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Abstra
t

In the present arti
le we demonstrate that there is a relation between

the Curtis-Tits theorem and Phan's theorems that goes well beyond the

similarity in appearan
e. In parti
ular, we present a geometri
 
onstru
-

tion 
onne
ting those theorems and suggesting that Phan's theorems 
an

be thought of as \twisted versions" of the Curtis-Tits theorem. The 
on-

stru
tion itself further suggests that Phan's theorems are only some of

many possible su
h theorems. We make this expli
it by presenting a new

Phan-type theorem for the symple
ti
 groups.

The work dis
ussed in this arti
le began as an attempt to provide a


omplete and 
lear proof of Phan's �rst theorem, together with a desire

for a more geometri
 proof of the Curtis-Tits theorem. We were surprised,

however, to �nd that our 
onstru
tion led to a unifying point of view on

these two theorems, an unexpe
ted bonus. Another remarkable observa-

tion is that the geometri
 
onstru
tions do not seem to depend on the

�niteness of the �eld or the spheri
ality of the diagram. So the present

arti
le may be of interest not only to �nite geometers and �nite group-

theorists but also to people interested in nonspheri
al twin buildings and

Ka
-Moody groups.

1 Introdu
tion

Geometri
 methods in (�nite) group theory have made tremendous advan
es

sin
e the 
lassi�
ation of �nite simple groups was �rst announ
ed by Gorenstein.

These methods have proven fruitful in simplifying some of the arguments needed

in the 
lassi�
ation. In parti
ular, the 
onne
tion between the universal 
over of


ertain geometries and the universal 
ompletion of related amalgams 
an be used

to simplify the identi�
ation of groups, 
onsidered as groups of automorphisms

of these geometries.

An important step of the 
lassi�
ation of �nite simple groups as well as

the revision of the 
lassi�
ation, pursued by Gorenstein, Lyons, Solomon and

others, is the identi�
ation of the \minimal 
ounterexample" with one of the

known simple groups. This follows the step of the lo
al analysis. At this step,

inside the minimal 
ounterexampleG one re
onstru
ts one or more of the proper

subgroups using the indu
tive assumption and available te
hniques. Thus the

initial point of the identi�
ation is a set of subgroups of G that resemble the
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subgroups of a 
entral extension

^

G of some known simple group (referred to as

the target group). The output of the identi�
ation step is the statement that

G is isomorphi
 to a quotient of

^

G. Two of the most widely used identi�
ation

tools are the Curtis-Tits theorem and Phan's �rst theorem.

The Curtis-Tits theorem allows the identi�
ation of G with a quotient of

a universal Chevalley group

^

G of twisted or untwisted type provided that G


ontains a system of subgroups identi
al to the system of appropiately 
hosen

rank two Levi fa
tors of

^

G. In parti
ular in the 
ase of the diagram A

n

, the

system in question 
onsists of all the groups SL(3; q) and SL(2; q) � SL(2; q)

lying in

^

G blo
k-diagonally.

Phan's �rst theorem deals with the 
ase

^

G = SU(n+1; q

2

) and the system of

blo
k-diagonal subgroups SU(3; q

2

) and SU(2; q

2

)�SU(2; q

2

). Thus Phan's the-

orem appears to be similar to the Curtis-Tits theorem in the 
ase A

n

. However,

unlike the 
ase of A

n

, the blo
k-diagonal SU(3; q

2

) and SU(2; q

2

) � SU(2; q

2

)

are not Levi fa
tors in SU(n+1; q

2

), so Phan's theorem is not a spe
ial 
ase of

the Curtis-Tits theorem.

It is one of the purposes of this paper to demonstrate that the relation be-

tween the Curtis-Tits theorem and Phan's theorem goes beyond a simple simi-

larity in appearan
e. To this end we present a geometri
 
onstru
tion revealing

a deeper 
onne
tion between these theorems. Our 
onstru
tion suggests that

Phan's theorem is a \twisted" version of the Curtis-Tits theorem. Furthermore,

from the point of view of this 
onstru
tion, Phan's theorems are just some of

many possible Phan-type theorems. We stress this point by presenting a new

su
h theorem dealing with the 
ase

^

G = Sp(2n; q) and a system of semisimple

subgroups of rank two whi
h again are not Levi fa
tors (
f. [GHSh℄). Moreover,

the presented methods do not seem to depend on the �niteness of the �eld or

the spheri
ality of the diagram. In fa
t, there already exists a Curtis-Tits-type

theorem for 
ertain Ka
-Moody groups (
f. [M℄), and we believe it to be an

interesting problem to prove a Phan-type theorem for a suitable Ka
-Moody

group.

The stru
ture of the paper is as follows. In Se
tion 2 we introdu
e some

notions from the areas of syntheti
 geometry, 
hamber systems and amalgams

of groups. In Se
tion 3 we dis
uss the proof of Phan's theorem from [BSh℄. In

Se
tion 4 we introdu
e the language of buildings and twin buildings and present

an overview of M�uhlherr's geometri
 proof of the Curtis-Tits theorem from [M℄.

Finally in Se
tion 5 we present our 
onstru
tion, dis
uss the new Phan-type

theorem for Sp(2n; q) from [GHSh℄, and propose more examples. Along the

way we pose a number of open problems.

2 Geometries and amalgams

2.1 Geometries

A pregeometry over I is a set of elements � together with a type fun
tion t and

a re
exive and symmetri
 in
iden
e relation �. The type fun
tion maps � onto
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the type set I , and for any two elements x; y 2 � with x � y and t(x) = t(y) we

have x = y. A 
ag in � is a set of pairwise-in
ident elements. Noti
e that the

type fun
tion inje
ts any 
ag into the type set. A geometry is a pregeometry

su
h that t indu
es a bije
tion between any maximal 
ag of � and I .

The residue res

�

(F ) of a 
ag F in a geometry � is the set of elements from

� n F that are in
ident to all elements of F . It follows that the residue res

�

(F )

is a geometry with the type set I n t(F ). The rank of the geometry � is the


ardinality of its type set I . We will only 
onsider the 
ase where I is �nite.

The rank of the residue of a 
ag F is 
alled the 
orank of F . The geometry � is


onne
ted if the graph with vertex set � and edges given by � is 
onne
ted. In

what follows all the geometries that we 
onsider are 
onne
ted. The geometry

� is residually 
onne
ted if the residue in � of every 
ag of 
orank at least 2 is


onne
ted. (Note that the property that the residue of every 
ag of 
orank 1

be non-empty|whi
h usually is required as well for the de�nition of residual


onne
tedness|follows from the fa
t that � is a geometry.)

An automorphism of a geometry � is a permutation of its elements that

preserves type and in
iden
e. The group of all automorphisms of � will be

denoted by Aut �. A subgroup G � Aut� a
ts 
ag-transitively on � if it is

transitive on the set of maximal 
ags (stri
tly speaking 
hamber-transitively, but

the notions of 
ag-transitivity and 
hamber-transitivity 
oin
ide for geometries).

A geometry that possesses a 
ag-transitive automorphism group is also 
alled


ag-transitive.

A paraboli
 subgroup (or simply a paraboli
) of G is the stabilizer in G of a

non-empty 
ag F of �. The rank of the paraboli
 is the 
orank of F .

2.2 Simpli
ial 
omplexes

A simpli
ial 
omplex S is a pair (X;�) where X is a set and � is a 
olle
tion

of subsets of X su
h that if A 2 � and B � A then B 2 �. The subsets from

� are 
alled simpli
es.

A morphism from a 
omplex S = (X;�) to a 
omplex S

0

= (X

0

;�

0

) is a map

between X and X

0

whi
h takes simpli
es to simpli
es. The star of a simplex

A 2 � is the set of subsets B 2 � su
h that A � B. A 
overing is a surje
tive

morphism � from S to S

0

su
h that for every A 2 �, the fun
tion � maps the

star of A bije
tively onto the star of �(A).

A path on a 
omplex S is a sequen
e x

0

; x

1

; : : : ; x

n

of elements of X su
h

that x

i�1

and x

i

are 
ontained in a simplex for all i = 1; : : : ; n. We do not

allow repetitions so x

i�1

6= x

i

for all i. The 
omplex S is 
onne
ted if every two

elements of X 
an be 
onne
ted by a path. The following two operations are


alled elementary homotopies: (a) substituting a subsequen
e x; y; x (a return)

by just x, or (b) substituting a subsequen
e x; y; z; x (a triangle) by x, provided

that x; y; z are all in the same simplex. Two paths are homotopi
ally equivalent

if they 
an be obtained from one another in a �nite sequen
e of elementary ho-

motopies. A loop is a 
losed path, that is, a path with x

0

= x

n

. A loop is 
alled

null-homotopi
 if it is homotopi
ally equivalent to the trivial path x

0

. The fun-

damental group �

1

(S; x) where x 2 X is the set of equivalen
e 
lasses of loops
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based at x with respe
t to homotopy. The produ
t is de�ned to be 
on
atena-

tion of loops. Noti
e that the fundamental group is independent of the 
hoi
e

of the base vertex x inside a �xed 
onne
ted 
omponent. On the other hand,

the fundamental group may vary for base verti
es in distin
t 
onne
ted 
ompo-

nents. The 
overings of S, taken up to a 
ertain natural equivalen
e, 
orrespond

bije
tively to the subgroups of �

1

(S; x). A 
onne
ted 
omplex S is 
alled simply


onne
ted if it has no proper 
overings, or, equivalently, if �

1

(S; x) = 1.

With every geometry � one 
an asso
iate its 
ag 
omplex. This is a simpli
ial


omplex de�ned on the set � whose simpli
es are the 
ags of �. We will say

that � is simply 
onne
ted if su
h is its 
ag 
omplex.

2.3 Chamber systems

A 
hamber system over a type set I is a set C 
alled the set of 
hambers, together

with equivalen
e relations �

i

, i 2 I . For i 2 I and 
hambers 
; d 2 C, we say

that 
 and d are i-adja
ent if 
 �

i

d. The 
hambers 
, d are adja
ent if they are

i-adja
ent for some i 2 I .

A 
hamber system is C is 
alled thi
k if for every i 2 I and every 
hamber


 2 C, there are at least three 
hambers (
 and two other 
hambers) i-adja
ent

to 
. A 
hamber system is 
alled thin if 
 is i-adja
ent to exa
tly two 
hambers

(itself and one other 
hamber) for all i 2 I and 
 2 C.

If � is a geometry with type set I then one 
an 
onstru
t a 
hamber system

C = C(�) over I as follows. The 
hambers are the maximal 
ags of �. Two

maximal 
ags are i-adja
ent if and only if they 
ontain the same element of

type j for all j 2 I n fig. A 
hamber system is 
alled geometri
 if it 
an be

obtained in this way.

If � is residually 
onne
ted, it 
an be re
overed from the asso
iated 
hamber

system C(�) as follows: For J � I , a J-
ell is an equivalen
e 
lass of the minimal

equivalen
e relation 
ontaining the relations �

i

for all i 2 J . The poset of all


ells ordered by reverse in
lusion is naturally isomorphi
 to the poset of the


ags of � ordered by in
lusion. Under this isomorphism the 
ell 
orresponding

to a 
ag F 
onsists of all 
hambers (maximal 
ags) 
ontaining F . In parti
ular

the elements of type i of � will 
orrespond to the (I n fig)-
ells.

2.4 Amalgams of groups

An amalgam of groups is a set A =

S

i2I

G

i

with a partial operation of multi-

pli
ation su
h that

(A1) the restri
tion of the multipli
ation to every G

i

makes G

i

a group;

(A2) the produ
t ab is de�ned if and only if a; b 2 G

i

for some i 2 I ; and

(A3) G

i

\G

j

is a subgroup of G

i

and G

j

for all i; j 2 I .

A 
ompletion of an amalgam A is a group G together with a mapping � from

A to G su
h that the restri
tion of � to every G

i

is a homomorphism and �(A)
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generates G. The universal 
ompletion of A is the group U(A) with generators

ft

s

j s 2 Ag and relations t

x

t

y

= t

xy

whenever x; y 2 G

i

for some i. The


orresponding mapping is given by x 7! t

x

. This is indeed the universal obje
t

in the 
ategory of 
ompletions of A. We will normally identify the 
ompletion

with just the group G and in this sense every 
ompletion is a quotient of the

universal 
ompletion U(A).

In terms of amalgams, the identi�
ation problem (see the introdu
tion)

amounts to �nding the universal 
ompletions of 
ertain amalgams arising in

Chevalley groups. The result that 
onne
ts amalgams and their 
ompletions

with geometries is a lemma due to Ja
ques Tits. In the remainder of this se
-

tion we will dis
uss this important result.

2.5 Tits' lemma

Given a geometry � and a 
ag-transitive group G � Aut�, we 
an asso
iate

with them an amalgam A as follows. Let F be a maximal 
ag of �. Then

A =

S

i2I

G

i

where G

i

is the stabilizer in G of the element of type i from

F . This A is 
alled the amalgam of maximal paraboli
s. Noti
e that A is

independent of the 
hoi
e of F if we 
onsider it up to isomorphism. If � is


onne
ted then A generates G so that G is a 
ompletion of A.

Proposition 2.1 (Tits' lemma, Corollaire 1 of [T1℄). Let � be a 
onne
ted

geometry and let G � Aut� be a 
ag-transitive group of automorphisms. More-

over, let F be a maximal 
ag of �. Then G is the universal 
ompletion of the

amalgam A of maximal paraboli
s with respe
t to F if and only if the geometry

� is simply 
onne
ted.

This result redu
es the problem of identifying the universal 
ompletion of


ertain amalgams to proving that the 
orresponding geometries are simply 
on-

ne
ted. As we have mentioned above, simple 
onne
tedness 
an be veri�ed by

proving that the fundamental group of the 
orresponding 
ag 
omplex is trivial,

that is, proving that every loop on that 
omplex is null-homotopi
.

3 Phan's theorem

3.1 History

The �rst of the identi�
ation theorems we shall dis
uss is Phan's �rst theorem.

In 1975, Kok-Wee Phan gave a method for identifying an unknown group G as a

quotient of the unitary group SU(n+1; q

2

) by �nding a generating 
on�guration

of subgroups SU(3; q

2

) and SU(2; q

2

)�SU(2; q

2

) in G. We begin by looking at

the 
on�guration of subgroups in SU(n+1; q

2

) to motivate our later de�nition.

Suppose n � 2 and suppose q is a prime power. Consider G = SU(n+1; q

2

)

and let U

i

�

=

SU(2; q

2

), i = 1; 2; : : : ; n, be the subgroups of G 
orresponding to

the (2 � 2)-blo
ks along the main diagonal. Let D

i

be the diagonal subgroup

in U

i

. Noti
e that D

i

is a maximal torus of U

i

of size q + 1. When q 6= 2, the

group G is generated by the subgroups U

i

, and the following hold:

5



(P1) if ji� jj > 1 then [x; y℄ = 1 for all x 2 U

i

and y 2 U

j

;

(P2) if ji� jj = 1 then hU

i

; U

j

i is isomorphi
 to SU(3; q

2

); and

(P3) [x; y℄ = 1 for all x 2 D

i

and y 2 D

j

,

for 1 � i; j � n. Suppose now G is an arbitrary group 
ontaining a system

of subgroups U

i

�

=

SU(2; q

2

), and suppose a maximal torus D

i

of size q + 1 is


hosen in ea
h U

i

. If the 
onditions (P1){(P3) above hold true for G, we will

say that G 
ontains a Phan system of rank n. In [Ph1℄ Kok-Wee Phan proved

the following result:

Theorem 3.1. If G 
ontains a Phan system of rank n at least two with q > 4,

then G is isomorphi
 to a fa
tor group of SU(n+ 1; q

2

).

Phan's proof of this result, however, is somewhat in
omplete. Mu
h of the

proof is 
al
ulation-based, and many of these 
al
ulations are left to the reader.

Moreover, while Phan apparently deals with the question of what the Phan

system generates if the amalgam A formed by the subgroups U

ij

= hU

i

; U

j

i is

exa
tly as in SU(n + 1; q

2

), he never addresses the question of the uniqueness

of A. Unfortunately, this is 
ru
ial. Indeed nothing in the 
onditions (P1){(P3)

tells us right away that A must be as in SU(n+1; q

2

). Potentially there may be

many su
h amalgams and then G 
an be a quotient of the universal 
ompletion

of any one of those amalgams. Thus the proof of the uniqueness of A must be

an important part of the proof of Phan's theorem.

3.2 Strategy

Let us assume for now that the uniqueness of A is known so that A 
an be

identi�ed with the amalgam formed by blo
k-diagonal subgroups SU(3; q

2

) and

SU(2; q

2

) � SU(2; q

2

) of

^

G = SU(n + 1; q

2

). Under this assumption, what

remains to be shown is that the universal 
ompletion of A 
oin
ides with

^

G. A

natural way to show this is via Tits' lemma.

In order to apply Tits' lemma we need a geometry on whi
h G a
ts 
ag-

transitively, so that A is (or at least, is related to) the 
orresponding amalgam

of maximal paraboli
s. Su
h a geometry has, in fa
t, already appeared in the

literature (e.g. see [A℄). This geometry, N = N (n+1; q

2

), is de�ned as follows.

Let V be the (n+1)-dimensional unitary spa
e over GF (q

2

). The elements of N

are the proper non-singular subspa
es U of V . The type of U is its dimension;

in
iden
e is de�ned by 
ontainment. Fixing an orthonormal basis fe

1

; : : : ; e

n+1

g

in V , we make

^

G a
t on N , and it is easy to see that this a
tion is 
ag-transitive.

The next key fa
t is that N is almost always simply 
onne
ted. We defer the

exa
t statement and a dis
ussion of the proof until the next subse
tion. For

now let us just mention that the 
ase where q > 3 is odd was �rst proven in [D℄.

On
e N is known to be simply 
onne
ted, Tits' lemma implies that

^

G is the

universal 
ompletion of the amalgam

^

A of maximal paraboli
s asso
iated with
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N . Choosing the maximal 
ag 
onsisting of all the subspa
es U

i

= he

1

; : : : ; e

i

i,

the amalgam

^

A is a union of blo
k-diagonal subgroups

(GU(i; q

2

)�GU(n+ 1� i; q

2

))

+

:

(The plus indi
ates that within this dire
t produ
t we only take matri
es with

determinant equal to one.) In parti
ular, A is 
ompletely 
ontained in

^

A. Un-

fortunately, however, A is not equal to

^

A. Consequently we have to do more

work.

Let G be the universal 
ompletion of A. Sin
e A is 
ontained in

^

A and

generates

^

G and, thus, the universal 
ompletion of

^

A is a 
ompletion of A, the

group

^

G

�

=

SU(n + 1; q

2

) is a quotient of G. Thus it suÆ
es to show that G


annot be larger than

^

G. We a

omplish this by extending A to a 
opy of

^

A

inside G. (This implies that G is in turn a quotient of

^

G.)

Re
all that in ea
h U

i

we have a torus D

i

of order q+1. Let D =

Q

D

i

(we

are working inside G). We show that D is in fa
t the dire
t produ
t of the D

i

's

and that U

ij

D is isomorphi
 to the full rank 2 paraboli
 from

^

A. Furthermore,

the union of the subgroups U

ij

D in G produ
es an amalgam isomorphi
 to

the full amalgam

^

A

2

of rank 2 paraboli
s. The remaining part is easy, as we

indu
tively extend every

^

A

s

to

^

A

s+1

using the 
ase s = 2 as a base of indu
tion.

Noti
e that the simple 
onne
tedness of N = N (s + 2; q) is used in extending

^

A

s

.

At this point we turn to the question of how the simple 
onne
tedness is

proven.

3.3 Simple Conne
tedness

Re
all that simple 
onne
tedness 
an be shown by proving that every loop of

the 
ag 
omplex of N is null-homotopi
. Fixing a base point x to be a point (an

element of type 1), a standard te
hnique is to redu
e every loop of N to a loop

in the point-line in
iden
e graph (lines are elements of type 2). This te
hnique

requires that the geometry in question 
ontains suÆ
iently many 
onne
ted

residues, whi
h is the 
ase for the geometry N .

Lemma 3.2. Every loop starting at some point x is homotopi
 to a loop that

is fully 
ontained in the point-line in
iden
e graph.

Furthermore, every loop in the latter graph 
an be understood as a loop in

the 
ollinearity graph � of N . The verti
es of � are the points of N and two

points are adja
ent if and only if they are 
ollinear (i.e., in
ident to a 
ommon

line).

A loop in � that is 
ontained entirely within the residue of an element of

N (su
h a loop is 
alled geometri
) is null-homotopi
. Thus, proving that N

is simply 
onne
ted requires showing that every loop in � 
an be de
omposed

into a produ
t of geometri
 loops. In fa
t, we only use geometri
 triangles for

this.
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The key fa
t that allows us to pro
eed is that, with few ex
eptions, � has

diameter two. This gives us by indu
tion that every loop in � is a produ
t of

loops of length up to �ve. Thus it suÆ
es to show that every loop 
 of length

3, 4, and 5 is null-homotopi
. When n is large, one 
an always �nd a point

that is perpendi
ular to all the points on 
. This produ
es a de
omposition of


 into geometri
 triangles. Hen
e the 
laim is essentially obvious for large n.

All the diÆ
ulty of the proof lies in the 
ase of small n, where we resort to a


ase-by-
ase analysis and the proof at times be
omes rather intri
ate.

We end this se
tion with the exa
t statement.

Proposition 3.3. The geometry N = N (n+1; q

2

) is simply 
onne
ted if (n; q)

is not one of (3; 2) and (3; 3).

Our proof of this proposition is 
omputer-free with the ex
eption of the 
ase

n = 5 and q = 2, whi
h was handled by Jon Dunlap using a Todd-Coxeter 
oset

enumeration in GAP ([GAP℄). Noti
e that neither one of the ex
eptions above

is simply 
onne
ted, so that the result is in a sense best possible.

3.4 Uniqueness of A

Noti
e that Phan does not address the 
ases q � 4 at all. Furthermore his

de�nitions do not even make sense for q = 2. We would like to in
lude all

possible 
ases in our theorem so we need to modify Phan's setup.

We say that a group G possesses a weak Phan system if G 
ontains subgroups

U

i

�

=

SU(2; q

2

), i = 1; 2; : : : ; n, and U

i;j

, 1 � i < j � n, so that the following

hold:

(wP1) If ji� jj > 1 then U

i;j

is a 
entral produ
t of U

i

and U

j

;

(wP2) for i = 1; 2; : : : ; n � 1, the groups U

i

and U

i+1

are 
ontained in U

i;i+1

,

whi
h is isomorphi
 to SU(3; q

2

) or PSU(3; q

2

); moreover, U

i

and U

i+1

form a standard pair in U

i;i+1

; and

(wP3) the subgroups U

i;j

, 1 � i < j � n, generate G.

Here a standard pair in SU(3; q

2

) is a pair of subgroups SU(2; q

2

) 
onjugate

as a pair to the two blo
k-diagonal SU(2; q

2

)'s. Standard pairs in PSU(3; q

2

)

are de�ned as the images under the natural homomorphism of the standard

pairs from SU(3; q

2

).

This de�nition leaves a lot of possibilities for the members of the amalgam

A =

S

U

ij

. This produ
es a variety of amalgams and we are unable to make any


laims of uniqueness in the general 
ase. We 
all an amalgam A unambiguous if

every U

ij

is isomorphi
 to just SU(3; q

2

) or SU(2; q

2

)� SU(2; q

2

) (rather than

a quotient of these groups). Using some \s
issors-and-glue" methods, one 
an

asso
iate to every amalgam A of weak Phan type an unambiguous amalgam

whose universal 
ompletion has U(A) as a quotient. This redu
es the analysis

of A to the 
ase where A is unambiguous. However even in this 
ase we 
annot


laim uniqueness, and we have to impose another restri
tion. A non-
ollapsing

8



amalgam is an amalgam su
h that U(A) 6= 1 (this simple de�nition works in all


ases ex
ept for q = 2; the latter 
ase requires the stronger 
ondition that every

U

i

embeds into U(A)). Clearly, from the point of view of Phan's theorem, we are

only interested in the non-
ollapsing amalgams. It is interesting that although

many unambiguous amalgams exist, only one of them is non-
ollapsing.

Proposition 3.4. If A =

S

U

ij

is unambiguous and non-
ollapsing, then it is

isomorphi
 to the 
anoni
al amalgam of blo
k-diagonal subgroups in SU(n +

1; q

2

).

We use the non-
ollapsing 
ondition as follows. For � = �1, de�ne D

�

i

=

N

U

i

(U

i+�

). Note that this normalizer makes sense in U

i;i+�

. Assuming that

A is non-
ollapsing, we have a 
ompletion H in whi
h every member of A

embeds. Working in H we show that D

+1

i

= D

�1

i

for all i = 2; : : : ; n � 1.

This extra 
ondition makes A unique. It also enables us to introdu
e the tori

D

i

= D

+1

i

= D

�1

i

as in Phan's original setup.

The main part of the uniqueness proof splits into the 
ases n = 3 and n > 3.

In the �rst 
ase we use Golds
hmidt's Lemma 2.7 of [G℄ to prove that the

amalgam of U

12

and U

23

with joint subgroup U

2

is unique up to isomorphism.

To identify A we need to de
ide whi
h subgroups of U

12

and U

23


an serve as U

1

and U

3

. On
e these subgroups are found, the remaining member U

13

is added

to U

12

[ U

23

as U

1

� U

3

.

The 
ondition on U

1

and U

3

is that ea
h must form a standard pair with

U

2

. It 
an be seen that U

2

a
ts transitively by 
onjugation on the 
andidates

for U

1

and on 
andidates for U

3

. Sin
e 
onjugation by an element of U

2

is an

automorphism of the amalgam U

12

[U

23

. Thus we 
an assume that U

1

is a �xed

subgroup. We have many possibilities for U

3

thus leading to many amalgams.

Fortunately we have the extra 
ondition 
oming from our assumption that A

is non-
ollapsing. This 
ondition leaves only two 
andidates for U

3

and we


omplete the proof by �nding an automorphism of U

12

[ U

23

that stabilizes U

1

and permutes the two 
andidates for U

3

.

For the n > 3 
ase, we now appeal to indu
tion using the 
ase n = 3 as the

base. In the end, 
ombining all the above we obtain the following two theorems.

Theorem 3.5. If G 
ontains a weak Phan system of rank n at least three with

q > 3, then G is isomorphi
 to a fa
tor group of SU(n+ 1; q

2

).

Theorem 3.6. Suppose G 
ontains a weak Phan system of rank n spe
i�ed

below with q = 2 or 3.

(1) Suppose q = 3, n � 4, and additionally, for i = 1; 2; : : : ; n � 2, the sub-

group generated by U

i;i+1

and U

i+1;i+2

is isomorphi
 to a fa
tor group of

SU(4; 9). Then G is isomorphi
 to a fa
tor group of SU(n+ 1; 9).

(2) Suppose q = 2, n � 5 and, for i = 1; 2; : : : ; n�3, the subgroup generated by

U

i;i+1

, U

i+1;i+2

and U

i+2;i+3

is isomorphi
 to a fa
tor group of SU(5; 4).

Then G is isomorphi
 to a fa
tor group of SU(n+ 1; 4).
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Noti
e that the extra 
onditions are due to the fa
t that, for q � 3 and small

n, the geometry N is not simply 
onne
ted. (And in one 
ase, n = 2 and q = 2,

it is not even 
onne
ted.)

4 The Curtis-Tits theorem

The following formulation of the Curtis-Tits theorem is taken from [GLS℄.

Theorem 4.1. Let G be the universal version of a �nite Chevalley group of

(twisted) rank at least 3 with root system �, fundamental system �, and root

groups X

�

, � 2 �. For ea
h J � � let G

J

be the subgroup of G generated by all

root subgroups X

�

, �� 2 J . Let D be the set of all subsets of � with at most 2

elements. Then G is the universal 
ompletion of the amalgam

S

J2D

G

J

.

We �rst dis
uss the similarities and di�eren
es between Phan's theorem and

the Curtis-Tits theorem. Let us 
onsider the 
ase of the Chevalley group of type

A

n

, whi
h is G = SL(n + 1; q). With the usual 
hoi
e of the root subgroups

in G, the subgroups G

J

= G

ij

are the blo
k-diagonal subgroups SL(3; q) and

SL(2; q)�SL(2; q), whi
h we note is similar to the amalgam in Phan's theorem.

The main di�eren
e between the two theorems is that the Curtis-Tits theorem

merely 
laims that the universal 
ompletion of the known amalgam (the one

found in SL(n + 1; q), i.e.,

S

J2D

G

J

) is SL(n + 1; q), while Phan's theorem

makes a 
laim about the 
ompletion of an arbitrary Phan amalgam.

Clearly, as we are again trying to �nd the universal 
ompletion of an amal-

gam, Tits' lemma appears to be a natural tool for this task. To use it, one needs

to �nd a suitable geometry on whi
h G a
ts 
ag-transitively with the 
orre
t

amalgam of maximal paraboli
s, and then prove that the geometry is simply


onne
ted. We begin by modifying the amalgam so as to repla
e the rank 2 sub-

groups, G

J

, with the maximal ones. Consider the amalgam A =

S

�2�

G

�nf�g

.

By indu
tion on the rank, the Curtis-Tits theorem is equivalent to the following.

Theorem 4.2. Under the assumptions of Theorem 4.1, the group G is the uni-

versal 
ompletion of the amalgam A.

In the rest of this se
tion we will dis
uss a geometri
 proof of this theorem

given by M�uhlherr in [M℄.

Re
all that a �nite Chevalley group G a
ts on its natural �nite geometry


alled a building. Let I be a set and M be a Coxeter matrix over I . Let (W;S)

be the Coxeter system of type M , where S = fs

i

j i 2 Ig. A building of type M

is a pair B = (C; Æ) where C is a set and Æ : C � C �! W is a distan
e fun
tion

satisfying the following axioms. Let x; y 2 C and w = Æ(x; y). Then

(B1) w = 1 if and only if x = y;

(B2) if z 2 C is su
h that Æ(y; z) = s 2 S, then Æ(x; z) = w or ws; furthermore

if l(ws) = l(w) + 1, then Æ(x; z) = ws; and

(B3) if s 2 S, there exists z 2 C su
h that Æ(y; z) = s and Æ(x; z) = ws.
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In this survey we will 
on
entrate (unlike M�uhlherr) on �nite buildings, in

whi
h 
ase the diagram is spheri
al, but a number of results that we state also

apply to the non-�nite 
ase.

Given a building B = (C; Æ) we 
an de�ne a 
hamber system on the set of


hambers C (we denote the 
hamber system by C as well) where two 
hambers


 and d are i-adja
ent if and only if Æ(
; d) = s

i

. Conversely, the building B 
an

be re
overed from its 
hamber system C. We will only 
onsider those buildings

B for whi
h C is thi
k. If B is a building, its 
hamber system 
ontains a 
lass

of thin subsystems 
alled apartments. In an apartment �, for any 
 2 � and

w 2 W , there is a unique 
hamber d 2 � su
h that Æ(
; d) = w. Every pair of


hambers of C is 
ontained in an apartment. Noti
e that the 
hamber system C

de�ned by a building is always geometri
. Let � = �(B) be the 
orresponding

geometry.

It is well known that � is simply 
onne
ted. Unfortunately, we 
annot use

this to prove the Curtis-Tits theorem be
ause it 
orresponds to the wrong amal-

gam. So we need to �nd a di�erent geometry.

Given two buildings B

+

= (C

+

; Æ

+

), B

�

= (C

�

; Æ

�

) of the same type M , a


odistan
e (twinning) is a map Æ

�

: (C

+

�C

�

) [ (C

�

� C

+

) �!W su
h that the

following axioms hold where � = �, x 2 C

�

; y 2 C

��

and w = Æ

�

(x; y):

(T1) Æ

�

(y; x) = w

�1

;

(T2) if z 2 C

��

su
h that Æ

��

(y; z) = s 2 S and l(ws) = l(w) � 1, then

Æ

�

(x; z) = ws; and

(T3) if s 2 S, there exists z 2 C

��

su
h that Æ

��

(y; z) = s 2 S and Æ

�

(x; z) = ws.

A twin building of type M is a triple (B

+

;B

�

; Æ

�

), where B

+

and B

�

are

buildings of type M and Æ

�

is twinning between B

+

and B

�

.

Tits showed (
f. Proposition 1 of [T2℄) that every spheri
al twin building


an be obtained as follows from some building B = (C; Æ) of the same type M .

Let B

+

= (C

+

; Æ

+

) be a 
opy of B, de�ne B

�

= (C

�

; Æ

�

) as (C; w

0

Æw

0

), and let

Æ

�

be de�ned as w

0

Æ and Æw

0

on C

+

�C

�

and C

�

� C

+

respe
tively. Here w

0

is

the longest element of the Weyl group W .

Given a twin building T = (B

+

;B

�

; Æ

�

), one 
an de�ne a 
hamber system

Opp(T ) = f(


+

; 


�

) 2 C

+

� C

�

j Æ

�

(


+

; 


�

) = 1

W

g. Chambers x 2 C

+

and

y 2 C

�

with Æ

�

(x; y) = 1

W

are 
alled opposite, hen
e the notation. Note that

Opp(T ) is a geometri
 
hamber system. Its 
orresponding geometry is denoted

by �

op

and is 
alled the opposites geometry. It 
an be des
ribed as follows. Let

�

+

and �

�

be the building geometries that 
orrespond to B

+

and B

�

. Elements

x

+

2 �

+

and x

�

2 �

�

of the same type i 2 I are 
alled opposite if they are


ontained in opposite maximal 
ags (i.e., 
hambers). The elements of �

op

of

type i are pairs (x

+

; x

�

) of opposite elements of type i. Two pairs (x

+

; x

�

) and

(x

0

+

; x

0

�

) are in
ident in �

op

if both x

+

and x

0

+

are in
ident in �

+

and x

�

and

x

0

�

are in
ident in �

�

. Clearly, a pair (


+

; 


�

) 2 Opp(T ) produ
es a maximal


ag in �

op

, and it 
an be shown that every maximal 
ag is obtained in this way.

We now give some examples.
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Example 1a. Let G

�

=

PSL(n+1; q), i.e., M is of type A

n

. Then the building

geometry � is the proje
tive spa
e, whose elements of type i, 1 � i � n, are all

the i-dimensional subspa
es in the 
orresponding (n+1)-dimesional ve
tor spa
e

V . The geometries �

+

and �

�

are isomorphi
 respe
tively to � and the dual

geometry of � (same as � ex
ept that the type of the i-dimensional subspa
e is

n+1� i). Elements (subspa
es) x

+

2 �

+

and x

�

2 �

�

of type i are opposite if

they interse
t trivially and thus form a dire
t sum de
omposition V = x

+

�x

�

.

It follows that these de
ompositions are the elements of �

op

.

Example 2a. Let G

�

=

PSp(2n; q), whi
h 
orresponds to the diagram C

n

.

Then � is the geometry of all totally isotropi
 subspa
es of a nondegenerate 2n-

dimensional symple
ti
 spa
e V . In this 
ase, both �

+

and �

�

are isomorphi
 to

�. Two i-dimensional totally isotropi
 subspa
es x

+

and x

�

are opposite if x

�

interse
ts trivially with the orthogonal 
omplement of x

+

. Su
h pairs (x

+

; x

�

)

are the elements of �

op

.

In general, if the twin building 
onsists of two isomorphi
 parts B

+

�

=

B

�

=

B

�

, whi
h is the 
ase for a spheri
al diagram, the automorphism group Aut (B)

of the building a
ts on the twin building T by automorphisms, in parti
ular, it

preserves the opposition relation, and hen
e it also a
ts on �

op

. It 
an be shown

that the a
tion of Aut (B) on the set of pairs of opposite 
hambers is transitive,

thus it is 
ag-transitive on �

op

. The stabilizers of the elements of a maximal


ag of �

op

are Levi fa
tors in the maximal paraboli
 subgroups (in the sense

of Chevalley groups) of G. The Levi fa
tors di�er from the members of the

amalgam of Theorem 4.2 only by the Cartan subgroup. To be pre
ise, the full

Levi fa
tors are the produ
ts of the subgroupsG

�nf�g

with the Cartan subgroup

H . This is not a major impediment as the Cartan subgroup 
an be re
overed

pie
ewise from the initial amalgam A. Therefore the Curtis-Tits theorem is

equivalent to the following:

Theorem 4.3. If T = (B

+

;B

�

; Æ

�

) is a spheri
al twin building of rank at least

three, then the geometry �

op

is simply 
onne
ted.

This was proved by M�uhlherr in [M℄ for twin buildings with arbitrary (that

is, not only spheri
al) Coxeter matrix M . His proof is 
ase-independent, short

and elegant. The 
laim is derived dire
tly from the axioms of twin buildings,

properties of apartments in buildings, and 
ertain 
onne
tivity properties of

buildings. However his proof does not 
over a number of ex
eptional (small

�eld) 
ases where the 
onne
tivity fails. In parti
ular, in the spheri
al 
ase,

the groups G

�

=

Sp(2n; 2) and F

4

(2) are not 
overed by his proof. In the

nonspheri
al 
ase M�uhlherr has to ex
lude tree residues and rank 2 residues

related to the buildings of type B

2

(2),

2

F

4

(2), G

2

(2), and G

2

(3). M�uhlherr

remarks that in the nonspheri
al situation there appear to be 
ounterexamples.

Hen
e a general proof for all M may not be possible. In the spheri
al 
ase we

know by the original Curtis-Tits proof that there are no 
ounterexamples. Thus

the following seems to be an interesting problem.

Problem 1. Generalize M�uhlherr's proof to 
over all spheri
al matri
es M .
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As we have already noti
ed, the Curtis-Tits theorem is not 
on
erned with

the question of the uniqueness of the amalgam A =

S

�2�

G

�nf�g

. In our

opinion this makes applying the Curtis-Tits theorem more 
ompli
ated. Indeed,

in order to apply it one has to show that inside the group G under 
onsideration

there is an exa
t 
opy of the amalgam A. Thus it would be advantageous to

strengthen the Curtis-Tits theorem by solving the following problem.

Problem 2. Prove that any non-
ollapsing amalgam of groups isomorphi
 to

G

�nf�g

(with given isomorphism types of their interse
tions) is in fa
t isomor-

phi
 to A.

5 Flip
op geometries

We will start with an example.

Example 1b. Consider the situation of Example 1a, but 
hange the �eld of

de�nition to GF (q

2

), so that G

�

=

PSL(n+1; q

2

). Consider a unitary polarity �,

that is, an involutory isomorphism from � onto the dual of � (re
all that these

geometries have the same set of elements but di�erent type fun
tions) whi
h

is de�ned by a nondegenerate Hermitian form � on V . That is, � sends every

subspa
e of V to its orthogonal 
omplement with respe
t to �. This � produ
es

an involutory automorphism of the twin building T that swit
hes C

+

and C

�

(or

else, �

+

and �

�

). It is an automorphism in the sense that it transforms Æ

+

into

Æ

�

and vi
e versa, and preserves Æ

�

. Corresponding �, there is an automorphism

of G, whi
h we will also denote �. Consider G

�

= C

G

(�) and �

�

= f(x

+

; x

�

) 2

�

op

j x

�

+

= x

�

g. ThenG

�

�

=

PSU(n+1; q

2

) a
ts on �

�

. Noti
e that the elements

of �

�

are of the form (x

+

; x

�

) where x

�

= x

�

+

= x

?

+

and V = x

+

�x

�

= x

+

�x

?

+

.

Thus, the mapping (x

+

; x

�

) 7! x

+

establishes an isomorphism between �

�

and

the geometry of all proper nondegenerate subspa
es of the unitary spa
e V , as

de�ned by �. This is exa
tly the geometry from Se
tion 3 that was used for a

new proof of Phan's �rst theorem.

This suggests the following general 
onstru
tion. Let T = (B

+

;B

�

; Æ

�

) be a

twin buiding. Consider an involutory automorphism � of T with the following

properties:

(F1) C

�

+

= C

�

;

(F2) � 
ips the distan
es, i.e., Æ

�

(x; y) = Æ

��

(x

�

; y

�

) for � = �; and

(F3) � preserves the 
odistan
e, i.e., Æ

�

(x; y) = Æ

�

(x

�

; y

�

).

We will additionally require that there be at least one 
hamber 
 2 C

�

su
h

that Æ

�

(
; 


�

) = 1

W

. Su
h �'s will be 
alled 
ips.

Constru
t C

�

as the 
hamber system whose 
hambers are pairs (
; 


�

) that

belong to Opp(T ). Note that by our assumption C

�

is non-empty. We do

not know if C

�

is geometri
 in general, however this is the 
ase in ea
h of

our examples ex
ept Example 5 (whi
h we did not 
he
k but believe to be
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geometri
). If C

�

is geometri
, let �

�

denote the 
orresponding geometry. It

will be referred to as the 
ip
op geometry.

In 
ase of a spheri
al twin building, we 
an 
ompute the a
tion of � on the

Coxeter diagram of the building, as has been done in Se
tion 3.3 of [Gr℄. Indeed,

using Tits' 
hara
terization of spheri
al twin buildings (Proposition 1 of [T2℄),

we have Æ(
; d) = Æ

+

(
; d) = Æ

�

(


�

; d

�

) = w

0

Æ(


�

; d

�

)w

0

. Therefore, the 
ip �

a
ts on the Coxeter diagram via 
onjugation with the longest word w

0

of the

Weyl group. This gives the following 
hara
terization of a 
ip of a spheri
al

twin building.

Proposition 5.1. Let T = (B

+

;B

�

; Æ

�

) be a spheri
al twin building. An ad-

ja
en
y-preserving involution � that inter
hanges B

+

and B

�

and maps some


hamber onto an opposite 
hamber is a 
ip if and only if the indu
ed map �̂ on

the building B = (C; Æ) satis�es Æ(
; d) = w

0

Æ(


�̂

; d

�̂

)w

0

for all 
hambers 
; d 2 C

where w

0

is the longest word in the Weyl group W .

Here are some additional examples.

Example 2b. Consider the situation of Example 2a, but with the �eld of

de�nition of order q

2

. Let fe

1

; : : : ; e

n

; f

1

; : : : ; f

n

g be a hyperboli
 basis of the

symple
ti
 spa
e V . (So that (e

i

; f

j

) = Æ

ij

.) Consider the semilinear transfor-

mation � of V whi
h is the 
omposition of the linear transformation given by

the Gram matrix of the form and the involutory �eld automorphism applied

to the 
oordinates with respe
t to the above basis. It 
an be shown that �

produ
es a 
ip of T . Furthermore, C

�

is geometri
 and G

�

�

=

PSp(2n; q) a
ts


ag-transitively on the 
orresponding 
ip
op geometry �

�

. The geometry �

�


an be des
ribed as follows. For u; v 2 V let ((u; v)) = (u; v

�

), where (�; �) is the

symple
ti
 form on V . Then ((�; �)) is a nondegenerate Hermitian form. The


ip
op geometry �

�


an be identi�ed (via (x

+

; x

�

) 7! x

+

) with the geometry

of all subspa
es of V whi
h are totally isotropi
 with respe
t to (�; �) and, at the

same time, nondegenerate with respe
t to ((�; �)).

The 
on�guration of Example 2b was looked at in [GHSh℄. It is proved there

that �

�

is almost always simply 
onne
ted. Here is the main theorem from that

paper.

Theorem 5.2. The 
ip
op geometry �

�

des
ribed in Example 2b is simply 
on-

ne
ted if n � 5 or n = 4, q � 3 or n = 3, q � 8.

We expe
t that some of the larger q's on this list of ex
eptions are there

only be
ause of the short
omings of our parti
ular proof, so that the �nal list

of ex
eptions will be shorter.

The above theorem leads to a new \Phan-type" result on groups generated

by subgroups U

i

�

=

SU(2; q

2

). Here we have that hU

i

; U

i+1

i

�

=

SU(3; q

2

) for all

1 � i < n � 1, while hU

n�1

; U

n

i

�

=

Sp(4; q). As in Phan's original situation U

i

and U

j

with ji � jj > 1 
ommute elementwise. An amalgam of subgroups as

indi
ated here is 
alled a Phan system of type C

n

. For the exa
t statements and

other appli
ations, see [GHSh℄. We have to point out that the uniqueness of

amalgams is not addressed in [GHSh℄ leaving the following an open problem.
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Problem 3. If q is suÆ
iently large prove that any non-
ollapsing Phan system

of type C

n

is in fa
t isomorphi
 to the 
anoni
al Phan system inside the group

Sp(2n; q).

We expe
t that this problem 
an be solved by using the same methods as

given in [BSh℄. Consequently, for small q one �rst has to introdu
e the notion

of a weak Phan system of type C

n

as in Se
tion 3 and then study unambiguous,

non-
ollapsing weak Phan systems.

Example 3. For G = PSO(2n; q

2

;+) and PSO(2n+ 1; q

2

) (diagrams D

n

and

B

n

, respe
tively) 
ips 
an be 
onstru
ted by the same algorithm as in Example

2b, that is, � 
an be de�ned as the 
omposition of the linear transformation

given by the Gram matrix, say, taken with respe
t to a hyperboli
 basis (the

a
tual requirement is that all entries of the Gram matrix must be in the sub�eld

GF (q)) and the involutory �eld automorphism with respe
t to the same basis.

In both 
ases we 
he
ked that this � produ
es a 
ip
op geometry on whi
h G

�

a
ts 
ag-transitively. While we have not obtained an exa
t result on the simple


onne
tivity of �

�

, it is 
lear that �

�

is simply 
onne
ted for all suÆ
iently large

n and q, leading to new \Phan-type" theorems, 
f. [BGHSh℄. Noti
e that the

D

n


ase here is likely to lead to Theorem 1.9 from Phan's se
ond paper [Ph2℄.

This 
onje
ture is unders
ored by our above observation (before Proposition 5.1)

that a 
ip a
ts via 
onjugation with the longest word of the Weyl group on the

diagram D

n

. Indeed, for n even, Phan's target group is Spin

+

(q) (the universal

Chevalley group of type D

n

(q)) and 
onjugation with the longest word leaves

the diagram invariant, while for n odd, Phan's target group is Spin

�

(q) (the

universal Chevalley group of type

2

D

n

(q

2

)) and 
onjugation with the longest

word inter
hanges the two nodes representing the two 
lasses of maximal totally

singular subspa
es. Another 
ip is indu
ed by the linear transformation given

by the Gram matrix with respe
t to a hyperboli
 basis alone, without applying

the involutory �eld automorphism.

Example 4. Now 
onsider the group G = PSO(2n; q;�) a
ting on the 
ag


omplex C of totally singular subspa
es of a nondegenerate orthogonal form of

� type on the ve
tor spa
e V of dimension 2n over GF (q). Choose two opposite


hambers 
 and d of that 
ag 
omplex and let U := h
; di

?

be the subspa
e of

V that is perpendi
ular to both 
 and d. Fix a hyperboli
 basis

fe

1

; : : : ; e

n�1

; f

1

; : : : ; f

n�1

g

of the ve
tor spa
e 
 � d su
h that 
 = (he

1

i; : : : ; he

1

; : : : ; e

n�1

i) and d =

(hf

1

i; : : : ; hf

1

; : : : ; f

n�1

i) and, moreover, �x some orthogonal basis of U . Then

there exists a linear map on V that preserves the form, maps e

i

onto f

i

and vi
e

versa, and a
ts by s
alar multipli
ation on ea
h of the ve
tors of the orthogonal

basis of U , e.g., the Gram matrix of the form with respe
t to the given basis.

This linear map indu
es a 
ip � of the twin building belonging to the 
ag 
om-

plex C. Noti
e, unlike Example 3, that we 
annot 
ompose this 
ip � with an

involutory �eld automorphism that a
ts entrywise on the ve
tors with respe
t to
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the given basis in order to obtain another 
ip, be
ause this �eld automorphism

would not 
ommute with �.

Example 5. LetG be the universal Chevalley group of type E

6

(q

2

) and 
onsider

its 27-dimensional module V , a ve
tor spa
e over GF (q

2

). For sake of simpli
ity

let us assume that q is not divisible by two. A ve
tor x 2 V is represented by the

triple (x

(1)

; x

(2)

; x

(3)

) where x

(i)

, 1 � i � 3, is a (3�3)-matrix overGF (q

2

). The

shadow spa
e E

6;1

(q

2

) 
an be des
ribed as the geometry on 
ertain subspa
es of

V , 
f. Se
tion 5.2 of Cohen's Chapter 12 of [Bu℄. There exists a nondegenerate

bilinear form (�; �) on V de�ned by

(x; y) = tra
e (x

(1)

y

(1)

+ x

(2)

y

(3)

+ x

(3)

y

(2)

):

De�ne g

℄

2 GL(V ) by (gx; g

℄

y) = (x; y) for all x; y 2 V . The map ℄ : GL (V )!

GL (V ) : g 7! g

℄

indu
es an involutory automorphism � of the group G. This

automorphism � in turn indu
es a 
orrelation � of the geometryE

6;1

(q

2

), i.e., an

in
iden
e-preserving permutation of E

6;1

(q

2

) that does not ne
essarily preserve

types. In fa
t, � indu
es the involutory graph automorphism on the Coxeter

diagramE

6

. The 
omposition of � and the involutory �eld automorphism a
ting

entrywise on the representation (x

(1)

; x

(2)

; x

(3)

) of any ve
tor x 2 V indu
es a

map � on the 
orresponding twin building T that satis�es the axioms of a 
ip

ex
ept that we did not 
he
k whether there exists a 
hamber that is mapped

to an opposite 
hamber. We do, however, strongly believe that su
h a 
hamber

exists. This observation is unders
ored by the fa
t that the 
entralizer in G

of the 
omposition of � and the involutory �eld automorphism equals

2

E

6

(q

2

)

and, thus, the present setting is likely to lead to an alternative proof of Phan's

Theorem 2.6 of [Ph2℄. The 
orrelation � 
an be expe
ted to indu
e a 
ip as

well.

We do not have a 
on
rete example of a 
ip for an F

4

twin building, but

we will dis
uss a general method for �nding 
ips in the 
ase where 
onjugation

with the longest word of the Weyl group a
ts trivially on the diagram, whi
h,

for example, applies in the F

4


ase. As a 
on
rete example, one would hope to

�nd a 
ip that 
entralizes the group F

4

(q) inside the group F

4

(q

2

); the resulting


ip
op geometry should admit the 
ip
op geometry of type B

3

from [BGHSh℄

and the 
ip
op geometry of type C

3

from [GHSh℄ as residues.

Let T = (B

+

;B

�

; Æ

�

) be a twin building. De�ne the automorphism group

Aut (T ) to be the set of all permutations � of T with

� Æ

�

(
; d) = Æ

�

(


�

; d

�

) for all 
; d 2 C

�

if � preserves C

+

and C

�

,

� Æ

�

(
; d) = Æ

��

(


�

; d

�

) for all 
; d 2 C

�

if � inter
hanges C

+

and C

�

, and

� Æ

�

(
; d) = Æ

�

(


�

; d

�

) for all 
 2 C

�

, d 2 C

��

,

where � = �. Clearly, if �; � 2 Aut (T ) both inter
hange C

+

and C

�

then

their produ
t �� preserves C

+

and C

�

. So, Aut (T ) is of the form Aut (B):2.

If there exists a 
ip or any other distan
e-swit
hing and 
odistan
e-preserving

involution of T , then Aut (T ) even is a semidire
t produ
t.
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Now suppose we have a spheri
al twin building with a Coxeter diagram su
h

that 
onjugation with the longest word w

0

a
ts as the trivial automorphism on

the diagram. Then the map � assigning to ea
h 
hamber 
 of C

�

the unique


hamber d of C

�

with Æ

�

(
; d) = w

0

(
alled the 
losest 
hamber to 
) is 
ontained

in Aut (T ). Moreover, � 
ommutes with any automorphism of T that preserves

C

+

and C

�

, so Aut (T ) is even a dire
t produ
t. This implies the following.

Proposition 5.3. Let T = (B

+

;B

�

; Æ

�

) be a spheri
al twin building su
h that


onjugation with the longest word w

0

of the Weyl group a
ts trivially on its

Coxeter diagram. Then Aut (T ) = Aut (B)� h�i, where � is the automorphism

assigning to ea
h 
hamber 
 2 C

�

the unique 
losest 
hamber d 2 C

�

. Moreover,

any 
ip of T is the produ
t �� for an involutory � 2 Aut (B) su
h that there

exists a 
hamber 
 2 C with Æ(
; 


�

) = w

0

. Conversely, every su
h �� is a 
ip.

This partial result motivates the following problem.

Problem 4. Classify all 
ips for all spheri
al twin buildings. For ea
h 
ip

investigate �

�

and its simple 
onne
tivity.

Of 
ourse, it would be mu
h ni
er to have general building-theoreti
 argu-

ments (M�uhlherr's type) in pla
e of a 
ase-by-
ase analysis. In parti
ular, this


on
erns showing that C

�

is always geometri
.

Besides the spheri
al 
ase the investigation of 
ips might be interesting for

the nonspheri
al 
ase as well.

Problem 5. Find an interesting 
ip for a nonspheri
al twin building.

A 
ip might be 
onsidered interesting if it either 
entralizes or 
ips an in-

teresting geometry or if it has an interesting 
entralizer. Also, M�uhlherr's proof

of the Curtis-Tits theorem has established a Curtis-Tits-type theorem for 
er-

tain Ka
-Moody groups. It might be worth the e�ort to investigate whether

interesting Phan-type theorems 
an be proved for Ka
-Moody groups as well.

A starting point for the sear
h of 
ips of nonspherial twin buildings might be

[B℄ on diagram automorphisms indu
ed by 
ertain root re
e
tions.

Referen
es

[A℄ M. As
hba
her, Simple 
onne
tivity of p-group 
omplexes, Israel J. Math.

82 (1993), 1{43.

[B℄ C. D. Bennett, Imaginary roots of a Ka
-Moody Lie algebra whose re
e
-

tions preserve root multipli
ities, J. Algebra 158 (1993), 244{267.

[BSh℄ C. D. Bennett and S. Shpe
torov, A new proof of Phan's theorem,

preprint.

[BGHSh℄ C. D. Bennett, R. Gramli
h, C. Ho�man and S. Shpe
torov, A Phan-

type theorem for SO(2n+ 1; q), in preparation.

17



[Bu℄ F. Buekenhout (editor), Handbook of In
iden
e Geometry, Elsevier, Ams-

terdam 1995.

[D℄ K. M. Das, Simple 
onne
tivity of the Quillen 
omplex of GL

n

(q), J. Alge-

bra 178 (1995), 239{263.

[GAP℄ The GAP Group, GAP { Groups, Algorithms, and Programming, Ver-

sion 4.2; 2000, (http://www.gap-system.org).

[G℄ D. M. Golds
hmidt, Automorphisms of trivalent graphs, Annals of Math.

111 (1980), 377{406.

[GLS℄ D. Gorenstein, R. Lyons and R. Solomon, The 
lassi�
ation of the �-

nite simple groups. Number 3. Part I. Chapter A. Almost simple K-groups,

Mathemati
al Surveys and Monographs 40.3. Ameri
an Mathemati
al So-


iety, Providen
e 1998.

[Gr℄ R. Gramli
h, On Graphs, Geometries, and Groups of Lie Type, PhD thesis,

Te
hnis
he Universiteit Eindhoven 2002,

(http://
age.rug.a
.be/�ni
k/Theses/theses.html).

[GHSh℄ R. Gramli
h, C. Ho�man and S. Shpe
torov, A Phan-type theorem for

Sp(2n; q), J. Algebra, to appear.

[M℄ B. M�uhlherr, On the simple 
onne
tedness of a 
hamber system asso
iated

to a twin buiding, preprint.

[Ph1℄ K. W. Phan, On groups generated by three-dimensional spe
ial unitary

groups, I, J. Austral. Math. So
. Ser. A 23 (1977), 67{77.

[Ph2℄ K. W. Phan, On groups generated by three-dimensional spe
ial unitary

groups, II, J. Austral. Math. So
. Ser. A 23 (1977), 129{146.

[S℄ J.-P. Serre, Arbres, amalgames, SL

2

, Ast�erisque 46, So
. Math. Fran
e,

Paris 1977

[T1℄ J. Tits, Ensembles Ordonn�es, immeubles et sommes amalgam�ees, Bull.

So
. Math. Belg. S�er. A 38 (1986), 367{387.

[T2℄ J. Tits, Twin buildings and groups of Ka
-Moody type. In: Groups, Combi-

natori
s and Geometry, LMS Le
ture Note Series 165, 249{286, Cambridge

University Press, Cambridge 1992.

18



Address of the authors:

Curtis Bennett, Corneliu Ho�man, Sergey Shpe
torov

Bowling Green State University

Bowling Green, OH 43403

USA

e-mail:


bennet�bgnet.bgsu.edu

hoffman�bgnet.bgsu.edu

sergey�bgnet.bgsu.edu

Ralf Gramli
h

TU Darmstadt

Fa
hberei
h Mathematik / AG 5

S
hlo�gartenstra�e 7

64289 Darmstadt

Germany

e-mail: gramli
h�mathematik.tu-darmstadt.de

19


