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Abstrat

The present artile provides a new haraterization of the geometry on the points

and hyperboli lines of a nondegenerate sympleti polar spae. This harateriza-

tion is aomplished by studying the familiy of subspaes obtained when onsidering

the polars of all hyperboli lines.

1 Introdution

The geometry on the points and hyperboli lines of a nondegenerate sympleti polar spae

(or, short, hyperboli sympleti geometry) is interesting for a number of reasons.

One observation is the fat that every pair of interseting hyperboli lines spans a dual

aÆne plane (sometimes also alled a sympleti plane). With the exeption of some small

ases, this observation an atually be used to haraterize the hyperboli sympleti

geometries, f. Cuypers [2℄ and Hall [6℄. In Setion 2 we will give a short review of

the ahievements of Cuypers and Hall. Another observation is the 1-1 orrespondene

between the set of long root subgroups, resp. fundamental SL

2

's of a sympleti group

and the points, resp. hyperboli lines of the orresponding sympleti geometry. This

orrespondene is well-known, see e.g. [8℄, Chapter 2, Example 1.4. So, from a group-

theoreti point of view, there also exists a natural interest in the hyperboli sympleti

geometry. This seond observation motivated the author's researh on this topi.

The �rst result fouses exlusively on the hyperboli lines and their relative posi-

tions. More preisely, let W

2n

(F) denote the polar spae with respet to a nondegenerate

sympleti polarity of P

2n�1

(F), for n � 1 and F a �eld. The hyperboli line graph

S(W

2n

(F)) = S

2n

(F) then is the graph on the hyperboli lines of W

2n

(F) where hyperboli

line l and m are adjaent (in symbols l ? m) if and only if all points of l are ollinear

(in W

2n

(F)) to all points of m, f. De�nition 3.1. Equivalently, l ? m if and only if m is

ontained in the polar of l, or, equivalently, if and only if the orresponding fundamental

SL

2

's ommute.

A graph � is loally homogeneous if and only if for any pair x, y of verties of �,

the indued subgraphs �(x) and �(y) on the set of neighbors of x, resp. y are isomorphi.

1
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Suh a graph � is alled loally �, for some graph �, if �(x)

�

=

� for some, whene

all, verties x of �. It is easily seen (f. Proposition 3.3) that the graph S

2n

(F) is loally

S

2n�2

(F). Conversely, this property is harateristi for this graph for suÆiently large n:

Theorem 1

Let n � 4, let F be a �eld, and let � be a onneted graph that is loally S

2n

(F). Then �

is isomorphi to S

2n+2

(F).

The requirement in the preeding theorem that � be onneted omes from the fat

that a graph is loally � if and only if eah of its onneted omponents is loally �. So

in fat, its primary role is to provide irreduibility.

In order to state the next theorem, we have to reall the notion of a perp spae. This

is a partial linear spae (P;L) endowed with a symmetri relation ?� P � P suh that

for every point x, whenever p 6= q are points on a line l, the fat x ? p and x ? q implies

x ? y for all y 2 l.

We an think of the hyperboli sympleti geometry as a perp spae, by hoosing ?

to be the polar relation; two objets are related by ? if and only if one is in the polar of

the other. Notie that this de�nition of ? is in aordane with our de�nition of ? above

as the adjaeny relation of the graph S

2n

(F).

Theorem 2

Let n � 4, let F be a �eld, and let (P;L;?) be a perp spae in whih for any line k 2 L

the spae k

?

is isomorphi to the hyperboli sympleti geometry of W

2n

(F) with l ? m

if and only if m is in the polar of l for (hyperboli) lines l, m inside k

?

. If the graph

(L;?) is onneted, then (P;L;?) is isomorphi to the hyperboli sympleti geometry of

W

2n+2

(F).

Rephrasing Theorem 2 yields the following theorem:

Theorem 3

Let n � 4, let (P;L) be a partial linear spae, and let ? denote non-ollinearity in that

spae. Assume there exists a nondegenerate sympleti spae of rank n suh that for all

k 2 L the set k

?

of all points and lines of (P;L) not ollinear to k is a subspae of

(P;L) that is isomorphi to the hyperboli geometry of that sympleti spae. If the graph

(L;?) is onneted, then the spae (P;L) is isomorphi to the geometry on the points and

hyperboli lines of a nondegenerate sympleti polar spae of rank n + 1.

We would like to point out that the lower bound on n in our theorems is sharp.

Indeed, the entralizer of a fundamental SL

2

in the exeptional group F

4

(F) is isomorphi

to Sp

6

(F), f. e.g. 7.18 of the third hapter of [8℄, so the orresponding onstrutions for

the group F

4

(F) yield ounterexamples to our theorems with n = 3.

This artile is organized as follows. In Setion 2 we will quikly review the hara-

terizations of the hyperboli sympleti geometries by Cuypers and by Hall. Setion 3 is
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devoted to the study of graphs isomorphi to S

2n

(F). As a side result we determine the

automorphism group of S

2n

(F). In Setion 4 we prove Theorem 1, whereas Theorems 2

and 3 are proved in Setion 3.4. Atually, we also provide a proof for Statement 4 on

perp spaes in the author's PhD thesis, f. Theorem 5.1.

2 Existing Results

Several partial results have been known for quite some time, but the �rst omplete result

was obtained by Jonathan I. Hall in [6℄.

Fat 2.1 (Hall [6℄, Main Theorem)

Let (P;L) be a �nite, onneted partial linear spae in whih eah pair of interseting

lines lies in a subspae isomorphi to a dual aÆne plane. Assume that (P;L) ontains at

least two suh planes. Then either

(i) for some prime power q and some integer n at least 3, the spae (P;L) is isomorphi

to the partial linear spae of hyperboli lines of a sympleti polar spae embedded

in the projetive spae P

n

(q); or

(ii) all lines of L ontain exatly three points.

The partial linear spaes satisfying (ii) of Theorem 2.1 are alled otriangular spaes.

Theorem 1 of [7℄ provides a omplete lassi�ation of the spaes ouring in (ii), whih

reads as follows.

Fat 2.2 (Hall [7℄, Theorem 1, Theorem 4)

Let (P;L) be a onneted partial linear spae all of whose lines ontain exatly three points

and in whih every pair of interseting lines lies in a subspae isomorphi to a dual aÆne

plane (of order two). Then (P;L) is isomorphi to one of the following partial linear

spaes:

(i) the geometry on the non-radial points and the hyperboli lines of some sympleti

spae over F

2

;

(ii) the subgeometry of a spae as in (i) on its non-singular points with respet to some

quadrati form q suh that the sympleti form f is obtained as f(x; y) = q(x) +

q(y) + q(x; y); or

(iii) the geometry de�ned as follows. Let 
 be a set of ardinality at least two and

let 


0

be a set disjoint from 
. The points of the geometry are the �nite subsets

of 
 [ 


0

that interset 
 in a set of ardinality two. The lines of the geom-

etry are those triples x

1

, x

2

, x

3

of points with empty symmetri di�erene, i.e.,

�

S

1�i�3

x

i

�

n

S

1�i;j�3

(x

i

\ x

j

) = ;.
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If additionally fyg [ fp 2 P j p 2 l; x 2 l 2 Lg = fxg [ fp 2 P j p 2 l; y 2 l 2 Lg implies

x = y for points x, y, then (P;L) is isomorphi to a geometry of Case (i) or (ii) with

respet to a nondegenerate form or of Case (iii) with 


0

= ;.

Hans Cuypers has proved a version of Hall's Main Theorem in [6℄ that inludes in�nite

point orders and in�nite dimensions but disregards point order 2.

Fat 2.3 (Cuypers [2℄, Theorem 1.1)

Let (P;L) be a onneted partial linear spae in whih any pair of interseting lines is

ontained in a subspae isomorphi to a dual aÆne plane. Assume that (P;L) ontains at

least two suh planes and a line with more than three points. Then (P;L) is isomorphi

to the geometry on the non-radial points and the hyperboli lines of a sympleti polar

spae embedded in some projetive spae of dimension at least 3.

3 The hyperboli line graph of sympleti spaes

In this setion we study graphs isomorphi to S

2n

(F). Let us start with realling the

de�nition from the introdution. Throughout this setion let n � 1 and let F be a �eld.

De�nition 3.1 Let W

2n

(F) denote the polar spae with respet to a nondegenerate sym-

pleti polarity of P

2n�1

(F). The hyperboli line graph S(W

2n

(F)) = S

2n

(F) is the

graph on the hyperboli lines of W

2n

(F) where hyperboli line l and m are adjaent (in

symbols l ? m) if and only if all points of l are ollinear (in W

2n

(F)) to all points of m.

For sake of brevity, instead of S

2n

(F)(x) for a vertex x we also write x

?

to denote the

indued subgraph of S

2n

(F) on the set of neighbors of x. Moreover, X

?

:= \

x2X

x

?

for a

set of verties X.

Remark 3.2 In this setion we always onsider the sympleti spae W

2n

(F) embedded

into its natural ambient spae P

2n�1

(F). Spans of geometrial objets of W

2n

(F) are to

be understood inside the ambient projetive spae and are denoted by h� � �i

P

.

Proposition 3.3

Let n � 2. The graph S

2n

(F) is onneted; it has diameter two if n � 4. Moreover, it is

loally S

2n�2

(F).

Proof. The �rst assertion is straightforward. The seond is immediate from the fat

that the set of points of W

2n

(F) that are ollinear to a given hyperboli line l spans a

subspae isomorphi to W

2n�2

(F), whose hyperboli lines are preisely those hyperboli

lines of W

2n

(F) that are in relation ? to the hyperboli line l. 2

Lemma 3.4

Let n � 3, and let l, m be distint hyperboli lines of W

2n

(F) with fl; mg

?

6= ;. Then any

hyperboli line ontained in fl; mg

??

is also ontained in hl; mi

P

and vie versa.
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Proof. Let p 2 hl; mi

P

be a point of W

2n

(F). Then a vetor that spans p an be

expressed as a linear ombination of vetors spanning points on l and m. But then points

ollinear to these are also ollinear to p. Hene a hyperboli line ontained in hl; mi

P

is

also ontained in fl; mg

??

. Conversely, let q be a point not ontained in hl; mi

P

. Note

that in a sympleti spae any hyperplane is singular, i.e., there exists a point having

that hyperplane as its polar. The spae hl; mi

P

has at most (projetive) dimension three.

Sine n � 3, hyperplanes have at least dimension 4. Now onsider the hyperplanes �

i

,

i 2 I for some index set, of P

2n�1

(F) ontaining hl; mi

P

. Denote the orresponding points

by p

i

. If all of the p

i

were ontained in hl; mi

P

, then fl; mg

?

= ; (for, a hyperboli line

of fl; mg

?

\ hl; mi

P

would have to be ontained in the radial of hl; mi

P

, whih does not

ontain hyperboli lines), whene there exists a p

i

outside hl; mi

P

. Fix suh a p

i

and hoose

a hyperline �

i

� �

i

with hl; mi

P

� �

i

and p

i

; q 62 �

i

. Let �

j

be any other hyperplane

of P

2n�1

(F) ontaining �

i

. Sine p

i

62 �

j

we have p

j

62 �

i

and p

i

, p

j

are nonollinear.

Moreover, at least one of p

i

and p

j

is not ollinear with q (beause q 62 �

i

\�

j

= �

i

) and

we have found a hyperboli line p

i

p

j

ontained in fl; mg

?

that ensures that no hyperboli

line ontaining q is ontained in fl; mg

??

. This �nishes the proof, beause q has been

hosen arbitrarily outside hl; mi

P

. 2

Notation 3.5 Let X be a subspae of W

2n

(F). Denote the set of all hyperboli lines of

W

2n

(F) ontained in X by S(X).

Lemma 3.6

Let n � 3. Let k, l, m be three hyperboli lines of W

2n

(F) with fk; l;mg

?

6= ; that

interset in a ommon point. Then S(hk; l;mi) = fk; l;mg

??

.

Proof. There exist hyperboli lines a and b with ha; bi

P

= hk; l;mi

P

. Then by the

preeding lemma we have S(ha; bi

P

) = fa; bg

??

. Finally, fa; bg

??

= fk; l;mg

??

by

ha; bi

P

= hk; l;mi

P

and linear algebra. 2

Lemma 3.7

Let n � 3. Distint hyperboli lines l and m of W

2n

(F) interset if and only if the perp

fl; mg

?

in S

2n

(F) is non-empty and the double perp fl; mg

??

in S

2n

(F) does not ontain

adjaent verties (with respet to ?).

Proof. Let l and m be two interseting hyperboli lines. First we will show that

fl; mg

?

6= ;. The spae hl; mi

P

has (projetive) dimension two. Hene its polar hl; mi

�

P

has

dimension two or bigger, sine n � 3. (We denote the polarity by �.) If n � 4, then hl; mi

�

P

is not totally isotropi, so we �nd two nonollinear points in hl; mi

�

P

, whene we also �nd a

hyperboli line adjaent to both l and m. Now suppose n = 3. If hl; mi

�

P

does not ontain

a hyperboli line, then it is totally singular and, beause of the dimensions, equal to

hl; mi

P

. But hl; mi

P

is not totally singular, as it ontains hyperboli lines, a ontradition.
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The spae hl; mi

P

is a projetive plane, and the hyperboli lines ontained in whih are

preisely those of fl; mg

??

, by Lemma 3.4. If this plane ontains two adjaent hyperboli

lines aF+bF and F+dF then (a; b) = (a; a�

1

+�

2

+d�

3

) = (a; a)�

1

+(a; )�

2

+(a; d)�

3

= 0

(where (�; �) denotes the alternating bilinear form), a ontradition to the fat that aF+bF

is a hyperboli line. Conversely, suppose l and m are non-interseting hyperboli lines.

Then hl; mi

P

is a projetive 3-spae and hl; mi

P

\ W

2n

(F) is a nondegenerate sympleti

spae (the diret sum of two disjoint hyperboli lines) or has a projetive line as its

radial (and hene the spae is the diret sum of a hyperboli line and a non-interseting

singular line). In both ases hl; mi

P

ontains adjaent hyperboli lines. We may assume

fl; mg

?

6= ;, and the laim follows from Lemma 3.4. 2

We now want to reover the points of the polar spae as penils of hyperboli lines.

Three mutually interseting hyperboli lines k, l, m interset in one point if there exists a

fourth hyperboli line j that intersets with the �rst three and spans a projetive 3-spae

with two of them. In terms of double perps this means that k, l and m are interseting

in one point if there exists a hyperboli line j with fk; lg

??

= S(hk; li

P

) ( S(hj; k; li

P

) =

fj; k; lg

??

. The former equality is due to Lemma 3.4, the latter is due to Lemma 3.6.

The only problem is to ensure that fk; lg

?

6= ; 6= fj; k; lg

?

. The �rst inequality has been

shown in Lemma 3.7, the seond will be handled by the following lemma. More preisely,

we show that we an hoose j in suh a way that fj; k; lg

?

6= ; holds.

Lemma 3.8

Let n � 3. For distint interseting hyperboli lines l and m of W

2n

(F) there exists a

hyperboli line j that intersets l and m suh that hj; l;mi

P

has projetive dimension 3

and fj; l;mg

?

in S

2n

(F) is non-empty.

Proof. Consider the plane hl; mi

P

. It ontains a point x as radial, whih lies on neither

l nor m. The spae l

�

in W

2n

(F) is isomorphi to W

2n�2

(F) and ontains a point y

that is not ollinear with x, beause W

2n

(F) is nondegenerate. Therefore hl; xyi

P

is a

nondegenerate sympleti 3-spae, a sympleti generalized quadrangle, and fl; xyg

?

6= ;

as n � 3. Thus we are done, if we an �nd a point p of hl; xyi

P

with hl; m; pi

P

= hl; xyi

P

that is not ollinear with q := l \m. But this point p exists sine hl; mi

P

� hl; xyi

P

and

hl; xyi

P

is nondegenerate, so we an hoose j to be the hyperboli line pq. 2

De�nition 3.9 Let n � 3. Following Lemma 3.7, distint verties l, m of a graph �

isomorphi to S

2n

(F) are said to interset if fl; mg

?

6= ; and the double perp fl; mg

??

in � does not ontain adjaent verties. In view of the paragraph before Lemma 3.8 three

mutually interseting verties k, l, m of �

�

=

S

2n

(F) are said to interset in one point

if there exists a vertex j of � that intersets k, l, and m and that has the property that

fj; k; lg

?

6= ; and fk; lg

??

= S(hk; li

P

) ( S(hj; k; li

P

) = fj; k; lg

??

.

An interior point of a graph � isomorphi to S

2n

(F) is a maximal set of mutually

interseting verties of � any three elements of whih interset in one point. Denote
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the set of all interior points of � by P. Furthermore, an interior hyperboli line of

�

�

=

S

2n

(F) is a vertex of �. The set of interior hyperboli lines of � is denoted by H.

By the preeding lemmas we have the following.

Proposition 3.10

Let n � 3, and let � be isomorphi to S

2n

(F). The geometry (P;H;�) on the interior

points and interior hyperboli lines of � is isomorphi to the geometry on points and

hyperboli lines of the sympleti spae W

2n

(F). 2

The spae (P;H) is alled the interior hyperboli spae on �

�

=

S

2n

(F).

Corollary 3.11

Let n � 3 and let F be a �eld. Then the automorphism group of S

2n

(F) is isomorphi to

the automorphism group of W

2n

(F). 2

4 Loally hyperboli line graphs

In this setion let n � 4, let F be a �eld, and let � be a onneted graph that is loally

S

2n

(F). By the preeding setion we an reonstrut the interior hyperboli spae from

the graph x

?

for any vertex x 2 �. Suh a hyperboli spae on a perp is alled loal

as is any objet that belongs to suh a spae. To avoid onfusion we will index any

suh loal objet by the vertex of � whose perp it is de�ned on. We would like to point

out that in the preeding setion we only reonstrut the objets of the polar geometry,

and not the objets of any ambient projetive spae. However, the singular lines are

easily reonstruted from the set of points and the (non-)ollinearity relation given by the

hyperboli lines. On the other hand, the set of points together with the set of singular

and hyperboli lines forms a projetive spae, in whih we will embed the sympleti

geometry. All spans of objets of the sympleti geometry are to be understood inside

this projetive spae.

It will turn out that � is isomorphi to S

2n+2

(F). To obtain this result we will onstrut

a global geometry on � from the interior hyperboli spaes on the perps, whih will be

shown to be isomorphi to the hyperboli spae of some sympleti polar spae (using the

haraterizations by Cuypers and by Hall), whose hyperboli line graph is isomorphi to

�.

Lemma 4.1

Consider � as a two-dimensional simpliial omplex whose two-simplies are its triangles.

Let w ? x ? y ? z be a hain of verties in �. Then there exists a hain w ? x

1

? y

1

? z

that is homotopially equivalent to the former hain of verties with w

?

\x

?

1

\y

?

1

\z

?

6= ;.

In partiular, the diameter of � (as a graph) is two, and � is simply onneted.
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Proof. Let us start with proving the �rst laim. We will distiguish the ases n � 6,

n = 5, and n = 4. Suppose n � 6. Then the perp y

?

is isomorphi to S

2n

(F), whih

an be endowed with the interior polar spae isomorphi to W

2n

(F) living in a projetive

spae P

2n�1

(F). By Lemma 3.3, the intersetions x

?

\ y

?

and y

?

\ z

?

are isomorphi

to S

2n�2

(F) and an be endowed with interior polar spaes isomorphi to W

2n�2

(F) that

are subspaes of the interior polar spae on y

?

. These subspaes live in hyperlines of the

projetive spae P

2n�1

(F). Therefore the intersetion x

?

\ y

?

\ z

?

is a subspae of the

interior polar spae on y

?

living in a subspae of P

2n�1

(F) of projetive odimension at

most three. The polar spae on x

?

\ y

?

\ z

?

an also be onsidered as a subspae of

the interior polar spae on x

?

. The intersetion w

?

\ x

?

admits an interior polar spae

isomorphi to W

2n�2

(F), as above. Now w

?

\ x

?

\ y

?

\ z

?

an be onsidered as the

intersetion of the interior polar spae on w

?

\ x

?

with the polar spae on x

?

\ y

?

\ z

?

.

The dimensions of the projetive spaes are at least 2n � 3 and 2n � 5, whene the

dimension of the intersetion is at least 2n � 7 � n � 1, sine n � 6. But the largest

totally isotropi subspae of the interior projetive spae on w

?

\ x

?

has (projetive)

dimension n� 2 and we an �nd a hyperboli line in w

?

\ x

?

\ y

?

\ z

?

.

Now suppose n = 4. In x

?

the verties w and y orrespond to hyperboli lines, whih

we denote by w

x

, respetively y

x

, their respetive polars are denoted by w

�

x

and y

�

x

. In

y

?

, the hyperboli lines indued by x and z are denoted by x

y

and z

y

. The intersetion

of their polars x

�

y

\ z

�

y

translates to a subspae of x

?

, whih we denote by U

x

. Note

that U

x

� y

�

x

. There are three di�erent ases: rank w

�

x

\ y

�

x

= 4 and rank U

x

= 4;

rank w

�

x

\ y

�

x

= 2 and rank U

x

= 4; rank w

�

x

\ y

�

x

= 2 and rank U

x

= 2. (We an omit the

natural fourth ase by reversing the labeling of the hain w;x;y; z.)

Let us assume we are in the seond ase. Then we an hoose a point p

x

in U

x

\w

�

x

and

a point q

x

in U

x

nw

�

x

suh that p

x

q

x

has rank two. Piking linearly independent vetors

v

1

; v

2

2 w

x

, v

3

2 p

x

, v

4

2 q

x

we obtain the following Gram matrix with respet to v

1

, v

2

,

v

3

, v

4

0

B

B

�

0 � 0 

�� 0 0 Æ

0 0 0 �

� �Æ �� 0

1

C

C

A

;

whose determinant is independent of  and Æ. Moreover, as � 6= 0 6= �, the matrix A has

full rank. Notie that the hyperboli line p

x

q

x

orresponds to a vertex l adjaent to x,

y, and z, so that the hain w ? x ? l ? z belongs to the �rst ase and is homotopially

equivalent to w ? x ? y ? z.

Let us assume we are in the third ase. If U

x

\ w

�

x

is not ontained in the radial of

U

x

, then an argument as in the above paragraph yields a vertex l adjaent to x, y, z with

rank hw

x

; l

x

i = 4, and after reversing the labelling of the path we are in the seond ase.

Hene let us assume that U

x

\ w

�

x

is ontained in the radial of U

x

and in the radial of

w

�

x

\ y

�

x

. Choose l

x

to be any hyperboli line in U

x

nw

�

x

. Then l

�

x

ontains the radial R
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of U

x

. On the other hand, the span hw

x

; l

x

i does not interset R. The hyperboli line l

x

orresponds to a vertex l adjaent to x, y, z. Replaing the hain w ? x ? y ? z by the

hain w ? x ? l ? z, we are in the ase of the �rst part of this paragraph.

Consider the ase rank w

�

x

\ y

�

x

= 4 and rank U

x

= 4. Choose a hyperboli line l

x

in

U

x

and let it vary through all hyperboli lines in U

x

. Then l

�

x

varies around the spae

U

�

x

. One an show that for some hoie of l, this hyperboli line orresponds to a vertex

l adjaent to x, y, z, suh that w

?

\ x

?

\ l

?

\ z

?

6= ;.

Finally suppose n = 5. Use the notation from ase n = 4 and suppose that w

x

does not interset y

x

, so that hw

x

; y

x

i has (projetive) dimension three whereas its polar

w

�

x

\ y

�

x

has dimension �ve. By arguments as in ase n = 4 we an assume that w

�

x

\ y

�

x

is

nondegenerate. But then U

x

\ w

�

x

annot be totally isotropi (it has too large dimension

inside w

�

x

\y

�

x

) and we are done. On the other hand, if w

x

does interset y

x

, then U

x

\w

�

x

annot be totally isotropi (it has too large dimension inside w

�

x

) and we are done as well.

For the other laims, let w and z be arbitrary verties of �. Sine � is onneted,

there exists a path from w to z. Indution on the length of suh a path yields diameter

two. A similar indution with w = z yields simple onnetedness. 2

Lemma 4.2

Let x, y, z be verties of � and let l

1

, l

2

, l

3

, l

4

be verties of y

?

with l

1

? x ? l

2

and

l

3

? z ? l

4

. Moreover, assume that the l

i

, 1 � i � 4, are ontained in a ommon interior

point of y

?

. Then there exist verties l

5

; l

6

2 x

?

\ z

?

suh that l

1

, l

2

, l

5

, l

6

, respetively

l

3

, l

4

, l

5

, l

6

are ontained in a ommon interior point of x

?

, respetively z

?

.

Proof. Left to the reader as an exerise. (Observe �rst that x

?

\ l

?

1

\ y

?

\ l

?

2

6= ;, and

hene redue the problem to the ase x ? y ? z. Then ondut loal analysis of y

?

.) 2

De�nition 4.3 Let x, y be verties of � and let p

x

, q

y

be loal points of x

?

, respetively

y

?

. We de�ne p

x

�

p

q

y

if and only if there exist distint verties l

1

; l

2

2 p

x

\ q

y

. By the

preeding lemma, the relation �

p

is an equivalene relation on the set of all loal points.

An equivalene lass of �

p

is alled a global point. Note that the intersetion of a global

point p with a perp x

?

is either empty or a loal point p

x

. Denote set of global points of

� by P

�

. Additionally, let H

�

be a opy of the set of verties of �.

Proposition 4.4

(P

�

;H

�

) is a onneted partial linear spae.

Proof. Let p and q be two global points. Fix a vertex in eah point, p and q, say. By

Lemma 4.1, there exists a vertex x adjaent to both p and q. Hene there exist loal

ounterparts p

x

and q

x

. Connetedness of (P

�

;H

�

) now follows from onnetedness of

the interior hyperboli spae on x

?

. Moreover, two global points p, q annot interset in

more than one vertex, whene (P

�

;H

�

) is a partial linear spae. For, if two global points

would interset in two verties x, y, then there exists a vertex z adjaent to both x, y by
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Lemma 4.1. But then p\z

?

and q\z

?

are two loal points that interset in two verties,

a ontradition. 2

Proposition 4.5

The spae (P

�

;H

�

) is isomorphi to the geometry of hyperboli lines of a sympleti polar

spae (P

�

;L

�

) embedded in some projetive spae of dimension at least 3.

Proof. Let l and m be two interseting hyperboli lines of (P

�

;H

�

). By Lemma 4.1,

there exists a vertex k of � adjaent to both l and m. Loal analysis of k

?

(or rather the

interior hyperboli spae on it) shows that the interseting lines l and m are ontained

in a dual aÆne plane. Certainly, (P

�

;H

�

) ontains two suh planes. If F 6= F

2

, the spae

(P

�

;H

�

) ontains a line with more than three points and the laim follows from Fat

2.3 with Proposition 4.4. If F = F

2

, we an invoke Fat 2.1 and Fat 2.2. It remains

to show that the geometry (P

�

;H

�

) does not belong to Cases (ii) or (iii) of Fat 2.2.

Case (ii) is easily exluded, as loally all sympleti points our, not only a subset of the

sympleti points. Case (iii) is a bit more diÆult. However, by the seond statement

of Fat 2.2, we obtain 


0

= ;. Indeed, for any pair x, y of points of (P

�

;H

�

), we �nd

hyperboli lines l inident with x and m inident with y. By Lemma 4.1 there exists a

hyperboli line k that is adjaent to both l and m in �. Therefore, we an onsider x, y

in some loal spae isomorphi to W

2n

(F). But if x 6= y, then we �nd a point that lies

on a ommon hyperboli line with x, but not with y. Hene, in (P

�

;H

�

), the equality

fyg [ fp 2 P j p 3 l; x 3 l 2 Lg = fxg [ fp 2 P j p 3 l; y 3 l 2 Lg implies x = y, and




0

= ;. It follows from the size of n that (P

�

;H

�

) annot belong to Case (iii) either. The

proposition is proved. 2

Proposition 4.6

The hyperboli line graph of (P

�

;L

�

) is isomorphi to �.

Proof. By de�nition the elements of H

�

are preisely the verties of �. The preeding

proposition tells us that the elements of H

�

are also preisely the hyperboli lines of the

sympleti spae (P

�

;L

�

), and we have a natural bijetion between the hyperboli lines

of (P

�

;L

�

) and the verties of �, whih preserves adjaeny. 2

Proposition 4.7

The spae (P

�

;L

�

) is isomorphi to the sympleti polar spae W

2n+2

(F).

Proof. By Proposition 4.6, the hyperboli line graph of (P

�

;L

�

) is isomorphi to �.

Sine � is loally S

2n

(F), this means for any hyperboli line l that the subspae of (P

�

;L

�

)

onsisting of all points ollinear with all points of l is isomorphi to W

2n

(F). But the only

sympleti polar spae with that property is W

2n+2

(F). The laim follows. 2

Theorem 1 is now proved.
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5 Perp spaes

In this setion we will prove Theorems 2 and 3. Atually, we will give a proof of Statement

4 of the author's PhD thesis, whih immediately implies Theorem 2 and Theorem 3 by

our �ndings in earlier hapters.

Let us start with some de�nitions. From the introdution we reall that a perp spae

is a partial linear spae (P;L) endowed with a symmetri relation ?� P � P suh that

for every point x, whenever p 6= q are points on a line l, the fat x ? p and x ? q implies

x ? y for all y 2 l. We set l ? m, l; m 2 L if p ? q for all p 2 l, q 2 m; similarly de�ne

X ? Y for other subsets X, Y of P. Moreover, in view of the following theorem, a graph

� is alled loally onneted if, for every any x 2 �, the indued subgraph �(x) on all

neighbors of x in �, is onneted.

Theorem 5.1

Let (P;L;?) be a perp spae without isolated points and with l

?

�

=

k

?

(as perp spaes)

for all k; l 2 L suh that

(i) the indued graph (L;?) is loally onneted and loally reognizable;

(ii) the diameter of (L;?) is two; and

(iii) for all lines k ? l, every point in the spae fk; lg

?

is uniquely determined by its line

penil in fk; lg

?

.

Then (P;L;?) an be haraterized, as a perp spae, by the struture of the spaes l

?

,

l 2 L.

Proof. Let (P;L;?) be a perp spae satisfying the hypothesis of the theorem. The

graph (L;?) is loally homogeneous, beause k

?

�

=

l

?

for all k; l 2 L. Moreover, (L;?)

is loally reognizable and onneted (indeed, its diameter is two), so (L;?) is uniquely

determined up to isomorphism. It suÆes to reover the point set P and the inidene

relation between points and lines. Let p be any point of (P;L;?). Then, as p is not

isolated, there exists a line l ontaining p. Choose any line k ? l, and we have k ? p.

Hene any point p in P atually ours in some loal spae k

?

. Converely, let p 2 l

?

and q 2 m

?

be points in distint loal spaes. There is at most one possible isomorphism

type for (P;L;?), if it is determined, whether p and q atually desribe the same point

of P or not. Choose lines a 3 p and b 3 q. Sine the diameter of (L;?) is two, there

exists a line  adjaent to a and b. Notie that  ? a implies  ? p and that  ? b implies

 ? q. But in 

?

the points p and q either oinide or they do not oinide. Either way

it is determined whether p and q should be idential or distint points of P. Hene there

exists at most one isomorphism type of perp spaes with a given loal struture as in the

hypothesis. We are done by the assumption of the existene of suh a perp spae. 2
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Proof of Theorem 2. Let (P;L;?) be isomorphi to the hyperboli sympleti geometry

of W

2n+2

(F). The graph (L;?) has diameter two and is loally onneted by Proposition

3.3; it is loally reognizable by Theorem 1. The spae (P;L;?) also satis�es Hypothesis

(iii) of Theorem 5.1 (by the reonstrution of the sympleti spae from the hyperboli

line graph in Setion 3). Appliation of the above theorem �nishes the proof. 2

Theorem 3 is just a rephrasing of Theorem 2.

6 Open problems

As indiated in the introdution, the graph on the ommuting fundamental SL

2

's of a

group of type F

4

(F) is also (onneted and) loally S

6

(F). It would be interested to extend

the dimension of Theorem 1 to inlude a omplete listing of all onneted, loally S

6

(F)

graphs. It is my belief that the following is true:

Conjeture

Let F be a �eld and let � be a onneted, loally S

6

(F) graph. Then � is isomorphi to

S

8

(F) or the graph on the ommuting fundamental SL

2

's of F

4

(F).

The reason for this onjeture is the following: �rst of all the diameter of � should be

quite small; it annot have diameter two, however, as the graph oming from F

4

(F) is a

ounterexample. Then one should be able to ondut a ase-by-ase analysis depending

on the diameter of �. For diameter two, � should be isomorphi to S

8

(F), as one should

be able to ontrol all planes.
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