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Abstrat Avalanhes, landslides and debris ows are devastingly powerful natural phenomena

that are far too little understood. These granular matters are mixtures of solid partiles and of an

interstitial uid and are easily modelled on the mirosopi level by the laws of lassial mehanis.

On mesosopi and marosopi levels the di�erent sales of the inuene of the partiles, the uid

and their interation lead to various models of avalanhing ows. In this survey we onsider several

models of granular materials haraterized by height and in ase also by momentum, disuss the

existene of similarity solutions, existene of arbitrary solutions and partile segregation. The main

part onerns the Savage-Hutter equations for dense ow avalanhes.

1 Introdution

The number of atastrophes indued by snow avalanhes, landslides and debris ows has

been inreasing during the last deades. The reasons are a possible hange of limate with

heavy rainfalls, but also the ativities of human beings in endangered mountainous regions.

Therefore the determination of runout zones and of endangered regions by analytial and

numerial methods for the di�erent types of \avalanhes" is of the utmost importane.

A related physial, but less desastrous behavior an be observed in the motion of sand

dunes, in the pouring of grains leading to free surfaes of stok piles and in hopper ows.

The main feature of the phenomena of granular materials is the mixture of solid par-

tiles with water or air leading to a behavior di�erent from that of solids, uids or gases.

On the other hand, the main di�erenes between the various kinds of granular ows are

due to the small or large uid-solid interation, the size and shape of the grains and due to

the predominane either of the solid partiles whilst the inuene of the interstitial uid

an be negleted or of the uid arrying the small partiles.

On the sale of individual grains the behavior of granular material is desribed by

the laws of lassial mehanis. But due to the huge variety of partile sizes, shapes and

densities, the abrasion of partiles, the interation with the uid, with di�erent layers or

with the bed leading to an exhange of partiles, it is very diÆult to model granular

ow on mesosopi or marosopi sales. Further typial features are the dilatany and

partile segregation. In every day life it is observed that after stirring or shaking grains

of di�erent size but not neessarily with di�erent spei� weight the bigger grains tend to

move upwards (inverse grading) and to the nose of an avalanhe.

As an example onsider the di�erent sales of a typial snow avalanhe with weight

10

6

kg onsisting of ie partiles with radii less than 1 mm. In the lower part of the

avalanhe sliding on a uidized layer the solid partiles dominate whereas the interstitial

air an be negleted. Above this dense ow avalanhe there may be a powder snow

avalanhe in whih turbulent air arries the ie partiles. In between there is a thin layer

alled resuspension layer or saltation layer feeding the powder snow avalanhe, see [?, ?℄.
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Dense Flow Avalanhe Powder Snow Avalanhe

Volume fration of partiles 0.3 { 0.5 1:10

�3

{ 1:10

�4

Density

�

kg

m

3

�

200 { 300 0.1 { 10

Length [m℄ 10 { 1000 100 { 2000

Height [m℄ 0.5 { 20 10 { 500

Speed

�

m

s

�

0 { 70 10 { 200

Table 1: Charateristi parameter ranges in dense ow and powder snow avalanhes [?, ?℄

Although powder snow avalanhes have a muh lower density than dense ow avalanhes,

their length, height, veloity and onsequently their runout zone is muh larger.

This review artile is organized as follows. In Setion 2 we disuss partile segregation

and a simple model based on di�usion and onvetion [?℄. Further we onsider stationary

solutions of the BCRE model for (dry) sand piles. Setion 3 is devoted to the Savage-

Hutter model [?℄ on dense ow avalanhes, its similarity solutions and the mathematial

analysis of weak entropy solutions within the theory of systems of onservation laws with

soure terms.

2 On Models of Cohesionless Granular Materials

2.1 Partile Segregation

It is well-known that in granular ow the large partiles tend to move upward and to the

nose of an avalanhe while the small partiles lie at the bottom and at the rear end of

an avalanhe. This inverse grading an be explained by the perolation e�et or the so-

alled random utuating sieve mehanism [?℄: the probability for a small partile to �nd

a hole in the granular material to fall into is larger than for large partiles. But sine this

gravity-indued hole-�lling mehanism would lead to a net mass ux downwards, Savage

and Lun [?℄ also propose a squeezing expulsion mehanism; by this mehanism the fores

exerted by the partiles to eah other lead to a squeezing of partiles up- or downward.

A further disussion of possible reasons for the usual grading and for inverse grading an

be found in [?℄ and in referenes therein. In addition to perolation e�ets, to geometrial

reorganization and to segregation driven by onvetion, inertia or entropy the authors

propose a so-alled ondensation of hard spheres as the driving fore.

A simple mathematial model for segregation in a mixture of n speies has been pro-

posed by J. Braun [?℄. Let u

i

= u

i

(x; t) denote the onentration of the i{th speies,

1 � i � n, in a one-dimensional ontainer 
 = (0; L) of height L > 0. Then the hange

�u

i

�t

of the onentration u

i

is balaned by the negative of the ux J

i

= J

i

(u) whih is

the sum of a onvetional part J



i

= f

i

(u) and of a di�usional part J

d

i

= �d(u)

�u

i

�x

with

d(u) > 0. Thus we get the system of reation { di�usion equations

u

t

�

�

d(u)u

x

� f(u)

�

x

= 0 ; u = (u

1

; : : : ; u

n

) : (1)
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The onvetive part f(u)

x

is related to the random utuating sieve mehanism whilst

the di�usive term

�

�d(u)u

�

x

aounts for the random e�ets of ollisions and ould lead

to the squeezing expulsion mehanism. In order to guarantee that

n

X

i=1

u

i

� 1 and u

i

� 0 (2)

the strutural onditions

n

X

i=1

f

i

(u) � 0 and u

i

= 0 ) f

i

(u) = 0 (3)

are imposed. We note that (2) is a onsequene of (3) due to the maximum priniple for

paraboli equations. Besides an initial value

u(�; 0) = u

0

(�) with

n

X

i=1

u

i0

� 1

the ux ondition J

�

u(x; �)

�

= 0 for x = 0 and x = L is used to impose the (non-linear)

boundary ondition

d(u)u

x

� f(u) = 0 at x = 0; x = L :

Then the e�et of segregation is reeted by the long-time behavior of solutions of (1).

For n = 2 speies with onentrations u := u

1

and u

2

= 1 � u

1

and onvetional part

f(u) := f

1

(u; 1 � u) where f

2

= �f

1

by (3), the system (1) simpli�es to one non-linear

paraboli equation

u

t

�

�

d(u)u

x

� f(u)

�

x

= 0

d(u)u

x

� f(u) = 0 in x = 0; x = L (4)

u(�; 0) = u

0

(�) :

Theorem 1 [?℄ Assume that d and f are twie ontinuously di�erentiable.

(1) For every presribed mean onentration

u =

1

L

Z

L

0

u(x)dx 2 [0; 1℄

the stationary problem

d(u)u

x

= f(u) ; (5)

f. (4), has exatly one solution u(x) with mean value u.

(2) For every initial value u

0

2 C

0

([0; L℄) with mean value u 2 [0; 1℄ problem (4) has a

unique global solution u on [0; L℄ � (0;1) onverging to the stationary solution u of (5)

with mean value u for !1 .
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Sketh of Proof (i) A solution u of (5) is de�ned by the ordinary di�erential equation

du

dx

= g(u) :=

f(u)

d(u)

(6)

where f(0) = f(1) = 0, f. (3), yields g(0) = g(1) = 0. Due to the unique solvability of

(6) every solution u(x) of (6) with initial value u

0

2 [0; 1℄ will exist for all x 2 [0; L℄ and

satisfy u(x) 2 [0; 1℄. By the same argument two solutions u

1

and u

2

with u

1

(0) < u

2

(0)

will satisfy u

1

(x) < u

2

(x) for all x 2 [0; L℄. Sine the solution u = u(�; u

0

) is a ontinuous

and even a monotonially inreasing funtion of its initial value u

0

= u(0) and sine u

0

= 0

or u

0

= 1 yield u � 0 or u � 1 respetively, we onlude that the map

u : [0; 1℄ ! [0; 1℄ ; u

0

7! u(�; u

0

) ;

is a homeomorphism.

(ii) Given an initial value u

0

(x) with u

0

(x) 2 [0; 1℄ the solution u of (4) exists for all t > 0.

Then v = d(u)u

x

� f(u) satis�es the paraboli equation

v

t

= a(t; x)v

xx

+ b(t; x)v

x

with bounded funtions a = d(u), b = d

0

(u)u

x

� f

0

(u) and vanishing boundary values in

x = 0, x = L. By lassial theorems v and v

x

= u

t

onverge to zero for t ! 1. In

partiular u onverges to a stationary solution u

1

of (4), i.e., u

1

solves (6). Furthermore

(4) easily implies that u(�; t) is onstant; hene u

1

is the unique solution of (6) satisfying

u

1

= u

0

. �

The proof of Theorem 1(1) is based on topologial arguments. Therefore degree theo-

retial arguments are used in the ase of more than two speies leading to the existene of

at least one stationary solution. Thus uniqueness of a �nal segregation of partiles annot

be guaranteed for more than two speies in general. Note that in this model empty spae

is evenly distributed in the vessel and that ompressibility or dilatany e�ets are ignored.

2.2 Stationary and Self-Similar Solutions

Consider a granular material suh as dry sand poured at a rate s = s(x; t) � 0 and piling

up to form heaps. First the material builds up without further motion, but eventually

starts to roll down when the pile has a ritial slope k = tan� > 0. The pile onsists of two

main parts, the standing layer of height h = h(x; t) (and of onstant density) and a thin

rolling layer of relative height r = r(x; t). In the BCRE model established by Bouhaud

et al. [?, ?℄ and modi�ed by de Gennes [?℄ by omitting di�usion terms the exhange of

grains from the rolling to the standing layer is desribed by the exhange term

�(t; r) = r

�

1�

jrhj

2

k

2

�

;  > 0 ; (7)

thus it is proportional to the thikness r � 0 of the rolling layer and vanishes i� r � 0 or

the slope of the bulk equals the ritial slope k. Sine the grains in the bulk are motionless

exept for the exhange �� to the rolling layer, h satis�es the equation

h

t

= �(h; r) :
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However, for the rolling layer, there are two soure terms s and��, suh that the ontinuity

equation for r reads

r

t

+ div(vr) = s� �(h; r)

where v is the horizontal projetion of the veloity vetor of rolling grains. Assuming that

partiles are rolling in the steepest desent diretion �rh, the term v is modelled by

v = ��rh ; � > 0 :

Summarizing we get the system of partial di�erential equations

h

t

= r

�

1�

jrhj

2

k

2

�

r

t

� div(�rrh) = s� r

�

1�

jrhj

2

k

2

�

(8)

for (x; t) 2 
� (0;1) together with the initial onditions r(x; 0) = 0 and h(x; 0) = h

0

(x),

where h

0

(x) desribes the bottom on whih the granular material is poured. If the domain


 � R

1

or 
 � R

2

is not the whole spae and surplus material drops down at �
 [?, ?, ?℄,

we presribe

h(x; t) = 0 for x 2 �
 : (9)

Sine h � 0 lose to �
, the salar produt of rh with the exterior normal vetor � on

�
 is nonpositive. For x lose to �
 by (8)

2

r

t

= �rr � rh + : : : indiating that r(x; t)

behaves like an outgoing wave near �
. Thus no boundary value for r may be presribed.

In the silo problem with walls of in�nite height at �
 suh that no material an leave

the silo [?, ?, ?℄, (8) yields the equation

d

dt

Z




(h + r)dx = �

Z

�


r

�h

��

do+

Z




s dx

for the balane of the total mass

R




(h + r)dx. Hene

R

�


r

�h

��

do = 0; sine r may be

arbitrary on �
, see the disussion above, we get the Neumann boundary ondition

�h

��

(x; t) = 0 on �
 : (10)

The system (8) is also losely related to an earlier model of L. Prigozhin [?, ?℄ using

variational inequalities. In [?℄ the authors introdue three length sales:

L

r

=

s



denotes a typial thikness of the rolling layer

given a harateristi (mean) soure intensity s

L

p

=

�



denotes the mean path of a rolling grain before

being trapped in the standing layer

L denotes the pile size.
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Then resaling variables by

x

0

=

x

L

; h

0

=

h

L

; r

0

=

r

L

r

; s

0

=

s

s

; t

0

=

ts

L

;

and omitting primes (

0

) for the new dimensionless variables and funtions, h and m =

L

p

L

r

solve the system

h

t

=

1

(L

p

=L)

m

�

1�

jrhj

2

k

2

�

�

L

r

L

�

r

t

� div(mrh) = s�

1

(L

p

=L)

m

�

1�

jrhj

2

k

2

�

:

Assuming L

r

<< L

p

and

L

p

L

! 0 the seond equation implies that

1

(L

p

=L)

m

�

1�

jrhj

2

k

2

�

� s+ div(mrh) (11)

and onsequently that

h

t

� div(mrh) � s :

Atually, if jrh(x; t)j < k, the term m has to vanish when L

p

=L ! 0, see (11). Summa-

rizing, in the limit we get the equation

h

t

� div(mrh) = s

with the restritions m � 0, jrhj � k and

jrh(x; t)j < k ) m = 0 :

Under suitable assumptions and with additional di�usive terms for h and r, this formal

analysis is rigorously proved in [?℄ for a related disretized system with respet to time

t � 0. Furthermore the equation for h and its Lagrange multiplier m is equivalent to a

variational problem in the onvex set K = f' 2 H

1

(
) : jr'j � k a.e.g :

(

�nd h(x; t) suh that h(�; t) 2 K for a.a. t > 0;

(h

t

� s; '� h)

L

2

(
)

� 0 8' 2 K

together with an initial ondition h(�; 0) = h

0

, see [?℄.

Note that the original BCRE equations inluded di�usion terms suh as "�r in (8)

2

leading to a paraboli rather than to a hyperboli equation for r. However di�usion may

lead to grains rolling upwards instead of downwards. The advantage of the system (8) is

the fat that the exhange between the standing and the rolling layer is easily modelled

by the exhange term � in (7). The other terms in (8) are just based on the onservation

of masses. On the other hand inertia, momenta, longitudinal and lateral pressures as

well as density hanges are negleted. These e�ets are inorporated in the Savage-Hutter

models for wet snow avalanhes, see Setion 3 below, leading to a highly nonlinear system

of onservation laws.
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In [?, ?, ?℄ another onstitutive law for the exhange term � is used:

�(h; r) = r

�

1�

jrhj

k

�

leading to the avalanhe model

h

t

= r

�

1�

jrhj

k

�

r

t

� div(�rrh) = s� r

�

1�

jrhj

k

�

(12)

together with initial onditions and the boundary onditions (9) or (10) for h. To our

knowledge there is no rigorous proof of existene and uniqueness of solutions to (12) up

to now. Even the stationary ase with s = 0 or s 6= 0 poses several open problems. One

main property and diÆulty of the stationary ase with s = 0, i.e. for the system

r

�

1�

jrhj

k

�

= 0; div(rrh) = 0 (13)

is the non-uniqueness of solutions: Every pair of funtions h; r satisfying

h � 0; jrhj � k; r = 0

(and even with jrhj � k leading to unstable situations) is a solution of (13).

Even in one dimension the boundary value problem

jrhj = k a.e. in 
; h = 0 on �
 ;

the so-alled eikonal equation known from geometrial optis, has unountably many so-

lutions, namely all pieewise linear funtions on an interval 
 � R

1

with slope �k a.e.

However, uniqueness may be obtained in the setting of visosity solutions of fully nonlinear

equations, see [?, ?℄, or when looking for the maximum volume solution.

Theorem 2 Let 
 � R

1

be a bounded open interval or let 
 � R

2

be an open bounded

domain. Let the funtion  2 C

0;1

(
) desribe the bottom topography (bed) and let � :

�
 ! [0;1℄ with � 6� 1,  � � on �
, desribe the rim (wall) of the ontainer. Then

there exists a unique maximum volume solution h 2 C

0;1

(
) suh that

 (x) � h(x) in 
; h(x) � �(x) on �


 (x) < h(x) for x 2 
 ) jhj

C

0;1

x

� k (14)

Z




(h�  )dx = max :

Here for x 2 
 the ondition jhj

C

0;1

x

� k means that there exists an open ball with enter

x in 
 suh that jh(y) � h(y

0

)j � kjy � y

0

j for all y; y

0

2 B. Note that h(x) =  (x) i�

no granular material lies on the bed at x 2 
. The term

R




(h �  )dx measures the total

mass poured onto the bed.

Proof [?℄ Let

M = fh 2 C

0

(
) : h �  on 
; h � � on �
 ;

h(x) >  (x) for x 2 
 ) jhj

C

0;1

x

� kg :
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Sine 
 is a bounded domain with Lipshitz boundary and sine  2 C

0;1

(
) there exists

a onstant K = K(k;  ) suh that

jh(y) � h(y

0

)j � Kjy � y

0

j for all y; y

0

2 
 (15)

and for all h 2 M . The assumption � 6� 1, i.e., there exists � 2 �
 with �(�) < 1,

implies that M is a set of uniformly bounded funtions. Furthermore M is losed in

C

0

(
). Thus M is bounded in C

0;1

(
) and by Arzel�a-Asoli's Theorem even ompat

in C

0

(
). Sine V (h) =

R




(h �  )dx is a ontinuous funtional on C

0

(
) we get the

existene of h 2 M maximizing the volume V (�). Given h

0

2 M with V (h

0

) = V (h), but

di�erent from h, the ontinuity of h; h

0

on 
 will lead to the funtion max(h; h

0

) 2M with

V (max(h; h

0

)) > V (h) ontraditing the maximality of V at h. �

There exists a remarkable analogy [?, ?, ?℄ between (14) and the Dirihlet problem for

the Laplaian, i.e.,

�u = 0 on 
; u = g on �
 : (16)

Under suitable assumptions on �
 and on g Perron's method haraterizes the unique

solution u of (16) by subharmoni funtions:

u(x) = supfv 2 C

2

(
) \ C

0

(
) : �v � 0 in 
; v � g on �
g :

Calling a funtion h 2 C

0;1

(
) satisfying (14)

1;2

subeikonal we get the following result.

Proposition 3 The solution h of problem (14) given by Theorem 2 an be haraterized

for every x 2 
 by

h(x) = supfg(x) : g 2Mg ;

i.e., h(x) is the supremum and even the maximum of g(x) among all subeikonal funtions

in (14).

Proof [?℄ To show that

~

h(x) := supfg(x) : g 2 Mg is Lipshitz ontinuous �x y; y

0

2


. Then there are sequenes (h

j

); (h

0

j

) � M suh that h

j

(y) !

~

h(y), h

0

j

(y

0

) !

~

h(y

0

).

Replaing h

j

and h

0

j

by max(h

j

; h

0

j

) 2M we may assume that h

0

j

= h

j

. Then the estimate

jh

j

(y)� h

j

(y

0

)j � K(k;  )jy � y

0

j for all j 2 N ;

see (15), yields the desired estimate for

~

h when j !1. In partiular

~

h is ontinuous.

To prove (14)

2

let

~

h(x) >  (x) for some x 2 
. Having the \maximum" Lipshitz

onstant K(k;  ) in mind we �nd an open ball B with enter x in 
 suh that

~

h >  

on B and that even every g 2 M with g(y) >

1

2

�

~

h(y) +  (y)

�

for some y 2 B satis�es

g >  on B. Given arbitrary y; y

0

2 B there exists a sequene (h

j

) = (h

0

j

) �M suh that

h

j

(y) !

~

h(y), h

j

(y

0

) !

~

h(y

0

). Sine the \global" Lipshitz onstant of h

j

on B is easily

seen to be bounded by k for every j 2 N, the same holds for

~

h proving that j

~

hj

C

0;1

x

� k.

Consequently

~

h 2M ,

~

h(x) � h(x) for all x 2 
 and V (

~

h) � V (h). If

~

h(x) > h(x), then

max(

~

h; h) 2

~

M would lead to a ontradition to the maximality of V (h). Thus

~

h � h. �

The solution h of (14) may also be haraterized by transport paths. If for simpliity

 � 0, then for x 2 


h(x) = inf

�

f�

�

�(1)

�

+ k`(�)g
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where � runs through the set of all ontinuous pieewise linear paths in 
 onneting x

with any point �(1) 2 �
; here `(�) denotes the length of � [?℄. In the most elementary

ase  � 0 and � � 0 (no wall), we easily get the solution

h(x) = k dist(x; �
) :

Note that h will have points or lines in 
 where it is not di�erentiable; for a disussion

of these singular sets for onrete examples and for several general lasses of domains, see

[?℄.

Besides the maximum volume solution in Theorem 2 we onsider the time-independent

standing/rolling layer of thikness h and r, resp. when granular material is onstantly

poured onto a at table  � 0 with soure intensity s(x). For a point soure loated in y,

i.e., formally s(x) = Æ

y

(x), we get a one with vertex y and with slope k, i.e., h(x) equals

�(x; y) =

8

<

:

k

�

dist(y; �
) � jx� yj) ; jx� yj < dist (y; �
)

0; otherwise :

Then, for more general soure distributions, we take the maximum (not the sum or inte-

gral) of �(x; y) on supp s, i.e.,

h(x) = max

y2supp s

�(x; y) = max

y2


�(x; y) � �

supp s

(y) : (17)

This formula is similar to the solution u(x) =

R




G(x; y)f(y)dy of Poisson's problem

��u = f on 
, u = 0 on �
 using Green's funtion G(x; y). In the one-dimensional ase


 = (0; `),  � 0, � � 0, problem (12) has a unique stationary solution (h; r). Based on

(17) h(x) and also r(x) an be written down expliity; in 2D this problem is not ompletely

solved, see [?℄.

Finally we onsider the silo problem (11), i.e.

h

t

= r

�

1�

jrhj

k

�

in 
� (0;1)

r

t

� div(�rrh) = s� r

�

1�

jrhj

k

�

in 
� (0;1)

�h

��

= 0 on �
� (0;1) :

(18)

This instationary hyperboli system is not yet solved rigorously. In the one-dimensional

ase exat solutions have been desribed in [?℄ by parametrizing h; r and also x; t in a

new oordinate system (�

1

; �

2

). If s � 0 and if div(�rrh) is replaed by r

x

, the authors

�nd a 4�4-system of PDEs in whih eah equation ontains only partial derivatives with

respet to �

1

or to �

2

. This system an be solved \expliitly" and yields solutions in

the form h(�

1

; �

2

), r(�

1

; �

2

), x(�

1

; �

2

) and t(�

1

; �

2

). From these formulae several pro�les

(h; r) and shok lines an be analyzed.

The analysis gets muh easier in the quasi-stationary ase where s � 0 is independent

of t with a mean soure intensity

s =

1

j
j

Z




s(x)dx > 0 : (19)
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In this ase, for large t, we expet a similarity solution

h(x; t) = h

0

(x) + st ; r(x; t) = r(x) :

Then (18) simpli�es to the stationary system

s = r

�

1�

jrhj

k

�

in 


�div(�rrh) = s� r

�

1�

jrhj

k

in 


�h

��

= 0 on �
 :

(20)

Sine s > 0, we onlude from (20)

1

that jrhj < k a.e. A simple alulation leads to the

highly nonlinear Neumann problem

�div

�

rh

1� jrhj=k

�

=

s(x)� s

�s=

in 
;

�h

��

= 0 on �
 : (21)

Proposition 4 In spae dimension one (20) has a unique similarity solution (up to ad-

ditive onstants in h). For 
 = (0; `) de�ne

U(x) =

Z

`

0

�

x

`

� �

(0;x)

(y)

�

f(y) :

Then the rolling layer is given by

r(x) =

1

k�

�

�

k

s+ jU(x)j

�

;

and the slope h

x

of the standing layer is given by

h

x

(x) = k

U(x)

�

k

s+ jU(x)j

:

The proof is given in [?℄. Sine s > 0, atually jh

x

j < � in (0; `). In the two-

dimensional ase an expliit solution an be found for the dis 
 = B

R

(0) and a point

soure s(x) = Æ

0

(x), see [?℄. The general problem in 2D is not yet ompletely solved.

3 Existene Results for the Savage-Hutter Avalanhe Model

3.1 Modelling

The Savage-Hutter equations model the ow of a dense snow avalanhe with small aspet

ratio on an inlined plane or on a rough bed by onsidering the avalanhe as a ohesionless

granular material in whih the interstitial air plays a negligible role. In ontrast with the

BCRE model of Setion 2 this model aounts for an exhange of momentum and goes far

beyond simple partile models [?, ?℄; on the other hand it ignores abrasion and exhange

of partiles between the avalanhe and the bed.

In a plane urvilinear oordinate system let x denote the oordinate along the rough

inline and let z denote the perpendiular oordinate. Looking for the veloity u of the

avalanhe and the height h of the free surfae the main assumptions of the Savage-Hutter

model [?℄ are as follows:

10



� The granular material obeys a Mohr-Coulomb-type plasti yield riterion expressed

by a onstant angle of internal frition �, i.e., given the stress tensor T and the

exterior normal vetor n on an internal surfae the shear tration S = n�T�n(n�T �n)

and the normal stress N = n � T � n are related to eah other by the formula jSj =

N tan�. Sine shear tration depends on the diretion of the veloity vetor u,

S = �

u

juj

N tan� ;

giving rise to a jump disontinuity.

� At the base there exists a very thin uidized layer (about 10 grain diameters) obeying

a Coulomb dry frition law with a bed frition angle Æ < �, i.e., S = �

u

juj

N tan Æ.

� The longitudinal stress omponent T

xx

is related to the perpendiular omponent

T

zz

by

T

xx

= K

at=pass

T

zz

where

K

at

K

pass

�

=

2(1�

p

(1� os

2

�= os

2

Æ))

os

2

�

� 1

i� �u=�x > 0

i� �u=�x < 0

(22)

is the ative and passive earth pressure oeÆient, resp. Note that 0 < K

at

< K

pass

,

where K

at

applies i� the ow is loally expanding.

� As a major assumption the veloity pro�le is blunt (exept for the uidized layer):

for every x 2 R, t > 0

Z

h(x;t)

0

u(x; z; t)dz = h(x; t)u(x; t);

Z

h

0

u

2

dz = hu

2

et.

Thus all marosopi quantities are onsidered to be y{independent.

� Given a harateristi height H and length L of the avalanhe assume that the

aspet ratio " = H=L is small ompared to 1, i.e., "� 1. If the bed is urved with a

harateristi radius of urvature R, assume that

L

R

= O("

1=2

). Finally assume that

tan Æ = O("

1=2

).

Typial values of Æ; � and K for glass, quartz, marmor or plasti grains are as follows, see

[?℄:

20

o

< Æ < 40

o

; 30

o

< � < 46

o

; 5

o

< �� Æ < 20

o

where the bed frition angle also depends on the roughness of the bed. Thus typial earth

pressure oeÆients are

K

at

2 (0:7; 0:9); K

pass

2 (2:8; 4:6) :

11



Ignoring all terms of order higher than " the Savage-Hutter equations for a thin two-

dimensional avalanhe of height h, veloity u = (u

1

; u

2

) and momentum hu on a two-

dimensional basal pro�le z = b(x; y) with main down slope diretion

�

1

0

�

take the form

[?, ?, ?℄

�

t

h+ div(hu) = 0

�

t

(hu) + div

�

hu
 u+

1

2

"h

2

K(os �)

�

= hs(u; x) (23)

with the soure term

s = sin �

�

1

0

�

�

u

juj

h tan Æ os � � "hK(os �)rb : (24)

Here � = �(x) is the loal inlination angle along the diretion

�

1

0

�

whereas the inuene

of the urvature has been omitted. Furthermore K denotes the diagonal 2�2-matrix of

earth pressure oeÆients suh that

div

�

1

2

"h

2

(os �)K

�

= "h os �

�

K

x;at=pass

�h

�x

;K

y;at=pass

x;at=pass

�h

�y

�

T

+ : : :

with K

x;at=pass

as in (22) and K

y;at=pass

x;at=pass

depending on the signs of

�u

1

�x

and of

�u

2

�y

.

This term together with the term "hK(os �)rb represents the variation of the normal

pressure in x- and y-diretions, whereas the �rst and seond term of (24) are due to

gravity normalized to 1 and to frition of the avalanhe with the bed, respetively. To be

more preise in the two-dimensional ase, " = H=L has to be replaed by a diagonal 2� 2

matrix with entries "

x

= H=L

x

and "

y

="

xy

= (H=L

y

)=(L

y

=L

x

) for harateristi lengths

L

x

and L

y

.

System (23) is written in the form of a system of onservation laws for (h; hu) with

a soure on the right-hand side depending on h and u. Looking at the leading terms

and ignoring the term ontaining K, (23) is similar to the shallow water equations and

to the Euler equations of gas dynamis. However, besides the fat that there exists no

satisfying mathematial theory for systems of onservation laws in more than one spae

dimension, the jump disontinuity

u

juj

and of ourse the pieewise onstant funtion K

depending on signs of ru pose new analytial and numerial diÆulties. Thus, in every

analytial approah { even when looking for similarity solutions, see x3.2 { K is assumed

to be onstant.

Of ourse solutions of (23) may evolve shoks even when the data are smooth. Shoks

will mainly our in the run-out zone when a part of the material has already been de-

posited. Furthermore shoks an be observed in beautiful experiments on granular matter

in rotating drums, see [?℄.

Proposition 5 Let (h; hu) 2 R

3

be a weak solution of (23) in a domain 
 � R

2

� (0;1),

i.e., for all ' 2 C

1

0

(
)

3

ZZ




��

h

hu

�

� '

t

+

�

hu

hu
 u+

1

2

"h

2

(os �)K

�

� r'

�

dxdt

= �

ZZ




�

0

hs

�

� 'dxdt :

12



Assume that 
 is separated by a smooth, regular surfae � into two parts 


`

and 


r

suh

that

�

h

hu

�

�

�

�




r

2 C

1

(


`

)

3

;

�

h

hu

�

�

�

�




r

2 C

1

(


r

)

3

:

Let � = (�

t

; �

x

) denote the unit normal vetor on � direted into 


`

. Then (h; hu) satis�es

the Rankine-Hugoniot jump ondition

h

�

h

hu

�

i

�

t

+ �

x

�

h

�

hu

hu
 u+

1

2

"h

2

(os �)K

�

i

= 0 ;

where as usual [�℄ denotes the di�erene of the limits of (h; hu) on � taken from 


`

and

from 


r

.

Coming bak to a one-dimensional avalanhe on a basal pro�le z = b(x), x 2 R, let a

line of disontinuity � be given in parameterized form

�

(t); t

�

. Then 

0

(t) is the speed

of propagation of the disontinuity, and the Rankine-Hugoniot ondition takes the simple

form

h

�

h

hu

�

i



0

(t) =

h

�

hu

hu

2

+

1

2

"h

2

(os �)K

at=pass

�

i

: (25)

A more reent generalization of the Savage-Hutter model onsiders ompressible avalanhes

of density � satisfying a onstitutive equation � = �(h; u), see [?, ?℄. Sine there is no

physial evidene for a (monotonially dereasing) dependene on juj, up to now the on-

stitutive equation

�(h) = h

�

; � > 0 ;

has been investigated; see [?℄ for the mathematially easier ase � = �

1

2

. In the one-

dimensional ase we get the system

�

t

(�h) + �

x

(�hu) = 0

�

t

(�hu) + �

x

(�hu

2

+

1

2

�(x)�h

2

) = �hs(u; x) ;

(26)

where

�(x) = "K

at=pass

os �(x) ;

s = sin � � " os � b

x

�

u

juj

tan Æ os � :

Assuming an overall onstant K = K

at=pass

it is onvenient to introdue new funtions

to get rid of the x-dependene in the term

1

2

�(x)�h

2

and to re�nd the standard form of

onservation laws. Let

(u

1

; u

2

) =

�

�

�

2�

�

1+�

h

1+�

;

�

�

2�

�

1+�

h

1+�

u

�

; (27)

where � =

�

4(1 + �)(2 + �)

�

�1

, and

F (u

1

; u

2

) =

�

u

2

u

2

2

u

1

+ �u

2+�

1+�

1

�

; S

0

=

(1 + �)�

0

�

F +

�

0

u

1

s(

u

2

u

1

; x)

�

: (28)
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Then (26) takes on the form

�

t

u + �

x

F (u) = S

0

(u; x); u = (u

1

; u

2

) : (29)

Note that in (28) also the �rst omponent of the soure term S

0

is di�erent from zero.

But the Rankine-Hugoniot ondition for a shok line � with speed of propagation 

0

(t)

has the simple form

[u

1

℄

0

= [u

2

℄; [u

2

℄

0

= [F

2

(u

1

; u

2

)℄

yielding the ompatibility ondition

[u

2

℄

2

= [F

2

(u

1

; u

2

)℄ � [u

1

℄ on � :

Thus a disontinuity of u

1

or of h w.r.t. x, say h(x�; t) > 0 = h(x+; t), is not admissable.

Up to now problems arising from the jump disontinuity in the soure terms s and S

0

have been ignored. In Setion 3.3 we propose to introdue set-valued maps to deal with

this disontinuity, see De�nition 7 and Remark 8 below.

3.2 Self-Similar Solutions

Consider the Savage-Hutter model for a one-dimensional inompressible avalanhe on a

plane moving downwards everywhere, i.e. the system

�

t

h+ �

x

(hu) = 0

�

t

u+ u�

x

u = sin � � tan Æ os � � � h

x

;

(30)

when sgnu = +1 is onstant. Also K

at=pass

is assumed to be onstant yielding a onstant

� = "K os � . In order to disuss the existene of self-similar solutions we subtrat the

motion of the enter of mass. To this end, de�ne

u

0

(t) = t(sin � � tan Æ os �); ~u = u� u

0

(t)

and the moving variable

� = x�

Z

t

0

u

0

(s)ds :

Let g(t) denote a typial length of the avalanhe at time t, e.g. half the spread of an

avalanhe with ompat support. Now use new oordinates

y =

�

g(t)

; � = t

in (30) and the notation (�)

0

and (�)

y

for derivatives w.r.t. � and y, resp., to �nd the

system

�

�

h� y

g

0

g

�

y

h+

1

g

�

y

(h~u) = 0

�

�

~u� y

g

0

g

�

y

~u+

1

g

(~u�

y

~u+ ��

y

h) = 0

(31)
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for (h; ~u). Then a solution of the form

h(y; �) = `(�)H(y); ~u(y; �) = k(�)U(y) (32)

is alled a self similar solution of (31). Due to the onservation of mass

M �

Z

R

h(�; t)d� =

Z

R

h(y; �)g(�)dy = `(�)g(�)

Z

R

H(y)dy

we get that

` =

1

g

;

at least when the total mass is �nite. It will be seen below that this assumption is not

satis�ed in general. Inserting ` = 1=g in (31) yields the system

H + yH

y

�

k

g

0

(HU)

y

= 0

U �

g

0

k

gk

0

yU

y

+

k

2

gk

0

UU

y

+

�

g

2

k

0

H

y

= 0 :

(33)

>From (33)

1

we see that

0 =

�

k

g

0

�

0

(HU)

y

:

Thus either

k

g

0

� onst or HU � onst :

Sine k(�) denotes an overall inrease or derease of the veloity ~u, the hange of

the harateristi length g

0

(�) has to be proportional to k(�). Hene k=g

0

has to be

independent of � . Atually, if k=g

0

6� onst, (33)

1

would imply that (HU)

y

� 0 and that

H + yH

y

� 0. These equations yield the general solution H(y) =



0

y

, U = 

1

y. Then

(33)

2

an be interpreted as a vanishing linear ombination of the funtions y and

1

y

2

with

� -depending oeÆients. Now we may onlude that 

0

= 0 and onsequently H � 0

yielding the trivial solution h � 0.

In the following assume w.l.o.g. that

k � g

0

;

sine a onstant k=g

0

di�erent from 1 an be subsumed by the funtions H or U , see (32).

Then (33) an be written in the simple form

�

(U � y)H

�

y

= 0

U +

g

0

2

gg

00

(U � y)U

y

+

�

g

2

g

00

H

y

= 0 :

(34)

Case 1: U � y In this ase the veloity ~u(y; �) is linear in y for every time � . From (34)

2

we get the equation g

2

g

00

= ��H

y

=y. Consequently both sides are onstants leading to

the identities

g

2

g

00

=

G

0

2

and H(y) = H

0

�

G

0

4�

y

2

(35)
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with onstants H

0

; G

0

. Let us ignore the elementary ase G

0

= 0 where H(y) is onstant

and g(�) is linear. If G

0

6= 0, by (35)

1

g

0

g

00

= G

0

g

0

=(2g

2

) and onsequently

g

0

2

= �G

0

(

1

g

+

1

g

0

) with g

0

2 Rnf0g :

If g

0

= 1, then g � 0 implies that G

0

< 0 and g

0

g

1=2

= �

p

jG

0

j. Hene

g(�) =

�

g(0)

3=2

+

3

2

p

jG

0

j �

�

2=3

; H(y) = H

0

+

jG

0

j

4�

y

2

; (36)

the ase g

0

g

1=2

= �

p

jG

0

j leads to an unphysial ompression of the avalanhe or { in

other words { to a time reversal in (36). The solution (36), onsidered only for jyj < y

0

,

de�nes an avalanhe with the shape of an M , alled an M{wave in [?℄. As � !1,

h(y; �) � �

�2=3

H(y) :

If g

0

2 R

�

= Rnf0g, then g

0

(�) = �

p

jG

0

j

p

jg

0

+gj

p

jg

0

gj

. First we onsider the ase when g

0

> 0

and g

0

> 0. Then

s

jG

0

j

g

0

� =

Z

g(�)

g(0)

p

g dg

p

g

0

+ g

= 2

Z

p

g(�)

p

g(0)

h

2

dh

p

g

0

+ h

2

=

p

g(�)

p

g

0

+ g(�)� g

0

ln

�

p

g(�) +

p

g

0

+ g(�)

�

� C

0

:

For � !1 we dedue the linear behavior

g(�) �

s

jG

0

j

g

0

� ; � !1 :

Sine g > 0 and g

0

> 0 neessarily imply that G

0

< 0, again H(y) = m +

jG

0

j

4�

y

2

de�nes

an M{wave on jyj � y

0

. But ompared to the M -wave above we now get an M -wave with

h(y; �) � �

�1

H(y) as � !1 :

When g

0

> 0 but g

0

< 0, then the di�erential equation for g(�) immediately implies that

g(�) ! 0 and onsequently that `(�) !1 in �nite time. Thus this ase is unphysial.

Next onsider the ase when g

0

< 0, but g + g

0

� 0 and g

0

� 0. Then G

0

> 0 and

s

G

0

jg

0

j

� = 2

Z

p

g(�)

p

g(0)

h

2

dh

p

h

2

� jg

0

j

=

p

g(�)

p

g(�)� jg

0

j+ jg

0

j ln

�

p

g(�) +

p

g(�) � jg

0

j

�

� C

0

:

For � ! 1 we dedue the asymptoti behavior g(�) � � : The shape of the avalanhe is

desribed by H(y) = m �

G

0

4�

y

2

for jyj �

p

4m�=G

0

forming a paraboli ap, see [?℄ for

the speial ase �

0

= 0, g

0

= �1, g(0) = 1 suh that g

0

(0) = 0 (avalanhe is starting at

rest).

In the ase g

0

< 0 and g + g

0

< 0, but g

0

> 0, the funtion g(�) is stritly inreasing

until g(�) ! jg

0

j where g

0

(�) ! 0. For g(�) lose to jg

0

j, but less than jg

0

j, the di�erential

equation for g(�) is related to the equation g

0

(�) = 2

p

jg

0

j � g(�) showing that g(�)
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atually approahes jg

0

j like the parabola g(�) = jg

0

j � (�

1

� �)

2

as � ! �

1

�. Then

k(�

1

) = g

0

(�

1

) = 0 and ~u(�

1

; y) = 0 yielding an avalanhe at rest! From standard theory it

is known that the solution g(�) is not uniquely determined for � > �

1

. When the avalanhe

restarts to move and g(�) beomes larger than jg

0

j for some � > �

1

, then we refer to the

previous ase.

The ase g

0

< 0, but g + g

0

> 0 and g

0

< 0 also leads to an avalanhe at rest in �nite

time. Finally, if g

0

< 0, g + g

0

< 0 and g

0

< 0, then g(�) onverges to 0 in �nite time.

Thus `(�) !1 in �nite time leading to an in�nite veloity and an unphysial solution.

Case 2: U 6� y. In this ase (34)

1

yields a onstant m 6= 0, a harateristi momentum,

suh that

H =

m

U � y

; (37)

the ase m = 0 is trivial. Inserting this identity into (34)

2

we get that

U +

g

0

2

gg

00

(U � y)U

y

�

�m

g

2

g

00

�

U

y

� 1

(U � y)

2

= 0 : (38)

Dividing by U , multiplying with g

2

g

00

and di�erentiating w.r.t y we are led to the equation

g

0

2

g

�

(U � y)U

y

U

�

y

� �m

�

U

y

� 1

(U � y)

2

U

�

y

= 0 :

In order to onlude that g

0

2

g is onstant we have to exlude the possibility that both

terms depending on y vanish. If these terms vanish, we would get two ordinary di�erential

equations for U(y) leading after elementary alulations to a ontradition. Thus we get

a onstant  6= 0 (sine g > 0) suh that

g

0

p

g =  and g(�) �

�

3

2

�

�

2=3

as � !1 ;

f. Case 1 with g

0

= 1. Hene g

00

g

2

= �

2

=2, and (38) yields the di�erential equation

U � 2(U � y)U

y

+ 2a

3

U

y

� 1

(U � y)

2

= 0 ; a

3

=

�m



2

6= 0 ; (39)

and, de�ning

V (y) = U(y)� y ; (40)

the equation

dV

dy

=

1

2

V

2

(V � y)

a

3

� V

3

: (41)

Note that the lines V � 0 and V � a as well as points y

0

where V (y

0

) = y

0

are important

in the disussion of loal and global properties of solutions of the di�erential equation (41).

Conerning the size of V

0

= V (0) and of a we have to distinguish between several ases.

Sine H(0) =

m

U(0)

=

m

V (0)

and sgn a = sgnm, the ases V

0

< 0 < a and a < 0 < V

0

lead to unphysial solutions with H(0) < 0 and will not be disussed.
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Case 2.1: 0 < a < V

0

and 9 y

0

> a : V (y

0

) = y

0

(this ase will our for V

0

� a).

In this ase V

0

(0) < 0 and even V

0

(y) < 0 for all y 2 (�1; y

0

). However V

0

(y

0

) = 0

and V

00

(y

0

) =

y

2

0

2(y

3

0

�a

3

)

> 0 implying that V has a loal minimum at y

0

. Sine even V

0

> 0

on (y

0

;1) and V

0

< 0 on (�1; y

0

), V has a global minimum at y

0

. To determine the

shape of the orresponding avalanhe it is ruial to disuss the asymptoti behavior of V

for y ! �1. By (41) we may exlude that V (y) is bounded for y ! 1. If there exists

y

1

> y

0

suh that V (y

1

) =

1

2

y

1

, the inequality V

0

(y

1

) =

1

2

y

3

1

=(y

3

1

� 8a

3

) >

1

2

leads to a

ontradition. Consequently

y

2

< V (y) < y for y > 0. De�ning w(y) = V (y)=y we see that

w(y) 2 (

1

2

; 1) and that

w

0

= �

w

2

2y

(2w � 1)(w + 1)� 2a

3

=(wy

3

)

w

3

� a

3

=y

3

: (42)

If there exists 0 < Æ <

1

2

suh that w(y) �

1

2

+ Æ for large y > 0, then w

0

(y) � �

1

y

for these

y leading to a logarithmi deay � log y. Then �nally w(y) will ross the line w =

1

2

+ Æ

with a negative slope. Thus w(y) <

1

2

+ Æ for all large y, even w(y) !

1

2

and V (y) �

y

2

for y ! 1. For y ! �1 (41) implies that V (y) is unbounded. If there exists y

2

< �a

suh that V (y

2

) = �y

2

, then V

0

(y

2

) = �y

3

2

=(a

3

+ y

3

2

) < �1 leads to a ontradition.

Thus w(y) =

V (y)

y

< �1 for all negative y. The possibility that w(y) � w

1

< �1 for

all large y < 0 an be exluded sine under this assumption w

0

�

Æ

y

for some Æ > 0.

Hene w(y) ! �1, V (y) = �y

�

1 + o(1)

�

and U(y) = V (y) + y = o(jyj) for y ! �1.

To prove that even U(y) = O(jyj

�1=2

) for y ! �1 we introdue the auxiliary funtion

'(y) = jyj

1=2

U(y). By (40), (41)

'

0

(y) =

jyj

1=2

2

w(y)

2

(w(y) + 1)

2

+O(jyj

�3

)

w(y)

3

�

1 +O(jyj

�3

)

�

for y ! �1. Sine w is bounded for large negative y, and 1 +w = �

U

jyj

= �

'(y)

jyj

3=2

, we get

that

'

0

=

(y)

jyj

5=2

�

1

2jyj

5=2

jw(y)j

'

2

; (43)

where j(y)j is bounded. Assuming that ' is not bounded for y ! �1 there exists y

1

< 0

suh that '

0

(y

1

) is negative. We may even assume that ' is stritly dereasing for y < y

1

.

Thus there are onstants 

1

; 

2

> 0 suh that

�



1

jyj

5=2

'

2

� '

0

� �



2

jyj

5=2

'

2

:

However, this di�erential inequality an be satis�ed only for bounded funtions. Now the

boundedness ' implies that U(y) = O(jyj

�1=2

) for y ! �1. Summarizing the previous

results we get for the avalanhe haraterized by U = V + y and H =

m

U�y

where m > 0,

that

0 < U(y) �



jyj

1=2

for y ! �1; U(y) �

3

2

y for y !1

H(y) �

m

jyj

for y ! �1; H(y) �

2m

y

for y !1 :
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The rate of deay of H for y ! �1 shows that the mass of the avalanhe is in�nite.

Case 2.2: 0 < a < V

0

and V (y) will not ross or touh the main diagonal (this ase will

our for V

0

> a lose to a).

For y > 0 the solution V (y) is stritly dereasing. Sine it will not ross the main

diagonal and annot ross the line y � a, it will approah a in �nite time y

1

< a with a

slope approahing �1. The behavior of V (y) for y ! �1 is the same as in the previous

ase. Thus the avalanhe has the properties

0 < U(y) <



jyj

1=2

for y ! �1; U(y) # y

1

+ a for y ! y

1

�

H(y) �

m

jyj

for y ! �1; H(y) "

m

a

for y ! y

1

�

where U and H have in�nite slope at y = y

1

in whih the solution breaks down.

Case 2.3: 0 < V

0

< a and 9 y

0

> 0 : V (y

0

) = y

0

(this ase will our for small V

0

).

Then V

0

(0) > 0, y

0

< a, V

0

(y

0

) = 0 and V

00

(y

0

) = �y

2

0

=

�

2(a

3

� y

3

0

)

�

< 0. Thus V has

a loal maximum at y

0

and even V

0

(y) < 0 for all y > y

0

. For y ! 1 the behavior of

V (y) is modelled by the di�erential equation V

0

= �yV

2

with a onstant  > 0 leading

to the asymptoti behavior V (y) = O(y

�2

). Analogously V (y) will tend to 0 as y ! �1

and V (y) = O(y

�2

). Thus the veloity U(y) has the properties

U(y) = y +O(y

�2

) for y ! �1 :

However the height H(y) = m=V (y) where m > 0 diverges as y

2

for y ! �1. Hene

the avalanhe is unphysial in this ase; the \expliit" solutions U;H may be used only

loally.

Case 2.4: 0 < V

0

< a and V (y) will not ross or touh the main diagonal (this ase will

our for V

0

< a lose to a).

Then V is stritly inreasing for y > 0 until it will reah the level y = a in �nite time

y

1

< a with slope +1. For y ! �1 the behavior is the same as in Case 2.3. Consequently

U(y) = y +O(y

�2

) for y ! �1; U(y) " y

1

+ a as y ! y

1

�

H(y) = O(y

2

) for y ! �1; H(y) #

m

a

> 0 as y ! y

1

� :

This solution is unphysial sine it breaks down in �nite time and sine H is unbounded.

There are four further ases when a < 0 and V

0

< 0. However, sine W (y) = �V (�y)

satis�es (41) with a replaed by �a, it suÆes to refer to Case 2.1{2.4. The orresponding

avalanhe is desribed by U(y)=̂� U(�y) and H(y)=̂H(�y).

Case 2.5: V

0

< a < 0 and V (y) rosses the main diagonal. Looking at Case 2.1 we get

an avalanhe with the properties (m < 0)

U(y) �

3

2

y for y ! �1; �



jyj

1=2

< U(y) < 0 for y ! +1

H(y) �

2m

y

for y ! �1; H(y) �

jmj

y

for y !1 :
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Due to the large negative veloities for y ! �1 the avalanhe seems to move upwards

everywhere. However, the real self-similar avalanhe has the height

h(x; t) =

1

g(t)

H

�

x� �t

2

=2

g(t)

�

where the aeleration � = sin � � tan Æ os � is assumed to be a positive onstant (� > Æ)

and g(t) �

�

3

2

t

�

2=3

for t! 1. Moreover, its veloity inluding the motion of the enter

of mass is given by

u(x; t) = �t+ g

0

(t)U

�

x� �t

2

=2

g(t)

�

:

Sine g

0

(t) =



p

g(t)

and g(t)

3=2

�

3

2

t for t ! 1, the asymptoti behavior of u(x; t) for

t! +1, i.e. y ! �1, is given by

u(x; t) � �t+

3

2



p

g(t)

x� �t

2

=2

g(t)

�

�

2

t+

x

t

: (44)

Hene the physial veloity is positive for large t and approahes half the veloity of the

orresponding enter of mass. This behavior is reeted by the height of the avalanhe:

h(x; t) �

m

jx� �t

2

=2j

(

2 for x! �1

1 for x! +1 :

Case 2.6: a < V

0

< 0 and V (y) rosses the main diagonal. Referring to Case 2.3 we

�nd a solution suh that V (y) = O(y

�2

) for y ! �1 and onsequently that U(y) � y,

H(y) = O(y

2

) for y ! �1.

We drop the two ases analogous to Case 2.3 and 2.4 when a and V

0

are negative sine

these solutions fail to exist for large negative y. Finally we mention that even when a

is positive there are further solutions existing on an y-semiaxis. E.g., if a > 0, onsider

y

0

> a and V

0

:= V (y

0

) > a or < a, but lose to a. Then there exists a solution V (y) for

y > y

0

evolving an in�nite slope for y < y

0

where V onverges to a; for y ! +1 V (y)

will diverge as

y

2

or onverge to 0 as y

�2

, see Case 2.1 or 2.3 for this asymptoti behavior,

resp.

Note that all self-similar solutions have been found under the assumption that sgnu(x; t) =

1, i.e., j~u(x; t)j < u

0

(t). Now the speed of the enter of mass of the self-similar avalanhe

is larger than ~u i�

jg

0

(t)U(y)j < �t (45)

for all admissable y. In several ases, see e.g. the M -wave on a ompat interval jyj � y

0

,

(45) is satis�ed for large t sine g

0

(t) is bounded, f. [?℄. For the paraboli ap whih has

a ompat support w.r.t. y and where g

0

(t) � t a largeness ondition for �, i.e. for the

onstant slope �, has to be assumed [?℄. In the important Case 2.1 and Case 2.5 ondition

(45) may be violated loally, but not globally, see (44).

Reall the overall assumption that the earth pressure oeÆient K

at=pass

was onstant

ignoring the fat that the avalanhe may be ompressed or strethed loally. In [?, ?℄ the

authors arefully analyse a paraboli ap solution when even the bed frition angle Æ varies
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either with y or with the enter of mass veloity or with both of them. Although in these

ases the height h de�nes a strit paraboli ap and the veloity u is linear, the equation

for the spread g is muh more ompliated sine g

00

g

2

is no longer onstant.

Finally we mention that also for a two-dimensional avalanhe on an inlined plane

there exist self-similar paraboli ap solutions starting with a irular support evolving

like an ellipse for inreasing t, see [?, ?℄. Let g

1

(t); g

2

(t) denote the length of the semiaxes

of the supporting ellipse in the longitudinal and traverse diretion resp., suh that the

height of the avalanhe equals h(y

1

; y

2

; t) = (1 � y

2

1

� y

2

2

)=(g

1

(t)g

2

(t). Then g

1

; g

2

satisfy

a seond order highly nonlinear system of ordinary di�erential equations with oeÆients

depending on the aspet ratios "

1

= [H=L

x

1

℄ and "

2

= [h=L

x

2

℄. Numerial results [?, ?℄

show a ruial dependene of the spreads g

1

(t); g

2

(t) on "

1

; "

2

;

"

1

"

2

and on the angles � and

Æ.

Note added in proof. When preparing this manusript we learned that also V. Chugunov,

J.M.N.T. Gray and K. Hutter [?℄ found almost the same set of self-similar solutions.

However they use abstrat Lie group theory to �nd invariane proerpties of (30), then

they disuss several ases in more details.

3.3 Existene Results

In this setion we present the mathematial analysis of the 2�2-onservation law (23)

when the density � � �

0

> 0 is onstant and of (26) for a density funtion �(h) = h

�

.

For a bed with varying slope �(x) we onsider the modi�ed height or mass distribution

u

1

=

�

�

2�

�

1+�

�h and momentum u

2

=

�

�

2�

�

1+�

�hu, f. (27) { (29). As indiated in Setion

3.1 system (23), (26) or (29) will evolve shoks and will allow multiple, even unphysial

solutions. Therefore we are looking for suitable (physial) solutions satisfying a suÆiently

large set of entropy onditions.

De�nition 6 Let � = �(u

1

; u

2

), q = q(u

1

; u

2

) be salar C

2

-funtions satisfying

r

u

�(u) � r

u

F (u) = r

u

q(u) for all u 2 R

�

+

� R :

If � is onvex and �(0; �) = 0, then (�; q) is alled a onvex weak entropy-ux pair (for the

ux F : R

2

! R

2

).

Sine the soure terms s in (26) and S

0

in (29) have jump disontinuities, it is reasonable

{ also in view of the striking non-uniqueness of solutions of (13) for sand piles { to use the

notion of set-valued maps. Looking at s = sin � � "b

x

os � �

u

juj

tan Æ os � we introdue

the set-valued sign funtion

sig u =

(

[�1; 1℄ for u = 0

u

juj

for u 6= 0

and

~s(u; x) = sin � � "b

x

os � � sig(u) tan Æ os � :

Then

~

S is de�ned by

~

S(u

1

; u

2

; x) =

(1 + �)�

0

�

F (u

1

; u

2

) +

�

0

u

1

~s

�

u

2

u

1

; x

�

�

:
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Finally the system (29) is replaed by the di�erential inlusion

�

t

u + �

x

F (u) 2

~

S(u; x) (46)

whih is made more preise in the following de�nition.

De�nition 7 Given an initial value u

0

= (u

0

1

; u

0

2

) 2 L

1

(R)

2

with u

0

1

� 0 and

u

0

2

u

0

1

2 L

1

(R)

we all a funtion u = (u

1

; u

2

) 2 L

1

�

(0; T )� R; R

+

� R) a weak entropy solution of (46)

i� u has the following properties:

(1) there exists S 2 L

1

lo

�

R � [0; T )

�

2

suh that

S(x; t) 2

~

S

�

u(x; t); x

�

for a.a. (x; t) 2 R � [0; T ) :

(2) u is a weak solution of (46), i.e., for all  2 C

1

0

�

R � [0; T )

�

2

Z

R

Z

T

0

�

u � �

t

 + F (u) � �

x

 + S �  )dtdx =

Z

R

u

0

�  (x; 0)dx

(3) u satis�es the entropy inequality

Z

R

Z

T

0

�

�(u)�

t

�+ q(u)�

x

�+r

u

�(u) � S�

�

dtdx �

Z

R

�(u

0

)�(�; 0)

for every test funtion 0 � � 2 C

1

0

�

R � [0; T )

�

and every onvex-weak entropy ux

pair (�; q) for whih r

u

�(u) is loally bounded on R � [0; T ).

Remark 8 The non-lassial part (1) in De�nition 7 states the seletion of an L

1

lo

-

funtion S(x; t) oiniding with S

0

(u

1

; u

2

; x) from (28) when the physial veloity

u

2

u

1

does

not vanish. In ontrast to the usual de�nition of onvex entropy ux pairs the degeneray

of (26) when u

1

! 0 (h! 0) requires to add the ondition that �(0; �) = 0 (weak entropy).

Theorem 9 [?℄ Let u

0

= (u

0

1

; u

0

2

) 2 L

1

(R)

2

denote an initial value suh that u

0

1

;

u

0

2

u

0

1

2

L

1

(R) and

u

0

1

� 0 ; u

0

1

(x) ! 0 ; u

0

2

(x) ! 0 as jxj ! 1

and let � 2 W

1;1

(R) be given suh that �(x) � �

0

> 0. Then there exists a loal weak

entropy solution u = (u

1

; u

2

) of (46). If � is onstant, there exists a global weak entropy

solution.

Sketh of Proof In a �rst step we onsider the visous approximation

u

t

+ �

x

F (u) = S

"

(u; x) + "�

2

x

u; " > 0 ; (47)

where S

"

is de�ned by

~

S via smoothing the jump disontinuity of ~s(u; x). To prove the

existene of lassial solutions u

"

and some a priori estimates it is onvenient to onsider

smooth initial values u

0

"

. E.g., we assume that u

0

"

2 C

2

(R)

2

, u

0

1"

� u

0

1

+ ". This smoothing

and lifting up in addition to the visous approximation is not ontained in the proof in

[?℄, but an easily be inluded [?℄. Standard paraboli theory yields a unique lassial

solution u

"

in some interval [0; T

"

). To prove that T

"

an be hosen independently of " > 0

we apply the theory of invariant regions.
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Lemma 10 Let u : R� [0; T ) ! R

�

+

�R be a lassial solution of the system (47). Further

let R

i

: R

2

! R and M

i

: [0; T ) ! R, i = 1; 2, be smooth funtions de�ning the regions

�(t) =

2

\

i=1

fu 2 R

2

: R

i

(u) �M

i

(t)g; t 2 [0; T ) :

Assume the following properties:

1. u(�; 0) 2 �(0)

2. r

u

R

i

(a) is a left eigenvetor of r

u

F (a) for all a 2 ��

i

(t), t 2 [0; T )

3. �(t) is onvex for all t 2 [0; T )

4. sup

x2R

sup

a2��

i

(t)

r

u

R

i

(a) � S

"

(a; x) �M

0

i

(t)

where ��

i

(t) = ��(t) \ fa 2 R

2

: R

i

(a) = M

i

(t)g. Then �(t) is a one-parameter family

of invariant regions, i.e., u(x; t) 2 �(t) for all t 2 [0; T ).

This lemma will be applied with the Riemann invariants R

�

(t) = �

u

2

u

1

+ u

1=(2(1+�))

1

and

a funtion M(t) = M

�

(t) satisfying M(0) = max

+;�

kR

�

(u

0

)k

1

and the di�erential

inequality M

0

(t) � C

�

M(t)

2

+ k sin �k

1

�

where C = C(k�

0

k

1

; �

0

; �). As a onlusion we

get a T

0

> 0 suh that

ku

"

1

k

L

1

(R�(0;T ))

+







u

"

2

u

"

1







L

1

(R�(0;T ))

� C(T )

for all 0 < T < T

0

independent of " > 0; if the slope � is onstant, then T

0

= 1 and C(T )

is linear in T .

Besides L

2

-estimates of u

"

1

and u

"

2

on R � (0; T

0

) with bounds depending on " and

the ruial non-negativity of u

"

1

, see [?℄, it is important to have suÆiently many loal

L

2

-estimates of ru at hand.

Lemma 11 Let (�; q) be a onvex entropy-ux pair suh that r� is bounded and � 2 C

2

on (0;1)�R. Further let u = (u

"

1

; u

"

2

) be a strong solution of (47) suh that u

"

, F (u

"

) and

G

"

(u

"

; x) are bounded independently of " 2 (0; 1). Then for every bounded set 
 � R�R

+

there exists a onstant C(
) > 0 suh that

"

ZZ




�

x

u

"

� r

2

u

�(u

"

) � �

x

u

"

dxdt � C(
) 8 " 2 (0; 1) :

If � is even strongly onvex, then a similar estimate holds for "j�

x

u

"

j

2

.

Proof Given a solution u

"

of (47) and an entropy-ux pair (�; q) the funtions �(u

"

), q(u

"

)

will satisfy the equation

�

t

�(u

"

) + �

x

q(u

"

) = "

�

�

2

x

�(u

"

)� �

x

u

"

� r

2

u

�(u

"

) � �

x

u

"

�

+r

u

�(u

"

) �G

"

: (48)

Testing with 0 � ' 2 C

1

0

�

R � [0;1)

�

suh that 'j




= 1 will yield the a priori estimate.

If � is stritly onvex, the estimate r � r

2

u

�(v) � r � Æjrj

2

with some Æ > 0 will prove the

seond assertion. �

The seond main step deals with the limit "! 0. Sine only very few a priori estimates

on u

"

are available and sine (46) ontains several nonlinear terms, we need to refer to

Young measure solutions as limits of

�

u

"

1

;

u

"

2

u

"

1

�

.
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Lemma 12 [?℄ Assume that (z

k

) � L

1

(
)

2

is a sequene on 
 � [0; T )�R with z

k

(
) �

K where K � R

2

is ompat and onvex. Then there exists a subsequene (z

k

j

) � (z

k

) and

a family of Borel probability measures (�

(x;t)

)

(x;t)2


on K suh that for every H 2 C

0

(K)

2

lim

j!1

ZZ




H

�

z

k

j

(x; t)

�

'(x; t)dxdt

=

ZZ




H(x; t)'(x; t)dxdt 8' 2 L

1

(
)

2

(49)

where

H(x; t) =

Z

K

H(�)d�

(x;t)

for a.a. (x; t) 2 
 :

The proof of this famous lemma is based on the Theorem of Banah-Alaoglu applied to the

spaes L

1

(
;C

0

(K)) and L

1

(
;M(K)). When applied to a sequene (z

k

) of approximate

solutions of a (partial) di�erential equation this lemma yields a measure-valued solution

R

K

y d�

(x;t)

(y) in the limit. By these means the notion of strong or weak solutions is

generalized to a great extent: there are no longer funtion values a.e. in 
, but only

probabilities of them. E.g., the sequene of Rademaher funtions r

j

(x) = sgn sin(2

j

�x)

on (0; 1) attains the values �1 with probability

1

2

for every j 2 N. Its limit for j !1 in

the usual weak sense of (L

1

)

�

is 0, but in the sense of Lemma 12 we get the probability

measure �

x

� � =

1

2

(Æ

�1

+ Æ

+1

) for all x 2 (0; 1). Then H(x) �

1

2

�

H(�1) +H(+1)

�

is the

limit of H

�

r

j

(x)

�

for all H 2 C

0

([�1; 1℄).

Lemma 12 will be applied to z

k

=

�

u

"

1

;

u

"

2

u

"

1

�

where " =

1

k

and to

H

1

(z) =

�

z

1

z

1

z

2

�

=

�

u

1

u

2

�

; H

2

(z) = F (z

1

; z

1

z

2

) :

Then for every test funtion ' 2 C

1

0

�

R � [0; T )

�

2

Z

R

Z

T

0

�

H

1

(z

"

)�

t

'+H

2

(z

"

)�

x

' +H

"

3

(z

"

; x)'

�

dt dx

= "

Z

R

Z

T

0

�

x

u

"

� �

x

'dtdx +

Z

R

u

0

'(x; 0)dx

where H

"

3

(z; x) = S

"

(z

1

; z

1

z

2

; x) is disontinuous in z. By Lemma 12 there exist Young

measures �

(x;t)

for a.a. (x; t) 2 
 suh that

Z

R

Z

T

0

(H

1

�

t

'+H

2

�

x

'+H

3

')dtdx =

Z

R

u

0

'(x; 0)dx

where H

j

(x; t) =

R

K

H

j

(y)d�

(x;t)

(y), j = 1; 2. However, H

3

2 L

1

(R � R

+

)

2

annot

be haraterized by using the measures �

(x;t)

. To deal with funtions with jump dis-

ontinuities as sgnu

1

or in two dimensions with disontinuities of the type

u

juj

a further

deomposition of the measures �

(x;t)

is needed, see [?℄.

To show for the Young measures that �

(x;t)

= Æ

z(x;t)

for a.a. (x; t) we need the Div-Curl

Lemma and suÆiently many entropy-ux pairs.
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Lemma 13 [?℄ Let 
 � R�R

+

be bounded, (u

k

) a sequene of funtions on 
 and (�

1

; q

1

),

(�

2

; q

2

) weak entropy-ux pairs. Assume that �

i

(u

k

), q

i

(u

k

) onverge weakly in L

2

(
) to

�

i

(u), q

i

(u) and that �

t

�

i

(u

k

) + �

x

q

i

(u

k

) is relatively ompat in W

�1;2

(
) for i = 1; 2.

Then, as k !1,

ZZ




�

�

1

(u

k

)q

2

(u

k

)� �

2

(u

k

)q

1

(u

k

)

�

'dxdt!

ZZ




(�

1

q

2

� �

2

q

1

)'dxdt

for every ' 2 C

1

0

(
). Furthermore

Z

K

(�

1

q

2

� �

2

q

1

)d�

(x;t)

=

Z

K

�

1

d�

(x;t)

�

Z

K

q

2

d�

(x;t)

�

Z

K

�

2

d�

(x;t)

�

Z

K

q

1

d�

(x;t)

:

Given an entropy-ux pair (�; q) De�nition 6 implies that � satis�es a seond order wave

equation w.r.t. u

1

; u

2

with (u

1

; u

2

)-depending oeÆients. By [?℄ every weak entropy �,

i.e., �(0; �) = 0, an be written in the form

�(u

1

; u

2

) =

Z

R

f(�)

�

u

1

2(1+�)

1

� (� �

u

2

u

1

)

2

�

2+4�

+

d�

(50)

= u

1

Z

1

�1

f

�

u

2

u

1

+ � u

1

2(1+�)

1

�

(1� �

2

)

2+4�

d� :

In partiular, for f(s) =

1

2

s

2

, the entropy � oinides up to multipliative onstant with

the mehanial energy �

E

=

1

2

u

2

2

u

1

+ �

0

u

2+�

1+�

1

. It is easily seen that for f 2 C

1

0

(R) the

sequene

�

r

u

�(u

k

)

�

is bounded on 
 and that

jr � r

2

u

�(u

k

) � rj � C

f

r � r

2

u

�(u

k

) � r 8 r 2 R

2

independent of k 2 N. A further analysis based on previous a priori estimates shows that

the right-hand side of (48) is preompat in W

�1;2

(
)

2

+ W

�1;p

(
)

2

(p < 2) and that

the left-hand side of (48) is uniformly bounded in W

�1;1

(
)

2

. Then by Murat's Lemma

�

�

t

�(u

k

) + �

x

q(u

k

)

�

k2N

is preompat in W

�1;2

(
) for every weak entropy-ux pair (�; q)

generated by f 2 C

1

0

(R), see (??). Hene Lemma ?? may be applied.

This is the starting point to show in a lengthy tehnial proof [?, ?℄ that the Young

measures �

(x;t)

are Æ-measures. To be more preise, using the (z

1

; z

2

)-funtions,

�

(x;t)

=

(

Æ

(z

1

;z

2

)

if z

1

> 0

Æ

z

1

� �

(x;t)

if z

1

= 0

where supp �

(x;t)

� [lim inf

k!1

z

k

1

(x; t); lim sup

k!1

z

k

1

(x; t)℄ �� R. For (u

1

; u

2

) we on-

lude that also in the ase when u

1

(x; t) = z

1

(x; t) = 0 the measure �

(x;t)

is onentrated

in one single point u(x; t). Note that the analysis from [?, ?℄ simpli�es to elementary

algebrai onsiderations when � = �

1

2

, see [?℄. However, in this ase, the onstitutive

relation � = h

�1=2

seems to be unphysial.

In the �nal step Lemma 12 implies that u

k

* u weakly in L

1

(
)

2

and using H(y) =

jyj

p

, 1 < p <1, that

ZZ




ju

k

j

p

dxdt !

ZZ




juj

p

dxdt for k !1. Hene u

k

! u in L

p

(
)

2

by the Theorem of Radon-Riesz. By similar arguments u an be shown to be an entropy
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solution of (29). Looking more arefully at

~

S with its jump disontinuity sigu we may

even selet a funtion S 2 L

1

lo

�

R � [0; T )

�

2

suh that u is a solution of (46) in the sense

of De�nition 7. �

A detailed analysis of the time interval in whih a weak entropy solution exists may be

performed by the theory of invariant regions, see Lemma 10. In the ase when � � �

0

> 0

the following results depending on the behavior of the slope �(x) have been obtained [?, ?℄:

Theorem 14 Let a urved base with variable slope angle �(x) be given suh that for

�(x) = "K os �(x)

�

0

�

2 L

1

(R) :

Consider an inompressible avalanhe with initial values h

0

; u

0

suh that

0 � �

0

= �h

0

2 L

1

(R); m

0

= �h

0

u

0

2 L

1

(R)

�

0

(x) ! 0; m

0

(x) ! 0 for jxj ! 1 :

Finally let s(x; u) = sin �(x) � sgn(u) tan Æ(x) os �(x), where the bed frition angle Æ(x)

may depend on x 2 R, let P =

5

8

k�

0

=�k

1

, Q = ksk

1

and let E

0

= max

�

k2�

0

k

1

; k

1

2

u

2

0

k

1

�

measure the initial energy of the avalanhe.

1. If �

0

= 0 (onstant slope), then the Savage-Hutter equations admit a global weak

entropy solution. Furthermore � grows at most quadratially as t ! 1 and u =

m

�

grows at most linearly as t ! 1. If in addition j�j � jÆj for all x 2 R, i.e., the

slope angle is bounded by the bed frition angle, then � and u are uniformly bounded

independent of time with a bound depending only on E

0

.

2. Assume that

�

0

� 0; u

0

> 0;

1

2

u

2

0

� 2�

0

and � � Æ ;

i.e., the slope angle �(x) is onstant or even steepening, the initial veloity is positive

and suÆiently large and the slope angle is greater than or equal to the bed frition

angle. Then there exists a global weak entropy solution. Furthermore � grows at

most quadratially and u = m=� grows at most linearly as t ! 1. Finally u � 0

(down slope) and

1

2

u

2

� 2�.

3. If the slope is arbitrarily urved (�

0

6= 0), then there exists a weak entropy solution

on a time interval (0; T

max

). Here it is suÆient to take

T

max

=

1

PQ

�

�

2

� artan

p

2E

0

P=Q

�

:

In [?, ?℄ the term sgn(u) in s(x; u) has been smoothed. However, the same results hold in

the set-valued formulation, f. (46), De�nition 7, for an inompressible avalanhe [?℄.
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