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Abstra
t. In this paper we study two types of groups of smooth maps from a non-
ompa
t

manifold M into a Lie group K whi
h may be in�nite-dimensional: the group C

1




(M;K) of


ompa
tly supported maps and for a 
ompa
t manifold M and a 
losed subset S the group

C

1

(M;S;K) of those maps whi
h vanish on S , together with all their derivatives. We study 
entral

extensions of these groups asso
iated to Lie algebra 
o
y
les of the form !(�;�)=[�(�;d�)℄ , where

�:k�k!Y is a symmetri
 invariant bilinear map on the Lie algebra k of K and the values of ! lie in




1

(M ;Y )=dC

1

(M ;Y ) . For su
h 
o
y
les we show that a 
orresponding 
entral Lie group extension

exists if and only if this is the 
ase for M=S

1

. If K is �nite-dimensional semisimple, this implies

the existen
e of a universal 
entral Lie group extension of the identity 
omponent of the 
urrent

groups.

Introdu
tion

If M is a 
ompa
t manifold and K a Lie group (whi
h may be in�nite-dimensional), then

the so 
alled 
urrent groups C

1

(M ;K), endowed with the group stru
ture given by pointwise

multipli
ation, are interesting in�nite-dimensional Lie groups arising in many 
ir
umstan
es. If

M is a non-
ompa
t manifold, the full group C

1

(M ;K) seems to be far too large to 
arry a

Lie group stru
ture 
ompatible with its natural group topology, so that it is natural to study

subgroups of maps f :M ! K that either vanish outside a 
ompa
t subset or de
ay fast enough

at in�nity. In the present paper we investigate the following two types of 
urrent groups on

a non-
ompa
t manifold M . The �rst 
lass 
onsists of the groups C

1




(M ;K) of 
ompa
tly

supported smooth maps and the se
ond 
lass of the groups C

1

(M;S;K) of maps on a 
ompa
t

manifold M for whi
h all partial derivatives vanish on the 
losed subset S � M . The groups

C

1

(M;S;K) have the advantage that they are Fr�e
het{Lie groups if K is a Fr�e
het{Lie group,

the Lie algebra is given by C

1

(M;S; k). We 
onsider them as groups of smooth maps on the

non-
ompa
t manifold M n S vanishing at in�nity. The groups C

1




(M ;K) are modeled on the

spa
e C

1




(M ; k) whi
h is not metrizable in its natural dire
t limit topology, not even for K = R .

The goal of the present paper is to understand 
entral extensions of 
urrent groups G

whi
h are identity 
omponents of groups of the type C

1




(M ;K) or C

1

(M;S;K). For an

in�nite-dimensional Lie group G not every Lie algebra 
o
y
le !: g � g ! z de�nes a 
entral

extension of g by z whi
h 
an be integrated to a Lie group. In [Ne02a℄ we show that there

are two kinds of obstru
tions. The �rst one is an element of Hom(�

1

(G);Lin(g; z)), and we will

see in Theorem V.8 that it always vanishes for 
urrent groups. The se
ond obstru
tion is that

the image of a 
ertain \period map" per

!

:�

2

(G) ! z need not be dis
rete. To illuminate the

obstru
tions for the 
lass of 
urrent groups, we need a good deal of information on the abelian

group �

2

(G). This information is obtained in Appendix A where we show that the 
omputation

of the homotopy groups of G 
an be redu
ed to the 
omputation of those of groups C(X ;K) of


ontinuous maps, where X is a 
ompa
t manifold with boundary.
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The Lie algebra 
o
y
les we are interested in are those of produ
t type, i.e., 
o
y
les

!: g � g ! z for whi
h there exists a sequentially 
omplete lo
ally 
onvex spa
e Y and an

invariant 
ontinuous symmetri
 bilinear form �: k � k ! Y su
h that !(�; �) = [�(�; d�)℄

de�nes a 
o
y
le with values in z := z

M;


(Y ) := 


1




(M ;Y )=dC

1




(M ;Y ) for g = C

1




(M ; k),

and z := z

(M;S)

(Y ) := 


1

(M;S;Y )=dC

1

(M;S;Y ) for g = C

1

(M;S; k). We systemati
ally

use forms with values in an in�nite-dimensional ve
tor spa
e to in
orporate in parti
ular the

universal invariant symmetri
 bilinear form �: k� k ! V (k).

The main steps in our analysis of these 
o
y
les and their period maps are as follows. In

Se
tion IV we show that the image of the period map always lies in the subspa
e of z 
oming

from the 
losed 1-forms. Then the problem is to determine the period group �

!

:= im(per

!

) � z

and to see if it is dis
rete. For the 
ase g = C




(M ; k) it is quite hard to get information on the

dis
reteness of a subgroup of z = z

M;


(Y ), resp., H

1

dR;


(M ;Y ) be
ause z is a dire
t limit of spa
es

on whi
h the topology is given by expli
it seminorms. We address this problem by approximating

the non-
ompa
t manifold M by suitably 
hosen submanifolds X

n

with boundary in su
h a way

that

H

1

dR;


(M ;Y ) = lim

�!

H

1

dR

(X

n

; �X

n

;Y )

(Se
tion III). From this relation we then derive the existen
e of a 
ountable set B so that

H

1

dR;


(M ;Y )

�

=

Y

(B)

;

is a lo
ally 
onvex dire
t sum, where the proje
tions are given by integrals over singular 
y
les

or over pie
ewise smooth proper maps R ! M . In Se
tion IV this information permits us

to see that �

!

is dis
rete for ea
h M if and only if this is the 
ase for the 
ir
le M = S

1

.

In the latter 
ase �

2

(C

1

(S

1

;K))

�

=

�

2

(K) � �

3

(K), the period map vanishes on �

2

(K), and

z

S

1

(Y )

�

=

Y , so that we arrive at a map �

3

(K)! Y whi
h depends only on the bilinear form � .

For �nite-dimensional groups K we 
an now use information from [MN02℄ to see that the period

group is dis
rete if � is the universal invariant symmetri
 bilinear form. This is used in Se
tion

VI to 
onstru
t for a �nite-dimensional redu
tive Lie group K with simply 
onne
ted 
enter a

universal 
entral extension of the groups C

1




(M ;K)

e

and C

1

(M;S;K)

e

. In both 
ases there

are many examples where the period group has in�nite rank. A simple example with M = S

2

and S a sequen
e with limit point is dis
ussed in detail in Example II.12. All the 
on
rete

examples of 
entral extensions of in�nite-dimensional Lie groups whi
h have been dealt with so

far in the literature have �nitely generated period groups. In this sense we provide new and


on
rete examples, where this is not the 
ase.

The 
lass of 
urrent groups most extensively studied is the 
lass of loop groups (M = S

1

and K 
ompa
t) whi
h is 
ompletely 
overed by Pressley and Segal's monograph [PS86℄. The

main point of the present paper is to see whi
h Lie algebra 
o
y
les of produ
t type 
an

be integrated to a 
entral Lie group extension. These 
entral extensions o

ur naturally in

mathemati
al physi
s, where the problem to integrate proje
tive representations of groups to

representations of 
entral extensions is at the heart of quantum me
hani
s ([Mi
87℄, [LMNS98℄,

[Wu01℄). The 
entral extensions of 
urrent groups are often 
onstru
ted via representations by

pulling ba
k 
entral extensions of 
ertain operator groups ([Mi
89℄). It is our philosophy that

one should try to understand the 
entral extensions of a Lie group G �rst, and then 
onstru
t

representations of these 
entral extensions. In this 
ontext 
ertain dis
reteness 
onditions for Lie

algebra 
o
y
les appear naturally be
ause they ensure that the 
orresponding 
entral Lie algebra

extension integrates to a 
entral Lie group extension ([Ne02a℄). We think of these dis
reteness


onditions as an abstra
t version of the dis
reteness of quantum numbers in quantum physi
s.

As an out
ome of our analysis, we will see that for our general results we do not have to impose

any restri
tion on the group K . It may be any in�nite-dimensional Lie group. This permits in

parti
ular iterative 
onstru
tions based on relations like C

1

(M �N ;K)

�

=

C

1

(M;C

1

(N ;K))

for 
ompa
t manifolds M and N .

The 
ontent of the paper is as follows. In Se
tion I we introdu
e the two kinds of Lie groups

we are dealing with: C

1




(M ;K) for M non-
ompa
t, and C

1

(M;S;K) for M 
ompa
t and

S �M 
losed.
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The main result of Se
tion II is that the group H

1

dR

(M;S; �) of all de Rham 
ohomology


lasses modulo S for whi
h all integrals over singular 
y
les modulo S are 
ontained in a dis
rete

subgroup � of Y is dis
rete (Theorem II.7). In Se
tion V this is used to prove the dis
reteness

of period groups for 
o
y
les of produ
t type for the groups C

1

(M;S;K).

Our strategy to get a des
ription of the spa
es z

M;


(Y ) and H

1

dR;


(M ;Y ) for a non-
ompa
t

manifold M is to des
ribe M as a union of 
ertain 
ompa
t submanifolds with boundary

(X

n

)

n2N

with X

n

� X

0

n+1

. To get information on the spa
e H

1

dR;


(M ;Y ), we will need

detailed information on the natural maps H

1

dR

(X

n

; �X

n

;Y ) ! H

1

dR

(X

n+1

; �X

n+1

;Y ) whi
h

is obtained in Theorem III.6. This result is used in Theorem IV.7 to obtain the isomorphism

H

1

dR;


(M ;Y )

�

=

Y

(B)

mentioned above. As a 
orollary, we show that if � is dis
rete, then

H

1

dR;


(M ; �) is dis
rete.

In Se
tion V we �rst explain the general setup for 
entral extensions of Lie groups. The

main question arising in the integration of Lie algebra 
o
y
les ! to 
entral extensions of Lie

groups is whether the 
orresponding period group �

!

is dis
rete. We then show that for 
o
y
les

of produ
t type for the groups C

1




(M ;K)

e

and C

1

(M;S;K)

e

the period group �

M;�

is dis
rete

if and only if this is the 
ase for �

S

1

;�

. This redu
es the dis
reteness problem to the 
ase of loop

groups, whi
h is known for K 
ompa
t, and therefore for all �nite-dimensional Lie groups (
f.

[PS86℄, [MN02℄). We further show that �

M;�

= H

1

dR;


(M ; �

S

1

;�

) for ea
h non-
ompa
t manifold

M and ea
h � .

In Se
tion VI we �nally turn to universal 
entral extensions. For the spe
ial 
lass of �nite-

dimensional semisimple Lie groups K , ea
h Lie algebra 
o
y
le ! 2 Z

2




(C

1




(M; k); z) is equivalent

to a 
o
y
le of produ
t type ([Ma02℄, [Fe88℄). This observation permits us to 
onstru
t a universal


entral extension of the Lie algebra g := C

1




(M ; k), and we show that this 
onstru
tion 
an be

globalized in our 
ontext, providing a universal 
entral extension of the 
onne
ted Lie group

C

1




(M ;K)

e

.

In Appendix A we address the topology of the groups C

1




(M ;K) and C

1

(M;S;K). For

our purposes it is of parti
ular importan
e to know their homotopy groups. We write C

0

(M ;K)

for the group of 
ontinuous fun
tions vanishing at in�nity, endowed with the topology of uniform


onvergen
e. Information on homotopy groups is obtained by several approximation arguments

showing that the in
lusion maps

C

1




(M ;K) ,! C

0

(M ;K) and C

1

(M;S;K) ,! C

0

(M n S;K)

are weak homotopy equivalen
es, i.e., indu
e isomorphisms of all homotopy groups. These results

are motivated by the fa
t that it is usually mu
h easier to deal with spa
es of 
ontinuous maps

than with spa
es of di�erentiable maps. We also note that if K is a Bana
h-, resp., Fr�e
het{Lie

group, then the same holds for the groups C

0

(M ;K) and C

0

(M n S;K).

Appendix B 
ontains several results on dire
t limits of lo
ally 
onvex spa
es. These are

needed to deal with the spa
es of 
ompa
tly supported smooth fun
tions or di�erential forms on

a non-
ompa
t manifold. The diÆ
ulties with these spa
es arise from the fa
t that they are not

metrizable, whi
h makes it harder to prove that a subgroup is dis
rete.

This paper 
ontributes in parti
ular to the program dealing with Lie groups G whose

Lie algebras g are root graded in the sense that there exists a �nite irredu
ible root system �

su
h that g has a �-grading g = g

0

�

L

�2�

g

�

, it 
ontains the split simple Lie algebra k


orresponding to � as a graded subalgebra, and is generated, topologi
ally, by the root spa
es

g

�

, � 2 �. All Lie groups of the type C

1




(M ;K), K simple 
omplex, are of this type, and

the same holds for their 
entral extension. A di�erent but related 
lass of groups arising in this


ontext are the Lie groups SL

n

(A) and their 
entral extensions, where A is a 
ontinuous inverse

algebra, i.e., a lo
ally 
onvex unital asso
iative algebra with open unit group and 
ontinuous

inversion ([Gl01
℄, [Ne03℄).

In [Ne02b℄ we dis
uss the universal 
entral extensions of the groups SL

n

(A), whi
h are

Lie group versions of the Steinberg groups St

n

(A). In [MN02, Rem. II.12℄ we have shown

that for K = SL

n

(A), A a 
ommutative 
ontinuous inverse algebra, the form �: k � k ! A ,

�(x; y) = tr(xy) is universal, and that the image of the 
orresponding period map is dis
rete for
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the 
orresponding produ
t type 
o
y
le on the Lie algebra C

1

(M ; k) of the group C

1

(M ;K).

For non-
ommutative algebras the image of the period map is not always dis
rete ([Ne02b℄).

Throughout this paper we will use the 
on
ept of an in�nite-dimensional Lie group des
ribed

in detail in [Mil83℄ (see also [Gl01a℄ for arguments showing that the 
ompleteness requirements

made in [Mil83℄ are not ne
essary to de�ne the 
on
ept). This means that a Lie group G is a

smooth manifold modeled on a lo
ally 
onvex spa
e g for whi
h the group multipli
ation and

the inversion are smooth maps. We write �

g

(x) = gx , resp., �

g

(x) = xg for the left, resp., right

multipli
ation on G . Let e 2 G be the identity element. Then ea
h X 2 T

e

(G) 
orresponds to

a unique left invariant ve
tor �eld X

l

with X

l

(g) := d�

g

(1):X; g 2 G: The spa
e of left invariant

ve
tor �elds is 
losed under the Lie bra
ket of ve
tor �elds, hen
e inherits a Lie algebra stru
ture.

In this sense we obtain on g := T

e

(G) a 
ontinuous Lie bra
ket whi
h is uniquely determined by

[X;Y ℄

l

= [X

l

; Y

l

℄ .

All �nite-dimensional manifolds M are assumed to be � -
ompa
t whi
h for 
onne
ted

manifolds is equivalent to requiring that M is para
ompa
t or a se
ond 
ountable topologi
al

spa
e. This ex
ludes pathologies su
h as \long lines" whi
h are one-dimensional smooth manifolds


onstru
ted from sets of 
ountable ordinal numbers ([SS78, p.72℄).

All topologi
al ve
tor spa
es in this paper are assumed to be Hausdor�.

A
knowledgement: I am grateful to H. Biller and H. Gl�o
kner for many extremely helpful

suggestions to improve the exposition of this paper.

I. Current groups on non-
ompa
t manifolds

In this se
tion we introdu
e two 
lasses of Lie groups of smooth maps: the group C

1




(M ;K) of

smooth maps with 
ompa
t support on a non-
ompa
t manifold and the group C

1

(M;S;K) of

smooth maps on a 
ompa
t manifold M that together with all higher partial derivatives vanish

on the 
losed subset S .

Compa
tly supported smooth maps

De�nition I.1. For two topologi
al spa
es M and Y we write C(M ;Y )




for the spa
e

C(M ;Y ) of all 
ontinuous maps M ! Y endowed with the 
ompa
t open topology. The topology

on this spa
e is generated by the sets

W (C;O) := ff 2 C(M ;Y ): f(C) � Og;

where C �M is 
ompa
t and O � Y is open.

(a) If M is lo
ally 
ompa
t and K is a topologi
al group, then C(M ;K)




is a topologi
al group

with respe
t to pointwise multipli
ation, and the topology 
oin
ides with the topology of uniform


onvergen
e on 
ompa
t subsets of M ([S
h75, Satz II.4.5℄). In parti
ular the sets W (C;U),

where C �M is 
ompa
t and U � K is an open identity neighborhood, form a basis of identity

neighborhoods in C(M ;K)




.

For a fun
tion f :M ! K let supp(f) := fx 2M : f(x) 6= eg denote its support. Then for

ea
h 
ompa
t subset X �M the subset

C

X

(M ;K) := ff 2 C(M ;K): supp(f) � Xg

is a 
losed subgroup of C(M ;K)




on whi
h the subspa
e topology 
oin
ides with the topology

of uniform 
onvergen
e.

If M is a dis
rete set, then C(M ;K)




�

=

K

M

as a topologi
al group.

(b) If M is a lo
ally 
ompa
t spa
e and Y is a lo
ally 
onvex spa
e, then (a) implies that

C(M ;Y )




is a lo
ally 
onvex spa
e, where the topology is de�ned by the seminorms

p

X;q

(f) := sup

x2X

q(f(x));
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where q is a 
ontinuous seminorm on Y and X �M a 
ompa
t subset.

If Y is a Fr�e
het spa
e and M is � -
ompa
t, then the topology is de�ned by a 
ountable

family of seminorms turning C(M ;Y )




into a Fr�e
het spa
e.

(
) If M is lo
ally 
ompa
t, X � M 
ompa
t, and Y is a lo
ally 
onvex spa
e, then for ea
h

open 0-neighborhood U � Y the subset

ff 2 C

X

(M ;Y )




: f(M) � Ug =W (X;U) \ C

X

(M ;Y )

is open in C

X

(M ;Y )




.

De�nition I.2. Let M be a smooth �nite-dimensional � -
ompa
t manifold. If Y is a lo
ally


onvex spa
e, then ea
h smooth map f :M ! Y de�nes a sequen
e of maps

d

n

f :T

n

M ! Y; n 2 N:

We endow C

1

(M ;Y ) with the topology obtained from the embedding

C

1

(M ;Y ) ,!

Y

n2N

0

C(T

n

M;Y )




turning C

1

(M ;Y ) into a lo
ally 
onvex spa
e. If X �M is a 
ompa
t subset, we 
onsider on

C

1

X

(M ;Y ) � C

1

(M ;Y ) the subspa
e topology.

(a) If K is a Lie group, then C

1

X

(M ;K) is a group with respe
t to pointwise multipli
ation. It

is shown in [Gl01b, 3.18℄ that it 
arries a Lie group stru
ture whi
h is uniquely determined by

the property that for ea
h open identity neighborhood U � K and ea
h 
hart ':U ! k with

'(e) = 0 there exists an open identity neighborhood U

0

� U su
h that the map

ff 2 C

1

X

(M ;K): f(M) � U

0

g ! fh 2 C

1

X

(M ; k):h(M) � '(U

0

)g; f 7! ' Æ f

is a di�eomorphism onto an open subset of the lo
ally 
onvex spa
e C

1

X

(M ; k). The Lie algebra

of this group is the lo
ally 
onvex spa
e C

1

X

(M ; k) with the pointwise Lie bra
ket, where k is

the Lie algebra of K ([Gl01b, 3.19℄).

(b) For a lo
ally 
onvex spa
e Y we endow the spa
e

C

1




(M ;Y ) := ff 2 C

1

(M ;Y ): supp(f) 
ompa
tg =

[

X

C

1

X

(M ;Y );

where X runs through all 
ompa
t subsets of M , with the lo
ally 
onvex dire
t limit topology.

This means that a seminorm on C

1




(M ;Y ) is 
ontinuous if and only if its restri
tions to all the

subspa
es C

1

X

(M ;Y ) are 
ontinuous with respe
t to the topology de�ned above.

In M there exists an in
reasing sequen
e (X

n

)

n2N

of 
ompa
t subsets X

n

with X

n

� X

0

n+1

and M =

S

n

X

n

. Then ea
h 
ompa
t subset X �M is 
ontained in some X

n

, and ea
h spa
e

C

1

X

n

(M ;Y ) is a 
losed subspa
e of C

1

X

n+1

(M ;Y ). Therefore

C

1




(M ;Y ) = lim

�!

C

1

X

n

(M ;Y )

is a stri
t indu
tive limit of the lo
ally 
onvex spa
es C

1

X

n

(M ;Y ) in the sense of [He89,

Prop. 1.5.3℄. In parti
ular ea
h bounded subset of C

1




(M ;Y ) is 
ontained in one of the sub-

spa
es C

1

X

n

(M ;Y ). Moreover, C

1




(M ;Y ) is Hausdor� and the 
ontinuous maps C

1

X

n

(M ;Y ) ,!

C

1




(M ;Y ) are embeddings, whi
h in turn implies that all the in
lusions

C

1

X

(M ;Y ) ,! C

1




(M ;Y )

are embeddings (
f. [K�o69, p.222℄).

If Y is a Fr�e
het spa
e, this topology turns C

1




(M ;Y ) into an LF-spa
e ([Gl01b, 4.6℄). It

is shown in [Gl01b, 4.18℄ that for ea
h Lie group K the group C

1




(M ;K) 
arries a Lie group

stru
ture, hen
e in parti
ular the stru
ture of a Hausdor� topologi
al group. In the same way as

for the groups C

1

X

(M ;K), the Lie group stru
ture is uniquely determined by the property that

for ea
h open identity neighborhood U � K and ea
h 
hart ':U ! k with '(e) = 0 there exists

an open identity neighborhood U

0

� U su
h that the map

ff 2 C

1




(M ;K): f(M) � U

0

g ! fh 2 C

1




(M ; k):h(M) � '(U

0

)g; f 7! ' Æ f

is a di�eomorphism onto an open subset of the lo
ally 
onvex spa
e C

1




(M ; k). The Lie algebra

of this group is the lo
ally 
onvex spa
e C

1




(M ; k) with the pointwise Lie bra
ket.



6 Current groups for non-
ompa
t manifolds and their 
entral extensions September 24, 2002

Remark I.3. From the fa
t that C

1




(M ; k) is a stri
t indu
tive limit of spa
es C

1

X

(M ; k) and

the des
ription of the natural 
harts of the Lie group C

1




(M ;K), we see that for ea
h 
ompa
t

subset X �M the in
lusion map C

1

X

(M ;K) ,! C

1




(M ;K) is a topologi
al embedding.

Remark I.4. If K is a Lie group with Lie algebra k , then the tangent bundle of K is a Lie

group isomorphi
 to k o K , where K a
ts on k by the adjoint representation (
f. [Ne01b℄).

Iterating this pro
edure, we obtain a Lie group stru
ture on all iterated higher tangent bundles

T

n

K whi
h are di�eomorphi
 to k

2

n

�1

�K .

It follows in parti
ular that for ea
h �nite-dimensional manifold M and ea
h n 2 N

0

we

obtain topologi
al groups C(T

n

M;T

n

K)




(De�nition I.1(a)). Therefore the 
anoni
al in
lusion

map

C

1

(M ;K) ,!

Y

n2N

C(T

n

M;T

n

K)




leads to a natural topology on C

1

(M ;K) turning it into a topologi
al group.

If M is 
ompa
t, then it is not hard to see that this pro
edure leads to the same topology

as the Lie group stru
ture de�ned in De�nition I.2. A similar statement holds for C

1

X

(M ;K) if

X �M is a 
ompa
t subset.

We 
annot expe
t for a general non-
ompa
t manifold M that C

1

(M ;K) 
arries a natural

Lie group stru
ture. In the example M = N the group C

1

(N;K) = C(N;K )

�

=

K

N

is the

topologi
al dire
t produ
t group. As the example K = T already shows, the groups K

N

need

not be manifolds be
ause they need not be lo
ally 
ontra
tible.

If M is 
onne
ted, then the situation seems to be mu
h better, but this needs to be

investigated ([NW03℄). One 
an show in parti
ular that for ea
h Bana
h{Lie group K the group

C

1

(R;K) is a Fr�e
het{Lie group with respe
t to its natural topology of uniform 
onvergen
e

of all derivatives on 
ompa
t subsets of R . Likewise, for ea
h simply 
onne
ted non-
ompa
t


omplex 
urve � and ea
h 
omplex Bana
h{Lie group K the group Hol(�;K) of all holomorphi


maps �! K is a Lie group.

Fr�e
het 
urrent groups de�ned by vanishing 
onditions

In this subse
tion M denotes a 
onne
ted �nite-dimensional manifold and S �M a 
losed

subset. Mostly we will assume that M is 
ompa
t.

Remark I.5. Let U be an open subset of a lo
ally 
onvex spa
e X and Y another lo
ally


onvex spa
e. If for a smooth fun
tion f :U ! Y its value together with all derivatives up to

order k vanish in a point p 2 U , then the formula for the Taylor expansion of 
ompositions

trivially implies that the same holds for all 
ompositions f Æ ' in q , where ':V ! U is a C

k

-

map with '(q) = p . It follows in parti
ular that for a smooth fun
tion on a manifold it makes

sense to say that all partial derivatives up to order k vanish in a point p .

De�nition I.6. Let M be a manifold with boundary and S �M a 
losed subset. For a Lie

group K we write C

1

(M;S;K) for the group of all those smooth maps for whi
h their value

together with all derivatives vanish on S . It 
learly suÆ
es that for ea
h point s 2 S there exists

one 
hart in whi
h all partial derivatives vanish in s .

If M is 
ompa
t and K is a (Fr�e
het-)Lie group, then also C

1

(M;S;K) is a Fr�e
het{Lie

group, where we use the same 
harts as for C

1

(M ;K) and observe that they restri
t to 
harts

of the subgroup C

1

(M;S;K). In parti
ular C

1

(M;S;R) is a real Fr�e
het algebra. For non-


ompa
t M we 
onsider C

1

(M;S;K) only as a topologi
al subgroup of C

1

(M ;K) in the sense

of Remark I.4.

Remark I.7. Let us 
onsider the 
ategory P whose obje
ts are pairs (M;S), where M is

a (�nite-dimensional) manifold and S is a 
losed subset. A morphism (M;S) ! (M

0

; S

0

)
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is a smooth map ':M ! M

0

with '(S) � S

0

. Remark I.5 implies that the assignment

(M;S) 7! C

1

(M;S;K) de�nes a 
ontravariant fun
tor from P to the 
ategory of topologi
al

groups. Here we use that for a morphism ': (M;S) ! (M

0

; S

0

) the 
orresponding group

homomorphism C

1

(M

0

; S

0

;K) ! C

1

(M;S;K); f 7! f Æ ' is 
ontinuous, whi
h is an easy


onsequen
e of the de�nitions (
f. Lemma A.1.6).

Lemma I.8. Let M be a �nite-dimensional manifold, X � M be a smooth submanifold with

boundary, dimX = dimM , and Y a lo
ally 
onvex spa
e. For a smooth fun
tion f :X ! Y the

extension by f(M n X) = f0g de�nes a smooth fun
tion M ! Y if and only if f and all its

derivatives vanish on �X .

Proof. It 
learly is a ne
essary 
ondition that all derivatives of f vanish on �X . Suppose,


onversely, that this 
ondition is satis�ed and extend f by 0 on M nX to a fun
tion f

M

:M ! Y .

As the smoothness of f

M

is equivalent to its weak smoothness (for this result of Grothen-

die
k see [Wa72℄ or [KM97℄), we may w.l.o.g. assume that Y = R . Moreover, we may assume

that M = R

n

and that X = fx 2 R

n

:x

n

� 0g . Then it is 
lear that all partial derivatives of

f extended by 0 on M nX yield 
ontinuous fun
tions. Moreover, all partial derivatives of the

extended fun
tion f

M

exist and 
oin
ide with the extensions of the partial derivatives of f . This

proves that f

M

is a C

1

-fun
tion. Iterating the argument shows that f

M

is a C

k

-fun
tion for

ea
h k , hen
e smooth.

Examples I.9. (a) Let X be a 
ompa
t manifold with boundary and X

d

the double of X .

This is, by de�nition, a 
ompa
t manifold without boundary 
ontaining X and a di�eomorphi



opy X

℄

of X su
h that X \X

℄

= �X = �X

℄

and X [X

℄

= X

d

. Then Lemma I.8 implies that

C

1

(X; �X ;K)

�

=

C

1

X

(X

d

;K)

and

C

1

(X

d

; �X ;K)

�

=

C

1

(X; �X ;K)� C

1

(X

℄

; �X ;K)

�

=

C

1

(X; �X ;K)

2

:

(b) We think of C

1

(M;S;K) as a group of smooth maps on the non-
ompa
t manifold M n S .

For M = S

n

and S = fpg have M n S

�

=

R

n

, and hen
e a natural Lie group of smooth maps

R

n

! K with a 
ertain de
ay at in�nity.

(
) Let M = S

1

. Then M nS is a 
ountable union of intervals I

j

, j 2 J , and we thus obtain an

in
lusion

C

1

(M;S;K) ,!

Y

j2J

C

1

(I

j

; �I

j

;K)

�

=

C

1

(I; �I ;K)

J

;

where the right hand side does not 
arry the produ
t topology but the l

1

-topology of uniform


onvergen
e of all derivatives uniformly in all 
omponents.

II. Relative de Rham 
ohomology

If M is a 
ompa
t manifold, S � M a 
ompa
t subset, and Y a sequentially 
omplete lo
ally


onvex spa
e (an s.
.l.
. spa
e), then we 
onsider the spa
e Z

1

dR

(M;S;Y ) of all Y -valued 
losed

smooth 1-forms that vanish, together with all their derivatives, on S . Integration of 1-forms

with this property over singular 
y
les in M modulo S lead to the subgroup Z

1

dR

(M;S; �) of

those 
losed 1-forms for whi
h all integrals over 
y
les have values in a subgroup � of Y . The

main result of this se
tion is Theorem II.7, saying that the image H

1

dR

(M;S; �) of Z

1

dR

(M;S; �)

in H

1

dR

(M;S;Y ) is a dis
rete subgroup if � is dis
rete. In Examples II.11 and II.12 we see that

these subgroups may have in�nite rank, even for Y = R .

We write I := [0; 1℄ and assume that S 6= � and that M is 
onne
ted. Further Y denotes

an s.
.l.
. spa
e, � is a subgroup of Y , and T

�

:= Y=� the 
orresponding quotient group. If �

is dis
rete, then the quotient topology turns T

�

into a Lie group with Lie algebra Y . For some

statements we do not have to assume that M is 
ompa
t. If we assume 
ompa
tness, we will

mention it expli
itly.
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We write 


1

(M ;Y ) for the spa
e of smooth 1-forms on M with values in Y and endow

this spa
e with the natural topology 
orresponding in ea
h 
hart to the uniform 
onvergen
e of

all derivatives on 
ompa
t subsets mapping into 
oordinate 
harts (
f. [Gl01d℄). For a subset

X � M we write 


1

X

(M ;Y ) for the 
losed subspa
e of 


1

(M ;Y ) 
onsisting of those forms

supported in X . We endow the spa
e 


1




(M ;Y ) with the lo
ally 
onvex dire
t limit topology

with respe
t to the subspa
es 


1

X

(M ;Y ), where X � M is a 
ompa
t subset. For a 
losed

subset S � M we write 


1

(M;S;Y ) � 


1

(M ;Y ) for the subspa
e of all forms vanishing with

all their partial derivatives on S .

The Lie group C

1

(M;S;T

�

)

De�nition II.1. Let M be a smooth manifold and K a Lie group. For an element f 2

C

1

(M ;K) we write

Æ

l

(f)(m) := d�

f(m)

�1
(f(m))df(m):T

m

(M)! k

�

=

T

e

(K)

for the left logarithmi
 derivative of f . This derivative 
an be viewed as a k-valued 1-form on

M whi
h we also write simply as Æ

l

(f) = f

�1

:df . We thus obtain a map

Æ

l

:C

1

(M ;K)! 


1

(M ; k)

satisfying the 
o
y
le 
ondition

Æ

l

(f

1

f

2

) = Ad(f

2

)

�1

:Æ

l

(f

1

) + Æ

l

(f

2

):

We also have the right logarithmi
 derivative Æ

r

(f) = df:f

�1

satisfying

Æ

r

(f

1

f

2

) = Æ

r

(f

1

) + Ad(f

1

):Æ

r

(f

2

):

(
f. [KM97, 38.1℄). If K is abelian, then the 
o
y
le 
ondition shows that Æ := Æ

l

is a group

homomorphism whose kernel 
onsists of the lo
ally 
onstant maps.

In Se
tion V we will need the following 
ontinuity result for the logarithmi
 derivatives.

Lemma II.2. For any Lie group K the maps Æ

l

; Æ

r

:C

1




(M ;K)! 


1




(M ; k) are smooth.

Proof. In view of the 
o
y
le relations

Æ

l

(f

1

f

2

) = Ad(f

2

)

�1

:Æ

l

(f

1

) + Æ

l

(f

2

) and Æ

r

(f

1

f

2

) = Æ

r

(f

1

) + Ad(f

1

):Æ

r

(f

2

);

it suÆ
es to prove the smoothness of Æ

l

and Æ

r

in an open identity neighborhood U of

C

1




(M ;K). Here we use that addition is 
ontinuous in 


1




(M ; k), and that the 
ontinuity of the

linear map Ad(f

1

) on 


1




(M ; k) follows from its 
ontinuity on the subspa
es 


1

X

(M ; k), X �M


ompa
t. A

ording to the de�nition of the Lie group stru
ture on C

1




(M ;K), we may assume

that

U = ff 2 C

1




(M ;K): f(M) � V

K

g;

where V

K

� K is an open identity neighborhood for whi
h there exists a di�eomorphism

':V

k

! V

K

, where V

k

is an open subset of the lo
ally 
onvex spa
e k . We now have to show

that the map

D:C

1




(M ;V

k

)! 


1




(M ; k); f 7! Æ

l

(' Æ f)

is smooth.

We think of D as a map between spa
es of se
tions of ve
tor bundles over M . Then the

values of D(f) in an open subset O �M only depend on f j

O

. This implies in parti
ular that

D is lo
al in the sense of [Gl02, Def. 3.1℄. Moreover, for ea
h 
ompa
t subset X �M the map

D

X

:= D j

C

1

X

(M ;K)

:C

1

X

(M ;K)! 


1

X

(M ; k)

is smooth be
ause the map

Æ

l

:C

1

X

(M ;K)! 


1

X

(M ; k)

is obviously smooth. Therefore the Smoothness Theorem 3.2 in [Gl02℄ implies that D is a smooth

map and hen
e that Æ

l

is smooth. The smoothness of Æ

r

is shown similarly.
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Lemma II.3. If � is dis
rete, then

Æ(C

1

(M;S;T

�

)) =

n

� 2 


1

(M;S;Y ):

�

8� 2 C

1

((I; �I); (M;S))

�

Z

�

� 2 �

o

:

Proof. If � = Æ(f) for some f 2 C

1

(M;S;T

�

) and � 2 C

1

((I; �I); (M;S)), then

f(�(1))� f(�(0)) =

Z

�

� + �

vanishes in T

�

= Y=�, so that

R

�

� 2 �.

Suppose, 
onversely, that � 2 


1

(M;S;Y ) satis�es

Z

�

� 2 � for all � 2 C

1

((I; �I); (M;S)):

Pi
k s

0

2 S . Then all integrals of � over smooth loops based in s

0

are 
ontained in � (here

we need that Y is sequentially 
omplete to ensure the existen
e of Y -valued Riemann integrals

over 
urves), so that there exists a smooth fun
tion f :M ! T

�

with � = Æ(f) and f(s

0

) = 0

([Ne02a, Prop. 3.9℄). For ea
h s 2 S there exists a smooth path � 2 C

1

((I; �I); (M;S)) from

s

0

to s , and we obtain

f(s) = f(s)� f(s

0

) =

Z

�

� + � 2 �:

This means that f j

S

= 0. As � = Æ(f), all higher derivatives of f vanish on S , so that

f 2 C

1

(M;S;T

�

).

Corollary II.4. For ea
h s.
.l.
. spa
e Y we have

dC

1

(M;S;Y ) =

n

� 2 


1

(M;S;Y ):

�

8� 2 C

1

((I; �I); (M;S))

�

Z

�

� = 0

o

:

In parti
ular dC

1

(M;S;Y ) is 
losed in 


1

(M;S;Y ) .

De�nition II.5. (a) In view of the 
losedness assertion in Corollary II.4, the quotient

z

(M;S)

(Y ) := 


1

(M;S;Y )=dC

1

(M;S;Y )


arries a natural (Hausdor�) lo
ally 
onvex topology. Moreover, the subspa
e Z

1

dR

(M;S;Y ) of


losed forms in 


1

(M;S;Y ) is 
losed, whi
h implies that

H

1

dR

(M;S;Y ) := Z

1

dR

(M;S;Y )=dC

1

(M;S;Y )

is a 
losed subspa
e of z

(M;S)

(Y ). Let q: 


1

(M;S;Y )! z

(M;S)

(Y ) denote the quotient map.

We want to relate H

1

dR

(M;S;Y ) to the singular Y -valued 
ohomology of M modulo S .

The abelian group Z

1

(M;S) of singular 1-
y
les modulo S is generated by those given by


ontinuous maps (I; �I) ! (M;S). Therefore H

1

(M;S) is generated by the image of the set

�

1

(M;S) := [(I; �I); (M;S)℄ of homotopy 
lasses of maps of pairs (see [Br93, VII.4.10℄ for more

details on Hurewi
z maps from homotopy groups to homology groups). Let � 2 Z

1

dR

(M;S;Y ).

Then we 
an de�ne for ea
h singular 1-
hain � the integral

R

�

� . A

ording to Stoke's formula,

these integrals vanish on boundaries and also on 
hains supported by S . We thus obtain a map

Z

1

dR

(M;S;Y )! H

1

(M;S;Y ) := Hom(H

1

(M;S);Y );

where H

1

(M;S) denotes the singular homology group with 
oeÆ
ients in Z and H

1

(M;S;Y ) a

relative singular 
ohomology group (
f. [Br93, V.7.2℄).
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The kernel of this map 
onsists of all 
losed 1-forms � for whi
h all the integrals of 
y
les in

Z

1

(M;S) vanish, whi
h means that � = df for some f 2 C

1

(M;S;Y ) (Corollary II.4). Hen
e

we obtain an embedding

(2:1) �:H

1

dR

(M;S;Y ) ,! H

1

(M;S;Y ):

As we will see in Example II.12 below, this map is not always surje
tive.

(b) For a subgroup � � Y we de�ne

Z

1

dR

(M;S; �) :=

n

� 2 Z

1

dR

(M;S;Y ): (8� 2 C

1

((I; �I); (M;S))

Z

�

� 2 �

o

:

Applying Corollary II.4, we see that dC

1

(M;S;Y ) is a 
losed subspa
e of Z

1

dR

(M;S; �), so that

H

1

dR

(M;S; �) := Z

1

dR

(M;S; �)=dC

1

(M;S;Y )


arries a natural Hausdor� lo
ally 
onvex topology. We also de�ne

Z

1

dR

(M ; �) :=

n

� 2 Z

1

dR

(M ;Y ): (8� 2 C

1

(S

1

;M))

Z

�

� 2 �

o

and H

1

dR

(M ; �) := Z

1

dR

(M ; �)=dC

1

(M ;Y ).

Remark II.6. Let M be a 
onne
ted manifold.

(a) Assume that � � Y is a dis
rete subgroup and let T

�

:= Y=� denote the 
orresponding

quotient Lie group and q

�

:Y ! T

�

the quotient map. We 
onsider the abelian topologi
al group

G := C

1

(M ;T

�

), the spa
e g := C

1

(M ;Y ), and the exponential fun
tion

exp

G

: g ! G; � 7! q

�

Æ �:

The map

Æ:G = C

1

(M ;T

�

)! Z

1

dR

(M ;Y ); f 7! Æ(f) = f

�1

df

is a 
ontinuous group homomorphism whose kernel 
onsists of the lo
ally 
onstant fun
tions on

M . If M is 
onne
ted, then ker Æ 
onsists only of the 
onstant fun
tions.

A

ording to [Ne02a, Prop. 3.9℄, a 
losed 1-form in Z

1

dR

(M ;Y ) 
an be written as Æ(f) for

some f 2 C

1

(M ;T

�

) if and only if all integrals over 
losed pie
ewise smooth paths are 
ontained

in �. This means that

im(Æ) = Z

1

dR

(M ; �):

Using the de
omposition G

�

=

G

�

� T

�

with G

�

:= ff 2 G: f(x

M

) = 0g , where x

M

2 M is a

base point, it follows that

Æ:G

�

! Z

1

dR

(M ; �)

is an isomorphism of groups. Here the subgroup B

1

dR

(M ;Y ) � Z

1

dR

(M ; �) 
orresponds to

im(exp

G

), so that

G= exp

G

(g)

�

=

Z

1

dR

(M ; �)=B

1

dR

(M ;Y ) = H

1

dR

(M ; �):

If, in addition, M is 
ompa
t, then G is a Lie group with Lie algebra g , exp

G

is the

universal 
overing map of G

e

, and Æ:G

�

! Z

1

dR

(M ; �) is an isomorphism of Lie groups. This

leads to

�

0

(G)

�

=

G= exp

G

(g)

�

=

Z

1

dR

(M ; �)=B

1

dR

(M ;Y ) = H

1

dR

(M ; �):

(b) If M is 
ompa
t and S � M a non-empty 
losed subset, then we obtain with similar

arguments as in (a) that the group G := C

1

(M;S;T

Y

) is a Lie group and that exp

G

is the
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universal 
overing map of the identity 
omponent G

e

of G . The 
onne
tedness of M and S 6= �

imply ker exp

G

= f0g . Therefore the exponential fun
tion exp

G

indu
es a di�eomorphism

exp

G

: g = C

1

(M;S;Y )! G

e

:

Moreover, Æ is an inje
tive homomorphism of Lie groups with Æ(G) = Z

1

dR

(M;S; �)

(Lemma II.3), where G

e


orresponds to the subspa
e dC

1

(M;S;Y ), so that

�

0

(G)

�

=

H

1

dR

(M;S; �):

(
) The set M n S is an open subset of M , hen
e a non-
ompa
t manifold. We have in
lusions




1




(M n S;Y ) ,! 


1

(M;S;Y ) and Z

1

dR;


(M n S;Y ) ,! Z

1

dR

(M;S;Y ):

Moreover,

dC

1




(M n S;Y ) � Z

1

dR;


(M n S;Y ) \ dC

1

(M;S;Y )

and if, 
onversely, � = df 2 





(M n S;Y ) with f 2 C

1

(M;S;Y ), then df vanishes in a

neighborhood of S , so that f

�1

(0) is an open neighborhood of S . If M is 
ompa
t, then it

follows that f has 
ompa
t support, and therefore that

dC

1




(M n S;Y ) = Z

1

dR;


(M n S;Y ) \ dC

1

(M;S;Y ):

This means that we also obtain an in
lusion

':H

1

dR;


(M n S;Y ) ,! H

1

dR

(M;S;Y ):

If X is a 
ompa
t manifold with boundary, M = X [X

℄

as in Example I.9, and int(X) =

M n S , we 
laim that

(2:2) H

1

dR;


(int(X);Y )

�

=

H

1

dR

(X; �X ;Y ) := H

1

dR

(M;M n int(X);Y ):

In fa
t, if � 2 Z

1

dR

(X; �X ;Y ), then the restri
tion of � to �X vanishes. Moreover, there exists

a tubular neighborhood U of �X di�eomorphi
 to �X � I , so that the in
lusion �X ,! U

indu
es an isomorphism �

1

(�X) ! �

1

(U). We 
on
lude that all periods of � j

U

vanish, and

hen
e that there exists a smooth fun
tion f 2 C

1

(U; �X ;Y ) with df = � j

U

. Let � 2 C

1

(X ;R)

be 
onstant 1 in a neighborhood of �X and 0 on X n U . Then � � d(�f) 2 Z

1

dR;


(int(X);Y )

has the same 
ohomology 
lass as � . This proves (2.2).

From [Br97, Prop. II.12.3, Th. III.1.1, Cor. III.4.12℄ applied to the para
ompa
tifying

family � of 
losed subsets of X n �X , we derive that for singular 
ohomology we have

H

1

(X; �X ;Y )

�

=

H

1




(int(X);Y ):

Further the general version of de Rham's Theorem with values in sheaves ([Br97, xIII.3℄) yields

an isomorphism

H

1




(int(X);Y )

�

=

H

1

dR;


(int(X);Y ):

Therefore

H

1

dR

(X; �X ;Y )

�

=

H

1

dR;


(int(X);Y )

�

=

H

1




(int(X);Y )

�

=

H

1

(X; �X ;Y )

�

=

Hom(H

1

(X; �X);Y ):

The following theorem on the dis
reteness of the group H

1

dR

(M;S; �) is the main result of

the present se
tion.
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Theorem II.7. Let S be a non-empty 
losed subset of the 
ompa
t manifold M and � � Y

a dis
rete subgroup. Then the subgroup

H

1

dR

(M;S; �) =

n

[�℄ 2 z

(M;S)

(Y ): (8� 2 C

1

((I; �I); (M;S))

Z

�

� 2 �

o

of z

(M;S)

(Y ) is dis
rete.

Proof. Let Z

1

dR

(M ;Y ) � 


1

(M ;Y ) denote the 
losed subspa
e of 
losed 1-forms. As �

1

(M)

is �nitely generated (
f. Proposition III.1 below) and � is dis
rete,

dC

1

(M ;Y ) =

n

� 2 Z

1

dR

(M ;Y ): (8[�℄ 2 �

1

(M))

Z

�

� = 0

o

is an open subgroup of

Z

1

dR

(M ; �) =

n

� 2 Z

1

dR

(M ;Y ): (8� 2 C

1

(S

1

;M))

Z

�

� 2 �

o

:

That H

1

dR

(M;S; �) is a dis
rete subgroup of the quotient spa
e z

(M;S)

(Y ) is equivalent to

dC

1

(M;S;Y ) being an open subgroup of Z

1

dR

(M;S; �). As a 
onsequen
e of what we have

just seen, the group Z

1

dR

(M;S; �) \ dC

1

(M ;Y ) is open in Z

1

dR

(M;S; �). Therefore it suÆ
es

to verify that dC

1

(M;S;Y ) is an open subgroup of Z

1

dR

(M;S; �) \ dC

1

(M ;Y ).

Fix a point x

M

2 S . We 
onsider the map

�:Z

1

dR

(M;S; �)! C(M ;T

�

); �(�)(x) :=

Z

x

x

M

� + � 2 T

�

:

Then

�(Z

1

dR

(M;S; �)) � C

1

(M ;T

�

); d

�

�(�)

�

= �; �(�) j

S

= 0;

and � is 
ontinuous with respe
t to the topology of uniform 
onvergen
e on 
ompa
t subsets

of M . Hen
e

�

�1

(C(M ;T

�

)

e

) = �

�1

(exp(C(M ;Y ))) = dC

1

(M;S;Y )

is an open subgroup of Z

1

dR

(M;S; �) be
ause C(M ;T

�

) is a Lie group (Remark II.6).

Lemma II.8. Let I = [0; 1℄ . The integration maps

(2:3) I

R

: 


1




(R;Y ) = Z

1

dR;


(R;Y )! Y; � 7!

Z

R

�;

(2:4) I

I

: 


1

(I; �I ;Y ) = Z

1

dR

(I; �I ;Y )! Y; � 7!

Z

I

�;

and

(2:5) I

S

1

: 


1

(S

1

;Y ) = Z

1

dR

(S

1

;Y )! Y; � 7!

Z

S

1

�

indu
e topologi
al isomorphisms

H

1

dR;


(R;Y )! Y; H

1

dR

(I; �I ;Y )! Y and H

1

dR

(S

1

;Y )! Y:

Proof. We have a 
ontinuous map 


1




(R;Y ) ! Y; � 7!

R

R

�; and it is easy to see that this

map is surje
tive be
ause there exists a smooth real-valued 1-form 
 with 
ompa
t support and

R

R


 = 1. Sin
e the map Y ! 


1




(R;Y ); v 7! 
 � v is 
ontinuous, the integration map splits

linearly. Further its kernel 
oin
ides with the spa
e of exa
t forms, whi
h proves (2.3). The other

two assertions follow by similar arguments.
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Remark II.9. (a) For ea
h smooth map �: (I; �I)! (M;S) of pairs we obtain a natural map

I

�

: z

(M;S)

(Y )! Y

�

=

z

(I;�I)

(Y )

whi
h is given on the equivalen
e 
lass of a Y -valued 1-form � by

I

�

([�℄) =

Z

�

� :=

Z

I

�

�

�

(
f. Lemma II.8). The des
ription of dC

1

(M;S;Y ) in Lemma II.3 implies that the maps

I

�

: z

(M;S)

(Y )! Y separate points.

(b) For (M;S) = (I; �I) the set �

1

(I; �I) 
onsists of 4 elements. In fa
t, if f : I ! I is a


ontinuous fun
tion with f(�I) � �I , then the 
onvexity of I implies that f is homotopy

equivalent to the aÆne interpolation of the restri
tion f j

�I

, and there are pre
isely four di�erent

maps �I ! �I .

Lemma II.10. The subspa
e H

1

dR

(M;S;Y ) of z

(M;S)

(Y ) 
oin
ides with those elements [�℄ for

whi
h all the integrals I

�

([�℄) only depend on the homotopy 
lass of � 2 C

1

((I; �I); (M;S)) in

�

1

(M;S) . In parti
ular

(1) H

1

dR

(M;S;Y ) is a 
losed subspa
e of z

(M;S)

(Y ) , and

(2) if � is dis
rete, then

Z

1

dR

(M;S; �) =

n

� 2 


1

(M;S;Y ): (8� 2 C

1

((I; �I); (M;S))

Z

�

� 2 �

o

:

Proof. Fix a point x

M

2 S . Then we have a natural in
lusion C((I; �I); (M;x

M

)) !

C((I; �I); (M;S)) indu
ing the map �

1

(M;x

M

)! �

1

(M;S).

Let � 2 


1

(M;S;Y ) and suppose �rst that the integrals

R

�

� for � 2 C

1

((I; �I); (M;S))

only depend on the homotopy 
lass. This implies in parti
ular that the integrals over loops in

C

1

((I; �I); (M;x

M

)) � C

1

�

(S

1

;M) in x

M

only depend on the homotopy 
lass. Let q

M

:

f

M !M

denote the universal 
overing manifold. That the integrals of � over loops in x

M

only depend

on the homotopy 
lass implies that there exists a smooth fun
tion f :

f

M ! Y with df = q

�

M

� ,

hen
e in parti
ular that d� = 0, and therefore that [�℄ 2 H

1

dR

(M;S;Y ).

Suppose, 
onversely, that [�℄ 2 H

1

dR

(M;S;Y ), i.e., that � is 
losed. Then integrals over


ontinuous maps I !M are well-de�ned. Then q

�

M

� is exa
t ([Ne02a, Th. 3.6℄), and there exists

a smooth fun
tion f 2 C

1

(

f

M ;Y ) with df = q

�

M

� . It follows in parti
ular that all integrals of

� over 
ontra
tible loops vanish. Let �: I � I ! M be a 
ontinuous map su
h that the maps

�

t

:= �(t; �): I !M satisfy �

t

(f0; 1g) � S . We have to show that

R

�

0

� =

R

�

1

� . We de�ne

e�: I � [0; 3℄!M; e�(t; s) :=

8

<

:

�(st; 0) for 0 � s � 1

�(t; s� 1) for 1 � s � 2

�((3� s)t; 1) for 2 � s � 3

and observe that e� is 
ontinuous and that the 
urves e�

t

:= e�(t; �) start in �

0

(0) and end in

�

0

(1), where s 7! e�

0

(3s) is homotopi
 to �

0

. We 
on
lude that for ea
h t 2 I we have

0 =

Z

e�

t

� �

Z

e�

0

� =

Z

e�

t

� �

Z

�

0

� =

Z

2

1

e�

�

t

� �

Z

�

0

� =

Z

�

t

� �

Z

�

0

�:

Here we use that the vanishing of � on S implies that the integrals

R

1

0

e�

�

t

� and

R

3

2

e�

�

t

� vanish.

For t = 1 we obtain

R

�

0

� =

R

�

1

� , and hen
e the homotopy 
hara
terization of the subspa
e

H

1

dR

(M;S;Y ) of z

(M;S)

(Y ).

This implies in parti
ular that H

1

dR

(M;S;Y ) is 
losed, be
ause it is de�ned as the inter-

se
tion of the kernels of the 
ontinuous linear maps

[�℄ 7!

Z

�

1

� �

Z

�

0

�; �

i

2 C

1

((I; �I); (M;S))
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from above.

Assume now that � � Y is a dis
rete subgroup. Then the requirement

R

�

� 2 � for ea
h

map � 2 C

1

((I; �I); (M;S)) together with the 
ontinuous dependen
e of the integral from �

implies that

R

�

� only depends on the homotopy 
lass of � in �

1

(M;S). If all these integrals

are 
ontained in the dis
rete subgroup �, it follows from the �rst part of the proof that � is


losed.

Example II.11. We 
onsider the 
losed subset

S = f0g [

�

1

n

:n 2 N

	

� R:

We 
laim that

H

1

dR

(R; S;R)

�

=

E := f(�

n

)

n2N

: (8k 2 N

0

) lim

n!1

n

k

�

n

= 0g

as Fr�e
het spa
es, where the topology on E is given by the seminorms p

k

(�) := sup

n2N

n

k

j�

n

j

for k 2 N .

As dimR = 1, we have Z

1

dR

(M;S;R) = 


1

(R; S;R) , and ea
h element on this spa
e 
an

be written as the di�erential of a unique fun
tion f 2 C

1

(R;R) with f(0) = 0. We have to

study the possible restri
tions f j

S

be
ause they give as the values of [df ℄ on the relative 1-
y
les

in Z

1

(R; S) .

First we derive ne
essary 
onditions. As f

(k)

(0) = 0 for ea
h k 2 N and

(2:6) f

(k)

(0) = lim

x!0

k!f(x)

x

k

= lim

n!1

k!f(

1

n

)n

k

;

we obtain for ea
h k 2 N the 
ondition lim

n!1

f(

1

n

)n

k

= 0:

Let (�

n

)

n2N

satisfy lim

n!1

n

k

�

n

= 0 for ea
h k 2 N

0

. We are looking for a smooth

fun
tion f in C

1

(R;R) with f

0

2 C

1

(R; S;R) and f(

1

n

) = �

n

for ea
h n . Let  2 C

1




(R;R)

be a fun
tion with supp( ) = [�1; 1℄, im( ) � [0; 1℄ and equal to 1 on a neighborhood of 0.

Then we obtain for ea
h a 2 R and " > 0 a smooth fun
tion  

a;"

(x) :=  ("

�1

(x�a)) supported

by [a� "; a+ "℄ whi
h is 
onstant 1 in a neighborhood of a . We de�ne  

n

:=  

1

n

;

1

4n(n+1)

. Then

 

n

is a fun
tion 
onstant 1 in a neighborhood of

1

n

with support 
ontained in

�

1

2

�

1

n

+

1

n+1

�

;

1

2

�

1

n

+

1

n�1

��

:

In parti
ular the supports of the fun
tions  

n

are pairwise disjoint. We 
laim that

f :=

1

X

n=1

�

n

 

n

de�nes a fun
tion in C

1

(R;R) with f

0

2 C

1

(R; S;R) . This will be a
hieved by showing that

all derivatives of the sequen
e de�ning f are uniformly 
onvergent. In fa
t, for k 2 N

0

we have

k 

(k)

n

k

1

�

�

4n(n+ 1)

�

k

k 

(k)

k

1

� 


k

n

2k

for some positive 
onstant 


k

. Therefore

X

n

j�

n

jk 

(k)

n

k

1

�

X

n

j�

n

j


k

n

2k

� 


k

X

n

j�

n

jn

2k

<1:

We 
on
lude that the series f =

P

n

�

n

 

n

de�nes a smooth fun
tion. It follows dire
tly from

the 
onstru
tion that f is 
onstant �

n

in a neighborhood of

1

n+1

and that all derivatives of f

vanish in 0 be
ause f vanishes on ℄�1; 0[.

This proves that the map

�:Z

1

dR

(R; S;R) ! E; h(t)dt 7!

�

Z
1

n

0

h(�) d�

�

n2N

;

is surje
tive. Formula (2.6) easily implies thatg � is 
ontinuous, hen
e a quotient map by the

Open Mapping Theorem. This proves that the indu
es map H

1

dR

(R; S;R) ! E is a topologi
al

isomorphism.

In the next example we take a 
onvergent sequen
e out of the sphere. This aims at an

example of a Fr�e
het{Lie group C

1

(M;S;K) where the period group �

(M;S)

(
f. De�nition III.7)

is dis
rete but not �nitely generated (see Proposition VII.16).
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Example II.12. (Removing a 
onvergent sequen
e from the sphere) Let M := S

2

� R

3

and

S = fx

n

:n 2 Ng [ f(0; 0; 1)g , where

x

n

=

�

1

n

; 0;

q

1�

1

n

2

�

:

As �

1

(M) is trivial, there exists for ea
h n 2 N a path 


n

: [0; 1℄!M from x

0

:= (0; 0; 1) to x

n

su
h that the group H

1

(M;S) is generated by the 
lasses [


n

℄ , n 2 N .

For ea
h n 2 N there exists a smooth fun
tion f

n

2 C

1

(M;S;R) whi
h is 
onstant 1 in a

neighborhood of x

n

and vanishes in a neighborhood of S n fx

n

g . Then df

n

2 


1

(M;S;R) and

we have

Z




m

df

n

= f

n

(


m

(1))� f

n

(


m

(0)) = Æ

mn

:

It follows in parti
ular that the 
lasses [


n

℄ are linearly independent over Z , so that we obtain

H

1

(M;S) =

M

n2N

Z[


n

℄

�

=

Z

(N)

and therefore that the map

H

1

(M;S;R) ! R

N

; f 7! (f([


n

℄))

n2N

is bije
tive.

We want to determine the subgroup H

1

dR

(M;S;R) in H

1

(M;S;R). Let � 2 Z

1

dR

(M;S;R).

Sin
e H

1

dR

(S

2

;R) is trivial, there exists a smooth fun
tion f :S

2

! R with f(x

0

) = 0 and df = � .

Then

Z




n

� =

Z




n

df = f(x

n

)� f(x

0

) = f(x

n

);

and the question is how to 
hara
terize those sequen
es in R

N

whi
h arise as (f(x

n

))

n2N

for

su
h a fun
tion f . We obtain a natural 
hart around x

0

via

':U := fx 2 R

2

: kxk

2

< 1g ! S

2

; '(x) =

�

x

1

; x

2

;

q

1� x

2

1

� x

2

2

�

:

Ea
h of the fun
tions 
onstru
ted in Example II.11 may be extended to a smooth 
ompa
tly

supported fun
tion on a neighborhood of S in R

2

in su
h a way that it does not depend on the

se
ond variable x

2

in a neighborhood of S . Then we may use the 
hart ' to obtain a fun
tion

in C

1

(M;S;R). We thus obtain

H

1

dR

(M;S;R)

�

=

f(�

n

)

n2N

: (8k 2 N) �

n

n

k

! 0g � H

1

(M;S;R)

�

=

R

N

;

i.e., that H

1

dR

(M;S;R) 
orresponds to the spa
e of rapidly de
reasing sequen
es with its usual

topology.

A fun
tion f yields an element in the group H

1

dR

(M;S;Z) if and only if all its values in the

x

n

are integral, so that H

1

dR

(M;S;Z)

�

=

Z

(N)


orresponds to the integer-valued fun
tions with

�nite support. In parti
ular H

1

dR

(M;S;Z) is a dis
rete subgroup of H

1

dR

(M;S;R) (
f. Theorem

IV.7).

We 
on
lude this se
tion with some additional remarks on the relation between the two

spa
es H

1

dR

(M;S;Y ) and H

1

dR;


(M n S;Y ).

Remark II.13. We re
all from Remark II.6(
) the inje
tion

':H

1

dR;


(M n S;Y ) ,! H

1

dR

(M;S;Y ):

(a) If S is a 
ompa
t submanifold of M , then ' is surje
tive. In fa
t, if � 2 Z

1

dR

(M;S;Y ), then

� j

S

= 0. Let U be a tubular neighborhood of S di�eomorphi
 to S � R . Then � j

U

is exa
t,
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and there exists f 2 C

1

(U ;Y ) with df = � j

U

. Now there exists a fun
tion f

1

2 C

1

(M ;Y )

whi
h 
oin
ides with f on a neighborhood of S , and then � � df vanishes in a neighborhood

of S . This proves that [�℄ = [� � df

1

℄ 2 im(').

(b) If H

1

dR;


(M n S;R) is in�nite-dimensional, then ' is not surje
tive. In fa
t, then the spa
e

H

1

dR;


(M n S;R) is a 
ountable dire
t limit of �nite-dimensional spa
es, hen
e of 
ountable

dimension (
f. Theorem IV.16). On the other hand H

1

dR

(M;S;R) is a quotient of the Fr�e
het

spa
e Z

1

dR

(M;S;R) by a 
losed subspa
e, hen
e a Fr�e
het spa
e. As ' is inje
tive, this spa
e

is in�nite-dimensional, so that the Baire property implies that it is not 
ountably dimensional.

Hen
e ' is not surje
tive.

(
) If H

0

(S) is �nitely generated, i.e., S has only �nitely many ar
-
omponents, then the exa
t

homology sequen
e of the pair (M;S) implies that H

1

(M;S) is �nitely generated, whi
h in turn

implies that

H

1

(M;S;R)

�

=

Hom(H

1

(M;S);R)

is �nite-dimensional. Therefore H

1

dR

(M;S;R) is also �nite-dimensional (
f. De�nition II.5).

Conversely, every lo
ally 
onstant fun
tion S ! Z 
an be extended to a smooth fun
tion

f :M ! R (it suÆ
es to 
onsider fun
tions S ! f0; 1g) whi
h is lo
ally 
onstant in a neighbor-

hood of the 
ompa
t set S . Then df 2 Z

1

dR;


(M n S;Z). The 
lass of [df ℄ in H

1

dR;


(M n S;Z)

is non-zero if f j

S

is not 
onstant. Therefore H

1

dR;


(M n S;Z) has in�nite rank if C(S;Z) has

in�nite rank. Note that this 
ondition is weaker than the requirement that S has only �nitely

many ar
-
omponents.

III. Compa
t manifolds with boundary

Our strategy to get a better des
ription of the spa
es z

M

(Y ) and H

1

dR;


(M ;Y ) for a non-
ompa
t

manifold is to des
ribe M as a union of 
ertain 
ompa
t submanifolds with boundary (X

n

)

n2N

with X

n

� X

0

n+1

(
f. Se
tion IV). To get information on the spa
e H

1

dR;


(M ;Y ), we will need

detailed information on the natural maps H

1

dR

(X

n

; �X

n

;Y )! H

1

dR

(X

n+1

; �X

n+1

;Y ). To obtain

this information is the main goal of the present se
tion (Theorem III.6). In this se
tion we only

deal with 
ompa
t manifolds with boundary, and in Se
tion IV we des
ribe the approximation

of non-
ompa
t manifolds.

In the following we write for a topologi
al spa
e X simply H

�

(X) := H

sing;�

(X ;Z) for the

singular homology groups with 
oeÆ
ients in Z . We likewise write H

�

(X;A) for the singular

homology groups for spa
e pairs (X;A).

Proposition III.1. Let X be a 
ompa
t manifold with boundary �X . Then the following

assertions hold:

(i) The singular homology groups H

�

(X) are �nitely generated.

(ii) All homotopy groups �

k

(X) , k 2 N

0

, are �nitely generated.

(iii) For ea
h 
ommutative ring R the 
ohomology groups H

�

(X;R) are �nitely generated

R-modules.

(iv) The relative homology groups H

�

(X; �X) are �nitely generated.

(v) The in
lusion int(X) ,! X is a homotopy equivalen
e.

Proof. There exists a 
ompa
t manifold X

d

, the double of X , in whi
h X embeds. In

parti
ular Whitney's Embedding Theorem implies that X

d

and hen
e X embeds smoothly into

R

2d+1

, where d = dimX . From the proof of Corollary E.5 in [Br93℄ we derive that there exists a

�nite CW-
omplex K � R

2n+1

su
h that K is a neighborhood of X and there exists a retra
tion

r:K ! X . The in
lusion j:X ,! K satis�es r Æ j = id

X

.

(i) We immediately derive that the spa
es H

�

(X) are dire
t summands in H

�

(K), hen
e in

parti
ular �nitely generated abelian groups.

(ii) We likewise see that for ea
h k 2 N

0

we have �

k

(K)

�

=

ker�

k

(r) o �

k

(X). As �

k

(K) is

�nitely generated, the same holds for the group �

k

(X)

�

=

�

k

(K)= ker�

k

(r).
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(iii) In view of [Fu70, Th. 52.2℄, we have for abelian groups A and C

j

, j 2 J :

Ext(�

j2J

C

j

; A) =

Y

j2J

Ext(C

j

; A):

As Ext(Z; A)

�

=

0 and Ext(Z=nZ; A)

�

=

A=nA , we 
on
lude that for every 
ommutative ring

R and every �nitely generated abelian group � the group Ext(�; R) is a �nitely generated R -

module. Therefore the Universal CoeÆ
ient Theorem implies that for every 
ompa
t manifold

with boundary the groups H

�

(X;R) are �nitely generated R -modules.

(iv) In view of [Br93, Th. IV.6.15℄, we further have an exa
t sequen
e

H

�

(�X)! H

�

(X)! H

�

(X; �X)! H

��1

(�X):

The fa
t that H

��1

(�X) and H

�

(X) are �nitely generated groups implies that the groups

H

�

(X; �X) are �nitely generated.

(v) Using the 
ollar 
onstru
tion for a 
ompa
t manifold with boundary, we obtain in
lusions

int(X) ,! X ,! int(X) ,! X , where the 
ompositions of two su

essive ones are homotopi
 to the

identity on int(X), resp., X . Therefore the in
lusion int(X) ,! X is a homotopy equivalen
e.

Lemma III.2. For ea
h 
ompa
t manifold X with boundary the spa
e H

1

dR

(X; �X ;R) is �nite-

dimensional.

Proof. In De�nition II.5 we have des
ribed an embedding

H

1

dR

(X; �X ;R) ,! H

1

(X; �X ;R):

Hen
e the assertion follows from Proposition III.1 whi
h implies that H

1

(X; �X ;R) is �nite-

dimensional.

We take a 
loser look at the embedding

H

1

dR

(X; �X ;R) ,! H

1

(X; �X ;R)

�

=

Hom(H

1

(X; �X);R)

introdu
ed in De�nition II.5. The inje
tivity of this embedding implies that the integration maps

I




:H

1

dR

(X; �X ;R) ! R; [�℄ 7!

Z




�

for singular 
y
les 
 2 Z

1

(X; �X) separate points. We are interested in a ni
e set of su
h 
y
les

for whi
h the integration maps form a basis of the dual spa
e of the �nite-dimensional ve
tor

spa
e H

1

dR

(X; �X ;R).

We re
all the part

H

1

(�X)! H

1

(X)

�

��!H

1

(X; �X)! H

0

(�X)

s

��!H

0

(X)

of the long exa
t homology sequen
e of the pair (X; �X) ([Br93, Th. IV.6.15℄). Let �:H

1

(X)!

H

1

(X; �X) be the natural map and 
hoose pie
ewise smooth loops �

1

; : : : ; �

a

in X for whi
h

the images �([�

i

℄) 2 H

1

(X; �X) form a Z-basis of the image �(H

1

(X)) modulo torsion. Let

b := rkH

0

(�X) � 1 and 
hoose a minimal system of pie
ewise smooth ar
s �

1

; : : : ; �

b

in

Z

1

(X; �X) 
onne
ting the boundary 
omponents of �X . Sin
e there are b + 1 boundary


omponents, b ar
s suÆ
e and less would not be enough. Then the images of the 
lasses [�

i

℄ in

H

0

(�X) form a Z-basis of the kernel of the summation map s:H

0

(�X)

�

=

Z

b+1

! H

0

(X)

�

=

Z .

Sin
e the 
lasses [�

j

℄ form a basis of the image of H

1

(X; �X) in H

0

(�X), and the 
lasses

�([�

i

℄) generate the kernel of the map H

1

(X; �X)! H

0

(�X) modulo torsion, the 
lasses �([�

i

℄)

and [�

j

℄ form a Z-basis of the abelian group H

1

(X; �X) modulo torsion.

The bije
tivity of the map � in the following proposition (see also (2.1)) 
an alternatively

be derived from the dis
ussion in Remark II.6(
), whi
h implies that the real ve
tor spa
es

H

1

dR

(X; �X ;R) and Hom(H

1

(X; �X);R) have the same dimension, so that the inje
tivity of �

implies that it is bije
tive. We will see that Proposition III.3 provides more 
on
rete information

whi
h is needed later on.
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Proposition III.3. The integration fun
tionals I

�

i

, i = 1; : : : ; a and I

�

j

, j = 1; : : : ; b form

a basis of the dual spa
e of H

1

dR

(X; �X ;R) . In parti
ular, the natural homomorphism

�:H

1

dR

(X; �X ;R) ! Hom(H

1

(X; �X);R); �([�℄)([
℄) =

Z




�

from De�nition II.5(2.1) is bije
tive.

Proof. Sin
e the 
lasses �([�

i

℄) and [�

j

℄ generate H

1

(X; �X) modulo torsion and � is inje
tive

(De�nition II.5), the integration maps I

�

i

and I

�

j

separate the points of H

1

dR

(X; �X ;R), hen
e

span its dual spa
e.

Let �

0

:H

1

(X; �X)! R be a homomorphism and �:H

1

(X)! R its pull-ba
k to H

1

(X).

Then � vanishes on the image of H

1

(�X) in H

1

(X), so that there exists a 
losed 1-form � on

X with

Z




� = �(
); 
 2 H

1

(X):

This 
an be proved as [Ne02a, Prop. 3.8℄. The main idea is to asso
iate to � , viewed as a

homomorphism �

1

(X) ! R , an aÆne R-bundle over X and then to use partitions of unity to

obtain a smooth global se
tion s , whose di�erential 
an be taken as � . Sin
e � vanishes on the

image of H

1

(�X) in H

1

(X), we 
an think of it as a homomorphism of the image �(H

1

(X)) of

H

1

(X) in H

1

(X; �X) to R .

Let C be a 
onne
ted 
omponent of �X , I := [0; 1℄ and

b

C be a neighborhood of C in X

di�eomorphi
 to I �C in su
h a way that f0g�C 
orresponds to C . Then the homomorphism

H

1

(C)! H

1

(�X)! R indu
ed by the 1-form � vanishes, so that there exists a smooth fun
tion

g

0

:

b

C ! R with � j

b

C

= dg . If ': I ! R is smooth with ' = 1 in a neighborhood of 0 and

0 in a neighborhood of 1, then b': (t; x) 7! '(t) yields a smooth fun
tion on X vanishing in a

neighborhood of X n

b

C and taking the value 1 on a neighborhood of C . Hen
e b' � g 
an be

viewed as a smooth fun
tion X ! R whose di�erential 
oin
ides with dg in a neighborhood

of C . Now � � d(b' � g

0

) de�nes the same homomorphism �

1

(X) ! R but, in addition, this

1-form vanishes in a neighborhood of C . Repeating this 
onstru
tion for the other 
onne
ted


omponents of �X yields a 
losed 1-form �

0

2 


1

(X; �X ;R) vanishing in a neighborhood of

�X for whi
h �

0

represents � on H

1

(X). We 
on
lude that �

0

� �([�

0

℄) vanishes on �(H

1

(X))

in H

1

(X; �X), so that it remains to see that ea
h homomorphisms �:H

1

(X; �X)! R vanishing

on the image of H

1

(X) is 
ontained in im(�). Let r:H

1

(X; �X)! H

0

(X) denote the boundary

map. Then �

0

= �

0

Æ r for some �

0

:H

0

(�X)

�

=

Z

b+1

! R .

Let C � �X be a 
onne
ted 
omponent. Using the 
ollar 
onstru
tion, we obtain a smooth

fun
tion f

C

:X ! R whi
h is 1 in a neighborhood of C and 0 in a neighborhood of all other


onne
ted 
omponents of �X . Then df

C

2 Z

1

dR

(X; �X ;R) and be
ause the form df

C

is exa
t,

it vanishes on all 
y
les in �(H

1

(X)). Moreover, the fun
tion f

C

de�nes a homomorphism

F

C

:H

0

(�X)! Z; C

0

7! f

C

(C

0

) = Æ

C;C

0

;

and, as a homomorphism H

1

(X; �X) ! R , the integration of df

C

over 
y
les modulo �X is

obtained by pulling F

C

ba
k via the natural map H

1

(X; �X) ! H

0

(�X). As the F

C

form

a Z-basis of Hom(H

0

(�X);R), we 
on
lude that �

0

lies in the span of the �([df

C

℄) , hen
e is


ontained in the image of � . This 
ompletes the proof of the surje
tivity of � .

Lemma III.4. For any s.
.l.
. spa
e Y the exa
tness of a 
losed 1-form � 2 


1

(X; �X ;Y ) is

equivalent to the vanishing of all integrals

R

�

i

� and

R

�

j

� .

Proof. If � 2 


1

(X; �X ;Y ) is exa
t, then 
learly all integrals

R




� vanish for 
 2 Z

1

(X; �X).

Suppose, 
onversely, that all integrals

R

�

i

� and

R

�

j

� vanish. For ea
h 
ontinuous linear fun
-

tional � 2 Y

0

we then obtain

Z

�

i

� Æ � = �

�

Z

�

i

�

�

= �

�

Z

�

j

�

�

=

Z

�

j

� Æ � = 0

for ea
h i and j . Sin
e Y

0

separates points of Y , all integrals of � on Z

1

(X; �X) are trivial,

and therefore � is exa
t.
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Remark III.5. Let [�

�

i

℄; [�

�

i

℄ 2 H

1

dR

(X; �X ;R) be a basis dual to the integrals I

�

i

and I

�

j

from above. Then the map

�

X

:H

1

dR

(X; �X ;Y )! Y

a+b

; �

X

([�℄) :=

�

Z

�

i

�;

Z

�

j

�

�

i=1;:::;a;j=1;:::;b

is 
ontinuous and inje
tive (Lemma III.4). Moreover, it is surje
tive and its inverse is given by

�

�1

X

(y

1

; : : : ; y

a+b

) :=

a

X

i=1

[�

�

i

� y

i

℄ +

b

X

j=1

[�

�

j

� y

a+j

℄:

It follows in parti
ular that �

�1

X

is 
ontinuous, and therefore that �

X

is an isomorphism of

topologi
al ve
tor spa
es. The extension of �

X

to a map

e

�

X

: z

(X;�X)

(Y )! Y

a+b

; �

X

([�℄) :=

�

Z

�

i

�;

Z

�

j

�

�

i=1;:::;a;j=1;:::;b

is 
ontinuous and surje
tive. Therefore its kernel is a 
losed 
omplement to H

1

dR

(X; �X ;Y ) and

the 
orresponding proje
tion onto H

1

dR

(X; �X ;Y ) is given by

p

X

: [�℄ 7!

a

X

i=1

h

�

�

i

�

Z

�

i

�

i

+

b

X

j=1

h

�

�

j

�

Z

�

j

�

i

:

Theorem III.6. Let Z be a 
ompa
t 
onne
ted manifold with boundary and X � int(Z) a


ompa
t 
onne
ted equidimensional submanifold with boundary. We assume that ea
h 
onne
ted


omponent of Z nX interse
ts �Z . Then the following assertions hold:

(1) The in
lusion Z

1

dR

(X; �X ;Y ) ,! Z

1

dR

(Z; �Z;Y ) obtained by extension by 0 on ZnX indu
es

an inje
tive map

H

1

dR

(X; �X ;Y ) ,! H

1

dR

(Z; �Z;Y ):

(2) The 
ontinuous proje
tion p

X

extends to a 
ontinuous proje
tion p

Z

, so that we obtain the


ommutative diagram

z

(X;�X)

(Y )

p

X

��! H

1

dR

(X; �X ;Y )

?

?

y

?

?

y

z

(Z;�Z)

(Y )

p

Z

��! H

1

dR

(Z; �Z;Y ):

Proof. Let �

i

, i = 1; : : : ; a and �

j

, j = 1; : : : ; b be as in Proposition III.3. Then the

integration fun
tionals I

�

1

; : : : ; I

�

a

; I

�

1

; : : : ; I

�

b

form a basis of the dual spa
e of H

1

dR

(X; �X ;R).

(1) We 
laim that

dC

1

(Z; �Z;Y ) \ Z

1

dR

(X; �X ;Y ) = dC

1

(X; �X ;Y ):

The in
lusion \�" is trivial. Conversely, let f 2 C

1

(Z; �Z;Y ) and suppose that df 2

Z

1

dR

(X; �X ;Y ), i.e., that df vanishes on Z n X . Then f is 
onstant on all 
onne
ted 
om-

ponents of Z nX . By our initial assumptions, all 
onne
ted 
omponents of Z nX interse
t �Z ,

whi
h implies that f vanishes on all these 
omponents, hen
e that f 2 C

1

(X; �X ;Y ). This

proves (1).

(2) Next we want to 
hoose integration maps H

1

dR

(Z; �Z;Y ) ! Y in su
h a way that those

whi
h are additional to the ones needed for X are supported by Z n int(X), hen
e vanish on

Z

1

dR

(X; �X ;Y ).

We have to modify the 
urves �

i

so that they represent elements on Z

1

(Z; �Z). Sin
e every


onne
ted 
omponent of Z nX meets �Z , we 
an extend every pie
ewise smooth 
urve �

i

to a

pie
ewise smooth 
urve

e

�

i


onne
ting two boundary 
omponents of Z . For this we may w.l.o.g.
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assume that we have parametrizations �

j

: [0; 1℄! X and

e

�

j

: [�1; 2℄! Z with

e

�

j

j

[0;1℄

= �

j

and

[0; 1℄ =

e

�

�1

j

(X). In parti
ular we have for ea
h 1-form � supported by X the relation

Z

�

i

� =

Z

e

�

i

�:

Next we 
hoose pie
ewise smooth 
losed 
urves 


1

; : : : ; 





in Z nX 
onne
ting those 
onne
ted


omponents of �Z lying in the same 
onne
ted 
omponent of Z n X . We further need 
losed


urves on Æ

1

; : : : ; Æ

d

in Z n int(X) whose homology 
lasses generate H

1

(Z n int(X);R) modulo the

image of H

1

(�Z;R). We will show below that the 
lasses of �

i

;

e

�

j

; 


k

and Æ

l

generate H

1

(Z; �Z)

modulo torsion by showing that the 
orresponding integrals separate points on H

1

dR

(Z; �Z;R).

Let � 2 Z

1

dR

(Z; �Z;Y ) be su
h that all integrals over the �

i

;

e

�

j

; 


k

and Æ

l

vanish. We 
laim

that � is exa
t. In parti
ular all integrals 
oming from H

1

(�X) vanish, so that there exists an

open neighborhood U

�

=

I � �X of �X on whi
h � is exa
t. Let f 2 C

1

(U ;Y ) with df = � j

U

.

Multiplying f with a smooth fun
tion � on U of the form (t; x) 7! '(t), where ' 2 C

1

(I ;R)

is 1 on a neighborhood of 0 and vanishes outside some interval [�"; "℄ , we obtain a smooth

fun
tion

e

f := � � f 2 C

1

(Z; �Z;Y ) with d

e

f = � in a neighborhood of �X . Repla
ing � by

� � d

e

f , we may assume that � vanishes on a neighborhood of �X . Then � j

X

2 Z

1

dR

(X; �X ;Y )

is exa
t be
ause the integrals over the �

i

vanish. Likewise � j

ZnX

is exa
t be
ause all integrals

over the Æ

i

vanish. Let f

1

2 C

1

(X ;Y ) with df

1

= � j

X

and f

2

2 C

1

(Z n int(X);Y ) with

df

2

= � j

ZnX

. We normalize f

2

by the 
ondition that it vanishes on �Z . That this is possible

follows from the vanishing of all integrals of � over the 


i

. We further normalize f

1

su
h that on

one boundary point x 2 �X we have f

1

(x) = f

2

(x). In a neighborhood of �X both fun
tions f

1

and f

2

are lo
ally 
onstant, hen
e 
onstant on all 
onne
ted 
omponents of �X . It remains to

show that f

1

j

�X

= f

2

j

�X

, so that both 
ombine to a fun
tion f 2 C

1

(Z; �Z;Y ) with df = � .

Let �

i

be su
h that either its end or starting point lies in the same 
onne
ted 
omponent

of �X as x . We re
all the parametrizations �

i

: [0; 1℄! X from above. We further observe that

f

1

(x) = f

1

(�

i

(0)) = f

2

(x) = f

2

(�

i

(0)) be
ause f

1

= f

2

is 
onstant on the whole 
omponent

of X 
ontaining x . We also re
all the parameterization of

e

�

j

on [�1; 2℄ from above and put

y := �

i

(1) 2 �X . Let p :=

e

�

i

(�1) and q :=

e

�

i

(2). Then

f

1

(y)� f

2

(y) =

�

f

1

(x) +

Z

�

i

�

�

+ f

2

(q)

| {z }

=0

�f

2

(y) = f

2

(x) +

Z

�

i

� + f

2

(q)� f

2

(y)

=

Z

0

�1

e

�

�

i

� +

Z

1

0

e

�

�

i

� +

Z

2

1

e

�

�

i

� =

Z

e

�

i

� = 0:

This proves f

1

(y) = f

2

(y). Using the other paths

e

�

i

, we 
on
lude indu
tively that f

1

= f

2

holds

on all 
onne
ted 
omponents of �X , and this 
ompletes the proof of the exa
tness of � .

Therefore the integration maps I

�

i

; I

e

�

j

; I




k

and I

Æ

l

separate points on H

1

dR

(Z; �Z;R).

Sin
e the maps I

�

i

, i = 1; : : : ; a; and I

e

�

j

, j = 1; : : : ; b; are linearly independent on the subspa
e

H

1

dR

(X; �X ;R), by omitting some of the 


k

and Æ

l

, we may w.l.o.g. assume that the whole


olle
tion is linearly independent.

We re
all the maps �

X

and p

X

from Remark III.5. Then we see that

�

Z

:H

1

dR

(Z; �Z;Y )! Y

a+b+
+d

;

�

Z

([�℄) :=

�

Z

�

i

�;

Z

�

j

�;

Z




k

�;

Z

Æ

l

�

�

i=1;:::;a;j=1;:::;b;k=1;:::;
;l=1;:::;d

is a topologi
al isomorphism. The 
orresponding proje
tion p

Z

: z

(Z;�Z)

(Y ) ! H

1

dR

(Z; �Z;Y ) is

given by

p

Z

: [�℄ 7!

a

X

i=1

h

�

�

i

�

Z

�

i

�

i

+

b

X

j=1

h

�

�

j

�

Z

e

�

j

�

i

+




X

k=1

h




�

k

�

Z




k

�

i

+

d

X

l=1

h

Æ

�

l

�

Z

Æ

l

�

i

:

Sin
e the integrals over the 


k

and Æ

l

vanish for � 2 


1

(X; �X ;Y ), and the integrals over �

j

and

e

�

j

are the same for these 1-forms, we obtain p

Z

j

z

(X;�X)

(Y )

= p

X

:
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Example III.7. (Oriented surfa
es) Let X be an oriented 
ompa
t 
onne
ted surfa
e with

boundary. All the boundary 
omponents are di�eomorphi
 to the 
ir
le. Collapsing ea
h

boundary 
omponent to a point leads to an oriented 
ompa
t surfa
e �. Let g := g(X) := g(�)

denote the genus of � and p := p(X) be the number of boundary 
omponents.

We re
all the part

: : :! H

2

(X)! H

2

(X; �X)! H

1

(�X)

�

��!H

1

(X)! H

1

(X; �X)! H

0

(�X)! H

0

(X)

of the long exa
t homology sequen
e of the pair (X; �X). Then H

0

(�X)

�

=

H

1

(�X)

�

=

Z

p

.

A

ording to Proposition III.1(v), the in
lusion int(X) ,! X is a homotopy equivalen
e, so that

H

1

(X)

�

=

H

1

(int(X)). On the other hand int(X)

�

=

� n P , where P is the image of �X in �.

Let

b

P be a disjoint union of open dis
s in � around ea
h point of P . Then � = int(X)[

b

P

is a union of two open subsets, and the exa
t Mayer{Vietoris Sequen
e ([Br93, Th. IV.18.1℄) yields

an exa
t sequen
e

: : :! H

2

(int(X))�H

2

(

b

P )! H

2

(�)! H

1

(int(X) \

b

P )! H

1

(int(X))�H

1

(

b

P )! H

1

(�)

! H

0

(int(X) \

b

P )! H

0

(int(X))�H

0

(

b

P )! H

0

(�):

We have H

0

(

b

P )

�

=

Z

P

, H

1

(

b

P ) = H

2

(

b

P ) = 0 , H

0

(int(X))

�

=

Z , H

0

(int(X) \

b

P )

�

=

Z

P

,

H

1

(int(X) \

b

P )

�

=

Z

P

, and H

2

(int(X)) = 0 be
ause int(X) is not 
ompa
t. Therefore we

obtain an exa
t sequen
e

H

2

(�)

�

=

Z ,! Z

P

! H

1

(int(X))! H

1

(�)

�

=

Z

2g

0

��!Z

P

,! Z�Z

P

! Z:

The vanishing of the homomorphism in the middle follows from the inje
tivity of the map

H

0

(int(X) \

b

P )! H

0

(

b

P ). This implies that the sequen
e

Z ,! Z

P

! H

1

(int(X))! Z

2g

! 0

is exa
t. As �

1

(int(X)) is a free group [tD00, Satz II.8.8℄, the homology group H

1

(int(X))

�

=

�

1

(int(X))=[�

1

(int(X)); �

1

(int(X))℄ is a free abelian group, whi
h leads to

H

1

(X)

�

=

H

1

(int(X))

�

=

Z

2g(X)+p(X)�1

:

Now we obtain with H

2

(X)

�

=

H

2

(int(X)) = 0 for H

1

(X; �X) the exa
t sequen
e

H

2

(X; �X) ,! H

1

(�X)

�

=

Z

p

�

��!H

1

(X)

�

=

Z

2g+p�1

! H

1

(X; �X)! Z

p

! Z:

The image of � in H

1

(X) 
orresponds to the image of H

1

(int(X) \

b

P ) in H

1

(int(X)) in the

exa
t Mayer{Vietoris Sequen
e, and is isomorphi
 to Z

p�1

. The 
okernel of � is isomorphi


to Z

2g

. The map H

0

(�X)

�

=

Z

p

! H

0

(X)

�

=

Z is the summation map, so that its kernel is

isomorphi
 to Z

p�1

. We thus obtain a short exa
t sequen
e


oker(�)

�

=

Z

2g

,! H

1

(X; �X)!! Z

p�1

;

and �nally

H

1

(X; �X)

�

=

Z

2g(X)+p(X)�1

:

Example III.8. (Non-orientable surfa
es) Let X be a non-orientable 
ompa
t 
onne
ted

surfa
e with boundary and pro
eed as in Example III.7. Then � is non-orientable. We de�ne

g(X) and p(X) as in Example III.8.

For the �nite subset P � � we now obtain with the exa
t Mayer-Vietoris sequen
e:

: : :! H

2

(�) = 0! H

1

(int(X) \

b

P )

�

=

Z

p

! H

1

(int(X))�H

1

(

b

P )! H

1

(�)

�

=

Z

g

�Z

2

! H

0

(int(X) \

b

P )

�

=

Z

p

! H

0

(int(X))�H

0

(

b

P )

�

=

Z

p+1

! H

0

(�)

�

=

Z:
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This leads to an exa
t sequen
e

Z

p

,! H

1

(int(X))! H

1

(�)

�

=

Z

g

�Z

2

! Z

p

,! Z

p+1

;

and further to

Z

p

,! H

1

(int(X))!! Z

g

�Z

2

:

As H

1

(int(X)) is a free abelian group, it follows that

H

1

(X)

�

=

H

1

(int(X))

�

=

Z

g(X)+p(X)

:

Now we obtain with the long exa
t homology sequen
e of the pair (X; �X):

: : :! H

2

(X)! H

2

(X; �X)! H

1

(�X)

�

��!H

1

(X)! H

1

(X; �X)! H

0

(�X)! H

0

(X)

and hen
e

Z

p

�

��!Z

g+p

! H

1

(X; �X)! Z

p

s

��!Z:

The image of � in H

1

(X) 
orresponds to the image of H

1

(int(X) \ P ) in H

1

(int(X)), hen
e is

isomorphi
 to Z

p

, and 
oker(�)

�

=

Z

g

. Here s:H

0

(�X)

�

=

Z

p

! H

0

(X)

�

=

Z is the summation

map, so that its kernel is isomorphi
 to Z

p�1

. We thus obtain a short exa
t sequen
e


oker(�)

�

=

Z

g

,! H

1

(X; �X)!! Z

p�1

= ker s;

whi
h leads to

H

1

(X; �X)

�

=

Z

g(X)+p(X)�1

:

IV. Approximating non-
ompa
t manifolds by 
ompa
t ones

In this se
tion M denotes a 
onne
ted � -
ompa
t �nite-dimensional manifold. We 
all a

submanifold X of M equidimensional if dimX = dimM . In this se
tion we �rst prove the

existen
e of well behaved sequen
es (X

n

)

n2N

of equidimensional 
ompa
t submanifolds with

boundary exhausting M (Lemma IV.4). The main result of this se
tion is Theorem IV.16

providing a topologi
al isomorphism

�

M

:H

1

dR;


(M ;Y )! Y

(B)

for a 
ertain set B whi
h might be in�nite. The 
omponents of �

M

are given by integration over

singular 
y
les in M or over 
urves obtained from proper maps R ! M . Here we make heavy

use of Theorem III.6 about the 
ohomology of 
ompa
t manifolds with boundary to 
onstru
t

the set B in su
h a way that �

M

be
omes an isomorphism. As a 
orollary, we show that if � is

dis
rete, then H

1

dR;


(M ; �)

�

=

�

(B)

is dis
rete.

Saturated exhaustive sequen
es

Lemma IV.1. For ea
h 
ompa
t equidimensional submanifold X � M with boundary the

number of 
onne
ted 
omponents of M nX is �nite.

Proof. As every 
onne
ted 
omponent of M n X 
ontains some 
omponent of �X in its


losure, and the number of 
omponents of the 
ompa
t manifold �X is �nite, the assertion

follows.
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De�nition IV.2. Let X � M be an equidimensional 
ompa
t submanifold with boundary.

We observe that ea
h 
onne
ted 
omponent of �X is 
ontained in the 
losure of exa
tly one


onne
ted 
omponent of M n X . We write

b

X for the union of X with all those 
omponents

of M n X whi
h are relatively 
ompa
t. As the number of these 
omponents is �nite (Lemma

IV.1),

b

X is 
ompa
t, be
ause for ea
h 
omponent C � M nX the boundary �C is a union of


onne
ted 
omponents of �X . This argument further shows that

b

X is a 
ompa
t submanifold

with boundary in M .

Lemma IV.3. For two equidimensional submanifolds with boundary X

1

; X

2

� M with

X

1

� X

0

2

we have

b

X

1

�

b

X

0

2

:

Proof. Let C �M nX

1

be a relatively 
ompa
t 
onne
ted 
omponent. Then C nX

2

is also

relatively 
ompa
t in M , hen
e 
ontained in

b

X

2

. Therefore

b

X

1

�

b

X

2

. If p 2 �

b

X

2

is a boundary

point, then it is in parti
ular a boundary point of X

2

, hen
e not 
ontained in X

1

, and therefore

not in �X

1

. If the 
onne
ted 
omponent of M nX

0

2


ontaining p is non-
ompa
t, then this is

likewise true for the 
onne
ted 
omponent of M nX

1


ontaining p , whi
h shows that it is not


ontained in

b

X

1

. This proves

b

X

1

�

b

X

0

2

.

For the 
ase of surfa
es the following lemma 
an also be found in [tD00, Satz 7.3℄.

Lemma IV.4. There exists a sequen
e X

n

of 
ompa
t 
onne
ted manifolds with boundary in

M su
h that

(E1) X

n

� X

0

n+1

,

(E2)

S

n

X

n

=M ,

(E3)

b

X

n

= X

n

, i.e., ea
h 
onne
ted 
omponent of M nX

n

is not relatively 
ompa
t in M .

Proof. Let ':M ! R be a proper smooth fun
tion whi
h is bounded from below. Su
h a

fun
tion 
an be obtained from an embedding �:M ,! R

n

as '(x) := kxk

2

2

. Then Sard's Theorem

implies that there exists an in
reasing sequen
e (r

n

)

n2N

of regular values of ' with r

n

! 1 .

Then ea
h Y

n

:= fx 2M :'(x) � r

n

g is a 
ompa
t equidimensional submanifold with boundary.

Pi
k x

0

2 Y

1

. We de�ne Z

n

to be the 
onne
ted 
omponent of Y

n


ontaining x

0

and X

n

:=

b

Z

n

.

From r

n

< r

n+1

we derive Y

n

� Y

0

n+1

, so that Z

n

� Z

0

n+1

, and Lemma IV.3 implies (E1). From

r

n

!1 we get

S

n

Y

n

=M . Ea
h x 2M 
an be 
onne
ted to x

0

by an ar
, whi
h lies in some

Y

n

, when
e x 2 Z

n

, and (E2) follows. Eventually (E3) follows from the de�nition of

b

Z

n

.

We 
all a sequen
e (X

n

)

n2N

as in Lemma IV.4 a saturated exhaustive sequen
e of M .

Lemma IV.5. For ea
h x 2 M there exists a proper smooth map 
:R

+

:= [0;1[! M with


(0) = x . If X =

b

X is an equidimensional 
ompa
t submanifold with boundary and x 2 �X ,

then there exists a 
 as above with 
(℄0;1[) �M nX .

Proof. Pi
k a saturated exhaustive sequen
e (X

n

)

n2N

of M and 
hoose points x

n

2 �X

n

su
h that x

n+1

lies in the 
onne
ted 
omponent of M nX

n


ontaining x

n

in its boundary. Sin
e

this 
omponent is not relatively 
ompa
t in M , it interse
ts �X

n+1

. Then there exists a smooth


urve 
:R

+

!M with 
(0) = x , 
(n) = x

n

for all n 2 N , and 
([n; n+1℄) � X

n+1

nX

0

n

. The

latter 
ondition implies that 
 is proper.

If x 2 �X holds for an equidimensional 
ompa
t submanifold with boundary X , thenX �

X

N

for N suÆ
iently large, and we 
an pro
eed as above by 
onne
ting �rst x in X

N

nX

1

to a

point in the boundary of X

N

, then to a point in X

N+1

et
. We thus obtain 
 with the required

properties.

Lemma IV.6. For x; y 2 M there exists a proper smooth map 
:R ! M with 
(0) = x and


(1) = y .

Proof. Using Lemma IV.5, we �nd a smooth map 
:R ! M with 
(0) = x and 
(1) = y

su
h that the restri
tions to [1;1[ and ℄�1; 0℄ are proper. This implies that 
 itself is proper.

The following lemma is obvious.
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Lemma IV.7. Let M be a topologi
al spa
e and (M

j

)

j2J

a dire
ted family of open subsets

of M with M =

S

j

M

j

. Then M = lim

�!

M

j

holds in the 
ategory of topologi
al spa
es, ea
h


ompa
t subset of M is 
ontained in some M

j

, and for ea
h x

M

2M and k 2 N

0

we have

�

k

(M;x

M

)

�

=

lim

�!

�

k

(M

j

; x

M

);

where fj 2 J :x

M

2M

j

g is 
o�nal in J .

Remark IV.8. The pre
eding lemma applies in parti
ular to saturated exhaustions (X

n

)

n2N

of a non-
ompa
t manifold M with M

n

= X

0

n

. Then we obtain with Proposition III.1(v):

�

k

(M)

�

=

lim

�!

�

k

(X

0

n

)

�

=

lim

�!

�

k

(X

n

)

Proposition IV.9. For ea
h � -
ompa
t 
onne
ted �nite-dimensional manifold M all homo-

topy groups are 
ountable.

Proof. This is a dire
t 
onsequen
e of Lemma IV.7, Remark IV.8 and Proposition III.1(ii).

De Rham 
ohomology with 
ompa
t supports is a dire
t sum

If Y is a s.
.l.
. spa
e and (X

n

)

n2N

is a saturated exhaustive sequen
e of M , then




1




(M ;Y ) 
arries the lo
ally 
onvex dire
t limit topology of the spa
es 


1

X

n

(M ;Y ) � 


1

(M ;Y )

(
f. Se
tion II). The di�erential d:C

1




(M ;Y ) ! 


1




(M ;Y ) is a 
ontinuous linear map be
ause

C

1




(M ;Y ) 
arries the lo
ally 
onvex dire
t limit topology of the subspa
es C

1

X

n

(M ;Y ) on whi
h

d is 
ontinuous.

Lemma IV.10. Let X =

b

X be an equidimensional 
ompa
t submanifold with boundary. Then




1

X

(M ;Y )

�

=




1

(X; �X ;Y ) and




1

X

(M ;Y ) \ dC

1




(M ;Y ) = dC

1

X

(M ;Y ):

Proof. (
f. Step 1 in the proof of Theorem III.6) It is 
lear that dC

1

X

(M ;Y ) is 
ontained in




1

X

(M ;Y )\dC

1




(M ;Y ). To prove the 
onverse in
lusion, let � 2 


1

X

(M ;Y ) and f 2 C

1




(M ;Y )

with � = df . Then f is 
onstant on all 
onne
ted 
omponents of M n X . Sin
e all these


omponents are not relatively 
ompa
t in M and f has 
ompa
t support, it follows that

f(M nX) = f0g , and therefore f 2 C

1

X

(M ;Y ).

From the isomorphisms




1

X

(M ;Y )

�

=




1

(X; �X ;Y ) and C

1

X

(M ;Y )

�

=

C

1

(X; �X ;Y )

obtained by extension on M nX by 0, we now derive




1

X

(M ;Y )=

�

dC

1




(M ;Y ) \ 


1

X

(M ;Y )

�

�

=




1

(X; �X ;Y )=dC

1

(X; �X ;Y ) = z

(X;�X)

(Y ):

Lemma IV.11. For ea
h s.
.l.
. spa
e Y the subspa
e B

1

dR;


(M ;Y ) = dC

1




(M ;Y ) of




1




(M ;Y ) is 
losed.

Proof. For ea
h equidimensional 
ompa
t submanifold X =

b

X with boundary, Lemma IV.10

implies that 


1

X

(M ;Y ) \ dC

1




(M ;Y ) = dC

1

X

(M ;Y ); whi
h 
orresponds to the subspa
e

dC

1

(X; �X ;Y ) � 


1

(X; �X ;Y )

whose 
losedness follows from Corollary II.4 whi
h also applies to the pair (X; �X), as it has the

same spa
e of smooth fun
tions as the pair (X

d

; X

℄

) (
f. Example I.9(a)).

For ea
h saturated exhaustive sequen
e (X

n

)

n2N

, the spa
e 


1




(M ;Y ) is the lo
ally 
onvex

dire
t limit of the subspa
es 


1

X

n

(M ;Y ), so that the 
losedness of dC

1




(M ;Y ) follows from the


losedness of the interse
tions with the spa
es 


1

X

n

(M ;Y ) (Lemma B.4(ii)).
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De�nition IV.12. As a 
onsequen
e of Lemma IV.11, the spa
e

z

M;


(Y ) := 


1




(M ;Y )=dC

1




(M ;Y )


arries a natural (Hausdor�) lo
ally 
onvex topology. It is isomorphi
 to

lim

�!




1

X

n

(M ;Y )=

�




1

X

n

(M ;Y ) \ dC

1




(M ;Y )

�

�

=

lim

�!




1

X

n

(M ;Y )=dC

1

X

n

(M ;Y )

= lim

�!

z

(X

n

;�X

n

)

(Y )

(Lemmas B.4 and IV.10). We write q: 


1




(M ;Y ) ! z

M;


(Y ) for the quotient map. The


ohomology spa
e

H

1

dR;


(M ;Y ) := Z

1

dR;


(M ;Y )=dC

1




(M ;Y )

is a 
losed subspa
e of z

M;


(Y ). For a 
ompa
t subset X �M we de�ne

H

1

dR;X

(M ;Y ) := Z

1

dR;X

(M ;Y )=

�

Z

1

dR;X

(M ;Y ) \ dC

1




(M ;Y )

�

and observe that H

1

dR;


(M ;Y ) is the union of the subspa
es H

1

dR;X

n

(M ;Y ).

Remark IV.13. For ea
h 
ompa
t equidimensional submanifold X � M with X =

b

X ,

Lemma IV.10 implies that

H

1

dR;X

(M ;Y ) = Z

1

dR;X

(M ;Y )=dC

1

X

(M ;Y )

�

=

Z

1

dR

(X; �X ;Y )=dC

1

(X; �X ;Y )

= H

1

dR

(X; �X ;Y ):

Therefore Lemma III.2 implies that for dimY <1 these spa
es are �nite-dimensional

1

.

Lemma IV.14. Let M be a non-
ompa
t �nite-dimensional manifold, (X

n

)

n2N

a saturated

exhaustion of M and Y a Fr�e
het spa
e. Then the following assertions hold:

(i) 


1




(M ;R) is a nu
lear LF-spa
e.

(ii) H

1

dR;


(M ;Y ) is the lo
ally 
onvex dire
t limit of the subspa
es H

1

dR

(X

n

; �X

n

;Y ) .

Proof. (i) 


1




(M ;R) is the dire
t limit of the Fr�e
het spa
es 


1

X

n

(M ;R). Ea
h spa
e




1

X

n

(M ;R) 
an be embedded into a produ
t of �nitely many spa
es of the form 


1

(U ;R) ,

where U is an open subset of R

d

, d = dimM . As the spa
es 


1

(U ;R) are nu
lear, the spa
es




1

X

n

(M ;R) are nu
lear, and the assertion follows ([Tr67, Prop. 50.1℄).

(ii) First we verify that the pairs X

n

� X

n+1

satisfy the assumptions of Theorem III.6. Let C be

a 
onne
ted 
omponent of X

n+1

nX

n

. If C does not interse
t �X

n+1

, then it also is a 
onne
ted


omponent of M nX

n

. Further it is 
ontained in the 
ompa
t set X

n+1

, so that X

n+1

=

b

X

n+1

leads to a 
ontradi
tion. Therefore all 
onne
ted 
omponents of X

n+1

n X

n

are non-
ompa
t,

Theorem III.6 applies, and we obtain indu
tively 
ontinuous proje
tions

p

n

: z

n

:= z

(X

n

;�X

n

)

(Y )! H

1

n

:= H

1

dR

(X

n

; �X

n

;Y )

whi
h are 
ompatible in the sense that p

n+1

j

z

n

= p

n

: Sin
e z

(M;
)

is the lo
ally 
onvex dire
t

limit of the subspa
es z

n

(De�nition IV.12), there exists a 
ontinuous proje
tion

p: z

(M;
)

(Y )! H

1

dR;


(M ;Y )

with p j

z

n

= p

n

for ea
h n 2 N .

Now let f

n

:H

1

n

! E be 
ontinuous linear fun
tions into a lo
ally 
onvex spa
e E with

f

n+1

j

H

1

n

= f

n

; for n 2 N:

Then the fun
tions f

n

Æ p

n

: z

n

! E are 
ontinuous linear maps with f

n+1

Æ p

n+1

j

z

n

= f

n

Æ p

n

, so

that there exists a 
ontinuous linear map F : z

(M;
)

(Y )! E with F j

z

n

= f

n

Æ p

n

for ea
h n 2 N ,

and therefore the restri
tion f := F j

H

1

dR;


(M ;Y )

is 
ontinuous. This proves the universal dire
t

limit property of the lo
ally 
onvex spa
e H

1

dR;


(M ;Y ).

1

There is some subtle point that one has to observe here. In general a 
losed subspa
e Y of an LF-spa
e

X=lim

�!

X

n

does not have to 
arry the LF-spa
e topology de�ned by the subspa
es Y \X

n

(
f. [Tr67, Rem. 13.2℄).
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Lemma IV.15. If Y is a lo
ally 
onvex spa
e and � � Y a dis
rete subgroup, then the subgroup

�

(N)

is dis
rete in the spa
e Y

(N)

endowed with the lo
ally 
onvex dire
t limit topology of the �nite

produ
ts Y

n

= Y

f1;:::;ng

, n 2 N .

Proof. Let U � Y be a 
onvex 0-neighborhood with U \ � = f0g . Then U

(N)

is a 
onvex

0-neighborhood in Y

(N)

with U

(N)

\ �

(N)

= f0g .

Theorem IV.16. Let Y be a s.
.l.
. spa
e and M a non-
ompa
t 
onne
ted manifold with

a saturated exhaustion (X

n

)

n2N

. Then there exists a set B =

S

n

B

n


onsisting of pie
ewise

smooth 
y
les and of pie
ewise smooth proper maps R !M su
h that:

(1) For ea
h n 2 N the subset B

n

is �nite, and the integration map

�

X

n

:H

1

dR

(X

n

; �X

n

;Y )! Y

B

n

; [�℄ 7!

�

Z

b

�

�

b2B

n

is a topologi
al isomorphism.

(2) The integration map

�

M

:H

1

dR;


(M ;Y )! Y

(B)

�

=

lim

�!

Y

B

n

; [�℄ 7!

�

Z

b

�

�

b2B

is a topologi
al isomorphism.

Proof. Using the 
onstru
tion in the proof of Theorem III.6, we indu
tively obtain �nite sets

B

n

of pie
ewise smooth 
y
les in X

n

modulo �X

n

su
h that B

n

� B

n+1

holds in the sense

that those 
y
les in B

n

whi
h are not 
y
les in X

n+1

are \extended" to relative 
y
les modulo

�X

n+1

in X

n+1

, and the set B

n+1

n B

n


onsists of 
y
les supported in X

n+1

nX

n

. Moreover,

for ea
h n 2 N the integration map �

X

n

is a topologi
al isomorphism (Remark III.5) whi
h, in

addition, satis�es

�

X

n+1

j

H

1

dR

(X

n

;�X

n

;Y )

= �

X

n

:

Therefore Lemma IV.14(ii) leads to a topologi
al isomorphism

�:H

1

dR;


(M ;Y )! lim

�!

Y

B

n

�

=

Y

(B)

;

where B :=

S

n

B

n

, and the spa
e Y

(B)

=

S

n

Y

B

n


arries the lo
ally 
onvex dire
t limit

topology.

Dis
rete subgroups of de Rham 
ohomology

Remark IV.17. In the following we write C

1

p

(N;M) for the set of proper smooth maps from

the manifold N to the manifold M .

Every smooth loop in C

1

(S

1

;M) is homotopi
 to a smooth loop � for whi
h all derivatives

vanish in the base point 1 2 S

1

, where we 
onsider S

1

as a subset of C . Then we 
an view it as

a smooth map [0; 1℄!M whi
h extends to a proper smooth map e�:R !M by using a smooth

proper map 
:R

+

!M with 
(0) = �(1) for whi
h all derivatives vanish in 0 and then de�ne

�(t) := 
(t � 1) for t � 1 and �(t) := 
(�t) for t � 0 (
f. Lemma IV.5). For ea
h 
ompa
tly

supported 1-form � we then have

Z

�

� =

Z

e�

� �

Z




� +

Z




� =

Z

e�

�:

Lemma IV.18. Let X =

b

X �M be an equidimensional 
ompa
t submanifold with boundary.

Then the following assertions hold:
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(i) For x; y 2 �X there exists a smooth proper 
urve �:R !M with �(0) = x , �(1) = y , and

[0; 1℄ = �

�1

(X) . For � 2 


1

(X; �X ;Y ) we then have

Z

�

� =

Z

�j

[0;1℄

�:

(ii) For � 2 Z

1

dR

(X; �X ;Y ) the subgroup of Y generated by the set of all integrals

R

�

� ,

� 2 C

1

p

(R;M) , 
oin
ides with the set of all integrals over elements in Z

1

(X; �X) .

Proof. (i) This follows from Lemma IV.6 and its proof.

(ii) From (i), Remark IV.17 and Proposition III.3 it follows that ea
h integral over a 
y
le in

Z

1

(X; �X) 
an also be written as a sum of integrals over proper smooth maps R !M .

Suppose, 
onversely, that �:R !M is smooth and proper. Then � is smoothly homotopi


to a proper 
urve 
 whi
h is transversal to the 
ompa
t submanifold �X of M ([BJ73, Satz

14.7; p.158℄). Therefore 


�1

(X) is a �nite union of 
ompa
t intervals I

1

; : : : ; I

m

, be
ause it is

lo
ally 
onne
ted and 
ompa
t. Then

Z

�

� =

Z




� =

X

j

Z


j

I

j

�;

and the restri
tions 
 j

I

j


an be interpreted as 
y
les in Z

1

(X; �X).

We 
on
lude from Lemma IV.18 that for the sake of testing integrality 
onditions of 1-

forms supported by X , we 
ould either work with 1-
y
les in X modulo �X or with proper

smooth maps R !M . The latter approa
h has the advantage of being independent of X .

De�nition IV.19. For a subgroup � � Y let

Z

1

dR;


(M ; �) :=

n

� 2 Z

1

dR;


(M ;Y ): (8� 2 C

1

p

(R;M))

Z

�

� 2 �

o

and observe that this equals

�

� 2 


1




(M ;Y ): (8� 2 C

1

p

(R;M))

R

�

� 2 �

	

if � is dis
rete (
f.

Lemma II.10(2)). We also de�ne

H

1

dR;


(M ; �) := Z

1

dR;


(M;�)=dC

1




(M ;Y ):

Proposition IV.20. Let � � Y be a dis
rete subgroup and T

�

:= Y=� . Then Æ(C

1




(M ;T

�

))


onsists of those 1-forms whose integrals over all elements of C

1

p

(R;M) are 
ontained in � . In

parti
ular,

H

1

dR;


(M ; �) = Æ(C

1




(M ;T

�

))=d(C

1




(M ;Y )):

Proof. For ea
h 
losed 1-form Æ(f), f 2 C

1




(M ;T

�

), the integrals over elements of

C

1

p

(R;M) are obviously 
ontained in �. If, 
onversely, � 2 


1




(M ;Y ) has this property, then

we pi
k an equidimensional 
ompa
t manifold X =

b

X with boundary 
ontaining the support

of � . Then Lemmas II.3 and IV.18 imply the existen
e of f 2 C

1

(X; �X ;T

�

) � C

1




(M ;T

�

)

with � = Æ(f). This proves that Æ(C

1




(M ;T

�

)) 
onsists of those 1-forms whose integrals over

all elements of C

1

p

(R;M) are 
ontained in �.

For the following 
orollary we re
all the set B from Theorem IV.16. For the 
ase where Y

is �nite-dimensional, the following dis
reteness result 
an also be obtained from Proposition B.3,


ombined with Theorem II.7.

Corollary IV.21. We have �

M

�

H

1

dR;


(M ; �)

�

= �

(B)

and in parti
ular

H

1

dR;


(M ; �)

�

=

�

(B)

� Y

(B)

�

=

H

1

dR;


(M ;Y ):

Moreover, for H

1

dR;


(M ;R) 6= f0g the group � is dis
rete if and only if H

1

dR;


(M ; �) is dis
rete.
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Proof. In view of Lemma IV.18(ii), we have

Z

1

dR;


(M ; �) =

[

n2N

Z

1

dR

(X

n

; �X

n

; �);

and therefore �

M

(H

1

dR;


(M ; �)) � �

(B)

: On the other hand, we have for ea
h n the restri
tion

isomorphism

�

X

n

= �

M

j

H

1

dR

(X

n

;�X

n

;Y )

:H

1

dR

(X

n

; �X

n

;Y )! Y

B

n

� Y

(B)

:

Let x

M

2 X

1

be a base point. If �

X

n

([�℄) 2 �

B

n

, then the 
onstru
tion of the set B

n

(
f.

Theorem III.6) implies that all integrals of � over 
y
les in Z

1

(X

n

; �X

n

) lie in �, and hen
e

that all integrals over 
urves in C

1

p

(R;M) lie in � (Lemma IV.18(ii)). Therefore � 2 Z

1

dR;


(M ; �)

and �

M

([�℄) = �

X

n

([�℄) . We 
on
lude that �

M

(H

1

dR;


(M ; �)) = �

(B)

:

Now we use Lemma IV.15 to see that for a non-empty set B the subgroup �

(B)

of the

lo
ally 
onvex dire
t sum Y

(B)

is dis
rete if and only if � is dis
rete in Y .

For the following, we observe that we have a natural 
ontinuous multipli
ation map




1

(M ;R) � Y ! 


1

(M ;Y ); (�; y) 7! � � y

whi
h indu
es 
ontinuous bilinear maps

H

1

dR

(M ;R) � Y ! H

1

dR

(M ;Y ) and H

1

dR;


(M ;R) � Y ! H

1

dR;


(M ;Y ):

Corollary IV.22. For ea
h subgroup � of Y we have H

1

dR;


(M ;Z) � � = H

1

dR;


(M ; �):

Proof. The in
lusion H

1

dR;


(M ;Z) � � � H

1

dR;


(M ; �) is trivial. For the 
onverse, let � 2

Z

1

dR

(X

n

; �X

n

; �). Then �

X

n

([�℄) 2 �

B

n

(Lemma IV.18). Suppose that B

n

= fb

1

; : : : ; b

m

g . Let

b

�

i

2 Z

1

dR

(X

n

; �X

n

;R) be elements with I

b

i

b

�

j

= Æ

ij

. Then

R

b

� = 0 for b 2 B n B

n

implies that

� �

P

m

i=1

b

�

i

�

R

b

i

� is exa
t, so that

[�℄ =

n

X

j=1

[b

�

i

℄ �

Z

b

i

� 2 H

1

dR;


(M ;Z) � �

holds in H

1

dR;


(M ;Y ). As B

n

generates Z

1

(X

n

; �X

n

) modulo torsion, we get b

�

i

2 H

1

dR;


(M ;Z)

(Lemma IV.18).

The following proposition will be helpful in understanding the assertion of Proposition V.12

below.

Proposition IV.23. If S is a 
losed subset of the 
ompa
t manifold M , then for ea
h dis
rete

subgroup � � Y we have

H

1

dR

(M;S;Z) � � = H

1

dR

(M;S; �):

Proof. The in
lusion \�" is 
lear. It remains to show the 
onverse. So let � 2 Z

1

dR

(M;S; �).

First we show that the group h�;H

1

(M;S)i � � is �nitely generated.

Sin
e H

1

(M) is �nitely generated, �

0

:= h�;H

1

(M)i is a �nitely generated subgroup of �.

Let p:Y ! Y=�

0

denote the quotient map. Then all periods of the 1-form �

0

:= pÆ � are trivial,

and there exists a smooth fun
tion f

0

:M ! Y=�

0

with df

0

= �

1

and f

0

(S) � �=�

0

. Moreover,

the fun
tion f

0

lifts to a smooth fun
tion f

1

:

f

M ! Y , with f

1

(q

�1

M

(S)) � �, where q

M

:

f

M !M

is a universal 
overing of M . As � is dis
rete, the fun
tion f

1

is lo
ally 
onstant on q

�1

M

(S), and

therefore f

0

is lo
ally 
onstant on S . Therefore f

0

(S) is �nite. As h�;H

1

(M;S)i=�

0

� hf

0

(S)i ,

it follows that h�;H

1

(M;S)i is �nitely generated.

Moreover, there exists a smooth fun
tion f

2

:M ! Y lo
ally 
onstant on a neighborhood

of S su
h that for ea
h s 2 S we have f

2

(s) + �

0

= f

0

(s). Then df

2

2 H

1

dR

(M;S;Z) lies in the

image of

H

1

dR;


(M n S; �)

�

=

H

1

dR;


(M n S;Z) � �
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(Corollary IV.22). For �

1

:= � � df

2

we now have

�

0

= h�;H

1

(M)i = h�

1

; H

1

(M)i = h�

1

; H

1

(M;S)i;

so that there exists some f

3

2 C

1

(M;S;Y=�

0

) with df

3

= �

1

.

As �

0

is �nitely generated, it spans a �nite-dimensional subspa
e Y

0

� Y . Extending the

identity map Y

0

! Y

0

to a 
ontinuous linear map Y ! Y

0

using the Hahn{Bana
h Extension

Theorem, we obtain a topologi
al dire
t sum de
omposition Y

�

=

Y

0

� Y

1

, where Y

1

is the

kernel of the extension. Then Y=�

0

�

=

(Y

0

=�

0

)� Y

1

as Lie groups. Moreover, �

1

= �

1

+�

2

with

�

j

2 Z

1

dR

(M;S;Y

j

), j = 1; 2, and f

3

= h

1

+h

2

with h

1

2 C

1

(M;S;Y

0

=�

0

), h

2

2 C

1

(M;S;Y

1

),

Æ(h

1

) = �

1

and dh

2

= �

2

. This proves that [�

1

℄ = [�

1

℄ . As Y

0

=�

0

is a �nite-dimensional torus,

we 
an write it as R

d

=Z

d

with Y

0

�

=

R

d

and Z

d

�

=

�

0

. This means that h

1

is a �nite produ
t

of the d 
omponent fun
tions l

1

; : : : ; l

d

2 C

1

(M;S;T). If e

1

; : : : ; e

d

denote the 
anoni
al basis

ve
tors in R

d

, this leads to

[�

1

℄ =

d

X

j=1

[dl

j

℄ � e

i

2 H

1

dR

(M;S;Z) � �:

Summing up, we obtain

H

1

dR

(M;S; �) � H

1

dR;


(M n S; �) +H

1

dR

(M;S;Z) � �

= H

1

dR;


(M n S;Z) � � +H

1

dR

(M;S;Z) � � � H

1

dR

(M;S;Z) � �:

Example IV.24. Let M := R

2

n P , where P is a subset without 
luster points. We want to

get an expli
it pi
ture of H

1

dR;


(M ;R) .

(a) First we 
onsider on R

2

n f(0; 0)g in polar 
oordinates the 1-form

�(re

i'

) := f(r)dr;

where f : ℄0;1[! R has 
ompa
t support and satis�es

R

1

0

f(r) dr = 1. Then

d� = f

0

(r)dr ^ dr +

�f

�'

d' ^ dr = 0;

and for ea
h proper map 
:R ! R

2

with lim

t!�1


(t) = (0; 0) and lim

t!1


(t) =1 we have

Z




� = 1:

(b) To 
al
ulate H

1

dR;


(M ;R) , we approximate M by 
ompa
t submanifolds X

n

whi
h are

obtained from 
losed dis
s D

n

with �D

n

\ P = � by removing open dis
s around the �nitely

many points in D

n

\ P . Note that the set P is 
ountable, so that there exist arbitrarily large

dis
s D

n

whose boundaries do not interse
t P .

Assume that D := D

n


ontains k elements of P and put X := X

n

. Then �

1

(X)

�

=

�

1

(int(X)) is a free group of k generators. For ea
h 
losed 1-form � with 
ompa
t support in

X

0

the integrals over the loops in X are trivial (make them very small around the points in

P ). Hen
e every su
h 1-form is exa
t. Let � = df with f 2 C

1

(X ;R). As � has 
ompa
t

support, f is 
onstant on the 
onne
ted 
omplement of D , so that we may w.l.o.g. assume that

f = 0 on the outer 
ir
le �D � �X . Then we 
onne
t �D by ar
s 


1

; : : : ; 


k

to the other

boundary 
omponents. If all integrals of � over the 


j

vanish, then � 2 dC

1

(X; �X ;R). If

�

1

; : : : ; �

k

2 Z

1

dR

(X; �X ;R) are the 1-forms supported 
lose to the elements of P \D as in (a),

we see that

R




i

�

j

= Æ

ij

for an appropriate normalization, so that [�℄ =

P

j

R




j

� � [�

j

℄ . Therefore

H

1

dR

(X; �X ;R) =

M

p2P\D

R[�

p

℄;
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and further

H

1

dR;


(M ;R) = lim

�!

H

1

dR

(X

n

; �X

n

;R) =

M

p2P

R[�

p

℄

�

=

R

(P )

:

The subgroup H

1

dR;


(M ;Z) of integral elements in H

1

dR;


(M ;R) 
onsists of those 
ohomol-

ogy 
lasses whose integrals over all paths between elements of P are integers. For p; q 2 P we

write 


p;q

for an ar
 from p to q . Then

Z




p;q

�

r

= Æ

p;r

� Æ

q;r

:

This means that

P

r

�

r

�

r

is integral if and only if all di�eren
es �

r

� �

s

are integral. As only

�nitely many 
oeÆ
ients �

r

are non-zero, it follows that

H

1

dR;


(M ;Z) =

X

p

Z[�

p

℄

�

=

Z

(P )

:

V. Central extensions of Lie groups and period maps

In this se
tion we �rst explain the general setup for 
entral extensions of in�nite-dimensional Lie

groups. The main question arising in the integration pro
ess of Lie algebra 
o
y
les ! to 
entral

extensions of Lie groups is whether the 
orresponding period group �

!

is dis
rete. In this se
tion

we show that for 
o
y
les of produ
t type for the groups C

1




(M ;K)

e

and C

1

(M;S;K)

e

the

period group is dis
rete for any M if and only if this is the 
ase for M = S

1

. This redu
es the

dis
reteness problem to the 
ase of loop groups, whi
h is known for K 
ompa
t, and therefore

for all �nite-dimensional Lie groups K .

Generalities on 
entral Lie group extensions

De�nition V.1. (a) Let z be a topologi
al ve
tor spa
e and g a topologi
al Lie algebra. A


ontinuous z-valued 2-
o
y
le is a 
ontinuous skew-symmetri
 fun
tion !: g� g! z with

!([x; y℄; z) + !([y; z℄; x) + !([z; x℄; y) = 0:

It is 
alled a 
oboundary if there exists a 
ontinuous linear map � 2 Lin(g; z) with !(x; y) =

�([x; y℄) for all x; y 2 g . We write Z

2




(g; z) for the spa
e of 
ontinuous z-valued 2-
o
y
les

and B

2




(g; z) for the subspa
e of 
oboundaries. We de�ne the se
ond 
ontinuous Lie algebra


ohomology spa
e

H

2




(g; z) := Z

2




(g; z)=B

2




(g; z):

(b) If ! is a 
ontinuous z-valued 
o
y
le on g , then we write g �

!

z for the topologi
al Lie

algebra whose underlying topologi
al ve
tor spa
e is the produ
t spa
e g� z , and the bra
ket is

de�ned by

[(x; z); (x

0

; z

0

)℄ =

�

[x; x

0

℄; !(x; x

0

)

�

:

Then q: g�

!

z ! g; (x; z) 7! x is a 
entral extension and �: g ! g�

!

z; x 7! (x; 0) is a 
ontinuous

linear se
tion of q .

If, 
onversely, a 
entral Lie algebra extension q:

b

g ! g with kernel z has a 
ontinuous

linear se
tion �: g !

b

g , then it 
an be des
ribed by a 
ontinuous Lie algebra 
o
y
le ! 2 Z

2




(g; z)

de�ned by !(x; y) := [�(x); �(y)℄ � �([x; y℄); be
ause the map

g�

!

z !

b

g; (x; z) 7! �(x) + z

is an isomorphism of topologi
al Lie algebras. As two Lie algebra 
o
y
les de�ne equivalent


entral extensions if and only if they di�er by a 
oboundary, we obtain an identi�
ation of the

set of equivalen
e 
lass of all 
entral z-extensions of g (with a 
ontinuous linear se
tion) with

the ve
tor spa
e H

2




(g; z).
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De�nition V.2. (a) Central extensions of Lie groups are always assumed to have a smooth

lo
al se
tion. Let Z ,!

b

G !! G be a 
entral extension of the 
onne
ted Lie group G by

the abelian Lie group Z . We assume that the identity 
omponent Z

e

of Z 
an be written as

Z

e

= z=�

1

(Z), where the Lie algebra z of Z is a s.
.l.
. spa
e. The group (z;+) 
an be identi�ed

in a natural way with the universal 
overing group of Z

e

, and Z

e

is a quotient of z modulo a

dis
rete subgroup whi
h 
an be identi�ed with �

1

(Z). Sin
e the quotient map q:

b

G ! G has a

smooth lo
al se
tion, the 
orresponding Lie algebra homomorphism

b

g ! g has a 
ontinuous linear

se
tion �: g !

b

g , hen
e 
an be des
ribed by a 
ontinuous Lie algebra 
o
y
le (De�nition V.1).

(b) If G is a group and Z an abelian group, then we de�ne the group

Z

2

(G;Z) := ff :G�G! Z: (8x; y; z 2 G)

f(1; x) = f(x;1) = 1; f(x; y)f(xy; z) = f(x; yz)f(y; z)g

of Z -valued 2-
o
y
les and the subgroup

B

2

(G;Z) := ff :G�G! Z: (9h:G! Z) h(1) = 1; (8x; y 2 G) f(x; y) = h(xy)h(x)

�1

h(y)

�1

g

of Z -valued 2-
oboundaries. In both 
ases the group stru
ture is given by pointwise multipli
a-

tion.

If G and Z are Lie groups, we write Z

2

s

(G;Z) for the subgroup of Z

2

(G;Z) 
onsisting of

those 
o
y
les f whi
h are smooth in a neighborhood of (e; e), and B

2

s

(G;Z) for the subgroup

of all fun
tions of the form (g; g

0

) 7! h(gg

0

)h(g)

�1

h(g

0

)

�1

, where h:G ! Z is smooth in an

identity neighborhood. We re
all from [Ne02a, Prop. 4.2℄ that 
entral Lie group extensions as

above 
an always be written as

b

G

�

=

G�

f

Z with (g; z)(g

0

; z

0

) =

�

gg

0

; zz

0

f(g; g

0

)

�

;

for some f 2 Z

2

s

(G;Z). Two 
o
y
les f

1

, f

2

de�ne equivalent Lie group extensions if and only

if f

1

� f

�1

2

2 B

2

s

(G;Z) (for f

�1

2

(x; y) := f

2

(x; y)

�1

), and the quotient group H

2

s

(G;Z) :=

Z

2

s

(G;Z)=B

2

s

(G;Z) parametrizes the equivalen
e 
lasses of 
entral Z -extensions of G with

smooth lo
al se
tions ([Ne02a, Remark 4.4℄). There is a natural map H

2

s

(G;Z) ! H

2




(g; z)

indu
ed by the map

(5:1) D:Z

2

s

(G;Z)! Z

2




(g; z); D(f)(x; y) = d

2

f(e; e)((x; 0); (0; y))� d

2

f(e; e)((y; 0); (x; 0))

([Ne02a, Lemma 4.6℄), where d

2

f(e; e) is well-de�ned be
ause df(e; e) vanishes, whi
h follows

from f(g; e) = f(e; g) = 1 . For more details on 
entral extensions of Lie groups we refer to

[Ne02a℄.

De�nition V.3. If z is a s.
.l.
. spa
e, G a Lie group, and 
 2 


2

(G; z) a 
losed z-valued

2-form, then we obtain with [Ne02a, Lemma 5.7℄ a group homomorphism

per




:�

2

(G)! z


alled the period map. It is given on smooth representatives �:S

2

! G of 
lasses in �

2

(G) by

the integral

per




([�℄) =

Z

S

2

�

�


 =

Z

�


:

We re
all that ea
h homotopy 
lass 
ontains smooth representatives. Here we use the sequential


ompleteness of z to ensure that the integrals, whi
h 
an be obtained as limits of Riemann

sums, do exist. If 
 is exa
t, then the period map is trivial by Stoke's Theorem. The image

�




:= per




(�

2

(G)) is 
alled the period group of 
.
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De�nition V.4. Let G be a 
onne
ted Lie group with Lie algebra g and ! 2 Z

2




(g; z) a


ontinuous Lie algebra 
o
y
le with values in the s.
.l.
. spa
e z . Let � � z be a dis
rete subgroup

and Z := z=� the 
orresponding quotient Lie group. Further let 
 be the 
orresponding left

invariant 
losed z-valued 2-form on G . Then we de�ne a homomorphism

P :H

2




(g; z)! Hom(�

2

(G); Z)�Hom(�

1

(G);Lin(g; z))

as follows. For the �rst 
omponent we take

P

1

([!℄) := q

Z

Æ per

!

;

where q

Z

: z ! Z is the quotient map and per

!

:= per




:�

2

(G) ! z is the period map of ! . To

de�ne the se
ond 
omponent, for ea
h X 2 g we write X

r

for the 
orresponding right invariant

ve
tor �eld on G . Then i

X

r


 is a 
losed z-valued 1-form ([Ne02a, Lemma 3.11℄) to whi
h we

asso
iate a homomorphism �

1

(G)! z via

P

2

([!℄)([
℄)(X) :=

Z




i

X

r


:

We refer to [Ne02a, Se
t. 7℄ for arguments showing that P is well-de�ned, i.e., that the right

hand sides only depend on the Lie algebra 
ohomology 
lass of ! .

The following theorem 
ompletely des
ribes the obstru
tions for a Lie algebra 
o
y
le to

integrate to a 
entral Lie group extension. It is the main result of [Ne02a℄.

Theorem V.5. Let ! 2 Z

2




(g; z) be a 
ontinuous Lie algebra 
o
y
le. Then the 
entral Lie

algebra extension z ,!

b

g := g�

!

z !! g integrates to a 
entral Lie group extension Z ,!

b

G!! G

if and only if P ([!℄) = 0 .

Proof. [Ne02a, Th. 7.12℄.

Appli
ations to 
urrent groups

Now we turn to 
entral extensions of the two 
lasses of 
urrent Lie groups given as the

identity 
omponents of C

1




(M ;K) and C

1

(M;S;K). The methods developed in this paper

are well suited for the study of Lie algebra 
o
y
les of produ
t type introdu
ed below. Here the

main problem is to de
ide for a given 
o
y
le if its period group is dis
rete (
f. Theorem V.5).

De�nition V.6. Let k be a lo
ally 
onvex topologi
al Lie algebra, M a manifold and

g := C

1

(M ; k). We 
onsider a 
ontinuous invariant symmetri
 bilinear map �: k � k ! Y ,

where Y is a s.
.l.
. spa
e. We then obtain a 
ontinuous z

M

(Y )-valued 
o
y
le on g by

!

M

(�; �) := !

M;�

(�; �) := [�(�; d�)℄ 2 z

M

(Y );

where we view �(�; d�) as the element of 


1

(M ;Y ) whose value in a tangent ve
tor v 2 T

p

(M)

is given by �(�(p); d�(p)(v)).

(a) On C

1

(M;S; k) we obtain by restri
tion a 
ontinuous z

(M;S)

(Y )-valued Lie algebra 
o
y
le

!

(M;S)

: For a 
ompa
t manifold M the group C

1

(M;S;K) has a natural Lie group stru
ture

(De�nition I.6), so that we 
an de�ne the period map

per

!

(M;S)

:�

2

(C

1

(M;S;K))! z

(M;S)

(Y )


orresponding to the left invariant 2-form 


(M;S)

on C

1

(M;S;K) with 


(M;S);e

= !

(M;S)

. We

write �

(M;S)

for the 
orresponding period group.
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(b) If � and � have 
ompa
t support, then the same holds for �(�; �), so that we also obtain a

Lie algebra 
o
y
le

!

M

2 Z

2




(C

1




(M ; k); z

M;


(Y )); z

M;


(Y ) := 


1




(M ;Y )=dC

1




(M ;Y ):

The 
ontinuity of this 
o
y
le follows from the 
ontinuity of the map

C

1




(M ; k)� 


1




(M ; k)! 


1




(M ;Y ); (f; �) 7! �(f; �);

whi
h in turn follows from [Gl01d, Th. 4.7℄ be
ause it 
an be interpreted as a map on the level of


ompa
tly supported se
tions of ve
tor bundles indu
ed by the bundle map determined by the


ontinuous map

k� Lin(T

p

(M); k)! Lin(T

p

(M);Y ); (x; �) 7! �(x; �(�))

on the �ber in p 2M .

(
) For any Lie group K we de�ne V (k) as follows. We �rst endow k 
 k with the proje
tive

tensor produ
t topology and de�ne V (k) as the 
ompletion of the quotient of V (k) by the 
losure

of the subspa
e spanned by all elements of the form

x
 y � y 
 x and [x; y℄
 z + y 
 [x; z℄; x; y; z 2 k:

If [z℄ denotes the image of z 2 k
 k in V (k), we obtain a 
ontinuous invariant bilinear map

�: k� k ! V (k); �(x; y) := [x
 y℄

whi
h leads to the 
o
y
le ! = !

S

1

;�

2 Z

2




(g; V (k)) on g := C

1

(S

1

; k) given by !(�; �) :=

[�(�; d�)℄: As �

2

(C

1

(S

1

;K))

�

=

�

3

(K) (Corollary A.15), the period map per

!

yields a homo-

morphism

per

K

:�

3

(K)! V (k):

Proposition V.7. Let g := C

1




(M ; k) and �: k� k ! Y be a 
ontinuous invariant symmetri


bilinear form. Then we obtain for the 
o
y
le !(�; �) := [�(�; d�)℄ an automorphi
 a
tion of the

group C

1

(M;K) on

b

g := g�

!

z

M

(Y ) by

(5:2) f:(�; z) := (Ad(f):�; z � [�(Æ

l

(f); �)℄):

The 
orresponding derived a
tion is given by

(5:3) �:(�; z) = [(�; 0); (�; z)℄ = ([�; �℄; !(�; �)):

Proof. The arguments 
an be taken over from [MN02, Prop. III.3℄. Here we only have to add

Lemma II.2 to see that Æ

l

is smooth.

Theorem V.8. Let K be a 
onne
ted Lie group, M a 
onne
ted manifold, G := C

1




(M;K)

e

and !

M;�

2 Z

2




(g; z

M

(Y )) as above. Suppose that the period group �

M;�

� z

M

(Y ) is dis
rete.

For Z := z

M

(Y )=�

!

M;�

we then obtain a 
entral Lie group extension Z ,!

b

G!! G 
orresponding

to the 
o
y
le !

M;�

.

Proof. In view of Theorem V.5, we only have to see that P

2

([!

M;�

℄) = 0. A

ording to [Ne02a,

Prop. 7.6℄, this is equivalent to the existen
e of a smooth linear a
tion of G on

b

g whose derived

a
tion is given by �:(�; z) = ([�; �℄; !(�; �)): Proposition V.7 implies that su
h a representation

exists.

For the following theorem we re
all that we 
an use the 
ontinuous bilinear form �: k�k ! Y

to de�ne a wedge produ
t

^

�

: 


1

(M ; k)� 


1

(M ; k)! 


2

(M ;Y )

by

(� ^

�

�)(v; w) := �(�

p

(v); �

p

(w)) � �(�

p

(v); �

p

(w)); v; w 2 T

p

(M):

The following theorem des
ribes a situation where we have a global smooth group 
o
y
le

asso
iated to the 
o
y
le obtained by 
omposing a 
o
y
le of produ
t type with the de Rham

di�erential z

M;


(Y ) ! 


2




(M ;Y ). The reason behind the existen
e of the global 
o
y
le lies in

the fa
t that all periods of !

M;�

lie in the kernel H

1

dR;


(M ;Y ) of d (see [Ne02a, Se
tion 8℄ for

more details on the existen
e of global smooth 
o
y
les).
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Theorem V.9. Let G

+

:= C

1




(M;K) . Then the map

h:G

+

�G

+

! 


2




(M ;Y ); h(f; g) := Æ

l

(f) ^

�

Æ

r

(g)

de�nes a a smooth 


2




(M ;Y )-valued group 2-
o
y
le on G

+

, so that we obtain a 
entral Lie

group extension

b

G

+

:= G

+

�

h




2




(M ;Y ) . The 
orresponding Lie algebra 
o
y
le Dh from (5.1)

is given by

Dh(�; �) = 2d� ^

�

d� for �; � 2 C

1




(M ; k):

The map 
: z

M;


(Y )! 


2




(M ;Y ); [�℄ 7! 2d� satis�es 
 Æ !

M;�

= Dh and indu
es a Lie algebra

homomorphism




g

:

b

g = g�

!

M;�

z

M;


(Y )!

b

g

+

:= g�

Dh




2




(M ;Y ); (X; [�℄) 7! (X; 2d�):

This homomorphism is G

+

-equivariant with respe
t to the a
tion on

b

g

+

indu
ed by the adjoint

a
tion of

b

G

+

, whi
h is given by

Ad

bg

+

(g):(�; z) =

�

Ad(g):�; z � d(�(Æ

l

(g); �))

�

:

Proof. This follows with the same arguments as in the proof of [MN02, Th. III.9℄. For non-


ompa
t manifolds we have to use Lemma II.2 for the smoothness of the maps Æ

l

; Æ

r

:C

1




(M;K)!




1




(M ; k):

Period maps for C

1

(M;S;K)

Now we turn to the period groups �

(M;S)

for the Lie algebra 
o
y
les !

(M;S)

asso
iated

to the Lie algebras C

1

(M;S; k), where M is 
ompa
t and S �M a 
losed subset.

Lemma V.10. For ea
h � 2 C

1

((I; �I); (M;S)) let

�

K

:C

1

(M;S;K)! C

1

(I; �I ;K)

denote the 
orresponding group homomorphism. Then

per

!

(I;�I)

Æ�

2

(�

K

) = I

�

Æ per

!

(M;S)

:

Proof. First we re
all from Lemma A.16 that the map �

K

is a Lie group homomorphism.

Let G := C

1

(M;S;K)

e

and 


(M;S)

2 


2

(G; z

(M;S)

(Y )) denote the left invariant 2-form


orresponding to !

(M;S)

. Then I

�

Æ 


(M;S)

is a Y -valued left invariant 2-form on G whose

value in 1 is I

�

Æ !

(M;S)

. Further �

�

K




(I;�I)

is a left invariant 2-form on G whose value in 1

is given by

(�; �) 7! !

(I;�I)

(� Æ �; � Æ �) = [�(� Æ �; d(� Æ �))℄

= [�(�

�

�; �

�

(d�))℄ =

Z

I

�(�

�

�; �

�

(d�)) =

Z

�

�(�; d�) = I

�

�

!

(M;S)

(�; �)

�

:

This implies

�

�

K




(I;�I)

= I

�

Æ


(M;S)

for ea
h � 2 C

1

((I; �I); (M;S)), and hen
e the assertion.
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Lemma V.11. If we identify z

S

1

(Y ) , z

(I;�I)

(Y ) , and z

R

(Y ) with Y via the integration maps

from Lemma II.8, then

�

S

1

= �

(I;�I)

= �

R

:

Proof. A

ording to Corollary A.15, the natural in
lusion

C

1

((I; �I);K) ,! C

1

�

(S

1

;K)

indu
ed from the 
anoni
al map � 2 C

1

((I; �I); (S

1

; �)) is a weak homotopy equivalen
e.

Therefore �

2

(�

K

) is an isomorphism, and Lemma V.10, applied to (M;S) = (S

1

; 1), implies

that

�

(I;�I)

= I

�

Æ�

S

1

�

=

�

S

1

be
ause the map I

�

: z

S

1

(Y )! Y is the integration isomorphism whi
h we ignore by identifying

�

S

1

and �

(I;�I)

as subsets of Y .

To obtain �

R

= �

(I;�I)

, we �rst use Theorem A.13 and a di�eomorphism �:R ! I n �I

to see that the natural embedding

'

K

:C

1




(R;K) ! C

1




(I n �I ;K) ,! C

1

(I; �I ;K)

is a weak homotopy equivalen
e. Moreover, L('

K

)

�

!

(I;�I)

= !

R

; so that '

�

K




(I;�I)

= 


R

; and

by integration over R we obtain �

(I;�I)

= �

R

.

Proposition V.12. For ea
h � the period group �

(M;S)

is 
ontained in H

1

dR

(M;S;Y ) , and

we have

H

1

dR

(M;S;Z) ��

S

1

� �

(M;S)

� H

1

dR

(M;S; �

S

1

):

If �

S

1

is dis
rete, then

�

(M;S)

= H

1

dR

(M;S; �

S

1

) = H

1

dR

(M;S;Z) � �

S

1

:

Proof. In the situation of Lemma V.10, the homomorphism �

2

(�

K

) only depends on the

homotopy 
lass of � (Lemma A.16). Therefore Lemma V.10 implies that the restri
tion of I

�

to

�

(M;S)

depends only on the homotopy 
lass of � , hen
e �

(M;S)

� H

1

dR

(M;S;Y ) by Lemma II.10.

From Lemmas V.10 and V.11 we further get

�

(M;S)

� H

1

dR

(M;S; �

(I;�I)

) = H

1

dR

(M;S; �

S

1

):

To prove the in
lusion

H

1

dR

(M;S;Z) � �

S

1

� �

(M;S)

;

let [�℄ 2 H

1

dR

(M;S;Z). Then Lemma II.3 implies the existen
e of f 2 C

1

(M;S;T) with

Æ(f) = � . Let 0 2 T

�

=

R=Z denote the identity element in T . The map f indu
es a smooth

group homomorphism

f

K

:C

1

�

(I; �I ;K)! C

1

(M;S;K); ' 7! ' Æ f

(Lemma A.16). We now get from Lemma V.10 for ea
h � 2 C

1

((I; �I); (M;S)) the relation

I

�

Æ per

!

(M;S)

Æ�

2

(f

K

) = per

!

(I;�I)

Æ�

2

(�

K

) Æ �

2

(f

K

) = per

!

(I;�I)

Æ�

2

((f Æ �)

K

);

where f Æ � is viewed as a map in C

1

((I; �I); (T; f0g)

�

. This map fa
tors through a smooth

map I=�I

�

=

T! T , and �

2

((f Æ�)

K

) is the multipli
ation with the winding number deg(f Æ�)

of this map ([MN02, Lemma I.10℄). For ea
h

[�℄ 2 �

2

(C

1

(T; f0g;K))

�

=

�

2

(C

1

�

(S

1

;K))

we then have

I

�

(per

!

(M;S)

(�

2

(f

K

)[�℄)) = deg(f Æ �) per

!

(I;�I)

([�℄) = I

�

(�) � per

!

(I;�I)

([�℄):

Sin
e the I

�

separate points on H

1

dR

(M;S;Y ), it follows that

per

!

(M;S)

(�

2

(f

K

)[�℄) = [�℄ � per

!

(I;�I)

([�℄);

and hen
e that

H

1

dR

(M;S;Z) � �

S

1

= H

1

dR

(M;S;Z) � �

(I;�I)

� �

(M;S)

:

If �

S

1

is dis
rete, then we apply Proposition IV.23 to obtain the asserted equalities.
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Corollary V.13. If �

S

1

is dis
rete, then �

(M;S)

is dis
rete for ea
h pair (M;S) .

Proof. Proposition V.12 implies that �

(M;S)

� H

1

dR

(M;S; �

S

1

), and the latter group is

dis
rete by Theorem II.7.

Remark V.14. In view of the pre
eding 
orollary, everything redu
es to the study of the period

map

per

!

S

1

:�

3

(K)

�

=

�

2

(C

1

(S

1

;K))! Y:

It is not ne
essary to know �

2

(G) expli
itly.

Proposition V.15. Suppose that Y = R and � = Z, so that T

�

= T . We further assume

that k is 
ompa
t and simple and that � in normalized in su
h a way that �(i��; i��) = �2 , where

�� 2 k

C

is a 
oroot 
orresponding to a long root. For G = C

1

(M;S;K)

e

we then have

�

(M;S)

= H

1

dR

(M;S;Z):

Proof. We �rst re
all from the 
al
ulations in Appendix IIa to Se
tion II in [Ne01a℄ that

under the present assumptions we have �

(I;�I)

= �

S

1

= Z (see also [MN02, Th. II.9℄). Therefore

Proposition V.12 dire
tly leads to

H

1

dR

(M;S;Z) ��

S

1

= Z �H

1

dR

(M;S;Z)

= H

1

dR

(M;S;Z)� �

(M;S)

� H

1

dR

(M;S; �

S

1

) = H

1

dR

(M;S;Z):

Applying Proposition V.15 to the group C

1

(M;S;K) from Example II.12, we obtain a


o
y
le on the Lie algebra of a Fr�e
het{Lie group for whi
h the period group �

(M;S)

is dis
rete

but not �nitely generated.

Period maps for C

1




(M ;K)

Let M be a 
onne
ted non-
ompa
t manifold and Y a s.
.l.
. spa
e. For a proper smooth

map �:R !M and � 2 Z

1

dR;


(M ;Y ) the integral

I

�

(�) :=

Z

�

� :=

Z

R

�

�

�

is de�ned be
ause �

�

� has 
ompa
t support. We thus obtain a linear map

I

�

:Z

1

dR;


(M ;Y )! Y

whi
h is easily seen to be 
ontinuous.

Lemma V.16. For ea
h � 2 C

1

p

(R;M) let

�

K

:C

1




(M ;K)! C

1




(R;K); f 7! f Æ �

denote the 
orresponding Lie group homomorphism. Then

(5:4) per

!

R

Æ�

2

(�

K

) = I

�

Æ per

!

M

:

Proof. From Lemma A.12 we re
all that �

K

is a Lie group homomorphism. The remaining

argument 
an be 
opied from Lemma V.10.
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Proposition V.17. For ea
h non-
ompa
t manifold M and ea
h � we have

�

M

= H

1

dR;


(M ; �

R

):

Proof. In the situation of Lemma V.16, the homomorphism �

2

(�

K

) only depends on the

homotopy 
lass of � (Lemma A.16). Therefore Lemma V.10 implies that the restri
tion of I

�

to �

M

depends only on the homotopy 
lass of � , hen
e �

M

� H

1

dR;


(M ;Y ) by Lemma II.10.

From Lemma V.16 we further get �

M

� H

1

dR;


(M ; �

R

):

To prove the 
onverse in
lusion H

1

dR;


(M ; �

R

) � �

M

; we �rst re
all from Corollary IV.22

that

H

1

dR;


(M;�

R

) = H

1

dR;


(M ;Z) ��

R

:

It therefore suÆ
es to prove H

1

dR;


(M ;Z) � �

R

� �

M

. Let [�℄ 2 H

1

dR

(M ;Z). Then Proposi-

tion IV.20 implies the existen
e of f 2 C

1




(M;T) with Æ(f) = � . Let 0 = Z 2 T

�

=

R=Z denote

the identity element in T . The map f indu
es a smooth group homomorphism

f

K

:C

1




(T;K)! C

1




(M ;K); f 7! f Æ '

(Lemma A.12). In view of Lemma V.16, we have for ea
h � 2 C

1

p

(R;M)

I

�

Æ per

!

M

Æ�

2

(f

K

) = per

!

R

Æ�

2

(�

K

) Æ �

2

(f

K

) = per

!

R

Æ�

2

((f Æ �)

K

);

where f Æ � is viewed as a map in C

1




(R;T). Viewing R as T n f0g , this map extends to a

smooth map T! T , and �

2

((f Æ �)

K

) is the multipli
ation with the winding number

deg(f Æ �) =

Z

�

�

of this map ([MN02, Lemma I.10℄). For ea
h [�℄ 2 �

2

(C

1




(R;K)) we then have

I

�

(per

!

M

(�

2

(f

K

)[�℄)) = deg(f Æ �) per

!

R

([�℄) = I

�

(�) per

!

R

([�℄):

Sin
e the I

�

separate points on H

1

dR;


(M ;Y ) (here we need that M is non-
ompa
t), it follows

that

per

!

M

(�

2

(f

K

)[�℄) = [�℄ � per

!

R

([�℄)

and hen
e that H

1

dR;


(M ;Z) � �

R

� �

M

:

Corollary V.18. If �

R

is dis
rete, then �

M

is dis
rete for ea
h non-
ompa
t 
onne
ted

manifold manifold M .

For the following proposition we re
all the spa
e V (k) from De�nition V.7.

Proposition V.19. If dimK <1 , and �: k� k ! V (k) is the universal symmetri
 invariant

bilinear map, then there exists for Z := V (k)=�

M;�

a 
entral Lie group extension

Z ,!

b

G!! G = C

1




(M;K)

e

:

Proof. In view of [MN02, Th. II.9℄, the period group �

S

1

;�

= �

R;�

is dis
rete (
f. Lemma

V.11), and Corollary V.18 now shows that �

M

is dis
rete. Therefore Theorem V.5 applies.
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Remark V.20. The main idea behind our identi�
ation of the period group for 
urrent groups

is as follows. Let M be a 
ompa
t manifold, x

M

2M , and

G := C

1

�

(M ;K) := ff 2 C

1

(M ;K) : f(x

M

) = eg:

The evaluation map

ev:G�M ! K; (f; p) 7! f(p)

indu
es maps

'

k;l

:�

k

(G)� �

l

(M)! �

k+l

(K)

as follows. We view �

k

(M) as the set of ar
-
omponents in the spa
e C((I

n

; �I

n

); (M;x

M

)) of


ontinuous maps of pairs, where I is the unit interval. Then '

k;l

([f ℄; [h℄) is the 
lass de�ned by

the map

I

k+l

! K; (x; y) 7! f(x)(h(y));

vanishing on the boundary

�I

k+l

= (�I

k

� I

l

) [ (I

k

� �I

l

):

In parti
ular we obtain a map

'

2;1

:�

2

(G)� �

1

(M)! �

3

(K);

and our analysis of the period map is based on the 
ommutative diagram

�

2

(G) � �

1

(M) ! �

3

(K)

?

?

y

per

!

M

?

?

y

id

?

?

y

per

S

1

H

1

dR

(M ;Y ) � �

1

(M) ! H

1

dR

(S

1

;Y )

�

=

Y

The e�e
tiveness of this pi
ture 
omes from the fa
t that the natural pairing

H

1

dR

(M ;Y )� �

1

(M)! Y

de�ned by integration over loops is non-degenerate in the sense that the integrals separate points

in H

1

dR

(M ;Y ).

The arguments for non-
ompa
t manifolds essentially follow the same line, where we have

to take smooth proper 
urves instead of loops.

VI. Universal 
entral extensions of 
urrent groups

For the spe
ial 
lass of �nite-dimensional semisimple Lie groups K , ea
h Lie algebra 
o
y
le

! 2 Z

2




(C

1




(M; k); z) is equivalent to a 
o
y
le of produ
t type ([Ma02℄). This observation

permits us to 
onstru
t a universal 
entral extension of the Lie algebra g := C

1




(M ; k). In the

present se
tion we show that this 
onstru
tion 
an be globalized in the sense that we 
onstru
t

a universal 
entral extension of the 
onne
ted Lie group C

1




(M ;K)

e

.

First 
y
li
 homology of fun
tion spa
es

De�nition VI.1. Let E , F and G be lo
ally 
onvex spa
es over K 2 fR; C g . Then the

proje
tive topology on the tensor produ
t E 
 F is de�ned by the seminorms

(p
 q)(x) = inf

n

n

X

j=1

p(y

j

)q(z

j

):x =

X

j

y

j


 z

j

o

;

where p , resp., q is a 
ontinuous seminorm on E , resp., F (
f. [Tr67, Prop. 43.4℄). We write

E


�

F for the lo
ally 
onvex spa
e obtained by endowing E
F with the lo
ally 
onvex topology

de�ned by this family of seminorms. It is 
alled the proje
tive tensor produ
t of E and F . It

has the universal property that the 
ontinuous bilinear maps E � F ! G are in one-to-one


orresponden
e with the 
ontinuous linear maps E 


�

F ! G (here we need that G is lo
ally


onvex). We write E

b




�

F for the 
ompletion of the proje
tive tensor produ
t of E and F .
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De�nition VI.2. Let A be a unital lo
ally 
onvex topologi
al algebra over K 2 fR; C g .

(a) We re
all that the �rst Ho
hs
hild homology spa
e HH

1

(A) is de�ned as

HH

1

(A) := Z

1

(A)=B

1

(A);

where

Z

1

(A) := ker b

A

� A
A; b

A

(a
 b) = [a; b℄ = ab� ba

and

B

1

(A) := spanfxy 
 z � x
 yz + zx
 y:x; y; z 2 Ag:

Here we endow A
 A with the proje
tive tensor produ
t topology.

Suppose that A is 
ommutative. Then Z

1

(A) = A
A . Let M be a 
ontinuous A-module,

i.e., M is a lo
ally 
onvex spa
e with an A-module stru
ture given by a 
ontinuous bilinear map

A�M !M . For a linear map D:A!M the bilinear map

A
A!M; x
 y 7! x:Dy

annihilates B

1

(A) if and only if D is a derivation. Hen
e HH

1

(A) has the universal property

of the universal di�erential module 


1

(A) with respe
t to the di�erential

d:A! HH

1

(A); a 7! [1
 a℄:

This means that for ea
h 
ontinuous derivation D:A ! M there exists a unique 
ontinuous

linear map ':HH

1

(A) ! M with D = ' Æ d (
f. [Ma02℄). Therefore HH

1

(A) is isomorphi
 to

the topologi
al module 


1

(A) of K�ahler di�erentials on A ([Lo98, Prop. 1.1.10℄).

(b) The �rst 
y
li
 homology spa
e of A 
an be obtained as the quotient

HC

1

(A) := Z

�

1

(A)=B

�

1

(A);

where

Z

�

1

:= ker b

A

� �

2

(A); b

A

(a ^ b) := [a; b℄;

and

B

�

1

(A) := spanfxy ^ z � x ^ yz + zx ^ y:x; y; z 2 Ag

(
f. [Lo98, Th. 2.15℄).

If A is 
ommutative, then a 
 b + b 
 a � 1 
 ab 2 B

1

(A) implies that the universal

di�erential d:A! HH

1

(A) satis�es

im(d) = [1
A℄

�

=

1
A+B

1

(A) = fa
 b+ b
 a: a; b 2 Ag+B

1

(A):

Hen
e

HH

1

(A)=im d

�

=

�

2

(A)=B

�

1

(A)

�

=

HC

1

(A)

(
f. [Lo98, Prop. 2.1.14℄).

Let M be a �nite-dimensional manifold and A := C

1




(M ;K ) . A

ording to [Gl01
℄,

the multipli
ation on C

1




(M ;K ) is a 
ontinuous bilinear map, so that A is a lo
ally 
onvex

topologi
al algebra. This is not obvious be
ause the topology on C

1




(M ;K ) is the lo
ally 
onvex

dire
t limit topology whi
h di�ers from the dire
t limit topology with respe
t to the subspa
es

C

1

X

n

(M ;K ) , where (X

n

)

n2N

is an exhaustive sequen
e of 
ompa
t submanifolds with boundary

in M . Hen
e there is no a priori reason for a bilinear map on C

1




(M ;K ) to be 
ontinuous if all

the restri
tions to the subspa
es C

1

X

n

(M ;K ) are 
ontinuous.

Let A

+

:= K1 + A � C

1

(M ;K ). In this se
tion we will show that, as lo
ally 
onvex

spa
es, we have

HH

1

(A) := HH

1

(A

+

)

�

=




1




(M ;K ) and HC

1

(A)

�

=




1




(M ;K )=dA = z

M;


(K ):

Theorem VI.3. (Gl�o
kner's Theorem) 


1




(M ;K ) is a 
ontinuous module of C

1




(M ;K ) .

Proof. This follows from [Gl01d, Th. 5.1℄ be
ause the module stru
ture is indu
ed by the

bundle map given in a point p 2M by the s
alar multipli
ation K � T

p

(M)

�

! T

p

(M)

�

:
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Theorem VI.4. HH

1

(C

1




(M ;K ))

�

=




1




(M ;K ) .

Proof. (
f. [Ma02, Th. 11℄) We will show that the 
ontinuous derivation d:A = C

1




(M K ) !




1




(M ;K ) has the universal property of the universal di�erential module of A . From this the

assertion follows, as HH

1

(A) 
an be viewed as the universal di�erential module of A (De�nition

VI.2).

We 
onsider the map

� :C

1

(M �M ;K ) ! 


1

(M ;K ); �(F )(x)(v) := dF (x; x)(0; v):

Via the natural embedding

A

+


A

+

! C

1

(M �M;K ); (f; g) 7! ((x; y) 7! f(x)g(y));

we view A

+


 A

+

(the algebrai
 tensor produ
t) as a subalgebra of C

1

(M � M;K ) . This

embedding is topologi
al on the subspa
es of the form

C

1

X

(M ;K ) 


�

C

1

X

(M ;K )

for 
ompa
t subsets X �M ([Gr55, Ch. 2, p.81℄). Let

I := fF 2 A

+


A

+

: (8x 2M)F (x; x) = 0g:

This is an ideal of A

+


 A

+

whi
h 
an also be viewed as the kernel of the multipli
ation map

�:A

+


A

+

! A

+

. Note that �(f 
 g) = f � dg 2 


1




(M ;K ) for f; g 2 A

+

.

(1) Let ('

j

)

j2J

be a lo
ally �nite partition of unity in A for whi
h supp('

j

) is 
ontained in

a 
oordinate neighborhood U

j

� M with U

j

di�eomorphi
 to R

d

, d := dimM . With this

partition of unity we write ea
h � 2 


1




(M ;K ) as

� =

X

j

'

j

�;

where the sum is �nite be
ause only �nitely many of the supports of the fun
tions '

j

interse
t

the support of � . As U

j

�

=

R

d

and supp('

j

) is a 
ompa
t subset of U

j

, there exist fun
tions

y

j

1

; : : : ; y

j

d

2 A su
h that on supp('

j

) the di�erentials dy

j

i

, i = 1; : : : ; d , are linearly independent.

Then we write

'

j

� =

d

X

i=1

�

j

i

dy

j

i

with �

j

i

2 A .

(2) �(A 
A) = �(A

+


A

+

) = 


1




(M ;K ): This follows from

� =

X

j

X

i

�

j

i

dy

j

i

=

X

j;i

�(�

j

i


 y

j

i

):

(3) As �(A

+


 1) = A

+

and �(A

+


 1) = 0, we have �(I) = �(A

+


 A

+

) = 


1




(M ;K ) by (2).

Let N := ker(� j

I

). We 
laim that N = I

2

. The in
lusion I

2

� N follows dire
tly from

(6:1) �(FG) = F�(G) + �(F )G;

whi
h also shows that N is an ideal of A

+


 A

+

. As � is 
ontinuous and I is 
losed, we also

obtain I

2

� N . Now let F 2 N . Sin
e F 
an be written as a �nite sum

F =

X

i;j

('

i


 '

j

)F;
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where ea
h summand is 
ontained in the ideal N , it suÆ
es to assume that supp(F ) � U

i

�U

j

�

=

R

2d

for some pair (i; j) 2 J

2

. Then we have

F (x; y) =

d

X

l=1

(x

l

� y

l

)F

l

(x; y)

with

F

l

(x; y) :=

1

2

Z

1

0

�F

�x

l

(tx+ (1� t)y; y)�

�F

�y

l

(x; tx + (1� t)y) dt;

and it is easy to see that the supports of the fun
tions F

l

are 
ompa
t. From

�(F )(x) = �

d

X

l=1

F

l

(x; x)dx

l

we derive that the fun
tions F

l

vanish on the diagonal in R

d

� R

d

, so that Lemma 5 in [Ma02℄

implies that F

l

2 C

1




(M �M;K ) is 
ontained in the 
losure I of the ideal I � A

+


 A

+

. Let

C � R

d

be a 
ompa
t subset su
h that C

0

� C

0


ontains the support of all the fun
tions F

l

.

We repla
e the 
oordinate fun
tions x

j

on R

d

by fun
tions x

j

2 C

1




(R

d

;K ) with supp(x

j

) � C

and obtain

F (x; y) =

d

X

l=1

(x

l

� y

l

)F

l

(x; y) 2 I � I � I

2

;

where the 
losure is taken in

C

1

C�C

(R

2d

;K )

�

=

C

1

C

(R

d

; C

1

C

(R

d

;K ))

�

=

C

1

C

(R

d

;K )

b




�

C

1

C

(R

d

;K )

(
f. [Gr55, Ch. 2, p.81℄).

(4) The derivation d:A ! 


1




(M ;K ) has the universal property of the universal topologi
al

di�erential module 


1

(A): Let E be a topologi
al A-module and d

E

:A ! E a 
ontinuous

derivation. We will 
omplete the proof by showing that there exists a 
ontinuous linear map

�:


1




(M ;K ) ! E with �(fdg) = fd

E

(g).

We have seen above that ker(� j

I

) = I

2

\N = I

2

with respe
t to the relative topology, so

that � j

I

leads to a 
ontinuous bije
tive linear map I=I

2

�

=




1

(A) ! 


1




(M ;K ) . Therefore the

natural map

A

+


A

+

� I ! E; f 
 g 7! fd

E

(g)

yields a linear map

�:


1




(M ;K ) ! E with �(fdg) = �(�(f 
 g)) = fd

E

(g):

Hen
e it only remains to show that � is 
ontinuous when viewed as a linear map on 


1




(M ;K ) .

As the topology on 


1




(M ;K ) is the lo
ally 
onvex dire
t limit topology with respe
t to the

subspa
es 


1

X

(M ;K ), X �M 
ompa
t, it suÆ
es to verify that the restri
tions � j




1

X

(M ;K)

are


ontinuous.

The set J

X

:= fj 2 J : supp('

j

) \X 6= �g is �nite, and for ea
h � 2 


1

X

(M ;K ) we have

� =

X

j2J

X

'

j

� =

X

j2J

X

X

i

�

j

i

dy

j

i

:

Now

�(�) =

X

j2J

X

�('

j

�) =

X

j2J

X

X

i

�

j

i

d

E

(y

j

i

)

be
ause the sum is �nite. The fun
tions y

j

i

do not depend on � , and the multipli
ation with '

j

is a 
ontinuous endomorphism of 


1




(M ;K ) . Therefore the maps




1




(M ;K ) ! A; � 7! �

j

i

are 
ontinuous. Now the 
ontinuity of the module stru
ture on E implies that � is 
ontinuous.

Corollary VI.5. For A = C

1




(M ;K ) and K 2 fR; C g we have

HC

1

(A)

�

=

HH

1

(A)=dA

�

=




1




(M ;K )=dC

1




(M ;K ):
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Universal 
entral extensions

In this subse
tion we turn to the question whether for a �nite-dimensional semisimple Lie group

K the 
entral extension of C

1




(M;K)

e

from Proposition V.19 is universal. This question will be

answered aÆrmatively if k is �nite-dimensional and semisimple. First we re
all some 
on
epts

and a result from [Ne01
℄ on weakly universal 
entral extensions of Lie groups and Lie algebras.

De�nition VI.6. (
f. [Ne01
℄) Let g be a topologi
al Lie algebra over K 2 fR; C g and

a be a topologi
al ve
tor spa
e 
onsidered as a trivial g-module. We 
all a 
entral extension

q:

b

g = g �

!

z ! g with z = ker q (or simply the Lie algebra

b

g) weakly universal for a if the


orresponding map Æ

a

: Lin(z; a)! H

2




(g; a); 
 7! [
 Æ !℄ is bije
tive.

We 
all q:

b

g ! g universal for a if for every 
entral extension q

1

:

b

g

1

! g of g by a with

a 
ontinuous linear se
tion there exists a unique homomorphism ':

b

g !

b

g

1

with q

1

Æ ' = q .

Note that this universal property immediately implies that two 
entral extensions

b

g

1

and

b

g

2

of g by a

1

and a

2

su
h that both

b

g

1

and

b

g

2

are universal for a

1

and a

2

are isomorphi
. A


entral extension is said to be (weakly) universal if it is (weakly) universal for all lo
ally 
onvex

spa
es a .

De�nition VI.7. We 
all a 
entral extension

b

G = G�

f

Z of the 
onne
ted Lie group G by

the abelian Lie group Z given by f 2 Z

2

s

(G;Z) weakly universal for the abelian Lie group A if

the map

Æ

A

: Hom(Z;A)! H

2

s

(G;A); 
 7! [
 Æ f ℄

is bije
tive. It is 
alled universal for the abelian Lie group A if for every 
entral extension

q

1

:G�

'

A! G; ' 2 Z

2

s

(G;A);

there exists a unique Lie group homomorphism  :G �

f

Z ! G �

'

A with q

1

Æ  = q (
f.

De�nition V.1). A 
entral extensional is said to be (weakly) universal if it is (weakly) universal

for all Lie groups A with A

e

�

=

a=�

1

(A) and a s.
.l.
.

De�nition VI.8. If g is a lo
ally 
onvex Lie algebra, then we write H

1

(g) for the 
ompletion

of the quotient spa
e g=[g; g℄ . If g is a Fr�e
het spa
e, then g=[g; g℄ is also Fr�e
het, and no


ompletion is ne
essary.

If G is a 
onne
ted Lie group with Lie algebra g and

e

G its universal 
overing group, then

we have a natural homomorphism d

G

:

e

G ! H

1

(g). Its kernel is denoted by (

e

G;

e

G). If G is

�nite-dimensional, then (

e

G;

e

G) is the 
ommutator group of

e

G .

Theorem VI.9. (Re
ognition Theorem) Assume that q:

b

G ! G is a 
entral Z -extension of

Lie groups over K 2 fR; C g for whi
h

(1) the 
orresponding Lie algebra extension

b

g! g is weakly K -universal,

(2)

b

G is simply 
onne
ted, and

(3) �

1

(G) � (

e

G;

e

G) .

If

b

g is weakly universal for a s.
.l.
. spa
e a , then

b

G is weakly universal for ea
h abelian Lie

group A with A

e

�

=

a=�

1

(A) .

Proof. The original statement of this theorem in [Ne01
, Th. IV.13℄ is formulated only for

Fr�e
het{Lie groups, but one easily veri�es that the proof yields the more general result stated

above.

Theorem VI.10. Let K be a �nite-dimensional semisimple Lie group and G := C

1




(M;K)

e

.

Further let z := z

M;


(V (k)) and ! = !

M;�

2 Z

2




(g; z) be a 
o
y
le of produ
t type given by

!(�; �) = [�(�; d�)℄ . Then the 
orresponding 
entral Lie algebra extension

b

g := g �

!

z is

universal, and there exists a 
orresponding 
entral Lie group extension Z ,!

b

G !! G with
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Z

�

=

�

1

(G)�(z=�

M

) whi
h is universal for all Lie groups A with A

e

�

=

a=� , where a is a s.
.l.
.

spa
e and � � a a dis
rete subgroup.

Proof. First we show that

b

g is perfe
t. In fa
t, for x; y 2 k and f; g 2 C

1

(M ;K ) we have in

b

g the relation

[f 
 x; g 
 y℄� [g 
 x; f 
 y℄ =

�

fg 
 [x; y℄� gf 
 [x; y℄; 2[fdg℄ � �(x; y)

�

=

�

0; 2[fdg℄ � �(x; y)

�

:

Sin
e V (k) is spanned by im(�), the fa
t that z

M;


(K ) is spanned by elements of the form [f �dg℄

implies that

b

g is perfe
t.

Sin
e

b

g is perfe
t, for ea
h lo
ally 
onvex spa
e a the natural map

Æ: Lin(z; a)! H

2




(g; a); 
 7! [
 Æ !℄

is inje
tive ([Ne01
, Rem. I.6℄). It has been shown in [Ma02, Thm. 16℄ that Æ is also surje
tive,

so that

b

g is weakly universal for all lo
ally 
onvex spa
es a . Sin
e

b

g is perfe
t, it even is a

universal 
entral extension of g ([Ne01
, Lemma I.12℄).

Furthermore, the period map per

!

:�

2

(G) ! z has dis
rete image �

!

(Proposition V.19).

In view of Theorem V.8, Theorem V.5 now implies the existen
e of a 
entral Lie group extension

Z ,!

b

G !! G with Z

�

=

(z=�

!

)� �

1

(G) 
orresponding to the Lie algebra extension z ,!

b

g ! g

and su
h that the 
onne
ting homomorphism �

1

(G)! �

0

(Z) is an isomorphism.

To prove the universality of

b

G , we use the Re
ognition Theorem VI.9. For that we have

to verify that

(1)

b

g is weakly universal,

(2) �

1

(

b

G) = 1 ,

(3) �

1

(G) � (

e

G;

e

G):

Condition (1) has been veri�ed above. Further (3) follows from the perfe
tness of g , whi
h

implies (

e

G;

e

G) =

e

G . It therefore remains to verify (2). For that we 
onsider a part of the long

exa
t homotopy sequen
e of the Z -prin
ipal bundle q:

b

G! G :

(6:2) �

2

(G)

Æ

��!�

1

(Z)! �

1

(

b

G)! �

1

(G)! �

0

(Z):

A

ording to [Ne02a, Prop. 5.11℄, we have Æ = � per

!

, so that �

1

(Z) = �

!

(as subsets

of z) implies that Æ is surje
tive. Moreover, the natural homomorphism �

1

(G) ! �

0

(Z) is

an isomorphism by the 
onstru
tion of

b

G , so that the exa
tness of (6.2) implies that

b

G is simply


onne
ted.

Remark VI.11. (a) If K is �nite-dimensional and redu
tive, then

e

K

�

=

z(k) � (

e

K;

e

K).

Therefore �

1

(K) is 
ontained in (

e

K;

e

K) if and only if K

�

=

z(k) � (K;K). In this 
ase we

have

C

1

(M;K)

�

=

C

1

(M; z(k)) � C

1

(M; (K;K))

and hen
e we have for G = C

1

(M;K)

e

the dire
t produ
t de
omposition

G = G

D

�G

Z

with G

D

:= C

1

(M; (K;K))

e

and G

Z

:= C

1

(M; z(k)):

In this 
ase the Lie algebra g = C

1

(M ; k) has the dire
t de
omposition g = g

0

� z(g) with

g

0

= C

1

(M ; k

0

) and z(g) = C

1

(M ; z(k)), where k

0

, resp., g

0

denote the 
ommutator algebra. It

is easy to see that every Lie algebra 
o
y
le ! 2 Z

2




(g;Y ) vanishes on g

0

� z(g) � g� g be
ause

g

0

is perfe
t. From that one further derives that a weakly universal 
entral extension of g 
an

be obtained with

z := z

M

(V (k

0

))� �

2

(z(g));

where for a lo
ally 
onvex spa
e E the spa
e �

2

(E) is de�ned as the quotient of E


�

E modulo

the 
losure of the subspa
e spanned by the elements e
e , e 2 E . To des
ribe the 
orresponding
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o
y
le, we write � 2 g as � = (�

0

; �

z

) with �

0

2 g

0

and �

z

2 z(g). Then a weakly universal


o
y
le is given by

!(�; �) = ([�

k

0

(�

0

; d�

0

)℄; �

z

^ �

z

):

Let

b

G

D

be the universal 
entral extension of G

D

from Theorem VI.10 and de�ne

b

G :=

b

G

D

�

b

G

Z

; where

b

G

Z

is the 2-step nilpotent Lie algebra

z(g)�

!

Z

�

2

(z(g)) with !

Z

(�; �) = � ^ �;

viewed as a Lie group with the multipli
ation x � y := x+ y +

1

2

[x; y℄ . Using Theorem VI.9, we

see that

b

G

Z

is a weakly universal 
entral extension of G

Z

�

=

g

Z

. Theorems VI.9 and VI.10 now

imply that

b

G is a weakly universal 
entral extension of G .

Appendix A. Homotopy groups of smooth 
urrent groups

In this se
tion we show that the homotopy groups of the Lie groups of smooth maps C

1




(M ;K),

resp., C

1

(M;S;K) introdu
ed in Se
tion I 
oin
ide with the homotopy groups of the 
orre-

sponding groups of 
ontinuous maps C

0

(M ;K), resp., C

0

(M n S;K). The latter groups are

usually better a

essible by means of topologi
al methods.

More spe
i�
ally, for the group C

1




(M ;K) of 
ompa
tly supported smooth fun
tions

on a manifold M with values in a Lie group K the main result will be that the in
lusion

C

1




(M ;K) ,! C

0

(M ;K) is a weak homotopy equivalen
e. For the group C

1

(M;S;K) of

smooth maps on a 
ompa
t manifold M vanishing with all derivatives on a 
losed subset S we

show that the in
lusion C

1

(M;S;K) ,! C

0

(M n S;K) is a weak homotopy equivalen
e.

In the present paper the results of this se
tion are mainly needed to get information on the

se
ond homotopy group whi
h is important for period maps asso
iated to Lie algebra 
o
y
les

(
f. Se
tion V). Moreover, the results of this appendix are of independent interest in many other


ontexts, where they provide valuable information on the topology of 
urrent groups.

Groups of 
ompa
tly supported fun
tions

Lemma A.1. For ea
h 
ompa
t subset E of C

1




(M ;K) there exists a 
ompa
t subset X �M

with E � C

1

X

(M ;K) .

Proof. Let U � k := L(K) be an open 0-neighborhood and ':U ! '(U) a 
hart with

'(0) = e . Then there exists an open 0-neighborhood U

0

� U su
h that we obtain a lo
al 
hart for

G := C

1




(M ;K) by '

G

(f) := ' Æ f (De�nition I.2(b)). Let V := ff 2 C

1




(M ; k): f(M) � U

0

g

and observe that

'

G

:V ! '

G

(V ) = ff 2 C

1




(M ;K): f(M) � '(U

0

)g:

Then for ea
h f 2 G the set f'

G

(V ) is an open neighborhood, and the map

'

f

:V ! f'

G

(V ); � 7! f'

G

(�)

is a di�eomorphism. Let W � V be a 
losed 0-neighborhood su
h that '

G

(W )'

G

(W ) � '

G

(V ).

Sin
e '

G

(W ) is the interse
tion of all sets '

G

(W )N , where N is an identity neighborhood in

C

1




(M ;K), '

G

(W ) � '

G

(V ), so that the 
losedness of W implies that '

G

(W ) is 
losed.

Sin
e the 
ompa
t set E is 
overed by the open sets f'

G

(W

0

), f 2 E , there exist

f

1

; : : : ; f

n

2 E with

E � f

1

'

G

(W

0

) [ : : : [ f

n

'

G

(W

0

):

The 
losedness of '

G

(W ) implies that ea
h set E \ f

j

'

G

(W ) is 
ompa
t, so that for ea
h j the


losed set

'

�1

f

j

(E \ f

j

'

G

(W )) =W \ '

�1

f

j

(E) � C

1




(M ; k) = lim

�!

C

1

X

(M ; k)
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is 
ompa
t, so that there exists a 
ompa
t subset X

j

�M with '

�1

f

j

(E\f

j

'

G

(W )) � C

1

X

j

(M ; k)

([He89, Prop. 1.5.3℄). Let

X := X

1

[ : : : [X

n

[ supp(f

1

) [ : : : [ supp(f

n

):

Then X is 
ompa
t and E � C

1

X

(M ;K).

Lemma A.2. Let E be a 
ompa
t spa
e and f :E ! C

1




(M ;K) a 
ontinuous map. Then

there exists a 
ompa
t subset X � M and a 
ontinuous map f

X

:E ! C

1

X

(M ;K) su
h that

f = �

X

Æ f

X

holds for the in
lusion map �

X

:C

1

X

(M ;K)! C

1




(M ;K) .

Proof. Sin
e C

1




(M ;K) is Hausdor�, the set f(E) is 
ompa
t. In view of Lemma A.1, there

exists a 
ompa
t subset X �M with f(E) � C

1

X

(M ;K). Let f

X

:E ! C

1

X

(M ;K) denote the


orestri
tion of f to C

1

X

(M ;K). Sin
e �

X

is a topologi
al embedding (Remark I.3), the map

f

X

is 
ontinuous. It obviously satis�es f = �

X

Æ f

X

.

Proposition A.3. Let X

n

� M be 
ompa
t with X

n

� X

0

n+1

and M =

S

n

X

n

. Then the

map

lim

�!

C

1

X

n

(M ;K)! C

1




(M ;K)

is a weak homotopy equivalen
e. In parti
ular �

m

(C

1




(M ;K))

�

=

lim

�!

�

m

(C

1

X

n

(M ;K)) for ea
h

m 2 N

0

.

Proof. Lemma A.2 �rst implies that ea
h 
ontinuous map f :S

m

! C

1




(M ;K) fa
tors

through some in
lusion C

1

X

n

(M ;K) ! C

1




(M ;K). If two su
h maps f

1

; f

2

are homotopi
,

then ea
h homotopy h:S

m

� [0; 1℄ ! C

1




(M ;K) also fa
tors through some group C

1

X

k

(M ;K).

This implies that the natural map

lim

�!

�

m

(C

1

X

n

(M ;K))

�

=

�

m

(lim

�!

C

1

X

n

(M ;K))! �

m

(C

1




(M ;K))

is bije
tive, i.e., that the 
ontinuous map lim

�!

C

1

X

n

(M ;K) ! C

1




(M ;K) is a weak homotopy

equivalen
e.

Remark A.4. A similar argument as the one leading to Proposition A.3 shows that the map

lim

�!

C

X

n

(M ;K)! C




(M ;K)

is a weak homotopy equivalen
e.

If M and N are topologi
al spa
es, we write [M;N ℄ for the set of homotopy 
lasses of


ontinuous maps f :M ! N . If, in addition, x

M

2 M and x

N

2 N are base points, then

C

�

(M;N) := ff 2 C(M;N): f(x

M

) = x

N

g denotes the set of base point preserving 
ontinuous

maps and [M;N ℄

�

denotes the 
orresponding set of homotopy 
lasses. We re
all that if M

is lo
ally 
ompa
t, then homotopy 
lasses 
orrespond to ar
 
omponents in the 
ompa
t open

topology.

Eventually we want to show that the map

C

1




(M ;K)! C




(M ;K)

is a weak homotopy equivalen
e, so that the homotopy groups of C

1




(M ;K) are the limits of

the 
orresponding homotopy groups of C

X

(M ;K). These groups are more approa
hable sin
e

they are isomorphi
 to C

�

(X=�X ;K), where X=�X is a 
ompa
t spa
e, with the image of �X

as the base point.

If M is a 
ompa
t manifold with boundary, then the homotopy groups �

m

(C

�

(M=�M ;K))

might be well a

essible. Note that if �M is empty, then C

�

(M=�M ;K) should be read as the

group C(M ;K).
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Lemma A.5. Let X

1

; X

2

�M be 
ompa
t subsets with X

1

� X

0

2

and f 2 C

X

1

(M ;K) . Then

every neighborhood of f 
ontains a map f

0

in C

1

X

2

(M ;K) . The image of the homomorphism

�:�

0

(C

1

X

2

(M ;K))! �

0

(C

X

2

(M ;K))


ontains the image of �

0

(C

X

1

(M ;K)) . Moreover, if f is 
ontained in C

X

1

(M ;K)

e

, then we

may 
hoose f

0

2 C

1

X

2

(M ;K)

e

.

Proof. The �rst assertion follows from [Ne02a, Th. A.3.7℄. Sin
e the groups C

X

(M ;K)

and C

1

X

(M ;K) are Lie groups, their 
onne
ted 
omponents are open, so that every 
onne
ted


omponent of C

X

2

(M ;K) meeting C

X

1

(M ;K) 
ontains a smooth element.

If the map f 2 C

X

1

(M ;K) is suÆ
iently 
lose to e in the sense that f(M) � V for some


hart e-neighborhood V � K di�eomorphi
 to an open 
onvex set, we �nd f

1

2 C

1

X

2

(M ;K)

with f

1

(M) � V . Now any two smooth maps f

1

; f

2

2 C

1

X

2

(M ;K) with f

j

(M) � V are smoothly

homotopi
, hen
e 
ontained in the same 
onne
ted 
omponent of C

1

X

2

(M ;K).

If f 2 C

X

1

(M ;K) is 
ontained in the identity 
omponent, then there exists a 
ontinuous


urve 
: [0; 1℄ ! C

X

1

(M ;K) with 
(0) = e and 
(1) = f . For a suÆ
iently �ne subdivision

0 = t

0

< t

1

< : : : < t

N

= 1 we now �nd smooth maps f

j

2 C

1

X

2

(M ;K) 
lose to 
(t

j

) in the sense

that (f

�1

j

� 
(t

i

))(M) � V , where for j < N the maps f

j

and f

j+1

are smoothly homotopi
.

Hen
e f

N

is 
ontained in the identity 
omponent of C

1

X

2

(M ;K).

Lemma A.6. The map �:C

1




(M ;K)! C




(M ;K) indu
es an isomorphism

�

0

(�):�

0

(C

1




(M ;K))! �

0

(C




(M ;K)):

Proof. The surje
tivity of �

0

(�) follows dire
tly from Lemma A.5. If f 2 C

1




(M ;K)

satis�es [f ℄ 2 ker�

0

(�), then there exists a 
ompa
t subset X � M and a 
ontinuous map


: [0; 1℄ ! C

X

(M ;K) with 
(0) = e and 
(1) = f (Lemma A.2). Let Y � M be a 
ompa
t

subset with X � Y

0

. Then Lemma A.5 implies that we 
an approximate f by smooth fun
tions

f

0

in the identity 
omponent of C

1

Y

(M ;K). It follows in parti
ular that f is 
ontained in the

identity 
omponent of C

1

Y

(M ;K), hen
e also in the identity 
omponent of C

1




(M ;K). This

shows that �

0

(�) is inje
tive.

In M we �x a base point x

M

and in any group we 
onsider the unit element e as the base

point. We write C

1

�

(M ;K) � C

1

(M ;K) for the subgroup of base point preserving maps and

observe that

C

1

(M ;K)

�

=

C

1

�

(M ;K)oK

as Lie groups, where we identify K with the subgroup of 
onstant maps. This relation already

leads to

(A:1) �

k

(C

1

(M ;K))

�

=

�

k

(C

1

�

(M ;K))� �

k

(K); k 2 N

0

:

In parti
ular we have

�

0

(C

1

(M ;K))

�

=

�

0

(C

1

�

(M ;K))

if K is 
onne
ted.

On the other hand, we have for ea
h topologi
al group G and ea
h k 2 N the relation

(A:2) �

k

(G)

�

=

�

0

(C

�

(S

k

; G)) = �

0

(C

�

(S

k

; G

e

)) = �

0

(C(S

k

; G

e

));

where G

e

denotes the ar
-
omponent of the identity in G .

The following theorem is one of the two main results of this se
tion. It provides a valuable

tool to determine the homotopy groups of groups of smooth maps in terms of the 
orresponding

groups of 
ontinuous maps.
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Theorem A.7. If M is a 
onne
ted � -
ompa
t �nite-dimensional manifold and K a Lie

group, then the in
lusion C

1




(M ;K) ! C




(M ;K) is a weak homotopy equivalen
e. If M is


ompa
t and x

M

2M is a base point, then the in
lusion

(A:3) C

1

�

(M ;K)! C

�

(M ;K) := ff 2 C(M ;K): f(x

M

) = eg

is a weak homotopy equivalen
e.

Proof. We have to show that the in
lusion indu
es for ea
h k 2 N

0

an isomorphism

�

k

(C

1




(M ;K))! �

k

(C




(M ;K)):

For k = 0 this is Lemma A.6. If M is 
ompa
t, then

�

0

(C

1




(M ;K)) = �

0

(C

1

(M ;K))

�

=

�

0

(C

1

�

(M ;K))� �

0

(K)

and

�

0

(C




(M ;K)) = �

0

(C(M ;K))

�

=

�

0

(C

�

(M ;K))� �

0

(K);

so that (A.3) follows from Lemma A.6. We only observe that if f

t

is a homotopy between f

0

and f

1

in C

1




(M ;K) and x

M

2M is a base point, then

e

f

t

(x)f

t

(x

M

)

�1

is a homotopy between

f

0

and f

1

in C

1

�

(M ;K).

Next we assume that k � 1 and observe that the in
lusions

C

�

(S

k

; C

1




(M ;K)) = C

�

(S

k

; C

1




(M ;K)

e

) ,! C(S

k

; C

1




(M ;K)

e

) ,! C(S

k

; C




(M ;K)

e

)

,! C(S

k

; C




(M ;K))

�

=

C




(S

k

�M ;K)

are 
ontinuous homomorphisms of Lie groups, where

C(S

k

; C




(M ;K)

e

) ,! C(S

k

; C




(M ;K))

is an open embedding. For the group of 
onne
ted 
omponents, we obtain for k � 1 with (A.2)

the homomorphisms

�

k

(C

1




(M ;K))

�

=

�

0

�

C

�

(S

k

; C

1




(M ;K))

�

�

=

�

0

�

C(S

k

; C

1




(M ;K)

e

)

�

! �

0

�

C(S

k

; C




(M ;K)

e

)

�

�

=

�

k

�

C




(M ;K)

�

:

If f :S

k

�M ! K is a 
ontinuous map with 
ompa
t support 
orresponding to an element

of C

�

(S

k

;C




(M ;K)

e

), then Lemma A.5 �rst implies that every neighborhood of f 
ontains

a smooth map with 
ompa
t support. Thus every 
onne
ted 
omponent of C




(S

k

� M ;K)


ontains an element of C(S

k

; C

1




(M ;K))

e

by the openness argument from above. This means

that the homomorphism �

k

(C

1




(M ;K))! �

k

(C




(M ;K)) is surje
tive. To see that it is inje
tive,

suppose that � 2 C

�

S

k

; C

1




(M ;K)

e

�

satis�es � 2 C

�

S

k

; C




(M ;K)

e

�

e

�

=

C




(S

k

�M ;K)

e

. From

Lemma A.6 we obtain

C

1




(S

k

�M ;K) \ C




(S

k

�M ;K)

e

� C

1




(S

k

�M ;K)

e

;

so that approximating � by elements in C

1




(S

k

�M ;K) (Lemma A.5), we see that we may

even approximate it by elements in C

1




(S

k

�M ;K)

e

, whi
h implies that � lies in the identity


omponent of C

�

S

k

; C

1




(M ;K)

e

�

. This proves that the homomorphisms �

k

(C

1




(M ;K)) !

�

k

(C




(M ;K)); k 2 N

0

; are isomorphisms.

Theorem A.7 
an also be extended to non-
onne
ted manifolds M as follows. Let M =

S

j2J

M

j

be the de
omposition of M into 
onne
ted 
omponents M

j

. Here one 
an use

C




(M ;K) =

M

j2J

C




(M

j

;K);

and for ea
h 
ompa
t subset X �M we have the �nite sum de
omposition

C

X

(M ;K) =

M

X\M

j

6=�

C

X\M

j

(M

j

;K):

If M has only �nitely many 
onne
ted 
omponents, then there is no problem, but if M has

in�nitely many 
onne
ted 
omponents, then one has to take the dire
t sum topology on C




(M ; k)

into a

ount and the 
orresponding Lie group topology on C




(M ;K).

Lemma A.8 and Proposition A.9 provide additional information on the homotopy type of

the topologi
al 
urrent groups.
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Lemma A.8. If M is a lo
ally 
ompa
t spa
e, then the in
lusion �:C




(M ;K) ! C

0

(M ;K)

indu
es an isomorphism �

0

(C




(M ;K))! �

0

(C

0

(M ;K)) .

Proof. Let f 2 C

0

(M ;K). Then there exists a 
ompa
t subset X �M su
h that f(M nX) is


ontained in an identity neighborhood of K whi
h is di�eomorphi
 to a 
onvex 0-neighborhood

U in k , where 0 
orresponds to e 2 K . Using a 
ontinuous fun
tion h 2 C




(M ;R) whi
h is

1 on X and satis�es h(M) � [0; 1℄, we de�ne a fun
tion

e

f 2 C




(M ;K) by

e

f = f on X and

e

f = hf on M nX , where we 
onsider f j

MnX

as a fun
tion with values in U . Then

F :M � [0; 1℄! K; F (x; t) :=

�

f(x) for x 2 X

(t+ (1� t)h(x))f(x) for x 2M nX

is a homotopy between f and

e

f , and we see that �

0

(�) is surje
tive.

A similar argument shows that for f; g 2 C




(M ;K) any path joining f and g in C

0

(M ;K)


an be deformed to a path lying 
ompletely inside of C

X

(M ;K) for a 
ompa
t subset X of M .

Therefore �

0

(�) is inje
tive.

Proposition A.9. If M is a lo
ally 
ompa
t spa
e, then the in
lusion �:C




(M ;K) !

C

0

(M ;K) is a weak homotopy equivalen
e.

Proof. Let M

1

=M [f1g denote the one-point 
ompa
ti�
ation of M . For every 
ompa
t

spa
e X we have an embedding of topologi
al groups

C(X;C

0

(M ;K))

�

=

C(X;C

�

(M

1

;K)) ,! C(X;C(M

1

;K))

�

=

C(X �M

1

;K);

whi
h easily leads to the isomorphism

C(X;C

0

(M ;K))

�

=

C

0

(X �M ;K):

In view of Lemma A.8, there exists for ea
h f 2 C

0

(X �M ;K) some 
ompa
t subset

Y � M and a 
ontinuous map f

Y

2 C(X;C

Y

(M ;K)) � C(X � Y ;K) homotopi
 to f .

The same argument applies to [0; 1℄ � X instead of X , so that we see that the in
lusion

C




(M ;K) ! C

0

(M ;K) indu
es a bije
tion [X;C




(M ;K)℄ ! [X;C

0

(M ;K)℄ on the level of

homotopy 
lasses.

Applying this to X := S

k

, k 2 N , we obtain with Lemma A.8 that the natural map

�

k

(C




(M ;K))

�

=

[S

k

; C




(M ;K)℄

�

�

=

[S

k

; C




(M ;K)

e

℄! [S

k

; C

0

(M ;K)

e

℄

�

=

[S

k

; C

0

(M ;K)℄

�

�

=

�

k

(C

0

(M ;K))

is bije
tive, hen
e an isomorphism of groups.

Theorem A.10. For ea
h � -
ompa
t 
onne
ted �nite-dimensional manifold M and ea
h Lie

group K the in
lusion map

C

1




(M ;K)! C

0

(M ;K)

�

=

C

�

(M

1

;K)

is a weak homotopy equivalen
e.

Proof. We only have to 
ombine Proposition A.9 with Theorem A.7.

Example A.11. For M = R

n

we obtain with Theorem A.10 for ea
h k 2 N

0

:

�

k

(C

1




(R

n

;K))

�

=

�

k

(C

�

(R

n

1

;K))

�

=

�

k

(C

�

(S

n

;K))

�

=

�

k+n

(K):

Lemma A.12. Let ':N !M be a smooth proper map.

(i) The map

'

K

:C

1




(M ;K)! C

1




(N ;K); f 7! f Æ '
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is a morphism of Lie groups.

(ii) Let '

1

:M

1

! N

1

denote the 
ontinuous extension of ' to the one-point 
ompa
ti�
ations.

Then for ea
h k 2 N

0

the map

�

k

('

K

):�

k

(C

1




(M ;K))! �

k

(C

1




(N ;K))

only depends on the homotopy 
lass of '

1

in the set [M

1

; N

1

℄

�

of pointed homotopy


lasses.

Proof. (i) It is 
lear that '

K

maps C

1




(N ;K) into C

1




(M ;K) and that it is a group

homomorphism. It therefore suÆ
es to show smoothness in some identity neighborhood.

Let U � K be an open identity neighborhood and  :U ! W a 
hart of K where W � k

is an open subset and  (e) = 0. Then there exists an open 0-neighborhood V �W su
h that

C

1




(N;W ) := ff 2 C

1




(N ;K): f(N) �  

�1

(V )g

is an open subset of C

1




(N ;K) ([Gl01b℄). Now it suÆ
es to see that the map

C

1




(M;V )! C

1




(N; V ); f 7! f Æ '

is smooth. As this map is the restri
tion of a linear map, we only have to show that it is


ontinuous.

For ea
h 
ompa
t subset X �M we have

C

1

X

(M ;K) Æ ' � C

1

'

�1

(X)

(M ;K);

so that the assertion follows from the observation that for ea
h n 2 N the map d

n

(f Æ') depends


ontinuously on f , when 
onsidered as an element of C(T

n

(N); k)




(
f. De�nition I.2).

(ii) Let �

M

:C

1




(M ;K)! C

�

(M

1

;K) denote the natural in
lusion. Then �

N

Æ '

K

= e'

K

Æ �

M

holds with

e'

K

:C

�

(N

1

;K)! C

�

(M

1

;K); f 7! f Æ ':

We know from Theorem A.10 that the maps �

M

and �

N

are weak homotopy equivalen
es.

Therefore it suÆ
es to show that the maps �

k

(e'

K

) only depend on the homotopy 
lass of ' .

If ';  :M ! N are proper and smooth su
h that '

1

and  

1

are homotopi
, then it is easy

to see that the maps e'

K

and

e

 

K

are homotopi
, hen
e indu
e the same homomorphisms on

homotopy groups.

Homotopy groups of groups de�ned by vanishing 
onditions

In this subse
tion we dis
uss the other major 
lass of groups of smooth maps C

1

(M;S;K).

Theorem A.13 is a variant of Theorem A.7 for this 
ontext.

Theorem A.13. Let M be a 
ompa
t manifold, S � M a 
losed subset and C

1

(M;S;K)

the subgroup of C

1

(M ;K) 
onsisting of all smooth maps vanishing together with all their partial

derivatives on S . Then the in
lusion

�:C

1




(M n S;K)! C

1

(M;S;K)

is a weak homotopy equivalen
e.

Proof. As M is 
ompa
t, the group C

1

(M;S;K), when 
onsidered as a group of maps

M n S ! K , is 
ontained in C

0

(M n S;K). The in
lusion C

1




(M n S;K)! C

0

(M n S;K) is a

weak homotopy equivalen
e by Theorem A.10, so that all the maps �

k

(�), k 2 N

0

, are inje
tive.

It therefore remains to show that they are also surje
tive.
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So let

� 2 C

�

(S

k

; C

1

(M;S;K)) � C

�

(S

k

; C

0

(M n S;K)) � C

0

(S

k

� (M n S);K):

Then there exists a 
ompa
t subset X � M n S su
h that �(S

k

� (M n X

0

)) is 
ontained in

an identity neighborhood of K whi
h is di�eomorphi
 to a 
onvex 0-neighborhood U in k ,

where 0 
orresponds to e 2 K . Let ':U ! '(U) � K denote the 
orresponding 
hart and

h 2 C

1




(M n S;R) with h(X) = f1g and h(M) � [0; 1℄. We now de�ne

e�:S

k

�M ! K; e�(t; x) :=

�

�(t; x) for x 2 X

'

�

h(x)'

�1

(�(t; x))

�

for x 62 X .

As �(S

k

� (M n X

0

)) is a 
ompa
t subset of '(U), it easily follows that e� is 
ontinuous and

that t 7! e�(t; �) yields a 
ontinuous map S

k

! C

1




(M n S;K). In fa
t, the support of ea
h map

e�(t; �) is 
ontained in the support of h . Moreover,

F : [0; 1℄� S

k

�M ! K; F (s; t; x) :=

�

�(t; x) for x 2 X

'

�

[sh(x) + (1� s)℄ � '

�1

(�(t; x))

�

for x 62 X

is a homotopy between � and e� preserving base points. This implies that the map �

k

(�) is

surje
tive.

Note that Theorem A.13 does not imply that C

1




(M n S;K) is dense in C

1

(M;S;K).

This will be shown in Theorem A.18 below.

Corollary A.14. Let M be a 
ompa
t manifold and � 6= S � M a 
losed subset. Then the

in
lusion

�:C

1

(M;S;K)! C

0

(M n S;K)

�

=

C

�

(M=S;K)

is a weak homotopy equivalen
e.

Proof. A

ording to Theorem A.10, the in
lusion C

1




(M n S;K)! C

0

(M n S;K) is a weak

homotopy equivalen
e, and this map is the 
omposition of � and the in
lusion map � from

Theorem A.10. This implies that � also is a weak homotopy equivalen
e.

Corollary A.15. For a 
ompa
t manifold M and k 2 N

0

we have

�

k

(C

1

(M;S;K))

�

=

�

k

(C

�

(M=S;K))

and in parti
ular

�

k

(C

1

(I; �I ;K))

�

=

�

k

(C

�

(S

1

;K))

�

=

�

k+1

(K):

Proof. For M = I and S = �I we have M=S

�

=

S

1

and therefore

�

k

(C

1

(I; �I;K))

�

=

�

k

(C

�

(S

1

;K))

�

=

�

k+1

(K):

Lemma A.16. For ea
h � 2 C

1

((M

0

; S

0

); (M;S)) let

�

K

:C

1

(M;S;K)! C

1

(M

0

; S

0

;K); f 7! f Æ �:

Then �

K

is a homomorphism of Lie groups and the homomorphisms �

k

(�

K

) only depend on

the homotopy 
lass of � in the spa
e C((M

0

; S

0

); (M;S)) .

Proof. First we observe that the 
hain rule for Taylor expansions implies that �

K

does indeed

map C

1

(M;S;K) into C

1

(M

0

; S

0

;K). That �

K

is a homomorphism of Lie groups follows by

similar arguments as in the proof of Lemma A.12(i).

Viewing � as a 
ontinuous map (M

0

; S

0

)! (M;S) of spa
e pairs, we see that it indu
es a


ontinuous map

�

�

:C

�

(M=S;K)! C

�

(M

0

=S

0

;K); f 7! f Æ �:

Sin
e the in
lusion C

1

(M;S;K) ! C

�

(M=S;K) is a weak homotopy equivalen
e (Corol-

lary A.14), the maps �

k

(�

K

) are 
onjugate to the maps �

k

(�

�

). It is easy to see that �

k

(�

�

) only

depends on the homotopy 
lass of � be
ause for ea
h 
ontinuous map �:S

k

! C

�

(M

0

=S

0

;K)

the map �

�

Æ �:S

k

! C

�

(M=S;K) depends 
ontinuously on � .
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Lemma A.17. For ea
h lo
ally 
onvex spa
e Y the spa
e C

1

(M;S;Y ) is a 
losed subspa
e of

C

1

(M ;Y ) invariant under multipli
ation with elements of C

1

(M ;R) .

Proof. This follows dire
tly from the Leibniz formula for the higher partial derivatives of a

produ
t of two fun
tions.

Theorem A.18. (Approximation Theorem) If M is 
ompa
t, then C

1




(M n S;K) is dense

in the Lie group C

1

(M;S;K) .

Proof. First we redu
e the problem to the assertion that for the Lie algebra k of K the

subspa
e C

1




(M n S; k) is dense in C

1

(M;S; k).

Let U � K be an open identity neighborhhod and ':V ! U a 
hart of K with V � k

an open 
onvex subset and '(0) = e . Then ff 2 C

1

(M;S;K): f(M) � Ug is an open subset

of C

1

(M;S;K) be
ause it is already open in the 
ompa
t open topology. We 
hoose an open


onvex 0-neighborhood V

1

� V with '(V

1

)

�1

'(V

1

) � '(V ).

Let f 2 C

1

(M;S;K). As f vanishes on S , the set f

�1

('(V

1

)) is an open subset of M


ontaining S . Therefore its 
omplement X is a 
ompa
t subset of M nS . Arguing as in the proof

of Lemma A.8, we �nd a fun
tion

e

f 2 C

1




(M n S;K) with

e

f j

X

= f j

X

and

e

f(M nX) � '(V

1

).

Now it suÆ
es to show that h := f

�1

e

f , whose values are 
ontained in '(V

1

)

�1

'(V

1

) � '(V ),

is 
ontained in the 
losure of C

1




(M n S;K). As '

�1

Æ h:M ! k is a well-de�ned smooth map,

we see that it suÆ
es to prove the theorem for k instead of K . In this setting we have to show

that if V � k is an open 
onvex 0-neighborhood with f(M) � V , then f 
an be approximated

by fun
tions in C

1




(M ; k) whose values lie in V .

Let f 2 C

1

(M;S; k). Using Lemma A.17 and a smooth partition of unity on M , we

may assume that the support of f lies in a 
oordinate neighborhood whi
h we may identify

with R

n

. We are therefore led to the following situation. We 
onsider a smooth fun
tion

f 2 C

1




(R

n

; k) all of whose derivatives vanish on the 
losed subset S � R

n

, and we are looking

for a sequen
e of fun
tions with 
ompa
t support in R

n

nS 
onverging to f in C

1

(R

n

; k) whose

supports are uniformly 
ontained in a 
ompa
t set. The existen
e of su
h a sequen
e is proved

in Proposition A.22 below.

An Approximation Lemma

Let � 6= S � R

d

be a 
losed subset, Y a Bana
h spa
e, and f 2 C

1

X

(R

d

;Y ) for a 
ompa
t

subset X � R

d

su
h that f and all its partial derivatives vanish on S \ X . We want to see

that f is 
ontained in the 
losure of the subspa
e C

1




(R

d

nS;Y )\C

1

X

(R

d

;Y ). In the following

d(S; x) denotes the eu
lidean distan
e of the set S and x . We write k � k for the eu
lidean norm

on R

d

.

Lemma A.19. For ea
h k 2 N and ea
h f 2 C

1




(R

d

; S;Y ) there exists a 
onstant C

k

> 0

with

kf(x)k � C

k

d(S; x)

k

:

Proof. We prove the assertion by indu
tion over k . For k = 0 it follows from the 
ompa
tness

of the support of f .

Now we assume that the assertion holds for k 2 N

0

. Let h 2 C

1




(R

d

; S;Y ). Then the

indu
tion hypothesis applies to dh 2 C

1




(R

d

; S; Lin(R

d

;Y )), and we obtain a 
onstant D

k

with

kdh(x)k � D

k

d(S; x)

k

for all x 2 R

d

. For x 2 R

d

we �nd an x

0

2 S with kx� x

0

k � 2d(S; x).

Then

h(x) = h(x

0

) +

Z

1

0

dh(x

0

+ t(x� x

0

))(x � x

0

) dt =

Z

1

0

dh(x

0

+ t(x� x

0

))(x � x

0

) dt

leads to

kh(x)k � kx� x

0

k sup

0�t�1

kdh(x

0

+ t(x� x

0

))k

� 2d(S; x)D

k

sup

0�t�1

d(S; x

0

+ t(x� x

0

))

k

� 2D

k

d(S; x)2

k

d(S; x)

k

= 2

k+1

D

k

d(S; x)

k+1

:
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This 
ompletes the indu
tion, and hen
e the proof of the lemma.

Now let Æ be a smooth fun
tion supported in the 
losed unit ball B

1

(0) in R

d

with

R

R

d

Æ(x) dx = 1 and im(Æ) � [0; 1℄. We de�ne

Æ

n

(x) := n

d

Æ(nx)

and observe that these fun
tions form a smooth Dira
 sequen
e. For ea
h multiindex J =

(j

1

; : : : ; j

d

) 2 N

d

0

we have

k�

J

Æ

n

k

1

= n

d+jJj

k�

J

Æk

1

:

Let S

n

:= fx 2 R

d

: d(S; x) �

2

n

g and

�

S

n

(x) :=

�

1 for x 2 S

n

0 for x 62 S

n

the 
hara
teristi
 fun
tion of S

n

. Then we de�ne

'

n

(x) := 1� (Æ

n

� �

S

n

)(x) = 1�

Z

x�S

n

Æ

n

(y) dy 2 [0; 1℄:

Then ea
h fun
tion '

n

is smooth with '

n

(x) = 1 for d(S; x) �

3

n

and '

n

(x) = 0 for d(S; x) �

1

n

.

Lemma A.20. For ea
h multiindex J there exists a 
onstant D

J

su
h that

k�

J

'

n

(x)k � D

J

d(S; x)

�jJj

; x 2 R

d

; n 2 N:

Proof. For jJ j = 0 the assertion follows from im('

n

) � [0; 1℄.

Suppose that jJ j > 0 and that d(S; x) 2 [

1

n

;

3

n

℄ . Otherwise �

J

'

n

(x) vanishes anyway.

Then we have

k�

J

'

n

(x)k = k

�

(�

J

Æ

n

) � �

S

n

�

(x)k � vol(B

1

n

(0))k�

J

Æ

n

k

1

� Cn

�d

n

d+jJj

k�

J

Æk

1

= Cn

jJj

k�

J

Æk

1

� C3

jJj

d(S; x)

�jJj

k�

J

Æk

1

:

Lemma A.21. For all multiindi
es J with jJ j > 0 we have uniformly �

J

'

n

� f ! 0 .

Proof. Combining Lemma A.19 and A.20, we get for ea
h k 2 N a 
onstant C

k

with

k(�

J

'

n

(x))f(x)k � C

k

d(S; x)

�jJj

d(S; x)

jJj+k

= C

k

d(S; x)

k

:

As �

J

'

n

(x) = 0 for d(S; x) �

3

n

(here we need jJ j > 0), this leads to

k(�

J

'

n

(x))f(x)k � C

k

3

k

n

�k

for all x 2 R

d

, and this implies the assertion.

Proposition A.22. For ea
h lo
ally 
onvex spa
e Y and f 2 C

1




(R

d

; S;Y ) we have '

n

f ! f

in C

1

(R

d

;Y ) .

Proof. As every lo
ally 
onvex spa
e 
an be embedded into a produ
t of Bana
h spa
es,

it suÆ
es to assume that Y is a Bana
h spa
e. Sin
e the supports of the fun
tions '

n

f and

f are 
ontained in one 
ompa
t subset of R

d

, we have to show k�

J

('

n

f � f)k

1

! 0 for all

multiindi
es J .

For jJ j = 0 this follows easily from the support properties of '

n

and kf(x)k � Cd(S; x).

Next we note that for ea
h multiindex J the fun
tion �

J

f also has the property that all its

partial derivatives vanish on S . Therefore Lemma A.21 implies that �

J

'

n

� �

J

f ! 0 uniformly

whenever jJ j > 0. In view of the Leibniz rule, the problem redu
es to showing that '

n

�

J

f


onverges uniformly to �

J

f , but this follows from the 
ase jJ j = 0, applied to �

J

f instead

of f .
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Appendix B. Lo
ally 
onvex dire
t limit spa
es

In this se
tion we dis
uss the dis
reteness of 
ertain subgroups of dire
t limits of lo
ally 
onvex

spa
es. In this paper we only use Lemma B.4. Nevertheless Proposition B.3 provides a mu
h

more dire
t way to prove the dis
reteness of the groups H

k

(M ;Y;�) if Y is �nite-dimensional

and � � Y is a dis
rete subgroup (
f. Corollary IV.21).

Lemma B.1. If X is a lo
ally 
onvex spa
e, Y � X a 
losed subspa
e and F � X a �nite-

dimensional subspa
e 
omplementing Y , then X

�

=

Y � F as topologi
al ve
tor spa
es.

Proof. The quotient map q:X ! X=Y indu
es an isomorphism q j

F

:F ! X=Y . Hen
e

q has a 
ontinuous linear se
tion �:X=Y ! X whose range is F , and therefore the addition

map a:Y � F ! X is a topologi
al isomorphism be
ause a

�1

(x) =

�

x � �(q(x)); �(q(x))

�

is


ontinuous.

Lemma B.2. Let X be a lo
ally 
onvex spa
e whi
h is the lo
ally 
onvex dire
t limit of the

subspa
es X

n

, n 2 N , where ea
h X

n

is a 
losed subspa
e of X

n+1

. Further let F � X be a

subspa
e su
h that for ea
h n 2 N the interse
tion F

n

:= F \ X

n

is �nite-dimensional. Then

the following assertions hold:

(i) There exists a 
ontinuous linear proje
tion p:X ! F with p(X

n

) = F

n

for ea
h n 2 N . In

parti
ular we have X

�

=

ker p� F .

(ii) F is 
losed.

(iii) F is the topologi
al dire
t limit of the subspa
es F

n

, n 2 N , whi
h means that F 
arries

the �nest lo
ally 
onvex topology.

Proof. (i) We argue by indu
tion. As F

1

is �nite-dimensional, the Hahn{Bana
h Theorem

yields a 
ontinuous extension p

1

:X

1

! F

1

of the identity map id

F

1

. Then p

1


an be viewed as

a 
ontinuous proje
tion of X

1

to F

1

.

Now let n 2 N and assume that p

n

:X

n

! F

n

is a 
ontinuous proje
tion. Then we


hoose a 
omplement E

n+1

of F

n

in F

n+1

. As X

n

is a 
losed subspa
e of the lo
ally 
onvex

spa
e X

n

+ F

n+1

= X

n

� E

n+1

, it follows from Lemma B.1 that X

n

+ F

n+1

�

=

X

n

� E

n+1

as topologi
al ve
tor spa
es. The linear map q

n

:= p

n

� id

E

n+1

is a 
ontinuous proje
tion of

X

n

+ F

n+1

onto F

n+1

. We use the Hahn{Bana
h Theorem again to extend q

n

to a 
ontinuous

linear map p

n+1

:X

n+1

! F

n+1

whi
h then also is a 
ontinuous proje
tion. We thus obtain a

sequen
e (p

n

)

n2N

of 
ontinuous linear maps p

n

:X

n

! F with p

n+1

j

X

n

= p

n

. Now the universal

property of X yields the existen
e of a 
ontinuous linear map p:X ! F with p j

X

n

= p

n

for

ea
h n 2 N . As p j

F

= id

F

, we are done.

(ii) follows from (i).

(iii) Let Z be a lo
ally 
onvex spa
e and f :F ! Z be a linear map. We 
laim that f is


ontinuous. To this end, we 
onsider the map h := f Æ p:X ! Z . Then h j

X

n

= (f j

F

n

) Æ p

n

, and

p

n

is 
ontinuous, as well as the map f j

F

n

on the �nite-dimensional ve
tor spa
e F

n

. Therefore

all the restri
tions h j

X

n

are 
ontinuous, and we 
on
lude that h is 
ontinuous, whi
h in turn

implies that f is 
ontinuous. The fa
t that all linear maps from F to lo
ally 
onvex spa
es are


ontinuous shows that F 
arries the �nest lo
ally 
onvex topology. Furthermore, F is 
ountably

dimensional be
ause all the spa
es F

n

are �nite-dimensional. Using [KK63℄, we now 
on
lude

that the topology on F 
oin
ides with the �nite open topology, i.e., the dire
t limit topology

with respe
t to the dire
ted system of all �nite-dimensional subspa
es. As the sequen
e (F

n

)

n2N

is 
o�nal, this topology 
oin
ides with the dire
t limit topology with respe
t to the sequen
e

(F

n

)

n2N

.

Proposition B.3. Let X be a lo
ally 
onvex spa
e whi
h is the lo
ally 
onvex dire
t limit of

the subspa
es X

n

, n 2 N , with X

n

� X

n+1

, where X

n

is 
losed in X

n+1

. Let further � � X

be a subgroup su
h that for ea
h n 2 N the group �\X

n

is dis
rete and �nitely generated. Then

� is a dis
rete subgroup of X .
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Proof. For ea
h n 2 N we 
onsider the �nite-dimensional subspa
e F

n

:= span�

n

for the

dis
rete �nitely generated subgroup �

n

:= � \X

n

of X

n

. Let F :=

S

n

F

n

= span�. We 
laim

that F

n

= F \ X

n

holds for ea
h n 2 N . Fix n;m 2 N with n < m . As �

n

is dis
rete in

the �nite-dimensional spa
e F

n

, there exists a basis B

n

of F

n

with �

n

= span

Z

B

n

. Further

�

n

= �\X

n

= �

m

\X

n

is a pure subgroup of �

m

, so that �

m

=�

n

is a free abelian group. Hen
e

we �nd a subset C

m

� �

m

su
h that the image of C

m

is a basis in (F

m

+X

n

)=X

n

�

=

F

m

=F

m

\X

n

generating the subgroup (�

m

+X

n

)=X

n

�

=

�

m

=�

n

. Now B

m

:= B

n

[ C

m

is a basis of F

m

with

�

m

= span

Z

B

m

. In parti
ular, it follows that F

m

\X

n

= span

R

B

n

= F

n

. As m was arbitrary,

we 
on
lude that F \X

n

= F

n

.

Next Lemma B.2 applies to the subspa
e F � X and shows that F is 
losed and 
arries the

�nite open topology. Let O := (F n�)[f0g . For ea
h n 2 N we then have O\F

n

= (F

n

n�

n

)[f0g ,

whi
h is an open set be
ause �

n

is dis
rete in F

n

. Therefore O is an open subset of F

(Lemma B.2(iii)), and sin
e F 
arries the subspa
e topology of X , there exists an open subset

O

X

� X with O

X

\ F = O . Now O

X

is an open 0-neighborhood in X with O

X

\ � = f0g .

This shows that � is dis
rete.

Lemma B.4. Let X = lim

�!

X

j

be a lo
ally 
onvex dire
t limit of the spa
es X

j

.

(i) If F � X is a 
losed subspa
e, then X=F

�

=

lim

�!

X

j

=(F \X

j

):

(ii) A subspa
e F � X is 
losed if and only if all interse
tions F \X

j

are 
losed.

Proof. (i) (
f. [K�o79, p.42℄) Sin
e F is 
losed, all the spa
es F

j

:= F \ X

j

are 
losed. Let

Z := lim

�!

X

j

=F

j

denote the lo
ally 
onvex dire
t limit of the spa
es X

j

=F

j

. Then we have

natural 
ontinuous maps '

j

:X

j

=F

j

! X=F whi
h de�ne a 
ontinuous linear map ':Z ! X=F .

On the other hand the 
ontinuous linear maps X

j

! Z 
ombine to a 
ontinuous linear map

X ! Z whi
h then fa
tors through a 
ontinuous linear map  :X=F ! Z . Now ' Æ  = id

X=F

and  Æ ' = id

Z

imply (i).

(ii) If F is 
losed, then the subspa
es F \ X

j

are trivially 
losed in X

j

. If, 
onversely, this


ondition is satis�ed, then we 
an form the lo
ally 
onvex dire
t limit spa
e Z := lim

�!

X

j

=(F\X

j

).

The natural maps X

j

! Z are 
ontinuous, hen
e 
ombine to a 
ontinuous map X ! Z whose

kernel F is a 
losed subspa
e.

Problem B.1. Does Proposition B.3 also hold without the assumption that the groups �\X

n

are �nitely generated? If this is true, then the proof of the dis
reteness of the groups H

1

dR;


(M ; �)

in Se
tion IV would be mu
h easier be
ause we would not need the 
ompli
ated approximation

pro
edure from Se
tion III.
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