Notes on Numerical Methods for Two-Dimensional Neutron
Transport Equation

Mohammed Seaid*

Fachbereich Mathematik
TU Darmstadt, 64289 Darmstadt, Germany

Abstract

Detailed numerical methods for two-dimensional neutron transport equation are pre-
sented. Using the discrete ordinates for angle collocation and the Diamond differencing for
space discretization, the neutron transport equation is transformed to a system of sparse
matrices. To solve the final system we formulate the source iteration, a full BICGSTAB and
GMRES algorithms. Additionally, the diffusion limit and the diffusion synthetic accelera-
tion are included in these notes. The robustness, efficiency and convergence rates of these
methods are illustrated by two numerical examples.

Keywords. Neutron transport equation, Discrete ordinates method, Diamond differencing,

Diffusion limit, Diffusion synthetic acceleration, Linear algebra

AMS subject classifications. 65R20; 65N06; 65F10; 82D75

Contents

1 Introduction

2 Discrete Ordinates Method

3 Space Discretization

4 Iterative Methods

5 Diffusion Synthetic Acceleration Method
6 Numerical Examples

7 Conclusions

References

Appendix A: The Ray Effect

*E-mail:seaid@mathematik.tu-darmstadt.de

12

16

18

27

31

31

1. Introduction 2

Appendix B: A Fortran Code 34

1 Introduction

The problem of non-energetic transport of neutrons in a substance surrounded by vacuum can
be formulation by the following integro-differential equation

la—w—i-Q-V'g/J—I—(U—i-H)'L/} = 2| plt,x, Q) +q(t,x,Q), in [0,T) x D x S2,
v Ot am J g2
P(t,x, Q) = g(t,x,0Q), on [0,T) x 0D~ x 82, (1)
$(0,%,Q) = 9°(x,9), in D xS8?

where D is a space domain with smooth boundary 0D, [0,T) is a time interval, and S? is the
unit sphere. Here 1 (t,x,Q) is the angular flux at time ¢ and position point x := (z,y,2)” in
the direction Q := (u,&,n)! with fixed speed v, 0 := o(t,x) is the scattering cross section,
k := k(t,x) is the absorption cross section, and ¢(¢,x,(2) is an external source. ¢(t,x,$2) and
$°(x,) are known boundary and initial functions, respectively. We assume that o and s are
non-negative functions. The boundary region 0D~ is defined as

0D~ :={x € 0D| n(x)-Q <0}, (2)

with n(x) is the outward normal at the point x on dD. Despite the equation (1) is linear,
computing its numerical solution is not trivial due to:

1. The large number of dependent unknowns. In general, the solution ¢ in (1) is a function of
eight independent variables, three space variables (z,y, z), three angle variables (u,&,7),
one energy variable F, and one time variable t. After discretizing these variables the
computer memory requirements and the computational cost become drastically immense.
This imposes severe restrictions on computational methods for (1).

2. In many neutron transport equation (1), the solution is not a smooth function of the
dependent variables (¢,x, E,2). Steep fronts and even shock discontinuities can arise,
which need to be resolved accurately in applications and often cause severe numerical
difficulties.

3. It is well known that the equation (1) change the behaviour from a physical situation to
another. For example, the equation (1) behaves like hyperbolic in void-like regions; in
optically dense region, it behaves like elliptic for steady-state case and parabolic for time-
dependent case. To construct an unified computational algorithm that resolve accurately
all the behaviour cases is extremely difficult.

For physical interest, we define a scattering ratio v and an optical coefficient ¢ associated to the

equation (1) as

yi= ng(ﬁ> and 9 := min <U(x) + m(x)> diam(D), (3)

respectively. diam(D) is the diameter of the space domain D. Two extreme situations in
computational neutron transport remain active field of research

1. Introduction 3

1. v =1, pure scattering, no absorption (x = 0)
2. ¥ > 1, optically thick, dense absorption (k > 1)

and the conventional methods suffer some difficulties to solve accurately these two cases as
mentioned out in [2, 1, 18]. For simplicity in presentation, we consider in these notes only the
two-dimensional version of (1). Thus, D C IR?, x := (z,y)’, and Q := (,7)T. By introducing
the scalar flux ¢

$(x) ;:ﬁ R (4)

the two-dimensional time-independent neutron transport equation reads

0 0
Na_fi"‘na_f;f—'_(‘j"_“)w = od(z,y) +q(z,y,p,m), in DX827

(5)
Pz, y,) = glx,y,1,n), on 0D x S2.

The aim of these notes is to give a detailed overview on the quality and efficiency of classical and
modern algorithms in computational neutron transport. At first we will show how to discretize
the equation (5) in angle and space. By the example of discrete ordinates and Diamond difference
methods, we will demonstrate how to develop iterative solvers for the fully discrete system.
Many studies of these solvers have been done in a number of books and papers by, among
others, [18, 1, 2, 22, 21, 5, 3] and the herein cited references.

Our notes contain several approaches to the construction of a suitable algorithm which can
serve as black-box solver for the general neutron transport equation (1). The easiest possibility is
the use of Richardson iteration known by astrophysicists as A-iteration. This strategy has been
theoretically analysed in details in [1, 18]. Another basic solver is the P;/Diffusion approach,
which means the equation (1) is replaced by a scaled diffusion problem such that at the limit
tend to approximate the solution of (1). Generalized P;/Diffusion and other simplified Py
approximations have been introduced in [17, 15, 24]. Iterative solvers for linear systems based
on Krylov subspace method like the BICGSTAB [25] or GMRES [23] are also implemented in
these notes. Generalzing the idea of constructing preconditioner for an accelerated A-iteration
we show how to use the P;/Diffusion approach as an optimal preconditioner for a given A-
iteration. The resulting solver known as diffusion synthetic acceleration was introduced in [2]
and studied from a linear algebra point of view in [5, 3]. Finally we apply these solvers to
various test cases from neutron transport problem. Dependent on the scattering ratio v and the
optical coefficient 9 of the problem under consideration, we can identify the most suitable solver
in terms of accuracy and computing cost.

These notes are organized as follows: In section 2 the discrete ordinates method is presented.
The space discretization is formulated in section 3. Iterative schemes for the full discrete problem
are discussed in section 4. The section 5 is devoted to the diffusion limit and the diffusion
synthetic acceleration method. Section 6 contains numerical results and comparison between
the different algorithms in terms of accuracy and efficiency. Finally some conclusions are listed
in section 7. For sake of completeness, the ray effect of the discrete ordinates is shown by an
example in appendix A and a Fortran code for the source iteration is set as appendix B.

2. Discrete Ordinates Method 4

2 Discrete Ordinates Method

The method of discrete ordinates was introduced and used in [6] to solve well many basic
problems in the area of radiative transfer. The method consists of replacing the integral terms
in some form of the Boltzmann equation by numerical quadrature approximations of those
terms, and then a resulting set of ordinary differential equations is solved. In much of the
literature [6, 22, 21, 18] the discrete ordinate method is detailed only for the one-dimensional
slab geometry case and the theoretical results remain valid for the multi-dimensional cases. In
this section we formulate and overview this method for the two-dimensional model (5).

A standard approach for the integral expression over the unit sphere S? in (12) is the quadra-
ture rules of the form

P(x, Q)dY ~ z)wxﬁ' (6)

52

where Q) := (u;, &, m)7, for Il = 1,2,..., N, with N = n(n+2), and n is the number of directions
cosines. Since Q) € S?, we have

4@ 4n?=1, forall 1=1,2,... N,

We assume n an even number of quadrature points so that the points (u;,&;, ;) are nonzero,
symmetric about the origin, and

-1
pi=pi+ 2m(2 — 33). (7)

For the weights w; we assume all are positive and satisfy

N N N N
Z wy = 4m, Z wip = 0, Z w§ =0, and Z wym = 0. (8)
-1 -1 -1 -1

A simple way to guaranty the conditions (8) is to set all weights positive and equal to 4T
Note that the approximation (6) can be derived using the spherical coordinates. If the
direction vector €2 := (sin ¢ cos 6, sin ¢ sin#, cos), then

T 2T
Ve = [" 00t sin g
S2 0 0

The trapezoidal rule for each one-dimensional integral separately yields

™ 27 L K
| [oot singds = 35S wnistx 01,00, (9)
0 0

=1 k=1

where the quadrature weights
i

2LK
By taking the sum over & in wy, the expression (9) is equivalent to the quadrature rule (6) with

wi = sin .

wl:Zwlk, and N = LK.

3. Space Discretization 5

Other methods to discretize the unit sphere S? are the so-called S,-direction sets. A review
dealing with the S, sets can be found in [8], and a comparison between different S,, sets for
radiative transfer have been done in [10]. These S, sets satisfy the conditions (7) and (8).
Furthermore, they are arranged on n/2 levels, invariant under 90° rotations, and they have
equal positive weights, see figure 1 for an illustration of Sis set in two-dimensional case. Here
the direction ¢ is omitted.

H] H3 Ha Ug [u
Figure 1: The Sis-direction set for the two-dimensional problems.

Let Sy be a chosen set of discrete directions in the unit sphere S?, then the two-dimensional
direction set is just the simplification of one direction in Sy such that the simplified set is
symmetric, has nonzero direction, and with positive weights. Hence a semi-discrete formulation
of the neutron transport equation (5) is given by

)) .
‘”% +77lalyl+ (c+r)Y = od(z,y) +al@,y), in DxSg,
(10)

hi(z,y) = alz,y), on 9JD” x Sg.

¢l($a y)a Ql(ma y) and gl(ma y) are approximations to Q,b(.’L', Y, ki, nl)a q(ma Y, i,y 77!) and g(xa Yy K1y nl)a
respectively. Note that the angular discretization (10) transforms the original integro-differential

equation (5) into a system of N coupled differential equations.

Remark 1 One of our favourite Sy-direction set is the C-60 known as buckyball in [7]. the
set contains 60 equal weighted directions with high symmetry configuration. The C-60 set is
reproduced in table 1. In our numerical examples we used others S, sets and C-60 yields the
best results. However, the main disadvantage using these sets is we can not refine the ordinates
within the same set as we can do using the usual trapezoidal or Gauss quadrature rules.

3 Space Discretization

The discrete ordinates method can be applied in combination with finite elements, finite dif-
ferences or spectral methods. In [5] the author combines the Petrov-Galerkin method with the
discrete ordinates collocation for the neutron transport equation (1). Since it is easier to combine

3. Space Discretization

Table 1: The C-60 directions set used in our numerical test problems.

o~

M i Wi

[Ly m wj

-0.9642754578 -0.1716393065 0.2094395102
-0.9642754578 -0.1716393065 0.2094395102
-0.8987150765 0.1716393065 0.2094395102
-0.8987150765 0.1716393065 0.2094395102
-0.8331546952 0.5149179195 0.2094395102
-0.8331546952 0.5149179195 0.2094395102
-0.7926361513 -0.5149179195 0.2094395102
-0.7926361513 -0.5149179195 0.2094395102
-0.6865572261 -0.7270757700 0.2094395102
10 -0.6615153887 0.1716393065 0.2094395102
11 -0.6615153887 0.1716393065 0.2094395102
12 -0.5554364635 -0.5149179195 0.2094395102
13 -0.5554364635 0.7270757700 0.2094395102
14 -0.5554364635 0.7270757700 0.2094395102
15 -0.5554364635 -0.5149179195 0.2094395102
16 -0.4898760822 -0.1716393065 0.2094395102
17 -0.4898760822 -0.1716393065 0.2094395102
18 -0.4493575383 0.5149179195 0.2094395102
19 -0.4493575383 0.5149179195 0.2094395102
20 -0.3432786130 -0.9392336205 0.2094395102
21 -0.2777182317 0.9392336205 0.2094395102
22 -0.2777182317 0.9392336205 0.2094395102
23 -0.2121578505 -0.7270757700 0.2094395102
24 -0.2121578505 -0.7270757700 0.2094395102
25 -0.1060789252 -0.1716393065 0.2094395102
26 -0.1060789252 -0.9392336205 0.2094395102
27 -0.1060789252 -0.9392336205 0.2094395102
28 -0.1060789252 -0.1716393065 0.2094395102
29 -0.0655603813 0.5149179195 0.2094395102
30 -0.0655603813 0.5149179195 0.2094395102

OO WN

31 0.0655603813 -0.5149179195 0.2094395102
32 0.0655603813 -0.5149179195 0.2094395102
33 0.1060789252 0.1716393065 0.2094395102
34 0.1060789252 0.9392336205 0.2094395102
35 0.1060789252 0.9392336205 0.2094395102
36 0.1060789252 0.1716393065 0.2094395102
37 0.2121578505 0.7270757700 0.2094395102
38 0.2121578505 0.7270757700 0.2094395102
39 0.2777182317 -0.9392336205 0.2094395102
40 0.2777182317 -0.9392336205 0.2094395102
41 0.3432786130 0.9392336205 0.2094395102
42 0.4493575383 -0.5149179195 0.2094395102
43 0.4493575383 -0.5149179195 0.2094395102
44 0.4898760822 0.1716393065 0.2094395102
45 0.4898760822 0.1716393065 0.2094395102
46 0.5554364635 0.5149179195 0.2094395102
47 0.5554364635 -0.7270757700 0.2094395102
48 0.5554364635 -0.7270757700 0.2094395102
49 0.5554364635 0.5149179195 0.2094395102
50 0.6615153887 -0.1716393065 0.2094395102
51 0.6615153887 -0.1716393065 0.2094395102
52 0.6865572261 0.7270757700 0.2094395102
53 0.7926361513 0.5149179195 0.2094395102
54 0.7926361513 0.5149179195 0.2094395102
95 0.8331546952 -0.5149179195 0.2094395102
56 0.8331546952 -0.5149179195 0.2094395102
57 0.8987150765 -0.1716393065 0.2094395102
58 0.8987150765 -0.1716393065 0.2094395102
59 0.9642754578 0.1716393065 0.2094395102
60 0.9642754578 0.1716393065 0.2094395102

the upwinding with finite volume discretization than other methods, we consider in these notes
a space discretization based on volume control and cell averaging. For simplicity, we assume
that the space domain is a rectangle, D := [a, b] X [c,d]. Thus the numerical grid is defined by

Dh = {xlj = (l‘i,yj)T,l‘i :Z(Ax)lvyj :](Ay)Jvz = 172"'3Naj = 172"'3M}7

o = a,zy = b, yo = ¢,y = d, and h denotes the maximum cell size h := max((A:E)i, (Ay)j).
ij

We define the averaged grid points as

Tl + T
==
We use the notation f;; to denote the approximation value of the function f at the grid point
(zi,y;). Using the semi-discrete formulation (10), a fully discrete approximation for the equa-
tion (5) can be directly written as

0 Yiit1j — Vi Yiij+1 — Yuij
(A:L')H_% (Ay)ﬂ_%

Y1ty

(Aﬂ?)H% = Tl — Ty Yjrl = D)

(AY)ji1 =Y — Y Ty

N

+m

+ (Ol Rt)it

(11)

Oipdjtd iy lird T iyl

3. Space Discretization 7

where the cell averages of ¢ are given by

y — [
1,2 i = AN Zi,y)ay,
+1j (AQ;)H—% ;s)
y S / " e, y)de, (12)
Liji1 = ,y;
1g+1 (Ay)y-i-% J

Y1

/»’vz+1 /y;+1 \dd
517 y zray,
(Az),;, y+ Yi

To approximate the fluxes (12), we use the well known Diamond difference method which consist
on centred differences and approximating the function values at the cell centres by the average
of their values at the neighbouring nodes. See the figure 2 for an illustration of the grids used in
these notes. The function value of f;, 1j4l at the cell centre is simply approximated by bilinear
interpolation as

fij + fivij + fij1 + fivri1
Tirgivs = 1 : (13)

Hence the scalar flux ¢, 1 in (11) is given by

i+ 5i+3

N
o Yij + Yivij + Yijr1 + Vi1
E 1 .

¢i+§j+% -
y
(i,j+1) (i+1,j+1)
Yier T - ¢
(+3i+3)
i °
!
y —e 3
J ()] (i+1,))
| i |
%i X1 X1 X
2

Figure 2: The staggered grid used for the space discretization.

For the boundary conditions in (10) we can proceed as follows:

3. Space Discretization 8

when z = a, the normal n = (—1,0)”, then n-Q; = —p, and for y; > 0 we have V1,05 = 91,05
when 2 = b, the normal n = (1,0)7, then n-Q; = y;, and for ; < 0 we have YINj = 91N
when y = ¢, the normal n = (0, —1)”, then n-Q; = —7;, and for n; > 0 we have Y140 = Gui0

when y = d, the normal n = (0,1)”, then n-Q; = n;, and for n; < 0 we have ¥ = g1.im

Remark 2 If the space domain D present some points on the boundary 0D~ where the normal
is not unique, corners for example in the case of a rectangular domain, then, is possible to
define a new normal on those points with multiple normal. For instance, at the left lower corner
V2 _ﬁ)T
207 2

point x = (a,c)l in the rectangle a new normal can be define as h = (— , and for

n-Q = —g,ul — gm < 0, we have 00 = gi00. Similar work can be done for other three

remaining corners.

In order to simplify the notations and to get closer to a compact linear algebra formulation
of (11), we first define the matrix entries

d .. 1. 1 = |H’l| + |7ll| + 0i+%j+% + ﬁi+%j+%
Li+3i+3 2(Ax)z+l 2(Ay)]+l 4)
2 2
€ . 1,1 = Iz 4 = n Titlj+li + Kipljpl
l,Z+§]+§ . 2(Ax)z+l 2(Ay)]+l 4)
2 2
o 1y el Tirsits T Ripl4l
J,Z+§]+§ = 2(Ax)z+l 2(Ay)]+l 4)
2 2
e 1.1 = —lpul + = N Oppljpl TR 1501
Litsi+s 2(AI)Z~+1 2(Ay)j+; 1 .
2 2

Define the vectors
\Ill,O (0 0]
: c _ZR(]\7+1)(]W+1)7 with \Ijl,j = c BN+1
qjl7M 'l:bl ,Nj
® $rj 1
2 2773
= : e R", with @, .=
2
@M_% ¢N—§]—7
Ql’% UNTES
and Q = : e R"M | with Q1= : c RN,
2 2
Ql,M—% ql,N—%j—%

Recall that the Sg-direction set used for the discrete ordinates formulation (10) avoid the zero
component in a given direction ; = (u,7;). So, only one of the four cases; y; < 0 and n < 0,
w <0andn >0, >0and n <0, or gy >0 and n > 0 can hold. Here we define the matrices

3. Space Discretization 9

H; and %}; for the case y; < 0 and n < 0, and the other three cases can be derived similarly.

Dl El
H, = . Dé . c RINHD(M+1)x(N+1)(M+1) with
L ’
D S
S
d e e e
D, = ' E1R(N+1)x(M+1)7 E = E1R(N+1)x(M+1)7
d e e e
1 1
1 1
and S = e RNH+DX(M+1),
1 1
1
El,%
5 = g e RIVHD(M+1)XNM with
LM—1
0
Tipdi+ i TRirlivd
3
o (N+1)xM
g = Tirdi+d TRirlitd €l .
7
0

With these definitions, the equation (11) can be written in the unknowns ¥ and ¢ as

H, - vy Q
- |] (14)

Hy | —Yg Uy Qx

—wS ... —wxS| I ¢ 0
where I is the N x M identity matrix and 0 is the /N null vector. The usual technique to solve
the equation (14), is to eliminate the angular flux ¥y,..., U5 using the Gaussian elimination.

Therefore the storage requirements is reduced and the resulting equation

1 1
—-1 o -1

(1— E;wlsrll zl>q> = EZ_ZIMZSHZ Q. (15)

is solved for the scalar flux ®, which does not depend on direction variables. Furthermore,
solving (15) does not need to store the dense NM x NM schur matrix,

N
— 1 § : —1

3. Space Discretization

For instance, to apply this matrix to a given NM vector U, only three N M vectors are needed.
The first is used to store the product U by 3;, in the second we store the solution of the linear
system with the matrix H;. Multiplying by S and subtracting the weighted resulting vector

from U is stored in the third vector.
Since the key idea in all the incoming numerical methods dealing with the equation (15) is
inverting the matrix H; for [= 1,..., N, we set up the following algorithm performing this step

Algorithm 1: sweeping(N,M,N,Az,Ay,0,k,1,m,Q,¥,U)

dol=1,...,N

doi=1,...,N
doj=1,....,.M

iyt

ClLitij+i

Cit3j+3

ClLitgi+s =

end do
end do

if (u; < 0 and n < 0) then
doi=1,....N+1

’l/}l,iMJrl =diiM+1

end do

doj=1,...,M+1

YI,N+1j = QI,N+1;

end do

dot=N,...
doj=M,...

U1 =

o Q(Al‘)”%

end do

end do
end if

if (<0 and n > 0) then
doi=1,...,N+1
Yrin = Qi
end do
doj=1,....M+1
VILNF1j = QN1
end do
dot=N,...
doj=1,....M
Vijet = Uiy 1jpl — el,i+%j+%¢lyi+1j - éz,i+§j+%¢l,ij - Ql,i+%j+%¢l7i+lj+l

Oipdj+d T Ripljpl

4

Tit3its T Rirdjtd

4

Tit3its T Rirdjtd

4

Ti+ ity T Rirdit)

4

Uiy Lipl =€y Ly 1Py = €y Lig 1WLit 141 = € q iy 1P0ij+1

iy 1jii

Qg ijid

3. Space Discretization 11

end do
end do
end if
if (g > 0 and n < 0) then
doi=1,...,N+1
YiiM+1 = QM1
end do
doj=1,....,.M+1
Vi1 = Qi
end do
dot=1,...,N
doj=M,...,1
Uiy ljpl — Ql,i+%j+%7/}lyij - él,i+%j+%"/}l,i+lj+l - el,i+%j+%¢l7ij+1

Yriv1j =

end do
end do
end if
if (u; > 0 and i > 0) then
doi=1,...,N+1
Yt = @i
end do
doj=1,....,.M+1
Z/Jl,lj =dqi1j
end do
doi=1,...,N
doj=1,....,.M
Uip Ljpd = €Lig 14 2P0t — €rir 3 3VLiG — €it b3 VLig+1

iy ijed

Yip1j41 = .
Litsi+3
end do
end do
end if

end do

Note that the Algorithm 1 is based on the Gaussian elimination known in computational
neutron transport as sweeping procedures. Additionally, for each direction in S5 only one sweep
is needed. See figure 3 for a sweep illustration.

Remark 3 When reflective boundaries arise on no more than one vertical and one horizontal
boundary, the Algorithm 1 start first sweeping at the boundaries with known incoming fluz then,
reflected flux from the boundary is used for backsweeping. If both horizontal and/or vertical
boundaries are reflective, an iterative process must be done on the boundaries. Suppose for
example, both vertical boundaries are reflective i.e.,

Yoj (e, m) = Poj(—pism), for gy >0 and Pni1j(pe,m) = Ynyri(—p,m) for py <O.

Then, the angular fluxes at the vertical boundaries which were calculated in one step are used
as inflow boundary for the next step of iteration. The iterations are stopped as soon as, the
inequality

[— ™| oo < 6,9 | o0 + b

is satisfy. Here 64, 6, are given tolerances and ||.|pe is the L°°-norm.

4. Iterative Methods 12

®
(| (| (|]
j+1®
1
i+ O O O O
j ®
(| (| (|]
®
Q|
y
O O O O /
X
® ® ® —1 ® ®
i i+— i+1

Figure 3: Sweep illustration for p; > 0 and n > 0. e known boundary flux %, o computed flux
1 at cell interfaces, and [0 computed flux ¢ at cell centre.

4 TIterative Methods

In this section we introduce some numerical methods used in the literature to solve the linear
system (14), which can be rewritten in common linear algebra notation as

AX =b, (17)
with
H, -3 vy Q1
A= , X = , and b=
Hy | Xy Yy Qy
—w1S ... —wgS I o 0

In the same spirit we can rewrite the system (15) as

A® = B, (18)

N
1
where A is the Schur matrix given in (16) and the right hand side B = e E wlSHlel.
s
li

Recall that the matrices A and A are sparse and nonsymmetric. In large scale problems
iterative methods are computationally more efficient than direct methods; however, most itera-
tive methods for nonsysmmetric systems, with the possible exception of multigrid methods, are
less efficient than their symmetric counterparts.

4. Iterative Methods 13

The most popular and easiest iterative method to solve (18) is the Richardson iteration known
in the computational neutron transport as Source Iteration (SI) method. Given an initial guess
(), the (k + 1)-iterate solution is obtained by

N
1
(k+1) _ &(k) - -1 o (k)
) = +47T ;1 wSH; " Q; — A®
or simply

k1) ZwlSH HQu+me®). (19)

In the following the SI algorithm is presented and a Fortran code with this algorithm is given
in the Appendix B.

Algorithm 2: The SI algorithm

N
1
given the initial guess ¥(9) compute 30 = — E w ST
4 —

dok=0,...,Kmazx

dol=1,...,N
compute W =Q; + 6
end do

call sweeping(N, M,]\7 Az, Ay, 0,k u,n,Q,\IJ(’“H),W)

compute ® (k+1) — Zw Sy, (k+1)
compute Res**1) = ||'I> ’“H) — 30|12
ResF+1)
if (m S tOl) StOp
end do
Here Kmaz is the maximum number of the iterations, tol is a given tolerance, ||.||;2 is the

discrete L?-norm, and Res®) denotes the residual vector at iteration k.

Note that iteration (19) is equivalent to a preconditioned block Gauss-Seidel method applied
o (17), where the preconditioner is the block lower triangle of the matrix A. Thus, if M is the
block lower triangle of A, then

MXFH) = (M — A)X®) 4 b,
and
XED = (1-M1A)X® + M~ b, (20)

Therefore the (k + 1)-iterate scalar flux satisfy

N
1
k+1) _ —1,7,(k+1)
o+l = —47T§ wSH, 'Y,

N
= % ZwlSHfl (Ql + Zlq)(k)>,
=1

4. Iterative Methods 14

which is identical to (19). Regarding to the matrix formulations (17) and (18), we have the
following properties:

1. The matrices A and A are nonsymmetric. In general they are not diagonally dominant.

2. When e“+ Lil < 0 and €+l
dominant.

Ll <0, for all /,4,7, the matrix A is weakly diagonally

3. Since o and k are nonnegative functions, and Sy has nonzero directions, the matrix A
has positive diagonal elements and nonpositive off-diagonal elements.

The fact that ¢ it ljed <0 and g it lied < 0 is equivalent to

2 2

h := max((Az);, (Ay);) < max el , | , VI, (21)

j
g Wi Lipd TR Ll Tip Ll T R L4l

which means physically that the cell size is no more than two mean free paths of the particles
being simulated. Needless to say that the condition (21) gives the bound of the coarser mesh
should be used in the computations.

Upon the properties listed above and Fourier analysis we have the following lemma whose
proof can be found in [3, 11] for the one-dimensional problem. With the same arguments the
result can be extended to the two dimensional case.

Lemma 1 Assume o(x) > 0, k(x) > 0 for all x € D, and assume that k(x) > ¢ > 0 on D.
Then for each direction 0 € Sy,

|©Y28H; 'x,07 12| <y < 1,

where © := diag{(o +K11)h,..., (UNféMfé + ”N—%M—%)h} and vy is defined in (3).

11 11
22 22

Consequently, the lemma 1 leads to the following convergence result for the SI algorithm.

Theorem 1 Under the assumption of lemma 1, the iterations (19) converge to the solution ®
of (15), and if ¥ := & — ®*) denotes the error at iteration k, then

||®1/2e(k+1)|| < “@1/29(16)”, k=0,1,...,

where © is defined in the lemma 1 and vy is given in (3). .

Proof. From (19) we have
1 N
1/2 ,(k+1) 1/2qgy—1 —1/2\ g 1/2 (K
O1/2¢k+ _E;wl (0V2sH;'x,0 1/2)el/2e®),
by applying norms on both sides and use the fact that the weights w; satisfy

w; > 0, and Zwl =A4n,

4. Iterative Methods 15

we end up with
1 N
|02+ || < = ZWZ'YHGI/Qe(k)H = 4] ©/2e®). (22)
4 P

Since the inequality (22) is strict and 7 independent of k£ with v < 1, the the iterations (19)
converge to the solution of (15). Moreover, the convergence rate is bounded by 7.

It is well known in iterative methods for linear algebra [13, 9, 11] that the preconditioned
Richardson iteration (21) converges rapidly as long as the norm of the matrix (I — M~!A) is
small. This condition is ensured by taking v small. As theorem 1 indicates, the convergence
rate of the SI method is restricted by the scattering ratio y. Hence, for v < 1 theorem 1 shows
that the SI method converges rapidly, but for v = 1 (large optical opacity) convergence becomes
slow and may restrict the efficiency of the SI algorithm.

In order to overcome the disadvantage of SI method to efficiently solve the problem (15) when
v = 1, we propose two Krylov subspace based methods, especially the BI-Conjugate Gradient
Stabilized (BICGSTAB) [25] and the Generalized Minimal Residual (GMRES) [23], which work
much better in this case. The main idea behind these approaches is that the Krylov subspace
methods can be interpreted as the weighted Richardson iteration

X (k+1) a<1 _ PflA)X(’“) +P7'b, O<ac<2, (23)

where the relaxation parameters « and the preconditioner P are variables within each iteration
step. Note that when a = 1 and P = M the iteration (23) is reduced to the SI method.

The BICSTAB and GMRES algorithms to solve the linear system (18) can be implemented
in the conventional way as in [25, 23, 13, 9, 11], with the only difference that the sparse matrix
A can not be explicitly stored. All what is needed, however, is a subroutine that performs a
matrix-vector multiplication as shown in the following algorithm

Algorithm 3: The matrix-vector multiplication

given a vector U, to apply the matrix A to U we proceed as:

dol=1,...,N

compute V =X, U

end do

call sweeping(N, M, N, Az, Ay, 0, K, 1t,1,Q, V, W)
dol=1,...,N

compute V =SW

end do

1 &
setU:U—E;le

Note that only three vectors (U, V and W) are needed to perform the multiplication of the
matrix A to the vector U. Moreover, only three calls for the algorithm 3 are required from the
BICGSTAB or GMRES subroutines.

Remark 4 Preconditioned BICGSTAB or GMRES methods can be also used. For instance,
in the case when the matriz A in (16) is diagonally dominant, the BICGSTAB or GMRES

5. Diffusion Synthetic Acceleration Method 16

methods can be accelerated by using the diagonal as a preconditioner. This approach which
requires additional computational work can be easily implemented. It is worth to say that since,
the matriz A does not have an explicit representation, ILU type preconditioners can not be used
to solve (15).

5 Diffusion Synthetic Acceleration Method

It has been shown in [17, 16, 15], under the physical assumptions that the medium is optically
thick and the scattering is dominate, the neutron transport equation (5) can be approximated
by the diffusion problem

-V. V(p)—i—ﬁgo = gq in D,

<m (24)

v+ Vo = 4mg, on 0JD.

3(o + k) "
The authors in [17, 16, 15] used asymptotic analysis to prove that, in diffusive limit, the so-
lution to the equation (24) approaches asymptotically solution of the full neutron transport
equation (5). Further analysis and other asymptotic approximations to the transport problem
in radiative heat transfer context can be found in [24]. The main advantages to consider the
diffusion approach lie on the fact that equation (24) does not depend on the angle variable €2,
is linear elliptic equation, simple to solve numerically with less computational cost and memory
requirement, and when & is positive (24) has a unique solution.

In order to build a discretization for the diffusion problem (24) which is consistent to the one
used for the neutron transport equation (5) and converges asymptotically to the same solution
as the mesh size h tends to zero, we consider in this section the same grid structure as figure 2
and the same notations as those used in section 3.

Hence a space discretization for the equation (24) reads as

1
) _
~Di (W@ g TPt T Gfied 2

where the difference operator D,% is given by D,Ql :=D2 + Dz, with

D2(§w)" o fij + §i+1j Witlj — Wij fz’—lj + gij Wij — Wi—1j

T iy = 5 . ’
2 (Aw)i% 2 (AQ;)H%

Dy(¢w)ij = Sij + Sij1 Wij1 —wij ij—1 + &ij Wij — Wij—1

Yy ij = 2 5 5 . 7
(Ay)j-l-% (Ay)j_,_%

and the functions ¢; 1,1 and ¢;,1,,1 appeared in (25) are given by the formula (13). The
2 2 2 2

gradient in the boundary conditions is approximated by upwinding without using ghost points.

For example, on the left boundary of the domain (z = () the boundary discretization is

2 Yoits — Yiits _ dmg

2J T3 3(0’%j+%+ﬁ?%j+%) (Am)% e

and similar work has to be done for the other boundaries. All together, the above discretization
leads to a linear system of form

Te=TR, (26)

5. Diffusion Synthetic Acceleration Method 17

where 7 is N x M nonsymmetric positive definite matrix obtained from the difference diffusion
operator (25) with boundary conditions included, and R is N M vector containing the right hand
g and boundary function g. The system (26) can be solved using one of the iterative methods
BICGSTAB or GMRES already discussed in section 4. In our numerical examples presented in
these notes we used the preconditioned BICGSTAB with the diagonal as preconditioner.

As mentioned early the diffusion approach (24) is a good approximation to the full neutron
transport equation (5) only when the transport field is optically thick (¢ > 1) or with dense
absorption (x > 1). In medium with small absorption or pure scattering (x = 0) the diffusion
approach (24) becomes unable to approximate accurately the correct solution of the full transport
problem. Nevertheless, this approach can be used to accelerate the source iteration algorithm
in all the regimes. The resulting accelerated algorithm, widely known in computational neutron
transport as Diffusion Synthetic Acceleration (DSA) method, was first introduced in [2] and
studied in a number of papers, for instance see [5, 3].

The implementation of DSA method to approximate the solution of the neutron transport
equation (5) is carried out in the following algorithm

Algorithm 4: The DSA algorithm
1 N
given the initial guess ¥(9) compute 30 = — ZwlS\II(O)
4 —

do k=0,...,Kmaz

dol=1,...,N
compute W =Q; + ¥, 6
end do

call sweeping(N, M, N, Az, Ay, 0, k, 1,1, Q, UFHD W)
L g (k+1)
(k+3) _ & k+1
compute "2/ = P ;wlS\Ill
compute ¢ by solving the diffusion problem

1 1
Vo — = Pk+3z) _ k)
\Y <3(U+H)Vgo>+mp o(),

2

set @A) = gkt+a) 4 ®

compute Res*) = ||@*+D) — k)|,
. (Res®*D
if (W < tOl) stop

end do

Recall that in the matrix notation of section 4 the SI iteration is given by the Richardson
iteration applied to the system (17) as

X(h+1) = (1 - M*lA) X*) 4 M1,

where M is the block lower triangle of A. Roughly speaking, the DSA method can be viewed
as preconditioned Richardson iteration with the diffusion matrix 7 like preconditioner,

X (k1) — (I - T*lA) X*) 4 7 1p,

6. Numerical Examples 18

and 7! is obtained by solving the diffusion linear system (26).

Note that the first lines in Algorithm 4 are similar to the Algorithm 2. However, the
source iteration algorithm gives only the intermediate solution ®*+3) which has to be corrected
by adding the solution ¢ obtained by the diffusion approach. Furthermore, if BICGSTAB is used
for the diffusion approach, then an inner iterations have to be added to the iteration used by the
SI algorithm and an outer SI iterations may require less accuracy from the inner BICGSTAB
iterations (since the main issue to consider the DSA method is to obtain an accelerated algo-
rithm).

6 Numerical Examples

Table 2: The values of o, x and boundary function g for different test problems in example 1.

o(z,y) k(2 y) gr, (y) gr. (y) gr, (z) gr,(z)
Test 1 0.99 0.01 0 1 T T
Test 2 99 1 0 1 x z
Test 3 1 10 y 1-y T 11—z
Test 4 10 0 Y 1—-y z 11—z

To asses the performance of the methods introduced in the previous sections we have run
some numerical experiments of two examples for the neutron transport equation (5). In all our
tests, the iterations in the numerical methods are terminated as soon as the inequality

Res(k)

—6

Relative Residual :=

is satisfied. Here Res(®) and Res®) denote the initial residual and the residual at the iteration
k in the iterative algorithm, respectively. We used the discrete L?-norm for the computation of
these residuals.

The convergence rates along with cross section plots of the results give a good ideas of the
accuracy of the algorithms. The efficiency of the solvers is compared in the CPU time context.
All the calculations reported in this section have been carried out in Fortran implementation
with double precision on a PC with AMD-K6 200 processors.

The first example is the equations (5) in the unit square D = [0, 1] x [0, 1] covered by 100 x 100
grid points and augmented with the following boundary function g

9(Ly, Q) =gr.(y), for 0<y<1L;
g(z,1,Q) = gr,(x), for 0<z <1

9(07 Y, Q) = gr, (y)7
g(:v,O, Q) = gl"b(x)u

We set g(z,y,€) = 0. The coefficients o, x; the functions gr,, gr,, ¢r, and gr,, are chosen for
four different test problems according to the table 2.

The main issues we wish to address in these test problems are concerned with the comparison
on convergence and efficiency of all the methods presented in these notes using different values

6. Numerical Examples 19

Table 3: The number of iterations (# Iter) and the CPU time (in seconds) for SI, GMRES,
BICGSTAB, DSA and Diffusion methods for the four test problems in example 1.

Test 1 Test 2 Test 3 Test 4
Iter | CPU | # Iter CPU # Iter | CPU | # Iter CPU
SI 17 7.65 866 317.29 6 3.10 262 107.98
GMRES 4 5.51 50 51.14 2 3.68 16 17.43
BICGSTAB 4 3.61 52 28.12 3 3.12 14 8.68
DSA 7 19.97 21 14.84 4 4.01 8 14.27
Diffusion 224 3.48 58 0.94 60 0.9 154 2.33

of o, k and ¢ to show the advantages of a method over the others. To this end we first plot
in figure 4 the convergence rates for the four test problems. A log-scale on the y-axis is used.
A first remark concerning these plots is that when v = 1 the SI method converges slowly, for
instance, in Test 2 (y = 0.99) SI needs 866 iterations to converge and in Test 4 (y = 1)
needs 262 iterations. This fact was early ensured by theorem 1. However, in both tests, DSA
method shows fast convergence over all the others methods. On the other hand, when v < 1
the BICGSTAB method can compete with DSA. In Test 1 and Test 3, a few iterations are
enough for the convergence of all methods, but still ST method is the slowest.

In table 3 we display the number of iterations needed by each method for the four tests
together with the consumed CPU time. It is clear that the BICGSTAB method uses less CPU
time in all tests except in Test 2 (¢ = 100). The diffusion results are also included in table 3,
They are less CPU time consuming specially when ¢ > (Test 2 and Test 3). However, the
diffusion results should not be compared to other methods since the problem they solve has
different structure than those solved by SI, BICGSTAB, GMRES, or DSA methods.

In figure 5 we plot the scalar flux ¢ obtained by DSA method for the four test problems.
Similar results are plotted in figure 6 but using the diffusion procedure. The SI, BISCATAB and
GMRES results are not presented here, because they overlap those obtained by DSA method. In
order to compare these results, we show in figure 7 a cross section at the main diagonal (y = z) of
the scalar flux obtained by all methods. As can be slightly seen the diffusion failed to approach
accurately the DSA results when v = 0.99; ¥ = 1 (Test 1), and v = 0.09; ¥ = 11 (Test 3). In
other two tests (Test 2 and Test4), diffusion approach resolves the neutron transport equation
correctly as the DSA method does, but with less computational effort referring to the CPU time
in table 3.

Our second example consists of tests arising in radiative transfer problems. Usually the
transport equation (5) is coupled to the heat equation to model radiative heat transfer phe-
nomena, compare [19, 6, 10, 24] for detailed studies on radiative transfer. Since our goal in
these notes is concerned with numerical tools for simulating the transport equation, we fix the
temperature profile in the radiative transfer equation and we try to solve the transport equation
coupled to this temperature profile. Thus, the problem statements we consider here are

6. Numerical Examples

Test 1 Test2
10’ T T 10’ T T
)] N —-3l
\ BICGSTAB N BICGSTAB
\ — Gmres S~ — Gmres
w0 Y — DSA 10 STt~ — DSA
\ N T
\ N e
\ ~
0]\ 10°E R E
— \ _ N
5 \ T D
3 \ 3 N
B 100 \ B 10 N
gwo Eo . gwo N E
. ! \ P N
o 1 \ o N
£ \ \ £ ~
5.4 \ 510 ~
gw'p . g1o N E
| \ | N
4] Y]
i \ | ~
N N
107 ' E 107 E
\
\
\
\
10°E \ E 10°E E
10'7 L L L L L 10'7 L L L L L
0 10 20 30 4 50 60 0 10 20 30 4 50 60
Number of iterations Number of iterations
Test3 Test4
10’ . . . 10" = . . .
— -3l ~_
h BICGSTAB A
\ — Gmres STt —— ol
10—17\\\ iDsA a 10—17 N e _ - - _
\\\ A N
\\\ ~ N
10°* L E 107 N
—_ \ \ —_ N N
] \]
3 A 3 N
@y)\ E @407 \
o [e N
5107k \ \\ J 610k N J
c Vo c
(\Il v (\Il
. \ \ |
\
10°F \ 9 10° 9
\
\
\
\
10°F \ 4 10°F ~ 8! E
\ BICGSTAB
\ Gmres
\ — DSA
w0 \ \ \ \ \ \ \ \ \ 1w | | \ \ \ \ \ \ \
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Number of iterations

Number of iterations

Figure 4: The convergence plots for the four test problems from table 2.

6. Numerical Examples 21

—
——
=4
———
—
———
—
———

==

==

———

=——=

——

——
=
=
= =
==
—
—
=
=

=
=—
=
=
=
=
=

“““““}““““““\“‘*‘3‘»"«%
I
\}‘\\ \\\}}}R\\w i

—

=
=
=——

(
e
&}}}g}\“\\\\\
(0

=
e
=

=
e

=

—
e
e
—
—
—
—
—
—

=

=

il
ity
(i saasassenmm il
)
A

—
=
—

j
i

,

M\

i
il
| \"‘""'0"0"’11/”///
ity
\\“‘ (el

=

—

=

i

=

I

1 Test4

T

\ Y ””

\“\\\\X‘\\}}}\\}“ m“\\\ I /////I//////////ll’;'f/lll/
U

i \\ PRI

Figure 5: The scalar flux ¢ obtained by DSA method for the four test problems from table 2.

6. Numerical Examples

22

““““““\“\““““\“\\\\\\\\ MM

0\
T
\\\\\\%“Q\‘\\\‘Q\‘Q\‘k‘k‘&“\\\\\\\\\““\\m N
M

(¥
gl
SIS

1

if
i

i

—
=
=4
= 4
=
——

———

= =

=——

=——
—
——— —
=——

—

=

7

==

=

——
———

—

==
e
———

—

=
—

=
e

=

)
fi

“ \\\‘\\‘Q‘n
it
ok M,,,l III’/II

=
=—
=——

——

=
==
=
=
——
——
——
——
=
——
=

=—
—

=

==
= —
—

=

—
—
——
=
=
=

==

=
———
=

==
=
=
=
——
—
=
———
e

—

=
=
=== =
== =
——
=
—
—
=
—
—

‘\

o

i
il \\&‘“\g“‘“
I

il Itittenttl
Pt S
PSS |
(R it
e il

Test4

Figure 6: The scalar flux ¢ in the Diffusion approach for the four test problems from table 2.

6. Numerical Examples

23

Test 1
09 . . . T
Clipping
09
08 1
0.85 p
o7k 08]
075
081 o7 1
X
2 | s
Fost 08]
3]
)]
04F —
03F]
- R
02 BICGSTAB ||
— Gmres
— DSA
— - Diffusion
0.1 L L L I I L T
0 01 02 03 04 05 06 07 08 09 1
Test3
0.025 T T T T T
—— 8|
, BICGSTAB |/,
’\\ — - Gmres [
\ — DSA [
P - — - Diffusion Iy
o2\ Clipping !
! 0.025 !
0.015
X
2
T
]
Q
(%)
0.01
0.005
0

Test2
1 T T T T T T
Clippin — S| j
ool 1 PpIng BICGSTAB
) —- Gmres
— DSA
08 oA
08l — — Diffusion [
06
071 04
o6 02 .
X
2 0
go.sf 08 08 09 09 1
[}
]
04
03
02
01F
0 . , .
0 0.1 02 03 04 05 06
Test4
05 ¥ T T T
—— 8|
BICGSTAB
045 —- Gmres 7]
— DSA
— - Diffusion
04
035
x 03 Clipping
=]
go.zs 03
5} 2
3 0.25
02 02
0.15
N
0.15 01 X
0.05
0.1

0.05

0
0.8 0.85 0.9 0.95

Figure 7: The cross section at y = = of the scalar flux ¢ for the four test problems from table 2.

6. Numerical Examples 24

The frequency-independent problem

o

Q-VI+(oc+r)I = y I(x,9)dQ + kB(T). (28)
™ Js2
The frequency-dependent problem
Q-VI+ (0, + 5, = Z—” L(x, Y, v)d + 5, B(T, v). (29)
T J g2

Here I, = I(x,Q,v), T = T(x), 0, = o(x,v) and K, = k(x,v) denote respectively, the radiation
intensity, the temperature, the scattering and the opacity within the frequency v > 0. B is the
Planck function given by

2hv3
= T2

- (eﬁV/kBT _ 1)*1’ (30)

B(T,v)

where A, kp and ¢ are Planck constant, Boltzmann constant and the speed of light, respectively.

Notice that, in the frequency-independent problem (28) the function B = B(T) = apT*?,

with ap is a radiation constant (ax = 1.8067.10 " J/K). The computational domain is a square

of 1 ¢m side discretized into 100 x 100 grid cells. The temperature we used in our computations
is a linear profile between 800 K and 1800 K in the unit square i.e.,

T(z,y) = 800z + 1000, (z,y) € [0,1] x [0,1].

Using this temperature profile we set the boundary conditions for the intensity according to the
radiative equilibrium

I(x) = B(T(x)), %€0D, (31)
for the frequency-independent problem (28), and
1(%) = BT(%),v), & €D, (32)

for the frequency-dependent problem (29).

First, we solve the grey problem (28)-(31) using the methods studied in the previous sections.
In figure 8 we report the convergence plots for two different values of the absorption s while the
scattering is fixed to o = 1 em ™! in both tests. It is apparent that the convergence of SI method
become slow when the scattering ratio vy change from 0.09 (k = 10 cm™!) to 1 (k = 0 em™!).
These results are in good agreement with theorem 1 in section 4. The accuracy plots given in
figure 9 represent a cross section at y = 0.5 ¢m on the scalar flux obtained by all the methods
with the diffusion approach included. As the opacity x decreases, the diffusion results become
slightly far from the results obtained for the full transport problem.

We now turn our attention to the frequency-dependent problem (29)-(32). In order to
discretize the equations (29)-(32) respect to the frequency variable v, we assume N frequency

bands [v,,v,41], ¢t = 1,..., N with piecewise constant absorption

Ky = Ky, Vvey,vy] ¢t=1,...,N.

We define the frequency-averaged intensity in the band [v,,v,+1] by

V41
I, = / Ly (x,Q,/")dV. (33)

6. Numerical Examples 25

k=10, 0=1 k=0, 0=1
10’ ‘ \ \ \ 10° ‘ \ \ \
\ - -8l N - -8l
\ BICGSTAB N N BICGSTAB
N\ — Grres \ N — Grres
'k — DSA i ol b — DSA
\ \ N
\\\ \\ \\
LIS N
N
g \ ’
1072 \\ . E 1072 N E
- VY — \\
[\ 5 \ N
3 Lo 3 \ N
D407 v 4 D407 N 4
0 - 0 ! N
- \ \ - \ AN
1 L o \ AN
\
gm“f P 7 gm'k | - i
c (B c AN
| VoY | \ N
9 \ 9 \ N
[\ N
10°k b E 10°k ' N E
\ \ N
\\ AN
N
100 |] 100 AN 1
. N
.
107 | | | | | | | | | 107 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Number of iterations Number of iterations

Figure 8: The convergence plots for the grey problem (28)-(31) with o = 1 and two different
values of opacity.

o k=10, 0=1 i k=0, 0=1
2 T T T T T T 16 T T T T T T
«¢ Clipping «¢ Clipping
18 19 16
18 14r
161 17
16
14r
15 121
12 14
5 5
2 13 =
Tl 08 Tl
o o
8] 8]
(%) (%)
08
081
0.6
041
-8l 0.6 -8l
BICGSTAB BICGSTAB
0.2 — Gmres — Gmres
— DsA — DSA
— - Diffusion — - Diffusion
0 L L L L L L L T 04 L L L L L L L T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 9: The cross section at y = 0.5 of the scalar flux ¢ for the grey problem (28)-(31) with
o =1 and two different values of opacity.

6. Numerical Examples 26

Table 4: The bands used in the numerical simulation of the frequency-dependent problem.

Band ¢ | v, (um) | vie1 (pm) | k, (m™1)
1 00) 0.40
2) 0.3333 0.50
3 0.3333 0.2857 7.70
4 0.2857 0.2500 15.45
) 0.2500 0.2222 27.98
6 0.2222 0.1818 267.98
7 0.1818 0.1666 567.32
8 0.1666 0.1428 7136.06
0.1428 0 opaque

Then, the equations (29)-(32) are transformed to a system of N transport equations of the form

V41
Q-VI, + (UL‘F/‘%)IL = Z—L I,(x, Q’,I/L)dQ'—l—m/ B(T,v)dV
™ Js2 v,
(34)

V41
1,(%) :/ B(T,/)d/, %€dD .
v,

Note that after the discretization of ordinates in NV directions and the space in N x M gridpoints,
one has to deal with systems with N x N x N x M unknowns and, finding solutions to such systems
requires much memory storage and much computational cost. In our numerical simulations we
use eight frequency bands [v,,v,41], ¢t = 1,...,8 given in table 4. These values are frequently
used in the glass manufacturing, we refer to [24] for more physical details.

Using two different values for the scattering (0 = 1 cm™! and o = 100 em™!), we summarize
in table 5 the CPU time and the number of iterations used by all methods except the BICSTAB
method, because their results are identical to the GMRES ones. It is important to mention two
points with respect to the results in table 5. First, we observe that by decreasing the scattering
ratio v and keeping o fixed to 100 ¢rn ™! or 1 em ™! the number of iterations reduce asymptoticly
in all the methods with the advantage of the GMRES method over the others. Second, when
o =100 em ™" the SI method required unreasonable number of iterations for the first frequency
bands, consequently the CPU time used is very large. In contrast, the Diffusion approach uses
only 0.012% of the CPU time used by SI method for this case, and the results obtained by both
approaches are similar, see figure 10.

In order to quantify the solution of (34) we define the frequency-mean scalar flux ¢ as

) = [st s

- ﬁzzmx)

=1 =1

7. Conclusions 27

Table 5: The number of iterations and the CPU time (in minutes) for SI, GMRES, DSA and
Diffusion methods for the eight frequency-bands problem with two different values of o.

Band ¢ | Scattering ratio vy SI GMRES | DSA || Diffusion

1 0.71428 16 6 7 217
2 0.66666 15 6 7 212

3 0.11494 8 4 4 91

4 0.06077 6 4 4 46

o=1cm™! 5 0.03450 6 4 3 25

6 0.00371 4 2 3 4

7 0.00175 4 2 3 3

8 0.00014 3 1 2 2
CPU — 25.63 3.94 14.69 0.21

1 0.99601 1700 92 32 87

2 0.99502 1321 89 30 82

3 0.92850 178 26 29 25

4 0.86617 95 18 29 17

o =100 cm™! 5 0.78137 57 14 27 11

6 0.27175 12 5 9 3

7 0.14985 9 4 6 3

8 0.01381 5 2 3

CPU — 981.16 6.43 69.72 0.12

The figure 10 shows a cross section of ¢ at y = 0.5 ¢m for the two values of 0. The main
message taken from this figure is that, the diffusion results coincides with the transport results
only when the scattering is large (o = 100 cm~!) and for this case the SI scheme is unreasonably
slow (compare the CPU time in table 5). Therefore, it is worth to use the diffusion approach
because, at least for this test problem, it gives results that are as accurate as those obtained for
the full transport equation, but with less computational cost.

7 Conclusions

We have combined the discrete ordinates collocation and the Diamond differencing to reconstruct
numerical methods for the two-dimensional neutron transport equation. These methods include
the source iteration scheme, full BICGSTAB and GMRES algorithms, and the diffusion synthetic
acceleration method. We have compared the results obtained by these methods on several test
problems. The principal conclusions achieved through this comparison are the following;:

1. For neutron transport equation with small scattering ratio (y < 1) and moderate optical
coefficient ¢, the SI method can be a reasonable solver, but still not efficient enough as
BICGSTAB, GMRES or DSA methods.

2. For neutron transport equation with large or pure scattering (y = 1), the SI method
become very slow and loses efficiency. In parallel, the DSA method is the best and presents

7. Conclusions

28

35 T T T

< Clipping
34

251

Sclar flux

Sl
— Gmres
— DSA
— - Diffusion
T

351

Sclar flux

0 Clipping

322
09 092 094 096 098

Sl
— Gmres
— DSA
— - Diffusion
T

05 Il Il Il Il Il Il
0 0.1 0.2 03 04 0.5 06 0.7 08 0.9 1 0 0.1 0.2 03 04 0.5 06 0.7 08 0.9 1

Figure 10: The cross section at y = 0.5 of the mean scalar flux ¢ for the problem (29)-(32) with
the eight frequency-bands given in table 5 and two different values of o.

fast convergence rate over all other methods.

3. For neutron transport equation in optically thick regime (¢ > 1), the diffusion approach
may be a valid alternative for the iterative methods since it gives results that are as
accurate as those obtained by DSA method, but with less computational cost, and diffusion
approach does not need extra discretization for the angular directions.

Nevertheless, borrowing the idea of simplified Py approximations to the transport equation and
following the argument of section 5, it is feasible to devise generalized preconditioners to the SI
method with high accelerated convergence. Such methods can be used in radiative heat transfer
and radiation hydrodynamic couplings rather than the transport equation (1). Results on these
methods will be reported in the near future.

We want to point out that general time-dependent neutron transport problem (1) can also
numerically solved in a similar manner. By using the discrete ordinates and the Diamond
differencing methods, and by using the same notations as in section 3, the equations (1) are
transformed to the following system of ODE’s

1d Yiiv1j — Vuij
;E%,H%H% T H (Az)

+ Yiij+1 — Vuij

(Ay) (Ot TRt Vi i

i+ i+

Oittjrt Pirdjrd T divljeds (35)

Y1 () 91,i5 (),
¢l,ij(0) = Tﬁ?,@ja

where each centred valued function f;; 1. 1 appeared in (35) is given by
’ 2 2

g frivig + fijer + friva
fl,i+%j+% - 4 :

7. Conclusions 29

For the time integration of (35), one can use any ODE solver, however the presence of the term
1/v in the front of the time-derivative operator, makes the use of explicit schemes inefficient,
because these explicit schemes are subject to a CFL condition of the form

A= v% <1, (36)

where h := max((Az);, (Ay);) is the mesh size, At is the time stepsize and v is the neutron
ij

speed (extremely large, order of speed of light). Therefore, implicit schemes which alleviate the
stability restriction (36), should be used. For simplicity, we consider here the implicit Euler
method to integrate the equations (35).

Let the time interval [0, 7] be divided into NT' subintervals [t;,, t,+1] of length At such that
t, = nAt and T'= NTAt. We use the notation VVZ’}” to denote the value of the function W at
(tns 1,15 i, y5). Then, the fully discrete formulation of the equation (1) can be written as

wn-}-l _ wn-}-l wn-}-l _ wn-}-l
I T TR T < 4+ RME L+ —>¢”+1
1 1 1
(Az);; 1 (Ay), 41 Tirdivs T il d T At) Vi kil
. (37)
n+1 n+1 n+1 n
lz+2]+l¢z+2]+1 9 it+ii+d T vAt'l’bl,i-l-%j-i-%'

Once again, the discrete equation (37) can be reformulated in matrices as in (14) by using the
following new matrix entries

1
N 11| N /| NUCes TAs SAAas T As B
baits T 2(Ax) 2(Ay) 41 4 ’
2 2
1
s ml o —lml T TRy e
Litgi+s Q(AQ;)Hl Q(Ay)j+l 4 ’
2 2
1
o —|,ul| n |771| n Oitl]-I-l +HZ+]-I-l + vAt
011 =
*l;H‘EJ'i‘E Q(AQ;)Hl Q(Ay)j+l 4 ’
2 2
1
. . — | + — | n Oipljrt T Riplipl +ong
.01, 1 = .
l,Z+§]+§ 2(A$)l+l 2(Ay)]+l 4
2 2

By doing so and changing the right hand side as in (37), the SI, BICGSTAB, GMRES, DSA
methods and the Diffusion approach studied in the previous sections remain valid to solve the
problem (37) in the same way as have been done for the time-independent problem (11) with
the only difference that another loop must be added for the time integration. Furthermore, the
convergence rate of the source iteration is governed, at each time step, by the new scattering
ratio

(tn,)) v
t,) := max , n=1,...,N.
7(n) xeD (U(tn,x) + K:(tnax) + ﬁ

We would like to mention that, the space discretization used in these notes is second or-
der. Therefore, to be consistent that the fully dicrestized scheme maintain the same order of
accuracy, a second order time integration scheme should be used. For example, Crank-Nicolson
method can be a good candidate, since it can be formulated easily as (37) and the resulting
linear systems have the same structures as those obtained by Euler method.

References 30

Acknowledgements. I would like to thank Professor Axel Klar for his guidelines during the
preparation of these notes. I am also grateful to Guido Thommes for helpful discussions. I want
to acknowledge the faithful conversations with Thomas Go6tz during my visits to Department of
Mathematics, university of Kaiserslautern. This work was supported by Sonderforschungabere-
ich 568 and the GraduiertenKolleg at Darmstadt university.

References

[1] M. L. Adams, E. W. Larsen, ”Fast Iterative Methods for Deterministic Particle Transport
Computations,” Preprint.

[2] R. E. Alcouffe, ”Diffusion Synthetic Acceleration Methods for the Diamond-Differenced
Discrete-Ordinates Equations,” Nucl, Sci, Eng. 64, 344-355 (1977).

[3] S. F. Ashby, P. N. Brown, M. R. Dorr, A. C. Hindmarsh, ”A Linear Algebraic Analysis
of Diffusion Synthetic Acceleration for the Boltzmann Transport Equations,” STAM. J.
Numer. Anal. 32, 128-178 (1995).

[4] L. L. Briggs, W. F. Miller Jr, E. E. Lewis, "Ray effect Mitigation in Discrete Ordinate-
Like Angular Finite Element Approximations in Neutron Transport,” Nucl, Sci, Eng. 57,
205-215 (1975).

[5] P. N. Brown, ”"A Linear Algebraic Development of Diffusion Synthetic Acceleration for
Three-Dimensional Transport Equations,” SIAM. J. Numer. Anal. 32, 179-214 (1995).

[6] S. Chandrasekhar, "Radiative Transfer,” Oxford Univ. Press, London, 1950.

[7] J. Cui”Finite Pointset Methods on the Sphere and Their Application in Physical Geodesty,”
Ph.D. Thesis, Dept. of Math, University Kaiserslautern (1995).

[8] W. A. Fiveland ”The Selection of Discrete Ordinate Quadrature Sets for Anisotropic Scat-
tering,” ASME HTD. Fundam. Radiat. Heat Transfer 160, 89-96 (1991).

[9] G. H. Golub, C. F. Van Loan, "Matrix Computations,” The Johns Hopkins University
Press, Baltimore and London, Third edition, 1996.

10] Th. Gotz ”Coupling Heat Conduction and radiative Transfer,” J. Quantitative Spectroscopy

g

& radiative Transfer 72, 57-73 (2002).

11] A. Greenbaum, ”Iterative Methods for Solving Linear Systems,” STAM. Philadelphia, 1997.

g

[12] C. Johnson, J. Pitkdranta, ” Convergence of a Fully Discrete Scheme for Two-Dimensional
Neutron Transport,” SIAM. J. Numer. Anal. 20, 951-966 (1983).

[13] C. T. Kelly, "Iterative Methods for Linear and Nonlinear Equations,” SIAM. Philadelphia,
1995.

[14] K. D. Lathrop, "Remedies for Ray Effects,” Nucl, Sci, Eng. 45, 255-265 (1968).

[15] E. W. Larsen, G. Thommes, A. Klar, ” Simplified Py Approximations to the Equations of

Radiative Heat Transfer in Glass [: Modelling”, Preprint.

Appendix A 31

[16] E. W. Larsen, J. E. Morel, ” Asymptotic Solutions of Numerical Transport Problems in
Optically Thick, Diffusive Regimes I1,” J. Comput. Physics 83, 212-236 (1989).

[17] E. W. Larsen, J. E. Morel, W. F. Miller Jr, ” Asymptotic Solutions of Numerical Transport
Problems in Optically Thick, Diffusive Regimes,” J. Comput. Physics 69, 283-324 (1987).

[18] E. E. Lewis, W. F. Miller Jr. ”Computational Methods of Neutron Transport,” John Wiley
& Sons, New York, 1984.

[19] D. Mihalas, B. W. Mihalas, "Foundations of Radiation Hydrodynamics,” Oxford Univ.
Press, New York (1984).

[20] W. F. Miller Jr, W. H. Reed, "Ray Effect Mitigation Methods for Two-dimensional Neutron
Transport Theory,” Nucl, Sci, Eng. 62, 391-403 (1977).

[21] J. Pitkidranta, ”On the Spatial Differencing of the Discrete Ordinate Neutron Transport
Equation,” STAM. J. Numer. Anal. 15, 859-869 (1980).

[22] J. Pitkdranta, L. R. Scott, "Error Estimates for the Combined Spatial and Angular Ap-
proximations of the Transport Equation for Slab Geometry,” STAM. J. Numer. Anal. 20,
922-950 (1983).

[23] Y. Saad, M. H. Schultz, ”GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems,” STAM. J. Sci. Statist. Comput. 7, 856-869 (1986).

[24] G. Thommes, "Radiative Heat Transfer Equations for Glass Cooling Problems: Analysis
and Numerics,” Ph.D. Thesis, TU Darmstadt, (2002).

[25] H. A. van der Vorst, ”BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-CG for
the Solution of Nonsymmetric Linear Systems,” STAM. J. Sci. Statist. Comput. 13, 631-644
(1992).

Appendix A: The Ray Effect

The discrete ordinates method described in section 2 solves the transport equation (5) for a close
set of angular directions Sy, as long as it approximates the angular integral by a weighted sum
of flux values. Of course, in two dimensional problems not all the possible directions in the unit
sphere S? are calculated, but the set is reduced by means of symmetry relations. Moreover, in a
three dimensional transport field projected in z-y plane, some directions appear to be between
others when they really are not.

One of the main drawbacks of the discrete ordinates method for solving the neutron trans-
port equation is that due to the existence of privileged directions in Sy set, the solution has
some degree of numerically induced anisotropy (by anisotropy we mean that the probability of
scattering for the particles is not the same for all directions). In cases with very little if any
scattering, and localized external sources, this effect may strongly disturb the correct solution
and become worse with sets of few angular directions. This undesirable effect is called the ray
effect. As mentioned in [18], the ray effects occur normally in two-dimensional problems where
the external sources are localized and the effects of scattering are relatively small.

Appendix A

32

Vacuum Boundary

=

[

X

Reflective Boundary

Flat
Source

Vacuum Boundary

1
Reflective Boundary

Figure 11: The model problem used to exhibit ray effects.

Figure 12: The angular flux ¢ along the direction (a) Q7
Q3 = (—0.21215, —0.72707).

(—0.79263, —0.51491) and (b)

Appendix A 33

0.15 T

Figure 13: The scalar flux ¢ (a) and its corresponding section at z = 1.967 (b).

In order to make the ray effect visible we use in this appendix, the same model problem
from [18] chosen by the authors to exhibit the ray effect. The model consists of the equations (5)
with a flat source ¢ given by

1, if 0<zx<1 and 0<y<1,
q(z,y) =

0, else.

The domain geometry and the boundary conditions used for this test are shown in figure 11. Both
the square source and the surrounding medium have the same optical properties. The scattering
and the absorption parameters are those used in [18]. Thus, o = 0.5 cm ! and £ = 0.25 cm ™.
The angular and the scalar fluxes are computed using the DSA method on 200 x 200 gridpoints
and C-60 set directions. First we plot in figure 12 the angular flux corresponding to the two
directions Q7 = (—0.79263, —0.51491)7 and Qg3 = (—0.21215, —0.72707)”". The colormap shows
the flux field ¢ in the domain, the ray effect is clearly visible as irregularities in what should be
squared isocontours. Another exhibition of the ray effect is shown in figure 13 where the scalar
flux ¢ and a section at z = 1.967 are plotted as suggested in [18]. The ray effects may be seen
from the figure 13 as nonphysical oscillations.

There are many ways to overcome the disadvantage of the ray effects from a given com-
putational neutron transport code. The simplest way is to refine the discrete ordinates set by
increasing the number of angular directions. Then, the frequency of the oscillations becomes
higher and the magnitude becomes lower. The ray effects can be completely eliminated by using
the so-called Py approximations. In contrast to discrete ordinates methods the Py methods
consist of expansion of the angular flux in the first N 4+1 Legendre polynomial. An extended ref-
erences on these methods and other techniques to remedy the ray effects in the discrete ordinates
collocation can be found in [18, 14, 4, 20].

Appendix B

34

Appendix B: A Fortran Code

For completeness, we include in this appendix a Fortran code for the SI algorithm to solve

the neutron transport equation (5).

The code links both the algorithm 1 and algorithm 2

to handled the linear system (15). We used the vacuum boundary conditions along the whole
domain. However, these boundary conditions together with the scattering and the absorption
coefficients can be changed very easily in their correspondent functions at the end of the listing

code.

We want to point out that the code is not written to be a show of efficiency and optimized
programming. It is simply to show for the reader how a source iteration code can be done.

subroutine SI(nd,nx,ny,np,x,y,hx,hy,dx,dy,wg,aflux,

&

O o0 o0 o o o

O o0 0
—
(=2
®
;.
el
[}
ct

nd =
nx
ny
np
hx =
hy =

dx =
dy =
wg =
aflux =

work =
tol
maxits =
iout =

O 0O 0O 0 0O 0 0O O 0O 0O 0O 0O 0 0 0 0 0 0 0 0 00

O o0
—
=2
0]
g
el
[}
t

= the

sflux,q,work,tol,maxits,iout)

This subroutine solve the Neutron transport problem (15)
using the source iteration method. We assume the inflow
boundary condition on all the bondaries of the computational
domain. Discrete ordinates and Diamond differencing are used
for angle and space discretizationms.

variables:
the number of directions in the unit sphere
the number of the space gridpoints in the x-direction
the number of the space gridpoints in the y-direction
the total number of the space gridpoints. (np = nx x ny)
the space gridsize in the x-direction.(hx is a vector of size nx)
the space gridsize in the y-direction.(hy is a vector of size ny)
the space gridpoints in the x-direction.
(x is a vector of size nx+1)
the space gridpoints in the y-direction.
(y is a vector of size ny+1)
the angle direction in the x-direction.(dx is a vector of size nd)
the angle direction in the y-direction.(dy is a vector of size nd)
the weight associated to the directions dx and dy
the angular flux is used as initial guess for the SI method
can be seted to zero unless for vacuum boundary conditions
are used. (aflux is a vector of size nd x nx+l x ny+l)
the source term. (q is a vector of size nd x nx+1 x ny+1)
the work vector. (work is a vector of size nd)
tolerance to stop the iteratioms.
the maximum number of iterations allowed
the output unit number for printing intermediate results

if(iout.le.0) no statiscts are printed

the

current angular flux.

Appendix B 35

c (aflux is a vector of size nd x nx+l x ny+1)
¢ sflux = the scalar flux. (sflux is a vector of size np)
Cm—— e
¢ The auxilary parameters:
Cm—m e
¢ wsflux = the vector to store sclar fux at the previous iteration.
c (wsflux is a vector of size np)
c s = the vector to store source term.
c (s is a vector of size nx x ny)
¢ bcl,bcr,bcb,bct = the vectors to store boundary conditions for the sweeping
c subroutine. (bcl,bcr are vectors of size ny+l1 and
c bcb,bct are vectors of size nx+1)
Cm——mmm
¢ The functions used:
Cm——mmm
¢ xkappa(x,y) = the absorption function
c sigma(x,y) = the scattering function
¢ bcleft(y) = the left boundary function
¢ beright(y) = the righ boundary function
¢ bcbottom(x) = the bottom boundary function
¢ bctop(x) = the top boundary function
¢ xint(nd,wg,w) = the function to compute the weighted integrals
Cmm
¢ The subroutine used
Cmmm e
c the sweeping subroutine
¢ sweeping(nd,nx,ny,np,x,y,hx,hy,dx,dy,s,bcl,bcr,bcb,bct,aflux)
c

implicit real*8(a-h,o0-z)

real*8 hx(1),hy(1),x(1),y(1),dx(1),dy(1) ,wg(1),sflux(1l) ,work(1l)

real*8 aflux(nd,nx+1,ny+1),wsflux(np),q(nd,nx+1,ny+1)

real*8 bcl(ny+1),bcr(ny+1) ,bcb(nx+1) ,bct(nx+1),s(nx,ny)

data pi/3.14159265358979d0/
Cmm
¢ The initial scalar flux guess
G m e

do 10 i=1,nx

do 10 j=1,ny
do 5 1=1,nd
work(1) = 0.25d0*(aflux(l,i+1,j)+aflux(1,i,j)+
& aflux(1l,i,j+1)+aflux(l,i+1,j+1))
5 continue

wsflux((i-1)*ny+j) = xint(nd,wg,work)
10 continue

Appendix B

do 85 its=1,maxits

c
¢ Compute the right hand side
c
do 60 1=1,nd
do 15 i=1,nx
do 15 j=1,ny
ct = sigma(x(i),y(j))/(4d0O*pi)

s(i,j) = ctxwsflux((i-1)*ny+j)+q(l,i,j)
15 continue
if(dx(1) .1t.0d0.and.dy(1) .1t.0d0) then
do 20 j=1,ny+1
becr(j) = beright(y(j))+q(1l,nx+1,3)
20 continue
do 25 i=1,nx+1
bct(i) = bctop(x(i))+q(1l,i,ny+1)
25 continue
elseif (dx(1).1t.0d0.and.dy(1) .gt.0d0) then
do 30 j=1,ny+1
ber(j) = beright(y(j))+q(l,nx+1,j)
30 continue
do 35 i=1,nx+1
bcb(i) = bcbottom(x(i))+q(l,i,1)
35 continue
elseif (dx(1).gt.0d0.and.dy(1).1t.0d0) then
do 40 j=1,ny+1
bcl(j) = bcleft(y(j))+q(l,1,3)
40 continue
do 45 i=1,nx+1
bct(i) = bectop(x(i))+q(1l,i,ny+1)
45 continue
else
do 50 j=1,ny+1
bcl(j) = bcleft(y(3))+q(l,1,5)
50 continue
do 55 i=1,nx+1
bcb(i) = becbottom(x(i))+q(l,i,1)

55 continue
endif
60 continue
Cm

call sweeping(nd,nx,ny,np,x,y,hx,hy,dx,dy,s,bcl,
& ber,bcb,bet,aflux)

¢ Compute the new scalar flux

Appendix B

37

O o0 0

o O 0

do 70 i=1,nx
do 70 j=1,ny
do 65 1=1,nd
work(l) = 0.25d0*(aflux(l,i+1,j)+aflux(1l,i,j)+
& aflux(1,i,j+1)+aflux(l,i+1,j+1))
65 continue
sflux((i-1)*ny+j) = xint(nd,wg,work)
70 continue

res = 0.0d0

do 75 k=1,np

res = res+dabs(sflux(k)-wsflux(k))**2
75 continue

res = dsqrt(res)

if(its.eq.1) resO = res

err = res/res0
print*, its-1,err
if (iout.gt.0) write(iout,’(i4,2x,d20.6)’) its-1,err
if(err.le.tol.or.its.eq.maxits) return
do 80 k=1,np
wsflux (k) = sflux(k)
80 continue

85 continue

return
end

subroutine sweeping(nd,nx,ny,np,x,y,hx,hy,dx,dy,f,
& bcl,bcr,bcb,bct,u)

This subroutine invert the matrix H in (15) using the sweeping procedure

implicit real*8(a-h,o0-z)

dimension hx(1) ,hy(1),dx(1),dy(1),x(1),y(1)
dimension bcl(1),bcr(1),bcb(1),bct (1)
dimension f (nx,ny) ,u(nd,nx+1,ny+1)

Initialize the angular flux u

do 5 1=1,nd

Appendix B

38

5
¢

do 5 i=1,nx+1
do 5 j=1,ny+1
u(l,i,j) = 040

continue

¢ Strat the sweeping

C

10

15

25

30

do 70 1=1,nd

if(dx(1) .1t.0d0.and.dy(1) .1t.0d0) then

do 10 j=1,ny+1
u(l,nx+1,j) = ber(j)
continue
do 15 i=1,nx+1
u(l,i,ny+1) = bct(i)
continue
do 20 i=nx,1,-1

do 20 j=ny,1,-1

d = dabs(dx(1))/(2d0*hx(i))+dabs(dy(1))/(2d0xhy(j))+
0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(3)))

el = dabs(dx(1))/(2d0*hx(i))-dabs(dy(1))/(2d0*hy (j))+
0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(3)))

e2 = -dabs(dx(1))/(2d0*hx (i))+dabs(dy(1))/(2d0*hy (j))+
0.25d0*(sigma(x(1i),y(j))+xkappa(x(i),y(j)))

e3 = -dabs(dx(1))/(2d0*hx(i))-dabs (dy(1))/(2d0*hy (j))+

0.25d0* (sigma(x(i),y(j))+xkappa(x(i),y(j)))

u(l,i,j) = (£(i,j)-e2*u(l,i+1,j)-e3*u(l,i+l,j+1)-
elxu(l,i,j+1))/d
continue
elseif (dx (1) .1t.0d0.and.dy(1) .gt.0d0) then

do 25 j=1,ny+1
u(l,nx+1,j) = ber(j)
continue
do 30 i=1,nx+1
u(l,i,1) = bcb(i)
continue
do 35 i=nx,1,-1
do 35 j=1,ny
d = dabs(dx(1))/(2d0*hx(i))+dabs(dy(1))/(2d0xhy(j))+
0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))
el = dabs(dx(1))/(2d0*hx (i))-dabs (dy(1))/(2d0*hy (j))+

Appendix B 39

40

45

55

60

0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e2 = -dabs(dx(1))/(2d0*hx(i))+dabs(dy(1))/(2d0*hy(j))+
0.25d0* (sigma(x(i),y(j))+xkappa(x(i),y(j)))
e3 = -dabs(dx(1))/(2d0*hx(i))-dabs(dy(1))/(2d0*hy(j))+

0.25d0* (sigma(x(i),y(j))+xkappa(x(i),y(j)))

u(l,i,j+1) = (£(i,j)-e3*u(l,i+l,j)-el*u(l,i,j)-
e2xu(l,i+1,j+1))/d
continue
elseif (dx(1) .gt.0d0.and.dy(1).1t.0d0) then

do 40 j=1,ny+1
u(l,1,j) = bcl(j)
continue
do 45 i=1,nx+1
u(l,i,ny+1) = bect(i)
continue
do 50 i=1,nx
do 50 j=ny,1,-1
d = dabs(dx(1))/(2d0*hx(i))+dabs(dy(1))/(2d0*hy(j))+
0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

el = dabs(dx(1))/(2d0*hx(i))-dabs(dy(1))/(2d0*hy(j))+
0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(3)))

e2 = -dabs(dx(1))/(2d0*hx(i))+dabs(dy(1))/(2d0*hy(j))+
0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(3)))

e3 = -dabs(dx(1))/(2d0*hx(i))-dabs(dy(1))/(2d0*hy(j))+

0.25d0* (sigma(x(i),y(j))+xkappa(x(i),y(j)))

u(l,i+1,j) = (£(i,j)-e2*u(l,i,j)-el*u(l,i+1,j+1)-
e3*xu(l,i,j+1))/d
continue
else

do 55 j=1,ny+1
u(l,1,j) = bcl(j)
continue
do 60 i=1,nx+1
u(l,i,1) = bcb(i)
continue
do 65 i=1,nx
do 65 j=1,ny
d = dabs(dx(1))/(2d0*hx(i))+dabs(dy(1))/(2d0*hy(j))+
0.25d0* (sigma(x(i),y(j))+xkappa(x(i),y(3)))

Appendix B

40

O 0O 0 0

O o0 o0 o o0

el = dabs(dx(1))/(2d0*hx(i))-dabs(dy(1))/(2d0xhy(j))+
0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(3)))

e2 = -dabs(dx(1))/(2d0*hx (i))+dabs(dy(1))/(2d0*hy (j))+
0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(3)))

e3 = -dabs(dx(1))/(2d0*hx(i))-dabs(dy(1))/(2d0*hy (j))+

0.25d0* (sigma(x(i),y(j))+xkappa(x(i),y(j)))

u(l,i+1,j+1) = (£(i,j)-el*u(l,i+1,j)-e3*u(l,i,j)-
e2*u(l,i,j+1))/d
65 continue
endif

70 continue
return
end
function xint(nd,wg,u)

This function compute the weighted

integral operator applied to u.

implicit realx*8(a-h,o0-z)
dimension u(1),wg(1)

xint = 0dO

do 5 1=1,nd

xint = xint+wg(l)*u(l)
continue

return
end

function xkappa(x,y)

This function set the absorption coefficient.
As default is set to O here, but can be changed
by the user.

implicit real*8(a-h,o-z)
xkappa = 040

return
end

function sigma(x,y)

Appendix B

¢ This function set the scattering coefficient.
¢ As default is set to 1 here, but can be changed
¢ by the user.

c
implicit real*8(a-h,o-z)
c
sigma = 1dO
c
return
end
C
function bcleft(y)
c
¢ This function set the inflow boundary
¢ on the left boundary. As default is set
¢ to 0 here, but can be changed by the user.
c

implicit real*8(a-h,o0-z)

c
bcleftl = 040
c
return
end
c
function bcright (y)
c
¢ This function set the inflow boundary
¢ on the right boundary. As default is set
¢ to 0 here, but can be changed by the user.
c

implicit real*8(a-h,o0-z)

c
bcright = 040
c
return
end
c
function bcbottom(x)
c
¢ This function set the inflow boundary
¢ on the bottom boundary. As default is set
¢ to 0 here, but can be changed by the user.
c

implicit real*8(a-h,o0-z)

bcbottom = 040

Appendix B

42

O o0 o0 o0 o0

return
end

function bctop(x)

This function set the inflow boundary
on the top boundary. As default is set

to 0 here, but can be changed by the user.

implicit real*8(a-h,o-z)
bctop = 0dO

return
end

