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1 Introdu
tion

In 1977 Kok-Wee Phan published a theorem (see [4℄) on generation of the

spe
ial unitary group SU(n+ 1; q

2

) by a system of its subgroups isomorphi


to SU(3; q

2

). This theorem is similar in spirit to the famous Curtis-Tits

theorem. In fa
t, both the Curtis-Tits theorem and Phan's theorem were used

as prin
ipal identi�
ation tools in the 
lassi�
ation of �nite simple groups.

The proof of Phan's theorem given in his 1977 paper is somewhat in
om-

plete. This motivated Bennett and Shpe
torov [1℄ to revise Phan's paper and

provide a new and 
omplete proof of his theorem. They used an approa
h

based on the 
on
epts of diagram geometries and amalgams of groups. It

turned out that Phan's 
on�guration arises as the amalgam of rank two

paraboli
s in the 
ag-transitive a
tion of SU(n + 1; q

2

) on the geometry

of nondegenerate subspa
es of the underlying unitary spa
e. This point of

view leads to a twofold interpretation of Phan's theorem: its 
omplete proof

must in
lude (1) a 
lassi�
ation of related amalgams; and (2) a veri�
ation

that|apart from some small ex
eptional 
ases|the above geometry is sim-

ply 
onne
ted. These two parts are tied together by a lemma due to Tits,

that implies that if a group G a
ts 
ag-transitively on a simply 
onne
ted

�
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geometry then the 
orresponding amalgam of maximal paraboli
s provides a

presentation for G, see Proposition 7.1.

The Curtis-Tits theorem 
an also be restated in similar geometri
 terms.

Let G be a Chevalley group. Then G a
ts on a spheri
al building B and also

on the 
orresponding twin building B = (B

+

; B

�

; d

�

). (Here B

+

�

=

B

�

=

B

�

and d

�

is a 
odistan
e between B

+

and B

�

, taking values in the Weyl group

W of B.) Now one 
an form the so-
alled opposites geometry �

op

of B. As

a 
hamber system, �

op


an be des
ribed as follows: its 
hambers are all the

pairs (C

+

; C

�

) su
h that C

+

2 B

+

, C

�

2 B

�

and d

�

(C

+

; C

�

) = 1

W

. It turns

out that the Curtis-Tits theorem is equivalent to the statement that �

op

is

simply 
onne
ted for every spheri
al building B of rank at least three. This

approa
h allows for a short proof of the Curtis-Tits theorem (
f. [3℄).

Furthermore, the geometri
 interpretation of the Curtis-Tits theorem and

Phan's theorem allows to relate them. Let G = SL(n + 1; q

2

) and let � be

the produ
t of the 
ontragredient automorphism and the involutory �eld

automorphism. Then � 
an be 
onsidered as an \automorphism" of the twin

building B 
orresponding to G. Unlike the ordinary automorphisms, � will

inter
hange (rather than stabilize) B

+

and B

�

, while preserving distan
e and


odistan
e between 
hambers. Let G

�

= C

G

(�) and

�

�

= f(C

+

; C

�

) 2 �

op

j C

�

+

= C

�

g:

Noti
e that � is an involution and hen
e also C

�

�

= C

+

; so, in a sense, �

�


onsists of all 
hambers of �

op

that are stabilized (in fa
t, 
ipped) by �. It

turns out that G

�

�

=

SU(n + 1; q

2

) a
ts 
ag- (
hamber-) transitively on �

�

and �

�

is exa
tly the geometry used in [1℄ to re-prove Phan's theorem.

Clearly, this 
onstru
tion 
an be generalized to other types of spheri
al

twin buildings B and \
ips" �. The 
hamber system �

�

asso
iated with B

and �, will be refered to as the 
ip
op geometry asso
iated with B and �.

(Noti
e that it is un
lear in general whether �

�

is a geometry; however, it

is true for all examples known to us.) The \
ip
op" 
onstru
tion be
omes

a sour
e of Phan-type theorems. In parti
ular, we 
onje
ture that Phan's

results on diagrams D

n

and E

n

from his se
ond paper [5℄ 
an be interpreted

in this way. It is an interesting open problem to try to determine a 
omplete

list of pairs (B; �) for whi
h �

�

is non-empty.

In this paper we take up the 
ase where B is the twin building for the

group Sp(2n; q

2

) and � is a parti
ular 
ip as de�ned in Se
tion 3.
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Main Theorem.

The following hold.

(1) �

�

is a rank n geometry admitting a 
ag-transitive group of automor-

phisms G

�

�

=

Sp(2n; q).

(2) �

�

is 
onne
ted unless n = 2 and q = 2; it is residually 
onne
ted if

q > 2.

(3) �

�

is simply 
onne
ted if n � 5, or n = 4 and q � 3, or n = 3 and

q � 8.

In parti
ular, �

�

is 2-simply 
onne
ted if q � 8; 3-simply 
onne
ted if

q � 3; and 4-simply 
onne
ted if q = 2 (
f. Se
tion 7 and [1℄).

The present paper is organized as follows. Se
tion 2 provides several

important group-theoreti
 
orollaries of the Main Theorem. In fa
t, those


orollaries were our motivation to prove the Main Theorem. In Se
tion 3 we

introdu
e and study a 
lass of 
ips � on a 2n-dimensional symple
ti
 spa
e

V over F

q

2

. In se
tion 4 we dis
uss �

�

; we establish that it is a 
ag-transitive

geometry and then study its 
onne
tivity properties. In Se
tions 5 and 6 we

prove that �

�

is simply 
onne
ted in all but few 
ases. Finally, in Se
tion 7

we derive group-theoreti
 
onsequen
es of the simple 
onne
tedness of �

�

.

Remark.

1. Although we only 
onsider �nite �elds, we would expe
t that in�nite-

�eld versions of our results hold as well. To be pre
ise, our 
onstru
tions

in Se
tion 3 are 
ompletely independent of the �eld. However, our

strategy of proof heavily relies on Lemma 4.3 whi
h only works for

�nite �elds. The 
ru
ial point of proving in�nite-�eld versions of our

results is therefore to suitably repla
e Lemma 4.3.

2. The ex
eption n = 2, q = 2 in part (2) of the Main Theorem is a true

ex
eption, see Lemma 4.6. The ex
eption n = 3, q = 2 in part (3) of

the Main Theorem is a true ex
eption as well, see the dis
ussion after

Theorem 6.8. It is 
urrently unknown to us whether this is true for the

other ex
eptions of part (3) as well.

3. The 
ase n = 3, q = 2 shows that any proof of our results has to 
ontain

a 
ounting argument of some kind. Requiring that the lines of � be

thi
k might be worth trying.
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2 Appli
ation to group theory

The Main Theorem has some group theoreti
 impli
ations along the lines of

Phan's theorem. Let F be a 
hamber (maximal 
ag) of �

�

. For 2 � s � n�1,

let A

(s)

be the amalgam of all rank s paraboli
s, i.e., stabilizers in G

�

of

sub
ags of F of 
orank s.

Theorem 1. The following hold.

(1) If q � 8 and n � 3 then G

�

is the universal 
ompletion of A

(2)

.

(2) If 3 � q � 7 and n � 4 then G

�

is the universal 
ompletion of A

(3)

.

(3) If q = 2 and n � 5 then G

�

is the universal 
ompletion of A

(4)

.

The maximal paraboli
s M

i

with respe
t to F are semisimple subgroups

of G

�

�

=

Sp(2n; q) of the form GU(i; q

2

) � Sp(2n � 2i; q), i = 1; : : : ; n.

Ea
hM

i

stabilizes a 2i-dimensional nondegenerate subspa
e U

i

of the natural

symple
ti
 module U of G

�

. It indu
es GU(i; q

2

) on U

i

and Sp(2n � 2i; q)

on U

?

i

. The interse
tion of all M

i

(also known as the Borel subgroup arising

from the a
tion of G

�

on �

�

) is a maximal torus T of G

�

of order (q + 1)

n

.

Let M

0

i

be the subgroup SU(i; q

2

) � Sp(2n � 2i; q) of M

i

. For an arbitrary

paraboli
 M

J

= \

i2J

M

i

de�ne M

0

J

= \

i2J

M

0

i

. Here J is a subset of the

type set I = f1; : : : ; ng of �

�

. It 
an be shown that M

J

=M

0

J

T .

In 
ase of a minimal paraboli
 M

Infig

, we have that L

i

:= M

0

Infig

�

=

SL(2; q). In fa
t, if 1 � i � n � 1 then L

i

arises as SU(2; q

2

)

�

=

SL(2; q),

while L

n

arises as Sp(2; q)

�

=

SL(2; q). Noti
e that T

i

= L

i

\ T is a torus in

L

i

of size q + 1. Noti
e also that the subgroups T

i

generate T .

If q 6= 2 then hL

i

; L

j

i =M

0

Infi;jg

. In parti
ular, the subgroups L

i

have the

following properties:

(1) L

i

�

=

SU(2; q

2

), if i = 1; : : : ; n� 1; L

n

�

=

Sp(2; q);

(2) hL

i

; L

j

i

�

=

8

<

:

L

i

� L

j

; if ji� jj > 1;

SU(3; q

2

); if ji� jj = 1 and fi; jg 6= fn� 1; ng;

Sp(4; q); if fi; jg = fn� 1; ng.

These properties are similar to Phan's original des
ription of his 
on�gu-

rations.

De�ne A

0

(s)

to be the amalgam formed by the subgroups M

0

J

for all

paraboli
s M

J

of rank s. The following is a \stripped-of-T" (Phan-type)

version of Theorem 1.
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Theorem 2. The following hold.

(1) If q � 8 and n � 3 then G

�

is the universal 
ompletion of A

0

(2)

.

(2) If 3 � q � 7 and n � 4 then G

�

is the universal 
ompletion of A

0

(3)

.

(3) If q = 2 and n � 5 then G

�

is the universal 
ompletion of A

0

(4)

.

Note that M

i

, i 6= n, is not a maximal semisimple subgroup of G

�

.

Namely, M

i

is 
ontained in the full stabilizer H

i

of the de
omposition U =

U

i

� U

?

i

. The subgroup H

i

is isomorphi
 to Sp(2i; q) � Sp(2n � 2i; q). It

is a maximal paraboli
 with respe
t to the a
tion of G

�

on the rank n � 1

pregeometry � of all proper nondegenerate subspa
es of U . It 
an be shown

that if n � 3 then � is a residually 
onne
ted geometry on whi
h G

�

a
ts


ag-transitively. Furthermore, fU

i

j 1 � i � n � 1g is a maximal 
ag of �,

and H

i

's are the 
orresponding maximal paraboli
s.

The following results will be derived from Theorem 1 and the results from

[1℄.

Theorem 3. Let n � 4. Then � is simply 
onne
ted provided that (n; q) 62

f(4; 2); (4; 3)g.

Indu
tively, � is 2-simply 
onne
ted if q � 4 and 3-simply 
onne
ted if

q = 2 or 3.

As a 
orollary, we prove the following.

Theorem 4. If q � 4 then the amalgam of any three subgroups H

i

has G

�

as

its universal 
ompletion. If q = 2 or 3 then the same holds for the amalgam

of any four subgroups H

i

.

Noti
e that if n � 5 and q = 2 or 3 then G

�


an still be re
overed

from some triples of subgroups H

i

. Namely, among others, every amalgam

H

1

[H

i

[H

n�1

, 1 < i < n�1, has G

�

as its universal 
ompletion, see Se
tion

7.

3 Flips and forms

Let V be a 2n-dimensional nondegenerate symple
ti
 spa
e over F

q

2

and

let (�; �) be the 
orresponding alternating bilinear form. Let the bar denote

the involutive automorphism of F

q

2

. In this se
tion we study semilinear

transformations � of V satisfying
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(T1) (�v)

�

=

�

�v

�

;

(T2) (u

�

; v

�

) = (u; v); and

(T3) �

2

= �Id.

We will 
all su
h a � a 
ip. An example of a 
ip 
an be 
onstru
ted as follows.

Choose a basis B = fe

1

; : : : ; e

n

; f

1

; : : : ; f

n

g in V su
h that, for 1 � i; j � n,

we have that (e

i

; e

j

) = (f

i

; f

j

) = 0 and (e

i

; f

j

) = Æ

ij

. This 
orresponds to the

Gram matrix

A =

�

0 I

�I 0

�

:

Here I is the identity matrix of size n� n, whereas 0 stands for the all-zero

matrix of the same size. (A basis like that is 
alled a hyperboli
 basis.) Let �

be the linear transformation of V whose matrix with respe
t to the basis B


oin
ides with A and let  be the semilinear transformation of V that applies

the bar automorphism to the B-
oordinates of every ve
tor. If �

0

= � Æ  ,

then for a ve
tor

u =

n

X

i=1

x

i

e

i

+

n

X

i=1

y

i

f

i

we 
ompute that

u

�

0

= �

n

X

i=1

�y

i

e

i

+

n

X

i=1

�x

i

f

i

:

One easily veri�es that (T1) and (T3) are satis�ed for �

0

. To 
he
k (T2),


onsider

v =

n

X

i=1

x

0

i

e

i

+

n

X

i=1

y

0

i

f

i

:

Then

(u

�

0

; v

�

0

) =

n

X

i=1

(��y

i

)�x

0

i

� �x

i

(��y

0

i

) = (u; v);

yielding (T2). Thus, �

0

is a 
ip. Noti
e that � = �

0


an be 
hara
terized as

the unique semilinear transformation su
h that (T1) holds and

e

�

i

= f

i

; f

�

i

= �e

i

; for 1 � i � n.

Whenever these latter 
onditions are satis�ed for a 
ip � and a hyperboli


basis B = fe

1

; : : : ; f

n

g, we will say that B is a 
anoni
al basis for �.
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Let G

�

=

Sp(2n; q

2

) be the group of all linear transformations of V pre-

serving the form (�; �). One of the prin
ipal results of this se
tion is the

following.

Proposition 3.1. Every 
ip admits a 
anoni
al basis.

In other words, every 
ip � is 
onjugate to �

0

by an element of G.

We start by dis
ussing the general properties of 
ips. Let � be a 
ip.

De�ne

((x; y)) = (x; y

�

):

Lemma 3.2. The form ((�; �)) is a nondegenerate Hermitian form. Further-

more, ((u

�

; v

�

)) = ((u; v)) for u; v 2 V .

Proof. Clearly, ((�; �)) is a sesquilinear form. Also, ((v; u)) = (v; u

�

) =

�(u

�

; v) = �(u

�

2

; v

�

) = �(�u; v

�

) = (u; v

�

) = ((u; v)). Thus, ((�; �)) is

Hermitian. If u is in the radi
al of ((�; �)) then for any v 2 V , 0 = ((u; v

�

)) =

((u; v

�

2

)) = �(u; v). Therefore, u = 0, as (�; �) is nondegenerate. Finally,

((u

�

; v

�

)) = (u

�

;�v) = (v; u

�

) = ((v; u)) = ((u; v)). 2

In what follows we will work with both (�; �) and ((�; �)). This 
alls for two

di�erent perpendi
ularity symbols. We will use ? for the form (�; �), while

?? will be used for ((�; �)).

Proof of Proposition 3.1. Let � be a 
ip. Pi
k a ve
tor u 2 V su
h that

((u; u)) = 1. Su
h a ve
tor exists sin
e ((�; �)) is nondegenerate by Lemma

3.2. Set e

n

= u and f

n

= u

�

. Sin
e (�; �) is an alternating form we have

(e

n

; e

n

) = (f

n

; f

n

) = 0. Furthermore, (e

n

; f

n

) = ((e

n

; f

�

�1

n

)) = ((e

n

; e

n

)) = 1.

In parti
ular, the subspa
e U = he

n

; f

n

i is nondegenerate with respe
t to

(�; �). Consider now V

0

= U

?

. Noti
e that U is invariant under �. Together

with (T2), this implies that V

0

is also invariant under �. It is easy to see that

the restri
tion of � to V

0

is a 
ip of V

0

. By indu
tion, there exists a hyperboli


basis e

1

; : : : ; e

n�1

; f

1

; : : : ; f

n�1

in V

0

, su
h that e

�

i

= f

i

for 1 � i � n � 1.

(Sin
e �

2

= �Id, this automati
ally implies f

�

i

= �e

i

.)

Clearly, fe

1

; : : : ; e

n

; f

1

; : : : ; f

n

g is a 
anoni
al basis for �. 2

Next, we dis
uss the behavior of �, (�; �), and ((�; �)) with respe
t to the

subspa
es U � V .

Lemma 3.3. For a subspa
e U � V , we have U

??

= (U

�

)

?

= (U

?

)

�

. Simi-

larly, U

?

= (U

�

)

??

= (U

??

)

�

.
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Proof. The �rst equality in the �rst 
laim immediately follows from the

de�nition of ((�; �)). If u 2 (U

?

)

�

(say, u = (u

0

)

�

for u

0

2 U

?

) and v 2 U

then ((u; v)) = ((u

0

)

�

; v

�

) = (u

0

; v) = 0. The se
ond 
laim follows by an

appli
ation of � to the equalities in the �rst 
laim. 2

Lemma 3.4. The form (�; �) has the same rank on U and U

�

; likewise, it

has the same rank on U

?

and U

??

= (U

?

)

�

. The same statements hold for

((�; �)).

Proof. The �rst 
laim follows from (T2) for (�; �), and from Lemma 3.2 for

((�; �)). The se
ond 
laim follows from the �rst one and Lemma 3.3. 2

If U is �-invariant then we 
an say more. It follows from Lemma 3.3 that

U

?

= U

??

. In other words, for a �-invariant subspa
e U , the orthogonal


omplement (and hen
e also the radi
al) of U is the same with respe
t to

(�; �) and ((�; �)). It also follows from Lemma 3.3 that both the orthogonal


omplement and the radi
al of U are �-invariant.

It was noti
ed in the proof of Proposition 3.1 that the properties (T1){

(T3) are inherited by the restri
tions of � to all �-invariant subspa
es U � V .

If U is nondegenerate|it does not matter with respe
t to whi
h form|then

the restri
tion of � to U is a 
ip of U . We should now dis
uss what happens

when U has a nontrivial radi
al. First of all, by the above 
omment, the

radi
al of U is �-invariant.

Lemma 3.5. If U is �-invariant then the radi
al of U has a �-invariant


omplement in U .

Proof. The proof is analogous to that of Proposition 3.1. If U is totally

singular then there is nothing to prove. Otherwise, 
hoose u 2 U su
h that

((u; u)) = 1. Then W = hu; u

�

i is a �-invariant nondegenerate subspa
e.

Hen
e U = (U \W

?

)�W and the radi
al of U 
oin
ides with the radi
al of

U

0

= U \W

?

. Clearly, U

0

is �-invariant, and so indu
tion applies. 2

Noti
e that the �-invariant 
omplement in the above lemma is automat-

i
ally nondegenerate.

Next, let us study the \eigenspa
es" of � on V . For � 2 F

q

2

, de�ne

V

�

= fu 2 V j u

�

= �ug. Note that V

�

is not a true eigenspa
e, be
ause � is

not linear.

Lemma 3.6. The following hold.
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(1) For 0 6= � 2 F

q

2

, we have �V

�

= V

�

0

, where �

0

=

��

�

�; in parti
ular, V

�

is an F

q

-subspa
e of V .

(2) V

�

6= 0 if and only if �

�

� = �1; furthermore, if V

�

6= 0 then V

�


ontains

a basis of V .

Proof. Suppose u 2 V

�

. Then (�u)

�

= ��u

�

= ���u =

��

�

�(�u). This proves

(1). Also, �u = u

�

2

=

�

��u. Thus, if u 6= 0 then �

�

� = �1. This proves

the `only if' part of (2). To prove the `if' part, 
hoose a 
anoni
al basis

fe

1

; : : : ; f

n

g for �. Fix a � 2 F

q

2

su
h that �

�

� = �1. De�ne u

i

= e

i

�

�

�f

i

and v

i

=

�

�e

i

+ f

i

for 1 � i � n. A simple 
he
k shows that u

i

and v

i

are

in V

�

. This shows that V

�

6= 0. Furthermore, u

i

and v

i

are not proportional

unless

�

� = �, that is, � 2 F

q

. Thus, if � 62 F

q

then fu

1

; : : : ; u

n

; v

1

; : : : ; v

n

g

is a basis of V . If � 2 F

q

then 
onsider �

0

=

��

�

�, where � is 
hosen so that

��

�

62 F

q

. By (1), V

�

0

= �V

�

. Also, sin
e �

0

62 F

q

, we have that V

�

0


ontains a

basis of V , and hen
e so does V

�

. 2

Consider an F

q

-linear map � : v 7! v�

�

�v

�

, where � 2 F

q

2

and �

�

� = �1.

It 
an be 
he
ked that � maps V onto V

�

, and its kernel is V

�

�

. The above

ve
tors u

i

and v

i

are obtained by applying � to the ve
tors in the 
anoni
al

basis fe

1

; : : : ; f

n

g.

Now �x a � 2 F

q

2

su
h that �

�

� = �1. Also, �x a � 2 F

q

2

with �� = ��.

Lemma 3.7. The restri
tion of ��(�; �) to V

�

is a nondegenerate alternating

F

q

-bilinear form.

Proof. Clearly, the form ��(�; �) is F

q

-bilinear and alternating. Sin
e V

�


ontains a basis of V by Lemma 3.6 (2), the form is nondegenerate. It remains

to see that it takes values in F

q

. However, if u; v 2 V

�

, then ��(u; v) =

��

�

�(u

�

; v

�

) = ��

�

��

2

(u; v) = ��(u; v). 2

Observe that the 
onjugation by � is an automorphism of G. Let G

�

be

the 
entralizer of � in G. The above setup gives us means to identify G

�

. Let

H

�

=

Sp(2n; q) be the group of all linear transformations of V

�

preserving the

(restri
tion of the) form ��(�; �). Sin
e V

�


ontains a basis of V , we 
an use

F

q

2

-linearity to extend the a
tion of the elements of H to the entire V . This

allows us to identify H with a subgroup of G. Clearly, sin
e h 2 H preserves

��(�; �), it must also preserve (�; �).

Proposition 3.8. G

�

= H.
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Proof. Choose a basis fw

1

; : : : ; w

2n

g in V

�

. Then this set is also a basis of V .

Let h 2 H. If u =

P

2n

i=1

x

i

w

i

2 V then u

�h

= (

P

2n

i=1

�x

i

�w

i

)

h

= �

P

2n

i=1

�x

i

w

h

i

.

On the other hand, u

h�

= (

P

2n

i=1

x

i

w

h

i

)

�

=

P

2n

i=1

�x

i

�w

h

i

. Therefore, H � G

�

.

Now take g 2 G

�

. If u 2 V

�

then (u

g

)

�

= (u

�

)

g

= (�u)

g

= �u

g

. This

proves that g leaves V

�

invariant. It remains to see that g preserves ��(�; �).

However, this is 
lear, be
ause g is F

q

2

-linear and it preserves (�; �). 2

4 The 
ip
op geometry �

We will be using the notation from the previous se
tion. In parti
ular, V is

a nondegenerate symple
ti
 F

q

2

-spa
e of dimension 2n with a form (�; �), � a


ip and ((�; �)) is the 
orresponding Hermitian form. Also, G

�

=

Sp(2n; q

2

)

is the group of linear transformations preserving (�; �) and G

�

= C

G

(�).

Throughout this se
tion, we assume n � 2. Let B be the building geometry

asso
iated with G. Its elements are all the (�; �)-totally singular subspa
es of

V .

Two elements U and U

0

of B are opposite whenever V = U

0

� U

?

, i.e.,

U , U

0

have the same dimension and U

0

\ U

?

= 0. Two 
hambers (maximal


ags) F and F

0

are opposite whenever for ea
h subspa
e U 2 F there is a

U

0

2 F

0

su
h that U and U

0

are opposite. Using this, it 
an be shown that the

opposites geometry �

op

related to B is indeed a geometry and its elements

are all pairs (U; U

0

) are opposite totally singular subspa
es of V .

Turning to �

�

, let F be a maximal 
ag of B su
h that F and F

�

are

opposite. Then, for every U 2 F , the spa
e U

�

must be the element of F

�

that is opposite U . Indeed, this follows from the fa
t that opposite elements

have the same dimension. Thus, (F; F

�

) 2 �

�

if and only if U

�

is opposite

U for every element U 2 F (that is, (U; U

�

) 2 �

op

).

Our �rst goal is to show that �

�

is a geometry, that is to say, its 
hambers

arise as maximal 
ags of a suitable geometry. The natural 
andidate for this

geometry is the following subset of �

op

:

f(U; U

0

) 2 �

op

j U

0

= U

�

g:

(For 
onvenien
e, we will refer to this set as �

�

, anti
ipating that 
orre
tness

of this will be shown later.)

It suÆ
es to show that �

�

is a full rank (that is, rank n) subgeometry

of �

op

. In order to avoid 
umbersome notation, let us proje
t every pair
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(U; U

0

) 2 �

�

to its �rst 
oordinate U . Sin
e U

0

= U

�

, this establishes a

bije
tion (in fa
t, an isomorphism of pregeometries) between �

�

and the

following subset of B:

� = fU 2 B j U

�

is opposite Ug:

The de�nition of � 
an be ni
ely restated in terms of the forms (�; �) and

((�; �)).

Proposition 4.1. The elements of � are all subspa
es U � V whi
h are

totally isotropi
 with respe
t to (�; �) and nondegenerate with respe
t to ((�; �)).

Proof. By Lemma 3.3, U

??

= (U

�

)

?

. Hen
e U and U

�

are opposite if and

only if U \ U

??

= 0. 2

As in the introdu
tion, we use f1; : : : ; ng as the type set of B. In par-

ti
ular, the type fun
tion is given by the linear (rather than proje
tive) di-

mension. We will use the 
ustomary geometri
 terminology. In parti
ular,

points, lines and planes are elements of type 1, 2 and 3, respe
tively.

We stress again that we will mostly work with �, using the fa
t that �

and �

�

are isomorphi
. We also noti
e that the isomorphism between � and

�

�


ommutes with the a
tion of H = G

�

.

Proposition 4.2. The pregeometry � is a geometry. Moreover, H a
ts 
ag-

transitively on �.

Proof. Let V

1

� V

2

� � � � � V

k

be a maximal 
ag. Let B = fe

1

; : : : ; e

t

g

be an orthonormal basis of V

k

with respe
t to ((�; �)). (This exists sin
e V

k

is

nondegenerate with respe
t to ((�; �)).) Then B [ B

�

forms a 
anoni
al basis

of V

k

�V

�

k

. If V

k

is not a maximal totally isotropi
 subspa
e of V with respe
t

to (�; �), there exists a nontrivial u 2 (V

k

� V

�

k

)

?

= (V

k

� V

�

k

)

??

su
h that

((u; u)) = 1. Then hV

k

; ui is totally isotropi
 for (�; �) and nondegenerate with

respe
t to ((�; �)), 
ontradi
ting maximality of the 
ag. Hen
e we 
an assume

V

k

is a maximal totally isotropi
 subspa
e with respe
t to (�; �). Indu
tion

shows that V

i�1

is a 
odimension 1 subspa
e in V

i

for 2 � i � k, proving that

the maximal 
ag is a 
hamber.

Let V

1

� V

2

� � � � � V

n

and V

0

1

� V

0

2

� � � � � V

0

n

be two 
hambers.

Choose bases B = fe

1

; : : : ; e

n

g, B

0

= fe

0

1

; : : : ; e

0

n

g for V

n

, respe
tively V

0

n

su
h that they are orthonormal with respe
t to ((�; �)) and V

i

= he

1

; : : : ; e

i

i,

V

0

i

= he

0

1

; : : : ; e

0

i

i. De�ne g 2 G su
h that e

g

i

= e

0

i

and (e

�

i

)

g

= (e

0

i

)

�

. Su
h a g
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obviously exists, sin
e G

�

=

Sp(2n; q

2

) a
ts 
ag-transitively on the symple
ti


polar spa
e (V; (�; �)). It is also 
lear that g maps one 
hamber onto the other.

Moreover noti
e that � Æ g = g Æ � on the basis B [B

�

. Therefore g 2 G

�

. 2

The following lemma will prove to be very useful throughout the whole

arti
le.

Lemma 4.3. Let P be a point of � and � � P be a 3-dimensional subspa
e

of V of rank at least two with respe
t to ((�; �)) su
h that P is in the radi
al of

� with respe
t to (�; �). Then any 2-dimensional subspa
e of � not 
ontaining

P is in
ident with at least q

2

� q � 1 (respe
tively, q

2

� 2q � 1) points of �


ollinear to P if its rank is one (respe
tively, two) with respe
t to ((�; �)).

Proof. Sin
e P is in the radi
al of � with respe
t to (�; �), all lines passing

through P will be totally isotropi
 with respe
t to (�; �) so we only need to


onsider ((�; �)). Noti
e that if L is a 2-dimensional subspa
e of V that is not

totally isotropi
 with repe
t to ((�; �)) then L 
ontains at least q

2

� q points

of �. (If the rank of L is one then the radi
al is the only nontrivial isotropi


subspa
e of L and if the rank of L is two then L 
ontains q + 1 distin
t

nontrivial isotropi
 subspa
es.)

Consider L

1

= P

??

\ �. Then by the above, there are at least q

2

� q

lines of � through to P that interse
t L

1

in a point of �. If L is any other

not totally isotropi
 2-dimensional subspa
e of � not 
ontaining P , at most

1, respe
tively q + 1 of the these q

2

� q lines will interse
t L in isotropi


subspa
es. Hen
e the lemma follows. 2

A
tually, we also showed the following:

Corollary 4.4. Let P be a point of � and � � P be a 3-dimensional subspa
e

of V of rank at least two with respe
t to ((�; �)). Then any 2-dimensional

subspa
e of � not 
ontaining P is in
ident with at least q

2

�q�1 (respe
tively,

q

2

� 2q � 1) points of � that generate a ((�; �))-nondegenerate two spa
e with

P if its ((�; �))-rank is one (respe
tively, two). 2

We need to prove that the geometry is 
onne
ted. This is equivalent

to proving 
onne
tivity of the point shadow spa
e of � whi
h in turn is

equivalent with 
onne
tivity of the 
ollinearity graph of �.

Lemma 4.5. Suppose n � 3. Then if (n; q) 6= (3; 2) then the 
ollinear-

ity graph of the geometry � has diameter two. If (n; q) = (3; 2) then the


ollinearity graph of � has diameter three. In parti
ular, � is 
onne
ted in

all 
ases.
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Proof. If (n; q) = (3; 2) then the 
laim 
an be 
he
ked 
omputationally

(say, in GAP). So suppose (n; q) 6= (3; 2). Let P

1

; P

2

be two points in the

geometry. Consider W

i

:= P

?

i

\ P

??

i

, i 2 f1; 2g. Then dimW

i

= 2n � 2

so dimW

1

\ W

2

� 2n � 4. If 2n � 4 > n � 1 then the spa
e W

1

\ W

2


annot be totally isotropi
 for ((�; �)) (it lies inside the (2n� 1)-dimensional

nondegenerate spa
e P

??

1

). Therefore if n > 3 we 
an �nd a point Q in the

geometry lying in W

1

\W

2

. In this 
ase Q 
onne
ts P

1

and P

2

.

If n = 3, the spa
e U = P

?

1

\P

?

2

\P

??

2

is at least 3-dimensional inside the

4-dimensional spa
e P

?

2

\ P

??

2

, whi
h is nondegenerate with respe
t to both

forms. A
tually, U has rank at least two with respe
t to ((�; �)), be
ause if it

had a 2-dimensional radi
al, this radi
al would be a maximal totally isotropi


subspa
e of P

?

2

\P

??

2

and had to be equal to its own polar in P

?

2

\P

??

2

with

respe
t to ((�; �)). Hen
e we 
an �nd a ((�; �))-nondegenerate 2-dimensional

subspa
e L of U , all points of whi
h a
tually are 
ollinear to P

2

. Applying

Lemma 4.3 to the plane hP

1

; Li, we �nd a 
ommon neighbor of P

1

and P

2

.

2

Lemma 4.6. If n = 2 and q 6= 2, then � is 
onne
ted. If n = 2 and q = 2,

then � is not 
onne
ted.

Proof. Fix a point P of �. Then P is 
ollinear to (q

2

� q)(q

2

� q � 1)

points of � (there are q

2

�q lines through P , ea
h of whi
h 
ontains q

2

�q�1

points of � ex
ept P ). Now let us estimate the number of points at distan
e

two to P . Ea
h point Q at distan
e one to P is in
ident with q

2

� q� 1 lines

that do not 
ontain P . Ea
h of these lines 
ontains q

2

� q � 1 points other

than Q. Moreover, if R is a point at distan
e two from P , then there are at

most q

2


ommon neighbors of P and R (indeed, hP;Ri

?

is a 2-dimensional

spa
e whi
h is not totally isotropi
 with respe
t to ((�; �)), when
e 
ontaining

either q

2

or q

2

� q points of �). Hen
e there are at least

(q

2

�q)(q

2

�q�1)

3

q

2

points

at distan
e two from P .

On the other hand, � 
ontains

q

8

�1

q

2

�1

� (q

2

+1)(q

3

+1) points (the number

of points of the proje
tive spa
e minus the number of points of the unitary

generalized quadrangle).

By Proposition 4.2 and Proposition 3.8, the group G

�

�

=

Sp(4; q) a
ts


ag-transitively on �. In parti
ular, it permutes the 
onne
ted 
omponents

of �. More pre
isely, the number of 
onne
ted 
omponents is equal to the

index of the stabilizer of one 
omponent in G

�

. By [2℄, Table 5.2.A the index

of a maximal subgroup of Sp(4; q) is at least 27, if q > 2. Hen
e, to show
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onne
tivity, it is enough to prove that 1+(q

2

�q)(q

2

�q�1)+

(q

2

�q)(q

2

�q�1)

3

q

2

is greater than

1

27

�

q

8

�1

q

2

�1

� (q

2

+ 1)(q

3

+ 1)

�

, whi
h is true for all q � 3.

To deal with the 
ase n = 2, q = 2, noti
e �rst that in this 
ase two points

P , Q of � are 
ollinear if and only if they are perpendi
ular with respe
t to

both forms. Therefore, for any point P , the set of points 
ollinear to P is


ontained in the nondegenerate (with respe
t to both forms) 2-dimensional

spa
e P

?

\P

??

, whi
h 
ontains pre
isely two points of �. Considering those

two points inside P

?

\ P

??

, we see that their neighbors 
oin
ide (they are

pre
isely the points P and P

�

). Therefore the 
onne
ted 
omponent of the

point P 
onsists of pre
isely four points. On the other hand � 
onsists of

40 =

2

8

�1

2

2

�1

� (2

2

+ 1)(2

3

+ 1) points, so � is not 
onne
ted. 2

We summarize Lemmas 4.5 and 4.6 in the following

Theorem 4.7. Suppose n � 2. Then � is 
onne
ted unless (n; q) = (2; 2).2

Combined with the results of [1℄, this yields

Corollary 4.8. If q 6= 2 then � is residually 
onne
ted. 2

Finally, let us dis
uss the diagram of the geometry �

�

. Noti
e that it

is a linear (string) diagram. Furthermore, it follows from Proposition 4.1

that the residue of an element of maximal type n� 1 is the geometry of all

nondegenerate subspa
es of a nondegenerate n-dimensional unitary spa
e.

The residue of a point is a geometry similar to � but with rank n� 1. This

leads to the diagram

q

2

�q

Æ

U

q

2

�q

Æ

U

q

2

�q

Æ : : :

q

2

�q

Æ

U

q

2

�q

Æ

S

q

2

�q

Æ:

The exa
t meaning of the edges Æ

U

Æ and Æ

S

Æ is as follows. The

�rst one represents the geometry of all 1- and 2-dimensional nondegenerate

subspa
es of a 3-dimensional unitary spa
e. It appears in [1℄. The se
ond

edge represents our 
ip
op geometry in the 
ase of rank two. We note that

both geometries are dis
onne
ted for q = 2 and 
onne
ted for q � 3. See [1℄

for Æ

U

Æ and Lemma 4.6 for Æ

S

Æ.
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5 Simple 
onne
tedness, Part I

In this and the next se
tion we will prove that, apart from a few ex
eptional


ases, the geometry � is simply 
onne
ted. Here we 
olle
t some general

statements and then 
omplete the 
ase n � 4. The next se
tion handles the


ase n = 3, whi
h is somewhat more 
ompli
ated.

Re
all the de�nition of the fundamental group of a 
onne
ted geometry

�. A path of length k in the geometry is a sequen
e of elements x

0

; : : : ; x

k

su
h that x

i

and x

i+1

are in
ident, 0 � i � k�1. We do not allow repetitions;

hen
e x

i

6= x

i+1

. A 
y
le based at an element x is a path in whi
h x

0

= x

k

=

x. Two paths are homotopi
ally equivalent if one 
an be obtained from the

other via the following operations (
alled elementary homotopies): inserting

or deleting a return (i.e., a 
y
le of length 2) or a triangle (i.e., a 
y
le of

length 3). The equivalen
e 
lasses of 
y
les based at an element x form a

group under the operation indu
ed by 
on
atenation of 
y
les. This group is


alled the fundamental group of � and denoted by �

1

(�; x). A geometry is


alled simply 
onne
ted if its fundamental group is trivial.

Noti
e that in order to prove that � is simply 
onne
ted it is enough to

prove that any 
y
le based at x is homotopi
ally equivalent to the 
y
le of

length 0. A 
y
le with this property is 
alled null homotopi
, or homotopi
ally

trivial.

Let us go ba
k to the 
ip
op geometry �. We pi
k the base element x to

be a point of �.

Lemma 5.1. Unless n = 3, q = 2, every 
y
le based at x is homotopi
ally

equivalent to a 
y
le passing only through points and lines.

Proof. We will indu
t on the number of elements of the path that are not

points or lines. If this number is zero there is nothing to prove. Take an

arbitrary 
y
le 
 := xx

1

: : : x

k�1

x. Let x

i

be the �rst element that is not a

point or a line. Clearly i 62 f0; kg. There are two 
ases to 
onsider:

If the type of x

i+1

is bigger than the type of x

i

then x

i�1

and x

i+1

are

in
ident and 
 is homotopi
ally equivalent to the 
y
le xx

1

: : : x

i�1

x

i+1

: : : x.

Suppose the type of x

i+1

is smaller than the type of x

i

. Let y be an

element of type n whi
h is in
ident to x

i

(in parti
ular, take x

i

, if the type

of x

i

is n), then y is in
ident to both x

i�1

and x

i+1

(the type of x

i�1

is


learly smaller than the type of x

i

). Therefore 
 is homotopi
ally equivalent

to the path xx

1

: : : x

i�1

yx

i+1

: : : x. Now pi
k two points z, w su
h that z
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is in
ident to x

i+1

and w is x

i�1

, if x

i�1

is a point, or a point in
ident to

x

i�1

, otherwise. Using Lemma 4.5 and Lemma 4.6 we 
an 
onne
t w and

z with a path ww

1

: : : w

t

z of only points and lines in
ident to y. Then 


is homotopi
ally equivalent to xx

1

: : : x

i�1

w

1

: : : w

t

zx

i+2

: : : x whi
h 
ontains

fewer elements that are not points and lines. 2

We 
an therefore restri
t our attention to the point-line in
iden
e graph

of � and, thus, to the 
ollinearity graph of �.

The �rst step is the analysis of triangles (i.e., 3-
y
les in the 
ollinearity

graph). We will 
all a triangle (P;Q;R) a good triangle if P , Q, and R are

in
ident to a 
ommon plane of the geometry. Conversely, all triangles that

are not good are 
alled bad.

Now we are to prove that all bad triangles are homotopi
ally trivial, i.e.,

they 
an be de
omposed into good triangles or are 
ontained in obje
ts of �

of higher rank.

Lemma 5.2. Let (P;Q;R) be a bad triangle. Then the plane hP;Q;Ri 
on-

tains a 1-dimensional radi
al with respe
t to ((�; �)).

Proof. It is 
lear that the plane � = hP;Q;Ri is totally isotropi
 with

respe
t to (�; �). Sin
e P;Q;R is a bad triangle, � is degenerate with repe
t

to ((�; �)). Also, the rank of � with respe
t to ((�; �)) is at least two (it


ontains the nondegenerate proje
tive line hP;Qi), so the radi
al is obviously

1-dimensional. 2

Lemma 5.3. Every bad triangle (P;Q;R) 
an be de
omposed as a produ
t of

two (bad) triangles in whi
h two of the verti
es are perpendi
ular with respe
t

to ((�; �)).

Proof. If two of P , Q and R are already perpendi
ular with respe
t to

((�; �)), then there is nothing to show. So assume that no two of P , Q and R

are perpendi
ular with respe
t to ((�; �)). Let X be the radi
al of the plane

hP;Q;Ri. Consider the unique proje
tive point S of the line hP;Qi su
h that

R??S. It is suÆ
ient to prove that S is a point of �. Suppose it is not, then

hR; Si = S

??

\ hP;Q;Ri and so it 
ontains X. Sin
e hP;Qi is a line of �, X

is not 
ontained in hP;Qi, yielding that X 6= S. Therefore hR; Si = hX;Si

is a totally isotropi
 spa
e with respe
t to ((�; �)) 
ontaining R, 
ontradi
ting

the fa
t that R is a point of �. Hen
e (P;R; S) and (Q;R; S) are triangles

as required. 2
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Lemma 5.4. Let (P;Q;R) be a bad triangle with P??Q and let X be the

radi
al of the plane hP;Q;Ri. If X

�

= X, then we 
an �nd a 
anoni
al basis

e

1

; : : : ; e

n

; f

1

; : : : ; f

n

of V for � su
h that (P;Q;R) equals (he

1

i; he

2

i; hxe

1

+

ye

2

+ (
e

3

+ f

3

)i) with 
�
 = �1 and xy 6= 0 and x�x + y�y 6= 0.

Proof. Choose a 
anoni
al basis e

1

; : : : ; e

n

; f

1

; : : : ; f

n

of V su
h that P =

he

1

i, Q = he

2

i. Then X 2 U := he

1

; e

2

i

?

\he

1

; e

2

i

??

= he

1

; e

2

; f

1

; f

2

i

??

, whi
h

is a nondegenerate spa
e with respe
t to both forms. Pi
k a; a

0

su
h that

a�a = �1 = a

0

�a

0

and a 6= a

0

. Then the ve
tors e

3

+ af

3

; e

3

+ a

0

f

3

; : : : ; e

n

+

af

n

; e

n

+a

0

f

n

are isotropi
 with respe
t to ((�; �)) and they form a basis of U .

Furthermore, every ve
tor from this basis spans a �-invariant 1-dimensional

subspa
e. The radi
al X 
annot be orthogonal to all of these ve
tors, so

there exists one ve
tor u in this basis su
h that ((u;X)) 6= 0. The spa
e

hu;Xi is nondegenerate and �-invariant so it will 
ontain a ve
tor e su
h

that ((e; e)) = 1 and therefore hu;Xi = he; e

�

i. Chosing a new 
anoni
al

basis of U starting with e we 
an assume that the bad triangle is 
ontained

in the spa
e he

1

; e

2

; e

3

; f

3

i and X = h
e

3

+ f

3

i. The 
onditions on x, y and 


as in the statement of the lemma 
an now be veri�ed. 2

For the rest of this se
tion assume n � 4.

Proposition 5.5. Let (P;Q;R) be a bad triangle. Then the triangle is ho-

motopi
ally trivial.

Proof. By Lemma 5.2, the plane hP;Q;Ri has a 1-dimensional radi
al X

(with respe
t to ((�; �))).

Suppose X = X

�

. By Lemma 5.3 and Lemma 5.4 we 
an assume that our

triangle has the form P = he

1

i, Q = he

2

i, R = hxe

1

+ ye

2

+ (
e

3

+ f

3

)i where


�
 = �1 and x�x + y�y 6= 0. (Here, as usual, e

1

; : : : ; f

n

is a 
anoni
al basis.)

Now one 
an add to P , Q and R the point he

4

i and form a tetrahedron in

whi
h all triangles but the initial one are good.

If X 6= X

�

, then 
onsider the line L = PQ of �. Let V

0

= L

??

\

(L

�

)

??

. Then V

0

is a nondegenerate �-invariant subspa
e of dimension 2n�4.

Moreover, X 2 V

0

. Nondegenera
y of V

0

and the fa
t that X 6= X

�

imply

the existen
e of a ve
tor v 2 V

0

with (v;X) = 0 and ((v;X)) = (v;X

�

) = 1.

Hen
e hX; vi is a line of �, and hP;Q;X; vi is totally isotropi
 with respe
t

to (�; �) and nondegenerate with respe
t to ((�; �)), when
e it is an obje
t of

� 
ontaining the triangle (P;Q;R). 2

The next task is proving that all quadrangles are homotopi
ally trivial.

Re
all that if a subspa
e U is �-invariant then U

?

= U

??

and, in parti
ular,
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U is nondegenerate with respe
t to (�; �) if and only if it is nondegenerate

with respe
t to ((�; �)).

Lemma 5.6. If U is a �-invariant nondegenerate subspa
e of V of dimen-

sion 2k � 4 and P is a point of �, then P is 
ollinear with a point of U or

2k = 4 and q = 2.

Proof. Consider the de
omposition V = U � U

?

. Let P

1

2 U be the

proje
tion of P onto U (with respe
t to this de
omposition). If we �nd a

point Q of � in P

?

1

\ P

??

1

\ U , then we are done. Indeed, Q ? P

1

, Q??P

1

implies Q ? P , Q??P by our 
hoi
e of the proje
tion. In parti
ular this

holds, if k > 2; then 2k�2 > k and P

?

1

\P

??

1

\U 
annot be totally isotropi
.

(Noti
e, that we are also done, if P

1

itself is nonsingular with respe
t to

((�; �)).)

Thus, 
onsider the 
ase k = 2. The spa
e U \ P

?

1

is 3-dimensional and

has rank at least two with respe
t to ((�; �)). Choose a proje
tive line L of

((�; �))-rank two in U \ P

?

1

. Noti
e that P ? L, when
e by Lemma 4.3, the

proje
tive line L 
ontains q

2

� 2q � 1 points of � 
ollinear to P , giving at

least one, if q > 2. 2

A pair P , Q of points of � will a be 
alled solid if the spa
e P

?

\ P

??

\

Q

?

\Q

??

is nondegenerate.

Lemma 5.7. Let A, B be two distin
t points of � with B 62 hA;A

�

i. The

pair A, B is solid if and only if the proje
tion of B onto hA;A

�

i

?

(via the

de
omposition V = hA;A

�

i � hA;A

�

i

?

) is nonsingular.

Proof. Let B

0

= pr

hA;A

�

i

?

(B) be the proje
tion of B onto hA;A

�

i

?

. Noti
e

that B

0

6= 0. We have hA;A

�

; Bi = hA;A

�

; B

0

i whi
h is of rank three with

respe
t to ((�; �)) if and only if B

0

is nonsingular with respe
t to ((�; �)). But

if the rank of this spa
e is three, then the rank of hA;A

�

; B; B

�

i has to be

four, sin
e its radi
al with respe
t to ((�; �)) equals the radi
al with respe
t to

(�; �) and it 
ontains a subspa
e of rank three with respe
t to ((�; �)). (Noti
e

that an alternating form always has even rank.) This settles the `if' part of

the lemma.

Now, suppose B

0

is singular with respe
t to ((�; �)). Then hA;A

�

; B; B

�

i =

hA;A

�

; B

0

; (B

0

)

�

i and B

0

is obviously 
ontained in the radi
al of the latter

spa
e. 2

Lemma 5.8. If n � 5 or n = 4 and q 6= 2, any quadrangle (P;Q;R; S) with

a solid pair P , R is null homotopi
.
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Proof. Assume P , R is a solid pair and let U = P

?

\ P

??

\ R

?

\ R

??

.

Then U is a �-invariant nondegenerate (2n � 4)-dimensional subspa
e and

all points of � in U are 
ollinear to both P and R. By Lemma 5.6, Q and S

are 
ollinear to points in U unless n = 4 and q = 2. Also, be
ause of Lemma

4.5 and Lemma 4.6, the interse
tion of U with the geometry � is 
onne
ted

unless n = 4, q = 2. This �nishes the proof. 2

Proposition 5.9. If n � 5 or n = 4 and q 6= 2, then any quadrangle is

homotopi
ally trivial.

To prove this proposition we will need some fa
ts from linear algebra:

Lemma 5.10. Let n � 2, q � 3 and let W be an F

q

2

-ve
tor spa
e of dimen-

sion n. Suppose f

1

and f

2

are two nontrivial Hermitian forms on W . Then

there exists a ve
tor of W whi
h is nonsingular with respe
t to both f

1

and

f

2

.

Proof. First suppose that f is a Hermitian form on W and L is a 2-

dimensional subspa
e in W that is not totally singular with respe
t to f .

Then if L is nondegenerate with respe
t to f then out of the total number

of q

2

+ 1 1-dimensional subspa
es of L exa
tly q + 1 are singular. Similarly,

if f has rank one on L then L 
ontains exa
tly one singular 1-dimensional

subspa
e.

Now, sin
e f

1

is nontrivial, any f

1

-singular 1-dimensional subspa
e of W

is 
ontained in a 2-dimensional subspa
e L whi
h is not totally isotropi


with respe
t to f

1

. If L is not totally isotropi
 with respe
t to f

2

, then it


ontains at least q

2

+1� q� 1� q� 1 � 2 1-dimensional subspa
es that are

nonsingular with respe
t to both f

1

and f

2

. On the other hand, if any su
h

L is totally isotropi
 with respe
t to f

2

, then every 1-dimensional subspa
e

that is singular with respe
t to f

1

, is also singular with respe
t to f

2

. But

sin
e f

2

is nontrivial on W , there exists a ve
tor that is nonsingular with

respe
t to f

2

, and hen
e with respe
t to f

1

, too. 2

Lemma 5.11. Let n � 3, q � 3 and let W be an F

q

2

-ve
tor spa
e of di-

mension n. Suppose f

1

, f

2

and f

3

are three nontrivial Hermitian forms on

W , and, furthermore, assume that f

1

is nondegenerate. Then there exists a

ve
tor of W whi
h is nonsingular with respe
t to all three forms.

Proof. Sin
e f

1

is nondegenerate and sin
e n � 3, any 1-dimensional

subspa
e singular with respe
t to f

1

is 
ontained in a 2-dimensional subspa
e
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L of f

1

-rank one. Noti
e that L 
ontains exa
tly q

2

1-dimensional subspa
es

that are nonsingular with respe
t to f

1

. If L is not totally isotropi
 with

respe
t to both f

2

and f

3

, then there are at least q

2

� q � 1 � q � 1 � 1

1-dimensional subspa
es that are nonsingular with respe
t to all three forms.

Therefore, suppose that any su
h subspa
e L is totally singular with

respe
t to either f

2

or f

3

. This means that every f

1

-singular 1-dimensional

subspa
e is singular with respe
t to f

2

or f

3

. However, by Lemma 5.10,

there is a ve
tor w 2 W that is nonsingular with respe
t to both f

2

and f

3

.

Consequently, w is also nonsingular with respe
t to f

1

. 2

Proof of Proposition 5.9. Let (A;B;C;D) be a quadrangle. In view of

Lemma 5.8, we may assume that both pairs A, C and B, D are not solid.

Assume �rst that q 6= 2. The spa
e U = hA;B;A

�

; B

�

i

?

is nondegenerate

of dimension 2n � 4. We want to �nd a point X of � in U that forms a

solid pair with both C and D. Besides ((�; �)), 
onsider two more forms

f

2

(u; v) = ((u

0

; v

0

)) and f

3

(u; v) = ((u

00

; v

00

)) where u

0

, v

0

are the proje
tions

of u and v to hC;C

�

i

?

and u

00

, v

00

are the proje
tions of u and v to hD;D

�

i

?

as in Lemma 5.7. We remark that both f

1

and f

2

are nontrivial. For example,

for f

1

, it suÆ
es to see that the image of the proje
tion of U to hC;C

�

i

?


annot be totally isotropi
. Let pr

1

and pr

2

be the proje
tions to hC;C

�

i and

hC;C

�

i

?

, respe
tively. If pr

2

(U) is totally isotropi
 then pr

1

is isometri
 on

U . In parti
ular, U \ hC;C

�

i

?

is in the radi
al of U , a 
ontradi
tion. Thus

f

1

and f

2

are nontrivial.

By Lemma 5.11, with f

1

= ((�; �)), there exists a point X of � su
h that

its proje
tions onto both hC;C

�

i

?

and hD;D

�

i

?

are nonsingular. Hen
e,

by Lemma 5.7, the point X forms a solid pair with both C and D, as we

wanted. Now, let W = hC;D;C

�

; D

�

i

?

, whi
h is also of dimension 2n � 4

and nondegenerate. By Lemma 5.6, W 
ontains a point Y of � 
ollinear to

X.

We have a

omplished the following: the quadrangle (A;B;C;D) has

been de
omposed into the triangles (A;B;X), (C;D; Y ) and the quadrangles

(C;B;X; Y ), (A;D; Y;X), both of whi
h 
ontain a solid pair.

It remains to deal with q = 2, in whi
h 
ase n � 5. Re
all that for

q = 2 two points are 
ollinear if and only if they are perpendi
ular with

respe
t to both forms. In parti
ular, B and D are in U = hA;A

�

; C; C

�

i

?

.

Sin
e A, C is not a solid pair, W = hA;A

�

; C; C

�

i is singular and hen
e

it has rank two with respe
t to either form. If dimW = 3 then U has di-

mension at least seven and rank at least six. It now follows from Lemma
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4.7 that the set of points of � 
ontained in U is 
onne
ted with respe
t to


ollinearity. Hen
e (A;B;C;D) 
an be de
omposed into triangles. Hen
e,

let us assume that W has dimension four and rank two. Then U has dimen-

sion six and rank four. By Lemma 3.5, U 
ontains a �-invariant subspa
e

U

0


omplementing the radi
al of U . Choose points B

0

2 U

0

\ (hB;B

�

i

?

)

and D

0

2 U

0

\ (hD;D

�

i

?

). Then (A;B;C;D) de
omposes as a produ
t of

(A;B

0

; C;D

0

) and four triangles. Sin
e B

0

and D

0

are 
ontained in U

0

, they

either form a solid pair or hB

0

; (B

0

)

�

; D

0

; (D

0

)

�

i is 3-dimensional of rank two.

In either 
ase, (A;B

0

; C;D

0

) is known to be null-homotopi
. 2

Finally, the de
omposition of pentagons is now easy:

Proposition 5.12. If n � 5 or n = 4 and q 6= 2, then any pentagon is

homotopi
ally trivial.

Proof. Let (A;B;C;D;E) be a pentagon. Consider U := hA;B;A

�

; B

�

i

?

of dimension 2n� 4, whi
h is nondegenerate with respe
t to both forms. By

Lemma 5.6, the point D is 
ollinear to a point F of � inside U , de
omposing

the pentagon into triangles and quadrangles. 2

We 
an summarize the results of this se
tion as follows. Suppose n � 4

and (n; q) 6= (4; 2). Then the diameter of the 
ollinearity graph of � is

two and 3-, 4- and 5-
y
les are null-homotopi
. This implies the following

theorem.

Theorem 5.13. If n � 4 then the geometry � is simply 
onne
ted, unless

(n; q) = (4; 2). 2

We remark that it is unknown to us whether the 
ase (n; q) = (4; 2) is a

true ex
eption.

6 Simple 
onne
tedness, Part II

In this se
tion we assume n = 3. We will prove that the geometry � is simply


onne
ted for q � 8. As usual e

1

; : : : ; f

n

is a 
anoni
al basis.

Lemma 6.1. Let (P;Q;R) be a bad triangle and let X be the radi
al of the

plane hP;Q;Ri with respe
t to ((�; �)). Then X

�

= X.
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Proof. Suppose X

�

6= X. Then the (�; �)-totally isotropi
 planes hP;Q;Ri

and hP

�

; Q

�

; R

�

i do not interse
t. Indeed, if they did, then the the rad-

i
al of hP;Q;Ri were 
ontained in the interse
tion. Hen
e, by symmetry,

hP;Q;Ri \ hP

�

; Q

�

; R

�

i had to 
ontain the two spa
e hX;X

�

i, whi
h on

one hand were 
ontained in the radi
al of hP;Q;Ri and on the other hand

is totally isotropi
 with respe
t to ((�; �)), 
ontradi
ting the fa
t that the

rank with respe
t to ((�; �)) of hP;Q;Ri equals two. Consequently, V =

hP;Q;R; P

�

; Q

�

; R

�

i, whi
h has a radi
al with respe
t to (�; �) 
ontaining X,


ontradi
ting nondegenera
y of (�; �). 2

In view of this lemma and of Lemmas 5.3 and 5.4 the bad triangles we

need to deal with are very restri
ted.

Lemma 6.2. Let (P;Q;R) be the bad triangle (he

1

i; he

2

i; hxe

1

+ ye

2

+(
e

3

+

f

3

)i) with 
�
 = �1 and xy 6= 0 and x�x + y�y 6= 0. Furthermore, assume that

x�x 6= 1 or 2, y�y 6= 1 or 2, x�x + y�y 6= 1 or 2, (x�x � 1)(x�x + y�y � 1) 6= 1,

(y�y � 1)(x�x + y�y � 1) 6= 1. Then (P;Q;R) 
an be de
omposed into good

triangles.

Proof. Consider the plane hf

1

; f

2

; f

3

i and �x the points A = hf

3

i, B =

h�xf

3

+ 
f

1

i, C = h�yf

3

+ 
f

2

i. These are uniquely determined by the


onditions that A ? hP;Qi, B ? hQ;Ri and C ? hP;Ri.

Noti
e that A;B;C are points of � if and only if x�x 6= 1 and y�y 6= 1

whi
h is satis�ed by assumption.

The proje
tive lines AP , AQ, BQ, and CP are lines of � be
ause the two

points on them are perpendi
ular with respe
t to ((�; �)). Also AB and AC

are in fa
t the proje
tive lines hf

1

; f

3

i, respe
tively hf

2

; f

3

i, so they are lines

of �.

Next we have to investigate the 
onditions under whi
h the proje
tive

lines BC, BR, and CR are lines in �. We need to see that ((�; �)) is non-

degenerate on ea
h of these 2-dimensional spa
es, so we will investigate the

Gram matri
es and �nd their determinants.

In the 
ase of BC we get

det

�

x�x� 1 x�y

�xy y�y � 1

�

= �x�x� y�y + 1:

The spa
e BR yields

det

�

x�x� 1 �x

��x x�x + y�y

�

= (x�x� 1)(x�x+ y�y � 1)� 1:
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In the 
ase of CR we get

det

�

y�y � 1 �y

��y x�x + y�y

�

= (y�y � 1)(x�x + y�y � 1)� 1:

Now we 
ompute 
onditions su
h that (A;B;C), (A;B;Q), (A;C; P ),

(A; P;Q), (B;C;R), (B;Q;R), and (C; P;R) are good triangles. Noti
e that

the triangles (A;B;C), (A;B;Q), (A; P;Q), and (A;C; P ) are automati
ally

good.

Moreover, the 
ase of (B;Q;R) gives

det

0

�

x�x� 1 0 �x

0 1 �y

��x y x�x + y�y

1

A

= x�x(x�x� 2):

In the 
ase of (B;C;R) we get

det

0

�

x�x� 1 x�y �x

�xy y�y � 1 �y

��x ��y x�x + y�y

1

A

= (x�x + y�y)(2� x�x� y�y):

Finally, for (C; P;R) we have

det

0

�

y�y � 1 0 �y

0 1 �x

��y x x�x + y�y

1

A

= y�y(y�y � 2):

This gives us exa
tly the 
onditions 
ontained in the hypothesis of the

lemma. 2

Lemma 6.3. Let q = p

e

and let 
; d 2 F

q

2

su
h that 
�
 = �1, d 6= 0. Then

the system of equations x�x + y�y = 1 and �x� �y
 = d has exa
tly q solutions.

Proof. The pair (x; y) is a solution of the �rst equation if and only if

the matrix A

x;y

:=

�

x ��y

y �x

�

has determinant one, thus the solutions of

the �rst equation are parametrized by the elements of the group SU(2; q

2

).

Observe that

(
; 1)A

x;y

= (x
 + y; �x� �y
) =

�


(�x� �y
); �x� �y


�

:
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Therefore two pairs (x; y), (x

0

; y

0

) are solutions for the system of equations if

and only if the matrix A

x;y

A

�1

x

0

;y

0

stabilizes the ve
tor (
; 1) whi
h is of norm

0 with respe
t to the unitary form. The stabilizer of su
h a ve
tor is the p-

Sylow subgroup of the unitary group. So, if the above system has a solution,

then it has exa
tly q solutions, for a �xed d. Sin
e the order of SU(2; q

2

) is

q(q

2

� 1), the above system has q solutions for ea
h d 6= 0. (Indeed, there

are q

2

� 1 possible d's.) 2

Proposition 6.4. Let q � 8 and let (P;Q;R) be a bad triangle. Then the

triangle 
an be de
omposed into good triangles.

Proof. Let X be the radi
al of the plane hP;Q;Ri. By the pre
eding

lemma we have X = X

�

. Now, by Lemmas 5.3 and 5.4, we 
an assume

(P;Q;R) = (he

1

i; he

2

i; hxe

1

+ye

2

+(
e

3

+f

3

)i) satisfying 
�
 = �1 and xy 6= 0

and x�x + y�y 6= 0. It is enough to show that this triangle is 
onjugate to a

triangle satisfying the hypothesis of Lemma 6.2.

Let g 2 G

�

�xing e

1

, e

2

, f

1

, f

2

pointwise. Then Lemma 6.3 shows that,

for any nontrivial d 2 F

q

2

, the element g 
an be 
hosen su
h that (
e

3

+

f

3

)

g

= d(


�

d

d

e

3

+ f

3

), and we have 
onjugated (P;Q;R) to (P

g

; Q

g

; R

g

) =

(he

1

i; he

2

i; h

x

d

e

1

+

y

d

e

2

+ (


�

d

d

e

3

+ f

3

)i).

It remains to be seen that we 
an pi
k d su
h that x

0

=

x

d

, y

0

=

y

d

satisfy

the 
onditions of 6.2. Then, by that lemma, we 
an de
ompose (P

g

; Q

g

; R

g

)

(and hen
e its 
onjugate (P;Q;R)) into good triangles. Noti
e that xy 6= 0

if and only if

x

d

y

d

6= 0, and 
�
 = �1 if and only if 


�

d

d

�




�

d

d

�

= �1. The same

holds for the 
ondition x�x + y�y 6= 0.

If there are seven di�erent non-zero values of d

�

d in F

q

, then we are able

to modify x�x and y�y (to

x�x

d

�

d

respe
tively

y�y

d

�

d

) su
h that the 
onditions x�x 6= 1,

x�x 6= 2, y�y 6= 1, y�y 6= 2, x�x + y�y 6= 1, x�x + y�y 6= 2 are satis�ed for the

modi�ed parameters. Furthermore, if there are four more values of d

�

d, we


an additionally modify x�x and y�y for (x�x�1)(x�x+y�y�1) 6= 1, (y�y�1)(x�x+

y�y � 1) 6= 1 to hold. This is the 
ase for q � 13, whi
h leaves q 2 f8; 9; 11g.

A straightforward 
he
k by hand or in GAP will show that any pair x�x, y�y


an be s
aled by d

�

d to satisfy all 
onditions. 2

Now we will shift our attention to quadrangles. By the pre
eding results,

it is enough to de
ompose quadrangles into triangles, regardless whether they

are good or bad. Noti
e that if in a quadrangle (A;B;C;D) we have that

A and C (or B and D) are 
ollinear then this quadrangle is immediately
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de
omposed into two triangles. We 
all (A;B;C;D) spe
ial if hA;Ci is non-

degenerate with respe
t to both forms (�; �) and ((�; �)).

Lemma 6.5. Let q � 5. Then any quadrangle 
an be de
omposed into tri-

angles and spe
ial quadrangles.

Proof. Consider an arbitrary quadrangle (A;B;C;D). Without loss of

generality we may assume that B and D are non
ollinear. Pi
k an arbitrary

point S 2 X = A

??

\ B

?

\ D

?

. The point S exists be
ause X is not

totally isotropi
 with respe
t to ((�; �)), being a 3-spa
e 
ontained in the

nondegenerate 5-spa
e A

??

. The proje
tive line L = hA; Si has rank two

with respe
t to ((�; �)). Using Corollary 4.4, L 
ontains at least q

2

� 2q � 1

points of � that are 
ollinear with B, respe
tively D, and at least q

2

� 2q� 1

points of � that generate a nondegenerate 2-spa
e with C. Sin
e q � 5 and

sin
e L 
ontains q

2

� q points of �, the spa
e L has to 
ontain a point P of �

that generates a nondegenerate 2-spa
e with C and that is 
ollinear to both

B and D. Clearly (A;B;C;D) de
omposes as a produ
t of (A;B; P;D) and

(C;B; P;D). If (A; P ) = 0 then hA; P i is a line, implying that (A;B; P;D)

de
omposes into triangles. Otherwise, (A;B; P;D) is spe
ial. Similarly, for

(C;B; P;D). 2

Proposition 6.6. Let q � 7. Then any quadrangle 
an be de
omposed into

triangles.

Proof. Denote the quadrangle by (A;B;C;D), as in the proof of the

pre
eding lemma. By that lemma, we 
an assume that (A;C) 6= 0 and that

hA;Ci is nondegenerate with respe
t to ((�; �)). Set W := A

?

\ C

?

and

U

1

:= W \B

?

and U

2

:= W \D

?

.

If L = U

1

\ U

2

is of rank two with respe
t to ((�; �)), then we 
an apply

Lemma 4.3 to the planes hA;Li, hB;Li, hC;Li, and hD;Li to obtain q

2

�5q�4

points of � on L 
ollinear to all of A, B, C, D. Noti
e that this is a positive

number for q � 7.

Suppose now that L = U

1

\ U

2

is of rank one. Then the plane hB;Li

has rank at least one. However, it 
annot have rank one, sin
e it lies inside

the ((�; �))-nondegenerate 4-dimensional spa
e A

?

\ B

?

= (A

�

)

??

\ (B

�

)

??

.

Indeed, a 2-dimensional radi
al would be maximal totally isotropi
 inside

A

?

\ B

?

and 
ould not have a polar of dimension three. Similar arguments

hold for the points A, C, D instead of B. Applying Lemma 4.3 as in the

above paragraph gives a point of � 
ollinear to all of A, B, C, D.
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Suppose now L is totally isotropi
 with respe
t to ((�; �)). Then L has to


ontain the radi
als R

1

and R

2

(with respe
t to ((�; �))) of the planes U

1

and

U

2

. These radi
als 
annot 
oin
ide as otherwise we would obtain a radi
al

for the ((�; �))-nondegenerate spa
e A

?

\ C

?

. Noti
e that R

?

2

\ U

1

= BR

2

.

Choose a line of � through B inside U

1

. (This exists sin
e the rank with

respe
t to ((�; �)) of U

1

is two.) This line 
ontains a point P 
ollinear to both

A and C, by Lemma 4.3. Now P

?

\W interse
ts U

2

in a line that does not


ontain R

2

. Hen
e its rank with respe
t to ((�; �)) is two. The arguments

given in the se
ond paragraph of this proof settle the 
laim. 2

As in the n � 4 
ase, pentagons are easy to handle.

Proposition 6.7. Let q � 5. Then any pentagon is null homotopi
.

Proof. Let (A;B;C;D;E) be a pentagon. Consider the spa
e U :=

hA;B;Di

?

of dimension three. Its rank with respe
t to ((�; �)) has to be at

least two, as the rank of hA;Bi is two. Choosing a ((�; �))-nondegenerate

proje
tive line L in U and applying Lemma 4.3 in turn on the planes hA;Li,

hB;Li, hD;Li, we will �nd q

2

� 2q � 1 � q � 1 � q � 1 = q

2

� 4q � 3 > 0

points on L 
ollinear to all of A, B, D, de
omposing the pentagon. 2

We summarize the results of this se
tion as follows.

Theorem 6.8. If n = 3 and q � 8 then � is simply 
onne
ted. 2

It is easy to see that � is not simply 
onne
ted if (n; q) = (3; 2). We do not

know whether this is the 
ase for 7 � q � 3. In order to prove our 
laim let P

be any point of �. Then all points 
ollinear to P are 
ontained in P

?

\ P

??

,

be
ause q = 2. The subspa
e P

?

\ P

??

is not 
onne
ted by Lemma 4.6. Let

A and B be points 
ontained in distin
t 
onne
ted 
omponents of P

?

\P

??

.

Consider an arbitrary 
y
le 
onsisting of A, P , B, and points at distan
e

at least two from P (e.g., A, P , B, P

�

). This 
y
le is not null-homotopi
,

be
ause A, P , B do not admit a 
ommon neighbor and are not 
ontained in

a plane of �.

We 
ompleted the proof of the Main Theorem. Indeed, part (1) of the

Main Theorem follows from Propositions 3.8 and 4.2. Part (2) follows from

Theorem 4.7 and Corollary 4.8. Finally, part (3) is proved in Theorems 5.13

and 6.8.
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7 Consequen
es of simple 
onne
tedness

In this se
tion we prove Theorems 1, 2, 3, and 4. Throughout this se
tion,

n � 3.

In the present paper an amalgam A of groups is a set with a partial

operation of multipli
ation and a 
olle
tion of subsets fH

i

g

i2I

, for some index

set I, su
h that the following hold:

(1) A = [

i2I

H

i

;

(2) the produ
t ab is de�ned if and only if a; b 2 H

i

for some i 2 I;

(3) the restri
tion of the multipli
ation to ea
h H

i

turns H

i

into a group;

and

(4) H

i

\H

j

is a subgroup in both H

i

and H

j

for all i; j 2 I.

It follows that the groups H

i

share the same identity element, whi
h is then

the only identity element in A, and that a

�1

2 A is well-de�ned for every

a 2 A. We will 
all the groups H

i

the members of the amalgam A. Noti
e

that our de�nition is a spe
ial 
ase of the general de�nition of an amalgam

of groups as found, say, in [6℄.

A group H is 
alled a 
ompletion of an amalgam A if there exists a map

� : A! H su
h that

(1) for all i 2 I the restri
tion of � to H

i

is a homomorphism of H

i

to H;

and

(2) �(A) generates H.

Among all 
ompletions of A there is one \largest" whi
h 
an be de�ned as

the group having the following presentation:

U(A) = ht

h

j h 2 A; t

x

t

y

= t

z

; whenever xy = z in Ai:

Obviously, U(A) is a 
ompletion of A sin
e one 
an take � to be the mapping

h 7! t

h

. Every 
ompletion of A is isomorphi
 to a quotient of U(A), and

be
ause of that U(A) is 
alled the universal 
ompletion.

Suppose a group H � Aut � a
ts 
ag-transitively on a geometry �. A

rank k paraboli
 is the stabilizer in H of a 
ag of 
orank k from �. Paraboli
s
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of rank n� 1 (where n is the rank of �) are 
alled maximal paraboli
s. They

are exa
tly the stabilizers in H of single elements of �.

Let F be a maximal 
ag in �, and let H

x

denote the stabilizer in H

of x 2 �. The amalgam A = A(F ) = [

x2F

H

x

is 
alled the amalgam

of maximal paraboli
s in H. Sin
e the a
tion of H is 
ag-transitive, this

amalgam is de�ned uniquely up to 
onjugation in H. For a �xed 
ag F we


an also use the notation M

i

for the maximal paraboli
 H

x

, where x 2 F

is of type i. (We de�ned this notation in the introdu
tion.) For a subset

J � I = f0; 1; : : : ; n � 1g, de�ne M

J

to be \

j2J

M

j

, in
luding M

;

= H.

Noti
e thatM

J

is a paraboli
 of rank jI nJ j; indeed, it is the stabilizer of the

sub
ag of F of type J . Similarly to A, we 
an de�ne the amalgamA

(s)

as the

union of all rank s paraboli
s. With this notation we 
an write A = A

(n�1)

.

Moreover, a

ording to our de�nition, A

(n)

= H.

Now we need to de�ne 
overings of geometries. Suppose � and

^

� are

two geometries over the same type set and suppose � :

^

� ! � is a mor-

phism of geometries, i.e., � preserves the type and sends in
ident elements

to in
ident elements. The morphism � is 
alled a 
overing if and only if for

every non-empty 
ag

^

F in

^

� the mapping � indu
es an isomorphism between

the residue of

^

F in

^

� and the residue of F = �(

^

F ) in �. Coverings of a

geometry 
orrespond to the usual topologi
al 
overings of its 
ag 
omplex.

In parti
ular, a simply 
onne
ted geometry (as de�ned in Se
tion 5) admits

no nontrivial 
overing.

The notion of 
overings 
an also be de�ned in the more broad 
ontext

of 
hamber systems. In this 
ontext one 
an de�ne more general notions

of k-
overings and k-simple 
onne
tedness. A 
hamber system is k-simply


onne
ted if and only if it has no proper k-
overings. Unfortunately, it is


on
eivable that a k-
over of a geometry is not a geometry. Still the following


laims 
an be made: A morphism � :

^

� ! � of geometries is a k-
overing,

if for any 
ag

^

F of 
orank at most k of

^

�, the indu
ed mapping from the

residue of

^

F onto the residue of �(

^

F ) is an isomorphism. Consequently, if

n is the rank of a geometry �, then the 
overings of � are pre
isely the

(n�1)-
overings of �. If a 
onne
ted geometry is k-simply 
onne
ted then it

admits no proper k-
overings. Also, every k-
overing is a (k�1)-
overing and

(k � 1)-simple 
onne
tedness of a geometry implies k-simple 
onne
tedness.

Proposition 7.1 (Tits' Lemma). Suppose a group H a
ts 
ag-transitively

on a geometry � and let A be the amalgam of maximal paraboli
s asso
iated
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with some maximal 
ag F . Then H is the universal 
ompletion of the amal-

gam A if and only if � is simply 
onne
ted.

Proof. Follows from [7℄, Corollaire 1, applied to the 
ag 
omplex of �. 2

In 
ase of � = �

�

and H = G

�

(
f. Se
tion 4), the Main Theorem and

Tits' Lemma imply that H is the universal 
ompletion of A unless (n; q) one

of (3; 2), (3; 3), (3; 4), (3; 5), (3; 7), (4; 2).

Re
all that the dire
t sum of two geometries �

1

and �

2

is de�ned as

follows. The type set (respe
tively, element set) of �

1

� �

2

is the disjoint

union of the type sets (respe
tively, element sets) of �

1

and �

2

. The in
iden
e

relation on �

1

� �

2

is the 
ombination of the in
iden
e relations on �

1

and

�

2

and the 
ondition that every element of �

1

is in
ident with every element

of �

2

.

To prove Theorem 1 we will need the following lemma.

Lemma 7.2. Assume that � = �

1

� �

2

with �

1


onne
ted of rank at least

two. Then � is simply 
onne
ted.

Proof. Certainly, � is 
onne
ted. Choose a base point x 2 �

1

. We �rst

prove that any 
y
le originating at x is homotopi
 to a 
y
le fully 
ontained

in �

1

. Let xx

1

: : : x

n�1

x be a 
y
le. Pro
eed by indu
tion on the number of

elements on the 
y
le whi
h are not in �

1

. Suppose x

s

is the �rst element in

the 
y
le whi
h is not in �

1

. Let y 2 �

1

su
h that y 6= x

s+1

and y is in
ident

with x

s+1

. (Re
all that �

1

has rank at least two.) Noti
e that y is in
ident

with x

s

. Sin
e the residue of x

s


ontains �

1

, we 
an 
onne
t x

s�1

with y

via a path x

s�1

y

1

: : : y

k�1

y fully 
ontained in �

1

. Furthermore, this path is

homotopi
 to the path x

s�1

x

s

y. Thus, our original path is homotopi
 to

the path xx

1

: : : x

s�1

y

1

: : : y

k�1

yx

s+1

: : : x

n�1

x. This path has fewer elements

outside �

1

, and our 
laim is proved.

Choosing an element z 2 �

2

we see that this z is in
ident to all elements

in �

1

, so any 
y
le in �

1

is null homotopi
. 2

Proof of Theorem 1. Let s � 2 if q � 8, s � 3 if 7 � q � 3, and s � 4 if

q = 2. Suppose that n � s+ 1. We will pro
eed by indu
tion and show that

the universal 
ompletion of A

(s)


oin
ides with the universal 
ompletion of

A

(s+1)

. Denote by H

(s)

the universal 
ompletion of A

(s)

.

Let J � I and jI n J j = s + 1. Let F

J

� F be of type J , so that M

J

is

the stabilizer of F

J

in H. Observe that the residue of F

J

(denoted by �

J

)
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is 
onne
ted. Indeed, if q > 2 then � is residually 
onne
ted by Corollary

4.8. In parti
ular, �

J

is 
onne
ted. If q = 2 then either the diagram of �

J

is

dis
onne
ted, or the diagram is 
onne
ted. In the �rst 
ase, �

J

is 
onne
ted,

sin
e the in
iden
e on � is de�ned as symmetrized in
lusion. In the se
ond


ase, �

J

is either our 
ip
op geometry of rank s + 1, or the geometry as in

[1℄. The 
onne
tedness follows from Theorem 4.7 and [1℄.

Observe also that �

J

is simply 
onne
ted. Indeed, either the diagram of

�

J

is dis
onne
ted, or it is 
onne
ted. In the �rst 
ase, the simple 
onne
tivity

follows from Lemma 7.2. The 
onne
tivity assumption in that lemma holds

be
ause one of �

1

and �

2

has suÆ
ient rank (rank at least two, if q � 3,

and rank at least three, if q = 2) to be 
onne
ted. If the diagram of �

J

is 
onne
ted then �

J

is simply 
onne
ted by the Main Theorem (3) or [1℄,

depending on its diagram.

The universal 
ompletion H

(s+1)

of A

(s+1)

is also a 
ompletion of A

(s)

.

Indeed, if n = s + 1, then H

(n)

= H = G

�

, whi
h 
ertainly is a 
ompletion

of A

(n�1)

. In 
ase n > s + 1, the amalgam A

(s+1)

is the union of all M

J

with J of 
orank s + 1 and we have a map � : A

(s+1)

! H

(s+1)

su
h that

�

jM

J

: M

J

! H

(s+1)

is a homomorphism. Consequently, also �

jM

J

\M

J

0

:

M

J

\M

J

0

! H

(s+1)

is a homomorphism. It remains to show that the set of

all images �(M

J

\M

J

0

) with jIn(J [ J

0

)j = s a
tually generate H

(s+1)

. But

sin
e �

J

is 
onne
ted, the group �(M

J

) � H

(s+1)

is generated by all those

images for a �xed J (be
ause the M

J

\M

J

0

are maximal paraboli
s in M

J

).

Thus, H

(s+1)

is a 
ompletion of A

(s)

, as it is generated by the �(M

J

).

Therefore there is a 
anoni
al homomorphism � from H

(s)

onto H

(s+1)

whose restri
tion toA

(s)

is the identity. Let  be the inverse of the restri
tion

of � to A

(s)

. Let J � I be su
h that jI n J j = s + 1 and let

^

M

J

be de�ned

as h (M

J

\ A

(s)

)i. By simple 
onne
tedness of �

J

and by Tits' Lemma,

� indu
es an isomorphism of

^

M

J

onto M

J

. Therefore,  extends to an

isomorphism of A

(s+1)

� H

(s+1)

onto

^

A

s+1

=

[

J�I;jInJj=s+1

^

M

J

� H

(s)

:

Hen
e the universal 
ompletion of A

(s)


oin
ides with the universal 
omple-

tion of A

(s+1)

. The fa
t H

(n)

= G

�

�nishes the proof. 2

Noti
e that we a
tually proved that � is 2-simply 
onne
ted if q � 8,

3-simply 
onne
ted if q � 3, and 4-simply 
onne
ted if q = 2, as 
laimed

after the statement of the Main Theorem in the introdu
tion.
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Let fe

1

; : : : ; f

n

g be a 
anoni
al basis for �. We will use the notation

T , L

i

, T

i

as introdu
ed before Theorem 2 in Se
tion 1. For the purposes of

proving that theorem, we will assume that the 
ag F 
onsists of the subspa
es

he

1

i, he

1

; e

2

i, . . . , he

1

; : : : ; e

n

i. With respe
t to this basis, T 
onsists of all

diagonal matri
es diag(a

1

; : : : ; a

n

; a

�1

1

; : : : ; a

�1

n

), where ea
h a

i

is of order

dividing q + 1. Furthermore, T

i

, 1 � i < n, 
onsists of matri
es from T , for

whi
h a

i

= a

�1

i+1

= a

�1

n+i

= a

n+i+1

, with all other a

j

equal to one. If i = n

then a

n

= a

�1

2n

and a

j

= 1 for all other j. Manifestly, T is the dire
t produ
t

of all T

i

's.

Proof of Theorem 2. Let s = 2 if q � 8, s = 3 if 7 � q � 3, and s = 4

if q = 2, and suppose that n � s + 1. Let

^

H be the universal 
ompletion

of the amalgam A

0

(s)

. Let � be the 
anoni
al homomorphism of

^

H onto

H, that exists due to the fa
t that H is a 
ompletion of A

0

(s)

. Denote by

^

A

0

(s)

the 
opy of A

0

(s)

in

^

H, so that � indu
es an isomorphism of

^

A

0

(s)

onto

A

0

(s)

. As in the proof of Theorem 1, let  : A

0

(s)

!

^

A

0

(s)

be the inverse of

�

j

^

A

0

(s)

. Additionally, de�ne

^

T

i

=  (T

i

) and

^

T = h

^

T

1

; : : : ;

^

T

n

i. Observe that

T

i

; T

j

� M

0

Infi;jg

= hL

i

; L

j

i � A

0

(s)

. Sin
e  restri
ted to the latter group is

an isomorphism to  (M

0

Infi;jg

), the groups

^

T

i

and

^

T

j


ommute elementwise.

Be
ause T is the dire
t produ
t of T

i

's, the map � establishes an isomorphism

between

^

T and T .

Let J be a subset of I with jI n J j = s. Observe that M

J

= M

0

J

T .

A

ordingly, we would like to de�ne

^

M

J

as

^

M

0

J

^

T , where

^

M

0

J

=  (M

0

J

). For

this de�nition to make sense, we need to show that

^

T normalizes

^

M

0

J

. Assume

�rst that q > 2. Sin
eM

0

i

is normal inM

i

and sin
e T � M

i

, we have that T

normalizes allM

i

and therefore T normalizes every L

i

= \

j2Infig

M

0

j

. Observe

that T

j

� L

j

and L

i

; L

j

� M

0

Infi;jg

= hL

i

; L

j

i. Sin
e  is an isomorphism

from A

0

(s)

to

^

A

0

(s)

, the group

^

T

j

normalizes

^

L

i

for all i and j. It is 
lear

that M

0

J

is generated by L

i

, i 2 I n J . The same must be true for

^

M

0

J

and

^

L

i

's. Therefore every

^

T

j

will normalize every

^

M

0

J

whi
h means that also

^

T

normalizes

^

M

0

J

. If q = 2 the same result 
an be a
hieved by using M

0

Infi;jg

's

in pla
e of L

i

's; re
all that in this 
ase we assume s = 4.

Sin
e

^

T normalizes M

0

J

and sin
e

^

T \

^

M

0

J

= h

^

T

j

j j 2 I n Ji is isomorphi


(via �) to T \M

0

J

, the map � establishes an isomorphism between

^

M

J

and
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M

J

, and, thus, � extends to an isomorphism

^

A

(s)

=

[

J�I;jInJj=s

^

M

J

�! A

(s)

:

Therefore, the universal 
ompletions of A

(s)

and A

0

(s)

are isomorphi
, and the


laim follows from Theorem 1. 2

Re
all from the introdu
tion that � is the pregeometry on the nondegen-

erate proper subspa
es of a nondegenerate 2n-dimensional symple
ti
 spa
e

V with symmetrized in
lusion as in
iden
e where the type of a subspa
e

equals half its dimension.

Lemma 7.3. � is a 
onne
ted geometry and the a
tion of G

�

�

=

Sp(2n; q)

on it is 
ag-transitive.

Proof. Let U

1

� � � � � U

t

be a maximal 
ag. If the dimension of U

t

is not

2n � 2, then the dimension of U

?

t

is at least four and we 
an �nd a proper

nondegenerate 2-dimensional subspa
e U of U

?

t

. But now U

t

� U is still a

proper nondegenerate subspa
e of V and U

1

� � � � � U

t

� U

t

� U is a 
ag

of �, a 
ontradi
tion. Hen
e U

t

has dimension 2n � 2. Similarly one 
an

show that U

i�1

has 
odimension 2 in U

i

for 2 � i � n� 1. Therefore, � is a

geometry.

Given any maximal 
ag U

1

� � � � � U

n�1

, we 
an 
hoose a hyperboli
 basis

fe

1

; : : : ; e

n

; f

1

; : : : ; f

n

g of V su
h that U

i

= he

1

; : : : ; e

i

; f

1

; : : : ; f

i

i, 1 � i �

n� 1. Flag-transitivity of the group Sp(2n; q) now follows from transitivity

of Sp(2n; q) on the set of hyperboli
 bases of V .

It remains to show 
onne
tedness of �. Let U and U

0

be two nondegener-

ate 2-dimensional subspa
es of V . If U and U

0

are orthogonal then hU; U

0

i is

nondegenerate and so U and U

0

are adja
ent in the 
ollinearity graph of �.

If U and U

0

meet in a 1-dimensional spa
e then hU; U

0

i is of dimension three

and rank two. Therefore it is 
ontained in a nondegenerate 4-dimensional

spa
e. Thus again U and U

0

are adja
ent. Finally if U and U

0

are disjoint

and not perpendi
ular, we 
an �nd ve
tors u 2 U and u

0

2 U

0

su
h that

hu; u

0

i is nondegenerate. Clearly the latter subspa
e is adja
ent to both U

and U

0

so they are at distan
e two. We have shown that the 
ollinearity

graph of � has diameter two. In parti
ular, it is 
onne
ted. 2

Corollary 7.4. � is residually 
onne
ted. 2
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Proof of Theorem 3. Suppose that n � 4 and n � 5 if q = 2 or 3. Let

B = [

1�i�n�1

H

i

. A

ording to Tits' Lemma, the 
on
lusion of the theorem

is equivalent to U(B)

�

=

G

�

. LetA = [

1�i�n

M

i

be, as before, the amalgam of

maximal paraboli
s related to the a
tion of H = G

�

on the 
ip
op geometry

�. Let A

0

= [

1�i�n�1

M

i

. Then A

0

is 
ontained in B, sin
e M

i

� H

i

for

1 � i � n� 1. The 
laim of the theorem will follow from the Main Theorem

(3) and Tits' Lemma, on
e we show that U(B)

�

=

U(A

0

) and U(A

0

)

�

=

U(A).

We will start with the se
ond isomorphism. Let

^

H = U(A

0

). Let also  be

the 
anoni
al embedding of A

0

into

^

H and de�ne

^

M

i

=  (M

i

), 1 � i � n�1,

and

^

A

0

=  (A

0

). Noti
e that M

n

\A

0

is the amalgam of maximal paraboli
s

in M

n

a
ting on the residue �

fng

of �. By [1℄, �

fng

is simply 
onne
ted.

Therefore,  (M

n

\ A

0

) generates in

^

H a subgroup

^

M

n

isomorphi
 to M

n

.

Clearly,

^

A

0

[

^

M

n

is isomorphi
 to

^

A and hen
e U(A

0

)

�

=

U(A).

Turning to the isomorphism U(B)

�

=

U(A

0

), we let

^

H = U(B) and let

 to be the embedding of B into

^

H. We 
laim that  (A

0

) generates

^

H.

Indeed, sin
e � is residually 
onne
ted (
f. the pre
eding 
orollary), any two

 (H

i

) generate

^

H. Take i = n � 1 or n � 2. Then H

i

= L � R, where

L

�

=

Sp(2i; q) and R

�

=

Sp(2n � 2i; q). Observe that R � M

j

for 1 � j � i

and that [

1�j�i

(L\M

j

) is the amalgam of maximal paraboli
s for L a
ting

on its 
orresponding 
ip
op geometry (of rank i). Sin
e that geometry is


onne
ted,  (H

i

) � h (A

0

)i. Thus,  (A

0

) indeed generates

^

H.

Consequently,

^

H must be a quotient of U(A

0

)

�

=

U(A)

�

=

H. Sin
e also,

H is isomorphi
 to a quotient of

^

H, we �nally obtain U(B)

�

=

H

�

=

U(A

0

). 2

Proof of Theorem 4. Let s = 2 if q � 4 and s = 3 if q = 2 or 3.

Let B

(s)

be the subamalgam of B (see the proof of Theorem 3) 
onsisting

of all rank s paraboli
s. As in the proof of Theorem 1, we 
an show that

U(B

(s)

)

�

=

H = G

�

. (Like before, this also implies 2-simple 
onne
tedness,

respe
tively 3-simple 
onne
tedness of �, as 
laimed after Theorem 3 in the

introdu
tion.) Sin
e the union of any three (four, if q = 2 or 3) H

i


ontains

B

(s)

and sin
e H

i

\ B

(s)

generates H

i

for all i, we are done. 2

Finally, the 
laim after Theorem 4 
an be proven as follows. Let H

J

=

\

i2J

H

i

. By Theorem 4, the amalgam of rank three paraboli
s (i.e., the

amalgam of all subgroups H

J

with jI n J j = 3) has G

�

as its universal


ompletion. The only rank 3 paraboli
 that 
annot be found inside the

amalgam H

1

[H

i

[H

n�1

is H

Inf1;i;n�1g

. Sin
e n � 5, i 6= 2 or i 6= n� 2. In

the �rst 
ase H

Inf1;i;n�1g

is isomorphi
 to H

Inf1g

�H

Infi;n�1g

. In the se
ond
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ase it is isomorphi
 to H

Inf1;ig

�H

Infn�1g

. Let us assume we are in the �rst


ase. By 
onne
tivity (see Lemma 7.3), the rank two paraboli
 H

Infi;n�1g

is

generated by the two minimal paraboli
s H

Infig

and H

Infn�1g

. It remains to

noti
e that both H

Inf1g

and H

Infig

are 
ontained in H

n�1

, while both H

Inf1g

and H

Infn�1g

are 
ontained in H

i

. So H

Inf1;i;n�1g

does not 
ontain any new

relations.
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