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Abstract

In the present article we demonstrate that there is a relation between
the Curtis-Tits theorem and Phan’s theorems that goes well beyond the
similarity in appearance. In particular, we present a geometric construc-
tion connecting those theorems and suggesting that Phan’s theorems can
be thought of as “twisted versions” of the Curtis-Tits theorem. The con-
struction itself further suggests that Phan’s theorems are only some of
many possible such theorems. We make this explicit by presenting a new
Phan-type theorem for the symplectic groups.

The work discussed in this article began as an attempt to provide a
complete and clear proof of Phan’s first theorem, together with a desire
for a more geometric proof of the Curtis-Tits theorem. We were surprised,
however, to find that our construction led to a unifying point of view on
these two theorems, an unexpected bonus. Another remarkable observa-
tion is that the geometric constructions do not seem to depend on the
finiteness of the field or the sphericality of the diagram. So the present
article may be of interest not only to finite geometers and finite group-
theorists but also to people interested in nonspherical twin buildings and
Kac-Moody groups.

1 Introduction

Geometric methods in (finite) group theory have made tremendous advances
since the classification of finite simple groups was first announced by Gorenstein.
These methods have proven fruitful in simplifying some of the arguments needed
in the classification. In particular, the connection between the universal cover of
certain geometries and the universal completion of related amalgams can be used
to simplify the identification of groups, considered as groups of automorphisms
of these geometries.

An important step of the classification of finite simple groups as well as
the revision of the classification, pursued by Gorenstein, Lyons, Solomon and
others, is the identification of the “minimal counterexample” with one of the
known simple groups. This follows the step of the local analysis. At this step,
inside the minimal counterexample G one reconstructs one or more of the proper
subgroups using the inductive assumption and available techniques. Thus the
initial point of the identification is a set of subgroups of G that resemble the



subgroups of a central extension G of some known simple group (referred to as
the target group). The output of the identification step is the statement that
G is isomorphic to a quotient of G. Two of the most widely used identification
tools are the Curtis-Tits theorem and Phan’s first theorem.

The Curtis-Tits theorem allows the identification of G with a quotient of
a universal Chevalley group G of twisted or untwisted type provided that G
contains a system of subgroups identical to the system of appropiately chosen
rank two Levi factors of G. In particular in the case of the diagram A,, the
system in question consists of all the groups SL(3,q) and SL(2,q) x SL(2,q)
lying in G block-diagonally.

Phan’s first theorem deals with the case G = SU(n+1,q¢?) and the system of
block-diagonal subgroups SU (3, ¢?) and SU (2, ¢?) x SU (2, ¢?). Thus Phan’s the-
orem appears to be similar to the Curtis-Tits theorem in the case A4,,. However,
unlike the case of A,, the block-diagonal SU(3,q?) and SU(2,¢*) x SU(2,q?)
are not Levi factors in SU(n + 1,¢?), so Phan’s theorem is not a special case of
the Curtis-Tits theorem.

It is one of the purposes of this paper to demonstrate that the relation be-
tween the Curtis-Tits theorem and Phan’s theorem goes beyond a simple simi-
larity in appearance. To this end we present a geometric construction revealing
a deeper connection between these theorems. Our construction suggests that
Phan’s theorem is a “twisted” version of the Curtis-Tits theorem. Furthermore,
from the point of view of this construction, Phan’s theorems are just some of
many possible Phan-type theorems. We stress this point by presenting a new
such theorem dealing with the case G = Sp(2n,q) and a system of semisimple
subgroups of rank two which again are not Levi factors (cf. [GHSh]). Moreover,
the presented methods do not seem to depend on the finiteness of the field or
the sphericality of the diagram. In fact, there already exists a Curtis-Tits-type
theorem for certain Kac-Moody groups (cf. [M]), and we believe it to be an
interesting problem to prove a Phan-type theorem for a suitable Kac-Moody
group.

The structure of the paper is as follows. In Section 2 we introduce some
notions from the areas of synthetic geometry, chamber systems and amalgams
of groups. In Section 3 we discuss the proof of Phan’s theorem from [BSh]. In
Section 4 we introduce the language of buildings and twin buildings and present
an overview of Miithlherr’s geometric proof of the Curtis-Tits theorem from [M].
Finally in Section 5 we present our construction, discuss the new Phan-type
theorem for Sp(2n,q) from [GHSh], and propose more examples. Along the
way we pose a number of open problems.

2 Geometries and amalgams

2.1 Geometries

A pregeometry over I is a set of elements I' together with a type function ¢ and
a reflexive and symmetric incidence relation ~. The type function maps I' onto



the type set I, and for any two elements z,y € I' with  ~ y and t(z) = t(y) we
have £ = y. A flagin I is a set of pairwise-incident elements. Notice that the
type function injects any flag into the type set. A geometry is a pregeometry
such that ¢ induces a bijection between any maximal flag of I' and 1.

The residue resp (F) of a flag F in a geometry I is the set of elements from
I'\ F that are incident to all elements of F'. It follows that the residue resp(F')
is a geometry with the type set I \ ¢(F). The rank of the geometry I is the
cardinality of its type set I. We will only consider the case where I is finite.
The rank of the residue of a flag F' is called the corank of F'. The geometry I is
connected if the graph with vertex set I' and edges given by ~ is connected. In
what follows all the geometries that we consider are connected. The geometry
[ is residually connected if the residue in I' of every flag of corank at least 2 is
connected. (Note that the property that the residue of every flag of corank 1
be non-empty—which usually is required as well for the definition of residual
connectedness—follows from the fact that I" is a geometry.)

An automorphism of a geometry I' is a permutation of its elements that
preserves type and incidence. The group of all automorphisms of I' will be
denoted by AutI'. A subgroup G < AutT' acts flag-transitively on T if it is
transitive on the set of maximal flags (strictly speaking chamber-transitively, but
the notions of flag-transitivity and chamber-transitivity coincide for geometries).
A geometry that possesses a flag-transitive automorphism group is also called
flag-transitive.

A parabolic subgroup (or simply a parabolic) of G is the stabilizer in G of a
non-empty flag F' of I'. The rank of the parabolic is the corank of F.

2.2 Simplicial complexes

A simplicial complex S is a pair (X, A) where X is a set and A is a collection
of subsets of X such that if A € A and B C A then B € A. The subsets from
A are called simplices.

A morphism from a complex S = (X, A) to a complex S’ = (X', A’) is a map
between X and X' which takes simplices to simplices. The star of a simplex
A € A is the set of subsets B € A such that A C B. A covering is a surjective
morphism ¢ from S to S’ such that for every A € A, the function ¢ maps the
star of A bijectively onto the star of ¢(A).

A path on a complex § is a sequence xg, Ty, ...,x, of elements of X such
that z;_; and x; are contained in a simplex for all i = 1,...,n. We do not
allow repetitions so x;_; # x; for all i. The complex S is connected if every two
elements of X can be connected by a path. The following two operations are
called elementary homotopies: (a) substituting a subsequence x,y, z (a return)
by just z, or (b) substituting a subsequence z,y, z, x (a triangle) by z, provided
that z,y, z are all in the same simplex. Two paths are homotopically equivalent
if they can be obtained from one another in a finite sequence of elementary ho-
motopies. A loop is a closed path, that is, a path with o = x,,. A loop is called
null-homotopic if it is homotopically equivalent to the trivial path xg. The fun-
damental group m (S, x) where z € X is the set of equivalence classes of loops



based at x with respect to homotopy. The product is defined to be concatena-
tion of loops. Notice that the fundamental group is independent of the choice
of the base vertex x inside a fixed connected component. On the other hand,
the fundamental group may vary for base vertices in distinct connected compo-
nents. The coverings of S, taken up to a certain natural equivalence, correspond
bijectively to the subgroups of 71 (S, x). A connected complex S is called simply
connected if it has no proper coverings, or, equivalently, if 71 (S,z) = 1.

With every geometry I one can associate its flag complex. This is a simplicial
complex defined on the set I' whose simplices are the flags of I'. We will say
that I is simply connected if such is its flag complex.

2.3 Chamber systems

A chamber system over a type set I is a set C called the set of chambers, together
with equivalence relations ~;, i € I. For i € I and chambers ¢,d € C, we say
that ¢ and d are i-adjacent if ¢ ~; d. The chambers ¢, d are adjacent if they are
i-adjacent for some ¢ € I.

A chamber system is C is called thick if for every ¢ € I and every chamber
¢ € C, there are at least three chambers (¢ and two other chambers) i-adjacent
to ¢. A chamber system is called thin if ¢ is i-adjacent to exactly two chambers
(itself and one other chamber) for all i € I and ¢ € C.

If ' is a geometry with type set I then one can construct a chamber system
C = C(T) over I as follows. The chambers are the maximal flags of I'. Two
maximal flags are i-adjacent if and only if they contain the same element of
type j for all j € I\ {i}. A chamber system is called geometric if it can be
obtained in this way.

If T is residually connected, it can be recovered from the associated chamber
system C(T') as follows: For J C I, a J-cell is an equivalence class of the minimal
equivalence relation containing the relations ~; for all ¢ € J. The poset of all
cells ordered by reverse inclusion is naturally isomorphic to the poset of the
flags of I ordered by inclusion. Under this isomorphism the cell corresponding
to a flag F' consists of all chambers (maximal flags) containing F'. In particular
the elements of type ¢ of I' will correspond to the (I'\ {i})-cells.

2.4 Amalgams of groups

An amalgam of groups is a set A = |J,.; G; with a partial operation of multi-

plication such that

icl

(A1) the restriction of the multiplication to every G; makes G; a group;
(A2) the product ab is defined if and only if a,b € G; for some i € I; and
(A3) G;NGj is a subgroup of G; and G, for all i,j € I.

A completion of an amalgam A is a group G together with a mapping ¢ from
A to G such that the restriction of ¢ to every G; is a homomorphism and ¢(.A)



generates G. The universal completion of A is the group U(A) with generators
{ts | s € A} and relations t,t, = t;, whenever z,y € G; for some i. The
corresponding mapping is given by = + t,. This is indeed the universal object
in the category of completions of A. We will normally identify the completion
with just the group G and in this sense every completion is a quotient of the
universal completion U (A).

In terms of amalgams, the identification problem (see the introduction)
amounts to finding the universal completions of certain amalgams arising in
Chevalley groups. The result that connects amalgams and their completions
with geometries is a lemma due to Jacques Tits. In the remainder of this sec-
tion we will discuss this important result.

2.5 Tits’ lemma

Given a geometry I' and a flag-transitive group G < Aut[', we can associate
with them an amalgam A as follows. Let F be a maximal flag of I'. Then
A = U,c; Gi where G is the stabilizer in G of the element of type i from
F. This A is called the amalgam of mazimal parabolics. Notice that A is
independent of the choice of F' if we consider it up to isomorphism. If I is
connected then A generates G so that G is a completion of A.

Proposition 2.1 (Tits’ lemma, Corollaire 1 of [T1]). LetT be a connected
geometry and let G < AutT" be a flag-transitive group of automorphisms. More-
over, let F' be a maximal flag of T'. Then G is the universal completion of the
amalgam A of maximal parabolics with respect to F' if and only if the geometry
I' is simply connected.

This result reduces the problem of identifying the universal completion of
certain amalgams to proving that the corresponding geometries are simply con-
nected. As we have mentioned above, simple connectedness can be verified by
proving that the fundamental group of the corresponding flag complex is trivial,
that is, proving that every loop on that complex is null-homotopic.

3 Phan’s theorem

3.1 History

The first of the identification theorems we shall discuss is Phan’s first theorem.
In 1975, Kok-Wee Phan gave a method for identifying an unknown group G as a
quotient of the unitary group SU(n+1,¢?) by finding a generating configuration
of subgroups SU (3, ¢?) and SU(2,¢?) x SU(2,¢?) in G. We begin by looking at
the configuration of subgroups in SU(n + 1, ¢?) to motivate our later definition.

Suppose n > 2 and suppose ¢ is a prime power. Consider G = SU(n + 1, ¢?)
and let U; = SU(2,4?%),i=1,2,...,n, be the subgroups of G corresponding to
the (2 x 2)-blocks along the main diagonal. Let D; be the diagonal subgroup
in U;. Notice that D; is a maximal torus of U; of size ¢ + 1. When ¢q # 2, the
group G is generated by the subgroups U;, and the following hold:



(P1) if |i — j| > 1 then [z,y] =1for all z € U; and y € Uj;
(P2) if |i — j| = 1 then (U;, U;) is isomorphic to SU (3, ¢*); and
(P3) [z,y] =1forall z € D; and y € Dy,

for 1 < 4,7 < n. Suppose now G is an arbitrary group containing a system
of subgroups U; = SU(2,¢?), and suppose a maximal torus D; of size ¢ + 1 is
chosen in each U;. If the conditions (P1)—(P3) above hold true for G, we will
say that G contains a Phan system of rank n. In [Phl] Kok-Wee Phan proved
the following result:

Theorem 3.1. If G contains a Phan system of rank n at least two with ¢ > 4,
then G is isomorphic to a factor group of SU(n + 1,¢%).

Phan’s proof of this result, however, is somewhat incomplete. Much of the
proof is calculation-based, and many of these calculations are left to the reader.
Moreover, while Phan apparently deals with the question of what the Phan
system generates if the amalgam A formed by the subgroups U;; = (U;, U;) is
exactly as in SU(n + 1,¢%), he never addresses the question of the uniqueness
of A. Unfortunately, this is crucial. Indeed nothing in the conditions (P1)—-(P3)
tells us right away that A must be as in SU(n+1, ¢?). Potentially there may be
many such amalgams and then G can be a quotient of the universal completion
of any one of those amalgams. Thus the proof of the uniqueness of .4 must be
an important part of the proof of Phan’s theorem.

3.2 Strategy

Let us assume for now that the uniqueness of A is known so that A can be
identified with the amalgam formed by block-diagonal subgroups SU (3, ¢?) and
SU(2,¢%) x SU(2,¢%) of G = SU(n + 1,¢%). Under this assumption, what
remains to be shown is that the universal completion of A coincides with G. A
natural way to show this is via Tits’ lemma.

In order to apply Tits’ lemma we need a geometry on which G acts flag-
transitively, so that 4 is (or at least, is related to) the corresponding amalgam
of maximal parabolics. Such a geometry has, in fact, already appeared in the
literature (e.g. see [A]). This geometry, N'= N(n+ 1, ¢?), is defined as follows.
Let V be the (n+1)-dimensional unitary space over GF(¢*). The elements of N/
are the proper non-singular subspaces U of V. The type of U is its dimension;
incidence is defined by containment. Fixing an orthonormal basis {e1,...,ept1}
in V, we make G act on \V, and it is easy to see that this action is flag-transitive.
The next key fact is that A is almost always simply connected. We defer the
exact statement and a discussion of the proof until the next subsection. For
now let us just mention that the case where ¢ > 3 is odd was first proven in [D].

Once N is known to be simply connected, Tits’ lemma implies that G is the
universal completion of the amalgam A of maximal parabolics associated with



N. Choosing the maximal flag consisting of all the subspaces U; = (e1, ..., €;),
the amalgam A is a union of block-diagonal subgroups

(GU(i,¢*) x GU(n + 1 —1i,¢*))".

(The plus indicates that within this direct product we only take matrices with
determinant equal to one.) In particular, A is completely contained in A. Un-
fortunately, however, A is not equal to A. Consequently we have to do more
work.

Let G be the universal completion of A. Since A is contained in A and
generates G and, thus, the universal completion of A is a completion of A, the
group G = SU(n +1,¢%) is a quotient of G. Thus it suffices to show that G
cannot be larger than G. We accomplish this by extending A to a copy of A
inside G. (This implies that G is in turn a quotient of G.)

Recall that in each U; we have a torus D; of order ¢+ 1. Let D = [[ D; (we
are working inside G). We show that D is in fact the direct product of the D;’s
and that U;; D is isomorphic to the full rank 2 parabolic from A. Furthermore,
the union of the subgroups U;;D in G produces an amalgam isomorphic to
the full amalgam A, of rank 2 parabolics. The remaining part is easy, as we
inductively extend every A, to /is+1 using the case s = 2 as a base of induction.
Notice that the simple connectedness of N = N(s + 2,q) is used in extending
As.

At this point we turn to the question of how the simple connectedness is
proven.

3.3 Simple Connectedness

Recall that simple connectedness can be shown by proving that every loop of
the flag complex of A is null-homotopic. Fixing a base point z to be a point (an
element of type 1), a standard technique is to reduce every loop of A to a loop
in the point-line incidence graph (lines are elements of type 2). This technique
requires that the geometry in question contains sufficiently many connected
residues, which is the case for the geometry .

Lemma 3.2. Every loop starting at some point x is homotopic to a loop that
is fully contained in the point-line incidence graph.

Furthermore, every loop in the latter graph can be understood as a loop in
the collinearity graph ¥ of . The vertices of ¥ are the points of A and two
points are adjacent if and only if they are collinear (i.e., incident to a common
line).

A loop in ¥ that is contained entirely within the residue of an element of
N (such a loop is called geometric) is null-homotopic. Thus, proving that N
is simply connected requires showing that every loop in ¥ can be decomposed
into a product of geometric loops. In fact, we only use geometric triangles for
this.



The key fact that allows us to proceed is that, with few exceptions, ¥ has
diameter two. This gives us by induction that every loop in ¥ is a product of
loops of length up to five. Thus it suffices to show that every loop v of length
3, 4, and 5 is null-homotopic. When n is large, one can always find a point
that is perpendicular to all the points on . This produces a decomposition of
~ into geometric triangles. Hence the claim is essentially obvious for large n.
All the difficulty of the proof lies in the case of small n, where we resort to a
case-by-case analysis and the proof at times becomes rather intricate.

We end this section with the exact statement.

Proposition 3.3. The geometry N' = N (n+1,¢%) is simply connected if (n,q)
is not one of (3,2) and (3,3).

Our proof of this proposition is computer-free with the exception of the case
n = 5 and ¢ = 2, which was handled by Jon Dunlap using a Todd-Coxeter coset
enumeration in GAP ([GAP]). Notice that neither one of the exceptions above
is simply connected, so that the result is in a sense best possible.

3.4 Uniqueness of A

Notice that Phan does not address the cases ¢ < 4 at all. Furthermore his
definitions do not even make sense for ¢ = 2. We would like to include all
possible cases in our theorem so we need to modify Phan’s setup.

We say that a group G possesses a weak Phan system if G contains subgroups
U; 2 8U(2,¢%),i=1,2,...,n,and U; j, 1 <i < j < n, so that the following
hold:

(wP1) If |i — j| > 1 then U, ; is a central product of U; and Uj;

(wP2) for i = 1,2,...,n — 1, the groups U; and U;y; are contained in U; 41,
which is isomorphic to SU(3,¢?) or PSU(3,q?); moreover, U; and U,
form a standard pair in U; ;41; and

(wP3) the subgroups U; j, 1 <i < j < n, generate G.

Here a standard pair in SU (3, ¢?) is a pair of subgroups SU(2, ¢?) conjugate
as a pair to the two block-diagonal SU(2,¢?)’s. Standard pairs in PSU(3, ¢°)
are defined as the images under the natural homomorphism of the standard
pairs from SU (3, ¢?%).

This definition leaves a lot of possibilities for the members of the amalgam
A =JU;;. This produces a variety of amalgams and we are unable to make any
claims of uniqueness in the general case. We call an amalgam A unambiguous if
every U;; is isomorphic to just SU(3,¢*) or SU(2,¢?) x SU(2,4*) (rather than
a quotient of these groups). Using some “scissors-and-glue” methods, one can
associate to every amalgam .4 of weak Phan type an unambiguous amalgam
whose universal completion has U(A) as a quotient. This reduces the analysis
of A to the case where A is unambiguous. However even in this case we cannot
claim uniqueness, and we have to impose another restriction. A non-collapsing



amalgam is an amalgam such that U(A) # 1 (this simple definition works in all
cases except for ¢ = 2; the latter case requires the stronger condition that every
U; embeds into U(A)). Clearly, from the point of view of Phan’s theorem, we are
only interested in the non-collapsing amalgams. It is interesting that although
many unambiguous amalgams exist, only one of them is non-collapsing.

Proposition 3.4. If A = JU;; is unambiguous and non-collapsing, then it is
isomorphic to the canonical amalgam of block-diagonal subgroups in SU(n +

Lg%).

We use the non-collapsing condition as follows. For e = %1, define D§ =
Nu,(Ui+e). Note that this normalizer makes sense in U; ;. Assuming that
A is non-collapsing, we have a completion H in which every member of A
embeds. Working in H we show that D' = D;* for all i = 2,...,n — 1.
This extra condition makes A unique. It also enables us to introduce the tori
D; = D;H = Di_1 as in Phan’s original setup.

The main part of the uniqueness proof splits into the cases n = 3 and n > 3.
In the first case we use Goldschmidt’s Lemma 2.7 of [G] to prove that the
amalgam of Uys and Usz with joint subgroup Us is unique up to isomorphism.
To identify A we need to decide which subgroups of Uj» and Usz can serve as Uy
and Us. Once these subgroups are found, the remaining member U3 is added
to U12 U U23 as U1 X U3

The condition on U; and Us is that each must form a standard pair with
U,. It can be seen that Us acts transitively by conjugation on the candidates
for U; and on candidates for Us. Since conjugation by an element of U, is an
automorphism of the amalgam U2 UUsy3. Thus we can assume that U, is a fixed
subgroup. We have many possibilities for Us thus leading to many amalgams.
Fortunately we have the extra condition coming from our assumption that A4
is non-collapsing. This condition leaves only two candidates for Us and we
complete the proof by finding an automorphism of U;s U Us3 that stabilizes U
and permutes the two candidates for Us.

For the n > 3 case, we now appeal to induction using the case n = 3 as the
base. In the end, combining all the above we obtain the following two theorems.

Theorem 3.5. If G contains a weak Phan system of rank n at least three with
q > 3, then G is isomorphic to a factor group of SU(n + 1,¢%).

Theorem 3.6. Suppose G contains a weak Phan system of rank n specified
below with ¢ = 2 or 3.

(1) Suppose ¢ = 3, n > 4, and additionally, for i = 1,2,...,n — 2, the sub-
group generated by U; ;11 and Uiy ;42 15 isomorphic to a factor group of
SU(4,9). Then G is isomorphic to a factor group of SU(n + 1,9).

(2) Suppose q=2,n >5 and, fori =1,2,...,n—3, the subgroup generated by
Uiit1, Uit1,i2 and Uiyo iy3 is isomorphic to a factor group of SU(5,4).
Then G is isomorphic to a factor group of SU(n + 1,4).



Notice that the extra conditions are due to the fact that, for ¢ < 3 and small
n, the geometry A is not simply connected. (And in one case, n = 2 and q = 2,
it is not even connected.)

4 The Curtis-Tits theorem

The following formulation of the Curtis-Tits theorem is taken from [GLS].

Theorem 4.1. Let G be the universal version of a finite Chevalley group of
(twisted) rank at least 3 with root system X, fundamental system 11, and root
groups X, a € X. For each J C1II let G; be the subgroup of G generated by all
root subgroups X, £a € J. Let D be the set of all subsets of I1 with at most 2
elements. Then G is the universal completion of the amalgam \J ., G ;.

We first discuss the similarities and differences between Phan’s theorem and
the Curtis-Tits theorem. Let us consider the case of the Chevalley group of type
Ay, which is G = SL(n + 1,¢). With the usual choice of the root subgroups
in G, the subgroups G; = G;; are the block-diagonal subgroups SL(3,q) and
SL(2,q) x SL(2, q), which we note is similar to the amalgam in Phan’s theorem.
The main difference between the two theorems is that the Curtis-Tits theorem
merely claims that the universal completion of the known amalgam (the one
found in SL(n + 1,q), i.e., U,cp Gs) is SL(n + 1,q), while Phan’s theorem
makes a claim about the completion of an arbitrary Phan amalgam.

Clearly, as we are again trying to find the universal completion of an amal-
gam, Tits’ lemma appears to be a natural tool for this task. To use it, one needs
to find a suitable geometry on which G acts flag-transitively with the correct
amalgam of maximal parabolics, and then prove that the geometry is simply
connected. We begin by modifying the amalgam so as to replace the rank 2 sub-
groups, Gy, with the maximal ones. Consider the amalgam A = |J, iy G\ {a}-
By induction on the rank, the Curtis-Tits theorem is equivalent to the following.

Theorem 4.2. Under the assumptions of Theorem 4.1, the group G is the uni-
versal completion of the amalgam A.

In the rest of this section we will discuss a geometric proof of this theorem
given by Miihlherr in [M].

Recall that a finite Chevalley group G acts on its natural finite geometry
called a building. Let I be a set and M be a Coxeter matrix over I. Let (W, S)
be the Coxeter system of type M, where S = {s; | i € [}. A building of type M
is a pair B = (C, ) where C is a set and 6 : C x C — W is a distance function
satisfying the following axioms. Let x,y € C and w = §(x,y). Then

(B1) w =1 if and only if z = y;

(B2) if z € C is such that 6(y,z) = s € S, then d(z,2) = w or ws; furthermore
if [(ws) = l(w) + 1, then 0(x, z) = ws; and

(B3) if s € S, there exists z € C such that 0(y,z) = s and d(x, z) = ws.
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In this survey we will concentrate (unlike Miihlherr) on finite buildings, in
which case the diagram is spherical, but a number of results that we state also
apply to the non-finite case.

Given a building B = (C,d) we can define a chamber system on the set of
chambers C (we denote the chamber system by C as well) where two chambers
c and d are i-adjacent if and only if §(c,d) = s;. Conversely, the building B can
be recovered from its chamber system C. We will only consider those buildings
B for which C is thick. If B is a building, its chamber system contains a class
of thin subsystems called apartments. In an apartment X, for any ¢ € ¥ and
w € W, there is a unique chamber d € ¥ such that 6(¢,d) = w. Every pair of
chambers of C is contained in an apartment. Notice that the chamber system C
defined by a building is always geometric. Let I' = I'(B) be the corresponding
geometry.

It is well known that I is simply connected. Unfortunately, we cannot use
this to prove the Curtis-Tits theorem because it corresponds to the wrong amal-
gam. So we need to find a different geometry.

Given two buildings By = (C4+,04), B = (C_,d_) of the same type M, a
codistance (twinning) is a map d, : (C1 X C_) U (C_ x C+) — W such that the
following axioms hold where e = £+, x € C,,y € C_. and w = d.(x,y):

(T1) du(y, o) =w™;

(T2) if z € C_¢ such that 0_.(y,z) = s € S and l(ws) = l(w) — 1, then
0«(x,z) = ws; and

(T3) if s € S, there exists z € C_, such that §_.(y, 2) = s € S and d.(z, 2) = ws.

A twin building of type M is a triple (By,B_,d.), where B, and B_ are
buildings of type M and ¢, is twinning between 54 and B_.

Tits showed (cf. Proposition 1 of [T2]) that every spherical twin building
can be obtained as follows from some building B = (C, d) of the same type M.
Let By = (C+,0+) be a copy of B, define B_ = (C_,d_) as (C, wodwp), and let
0« be defined as wpd and dwp on C+ x C_— and C_ x C4 respectively. Here wyq is
the longest element of the Weyl group W.

Given a twin building 7 = (B4, B_,d.), one can define a chamber system
Opp(T) = {(e4,c-) € Cy xC_ | du(cy,c—) = 1w}. Chambers z € C4 and
y € C_ with 0.(x,y) = 1w are called opposite, hence the notation. Note that
Opp(T) is a geometric chamber system. Its corresponding geometry is denoted
by I'yp, and is called the opposites geometry. It can be described as follows. Let
'y and I'_ be the building geometries that correspond to By and B_. Elements
x4 € 'y and z_ € T'_ of the same type i € I are called opposite if they are
contained in opposite maximal flags (i.e., chambers). The elements of I',, of
type i are pairs (x4, x_) of opposite elements of type i. Two pairs (zy,z_) and
(¢! , 2" ) are incident in 'y, if both 24 and 2/, are incident in I'y and z_ and
x"_ are incident in I'_. Clearly, a pair (¢4, c—) € Opp(T) produces a maximal
flag in I'yp, and it can be shown that every maximal flag is obtained in this way.

We now give some examples.
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Example la. Let G = PSL(n+1,q), i.e., M is of type A,,. Then the building
geometry I' is the projective space, whose elements of type i, 1 < i < n, are all
the i-dimensional subspaces in the corresponding (n+1)-dimesional vector space
V. The geometries I';. and I'_ are isomorphic respectively to I' and the dual
geometry of I' (same as I except that the type of the i-dimensional subspace is
n+1—1). Elements (subspaces) z € I'; and z_ € T'_ of type i are opposite if
they intersect trivially and thus form a direct sum decomposition V =z dx_.
It follows that these decompositions are the elements of I'yp,.

Example 2a. Let G = PSp(2n,q), which corresponds to the diagram C,.
Then T is the geometry of all totally isotropic subspaces of a nondegenerate 2n-
dimensional symplectic space V. In this case, both I'; and I'_ are isomorphic to
I'. Two i-dimensional totally isotropic subspaces x4 and z_ are opposite if z_
intersects trivially with the orthogonal complement of x. Such pairs (x4,z_)
are the elements of I',,.

In general, if the twin building consists of two isomorphic parts By = B =
B_, which is the case for a spherical diagram, the automorphism group Aut (B)
of the building acts on the twin building 7 by automorphisms, in particular, it
preserves the opposition relation, and hence it also acts on I'y,. It can be shown
that the action of Aut (B) on the set of pairs of opposite chambers is transitive,
thus it is flag-transitive on I',,. The stabilizers of the elements of a maximal
flag of I',, are Levi factors in the maximal parabolic subgroups (in the sense
of Chevalley groups) of G. The Levi factors differ from the members of the
amalgam of Theorem 4.2 only by the Cartan subgroup. To be precise, the full
Levi factors are the products of the subgroups Gy 1} With the Cartan subgroup
H. This is not a major impediment as the Cartan subgroup can be recovered
piecewise from the initial amalgam A. Therefore the Curtis-Tits theorem is
equivalent to the following;:

Theorem 4.3. If T = (B4, B_,0.) is a spherical twin building of rank at least
three, then the geometry Iy, is simply connected.

This was proved by Miihlherr in [M] for twin buildings with arbitrary (that
is, not only spherical) Coxeter matrix M. His proof is case-independent, short
and elegant. The claim is derived directly from the axioms of twin buildings,
properties of apartments in buildings, and certain connectivity properties of
buildings. However his proof does not cover a number of exceptional (small
field) cases where the connectivity fails. In particular, in the spherical case,
the groups G = Sp(2n,2) and Fy(2) are not covered by his proof. In the
nonspherical case Miihlherr has to exclude tree residues and rank 2 residues
related to the buildings of type B2(2), 2F4(2), G2(2), and G2(3). Miihlherr
remarks that in the nonspherical situation there appear to be counterexamples.
Hence a general proof for all M may not be possible. In the spherical case we
know by the original Curtis-Tits proof that there are no counterexamples. Thus
the following seems to be an interesting problem.

Problem 1. Generalize Mihlherr’s proof to cover all spherical matrices M .

12



As we have already noticed, the Curtis-Tits theorem is not concerned with
the question of the uniqueness of the amalgam A4 = UaEH Gm\{a}- In our
opinion this makes applying the Curtis-Tits theorem more complicated. Indeed,
in order to apply it one has to show that inside the group G under consideration
there is an exact copy of the amalgam A. Thus it would be advantageous to
strengthen the Curtis-Tits theorem by solving the following problem.

Problem 2. Prove that any non-collapsing amalgam of groups isomorphic to
Gm\{a} (with given isomorphism types of their intersections) is in fact isomor-
phic to A.

5 Flipflop geometries

We will start with an example.

Example 1b. Consider the situation of Example la, but change the field of
definition to GF(¢?), so that G = PSL(n+1,¢?). Consider a unitary polarity o,
that is, an involutory isomorphism from I" onto the dual of T' (recall that these
geometries have the same set of elements but different type functions) which
is defined by a nondegenerate Hermitian form ® on V. That is, o sends every
subspace of V' to its orthogonal complement with respect to ®. This ¢ produces
an involutory automorphism of the twin building 7 that switches C; and C_ (or
else, 'y and I'_). It is an automorphism in the sense that it transforms d; into
d_ and wvice versa, and preserves d,. Corresponding o, there is an automorphism
of G, which we will also denote . Consider G, = Cg(0) and I'y = {(z4,2_) €
Loy | 25 =z_}. Then G, = PSU(n+1,¢?) acts on I',. Notice that the elements
of I'; are of the form (z4,2_) wherex_ = 2% =2t and V = 2, Ga_ = x4 ®ay.
Thus, the mapping (z4,z_) — x4 establishes an isomorphism between I', and
the geometry of all proper nondegenerate subspaces of the unitary space V, as
defined by ®. This is exactly the geometry from Section 3 that was used for a
new proof of Phan’s first theorem.

This suggests the following general construction. Let 7 = (B4, B_,0.) be a
twin buiding. Consider an involutory automorphism ¢ of 7 with the following
properties:

(F1) Cf =C-;
(F2) o flips the distances, i.e., d.(z,y) = d_(z7,y?) for e = +; and
(F3) o preserves the codistance, i.e., 0.(x,y) = 0. (z7,y?).

We will additionally require that there be at least one chamber ¢ € C+ such
that d.(c,c”) = 1. Such o’s will be called flips.

Construct C, as the chamber system whose chambers are pairs (c,¢”) that
belong to Opp(T). Note that by our assumption C, is non-empty. We do
not know if C, is geometric in general, however this is the case in each of
our examples except Example 5 (which we did not check but believe to be
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geometric). If C, is geometric, let ', denote the corresponding geometry. It
will be referred to as the flipflop geometry.

In case of a spherical twin building, we can compute the action of o on the
Coxeter diagram of the building, as has been done in Section 3.3 of [Gr]. Indeed,
using Tits’ characterization of spherical twin buildings (Proposition 1 of [T2]),
we have d(c,d) = d4(c,d) = d_(c7,d?) = wpd(c?,d” )wy. Therefore, the flip o
acts on the Coxeter diagram via conjugation with the longest word wg of the
Weyl group. This gives the following characterization of a flip of a spherical
twin building.

Proposition 5.1. Let T = (By,B_,d.) be a spherical twin building. An ad-
jacency-preserving involution o that interchanges By and B_ and maps some
chamber onto an opposite chamber is a flip if and only if the induced map & on
the building B = (C,0) satisfies 6(c,d) = wod(c?, d”)wo for all chambers c,d € C
where wy 1s the longest word in the Weyl group W.

Here are some additional examples.

Example 2b. Consider the situation of Example 2a, but with the field of
definition of order ¢*. Let {ei,...,en, fi,..., fn} be a hyperbolic basis of the
symplectic space V. (So that (e;, f;) = d;;.) Consider the semilinear transfor-
mation o of V which is the composition of the linear transformation given by
the Gram matrix of the form and the involutory field automorphism applied
to the coordinates with respect to the above basis. It can be shown that o
produces a flip of 7. Furthermore, C, is geometric and G, = PSp(2n, q) acts
flag-transitively on the corresponding flipflop geometry I',. The geometry T,
can be described as follows. For u,v € V let ((u,v)) = (u,v?), where (-, ) is the
symplectic form on V. Then ((-,-)) is a nondegenerate Hermitian form. The
flipflop geometry T', can be identified (via (z4,z_) — z4) with the geometry
of all subspaces of V' which are totally isotropic with respect to (-, -) and, at the
same time, nondegenerate with respect to ((-,-)).

The configuration of Example 2b was looked at in [GHSh]. It is proved there
that I, is almost always simply connected. Here is the main theorem from that

paper.

Theorem 5.2. The flipflop geometry ', described in Example 2b is simply con-
nected if n >5 orn=4,q>3 orn=3,q>8.

We expect that some of the larger ¢’s on this list of exceptions are there
only because of the shortcomings of our particular proof, so that the final list
of exceptions will be shorter.

The above theorem leads to a new “Phan-type” result on groups generated
by subgroups U; = SU(2,¢?). Here we have that (U;, U;11) = SU(3, ¢?) for all
1<i<n-—1,while (U,_1,U,) = Sp(4,q). As in Phan’s original situation U;
and U; with |i — j| > 1 commute elementwise. An amalgam of subgroups as
indicated here is called a Phan system of type C,,. For the exact statements and
other applications, see [GHSh]. We have to point out that the uniqueness of
amalgams is not addressed in [GHSh] leaving the following an open problem.
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Problem 3. If q is sufficiently large prove that any non-collapsing Phan system
of type C,, is in fact isomorphic to the canonical Phan system inside the group

Sp(2n,q).

We expect that this problem can be solved by using the same methods as
given in [BSh]. Consequently, for small g one first has to introduce the notion
of a weak Phan system of type C), as in Section 3 and then study unambiguous,
non-collapsing weak Phan systems.

Example 3. For G = PSO(2n,q?,+) and PSO(2n + 1, ¢*) (diagrams D,, and
B, respectively) flips can be constructed by the same algorithm as in Example
2b, that is, o can be defined as the composition of the linear transformation
given by the Gram matrix, say, taken with respect to a hyperbolic basis (the
actual requirement is that all entries of the Gram matrix must be in the subfield
GF(q)) and the involutory field automorphism with respect to the same basis.
In both cases we checked that this o produces a flipflop geometry on which G,
acts flag-transitively. While we have not obtained an exact result on the simple
connectivity of I',, it is clear that I, is simply connected for all sufficiently large
n and ¢, leading to new “Phan-type” theorems, cf. [BGHSh]. Notice that the
D,, case here is likely to lead to Theorem 1.9 from Phan’s second paper [Ph2].
This conjecture is underscored by our above observation (before Proposition 5.1)
that a flip acts via conjugation with the longest word of the Weyl group on the
diagram D,,. Indeed, for n even, Phan’s target group is Spin®(q) (the universal
Chevalley group of type D,(q)) and conjugation with the longest word leaves
the diagram invariant, while for n odd, Phan’s target group is Spin~—(g) (the
universal Chevalley group of type 2D, (¢?)) and conjugation with the longest
word interchanges the two nodes representing the two classes of maximal totally
singular subspaces. Another flip is induced by the linear transformation given
by the Gram matrix with respect to a hyperbolic basis alone, without applying
the involutory field automorphism.

Example 4. Now consider the group G = PSO(2n,q,—) acting on the flag
complex C of totally singular subspaces of a nondegenerate orthogonal form of
— type on the vector space V' of dimension 2n over GF(¢q). Choose two opposite
chambers ¢ and d of that flag complex and let U := (c,d)* be the subspace of
V' that is perpendicular to both ¢ and d. Fix a hyperbolic basis

{61,...,en_l,fl,...,fn_l}

of the vector space ¢ ® d such that ¢ = ({(e1),...,{e1,-.-,en—1)) and d =
((f1),--, (fi,---, fn—1)) and, moreover, fix some orthogonal basis of U. Then
there exists a linear map on V' that preserves the form, maps e; onto f; and vice
versa, and acts by scalar multiplication on each of the vectors of the orthogonal
basis of U, e.g., the Gram matrix of the form with respect to the given basis.
This linear map induces a flip o of the twin building belonging to the flag com-
plex C. Notice, unlike Example 3, that we cannot compose this flip ¢ with an
involutory field automorphism that acts entrywise on the vectors with respect to
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the given basis in order to obtain another flip, because this field automorphism
would not commute with o.

Example 5. Let G be the universal Chevalley group of type Fg(q?) and consider
its 27-dimensional module V', a vector space over GF(¢?). For sake of simplicity
let us assume that ¢ is not divisible by two. A vector z € V is represented by the
triple (M), 2(?), 2(®) where (9, 1 < i < 3, is a (3 x 3)-matrix over GF(¢?). The
shadow space Eg 1(g?) can be described as the geometry on certain subspaces of
V, cf. Section 5.2 of Cohen’s Chapter 12 of [Bu]. There exists a nondegenerate
bilinear form (-,-) on V' defined by

(z,y) = trace (x(l)y(l) + m(Z)y(3) + x(3)y(2>),

Define g* € GL (V) by (gz, g*y) = (x,y) for all z,y € V. Themap  : GL (V) —
GL (V) : g = g* induces an involutory automorphism « of the group G. This
automorphism « in turn induces a correlation 8 of the geometry Fg 1 (¢?), i.e., an
incidence-preserving permutation of Fg 1(g?) that does not necessarily preserve
types. In fact, 8 induces the involutory graph automorphism on the Coxeter
diagram Fg. The composition of 5 and the involutory field automorphism acting
entrywise on the representation (z(*), z(?), z(3)) of any vector z € V induces a
map o on the corresponding twin building 7 that satisfies the axioms of a flip
except that we did not check whether there exists a chamber that is mapped
to an opposite chamber. We do, however, strongly believe that such a chamber
exists. This observation is underscored by the fact that the centralizer in G
of the composition of a and the involutory field automorphism equals 2 Fg(q?)
and, thus, the present setting is likely to lead to an alternative proof of Phan’s
Theorem 2.6 of [Ph2]. The correlation § can be expected to induce a flip as
well.

We do not have a concrete example of a flip for an Fjy twin building, but
we will discuss a general method for finding flips in the case where conjugation
with the longest word of the Weyl group acts trivially on the diagram, which,
for example, applies in the Fy case. As a concrete example, one would hope to
find a flip that centralizes the group F4(q) inside the group Fjy(q?); the resulting
flipflop geometry should admit the flipflop geometry of type Bs from [BGHSh)]
and the flipflop geometry of type Cs from [GHSh] as residues.

Let 7 = (B+,B_,04) be a twin building. Define the automorphism group
Aut (7) to be the set of all permutations a of 7 with

e i.(c,d) =0.(c*,d®) for all ¢,d € C, if a preserves C4 and C_,
o . (c,d) =d_(c*,d¥) for all ¢,d € Cc if a interchanges Cy and C_, and
e 0.(c,d) = 0.(c*,d*) forall c € C., d € C_,

where ¢ = +. Clearly, if o, € Aut(7) both interchange Cy and C_ then
their product af preserves C+ and C_. So, Aut (7) is of the form Aut (B).2.
If there exists a flip or any other distance-switching and codistance-preserving
involution of 7, then Aut (7) even is a semidirect product.

16



Now suppose we have a spherical twin building with a Coxeter diagram such
that conjugation with the longest word wy acts as the trivial automorphism on
the diagram. Then the map 7 assigning to each chamber ¢ of C+ the unique
chamber d of C+ with . (c, d) = wy (called the closest chamber to ¢) is contained
in Aut (7). Moreover, 7 commutes with any automorphism of 7 that preserves
C+ and C_, so Aut (7) is even a direct product. This implies the following.

Proposition 5.3. Let T = (By,B_,0.) be a spherical twin building such that
conjugation with the longest word wy of the Weyl group acts trivially on its
Cozeter diagram. Then Aut (T) = Aut (B) x (), where T is the autornorphism
assigning to each chamber c € C+ the unique closest chamber d € C. Moreover,
any flip of T is the product at for an involutory « € Aut (B) such that there
exists a chamber ¢ € C with §(c,c®) = wy. Conversely, every such at is a flip.

This partial result motivates the following problem.

Problem 4. Classify all flips for all spherical twin buildings. For each flip
investigate I'y and its simple connectivity.

Of course, it would be much nicer to have general building-theoretic argu-
ments (Mithlherr’s type) in place of a case-by-case analysis. In particular, this
concerns showing that C, is always geometric.

Besides the spherical case the investigation of flips might be interesting for
the nonspherical case as well.

Problem 5. Find an interesting flip for a nonspherical twin building.

A flip might be considered interesting if it either centralizes or flips an in-
teresting geometry or if it has an interesting centralizer. Also, Miihlherr’s proof
of the Curtis-Tits theorem has established a Curtis-Tits-type theorem for cer-
tain Kac-Moody groups. It might be worth the effort to investigate whether
interesting Phan-type theorems can be proved for Kac-Moody groups as well.
A starting point for the search of flips of nonspherial twin buildings might be
[B] on diagram automorphisms induced by certain root reflections.
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