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Abstra
t Avalan
hes, landslides and debris 
ows are devastingly powerful natural phenomena

that are far too little understood. These granular matters are mixtures of solid parti
les and of an

interstitial 
uid and are easily modelled on the mi
ros
opi
 level by the laws of 
lassi
al me
hani
s.

On mesos
opi
 and ma
ros
opi
 levels the di�erent s
ales of the in
uen
e of the parti
les, the 
uid

and their intera
tion lead to various models of avalan
hing 
ows. In this survey we 
onsider several

models of granular materials 
hara
terized by height and in 
ase also by momentum, dis
uss the

existen
e of similarity solutions, existen
e of arbitrary solutions and parti
le segregation. The main

part 
on
erns the Savage-Hutter equations for dense 
ow avalan
hes.

1 Introdu
tion

The number of 
atastrophes indu
ed by snow avalan
hes, landslides and debris 
ows has

been in
reasing during the last de
ades. The reasons are a possible 
hange of 
limate with

heavy rainfalls, but also the a
tivities of human beings in endangered mountainous regions.

Therefore the determination of runout zones and of endangered regions by analyti
al and

numeri
al methods for the di�erent types of \avalan
hes" is of the utmost importan
e.

A related physi
al, but less desastrous behavior 
an be observed in the motion of sand

dunes, in the pouring of grains leading to free surfa
es of sto
k piles and in hopper 
ows.

The main feature of the phenomena of granular materials is the mixture of solid par-

ti
les with water or air leading to a behavior di�erent from that of solids, 
uids or gases.

On the other hand, the main di�eren
es between the various kinds of granular 
ows are

due to the small or large 
uid-solid intera
tion, the size and shape of the grains and due to

the predominan
e either of the solid parti
les whilst the in
uen
e of the interstitial 
uid


an be negle
ted or of the 
uid 
arrying the small parti
les.

On the s
ale of individual grains the behavior of granular material is des
ribed by

the laws of 
lassi
al me
hani
s. But due to the huge variety of parti
le sizes, shapes and

densities, the abrasion of parti
les, the intera
tion with the 
uid, with di�erent layers or

with the bed leading to an ex
hange of parti
les, it is very diÆ
ult to model granular


ow on mesos
opi
 or ma
ros
opi
 s
ales. Further typi
al features are the dilatan
y and

parti
le segregation. In every day life it is observed that after stirring or shaking grains

of di�erent size but not ne
essarily with di�erent spe
i�
 weight the bigger grains tend to

move upwards (inverse grading) and to the nose of an avalan
he.

As an example 
onsider the di�erent s
ales of a typi
al snow avalan
he with weight

10

6

kg 
onsisting of i
e parti
les with radii less than 1 mm. In the lower part of the

avalan
he sliding on a 
uidized layer the solid parti
les dominate whereas the interstitial

air 
an be negle
ted. Above this dense 
ow avalan
he there may be a powder snow

avalan
he in whi
h turbulent air 
arries the i
e parti
les. In between there is a thin layer


alled resuspension layer or saltation layer feeding the powder snow avalan
he, see [?, ?℄.
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Dense Flow Avalan
he Powder Snow Avalan
he

Volume fra
tion of parti
les 0.3 { 0.5 1:10

�3

{ 1:10

�4

Density

�

kg

m

3

�

200 { 300 0.1 { 10

Length [m℄ 10 { 1000 100 { 2000

Height [m℄ 0.5 { 20 10 { 500

Speed

�

m

s

�

0 { 70 10 { 200

Table 1: Chara
teristi
 parameter ranges in dense 
ow and powder snow avalan
hes [?, ?℄

Although powder snow avalan
hes have a mu
h lower density than dense 
ow avalan
hes,

their length, height, velo
ity and 
onsequently their runout zone is mu
h larger.

This review arti
le is organized as follows. In Se
tion 2 we dis
uss parti
le segregation

and a simple model based on di�usion and 
onve
tion [?℄. Further we 
onsider stationary

solutions of the BCRE model for (dry) sand piles. Se
tion 3 is devoted to the Savage-

Hutter model [?℄ on dense 
ow avalan
hes, its similarity solutions and the mathemati
al

analysis of weak entropy solutions within the theory of systems of 
onservation laws with

sour
e terms.

2 On Models of Cohesionless Granular Materials

2.1 Parti
le Segregation

It is well-known that in granular 
ow the large parti
les tend to move upward and to the

nose of an avalan
he while the small parti
les lie at the bottom and at the rear end of

an avalan
he. This inverse grading 
an be explained by the per
olation e�e
t or the so-


alled random 
u
tuating sieve me
hanism [?℄: the probability for a small parti
le to �nd

a hole in the granular material to fall into is larger than for large parti
les. But sin
e this

gravity-indu
ed hole-�lling me
hanism would lead to a net mass 
ux downwards, Savage

and Lun [?℄ also propose a squeezing expulsion me
hanism; by this me
hanism the for
es

exerted by the parti
les to ea
h other lead to a squeezing of parti
les up- or downward.

A further dis
ussion of possible reasons for the usual grading and for inverse grading 
an

be found in [?℄ and in referen
es therein. In addition to per
olation e�e
ts, to geometri
al

reorganization and to segregation driven by 
onve
tion, inertia or entropy the authors

propose a so-
alled 
ondensation of hard spheres as the driving for
e.

A simple mathemati
al model for segregation in a mixture of n spe
ies has been pro-

posed by J. Braun [?℄. Let u

i

= u

i

(x; t) denote the 
on
entration of the i{th spe
ies,

1 � i � n, in a one-dimensional 
ontainer 
 = (0; L) of height L > 0. Then the 
hange

�u

i

�t

of the 
on
entration u

i

is balan
ed by the negative of the 
ux J

i

= J

i

(u) whi
h is

the sum of a 
onve
tional part J




i

= f

i

(u) and of a di�usional part J

d

i

= �d(u)

�u

i

�x

with

d(u) > 0. Thus we get the system of rea
tion { di�usion equations

u

t

�

�

d(u)u

x

� f(u)

�

x

= 0 ; u = (u

1

; : : : ; u

n

) : (1)
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The 
onve
tive part f(u)

x

is related to the random 
u
tuating sieve me
hanism whilst

the di�usive term

�

�d(u)u

�

x

a

ounts for the random e�e
ts of 
ollisions and 
ould lead

to the squeezing expulsion me
hanism. In order to guarantee that

n

X

i=1

u

i

� 1 and u

i

� 0 (2)

the stru
tural 
onditions

n

X

i=1

f

i

(u) � 0 and u

i

= 0 ) f

i

(u) = 0 (3)

are imposed. We note that (2) is a 
onsequen
e of (3) due to the maximum prin
iple for

paraboli
 equations. Besides an initial value

u(�; 0) = u

0

(�) with

n

X

i=1

u

i0

� 1

the 
ux 
ondition J

�

u(x; �)

�

= 0 for x = 0 and x = L is used to impose the (non-linear)

boundary 
ondition

d(u)u

x

� f(u) = 0 at x = 0; x = L :

Then the e�e
t of segregation is re
e
ted by the long-time behavior of solutions of (1).

For n = 2 spe
ies with 
on
entrations u := u

1

and u

2

= 1 � u

1

and 
onve
tional part

f(u) := f

1

(u; 1 � u) where f

2

= �f

1

by (3), the system (1) simpli�es to one non-linear

paraboli
 equation

u

t

�

�

d(u)u

x

� f(u)

�

x

= 0

d(u)u

x

� f(u) = 0 in x = 0; x = L (4)

u(�; 0) = u

0

(�) :

Theorem 1 [?℄ Assume that d and f are twi
e 
ontinuously di�erentiable.

(1) For every pres
ribed mean 
on
entration

u =

1

L

Z

L

0

u(x)dx 2 [0; 1℄

the stationary problem

d(u)u

x

= f(u) ; (5)


f. (4), has exa
tly one solution u(x) with mean value u.

(2) For every initial value u

0

2 C

0

([0; L℄) with mean value u 2 [0; 1℄ problem (4) has a

unique global solution u on [0; L℄ � (0;1) 
onverging to the stationary solution u of (5)

with mean value u for !1 .
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Sket
h of Proof (i) A solution u of (5) is de�ned by the ordinary di�erential equation

du

dx

= g(u) :=

f(u)

d(u)

(6)

where f(0) = f(1) = 0, 
f. (3), yields g(0) = g(1) = 0. Due to the unique solvability of

(6) every solution u(x) of (6) with initial value u

0

2 [0; 1℄ will exist for all x 2 [0; L℄ and

satisfy u(x) 2 [0; 1℄. By the same argument two solutions u

1

and u

2

with u

1

(0) < u

2

(0)

will satisfy u

1

(x) < u

2

(x) for all x 2 [0; L℄. Sin
e the solution u = u(�; u

0

) is a 
ontinuous

and even a monotoni
ally in
reasing fun
tion of its initial value u

0

= u(0) and sin
e u

0

= 0

or u

0

= 1 yield u � 0 or u � 1 respe
tively, we 
on
lude that the map

u : [0; 1℄ ! [0; 1℄ ; u

0

7! u(�; u

0

) ;

is a homeomorphism.

(ii) Given an initial value u

0

(x) with u

0

(x) 2 [0; 1℄ the solution u of (4) exists for all t > 0.

Then v = d(u)u

x

� f(u) satis�es the paraboli
 equation

v

t

= a(t; x)v

xx

+ b(t; x)v

x

with bounded fun
tions a = d(u), b = d

0

(u)u

x

� f

0

(u) and vanishing boundary values in

x = 0, x = L. By 
lassi
al theorems v and v

x

= u

t


onverge to zero for t ! 1. In

parti
ular u 
onverges to a stationary solution u

1

of (4), i.e., u

1

solves (6). Furthermore

(4) easily implies that u(�; t) is 
onstant; hen
e u

1

is the unique solution of (6) satisfying

u

1

= u

0

. �

The proof of Theorem 1(1) is based on topologi
al arguments. Therefore degree theo-

reti
al arguments are used in the 
ase of more than two spe
ies leading to the existen
e of

at least one stationary solution. Thus uniqueness of a �nal segregation of parti
les 
annot

be guaranteed for more than two spe
ies in general. Note that in this model empty spa
e

is evenly distributed in the vessel and that 
ompressibility or dilatan
y e�e
ts are ignored.

2.2 Stationary and Self-Similar Solutions

Consider a granular material su
h as dry sand poured at a rate s = s(x; t) � 0 and piling

up to form heaps. First the material builds up without further motion, but eventually

starts to roll down when the pile has a 
riti
al slope k = tan� > 0. The pile 
onsists of two

main parts, the standing layer of height h = h(x; t) (and of 
onstant density) and a thin

rolling layer of relative height r = r(x; t). In the BCRE model established by Bou
haud

et al. [?, ?℄ and modi�ed by de Gennes [?℄ by omitting di�usion terms the ex
hange of

grains from the rolling to the standing layer is des
ribed by the ex
hange term

�(t; r) = 
r

�

1�

jrhj

2

k

2

�

; 
 > 0 ; (7)

thus it is proportional to the thi
kness r � 0 of the rolling layer and vanishes i� r � 0 or

the slope of the bulk equals the 
riti
al slope k. Sin
e the grains in the bulk are motionless

ex
ept for the ex
hange �� to the rolling layer, h satis�es the equation

h

t

= �(h; r) :
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However, for the rolling layer, there are two sour
e terms s and��, su
h that the 
ontinuity

equation for r reads

r

t

+ div(vr) = s� �(h; r)

where v is the horizontal proje
tion of the velo
ity ve
tor of rolling grains. Assuming that

parti
les are rolling in the steepest des
ent dire
tion �rh, the term v is modelled by

v = ��rh ; � > 0 :

Summarizing we get the system of partial di�erential equations

h

t

= 
r

�

1�

jrhj

2

k

2

�

r

t

� div(�rrh) = s� 
r

�

1�

jrhj

2

k

2

�

(8)

for (x; t) 2 
� (0;1) together with the initial 
onditions r(x; 0) = 0 and h(x; 0) = h

0

(x),

where h

0

(x) des
ribes the bottom on whi
h the granular material is poured. If the domain


 � R

1

or 
 � R

2

is not the whole spa
e and surplus material drops down at �
 [?, ?, ?℄,

we pres
ribe

h(x; t) = 0 for x 2 �
 : (9)

Sin
e h � 0 
lose to �
, the s
alar produ
t of rh with the exterior normal ve
tor � on

�
 is nonpositive. For x 
lose to �
 by (8)

2

r

t

= �rr � rh + : : : indi
ating that r(x; t)

behaves like an outgoing wave near �
. Thus no boundary value for r may be pres
ribed.

In the silo problem with walls of in�nite height at �
 su
h that no material 
an leave

the silo [?, ?, ?℄, (8) yields the equation

d

dt

Z




(h + r)dx = �

Z

�


r

�h

��

do+

Z




s dx

for the balan
e of the total mass

R




(h + r)dx. Hen
e

R

�


r

�h

��

do = 0; sin
e r may be

arbitrary on �
, see the dis
ussion above, we get the Neumann boundary 
ondition

�h

��

(x; t) = 0 on �
 : (10)

The system (8) is also 
losely related to an earlier model of L. Prigozhin [?, ?℄ using

variational inequalities. In [?℄ the authors introdu
e three length s
ales:

L

r

=

s




denotes a typi
al thi
kness of the rolling layer

given a 
hara
teristi
 (mean) sour
e intensity s

L

p

=

�




denotes the mean path of a rolling grain before

being trapped in the standing layer

L denotes the pile size.
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Then res
aling variables by

x

0

=

x

L

; h

0

=

h

L

; r

0

=

r

L

r

; s

0

=

s

s

; t

0

=

ts

L

;

and omitting primes (

0

) for the new dimensionless variables and fun
tions, h and m =

L

p

L

r

solve the system

h

t

=

1

(L

p

=L)

m

�

1�

jrhj

2

k

2

�

�

L

r

L

�

r

t

� div(mrh) = s�

1

(L

p

=L)

m

�

1�

jrhj

2

k

2

�

:

Assuming L

r

<< L

p

and

L

p

L

! 0 the se
ond equation implies that

1

(L

p

=L)

m

�

1�

jrhj

2

k

2

�

� s+ div(mrh) (11)

and 
onsequently that

h

t

� div(mrh) � s :

A
tually, if jrh(x; t)j < k, the term m has to vanish when L

p

=L ! 0, see (11). Summa-

rizing, in the limit we get the equation

h

t

� div(mrh) = s

with the restri
tions m � 0, jrhj � k and

jrh(x; t)j < k ) m = 0 :

Under suitable assumptions and with additional di�usive terms for h and r, this formal

analysis is rigorously proved in [?℄ for a related dis
retized system with respe
t to time

t � 0. Furthermore the equation for h and its Lagrange multiplier m is equivalent to a

variational problem in the 
onvex set K = f' 2 H

1

(
) : jr'j � k a.e.g :

(

�nd h(x; t) su
h that h(�; t) 2 K for a.a. t > 0;

(h

t

� s; '� h)

L

2

(
)

� 0 8' 2 K

together with an initial 
ondition h(�; 0) = h

0

, see [?℄.

Note that the original BCRE equations in
luded di�usion terms su
h as "�r in (8)

2

leading to a paraboli
 rather than to a hyperboli
 equation for r. However di�usion may

lead to grains rolling upwards instead of downwards. The advantage of the system (8) is

the fa
t that the ex
hange between the standing and the rolling layer is easily modelled

by the ex
hange term � in (7). The other terms in (8) are just based on the 
onservation

of masses. On the other hand inertia, momenta, longitudinal and lateral pressures as

well as density 
hanges are negle
ted. These e�e
ts are in
orporated in the Savage-Hutter

models for wet snow avalan
hes, see Se
tion 3 below, leading to a highly nonlinear system

of 
onservation laws.
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In [?, ?, ?℄ another 
onstitutive law for the ex
hange term � is used:

�(h; r) = 
r

�

1�

jrhj

k

�

leading to the avalan
he model

h

t

= 
r

�

1�

jrhj

k

�

r

t

� div(�rrh) = s� 
r

�

1�

jrhj

k

�

(12)

together with initial 
onditions and the boundary 
onditions (9) or (10) for h. To our

knowledge there is no rigorous proof of existen
e and uniqueness of solutions to (12) up

to now. Even the stationary 
ase with s = 0 or s 6= 0 poses several open problems. One

main property and diÆ
ulty of the stationary 
ase with s = 0, i.e. for the system

r

�

1�

jrhj

k

�

= 0; div(rrh) = 0 (13)

is the non-uniqueness of solutions: Every pair of fun
tions h; r satisfying

h � 0; jrhj � k; r = 0

(and even with jrhj � k leading to unstable situations) is a solution of (13).

Even in one dimension the boundary value problem

jrhj = k a.e. in 
; h = 0 on �
 ;

the so-
alled eikonal equation known from geometri
al opti
s, has un
ountably many so-

lutions, namely all pie
ewise linear fun
tions on an interval 
 � R

1

with slope �k a.e.

However, uniqueness may be obtained in the setting of vis
osity solutions of fully nonlinear

equations, see [?, ?℄, or when looking for the maximum volume solution.

Theorem 2 Let 
 � R

1

be a bounded open interval or let 
 � R

2

be an open bounded

domain. Let the fun
tion  2 C

0;1

(
) des
ribe the bottom topography (bed) and let � :

�
 ! [0;1℄ with � 6� 1,  � � on �
, des
ribe the rim (wall) of the 
ontainer. Then

there exists a unique maximum volume solution h 2 C

0;1

(
) su
h that

 (x) � h(x) in 
; h(x) � �(x) on �


 (x) < h(x) for x 2 
 ) jhj

C

0;1

x

� k (14)

Z




(h�  )dx = max :

Here for x 2 
 the 
ondition jhj

C

0;1

x

� k means that there exists an open ball with 
enter

x in 
 su
h that jh(y) � h(y

0

)j � kjy � y

0

j for all y; y

0

2 B. Note that h(x) =  (x) i�

no granular material lies on the bed at x 2 
. The term

R




(h �  )dx measures the total

mass poured onto the bed.

Proof [?℄ Let

M = fh 2 C

0

(
) : h �  on 
; h � � on �
 ;

h(x) >  (x) for x 2 
 ) jhj

C

0;1

x

� kg :
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Sin
e 
 is a bounded domain with Lips
hitz boundary and sin
e  2 C

0;1

(
) there exists

a 
onstant K = K(k;  ) su
h that

jh(y) � h(y

0

)j � Kjy � y

0

j for all y; y

0

2 
 (15)

and for all h 2 M . The assumption � 6� 1, i.e., there exists � 2 �
 with �(�) < 1,

implies that M is a set of uniformly bounded fun
tions. Furthermore M is 
losed in

C

0

(
). Thus M is bounded in C

0;1

(
) and by Arzel�a-As
oli's Theorem even 
ompa
t

in C

0

(
). Sin
e V (h) =

R




(h �  )dx is a 
ontinuous fun
tional on C

0

(
) we get the

existen
e of h 2 M maximizing the volume V (�). Given h

0

2 M with V (h

0

) = V (h), but

di�erent from h, the 
ontinuity of h; h

0

on 
 will lead to the fun
tion max(h; h

0

) 2M with

V (max(h; h

0

)) > V (h) 
ontradi
ting the maximality of V at h. �

There exists a remarkable analogy [?, ?, ?℄ between (14) and the Diri
hlet problem for

the Lapla
ian, i.e.,

�u = 0 on 
; u = g on �
 : (16)

Under suitable assumptions on �
 and on g Perron's method 
hara
terizes the unique

solution u of (16) by subharmoni
 fun
tions:

u(x) = supfv 2 C

2

(
) \ C

0

(
) : �v � 0 in 
; v � g on �
g :

Calling a fun
tion h 2 C

0;1

(
) satisfying (14)

1;2

subeikonal we get the following result.

Proposition 3 The solution h of problem (14) given by Theorem 2 
an be 
hara
terized

for every x 2 
 by

h(x) = supfg(x) : g 2Mg ;

i.e., h(x) is the supremum and even the maximum of g(x) among all subeikonal fun
tions

in (14).

Proof [?℄ To show that

~

h(x) := supfg(x) : g 2 Mg is Lips
hitz 
ontinuous �x y; y

0

2


. Then there are sequen
es (h

j

); (h

0

j

) � M su
h that h

j

(y) !

~

h(y), h

0

j

(y

0

) !

~

h(y

0

).

Repla
ing h

j

and h

0

j

by max(h

j

; h

0

j

) 2M we may assume that h

0

j

= h

j

. Then the estimate

jh

j

(y)� h

j

(y

0

)j � K(k;  )jy � y

0

j for all j 2 N ;

see (15), yields the desired estimate for

~

h when j !1. In parti
ular

~

h is 
ontinuous.

To prove (14)

2

let

~

h(x) >  (x) for some x 2 
. Having the \maximum" Lips
hitz


onstant K(k;  ) in mind we �nd an open ball B with 
enter x in 
 su
h that

~

h >  

on B and that even every g 2 M with g(y) >

1

2

�

~

h(y) +  (y)

�

for some y 2 B satis�es

g >  on B. Given arbitrary y; y

0

2 B there exists a sequen
e (h

j

) = (h

0

j

) �M su
h that

h

j

(y) !

~

h(y), h

j

(y

0

) !

~

h(y

0

). Sin
e the \global" Lips
hitz 
onstant of h

j

on B is easily

seen to be bounded by k for every j 2 N, the same holds for

~

h proving that j

~

hj

C

0;1

x

� k.

Consequently

~

h 2M ,

~

h(x) � h(x) for all x 2 
 and V (

~

h) � V (h). If

~

h(x) > h(x), then

max(

~

h; h) 2

~

M would lead to a 
ontradi
tion to the maximality of V (h). Thus

~

h � h. �

The solution h of (14) may also be 
hara
terized by transport paths. If for simpli
ity

 � 0, then for x 2 


h(x) = inf

�

f�

�

�(1)

�

+ k`(�)g

8



where � runs through the set of all 
ontinuous pie
ewise linear paths in 
 
onne
ting x

with any point �(1) 2 �
; here `(�) denotes the length of � [?℄. In the most elementary


ase  � 0 and � � 0 (no wall), we easily get the solution

h(x) = k dist(x; �
) :

Note that h will have points or lines in 
 where it is not di�erentiable; for a dis
ussion

of these singular sets for 
on
rete examples and for several general 
lasses of domains, see

[?℄.

Besides the maximum volume solution in Theorem 2 we 
onsider the time-independent

standing/rolling layer of thi
kness h and r, resp. when granular material is 
onstantly

poured onto a 
at table  � 0 with sour
e intensity s(x). For a point sour
e lo
ated in y,

i.e., formally s(x) = Æ

y

(x), we get a 
one with vertex y and with slope k, i.e., h(x) equals

�(x; y) =

8

<

:

k

�

dist(y; �
) � jx� yj) ; jx� yj < dist (y; �
)

0; otherwise :

Then, for more general sour
e distributions, we take the maximum (not the sum or inte-

gral) of �(x; y) on supp s, i.e.,

h(x) = max

y2supp s

�(x; y) = max

y2


�(x; y) � �

supp s

(y) : (17)

This formula is similar to the solution u(x) =

R




G(x; y)f(y)dy of Poisson's problem

��u = f on 
, u = 0 on �
 using Green's fun
tion G(x; y). In the one-dimensional 
ase


 = (0; `),  � 0, � � 0, problem (12) has a unique stationary solution (h; r). Based on

(17) h(x) and also r(x) 
an be written down expli
ity; in 2D this problem is not 
ompletely

solved, see [?℄.

Finally we 
onsider the silo problem (11), i.e.

h

t

= 
r

�

1�

jrhj

k

�

in 
� (0;1)

r

t

� div(�rrh) = s� 
r

�

1�

jrhj

k

�

in 
� (0;1)

�h

��

= 0 on �
� (0;1) :

(18)

This instationary hyperboli
 system is not yet solved rigorously. In the one-dimensional


ase exa
t solutions have been des
ribed in [?℄ by parametrizing h; r and also x; t in a

new 
oordinate system (�

1

; �

2

). If s � 0 and if div(�rrh) is repla
ed by 
r

x

, the authors

�nd a 4�4-system of PDEs in whi
h ea
h equation 
ontains only partial derivatives with

respe
t to �

1

or to �

2

. This system 
an be solved \expli
itly" and yields solutions in

the form h(�

1

; �

2

), r(�

1

; �

2

), x(�

1

; �

2

) and t(�

1

; �

2

). From these formulae several pro�les

(h; r) and sho
k lines 
an be analyzed.

The analysis gets mu
h easier in the quasi-stationary 
ase where s � 0 is independent

of t with a mean sour
e intensity

s =

1

j
j

Z




s(x)dx > 0 : (19)
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In this 
ase, for large t, we expe
t a similarity solution

h(x; t) = h

0

(x) + st ; r(x; t) = r(x) :

Then (18) simpli�es to the stationary system

s = 
r

�

1�

jrhj

k

�

in 


�div(�rrh) = s� 
r

�

1�

jrhj

k

in 


�h

��

= 0 on �
 :

(20)

Sin
e s > 0, we 
on
lude from (20)

1

that jrhj < k a.e. A simple 
al
ulation leads to the

highly nonlinear Neumann problem

�div

�

rh

1� jrhj=k

�

=

s(x)� s

�s=


in 
;

�h

��

= 0 on �
 : (21)

Proposition 4 In spa
e dimension one (20) has a unique similarity solution (up to ad-

ditive 
onstants in h). For 
 = (0; `) de�ne

U(x) =

Z

`

0

�

x

`

� �

(0;x)

(y)

�

f(y) :

Then the rolling layer is given by

r(x) =

1

k�

�

�


k

s+ jU(x)j

�

;

and the slope h

x

of the standing layer is given by

h

x

(x) = k

U(x)

�


k

s+ jU(x)j

:

The proof is given in [?℄. Sin
e s > 0, a
tually jh

x

j < � in (0; `). In the two-

dimensional 
ase an expli
it solution 
an be found for the dis
 
 = B

R

(0) and a point

sour
e s(x) = Æ

0

(x), see [?℄. The general problem in 2D is not yet 
ompletely solved.

3 Existen
e Results for the Savage-Hutter Avalan
he Model

3.1 Modelling

The Savage-Hutter equations model the 
ow of a dense snow avalan
he with small aspe
t

ratio on an in
lined plane or on a rough bed by 
onsidering the avalan
he as a 
ohesionless

granular material in whi
h the interstitial air plays a negligible role. In 
ontrast with the

BCRE model of Se
tion 2 this model a

ounts for an ex
hange of momentum and goes far

beyond simple parti
le models [?, ?℄; on the other hand it ignores abrasion and ex
hange

of parti
les between the avalan
he and the bed.

In a plane 
urvilinear 
oordinate system let x denote the 
oordinate along the rough

in
line and let z denote the perpendi
ular 
oordinate. Looking for the velo
ity u of the

avalan
he and the height h of the free surfa
e the main assumptions of the Savage-Hutter

model [?℄ are as follows:

10



� The granular material obeys a Mohr-Coulomb-type plasti
 yield 
riterion expressed

by a 
onstant angle of internal fri
tion �, i.e., given the stress tensor T and the

exterior normal ve
tor n on an internal surfa
e the shear tra
tion S = n�T�n(n�T �n)

and the normal stress N = n � T � n are related to ea
h other by the formula jSj =

N tan�. Sin
e shear tra
tion depends on the dire
tion of the velo
ity ve
tor u,

S = �

u

juj

N tan� ;

giving rise to a jump dis
ontinuity.

� At the base there exists a very thin 
uidized layer (about 10 grain diameters) obeying

a Coulomb dry fri
tion law with a bed fri
tion angle Æ < �, i.e., S = �

u

juj

N tan Æ.

� The longitudinal stress 
omponent T

xx

is related to the perpendi
ular 
omponent

T

zz

by

T

xx

= K

a
t=pass

T

zz

where

K

a
t

K

pass

�

=

2(1�

p

(1� 
os

2

�= 
os

2

Æ))


os

2

�

� 1

i� �u=�x > 0

i� �u=�x < 0

(22)

is the a
tive and passive earth pressure 
oeÆ
ient, resp. Note that 0 < K

a
t

< K

pass

,

where K

a
t

applies i� the 
ow is lo
ally expanding.

� As a major assumption the velo
ity pro�le is blunt (ex
ept for the 
uidized layer):

for every x 2 R, t > 0

Z

h(x;t)

0

u(x; z; t)dz = h(x; t)u(x; t);

Z

h

0

u

2

dz = hu

2

et
.

Thus all ma
ros
opi
 quantities are 
onsidered to be y{independent.

� Given a 
hara
teristi
 height H and length L of the avalan
he assume that the

aspe
t ratio " = H=L is small 
ompared to 1, i.e., "� 1. If the bed is 
urved with a


hara
teristi
 radius of 
urvature R, assume that

L

R

= O("

1=2

). Finally assume that

tan Æ = O("

1=2

).

Typi
al values of Æ; � and K for glass, quartz, marmor or plasti
 grains are as follows, see

[?℄:

20

o

< Æ < 40

o

; 30

o

< � < 46

o

; 5

o

< �� Æ < 20

o

where the bed fri
tion angle also depends on the roughness of the bed. Thus typi
al earth

pressure 
oeÆ
ients are

K

a
t

2 (0:7; 0:9); K

pass

2 (2:8; 4:6) :

11



Ignoring all terms of order higher than " the Savage-Hutter equations for a thin two-

dimensional avalan
he of height h, velo
ity u = (u

1

; u

2

) and momentum hu on a two-

dimensional basal pro�le z = b(x; y) with main down slope dire
tion

�

1

0

�

take the form

[?, ?, ?℄

�

t

h+ div(hu) = 0

�

t

(hu) + div

�

hu
 u+

1

2

"h

2

K(
os �)

�

= hs(u; x) (23)

with the sour
e term

s = sin �

�

1

0

�

�

u

juj

h tan Æ 
os � � "hK(
os �)rb : (24)

Here � = �(x) is the lo
al in
lination angle along the dire
tion

�

1

0

�

whereas the in
uen
e

of the 
urvature has been omitted. Furthermore K denotes the diagonal 2�2-matrix of

earth pressure 
oeÆ
ients su
h that

div

�

1

2

"h

2

(
os �)K

�

= "h 
os �

�

K

x;a
t=pass

�h

�x

;K

y;a
t=pass

x;a
t=pass

�h

�y

�

T

+ : : :

with K

x;a
t=pass

as in (22) and K

y;a
t=pass

x;a
t=pass

depending on the signs of

�u

1

�x

and of

�u

2

�y

.

This term together with the term "hK(
os �)rb represents the variation of the normal

pressure in x- and y-dire
tions, whereas the �rst and se
ond term of (24) are due to

gravity normalized to 1 and to fri
tion of the avalan
he with the bed, respe
tively. To be

more pre
ise in the two-dimensional 
ase, " = H=L has to be repla
ed by a diagonal 2� 2

matrix with entries "

x

= H=L

x

and "

y

="

xy

= (H=L

y

)=(L

y

=L

x

) for 
hara
teristi
 lengths

L

x

and L

y

.

System (23) is written in the form of a system of 
onservation laws for (h; hu) with

a sour
e on the right-hand side depending on h and u. Looking at the leading terms

and ignoring the term 
ontaining K, (23) is similar to the shallow water equations and

to the Euler equations of gas dynami
s. However, besides the fa
t that there exists no

satisfying mathemati
al theory for systems of 
onservation laws in more than one spa
e

dimension, the jump dis
ontinuity

u

juj

and of 
ourse the pie
ewise 
onstant fun
tion K

depending on signs of ru pose new analyti
al and numeri
al diÆ
ulties. Thus, in every

analyti
al approa
h { even when looking for similarity solutions, see x3.2 { K is assumed

to be 
onstant.

Of 
ourse solutions of (23) may evolve sho
ks even when the data are smooth. Sho
ks

will mainly o

ur in the run-out zone when a part of the material has already been de-

posited. Furthermore sho
ks 
an be observed in beautiful experiments on granular matter

in rotating drums, see [?℄.

Proposition 5 Let (h; hu) 2 R

3

be a weak solution of (23) in a domain 
 � R

2

� (0;1),

i.e., for all ' 2 C

1

0

(
)

3

ZZ




��

h

hu

�

� '

t

+

�

hu

hu
 u+

1

2

"h

2

(
os �)K

�

� r'

�

dxdt

= �

ZZ




�

0

hs

�

� 'dxdt :
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Assume that 
 is separated by a smooth, regular surfa
e � into two parts 


`

and 


r

su
h

that

�

h

hu

�

�

�

�




r

2 C

1

(


`

)

3

;

�

h

hu

�

�

�

�




r

2 C

1

(


r

)

3

:

Let � = (�

t

; �

x

) denote the unit normal ve
tor on � dire
ted into 


`

. Then (h; hu) satis�es

the Rankine-Hugoniot jump 
ondition

h

�

h

hu

�

i

�

t

+ �

x

�

h

�

hu

hu
 u+

1

2

"h

2

(
os �)K

�

i

= 0 ;

where as usual [�℄ denotes the di�eren
e of the limits of (h; hu) on � taken from 


`

and

from 


r

.

Coming ba
k to a one-dimensional avalan
he on a basal pro�le z = b(x), x 2 R, let a

line of dis
ontinuity � be given in parameterized form

�


(t); t

�

. Then 


0

(t) is the speed

of propagation of the dis
ontinuity, and the Rankine-Hugoniot 
ondition takes the simple

form

h

�

h

hu

�

i




0

(t) =

h

�

hu

hu

2

+

1

2

"h

2

(
os �)K

a
t=pass

�

i

: (25)

A more re
ent generalization of the Savage-Hutter model 
onsiders 
ompressible avalan
hes

of density � satisfying a 
onstitutive equation � = �(h; u), see [?, ?℄. Sin
e there is no

physi
al eviden
e for a (monotoni
ally de
reasing) dependen
e on juj, up to now the 
on-

stitutive equation

�(h) = h

�

; � > 0 ;

has been investigated; see [?℄ for the mathemati
ally easier 
ase � = �

1

2

. In the one-

dimensional 
ase we get the system

�

t

(�h) + �

x

(�hu) = 0

�

t

(�hu) + �

x

(�hu

2

+

1

2

�(x)�h

2

) = �hs(u; x) ;

(26)

where

�(x) = "K

a
t=pass


os �(x) ;

s = sin � � " 
os � b

x

�

u

juj

tan Æ 
os � :

Assuming an overall 
onstant K = K

a
t=pass

it is 
onvenient to introdu
e new fun
tions

to get rid of the x-dependen
e in the term

1

2

�(x)�h

2

and to re�nd the standard form of


onservation laws. Let

(u

1

; u

2

) =

�

�

�

2�

�

1+�

h

1+�

;

�

�

2�

�

1+�

h

1+�

u

�

; (27)

where � =

�

4(1 + �)(2 + �)

�

�1

, and

F (u

1

; u

2

) =

�

u

2

u

2

2

u

1

+ �u

2+�

1+�

1

�

; S

0

=

(1 + �)�

0

�

F +

�

0

u

1

s(

u

2

u

1

; x)

�

: (28)
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Then (26) takes on the form

�

t

u + �

x

F (u) = S

0

(u; x); u = (u

1

; u

2

) : (29)

Note that in (28) also the �rst 
omponent of the sour
e term S

0

is di�erent from zero.

But the Rankine-Hugoniot 
ondition for a sho
k line � with speed of propagation 


0

(t)

has the simple form

[u

1

℄


0

= [u

2

℄; [u

2

℄


0

= [F

2

(u

1

; u

2

)℄

yielding the 
ompatibility 
ondition

[u

2

℄

2

= [F

2

(u

1

; u

2

)℄ � [u

1

℄ on � :

Thus a dis
ontinuity of u

1

or of h w.r.t. x, say h(x�; t) > 0 = h(x+; t), is not admissable.

Up to now problems arising from the jump dis
ontinuity in the sour
e terms s and S

0

have been ignored. In Se
tion 3.3 we propose to introdu
e set-valued maps to deal with

this dis
ontinuity, see De�nition 7 and Remark 8 below.

3.2 Self-Similar Solutions

Consider the Savage-Hutter model for a one-dimensional in
ompressible avalan
he on a

plane moving downwards everywhere, i.e. the system

�

t

h+ �

x

(hu) = 0

�

t

u+ u�

x

u = sin � � tan Æ 
os � � � h

x

;

(30)

when sgnu = +1 is 
onstant. Also K

a
t=pass

is assumed to be 
onstant yielding a 
onstant

� = "K 
os � . In order to dis
uss the existen
e of self-similar solutions we subtra
t the

motion of the 
enter of mass. To this end, de�ne

u

0

(t) = t(sin � � tan Æ 
os �); ~u = u� u

0

(t)

and the moving variable

� = x�

Z

t

0

u

0

(s)ds :

Let g(t) denote a typi
al length of the avalan
he at time t, e.g. half the spread of an

avalan
he with 
ompa
t support. Now use new 
oordinates

y =

�

g(t)

; � = t

in (30) and the notation (�)

0

and (�)

y

for derivatives w.r.t. � and y, resp., to �nd the

system

�

�

h� y

g

0

g

�

y

h+

1

g

�

y

(h~u) = 0

�

�

~u� y

g

0

g

�

y

~u+

1

g

(~u�

y

~u+ ��

y

h) = 0

(31)
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for (h; ~u). Then a solution of the form

h(y; �) = `(�)H(y); ~u(y; �) = k(�)U(y) (32)

is 
alled a self similar solution of (31). Due to the 
onservation of mass

M �

Z

R

h(�; t)d� =

Z

R

h(y; �)g(�)dy = `(�)g(�)

Z

R

H(y)dy

we get that

` =

1

g

;

at least when the total mass is �nite. It will be seen below that this assumption is not

satis�ed in general. Inserting ` = 1=g in (31) yields the system

H + yH

y

�

k

g

0

(HU)

y

= 0

U �

g

0

k

gk

0

yU

y

+

k

2

gk

0

UU

y

+

�

g

2

k

0

H

y

= 0 :

(33)

>From (33)

1

we see that

0 =

�

k

g

0

�

0

(HU)

y

:

Thus either

k

g

0

� 
onst or HU � 
onst :

Sin
e k(�) denotes an overall in
rease or de
rease of the velo
ity ~u, the 
hange of

the 
hara
teristi
 length g

0

(�) has to be proportional to k(�). Hen
e k=g

0

has to be

independent of � . A
tually, if k=g

0

6� 
onst, (33)

1

would imply that (HU)

y

� 0 and that

H + yH

y

� 0. These equations yield the general solution H(y) =




0

y

, U = 


1

y. Then

(33)

2


an be interpreted as a vanishing linear 
ombination of the fun
tions y and

1

y

2

with

� -depending 
oeÆ
ients. Now we may 
on
lude that 


0

= 0 and 
onsequently H � 0

yielding the trivial solution h � 0.

In the following assume w.l.o.g. that

k � g

0

;

sin
e a 
onstant k=g

0

di�erent from 1 
an be subsumed by the fun
tions H or U , see (32).

Then (33) 
an be written in the simple form

�

(U � y)H

�

y

= 0

U +

g

0

2

gg

00

(U � y)U

y

+

�

g

2

g

00

H

y

= 0 :

(34)

Case 1: U � y In this 
ase the velo
ity ~u(y; �) is linear in y for every time � . From (34)

2

we get the equation g

2

g

00

= ��H

y

=y. Consequently both sides are 
onstants leading to

the identities

g

2

g

00

=

G

0

2

and H(y) = H

0

�

G

0

4�

y

2

(35)
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with 
onstants H

0

; G

0

. Let us ignore the elementary 
ase G

0

= 0 where H(y) is 
onstant

and g(�) is linear. If G

0

6= 0, by (35)

1

g

0

g

00

= G

0

g

0

=(2g

2

) and 
onsequently

g

0

2

= �G

0

(

1

g

+

1

g

0

) with g

0

2 Rnf0g :

If g

0

= 1, then g � 0 implies that G

0

< 0 and g

0

g

1=2

= �

p

jG

0

j. Hen
e

g(�) =

�

g(0)

3=2

+

3

2

p

jG

0

j �

�

2=3

; H(y) = H

0

+

jG

0

j

4�

y

2

; (36)

the 
ase g

0

g

1=2

= �

p

jG

0

j leads to an unphysi
al 
ompression of the avalan
he or { in

other words { to a time reversal in (36). The solution (36), 
onsidered only for jyj < y

0

,

de�nes an avalan
he with the shape of an M , 
alled an M{wave in [?℄. As � !1,

h(y; �) � 
�

�2=3

H(y) :

If g

0

2 R

�

= Rnf0g, then g

0

(�) = �

p

jG

0

j

p

jg

0

+gj

p

jg

0

gj

. First we 
onsider the 
ase when g

0

> 0

and g

0

> 0. Then

s

jG

0

j

g

0

� =

Z

g(�)

g(0)

p

g dg

p

g

0

+ g

= 2

Z

p

g(�)

p

g(0)

h

2

dh

p

g

0

+ h

2

=

p

g(�)

p

g

0

+ g(�)� g

0

ln

�

p

g(�) +

p

g

0

+ g(�)

�

� C

0

:

For � !1 we dedu
e the linear behavior

g(�) �

s

jG

0

j

g

0

� ; � !1 :

Sin
e g > 0 and g

0

> 0 ne
essarily imply that G

0

< 0, again H(y) = m +

jG

0

j

4�

y

2

de�nes

an M{wave on jyj � y

0

. But 
ompared to the M -wave above we now get an M -wave with

h(y; �) � �

�1

H(y) as � !1 :

When g

0

> 0 but g

0

< 0, then the di�erential equation for g(�) immediately implies that

g(�) ! 0 and 
onsequently that `(�) !1 in �nite time. Thus this 
ase is unphysi
al.

Next 
onsider the 
ase when g

0

< 0, but g + g

0

� 0 and g

0

� 0. Then G

0

> 0 and

s

G

0

jg

0

j

� = 2

Z

p

g(�)

p

g(0)

h

2

dh

p

h

2

� jg

0

j

=

p

g(�)

p

g(�)� jg

0

j+ jg

0

j ln

�

p

g(�) +

p

g(�) � jg

0

j

�

� C

0

:

For � ! 1 we dedu
e the asymptoti
 behavior g(�) � � : The shape of the avalan
he is

des
ribed by H(y) = m �

G

0

4�

y

2

for jyj �

p

4m�=G

0

forming a paraboli
 
ap, see [?℄ for

the spe
ial 
ase �

0

= 0, g

0

= �1, g(0) = 1 su
h that g

0

(0) = 0 (avalan
he is starting at

rest).

In the 
ase g

0

< 0 and g + g

0

< 0, but g

0

> 0, the fun
tion g(�) is stri
tly in
reasing

until g(�) ! jg

0

j where g

0

(�) ! 0. For g(�) 
lose to jg

0

j, but less than jg

0

j, the di�erential

equation for g(�) is related to the equation g

0

(�) = 2

p

jg

0

j � g(�) showing that g(�)
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a
tually approa
hes jg

0

j like the parabola g(�) = jg

0

j � (�

1

� �)

2

as � ! �

1

�. Then

k(�

1

) = g

0

(�

1

) = 0 and ~u(�

1

; y) = 0 yielding an avalan
he at rest! From standard theory it

is known that the solution g(�) is not uniquely determined for � > �

1

. When the avalan
he

restarts to move and g(�) be
omes larger than jg

0

j for some � > �

1

, then we refer to the

previous 
ase.

The 
ase g

0

< 0, but g + g

0

> 0 and g

0

< 0 also leads to an avalan
he at rest in �nite

time. Finally, if g

0

< 0, g + g

0

< 0 and g

0

< 0, then g(�) 
onverges to 0 in �nite time.

Thus `(�) !1 in �nite time leading to an in�nite velo
ity and an unphysi
al solution.

Case 2: U 6� y. In this 
ase (34)

1

yields a 
onstant m 6= 0, a 
hara
teristi
 momentum,

su
h that

H =

m

U � y

; (37)

the 
ase m = 0 is trivial. Inserting this identity into (34)

2

we get that

U +

g

0

2

gg

00

(U � y)U

y

�

�m

g

2

g

00

�

U

y

� 1

(U � y)

2

= 0 : (38)

Dividing by U , multiplying with g

2

g

00

and di�erentiating w.r.t y we are led to the equation

g

0

2

g

�

(U � y)U

y

U

�

y

� �m

�

U

y

� 1

(U � y)

2

U

�

y

= 0 :

In order to 
on
lude that g

0

2

g is 
onstant we have to ex
lude the possibility that both

terms depending on y vanish. If these terms vanish, we would get two ordinary di�erential

equations for U(y) leading after elementary 
al
ulations to a 
ontradi
tion. Thus we get

a 
onstant 
 6= 0 (sin
e g > 0) su
h that

g

0

p

g = 
 and g(�) �

�

3

2


�

�

2=3

as � !1 ;


f. Case 1 with g

0

= 1. Hen
e g

00

g

2

= �


2

=2, and (38) yields the di�erential equation

U � 2(U � y)U

y

+ 2a

3

U

y

� 1

(U � y)

2

= 0 ; a

3

=

�m




2

6= 0 ; (39)

and, de�ning

V (y) = U(y)� y ; (40)

the equation

dV

dy

=

1

2

V

2

(V � y)

a

3

� V

3

: (41)

Note that the lines V � 0 and V � a as well as points y

0

where V (y

0

) = y

0

are important

in the dis
ussion of lo
al and global properties of solutions of the di�erential equation (41).

Con
erning the size of V

0

= V (0) and of a we have to distinguish between several 
ases.

Sin
e H(0) =

m

U(0)

=

m

V (0)

and sgn a = sgnm, the 
ases V

0

< 0 < a and a < 0 < V

0

lead to unphysi
al solutions with H(0) < 0 and will not be dis
ussed.
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Case 2.1: 0 < a < V

0

and 9 y

0

> a : V (y

0

) = y

0

(this 
ase will o

ur for V

0

� a).

In this 
ase V

0

(0) < 0 and even V

0

(y) < 0 for all y 2 (�1; y

0

). However V

0

(y

0

) = 0

and V

00

(y

0

) =

y

2

0

2(y

3

0

�a

3

)

> 0 implying that V has a lo
al minimum at y

0

. Sin
e even V

0

> 0

on (y

0

;1) and V

0

< 0 on (�1; y

0

), V has a global minimum at y

0

. To determine the

shape of the 
orresponding avalan
he it is 
ru
ial to dis
uss the asymptoti
 behavior of V

for y ! �1. By (41) we may ex
lude that V (y) is bounded for y ! 1. If there exists

y

1

> y

0

su
h that V (y

1

) =

1

2

y

1

, the inequality V

0

(y

1

) =

1

2

y

3

1

=(y

3

1

� 8a

3

) >

1

2

leads to a


ontradi
tion. Consequently

y

2

< V (y) < y for y > 0. De�ning w(y) = V (y)=y we see that

w(y) 2 (

1

2

; 1) and that

w

0

= �

w

2

2y

(2w � 1)(w + 1)� 2a

3

=(wy

3

)

w

3

� a

3

=y

3

: (42)

If there exists 0 < Æ <

1

2

su
h that w(y) �

1

2

+ Æ for large y > 0, then w

0

(y) � �

1

y

for these

y leading to a logarithmi
 de
ay � log y. Then �nally w(y) will 
ross the line w =

1

2

+ Æ

with a negative slope. Thus w(y) <

1

2

+ Æ for all large y, even w(y) !

1

2

and V (y) �

y

2

for y ! 1. For y ! �1 (41) implies that V (y) is unbounded. If there exists y

2

< �a

su
h that V (y

2

) = �y

2

, then V

0

(y

2

) = �y

3

2

=(a

3

+ y

3

2

) < �1 leads to a 
ontradi
tion.

Thus w(y) =

V (y)

y

< �1 for all negative y. The possibility that w(y) � w

1

< �1 for

all large y < 0 
an be ex
luded sin
e under this assumption w

0

�

Æ

y

for some Æ > 0.

Hen
e w(y) ! �1, V (y) = �y

�

1 + o(1)

�

and U(y) = V (y) + y = o(jyj) for y ! �1.

To prove that even U(y) = O(jyj

�1=2

) for y ! �1 we introdu
e the auxiliary fun
tion

'(y) = jyj

1=2

U(y). By (40), (41)

'

0

(y) =

jyj

1=2

2

w(y)

2

(w(y) + 1)

2

+O(jyj

�3

)

w(y)

3

�

1 +O(jyj

�3

)

�

for y ! �1. Sin
e w is bounded for large negative y, and 1 +w = �

U

jyj

= �

'(y)

jyj

3=2

, we get

that

'

0

=


(y)

jyj

5=2

�

1

2jyj

5=2

jw(y)j

'

2

; (43)

where j
(y)j is bounded. Assuming that ' is not bounded for y ! �1 there exists y

1

< 0

su
h that '

0

(y

1

) is negative. We may even assume that ' is stri
tly de
reasing for y < y

1

.

Thus there are 
onstants 


1

; 


2

> 0 su
h that

�




1

jyj

5=2

'

2

� '

0

� �




2

jyj

5=2

'

2

:

However, this di�erential inequality 
an be satis�ed only for bounded fun
tions. Now the

boundedness ' implies that U(y) = O(jyj

�1=2

) for y ! �1. Summarizing the previous

results we get for the avalan
he 
hara
terized by U = V + y and H =

m

U�y

where m > 0,

that

0 < U(y) �




jyj

1=2

for y ! �1; U(y) �

3

2

y for y !1

H(y) �

m

jyj

for y ! �1; H(y) �

2m

y

for y !1 :
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The rate of de
ay of H for y ! �1 shows that the mass of the avalan
he is in�nite.

Case 2.2: 0 < a < V

0

and V (y) will not 
ross or tou
h the main diagonal (this 
ase will

o

ur for V

0

> a 
lose to a).

For y > 0 the solution V (y) is stri
tly de
reasing. Sin
e it will not 
ross the main

diagonal and 
annot 
ross the line y � a, it will approa
h a in �nite time y

1

< a with a

slope approa
hing �1. The behavior of V (y) for y ! �1 is the same as in the previous


ase. Thus the avalan
he has the properties

0 < U(y) <




jyj

1=2

for y ! �1; U(y) # y

1

+ a for y ! y

1

�

H(y) �

m

jyj

for y ! �1; H(y) "

m

a

for y ! y

1

�

where U and H have in�nite slope at y = y

1

in whi
h the solution breaks down.

Case 2.3: 0 < V

0

< a and 9 y

0

> 0 : V (y

0

) = y

0

(this 
ase will o

ur for small V

0

).

Then V

0

(0) > 0, y

0

< a, V

0

(y

0

) = 0 and V

00

(y

0

) = �y

2

0

=

�

2(a

3

� y

3

0

)

�

< 0. Thus V has

a lo
al maximum at y

0

and even V

0

(y) < 0 for all y > y

0

. For y ! 1 the behavior of

V (y) is modelled by the di�erential equation V

0

= �
yV

2

with a 
onstant 
 > 0 leading

to the asymptoti
 behavior V (y) = O(y

�2

). Analogously V (y) will tend to 0 as y ! �1

and V (y) = O(y

�2

). Thus the velo
ity U(y) has the properties

U(y) = y +O(y

�2

) for y ! �1 :

However the height H(y) = m=V (y) where m > 0 diverges as y

2

for y ! �1. Hen
e

the avalan
he is unphysi
al in this 
ase; the \expli
it" solutions U;H may be used only

lo
ally.

Case 2.4: 0 < V

0

< a and V (y) will not 
ross or tou
h the main diagonal (this 
ase will

o

ur for V

0

< a 
lose to a).

Then V is stri
tly in
reasing for y > 0 until it will rea
h the level y = a in �nite time

y

1

< a with slope +1. For y ! �1 the behavior is the same as in Case 2.3. Consequently

U(y) = y +O(y

�2

) for y ! �1; U(y) " y

1

+ a as y ! y

1

�

H(y) = O(y

2

) for y ! �1; H(y) #

m

a

> 0 as y ! y

1

� :

This solution is unphysi
al sin
e it breaks down in �nite time and sin
e H is unbounded.

There are four further 
ases when a < 0 and V

0

< 0. However, sin
e W (y) = �V (�y)

satis�es (41) with a repla
ed by �a, it suÆ
es to refer to Case 2.1{2.4. The 
orresponding

avalan
he is des
ribed by U(y)=̂� U(�y) and H(y)=̂H(�y).

Case 2.5: V

0

< a < 0 and V (y) 
rosses the main diagonal. Looking at Case 2.1 we get

an avalan
he with the properties (m < 0)

U(y) �

3

2

y for y ! �1; �




jyj

1=2

< U(y) < 0 for y ! +1

H(y) �

2m

y

for y ! �1; H(y) �

jmj

y

for y !1 :
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Due to the large negative velo
ities for y ! �1 the avalan
he seems to move upwards

everywhere. However, the real self-similar avalan
he has the height

h(x; t) =

1

g(t)

H

�

x� �t

2

=2

g(t)

�

where the a

eleration � = sin � � tan Æ 
os � is assumed to be a positive 
onstant (� > Æ)

and g(t) �

�

3

2


t

�

2=3

for t! 1. Moreover, its velo
ity in
luding the motion of the 
enter

of mass is given by

u(x; t) = �t+ g

0

(t)U

�

x� �t

2

=2

g(t)

�

:

Sin
e g

0

(t) =




p

g(t)

and g(t)

3=2

�

3

2


t for t ! 1, the asymptoti
 behavior of u(x; t) for

t! +1, i.e. y ! �1, is given by

u(x; t) � �t+

3

2




p

g(t)

x� �t

2

=2

g(t)

�

�

2

t+

x

t

: (44)

Hen
e the physi
al velo
ity is positive for large t and approa
hes half the velo
ity of the


orresponding 
enter of mass. This behavior is re
e
ted by the height of the avalan
he:

h(x; t) �

m

jx� �t

2

=2j

(

2 for x! �1

1 for x! +1 :

Case 2.6: a < V

0

< 0 and V (y) 
rosses the main diagonal. Referring to Case 2.3 we

�nd a solution su
h that V (y) = O(y

�2

) for y ! �1 and 
onsequently that U(y) � y,

H(y) = O(y

2

) for y ! �1.

We drop the two 
ases analogous to Case 2.3 and 2.4 when a and V

0

are negative sin
e

these solutions fail to exist for large negative y. Finally we mention that even when a

is positive there are further solutions existing on an y-semiaxis. E.g., if a > 0, 
onsider

y

0

> a and V

0

:= V (y

0

) > a or < a, but 
lose to a. Then there exists a solution V (y) for

y > y

0

evolving an in�nite slope for y < y

0

where V 
onverges to a; for y ! +1 V (y)

will diverge as

y

2

or 
onverge to 0 as y

�2

, see Case 2.1 or 2.3 for this asymptoti
 behavior,

resp.

Note that all self-similar solutions have been found under the assumption that sgnu(x; t) =

1, i.e., j~u(x; t)j < u

0

(t). Now the speed of the 
enter of mass of the self-similar avalan
he

is larger than ~u i�

jg

0

(t)U(y)j < �t (45)

for all admissable y. In several 
ases, see e.g. the M -wave on a 
ompa
t interval jyj � y

0

,

(45) is satis�ed for large t sin
e g

0

(t) is bounded, 
f. [?℄. For the paraboli
 
ap whi
h has

a 
ompa
t support w.r.t. y and where g

0

(t) � t a largeness 
ondition for �, i.e. for the


onstant slope �, has to be assumed [?℄. In the important Case 2.1 and Case 2.5 
ondition

(45) may be violated lo
ally, but not globally, see (44).

Re
all the overall assumption that the earth pressure 
oeÆ
ient K

a
t=pass

was 
onstant

ignoring the fa
t that the avalan
he may be 
ompressed or stret
hed lo
ally. In [?, ?℄ the

authors 
arefully analyse a paraboli
 
ap solution when even the bed fri
tion angle Æ varies
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either with y or with the 
enter of mass velo
ity or with both of them. Although in these


ases the height h de�nes a stri
t paraboli
 
ap and the velo
ity u is linear, the equation

for the spread g is mu
h more 
ompli
ated sin
e g

00

g

2

is no longer 
onstant.

Finally we mention that also for a two-dimensional avalan
he on an in
lined plane

there exist self-similar paraboli
 
ap solutions starting with a 
ir
ular support evolving

like an ellipse for in
reasing t, see [?, ?℄. Let g

1

(t); g

2

(t) denote the length of the semiaxes

of the supporting ellipse in the longitudinal and traverse dire
tion resp., su
h that the

height of the avalan
he equals h(y

1

; y

2

; t) = (1 � y

2

1

� y

2

2

)=(g

1

(t)g

2

(t). Then g

1

; g

2

satisfy

a se
ond order highly nonlinear system of ordinary di�erential equations with 
oeÆ
ients

depending on the aspe
t ratios "

1

= [H=L

x

1

℄ and "

2

= [h=L

x

2

℄. Numeri
al results [?, ?℄

show a 
ru
ial dependen
e of the spreads g

1

(t); g

2

(t) on "

1

; "

2

;

"

1

"

2

and on the angles � and

Æ.

Note added in proof. When preparing this manus
ript we learned that also V. Chugunov,

J.M.N.T. Gray and K. Hutter [?℄ found almost the same set of self-similar solutions.

However they use abstra
t Lie group theory to �nd invarian
e proerpties of (30), then

they dis
uss several 
ases in more details.

3.3 Existen
e Results

In this se
tion we present the mathemati
al analysis of the 2�2-
onservation law (23)

when the density � � �

0

> 0 is 
onstant and of (26) for a density fun
tion �(h) = h

�

.

For a bed with varying slope �(x) we 
onsider the modi�ed height or mass distribution

u

1

=

�

�

2�

�

1+�

�h and momentum u

2

=

�

�

2�

�

1+�

�hu, 
f. (27) { (29). As indi
ated in Se
tion

3.1 system (23), (26) or (29) will evolve sho
ks and will allow multiple, even unphysi
al

solutions. Therefore we are looking for suitable (physi
al) solutions satisfying a suÆ
iently

large set of entropy 
onditions.

De�nition 6 Let � = �(u

1

; u

2

), q = q(u

1

; u

2

) be s
alar C

2

-fun
tions satisfying

r

u

�(u) � r

u

F (u) = r

u

q(u) for all u 2 R

�

+

� R :

If � is 
onvex and �(0; �) = 0, then (�; q) is 
alled a 
onvex weak entropy-
ux pair (for the


ux F : R

2

! R

2

).

Sin
e the sour
e terms s in (26) and S

0

in (29) have jump dis
ontinuities, it is reasonable

{ also in view of the striking non-uniqueness of solutions of (13) for sand piles { to use the

notion of set-valued maps. Looking at s = sin � � "b

x


os � �

u

juj

tan Æ 
os � we introdu
e

the set-valued sign fun
tion

sig u =

(

[�1; 1℄ for u = 0

u

juj

for u 6= 0

and

~s(u; x) = sin � � "b

x


os � � sig(u) tan Æ 
os � :

Then

~

S is de�ned by

~

S(u

1

; u

2

; x) =

(1 + �)�

0

�

F (u

1

; u

2

) +

�

0

u

1

~s

�

u

2

u

1

; x

�

�

:
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Finally the system (29) is repla
ed by the di�erential in
lusion

�

t

u + �

x

F (u) 2

~

S(u; x) (46)

whi
h is made more pre
ise in the following de�nition.

De�nition 7 Given an initial value u

0

= (u

0

1

; u

0

2

) 2 L

1

(R)

2

with u

0

1

� 0 and

u

0

2

u

0

1

2 L

1

(R)

we 
all a fun
tion u = (u

1

; u

2

) 2 L

1

�

(0; T )� R; R

+

� R) a weak entropy solution of (46)

i� u has the following properties:

(1) there exists S 2 L

1

lo


�

R � [0; T )

�

2

su
h that

S(x; t) 2

~

S

�

u(x; t); x

�

for a.a. (x; t) 2 R � [0; T ) :

(2) u is a weak solution of (46), i.e., for all  2 C

1

0

�

R � [0; T )

�

2

Z

R

Z

T

0

�

u � �

t

 + F (u) � �

x

 + S �  )dtdx =

Z

R

u

0

�  (x; 0)dx

(3) u satis�es the entropy inequality

Z

R

Z

T

0

�

�(u)�

t

�+ q(u)�

x

�+r

u

�(u) � S�

�

dtdx �

Z

R

�(u

0

)�(�; 0)

for every test fun
tion 0 � � 2 C

1

0

�

R � [0; T )

�

and every 
onvex-weak entropy 
ux

pair (�; q) for whi
h r

u

�(u) is lo
ally bounded on R � [0; T ).

Remark 8 The non-
lassi
al part (1) in De�nition 7 states the sele
tion of an L

1

lo


-

fun
tion S(x; t) 
oin
iding with S

0

(u

1

; u

2

; x) from (28) when the physi
al velo
ity

u

2

u

1

does

not vanish. In 
ontrast to the usual de�nition of 
onvex entropy 
ux pairs the degenera
y

of (26) when u

1

! 0 (h! 0) requires to add the 
ondition that �(0; �) = 0 (weak entropy).

Theorem 9 [?℄ Let u

0

= (u

0

1

; u

0

2

) 2 L

1

(R)

2

denote an initial value su
h that u

0

1

;

u

0

2

u

0

1

2

L

1

(R) and

u

0

1

� 0 ; u

0

1

(x) ! 0 ; u

0

2

(x) ! 0 as jxj ! 1

and let � 2 W

1;1

(R) be given su
h that �(x) � �

0

> 0. Then there exists a lo
al weak

entropy solution u = (u

1

; u

2

) of (46). If � is 
onstant, there exists a global weak entropy

solution.

Sket
h of Proof In a �rst step we 
onsider the vis
ous approximation

u

t

+ �

x

F (u) = S

"

(u; x) + "�

2

x

u; " > 0 ; (47)

where S

"

is de�ned by

~

S via smoothing the jump dis
ontinuity of ~s(u; x). To prove the

existen
e of 
lassi
al solutions u

"

and some a priori estimates it is 
onvenient to 
onsider

smooth initial values u

0

"

. E.g., we assume that u

0

"

2 C

2

(R)

2

, u

0

1"

� u

0

1

+ ". This smoothing

and lifting up in addition to the vis
ous approximation is not 
ontained in the proof in

[?℄, but 
an easily be in
luded [?℄. Standard paraboli
 theory yields a unique 
lassi
al

solution u

"

in some interval [0; T

"

). To prove that T

"


an be 
hosen independently of " > 0

we apply the theory of invariant regions.
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Lemma 10 Let u : R� [0; T ) ! R

�

+

�R be a 
lassi
al solution of the system (47). Further

let R

i

: R

2

! R and M

i

: [0; T ) ! R, i = 1; 2, be smooth fun
tions de�ning the regions

�(t) =

2

\

i=1

fu 2 R

2

: R

i

(u) �M

i

(t)g; t 2 [0; T ) :

Assume the following properties:

1. u(�; 0) 2 �(0)

2. r

u

R

i

(a) is a left eigenve
tor of r

u

F (a) for all a 2 ��

i

(t), t 2 [0; T )

3. �(t) is 
onvex for all t 2 [0; T )

4. sup

x2R

sup

a2��

i

(t)

r

u

R

i

(a) � S

"

(a; x) �M

0

i

(t)

where ��

i

(t) = ��(t) \ fa 2 R

2

: R

i

(a) = M

i

(t)g. Then �(t) is a one-parameter family

of invariant regions, i.e., u(x; t) 2 �(t) for all t 2 [0; T ).

This lemma will be applied with the Riemann invariants R

�

(t) = �

u

2

u

1

+ u

1=(2(1+�))

1

and

a fun
tion M(t) = M

�

(t) satisfying M(0) = max

+;�

kR

�

(u

0

)k

1

and the di�erential

inequality M

0

(t) � C

�

M(t)

2

+ k sin �k

1

�

where C = C(k�

0

k

1

; �

0

; �). As a 
on
lusion we

get a T

0

> 0 su
h that

ku

"

1

k

L

1

(R�(0;T ))

+










u

"

2

u

"

1










L

1

(R�(0;T ))

� C(T )

for all 0 < T < T

0

independent of " > 0; if the slope � is 
onstant, then T

0

= 1 and C(T )

is linear in T .

Besides L

2

-estimates of u

"

1

and u

"

2

on R � (0; T

0

) with bounds depending on " and

the 
ru
ial non-negativity of u

"

1

, see [?℄, it is important to have suÆ
iently many lo
al

L

2

-estimates of ru at hand.

Lemma 11 Let (�; q) be a 
onvex entropy-
ux pair su
h that r� is bounded and � 2 C

2

on (0;1)�R. Further let u = (u

"

1

; u

"

2

) be a strong solution of (47) su
h that u

"

, F (u

"

) and

G

"

(u

"

; x) are bounded independently of " 2 (0; 1). Then for every bounded set 
 � R�R

+

there exists a 
onstant C(
) > 0 su
h that

"

ZZ




�

x

u

"

� r

2

u

�(u

"

) � �

x

u

"

dxdt � C(
) 8 " 2 (0; 1) :

If � is even strongly 
onvex, then a similar estimate holds for "j�

x

u

"

j

2

.

Proof Given a solution u

"

of (47) and an entropy-
ux pair (�; q) the fun
tions �(u

"

), q(u

"

)

will satisfy the equation

�

t

�(u

"

) + �

x

q(u

"

) = "

�

�

2

x

�(u

"

)� �

x

u

"

� r

2

u

�(u

"

) � �

x

u

"

�

+r

u

�(u

"

) �G

"

: (48)

Testing with 0 � ' 2 C

1

0

�

R � [0;1)

�

su
h that 'j




= 1 will yield the a priori estimate.

If � is stri
tly 
onvex, the estimate r � r

2

u

�(v) � r � Æjrj

2

with some Æ > 0 will prove the

se
ond assertion. �

The se
ond main step deals with the limit "! 0. Sin
e only very few a priori estimates

on u

"

are available and sin
e (46) 
ontains several nonlinear terms, we need to refer to

Young measure solutions as limits of

�

u

"

1

;

u

"

2

u

"

1

�

.
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Lemma 12 [?℄ Assume that (z

k

) � L

1

(
)

2

is a sequen
e on 
 � [0; T )�R with z

k

(
) �

K where K � R

2

is 
ompa
t and 
onvex. Then there exists a subsequen
e (z

k

j

) � (z

k

) and

a family of Borel probability measures (�

(x;t)

)

(x;t)2


on K su
h that for every H 2 C

0

(K)

2

lim

j!1

ZZ




H

�

z

k

j

(x; t)

�

'(x; t)dxdt

=

ZZ




H(x; t)'(x; t)dxdt 8' 2 L

1

(
)

2

(49)

where

H(x; t) =

Z

K

H(�)d�

(x;t)

for a.a. (x; t) 2 
 :

The proof of this famous lemma is based on the Theorem of Bana
h-Alaoglu applied to the

spa
es L

1

(
;C

0

(K)) and L

1

(
;M(K)). When applied to a sequen
e (z

k

) of approximate

solutions of a (partial) di�erential equation this lemma yields a measure-valued solution

R

K

y d�

(x;t)

(y) in the limit. By these means the notion of strong or weak solutions is

generalized to a great extent: there are no longer fun
tion values a.e. in 
, but only

probabilities of them. E.g., the sequen
e of Radema
her fun
tions r

j

(x) = sgn sin(2

j

�x)

on (0; 1) attains the values �1 with probability

1

2

for every j 2 N. Its limit for j !1 in

the usual weak sense of (L

1

)

�

is 0, but in the sense of Lemma 12 we get the probability

measure �

x

� � =

1

2

(Æ

�1

+ Æ

+1

) for all x 2 (0; 1). Then H(x) �

1

2

�

H(�1) +H(+1)

�

is the

limit of H

�

r

j

(x)

�

for all H 2 C

0

([�1; 1℄).

Lemma 12 will be applied to z

k

=

�

u

"

1

;

u

"

2

u

"

1

�

where " =

1

k

and to

H

1

(z) =

�

z

1

z

1

z

2

�

=

�

u

1

u

2

�

; H

2

(z) = F (z

1

; z

1

z

2

) :

Then for every test fun
tion ' 2 C

1

0

�

R � [0; T )

�

2

Z

R

Z

T

0

�

H

1

(z

"

)�

t

'+H

2

(z

"

)�

x

' +H

"

3

(z

"

; x)'

�

dt dx

= "

Z

R

Z

T

0

�

x

u

"

� �

x

'dtdx +

Z

R

u

0

'(x; 0)dx

where H

"

3

(z; x) = S

"

(z

1

; z

1

z

2

; x) is dis
ontinuous in z. By Lemma 12 there exist Young

measures �

(x;t)

for a.a. (x; t) 2 
 su
h that

Z

R

Z

T

0

(H

1

�

t

'+H

2

�

x

'+H

3

')dtdx =

Z

R

u

0

'(x; 0)dx

where H

j

(x; t) =

R

K

H

j

(y)d�

(x;t)

(y), j = 1; 2. However, H

3

2 L

1

(R � R

+

)

2


annot

be 
hara
terized by using the measures �

(x;t)

. To deal with fun
tions with jump dis-


ontinuities as sgnu

1

or in two dimensions with dis
ontinuities of the type

u

juj

a further

de
omposition of the measures �

(x;t)

is needed, see [?℄.

To show for the Young measures that �

(x;t)

= Æ

z(x;t)

for a.a. (x; t) we need the Div-Curl

Lemma and suÆ
iently many entropy-
ux pairs.
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Lemma 13 [?℄ Let 
 � R�R

+

be bounded, (u

k

) a sequen
e of fun
tions on 
 and (�

1

; q

1

),

(�

2

; q

2

) weak entropy-
ux pairs. Assume that �

i

(u

k

), q

i

(u

k

) 
onverge weakly in L

2

(
) to

�

i

(u), q

i

(u) and that �

t

�

i

(u

k

) + �

x

q

i

(u

k

) is relatively 
ompa
t in W

�1;2

(
) for i = 1; 2.

Then, as k !1,

ZZ




�

�

1

(u

k

)q

2

(u

k

)� �

2

(u

k

)q

1

(u

k

)

�

'dxdt!

ZZ




(�

1

q

2

� �

2

q

1

)'dxdt

for every ' 2 C

1

0

(
). Furthermore

Z

K

(�

1

q

2

� �

2

q

1

)d�

(x;t)

=

Z

K

�

1

d�

(x;t)

�

Z

K

q

2

d�

(x;t)

�

Z

K

�

2

d�

(x;t)

�

Z

K

q

1

d�

(x;t)

:

Given an entropy-
ux pair (�; q) De�nition 6 implies that � satis�es a se
ond order wave

equation w.r.t. u

1

; u

2

with (u

1

; u

2

)-depending 
oeÆ
ients. By [?℄ every weak entropy �,

i.e., �(0; �) = 0, 
an be written in the form

�(u

1

; u

2

) =

Z

R

f(�)

�

u

1

2(1+�)

1

� (� �

u

2

u

1

)

2

�

2+4�

+

d�

(50)

= u

1

Z

1

�1

f

�

u

2

u

1

+ � u

1

2(1+�)

1

�

(1� �

2

)

2+4�

d� :

In parti
ular, for f(s) =

1

2

s

2

, the entropy � 
oin
ides up to multipli
ative 
onstant with

the me
hani
al energy �

E

=

1

2

u

2

2

u

1

+ �

0

u

2+�

1+�

1

. It is easily seen that for f 2 C

1

0

(R) the

sequen
e

�

r

u

�(u

k

)

�

is bounded on 
 and that

jr � r

2

u

�(u

k

) � rj � C

f

r � r

2

u

�(u

k

) � r 8 r 2 R

2

independent of k 2 N. A further analysis based on previous a priori estimates shows that

the right-hand side of (48) is pre
ompa
t in W

�1;2

(
)

2

+ W

�1;p

(
)

2

(p < 2) and that

the left-hand side of (48) is uniformly bounded in W

�1;1

(
)

2

. Then by Murat's Lemma

�

�

t

�(u

k

) + �

x

q(u

k

)

�

k2N

is pre
ompa
t in W

�1;2

(
) for every weak entropy-
ux pair (�; q)

generated by f 2 C

1

0

(R), see (??). Hen
e Lemma ?? may be applied.

This is the starting point to show in a lengthy te
hni
al proof [?, ?℄ that the Young

measures �

(x;t)

are Æ-measures. To be more pre
ise, using the (z

1

; z

2

)-fun
tions,

�

(x;t)

=

(

Æ

(z

1

;z

2

)

if z

1

> 0

Æ

z

1

� �

(x;t)

if z

1

= 0

where supp �

(x;t)

� [lim inf

k!1

z

k

1

(x; t); lim sup

k!1

z

k

1

(x; t)℄ �� R. For (u

1

; u

2

) we 
on-


lude that also in the 
ase when u

1

(x; t) = z

1

(x; t) = 0 the measure �

(x;t)

is 
on
entrated

in one single point u(x; t). Note that the analysis from [?, ?℄ simpli�es to elementary

algebrai
 
onsiderations when � = �

1

2

, see [?℄. However, in this 
ase, the 
onstitutive

relation � = h

�1=2

seems to be unphysi
al.

In the �nal step Lemma 12 implies that u

k

* u weakly in L

1

(
)

2

and using H(y) =

jyj

p

, 1 < p <1, that

ZZ




ju

k

j

p

dxdt !

ZZ




juj

p

dxdt for k !1. Hen
e u

k

! u in L

p

(
)

2

by the Theorem of Radon-Riesz. By similar arguments u 
an be shown to be an entropy
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solution of (29). Looking more 
arefully at

~

S with its jump dis
ontinuity sigu we may

even sele
t a fun
tion S 2 L

1

lo


�

R � [0; T )

�

2

su
h that u is a solution of (46) in the sense

of De�nition 7. �

A detailed analysis of the time interval in whi
h a weak entropy solution exists may be

performed by the theory of invariant regions, see Lemma 10. In the 
ase when � � �

0

> 0

the following results depending on the behavior of the slope �(x) have been obtained [?, ?℄:

Theorem 14 Let a 
urved base with variable slope angle �(x) be given su
h that for

�(x) = "K 
os �(x)

�

0

�

2 L

1

(R) :

Consider an in
ompressible avalan
he with initial values h

0

; u

0

su
h that

0 � �

0

= �h

0

2 L

1

(R); m

0

= �h

0

u

0

2 L

1

(R)

�

0

(x) ! 0; m

0

(x) ! 0 for jxj ! 1 :

Finally let s(x; u) = sin �(x) � sgn(u) tan Æ(x) 
os �(x), where the bed fri
tion angle Æ(x)

may depend on x 2 R, let P =

5

8

k�

0

=�k

1

, Q = ksk

1

and let E

0

= max

�

k2�

0

k

1

; k

1

2

u

2

0

k

1

�

measure the initial energy of the avalan
he.

1. If �

0

= 0 (
onstant slope), then the Savage-Hutter equations admit a global weak

entropy solution. Furthermore � grows at most quadrati
ally as t ! 1 and u =

m

�

grows at most linearly as t ! 1. If in addition j�j � jÆj for all x 2 R, i.e., the

slope angle is bounded by the bed fri
tion angle, then � and u are uniformly bounded

independent of time with a bound depending only on E

0

.

2. Assume that

�

0

� 0; u

0

> 0;

1

2

u

2

0

� 2�

0

and � � Æ ;

i.e., the slope angle �(x) is 
onstant or even steepening, the initial velo
ity is positive

and suÆ
iently large and the slope angle is greater than or equal to the bed fri
tion

angle. Then there exists a global weak entropy solution. Furthermore � grows at

most quadrati
ally and u = m=� grows at most linearly as t ! 1. Finally u � 0

(down slope) and

1

2

u

2

� 2�.

3. If the slope is arbitrarily 
urved (�

0

6= 0), then there exists a weak entropy solution

on a time interval (0; T

max

). Here it is suÆ
ient to take

T

max

=

1

PQ

�

�

2

� ar
tan

p

2E

0

P=Q

�

:

In [?, ?℄ the term sgn(u) in s(x; u) has been smoothed. However, the same results hold in

the set-valued formulation, 
f. (46), De�nition 7, for an in
ompressible avalan
he [?℄.
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