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Abstrat

Detailed numerial methods for two-dimensional neutron transport equation are pre-

sented. Using the disrete ordinates for angle olloation and the Diamond di�erening for

spae disretization, the neutron transport equation is transformed to a system of sparse

matries. To solve the �nal system we formulate the soure iteration, a full BICGSTAB and

GMRES algorithms. Additionally, the di�usion limit and the di�usion syntheti aelera-

tion are inluded in these notes. The robustness, eÆieny and onvergene rates of these

methods are illustrated by two numerial examples.
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1 Introdution

The problem of non-energeti transport of neutrons in a substane surrounded by vauum an

be formulation by the following integro-di�erential equation

1

v

� 

�t

+
 � r + (� + �) =

�

4�

Z

S

2

 (t;x;


0

)d


0

+ q(t;x;
); in [0; T )�D � S

2

;

 (t;x;
) = g(t;x;
); on [0; T )� �D

�

� S

2

; (1)

 (0;x;
) =  

0

(x;
); in D � S

2

;

where D is a spae domain with smooth boundary �D, [0; T ) is a time interval, and S

2

is the

unit sphere. Here  (t;x;
) is the angular ux at time t and position point x := (x; y; z)

T

in

the diretion 
 := (�; �; �)

T

with �xed speed v, � := �(t;x) is the sattering ross setion,

� := �(t;x) is the absorption ross setion, and q(t;x;
) is an external soure. g(t;x;
) and

 

0

(x;
) are known boundary and initial funtions, respetively. We assume that � and � are

non-negative funtions. The boundary region �D

�

is de�ned as

�D

�

:=

�

x 2 �Dj n(x) � 
 < 0

	

; (2)

with n(x) is the outward normal at the point x on �D. Despite the equation (1) is linear,

omputing its numerial solution is not trivial due to:

1. The large number of dependent unknowns. In general, the solution  in (1) is a funtion of

eight independent variables, three spae variables (x; y; z), three angle variables (�; �; �),

one energy variable E, and one time variable t. After disretizing these variables the

omputer memory requirements and the omputational ost beome drastially immense.

This imposes severe restritions on omputational methods for (1).

2. In many neutron transport equation (1), the solution is not a smooth funtion of the

dependent variables (t;x; E;
). Steep fronts and even shok disontinuities an arise,

whih need to be resolved aurately in appliations and often ause severe numerial

diÆulties.

3. It is well known that the equation (1) hange the behaviour from a physial situation to

another. For example, the equation (1) behaves like hyperboli in void-like regions; in

optially dense region, it behaves like ellipti for steady-state ase and paraboli for time-

dependent ase. To onstrut an uni�ed omputational algorithm that resolve aurately

all the behaviour ases is extremely diÆult.

For physial interest, we de�ne a sattering ratio  and an optial oeÆient # assoiated to the

equation (1) as

 := max

x2D

�

�(x)

�(x) + �(x)

�

; and # := min

x2D

�

�(x) + �(x)

�

diam(D); (3)

respetively. diam(D) is the diameter of the spae domain D. Two extreme situations in

omputational neutron transport remain ative �eld of researh
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1.  = 1, pure sattering, no absorption (� = 0)

2. #� 1, optially thik, dense absorption (�� 1)

and the onventional methods su�er some diÆulties to solve aurately these two ases as

mentioned out in [2, 1, 18℄. For simpliity in presentation, we onsider in these notes only the

two-dimensional version of (1). Thus, D � IR

2

, x := (x; y)

T

, and 
 := (�; �)

T

. By introduing

the salar ux �

�(x) :=

1

4�

Z

S

2

 (x;


0

)d


0

; (4)

the two-dimensional time-independent neutron transport equation reads

�

� 

�x

+ �

� 

�y

+ (� + �) = ��(x; y) + q(x; y; �; �); in D � S

2

;

(5)

 (x; y; �; �) = g(x; y; �; �); on �D

�

� S

2

:

The aim of these notes is to give a detailed overview on the quality and eÆieny of lassial and

modern algorithms in omputational neutron transport. At �rst we will show how to disretize

the equation (5) in angle and spae. By the example of disrete ordinates and Diamond di�erene

methods, we will demonstrate how to develop iterative solvers for the fully disrete system.

Many studies of these solvers have been done in a number of books and papers by, among

others, [18, 1, 2, 22, 21, 5, 3℄ and the herein ited referenes.

Our notes ontain several approahes to the onstrution of a suitable algorithm whih an

serve as blak-box solver for the general neutron transport equation (1). The easiest possibility is

the use of Rihardson iteration known by astrophysiists as ^-iteration. This strategy has been

theoretially analysed in details in [1, 18℄. Another basi solver is the P

1

/Di�usion approah,

whih means the equation (1) is replaed by a saled di�usion problem suh that at the limit

tend to approximate the solution of (1). Generalized P

1

/Di�usion and other simpli�ed P

N

approximations have been introdued in [17, 15, 24℄. Iterative solvers for linear systems based

on Krylov subspae method like the BICGSTAB [25℄ or GMRES [23℄ are also implemented in

these notes. Generalzing the idea of onstruting preonditioner for an aelerated ^-iteration

we show how to use the P

1

/Di�usion approah as an optimal preonditioner for a given ^-

iteration. The resulting solver known as di�usion syntheti aeleration was introdued in [2℄

and studied from a linear algebra point of view in [5, 3℄. Finally we apply these solvers to

various test ases from neutron transport problem. Dependent on the sattering ratio  and the

optial oeÆient # of the problem under onsideration, we an identify the most suitable solver

in terms of auray and omputing ost.

These notes are organized as follows: In setion 2 the disrete ordinates method is presented.

The spae disretization is formulated in setion 3. Iterative shemes for the full disrete problem

are disussed in setion 4. The setion 5 is devoted to the di�usion limit and the di�usion

syntheti aeleration method. Setion 6 ontains numerial results and omparison between

the di�erent algorithms in terms of auray and eÆieny. Finally some onlusions are listed

in setion 7. For sake of ompleteness, the ray e�et of the disrete ordinates is shown by an

example in appendix A and a Fortran ode for the soure iteration is set as appendix B.
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2 Disrete Ordinates Method

The method of disrete ordinates was introdued and used in [6℄ to solve well many basi

problems in the area of radiative transfer. The method onsists of replaing the integral terms

in some form of the Boltzmann equation by numerial quadrature approximations of those

terms, and then a resulting set of ordinary di�erential equations is solved. In muh of the

literature [6, 22, 21, 18℄ the disrete ordinate method is detailed only for the one-dimensional

slab geometry ase and the theoretial results remain valid for the multi-dimensional ases. In

this setion we formulate and overview this method for the two-dimensional model (5).

A standard approah for the integral expression over the unit sphere S

2

in (12) is the quadra-

ture rules of the form

Z

S

2

 (x;


0

)d


0

'

�

N

X

l=1

!

l

 (x;


0

l

); (6)

where 


0

l

:= (�

l

; �

l

; �

l

)

T

, for l = 1; 2; : : : ;

�

N , with

�

N = n(n+2), and n is the number of diretions

osines. Sine 


0

l

2 S

2

, we have

�

2

l

+ �

2

l

+ �

2

l

= 1; for all l = 1; 2; : : : ;

�

N:

We assume n an even number of quadrature points so that the points (�

l

; �

l

; �

l

) are nonzero,

symmetri about the origin, and

�

2

l

= �

2

1

+ 2

l � 1

n� 2

(2� 3�

2

1

): (7)

For the weights !

l

we assume all are positive and satisfy

�

N

X

l=1

!

l

= 4�;

�

N

X

l=1

!

l

�

l

= 0;

�

N

X

l=1

!

l

�

l

= 0; and

�

N

X

l=1

!

l

�

l

= 0: (8)

A simple way to guaranty the onditions (8) is to set all weights positive and equal to

4�

�

N

.

Note that the approximation (6) an be derived using the spherial oordinates. If the

diretion vetor 
 := (sin' os �; sin' sin �; os')

T

, then

Z

S

2

 (x;


0

)d


0

=

Z

�

0

Z

2�

0

 (x; �

0

; '

0

)d�

0

sin'

0

d'

0

:

The trapezoidal rule for eah one-dimensional integral separately yields

Z

�

0

Z

2�

0

 (x; �

0

; '

0

)d�

0

sin'

0

d'

0

'

L

X

l=1

K

X

k=1

w

lk

 (x; �

l

; '

k

); (9)

where the quadrature weights

w

lk

=

�

2LK

sin'

l

:

By taking the sum over k in w

lk

, the expression (9) is equivalent to the quadrature rule (6) with

!

l

=

K

X

k=1

w

lk

; and

�

N = LK:
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Other methods to disretize the unit sphere S

2

are the so-alled S

n

-diretion sets. A review

dealing with the S

n

sets an be found in [8℄, and a omparison between di�erent S

n

sets for

radiative transfer have been done in [10℄. These S

n

sets satisfy the onditions (7) and (8).

Furthermore, they are arranged on n=2 levels, invariant under 90

Æ

rotations, and they have

equal positive weights, see �gure 1 for an illustration of S

12

set in two-dimensional ase. Here

the diretion � is omitted.
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Figure 1: The S

12

-diretion set for the two-dimensional problems.

Let S

�

N

be a hosen set of disrete diretions in the unit sphere S

2

, then the two-dimensional

diretion set is just the simpli�ation of one diretion in S

�

N

suh that the simpli�ed set is

symmetri, has nonzero diretion, and with positive weights. Hene a semi-disrete formulation

of the neutron transport equation (5) is given by

�

l

� 

l

�x

+ �

l

� 

l

�y

+ (� + �) 

l

= ��(x; y) + q

l

(x; y); in D � S

�

N

;

(10)

 

l

(x; y) = g

l

(x; y); on �D

�

� S

�

N

:

 

l

(x; y), q

l

(x; y) and g

l

(x; y) are approximations to  (x; y; �

l

; �

l

), q(x; y; �

l

; �

l

) and g(x; y; �

l

; �

l

),

respetively. Note that the angular disretization (10) transforms the original integro-di�erential

equation (5) into a system of

�

N oupled di�erential equations.

Remark 1 One of our favourite S

n

-diretion set is the C-60 known as bukyball in [7℄. the

set ontains 60 equal weighted diretions with high symmetry on�guration. The C-60 set is

reprodued in table 1. In our numerial examples we used others S

n

sets and C-60 yields the

best results. However, the main disadvantage using these sets is we an not re�ne the ordinates

within the same set as we an do using the usual trapezoidal or Gauss quadrature rules.

3 Spae Disretization

The disrete ordinates method an be applied in ombination with �nite elements, �nite dif-

ferenes or spetral methods. In [5℄ the author ombines the Petrov-Galerkin method with the

disrete ordinates olloation for the neutron transport equation (1). Sine it is easier to ombine
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Table 1: The C-60 diretions set used in our numerial test problems.

l �

l

�

l

!

l

l �

l

�

l

!

l

1 -0.9642754578 -0.1716393065 0.2094395102 31 0.0655603813 -0.5149179195 0.2094395102

2 -0.9642754578 -0.1716393065 0.2094395102 32 0.0655603813 -0.5149179195 0.2094395102

3 -0.8987150765 0.1716393065 0.2094395102 33 0.1060789252 0.1716393065 0.2094395102

4 -0.8987150765 0.1716393065 0.2094395102 34 0.1060789252 0.9392336205 0.2094395102

5 -0.8331546952 0.5149179195 0.2094395102 35 0.1060789252 0.9392336205 0.2094395102

6 -0.8331546952 0.5149179195 0.2094395102 36 0.1060789252 0.1716393065 0.2094395102

7 -0.7926361513 -0.5149179195 0.2094395102 37 0.2121578505 0.7270757700 0.2094395102

8 -0.7926361513 -0.5149179195 0.2094395102 38 0.2121578505 0.7270757700 0.2094395102

9 -0.6865572261 -0.7270757700 0.2094395102 39 0.2777182317 -0.9392336205 0.2094395102

10 -0.6615153887 0.1716393065 0.2094395102 40 0.2777182317 -0.9392336205 0.2094395102

11 -0.6615153887 0.1716393065 0.2094395102 41 0.3432786130 0.9392336205 0.2094395102

12 -0.5554364635 -0.5149179195 0.2094395102 42 0.4493575383 -0.5149179195 0.2094395102

13 -0.5554364635 0.7270757700 0.2094395102 43 0.4493575383 -0.5149179195 0.2094395102

14 -0.5554364635 0.7270757700 0.2094395102 44 0.4898760822 0.1716393065 0.2094395102

15 -0.5554364635 -0.5149179195 0.2094395102 45 0.4898760822 0.1716393065 0.2094395102

16 -0.4898760822 -0.1716393065 0.2094395102 46 0.5554364635 0.5149179195 0.2094395102

17 -0.4898760822 -0.1716393065 0.2094395102 47 0.5554364635 -0.7270757700 0.2094395102

18 -0.4493575383 0.5149179195 0.2094395102 48 0.5554364635 -0.7270757700 0.2094395102

19 -0.4493575383 0.5149179195 0.2094395102 49 0.5554364635 0.5149179195 0.2094395102

20 -0.3432786130 -0.9392336205 0.2094395102 50 0.6615153887 -0.1716393065 0.2094395102

21 -0.2777182317 0.9392336205 0.2094395102 51 0.6615153887 -0.1716393065 0.2094395102

22 -0.2777182317 0.9392336205 0.2094395102 52 0.6865572261 0.7270757700 0.2094395102

23 -0.2121578505 -0.7270757700 0.2094395102 53 0.7926361513 0.5149179195 0.2094395102

24 -0.2121578505 -0.7270757700 0.2094395102 54 0.7926361513 0.5149179195 0.2094395102

25 -0.1060789252 -0.1716393065 0.2094395102 55 0.8331546952 -0.5149179195 0.2094395102

26 -0.1060789252 -0.9392336205 0.2094395102 56 0.8331546952 -0.5149179195 0.2094395102

27 -0.1060789252 -0.9392336205 0.2094395102 57 0.8987150765 -0.1716393065 0.2094395102

28 -0.1060789252 -0.1716393065 0.2094395102 58 0.8987150765 -0.1716393065 0.2094395102

29 -0.0655603813 0.5149179195 0.2094395102 59 0.9642754578 0.1716393065 0.2094395102

30 -0.0655603813 0.5149179195 0.2094395102 60 0.9642754578 0.1716393065 0.2094395102

the upwinding with �nite volume disretization than other methods, we onsider in these notes

a spae disretization based on volume ontrol and ell averaging. For simpliity, we assume

that the spae domain is a retangle, D := [a; b℄ � [; d℄. Thus the numerial grid is de�ned by

D

h

:=

n

x

ij

= (x

i

; y

j

)

T

; x

i

= i(�x)

i

; y

j

= j(�y)

j

; i = 1; 2 : : : ; N; j = 1; 2 : : : ;M

o

;

x

0

= a; x

N

= b, y

0

= ; y

M

= d, and h denotes the maximum ell size h := max

ij

�

(�x)

i

; (�y)

j

�

.

We de�ne the averaged grid points as

(�x)

i+

1

2

:= x

i+1

� x

i

; (�y)

j+

1

2

:= y

j+1

� y

j

; x

i+

1

2

:=

x

i+1

+ x

i

2

; y

j+

1

2

:=

y

j+1

+ y

j

2

:

We use the notation f

ij

to denote the approximation value of the funtion f at the grid point

(x

i

; y

j

). Using the semi-disrete formulation (10), a fully disrete approximation for the equa-

tion (5) an be diretly written as

�

l

 

l;i+1j

�  

l;ij

(�x)

i+

1

2

+ �

l

 

l;ij+1

�  

l;ij

(�y)

j+

1

2

+

�

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

�

 

l;i+

1

2

j+

1

2

=

�

i+

1

2

j+

1

2

�

i+

1

2

j+

1

2

+ q

l;i+

1

2

j+

1

2

; (11)
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where the ell averages of  are given by

 

l;i+1j

=

1

(�x)

i+

1

2

Z

y

j+1

y

j

 

l

(x

i

; y)dy;

 

l;ij+1

=

1

(�y)

j+

1

2

Z

x

i+1

x

i

 

l

(x; y

j

)dx; (12)

 

l;ij

=

1

(�x)

i+

1

2

(�y)

j+

1

2

Z

x

i+1

x

i

Z

y

j+1

y

j

 

l

(x; y)dxdy;

To approximate the uxes (12), we use the well known Diamond di�erene method whih onsist

on entred di�erenes and approximating the funtion values at the ell entres by the average

of their values at the neighbouring nodes. See the �gure 2 for an illustration of the grids used in

these notes. The funtion value of f

i+

1

2

j+

1

2

at the ell entre is simply approximated by bilinear

interpolation as

f

i+

1

2

j+

1

2

=

f

ij

+ f

i+ij

+ f

ij+1

+ f

i+1j+1

4

: (13)

Hene the salar ux �

i+

1

2

j+

1

2

in (11) is given by

�

i+

1

2

j+

1

2

=

�

N

X

l=1

!

l

 

ij

+  

i+ij

+  

ij+1

+  

i+1j+1

4

:

x

y

x
i+1

x

yj+1

y

i

j (i,j) (i+1,j)

(i,j+1) (i+1,j+1)

x
i+

2
1

j+y
2
1

2
1(i+    ,j+    )

2
1

Figure 2: The staggered grid used for the spae disretization.

For the boundary onditions in (10) we an proeed as follows:



3. Spae Disretization 8

when x = a, the normal n = (�1; 0)

T

, then n�


l

= ��

l

, and for �

l

> 0 we have  

l;0j

= g

l;0j

when x = b, the normal n = (1; 0)

T

, then n �


l

= �

l

, and for �

l

< 0 we have  

l;Nj

= g

l;Nj

when y = , the normal n = (0;�1)

T

, then n �


l

= ��

l

, and for �

l

> 0 we have  

l;i0

= g

l;i0

when y = d, the normal n = (0; 1)

T

, then n �


l

= �

l

, and for �

l

< 0 we have  

l;iM

= g

l;iM

Remark 2 If the spae domain D present some points on the boundary �D

�

where the normal

is not unique, orners for example in the ase of a retangular domain, then, is possible to

de�ne a new normal on those points with multiple normal. For instane, at the left lower orner

point x = (a; )

T

in the retangle a new normal an be de�ne as
~
n = (�

p

2

2

;�

p

2

2

)

T

, and for

~
n � 


l

= �

p

2

2

�

l

�

p

2

2

�

l

< 0, we have  

l;00

= g

l;00

. Similar work an be done for other three

remaining orners.

In order to simplify the notations and to get loser to a ompat linear algebra formulation

of (11), we �rst de�ne the matrix entries

d

l;i+

1

2

j+

1

2

:=

j�

l

j

2(�x)

i+

1

2

+

j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

;

�e

l;i+

1

2

j+

1

2

:=

j�

l

j

2(�x)

i+

1

2

+

�j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

;

e

�

l;i+

1

2

j+

1

2

:=

�j�

l

j

2(�x)

i+

1

2

+

j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

;

e

l;i+

1

2

j+

1

2

:=

�j�

l

j

2(�x)

i+

1

2

+

�j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

:

De�ne the vetors

	

l

�

0

B

�

	

l;0

.

.

.

	

l;M

1

C

A

2 IR

(N+1)(M+1)

; with 	

l;j

�

0

B

�

 

l;0j

.

.

.

 

l;Nj

1

C

A

2 IR

N+1

;

� �

0

B

B

�

�
1

2

.

.

.

�

M�

1

2

1

C

C

A

2 IR

NM

; with �

j�

1

2

�

0

B

B

�

�
1

2

j�

1

2

.

.

.

�

N�

1

2

j�

1

2

1

C

C

A

2 IR

N

;

and Q

l

�

0

B

B

�

Q

l;

1

2

.

.

.

Q

l;M�

1

2

1

C

C

A

2 IR

NM

; with Q

l;j�

1

2

�

0

B

B

�

q

l;

1

2

j�

1

2

.

.

.

q

l;N�

1

2

j�

1

2

1

C

C

A

2 IR

N

:

Reall that the S

�

N

-diretion set used for the disrete ordinates formulation (10) avoid the zero

omponent in a given diretion 


l

= (�

l

; �

l

). So, only one of the four ases; �

l

< 0 and � < 0,

�

l

< 0 and � > 0, �

l

> 0 and � < 0, or �

l

> 0 and � > 0 an hold. Here we de�ne the matries
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H

l

and �

l

for the ase �

l

< 0 and � < 0, and the other three ases an be derived similarly.

H

l

�

0

B

B

B

B

B

�

D

l

E

�

l

.

.

.

.

.

.

D

l

E

�

l

D

l

S

S

1

C

C

C

C

C

A

2 IR

(N+1)(M+1)�(N+1)(M+1)

; with

D

l

�

0

B

B

B

�

d �e

.

.

.

.

.

.

d �e

1

1

C

C

C

A

2 IR

(N+1)�(M+1)

; E

�

l

�

0

B

B

B

�

e

�

e

.

.

.

.

.

.

e

�

e

1

1

C

C

C

A

2 IR

(N+1)�(M+1)

;

and S �

0

B

B

B

�

1 1

.

.

.

.

.

.

1 1

1

1

C

C

C

A

2 IR

(N+1)�(M+1)

:

�

l

�

0

B

B

B

B

�

�

l;

1

2

.

.

.

�

l;M�

1

2

0

1

C

C

C

C

A

2 IR

(N+1)(M+1)�NM

; with

�

l;j

�

0

B

B

B

B

�

�

i+

1

2

j+

1

2

+�

i+

1

2

j+

1

2

4

.

.

.

�

i+

1

2

j+

1

2

+�

i+

1

2

j+

1

2

4

0

1

C

C

C

C

A

2 IR

(N+1)�M

:

With these de�nitions, the equation (11) an be written in the unknowns 	 and � as

0

B

B

B

B

B

B

�

H

1

��

1

.

.

.

.

.

.

H

�

N

��

�

N

�!

1

S : : : �!

�

N

S I

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

�

	

1

.

.

.

	

�

N

�

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

�

Q

1

.

.

.

Q

�

N

0

1

C

C

C

C

C

C

A

; (14)

where I is the N �M identity matrix and 0 is the N null vetor. The usual tehnique to solve

the equation (14), is to eliminate the angular ux 	

1

; : : : ;	

�

N

using the Gaussian elimination.

Therefore the storage requirements is redued and the resulting equation

�

I�

1

4�

�

N

X

l=1

!

l

SH

�1

l

�

l

�

� =

1

4�

�

N

X

l=1

!

l

SH

�1

l

Q

l

; (15)

is solved for the salar ux �, whih does not depend on diretion variables. Furthermore,

solving (15) does not need to store the dense NM �NM shur matrix,

A � I�

1

4�

�

N

X

l=1

!

l

SH

�1

l

�

l

: (16)
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For instane, to apply this matrix to a given NM vetor U, only three NM vetors are needed.

The �rst is used to store the produt U by �

l

, in the seond we store the solution of the linear

system with the matrix H

l

. Multiplying by S and subtrating the weighted resulting vetor

from U is stored in the third vetor.

Sine the key idea in all the inoming numerial methods dealing with the equation (15) is

inverting the matrix H

l

for l = 1; : : : ;

�

N , we set up the following algorithm performing this step

Algorithm 1: sweeping(N ,M ,

�

N ,�x,�y,�,�,�,�,Q,	,U)

do l = 1; : : : ;

�

N

do i = 1; : : : ; N

do j = 1; : : : ;M

d

l;i+

1

2

j+

1

2

=

j�

l

j

2(�x)

i+

1

2

+

j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

�e

l;i+

1

2

j+

1

2

=

j�

l

j

2(�x)

i+

1

2

+

�j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

e

�

l;i+

1

2

j+

1

2

=

�j�

l

j

2(�x)

i+

1

2

+

j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

e

l;i+

1

2

j+

1

2

=

�j�

l

j

2(�x)

i+

1

2

+

�j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

end do

end do

if (�

l

< 0 and � < 0) then

do i = 1; : : : ; N + 1

 

l;iM+1

= q

l;iM+1

end do

do j = 1; : : : ;M + 1

 

l;N+1j

= q

l;N+1j

end do

do i = N; : : : ; 1

do j =M; : : : ; 1

 

l;ij

=

u

i+

1

2

j+

1

2

� e

�

l;i+

1

2

j+

1

2

 

l;i+1j

� e

l;i+

1

2

j+

1

2

 

l;i+1j+1

� �e

l;i+

1

2

j+

1

2

 

l;ij+1

d

l;i+

1

2

j+

1

2

end do

end do

end if

if (�

l

< 0 and � > 0) then

do i = 1; : : : ; N + 1

 

l;i1

= q

l;i1

end do

do j = 1; : : : ;M + 1

 

l;N+1j

= q

l;N+1j

end do

do i = N; : : : ; 1

do j = 1; : : : ;M

 

l;ij+1

=

u

i+

1

2

j+

1

2

� e

l;i+

1

2

j+

1

2

 

l;i+1j

� �e

l;i+

1

2

j+

1

2

 

l;ij

� e

�

l;i+

1

2

j+

1

2

 

l;i+1j+1

d

l;i+

1

2

j+

1

2
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end do

end do

end if

if (�

l

> 0 and � < 0) then

do i = 1; : : : ; N + 1

 

l;iM+1

= q

l;iM+1

end do

do j = 1; : : : ;M + 1

 

l;1j

= q

l;1j

end do

do i = 1; : : : ; N

do j =M; : : : ; 1

 

l;i+1j

=

u

i+

1

2

j+

1

2

� e

�

l;i+

1

2

j+

1

2

 

l;ij

� �e

l;i+

1

2

j+

1

2

 

l;i+1j+1

� e

l;i+

1

2

j+

1

2

 

l;ij+1

d

l;i+

1

2

j+

1

2

end do

end do

end if

if (�

l

> 0 and � > 0) then

do i = 1; : : : ; N + 1

 

l;i1

= q

l;i1

end do

do j = 1; : : : ;M + 1

 

l;1j

= q

l;1j

end do

do i = 1; : : : ; N

do j = 1; : : : ;M

 

l;i+1j+1

=

u

i+

1

2

j+

1

2

� �e

l;i+

1

2

j+

1

2

 

l;i+1j

� e

l;i+

1

2

j+

1

2

 

l;ij

� e

�

l;i+

1

2

j+

1

2

 

l;ij+1

d

l;i+

1

2

j+

1

2

end do

end do

end if

end do

Note that the Algorithm 1 is based on the Gaussian elimination known in omputational

neutron transport as sweeping proedures. Additionally, for eah diretion in S

�

N

only one sweep

is needed. See �gure 3 for a sweep illustration.

Remark 3 When reetive boundaries arise on no more than one vertial and one horizontal

boundary, the Algorithm 1 start �rst sweeping at the boundaries with known inoming ux then,

reeted ux from the boundary is used for baksweeping. If both horizontal and/or vertial

boundaries are reetive, an iterative proess must be done on the boundaries. Suppose for

example, both vertial boundaries are reetive i.e.,

 

0j

(�

l

; �

l

) =  

0j

(��

l

; �

l

); for �

l

> 0 and  

N+1j

(�

l

; �

l

) =  

N+1j

(��

l

; �

l

) for �

l

< 0:

Then, the angular uxes at the vertial boundaries whih were alulated in one step are used

as inow boundary for the next step of iteration. The iterations are stopped as soon as, the

inequality

k 

old

�  

new

k

L

1

� Æ

r

k 

old

k

L

1

+ Æ

a

is satisfy. Here Æ

a

, Æ

r

are given toleranes and k:k

L

1

is the L

1

-norm.
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x

y lΩ

j

j+1

i+

__1
2

i+1i

j+

__
2
1

Figure 3: Sweep illustration for �

l

> 0 and � > 0. � known boundary ux  , Æ omputed ux

 at ell interfaes, and � omputed ux � at ell entre.

4 Iterative Methods

In this setion we introdue some numerial methods used in the literature to solve the linear

system (14), whih an be rewritten in ommon linear algebra notation as

AX = b; (17)

with

A �

0

B

B

B

B

B

B

�

H

1

��

1

.

.

.

.

.

.

H

�

N

��

�

N

�!

1

S : : : �!

�

N

S I

1

C

C

C

C

C

C

A

; X �

0

B

B

B

B

B

B

�

	

1

.

.

.

	

�

N

�

1

C

C

C

C

C

C

A

; and b �

0

B

B

B

B

B

B

�

Q

1

.

.

.

Q

�

N

0

1

C

C

C

C

C

C

A

:

In the same spirit we an rewrite the system (15) as

A� = B; (18)

where A is the Shur matrix given in (16) and the right hand side B =

1

4�

�

N

X

l=1

!

l

SH

�1

l

Q

l

.

Reall that the matries A and A are sparse and nonsymmetri. In large sale problems

iterative methods are omputationally more eÆient than diret methods; however, most itera-

tive methods for nonsysmmetri systems, with the possible exeption of multigrid methods, are

less eÆient than their symmetri ounterparts.
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The most popular and easiest iterative method to solve (18) is the Rihardson iteration known

in the omputational neutron transport as Soure Iteration (SI) method. Given an initial guess

�

(0)

, the (k + 1)-iterate solution is obtained by

�

(k+1)

= �

(k)

+

1

4�

�

N

X

l=1

!

l

SH

�1

l

Q

l

�A�

(k)

;

or simply

�

(k+1)

=

1

4�

�

N

X

l=1

!

l

SH

�1

l

�

Q

l

+�

l

�

(k)

�

: (19)

In the following the SI algorithm is presented and a Fortran ode with this algorithm is given

in the Appendix B.

Algorithm 2: The SI algorithm

given the initial guess 	

(0)

ompute �

(0)

=

1

4�

�

N

X

l=1

!

l

S	

(0)

do k = 0; : : : ;Kmax

do l = 1; : : : ;

�

N

ompute W = Q

l

+�

l

�

(k)

end do

all sweeping(N;M;

�

N;�x;�y; �; �; �; �;Q;	

(k+1)

;W)

ompute �

(k+1)

=

1

4�

�

N

X

l=1

!

l

S	

(k+1)

l

ompute Res

(k+1)

= k�

(k+1)

� �

(k)

k

L

2

if

�

Res

(k+1)

Res

(0)

� tol

�

stop

end do

Here Kmax is the maximum number of the iterations, tol is a given tolerane, k:k

L

2
is the

disrete L

2

-norm, and Res

(k)

denotes the residual vetor at iteration k.

Note that iteration (19) is equivalent to a preonditioned blok Gauss-Seidel method applied

to (17), where the preonditioner is the blok lower triangle of the matrix A. Thus, if M is the

blok lower triangle of A, then

MX

(k+1)

= (M�A)X

(k)

+ b;

and

X

(k+1)

=

�

I�M

�1

A

�

X

(k)

+M

�1

b: (20)

Therefore the (k + 1)-iterate salar ux satisfy

�

(k+1)

=

1

4�

�

N

X

l=1

!

l

SH

�1

l

	

(k+1)

l

=

1

4�

�

N

X

l=1

!

l

SH

�1

l

�

Q

l

+�

l

�

(k)

�

;
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whih is idential to (19). Regarding to the matrix formulations (17) and (18), we have the

following properties:

1. The matries A and A are nonsymmetri. In general they are not diagonally dominant.

2. When �e

l;i+

1

2

j+

1

2

� 0 and e

�

l;i+

1

2

j+

1

2

� 0, for all l; i; j, the matrix A is weakly diagonally

dominant.

3. Sine � and � are nonnegative funtions, and S

�

N

has nonzero diretions, the matrix A

has positive diagonal elements and nonpositive o�-diagonal elements.

The fat that �e

l;i+

1

2

j+

1

2

� 0 and e

�

l;i+

1

2

j+

1

2

� 0 is equivalent to

h := max

ij

�

(�x)

i

; (�y)

j

�

� max

ij

�

2j�

l

j

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

;

2j�

l

j

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

�

; 8 l; (21)

whih means physially that the ell size is no more than two mean free paths of the partiles

being simulated. Needless to say that the ondition (21) gives the bound of the oarser mesh

should be used in the omputations.

Upon the properties listed above and Fourier analysis we have the following lemma whose

proof an be found in [3, 11℄ for the one-dimensional problem. With the same arguments the

result an be extended to the two dimensional ase.

Lemma 1 Assume �(x) � 0, �(x) � 0 for all x 2 D, and assume that �(x) �  > 0 on D.

Then for eah diretion 


l

2 S

�

N

,

k�

1=2

SH

�1

l

�

l

�

�1=2

k <  � 1;

where � := diag

n

(�
1

2

1

2

+ �
1

2

1

2

)h; : : : ; (�

N�

1

2

M�

1

2

+ �

N�

1

2

M�

1

2

)h

o

and  is de�ned in (3).

Consequently, the lemma 1 leads to the following onvergene result for the SI algorithm.

Theorem 1 Under the assumption of lemma 1, the iterations (19) onverge to the solution �

of (15), and if e

(k)

:= �� �

(k)

denotes the error at iteration k, then

k�

1=2

e

(k+1)

k < k�

1=2

e

(k)

k; k = 0; 1; : : : ;

where � is de�ned in the lemma 1 and  is given in (3).

�

Proof. From (19) we have

�

1=2

e

(k+1)

=

1

4�

�

N

X

l=1

!

l

�

�

1=2

SH

�1

l

�

l

�

�1=2

�

�

1=2

e

(k)

;

by applying norms on both sides and use the fat that the weights !

l

satisfy

!

l

� 0; and

�

N

X

l=1

!

l

= 4�;
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we end up with

k�

1=2

e

(k+1)

k <

1

4�

�

N

X

l=1

!

l

k�

1=2

e

(k)

k = k�

1=2

e

(k)

k: (22)

Sine the inequality (22) is strit and  independent of k with  � 1, the the iterations (19)

onverge to the solution of (15). Moreover, the onvergene rate is bounded by .

It is well known in iterative methods for linear algebra [13, 9, 11℄ that the preonditioned

Rihardson iteration (21) onverges rapidly as long as the norm of the matrix (I �M

�1

A) is

small. This ondition is ensured by taking  small. As theorem 1 indiates, the onvergene

rate of the SI method is restrited by the sattering ratio . Hene, for  � 1 theorem 1 shows

that the SI method onverges rapidly, but for  � 1 (large optial opaity) onvergene beomes

slow and may restrit the eÆieny of the SI algorithm.

In order to overome the disadvantage of SI method to eÆiently solve the problem (15) when

 � 1, we propose two Krylov subspae based methods, espeially the BI-Conjugate Gradient

Stabilized (BICGSTAB) [25℄ and the Generalized Minimal Residual (GMRES) [23℄, whih work

muh better in this ase. The main idea behind these approahes is that the Krylov subspae

methods an be interpreted as the weighted Rihardson iteration

X

(k+1)

= �

�

I�P

�1

A

�

X

(k)

+P

�1

b; 0 < � < 2; (23)

where the relaxation parameters � and the preonditioner P are variables within eah iteration

step. Note that when � = 1 and P =M the iteration (23) is redued to the SI method.

The BICSTAB and GMRES algorithms to solve the linear system (18) an be implemented

in the onventional way as in [25, 23, 13, 9, 11℄, with the only di�erene that the sparse matrix

A an not be expliitly stored. All what is needed, however, is a subroutine that performs a

matrix-vetor multipliation as shown in the following algorithm

Algorithm 3: The matrix-vetor multipliation

given a vetor U, to apply the matrix A to U we proeed as:

do l = 1; : : : ;

�

N

ompute V = �

l

U

end do

all sweeping(N;M;

�

N;�x;�y; �; �; �; �;Q;V;W)

do l = 1; : : : ;

�

N

ompute V = S

l

W

end do

set U = U�

1

4�

�

N

X

l=1

!

l

V

Note that only three vetors (U, V andW) are needed to perform the multipliation of the

matrix A to the vetor U. Moreover, only three alls for the algorithm 3 are required from the

BICGSTAB or GMRES subroutines.

Remark 4 Preonditioned BICGSTAB or GMRES methods an be also used. For instane,

in the ase when the matrix A in (16) is diagonally dominant, the BICGSTAB or GMRES
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methods an be aelerated by using the diagonal as a preonditioner. This approah whih

requires additional omputational work an be easily implemented. It is worth to say that sine,

the matrix A does not have an expliit representation, ILU type preonditioners an not be used

to solve (15).

5 Di�usion Syntheti Aeleration Method

It has been shown in [17, 16, 15℄, under the physial assumptions that the medium is optially

thik and the sattering is dominate, the neutron transport equation (5) an be approximated

by the di�usion problem

�r �

�

1

3(� + �)

r'

�

+ �' = q in D;

(24)

'+

2

3(� + �)

n � r' = 4�g; on �D:

The authors in [17, 16, 15℄ used asymptoti analysis to prove that, in di�usive limit, the so-

lution to the equation (24) approahes asymptotially solution of the full neutron transport

equation (5). Further analysis and other asymptoti approximations to the transport problem

in radiative heat transfer ontext an be found in [24℄. The main advantages to onsider the

di�usion approah lie on the fat that equation (24) does not depend on the angle variable 
,

is linear ellipti equation, simple to solve numerially with less omputational ost and memory

requirement, and when � is positive (24) has a unique solution.

In order to build a disretization for the di�usion problem (24) whih is onsistent to the one

used for the neutron transport equation (5) and onverges asymptotially to the same solution

as the mesh size h tends to zero, we onsider in this setion the same grid struture as �gure 2

and the same notations as those used in setion 3.

Hene a spae disretization for the equation (24) reads as

�D

2

h

�

1

3(� + �)

'

�

ij

+ �'

i+

1

2

j+

1

2

= q

i+

1

2

j+

1

2

; (25)

where the di�erene operator D

2

h

is given by D

2

h

:= D

2

x

+D

2

y

, with

D

2

x

(�!)

ij

:=

�

ij

+ �

i+1j

2

!

i+1j

� !

ij

(�x)

2

i+

1

2

�

�

i�1j

+ �

ij

2

!

ij

� !

i�1j

(�x)

2

i+

1

2

;

D

2

y

(�!)

ij

:=

�

ij

+ �

ij+1

2

!

ij+1

� !

ij

(�y)

2

j+

1

2

�

�

ij�1

+ �

ij

2

!

ij

� !

ij�1

(�y)

2

j+

1

2

;

and the funtions '

i+

1

2

j+

1

2

and q

i+

1

2

j+

1

2

appeared in (25) are given by the formula (13). The

gradient in the boundary onditions is approximated by upwinding without using ghost points.

For example, on the left boundary of the domain (x = x

0

) the boundary disretization is

'
1

2

j+

1

2

�

2

3(�
1

2

j+

1

2

+ �
1

2

j+

1

2

)

'
3

2

j+

1

2

� '
1

2

j+

1

2

(�x)
1

2

= 4�g
1

2

j+

1

2

;

and similar work has to be done for the other boundaries. All together, the above disretization

leads to a linear system of form

T ' = R; (26)
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where T is N �M nonsymmetri positive de�nite matrix obtained from the di�erene di�usion

operator (25) with boundary onditions inluded, andR is NM vetor ontaining the right hand

q and boundary funtion g. The system (26) an be solved using one of the iterative methods

BICGSTAB or GMRES already disussed in setion 4. In our numerial examples presented in

these notes we used the preonditioned BICGSTAB with the diagonal as preonditioner.

As mentioned early the di�usion approah (24) is a good approximation to the full neutron

transport equation (5) only when the transport �eld is optially thik (# � 1) or with dense

absorption (� � 1). In medium with small absorption or pure sattering (� = 0) the di�usion

approah (24) beomes unable to approximate aurately the orret solution of the full transport

problem. Nevertheless, this approah an be used to aelerate the soure iteration algorithm

in all the regimes. The resulting aelerated algorithm, widely known in omputational neutron

transport as Di�usion Syntheti Aeleration (DSA) method, was �rst introdued in [2℄ and

studied in a number of papers, for instane see [5, 3℄.

The implementation of DSA method to approximate the solution of the neutron transport

equation (5) is arried out in the following algorithm

Algorithm 4: The DSA algorithm

given the initial guess 	

(0)

ompute �

(0)

=

1

4�

�

N

X

l=1

!

l

S	

(0)

do k = 0; : : : ;Kmax

do l = 1; : : : ;

�

N

ompute W = Q

l

+�

l

�

(k)

end do

all sweeping(N;M;

�

N;�x;�y; �; �; �; �;Q;	

(k+1)

;W)

ompute �

(k+

1

2

)

=

1

4�

�

N

X

l=1

!

l

S	

(k+1)

l

ompute ' by solving the di�usion problem

�r �

�

1

3(� + �)

r'

�

+ �' = �

�

�

(k+

1

2

)

� �

(k)

�

;

'+

2

3(� + �)

n � r' = 0:

set �

(k+1)

= �

(k+

1

2

)

+ '

ompute Res

(k+1)

= k�

(k+1)

� �

(k)

k

L

2

if

�

Res

(k+1)

Res

(0)

� tol

�

stop

end do

Reall that in the matrix notation of setion 4 the SI iteration is given by the Rihardson

iteration applied to the system (17) as

X

(k+1)

=

�

I�M

�1

A

�

X

(k)

+M

�1

b;

where M is the blok lower triangle of A. Roughly speaking, the DSA method an be viewed

as preonditioned Rihardson iteration with the di�usion matrix T like preonditioner,

X

(k+1)

=

�

I� T

�1

A

�

X

(k)

+ T

�1

b;
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and T

�1

is obtained by solving the di�usion linear system (26).

Note that the �rst lines in Algorithm 4 are similar to the Algorithm 2. However, the

soure iteration algorithm gives only the intermediate solution �

(k+

1

2

)

whih has to be orreted

by adding the solution ' obtained by the di�usion approah. Furthermore, if BICGSTAB is used

for the di�usion approah, then an inner iterations have to be added to the iteration used by the

SI algorithm and an outer SI iterations may require less auray from the inner BICGSTAB

iterations (sine the main issue to onsider the DSA method is to obtain an aelerated algo-

rithm).

6 Numerial Examples

Table 2: The values of �, � and boundary funtion g for di�erent test problems in example 1.

�(x; y) �(x; y) g

�

l

(y) g

�

r

(y) g

�

b

(x) g

�

t

(x)

Test 1 0:99 0:01 0 1 x x

Test 2 99 1 0 1 x x

Test 3 1 10 y 1� y x 1� x

Test 4 10 0 y 1� y x 1� x

To asses the performane of the methods introdued in the previous setions we have run

some numerial experiments of two examples for the neutron transport equation (5). In all our

tests, the iterations in the numerial methods are terminated as soon as the inequality

Relative Residual :=

Res

(k)

Res

(0)

� 10

�6

; (27)

is satis�ed. Here Res

(0)

and Res

(k)

denote the initial residual and the residual at the iteration

k in the iterative algorithm, respetively. We used the disrete L

2

-norm for the omputation of

these residuals.

The onvergene rates along with ross setion plots of the results give a good ideas of the

auray of the algorithms. The eÆieny of the solvers is ompared in the CPU time ontext.

All the alulations reported in this setion have been arried out in Fortran implementation

with double preision on a PC with AMD-K6 200 proessors.

The �rst example is the equations (5) in the unit square D = [0; 1℄�[0; 1℄ overed by 100�100

grid points and augmented with the following boundary funtion g

g(0; y;
) = g

�

l

(y); g(1; y;
) = g

�

r

(y); for 0 � y � 1;

g(x; 0;
) = g

�

b

(x); g(x; 1;
) = g

�

t

(x); for 0 � x � 1:

We set q(x; y;
) = 0. The oeÆients �, �; the funtions g

�

l

, g

�

r

, g

�

b

and g

�

t

, are hosen for

four di�erent test problems aording to the table 2.

The main issues we wish to address in these test problems are onerned with the omparison

on onvergene and eÆieny of all the methods presented in these notes using di�erent values
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Table 3: The number of iterations (# Iter) and the CPU time (in seonds) for SI, GMRES,

BICGSTAB, DSA and Di�usion methods for the four test problems in example 1.

Test 1 Test 2 Test 3 Test 4

# Iter CPU # Iter CPU # Iter CPU # Iter CPU

SI 17 7.65 866 317.29 6 3.10 262 107.98

GMRES 4 5.51 50 51.14 2 3.68 16 17.43

BICGSTAB 4 3.61 52 28.12 3 3.12 14 8.68

DSA 7 19.97 21 14.84 4 4.01 8 14.27

Di�usion 224 3.48 58 0.94 60 0.9 154 2.33

of �, � and g to show the advantages of a method over the others. To this end we �rst plot

in �gure 4 the onvergene rates for the four test problems. A log-sale on the y-axis is used.

A �rst remark onerning these plots is that when  � 1 the SI method onverges slowly, for

instane, in Test 2 ( = 0:99) SI needs 866 iterations to onverge and in Test 4 ( = 1)

needs 262 iterations. This fat was early ensured by theorem 1. However, in both tests, DSA

method shows fast onvergene over all the others methods. On the other hand, when  � 1

the BICGSTAB method an ompete with DSA. In Test 1 and Test 3, a few iterations are

enough for the onvergene of all methods, but still SI method is the slowest.

In table 3 we display the number of iterations needed by eah method for the four tests

together with the onsumed CPU time. It is lear that the BICGSTAB method uses less CPU

time in all tests exept in Test 2 (# = 100). The di�usion results are also inluded in table 3,

They are less CPU time onsuming speially when # � (Test 2 and Test 3). However, the

di�usion results should not be ompared to other methods sine the problem they solve has

di�erent struture than those solved by SI, BICGSTAB, GMRES, or DSA methods.

In �gure 5 we plot the salar ux � obtained by DSA method for the four test problems.

Similar results are plotted in �gure 6 but using the di�usion proedure. The SI, BISCATAB and

GMRES results are not presented here, beause they overlap those obtained by DSA method. In

order to ompare these results, we show in �gure 7 a ross setion at the main diagonal (y = x) of

the salar ux obtained by all methods. As an be slightly seen the di�usion failed to approah

aurately the DSA results when  = 0:99; # = 1 (Test 1), and  = 0:09; # = 11 (Test 3). In

other two tests (Test 2 and Test4), di�usion approah resolves the neutron transport equation

orretly as the DSA method does, but with less omputational e�ort referring to the CPU time

in table 3.

Our seond example onsists of tests arising in radiative transfer problems. Usually the

transport equation (5) is oupled to the heat equation to model radiative heat transfer phe-

nomena, ompare [19, 6, 10, 24℄ for detailed studies on radiative transfer. Sine our goal in

these notes is onerned with numerial tools for simulating the transport equation, we �x the

temperature pro�le in the radiative transfer equation and we try to solve the transport equation

oupled to this temperature pro�le. Thus, the problem statements we onsider here are
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Figure 4: The onvergene plots for the four test problems from table 2.
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Figure 5: The salar ux � obtained by DSA method for the four test problems from table 2.
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Figure 6: The salar ux � in the Di�usion approah for the four test problems from table 2.
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Figure 7: The ross setion at y = x of the salar ux � for the four test problems from table 2.



6. Numerial Examples 24

The frequeny-independent problem


 � rI + (� + �)I =

�

4�

Z

S

2

I(x;


0

)d


0

+ �B(T ): (28)

The frequeny-dependent problem


 � rI

�

+

�

�

�

+ �

�

�

I

�

=

�

�

4�

Z

S

2

I

�

(x;


0

; �)d


0

+ �

�

B(T; �): (29)

Here I

�

= I(x;
; �), T = T (x), �

�

= �(x; �) and �

�

= �(x; �) denote respetively, the radiation

intensity, the temperature, the sattering and the opaity within the frequeny � > 0. B is the

Plank funtion given by

B(T; �) =

2~�

3



2

�

e

~�=k

B

T

� 1

�

�1

; (30)

where ~, k

B

and  are Plank onstant, Boltzmann onstant and the speed of light, respetively.

Notie that, in the frequeny-independent problem (28) the funtion B = B(T ) = a

R

T

4

,

with a

R

is a radiation onstant (a

R

= 1:8067:10

�8

J=K). The omputational domain is a square

of 1 m side disretized into 100� 100 grid ells. The temperature we used in our omputations

is a linear pro�le between 800 K and 1800 K in the unit square i.e.,

T (x; y) = 800x+ 1000; (x; y) 2 [0; 1℄ � [0; 1℄:

Using this temperature pro�le we set the boundary onditions for the intensity aording to the

radiative equilibrium

I(x̂) = B(T (x̂)); x̂ 2 �D

�

; (31)

for the frequeny-independent problem (28), and

I

�

(x̂) = B(T (x̂); �); x̂ 2 �D

�

; (32)

for the frequeny-dependent problem (29).

First, we solve the grey problem (28)-(31) using the methods studied in the previous setions.

In �gure 8 we report the onvergene plots for two di�erent values of the absorption � while the

sattering is �xed to � = 1 m

�1

in both tests. It is apparent that the onvergene of SI method

beome slow when the sattering ratio  hange from 0:09 (� = 10 m

�1

) to 1 (� = 0 m

�1

).

These results are in good agreement with theorem 1 in setion 4. The auray plots given in

�gure 9 represent a ross setion at y = 0:5 m on the salar ux obtained by all the methods

with the di�usion approah inluded. As the opaity � dereases, the di�usion results beome

slightly far from the results obtained for the full transport problem.

We now turn our attention to the frequeny-dependent problem (29)-(32). In order to

disretize the equations (29)-(32) respet to the frequeny variable �, we assume

~

N frequeny

bands [�

�

; �

�+1

℄; � = 1; : : : ;

~

N with pieewise onstant absorption

�

�

= �

�

; 8 � 2 [�

�

; �

�+1

℄ � = 1; : : : ;

~

N:

We de�ne the frequeny-averaged intensity in the band [�

�

; �

�+1

℄ by

I

�

=

Z

�

�+1

�

�

I

�

0

(x;
; �

0

)d�

0

: (33)



6. Numerial Examples 25

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L
2

−
n

o
rm

 o
f 

re
s
id

u
a

l

 κ = 10,  σ = 1

SI      
BICGSTAB
Gmres   
DSA     

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L
2

−
n

o
rm

 o
f 

re
s
id

u
a

l

 κ = 0,  σ = 1

SI      
BICGSTAB
Gmres   
DSA     

Figure 8: The onvergene plots for the grey problem (28)-(31) with � = 1 and two di�erent

values of opaity.
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Figure 9: The ross setion at y = 0:5 of the salar ux � for the grey problem (28)-(31) with

� = 1 and two di�erent values of opaity.
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Table 4: The bands used in the numerial simulation of the frequeny-dependent problem.

Band � �

�

(�m) �

�+1

(�m) �

�

(m

�1

)

1 1 5 0.40

2 5 0.3333 0.50

3 0.3333 0.2857 7.70

4 0.2857 0.2500 15.45

5 0.2500 0.2222 27.98

6 0.2222 0.1818 267.98

7 0.1818 0.1666 567.32

8 0.1666 0.1428 7136.06

0.1428 0 opaque

Then, the equations (29)-(32) are transformed to a system of

~

N transport equations of the form


 � rI

�

+

�

�

�

+ �

�

�

I

�

=

�

�

4�

Z

S

2

I

�

(x;


0

; �

�

)d


0

+ �

�

Z

�

�+1

�

�

B(T; �

0

)d�

0

;

(34)

I

�

(x̂) =

Z

�

�+1

�

�

B(T; �

0

)d�

0

; x̂ 2 �D

�

:

Note that after the disretization of ordinates in

�

N diretions and the spae in N�M gridpoints,

one has to deal with systems with

~

N�

�

N�N�M unknowns and, �nding solutions to suh systems

requires muh memory storage and muh omputational ost. In our numerial simulations we

use eight frequeny bands [�

�

; �

�+1

℄; � = 1; : : : ; 8 given in table 4. These values are frequently

used in the glass manufaturing, we refer to [24℄ for more physial details.

Using two di�erent values for the sattering (� = 1 m

�1

and � = 100 m

�1

), we summarize

in table 5 the CPU time and the number of iterations used by all methods exept the BICSTAB

method, beause their results are idential to the GMRES ones. It is important to mention two

points with respet to the results in table 5. First, we observe that by dereasing the sattering

ratio  and keeping � �xed to 100 m

�1

or 1 m

�1

the number of iterations redue asymptotily

in all the methods with the advantage of the GMRES method over the others. Seond, when

� = 100 m

�1

the SI method required unreasonable number of iterations for the �rst frequeny

bands, onsequently the CPU time used is very large. In ontrast, the Di�usion approah uses

only 0:012% of the CPU time used by SI method for this ase, and the results obtained by both

approahes are similar, see �gure 10.

In order to quantify the solution of (34) we de�ne the frequeny-mean salar ux ' as

'(x) =

1

4�

Z

S

2

Z

1

0

I(x;


0

; �

0

)d


0

d�

0

=

1

4�

�

M

X

l=1

~

N

X

�=1

I

�;l

(x):
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Table 5: The number of iterations and the CPU time (in minutes) for SI, GMRES, DSA and

Di�usion methods for the eight frequeny-bands problem with two di�erent values of �.

Band � Sattering ratio  SI GMRES DSA Di�usion

1 0.71428 16 6 7 217

2 0.66666 15 6 7 212

3 0.11494 8 4 4 91

4 0.06077 6 4 4 46

� = 1 m

�1

5 0.03450 6 4 3 25

6 0.00371 4 2 3 4

7 0.00175 4 2 3 3

8 0.00014 3 1 2 2

CPU ||{ 25.63 3.94 14.69 0.21

1 0.99601 1700 92 32 87

2 0.99502 1321 89 30 82

3 0.92850 178 26 29 25

4 0.86617 95 18 29 17

� = 100 m

�1

5 0.78137 57 14 27 11

6 0.27175 12 5 9 3

7 0.14985 9 4 6 3

8 0.01381 5 2 3 2

CPU ||{ 981.16 6.43 69.72 0.12

The �gure 10 shows a ross setion of ' at y = 0:5 m for the two values of �. The main

message taken from this �gure is that, the di�usion results oinides with the transport results

only when the sattering is large (� = 100 m

�1

) and for this ase the SI sheme is unreasonably

slow (ompare the CPU time in table 5). Therefore, it is worth to use the di�usion approah

beause, at least for this test problem, it gives results that are as aurate as those obtained for

the full transport equation, but with less omputational ost.

7 Conlusions

We have ombined the disrete ordinates olloation and the Diamond di�erening to reonstrut

numerial methods for the two-dimensional neutron transport equation. These methods inlude

the soure iteration sheme, full BICGSTAB and GMRES algorithms, and the di�usion syntheti

aeleration method. We have ompared the results obtained by these methods on several test

problems. The prinipal onlusions ahieved through this omparison are the following:

1. For neutron transport equation with small sattering ratio ( � 1) and moderate optial

oeÆient #, the SI method an be a reasonable solver, but still not eÆient enough as

BICGSTAB, GMRES or DSA methods.

2. For neutron transport equation with large or pure sattering ( � 1), the SI method

beome very slow and loses eÆieny. In parallel, the DSA method is the best and presents
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Figure 10: The ross setion at y = 0:5 of the mean salar ux ' for the problem (29)-(32) with

the eight frequeny-bands given in table 5 and two di�erent values of �.

fast onvergene rate over all other methods.

3. For neutron transport equation in optially thik regime (# � 1), the di�usion approah

may be a valid alternative for the iterative methods sine it gives results that are as

aurate as those obtained by DSA method, but with less omputational ost, and di�usion

approah does not need extra disretization for the angular diretions.

Nevertheless, borrowing the idea of simpli�ed P

N

approximations to the transport equation and

following the argument of setion 5, it is feasible to devise generalized preonditioners to the SI

method with high aelerated onvergene. Suh methods an be used in radiative heat transfer

and radiation hydrodynami ouplings rather than the transport equation (1). Results on these

methods will be reported in the near future.

We want to point out that general time-dependent neutron transport problem (1) an also

numerially solved in a similar manner. By using the disrete ordinates and the Diamond

di�erening methods, and by using the same notations as in setion 3, the equations (1) are

transformed to the following system of ODE's

1

v

d

dt

 

l;i+

1

2

j+

1

2

+ �

l

 

l;i+1j

�  

l;ij

(�x)

i+

1

2

+ �

l

 

l;ij+1

�  

l;ij

(�y)

j+

1

2

+

�

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

�

 

l;i+

1

2

j+

1

2

=

�

l;i+

1

2

j+

1

2

�

i+

1

2

j+

1

2

+ q

l;i+

1

2

j+

1

2

;

(35)

 

l;ij

(t) = g

l;ij

(t);

 

l;ij

(0) =  

0

l;ij

;

where eah entred valued funtion f

l;i+

1

2

j+

1

2

appeared in (35) is given by

f

l;i+

1

2

j+

1

2

=

f

l;ij

+ f

l;i+ij

+ f

ij+1

+ f

l;i+1j+1

4

:



7. Conlusions 29

For the time integration of (35), one an use any ODE solver, however the presene of the term

1=v in the front of the time-derivative operator, makes the use of expliit shemes ineÆient,

beause these expliit shemes are subjet to a CFL ondition of the form

� := v

�t

h

� 1; (36)

where h := max

ij

�

(�x)

i

; (�y)

j

�

is the mesh size, �t is the time stepsize and v is the neutron

speed (extremely large, order of speed of light). Therefore, impliit shemes whih alleviate the

stability restrition (36), should be used. For simpliity, we onsider here the impliit Euler

method to integrate the equations (35).

Let the time interval [0; T ℄ be divided into NT subintervals [t

n

; t

n+1

℄ of length �t suh that

t

n

= n�t and T = NT�t. We use the notation W

n

l;ij

to denote the value of the funtion W at

(t

n

; �

l

; �

l

; x

i

; y

j

). Then, the fully disrete formulation of the equation (1) an be written as

�

l

 

n+1

l;i+1j

�  

n+1

l;ij

(�x)

i+

1

2

+ �

l

 

n+1

l;ij+1

�  

n+1

l;ij

(�y)
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1

2

+

�

�

n+1

i+

1

2

j+

1

2

+ �

n+1
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1

2
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1

2

+

1
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n+1
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1

2

j+

1

2
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(37)

�
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2
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:

One again, the disrete equation (37) an be reformulated in matries as in (14) by using the

following new matrix entries

d

l;i+

1

2

j+

1

2
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j�

l

j

2(�x)
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1

2
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:

By doing so and hanging the right hand side as in (37), the SI, BICGSTAB, GMRES, DSA

methods and the Di�usion approah studied in the previous setions remain valid to solve the

problem (37) in the same way as have been done for the time-independent problem (11) with

the only di�erene that another loop must be added for the time integration. Furthermore, the

onvergene rate of the soure iteration is governed, at eah time step, by the new sattering

ratio

(t

n

) := max

x2D

�

�(t

n

;x)

�(t

n

;x) + �(t

n

;x) +

1

v�t

�

; n = 1; : : : ;

~

N:

We would like to mention that, the spae disretization used in these notes is seond or-

der. Therefore, to be onsistent that the fully direstized sheme maintain the same order of

auray, a seond order time integration sheme should be used. For example, Crank-Niolson

method an be a good andidate, sine it an be formulated easily as (37) and the resulting

linear systems have the same strutures as those obtained by Euler method.
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Appendix A: The Ray E�et

The disrete ordinates method desribed in setion 2 solves the transport equation (5) for a lose

set of angular diretions S

�

N

, as long as it approximates the angular integral by a weighted sum

of ux values. Of ourse, in two dimensional problems not all the possible diretions in the unit

sphere S

2

are alulated, but the set is redued by means of symmetry relations. Moreover, in a

three dimensional transport �eld projeted in x-y plane, some diretions appear to be between

others when they really are not.

One of the main drawbaks of the disrete ordinates method for solving the neutron trans-

port equation is that due to the existene of privileged diretions in S

�

N

set, the solution has

some degree of numerially indued anisotropy (by anisotropy we mean that the probability of

sattering for the partiles is not the same for all diretions). In ases with very little if any

sattering, and loalized external soures, this e�et may strongly disturb the orret solution

and beome worse with sets of few angular diretions. This undesirable e�et is alled the ray

e�et. As mentioned in [18℄, the ray e�ets our normally in two-dimensional problems where

the external soures are loalized and the e�ets of sattering are relatively small.
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Figure 11: The model problem used to exhibit ray e�ets.

Figure 12: The angular ux  along the diretion (a) 


7

= (�0:79263;�0:51491) and (b)




23

= (�0:21215;�0:72707).
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Figure 13: The salar ux � (a) and its orresponding setion at x = 1:967 (b).

In order to make the ray e�et visible we use in this appendix, the same model problem

from [18℄ hosen by the authors to exhibit the ray e�et. The model onsists of the equations (5)

with a at soure q given by

q(x; y) =

(

1; if 0 � x � 1 and 0 � y � 1;

0; else:

The domain geometry and the boundary onditions used for this test are shown in �gure 11. Both

the square soure and the surrounding medium have the same optial properties. The sattering

and the absorption parameters are those used in [18℄. Thus, � = 0:5 m

�1

and � = 0:25 m

�1

.

The angular and the salar uxes are omputed using the DSA method on 200� 200 gridpoints

and C-60 set diretions. First we plot in �gure 12 the angular ux orresponding to the two

diretions 


7

= (�0:79263;�0:51491)

T

and 


23

= (�0:21215;�0:72707)

T

. The olormap shows

the ux �eld  in the domain, the ray e�et is learly visible as irregularities in what should be

squared isoontours. Another exhibition of the ray e�et is shown in �gure 13 where the salar

ux � and a setion at x = 1:967 are plotted as suggested in [18℄. The ray e�ets may be seen

from the �gure 13 as nonphysial osillations.

There are many ways to overome the disadvantage of the ray e�ets from a given om-

putational neutron transport ode. The simplest way is to re�ne the disrete ordinates set by

inreasing the number of angular diretions. Then, the frequeny of the osillations beomes

higher and the magnitude beomes lower. The ray e�ets an be ompletely eliminated by using

the so-alled P

N

approximations. In ontrast to disrete ordinates methods the P

N

methods

onsist of expansion of the angular ux in the �rst N+1 Legendre polynomial. An extended ref-

erenes on these methods and other tehniques to remedy the ray e�ets in the disrete ordinates

olloation an be found in [18, 14, 4, 20℄.
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Appendix B: A Fortran Code

For ompleteness, we inlude in this appendix a Fortran ode for the SI algorithm to solve

the neutron transport equation (5). The ode links both the algorithm 1 and algorithm 2

to handled the linear system (15). We used the vauum boundary onditions along the whole

domain. However, these boundary onditions together with the sattering and the absorption

oeÆients an be hanged very easily in their orrespondent funtions at the end of the listing

ode.

We want to point out that the ode is not written to be a show of eÆieny and optimized

programming. It is simply to show for the reader how a soure iteration ode an be done.

subroutine SI(nd,nx,ny,np,x,y,hx,hy,dx,dy,wg,aflux,

& sflux,q,work,tol,maxits,iout)



 This subroutine solve the Neutron transport problem (15)

 using the soure iteration method. We assume the inflow

 boundary ondition on all the bondaries of the omputational

 domain. Disrete ordinates and Diamond differening are used

 for angle and spae disretizations.

---------------------

 The input variables:

---------------------

 nd = the number of diretions in the unit sphere

 nx = the number of the spae gridpoints in the x-diretion

 ny = the number of the spae gridpoints in the y-diretion

 np = the total number of the spae gridpoints. (np = nx x ny)

 hx = the spae gridsize in the x-diretion.(hx is a vetor of size nx)

 hy = the spae gridsize in the y-diretion.(hy is a vetor of size ny)

 x = the spae gridpoints in the x-diretion.

 (x is a vetor of size nx+1)

 y = the spae gridpoints in the y-diretion.

 (y is a vetor of size ny+1)

 dx = the angle diretion in the x-diretion.(dx is a vetor of size nd)

 dy = the angle diretion in the y-diretion.(dy is a vetor of size nd)

 wg = the weight assoiated to the diretions dx and dy

 aflux = the angular flux is used as initial guess for the SI method

 an be seted to zero unless for vauum boundary onditions

 are used. (aflux is a vetor of size nd x nx+1 x ny+1)

 q = the soure term. (q is a vetor of size nd x nx+1 x ny+1)

 work = the work vetor. (work is a vetor of size nd)

 tol = the tolerane to stop the iterations.

 maxits = the maximum number of iterations allowed

 iout = the output unit number for printing intermediate results

 if(iout.le.0) no statists are printed

---------------------

 The ouput variables:

---------------------

 aflux = the urrent angular flux.
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 (aflux is a vetor of size nd x nx+1 x ny+1)

 sflux = the salar flux. (sflux is a vetor of size np)

------------------------

 The auxilary parameters:

------------------------

 wsflux = the vetor to store slar fux at the previous iteration.

 (wsflux is a vetor of size np)

 s = the vetor to store soure term.

 (s is a vetor of size nx x ny)

 bl,br,bb,bt = the vetors to store boundary onditions for the sweeping

 subroutine. (bl,br are vetors of size ny+1 and

 bb,bt are vetors of size nx+1)

--------------------

 The funtions used:

--------------------

 xkappa(x,y) = the absorption funtion

 sigma(x,y) = the sattering funtion

 bleft(y) = the left boundary funtion

 bright(y) = the righ boundary funtion

 bbottom(x) = the bottom boundary funtion

 btop(x) = the top boundary funtion

 xint(nd,wg,w) = the funtion to ompute the weighted integrals

---------------------

 The subroutine used:

---------------------

 the sweeping subroutine

 sweeping(nd,nx,ny,np,x,y,hx,hy,dx,dy,s,bl,br,bb,bt,aflux)

======================================================================

impliit real*8(a-h,o-z)

real*8 hx(1),hy(1),x(1),y(1),dx(1),dy(1),wg(1),sflux(1),work(1)

real*8 aflux(nd,nx+1,ny+1),wsflux(np),q(nd,nx+1,ny+1)

real*8 bl(ny+1),br(ny+1),bb(nx+1),bt(nx+1),s(nx,ny)

data pi/3.14159265358979d0/

-------------------------------

 The initial salar flux guess

-------------------------------

do 10 i=1,nx

do 10 j=1,ny

do 5 l=1,nd

work(l) = 0.25d0*(aflux(l,i+1,j)+aflux(l,i,j)+

& aflux(l,i,j+1)+aflux(l,i+1,j+1))

5 ontinue

wsflux((i-1)*ny+j) = xint(nd,wg,work)

10 ontinue

----------------------------

 Strat the iterative proess

----------------------------
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do 85 its=1,maxits



 Compute the right hand side



do 60 l=1,nd

do 15 i=1,nx

do 15 j=1,ny

t = sigma(x(i),y(j))/(4d0*pi)

s(i,j) = t*wsflux((i-1)*ny+j)+q(l,i,j)

15 ontinue

if(dx(l).lt.0d0.and.dy(l).lt.0d0) then

do 20 j=1,ny+1

br(j) = bright(y(j))+q(l,nx+1,j)

20 ontinue

do 25 i=1,nx+1

bt(i) = btop(x(i))+q(l,i,ny+1)

25 ontinue

elseif(dx(l).lt.0d0.and.dy(l).gt.0d0) then

do 30 j=1,ny+1

br(j) = bright(y(j))+q(l,nx+1,j)

30 ontinue

do 35 i=1,nx+1

bb(i) = bbottom(x(i))+q(l,i,1)

35 ontinue

elseif(dx(l).gt.0d0.and.dy(l).lt.0d0) then

do 40 j=1,ny+1

bl(j) = bleft(y(j))+q(l,1,j)

40 ontinue

do 45 i=1,nx+1

bt(i) = btop(x(i))+q(l,i,ny+1)

45 ontinue

else

do 50 j=1,ny+1

bl(j) = bleft(y(j))+q(l,1,j)

50 ontinue

do 55 i=1,nx+1

bb(i) = bbottom(x(i))+q(l,i,1)

55 ontinue

endif

60 ontinue

--------------------------------------------------

 Call the sweeping to ompute the new angular flux

--------------------------------------------------

all sweeping(nd,nx,ny,np,x,y,hx,hy,dx,dy,s,bl,

& br,bb,bt,aflux)

----------------------------

 Compute the new salar flux
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----------------------------

do 70 i=1,nx

do 70 j=1,ny

do 65 l=1,nd

work(l) = 0.25d0*(aflux(l,i+1,j)+aflux(l,i,j)+

& aflux(l,i,j+1)+aflux(l,i+1,j+1))

65 ontinue

sflux((i-1)*ny+j) = xint(nd,wg,work)

70 ontinue

---------------------

 Compute the residual

---------------------

res = 0.0d0

do 75 k=1,np

res = res+dabs(sflux(k)-wsflux(k))**2

75 ontinue

res = dsqrt(res)

if(its.eq.1) res0 = res

---------------------

 Convergene reteria

---------------------

err = res/res0

print*, its-1,err

if(iout.gt.0) write(iout,'(i4,2x,d20.6)') its-1,err

if(err.le.tol.or.its.eq.maxits) return

do 80 k=1,np

wsflux(k) = sflux(k)

80 ontinue



85 ontinue



return

end

=======================================================

subroutine sweeping(nd,nx,ny,np,x,y,hx,hy,dx,dy,f,

& bl,br,bb,bt,u)



 This subroutine invert the matrix H in (15) using the sweeping proedure



impliit real*8(a-h,o-z)

dimension hx(1),hy(1),dx(1),dy(1),x(1),y(1)

dimension bl(1),br(1),bb(1),bt(1)

dimension f(nx,ny),u(nd,nx+1,ny+1)



 Initialize the angular flux u



do 5 l=1,nd
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do 5 i=1,nx+1

do 5 j=1,ny+1

u(l,i,j) = 0d0

5 ontinue



 Strat the sweeping



do 70 l=1,nd

if(dx(l).lt.0d0.and.dy(l).lt.0d0) then

-------------------

 The first sweeping

-------------------

do 10 j=1,ny+1

u(l,nx+1,j) = br(j)

10 ontinue

do 15 i=1,nx+1

u(l,i,ny+1) = bt(i)

15 ontinue

do 20 i=nx,1,-1

do 20 j=ny,1,-1

d = dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e1 = dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e2 = -dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e3 = -dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))



u(l,i,j) = (f(i,j)-e2*u(l,i+1,j)-e3*u(l,i+1,j+1)-

& e1*u(l,i,j+1))/d

20 ontinue

elseif(dx(l).lt.0d0.and.dy(l).gt.0d0) then

--------------------

 The seond sweeping

--------------------

do 25 j=1,ny+1

u(l,nx+1,j) = br(j)

25 ontinue

do 30 i=1,nx+1

u(l,i,1) = bb(i)

30 ontinue

do 35 i=nx,1,-1

do 35 j=1,ny

d = dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e1 = dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+
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& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e2 = -dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e3 = -dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))



u(l,i,j+1) = (f(i,j)-e3*u(l,i+1,j)-e1*u(l,i,j)-

& e2*u(l,i+1,j+1))/d

35 ontinue

elseif(dx(l).gt.0d0.and.dy(l).lt.0d0) then

-------------------

 The third sweeping

-------------------

do 40 j=1,ny+1

u(l,1,j) = bl(j)

40 ontinue

do 45 i=1,nx+1

u(l,i,ny+1) = bt(i)

45 ontinue

do 50 i=1,nx

do 50 j=ny,1,-1

d = dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e1 = dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e2 = -dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e3 = -dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))



u(l,i+1,j) = (f(i,j)-e2*u(l,i,j)-e1*u(l,i+1,j+1)-

& e3*u(l,i,j+1))/d

50 ontinue

else

--------------------

 The fourth sweeping

--------------------

do 55 j=1,ny+1

u(l,1,j) = bl(j)

55 ontinue

do 60 i=1,nx+1

u(l,i,1) = bb(i)

60 ontinue

do 65 i=1,nx

do 65 j=1,ny

d = dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))
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e1 = dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e2 = -dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e3 = -dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))



u(l,i+1,j+1) = (f(i,j)-e1*u(l,i+1,j)-e3*u(l,i,j)-

& e2*u(l,i,j+1))/d

65 ontinue

endif

70 ontinue



return

end

===========================

funtion xint(nd,wg,u)



 This funtion ompute the weighted

 integral operator applied to u.



impliit real*8(a-h,o-z)

dimension u(1),wg(1)



xint = 0d0

do 5 l=1,nd

xint = xint+wg(l)*u(l)

5 ontinue



return

end

=========================

funtion xkappa(x,y)



 This funtion set the absorption oeffiient.

 As default is set to 0 here, but an be hanged

 by the user.



impliit real*8(a-h,o-z)



xkappa = 0d0



return

end

========================

funtion sigma(x,y)
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 This funtion set the sattering oeffiient.

 As default is set to 1 here, but an be hanged

 by the user.



impliit real*8(a-h,o-z)



sigma = 1d0



return

end

=======================

funtion bleft(y)



 This funtion set the inflow boundary

 on the left boundary. As default is set

 to 0 here, but an be hanged by the user.



impliit real*8(a-h,o-z)



bleftl = 0d0



return

end

========================

funtion bright(y)



 This funtion set the inflow boundary

 on the right boundary. As default is set

 to 0 here, but an be hanged by the user.



impliit real*8(a-h,o-z)



bright = 0d0



return

end

=========================

funtion bbottom(x)



 This funtion set the inflow boundary

 on the bottom boundary. As default is set

 to 0 here, but an be hanged by the user.



impliit real*8(a-h,o-z)



bbottom = 0d0
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return

end

======================

funtion btop(x)



 This funtion set the inflow boundary

 on the top boundary. As default is set

 to 0 here, but an be hanged by the user.



impliit real*8(a-h,o-z)



btop = 0d0



return

end


