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Abstrat. The onstrution of weighted extended B-splines (web-

splines), as reently introdued by the authors and J. Wipper for

uniform knot sequenes, is generalized to the non-uniform ase.

We show that web-splines form a stable basis for splines on arbi-

trary domains in R

m

whih provides optimal approximation power.

Moreover, homogeneous boundary onditions, as enountered fre-

quently in �nite element appliations, an be satis�ed exatly by

using an appropriate weight funtion. To illustrate the perfor-

mane of the method, it is applied to a sattered data �tting prob-

lem and a �nite element approximation of an ellipti boundary

value problem.

1. Introdution

Tensor produt B-splines have beome a standard for approxima-

tion of funtions and disrete data [2℄, omputer-aided-design [5, 11℄,

geometri modelling and omputer graphis [4℄. Among their many

favorable properties, the stability of the B-spline basis is ruial for

approximation purposes. However, stability is in general lost if the

domain is trimmed to a bounded domain D � R

m

, whose boundaries

are not aligned with the oordinate axes. This fat auses severe prob-

lems for instane in reverse engineering appliations, where data are

typially available only a bounded domain. Equally, it is a major ob-

stale to using B-splines as �nite elements. As a generalization of the

approah introdued in [8, 9, 10, 7℄ for the uniform ase, we present a

solution to this problem for nonuniform spline spaes.

The basi idea is simple. As is illustrated in Figure 1, we an approx-

imate a funtion on a bounded domain D � R

m

by forming a spline,

i.e., a linear ombination of all relevant B-splines

b

k

; k 2 K;

whih have some support in D. Depending on the degree, this yields

approximations of arbitrary order and smoothness. However, numerial

instabilities may arise due to the outer B-splines

b

j

; j 2 J;

Key words and phrases. �nite element, B-spline, web-spline, meshless method,

nonuniform.
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for whih no omplete grid ell of their support lies in D. Here and

in the sequel, a grid ell is an interval whih in every oordinate di-

retion is bounded by two onseutive, but di�erent knots, and an

inner grid ell is a grid ell whose interior is ompletely ontained in

D. A further diÆulty is that, in general, splines do not onform to

homogeneous boundary onditions, whih is essential for standard �-

nite element shemes [16℄ or for mathing boundaries in data �tting

problems.

PSfrag replaements
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Figure 1. Relevant biquadrati B-splines for a domain

D, marked at the lower left orners (k

1

h; k

2

h) of their

supports. Inner and outer B-splines are indiated with

dots and irles, respetively.

Fortunately, both problems an be resolved. A stable basis is ob-

tained by forming appropriate extensions of the inner B-splines

b

i

; i 2 I := KnJ;

whih have at least one inner grid ell in their support. If zero boundary

data are required, we multiply by a positive weight funtion w whih

vanishes on the boundary �D of D. Otherwise, w an be omitted or,

to unify notation, be set to w � 1. Combining both ideas led to the

de�nition of weighted extended B-splines (web-splines) [8℄. These new

basis funtions ombine the omputational advantages of B-splines and

standard �nite elements:

� The web-spline basis is stable.

� Homogeneous boundary onditions an be mathed exatly.

� No mesh generation is required.

� Aurate numerial approximations are possible with relatively

low-dimensional subspaes.
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� Smoothness and approximation order an be hosen arbitrarily.

� Hierarhial bases permit adaptive re�nement und multigrid al-

gorithms.

Given the diÆulty of meshing 2d and even more 3d domains, (f.,

e.g., [13℄), the third property is of great importane for �nite element

appliations. Utilizing a regular grid not only eliminates a ompli-

ated and time-onsuming preproessing step, but also permits a very

eÆient implementation of algorithms.

In [8℄, web-splines have been onstruted with uniform B-splines.

This is adequate for smooth problems and also gives aeptable results

for moderate singularities. To gain more exibility, nonuniform knot

spaing an be used to adapt the spline spae to the requested res-

olution, or to suit the grid struture to the geometry of the domain.

On the left hand side, Figure 2 shows an example, where nonuniform

knots are used to resolve the potential �ne struture of the funtion

to be approximated in a viinity of the small ut out irle. The right

hand side depits a typial situation, where the grid lines are aligned

in a natural way to horizontal and vertial boundaries. We shall ome

bak to these two examples in Setion 5. In suh situations, the use of

nonuniform knot sequenes, as desribed in this paper, is partiularly

ompetitive sine it ombines relatively low-dimensional spaes with

the omputational advantages of a regular grid.

Of ourse, in the multivariate ase, nonuniform knot sequenes are

not always useful. The point is that knot insertion is not loal in the

sense that the omplete domain is subdivided. This leads to an unjust

inrease of the dimension of the spline spae if several, unaligned fea-

tures are to be resolved. In suh ases, hierarhial bases, as desribed

in [6, 7℄, are the method of hoie. Here, the �nite elements are de�ned

on a nested sequene of grids with saled uniform knot sequenes.

Figure 2. Domains with nonuniform grids.

In this paper, we show how web-splines an be generalized to nonuni-

form knot sequenes, where emphasis is put on the extension proedure.
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The key tool are dual funtionals, whih we review in Setion 2 along

with some de�nitions and basi fats about B-splines. In Setion 3, we

illustrate the main idea of our basis onstrution for a simple univariate

model. The de�nition of multivariate nonuniform web-splines is then

given in Setion 4. Finally, we onsider in Setion 5 two appliations:

We show how web-splines avoid boundary artifats in sattered data

approximation on trimmed domains, and we demonstrate their exel-

lent performane as �nite elements at hand of a simple model problem.

Throughout, we use the following notational onventions. For an in-

terval Q � R

m

, we denote by jQj and �(Q) its diameter and measure,

respetively. The linear spae of all polynomial of degree � n is denoted

by P

n

, where in the multivariate ase, n = [n

1

; : : : ; n

m

℄ is understood

as the oordinate degree. In estimates, onstants onst(p

1

; p

2

; : : : ) de-

pending on parameters p

�

are always positive. If the onstants are lear

form the ontext, we drop them and use the symbols �;�, and �, in-

stead. The p-norm of a vetor or sequene C = f

k

g

k2K

is denoted by

kCk

p;K

, and the L

p

-norm of a funtion u on a domain D by kuk

p;D

.

Finally, k � k

p;`;D

is the norm of the Sobolev spae W

`

p

(D), see [1℄.

2. Some Fats about B-Splines

The material presented in this setion is well known, but briey

ompiled here for later referene and onveniene of the reader. For

given degree n and a bi-in�nite nondereasing knot sequene

t : � � � t

k

� t

k+1

� � � �

we denote by b

k

; k 2 Z, the B-splines of degree n with support

supp b

k

= [t

k

; t

k+n+1

℄:

We hoose the standard normalization

P

k

b

k

= 1 and assume t

k

<

t

k+n+1

to avoid degenerate ases, i.e., the multipliity m

k

of the knot

t

k

is at most n+1. As is well-known [2℄, the B-splines fb

k

; k 2 Zg form

a basis for the pieewise polynomials of degree � n whih are (n�m

k

)-

times ontinuously di�erentiable at t

k

. If higher order derivatives are

required at a knot, they are understood as right-sided limits of adjaent

polynomials. Moreover, the B-spline basis is uniformly stable,

onst(n)

�1

kCk

1;Z

�











X

k2Z



k

b

k











1;R

� kCk

1;Z

:(1)

Hene, in the bi-in�nite ase, the ondition number of the basis does

not depend on the knot sequene t.

The estimate (1) and many other results onerning stability and ap-

proximation power of B-splines an be proven using dual funtionals.

From the plethora of possible onstrutions, we onsider here the las-

sial de�nition of de Boor and Fix [3℄, whih is expliit and partiularly



NONUNIFORM WEB-SPLINES 5

elegant. For k 2 Z and �

k

2 [t

k

; t

k+n+1

), we de�ne

�

k

f :=

n

X

`=0

(�1)

n�`

 

(n�`)

k

(�

k

)f

(`)

(�

k

);  

k

(x) :=

1

n!

n

Y

`=1

(t

k+`

� x):(2)

The essential properties of this family of funtionals are bi-orthogonality

and uniform boundedness on the spae of polynomials of degree � n.

Theorem 1 (Dual Funtionals for B-Splines). i) B-splines and de Boor-

Fix funtionals are bi-orthogonal,

�

k

b

k

0

= Æ

k;k

0

; k; k

0

2 Z:

ii) If Q is an interval in the support of b

k

with length bounded by jQj �

�j supp b

k

j for some onstant � 2 (0; 1℄, then

j�

k

pj � onst(n; �)kpk

1;Q

; p 2 P

n

:

Proof. The proof of bi-orthogonality is based on Taylor's theorem and

Marsden's identity, see [2℄ for details. To verify boundedness, we note

that de�nition (2) is ompatible with translation and saling. More

preisely, if

~

�

k

is the dual funtional orresponding to the knot sequene

~

t := ht + s and the parameter ~�

k

:= h�

k

+ s, then

�

k

f =

~

�

k

f

�

(� � s)=h

�

:

This implies that we may assume Q

k

= [0; 1℄ without loss of general-

ity. It is easily heked that k 

k

k

1;n;[0;1℄

� onst(n)jt

k+n+1

� t

k

j

n

�

onst(n)�

�n

. Thus, by equivalene of norms on P

n

,

j�

k

pj � onst(n)k 

k

k

1;n;[0;1℄

kpk

1;n;[0;1℄

� onst(n; �)kpk

1;[0;1℄

:

Clearly, if we hoose Q as the largest grid interval in supp b

k

, we an

take � = 1=(n + 1), and the onstant in the estimate depends only

on the degree. With this hoie and �

k

2 Q we obtain a proof for the

nontrivial left inequality of the stability result (1). We simply observe

that, by bi-orthogonality,



k

= �

k

q; q =

X

k

0



k

0

b

k

0

for any spline q, and that Theorem 1 applies sine q is a polynomial on

Q.

However, it should be noted that this argument an fail for �nite knot

sequenes. For a B-spline with exterior knots, the largest grid interval

Qmay lie outside the natural domain of de�nitionD of the spline spae.

Hene, as is easily overlooked, for �nite dimensional spline spaes, (1)

does not hold. This problem an be eliminated by requiring that the

mesh ratio, i.e., the maximal quotient of the lengths of adjaent grid
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ells, is bounded by a onstant %. In this ase, every grid ell Q

k

in the

support of b

k

has length

jQ

k

j � onst(n; %)j supp b

k

j;

and the onstant in (1) has to be replaed by onst(n; %).

Finally, with the aid of dual funtionals, we an de�ne a anonial

projetor onto splines via

Pf :=

X

k

(�

k

f)b

k

:

Beause of bi-orthogonality, P reprodues B-splines, whih implies in

partiular polynomial preision, i.e.,

Pp =

X

k

(�

k

p)b

k

= p(3)

for all polynomials p 2 P

n

.

3. Stability via Extension

As we have seen, stability problems are aused by B-splines with

small support in D. While the mesh ratio an be ontrolled quite

easily, the support of some B-splines in D an still beome small if D

is not a union of grid ells. This phenomenon is persistent only in the

multivariate ase, but shall at �rst be studied in one variable for the

sake of simpliity.

Let

X

k2K



k

b

k

(x); x 2 D;

be a spline on a bounded interval D � R, where the index set K

omprises all relevant B-splines with some support in D. The example

of a quadrati spline spae on D = (0; 1), depited in Figure 3, aptures

the essential diÆulty. If the interval endpoints do not oinide with

knots, there exist outer B-splines

b

j

; j 2 J;

for whih supp b

j

does not ontain an inner grid ell. These outer B-

splines ause stability problems even if the mesh ratio is small. In the

example, we have J = f�1; 0g and

b

�1

(x) = O("

2

); b

0

(x) = O(")

for x 2 D. Hene, the �rst two oeÆients of a spline q with kqk

1;D

� 1

an beome arbitrarily large as "! 0. For the inner B-splines

b

i

; i 2 I;

supp b

i

ontains at least one inner grid ell. In the example, I =

f1; 2; 3; 4g. This part of the basis is stable regardless of the size of

".



NONUNIFORM WEB-SPLINES 7

PSfrag replaements

0 1

"

t

4

D

b

�1

b

0

b

1

b

2

b

3

b

4

Figure 3. Inner B-splines b

i

, i 2 I, and outer B-splines

b

j

, j 2 J , on a bounded interval D.

We would like to selet a subspae with a stable, loal basis while

maintaining polynomial preision. This is aomplished by adjoining

outer to inner B-splines via appropriate linear ombinations. To this

end, for an outer index j 2 J , we denote the inner grid ell losest to

supp b

j

by Q

j

and de�ne the set of related inner indies by

I(j) := fi 2 I : Q

j

� supp b

i

g:

It is easy to see that I(j) onsists of n + 1 onseutive inner indies,

I(j) = f`; : : : ; ` + ng. Conversely, for an inner index i, we de�ne the

set of related outer indies by

J(i) := fj 2 J : i 2 I(j)g:

In the example, Q

�1

= Q

0

= ["; t

4

℄ and

I(�1) = I(0) = f1; 2; 3g; J(1) = J(2) = J(3) = f�1; 0g; J(4) = ;:

With these notions, we de�ne extended B-splines as follows:

De�nition 1. For i 2 I; j 2 J(i), and Q

j

as de�ned above, we de-

note by p

i;j

the polynomial whih agrees with b

i

on Q

j

and de�ne the

extension oeÆients

e

i;j

:= �

j

p

i;j

:(4)
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Then, the extended B-splines (eb-splines) are

B

i

:= b

i

+

X

j2J(i)

e

i;j

b

j

; i 2 I:

The linear span of eb-splines is denoted by B.

The omputation of the extension oeÆients is straightforward: We

generate the polynomials p

i;j

in Taylor form using the reurrene rela-

tion for B-splines. Expanding at an arbitrary point �

j

, whih appears

in the de�nition of the dual funtional �

j

, the oeÆients yield the

relevant data for applying formula (2). This proedure is slightly more

involved than for uniform knots (t

k

= kh), where we have the simple

expression

e

i;j

=

n

Y

�=0

`+� 6=i

j � `� �

i� `� �

;

derived via Lagrange interpolation, see [8℄ for details. In any ase, the

overhead is small sine only few B-splines near the interval endpoints

are extended.

We show now that extended B-splines inherit all properties of stan-

dard B-splines whih are ruial for approximation purposes, namely

loality, boundedness, existene of dual funtionals, and polynomial

preision.

Theorem 2 (Loality and Boundedness). i) The distane between i 2

I and j 2 J(i) is bounded by ji� jj � 2n+ 1. In partiular,

j suppB

i

j � onst(n; %)j supp b

i

j:(5)

ii) eb-splines are uniformly bounded by

kB

(`)

i

k

1;D

� onst(n; %)j supp b

i

j

�`

:(6)

Proof. To prove loality, we onsider, e.g., the left boundary of D. If i

0

is the smallest inner index, then i

0

� n� 2 is an index whih ertainly

orresponds to a non-relevant B-spline. Hene, i

0

�n�1 � j < i

0

, and

the orresponding set of inner indies is I(j) = i

0

+ f0; : : : ; ng. The

bound on the number of outer B-splines b

j

attahed to b

i

ombined

with the bound % on the mesh ratio yields (5).

To prove the seond statement, we �rst show that the extension oef-

�ients are uniformly bounded. The onstrution of eb-splines is invari-

ant under aÆne transformations of the absissa. Hene, for j 2 J and

Q

j

the nearest inner grid ell, we may assume Q

j

= [0; 1℄. Being part of

a standard B-spline, the polynomial p

i;j

is bounded by kp

i;j

k

1;[0;1℄

� 1.

This implies that p

i;j

(x) is bounded by a onstant depending only on

n and x. By (5), jxj � onst(n; %) for x 2 supp b

j

. So, we obtain using

Theorem 1 with Q = supp b

j

je

i;j

j = j�

j

p

i;j

j � onst(n)kp

i;j

k

1;supp b

j

� onst(n; %):
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Boundedness of extension oeÆients ombined with the known esti-

mate kb

(`)

k

k

1;R

� onst(n; %)j supp b

k

j

�`

, whih holds for standard B-

splines, proves the laim.

Now, we show that f�

i

; i 2 Ig is a family of bounded dual funtionals

for the eb-splines fB

i

; i 2 Ig:

Theorem 3 (Dual Funtionals for eb-Splines). i) eb-splines and de Boor-

Fix funtionals are bi-orthogonal,

�

i

b

i

0

= Æ

i;i

0

; i; i

0

2 I:

ii) If Q is an inner grid ell in the support of b

i

, then

j�

i

pj � onst(n; %)kpk

1;Q

; p 2 P

n

:

Proof. Bi-orthogonality follows from �

k

b

k

0

= Æ

k;k

0

and the de�nition of

B

i

0

sine �

i

b

j

= 0 for j 2 J , while boundedness just realls Theorem 1.

The existene of dual funtionals implies linear independene, i.e.,

eb-splines form a basis for the spline spae B. Moreover, like standard

B-splines, eb-splines are a loal basis in the sense that for any grid ell

Q interseting D the eb-splines whih do not vanish on Q are linearly

independent. This an easily be shown by seleting �

i

2 Q \D for all

dual funtionals �

i

orresponding to eb-splines with Q in their support.

Sine all polynomials p 2 P

n

are ontained in B, as will follow from the

next theorem, there exist exatly n+ 1 eb-splines whih do not vanish

on Q, and they span the spae of all polynomials of degree � n on Q.

De�ning the anonial projetor P onto B by

Pf :=

X

i2I

(�

i

f)B

i

;

we an establish polynomial preision.

Theorem 4 (Polynomial Preision). For all polynomials p 2 P

n

,

Pp = p:

In partiular, the spline spae B ontains all polynomials of degree � n

on D.

Proof. Substituting the de�nition of B

i

and interhanging sums, we

have for x 2 D

Pp =

X

i2I

(�

i

p)B

i

(x) =

X

i2I

(�

i

p)b

i

+

X

j2J

2

4

X

i2I(j)

e

i;j

(�

i

p)

3

5

b

j

:

Now, beause of (3), Pp = p is equivalent to

X

i2I(j)

e

i;j

(�

i

p) = �

j

p:(7)
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Sine both sides are linear in p, it suÆes to hek this identity for a ba-

sis. Taking p = p

i

0

;j

with i

0

2 I(j) and �

i

2 Q

j

, we have �

i

p

i

0

;j

= �

i

b

i

0

=

Æ

i;i

0

, and (7) redues to the de�nition (4) of the extension oeÆients

e

i;j

.

After establishing loality and boundedness, dual funtionals, and

polynomial preision, we have all essential ingredients at our disposal

to derive standard results on stability and approximation power. Ex-

emplarily, we establish optimal onvergene rates when approximating

smooth funtions.

Theorem 5 (Approximation power). For x 2 D, we denote by Q the

union of supports of eb-splines ontaining x, and by h the length of the

grid ell ontaining x. Then, for a smooth funtion f , the approxima-

tion error d := Pf � f is pointwise bounded by

�

�

d

(`)

(x)

�

�

� onst(n; %)





f

(n+1)





1;Q

h

n+1�`

:

Proof. The proof is routine. We denote by

~

I the set of inner indies

whih are relevant for x. Sine

~

I ontains n+1 elements, jQj � h. Let

p 2 P

n

be the Taylor polynomial of f at x. Then, with � := f � p,





�

(`)





1;Q

�





f

(n+1)





1;Q

h

n+1�`

:

Further, by polynomial preision and boundedness of eb-splines,

�

�

d

(`)

(x)

�

�

=

�

�

(P�)

(`)

(x)

�

�

=

�

�

�

�

X

i2

~

I

(�

i

�)B

(`)

i

(x)

�

�

�

�

� max

i2

~

I

j�

i

�jh

�`

:

It remains to onsider �

i

�. The point �

i

in the de�nition of �

i

lies in

Q. Hene,

�

�

 

(n�`

0

)

i

(�

i

)

�

�

� h

`

0

, and

j�

i

�j �

n

X

`

0

=0

�

�

 

(n�`

0

)

i

(�

i

)

�

�

�

�

�

(`

0

)

(�

i

)

�

�

�





f

(n+1)





1;Q

h

n+1

We note that similar results for the approximation of less regular fun-

tions an be obtained exatly in the same way using dual funtionals

whih are bounded, e.g., with respet to the sup-norm. The speial

hoie that we made here is merely due to the expliit harater of

the de Boor-Fix funtionals, whih is favorable for the de�nition of

extension oeÆients.

Summarizing, the material presented in this setion admits to derive

standard approximation and stability properties for spline spaes with

small parameter intervals at the endpoints of D. The modi�ations

are ruial for splines in several variables, where we an in general not

align the grid lines to the domain boundaries.
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4. Multivariate Web-Splines

Generalizing the univariate de�nitions and results of the last setion

to m � 2 variables is straightforward. The arguments are ompletely

analogous. Merely the notation needs to be adapted to the multivariate

setting.

We onsider a tensor produt grid in R

m

with knot sequenes t =

[t

1

; : : : ; t

m

℄,

t

�

: � � � � t

�

k

� t

�

k+1

� � � � ; � = 1; : : : ; m;

and denote by

b

k

= b

n

k;t

(x) := b

n

1

k

1

;t

1

(x

1

) � � � b

n

m

k

m

;t

m

(x

m

); k 2 Z

m

;

the orresponding tensor produt B-splines of degree n = [n

1

; : : : ; n

m

℄.

For a grid ell Q with side lengths l

1

; : : : ; l

m

we de�ne its distortion by

max

�;�

0

l

�

=l

�

0

:

The distortion of the knot sequene t is the maximal distortion of its

grid ells, and Æ will denote an upper bound on it. Like the mesh

ratio in the univariate ase, the distortion quanti�es the deviation from

a uniform setting in the multivariate ase. It is easy to see that if

the distortion of t is bounded by Æ, then the mesh ratios of all knot

sequenes t

1

; : : : ; t

m

are bounded by Æ

2

.

For a bounded domainD � R

m

we de�ne the sets K; I; J of relevant,

inner, and outer indies as in the univariate ase (f. also Figure 1):

K := fk 2 Z

m

: D \ supp b

k

6= ;g

I := fi 2 Z

m

: supp b

i

ontains an inner grid ellg

J := KnI:

For j 2 J , the inner grid ell whose midpoint is losest to the midpoint

of supp b

j

is denoted by Q

j

. The B-splines whih do not vanish on Q

j

have indies in

I(j) = I

1

(j)� � � � � I

m

(j) = `+ f0; : : : ; ng

m

with ` = `(j) 2 Z

m

, see Figure 4. The omplementary sets J(i) are

de�ned as before.

The multivariate de Boor-Fix funtionals are onstruted from the

univariate ones as follows: For k 2 Z

m

and �

k

= [�

k

1

; : : : ; �

k

m

℄,

�

k

:= �

1

k

1

Æ � � � Æ �

m

k

m

;(8)

where �

�

k

�

is ating on the �th variable. It is easily heked that bi-

orthogonality and uniform boundedness are kept.

Exept for the inorporation of an additional weight funtion, the

de�nition of multivariate extended B-splines is ompletely analogous

to the univariate ase:
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PSfrag replaements

I(j)

j

Figure 4. Grid points (t

1

i

1

; t

2

i

2

), i 2 I(j), for a bilin-

ear outer B-spline b

j

. The nearest inner grid ell Q

j

is

highlighted, and the point x

i

marked by a ross.

De�nition 2. For i 2 I; j 2 J(i), and Q

j

de�ned as above, we de-

note by p

i;j

the polynomial whih agrees with b

i

on Q

j

and de�ne the

extension oeÆients

e

i;j

:= �

j

p

i;j

:

Further, let w be a positive weight funtion whih is smooth on D and

equivalent to some power r � 0 of the boundary distane funtion,

w(x) � dist(x; �D)

r

;(9)

and denote by x

i

the enter of an inner grid ell in supp b

i

. Then, the

weighted extended B-splines (web-splines) are de�ned by

B

i

:=

w

w(x

i

)

0

�

b

i

+

X

j2J(i)

e

i;j

b

j

1

A

; i 2 I:

The linear span of web-splines is the web-spae B.

In partiular, the weight funtion is essential for �nite element ap-

pliations. It allows us to satisfy homogeneous Dirihlet boundary

onditions simply by requiring that w vanishes on the appropriate om-

ponent of the boundary �D. Using suh weighted �nite element bases

was already suggested by Kantorowitsh and Krylow [12℄ and has been

extensively studied by Rvahev et al. (f., e.g., the survey [15℄ and

the literature ited there). Rvahev developed the so-alled R-funtion

method, whih is partiularly suited for domains onstruted from sim-

ple primitives with Boolean operations. For planar domains bounded

pieewise by NURBS-urves, weight funtions are onstruted in [14℄.
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With dual funtionals aording to (8) and p

i;j

(x) =

Q

�

p

i

�

;j

�

(x

�

),

we obtain

e

i;j

=

�

�

1

j

1

Æ � � � Æ �

m

j

m

�

p

i;j

=

m

Y

�=1

�

�

j

�

p

i

�

;j

�

=

m

Y

�=1

e

i

�

;j

�

:

That is, multivariate extension oeÆients an be onveniently om-

puted as produts of univariate ones.

Again, the web-splines B

i

inherit all basi properties of standard

nonuniform B-splines, exept positivity. However, onstants typially

depend now on a bound Æ on the distortion instead of the mesh ratio.

Theorem 6 (Loality and Boundedness). i) IfD � R

m

is a Lipshitz-

domain, then the distane between i 2 I and j 2 J(i) is bounded by

ki� jk

1

� onst(n;m; Æ;D). In partiular,

j suppB

i

j � onst(n;m; Æ;D)j supp b

i

j

�(suppB

i

) � onst(n;m; Æ;D)�(supp b

i

):

ii) web-splines are uniformly bounded by

kB

i

k

1;D

� onst(n;m; Æ;D; w):(10)

Proof. To prove the �rst statement, we observe that the ratio of di-

ameters of any two grid ells Q;Q

0

is bounded by jQj=jQ

0

j � Æ

2

. In

partiular, if ktk denotes the maximal diameter of grid ells, Æ

�2

ktk �

jQj � Æ

2

ktk. The diameter of Q is bounded in terms of its side

lengths l

1

; : : : ; l

m

by jQj � Æ

p

ml

�

. Sine the domain is assumed to

be Lipshitz, there exist onstants �; h

0

depending on D suh that

for all h 2 (0; h

0

) and x 2 D there exists a point y 2 D with

kx� yk

2

< h < � dist(y; �D).

If ktk < h

0

=(�Æ

2

), we onsider an outer index j 2 J and a point

x 2 supp b

j

\ D. With h := ktk�Æ

2

and y as above, the grid ell Q

ontaining y is inner sine jQj � ktkÆ

2

= h=� < dist(y; �D). Sine kx�

yk � ktk, the distane between supp b

j

and Q is � ktk. Consequently,

the distane between supp b

j

and the nearest inner grid ell Q

j

is � ktk.

All side lengths of all B-splines are � ktk. So, the di�erene between j

and inner indies i 2 I(j) is � 1.

If ktk � h

0

=(�Æ

2

), then the side lengths l

1

; : : : ; l

m

of any grid ell Q

are bounded by

l

�

�

jQj

Æ

p

m

�

ktk

Æ

3

p

m

�

h

0

�Æ

5

p

m

:

SineD is bounded, the lower bound on the side lengths yields an upper

bound on the number #K of relevant indies, and ki� jk

1

� #K �

onst(n;m; Æ;D). The inequalities for the diameter and the measure of

suppB

i

follow immediately from the boundedness of the number outer

B-splines attahed to b

i

and the boundedness of distortion.
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To prove the seond statement, we onlude from (9) that the weight

fator in the de�nition of web-splines is bounded by









w

w(x

i

)









1;suppB

i

� 1:

It remains to show that the extension oeÆients are uniformly bounded

by

je

i;j

j � onst(n;m; Æ;D);

whih an be done following exatly the arguments given in the uni-

variate ase.

It an be shown by arefully onstruted examples that the upper

bound on ki � jk

1

in fat depends on the distortion. However, suh

ases are rarely enountered in appliations. The examples in Setion 5

show that ki� jk

1

is typially lose to n if the knot sequenes are �ne.

The dual funtionals need to be adapted to the weight funtion.

With x

i

as in De�nition 2, we de�ne the weighted funtionals

�

i

f := w(x

i

)�

i

(f=w); i 2 I:

Uniform boundedness is now required on the spae of weighted poly-

nomials. On the inner grid ell Q � suppB

i

ontaining x

i

the weight

funtion an get arbitrarily small. The resulting problem an be ir-

umvented by restrition to a sub-interval

~

Q of Q whih has the same

enter, but halved side lengths. From (9) we onlude that









w(x

i

)

w









1;

~

Q

� 1(11)

with onstants depending on Æ and w. Now, we are prepared to estab-

lish the analogue of theorems 1 and 3 for web-splines.

Theorem 7 (Dual Funtionals for web-Splines). i) web-splines and weighted

de Boor-Fix funtionals are bi-orthogonal,

�

i

B

i

0

= Æ

i;i

0

; i; i

0

2 I:

ii) If Q is the inner grid ell in the support of B

i

ontaining x

i

, and

~

Q

the half-size sub-interval as de�ned above, then

j�

i

(wp)j � onst(n; %; w)kwpk

1;

~

Q

; p 2 P

n

:

Proof. Bi-orthogonality is veri�ed by inspetion. To show boundedness

on weighted polynomials, we note that the multivariate de Boor-Fix

funtionals are bounded by

j�

i

pj � onst(n; Æ)kpk

1;

~

Q

:
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Further, with (11),

j�

i

(wp)j = w(x

i

) j�

i

pj � onst(n; %)w(x

i

)kpk

1;

~

Q

� onst(n; %)kw(x

i

)=wk

1;

~

Q

kwpk

1;

~

Q

� onst(n; %; w)kwpk

1;

~

Q

:

The anonial projetor P onto the spline spae B is de�ned as before

by

Pf :=

X

i2I

(�

i

f)B

i

:

Now, polynomial preision is replaed by weighted polynomial prei-

sion.

Theorem 8 (Weighted Polynomial Preision). For all polynomials p 2

P

n

,

P (wp) = wp:

In partiular, the spline spae B ontains all weighted polynomials of

degree � n on D.

Proof. We obtain

P (wp) =

X

i2I

�

i

(wp)B

i

= w

X

i2I

(�

i

p)

0

�

b

i

+

X

j2J(i)

e

i;j

b

j

1

A

= wp;

where the last identity is veri�ed exatly as in the proof of Theorem 4.

Proving approximation results for weighted spline spaes is slightly

more involved than in standard ases. The tehnial details are de-

sribed in [7℄. Here, we onsider stability of the web-basis and show

the following generalization of (1) and (10):

Theorem 9 (Stability). Appropriately normalized, web-splines are uni-

formly stable with respet to p-norms, i.e.,

kCk

p;I

�











X

i2I



i

(

i

B

i

)











p;D

;

where the normalization fator is



i

:=

(

�(supp b

i

)

�1=p

for 1 � p <1

1 for p =1;

and the onstants depend only on n;m; Æ;D; w.
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Proof. The line of arguments is well known: Sine the support of eah

web-spline ontains only � 1 grid ells, it suÆes to prove the loal

estimates

�

�



�1

i

�

i

q

�

�

� kqk

p;

~

Q

; k

i

B

i

k

p;D

� 1;

where q =

P

i2I



i

(

i

B

i

) and

~

Q is the half-size sub-interval of the inner

grid ell ontaining x

i

. The �rst inequality is invariant under aÆne

transformations of the arguments. Hene, we may assume

~

Q = [0; 1℄

m

.

By Theorem 6, 

�1

i

= �(supp b

i

)

1=p

� 1. Further, sine q is a weighted

polynomial on [0; 1℄

m

, we an use Theorem 7 and equivalene of norms

to obtain j�

i

qj � kqk

1;[0;1℄

m

� kqk

p;[0;1℄

m

.

For p =1, the seond inequality is just (10). For p <1, Theorem 6

yields

k

i

B

i

k

p;D

�

�

�(suppB

i

)

�(supp b

i

)

�

1=p

� 1;

and the proof is omplete.

5. Appliations

In this setion, we disuss two typial appliations of web-splines.

First, we onsider a sattered data approximation problem on a trimmed

domain. Seond, we illustrate their performane as �nite elements at

hand of a simple model problem.

Sattered data approximation problems on trimmed domains our,

for instane, in reverse engineering appliations. Let D � R

2

be a

bounded domain. For given data points (x

�

; y

�

; z

�

) 2 D � R we seek

a bivariate spline q : D ! R whih approximates in a least squares

sense:

X

�

(q(x

�

; y

�

)� z

�

)

2

! min :

Figure 5 shows a domain and the loation of data points together with

knot lines, whih are aligned with the boundary of D in a natural way.

In the example, height values are sampled from the smooth funtion

z = f(x; y) = 2 os(x=3) os(y=2). No weighting is required, so we set

w � 1. On the left hand side, Figure 6 shows the best approximating

ubi web-spline q

web

. In ontrast, on the right hand side, standard

B-splines are used to obtain the approximation q

std

. The artifats at

the rounded orners of the domain are learly visible. The point is

that outer B-spline oeÆients may get very large in order to slightly

redue the approximation error at the data points near the boundary.

The advantages of the web-method beome obvious when omparing

the Eulidean error at the data points, the maximal error on D, and
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the ondition number of the Gramian matrix G:

kq

web

(X; Y )� Zk

2

� 8.6e-4; kq

std

(X; Y )� Zk

2

� 8.2e-4

kq

web

� fk

1;D

� 2.2e-4; kq

std

� fk

1;D

� 2.8e-1

ondG

web

� 7.7e3; ondG

std

� 6.2e13:

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

−4

−2

0

2

4

−2

0

2

0

0.5

1

1.5

Figure 5. Domain with grid lines and sattered

data points (left) and sampled funtion f(x) =

2 os(x=3) os(y=2) (right.)

Figure 6. Approximation with extension (left) and

without extension (right).

As a seond example, we onsider Poisson's equation with Dirihlet

boundary onditions,

��u(x; y) = f(x; y) = 25x

2

on D; u = 0 at �D:(12)

The domainD is the unit disk with a small irular hole with radius r =

0:04 loated at (x

0

; y

0

) = (�1=2;�1=2), see Figure 7, left. Non-uniform

knot spaing is used in order to resolve the expeted high urvature of

the solution near the small hole. In this ase, an appropriate weight

funtion is easily onstruted,

w(x; y) =

�

1� x

2

� y

2

��

(x� x

0

)

2

+ (y � y

0

)

2

� r

2

�

;
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see Figure 8, left. Eah grid ell that intersets the boundary has an

adjaent inner grid ell. That is, despite the relatively high distortion

Æ � 18, the di�erene between inner and outer indies is optimally

small, ki � jk

1

� n + 1 = 5. The oeÆient vetor U of an approx-

imate solution is obtained by solving the Galerkin system GU = F

resulting from the standard �nite element disretization of (12). The

moderate ondition number ondG

web

� 1700, obtained after saling

the diagonal to 1, admits eÆient solution with standard solvers. The

approximation u

web

that we obtain using quarti web-splines is fairly

aurate in view of the small number of oeÆients,

ku

web

� uk

1;D

� 3.2e-4 with � 450 oeÆients;

see also Figure 9, left. Let us ompare this result with uniform web-

splines and standard hat funtions.

� For uniform knot sequenes and equal degree n = 4, a rather �ne

grid is requested to obtain an approximation u

uni

with similar

auray,

ku

uni

� uk

1;D

� 3.7e-4 with � 5250 oeÆients:

On the right hand side, Figure 9 shows that the error is highly

onentrated near the hole, i.e., the global �ne resolution is in fat

not neessary.

� The MATLAB pde-toolbox, whih uses standard algorithms based

on a triangulation of the domain and pieewise linear basis fun-

tions, provides a omparable approximation u

�

only for a very

�ne triangulation,

ku

�

� uk

1;D

� 4.8e-4 with � 16:000 oeÆients;

see also Figure 7, right.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−0.5

−0.5

Figure 7. Domain with non-uniform grid (left) and

part of the triangulation required to ahieve similar a-

uray (right).
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Figure 8. Weight funtion w(left) and approximation

u

web

(right).

−1 −0.5 0 0.5 1−1

0

1

−4

−3

−2

−1

0

1

2

3

4

x 10
−4

−1 −0.5 0 0.5 1−1

0

1

−4

−3

−2

−1

0

1

2

3

4

x 10
−4

Figure 9. Error for non-uniform knots (left) and for

uniform knots (right).

The examples presented in this setion illustrate that non-uniform

web-splines are a ompetitive tool for approximating disrete data and

solutions of pdes.

6. Conlusion

The web-method is a new meshless �nite element tehnique ombin-

ing the advantages of B-splines and standard mesh-based trial funtions

(f. http://www.web.spline.de). In partiular, highly aurate numeri-

al solutions are possible with relatively few parameters and boundary

onditions are mathed exatly. Moreover, smoothness and approxi-

mation order an be hosen arbitrarily without signi�antly inreasing

the omputational omplexity.

Initially, web-splines were de�ned for uniform grids. As is shown in

this paper, the onept naturally extends to arbitrary knot sequenes.

This provides additional exibility for meeting design spei�ations and
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adapting the spline basis to the struture of the approximated data

or funtions. Perhaps more importantly, the nonuniform web-method

onforms to the NURBS-standard, used in many industrial applia-

tions. We hope that our work will ontribute to unifying methods in

CAD/CAM and FEM, advertising B-splines as a onvenient tool for

all stages of the manufaturing proess.
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Referenes

[1℄ R.A. Adams: Sobolev Spaes, Aademi Press, New York, 1978.

[2℄ C. de Boor: A Pratial Guide to Splines, Springer, New York, 1978.

[3℄ C. de Boor and G. Fix: Spline approximation by quasi-interpolants, J. Approx.

Theory 8 (1973), 19{45.

[4℄ E. Cohen, R.F. Riesenfeld, and G. Elber, Geometri Modeling with Splines:

An Introdution, A.K. Peters, 2001.

[5℄ G.E. Farin: Curves and Surfaes for Computer Aided Geometri Design, Aa-

demi Press, New York, 1988.

[6℄ K. H�ollig: Finite Element Approximation with Splines, in: Handbook of Com-

puter Aided Geometri Design, G. Farin, J. Hoshek, and M.S. Kim (eds.),

Elsevier, 2002, 283{308.

[7℄ K. H�ollig: Finite Element Methods with B-Splines, Frontiers in Applied Math-

ematis 26, SIAM, 2002, to appear.

[8℄ K. H�ollig, U. Reif, and J. Wipper: Weighted extended B-spline approximation

of Dirihlet problems, SIAM J. Numer. Anal. 39:2 (2001), 442{462.

[9℄ K. H�ollig, U. Reif, and J. Wipper: Error estimates for the web-method,

in: Mathematial Methods for Curves and Surfaes: Oslo 2000, T. Lyhe,

L.L. Shumaker (eds.), Vanderbilt University Press, 195{209.

[10℄ K. H�ollig, U. Reif, and J. Wipper: Multigrid methods with web-splines, Numer.

Math. 91:2 (2002), 237{256.

[11℄ J. Hoshek and D. Lasser: Fundamentals of Computer Aided Geometri De-

sign, A.K. Peters, 1993.

[12℄ L.W. Kantorowitsh and W.I. Krylow: N�aherungsmethoden der H�oheren Ana-

lysis, VEB Deutsher Verlag der Wissenshaften, Berlin, 1956.

[13℄ S.J. Owen: A survey of unstrutured mesh generation tehnology, in: Pro-

eedings, 7th International Meshing Roundtable, Sandia National Laboratories

(1998), 239{268.

[14℄ U. Reif: Construting weight funtions for non-smooth domains, in prepara-

tion.

[15℄ V.L. Rvahev and T.I. Sheiko: R-funtions in boundary value problems in

mehanis, Appl. Meh. Rev. 48:4 (1995), 151{188.

[16℄ O.C. Zienkiewiz and R.I. Taylor: Finite Element Method, Vol. I-III, Butter-

worth & Heinemann, 2000.


