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Abstra
t

The present arti
le provides a new 
hara
terization of the geometry on the points

and hyperboli
 lines of a nondegenerate symple
ti
 polar spa
e. This 
hara
teriza-

tion is a

omplished by studying the familiy of subspa
es obtained when 
onsidering

the polars of all hyperboli
 lines.

1 Introdu
tion

The geometry on the points and hyperboli
 lines of a nondegenerate symple
ti
 polar spa
e

(or, short, hyperboli
 symple
ti
 geometry) is interesting for a number of reasons.

One observation is the fa
t that every pair of interse
ting hyperboli
 lines spans a dual

aÆne plane (sometimes also 
alled a symple
ti
 plane). With the ex
eption of some small


ases, this observation 
an a
tually be used to 
hara
terize the hyperboli
 symple
ti


geometries, 
f. Cuypers [2℄ and Hall [6℄. In Se
tion 2 we will give a short review of

the a
hievements of Cuypers and Hall. Another observation is the 1-1 
orresponden
e

between the set of long root subgroups, resp. fundamental SL

2

's of a symple
ti
 group

and the points, resp. hyperboli
 lines of the 
orresponding symple
ti
 geometry. This


orresponden
e is well-known, see e.g. [8℄, Chapter 2, Example 1.4. So, from a group-

theoreti
 point of view, there also exists a natural interest in the hyperboli
 symple
ti


geometry. This se
ond observation motivated the author's resear
h on this topi
.

The �rst result fo
uses ex
lusively on the hyperboli
 lines and their relative posi-

tions. More pre
isely, let W

2n

(F) denote the polar spa
e with respe
t to a nondegenerate

symple
ti
 polarity of P

2n�1

(F), for n � 1 and F a �eld. The hyperboli
 line graph

S(W

2n

(F)) = S

2n

(F) then is the graph on the hyperboli
 lines of W

2n

(F) where hyperboli


line l and m are adja
ent (in symbols l ? m) if and only if all points of l are 
ollinear

(in W

2n

(F)) to all points of m, 
f. De�nition 3.1. Equivalently, l ? m if and only if m is


ontained in the polar of l, or, equivalently, if and only if the 
orresponding fundamental

SL

2

's 
ommute.

A graph � is lo
ally homogeneous if and only if for any pair x, y of verti
es of �,

the indu
ed subgraphs �(x) and �(y) on the set of neighbors of x, resp. y are isomorphi
.

1
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Su
h a graph � is 
alled lo
ally �, for some graph �, if �(x)

�

=

� for some, when
e

all, verti
es x of �. It is easily seen (
f. Proposition 3.3) that the graph S

2n

(F) is lo
ally

S

2n�2

(F). Conversely, this property is 
hara
teristi
 for this graph for suÆ
iently large n:

Theorem 1

Let n � 4, let F be a �eld, and let � be a 
onne
ted graph that is lo
ally S

2n

(F). Then �

is isomorphi
 to S

2n+2

(F).

The requirement in the pre
eding theorem that � be 
onne
ted 
omes from the fa
t

that a graph is lo
ally � if and only if ea
h of its 
onne
ted 
omponents is lo
ally �. So

in fa
t, its primary role is to provide irredu
ibility.

In order to state the next theorem, we have to re
all the notion of a perp spa
e. This

is a partial linear spa
e (P;L) endowed with a symmetri
 relation ?� P � P su
h that

for every point x, whenever p 6= q are points on a line l, the fa
t x ? p and x ? q implies

x ? y for all y 2 l.

We 
an think of the hyperboli
 symple
ti
 geometry as a perp spa
e, by 
hoosing ?

to be the polar relation; two obje
ts are related by ? if and only if one is in the polar of

the other. Noti
e that this de�nition of ? is in a

ordan
e with our de�nition of ? above

as the adja
en
y relation of the graph S

2n

(F).

Theorem 2

Let n � 4, let F be a �eld, and let (P;L;?) be a perp spa
e in whi
h for any line k 2 L

the spa
e k

?

is isomorphi
 to the hyperboli
 symple
ti
 geometry of W

2n

(F) with l ? m

if and only if m is in the polar of l for (hyperboli
) lines l, m inside k

?

. If the graph

(L;?) is 
onne
ted, then (P;L;?) is isomorphi
 to the hyperboli
 symple
ti
 geometry of

W

2n+2

(F).

Rephrasing Theorem 2 yields the following theorem:

Theorem 3

Let n � 4, let (P;L) be a partial linear spa
e, and let ? denote non-
ollinearity in that

spa
e. Assume there exists a nondegenerate symple
ti
 spa
e of rank n su
h that for all

k 2 L the set k

?

of all points and lines of (P;L) not 
ollinear to k is a subspa
e of

(P;L) that is isomorphi
 to the hyperboli
 geometry of that symple
ti
 spa
e. If the graph

(L;?) is 
onne
ted, then the spa
e (P;L) is isomorphi
 to the geometry on the points and

hyperboli
 lines of a nondegenerate symple
ti
 polar spa
e of rank n + 1.

We would like to point out that the lower bound on n in our theorems is sharp.

Indeed, the 
entralizer of a fundamental SL

2

in the ex
eptional group F

4

(F) is isomorphi


to Sp

6

(F), 
f. e.g. 7.18 of the third 
hapter of [8℄, so the 
orresponding 
onstru
tions for

the group F

4

(F) yield 
ounterexamples to our theorems with n = 3.

This arti
le is organized as follows. In Se
tion 2 we will qui
kly review the 
hara
-

terizations of the hyperboli
 symple
ti
 geometries by Cuypers and by Hall. Se
tion 3 is
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devoted to the study of graphs isomorphi
 to S

2n

(F). As a side result we determine the

automorphism group of S

2n

(F). In Se
tion 4 we prove Theorem 1, whereas Theorems 2

and 3 are proved in Se
tion 3.4. A
tually, we also provide a proof for Statement 4 on

perp spa
es in the author's PhD thesis, 
f. Theorem 5.1.

2 Existing Results

Several partial results have been known for quite some time, but the �rst 
omplete result

was obtained by Jonathan I. Hall in [6℄.

Fa
t 2.1 (Hall [6℄, Main Theorem)

Let (P;L) be a �nite, 
onne
ted partial linear spa
e in whi
h ea
h pair of interse
ting

lines lies in a subspa
e isomorphi
 to a dual aÆne plane. Assume that (P;L) 
ontains at

least two su
h planes. Then either

(i) for some prime power q and some integer n at least 3, the spa
e (P;L) is isomorphi


to the partial linear spa
e of hyperboli
 lines of a symple
ti
 polar spa
e embedded

in the proje
tive spa
e P

n

(q); or

(ii) all lines of L 
ontain exa
tly three points.

The partial linear spa
es satisfying (ii) of Theorem 2.1 are 
alled 
otriangular spa
es.

Theorem 1 of [7℄ provides a 
omplete 
lassi�
ation of the spa
es o

uring in (ii), whi
h

reads as follows.

Fa
t 2.2 (Hall [7℄, Theorem 1, Theorem 4)

Let (P;L) be a 
onne
ted partial linear spa
e all of whose lines 
ontain exa
tly three points

and in whi
h every pair of interse
ting lines lies in a subspa
e isomorphi
 to a dual aÆne

plane (of order two). Then (P;L) is isomorphi
 to one of the following partial linear

spa
es:

(i) the geometry on the non-radi
al points and the hyperboli
 lines of some symple
ti


spa
e over F

2

;

(ii) the subgeometry of a spa
e as in (i) on its non-singular points with respe
t to some

quadrati
 form q su
h that the symple
ti
 form f is obtained as f(x; y) = q(x) +

q(y) + q(x; y); or

(iii) the geometry de�ned as follows. Let 
 be a set of 
ardinality at least two and

let 


0

be a set disjoint from 
. The points of the geometry are the �nite subsets

of 
 [ 


0

that interse
t 
 in a set of 
ardinality two. The lines of the geom-

etry are those triples x

1

, x

2

, x

3

of points with empty symmetri
 di�eren
e, i.e.,

�

S

1�i�3

x

i

�

n

S

1�i;j�3

(x

i

\ x

j

) = ;.
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If additionally fyg [ fp 2 P j p 2 l; x 2 l 2 Lg = fxg [ fp 2 P j p 2 l; y 2 l 2 Lg implies

x = y for points x, y, then (P;L) is isomorphi
 to a geometry of Case (i) or (ii) with

respe
t to a nondegenerate form or of Case (iii) with 


0

= ;.

Hans Cuypers has proved a version of Hall's Main Theorem in [6℄ that in
ludes in�nite

point orders and in�nite dimensions but disregards point order 2.

Fa
t 2.3 (Cuypers [2℄, Theorem 1.1)

Let (P;L) be a 
onne
ted partial linear spa
e in whi
h any pair of interse
ting lines is


ontained in a subspa
e isomorphi
 to a dual aÆne plane. Assume that (P;L) 
ontains at

least two su
h planes and a line with more than three points. Then (P;L) is isomorphi


to the geometry on the non-radi
al points and the hyperboli
 lines of a symple
ti
 polar

spa
e embedded in some proje
tive spa
e of dimension at least 3.

3 The hyperboli
 line graph of symple
ti
 spa
es

In this se
tion we study graphs isomorphi
 to S

2n

(F). Let us start with re
alling the

de�nition from the introdu
tion. Throughout this se
tion let n � 1 and let F be a �eld.

De�nition 3.1 Let W

2n

(F) denote the polar spa
e with respe
t to a nondegenerate sym-

ple
ti
 polarity of P

2n�1

(F). The hyperboli
 line graph S(W

2n

(F)) = S

2n

(F) is the

graph on the hyperboli
 lines of W

2n

(F) where hyperboli
 line l and m are adja
ent (in

symbols l ? m) if and only if all points of l are 
ollinear (in W

2n

(F)) to all points of m.

For sake of brevity, instead of S

2n

(F)(x) for a vertex x we also write x

?

to denote the

indu
ed subgraph of S

2n

(F) on the set of neighbors of x. Moreover, X

?

:= \

x2X

x

?

for a

set of verti
es X.

Remark 3.2 In this se
tion we always 
onsider the symple
ti
 spa
e W

2n

(F) embedded

into its natural ambient spa
e P

2n�1

(F). Spans of geometri
al obje
t
s of W

2n

(F) are to

be understood inside the ambient proje
tive spa
e and are denoted by h� � �i

P

.

Proposition 3.3

Let n � 2. The graph S

2n

(F) is 
onne
ted; it has diameter two if n � 4. Moreover, it is

lo
ally S

2n�2

(F).

Proof. The �rst assertion is straightforward. The se
ond is immediate from the fa
t

that the set of points of W

2n

(F) that are 
ollinear to a given hyperboli
 line l spans a

subspa
e isomorphi
 to W

2n�2

(F), whose hyperboli
 lines are pre
isely those hyperboli


lines of W

2n

(F) that are in relation ? to the hyperboli
 line l. 2

Lemma 3.4

Let n � 3, and let l, m be distin
t hyperboli
 lines of W

2n

(F) with fl; mg

?

6= ;. Then any

hyperboli
 line 
ontained in fl; mg

??

is also 
ontained in hl; mi

P

and vi
e versa.
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Proof. Let p 2 hl; mi

P

be a point of W

2n

(F). Then a ve
tor that spans p 
an be

expressed as a linear 
ombination of ve
tors spanning points on l and m. But then points


ollinear to these are also 
ollinear to p. Hen
e a hyperboli
 line 
ontained in hl; mi

P

is

also 
ontained in fl; mg

??

. Conversely, let q be a point not 
ontained in hl; mi

P

. Note

that in a symple
ti
 spa
e any hyperplane is singular, i.e., there exists a point having

that hyperplane as its polar. The spa
e hl; mi

P

has at most (proje
tive) dimension three.

Sin
e n � 3, hyperplanes have at least dimension 4. Now 
onsider the hyperplanes �

i

,

i 2 I for some index set, of P

2n�1

(F) 
ontaining hl; mi

P

. Denote the 
orresponding points

by p

i

. If all of the p

i

were 
ontained in hl; mi

P

, then fl; mg

?

= ; (for, a hyperboli
 line

of fl; mg

?

\ hl; mi

P

would have to be 
ontained in the radi
al of hl; mi

P

, whi
h does not


ontain hyperboli
 lines), when
e there exists a p

i

outside hl; mi

P

. Fix su
h a p

i

and 
hoose

a hyperline �

i

� �

i

with hl; mi

P

� �

i

and p

i

; q 62 �

i

. Let �

j

be any other hyperplane

of P

2n�1

(F) 
ontaining �

i

. Sin
e p

i

62 �

j

we have p

j

62 �

i

and p

i

, p

j

are non
ollinear.

Moreover, at least one of p

i

and p

j

is not 
ollinear with q (be
ause q 62 �

i

\�

j

= �

i

) and

we have found a hyperboli
 line p

i

p

j


ontained in fl; mg

?

that ensures that no hyperboli


line 
ontaining q is 
ontained in fl; mg

??

. This �nishes the proof, be
ause q has been


hosen arbitrarily outside hl; mi

P

. 2

Notation 3.5 Let X be a subspa
e of W

2n

(F). Denote the set of all hyperboli
 lines of

W

2n

(F) 
ontained in X by S(X).

Lemma 3.6

Let n � 3. Let k, l, m be three hyperboli
 lines of W

2n

(F) with fk; l;mg

?

6= ; that

interse
t in a 
ommon point. Then S(hk; l;mi) = fk; l;mg

??

.

Proof. There exist hyperboli
 lines a and b with ha; bi

P

= hk; l;mi

P

. Then by the

pre
eding lemma we have S(ha; bi

P

) = fa; bg

??

. Finally, fa; bg

??

= fk; l;mg

??

by

ha; bi

P

= hk; l;mi

P

and linear algebra. 2

Lemma 3.7

Let n � 3. Distin
t hyperboli
 lines l and m of W

2n

(F) interse
t if and only if the perp

fl; mg

?

in S

2n

(F) is non-empty and the double perp fl; mg

??

in S

2n

(F) does not 
ontain

adja
ent verti
es (with respe
t to ?).

Proof. Let l and m be two interse
ting hyperboli
 lines. First we will show that

fl; mg

?

6= ;. The spa
e hl; mi

P

has (proje
tive) dimension two. Hen
e its polar hl; mi

�

P

has

dimension two or bigger, sin
e n � 3. (We denote the polarity by �.) If n � 4, then hl; mi

�

P

is not totally isotropi
, so we �nd two non
ollinear points in hl; mi

�

P

, when
e we also �nd a

hyperboli
 line adja
ent to both l and m. Now suppose n = 3. If hl; mi

�

P

does not 
ontain

a hyperboli
 line, then it is totally singular and, be
ause of the dimensions, equal to

hl; mi

P

. But hl; mi

P

is not totally singular, as it 
ontains hyperboli
 lines, a 
ontradi
tion.
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The spa
e hl; mi

P

is a proje
tive plane, and the hyperboli
 lines 
ontained in whi
h are

pre
isely those of fl; mg

??

, by Lemma 3.4. If this plane 
ontains two adja
ent hyperboli


lines aF+bF and 
F+dF then (a; b) = (a; a�

1

+
�

2

+d�

3

) = (a; a)�

1

+(a; 
)�

2

+(a; d)�

3

= 0

(where (�; �) denotes the alternating bilinear form), a 
ontradi
tion to the fa
t that aF+bF

is a hyperboli
 line. Conversely, suppose l and m are non-interse
ting hyperboli
 lines.

Then hl; mi

P

is a proje
tive 3-spa
e and hl; mi

P

\ W

2n

(F) is a nondegenerate symple
ti


spa
e (the dire
t sum of two disjoint hyperboli
 lines) or has a proje
tive line as its

radi
al (and hen
e the spa
e is the dire
t sum of a hyperboli
 line and a non-interse
ting

singular line). In both 
ases hl; mi

P


ontains adja
ent hyperboli
 lines. We may assume

fl; mg

?

6= ;, and the 
laim follows from Lemma 3.4. 2

We now want to re
over the points of the polar spa
e as pen
ils of hyperboli
 lines.

Three mutually interse
ting hyperboli
 lines k, l, m interse
t in one point if there exists a

fourth hyperboli
 line j that interse
ts with the �rst three and spans a proje
tive 3-spa
e

with two of them. In terms of double perps this means that k, l and m are interse
ting

in one point if there exists a hyperboli
 line j with fk; lg

??

= S(hk; li

P

) ( S(hj; k; li

P

) =

fj; k; lg

??

. The former equality is due to Lemma 3.4, the latter is due to Lemma 3.6.

The only problem is to ensure that fk; lg

?

6= ; 6= fj; k; lg

?

. The �rst inequality has been

shown in Lemma 3.7, the se
ond will be handled by the following lemma. More pre
isely,

we show that we 
an 
hoose j in su
h a way that fj; k; lg

?

6= ; holds.

Lemma 3.8

Let n � 3. For distin
t interse
ting hyperboli
 lines l and m of W

2n

(F) there exists a

hyperboli
 line j that interse
ts l and m su
h that hj; l;mi

P

has proje
tive dimension 3

and fj; l;mg

?

in S

2n

(F) is non-empty.

Proof. Consider the plane hl; mi

P

. It 
ontains a point x as radi
al, whi
h lies on neither

l nor m. The spa
e l

�

in W

2n

(F) is isomorphi
 to W

2n�2

(F) and 
ontains a point y

that is not 
ollinear with x, be
ause W

2n

(F) is nondegenerate. Therefore hl; xyi

P

is a

nondegenerate symple
ti
 3-spa
e, a symple
ti
 generalized quadrangle, and fl; xyg

?

6= ;

as n � 3. Thus we are done, if we 
an �nd a point p of hl; xyi

P

with hl; m; pi

P

= hl; xyi

P

that is not 
ollinear with q := l \m. But this point p exists sin
e hl; mi

P

� hl; xyi

P

and

hl; xyi

P

is nondegenerate, so we 
an 
hoose j to be the hyperboli
 line pq. 2

De�nition 3.9 Let n � 3. Following Lemma 3.7, distin
t verti
es l, m of a graph �

isomorphi
 to S

2n

(F) are said to interse
t if fl; mg

?

6= ; and the double perp fl; mg

??

in � does not 
ontain adja
ent verti
es. In view of the paragraph before Lemma 3.8 three

mutually interse
ting verti
es k, l, m of �

�

=

S

2n

(F) are said to interse
t in one point

if there exists a vertex j of � that interse
ts k, l, and m and that has the property that

fj; k; lg

?

6= ; and fk; lg

??

= S(hk; li

P

) ( S(hj; k; li

P

) = fj; k; lg

??

.

An interior point of a graph � isomorphi
 to S

2n

(F) is a maximal set of mutually

interse
ting verti
es of � any three elements of whi
h interse
t in one point. Denote
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the set of all interior points of � by P. Furthermore, an interior hyperboli
 line of

�

�

=

S

2n

(F) is a vertex of �. The set of interior hyperboli
 lines of � is denoted by H.

By the pre
eding lemmas we have the following.

Proposition 3.10

Let n � 3, and let � be isomorphi
 to S

2n

(F). The geometry (P;H;�) on the interior

points and interior hyperboli
 lines of � is isomorphi
 to the geometry on points and

hyperboli
 lines of the symple
ti
 spa
e W

2n

(F). 2

The spa
e (P;H) is 
alled the interior hyperboli
 spa
e on �

�

=

S

2n

(F).

Corollary 3.11

Let n � 3 and let F be a �eld. Then the automorphism group of S

2n

(F) is isomorphi
 to

the automorphism group of W

2n

(F). 2

4 Lo
ally hyperboli
 line graphs

In this se
tion let n � 4, let F be a �eld, and let � be a 
onne
ted graph that is lo
ally

S

2n

(F). By the pre
eding se
tion we 
an re
onstru
t the interior hyperboli
 spa
e from

the graph x

?

for any vertex x 2 �. Su
h a hyperboli
 spa
e on a perp is 
alled lo
al

as is any obje
t that belongs to su
h a spa
e. To avoid 
onfusion we will index any

su
h lo
al obje
t by the vertex of � whose perp it is de�ned on. We would like to point

out that in the pre
eding se
tion we only re
onstru
t the obje
ts of the polar geometry,

and not the obje
ts of any ambient proje
tive spa
e. However, the singular lines are

easily re
onstru
ted from the set of points and the (non-)
ollinearity relation given by the

hyperboli
 lines. On the other hand, the set of points together with the set of singular

and hyperboli
 lines forms a proje
tive spa
e, in whi
h we will embed the symple
ti


geometry. All spans of obje
ts of the symple
ti
 geometry are to be understood inside

this proje
tive spa
e.

It will turn out that � is isomorphi
 to S

2n+2

(F). To obtain this result we will 
onstru
t

a global geometry on � from the interior hyperboli
 spa
es on the perps, whi
h will be

shown to be isomorphi
 to the hyperboli
 spa
e of some symple
ti
 polar spa
e (using the


hara
terizations by Cuypers and by Hall), whose hyperboli
 line graph is isomorphi
 to

�.

Lemma 4.1

Consider � as a two-dimensional simpli
ial 
omplex whose two-simpli
es are its triangles.

Let w ? x ? y ? z be a 
hain of verti
es in �. Then there exists a 
hain w ? x

1

? y

1

? z

that is homotopi
ally equivalent to the former 
hain of verti
es with w

?

\x

?

1

\y

?

1

\z

?

6= ;.

In parti
ular, the diameter of � (as a graph) is two, and � is simply 
onne
ted.
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Proof. Let us start with proving the �rst 
laim. We will distiguish the 
ases n � 6,

n = 5, and n = 4. Suppose n � 6. Then the perp y

?

is isomorphi
 to S

2n

(F), whi
h


an be endowed with the interior polar spa
e isomorphi
 to W

2n

(F) living in a proje
tive

spa
e P

2n�1

(F). By Lemma 3.3, the interse
tions x

?

\ y

?

and y

?

\ z

?

are isomorphi


to S

2n�2

(F) and 
an be endowed with interior polar spa
es isomorphi
 to W

2n�2

(F) that

are subspa
es of the interior polar spa
e on y

?

. These subspa
es live in hyperlines of the

proje
tive spa
e P

2n�1

(F). Therefore the interse
tion x

?

\ y

?

\ z

?

is a subspa
e of the

interior polar spa
e on y

?

living in a subspa
e of P

2n�1

(F) of proje
tive 
odimension at

most three. The polar spa
e on x

?

\ y

?

\ z

?


an also be 
onsidered as a subspa
e of

the interior polar spa
e on x

?

. The interse
tion w

?

\ x

?

admits an interior polar spa
e

isomorphi
 to W

2n�2

(F), as above. Now w

?

\ x

?

\ y

?

\ z

?


an be 
onsidered as the

interse
tion of the interior polar spa
e on w

?

\ x

?

with the polar spa
e on x

?

\ y

?

\ z

?

.

The dimensions of the proje
tive spa
es are at least 2n � 3 and 2n � 5, when
e the

dimension of the interse
tion is at least 2n � 7 � n � 1, sin
e n � 6. But the largest

totally isotropi
 subspa
e of the interior proje
tive spa
e on w

?

\ x

?

has (proje
tive)

dimension n� 2 and we 
an �nd a hyperboli
 line in w

?

\ x

?

\ y

?

\ z

?

.

Now suppose n = 4. In x

?

the verti
es w and y 
orrespond to hyperboli
 lines, whi
h

we denote by w

x

, respe
tively y

x

, their respe
tive polars are denoted by w

�

x

and y

�

x

. In

y

?

, the hyperboli
 lines indu
ed by x and z are denoted by x

y

and z

y

. The interse
tion

of their polars x

�

y

\ z

�

y

translates to a subspa
e of x

?

, whi
h we denote by U

x

. Note

that U

x

� y

�

x

. There are three di�erent 
ases: rank w

�

x

\ y

�

x

= 4 and rank U

x

= 4;

rank w

�

x

\ y

�

x

= 2 and rank U

x

= 4; rank w

�

x

\ y

�

x

= 2 and rank U

x

= 2. (We 
an omit the

natural fourth 
ase by reversing the labeling of the 
hain w;x;y; z.)

Let us assume we are in the se
ond 
ase. Then we 
an 
hoose a point p

x

in U

x

\w

�

x

and

a point q

x

in U

x

nw

�

x

su
h that p

x

q

x

has rank two. Pi
king linearly independent ve
tors

v

1

; v

2

2 w

x

, v

3

2 p

x

, v

4

2 q

x

we obtain the following Gram matrix with respe
t to v

1

, v

2

,

v

3

, v

4

0

B

B

�

0 � 0 


�� 0 0 Æ

0 0 0 �

�
 �Æ �� 0

1

C

C

A

;

whose determinant is independent of 
 and Æ. Moreover, as � 6= 0 6= �, the matrix A has

full rank. Noti
e that the hyperboli
 line p

x

q

x


orresponds to a vertex l adja
ent to x,

y, and z, so that the 
hain w ? x ? l ? z belongs to the �rst 
ase and is homotopi
ally

equivalent to w ? x ? y ? z.

Let us assume we are in the third 
ase. If U

x

\ w

�

x

is not 
ontained in the radi
al of

U

x

, then an argument as in the above paragraph yields a vertex l adja
ent to x, y, z with

rank hw

x

; l

x

i = 4, and after reversing the labelling of the path we are in the se
ond 
ase.

Hen
e let us assume that U

x

\ w

�

x

is 
ontained in the radi
al of U

x

and in the radi
al of

w

�

x

\ y

�

x

. Choose l

x

to be any hyperboli
 line in U

x

nw

�

x

. Then l

�

x


ontains the radi
al R
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of U

x

. On the other hand, the span hw

x

; l

x

i does not interse
t R. The hyperboli
 line l

x


orresponds to a vertex l adja
ent to x, y, z. Repla
ing the 
hain w ? x ? y ? z by the


hain w ? x ? l ? z, we are in the 
ase of the �rst part of this paragraph.

Consider the 
ase rank w

�

x

\ y

�

x

= 4 and rank U

x

= 4. Choose a hyperboli
 line l

x

in

U

x

and let it vary through all hyperboli
 lines in U

x

. Then l

�

x

varies around the spa
e

U

�

x

. One 
an show that for some 
hoi
e of l, this hyperboli
 line 
orresponds to a vertex

l adja
ent to x, y, z, su
h that w

?

\ x

?

\ l

?

\ z

?

6= ;.

Finally suppose n = 5. Use the notation from 
ase n = 4 and suppose that w

x

does not interse
t y

x

, so that hw

x

; y

x

i has (proje
tive) dimension three whereas its polar

w

�

x

\ y

�

x

has dimension �ve. By arguments as in 
ase n = 4 we 
an assume that w

�

x

\ y

�

x

is

nondegenerate. But then U

x

\ w

�

x


annot be totally isotropi
 (it has too large dimension

inside w

�

x

\y

�

x

) and we are done. On the other hand, if w

x

does interse
t y

x

, then U

x

\w

�

x


annot be totally isotropi
 (it has too large dimension inside w

�

x

) and we are done as well.

For the other 
laims, let w and z be arbitrary verti
es of �. Sin
e � is 
onne
ted,

there exists a path from w to z. Indu
tion on the length of su
h a path yields diameter

two. A similar indu
tion with w = z yields simple 
onne
tedness. 2

Lemma 4.2

Let x, y, z be verti
es of � and let l

1

, l

2

, l

3

, l

4

be verti
es of y

?

with l

1

? x ? l

2

and

l

3

? z ? l

4

. Moreover, assume that the l

i

, 1 � i � 4, are 
ontained in a 
ommon interior

point of y

?

. Then there exist verti
es l

5

; l

6

2 x

?

\ z

?

su
h that l

1

, l

2

, l

5

, l

6

, respe
tively

l

3

, l

4

, l

5

, l

6

are 
ontained in a 
ommon interior point of x

?

, respe
tively z

?

.

Proof. Left to the reader as an exer
ise. (Observe �rst that x

?

\ l

?

1

\ y

?

\ l

?

2

6= ;, and

hen
e redu
e the problem to the 
ase x ? y ? z. Then 
ondu
t lo
al analysis of y

?

.) 2

De�nition 4.3 Let x, y be verti
es of � and let p

x

, q

y

be lo
al points of x

?

, respe
tively

y

?

. We de�ne p

x

�

p

q

y

if and only if there exist distin
t verti
es l

1

; l

2

2 p

x

\ q

y

. By the

pre
eding lemma, the relation �

p

is an equivalen
e relation on the set of all lo
al points.

An equivalen
e 
lass of �

p

is 
alled a global point. Note that the interse
tion of a global

point p with a perp x

?

is either empty or a lo
al point p

x

. Denote set of global points of

� by P

�

. Additionally, let H

�

be a 
opy of the set of verti
es of �.

Proposition 4.4

(P

�

;H

�

) is a 
onne
ted partial linear spa
e.

Proof. Let p and q be two global points. Fix a vertex in ea
h point, p and q, say. By

Lemma 4.1, there exists a vertex x adja
ent to both p and q. Hen
e there exist lo
al


ounterparts p

x

and q

x

. Conne
tedness of (P

�

;H

�

) now follows from 
onne
tedness of

the interior hyperboli
 spa
e on x

?

. Moreover, two global points p, q 
annot interse
t in

more than one vertex, when
e (P

�

;H

�

) is a partial linear spa
e. For, if two global points

would interse
t in two verti
es x, y, then there exists a vertex z adja
ent to both x, y by
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Lemma 4.1. But then p\z

?

and q\z

?

are two lo
al points that interse
t in two verti
es,

a 
ontradi
tion. 2

Proposition 4.5

The spa
e (P

�

;H

�

) is isomorphi
 to the geometry of hyperboli
 lines of a symple
ti
 polar

spa
e (P

�

;L

�

) embedded in some proje
tive spa
e of dimension at least 3.

Proof. Let l and m be two interse
ting hyperboli
 lines of (P

�

;H

�

). By Lemma 4.1,

there exists a vertex k of � adja
ent to both l and m. Lo
al analysis of k

?

(or rather the

interior hyperboli
 spa
e on it) shows that the interse
ting lines l and m are 
ontained

in a dual aÆne plane. Certainly, (P

�

;H

�

) 
ontains two su
h planes. If F 6= F

2

, the spa
e

(P

�

;H

�

) 
ontains a line with more than three points and the 
laim follows from Fa
t

2.3 with Proposition 4.4. If F = F

2

, we 
an invoke Fa
t 2.1 and Fa
t 2.2. It remains

to show that the geometry (P

�

;H

�

) does not belong to Cases (ii) or (iii) of Fa
t 2.2.

Case (ii) is easily ex
luded, as lo
ally all symple
ti
 points o

ur, not only a subset of the

symple
ti
 points. Case (iii) is a bit more diÆ
ult. However, by the se
ond statement

of Fa
t 2.2, we obtain 


0

= ;. Indeed, for any pair x, y of points of (P

�

;H

�

), we �nd

hyperboli
 lines l in
ident with x and m in
ident with y. By Lemma 4.1 there exists a

hyperboli
 line k that is adja
ent to both l and m in �. Therefore, we 
an 
onsider x, y

in some lo
al spa
e isomorphi
 to W

2n

(F). But if x 6= y, then we �nd a point that lies

on a 
ommon hyperboli
 line with x, but not with y. Hen
e, in (P

�

;H

�

), the equality

fyg [ fp 2 P j p 3 l; x 3 l 2 Lg = fxg [ fp 2 P j p 3 l; y 3 l 2 Lg implies x = y, and




0

= ;. It follows from the size of n that (P

�

;H

�

) 
annot belong to Case (iii) either. The

proposition is proved. 2

Proposition 4.6

The hyperboli
 line graph of (P

�

;L

�

) is isomorphi
 to �.

Proof. By de�nition the elements of H

�

are pre
isely the verti
es of �. The pre
eding

proposition tells us that the elements of H

�

are also pre
isely the hyperboli
 lines of the

symple
ti
 spa
e (P

�

;L

�

), and we have a natural bije
tion between the hyperboli
 lines

of (P

�

;L

�

) and the verti
es of �, whi
h preserves adja
en
y. 2

Proposition 4.7

The spa
e (P

�

;L

�

) is isomorphi
 to the symple
ti
 polar spa
e W

2n+2

(F).

Proof. By Proposition 4.6, the hyperboli
 line graph of (P

�

;L

�

) is isomorphi
 to �.

Sin
e � is lo
ally S

2n

(F), this means for any hyperboli
 line l that the subspa
e of (P

�

;L

�

)


onsisting of all points 
ollinear with all points of l is isomorphi
 to W

2n

(F). But the only

symple
ti
 polar spa
e with that property is W

2n+2

(F). The 
laim follows. 2

Theorem 1 is now proved.
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5 Perp spa
es

In this se
tion we will prove Theorems 2 and 3. A
tually, we will give a proof of Statement

4 of the author's PhD thesis, whi
h immediately implies Theorem 2 and Theorem 3 by

our �ndings in earlier 
hapters.

Let us start with some de�nitions. From the introdu
tion we re
all that a perp spa
e

is a partial linear spa
e (P;L) endowed with a symmetri
 relation ?� P � P su
h that

for every point x, whenever p 6= q are points on a line l, the fa
t x ? p and x ? q implies

x ? y for all y 2 l. We set l ? m, l; m 2 L if p ? q for all p 2 l, q 2 m; similarly de�ne

X ? Y for other subsets X, Y of P. Moreover, in view of the following theorem, a graph

� is 
alled lo
ally 
onne
ted if, for every any x 2 �, the indu
ed subgraph �(x) on all

neighbors of x in �, is 
onne
ted.

Theorem 5.1

Let (P;L;?) be a perp spa
e without isolated points and with l

?

�

=

k

?

(as perp spa
es)

for all k; l 2 L su
h that

(i) the indu
ed graph (L;?) is lo
ally 
onne
ted and lo
ally re
ognizable;

(ii) the diameter of (L;?) is two; and

(iii) for all lines k ? l, every point in the spa
e fk; lg

?

is uniquely determined by its line

pen
il in fk; lg

?

.

Then (P;L;?) 
an be 
hara
terized, as a perp spa
e, by the stru
ture of the spa
es l

?

,

l 2 L.

Proof. Let (P;L;?) be a perp spa
e satisfying the hypothesis of the theorem. The

graph (L;?) is lo
ally homogeneous, be
ause k

?

�

=

l

?

for all k; l 2 L. Moreover, (L;?)

is lo
ally re
ognizable and 
onne
ted (indeed, its diameter is two), so (L;?) is uniquely

determined up to isomorphism. It suÆ
es to re
over the point set P and the in
iden
e

relation between points and lines. Let p be any point of (P;L;?). Then, as p is not

isolated, there exists a line l 
ontaining p. Choose any line k ? l, and we have k ? p.

Hen
e any point p in P a
tually o

urs in some lo
al spa
e k

?

. Converely, let p 2 l

?

and q 2 m

?

be points in distin
t lo
al spa
es. There is at most one possible isomorphism

type for (P;L;?), if it is determined, whether p and q a
tually des
ribe the same point

of P or not. Choose lines a 3 p and b 3 q. Sin
e the diameter of (L;?) is two, there

exists a line 
 adja
ent to a and b. Noti
e that 
 ? a implies 
 ? p and that 
 ? b implies


 ? q. But in 


?

the points p and q either 
oin
ide or they do not 
oin
ide. Either way

it is determined whether p and q should be identi
al or distin
t points of P. Hen
e there

exists at most one isomorphism type of perp spa
es with a given lo
al stru
ture as in the

hypothesis. We are done by the assumption of the existen
e of su
h a perp spa
e. 2
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Proof of Theorem 2. Let (P;L;?) be isomorphi
 to the hyperboli
 symple
ti
 geometry

of W

2n+2

(F). The graph (L;?) has diameter two and is lo
ally 
onne
ted by Proposition

3.3; it is lo
ally re
ognizable by Theorem 1. The spa
e (P;L;?) also satis�es Hypothesis

(iii) of Theorem 5.1 (by the re
onstru
tion of the symple
ti
 spa
e from the hyperboli


line graph in Se
tion 3). Appli
ation of the above theorem �nishes the proof. 2

Theorem 3 is just a rephrasing of Theorem 2.

6 Open problems

As indi
ated in the introdu
tion, the graph on the 
ommuting fundamental SL

2

's of a

group of type F

4

(F) is also (
onne
ted and) lo
ally S

6

(F). It would be interested to extend

the dimension of Theorem 1 to in
lude a 
omplete listing of all 
onne
ted, lo
ally S

6

(F)

graphs. It is my belief that the following is true:

Conje
ture

Let F be a �eld and let � be a 
onne
ted, lo
ally S

6

(F) graph. Then � is isomorphi
 to

S

8

(F) or the graph on the 
ommuting fundamental SL

2

's of F

4

(F).

The reason for this 
onje
ture is the following: �rst of all the diameter of � should be

quite small; it 
annot have diameter two, however, as the graph 
oming from F

4

(F) is a


ounterexample. Then one should be able to 
ondu
t a 
ase-by-
ase analysis depending

on the diameter of �. For diameter two, � should be isomorphi
 to S

8

(F), as one should

be able to 
ontrol all planes.
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