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1 Introduction

In 1977 Kok-Wee Phan published a theorem (see [4]) on generation of the
special unitary group SU(n + 1, ¢?) by a system of its subgroups isomorphic
to SU(3,¢?). This theorem is similar in spirit to the famous Curtis-Tits
theorem. In fact, both the Curtis-Tits theorem and Phan’s theorem were used
as principal identification tools in the classification of finite simple groups.
The proof of Phan’s theorem given in his 1977 paper is somewhat incom-
plete. This motivated Bennett and Shpectorov [1] to revise Phan’s paper and
provide a new and complete proof of his theorem. They used an approach
based on the concepts of diagram geometries and amalgams of groups. It
turned out that Phan’s configuration arises as the amalgam of rank two
parabolics in the flag-transitive action of SU(n + 1,¢*) on the geometry
of nondegenerate subspaces of the underlying unitary space. This point of
view leads to a twofold interpretation of Phan’s theorem: its complete proof
must include (1) a classification of related amalgams; and (2) a verification
that—apart from some small exceptional cases—the above geometry is sim-
ply connected. These two parts are tied together by a lemma due to Tits,
that implies that if a group G acts flag-transitively on a simply connected
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geometry then the corresponding amalgam of maximal parabolics provides a
presentation for (G, see Proposition 7.1.

The Curtis-Tits theorem can also be restated in similar geometric terms.
Let G be a Chevalley group. Then G acts on a spherical building B and also
on the corresponding twin building B = (B4, B_,d*). (Here By ¥ B~ B_
and d* is a codistance between B, and B_, taking values in the Weyl group
W of B.) Now one can form the so-called opposites geometry Iy, of B. As
a chamber system, I'y, can be described as follows: its chambers are all the
pairs (Cy,C_) such that Cy € By, C_ € B_ and d*(Cy,C_) = 1. It turns
out that the Curtis-Tits theorem is equivalent to the statement that I, is
simply connected for every spherical building B of rank at least three. This
approach allows for a short proof of the Curtis-Tits theorem (cf. [3]).

Furthermore, the geometric interpretation of the Curtis-Tits theorem and
Phan’s theorem allows to relate them. Let G = SL(n + 1,¢?) and let o be
the product of the contragredient automorphism and the involutory field
automorphism. Then ¢ can be considered as an “automorphism” of the twin
building B corresponding to . Unlike the ordinary automorphisms, o will
interchange (rather than stabilize) B, and B_, while preserving distance and
codistance between chambers. Let G, = Cg(0) and

Ty ={(Cy,C_) €Ty, | C7 =C_}.

Notice that o is an involution and hence also C? = C.; so, in a sense, [',
consists of all chambers of Iy, that are stabilized (in fact, flipped) by o. It
turns out that G, = SU(n + 1,¢*) acts flag- (chamber-) transitively on T,
and T, is exactly the geometry used in [1] to re-prove Phan’s theorem.

Clearly, this construction can be generalized to other types of spherical
twin buildings B and “flips” o. The chamber system [, associated with B
and o, will be refered to as the flipflop geometry associated with B and o.
(Notice that it is unclear in general whether I'; is a geometry; however, it
is true for all examples known to us.) The “flipflop” construction becomes
a source of Phan-type theorems. In particular, we conjecture that Phan’s
results on diagrams D,, and F,, from his second paper [5] can be interpreted
in this way. It is an interesting open problem to try to determine a complete
list of pairs (B, o) for which I, is non-empty.

In this paper we take up the case where B is the twin building for the
group Sp(2n, ¢?) and o is a particular flip as defined in Section 3.
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Main Theorem.
The following hold.

(1) Ty is a rank n geometry admitting a flag-transitive group of automor-
phisms G, = Sp(2n, q).

(2) T, is connected unless n = 2 and q = 2; it is residually connected if
q > 2.

(3) Ty is simply connected if n > 5, orn =4 and ¢ > 3, or n = 3 and
q=8.

In particular, ', is 2-simply connected if ¢ > 8; 3-simply connected if
q > 3; and 4-simply connected if ¢ = 2 (cf. Section 7 and [1]).

The present paper is organized as follows. Section 2 provides several
important group-theoretic corollaries of the Main Theorem. In fact, those
corollaries were our motivation to prove the Main Theorem. In Section 3 we
introduce and study a class of flips o on a 2n-dimensional symplectic space
V over F.. In section 4 we discuss I',; we establish that it is a flag-transitive
geometry and then study its connectivity properties. In Sections 5 and 6 we
prove that I', is simply connected in all but few cases. Finally, in Section 7
we derive group-theoretic consequences of the simple connectedness of T',.

Remark.

1. Although we only consider finite fields, we would expect that infinite-
field versions of our results hold as well. To be precise, our constructions
in Section 3 are completely independent of the field. However, our
strategy of proof heavily relies on Lemma 4.3 which only works for
finite fields. The crucial point of proving infinite-field versions of our
results is therefore to suitably replace Lemma 4.3.

2. The exception n = 2, ¢ = 2 in part (2) of the Main Theorem is a true
exception, see Lemma 4.6. The exception n = 3, ¢ = 2 in part (3) of
the Main Theorem is a true exception as well, see the discussion after
Theorem 6.8. It is currently unknown to us whether this is true for the
other exceptions of part (3) as well.

3. The case n = 3, ¢ = 2 shows that any proof of our results has to contain
a counting argument of some kind. Requiring that the lines of I" be
thick might be worth trying.
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2 Application to group theory

The Main Theorem has some group theoretic implications along the lines of
Phan’s theorem. Let F' be a chamber (maximal flag) of T',. For2 < s < n-—1,
let As) be the amalgam of all rank s parabolics, i.e., stabilizers in G, of
subflags of F' of corank s.

Theorem 1. The following hold.
(1) If ¢ > 8 and n > 3 then G, is the universal completion of A).

(2) If 3<q <7 andn >4 then G, is the universal completion of As).

(3) If ¢ =2 and n > 5 then G, is the universal completion of Agy.

The maximal parabolics M; with respect to F' are semisimple subgroups
of G, = Sp(2n,q) of the form GU(i,q*) x Sp(2n — 2i,q), i = 1,...,n.
Each M; stabilizes a 2i-dimensional nondegenerate subspace U; of the natural
symplectic module U of G,. Tt induces GU(%,¢*) on U; and Sp(2n — 2i, q)
on U#. The intersection of all M; (also known as the Borel subgroup arising
from the action of G, on I',) is a maximal torus 7" of G, of order (¢ + 1)™.
Let M) be the subgroup SU(i,q?) x Sp(2n — 2i,q) of M;. For an arbitrary
parabolic M; = N;cy M; define MY = N;c; M?. Here J is a subset of the
type set I ={1,...,n} of T';. It can be shown that M; = MIT.

In case of a minimal parabolic Mp (), we have that L; := M?\{i}
SL(2,q). In fact, if 1 <4 < n — 1 then L; arises as SU(2,¢?) & SL(2,q),
while L, arises as Sp(2,q) = SL(2,q). Notice that T; = L; N T is a torus in
L; of size ¢ + 1. Notice also that the subgroups 7; generate 7.

If ¢ # 2 then (L;, L;) = M?\{Z.’j}. In particular, the subgroups L; have the
following properties:

(1) Li = SUQ,q2), ifi = 1,...,n— 15 Ly = Sp(2,q);

~

L x L;, if|i—j|>1,
(@) (L L) = { SUG, ), if|i—jl =1 and {i,j} # {n—1,n};
Sp(4,q), if{i,j} ={n—1n}
These properties are similar to Phan’s original description of his configu-
rations.
Define A((’s) to be the amalgam formed by the subgroups MY for all
parabolics M of rank s. The following is a “stripped-of-7” (Phan-type)
version of Theorem 1.
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Theorem 2. The following hold.
(1) If ¢ > 8 and n > 3 then G, is the universal completion of .A?Q).

(2) If3<q <7 andn >4 then G, is the universal completion of A(()3).

(3) If g =2 and n > 5 then G, is the universal completion of A?4).

Note that M;, ¢ # n, is not a maximal semisimple subgroup of G,.
Namely, M; is contained in the full stabilizer H; of the decomposition U =
U; ® U, The subgroup H; is isomorphic to Sp(2i,q) x Sp(2n — 2i,q). It
is a maximal parabolic with respect to the action of G, on the rank n — 1
pregeometry A of all proper nondegenerate subspaces of U. It can be shown
that if n > 3 then A is a residually connected geometry on which G, acts
flag-transitively. Furthermore, {U; | 1 < i < n — 1} is a maximal flag of A,
and H;’s are the corresponding maximal parabolics.

The following results will be derived from Theorem 1 and the results from

[1].
Theorem 3. Let n > 4. Then A is simply connected provided that (n,q) &

{(4,2),(4,3)}.

Inductively, A is 2-simply connected if ¢ > 4 and 3-simply connected if
q=2or3.
As a corollary, we prove the following.

Theorem 4. Ifq > 4 then the amalgam of any three subgroups H; has G, as
its universal completion. If ¢ = 2 or 3 then the same holds for the amalgam
of any four subgroups H;.

Notice that if n > 5 and ¢ = 2 or 3 then GG, can still be recovered
from some triples of subgroups H;. Namely, among others, every amalgam

H/UH;UH, 1,1 <1< n-—1, has G, as its universal completion, see Section
7.

3 Flips and forms

Let V' be a 2n-dimensional nondegenerate symplectic space over F. and
let (-,-) be the corresponding alternating bilinear form. Let the bar denote
the involutive automorphism of Fyp. In this section we study semilinear
transformations o of V' satisfying
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(T1) (\v)? = Av’;
(T2) (u”,07) = (u,v); and
(T3) o2 = —Id.

We will call such a o a fiip. An example of a flip can be constructed as follows.
Choose a basis B = {ey,...,en, f1,..., fn} in V such that, for 1 <i,j <n,
we have that (e;,e;) = (fi, f;) = 0 and (e;, f;) = d;;. This corresponds to the

Gram matrix
0 I
A= ( ot )

Here I is the identity matrix of size n x n, whereas 0 stands for the all-zero
matrix of the same size. (A basis like that is called a hyperbolic basis.) Let ¢
be the linear transformation of V' whose matrix with respect to the basis B
coincides with A and let ¢ be the semilinear transformation of V' that applies
the bar automorphism to the B-coordinates of every vector. If og = ¢ o 1),

then for a vector . .
u = inei + Zyifi
i=1 i=1
we compute that
n n
u” = — Zgiei + Zfzfz
i=1 i=1

One easily verifies that (T1) and (T3) are satisfied for oy. To check (T2),

consider
n n
o ! !
v = E xie; + E Y, fi-
i=1 i=1

n

(u™,v%) = Z(_gl)‘f; - fZ(_g;) = (u,v),

=1

Then

yielding (T2). Thus, oy is a flip. Notice that o = 0y can be characterized as
the unique semilinear transformation such that (T1) holds and

e; = fi, fi=—e, forl<i<n.

Whenever these latter conditions are satisfied for a flip ¢ and a hyperbolic
basis B = {ey, ..., fn}, we will say that B is a canonical basis for o.



3 FLIPS AND FORMS 7

Let G 2 Sp(2n,q?) be the group of all linear transformations of V' pre-
serving the form (-,-). One of the principal results of this section is the
following.

Proposition 3.1. FEvery flip admits a canonical basis.

In other words, every flip o is conjugate to oy by an element of G.

We start by discussing the general properties of flips. Let o be a flip.

Define
((z,y)) = (z,y%).

Lemma 3.2. The form ((-,-)) is a nondegenerate Hermitian form. Further-
more, ((u”,v7)) = ((u,v)) for u,v € V.,

)
Proof. Clearly, ((-,-)) is a sesquilinear form. Also, ((v,u)) = (v,u?)
—(U,U,U) = _(U’Uzvva) = _(_U’ng) = (U,UU) = ((U’Jv)) Thus, ((7)) .
Hermitian. If u is in the radical of ((+,-)) then for any v € V', 0 = ((u,v?))
((u,v°")) = —(u,v). Therefore, u = 0, as (-,-) is nondegenerate. Finall
((u?,07)) = (u7, —v) = (v,u") = ((v,u)) = (v, v)).

In what follows we will work with both (-, -) and ((-,-)). This calls for two
different perpendicularity symbols. We will use L for the form (-,-), while
1l will be used for ((-,-)).

Proof of Proposition 3.1. Let o be a flip. Pick a vector v € V such that
((u,u)) = 1. Such a vector exists since ((+,-)) is nondegenerate by Lemma
3.2. Set e, = u and f, = u’. Since (-,-) is an alternating form we have
(en€n) = (fu, fn) = 0. Furthermore, (e,, fn) = ((en, f7 1)) = ((en, €,)) = 1.
In particular, the subspace U = (e,, f,) is nondegenerate with respect to
(-,+). Consider now V' = U+. Notice that U is invariant under o. Together
with (T2), this implies that V' is also invariant under o. It is easy to see that
the restriction of o to V' is a flip of V'. By induction, there exists a hyperbolic
basis €1,...,€n 1, f1,---, fa1 in V' such that 7 = f; for 1 < i < n —1.
(Since 0? = —Id, this automatically implies f7 = —e;.)

Clearly, {e1,...,en, f1,--., fn} is a canonical basis for o. O

—
wn

O =

Next, we discuss the behavior of o, (-,-), and ((-,-)) with respect to the
subspaces U C V.

Lemma 3.3. For a subspace U C V, we have U* = (U°)*+ = (U*)?. Simi-
larly, U+ = (U°)* = (U*).
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Proof. The first equality in the first claim immediately follows from the
definition of ((-,-)). If u € (U%)? (say, u = (u)7 for ' € U+) and v € U
then ((u,v)) = ((v')7,v7) = (u/,v) = 0. The second claim follows by an
application of o to the equalities in the first claim. O

Lemma 3.4. The form (-,-) has the same rank on U and U?; likewise, it
has the same rank on UL and UYL = (U*)?. The same statements hold for

(C52))-

Proof. The first claim follows from (T2) for (-,-), and from Lemma 3.2 for
((+,+)). The second claim follows from the first one and Lemma 3.3. O

If U is o-invariant then we can say more. It follows from Lemma 3.3 that
U+ = U*. In other words, for a o-invariant subspace U, the orthogonal
complement (and hence also the radical) of U is the same with respect to
(+,) and ((-,-)). It also follows from Lemma 3.3 that both the orthogonal
complement and the radical of U are o-invariant.

It was noticed in the proof of Proposition 3.1 that the properties (T1)—
(T3) are inherited by the restrictions of o to all o-invariant subspaces U C V.
If U is nondegenerate—it does not matter with respect to which form—then
the restriction of o to U is a flip of U. We should now discuss what happens
when U has a nontrivial radical. First of all, by the above comment, the
radical of U is o-invariant.

Lemma 3.5. If U is o-invariant then the radical of U has a o-invariant
complement in U.

Proof. The proof is analogous to that of Proposition 3.1. If U is totally
singular then there is nothing to prove. Otherwise, choose u € U such that
((u,u)) = 1. Then W = (u,u’) is a o-invariant nondegenerate subspace.
Hence U = (UNW*) @& W and the radical of U coincides with the radical of
Uy = UN W+, Clearly, Uy is o-invariant, and so induction applies. O

Notice that the o-invariant complement in the above lemma is automat-
ically nondegenerate.

Next, let us study the “eigenspaces” of o on V. For A € F,, define
Vi = {u € V|u? = Au}. Note that V) is not a true eigenspace, because o is
not linear.

Lemma 3.6. The following hold.
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(1) For 0 # p € Fp, we have pVy = Vi, where X' = %)\; in particular, V)
is an F,-subspace of V.

(2) Vi # 0 if and only if \\ = —1; furthermore, if Vi # 0 then V) contains
a basis of V.

Proof. Suppose u € V). Then (pu)? = pu® = glu = %)\(uu). This proves
(1). Also, —u = u” = Mwu. Thus, if u # 0 then AX = —1. This proves
the ‘only if’ part of (2). To prove the ‘if’ part, choose a canonical basis
{er,..., fu} for 0. Fix a A € Fpz such that A\ = —1. Define u; = ¢; — Af;
and v; = \e; + f; for 1 < i < n. A simple check shows that u; and v; are
in V. This shows that V), # 0. Furthermore, u; and v; are not proportional
unless A = A, that is, A\ € F,. Thus, if A € F, then {uy,...,uy,v1,...,0,}
is a basis of V. If A € F, then consider \' = %)\, where p is chosen so that
% ¢ F,. By (1), Vi = pV). Also, since N ¢ IF,, we have that V) contains a
basis of V', and hence so does V). O

Consider an F,-linear map ¢ : v +— v — \v?, where \ € Fy2 and A\ = —1.
It can be checked that ¢ maps V onto V), and its kernel is V5. The above
vectors u; and v; are obtained by applying ¢ to the vectors in the canonical

basis {e1,..., fu}-
Now fix a A € F2 such that A = —1. Also, fixa p € Fp with i = —p.

Lemma 3.7. The restriction of uA(-,-) to Vy is a nondegenerate alternating
F, -bilinear form.

Proof. Clearly, the form pA(:,-) is F,-bilinear and alternating. Since V)
contains a basis of V' by Lemma 3.6 (2), the form is nondegenerate. It remains
to see that it takes values in F,. However, if u,v € V), then pA(u,v) =
A (U, v7) = —pAAN2(u, v) = pA(u,v). 0

Observe that the conjugation by ¢ is an automorphism of G. Let G, be
the centralizer of o in G. The above setup gives us means to identify G,. Let
H = Sp(2n, q) be the group of all linear transformations of V), preserving the
(restriction of the) form pA(-,-). Since V) contains a basis of V', we can use
Fz-linearity to extend the action of the elements of H to the entire V. This
allows us to identify H with a subgroup of G. Clearly, since h € H preserves
pA(-, -), it must also preserve (-, -).

Proposition 3.8. G, = H.
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Proof. Choose a basis {wy, ..., wy,} in V). Then this set is also a basis of V.
Let h € H. If u = 32" z;w; € V then u = (37", 7 wi)" = A%, Twl.

1=
On the other hand, u"* = (32", z;w)” = 3.7 7 wl. Therefore, H < G,.
Now take g € G,. If u € V) then (u9)” = (u?)? = (Au)? = Au?. This
proves that g leaves V) invariant. It remains to see that g preserves pA(-,-).

However, this is clear, because g is F2-linear and it preserves (-, -). O

4 The flipflop geometry I'

We will be using the notation from the previous section. In particular, V' is
a nondegenerate symplectic F2-space of dimension 2n with a form (-,+), o a
flip and ((-,-)) is the corresponding Hermitian form. Also, G = Sp(2n, ¢?)
is the group of linear transformations preserving (-,-) and G, = Cg(0).
Throughout this section, we assume n > 2. Let B be the building geometry
associated with G. Its elements are all the (-, -)-totally singular subspaces of
V.

Two elements U and U’ of B are opposite whenever V = U’ @ U™, i.e.,
U, U’ have the same dimension and U’ N U+ = 0. Two chambers (maximal
flags) F' and F' are opposite whenever for each subspace U € F there is a
U’ € F' such that U and U’ are opposite. Using this, it can be shown that the
opposites geometry I'y, related to B is indeed a geometry and its elements
are all pairs (U, U’) are opposite totally singular subspaces of V.

Turning to I',, let F' be a maximal flag of B such that F' and F? are
opposite. Then, for every U € F', the space U’ must be the element of F?
that is opposite U. Indeed, this follows from the fact that opposite elements
have the same dimension. Thus, (F, F7) € I, if and only if U? is opposite
U for every element U € F' (that is, (U,U%) € I'yp).

Our first goal is to show that I', is a geometry, that is to say, its chambers
arise as maximal flags of a suitable geometry. The natural candidate for this
geometry is the following subset of I',,:

{{U,U")eT, | U =U"}.

(For convenience, we will refer to this set as I',, anticipating that correctness
of this will be shown later.)

It suffices to show that ', is a full rank (that is, rank n) subgeometry
of I'pp. In order to avoid cumbersome notation, let us project every pair
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(U,U") € T, to its first coordinate U. Since U' = U, this establishes a
bijection (in fact, an isomorphism of pregeometries) between I', and the
following subset of B:

['={U € B | U? is opposite U}.

The definition of I" can be nicely restated in terms of the forms (-,-) and
((-5-))-

Proposition 4.1. The elements of I' are all subspaces U C V which are
totally isotropic with respect to (+,-) and nondegenerate with respect to ((+,-)).

Proof. By Lemma 3.3, Ut = (U°)+. Hence U and U7 are opposite if and
only if U N U = 0. a

As in the introduction, we use {1,...,n} as the type set of B. In par-
ticular, the type function is given by the linear (rather than projective) di-
mension. We will use the customary geometric terminology. In particular,
points, lines and planes are elements of type 1, 2 and 3, respectively.

We stress again that we will mostly work with I', using the fact that [’
and I', are isomorphic. We also notice that the isomorphism between I' and
[', commutes with the action of H = G,,.

Proposition 4.2. The pregeometry I' is a geometry. Moreover, H acts flag-
transitively on I'.

Proof. Let V; < V5 < --- < V) be a maximal flag. Let B = {ey,..., e}
be an orthonormal basis of Vj, with respect to ((+,-)). (This exists since V} is
nondegenerate with respect to ((+,-)).) Then B U B forms a canonical basis
of V,@V)?. If Vj is not a maximal totally isotropic subspace of V' with respect
to (+,), there exists a nontrivial u € (V3 ® V2)* = (Vx @ V¢)* such that
((u,u)) = 1. Then (Vi, u) is totally isotropic for (-, -) and nondegenerate with
respect to ((,-)), contradicting maximality of the flag. Hence we can assume
Vi is a maximal totally isotropic subspace with respect to (-,-). Induction
shows that V;_; is a codimension 1 subspace in V; for 2 < i < k, proving that
the maximal flag is a chamber.

Let Vi < Vo < --- < Vyand V) < V) < - < V) be two chambers.
Choose bases B = {ei1,...,e,}, B = {e€},... e} for V,,, respectively V!
such that they are orthonormal with respect to ((-,-)) and V; = (ey,...,€;),
V! ={(e,...,€}). Define g € G such that ¢/ = ¢} and (e7)? = (€})?. Such a g

) g
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obviously exists, since G 2 Sp(2n, ¢*) acts flag-transitively on the symplectic
polar space (V, (-, -)). It is also clear that g maps one chamber onto the other.
Moreover notice that 0 o ¢ = g oo on the basis BU B?. Therefore g € G,. O

The following lemma will prove to be very useful throughout the whole
article.

Lemma 4.3. Let P be a point of I' and Il D P be a 3-dimensional subspace
of V' of rank at least two with respect to ((-,-)) such that P is in the radical of
IT with respect to (-,-). Then any 2-dimensional subspace of 11 not containing
P is incident with at least ¢* — q — 1 (respectively, ¢> — 2q — 1) points of T
collinear to P if its rank is one (respectively, two) with respect to ((-,-)).

Proof. Since P is in the radical of IT with respect to (-,-), all lines passing
through P will be totally isotropic with respect to (-,-) so we only need to
consider ((-,-)). Notice that if L is a 2-dimensional subspace of V' that is not
totally isotropic with repect to ((-,-)) then L contains at least ¢* — ¢ points
of I'. (If the rank of L is one then the radical is the only nontrivial isotropic
subspace of L and if the rank of L is two then L contains ¢ + 1 distinct
nontrivial isotropic subspaces.)

Consider L; = P~ N1II. Then by the above, there are at least ¢*> — ¢
lines of I' through to P that intersect L; in a point of ['. If L is any other
not totally isotropic 2-dimensional subspace of II not containing P, at most
1, respectively ¢ + 1 of the these ¢ — ¢ lines will intersect L in isotropic
subspaces. Hence the lemma follows. O

Actually, we also showed the following:

Corollary 4.4. Let P be a point of T and II D P be a 3-dimensional subspace
of V' of rank at least two with respect to ((-,-)). Then any 2-dimensional
subspace of IT not containing P is incident with at least ¢>—q—1 (respectively,
q? —2q — 1) points of T that generate a ((-,+))-nondegenerate two space with
P if its ((-,-))-rank is one (respectively, two). O

We need to prove that the geometry is connected. This is equivalent
to proving connectivity of the point shadow space of I' which in turn is
equivalent with connectivity of the collinearity graph of I'.

Lemma 4.5. Suppose n > 3. Then if (n,q) # (3,2) then the collinear-
ity graph of the geometry T has diameter two. If (n,q) = (3,2) then the
collinearity graph of I' has diameter three. In particular, I' is connected in
all cases.
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Proof. If (n,q) = (3,2) then the claim can be checked computationally
(say, in GAP). So suppose (n,q) # (3,2). Let P, P, be two points in the
geometry. Consider W; := P+ n P i € {1,2}. Then dimW; = 2n — 2
so dimWi;NWy, > 2n —4. If 2n — 4 > n — 1 then the space W; N W,
cannot be totally isotropic for ((-,-)) (it lies inside the (2n — 1)-dimensional
nondegenerate space Pi). Therefore if n > 3 we can find a point @ in the
geometry lying in W, N Ws. In this case () connects P; and Ps.

If n = 3, the space U = P} N P;-N P;* is at least 3-dimensional inside the
4-dimensional space P;- N Ps, which is nondegenerate with respect to both
forms. Actually, U has rank at least two with respect to ((-,-)), because if it
had a 2-dimensional radical, this radical would be a maximal totally isotropic
subspace of P;- N P;* and had to be equal to its own polar in P;- N P;* with
respect to ((+,-)). Hence we can find a ((-,-))-nondegenerate 2-dimensional
subspace L of U, all points of which actually are collinear to P,. Applying
Lemma 4.3 to the plane (P;, L), we find a common neighbor of P; and Ps.
(I

Lemma 4.6. If n =2 and q # 2, then I" is connected. If n =2 and q = 2,
then I' is not connected.

Proof. Fix a point P of I'. Then P is collinear to (¢> — q)(¢*> — q — 1)
points of I (there are ¢? — ¢ lines through P, each of which contains ¢ —q—1
points of I" except P). Now let us estimate the number of points at distance
two to P. Each point Q at distance one to P is incident with ¢> — ¢ — 1 lines
that do not contain P. Each of these lines contains ¢> — ¢ — 1 points other
than ). Moreover, if R is a point at distance two from P, then there are at
most ¢ common neighbors of P and R (indeed, (P, R)* is a 2-dimensional
space which is not totally isotropic with respect to ((-,-)), whence containing
either ¢? or ¢* — ¢ points of T'). Hence there are at least (’12_’1)(3#
at distance two from P.

On the other hand, T' contains Zij —(¢*+1)(¢*+1) points (the number
of points of the projective space minus the number of points of the unitary
generalized quadrangle).

By Proposition 4.2 and Proposition 3.8, the group G, = Sp(4,q) acts
flag-transitively on I'. In particular, it permutes the connected components
of I'. More precisely, the number of connected components is equal to the
index of the stabilizer of one component in G,. By [2], Table 5.2.A the index

of a maximal subgroup of Sp(4, q) is at least 27, if ¢ > 2. Hence, to show

points
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)+ (qQ—q)(gz—q—l)g’

is greater than - (Z;j —(*+ 1) (¢ + 1)), which is true for all ¢ > 3.

To deal with the case n = 2, ¢ = 2, notice first that in this case two points
P, @) of T' are collinear if and only if they are perpendicular with respect to
both forms. Therefore, for any point P, the set of points collinear to P is
contained in the nondegenerate (with respect to both forms) 2-dimensional
space P+N P*, which contains precisely two points of I'. Considering those
two points inside P+ N P we see that their neighbors coincide (they are
precisely the points P and P?). Therefore the connected component of the
point P consists of precisely four points. On the other hand I' consists of

40 = 33:} — (22 +1)(2° + 1) points, so I' is not, connected. O

connectivity, it is enough to prove that 1+ (¢ —¢q)(¢* —q—1

We summarize Lemmas 4.5 and 4.6 in the following

Theorem 4.7. Suppose n > 2. Then I is connected unless (n,q) = (2,2).0
Combined with the results of [1], this yields

Corollary 4.8. If ¢ # 2 then I is residually connected. ]

Finally, let us discuss the diagram of the geometry I',. Notice that it
is a linear (string) diagram. Furthermore, it follows from Proposition 4.1
that the residue of an element of maximal type n — 1 is the geometry of all
nondegenerate subspaces of a nondegenerate n-dimensional unitary space.
The residue of a point is a geometry similar to [I' but with rank n — 1. This
leads to the diagram

The exact meaning of the edges U o and —2 is as follows. The

first one represents the geometry of all 1- and 2-dimensional nondegenerate
subspaces of a 3-dimensional unitary space. It appears in [1]. The second
edge represents our flipflop geometry in the case of rank two. We note that
both geometries are disconnected for ¢ = 2 and connected for ¢ > 3. See [1]

S

for oio and Lemma 4.6 for o—=—o.
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5 Simple connectedness, Part 1

In this and the next section we will prove that, apart from a few exceptional
cases, the geometry [' is simply connected. Here we collect some general
statements and then complete the case n > 4. The next section handles the
case n = 3, which is somewhat more complicated.

Recall the definition of the fundamental group of a connected geometry
A. A path of length k£ in the geometry is a sequence of elements xg, ...,z
such that x; and z;,4 are incident, 0 < ¢ < k—1. We do not allow repetitions;
hence x; # x;11. A cycle based at an element z is a path in which 2y =z =
x. Two paths are homotopically equivalent if one can be obtained from the
other via the following operations (called elementary homotopies): inserting
or deleting a return (i.e., a cycle of length 2) or a triangle (i.e., a cycle of
length 3). The equivalence classes of cycles based at an element x form a
group under the operation induced by concatenation of cycles. This group is
called the fundamental group of A and denoted by 7 (A, z). A geometry is
called simply connected if its fundamental group is trivial.

Notice that in order to prove that A is simply connected it is enough to
prove that any cycle based at x is homotopically equivalent to the cycle of
length 0. A cycle with this property is called null homotopic, or homotopically
trivial.

Let us go back to the flipflop geometry I". We pick the base element x to
be a point of I'.

Lemma 5.1. Unless n = 3, ¢ = 2, every cycle based at x 1s homotopically
equivalent to a cycle passing only through points and lines.

Proof. We will induct on the number of elements of the path that are not
points or lines. If this number is zero there is nothing to prove. Take an
arbitrary cycle v := xxy...xp_1x. Let x; be the first element that is not a
point or a line. Clearly i € {0, k}. There are two cases to consider:

If the type of x;,; is bigger than the type of x; then x; | and x;,, are
incident and ~ is homotopically equivalent to the cycle xzy ... x; 12,41 ... 2.

Suppose the type of z;,; is smaller than the type of z;. Let y be an
element of type n which is incident to z; (in particular, take x;, if the type
of z; is n), then y is incident to both z;_; and x;,; (the type of x;_; is
clearly smaller than the type of z;). Therefore  is homotopically equivalent
to the path xx,...x; 1yx;y1...2. Now pick two points z, w such that z
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is incident to x;.; and w is x; 1, if x; 1 is a point, or a point incident to
Zi 1, otherwise. Using Lemma 4.5 and Lemma 4.6 we can connect w and
z with a path ww;...wsz of only points and lines incident to y. Then -~y
is homotopically equivalent to xzy ...z;_jw; ... wzx; 49 ... x which contains
fewer elements that are not points and lines. O

We can therefore restrict our attention to the point-line incidence graph
of I' and, thus, to the collinearity graph of I.

The first step is the analysis of triangles (i.e., 3-cycles in the collinearity
graph). We will call a triangle (P, @, R) a good triangle if P, ), and R are
incident to a common plane of the geometry. Conversely, all triangles that
are not good are called bad.

Now we are to prove that all bad triangles are homotopically trivial, ¢.e.,
they can be decomposed into good triangles or are contained in objects of I'
of higher rank.

Lemma 5.2. Let (P,Q, R) be a bad triangle. Then the plane (P,Q, R) con-
tains a 1-dimensional radical with respect to ((-,-)).

Proof. It is clear that the plane II = (P, @, R) is totally isotropic with
respect to (+,-). Since P, @, R is a bad triangle, II is degenerate with repect
to ((-,-)). Also, the rank of II with respect to ((-,-)) is at least two (it
contains the nondegenerate projective line (P, @Q))), so the radical is obviously
1-dimensional. O

Lemma 5.3. Every bad triangle (P, Q, R) can be decomposed as a product of
two (bad) triangles in which two of the vertices are perpendicular with respect

to ((-,-))-

Proof. If two of P, Q and R are already perpendicular with respect to
((+,-)), then there is nothing to show. So assume that no two of P, ) and R
are perpendicular with respect to ((-,-)). Let X be the radical of the plane
(P, @, R). Consider the unique projective point S of the line (P, Q) such that
RALS. It is sufficient to prove that S is a point of I'. Suppose it is not, then
(R,S) = SN (P,Q, R) and so it contains X. Since (P, Q) is a line of ', X
is not contained in (P, @), yielding that X # S. Therefore (R, S) = (X, 5)
is a totally isotropic space with respect to ((-,-)) containing R, contradicting
the fact that R is a point of I'. Hence (P, R,S) and (@, R, S) are triangles
as required. O
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Lemma 5.4. Let (P,Q, R) be a bad triangle with P1L.Q) and let X be the
radical of the plane (P,Q, R). If X = X, then we can find a canonical basis
€1y-vesCny f1y-eosfn of V' for o such that (P,Q, R) equals ({e1), (ea), (xe; +
yes + (ces + f3))) with cc = —1 and zy # 0 and zz + yy # 0.

Proof. Choose a canonical basis eq,...,e,, fi,..., f, of V such that P =
<€1>, Q = <€2>. Then X € U := <€1, €2>J'r\| <€1,€2>LL = <€1,€2, fl; f2>iL, which
is a nondegenerate space with respect to both forms. Pick a,a’ such that
ad = —1 = d'@’ and a # a/. Then the vectors ez + af3,e3 +d'f3,..., e, +
afn,en+d f, are isotropic with respect to ((+,+)) and they form a basis of U.
Furthermore, every vector from this basis spans a o-invariant 1-dimensional
subspace. The radical X cannot be orthogonal to all of these vectors, so
there exists one vector u in this basis such that ((u, X)) # 0. The space
(u, X') is nondegenerate and o-invariant so it will contain a vector e such
that ((e,e)) = 1 and therefore (u, X) = (e,e”). Chosing a new canonical
basis of U starting with e we can assume that the bad triangle is contained
in the space (e, 9, €3, f3) and X = (ce3 + f3). The conditions on z, y and ¢
as in the statement of the lemma can now be verified. O

For the rest of this section assume n > 4.

Proposition 5.5. Let (P,Q, R) be a bad triangle. Then the triangle is ho-
motopically trivial.

Proof. By Lemma 5.2, the plane (P, @, R) has a 1-dimensional radical X
(with respect to ((+,+)))-

Suppose X = X?. By Lemma 5.3 and Lemma 5.4 we can assume that our
triangle has the form P = (e1), Q = (e2), R = (ve1 + yes + (ce3 + f3)) where
cc = —1 and zZ + yy # 0. (Here, as usual, ey, ..., f, is a canonical basis.)
Now one can add to P, @) and R the point (es) and form a tetrahedron in
which all triangles but the initial one are good.

If X # X, then consider the line L = PQ of I'. Let V' = L* N
(L7)*. Then V' is a nondegenerate o-invariant subspace of dimension 2n—4.
Moreover, X € V'. Nondegeneracy of V' and the fact that X # X7 imply
the existence of a vector v € V' with (v, X) =0 and ((v, X)) = (v, X?) = 1.
Hence (X,v) is a line of ', and (P, @, X, v) is totally isotropic with respect
to (-,-) and nondegenerate with respect to ((-,-)), whence it is an object of
[ containing the triangle (P, Q, R). a

The next task is proving that all quadrangles are homotopically trivial.
Recall that if a subspace U is o-invariant then U+ = U and, in particular,
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U is nondegenerate with respect to (-,-) if and only if it is nondegenerate
with respect to ((-,)).

Lemma 5.6. If U is a o-invariant nondegenerate subspace of V' of dimen-
ston 2k > 4 and P s a point of I, then P 1is collinear with a point of U or
2k =4 and q = 2.

Proof. Consider the decomposition V = U ® U*+. Let P, € U be the
projection of P onto U (with respect to this decomposition). If we find a
point Q of T'in Pt N P N U, then we are done. Indeed, Q L P, QP
implies @ L P, QL1LP by our choice of the projection. In particular this
holds, if & > 2; then 2k —2 > k and PN P NU cannot be totally isotropic.
(Notice, that we are also done, if P; itself is nonsingular with respect to
(())-)

Thus, consider the case k = 2. The space U N P is 3-dimensional and
has rank at least two with respect to ((-,-)). Choose a projective line L of
((+,+))-rank two in U N Pit. Notice that P L L, whence by Lemma 4.3, the
projective line L contains ¢ — 2¢ — 1 points of I' collinear to P, giving at
least one, if ¢ > 2. O

A pair P, @ of points of I will a be called solid if the space P+ N P+ N
Q+ N Q* is nondegenerate.

Lemma 5.7. Let A, B be two distinct points of I' with B ¢ (A, A?). The
pair A, B is solid if and only if the projection of B onto (A, A°)L (via the
decomposition V = (A, A%) & (A, A%)*) is nonsingular.

Proof. Let B' = pri, 40y1(B) be the projection of B onto (A, A%)*. Notice
that B’ # 0. We have (A, A%, B) = (A, A%, B') which is of rank three with
respect to ((-,-)) if and only if B’ is nonsingular with respect to ((-,-)). But
if the rank of this space is three, then the rank of (A, A%, B, B?) has to be
four, since its radical with respect to ((-, -)) equals the radical with respect to
(+,+) and it contains a subspace of rank three with respect to ((-,+)). (Notice
that an alternating form always has even rank.) This settles the ‘if’ part of
the lemma.

Now, suppose B’ is singular with respect to ((-,-)). Then (A, A”, B, B?) =
(A, A° B',(B')?) and B’ is obviously contained in the radical of the latter
space. O

Lemma 5.8. Ifn > 5 orn =4 and q # 2, any quadrangle (P, Q, R, S) with
a solid pair P, R is null homotopic.
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Proof. Assume P, R is a solid pair and let U = P+ N P+ N RN R
Then U is a o-invariant nondegenerate (2n — 4)-dimensional subspace and
all points of I in U are collinear to both P and R. By Lemma 5.6, () and S
are collinear to points in U unless n = 4 and ¢ = 2. Also, because of Lemma
4.5 and Lemma 4.6, the intersection of U with the geometry [' is connected
unless n = 4, ¢ = 2. This finishes the proof. O

Proposition 5.9. If n > 5 orn = 4 and q # 2, then any quadrangle is
homotopically trivial.

To prove this proposition we will need some facts from linear algebra:

Lemma 5.10. Let n > 2, ¢ > 3 and let W be an F 2 -vector space of dimen-
ston n. Suppose fi1 and fy are two nontrivial Hermitian forms on W. Then
there exists a vector of W which is nonsingular with respect to both fi and

fo-

Proof. First suppose that f is a Hermitian form on W and L is a 2-
dimensional subspace in W that is not totally singular with respect to f.
Then if L is nondegenerate with respect to f then out of the total number
of ¢> + 1 1-dimensional subspaces of L exactly ¢ + 1 are singular. Similarly,
if f has rank one on L then L contains exactly one singular 1-dimensional
subspace.

Now, since f; is nontrivial, any f;-singular 1-dimensional subspace of W
is contained in a 2-dimensional subspace L which is not totally isotropic
with respect to fi. If L is not totally isotropic with respect to f», then it
contains at least ¢> +1—¢—1— ¢ — 1 > 2 1-dimensional subspaces that are
nonsingular with respect to both f; and f,. On the other hand, if any such
L is totally isotropic with respect to fs, then every 1-dimensional subspace
that is singular with respect to fi, is also singular with respect to f,. But
since fo is nontrivial on W, there exists a vector that is nonsingular with
respect to fo, and hence with respect to fi, too. O

Lemma 5.11. Let n > 3, ¢ > 3 and let W be an Fp2-vector space of di-
mension n. Suppose fi, fo and f3 are three nontrivial Hermitian forms on
W, and, furthermore, assume that f, is nondegenerate. Then there exists a
vector of W which is nonsingular with respect to all three forms.

Proof. Since f; is nondegenerate and since n > 3, any 1-dimensional
subspace singular with respect to f; is contained in a 2-dimensional subspace
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L of fi-rank one. Notice that L contains exactly ¢ 1-dimensional subspaces
that are nonsingular with respect to f;. If L is not totally isotropic with
respect to both f, and f3, then there are at least ¢> —¢q—1—-¢—1>1
1-dimensional subspaces that are nonsingular with respect to all three forms.

Therefore, suppose that any such subspace L is totally singular with
respect to either f, or f;. This means that every fi-singular 1-dimensional
subspace is singular with respect to fy or f;. However, by Lemma 5.10,
there is a vector w € W that is nonsingular with respect to both fy and fs.
Consequently, w is also nonsingular with respect to fi. O

Proof of Proposition 5.9. Let (A, B,C, D) be a quadrangle. In view of
Lemma 5.8, we may assume that both pairs A, C' and B, D are not solid.

Assume first that ¢ # 2. The space U = (A, B, A, B°)* is nondegenerate
of dimension 2n — 4. We want to find a point X of I' in U that forms a
solid pair with both C' and D. Besides ((+,+)), consider two more forms
fo(u,v) = ((u',v")) and f3(u,v) = ((u”,v")) where ', v" are the projections
of u and v to (C, C?)* and u", v" are the projections of u and v to (D, D7)+
as in Lemma 5.7. We remark that both f; and f; are nontrivial. For example,
for f,, it suffices to see that the image of the projection of U to (C,C%)*
cannot be totally isotropic. Let pr; and pr, be the projections to (C, C?) and
(C,C7)*, respectively. If pry(U) is totally isotropic then pry is isometric on
U. In particular, U N (C,C?)* is in the radical of U, a contradiction. Thus
f1 and f, are nontrivial.

By Lemma 5.11, with f; = ((,-)), there exists a point X of I' such that
its projections onto both (C,C°)* and (D, D°)! are nonsingular. Hence,
by Lemma 5.7, the point X forms a solid pair with both C' and D, as we
wanted. Now, let W = (C, D, (C?, D?)+, which is also of dimension 2n — 4
and nondegenerate. By Lemma 5.6, W contains a point Y of I collinear to
X.

We have accomplished the following: the quadrangle (A, B,C, D) has
been decomposed into the triangles (A, B, X), (C, D,Y") and the quadrangles
(C,B,X,Y), (A,D,Y, X), both of which contain a solid pair.

It remains to deal with ¢ = 2, in which case n > 5. Recall that for
g = 2 two points are collinear if and only if they are perpendicular with
respect to both forms. In particular, B and D are in U = (A, A, C,C°)*.
Since A, C' is not a solid pair, W = (A, A%, C,C?) is singular and hence
it has rank two with respect to either form. If dimW = 3 then U has di-
mension at least seven and rank at least six. It now follows from Lemma
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4.7 that the set of points of I' contained in U is connected with respect to
collinearity. Hence (A, B,C, D) can be decomposed into triangles. Hence,
let us assume that W has dimension four and rank two. Then U has dimen-
sion six and rank four. By Lemma 3.5, U contains a o-invariant subspace
Up complementing the radical of U. Choose points B’ € Uy N ((B, B%)*)
and D' € Uy N ({(D,D°)+). Then (A, B,C, D) decomposes as a product of
(A, B',C,D') and four triangles. Since B" and D’ are contained in Uy, they
either form a solid pair or (B', (B')?, D', (D')?) is 3-dimensional of rank two.
In either case, (A, B',C, D') is known to be null-homotopic. O

Finally, the decomposition of pentagons is now easy:

Proposition 5.12. If n > 5 orn = 4 and q # 2, then any pentagon is
homotopically trivial.

Proof. Let (A, B,C, D, E) be a pentagon. Consider U := (A, B, A%, B?)*
of dimension 2n — 4, which is nondegenerate with respect to both forms. By
Lemma 5.6, the point D is collinear to a point F' of I' inside U, decomposing
the pentagon into triangles and quadrangles. O

We can summarize the results of this section as follows. Suppose n > 4
and (n,q) # (4,2). Then the diameter of the collinearity graph of I' is
two and 3-, 4- and 5-cycles are null-homotopic. This implies the following
theorem.

Theorem 5.13. If n > 4 then the geometry I' is simply connected, unless
(n,q) = (4,2). a

We remark that it is unknown to us whether the case (n,q) = (4,2) is a
true exception.

6 Simple connectedness, Part 11

In this section we assume n = 3. We will prove that the geometry I' is simply
connected for ¢ > 8. As usual e, ..., f, is a canonical basis.

Lemma 6.1. Let (P,Q, R) be a bad triangle and let X be the radical of the
plane (P,Q, R) with respect to ((-,-)). Then X7 = X.
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Proof. Suppose X7 # X. Then the (-, -)-totally isotropic planes (P, Q, R)
and (P?,Q7,R’) do not intersect. Indeed, if they did, then the the rad-
ical of (P,Q, R) were contained in the intersection. Hence, by symmetry,
(P,Q,R) N (P?,Q°, R°) had to contain the two space (X, X?), which on
one hand were contained in the radical of (P, @, R) and on the other hand
is totally isotropic with respect to ((-,-)), contradicting the fact that the
rank with respect to ((-,-)) of (P,Q, R) equals two. Consequently, V =
(P,Q,R,P°,Q°, R%), which has a radical with respect to (-, -) containing X,
contradicting nondegeneracy of (-, -). O

In view of this lemma and of Lemmas 5.3 and 5.4 the bad triangles we
need to deal with are very restricted.

Lemma 6.2. Let (P, (Q, R) be the bad triangle ({e1), (es), (xe1 + yes + (ces +
f3))) with c¢ = —1 and vy # 0 and xT + yy # 0. Furthermore, assume that
2 £ Lor2, yg#1or2, zx+yyg#1or2 (zz—1)(xzx+yy—1) # 1,
(yy — 1)(zz +yy — 1) # 1. Then (P,Q,R) can be decomposed into good
triangles.

Proof. Consider the plane (fi, fo, f3) and fix the points A = (f3), B =
(—xfs + cf1), C = (—yfs + cfz). These are uniquely determined by the
conditions that A L (P,Q), B L (Q,R) and C' L (P, R).

Notice that A, B,C are points of I' if and only if zZ # 1 and yy # 1
which is satisfied by assumption.

The projective lines AP, AQ, BQ, and C'P are lines of I' because the two
points on them are perpendicular with respect to ((-,-)). Also AB and AC
are in fact the projective lines (fi, f3), respectively (fs, f3), so they are lines
of I'.

Next we have to investigate the conditions under which the projective
lines BC, BR, and CR are lines in I'. We need to see that ((-,-)) is non-
degenerate on each of these 2-dimensional spaces, so we will investigate the
Gram matrices and find their determinants.

In the case of BC' we get

zx —1 Ty _ _
det _ - = —xx —yy + 1.

( vy yy—1 ) i
The space BR yields

xr —1 - _ - _
det ( R, ) =(zz—1)(xzz+yy—1)— 1.
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In the case of C'R we get

yy—1  —y _ o
det ( —§ zE+yy ) =(yyg—1)(zz+yyg—1)— 1.
Now we compute conditions such that (A, B,C), (A, B,Q), (A,C,P),
(A, P,Q), (B,C,R), (B,Q, R), and (C, P, R) are good triangles. Notice that
the triangles (A, B,C), (A, B,Q), (A, P,Q), and (A, C, P) are automatically
good.
Moreover, the case of (B, @, R) gives

zx—1 0 —x
det 0 1 Yy = 2T (2T — 2).
- Yy zTH+Yy
In the case of (B, C, R) we get
xx — 1 Ty -
det Ty  yy—1 —y = (zx + yy)(2 — 2T — yy).
—Z -y  TT+ Yy
Finally, for (C, P, R) we have
yy—1 0 -y
det 0 1 T = yy(yy — 2).

—y T TT+yy

This gives us exactly the conditions contained in the hypothesis of the
lemma. O

Lemma 6.3. Let ¢ = p°® and let ¢,d € Fp2 such that cc = —1, d # 0. Then
the system of equations xT + yy = 1 and T — yc = d has exactly q solutions.

Proof.  The pair (z,y) is a solution of the first equation if and only if

Y
the first equation are parametrized by the elements of the group SU(2, ¢%).
Observe that

the matrix A, , = < o _jy ) has determinant one, thus the solutions of

(¢, 1)Azy = (zc+y, 7 — yc) = (cm, T — gc) :
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Therefore two pairs (x,y), (¢',y') are solutions for the system of equations if
and only if the matrix Aw,yA;,fy, stabilizes the vector (¢, 1) which is of norm
0 with respect to the unitary form. The stabilizer of such a vector is the p-
Sylow subgroup of the unitary group. So, if the above system has a solution,
then it has exactly ¢ solutions, for a fixed d. Since the order of SU(2,¢?) is
q(q*> — 1), the above system has ¢ solutions for each d # 0. (Indeed, there
are ¢* — 1 possible d’s.) O

Proposition 6.4. Let ¢ > 8 and let (P,Q, R) be a bad triangle. Then the
triangle can be decomposed into good triangles.

Proof. Let X be the radical of the plane (P, Q, R). By the preceding
lemma we have X = X?. Now, by Lemmas 5.3 and 5.4, we can assume
(P,Q,R) = ({e1), (e2), (we1 +yea+ (cez + f3))) satistying cc = —1 and zy # 0
and zT + yy # 0. It is enough to show that this triangle is conjugate to a
triangle satisfying the hypothesis of Lemma 6.2.

Let g € G, fixing ey, ey, f1, fo pointwise. Then Lemma 6.3 shows that,
for any nontrivial d € F,2, the element g can be chosen such that (ces +
f3)? = d(c%es + f3), and we have conjugated (P,Q,R) to (P9,Q9 RY) =
({e1), (e2), (e + Yea + (ces + f3)).

It remains to be seen that we can pick d such that 2’ = 2, y' = & satisfy
the conditions of 6.2. Then, by that lemma, we can decompose (P?,Q9, R9)
(and hence its conjugate (P, @, R)) into good triangles. Notice that zy # 0
if and only if £% # 0, and c¢ = —1 if and only if c% (c%) = —1. The same
holds for the condition xZ + ygy # 0.

If there are seven different non-zero values of dd in F,, then we are able
to modify zz and yy (to &% respectively Z—%) such that the conditions zZ # 1,
xT # 2,9y # 1, yy # 2, 2z +yy # 1, & + yy # 2 are satisfied for the
modified parameters. Furthermore, if there are four more values of dd, we
can additionally modify Z and yg for (xz—1)(zz+yg—1) # 1, (yg—1)(2Z+
yy — 1) # 1 to hold. This is the case for ¢ > 13, which leaves ¢ € {8,9,11}.
A straightforward check by hand or in GAP will show that any pair zz, yy
can be scaled by dd to satisfy all conditions. O

Now we will shift our attention to quadrangles. By the preceding results,
it is enough to decompose quadrangles into triangles, regardless whether they
are good or bad. Notice that if in a quadrangle (A, B,C, D) we have that
A and C (or B and D) are collinear then this quadrangle is immediately
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decomposed into two triangles. We call (A, B, C, D) special if (A, C) is non-
degenerate with respect to both forms (-,-) and ((-,-)).

Lemma 6.5. Let ¢ > 5. Then any quadrangle can be decomposed into tri-
angles and special quadrangles.

Proof. Consider an arbitrary quadrangle (A, B,C, D). Without loss of
generality we may assume that B and D are noncollinear. Pick an arbitrary
point S € X = AL N BY N DY The point S exists because X is not
totally isotropic with respect to ((-,-)), being a 3-space contained in the
nondegenerate 5-space AX. The projective line L = (A, S) has rank two
with respect to ((-,-)). Using Corollary 4.4, L contains at least ¢* — 2¢ — 1
points of I that are collinear with B, respectively D, and at least ¢*> —2¢ — 1
points of [' that generate a nondegenerate 2-space with C. Since ¢ > 5 and
since L contains ¢? — ¢ points of I', the space L has to contain a point P of I’
that generates a nondegenerate 2-space with C' and that is collinear to both
B and D. Clearly (A, B,C, D) decomposes as a product of (A, B, P, D) and
(C,B,P,D). If (A, P) = 0 then (A, P) is a line, implying that (A, B, P, D)
decomposes into triangles. Otherwise, (A, B, P, D) is special. Similarly, for
(C, B, P, D). 0

Proposition 6.6. Let ¢ > 7. Then any quadrangle can be decomposed into
triangles.

Proof. Denote the quadrangle by (A, B,C, D), as in the proof of the
preceding lemma. By that lemma, we can assume that (A, C') # 0 and that
(A, C) is nondegenerate with respect to ((+,-)). Set W := A+ N C* and
Uy :=WnB* and Uy := W n D

If L =U,NU, is of rank two with respect to ((-,-)), then we can apply
Lemma 4.3 to the planes (A, L), (B, L), (C, L), and (D, L) to obtain ¢*—5¢—4
points of I' on L collinear to all of A, B, C', D. Notice that this is a positive
number for ¢ > 7.

Suppose now that L = Uy N U, is of rank one. Then the plane (B, L)
has rank at least one. However, it cannot have rank one, since it lies inside
the ((-,+))-nondegenerate 4-dimensional space A+ N B+ = (A%)* N (B7)*,
Indeed, a 2-dimensional radical would be maximal totally isotropic inside
A+ N B+ and could not have a polar of dimension three. Similar arguments
hold for the points A, C, D instead of B. Applying Lemma 4.3 as in the
above paragraph gives a point of I" collinear to all of A, B, C, D.
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Suppose now L is totally isotropic with respect to ((-,-)). Then L has to
contain the radicals R; and Ry (with respect to ((+,-))) of the planes U; and
U,. These radicals cannot coincide as otherwise we would obtain a radical
for the ((-,-))-nondegenerate space A+ N C+. Notice that Ry N U; = BR,.
Choose a line of I' through B inside U;. (This exists since the rank with
respect to ((+,-)) of U; is two.) This line contains a point P collinear to both
A and C, by Lemma 4.3. Now P+ N W intersects U, in a line that does not
contain Ry. Hence its rank with respect to ((-,-)) is two. The arguments
given in the second paragraph of this proof settle the claim. O

As in the n > 4 case, pentagons are easy to handle.
Proposition 6.7. Let ¢ > 5. Then any pentagon s null homotopic.

Proof. Let (A,B,C,D,FE) be a pentagon. Consider the space U :=
(A, B, D)* of dimension three. Its rank with respect to ((-,-)) has to be at
least two, as the rank of (A, B) is two. Choosing a ((-,-))-nondegenerate
projective line L in U and applying Lemma 4.3 in turn on the planes (A, L),
(B,L), (D,L), we will find ¢* —2¢—1—-q¢—-1—-¢q¢—1=¢*—4¢g—-3 >0
points on L collinear to all of A, B, D, decomposing the pentagon. O

We summarize the results of this section as follows.
Theorem 6.8. If n =3 and g > 8 then I" is simply connected. O

It is easy to see that I" is not simply connected if (n, ¢) = (3,2). We do not
know whether this is the case for 7 > ¢ > 3. In order to prove our claim let P
be any point of I'. Then all points collinear to P are contained in P+ N P,
because ¢ = 2. The subspace P+ N P is not connected by Lemma 4.6. Let
A and B be points contained in distinct connected components of P+ P
Consider an arbitrary cycle consisting of A, P, B, and points at distance
at least two from P (e.g., A, P, B, P?). This cycle is not null-homotopic,
because A, P, B do not admit a common neighbor and are not contained in
a plane of I'.

We completed the proof of the Main Theorem. Indeed, part (1) of the
Main Theorem follows from Propositions 3.8 and 4.2. Part (2) follows from
Theorem 4.7 and Corollary 4.8. Finally, part (3) is proved in Theorems 5.13
and 6.8.
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7 Consequences of simple connectedness
In this section we prove Theorems 1, 2, 3, and 4. Throughout this section,
n > 3.

In the present paper an amalgam A of groups is a set with a partial
operation of multiplication and a collection of subsets { H;};c;, for some index
set I, such that the following hold:

(1) A= UiesHi;
(2) the product ab is defined if and only if a,b € H; for some i € I;

(3) the restriction of the multiplication to each H; turns H; into a group;
and

(4) H;N Hj is a subgroup in both H; and H, for all i,j € I.

It follows that the groups H; share the same identity element, which is then
the only identity element in A, and that ™! € A is well-defined for every
a € A. We will call the groups H; the members of the amalgam A. Notice
that our definition is a special case of the general definition of an amalgam
of groups as found, say, in [6].

A group H is called a completion of an amalgam A if there exists a map
m: A — H such that

(1) for all i € I the restriction of 7 to H; is a homomorphism of H; to H;
and

(2) m(A) generates H.

Among all completions of A there is one “largest” which can be defined as
the group having the following presentation:

U(A) = (tn | h € A, t,t, =t,, whenever zy = z in A).

Obviously, U(.A) is a completion of A since one can take 7 to be the mapping
h + t,. Every completion of A is isomorphic to a quotient of U(A), and
because of that U(A) is called the universal completion.

Suppose a group H < Aut[ acts flag-transitively on a geometry I'. A
rank k parabolic is the stabilizer in H of a flag of corank £ from I'. Parabolics
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of rank n — 1 (where n is the rank of I') are called mazimal parabolics. They
are exactly the stabilizers in H of single elements of I'.

Let F' be a maximal flag in ', and let H, denote the stabilizer in H
of z € T. The amalgam A = A(F) = Ugep H, is called the amalgam
of maximal parabolics in H. Since the action of H is flag-transitive, this
amalgam is defined uniquely up to conjugation in H. For a fixed flag F' we
can also use the notation M; for the maximal parabolic H,, where z € F
is of type i. (We defined this notation in the introduction.) For a subset
J I ={0,1,...,n — 1}, define M, to be N;c; M;, including My = H.
Notice that M is a parabolic of rank |I'\ J|; indeed, it is the stabilizer of the
subflag of F" of type J. Similarly to A, we can define the amalgam A(,) as the
union of all rank s parabolics. With this notation we can write A = A(,_1).
Moreover, according to our definition, A,y = H.

Now we need to define coverings of geometries. Suppose I' and [ are
two geometries over the same type set and suppose ¢ : I - I is a mor-
phism of geometries, i.e., ¢ preserves the type and sends incident elements
to incident elements. The morphism ¢ is called a covering it and only if for
every non-empty flag . Fin T the mapping ¢ induces an isomorphism between
the residue of F in I' and the residue of F = ¢(F) in I'. Coverings of a
geometry correspond to the usual topological coverings of its flag complex.
In particular, a simply connected geometry (as defined in Section 5) admits
no nontrivial covering.

The notion of coverings can also be defined in the more broad context
of chamber systems. In this context one can define more general notions
of k-coverings and k-simple connectedness. A chamber system is k-simply
connected if and only if it has no proper k-coverings. Unfortunately, it is
conceivable that a k-cover of a geometry is not a geometry. Still the following
claims can be made: A morphism ¢ : I T of geometries is a k-covering,
if for any flag F of corank at most k of I, the induced mapping from the
residue of F' onto the residue of O(F ) is an isomorphism. Consequently, if
n is the rank of a geometry I', then the coverings of I' are precisely the
(n—1)-coverings of I'. If a connected geometry is k-simply connected then it
admits no proper k-coverings. Also, every k-covering is a (k —1)-covering and
(k — 1)-simple connectedness of a geometry implies k-simple connectedness.

Proposition 7.1 (Tits’ Lemma). Suppose a group H acts flag-transitively
on a geometry I' and let A be the amalgam of mazimal parabolics associated
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with some maximal flag F'. Then H is the universal completion of the amal-
gam A if and only if ' is simply connected.

Proof. Follows from [7], Corollaire 1, applied to the flag complex of I'. O

In case of I' = I, and H = G, (cf. Section 4), the Main Theorem and
Tits’ Lemma imply that H is the universal completion of A unless (n, ¢) one
of (3,2), (3,3), (3,4), (3,5), (3,7), (4,2).

Recall that the direct sum of two geometries I'y and [’y is defined as
follows. The type set (respectively, element set) of I'y @ I's is the disjoint
union of the type sets (respectively, element sets) of I'; and I'y. The incidence
relation on I'y @ I'y is the combination of the incidence relations on I'; and
['s and the condition that every element of I'; is incident with every element
of ['y.

To prove Theorem 1 we will need the following lemma.

Lemma 7.2. Assume that ¥ = ¥ @ Yo with X1 connected of rank at least
two. Then X is simply connected.

Proof. Certainly, ¥ is connected. Choose a base point x € ¥;. We first
prove that any cycle originating at = is homotopic to a cycle fully contained
in ¥;. Let zx,...2,_12 be a cycle. Proceed by induction on the number of
elements on the cycle which are not in ;. Suppose x; is the first element in
the cycle which is not in ¥;. Let y € ¥ such that y # z,,, and y is incident
with ,,1. (Recall that ¥; has rank at least two.) Notice that y is incident
with zs. Since the residue of zy contains X;, we can connect z,_; with y
via a path xs_1y;...yr_1y fully contained in ¥;. Furthermore, this path is
homotopic to the path z,_jx,y. Thus, our original path is homotopic to
the path xxy ... x5 1y1 ... Yp_1YTss1 ... T, 12. This path has fewer elements
outside X1, and our claim is proved.

Choosing an element z € ¥, we see that this z is incident to all elements
in Y1, so any cycle in ¥; is null homotopic. O

Proof of Theorem 1. Let s >2if¢>8,s>3if7>¢q > 3, and s > 4 if
q = 2. Suppose that n > s+ 1. We will proceed by induction and show that
the universal completion of A, coincides with the universal completion of
A(s+1)- Denote by Hy,) the universal completion of Ay).

Let J C I and |[I\J|=s+1. Let F; C F be of type J, so that M; is
the stabilizer of F; in H. Observe that the residue of F; (denoted by I';)
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is connected. Indeed, if ¢ > 2 then I' is residually connected by Corollary
4.8. In particular, I'; is connected. If ¢ = 2 then either the diagram of I'; is
disconnected, or the diagram is connected. In the first case, ['; is connected,
since the incidence on I' is defined as symmetrized inclusion. In the second
case, I'; is either our flipflop geometry of rank s 4 1, or the geometry as in
[1]. The connectedness follows from Theorem 4.7 and [1].

Observe also that ['; is simply connected. Indeed, either the diagram of
['; is disconnected, or it is connected. In the first case, the simple connectivity
follows from Lemma 7.2. The connectivity assumption in that lemma holds
because one of ¥; and ¥y has sufficient rank (rank at least two, if ¢ > 3,
and rank at least three, if ¢ = 2) to be connected. If the diagram of T';
is connected then I'; is simply connected by the Main Theorem (3) or [1],
depending on its diagram.

The universal completion H, 1) of A1) is also a completion of A).
Indeed, if n = s + 1, then Hy,) = H = G,, which certainly is a completion
of Aju—1). In case n > s + 1, the amalgam A1) is the union of all M;
with J of corank s + 1 and we have a map 7 : A1) — H(,41) such that
mm, © My — Hgy1y is a homomorphism. Consequently, also mja,nn,, -
M; N My — Hyq) is a homomorphism. It remains to show that the set of
all images 7(M; N Myr) with [I\(J U J')| = s actually generate H ). But
since ['; is connected, the group m(M;) < H(s41) is generated by all those
images for a fixed J (because the M; N M are maximal parabolics in Mj).
Thus, H(,1) is a completion of A, as it is generated by the m(Mj).

Therefore there is a canonical homomorphism ¢ from H) onto H,y1)
whose restriction to Ay, is the identity. Let ¢) be the inverse of the restriction
of ¢ to Ags). Let J C I be such that [T\ J| = s+ 1 and let M; be defined
as ((M; N Ag))). By simple connectedness of I'; and by Tits’ Lemma,
¢ induces an isomorphism of M; onto M,. Therefore, 1 extends to an
isomorphism of A1) C Hs41) onto

./Zl5+1 = U MJ C H(S).

JCIL|I\J|=s+1

Hence the universal completion of A, coincides with the universal comple-
tion of A(,11). The fact H(,) = G, finishes the proof. O

Notice that we actually proved that [' is 2-simply connected if ¢ > 8,
3-simply connected if ¢ > 3, and 4-simply connected if ¢ = 2, as claimed
after the statement of the Main Theorem in the introduction.
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Let {e,..., fn} be a canonical basis for 0. We will use the notation
T, L;, T; as introduced before Theorem 2 in Section 1. For the purposes of
proving that theorem, we will assume that the flag F' consists of the subspaces
(e1), (e1,e2), ..., (e1,...,e,). With respect to this basis, T consists of all
diagonal matrices diag(ay,...,an,a;’,... a; '), where each a; is of order
dividing ¢ + 1. Furthermore, T;, 1 < ¢ < n, consists of matrices from 7', for
which a; = aijrll = a;}ri = Qptit1, With all other a; equal to one. If ¢ = n
then a, = a,, and a; = 1 for all other j. Manifestly, 7" is the direct product
of all 7;’s.

Proof of Theorem 2. Let s =21if¢>38,s=31f{7>¢>3,and s =4
if ¢ = 2, and suppose that n > s + 1. Let H be the universal completion
of the amalgam A((’s). Let ¢ be the canonical homomorphism of H onto

H, that exists due to the fact that H is a completion of A((’s). Denote by
./Zl?s) the copy of A((’s) in H , so that ¢ induces an isomorphism of fl((’s) onto
A?s). As in the proof of Theorem 1, let v : A((’s) — fl?s) be the inverse of
¢|A0 . Additionally, define 7; = ¢(7T;) and T = (T},...,T,). Observe that
T, T < M?\{”} = (L;, L-> C AO Since 1 restricted to the latter group is

an isomorphism to (M 1\{1 ]}) the groups T; and T commute elementwise.
Because T is the direct product of T;’s, the map ¢ estabhshes an isomorphism
between T and T

Let J be a subset of I with |[I'\ J| = s. Observe that M, = MjT.
Accordingly, we would like to define M, as MIT, where MY = P(M3). For
this definition to make sense, we need to show that T normalizes M0 Assume
first that ¢ > 2. Since Ml0 is normal in M; and since T' < M;, we have that T’
normalizes all M; and therefore T' normalizes every L; = Njecp (i3 M J(-’. Observe
that 7; < L; and L;, L; < M?\{”} (Li, L;). Since 1 is an isomorphism
from .A ) to .A , the group T normalizes L; for all ¢ and j. It is clear
that M0 is generated by L;, i € I \ J. The same must be true for ]\40 and
L;’s. Therefore every T will normalize every M 9 which means that also T
normalizes M0 If ¢ = 2 the same result can be achieved by using MI\{Z.’J.}
in place of L;’s; recall that in this case we assume s = 4.

Since T normalizes M9 and since TN M9 = (Tj | j € I\ J) is isomorphic
(via @) to T'N MY, the map ¢ establishes an isomorphism between M; and
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My, and, thus, ¢ extends to an isomorphism

Ady= U M — Ay

JCIL|I\J|=s

Therefore, the universal completions of A, and A((’s) are isomorphic, and the
claim follows from Theorem 1. O

Recall from the introduction that A is the pregeometry on the nondegen-
erate proper subspaces of a nondegenerate 2n-dimensional symplectic space
V' with symmetrized inclusion as incidence where the type of a subspace
equals half its dimension.

Lemma 7.3. A is a connected geometry and the action of G, = Sp(2n,q)
on it 1s flag-transitive.

Proof. Let U; <--- < U, be a maximal flag. If the dimension of U; is not
2n — 2, then the dimension of U} is at least four and we can find a proper
nondegenerate 2-dimensional subspace U of Ut. But now U, @ U is still a
proper nondegenerate subspace of V and Uy < --- < U, < U; @ U is a flag
of A, a contradiction. Hence U; has dimension 2n — 2. Similarly one can
show that U;_; has codimension 2 in U; for 2 < ¢ < n — 1. Therefore, A is a
geometry.

Given any maximal flag U; < --- < U,,_1, we can choose a hyperbolic basis
{61,...,€n,f1,...,fn} of V such that Uz = <€17---7€i7f17---7fi>7 1 < <
n — 1. Flag-transitivity of the group Sp(2n,¢) now follows from transitivity
of Sp(2n, q) on the set of hyperbolic bases of V.

It remains to show connectedness of A. Let U and U’ be two nondegener-
ate 2-dimensional subspaces of V. If U and U’ are orthogonal then (U, U’) is
nondegenerate and so U and U’ are adjacent in the collinearity graph of A.
If U and U’ meet in a 1-dimensional space then (U, U’) is of dimension three
and rank two. Therefore it is contained in a nondegenerate 4-dimensional
space. Thus again U and U’ are adjacent. Finally if U and U’ are disjoint
and not perpendicular, we can find vectors u € U and u' € U’ such that
(u,u') is nondegenerate. Clearly the latter subspace is adjacent to both U
and U’ so they are at distance two. We have shown that the collinearity
graph of A has diameter two. In particular, it is connected. O

Corollary 7.4. A is residually connected. O
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Proof of Theorem 3. Suppose that n >4 andn > 5if ¢ =2 or 3. Let
B = Ui<i<n—1 H;. According to Tits’ Lemma, the conclusion of the theorem
is equivalent to U(B) = G,,. Let A = Ui<j<n, M; be, as before, the amalgam of
maximal parabolics related to the action of H = (G, on the flipflop geometry
I'. Let A" = Ui<i<n—1 M;. Then A’ is contained in B, since M; < H; for
1 <i<n-—1. The claim of the theorem will follow from the Main Theorem
(3) and Tits” Lemma, once we show that U(B) = U(A’) and U(A') = U(A).

We will start with the second isomorphism. Let H = U(A"). Let also 1 be
the canonical embedding of A’ into H and define M; = ¢(M;), 1 < i <n—1,
and A" = ¢)(A"). Notice that M, N A’ is the amalgam of maximal parabohcs
in M, acting on the residue I'g,y of I'. By [1], I'(,y is simply connected.
Therefore, w(M N A’) generates in H a subgroup M,, isomorphic to M,.
Clearly, A’ U M, is isomorphic to A and hence U(A) = U(A).

Turning to the isomorphism U(B) = U(A'), we let H = U(B) and let
¥ to be the embedding of B into H. We claim that 1 (A’) generates H.
Indeed, since A is residually connected (cf. the preceding corollary), any two
Y(H;) generate H. Take i = n—1orn—2 Then H; = L x R, where
L = Sp(2i,q) and R = Sp(2n — 2i,q). Observe that R < M; for 1 < j <1
and that Ui<j<; (L N M;) is the amalgam of maximal parabolics for L acting
on its corresponding flipflop geometry (of rank 7). Since that geometry is
connected, ¥(H;) < (¢(A)). Thus, ¢(A’) indeed generates H.

Consequently, H must be a quotient of U(A") 2 U(A) = H. Since also,
H is isomorphic to a quotient of H, we finally obtain U(B) = H = U(A’). O

Proof of Theorem 4. Let s =2ifq¢ > 4and s = 3 if ¢ = 2 or 3.
Let B, be the subamalgam of B (see the proof of Theorem 3) consisting
of all rank s parabolics. As in the proof of Theorem 1, we can show that
U(Bi)) 2 H = G,. (Like before, this also implies 2-simple connectedness,
respectively 3-simple connectedness of A, as claimed after Theorem 3 in the
introduction.) Since the union of any three (four, if ¢ = 2 or 3) H; contains
By and since H; N B, generates H; for all ¢, we are done. O

Finally, the claim after Theorem 4 can be proven as follows. Let H; =
NicsH;. By Theorem 4, the amalgam of rank three parabolics (i.e., the
amalgam of all subgroups H; with |I \ J| = 3) has G, as its universal
completion. The only rank 3 parabolic that cannot be found inside the
amalgam Hy U H; U H,,_ is Hpf1,ip—1). Sincen > 5,i #2ori#n—2. In
the first case Hjp\{1,i,—1} is isomorphic to Hp g1y X Hpfi,n—1y. In the second
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case it is isomorphic to Hy (14 X Hp\(n—1y. Let us assume we are in the first
case. By connectivity (see Lemma 7.3), the rank two parabolic Hp\ f;n—1y is
generated by the two minimal parabolics Hp ;) and Hp p,—1;. It remains to
notice that both Hp 1y and Hj\ ;) are contained in H,_;, while both Hp 1)
and Hpy,_1) are contained in H;. So Hp 1,1y does not contain any new
relations.
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