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1 Introdution

In 1977 Kok-Wee Phan published a theorem (see [4℄) on generation of the

speial unitary group SU(n+ 1; q

2

) by a system of its subgroups isomorphi

to SU(3; q

2

). This theorem is similar in spirit to the famous Curtis-Tits

theorem. In fat, both the Curtis-Tits theorem and Phan's theorem were used

as prinipal identi�ation tools in the lassi�ation of �nite simple groups.

The proof of Phan's theorem given in his 1977 paper is somewhat inom-

plete. This motivated Bennett and Shpetorov [1℄ to revise Phan's paper and

provide a new and omplete proof of his theorem. They used an approah

based on the onepts of diagram geometries and amalgams of groups. It

turned out that Phan's on�guration arises as the amalgam of rank two

parabolis in the ag-transitive ation of SU(n + 1; q

2

) on the geometry

of nondegenerate subspaes of the underlying unitary spae. This point of

view leads to a twofold interpretation of Phan's theorem: its omplete proof

must inlude (1) a lassi�ation of related amalgams; and (2) a veri�ation

that|apart from some small exeptional ases|the above geometry is sim-

ply onneted. These two parts are tied together by a lemma due to Tits,

that implies that if a group G ats ag-transitively on a simply onneted

�
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1 INTRODUCTION 2

geometry then the orresponding amalgam of maximal parabolis provides a

presentation for G, see Proposition 7.1.

The Curtis-Tits theorem an also be restated in similar geometri terms.

Let G be a Chevalley group. Then G ats on a spherial building B and also

on the orresponding twin building B = (B

+

; B

�

; d

�

). (Here B

+

�

=

B

�

=

B

�

and d

�

is a odistane between B

+

and B

�

, taking values in the Weyl group

W of B.) Now one an form the so-alled opposites geometry �

op

of B. As

a hamber system, �

op

an be desribed as follows: its hambers are all the

pairs (C

+

; C

�

) suh that C

+

2 B

+

, C

�

2 B

�

and d

�

(C

+

; C

�

) = 1

W

. It turns

out that the Curtis-Tits theorem is equivalent to the statement that �

op

is

simply onneted for every spherial building B of rank at least three. This

approah allows for a short proof of the Curtis-Tits theorem (f. [3℄).

Furthermore, the geometri interpretation of the Curtis-Tits theorem and

Phan's theorem allows to relate them. Let G = SL(n + 1; q

2

) and let � be

the produt of the ontragredient automorphism and the involutory �eld

automorphism. Then � an be onsidered as an \automorphism" of the twin

building B orresponding to G. Unlike the ordinary automorphisms, � will

interhange (rather than stabilize) B

+

and B

�

, while preserving distane and

odistane between hambers. Let G

�

= C

G

(�) and

�

�

= f(C

+

; C

�

) 2 �

op

j C

�

+

= C

�

g:

Notie that � is an involution and hene also C

�

�

= C

+

; so, in a sense, �

�

onsists of all hambers of �

op

that are stabilized (in fat, ipped) by �. It

turns out that G

�

�

=

SU(n + 1; q

2

) ats ag- (hamber-) transitively on �

�

and �

�

is exatly the geometry used in [1℄ to re-prove Phan's theorem.

Clearly, this onstrution an be generalized to other types of spherial

twin buildings B and \ips" �. The hamber system �

�

assoiated with B

and �, will be refered to as the ipop geometry assoiated with B and �.

(Notie that it is unlear in general whether �

�

is a geometry; however, it

is true for all examples known to us.) The \ipop" onstrution beomes

a soure of Phan-type theorems. In partiular, we onjeture that Phan's

results on diagrams D

n

and E

n

from his seond paper [5℄ an be interpreted

in this way. It is an interesting open problem to try to determine a omplete

list of pairs (B; �) for whih �

�

is non-empty.

In this paper we take up the ase where B is the twin building for the

group Sp(2n; q

2

) and � is a partiular ip as de�ned in Setion 3.
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Main Theorem.

The following hold.

(1) �

�

is a rank n geometry admitting a ag-transitive group of automor-

phisms G

�

�

=

Sp(2n; q).

(2) �

�

is onneted unless n = 2 and q = 2; it is residually onneted if

q > 2.

(3) �

�

is simply onneted if n � 5, or n = 4 and q � 3, or n = 3 and

q � 8.

In partiular, �

�

is 2-simply onneted if q � 8; 3-simply onneted if

q � 3; and 4-simply onneted if q = 2 (f. Setion 7 and [1℄).

The present paper is organized as follows. Setion 2 provides several

important group-theoreti orollaries of the Main Theorem. In fat, those

orollaries were our motivation to prove the Main Theorem. In Setion 3 we

introdue and study a lass of ips � on a 2n-dimensional sympleti spae

V over F

q

2

. In setion 4 we disuss �

�

; we establish that it is a ag-transitive

geometry and then study its onnetivity properties. In Setions 5 and 6 we

prove that �

�

is simply onneted in all but few ases. Finally, in Setion 7

we derive group-theoreti onsequenes of the simple onnetedness of �

�

.

Remark.

1. Although we only onsider �nite �elds, we would expet that in�nite-

�eld versions of our results hold as well. To be preise, our onstrutions

in Setion 3 are ompletely independent of the �eld. However, our

strategy of proof heavily relies on Lemma 4.3 whih only works for

�nite �elds. The ruial point of proving in�nite-�eld versions of our

results is therefore to suitably replae Lemma 4.3.

2. The exeption n = 2, q = 2 in part (2) of the Main Theorem is a true

exeption, see Lemma 4.6. The exeption n = 3, q = 2 in part (3) of

the Main Theorem is a true exeption as well, see the disussion after

Theorem 6.8. It is urrently unknown to us whether this is true for the

other exeptions of part (3) as well.

3. The ase n = 3, q = 2 shows that any proof of our results has to ontain

a ounting argument of some kind. Requiring that the lines of � be

thik might be worth trying.



2 APPLICATION TO GROUP THEORY 4

2 Appliation to group theory

The Main Theorem has some group theoreti impliations along the lines of

Phan's theorem. Let F be a hamber (maximal ag) of �

�

. For 2 � s � n�1,

let A

(s)

be the amalgam of all rank s parabolis, i.e., stabilizers in G

�

of

subags of F of orank s.

Theorem 1. The following hold.

(1) If q � 8 and n � 3 then G

�

is the universal ompletion of A

(2)

.

(2) If 3 � q � 7 and n � 4 then G

�

is the universal ompletion of A

(3)

.

(3) If q = 2 and n � 5 then G

�

is the universal ompletion of A

(4)

.

The maximal parabolis M

i

with respet to F are semisimple subgroups

of G

�

�

=

Sp(2n; q) of the form GU(i; q

2

) � Sp(2n � 2i; q), i = 1; : : : ; n.

EahM

i

stabilizes a 2i-dimensional nondegenerate subspae U

i

of the natural

sympleti module U of G

�

. It indues GU(i; q

2

) on U

i

and Sp(2n � 2i; q)

on U

?

i

. The intersetion of all M

i

(also known as the Borel subgroup arising

from the ation of G

�

on �

�

) is a maximal torus T of G

�

of order (q + 1)

n

.

Let M

0

i

be the subgroup SU(i; q

2

) � Sp(2n � 2i; q) of M

i

. For an arbitrary

paraboli M

J

= \

i2J

M

i

de�ne M

0

J

= \

i2J

M

0

i

. Here J is a subset of the

type set I = f1; : : : ; ng of �

�

. It an be shown that M

J

=M

0

J

T .

In ase of a minimal paraboli M

Infig

, we have that L

i

:= M

0

Infig

�

=

SL(2; q). In fat, if 1 � i � n � 1 then L

i

arises as SU(2; q

2

)

�

=

SL(2; q),

while L

n

arises as Sp(2; q)

�

=

SL(2; q). Notie that T

i

= L

i

\ T is a torus in

L

i

of size q + 1. Notie also that the subgroups T

i

generate T .

If q 6= 2 then hL

i

; L

j

i =M

0

Infi;jg

. In partiular, the subgroups L

i

have the

following properties:

(1) L

i

�

=

SU(2; q

2

), if i = 1; : : : ; n� 1; L

n

�

=

Sp(2; q);

(2) hL

i

; L

j

i

�

=

8

<

:

L

i

� L

j

; if ji� jj > 1;

SU(3; q

2

); if ji� jj = 1 and fi; jg 6= fn� 1; ng;

Sp(4; q); if fi; jg = fn� 1; ng.

These properties are similar to Phan's original desription of his on�gu-

rations.

De�ne A

0

(s)

to be the amalgam formed by the subgroups M

0

J

for all

parabolis M

J

of rank s. The following is a \stripped-of-T" (Phan-type)

version of Theorem 1.
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Theorem 2. The following hold.

(1) If q � 8 and n � 3 then G

�

is the universal ompletion of A

0

(2)

.

(2) If 3 � q � 7 and n � 4 then G

�

is the universal ompletion of A

0

(3)

.

(3) If q = 2 and n � 5 then G

�

is the universal ompletion of A

0

(4)

.

Note that M

i

, i 6= n, is not a maximal semisimple subgroup of G

�

.

Namely, M

i

is ontained in the full stabilizer H

i

of the deomposition U =

U

i

� U

?

i

. The subgroup H

i

is isomorphi to Sp(2i; q) � Sp(2n � 2i; q). It

is a maximal paraboli with respet to the ation of G

�

on the rank n � 1

pregeometry � of all proper nondegenerate subspaes of U . It an be shown

that if n � 3 then � is a residually onneted geometry on whih G

�

ats

ag-transitively. Furthermore, fU

i

j 1 � i � n � 1g is a maximal ag of �,

and H

i

's are the orresponding maximal parabolis.

The following results will be derived from Theorem 1 and the results from

[1℄.

Theorem 3. Let n � 4. Then � is simply onneted provided that (n; q) 62

f(4; 2); (4; 3)g.

Indutively, � is 2-simply onneted if q � 4 and 3-simply onneted if

q = 2 or 3.

As a orollary, we prove the following.

Theorem 4. If q � 4 then the amalgam of any three subgroups H

i

has G

�

as

its universal ompletion. If q = 2 or 3 then the same holds for the amalgam

of any four subgroups H

i

.

Notie that if n � 5 and q = 2 or 3 then G

�

an still be reovered

from some triples of subgroups H

i

. Namely, among others, every amalgam

H

1

[H

i

[H

n�1

, 1 < i < n�1, has G

�

as its universal ompletion, see Setion

7.

3 Flips and forms

Let V be a 2n-dimensional nondegenerate sympleti spae over F

q

2

and

let (�; �) be the orresponding alternating bilinear form. Let the bar denote

the involutive automorphism of F

q

2

. In this setion we study semilinear

transformations � of V satisfying
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(T1) (�v)

�

=

�

�v

�

;

(T2) (u

�

; v

�

) = (u; v); and

(T3) �

2

= �Id.

We will all suh a � a ip. An example of a ip an be onstruted as follows.

Choose a basis B = fe

1

; : : : ; e

n

; f

1

; : : : ; f

n

g in V suh that, for 1 � i; j � n,

we have that (e

i

; e

j

) = (f

i

; f

j

) = 0 and (e

i

; f

j

) = Æ

ij

. This orresponds to the

Gram matrix

A =

�

0 I

�I 0

�

:

Here I is the identity matrix of size n� n, whereas 0 stands for the all-zero

matrix of the same size. (A basis like that is alled a hyperboli basis.) Let �

be the linear transformation of V whose matrix with respet to the basis B

oinides with A and let  be the semilinear transformation of V that applies

the bar automorphism to the B-oordinates of every vetor. If �

0

= � Æ  ,

then for a vetor

u =

n

X

i=1

x

i

e

i

+

n

X

i=1

y

i

f

i

we ompute that

u

�

0

= �

n

X

i=1

�y

i

e

i

+

n

X

i=1

�x

i

f

i

:

One easily veri�es that (T1) and (T3) are satis�ed for �

0

. To hek (T2),

onsider

v =

n

X

i=1

x

0

i

e

i

+

n

X

i=1

y

0

i

f

i

:

Then

(u

�

0

; v

�

0

) =

n

X

i=1

(��y

i

)�x

0

i

� �x

i

(��y

0

i

) = (u; v);

yielding (T2). Thus, �

0

is a ip. Notie that � = �

0

an be haraterized as

the unique semilinear transformation suh that (T1) holds and

e

�

i

= f

i

; f

�

i

= �e

i

; for 1 � i � n.

Whenever these latter onditions are satis�ed for a ip � and a hyperboli

basis B = fe

1

; : : : ; f

n

g, we will say that B is a anonial basis for �.
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Let G

�

=

Sp(2n; q

2

) be the group of all linear transformations of V pre-

serving the form (�; �). One of the prinipal results of this setion is the

following.

Proposition 3.1. Every ip admits a anonial basis.

In other words, every ip � is onjugate to �

0

by an element of G.

We start by disussing the general properties of ips. Let � be a ip.

De�ne

((x; y)) = (x; y

�

):

Lemma 3.2. The form ((�; �)) is a nondegenerate Hermitian form. Further-

more, ((u

�

; v

�

)) = ((u; v)) for u; v 2 V .

Proof. Clearly, ((�; �)) is a sesquilinear form. Also, ((v; u)) = (v; u

�

) =

�(u

�

; v) = �(u

�

2

; v

�

) = �(�u; v

�

) = (u; v

�

) = ((u; v)). Thus, ((�; �)) is

Hermitian. If u is in the radial of ((�; �)) then for any v 2 V , 0 = ((u; v

�

)) =

((u; v

�

2

)) = �(u; v). Therefore, u = 0, as (�; �) is nondegenerate. Finally,

((u

�

; v

�

)) = (u

�

;�v) = (v; u

�

) = ((v; u)) = ((u; v)). 2

In what follows we will work with both (�; �) and ((�; �)). This alls for two

di�erent perpendiularity symbols. We will use ? for the form (�; �), while

?? will be used for ((�; �)).

Proof of Proposition 3.1. Let � be a ip. Pik a vetor u 2 V suh that

((u; u)) = 1. Suh a vetor exists sine ((�; �)) is nondegenerate by Lemma

3.2. Set e

n

= u and f

n

= u

�

. Sine (�; �) is an alternating form we have

(e

n

; e

n

) = (f

n

; f

n

) = 0. Furthermore, (e

n

; f

n

) = ((e

n

; f

�

�1

n

)) = ((e

n

; e

n

)) = 1.

In partiular, the subspae U = he

n

; f

n

i is nondegenerate with respet to

(�; �). Consider now V

0

= U

?

. Notie that U is invariant under �. Together

with (T2), this implies that V

0

is also invariant under �. It is easy to see that

the restrition of � to V

0

is a ip of V

0

. By indution, there exists a hyperboli

basis e

1

; : : : ; e

n�1

; f

1

; : : : ; f

n�1

in V

0

, suh that e

�

i

= f

i

for 1 � i � n � 1.

(Sine �

2

= �Id, this automatially implies f

�

i

= �e

i

.)

Clearly, fe

1

; : : : ; e

n

; f

1

; : : : ; f

n

g is a anonial basis for �. 2

Next, we disuss the behavior of �, (�; �), and ((�; �)) with respet to the

subspaes U � V .

Lemma 3.3. For a subspae U � V , we have U

??

= (U

�

)

?

= (U

?

)

�

. Simi-

larly, U

?

= (U

�

)

??

= (U

??

)

�

.
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Proof. The �rst equality in the �rst laim immediately follows from the

de�nition of ((�; �)). If u 2 (U

?

)

�

(say, u = (u

0

)

�

for u

0

2 U

?

) and v 2 U

then ((u; v)) = ((u

0

)

�

; v

�

) = (u

0

; v) = 0. The seond laim follows by an

appliation of � to the equalities in the �rst laim. 2

Lemma 3.4. The form (�; �) has the same rank on U and U

�

; likewise, it

has the same rank on U

?

and U

??

= (U

?

)

�

. The same statements hold for

((�; �)).

Proof. The �rst laim follows from (T2) for (�; �), and from Lemma 3.2 for

((�; �)). The seond laim follows from the �rst one and Lemma 3.3. 2

If U is �-invariant then we an say more. It follows from Lemma 3.3 that

U

?

= U

??

. In other words, for a �-invariant subspae U , the orthogonal

omplement (and hene also the radial) of U is the same with respet to

(�; �) and ((�; �)). It also follows from Lemma 3.3 that both the orthogonal

omplement and the radial of U are �-invariant.

It was notied in the proof of Proposition 3.1 that the properties (T1){

(T3) are inherited by the restritions of � to all �-invariant subspaes U � V .

If U is nondegenerate|it does not matter with respet to whih form|then

the restrition of � to U is a ip of U . We should now disuss what happens

when U has a nontrivial radial. First of all, by the above omment, the

radial of U is �-invariant.

Lemma 3.5. If U is �-invariant then the radial of U has a �-invariant

omplement in U .

Proof. The proof is analogous to that of Proposition 3.1. If U is totally

singular then there is nothing to prove. Otherwise, hoose u 2 U suh that

((u; u)) = 1. Then W = hu; u

�

i is a �-invariant nondegenerate subspae.

Hene U = (U \W

?

)�W and the radial of U oinides with the radial of

U

0

= U \W

?

. Clearly, U

0

is �-invariant, and so indution applies. 2

Notie that the �-invariant omplement in the above lemma is automat-

ially nondegenerate.

Next, let us study the \eigenspaes" of � on V . For � 2 F

q

2

, de�ne

V

�

= fu 2 V j u

�

= �ug. Note that V

�

is not a true eigenspae, beause � is

not linear.

Lemma 3.6. The following hold.
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(1) For 0 6= � 2 F

q

2

, we have �V

�

= V

�

0

, where �

0

=

��

�

�; in partiular, V

�

is an F

q

-subspae of V .

(2) V

�

6= 0 if and only if �

�

� = �1; furthermore, if V

�

6= 0 then V

�

ontains

a basis of V .

Proof. Suppose u 2 V

�

. Then (�u)

�

= ��u

�

= ���u =

��

�

�(�u). This proves

(1). Also, �u = u

�

2

=

�

��u. Thus, if u 6= 0 then �

�

� = �1. This proves

the `only if' part of (2). To prove the `if' part, hoose a anonial basis

fe

1

; : : : ; f

n

g for �. Fix a � 2 F

q

2

suh that �

�

� = �1. De�ne u

i

= e

i

�

�

�f

i

and v

i

=

�

�e

i

+ f

i

for 1 � i � n. A simple hek shows that u

i

and v

i

are

in V

�

. This shows that V

�

6= 0. Furthermore, u

i

and v

i

are not proportional

unless

�

� = �, that is, � 2 F

q

. Thus, if � 62 F

q

then fu

1

; : : : ; u

n

; v

1

; : : : ; v

n

g

is a basis of V . If � 2 F

q

then onsider �

0

=

��

�

�, where � is hosen so that

��

�

62 F

q

. By (1), V

�

0

= �V

�

. Also, sine �

0

62 F

q

, we have that V

�

0

ontains a

basis of V , and hene so does V

�

. 2

Consider an F

q

-linear map � : v 7! v�

�

�v

�

, where � 2 F

q

2

and �

�

� = �1.

It an be heked that � maps V onto V

�

, and its kernel is V

�

�

. The above

vetors u

i

and v

i

are obtained by applying � to the vetors in the anonial

basis fe

1

; : : : ; f

n

g.

Now �x a � 2 F

q

2

suh that �

�

� = �1. Also, �x a � 2 F

q

2

with �� = ��.

Lemma 3.7. The restrition of ��(�; �) to V

�

is a nondegenerate alternating

F

q

-bilinear form.

Proof. Clearly, the form ��(�; �) is F

q

-bilinear and alternating. Sine V

�

ontains a basis of V by Lemma 3.6 (2), the form is nondegenerate. It remains

to see that it takes values in F

q

. However, if u; v 2 V

�

, then ��(u; v) =

��

�

�(u

�

; v

�

) = ��

�

��

2

(u; v) = ��(u; v). 2

Observe that the onjugation by � is an automorphism of G. Let G

�

be

the entralizer of � in G. The above setup gives us means to identify G

�

. Let

H

�

=

Sp(2n; q) be the group of all linear transformations of V

�

preserving the

(restrition of the) form ��(�; �). Sine V

�

ontains a basis of V , we an use

F

q

2

-linearity to extend the ation of the elements of H to the entire V . This

allows us to identify H with a subgroup of G. Clearly, sine h 2 H preserves

��(�; �), it must also preserve (�; �).

Proposition 3.8. G

�

= H.
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Proof. Choose a basis fw

1

; : : : ; w

2n

g in V

�

. Then this set is also a basis of V .

Let h 2 H. If u =

P

2n

i=1

x

i

w

i

2 V then u

�h

= (

P

2n

i=1

�x

i

�w

i

)

h

= �

P

2n

i=1

�x

i

w

h

i

.

On the other hand, u

h�

= (

P

2n

i=1

x

i

w

h

i

)

�

=

P

2n

i=1

�x

i

�w

h

i

. Therefore, H � G

�

.

Now take g 2 G

�

. If u 2 V

�

then (u

g

)

�

= (u

�

)

g

= (�u)

g

= �u

g

. This

proves that g leaves V

�

invariant. It remains to see that g preserves ��(�; �).

However, this is lear, beause g is F

q

2

-linear and it preserves (�; �). 2

4 The ipop geometry �

We will be using the notation from the previous setion. In partiular, V is

a nondegenerate sympleti F

q

2

-spae of dimension 2n with a form (�; �), � a

ip and ((�; �)) is the orresponding Hermitian form. Also, G

�

=

Sp(2n; q

2

)

is the group of linear transformations preserving (�; �) and G

�

= C

G

(�).

Throughout this setion, we assume n � 2. Let B be the building geometry

assoiated with G. Its elements are all the (�; �)-totally singular subspaes of

V .

Two elements U and U

0

of B are opposite whenever V = U

0

� U

?

, i.e.,

U , U

0

have the same dimension and U

0

\ U

?

= 0. Two hambers (maximal

ags) F and F

0

are opposite whenever for eah subspae U 2 F there is a

U

0

2 F

0

suh that U and U

0

are opposite. Using this, it an be shown that the

opposites geometry �

op

related to B is indeed a geometry and its elements

are all pairs (U; U

0

) are opposite totally singular subspaes of V .

Turning to �

�

, let F be a maximal ag of B suh that F and F

�

are

opposite. Then, for every U 2 F , the spae U

�

must be the element of F

�

that is opposite U . Indeed, this follows from the fat that opposite elements

have the same dimension. Thus, (F; F

�

) 2 �

�

if and only if U

�

is opposite

U for every element U 2 F (that is, (U; U

�

) 2 �

op

).

Our �rst goal is to show that �

�

is a geometry, that is to say, its hambers

arise as maximal ags of a suitable geometry. The natural andidate for this

geometry is the following subset of �

op

:

f(U; U

0

) 2 �

op

j U

0

= U

�

g:

(For onveniene, we will refer to this set as �

�

, antiipating that orretness

of this will be shown later.)

It suÆes to show that �

�

is a full rank (that is, rank n) subgeometry

of �

op

. In order to avoid umbersome notation, let us projet every pair
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(U; U

0

) 2 �

�

to its �rst oordinate U . Sine U

0

= U

�

, this establishes a

bijetion (in fat, an isomorphism of pregeometries) between �

�

and the

following subset of B:

� = fU 2 B j U

�

is opposite Ug:

The de�nition of � an be niely restated in terms of the forms (�; �) and

((�; �)).

Proposition 4.1. The elements of � are all subspaes U � V whih are

totally isotropi with respet to (�; �) and nondegenerate with respet to ((�; �)).

Proof. By Lemma 3.3, U

??

= (U

�

)

?

. Hene U and U

�

are opposite if and

only if U \ U

??

= 0. 2

As in the introdution, we use f1; : : : ; ng as the type set of B. In par-

tiular, the type funtion is given by the linear (rather than projetive) di-

mension. We will use the ustomary geometri terminology. In partiular,

points, lines and planes are elements of type 1, 2 and 3, respetively.

We stress again that we will mostly work with �, using the fat that �

and �

�

are isomorphi. We also notie that the isomorphism between � and

�

�

ommutes with the ation of H = G

�

.

Proposition 4.2. The pregeometry � is a geometry. Moreover, H ats ag-

transitively on �.

Proof. Let V

1

� V

2

� � � � � V

k

be a maximal ag. Let B = fe

1

; : : : ; e

t

g

be an orthonormal basis of V

k

with respet to ((�; �)). (This exists sine V

k

is

nondegenerate with respet to ((�; �)).) Then B [ B

�

forms a anonial basis

of V

k

�V

�

k

. If V

k

is not a maximal totally isotropi subspae of V with respet

to (�; �), there exists a nontrivial u 2 (V

k

� V

�

k

)

?

= (V

k

� V

�

k

)

??

suh that

((u; u)) = 1. Then hV

k

; ui is totally isotropi for (�; �) and nondegenerate with

respet to ((�; �)), ontraditing maximality of the ag. Hene we an assume

V

k

is a maximal totally isotropi subspae with respet to (�; �). Indution

shows that V

i�1

is a odimension 1 subspae in V

i

for 2 � i � k, proving that

the maximal ag is a hamber.

Let V

1

� V

2

� � � � � V

n

and V

0

1

� V

0

2

� � � � � V

0

n

be two hambers.

Choose bases B = fe

1

; : : : ; e

n

g, B

0

= fe

0

1

; : : : ; e

0

n

g for V

n

, respetively V

0

n

suh that they are orthonormal with respet to ((�; �)) and V

i

= he

1

; : : : ; e

i

i,

V

0

i

= he

0

1

; : : : ; e

0

i

i. De�ne g 2 G suh that e

g

i

= e

0

i

and (e

�

i

)

g

= (e

0

i

)

�

. Suh a g
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obviously exists, sine G

�

=

Sp(2n; q

2

) ats ag-transitively on the sympleti

polar spae (V; (�; �)). It is also lear that g maps one hamber onto the other.

Moreover notie that � Æ g = g Æ � on the basis B [B

�

. Therefore g 2 G

�

. 2

The following lemma will prove to be very useful throughout the whole

artile.

Lemma 4.3. Let P be a point of � and � � P be a 3-dimensional subspae

of V of rank at least two with respet to ((�; �)) suh that P is in the radial of

� with respet to (�; �). Then any 2-dimensional subspae of � not ontaining

P is inident with at least q

2

� q � 1 (respetively, q

2

� 2q � 1) points of �

ollinear to P if its rank is one (respetively, two) with respet to ((�; �)).

Proof. Sine P is in the radial of � with respet to (�; �), all lines passing

through P will be totally isotropi with respet to (�; �) so we only need to

onsider ((�; �)). Notie that if L is a 2-dimensional subspae of V that is not

totally isotropi with repet to ((�; �)) then L ontains at least q

2

� q points

of �. (If the rank of L is one then the radial is the only nontrivial isotropi

subspae of L and if the rank of L is two then L ontains q + 1 distint

nontrivial isotropi subspaes.)

Consider L

1

= P

??

\ �. Then by the above, there are at least q

2

� q

lines of � through to P that interset L

1

in a point of �. If L is any other

not totally isotropi 2-dimensional subspae of � not ontaining P , at most

1, respetively q + 1 of the these q

2

� q lines will interset L in isotropi

subspaes. Hene the lemma follows. 2

Atually, we also showed the following:

Corollary 4.4. Let P be a point of � and � � P be a 3-dimensional subspae

of V of rank at least two with respet to ((�; �)). Then any 2-dimensional

subspae of � not ontaining P is inident with at least q

2

�q�1 (respetively,

q

2

� 2q � 1) points of � that generate a ((�; �))-nondegenerate two spae with

P if its ((�; �))-rank is one (respetively, two). 2

We need to prove that the geometry is onneted. This is equivalent

to proving onnetivity of the point shadow spae of � whih in turn is

equivalent with onnetivity of the ollinearity graph of �.

Lemma 4.5. Suppose n � 3. Then if (n; q) 6= (3; 2) then the ollinear-

ity graph of the geometry � has diameter two. If (n; q) = (3; 2) then the

ollinearity graph of � has diameter three. In partiular, � is onneted in

all ases.



4 THE FLIPFLOP GEOMETRY � 13

Proof. If (n; q) = (3; 2) then the laim an be heked omputationally

(say, in GAP). So suppose (n; q) 6= (3; 2). Let P

1

; P

2

be two points in the

geometry. Consider W

i

:= P

?

i

\ P

??

i

, i 2 f1; 2g. Then dimW

i

= 2n � 2

so dimW

1

\ W

2

� 2n � 4. If 2n � 4 > n � 1 then the spae W

1

\ W

2

annot be totally isotropi for ((�; �)) (it lies inside the (2n� 1)-dimensional

nondegenerate spae P

??

1

). Therefore if n > 3 we an �nd a point Q in the

geometry lying in W

1

\W

2

. In this ase Q onnets P

1

and P

2

.

If n = 3, the spae U = P

?

1

\P

?

2

\P

??

2

is at least 3-dimensional inside the

4-dimensional spae P

?

2

\ P

??

2

, whih is nondegenerate with respet to both

forms. Atually, U has rank at least two with respet to ((�; �)), beause if it

had a 2-dimensional radial, this radial would be a maximal totally isotropi

subspae of P

?

2

\P

??

2

and had to be equal to its own polar in P

?

2

\P

??

2

with

respet to ((�; �)). Hene we an �nd a ((�; �))-nondegenerate 2-dimensional

subspae L of U , all points of whih atually are ollinear to P

2

. Applying

Lemma 4.3 to the plane hP

1

; Li, we �nd a ommon neighbor of P

1

and P

2

.

2

Lemma 4.6. If n = 2 and q 6= 2, then � is onneted. If n = 2 and q = 2,

then � is not onneted.

Proof. Fix a point P of �. Then P is ollinear to (q

2

� q)(q

2

� q � 1)

points of � (there are q

2

�q lines through P , eah of whih ontains q

2

�q�1

points of � exept P ). Now let us estimate the number of points at distane

two to P . Eah point Q at distane one to P is inident with q

2

� q� 1 lines

that do not ontain P . Eah of these lines ontains q

2

� q � 1 points other

than Q. Moreover, if R is a point at distane two from P , then there are at

most q

2

ommon neighbors of P and R (indeed, hP;Ri

?

is a 2-dimensional

spae whih is not totally isotropi with respet to ((�; �)), whene ontaining

either q

2

or q

2

� q points of �). Hene there are at least

(q

2

�q)(q

2

�q�1)

3

q

2

points

at distane two from P .

On the other hand, � ontains

q

8

�1

q

2

�1

� (q

2

+1)(q

3

+1) points (the number

of points of the projetive spae minus the number of points of the unitary

generalized quadrangle).

By Proposition 4.2 and Proposition 3.8, the group G

�

�

=

Sp(4; q) ats

ag-transitively on �. In partiular, it permutes the onneted omponents

of �. More preisely, the number of onneted omponents is equal to the

index of the stabilizer of one omponent in G

�

. By [2℄, Table 5.2.A the index

of a maximal subgroup of Sp(4; q) is at least 27, if q > 2. Hene, to show
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onnetivity, it is enough to prove that 1+(q

2

�q)(q

2

�q�1)+

(q

2

�q)(q

2

�q�1)

3

q

2

is greater than

1

27

�

q

8

�1

q

2

�1

� (q

2

+ 1)(q

3

+ 1)

�

, whih is true for all q � 3.

To deal with the ase n = 2, q = 2, notie �rst that in this ase two points

P , Q of � are ollinear if and only if they are perpendiular with respet to

both forms. Therefore, for any point P , the set of points ollinear to P is

ontained in the nondegenerate (with respet to both forms) 2-dimensional

spae P

?

\P

??

, whih ontains preisely two points of �. Considering those

two points inside P

?

\ P

??

, we see that their neighbors oinide (they are

preisely the points P and P

�

). Therefore the onneted omponent of the

point P onsists of preisely four points. On the other hand � onsists of

40 =

2

8

�1

2

2

�1

� (2

2

+ 1)(2

3

+ 1) points, so � is not onneted. 2

We summarize Lemmas 4.5 and 4.6 in the following

Theorem 4.7. Suppose n � 2. Then � is onneted unless (n; q) = (2; 2).2

Combined with the results of [1℄, this yields

Corollary 4.8. If q 6= 2 then � is residually onneted. 2

Finally, let us disuss the diagram of the geometry �

�

. Notie that it

is a linear (string) diagram. Furthermore, it follows from Proposition 4.1

that the residue of an element of maximal type n� 1 is the geometry of all

nondegenerate subspaes of a nondegenerate n-dimensional unitary spae.

The residue of a point is a geometry similar to � but with rank n� 1. This

leads to the diagram

q

2

�q

Æ

U

q

2

�q

Æ

U

q

2

�q

Æ : : :

q

2

�q

Æ

U

q

2

�q

Æ

S

q

2

�q

Æ:

The exat meaning of the edges Æ

U

Æ and Æ

S

Æ is as follows. The

�rst one represents the geometry of all 1- and 2-dimensional nondegenerate

subspaes of a 3-dimensional unitary spae. It appears in [1℄. The seond

edge represents our ipop geometry in the ase of rank two. We note that

both geometries are disonneted for q = 2 and onneted for q � 3. See [1℄

for Æ

U

Æ and Lemma 4.6 for Æ

S

Æ.
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5 Simple onnetedness, Part I

In this and the next setion we will prove that, apart from a few exeptional

ases, the geometry � is simply onneted. Here we ollet some general

statements and then omplete the ase n � 4. The next setion handles the

ase n = 3, whih is somewhat more ompliated.

Reall the de�nition of the fundamental group of a onneted geometry

�. A path of length k in the geometry is a sequene of elements x

0

; : : : ; x

k

suh that x

i

and x

i+1

are inident, 0 � i � k�1. We do not allow repetitions;

hene x

i

6= x

i+1

. A yle based at an element x is a path in whih x

0

= x

k

=

x. Two paths are homotopially equivalent if one an be obtained from the

other via the following operations (alled elementary homotopies): inserting

or deleting a return (i.e., a yle of length 2) or a triangle (i.e., a yle of

length 3). The equivalene lasses of yles based at an element x form a

group under the operation indued by onatenation of yles. This group is

alled the fundamental group of � and denoted by �

1

(�; x). A geometry is

alled simply onneted if its fundamental group is trivial.

Notie that in order to prove that � is simply onneted it is enough to

prove that any yle based at x is homotopially equivalent to the yle of

length 0. A yle with this property is alled null homotopi, or homotopially

trivial.

Let us go bak to the ipop geometry �. We pik the base element x to

be a point of �.

Lemma 5.1. Unless n = 3, q = 2, every yle based at x is homotopially

equivalent to a yle passing only through points and lines.

Proof. We will indut on the number of elements of the path that are not

points or lines. If this number is zero there is nothing to prove. Take an

arbitrary yle  := xx

1

: : : x

k�1

x. Let x

i

be the �rst element that is not a

point or a line. Clearly i 62 f0; kg. There are two ases to onsider:

If the type of x

i+1

is bigger than the type of x

i

then x

i�1

and x

i+1

are

inident and  is homotopially equivalent to the yle xx

1

: : : x

i�1

x

i+1

: : : x.

Suppose the type of x

i+1

is smaller than the type of x

i

. Let y be an

element of type n whih is inident to x

i

(in partiular, take x

i

, if the type

of x

i

is n), then y is inident to both x

i�1

and x

i+1

(the type of x

i�1

is

learly smaller than the type of x

i

). Therefore  is homotopially equivalent

to the path xx

1

: : : x

i�1

yx

i+1

: : : x. Now pik two points z, w suh that z
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is inident to x

i+1

and w is x

i�1

, if x

i�1

is a point, or a point inident to

x

i�1

, otherwise. Using Lemma 4.5 and Lemma 4.6 we an onnet w and

z with a path ww

1

: : : w

t

z of only points and lines inident to y. Then 

is homotopially equivalent to xx

1

: : : x

i�1

w

1

: : : w

t

zx

i+2

: : : x whih ontains

fewer elements that are not points and lines. 2

We an therefore restrit our attention to the point-line inidene graph

of � and, thus, to the ollinearity graph of �.

The �rst step is the analysis of triangles (i.e., 3-yles in the ollinearity

graph). We will all a triangle (P;Q;R) a good triangle if P , Q, and R are

inident to a ommon plane of the geometry. Conversely, all triangles that

are not good are alled bad.

Now we are to prove that all bad triangles are homotopially trivial, i.e.,

they an be deomposed into good triangles or are ontained in objets of �

of higher rank.

Lemma 5.2. Let (P;Q;R) be a bad triangle. Then the plane hP;Q;Ri on-

tains a 1-dimensional radial with respet to ((�; �)).

Proof. It is lear that the plane � = hP;Q;Ri is totally isotropi with

respet to (�; �). Sine P;Q;R is a bad triangle, � is degenerate with repet

to ((�; �)). Also, the rank of � with respet to ((�; �)) is at least two (it

ontains the nondegenerate projetive line hP;Qi), so the radial is obviously

1-dimensional. 2

Lemma 5.3. Every bad triangle (P;Q;R) an be deomposed as a produt of

two (bad) triangles in whih two of the verties are perpendiular with respet

to ((�; �)).

Proof. If two of P , Q and R are already perpendiular with respet to

((�; �)), then there is nothing to show. So assume that no two of P , Q and R

are perpendiular with respet to ((�; �)). Let X be the radial of the plane

hP;Q;Ri. Consider the unique projetive point S of the line hP;Qi suh that

R??S. It is suÆient to prove that S is a point of �. Suppose it is not, then

hR; Si = S

??

\ hP;Q;Ri and so it ontains X. Sine hP;Qi is a line of �, X

is not ontained in hP;Qi, yielding that X 6= S. Therefore hR; Si = hX;Si

is a totally isotropi spae with respet to ((�; �)) ontaining R, ontraditing

the fat that R is a point of �. Hene (P;R; S) and (Q;R; S) are triangles

as required. 2
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Lemma 5.4. Let (P;Q;R) be a bad triangle with P??Q and let X be the

radial of the plane hP;Q;Ri. If X

�

= X, then we an �nd a anonial basis

e

1

; : : : ; e

n

; f

1

; : : : ; f

n

of V for � suh that (P;Q;R) equals (he

1

i; he

2

i; hxe

1

+

ye

2

+ (e

3

+ f

3

)i) with � = �1 and xy 6= 0 and x�x + y�y 6= 0.

Proof. Choose a anonial basis e

1

; : : : ; e

n

; f

1

; : : : ; f

n

of V suh that P =

he

1

i, Q = he

2

i. Then X 2 U := he

1

; e

2

i

?

\he

1

; e

2

i

??

= he

1

; e

2

; f

1

; f

2

i

??

, whih

is a nondegenerate spae with respet to both forms. Pik a; a

0

suh that

a�a = �1 = a

0

�a

0

and a 6= a

0

. Then the vetors e

3

+ af

3

; e

3

+ a

0

f

3

; : : : ; e

n

+

af

n

; e

n

+a

0

f

n

are isotropi with respet to ((�; �)) and they form a basis of U .

Furthermore, every vetor from this basis spans a �-invariant 1-dimensional

subspae. The radial X annot be orthogonal to all of these vetors, so

there exists one vetor u in this basis suh that ((u;X)) 6= 0. The spae

hu;Xi is nondegenerate and �-invariant so it will ontain a vetor e suh

that ((e; e)) = 1 and therefore hu;Xi = he; e

�

i. Chosing a new anonial

basis of U starting with e we an assume that the bad triangle is ontained

in the spae he

1

; e

2

; e

3

; f

3

i and X = he

3

+ f

3

i. The onditions on x, y and 

as in the statement of the lemma an now be veri�ed. 2

For the rest of this setion assume n � 4.

Proposition 5.5. Let (P;Q;R) be a bad triangle. Then the triangle is ho-

motopially trivial.

Proof. By Lemma 5.2, the plane hP;Q;Ri has a 1-dimensional radial X

(with respet to ((�; �))).

Suppose X = X

�

. By Lemma 5.3 and Lemma 5.4 we an assume that our

triangle has the form P = he

1

i, Q = he

2

i, R = hxe

1

+ ye

2

+ (e

3

+ f

3

)i where

� = �1 and x�x + y�y 6= 0. (Here, as usual, e

1

; : : : ; f

n

is a anonial basis.)

Now one an add to P , Q and R the point he

4

i and form a tetrahedron in

whih all triangles but the initial one are good.

If X 6= X

�

, then onsider the line L = PQ of �. Let V

0

= L

??

\

(L

�

)

??

. Then V

0

is a nondegenerate �-invariant subspae of dimension 2n�4.

Moreover, X 2 V

0

. Nondegeneray of V

0

and the fat that X 6= X

�

imply

the existene of a vetor v 2 V

0

with (v;X) = 0 and ((v;X)) = (v;X

�

) = 1.

Hene hX; vi is a line of �, and hP;Q;X; vi is totally isotropi with respet

to (�; �) and nondegenerate with respet to ((�; �)), whene it is an objet of

� ontaining the triangle (P;Q;R). 2

The next task is proving that all quadrangles are homotopially trivial.

Reall that if a subspae U is �-invariant then U

?

= U

??

and, in partiular,
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U is nondegenerate with respet to (�; �) if and only if it is nondegenerate

with respet to ((�; �)).

Lemma 5.6. If U is a �-invariant nondegenerate subspae of V of dimen-

sion 2k � 4 and P is a point of �, then P is ollinear with a point of U or

2k = 4 and q = 2.

Proof. Consider the deomposition V = U � U

?

. Let P

1

2 U be the

projetion of P onto U (with respet to this deomposition). If we �nd a

point Q of � in P

?

1

\ P

??

1

\ U , then we are done. Indeed, Q ? P

1

, Q??P

1

implies Q ? P , Q??P by our hoie of the projetion. In partiular this

holds, if k > 2; then 2k�2 > k and P

?

1

\P

??

1

\U annot be totally isotropi.

(Notie, that we are also done, if P

1

itself is nonsingular with respet to

((�; �)).)

Thus, onsider the ase k = 2. The spae U \ P

?

1

is 3-dimensional and

has rank at least two with respet to ((�; �)). Choose a projetive line L of

((�; �))-rank two in U \ P

?

1

. Notie that P ? L, whene by Lemma 4.3, the

projetive line L ontains q

2

� 2q � 1 points of � ollinear to P , giving at

least one, if q > 2. 2

A pair P , Q of points of � will a be alled solid if the spae P

?

\ P

??

\

Q

?

\Q

??

is nondegenerate.

Lemma 5.7. Let A, B be two distint points of � with B 62 hA;A

�

i. The

pair A, B is solid if and only if the projetion of B onto hA;A

�

i

?

(via the

deomposition V = hA;A

�

i � hA;A

�

i

?

) is nonsingular.

Proof. Let B

0

= pr

hA;A

�

i

?

(B) be the projetion of B onto hA;A

�

i

?

. Notie

that B

0

6= 0. We have hA;A

�

; Bi = hA;A

�

; B

0

i whih is of rank three with

respet to ((�; �)) if and only if B

0

is nonsingular with respet to ((�; �)). But

if the rank of this spae is three, then the rank of hA;A

�

; B; B

�

i has to be

four, sine its radial with respet to ((�; �)) equals the radial with respet to

(�; �) and it ontains a subspae of rank three with respet to ((�; �)). (Notie

that an alternating form always has even rank.) This settles the `if' part of

the lemma.

Now, suppose B

0

is singular with respet to ((�; �)). Then hA;A

�

; B; B

�

i =

hA;A

�

; B

0

; (B

0

)

�

i and B

0

is obviously ontained in the radial of the latter

spae. 2

Lemma 5.8. If n � 5 or n = 4 and q 6= 2, any quadrangle (P;Q;R; S) with

a solid pair P , R is null homotopi.
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Proof. Assume P , R is a solid pair and let U = P

?

\ P

??

\ R

?

\ R

??

.

Then U is a �-invariant nondegenerate (2n � 4)-dimensional subspae and

all points of � in U are ollinear to both P and R. By Lemma 5.6, Q and S

are ollinear to points in U unless n = 4 and q = 2. Also, beause of Lemma

4.5 and Lemma 4.6, the intersetion of U with the geometry � is onneted

unless n = 4, q = 2. This �nishes the proof. 2

Proposition 5.9. If n � 5 or n = 4 and q 6= 2, then any quadrangle is

homotopially trivial.

To prove this proposition we will need some fats from linear algebra:

Lemma 5.10. Let n � 2, q � 3 and let W be an F

q

2

-vetor spae of dimen-

sion n. Suppose f

1

and f

2

are two nontrivial Hermitian forms on W . Then

there exists a vetor of W whih is nonsingular with respet to both f

1

and

f

2

.

Proof. First suppose that f is a Hermitian form on W and L is a 2-

dimensional subspae in W that is not totally singular with respet to f .

Then if L is nondegenerate with respet to f then out of the total number

of q

2

+ 1 1-dimensional subspaes of L exatly q + 1 are singular. Similarly,

if f has rank one on L then L ontains exatly one singular 1-dimensional

subspae.

Now, sine f

1

is nontrivial, any f

1

-singular 1-dimensional subspae of W

is ontained in a 2-dimensional subspae L whih is not totally isotropi

with respet to f

1

. If L is not totally isotropi with respet to f

2

, then it

ontains at least q

2

+1� q� 1� q� 1 � 2 1-dimensional subspaes that are

nonsingular with respet to both f

1

and f

2

. On the other hand, if any suh

L is totally isotropi with respet to f

2

, then every 1-dimensional subspae

that is singular with respet to f

1

, is also singular with respet to f

2

. But

sine f

2

is nontrivial on W , there exists a vetor that is nonsingular with

respet to f

2

, and hene with respet to f

1

, too. 2

Lemma 5.11. Let n � 3, q � 3 and let W be an F

q

2

-vetor spae of di-

mension n. Suppose f

1

, f

2

and f

3

are three nontrivial Hermitian forms on

W , and, furthermore, assume that f

1

is nondegenerate. Then there exists a

vetor of W whih is nonsingular with respet to all three forms.

Proof. Sine f

1

is nondegenerate and sine n � 3, any 1-dimensional

subspae singular with respet to f

1

is ontained in a 2-dimensional subspae
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L of f

1

-rank one. Notie that L ontains exatly q

2

1-dimensional subspaes

that are nonsingular with respet to f

1

. If L is not totally isotropi with

respet to both f

2

and f

3

, then there are at least q

2

� q � 1 � q � 1 � 1

1-dimensional subspaes that are nonsingular with respet to all three forms.

Therefore, suppose that any suh subspae L is totally singular with

respet to either f

2

or f

3

. This means that every f

1

-singular 1-dimensional

subspae is singular with respet to f

2

or f

3

. However, by Lemma 5.10,

there is a vetor w 2 W that is nonsingular with respet to both f

2

and f

3

.

Consequently, w is also nonsingular with respet to f

1

. 2

Proof of Proposition 5.9. Let (A;B;C;D) be a quadrangle. In view of

Lemma 5.8, we may assume that both pairs A, C and B, D are not solid.

Assume �rst that q 6= 2. The spae U = hA;B;A

�

; B

�

i

?

is nondegenerate

of dimension 2n � 4. We want to �nd a point X of � in U that forms a

solid pair with both C and D. Besides ((�; �)), onsider two more forms

f

2

(u; v) = ((u

0

; v

0

)) and f

3

(u; v) = ((u

00

; v

00

)) where u

0

, v

0

are the projetions

of u and v to hC;C

�

i

?

and u

00

, v

00

are the projetions of u and v to hD;D

�

i

?

as in Lemma 5.7. We remark that both f

1

and f

2

are nontrivial. For example,

for f

1

, it suÆes to see that the image of the projetion of U to hC;C

�

i

?

annot be totally isotropi. Let pr

1

and pr

2

be the projetions to hC;C

�

i and

hC;C

�

i

?

, respetively. If pr

2

(U) is totally isotropi then pr

1

is isometri on

U . In partiular, U \ hC;C

�

i

?

is in the radial of U , a ontradition. Thus

f

1

and f

2

are nontrivial.

By Lemma 5.11, with f

1

= ((�; �)), there exists a point X of � suh that

its projetions onto both hC;C

�

i

?

and hD;D

�

i

?

are nonsingular. Hene,

by Lemma 5.7, the point X forms a solid pair with both C and D, as we

wanted. Now, let W = hC;D;C

�

; D

�

i

?

, whih is also of dimension 2n � 4

and nondegenerate. By Lemma 5.6, W ontains a point Y of � ollinear to

X.

We have aomplished the following: the quadrangle (A;B;C;D) has

been deomposed into the triangles (A;B;X), (C;D; Y ) and the quadrangles

(C;B;X; Y ), (A;D; Y;X), both of whih ontain a solid pair.

It remains to deal with q = 2, in whih ase n � 5. Reall that for

q = 2 two points are ollinear if and only if they are perpendiular with

respet to both forms. In partiular, B and D are in U = hA;A

�

; C; C

�

i

?

.

Sine A, C is not a solid pair, W = hA;A

�

; C; C

�

i is singular and hene

it has rank two with respet to either form. If dimW = 3 then U has di-

mension at least seven and rank at least six. It now follows from Lemma
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4.7 that the set of points of � ontained in U is onneted with respet to

ollinearity. Hene (A;B;C;D) an be deomposed into triangles. Hene,

let us assume that W has dimension four and rank two. Then U has dimen-

sion six and rank four. By Lemma 3.5, U ontains a �-invariant subspae

U

0

omplementing the radial of U . Choose points B

0

2 U

0

\ (hB;B

�

i

?

)

and D

0

2 U

0

\ (hD;D

�

i

?

). Then (A;B;C;D) deomposes as a produt of

(A;B

0

; C;D

0

) and four triangles. Sine B

0

and D

0

are ontained in U

0

, they

either form a solid pair or hB

0

; (B

0

)

�

; D

0

; (D

0

)

�

i is 3-dimensional of rank two.

In either ase, (A;B

0

; C;D

0

) is known to be null-homotopi. 2

Finally, the deomposition of pentagons is now easy:

Proposition 5.12. If n � 5 or n = 4 and q 6= 2, then any pentagon is

homotopially trivial.

Proof. Let (A;B;C;D;E) be a pentagon. Consider U := hA;B;A

�

; B

�

i

?

of dimension 2n� 4, whih is nondegenerate with respet to both forms. By

Lemma 5.6, the point D is ollinear to a point F of � inside U , deomposing

the pentagon into triangles and quadrangles. 2

We an summarize the results of this setion as follows. Suppose n � 4

and (n; q) 6= (4; 2). Then the diameter of the ollinearity graph of � is

two and 3-, 4- and 5-yles are null-homotopi. This implies the following

theorem.

Theorem 5.13. If n � 4 then the geometry � is simply onneted, unless

(n; q) = (4; 2). 2

We remark that it is unknown to us whether the ase (n; q) = (4; 2) is a

true exeption.

6 Simple onnetedness, Part II

In this setion we assume n = 3. We will prove that the geometry � is simply

onneted for q � 8. As usual e

1

; : : : ; f

n

is a anonial basis.

Lemma 6.1. Let (P;Q;R) be a bad triangle and let X be the radial of the

plane hP;Q;Ri with respet to ((�; �)). Then X

�

= X.
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Proof. Suppose X

�

6= X. Then the (�; �)-totally isotropi planes hP;Q;Ri

and hP

�

; Q

�

; R

�

i do not interset. Indeed, if they did, then the the rad-

ial of hP;Q;Ri were ontained in the intersetion. Hene, by symmetry,

hP;Q;Ri \ hP

�

; Q

�

; R

�

i had to ontain the two spae hX;X

�

i, whih on

one hand were ontained in the radial of hP;Q;Ri and on the other hand

is totally isotropi with respet to ((�; �)), ontraditing the fat that the

rank with respet to ((�; �)) of hP;Q;Ri equals two. Consequently, V =

hP;Q;R; P

�

; Q

�

; R

�

i, whih has a radial with respet to (�; �) ontaining X,

ontraditing nondegeneray of (�; �). 2

In view of this lemma and of Lemmas 5.3 and 5.4 the bad triangles we

need to deal with are very restrited.

Lemma 6.2. Let (P;Q;R) be the bad triangle (he

1

i; he

2

i; hxe

1

+ ye

2

+(e

3

+

f

3

)i) with � = �1 and xy 6= 0 and x�x + y�y 6= 0. Furthermore, assume that

x�x 6= 1 or 2, y�y 6= 1 or 2, x�x + y�y 6= 1 or 2, (x�x � 1)(x�x + y�y � 1) 6= 1,

(y�y � 1)(x�x + y�y � 1) 6= 1. Then (P;Q;R) an be deomposed into good

triangles.

Proof. Consider the plane hf

1

; f

2

; f

3

i and �x the points A = hf

3

i, B =

h�xf

3

+ f

1

i, C = h�yf

3

+ f

2

i. These are uniquely determined by the

onditions that A ? hP;Qi, B ? hQ;Ri and C ? hP;Ri.

Notie that A;B;C are points of � if and only if x�x 6= 1 and y�y 6= 1

whih is satis�ed by assumption.

The projetive lines AP , AQ, BQ, and CP are lines of � beause the two

points on them are perpendiular with respet to ((�; �)). Also AB and AC

are in fat the projetive lines hf

1

; f

3

i, respetively hf

2

; f

3

i, so they are lines

of �.

Next we have to investigate the onditions under whih the projetive

lines BC, BR, and CR are lines in �. We need to see that ((�; �)) is non-

degenerate on eah of these 2-dimensional spaes, so we will investigate the

Gram matries and �nd their determinants.

In the ase of BC we get

det

�

x�x� 1 x�y

�xy y�y � 1

�

= �x�x� y�y + 1:

The spae BR yields

det

�

x�x� 1 �x

��x x�x + y�y

�

= (x�x� 1)(x�x+ y�y � 1)� 1:
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In the ase of CR we get

det

�

y�y � 1 �y

��y x�x + y�y

�

= (y�y � 1)(x�x + y�y � 1)� 1:

Now we ompute onditions suh that (A;B;C), (A;B;Q), (A;C; P ),

(A; P;Q), (B;C;R), (B;Q;R), and (C; P;R) are good triangles. Notie that

the triangles (A;B;C), (A;B;Q), (A; P;Q), and (A;C; P ) are automatially

good.

Moreover, the ase of (B;Q;R) gives

det

0

�

x�x� 1 0 �x

0 1 �y

��x y x�x + y�y

1

A

= x�x(x�x� 2):

In the ase of (B;C;R) we get

det

0

�

x�x� 1 x�y �x

�xy y�y � 1 �y

��x ��y x�x + y�y

1

A

= (x�x + y�y)(2� x�x� y�y):

Finally, for (C; P;R) we have

det

0

�

y�y � 1 0 �y

0 1 �x

��y x x�x + y�y

1

A

= y�y(y�y � 2):

This gives us exatly the onditions ontained in the hypothesis of the

lemma. 2

Lemma 6.3. Let q = p

e

and let ; d 2 F

q

2

suh that � = �1, d 6= 0. Then

the system of equations x�x + y�y = 1 and �x� �y = d has exatly q solutions.

Proof. The pair (x; y) is a solution of the �rst equation if and only if

the matrix A

x;y

:=

�

x ��y

y �x

�

has determinant one, thus the solutions of

the �rst equation are parametrized by the elements of the group SU(2; q

2

).

Observe that

(; 1)A

x;y

= (x + y; �x� �y) =

�

(�x� �y); �x� �y

�

:
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Therefore two pairs (x; y), (x

0

; y

0

) are solutions for the system of equations if

and only if the matrix A

x;y

A

�1

x

0

;y

0

stabilizes the vetor (; 1) whih is of norm

0 with respet to the unitary form. The stabilizer of suh a vetor is the p-

Sylow subgroup of the unitary group. So, if the above system has a solution,

then it has exatly q solutions, for a �xed d. Sine the order of SU(2; q

2

) is

q(q

2

� 1), the above system has q solutions for eah d 6= 0. (Indeed, there

are q

2

� 1 possible d's.) 2

Proposition 6.4. Let q � 8 and let (P;Q;R) be a bad triangle. Then the

triangle an be deomposed into good triangles.

Proof. Let X be the radial of the plane hP;Q;Ri. By the preeding

lemma we have X = X

�

. Now, by Lemmas 5.3 and 5.4, we an assume

(P;Q;R) = (he

1

i; he

2

i; hxe

1

+ye

2

+(e

3

+f

3

)i) satisfying � = �1 and xy 6= 0

and x�x + y�y 6= 0. It is enough to show that this triangle is onjugate to a

triangle satisfying the hypothesis of Lemma 6.2.

Let g 2 G

�

�xing e

1

, e

2

, f

1

, f

2

pointwise. Then Lemma 6.3 shows that,

for any nontrivial d 2 F

q

2

, the element g an be hosen suh that (e

3

+

f

3

)

g

= d(

�

d

d

e

3

+ f

3

), and we have onjugated (P;Q;R) to (P

g

; Q

g

; R

g

) =

(he

1

i; he

2

i; h

x

d

e

1

+

y

d

e

2

+ (

�

d

d

e

3

+ f

3

)i).

It remains to be seen that we an pik d suh that x

0

=

x

d

, y

0

=

y

d

satisfy

the onditions of 6.2. Then, by that lemma, we an deompose (P

g

; Q

g

; R

g

)

(and hene its onjugate (P;Q;R)) into good triangles. Notie that xy 6= 0

if and only if

x

d

y

d

6= 0, and � = �1 if and only if 

�

d

d

�



�

d

d

�

= �1. The same

holds for the ondition x�x + y�y 6= 0.

If there are seven di�erent non-zero values of d

�

d in F

q

, then we are able

to modify x�x and y�y (to

x�x

d

�

d

respetively

y�y

d

�

d

) suh that the onditions x�x 6= 1,

x�x 6= 2, y�y 6= 1, y�y 6= 2, x�x + y�y 6= 1, x�x + y�y 6= 2 are satis�ed for the

modi�ed parameters. Furthermore, if there are four more values of d

�

d, we

an additionally modify x�x and y�y for (x�x�1)(x�x+y�y�1) 6= 1, (y�y�1)(x�x+

y�y � 1) 6= 1 to hold. This is the ase for q � 13, whih leaves q 2 f8; 9; 11g.

A straightforward hek by hand or in GAP will show that any pair x�x, y�y

an be saled by d

�

d to satisfy all onditions. 2

Now we will shift our attention to quadrangles. By the preeding results,

it is enough to deompose quadrangles into triangles, regardless whether they

are good or bad. Notie that if in a quadrangle (A;B;C;D) we have that

A and C (or B and D) are ollinear then this quadrangle is immediately
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deomposed into two triangles. We all (A;B;C;D) speial if hA;Ci is non-

degenerate with respet to both forms (�; �) and ((�; �)).

Lemma 6.5. Let q � 5. Then any quadrangle an be deomposed into tri-

angles and speial quadrangles.

Proof. Consider an arbitrary quadrangle (A;B;C;D). Without loss of

generality we may assume that B and D are nonollinear. Pik an arbitrary

point S 2 X = A

??

\ B

?

\ D

?

. The point S exists beause X is not

totally isotropi with respet to ((�; �)), being a 3-spae ontained in the

nondegenerate 5-spae A

??

. The projetive line L = hA; Si has rank two

with respet to ((�; �)). Using Corollary 4.4, L ontains at least q

2

� 2q � 1

points of � that are ollinear with B, respetively D, and at least q

2

� 2q� 1

points of � that generate a nondegenerate 2-spae with C. Sine q � 5 and

sine L ontains q

2

� q points of �, the spae L has to ontain a point P of �

that generates a nondegenerate 2-spae with C and that is ollinear to both

B and D. Clearly (A;B;C;D) deomposes as a produt of (A;B; P;D) and

(C;B; P;D). If (A; P ) = 0 then hA; P i is a line, implying that (A;B; P;D)

deomposes into triangles. Otherwise, (A;B; P;D) is speial. Similarly, for

(C;B; P;D). 2

Proposition 6.6. Let q � 7. Then any quadrangle an be deomposed into

triangles.

Proof. Denote the quadrangle by (A;B;C;D), as in the proof of the

preeding lemma. By that lemma, we an assume that (A;C) 6= 0 and that

hA;Ci is nondegenerate with respet to ((�; �)). Set W := A

?

\ C

?

and

U

1

:= W \B

?

and U

2

:= W \D

?

.

If L = U

1

\ U

2

is of rank two with respet to ((�; �)), then we an apply

Lemma 4.3 to the planes hA;Li, hB;Li, hC;Li, and hD;Li to obtain q

2

�5q�4

points of � on L ollinear to all of A, B, C, D. Notie that this is a positive

number for q � 7.

Suppose now that L = U

1

\ U

2

is of rank one. Then the plane hB;Li

has rank at least one. However, it annot have rank one, sine it lies inside

the ((�; �))-nondegenerate 4-dimensional spae A

?

\ B

?

= (A

�

)

??

\ (B

�

)

??

.

Indeed, a 2-dimensional radial would be maximal totally isotropi inside

A

?

\ B

?

and ould not have a polar of dimension three. Similar arguments

hold for the points A, C, D instead of B. Applying Lemma 4.3 as in the

above paragraph gives a point of � ollinear to all of A, B, C, D.
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Suppose now L is totally isotropi with respet to ((�; �)). Then L has to

ontain the radials R

1

and R

2

(with respet to ((�; �))) of the planes U

1

and

U

2

. These radials annot oinide as otherwise we would obtain a radial

for the ((�; �))-nondegenerate spae A

?

\ C

?

. Notie that R

?

2

\ U

1

= BR

2

.

Choose a line of � through B inside U

1

. (This exists sine the rank with

respet to ((�; �)) of U

1

is two.) This line ontains a point P ollinear to both

A and C, by Lemma 4.3. Now P

?

\W intersets U

2

in a line that does not

ontain R

2

. Hene its rank with respet to ((�; �)) is two. The arguments

given in the seond paragraph of this proof settle the laim. 2

As in the n � 4 ase, pentagons are easy to handle.

Proposition 6.7. Let q � 5. Then any pentagon is null homotopi.

Proof. Let (A;B;C;D;E) be a pentagon. Consider the spae U :=

hA;B;Di

?

of dimension three. Its rank with respet to ((�; �)) has to be at

least two, as the rank of hA;Bi is two. Choosing a ((�; �))-nondegenerate

projetive line L in U and applying Lemma 4.3 in turn on the planes hA;Li,

hB;Li, hD;Li, we will �nd q

2

� 2q � 1 � q � 1 � q � 1 = q

2

� 4q � 3 > 0

points on L ollinear to all of A, B, D, deomposing the pentagon. 2

We summarize the results of this setion as follows.

Theorem 6.8. If n = 3 and q � 8 then � is simply onneted. 2

It is easy to see that � is not simply onneted if (n; q) = (3; 2). We do not

know whether this is the ase for 7 � q � 3. In order to prove our laim let P

be any point of �. Then all points ollinear to P are ontained in P

?

\ P

??

,

beause q = 2. The subspae P

?

\ P

??

is not onneted by Lemma 4.6. Let

A and B be points ontained in distint onneted omponents of P

?

\P

??

.

Consider an arbitrary yle onsisting of A, P , B, and points at distane

at least two from P (e.g., A, P , B, P

�

). This yle is not null-homotopi,

beause A, P , B do not admit a ommon neighbor and are not ontained in

a plane of �.

We ompleted the proof of the Main Theorem. Indeed, part (1) of the

Main Theorem follows from Propositions 3.8 and 4.2. Part (2) follows from

Theorem 4.7 and Corollary 4.8. Finally, part (3) is proved in Theorems 5.13

and 6.8.
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7 Consequenes of simple onnetedness

In this setion we prove Theorems 1, 2, 3, and 4. Throughout this setion,

n � 3.

In the present paper an amalgam A of groups is a set with a partial

operation of multipliation and a olletion of subsets fH

i

g

i2I

, for some index

set I, suh that the following hold:

(1) A = [

i2I

H

i

;

(2) the produt ab is de�ned if and only if a; b 2 H

i

for some i 2 I;

(3) the restrition of the multipliation to eah H

i

turns H

i

into a group;

and

(4) H

i

\H

j

is a subgroup in both H

i

and H

j

for all i; j 2 I.

It follows that the groups H

i

share the same identity element, whih is then

the only identity element in A, and that a

�1

2 A is well-de�ned for every

a 2 A. We will all the groups H

i

the members of the amalgam A. Notie

that our de�nition is a speial ase of the general de�nition of an amalgam

of groups as found, say, in [6℄.

A group H is alled a ompletion of an amalgam A if there exists a map

� : A! H suh that

(1) for all i 2 I the restrition of � to H

i

is a homomorphism of H

i

to H;

and

(2) �(A) generates H.

Among all ompletions of A there is one \largest" whih an be de�ned as

the group having the following presentation:

U(A) = ht

h

j h 2 A; t

x

t

y

= t

z

; whenever xy = z in Ai:

Obviously, U(A) is a ompletion of A sine one an take � to be the mapping

h 7! t

h

. Every ompletion of A is isomorphi to a quotient of U(A), and

beause of that U(A) is alled the universal ompletion.

Suppose a group H � Aut � ats ag-transitively on a geometry �. A

rank k paraboli is the stabilizer in H of a ag of orank k from �. Parabolis
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of rank n� 1 (where n is the rank of �) are alled maximal parabolis. They

are exatly the stabilizers in H of single elements of �.

Let F be a maximal ag in �, and let H

x

denote the stabilizer in H

of x 2 �. The amalgam A = A(F ) = [

x2F

H

x

is alled the amalgam

of maximal parabolis in H. Sine the ation of H is ag-transitive, this

amalgam is de�ned uniquely up to onjugation in H. For a �xed ag F we

an also use the notation M

i

for the maximal paraboli H

x

, where x 2 F

is of type i. (We de�ned this notation in the introdution.) For a subset

J � I = f0; 1; : : : ; n � 1g, de�ne M

J

to be \

j2J

M

j

, inluding M

;

= H.

Notie thatM

J

is a paraboli of rank jI nJ j; indeed, it is the stabilizer of the

subag of F of type J . Similarly to A, we an de�ne the amalgamA

(s)

as the

union of all rank s parabolis. With this notation we an write A = A

(n�1)

.

Moreover, aording to our de�nition, A

(n)

= H.

Now we need to de�ne overings of geometries. Suppose � and

^

� are

two geometries over the same type set and suppose � :

^

� ! � is a mor-

phism of geometries, i.e., � preserves the type and sends inident elements

to inident elements. The morphism � is alled a overing if and only if for

every non-empty ag

^

F in

^

� the mapping � indues an isomorphism between

the residue of

^

F in

^

� and the residue of F = �(

^

F ) in �. Coverings of a

geometry orrespond to the usual topologial overings of its ag omplex.

In partiular, a simply onneted geometry (as de�ned in Setion 5) admits

no nontrivial overing.

The notion of overings an also be de�ned in the more broad ontext

of hamber systems. In this ontext one an de�ne more general notions

of k-overings and k-simple onnetedness. A hamber system is k-simply

onneted if and only if it has no proper k-overings. Unfortunately, it is

oneivable that a k-over of a geometry is not a geometry. Still the following

laims an be made: A morphism � :

^

� ! � of geometries is a k-overing,

if for any ag

^

F of orank at most k of

^

�, the indued mapping from the

residue of

^

F onto the residue of �(

^

F ) is an isomorphism. Consequently, if

n is the rank of a geometry �, then the overings of � are preisely the

(n�1)-overings of �. If a onneted geometry is k-simply onneted then it

admits no proper k-overings. Also, every k-overing is a (k�1)-overing and

(k � 1)-simple onnetedness of a geometry implies k-simple onnetedness.

Proposition 7.1 (Tits' Lemma). Suppose a group H ats ag-transitively

on a geometry � and let A be the amalgam of maximal parabolis assoiated
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with some maximal ag F . Then H is the universal ompletion of the amal-

gam A if and only if � is simply onneted.

Proof. Follows from [7℄, Corollaire 1, applied to the ag omplex of �. 2

In ase of � = �

�

and H = G

�

(f. Setion 4), the Main Theorem and

Tits' Lemma imply that H is the universal ompletion of A unless (n; q) one

of (3; 2), (3; 3), (3; 4), (3; 5), (3; 7), (4; 2).

Reall that the diret sum of two geometries �

1

and �

2

is de�ned as

follows. The type set (respetively, element set) of �

1

� �

2

is the disjoint

union of the type sets (respetively, element sets) of �

1

and �

2

. The inidene

relation on �

1

� �

2

is the ombination of the inidene relations on �

1

and

�

2

and the ondition that every element of �

1

is inident with every element

of �

2

.

To prove Theorem 1 we will need the following lemma.

Lemma 7.2. Assume that � = �

1

� �

2

with �

1

onneted of rank at least

two. Then � is simply onneted.

Proof. Certainly, � is onneted. Choose a base point x 2 �

1

. We �rst

prove that any yle originating at x is homotopi to a yle fully ontained

in �

1

. Let xx

1

: : : x

n�1

x be a yle. Proeed by indution on the number of

elements on the yle whih are not in �

1

. Suppose x

s

is the �rst element in

the yle whih is not in �

1

. Let y 2 �

1

suh that y 6= x

s+1

and y is inident

with x

s+1

. (Reall that �

1

has rank at least two.) Notie that y is inident

with x

s

. Sine the residue of x

s

ontains �

1

, we an onnet x

s�1

with y

via a path x

s�1

y

1

: : : y

k�1

y fully ontained in �

1

. Furthermore, this path is

homotopi to the path x

s�1

x

s

y. Thus, our original path is homotopi to

the path xx

1

: : : x

s�1

y

1

: : : y

k�1

yx

s+1

: : : x

n�1

x. This path has fewer elements

outside �

1

, and our laim is proved.

Choosing an element z 2 �

2

we see that this z is inident to all elements

in �

1

, so any yle in �

1

is null homotopi. 2

Proof of Theorem 1. Let s � 2 if q � 8, s � 3 if 7 � q � 3, and s � 4 if

q = 2. Suppose that n � s+ 1. We will proeed by indution and show that

the universal ompletion of A

(s)

oinides with the universal ompletion of

A

(s+1)

. Denote by H

(s)

the universal ompletion of A

(s)

.

Let J � I and jI n J j = s + 1. Let F

J

� F be of type J , so that M

J

is

the stabilizer of F

J

in H. Observe that the residue of F

J

(denoted by �

J

)



7 CONSEQUENCES OF SIMPLE CONNECTEDNESS 30

is onneted. Indeed, if q > 2 then � is residually onneted by Corollary

4.8. In partiular, �

J

is onneted. If q = 2 then either the diagram of �

J

is

disonneted, or the diagram is onneted. In the �rst ase, �

J

is onneted,

sine the inidene on � is de�ned as symmetrized inlusion. In the seond

ase, �

J

is either our ipop geometry of rank s + 1, or the geometry as in

[1℄. The onnetedness follows from Theorem 4.7 and [1℄.

Observe also that �

J

is simply onneted. Indeed, either the diagram of

�

J

is disonneted, or it is onneted. In the �rst ase, the simple onnetivity

follows from Lemma 7.2. The onnetivity assumption in that lemma holds

beause one of �

1

and �

2

has suÆient rank (rank at least two, if q � 3,

and rank at least three, if q = 2) to be onneted. If the diagram of �

J

is onneted then �

J

is simply onneted by the Main Theorem (3) or [1℄,

depending on its diagram.

The universal ompletion H

(s+1)

of A

(s+1)

is also a ompletion of A

(s)

.

Indeed, if n = s + 1, then H

(n)

= H = G

�

, whih ertainly is a ompletion

of A

(n�1)

. In ase n > s + 1, the amalgam A

(s+1)

is the union of all M

J

with J of orank s + 1 and we have a map � : A

(s+1)

! H

(s+1)

suh that

�

jM

J

: M

J

! H

(s+1)

is a homomorphism. Consequently, also �

jM

J

\M

J

0

:

M

J

\M

J

0

! H

(s+1)

is a homomorphism. It remains to show that the set of

all images �(M

J

\M

J

0

) with jIn(J [ J

0

)j = s atually generate H

(s+1)

. But

sine �

J

is onneted, the group �(M

J

) � H

(s+1)

is generated by all those

images for a �xed J (beause the M

J

\M

J

0

are maximal parabolis in M

J

).

Thus, H

(s+1)

is a ompletion of A

(s)

, as it is generated by the �(M

J

).

Therefore there is a anonial homomorphism � from H

(s)

onto H

(s+1)

whose restrition toA

(s)

is the identity. Let  be the inverse of the restrition

of � to A

(s)

. Let J � I be suh that jI n J j = s + 1 and let

^

M

J

be de�ned

as h (M

J

\ A

(s)

)i. By simple onnetedness of �

J

and by Tits' Lemma,

� indues an isomorphism of

^

M

J

onto M

J

. Therefore,  extends to an

isomorphism of A

(s+1)

� H

(s+1)

onto

^

A

s+1

=

[

J�I;jInJj=s+1

^

M

J

� H

(s)

:

Hene the universal ompletion of A

(s)

oinides with the universal omple-

tion of A

(s+1)

. The fat H

(n)

= G

�

�nishes the proof. 2

Notie that we atually proved that � is 2-simply onneted if q � 8,

3-simply onneted if q � 3, and 4-simply onneted if q = 2, as laimed

after the statement of the Main Theorem in the introdution.
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Let fe

1

; : : : ; f

n

g be a anonial basis for �. We will use the notation

T , L

i

, T

i

as introdued before Theorem 2 in Setion 1. For the purposes of

proving that theorem, we will assume that the ag F onsists of the subspaes

he

1

i, he

1

; e

2

i, . . . , he

1

; : : : ; e

n

i. With respet to this basis, T onsists of all

diagonal matries diag(a

1

; : : : ; a

n

; a

�1

1

; : : : ; a

�1

n

), where eah a

i

is of order

dividing q + 1. Furthermore, T

i

, 1 � i < n, onsists of matries from T , for

whih a

i

= a

�1

i+1

= a

�1

n+i

= a

n+i+1

, with all other a

j

equal to one. If i = n

then a

n

= a

�1

2n

and a

j

= 1 for all other j. Manifestly, T is the diret produt

of all T

i

's.

Proof of Theorem 2. Let s = 2 if q � 8, s = 3 if 7 � q � 3, and s = 4

if q = 2, and suppose that n � s + 1. Let

^

H be the universal ompletion

of the amalgam A

0

(s)

. Let � be the anonial homomorphism of

^

H onto

H, that exists due to the fat that H is a ompletion of A

0

(s)

. Denote by

^

A

0

(s)

the opy of A

0

(s)

in

^

H, so that � indues an isomorphism of

^

A

0

(s)

onto

A

0

(s)

. As in the proof of Theorem 1, let  : A

0

(s)

!

^

A

0

(s)

be the inverse of

�

j

^

A

0

(s)

. Additionally, de�ne

^

T

i

=  (T

i

) and

^

T = h

^

T

1

; : : : ;

^

T

n

i. Observe that

T

i

; T

j

� M

0

Infi;jg

= hL

i

; L

j

i � A

0

(s)

. Sine  restrited to the latter group is

an isomorphism to  (M

0

Infi;jg

), the groups

^

T

i

and

^

T

j

ommute elementwise.

Beause T is the diret produt of T

i

's, the map � establishes an isomorphism

between

^

T and T .

Let J be a subset of I with jI n J j = s. Observe that M

J

= M

0

J

T .

Aordingly, we would like to de�ne

^

M

J

as

^

M

0

J

^

T , where

^

M

0

J

=  (M

0

J

). For

this de�nition to make sense, we need to show that

^

T normalizes

^

M

0

J

. Assume

�rst that q > 2. SineM

0

i

is normal inM

i

and sine T � M

i

, we have that T

normalizes allM

i

and therefore T normalizes every L

i

= \

j2Infig

M

0

j

. Observe

that T

j

� L

j

and L

i

; L

j

� M

0

Infi;jg

= hL

i

; L

j

i. Sine  is an isomorphism

from A

0

(s)

to

^

A

0

(s)

, the group

^

T

j

normalizes

^

L

i

for all i and j. It is lear

that M

0

J

is generated by L

i

, i 2 I n J . The same must be true for

^

M

0

J

and

^

L

i

's. Therefore every

^

T

j

will normalize every

^

M

0

J

whih means that also

^

T

normalizes

^

M

0

J

. If q = 2 the same result an be ahieved by using M

0

Infi;jg

's

in plae of L

i

's; reall that in this ase we assume s = 4.

Sine

^

T normalizes M

0

J

and sine

^

T \

^

M

0

J

= h

^

T

j

j j 2 I n Ji is isomorphi

(via �) to T \M

0

J

, the map � establishes an isomorphism between

^

M

J

and
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M

J

, and, thus, � extends to an isomorphism

^

A

(s)

=

[

J�I;jInJj=s

^

M

J

�! A

(s)

:

Therefore, the universal ompletions of A

(s)

and A

0

(s)

are isomorphi, and the

laim follows from Theorem 1. 2

Reall from the introdution that � is the pregeometry on the nondegen-

erate proper subspaes of a nondegenerate 2n-dimensional sympleti spae

V with symmetrized inlusion as inidene where the type of a subspae

equals half its dimension.

Lemma 7.3. � is a onneted geometry and the ation of G

�

�

=

Sp(2n; q)

on it is ag-transitive.

Proof. Let U

1

� � � � � U

t

be a maximal ag. If the dimension of U

t

is not

2n � 2, then the dimension of U

?

t

is at least four and we an �nd a proper

nondegenerate 2-dimensional subspae U of U

?

t

. But now U

t

� U is still a

proper nondegenerate subspae of V and U

1

� � � � � U

t

� U

t

� U is a ag

of �, a ontradition. Hene U

t

has dimension 2n � 2. Similarly one an

show that U

i�1

has odimension 2 in U

i

for 2 � i � n� 1. Therefore, � is a

geometry.

Given any maximal ag U

1

� � � � � U

n�1

, we an hoose a hyperboli basis

fe

1

; : : : ; e

n

; f

1

; : : : ; f

n

g of V suh that U

i

= he

1

; : : : ; e

i

; f

1

; : : : ; f

i

i, 1 � i �

n� 1. Flag-transitivity of the group Sp(2n; q) now follows from transitivity

of Sp(2n; q) on the set of hyperboli bases of V .

It remains to show onnetedness of �. Let U and U

0

be two nondegener-

ate 2-dimensional subspaes of V . If U and U

0

are orthogonal then hU; U

0

i is

nondegenerate and so U and U

0

are adjaent in the ollinearity graph of �.

If U and U

0

meet in a 1-dimensional spae then hU; U

0

i is of dimension three

and rank two. Therefore it is ontained in a nondegenerate 4-dimensional

spae. Thus again U and U

0

are adjaent. Finally if U and U

0

are disjoint

and not perpendiular, we an �nd vetors u 2 U and u

0

2 U

0

suh that

hu; u

0

i is nondegenerate. Clearly the latter subspae is adjaent to both U

and U

0

so they are at distane two. We have shown that the ollinearity

graph of � has diameter two. In partiular, it is onneted. 2

Corollary 7.4. � is residually onneted. 2
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Proof of Theorem 3. Suppose that n � 4 and n � 5 if q = 2 or 3. Let

B = [

1�i�n�1

H

i

. Aording to Tits' Lemma, the onlusion of the theorem

is equivalent to U(B)

�

=

G

�

. LetA = [

1�i�n

M

i

be, as before, the amalgam of

maximal parabolis related to the ation of H = G

�

on the ipop geometry

�. Let A

0

= [

1�i�n�1

M

i

. Then A

0

is ontained in B, sine M

i

� H

i

for

1 � i � n� 1. The laim of the theorem will follow from the Main Theorem

(3) and Tits' Lemma, one we show that U(B)

�

=

U(A

0

) and U(A

0

)

�

=

U(A).

We will start with the seond isomorphism. Let

^

H = U(A

0

). Let also  be

the anonial embedding of A

0

into

^

H and de�ne

^

M

i

=  (M

i

), 1 � i � n�1,

and

^

A

0

=  (A

0

). Notie that M

n

\A

0

is the amalgam of maximal parabolis

in M

n

ating on the residue �

fng

of �. By [1℄, �

fng

is simply onneted.

Therefore,  (M

n

\ A

0

) generates in

^

H a subgroup

^

M

n

isomorphi to M

n

.

Clearly,

^

A

0

[

^

M

n

is isomorphi to

^

A and hene U(A

0

)

�

=

U(A).

Turning to the isomorphism U(B)

�

=

U(A

0

), we let

^

H = U(B) and let

 to be the embedding of B into

^

H. We laim that  (A

0

) generates

^

H.

Indeed, sine � is residually onneted (f. the preeding orollary), any two

 (H

i

) generate

^

H. Take i = n � 1 or n � 2. Then H

i

= L � R, where

L

�

=

Sp(2i; q) and R

�

=

Sp(2n � 2i; q). Observe that R � M

j

for 1 � j � i

and that [

1�j�i

(L\M

j

) is the amalgam of maximal parabolis for L ating

on its orresponding ipop geometry (of rank i). Sine that geometry is

onneted,  (H

i

) � h (A

0

)i. Thus,  (A

0

) indeed generates

^

H.

Consequently,

^

H must be a quotient of U(A

0

)

�

=

U(A)

�

=

H. Sine also,

H is isomorphi to a quotient of

^

H, we �nally obtain U(B)

�

=

H

�

=

U(A

0

). 2

Proof of Theorem 4. Let s = 2 if q � 4 and s = 3 if q = 2 or 3.

Let B

(s)

be the subamalgam of B (see the proof of Theorem 3) onsisting

of all rank s parabolis. As in the proof of Theorem 1, we an show that

U(B

(s)

)

�

=

H = G

�

. (Like before, this also implies 2-simple onnetedness,

respetively 3-simple onnetedness of �, as laimed after Theorem 3 in the

introdution.) Sine the union of any three (four, if q = 2 or 3) H

i

ontains

B

(s)

and sine H

i

\ B

(s)

generates H

i

for all i, we are done. 2

Finally, the laim after Theorem 4 an be proven as follows. Let H

J

=

\

i2J

H

i

. By Theorem 4, the amalgam of rank three parabolis (i.e., the

amalgam of all subgroups H

J

with jI n J j = 3) has G

�

as its universal

ompletion. The only rank 3 paraboli that annot be found inside the

amalgam H

1

[H

i

[H

n�1

is H

Inf1;i;n�1g

. Sine n � 5, i 6= 2 or i 6= n� 2. In

the �rst ase H

Inf1;i;n�1g

is isomorphi to H

Inf1g

�H

Infi;n�1g

. In the seond
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ase it is isomorphi to H

Inf1;ig

�H

Infn�1g

. Let us assume we are in the �rst

ase. By onnetivity (see Lemma 7.3), the rank two paraboli H

Infi;n�1g

is

generated by the two minimal parabolis H

Infig

and H

Infn�1g

. It remains to

notie that both H

Inf1g

and H

Infig

are ontained in H

n�1

, while both H

Inf1g

and H

Infn�1g

are ontained in H

i

. So H

Inf1;i;n�1g

does not ontain any new

relations.

Referenes

[1℄ C. D. Bennett and S. Shpetorov, A new proof of Phan's theorem,

preprint.

[2℄ B.N. Cooperstein, Minimal degree for a permutation representation of

a lassial group, Israel J. of Math. 30 (1978), 213 { 235.

[3℄ B. M�uhlherr, On the simple onnetedness of a hamber system assoi-

ated to a twin buiding, preprint.

[4℄ K. W. Phan, On groups generated by three-dimensional speial unitary

groups, I. J. Austral. Math. So. Ser. A 23 (1977), no. 1, 67{77.

[5℄ K. W. Phan, On groups generated by three-dimensional speial unitary

groups. II, J. Austral. Math. So. Ser. A 23 (1977), no. 2, 129{146.

[6℄ J.-P. Serre, Arbres, amalgames, SL

2

, Ast�erisque 46, So. Math. Frane,

Paris 1977

[7℄ J. Tits, Ensembles Ordonn�es, immeubles et sommes amalgam�ees, Bull.

So. Math. Belg. S�er. A 38 (1986), 367{387.

Address of the authors:

Ralf Gramlih

TU Darmstadt

Fahbereih Mathematik / AG 5

Shlo�gartenstra�e 7

64289 Darmstadt

Germany

email: gramlih�mathematik.tu-darmstadt.de



REFERENCES 35

Corneliu Ho�man, Sergey Shpetorov

Bowling Green State University

Bowling Green, OH 43403

USA

email:

hoffman�bgnet.bgsu.edu

sergey�bgnet.bgsu.edu


