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Abstra
t

Detailed numeri
al methods for two-dimensional neutron transport equation are pre-

sented. Using the dis
rete ordinates for angle 
ollo
ation and the Diamond di�eren
ing for

spa
e dis
retization, the neutron transport equation is transformed to a system of sparse

matri
es. To solve the �nal system we formulate the sour
e iteration, a full BICGSTAB and

GMRES algorithms. Additionally, the di�usion limit and the di�usion syntheti
 a

elera-

tion are in
luded in these notes. The robustness, eÆ
ien
y and 
onvergen
e rates of these

methods are illustrated by two numeri
al examples.
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1 Introdu
tion

The problem of non-energeti
 transport of neutrons in a substan
e surrounded by va
uum 
an

be formulation by the following integro-di�erential equation

1

v

� 

�t

+
 � r + (� + �) =

�

4�

Z

S

2

 (t;x;


0

)d


0

+ q(t;x;
); in [0; T )�D � S

2

;

 (t;x;
) = g(t;x;
); on [0; T )� �D

�

� S

2

; (1)

 (0;x;
) =  

0

(x;
); in D � S

2

;

where D is a spa
e domain with smooth boundary �D, [0; T ) is a time interval, and S

2

is the

unit sphere. Here  (t;x;
) is the angular 
ux at time t and position point x := (x; y; z)

T

in

the dire
tion 
 := (�; �; �)

T

with �xed speed v, � := �(t;x) is the s
attering 
ross se
tion,

� := �(t;x) is the absorption 
ross se
tion, and q(t;x;
) is an external sour
e. g(t;x;
) and

 

0

(x;
) are known boundary and initial fun
tions, respe
tively. We assume that � and � are

non-negative fun
tions. The boundary region �D

�

is de�ned as

�D

�

:=

�

x 2 �Dj n(x) � 
 < 0

	

; (2)

with n(x) is the outward normal at the point x on �D. Despite the equation (1) is linear,


omputing its numeri
al solution is not trivial due to:

1. The large number of dependent unknowns. In general, the solution  in (1) is a fun
tion of

eight independent variables, three spa
e variables (x; y; z), three angle variables (�; �; �),

one energy variable E, and one time variable t. After dis
retizing these variables the


omputer memory requirements and the 
omputational 
ost be
ome drasti
ally immense.

This imposes severe restri
tions on 
omputational methods for (1).

2. In many neutron transport equation (1), the solution is not a smooth fun
tion of the

dependent variables (t;x; E;
). Steep fronts and even sho
k dis
ontinuities 
an arise,

whi
h need to be resolved a

urately in appli
ations and often 
ause severe numeri
al

diÆ
ulties.

3. It is well known that the equation (1) 
hange the behaviour from a physi
al situation to

another. For example, the equation (1) behaves like hyperboli
 in void-like regions; in

opti
ally dense region, it behaves like ellipti
 for steady-state 
ase and paraboli
 for time-

dependent 
ase. To 
onstru
t an uni�ed 
omputational algorithm that resolve a

urately

all the behaviour 
ases is extremely diÆ
ult.

For physi
al interest, we de�ne a s
attering ratio 
 and an opti
al 
oeÆ
ient # asso
iated to the

equation (1) as


 := max

x2D

�

�(x)

�(x) + �(x)

�

; and # := min

x2D

�

�(x) + �(x)

�

diam(D); (3)

respe
tively. diam(D) is the diameter of the spa
e domain D. Two extreme situations in


omputational neutron transport remain a
tive �eld of resear
h
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1. 
 = 1, pure s
attering, no absorption (� = 0)

2. #� 1, opti
ally thi
k, dense absorption (�� 1)

and the 
onventional methods su�er some diÆ
ulties to solve a

urately these two 
ases as

mentioned out in [2, 1, 18℄. For simpli
ity in presentation, we 
onsider in these notes only the

two-dimensional version of (1). Thus, D � IR

2

, x := (x; y)

T

, and 
 := (�; �)

T

. By introdu
ing

the s
alar 
ux �

�(x) :=

1

4�

Z

S

2

 (x;


0

)d


0

; (4)

the two-dimensional time-independent neutron transport equation reads

�

� 

�x

+ �

� 

�y

+ (� + �) = ��(x; y) + q(x; y; �; �); in D � S

2

;

(5)

 (x; y; �; �) = g(x; y; �; �); on �D

�

� S

2

:

The aim of these notes is to give a detailed overview on the quality and eÆ
ien
y of 
lassi
al and

modern algorithms in 
omputational neutron transport. At �rst we will show how to dis
retize

the equation (5) in angle and spa
e. By the example of dis
rete ordinates and Diamond di�eren
e

methods, we will demonstrate how to develop iterative solvers for the fully dis
rete system.

Many studies of these solvers have been done in a number of books and papers by, among

others, [18, 1, 2, 22, 21, 5, 3℄ and the herein 
ited referen
es.

Our notes 
ontain several approa
hes to the 
onstru
tion of a suitable algorithm whi
h 
an

serve as bla
k-box solver for the general neutron transport equation (1). The easiest possibility is

the use of Ri
hardson iteration known by astrophysi
ists as ^-iteration. This strategy has been

theoreti
ally analysed in details in [1, 18℄. Another basi
 solver is the P

1

/Di�usion approa
h,

whi
h means the equation (1) is repla
ed by a s
aled di�usion problem su
h that at the limit

tend to approximate the solution of (1). Generalized P

1

/Di�usion and other simpli�ed P

N

approximations have been introdu
ed in [17, 15, 24℄. Iterative solvers for linear systems based

on Krylov subspa
e method like the BICGSTAB [25℄ or GMRES [23℄ are also implemented in

these notes. Generalzing the idea of 
onstru
ting pre
onditioner for an a

elerated ^-iteration

we show how to use the P

1

/Di�usion approa
h as an optimal pre
onditioner for a given ^-

iteration. The resulting solver known as di�usion syntheti
 a

eleration was introdu
ed in [2℄

and studied from a linear algebra point of view in [5, 3℄. Finally we apply these solvers to

various test 
ases from neutron transport problem. Dependent on the s
attering ratio 
 and the

opti
al 
oeÆ
ient # of the problem under 
onsideration, we 
an identify the most suitable solver

in terms of a

ura
y and 
omputing 
ost.

These notes are organized as follows: In se
tion 2 the dis
rete ordinates method is presented.

The spa
e dis
retization is formulated in se
tion 3. Iterative s
hemes for the full dis
rete problem

are dis
ussed in se
tion 4. The se
tion 5 is devoted to the di�usion limit and the di�usion

syntheti
 a

eleration method. Se
tion 6 
ontains numeri
al results and 
omparison between

the di�erent algorithms in terms of a

ura
y and eÆ
ien
y. Finally some 
on
lusions are listed

in se
tion 7. For sake of 
ompleteness, the ray e�e
t of the dis
rete ordinates is shown by an

example in appendix A and a Fortran 
ode for the sour
e iteration is set as appendix B.
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2 Dis
rete Ordinates Method

The method of dis
rete ordinates was introdu
ed and used in [6℄ to solve well many basi


problems in the area of radiative transfer. The method 
onsists of repla
ing the integral terms

in some form of the Boltzmann equation by numeri
al quadrature approximations of those

terms, and then a resulting set of ordinary di�erential equations is solved. In mu
h of the

literature [6, 22, 21, 18℄ the dis
rete ordinate method is detailed only for the one-dimensional

slab geometry 
ase and the theoreti
al results remain valid for the multi-dimensional 
ases. In

this se
tion we formulate and overview this method for the two-dimensional model (5).

A standard approa
h for the integral expression over the unit sphere S

2

in (12) is the quadra-

ture rules of the form

Z

S

2

 (x;


0

)d


0

'

�

N

X

l=1

!

l

 (x;


0

l

); (6)

where 


0

l

:= (�

l

; �

l

; �

l

)

T

, for l = 1; 2; : : : ;

�

N , with

�

N = n(n+2), and n is the number of dire
tions


osines. Sin
e 


0

l

2 S

2

, we have

�

2

l

+ �

2

l

+ �

2

l

= 1; for all l = 1; 2; : : : ;

�

N:

We assume n an even number of quadrature points so that the points (�

l

; �

l

; �

l

) are nonzero,

symmetri
 about the origin, and

�

2

l

= �

2

1

+ 2

l � 1

n� 2

(2� 3�

2

1

): (7)

For the weights !

l

we assume all are positive and satisfy

�

N

X

l=1

!

l

= 4�;

�

N

X

l=1

!

l

�

l

= 0;

�

N

X

l=1

!

l

�

l

= 0; and

�

N

X

l=1

!

l

�

l

= 0: (8)

A simple way to guaranty the 
onditions (8) is to set all weights positive and equal to

4�

�

N

.

Note that the approximation (6) 
an be derived using the spheri
al 
oordinates. If the

dire
tion ve
tor 
 := (sin' 
os �; sin' sin �; 
os')

T

, then

Z

S

2

 (x;


0

)d


0

=

Z

�

0

Z

2�

0

 (x; �

0

; '

0

)d�

0

sin'

0

d'

0

:

The trapezoidal rule for ea
h one-dimensional integral separately yields

Z

�

0

Z

2�

0

 (x; �

0

; '

0

)d�

0

sin'

0

d'

0

'

L

X

l=1

K

X

k=1

w

lk

 (x; �

l

; '

k

); (9)

where the quadrature weights

w

lk

=

�

2LK

sin'

l

:

By taking the sum over k in w

lk

, the expression (9) is equivalent to the quadrature rule (6) with

!

l

=

K

X

k=1

w

lk

; and

�

N = LK:
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Other methods to dis
retize the unit sphere S

2

are the so-
alled S

n

-dire
tion sets. A review

dealing with the S

n

sets 
an be found in [8℄, and a 
omparison between di�erent S

n

sets for

radiative transfer have been done in [10℄. These S

n

sets satisfy the 
onditions (7) and (8).

Furthermore, they are arranged on n=2 levels, invariant under 90

Æ

rotations, and they have

equal positive weights, see �gure 1 for an illustration of S

12

set in two-dimensional 
ase. Here

the dire
tion � is omitted.

η

µ

η

η

η

η

η

η

µµµµµµ 2
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1

1
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43

3

6
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5

5

Figure 1: The S

12

-dire
tion set for the two-dimensional problems.

Let S

�

N

be a 
hosen set of dis
rete dire
tions in the unit sphere S

2

, then the two-dimensional

dire
tion set is just the simpli�
ation of one dire
tion in S

�

N

su
h that the simpli�ed set is

symmetri
, has nonzero dire
tion, and with positive weights. Hen
e a semi-dis
rete formulation

of the neutron transport equation (5) is given by

�

l

� 

l

�x

+ �

l

� 

l

�y

+ (� + �) 

l

= ��(x; y) + q

l

(x; y); in D � S

�

N

;

(10)

 

l

(x; y) = g

l

(x; y); on �D

�

� S

�

N

:

 

l

(x; y), q

l

(x; y) and g

l

(x; y) are approximations to  (x; y; �

l

; �

l

), q(x; y; �

l

; �

l

) and g(x; y; �

l

; �

l

),

respe
tively. Note that the angular dis
retization (10) transforms the original integro-di�erential

equation (5) into a system of

�

N 
oupled di�erential equations.

Remark 1 One of our favourite S

n

-dire
tion set is the C-60 known as bu
kyball in [7℄. the

set 
ontains 60 equal weighted dire
tions with high symmetry 
on�guration. The C-60 set is

reprodu
ed in table 1. In our numeri
al examples we used others S

n

sets and C-60 yields the

best results. However, the main disadvantage using these sets is we 
an not re�ne the ordinates

within the same set as we 
an do using the usual trapezoidal or Gauss quadrature rules.

3 Spa
e Dis
retization

The dis
rete ordinates method 
an be applied in 
ombination with �nite elements, �nite dif-

feren
es or spe
tral methods. In [5℄ the author 
ombines the Petrov-Galerkin method with the

dis
rete ordinates 
ollo
ation for the neutron transport equation (1). Sin
e it is easier to 
ombine
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Table 1: The C-60 dire
tions set used in our numeri
al test problems.

l �

l

�

l

!

l

l �

l

�

l

!

l

1 -0.9642754578 -0.1716393065 0.2094395102 31 0.0655603813 -0.5149179195 0.2094395102

2 -0.9642754578 -0.1716393065 0.2094395102 32 0.0655603813 -0.5149179195 0.2094395102

3 -0.8987150765 0.1716393065 0.2094395102 33 0.1060789252 0.1716393065 0.2094395102

4 -0.8987150765 0.1716393065 0.2094395102 34 0.1060789252 0.9392336205 0.2094395102

5 -0.8331546952 0.5149179195 0.2094395102 35 0.1060789252 0.9392336205 0.2094395102

6 -0.8331546952 0.5149179195 0.2094395102 36 0.1060789252 0.1716393065 0.2094395102

7 -0.7926361513 -0.5149179195 0.2094395102 37 0.2121578505 0.7270757700 0.2094395102

8 -0.7926361513 -0.5149179195 0.2094395102 38 0.2121578505 0.7270757700 0.2094395102

9 -0.6865572261 -0.7270757700 0.2094395102 39 0.2777182317 -0.9392336205 0.2094395102

10 -0.6615153887 0.1716393065 0.2094395102 40 0.2777182317 -0.9392336205 0.2094395102

11 -0.6615153887 0.1716393065 0.2094395102 41 0.3432786130 0.9392336205 0.2094395102

12 -0.5554364635 -0.5149179195 0.2094395102 42 0.4493575383 -0.5149179195 0.2094395102

13 -0.5554364635 0.7270757700 0.2094395102 43 0.4493575383 -0.5149179195 0.2094395102

14 -0.5554364635 0.7270757700 0.2094395102 44 0.4898760822 0.1716393065 0.2094395102

15 -0.5554364635 -0.5149179195 0.2094395102 45 0.4898760822 0.1716393065 0.2094395102

16 -0.4898760822 -0.1716393065 0.2094395102 46 0.5554364635 0.5149179195 0.2094395102

17 -0.4898760822 -0.1716393065 0.2094395102 47 0.5554364635 -0.7270757700 0.2094395102

18 -0.4493575383 0.5149179195 0.2094395102 48 0.5554364635 -0.7270757700 0.2094395102

19 -0.4493575383 0.5149179195 0.2094395102 49 0.5554364635 0.5149179195 0.2094395102

20 -0.3432786130 -0.9392336205 0.2094395102 50 0.6615153887 -0.1716393065 0.2094395102

21 -0.2777182317 0.9392336205 0.2094395102 51 0.6615153887 -0.1716393065 0.2094395102

22 -0.2777182317 0.9392336205 0.2094395102 52 0.6865572261 0.7270757700 0.2094395102

23 -0.2121578505 -0.7270757700 0.2094395102 53 0.7926361513 0.5149179195 0.2094395102

24 -0.2121578505 -0.7270757700 0.2094395102 54 0.7926361513 0.5149179195 0.2094395102

25 -0.1060789252 -0.1716393065 0.2094395102 55 0.8331546952 -0.5149179195 0.2094395102

26 -0.1060789252 -0.9392336205 0.2094395102 56 0.8331546952 -0.5149179195 0.2094395102

27 -0.1060789252 -0.9392336205 0.2094395102 57 0.8987150765 -0.1716393065 0.2094395102

28 -0.1060789252 -0.1716393065 0.2094395102 58 0.8987150765 -0.1716393065 0.2094395102

29 -0.0655603813 0.5149179195 0.2094395102 59 0.9642754578 0.1716393065 0.2094395102

30 -0.0655603813 0.5149179195 0.2094395102 60 0.9642754578 0.1716393065 0.2094395102

the upwinding with �nite volume dis
retization than other methods, we 
onsider in these notes

a spa
e dis
retization based on volume 
ontrol and 
ell averaging. For simpli
ity, we assume

that the spa
e domain is a re
tangle, D := [a; b℄ � [
; d℄. Thus the numeri
al grid is de�ned by

D

h

:=

n

x

ij

= (x

i

; y

j

)

T

; x

i

= i(�x)

i

; y

j

= j(�y)

j

; i = 1; 2 : : : ; N; j = 1; 2 : : : ;M

o

;

x

0

= a; x

N

= b, y

0

= 
; y

M

= d, and h denotes the maximum 
ell size h := max

ij

�

(�x)

i

; (�y)

j

�

.

We de�ne the averaged grid points as

(�x)

i+

1

2

:= x

i+1

� x

i

; (�y)

j+

1

2

:= y

j+1

� y

j

; x

i+

1

2

:=

x

i+1

+ x

i

2

; y

j+

1

2

:=

y

j+1

+ y

j

2

:

We use the notation f

ij

to denote the approximation value of the fun
tion f at the grid point

(x

i

; y

j

). Using the semi-dis
rete formulation (10), a fully dis
rete approximation for the equa-

tion (5) 
an be dire
tly written as

�

l

 

l;i+1j

�  

l;ij

(�x)

i+

1

2

+ �

l

 

l;ij+1

�  

l;ij

(�y)

j+

1

2

+

�

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

�

 

l;i+

1

2

j+

1

2

=

�

i+

1

2

j+

1

2

�

i+

1

2

j+

1

2

+ q

l;i+

1

2

j+

1

2

; (11)
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where the 
ell averages of  are given by

 

l;i+1j

=

1

(�x)

i+

1

2

Z

y

j+1

y

j

 

l

(x

i

; y)dy;

 

l;ij+1

=

1

(�y)

j+

1

2

Z

x

i+1

x

i

 

l

(x; y

j

)dx; (12)

 

l;ij

=

1

(�x)

i+

1

2

(�y)

j+

1

2

Z

x

i+1

x

i

Z

y

j+1

y

j

 

l

(x; y)dxdy;

To approximate the 
uxes (12), we use the well known Diamond di�eren
e method whi
h 
onsist

on 
entred di�eren
es and approximating the fun
tion values at the 
ell 
entres by the average

of their values at the neighbouring nodes. See the �gure 2 for an illustration of the grids used in

these notes. The fun
tion value of f

i+

1

2

j+

1

2

at the 
ell 
entre is simply approximated by bilinear

interpolation as

f

i+

1

2

j+

1

2

=

f

ij

+ f

i+ij

+ f

ij+1

+ f

i+1j+1

4

: (13)

Hen
e the s
alar 
ux �

i+

1

2

j+

1

2

in (11) is given by

�

i+

1

2

j+

1

2

=

�

N

X

l=1

!

l

 

ij

+  

i+ij

+  

ij+1

+  

i+1j+1

4

:

x

y

x
i+1

x

yj+1

y

i

j (i,j) (i+1,j)

(i,j+1) (i+1,j+1)

x
i+

2
1

j+y
2
1

2
1(i+    ,j+    )

2
1

Figure 2: The staggered grid used for the spa
e dis
retization.

For the boundary 
onditions in (10) we 
an pro
eed as follows:
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when x = a, the normal n = (�1; 0)

T

, then n�


l

= ��

l

, and for �

l

> 0 we have  

l;0j

= g

l;0j

when x = b, the normal n = (1; 0)

T

, then n �


l

= �

l

, and for �

l

< 0 we have  

l;Nj

= g

l;Nj

when y = 
, the normal n = (0;�1)

T

, then n �


l

= ��

l

, and for �

l

> 0 we have  

l;i0

= g

l;i0

when y = d, the normal n = (0; 1)

T

, then n �


l

= �

l

, and for �

l

< 0 we have  

l;iM

= g

l;iM

Remark 2 If the spa
e domain D present some points on the boundary �D

�

where the normal

is not unique, 
orners for example in the 
ase of a re
tangular domain, then, is possible to

de�ne a new normal on those points with multiple normal. For instan
e, at the left lower 
orner

point x = (a; 
)

T

in the re
tangle a new normal 
an be de�ne as
~
n = (�

p

2

2

;�

p

2

2

)

T

, and for

~
n � 


l

= �

p

2

2

�

l

�

p

2

2

�

l

< 0, we have  

l;00

= g

l;00

. Similar work 
an be done for other three

remaining 
orners.

In order to simplify the notations and to get 
loser to a 
ompa
t linear algebra formulation

of (11), we �rst de�ne the matrix entries

d

l;i+

1

2

j+

1

2

:=

j�

l

j

2(�x)

i+

1

2

+

j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

;

�e

l;i+

1

2

j+

1

2

:=

j�

l

j

2(�x)

i+

1

2

+

�j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

;

e

�

l;i+

1

2

j+

1

2

:=

�j�

l

j

2(�x)

i+

1

2

+

j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

;

e

l;i+

1

2

j+

1

2

:=

�j�

l

j

2(�x)

i+

1

2

+

�j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

:

De�ne the ve
tors

	

l

�

0

B

�

	

l;0

.

.

.

	

l;M

1

C

A

2 IR

(N+1)(M+1)

; with 	

l;j

�

0

B

�

 

l;0j

.

.

.

 

l;Nj

1

C

A

2 IR

N+1

;

� �

0

B

B

�

�
1

2

.

.

.

�

M�

1

2

1

C

C

A

2 IR

NM

; with �

j�

1

2

�

0

B

B

�

�
1

2

j�

1

2

.

.

.

�

N�

1

2

j�

1

2

1

C

C

A

2 IR

N

;

and Q

l

�

0

B

B

�

Q

l;

1

2

.

.

.

Q

l;M�

1

2

1

C

C

A

2 IR

NM

; with Q

l;j�

1

2

�

0

B

B

�

q

l;

1

2

j�

1

2

.

.

.

q

l;N�

1

2

j�

1

2

1

C

C

A

2 IR

N

:

Re
all that the S

�

N

-dire
tion set used for the dis
rete ordinates formulation (10) avoid the zero


omponent in a given dire
tion 


l

= (�

l

; �

l

). So, only one of the four 
ases; �

l

< 0 and � < 0,

�

l

< 0 and � > 0, �

l

> 0 and � < 0, or �

l

> 0 and � > 0 
an hold. Here we de�ne the matri
es
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H

l

and �

l

for the 
ase �

l

< 0 and � < 0, and the other three 
ases 
an be derived similarly.

H

l

�

0

B

B

B

B

B

�

D

l

E

�

l

.

.

.

.

.

.

D

l

E

�

l

D

l

S

S

1

C

C

C

C

C

A

2 IR

(N+1)(M+1)�(N+1)(M+1)

; with

D

l

�

0

B

B

B

�

d �e

.

.

.

.

.

.

d �e

1

1

C

C

C

A

2 IR

(N+1)�(M+1)

; E

�

l

�

0

B

B

B

�

e

�

e

.

.

.

.

.

.

e

�

e

1

1

C

C

C

A

2 IR

(N+1)�(M+1)

;

and S �

0

B

B

B

�

1 1

.

.

.

.

.

.

1 1

1

1

C

C

C

A

2 IR

(N+1)�(M+1)

:

�

l

�

0

B

B

B

B

�

�

l;

1

2

.

.

.

�

l;M�

1

2

0

1

C

C

C

C

A

2 IR

(N+1)(M+1)�NM

; with

�

l;j

�

0

B

B

B

B

�

�

i+

1

2

j+

1

2

+�

i+

1

2

j+

1

2

4

.

.

.

�

i+

1

2

j+

1

2

+�

i+

1

2

j+

1

2

4

0

1

C

C

C

C

A

2 IR

(N+1)�M

:

With these de�nitions, the equation (11) 
an be written in the unknowns 	 and � as

0

B

B

B

B

B

B

�

H

1

��

1

.

.

.

.

.

.

H

�

N

��

�

N

�!

1

S : : : �!

�

N

S I

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

�

	

1

.

.

.

	

�

N

�

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

�

Q

1

.

.

.

Q

�

N

0

1

C

C

C

C

C

C

A

; (14)

where I is the N �M identity matrix and 0 is the N null ve
tor. The usual te
hnique to solve

the equation (14), is to eliminate the angular 
ux 	

1

; : : : ;	

�

N

using the Gaussian elimination.

Therefore the storage requirements is redu
ed and the resulting equation

�

I�

1

4�

�

N

X

l=1

!

l

SH

�1

l

�

l

�

� =

1

4�

�

N

X

l=1

!

l

SH

�1

l

Q

l

; (15)

is solved for the s
alar 
ux �, whi
h does not depend on dire
tion variables. Furthermore,

solving (15) does not need to store the dense NM �NM s
hur matrix,

A � I�

1

4�

�

N

X

l=1

!

l

SH

�1

l

�

l

: (16)
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For instan
e, to apply this matrix to a given NM ve
tor U, only three NM ve
tors are needed.

The �rst is used to store the produ
t U by �

l

, in the se
ond we store the solution of the linear

system with the matrix H

l

. Multiplying by S and subtra
ting the weighted resulting ve
tor

from U is stored in the third ve
tor.

Sin
e the key idea in all the in
oming numeri
al methods dealing with the equation (15) is

inverting the matrix H

l

for l = 1; : : : ;

�

N , we set up the following algorithm performing this step

Algorithm 1: sweeping(N ,M ,

�

N ,�x,�y,�,�,�,�,Q,	,U)

do l = 1; : : : ;

�

N

do i = 1; : : : ; N

do j = 1; : : : ;M

d

l;i+

1

2

j+

1

2

=

j�

l

j

2(�x)

i+

1

2

+

j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

�e

l;i+

1

2

j+

1

2

=

j�

l

j

2(�x)

i+

1

2

+

�j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

e

�

l;i+

1

2

j+

1

2

=

�j�

l

j

2(�x)

i+

1

2

+

j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

e

l;i+

1

2

j+

1

2

=

�j�

l

j

2(�x)

i+

1

2

+

�j�

l

j

2(�y)

j+

1

2

+

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

4

end do

end do

if (�

l

< 0 and � < 0) then

do i = 1; : : : ; N + 1

 

l;iM+1

= q

l;iM+1

end do

do j = 1; : : : ;M + 1

 

l;N+1j

= q

l;N+1j

end do

do i = N; : : : ; 1

do j =M; : : : ; 1

 

l;ij

=

u

i+

1

2

j+

1

2

� e

�

l;i+

1

2

j+

1

2

 

l;i+1j

� e

l;i+

1

2

j+

1

2

 

l;i+1j+1

� �e

l;i+

1

2

j+

1

2

 

l;ij+1

d

l;i+

1

2

j+

1

2

end do

end do

end if

if (�

l

< 0 and � > 0) then

do i = 1; : : : ; N + 1

 

l;i1

= q

l;i1

end do

do j = 1; : : : ;M + 1

 

l;N+1j

= q

l;N+1j

end do

do i = N; : : : ; 1

do j = 1; : : : ;M

 

l;ij+1

=

u

i+

1

2

j+

1

2

� e

l;i+

1

2

j+

1

2

 

l;i+1j

� �e

l;i+

1

2

j+

1

2

 

l;ij

� e

�

l;i+

1

2

j+

1

2

 

l;i+1j+1

d

l;i+

1

2

j+

1

2
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end do

end do

end if

if (�

l

> 0 and � < 0) then

do i = 1; : : : ; N + 1

 

l;iM+1

= q

l;iM+1

end do

do j = 1; : : : ;M + 1

 

l;1j

= q

l;1j

end do

do i = 1; : : : ; N

do j =M; : : : ; 1

 

l;i+1j

=

u

i+

1

2

j+

1

2

� e

�

l;i+

1

2

j+

1

2

 

l;ij

� �e

l;i+

1

2

j+

1

2

 

l;i+1j+1

� e

l;i+

1

2

j+

1

2

 

l;ij+1

d

l;i+

1

2

j+

1

2

end do

end do

end if

if (�

l

> 0 and � > 0) then

do i = 1; : : : ; N + 1

 

l;i1

= q

l;i1

end do

do j = 1; : : : ;M + 1

 

l;1j

= q

l;1j

end do

do i = 1; : : : ; N

do j = 1; : : : ;M

 

l;i+1j+1

=

u

i+

1

2

j+

1

2

� �e

l;i+

1

2

j+

1

2

 

l;i+1j

� e

l;i+

1

2

j+

1

2

 

l;ij

� e

�

l;i+

1

2

j+

1

2

 

l;ij+1

d

l;i+

1

2

j+

1

2

end do

end do

end if

end do

Note that the Algorithm 1 is based on the Gaussian elimination known in 
omputational

neutron transport as sweeping pro
edures. Additionally, for ea
h dire
tion in S

�

N

only one sweep

is needed. See �gure 3 for a sweep illustration.

Remark 3 When re
e
tive boundaries arise on no more than one verti
al and one horizontal

boundary, the Algorithm 1 start �rst sweeping at the boundaries with known in
oming 
ux then,

re
e
ted 
ux from the boundary is used for ba
ksweeping. If both horizontal and/or verti
al

boundaries are re
e
tive, an iterative pro
ess must be done on the boundaries. Suppose for

example, both verti
al boundaries are re
e
tive i.e.,

 

0j

(�

l

; �

l

) =  

0j

(��

l

; �

l

); for �

l

> 0 and  

N+1j

(�

l

; �

l

) =  

N+1j

(��

l

; �

l

) for �

l

< 0:

Then, the angular 
uxes at the verti
al boundaries whi
h were 
al
ulated in one step are used

as in
ow boundary for the next step of iteration. The iterations are stopped as soon as, the

inequality

k 

old

�  

new

k

L

1

� Æ

r

k 

old

k

L

1

+ Æ

a

is satisfy. Here Æ

a

, Æ

r

are given toleran
es and k:k

L

1

is the L

1

-norm.
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x

y lΩ

j

j+1

i+

__1
2

i+1i

j+

__
2
1

Figure 3: Sweep illustration for �

l

> 0 and � > 0. � known boundary 
ux  , Æ 
omputed 
ux

 at 
ell interfa
es, and � 
omputed 
ux � at 
ell 
entre.

4 Iterative Methods

In this se
tion we introdu
e some numeri
al methods used in the literature to solve the linear

system (14), whi
h 
an be rewritten in 
ommon linear algebra notation as

AX = b; (17)

with

A �

0

B

B

B

B

B

B

�

H

1

��

1

.

.

.

.

.

.

H

�

N

��

�

N

�!

1

S : : : �!

�

N

S I

1

C

C

C

C

C

C

A

; X �

0

B

B

B

B

B

B

�

	

1

.

.

.

	

�

N

�

1

C

C

C

C

C

C

A

; and b �

0

B

B

B

B

B

B

�

Q

1

.

.

.

Q

�

N

0

1

C

C

C

C

C

C

A

:

In the same spirit we 
an rewrite the system (15) as

A� = B; (18)

where A is the S
hur matrix given in (16) and the right hand side B =

1

4�

�

N

X

l=1

!

l

SH

�1

l

Q

l

.

Re
all that the matri
es A and A are sparse and nonsymmetri
. In large s
ale problems

iterative methods are 
omputationally more eÆ
ient than dire
t methods; however, most itera-

tive methods for nonsysmmetri
 systems, with the possible ex
eption of multigrid methods, are

less eÆ
ient than their symmetri
 
ounterparts.
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The most popular and easiest iterative method to solve (18) is the Ri
hardson iteration known

in the 
omputational neutron transport as Sour
e Iteration (SI) method. Given an initial guess

�

(0)

, the (k + 1)-iterate solution is obtained by

�

(k+1)

= �

(k)

+

1

4�

�

N

X

l=1

!

l

SH

�1

l

Q

l

�A�

(k)

;

or simply

�

(k+1)

=

1

4�

�

N

X

l=1

!

l

SH

�1

l

�

Q

l

+�

l

�

(k)

�

: (19)

In the following the SI algorithm is presented and a Fortran 
ode with this algorithm is given

in the Appendix B.

Algorithm 2: The SI algorithm

given the initial guess 	

(0)


ompute �

(0)

=

1

4�

�

N

X

l=1

!

l

S	

(0)

do k = 0; : : : ;Kmax

do l = 1; : : : ;

�

N


ompute W = Q

l

+�

l

�

(k)

end do


all sweeping(N;M;

�

N;�x;�y; �; �; �; �;Q;	

(k+1)

;W)


ompute �

(k+1)

=

1

4�

�

N

X

l=1

!

l

S	

(k+1)

l


ompute Res

(k+1)

= k�

(k+1)

� �

(k)

k

L

2

if

�

Res

(k+1)

Res

(0)

� tol

�

stop

end do

Here Kmax is the maximum number of the iterations, tol is a given toleran
e, k:k

L

2
is the

dis
rete L

2

-norm, and Res

(k)

denotes the residual ve
tor at iteration k.

Note that iteration (19) is equivalent to a pre
onditioned blo
k Gauss-Seidel method applied

to (17), where the pre
onditioner is the blo
k lower triangle of the matrix A. Thus, if M is the

blo
k lower triangle of A, then

MX

(k+1)

= (M�A)X

(k)

+ b;

and

X

(k+1)

=

�

I�M

�1

A

�

X

(k)

+M

�1

b: (20)

Therefore the (k + 1)-iterate s
alar 
ux satisfy

�

(k+1)

=

1

4�

�

N

X

l=1

!

l

SH

�1

l

	

(k+1)

l

=

1

4�

�

N

X

l=1

!

l

SH

�1

l

�

Q

l

+�

l

�

(k)

�

;
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whi
h is identi
al to (19). Regarding to the matrix formulations (17) and (18), we have the

following properties:

1. The matri
es A and A are nonsymmetri
. In general they are not diagonally dominant.

2. When �e

l;i+

1

2

j+

1

2

� 0 and e

�

l;i+

1

2

j+

1

2

� 0, for all l; i; j, the matrix A is weakly diagonally

dominant.

3. Sin
e � and � are nonnegative fun
tions, and S

�

N

has nonzero dire
tions, the matrix A

has positive diagonal elements and nonpositive o�-diagonal elements.

The fa
t that �e

l;i+

1

2

j+

1

2

� 0 and e

�

l;i+

1

2

j+

1

2

� 0 is equivalent to

h := max

ij

�

(�x)

i

; (�y)

j

�

� max

ij

�

2j�

l

j

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

;

2j�

l

j

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

�

; 8 l; (21)

whi
h means physi
ally that the 
ell size is no more than two mean free paths of the parti
les

being simulated. Needless to say that the 
ondition (21) gives the bound of the 
oarser mesh

should be used in the 
omputations.

Upon the properties listed above and Fourier analysis we have the following lemma whose

proof 
an be found in [3, 11℄ for the one-dimensional problem. With the same arguments the

result 
an be extended to the two dimensional 
ase.

Lemma 1 Assume �(x) � 0, �(x) � 0 for all x 2 D, and assume that �(x) � 
 > 0 on D.

Then for ea
h dire
tion 


l

2 S

�

N

,

k�

1=2

SH

�1

l

�

l

�

�1=2

k < 
 � 1;

where � := diag

n

(�
1

2

1

2

+ �
1

2

1

2

)h; : : : ; (�

N�

1

2

M�

1

2

+ �

N�

1

2

M�

1

2

)h

o

and 
 is de�ned in (3).

Consequently, the lemma 1 leads to the following 
onvergen
e result for the SI algorithm.

Theorem 1 Under the assumption of lemma 1, the iterations (19) 
onverge to the solution �

of (15), and if e

(k)

:= �� �

(k)

denotes the error at iteration k, then

k�

1=2

e

(k+1)

k < k�

1=2

e

(k)

k; k = 0; 1; : : : ;

where � is de�ned in the lemma 1 and 
 is given in (3).

�

Proof. From (19) we have

�

1=2

e

(k+1)

=

1

4�

�

N

X

l=1

!

l

�

�

1=2

SH

�1

l

�

l

�

�1=2

�

�

1=2

e

(k)

;

by applying norms on both sides and use the fa
t that the weights !

l

satisfy

!

l

� 0; and

�

N

X

l=1

!

l

= 4�;
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we end up with

k�

1=2

e

(k+1)

k <

1

4�

�

N

X

l=1

!

l


k�

1=2

e

(k)

k = 
k�

1=2

e

(k)

k: (22)

Sin
e the inequality (22) is stri
t and 
 independent of k with 
 � 1, the the iterations (19)


onverge to the solution of (15). Moreover, the 
onvergen
e rate is bounded by 
.

It is well known in iterative methods for linear algebra [13, 9, 11℄ that the pre
onditioned

Ri
hardson iteration (21) 
onverges rapidly as long as the norm of the matrix (I �M

�1

A) is

small. This 
ondition is ensured by taking 
 small. As theorem 1 indi
ates, the 
onvergen
e

rate of the SI method is restri
ted by the s
attering ratio 
. Hen
e, for 
 � 1 theorem 1 shows

that the SI method 
onverges rapidly, but for 
 � 1 (large opti
al opa
ity) 
onvergen
e be
omes

slow and may restri
t the eÆ
ien
y of the SI algorithm.

In order to over
ome the disadvantage of SI method to eÆ
iently solve the problem (15) when


 � 1, we propose two Krylov subspa
e based methods, espe
ially the BI-Conjugate Gradient

Stabilized (BICGSTAB) [25℄ and the Generalized Minimal Residual (GMRES) [23℄, whi
h work

mu
h better in this 
ase. The main idea behind these approa
hes is that the Krylov subspa
e

methods 
an be interpreted as the weighted Ri
hardson iteration

X

(k+1)

= �

�

I�P

�1

A

�

X

(k)

+P

�1

b; 0 < � < 2; (23)

where the relaxation parameters � and the pre
onditioner P are variables within ea
h iteration

step. Note that when � = 1 and P =M the iteration (23) is redu
ed to the SI method.

The BICSTAB and GMRES algorithms to solve the linear system (18) 
an be implemented

in the 
onventional way as in [25, 23, 13, 9, 11℄, with the only di�eren
e that the sparse matrix

A 
an not be expli
itly stored. All what is needed, however, is a subroutine that performs a

matrix-ve
tor multipli
ation as shown in the following algorithm

Algorithm 3: The matrix-ve
tor multipli
ation

given a ve
tor U, to apply the matrix A to U we pro
eed as:

do l = 1; : : : ;

�

N


ompute V = �

l

U

end do


all sweeping(N;M;

�

N;�x;�y; �; �; �; �;Q;V;W)

do l = 1; : : : ;

�

N


ompute V = S

l

W

end do

set U = U�

1

4�

�

N

X

l=1

!

l

V

Note that only three ve
tors (U, V andW) are needed to perform the multipli
ation of the

matrix A to the ve
tor U. Moreover, only three 
alls for the algorithm 3 are required from the

BICGSTAB or GMRES subroutines.

Remark 4 Pre
onditioned BICGSTAB or GMRES methods 
an be also used. For instan
e,

in the 
ase when the matrix A in (16) is diagonally dominant, the BICGSTAB or GMRES
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methods 
an be a

elerated by using the diagonal as a pre
onditioner. This approa
h whi
h

requires additional 
omputational work 
an be easily implemented. It is worth to say that sin
e,

the matrix A does not have an expli
it representation, ILU type pre
onditioners 
an not be used

to solve (15).

5 Di�usion Syntheti
 A

eleration Method

It has been shown in [17, 16, 15℄, under the physi
al assumptions that the medium is opti
ally

thi
k and the s
attering is dominate, the neutron transport equation (5) 
an be approximated

by the di�usion problem

�r �

�

1

3(� + �)

r'

�

+ �' = q in D;

(24)

'+

2

3(� + �)

n � r' = 4�g; on �D:

The authors in [17, 16, 15℄ used asymptoti
 analysis to prove that, in di�usive limit, the so-

lution to the equation (24) approa
hes asymptoti
ally solution of the full neutron transport

equation (5). Further analysis and other asymptoti
 approximations to the transport problem

in radiative heat transfer 
ontext 
an be found in [24℄. The main advantages to 
onsider the

di�usion approa
h lie on the fa
t that equation (24) does not depend on the angle variable 
,

is linear ellipti
 equation, simple to solve numeri
ally with less 
omputational 
ost and memory

requirement, and when � is positive (24) has a unique solution.

In order to build a dis
retization for the di�usion problem (24) whi
h is 
onsistent to the one

used for the neutron transport equation (5) and 
onverges asymptoti
ally to the same solution

as the mesh size h tends to zero, we 
onsider in this se
tion the same grid stru
ture as �gure 2

and the same notations as those used in se
tion 3.

Hen
e a spa
e dis
retization for the equation (24) reads as

�D

2

h

�

1

3(� + �)

'

�

ij

+ �'

i+

1

2

j+

1

2

= q

i+

1

2

j+

1

2

; (25)

where the di�eren
e operator D

2

h

is given by D

2

h

:= D

2

x

+D

2

y

, with

D

2

x

(�!)

ij

:=

�

ij

+ �

i+1j

2

!

i+1j

� !

ij

(�x)

2

i+

1

2

�

�

i�1j

+ �

ij

2

!

ij

� !

i�1j

(�x)

2

i+

1

2

;

D

2

y

(�!)

ij

:=

�

ij

+ �

ij+1

2

!

ij+1

� !

ij

(�y)

2

j+

1

2

�

�

ij�1

+ �

ij

2

!

ij

� !

ij�1

(�y)

2

j+

1

2

;

and the fun
tions '

i+

1

2

j+

1

2

and q

i+

1

2

j+

1

2

appeared in (25) are given by the formula (13). The

gradient in the boundary 
onditions is approximated by upwinding without using ghost points.

For example, on the left boundary of the domain (x = x

0

) the boundary dis
retization is

'
1

2

j+

1

2

�

2

3(�
1

2

j+

1

2

+ �
1

2

j+

1

2

)

'
3

2

j+

1

2

� '
1

2

j+

1

2

(�x)
1

2

= 4�g
1

2

j+

1

2

;

and similar work has to be done for the other boundaries. All together, the above dis
retization

leads to a linear system of form

T ' = R; (26)
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where T is N �M nonsymmetri
 positive de�nite matrix obtained from the di�eren
e di�usion

operator (25) with boundary 
onditions in
luded, andR is NM ve
tor 
ontaining the right hand

q and boundary fun
tion g. The system (26) 
an be solved using one of the iterative methods

BICGSTAB or GMRES already dis
ussed in se
tion 4. In our numeri
al examples presented in

these notes we used the pre
onditioned BICGSTAB with the diagonal as pre
onditioner.

As mentioned early the di�usion approa
h (24) is a good approximation to the full neutron

transport equation (5) only when the transport �eld is opti
ally thi
k (# � 1) or with dense

absorption (� � 1). In medium with small absorption or pure s
attering (� = 0) the di�usion

approa
h (24) be
omes unable to approximate a

urately the 
orre
t solution of the full transport

problem. Nevertheless, this approa
h 
an be used to a

elerate the sour
e iteration algorithm

in all the regimes. The resulting a

elerated algorithm, widely known in 
omputational neutron

transport as Di�usion Syntheti
 A

eleration (DSA) method, was �rst introdu
ed in [2℄ and

studied in a number of papers, for instan
e see [5, 3℄.

The implementation of DSA method to approximate the solution of the neutron transport

equation (5) is 
arried out in the following algorithm

Algorithm 4: The DSA algorithm

given the initial guess 	

(0)


ompute �

(0)

=

1

4�

�

N

X

l=1

!

l

S	

(0)

do k = 0; : : : ;Kmax

do l = 1; : : : ;

�

N


ompute W = Q

l

+�

l

�

(k)

end do


all sweeping(N;M;

�

N;�x;�y; �; �; �; �;Q;	

(k+1)

;W)


ompute �

(k+

1

2

)

=

1

4�

�

N

X

l=1

!

l

S	

(k+1)

l


ompute ' by solving the di�usion problem

�r �

�

1

3(� + �)

r'

�

+ �' = �

�

�

(k+

1

2

)

� �

(k)

�

;

'+

2

3(� + �)

n � r' = 0:

set �

(k+1)

= �

(k+

1

2

)

+ '


ompute Res

(k+1)

= k�

(k+1)

� �

(k)

k

L

2

if

�

Res

(k+1)

Res

(0)

� tol

�

stop

end do

Re
all that in the matrix notation of se
tion 4 the SI iteration is given by the Ri
hardson

iteration applied to the system (17) as

X

(k+1)

=

�

I�M

�1

A

�

X

(k)

+M

�1

b;

where M is the blo
k lower triangle of A. Roughly speaking, the DSA method 
an be viewed

as pre
onditioned Ri
hardson iteration with the di�usion matrix T like pre
onditioner,

X

(k+1)

=

�

I� T

�1

A

�

X

(k)

+ T

�1

b;
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and T

�1

is obtained by solving the di�usion linear system (26).

Note that the �rst lines in Algorithm 4 are similar to the Algorithm 2. However, the

sour
e iteration algorithm gives only the intermediate solution �

(k+

1

2

)

whi
h has to be 
orre
ted

by adding the solution ' obtained by the di�usion approa
h. Furthermore, if BICGSTAB is used

for the di�usion approa
h, then an inner iterations have to be added to the iteration used by the

SI algorithm and an outer SI iterations may require less a

ura
y from the inner BICGSTAB

iterations (sin
e the main issue to 
onsider the DSA method is to obtain an a

elerated algo-

rithm).

6 Numeri
al Examples

Table 2: The values of �, � and boundary fun
tion g for di�erent test problems in example 1.

�(x; y) �(x; y) g

�

l

(y) g

�

r

(y) g

�

b

(x) g

�

t

(x)

Test 1 0:99 0:01 0 1 x x

Test 2 99 1 0 1 x x

Test 3 1 10 y 1� y x 1� x

Test 4 10 0 y 1� y x 1� x

To asses the performan
e of the methods introdu
ed in the previous se
tions we have run

some numeri
al experiments of two examples for the neutron transport equation (5). In all our

tests, the iterations in the numeri
al methods are terminated as soon as the inequality

Relative Residual :=

Res

(k)

Res

(0)

� 10

�6

; (27)

is satis�ed. Here Res

(0)

and Res

(k)

denote the initial residual and the residual at the iteration

k in the iterative algorithm, respe
tively. We used the dis
rete L

2

-norm for the 
omputation of

these residuals.

The 
onvergen
e rates along with 
ross se
tion plots of the results give a good ideas of the

a

ura
y of the algorithms. The eÆ
ien
y of the solvers is 
ompared in the CPU time 
ontext.

All the 
al
ulations reported in this se
tion have been 
arried out in Fortran implementation

with double pre
ision on a PC with AMD-K6 200 pro
essors.

The �rst example is the equations (5) in the unit square D = [0; 1℄�[0; 1℄ 
overed by 100�100

grid points and augmented with the following boundary fun
tion g

g(0; y;
) = g

�

l

(y); g(1; y;
) = g

�

r

(y); for 0 � y � 1;

g(x; 0;
) = g

�

b

(x); g(x; 1;
) = g

�

t

(x); for 0 � x � 1:

We set q(x; y;
) = 0. The 
oeÆ
ients �, �; the fun
tions g

�

l

, g

�

r

, g

�

b

and g

�

t

, are 
hosen for

four di�erent test problems a

ording to the table 2.

The main issues we wish to address in these test problems are 
on
erned with the 
omparison

on 
onvergen
e and eÆ
ien
y of all the methods presented in these notes using di�erent values
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Table 3: The number of iterations (# Iter) and the CPU time (in se
onds) for SI, GMRES,

BICGSTAB, DSA and Di�usion methods for the four test problems in example 1.

Test 1 Test 2 Test 3 Test 4

# Iter CPU # Iter CPU # Iter CPU # Iter CPU

SI 17 7.65 866 317.29 6 3.10 262 107.98

GMRES 4 5.51 50 51.14 2 3.68 16 17.43

BICGSTAB 4 3.61 52 28.12 3 3.12 14 8.68

DSA 7 19.97 21 14.84 4 4.01 8 14.27

Di�usion 224 3.48 58 0.94 60 0.9 154 2.33

of �, � and g to show the advantages of a method over the others. To this end we �rst plot

in �gure 4 the 
onvergen
e rates for the four test problems. A log-s
ale on the y-axis is used.

A �rst remark 
on
erning these plots is that when 
 � 1 the SI method 
onverges slowly, for

instan
e, in Test 2 (
 = 0:99) SI needs 866 iterations to 
onverge and in Test 4 (
 = 1)

needs 262 iterations. This fa
t was early ensured by theorem 1. However, in both tests, DSA

method shows fast 
onvergen
e over all the others methods. On the other hand, when 
 � 1

the BICGSTAB method 
an 
ompete with DSA. In Test 1 and Test 3, a few iterations are

enough for the 
onvergen
e of all methods, but still SI method is the slowest.

In table 3 we display the number of iterations needed by ea
h method for the four tests

together with the 
onsumed CPU time. It is 
lear that the BICGSTAB method uses less CPU

time in all tests ex
ept in Test 2 (# = 100). The di�usion results are also in
luded in table 3,

They are less CPU time 
onsuming spe
ially when # � (Test 2 and Test 3). However, the

di�usion results should not be 
ompared to other methods sin
e the problem they solve has

di�erent stru
ture than those solved by SI, BICGSTAB, GMRES, or DSA methods.

In �gure 5 we plot the s
alar 
ux � obtained by DSA method for the four test problems.

Similar results are plotted in �gure 6 but using the di�usion pro
edure. The SI, BISCATAB and

GMRES results are not presented here, be
ause they overlap those obtained by DSA method. In

order to 
ompare these results, we show in �gure 7 a 
ross se
tion at the main diagonal (y = x) of

the s
alar 
ux obtained by all methods. As 
an be slightly seen the di�usion failed to approa
h

a

urately the DSA results when 
 = 0:99; # = 1 (Test 1), and 
 = 0:09; # = 11 (Test 3). In

other two tests (Test 2 and Test4), di�usion approa
h resolves the neutron transport equation


orre
tly as the DSA method does, but with less 
omputational e�ort referring to the CPU time

in table 3.

Our se
ond example 
onsists of tests arising in radiative transfer problems. Usually the

transport equation (5) is 
oupled to the heat equation to model radiative heat transfer phe-

nomena, 
ompare [19, 6, 10, 24℄ for detailed studies on radiative transfer. Sin
e our goal in

these notes is 
on
erned with numeri
al tools for simulating the transport equation, we �x the

temperature pro�le in the radiative transfer equation and we try to solve the transport equation


oupled to this temperature pro�le. Thus, the problem statements we 
onsider here are



6. Numeri
al Examples 20

0 10 20 30 40 50 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L
2
−

n
o
rm

 o
f 
re

s
id

u
a
l

Test 1

SI      
BICGSTAB
Gmres   
DSA     

0 10 20 30 40 50 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations
L
2
−

n
o
rm

 o
f 
re

s
id

u
a
l

Test 2

SI      
BICGSTAB
Gmres   
DSA     

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L
2
−

n
o
rm

 o
f 
re

s
id

u
a
l

Test 3

SI      
BICGSTAB
Gmres   
DSA     

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

L
2
−

n
o
rm

 o
f 
re

s
id

u
a
l

Test 4

SI      
BICGSTAB
Gmres   
DSA     

Figure 4: The 
onvergen
e plots for the four test problems from table 2.
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Figure 5: The s
alar 
ux � obtained by DSA method for the four test problems from table 2.
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Figure 6: The s
alar 
ux � in the Di�usion approa
h for the four test problems from table 2.
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tion at y = x of the s
alar 
ux � for the four test problems from table 2.
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The frequen
y-independent problem


 � rI + (� + �)I =

�

4�

Z

S

2

I(x;


0

)d


0

+ �B(T ): (28)

The frequen
y-dependent problem


 � rI

�

+

�

�

�

+ �

�

�

I

�

=

�

�

4�

Z

S

2

I

�

(x;


0

; �)d


0

+ �

�

B(T; �): (29)

Here I

�

= I(x;
; �), T = T (x), �

�

= �(x; �) and �

�

= �(x; �) denote respe
tively, the radiation

intensity, the temperature, the s
attering and the opa
ity within the frequen
y � > 0. B is the

Plan
k fun
tion given by

B(T; �) =

2~�

3




2

�

e

~�=k

B

T

� 1

�

�1

; (30)

where ~, k

B

and 
 are Plan
k 
onstant, Boltzmann 
onstant and the speed of light, respe
tively.

Noti
e that, in the frequen
y-independent problem (28) the fun
tion B = B(T ) = a

R

T

4

,

with a

R

is a radiation 
onstant (a

R

= 1:8067:10

�8

J=K). The 
omputational domain is a square

of 1 
m side dis
retized into 100� 100 grid 
ells. The temperature we used in our 
omputations

is a linear pro�le between 800 K and 1800 K in the unit square i.e.,

T (x; y) = 800x+ 1000; (x; y) 2 [0; 1℄ � [0; 1℄:

Using this temperature pro�le we set the boundary 
onditions for the intensity a

ording to the

radiative equilibrium

I(x̂) = B(T (x̂)); x̂ 2 �D

�

; (31)

for the frequen
y-independent problem (28), and

I

�

(x̂) = B(T (x̂); �); x̂ 2 �D

�

; (32)

for the frequen
y-dependent problem (29).

First, we solve the grey problem (28)-(31) using the methods studied in the previous se
tions.

In �gure 8 we report the 
onvergen
e plots for two di�erent values of the absorption � while the

s
attering is �xed to � = 1 
m

�1

in both tests. It is apparent that the 
onvergen
e of SI method

be
ome slow when the s
attering ratio 
 
hange from 0:09 (� = 10 
m

�1

) to 1 (� = 0 
m

�1

).

These results are in good agreement with theorem 1 in se
tion 4. The a

ura
y plots given in

�gure 9 represent a 
ross se
tion at y = 0:5 
m on the s
alar 
ux obtained by all the methods

with the di�usion approa
h in
luded. As the opa
ity � de
reases, the di�usion results be
ome

slightly far from the results obtained for the full transport problem.

We now turn our attention to the frequen
y-dependent problem (29)-(32). In order to

dis
retize the equations (29)-(32) respe
t to the frequen
y variable �, we assume

~

N frequen
y

bands [�

�

; �

�+1

℄; � = 1; : : : ;

~

N with pie
ewise 
onstant absorption

�

�

= �

�

; 8 � 2 [�

�

; �

�+1

℄ � = 1; : : : ;

~

N:

We de�ne the frequen
y-averaged intensity in the band [�

�

; �

�+1

℄ by

I

�

=

Z

�

�+1

�

�

I

�

0

(x;
; �

0

)d�

0

: (33)
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Figure 8: The 
onvergen
e plots for the grey problem (28)-(31) with � = 1 and two di�erent

values of opa
ity.
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Figure 9: The 
ross se
tion at y = 0:5 of the s
alar 
ux � for the grey problem (28)-(31) with

� = 1 and two di�erent values of opa
ity.
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Table 4: The bands used in the numeri
al simulation of the frequen
y-dependent problem.

Band � �

�

(�m) �

�+1

(�m) �

�

(m

�1

)

1 1 5 0.40

2 5 0.3333 0.50

3 0.3333 0.2857 7.70

4 0.2857 0.2500 15.45

5 0.2500 0.2222 27.98

6 0.2222 0.1818 267.98

7 0.1818 0.1666 567.32

8 0.1666 0.1428 7136.06

0.1428 0 opaque

Then, the equations (29)-(32) are transformed to a system of

~

N transport equations of the form


 � rI

�

+

�

�

�

+ �

�

�

I

�

=

�

�

4�

Z

S

2

I

�

(x;


0

; �

�

)d


0

+ �

�

Z

�

�+1

�

�

B(T; �

0

)d�

0

;

(34)

I

�

(x̂) =

Z

�

�+1

�

�

B(T; �

0

)d�

0

; x̂ 2 �D

�

:

Note that after the dis
retization of ordinates in

�

N dire
tions and the spa
e in N�M gridpoints,

one has to deal with systems with

~

N�

�

N�N�M unknowns and, �nding solutions to su
h systems

requires mu
h memory storage and mu
h 
omputational 
ost. In our numeri
al simulations we

use eight frequen
y bands [�

�

; �

�+1

℄; � = 1; : : : ; 8 given in table 4. These values are frequently

used in the glass manufa
turing, we refer to [24℄ for more physi
al details.

Using two di�erent values for the s
attering (� = 1 
m

�1

and � = 100 
m

�1

), we summarize

in table 5 the CPU time and the number of iterations used by all methods ex
ept the BICSTAB

method, be
ause their results are identi
al to the GMRES ones. It is important to mention two

points with respe
t to the results in table 5. First, we observe that by de
reasing the s
attering

ratio 
 and keeping � �xed to 100 
m

�1

or 1 
m

�1

the number of iterations redu
e asymptoti
ly

in all the methods with the advantage of the GMRES method over the others. Se
ond, when

� = 100 
m

�1

the SI method required unreasonable number of iterations for the �rst frequen
y

bands, 
onsequently the CPU time used is very large. In 
ontrast, the Di�usion approa
h uses

only 0:012% of the CPU time used by SI method for this 
ase, and the results obtained by both

approa
hes are similar, see �gure 10.

In order to quantify the solution of (34) we de�ne the frequen
y-mean s
alar 
ux ' as

'(x) =

1

4�

Z

S

2

Z

1

0

I(x;


0

; �

0

)d


0

d�

0

=

1

4�

�

M

X

l=1

~

N

X

�=1

I

�;l

(x):
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Table 5: The number of iterations and the CPU time (in minutes) for SI, GMRES, DSA and

Di�usion methods for the eight frequen
y-bands problem with two di�erent values of �.

Band � S
attering ratio 
 SI GMRES DSA Di�usion

1 0.71428 16 6 7 217

2 0.66666 15 6 7 212

3 0.11494 8 4 4 91

4 0.06077 6 4 4 46

� = 1 
m

�1

5 0.03450 6 4 3 25

6 0.00371 4 2 3 4

7 0.00175 4 2 3 3

8 0.00014 3 1 2 2

CPU ||{ 25.63 3.94 14.69 0.21

1 0.99601 1700 92 32 87

2 0.99502 1321 89 30 82

3 0.92850 178 26 29 25

4 0.86617 95 18 29 17

� = 100 
m

�1

5 0.78137 57 14 27 11

6 0.27175 12 5 9 3

7 0.14985 9 4 6 3

8 0.01381 5 2 3 2

CPU ||{ 981.16 6.43 69.72 0.12

The �gure 10 shows a 
ross se
tion of ' at y = 0:5 
m for the two values of �. The main

message taken from this �gure is that, the di�usion results 
oin
ides with the transport results

only when the s
attering is large (� = 100 
m

�1

) and for this 
ase the SI s
heme is unreasonably

slow (
ompare the CPU time in table 5). Therefore, it is worth to use the di�usion approa
h

be
ause, at least for this test problem, it gives results that are as a

urate as those obtained for

the full transport equation, but with less 
omputational 
ost.

7 Con
lusions

We have 
ombined the dis
rete ordinates 
ollo
ation and the Diamond di�eren
ing to re
onstru
t

numeri
al methods for the two-dimensional neutron transport equation. These methods in
lude

the sour
e iteration s
heme, full BICGSTAB and GMRES algorithms, and the di�usion syntheti


a

eleration method. We have 
ompared the results obtained by these methods on several test

problems. The prin
ipal 
on
lusions a
hieved through this 
omparison are the following:

1. For neutron transport equation with small s
attering ratio (
 � 1) and moderate opti
al


oeÆ
ient #, the SI method 
an be a reasonable solver, but still not eÆ
ient enough as

BICGSTAB, GMRES or DSA methods.

2. For neutron transport equation with large or pure s
attering (
 � 1), the SI method

be
ome very slow and loses eÆ
ien
y. In parallel, the DSA method is the best and presents
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Figure 10: The 
ross se
tion at y = 0:5 of the mean s
alar 
ux ' for the problem (29)-(32) with

the eight frequen
y-bands given in table 5 and two di�erent values of �.

fast 
onvergen
e rate over all other methods.

3. For neutron transport equation in opti
ally thi
k regime (# � 1), the di�usion approa
h

may be a valid alternative for the iterative methods sin
e it gives results that are as

a

urate as those obtained by DSA method, but with less 
omputational 
ost, and di�usion

approa
h does not need extra dis
retization for the angular dire
tions.

Nevertheless, borrowing the idea of simpli�ed P

N

approximations to the transport equation and

following the argument of se
tion 5, it is feasible to devise generalized pre
onditioners to the SI

method with high a

elerated 
onvergen
e. Su
h methods 
an be used in radiative heat transfer

and radiation hydrodynami
 
ouplings rather than the transport equation (1). Results on these

methods will be reported in the near future.

We want to point out that general time-dependent neutron transport problem (1) 
an also

numeri
ally solved in a similar manner. By using the dis
rete ordinates and the Diamond

di�eren
ing methods, and by using the same notations as in se
tion 3, the equations (1) are

transformed to the following system of ODE's

1

v

d

dt

 

l;i+

1

2

j+

1

2

+ �

l

 

l;i+1j

�  

l;ij

(�x)

i+

1

2

+ �

l

 

l;ij+1

�  

l;ij

(�y)

j+

1

2

+

�

�

i+

1

2

j+

1

2

+ �

i+

1

2

j+

1

2

�

 

l;i+

1

2

j+

1

2

=

�

l;i+

1

2

j+

1

2

�

i+

1

2

j+

1

2

+ q

l;i+

1

2

j+

1

2

;

(35)

 

l;ij

(t) = g

l;ij

(t);

 

l;ij

(0) =  

0

l;ij

;

where ea
h 
entred valued fun
tion f

l;i+

1

2

j+

1

2

appeared in (35) is given by

f

l;i+

1

2

j+

1

2

=

f

l;ij

+ f

l;i+ij

+ f

ij+1

+ f

l;i+1j+1

4

:
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For the time integration of (35), one 
an use any ODE solver, however the presen
e of the term

1=v in the front of the time-derivative operator, makes the use of expli
it s
hemes ineÆ
ient,

be
ause these expli
it s
hemes are subje
t to a CFL 
ondition of the form

� := v

�t

h

� 1; (36)

where h := max

ij

�

(�x)

i

; (�y)

j

�

is the mesh size, �t is the time stepsize and v is the neutron

speed (extremely large, order of speed of light). Therefore, impli
it s
hemes whi
h alleviate the

stability restri
tion (36), should be used. For simpli
ity, we 
onsider here the impli
it Euler

method to integrate the equations (35).

Let the time interval [0; T ℄ be divided into NT subintervals [t

n

; t

n+1

℄ of length �t su
h that

t

n

= n�t and T = NT�t. We use the notation W

n

l;ij

to denote the value of the fun
tion W at

(t

n

; �

l

; �

l

; x

i

; y

j

). Then, the fully dis
rete formulation of the equation (1) 
an be written as

�

l

 

n+1

l;i+1j

�  

n+1

l;ij

(�x)

i+

1

2

+ �

l

 

n+1

l;ij+1

�  

n+1

l;ij

(�y)

j+

1

2

+

�

�

n+1

i+

1

2

j+

1

2

+ �

n+1

i+

1

2

j+

1

2

+

1

v�t

�

 

n+1

l;i+

1

2

j+

1

2

=

(37)

�

n+1

l;i+

1

2

j+

1

2

�

n+1

i+

1

2

j+

1

2

+ q

n+1

l;i+

1

2

j+

1

2

+

1

v�t

 

n

l;i+

1

2

j+

1

2

:

On
e again, the dis
rete equation (37) 
an be reformulated in matri
es as in (14) by using the

following new matrix entries

d

l;i+

1

2

j+

1

2

:=

j�

l

j

2(�x)

i+

1

2

+

j�

l

j

2(�y)

j+

1

2

+

�
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1

2
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1

2

+ �
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1

2

j+

1

2

+

1

v�t

4

;

�e
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1

2
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1

2
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j�

l
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1

2

+

�j�
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1

2
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;

e

�
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1

2

+
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e
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2(�x)

i+

1

2

+
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:

By doing so and 
hanging the right hand side as in (37), the SI, BICGSTAB, GMRES, DSA

methods and the Di�usion approa
h studied in the previous se
tions remain valid to solve the

problem (37) in the same way as have been done for the time-independent problem (11) with

the only di�eren
e that another loop must be added for the time integration. Furthermore, the


onvergen
e rate of the sour
e iteration is governed, at ea
h time step, by the new s
attering

ratio


(t

n

) := max

x2D

�

�(t

n

;x)

�(t

n

;x) + �(t

n

;x) +

1

v�t

�

; n = 1; : : : ;

~

N:

We would like to mention that, the spa
e dis
retization used in these notes is se
ond or-

der. Therefore, to be 
onsistent that the fully di
restized s
heme maintain the same order of

a

ura
y, a se
ond order time integration s
heme should be used. For example, Crank-Ni
olson

method 
an be a good 
andidate, sin
e it 
an be formulated easily as (37) and the resulting

linear systems have the same stru
tures as those obtained by Euler method.
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Appendix A: The Ray E�e
t

The dis
rete ordinates method des
ribed in se
tion 2 solves the transport equation (5) for a 
lose

set of angular dire
tions S

�

N

, as long as it approximates the angular integral by a weighted sum

of 
ux values. Of 
ourse, in two dimensional problems not all the possible dire
tions in the unit

sphere S

2

are 
al
ulated, but the set is redu
ed by means of symmetry relations. Moreover, in a

three dimensional transport �eld proje
ted in x-y plane, some dire
tions appear to be between

others when they really are not.

One of the main drawba
ks of the dis
rete ordinates method for solving the neutron trans-

port equation is that due to the existen
e of privileged dire
tions in S

�

N

set, the solution has

some degree of numeri
ally indu
ed anisotropy (by anisotropy we mean that the probability of

s
attering for the parti
les is not the same for all dire
tions). In 
ases with very little if any

s
attering, and lo
alized external sour
es, this e�e
t may strongly disturb the 
orre
t solution

and be
ome worse with sets of few angular dire
tions. This undesirable e�e
t is 
alled the ray

e�e
t. As mentioned in [18℄, the ray e�e
ts o

ur normally in two-dimensional problems where

the external sour
es are lo
alized and the e�e
ts of s
attering are relatively small.
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Figure 11: The model problem used to exhibit ray e�e
ts.

Figure 12: The angular 
ux  along the dire
tion (a) 


7

= (�0:79263;�0:51491) and (b)




23

= (�0:21215;�0:72707).
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Figure 13: The s
alar 
ux � (a) and its 
orresponding se
tion at x = 1:967 (b).

In order to make the ray e�e
t visible we use in this appendix, the same model problem

from [18℄ 
hosen by the authors to exhibit the ray e�e
t. The model 
onsists of the equations (5)

with a 
at sour
e q given by

q(x; y) =

(

1; if 0 � x � 1 and 0 � y � 1;

0; else:

The domain geometry and the boundary 
onditions used for this test are shown in �gure 11. Both

the square sour
e and the surrounding medium have the same opti
al properties. The s
attering

and the absorption parameters are those used in [18℄. Thus, � = 0:5 
m

�1

and � = 0:25 
m

�1

.

The angular and the s
alar 
uxes are 
omputed using the DSA method on 200� 200 gridpoints

and C-60 set dire
tions. First we plot in �gure 12 the angular 
ux 
orresponding to the two

dire
tions 


7

= (�0:79263;�0:51491)

T

and 


23

= (�0:21215;�0:72707)

T

. The 
olormap shows

the 
ux �eld  in the domain, the ray e�e
t is 
learly visible as irregularities in what should be

squared iso
ontours. Another exhibition of the ray e�e
t is shown in �gure 13 where the s
alar


ux � and a se
tion at x = 1:967 are plotted as suggested in [18℄. The ray e�e
ts may be seen

from the �gure 13 as nonphysi
al os
illations.

There are many ways to over
ome the disadvantage of the ray e�e
ts from a given 
om-

putational neutron transport 
ode. The simplest way is to re�ne the dis
rete ordinates set by

in
reasing the number of angular dire
tions. Then, the frequen
y of the os
illations be
omes

higher and the magnitude be
omes lower. The ray e�e
ts 
an be 
ompletely eliminated by using

the so-
alled P

N

approximations. In 
ontrast to dis
rete ordinates methods the P

N

methods


onsist of expansion of the angular 
ux in the �rst N+1 Legendre polynomial. An extended ref-

eren
es on these methods and other te
hniques to remedy the ray e�e
ts in the dis
rete ordinates


ollo
ation 
an be found in [18, 14, 4, 20℄.
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Appendix B: A Fortran Code

For 
ompleteness, we in
lude in this appendix a Fortran 
ode for the SI algorithm to solve

the neutron transport equation (5). The 
ode links both the algorithm 1 and algorithm 2

to handled the linear system (15). We used the va
uum boundary 
onditions along the whole

domain. However, these boundary 
onditions together with the s
attering and the absorption


oeÆ
ients 
an be 
hanged very easily in their 
orrespondent fun
tions at the end of the listing


ode.

We want to point out that the 
ode is not written to be a show of eÆ
ien
y and optimized

programming. It is simply to show for the reader how a sour
e iteration 
ode 
an be done.

subroutine SI(nd,nx,ny,np,x,y,hx,hy,dx,dy,wg,aflux,

& sflux,q,work,tol,maxits,iout)





 This subroutine solve the Neutron transport problem (15)


 using the sour
e iteration method. We assume the inflow


 boundary 
ondition on all the bondaries of the 
omputational


 domain. Dis
rete ordinates and Diamond differen
ing are used


 for angle and spa
e dis
retizations.


---------------------


 The input variables:


---------------------


 nd = the number of dire
tions in the unit sphere


 nx = the number of the spa
e gridpoints in the x-dire
tion


 ny = the number of the spa
e gridpoints in the y-dire
tion


 np = the total number of the spa
e gridpoints. (np = nx x ny)


 hx = the spa
e gridsize in the x-dire
tion.(hx is a ve
tor of size nx)


 hy = the spa
e gridsize in the y-dire
tion.(hy is a ve
tor of size ny)


 x = the spa
e gridpoints in the x-dire
tion.


 (x is a ve
tor of size nx+1)


 y = the spa
e gridpoints in the y-dire
tion.


 (y is a ve
tor of size ny+1)


 dx = the angle dire
tion in the x-dire
tion.(dx is a ve
tor of size nd)


 dy = the angle dire
tion in the y-dire
tion.(dy is a ve
tor of size nd)


 wg = the weight asso
iated to the dire
tions dx and dy


 aflux = the angular flux is used as initial guess for the SI method


 
an be seted to zero unless for va
uum boundary 
onditions


 are used. (aflux is a ve
tor of size nd x nx+1 x ny+1)


 q = the sour
e term. (q is a ve
tor of size nd x nx+1 x ny+1)


 work = the work ve
tor. (work is a ve
tor of size nd)


 tol = the toleran
e to stop the iterations.


 maxits = the maximum number of iterations allowed


 iout = the output unit number for printing intermediate results


 if(iout.le.0) no statis
ts are printed


---------------------


 The ouput variables:


---------------------


 aflux = the 
urrent angular flux.
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 (aflux is a ve
tor of size nd x nx+1 x ny+1)


 sflux = the s
alar flux. (sflux is a ve
tor of size np)


------------------------


 The auxilary parameters:


------------------------


 wsflux = the ve
tor to store s
lar fux at the previous iteration.


 (wsflux is a ve
tor of size np)


 s = the ve
tor to store sour
e term.


 (s is a ve
tor of size nx x ny)


 b
l,b
r,b
b,b
t = the ve
tors to store boundary 
onditions for the sweeping


 subroutine. (b
l,b
r are ve
tors of size ny+1 and


 b
b,b
t are ve
tors of size nx+1)


--------------------


 The fun
tions used:


--------------------


 xkappa(x,y) = the absorption fun
tion


 sigma(x,y) = the s
attering fun
tion


 b
left(y) = the left boundary fun
tion


 b
right(y) = the righ boundary fun
tion


 b
bottom(x) = the bottom boundary fun
tion


 b
top(x) = the top boundary fun
tion


 xint(nd,wg,w) = the fun
tion to 
ompute the weighted integrals


---------------------


 The subroutine used:


---------------------


 the sweeping subroutine


 sweeping(nd,nx,ny,np,x,y,hx,hy,dx,dy,s,b
l,b
r,b
b,b
t,aflux)


======================================================================

impli
it real*8(a-h,o-z)

real*8 hx(1),hy(1),x(1),y(1),dx(1),dy(1),wg(1),sflux(1),work(1)

real*8 aflux(nd,nx+1,ny+1),wsflux(np),q(nd,nx+1,ny+1)

real*8 b
l(ny+1),b
r(ny+1),b
b(nx+1),b
t(nx+1),s(nx,ny)

data pi/3.14159265358979d0/


-------------------------------


 The initial s
alar flux guess


-------------------------------

do 10 i=1,nx

do 10 j=1,ny

do 5 l=1,nd

work(l) = 0.25d0*(aflux(l,i+1,j)+aflux(l,i,j)+

& aflux(l,i,j+1)+aflux(l,i+1,j+1))

5 
ontinue

wsflux((i-1)*ny+j) = xint(nd,wg,work)

10 
ontinue


----------------------------


 Strat the iterative pro
ess


----------------------------
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do 85 its=1,maxits





 Compute the right hand side




do 60 l=1,nd

do 15 i=1,nx

do 15 j=1,ny


t = sigma(x(i),y(j))/(4d0*pi)

s(i,j) = 
t*wsflux((i-1)*ny+j)+q(l,i,j)

15 
ontinue

if(dx(l).lt.0d0.and.dy(l).lt.0d0) then

do 20 j=1,ny+1

b
r(j) = b
right(y(j))+q(l,nx+1,j)

20 
ontinue

do 25 i=1,nx+1

b
t(i) = b
top(x(i))+q(l,i,ny+1)

25 
ontinue

elseif(dx(l).lt.0d0.and.dy(l).gt.0d0) then

do 30 j=1,ny+1

b
r(j) = b
right(y(j))+q(l,nx+1,j)

30 
ontinue

do 35 i=1,nx+1

b
b(i) = b
bottom(x(i))+q(l,i,1)

35 
ontinue

elseif(dx(l).gt.0d0.and.dy(l).lt.0d0) then

do 40 j=1,ny+1

b
l(j) = b
left(y(j))+q(l,1,j)

40 
ontinue

do 45 i=1,nx+1

b
t(i) = b
top(x(i))+q(l,i,ny+1)

45 
ontinue

else

do 50 j=1,ny+1

b
l(j) = b
left(y(j))+q(l,1,j)

50 
ontinue

do 55 i=1,nx+1

b
b(i) = b
bottom(x(i))+q(l,i,1)

55 
ontinue

endif

60 
ontinue


--------------------------------------------------


 Call the sweeping to 
ompute the new angular flux


--------------------------------------------------


all sweeping(nd,nx,ny,np,x,y,hx,hy,dx,dy,s,b
l,

& b
r,b
b,b
t,aflux)


----------------------------


 Compute the new s
alar flux
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----------------------------

do 70 i=1,nx

do 70 j=1,ny

do 65 l=1,nd

work(l) = 0.25d0*(aflux(l,i+1,j)+aflux(l,i,j)+

& aflux(l,i,j+1)+aflux(l,i+1,j+1))

65 
ontinue

sflux((i-1)*ny+j) = xint(nd,wg,work)

70 
ontinue


---------------------


 Compute the residual


---------------------

res = 0.0d0

do 75 k=1,np

res = res+dabs(sflux(k)-wsflux(k))**2

75 
ontinue

res = dsqrt(res)

if(its.eq.1) res0 = res


---------------------


 Convergen
e 
reteria


---------------------

err = res/res0

print*, its-1,err

if(iout.gt.0) write(iout,'(i4,2x,d20.6)') its-1,err

if(err.le.tol.or.its.eq.maxits) return

do 80 k=1,np

wsflux(k) = sflux(k)

80 
ontinue




85 
ontinue




return

end


=======================================================

subroutine sweeping(nd,nx,ny,np,x,y,hx,hy,dx,dy,f,

& b
l,b
r,b
b,b
t,u)





 This subroutine invert the matrix H in (15) using the sweeping pro
edure




impli
it real*8(a-h,o-z)

dimension hx(1),hy(1),dx(1),dy(1),x(1),y(1)

dimension b
l(1),b
r(1),b
b(1),b
t(1)

dimension f(nx,ny),u(nd,nx+1,ny+1)





 Initialize the angular flux u




do 5 l=1,nd
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do 5 i=1,nx+1

do 5 j=1,ny+1

u(l,i,j) = 0d0

5 
ontinue





 Strat the sweeping




do 70 l=1,nd

if(dx(l).lt.0d0.and.dy(l).lt.0d0) then


-------------------


 The first sweeping


-------------------

do 10 j=1,ny+1

u(l,nx+1,j) = b
r(j)

10 
ontinue

do 15 i=1,nx+1

u(l,i,ny+1) = b
t(i)

15 
ontinue

do 20 i=nx,1,-1

do 20 j=ny,1,-1

d = dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e1 = dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e2 = -dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e3 = -dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))




u(l,i,j) = (f(i,j)-e2*u(l,i+1,j)-e3*u(l,i+1,j+1)-

& e1*u(l,i,j+1))/d

20 
ontinue

elseif(dx(l).lt.0d0.and.dy(l).gt.0d0) then


--------------------


 The se
ond sweeping


--------------------

do 25 j=1,ny+1

u(l,nx+1,j) = b
r(j)

25 
ontinue

do 30 i=1,nx+1

u(l,i,1) = b
b(i)

30 
ontinue

do 35 i=nx,1,-1

do 35 j=1,ny

d = dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e1 = dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+
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& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e2 = -dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e3 = -dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))




u(l,i,j+1) = (f(i,j)-e3*u(l,i+1,j)-e1*u(l,i,j)-

& e2*u(l,i+1,j+1))/d

35 
ontinue

elseif(dx(l).gt.0d0.and.dy(l).lt.0d0) then


-------------------


 The third sweeping


-------------------

do 40 j=1,ny+1

u(l,1,j) = b
l(j)

40 
ontinue

do 45 i=1,nx+1

u(l,i,ny+1) = b
t(i)

45 
ontinue

do 50 i=1,nx

do 50 j=ny,1,-1

d = dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e1 = dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e2 = -dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e3 = -dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))




u(l,i+1,j) = (f(i,j)-e2*u(l,i,j)-e1*u(l,i+1,j+1)-

& e3*u(l,i,j+1))/d

50 
ontinue

else


--------------------


 The fourth sweeping


--------------------

do 55 j=1,ny+1

u(l,1,j) = b
l(j)

55 
ontinue

do 60 i=1,nx+1

u(l,i,1) = b
b(i)

60 
ontinue

do 65 i=1,nx

do 65 j=1,ny

d = dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))
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e1 = dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e2 = -dabs(dx(l))/(2d0*hx(i))+dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))

e3 = -dabs(dx(l))/(2d0*hx(i))-dabs(dy(l))/(2d0*hy(j))+

& 0.25d0*(sigma(x(i),y(j))+xkappa(x(i),y(j)))




u(l,i+1,j+1) = (f(i,j)-e1*u(l,i+1,j)-e3*u(l,i,j)-

& e2*u(l,i,j+1))/d

65 
ontinue

endif

70 
ontinue




return

end


===========================

fun
tion xint(nd,wg,u)





 This fun
tion 
ompute the weighted


 integral operator applied to u.




impli
it real*8(a-h,o-z)

dimension u(1),wg(1)




xint = 0d0

do 5 l=1,nd

xint = xint+wg(l)*u(l)

5 
ontinue




return

end


=========================

fun
tion xkappa(x,y)





 This fun
tion set the absorption 
oeffi
ient.


 As default is set to 0 here, but 
an be 
hanged


 by the user.




impli
it real*8(a-h,o-z)




xkappa = 0d0




return

end


========================

fun
tion sigma(x,y)
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 This fun
tion set the s
attering 
oeffi
ient.


 As default is set to 1 here, but 
an be 
hanged


 by the user.




impli
it real*8(a-h,o-z)




sigma = 1d0




return

end


=======================

fun
tion b
left(y)





 This fun
tion set the inflow boundary


 on the left boundary. As default is set


 to 0 here, but 
an be 
hanged by the user.




impli
it real*8(a-h,o-z)




b
leftl = 0d0




return

end


========================

fun
tion b
right(y)





 This fun
tion set the inflow boundary


 on the right boundary. As default is set


 to 0 here, but 
an be 
hanged by the user.




impli
it real*8(a-h,o-z)




b
right = 0d0




return

end


=========================

fun
tion b
bottom(x)





 This fun
tion set the inflow boundary


 on the bottom boundary. As default is set


 to 0 here, but 
an be 
hanged by the user.




impli
it real*8(a-h,o-z)




b
bottom = 0d0
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return

end


======================

fun
tion b
top(x)





 This fun
tion set the inflow boundary


 on the top boundary. As default is set


 to 0 here, but 
an be 
hanged by the user.




impli
it real*8(a-h,o-z)




b
top = 0d0




return

end


