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Abstra
t. The 
onstru
tion of weighted extended B-splines (web-

splines), as re
ently introdu
ed by the authors and J. Wipper for

uniform knot sequen
es, is generalized to the non-uniform 
ase.

We show that web-splines form a stable basis for splines on arbi-

trary domains in R

m

whi
h provides optimal approximation power.

Moreover, homogeneous boundary 
onditions, as en
ountered fre-

quently in �nite element appli
ations, 
an be satis�ed exa
tly by

using an appropriate weight fun
tion. To illustrate the perfor-

man
e of the method, it is applied to a s
attered data �tting prob-

lem and a �nite element approximation of an ellipti
 boundary

value problem.

1. Introdu
tion

Tensor produ
t B-splines have be
ome a standard for approxima-

tion of fun
tions and dis
rete data [2℄, 
omputer-aided-design [5, 11℄,

geometri
 modelling and 
omputer graphi
s [4℄. Among their many

favorable properties, the stability of the B-spline basis is 
ru
ial for

approximation purposes. However, stability is in general lost if the

domain is trimmed to a bounded domain D � R

m

, whose boundaries

are not aligned with the 
oordinate axes. This fa
t 
auses severe prob-

lems for instan
e in reverse engineering appli
ations, where data are

typi
ally available only a bounded domain. Equally, it is a major ob-

sta
le to using B-splines as �nite elements. As a generalization of the

approa
h introdu
ed in [8, 9, 10, 7℄ for the uniform 
ase, we present a

solution to this problem for nonuniform spline spa
es.

The basi
 idea is simple. As is illustrated in Figure 1, we 
an approx-

imate a fun
tion on a bounded domain D � R

m

by forming a spline,

i.e., a linear 
ombination of all relevant B-splines

b

k

; k 2 K;

whi
h have some support in D. Depending on the degree, this yields

approximations of arbitrary order and smoothness. However, numeri
al

instabilities may arise due to the outer B-splines

b

j

; j 2 J;

Key words and phrases. �nite element, B-spline, web-spline, meshless method,

nonuniform.
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for whi
h no 
omplete grid 
ell of their support lies in D. Here and

in the sequel, a grid 
ell is an interval whi
h in every 
oordinate di-

re
tion is bounded by two 
onse
utive, but di�erent knots, and an

inner grid 
ell is a grid 
ell whose interior is 
ompletely 
ontained in

D. A further diÆ
ulty is that, in general, splines do not 
onform to

homogeneous boundary 
onditions, whi
h is essential for standard �-

nite element s
hemes [16℄ or for mat
hing boundaries in data �tting

problems.

PSfrag repla
ements
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Figure 1. Relevant biquadrati
 B-splines for a domain

D, marked at the lower left 
orners (k

1

h; k

2

h) of their

supports. Inner and outer B-splines are indi
ated with

dots and 
ir
les, respe
tively.

Fortunately, both problems 
an be resolved. A stable basis is ob-

tained by forming appropriate extensions of the inner B-splines

b

i

; i 2 I := KnJ;

whi
h have at least one inner grid 
ell in their support. If zero boundary

data are required, we multiply by a positive weight fun
tion w whi
h

vanishes on the boundary �D of D. Otherwise, w 
an be omitted or,

to unify notation, be set to w � 1. Combining both ideas led to the

de�nition of weighted extended B-splines (web-splines) [8℄. These new

basis fun
tions 
ombine the 
omputational advantages of B-splines and

standard �nite elements:

� The web-spline basis is stable.

� Homogeneous boundary 
onditions 
an be mat
hed exa
tly.

� No mesh generation is required.

� A

urate numeri
al approximations are possible with relatively

low-dimensional subspa
es.
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� Smoothness and approximation order 
an be 
hosen arbitrarily.

� Hierar
hi
al bases permit adaptive re�nement und multigrid al-

gorithms.

Given the diÆ
ulty of meshing 2d and even more 3d domains, (
f.,

e.g., [13℄), the third property is of great importan
e for �nite element

appli
ations. Utilizing a regular grid not only eliminates a 
ompli-


ated and time-
onsuming prepro
essing step, but also permits a very

eÆ
ient implementation of algorithms.

In [8℄, web-splines have been 
onstru
ted with uniform B-splines.

This is adequate for smooth problems and also gives a

eptable results

for moderate singularities. To gain more 
exibility, nonuniform knot

spa
ing 
an be used to adapt the spline spa
e to the requested res-

olution, or to suit the grid stru
ture to the geometry of the domain.

On the left hand side, Figure 2 shows an example, where nonuniform

knots are used to resolve the potential �ne stru
ture of the fun
tion

to be approximated in a vi
inity of the small 
ut out 
ir
le. The right

hand side depi
ts a typi
al situation, where the grid lines are aligned

in a natural way to horizontal and verti
al boundaries. We shall 
ome

ba
k to these two examples in Se
tion 5. In su
h situations, the use of

nonuniform knot sequen
es, as des
ribed in this paper, is parti
ularly


ompetitive sin
e it 
ombines relatively low-dimensional spa
es with

the 
omputational advantages of a regular grid.

Of 
ourse, in the multivariate 
ase, nonuniform knot sequen
es are

not always useful. The point is that knot insertion is not lo
al in the

sense that the 
omplete domain is subdivided. This leads to an unjust

in
rease of the dimension of the spline spa
e if several, unaligned fea-

tures are to be resolved. In su
h 
ases, hierar
hi
al bases, as des
ribed

in [6, 7℄, are the method of 
hoi
e. Here, the �nite elements are de�ned

on a nested sequen
e of grids with s
aled uniform knot sequen
es.

Figure 2. Domains with nonuniform grids.

In this paper, we show how web-splines 
an be generalized to nonuni-

form knot sequen
es, where emphasis is put on the extension pro
edure.
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The key tool are dual fun
tionals, whi
h we review in Se
tion 2 along

with some de�nitions and basi
 fa
ts about B-splines. In Se
tion 3, we

illustrate the main idea of our basis 
onstru
tion for a simple univariate

model. The de�nition of multivariate nonuniform web-splines is then

given in Se
tion 4. Finally, we 
onsider in Se
tion 5 two appli
ations:

We show how web-splines avoid boundary artifa
ts in s
attered data

approximation on trimmed domains, and we demonstrate their ex
el-

lent performan
e as �nite elements at hand of a simple model problem.

Throughout, we use the following notational 
onventions. For an in-

terval Q � R

m

, we denote by jQj and �(Q) its diameter and measure,

respe
tively. The linear spa
e of all polynomial of degree � n is denoted

by P

n

, where in the multivariate 
ase, n = [n

1

; : : : ; n

m

℄ is understood

as the 
oordinate degree. In estimates, 
onstants 
onst(p

1

; p

2

; : : : ) de-

pending on parameters p

�

are always positive. If the 
onstants are 
lear

form the 
ontext, we drop them and use the symbols �;�, and �, in-

stead. The p-norm of a ve
tor or sequen
e C = f


k

g

k2K

is denoted by

kCk

p;K

, and the L

p

-norm of a fun
tion u on a domain D by kuk

p;D

.

Finally, k � k

p;`;D

is the norm of the Sobolev spa
e W

`

p

(D), see [1℄.

2. Some Fa
ts about B-Splines

The material presented in this se
tion is well known, but brie
y


ompiled here for later referen
e and 
onvenien
e of the reader. For

given degree n and a bi-in�nite nonde
reasing knot sequen
e

t : � � � t

k

� t

k+1

� � � �

we denote by b

k

; k 2 Z, the B-splines of degree n with support

supp b

k

= [t

k

; t

k+n+1

℄:

We 
hoose the standard normalization

P

k

b

k

= 1 and assume t

k

<

t

k+n+1

to avoid degenerate 
ases, i.e., the multipli
ity m

k

of the knot

t

k

is at most n+1. As is well-known [2℄, the B-splines fb

k

; k 2 Zg form

a basis for the pie
ewise polynomials of degree � n whi
h are (n�m

k

)-

times 
ontinuously di�erentiable at t

k

. If higher order derivatives are

required at a knot, they are understood as right-sided limits of adja
ent

polynomials. Moreover, the B-spline basis is uniformly stable,


onst(n)

�1

kCk

1;Z

�
















X

k2Z




k

b

k
















1;R

� kCk

1;Z

:(1)

Hen
e, in the bi-in�nite 
ase, the 
ondition number of the basis does

not depend on the knot sequen
e t.

The estimate (1) and many other results 
on
erning stability and ap-

proximation power of B-splines 
an be proven using dual fun
tionals.

From the plethora of possible 
onstru
tions, we 
onsider here the 
las-

si
al de�nition of de Boor and Fix [3℄, whi
h is expli
it and parti
ularly
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elegant. For k 2 Z and �

k

2 [t

k

; t

k+n+1

), we de�ne

�

k

f :=

n

X

`=0

(�1)

n�`

 

(n�`)

k

(�

k

)f

(`)

(�

k

);  

k

(x) :=

1

n!

n

Y

`=1

(t

k+`

� x):(2)

The essential properties of this family of fun
tionals are bi-orthogonality

and uniform boundedness on the spa
e of polynomials of degree � n.

Theorem 1 (Dual Fun
tionals for B-Splines). i) B-splines and de Boor-

Fix fun
tionals are bi-orthogonal,

�

k

b

k

0

= Æ

k;k

0

; k; k

0

2 Z:

ii) If Q is an interval in the support of b

k

with length bounded by jQj �

�j supp b

k

j for some 
onstant � 2 (0; 1℄, then

j�

k

pj � 
onst(n; �)kpk

1;Q

; p 2 P

n

:

Proof. The proof of bi-orthogonality is based on Taylor's theorem and

Marsden's identity, see [2℄ for details. To verify boundedness, we note

that de�nition (2) is 
ompatible with translation and s
aling. More

pre
isely, if

~

�

k

is the dual fun
tional 
orresponding to the knot sequen
e

~

t := ht + s and the parameter ~�

k

:= h�

k

+ s, then

�

k

f =

~

�

k

f

�

(� � s)=h

�

:

This implies that we may assume Q

k

= [0; 1℄ without loss of general-

ity. It is easily 
he
ked that k 

k

k

1;n;[0;1℄

� 
onst(n)jt

k+n+1

� t

k

j

n

�


onst(n)�

�n

. Thus, by equivalen
e of norms on P

n

,

j�

k

pj � 
onst(n)k 

k

k

1;n;[0;1℄

kpk

1;n;[0;1℄

� 
onst(n; �)kpk

1;[0;1℄

:

Clearly, if we 
hoose Q as the largest grid interval in supp b

k

, we 
an

take � = 1=(n + 1), and the 
onstant in the estimate depends only

on the degree. With this 
hoi
e and �

k

2 Q we obtain a proof for the

nontrivial left inequality of the stability result (1). We simply observe

that, by bi-orthogonality,




k

= �

k

q; q =

X

k

0




k

0

b

k

0

for any spline q, and that Theorem 1 applies sin
e q is a polynomial on

Q.

However, it should be noted that this argument 
an fail for �nite knot

sequen
es. For a B-spline with exterior knots, the largest grid interval

Qmay lie outside the natural domain of de�nitionD of the spline spa
e.

Hen
e, as is easily overlooked, for �nite dimensional spline spa
es, (1)

does not hold. This problem 
an be eliminated by requiring that the

mesh ratio, i.e., the maximal quotient of the lengths of adja
ent grid
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ells, is bounded by a 
onstant %. In this 
ase, every grid 
ell Q

k

in the

support of b

k

has length

jQ

k

j � 
onst(n; %)j supp b

k

j;

and the 
onstant in (1) has to be repla
ed by 
onst(n; %).

Finally, with the aid of dual fun
tionals, we 
an de�ne a 
anoni
al

proje
tor onto splines via

Pf :=

X

k

(�

k

f)b

k

:

Be
ause of bi-orthogonality, P reprodu
es B-splines, whi
h implies in

parti
ular polynomial pre
ision, i.e.,

Pp =

X

k

(�

k

p)b

k

= p(3)

for all polynomials p 2 P

n

.

3. Stability via Extension

As we have seen, stability problems are 
aused by B-splines with

small support in D. While the mesh ratio 
an be 
ontrolled quite

easily, the support of some B-splines in D 
an still be
ome small if D

is not a union of grid 
ells. This phenomenon is persistent only in the

multivariate 
ase, but shall at �rst be studied in one variable for the

sake of simpli
ity.

Let

X

k2K




k

b

k

(x); x 2 D;

be a spline on a bounded interval D � R, where the index set K


omprises all relevant B-splines with some support in D. The example

of a quadrati
 spline spa
e on D = (0; 1), depi
ted in Figure 3, 
aptures

the essential diÆ
ulty. If the interval endpoints do not 
oin
ide with

knots, there exist outer B-splines

b

j

; j 2 J;

for whi
h supp b

j

does not 
ontain an inner grid 
ell. These outer B-

splines 
ause stability problems even if the mesh ratio is small. In the

example, we have J = f�1; 0g and

b

�1

(x) = O("

2

); b

0

(x) = O(")

for x 2 D. Hen
e, the �rst two 
oeÆ
ients of a spline q with kqk

1;D

� 1


an be
ome arbitrarily large as "! 0. For the inner B-splines

b

i

; i 2 I;

supp b

i


ontains at least one inner grid 
ell. In the example, I =

f1; 2; 3; 4g. This part of the basis is stable regardless of the size of

".
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Figure 3. Inner B-splines b

i

, i 2 I, and outer B-splines

b

j

, j 2 J , on a bounded interval D.

We would like to sele
t a subspa
e with a stable, lo
al basis while

maintaining polynomial pre
ision. This is a

omplished by adjoining

outer to inner B-splines via appropriate linear 
ombinations. To this

end, for an outer index j 2 J , we denote the inner grid 
ell 
losest to

supp b

j

by Q

j

and de�ne the set of related inner indi
es by

I(j) := fi 2 I : Q

j

� supp b

i

g:

It is easy to see that I(j) 
onsists of n + 1 
onse
utive inner indi
es,

I(j) = f`; : : : ; ` + ng. Conversely, for an inner index i, we de�ne the

set of related outer indi
es by

J(i) := fj 2 J : i 2 I(j)g:

In the example, Q

�1

= Q

0

= ["; t

4

℄ and

I(�1) = I(0) = f1; 2; 3g; J(1) = J(2) = J(3) = f�1; 0g; J(4) = ;:

With these notions, we de�ne extended B-splines as follows:

De�nition 1. For i 2 I; j 2 J(i), and Q

j

as de�ned above, we de-

note by p

i;j

the polynomial whi
h agrees with b

i

on Q

j

and de�ne the

extension 
oeÆ
ients

e

i;j

:= �

j

p

i;j

:(4)
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Then, the extended B-splines (eb-splines) are

B

i

:= b

i

+

X

j2J(i)

e

i;j

b

j

; i 2 I:

The linear span of eb-splines is denoted by B.

The 
omputation of the extension 
oeÆ
ients is straightforward: We

generate the polynomials p

i;j

in Taylor form using the re
urren
e rela-

tion for B-splines. Expanding at an arbitrary point �

j

, whi
h appears

in the de�nition of the dual fun
tional �

j

, the 
oeÆ
ients yield the

relevant data for applying formula (2). This pro
edure is slightly more

involved than for uniform knots (t

k

= kh), where we have the simple

expression

e

i;j

=

n

Y

�=0

`+� 6=i

j � `� �

i� `� �

;

derived via Lagrange interpolation, see [8℄ for details. In any 
ase, the

overhead is small sin
e only few B-splines near the interval endpoints

are extended.

We show now that extended B-splines inherit all properties of stan-

dard B-splines whi
h are 
ru
ial for approximation purposes, namely

lo
ality, boundedness, existen
e of dual fun
tionals, and polynomial

pre
ision.

Theorem 2 (Lo
ality and Boundedness). i) The distan
e between i 2

I and j 2 J(i) is bounded by ji� jj � 2n+ 1. In parti
ular,

j suppB

i

j � 
onst(n; %)j supp b

i

j:(5)

ii) eb-splines are uniformly bounded by

kB

(`)

i

k

1;D

� 
onst(n; %)j supp b

i

j

�`

:(6)

Proof. To prove lo
ality, we 
onsider, e.g., the left boundary of D. If i

0

is the smallest inner index, then i

0

� n� 2 is an index whi
h 
ertainly


orresponds to a non-relevant B-spline. Hen
e, i

0

�n�1 � j < i

0

, and

the 
orresponding set of inner indi
es is I(j) = i

0

+ f0; : : : ; ng. The

bound on the number of outer B-splines b

j

atta
hed to b

i


ombined

with the bound % on the mesh ratio yields (5).

To prove the se
ond statement, we �rst show that the extension 
oef-

�
ients are uniformly bounded. The 
onstru
tion of eb-splines is invari-

ant under aÆne transformations of the abs
issa. Hen
e, for j 2 J and

Q

j

the nearest inner grid 
ell, we may assume Q

j

= [0; 1℄. Being part of

a standard B-spline, the polynomial p

i;j

is bounded by kp

i;j

k

1;[0;1℄

� 1.

This implies that p

i;j

(x) is bounded by a 
onstant depending only on

n and x. By (5), jxj � 
onst(n; %) for x 2 supp b

j

. So, we obtain using

Theorem 1 with Q = supp b

j

je

i;j

j = j�

j

p

i;j

j � 
onst(n)kp

i;j

k

1;supp b

j

� 
onst(n; %):
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Boundedness of extension 
oeÆ
ients 
ombined with the known esti-

mate kb

(`)

k

k

1;R

� 
onst(n; %)j supp b

k

j

�`

, whi
h holds for standard B-

splines, proves the 
laim.

Now, we show that f�

i

; i 2 Ig is a family of bounded dual fun
tionals

for the eb-splines fB

i

; i 2 Ig:

Theorem 3 (Dual Fun
tionals for eb-Splines). i) eb-splines and de Boor-

Fix fun
tionals are bi-orthogonal,

�

i

b

i

0

= Æ

i;i

0

; i; i

0

2 I:

ii) If Q is an inner grid 
ell in the support of b

i

, then

j�

i

pj � 
onst(n; %)kpk

1;Q

; p 2 P

n

:

Proof. Bi-orthogonality follows from �

k

b

k

0

= Æ

k;k

0

and the de�nition of

B

i

0

sin
e �

i

b

j

= 0 for j 2 J , while boundedness just re
alls Theorem 1.

The existen
e of dual fun
tionals implies linear independen
e, i.e.,

eb-splines form a basis for the spline spa
e B. Moreover, like standard

B-splines, eb-splines are a lo
al basis in the sense that for any grid 
ell

Q interse
ting D the eb-splines whi
h do not vanish on Q are linearly

independent. This 
an easily be shown by sele
ting �

i

2 Q \D for all

dual fun
tionals �

i


orresponding to eb-splines with Q in their support.

Sin
e all polynomials p 2 P

n

are 
ontained in B, as will follow from the

next theorem, there exist exa
tly n+ 1 eb-splines whi
h do not vanish

on Q, and they span the spa
e of all polynomials of degree � n on Q.

De�ning the 
anoni
al proje
tor P onto B by

Pf :=

X

i2I

(�

i

f)B

i

;

we 
an establish polynomial pre
ision.

Theorem 4 (Polynomial Pre
ision). For all polynomials p 2 P

n

,

Pp = p:

In parti
ular, the spline spa
e B 
ontains all polynomials of degree � n

on D.

Proof. Substituting the de�nition of B

i

and inter
hanging sums, we

have for x 2 D

Pp =

X

i2I

(�

i

p)B

i

(x) =

X

i2I

(�

i

p)b

i

+

X

j2J

2

4

X

i2I(j)

e

i;j

(�

i

p)

3

5

b

j

:

Now, be
ause of (3), Pp = p is equivalent to

X

i2I(j)

e

i;j

(�

i

p) = �

j

p:(7)
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Sin
e both sides are linear in p, it suÆ
es to 
he
k this identity for a ba-

sis. Taking p = p

i

0

;j

with i

0

2 I(j) and �

i

2 Q

j

, we have �

i

p

i

0

;j

= �

i

b

i

0

=

Æ

i;i

0

, and (7) redu
es to the de�nition (4) of the extension 
oeÆ
ients

e

i;j

.

After establishing lo
ality and boundedness, dual fun
tionals, and

polynomial pre
ision, we have all essential ingredients at our disposal

to derive standard results on stability and approximation power. Ex-

emplarily, we establish optimal 
onvergen
e rates when approximating

smooth fun
tions.

Theorem 5 (Approximation power). For x 2 D, we denote by Q the

union of supports of eb-splines 
ontaining x, and by h the length of the

grid 
ell 
ontaining x. Then, for a smooth fun
tion f , the approxima-

tion error d := Pf � f is pointwise bounded by

�

�

d

(`)

(x)

�

�

� 
onst(n; %)







f

(n+1)







1;Q

h

n+1�`

:

Proof. The proof is routine. We denote by

~

I the set of inner indi
es

whi
h are relevant for x. Sin
e

~

I 
ontains n+1 elements, jQj � h. Let

p 2 P

n

be the Taylor polynomial of f at x. Then, with � := f � p,







�

(`)







1;Q

�







f

(n+1)







1;Q

h

n+1�`

:

Further, by polynomial pre
ision and boundedness of eb-splines,

�

�

d

(`)

(x)

�

�

=

�

�

(P�)

(`)

(x)

�

�

=

�

�

�

�

X

i2

~

I

(�

i

�)B

(`)

i

(x)

�

�

�

�

� max

i2

~

I

j�

i

�jh

�`

:

It remains to 
onsider �

i

�. The point �

i

in the de�nition of �

i

lies in

Q. Hen
e,

�

�

 

(n�`

0

)

i

(�

i

)

�

�

� h

`

0

, and

j�

i

�j �

n

X

`

0

=0

�

�

 

(n�`

0

)

i

(�

i

)

�

�

�

�

�

(`

0

)

(�

i

)

�

�

�







f

(n+1)







1;Q

h

n+1

We note that similar results for the approximation of less regular fun
-

tions 
an be obtained exa
tly in the same way using dual fun
tionals

whi
h are bounded, e.g., with respe
t to the sup-norm. The spe
ial


hoi
e that we made here is merely due to the expli
it 
hara
ter of

the de Boor-Fix fun
tionals, whi
h is favorable for the de�nition of

extension 
oeÆ
ients.

Summarizing, the material presented in this se
tion admits to derive

standard approximation and stability properties for spline spa
es with

small parameter intervals at the endpoints of D. The modi�
ations

are 
ru
ial for splines in several variables, where we 
an in general not

align the grid lines to the domain boundaries.
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4. Multivariate Web-Splines

Generalizing the univariate de�nitions and results of the last se
tion

to m � 2 variables is straightforward. The arguments are 
ompletely

analogous. Merely the notation needs to be adapted to the multivariate

setting.

We 
onsider a tensor produ
t grid in R

m

with knot sequen
es t =

[t

1

; : : : ; t

m

℄,

t

�

: � � � � t

�

k

� t

�

k+1

� � � � ; � = 1; : : : ; m;

and denote by

b

k

= b

n

k;t

(x) := b

n

1

k

1

;t

1

(x

1

) � � � b

n

m

k

m

;t

m

(x

m

); k 2 Z

m

;

the 
orresponding tensor produ
t B-splines of degree n = [n

1

; : : : ; n

m

℄.

For a grid 
ell Q with side lengths l

1

; : : : ; l

m

we de�ne its distortion by

max

�;�

0

l

�

=l

�

0

:

The distortion of the knot sequen
e t is the maximal distortion of its

grid 
ells, and Æ will denote an upper bound on it. Like the mesh

ratio in the univariate 
ase, the distortion quanti�es the deviation from

a uniform setting in the multivariate 
ase. It is easy to see that if

the distortion of t is bounded by Æ, then the mesh ratios of all knot

sequen
es t

1

; : : : ; t

m

are bounded by Æ

2

.

For a bounded domainD � R

m

we de�ne the sets K; I; J of relevant,

inner, and outer indi
es as in the univariate 
ase (
f. also Figure 1):

K := fk 2 Z

m

: D \ supp b

k

6= ;g

I := fi 2 Z

m

: supp b

i


ontains an inner grid 
ellg

J := KnI:

For j 2 J , the inner grid 
ell whose midpoint is 
losest to the midpoint

of supp b

j

is denoted by Q

j

. The B-splines whi
h do not vanish on Q

j

have indi
es in

I(j) = I

1

(j)� � � � � I

m

(j) = `+ f0; : : : ; ng

m

with ` = `(j) 2 Z

m

, see Figure 4. The 
omplementary sets J(i) are

de�ned as before.

The multivariate de Boor-Fix fun
tionals are 
onstru
ted from the

univariate ones as follows: For k 2 Z

m

and �

k

= [�

k

1

; : : : ; �

k

m

℄,

�

k

:= �

1

k

1

Æ � � � Æ �

m

k

m

;(8)

where �

�

k

�

is a
ting on the �th variable. It is easily 
he
ked that bi-

orthogonality and uniform boundedness are kept.

Ex
ept for the in
orporation of an additional weight fun
tion, the

de�nition of multivariate extended B-splines is 
ompletely analogous

to the univariate 
ase:
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PSfrag repla
ements

I(j)

j

Figure 4. Grid points (t

1

i

1

; t

2

i

2

), i 2 I(j), for a bilin-

ear outer B-spline b

j

. The nearest inner grid 
ell Q

j

is

highlighted, and the point x

i

marked by a 
ross.

De�nition 2. For i 2 I; j 2 J(i), and Q

j

de�ned as above, we de-

note by p

i;j

the polynomial whi
h agrees with b

i

on Q

j

and de�ne the

extension 
oeÆ
ients

e

i;j

:= �

j

p

i;j

:

Further, let w be a positive weight fun
tion whi
h is smooth on D and

equivalent to some power r � 0 of the boundary distan
e fun
tion,

w(x) � dist(x; �D)

r

;(9)

and denote by x

i

the 
enter of an inner grid 
ell in supp b

i

. Then, the

weighted extended B-splines (web-splines) are de�ned by

B

i

:=

w

w(x

i

)

0

�

b

i

+

X

j2J(i)

e

i;j

b

j

1

A

; i 2 I:

The linear span of web-splines is the web-spa
e B.

In parti
ular, the weight fun
tion is essential for �nite element ap-

pli
ations. It allows us to satisfy homogeneous Diri
hlet boundary


onditions simply by requiring that w vanishes on the appropriate 
om-

ponent of the boundary �D. Using su
h weighted �nite element bases

was already suggested by Kantorowits
h and Krylow [12℄ and has been

extensively studied by Rva
hev et al. (
f., e.g., the survey [15℄ and

the literature 
ited there). Rva
hev developed the so-
alled R-fun
tion

method, whi
h is parti
ularly suited for domains 
onstru
ted from sim-

ple primitives with Boolean operations. For planar domains bounded

pie
ewise by NURBS-
urves, weight fun
tions are 
onstru
ted in [14℄.



NONUNIFORM WEB-SPLINES 13

With dual fun
tionals a

ording to (8) and p

i;j

(x) =

Q

�

p

i

�

;j

�

(x

�

),

we obtain

e

i;j

=

�

�

1

j

1

Æ � � � Æ �

m

j

m

�

p

i;j

=

m

Y

�=1

�

�

j

�

p

i

�

;j

�

=

m

Y

�=1

e

i

�

;j

�

:

That is, multivariate extension 
oeÆ
ients 
an be 
onveniently 
om-

puted as produ
ts of univariate ones.

Again, the web-splines B

i

inherit all basi
 properties of standard

nonuniform B-splines, ex
ept positivity. However, 
onstants typi
ally

depend now on a bound Æ on the distortion instead of the mesh ratio.

Theorem 6 (Lo
ality and Boundedness). i) IfD � R

m

is a Lips
hitz-

domain, then the distan
e between i 2 I and j 2 J(i) is bounded by

ki� jk

1

� 
onst(n;m; Æ;D). In parti
ular,

j suppB

i

j � 
onst(n;m; Æ;D)j supp b

i

j

�(suppB

i

) � 
onst(n;m; Æ;D)�(supp b

i

):

ii) web-splines are uniformly bounded by

kB

i

k

1;D

� 
onst(n;m; Æ;D; w):(10)

Proof. To prove the �rst statement, we observe that the ratio of di-

ameters of any two grid 
ells Q;Q

0

is bounded by jQj=jQ

0

j � Æ

2

. In

parti
ular, if ktk denotes the maximal diameter of grid 
ells, Æ

�2

ktk �

jQj � Æ

2

ktk. The diameter of Q is bounded in terms of its side

lengths l

1

; : : : ; l

m

by jQj � Æ

p

ml

�

. Sin
e the domain is assumed to

be Lips
hitz, there exist 
onstants �; h

0

depending on D su
h that

for all h 2 (0; h

0

) and x 2 D there exists a point y 2 D with

kx� yk

2

< h < � dist(y; �D).

If ktk < h

0

=(�Æ

2

), we 
onsider an outer index j 2 J and a point

x 2 supp b

j

\ D. With h := ktk�Æ

2

and y as above, the grid 
ell Q


ontaining y is inner sin
e jQj � ktkÆ

2

= h=� < dist(y; �D). Sin
e kx�

yk � ktk, the distan
e between supp b

j

and Q is � ktk. Consequently,

the distan
e between supp b

j

and the nearest inner grid 
ell Q

j

is � ktk.

All side lengths of all B-splines are � ktk. So, the di�eren
e between j

and inner indi
es i 2 I(j) is � 1.

If ktk � h

0

=(�Æ

2

), then the side lengths l

1

; : : : ; l

m

of any grid 
ell Q

are bounded by

l

�

�

jQj

Æ

p

m

�

ktk

Æ

3

p

m

�

h

0

�Æ

5

p

m

:

Sin
eD is bounded, the lower bound on the side lengths yields an upper

bound on the number #K of relevant indi
es, and ki� jk

1

� #K �


onst(n;m; Æ;D). The inequalities for the diameter and the measure of

suppB

i

follow immediately from the boundedness of the number outer

B-splines atta
hed to b

i

and the boundedness of distortion.
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To prove the se
ond statement, we 
on
lude from (9) that the weight

fa
tor in the de�nition of web-splines is bounded by













w

w(x

i

)













1;suppB

i

� 1:

It remains to show that the extension 
oeÆ
ients are uniformly bounded

by

je

i;j

j � 
onst(n;m; Æ;D);

whi
h 
an be done following exa
tly the arguments given in the uni-

variate 
ase.

It 
an be shown by 
arefully 
onstru
ted examples that the upper

bound on ki � jk

1

in fa
t depends on the distortion. However, su
h


ases are rarely en
ountered in appli
ations. The examples in Se
tion 5

show that ki� jk

1

is typi
ally 
lose to n if the knot sequen
es are �ne.

The dual fun
tionals need to be adapted to the weight fun
tion.

With x

i

as in De�nition 2, we de�ne the weighted fun
tionals

�

i

f := w(x

i

)�

i

(f=w); i 2 I:

Uniform boundedness is now required on the spa
e of weighted poly-

nomials. On the inner grid 
ell Q � suppB

i


ontaining x

i

the weight

fun
tion 
an get arbitrarily small. The resulting problem 
an be 
ir-


umvented by restri
tion to a sub-interval

~

Q of Q whi
h has the same


enter, but halved side lengths. From (9) we 
on
lude that













w(x

i

)

w













1;

~

Q

� 1(11)

with 
onstants depending on Æ and w. Now, we are prepared to estab-

lish the analogue of theorems 1 and 3 for web-splines.

Theorem 7 (Dual Fun
tionals for web-Splines). i) web-splines and weighted

de Boor-Fix fun
tionals are bi-orthogonal,

�

i

B

i

0

= Æ

i;i

0

; i; i

0

2 I:

ii) If Q is the inner grid 
ell in the support of B

i


ontaining x

i

, and

~

Q

the half-size sub-interval as de�ned above, then

j�

i

(wp)j � 
onst(n; %; w)kwpk

1;

~

Q

; p 2 P

n

:

Proof. Bi-orthogonality is veri�ed by inspe
tion. To show boundedness

on weighted polynomials, we note that the multivariate de Boor-Fix

fun
tionals are bounded by

j�

i

pj � 
onst(n; Æ)kpk

1;

~

Q

:
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Further, with (11),

j�

i

(wp)j = w(x

i

) j�

i

pj � 
onst(n; %)w(x

i

)kpk

1;

~

Q

� 
onst(n; %)kw(x

i

)=wk

1;

~

Q

kwpk

1;

~

Q

� 
onst(n; %; w)kwpk

1;

~

Q

:

The 
anoni
al proje
tor P onto the spline spa
e B is de�ned as before

by

Pf :=

X

i2I

(�

i

f)B

i

:

Now, polynomial pre
ision is repla
ed by weighted polynomial pre
i-

sion.

Theorem 8 (Weighted Polynomial Pre
ision). For all polynomials p 2

P

n

,

P (wp) = wp:

In parti
ular, the spline spa
e B 
ontains all weighted polynomials of

degree � n on D.

Proof. We obtain

P (wp) =

X

i2I

�

i

(wp)B

i

= w

X

i2I

(�

i

p)

0

�

b

i

+

X

j2J(i)

e

i;j

b

j

1

A

= wp;

where the last identity is veri�ed exa
tly as in the proof of Theorem 4.

Proving approximation results for weighted spline spa
es is slightly

more involved than in standard 
ases. The te
hni
al details are de-

s
ribed in [7℄. Here, we 
onsider stability of the web-basis and show

the following generalization of (1) and (10):

Theorem 9 (Stability). Appropriately normalized, web-splines are uni-

formly stable with respe
t to p-norms, i.e.,

kCk

p;I

�
















X

i2I




i

(


i

B

i

)
















p;D

;

where the normalization fa
tor is




i

:=

(

�(supp b

i

)

�1=p

for 1 � p <1

1 for p =1;

and the 
onstants depend only on n;m; Æ;D; w.



16 KLAUS H

�

OLLIG AND ULRICH REIF

Proof. The line of arguments is well known: Sin
e the support of ea
h

web-spline 
ontains only � 1 grid 
ells, it suÆ
es to prove the lo
al

estimates

�

�




�1

i

�

i

q

�

�

� kqk

p;

~

Q

; k


i

B

i

k

p;D

� 1;

where q =

P

i2I




i

(


i

B

i

) and

~

Q is the half-size sub-interval of the inner

grid 
ell 
ontaining x

i

. The �rst inequality is invariant under aÆne

transformations of the arguments. Hen
e, we may assume

~

Q = [0; 1℄

m

.

By Theorem 6, 


�1

i

= �(supp b

i

)

1=p

� 1. Further, sin
e q is a weighted

polynomial on [0; 1℄

m

, we 
an use Theorem 7 and equivalen
e of norms

to obtain j�

i

qj � kqk

1;[0;1℄

m

� kqk

p;[0;1℄

m

.

For p =1, the se
ond inequality is just (10). For p <1, Theorem 6

yields

k


i

B

i

k

p;D

�

�

�(suppB

i

)

�(supp b

i

)

�

1=p

� 1;

and the proof is 
omplete.

5. Appli
ations

In this se
tion, we dis
uss two typi
al appli
ations of web-splines.

First, we 
onsider a s
attered data approximation problem on a trimmed

domain. Se
ond, we illustrate their performan
e as �nite elements at

hand of a simple model problem.

S
attered data approximation problems on trimmed domains o

ur,

for instan
e, in reverse engineering appli
ations. Let D � R

2

be a

bounded domain. For given data points (x

�

; y

�

; z

�

) 2 D � R we seek

a bivariate spline q : D ! R whi
h approximates in a least squares

sense:

X

�

(q(x

�

; y

�

)� z

�

)

2

! min :

Figure 5 shows a domain and the lo
ation of data points together with

knot lines, whi
h are aligned with the boundary of D in a natural way.

In the example, height values are sampled from the smooth fun
tion

z = f(x; y) = 2 
os(x=3) 
os(y=2). No weighting is required, so we set

w � 1. On the left hand side, Figure 6 shows the best approximating


ubi
 web-spline q

web

. In 
ontrast, on the right hand side, standard

B-splines are used to obtain the approximation q

std

. The artifa
ts at

the rounded 
orners of the domain are 
learly visible. The point is

that outer B-spline 
oeÆ
ients may get very large in order to slightly

redu
e the approximation error at the data points near the boundary.

The advantages of the web-method be
ome obvious when 
omparing

the Eu
lidean error at the data points, the maximal error on D, and
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the 
ondition number of the Gramian matrix G:

kq

web

(X; Y )� Zk

2

� 8.6e-4; kq

std

(X; Y )� Zk

2

� 8.2e-4

kq

web

� fk

1;D

� 2.2e-4; kq

std

� fk

1;D

� 2.8e-1


ondG

web

� 7.7e3; 
ondG

std

� 6.2e13:

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

−4

−2

0

2

4

−2

0

2

0

0.5

1

1.5

Figure 5. Domain with grid lines and s
attered

data points (left) and sampled fun
tion f(x) =

2 
os(x=3) 
os(y=2) (right.)

Figure 6. Approximation with extension (left) and

without extension (right).

As a se
ond example, we 
onsider Poisson's equation with Diri
hlet

boundary 
onditions,

��u(x; y) = f(x; y) = 25x

2

on D; u = 0 at �D:(12)

The domainD is the unit disk with a small 
ir
ular hole with radius r =

0:04 lo
ated at (x

0

; y

0

) = (�1=2;�1=2), see Figure 7, left. Non-uniform

knot spa
ing is used in order to resolve the expe
ted high 
urvature of

the solution near the small hole. In this 
ase, an appropriate weight

fun
tion is easily 
onstru
ted,

w(x; y) =

�

1� x

2

� y

2

��

(x� x

0

)

2

+ (y � y

0

)

2

� r

2

�

;
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see Figure 8, left. Ea
h grid 
ell that interse
ts the boundary has an

adja
ent inner grid 
ell. That is, despite the relatively high distortion

Æ � 18, the di�eren
e between inner and outer indi
es is optimally

small, ki � jk

1

� n + 1 = 5. The 
oeÆ
ient ve
tor U of an approx-

imate solution is obtained by solving the Galerkin system GU = F

resulting from the standard �nite element dis
retization of (12). The

moderate 
ondition number 
ondG

web

� 1700, obtained after s
aling

the diagonal to 1, admits eÆ
ient solution with standard solvers. The

approximation u

web

that we obtain using quarti
 web-splines is fairly

a

urate in view of the small number of 
oeÆ
ients,

ku

web

� uk

1;D

� 3.2e-4 with � 450 
oeÆ
ients;

see also Figure 9, left. Let us 
ompare this result with uniform web-

splines and standard hat fun
tions.

� For uniform knot sequen
es and equal degree n = 4, a rather �ne

grid is requested to obtain an approximation u

uni

with similar

a

ura
y,

ku

uni

� uk

1;D

� 3.7e-4 with � 5250 
oeÆ
ients:

On the right hand side, Figure 9 shows that the error is highly


on
entrated near the hole, i.e., the global �ne resolution is in fa
t

not ne
essary.

� The MATLAB pde-toolbox, whi
h uses standard algorithms based

on a triangulation of the domain and pie
ewise linear basis fun
-

tions, provides a 
omparable approximation u

�

only for a very

�ne triangulation,

ku

�

� uk

1;D

� 4.8e-4 with � 16:000 
oeÆ
ients;

see also Figure 7, right.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−0.5

−0.5

Figure 7. Domain with non-uniform grid (left) and

part of the triangulation required to a
hieve similar a
-


ura
y (right).
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Figure 8. Weight fun
tion w(left) and approximation

u

web

(right).

−1 −0.5 0 0.5 1−1

0

1

−4

−3

−2

−1

0

1

2

3

4

x 10
−4

−1 −0.5 0 0.5 1−1

0

1

−4

−3

−2

−1

0

1

2

3

4

x 10
−4

Figure 9. Error for non-uniform knots (left) and for

uniform knots (right).

The examples presented in this se
tion illustrate that non-uniform

web-splines are a 
ompetitive tool for approximating dis
rete data and

solutions of pdes.

6. Con
lusion

The web-method is a new meshless �nite element te
hnique 
ombin-

ing the advantages of B-splines and standard mesh-based trial fun
tions

(
f. http://www.web.spline.de). In parti
ular, highly a

urate numeri-


al solutions are possible with relatively few parameters and boundary


onditions are mat
hed exa
tly. Moreover, smoothness and approxi-

mation order 
an be 
hosen arbitrarily without signi�
antly in
reasing

the 
omputational 
omplexity.

Initially, web-splines were de�ned for uniform grids. As is shown in

this paper, the 
on
ept naturally extends to arbitrary knot sequen
es.

This provides additional 
exibility for meeting design spe
i�
ations and
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adapting the spline basis to the stru
ture of the approximated data

or fun
tions. Perhaps more importantly, the nonuniform web-method


onforms to the NURBS-standard, used in many industrial appli
a-

tions. We hope that our work will 
ontribute to unifying methods in

CAD/CAM and FEM, advertising B-splines as a 
onvenient tool for

all stages of the manufa
turing pro
ess.
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