pr, Lr) is isomorphic to the symplectic polar space Way, 4o (F).

Proof. By Proposition 4.6, the hyperbolic line graph of (Pr, Lr) is isomorphic to T
Since I"is locally Sy, (F), this means for any hyperbolic line 1 that the subspace of (Pr, Lr)
consisting of all points collinear with all points of [ is isomorphic to Wy, (F). But the only
symplectic polar space with that property is Wa,, 45 (IF). The claim follows. O

Theorem 1 is now proved.
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5 Perp spaces

In this section we will prove Theorems 2 and 3. Actually, we will give a proof of Statement
4 of the author’s PhD thesis, which immediately implies Theorem 2 and Theorem 3 by
our findings in earlier chapters.

Let us start with some definitions. From the introduction we recall that a perp space
is a partial linear space (P, L) endowed with a symmetric relation L C P x P such that
for every point x, whenever p # ¢ are points on a line [, the fact + L p and x L ¢ implies
x Lyforallyel. Wesetl L m,l,mée L ifp L qforall péel, g€ m;similarly define
X 1Y for other subsets X, Y of P. Moreover, in view of the following theorem, a graph
[ is called locally connected if, for every any x € I, the induced subgraph I'(x) on all
neighbors of x in I, is connected.

Theorem 5.1
Let (P, L, 1) be a perp space without isolated points and with I+ = k* (as perp spaces)
for all k,l € L such that

(i) the induced graph (L, 1) is locally connected and locally recognizable;
(ii) the diameter of (L, L) is two; and

(iii) for all lines k L 1, every point in the space {k,1}* is uniquely determined by its line
pencil in {k, 1}+.

Then (P, L, L) can be characterized, as a perp space, by the structure of the spaces |-,
lel.

Proof.  Let (P,L, L) be a perp space satisfying the hypothesis of the theorem. The
graph (£, 1) is locally homogeneous, because k* =2 [+ for all k,[ € L. Moreover, (£, 1)
is locally recognizable and connected (indeed, its diameter is two), so (£, L) is uniquely
determined up to isomorphism. It suffices to recover the point set P and the incidence
relation between points and lines. Let p be any point of (P, £, L). Then, as p is not
isolated, there exists a line [ containing p. Choose any line £ L [, and we have k& L p.
Hence any point p in P actually occurs in some local space k. Converely, let p € [+
and ¢ € m* be points in distinct local spaces. There is at most one possible isomorphism
type for (P, L, L), if it is determined, whether p and ¢ actually describe the same point
of P or not. Choose lines a > p and b > ¢. Since the diameter of (£, L) is two, there
exists a line ¢ adjacent to a and b. Notice that ¢ I a implies ¢ | p and that ¢ L b implies
¢ L g. But in ¢* the points p and ¢ either coincide or they do not coincide. Either way
it is determined whether p and ¢ should be identical or distinct points of P. Hence there
exists at most one isomorphism type of perp spaces with a given local structure as in the
hypothesis. We are done by the assumption of the existence of such a perp space. O
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Proof of Theorem 2. Let (P, L, L) be isomorphic to the hyperbolic symplectic geometry
of Wy, 12 (F). The graph (£, L) has diameter two and is locally connected by Proposition
3.3; it is locally recognizable by Theorem 1. The space (P, £, L) also satisfies Hypothesis
(iii) of Theorem 5.1 (by the reconstruction of the symplectic space from the hyperbolic
line graph in Section 3). Application of the above theorem finishes the proof. O

Theorem 3 is just a rephrasing of Theorem 2.

6 Open problems

As indicated in the introduction, the graph on the commuting fundamental SLsy’s of a
group of type Fy(TF) is also (connected and) locally Sg(IF). It would be interested to extend
the dimension of Theorem 1 to include a complete listing of all connected, locally Sg(TF)
graphs. It is my belief that the following is true:

Conjecture
Let F be a field and let T be a connected, locally S¢(F) graph. Then T' is isomorphic to
Ss(F) or the graph on the commuting fundamental SLy’s of Fy(F).

The reason for this conjecture is the following: first of all the diameter of I' should be
quite small; it cannot have diameter two, however, as the graph coming from F,(F) is a
counterexample. Then one should be able to conduct a case-by-case analysis depending
on the diameter of I'. For diameter two, I' should be isomorphic to Sg(F), as one should
be able to control all planes.
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