NONUNIFORM WEB-SPLINES
KLAUS HOLLIG AND ULRICH REIF

ABSTRACT. The construction of weighted extended B-splines (web-
splines), as recently introduced by the authors and J. Wipper for
uniform knot sequences, is generalized to the non-uniform case.
We show that web-splines form a stable basis for splines on arbi-
trary domains in R™ which provides optimal approximation power.
Moreover, homogeneous boundary conditions, as encountered fre-
quently in finite element applications, can be satisfied exactly by
using an appropriate weight function. To illustrate the perfor-
mance of the method, it is applied to a scattered data fitting prob-
lem and a finite element approximation of an elliptic boundary
value problem.

1. INTRODUCTION

Tensor product B-splines have become a standard for approxima-
tion of functions and discrete data [2], computer-aided-design [5, 11],
geometric modelling and computer graphics [4]. Among their many
favorable properties, the stability of the B-spline basis is crucial for
approximation purposes. However, stability is in general lost if the
domain is trimmed to a bounded domain D C R™, whose boundaries
are not aligned with the coordinate axes. This fact causes severe prob-
lems for instance in reverse engineering applications, where data are
typically available only a bounded domain. Equally, it is a major ob-
stacle to using B-splines as finite elements. As a generalization of the
approach introduced in [8, 9, 10, 7] for the uniform case, we present a
solution to this problem for nonuniform spline spaces.

The basic idea is simple. As is illustrated in Figure 1, we can approx-
imate a function on a bounded domain D C R™ by forming a spline,
i.e., a linear combination of all relevant B-splines

bk; kGK,

which have some support in D. Depending on the degree, this yields
approximations of arbitrary order and smoothness. However, numerical
instabilities may arise due to the outer B-splines

bj, ] € J,
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nonuniform.
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for which no complete grid cell of their support lies in D. Here and
in the sequel, a grid cell is an interval which in every coordinate di-
rection is bounded by two consecutive, but different knots, and an
wnner grid cell is a grid cell whose interior is completely contained in
D. A further difficulty is that, in general, splines do not conform to
homogeneous boundary conditions, which is essential for standard fi-
nite element schemes [16] or for matching boundaries in data fitting
problems.

FIGURE 1. Relevant biquadratic B-splines for a domain
D, marked at the lower left corners (kih,koh) of their
supports. Inner and outer B-splines are indicated with
dots and circles, respectively.

Fortunately, both problems can be resolved. A stable basis is ob-
tained by forming appropriate extensions of the inner B-splines

b, ie€l:=K\J

which have at least one inner grid cell in their support. If zero boundary
data are required, we multiply by a positive weight function w which
vanishes on the boundary 0D of D. Otherwise, w can be omitted or,
to unify notation, be set to w = 1. Combining both ideas led to the
definition of weighted extended B-splines (web-splines) [8]. These new
basis functions combine the computational advantages of B-splines and
standard finite elements:

e The web-spline basis is stable.

e Homogeneous boundary conditions can be matched exactly.

e No mesh generation is required.

e Accurate numerical approximations are possible with relatively
low-dimensional subspaces.
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e Smoothness and approximation order can be chosen arbitrarily.
e Hierarchical bases permit adaptive refinement und multigrid al-
gorithms.

Given the difficulty of meshing 2d and even more 3d domains, (cf.,
e.g., [13]), the third property is of great importance for finite element
applications. Utilizing a regular grid not only eliminates a compli-
cated and time-consuming preprocessing step, but also permits a very
efficient implementation of algorithms.

In [8], web-splines have been constructed with uniform B-splines.
This is adequate for smooth problems and also gives acceptable results
for moderate singularities. To gain more flexibility, nonuniform knot
spacing can be used to adapt the spline space to the requested res-
olution, or to suit the grid structure to the geometry of the domain.
On the left hand side, Figure 2 shows an example, where nonuniform
knots are used to resolve the potential fine structure of the function
to be approximated in a vicinity of the small cut out circle. The right
hand side depicts a typical situation, where the grid lines are aligned
in a natural way to horizontal and vertical boundaries. We shall come
back to these two examples in Section 5. In such situations, the use of
nonuniform knot sequences, as described in this paper, is particularly
competitive since it combines relatively low-dimensional spaces with
the computational advantages of a regular grid.

Of course, in the multivariate case, nonuniform knot sequences are
not always useful. The point is that knot insertion is not local in the
sense that the complete domain is subdivided. This leads to an unjust
increase of the dimension of the spline space if several, unaligned fea-
tures are to be resolved. In such cases, hierarchical bases, as described
in [6, 7], are the method of choice. Here, the finite elements are defined
on a nested sequence of grids with scaled uniform knot sequences.
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FI1GURE 2. Domains with nonuniform grids.

In this paper, we show how web-splines can be generalized to nonuni-
form knot sequences, where emphasis is put on the extension procedure.
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The key tool are dual functionals, which we review in Section 2 along
with some definitions and basic facts about B-splines. In Section 3, we
illustrate the main idea of our basis construction for a simple univariate
model. The definition of multivariate nonuniform web-splines is then
given in Section 4. Finally, we consider in Section 5 two applications:
We show how web-splines avoid boundary artifacts in scattered data
approximation on trimmed domains, and we demonstrate their excel-
lent performance as finite elements at hand of a simple model problem.
Throughout, we use the following notational conventions. For an in-
terval Q C R™, we denote by || and u(Q) its diameter and measure,
respectively. The linear space of all polynomial of degree < n is denoted
by P,, where in the multivariate case, n = [ny,...,n,,] is understood
as the coordinate degree. In estimates, constants const(pi, ps,...) de-
pending on parameters p, are always positive. If the constants are clear
form the context, we drop them and use the symbols <, >, and <, in-
stead. The p-norm of a vector or sequence C' = {¢ }rex is denoted by
IC||p.x, and the L,-norm of a function u on a domain D by ||u||,p-
Finally, || - ||,.¢,p is the norm of the Sobolev space W£(D), see [1].

2. SOME FACTS ABOUT B-SPLINES

The material presented in this section is well known, but briefly
compiled here for later reference and convenience of the reader. For
given degree n and a bi-infinite nondecreasing knot sequence

trooety <tpp <o

we denote by b, k € Z, the B-splines of degree n with support

supp by, = [tk thini1]-

We choose the standard normalization ), b, = 1 and assume ¢, <
tkint1 to avoid degenerate cases, i.e., the multiplicity my of the knot
tr, is at most n+1. As is well-known [2], the B-splines {by, k € Z} form
a basis for the piecewise polynomials of degree < n which are (n—my)-
times continuously differentiable at ¢;. If higher order derivatives are
required at a knot, they are understood as right-sided limits of adjacent
polynomials. Moreover, the B-spline basis is uniformly stable,

Z Ckbk

kEZ

(1) const(n) 7H|C|looz < <|Cls0,z-

oo,R

Hence, in the bi-infinite case, the condition number of the basis does
not depend on the knot sequence t.

The estimate (1) and many other results concerning stability and ap-
proximation power of B-splines can be proven using dual functionals.
From the plethora of possible constructions, we consider here the clas-
sical definition of de Boor and Fix [3], which is explicit and particularly
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elegant. For k € Z and 7y, € [tg, tgns1), we define
n 1 n
n— n—~{
(2) Arf = Z(—l) ) () O (), (@) = ] H(tk—i—K — ).
£=0 =1
The essential properties of this family of functionals are bi-orthogonality
and uniform boundedness on the space of polynomials of degree < n.

Theorem 1 (Dual Functionals for B-Splines). i) B-splines and de Boor-
Fiz functionals are bi-orthogonal,

by = 5197]9/, /C, K eZ.

i) If Q is an interval in the support of by with length bounded by |Q| >
a| supp by | for some constant o € (0,1], then

|Akp| < const(n, @)||plle,g, P E Pa.

Proof. The proof of bi-orthogonality is based on Taylor’s theorem and
Marsden’s identity, see [2] for details. To verify boundedness, we note
that definition (2) is compatible with translation and scaling. More
precisely, if A, is the dual functional corresponding to the knot sequence
t := ht + s and the parameter 7, := h7, + s, then

Mef = Mef ((- = s)/h).

This implies that we may assume @ = [0, 1] without loss of general-
ity. It is easily checked that ||{g||som,0,1] < const(n)|tpiner — " <
const(n)a~ ™. Thus, by equivalence of norms on P,,

[Aep| < const(12) |9kl oo,n,j0,1) 1Pl c0,m.f0,1) < const(n, a)||plloo,fo,1)-
O

Clearly, if we choose () as the largest grid interval in supp by, we can
take @« = 1/(n + 1), and the constant in the estimate depends only
on the degree. With this choice and 7, € ) we obtain a proof for the
nontrivial left inequality of the stability result (1). We simply observe
that, by bi-orthogonality,

k= Aq, q= ch’bk’
k/
for any spline ¢, and that Theorem 1 applies since ¢ is a polynomial on
Q.

However, it should be noted that this argument can fail for finite knot
sequences. For a B-spline with exterior knots, the largest grid interval
() may lie outside the natural domain of definition D of the spline space.
Hence, as is easily overlooked, for finite dimensional spline spaces, (1)
does not hold. This problem can be eliminated by requiring that the
mesh ratio, i.e., the maximal quotient of the lengths of adjacent grid
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cells, is bounded by a constant p. In this case, every grid cell J; in the
support of by has length

|Qk| = const(n, o)| supp by,

and the constant in (1) has to be replaced by const(n, ).
Finally, with the aid of dual functionals, we can define a canonical
projector onto splines via

Pfi=>> (\ef)bx.
k
Because of bi-orthogonality, P reproduces B-splines, which implies in

particular polynomial precision, i.e.,

(3) Pp=>) (Mp)br =p
k

for all polynomials p € P,,.

3. STABILITY VIA EXTENSION

As we have seen, stability problems are caused by B-splines with
small support in D. While the mesh ratio can be controlled quite
easily, the support of some B-splines in D can still become small if D
is not a union of grid cells. This phenomenon is persistent only in the
multivariate case, but shall at first be studied in one variable for the
sake of simplicity.

Let

chbk(l‘), rzeD,
keK

be a spline on a bounded interval D C R, where the index set K
comprises all relevant B-splines with some support in D. The example
of a quadratic spline space on D = (0, 1), depicted in Figure 3, captures
the essential difficulty. If the interval endpoints do not coincide with
knots, there exist outer B-splines

bj, ] € J,
for which supp b; does not contain an inner grid cell. These outer B-
splines cause stability problems even if the mesh ratio is small. In the
example, we have J = {—1,0} and
boi(z) = O(*), bo(z) = Ofe)
for z € D. Hence, the first two coefficients of a spline ¢ with ||¢||o0,p <1
can become arbitrarily large as € — 0. For the inner B-splines

b, 1€l
supp b; contains at least one inner grid cell. In the example, I =

{1,2,3,4}. This part of the basis is stable regardless of the size of
€.
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FI1GURE 3. Inner B-splines b;, ¢ € I, and outer B-splines
b;j, 7 € J, on a bounded interval D.

We would like to select a subspace with a stable, local basis while
maintaining polynomial precision. This is accomplished by adjoining
outer to inner B-splines via appropriate linear combinations. To this
end, for an outer index 5 € J, we denote the inner grid cell closest to
supp b; by (); and define the set of related inner indices by

I(j):=={iel: Qj Csuppb;}.

It is easy to see that I(j) consists of n + 1 consecutive inner indices,
I(5) = {¢, ..., +n}. Conversely, for an inner index i, we define the
set of related outer indices by

J(@)={jeJ:iel(j)}
In the example, Q_; = Qo = [, t4] and
I(-1)=1(0) ={1,2,3}, J(1)=J(2)=J@3)={-1,0}, J(4)=0.
With these notions, we define extended B-splines as follows:

Definition 1. Fori € 1,5 € J(i), and Q; as defined above, we de-
note by p;; the polynomial which agrees with b; on @); and define the
extension coefficients

(4) ei,j = )\jpz’,j-
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Then, the extended B-splines (eb-splines) are
B, =b;+ Z ei,jbja 1€ 1.

j€J (@)
The linear span of eb-splines is denoted by B.

The computation of the extension coefficients is straightforward: We
generate the polynomials p; ; in Taylor form using the recurrence rela-
tion for B-splines. Expanding at an arbitrary point 7;, which appears
in the definition of the dual functional );, the coefficients yield the
relevant data for applying formula (2). This procedure is slightly more
involved than for uniform knots (¢, = kh), where we have the simple
expression

=l —v
tv#i
derived via Lagrange interpolation, see [8] for details. In any case, the
overhead is small since only few B-splines near the interval endpoints
are extended.

We show now that extended B-splines inherit all properties of stan-
dard B-splines which are crucial for approximation purposes, namely
locality, boundedness, existence of dual functionals, and polynomial
precision.

Theorem 2 (Locality and Boundedness). i) The distance between i €
I and j € J(i) is bounded by |i — j| < 2n+ 1. In particular,

(5) | supp B;| < const(n, 0)| supp b;|.
ii) eb-splines are uniformly bounded by

(6) ||B§l)||007D < const(n, g)|supp bi|_l.

Proof. To prove locality, we consider, e.g., the left boundary of D. If 4
is the smallest inner index, then 79 —n — 2 is an index which certainly
corresponds to a non-relevant B-spline. Hence, 1o —n—1 < j < 19, and
the corresponding set of inner indices is I(j) = ip + {0,...,n}. The
bound on the number of outer B-splines b; attached to b; combined
with the bound g on the mesh ratio yields (5).

To prove the second statement, we first show that the extension coef-
ficients are uniformly bounded. The construction of eb-splines is invari-
ant under affine transformations of the abscissa. Hence, for j € J and
(), the nearest inner grid cell, we may assume (); = [0, 1]. Being part of
a standard B-spline, the polynomial p; ; is bounded by ||p; j||oc,01] < 1.
This implies that p; j(x) is bounded by a constant depending only on
n and x. By (5), |z| < const(n, o) for « € supp b;. So, we obtain using
Theorem 1 with () = supp b;

leij| = [Ajpiz| < const(n)||pijl|eosupps; < const(n, o).
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Boundedness of extension coefficients combined with the known esti-
mate ||b,(f)||oo,R < const(n, g)| supp bx|~¢, which holds for standard B-
splines, proves the claim. O

Now, we show that {\;,7 € '} is a family of bounded dual functionals
for the eb-splines {B;,i € I}:

Theorem 3 (Dual Functionals for eb-Splines). i) eb-splines and de Boor-
Fiz functionals are bi-orthogonal,

Nibyr = 52',2'1, i, =
i) If Q is an inner grid cell in the support of b;, then
|)\7,p| S COHSt(n, Q)Hp“OO,QJ p € Pn

Proof. Bi-orthogonality follows from Azby = d5 and the definition of
By since \;b; = 0 for j € J, while boundedness just recalls Theorem 1.
O

The existence of dual functionals implies linear independence, i.e.,
eb-splines form a basis for the spline space B. Moreover, like standard
B-splines, eb-splines are a [ocal basis in the sense that for any grid cell
@ intersecting D the eb-splines which do not vanish on () are linearly
independent. This can easily be shown by selecting 7; € Q@ N D for all
dual functionals \; corresponding to eb-splines with () in their support.
Since all polynomials p € P,, are contained in B, as will follow from the
next theorem, there exist exactly n + 1 eb-splines which do not vanish
on (), and they span the space of all polynomials of degree < n on Q).

Defining the canonical projector P onto B by

Pf:=) (\f)Bi,
icl
we can establish polynomial precision.
Theorem 4 (Polynomial Precision). For all polynomials p € Py,
Pp =p.

In particular, the spline space B contains all polynomials of degree < n
on D.

Proof. Substituting the definition of B; and interchanging sums, we
have for z € D

Pp=>"(Ap)Bi(z) = > (Ap)bi+ > | > eij(hip)| by

iel el JeJ |i€l(j)
Now, because of (3), Pp = p is equivalent to

(7) Z eij(Aip) = Ajp.

i€l(y)
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Since both sides are linear in p, it suffices to check this identity for a ba-
sis. Taking p = py ; with ¢’ € I(j) and 7; € @Q;, we have \jpy j = \jby =
d;.i7, and (7) reduces to the definition (4) of the extension coefficients
€ij- Ol

After establishing locality and boundedness, dual functionals, and
polynomial precision, we have all essential ingredients at our disposal
to derive standard results on stability and approximation power. Ex-
emplarily, we establish optimal convergence rates when approximating
smooth functions.

Theorem 5 (Approximation power). For xz € D, we denote by Q the
unton of supports of eb-splines containing x, and by h the length of the
grid cell containing x. Then, for a smooth function f, the approxima-
tion error d := Pf — f is pointwise bounded by
‘d(l) (x)‘ < const(n, o) Hf(”“)HOO o Bt

Proof. The proof is routine. We denote by I the set of inner indices
which are relevant for x. Since I contains n+ 1 elements, |Q| < h. Let
p € P, be the Taylor polynomial of f at x. Then, with A := f — p,

1AD ] g = F™ ] g A1

Further, by polynomial precision and boundedness of eb-splines,

|dO ()| = [(PA) O ()| = ‘Z(AiA)Bfl)(ﬂf) < max [\AATE
iel el

It remains to consider A\;A. The point 7; in the definition of \; lies in
Q). Hence, 1/)@_“(71-)‘ < h*, and

7

NAL< ST [ m)| [AO@)] 2 | Fm) o b
=0

0

We note that similar results for the approximation of less regular func-
tions can be obtained exactly in the same way using dual functionals
which are bounded, e.g., with respect to the sup-norm. The special
choice that we made here is merely due to the explicit character of
the de Boor-Fix functionals, which is favorable for the definition of
extension coefficients.

Summarizing, the material presented in this section admits to derive
standard approximation and stability properties for spline spaces with
small parameter intervals at the endpoints of D. The modifications
are crucial for splines in several variables, where we can in general not
align the grid lines to the domain boundaries.
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4. MULTIVARIATE WEB-SPLINES

Generalizing the univariate definitions and results of the last section
to m > 2 variables is straightforward. The arguments are completely
analogous. Merely the notation needs to be adapted to the multivariate
setting.

We consider a tensor product grid in R™ with knot sequences ¢ =
[t ... t™],

e S <
and denote by
by = b (@) == (1) - O (), K € Z™,

the corresponding tensor product B-splines of degree n = [ny, ..., ny,].
For a grid cell () with side lengths [y, ..., [, we define its distortion by

max/{,/l,.
v,V

The distortion of the knot sequence t is the maximal distortion of its
grid cells, and ¢ will denote an upper bound on it. Like the mesh
ratio in the univariate case, the distortion quantifies the deviation from
a uniform setting in the multivariate case. It is easy to see that if
the distortion of ¢ is bounded by ¢, then the mesh ratios of all knot
sequences t', ..., t™ are bounded by 4§2.

For a bounded domain D C R™ we define the sets K, I, J of relevant,
inner, and outer indices as in the univariate case (cf. also Figure 1):

K:={keZ"™:Dnsuppb; # 0}
I:={i € Z™ : supp b; contains an inner grid cell}
J = K\I.

For j € J, the inner grid cell whose midpoint is closest to the midpoint
of supp b; is denoted by ();. The B-splines which do not vanish on Q);
have indices in

I(G) =I1'(G) x -~ x I"(j) = £+ {0,... ,n}™

with ¢ = ((j) € Z™, see Figure 4. The complementary sets .J(i) are
defined as before.

The multivariate de Boor-Fix functionals are constructed from the
univariate ones as follows: For k € Z™ and 7, = |74y, ..., Tk, ]

®) Aei= A o0 AT,

where A} is acting on the vth variable. It is easily checked that bi-
orthogonality and uniform boundedness are kept.

Except for the incorporation of an additional weight function, the
definition of multivariate extended B-splines is completely analogous
to the univariate case:



12 KLAUS HOLLIG AND ULRICH REIF

1Y\
N

JL X
1) \

F1cUure 4. Grid points (¢} ,t2), i € I(j), for a bilin-

117 712
ear outer B-spline b;. The nearest inner grid cell ¢); is

highlighted, and the point x; marked by a cross.

Definition 2. Fori € 1,5 € J(i), and Q; defined as above, we de-
note by p;; the polynomial which agrees with b; on Q); and define the
extension coefficients

€ij = AjDij-

Further, let w be a positive weight function which is smooth on D and
equivalent to some power r > 0 of the boundary distance function,

9) w(z) < dist(xz,0D)",

and denote by x; the center of an inner grid cell in supp b;. Then, the
weighted extended B-splines (web-splines) are defined by

B; := ad b; + Z ei,jbj , 1€l
)

w(zi) e
The linear span of web-splines is the web-space B.

In particular, the weight function is essential for finite element ap-
plications. It allows us to satisfy homogeneous Dirichlet boundary
conditions simply by requiring that w vanishes on the appropriate com-
ponent of the boundary 0D. Using such weighted finite element bases
was already suggested by Kantorowitsch and Krylow [12] and has been
extensively studied by Rvachev et al. (cf., e.g., the survey [15] and
the literature cited there). Rvachev developed the so-called R-function
method, which is particularly suited for domains constructed from sim-
ple primitives with Boolean operations. For planar domains bounded
piecewise by NURBS-curves, weight functions are constructed in [14].
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With dual functionals according to (8) and p; () = [, pi,.. (zv),

we obtain
m

€ij = ()\1 pl,] H )‘J,,pz,,,],, = H €iy v

v=1

That is, multivariate extension Coefﬁ(:lents can be conveniently com-
puted as products of univariate ones.

Again, the web-splines B; inherit all basic properties of standard
nonuniform B-splines, except positivity. However, constants typically
depend now on a bound d on the distortion instead of the mesh ratio.

Theorem 6 (Locality and Boundedness). i) If D C R™ is a Lipschitz-
domain, then the distance between i € I and j € J(i) is bounded by
li — jlloo < const(n,m,d, D). In particular,

| supp B;| < const(n,m,d, D)|supp b;|
p(supp B;) < const(n, m,d, D)u(supp b;).
ii) web-splines are uniformly bounded by
(10) | Billoo,p < const(n,m,d, D, w).

Proof. To prove the first statement, we observe that the ratio of di-
ameters of any two grid cells @, Q' is bounded by |Q]/|Q'| < ¢%. In
particular, if ||t|| denotes the maximal diameter of grid cells, 62||¢]| <
Q] < 6%||t||. The diameter of @ is bounded in terms of its side
lengths [y,...,0, by |Q| < dy/ml,. Since the domain is assumed to
be Lipschitz, there exist constants «, hy depending on D such that
for all h € (0,hy) and = € D there exists a point y € D with
|z —yll2 < h < adist(y, 0D).

If ||t|] < ho/(cd?), we consider an outer index j € J and a point
z € suppb; N D. With h := ||t||ad? and y as above, the grid cell Q
containing y is inner since |Q| < ||t[|0* = h/a < dist(y, dD). Since ||z —
y|l < ||t]|, the distance between suppb; and @ is < ||t||. Consequently,
the distance between supp b; and the nearest inner grid cell Q; is < [|¢]|.
All side lengths of all B-splines are > ||¢||. So, the difference between j
and inner indices i € I(j) is < 1.

If [|£|| > ho/(cd?), then the side lengths [y,. .., I, of any grid cell @
are bounded by

I
- 6\/_ —8ym T addy/m
Since D is bounded, the lower bound on the side lengths yields an upper
bound on the number #K of relevant indices, and ||i — j||oc < #K <
const(n, m,d, D). The inequalities for the diameter and the measure of
supp B; follow immediately from the boundedness of the number outer
B-splines attached to b; and the boundedness of distortion.

L,
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To prove the second statement, we conclude from (9) that the weight

factor in the definition of web-splines is bounded by

=< 1.

‘ ‘ ¢

’U)(ZL‘Z) ‘oo,supp B;

It remains to show that the extension coefficients are uniformly bounded
by

le5,j] < const(n,m, 4, D),

which can be done following exactly the arguments given in the uni-
variate case. 0

It can be shown by carefully constructed examples that the upper
bound on ||i — j||« in fact depends on the distortion. However, such
cases are rarely encountered in applications. The examples in Section 5
show that ||i — j||o is typically close to n if the knot sequences are fine.

The dual functionals need to be adapted to the weight function.
With z; as in Definition 2, we define the weighted functionals

Nif = w(z)N(f/w), i€l

Uniform boundedness is now required on the space of weighted poly-
nomials. On the inner grid cell () C supp B; containing x; the weight
function can get arbitrarily small. The resulting problem can be cir-
cumvented by restriction to a sub-interval Q of ) which has the same
center, but halved side lengths. From (9) we conclude that

<1
OO7Q

=

with constants depending on § and w. Now, we are prepared to estab-
lish the analogue of theorems 1 and 3 for web-splines.

Theorem 7 (Dual Functionals for web-Splines). i) web-splines and weighted
de Boor-Fix functionals are bi-orthogonal,

N, By = 6i,i'7 7, i'el.

ii) If Q is the inner grid cell in the support of B; containing x;, and Q
the half-size sub-interval as defined above, then

|Ai(wp)| < const(n, o, w)||wpll,a, P E P

Proof. Bi-orthogonality is verified by inspection. To show boundedness
on weighted polynomials, we note that the multivariate de Boor-Fix
functionals are bounded by

|Aip| < const(n, 6)[|pll o-
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Further, with (11),

|Ai(wp)| = w(w;) [Nip] < const(n, 0)w(z:)||p]l.0
< const(n, o) [|w(zi)/wl ollwpllw.o
< const(n, o, w)||wpl|, o-

O

The canonical projector P onto the spline space B is defined as before
by

Pf:=> (Af)B:.
iel
Now, polynomial precision is replaced by weighted polynomial preci-
sion.

Theorem 8 (Weighted Polynomial Precision). For all polynomialsp €
P,

P(wp) = wp.

In particular, the spline space B contains all weighted polynomials of
degree < n on D.

Proof. We obtain

P(wp) = ZAi(wp)Bi =w Z()\ip) b; + Z e jb; | = wp,
)

icl icl jeJ(i

where the last identity is verified exactly as in the proof of Theorem 4.
O

Proving approximation results for weighted spline spaces is slightly
more involved than in standard cases. The technical details are de-
scribed in [7]. Here, we consider stability of the web-basis and show
the following generalization of (1) and (10):

Theorem 9 (Stability). Appropriately normalized, web-splines are uni-
formly stable with respect to p-norms, i.e.,

Z &) (%’Bi)

el

1Clp,r =

)

p,D

where the normalization factor is

p(supp b;)~? for 1 < p < oo
Vi =
1 for p = oo,

and the constants depend only on n,m,d, D, w.
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Proof. The line of arguments is well known: Since the support of each
web-spline contains only < 1 grid cells, it suffices to prove the local
estimates

it Aag| = llall,. g IeBill,p <1,

where ¢ =), ¢;(v:B;) and Q is the half-size sub-interval of the inner
grid cell containing z;. The first inequality is invariant under affine
transformations of the arguments. Hence, we may assume Q= [0, 1]™.
By Theorem 6, v; ' = u(supp b;)'/? < 1. Further, since ¢ is a weighted
polynomial on [0, 1]™, we can use Theorem 7 and equivalence of norms
to obtain |Aig] = ¢/, = llgllpoum-

For p = oo, the second inequality is just (10). For p < oo, Theorem 6
yields

=<1

— Y

f1(supp B¢)>1/ P

YiBillp, j(
1iBill.o f1(supp b;)

and the proof is complete. O

5. APPLICATIONS

In this section, we discuss two typical applications of web-splines.
First, we consider a scattered data approximation problem on a trimmed
domain. Second, we illustrate their performance as finite elements at
hand of a simple model problem.

Scattered data approximation problems on trimmed domains occur,
for instance, in reverse engineering applications. Let D C R? be a
bounded domain. For given data points (z,,y,,2,) € D X R we seek
a bivariate spline ¢ : D — R which approximates in a least squares
sense:

> (q(@,9) — 2,)° — min.

v

Figure 5 shows a domain and the location of data points together with
knot lines, which are aligned with the boundary of D in a natural way.
In the example, height values are sampled from the smooth function
z = f(z,y) = 2cos(x/3) cos(y/2). No weighting is required, so we set
w = 1. On the left hand side, Figure 6 shows the best approximating
cubic web-spline ¢yen. In contrast, on the right hand side, standard
B-splines are used to obtain the approximation ¢gq. The artifacts at
the rounded corners of the domain are clearly visible. The point is
that outer B-spline coefficients may get very large in order to slightly
reduce the approximation error at the data points near the boundary.
The advantages of the web-method become obvious when comparing
the Euclidean error at the data points, the maximal error on D, and



NONUNIFORM WEB-SPLINES 17

the condition number of the Gramian matrix G:

| Gweb (X, Y) — Z||o = 8.6e-4,

||QWeb - f||oo,D ~ 2-26'47
cond Gy, & 7.7€3,

n
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gsta(X,Y) — Z||> ~ 8.2e-4

gsta — flloo.p = 2.8e-1
cond Ggiq =~ 6.2¢13.

2 -4

FIGURE 5. Domain with grid lines and scattered
data points (left) and sampled function f(z) =

2 cos(x/3) cos(y/2) (right.)
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FIGURE 6. Approximation with extension (left) and

without extension (right).

As a second example, we consider Poisson’s equation with Dirichlet

boundary conditions,

(12)

—Au(m,y) = f(xay) = 25‘%2 on D7

uw=0at 0D.

The domain D is the unit disk with a small circular hole with radius r =
0.04 located at (zg,yo) = (—1/2,—1/2), see Figure 7, left. Non-uniform
knot spacing is used in order to resolve the expected high curvature of
the solution near the small hole. In this case, an appropriate weight

function is easily constructed,

w(z,y) = (1 —2* —y®) ((z — 20)* + (y — 0)* — %),
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see Figure 8, left. Each grid cell that intersects the boundary has an
adjacent inner grid cell. That is, despite the relatively high distortion
0 =~ 18, the difference between inner and outer indices is optimally
small, ||i — j||oc < n+ 1 =>5. The coefficient vector U of an approx-
imate solution is obtained by solving the Galerkin system GU = F
resulting from the standard finite element discretization of (12). The
moderate condition number cond Gy, &~ 1700, obtained after scaling
the diagonal to 1, admits efficient solution with standard solvers. The
approximation uwep that we obtain using quartic web-splines is fairly
accurate in view of the small number of coefficients,

|ttweb — ©]|oo,p A 3.2e-4  with ~ 450 coefficients,
see also Figure 9, left. Let us compare this result with uniform web-
splines and standard hat functions.

e For uniform knot sequences and equal degree n = 4, a rather fine
grid is requested to obtain an approximation wu,, with similar
accuracy,

|| tbuni — ]|oo,p = 3.7Te-4  with &~ 5250 coefficients.

On the right hand side, Figure 9 shows that the error is highly
concentrated near the hole, i.e., the global fine resolution is in fact
not necessary.

e The MATLAB pde-toolbox, which uses standard algorithms based
on a triangulation of the domain and piecewise linear basis func-
tions, provides a comparable approximation ua only for a very
fine triangulation,

|lua — ul|oo,p = 4.8¢-4  with &~ 16.000 coefficients,

see also Figure 7, right.
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FIGURE 8. Weight function w(left) and approximation
Uweb (Tight).

FIGUure 9. Error for non-uniform knots (left) and for
uniform knots (right).

The examples presented in this section illustrate that non-uniform
web-splines are a competitive tool for approximating discrete data and
solutions of pdes.

6. CONCLUSION

The web-method is a new meshless finite element technique combin-
ing the advantages of B-splines and standard mesh-based trial functions
(cf. http://www.web.spline.de). In particular, highly accurate numeri-
cal solutions are possible with relatively few parameters and boundary
conditions are matched exactly. Moreover, smoothness and approxi-
mation order can be chosen arbitrarily without significantly increasing
the computational complexity.

Initially, web-splines were defined for uniform grids. As is shown in
this paper, the concept naturally extends to arbitrary knot sequences.
This provides additional flexibility for meeting design specifications and
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adapting the spline basis to the structure of the approximated data
or functions. Perhaps more importantly, the nonuniform web-method
conforms to the NURBS-standard, used in many industrial applica-
tions. We hope that our work will contribute to unifying methods in
CAD/CAM and FEM, advertising B-splines as a convenient tool for
all stages of the manufacturing process.

Acknowledgement: We would like to thank Bernhard Mofiner for
implementing nonuniform web-splines and also Joachim Wipper and
Christian Apprich for helping with the figures.
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