1 current2.tex September 24, 2002

Current groups for non-compact manifolds and their central extensions

Karl-Hermann Neeb

Dedicated to Karl Heinrich Hofmann on the occasion
of his 70th birthday

Abstract. In this paper we study two types of groups of smooth maps from a non-compact
manifold M into a Lie group K which may be infinite-dimensional: the group C2°(M,K) of
compactly supported maps and for a compact manifold M and a closed subset S the group
C*°(M,S;K) of those maps which vanish on S, together with all their derivatives. We study central
extensions of these groups associated to Lie algebra cocycles of the form w(¢,n)=[x(€,dn)], where
k:ExE—Y is a symmetric invariant bilinear map on the Lie algebra ¢ of K and the values of w lie in
QY (M;Y)/dC>>(M;Y). For such cocycles we show that a corresponding central Lie group extension
exists if and only if this is the case for M=S'. If K is finite-dimensional semisimple, this implies
the existence of a universal central Lie group extension of the identity component of the current
groups.

Introduction

If M is a compact manifold and K a Lie group (which may be infinite-dimensional), then
the so called current groups C°°(M; K), endowed with the group structure given by pointwise
multiplication, are interesting infinite-dimensional Lie groups arising in many circumstances. If
M is a non-compact manifold, the full group C*°(M; K) seems to be far too large to carry a
Lie group structure compatible with its natural group topology, so that it is natural to study
subgroups of maps f: M — K that either vanish outside a compact subset or decay fast enough
at infinity. In the present paper we investigate the following two types of current groups on
a non-compact manifold A . The first class consists of the groups C°(M;K) of compactly
supported smooth maps and the second class of the groups C*°(M, S; K) of maps on a compact
manifold M for which all partial derivatives vanish on the closed subset S C M. The groups
C* (M, S; K) have the advantage that they are Fréchet—Lie groups if K is a Fréchet-Lie group,
the Lie algebra is given by C*°(M, S;€). We consider them as groups of smooth maps on the
non-compact manifold M \ S vanishing at infinity. The groups C2°(M; K) are modeled on the
space C2°(M ;) which is not metrizable in its natural direct limit topology, not even for K = R.

The goal of the present paper is to understand central extensions of current groups G
which are identity components of groups of the type C*(M;K) or C*°(M,S;K). For an
infinite-dimensional Lie group G not every Lie algebra cocycle w:g x g — 3 defines a central
extension of g by 3 which can be integrated to a Lie group. In [Ne02a] we show that there
are two kinds of obstructions. The first one is an element of Hom(m (G),Lin(g,3)), and we will
see in Theorem V.8 that it always vanishes for current groups. The second obstruction is that
the image of a certain “period map” per,:m2(G) — 3 need not be discrete. To illuminate the
obstructions for the class of current groups, we need a good deal of information on the abelian
group 72(G). This information is obtained in Appendix A where we show that the computation
of the homotopy groups of G' can be reduced to the computation of those of groups C(X; K) of
continuous maps, where X is a compact manifold with boundary.
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The Lie algebra cocycles we are interested in are those of product type, i.e., cocycles
w:g X g — 3 for which there exists a sequentially complete locally convex space Y and an
invariant continuous symmetric bilinear form :€ x ¢ — Y such that w({,n) = [k(, dn)]
defines a cocycle with values in 3 := jap.(Y) := QL(M;Y)/dC®(M;Y) for g = C>(M;¥),
and 3 = 3,5 (V) = QY(M,S;Y)/dC>®(M,S;Y) for g = C>(M,S;€). We systematically
use forms with values in an infinite-dimensional vector space to incorporate in particular the
universal invariant symmetric bilinear form x:€ x € — V(£).

The main steps in our analysis of these cocycles and their period maps are as follows. In
Section IV we show that the image of the period map always lies in the subspace of 3 coming
from the closed 1-forms. Then the problem is to determine the period group II,, := im(per,) C 3
and to see if it is discrete. For the case g = C.(M;¥) it is quite hard to get information on the
discreteness of a subgroup of 3 = 3a7,.(Y), resp., H§R7C(M; Y’) because j is a direct limit of spaces
on which the topology is given by explicit seminorms. We address this problem by approximating
the non-compact manifold M by suitably chosen submanifolds X,, with boundary in such a way
that

Hip (M:Y) = lim g (X,,,0X,:Y)

(Section IIT). From this relation we then derive the existence of a countable set B so that
Hip,(M;Y) =Y,

is a locally convex direct sum, where the projections are given by integrals over singular cycles
or over piecewise smooth proper maps R — M. In Section IV this information permits us
to see that II, is discrete for each M if and only if this is the case for the circle M = S'.
In the latter case m(C>® (S, K)) = my(K) x m3(K), the period map vanishes on m»(K), and
3s1(Y) 2 Y, so that we arrive at a map w3(K) — Y which depends only on the bilinear form .
For finite-dimensional groups K we can now use information from [MNO2] to see that the period
group is discrete if & is the universal invariant symmetric bilinear form. This is used in Section
VI to construct for a finite-dimensional reductive Lie group K with simply connected center a
universal central extension of the groups C°(M; K), and C*(M,S;K).. In both cases there
are many examples where the period group has infinite rank. A simple example with M = S?2
and S a sequence with limit point is discussed in detail in Example I1.12. All the concrete
examples of central extensions of infinite-dimensional Lie groups which have been dealt with so
far in the literature have finitely generated period groups. In this sense we provide new and
concrete examples, where this is not the case.

The class of current groups most extensively studied is the class of loop groups (M = S!
and K compact) which is completely covered by Pressley and Segal’s monograph [PS86]. The
main point of the present paper is to see which Lie algebra cocycles of product type can
be integrated to a central Lie group extension. These central extensions occur naturally in
mathematical physics, where the problem to integrate projective representations of groups to
representations of central extensions is at the heart of quantum mechanics ([Mic87], [LMNS98],
[Wu01]). The central extensions of current groups are often constructed via representations by
pulling back central extensions of certain operator groups ([Mic89]). It is our philosophy that
one should try to understand the central extensions of a Lie group G first, and then construct
representations of these central extensions. In this context certain discreteness conditions for Lie
algebra cocycles appear naturally because they ensure that the corresponding central Lie algebra
extension integrates to a central Lie group extension ([Ne02a]). We think of these discreteness
conditions as an abstract version of the discreteness of quantum numbers in quantum physics.
As an outcome of our analysis, we will see that for our general results we do not have to impose
any restriction on the group K. It may be any infinite-dimensional Lie group. This permits in
particular iterative constructions based on relations like C°(M x N; K) = C*°(M,C*(N; K))
for compact manifolds M and N.

The content of the paper is as follows. In Section I we introduce the two kinds of Lie groups
we are dealing with: CS°(M; K) for M non-compact, and C*(M,S; K) for M compact and
S C M closed.
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The main result of Section II is that the group H}g(M,S;T) of all de Rham cohomology
classes modulo S for which all integrals over singular cycles modulo S are contained in a discrete
subgroup T of Y is discrete (Theorem IL.7). In Section V this is used to prove the discreteness
of period groups for cocycles of product type for the groups C*®(M,S; K).

Our strategy to get a description of the spaces 3ar,.(Y) and H5R7C(M; Y") for a non-compact
manifold M is to describe M as a union of certain compact submanifolds with boundary
(Xn)nen with X, C X9.,. To get information on the space Hgg .(M;Y), we will need
detailed information on the natural maps Hp(Xp,0X,;Y) — Hjg(Xpt1,0Xp41;Y) which
is obtained in Theorem III.6. This result is used in Theorem IV.7 to obtain the isomorphism
Hig (M;Y) = V(B mentioned above. As a corollary, we show that if T' is discrete, then
Hgg .(M;T) is discrete.

In Section V we first explain the general setup for central extensions of Lie groups. The
main question arising in the integration of Lie algebra cocycles w to central extensions of Lie
groups is whether the corresponding period group II,, is discrete. We then show that for cocycles
of product type for the groups C°(M; K), and C*(M, S; K), the period group s, is discrete
if and only if this is the case for Ilg: . This reduces the discreteness problem to the case of loop
groups, which is known for K compact, and therefore for all finite-dimensional Lie groups (cf.
[PS86], [MNO02]). We further show that My, = Hig .(M; 151 ) for each non-compact manifold
M and each k.

In Section VI we finally turn to universal central extensions. For the special class of finite-
dimensional semisimple Lie groups K , each Lie algebra cocycle w € Z2(C°(M,¥),3) is equivalent
to a cocycle of product type ([Ma02], [Fe88]). This observation permits us to construct a universal
central extension of the Lie algebra g := C2°(M;¢), and we show that this construction can be
globalized in our context, providing a universal central extension of the connected Lie group
C(M; K)e .

In Appendix A we address the topology of the groups C°(M; K) and C*°(M,S; K). For
our purposes it is of particular importance to know their homotopy groups. We write Co(M; K)
for the group of continuous functions vanishing at infinity, endowed with the topology of uniform
convergence. Information on homotopy groups is obtained by several approximation arguments
showing that the inclusion maps

CX(M;K) = Co(M;K) and C®(M,S;K)— Co(M\ S;K)

are weak homotopy equivalences, i.e., induce isomorphisms of all homotopy groups. These results
are motivated by the fact that it is usually much easier to deal with spaces of continuous maps
than with spaces of differentiable maps. We also note that if K is a Banach-, resp., Fréchet—Lie
group, then the same holds for the groups Cy(M; K) and Co(M \ S;K).

Appendix B contains several results on direct limits of locally convex spaces. These are
needed to deal with the spaces of compactly supported smooth functions or differential forms on
a non-compact manifold. The difficulties with these spaces arise from the fact that they are not
metrizable, which makes it harder to prove that a subgroup is discrete.

This paper contributes in particular to the program dealing with Lie groups G whose
Lie algebras g are root graded in the sense that there exists a finite irreducible root system A
such that g has a A-grading g = gg @ ®aeA ga, it contains the split simple Lie algebra ¢
corresponding to A as a graded subalgebra, and is generated, topologically, by the root spaces
do, @ € A. All Lie groups of the type C°(M;K), K simple complex, are of this type, and
the same holds for their central extension. A different but related class of groups arising in this
context are the Lie groups SL,(A) and their central extensions, where A is a continuous inverse
algebra, i.e., a locally convex unital associative algebra with open unit group and continuous
inversion ([Gl01c], [Ne03]).

In [Ne02b] we discuss the universal central extensions of the groups SL,(A), which are
Lie group versions of the Steinberg groups St,(A). In [MNO02, Rem. II.12] we have shown
that for K = SL,(A), A a commutative continuous inverse algebra, the form x:€ x & — A,
k(z,y) = tr(zy) is universal, and that the image of the corresponding period map is discrete for
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the corresponding product type cocycle on the Lie algebra C°°(M;¢€) of the group C*°(M; K).
For non-commutative algebras the image of the period map is not always discrete ([Ne02b]).

Throughout this paper we will use the concept of an infinite-dimensional Lie group described
in detail in [Mil83] (see also [Gl0la] for arguments showing that the completeness requirements
made in [Mil83] are not necessary to define the concept). This means that a Lie group G is a
smooth manifold modeled on a locally convex space g for which the group multiplication and
the inversion are smooth maps. We write \,(z) = gz, resp., py(z) = xzg for the left, resp., right
multiplication on G. Let e € G be the identity element. Then each X € T.(G) corresponds to
a unique left invariant vector field X; with X;(g) := d\,(1).X,g € G. The space of left invariant
vector fields is closed under the Lie bracket of vector fields, hence inherits a Lie algebra structure.
In this sense we obtain on g := T.(G) a continuous Lie bracket which is uniquely determined by
[X’ Y]l = [XZ,YZ]'

All finite-dimensional manifolds M are assumed to be o-compact which for connected
manifolds is equivalent to requiring that M is paracompact or a second countable topological
space. This excludes pathologies such as “long lines” which are one-dimensional smooth manifolds
constructed from sets of countable ordinal numbers ([SS78, p.72]).

All topological vector spaces in this paper are assumed to be Hausdorff.

Acknowledgement: T am grateful to H. Biller and H. Glockner for many extremely helpful
suggestions to improve the exposition of this paper.

I. Current groups on non-compact manifolds

In this section we introduce two classes of Lie groups of smooth maps: the group C°(M; K) of
smooth maps with compact support on a non-compact manifold and the group C*(M, S; K) of
smooth maps on a compact manifold M that together with all higher partial derivatives vanish
on the closed subset S.

Compactly supported smooth maps

Definition I.1. For two topological spaces M and Y we write C(M;Y). for the space
C(M;Y) of all continuous maps M — Y endowed with the compact open topology. The topology
on this space is generated by the sets

W(C,0) :=={f € C(M;Y): f(C) € O},

where C' C M is compact and O CY is open.
(a) If M is locally compact and K is a topological group, then C'(M; K). is a topological group
with respect to pointwise multiplication, and the topology coincides with the topology of uniform
convergence on compact subsets of M ([Sch75, Satz I1.4.5]). In particular the sets W(C,U),
where C' C M is compact and U C K is an open identity neighborhood, form a basis of identity
neighborhoods in C(M; K)..

For a function f: M — K let supp(f) := {z € M: f(z) # e} denote its support. Then for
each compact subset X C M the subset

Cx(M;K) :={f € C(M; K):supp(f) C X}

is a closed subgroup of C(M;K). on which the subspace topology coincides with the topology
of uniform convergence.

If M is a discrete set, then C(M; K). = KM as a topological group.
(b) If M is a locally compact space and Y is a locally convex space, then (a) implies that
C(M;Y). is a locally convex space, where the topology is defined by the seminorms

pxq(f) := sup,ex q(f()),
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where ¢ is a continuous seminorm on Y and X C M a compact subset.

If Y is a Fréchet space and M is o-compact, then the topology is defined by a countable
family of seminorms turning C'(M;Y). into a Fréchet space.
(c) If M is locally compact, X C M compact, and Y is a locally convex space, then for each
open 0-neighborhood U C Y the subset

{f e Cx(M;Y)e: f(M) CU}Y=W(X,U)NCx (M;Y)
is open in Cx(M;Y),. ]

Definition I.2. Let M be a smooth finite-dimensional o-compact manifold. If Y is a locally
convex space, then each smooth map f: M — Y defines a sequence of maps

d"f:T"M =Y, neN
We endow C°°(M;Y") with the topology obtained from the embedding

C*(M;Y) = [[ c@mm,y).
n€ENp

turning C*®°(M;Y") into a locally convex space. If X C M is a compact subset, we consider on
C¥(M;Y) C C*(M;Y) the subspace topology.

(a) If K is a Lie group, then C(M; K) is a group with respect to pointwise multiplication. It
is shown in [G101b, 3.18] that it carries a Lie group structure which is uniquely determined by
the property that for each open identity neighborhood U C K and each chart ¢:U — £ with
»(e) = 0 there exists an open identity neighborhood Uy C U such that the map

{f € CX (M; K): f(M) CUp} — {h € OF (M;8): h(M) C o(Un)}, frrpof
is a diffeomorphism onto an open subset of the locally convex space C¢(M;€). The Lie algebra
of this group is the locally convex space C¥(M;€) with the pointwise Lie bracket, where € is
the Lie algebra of K ([Gl01b, 3.19]).
(b) For a locally convex space Y we endow the space

C2(M;Y) == {f € C°(M;Y):supp(f) compact} = | JCF(M;Y),
X
where X runs through all compact subsets of M, with the locally convex direct limit topology.
This means that a seminorm on C2°(M;Y) is continuous if and only if its restrictions to all the
subspaces C¥(M;Y") are continuous with respect to the topology defined above.
In M there exists an increasing sequence (X, )nen of compact subsets X,, with X, C X? 41

and M = J,, X»,. Then each compact subset X C M is contained in some X,,, and each space
CX,(M;Y) is a closed subspace of C§, (M;Y). Therefore

CE(M;Y) =lim OF (M;Y)

is a strict inductive limit of the locally convex spaces CF (M;Y) in the sense of [He89,
Prop. 1.5.3]. In particular each bounded subset of C°(M;Y) is contained in one of the sub-
spaces O (M;Y'). Moreover, C>°(M;Y") is Hausdorff and the continuous maps CF (M;Y) <
C* (M, Y) are embeddings, which in turn implies that all the inclusions

CF(M;Y) = C=(M;Y)
are embeddings (cf. [K669, p.222]).

If Y is a Fréchet space, this topology turns C2°(M;Y") into an LF-space ([Gl01b, 4.6]). It
is shown in [G101b, 4.18] that for each Lie group K the group C°(M; K) carries a Lie group
structure, hence in particular the structure of a Hausdorff topological group. In the same way as
for the groups C¥ (M; K), the Lie group structure is uniquely determined by the property that

for each open identity neighborhood U C K and each chart ¢: U — € with ¢(e) = 0 there exists
an open identity neighborhood Uy C U such that the map

{f € CZ(M; K): f(M) C Up} = {h € CF(M;8): h(M) C p(Un)}, fr>pof

is a diffeomorphism onto an open subset of the locally convex space C°(M;€). The Lie algebra
of this group is the locally convex space CZ°(M;¢) with the pointwise Lie bracket. ]
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Remark 1.3. From the fact that C°(M;€) is a strict inductive limit of spaces C¥ (M ;¢) and
the description of the natural charts of the Lie group C2°(M; K), we see that for each compact
subset X C M the inclusion map C¥(M; K) — C°(M; K) is a topological embedding. ]

Remark I.4. If K is a Lie group with Lie algebra ¥, then the tangent bundle of K is a Lie
group isomorphic to € x K, where K acts on £ by the adjoint representation (cf. [NeOlb]).
Iterating this procedure, we obtain a Lie group structure on all iterated higher tangent bundles
T"K which are diffeomorphic to £~ x K .

It follows in particular that for each finite-dimensional manifold M and each n € Ny we
obtain topological groups C(T"M,T"K). (Definition I.1(a)). Therefore the canonical inclusion
map

C*(M;K) < [[ C(T"M,T"K),
neN

leads to a natural topology on C'*°(M; K) turning it into a topological group.

If M is compact, then it is not hard to see that this procedure leads to the same topology
as the Lie group structure defined in Definition 1.2. A similar statement holds for C(M; K) if
X C M is a compact subset.

We cannot expect for a general non-compact manifold M that C°°(M; K) carries a natural
Lie group structure. In the example M = N the group C®(N;K) = C(N;K) = KV is the
topological direct product group. As the example K = T already shows, the groups K need
not be manifolds because they need not be locally contractible.

If M is connected, then the situation seems to be much better, but this needs to be
investigated ([NW03]). One can show in particular that for each Banach—Lie group K the group
C>(R,K) is a Fréchet-Lie group with respect to its natural topology of uniform convergence
of all derivatives on compact subsets of R. Likewise, for each simply connected non-compact
complex curve ¥ and each complex Banach—Lie group K the group Hol(X, K) of all holomorphic
maps X — K is a Lie group.

]

Fréchet current groups defined by vanishing conditions

In this subsection M denotes a connected finite-dimensional manifold and S C M a closed
subset. Mostly we will assume that M is compact.

Remark I.5. Let U be an open subset of a locally convex space X and Y another locally
convex space. If for a smooth function f:U — Y its value together with all derivatives up to
order k vanish in a point p € U, then the formula for the Taylor expansion of compositions
trivially implies that the same holds for all compositions f o ¢ in ¢, where ¢:V — U is a C*-
map with ¢(q) = p. It follows in particular that for a smooth function on a manifold it makes
sense to say that all partial derivatives up to order k vanish in a point p. ]

Definition I.6. Let M be a manifold with boundary and S C M a closed subset. For a Lie
group K we write C*°(M, S; K) for the group of all those smooth maps for which their value
together with all derivatives vanish on S. It clearly suffices that for each point s € S there exists
one chart in which all partial derivatives vanish in s.

If M is compact and K is a (Fréchet-)Lie group, then also C*°(M, S; K) is a Fréchet—Lie
group, where we use the same charts as for C*°(M; K) and observe that they restrict to charts
of the subgroup C*°(M,S;K). In particular C*°(M,S;R) is a real Fréchet algebra. For non-
compact M we consider C*° (M, S; K) only as a topological subgroup of C°(M; K) in the sense
of Remark 1.4. ]

Remark 1.7. Let us consider the category P whose objects are pairs (M,S), where M is
a (finite-dimensional) manifold and S is a closed subset. A morphism (M,S) — (M',S")
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is a smooth map ¢: M — M' with ¢(S) C S’. Remark L.5 implies that the assignment
(M,S) — C(M,S;K) defines a contravariant functor from P to the category of topological
groups. Here we use that for a morphism ¢:(M,S) — (M’',S’) the corresponding group
homomorphism C*®(M' S";K) — C>®(M,S;K),f + f o is continuous, which is an easy
consequence of the definitions (cf. Lemma A.1.6). [

Lemma 1.8. Let M be a finite-dimensional manifold, X C M be a smooth submanifold with
boundary, dim X = dim M , and Y a locally convex space. For a smooth function f: X — Y the
extension by f(M \ X) = {0} defines a smooth function M — Y if and only if f and all its
derivatives vanish on 0X .

Proof. It clearly is a necessary condition that all derivatives of f vanish on 90X . Suppose,
conversely, that this condition is satisfied and extend f by 0 on M\ X to a function fy;: M — Y.

As the smoothness of fjs is equivalent to its weak smoothness (for this result of Grothen-
dieck see [Wa72] or [KM97]), we may w.l.o.g. assume that ¥ = R. Moreover, we may assume
that M = R" and that X = {z € R":2, < 0}. Then it is clear that all partial derivatives of
f extended by 0 on M \ X yield continuous functions. Moreover, all partial derivatives of the
extended function fp; exist and coincide with the extensions of the partial derivatives of f. This
proves that fus is a C'-function. Iterating the argument shows that fus is a C*-function for
each k, hence smooth. [ ]

Examples 1.9. (a) Let X be a compact manifold with boundary and X? the double of X .
This is, by definition, a compact manifold without boundary containing X and a diffeomorphic
copy X% of X such that XN X% =9X =0X* and XUX*? = X¢. Then Lemma L.8 implies that

C®(X,0X;K) = C¥ (X% K)

and
C®(X40X;K) = C®(X,0X;K) x C®(X*,0X;K) = C®(X,0X;K)>.

(b) We think of C*°(M, S; K) as a group of smooth maps on the non-compact manifold M \ S.
For M = S™ and S = {p} have M \ S =2 R", and hence a natural Lie group of smooth maps
R"™ — K with a certain decay at infinity.
(c) Let M =S'. Then M\ S is a countable union of intervals I;, j € J, and we thus obtain an
inclusion
C®(M,S;K) <= [[ C>(1;,01;; K) = C>(I,0I; K),

JjEJ
where the right hand side does not carry the product topology but the [*°-topology of uniform
convergence of all derivatives uniformly in all components. ]

II. Relative de Rham cohomology

If M is a compact manifold, S C M a compact subset, and Y a sequentially complete locally
convex space (an s.c.l.c. space), then we consider the space ZJp (M, S;Y) of all Y -valued closed
smooth 1-forms that vanish, together with all their derivatives, on S. Integration of 1-forms
with this property over singular cycles in M modulo S lead to the subgroup Z}y(M,S;T) of
those closed 1-forms for which all integrals over cycles have values in a subgroup T’ of Y. The
main result of this section is Theorem IL.7, saying that the image Hig (M, S;T) of Zis (M, S;T)
in HcllR(M, S;Y) is a discrete subgroup if T' is discrete. In Examples I1.11 and I1.12 we see that
these subgroups may have infinite rank, even for Y = R.

We write I := [0, 1] and assume that S # @ and that M is connected. Further Y denotes
an s.c.l.c. space, I is a subgroup of Y, and Tt := Y/T the corresponding quotient group. If T’
is discrete, then the quotient topology turns 7T into a Lie group with Lie algebra Y. For some
statements we do not have to assume that M is compact. If we assume compactness, we will
mention it explicitly.



8  Current groups for non-compact manifolds and their central extensions  September 24, 2002

We write Q'(M;Y) for the space of smooth 1-forms on M with values in ¥ and endow
this space with the natural topology corresponding in each chart to the uniform convergence of
all derivatives on compact subsets mapping into coordinate charts (cf. [G101d]). For a subset
X C M we write Q% (M;Y) for the closed subspace of Q'(M;Y) consisting of those forms
supported in X. We endow the space QL(M;Y) with the locally convex direct limit topology
with respect to the subspaces Q% (M;Y), where X C M is a compact subset. For a closed
subset S C M we write Q'(M,S;Y) C Q(M;Y) for the subspace of all forms vanishing with
all their partial derivatives on S.

The Lie group C*(M, S;1r)
Definition II.1. Let M be a smooth manifold and K a Lie group. For an element f €
C®(M; K) we write
' (£)(m) = dAp(my-1 (f(m))df (m): T (M) = € = T, (K)

for the left logarithmic derivative of f. This derivative can be viewed as a £-valued 1-form on
M which we also write simply as 6'(f) = f~'.df . We thus obtain a map

6L C°(M; K) — QY (M;¥)
satisfying the cocycle condition

' (f1f>) = Ad(f2) 8" (f1) + 8" (fa)-
We also have the right logarithmic derivative 6™ (f) = df.f~! satisfying

6"(fifa) = 0"(f1) + Ad(f1)-0"(f2)-

(cf. [KM97, 38.1]). If K is abelian, then the cocycle condition shows that § := &' is a group
homomorphism whose kernel consists of the locally constant maps. ]

In Section V we will need the following continuity result for the logarithmic derivatives.

Lemma IL1.2. For any Lie group K the maps &',6":C°(M;K) — QL(M;¥€) are smooth.
Proof. In view of the cocycle relations

8 (fif) = Ad(fo) L8 (f1) +6'(f)  and 6" (fif2) = 0" (f1) + Ad(f1)-6"(f2),

it suffices to prove the smoothness of & and " in an open identity neighborhood U of
C>°(M;K). Here we use that addition is continuous in QL(M;€), and that the continuity of the
linear map Ad(fi) on QL(M;¢) follows from its continuity on the subspaces Q% (M;€), X C M
compact. According to the definition of the Lie group structure on C°(M; K), we may assume
that
U={feC(M;K): f(M) C Vk},
where Vi C K is an open identity neighborhood for which there exists a diffeomorphism
p: Ve = Vi, where Vi is an open subset of the locally convex space £. We now have to show
that the map
D:CX(M;Ve) = QL(M;E), f dl(pof)

is smooth.

We think of D as a map between spaces of sections of vector bundles over M. Then the

values of D(f) in an open subset O C M only depend on f|o. This implies in particular that
D is local in the sense of [G102, Def. 3.1]. Moreover, for each compact subset X C M the map

Dx = Dlogmx): CX (M;K) — Q% (M;¥)
is smooth because the map
5O (M; K) — Q% (M;¥)
is obviously smooth. Therefore the Smoothness Theorem 3.2 in [G102] implies that D is a smooth
map and hence that §' is smooth. The smoothness of 6" is shown similarly. ]
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Lemma I1.3. If T is discrete, then

S(C(M,5:Tv)) = {B € Q' (M. S:Y): (Yo € C((1,1). (M, 5))) / per}.

Proof. If 8 =4(f) for some f € C>®°(M,S;Tr) and a € C®((1,0I),(M,S)), then
fma»—fmm»:/ﬁ+r

vanishes in Tt = Y/T', so that fa Berl.
Suppose, conversely, that 3 € Q*(M,S;Y) satisfies

/BEI‘ forall a€C®((I,01),(M,S)).

Pick sg € S. Then all integrals of 8 over smooth loops based in sy are contained in I' (here
we need that Y is sequentially complete to ensure the existence of Y -valued Riemann integrals
over curves), so that there exists a smooth function f: M — Tr with 8 = 6(f) and f(sg) =0
([Ne02a, Prop. 3.9]). For each s € S there exists a smooth path a € C*°((I,dI),(M,S)) from
sp to s, and we obtain

ﬂﬁzf@—fwo:/ﬂ+rep

This means that f|s = 0. As 8 = §(f), all higher derivatives of f vanish on S, so that
fECOO(M,S;TF). u

Corollary I1.4.  For each s.c.l.c. space Y we have
A0(M,5:Y) = {3 € Q' (M, 5 Y): (Yo € O((1,21), (M. 5))) / p=0}.

In particular dC>®(M,S;Y) is closed in Q' (M,S;Y). n
Definition I1.5. (a) In view of the closedness assertion in Corollary II.4, the quotient
sa,5)(Y) := QH(M, S;Y) /dC> (M, S;Y)

carries a natural (Hausdorff) locally convex topology. Moreover, the subspace Zig (M, S;Y) of
closed forms in Q'(M,S;Y) is closed, which implies that

Hig(M,S;Y) := Zig(M, S;Y)/dC>(M,S;Y)

is a closed subspace of 3(a7,5)(Y). Let g: OY(M,S;Y) — 3(m,s)(Y) denote the quotient map.
We want to relate Hig (M,S;Y) to the singular Y -valued cohomology of M modulo S.
The abelian group Z;(M,S) of singular 1-cycles modulo S is generated by those given by
continuous maps (I,0I) — (M,S). Therefore Hy(M,S) is generated by the image of the set
m(M,S) :=[(I,0I),(M,S)] of homotopy classes of maps of pairs (see [Br93, VII.4.10] for more
details on Hurewicz maps from homotopy groups to homology groups). Let 3 € Ziz(M,S;Y).
Then we can define for each singular 1-chain a the integral fa B. According to Stoke’s formula,
these integrals vanish on boundaries and also on chains supported by S. We thus obtain a map

Z&R(M,S;Y) — Hl(M,S;Y) := Hom(H, (M, S);Y),

where H; (M, S) denotes the singular homology group with coefficients in Z and H'(M,S;Y) a
relative singular cohomology group (cf. [Br93, V.7.2]).



10 Current groups for non-compact manifolds and their central extensions September 24, 2002

The kernel of this map consists of all closed 1-forms  for which all the integrals of cycles in
Z1(M,S) vanish, which means that 8 = df for some f € C*°(M,S;Y) (Corollary I11.4). Hence
we obtain an embedding

(2.1) n:Hig(M,S;Y) < H'(M,S;Y).

As we will see in Example I1.12 below, this map is not always surjective.
(b) For a subgroup I' C Y we define

Zin(M,$:T) = {8 € Zg(M,S:Y): (Ya € O((1,21), (M. 5)) / per}.

Applying Corollary I1.4, we see that dC*> (M, S;Y) is a closed subspace of Z} (M, S;T), so that
Hig (M, S;T) == Zip (M, $; 1) [dC> (M, S;Y)

carries a natural Hausdorff locally convex topology. We also define

Zin(M;T) = { B € Z}n(M;Y): (Vo € C(S*, M) / per}

and Hjg(M;T) := Zjx(M;T)/dC>(M;Y). ]

Remark I1.6. Let M be a connected manifold.

(a) Assume that T' C Y is a discrete subgroup and let 7t := Y/I" denote the corresponding
quotient Lie group and ¢r:Y — Tt the quotient map. We consider the abelian topological group
G := C*°(M;Tr), the space g:= C*°(M;Y), and the exponential function

expgig = G, = qrok.

The map
0:G = C%(M;Tr) = Zap(M;Y),  f 8(f) = f~'df

is a continuous group homomorphism whose kernel consists of the locally constant functions on
M. If M is connected, then kerd consists only of the constant functions.

According to [Ne02a, Prop. 3.9], a closed 1-form in Z}g (M;Y) can be written as 6(f) for
some f € C*°(M;Tr) if and only if all integrals over closed piecewise smooth paths are contained
in I'. This means that

im(8) = Zix(M;T).

Using the decomposition G = G, x Tr with G. := {f € G: f(zp) = 0}, where zps € M is a
base point, it follows that
§:G. — Zig(M;T)

is an isomorphism of groups. Here the subgroup Big(M;Y) C Zjz(M;T) corresponds to
im(exp¢), so that

G/ expg(g) = Zap(M;T)/Bag(M;Y) = Hag (M;T).

If, in addition, M is compact, then G is a Lie group with Lie algebra g, expy is the
universal covering map of G., and 6:G. — Z z(M;T) is an isomorphism of Lie groups. This
leads to

m0(G) = G/ expg(9) = Zig(M;T)/Bgg (M;Y) = Hig (M;T).

(b) If M is compact and S C M a non-empty closed subset, then we obtain with similar
arguments as in (a) that the group G := C*(M,S;Ty) is a Lie group and that exp. is the
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universal covering map of the identity component G, of G. The connectedness of M and S # @
imply kerexps = {0}. Therefore the exponential function exp. induces a diffeomorphism

expgig = C®(M,S;Y) = G,.

Moreover, & is an injective homomorphism of Lie groups with §(G) = Zlz(M,S;T)
(Lemma I1.3), where G, corresponds to the subspace dC*°(M,S;Y"), so that

m0(G) = Hig (M, S;T).
(c) The set M \ S is an open subset of M , hence a non-compact manifold. We have inclusions
QL M\ S;Y) < QY(M,5;Y) and  Zi (M \ S;Y) = Zip(M,S;Y).
Moreover,
dCP(M\ S;Y) C Zgg (M \ S;Y) NdC™(M, S;Y)

and if, conversely, ( = df € Q.(M \ S;Y) with f € C*(M,S;Y), then df vanishes in a
neighborhood of S, so that f~!(0) is an open neighborhood of S. If M is compact, then it
follows that f has compact support, and therefore that

AC®(M\ S;Y) = Zlp (M \ S;Y) NdC™ (M, S; V).
This means that we also obtain an inclusion
¢: Hip o (M \ S;Y) = Hgg (M, S;Y).

If X is a compact manifold with boundary, M = X U X* as in Example 1.9, and int(X) =
M\ S, we claim that

(2.2) Hgg (int(X);Y) = Hip(X,0X;Y) := Hig (M, M \ int(X);Y).

In fact, if ¢ € ZJz(X,0X;Y), then the restriction of ( to X vanishes. Moreover, there exists
a tubular neighborhood U of 90X diffeomorphic to X x I, so that the inclusion X — U
induces an isomorphism m;(0X) — 7 (U). We conclude that all periods of { |y vanish, and
hence that there exists a smooth function f € C*(U,0X;Y) with df = (|r. Let x € C*°(X;R)
be constant 1 in a neighborhood of X and 0 on X \ U. Then ¢ —d(xf) € Zzg .(int(X);Y)
has the same cohomology class as . This proves (2.2).

From [Br97, Prop. 11.12.3, Th. IIL.1.1, Cor. I11.4.12] applied to the paracompactifying
family @ of closed subsets of X \ X, we derive that for singular cohomology we have

H'(X,0X;Y) = H (int(X); V).

Further the general version of de Rham’s Theorem with values in sheaves ([Br97, §II1.3]) yields
an isomorphism

HY (int(X): V) & Hlp o (int(X); V).

Therefore

Hip(X,0X;Y) = H§R7c(int(X); Y) = H(int(X);Y) = HY(X,0X;Y) = Hom(H,(X,0X);Y).
| |

The following theorem on the discreteness of the group H}g (M, S;T) is the main result of
the present section.
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Theorem II.7. Let S be a non-empty closed subset of the compact manifold M and T CY
a discrete subgroup. Then the subgroup

Hin(M,5:T) = {[8] € 3001 (V): (Va € C((1,01), (M,5) [ geT)

of 3(m,5)(Y) is discrete.

Proof. Let Ziz(M;Y) C Q'(M;Y) denote the closed subspace of closed 1-forms. As (M)
is finitely generated (cf. Proposition III.1 below) and T is discrete,

dC®(M;Y) = {B € Zi (M;Y): (V]a] € m (M) / 8= 0}

[e3

is an open subgroup of

Zin(M;T) = {8 € Zin(M;Y): (Ya € C=(S!, M) / ger}.
That H}g(M,S;T) is a discrete subgroup of the quotient space 3(m,s)(Y) is equivalent to
dC® (M, S;Y) being an open subgroup of Ziz(M,S;T). As a consequence of what we have
just seen, the group Z!y (M, S;T)NdC>(M;Y) is open in Zlg(M,S;T). Therefore it suffices
to verify that dC>(M,S;Y’) is an open subgroup of Ziz(M,S;T) NdC>(M;Y).
Fix a point z); € S. We consider the map

®: Z3x (M, S;T) = C(M;Ty), ®(B)(z) := /x B+T eTr.
Then

®(Zip(M, S;T)) C C®(M;Tr), d(®(8)) =8, @(B)|s =0,

and @ is continuous with respect to the topology of uniform convergence on compact subsets
of M. Hence
&~ (C(M;Tr).) = @ '(exp(C(M;Y))) = dC>®(M, S;Y)

is an open subgroup of Ziz (M, S;T) because C(M;Tr) is a Lie group (Remark I1.6). n

Lemma I1.8. Let I =10,1]. The integration maps

(2.3) QMR Y) = Zip (RY) 5 Y, B / 8,
R
(2.4) I QYI,0LY) = Z\s(I,0I;Y) = Y, B~ /5,
T
and
(2.5) L Q' ShY)=ZR(SLY) =Y, B | B
Sl

induce topological isomorphisms

HéR’C(]R;Y) =Y, HRU,0IY)—=Y and HRRES4LY)-=Y.

Proof. We have a continuous map QL(R;Y) — Y, — fR B3, and it is easy to see that this
map is surjective because there exists a smooth real-valued 1-form ~ with compact support and
fRfy = 1. Since the map ¥ — QL(R;Y),v +~ 5 - v is continuous, the integration map splits
linearly. Further its kernel coincides with the space of exact forms, which proves (2.3). The other
two assertions follow by similar arguments. ]
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Remark II.9. (a) For each smooth map «: (I,0I) — (M, S) of pairs we obtain a natural map

Lot 30,5)(Y) =Y Z55n(Y)

which is given on the equivalence class of a Y -valued 1-form £ by

1.(8)) = / § = / o"p

(cf. Lemma IL.8). The description of dC*°(M,S;Y) in Lemma II.3 implies that the maps
Io:3(0m,5)(Y) = Y separate points.

(b) For (M,S) = (I,0I) the set m(I,0I) consists of 4 elements. In fact, if f:1 — T is a
continuous function with f(0I) C 0I, then the convexity of I implies that f is homotopy
equivalent to the affine interpolation of the restriction f|g;, and there are precisely four different
maps 0 — OI. ]

Lemma II.10. The subspace Hig (M, S;Y) of 3(amr,s)(Y) coincides with those elements [B] for
which all the integrals I,([5]) only depend on the homotopy class of a € C*((1,0I),(M,S)) in
m (M, S). In particular

(1) Hig(M,S;Y) is a closed subspace of 3n,s)(Y), and

(2) if T is discrete, then

Zin(M,5:T) = {8 € Q1(M, 5 V): (Va € O((1,01), (M. 5)) / ger.

Proof. Fix a point zps € S. Then we have a natural inclusion C((I,0I),(M,zr)) —
C((I,0I),(M,S)) inducing the map m (M, zr) — m (M, S).

Let § € Q'(M,S;Y) and suppose first that the integrals [ 3 for a € C*((I,0I),(M,S))
only depend on the homotopy class. This implies in particular that the integrals over loops in
C>((I,0I),(M,z)) C C®(S, M) in zp only depend on the homotopy class. Let qar: M — M
denote the universal covering manifold. That the integrals of 3 over loops in zas only depend
on the homotopy class implies that there exists a smooth function f: M — Y with df = ¢3,0,
hence in particular that dB = 0, and therefore that [3] € Hig (M, S;Y).

Suppose, conversely, that [3] € Hjg(M,S;Y), i.e., that 3 is closed. Then integrals over
continuous maps I — M are well-defined. Then ¢}, is exact ([Ne02a, Th. 3.6]), and there exists
a smooth function f € COO(M ;Y) with df = ¢3,8. It follows in particular that all integrals of
B over contractible loops vanish. Let a:I x I — M be a continuous map such that the maps
ap = aft,): I — M satisfy a;({0,1}) C S. We have to show that [ B = [ 5. We define

a(st,0) for0<s<1
a:I x[0,3] = M, af(t,s) =< a(t,s —1) for1<s<2
a((3 —s)t,1) for2<s<3

and observe that & is continuous and that the curves @; := a(t,-) start in ap(0) and end in
ap(1), where s — ap(3s) is homotopic to ag. We conclude that for each ¢ € T we have

0:/gtﬁ—/goﬁ=/&,t6—/%6=AQ&tﬁ—AOB=At6—LOB-

Here we use that the vanishing of 8 on S implies that the integrals fol ajf and f; aff vanish.
For t = 1 we obtain fao 8= fal B, and hence the homotopy characterization of the subspace
Hp(M,S;Y) of 3,8 (Y).

This implies in particular that Hlg (M, S;Y) is closed, because it is defined as the inter-
section of the kernels of the continuous linear maps

wm/ B—/ B, a; € C=((I,al),(M,S))
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from above.

Assume now that I' C Y is a discrete subgroup. Then the requirement fa B €T for each
map a € C*((I,0I),(M,S)) together with the continuous dependence of the integral from o
implies that [ A3 only depends on the homotopy class of a in 1 (M,S). If all these integrals
are contained in the discrete subgroup I', it follows from the first part of the proof that £ is
closed. ]

Example I1.11. We consider the closed subset
S={0}u{t:ineN} CR

We claim that
HIR(R,S;R) = F = {(An)nen: (Vk € Np) lim n*\, = 0}

as Fréchet spaces, where the topology on E is given by the seminorms pg(\) := sup,,cn 7|\
for k € N.

As dimR = 1, we have Z};(M,S;R) = Q'(R, S;R), and each element on this space can
be written as the differential of a unique function f € C*°(R;R) with f(0) = 0. We have to
study the possible restrictions f|s because they give as the values of [df] on the relative 1-cycles
in 71 (R, S).

First we derive necessary conditions. As f(*)(0) = 0 for each k € N and

. klf(z) .

(k) — — 1£( Ly, F
(2.6) f(0) Jlm% o nhm kf(n)n ,
we obtain for each k& € N the condition lim,, 7‘(—711)711c =0.

Let (An)nen satisfy lim, oo nfA, = 0 for each k € Ny. We are looking for a smooth
function f in C*(R;R) with f' € C*°(R,S;R) and f(%) = X, for each n. Let ¢ € C°(R;R)
be a function with supp(y) = [—1,1], im(¢)) C [0,1] and equal to 1 on a neighborhood of 0.
Then we obtain for each a € R and £ > 0 a smooth function ¢, . (z) := ¢ (¢~ (z —a)) supported

by [a —¢&,a+ €] which is constant 1 in a neighborhood of a. We define ¢, :=¢¥1 __ 1. Then

n ' dn(nt1)

1y, is a function constant 1 in a neighborhood of % with support contained in
1(1 1y 1(1 1
s+ ) s+l

In particular the supports of the functions 1, are pairwise disjoint. We claim that

F=" Anthn
n=1

defines a function in C*°(R;R) with f' € C*°(R,S;R). This will be achieved by showing that
all derivatives of the sequence defining f are uniformly convergent. In fact, for & € Ny we have

1P [l < (4n(n + 1)) 11® |0 < cxn*

for some positive constant ¢ . Therefore
Z |/\n|||1/’7(zk)||oo < Z Anlexn® < ey Z [An|n?* < oo
n n n

We conclude that the series f = Y A,1), defines a smooth function. It follows directly from
the construction that f is constant A, in a neighborhood of n+_1 and that all derivatives of f
vanish in 0 because f vanishes on | — 00, 0.

This proves that the map

1
@: 2 (R S:E) = B, h(tydt v ( / hr)dr)

0 neN
is surjective. Formula (2.6) easily implies thatg ® is continuous, hence a quotient map by the
Open Mapping Theorem. This proves that the induces map Hly (R, S;R) — E is a topological
isomorphism. ]

In the next example we take a convergent sequence out of the sphere. This aims at an
example of a Fréchet-Lie group C* (M, S; K') where the period group s,y (cf. Definition TI1.7)
is discrete but not finitely generated (see Proposition VII.16).
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Example I1.12. (Removing a convergent sequence from the sphere) Let M := S? C R® and
S ={x,:n e N} U{(0,0,1)}, where

zn = (£,0,4/1—5).
As (M) is trivial, there exists for each n € N a path ,:[0,1] = M from zo := (0,0,1) to z,
such that the group Hi(M,S) is generated by the classes [y,], n € N.

For each n € N there exists a smooth function f, € C*°(M,S;R) which is constant 1 in a
neighborhood of x, and vanishes in a neighborhood of S\ {z,}. Then df, € Q'(M,S;R) and
we have

/ dfn = FoaCrm (D) = Fu(7m(0)) = Bonn.

m

It follows in particular that the classes [v,] are linearly independent over 7Z, so that we obtain

H, (M, S) = @ Bl = 20

neN

and therefore that the map
Hl(MaSa]R) _>]RN7 f'_> (f(h/n]))TLGN

is bijective.

We want to determine the subgroup Hlg (M, S;R) in H*(M,S;R). Let ¢ € ZIz (M, S;R).
Since H}g(S%R) is trivial, there exists a smooth function f:S? = R with f(zo) = 0 and df = (.
Then

/ C= [ df = f(en) — flxo) = f(an),

and the question is how to characterize those sequences in RY which arise as (f(z,))nen for
such a function f. We obtain a natural chart around xg via

U :={z € Rzl <1} = S o(z) = (2131,372,\/1 — —:E2).

Each of the functions constructed in Example II.11 may be extended to a smooth compactly
supported function on a neighborhood of S in R? in such a way that it does not depend on the
second variable x5 in a neighborhood of S. Then we may use the chart ¢ to obtain a function
in C*°(M,S;R). We thus obtain

Hlg (M, S;R) = {(\)nen: (VE € N) \,n®F — 0} C H' (M, S;R) = RY,

ie., that Hig(M,S;R) corresponds to the space of rapidly decreasing sequences with its usual
topology.

A function f yields an element in the group Hy (M, S;Z) if and only if all its values in the
T, are integral, so that H}z(M,S;7Z) = 7™ corresponds to the integer-valued functions with
finite support. In particular Hg (M, S;Z) is a discrete subgroup of Hig (M, S;R) (cf. Theorem
v.7). [

We conclude this section with some additional remarks on the relation between the two
spaces Hig (M, S;Y) and Hgp (M \ S;Y).

Remark I1.13. We recall from Remark II.6(c) the injection
¢: Hip o(M \ S;Y) = Hgg (M, S;Y).

(a) If S is a compact submanifold of M, then ¢ is surjective. In fact, if ¢ € Z}z (M, S;Y), then
C|ls = 0. Let U be a tubular neighborhood of S diffeomorphic to S x R. Then (|y is exact,
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and there exists f € C*(U;Y) with df = (|y. Now there exists a function f; € C*°(M;Y)
which coincides with f on a neighborhood of S, and then ( — df vanishes in a neighborhood
of S. This proves that [(] = [( — dfi] € im(p).
(b) If Hjg (M \ S;R) is infinite-dimensional, then ¢ is not surjective. In fact, then the space
HéR’C(M \ S;R) is a countable direct limit of finite-dimensional spaces, hence of countable
dimension (cf. Theorem IV.16). On the other hand Hjg (M, S;R) is a quotient of the Fréchet
space Zix(M,S;R) by a closed subspace, hence a Fréchet space. As ¢ is injective, this space
is infinite-dimensional, so that the Baire property implies that it is not countably dimensional.
Hence ¢ is not surjective.
(c) If Ho(S) is finitely generated, i.e., S has only finitely many arc-components, then the exact
homology sequence of the pair (M, S) implies that H; (M, S) is finitely generated, which in turn
implies that

H'(M,S;R) = Hom(H,(M,S),R)

is finite-dimensional. Therefore H}g (M, S;R) is also finite-dimensional (cf. Definition IL.5).
Conversely, every locally constant function S — Z can be extended to a smooth function
fiM — R (it suffices to consider functions S — {0,1}) which is locally constant in a neighbor-
hood of the compact set S. Then df € Zjp (M \ S;Z). The class of [df] in Hyg (M \ S;Z)
is non-zero if f|s is not constant. Therefore Hc11R7c(M \ S;7Z) has infinite rank if C(S,Z) has
infinite rank. Note that this condition is weaker than the requirement that S has only finitely
many arc-components. [

III. Compact manifolds with boundary

Our strategy to get a better description of the spaces 35/(Y) and H(}R,C(M; Y") for a non-compact
manifold is to describe M as a union of certain compact submanifolds with boundary (X,,)nen
with X, C X9, (cf. Section IV). To get information on the space H(}R7C(M; Y), we will need
detailed information on the natural maps Hig (X,,,0X,;Y) = Hig (Xnt1,0X41;Y). To obtain
this information is the main goal of the present section (Theorem III.6). In this section we only
deal with compact manifolds with boundary, and in Section IV we describe the approximation
of non-compact manifolds.

In the following we write for a topological space X simply H,(X) := Hging,«(X;Z) for the
singular homology groups with coefficients in Z. We likewise write H.(X, A) for the singular
homology groups for space pairs (X, A4).

Proposition ITI.1.  Let X be a compact manifold with boundary 0X . Then the following

assertions hold:

(i) The singular homology groups H.(X) are finitely generated.

(i) All homotopy groups 7 (X), k € Ny, are finitely generated.

(iii) For each commutative ring R the cohomology groups H*(X,R) are finitely generated
R -modules.

(iv) The relative homology groups H.(X,0X) are finitely generated.

(v) The inclusion int(X) < X is a homotopy equivalence.

Proof. There exists a compact manifold X%, the double of X, in which X embeds. In
particular Whitney’s Embedding Theorem implies that X% and hence X embeds smoothly into
R?4+1  where d = dim X . From the proof of Corollary E.5 in [Br93] we derive that there exists a
finite CW-complex K C R2™*+! such that K is a neighborhood of X and there exists a retraction
r: K — X . The inclusion j: X — K satisfies roj = idx.

(i) We immediately derive that the spaces H.(X) are direct summands in H,(K), hence in
particular finitely generated abelian groups.

(ii) We likewise see that for each k € Ny we have m(K) = kermi(r) X mp(X). As 7 (K) is
finitely generated, the same holds for the group 7, (X) & 7 (K)/ ker mp(r).
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(iii) In view of [Fu70, Th. 52.2], we have for abelian groups A and Cj, j € J:

Ext(®;esCj, A) = [] Ext(C;, A).
JjeJ
As Ext(Z,A) = 0 and Ext(Z/nZ,A) = A/nA, we conclude that for every commutative ring
R and every finitely generated abelian group T' the group Ext(T, R) is a finitely generated R-
module. Therefore the Universal Coefficient Theorem implies that for every compact manifold
with boundary the groups H*(X, R) are finitely generated R-modules.
(iv) In view of [Br93, Th. IV.6.15], we further have an exact sequence

H,(0X) = H,(X) = H,(X,0X) = H,_,(0X).

The fact that H._1(0X) and H.(X) are finitely generated groups implies that the groups
H.(X,0X) are finitely generated.

(v) Using the collar construction for a compact manifold with boundary, we obtain inclusions
int(X) — X < int(X) < X, where the compositions of two successive ones are homotopic to the
identity on int(X), resp., X . Therefore the inclusion int(X) < X is a homotopy equivalence.m

Lemma II1.2. For each compact manifold X with boundary the space HcllR(X, OX;R) is finite-
dimensional.

Proof. In Definition II.5 we have described an embedding
Higr(X,0X;R) — H'(X,0X;R).

Hence the assertion follows from Proposition III.1 which implies that H'(X,0X;R) is finite-
dimensional. ]

We take a closer look at the embedding
Hig(X,0X;R) — H'(X,0X;R) = Hom(H,(X,0X);R)

introduced in Definition I1.5. The injectivity of this embedding implies that the integration maps
L Hin(X,0XR) 5 R, (0 [ ¢
Yy

for singular cycles v € Z;(X,0X) separate points. We are interested in a nice set of such cycles
for which the integration maps form a basis of the dual space of the finite-dimensional vector
space Hip (X,0X;R).

We recall the part

H(0X) — H(X)——=H,(X,0X) — Ho(0X)—=Hy(X)

of the long exact homology sequence of the pair (X,0X) ([Br93, Th. IV.6.15]). Let ¢: H;(X) —
H;(X,0X) be the natural map and choose piecewise smooth loops aq,...,a, in X for which
the images t([a;]) € Hi(X,0X) form a Z-basis of the image ¢(H;(X)) modulo torsion. Let
b := rk Hy(0X) — 1 and choose a minimal system of piecewise smooth arcs fi,...,0; in
Z1(X,0X) connecting the boundary components of 0X. Since there are b + 1 boundary
components, b arcs suffice and less would not be enough. Then the images of the classes [§;] in
Hy(0X) form a Z-basis of the kernel of the summation map s: Ho(0X) = Zb*+! — Ho(X) 2 7.

Since the classes [3;] form a basis of the image of H;(X,0X) in Hy(0X), and the classes
t([e;]) generate the kernel of the map H; (X,0X) — Hy(0X) modulo torsion, the classes ¢([a;])
and [3;] form a Z-basis of the abelian group Hi(X,dX) modulo torsion.

The bijectivity of the map 1 in the following proposition (see also (2.1)) can alternatively
be derived from the discussion in Remark II.6(c), which implies that the real vector spaces
H}p (X,0X;R) and Hom(H;(X,0X);R) have the same dimension, so that the injectivity of
implies that it is bijective. We will see that Proposition II1.3 provides more concrete information
which is needed later on.
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Proposition II1.3.  The integration functionals I,,, i =1,...,a and Ig,, j=1,...,b form
a basis of the dual space of Hig(X,0X;R). In particular, the natural homomorphism

nﬂwam%mmmxummeMP/c

from Definition I1.5(2.1) is bijective.

Proof.  Since the classes ¢([o;]) and [3;] generate H; (X,0X) modulo torsion and 7 is injective
(Definition I1.5), the integration maps I, and I3; separate the points of Hjp(X,0X;R), hence
span its dual space.

Let xo: H1(X,0X) — R be a homomorphism and x: H;(X) — R its pull-back to H;(X).
Then y vanishes on the image of H;(0X) in H;(X), so that there exists a closed 1-form « on
X with

[a=xt. vemw.

This can be proved as [Ne02a, Prop. 3.8]. The main idea is to associate to y, viewed as a
homomorphism 71 (X) — R, an affine R-bundle over X and then to use partitions of unity to
obtain a smooth global section s, whose differential can be taken as a. Since x vanishes on the
image of H;(0X) in H;(X), we can think of it as a homomorphism of the image +(H; (X)) of
Hy(X) in H,(X,0X) to R.

Let C be a connected component of 0X, I :=10,1] and C be a neighborhood of C' in X
diffeomorphic to I x C' in such a way that {0} x C' corresponds to C'. Then the homomorphism
H,(C) = H;(0X) — R induced by the 1-form a vanishes, so that there exists a smooth function

o~

90:C — R with « |8 =dg. If p:I = R is smooth with ¢ = 1 in a neighborhood of 0 and
0 in a neighborhood of 1, then @: (t,2) — ©(t) yields a smooth function on X vanishing in a
neighborhood of X \ C and taking the value 1 on a neighborhood of C'. Hence ¢ - g can be
viewed as a smooth function X — R whose differential coincides with dg in a neighborhood
of C. Now a —d(p - go) defines the same homomorphism 7 (X) — R but, in addition, this
1-form vanishes in a neighborhood of C'. Repeating this construction for the other connected
components of X yields a closed 1-form o' € Q'(X,0X;R) vanishing in a neighborhood of
0X for which o' represents x on H;(X). We conclude that xo — n([e']) vanishes on «(H; (X))
in Hy(X,0X), so that it remains to see that each homomorphisms y: H; (X,0X) — R vanishing
on the image of Hq(X) is contained in im(n). Let r: Hy(X,0X) — Ho(X) denote the boundary
map. Then xo = x' or for some x': Hy(0X) = 7+ — R.

Let C C X be a connected component. Using the collar construction, we obtain a smooth
function fc: X — R which is 1 in a neighborhood of C' and 0 in a neighborhood of all other
connected components of 0X. Then dfc € Z z(X,0X;R) and because the form dfc is exact,
it vanishes on all cycles in +(H;(X)). Moreover, the function fo defines a homomorphism

Fo:Ho(0X) = Z, C'— fo(C') =dccr,

and, as a homomorphism H;(X,0X) — R, the integration of dfc over cycles modulo 90X is
obtained by pulling Fo back via the natural map H;(X,0X) — Ho(0X). As the Fo form
a Z-basis of Hom(Hp(0X),R), we conclude that x’ lies in the span of the n([df¢]), hence is
contained in the image of n. This completes the proof of the surjectivity of 7. |

Lemma II1.4. For any s.c.l.c. space Y the exactness of a closed 1-form ( € QY(X,0X;Y) is
equivalent to the vanishing of all integrals [ { and fB- C.

Proof. If ( € Q'(X,0X;Y) is exact, then clearly all integrals fwg vanish for v € Z;(X,0X).
Suppose, conversely, that all integrals [ ¢ and [ 5, ¢ vanish. For each continuous linear func-
tional A € Y’ we then obtain

/aiAOC:A(/mC):A(/ﬁjc)z/ﬁj“@O

for each ¢ and j. Since Y’ separates points of Y, all integrals of { on Z;(X,0X) are trivial,
and therefore ( is exact. ]
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Remark IIL5. Let [of],[3f] € Hig(X,0X;R) be a basis dual to the integrals I,, and Ig,
from above. Then the map

Bx: Hig(X,0X;Y) = Yo ®x([(]) := / /

-a3i=1,...,b

is continuous and injective (Lemma II1.4). Moreover, it is surjective and its inverse is given by
a b
(P;(l(yla---aya+b) = Z a yt +ZB ya+J
i=1 j=1

It follows in particular that (I>)_(1 is continuous, and therefore that ®x is an isomorphism of
topological vector spaces. The extension of ®x to a map

<f>Xis(x,ax)(Y) =Y By ([¢]) / /
(677

=1,...,a;j=1,...,b

is continuous and surjective. Therefore its kernel is a closed complement to H}g (X,0X;Y) and
the corresponding projection onto Hiz(X,0X;Y) is given by

px:[cmg[a:-/md+i[ﬂ3*'/ﬁj4- )

j=1

Theorem II1.6. Let Z be a compact connected manifold with boundary and X C int(Z) a
compact connected equidimensional submanifold with boundary. We assume that each connected
component of Z \ X intersects 0Z. Then the following assertions hold:
(1) The inclusion Z gz (X,0X;Y) < Zig(Z,0Z;Y) obtained by extension by 0 on Z\X induces
an injective map
Hip(X,0X;Y) < Hir(Z,07;Y).

(2) The continuous projection px extends to a continuous projection pz, so that we obtain the
commutative diagram ,
X
sxox)(Y) — Hg(X,0X3Y)

szon(Y) 5 Hip(Z,0Z;Y).
Proof. Let a;, i = 1,...,a and B;, j = 1,...,b be as in Proposition III.3. Then the
integration functionals I,,,...,Ia,, I3,, ..., I3, form a basis of the dual space of H} (X,0X;R).
(1) We claim that

dC™®(Z,02;Y) N Zix(X,0X;Y) = dC®(X,0X;Y).

The inclusion “D” is trivial. Conversely, let f € C*®(Z,0Z;Y) and suppose that df €
Zip(X,0X;Y), ie., that df vanishes on Z\ X. Then f is constant on all connected com-
ponents of Z\ X . By our initial assumptions, all connected components of Z \ X intersect 07,
which implies that f vanishes on all these components, hence that f € C*°(X,0X;Y). This
proves (1).
(2) Next we want to choose integration maps H}z(Z,0Z;Y) — Y in such a way that those
which are additional to the ones needed for X are supported by Z \ int(X), hence vanish on
ZR(X,0X;Y).

We have to modify the curves ; so that they represent elements on Z;(Z,0Z). Since every
connected component of Z \ X meets 0Z, we can extend every piecewise smooth curve §3; to a
piecewise smooth curve BZ connecting two boundary components of Z. For this we may w.l.o.g.
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assume that we have parametrizations 3;:[0,1] - X and Ej: [—1,2] = Z with Bj lo,1] = B; and
[0,1] = E;l(X ). In particular we have for each 1-form ¢ supported by X the relation

I

Next we choose piecewise smooth closed curves ~v1,...,7. in Z\ X connecting those connected
components of 97 lying in the same connected component of Z \ X. We further need closed
curves on dy,...,d0q in Z\int(X) whose homology classes generate H(Z\int(X);R) modulo the
image of H;(0Z;R). We will show below that the classes of «;, Ej, v and &; generate H,(Z,07)
modulo torsion by showing that the corresponding integrals separate points on HcllR(Z, 0Z;R).
Let ¢ € Z g (Z,0Z;Y) be such that all integrals over the ai,gj,fyk and §; vanish. We claim
that ¢ is exact. In particular all integrals coming from H;(0X) vanish, so that there exists an
open neighborhood U 22 I x X of X on which ( is exact. Let f € C*°(U;Y) with df = (|v.
Multiplying f with a smooth function y on U of the form (¢,z) — ¢(t), where ¢ € C*(I;R)
is 1 on a neighborhood of 0 and vanishes outside some interval [—¢,¢], we obtain a smooth
function f := y-f € C>*(Z,07;Y) with df = ¢ in a neighborhood of X . Replacing ¢ by
¢ — df, we may assume that ¢ vanishes on a neighborhood of X . Then (|x € ZIz(X,0X;Y)
is exact because the integrals over the a; vanish. Likewise (|7 x is exact because all integrals
over the ¢; vanish. Let f; € C®(X;Y) with dfi = (|x and fo € C®(Z \ int(X);Y) with
dfs = (|2 x . We normalize f> by the condition that it vanishes on dZ. That this is possible
follows from the vanishing of all integrals of { over the ~;. We further normalize f; such that on
one boundary point z € X we have fi(z) = fo(z). In a neighborhood of X both functions f;
and fy are locally constant, hence constant on all connected components of 0X . It remains to
show that fi|sx = fa]sx, so that both combine to a function f € C*°(Z,0Z;Y) with df = (.
Let (; be such that either its end or starting point lies in the same connected component
of 0X as z. We recall the parametrizations 3;:[0,1] = X from above. We further observe that
fi(z) = f1(B:(0)) = fa(z) = f2(B:(0)) because fi = fo is constant on the whole component
of X containing 2. We also recall the parameterization of Bj on [—1,2] from above and put

y:=PBi(1) € 9X. Let p:= B;(—1) and q:= B;(2). Then
1)~ hw) = (1) + AQ+ﬁU ) =@+ [ ¢+ 50~ pO)

/BC+/ﬂC+/ﬂC /c-o

This proves fi1(y) = f2(y). Using the other paths B3;, we conclude inductively that f; = f» holds
on all connected components of dX , and this completes the proof of the exactness of (.

Therefore the integration maps Ial,IB , I, and I5, separate points on H}y(Z,0Z;R).
Since the maps I,,, i =1,...,a, and I~_ j=1,...,b, are linearly independent on the subspace
]

H}p(X,0X;R), by omitting some of the v, and §;, we may w.lo.g. assume that the whole
collection is linearly independent.
We recall the maps ®x and px from Remark ITI.5. Then we see that

By Hig(Z,07;Y) — Yotbtetd

/al / /W ’/gl 1,aii=1, . bik=1,.,el=1,...,d

is a topological isomorphism. The corresponding projection pz:3(z,02)(Y) — Hp(Z,0Z;Y) is

given by
can Sl [ el [ d+Ehi [ d+X [ 4

Since the integrals over the v, and & vanish for ¢ € Q'(X,0X;Y), and the integrals over 3;
and f3; are the same for these 1-forms, we obtain pz |3(X’6X)(y) = px. ]
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Example IIL.7. (Oriented surfaces) Let X be an oriented compact connected surface with
boundary. All the boundary components are diffeomorphic to the circle. Collapsing each
boundary component to a point leads to an oriented compact surface ¥. Let g := g(X) := g(%)
denote the genus of ¥ and p:= p(X) be the number of boundary components.

We recall the part

. H2(X) — HQ(X,@X) — H1(6X)L>H1(X) — Hl(X,OX) — Ho(aX) — Ho(X)

of the long exact homology sequence of the pair (X,0X). Then Hy(0X) =2 H,(0X) =2 ZP.
According to Proposition III.1(v), the inclusion int(X) < X is a homotopy equivalence, so that
H,(X) 2= H(int(X)). On the other hand int(X) 2 ¥\ P, where P is the image of 0X in .

Let P be a disjoint union of open discs in © around each point of P. Then ¥ = int(X)UP
is a union of two open subsets, and the exact Mayer—Vietoris Sequence ([Br93, Th. IV.18.1]) yields
an exact sequence

~

.= Hy(int(X)) @ Hy(P) = Ho(E) — H,y (int(X)

H,(P) = H,(%)
— Ho(int(X) p

b
We have Ho(P) = ZP, H(P) = Hy(P) = 0, Hy(int(X)) & Z, Ho(int(X) N P) = ZF,
Hy(int(X) N P) & ZF and Hs(int(X)) = 0 because int(X) is not compact. Therefore we
obtain an exact sequence

Hy(S) = 7 s ZF — Hy(int(X)) —» H\(S) 2 229-37F 7.6 77 - 7.

The vanishing of the homomorphism in the middle follows from the injectivity of the map

-~

Hy(int(X) N P) — Hy(P). This implies that the sequence
7 — 7Y — H,(int(X)) = Z%9 - 0

is exact. As m(int(X)) is a free group [tD00, Satz II1.8.8], the homology group H;(int(X)) =
71 (int (X)) /[m1 (int (X)), 71 (int (X))] is a free abelian group, which leads to

Hi(X) = Hy(int(X)) = 2290 +p(X) =1
Now we obtain with Hy(X) = Hy(int(X)) = 0 for Hy(X,0X) the exact sequence
Hy(X,0X) < H,(0X) = ZP—"sH,(X) = Z*P1 5 H|(X,0X) = ZP = 7.
The image of o in H;(X) corresponds to the image of H(int(X) N ﬁ) in Hy(int(X)) in the
exact Mayer—Vietoris Sequence, and is isomorphic to ZP~'. The cokernel of a is isomorphic

to Z*9. The map Ho(0X) = ZP — Hy(X) = Z is the summation map, so that its kernel is
isomorphic to ZP~'. We thus obtain a short exact sequence

coker(a) = 729 — Hy(X,0X) —» ZP 1,

and finally
Hy(X,0X) = 7200+p(X) -1, .

Example IIL.8. (Non-orientable surfaces) Let X be a non-orientable compact connected
surface with boundary and proceed as in Example II1.7. Then ¥ is non-orientable. We define
g(X) and p(X) as in Example IIL8.

For the finite subset P C ¥ we now obtain with the exact Mayer-Vietoris sequence:

1

... = Hy(S) = 0 — Hy(int(X) N P)
npP

7P — Hy(int(X)) ® Hy(P) — Hy(3) 2 79 & T
— Hy(int(X) N P) P

7P — Hy(int(X)) @ Hy(P) = 7P — Hy(%) = 7.

1%
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This leads to an exact sequence
7P — H,(int(X)) = H\(Z) 2 29 ® Ly — LP — 7P,
and further to
7P — Hl(lnt(X)) —» 79 ® L.

As Hi(int(X)) is a free abelian group, it follows that
Hy(X) = Hy (int(X)) = 790+,
Now we obtain with the long exact homology sequence of the pair (X,0X):
o= Ho(X) = Ho(X,0X) — H (0X)—"H,(X) = H\(X,0X) — Ho(0X) — Ho(X)

and hence
7P-579%  H(X,0X) — ZP—"7.

The image of « in Hq(X) corresponds to the image of H; (int(X)N P) in H; (int(X)), hence is
isomorphic to ZP, and coker(a) = Z9. Here s: Hy(0X) = ZP — Ho(X) = Z is the summation
map, so that its kernel is isomorphic to ZP~!. We thus obtain a short exact sequence

coker(a) 2 79 — Hy(X,0X) —» ZP~' = kers,

which leads to
Hy(X,0X) =2 7,9)+p(X)=1, n

IV. Approximating non-compact manifolds by compact ones

In this section M denotes a connected o-compact finite-dimensional manifold. We call a
submanifold X of M equidimensional if dim X = dim M. In this section we first prove the
existence of well behaved sequences (X, )nen of equidimensional compact submanifolds with
boundary exhausting M (Lemma IV.4). The main result of this section is Theorem IV.16
providing a topological isomorphism

Oy Hig o(M;Y) - YD

for a certain set B which might be infinite. The components of &, are given by integration over
singular cycles in M or over curves obtained from proper maps R — M. Here we make heavy
use of Theorem III.6 about the cohomology of compact manifolds with boundary to construct
the set B in such a way that ®,; becomes an isomorphism. As a corollary, we show that if T' is
discrete, then Hjg (M;T) = T8 is discrete.

Saturated exhaustive sequences

Lemma IV.1. For each compact equidimensional submanifold X C M with boundary the
number of connected components of M \ X is finite.

Proof. As every connected component of M \ X contains some component of 90X in its
closure, and the number of components of the compact manifold dX is finite, the assertion
follows. .
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Definition IV.2. Let X C M be an equidimensional compact submanifold with boundary.
We observe that each connected component of X is contained in the closure of exactly one
connected component of M \ X. We write X for the union of X with all those components
of M\ X which are relatively compact. As the number of these components is finite (Lemma
Iv.1), X is compact, because for each component C C M \ X the boundary 0C' is a union of
connected components of X . This argument further shows that X isa compact submanifold
with boundary in M. ]

Lemma IV.3. For two equidimensional submanifolds with boundary Xi1,X> C M with
X1 C X9 we have X; C X3.

Proof. Let C C M\ X; be a relatively compact connected component. Then C'\ X5 is also
relatively compact in M , hence contained in )?2. Therefore )A(l C )?2. Ifpe 8)?2 is a boundary
point, then it is in particular a boundary point of X5, hence not contained in X7, and therefore
not in 9X;. If the connected component of M \ X containing p is non-compact, then this is
likewise true for the connected component of M \ X; containing p, which shows that it is not
contained in )?1. This proves X’l - )?3 [

For the case of surfaces the following lemma can also be found in [tD00, Satz 7.3].

Lemma IV.4. There exists a sequence X, of compact connected manifolds with boundary in
M such that

(E1) Xn C X4y,

(E2) U, Xn =M,

(E3) X’n = X,,, i.e., each connected component of M \ X,, is not relatively compact in M .

Proof. Let ¢:M — R be a proper smooth function which is bounded from below. Such a
function can be obtained from an embedding t: M < R™ as ¢(x) := ||z||3. Then Sard’s Theorem
implies that there exists an increasing sequence (7,)nen of regular values of ¢ with r, — oo.
Then each V), := {z € M:p(z) < r,} is a compact equidimensional submanifold with boundary.
Pick zg € Y. We define Z,, to be the connected component of Y,, containing zy and X, := Zn
From ry, < rpy1 we derive Y, C Y2, |, so that Z, C Z2,,, and Lemma IV.3 implies (E1). From
rn, = 00 we get |J, Y, = M. Each z € M can be connected to x¢ by an arc, which lies in some
Y, , whence z € Z,,, and (E2) follows. Eventually (E3) follows from the definition of Zy. m

We call a sequence (X,,)nen as in Lemma IV .4 a saturated exhaustive sequence of M .

Lemma IV.5. For each x € M there exists a proper smooth map ~v:R" := [0, 00— M with

~70)==2z. If X = X is an equidimensional compact submanifold with boundary and x© € 0X,
then there exists a vy as above with v(]0,00[) C M\ X .

Proof. Pick a saturated exhaustive sequence (X,)nen of M and choose points z, € 90X,
such that x,; lies in the connected component of M \ X,, containing z,, in its boundary. Since
this component is not relatively compact in M , it intersects 9 X, +1. Then there exists a smooth
curve v: Rt — M with y(0) =z, v(n) = z,, for all n € N, and v([n,n+1]) C X,41 \ X2. The
latter condition implies that - is proper.

If © € 0X holds for an equidimensional compact submanifold with boundary X, then X C
Xn for N sufficiently large, and we can proceed as above by connecting first  in X \ X1 to a
point in the boundary of X, then to a point in Xy etc. We thus obtain + with the required
properties. [

Lemma IV.6. For z,y € M there exists a proper smooth map v:R — M with v(0) =z and
(1) =y.

Proof. Using Lemma IV.5, we find a smooth map v:R — M with v(0) =z and (1) =y
such that the restrictions to [1, 00[ and ] — 00, 0] are proper. This implies that v itself is proper.m

The following lemma is obvious.
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Lemma IV.7. Let M be a topological space and (M;)jcs o directed family of open subsets
of M with M = Uj M;. Then M = ll_II)l Mj holds in the category of topological spaces, each

compact subset of M is contained in some M;, and for each xpy € M and k € Ny we have

™ (M, 2ar) 2= lim g (M, 2r),
where {j € J:xpr € Mj} is cofinal in J. (]

Remark IV.8. The preceding lemma applies in particular to saturated exhaustions (Xp,)nen
of a non-compact manifold M with M, = X?. Then we obtain with Proposition ITI.1(v):

Wk(M)Ehi}nﬂk(Xg)El'i)nﬂ'k(Xn) | |

Proposition IV.9.  For each o-compact connected finite-dimensional manifold M all homo-
topy groups are countable.

Proof. This is a direct consequence of Lemma IV.7, Remark IV.8 and Proposition ITI.1(ii). m

De Rham cohomology with compact supports is a direct sum

If YV is a s.cl.c. space and (X,)nen is a saturated exhaustive sequence of M, then
QL(M;Y) carries the locally convex direct limit topology of the spaces Q% (M;Y) C Q'(M;Y)

(cf. Section II). The differential d: C°(M;Y) — QL(M;Y) is a continuous linear map because
CX(M;Y) carries the locally convex direct limit topology of the subspaces C'§ (M;Y’) on which

d is continuous.

Lemma IV.10. Let X = X be an equidimensional compact submanifold with boundary. Then
QL (M;Y) 2 0H(X,0X;Y) and

QY (M;Y)NdC®(M;Y) = dOF (M;Y).
Proof. (cf. Step 1 in the proof of Theorem IIL.6) It is clear that dCSP(M;Y") is contained in
QL (M;Y)NdC>®(M;Y). To prove the converse inclusion, let 3 € Q% (M;Y) and f € C(M;Y)
with 8 = df. Then f is constant on all connected components of M \ X. Since all these

components are not relatively compact in M and f has compact support, it follows that
f(M\ X) = {0}, and therefore f € C¥(M;Y). m

From the isomorphisms
Q% (M;Y) =2 QYX,0X;Y) and CF(M;Y)=C™(X,0X;Y)
obtained by extension on M \ X by 0, we now derive
Qx (M;Y)/(dC (M;Y) N Qx (M;Y)) = QY(X,0X;Y)/dC™ (X,0X3Y) = j(x,0x) ()
Lemma IV.11. For each s.c.l.c. space Y the subspace By (M;Y) = dC>*(M;Y) of
QL(M;Y) is closed.

Proof. For each equidimensional compact submanifold X = X with boundary, Lemma IV.10
implies that Q% (M;Y)NdC®(M;Y) = dC¥(M;Y), which corresponds to the subspace

dC>®(X,0X;Y) C Q' (X,0X;Y)

whose closedness follows from Corollary II.4 which also applies to the pair (X,0X), as it has the
same space of smooth functions as the pair (X¢, X*) (cf. Example 1.9(a)).

For each saturated exhaustive sequence (X, )nen, the space QL(M;Y) is the locally convex
direct limit of the subspaces Q% (M;Y’), so that the closedness of dCZ°(M;Y") follows from the
closedness of the intersections with the spaces Q% (M;Y) (Lemma B.4(ii)). ]
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Definition IV.12. As a consequence of Lemma IV.11, the space
3me(Y) := Qe (M;Y) [dCX (M;Y)
carries a natural (Hausdorfl) locally convex topology. It is isomorphic to
lim Q% (M;Y)/(Q, (M;Y)NdCX(M;Y)) =2 lim Qf (M;Y)/dCE. (M;Y)
— " n — n n
= 151 3(Xn,c’)Xn)(Y)

(Lemmas B.4 and IV.10). We write ¢:QL(M;Y) — 3um..(Y) for the quotient map. The
cohomology space
Hyp o (M3Y) = Zgp (M;Y) /dCZ (M;Y)

is a closed subspace of 3ar,.(Y). For a compact subset X C M we define

H(}R,X(M; Y):= Zémx(M; Y)/(chlRJ((M; Y)NdCF(M;Y))

and observe that Hjg .(M;Y) is the union of the subspaces Hyg x (M;Y). n
Remark IV.13. For each compact equidimensional submanifold X C M with X = X ,
Lemma IV.10 implies that
Hip x (M;Y) = Zig x (M;Y)/dCF (M;Y) = Zip(X,0X;Y)/dC%(X,0X;Y)
= Hir(X,0X;Y).
Therefore Lemma, IT1.2 implies that for dimY < oo these spaces are finite-dimensional . ]

Lemma IV.14. Let M be a non-compact finite-dimensional manifold, (X, )nen a saturated
exhaustion of M and Y a Fréchet space. Then the following assertions hold:

(i) QL(M;R) is a nuclear LF-space.

(i) Higo(M;Y) is the locally convex direct limit of the subspaces Hgg(Xn,0X,;Y).

Proof. (i) QL(M;R) is the direct limit of the Fréchet spaces Q% (M;R). Each space
an(M;]R) can be embedded into a product of finitely many spaces of the form Q!(U;R),
where U is an open subset of R?, d = dim M. As the spaces Q'(U;R) are nuclear, the spaces
Q% (M;R) are nuclear, and the assertion follows ([Tr67, Prop. 50.1]).

(ii) First we verify that the pairs X,, C X,,11 satisfy the assumptions of Theorem II1.6. Let C be
a connected component of X, 1\ X,,. If C does not intersect 0X,,11, then it also is a connected
component of M \ X,,. Further it is contained in the compact set X, 1, so that X, +; = Xn+1
leads to a contradiction. Therefore all connected components of X,,4; \ X,, are non-compact,
Theorem IIL.6 applies, and we obtain inductively continuous projections

Pnidn = 5(Xn78Xn)(Y) - H;L = H(}R(XnaaXn;Y)

which are compatible in the sense that pni1|;, = pn. Since 3(ar,) is the locally convex direct
limit of the subspaces 3, (Definition IV.12), there exists a continuous projection

P 3(M,c) (Y) - H(}R,C(M; Y)

with p|;, = p, for each n € N.
Now let fn: H: — E be continuous linear functions into a locally convex space E with

fotilgy = f, for mneN

Then the functions f, opp:3, — E are continuous linear maps with fr41 0 pnt1l;, = fnoPn, S0
that there exists a continuous linear map F:3(pr,)(Y) = E with F|;, = f,op, foreach n € N,

and therefore the restriction f := F'| H (M;Y) is continuous. This proves the universal direct

limit property of the locally convex space H (}R7C(M Y). ]

1 There is some subtle point that one has to observe here. In general a closed subspace Y of an LF-space
X=lim X, does not have to carry the LF-space topology defined by the subspaces YNX, (cf. [Tr67, Rem. 13.2]).
—
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Lemma IV.15. IfY is alocally convex space and I' CY a discrete subgroup, then the subgroup
'™ s discrete in the space YY) endowed with the locally convex direct limit topology of the finite
products Y™ = Y{b--n} e N.

Proof. Let U CY be a convex 0-neighborhood with U NT" = {0}. Then UM is a convex
0-neighborhood in Y™ with U™ nT™ = {0}. "

Theorem IV.16. Let Y be a s.c.l.c. space and M a non-compact connected manifold with
a saturated ezhaustion (Xp)nen. Then there exists a set B = |J, By consisting of piecewise
smooth cycles and of piecewise smooth proper maps R — M such that:

(1) For each n € N the subset By, is finite, and the integration map

Ox,: Hip(Xn, 0X,3Y) = Y5, [(Ie (/bc)beBn

s a topological isomorphism.
(2) The integration map

B Hin (M) > VO =lim 2, (s ([ €),

is a topological isomorphism.

Proof. Using the construction in the proof of Theorem III.6, we inductively obtain finite sets
B,, of piecewise smooth cycles in X,, modulo 0X,, such that B,, C B,;+; holds in the sense
that those cycles in B,, which are not cycles in X,,;; are “extended” to relative cycles modulo
0Xpn+1 in X, 41, and the set B,41 \ By consists of cycles supported in X, 41 \ X,,. Moreover,
for each n € N the integration map ®x, is a topological isomorphism (Remark ITL.5) which, in
addition, satisfies

Pxi lmL (X006, y) = Px,.-

Therefore Lemma, IV.14(ii) leads to a topological isomorphism

&: Hig (M;Y) = lim VB =2 y(B)
™ —

where B := |J,, By, and the space Y(B) = |J VB~ carries the locally convex direct limit
topology. ]

Discrete subgroups of de Rham cohomology

Remark IV.17. In the following we write C’;O(N , M) for the set of proper smooth maps from
the manifold IV to the manifold M.

Every smooth loop in C*(S!, M) is homotopic to a smooth loop « for which all derivatives
vanish in the base point 1 € S!, where we consider S' as a subset of C. Then we can view it as
a smooth map [0,1] = M which extends to a proper smooth map @:R — M by using a smooth
proper map v: R™ — M with v(0) = a(1) for which all derivatives vanish in 0 and then define
a(t) ==~ —1) for t > 1 and «a(t) := y(—t) for ¢ <0 (cf. Lemma IV.5). For each compactly
supported 1-form 3 we then have

Aﬂ=éﬂ—ﬁﬂ+ﬁﬂ=éﬂ .

Lemma IV.18. Let X = X C M be an equidimensional compact submanifold with boundary.
Then the following assertions hold:
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(i) For z,y € 0X there exists a smooth proper curve c: R = M with «(0) =z, a(1) =y, and
[0,1] = a 1(X). For ( € Q'(X,0X;Y) we then have

/QC - /04[0.1] 3

(i) For ¢ € ZIg(X,0X;Y) the subgroup of Y generated by the set of all integrals fa{,
a € C°(R, M), coincides with the set of all integrals over elements in Z1(X,0X).

Proof. (i) This follows from Lemma IV.6 and its proof.

(if) From (i), Remark IV.17 and Proposition IIL.3 it follows that each integral over a cycle in

Z1(X,0X) can also be written as a sum of integrals over proper smooth maps R — M.

Suppose, conversely, that a: R — M is smooth and proper. Then « is smoothly homotopic

to a proper curve 7 which is transversal to the compact submanifold 0X of M ([BJ73, Satz

14.7; p.158]). Therefore y~!(X) is a finite union of compact intervals I,..., I, , because it is

locally connected and compact. Then

/a<=/7<=;/mp,

and the restrictions v|r; can be interpreted as cycles in Z;(X,0X). ]

We conclude from Lemma IV.18 that for the sake of testing integrality conditions of 1-
forms supported by X, we could either work with 1-cycles in X modulo X or with proper
smooth maps R — M. The latter approach has the advantage of being independent of X .

Definition IV.19. For a subgroup I' C Y let
Zin o (MiT) = {3 € Zig (O1Y): (Va € G M) [ peT)
«

and observe that this equals {8 € QL(M;Y): (Vo € C°(R,M)) [, B € T} if T is discrete (cf.
Lemma I1.10(2)). We also define

Hig,o(M;T) := Zig o(M, 1) /dCZ (M Y). u

Proposition IV.20. Let I' CY be a discrete subgroup and Tr :=Y/T'. Then §(C°(M;1T))
consists of those 1-forms whose integrals over all elements of C°(R, M) are contained in T'. In
particular,
Hig o(M;T) = §(C2(M; Tr)) /d(C (M;Y)).

Proof. For each closed 1-form &(f), f € C>®(M;Tr), the integrals over elements of
C°(R, M) are obviously contained in T'. If, conversely, ¢ € QL(M;Y) has this property, then
we pick an equidimensional compact manifold X = X with boundary containing the support
of ¢. Then Lemmas I.3 and IV.18 imply the existence of f € C°°(X,0X;Tr) C C>°(M;1r)
with 8 = &(f). This proves that §(C°(M;Tr)) consists of those 1-forms whose integrals over
all elements of C°(R, M) are contained in T'. [

For the following corollary we recall the set B from Theorem IV.16. For the case where Y’
is finite-dimensional, the following discreteness result can also be obtained from Proposition B.3,
combined with Theorem II.7.
Corollary IV.21.  We have @y (H(}R,C(M; ) =T5) and in particular
Hig,o(M;T) 2T C VB = Hig (M;Y).

Moreover, for H5R7C(M; R) # {0} the group T is discrete if and only if H§R7C(M; ) is discrete.
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Proof. In view of Lemma IV.18(ii), we have

Zin,(M;T) = | ) Zin (X, 0X,;T),
neN

and therefore @y (Hgg (M;T)) C ['B). On the other hand, we have for each n the restriction
isomorphism
bx, = m_(x,.0x,) Hir(Xn, 0Xn;Y) — Y CcyB),

Let zas € X; be a base point. If ®x, ([¢]) € T'B», then the construction of the set B, (cf.
Theorem II1.6) implies that all integrals of ¢ over cycles in Z;(X,,0X,) lie in T, and hence
that all integrals over curves in Cp°(R, M) liein T' (Lemma IV.18(ii)). Therefore ¢ € Zjg (M;T)
and @ ([¢]) = ®x, ([¢]). We conclude that ®ur(Hig (M;T)) =T5).

Now we use Lemma IV.15 to see that for a non-empty set B the subgroup T'®) of the
locally convex direct sum Y(P) is discrete if and only if T is discrete in Y. ]

For the following, we observe that we have a natural continuous multiplication map
QLR XY = QMY), (CGy) =Gy
which induces continuous bilinear maps
Hig(M;R) x Y — Hig(M;Y) and  Hig (M;R) x Y — Hgg (M;Y).

Corollary IV.22.  For each subgroup T' of Y we have Hiy (M;Z)-T = Hyg (M;T).

Proof.  The inclusion Hgg (M;Z)-T C Hig (M;T) is trivial. For the converse, let ¢ €
Zir(X,,0Xp;T). Then ®x, ([¢]) € I'P» (Lemma IV.18). Suppose that B, = {bi,...,by}. Let
bi € Zyg(Xn,0X,;R) be elements with Ij,b5 = 6;;. Then [, ¢ =0 for b € B\ B, implies that
C— 2k, b; - f,, € is exact, so that

i=1"1

n

(=301 [ &M 0n) T

J

holds in Hjp (M;Y). As B, generates Z(X,,0X,) modulo torsion, we get b} € Hgg .(M;7)
(Lemma IV.18). ]

The following proposition will be helpful in understanding the assertion of Proposition V.12
below.

Proposition IV.23. If S is a closed subset of the compact manifold M , then for each discrete
subgroup T' CY we have

Hig (M, $i2)-T = Hip (M, S;T).
Proof. The inclusion “C” is clear. It remains to show the converse. So let ¢ € Zi (M, S;T).
First we show that the group ((, H;(M,S)) CT is finitely generated.

Since Hy(M) is finitely generated, I'g := (¢, H1(M)) is a finitely generated subgroup of T".
Let p:Y — Y/T, denote the quotient map. Then all periods of the 1-form (o := po( are trivial,
and there exists a smooth function fo: M — Y/T'y with dfp = (1 and fy(S) C T'/Ty. Moreover,
the function fy lifts to a smooth function fi: M — Y, with f; (q;‘,l(S)) C T, where qp: M— M
is a universal covering of M. As T is discrete, the function f; is locally constant on q&l(S), and
therefore fy is locally constant on S. Therefore fo(S) is finite. As (¢, H1(M,S))/To C (fo(S)),
it follows that ((, H;(M,S)) is finitely generated.

Moreover, there exists a smooth function fo: M — Y locally constant on a neighborhood
of S such that for each s € S we have fo(s) + To = fo(s). Then dfs € Hig(M,S;Z) lies in the
image of

H(}R,C(M \ S; F) = H&R,C(M \ S5 Z) T
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(Corollary IV.22). For (; := ¢ — df2 we now have
Lo = (¢, Hi(M)) = (G, Hi(M)) = (C1, Hi1 (M, S)),

so that there exists some f3 € C*°(M,S;Y/Ty) with dfs = (i .

As Ty is finitely generated, it spans a finite-dimensional subspace Yy C Y. Extending the
identity map Yy — Yy to a continuous linear map Y — Y; using the Hahn-Banach Extension
Theorem, we obtain a topological direct sum decomposition YV = Yy @ Y7, where Y; is the
kernel of the extension. Then Y /Ty 2 (Yy/Tp) x Y1 as Lie groups. Moreover, (; = a; + a2 with
aj € ZtliR(M,S;Y}), j=1,2,and f3 = hi+ho with hy € COO(M,S;YE)/F()), hs € COO(M,S;H),
0(h1) = a3 and dhy = as. This proves that [(1] = [@1]. As Yy /T is a finite-dimensional torus,
we can write it as ]Rd/Zd with Yy 2 R? and Z¢ =2 Ty. This means that h; is a finite product
of the d component functions Iy,...,l; € C°(M,S;T). If e;,...,eq denote the canonical basis
vectors in R? | this leads to

d
[041] = Z[dl]] -e; € H&R(M,S;Z) -T.

=1
Summing up, we obtain

Hip(M,S;T) C Hig (M \ S;T) + Hig(M,S;Z)-T
= Hig M\ S;Z) T+ Hig(M,S;7)- T C Hiz(M,S;Z)-T.

Example IV.24. Let M := R? \ P, where P is a subset without cluster points. We want to
get an explicit picture of H§R7C(M; R).
(a) First we consider on R? \ {(0,0)} in polar coordinates the 1-form

a(re’?) == f(r)dr,

where f:]0,00[— R has compact support and satisfies fOOO f(r)dr =1. Then
' of
da = f (r)dr/\dr-l-a—dcp/\dr:O,
©

and for each proper map v: R — R? with lim;_, o v(t) = (0,0) and lim;_,, 7(t) = o0 we have

/azl.
-

(b) To calculate H5R7C(M ;R), we approximate M by compact submanifolds X, which are
obtained from closed discs D,, with 0D, N P = ) by removing open discs around the finitely
many points in D, N P. Note that the set P is countable, so that there exist arbitrarily large
discs D,, whose boundaries do not intersect P.

Assume that D := D,, contains k elements of P and put X := X,,. Then m (X) =
71 (int(X)) is a free group of k generators. For each closed 1-form ( with compact support in
X0 the integrals over the loops in X are trivial (make them very small around the points in
P). Hence every such 1-form is exact. Let ( = df with f € C®(X;R). As ( has compact
support, f is constant on the connected complement of D, so that we may w.l.0.g. assume that
f = 0 on the outer circle 9D C 9X. Then we connect D by arcs 7,...,7, to the other
boundary components. If all integrals of { over the v; vanish, then ¢ € dC>(X,0X;R). If
a1y...,ap € Zig (X, 0X;R) are the 1-forms supported close to the elements of PN D as in (a),
we see that f%_ aj = d0;; for an appropriate normalization, so that [(] =3, fw ¢-[a;]. Therefore

Hip(X,0X;R) = @ Rlap],
pePND
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and further
Hip o(M;R) = lim Hp (X, 0X0;R) = 62 Rloy] = RP).
pE

The subgroup Hjg .(M;Z) of integral elements in Hyg .(M;R) consists of those cohomol-
ogy classes whose integrals over all paths between elements of P are integers. For p,q € P we
write 7y, , for an arc from p to ¢. Then

/ ar =0pr — Og,r-
.

pPyq

This means that ) A,a, is integral if and only if all differences A, — A, are integral. As only
finitely many coefficients A, are non-zero, it follows that

Hip o (M;Z) ="y Zlay) = 7P u
P

V. Central extensions of Lie groups and period maps

In this section we first explain the general setup for central extensions of infinite-dimensional Lie
groups. The main question arising in the integration process of Lie algebra cocycles w to central
extensions of Lie groups is whether the corresponding period group II,, is discrete. In this section
we show that for cocycles of product type for the groups C°(M;K), and C*(M,S;K), the
period group is discrete for any M if and only if this is the case for M = S'. This reduces the
discreteness problem to the case of loop groups, which is known for K compact, and therefore
for all finite-dimensional Lie groups K.

Generalities on central Lie group extensions

Definition V.1. (a) Let 3 be a topological vector space and ¢ a topological Lie algebra. A
continuous j-valued 2-cocycle is a continuous skew-symmetric function w:g x g — 3 with

w([a:,y],z) + w([y,z],az) + w([sz]ay) =0.

It is called a coboundary if there exists a continuous linear map « € Lin(g,3) with w(z,y) =
a([z,y]) for all z,y € g. We write Z2(g,3) for the space of continuous j3-valued 2-cocycles
and B2(g,3) for the subspace of coboundaries. We define the second continuous Lie algebra
cohomology space

HZ(g,3) = Z2(8,3)/ B>(g,3)-

(b) If w is a continuous 3-valued cocycle on g, then we write g @, 3 for the topological Lie
algebra whose underlying topological vector space is the product space g x 3, and the bracket is

defined by
[(1‘, 2), (xla zl)] = ([xa xl]a w(ac, x,))

Then q:g®,3 — ¢, (z,2) — x is a central extension and o:g — g®, 3, — (z,0) is a continuous
linear section of gq.

If, conversely, a central Lie algebra extension q:g — g with kernel 3 has a continuous
linear section o:g — g, then it can be described by a continuous Lie algebra cocycle w € Z2(g, 3)
defined by w(z,y) := [o(z),0(y)] — o([z,y]), because the map

gDu3 =0, (r,2)—=o(x)+z2

is an isomorphism of topological Lie algebras. As two Lie algebra cocycles define equivalent
central extensions if and only if they differ by a coboundary, we obtain an identification of the
set of equivalence class of all central j3-extensions of g (with a continuous linear section) with
the vector space HZ(g,3). n
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Definition V.2. (a) Central extensions of Lie groups are always assumed to have a smooth
local section. Let Z <> G —» G be a central extension of the connected Lie group G by
the abelian Lie group Z. We assume that the identity component Z, of Z can be written as
Ze = 3/m1(Z), where the Lie algebra 3 of Z is a s.c.l.c. space. The group (3,+) can be identified
in a natural way with the universal covering group of Z., and Z. is a quotient of 3 modulo a
discrete subgroup which can be identified with 71 (Z). Since the quotient map ¢: G — G has a
smooth local section, the corresponding Lie algebra homomorphism g — g has a continuous linear
section o:g — @, hence can be described by a continuous Lie algebra cocycle (Definition V.1).
(b) If G is a group and Z an abelian group, then we define the group

ZX(G,Z) ={f:GxG = Z:(Vz,y,2 € G)
fz) = f(z,1) =1, f(z,y)f(zy,2) = f(z,y2)f(y,2)}

of Z -valued 2-cocycles and the subgroup
B*(G,Z):={f:GxG — Z:(3h:G — Z) h(1) = 1,(Vz,y € G) f(z,y) = h(zy)h(z) " h(y)~"'}

of Z -valued 2-coboundaries. In both cases the group structure is given by pointwise multiplica-
tion.

If G and Z are Lie groups, we write Z2(@G, Z) for the subgroup of Z?(G, Z) consisting of
those cocycles f which are smooth in a neighborhood of (e,e), and B2(G, Z) for the subgroup
of all functions of the form (g,g') +— h(gg')h(g)~'h(g")~!, where h:G — Z is smooth in an
identity neighborhood. We recall from [Ne02a, Prop. 4.2] that central Lie group extensions as
above can always be written as

G=Gx;Z with (9,2)(d,2") = (99", 22'f(g,9")),

for some f € Z2(G, Z). Two cocycles fi, fo define equivalent Lie group extensions if and only
if fi-f,' € BXG,Z) (for fy " (z,y) = f2(x,y)~"), and the quotient group HZ(G,Z) :=
7Z2(G,Z)/B2(G, Z) parametrizes the equivalence classes of central Z-extensions of G with
smooth local sections ([Ne02a, Remark 4.4]). There is a natural map H2(G,Z) — H>(g,3)
induced by the map

(5.1) D:Z}(G,Z) - Z2(g,3), D(f)(z,y) = d*f(e,e)((x,0),(0,y)) — d*f(e,e)((y,0), (=,0))
([Ne02a, Lemma 4.6]), where d?f(e,e) is well-defined because df(e,e) vanishes, which follows

from f(g,e) = f(e,g) = 1. For more details on central extensions of Lie groups we refer to
[Ne02a]. [

Definition V.3. If 3 is a s.c.l.c. space, G a Lie group, and Q € Q%(G,3) a closed 3-valued
2-form, then we obtain with [Ne02a, Lemma 5.7] a group homomorphism

perg: m(G) = 3

called the period map. It is given on smooth representatives 0:S? — G of classes in m(G) by

the integral
perQ([U])z/ g*gz/n.
S2 o

We recall that each homotopy class contains smooth representatives. Here we use the sequential
completeness of 3 to ensure that the integrals, which can be obtained as limits of Riemann
sums, do exist. If  is exact, then the period map is trivial by Stoke’s Theorem. The image
IIg := perg(m2(G)) is called the period group of Q. ]
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Definition V.4. Let G be a connected Lie group with Lie algebra g and w € Z2(g,3) a
continuous Lie algebra cocycle with values in the s.c.l.c. space 3. Let I' C 3 be a discrete subgroup
and Z := 3/T" the corresponding quotient Lie group. Further let Q be the corresponding left
invariant closed 3-valued 2-form on G. Then we define a homomorphism

P:HZ(g,3) = Hom(m(G), Z) x Hom(m (), Lin(g, 3))
as follows. For the first component we take
Py([w]) :== gz o per,,,

where gz:3 — Z is the quotient map and per,, := perq: m2(G) — 3 is the period map of w. To
define the second component, for each X € g we write X,. for the corresponding right invariant
vector field on G. Then ix, Q is a closed j-valued 1-form ([Ne02a, Lemma 3.11]) to which we
associate a homomorphism m (G) — 3 via

Py () () (X) 1= / ix, Q.

v

We refer to [Ne02a, Sect. 7] for arguments showing that P is well-defined, i.e., that the right
hand sides only depend on the Lie algebra cohomology class of w. ]

The following theorem completely describes the obstructions for a Lie algebra cocycle to
integrate to a central Lie group extension. It is the main result of [Ne02a].

Theorem V.5. Let w € Z2(g,3) be a continuous Lie algebra cocycle. Then the central Lie
algebra extension 5 — g := gD, 3 —» @ integrates to a central Lie group extension Z < G —» G
if and only if P([w]) =0.

Proof. [Ne02a, Th. 7.12]. ]

Applications to current groups

Now we turn to central extensions of the two classes of current Lie groups given as the
identity components of C°(M;K) and C*°(M,S; K). The methods developed in this paper
are well suited for the study of Lie algebra cocycles of product type introduced below. Here the
main problem is to decide for a given cocycle if its period group is discrete (cf. Theorem V.5).

Definition V.6. Let ¢ be a locally convex topological Lie algebra, M a manifold and
g := C°(M;¥¢). We consider a continuous invariant symmetric bilinear map k:&¢ x ¢ — Y,
where Y is a s.c.l.c. space. We then obtain a continuous 3/ (Y)-valued cocycle on g by

OJM(&, 77) = wM,n(ga 77) = [R(fa d’?)] € 3M(Y)7

where we view (&, dn) as the element of Q'(M;Y) whose value in a tangent vector v € T, (M)
is given by £(£(p), dn(p)(v)).

(a) On C*°(M, S;€) we obtain by restriction a continuous 3(as,s)(Y)-valued Lie algebra cocycle
w(n,s)- For a compact manifold M the group C* (M, S; K) has a natural Lie group structure
(Definition 1.6), so that we can define the period map

pel‘w(M‘S):TFQ(OOO(M,S;K)) — 5(M,S)(Y)

corresponding to the left invariant 2-form Q57 q) on C*°(M, S; K) with Qs 5y = winr,s)- We
write I ps ) for the corresponding period group.
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(b) If ¢ and n have compact support, then the same holds for x(£,n), so that we also obtain a
Lie algebra cocycle
wir € ZZ(CP(M;8),50m,0(Y)),  sare(Y) 1= Qu(M;Y)/dCZ (M;Y).
The continuity of this cocycle follows from the continuity of the map
OO (M;8) x Q(M38) = Q(M;Y),  (f,€) = (. 8),

which in turn follows from [G101d, Th. 4.7] because it can be interpreted as a map on the level of
compactly supported sections of vector bundles induced by the bundle map determined by the
continuous map

& x Lin(T,(M);€) — Lin(T,(M);Y), (x,8) ~ (=, B(-))

on the fiber in p € M.

(c) For any Lie group K we define V(£) as follows. We first endow ¢ ® € with the projective
tensor product topology and define V' (¢) as the completion of the quotient of V' (£) by the closure
of the subspace spanned by all elements of the form

1‘®y—y®l’ and [‘Tay]®2+y®[xaz]7 $,y,2€é.
If [z] denotes the image of z € E® € in V (£), we obtain a continuous invariant bilinear map
kEXE—=V(E), k(z,y):=[rQy]

which leads to the cocycle w = ws1,, € Z2(g,V(€)) on g := C>®(S';€) given by w(&,n) =
[k(€,dn)]. As m(C>®(SY; K)) = 73(K) (Corollary A.15), the period map per, yields a homo-
morphism

perp:m3(K) — V(§). [

Proposition V.7. Let g := C>®(M;t) and k:Ex t =Y be a continuous invariant symmetric
bilinear form. Then we obtain for the cocycle w(&,n) := [k(€,dn)] an automorphic action of the
group C®(M,K) on g:=g®,3m(Y) by

(5.2) f(€,2) = (Ad(f)-& 2z = [6(5 (1), O)))-

The corresponding derived action is given by

(5.3) n-(§ 2) = [(n,0), (& 2)] = ([0, €], w(n, §))-

Proof. The arguments can be taken over from [MN02, Prop. III.3]. Here we only have to add
Lemma II.2 to see that ' is smooth. ]

Theorem V.8. Let K be a connected Lie group, M a connected manifold, G := C>*(M, K),
and wyrx € Z2(g,3m(Y)) as above. Suppose that the period group Wpr . C 3 (Y) is discrete.
For Z := 30 (Y) /11, we then obtain a central Lie group extension Z — G—»da corresponding
to the cocycle wr ., -

Proof. In view of Theorem V.5, we only have to see that Pz ([war,x]) = 0. According to [Ne02a,
Prop. 7.6], this is equivalent to the existence of a smooth linear action of G on g whose derived
action is given by n.(&,2) = ([n,&],w(n,&)). Proposition V.7 implies that such a representation
exists. -

For the following theorem we recall that we can use the continuous bilinear form x:¢x¢ — Y
to define a wedge product

Ar: QH(M;E) x QY (M;€) — Q*(M;Y)
by
(@ Ax B) (v, w) := K(ap(v), Bp(w)) = K(Bp(v), ap(w)), v,w € Tp(M).
The following theorem describes a situation where we have a global smooth group cocycle
associated to the cocycle obtained by composing a cocycle of product type with the de Rham
differential 357,.(Y) — Q2(M;Y). The reason behind the existence of the global cocycle lies in

the fact that all periods of was, lie in the kernel Hyp (M;Y) of d (see [NeO2a, Section 8] for
more details on the existence of global smooth cocycles).
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Theorem V.9. Let Gt := CX(M,K). Then the map
h:GY x Gt = Q(M;Y),  h(f,9) == 6'(f) A 0"(9)

defines a a smooth Q2(M;Y)-valued group 2-cocycle on GT, so that we obtain a central Lie
group extension G =G+t x, Q2(M;Y). The corresponding Lie algebra cocycle Dh from (5.1)
s given by

Dh(&,m) =2d§ Awdn  for & n € C°(M;¥).

The map v:3m,.(Y) = Q2(M;Y),[B] = 2dB satisfies v o warx = Dh and induces a Lie algebra
homomorphism

Yo:8 =0 PBun. sme(Y) = 87 =g ®pr W(M;Y),  (X,[B]) = (X,2dB).

This homomorphism is G -equivariant with respect to the action on g induced by the adjoint
action of GT, which is given by

Adg, (9).(€,2) = (Ad(g).£, 2 — d(k(0'(9),£)))-

Proof. This follows with the same arguments as in the proof of [MNO02, Th. ITI.9]. For non-
compact manifolds we have to use Lemma II.2 for the smoothness of the maps §',6": C> (M, K) —
QLl(M;e). ]

Period maps for C*(M,S; K)

Now we turn to the period groups II(ys sy for the Lie algebra cocycles w(ys,5) associated
to the Lie algebras C*° (M, S;€), where M is compact and S C M a closed subset.

Lemma V.10. For each a € C*>((I,0I),(M,S)) let
ag:C*(M,S;K) - C*(I,0I; K)
denote the corresponding group homomorphism. Then

per, .. ome(ar) = Iy 0 per, . o -

Proof.  First we recall from Lemma A.16 that the map ag is a Lie group homomorphism.
Let G = C®(M,S;K). and Qus) € Q°(G,3(m,5)(Y)) denote the left invariant 2-form
corresponding to wps,sy. Then I, o Q(y5) is a Y -valued left invariant 2-form on G whose
value in 1 is I, ow(ar,s). Further azQ oy is a left invariant 2-form on G' whose value in 1
is given by

(€1) = wir.on) (€ 0 @y 0 a) = [K(€ 0 ayd(n o @)
= [s(a"€, 0 (dn))] = / k(o€ 0 (dn)) = / K&, dn) = T (wor.5)(E)).

This implies
@k Qron =In 0 Qs

for each a € C*°((I,0I), (M, S)), and hence the assertion. ]
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Lemma V.11. If we identify 351(Y), 3(1,0r)(Y), and 3r(Y) with Y via the integration maps
from Lemma IL.8, then
Hs1 =17 51) = Hr.

Proof. According to Corollary A.15, the natural inclusion
C=((1,01); K) = C2(S} K)

induced from the canonical map « € C*°((I,8I),(S!,x)) is a weak homotopy equivalence.
Therefore 7 (ax) is an isomorphism, and Lemma V.10, applied to (M,S) = (S',1), implies
that

s p1) = Io 0 Ilgr = g1

because the map I,:351(Y) = Y is the integration isomorphism which we ignore by identifying
lg: and Il(7 55y as subsets of V.

To obtain Ilg = I(7 57y, we first use Theorem A.13 and a diffeomorphism a:R — I\ 01
to see that the natural embedding

or:CP (R K) - CX(I\OI; K) — C™(I,0]; K)
is a weak homotopy equivalence. Moreover, L(¢x)*w(r,a1) = Wr, 80 that ¢3 Qa1 = OQr, and

by integration over R we obtain Il(; 57y = Ilg. ]

Proposition V.12.  For each k the period group 1l ys sy is contained in Hz(M,S;Y), and
we have

Hig(M,S;Z)-Tgr C Mar,s) € Hig (M, S;Tsn).
If Tt is discrete, then

My,s) = Hig (M, S;Ts1) = Hig (M, S;Z) - Tg1.
Proof. In the situation of Lemma V.10, the homomorphism (k) only depends on the
homotopy class of o (Lemma A.16). Therefore Lemma V.10 implies that the restriction of I, to

I(ar,s) depends only on the homotopy class of a, hence II(xr,5) C Hjr(M,S;Y) by Lemma IL.10.
From Lemmas V.10 and V.11 we further get

Mar,sy € Hig(M, S;T (1 01)) = Hig (M, S; s1).

To prove the inclusion
Hig(M,S;Z)-Ts: C T (ar,s),

let [¢] € Hig(M,S;Z). Then Lemma IL3 implies the existence of f € C*°(M,S;T) with
5(f) =¢. Let 0 € T =2 R/Z denote the identity element in T. The map f induces a smooth
group homomorphism

fk:CE(LOGK) —» C*(M,SK), ¢ gof
(Lemma A.16). We now get from Lemma V.10 for each a € C*°((I,0I), (M, S)) the relation
Io oper, . . om(fk) =per,, ,, om(ak) o m(fk) = per, , ,, om((f o @)k),

where f o« is viewed as a map in C*((I,dI),(T,{0})). This map factors through a smooth
map I/0I = T — T, and m((f oa)k) is the multiplication with the winding number deg(f o)
of this map ([MN02, Lemma I.10]). For each

[0] € m(C™(T, {0}; K)) = m(C°(S'; K))
we then have
Ia(per,,,, ., (m2(fx)[o])) = deg(f o o) per,,, , ([o]) = 1a(C) - per,,, ,, ([o])-
Since the I, separate points on H}g (M, S;Y), it follows that

pery ,, o (ma(fr)lo]) = [(] - pery,, ,, ([0]),

and hence that
Hir(M,S;7) - Tig: = Hyg (M, S;7) - 1,01y C M(ns,5)-

If I is discrete, then we apply Proposition IV.23 to obtain the asserted equalities. ]
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Corollary V.13.  If lls: is discrete, then I ar sy is discrete for each pair (M,S).

Proof. Proposition V.12 implies that IIys5) C Hlz (M, S;s1), and the latter group is
discrete by Theorem II.7. ]

Remark V.14. In view of the preceding corollary, everything reduces to the study of the period
map

perwh‘lnrg(K) ~ m(C*(SLK)) = Y.

It is not necessary to know mo(G) explicitly. [

Proposition V.15.  Suppose that Y = R and ' = Z, so that Tr = T. We further assume
that € is compact and simple and that k in normalized in such a way that k(i i) = —2, where
& € e is a coroot corresponding to a long root. For G = C*(M,S; K). we then have

O(pr,5) = Hig (M, S; 7).

Proof.  We first recall from the calculations in Appendix ITa to Section II in [NeOla] that
under the present assumptions we have IL(; o) = [Is1 = Z (see also [MN02, Th. IL.9]). Therefore
Proposition V.12 directly leads to

Hig(M,S;2)-Ts1 = Z- Hig (M, S; 7)
= Hir(M,S;Z) C a5y C Hyp (M, S;Tg1) = Hig (M, S; 7).

Applying Proposition V.15 to the group C'*°(M,S; K) from Example 11.12, we obtain a
cocycle on the Lie algebra of a Fréchet—Lie group for which the period group I, s) is discrete
but not finitely generated.

Period maps for C°(M;K)

Let M be a connected non-compact manifold and Y a s.c.l.c. space. For a proper smooth
map a:R — M and ¢ € Zg (M;Y) the integral

@ = [ ¢= [ o

is defined because a*( has compact support. We thus obtain a linear map
In: Zgp o(M;Y) > Y
which is easily seen to be continuous.
Lemma V.16. For each a € C°(R, M) let
ag:CP(M;K) - CP(RK), fw foa
denote the corresponding Lie group homomorphism. Then
(5.4) per, omz(ak) = I, oper, .

Proof. From Lemma A.12 we recall that ak is a Lie group homomorphism. The remaining
argument can be copied from Lemma V.10. ]
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Proposition V.17.  For each non-compact manifold M and each k we have

My = Hig o (M; 1Ir).

Proof. In the situation of Lemma V.16, the homomorphism (k) only depends on the
homotopy class of a (Lemma A.16). Therefore Lemma V.10 implies that the restriction of I,
to s depends only on the homotopy class of a, hence I C H§R7C(M; Y) by Lemma II.10.

From Lemma V.16 we further get Ty C Hig  (M;Ig).

To prove the converse inclusion H, (}R7C(M ;) C My, we first recall from Corollary IV.22
that

H(}R,C(M7 HR) = Hc11R7c(M; Z) - g.

It, therefore suffices to prove Hig (M;Z)-Tr C Ty. Let [(] € Hyg(M;Z). Then Proposi-
tion IV.20 implies the existence of f € C°(M,T) with §(f) = (. Let 0 =7 € T 2 R/Z denote
the identity element in T. The map f induces a smooth group homomorphism

fi:CX (T K) = CO(MK),  f=fogp
(Lemma A.12). In view of Lemma V.16, we have for each a € C}°(R, M)
I o per,,, oms(fK) = per,, om(ax) o mo(fx) = per,, om((f o a)k),

where f o« is viewed as a map in C°(R,T). Viewing R as T\ {0}, this map extends to a
smooth map T — T, and m((f o @)k ) is the multiplication with the winding number

deg(foa) = [ ¢
of this map ([MNO02, Lemma 1.10]). For each [0] € m2(C°(R; K)) we then have

La(pery,, (M (fx)[o])) = deg(f o a) per,, ([o]) = Ia(C) per,, ([0])-

Since the I, separate points on H5R7C(M; Y) (here we need that M is non-compact), it follows
that

per,,, (ma(fx)[o]) = [(] - per,, ([o])

and hence that H5R7C(M; Z) Mg CHyy. ]
Corollary V.18. If Mg is discrete, then Iy is discrete for each mon-compact connected
manifold manifold M . ]

For the following proposition we recall the space V' (€) from Definition V.7.

Proposition V.19. Ifdim K < oo, and k: € x & — V(£) is the universal symmetric invariant
bilinear map, then there exists for Z := V (€)/Ilar, a central Lie group extension

Z<—>@—»G=C§°(M,K)e.

Proof. 1In view of [MNO02, Th. IL.9], the period group Ig:, = Ig , is discrete (cf. Lemma
V.11), and Corollary V.18 now shows that II,; is discrete. Therefore Theorem V.5 applies. =
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Remark V.20. The main idea behind our identification of the period group for current groups
is as follows. Let M be a compact manifold, x,; € M, and
G:=Cr(M;K):={feC®M;K): flrm) =e}.
The evaluation map
eviGx M = K, (f,p)— f(p)
induces maps
o (G) X m(M) = mpp (K)

as follows. We view 71, (M) as the set of arc-components in the space C((I™,dI"),(M,xzar)) of
continuous maps of pairs, where I is the unit interval. Then ¢ ;([f], [h]) is the class defined by
the map

M K, (2,y) = f(2) (b)),

vanishing on the boundary

AT = (a1* x 1Y) U (T* x aTI').
In particular we obtain a map

(p271:71'2(G) X 7T1(M) — 7T3(K),
and our analysis of the period map is based on the commutative diagram

7T2(G) X 7T1(M) — 7T3(K)
Deer id persi
Hig(M;Y) x m(M) — HRpShY)=2Y
The effectiveness of this picture comes from the fact that the natural pairing
Hig(M;Y) x 1 (M) =Y
defined by integration over loops is non-degenerate in the sense that the integrals separate points
in Hig(M;Y).
The arguments for non-compact manifolds essentially follow the same line, where we have

to take smooth proper curves instead of loops. [ ]

VI. Universal central extensions of current groups

For the special class of finite-dimensional semisimple Lie groups K, each Lie algebra cocycle
w € Z2(C>*(M,¥),3) is equivalent to a cocycle of product type ([Ma02]). This observation
permits us to construct a universal central extension of the Lie algebra g := C°(M;¢€). In the
present section we show that this construction can be globalized in the sense that we construct
a universal central extension of the connected Lie group C°(M; K),.

First cyclic homology of function spaces

Definition VI.1. Let E, F and G be locally convex spaces over K € {R,C}. Then the
projective topology on the tensor product £ ® F' is defined by the seminorms

(0@ a)(@) =inf { 3" p(u)alz):e = 3 u; @ 2},

where p, resp., ¢ is a continuous seminorm on E, resp., F (cf. [Tr67, Prop. 43.4]). We write
E®, F for the locally convex space obtained by endowing E® F' with the locally convex topology
defined by this family of seminorms. It is called the projective tensor product of E and F. It
has the universal property that the continuous bilinear maps F x F' — (G are in one-to-one
correspondence with the continuous linear maps F ®, F — G (here we need that G is locally
convex). We write E®,F for the completion of the projective tensor product of E and F. =
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Definition VI.2. Let A be a unital locally convex topological algebra over K € {R,C }.
(a) We recall that the first Hochschild homology space HH,(A) is defined as

HHl(A) = Zl(A)/Bl(A),
where
Z1(A) :=kerby CA® A, ba(a®b)=][a,b] =ab—ba
and
Bi(A) :=span{zy®z —z Qyz+ 2z Qy:z,y,z € A}.

Here we endow A ® A with the projective tensor product topology.

Suppose that A is commutative. Then Z;(4) = A® A. Let M be a continuous A-module,
i.e., M is alocally convex space with an A-module structure given by a continuous bilinear map
AXx M — M. For a linear map D: A — M the bilinear map

ARA—> M, z®y—z.Dy

annihilates By (A) if and only if D is a derivation. Hence HH;(A) has the universal property
of the universal differential module Q'(A) with respect to the differential

d:A— HH,(4), a~ [1l®al.

This means that for each continuous derivation D: A — M there exists a unique continuous
linear map : HHy(A) - M with D = ¢ od (cf. [Ma02]). Therefore HH,(A) is isomorphic to
the topological module Q!(A4) of Kéhler differentials on A ([Lo98, Prop. 1.1.10]).

(b) The first cyclic homology space of A can be obtained as the quotient

HC\(A) = Z}(A)/ B} (A),
where
Z} :=kerba C A%(A), ba(aAb):=a,b],

and
BMA) :=span{zy Az —x Ayz + 2z Ay:x,y,2 € A}

(cf. [Lo98, Th. 2.15]).
If A is commutative, then a @ b+ b®a —1® ab € By(A) implies that the universal
differential d: A — HH;(A) satisfies

im(d) =19A] =21 A+ Bi(A)={a®@b+b®a:a,be A} + B (A).

Hence

HH,(A)/imd = A*(A)/B}A) = HC(A)
(cf. [Lo98, Prop. 2.1.14]). ]

Let M be a finite-dimensional manifold and A := C°(M;K). According to [Gl01c],
the multiplication on C¢°(M;K) is a continuous bilinear map, so that A is a locally convex
topological algebra. This is not obvious because the topology on C2°(M;K) is the locally convex
direct limit topology which differs from the direct limit topology with respect to the subspaces
C%. (M;K), where (X,)nen is an exhaustive sequence of compact submanifolds with boundary
in M. Hence there is no a priori reason for a bilinear map on C2°(M;K) to be continuous if all
the restrictions to the subspaces C'§¥ (M;K) are continuous.

Let Ay =K1 + A C C*®(M;K). In this section we will show that, as locally convex
spaces, we have

HH (A) = HH;(A,) = QX(M;K) and HCi(A) = QL(M;K)/dA = 3ur..(K).

Theorem VI.3. (Glockner’s Theorem) Q! (M;K) is a continuous module of C>°(M;K).

Proof.  This follows from [Gl01d, Th. 5.1] because the module structure is induced by the
bundle map given in a point p € M by the scalar multiplication K x T,,(M)* — T,,(M)*. ]
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Theorem VI.4. HH,(C>®(M;K)) = Ql(M;K).

Proof. (cf. [Ma02, Th. 11]) We will show that the continuous derivation d: A = C°(M K) —
QL(M;K) has the universal property of the universal differential module of A. From this the
assertion follows, as HH;(A) can be viewed as the universal differential module of A (Definition
VI.2).

We consider the map
7 C®°(M x M;K) — Q" (M;K), 7(F)(z)(v) := dF(z,z)(0,v).
Via the natural embedding

Ap @Ay = CF(M x M,K),  (f,9) = ((z,y) = f(2)9(y)),

we view Ay ® Ay (the algebraic tensor product) as a subalgebra of C>°(M x M,K). This
embedding is topological on the subspaces of the form

CX (M;K) ®x CF (M;K)
for compact subsets X C M ([Gr55, Ch. 2, p.81]). Let
I'={FeA; ®A;:(Vx € M)F(z,z) = 0}.

This is an ideal of AL ® A} which can also be viewed as the kernel of the multiplication map
wAr ® Ay — Ay Note that 7(f ® g) = f -dg € QL(M;K) for f,ge A, .

(1) Let (¢j)jes be a locally finite partition of unity in A for which supp(y;) is contained in
a coordinate neighborhood U; C M with U; diffeomorphic to R?, d := dim M. With this
partition of unity we write each a € QL(M;K) as

Q@ = Z(pjaa
J

where the sum is finite because only finitely many of the supports of the functions ¢; intersect
the support of a. As U; 2 R? and supp(yp;) is a compact subset of U;, there exist functions

T ,yﬁl € A such that on supp(p;) the differentials dy{f, i =1,...,d, are linearly independent.
Then we write

d
pjo=)_aldy]
i=1

with a{ €A
(2) T(A® A) =1(A; ® Ay) = QL(M;K): This follows from

a=3 ) aldy =3 (o] ©7)).
i i

i

(3) As p(A4 ®1) = A, and (A4 ®1) =0, we have 7(I) = 7(AL ® Ay) = QL(M;K) by (2).
Let N := ker(r|r). We claim that N = I2. The inclusion I? C N follows directly from

(6.1) 7(FG) = Fr(G) + 7(F)G,

which also shows that N is an ideal of A, ® A, . As 7 is continuous and I is closed, we also
obtain 12 C N. Now let F € N. Since F can be written as a finite sum

F =Y (p;i ®¢;)F,

(2]
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where each summand is contained in the ideal NV, it suffices to assume that supp(F) C U; xU; =
R?¢ for some pair (i,7) € J2. Then we have

M&

—y)Fi(z,y)
l:l
with
1 [toF OF
F == t 1—t - T (z,t 1—t)y)dt
i(x,y) 208ml(x+( )Y, Y) 8yl(ﬂc,ﬂw( )y) dt,

and it is easy to see that the supports of the functions F; are compact. From

d
=— Z Fy(z,z)dx
=1

we derive that the functions Fj vanish on the diagonal in R? x R?, so that Lemma 5 in [Ma02]
implies that F; € C°(M x M,K) is contained in the closure I of the ideal T C A, ® A, . Let
C C R? be a compact subset such that C° x C° contains the support of all the functions Fj.
We replace the coordinate functions z; on R? by functions 7; € C°(R?; K) with supp(z;) C C
and obtain

-y Fi(z,y) € el-TC1I?,

M@

1:1
where the closure is taken in

C& (R K) = CF (R, CF (R', K)) = OF (R, K)®CZ (R, K)

(cf. [Grb55, Ch. 2, p.81]).

(4) The derivation d: A — QL(M;K) has the universal property of the universal topological
differential module Q!(A4): Let E be a topological A-module and dg: A — E a continuous
derivation. We will complete the proof by showing that there exists a continuous linear map
®:QL(M;K) - E with ®(fdg) = fdr(g).

We have seen above that ker(r|;) = I2 N N = I? with respect to the relative topology, so
that 7|; leads to a continuous bijective linear map I/I? = Q'(A4) — Q! (M;K). Therefore the
natural map

AL @Ay DI = E, fogr fdr(g)

yields a linear map
®: Q0L (M;K) - E with ®(fdg) = ®(1(f ®g)) = fdr(g).

Hence it only remains to show that & is continuous when viewed as a linear map on Q!(M;K).
As the topology on QL(M;K) is the locally convex direct limit topology with respect to the
subspaces Q% (M;K), X C M compact, it suffices to verify that the restrictions ® |Q§((M;K) are
continuous.

The set Jx := {j € J:supp(p;) N X # O} is finite, and for each a € Q% (M;K) we have

0= ¥ o= 3 Tol

JjeEIx jeEJx i
Now . .
®la)= ) ®lpja)= ) > aldp(@)
jeEJx jeEJx i

because the sum is finite. The functions y] do not depend on «, and the multiplication with ¢;
is a continuous endomorphism of Q!(M;K). Therefore the maps

QUM;K) = A, am o
are continuous. Now the continuity of the module structure on E implies that ® is continuous.m

Corollary VI.5. For A =C>®(M;K) and K € {R,C} we have
HCy(A) = HH,(A)/dA = QL(M;K)/dC>® (M;K). n
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Universal central extensions

In this subsection we turn to the question whether for a finite-dimensional semisimple Lie group
K the central extension of C°(M, K). from Proposition V.19 is universal. This question will be
answered affirmatively if € is finite-dimensional and semisimple. First we recall some concepts
and a result from [NeOlc] on weakly universal central extensions of Lie groups and Lie algebras.

Definition VI.6. (cf. [NeOlc]) Let g be a topological Lie algebra over K € {R,C} and
a be a topological vector space considered as a trivial g-module. We call a central extension
g =gD, 3 — g with 3 = kerq (or simply the Lie algebra g) weakly universal for a if the
corresponding map d,: Lin(3,a) — H2(g,a),v — [y o w] is bijective.

We call q:g — g universal for a if for every central extension ¢i;:g; — g of g by a with
a continuous linear section there exists a unique homomorphism ¢:g — g; with ¢ o ¢ = ¢.
Note that this universal property immediately implies that two central extensions g; and g
of g by a; and ay such that both g; and g» are universal for a; and ay are isomorphic. A
central extension is said to be (weakly) universal if it is (weakly) universal for all locally convex
spaces a. ]

Definition VI.7. We call a central extension G = G x ¢ Z of the connected Lie group G' by
the abelian Lie group Z given by f € Z2(G, Z) weakly universal for the abelian Lie group A if
the map

Sa:Hom(Z, A) = H2(G,A), v~ [yof]

is bijective. It is called universal for the abelian Lie group A if for every central extension
1:Gx, A= G, ¢eZG,A),

there exists a unique Lie group homomorphism ¢:G xy Z — G x, A with ¢ o ¢y = ¢ (cf.
Definition V.1). A central extensional is said to be (weakly) universal if it is (weakly) universal
for all Lie groups A with A, 2 a/m(A4) and a s.cl.c. n

Definition VI.8. If g is a locally convex Lie algebra, then we write H;(g) for the completion
of the quotient space g/[g,g]. If g is a Fréchet space, then g/[g,g] is also Fréchet, and no
completion is necessary.

If G is a connected Lie group with Lie algebra g and G its universal covering group, then
we have a natural homomorphism dg:G — Hi(g). Its kernel is denoted by (G,G). If G is
finite-dimensional, then (C~¥, C~¥) is the commutator group of G. ]

Theorem VI.9. (Recognition Theorem) Assume that q:@' — G is a central Z -extension of
Lie groups over K € {R,C} for which

(1) the corresponding Lie algebra extension g — g is weakly K-universal,

(2) G is simply connected, and

3) m(G) C(G,G).

If § is weakly universal for a s.c.l.c. space a, then G is weakly universal for each abelian Lie
group A with A, =2 a/m(A).

Proof.  The original statement of this theorem in [NeOlc, Th. IV.13] is formulated only for

Fréchet—Lie groups, but one easily verifies that the proof yields the more general result stated
above. ]

Theorem VI.10. Let K be a finite-dimensional semisimple Lie group and G := C* (M, K), .
Further let 3 := 3um.(V(€) and w = wny € Z2(g,3) be a cocycle of product type given by
w(n, &) = [k(n,d€)]. Then the corresponding central Lie algebra extension g := g @, 3 is

~

universal, and there exists a corresponding central Lie group extension Z — G —» G with
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Z =1 (G) % (3/Upr) which is universal for all Lie groups A with A, = a/T, where a is a s.c.l.c.
space and ' C a a discrete subgroup.

Proof. TFirst we show that g is perfect. In fact, for z,y € € and f,g € C®(M;K) we have in
g the relation

[foz,goyl-lgoz, foyl= (fe&z,y] — gf ® [x,y],2[fdg] - k(z,y)) = (0,2[fdg] - k(z,y)).

Since V(¢) is spanned by im(k), the fact that 3as..(K) is spanned by elements of the form [f -dg]
implies that g is perfect.
Since g is perfect, for each locally convex space a the natural map

§:Lin(3,a) — H2(g,a), v+~ [youw]

is injective ([NeOlc, Rem. 1.6]). It has been shown in [Ma02, Thm. 16] that 0 is also surjective,
so that g is weakly universal for all locally convex spaces a. Since g is perfect, it even is a
universal central extension of g ([NeOlc, Lemma I1.12]).

Furthermore, the period map per,:m2(G) — 3 has discrete image II,, (Proposition V.19).
In view of Theorem V.8, Theorem V.5 now implies the existence of a central Lie group extension
Z — G —» G with Z = (3/11,,) x 71 (G) corresponding to the Lie algebra extension 3 < g — ¢
and such that the connecting homomorphism m; (G) — mp(Z) is an isomorphism.

To prove the universality of @, we use the Recognition Theorem VI.9. For that we have
to verify that
(1) ¢ is weakly universal,
(2) m(G)=1,
3) m(G) C(G,G).

Condition (1) has been verified above. Further (3) follows from the perfectness of g, which
implies (G,@) = G. It therefore remains to verify (2). For that we consider a part of the long

exact homotopy sequence of the Z-principal bundle ¢: G- G
(6.2) m3(@) =11 (2) = m(G) = m(G) = m0(Z).

According to [Ne02a, Prop. 5.11], we have § = —per,, so that m (Z) = II, (as subsets
of 3) implies that § is surjective. Moreover, the natural homomorphism 7 (G) — mo(Z) is

an isomorphism by the construction of @, so that the exactness of (6.2) implies that G is simply
connected. ]

Remark VI.11. (a) If K is finite-dimensional and reductive, then K = 3(¢) x (K,K).
Therefore 7 (K) is contained in (K, K) if and only if K = 3(¢) x (K,K). In this case we
have

C®(M,K) =2 C*®(M,j3(¢) x C*(M, (K, K))

and hence we have for G = C*°(M, K), the direct product decomposition
G=GpxGz with Gp:=C*M,(K,K)) and Ggz:=C>®(M,j(¥)).

In this case the Lie algebra g = C>°(M;¥) has the direct decomposition g = g’ @ 3(g) with
g =C>(M;¥) and 3(g) = C*°(M;3(8)), where €', resp., g’ denote the commutator algebra. It
is easy to see that every Lie algebra cocycle w € Z2(g;Y) vanishes on g’ x 3(g) C g x g because
g’ is perfect. From that one further derives that a weakly universal central extension of g can
be obtained with

3:=3m(V(¥)) & A%(3(0)),

where for a locally convex space F the space A%(E) is defined as the quotient of E®, E modulo
the closure of the subspace spanned by the elements e® e, e € E. To describe the corresponding
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cocycle, we write £ € g as £ = (¢/,¢&) with ¢ € ¢’ and & € 3(g). Then a weakly universal
cocycle is given by

w(&,n) = ([se (&', dn")], & Ay)-

R L}\et G p be tAhe universal central extension of Gp from Theorem VI.10 and define G =
Gp x Gz, where Gz is the 2-step nilpotent Lie algebra

3(8) Xw, A%(3(g))  with  wz(&,m) =EAn,

viewed as a Lie group with the multiplication z xy ==z +y + %[az, y]. Using Theorem VI.9, we

see that G z Ais a weakly universal central extension of Gz = gz . Theorems VI.9 and VI.10 now
imply that G is a weakly universal central extension of G. ]

Appendix A. Homotopy groups of smooth current groups

In this section we show that the homotopy groups of the Lie groups of smooth maps C°(M; K),
resp., C°(M,S; K) introduced in Section I coincide with the homotopy groups of the corre-
sponding groups of continuous maps Cy(M;K), resp., Co(M \ S;K). The latter groups are
usually better accessible by means of topological methods.

More specifically, for the group C°(M;K) of compactly supported smooth functions
on a manifold M with values in a Lie group K the main result will be that the inclusion
CX(M;K) — Co(M;K) is a weak homotopy equivalence. For the group C*°(M,S;K) of
smooth maps on a compact manifold M vanishing with all derivatives on a closed subset S we
show that the inclusion C*°(M,S; K) < Co(M \ S; K) is a weak homotopy equivalence.

In the present paper the results of this section are mainly needed to get information on the
second homotopy group which is important for period maps associated to Lie algebra cocycles
(cf. Section V). Moreover, the results of this appendix are of independent interest in many other
contexts, where they provide valuable information on the topology of current groups.

Groups of compactly supported functions

Lemma A.1. For each compact subset E of C°(M; K) there exists a compact subset X C M
with E C C¥(M; K).

Proof. Let U C ¢ := L(K) be an open 0-neighborhood and ¢:U — ¢(U) a chart with
©(0) = e. Then there exists an open 0-neighborhood Uy C U such that we obtain a local chart for
G = C®(M;K) by pa(f) := ¢o f (Definition 1.2(b)). Let V := {f € C>*(M;¥): f(M) C Uy}
and observe that

eV = oa(V) ={f € CZ(M; K): f(M) C ¢(Uo)}-

Then for each f € G the set fpg(V) is an open neighborhood, and the map

or:V = foa(V), &= foa(f)

is a diffeomorphism. Let W C V be a closed 0-neighborhood such that pg(W)ea(W) C pa(V).
Since pg(W) is the intersection of all sets pg(W)N, where N is an identity neighborhood in
CX(M;K), pa(W) C pa(V), so that the closedness of W implies that ¢q (W) is closed.

Since the compact set E is covered by the open sets fog(W°), f € E, there exist
fl:---afn € E with

EC fipg(WO)U... U fapa(WO).

The closedness of ¢ (W) implies that each set EN fjoe(WW) is compact, so that for each j the
closed set
7, (BN fipa(W)) =W Nep(B) C CX(M;t) = lim CF (M;¥)
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is compact, so that there exists a compact subset X; C M with @JIjl (ENfipa(W)) C CX, (M;¥t)
([He89, Prop. 1.5.3]). Let

X:=XjU...UX,Usupp(fi)U...Usupp(fn)-
Then X is compact and E C CF(M;K). n

Lemma A.2. Let E be a compact space and f:E — C(M;K) a continuous map. Then
there exists a compact subset X C M and a continuous map fx:E — C¥(M;K) such that
f=mnx o fx holds for the inclusion map nx:C¥ (M;K) - C>*(M; K).

Proof. Since C*(M; K) is Hausdorff, the set f(F) is compact. In view of Lemma A.1, there
exists a compact subset X C M with f(E) C C¥(M;K). Let fx: E — C¥(M; K) denote the
corestriction of f to C¥(M;K). Since nx is a topological embedding (Remark I1.3), the map
fx is continuous. It obviously satisfies f =nx o fx. ]

Proposition A.3. Let X,, C M be compact with X,, C X2+1 and M = J,, Xn. Then the
map

lim CF (M;K) — C°(M; K)

—

is a weak homotopy equivalence. In particular 7, (CX(M; K)) = lim m, (C¥ (M; K)) for each
p—e n

meN.

Proof. Lemma A.2 first implies that each continuous map f:S™ — C(M;K) factors

through some inclusion C§ (M;K) — C°(M;K). If two such maps fi, fo are homotopic,

then each homotopy h:S™ x [0,1] — C2°(M; K) also factors through some group C§, (M; K).

This implies that the natural map

lim 7, (CF, (M; K)) = m (i CF, (M; K)) = 1, (O (M; K)

is bijective, i.e., that the continuous map lim C¥ (M;K) — C*(M;K) is a weak homotopy
m L,

equivalence. [ ]
Remark A.4. A similar argument as the one leading to Proposition A.3 shows that the map

lim Cx,(M;K) = C.(M; K)
—

is a weak homotopy equivalence. ]

If M and N are topological spaces, we write [M, N] for the set of homotopy classes of
continuous maps f:M — N. If, in addition, xy; € M and zy € N are base points, then
Ci(M,N):={f € C(M,N): f(xpm) = zn} denotes the set of base point preserving continuous
maps and [M, N]. denotes the corresponding set of homotopy classes. We recall that if M
is locally compact, then homotopy classes correspond to arc components in the compact open
topology.

Eventually we want to show that the map

C&(M;K) = Co(M; K)

is a weak homotopy equivalence, so that the homotopy groups of C°(M;K) are the limits of
the corresponding homotopy groups of Cx (M;K). These groups are more approachable since
they are isomorphic to Cy(X/0X; K), where X/0X is a compact space, with the image of 90X
as the base point.

If M is a compact manifold with boundary, then the homotopy groups m, (C\(M/OM; K))
might be well accessible. Note that if M is empty, then C.(M/OM; K) should be read as the
group C(M; K).
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Lemma A.5. Let X1, Xy, C M be compact subsets with X1 C X9 and f € Cx,(M;K). Then
every neighborhood of f contains a map f' in CF, (M;K). The image of the homomorphism

n:m0(CX, (M K)) = m0(Cx, (M; K))

contains the image of mo(Cx,(M;K)). Moreover, if f is contained in Cx,(M;K)., then we
may choose f' € C,(M;K)e. .

Proof. The first assertion follows from [Ne02a, Th. A.3.7]. Since the groups Cx(M;K)
and C¥(M;K) are Lie groups, their connected components are open, so that every connected
component of Cx,(M; K) meeting Cx, (M; K) contains a smooth element.

If the map f € Cx, (M;K) is sufficiently close to e in the sense that f(M) CV for some
chart e-neighborhood V' C K diffeomorphic to an open convex set, we find fi € CS, (M; K)
with fi (M) C V. Now any two smooth maps fi, fo € C%,(M; K) with f;(M) C V are smoothly
homotopic, hence contained in the same connected component of CF, (M; K).

If f € Cx,(M;K) is contained in the identity component, then there exists a continuous
curve v:[0,1] —» Cx,(M; K) with v(0) = e and (1) = f. For a sufficiently fine subdivision
0=ty <t <...<ty=1wenow find smooth maps f; € C%,(M;K) close to 7(t;) in the sense
that (fj_1 -y(t;))(M) C V, where for j < N the maps f; and fj4+1 are smoothly homotopic.
Hence fy is contained in the identity component of C% (M; K). [

Lemma A.6. The map 1:CX°(M;K) — C.(M; K) induces an isomorphism

mo(1): Mo (C°(M; K)) — mo(Ce(M; K)).

Proof. The surjectivity of mo(:) follows directly from Lemma A.5. If f € C®(M;K)
satisfies [f] € kermo(t), then there exists a compact subset X C M and a continuous map
v:[0,1] = Cx(M; K) with v(0) = e and v(1) = f (Lemma A.2). Let Y C M be a compact
subset with X C Y°. Then Lemma A.5 implies that we can approximate f by smooth functions
f' in the identity component of C5°(M; K). It follows in particular that f is contained in the
identity component of C§°(M;K), hence also in the identity component of C°(M;K). This
shows that mo(s) is injective. [

In M we fix a base point xj; and in any group we consider the unit element e as the base
point. We write C°(M; K) C C*°(M; K) for the subgroup of base point preserving maps and
observe that

C®(M;K)=2CX*(M;K)x K

as Lie groups, where we identify K with the subgroup of constant maps. This relation already
leads to

(A1) T (CP(M; K)) 2 mp(C° (M K)) x mip(K), keN.

In particular we have
mo(C™(M; K)) = mo(CF (M; K))

if K is connected.
On the other hand, we have for each topological group G and each k € N the relation

(4.2) 1 (G) 2 10 (CL(S¥, G)) = m0(Cx (S, Ge)) = mo(C(S*, Ge)),

where (G, denotes the arc-component of the identity in G.

The following theorem is one of the two main results of this section. It provides a valuable
tool to determine the homotopy groups of groups of smooth maps in terms of the corresponding
groups of continuous maps.
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Theorem A.7. If M is a connected o-compact finite-dimensional manifold and K a Lie
group, then the inclusion C*(M;K) — C.(M;K) is a weak homotopy equivalence. If M is
compact and xpr € M is a base point, then the inclusion

(4.3) C2(M; K) = C.(M; K) = {f € C(M; K): f(aar) = e}
is a weak homotopy equivalence.
Proof. We have to show that the inclusion induces for each k € Ny an isomorphism
T (C (M5 K)) = my(Co(M; K)).
For k£ = 0 this is Lemma A.6. If M is compact, then
70(C (M K)) = 10 (C (M K)) & m0(C (M5 K)) X 7o(K)
and
mo(Ce(M; K)) = mo(C(M; K)) = mo(Cs(M; K)) x o (K),
so that (A.3) follows from Lemma A.6. We only observe fhat if f; is a homotopy between fy
and f; in C®°(M;K) and s € M is a base point, then f;(z)f;(xar)~" is a homotopy between
fo and fi in C°(M; K).
Next we assume that k > 1 and observe that the inclusions
Cu(S*,C2° (M; K)) = Cu(S%, O (M5 K),) < O, C° (M K).)
— C(Sk,C.(M; K)) =
are continuous homomorphisms of Lie groups, where
C(S*,Ce(M; K)e) = C(S*,Co(M; K))
is an open embedding. For the group of connected components, we obtain for k > 1 with (A.2)
the homomorphisms
m(C° (M3 K)) = mo (Cu (S, C2°(M; K))) = mo (C(S¥, C2°(M; K).))
— o (C’(Sk, Ce(M;K),)) = i (Ce(M; K)).

— C(S*,C.(M; K),)
C.(SFx M; K)

If f:S¥x M — K is a continuous map with compact support corresponding to an element
of C.(S*¥;C.(M;K),), then Lemma A.5 first implies that every neighborhood of f contains
a smooth map with compact support. Thus every connected component of C,(S* x M;K)
contains an element of C'(S¥,C°(M;K)). by the openness argument from above. This means
that the homomorphism 7 (C°(M; K)) — 7, (C.(M; K)) is surjective. To see that it is injective,
suppose that o € C(S*,C°(M; K).) satisfies 0 € C(S¥,Co(M; K).), = C.(S¥x M; K). . From
Lemma A.6 we obtain

CX(S* x M; K)NC.(S* x M;K), C C®(S*¥ x M; K),,

so that approximating o by elements in C2°(S* x M; K) (Lemma A.5), we see that we may
even approximate it by elements in C2°(S* x M; K)., which implies that o lies in the identity
component of C(S¥, C2°(M;K).). This proves that the homomorphisms mj(C°(M;K)) —
7t (Ce(M; K)), k € Ny, are isomorphisms. [

Theorem A.7 can also be extended to non-connected manifolds M as follows. Let M =
Ujes M; be the decomposition of M into connected components M;. Here one can use

Ce(M; K) = @ C(Mj; K),
JjeJ
and for each compact subset X C M we have the finite sum decomposition
Cx(M;K)= P Cxru,(M;;K).

XﬁMj;ﬁ@
If M has only finitely many connected components, then there is no problem, but if M has
infinitely many connected components, then one has to take the direct sum topology on C.(M; €)
into account and the corresponding Lie group topology on C.(M; K).

Lemma A.8 and Proposition A.9 provide additional information on the homotopy type of
the topological current groups.
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Lemma A.8. If M is a locally compact space, then the inclusion n:C.(M; K) — Co(M; K)
induces an isomorphism mo(C.(M; K)) — mo(Co(M; K)).

Proof. Let f € Cy(M;K). Then there exists a compact subset X C M such that f(M\X) is
contained in an identity neighborhood of K which is diffeomorphic to a convex 0-neighborhood
U in &, where 0 corresponds to e € K. Using a continuous function h € C.(M;R) which is
1 on X and satisfies h(M) C [0,1], we define a function fe C.(M; K) by f=fon X and
f=hfon M \ X', where we consider f|ynx as a function with values in U. Then

‘ [ f@) forz e X
F:M x[0,1] = K, F(wat)'_{(t_|_(]__t)h(1'))f(x) f(o)erM\X

is a homotopy between f and f, and we see that mo(n) is surjective.

A similar argument shows that for f,g € C.(M; K) any path joining f and g in Co(M; K)
can be deformed to a path lying completely inside of C'x (M ; K) for a compact subset X of M.
Therefore mo(n) is injective. ]

Proposition A.9. If M is a locally compact space, then the inclusion n:C.(M;K) —
Co(M; K) is a weak homotopy equivalence.

Proof. Let My = M U{oo} denote the one-point compactification of M. For every compact
space X we have an embedding of topological groups

C(X,Co(M;K)) = C(X,Ci(Mx; K)) = C(X,C(My; K)) 2 C(X X My; K),
which easily leads to the isomorphism
C(X,Co(M;K)) =2 Co(X x M; K).

In view of Lemma A.8, there exists for each f € Cyo(X x M;K) some compact subset
Y € M and a continuous map fy € C(X,Cy(M;K)) C C(X x Y;K) homotopic to f.
The same argument applies to [0,1] x X instead of X, so that we see that the inclusion
C.(M;K) = Co(M;K) induces a bijection [X,C.(M;K)] — [X,Co(M;K)] on the level of
homotopy classes.

Applying this to X := S*, k € N, we obtain with Lemma A.8 that the natural map

me(Co(M; K)) =[S, Co(M; K]\ = [S¥, Co(M; K).] — [SF, Co(M; K).]
[S*, Co(M; K)]. & m,(Co(M; K))

is bijective, hence an isomorphism of groups. ]

1%

Theorem A.10. For each o-compact connected finite-dimensional manifold M and each Lie
group K the inclusion map

C(M; K) = Co(M; K) = Cu (Moo K)

is a weak homotopy equivalence.

Proof. We only have to combine Proposition A.9 with Theorem A.7. ]
Example A.11. For M = R" we obtain with Theorem A.10 for each k € Ny :

T (C2 (R K)) 2 1y (Cu (R ; K)) = 1 (Cu(S™5 K)) 2 g (K). .
Lemma A.12. Let ¢o: N — M be a smooth proper map.

(i) The map
pr:CX(M;K) = CX(N;K), frfop
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is a morphism of Lie groups.
(i) Let poo: Moy = Noo denote the continuous extension of ¢ to the one-point compactifications.
Then for each k € Ny the map

T (K ): T (C° (M5 K)) — i (C° (N5 K))

only depends on the homotopy class of o, in the set [Mo, Nool« of pointed homotopy
classes.

Proof. (i) It is clear that ¢x maps C°(N;K) into C°(M;K) and that it is a group
homomorphism. It therefore suffices to show smoothness in some identity neighborhood.

Let U C K be an open identity neighborhood and :U — W a chart of K where W C ¢
is an open subset and ¢ (e) = 0. Then there exists an open 0-neighborhood V' C W such that

C(N,W) = {f € CX(N; K): f(N) Sy~ (V)}
is an open subset of C°(N; K) ([Gl01b]). Now it suffices to see that the map
CE(M, V) = CE(N,V), frefop

is smooth. As this map is the restriction of a linear map, we only have to show that it is
continuous.
For each compact subset X C M we have

CX (M;K)op CCRy x)(M; K),

so that the assertion follows from the observation that for each n € N the map d"(fop) depends
continuously on f, when considered as an element of C(T"(N), ). (cf. Definition I1.2).
(i) Let nar: C°(M; K) = Cu(My; K) denote the natural inclusion. Then ny o o = @ o num
holds with

Pr:Cu(Noo; K) = Cu(Moo; K), [ foop.

We know from Theorem A.10 that the maps 7y, and nny are weak homotopy equivalences.
Therefore it suffices to show that the maps 7 (@x) only depend on the homotopy class of .
If p,4: M — N are proper and smooth such that ¢, and ¢, are homotopic, then it is easy
to see that the maps ¢x and g are homotopic, hence induce the same homomorphisms on
homotopy groups. ]

Homotopy groups of groups defined by vanishing conditions

In this subsection we discuss the other major class of groups of smooth maps C*° (M, S; K).
Theorem A.13 is a variant of Theorem A.7 for this context.

Theorem A.13. Let M be a compact manifold, S C M a closed subset and C*(M,S; K)
the subgroup of C®°(M; K) consisting of all smooth maps vanishing together with all their partial
derivatives on S. Then the inclusion

n:C(M\ S; K) » C*(M, S; K)

is a weak homotopy equivalence.

Proof. As M is compact, the group C*°(M,S; K), when considered as a group of maps
M\ S — K, is contained in Co(M \ S; K). The inclusion C®(M \ S; K) = Co(M \ S;K) is a
weak homotopy equivalence by Theorem A.10, so that all the maps 7, (n), k € Ny, are injective.
It therefore remains to show that they are also surjective.
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So let
o € C.(S*,C®(M,S;K)) C C.(S*,Co(M \ S; K)) C Co(Sk x (M \ S); K).

Then there exists a compact subset X C M \ S such that o(S* x (M \ X?)) is contained in
an identity neighborhood of K which is diffeomorphic to a convex 0-neighborhood U in ¢,
where 0 corresponds to ¢ € K. Let o:U — o(U) C K denote the corresponding chart and
heC*(M\ S;R) with h(X) = {1} and h(M) C [0,1]. We now define

o(t,x) forz e X
cp(h(ac)ap_l(o(t,x))) for x & X.

As o(S* x (M \ X?)) is a compact subset of p(U), it easily follows that & is continuous and
that ¢ — &(t,-) yields a continuous map S* — C°(M \ S; K). In fact, the support of each map
o(t,-) is contained in the support of h. Moreover,

5:Skx M = K, &(t,x) ::{

o(t,x) forz € X
o([sh(z) + (1 =3s)] - 7 (o(t,2))) forazgX

is a homotopy between o and & preserving base points. This implies that the map m(n) is
surjective. [

Note that Theorem A.13 does not imply that C°(M \ S;K) is dense in C*(M,S;K).
This will be shown in Theorem A.18 below.

RMHXWXM%K,F@L@:{

Corollary A.14. Let M be a compact manifold and @ # S C M a closed subset. Then the
inclusion
(:0® (M, §; K) + Co(M \ §; K) = C..(M/S; K)
is a weak homotopy equivalence.
Proof. According to Theorem A.10, the inclusion C°(M \ S;K) = Co(M \ S; K) is a weak

homotopy equivalence, and this map is the composition of { and the inclusion map n from
Theorem A.10. This implies that ¢ also is a weak homotopy equivalence. ]

Corollary A.15.  For a compact manifold M and k € Ny we have
m(C*(M, S; K)) = m,(Ce(M/S; K))
and in particular
7 (C (1,01 K) 2= my (Cu (S K) = my1 (K.
Proof. For M =1 and S =8I we have M/S = S' and therefore

Tk (C%(I,01; K)) = m(CL(S'; K)) 22 g (K). n
Lemma A.16. For each o € C*°((M',S"),(M,S)) let
ag:C®°(M,S;K) = C®(M',S";K), fr foa.

Then ak is a homomorphism of Lie groups and the homomorphisms m(ax) only depend on
the homotopy class of a in the space C((M',S"),(M,S)).

Proof. First we observe that the chain rule for Taylor expansions implies that ax does indeed
map C*(M,S;K) into C*®°(M',S"; K). That ax is a homomorphism of Lie groups follows by
similar arguments as in the proof of Lemma A.12(3).

Viewing « as a continuous map (M’,S") — (M, S) of space pairs, we see that it induces a

continuous map

a*:Cu(M/S;K) - C.(M'/S";K), f+ foa.
Since the inclusion C*°(M,S;K) — C.(M/S;K) is a weak homotopy equivalence (Corol-
lary A.14), the maps 7 (a ) are conjugate to the maps 7 («*). It is easy to see that m(a*) only

depends on the homotopy class of a because for each continuous map o:S* — C,(M'/S"; K)
the map a* o 0:S¥F — C,(M/S; K) depends continuously on . |
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Lemma A.17. For each locally convex space Y the space C®°(M,S;Y) is a closed subspace of
C>*(M;Y) invariant under multiplication with elements of C*°(M;R).

Proof.  This follows directly from the Leibniz formula for the higher partial derivatives of a
product of two functions. ]

Theorem A.18. (Approximation Theorem) If M is compact, then C°(M \ S;K) is dense
in the Lie group C*°(M,S; K).

Proof. First we reduce the problem to the assertion that for the Lie algebra € of K the
subspace C°(M \ S;¥) is dense in C*°(M, S;¥).

Let U C K be an open identity neighborhhod and ¢:V — U a chart of K with V C ¢
an open convex subset and ¢(0) = e. Then {f € C*°(M,S;K): f(M) C U} is an open subset
of C*°(M,S;K) because it is already open in the compact open topology. We choose an open
convex 0-neighborhood Vi C V' with ¢(Vi)™tp(Vi) C ¢(V).

Let f € C*(M,S;K). As f vanishes on S, the set f~!(p(V;)) is an open subset of M
containing S. Therefore its complement X is a compact subset of M\.S. Arguing as in the proof
of Lemma A.8, we find a function f € C*(M\ S;K) with flx = flx and f(M\ X) C o(V1).
Now it suffices to show that h := f~'f, whose values are contained in ¢(V1)~ (Vi) C o(V),
is contained in the closure of C°(M \ S; K). As ¢t oh: M — € is a well-defined smooth map,
we see that it suffices to prove the theorem for £ instead of K . In this setting we have to show
that if V' C ¢ is an open convex 0-neighborhood with f(M) C V', then f can be approximated
by functions in C2°(M;¢€) whose values lie in V.

Let f € C*(M,S;t). Using Lemma A.17 and a smooth partition of unity on M, we
may assume that the support of f lies in a coordinate neighborhood which we may identify
with R™. We are therefore led to the following situation. We consider a smooth function
f € C°(R™;£) all of whose derivatives vanish on the closed subset S C R", and we are looking
for a sequence of functions with compact support in R™ \ S converging to f in C*°(R"™;¢) whose
supports are uniformly contained in a compact set. The existence of such a sequence is proved
in Proposition A.22 below. ]

An Approximation Lemma

Let @ # S C R? be a closed subset, Y a Banach space, and f € C3¥(R%;Y) for a compact
subset X C R? such that f and all its partial derivatives vanish on S N X. We want to see
that f is contained in the closure of the subspace C°(R?\ S;Y)NCP(R?;Y). In the following
d(S,z) denotes the euclidean distance of the set S and 2. We write || - || for the euclidean norm
on RZ.

Lemma A.19. For each k € N and each f € CX(R%,S;Y) there exists a constant Cy > 0
with

£ (@)l < Crd(S, )"
Proof. We prove the assertion by induction over k. For k = 0 it follows from the compactness
of the support of f.

Now we assume that the assertion holds for k € Ny. Let h € C>®°(R?,S;Y). Then the
induction hypothesis applies to dh € C°(R?, S; Lin(R?;Y’)), and we obtain a constant Dj, with
||dh(z)|| < Did(S,z)* for all x € R?. For x € R? we find an zo € S with ||z — x| < 2d(S, 7).
Then

h(z) = h(zo) + /0 dh(zo + t(x — z9))(z — x0) dt = /0 dh(zo + t(x — zo))(z — x0) dt

leads to
17(@)]] < Nl — ol supg<i<i lldh(zo + t(z — o))
< 2d(S, z) Dy, supg<i<1 d(S, o + t(z — z0))*
< 2Dd(S, )2%d(S, z)* = 2" Dd(S, z) .
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This completes the induction, and hence the proof of the lemma. ]
Now let § be a smooth function supported in the closed unit ball B;(0) in R? with
Jpad(x)dz =1 and im(d) C [0,1]. We define
6 () := n6(nx)

and observe that these functions form a smooth Dirac sequence. For each multiindex J =
(j1,---,ja) € NI we have
1076 loc = n 1107 8] o

Let S, :={z € R:d(S,z) < 2} and

(2) = 1 forzesS,
XS\ =0 for o € Sh

the characteristic function of S,,. Then we define

on(@) i =1—(6p*xs,)(x)=1- /_S on(y) dy € ]0,1].

Then each function ¢,, is smooth with ¢, (z) = 1 for d(S,z) > 2 and ¢n(2) = 0 for d(S,z) < L.
Lemma A.20. For each multiindex J there exists a constant Dj such that

107 (@)l < Dyd(S,z) !, zeR'neN

Proof. For |J| =0 the assertion follows from im(p,) C [0,1].
Suppose that |J| > 0 and that d(S,z) € [+, 2]. Otherwise 87¢, () vanishes anyway.

n’n
Then we have

107 @n(@)]| = 1((876n) * x5, ) ()| < VOI(BL(0))[|87n]l0o
< Cn~ V167 6)|00 = CnlN|07 6|00 < C3171d(S, 2) 7171|187 8| 0o

Lemma A.21. For all multiindices J with |J| > 0 we have uniformly 87 ¢, - f — 0.
Proof. Combining Lemma A.19 and A.20, we get for each £ € N a constant C} with

1@7on (@) f(@)I] < Crd(S,2)Vld(S,2) I = Cpd(S, 2)".
As 07, (z) =0 for d(S,z) > 2 (here we need |J| > 0), this leads to
107 g (2)) f(@)]| < Ci3*n~"
for all € R?, and this implies the assertion. n

Proposition A.22.  For each locally convezr space Y and f € C°(R?,S;Y) we have p,f — f
in C®(R%;Y).
Proof. As every locally convex space can be embedded into a product of Banach spaces,
it suffices to assume that Y is a Banach space. Since the supports of the functions ¢, f and
f are contained in one compact subset of R?, we have to show ||07(¢nf — f)||ec — 0 for all
multiindices J.
For |J| = 0 this follows easily from the support properties of ¢, and ||f(z)|| < Cd(S,z).
Next we note that for each multiindex J the function 87 f also has the property that all its
partial derivatives vanish on S. Therefore Lemma A.21 implies that 8”7¢,, - 97 f — 0 uniformly
whenever |J| > 0. In view of the Leibniz rule, the problem reduces to showing that ¢,0” f
converges uniformly to 87 f, but this follows from the case |J| = 0, applied to d”f instead
of f. ]
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Appendix B. Locally convex direct limit spaces

In this section we discuss the discreteness of certain subgroups of direct limits of locally convex
spaces. In this paper we only use Lemma B.4. Nevertheless Proposition B.3 provides a much
more direct way to prove the discreteness of the groups H*(M;Y,T) if Y is finite-dimensional
and T' CY is a discrete subgroup (cf. Corollary IV.21).

Lemma B.1. If X is a locally convex space, Y C X a closed subspace and F C X a finite-
dimensional subspace complementing Y , then X 2Y ® F as topological vector spaces.

Proof.  The quotient map ¢: X — X/Y induces an isomorphism ¢ |p: F — X/Y. Hence
g has a continuous linear section ¢: X/Y — X whose range is F, and therefore the addition
map a:Y x F — X is a topological isomorphism because a™'(z) = (z — o(q(2)),0(q(z))) is
continuous. [

Lemma B.2. Let X be a locally convex space which is the locally convex direct limit of the

subspaces X,,, n € N, where each X,, is a closed subspace of X,11. Further let F C X be a

subspace such that for each n € N the intersection F,, := F N X, is finite-dimensional. Then

the following assertions hold:

(i) There exists a continuous linear projection p: X — F with p(X,) = F,, for each n € N. In
particular we have X 2 kerp® F'.

(i) F' s closed.

(iii) F is the topological direct limit of the subspaces F,, n € N, which means that F carries
the finest locally convex topology.

Proof. (i) We argue by induction. As Fj is finite-dimensional, the Hahn-Banach Theorem
yields a continuous extension pi: X1 — Fi of the identity map idg, . Then p; can be viewed as
a continuous projection of X; to Fj.

Now let n € N and assume that p,:X,, — F, is a continuous projection. Then we
choose a complement E,.; of F,, in F,1. As X, is a closed subspace of the locally convex
space Xy + Fpp1 = Xy ® Epy1, it follows from Lemma B.1 that X,, + Fjip1 &2 X,, & Epqa
as topological vector spaces. The linear map ¢, := p, ® idg,,, is a continuous projection of
X, + Fyy1 onto F, 1. We use the Hahn—Banach Theorem again to extend ¢, to a continuous
linear map ppy1: Xpn+1 — Fr41 which then also is a continuous projection. We thus obtain a
sequence (pn)nen of continuous linear maps pp: X, = F with pp41|x, = pn. Now the universal
property of X yields the existence of a continuous linear map p: X — F with p|x, = p, for
each n € N. As p|r =idp, we are done.

(ii) follows from (i).

(iii) Let Z be a locally convex space and f:F — Z be a linear map. We claim that f is
continuous. To this end, we consider the map h:= fop: X — Z. Then h|x, = (f|r,) opn, and
pr, is continuous, as well as the map f|p, on the finite-dimensional vector space Fj,. Therefore
all the restrictions h|x, are continuous, and we conclude that h is continuous, which in turn
implies that f is continuous. The fact that all linear maps from F' to locally convex spaces are
continuous shows that F' carries the finest locally convex topology. Furthermore, F' is countably
dimensional because all the spaces F), are finite-dimensional. Using [KK63], we now conclude
that the topology on F' coincides with the finite open topology, i.e., the direct limit topology
with respect to the directed system of all finite-dimensional subspaces. As the sequence (F},)nen
is cofinal, this topology coincides with the direct limit topology with respect to the sequence
(Fn)nGN . u

Proposition B.3. Let X be a locally convex space which is the locally convex direct limit of
the subspaces X, , n € N, with X,, C X,,41, where X,, is closed in X, 1. Let further T C X
be a subgroup such that for each n € N the group I'N X, is discrete and finitely generated. Then
I is a discrete subgroup of X .
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Proof. For each n € N we consider the finite-dimensional subspace F,, := spanTl,, for the
discrete finitely generated subgroup I'y, :=T'NX,, of X,,. Let F := (], F), = spanI'. We claim
that F,, = FFN X,, holds for each n € N. Fix n,m € N with n < m. As I'j, is discrete in
the finite-dimensional space Fj,, there exists a basis B, of F, with I, = span; B,,. Further
', =I'nX, =T,NX, is a pure subgroup of Ty, so that Iy, /T, is a free abelian group. Hence
we find a subset C), C I';;, such that the image of C,, is a basis in (F,,,+X,,)/ X, = F, /FnnNX,
generating the subgroup ('), + X,,)/X,, = T,,/T,,. Now B,, := B, UC}, is a basis of F,, with
Iy, = spany By, . In particular, it follows that F,,, N X,, = spany B,, = F,,. As m was arbitrary,
we conclude that FN X, = F,.

Next Lemma B.2 applies to the subspace F' C X and shows that F' is closed and carries the
finite open topology. Let O := (F\I')U{0}. For each n € N we then have ONF,, = (F,,\I',,)U{0},
which is an open set because T'j, is discrete in Fj,. Therefore O is an open subset of F
(Lemma B.2(iii)), and since F' carries the subspace topology of X, there exists an open subset
Ox C X with Ox N F = 0. Now Ox is an open 0-neighborhood in X with Ox NT" = {0}.
This shows that T" is discrete. ]

Lemma B.4. Let X =lim X; be a locally convex direct limit of the spaces X;.
—

(i) If F C X is a closed subspace, then X/F 1£>n X;/(FnXj).

(ii) A subspace F C X is closed if and only if all intersections F'N X; are closed.

Proof. (i) (cf. [K679, p.42]) Since F is closed, all the spaces F; := F'NX; are closed. Let
Z = h_n>1 X;/F; denote the locally convex direct limit of the spaces X;/F;. Then we have

natural continuous maps ¢;: X;/F; — X/F which define a continuous linear map ¢: Z — X/F'.
On the other hand the continuous linear maps X; — Z combine to a continuous linear map
X — Z which then factors through a continuous linear map v¢: X/F — Z. Now o =idx/p
and 9 o p =idz imply (i).

(ii) If F is closed, then the subspaces F' N X; are trivially closed in X;. If, conversely, this
condition is satisfied, then we can form the locally convex direct limit space Z := li»n X;/(FNX;).

The natural maps X; — Z are continuous, hence combine to a continuous map X — Z whose
kernel F' is a closed subspace. ]

Problem B.1. Does Proposition B.3 also hold without the assumption that the groups I'n X,
are finitely generated? If this is true, then the proof of the discreteness of the groups H, éR’C(M ;1)
in Section IV would be much easier because we would not need the complicated approximation

procedure from Section III. ]
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