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Abstract Avalanches, landslides and debris flows are devastingly powerful natural phenomena
that are far too little understood. These granular matters are mixtures of solid particles and of an
interstitial fluid and are easily modelled on the microscopic level by the laws of classical mechanics.
On mesoscopic and macroscopic levels the different scales of the influence of the particles, the fluid
and their interaction lead to various models of avalanching flows. In this survey we consider several
models of granular materials characterized by height and in case also by momentum, discuss the
existence of similarity solutions, existence of arbitrary solutions and particle segregation. The main
part concerns the Savage-Hutter equations for dense flow avalanches.

1 Introduction

The number of catastrophes induced by snow avalanches, landslides and debris flows has
been increasing during the last decades. The reasons are a possible change of climate with
heavy rainfalls, but also the activities of human beings in endangered mountainous regions.
Therefore the determination of runout zones and of endangered regions by analytical and
numerical methods for the different types of “avalanches” is of the utmost importance.
A related physical, but less desastrous behavior can be observed in the motion of sand
dunes, in the pouring of grains leading to free surfaces of stock piles and in hopper flows.

The main feature of the phenomena of granular materials is the mixture of solid par-
ticles with water or air leading to a behavior different from that of solids, fluids or gases.
On the other hand, the main differences between the various kinds of granular flows are
due to the small or large fluid-solid interaction, the size and shape of the grains and due to
the predominance either of the solid particles whilst the influence of the interstitial fluid
can be neglected or of the fluid carrying the small particles.

On the scale of individual grains the behavior of granular material is described by
the laws of classical mechanics. But due to the huge variety of particle sizes, shapes and
densities, the abrasion of particles, the interaction with the fluid, with different layers or
with the bed leading to an exchange of particles, it is very difficult to model granular
flow on mesoscopic or macroscopic scales. Further typical features are the dilatancy and
particle segregation. In every day life it is observed that after stirring or shaking grains
of different size but not necessarily with different specific weight the bigger grains tend to
move upwards (inverse grading) and to the nose of an avalanche.

As an example consider the different scales of a typical snow avalanche with weight
10% kg consisting of ice particles with radii less than 1 mm. In the lower part of the
avalanche sliding on a fluidized layer the solid particles dominate whereas the interstitial
air can be neglected. Above this dense flow avalanche there may be a powder snow
avalanche in which turbulent air carries the ice particles. In between there is a thin layer
called resuspension layer or saltation layer feeding the powder snow avalanche, see [?, ?].



Dense Flow Avalanche | Powder Snow Avalanche
Volume fraction of particles 0.3-0.5 1.1073-1.10~*
Density [X2] 200300 0.1-10
Length [7n) 101000 100 - 2000
Height [1n) 0.5-20 10500
Speed (2] 070 10200

Table 1: Characteristic parameter ranges in dense flow and powder snow avalanches [?, ?]

Although powder snow avalanches have a much lower density than dense flow avalanches,
their length, height, velocity and consequently their runout zone is much larger.

This review article is organized as follows. In Section 2 we discuss particle segregation
and a simple model based on diffusion and convection [?]. Further we consider stationary
solutions of the BCRE model for (dry) sand piles. Section 3 is devoted to the Savage-
Hutter model [?] on dense flow avalanches, its similarity solutions and the mathematical
analysis of weak entropy solutions within the theory of systems of conservation laws with
source terms.

2 On Models of Cohesionless Granular Materials

2.1 Particle Segregation

It is well-known that in granular flow the large particles tend to move upward and to the
nose of an avalanche while the small particles lie at the bottom and at the rear end of
an avalanche. This inverse grading can be explained by the percolation effect or the so-
called random fluctuating sieve mechanism [?]: the probability for a small particle to find
a hole in the granular material to fall into is larger than for large particles. But since this
gravity-induced hole-filling mechanism would lead to a net mass flux downwards, Savage
and Lun [?] also propose a squeezing expulsion mechanism; by this mechanism the forces
exerted by the particles to each other lead to a squeezing of particles up- or downward.

A further discussion of possible reasons for the usual grading and for inverse grading can
be found in [?] and in references therein. In addition to percolation effects, to geometrical
reorganization and to segregation driven by convection, inertia or entropy the authors
propose a so-called condensation of hard spheres as the driving force.

A simple mathematical model for segregation in a mixture of n species has been pro-
posed by J. Braun [?]. Let u; = u;(z,t) denote the concentration of the i—th species,
1 <4 < n, in a one-dimensional container 2 = (0, L) of height L > 0. Then the change
% of the concentration u; is balanced by the negative of the flux J; = J;(u) which is
the sum of a convectional part J¢ = f;(u) and of a diffusional part J& = —d(u) % with

d(u) > 0. Thus we get the system of reaction — diffusion equations

ut—(d(u)ux—f(u))xzo, U= (Up,y... ,Up). (1)



The convective part f(u), is related to the random fluctuating sieve mechanism whilst
the diffusive term (—d(u)u)x accounts for the random effects of collisions and could lead
to the squeezing expulsion mechanism. In order to guarantee that

Zuizl and u; >0 (2)
i=1

the structural conditions
Y filw)=0 and u; =0= fi(u) =0 (3)
i=1

are imposed. We note that (2) is a consequence of (3) due to the maximum principle for
parabolic equations. Besides an initial value

n
u(+,0) = ug(-) with Zuig =1
i=1

the flux condition J(u(z,-)) = 0 for = 0 and z = L is used to impose the (non-linear)
boundary condition

diuw)uy — f(u) =0 atz=0,z=0L.

Then the effect of segregation is reflected by the long-time behavior of solutions of (1).
For n = 2 species with concentrations v := u; and uo = 1 — w1 and convectional part
fw) = fi(u,1 —u) where fo = —f1 by (3), the system (1) simplifies to one non-linear
parabolic equation

u — (dwu, — f(w), = 0
duw)ug — f(u) = 0 inz=0,z=1L (4)
u(-,0) = wuo().
Theorem 1 [?] Assume that d and f are twice continuously differentiable.
(1) For every prescribed mean concentration

L
U= %/0 u(z)dz € [0,1]

the stationary problem

d(u)uy = f(u), (5)

cf. (4), has exactly one solution u(x) with mean value G.

(2) For every initial value ug € C°([0, L]) with mean value uw € [0,1] problem (4) has a
unique global solution u on [0, L] x (0,00) converging to the stationary solution u of (5)
with mean value u for — oo .



Sketch of Proof (i) A solution u of (5) is defined by the ordinary differential equation

du o f(u)
o = 9) = ) (6)

where f(0) = f(1) =0, cf. (3), yields g(0) = ¢g(1) = 0. Due to the unique solvability of
(6) every solution u(z) of (6) with initial value ugp € [0,1] will exist for all z € [0, L] and
satisfy u(z) € [0,1]. By the same argument two solutions u; and ug with u1(0) < uz(0)
will satisfy u;(z) < ug(zx) for all z € [0, L]. Since the solution u = u(-,up) is a continuous
and even a monotonically increasing function of its initial value uy = u(0) and since ug = 0
or ug = 1 yield u = 0 or u = 1 respectively, we conclude that the map

w:[0,1] = [0,1],  wp — u(-,uo),

is a homeomorphism.

(ii) Given an initial value ug(z) with ug(z) € [0, 1] the solution u of (4) exists for all ¢ > 0.
Then v = d(u)u, — f(u) satisfies the parabolic equation

vy = a(t, ©) vy + b(t, )vy

with bounded functions a = d(u), b = d'(u)u; — f'(u) and vanishing boundary values in
z = 0, x = L. By classical theorems v and v, = wu; converge to zero for { — oco. In
particular u converges to a stationary solution u of (4), i.e., ux solves (6). Furthermore
(4) easily implies that u(-,t) is constant; hence uq, is the unique solution of (6) satisfying

Uoo = UQ- O

The proof of Theorem 1(1) is based on topological arguments. Therefore degree theo-
retical arguments are used in the case of more than two species leading to the existence of
at least one stationary solution. Thus uniqueness of a final segregation of particles cannot
be guaranteed for more than two species in general. Note that in this model empty space
is evenly distributed in the vessel and that compressibility or dilatancy effects are ignored.

2.2 Stationary and Self-Similar Solutions

Consider a granular material such as dry sand poured at a rate s = s(x,¢) > 0 and piling
up to form heaps. First the material builds up without further motion, but eventually
starts to roll down when the pile has a critical slope £ = tan « > 0. The pile consists of two
main parts, the standing layer of height h = h(x,t) (and of constant density) and a thin
rolling layer of relative height » = r(z,t). In the BCRE model established by Bouchaud
et al. [?, 7] and modified by de Gennes [?] by omitting diffusion terms the exchange of
grains from the rolling to the standing layer is described by the exchange term

| 2

L(t,r) = 'yr(l — | 2

), 7>0; (7)

thus it is proportional to the thickness r > 0 of the rolling layer and vanishes iff r = 0 or
the slope of the bulk equals the critical slope k. Since the grains in the bulk are motionless
except for the exchange —I' to the rolling layer, h satisfies the equation

he =T(h,r).



However, for the rolling layer, there are two source terms s and —1I', such that the continuity
equation for r reads

ry + div(vr) = s = I'(h,r)

where v is the horizontal projection of the velocity vector of rolling grains. Assuming that
particles are rolling in the steepest descent direction —Vh, the term v is modelled by

v=—uVh, u>0.
Summarizing we get the system of partial differential equations

VA
L

VA
o)

hy = 7r(1 —
(8)
ry — div(urVh) = s—r(l—

for (z,t) € Q x (0,00) together with the initial conditions r(z,0) = 0 and h(z,0) = ho(z),
where ho(z) describes the bottom on which the granular material is poured. If the domain
Q C R! or 2 C R? is not the whole space and surplus material drops down at 99 [?, 7, 7],
we prescribe

h(z,t) =0 forz € 0Q. (9)

Since h > 0 close to 012, the scalar product of VA with the exterior normal vector v on
0} is nonpositive. For z close to 0S2 by (8)2 ry = uVr - Vh + ... indicating that r(z,t)
behaves like an outgoing wave near 0€2. Thus no boundary value for » may be prescribed.

In the silo problem with walls of infinite height at 02 such that no material can leave
the silo [?7, 7, ?], (8) yields the equation

d oh
— (h—i—r)dm:u/ r—d0+/sda;
)

dt 0 o0 81/

for the balance of the total mass [;,(h + r)dz. Hence [,,72%do = 0; since r may be
arbitrary on 02, see the discussion above, we get the Neumann boundary condition

oh
E(m,t) =0 on 09. (10)

The system (8) is also closely related to an earlier model of L. Prigozhin [?, ?] using
variational inequalities. In [?] the authors introduce three length scales:

L, = % denotes a typical thickness of the rolling layer
given a characteristic (mean) source intensity s

L,= % denotes the mean path of a rolling grain before
being trapped in the standing layer

L denotes the pile size.



Then rescaling variables by

and omitting primes (') for the new dimensionless variables and functions, h and m = %r
solve the system

1 _|vhP?

" (Lp/L)m( 2
2
(%)n —div(mVh) = s— (Lpl/L)m (- |V/£| )

Assuming L, << L, and % — 0 the second equation implies that

1
(Lp/L)

and consequently that

VA
-

m(1 ) ~ s+ div(mVh) (11)

hy —div(mVh) = s.

Actually, if |Vh(z,t)| < k, the term m has to vanish when L,/L — 0, see (11). Summa-
rizing, in the limit we get the equation

hy —div(mVh) = s
with the restrictions m > 0, |Vh| < k and
|Vh(z,t)] <k=m=0.

Under suitable assumptions and with additional diffusive terms for h and r, this formal
analysis is rigorously proved in [?] for a related discretized system with respect to time
t > 0. Furthermore the equation for A and its Lagrange multiplier m is equivalent to a
variational problem in the convex set K = {¢ € HY(Q) : [Vp| < k a.e.} :

find h(z,t) such that h(-,t) € K for a.a. t > 0,
(ht—S,(P—h)LQ(Q)ZO VQPEK

together with an initial condition h(-,0) = hy, see [?].

Note that the original BCRE equations included diffusion terms such as eAr in (8)2
leading to a parabolic rather than to a hyperbolic equation for . However diffusion may
lead to grains rolling upwards instead of downwards. The advantage of the system (8) is
the fact that the exchange between the standing and the rolling layer is easily modelled
by the exchange term I" in (7). The other terms in (8) are just based on the conservation
of masses. On the other hand inertia, momenta, longitudinal and lateral pressures as
well as density changes are neglected. These effects are incorporated in the Savage-Hutter
models for wet snow avalanches, see Section 3 below, leading to a highly nonlinear system
of conservation laws.



In [?, 7, ?] another constitutive law for the exchange term I' is used:

P =r(1 - 22

leading to the avalanche model
k )

h
ry —div(urVh) = s-— fyr(l - —|Vk |)

hy = 77‘(1
(12)

together with initial conditions and the boundary conditions (9) or (10) for h. To our
knowledge there is no rigorous proof of existence and uniqueness of solutions to (12) up
to now. Even the stationary case with s = 0 or s # 0 poses several open problems. One
main property and difficulty of the stationary case with s = 0, i.e. for the system

r(1- @) =0, div(rVh)=0 (13)

is the non-uniqueness of solutions: Every pair of functions h,r satisfying
h>0, |Vh| <k, r=0
(and even with |Vh| > k leading to unstable situations) is a solution of (13).

Even in one dimension the boundary value problem
IVh| =k a.e. in Q, h=0ondN,

the so-called eikonal equation known from geometrical optics, has uncountably many so-
lutions, namely all piecewise linear functions on an interval Q C R' with slope £k a.e.
However, uniqueness may be obtained in the setting of viscosity solutions of fully nonlinear
equations, see [?, ?], or when looking for the mazimum volume solution.

Theorem 2 Let Q C R! be a bounded open interval or let Q C R? be an open bounded
domain. Let the function ¢ € C%Y(Q) describe the bottom topography (bed) and let ¢ :
0 — [0,00] with ¢ # 0o, P < ¢ on 0N, describe the rim (wall) of the container. Then
there exists a unique mazimum volume solution h € C%'(Q) such that

P(z) <h(z) in Q,  h(z) < ¢(z) on 0

P(z) < h(z) forz e Q = |h|cg,1 <k (14)

/Q(h—w)dac = max .

Here for z € Q the condition |h]| oo < k means that there exists an open ball with center
z in Q such that |h(y) — h(y")| < kly — /| for all y,y' € B. Note that h(z) = 9(x) iff
no granular material lies on the bed at 2 € Q. The term [,,(h — ¢)dz measures the total
mass poured onto the bed.

Proof [?] Let
M = {heC’Q):h>¢ponQ, h<¢$ond,
h(z) > ¢(z) for z € @ = [h| 01 < K},

7



Since 2 is a bounded domain with Lipschitz boundary and since 1 € C%!(€2) there exists
a constant K = K (k,) such that

Ih(y) — h(y')| < Kly —y'| forally,y €Q (15)

and for all h € M. The assumption ¢ # oo, i.e., there exists £ € 9Q with ¢(§) < oo,
implies that M is a set of uniformly bounded functions. Furthermore M is closed in
C%(Q). Thus M is bounded in C%(Q) and by Arzela-Ascoli’s Theorem even compact
in C°(Q). Since V(h) = [4(h — 9)dz is a continuous functional on C°(2) we get the
existence of h € M maximizing the volume V(). Given h' € M with V(h') = V(h), but
different from h, the continuity of k, b’ on  will lead to the function max(h, k') € M with
V(max(h,h')) > V(h) contradicting the maximality of V at h. O

There exists a remarkable analogy [?, 7, ?] between (14) and the Dirichlet problem for
the Laplacian, i.e.,

Au=0o0n§, u=gond. (16)

Under suitable assumptions on 02 and on g Perron’s method characterizes the unique
solution u of (16) by subharmonic functions:

u(z) = supf{v € C*(Q)NC°(Q) : Av >0in Q, v < g on IN}.
Calling a function h € C%1(Q) satisfying (14)1 2 subeikonal we get the following result.

Proposition 3 The solution h of problem (14) given by Theorem 2 can be characterized
for every x € Q by

h(z) = sup{g(z) : g € M},

i.e., h(x) is the supremum and even the mazimum of g(z) among all subeikonal functions

in (14).

Proof [?] To show that h(z) := sup{g(z) : ¢ € M} is Lipschitz continuous fix y,y’ €
Q. Then there are sequences (hj), (h;) C M such that h;(y) — h(y), hi(y) — h(y).

Replacing h; and h}; by max(hj, h;) € M we may assume that h; = h;. Then the estimate

hj(y) — hi(y)] < K(k, )|y — 3| forall j €N,

see (15), yields the desired estimate for h when j — oo. In particular h is continuous.

To prove (14)y let h(z) > 9(x) for some z € Q. Having the “maximum” Lipschitz
constant K (k,+) in mind we find an open ball B with center z in Q such that h > 1
on B and that even every ¢ € M with g(y) > %(E(y) + 9 (y)) for some y € B satisfies
g >4 on B. Given arbitrary y,y’ € B there exists a sequence (h;) = (h}) C M such that
hj(y) = h(y), hj(y'") — h(y'). Since the “global” Lipschitz constant of h; on B is easily
seen to be bounded by k for every 5 € N, the same holds for h proving that |i~z|cg,1 <k.

Consequently & € M, h(z) > h(z) for all z € Q@ and V (h) < V/(h). If h(z) > h(z), then
max(h, h) € M would lead to a contradiction to the maximality of V' (k). Thus h = h. O

The solution h of (14) may also be characterized by transport paths. If for simplicity
¢ = 0, then for z € Q

h(z) = ig(lf{¢(x(1)) + kL(x)}



where x runs through the set of all continuous piecewise linear paths in € connecting z
with any point x(1) € 09; here £(x) denotes the length of x [?]. In the most elementary
case 1 = 0 and ¢ = 0 (no wall), we easily get the solution

h(z) = kdist(z, 09) .

Note that h will have points or lines in 2 where it is not differentiable; for a discussion
of these singular sets for concrete examples and for several general classes of domains, see

[7].

Besides the maximum volume solution in Theorem 2 we consider the time-independent
standing/rolling layer of thickness h and r, resp. when granular material is constantly
poured onto a flat table 1y = 0 with source intensity s(z). For a point source located in y,
i.e., formally s(z) = 6,(x), we get a cone with vertex y and with slope £, i.e., h(z) equals

k(dist(y,09) — |z —yl) , |z —yl < dist (y,09)
Iz, y) =
0, otherwise .

Then, for more general source distributions, we take the maximum (not the sum or inte-
gral) of T'(z,y) on supps, i.e.,
hz) = r - r : . 1

() =  max I(z,y) = maxD'(z,y) - Xsupps() (17)
This formula is similar to the solution u(z) = [, G(z,y)f(y)dy of Poisson’s problem
—Au = fon Q, u=0 on J using Green’s function G(z,y). In the one-dimensional case
Q= (0,¢), 9 =0, ¢ =0, problem (12) has a unique stationary solution (h,r). Based on
(17) h(x) and also r(z) can be written down explicity; in 2D this problem is not completely
solved, see [7].

Finally we consider the silo problem (11), i.e.

_ VAl

he = r( ? ) in  Qx(0,00)
ry — div(urVh) = s—r(l— @) in  Qx(0,00) (18)
% =0 on 08 x (0,00).

This instationary hyperbolic system is not yet solved rigorously. In the one-dimensional
case exact solutions have been described in [?] by parametrizing h,r and also z,% in a
new coordinate system (u1, p2). If s =0 and if div(urVh) is replaced by cr,, the authors
find a 4x4-system of PDEs in which each equation contains only partial derivatives with
respect to p; or to pe. This system can be solved “explicitly” and yields solutions in
the form h(p1, p2), r(p1, p2), o1, p2) and t(u1, o). From these formulae several profiles
(h,r) and shock lines can be analyzed.

The analysis gets much easier in the quasi-stationary case where s > 0 is independent
of ¢ with a mean source intensity

5= ﬁ/gs(m)dm > 0. (19)



In this case, for large ¢, we expect a similarity solution
h(z,t) = ho(x) +35t, r(z,t)=r(z).

Then (18) simplifies to the stationary system

_ vl

5 = ')/'r( k ) n Q
h
—div(urvh) = s—r(l- % in Q (20)
oh
W 0 on 0f}.

Since 5 > 0, we conclude from (20); that |[Vh| < k a.e. A simple calculation leads to the

highly nonlinear Neumann problem
Vh ) — s(z) =35 .

L—[Vhl|/E"— ps/y

n 2, %:00H8Q. (21)

—div ( £y

Proposition 4 In space dimension one (20) has a unique similarity solution (up to ad-
ditive constants in h). For Q = (0,£) define

¢ xr
U(zx) :/0 (7 = X0 W) f (W)

Then the rolling layer is given by
1

r(z) = E(%§+ U(2)])
and the slope hy of the standing layer is given by
U(x)
hy(z) =k —7F—.
L5+ U (o)

The proof is given in [?]. Since 5 > 0, actually |hy| < a in (0,¢). In the two-
dimensional case an explicit solution can be found for the disc @ = Bg(0) and a point
source s(z) = dg(x), see [?]. The general problem in 2D is not yet completely solved.

3 Existence Results for the Savage-Hutter Avalanche Model

3.1 Modelling

The Savage-Hutter equations model the flow of a dense snow avalanche with small aspect
ratio on an inclined plane or on a rough bed by considering the avalanche as a cohesionless
granular material in which the interstitial air plays a negligible role. In contrast with the
BCRE model of Section 2 this model accounts for an exchange of momentum and goes far
beyond simple particle models [?, ?]; on the other hand it ignores abrasion and exchange
of particles between the avalanche and the bed.

In a plane curvilinear coordinate system let z denote the coordinate along the rough
incline and let z denote the perpendicular coordinate. Looking for the velocity w of the
avalanche and the height h of the free surface the main assumptions of the Savage-Hutter
model [?] are as follows:

10



e The granular material obeys a Mohr-Coulomb-type plastic yield criterion expressed
by a constant angle of internal friction ¢, i.e., given the stress tensor 1" and the
exterior normal vector n on an internal surface the shear traction S = n-T—n(n-T-n)
and the normal stress N = n - T - n are related to each other by the formula |S| =
N tan ¢. Since shear traction depends on the direction of the velocity vector w,

S = —iNtangb,
|ul

giving rise to a jump discontinuity.

e At the base there exists a very thin fluidized layer (about 10 grain diameters) obeying
a Coulomb dry friction law with a bed friction angle § < ¢, i.e., S = —*% N tan.

Jul

e The longitudinal stress component 17, is related to the perpendicular component

T,, by
Tope = act/pass T,
where
Kot | _ 200F /(1 — cos? ¢/ cos?9)) , i ou/dzx >0 (22)
Kpass B cos? ¢ iff 8u/8x <0

is the active and passive earth pressure coefficient, resp. Note that 0 < Kyey < Kpass,
where K, applies iff the flow is locally expanding.

e As a major assumption the velocity profile is blunt (except for the fluidized layer):
forevery z e R, ¢ > 0

h(z,t) h
/ u(z, z,t)dz = h(z, t)u(z,t), / u?dz = hu? etc.
0 0

Thus all macroscopic quantities are considered to be y—independent.

e Given a characteristic height H and length L of the avalanche assume that the
aspect ratio e = H/L is small compared to 1, i.e., ¢ < 1. If the bed is curved with a
characteristic radius of curvature R, assume that % = O(¢'/?). Finally assume that
tand = O(e!/?).

Typical values of §, ¢ and K for glass, quartz, marmor or plastic grains are as follows, see

[7]:
20° < § <40°% 30% < ¢ <462, 5° < p— 6§ < 20°

where the bed friction angle also depends on the roughness of the bed. Thus typical earth
pressure coefficients are

Kact € (0.7,0.9), Kpass € (2.8,4.6) .

11



Ignoring all terms of order higher than € the Savage-Hutter equations for a thin two-
dimensional avalanche of height h, velocity v = (u1,u2) and momentum hu on a two-

dimensional basal profile z = b(x,y) with main down slope direction ((1)) take the form
7,7, 7]

Oih + div(hu) = 0

1
O (hu) + div(hu ® u + Eath(cos ¢) = hs(u, ) (23)
with the source term
1
5= sin§(0> - %htanécos{ —ehK(cos&)Vb. (24)

Here ¢ = £(x) is the local inclination angle along the direction ((1)) whereas the influence

of the curvature has been omitted. Furthermore K denotes the diagonal 2x2-matrix of
earth pressure coefficients such that

diV(%sh%cos&)K) = cheos (K O roy,act/pass Oh

T
z,act/pass 8_£E’ x,act/pass 8_y) t...

y,act/pass
Kw,a,ct /pass

This term together with the term ehK (cos{)Vb represents the variation of the normal
pressure in z- and y-directions, whereas the first and second term of (24) are due to
gravity normalized to 1 and to friction of the avalanche with the bed, respectively. To be
more precise in the two-dimensional case, ¢ = H/L has to be replaced by a diagonal 2 x 2
matrix with entries ¢, = H/L, and e, /e4y = (H/Ly)/(Ly/Ly) for characteristic lengths
L, and L,.

System (23) is written in the form of a system of conservation laws for (h,hu) with
a source on the right-hand side depending on h and w. Looking at the leading terms
and ignoring the term containing K, (23) is similar to the shallow water equations and
to the Euler equations of gas dynamics. However, besides the fact that there exists no
satisfying mathematical theory for systems of conservation laws in more than one space
dimension, the jump discontinuity ﬁ and of course the piecewise constant function K
depending on signs of Vu pose new analytical and numerical difficulties. Thus, in every
analytical approach — even when looking for similarity solutions, see §3.2 — K is assumed
to be constant.

with K act/pass s in (22) and depending on the signs of % and of 88—’;/2.

Of course solutions of (23) may evolve shocks even when the data are smooth. Shocks
will mainly occur in the run-out zone when a part of the material has already been de-
posited. Furthermore shocks can be observed in beautiful experiments on granular matter
in rotating drums, see [?].

Proposition 5 Let (h, hu) € R? be a weak solution of (23) in a domain Q C R? x (0,00),
i.e., for all p € C§(2)3

é/ { <th> ot (hu ®u+ ;:hZ(cos §)K> ' Vw} didl
= —//<’?S> - dxdt.
Q
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Assume that §) is separated by a smooth, reqular surface I' into two parts Qp and §2,. such

that
h 1/5\3 h 1/5\3
Q Q,.)°.
(’W)‘QTEC( 0" (hu>‘QTEC( 2

Let v = (v, v;) denote the unit normal vector on T directed into Q. Then (h, hu) satisfies
the Rankine-Hugoniot jump condition

Khhuﬂyt e Khu ®u+ ;:h%cosg)f()] =0,

where as usual [-] denotes the difference of the limits of (h,hu) on I' taken from €y and
from Q,.

Coming back to a one-dimensional avalanche on a basal profile z = b(z), x € R, let a
line of discontinuity I' be given in parameterized form (y(t),t). Then v'(t) is the speed
of propagation of the discontinuity, and the Rankine-Hugoniot condition takes the simple
form

[(h’z)] 7= [(W + Leh? (’ézsg)Kact /passﬂ ' (25)

A more recent generalization of the Savage-Hutter model considers compressible avalanches
of density p satisfying a constitutive equation p = p(h,u), see [?, ?]. Since there is no
physical evidence for a (monotonically decreasing) dependence on |u|, up to now the con-
stitutive equation

p(h):ha, a>0,

has been investigated; see [?] for the mathematically easier case a = —%. In the one-
dimensional case we get the system

9 (ph) + Ox(phu) = 0

O phu) + Du(phes® + L A()ph?) = phs(u, ), @
where
B(2) = eKoerpuss cOSE()
s = sing—ecosgbx—%tanécosg.

Assuming an overall constant K = K /pass it is convenient to introduce new functions
to get rid of the z-dependence in the term 33(z)ph® and to refind the standard form of
conservation laws. Let

= (1) (2)" ). -

where £ = (4(1 + a)(2 + oz))fl, and
F(ui,ug) = (u2 2 2+a> , So = LQ)’BIF_F (uls(?‘2 )> ) (28)

2 1+o uz
o T RYy g R
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Then (26) takes on the form
Owu + 0, F(u) = So(u,z), u = (ur,usz). (29)

Note that in (28) also the first component of the source term Sy is different from zero.
But the Rankine-Hugoniot condition for a shock line I' with speed of propagation +/(t)
has the simple form

[ur]y" = [ua], [u2]y' = [Fa(u1,uz)]
yielding the compatibility condition

[us)?® = [Fo(ur,us)] - [u1] onT.

Thus a discontinuity of uj or of h w.r.t. x, say h(z—,t) > 0 = h(z+, %), is not admissable.

Up to now problems arising from the jump discontinuity in the source terms s and Sy
have been ignored. In Section 3.3 we propose to introduce set-valued maps to deal with
this discontinuity, see Definition 7 and Remark 8 below.

3.2 Self-Similar Solutions

Consider the Savage-Hutter model for a one-dimensional incompressible avalanche on a
plane moving downwards everywhere, i.e. the system

(30)
du+udyu = siné —tandcosé — Bhy,

when sgnu = +1 is constant. Also K ;/pass 1S assumed to be constant yielding a constant
B = eKcosé. In order to discuss the existence of self-similar solutions we subtract the
motion of the center of mass. To this end, define

up(t) = t(sin€ — tand cosé), U =u — up(t)

and the moving variable

{zx—/otu[)(s)ds.

Let g(t) denote a typical length of the avalanche at time ¢, e.g. half the spread of an
avalanche with compact support. Now use new coordinates

in (30) and the notation (-)" and (-), for derivatives w.r.t. 7 and y, resp., to find the
system

g 1,
O-h —y > b+ = 9,(hi) = 0

/
Ot —yL 0y + S (adyi + fa,h) = O
g g

14



for (h,w). Then a solution of the form

h(y,7) = £(T)H(y), aly,7) =k(T)U(y) (32)

is called a self similar solution of (31). Due to the conservation of mass

M= /R hE,t)de = /R Wy, 7)g(r)dy = £(r)g(r) /R H(y)dy

we get that
1

L=—,
g

at least when the total mass is finite. It will be seen below that this assumption is not
satisfied in general. Inserting £ = 1/¢ in (31) yields the system

k
v o oo B~ .
gk’y Yy gkl Yy ngJ [/ .

;From (33); we see that
k

0= (?),(HU)y .

Thus either

k
— =const or HU = const.

Since k(7) denotes an overall increase or decrease of the velocity u, the change of
the characteristic length ¢'(7) has to be proportional to k(7). Hence k/g' has to be
independent of 7. Actually, if k/¢g’ # const, (33); would imply that (HU), = 0 and that
H + yH, = 0. These equations yield the general solution H(y) = %0, U = c1y. Then
(33)2 can be interpreted as a vanishing linear combination of the functions y and % with
7-depending coefficients. Now we may conclude that ¢y = 0 and consequently H = 0
yielding the trivial solution A = 0.

In the following assume w.l.o.g. that

k=g,

since a constant k/g' different from 1 can be subsumed by the functions H or U, see (32).
Then (33) can be written in the simple form

(U-yH), =0

2 (34)
g p
U+ o (U -y)Uy + PN H, = 0.
Case 1: U =y In this case the velocity @(y, 7) is linear in y for every time 7. From (34),
we get the equation ¢g?¢” = —BHy/y. Consequently both sides are constants leading to
the identities
G G
2. n 0 0 2
= d H(y) = - = 35
g9 =~ an (y) = Ho— Y (35)
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with constants Hy, Gy. Let us ignore the elementary case Gy = 0 where H(y) is constant
and g(7) is linear. If Gy # 0, by (35)1 ¢'g” = Gog'/(2g%) and consequently

11 _
" — _Go(= 4+ —) with gy € R\{0}.
g 9

If gy = oo, then g > 0 implies that Gy < 0 and ¢'g'/? = £/|Gy|. Hence

|G0|

2/3
o(7) = (a0 + 3v1Gal )", H(y) = Ho + oy (36)
the case ¢'¢g'/? = —+/|Go| leads to an unphysical compression of the avalanche or — in
other words — to a time reversal in (36). The solution (36), considered only for |y| < v,
defines an avalanche with the shape of an M, called an M -wave in [?]. As 7 — oo,
hiy,7) ~ et H(y).
If go € R* = R\{0}, then ¢'( +./|Go| ¥Y— 190191 Pipst we consider the case when go >0

Vgog|

and ¢’ > 0. Then

G| /g(T) Vadg ) /\/9(7) h2dh,
—7’ _= _— —
9o g(0) V90+9g V) V' go+ h?

= V9(r) Vgo +9(1) — goIn (v/g(1) + Vg0 + (7)) — Cy.

For 7 — oo we deduce the linear behavior

G
g(1) ~ [Gol 0|7', T — 0.
90

Since g > 0 and gy > 0 necessarily imply that Gy < 0, again H(y) = m + ‘f—g' y? defines
an M—wave on |y| < yo. But compared to the M-wave above we now get an M-wave with

h(y,7) ~7'H(y) as7 — .

When gy > 0 but ¢’ < 0, then the differential equation for ¢g(7) immediately implies that
g(7) — 0 and consequently that ¢(7) — oo in finite time. Thus this case is unphysical.
Next consider the case when gg < 0, but g + go > 0 and ¢’ > 0. Then Gy > 0 and

V(™) h2 dh
|90 |go

:\/Q(T)\/Q(T)—|go|+|90|1D(\/9 ) +v9(T) —lg0l) — Co.

For 7 — oo we deduce the asymptotic behavior g(7) ~ 7. The shape of the avalanche is
described by H(y) = m — f—g y? for |y| < \/4mB/Gy forming a parabolic cap, see [?] for
the special case 79 = 0, go = —1, ¢g(0) = 1 such that ¢’(0) = 0 (avalanche is starting at
rest).

In the case go < 0 and g + go < 0, but ¢’ > 0, the function g(7) is strictly increasing
until g(7) — |go| where ¢'(7) — 0. For g(7) close to |go|, but less than |go|, the differential
equation for g(7) is related to the equation ¢'(7) = 24/|go| — g(7) showing that ¢(7)
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actually approaches |go| like the parabola g(7) = |go| — (1 — 7)? as 7 — 71—. Then
k(1) = ¢ (m1) = 0 and @(71,y) = 0 yielding an avalanche at rest! From standard theory it
is known that the solution g(7) is not uniquely determined for 7 > 7. When the avalanche
restarts to move and ¢g(7) becomes larger than |gg| for some 7 > 71, then we refer to the
previous case.

The case gy < 0, but g + go > 0 and ¢’ < 0 also leads to an avalanche at rest in finite
time. Finally, if g9 < 0, g+ go < 0 and ¢’ < 0, then g(7) converges to 0 in finite time.
Thus ¢(7) — oo in finite time leading to an infinite velocity and an unphysical solution.

Case 2: U # y. In this case (34); yields a constant m # 0, a characteristic momentum,
such that

m
— ; 37
T (37)
the case m = 0 is trivial. Inserting this identity into (34)2 we get that
12
U, -1
g pm Uy =l (38)

U+w(U—y)Uy_

g%g" (U —y)?

2//

Dividing by U, multiplying with g°¢" and differentiating w.r.t y we are led to the equation

o), - o), =

In order to conclude that ¢’ 29 is constant we have to exclude the possibility that both
terms depending on y vanish. If these terms vanish, we would get two ordinary differential
equations for U(y) leading after elementary calculations to a contradiction. Thus we get
a constant ¢ # 0 (since g > 0) such that

3
g\v/g=c and g(T)~(5c7)2/3 as 7 — 00,

cf. Case 1 with gg = co. Hence ¢"g?> = —c?/2, and (38) yields the differential equation
Uy — ﬂm
U-2U -y)Uy+20° ——5 =0, o == #0, 39
U ~y) T (39)

and, defining

V(y) =Uly) — v, (40)
the equation

d 1 V2(V -

av. _ 1V -y (41)

dy 2 a*-V3

Note that the lines V' =0 and V = a as well as points yy where V(yy) = yo are important
in the discussion of local and global properties of solutions of the differential equation (41).
Concerning the size of Vo = V(0) and of a we have to distinguish between several cases.

Since H(0) = ( y = % and sgna = sgnm, the cases V) <0 <aand a <0 <V
lead to unphysical solutions with H(0) < 0 and will not be discussed.
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Case 2.1: 0 <a < Vy and Jyy > a: V(yo) = yo (this case will occur for V > a).
In this case V'(0) < 0 and even V'(y) < 0 for all y € (—o00,yp). However V'(yo) = 0

and V" (yo) = 2(y§/§a3) > 0 implying that V has a local minimum at yy. Since even V' > 0
on (yp,00) and V' < 0 on (—00,%p), V has a global minimum at yy. To determine the
shape of the corresponding avalanche it is crucial to discuss the asymptotic behavior of V'
for y — £o00. By (41) we may exclude that V(y) is bounded for y — oo. If there exists
y1 > yo such that V(y1) = 3yi, the inequality V'(y1) = 3y3/(y3 — 8as) > 3 leads to a
contradiction. Consequently & < V(y) <y for y > 0. Defining w(y) = V(y)/y we see that
w(y) € (3,1) and that

;o w? 2w — 1)(w + 1) — 2a3/(wy?)
2y w? — a? [y? '

(42)

If there exists 0 < § < & such that w(y) > 5+ for large y > 0, then w'(y) ~ —% for these

y leading to a logarithmic decay —logy. Then finally w(y) will cross the line w = % +9
with a negative slope. Thus w(y) < § + ¢ for all large y, even w(y) — 3 and V(y) ~ ¥
for y — oo. For y — —oo (41) implies that V (y) is unbounded. If there exists y, < —a
such that V(ya) = —vyo, then V'(y2) = —y3/(a® + y3) < —1 leads to a contradiction.

Thus w(y) = % < —1 for all negative y. The possibility that w(y) < w; < —1 for
all large y < 0 can be excluded since under this assumption w' < % for some § > 0.
Hence w(y) — —1, V(y) = —y(L +o(1)) and U(y) = V(y) +y = o(]y|) for y — —oo.
To prove that even U(y) = O(|y|~'/?) for y — —oo we introduce the auxiliary function

o(y) = [y|'2U(y). By (40), (41)

_ |y w(y)*(wly) +1)* + Oy ?)

!/
©'(y)
2 w(y)? (1 + O(ly[~*))

for y — —o0. Since w is bounded for large negative y, and 1 +w = _I?U\ = —fﬁTy/)z, we get
that

1 C(y) 1 2

= - 2 (43)
>z 2lyP R w(y)]

where |c(y)| is bounded. Assuming that ¢ is not bounded for y — —oo there exists y; < 0
such that ¢'(y1) is negative. We may even assume that ¢ is strictly decreasing for y < y;.
Thus there are constants ci,cy > 0 such that

|y[°/?

__ G 2
PECAE

< <

However, this differential inequality can be satisfied only for bounded functions. Now the
boundedness ¢ implies that U(y) = O(|y|~"/?) for y — —oo. Summarizing the previous
results we get for the avalanche characterized by U =V +y and H = % where m > 0,

that

0<U(y) ~ —°_ for y— —oo, Uly)~ §y for y — oo
ly|'/2 2
2

H(y)"“% for y — —o0, H(y)fv?m for y — o0.
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The rate of decay of H for y — *oo shows that the mass of the avalanche is infinite.

Case 2.2: 0 < a < Vp and V(y) will not cross or touch the main diagonal (this case will
occur for V > a close to a).

For y > 0 the solution V' (y) is strictly decreasing. Since it will not cross the main
diagonal and cannot cross the line y = a, it will approach « in finite time y; < a with a
slope approaching —oo. The behavior of V (y) for y — —oo is the same as in the previous
case. Thus the avalanche has the properties

0<U(y)<m+/2 fory — —oo, U(y)lyi+a fory—y —
m

H(?J)”m

for y — —oo, H(y)Tm for y — y1—
a

where U and H have infinite slope at y = y; in which the solution breaks down.

Case 2.3: 0 < Vp <a and Jyo > 0: V(yp) = yo (this case will occur for small V).

Then V'(0) > 0, yo < a, V'(y0) =0 and V" (yo) = —y2/(2(a® — y3)) < 0. Thus V has
a local maximum at yo and even V'(y) < 0 for all y > yg. For y — oo the behavior of
V(y) is modelled by the differential equation V' = —cyV? with a constant ¢ > 0 leading
to the asymptotic behavior V (y) = O(y~2). Analogously V (y) will tend to 0 as y — —oo
and V(y) = O(y~2). Thus the velocity U(y) has the properties

Uly) =y+O0(y2) fory— £o0.

However the height H(y) = m/V (y) where m > 0 diverges as y? for y — 4o0o. Hence
the avalanche is unphysical in this case; the “explicit” solutions U, H may be used only
locally.

Case 2.4: 0 < Vj < a and V(y) will not cross or touch the main diagonal (this case will
occur for V) < a close to a).

Then V is strictly increasing for y > 0 until it will reach the level y = @ in finite time
y1 < a with slope +00. For y — —oo the behavior is the same as in Case 2.3. Consequently

Uly) =y +0(y™?) fory— —oo, Uly)tyr+aasy—yi—
H(y) = O(y?) fory — —oo, H(y)l T >0asy—y — .
This solution is unphysical since it breaks down in finite time and since H is unbounded.

There are four further cases when a < 0 and Vy < 0. However, since W (y) = =V (—y)
satisfies (41) with a replaced by —a, it suffices to refer to Case 2.1-2.4. The corresponding
avalanche is described by U(y)= — U(—y) and H(y)=H(—y).

Case 2.5: V) < a < 0 and V(y) crosses the main diagonal. Looking at Case 2.1 we get
an avalanche with the properties (m < 0)

3
U(y)NEy for y — —o0, _HLI/Z <U(y) <0 fory— +o0
Yy
2m m
~— for y — 0.

H(Q)NT for y = —oo, H(y) ”
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Due to the large negative velocities for y — —oo the avalanche seems to move upwards
everywhere. However, the real self-similar avalanche has the height

T — at?/2
g(t) )

where the acceleration o = siné — tan d cos € is assumed to be a positive constant (£ > 0)

and g(t) ~ (%ct)2/3

of mass is given by

Wz, 1) = g(lt) i

for t — co. Moreover, its velocity including the motion of the center

T — at? /2
u(z,t) = at + ¢ () U (———) .
Since ¢'(t) = —“= and g(t)*? ~ 3ct for t — oo, the asymptotic behavior of u(z,t) for

9(t)
t — 400, i.e. y = —00, is given by

3 — at?/2
u(z,t) ~ at + — c_z—oaty S (44)

2 /o) 9t 27

Hence the physical velocity is positive for large ¢t and approaches half the velocity of the
corresponding center of mass. This behavior is reflected by the height of the avalanche:

h(z, 1) ~ m {2 for z —» —

|z —at?/2| |1 for z — +oo.

Case 2.6: a < Vj < 0 and V(y) crosses the main diagonal. Referring to Case 2.3 we
find a solution such that V(y) = O(y~2) for y — +oo and consequently that U(y) ~ v,
H(y) = O(y?) for y — +oo.

We drop the two cases analogous to Case 2.3 and 2.4 when a and Vj) are negative since
these solutions fail to exist for large negative y. Finally we mention that even when «a
is positive there are further solutions existing on an y-semiaxis. E.g., if a > 0, consider
yo > a and Vj := V(yp) > a or < a, but close to a. Then there exists a solution V(y) for
y > yo evolving an infinite slope for y < yy where V' converges to a; for y — +o0 V(y)
will diverge as % or converge to 0 as y~2, see Case 2.1 or 2.3 for this asymptotic behavior,
resp.

Note that all self-similar solutions have been found under the assumption that sgnu(z,t) =
1, ie., |a(z,t)| < up(t). Now the speed of the center of mass of the self-similar avalanche
is larger than « iff

9" OU ()| < at (45)

for all admissable y. In several cases, see e.g. the M-wave on a compact interval |y| < yo,
(45) is satisfied for large ¢ since ¢'(t) is bounded, cf. [?]. For the parabolic cap which has
a compact support w.r.t. y and where ¢'(t) ~ ¢ a largeness condition for «, i.e. for the
constant slope £, has to be assumed [?]. In the important Case 2.1 and Case 2.5 condition
(45) may be violated locally, but not globally, see (44).

Recall the overall assumption that the earth pressure coefficient K, /pass Was constant
ignoring the fact that the avalanche may be compressed or stretched locally. In [?, ?] the
authors carefully analyse a parabolic cap solution when even the bed friction angle ¢ varies
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either with y or with the center of mass velocity or with both of them. Although in these
cases the height h defines a strict parabolic cap and the velocity w is linear, the equation
for the spread ¢ is much more complicated since g”¢? is no longer constant.

Finally we mention that also for a two-dimensional avalanche on an inclined plane
there exist self-similar parabolic cap solutions starting with a circular support evolving
like an ellipse for increasing t, see [?, ?]. Let g1 (t), g2(t) denote the length of the semiaxes
of the supporting ellipse in the longitudinal and traverse direction resp., such that the
height of the avalanche equals h(y,y2,t) = (1 — y? — y3)/(g1(t)g2(t). Then gy, g satisfy
a second order highly nonlinear system of ordinary differential equations with coefficients
depending on the aspect ratios e; = [H/Ly, | and €2 = [h/Ly,]. Numerical results [?, ?]
show a crucial dependence of the spreads g (t), g2(t) on &1, €9, % and on the angles ¢ and

J.

Note added in proof. When preparing this manuscript we learned that also V. Chugunov,
JM.N.T. Gray and K. Hutter [?] found almost the same set of self-similar solutions.
However they use abstract Lie group theory to find invariance proerpties of (30), then
they discuss several cases in more details.

3.3 Existence Results

In this section we present the mathematical analysis of the 2x2-conservation law (23)
when the density p = pp > 0 is constant and of (26) for a density function p(h) = h®.
For a bed with varying slope {(z) we consider the modified height or mass distribution
up = (%)Haph and momentum uy = (%)Haphu, cf. (27) - (29). As indicated in Section
3.1 system (23), (26) or (29) will evolve shocks and will allow multiple, even unphysical
solutions. Therefore we are looking for suitable (physical) solutions satisfying a sufficiently

large set of entropy conditions.
Definition 6 Let 5 = 7(uy,u2), ¢ = q(u1,u2) be scalar C2-functions satisfying
Vun(u) - Vo F(u) = Vyg(u) for all w € R} x R.

If i is convex and 7(0,-) = 0, then (7, q) is called a convex weak entropy-fluz pair (for the
flux F : R? — R?).

Since the source terms s in (26) and Sy in (29) have jump discontinuities, it is reasonable
— also in view of the striking non-uniqueness of solutions of (13) for sand piles — to use the
notion of set-valued maps. Looking at s = siné — eb; cos & — ﬁ tan d cos & we introduce
the set-valued sign function

) [—1,1] foru=0
sigu =
u for u # 0

Tul
and
5(u,z) = sin& — eb, cos & — sig(u) tan d cos €.
Then S is defined by
~ I+ wp 0
S(ur,u2,x) = TF(uhm) + wi(2,7))
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Finally the system (29) is replaced by the differential inclusion
yu + 0, F(u) € S(u, ) (46)
which is made more precise in the following definition.

Definition 7 Given an initial value u° = (u,u3) € L>(R)? with v > 0 and Z—% € L*(R)
1

we call a function u = (u1,uz) € L%((0,T) x R; Ry x R) a weak entropy solution of (46)
iff u has the following properties:

(1) there exists S € LS (R x [O,T))2 such that

loc

S(z,t) € S(u(z,t),z) for a.a. (z,t) e Rx[0,7T).

(2) uis a weak solution of (46), i.e., for all ) € Cj (R x [O,T))2

T
// (u-(?ﬂb-l-F(u)-8x1,b+5-1,b)dtda;:/uo-w(x,O)dm
R J0O

R

(3) w satisfies the entropy inequality

T
/ / (n(w)9r + a() 0 + Vun(u) - S¢)dtdas > / n(u®)(-,0)
RJO R

for every test function 0 < ¢ € C (R x [0, T)) and every convex-weak entropy flux
pair (7, q) for which V,n(u) is locally bounded on R x [0,T).

Remark 8 The non-classical part (1) in Definition 7 states the selection of an L{Y -
function S(z,) coinciding with So(u1,u2, z) from (28) when the physical velocity 7> does
not vanish. In contrast to the usual definition of convex entropy flux pairs the degeneracy

of (26) when u; — 0 (h — 0) requires to add the condition that 1(0,-) = 0 (weak entropy).

Theorem 9 [?] Let v’ = (ud,u3) € L®(R)? denote an initial value such that ul, Z—% €
1
L*®(R) and

ud >0, ul(z) = 0, ud(z) = 0 as |z| — oo

and let § € WH®(R) be given such that B(z) > By > 0. Then there exists a local weak
entropy solution u = (uy,us) of (46). If B is constant, there exists a global weak entropy
solution.

Sketch of Proof In a first step we consider the viscous approximation
ug + 0pF (u) = S.(u,z) +€0%u, >0, (47)

where S. is defined by S via smoothing the jump discontinuity of §(u,z). To prove the
existence of classical solutions u° and some a priori estimates it is convenient to consider
smooth initial values u?. E.g., we assume that u? € C?(R)?, ud, > u? +e. This smoothing
and lifting up in addition to the viscous approximation is not contained in the proof in
[?], but can easily be included [?]. Standard parabolic theory yields a unique classical
solution u® in some interval [0, 7). To prove that T, can be chosen independently of ¢ > 0
we apply the theory of invariant regions.
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Lemma 10 Letu : Rx[0,T) — Ri xR be a classical solution of the system (47). Further
let R;: R2 - R and M; : [0,T) = R, i = 1,2, be smooth functions defining the regions

2
S(t) = ({u € B : Ry(u) < My(t)}, t€[0,T).
=1

Assume the following properties:
1. u(-,0) € £(0)
2. VyRi(a) is a left eigenvector of V, F(a) for all a € 05(t), t € [0,T)
3. 3(t) is convex for all t € [0,T)

4. SUPgcRr SUPgepy, (1) Vulli(a) - S:(a,z) < M|(t)

where 0%;(t) = 0X(t) N {a € R? : R;(a) = M;(t)}. Then X(t) is a one-parameter family
of invariant regions, i.e., u(z,t) € X(t) for all t € [0,T).

This lemma will be applied with the Riemann invariants Ry (f) = 32 + u}/(z(Ha)) and

a function M(t) = My(t) satisfying M(0) = max; _ ||Rs(u%)||w and the differential
inequality M'(t) > C (M (t)? + || sin||s) where C = C(||8'||s0, Bo, ). As a conclusion we
get a Tp > 0 such that

uE
—2 <C(T)
Lo°(Rx(0,T))

uill zoe (rx(0,1) + ‘ s
for all 0 < T' < Ty independent of € > 0; if the slope £ is constant, then T = oo and C(T)
is linear in T'.

Besides L2-estimates of u§ and u§ on R x (0,7y) with bounds depending on ¢ and
the crucial non-negativity of uj, see [?], it is important to have sufficiently many local
L?-estimates of Vu at hand.

Lemma 11 Let (n,q) be a convex entropy-fluz pair such that Vn is bounded and n € C?
on (0,00) xR. Further let u = (uf,u$) be a strong solution of (47) such that v, F(u®) and
Ge(u®, z) are bounded independently of € € (0,1). Then for every bounded set Q@ C Rx Ry
there exists a constant C(€2) > 0 such that

6//(9qu - V2n(uf) - Opul dadt < C(Q) Yee (0,1).
)

If 1) is even strongly convex, then a similar estimate holds for €|0,u®|?.

Proof Given a solution u® of (47) and an entropy-flux pair (7, ¢) the functions n(u®), g(u®)
will satisfy the equation

Oen(u®) + 0pq(u®) = e(Fon(uw’) — dpu® - Vin(u®) - dpu) + Vun(u) - Ge . (48)

Testing with 0 < ¢ € C§°(R x [0,00)) such that ¢|p = 1 will yield the a priori estimate.
If i) is strictly convex, the estimate r - V2n(v) - 7 > §|r|* with some § > 0 will prove the
second assertion. 0

The second main step deals with the limit € — 0. Since only very few a priori estimates
on u° are available and since (46) contains several nonlinear terms, we need to refer to
us

Young measure solutions as limits of (u§, =2).
1
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Lemma 12 [?] Assume that (z;) C L™®(2)? is a sequence on Q C [0,T) X R with 2 () C
K where K C R? is compact and convezx. Then there exists a subsequence (zy;) C (z) and
a family of Borel probability measures (j4(5.1)) (z,t)e on K such that for every H € C(K)?

lim / / H (2, (0.)) () derdt
Q

:/ H(z,t)p(x,t)dzdt ¥ € L*(Q)? (49)

where
H(z,t) :/ H()dpyy for a.a. (z,t) € Q.
K

The proof of this famous lemma is based on the Theorem of Banach-Alaoglu applied to the
spaces L' (Q; C°(K)) and L>®(Q; M(K)). When applied to a sequence (z) of approximate
solutions of a (partial) differential equation this lemma yields a measure-valued solution
Jx ¥ dp(zp(y) in the limit. By these means the notion of strong or weak solutions is
generalized to a great extent: there are no longer function values a.e. in 2, but only
probabilities of them. E.g., the sequence of Rademacher functions r;(z) = sgnsin(2/nz)
on (0,1) attains the values £1 with probability 3 for every j € N. Its limit for j — oo in
the usual weak sense of (L°°)* is 0, but in the sense of Lemma 12 we get the probability
measure iz = p = 5(0_1 +041) for all z € (0,1). Then H(z) = §(H(-1)+ H(+1)) is the
limit of H (rj(z)) for all H € C%([-1,1)).
Lemma 12 will be applied to z* = (ui, Z—%) where ¢ = % and to

Hi(z) = (;;2) = (“1> . Ho(z) = F(z1,212) .

U2

Then for every test function ¢ € CJ (R x [0, T))2

T
// (Hi1(2°)0p + Ho(2°)Opp + H5 (2%, z)p)dt dz
R J0

T
= 6/ / Ogu® - O dtdz + / u’p(x,0)d
R J0 R

where HS(z,z) = Sc(z1, 2122, ) is discontinuous in z. By Lemma 12 there exist Young
measures (i, ) for a.a. (z,t) € Q such that

T
/ / (H10yp + Ho0pp + Hzp)dtdz = / uo(z,0)dr
R J0O R

where H j( = [ Hi(y)dp@y(y), 5 = 1,2. However, Hjz € L®(R x R, )? cannot
be characterlzed by us1ng the measures fi(; ). 10 deal with functions with jump dis-
continuities as sgnu; or in two dimensions with discontinuities of the type ﬁ a further
decomposition of the measures p(; ;) is needed, see [?].

To show for the Young measures that p(, ;) = 0,4 for a.a. (z,t) we need the Div-Curl

Lemma and sufficiently many entropy-flux pairs.
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Lemma 13 [?] Let Q C RxRy be bounded, (u*) a sequence of functions on  and (', q),
(0%, ¢%) weak entropy-fluz pairs. Assume that n*(u*), ¢'(u¥) converge weakly in L*(Q) to
n'(u), ¢'(u) and that O’ (u®) + 0.q' (u¥) is relatively compact in W—12(Q) for i = 1,2.
Then, as k — oo,

[ ey = ) e dodt - [ [ ota? = rPat o dad
Q Q
for every ¢ € C§°(R?). Furthermore

/ (n'¢® — P q1)dpug ) = / 0 i - / @y ) — / N di( ) - / g dpvz ) -
K K K K K

Given an entropy-flux pair (7, g¢) Definition 6 implies that n satisfies a second order wave
equation w.r.t. wy,ug with (u,us)-depending coefficients. By [?] every weak entropy 7,
i.e.,, n(0,-) =0, can be written in the form

U1

wunar) = [ 1O @ — (- 227 dg
1 (50)

= ul/lf(Z—i+§uf“+”)(1—§2)2+4ad§.

In particular, for f(s) = %52, the entropy 7 coincides up to multiplicative constant with
24«

2
the mechanical energy np = 5 = + x'u; ™. It is easily seen that for f € C§°(R) the

2w

sequence (V,n(u*)) is bounded on 2 and that
Ir - V2n(uF) -r| < Cpr-V2n®) - r VreR?

independent of k € N. A further analysis based on previous a priori estimates shows that
the right-hand side of (48) is precompact in W=12(Q)? + W=1P(Q)? (p < 2) and that
the left-hand side of (48) is uniformly bounded in W~ 1°°(Q)2. Then by Murat’s Lemma
(Oun(u®) + &,Uq(uk))/,cEN is precompact in W~12(Q) for every weak entropy-flux pair (1, q)
generated by f € C§°(R), see (?77). Hence Lemma ?? may be applied.

This is the starting point to show in a lengthy technical proof [?, 7] that the Young
measures fi(, ) are d-measures. To be more precise, using the (21, z2)-functions,

. 6(Z1,z2) ifz1 >0
M(I’t) 621 X V(a:,t) if z1=0

where supp v, ;) C [liminfy_, 2§ (2, 1), limsupy_, ., 2§ (z,t)] CC R. For (u1,up) we con-
clude that also in the case when uj(z,t) = 21(7,t) = 0 the measure p, ) is concentrated
in one single point u(z,t). Note that the analysis from [?, ?] simplifies to elementary

algebraic considerations when o = —1, see [?]. However, in this case, the constitutive

P
relation p = h~1/2 seems to be unphysical.

In the final step Lemma 12 implies that u* — u weakly in L>°(Q)? and using H(y) =
lylP, 1 < p < oo, that //|uk|p dxdt — //|u|pd$dt for k — oo. Hence u¥ — u in LP(2)?
Q Q

by the Theorem of Radon-Riesz. By similar arguments u can be shown to be an entropy
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solution of (29). Looking more carefully at S with its jump discontinuity sigu we may
even select a function S € L{2 (R x [0, T))2 such that v is a solution of (46) in the sense
of Definition 7. [

A detailed analysis of the time interval in which a weak entropy solution exists may be
performed by the theory of invariant regions, see Lemma 10. In the case when p = py > 0

the following results depending on the behavior of the slope £(x) have been obtained [?, 7]:

Theorem 14 Let a curved base with variable slope angle £(x) be given such that for
B(z) = eK cos &(x)

El € L®(R).

Consider an incompressible avalanche with initial values hy,ug such that

0<py = Bhy € LOO(R), mg = Bhoug € LOO(R)
po(z) =0, mo(z) =0 for|z| — oo.

Finally let s(z,u) = siné(x) — sgn(u) tan §(x) cos £(x), where the bed friction angle 0(x)
may depend on x € R, let P = % 18"/ Blloos @ = ||]|co and let Ey = max (||2p0“oo, H% u%“oo)
measure the initial energy of the avalanche.

1. If B" = 0 (constant slope), then the Savage-Hutter equations admit a global weak
entropy solution. Furthermore p grows at most quadratically as t — oo and u = 2
grows at most linearly as t — oo. If in addition |&| < |6| for all z € R, i.e., the
slope angle is bounded by the bed friction angle, then p and u are uniformly bounded
independent of time with a bound depending only on Ej.

2. Assume that
! 1 2
B <0, up >0, JU0 = 2P0 and § > 9,

i.e., the slope angle £(x) is constant or even steepening, the initial velocity is positive
and sufficiently large and the slope angle is greater than or equal to the bed friction
angle. Then there exists a global weak entropy solution. Furthermore p grows at
most quadratically and w = m/p grows at most linearly as t — oco. Finally u > 0
(down slope) and tu? > 2p.

3. If the slope is arbitrarily curved (§' # 0), then there exists a weak entropy solution
on a time interval (0, Tnax). Here it is sufficient to take

1

Thax = P—Q (g — arctan \/ZEOP/Q) .

In [?, ?] the term sgn(u) in s(z,u) has been smoothed. However, the same results hold in
the set-valued formulation, cf. (46), Definition 7, for an incompressible avalanche [7].
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