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Abstrat

The problem of strong solvability of the nonstationary Navier-Stokes

equations is onsidered in weighted L

q

-spaes L

q

!

(
); where the domain


 � R

n

is equal to the half spae R

n

+

or to a bounded domain with boundary

of lass C

1;1

and the weight ! belongs to the Mukenhoupt lass A

q

. We give

general onditions on the weight funtion ensuring the existene of a unique

strong solution at least loally in time. In partiular, these onditions admit

weight funtions ! 2 A

q

; whih beome singular at the boundary or, in the

ase 
 = R

n

+

, grow for jxj ! 1:

AMS lassi�ation: 35Q30, 35D05, 76D05

1 Introdution

In this paper we investigate the existene of strong solutions in weighted L

q

-spaes

of the instationary Navier-Stokes equations

u

t

+ u � ru� ��u +rp = f in (0; T )� 
 (1a)

div u = 0 in (0; T )� 
 (1b)

u = 0 on (0; T )� �
 (1)

u(0) = u

0

in 
: (1d)

Here 
 � R

n

is a bounded domain with boundary of lass C

1;1

or the half spae

R

n

+

; u denotes the unknown veloity �eld, p is the unknown pressure, while the

external fore f and the initial veloity u

0

are given and � > 0 is the onstant

visosity.

There are numerous referenes onerning the problem of strong solvability of

the Navier-Stokes system in L

q

-spaes; we mention only [8℄, [14℄ for q = 2 and [12℄,

[22℄ for general L

q

-spaes and refer to [12℄ for a more omplete survey.
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Our aim is to embed the results in L

q

-spaes without weights [12℄, [22℄ into the

weighted ontext for a large lass of weight funtions. For this purpose we exploit

results from [6℄, [7℄ on the Stokes operator in weighted L

q

-spaes, 1 < q < 1; for

general weight funtions of Mukenhoupt lass A

q

(see De�nition 2.1).

To de�ne the Stokes operator in weighted L

q

-spaes let 1 < q <1; ! 2 A

q

;

L

q

!

(
) := fu 2 L

1

lo

(
) : kuk

q

q;!

=

Z




juj

q

! dx <1g

and use the existene of the Helmholtz deomposition, see [5℄,

L

q

!

(
)

n

= L

q

!;�

(
)�G

q

!

(
)

where L

q

!;�

(
) is the losure of C

1

0;�

(
) = fu 2 C

1

0

(
)

n

: div u = 0g in L

q

!

(
)

n

and

G

q

!

(
) are the gradient �elds in L

q

!

(
)

n

. Using the bounded Helmholtz projetion

P

q;!

: L

q

!

(
)

n

! L

q

!;�

(
) we de�ne the Stokes operator A

q;!

in L

q

!;�

(
) by

D(A

q;!

) = W

2;q

!

(
)

n

\ L

q

!;�

(
) \ fu 2 W

1;q

!

(
)

n

: u

�

�

�


= 0g

A

q;!

= �� P

q;!

� on D(A

q;!

);

where W

1;q

!

(
) and W

2;q

!

(
) denote the Sobolev spaes over L

q

!

(
) of order 1 and

2 respetively. It was shown in [6℄, [7℄ that the Stokes operator �A

q;!

generates a

bounded analyti semigroup in L

q

!;�

(
): Applying the Helmholtz projetion P to

the Navier-Stokes equations (1) yields the initial value problem

u

t

+A

q;!

u = Pf � P (u � ru); u(0) = u

0

(2)

in L

q

!; �

(
) or more generally in the spaes D

�;q

!

(
) de�ned as

D

�;q

!

(
) := D((I +A

q;!

)

�

) for � > 0

equipped with the norm kuk

D

�;q

!

(
)

:= k(I +A

q;!

)

�

uk

q;!

; where D((I +A

q;!

)

�

) is

the domain of the frational power (I + A

q;!

)

�

in L

q

!; �

(
). For � < 0 we de�ne

D

�;q

!

(
) to be the dual spae of D

��;q

0

!

0

(
); where q

0

=

q

q�1

and !

0

= !

�1=(q�1)

: For

� = 0 let D

0;q

!

(
) := L

q

!; �

(
).

Using that the Stokes operator �A

q;!

generates a bounded analyti semigroup

fe

�tA

q;!

g

t�0

we an reformulate (2) in integral form

u(t) = e

�tA

q;!

u

0

+

Z

t

0

e

�(t�s)A

q;!

fPf(s)� P (u � ru)(s)g ds (3)

for all t 2 (0; T ).

Then our main result on solvability of (3) reads as follows:

Theorem 1.1 Let 1 < q < 1; ! 2 A

q

and let 
 be a bounded C

1;1

-domain or

the half spae R

n

+

. Moreover let

n

2q

�

1

2

< � < 1 and assume that there exists an

�� 2 (�

1

2

; �), suh that

jQj

(1+2��)

q

n

� C !(Q) (4)
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for some C 2 R

+

and for all ubes Q � U , where U = R

n

+

if 
 = R

n

+

and

U � R

n

is a neighbourhood of 
 if 
 is a bounded C

1;1

-domain. Set A := A

q;!

and

Fu := �P (u � ru).

Finally let u

0

2 D

�;q

!

(
) and for some Æ 2 [0;

1

2

) with �� < Æ < 1�� and some

T > 0 let

f 2 C((0; T ℄; D

�Æ;q

!

(
)) and kf(t)k

D

�Æ;q

!

= o(t

�+Æ�1

) for t! 0:

Then there is a T

�

> 0 and a unique urve u : [0; T

�

℄ �! D

�;q

!

(
) with the

properties

a) u 2 C([0; T

�

℄; D

�;q

!

(
)) and u(0) = u

0

.

b) u 2 C([0; T

�

℄; D

�;q

!

(
)) for � < � < 1� Æ and lim

t!0

t

���

ku(t)k

D

�;q

!

= 0.

) u(t) = e

�tA

u

0

+

R

t

0

e

�(t�s)A

fFu(s) + f(s)g ds for all t 2 [0; T

�

℄.

The mapping u : [0; T

�

℄ ! D

�;q

!

(
) is uniquely determined if it satis�es a), b) for

some � �

��Æ+1

2

and ).

Comparing this result with results in the ase without weights we see that in [22℄

and [12℄ the same lower bound n=2q� 1=2 for the hoie of � was found. In [12℄ it

was possible to inlude even the limit ase � = n=2q� 1=2 beause of the result in

[13℄. Thus exept of this limit ase we have the same restritions on the hoie of q

and � but we an additionally admit a weight funtion satisfying the ondition (4).

Roughly spoken, (4) means that the weight funtion is not allowed to beome too

small. In partiular, we an hoose weight funtions ! 2 A

q

whih are bounded

from below by positive onstants but beome singular at the boundary �
 or grow

for jxj ! 1 in the ase 
 = R

n

+

: Hene we obtain more preise informations about

the behaviour of the solution near �
 and for jxj ! 1: Some simple examples of

weight funtions obeying (4) are given in Setion 7.

Finally, Theorem 1.1 implies the unique loal solvability of the Navier-Stokes

equations in the evolutionary formulation (2) in weighted L

q

-spaes under addi-

tional regularity assumptions on f (Theorem 7.1 in Setion 7 below). Moreover we

get even global existene results under smallness assumptions on the norms of u

0

and f in the ase of a bounded domain 
 (Corollary 7.1).

This paper is organized as follows: In Setion 2 we introdue the lass of Muk-

enhoupt weights and �x some notation.

Setion 3 disusses with imbedding properties of weighted Bessel potential

spaes H

�;q

!

(
) for � 2 R exploiting results on the boundedness of frational inte-

gral operators in weighted L

q

-spaes [18℄, extension theorems in weighted Sobolev

spaes [1℄ and the omplex interpolation method. For these weighted imbedding

theorems more restritive assumptions than ! 2 A

q

are needed. These assumptions

�nally lead to the ondition (4) in Theorem 1.1.

After summarizing results on the Stokes operator A

q;!

from [6℄, [7℄ and dis-

ussing properties of the spaes D

�;q

!

(
) in Setion 4, we ompare the spaes
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D

�;q

!

(
) with the weighted Bessel potential spaes H

�;q

!

(
) : Sine up to now there

is no proof of boundedness of the purely imaginary powers of the Stokes operator

A

q;!

for general Mukenhoupt weights ! 2 A

q

, we an only use the imbeddings

D

�;q

!

(
) ,! H

2�;q

!

(
) ,! D

�;q

!

(
)

for � < � < �.

Combining the results of Setion 3 and Setion 4 we derive weighted estimates

of the nonlinearity P (u � ru) in Setion 5.

In Setion 6 an abstrat existene theorem for integral equations of the form

(3) is proved with the help of Banah's �xed point theorem generalizing a result of

[22℄.

In Setion 7 we apply the abstrat results of Setion 6 and the estimates of the

nonlinear term in Setion 5 to obtain Theorem 1.1. Then by standard arguments

Theorem 1.1 yields results on unique loal and global solvability of the initial value

problem (2) in weighted spaes stated as Theorem 7.1 and Corollary 7.1 in Setion

7 below.

2 Preliminaries

By a ube Q we mean a subset of R

n

of the form �

n

j=1

I

j

; where I

1

; : : : ; I

n

� R are

bounded intervals of the same length. Thus ubes have always sides parallel to the

axes.

De�nition 2.1 Let 1 < q < 1. A funtion 0 � ! 2 L

1

lo

(R

n

) is alled an A

q

-

weight if

A

q

(!) := sup

Q

�

1

jQj

Z

Q

! dx

��

1

jQj

Z

Q

!

�

1

q�1

dx

�

q�1

<1; (5)

where the supremum is taken over all ubes Q � R

n

and jQj assigns the Lebesgue

measure of Q. A

q

(!) is alled the A

q

-onstant of !.

We use the abbreviation !(A) for

R

A

!(x) dx and set !

0

:= !

�

1

q�1

if q 2 (1;1)

is �xed.

Note that if 1 < q <1 and q

0

= q=(q�1); then (L

q

!

(
))

0

�

=

L

q

0

!

0

(
) with respet

to the usual dual produt (f; g) =

R




f g dx. Note that !

0

2 A

q

0

.

Simple examples of A

q

-weights are radially symmetri weights of the form

!(x) = jx� x

0

j

�

for �n < � < n(q � 1) or more generally distane funtions of

the form !(x) = dist (x;M)

�

for a k-dimensional ompat Lipshitzian manifold

M and �(n� k) < � < (n� k)(q � 1): For further examples we refer to [2℄.

For Mukenhoupt weights there is a weighted version of the H�ormander-Mihlin

multiplier theorem (see [9℄, Chapter IV, Theorem 3.9 or [2℄, Theorem 3.3).
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Theorem 2.1 (H�ormander-Mihlin multiplier theorem with weights)

Let m 2 C

n

(R

n

nf0g) have the property that

9M 2 R : jD

�

m(�)j �M j�j

�j�j

8 � 2 R

n

n f0g; j�j = 0; 1; : : : ; n:

Then for all 1 < q < 1 and ! 2 A

q

the multiplier operator



Tf = m

b

f de�ned for

Shwartz funtions f 2 S = S(R

n

) an be extended uniquely to a bounded linear

operator from L

q

!

(R

n

) to L

q

!

(R

n

) witha norm depending only on n; q;M and A

q

(!):

For a domain 
 � R

n

; 1 < q < 1; ! 2 A

q

and k 2 N we de�ne the weighted

Sobolev spae

W

k;q

!

(
) := fu 2 L

q

!

(
) : D

�

u 2 L

q

!

(
); j�j � kg

kuk

k;q;!

:=

�

X

j�j�k

kD

�

uk

q

q;!

�

1

q

:

If 
 is the half spae R

n

+

or a bounded Lipshitz domain, the trae of funtions in

W

1;q

!

(
) on the boundary is well de�ned (see [6℄, [7℄). By W

1;q

0;!

(
) we denote the

subspae of funtions from W

1;q

!

(
) with zero trae.

Next we prove an extension theorem following from results of Chua [1℄. For the

de�nition of an (";1)-domain see [1℄ or [6℄, De�nition 3.1. It is easy to hek that

every bounded Lipshitz domain and the half spae R

n

+

are (";1)-domains.

Theorem 2.2 Let 1 < q <1 and ! 2 A

q

. Let 
 � R

n

be an (";1)-domain and

m 2 N. Then there exists a linear, bounded extension operator E

m

: W

m;q

!

(
) !

W

m;q

!

(R

n

) and a onstant C > 0 suh that for k = 0; 1; : : : ; m

kE

m

uk

k;q;!;R

n

� C kuk

k;q;!;


(6)

for all u 2 W

k;q

!

(
).

Proof: For unbounded (";1)-domains the result follows from Theorem 1.5 in [1℄.

For a bounded (";1)-domain Theorem 1.4 in [1℄ yields the existene of a

bounded neighbourhood U of 
 and the existene of an extension operator E :

W

m;q

!

(
)!W

m;q

!

(U) suh that

kr

k

Euk

q;!;U

� C kr

k

uk

q;!;


for k = 0; 1; : : : ; m: Let ' 2 C

1

0

(U) with ' � 1 on 
: Then E

m

:= 'E is the

desired extension operator. 2

3 Weighted Bessel potential spaes

On S

0

(R

n

) we de�ne for s 2 R the operator

�

s

f := F

�1

(1 + j�j

2

)

s

2

F f 8f 2 S

0

;
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where F is the Fourier transformation on S

0

. Then for 1 < q <1 and ! 2 A

q

the

weighted Bessel potential spae is de�ned by

H

s;q

!

(R

n

) := ff 2 S

0

: kfk

H

s;q

!

= k�

s

fk

q;!

<1g : (7)

Note that H

s;q

!

(R

n

) is a reexive Banah spae. The weighted Multiplier The-

orem 2.1 yields the imbedding H

s

1

;q

!

(R

n

) ,! H

s

2

;q

!

(R

n

) for s

1

� s

2

.

In the sequel the omplex interpolation method (see e.g. [17℄ or [21℄) will be

used. Given two ompatible Banah spaes X and Y and � 2 (0; 1) the respetive

omplex interpolation spae is denoted by [X; Y ℄

�

: Further let [X; Y ℄

�

= X for

� = 0 and [X; Y ℄

�

= Y for � = 1.

Lemma 3.1 Let 1 < q <1; ! 2 A

q

and k 2 N.

i) H

k;q

!

(R

n

) =W

k;q

!

(R

n

) with equivalent norms.

ii) Let 0 < s < k. Then [L

q

!

(R

n

); H

k;q

!

(R

n

)℄

�

= H

s;q

!

(R

n

) for � =

s

k

.

Proof: i) The assertion follows from Theorem 2.1 (f. Propostion 6.1 in [20℄,

Chapter 13). ii) The proof is based on the boundedness of the purely imaginary

powers �

iy

in L

q

!

(R

n

); whih is an easy onsequene of the weighted Multiplier

Theorem 2.1. We refer to the proof of Proposition 6.2 in [20℄, Chapter 13. 2

3.1 A weighted embedding lemma

For 0 < � < n de�ne the frational integral operator

I

�

g(x) =

Z

R

n

g(y)

jx� yj

n��

dy: (8)

In the sequel Q assigns a ube in R

n

with sides parallel to the axes. A weight

funtion ! has the reverse doubling property (RD), if

(RD) 9 �; Æ 2 (0; 1) : !(ÆQ) � � !(Q) 8Q � R

n

:

From [18℄ (Theorem 1 (B)) we ite the following theorem about boundedness

of the operator I

�

in weighted L

p

-spaes.

Theorem 3.1 Let 0 < � < n and 1 < p < q < 1. Let v; ! � 0 be measurable

funtions on R

n

suh that both ! and v

�

1

p�1

have the property (RD). If

(A

�

p;q

) jQj

�

n

�1

�

Z

Q

!

�

1

q

�

Z

Q

v

�

1

p�1

�

1

p

0

� C 8Q � R

n

;

then

kI

�

fk

q;!

� C kfk

p;v

(9)

for all f 2 L

p

v

(R

n

).
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Remark: Every Mukenhoupt weight ! 2 A

1

:=

S

1<q<1

A

q

has the property

(RD) (see e.g. [9℄, Chapter IV, Lemma 2.4).

The operator I

�

an be written as a multiplier operator in the form

d

I

�

f =  j�j

��

b

f 8f 2 S (10)

(see [19℄, Chapter V, Lemma 2 (b)), where  > 0 depends only on n; �. Sine I

�

neither maps S into itself nor an be well de�ned on S

0

we onsider the spae

M := ff 2 S :

b

f � 0 in a neighbourhood of 0g; (11)

whih is obviously mapped by I

�

into itself. For f 2 M the omposition I

�

�

�

f =

F

�1

j�j

��

(1 + j�j

2

)

�

2

F 2M is well-de�ned and with

J

�

g := 

�1

F

�1

j�j

�

(1 + j�j

2

)

�

�

2

Fg 8g 2 M

we have J

�

I

�

�

�

f = f for all f 2 M:

We show the density of M in weighted Bessel potential spaes H

s;q

!

(R

n

).

Lemma 3.2 Let 1 < q <1; ! 2 A

q

and let s 2 R. ThenM is dense in H

s;q

!

(R

n

):

Proof: Choose a ut-o� funtion � 2 C

1

0

(R

n

) with � � 1 in a neighbourhood of

0. Set �

"

(�) = �(

�

"

) for " > 0 and onsider the multiplier operator

d

T

"

f(�) = �

"

(�)

b

f(�) (12)

for f 2 S

0

. We laim that

8f 2 S : T

"

f ! 0 in L

q

!

(R

n

) (13)

for "! 0. Sine for k = 1; : : : ; n

j�j

k

jr

k

�

"

(�)j �

�

�

�

�

"

�

�

�

k

�

�

�

(r

k

�)

�

�

"

�

�

�

�

� C

�

with C

�

independent of " > 0, Theorem 2.1 implies the uniform boundedness of

fT

"

: " > 0g in L(L

q

!

(R

n

): Sine

b

f 2 S we an use Theorem 2.1 again to obtain

kT

"

fk

q;!

� C

!;f

kF

�1

�

"

k

q;!

= "

n

C

!;f

k(F

�1

�)(" �)k

q;!

: (14)

Sine ! 2 A

q

there is a Æ > 0 suh that ! 2 A

q�Æ

(see [9℄, Chapter IV, Theorem

2.6). For

�

Æ := q

�1

nÆ > 0 we get beause of F

�1

� 2 S the estimate

j(F

�1

�)("x)j � 

0

(1 + j"xj)

�

Æ�n

�  "

�

Æ�n

(1 + jxj)

�

Æ�n

:

Applying this estimate to the right hand side of (14) yields

"

n

k(F

�1

�)(" �)k

q;!

�  "

n

"

�

Æ�n

�

Z

R

n

!(x)

(1 + jxj)

n(q�Æ)

dx

�

1

q

! 0

7



for " ! 0, sine the integral is �nite for ! 2 A

q�Æ

(see [2℄, Lemma 2.2 iii)). This

shows (13).

Obviously (I � T

"

)f 2 M for f 2 S. By (13) we obtain

kf � (I � T

"

)fk

H

s;q

!

= kT

"

fk

H

s;q

!

= kT

"

�

s

fk

q;!

! 0

for "! 0 and f 2 S.

It remains to show the density of S in H

s;q

!

(R

n

). But this fat follows from the

density of S in L

q

!

(R

n

) (see [6℄) and the fat that �

�s

: L

q

!

(R

n

) ! H

s;q

!

(R

n

) is an

isomorphism mapping S onto S. 2

Now it is easy to prove a weighted Sobolev imbedding theorem:

Theorem 3.2 Let 1 < q <1; ! 2 A

q

; 0 < � < n and 1 < q < s <1. Let

jQj

�

n

�1

�

Z

Q

!

�

1

s

�

Z

Q

!

�

1

q�1

�

1

q

0

� C (15)

for some 0 < � � � and for all ubes Q � R

n

. Then it holds the imbedding

H

�;q

!

(R

n

) ,! L

s

!

(R

n

): (16)

Proof: Sine A

q

� A

s

the operator J

�

= 

�1

F

�1

j�j

�

(1 + j�j

2

)

�

�

2

F extends by

the multiplier theorem 2.1 to a linear bounded operator from L

s

!

(R

n

) to L

s

!

(R

n

) .

Hene for f 2 M it follows by Theorem 3.1 that

kfk

s;!

= kJ

�

I

�

�

�

fk

s;!

� C kI

�

�

�

fk

s;!

� C k�

�

fk

q;!

= C kfk

H

�;q

!

:

Sine by Lemma 3.2 the spae M is dense in H

�;q

!

(R

n

); we get the embedding

H

�;q

!

(R

n

) ,! L

s

!

(R

n

): Sine � � � the embedding (21) is proved. 2

Remark: The assumption (15) is satis�ed if ! 2 A

q

and

jQj

�

n

!(Q)

1

s

�

1

q

� C (17)

for all ubes Q � R

n

with a onstant C > 0 independent of Q. In fat,

jQj

�

n

�1

�

Z

Q

!

�

1

s

�

Z

Q

!

�

1

q�1

�

1

q

0

= jQj

�

n

!(Q)

1

s

�

1

q

jQj

�1

!(Q)

1

q

!

�

1

q�1

(Q)

1

q

0

� C A

q

(!)

1

q

:

Sine 1 � jQj

�1

!(Q)

1

q

!

�

1

q�1

(Q)

1

q

0

the ondition (17) is also neessary for (15). In

the sequel we will work with the ondition (17) instead of (15).

3.2 Bessel potential spaes on domains

De�nition 3.1 A domain 
 � R

n

is alled an extension domain if for all m 2 N

there exists an extension operator E

m

suh that for all 1 < q < 1; ! 2 A

q

and

k = 0; 1; : : : ; m

E

m

: W

k;q

!

(
)!W

k;q

!

(R

n

)

is linear and bounded.

8



Theorem 2.2 states that every (";1)-domain - and thus the half spae R

n

+

and

every bounded Lipshitz domain - is an extension domain.

In the sequel let 1 < q <1; ! 2 A

q

and 
 � R

n

be an extension domain. For

� 2 R we de�ne

H

�;q

!

(
) :=

n

g

�

�




: g 2 H

�;q

!

(R

n

)

o

with norm kuk

H

�;q

!

(
)

= inffkgk

H

�;q

!

: g 2 H

�;q

!

(R

n

); g

�

�




= ug: Lemma 3.1 and the

extension property of the domain imply that H

k;q

!

(
) = W

k;q

!

(
) for k 2 N . We

have the following interpolation property:

Theorem 3.3 Let 1 < q < 1; ! 2 A

q

and let 
 � R

n

be an extension damain.

Then for k 2 N und 0 � � � k

H

�;q

!

(
) = [L

q

!

(
);W

k;q

!

(
)℄

�

k

:

Proof: Sine 
 is an extension domain, there is a linear bounded extension

operator

E : W

k;q

!

(
)! W

k;q

!

(R

n

) and E : L

q

!

(
)! L

q

!

(R

n

):

By omplex interpolation and Lemma 3.1 it follows that

E : [L

q

!

(
);W

k;q

!

(
)℄

�

k

! [L

q

!

(R

n

);W

k;q

!

(R

n

)℄

�

k

= H

�;q

!

(R

n

)

is linear and bounded. This implies the embedding

[L

q

!

(
);W

k;q

!

(
)℄

�

k

,! H

�;q

!

(
): (18)

Replaing in the arguments above the extension operator E by the respetive re-

strition operator, we get the embedding (18) in the other diretion. 2

The reiteration property of omplex interpolation (see [21℄ or [17℄) yields:

Corollary 3.1 Under the assumptions of the preeding theorem on q; !;
 the in-

terpolation property

H

;q

!

(
) = [H

�;q

!

(
); H

�;q

!

(
)℄

�

holds with  = (1� �)� + �� for all 0 � � � � and 0 � � � 1.

Theorem 3.3 implies the existene of a linear bounded extension operator E :

H

�;q

!

(
)! H

�;q

!

(R

n

) for all � � 0. Therefore Theorem 3.2 yields weighted Sobolev

embeddings for extension domains 
.

Theorem 3.4 Let 1 < q < 1; ! 2 A

q

; 0 < � < n and 1 < q < s < 1 and let


 � R

n

be an extension domain. If there exists an 0 < � � � suh that

jQj

�

n

!(Q)

1

s

�

1

q

� C (19)

for all ubes Q � R

n

, then it holds the imdedding

H

�;q

!

(
) ,! L

s

!

(
): (20)

9



As we already mentioned the half spae R

n

+

and every bounded Lipshitz do-

mains are (";1)-domains and therefore by Theorem 2.2 extension domains. Fur-

thermore it an be shown that for these domains 
 it is suÆient to verify the

ondition (19) on the weight funtion ! only for ubes Q ontained in a neighbour-

hood of 
; if 
 is bounded, or ontained in R

n

+

; for 
 = R

n

+

. Sine the proof of this

fat is elementary but rather lengthy it will be omitted and we refer to [4℄, proof

of Satz 8.8, for details. This yields the following result:

Corollary 3.2 Let 1 < q <1; ! 2 A

q

; 0 < � < n and 1 < q < s <1:

i) Let 
 � R

n

be a bounded Lipshitz domain and let U be a neighbourhood of


. If there exists an � 2 (0; �℄ suh that (19) is satis�ed for all ubes Q � U;

then it holds the imbedding

H

�;q

!

(
) ,! L

s

!

(
): (21)

ii) Let 
 = R

n

+

: Then the imbedding (21) holds if (19) is satis�ed for some

� 2 (0; �℄ and for all ubes Q � R

n

+

:

4 The Stokes operator

Let 1 < q <1; ! 2 A

q

and let 
 = R

n

;R

n

+

or a bounded C

1;1

-domain. Reall the

de�nition of the Stokes operator A

q;!

from the introdution.

The results from [6℄, [7℄ yield the following properties of the Stokes operator:

Theorem 4.1 i) The Stokes operator A

q;!

: D(A

q;!

) � L

q

!; �

(
) �! L

q

!; �

(
)

is densely de�ned and losed.

ii) For every f 2 L

q

!; �

(
) and � 2 �

"

= f� 2 C n f0g : jarg �j < � � " g; 0 <

" <

�

2

; the resolvent problem

�u+A

q;!

u = f (22)

has a unique solution u 2 D(A

q;!

). There is a onstant C

"

suh that

j�jkuk

q;!

+ kA

q;!

uk

q;!

� C

"

kfk

q;!

: (23)

For all 1 < p <1; v 2 A

p

and f 2 L

q

!; �

(
) \ L

p

v;�

(
) it holds

(�+A

q;!

)

�1

f = (�+A

p;v

)

�1

f: (24)

For a bounded C

1;1

-domain 
 the Stokes operator A

q;!

is boundedly invertible.

For � 2 �

"

[ f0g the Stokes resolvent problem (22) has a unique solution

satisfying the estimate

j�jkuk

q;!

+ kuk

W

2;q

!

(
)

� C

"

kfk

q;!

: (25)

10



iii) For 
 = R

n

or R

n

+

kr

2

uk

q;!

� C kA

q;!

uk

q;!

; (26)

kuk

W

2;q

!

(
)

� C k(I +A

q;!

)uk

q;!

(27)

for all u 2 D(A

q;!

).

iv) For 
 = R

n

; R

n

+

and a bounded C

1;1

-domain the Stokes operator �A

q;!

gen-

erates a bounded analyti semigroup in L

q

!; �

(
).

For 
 = R

n

or R

n

+

it holds 0 =2 �(A

q;!

); but 0 2 �(I+A

q;!

) and �(A

q;!

+I) also

generates a bounded analyti semigroup fe

�t (I+A

q;!

)

g: Hene the frational powers

(I +A

q;!

)

�

; � 2 R; an be de�ned in the usual way (see e.g. [16℄).

De�nition 4.1 Let 
 = R

n

;R

n

+

or a bounded C

1;1

-domain and � > 0. Then de�ne

D

�;q

!

(
) := D((I +A

q;!

)

�

)

equipped with the norm kuk

D

�;q

!

(
)

:= k(I+A

q;!

)

�

uk

q;!

: Let D

��;q

!

(
) := [D

�;q

0

!

0

(
)℄

0

and D

0;q

!

(
) := L

q

!; �

(
).

Sine L

q

!; �

(
) - as a losed subspae of L

q

!

(
)

n

- is a reexive Banah spae of

L

q

!

(
)

n

and sine for � � 0

(I +A

q;!

)

��

: L

q

!; �

(
) �! D

�;q

!

(
) (28)

is an isometri isomorphism D

�;q

!

(
) is a reexive Banah spae.

By [16℄ Theorem 2.7 the intersetion

T

1

n=1

D

n;q

!

(
) is dense in L

q

!; �

(
). Then

the isometri isomorphism (28) implies that D

�;q

!

(
) is dense in D

�;q

!

(
) for � >

� � 0. In the sequel we will show (see Lemma 4.1) that L

q

!; �

(
) is dense in D

�;q

!

(
)

for � < 0; this implies the density of D

�;q

!

(
) in D

�;q

!

(
) for arbitrary � > �.

Sine for a bounded C

1;1

-domain 
 � R

n

the Stokes operator A

q;!

is invertible,

the spaes D

�;q

!

(
) and D(A

�

q;!

) oinide for 0 � � � 1 in this ase with equivalent

norms k � k

D

�;q

!

(
)

and kA

�

q;!

� k

q;!

(see e.g. [15℄).

Lemma 4.1 Let 
 = R

n

;R

n

+

or a bounded C

1;1

�domain and � > 0. Then

D

��;q

!

(
) is isomorphi to the ompletion of the spae L

q

!; �

(
) with respet to the

norm k(I +A

q;!

)

��

� k

q;!

.

Let 0 � � � 1 and let 
 a bounded C

1;1

-domain. Then the norms kA

��

q;!

� k

q;!

and k(I +A

q;!

)

��

� k

q;!

are equivalent on L

q

!; �

(
).

Proof: From Theorem 4.1 ii) and the fat that (L

q

!

(
))

0

= L

q

0

!

0

(
) it follows by

standard arguments that (A

q;!

)

0

= A

q

0

;!

0

and [(A

q;!

+ �)

�1

℄

0

= (A

q

0

;!

0

+ �)

�1

for

� 2 C n R

�

. This implies [(I + A

q

0

;!

0

)

��

℄

0

= (I + A

q;!

)

��

by the de�nition of

frational powers (see [16℄).
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The last assertion follows from the remark above that the spaes D

�;q

!

(
) and

D(A

�

q;!

) oinide with equivalent norms k � k

D

�;q

!

(
)

� kA

�

q;!

� k

q;!

for 0 � � � 1 if


 is a bounded C

1;1

-domain. 2

Using the relation e

�tA

q;!

= e

t

e

�t (I+A

q;!

)

; t � 0; and the well known relations

between the semigroup e

�t (I+A

q;!

)

and the frational powers (I + A

q;!

)

�

(see e.g.

[16℄) we obtain the following results:

Lemma 4.2 Let 
 = R

n

; R

n

+

or a bounded C

1;1

-domain.

i) Let � > 0. Then the Stokes semigroup fe

�tA

q;!

; t > 0g extends uniquely to a

bounded C

0

-semigroup on D

��;q

!

(
) - again denoted by fe

�tA

q;!

; t > 0g.

ii) For all �1 < � < � <1 and T > 0 there is a onstant C

T

suh that

ke

�tA

q;!

uk

D

�;q

!

(
)

� C

T

t

���

kuk

D

�;q

!

(
)

8u 2 D

�;q

!

(
)

for all t 2 (0; T ℄: If 
 is a bounded C

1;1

-domain, C

T

is independent of T > 0.

iii) For � > � and u 2 D

�;q

!

(
)

lim

t!0

t

���

ke

�tA

q;!

uk

D

�;q

!

(
)

= 0:

Proof: i) For u 2 L

q

!; �

(
) we get by Lemma 4.1

ke

�tA

q;!

uk

D

��;q

!

(
)

= k(I +A

q;!

)

��

e

�tA

q;!

uk

q;!

= ke

�tA

q;!

(I +A

q;!

)

��

uk

q;!

� Ck(I +A

q;!

)

��

uk

q;!

= Ckuk

D

��;q

!

(
)

:

Then the density of L

q

!; �

(
) in D

��;q

!

(
) yields i).

ii) For u 2 D

�;q

!

(
)\L

q

!; �

(
) Lemma 4.1, Theorem 6.13 in [16℄ and the relation

e

�tA

q;!

= e

t

e

�t (I+A

q;!

)

imply

ke

�tA

q;!

uk

D

�;q

!

(
)

= k(I +A

q;!

)

�

e

�tA

q;!

uk

q;!

= k(I +A

q;!

)

���

e

�tA

q;!

(I +A

q;!

)

�

uk

q;!

� C

T

t

���

kuk

D

�;q

!

(
)

for all t 2 (0; T ℄: Sine for a bounded C

1;1

-domain 
 in the above alulation

(I +A

q;!

)

���

an be replaed by A

���

q;!

; the onstant C

T

is independent of T > 0

in this ase. The density of D

�;q

!

(
) \ L

q

!; �

(
) in D

�;q

!

(
) ompletes the proof.

iii) Let " > 0 be given. Sine D

�;q

!

(
) \ L

q

!; �

(
) is dense in D

�;q

!

(
) there is

a v 2 D

�;q

!

(
) \ L

q

!; �

(
) suh that ku � vk

D

�;q

!

< ": From part i) and ii) of this

lemma it follows that

t

���

ke

�tA

q;!

uk

D

�;q

!

� t

���

ke

�tA

q;!

vk

D

�;q

!

+ t

���

ke

�tA

q;!

(u� v)k

D

�;q

!

� C

T

( t

���

kvk

D

�;q

!

+ ");

for 0 < t � T: Letting t! 0 and noting that " > 0 was arbitrarily given yields the

assertion. 2
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Lemma 4.3 Let 0 � � � 1 and let 
 = R

n

; R

n

+

be a bounded C

1;1

-domain. Then

the smooth funtions C

1

(
)

n

\D(A

q;!

) are dense in D

�;q

!

(
).

Proof: Given f 2 C

1

0;�

(
) and 1 < r < 1 standard regularity theory of the

stationary Stokes equation ([10℄, Chapter IV, Theorem 4.2) yields the existene of

a solution u 2

T

1

k=1

W

k;r

lo

(
)

n

� C

1

(
)

n

of the equationA

r

u = �u+f: This means

(I+A

r

)

�1

(C

1

0;�

(
)) � C

1

(
)

n

: Then (24) yields (I+A

q;!

)

�1

(C

1

0;�

(
)) � C

1

(
)

n

:

Sine C

1

0;�

(
) is dense in L

q

!; �

(
) and (I +A

q;!

)

�1

: L

q

!; �

(
) �! D(A

q;!

) is a

topologial isomorphism, (I + A

q;!

)

�1

(C

1

0;�

(
)) is dense in D(A

q;!

) and therefore

in D

�;q

!

(
). 2

Next we use the omplex interpolation method ([17℄, [21℄) to ompare the spaes

D

�;q

!

(
) to the spaes H

s;q

!

(
). The following properties of the domains of frational

powers are needed:

Lemma 4.4 Let X be a Banah spae, �A : D(A) � X ! X a generator of

a bounded analyti semigroup on X and � 2 (0; 1): Let D(A

�

) for 0 < � < 1 be

equipped with the graph norm. Then the ontinuous embeddings

[D(A

�

); D(A

�

)℄

�

,! D(A



) ,! [D(A

�

); D(A

�

)℄

�

hold for 0 � � � � � 1; 0 � � < � < � � 1 and  = �� + (1� �)�.

Proof: In [3℄, Theorem 6.16, the imbeddings [X;D(A)℄

�

,! D(A

�

) and

D(A

�

) ,! [X;D(A)℄

�

are proven for all 0 � � < � < � � 1. Sine �A

���

also generates a bounded analyti semigroup on X (see [15℄, Setion 10), we may

apply this result to obtain [X;D(A

���

)℄

�

,! D(A

��

). Sine A

�

is an isomor-

phism from [D(A

�

); D(A

�

)℄

�

to [X;D(A

���

)℄

�

and from D(A



) to D(A

��

); we

get [D(A

�

); D(A

�

)℄

�

,! D(A



): The seond embedding is proved analogously. 2

Lemma 4.5 For every 0 � � � 1; 0 � � � 1 and every " > 0 it holds

(1) D

�+";q

!

(
) ,! H

2�

!

(
);

(2) [L

q

!; �

(
); D

��;q

!

(
)℄

�

,! D

����";q

!

(
):

Proof: (1) By Lemma 4.4 and Theorem 3.3

D

�+";q

!

(
) ,! [L

q

!; �

(
); D(A

q;!

)℄

�

,! [L

q

!

(
); H

2;q

!

(
)℄

�

= H

2�;q

!

(
):

(2) Corollary 4.4 yields D

��+";q

0

!

0

(
) ,! [L

q

0

!

0

;�

(
); D

�;q

0

!

0

(
)℄

�

by duality. 2

5 Estimates of the nonlinear term

Let 1 < q < 1; ! 2 A

q

and let 
 � R

n

be equal to R

n

+

or to a bounded domain

with �
 2 C

1;1

. In this situation P = P

q;!

denotes the orresponding Helmholtz

projetion and A = A

q;!

denotes the orresponding Stokes operator.
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Lemma 5.1 For 1 � j � n and � >

1

2

there is a onstant C 2 R

+

suh that

kP

q;!

�

j

uk

D

��;q

!

� Ckuk

q;!

for all u 2 C

1

0

(
)

n

; i.e., the operator P�

j

de�ned on C

1

0

(
)

n

extends to a bounded

linear operator from L

q

!

(
)

n

to D

��;q

!

(
).

Proof: Sine � >

1

2

; Lemma 4.5 (1) implies that �

j

�(I +A

q

0

;!

0

)

��

: L

q

0

!

0

;�

(
) ,!

L

q

0

!

0

(
)

n

is bounded, where � denotes the injetion L

q

0

!

0

;�

(
) � L

q

0

!

0

(
)

n

: Sine the

adjoint operator of � is P

q;!

the result follows from duality. 2

We de�ne for suÆiently regular vetor �elds u and v on 


F (u; v) := P (u � rv) = P

�

n

X

j=1

u

j

�

j

v

�

:

Theorem 5.1 Let 0 < � < �

0

; 0 <  < 

0

and assume there exists a onstant

C > 0 suh that

jQj

2(+�)

q

n

� C !(Q) (29)

for all ubes Q � U , where U = R

n

+

if 
 = R

n

+

and U is a neighbourhood of 
 if 


is a bounded C

1;1

-domain. Then for all Æ 2 [0;

1

2

℄

F : D

�

0

;q

!

(
)�D



0

�Æ+

1

2

;q

!

(
)! D

�Æ;q

!

(
)

is bounded as a bilinear map.

Proof: In this proof C > 0 denotes a generi onstant. For

1

q

=

1

s

+

1

r

and all

! 2 A

q

satisfying

jQj

2�

n

!(Q)

1

r

�

1

q

= jQj

2�

n

!(Q)

�

1

s

� C 8Q � U (30)

jQj

2

n

!(Q)

1

s

�

1

q

� C 8Q � U (31)

it follows from Corollary 3.2, Lemma 4.5 i) and the boundedness of P in L

q

!

(
)

n

that

kP (u � ru)k

q;!

� kuk

r;!

krvk

s;!

� Ckuk

H

2�;q

!

krvk

H

2;q

!

� Ckuk

D

�

0

;q

!

kvk

D

�+

1

2

;q

!

(32)

for  < � < 

0

.

Choosing s =

(+�)q

�

we get �



�

1

s

=

1

s

�

1

q

: Hene both (30) and (31) are

equivalent to (29) for this hoie of s.

Sine F is bilinear, it is suÆient to show the boundedness of F on a dense

subspae. By Lemma 4.3 the spae D(A) \ C

1

(
)

n

is dense in D

�;q

!

(
) for all

14



� � 0: Hene we an assume additionally that u; v 2 C

1

(
). Then div u = 0

implies u � rv =

P

n

j=1

�

j

(u

j

v):

Under the same assumptions on s; r and ! it follows from Lemma 5.1 for arbi-

trary " > 0 that

kP (u � rv)k

D

�

1

2

�";q

!

�

n

X

j=1

kP�

j

(u

j

v)k

D

�

1

2

�";q

!

� Ck jujjvj k

q;!

� Ckuk

r;!

kvk

s;!

� C kuk

H

2�;q

!

kvk

H

2;q

!

� C kuk

D

�

0

;q

!

kvk

D

�;q

!

:

Hene for �xed u 2 D

�

0

;q

!

(
) the operator F

u

: v 7! F (u; v) is linear and bounded

from D

�+

1

2

;q

!

(
) to L

q

!; �

(
) and from D

�;q

!

(
) to D

�

1

2

�";q

!

(
). Interplotaion yields

that

F

u

: [D

�+

1

2

;q

!

(
); D

�;q

!

(
)℄

�

�! [L

q

!; �

(
); D

�

1

2

�";q

!

(
)℄

�

is linear and bounded with norm less or equal to Ckuk

D

�

0

;q

!

. Lemma 4.4 implies for

0 � Æ �

1

2

the embeddings

D



0

+

1

2

�Æ;q

!

(
) ,! [D

�+

1

2

;q

!

(
); D

�;q

!

(
)℄

�

; (33)

[L

q

!; �

(
); D

�

1

2

�";q

!

(
)℄

�

,! D

�Æ;q

!

(
); (34)

if � �

�

2

< 

0

� Æ and

�

2

+ "� < Æ; or if Æ = � = 0. For Æ 2 (0;

1

2

℄ these onditions

are satis�ed by some � 2 [0; 1℄ if " > 0 is small enough. Then F

u

: D



0

+

1

2

�Æ;q

!

(
)!

D

�Æ;q

!

(
) is bounded with norm � C kuk

D

�

0

;q

!

. Sine F (u; v) = F

u

(v); the proof is

omplete. 2

6 Abstrat existene theorem

In this setion we follow [22℄ the abstrat existene theorem in [22℄. However we

introdue an additional Banah spae and an inhomogeneity f . This implies a more

general loal existene result for strong solutions of the Navier-Stokes equations.

Theorem 6.1 Let W;X; Y; Z and G be Banah spaes, whih are imbedded into a

ommon topologial vetor spae. Furthermore let fe

tA

g

t�0

be a C

0

-semigroup on

X satisfying the following assumptions:

(I) For every t > 0 the operator e

tA

extends to a linear bounded operator from

W to X. There exists some a 2 (0; 1) and positive onstants C and T suh

that

je

tA

uj

X

� C t

�a

juj

W

for all u 2 W und t 2 (0; T ℄.

15



(II) For every t > 0 it holds e

tA

2 L(X; Y ) \ L(X;Z) \ L(X;G). There exist

b > 0;  > 0; d 2 (a; 1) and positive onstants C and T suh that

je

tA

uj

Y

� C t

�b

juj

X

(35)

je

tA

uj

Z

� C t

�

juj

X

(36)

je

tA

uj

G

� C t

�(d�a)

juj

X

(37)

for all u 2 X and t 2 (0; T ℄. Furthermore e

tA

u 2 C((0; T ℄; Y )\C((0; T ℄; Z)\

C((0; T ℄; G) and

lim

t!0

t

b

je

tA

uj

Y

= lim

t!0

t



je

tA

uj

Z

= lim

t!0

t

d�a

je

tA

uj

G

= 0:

for all u 2 X.

Additionally assume that a+ b +  � 1.

Let

F : Y � Z !W

be a bilinear bounded mapping and F (u) := F (u; u).

Then for every u

0

2 X and f 2 C((0; T ℄;W ) for some T > 0 with jf(t)j

W

=

o(t

�b�

) for t ! 0 there exists some T

�

> 0 and a unique urve u : [0; T

�

℄ ! X

with the properties:

a) u : [0; T

�

℄! X is ontinuous and u(0) = u

0

:

b) u 2 C((0; T

�

℄; Y ) \ C((0; T

�

℄; Z) \ C((0; T

�

℄; G) and

lim

t!0

t

d�a

ju(t)j

G

= lim

t!0

t

b

ju(t)j

Y

= lim

t!0

t



ju(t)j

Z

= 0:

) u(t) = e

tA

u

0

+

R

t

0

e

(t�s)A

(Fu(s) + f(s) )ds for all t 2 [0; T

�

℄.

Furthermore T

�

> 0 an be hosen independly of the hoie of G.

Proof: Let u

0

2 X and �; �; T > 0 be suh that

je

tA

u

0

j

X

� �; t

b

je

tA

u

0

j

Y

� �; t



je

tA

u

0

j

Z

� � (38)

for all t 2 (0; T ℄: For T ! 0 the value � > 0 an be hosen arbitrarily small.

For �; � and T satisfying (38) let M = M(�; �; T ) be the set of all mappings

u : (0; T ℄! X satisfying

u 2 C((0; T ℄; X) \ C((0; T ℄; Y ) \ C((0; T ℄; Z) \ C((0; T ℄; G);

ju(t)j

X

� 2�; t

b

ju(t)j

Y

� 2�; t



ju(t)j

Z

� 2�; sup

t2(0;T ℄

t

d�a

ju(t)j

G

<1

16



for all t 2 (0; T ℄. Let  := sup

t2(0;T ℄

t

d

je

tA

j

L(W;G)

: Then M(�; �; T ) equipped with

the metri

d(u; v) = sup

t2(0;T ℄

( ju(t)� v(t)j

X

+  t

b

ju(t)� v(t)j

Y

+

 t



ju(t)� v(t)j

Z

+ t

d�a

ju(t)� v(t)j

G

)

is a nonempty omplete metri spae. For u 2M de�ne the operator

Fu(t) = e

tA

u

0

+

Z

t

0

e

(t�s)A

(Fu(s) + f(s) )ds:

In order to apply Banah's �xed point theorem we show that F : M ! M is a

q�ontration with q < 1 if T > 0 is suÆiently small.

To show that F mapsM into itself, we only prove that t

b

jFu(t)j

Y

� 2� for � > 0

and T > 0 suÆiently small. The remaining estimates are proved analogously:

t

b

jFu(t)j

Y

� t

b

Z

t

0

je

(t�s)A

j

L(W;Y )

jFu(s)j

W

ds

+ t

b

Z

t

0

je

(t�s)A

j

L(W;Y )

jf(s)j

W

ds+ t

b

je

tA

u

0

j

Y

� C t

b

Z

t

0

(t� s)

�b�a

ju(s)j

Y

ju(s)j

Z

ds+ (t) t

b

Z

t

0

(t� s)

�b�a

s

�b�

ds+ �

� ( 4C �

2

+ (t) ) t

b

Z

t

0

(t� s)

�b�a

s

�b�

ds+ �

=

~

C ( �

2

+ (t) ) t

1�(a+b+)

+ � � 2�;

where lim

t!0

(t) = 0 and the last �-sign holds for t 2 (0; T ℄, if T > 0 and � > 0

are suÆiently small.

We show that for T small enough F is a q-ontration with q < 1, i.e.,

d(Fu;Fv) � q d(u; v) 8 u; v 2 M:

We prove only t

d�a

jFu(t) � Fv(t)j

G

� q d(u; v); where q < 1 for t 2 (0; T ℄ and

T > 0 small enough. The remaining estimates are proved analogously.

t

d�a

jFu(t)�Fv(t)j

G

� t

d�a

Z

t

0

je

(t�s)A

j

L(W;G)

jFu(s)� Fv(s)j

W

ds

� C t

d�a

Z

t

0

(t� s)

�d

(ju(s)j

Y

 ju(s)� v(s)j

Z

+ jv(s)j

Z

 ju(s)� v(s)j

Y

) ds

� 2C � t

d�a

Z

t

0

(t� s)

�d

s

�b�

d(u; v) ds

=

~

C � t

1�(a+b+)

d(u; v) � q d(u; v)

17



for t 2 (0; T ℄ with some q < 1, if T > 0 and � > 0 are suÆiently small. Note that

 may depend on the hoie of the spae G, but

~

C > 0 is independent of G. Hene

T > 0 an be hosen independently of the hoie of G.

Choosing for T and for � small values T

�

> 0 and �

�

> 0, Banah's �xed point

theorem implies the existene of a unique �xed point u 2 M(�; �

�

; T

�

) of F , i.e.,

) is proved. In a) and b) it remains to investigate the behaviour of u for t! 0:

Let �

1

� �

�

and T

1

� T

�

be suh that (38) is satis�ed, and let u

1

and u

be the �xed points of F in M(�; �

1

; T

1

) and in M(�; �

�

; T

�

) respetively. Sine

M(�; �

1

; T

1

) �M(�; �

�

; T

1

) the uniqueness of u implies u

1

= u

�

�

(0;T

1

℄

.

We show a). Due to the assumptions

ju(t)� u

0

j

X

�

Z

t

0

je

(t�s)A

j

L(W;X)

(jFu(s)j

W

+ jf(s)j

W

) ds+ je

tA

u

0

� u

0

j

X

�

~

C ( �

2

1

+ (t))t

1�(a+b+)

+ je

tA

u

0

� u

0

j

X

for all t 2 (0; T

1

℄ with (t) ! 0 for t ! 0. Sine T

1

> 0 and �

1

> 0 an be hosen

arbitrarily small it follows u(t)! u

0

for t! 0 in X.

To show lim

t!0

t

d�a

ju(t)j

G

= 0 in b) note that

t

d�a

ju(t)j

G

� t

d�a

Z

t

0

je

(t�s)A

j

L(W;G)

(jFu(s)j

W

+ jf(s)j

W

) ds+ t

d�a

je

tA

u

0

j

G

� C  t

d�a

Z

t

0

(t� s)

�d

ju(s)j

Y

ju(s)j

Z

ds

+ (t)  t

d�a

Z

t

0

(t� s)

�d

s

�b�

ds+ t

d�a

je

tA

u

0

j

G

� ( 4C �

2

1

+ (t) )  t

d�a

Z

t

0

(t� s)

�d

s

�b�

ds+ t

d�a

je

tA

u

0

j

G

�

~

C  ( �

2

1

+ (t))t

1�(a+b+)

+ t

d�a

je

tA

u

0

j

G

:

for t 2 (0; T

1

℄. Note that due to the assumptions t

d�a

je

tA

u

0

j

G

! 0 for t! 0 and �

1

an be hosen arbitrarily small by hoosing T

1

small. Moreover (t)! 0 for t! 0:

The remaining estimates are analogous and thus the laim follows b). 2

An analysis of the proof of Theorem 6.1 shows that Banah's �xed point theorem

is appliable if � > 0 and sup

0<t<T

�

(t) are suÆiently small. This was ahieved

by hoosing T

�

> 0 suÆiently small. The following orollary is based on the fat

that the smallness of � > 0 and sup

0<t<T

�

(t) an also be guaranteed by hoosing

some norms of u

0

and f small enough.

Corollary 6.1 i) Additionally to the assumptions of the preeding theorem let

the semigroup fe

tA

g

t�0

be uniformly bounded in L(Y ) \ L(Z) and let R > 0.

Then T

�

> 0 does not depend on the hoie of an initial value u

0

2 Y \ Z

with maxfju

0

j

Y

; ju

0

j

Z

g � R and on f 2 C([0; T ℄;W ) with kfk

C([0;T ℄;W )

� R.
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ii) Additionally to the assumptions of Theorem 6.1 let T =1 and a+ b+  = 1.

Then there are onstants 

1

> 0 and 

2

> 0 suh that for all u

0

and f

satisfying ju

0

j

X

� 

1

and sup

0<t<1

t

b+

jf j

W

� 

2

the solution u from Theorem

6.1 exists on (0;1), i.e., a)- ) hold for arbitrary T

�

> 0:

Proof: i) Sine e

tA

2 L(Y ) \ L(Z) and maxfju

0

j

Y

; ju

0

j

Z

g � R,

t

b

je

tA

u

0

j

Y

� C R t

b

and t



je

tA

u

0

j

Z

� C R t



:

Comparing with (38) we get that � an be hosen arbitrarily small and independent

of u

0

if T

�

tends to zero. Furthermore for jf(t)j

W

� R; t 2 [0; T ℄ the quantity

(t) = t

b+

jf(t)j

W

only depends on R but not on f .

ii) Let � > 0 be given. Beause of (35)-(37) we get (38) for all t > 0, if ju

0

j

X

is

suÆiently small. Replae (t) by 

2

:= sup

0<t<1

t

b+

jf(t)j

W

. Choosing 

2

small

enough and assuming that � > 0 is given suÆiently small, then u(t) exists on

(0;1). 2

7 Instationary Navier-Stokes equations

Let 
 be equal to the half spae R

n

+

or to a bounded domain with C

1;1

-boundary.

We show a loal existene result for strong solutions of the instationary Navier-

Stokes equations (1) in weighted Sobolev spaes. Our aim is to embed results from

[22℄ and [12℄ into the weighted ontext.

Proof of Theorem 1.1: Choose � =

��Æ+1

2

and  =

�+Æ

2

. Then � > 0; � 2

(�; 1�Æ) and  2 (0;

1

2

). Furthermore �+ =

1

2

+�: Sine 0 < ��+

1

2

< �+

1

2

= �+;

we an hoose

�

� 2 (0; �) and � 2 (0; ) suh that

�

� + � = �� +

1

2

. Hene by (4)

jQj

2(

�

�+�)

q

n

= jQj

(1+2��)

q

n

� C !(Q) 8Q � U:

Sine � =  +

1

2

� Æ; Theorem 5.1 yields that

F : D

�;q

!

(
)�D

�;q

!

(
) �! D

�Æ;q

!

(
) (39)

is bilinear bounded. Then for � 2 (�; 1� Æ) and

W = D

�Æ;q

!

(
); X = D

�;q

!

(
)

Y = Z = D

�;q

!

(
); ; G = D

�;q

!

(
) (40)

a = � + Æ; b =  = � � �; ; d = �+ Æ

by Lemma 4.2 the assumptions of Theorem 6.1 are satis�ed: It holds a; b;  > 0 and

d 2 (a; 1) by the hoie of �; ; Æ and �: Furthermore a+b+ = �+Æ+2(���) = 1

by the hoie of �.

By Lemma 4.2 the assumptions (I) and (II) of Theorem 6.1 on the semigroup

e

�tA

are satis�ed. By (39) the assumptions of Theorem 6.1 on F are satis�ed.

Sine b+  = 2(� � �) = 1� Æ � �; we have

jf j

W

= kfk

D

�Æ;q

!

(
)

= o(t

Æ+��1

) = o(t

�b�

):
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Then an appliation of Theorem 6.1 yields the assertions a),b),).

Conerning uniqueness, note that if a) and b) hold for some � �

��Æ+1

2

= �,

then beause of

kuk

D

�;q

!

� C kuk

�

D

�;q

!

kuk

1��

D

�;q

!

with � =

���

���

(see [16℄, Chapter 2, Theorem 6.10) it follows that b) is satis�ed for

� = �. Hene the laim follows from the uniqueness statement of Theorem 6.1, if

we hoose � = � =

��Æ+1

2

in (40), i.e., Y = Z = G = D

�;q

!

(
). 2

Remark: For the proof of Theorem 1.1 we formally only need to assume that

�

1

2

< � < 1: But note that the ondition (4) an hold for ! 2 A

q

only if

(1 + 2�)

q

n

� 1: (41)

The reason is that (4) implies for the mean value of ! on Q

jQj

(1+2��)

q

n

�1

� C

!(Q)

jQj

:

If (1+2��)

q

n

< 1; then for jQj ! 0 the left hand side tends to in�nity. By Lebesgue's

di�erentiation theorem this implies ! � 1 a.e. on 
, whih is impossible beause

of ! 2 A

q

� L

1

lo

(R

n

). By � > � and (41) we obtain the ondition

n

2q

�

1

2

< �: (42)

This lower bound for � was also found in [12℄ in the ase without weights, i.e.,

! � 1.

Let q and � be as in Theorem 1.1. Then in the ase that 
 is a bounded

C

1;1

-domain examples of weight funtions ! satisfying the assumption (4) are

jx� x

0

j

�

for � n < � < (1 + 2�)q � n;

d(x; �
)

�

for � 1 < � < minfq � 1; (1 + 2�)q � ng;

where x

0

2 R

n

is arbitrary and d(x; �
) is the distane from x to �
.

If 
 = R

n

+

; then (4) implies that the weight is not allowed to derease for

jxj ! 1: More preisely, it follows from (4) that

!(Q

0

+ x) � C(Q

0

)

for x 2 R

n

and a �xed ube Q

0

, i.e. !(x)! 0 for jxj ! 1 is not possible. Simple

examples of weights satisfying the ondition (4) for 
 = R

n

+

are

jx� x

0

j

�

for 0 � � < (1 + 2�)q � n;

1 + jx� x

0

j

�

for � n < � < 0;

x

�

n

for 0 � � < minfq � 1; (1 + 2�)q � ng;

1 + x

�

n

for � 1 < � < 0;
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where x

0

2 R

n

is arbitrary and x

n

denotes the nth omponent of a vetor x =

(x

1

; : : : ; x

n

) 2 R

n

+

.

The way how to onlude from Theorem 1.1 the existene of loal strong solu-

tions of the Navier-Stokes equations (2) is standard and ompletely analogous to

the ase without weights (see [12℄). Therefore we skip the proof of the following

result and refer to [12℄ for details:

Theorem 7.1 Additionally to the assumptions of Theorem 1.1 let f : (0; T ℄ !

L

q

!; �

(
) be H�older ontinuous on ["; T ℄ for every 0 < " < T: Then there exists a

T

�

> 0 and a loal strong solution u 2 C([0; T

�

℄; D

�;q

!

(
)) \C

1

((0; T

�

℄; L

q

!; �

(
)) of

the Navier-Stokes equations (2) on [0; T

�

℄ satisfying assertion b) of Theorem 1.1

and u(t) 2 D(A

q;!

) for all t 2 (0; T

�

℄.

The solution is unique if assertion b) of Theorem 1.1 holds for some � �

1�Æ+�

2

.

We onlude with a global existene result for small data: Let 
 be a bounded

C

1;1

-domain. Then the following orollary is an easy onsequene of Corollary 6.1

and the fat that the onstant C in Lemma 4.2 ii) is independent of T if 
 is

bounded:

Corollary 7.1 Let 
 be a bounded C

1;1

-domain. Then there are onstants 

1

> 0

and 

2

> 0 suh that the solution u of the Navier-Stokes equations given by Theorem

7.1 exists globally on R

+

if

ku

0

k

D

�;q

!

� 

1

and sup

0<t<1

t

1���Æ

kf(t)k

D

�Æ;q

!

� 

2

:
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