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Abstrat

In the present artile we demonstrate that there is a relation between

the Curtis-Tits theorem and Phan's theorems that goes well beyond the

similarity in appearane. In partiular, we present a geometri onstru-

tion onneting those theorems and suggesting that Phan's theorems an

be thought of as \twisted versions" of the Curtis-Tits theorem. The on-

strution itself further suggests that Phan's theorems are only some of

many possible suh theorems. We make this expliit by presenting a new

Phan-type theorem for the sympleti groups.

The work disussed in this artile began as an attempt to provide a

omplete and lear proof of Phan's �rst theorem, together with a desire

for a more geometri proof of the Curtis-Tits theorem. We were surprised,

however, to �nd that our onstrution led to a unifying point of view on

these two theorems, an unexpeted bonus. Another remarkable observa-

tion is that the geometri onstrutions do not seem to depend on the

�niteness of the �eld or the spheriality of the diagram. So the present

artile may be of interest not only to �nite geometers and �nite group-

theorists but also to people interested in nonspherial twin buildings and

Ka-Moody groups.

1 Introdution

Geometri methods in (�nite) group theory have made tremendous advanes

sine the lassi�ation of �nite simple groups was �rst announed by Gorenstein.

These methods have proven fruitful in simplifying some of the arguments needed

in the lassi�ation. In partiular, the onnetion between the universal over of

ertain geometries and the universal ompletion of related amalgams an be used

to simplify the identi�ation of groups, onsidered as groups of automorphisms

of these geometries.

An important step of the lassi�ation of �nite simple groups as well as

the revision of the lassi�ation, pursued by Gorenstein, Lyons, Solomon and

others, is the identi�ation of the \minimal ounterexample" with one of the

known simple groups. This follows the step of the loal analysis. At this step,

inside the minimal ounterexampleG one reonstruts one or more of the proper

subgroups using the indutive assumption and available tehniques. Thus the

initial point of the identi�ation is a set of subgroups of G that resemble the
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subgroups of a entral extension

^

G of some known simple group (referred to as

the target group). The output of the identi�ation step is the statement that

G is isomorphi to a quotient of

^

G. Two of the most widely used identi�ation

tools are the Curtis-Tits theorem and Phan's �rst theorem.

The Curtis-Tits theorem allows the identi�ation of G with a quotient of

a universal Chevalley group

^

G of twisted or untwisted type provided that G

ontains a system of subgroups idential to the system of appropiately hosen

rank two Levi fators of

^

G. In partiular in the ase of the diagram A

n

, the

system in question onsists of all the groups SL(3; q) and SL(2; q) � SL(2; q)

lying in

^

G blok-diagonally.

Phan's �rst theorem deals with the ase

^

G = SU(n+1; q

2

) and the system of

blok-diagonal subgroups SU(3; q

2

) and SU(2; q

2

)�SU(2; q

2

). Thus Phan's the-

orem appears to be similar to the Curtis-Tits theorem in the ase A

n

. However,

unlike the ase of A

n

, the blok-diagonal SU(3; q

2

) and SU(2; q

2

) � SU(2; q

2

)

are not Levi fators in SU(n+1; q

2

), so Phan's theorem is not a speial ase of

the Curtis-Tits theorem.

It is one of the purposes of this paper to demonstrate that the relation be-

tween the Curtis-Tits theorem and Phan's theorem goes beyond a simple simi-

larity in appearane. To this end we present a geometri onstrution revealing

a deeper onnetion between these theorems. Our onstrution suggests that

Phan's theorem is a \twisted" version of the Curtis-Tits theorem. Furthermore,

from the point of view of this onstrution, Phan's theorems are just some of

many possible Phan-type theorems. We stress this point by presenting a new

suh theorem dealing with the ase

^

G = Sp(2n; q) and a system of semisimple

subgroups of rank two whih again are not Levi fators (f. [GHSh℄). Moreover,

the presented methods do not seem to depend on the �niteness of the �eld or

the spheriality of the diagram. In fat, there already exists a Curtis-Tits-type

theorem for ertain Ka-Moody groups (f. [M℄), and we believe it to be an

interesting problem to prove a Phan-type theorem for a suitable Ka-Moody

group.

The struture of the paper is as follows. In Setion 2 we introdue some

notions from the areas of syntheti geometry, hamber systems and amalgams

of groups. In Setion 3 we disuss the proof of Phan's theorem from [BSh℄. In

Setion 4 we introdue the language of buildings and twin buildings and present

an overview of M�uhlherr's geometri proof of the Curtis-Tits theorem from [M℄.

Finally in Setion 5 we present our onstrution, disuss the new Phan-type

theorem for Sp(2n; q) from [GHSh℄, and propose more examples. Along the

way we pose a number of open problems.

2 Geometries and amalgams

2.1 Geometries

A pregeometry over I is a set of elements � together with a type funtion t and

a reexive and symmetri inidene relation �. The type funtion maps � onto
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the type set I , and for any two elements x; y 2 � with x � y and t(x) = t(y) we

have x = y. A ag in � is a set of pairwise-inident elements. Notie that the

type funtion injets any ag into the type set. A geometry is a pregeometry

suh that t indues a bijetion between any maximal ag of � and I .

The residue res

�

(F ) of a ag F in a geometry � is the set of elements from

� n F that are inident to all elements of F . It follows that the residue res

�

(F )

is a geometry with the type set I n t(F ). The rank of the geometry � is the

ardinality of its type set I . We will only onsider the ase where I is �nite.

The rank of the residue of a ag F is alled the orank of F . The geometry � is

onneted if the graph with vertex set � and edges given by � is onneted. In

what follows all the geometries that we onsider are onneted. The geometry

� is residually onneted if the residue in � of every ag of orank at least 2 is

onneted. (Note that the property that the residue of every ag of orank 1

be non-empty|whih usually is required as well for the de�nition of residual

onnetedness|follows from the fat that � is a geometry.)

An automorphism of a geometry � is a permutation of its elements that

preserves type and inidene. The group of all automorphisms of � will be

denoted by Aut �. A subgroup G � Aut� ats ag-transitively on � if it is

transitive on the set of maximal ags (stritly speaking hamber-transitively, but

the notions of ag-transitivity and hamber-transitivity oinide for geometries).

A geometry that possesses a ag-transitive automorphism group is also alled

ag-transitive.

A paraboli subgroup (or simply a paraboli) of G is the stabilizer in G of a

non-empty ag F of �. The rank of the paraboli is the orank of F .

2.2 Simpliial omplexes

A simpliial omplex S is a pair (X;�) where X is a set and � is a olletion

of subsets of X suh that if A 2 � and B � A then B 2 �. The subsets from

� are alled simplies.

A morphism from a omplex S = (X;�) to a omplex S

0

= (X

0

;�

0

) is a map

between X and X

0

whih takes simplies to simplies. The star of a simplex

A 2 � is the set of subsets B 2 � suh that A � B. A overing is a surjetive

morphism � from S to S

0

suh that for every A 2 �, the funtion � maps the

star of A bijetively onto the star of �(A).

A path on a omplex S is a sequene x

0

; x

1

; : : : ; x

n

of elements of X suh

that x

i�1

and x

i

are ontained in a simplex for all i = 1; : : : ; n. We do not

allow repetitions so x

i�1

6= x

i

for all i. The omplex S is onneted if every two

elements of X an be onneted by a path. The following two operations are

alled elementary homotopies: (a) substituting a subsequene x; y; x (a return)

by just x, or (b) substituting a subsequene x; y; z; x (a triangle) by x, provided

that x; y; z are all in the same simplex. Two paths are homotopially equivalent

if they an be obtained from one another in a �nite sequene of elementary ho-

motopies. A loop is a losed path, that is, a path with x

0

= x

n

. A loop is alled

null-homotopi if it is homotopially equivalent to the trivial path x

0

. The fun-

damental group �

1

(S; x) where x 2 X is the set of equivalene lasses of loops
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based at x with respet to homotopy. The produt is de�ned to be onatena-

tion of loops. Notie that the fundamental group is independent of the hoie

of the base vertex x inside a �xed onneted omponent. On the other hand,

the fundamental group may vary for base verties in distint onneted ompo-

nents. The overings of S, taken up to a ertain natural equivalene, orrespond

bijetively to the subgroups of �

1

(S; x). A onneted omplex S is alled simply

onneted if it has no proper overings, or, equivalently, if �

1

(S; x) = 1.

With every geometry � one an assoiate its ag omplex. This is a simpliial

omplex de�ned on the set � whose simplies are the ags of �. We will say

that � is simply onneted if suh is its ag omplex.

2.3 Chamber systems

A hamber system over a type set I is a set C alled the set of hambers, together

with equivalene relations �

i

, i 2 I . For i 2 I and hambers ; d 2 C, we say

that  and d are i-adjaent if  �

i

d. The hambers , d are adjaent if they are

i-adjaent for some i 2 I .

A hamber system is C is alled thik if for every i 2 I and every hamber

 2 C, there are at least three hambers ( and two other hambers) i-adjaent

to . A hamber system is alled thin if  is i-adjaent to exatly two hambers

(itself and one other hamber) for all i 2 I and  2 C.

If � is a geometry with type set I then one an onstrut a hamber system

C = C(�) over I as follows. The hambers are the maximal ags of �. Two

maximal ags are i-adjaent if and only if they ontain the same element of

type j for all j 2 I n fig. A hamber system is alled geometri if it an be

obtained in this way.

If � is residually onneted, it an be reovered from the assoiated hamber

system C(�) as follows: For J � I , a J-ell is an equivalene lass of the minimal

equivalene relation ontaining the relations �

i

for all i 2 J . The poset of all

ells ordered by reverse inlusion is naturally isomorphi to the poset of the

ags of � ordered by inlusion. Under this isomorphism the ell orresponding

to a ag F onsists of all hambers (maximal ags) ontaining F . In partiular

the elements of type i of � will orrespond to the (I n fig)-ells.

2.4 Amalgams of groups

An amalgam of groups is a set A =

S

i2I

G

i

with a partial operation of multi-

pliation suh that

(A1) the restrition of the multipliation to every G

i

makes G

i

a group;

(A2) the produt ab is de�ned if and only if a; b 2 G

i

for some i 2 I ; and

(A3) G

i

\G

j

is a subgroup of G

i

and G

j

for all i; j 2 I .

A ompletion of an amalgam A is a group G together with a mapping � from

A to G suh that the restrition of � to every G

i

is a homomorphism and �(A)
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generates G. The universal ompletion of A is the group U(A) with generators

ft

s

j s 2 Ag and relations t

x

t

y

= t

xy

whenever x; y 2 G

i

for some i. The

orresponding mapping is given by x 7! t

x

. This is indeed the universal objet

in the ategory of ompletions of A. We will normally identify the ompletion

with just the group G and in this sense every ompletion is a quotient of the

universal ompletion U(A).

In terms of amalgams, the identi�ation problem (see the introdution)

amounts to �nding the universal ompletions of ertain amalgams arising in

Chevalley groups. The result that onnets amalgams and their ompletions

with geometries is a lemma due to Jaques Tits. In the remainder of this se-

tion we will disuss this important result.

2.5 Tits' lemma

Given a geometry � and a ag-transitive group G � Aut�, we an assoiate

with them an amalgam A as follows. Let F be a maximal ag of �. Then

A =

S

i2I

G

i

where G

i

is the stabilizer in G of the element of type i from

F . This A is alled the amalgam of maximal parabolis. Notie that A is

independent of the hoie of F if we onsider it up to isomorphism. If � is

onneted then A generates G so that G is a ompletion of A.

Proposition 2.1 (Tits' lemma, Corollaire 1 of [T1℄). Let � be a onneted

geometry and let G � Aut� be a ag-transitive group of automorphisms. More-

over, let F be a maximal ag of �. Then G is the universal ompletion of the

amalgam A of maximal parabolis with respet to F if and only if the geometry

� is simply onneted.

This result redues the problem of identifying the universal ompletion of

ertain amalgams to proving that the orresponding geometries are simply on-

neted. As we have mentioned above, simple onnetedness an be veri�ed by

proving that the fundamental group of the orresponding ag omplex is trivial,

that is, proving that every loop on that omplex is null-homotopi.

3 Phan's theorem

3.1 History

The �rst of the identi�ation theorems we shall disuss is Phan's �rst theorem.

In 1975, Kok-Wee Phan gave a method for identifying an unknown group G as a

quotient of the unitary group SU(n+1; q

2

) by �nding a generating on�guration

of subgroups SU(3; q

2

) and SU(2; q

2

)�SU(2; q

2

) in G. We begin by looking at

the on�guration of subgroups in SU(n+1; q

2

) to motivate our later de�nition.

Suppose n � 2 and suppose q is a prime power. Consider G = SU(n+1; q

2

)

and let U

i

�

=

SU(2; q

2

), i = 1; 2; : : : ; n, be the subgroups of G orresponding to

the (2 � 2)-bloks along the main diagonal. Let D

i

be the diagonal subgroup

in U

i

. Notie that D

i

is a maximal torus of U

i

of size q + 1. When q 6= 2, the

group G is generated by the subgroups U

i

, and the following hold:
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(P1) if ji� jj > 1 then [x; y℄ = 1 for all x 2 U

i

and y 2 U

j

;

(P2) if ji� jj = 1 then hU

i

; U

j

i is isomorphi to SU(3; q

2

); and

(P3) [x; y℄ = 1 for all x 2 D

i

and y 2 D

j

,

for 1 � i; j � n. Suppose now G is an arbitrary group ontaining a system

of subgroups U

i

�

=

SU(2; q

2

), and suppose a maximal torus D

i

of size q + 1 is

hosen in eah U

i

. If the onditions (P1){(P3) above hold true for G, we will

say that G ontains a Phan system of rank n. In [Ph1℄ Kok-Wee Phan proved

the following result:

Theorem 3.1. If G ontains a Phan system of rank n at least two with q > 4,

then G is isomorphi to a fator group of SU(n+ 1; q

2

).

Phan's proof of this result, however, is somewhat inomplete. Muh of the

proof is alulation-based, and many of these alulations are left to the reader.

Moreover, while Phan apparently deals with the question of what the Phan

system generates if the amalgam A formed by the subgroups U

ij

= hU

i

; U

j

i is

exatly as in SU(n + 1; q

2

), he never addresses the question of the uniqueness

of A. Unfortunately, this is ruial. Indeed nothing in the onditions (P1){(P3)

tells us right away that A must be as in SU(n+1; q

2

). Potentially there may be

many suh amalgams and then G an be a quotient of the universal ompletion

of any one of those amalgams. Thus the proof of the uniqueness of A must be

an important part of the proof of Phan's theorem.

3.2 Strategy

Let us assume for now that the uniqueness of A is known so that A an be

identi�ed with the amalgam formed by blok-diagonal subgroups SU(3; q

2

) and

SU(2; q

2

) � SU(2; q

2

) of

^

G = SU(n + 1; q

2

). Under this assumption, what

remains to be shown is that the universal ompletion of A oinides with

^

G. A

natural way to show this is via Tits' lemma.

In order to apply Tits' lemma we need a geometry on whih G ats ag-

transitively, so that A is (or at least, is related to) the orresponding amalgam

of maximal parabolis. Suh a geometry has, in fat, already appeared in the

literature (e.g. see [A℄). This geometry, N = N (n+1; q

2

), is de�ned as follows.

Let V be the (n+1)-dimensional unitary spae over GF (q

2

). The elements of N

are the proper non-singular subspaes U of V . The type of U is its dimension;

inidene is de�ned by ontainment. Fixing an orthonormal basis fe

1

; : : : ; e

n+1

g

in V , we make

^

G at on N , and it is easy to see that this ation is ag-transitive.

The next key fat is that N is almost always simply onneted. We defer the

exat statement and a disussion of the proof until the next subsetion. For

now let us just mention that the ase where q > 3 is odd was �rst proven in [D℄.

One N is known to be simply onneted, Tits' lemma implies that

^

G is the

universal ompletion of the amalgam

^

A of maximal parabolis assoiated with
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N . Choosing the maximal ag onsisting of all the subspaes U

i

= he

1

; : : : ; e

i

i,

the amalgam

^

A is a union of blok-diagonal subgroups

(GU(i; q

2

)�GU(n+ 1� i; q

2

))

+

:

(The plus indiates that within this diret produt we only take matries with

determinant equal to one.) In partiular, A is ompletely ontained in

^

A. Un-

fortunately, however, A is not equal to

^

A. Consequently we have to do more

work.

Let G be the universal ompletion of A. Sine A is ontained in

^

A and

generates

^

G and, thus, the universal ompletion of

^

A is a ompletion of A, the

group

^

G

�

=

SU(n + 1; q

2

) is a quotient of G. Thus it suÆes to show that G

annot be larger than

^

G. We aomplish this by extending A to a opy of

^

A

inside G. (This implies that G is in turn a quotient of

^

G.)

Reall that in eah U

i

we have a torus D

i

of order q+1. Let D =

Q

D

i

(we

are working inside G). We show that D is in fat the diret produt of the D

i

's

and that U

ij

D is isomorphi to the full rank 2 paraboli from

^

A. Furthermore,

the union of the subgroups U

ij

D in G produes an amalgam isomorphi to

the full amalgam

^

A

2

of rank 2 parabolis. The remaining part is easy, as we

indutively extend every

^

A

s

to

^

A

s+1

using the ase s = 2 as a base of indution.

Notie that the simple onnetedness of N = N (s + 2; q) is used in extending

^

A

s

.

At this point we turn to the question of how the simple onnetedness is

proven.

3.3 Simple Connetedness

Reall that simple onnetedness an be shown by proving that every loop of

the ag omplex of N is null-homotopi. Fixing a base point x to be a point (an

element of type 1), a standard tehnique is to redue every loop of N to a loop

in the point-line inidene graph (lines are elements of type 2). This tehnique

requires that the geometry in question ontains suÆiently many onneted

residues, whih is the ase for the geometry N .

Lemma 3.2. Every loop starting at some point x is homotopi to a loop that

is fully ontained in the point-line inidene graph.

Furthermore, every loop in the latter graph an be understood as a loop in

the ollinearity graph � of N . The verties of � are the points of N and two

points are adjaent if and only if they are ollinear (i.e., inident to a ommon

line).

A loop in � that is ontained entirely within the residue of an element of

N (suh a loop is alled geometri) is null-homotopi. Thus, proving that N

is simply onneted requires showing that every loop in � an be deomposed

into a produt of geometri loops. In fat, we only use geometri triangles for

this.
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The key fat that allows us to proeed is that, with few exeptions, � has

diameter two. This gives us by indution that every loop in � is a produt of

loops of length up to �ve. Thus it suÆes to show that every loop  of length

3, 4, and 5 is null-homotopi. When n is large, one an always �nd a point

that is perpendiular to all the points on . This produes a deomposition of

 into geometri triangles. Hene the laim is essentially obvious for large n.

All the diÆulty of the proof lies in the ase of small n, where we resort to a

ase-by-ase analysis and the proof at times beomes rather intriate.

We end this setion with the exat statement.

Proposition 3.3. The geometry N = N (n+1; q

2

) is simply onneted if (n; q)

is not one of (3; 2) and (3; 3).

Our proof of this proposition is omputer-free with the exeption of the ase

n = 5 and q = 2, whih was handled by Jon Dunlap using a Todd-Coxeter oset

enumeration in GAP ([GAP℄). Notie that neither one of the exeptions above

is simply onneted, so that the result is in a sense best possible.

3.4 Uniqueness of A

Notie that Phan does not address the ases q � 4 at all. Furthermore his

de�nitions do not even make sense for q = 2. We would like to inlude all

possible ases in our theorem so we need to modify Phan's setup.

We say that a group G possesses a weak Phan system if G ontains subgroups

U

i

�

=

SU(2; q

2

), i = 1; 2; : : : ; n, and U

i;j

, 1 � i < j � n, so that the following

hold:

(wP1) If ji� jj > 1 then U

i;j

is a entral produt of U

i

and U

j

;

(wP2) for i = 1; 2; : : : ; n � 1, the groups U

i

and U

i+1

are ontained in U

i;i+1

,

whih is isomorphi to SU(3; q

2

) or PSU(3; q

2

); moreover, U

i

and U

i+1

form a standard pair in U

i;i+1

; and

(wP3) the subgroups U

i;j

, 1 � i < j � n, generate G.

Here a standard pair in SU(3; q

2

) is a pair of subgroups SU(2; q

2

) onjugate

as a pair to the two blok-diagonal SU(2; q

2

)'s. Standard pairs in PSU(3; q

2

)

are de�ned as the images under the natural homomorphism of the standard

pairs from SU(3; q

2

).

This de�nition leaves a lot of possibilities for the members of the amalgam

A =

S

U

ij

. This produes a variety of amalgams and we are unable to make any

laims of uniqueness in the general ase. We all an amalgam A unambiguous if

every U

ij

is isomorphi to just SU(3; q

2

) or SU(2; q

2

)� SU(2; q

2

) (rather than

a quotient of these groups). Using some \sissors-and-glue" methods, one an

assoiate to every amalgam A of weak Phan type an unambiguous amalgam

whose universal ompletion has U(A) as a quotient. This redues the analysis

of A to the ase where A is unambiguous. However even in this ase we annot

laim uniqueness, and we have to impose another restrition. A non-ollapsing
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amalgam is an amalgam suh that U(A) 6= 1 (this simple de�nition works in all

ases exept for q = 2; the latter ase requires the stronger ondition that every

U

i

embeds into U(A)). Clearly, from the point of view of Phan's theorem, we are

only interested in the non-ollapsing amalgams. It is interesting that although

many unambiguous amalgams exist, only one of them is non-ollapsing.

Proposition 3.4. If A =

S

U

ij

is unambiguous and non-ollapsing, then it is

isomorphi to the anonial amalgam of blok-diagonal subgroups in SU(n +

1; q

2

).

We use the non-ollapsing ondition as follows. For � = �1, de�ne D

�

i

=

N

U

i

(U

i+�

). Note that this normalizer makes sense in U

i;i+�

. Assuming that

A is non-ollapsing, we have a ompletion H in whih every member of A

embeds. Working in H we show that D

+1

i

= D

�1

i

for all i = 2; : : : ; n � 1.

This extra ondition makes A unique. It also enables us to introdue the tori

D

i

= D

+1

i

= D

�1

i

as in Phan's original setup.

The main part of the uniqueness proof splits into the ases n = 3 and n > 3.

In the �rst ase we use Goldshmidt's Lemma 2.7 of [G℄ to prove that the

amalgam of U

12

and U

23

with joint subgroup U

2

is unique up to isomorphism.

To identify A we need to deide whih subgroups of U

12

and U

23

an serve as U

1

and U

3

. One these subgroups are found, the remaining member U

13

is added

to U

12

[ U

23

as U

1

� U

3

.

The ondition on U

1

and U

3

is that eah must form a standard pair with

U

2

. It an be seen that U

2

ats transitively by onjugation on the andidates

for U

1

and on andidates for U

3

. Sine onjugation by an element of U

2

is an

automorphism of the amalgam U

12

[U

23

. Thus we an assume that U

1

is a �xed

subgroup. We have many possibilities for U

3

thus leading to many amalgams.

Fortunately we have the extra ondition oming from our assumption that A

is non-ollapsing. This ondition leaves only two andidates for U

3

and we

omplete the proof by �nding an automorphism of U

12

[ U

23

that stabilizes U

1

and permutes the two andidates for U

3

.

For the n > 3 ase, we now appeal to indution using the ase n = 3 as the

base. In the end, ombining all the above we obtain the following two theorems.

Theorem 3.5. If G ontains a weak Phan system of rank n at least three with

q > 3, then G is isomorphi to a fator group of SU(n+ 1; q

2

).

Theorem 3.6. Suppose G ontains a weak Phan system of rank n spei�ed

below with q = 2 or 3.

(1) Suppose q = 3, n � 4, and additionally, for i = 1; 2; : : : ; n � 2, the sub-

group generated by U

i;i+1

and U

i+1;i+2

is isomorphi to a fator group of

SU(4; 9). Then G is isomorphi to a fator group of SU(n+ 1; 9).

(2) Suppose q = 2, n � 5 and, for i = 1; 2; : : : ; n�3, the subgroup generated by

U

i;i+1

, U

i+1;i+2

and U

i+2;i+3

is isomorphi to a fator group of SU(5; 4).

Then G is isomorphi to a fator group of SU(n+ 1; 4).
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Notie that the extra onditions are due to the fat that, for q � 3 and small

n, the geometry N is not simply onneted. (And in one ase, n = 2 and q = 2,

it is not even onneted.)

4 The Curtis-Tits theorem

The following formulation of the Curtis-Tits theorem is taken from [GLS℄.

Theorem 4.1. Let G be the universal version of a �nite Chevalley group of

(twisted) rank at least 3 with root system �, fundamental system �, and root

groups X

�

, � 2 �. For eah J � � let G

J

be the subgroup of G generated by all

root subgroups X

�

, �� 2 J . Let D be the set of all subsets of � with at most 2

elements. Then G is the universal ompletion of the amalgam

S

J2D

G

J

.

We �rst disuss the similarities and di�erenes between Phan's theorem and

the Curtis-Tits theorem. Let us onsider the ase of the Chevalley group of type

A

n

, whih is G = SL(n + 1; q). With the usual hoie of the root subgroups

in G, the subgroups G

J

= G

ij

are the blok-diagonal subgroups SL(3; q) and

SL(2; q)�SL(2; q), whih we note is similar to the amalgam in Phan's theorem.

The main di�erene between the two theorems is that the Curtis-Tits theorem

merely laims that the universal ompletion of the known amalgam (the one

found in SL(n + 1; q), i.e.,

S

J2D

G

J

) is SL(n + 1; q), while Phan's theorem

makes a laim about the ompletion of an arbitrary Phan amalgam.

Clearly, as we are again trying to �nd the universal ompletion of an amal-

gam, Tits' lemma appears to be a natural tool for this task. To use it, one needs

to �nd a suitable geometry on whih G ats ag-transitively with the orret

amalgam of maximal parabolis, and then prove that the geometry is simply

onneted. We begin by modifying the amalgam so as to replae the rank 2 sub-

groups, G

J

, with the maximal ones. Consider the amalgam A =

S

�2�

G

�nf�g

.

By indution on the rank, the Curtis-Tits theorem is equivalent to the following.

Theorem 4.2. Under the assumptions of Theorem 4.1, the group G is the uni-

versal ompletion of the amalgam A.

In the rest of this setion we will disuss a geometri proof of this theorem

given by M�uhlherr in [M℄.

Reall that a �nite Chevalley group G ats on its natural �nite geometry

alled a building. Let I be a set and M be a Coxeter matrix over I . Let (W;S)

be the Coxeter system of type M , where S = fs

i

j i 2 Ig. A building of type M

is a pair B = (C; Æ) where C is a set and Æ : C � C �! W is a distane funtion

satisfying the following axioms. Let x; y 2 C and w = Æ(x; y). Then

(B1) w = 1 if and only if x = y;

(B2) if z 2 C is suh that Æ(y; z) = s 2 S, then Æ(x; z) = w or ws; furthermore

if l(ws) = l(w) + 1, then Æ(x; z) = ws; and

(B3) if s 2 S, there exists z 2 C suh that Æ(y; z) = s and Æ(x; z) = ws.

10



In this survey we will onentrate (unlike M�uhlherr) on �nite buildings, in

whih ase the diagram is spherial, but a number of results that we state also

apply to the non-�nite ase.

Given a building B = (C; Æ) we an de�ne a hamber system on the set of

hambers C (we denote the hamber system by C as well) where two hambers

 and d are i-adjaent if and only if Æ(; d) = s

i

. Conversely, the building B an

be reovered from its hamber system C. We will only onsider those buildings

B for whih C is thik. If B is a building, its hamber system ontains a lass

of thin subsystems alled apartments. In an apartment �, for any  2 � and

w 2 W , there is a unique hamber d 2 � suh that Æ(; d) = w. Every pair of

hambers of C is ontained in an apartment. Notie that the hamber system C

de�ned by a building is always geometri. Let � = �(B) be the orresponding

geometry.

It is well known that � is simply onneted. Unfortunately, we annot use

this to prove the Curtis-Tits theorem beause it orresponds to the wrong amal-

gam. So we need to �nd a di�erent geometry.

Given two buildings B

+

= (C

+

; Æ

+

), B

�

= (C

�

; Æ

�

) of the same type M , a

odistane (twinning) is a map Æ

�

: (C

+

�C

�

) [ (C

�

� C

+

) �!W suh that the

following axioms hold where � = �, x 2 C

�

; y 2 C

��

and w = Æ

�

(x; y):

(T1) Æ

�

(y; x) = w

�1

;

(T2) if z 2 C

��

suh that Æ

��

(y; z) = s 2 S and l(ws) = l(w) � 1, then

Æ

�

(x; z) = ws; and

(T3) if s 2 S, there exists z 2 C

��

suh that Æ

��

(y; z) = s 2 S and Æ

�

(x; z) = ws.

A twin building of type M is a triple (B

+

;B

�

; Æ

�

), where B

+

and B

�

are

buildings of type M and Æ

�

is twinning between B

+

and B

�

.

Tits showed (f. Proposition 1 of [T2℄) that every spherial twin building

an be obtained as follows from some building B = (C; Æ) of the same type M .

Let B

+

= (C

+

; Æ

+

) be a opy of B, de�ne B

�

= (C

�

; Æ

�

) as (C; w

0

Æw

0

), and let

Æ

�

be de�ned as w

0

Æ and Æw

0

on C

+

�C

�

and C

�

� C

+

respetively. Here w

0

is

the longest element of the Weyl group W .

Given a twin building T = (B

+

;B

�

; Æ

�

), one an de�ne a hamber system

Opp(T ) = f(

+

; 

�

) 2 C

+

� C

�

j Æ

�

(

+

; 

�

) = 1

W

g. Chambers x 2 C

+

and

y 2 C

�

with Æ

�

(x; y) = 1

W

are alled opposite, hene the notation. Note that

Opp(T ) is a geometri hamber system. Its orresponding geometry is denoted

by �

op

and is alled the opposites geometry. It an be desribed as follows. Let

�

+

and �

�

be the building geometries that orrespond to B

+

and B

�

. Elements

x

+

2 �

+

and x

�

2 �

�

of the same type i 2 I are alled opposite if they are

ontained in opposite maximal ags (i.e., hambers). The elements of �

op

of

type i are pairs (x

+

; x

�

) of opposite elements of type i. Two pairs (x

+

; x

�

) and

(x

0

+

; x

0

�

) are inident in �

op

if both x

+

and x

0

+

are inident in �

+

and x

�

and

x

0

�

are inident in �

�

. Clearly, a pair (

+

; 

�

) 2 Opp(T ) produes a maximal

ag in �

op

, and it an be shown that every maximal ag is obtained in this way.

We now give some examples.
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Example 1a. Let G

�

=

PSL(n+1; q), i.e., M is of type A

n

. Then the building

geometry � is the projetive spae, whose elements of type i, 1 � i � n, are all

the i-dimensional subspaes in the orresponding (n+1)-dimesional vetor spae

V . The geometries �

+

and �

�

are isomorphi respetively to � and the dual

geometry of � (same as � exept that the type of the i-dimensional subspae is

n+1� i). Elements (subspaes) x

+

2 �

+

and x

�

2 �

�

of type i are opposite if

they interset trivially and thus form a diret sum deomposition V = x

+

�x

�

.

It follows that these deompositions are the elements of �

op

.

Example 2a. Let G

�

=

PSp(2n; q), whih orresponds to the diagram C

n

.

Then � is the geometry of all totally isotropi subspaes of a nondegenerate 2n-

dimensional sympleti spae V . In this ase, both �

+

and �

�

are isomorphi to

�. Two i-dimensional totally isotropi subspaes x

+

and x

�

are opposite if x

�

intersets trivially with the orthogonal omplement of x

+

. Suh pairs (x

+

; x

�

)

are the elements of �

op

.

In general, if the twin building onsists of two isomorphi parts B

+

�

=

B

�

=

B

�

, whih is the ase for a spherial diagram, the automorphism group Aut (B)

of the building ats on the twin building T by automorphisms, in partiular, it

preserves the opposition relation, and hene it also ats on �

op

. It an be shown

that the ation of Aut (B) on the set of pairs of opposite hambers is transitive,

thus it is ag-transitive on �

op

. The stabilizers of the elements of a maximal

ag of �

op

are Levi fators in the maximal paraboli subgroups (in the sense

of Chevalley groups) of G. The Levi fators di�er from the members of the

amalgam of Theorem 4.2 only by the Cartan subgroup. To be preise, the full

Levi fators are the produts of the subgroupsG

�nf�g

with the Cartan subgroup

H . This is not a major impediment as the Cartan subgroup an be reovered

pieewise from the initial amalgam A. Therefore the Curtis-Tits theorem is

equivalent to the following:

Theorem 4.3. If T = (B

+

;B

�

; Æ

�

) is a spherial twin building of rank at least

three, then the geometry �

op

is simply onneted.

This was proved by M�uhlherr in [M℄ for twin buildings with arbitrary (that

is, not only spherial) Coxeter matrix M . His proof is ase-independent, short

and elegant. The laim is derived diretly from the axioms of twin buildings,

properties of apartments in buildings, and ertain onnetivity properties of

buildings. However his proof does not over a number of exeptional (small

�eld) ases where the onnetivity fails. In partiular, in the spherial ase,

the groups G

�

=

Sp(2n; 2) and F

4

(2) are not overed by his proof. In the

nonspherial ase M�uhlherr has to exlude tree residues and rank 2 residues

related to the buildings of type B

2

(2),

2

F

4

(2), G

2

(2), and G

2

(3). M�uhlherr

remarks that in the nonspherial situation there appear to be ounterexamples.

Hene a general proof for all M may not be possible. In the spherial ase we

know by the original Curtis-Tits proof that there are no ounterexamples. Thus

the following seems to be an interesting problem.

Problem 1. Generalize M�uhlherr's proof to over all spherial matries M .
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As we have already notied, the Curtis-Tits theorem is not onerned with

the question of the uniqueness of the amalgam A =

S

�2�

G

�nf�g

. In our

opinion this makes applying the Curtis-Tits theorem more ompliated. Indeed,

in order to apply it one has to show that inside the group G under onsideration

there is an exat opy of the amalgam A. Thus it would be advantageous to

strengthen the Curtis-Tits theorem by solving the following problem.

Problem 2. Prove that any non-ollapsing amalgam of groups isomorphi to

G

�nf�g

(with given isomorphism types of their intersetions) is in fat isomor-

phi to A.

5 Flipop geometries

We will start with an example.

Example 1b. Consider the situation of Example 1a, but hange the �eld of

de�nition to GF (q

2

), so that G

�

=

PSL(n+1; q

2

). Consider a unitary polarity �,

that is, an involutory isomorphism from � onto the dual of � (reall that these

geometries have the same set of elements but di�erent type funtions) whih

is de�ned by a nondegenerate Hermitian form � on V . That is, � sends every

subspae of V to its orthogonal omplement with respet to �. This � produes

an involutory automorphism of the twin building T that swithes C

+

and C

�

(or

else, �

+

and �

�

). It is an automorphism in the sense that it transforms Æ

+

into

Æ

�

and vie versa, and preserves Æ

�

. Corresponding �, there is an automorphism

of G, whih we will also denote �. Consider G

�

= C

G

(�) and �

�

= f(x

+

; x

�

) 2

�

op

j x

�

+

= x

�

g. ThenG

�

�

=

PSU(n+1; q

2

) ats on �

�

. Notie that the elements

of �

�

are of the form (x

+

; x

�

) where x

�

= x

�

+

= x

?

+

and V = x

+

�x

�

= x

+

�x

?

+

.

Thus, the mapping (x

+

; x

�

) 7! x

+

establishes an isomorphism between �

�

and

the geometry of all proper nondegenerate subspaes of the unitary spae V , as

de�ned by �. This is exatly the geometry from Setion 3 that was used for a

new proof of Phan's �rst theorem.

This suggests the following general onstrution. Let T = (B

+

;B

�

; Æ

�

) be a

twin buiding. Consider an involutory automorphism � of T with the following

properties:

(F1) C

�

+

= C

�

;

(F2) � ips the distanes, i.e., Æ

�

(x; y) = Æ

��

(x

�

; y

�

) for � = �; and

(F3) � preserves the odistane, i.e., Æ

�

(x; y) = Æ

�

(x

�

; y

�

).

We will additionally require that there be at least one hamber  2 C

�

suh

that Æ

�

(; 

�

) = 1

W

. Suh �'s will be alled ips.

Construt C

�

as the hamber system whose hambers are pairs (; 

�

) that

belong to Opp(T ). Note that by our assumption C

�

is non-empty. We do

not know if C

�

is geometri in general, however this is the ase in eah of

our examples exept Example 5 (whih we did not hek but believe to be
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geometri). If C

�

is geometri, let �

�

denote the orresponding geometry. It

will be referred to as the ipop geometry.

In ase of a spherial twin building, we an ompute the ation of � on the

Coxeter diagram of the building, as has been done in Setion 3.3 of [Gr℄. Indeed,

using Tits' haraterization of spherial twin buildings (Proposition 1 of [T2℄),

we have Æ(; d) = Æ

+

(; d) = Æ

�

(

�

; d

�

) = w

0

Æ(

�

; d

�

)w

0

. Therefore, the ip �

ats on the Coxeter diagram via onjugation with the longest word w

0

of the

Weyl group. This gives the following haraterization of a ip of a spherial

twin building.

Proposition 5.1. Let T = (B

+

;B

�

; Æ

�

) be a spherial twin building. An ad-

jaeny-preserving involution � that interhanges B

+

and B

�

and maps some

hamber onto an opposite hamber is a ip if and only if the indued map �̂ on

the building B = (C; Æ) satis�es Æ(; d) = w

0

Æ(

�̂

; d

�̂

)w

0

for all hambers ; d 2 C

where w

0

is the longest word in the Weyl group W .

Here are some additional examples.

Example 2b. Consider the situation of Example 2a, but with the �eld of

de�nition of order q

2

. Let fe

1

; : : : ; e

n

; f

1

; : : : ; f

n

g be a hyperboli basis of the

sympleti spae V . (So that (e

i

; f

j

) = Æ

ij

.) Consider the semilinear transfor-

mation � of V whih is the omposition of the linear transformation given by

the Gram matrix of the form and the involutory �eld automorphism applied

to the oordinates with respet to the above basis. It an be shown that �

produes a ip of T . Furthermore, C

�

is geometri and G

�

�

=

PSp(2n; q) ats

ag-transitively on the orresponding ipop geometry �

�

. The geometry �

�

an be desribed as follows. For u; v 2 V let ((u; v)) = (u; v

�

), where (�; �) is the

sympleti form on V . Then ((�; �)) is a nondegenerate Hermitian form. The

ipop geometry �

�

an be identi�ed (via (x

+

; x

�

) 7! x

+

) with the geometry

of all subspaes of V whih are totally isotropi with respet to (�; �) and, at the

same time, nondegenerate with respet to ((�; �)).

The on�guration of Example 2b was looked at in [GHSh℄. It is proved there

that �

�

is almost always simply onneted. Here is the main theorem from that

paper.

Theorem 5.2. The ipop geometry �

�

desribed in Example 2b is simply on-

neted if n � 5 or n = 4, q � 3 or n = 3, q � 8.

We expet that some of the larger q's on this list of exeptions are there

only beause of the shortomings of our partiular proof, so that the �nal list

of exeptions will be shorter.

The above theorem leads to a new \Phan-type" result on groups generated

by subgroups U

i

�

=

SU(2; q

2

). Here we have that hU

i

; U

i+1

i

�

=

SU(3; q

2

) for all

1 � i < n � 1, while hU

n�1

; U

n

i

�

=

Sp(4; q). As in Phan's original situation U

i

and U

j

with ji � jj > 1 ommute elementwise. An amalgam of subgroups as

indiated here is alled a Phan system of type C

n

. For the exat statements and

other appliations, see [GHSh℄. We have to point out that the uniqueness of

amalgams is not addressed in [GHSh℄ leaving the following an open problem.
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Problem 3. If q is suÆiently large prove that any non-ollapsing Phan system

of type C

n

is in fat isomorphi to the anonial Phan system inside the group

Sp(2n; q).

We expet that this problem an be solved by using the same methods as

given in [BSh℄. Consequently, for small q one �rst has to introdue the notion

of a weak Phan system of type C

n

as in Setion 3 and then study unambiguous,

non-ollapsing weak Phan systems.

Example 3. For G = PSO(2n; q

2

;+) and PSO(2n+ 1; q

2

) (diagrams D

n

and

B

n

, respetively) ips an be onstruted by the same algorithm as in Example

2b, that is, � an be de�ned as the omposition of the linear transformation

given by the Gram matrix, say, taken with respet to a hyperboli basis (the

atual requirement is that all entries of the Gram matrix must be in the sub�eld

GF (q)) and the involutory �eld automorphism with respet to the same basis.

In both ases we heked that this � produes a ipop geometry on whih G

�

ats ag-transitively. While we have not obtained an exat result on the simple

onnetivity of �

�

, it is lear that �

�

is simply onneted for all suÆiently large

n and q, leading to new \Phan-type" theorems, f. [BGHSh℄. Notie that the

D

n

ase here is likely to lead to Theorem 1.9 from Phan's seond paper [Ph2℄.

This onjeture is undersored by our above observation (before Proposition 5.1)

that a ip ats via onjugation with the longest word of the Weyl group on the

diagram D

n

. Indeed, for n even, Phan's target group is Spin

+

(q) (the universal

Chevalley group of type D

n

(q)) and onjugation with the longest word leaves

the diagram invariant, while for n odd, Phan's target group is Spin

�

(q) (the

universal Chevalley group of type

2

D

n

(q

2

)) and onjugation with the longest

word interhanges the two nodes representing the two lasses of maximal totally

singular subspaes. Another ip is indued by the linear transformation given

by the Gram matrix with respet to a hyperboli basis alone, without applying

the involutory �eld automorphism.

Example 4. Now onsider the group G = PSO(2n; q;�) ating on the ag

omplex C of totally singular subspaes of a nondegenerate orthogonal form of

� type on the vetor spae V of dimension 2n over GF (q). Choose two opposite

hambers  and d of that ag omplex and let U := h; di

?

be the subspae of

V that is perpendiular to both  and d. Fix a hyperboli basis

fe

1

; : : : ; e

n�1

; f

1

; : : : ; f

n�1

g

of the vetor spae  � d suh that  = (he

1

i; : : : ; he

1

; : : : ; e

n�1

i) and d =

(hf

1

i; : : : ; hf

1

; : : : ; f

n�1

i) and, moreover, �x some orthogonal basis of U . Then

there exists a linear map on V that preserves the form, maps e

i

onto f

i

and vie

versa, and ats by salar multipliation on eah of the vetors of the orthogonal

basis of U , e.g., the Gram matrix of the form with respet to the given basis.

This linear map indues a ip � of the twin building belonging to the ag om-

plex C. Notie, unlike Example 3, that we annot ompose this ip � with an

involutory �eld automorphism that ats entrywise on the vetors with respet to
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the given basis in order to obtain another ip, beause this �eld automorphism

would not ommute with �.

Example 5. LetG be the universal Chevalley group of type E

6

(q

2

) and onsider

its 27-dimensional module V , a vetor spae over GF (q

2

). For sake of simpliity

let us assume that q is not divisible by two. A vetor x 2 V is represented by the

triple (x

(1)

; x

(2)

; x

(3)

) where x

(i)

, 1 � i � 3, is a (3�3)-matrix overGF (q

2

). The

shadow spae E

6;1

(q

2

) an be desribed as the geometry on ertain subspaes of

V , f. Setion 5.2 of Cohen's Chapter 12 of [Bu℄. There exists a nondegenerate

bilinear form (�; �) on V de�ned by

(x; y) = trae (x

(1)

y

(1)

+ x

(2)

y

(3)

+ x

(3)

y

(2)

):

De�ne g

℄

2 GL(V ) by (gx; g

℄

y) = (x; y) for all x; y 2 V . The map ℄ : GL (V )!

GL (V ) : g 7! g

℄

indues an involutory automorphism � of the group G. This

automorphism � in turn indues a orrelation � of the geometryE

6;1

(q

2

), i.e., an

inidene-preserving permutation of E

6;1

(q

2

) that does not neessarily preserve

types. In fat, � indues the involutory graph automorphism on the Coxeter

diagramE

6

. The omposition of � and the involutory �eld automorphism ating

entrywise on the representation (x

(1)

; x

(2)

; x

(3)

) of any vetor x 2 V indues a

map � on the orresponding twin building T that satis�es the axioms of a ip

exept that we did not hek whether there exists a hamber that is mapped

to an opposite hamber. We do, however, strongly believe that suh a hamber

exists. This observation is undersored by the fat that the entralizer in G

of the omposition of � and the involutory �eld automorphism equals

2

E

6

(q

2

)

and, thus, the present setting is likely to lead to an alternative proof of Phan's

Theorem 2.6 of [Ph2℄. The orrelation � an be expeted to indue a ip as

well.

We do not have a onrete example of a ip for an F

4

twin building, but

we will disuss a general method for �nding ips in the ase where onjugation

with the longest word of the Weyl group ats trivially on the diagram, whih,

for example, applies in the F

4

ase. As a onrete example, one would hope to

�nd a ip that entralizes the group F

4

(q) inside the group F

4

(q

2

); the resulting

ipop geometry should admit the ipop geometry of type B

3

from [BGHSh℄

and the ipop geometry of type C

3

from [GHSh℄ as residues.

Let T = (B

+

;B

�

; Æ

�

) be a twin building. De�ne the automorphism group

Aut (T ) to be the set of all permutations � of T with

� Æ

�

(; d) = Æ

�

(

�

; d

�

) for all ; d 2 C

�

if � preserves C

+

and C

�

,

� Æ

�

(; d) = Æ

��

(

�

; d

�

) for all ; d 2 C

�

if � interhanges C

+

and C

�

, and

� Æ

�

(; d) = Æ

�

(

�

; d

�

) for all  2 C

�

, d 2 C

��

,

where � = �. Clearly, if �; � 2 Aut (T ) both interhange C

+

and C

�

then

their produt �� preserves C

+

and C

�

. So, Aut (T ) is of the form Aut (B):2.

If there exists a ip or any other distane-swithing and odistane-preserving

involution of T , then Aut (T ) even is a semidiret produt.
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Now suppose we have a spherial twin building with a Coxeter diagram suh

that onjugation with the longest word w

0

ats as the trivial automorphism on

the diagram. Then the map � assigning to eah hamber  of C

�

the unique

hamber d of C

�

with Æ

�

(; d) = w

0

(alled the losest hamber to ) is ontained

in Aut (T ). Moreover, � ommutes with any automorphism of T that preserves

C

+

and C

�

, so Aut (T ) is even a diret produt. This implies the following.

Proposition 5.3. Let T = (B

+

;B

�

; Æ

�

) be a spherial twin building suh that

onjugation with the longest word w

0

of the Weyl group ats trivially on its

Coxeter diagram. Then Aut (T ) = Aut (B)� h�i, where � is the automorphism

assigning to eah hamber  2 C

�

the unique losest hamber d 2 C

�

. Moreover,

any ip of T is the produt �� for an involutory � 2 Aut (B) suh that there

exists a hamber  2 C with Æ(; 

�

) = w

0

. Conversely, every suh �� is a ip.

This partial result motivates the following problem.

Problem 4. Classify all ips for all spherial twin buildings. For eah ip

investigate �

�

and its simple onnetivity.

Of ourse, it would be muh nier to have general building-theoreti argu-

ments (M�uhlherr's type) in plae of a ase-by-ase analysis. In partiular, this

onerns showing that C

�

is always geometri.

Besides the spherial ase the investigation of ips might be interesting for

the nonspherial ase as well.

Problem 5. Find an interesting ip for a nonspherial twin building.

A ip might be onsidered interesting if it either entralizes or ips an in-

teresting geometry or if it has an interesting entralizer. Also, M�uhlherr's proof

of the Curtis-Tits theorem has established a Curtis-Tits-type theorem for er-

tain Ka-Moody groups. It might be worth the e�ort to investigate whether

interesting Phan-type theorems an be proved for Ka-Moody groups as well.

A starting point for the searh of ips of nonspherial twin buildings might be

[B℄ on diagram automorphisms indued by ertain root reetions.
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