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Dediated to Karl Heinrih Hofmann on the oasion

of his 70th birthday

Abstrat. In this paper we study two types of groups of smooth maps from a non-ompat

manifold M into a Lie group K whih may be in�nite-dimensional: the group C

1



(M;K) of

ompatly supported maps and for a ompat manifold M and a losed subset S the group

C

1

(M;S;K) of those maps whih vanish on S , together with all their derivatives. We study entral

extensions of these groups assoiated to Lie algebra oyles of the form !(�;�)=[�(�;d�)℄ , where

�:k�k!Y is a symmetri invariant bilinear map on the Lie algebra k of K and the values of ! lie in




1

(M ;Y )=dC

1

(M ;Y ) . For suh oyles we show that a orresponding entral Lie group extension

exists if and only if this is the ase for M=S

1

. If K is �nite-dimensional semisimple, this implies

the existene of a universal entral Lie group extension of the identity omponent of the urrent

groups.

Introdution

If M is a ompat manifold and K a Lie group (whih may be in�nite-dimensional), then

the so alled urrent groups C

1

(M ;K), endowed with the group struture given by pointwise

multipliation, are interesting in�nite-dimensional Lie groups arising in many irumstanes. If

M is a non-ompat manifold, the full group C

1

(M ;K) seems to be far too large to arry a

Lie group struture ompatible with its natural group topology, so that it is natural to study

subgroups of maps f :M ! K that either vanish outside a ompat subset or deay fast enough

at in�nity. In the present paper we investigate the following two types of urrent groups on

a non-ompat manifold M . The �rst lass onsists of the groups C

1



(M ;K) of ompatly

supported smooth maps and the seond lass of the groups C

1

(M;S;K) of maps on a ompat

manifold M for whih all partial derivatives vanish on the losed subset S � M . The groups

C

1

(M;S;K) have the advantage that they are Fr�ehet{Lie groups if K is a Fr�ehet{Lie group,

the Lie algebra is given by C

1

(M;S; k). We onsider them as groups of smooth maps on the

non-ompat manifold M n S vanishing at in�nity. The groups C

1



(M ;K) are modeled on the

spae C

1



(M ; k) whih is not metrizable in its natural diret limit topology, not even for K = R .

The goal of the present paper is to understand entral extensions of urrent groups G

whih are identity omponents of groups of the type C

1



(M ;K) or C

1

(M;S;K). For an

in�nite-dimensional Lie group G not every Lie algebra oyle !: g � g ! z de�nes a entral

extension of g by z whih an be integrated to a Lie group. In [Ne02a℄ we show that there

are two kinds of obstrutions. The �rst one is an element of Hom(�

1

(G);Lin(g; z)), and we will

see in Theorem V.8 that it always vanishes for urrent groups. The seond obstrution is that

the image of a ertain \period map" per

!

:�

2

(G) ! z need not be disrete. To illuminate the

obstrutions for the lass of urrent groups, we need a good deal of information on the abelian

group �

2

(G). This information is obtained in Appendix A where we show that the omputation

of the homotopy groups of G an be redued to the omputation of those of groups C(X ;K) of

ontinuous maps, where X is a ompat manifold with boundary.
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The Lie algebra oyles we are interested in are those of produt type, i.e., oyles

!: g � g ! z for whih there exists a sequentially omplete loally onvex spae Y and an

invariant ontinuous symmetri bilinear form �: k � k ! Y suh that !(�; �) = [�(�; d�)℄

de�nes a oyle with values in z := z

M;

(Y ) := 


1



(M ;Y )=dC

1



(M ;Y ) for g = C

1



(M ; k),

and z := z

(M;S)

(Y ) := 


1

(M;S;Y )=dC

1

(M;S;Y ) for g = C

1

(M;S; k). We systematially

use forms with values in an in�nite-dimensional vetor spae to inorporate in partiular the

universal invariant symmetri bilinear form �: k� k ! V (k).

The main steps in our analysis of these oyles and their period maps are as follows. In

Setion IV we show that the image of the period map always lies in the subspae of z oming

from the losed 1-forms. Then the problem is to determine the period group �

!

:= im(per

!

) � z

and to see if it is disrete. For the ase g = C



(M ; k) it is quite hard to get information on the

disreteness of a subgroup of z = z

M;

(Y ), resp., H

1

dR;

(M ;Y ) beause z is a diret limit of spaes

on whih the topology is given by expliit seminorms. We address this problem by approximating

the non-ompat manifold M by suitably hosen submanifolds X

n

with boundary in suh a way

that

H

1

dR;

(M ;Y ) = lim

�!

H

1

dR

(X

n

; �X

n

;Y )

(Setion III). From this relation we then derive the existene of a ountable set B so that

H

1

dR;

(M ;Y )

�

=

Y

(B)

;

is a loally onvex diret sum, where the projetions are given by integrals over singular yles

or over pieewise smooth proper maps R ! M . In Setion IV this information permits us

to see that �

!

is disrete for eah M if and only if this is the ase for the irle M = S

1

.

In the latter ase �

2

(C

1

(S

1

;K))

�

=

�

2

(K) � �

3

(K), the period map vanishes on �

2

(K), and

z

S

1

(Y )

�

=

Y , so that we arrive at a map �

3

(K)! Y whih depends only on the bilinear form � .

For �nite-dimensional groups K we an now use information from [MN02℄ to see that the period

group is disrete if � is the universal invariant symmetri bilinear form. This is used in Setion

VI to onstrut for a �nite-dimensional redutive Lie group K with simply onneted enter a

universal entral extension of the groups C

1



(M ;K)

e

and C

1

(M;S;K)

e

. In both ases there

are many examples where the period group has in�nite rank. A simple example with M = S

2

and S a sequene with limit point is disussed in detail in Example II.12. All the onrete

examples of entral extensions of in�nite-dimensional Lie groups whih have been dealt with so

far in the literature have �nitely generated period groups. In this sense we provide new and

onrete examples, where this is not the ase.

The lass of urrent groups most extensively studied is the lass of loop groups (M = S

1

and K ompat) whih is ompletely overed by Pressley and Segal's monograph [PS86℄. The

main point of the present paper is to see whih Lie algebra oyles of produt type an

be integrated to a entral Lie group extension. These entral extensions our naturally in

mathematial physis, where the problem to integrate projetive representations of groups to

representations of entral extensions is at the heart of quantum mehanis ([Mi87℄, [LMNS98℄,

[Wu01℄). The entral extensions of urrent groups are often onstruted via representations by

pulling bak entral extensions of ertain operator groups ([Mi89℄). It is our philosophy that

one should try to understand the entral extensions of a Lie group G �rst, and then onstrut

representations of these entral extensions. In this ontext ertain disreteness onditions for Lie

algebra oyles appear naturally beause they ensure that the orresponding entral Lie algebra

extension integrates to a entral Lie group extension ([Ne02a℄). We think of these disreteness

onditions as an abstrat version of the disreteness of quantum numbers in quantum physis.

As an outome of our analysis, we will see that for our general results we do not have to impose

any restrition on the group K . It may be any in�nite-dimensional Lie group. This permits in

partiular iterative onstrutions based on relations like C

1

(M �N ;K)

�

=

C

1

(M;C

1

(N ;K))

for ompat manifolds M and N .

The ontent of the paper is as follows. In Setion I we introdue the two kinds of Lie groups

we are dealing with: C

1



(M ;K) for M non-ompat, and C

1

(M;S;K) for M ompat and

S �M losed.
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The main result of Setion II is that the group H

1

dR

(M;S; �) of all de Rham ohomology

lasses modulo S for whih all integrals over singular yles modulo S are ontained in a disrete

subgroup � of Y is disrete (Theorem II.7). In Setion V this is used to prove the disreteness

of period groups for oyles of produt type for the groups C

1

(M;S;K).

Our strategy to get a desription of the spaes z

M;

(Y ) and H

1

dR;

(M ;Y ) for a non-ompat

manifold M is to desribe M as a union of ertain ompat submanifolds with boundary

(X

n

)

n2N

with X

n

� X

0

n+1

. To get information on the spae H

1

dR;

(M ;Y ), we will need

detailed information on the natural maps H

1

dR

(X

n

; �X

n

;Y ) ! H

1

dR

(X

n+1

; �X

n+1

;Y ) whih

is obtained in Theorem III.6. This result is used in Theorem IV.7 to obtain the isomorphism

H

1

dR;

(M ;Y )

�

=

Y

(B)

mentioned above. As a orollary, we show that if � is disrete, then

H

1

dR;

(M ; �) is disrete.

In Setion V we �rst explain the general setup for entral extensions of Lie groups. The

main question arising in the integration of Lie algebra oyles ! to entral extensions of Lie

groups is whether the orresponding period group �

!

is disrete. We then show that for oyles

of produt type for the groups C

1



(M ;K)

e

and C

1

(M;S;K)

e

the period group �

M;�

is disrete

if and only if this is the ase for �

S

1

;�

. This redues the disreteness problem to the ase of loop

groups, whih is known for K ompat, and therefore for all �nite-dimensional Lie groups (f.

[PS86℄, [MN02℄). We further show that �

M;�

= H

1

dR;

(M ; �

S

1

;�

) for eah non-ompat manifold

M and eah � .

In Setion VI we �nally turn to universal entral extensions. For the speial lass of �nite-

dimensional semisimple Lie groups K , eah Lie algebra oyle ! 2 Z

2



(C

1



(M; k); z) is equivalent

to a oyle of produt type ([Ma02℄, [Fe88℄). This observation permits us to onstrut a universal

entral extension of the Lie algebra g := C

1



(M ; k), and we show that this onstrution an be

globalized in our ontext, providing a universal entral extension of the onneted Lie group

C

1



(M ;K)

e

.

In Appendix A we address the topology of the groups C

1



(M ;K) and C

1

(M;S;K). For

our purposes it is of partiular importane to know their homotopy groups. We write C

0

(M ;K)

for the group of ontinuous funtions vanishing at in�nity, endowed with the topology of uniform

onvergene. Information on homotopy groups is obtained by several approximation arguments

showing that the inlusion maps

C

1



(M ;K) ,! C

0

(M ;K) and C

1

(M;S;K) ,! C

0

(M n S;K)

are weak homotopy equivalenes, i.e., indue isomorphisms of all homotopy groups. These results

are motivated by the fat that it is usually muh easier to deal with spaes of ontinuous maps

than with spaes of di�erentiable maps. We also note that if K is a Banah-, resp., Fr�ehet{Lie

group, then the same holds for the groups C

0

(M ;K) and C

0

(M n S;K).

Appendix B ontains several results on diret limits of loally onvex spaes. These are

needed to deal with the spaes of ompatly supported smooth funtions or di�erential forms on

a non-ompat manifold. The diÆulties with these spaes arise from the fat that they are not

metrizable, whih makes it harder to prove that a subgroup is disrete.

This paper ontributes in partiular to the program dealing with Lie groups G whose

Lie algebras g are root graded in the sense that there exists a �nite irreduible root system �

suh that g has a �-grading g = g

0

�

L

�2�

g

�

, it ontains the split simple Lie algebra k

orresponding to � as a graded subalgebra, and is generated, topologially, by the root spaes

g

�

, � 2 �. All Lie groups of the type C

1



(M ;K), K simple omplex, are of this type, and

the same holds for their entral extension. A di�erent but related lass of groups arising in this

ontext are the Lie groups SL

n

(A) and their entral extensions, where A is a ontinuous inverse

algebra, i.e., a loally onvex unital assoiative algebra with open unit group and ontinuous

inversion ([Gl01℄, [Ne03℄).

In [Ne02b℄ we disuss the universal entral extensions of the groups SL

n

(A), whih are

Lie group versions of the Steinberg groups St

n

(A). In [MN02, Rem. II.12℄ we have shown

that for K = SL

n

(A), A a ommutative ontinuous inverse algebra, the form �: k � k ! A ,

�(x; y) = tr(xy) is universal, and that the image of the orresponding period map is disrete for
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the orresponding produt type oyle on the Lie algebra C

1

(M ; k) of the group C

1

(M ;K).

For non-ommutative algebras the image of the period map is not always disrete ([Ne02b℄).

Throughout this paper we will use the onept of an in�nite-dimensional Lie group desribed

in detail in [Mil83℄ (see also [Gl01a℄ for arguments showing that the ompleteness requirements

made in [Mil83℄ are not neessary to de�ne the onept). This means that a Lie group G is a

smooth manifold modeled on a loally onvex spae g for whih the group multipliation and

the inversion are smooth maps. We write �

g

(x) = gx , resp., �

g

(x) = xg for the left, resp., right

multipliation on G . Let e 2 G be the identity element. Then eah X 2 T

e

(G) orresponds to

a unique left invariant vetor �eld X

l

with X

l

(g) := d�

g

(1):X; g 2 G: The spae of left invariant

vetor �elds is losed under the Lie braket of vetor �elds, hene inherits a Lie algebra struture.

In this sense we obtain on g := T

e

(G) a ontinuous Lie braket whih is uniquely determined by

[X;Y ℄

l

= [X

l

; Y

l

℄ .

All �nite-dimensional manifolds M are assumed to be � -ompat whih for onneted

manifolds is equivalent to requiring that M is paraompat or a seond ountable topologial

spae. This exludes pathologies suh as \long lines" whih are one-dimensional smooth manifolds

onstruted from sets of ountable ordinal numbers ([SS78, p.72℄).

All topologial vetor spaes in this paper are assumed to be Hausdor�.

Aknowledgement: I am grateful to H. Biller and H. Gl�okner for many extremely helpful

suggestions to improve the exposition of this paper.

I. Current groups on non-ompat manifolds

In this setion we introdue two lasses of Lie groups of smooth maps: the group C

1



(M ;K) of

smooth maps with ompat support on a non-ompat manifold and the group C

1

(M;S;K) of

smooth maps on a ompat manifold M that together with all higher partial derivatives vanish

on the losed subset S .

Compatly supported smooth maps

De�nition I.1. For two topologial spaes M and Y we write C(M ;Y )



for the spae

C(M ;Y ) of all ontinuous maps M ! Y endowed with the ompat open topology. The topology

on this spae is generated by the sets

W (C;O) := ff 2 C(M ;Y ): f(C) � Og;

where C �M is ompat and O � Y is open.

(a) If M is loally ompat and K is a topologial group, then C(M ;K)



is a topologial group

with respet to pointwise multipliation, and the topology oinides with the topology of uniform

onvergene on ompat subsets of M ([Sh75, Satz II.4.5℄). In partiular the sets W (C;U),

where C �M is ompat and U � K is an open identity neighborhood, form a basis of identity

neighborhoods in C(M ;K)



.

For a funtion f :M ! K let supp(f) := fx 2M : f(x) 6= eg denote its support. Then for

eah ompat subset X �M the subset

C

X

(M ;K) := ff 2 C(M ;K): supp(f) � Xg

is a losed subgroup of C(M ;K)



on whih the subspae topology oinides with the topology

of uniform onvergene.

If M is a disrete set, then C(M ;K)



�

=

K

M

as a topologial group.

(b) If M is a loally ompat spae and Y is a loally onvex spae, then (a) implies that

C(M ;Y )



is a loally onvex spae, where the topology is de�ned by the seminorms

p

X;q

(f) := sup

x2X

q(f(x));
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where q is a ontinuous seminorm on Y and X �M a ompat subset.

If Y is a Fr�ehet spae and M is � -ompat, then the topology is de�ned by a ountable

family of seminorms turning C(M ;Y )



into a Fr�ehet spae.

() If M is loally ompat, X � M ompat, and Y is a loally onvex spae, then for eah

open 0-neighborhood U � Y the subset

ff 2 C

X

(M ;Y )



: f(M) � Ug =W (X;U) \ C

X

(M ;Y )

is open in C

X

(M ;Y )



.

De�nition I.2. Let M be a smooth �nite-dimensional � -ompat manifold. If Y is a loally

onvex spae, then eah smooth map f :M ! Y de�nes a sequene of maps

d

n

f :T

n

M ! Y; n 2 N:

We endow C

1

(M ;Y ) with the topology obtained from the embedding

C

1

(M ;Y ) ,!

Y

n2N

0

C(T

n

M;Y )



turning C

1

(M ;Y ) into a loally onvex spae. If X �M is a ompat subset, we onsider on

C

1

X

(M ;Y ) � C

1

(M ;Y ) the subspae topology.

(a) If K is a Lie group, then C

1

X

(M ;K) is a group with respet to pointwise multipliation. It

is shown in [Gl01b, 3.18℄ that it arries a Lie group struture whih is uniquely determined by

the property that for eah open identity neighborhood U � K and eah hart ':U ! k with

'(e) = 0 there exists an open identity neighborhood U

0

� U suh that the map

ff 2 C

1

X

(M ;K): f(M) � U

0

g ! fh 2 C

1

X

(M ; k):h(M) � '(U

0

)g; f 7! ' Æ f

is a di�eomorphism onto an open subset of the loally onvex spae C

1

X

(M ; k). The Lie algebra

of this group is the loally onvex spae C

1

X

(M ; k) with the pointwise Lie braket, where k is

the Lie algebra of K ([Gl01b, 3.19℄).

(b) For a loally onvex spae Y we endow the spae

C

1



(M ;Y ) := ff 2 C

1

(M ;Y ): supp(f) ompatg =

[

X

C

1

X

(M ;Y );

where X runs through all ompat subsets of M , with the loally onvex diret limit topology.

This means that a seminorm on C

1



(M ;Y ) is ontinuous if and only if its restritions to all the

subspaes C

1

X

(M ;Y ) are ontinuous with respet to the topology de�ned above.

In M there exists an inreasing sequene (X

n

)

n2N

of ompat subsets X

n

with X

n

� X

0

n+1

and M =

S

n

X

n

. Then eah ompat subset X �M is ontained in some X

n

, and eah spae

C

1

X

n

(M ;Y ) is a losed subspae of C

1

X

n+1

(M ;Y ). Therefore

C

1



(M ;Y ) = lim

�!

C

1

X

n

(M ;Y )

is a strit indutive limit of the loally onvex spaes C

1

X

n

(M ;Y ) in the sense of [He89,

Prop. 1.5.3℄. In partiular eah bounded subset of C

1



(M ;Y ) is ontained in one of the sub-

spaes C

1

X

n

(M ;Y ). Moreover, C

1



(M ;Y ) is Hausdor� and the ontinuous maps C

1

X

n

(M ;Y ) ,!

C

1



(M ;Y ) are embeddings, whih in turn implies that all the inlusions

C

1

X

(M ;Y ) ,! C

1



(M ;Y )

are embeddings (f. [K�o69, p.222℄).

If Y is a Fr�ehet spae, this topology turns C

1



(M ;Y ) into an LF-spae ([Gl01b, 4.6℄). It

is shown in [Gl01b, 4.18℄ that for eah Lie group K the group C

1



(M ;K) arries a Lie group

struture, hene in partiular the struture of a Hausdor� topologial group. In the same way as

for the groups C

1

X

(M ;K), the Lie group struture is uniquely determined by the property that

for eah open identity neighborhood U � K and eah hart ':U ! k with '(e) = 0 there exists

an open identity neighborhood U

0

� U suh that the map

ff 2 C

1



(M ;K): f(M) � U

0

g ! fh 2 C

1



(M ; k):h(M) � '(U

0

)g; f 7! ' Æ f

is a di�eomorphism onto an open subset of the loally onvex spae C

1



(M ; k). The Lie algebra

of this group is the loally onvex spae C

1



(M ; k) with the pointwise Lie braket.
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Remark I.3. From the fat that C

1



(M ; k) is a strit indutive limit of spaes C

1

X

(M ; k) and

the desription of the natural harts of the Lie group C

1



(M ;K), we see that for eah ompat

subset X �M the inlusion map C

1

X

(M ;K) ,! C

1



(M ;K) is a topologial embedding.

Remark I.4. If K is a Lie group with Lie algebra k , then the tangent bundle of K is a Lie

group isomorphi to k o K , where K ats on k by the adjoint representation (f. [Ne01b℄).

Iterating this proedure, we obtain a Lie group struture on all iterated higher tangent bundles

T

n

K whih are di�eomorphi to k

2

n

�1

�K .

It follows in partiular that for eah �nite-dimensional manifold M and eah n 2 N

0

we

obtain topologial groups C(T

n

M;T

n

K)



(De�nition I.1(a)). Therefore the anonial inlusion

map

C

1

(M ;K) ,!

Y

n2N

C(T

n

M;T

n

K)



leads to a natural topology on C

1

(M ;K) turning it into a topologial group.

If M is ompat, then it is not hard to see that this proedure leads to the same topology

as the Lie group struture de�ned in De�nition I.2. A similar statement holds for C

1

X

(M ;K) if

X �M is a ompat subset.

We annot expet for a general non-ompat manifold M that C

1

(M ;K) arries a natural

Lie group struture. In the example M = N the group C

1

(N;K) = C(N;K )

�

=

K

N

is the

topologial diret produt group. As the example K = T already shows, the groups K

N

need

not be manifolds beause they need not be loally ontratible.

If M is onneted, then the situation seems to be muh better, but this needs to be

investigated ([NW03℄). One an show in partiular that for eah Banah{Lie group K the group

C

1

(R;K) is a Fr�ehet{Lie group with respet to its natural topology of uniform onvergene

of all derivatives on ompat subsets of R . Likewise, for eah simply onneted non-ompat

omplex urve � and eah omplex Banah{Lie group K the group Hol(�;K) of all holomorphi

maps �! K is a Lie group.

Fr�ehet urrent groups de�ned by vanishing onditions

In this subsetion M denotes a onneted �nite-dimensional manifold and S �M a losed

subset. Mostly we will assume that M is ompat.

Remark I.5. Let U be an open subset of a loally onvex spae X and Y another loally

onvex spae. If for a smooth funtion f :U ! Y its value together with all derivatives up to

order k vanish in a point p 2 U , then the formula for the Taylor expansion of ompositions

trivially implies that the same holds for all ompositions f Æ ' in q , where ':V ! U is a C

k

-

map with '(q) = p . It follows in partiular that for a smooth funtion on a manifold it makes

sense to say that all partial derivatives up to order k vanish in a point p .

De�nition I.6. Let M be a manifold with boundary and S �M a losed subset. For a Lie

group K we write C

1

(M;S;K) for the group of all those smooth maps for whih their value

together with all derivatives vanish on S . It learly suÆes that for eah point s 2 S there exists

one hart in whih all partial derivatives vanish in s .

If M is ompat and K is a (Fr�ehet-)Lie group, then also C

1

(M;S;K) is a Fr�ehet{Lie

group, where we use the same harts as for C

1

(M ;K) and observe that they restrit to harts

of the subgroup C

1

(M;S;K). In partiular C

1

(M;S;R) is a real Fr�ehet algebra. For non-

ompat M we onsider C

1

(M;S;K) only as a topologial subgroup of C

1

(M ;K) in the sense

of Remark I.4.

Remark I.7. Let us onsider the ategory P whose objets are pairs (M;S), where M is

a (�nite-dimensional) manifold and S is a losed subset. A morphism (M;S) ! (M

0

; S

0

)
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is a smooth map ':M ! M

0

with '(S) � S

0

. Remark I.5 implies that the assignment

(M;S) 7! C

1

(M;S;K) de�nes a ontravariant funtor from P to the ategory of topologial

groups. Here we use that for a morphism ': (M;S) ! (M

0

; S

0

) the orresponding group

homomorphism C

1

(M

0

; S

0

;K) ! C

1

(M;S;K); f 7! f Æ ' is ontinuous, whih is an easy

onsequene of the de�nitions (f. Lemma A.1.6).

Lemma I.8. Let M be a �nite-dimensional manifold, X � M be a smooth submanifold with

boundary, dimX = dimM , and Y a loally onvex spae. For a smooth funtion f :X ! Y the

extension by f(M n X) = f0g de�nes a smooth funtion M ! Y if and only if f and all its

derivatives vanish on �X .

Proof. It learly is a neessary ondition that all derivatives of f vanish on �X . Suppose,

onversely, that this ondition is satis�ed and extend f by 0 on M nX to a funtion f

M

:M ! Y .

As the smoothness of f

M

is equivalent to its weak smoothness (for this result of Grothen-

diek see [Wa72℄ or [KM97℄), we may w.l.o.g. assume that Y = R . Moreover, we may assume

that M = R

n

and that X = fx 2 R

n

:x

n

� 0g . Then it is lear that all partial derivatives of

f extended by 0 on M nX yield ontinuous funtions. Moreover, all partial derivatives of the

extended funtion f

M

exist and oinide with the extensions of the partial derivatives of f . This

proves that f

M

is a C

1

-funtion. Iterating the argument shows that f

M

is a C

k

-funtion for

eah k , hene smooth.

Examples I.9. (a) Let X be a ompat manifold with boundary and X

d

the double of X .

This is, by de�nition, a ompat manifold without boundary ontaining X and a di�eomorphi

opy X

℄

of X suh that X \X

℄

= �X = �X

℄

and X [X

℄

= X

d

. Then Lemma I.8 implies that

C

1

(X; �X ;K)

�

=

C

1

X

(X

d

;K)

and

C

1

(X

d

; �X ;K)

�

=

C

1

(X; �X ;K)� C

1

(X

℄

; �X ;K)

�

=

C

1

(X; �X ;K)

2

:

(b) We think of C

1

(M;S;K) as a group of smooth maps on the non-ompat manifold M n S .

For M = S

n

and S = fpg have M n S

�

=

R

n

, and hene a natural Lie group of smooth maps

R

n

! K with a ertain deay at in�nity.

() Let M = S

1

. Then M nS is a ountable union of intervals I

j

, j 2 J , and we thus obtain an

inlusion

C

1

(M;S;K) ,!

Y

j2J

C

1

(I

j

; �I

j

;K)

�

=

C

1

(I; �I ;K)

J

;

where the right hand side does not arry the produt topology but the l

1

-topology of uniform

onvergene of all derivatives uniformly in all omponents.

II. Relative de Rham ohomology

If M is a ompat manifold, S � M a ompat subset, and Y a sequentially omplete loally

onvex spae (an s..l.. spae), then we onsider the spae Z

1

dR

(M;S;Y ) of all Y -valued losed

smooth 1-forms that vanish, together with all their derivatives, on S . Integration of 1-forms

with this property over singular yles in M modulo S lead to the subgroup Z

1

dR

(M;S; �) of

those losed 1-forms for whih all integrals over yles have values in a subgroup � of Y . The

main result of this setion is Theorem II.7, saying that the image H

1

dR

(M;S; �) of Z

1

dR

(M;S; �)

in H

1

dR

(M;S;Y ) is a disrete subgroup if � is disrete. In Examples II.11 and II.12 we see that

these subgroups may have in�nite rank, even for Y = R .

We write I := [0; 1℄ and assume that S 6= � and that M is onneted. Further Y denotes

an s..l.. spae, � is a subgroup of Y , and T

�

:= Y=� the orresponding quotient group. If �

is disrete, then the quotient topology turns T

�

into a Lie group with Lie algebra Y . For some

statements we do not have to assume that M is ompat. If we assume ompatness, we will

mention it expliitly.
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We write 


1

(M ;Y ) for the spae of smooth 1-forms on M with values in Y and endow

this spae with the natural topology orresponding in eah hart to the uniform onvergene of

all derivatives on ompat subsets mapping into oordinate harts (f. [Gl01d℄). For a subset

X � M we write 


1

X

(M ;Y ) for the losed subspae of 


1

(M ;Y ) onsisting of those forms

supported in X . We endow the spae 


1



(M ;Y ) with the loally onvex diret limit topology

with respet to the subspaes 


1

X

(M ;Y ), where X � M is a ompat subset. For a losed

subset S � M we write 


1

(M;S;Y ) � 


1

(M ;Y ) for the subspae of all forms vanishing with

all their partial derivatives on S .

The Lie group C

1

(M;S;T

�

)

De�nition II.1. Let M be a smooth manifold and K a Lie group. For an element f 2

C

1

(M ;K) we write

Æ

l

(f)(m) := d�

f(m)

�1
(f(m))df(m):T

m

(M)! k

�

=

T

e

(K)

for the left logarithmi derivative of f . This derivative an be viewed as a k-valued 1-form on

M whih we also write simply as Æ

l

(f) = f

�1

:df . We thus obtain a map

Æ

l

:C

1

(M ;K)! 


1

(M ; k)

satisfying the oyle ondition

Æ

l

(f

1

f

2

) = Ad(f

2

)

�1

:Æ

l

(f

1

) + Æ

l

(f

2

):

We also have the right logarithmi derivative Æ

r

(f) = df:f

�1

satisfying

Æ

r

(f

1

f

2

) = Æ

r

(f

1

) + Ad(f

1

):Æ

r

(f

2

):

(f. [KM97, 38.1℄). If K is abelian, then the oyle ondition shows that Æ := Æ

l

is a group

homomorphism whose kernel onsists of the loally onstant maps.

In Setion V we will need the following ontinuity result for the logarithmi derivatives.

Lemma II.2. For any Lie group K the maps Æ

l

; Æ

r

:C

1



(M ;K)! 


1



(M ; k) are smooth.

Proof. In view of the oyle relations

Æ

l

(f

1

f

2

) = Ad(f

2

)

�1

:Æ

l

(f

1

) + Æ

l

(f

2

) and Æ

r

(f

1

f

2

) = Æ

r

(f

1

) + Ad(f

1

):Æ

r

(f

2

);

it suÆes to prove the smoothness of Æ

l

and Æ

r

in an open identity neighborhood U of

C

1



(M ;K). Here we use that addition is ontinuous in 


1



(M ; k), and that the ontinuity of the

linear map Ad(f

1

) on 


1



(M ; k) follows from its ontinuity on the subspaes 


1

X

(M ; k), X �M

ompat. Aording to the de�nition of the Lie group struture on C

1



(M ;K), we may assume

that

U = ff 2 C

1



(M ;K): f(M) � V

K

g;

where V

K

� K is an open identity neighborhood for whih there exists a di�eomorphism

':V

k

! V

K

, where V

k

is an open subset of the loally onvex spae k . We now have to show

that the map

D:C

1



(M ;V

k

)! 


1



(M ; k); f 7! Æ

l

(' Æ f)

is smooth.

We think of D as a map between spaes of setions of vetor bundles over M . Then the

values of D(f) in an open subset O �M only depend on f j

O

. This implies in partiular that

D is loal in the sense of [Gl02, Def. 3.1℄. Moreover, for eah ompat subset X �M the map

D

X

:= D j

C

1

X

(M ;K)

:C

1

X

(M ;K)! 


1

X

(M ; k)

is smooth beause the map

Æ

l

:C

1

X

(M ;K)! 


1

X

(M ; k)

is obviously smooth. Therefore the Smoothness Theorem 3.2 in [Gl02℄ implies that D is a smooth

map and hene that Æ

l

is smooth. The smoothness of Æ

r

is shown similarly.
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Lemma II.3. If � is disrete, then

Æ(C

1

(M;S;T

�

)) =

n

� 2 


1

(M;S;Y ):

�

8� 2 C

1

((I; �I); (M;S))

�

Z

�

� 2 �

o

:

Proof. If � = Æ(f) for some f 2 C

1

(M;S;T

�

) and � 2 C

1

((I; �I); (M;S)), then

f(�(1))� f(�(0)) =

Z

�

� + �

vanishes in T

�

= Y=�, so that

R

�

� 2 �.

Suppose, onversely, that � 2 


1

(M;S;Y ) satis�es

Z

�

� 2 � for all � 2 C

1

((I; �I); (M;S)):

Pik s

0

2 S . Then all integrals of � over smooth loops based in s

0

are ontained in � (here

we need that Y is sequentially omplete to ensure the existene of Y -valued Riemann integrals

over urves), so that there exists a smooth funtion f :M ! T

�

with � = Æ(f) and f(s

0

) = 0

([Ne02a, Prop. 3.9℄). For eah s 2 S there exists a smooth path � 2 C

1

((I; �I); (M;S)) from

s

0

to s , and we obtain

f(s) = f(s)� f(s

0

) =

Z

�

� + � 2 �:

This means that f j

S

= 0. As � = Æ(f), all higher derivatives of f vanish on S , so that

f 2 C

1

(M;S;T

�

).

Corollary II.4. For eah s..l.. spae Y we have

dC

1

(M;S;Y ) =

n

� 2 


1

(M;S;Y ):

�

8� 2 C

1

((I; �I); (M;S))

�

Z

�

� = 0

o

:

In partiular dC

1

(M;S;Y ) is losed in 


1

(M;S;Y ) .

De�nition II.5. (a) In view of the losedness assertion in Corollary II.4, the quotient

z

(M;S)

(Y ) := 


1

(M;S;Y )=dC

1

(M;S;Y )

arries a natural (Hausdor�) loally onvex topology. Moreover, the subspae Z

1

dR

(M;S;Y ) of

losed forms in 


1

(M;S;Y ) is losed, whih implies that

H

1

dR

(M;S;Y ) := Z

1

dR

(M;S;Y )=dC

1

(M;S;Y )

is a losed subspae of z

(M;S)

(Y ). Let q: 


1

(M;S;Y )! z

(M;S)

(Y ) denote the quotient map.

We want to relate H

1

dR

(M;S;Y ) to the singular Y -valued ohomology of M modulo S .

The abelian group Z

1

(M;S) of singular 1-yles modulo S is generated by those given by

ontinuous maps (I; �I) ! (M;S). Therefore H

1

(M;S) is generated by the image of the set

�

1

(M;S) := [(I; �I); (M;S)℄ of homotopy lasses of maps of pairs (see [Br93, VII.4.10℄ for more

details on Hurewiz maps from homotopy groups to homology groups). Let � 2 Z

1

dR

(M;S;Y ).

Then we an de�ne for eah singular 1-hain � the integral

R

�

� . Aording to Stoke's formula,

these integrals vanish on boundaries and also on hains supported by S . We thus obtain a map

Z

1

dR

(M;S;Y )! H

1

(M;S;Y ) := Hom(H

1

(M;S);Y );

where H

1

(M;S) denotes the singular homology group with oeÆients in Z and H

1

(M;S;Y ) a

relative singular ohomology group (f. [Br93, V.7.2℄).
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The kernel of this map onsists of all losed 1-forms � for whih all the integrals of yles in

Z

1

(M;S) vanish, whih means that � = df for some f 2 C

1

(M;S;Y ) (Corollary II.4). Hene

we obtain an embedding

(2:1) �:H

1

dR

(M;S;Y ) ,! H

1

(M;S;Y ):

As we will see in Example II.12 below, this map is not always surjetive.

(b) For a subgroup � � Y we de�ne

Z

1

dR

(M;S; �) :=

n

� 2 Z

1

dR

(M;S;Y ): (8� 2 C

1

((I; �I); (M;S))

Z

�

� 2 �

o

:

Applying Corollary II.4, we see that dC

1

(M;S;Y ) is a losed subspae of Z

1

dR

(M;S; �), so that

H

1

dR

(M;S; �) := Z

1

dR

(M;S; �)=dC

1

(M;S;Y )

arries a natural Hausdor� loally onvex topology. We also de�ne

Z

1

dR

(M ; �) :=

n

� 2 Z

1

dR

(M ;Y ): (8� 2 C

1

(S

1

;M))

Z

�

� 2 �

o

and H

1

dR

(M ; �) := Z

1

dR

(M ; �)=dC

1

(M ;Y ).

Remark II.6. Let M be a onneted manifold.

(a) Assume that � � Y is a disrete subgroup and let T

�

:= Y=� denote the orresponding

quotient Lie group and q

�

:Y ! T

�

the quotient map. We onsider the abelian topologial group

G := C

1

(M ;T

�

), the spae g := C

1

(M ;Y ), and the exponential funtion

exp

G

: g ! G; � 7! q

�

Æ �:

The map

Æ:G = C

1

(M ;T

�

)! Z

1

dR

(M ;Y ); f 7! Æ(f) = f

�1

df

is a ontinuous group homomorphism whose kernel onsists of the loally onstant funtions on

M . If M is onneted, then ker Æ onsists only of the onstant funtions.

Aording to [Ne02a, Prop. 3.9℄, a losed 1-form in Z

1

dR

(M ;Y ) an be written as Æ(f) for

some f 2 C

1

(M ;T

�

) if and only if all integrals over losed pieewise smooth paths are ontained

in �. This means that

im(Æ) = Z

1

dR

(M ; �):

Using the deomposition G

�

=

G

�

� T

�

with G

�

:= ff 2 G: f(x

M

) = 0g , where x

M

2 M is a

base point, it follows that

Æ:G

�

! Z

1

dR

(M ; �)

is an isomorphism of groups. Here the subgroup B

1

dR

(M ;Y ) � Z

1

dR

(M ; �) orresponds to

im(exp

G

), so that

G= exp

G

(g)

�

=

Z

1

dR

(M ; �)=B

1

dR

(M ;Y ) = H

1

dR

(M ; �):

If, in addition, M is ompat, then G is a Lie group with Lie algebra g , exp

G

is the

universal overing map of G

e

, and Æ:G

�

! Z

1

dR

(M ; �) is an isomorphism of Lie groups. This

leads to

�

0

(G)

�

=

G= exp

G

(g)

�

=

Z

1

dR

(M ; �)=B

1

dR

(M ;Y ) = H

1

dR

(M ; �):

(b) If M is ompat and S � M a non-empty losed subset, then we obtain with similar

arguments as in (a) that the group G := C

1

(M;S;T

Y

) is a Lie group and that exp

G

is the
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universal overing map of the identity omponent G

e

of G . The onnetedness of M and S 6= �

imply ker exp

G

= f0g . Therefore the exponential funtion exp

G

indues a di�eomorphism

exp

G

: g = C

1

(M;S;Y )! G

e

:

Moreover, Æ is an injetive homomorphism of Lie groups with Æ(G) = Z

1

dR

(M;S; �)

(Lemma II.3), where G

e

orresponds to the subspae dC

1

(M;S;Y ), so that

�

0

(G)

�

=

H

1

dR

(M;S; �):

() The set M n S is an open subset of M , hene a non-ompat manifold. We have inlusions




1



(M n S;Y ) ,! 


1

(M;S;Y ) and Z

1

dR;

(M n S;Y ) ,! Z

1

dR

(M;S;Y ):

Moreover,

dC

1



(M n S;Y ) � Z

1

dR;

(M n S;Y ) \ dC

1

(M;S;Y )

and if, onversely, � = df 2 




(M n S;Y ) with f 2 C

1

(M;S;Y ), then df vanishes in a

neighborhood of S , so that f

�1

(0) is an open neighborhood of S . If M is ompat, then it

follows that f has ompat support, and therefore that

dC

1



(M n S;Y ) = Z

1

dR;

(M n S;Y ) \ dC

1

(M;S;Y ):

This means that we also obtain an inlusion

':H

1

dR;

(M n S;Y ) ,! H

1

dR

(M;S;Y ):

If X is a ompat manifold with boundary, M = X [X

℄

as in Example I.9, and int(X) =

M n S , we laim that

(2:2) H

1

dR;

(int(X);Y )

�

=

H

1

dR

(X; �X ;Y ) := H

1

dR

(M;M n int(X);Y ):

In fat, if � 2 Z

1

dR

(X; �X ;Y ), then the restrition of � to �X vanishes. Moreover, there exists

a tubular neighborhood U of �X di�eomorphi to �X � I , so that the inlusion �X ,! U

indues an isomorphism �

1

(�X) ! �

1

(U). We onlude that all periods of � j

U

vanish, and

hene that there exists a smooth funtion f 2 C

1

(U; �X ;Y ) with df = � j

U

. Let � 2 C

1

(X ;R)

be onstant 1 in a neighborhood of �X and 0 on X n U . Then � � d(�f) 2 Z

1

dR;

(int(X);Y )

has the same ohomology lass as � . This proves (2.2).

From [Br97, Prop. II.12.3, Th. III.1.1, Cor. III.4.12℄ applied to the paraompatifying

family � of losed subsets of X n �X , we derive that for singular ohomology we have

H

1

(X; �X ;Y )

�

=

H

1



(int(X);Y ):

Further the general version of de Rham's Theorem with values in sheaves ([Br97, xIII.3℄) yields

an isomorphism

H

1



(int(X);Y )

�

=

H

1

dR;

(int(X);Y ):

Therefore

H

1

dR

(X; �X ;Y )

�

=

H

1

dR;

(int(X);Y )

�

=

H

1



(int(X);Y )

�

=

H

1

(X; �X ;Y )

�

=

Hom(H

1

(X; �X);Y ):

The following theorem on the disreteness of the group H

1

dR

(M;S; �) is the main result of

the present setion.
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Theorem II.7. Let S be a non-empty losed subset of the ompat manifold M and � � Y

a disrete subgroup. Then the subgroup

H

1

dR

(M;S; �) =

n

[�℄ 2 z

(M;S)

(Y ): (8� 2 C

1

((I; �I); (M;S))

Z

�

� 2 �

o

of z

(M;S)

(Y ) is disrete.

Proof. Let Z

1

dR

(M ;Y ) � 


1

(M ;Y ) denote the losed subspae of losed 1-forms. As �

1

(M)

is �nitely generated (f. Proposition III.1 below) and � is disrete,

dC

1

(M ;Y ) =

n

� 2 Z

1

dR

(M ;Y ): (8[�℄ 2 �

1

(M))

Z

�

� = 0

o

is an open subgroup of

Z

1

dR

(M ; �) =

n

� 2 Z

1

dR

(M ;Y ): (8� 2 C

1

(S

1

;M))

Z

�

� 2 �

o

:

That H

1

dR

(M;S; �) is a disrete subgroup of the quotient spae z

(M;S)

(Y ) is equivalent to

dC

1

(M;S;Y ) being an open subgroup of Z

1

dR

(M;S; �). As a onsequene of what we have

just seen, the group Z

1

dR

(M;S; �) \ dC

1

(M ;Y ) is open in Z

1

dR

(M;S; �). Therefore it suÆes

to verify that dC

1

(M;S;Y ) is an open subgroup of Z

1

dR

(M;S; �) \ dC

1

(M ;Y ).

Fix a point x

M

2 S . We onsider the map

�:Z

1

dR

(M;S; �)! C(M ;T

�

); �(�)(x) :=

Z

x

x

M

� + � 2 T

�

:

Then

�(Z

1

dR

(M;S; �)) � C

1

(M ;T

�

); d

�

�(�)

�

= �; �(�) j

S

= 0;

and � is ontinuous with respet to the topology of uniform onvergene on ompat subsets

of M . Hene

�

�1

(C(M ;T

�

)

e

) = �

�1

(exp(C(M ;Y ))) = dC

1

(M;S;Y )

is an open subgroup of Z

1

dR

(M;S; �) beause C(M ;T

�

) is a Lie group (Remark II.6).

Lemma II.8. Let I = [0; 1℄ . The integration maps

(2:3) I

R

: 


1



(R;Y ) = Z

1

dR;

(R;Y )! Y; � 7!

Z

R

�;

(2:4) I

I

: 


1

(I; �I ;Y ) = Z

1

dR

(I; �I ;Y )! Y; � 7!

Z

I

�;

and

(2:5) I

S

1

: 


1

(S

1

;Y ) = Z

1

dR

(S

1

;Y )! Y; � 7!

Z

S

1

�

indue topologial isomorphisms

H

1

dR;

(R;Y )! Y; H

1

dR

(I; �I ;Y )! Y and H

1

dR

(S

1

;Y )! Y:

Proof. We have a ontinuous map 


1



(R;Y ) ! Y; � 7!

R

R

�; and it is easy to see that this

map is surjetive beause there exists a smooth real-valued 1-form  with ompat support and

R

R

 = 1. Sine the map Y ! 


1



(R;Y ); v 7!  � v is ontinuous, the integration map splits

linearly. Further its kernel oinides with the spae of exat forms, whih proves (2.3). The other

two assertions follow by similar arguments.
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Remark II.9. (a) For eah smooth map �: (I; �I)! (M;S) of pairs we obtain a natural map

I

�

: z

(M;S)

(Y )! Y

�

=

z

(I;�I)

(Y )

whih is given on the equivalene lass of a Y -valued 1-form � by

I

�

([�℄) =

Z

�

� :=

Z

I

�

�

�

(f. Lemma II.8). The desription of dC

1

(M;S;Y ) in Lemma II.3 implies that the maps

I

�

: z

(M;S)

(Y )! Y separate points.

(b) For (M;S) = (I; �I) the set �

1

(I; �I) onsists of 4 elements. In fat, if f : I ! I is a

ontinuous funtion with f(�I) � �I , then the onvexity of I implies that f is homotopy

equivalent to the aÆne interpolation of the restrition f j

�I

, and there are preisely four di�erent

maps �I ! �I .

Lemma II.10. The subspae H

1

dR

(M;S;Y ) of z

(M;S)

(Y ) oinides with those elements [�℄ for

whih all the integrals I

�

([�℄) only depend on the homotopy lass of � 2 C

1

((I; �I); (M;S)) in

�

1

(M;S) . In partiular

(1) H

1

dR

(M;S;Y ) is a losed subspae of z

(M;S)

(Y ) , and

(2) if � is disrete, then

Z

1

dR

(M;S; �) =

n

� 2 


1

(M;S;Y ): (8� 2 C

1

((I; �I); (M;S))

Z

�

� 2 �

o

:

Proof. Fix a point x

M

2 S . Then we have a natural inlusion C((I; �I); (M;x

M

)) !

C((I; �I); (M;S)) induing the map �

1

(M;x

M

)! �

1

(M;S).

Let � 2 


1

(M;S;Y ) and suppose �rst that the integrals

R

�

� for � 2 C

1

((I; �I); (M;S))

only depend on the homotopy lass. This implies in partiular that the integrals over loops in

C

1

((I; �I); (M;x

M

)) � C

1

�

(S

1

;M) in x

M

only depend on the homotopy lass. Let q

M

:

f

M !M

denote the universal overing manifold. That the integrals of � over loops in x

M

only depend

on the homotopy lass implies that there exists a smooth funtion f :

f

M ! Y with df = q

�

M

� ,

hene in partiular that d� = 0, and therefore that [�℄ 2 H

1

dR

(M;S;Y ).

Suppose, onversely, that [�℄ 2 H

1

dR

(M;S;Y ), i.e., that � is losed. Then integrals over

ontinuous maps I !M are well-de�ned. Then q

�

M

� is exat ([Ne02a, Th. 3.6℄), and there exists

a smooth funtion f 2 C

1

(

f

M ;Y ) with df = q

�

M

� . It follows in partiular that all integrals of

� over ontratible loops vanish. Let �: I � I ! M be a ontinuous map suh that the maps

�

t

:= �(t; �): I !M satisfy �

t

(f0; 1g) � S . We have to show that

R

�

0

� =

R

�

1

� . We de�ne

e�: I � [0; 3℄!M; e�(t; s) :=

8

<

:

�(st; 0) for 0 � s � 1

�(t; s� 1) for 1 � s � 2

�((3� s)t; 1) for 2 � s � 3

and observe that e� is ontinuous and that the urves e�

t

:= e�(t; �) start in �

0

(0) and end in

�

0

(1), where s 7! e�

0

(3s) is homotopi to �

0

. We onlude that for eah t 2 I we have

0 =

Z

e�

t

� �

Z

e�

0

� =

Z

e�

t

� �

Z

�

0

� =

Z

2

1

e�

�

t

� �

Z

�

0

� =

Z

�

t

� �

Z

�

0

�:

Here we use that the vanishing of � on S implies that the integrals

R

1

0

e�

�

t

� and

R

3

2

e�

�

t

� vanish.

For t = 1 we obtain

R

�

0

� =

R

�

1

� , and hene the homotopy haraterization of the subspae

H

1

dR

(M;S;Y ) of z

(M;S)

(Y ).

This implies in partiular that H

1

dR

(M;S;Y ) is losed, beause it is de�ned as the inter-

setion of the kernels of the ontinuous linear maps

[�℄ 7!

Z

�

1

� �

Z

�

0

�; �

i

2 C

1

((I; �I); (M;S))
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from above.

Assume now that � � Y is a disrete subgroup. Then the requirement

R

�

� 2 � for eah

map � 2 C

1

((I; �I); (M;S)) together with the ontinuous dependene of the integral from �

implies that

R

�

� only depends on the homotopy lass of � in �

1

(M;S). If all these integrals

are ontained in the disrete subgroup �, it follows from the �rst part of the proof that � is

losed.

Example II.11. We onsider the losed subset

S = f0g [

�

1

n

:n 2 N

	

� R:

We laim that

H

1

dR

(R; S;R)

�

=

E := f(�

n

)

n2N

: (8k 2 N

0

) lim

n!1

n

k

�

n

= 0g

as Fr�ehet spaes, where the topology on E is given by the seminorms p

k

(�) := sup

n2N

n

k

j�

n

j

for k 2 N .

As dimR = 1, we have Z

1

dR

(M;S;R) = 


1

(R; S;R) , and eah element on this spae an

be written as the di�erential of a unique funtion f 2 C

1

(R;R) with f(0) = 0. We have to

study the possible restritions f j

S

beause they give as the values of [df ℄ on the relative 1-yles

in Z

1

(R; S) .

First we derive neessary onditions. As f

(k)

(0) = 0 for eah k 2 N and

(2:6) f

(k)

(0) = lim

x!0

k!f(x)

x

k

= lim

n!1

k!f(

1

n

)n

k

;

we obtain for eah k 2 N the ondition lim

n!1

f(

1

n

)n

k

= 0:

Let (�

n

)

n2N

satisfy lim

n!1

n

k

�

n

= 0 for eah k 2 N

0

. We are looking for a smooth

funtion f in C

1

(R;R) with f

0

2 C

1

(R; S;R) and f(

1

n

) = �

n

for eah n . Let  2 C

1



(R;R)

be a funtion with supp( ) = [�1; 1℄, im( ) � [0; 1℄ and equal to 1 on a neighborhood of 0.

Then we obtain for eah a 2 R and " > 0 a smooth funtion  

a;"

(x) :=  ("

�1

(x�a)) supported

by [a� "; a+ "℄ whih is onstant 1 in a neighborhood of a . We de�ne  

n

:=  

1

n

;

1

4n(n+1)

. Then

 

n

is a funtion onstant 1 in a neighborhood of

1

n

with support ontained in

�

1

2

�

1

n

+

1

n+1

�

;

1

2

�

1

n

+

1

n�1

��

:

In partiular the supports of the funtions  

n

are pairwise disjoint. We laim that

f :=

1

X

n=1

�

n

 

n

de�nes a funtion in C

1

(R;R) with f

0

2 C

1

(R; S;R) . This will be ahieved by showing that

all derivatives of the sequene de�ning f are uniformly onvergent. In fat, for k 2 N

0

we have

k 

(k)

n

k

1

�

�

4n(n+ 1)

�

k

k 

(k)

k

1

� 

k

n

2k

for some positive onstant 

k

. Therefore

X

n

j�

n

jk 

(k)

n

k

1

�

X

n

j�

n

j

k

n

2k

� 

k

X

n

j�

n

jn

2k

<1:

We onlude that the series f =

P

n

�

n

 

n

de�nes a smooth funtion. It follows diretly from

the onstrution that f is onstant �

n

in a neighborhood of

1

n+1

and that all derivatives of f

vanish in 0 beause f vanishes on ℄�1; 0[.

This proves that the map

�:Z

1

dR

(R; S;R) ! E; h(t)dt 7!

�

Z
1

n

0

h(�) d�

�

n2N

;

is surjetive. Formula (2.6) easily implies thatg � is ontinuous, hene a quotient map by the

Open Mapping Theorem. This proves that the indues map H

1

dR

(R; S;R) ! E is a topologial

isomorphism.

In the next example we take a onvergent sequene out of the sphere. This aims at an

example of a Fr�ehet{Lie group C

1

(M;S;K) where the period group �

(M;S)

(f. De�nition III.7)

is disrete but not �nitely generated (see Proposition VII.16).
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Example II.12. (Removing a onvergent sequene from the sphere) Let M := S

2

� R

3

and

S = fx

n

:n 2 Ng [ f(0; 0; 1)g , where

x

n

=

�

1

n

; 0;

q

1�

1

n

2

�

:

As �

1

(M) is trivial, there exists for eah n 2 N a path 

n

: [0; 1℄!M from x

0

:= (0; 0; 1) to x

n

suh that the group H

1

(M;S) is generated by the lasses [

n

℄ , n 2 N .

For eah n 2 N there exists a smooth funtion f

n

2 C

1

(M;S;R) whih is onstant 1 in a

neighborhood of x

n

and vanishes in a neighborhood of S n fx

n

g . Then df

n

2 


1

(M;S;R) and

we have

Z



m

df

n

= f

n

(

m

(1))� f

n

(

m

(0)) = Æ

mn

:

It follows in partiular that the lasses [

n

℄ are linearly independent over Z , so that we obtain

H

1

(M;S) =

M

n2N

Z[

n

℄

�

=

Z

(N)

and therefore that the map

H

1

(M;S;R) ! R

N

; f 7! (f([

n

℄))

n2N

is bijetive.

We want to determine the subgroup H

1

dR

(M;S;R) in H

1

(M;S;R). Let � 2 Z

1

dR

(M;S;R).

Sine H

1

dR

(S

2

;R) is trivial, there exists a smooth funtion f :S

2

! R with f(x

0

) = 0 and df = � .

Then

Z



n

� =

Z



n

df = f(x

n

)� f(x

0

) = f(x

n

);

and the question is how to haraterize those sequenes in R

N

whih arise as (f(x

n

))

n2N

for

suh a funtion f . We obtain a natural hart around x

0

via

':U := fx 2 R

2

: kxk

2

< 1g ! S

2

; '(x) =

�

x

1

; x

2

;

q

1� x

2

1

� x

2

2

�

:

Eah of the funtions onstruted in Example II.11 may be extended to a smooth ompatly

supported funtion on a neighborhood of S in R

2

in suh a way that it does not depend on the

seond variable x

2

in a neighborhood of S . Then we may use the hart ' to obtain a funtion

in C

1

(M;S;R). We thus obtain

H

1

dR

(M;S;R)

�

=

f(�

n

)

n2N

: (8k 2 N) �

n

n

k

! 0g � H

1

(M;S;R)

�

=

R

N

;

i.e., that H

1

dR

(M;S;R) orresponds to the spae of rapidly dereasing sequenes with its usual

topology.

A funtion f yields an element in the group H

1

dR

(M;S;Z) if and only if all its values in the

x

n

are integral, so that H

1

dR

(M;S;Z)

�

=

Z

(N)

orresponds to the integer-valued funtions with

�nite support. In partiular H

1

dR

(M;S;Z) is a disrete subgroup of H

1

dR

(M;S;R) (f. Theorem

IV.7).

We onlude this setion with some additional remarks on the relation between the two

spaes H

1

dR

(M;S;Y ) and H

1

dR;

(M n S;Y ).

Remark II.13. We reall from Remark II.6() the injetion

':H

1

dR;

(M n S;Y ) ,! H

1

dR

(M;S;Y ):

(a) If S is a ompat submanifold of M , then ' is surjetive. In fat, if � 2 Z

1

dR

(M;S;Y ), then

� j

S

= 0. Let U be a tubular neighborhood of S di�eomorphi to S � R . Then � j

U

is exat,
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and there exists f 2 C

1

(U ;Y ) with df = � j

U

. Now there exists a funtion f

1

2 C

1

(M ;Y )

whih oinides with f on a neighborhood of S , and then � � df vanishes in a neighborhood

of S . This proves that [�℄ = [� � df

1

℄ 2 im(').

(b) If H

1

dR;

(M n S;R) is in�nite-dimensional, then ' is not surjetive. In fat, then the spae

H

1

dR;

(M n S;R) is a ountable diret limit of �nite-dimensional spaes, hene of ountable

dimension (f. Theorem IV.16). On the other hand H

1

dR

(M;S;R) is a quotient of the Fr�ehet

spae Z

1

dR

(M;S;R) by a losed subspae, hene a Fr�ehet spae. As ' is injetive, this spae

is in�nite-dimensional, so that the Baire property implies that it is not ountably dimensional.

Hene ' is not surjetive.

() If H

0

(S) is �nitely generated, i.e., S has only �nitely many ar-omponents, then the exat

homology sequene of the pair (M;S) implies that H

1

(M;S) is �nitely generated, whih in turn

implies that

H

1

(M;S;R)

�

=

Hom(H

1

(M;S);R)

is �nite-dimensional. Therefore H

1

dR

(M;S;R) is also �nite-dimensional (f. De�nition II.5).

Conversely, every loally onstant funtion S ! Z an be extended to a smooth funtion

f :M ! R (it suÆes to onsider funtions S ! f0; 1g) whih is loally onstant in a neighbor-

hood of the ompat set S . Then df 2 Z

1

dR;

(M n S;Z). The lass of [df ℄ in H

1

dR;

(M n S;Z)

is non-zero if f j

S

is not onstant. Therefore H

1

dR;

(M n S;Z) has in�nite rank if C(S;Z) has

in�nite rank. Note that this ondition is weaker than the requirement that S has only �nitely

many ar-omponents.

III. Compat manifolds with boundary

Our strategy to get a better desription of the spaes z

M

(Y ) and H

1

dR;

(M ;Y ) for a non-ompat

manifold is to desribe M as a union of ertain ompat submanifolds with boundary (X

n

)

n2N

with X

n

� X

0

n+1

(f. Setion IV). To get information on the spae H

1

dR;

(M ;Y ), we will need

detailed information on the natural maps H

1

dR

(X

n

; �X

n

;Y )! H

1

dR

(X

n+1

; �X

n+1

;Y ). To obtain

this information is the main goal of the present setion (Theorem III.6). In this setion we only

deal with ompat manifolds with boundary, and in Setion IV we desribe the approximation

of non-ompat manifolds.

In the following we write for a topologial spae X simply H

�

(X) := H

sing;�

(X ;Z) for the

singular homology groups with oeÆients in Z . We likewise write H

�

(X;A) for the singular

homology groups for spae pairs (X;A).

Proposition III.1. Let X be a ompat manifold with boundary �X . Then the following

assertions hold:

(i) The singular homology groups H

�

(X) are �nitely generated.

(ii) All homotopy groups �

k

(X) , k 2 N

0

, are �nitely generated.

(iii) For eah ommutative ring R the ohomology groups H

�

(X;R) are �nitely generated

R-modules.

(iv) The relative homology groups H

�

(X; �X) are �nitely generated.

(v) The inlusion int(X) ,! X is a homotopy equivalene.

Proof. There exists a ompat manifold X

d

, the double of X , in whih X embeds. In

partiular Whitney's Embedding Theorem implies that X

d

and hene X embeds smoothly into

R

2d+1

, where d = dimX . From the proof of Corollary E.5 in [Br93℄ we derive that there exists a

�nite CW-omplex K � R

2n+1

suh that K is a neighborhood of X and there exists a retration

r:K ! X . The inlusion j:X ,! K satis�es r Æ j = id

X

.

(i) We immediately derive that the spaes H

�

(X) are diret summands in H

�

(K), hene in

partiular �nitely generated abelian groups.

(ii) We likewise see that for eah k 2 N

0

we have �

k

(K)

�

=

ker�

k

(r) o �

k

(X). As �

k

(K) is

�nitely generated, the same holds for the group �

k

(X)

�

=

�

k

(K)= ker�

k

(r).
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(iii) In view of [Fu70, Th. 52.2℄, we have for abelian groups A and C

j

, j 2 J :

Ext(�

j2J

C

j

; A) =

Y

j2J

Ext(C

j

; A):

As Ext(Z; A)

�

=

0 and Ext(Z=nZ; A)

�

=

A=nA , we onlude that for every ommutative ring

R and every �nitely generated abelian group � the group Ext(�; R) is a �nitely generated R -

module. Therefore the Universal CoeÆient Theorem implies that for every ompat manifold

with boundary the groups H

�

(X;R) are �nitely generated R -modules.

(iv) In view of [Br93, Th. IV.6.15℄, we further have an exat sequene

H

�

(�X)! H

�

(X)! H

�

(X; �X)! H

��1

(�X):

The fat that H

��1

(�X) and H

�

(X) are �nitely generated groups implies that the groups

H

�

(X; �X) are �nitely generated.

(v) Using the ollar onstrution for a ompat manifold with boundary, we obtain inlusions

int(X) ,! X ,! int(X) ,! X , where the ompositions of two suessive ones are homotopi to the

identity on int(X), resp., X . Therefore the inlusion int(X) ,! X is a homotopy equivalene.

Lemma III.2. For eah ompat manifold X with boundary the spae H

1

dR

(X; �X ;R) is �nite-

dimensional.

Proof. In De�nition II.5 we have desribed an embedding

H

1

dR

(X; �X ;R) ,! H

1

(X; �X ;R):

Hene the assertion follows from Proposition III.1 whih implies that H

1

(X; �X ;R) is �nite-

dimensional.

We take a loser look at the embedding

H

1

dR

(X; �X ;R) ,! H

1

(X; �X ;R)

�

=

Hom(H

1

(X; �X);R)

introdued in De�nition II.5. The injetivity of this embedding implies that the integration maps

I



:H

1

dR

(X; �X ;R) ! R; [�℄ 7!

Z



�

for singular yles  2 Z

1

(X; �X) separate points. We are interested in a nie set of suh yles

for whih the integration maps form a basis of the dual spae of the �nite-dimensional vetor

spae H

1

dR

(X; �X ;R).

We reall the part

H

1

(�X)! H

1

(X)

�

��!H

1

(X; �X)! H

0

(�X)

s

��!H

0

(X)

of the long exat homology sequene of the pair (X; �X) ([Br93, Th. IV.6.15℄). Let �:H

1

(X)!

H

1

(X; �X) be the natural map and hoose pieewise smooth loops �

1

; : : : ; �

a

in X for whih

the images �([�

i

℄) 2 H

1

(X; �X) form a Z-basis of the image �(H

1

(X)) modulo torsion. Let

b := rkH

0

(�X) � 1 and hoose a minimal system of pieewise smooth ars �

1

; : : : ; �

b

in

Z

1

(X; �X) onneting the boundary omponents of �X . Sine there are b + 1 boundary

omponents, b ars suÆe and less would not be enough. Then the images of the lasses [�

i

℄ in

H

0

(�X) form a Z-basis of the kernel of the summation map s:H

0

(�X)

�

=

Z

b+1

! H

0

(X)

�

=

Z .

Sine the lasses [�

j

℄ form a basis of the image of H

1

(X; �X) in H

0

(�X), and the lasses

�([�

i

℄) generate the kernel of the map H

1

(X; �X)! H

0

(�X) modulo torsion, the lasses �([�

i

℄)

and [�

j

℄ form a Z-basis of the abelian group H

1

(X; �X) modulo torsion.

The bijetivity of the map � in the following proposition (see also (2.1)) an alternatively

be derived from the disussion in Remark II.6(), whih implies that the real vetor spaes

H

1

dR

(X; �X ;R) and Hom(H

1

(X; �X);R) have the same dimension, so that the injetivity of �

implies that it is bijetive. We will see that Proposition III.3 provides more onrete information

whih is needed later on.
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Proposition III.3. The integration funtionals I

�

i

, i = 1; : : : ; a and I

�

j

, j = 1; : : : ; b form

a basis of the dual spae of H

1

dR

(X; �X ;R) . In partiular, the natural homomorphism

�:H

1

dR

(X; �X ;R) ! Hom(H

1

(X; �X);R); �([�℄)([℄) =

Z



�

from De�nition II.5(2.1) is bijetive.

Proof. Sine the lasses �([�

i

℄) and [�

j

℄ generate H

1

(X; �X) modulo torsion and � is injetive

(De�nition II.5), the integration maps I

�

i

and I

�

j

separate the points of H

1

dR

(X; �X ;R), hene

span its dual spae.

Let �

0

:H

1

(X; �X)! R be a homomorphism and �:H

1

(X)! R its pull-bak to H

1

(X).

Then � vanishes on the image of H

1

(�X) in H

1

(X), so that there exists a losed 1-form � on

X with

Z



� = �();  2 H

1

(X):

This an be proved as [Ne02a, Prop. 3.8℄. The main idea is to assoiate to � , viewed as a

homomorphism �

1

(X) ! R , an aÆne R-bundle over X and then to use partitions of unity to

obtain a smooth global setion s , whose di�erential an be taken as � . Sine � vanishes on the

image of H

1

(�X) in H

1

(X), we an think of it as a homomorphism of the image �(H

1

(X)) of

H

1

(X) in H

1

(X; �X) to R .

Let C be a onneted omponent of �X , I := [0; 1℄ and

b

C be a neighborhood of C in X

di�eomorphi to I �C in suh a way that f0g�C orresponds to C . Then the homomorphism

H

1

(C)! H

1

(�X)! R indued by the 1-form � vanishes, so that there exists a smooth funtion

g

0

:

b

C ! R with � j

b

C

= dg . If ': I ! R is smooth with ' = 1 in a neighborhood of 0 and

0 in a neighborhood of 1, then b': (t; x) 7! '(t) yields a smooth funtion on X vanishing in a

neighborhood of X n

b

C and taking the value 1 on a neighborhood of C . Hene b' � g an be

viewed as a smooth funtion X ! R whose di�erential oinides with dg in a neighborhood

of C . Now � � d(b' � g

0

) de�nes the same homomorphism �

1

(X) ! R but, in addition, this

1-form vanishes in a neighborhood of C . Repeating this onstrution for the other onneted

omponents of �X yields a losed 1-form �

0

2 


1

(X; �X ;R) vanishing in a neighborhood of

�X for whih �

0

represents � on H

1

(X). We onlude that �

0

� �([�

0

℄) vanishes on �(H

1

(X))

in H

1

(X; �X), so that it remains to see that eah homomorphisms �:H

1

(X; �X)! R vanishing

on the image of H

1

(X) is ontained in im(�). Let r:H

1

(X; �X)! H

0

(X) denote the boundary

map. Then �

0

= �

0

Æ r for some �

0

:H

0

(�X)

�

=

Z

b+1

! R .

Let C � �X be a onneted omponent. Using the ollar onstrution, we obtain a smooth

funtion f

C

:X ! R whih is 1 in a neighborhood of C and 0 in a neighborhood of all other

onneted omponents of �X . Then df

C

2 Z

1

dR

(X; �X ;R) and beause the form df

C

is exat,

it vanishes on all yles in �(H

1

(X)). Moreover, the funtion f

C

de�nes a homomorphism

F

C

:H

0

(�X)! Z; C

0

7! f

C

(C

0

) = Æ

C;C

0

;

and, as a homomorphism H

1

(X; �X) ! R , the integration of df

C

over yles modulo �X is

obtained by pulling F

C

bak via the natural map H

1

(X; �X) ! H

0

(�X). As the F

C

form

a Z-basis of Hom(H

0

(�X);R), we onlude that �

0

lies in the span of the �([df

C

℄) , hene is

ontained in the image of � . This ompletes the proof of the surjetivity of � .

Lemma III.4. For any s..l.. spae Y the exatness of a losed 1-form � 2 


1

(X; �X ;Y ) is

equivalent to the vanishing of all integrals

R

�

i

� and

R

�

j

� .

Proof. If � 2 


1

(X; �X ;Y ) is exat, then learly all integrals

R



� vanish for  2 Z

1

(X; �X).

Suppose, onversely, that all integrals

R

�

i

� and

R

�

j

� vanish. For eah ontinuous linear fun-

tional � 2 Y

0

we then obtain

Z

�

i

� Æ � = �

�

Z

�

i

�

�

= �

�

Z

�

j

�

�

=

Z

�

j

� Æ � = 0

for eah i and j . Sine Y

0

separates points of Y , all integrals of � on Z

1

(X; �X) are trivial,

and therefore � is exat.
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Remark III.5. Let [�

�

i

℄; [�

�

i

℄ 2 H

1

dR

(X; �X ;R) be a basis dual to the integrals I

�

i

and I

�

j

from above. Then the map

�

X

:H

1

dR

(X; �X ;Y )! Y

a+b

; �

X

([�℄) :=

�

Z

�

i

�;

Z

�

j

�

�

i=1;:::;a;j=1;:::;b

is ontinuous and injetive (Lemma III.4). Moreover, it is surjetive and its inverse is given by

�

�1

X

(y

1

; : : : ; y

a+b

) :=

a

X

i=1

[�

�

i

� y

i

℄ +

b

X

j=1

[�

�

j

� y

a+j

℄:

It follows in partiular that �

�1

X

is ontinuous, and therefore that �

X

is an isomorphism of

topologial vetor spaes. The extension of �

X

to a map

e

�

X

: z

(X;�X)

(Y )! Y

a+b

; �

X

([�℄) :=

�

Z

�

i

�;

Z

�

j

�

�

i=1;:::;a;j=1;:::;b

is ontinuous and surjetive. Therefore its kernel is a losed omplement to H

1

dR

(X; �X ;Y ) and

the orresponding projetion onto H

1

dR

(X; �X ;Y ) is given by

p

X

: [�℄ 7!

a

X

i=1

h

�

�

i

�

Z

�

i

�

i

+

b

X

j=1

h

�

�

j

�

Z

�

j

�

i

:

Theorem III.6. Let Z be a ompat onneted manifold with boundary and X � int(Z) a

ompat onneted equidimensional submanifold with boundary. We assume that eah onneted

omponent of Z nX intersets �Z . Then the following assertions hold:

(1) The inlusion Z

1

dR

(X; �X ;Y ) ,! Z

1

dR

(Z; �Z;Y ) obtained by extension by 0 on ZnX indues

an injetive map

H

1

dR

(X; �X ;Y ) ,! H

1

dR

(Z; �Z;Y ):

(2) The ontinuous projetion p

X

extends to a ontinuous projetion p

Z

, so that we obtain the

ommutative diagram

z

(X;�X)

(Y )

p

X

��! H

1

dR

(X; �X ;Y )

?

?

y

?

?

y

z

(Z;�Z)

(Y )

p

Z

��! H

1

dR

(Z; �Z;Y ):

Proof. Let �

i

, i = 1; : : : ; a and �

j

, j = 1; : : : ; b be as in Proposition III.3. Then the

integration funtionals I

�

1

; : : : ; I

�

a

; I

�

1

; : : : ; I

�

b

form a basis of the dual spae of H

1

dR

(X; �X ;R).

(1) We laim that

dC

1

(Z; �Z;Y ) \ Z

1

dR

(X; �X ;Y ) = dC

1

(X; �X ;Y ):

The inlusion \�" is trivial. Conversely, let f 2 C

1

(Z; �Z;Y ) and suppose that df 2

Z

1

dR

(X; �X ;Y ), i.e., that df vanishes on Z n X . Then f is onstant on all onneted om-

ponents of Z nX . By our initial assumptions, all onneted omponents of Z nX interset �Z ,

whih implies that f vanishes on all these omponents, hene that f 2 C

1

(X; �X ;Y ). This

proves (1).

(2) Next we want to hoose integration maps H

1

dR

(Z; �Z;Y ) ! Y in suh a way that those

whih are additional to the ones needed for X are supported by Z n int(X), hene vanish on

Z

1

dR

(X; �X ;Y ).

We have to modify the urves �

i

so that they represent elements on Z

1

(Z; �Z). Sine every

onneted omponent of Z nX meets �Z , we an extend every pieewise smooth urve �

i

to a

pieewise smooth urve

e

�

i

onneting two boundary omponents of Z . For this we may w.l.o.g.
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assume that we have parametrizations �

j

: [0; 1℄! X and

e

�

j

: [�1; 2℄! Z with

e

�

j

j

[0;1℄

= �

j

and

[0; 1℄ =

e

�

�1

j

(X). In partiular we have for eah 1-form � supported by X the relation

Z

�

i

� =

Z

e

�

i

�:

Next we hoose pieewise smooth losed urves 

1

; : : : ; 



in Z nX onneting those onneted

omponents of �Z lying in the same onneted omponent of Z n X . We further need losed

urves on Æ

1

; : : : ; Æ

d

in Z n int(X) whose homology lasses generate H

1

(Z n int(X);R) modulo the

image of H

1

(�Z;R). We will show below that the lasses of �

i

;

e

�

j

; 

k

and Æ

l

generate H

1

(Z; �Z)

modulo torsion by showing that the orresponding integrals separate points on H

1

dR

(Z; �Z;R).

Let � 2 Z

1

dR

(Z; �Z;Y ) be suh that all integrals over the �

i

;

e

�

j

; 

k

and Æ

l

vanish. We laim

that � is exat. In partiular all integrals oming from H

1

(�X) vanish, so that there exists an

open neighborhood U

�

=

I � �X of �X on whih � is exat. Let f 2 C

1

(U ;Y ) with df = � j

U

.

Multiplying f with a smooth funtion � on U of the form (t; x) 7! '(t), where ' 2 C

1

(I ;R)

is 1 on a neighborhood of 0 and vanishes outside some interval [�"; "℄ , we obtain a smooth

funtion

e

f := � � f 2 C

1

(Z; �Z;Y ) with d

e

f = � in a neighborhood of �X . Replaing � by

� � d

e

f , we may assume that � vanishes on a neighborhood of �X . Then � j

X

2 Z

1

dR

(X; �X ;Y )

is exat beause the integrals over the �

i

vanish. Likewise � j

ZnX

is exat beause all integrals

over the Æ

i

vanish. Let f

1

2 C

1

(X ;Y ) with df

1

= � j

X

and f

2

2 C

1

(Z n int(X);Y ) with

df

2

= � j

ZnX

. We normalize f

2

by the ondition that it vanishes on �Z . That this is possible

follows from the vanishing of all integrals of � over the 

i

. We further normalize f

1

suh that on

one boundary point x 2 �X we have f

1

(x) = f

2

(x). In a neighborhood of �X both funtions f

1

and f

2

are loally onstant, hene onstant on all onneted omponents of �X . It remains to

show that f

1

j

�X

= f

2

j

�X

, so that both ombine to a funtion f 2 C

1

(Z; �Z;Y ) with df = � .

Let �

i

be suh that either its end or starting point lies in the same onneted omponent

of �X as x . We reall the parametrizations �

i

: [0; 1℄! X from above. We further observe that

f

1

(x) = f

1

(�

i

(0)) = f

2

(x) = f

2

(�

i

(0)) beause f

1

= f

2

is onstant on the whole omponent

of X ontaining x . We also reall the parameterization of

e

�

j

on [�1; 2℄ from above and put

y := �

i

(1) 2 �X . Let p :=

e

�

i

(�1) and q :=

e

�

i

(2). Then

f

1

(y)� f

2

(y) =

�

f

1

(x) +

Z

�

i

�

�

+ f

2

(q)

| {z }

=0

�f

2

(y) = f

2

(x) +

Z

�

i

� + f

2

(q)� f

2

(y)

=

Z

0

�1

e

�

�

i

� +

Z

1

0

e

�

�

i

� +

Z

2

1

e

�

�

i

� =

Z

e

�

i

� = 0:

This proves f

1

(y) = f

2

(y). Using the other paths

e

�

i

, we onlude indutively that f

1

= f

2

holds

on all onneted omponents of �X , and this ompletes the proof of the exatness of � .

Therefore the integration maps I

�

i

; I

e

�

j

; I



k

and I

Æ

l

separate points on H

1

dR

(Z; �Z;R).

Sine the maps I

�

i

, i = 1; : : : ; a; and I

e

�

j

, j = 1; : : : ; b; are linearly independent on the subspae

H

1

dR

(X; �X ;R), by omitting some of the 

k

and Æ

l

, we may w.l.o.g. assume that the whole

olletion is linearly independent.

We reall the maps �

X

and p

X

from Remark III.5. Then we see that

�

Z

:H

1

dR

(Z; �Z;Y )! Y

a+b++d

;

�

Z

([�℄) :=

�

Z

�

i

�;

Z

�

j

�;

Z



k

�;

Z

Æ

l

�

�

i=1;:::;a;j=1;:::;b;k=1;:::;;l=1;:::;d

is a topologial isomorphism. The orresponding projetion p

Z

: z

(Z;�Z)

(Y ) ! H

1

dR

(Z; �Z;Y ) is

given by

p

Z

: [�℄ 7!

a

X

i=1

h

�

�

i

�

Z

�

i

�

i

+

b

X

j=1

h

�

�

j

�

Z

e

�

j

�

i

+



X

k=1

h



�

k

�

Z



k

�

i

+

d

X

l=1

h

Æ

�

l

�

Z

Æ

l

�

i

:

Sine the integrals over the 

k

and Æ

l

vanish for � 2 


1

(X; �X ;Y ), and the integrals over �

j

and

e

�

j

are the same for these 1-forms, we obtain p

Z

j

z

(X;�X)

(Y )

= p

X

:
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Example III.7. (Oriented surfaes) Let X be an oriented ompat onneted surfae with

boundary. All the boundary omponents are di�eomorphi to the irle. Collapsing eah

boundary omponent to a point leads to an oriented ompat surfae �. Let g := g(X) := g(�)

denote the genus of � and p := p(X) be the number of boundary omponents.

We reall the part

: : :! H

2

(X)! H

2

(X; �X)! H

1

(�X)

�

��!H

1

(X)! H

1

(X; �X)! H

0

(�X)! H

0

(X)

of the long exat homology sequene of the pair (X; �X). Then H

0

(�X)

�

=

H

1

(�X)

�

=

Z

p

.

Aording to Proposition III.1(v), the inlusion int(X) ,! X is a homotopy equivalene, so that

H

1

(X)

�

=

H

1

(int(X)). On the other hand int(X)

�

=

� n P , where P is the image of �X in �.

Let

b

P be a disjoint union of open diss in � around eah point of P . Then � = int(X)[

b

P

is a union of two open subsets, and the exat Mayer{Vietoris Sequene ([Br93, Th. IV.18.1℄) yields

an exat sequene

: : :! H

2

(int(X))�H

2

(

b

P )! H

2

(�)! H

1

(int(X) \

b

P )! H

1

(int(X))�H

1

(

b

P )! H

1

(�)

! H

0

(int(X) \

b

P )! H

0

(int(X))�H

0

(

b

P )! H

0

(�):

We have H

0

(

b

P )

�

=

Z

P

, H

1

(

b

P ) = H

2

(

b

P ) = 0 , H

0

(int(X))

�

=

Z , H

0

(int(X) \

b

P )

�

=

Z

P

,

H

1

(int(X) \

b

P )

�

=

Z

P

, and H

2

(int(X)) = 0 beause int(X) is not ompat. Therefore we

obtain an exat sequene

H

2

(�)

�

=

Z ,! Z

P

! H

1

(int(X))! H

1

(�)

�

=

Z

2g

0

��!Z

P

,! Z�Z

P

! Z:

The vanishing of the homomorphism in the middle follows from the injetivity of the map

H

0

(int(X) \

b

P )! H

0

(

b

P ). This implies that the sequene

Z ,! Z

P

! H

1

(int(X))! Z

2g

! 0

is exat. As �

1

(int(X)) is a free group [tD00, Satz II.8.8℄, the homology group H

1

(int(X))

�

=

�

1

(int(X))=[�

1

(int(X)); �

1

(int(X))℄ is a free abelian group, whih leads to

H

1

(X)

�

=

H

1

(int(X))

�

=

Z

2g(X)+p(X)�1

:

Now we obtain with H

2

(X)

�

=

H

2

(int(X)) = 0 for H

1

(X; �X) the exat sequene

H

2

(X; �X) ,! H

1

(�X)

�

=

Z

p

�

��!H

1

(X)

�

=

Z

2g+p�1

! H

1

(X; �X)! Z

p

! Z:

The image of � in H

1

(X) orresponds to the image of H

1

(int(X) \

b

P ) in H

1

(int(X)) in the

exat Mayer{Vietoris Sequene, and is isomorphi to Z

p�1

. The okernel of � is isomorphi

to Z

2g

. The map H

0

(�X)

�

=

Z

p

! H

0

(X)

�

=

Z is the summation map, so that its kernel is

isomorphi to Z

p�1

. We thus obtain a short exat sequene

oker(�)

�

=

Z

2g

,! H

1

(X; �X)!! Z

p�1

;

and �nally

H

1

(X; �X)

�

=

Z

2g(X)+p(X)�1

:

Example III.8. (Non-orientable surfaes) Let X be a non-orientable ompat onneted

surfae with boundary and proeed as in Example III.7. Then � is non-orientable. We de�ne

g(X) and p(X) as in Example III.8.

For the �nite subset P � � we now obtain with the exat Mayer-Vietoris sequene:

: : :! H

2

(�) = 0! H

1

(int(X) \

b

P )

�

=

Z

p

! H

1

(int(X))�H

1

(

b

P )! H

1

(�)

�

=

Z

g

�Z

2

! H

0

(int(X) \

b

P )

�

=

Z

p

! H

0

(int(X))�H

0

(

b

P )

�

=

Z

p+1

! H

0

(�)

�

=

Z:
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This leads to an exat sequene

Z

p

,! H

1

(int(X))! H

1

(�)

�

=

Z

g

�Z

2

! Z

p

,! Z

p+1

;

and further to

Z

p

,! H

1

(int(X))!! Z

g

�Z

2

:

As H

1

(int(X)) is a free abelian group, it follows that

H

1

(X)

�

=

H

1

(int(X))

�

=

Z

g(X)+p(X)

:

Now we obtain with the long exat homology sequene of the pair (X; �X):

: : :! H

2

(X)! H

2

(X; �X)! H

1

(�X)

�

��!H

1

(X)! H

1

(X; �X)! H

0

(�X)! H

0

(X)

and hene

Z

p

�

��!Z

g+p

! H

1

(X; �X)! Z

p

s

��!Z:

The image of � in H

1

(X) orresponds to the image of H

1

(int(X) \ P ) in H

1

(int(X)), hene is

isomorphi to Z

p

, and oker(�)

�

=

Z

g

. Here s:H

0

(�X)

�

=

Z

p

! H

0

(X)

�

=

Z is the summation

map, so that its kernel is isomorphi to Z

p�1

. We thus obtain a short exat sequene

oker(�)

�

=

Z

g

,! H

1

(X; �X)!! Z

p�1

= ker s;

whih leads to

H

1

(X; �X)

�

=

Z

g(X)+p(X)�1

:

IV. Approximating non-ompat manifolds by ompat ones

In this setion M denotes a onneted � -ompat �nite-dimensional manifold. We all a

submanifold X of M equidimensional if dimX = dimM . In this setion we �rst prove the

existene of well behaved sequenes (X

n

)

n2N

of equidimensional ompat submanifolds with

boundary exhausting M (Lemma IV.4). The main result of this setion is Theorem IV.16

providing a topologial isomorphism

�

M

:H

1

dR;

(M ;Y )! Y

(B)

for a ertain set B whih might be in�nite. The omponents of �

M

are given by integration over

singular yles in M or over urves obtained from proper maps R ! M . Here we make heavy

use of Theorem III.6 about the ohomology of ompat manifolds with boundary to onstrut

the set B in suh a way that �

M

beomes an isomorphism. As a orollary, we show that if � is

disrete, then H

1

dR;

(M ; �)

�

=

�

(B)

is disrete.

Saturated exhaustive sequenes

Lemma IV.1. For eah ompat equidimensional submanifold X � M with boundary the

number of onneted omponents of M nX is �nite.

Proof. As every onneted omponent of M n X ontains some omponent of �X in its

losure, and the number of omponents of the ompat manifold �X is �nite, the assertion

follows.
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De�nition IV.2. Let X � M be an equidimensional ompat submanifold with boundary.

We observe that eah onneted omponent of �X is ontained in the losure of exatly one

onneted omponent of M n X . We write

b

X for the union of X with all those omponents

of M n X whih are relatively ompat. As the number of these omponents is �nite (Lemma

IV.1),

b

X is ompat, beause for eah omponent C � M nX the boundary �C is a union of

onneted omponents of �X . This argument further shows that

b

X is a ompat submanifold

with boundary in M .

Lemma IV.3. For two equidimensional submanifolds with boundary X

1

; X

2

� M with

X

1

� X

0

2

we have

b

X

1

�

b

X

0

2

:

Proof. Let C �M nX

1

be a relatively ompat onneted omponent. Then C nX

2

is also

relatively ompat in M , hene ontained in

b

X

2

. Therefore

b

X

1

�

b

X

2

. If p 2 �

b

X

2

is a boundary

point, then it is in partiular a boundary point of X

2

, hene not ontained in X

1

, and therefore

not in �X

1

. If the onneted omponent of M nX

0

2

ontaining p is non-ompat, then this is

likewise true for the onneted omponent of M nX

1

ontaining p , whih shows that it is not

ontained in

b

X

1

. This proves

b

X

1

�

b

X

0

2

.

For the ase of surfaes the following lemma an also be found in [tD00, Satz 7.3℄.

Lemma IV.4. There exists a sequene X

n

of ompat onneted manifolds with boundary in

M suh that

(E1) X

n

� X

0

n+1

,

(E2)

S

n

X

n

=M ,

(E3)

b

X

n

= X

n

, i.e., eah onneted omponent of M nX

n

is not relatively ompat in M .

Proof. Let ':M ! R be a proper smooth funtion whih is bounded from below. Suh a

funtion an be obtained from an embedding �:M ,! R

n

as '(x) := kxk

2

2

. Then Sard's Theorem

implies that there exists an inreasing sequene (r

n

)

n2N

of regular values of ' with r

n

! 1 .

Then eah Y

n

:= fx 2M :'(x) � r

n

g is a ompat equidimensional submanifold with boundary.

Pik x

0

2 Y

1

. We de�ne Z

n

to be the onneted omponent of Y

n

ontaining x

0

and X

n

:=

b

Z

n

.

From r

n

< r

n+1

we derive Y

n

� Y

0

n+1

, so that Z

n

� Z

0

n+1

, and Lemma IV.3 implies (E1). From

r

n

!1 we get

S

n

Y

n

=M . Eah x 2M an be onneted to x

0

by an ar, whih lies in some

Y

n

, whene x 2 Z

n

, and (E2) follows. Eventually (E3) follows from the de�nition of

b

Z

n

.

We all a sequene (X

n

)

n2N

as in Lemma IV.4 a saturated exhaustive sequene of M .

Lemma IV.5. For eah x 2 M there exists a proper smooth map :R

+

:= [0;1[! M with

(0) = x . If X =

b

X is an equidimensional ompat submanifold with boundary and x 2 �X ,

then there exists a  as above with (℄0;1[) �M nX .

Proof. Pik a saturated exhaustive sequene (X

n

)

n2N

of M and hoose points x

n

2 �X

n

suh that x

n+1

lies in the onneted omponent of M nX

n

ontaining x

n

in its boundary. Sine

this omponent is not relatively ompat in M , it intersets �X

n+1

. Then there exists a smooth

urve :R

+

!M with (0) = x , (n) = x

n

for all n 2 N , and ([n; n+1℄) � X

n+1

nX

0

n

. The

latter ondition implies that  is proper.

If x 2 �X holds for an equidimensional ompat submanifold with boundary X , thenX �

X

N

for N suÆiently large, and we an proeed as above by onneting �rst x in X

N

nX

1

to a

point in the boundary of X

N

, then to a point in X

N+1

et. We thus obtain  with the required

properties.

Lemma IV.6. For x; y 2 M there exists a proper smooth map :R ! M with (0) = x and

(1) = y .

Proof. Using Lemma IV.5, we �nd a smooth map :R ! M with (0) = x and (1) = y

suh that the restritions to [1;1[ and ℄�1; 0℄ are proper. This implies that  itself is proper.

The following lemma is obvious.
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Lemma IV.7. Let M be a topologial spae and (M

j

)

j2J

a direted family of open subsets

of M with M =

S

j

M

j

. Then M = lim

�!

M

j

holds in the ategory of topologial spaes, eah

ompat subset of M is ontained in some M

j

, and for eah x

M

2M and k 2 N

0

we have

�

k

(M;x

M

)

�

=

lim

�!

�

k

(M

j

; x

M

);

where fj 2 J :x

M

2M

j

g is o�nal in J .

Remark IV.8. The preeding lemma applies in partiular to saturated exhaustions (X

n

)

n2N

of a non-ompat manifold M with M

n

= X

0

n

. Then we obtain with Proposition III.1(v):

�

k

(M)

�

=

lim

�!

�

k

(X

0

n

)

�

=

lim

�!

�

k

(X

n

)

Proposition IV.9. For eah � -ompat onneted �nite-dimensional manifold M all homo-

topy groups are ountable.

Proof. This is a diret onsequene of Lemma IV.7, Remark IV.8 and Proposition III.1(ii).

De Rham ohomology with ompat supports is a diret sum

If Y is a s..l.. spae and (X

n

)

n2N

is a saturated exhaustive sequene of M , then




1



(M ;Y ) arries the loally onvex diret limit topology of the spaes 


1

X

n

(M ;Y ) � 


1

(M ;Y )

(f. Setion II). The di�erential d:C

1



(M ;Y ) ! 


1



(M ;Y ) is a ontinuous linear map beause

C

1



(M ;Y ) arries the loally onvex diret limit topology of the subspaes C

1

X

n

(M ;Y ) on whih

d is ontinuous.

Lemma IV.10. Let X =

b

X be an equidimensional ompat submanifold with boundary. Then




1

X

(M ;Y )

�

=




1

(X; �X ;Y ) and




1

X

(M ;Y ) \ dC

1



(M ;Y ) = dC

1

X

(M ;Y ):

Proof. (f. Step 1 in the proof of Theorem III.6) It is lear that dC

1

X

(M ;Y ) is ontained in




1

X

(M ;Y )\dC

1



(M ;Y ). To prove the onverse inlusion, let � 2 


1

X

(M ;Y ) and f 2 C

1



(M ;Y )

with � = df . Then f is onstant on all onneted omponents of M n X . Sine all these

omponents are not relatively ompat in M and f has ompat support, it follows that

f(M nX) = f0g , and therefore f 2 C

1

X

(M ;Y ).

From the isomorphisms




1

X

(M ;Y )

�

=




1

(X; �X ;Y ) and C

1

X

(M ;Y )

�

=

C

1

(X; �X ;Y )

obtained by extension on M nX by 0, we now derive




1

X

(M ;Y )=

�

dC

1



(M ;Y ) \ 


1

X

(M ;Y )

�

�

=




1

(X; �X ;Y )=dC

1

(X; �X ;Y ) = z

(X;�X)

(Y ):

Lemma IV.11. For eah s..l.. spae Y the subspae B

1

dR;

(M ;Y ) = dC

1



(M ;Y ) of




1



(M ;Y ) is losed.

Proof. For eah equidimensional ompat submanifold X =

b

X with boundary, Lemma IV.10

implies that 


1

X

(M ;Y ) \ dC

1



(M ;Y ) = dC

1

X

(M ;Y ); whih orresponds to the subspae

dC

1

(X; �X ;Y ) � 


1

(X; �X ;Y )

whose losedness follows from Corollary II.4 whih also applies to the pair (X; �X), as it has the

same spae of smooth funtions as the pair (X

d

; X

℄

) (f. Example I.9(a)).

For eah saturated exhaustive sequene (X

n

)

n2N

, the spae 


1



(M ;Y ) is the loally onvex

diret limit of the subspaes 


1

X

n

(M ;Y ), so that the losedness of dC

1



(M ;Y ) follows from the

losedness of the intersetions with the spaes 


1

X

n

(M ;Y ) (Lemma B.4(ii)).



25 urrent2.tex September 24, 2002

De�nition IV.12. As a onsequene of Lemma IV.11, the spae

z

M;

(Y ) := 


1



(M ;Y )=dC

1



(M ;Y )

arries a natural (Hausdor�) loally onvex topology. It is isomorphi to

lim

�!




1

X

n

(M ;Y )=

�




1

X

n

(M ;Y ) \ dC

1



(M ;Y )

�

�

=

lim

�!




1

X

n

(M ;Y )=dC

1

X

n

(M ;Y )

= lim

�!

z

(X

n

;�X

n

)

(Y )

(Lemmas B.4 and IV.10). We write q: 


1



(M ;Y ) ! z

M;

(Y ) for the quotient map. The

ohomology spae

H

1

dR;

(M ;Y ) := Z

1

dR;

(M ;Y )=dC

1



(M ;Y )

is a losed subspae of z

M;

(Y ). For a ompat subset X �M we de�ne

H

1

dR;X

(M ;Y ) := Z

1

dR;X

(M ;Y )=

�

Z

1

dR;X

(M ;Y ) \ dC

1



(M ;Y )

�

and observe that H

1

dR;

(M ;Y ) is the union of the subspaes H

1

dR;X

n

(M ;Y ).

Remark IV.13. For eah ompat equidimensional submanifold X � M with X =

b

X ,

Lemma IV.10 implies that

H

1

dR;X

(M ;Y ) = Z

1

dR;X

(M ;Y )=dC

1

X

(M ;Y )

�

=

Z

1

dR

(X; �X ;Y )=dC

1

(X; �X ;Y )

= H

1

dR

(X; �X ;Y ):

Therefore Lemma III.2 implies that for dimY <1 these spaes are �nite-dimensional

1

.

Lemma IV.14. Let M be a non-ompat �nite-dimensional manifold, (X

n

)

n2N

a saturated

exhaustion of M and Y a Fr�ehet spae. Then the following assertions hold:

(i) 


1



(M ;R) is a nulear LF-spae.

(ii) H

1

dR;

(M ;Y ) is the loally onvex diret limit of the subspaes H

1

dR

(X

n

; �X

n

;Y ) .

Proof. (i) 


1



(M ;R) is the diret limit of the Fr�ehet spaes 


1

X

n

(M ;R). Eah spae




1

X

n

(M ;R) an be embedded into a produt of �nitely many spaes of the form 


1

(U ;R) ,

where U is an open subset of R

d

, d = dimM . As the spaes 


1

(U ;R) are nulear, the spaes




1

X

n

(M ;R) are nulear, and the assertion follows ([Tr67, Prop. 50.1℄).

(ii) First we verify that the pairs X

n

� X

n+1

satisfy the assumptions of Theorem III.6. Let C be

a onneted omponent of X

n+1

nX

n

. If C does not interset �X

n+1

, then it also is a onneted

omponent of M nX

n

. Further it is ontained in the ompat set X

n+1

, so that X

n+1

=

b

X

n+1

leads to a ontradition. Therefore all onneted omponents of X

n+1

n X

n

are non-ompat,

Theorem III.6 applies, and we obtain indutively ontinuous projetions

p

n

: z

n

:= z

(X

n

;�X

n

)

(Y )! H

1

n

:= H

1

dR

(X

n

; �X

n

;Y )

whih are ompatible in the sense that p

n+1

j

z

n

= p

n

: Sine z

(M;)

is the loally onvex diret

limit of the subspaes z

n

(De�nition IV.12), there exists a ontinuous projetion

p: z

(M;)

(Y )! H

1

dR;

(M ;Y )

with p j

z

n

= p

n

for eah n 2 N .

Now let f

n

:H

1

n

! E be ontinuous linear funtions into a loally onvex spae E with

f

n+1

j

H

1

n

= f

n

; for n 2 N:

Then the funtions f

n

Æ p

n

: z

n

! E are ontinuous linear maps with f

n+1

Æ p

n+1

j

z

n

= f

n

Æ p

n

, so

that there exists a ontinuous linear map F : z

(M;)

(Y )! E with F j

z

n

= f

n

Æ p

n

for eah n 2 N ,

and therefore the restrition f := F j

H

1

dR;

(M ;Y )

is ontinuous. This proves the universal diret

limit property of the loally onvex spae H

1

dR;

(M ;Y ).

1

There is some subtle point that one has to observe here. In general a losed subspae Y of an LF-spae

X=lim

�!

X

n

does not have to arry the LF-spae topology de�ned by the subspaes Y \X

n

(f. [Tr67, Rem. 13.2℄).
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Lemma IV.15. If Y is a loally onvex spae and � � Y a disrete subgroup, then the subgroup

�

(N)

is disrete in the spae Y

(N)

endowed with the loally onvex diret limit topology of the �nite

produts Y

n

= Y

f1;:::;ng

, n 2 N .

Proof. Let U � Y be a onvex 0-neighborhood with U \ � = f0g . Then U

(N)

is a onvex

0-neighborhood in Y

(N)

with U

(N)

\ �

(N)

= f0g .

Theorem IV.16. Let Y be a s..l.. spae and M a non-ompat onneted manifold with

a saturated exhaustion (X

n

)

n2N

. Then there exists a set B =

S

n

B

n

onsisting of pieewise

smooth yles and of pieewise smooth proper maps R !M suh that:

(1) For eah n 2 N the subset B

n

is �nite, and the integration map

�

X

n

:H

1

dR

(X

n

; �X

n

;Y )! Y

B

n

; [�℄ 7!

�

Z

b

�

�

b2B

n

is a topologial isomorphism.

(2) The integration map

�

M

:H

1

dR;

(M ;Y )! Y

(B)

�

=

lim

�!

Y

B

n

; [�℄ 7!

�

Z

b

�

�

b2B

is a topologial isomorphism.

Proof. Using the onstrution in the proof of Theorem III.6, we indutively obtain �nite sets

B

n

of pieewise smooth yles in X

n

modulo �X

n

suh that B

n

� B

n+1

holds in the sense

that those yles in B

n

whih are not yles in X

n+1

are \extended" to relative yles modulo

�X

n+1

in X

n+1

, and the set B

n+1

n B

n

onsists of yles supported in X

n+1

nX

n

. Moreover,

for eah n 2 N the integration map �

X

n

is a topologial isomorphism (Remark III.5) whih, in

addition, satis�es

�

X

n+1

j

H

1

dR

(X

n

;�X

n

;Y )

= �

X

n

:

Therefore Lemma IV.14(ii) leads to a topologial isomorphism

�:H

1

dR;

(M ;Y )! lim

�!

Y

B

n

�

=

Y

(B)

;

where B :=

S

n

B

n

, and the spae Y

(B)

=

S

n

Y

B

n

arries the loally onvex diret limit

topology.

Disrete subgroups of de Rham ohomology

Remark IV.17. In the following we write C

1

p

(N;M) for the set of proper smooth maps from

the manifold N to the manifold M .

Every smooth loop in C

1

(S

1

;M) is homotopi to a smooth loop � for whih all derivatives

vanish in the base point 1 2 S

1

, where we onsider S

1

as a subset of C . Then we an view it as

a smooth map [0; 1℄!M whih extends to a proper smooth map e�:R !M by using a smooth

proper map :R

+

!M with (0) = �(1) for whih all derivatives vanish in 0 and then de�ne

�(t) := (t � 1) for t � 1 and �(t) := (�t) for t � 0 (f. Lemma IV.5). For eah ompatly

supported 1-form � we then have

Z

�

� =

Z

e�

� �

Z



� +

Z



� =

Z

e�

�:

Lemma IV.18. Let X =

b

X �M be an equidimensional ompat submanifold with boundary.

Then the following assertions hold:
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(i) For x; y 2 �X there exists a smooth proper urve �:R !M with �(0) = x , �(1) = y , and

[0; 1℄ = �

�1

(X) . For � 2 


1

(X; �X ;Y ) we then have

Z

�

� =

Z

�j

[0;1℄

�:

(ii) For � 2 Z

1

dR

(X; �X ;Y ) the subgroup of Y generated by the set of all integrals

R

�

� ,

� 2 C

1

p

(R;M) , oinides with the set of all integrals over elements in Z

1

(X; �X) .

Proof. (i) This follows from Lemma IV.6 and its proof.

(ii) From (i), Remark IV.17 and Proposition III.3 it follows that eah integral over a yle in

Z

1

(X; �X) an also be written as a sum of integrals over proper smooth maps R !M .

Suppose, onversely, that �:R !M is smooth and proper. Then � is smoothly homotopi

to a proper urve  whih is transversal to the ompat submanifold �X of M ([BJ73, Satz

14.7; p.158℄). Therefore 

�1

(X) is a �nite union of ompat intervals I

1

; : : : ; I

m

, beause it is

loally onneted and ompat. Then

Z

�

� =

Z



� =

X

j

Z

j

I

j

�;

and the restritions  j

I

j

an be interpreted as yles in Z

1

(X; �X).

We onlude from Lemma IV.18 that for the sake of testing integrality onditions of 1-

forms supported by X , we ould either work with 1-yles in X modulo �X or with proper

smooth maps R !M . The latter approah has the advantage of being independent of X .

De�nition IV.19. For a subgroup � � Y let

Z

1

dR;

(M ; �) :=

n

� 2 Z

1

dR;

(M ;Y ): (8� 2 C

1

p

(R;M))

Z

�

� 2 �

o

and observe that this equals

�

� 2 


1



(M ;Y ): (8� 2 C

1

p

(R;M))

R

�

� 2 �

	

if � is disrete (f.

Lemma II.10(2)). We also de�ne

H

1

dR;

(M ; �) := Z

1

dR;

(M;�)=dC

1



(M ;Y ):

Proposition IV.20. Let � � Y be a disrete subgroup and T

�

:= Y=� . Then Æ(C

1



(M ;T

�

))

onsists of those 1-forms whose integrals over all elements of C

1

p

(R;M) are ontained in � . In

partiular,

H

1

dR;

(M ; �) = Æ(C

1



(M ;T

�

))=d(C

1



(M ;Y )):

Proof. For eah losed 1-form Æ(f), f 2 C

1



(M ;T

�

), the integrals over elements of

C

1

p

(R;M) are obviously ontained in �. If, onversely, � 2 


1



(M ;Y ) has this property, then

we pik an equidimensional ompat manifold X =

b

X with boundary ontaining the support

of � . Then Lemmas II.3 and IV.18 imply the existene of f 2 C

1

(X; �X ;T

�

) � C

1



(M ;T

�

)

with � = Æ(f). This proves that Æ(C

1



(M ;T

�

)) onsists of those 1-forms whose integrals over

all elements of C

1

p

(R;M) are ontained in �.

For the following orollary we reall the set B from Theorem IV.16. For the ase where Y

is �nite-dimensional, the following disreteness result an also be obtained from Proposition B.3,

ombined with Theorem II.7.

Corollary IV.21. We have �

M

�

H

1

dR;

(M ; �)

�

= �

(B)

and in partiular

H

1

dR;

(M ; �)

�

=

�

(B)

� Y

(B)

�

=

H

1

dR;

(M ;Y ):

Moreover, for H

1

dR;

(M ;R) 6= f0g the group � is disrete if and only if H

1

dR;

(M ; �) is disrete.
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Proof. In view of Lemma IV.18(ii), we have

Z

1

dR;

(M ; �) =

[

n2N

Z

1

dR

(X

n

; �X

n

; �);

and therefore �

M

(H

1

dR;

(M ; �)) � �

(B)

: On the other hand, we have for eah n the restrition

isomorphism

�

X

n

= �

M

j

H

1

dR

(X

n

;�X

n

;Y )

:H

1

dR

(X

n

; �X

n

;Y )! Y

B

n

� Y

(B)

:

Let x

M

2 X

1

be a base point. If �

X

n

([�℄) 2 �

B

n

, then the onstrution of the set B

n

(f.

Theorem III.6) implies that all integrals of � over yles in Z

1

(X

n

; �X

n

) lie in �, and hene

that all integrals over urves in C

1

p

(R;M) lie in � (Lemma IV.18(ii)). Therefore � 2 Z

1

dR;

(M ; �)

and �

M

([�℄) = �

X

n

([�℄) . We onlude that �

M

(H

1

dR;

(M ; �)) = �

(B)

:

Now we use Lemma IV.15 to see that for a non-empty set B the subgroup �

(B)

of the

loally onvex diret sum Y

(B)

is disrete if and only if � is disrete in Y .

For the following, we observe that we have a natural ontinuous multipliation map




1

(M ;R) � Y ! 


1

(M ;Y ); (�; y) 7! � � y

whih indues ontinuous bilinear maps

H

1

dR

(M ;R) � Y ! H

1

dR

(M ;Y ) and H

1

dR;

(M ;R) � Y ! H

1

dR;

(M ;Y ):

Corollary IV.22. For eah subgroup � of Y we have H

1

dR;

(M ;Z) � � = H

1

dR;

(M ; �):

Proof. The inlusion H

1

dR;

(M ;Z) � � � H

1

dR;

(M ; �) is trivial. For the onverse, let � 2

Z

1

dR

(X

n

; �X

n

; �). Then �

X

n

([�℄) 2 �

B

n

(Lemma IV.18). Suppose that B

n

= fb

1

; : : : ; b

m

g . Let

b

�

i

2 Z

1

dR

(X

n

; �X

n

;R) be elements with I

b

i

b

�

j

= Æ

ij

. Then

R

b

� = 0 for b 2 B n B

n

implies that

� �

P

m

i=1

b

�

i

�

R

b

i

� is exat, so that

[�℄ =

n

X

j=1

[b

�

i

℄ �

Z

b

i

� 2 H

1

dR;

(M ;Z) � �

holds in H

1

dR;

(M ;Y ). As B

n

generates Z

1

(X

n

; �X

n

) modulo torsion, we get b

�

i

2 H

1

dR;

(M ;Z)

(Lemma IV.18).

The following proposition will be helpful in understanding the assertion of Proposition V.12

below.

Proposition IV.23. If S is a losed subset of the ompat manifold M , then for eah disrete

subgroup � � Y we have

H

1

dR

(M;S;Z) � � = H

1

dR

(M;S; �):

Proof. The inlusion \�" is lear. It remains to show the onverse. So let � 2 Z

1

dR

(M;S; �).

First we show that the group h�;H

1

(M;S)i � � is �nitely generated.

Sine H

1

(M) is �nitely generated, �

0

:= h�;H

1

(M)i is a �nitely generated subgroup of �.

Let p:Y ! Y=�

0

denote the quotient map. Then all periods of the 1-form �

0

:= pÆ � are trivial,

and there exists a smooth funtion f

0

:M ! Y=�

0

with df

0

= �

1

and f

0

(S) � �=�

0

. Moreover,

the funtion f

0

lifts to a smooth funtion f

1

:

f

M ! Y , with f

1

(q

�1

M

(S)) � �, where q

M

:

f

M !M

is a universal overing of M . As � is disrete, the funtion f

1

is loally onstant on q

�1

M

(S), and

therefore f

0

is loally onstant on S . Therefore f

0

(S) is �nite. As h�;H

1

(M;S)i=�

0

� hf

0

(S)i ,

it follows that h�;H

1

(M;S)i is �nitely generated.

Moreover, there exists a smooth funtion f

2

:M ! Y loally onstant on a neighborhood

of S suh that for eah s 2 S we have f

2

(s) + �

0

= f

0

(s). Then df

2

2 H

1

dR

(M;S;Z) lies in the

image of

H

1

dR;

(M n S; �)

�

=

H

1

dR;

(M n S;Z) � �
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(Corollary IV.22). For �

1

:= � � df

2

we now have

�

0

= h�;H

1

(M)i = h�

1

; H

1

(M)i = h�

1

; H

1

(M;S)i;

so that there exists some f

3

2 C

1

(M;S;Y=�

0

) with df

3

= �

1

.

As �

0

is �nitely generated, it spans a �nite-dimensional subspae Y

0

� Y . Extending the

identity map Y

0

! Y

0

to a ontinuous linear map Y ! Y

0

using the Hahn{Banah Extension

Theorem, we obtain a topologial diret sum deomposition Y

�

=

Y

0

� Y

1

, where Y

1

is the

kernel of the extension. Then Y=�

0

�

=

(Y

0

=�

0

)� Y

1

as Lie groups. Moreover, �

1

= �

1

+�

2

with

�

j

2 Z

1

dR

(M;S;Y

j

), j = 1; 2, and f

3

= h

1

+h

2

with h

1

2 C

1

(M;S;Y

0

=�

0

), h

2

2 C

1

(M;S;Y

1

),

Æ(h

1

) = �

1

and dh

2

= �

2

. This proves that [�

1

℄ = [�

1

℄ . As Y

0

=�

0

is a �nite-dimensional torus,

we an write it as R

d

=Z

d

with Y

0

�

=

R

d

and Z

d

�

=

�

0

. This means that h

1

is a �nite produt

of the d omponent funtions l

1

; : : : ; l

d

2 C

1

(M;S;T). If e

1

; : : : ; e

d

denote the anonial basis

vetors in R

d

, this leads to

[�

1

℄ =

d

X

j=1

[dl

j

℄ � e

i

2 H

1

dR

(M;S;Z) � �:

Summing up, we obtain

H

1

dR

(M;S; �) � H

1

dR;

(M n S; �) +H

1

dR

(M;S;Z) � �

= H

1

dR;

(M n S;Z) � � +H

1

dR

(M;S;Z) � � � H

1

dR

(M;S;Z) � �:

Example IV.24. Let M := R

2

n P , where P is a subset without luster points. We want to

get an expliit piture of H

1

dR;

(M ;R) .

(a) First we onsider on R

2

n f(0; 0)g in polar oordinates the 1-form

�(re

i'

) := f(r)dr;

where f : ℄0;1[! R has ompat support and satis�es

R

1

0

f(r) dr = 1. Then

d� = f

0

(r)dr ^ dr +

�f

�'

d' ^ dr = 0;

and for eah proper map :R ! R

2

with lim

t!�1

(t) = (0; 0) and lim

t!1

(t) =1 we have

Z



� = 1:

(b) To alulate H

1

dR;

(M ;R) , we approximate M by ompat submanifolds X

n

whih are

obtained from losed diss D

n

with �D

n

\ P = � by removing open diss around the �nitely

many points in D

n

\ P . Note that the set P is ountable, so that there exist arbitrarily large

diss D

n

whose boundaries do not interset P .

Assume that D := D

n

ontains k elements of P and put X := X

n

. Then �

1

(X)

�

=

�

1

(int(X)) is a free group of k generators. For eah losed 1-form � with ompat support in

X

0

the integrals over the loops in X are trivial (make them very small around the points in

P ). Hene every suh 1-form is exat. Let � = df with f 2 C

1

(X ;R). As � has ompat

support, f is onstant on the onneted omplement of D , so that we may w.l.o.g. assume that

f = 0 on the outer irle �D � �X . Then we onnet �D by ars 

1

; : : : ; 

k

to the other

boundary omponents. If all integrals of � over the 

j

vanish, then � 2 dC

1

(X; �X ;R). If

�

1

; : : : ; �

k

2 Z

1

dR

(X; �X ;R) are the 1-forms supported lose to the elements of P \D as in (a),

we see that

R



i

�

j

= Æ

ij

for an appropriate normalization, so that [�℄ =

P

j

R



j

� � [�

j

℄ . Therefore

H

1

dR

(X; �X ;R) =

M

p2P\D

R[�

p

℄;
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and further

H

1

dR;

(M ;R) = lim

�!

H

1

dR

(X

n

; �X

n

;R) =

M

p2P

R[�

p

℄

�

=

R

(P )

:

The subgroup H

1

dR;

(M ;Z) of integral elements in H

1

dR;

(M ;R) onsists of those ohomol-

ogy lasses whose integrals over all paths between elements of P are integers. For p; q 2 P we

write 

p;q

for an ar from p to q . Then

Z



p;q

�

r

= Æ

p;r

� Æ

q;r

:

This means that

P

r

�

r

�

r

is integral if and only if all di�erenes �

r

� �

s

are integral. As only

�nitely many oeÆients �

r

are non-zero, it follows that

H

1

dR;

(M ;Z) =

X

p

Z[�

p

℄

�

=

Z

(P )

:

V. Central extensions of Lie groups and period maps

In this setion we �rst explain the general setup for entral extensions of in�nite-dimensional Lie

groups. The main question arising in the integration proess of Lie algebra oyles ! to entral

extensions of Lie groups is whether the orresponding period group �

!

is disrete. In this setion

we show that for oyles of produt type for the groups C

1



(M ;K)

e

and C

1

(M;S;K)

e

the

period group is disrete for any M if and only if this is the ase for M = S

1

. This redues the

disreteness problem to the ase of loop groups, whih is known for K ompat, and therefore

for all �nite-dimensional Lie groups K .

Generalities on entral Lie group extensions

De�nition V.1. (a) Let z be a topologial vetor spae and g a topologial Lie algebra. A

ontinuous z-valued 2-oyle is a ontinuous skew-symmetri funtion !: g� g! z with

!([x; y℄; z) + !([y; z℄; x) + !([z; x℄; y) = 0:

It is alled a oboundary if there exists a ontinuous linear map � 2 Lin(g; z) with !(x; y) =

�([x; y℄) for all x; y 2 g . We write Z

2



(g; z) for the spae of ontinuous z-valued 2-oyles

and B

2



(g; z) for the subspae of oboundaries. We de�ne the seond ontinuous Lie algebra

ohomology spae

H

2



(g; z) := Z

2



(g; z)=B

2



(g; z):

(b) If ! is a ontinuous z-valued oyle on g , then we write g �

!

z for the topologial Lie

algebra whose underlying topologial vetor spae is the produt spae g� z , and the braket is

de�ned by

[(x; z); (x

0

; z

0

)℄ =

�

[x; x

0

℄; !(x; x

0

)

�

:

Then q: g�

!

z ! g; (x; z) 7! x is a entral extension and �: g ! g�

!

z; x 7! (x; 0) is a ontinuous

linear setion of q .

If, onversely, a entral Lie algebra extension q:

b

g ! g with kernel z has a ontinuous

linear setion �: g !

b

g , then it an be desribed by a ontinuous Lie algebra oyle ! 2 Z

2



(g; z)

de�ned by !(x; y) := [�(x); �(y)℄ � �([x; y℄); beause the map

g�

!

z !

b

g; (x; z) 7! �(x) + z

is an isomorphism of topologial Lie algebras. As two Lie algebra oyles de�ne equivalent

entral extensions if and only if they di�er by a oboundary, we obtain an identi�ation of the

set of equivalene lass of all entral z-extensions of g (with a ontinuous linear setion) with

the vetor spae H

2



(g; z).
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De�nition V.2. (a) Central extensions of Lie groups are always assumed to have a smooth

loal setion. Let Z ,!

b

G !! G be a entral extension of the onneted Lie group G by

the abelian Lie group Z . We assume that the identity omponent Z

e

of Z an be written as

Z

e

= z=�

1

(Z), where the Lie algebra z of Z is a s..l.. spae. The group (z;+) an be identi�ed

in a natural way with the universal overing group of Z

e

, and Z

e

is a quotient of z modulo a

disrete subgroup whih an be identi�ed with �

1

(Z). Sine the quotient map q:

b

G ! G has a

smooth loal setion, the orresponding Lie algebra homomorphism

b

g ! g has a ontinuous linear

setion �: g !

b

g , hene an be desribed by a ontinuous Lie algebra oyle (De�nition V.1).

(b) If G is a group and Z an abelian group, then we de�ne the group

Z

2

(G;Z) := ff :G�G! Z: (8x; y; z 2 G)

f(1; x) = f(x;1) = 1; f(x; y)f(xy; z) = f(x; yz)f(y; z)g

of Z -valued 2-oyles and the subgroup

B

2

(G;Z) := ff :G�G! Z: (9h:G! Z) h(1) = 1; (8x; y 2 G) f(x; y) = h(xy)h(x)

�1

h(y)

�1

g

of Z -valued 2-oboundaries. In both ases the group struture is given by pointwise multiplia-

tion.

If G and Z are Lie groups, we write Z

2

s

(G;Z) for the subgroup of Z

2

(G;Z) onsisting of

those oyles f whih are smooth in a neighborhood of (e; e), and B

2

s

(G;Z) for the subgroup

of all funtions of the form (g; g

0

) 7! h(gg

0

)h(g)

�1

h(g

0

)

�1

, where h:G ! Z is smooth in an

identity neighborhood. We reall from [Ne02a, Prop. 4.2℄ that entral Lie group extensions as

above an always be written as

b

G

�

=

G�

f

Z with (g; z)(g

0

; z

0

) =

�

gg

0

; zz

0

f(g; g

0

)

�

;

for some f 2 Z

2

s

(G;Z). Two oyles f

1

, f

2

de�ne equivalent Lie group extensions if and only

if f

1

� f

�1

2

2 B

2

s

(G;Z) (for f

�1

2

(x; y) := f

2

(x; y)

�1

), and the quotient group H

2

s

(G;Z) :=

Z

2

s

(G;Z)=B

2

s

(G;Z) parametrizes the equivalene lasses of entral Z -extensions of G with

smooth loal setions ([Ne02a, Remark 4.4℄). There is a natural map H

2

s

(G;Z) ! H

2



(g; z)

indued by the map

(5:1) D:Z

2

s

(G;Z)! Z

2



(g; z); D(f)(x; y) = d

2

f(e; e)((x; 0); (0; y))� d

2

f(e; e)((y; 0); (x; 0))

([Ne02a, Lemma 4.6℄), where d

2

f(e; e) is well-de�ned beause df(e; e) vanishes, whih follows

from f(g; e) = f(e; g) = 1 . For more details on entral extensions of Lie groups we refer to

[Ne02a℄.

De�nition V.3. If z is a s..l.. spae, G a Lie group, and 
 2 


2

(G; z) a losed z-valued

2-form, then we obtain with [Ne02a, Lemma 5.7℄ a group homomorphism

per




:�

2

(G)! z

alled the period map. It is given on smooth representatives �:S

2

! G of lasses in �

2

(G) by

the integral

per




([�℄) =

Z

S

2

�

�


 =

Z

�


:

We reall that eah homotopy lass ontains smooth representatives. Here we use the sequential

ompleteness of z to ensure that the integrals, whih an be obtained as limits of Riemann

sums, do exist. If 
 is exat, then the period map is trivial by Stoke's Theorem. The image

�




:= per




(�

2

(G)) is alled the period group of 
.
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De�nition V.4. Let G be a onneted Lie group with Lie algebra g and ! 2 Z

2



(g; z) a

ontinuous Lie algebra oyle with values in the s..l.. spae z . Let � � z be a disrete subgroup

and Z := z=� the orresponding quotient Lie group. Further let 
 be the orresponding left

invariant losed z-valued 2-form on G . Then we de�ne a homomorphism

P :H

2



(g; z)! Hom(�

2

(G); Z)�Hom(�

1

(G);Lin(g; z))

as follows. For the �rst omponent we take

P

1

([!℄) := q

Z

Æ per

!

;

where q

Z

: z ! Z is the quotient map and per

!

:= per




:�

2

(G) ! z is the period map of ! . To

de�ne the seond omponent, for eah X 2 g we write X

r

for the orresponding right invariant

vetor �eld on G . Then i

X

r


 is a losed z-valued 1-form ([Ne02a, Lemma 3.11℄) to whih we

assoiate a homomorphism �

1

(G)! z via

P

2

([!℄)([℄)(X) :=

Z



i

X

r


:

We refer to [Ne02a, Set. 7℄ for arguments showing that P is well-de�ned, i.e., that the right

hand sides only depend on the Lie algebra ohomology lass of ! .

The following theorem ompletely desribes the obstrutions for a Lie algebra oyle to

integrate to a entral Lie group extension. It is the main result of [Ne02a℄.

Theorem V.5. Let ! 2 Z

2



(g; z) be a ontinuous Lie algebra oyle. Then the entral Lie

algebra extension z ,!

b

g := g�

!

z !! g integrates to a entral Lie group extension Z ,!

b

G!! G

if and only if P ([!℄) = 0 .

Proof. [Ne02a, Th. 7.12℄.

Appliations to urrent groups

Now we turn to entral extensions of the two lasses of urrent Lie groups given as the

identity omponents of C

1



(M ;K) and C

1

(M;S;K). The methods developed in this paper

are well suited for the study of Lie algebra oyles of produt type introdued below. Here the

main problem is to deide for a given oyle if its period group is disrete (f. Theorem V.5).

De�nition V.6. Let k be a loally onvex topologial Lie algebra, M a manifold and

g := C

1

(M ; k). We onsider a ontinuous invariant symmetri bilinear map �: k � k ! Y ,

where Y is a s..l.. spae. We then obtain a ontinuous z

M

(Y )-valued oyle on g by

!

M

(�; �) := !

M;�

(�; �) := [�(�; d�)℄ 2 z

M

(Y );

where we view �(�; d�) as the element of 


1

(M ;Y ) whose value in a tangent vetor v 2 T

p

(M)

is given by �(�(p); d�(p)(v)).

(a) On C

1

(M;S; k) we obtain by restrition a ontinuous z

(M;S)

(Y )-valued Lie algebra oyle

!

(M;S)

: For a ompat manifold M the group C

1

(M;S;K) has a natural Lie group struture

(De�nition I.6), so that we an de�ne the period map

per

!

(M;S)

:�

2

(C

1

(M;S;K))! z

(M;S)

(Y )

orresponding to the left invariant 2-form 


(M;S)

on C

1

(M;S;K) with 


(M;S);e

= !

(M;S)

. We

write �

(M;S)

for the orresponding period group.
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(b) If � and � have ompat support, then the same holds for �(�; �), so that we also obtain a

Lie algebra oyle

!

M

2 Z

2



(C

1



(M ; k); z

M;

(Y )); z

M;

(Y ) := 


1



(M ;Y )=dC

1



(M ;Y ):

The ontinuity of this oyle follows from the ontinuity of the map

C

1



(M ; k)� 


1



(M ; k)! 


1



(M ;Y ); (f; �) 7! �(f; �);

whih in turn follows from [Gl01d, Th. 4.7℄ beause it an be interpreted as a map on the level of

ompatly supported setions of vetor bundles indued by the bundle map determined by the

ontinuous map

k� Lin(T

p

(M); k)! Lin(T

p

(M);Y ); (x; �) 7! �(x; �(�))

on the �ber in p 2M .

() For any Lie group K we de�ne V (k) as follows. We �rst endow k 
 k with the projetive

tensor produt topology and de�ne V (k) as the ompletion of the quotient of V (k) by the losure

of the subspae spanned by all elements of the form

x
 y � y 
 x and [x; y℄
 z + y 
 [x; z℄; x; y; z 2 k:

If [z℄ denotes the image of z 2 k
 k in V (k), we obtain a ontinuous invariant bilinear map

�: k� k ! V (k); �(x; y) := [x
 y℄

whih leads to the oyle ! = !

S

1

;�

2 Z

2



(g; V (k)) on g := C

1

(S

1

; k) given by !(�; �) :=

[�(�; d�)℄: As �

2

(C

1

(S

1

;K))

�

=

�

3

(K) (Corollary A.15), the period map per

!

yields a homo-

morphism

per

K

:�

3

(K)! V (k):

Proposition V.7. Let g := C

1



(M ; k) and �: k� k ! Y be a ontinuous invariant symmetri

bilinear form. Then we obtain for the oyle !(�; �) := [�(�; d�)℄ an automorphi ation of the

group C

1

(M;K) on

b

g := g�

!

z

M

(Y ) by

(5:2) f:(�; z) := (Ad(f):�; z � [�(Æ

l

(f); �)℄):

The orresponding derived ation is given by

(5:3) �:(�; z) = [(�; 0); (�; z)℄ = ([�; �℄; !(�; �)):

Proof. The arguments an be taken over from [MN02, Prop. III.3℄. Here we only have to add

Lemma II.2 to see that Æ

l

is smooth.

Theorem V.8. Let K be a onneted Lie group, M a onneted manifold, G := C

1



(M;K)

e

and !

M;�

2 Z

2



(g; z

M

(Y )) as above. Suppose that the period group �

M;�

� z

M

(Y ) is disrete.

For Z := z

M

(Y )=�

!

M;�

we then obtain a entral Lie group extension Z ,!

b

G!! G orresponding

to the oyle !

M;�

.

Proof. In view of Theorem V.5, we only have to see that P

2

([!

M;�

℄) = 0. Aording to [Ne02a,

Prop. 7.6℄, this is equivalent to the existene of a smooth linear ation of G on

b

g whose derived

ation is given by �:(�; z) = ([�; �℄; !(�; �)): Proposition V.7 implies that suh a representation

exists.

For the following theorem we reall that we an use the ontinuous bilinear form �: k�k ! Y

to de�ne a wedge produt

^

�

: 


1

(M ; k)� 


1

(M ; k)! 


2

(M ;Y )

by

(� ^

�

�)(v; w) := �(�

p

(v); �

p

(w)) � �(�

p

(v); �

p

(w)); v; w 2 T

p

(M):

The following theorem desribes a situation where we have a global smooth group oyle

assoiated to the oyle obtained by omposing a oyle of produt type with the de Rham

di�erential z

M;

(Y ) ! 


2



(M ;Y ). The reason behind the existene of the global oyle lies in

the fat that all periods of !

M;�

lie in the kernel H

1

dR;

(M ;Y ) of d (see [Ne02a, Setion 8℄ for

more details on the existene of global smooth oyles).
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Theorem V.9. Let G

+

:= C

1



(M;K) . Then the map

h:G

+

�G

+

! 


2



(M ;Y ); h(f; g) := Æ

l

(f) ^

�

Æ

r

(g)

de�nes a a smooth 


2



(M ;Y )-valued group 2-oyle on G

+

, so that we obtain a entral Lie

group extension

b

G

+

:= G

+

�

h




2



(M ;Y ) . The orresponding Lie algebra oyle Dh from (5.1)

is given by

Dh(�; �) = 2d� ^

�

d� for �; � 2 C

1



(M ; k):

The map : z

M;

(Y )! 


2



(M ;Y ); [�℄ 7! 2d� satis�es  Æ !

M;�

= Dh and indues a Lie algebra

homomorphism



g

:

b

g = g�

!

M;�

z

M;

(Y )!

b

g

+

:= g�

Dh




2



(M ;Y ); (X; [�℄) 7! (X; 2d�):

This homomorphism is G

+

-equivariant with respet to the ation on

b

g

+

indued by the adjoint

ation of

b

G

+

, whih is given by

Ad

bg

+

(g):(�; z) =

�

Ad(g):�; z � d(�(Æ

l

(g); �))

�

:

Proof. This follows with the same arguments as in the proof of [MN02, Th. III.9℄. For non-

ompat manifolds we have to use Lemma II.2 for the smoothness of the maps Æ

l

; Æ

r

:C

1



(M;K)!




1



(M ; k):

Period maps for C

1

(M;S;K)

Now we turn to the period groups �

(M;S)

for the Lie algebra oyles !

(M;S)

assoiated

to the Lie algebras C

1

(M;S; k), where M is ompat and S �M a losed subset.

Lemma V.10. For eah � 2 C

1

((I; �I); (M;S)) let

�

K

:C

1

(M;S;K)! C

1

(I; �I ;K)

denote the orresponding group homomorphism. Then

per

!

(I;�I)

Æ�

2

(�

K

) = I

�

Æ per

!

(M;S)

:

Proof. First we reall from Lemma A.16 that the map �

K

is a Lie group homomorphism.

Let G := C

1

(M;S;K)

e

and 


(M;S)

2 


2

(G; z

(M;S)

(Y )) denote the left invariant 2-form

orresponding to !

(M;S)

. Then I

�

Æ 


(M;S)

is a Y -valued left invariant 2-form on G whose

value in 1 is I

�

Æ !

(M;S)

. Further �

�

K




(I;�I)

is a left invariant 2-form on G whose value in 1

is given by

(�; �) 7! !

(I;�I)

(� Æ �; � Æ �) = [�(� Æ �; d(� Æ �))℄

= [�(�

�

�; �

�

(d�))℄ =

Z

I

�(�

�

�; �

�

(d�)) =

Z

�

�(�; d�) = I

�

�

!

(M;S)

(�; �)

�

:

This implies

�

�

K




(I;�I)

= I

�

Æ


(M;S)

for eah � 2 C

1

((I; �I); (M;S)), and hene the assertion.
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Lemma V.11. If we identify z

S

1

(Y ) , z

(I;�I)

(Y ) , and z

R

(Y ) with Y via the integration maps

from Lemma II.8, then

�

S

1

= �

(I;�I)

= �

R

:

Proof. Aording to Corollary A.15, the natural inlusion

C

1

((I; �I);K) ,! C

1

�

(S

1

;K)

indued from the anonial map � 2 C

1

((I; �I); (S

1

; �)) is a weak homotopy equivalene.

Therefore �

2

(�

K

) is an isomorphism, and Lemma V.10, applied to (M;S) = (S

1

; 1), implies

that

�

(I;�I)

= I

�

Æ�

S

1

�

=

�

S

1

beause the map I

�

: z

S

1

(Y )! Y is the integration isomorphism whih we ignore by identifying

�

S

1

and �

(I;�I)

as subsets of Y .

To obtain �

R

= �

(I;�I)

, we �rst use Theorem A.13 and a di�eomorphism �:R ! I n �I

to see that the natural embedding

'

K

:C

1



(R;K) ! C

1



(I n �I ;K) ,! C

1

(I; �I ;K)

is a weak homotopy equivalene. Moreover, L('

K

)

�

!

(I;�I)

= !

R

; so that '

�

K




(I;�I)

= 


R

; and

by integration over R we obtain �

(I;�I)

= �

R

.

Proposition V.12. For eah � the period group �

(M;S)

is ontained in H

1

dR

(M;S;Y ) , and

we have

H

1

dR

(M;S;Z) ��

S

1

� �

(M;S)

� H

1

dR

(M;S; �

S

1

):

If �

S

1

is disrete, then

�

(M;S)

= H

1

dR

(M;S; �

S

1

) = H

1

dR

(M;S;Z) � �

S

1

:

Proof. In the situation of Lemma V.10, the homomorphism �

2

(�

K

) only depends on the

homotopy lass of � (Lemma A.16). Therefore Lemma V.10 implies that the restrition of I

�

to

�

(M;S)

depends only on the homotopy lass of � , hene �

(M;S)

� H

1

dR

(M;S;Y ) by Lemma II.10.

From Lemmas V.10 and V.11 we further get

�

(M;S)

� H

1

dR

(M;S; �

(I;�I)

) = H

1

dR

(M;S; �

S

1

):

To prove the inlusion

H

1

dR

(M;S;Z) � �

S

1

� �

(M;S)

;

let [�℄ 2 H

1

dR

(M;S;Z). Then Lemma II.3 implies the existene of f 2 C

1

(M;S;T) with

Æ(f) = � . Let 0 2 T

�

=

R=Z denote the identity element in T . The map f indues a smooth

group homomorphism

f

K

:C

1

�

(I; �I ;K)! C

1

(M;S;K); ' 7! ' Æ f

(Lemma A.16). We now get from Lemma V.10 for eah � 2 C

1

((I; �I); (M;S)) the relation

I

�

Æ per

!

(M;S)

Æ�

2

(f

K

) = per

!

(I;�I)

Æ�

2

(�

K

) Æ �

2

(f

K

) = per

!

(I;�I)

Æ�

2

((f Æ �)

K

);

where f Æ � is viewed as a map in C

1

((I; �I); (T; f0g)

�

. This map fators through a smooth

map I=�I

�

=

T! T , and �

2

((f Æ�)

K

) is the multipliation with the winding number deg(f Æ�)

of this map ([MN02, Lemma I.10℄). For eah

[�℄ 2 �

2

(C

1

(T; f0g;K))

�

=

�

2

(C

1

�

(S

1

;K))

we then have

I

�

(per

!

(M;S)

(�

2

(f

K

)[�℄)) = deg(f Æ �) per

!

(I;�I)

([�℄) = I

�

(�) � per

!

(I;�I)

([�℄):

Sine the I

�

separate points on H

1

dR

(M;S;Y ), it follows that

per

!

(M;S)

(�

2

(f

K

)[�℄) = [�℄ � per

!

(I;�I)

([�℄);

and hene that

H

1

dR

(M;S;Z) � �

S

1

= H

1

dR

(M;S;Z) � �

(I;�I)

� �

(M;S)

:

If �

S

1

is disrete, then we apply Proposition IV.23 to obtain the asserted equalities.
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Corollary V.13. If �

S

1

is disrete, then �

(M;S)

is disrete for eah pair (M;S) .

Proof. Proposition V.12 implies that �

(M;S)

� H

1

dR

(M;S; �

S

1

), and the latter group is

disrete by Theorem II.7.

Remark V.14. In view of the preeding orollary, everything redues to the study of the period

map

per

!

S

1

:�

3

(K)

�

=

�

2

(C

1

(S

1

;K))! Y:

It is not neessary to know �

2

(G) expliitly.

Proposition V.15. Suppose that Y = R and � = Z, so that T

�

= T . We further assume

that k is ompat and simple and that � in normalized in suh a way that �(i��; i��) = �2 , where

�� 2 k

C

is a oroot orresponding to a long root. For G = C

1

(M;S;K)

e

we then have

�

(M;S)

= H

1

dR

(M;S;Z):

Proof. We �rst reall from the alulations in Appendix IIa to Setion II in [Ne01a℄ that

under the present assumptions we have �

(I;�I)

= �

S

1

= Z (see also [MN02, Th. II.9℄). Therefore

Proposition V.12 diretly leads to

H

1

dR

(M;S;Z) ��

S

1

= Z �H

1

dR

(M;S;Z)

= H

1

dR

(M;S;Z)� �

(M;S)

� H

1

dR

(M;S; �

S

1

) = H

1

dR

(M;S;Z):

Applying Proposition V.15 to the group C

1

(M;S;K) from Example II.12, we obtain a

oyle on the Lie algebra of a Fr�ehet{Lie group for whih the period group �

(M;S)

is disrete

but not �nitely generated.

Period maps for C

1



(M ;K)

Let M be a onneted non-ompat manifold and Y a s..l.. spae. For a proper smooth

map �:R !M and � 2 Z

1

dR;

(M ;Y ) the integral

I

�

(�) :=

Z

�

� :=

Z

R

�

�

�

is de�ned beause �

�

� has ompat support. We thus obtain a linear map

I

�

:Z

1

dR;

(M ;Y )! Y

whih is easily seen to be ontinuous.

Lemma V.16. For eah � 2 C

1

p

(R;M) let

�

K

:C

1



(M ;K)! C

1



(R;K); f 7! f Æ �

denote the orresponding Lie group homomorphism. Then

(5:4) per

!

R

Æ�

2

(�

K

) = I

�

Æ per

!

M

:

Proof. From Lemma A.12 we reall that �

K

is a Lie group homomorphism. The remaining

argument an be opied from Lemma V.10.
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Proposition V.17. For eah non-ompat manifold M and eah � we have

�

M

= H

1

dR;

(M ; �

R

):

Proof. In the situation of Lemma V.16, the homomorphism �

2

(�

K

) only depends on the

homotopy lass of � (Lemma A.16). Therefore Lemma V.10 implies that the restrition of I

�

to �

M

depends only on the homotopy lass of � , hene �

M

� H

1

dR;

(M ;Y ) by Lemma II.10.

From Lemma V.16 we further get �

M

� H

1

dR;

(M ; �

R

):

To prove the onverse inlusion H

1

dR;

(M ; �

R

) � �

M

; we �rst reall from Corollary IV.22

that

H

1

dR;

(M;�

R

) = H

1

dR;

(M ;Z) ��

R

:

It therefore suÆes to prove H

1

dR;

(M ;Z) � �

R

� �

M

. Let [�℄ 2 H

1

dR

(M ;Z). Then Proposi-

tion IV.20 implies the existene of f 2 C

1



(M;T) with Æ(f) = � . Let 0 = Z 2 T

�

=

R=Z denote

the identity element in T . The map f indues a smooth group homomorphism

f

K

:C

1



(T;K)! C

1



(M ;K); f 7! f Æ '

(Lemma A.12). In view of Lemma V.16, we have for eah � 2 C

1

p

(R;M)

I

�

Æ per

!

M

Æ�

2

(f

K

) = per

!

R

Æ�

2

(�

K

) Æ �

2

(f

K

) = per

!

R

Æ�

2

((f Æ �)

K

);

where f Æ � is viewed as a map in C

1



(R;T). Viewing R as T n f0g , this map extends to a

smooth map T! T , and �

2

((f Æ �)

K

) is the multipliation with the winding number

deg(f Æ �) =

Z

�

�

of this map ([MN02, Lemma I.10℄). For eah [�℄ 2 �

2

(C

1



(R;K)) we then have

I

�

(per

!

M

(�

2

(f

K

)[�℄)) = deg(f Æ �) per

!

R

([�℄) = I

�

(�) per

!

R

([�℄):

Sine the I

�

separate points on H

1

dR;

(M ;Y ) (here we need that M is non-ompat), it follows

that

per

!

M

(�

2

(f

K

)[�℄) = [�℄ � per

!

R

([�℄)

and hene that H

1

dR;

(M ;Z) � �

R

� �

M

:

Corollary V.18. If �

R

is disrete, then �

M

is disrete for eah non-ompat onneted

manifold manifold M .

For the following proposition we reall the spae V (k) from De�nition V.7.

Proposition V.19. If dimK <1 , and �: k� k ! V (k) is the universal symmetri invariant

bilinear map, then there exists for Z := V (k)=�

M;�

a entral Lie group extension

Z ,!

b

G!! G = C

1



(M;K)

e

:

Proof. In view of [MN02, Th. II.9℄, the period group �

S

1

;�

= �

R;�

is disrete (f. Lemma

V.11), and Corollary V.18 now shows that �

M

is disrete. Therefore Theorem V.5 applies.
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Remark V.20. The main idea behind our identi�ation of the period group for urrent groups

is as follows. Let M be a ompat manifold, x

M

2M , and

G := C

1

�

(M ;K) := ff 2 C

1

(M ;K) : f(x

M

) = eg:

The evaluation map

ev:G�M ! K; (f; p) 7! f(p)

indues maps

'

k;l

:�

k

(G)� �

l

(M)! �

k+l

(K)

as follows. We view �

k

(M) as the set of ar-omponents in the spae C((I

n

; �I

n

); (M;x

M

)) of

ontinuous maps of pairs, where I is the unit interval. Then '

k;l

([f ℄; [h℄) is the lass de�ned by

the map

I

k+l

! K; (x; y) 7! f(x)(h(y));

vanishing on the boundary

�I

k+l

= (�I

k

� I

l

) [ (I

k

� �I

l

):

In partiular we obtain a map

'

2;1

:�

2

(G)� �

1

(M)! �

3

(K);

and our analysis of the period map is based on the ommutative diagram

�

2

(G) � �

1

(M) ! �

3

(K)

?

?

y

per

!

M

?

?

y

id

?

?

y

per

S

1

H

1

dR

(M ;Y ) � �

1

(M) ! H

1

dR

(S

1

;Y )

�

=

Y

The e�etiveness of this piture omes from the fat that the natural pairing

H

1

dR

(M ;Y )� �

1

(M)! Y

de�ned by integration over loops is non-degenerate in the sense that the integrals separate points

in H

1

dR

(M ;Y ).

The arguments for non-ompat manifolds essentially follow the same line, where we have

to take smooth proper urves instead of loops.

VI. Universal entral extensions of urrent groups

For the speial lass of �nite-dimensional semisimple Lie groups K , eah Lie algebra oyle

! 2 Z

2



(C

1



(M; k); z) is equivalent to a oyle of produt type ([Ma02℄). This observation

permits us to onstrut a universal entral extension of the Lie algebra g := C

1



(M ; k). In the

present setion we show that this onstrution an be globalized in the sense that we onstrut

a universal entral extension of the onneted Lie group C

1



(M ;K)

e

.

First yli homology of funtion spaes

De�nition VI.1. Let E , F and G be loally onvex spaes over K 2 fR; C g . Then the

projetive topology on the tensor produt E 
 F is de�ned by the seminorms

(p
 q)(x) = inf

n

n

X

j=1

p(y

j

)q(z

j

):x =

X

j

y

j


 z

j

o

;

where p , resp., q is a ontinuous seminorm on E , resp., F (f. [Tr67, Prop. 43.4℄). We write

E


�

F for the loally onvex spae obtained by endowing E
F with the loally onvex topology

de�ned by this family of seminorms. It is alled the projetive tensor produt of E and F . It

has the universal property that the ontinuous bilinear maps E � F ! G are in one-to-one

orrespondene with the ontinuous linear maps E 


�

F ! G (here we need that G is loally

onvex). We write E

b




�

F for the ompletion of the projetive tensor produt of E and F .
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De�nition VI.2. Let A be a unital loally onvex topologial algebra over K 2 fR; C g .

(a) We reall that the �rst Hohshild homology spae HH

1

(A) is de�ned as

HH

1

(A) := Z

1

(A)=B

1

(A);

where

Z

1

(A) := ker b

A

� A
A; b

A

(a
 b) = [a; b℄ = ab� ba

and

B

1

(A) := spanfxy 
 z � x
 yz + zx
 y:x; y; z 2 Ag:

Here we endow A
 A with the projetive tensor produt topology.

Suppose that A is ommutative. Then Z

1

(A) = A
A . Let M be a ontinuous A-module,

i.e., M is a loally onvex spae with an A-module struture given by a ontinuous bilinear map

A�M !M . For a linear map D:A!M the bilinear map

A
A!M; x
 y 7! x:Dy

annihilates B

1

(A) if and only if D is a derivation. Hene HH

1

(A) has the universal property

of the universal di�erential module 


1

(A) with respet to the di�erential

d:A! HH

1

(A); a 7! [1
 a℄:

This means that for eah ontinuous derivation D:A ! M there exists a unique ontinuous

linear map ':HH

1

(A) ! M with D = ' Æ d (f. [Ma02℄). Therefore HH

1

(A) is isomorphi to

the topologial module 


1

(A) of K�ahler di�erentials on A ([Lo98, Prop. 1.1.10℄).

(b) The �rst yli homology spae of A an be obtained as the quotient

HC

1

(A) := Z

�

1

(A)=B

�

1

(A);

where

Z

�

1

:= ker b

A

� �

2

(A); b

A

(a ^ b) := [a; b℄;

and

B

�

1

(A) := spanfxy ^ z � x ^ yz + zx ^ y:x; y; z 2 Ag

(f. [Lo98, Th. 2.15℄).

If A is ommutative, then a 
 b + b 
 a � 1 
 ab 2 B

1

(A) implies that the universal

di�erential d:A! HH

1

(A) satis�es

im(d) = [1
A℄

�

=

1
A+B

1

(A) = fa
 b+ b
 a: a; b 2 Ag+B

1

(A):

Hene

HH

1

(A)=im d

�

=

�

2

(A)=B

�

1

(A)

�

=

HC

1

(A)

(f. [Lo98, Prop. 2.1.14℄).

Let M be a �nite-dimensional manifold and A := C

1



(M ;K ) . Aording to [Gl01℄,

the multipliation on C

1



(M ;K ) is a ontinuous bilinear map, so that A is a loally onvex

topologial algebra. This is not obvious beause the topology on C

1



(M ;K ) is the loally onvex

diret limit topology whih di�ers from the diret limit topology with respet to the subspaes

C

1

X

n

(M ;K ) , where (X

n

)

n2N

is an exhaustive sequene of ompat submanifolds with boundary

in M . Hene there is no a priori reason for a bilinear map on C

1



(M ;K ) to be ontinuous if all

the restritions to the subspaes C

1

X

n

(M ;K ) are ontinuous.

Let A

+

:= K1 + A � C

1

(M ;K ). In this setion we will show that, as loally onvex

spaes, we have

HH

1

(A) := HH

1

(A

+

)

�

=




1



(M ;K ) and HC

1

(A)

�

=




1



(M ;K )=dA = z

M;

(K ):

Theorem VI.3. (Gl�okner's Theorem) 


1



(M ;K ) is a ontinuous module of C

1



(M ;K ) .

Proof. This follows from [Gl01d, Th. 5.1℄ beause the module struture is indued by the

bundle map given in a point p 2M by the salar multipliation K � T

p

(M)

�

! T

p

(M)

�

:
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Theorem VI.4. HH

1

(C

1



(M ;K ))

�

=




1



(M ;K ) .

Proof. (f. [Ma02, Th. 11℄) We will show that the ontinuous derivation d:A = C

1



(M K ) !




1



(M ;K ) has the universal property of the universal di�erential module of A . From this the

assertion follows, as HH

1

(A) an be viewed as the universal di�erential module of A (De�nition

VI.2).

We onsider the map

� :C

1

(M �M ;K ) ! 


1

(M ;K ); �(F )(x)(v) := dF (x; x)(0; v):

Via the natural embedding

A

+


A

+

! C

1

(M �M;K ); (f; g) 7! ((x; y) 7! f(x)g(y));

we view A

+


 A

+

(the algebrai tensor produt) as a subalgebra of C

1

(M � M;K ) . This

embedding is topologial on the subspaes of the form

C

1

X

(M ;K ) 


�

C

1

X

(M ;K )

for ompat subsets X �M ([Gr55, Ch. 2, p.81℄). Let

I := fF 2 A

+


A

+

: (8x 2M)F (x; x) = 0g:

This is an ideal of A

+


 A

+

whih an also be viewed as the kernel of the multipliation map

�:A

+


A

+

! A

+

. Note that �(f 
 g) = f � dg 2 


1



(M ;K ) for f; g 2 A

+

.

(1) Let ('

j

)

j2J

be a loally �nite partition of unity in A for whih supp('

j

) is ontained in

a oordinate neighborhood U

j

� M with U

j

di�eomorphi to R

d

, d := dimM . With this

partition of unity we write eah � 2 


1



(M ;K ) as

� =

X

j

'

j

�;

where the sum is �nite beause only �nitely many of the supports of the funtions '

j

interset

the support of � . As U

j

�

=

R

d

and supp('

j

) is a ompat subset of U

j

, there exist funtions

y

j

1

; : : : ; y

j

d

2 A suh that on supp('

j

) the di�erentials dy

j

i

, i = 1; : : : ; d , are linearly independent.

Then we write

'

j

� =

d

X

i=1

�

j

i

dy

j

i

with �

j

i

2 A .

(2) �(A 
A) = �(A

+


A

+

) = 


1



(M ;K ): This follows from

� =

X

j

X

i

�

j

i

dy

j

i

=

X

j;i

�(�

j

i


 y

j

i

):

(3) As �(A

+


 1) = A

+

and �(A

+


 1) = 0, we have �(I) = �(A

+


 A

+

) = 


1



(M ;K ) by (2).

Let N := ker(� j

I

). We laim that N = I

2

. The inlusion I

2

� N follows diretly from

(6:1) �(FG) = F�(G) + �(F )G;

whih also shows that N is an ideal of A

+


 A

+

. As � is ontinuous and I is losed, we also

obtain I

2

� N . Now let F 2 N . Sine F an be written as a �nite sum

F =

X

i;j

('

i


 '

j

)F;
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where eah summand is ontained in the ideal N , it suÆes to assume that supp(F ) � U

i

�U

j

�

=

R

2d

for some pair (i; j) 2 J

2

. Then we have

F (x; y) =

d

X

l=1

(x

l

� y

l

)F

l

(x; y)

with

F

l

(x; y) :=

1

2

Z

1

0

�F

�x

l

(tx+ (1� t)y; y)�

�F

�y

l

(x; tx + (1� t)y) dt;

and it is easy to see that the supports of the funtions F

l

are ompat. From

�(F )(x) = �

d

X

l=1

F

l

(x; x)dx

l

we derive that the funtions F

l

vanish on the diagonal in R

d

� R

d

, so that Lemma 5 in [Ma02℄

implies that F

l

2 C

1



(M �M;K ) is ontained in the losure I of the ideal I � A

+


 A

+

. Let

C � R

d

be a ompat subset suh that C

0

� C

0

ontains the support of all the funtions F

l

.

We replae the oordinate funtions x

j

on R

d

by funtions x

j

2 C

1



(R

d

;K ) with supp(x

j

) � C

and obtain

F (x; y) =

d

X

l=1

(x

l

� y

l

)F

l

(x; y) 2 I � I � I

2

;

where the losure is taken in

C

1

C�C

(R

2d

;K )

�

=

C

1

C

(R

d

; C

1

C

(R

d

;K ))

�

=

C

1

C

(R

d

;K )

b




�

C

1

C

(R

d

;K )

(f. [Gr55, Ch. 2, p.81℄).

(4) The derivation d:A ! 


1



(M ;K ) has the universal property of the universal topologial

di�erential module 


1

(A): Let E be a topologial A-module and d

E

:A ! E a ontinuous

derivation. We will omplete the proof by showing that there exists a ontinuous linear map

�:


1



(M ;K ) ! E with �(fdg) = fd

E

(g).

We have seen above that ker(� j

I

) = I

2

\N = I

2

with respet to the relative topology, so

that � j

I

leads to a ontinuous bijetive linear map I=I

2

�

=




1

(A) ! 


1



(M ;K ) . Therefore the

natural map

A

+


A

+

� I ! E; f 
 g 7! fd

E

(g)

yields a linear map

�:


1



(M ;K ) ! E with �(fdg) = �(�(f 
 g)) = fd

E

(g):

Hene it only remains to show that � is ontinuous when viewed as a linear map on 


1



(M ;K ) .

As the topology on 


1



(M ;K ) is the loally onvex diret limit topology with respet to the

subspaes 


1

X

(M ;K ), X �M ompat, it suÆes to verify that the restritions � j




1

X

(M ;K)

are

ontinuous.

The set J

X

:= fj 2 J : supp('

j

) \X 6= �g is �nite, and for eah � 2 


1

X

(M ;K ) we have

� =

X

j2J

X

'

j

� =

X

j2J

X

X

i

�

j

i

dy

j

i

:

Now

�(�) =

X

j2J

X

�('

j

�) =

X

j2J

X

X

i

�

j

i

d

E

(y

j

i

)

beause the sum is �nite. The funtions y

j

i

do not depend on � , and the multipliation with '

j

is a ontinuous endomorphism of 


1



(M ;K ) . Therefore the maps




1



(M ;K ) ! A; � 7! �

j

i

are ontinuous. Now the ontinuity of the module struture on E implies that � is ontinuous.

Corollary VI.5. For A = C

1



(M ;K ) and K 2 fR; C g we have

HC

1

(A)

�

=

HH

1

(A)=dA

�

=




1



(M ;K )=dC

1



(M ;K ):
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Universal entral extensions

In this subsetion we turn to the question whether for a �nite-dimensional semisimple Lie group

K the entral extension of C

1



(M;K)

e

from Proposition V.19 is universal. This question will be

answered aÆrmatively if k is �nite-dimensional and semisimple. First we reall some onepts

and a result from [Ne01℄ on weakly universal entral extensions of Lie groups and Lie algebras.

De�nition VI.6. (f. [Ne01℄) Let g be a topologial Lie algebra over K 2 fR; C g and

a be a topologial vetor spae onsidered as a trivial g-module. We all a entral extension

q:

b

g = g �

!

z ! g with z = ker q (or simply the Lie algebra

b

g) weakly universal for a if the

orresponding map Æ

a

: Lin(z; a)! H

2



(g; a);  7! [ Æ !℄ is bijetive.

We all q:

b

g ! g universal for a if for every entral extension q

1

:

b

g

1

! g of g by a with

a ontinuous linear setion there exists a unique homomorphism ':

b

g !

b

g

1

with q

1

Æ ' = q .

Note that this universal property immediately implies that two entral extensions

b

g

1

and

b

g

2

of g by a

1

and a

2

suh that both

b

g

1

and

b

g

2

are universal for a

1

and a

2

are isomorphi. A

entral extension is said to be (weakly) universal if it is (weakly) universal for all loally onvex

spaes a .

De�nition VI.7. We all a entral extension

b

G = G�

f

Z of the onneted Lie group G by

the abelian Lie group Z given by f 2 Z

2

s

(G;Z) weakly universal for the abelian Lie group A if

the map

Æ

A

: Hom(Z;A)! H

2

s

(G;A);  7! [ Æ f ℄

is bijetive. It is alled universal for the abelian Lie group A if for every entral extension

q

1

:G�

'

A! G; ' 2 Z

2

s

(G;A);

there exists a unique Lie group homomorphism  :G �

f

Z ! G �

'

A with q

1

Æ  = q (f.

De�nition V.1). A entral extensional is said to be (weakly) universal if it is (weakly) universal

for all Lie groups A with A

e

�

=

a=�

1

(A) and a s..l..

De�nition VI.8. If g is a loally onvex Lie algebra, then we write H

1

(g) for the ompletion

of the quotient spae g=[g; g℄ . If g is a Fr�ehet spae, then g=[g; g℄ is also Fr�ehet, and no

ompletion is neessary.

If G is a onneted Lie group with Lie algebra g and

e

G its universal overing group, then

we have a natural homomorphism d

G

:

e

G ! H

1

(g). Its kernel is denoted by (

e

G;

e

G). If G is

�nite-dimensional, then (

e

G;

e

G) is the ommutator group of

e

G .

Theorem VI.9. (Reognition Theorem) Assume that q:

b

G ! G is a entral Z -extension of

Lie groups over K 2 fR; C g for whih

(1) the orresponding Lie algebra extension

b

g! g is weakly K -universal,

(2)

b

G is simply onneted, and

(3) �

1

(G) � (

e

G;

e

G) .

If

b

g is weakly universal for a s..l.. spae a , then

b

G is weakly universal for eah abelian Lie

group A with A

e

�

=

a=�

1

(A) .

Proof. The original statement of this theorem in [Ne01, Th. IV.13℄ is formulated only for

Fr�ehet{Lie groups, but one easily veri�es that the proof yields the more general result stated

above.

Theorem VI.10. Let K be a �nite-dimensional semisimple Lie group and G := C

1



(M;K)

e

.

Further let z := z

M;

(V (k)) and ! = !

M;�

2 Z

2



(g; z) be a oyle of produt type given by

!(�; �) = [�(�; d�)℄ . Then the orresponding entral Lie algebra extension

b

g := g �

!

z is

universal, and there exists a orresponding entral Lie group extension Z ,!

b

G !! G with
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Z

�

=

�

1

(G)�(z=�

M

) whih is universal for all Lie groups A with A

e

�

=

a=� , where a is a s..l..

spae and � � a a disrete subgroup.

Proof. First we show that

b

g is perfet. In fat, for x; y 2 k and f; g 2 C

1

(M ;K ) we have in

b

g the relation

[f 
 x; g 
 y℄� [g 
 x; f 
 y℄ =

�

fg 
 [x; y℄� gf 
 [x; y℄; 2[fdg℄ � �(x; y)

�

=

�

0; 2[fdg℄ � �(x; y)

�

:

Sine V (k) is spanned by im(�), the fat that z

M;

(K ) is spanned by elements of the form [f �dg℄

implies that

b

g is perfet.

Sine

b

g is perfet, for eah loally onvex spae a the natural map

Æ: Lin(z; a)! H

2



(g; a);  7! [ Æ !℄

is injetive ([Ne01, Rem. I.6℄). It has been shown in [Ma02, Thm. 16℄ that Æ is also surjetive,

so that

b

g is weakly universal for all loally onvex spaes a . Sine

b

g is perfet, it even is a

universal entral extension of g ([Ne01, Lemma I.12℄).

Furthermore, the period map per

!

:�

2

(G) ! z has disrete image �

!

(Proposition V.19).

In view of Theorem V.8, Theorem V.5 now implies the existene of a entral Lie group extension

Z ,!

b

G !! G with Z

�

=

(z=�

!

)� �

1

(G) orresponding to the Lie algebra extension z ,!

b

g ! g

and suh that the onneting homomorphism �

1

(G)! �

0

(Z) is an isomorphism.

To prove the universality of

b

G , we use the Reognition Theorem VI.9. For that we have

to verify that

(1)

b

g is weakly universal,

(2) �

1

(

b

G) = 1 ,

(3) �

1

(G) � (

e

G;

e

G):

Condition (1) has been veri�ed above. Further (3) follows from the perfetness of g , whih

implies (

e

G;

e

G) =

e

G . It therefore remains to verify (2). For that we onsider a part of the long

exat homotopy sequene of the Z -prinipal bundle q:

b

G! G :

(6:2) �

2

(G)

Æ

��!�

1

(Z)! �

1

(

b

G)! �

1

(G)! �

0

(Z):

Aording to [Ne02a, Prop. 5.11℄, we have Æ = � per

!

, so that �

1

(Z) = �

!

(as subsets

of z) implies that Æ is surjetive. Moreover, the natural homomorphism �

1

(G) ! �

0

(Z) is

an isomorphism by the onstrution of

b

G , so that the exatness of (6.2) implies that

b

G is simply

onneted.

Remark VI.11. (a) If K is �nite-dimensional and redutive, then

e

K

�

=

z(k) � (

e

K;

e

K).

Therefore �

1

(K) is ontained in (

e

K;

e

K) if and only if K

�

=

z(k) � (K;K). In this ase we

have

C

1

(M;K)

�

=

C

1

(M; z(k)) � C

1

(M; (K;K))

and hene we have for G = C

1

(M;K)

e

the diret produt deomposition

G = G

D

�G

Z

with G

D

:= C

1

(M; (K;K))

e

and G

Z

:= C

1

(M; z(k)):

In this ase the Lie algebra g = C

1

(M ; k) has the diret deomposition g = g

0

� z(g) with

g

0

= C

1

(M ; k

0

) and z(g) = C

1

(M ; z(k)), where k

0

, resp., g

0

denote the ommutator algebra. It

is easy to see that every Lie algebra oyle ! 2 Z

2



(g;Y ) vanishes on g

0

� z(g) � g� g beause

g

0

is perfet. From that one further derives that a weakly universal entral extension of g an

be obtained with

z := z

M

(V (k

0

))� �

2

(z(g));

where for a loally onvex spae E the spae �

2

(E) is de�ned as the quotient of E


�

E modulo

the losure of the subspae spanned by the elements e
e , e 2 E . To desribe the orresponding



44 Current groups for non-ompat manifolds and their entral extensions September 24, 2002

oyle, we write � 2 g as � = (�

0

; �

z

) with �

0

2 g

0

and �

z

2 z(g). Then a weakly universal

oyle is given by

!(�; �) = ([�

k

0

(�

0

; d�

0

)℄; �

z

^ �

z

):

Let

b

G

D

be the universal entral extension of G

D

from Theorem VI.10 and de�ne

b

G :=

b

G

D

�

b

G

Z

; where

b

G

Z

is the 2-step nilpotent Lie algebra

z(g)�

!

Z

�

2

(z(g)) with !

Z

(�; �) = � ^ �;

viewed as a Lie group with the multipliation x � y := x+ y +

1

2

[x; y℄ . Using Theorem VI.9, we

see that

b

G

Z

is a weakly universal entral extension of G

Z

�

=

g

Z

. Theorems VI.9 and VI.10 now

imply that

b

G is a weakly universal entral extension of G .

Appendix A. Homotopy groups of smooth urrent groups

In this setion we show that the homotopy groups of the Lie groups of smooth maps C

1



(M ;K),

resp., C

1

(M;S;K) introdued in Setion I oinide with the homotopy groups of the orre-

sponding groups of ontinuous maps C

0

(M ;K), resp., C

0

(M n S;K). The latter groups are

usually better aessible by means of topologial methods.

More spei�ally, for the group C

1



(M ;K) of ompatly supported smooth funtions

on a manifold M with values in a Lie group K the main result will be that the inlusion

C

1



(M ;K) ,! C

0

(M ;K) is a weak homotopy equivalene. For the group C

1

(M;S;K) of

smooth maps on a ompat manifold M vanishing with all derivatives on a losed subset S we

show that the inlusion C

1

(M;S;K) ,! C

0

(M n S;K) is a weak homotopy equivalene.

In the present paper the results of this setion are mainly needed to get information on the

seond homotopy group whih is important for period maps assoiated to Lie algebra oyles

(f. Setion V). Moreover, the results of this appendix are of independent interest in many other

ontexts, where they provide valuable information on the topology of urrent groups.

Groups of ompatly supported funtions

Lemma A.1. For eah ompat subset E of C

1



(M ;K) there exists a ompat subset X �M

with E � C

1

X

(M ;K) .

Proof. Let U � k := L(K) be an open 0-neighborhood and ':U ! '(U) a hart with

'(0) = e . Then there exists an open 0-neighborhood U

0

� U suh that we obtain a loal hart for

G := C

1



(M ;K) by '

G

(f) := ' Æ f (De�nition I.2(b)). Let V := ff 2 C

1



(M ; k): f(M) � U

0

g

and observe that

'

G

:V ! '

G

(V ) = ff 2 C

1



(M ;K): f(M) � '(U

0

)g:

Then for eah f 2 G the set f'

G

(V ) is an open neighborhood, and the map

'

f

:V ! f'

G

(V ); � 7! f'

G

(�)

is a di�eomorphism. Let W � V be a losed 0-neighborhood suh that '

G

(W )'

G

(W ) � '

G

(V ).

Sine '

G

(W ) is the intersetion of all sets '

G

(W )N , where N is an identity neighborhood in

C

1



(M ;K), '

G

(W ) � '

G

(V ), so that the losedness of W implies that '

G

(W ) is losed.

Sine the ompat set E is overed by the open sets f'

G

(W

0

), f 2 E , there exist

f

1

; : : : ; f

n

2 E with

E � f

1

'

G

(W

0

) [ : : : [ f

n

'

G

(W

0

):

The losedness of '

G

(W ) implies that eah set E \ f

j

'

G

(W ) is ompat, so that for eah j the

losed set

'

�1

f

j

(E \ f

j

'

G

(W )) =W \ '

�1

f

j

(E) � C

1



(M ; k) = lim

�!

C

1

X

(M ; k)
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is ompat, so that there exists a ompat subset X

j

�M with '

�1

f

j

(E\f

j

'

G

(W )) � C

1

X

j

(M ; k)

([He89, Prop. 1.5.3℄). Let

X := X

1

[ : : : [X

n

[ supp(f

1

) [ : : : [ supp(f

n

):

Then X is ompat and E � C

1

X

(M ;K).

Lemma A.2. Let E be a ompat spae and f :E ! C

1



(M ;K) a ontinuous map. Then

there exists a ompat subset X � M and a ontinuous map f

X

:E ! C

1

X

(M ;K) suh that

f = �

X

Æ f

X

holds for the inlusion map �

X

:C

1

X

(M ;K)! C

1



(M ;K) .

Proof. Sine C

1



(M ;K) is Hausdor�, the set f(E) is ompat. In view of Lemma A.1, there

exists a ompat subset X �M with f(E) � C

1

X

(M ;K). Let f

X

:E ! C

1

X

(M ;K) denote the

orestrition of f to C

1

X

(M ;K). Sine �

X

is a topologial embedding (Remark I.3), the map

f

X

is ontinuous. It obviously satis�es f = �

X

Æ f

X

.

Proposition A.3. Let X

n

� M be ompat with X

n

� X

0

n+1

and M =

S

n

X

n

. Then the

map

lim

�!

C

1

X

n

(M ;K)! C

1



(M ;K)

is a weak homotopy equivalene. In partiular �

m

(C

1



(M ;K))

�

=

lim

�!

�

m

(C

1

X

n

(M ;K)) for eah

m 2 N

0

.

Proof. Lemma A.2 �rst implies that eah ontinuous map f :S

m

! C

1



(M ;K) fators

through some inlusion C

1

X

n

(M ;K) ! C

1



(M ;K). If two suh maps f

1

; f

2

are homotopi,

then eah homotopy h:S

m

� [0; 1℄ ! C

1



(M ;K) also fators through some group C

1

X

k

(M ;K).

This implies that the natural map

lim

�!

�

m

(C

1

X

n

(M ;K))

�

=

�

m

(lim

�!

C

1

X

n

(M ;K))! �

m

(C

1



(M ;K))

is bijetive, i.e., that the ontinuous map lim

�!

C

1

X

n

(M ;K) ! C

1



(M ;K) is a weak homotopy

equivalene.

Remark A.4. A similar argument as the one leading to Proposition A.3 shows that the map

lim

�!

C

X

n

(M ;K)! C



(M ;K)

is a weak homotopy equivalene.

If M and N are topologial spaes, we write [M;N ℄ for the set of homotopy lasses of

ontinuous maps f :M ! N . If, in addition, x

M

2 M and x

N

2 N are base points, then

C

�

(M;N) := ff 2 C(M;N): f(x

M

) = x

N

g denotes the set of base point preserving ontinuous

maps and [M;N ℄

�

denotes the orresponding set of homotopy lasses. We reall that if M

is loally ompat, then homotopy lasses orrespond to ar omponents in the ompat open

topology.

Eventually we want to show that the map

C

1



(M ;K)! C



(M ;K)

is a weak homotopy equivalene, so that the homotopy groups of C

1



(M ;K) are the limits of

the orresponding homotopy groups of C

X

(M ;K). These groups are more approahable sine

they are isomorphi to C

�

(X=�X ;K), where X=�X is a ompat spae, with the image of �X

as the base point.

If M is a ompat manifold with boundary, then the homotopy groups �

m

(C

�

(M=�M ;K))

might be well aessible. Note that if �M is empty, then C

�

(M=�M ;K) should be read as the

group C(M ;K).
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Lemma A.5. Let X

1

; X

2

�M be ompat subsets with X

1

� X

0

2

and f 2 C

X

1

(M ;K) . Then

every neighborhood of f ontains a map f

0

in C

1

X

2

(M ;K) . The image of the homomorphism

�:�

0

(C

1

X

2

(M ;K))! �

0

(C

X

2

(M ;K))

ontains the image of �

0

(C

X

1

(M ;K)) . Moreover, if f is ontained in C

X

1

(M ;K)

e

, then we

may hoose f

0

2 C

1

X

2

(M ;K)

e

.

Proof. The �rst assertion follows from [Ne02a, Th. A.3.7℄. Sine the groups C

X

(M ;K)

and C

1

X

(M ;K) are Lie groups, their onneted omponents are open, so that every onneted

omponent of C

X

2

(M ;K) meeting C

X

1

(M ;K) ontains a smooth element.

If the map f 2 C

X

1

(M ;K) is suÆiently lose to e in the sense that f(M) � V for some

hart e-neighborhood V � K di�eomorphi to an open onvex set, we �nd f

1

2 C

1

X

2

(M ;K)

with f

1

(M) � V . Now any two smooth maps f

1

; f

2

2 C

1

X

2

(M ;K) with f

j

(M) � V are smoothly

homotopi, hene ontained in the same onneted omponent of C

1

X

2

(M ;K).

If f 2 C

X

1

(M ;K) is ontained in the identity omponent, then there exists a ontinuous

urve : [0; 1℄ ! C

X

1

(M ;K) with (0) = e and (1) = f . For a suÆiently �ne subdivision

0 = t

0

< t

1

< : : : < t

N

= 1 we now �nd smooth maps f

j

2 C

1

X

2

(M ;K) lose to (t

j

) in the sense

that (f

�1

j

� (t

i

))(M) � V , where for j < N the maps f

j

and f

j+1

are smoothly homotopi.

Hene f

N

is ontained in the identity omponent of C

1

X

2

(M ;K).

Lemma A.6. The map �:C

1



(M ;K)! C



(M ;K) indues an isomorphism

�

0

(�):�

0

(C

1



(M ;K))! �

0

(C



(M ;K)):

Proof. The surjetivity of �

0

(�) follows diretly from Lemma A.5. If f 2 C

1



(M ;K)

satis�es [f ℄ 2 ker�

0

(�), then there exists a ompat subset X � M and a ontinuous map

: [0; 1℄ ! C

X

(M ;K) with (0) = e and (1) = f (Lemma A.2). Let Y � M be a ompat

subset with X � Y

0

. Then Lemma A.5 implies that we an approximate f by smooth funtions

f

0

in the identity omponent of C

1

Y

(M ;K). It follows in partiular that f is ontained in the

identity omponent of C

1

Y

(M ;K), hene also in the identity omponent of C

1



(M ;K). This

shows that �

0

(�) is injetive.

In M we �x a base point x

M

and in any group we onsider the unit element e as the base

point. We write C

1

�

(M ;K) � C

1

(M ;K) for the subgroup of base point preserving maps and

observe that

C

1

(M ;K)

�

=

C

1

�

(M ;K)oK

as Lie groups, where we identify K with the subgroup of onstant maps. This relation already

leads to

(A:1) �

k

(C

1

(M ;K))

�

=

�

k

(C

1

�

(M ;K))� �

k

(K); k 2 N

0

:

In partiular we have

�

0

(C

1

(M ;K))

�

=

�

0

(C

1

�

(M ;K))

if K is onneted.

On the other hand, we have for eah topologial group G and eah k 2 N the relation

(A:2) �

k

(G)

�

=

�

0

(C

�

(S

k

; G)) = �

0

(C

�

(S

k

; G

e

)) = �

0

(C(S

k

; G

e

));

where G

e

denotes the ar-omponent of the identity in G .

The following theorem is one of the two main results of this setion. It provides a valuable

tool to determine the homotopy groups of groups of smooth maps in terms of the orresponding

groups of ontinuous maps.



47 urrent2.tex September 24, 2002

Theorem A.7. If M is a onneted � -ompat �nite-dimensional manifold and K a Lie

group, then the inlusion C

1



(M ;K) ! C



(M ;K) is a weak homotopy equivalene. If M is

ompat and x

M

2M is a base point, then the inlusion

(A:3) C

1

�

(M ;K)! C

�

(M ;K) := ff 2 C(M ;K): f(x

M

) = eg

is a weak homotopy equivalene.

Proof. We have to show that the inlusion indues for eah k 2 N

0

an isomorphism

�

k

(C

1



(M ;K))! �

k

(C



(M ;K)):

For k = 0 this is Lemma A.6. If M is ompat, then

�

0

(C

1



(M ;K)) = �

0

(C

1

(M ;K))

�

=

�

0

(C

1

�

(M ;K))� �

0

(K)

and

�

0

(C



(M ;K)) = �

0

(C(M ;K))

�

=

�

0

(C

�

(M ;K))� �

0

(K);

so that (A.3) follows from Lemma A.6. We only observe that if f

t

is a homotopy between f

0

and f

1

in C

1



(M ;K) and x

M

2M is a base point, then

e

f

t

(x)f

t

(x

M

)

�1

is a homotopy between

f

0

and f

1

in C

1

�

(M ;K).

Next we assume that k � 1 and observe that the inlusions

C

�

(S

k

; C

1



(M ;K)) = C

�

(S

k

; C

1



(M ;K)

e

) ,! C(S

k

; C

1



(M ;K)

e

) ,! C(S

k

; C



(M ;K)

e

)

,! C(S

k

; C



(M ;K))

�

=

C



(S

k

�M ;K)

are ontinuous homomorphisms of Lie groups, where

C(S

k

; C



(M ;K)

e

) ,! C(S

k

; C



(M ;K))

is an open embedding. For the group of onneted omponents, we obtain for k � 1 with (A.2)

the homomorphisms

�

k

(C

1



(M ;K))

�

=

�

0

�

C

�

(S

k

; C

1



(M ;K))

�

�

=

�

0

�

C(S

k

; C

1



(M ;K)

e

)

�

! �

0

�

C(S

k

; C



(M ;K)

e

)

�

�

=

�

k

�

C



(M ;K)

�

:

If f :S

k

�M ! K is a ontinuous map with ompat support orresponding to an element

of C

�

(S

k

;C



(M ;K)

e

), then Lemma A.5 �rst implies that every neighborhood of f ontains

a smooth map with ompat support. Thus every onneted omponent of C



(S

k

� M ;K)

ontains an element of C(S

k

; C

1



(M ;K))

e

by the openness argument from above. This means

that the homomorphism �

k

(C

1



(M ;K))! �

k

(C



(M ;K)) is surjetive. To see that it is injetive,

suppose that � 2 C

�

S

k

; C

1



(M ;K)

e

�

satis�es � 2 C

�

S

k

; C



(M ;K)

e

�

e

�

=

C



(S

k

�M ;K)

e

. From

Lemma A.6 we obtain

C

1



(S

k

�M ;K) \ C



(S

k

�M ;K)

e

� C

1



(S

k

�M ;K)

e

;

so that approximating � by elements in C

1



(S

k

�M ;K) (Lemma A.5), we see that we may

even approximate it by elements in C

1



(S

k

�M ;K)

e

, whih implies that � lies in the identity

omponent of C

�

S

k

; C

1



(M ;K)

e

�

. This proves that the homomorphisms �

k

(C

1



(M ;K)) !

�

k

(C



(M ;K)); k 2 N

0

; are isomorphisms.

Theorem A.7 an also be extended to non-onneted manifolds M as follows. Let M =

S

j2J

M

j

be the deomposition of M into onneted omponents M

j

. Here one an use

C



(M ;K) =

M

j2J

C



(M

j

;K);

and for eah ompat subset X �M we have the �nite sum deomposition

C

X

(M ;K) =

M

X\M

j

6=�

C

X\M

j

(M

j

;K):

If M has only �nitely many onneted omponents, then there is no problem, but if M has

in�nitely many onneted omponents, then one has to take the diret sum topology on C



(M ; k)

into aount and the orresponding Lie group topology on C



(M ;K).

Lemma A.8 and Proposition A.9 provide additional information on the homotopy type of

the topologial urrent groups.
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Lemma A.8. If M is a loally ompat spae, then the inlusion �:C



(M ;K) ! C

0

(M ;K)

indues an isomorphism �

0

(C



(M ;K))! �

0

(C

0

(M ;K)) .

Proof. Let f 2 C

0

(M ;K). Then there exists a ompat subset X �M suh that f(M nX) is

ontained in an identity neighborhood of K whih is di�eomorphi to a onvex 0-neighborhood

U in k , where 0 orresponds to e 2 K . Using a ontinuous funtion h 2 C



(M ;R) whih is

1 on X and satis�es h(M) � [0; 1℄, we de�ne a funtion

e

f 2 C



(M ;K) by

e

f = f on X and

e

f = hf on M nX , where we onsider f j

MnX

as a funtion with values in U . Then

F :M � [0; 1℄! K; F (x; t) :=

�

f(x) for x 2 X

(t+ (1� t)h(x))f(x) for x 2M nX

is a homotopy between f and

e

f , and we see that �

0

(�) is surjetive.

A similar argument shows that for f; g 2 C



(M ;K) any path joining f and g in C

0

(M ;K)

an be deformed to a path lying ompletely inside of C

X

(M ;K) for a ompat subset X of M .

Therefore �

0

(�) is injetive.

Proposition A.9. If M is a loally ompat spae, then the inlusion �:C



(M ;K) !

C

0

(M ;K) is a weak homotopy equivalene.

Proof. Let M

1

=M [f1g denote the one-point ompati�ation of M . For every ompat

spae X we have an embedding of topologial groups

C(X;C

0

(M ;K))

�

=

C(X;C

�

(M

1

;K)) ,! C(X;C(M

1

;K))

�

=

C(X �M

1

;K);

whih easily leads to the isomorphism

C(X;C

0

(M ;K))

�

=

C

0

(X �M ;K):

In view of Lemma A.8, there exists for eah f 2 C

0

(X �M ;K) some ompat subset

Y � M and a ontinuous map f

Y

2 C(X;C

Y

(M ;K)) � C(X � Y ;K) homotopi to f .

The same argument applies to [0; 1℄ � X instead of X , so that we see that the inlusion

C



(M ;K) ! C

0

(M ;K) indues a bijetion [X;C



(M ;K)℄ ! [X;C

0

(M ;K)℄ on the level of

homotopy lasses.

Applying this to X := S

k

, k 2 N , we obtain with Lemma A.8 that the natural map

�

k

(C



(M ;K))

�

=

[S

k

; C



(M ;K)℄

�

�

=

[S

k

; C



(M ;K)

e

℄! [S

k

; C

0

(M ;K)

e

℄

�

=

[S

k

; C

0

(M ;K)℄

�

�

=

�

k

(C

0

(M ;K))

is bijetive, hene an isomorphism of groups.

Theorem A.10. For eah � -ompat onneted �nite-dimensional manifold M and eah Lie

group K the inlusion map

C

1



(M ;K)! C

0

(M ;K)

�

=

C

�

(M

1

;K)

is a weak homotopy equivalene.

Proof. We only have to ombine Proposition A.9 with Theorem A.7.

Example A.11. For M = R

n

we obtain with Theorem A.10 for eah k 2 N

0

:

�

k

(C

1



(R

n

;K))

�

=

�

k

(C

�

(R

n

1

;K))

�

=

�

k

(C

�

(S

n

;K))

�

=

�

k+n

(K):

Lemma A.12. Let ':N !M be a smooth proper map.

(i) The map

'

K

:C

1



(M ;K)! C

1



(N ;K); f 7! f Æ '
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is a morphism of Lie groups.

(ii) Let '

1

:M

1

! N

1

denote the ontinuous extension of ' to the one-point ompati�ations.

Then for eah k 2 N

0

the map

�

k

('

K

):�

k

(C

1



(M ;K))! �

k

(C

1



(N ;K))

only depends on the homotopy lass of '

1

in the set [M

1

; N

1

℄

�

of pointed homotopy

lasses.

Proof. (i) It is lear that '

K

maps C

1



(N ;K) into C

1



(M ;K) and that it is a group

homomorphism. It therefore suÆes to show smoothness in some identity neighborhood.

Let U � K be an open identity neighborhood and  :U ! W a hart of K where W � k

is an open subset and  (e) = 0. Then there exists an open 0-neighborhood V �W suh that

C

1



(N;W ) := ff 2 C

1



(N ;K): f(N) �  

�1

(V )g

is an open subset of C

1



(N ;K) ([Gl01b℄). Now it suÆes to see that the map

C

1



(M;V )! C

1



(N; V ); f 7! f Æ '

is smooth. As this map is the restrition of a linear map, we only have to show that it is

ontinuous.

For eah ompat subset X �M we have

C

1

X

(M ;K) Æ ' � C

1

'

�1

(X)

(M ;K);

so that the assertion follows from the observation that for eah n 2 N the map d

n

(f Æ') depends

ontinuously on f , when onsidered as an element of C(T

n

(N); k)



(f. De�nition I.2).

(ii) Let �

M

:C

1



(M ;K)! C

�

(M

1

;K) denote the natural inlusion. Then �

N

Æ '

K

= e'

K

Æ �

M

holds with

e'

K

:C

�

(N

1

;K)! C

�

(M

1

;K); f 7! f Æ ':

We know from Theorem A.10 that the maps �

M

and �

N

are weak homotopy equivalenes.

Therefore it suÆes to show that the maps �

k

(e'

K

) only depend on the homotopy lass of ' .

If ';  :M ! N are proper and smooth suh that '

1

and  

1

are homotopi, then it is easy

to see that the maps e'

K

and

e

 

K

are homotopi, hene indue the same homomorphisms on

homotopy groups.

Homotopy groups of groups de�ned by vanishing onditions

In this subsetion we disuss the other major lass of groups of smooth maps C

1

(M;S;K).

Theorem A.13 is a variant of Theorem A.7 for this ontext.

Theorem A.13. Let M be a ompat manifold, S � M a losed subset and C

1

(M;S;K)

the subgroup of C

1

(M ;K) onsisting of all smooth maps vanishing together with all their partial

derivatives on S . Then the inlusion

�:C

1



(M n S;K)! C

1

(M;S;K)

is a weak homotopy equivalene.

Proof. As M is ompat, the group C

1

(M;S;K), when onsidered as a group of maps

M n S ! K , is ontained in C

0

(M n S;K). The inlusion C

1



(M n S;K)! C

0

(M n S;K) is a

weak homotopy equivalene by Theorem A.10, so that all the maps �

k

(�), k 2 N

0

, are injetive.

It therefore remains to show that they are also surjetive.
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So let

� 2 C

�

(S

k

; C

1

(M;S;K)) � C

�

(S

k

; C

0

(M n S;K)) � C

0

(S

k

� (M n S);K):

Then there exists a ompat subset X � M n S suh that �(S

k

� (M n X

0

)) is ontained in

an identity neighborhood of K whih is di�eomorphi to a onvex 0-neighborhood U in k ,

where 0 orresponds to e 2 K . Let ':U ! '(U) � K denote the orresponding hart and

h 2 C

1



(M n S;R) with h(X) = f1g and h(M) � [0; 1℄. We now de�ne

e�:S

k

�M ! K; e�(t; x) :=

�

�(t; x) for x 2 X

'

�

h(x)'

�1

(�(t; x))

�

for x 62 X .

As �(S

k

� (M n X

0

)) is a ompat subset of '(U), it easily follows that e� is ontinuous and

that t 7! e�(t; �) yields a ontinuous map S

k

! C

1



(M n S;K). In fat, the support of eah map

e�(t; �) is ontained in the support of h . Moreover,

F : [0; 1℄� S

k

�M ! K; F (s; t; x) :=

�

�(t; x) for x 2 X

'

�

[sh(x) + (1� s)℄ � '

�1

(�(t; x))

�

for x 62 X

is a homotopy between � and e� preserving base points. This implies that the map �

k

(�) is

surjetive.

Note that Theorem A.13 does not imply that C

1



(M n S;K) is dense in C

1

(M;S;K).

This will be shown in Theorem A.18 below.

Corollary A.14. Let M be a ompat manifold and � 6= S � M a losed subset. Then the

inlusion

�:C

1

(M;S;K)! C

0

(M n S;K)

�

=

C

�

(M=S;K)

is a weak homotopy equivalene.

Proof. Aording to Theorem A.10, the inlusion C

1



(M n S;K)! C

0

(M n S;K) is a weak

homotopy equivalene, and this map is the omposition of � and the inlusion map � from

Theorem A.10. This implies that � also is a weak homotopy equivalene.

Corollary A.15. For a ompat manifold M and k 2 N

0

we have

�

k

(C

1

(M;S;K))

�

=

�

k

(C

�

(M=S;K))

and in partiular

�

k

(C

1

(I; �I ;K))

�

=

�

k

(C

�

(S

1

;K))

�

=

�

k+1

(K):

Proof. For M = I and S = �I we have M=S

�

=

S

1

and therefore

�

k

(C

1

(I; �I;K))

�

=

�

k

(C

�

(S

1

;K))

�

=

�

k+1

(K):

Lemma A.16. For eah � 2 C

1

((M

0

; S

0

); (M;S)) let

�

K

:C

1

(M;S;K)! C

1

(M

0

; S

0

;K); f 7! f Æ �:

Then �

K

is a homomorphism of Lie groups and the homomorphisms �

k

(�

K

) only depend on

the homotopy lass of � in the spae C((M

0

; S

0

); (M;S)) .

Proof. First we observe that the hain rule for Taylor expansions implies that �

K

does indeed

map C

1

(M;S;K) into C

1

(M

0

; S

0

;K). That �

K

is a homomorphism of Lie groups follows by

similar arguments as in the proof of Lemma A.12(i).

Viewing � as a ontinuous map (M

0

; S

0

)! (M;S) of spae pairs, we see that it indues a

ontinuous map

�

�

:C

�

(M=S;K)! C

�

(M

0

=S

0

;K); f 7! f Æ �:

Sine the inlusion C

1

(M;S;K) ! C

�

(M=S;K) is a weak homotopy equivalene (Corol-

lary A.14), the maps �

k

(�

K

) are onjugate to the maps �

k

(�

�

). It is easy to see that �

k

(�

�

) only

depends on the homotopy lass of � beause for eah ontinuous map �:S

k

! C

�

(M

0

=S

0

;K)

the map �

�

Æ �:S

k

! C

�

(M=S;K) depends ontinuously on � .
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Lemma A.17. For eah loally onvex spae Y the spae C

1

(M;S;Y ) is a losed subspae of

C

1

(M ;Y ) invariant under multipliation with elements of C

1

(M ;R) .

Proof. This follows diretly from the Leibniz formula for the higher partial derivatives of a

produt of two funtions.

Theorem A.18. (Approximation Theorem) If M is ompat, then C

1



(M n S;K) is dense

in the Lie group C

1

(M;S;K) .

Proof. First we redue the problem to the assertion that for the Lie algebra k of K the

subspae C

1



(M n S; k) is dense in C

1

(M;S; k).

Let U � K be an open identity neighborhhod and ':V ! U a hart of K with V � k

an open onvex subset and '(0) = e . Then ff 2 C

1

(M;S;K): f(M) � Ug is an open subset

of C

1

(M;S;K) beause it is already open in the ompat open topology. We hoose an open

onvex 0-neighborhood V

1

� V with '(V

1

)

�1

'(V

1

) � '(V ).

Let f 2 C

1

(M;S;K). As f vanishes on S , the set f

�1

('(V

1

)) is an open subset of M

ontaining S . Therefore its omplement X is a ompat subset of M nS . Arguing as in the proof

of Lemma A.8, we �nd a funtion

e

f 2 C

1



(M n S;K) with

e

f j

X

= f j

X

and

e

f(M nX) � '(V

1

).

Now it suÆes to show that h := f

�1

e

f , whose values are ontained in '(V

1

)

�1

'(V

1

) � '(V ),

is ontained in the losure of C

1



(M n S;K). As '

�1

Æ h:M ! k is a well-de�ned smooth map,

we see that it suÆes to prove the theorem for k instead of K . In this setting we have to show

that if V � k is an open onvex 0-neighborhood with f(M) � V , then f an be approximated

by funtions in C

1



(M ; k) whose values lie in V .

Let f 2 C

1

(M;S; k). Using Lemma A.17 and a smooth partition of unity on M , we

may assume that the support of f lies in a oordinate neighborhood whih we may identify

with R

n

. We are therefore led to the following situation. We onsider a smooth funtion

f 2 C

1



(R

n

; k) all of whose derivatives vanish on the losed subset S � R

n

, and we are looking

for a sequene of funtions with ompat support in R

n

nS onverging to f in C

1

(R

n

; k) whose

supports are uniformly ontained in a ompat set. The existene of suh a sequene is proved

in Proposition A.22 below.

An Approximation Lemma

Let � 6= S � R

d

be a losed subset, Y a Banah spae, and f 2 C

1

X

(R

d

;Y ) for a ompat

subset X � R

d

suh that f and all its partial derivatives vanish on S \ X . We want to see

that f is ontained in the losure of the subspae C

1



(R

d

nS;Y )\C

1

X

(R

d

;Y ). In the following

d(S; x) denotes the eulidean distane of the set S and x . We write k � k for the eulidean norm

on R

d

.

Lemma A.19. For eah k 2 N and eah f 2 C

1



(R

d

; S;Y ) there exists a onstant C

k

> 0

with

kf(x)k � C

k

d(S; x)

k

:

Proof. We prove the assertion by indution over k . For k = 0 it follows from the ompatness

of the support of f .

Now we assume that the assertion holds for k 2 N

0

. Let h 2 C

1



(R

d

; S;Y ). Then the

indution hypothesis applies to dh 2 C

1



(R

d

; S; Lin(R

d

;Y )), and we obtain a onstant D

k

with

kdh(x)k � D

k

d(S; x)

k

for all x 2 R

d

. For x 2 R

d

we �nd an x

0

2 S with kx� x

0

k � 2d(S; x).

Then

h(x) = h(x

0

) +

Z

1

0

dh(x

0

+ t(x� x

0

))(x � x

0

) dt =

Z

1

0

dh(x

0

+ t(x� x

0

))(x � x

0

) dt

leads to

kh(x)k � kx� x

0

k sup

0�t�1

kdh(x

0

+ t(x� x

0

))k

� 2d(S; x)D

k

sup

0�t�1

d(S; x

0

+ t(x� x

0

))

k

� 2D

k

d(S; x)2

k

d(S; x)

k

= 2

k+1

D

k

d(S; x)

k+1

:
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This ompletes the indution, and hene the proof of the lemma.

Now let Æ be a smooth funtion supported in the losed unit ball B

1

(0) in R

d

with

R

R

d

Æ(x) dx = 1 and im(Æ) � [0; 1℄. We de�ne

Æ

n

(x) := n

d

Æ(nx)

and observe that these funtions form a smooth Dira sequene. For eah multiindex J =

(j

1

; : : : ; j

d

) 2 N

d

0

we have

k�

J

Æ

n

k

1

= n

d+jJj

k�

J

Æk

1

:

Let S

n

:= fx 2 R

d

: d(S; x) �

2

n

g and

�

S

n

(x) :=

�

1 for x 2 S

n

0 for x 62 S

n

the harateristi funtion of S

n

. Then we de�ne

'

n

(x) := 1� (Æ

n

� �

S

n

)(x) = 1�

Z

x�S

n

Æ

n

(y) dy 2 [0; 1℄:

Then eah funtion '

n

is smooth with '

n

(x) = 1 for d(S; x) �

3

n

and '

n

(x) = 0 for d(S; x) �

1

n

.

Lemma A.20. For eah multiindex J there exists a onstant D

J

suh that

k�

J

'

n

(x)k � D

J

d(S; x)

�jJj

; x 2 R

d

; n 2 N:

Proof. For jJ j = 0 the assertion follows from im('

n

) � [0; 1℄.

Suppose that jJ j > 0 and that d(S; x) 2 [

1

n

;

3

n

℄ . Otherwise �

J

'

n

(x) vanishes anyway.

Then we have

k�

J

'

n

(x)k = k

�

(�

J

Æ

n

) � �

S

n

�

(x)k � vol(B

1

n

(0))k�

J

Æ

n

k

1

� Cn

�d

n

d+jJj

k�

J

Æk

1

= Cn

jJj

k�

J

Æk

1

� C3

jJj

d(S; x)

�jJj

k�

J

Æk

1

:

Lemma A.21. For all multiindies J with jJ j > 0 we have uniformly �

J

'

n

� f ! 0 .

Proof. Combining Lemma A.19 and A.20, we get for eah k 2 N a onstant C

k

with

k(�

J

'

n

(x))f(x)k � C

k

d(S; x)

�jJj

d(S; x)

jJj+k

= C

k

d(S; x)

k

:

As �

J

'

n

(x) = 0 for d(S; x) �

3

n

(here we need jJ j > 0), this leads to

k(�

J

'

n

(x))f(x)k � C

k

3

k

n

�k

for all x 2 R

d

, and this implies the assertion.

Proposition A.22. For eah loally onvex spae Y and f 2 C

1



(R

d

; S;Y ) we have '

n

f ! f

in C

1

(R

d

;Y ) .

Proof. As every loally onvex spae an be embedded into a produt of Banah spaes,

it suÆes to assume that Y is a Banah spae. Sine the supports of the funtions '

n

f and

f are ontained in one ompat subset of R

d

, we have to show k�

J

('

n

f � f)k

1

! 0 for all

multiindies J .

For jJ j = 0 this follows easily from the support properties of '

n

and kf(x)k � Cd(S; x).

Next we note that for eah multiindex J the funtion �

J

f also has the property that all its

partial derivatives vanish on S . Therefore Lemma A.21 implies that �

J

'

n

� �

J

f ! 0 uniformly

whenever jJ j > 0. In view of the Leibniz rule, the problem redues to showing that '

n

�

J

f

onverges uniformly to �

J

f , but this follows from the ase jJ j = 0, applied to �

J

f instead

of f .
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Appendix B. Loally onvex diret limit spaes

In this setion we disuss the disreteness of ertain subgroups of diret limits of loally onvex

spaes. In this paper we only use Lemma B.4. Nevertheless Proposition B.3 provides a muh

more diret way to prove the disreteness of the groups H

k

(M ;Y;�) if Y is �nite-dimensional

and � � Y is a disrete subgroup (f. Corollary IV.21).

Lemma B.1. If X is a loally onvex spae, Y � X a losed subspae and F � X a �nite-

dimensional subspae omplementing Y , then X

�

=

Y � F as topologial vetor spaes.

Proof. The quotient map q:X ! X=Y indues an isomorphism q j

F

:F ! X=Y . Hene

q has a ontinuous linear setion �:X=Y ! X whose range is F , and therefore the addition

map a:Y � F ! X is a topologial isomorphism beause a

�1

(x) =

�

x � �(q(x)); �(q(x))

�

is

ontinuous.

Lemma B.2. Let X be a loally onvex spae whih is the loally onvex diret limit of the

subspaes X

n

, n 2 N , where eah X

n

is a losed subspae of X

n+1

. Further let F � X be a

subspae suh that for eah n 2 N the intersetion F

n

:= F \ X

n

is �nite-dimensional. Then

the following assertions hold:

(i) There exists a ontinuous linear projetion p:X ! F with p(X

n

) = F

n

for eah n 2 N . In

partiular we have X

�

=

ker p� F .

(ii) F is losed.

(iii) F is the topologial diret limit of the subspaes F

n

, n 2 N , whih means that F arries

the �nest loally onvex topology.

Proof. (i) We argue by indution. As F

1

is �nite-dimensional, the Hahn{Banah Theorem

yields a ontinuous extension p

1

:X

1

! F

1

of the identity map id

F

1

. Then p

1

an be viewed as

a ontinuous projetion of X

1

to F

1

.

Now let n 2 N and assume that p

n

:X

n

! F

n

is a ontinuous projetion. Then we

hoose a omplement E

n+1

of F

n

in F

n+1

. As X

n

is a losed subspae of the loally onvex

spae X

n

+ F

n+1

= X

n

� E

n+1

, it follows from Lemma B.1 that X

n

+ F

n+1

�

=

X

n

� E

n+1

as topologial vetor spaes. The linear map q

n

:= p

n

� id

E

n+1

is a ontinuous projetion of

X

n

+ F

n+1

onto F

n+1

. We use the Hahn{Banah Theorem again to extend q

n

to a ontinuous

linear map p

n+1

:X

n+1

! F

n+1

whih then also is a ontinuous projetion. We thus obtain a

sequene (p

n

)

n2N

of ontinuous linear maps p

n

:X

n

! F with p

n+1

j

X

n

= p

n

. Now the universal

property of X yields the existene of a ontinuous linear map p:X ! F with p j

X

n

= p

n

for

eah n 2 N . As p j

F

= id

F

, we are done.

(ii) follows from (i).

(iii) Let Z be a loally onvex spae and f :F ! Z be a linear map. We laim that f is

ontinuous. To this end, we onsider the map h := f Æ p:X ! Z . Then h j

X

n

= (f j

F

n

) Æ p

n

, and

p

n

is ontinuous, as well as the map f j

F

n

on the �nite-dimensional vetor spae F

n

. Therefore

all the restritions h j

X

n

are ontinuous, and we onlude that h is ontinuous, whih in turn

implies that f is ontinuous. The fat that all linear maps from F to loally onvex spaes are

ontinuous shows that F arries the �nest loally onvex topology. Furthermore, F is ountably

dimensional beause all the spaes F

n

are �nite-dimensional. Using [KK63℄, we now onlude

that the topology on F oinides with the �nite open topology, i.e., the diret limit topology

with respet to the direted system of all �nite-dimensional subspaes. As the sequene (F

n

)

n2N

is o�nal, this topology oinides with the diret limit topology with respet to the sequene

(F

n

)

n2N

.

Proposition B.3. Let X be a loally onvex spae whih is the loally onvex diret limit of

the subspaes X

n

, n 2 N , with X

n

� X

n+1

, where X

n

is losed in X

n+1

. Let further � � X

be a subgroup suh that for eah n 2 N the group �\X

n

is disrete and �nitely generated. Then

� is a disrete subgroup of X .
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Proof. For eah n 2 N we onsider the �nite-dimensional subspae F

n

:= span�

n

for the

disrete �nitely generated subgroup �

n

:= � \X

n

of X

n

. Let F :=

S

n

F

n

= span�. We laim

that F

n

= F \ X

n

holds for eah n 2 N . Fix n;m 2 N with n < m . As �

n

is disrete in

the �nite-dimensional spae F

n

, there exists a basis B

n

of F

n

with �

n

= span

Z

B

n

. Further

�

n

= �\X

n

= �

m

\X

n

is a pure subgroup of �

m

, so that �

m

=�

n

is a free abelian group. Hene

we �nd a subset C

m

� �

m

suh that the image of C

m

is a basis in (F

m

+X

n

)=X

n

�

=

F

m

=F

m

\X

n

generating the subgroup (�

m

+X

n

)=X

n

�

=

�

m

=�

n

. Now B

m

:= B

n

[ C

m

is a basis of F

m

with

�

m

= span

Z

B

m

. In partiular, it follows that F

m

\X

n

= span

R

B

n

= F

n

. As m was arbitrary,

we onlude that F \X

n

= F

n

.

Next Lemma B.2 applies to the subspae F � X and shows that F is losed and arries the

�nite open topology. Let O := (F n�)[f0g . For eah n 2 N we then have O\F

n

= (F

n

n�

n

)[f0g ,

whih is an open set beause �

n

is disrete in F

n

. Therefore O is an open subset of F

(Lemma B.2(iii)), and sine F arries the subspae topology of X , there exists an open subset

O

X

� X with O

X

\ F = O . Now O

X

is an open 0-neighborhood in X with O

X

\ � = f0g .

This shows that � is disrete.

Lemma B.4. Let X = lim

�!

X

j

be a loally onvex diret limit of the spaes X

j

.

(i) If F � X is a losed subspae, then X=F

�

=

lim

�!

X

j

=(F \X

j

):

(ii) A subspae F � X is losed if and only if all intersetions F \X

j

are losed.

Proof. (i) (f. [K�o79, p.42℄) Sine F is losed, all the spaes F

j

:= F \ X

j

are losed. Let

Z := lim

�!

X

j

=F

j

denote the loally onvex diret limit of the spaes X

j

=F

j

. Then we have

natural ontinuous maps '

j

:X

j

=F

j

! X=F whih de�ne a ontinuous linear map ':Z ! X=F .

On the other hand the ontinuous linear maps X

j

! Z ombine to a ontinuous linear map

X ! Z whih then fators through a ontinuous linear map  :X=F ! Z . Now ' Æ  = id

X=F

and  Æ ' = id

Z

imply (i).

(ii) If F is losed, then the subspaes F \ X

j

are trivially losed in X

j

. If, onversely, this

ondition is satis�ed, then we an form the loally onvex diret limit spae Z := lim

�!

X

j

=(F\X

j

).

The natural maps X

j

! Z are ontinuous, hene ombine to a ontinuous map X ! Z whose

kernel F is a losed subspae.

Problem B.1. Does Proposition B.3 also hold without the assumption that the groups �\X

n

are �nitely generated? If this is true, then the proof of the disreteness of the groups H

1

dR;

(M ; �)

in Setion IV would be muh easier beause we would not need the ompliated approximation

proedure from Setion III.
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