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Abstract

The problem of strong solvability of the nonstationary Navier-Stokes
equations is considered in weighted L%-spaces L& (€2), where the domain
2 C R" is equal to the half space R’} or to a bounded domain with boundary
of class C1! and the weight w belongs to the Muckenhoupt class A4,. We give
general conditions on the weight function ensuring the existence of a unique
strong solution at least locally in time. In particular, these conditions admit
weight functions w € A4, which become singular at the boundary or, in the
case 2 = R}, grow for |z| — oo.

AMS classification: 35Q30, 35D05, 76D05

1 Introduction

In this paper we investigate the existence of strong solutions in weighted L{-spaces
of the instationary Navier-Stokes equations

w+u-Vu—vAu+Vp=f in (0,7) x Q (1a)
divu=0 1in (0,7) x Q (1b)

u=0 on (0,7) x 0 (1c)

u(0) =up in Q. (1d)

Here 2 C R" is a bounded domain with boundary of class C'! or the half space
R’ ; u denotes the unknown velocity field, p is the unknown pressure, while the
external force f and the initial velocity uy are given and v > 0 is the constant
viscosity.

There are numerous references concerning the problem of strong solvability of
the Navier-Stokes system in L?-spaces; we mention only [8], [14] for ¢ = 2 and [12],
[22] for general Li-spaces and refer to [12] for a more complete survey.
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Our aim is to embed the results in L7-spaces without weights [12], [22] into the
weighted context for a large class of weight functions. For this purpose we exploit
results from [6], [7] on the Stokes operator in weighted L?-spaces, 1 < ¢ < oo, for
general weight functions of Muckenhoupt class A, (see Definition 2.1).

To define the Stokes operator in weighted L-spaces let 1 < ¢ < 00, w € A,

L8(©) = {u € Lip(@ : ulf = | Jultw do < 0}
Q

and use the existence of the Helmholtz decomposition, see [5],
LL()" = L, () @ GL(Q)

where L{, (€2) is the closure of C§% (2) = {u € C§°(Q)" : divu = 0} in LL(Q2)" and
G4(2) are the gradient fields in LZ(2)". Using the bounded Helmholtz projection
Py LL(Q)" — LE ,(2) we define the Stokes operator Ay, in L? ,(€2) by

D(Aq.) = W2I(Q)" N L, (Q2)n{ue e (R U"OQ =0}
Ay =—-v P A on D(Ayu),

where W24(Q) and W24(2) denote the Sobolev spaces over L%((2) of order 1 and
2 respectively. It was shown in [6], [7] that the Stokes operator —A,, generates a
bounded analytic semigroup in Lf, (€2). Applying the Helmholtz projection P to
the Navier-Stokes equations (1) yields the initial value problem

u+ Agou=Pf—P(u-Vu), u(0)=ug (2)

in L? _(£2) or more generally in the spaces D®7(2) defined as

D31(Q) == D((I + Ayw)®) fora>0

equipped with the norm [Jul|pee(q) == (I + Agw)*ullqw, where D((1 + Ag,)%) is
the domain of the fractional power (I + .A,,)* in L? ,(€2). For a < 0 we define
D®4(£2) to be the dual space of D_*7 (), where ¢ = g and W' = w1 For
a=0let DY) := Lf ,(Q).

Using that the Stokes operator —A,,, generates a bounded analytic semigroup
{e=taw}, 5o we can reformulate (2) in integral form

u(t) = e oy + /0 e M us (PF(s) — Plu-Vu)(s)} ds 3)
for all t € (0,7).

Then our main result on solvability of (3) reads as follows:

Theorem 1.1 Let 1 < ¢ < oo, w € A, and let Q be a bounded C*'-domain or
the half space R}. Moreover let 2%1 — % < a < 1 and assume that there exists an

a € (—3,a), such that

QI < Cw(Q) (4)



for some C € Ry and for all cubes Q C U, where U = R} if Q = R} and
U C R" is a neighbourhood of Q if Q is a bounded CY'-domain. Set A := A,,, and
Fu:=—P(u-Vu).

Finally let ug € D29(Q) and for some 6 € [0, 5) with —a < 6 < 1—a and some
T >0 let

F€C((0,T,D57(Q)  and |[f(B)ll -0 = 0(t*°") fort — 0.

Then there is a T* > 0 and a unique curve u : [0,T*] — D%9(Q) with the
properties

a) ue C([0,T*], D*1()) and u(0) = uy.
b) ue C([0,T*], DH1(Q)) for a« <p<1—=06 and lim o t*=*||u(t)| pre = 0.
c) ut) = e ug + [ e" I Fu(s) + f(s)} ds for all t € [0,T7].

The mapping u : [0,T*] — D*(Q) is uniquely determined if it satisfies a), b) for
some p > =3+ qnd ¢).

Comparing this result with results in the case without weights we see that in [22]
and [12] the same lower bound n/2q — 1/2 for the choice of o was found. In [12] it
was possible to include even the limit case &« = n/2q — 1/2 because of the result in
[13]. Thus except of this limit case we have the same restrictions on the choice of ¢
and « but we can additionally admit a weight function satisfying the condition (4).
Roughly spoken, (4) means that the weight function is not allowed to become too
small. In particular, we can choose weight functions w € A, which are bounded
from below by positive constants but become singular at the boundary 0S2 or grow
for |#| — oo in the case 2 = R} . Hence we obtain more precise informations about
the behaviour of the solution near 9Q and for |z| — oco. Some simple examples of
weight functions obeying (4) are given in Section 7.

Finally, Theorem 1.1 implies the unique local solvability of the Navier-Stokes
equations in the evolutionary formulation (2) in weighted Li-spaces under addi-
tional regularity assumptions on f (Theorem 7.1 in Section 7 below). Moreover we
get even global existence results under smallness assumptions on the norms of ug
and f in the case of a bounded domain © (Corollary 7.1).

This paper is organized as follows: In Section 2 we introduce the class of Muck-
enhoupt weights and fix some notation.

Section 3 discusses with imbedding properties of weighted Bessel potential
spaces H2?(Q2) for o € R exploiting results on the boundedness of fractional inte-
gral operators in weighted Li-spaces [18], extension theorems in weighted Sobolev
spaces [1] and the complex interpolation method. For these weighted imbedding
theorems more restrictive assumptions than w € A, are needed. These assumptions
finally lead to the condition (4) in Theorem 1.1.

After summarizing results on the Stokes operator A, from [6], [7] and dis-
cussing properties of the spaces D*?({2) in Section 4, we compare the spaces
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D21(€2) with the weighted Bessel potential spaces H24(€2) : Since up to now there
is no proof of boundedness of the purely imaginary powers of the Stokes operator
A, for general Muckenhoupt weights w € A,, we can only use the imbeddings

DE*(Q) = H™(Q) < Dg(Q)

fora < a<a.

Combining the results of Section 3 and Section 4 we derive weighted estimates
of the nonlinearity P(u - Vu) in Section 5.

In Section 6 an abstract existence theorem for integral equations of the form
(3) is proved with the help of Banach’s fixed point theorem generalizing a result of
[22].

In Section 7 we apply the abstract results of Section 6 and the estimates of the
nonlinear term in Section 5 to obtain Theorem 1.1. Then by standard arguments
Theorem 1.1 yields results on unique local and global solvability of the initial value
problem (2) in weighted spaces stated as Theorem 7.1 and Corollary 7.1 in Section
7 below.

2 Preliminaries

By a cube ) we mean a subset of R" of the form II}_, I;, where I,... I, C R are
bounded intervals of the same length. Thus cubes have always sides parallel to the
axes.

Definition 2.1 Let 1 < ¢ < co. A function 0 < w € Li,.(R") is called an A,-
weight iof

g (o) ( f o) <

where the supremum is taken over all cubes Q@ C R™ and |Q| assigns the Lebesgue
measure of Q. Ag(w) is called the Ag-constant of w.

We use the abbreviation w(A) for [, w(x)dz and set w' := W T if ¢ € (1,00)
is fized.

Note that if 1 < ¢ < coand ¢ = ¢/(¢—1), then (LL(Q))" = Lz:,(Q) with respect
to the usual dual product (f,g) = [, f gdz. Note that w’ € Ay.

Simple examples of A,-weights are radially symmetric weights of the form
w(z) = |z —x9|* for —n < a < n(g — 1) or more generally distance functions of
the form w(z) = dist (x, M)® for a k-dimensional compact Lipschitzian manifold
M and —(n — k) < a < (n — k)(q — 1). For further examples we refer to [2].

For Muckenhoupt weights there is a weighted version of the Hormander-Michlin
multiplier theorem (see [9], Chapter IV, Theorem 3.9 or [2], Theorem 3.3).



Theorem 2.1 (Hormander-Michlin multiplier theorem with weights)
Let m € C"(R*"\{0}) have the property that

IMER : IDm(€)] < M |g|1 ve e R\ {0}, |a| =0,1,... ,n.

Then for all 1 < ¢ < oo and w € A, the multiplier operator f\f = mf defined for
Schwartz functions f € S = S(R™) can be extended uniquely to a bounded linear
operator from LL(R™) to LI (R"™) witha norm depending only on n,q, M and Ay(w).

For a domain Q@ C R*, 1 < ¢ < oo, w € A; and k € N we define the weighted
Sobolev space

WkE(Q) := {u e LI(Q) : D*u e LL(Q), |of < k}

1
lullee = (3 IDullt,,)"

la|<k

If €2 is the half space R} or a bounded Lipschitz domain, the trace of functions in
W2l4(Q2) on the boundary is well defined (see [6], [7]). By WOIU‘J’(Q) we denote the
subspace of functions from W 4(Q) with zero trace.

Next we prove an extension theorem following from results of Chua [1]. For the
definition of an (e, c0)-domain see [1] or [6], Definition 3.1. It is easy to check that
every bounded Lipschitz domain and the half space R’} are (e, 00)-domains.

Theorem 2.2 Let 1 < ¢ < oo andw € A,. Let @ C R be an (¢, 00)-domain and
m € N. Then there ezists a linear, bounded extension operator E,, : WIM(2) —
W2(R") and a constant C > 0 such that for k=0,1,...,m

[ Emullbgwre < Clullegwe (6)
for all uw € Wh1(Q).

Proof: For unbounded (g, 00)-domains the result follows from Theorem 1.5 in [1].

For a bounded (g,00)-domain Theorem 1.4 in [1] yields the existence of a
bounded neighbourhood U of € and the existence of an extension operator E :
wme(Q) — W74(U) such that

||VkEu||q,w,U <C ||Vku||q,w79
for k = 0,1,...,m. Let ¢ € C°(U) with ¢ = 1 on Q. Then E,, := pE is the
desired extension operator. O
3 Weighted Bessel potential spaces
On S'(R") we define for s € R the operator

Nf=F 1+ |EPH2Ff  Vfed,
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where F is the Fourier transformation on &'. Then for 1 < ¢ < oo and w € A, the
weighted Bessel potential space is defined by

HYRY) :={f €8 : [|flluge = [[A°f

lgw < 00} (7)

Note that H>?(R") is a reflexive Banach space. The weighted Multiplier The-
orem 2.1 yields the imbedding HZ"/(R") — H?>9(R™) for s; > s,.

In the sequel the complex interpolation method (see e.g. [17] or [21]) will be
used. Given two compatible Banach spaces X and Y and 6 € (0, 1) the respective
complex interpolation space is denoted by [X,Y]s. Further let [X,Y]y = X for
=0and [X,Y]p=Y for § =1.

Lemma 3.1 Let1 < g <oo,w€ A; and k € N.
i) HE(RM) = WEYR™) with equivalent norms.
ii) Let 0 < s < k. Then [LI(R"), HM(R")], = H29(R") for 6 = &.

Proof: i) The assertion follows from Theorem 2.1 (cf. Propostion 6.1 in [20],
Chapter 13). ii) The proof is based on the boundedness of the purely imaginary
powers A% in LI (R"), which is an easy consequence of the weighted Multiplier
Theorem 2.1. We refer to the proof of Proposition 6.2 in [20], Chapter 13. O

3.1 A weighted embedding lemma

For 0 < v < n define the fractional integral operator

Lato) = | 9w g, ®)

n o —yln—e

In the sequel Q) assigns a cube in R" with sides parallel to the axes. A weight
function w has the reverse doubling property (RD), if

(RD) Jde,0 € (0,1) : w(Q) <ew(Q) VQ CR".

From [18] (Theorem 1 (B)) we cite the following theorem about boundedness
of the operator I, in weighted LP-spaces.

Theorem 3.1 Let 0 < a <nand 1l < p < q < oco. Let v,w > 0 be measurable
1
functions on R™ such that both w and v~ »-1 have the property (RD). If

(42,) IQIW(/Qw)%(/Qv‘ﬁ)I’L' <C VQCRY,

then

Hafllgw < ClIfllpo (9)
for all f € LP(R").



Remark: Every Muckenhoupt weight w € A, := U1<q<oo A, has the property
(RD) (see e.g. [9], Chapter IV, Lemma 2.4).

The operator I, can be written as a multiplier operator in the form
Lf=cle°f vies (10)

(see [19], Chapter V, Lemma 2 (b)), where ¢ > 0 depends only on n,«. Since I,
neither maps S into itself nor can be well defined on 8’ we consider the space

M :={f €S8 : f=0in a neighbourhood of 0}, (11)

which is obviously mapped by I, into itself. For f € M the composition I, A®f =
cFHE~(1 + |€]2)2 F € M is well-defined and with

Jog = FHE A+ [E) 2 Fg Vge M

we have J, [, A“f = f for all f € M.
We show the density of M in weighted Bessel potential spaces H (R ).

Lemma 3.2 Let1l < ¢ < oo, w € A, and let s € R. Then M is dense in H3(R").

Proof: Choose a cut-off function n € C§°(R") with = 1 in a neighbourhood of
0. Set n.(¢) = 77(%) for € > 0 and consider the multiplier operator

— -~

T.f (&) = n(8) f(£) (12)
for f € §’. We claim that
VfeS: T.f—0 in LI(R") (13)
for e — 0. Since for k =1,... ,n

§

even©l < S o (2)] < ¢,

with (), independent of ¢ > 0, Theorem 2.1 implies the uniform boundedness of
{T. : ¢ >0} in L(L9(R"). Since f € S we can use Theorem 2.1 again to obtain

1T fllgw < Cog IF nellgw = £"Cooy 1(F 1) (2 )l (14)

Since w € A, there is a § > 0 such that w € A, 5 (see [9], Chapter IV, Theorem
2.6). For § := ¢7'nd > 0 we get because of F~'n € S the estimate

(F ') (ea)| < ¢ (L+[ea])’ " < ee” (14 [2])" "
Applying this estimate to the right hand side of (14) yields

w(x) ;

n 1 . < n_é-n T\ e
IEE N < 0 ([ o ) 0



for ¢ — 0, since the integral is finite for w € A, 5 (see [2], Lemma 2.2 iii)). This
shows (13).
Obviously (I —T.)f € M for f € S. By (13) we obtain

If = (I = To) fllmze = [Teflnge = 1 TA° fllg — 0

fore > 0and f €S8.

It remains to show the density of S in H>?(R™). But this fact follows from the
density of S in LZ(R"™) (see [6]) and the fact that A=* : LI(R") — H3%(R") is an
isomorphism mapping S onto S. O

Now it is easy to prove a weighted Sobolev imbedding theorem:

Theorem 3.2 Let 1 <g<oo,we€ A, 0<f<nandl <q<s<oo. Let

|@?%wapéwﬁﬁﬁsc (15)

for some 0 < a < 8 and for all cubes () C R™. Then it holds the imbedding
HEI(R") < Lg(R"). (16)

Proof: Since A, C A, the operator J, = ¢ *F1|¢|*(1 + |¢|*)~> F extends by
the multiplier theorem 2.1 to a linear bounded operator from L (R") to L (R") .
Hence for f € M it follows by Theorem 3.1 that

[ llso = I TadaA fllsw < CllLa A*fllsw < CIA fllgw = C 1 fll e

Since by Lemma 3.2 the space M is dense in H2?(R"), we get the embedding
H2>(R") — L?(R"). Since > « the embedding (21) is proved. O

Remark: The assumption (15) is satisfied if w € A, and

a 1_1
Q" w(@): 7 < C (17)
for all cubes ) C R® with a constant C' > 0 independent of ). In fact,

QI (/Qw)%(/Qw-q;ﬁ = Q% w(Q)

Since 1 < |Q|*1w(Q)%w_q%l(Q)qi’ the condition (17) is also necessary for (15). In
the sequel we will work with the condition (17) instead of (15).

1 1
T

QI w(Q)rw T (Q)T < C Ay(w)i.

® =

3.2 Bessel potential spaces on domains

Definition 3.1 A domain Q2 C R" is called an extension domain if for all m € N

there exists an extension operator E,, such that for all 1 < ¢ < oo, w € A, and
k=0,1,...,m

E,, : WE(Q) — WEI(R?)

18 linear and bounded.



Theorem 2.2 states that every (e,00)-domain - and thus the half space R} and
every bounded Lipschitz domain - is an extension domain.

In the sequel let 1 < ¢ < 0o, w € A; and 2 C R” be an extension domain. For
a € R we define

HE9(9) = {g], + g € HIU(R") }

with norm ||u|| yae(q) = inf{[|g||ges : g € HPYU(R), g‘Q = u}. Lemma 3.1 and the
extension property of the domain imply that HF(Q) = Wk4(Q) for k € N. We
have the following interpolation property:

Theorem 3.3 Let 1 < ¢ < 0o, w € A, and let Q@ C R* be an extension damain.
Then for k€ Nund 0 <o <k

H3(Q) = [LL(Q), WE(Q)]

23 .

3

Proof:  Since () is an extension domain, there is a linear bounded extension
operator

E: Wk(Q) - WF(R") and E: L1(Q) — LL(R").
By complex interpolation and Lemma 3.1 it follows that
B [LE(Q), WS ()]s — [LL(RY), WiU(R")]2 = HS(R")
is linear and bounded. This implies the embedding
[L4(9), W51 (Q)]g — HZ*(€Q). (18)

Replacing in the arguments above the extension operator E by the respective re-
striction operator, we get the embedding (18) in the other direction. O
The reiteration property of complex interpolation (see [21] or [17]) yields:

Corollary 3.1 Under the assumptions of the preceding theorem on q,w,$2 the in-
terpolation property

H)Q) = [HI(Q), HD ()]
holds with v = (1 — 0)a+ 0 for all 0 < a < and 0 < 6§ < 1.

Theorem 3.3 implies the existence of a linear bounded extension operator E :
HP1(Q) — HS4(R™) for all 8 > 0. Therefore Theorem 3.2 yields weighted Sobolev
embeddings for extension domains 2.

Theorem 3.4 Let 1 < g <oo,w € A;,0 < B <nandl <q<s < oo and let
Q C R" be an extension domain. If there exists an 0 < o < 8 such that

a 1_1
Q" w(Q):77 <C (19)
for all cubes QQ C R™, then it holds the imdedding
HE1(Q) < L, (). (20)



As we already mentioned the half space R} and every bounded Lipschitz do-
mains are (g,00)-domains and therefore by Theorem 2.2 extension domains. Fur-
thermore it can be shown that for these domains €2 it is sufficient to verify the
condition (19) on the weight function w only for cubes ) contained in a neighbour-
hood of €2, if €2 is bounded, or contained in R, for 2 = R’ . Since the proof of this
fact is elementary but rather lengthy it will be omitted and we refer to [4], proof
of Satz 8.8, for details. This yields the following result:

Corollary 3.2 Letl1 <g<oo,w€ A, 0<B<nandl <qg<s<oo.

i) Let Q C R" be a bounded Lipschitz domain and let U be a neighbourhood of
Q. If there exists an « € (0, 8] such that (19) is satisfied for all cubes Q C U,
then it holds the imbedding

H3*(Q) = Ly,(Q). (21)

i) Let Q@ = R. Then the imbedding (21) holds if (19) is satisfied for some
a € (0, 8] and for all cubes @ C R .

4 The Stokes operator

Let 1 < ¢ < oo, w € A, and let Q = R*, R or a bounded C*'-domain. Recall the
definition of the Stokes operator A, from the introduction.
The results from [6], [7] yield the following properties of the Stokes operator:

Theorem 4.1 i) The Stokes operator Ay, : D(Agn) C LY () — L ,(S2)
s densely defined and closed.

i) For every f € LE () and A € ¥, ={A € C\ {0} : |argA| <7 —¢c},0<

g < 3, the resolvent problem
A+ Agu = f (22)
has a unique solution uw € D(A,,). There is a constant C. such that

oo < Cel[ fllge- (23)
For all1 <p <oo,v €A, and f € LE (Q) N LY () it holds

[AMllellgw + [1Agwu

A+ Ag) =+ A7 (24)
For a bounded C*'-domain 2 the Stokes operator A, is boundedly invertible.

For A € ¥. U {0} the Stokes resolvent problem (22) has a unique solution
satisfying the estimate

[Alllellge + llullyza@) < Ccll fllgw- (25)
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i4i) For Q =R" or R}

IV*ullgew < C | Agutillge. (26)
[ullwze) < CIU + Agw)ullgw (27)

for alluw € D(A,,).

w) For Q=R", R? and a bounded C*'-domain the Stokes operator — A, gen-
erates a bounded analytic semigroup in L, ,(§2).

For 2 = R" or RY} it holds 0 ¢ p(Ay.), but 0 € p(/ +Ay) and —(Ag.+1) also
generates a bounded analytic semigroup {e*U*44«)} Hence the fractional powers
(I+ A,u)%, a € R, can be defined in the usual way (see e.g. [16]).

Definition 4.1 Let Q =R", R} or a bounded C*'-domain and o > 0. Then define
D) == D((I + Ag)”)

equipped with the norm ||ul| paaqy = ||(I +Agw)*ullgw- Let D7) = [ij,’q’(Q)]’
and DY(2) := LE ().

Since LE ,(€2) - as a closed subspace of L (€2)" - is a reflexive Banach space of
L ()™ and since for o > 0

(I 4+ Agw) ®: Lg, o (Q) — DG(Q) (28)

is an isometric isomorphism D29(2) is a reflexive Banach space.

By [16] Theorem 2.7 the intersection ()2, D24(€2) is dense in L¢ ,(€2). Then
the isometric isomorphism (28) implies that D%?(Q) is dense in D®4(Q) for 3 >
a > 0. In the sequel we will show (see Lemma 4.1) that LZ ,(€) is dense in D$?(€2)
for o < 0; this implies the density of D?7(Q) in D*4(Q) for arbitrary 8 > a.

Since for a bounded C*'-domain 2 C R" the Stokes operator A, is invertible,
the spaces D ?(€2) and D(A7 ) coincide for 0 < a < 1 in this case with equivalent
norms || - || paaig) and [JAG, - |0 (see e.g. [15]).

Lemma 4.1 Let @ = R*, R} or a bounded CY'—domain and o > 0. Then
D;*(Q) is isomorphic to the completion of the space Lf, ,(S) with respect to the
norm (1 + Ag) = -

Let 0 < o < 1 and let Q a bounded C'-domain. Then the norms [|A;S - |lgw

and [|(I + Agw)™ -« |lgw are equivalent on LY ().

Proof: From Theorem 4.1 ii) and the fact that (L%(2)) = LZJI,(Q) it follows by
standard arguments that (A,,) = Ay and [(Age + A7 = (Agw + A)7F for
A € C\R_. This implies [({ + Ay )™ = (I + Ayw)~* by the definition of
fractional powers (see [16]).
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The last assertion follows from the remark above that the spaces D%?((2) and
D(A7,,) coincide with equivalent norms || - || paaiq) ~ [| A, - [lgw for 0 < a < Tif
Q is a bounded C'*'-domain. O

Using the relation e~tAue = et e~tU+Aww) ¢ > 0, and the well known relations
between the semigroup e~ {/*4a«) and the fractional powers (I + A,,)* (see e.g.
[16]) we obtain the following results:

Lemma 4.2 Let Q= R", R} or a bounded CHl-domain.

i) Let a > 0. Then the Stokes semigroup {e~"“« t > 0} extends uniquely to a
bounded Cy-semigroup on D;%9(Q) - again denoted by {e~ e ¢ > 0},

i) For all —oo < a < B < o0 and T > 0 there is a constant Cr such that
e~ 4l gy < Or 1P ull oy Vs € D9(0)
for allt € (0,T). If Q is a bounded C*'-domain, Cr is independent of T > 0.
iii) For > « and u € D®1(1Q)

- - —tA w I
lim #77¢le™ " ul pga ) = 0.

Proof: i) For u € LY ,(£2) we get by Lemma 4.1

le™ < ull praqy = (T + Ager) el
= [le™ e (I + Ag) ™ullgw < CIU + Aga) ™ ullgw = Cllull proa(gy-
Then the density of LY (€2) in D *(€2) yields i).
i) For u € D(Q)N LY () Lemma 4.1, Theorem 6.13 in [16] and the relation
etAww = el emtUH+Aae) imply
le™ ol pgagy = 17 + Agw) e ull

= [I(1 + Aq,W)B_ae_tAq’w (L + Agw)ullgw < Cr ta_BHU“Dﬁ’q(Q)

for all t € (0,T]. Since for a bounded C*'-domain €2 in the above calculation
(I 4+ Agw)? ™ can be replaced by A2, the constant Cr is independent of T > 0
in this case. The density of D>(Q) N L ,(€2) in D24(Q) completes the proof.

iii) Let & > 0 be given. Since D2?(Q) N L () is dense in D%(Q) there is
a v e D5Q) N LE ,(Q) such that [|u — v]|pes < e. From part i) and ii) of this
lemma it follows that

e e Al g < B e ] g+ 05 e e (0 — o)

< Cr(t7*|vll pga + ),

||Dg"1

for 0 <t <T. Letting t — 0 and noting that ¢ > 0 was arbitrarily given yields the
assertion. O
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Lemma 4.3 Let 0 < a <1 and let Q = R", R" be a bounded C"*-domain. Then
the smooth functions C*°()" N D(A, ) are dense in D*9(€2).

Proof: Given f € C§5(Q2) and 1 < r < oo standard regularity theory of the
stationary Stokes equation ([10], Chapter IV, Theorem 4.2) yields the existence of
a solution u € ()72, WE(Q)" € C()" of the equation A,u = —u+ f. This means
(I+A,) HC55(Q)) € C=(Q)". Then (24) yields (I +Ag.) (C5%(Q)) C C=(Q)".

Since C§%,(€2) is dense in LY ,(Q) and (I + Ag.)™" : LL () — D(Agy) is a
topological isomorphism, (I + Ay.,) " (C5%()) is dense in D(A,,,) and therefore
in D>1(2). O

Next we use the complex interpolation method ([17], [21]) to compare the spaces
D29(2) to the spaces H>?(€2). The following properties of the domains of fractional
powers are needed:

Lemma 4.4 Let X be a Banach space, —A : D(A) C X — X a generator of
a bounded analytic semigroup on X and 6 € (0,1). Let D(A%) for 0 < 6 < 1 be
equipped with the graph norm. Then the continuous embeddings

[D(A%), D(A%)]z — D(A”) < [D(A%), D(A”)]y
hold for 0 < a<B<1,0<0<0<0<1andy=08+(1-0).

Proof:  In [3], Theorem 6.16, the imbeddings [X, D(A)]; < D(A?) and
D(A%) < [X,D(A)]y are proven for all 0 < § < 6§ < 6 < 1. Since —A%°
also generates a bounded analytic semigroup on X (see [15], Section 10), we may
apply this result to obtain [X, D(A°~%)]; < D(A7=®). Since A is an isomor-
phism from [D(A®), D(AP)]; to [X, D(AP~=%)]; and from D(A") to D(A7™%), we
get [D(A%), D(AP)]; = D(A"). The second embedding is proved analogously. O

Lemma 4.5 For every 0 < a<1,0<60 <1 and every e > 0 it holds
(1) DgHea(Q) — HZ* (%),
(2) [LE, (), Dy*1(Q)]g < D, =1(Q).
Proof: (1) By Lemma 4.4 and Theorem 3.3
Dg(Q) < (LY (), D(Agw)la = [LE(Q), Hy ()] = H™(Q).

(2) Corollary 4.4 yields Df}',lJ“g’ql(Q) — [Lg;,’g(ﬂ), Dgiq,(Q)]g by duality. O

5 Estimates of the nonlinear term

Let 1 < g < o0, w € Ay and let 2 C R" be equal to R} or to a bounded domain
with 9Q € C'. In this situation P = P, denotes the corresponding Helmholtz
projection and A = A, denotes the corresponding Stokes operator.

13



Lemma 5.1 Forl1 <j<n and a > % there is a constant C' € Ry such that
| PewOjull pzos < Cllulfg

for all uw € C§°(2)", i.e., the operator PO; defined on C§°(Q2)" extends to a bounded
linear operator from L4 ()" to D_*4(12).

Proof: Since a > 3, Lemma 4.5 (1) implies that 0;7(1 + Ay )™ : LZ]’,,U(Q) <
L%, ()" is bounded, Where 7 denotes the injection Lg;,,g(Q) c L% (Q)". Since the
adjoint operator of 7 is P, the result follows from duality. O

We define for sufficiently regular vector fields v and v on 2
F(u,v) := P(u- Vo) (Zujav)
Theorem 5.1 Let 0 < B < [y, 0 < v < 7 and assume there exists a constant
C > 0 such that
QP < Cw(Q) (29)

for all cubes Q C U, where U =R if Q =R} and U is a neighbourhood of Q if Q
is a bounded C*-domain. Then for all § € [0, 1]

_§5+ L1
F: DP(Q) x DY) — D;%(Q)

1s bounded as a bilinear map.

Proof: In this proof C' > 0 denotes a generic constant. For %

w € A, satisfying

:%+%andall

vQ CU (30)

Q" w(Q)7 77 = Q| " w(Q)~
Q) VQ C U (31)

Q7 w(@)

it follows from Corollary 3.2, Lemma 4.5 i) and the boundedness of P in LI ()"
that

1P(uw- Vu)llge <
2.4 ||Vl g2va < Cllull pgoallvll 430 (32)
for v <5 < .
Choosing s = % we get —%% =1_ %. Hence both (30) and (31) are

equivalent to (29) for this choice of s.
Since F' is bilinear, it is sufficient to show the boundedness of F' on a dense
subspace. By Lemma 4.3 the space D(A) N C*°(2)" is dense in D4(Q2) for all

14



a > 0. Hence we can assume additionally that u,v € C*°(Q2). Then divu = 0

implies u - Vo = Y77, 0;(u;v).

Under the same assumptions on s, and w it follows from Lemma 5.1 for arbi-
trary € > 0 that

||P(U’ ) VU)“D;%—E,(J < Z ||Paj(ujv)||D;%—€,q
j=1

< Cllfullol llgw < Cllullrwllvllsw < Cllull gzoal[oll gzna

< Cllull pgoallvll pge-

Hence for fixed u € D504(Q2) the operator F, : v + F(u,v) is linear and bounded

v L ~ -1
from DZ+2’q(Q) to LY ,(Q2) and from D)4(Q) to D, > “(Q). Interplotaion yields
that

F, : [DIT"(Q), DY ()] — L4, (), Do® ()]s
is linear and bounded with norm less or equal to C/|ul| s0... Lemma 4.4 implies for
0<o< % the embeddings
1_ il )
DI Q) < [DIT2(Q), D)), (33)
(LY (), Dy "(Q)]y — D,>(), (34)

ify—2 <y —dand $420 <4, orif 6 =6 =0. For § € (0,3] these conditions

are satisfied by some 0 € [0, 1] if £ > 0 is small enough. Then F, : DZOJFE_&’(I(Q) —
D;%1(Q) is bounded with norm < C'||u|| g0 Since F(u,v) = F,(v), the proof is
complete. O

6 Abstract existence theorem

In this section we follow [22] the abstract existence theorem in [22]. However we
introduce an additional Banach space and an inhomogeneity f. This implies a more
general local existence result for strong solutions of the Navier-Stokes equations.

Theorem 6.1 Let W, XY, Z and G be Banach spaces, which are imbedded into a
common topological vector space. Furthermore let {etA}tZO be a Cy-semigroup on
X satisfying the following assumptions:

(I) For every t > 0 the operator e'* extends to a linear bounded operator from
W to X. There ezists some a € (0,1) and positive constants C' and T such
that

leulx < Ot fu|w

for allu € W und t € (0,T].

15



(II) For every t > 0 it holds et € L(X,Y) N L(X,Z)N L(X,G). There exist
b>0,¢>0,de (a,l) and positive constants C and T such that

leuly < Ctbulx (35)
le"ul, < Ot “ulx (36)

|etAu|G < Ct*(d*“)|u|x (37)

forallu € X andt € (0,T]. Furthermore ¢"*u € C((0,T],Y)NC((0,T],Z)N
C((0,7),G) and

lim ¢ |etAu|y = lim t¢ |etAu|Z = lim #4~¢ |etAu|G =0.
t—0 t—0 t—0
forallu € X.

Additionally assume that a + b+ ¢ < 1.
Let

F:YxZ—-W

be a bilinear bounded mapping and F(u) := F(u,u).

Then for every ug € X and f € C((0,T],W) for some T > 0 with |f(t)|w =

o(t==¢) for t — 0 there exists some T* > 0 and a unique curve u : [0,T*] — X
with the properties:

a) u:[0,T*] - X is continuous and u(0) = uy.
b) we C((0,7%,Y)NnC((0,T7*],Z) n C((0, T*],G) and

. d—a R TI R T c _
lim ¢ u(t) ¢ = lim ¢"|u(t)]y = lim*[u(t)| 7 = 0.

¢) u(t) = ety + fot e = Fu(s) + f(s) )ds for all t € [0,T7].
Furthermore T* > 0 can be chosen independly of the choice of G.

Proof: Let uy € X and «, 3,17 > 0 be such that

e gl x < a, teMugly < B, t¢leMugl, < B

(38)

for all t € (0, 7). For T — 0 the value > 0 can be chosen arbitrarily small.

For a, f and T satisfying (38) let M = M («, 5,T) be the set of all mappings
w: (0,T] — X satisfying

w e C((0,T), X) N C((0,T),¥) N C((0,T), 2) N C((0,T), G),
lu(t)|x < 20, tlu(t)]y <28, tu(t)], < 26, sup t"%u(t)|e < oo
te(0,T
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for all t € (0,T]. Let v := sup,e o t* €| Lw,c)- Then M(a, 8, T) equipped with
the metric

d(u,v) = tES(l(l)pT](v [u(t) = v(®)x + vt u(t) — o(®)]y +

v tlu(t) — v(t)|z + T u(t) — v(t)|e)

is a nonempty complete metric space. For u € M define the operator
t
Fu(t) = ey +/ DA Fu(s) + f(s) )ds.
0

In order to apply Banach’s fixed point theorem we show that F : M — M is a
g—contraction with ¢ < 1 if T" > 0 is sufficiently small.

To show that F maps M into itself, we only prove that t°| Fu(t)]y < 28 for 3 >0
and T" > 0 sufficiently small. The remaining estimates are proved analogously:

1 Fu(t) |y

t
< [ 1M g | Pu(s) s
0
t
8 [y (5o s+ e

i ;
<o / (t = )02 u(s) |y |u(s) |4 ds + c(t) / (t— 5) b5 bcds 4+ 3

0 0

< (403 +c(t))t /t(t —s) st tds + B
0
=C (B +ot)) #7109 + B < 28,

where lim; o ¢(t) = 0 and the last <-sign holds for ¢t € (0,7], if 7> 0 and § > 0
are sufficiently small.
We show that for 7" small enough F is a ¢g-contraction with ¢ < 1, i.e.,

d(Fu, Fv) < qd(u,v) Yu,ve M.

We prove only ¢ ¢ Fu(t) — Fu(t)|e < qd(u,v), where ¢ < 1 for t € (0,7] and
T > 0 small enough. The remaining estimates are proved analogously.

t7 | Fu(t) — Fot)|a

< td“/o e Loway [ Fu(s) — Fo(s)|w ds

< Ctd_“/0 (t = ) (Jus)ly 7 [uls) = v(s)lz + [v(s)|2 7 ul(s) — v(s)ly) ds
<20 [t /t(t —5) s d(u,v) ds

= O pt' =9 d(u,v) < gd(u,v)
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for t € (0, 7] with some ¢ < 1, if T'> 0 and > 0 are sufficiently small. Note that
~ may depend on the choice of the space G, but C' > 0 is independent of G. Hence
T > 0 can be chosen independently of the choice of G.

Choosing for T and for  small values 7* > 0 and 3* > 0, Banach’s fixed point
theorem implies the existence of a unique fixed point u € M(«, 8%, T*) of F, i.e.,
¢) is proved. In a) and b) it remains to investigate the behaviour of u for t — 0:

Let 81 < f* and T} < T* be such that (38) is satisfied, and let u; and u
be the fixed points of F in M(«, 51,T1) and in M («, 5*,T*) respectively. Since
M(«, 51,T1) C M(«, B*,T1) the uniqueness of u implies u; = u‘

We show a). Due to the assumptions

(O’Tl}‘

ult) ol
t
< [ I (F sl + 1)) ds + [euo - ualx
0
S é(ﬁ% + C(t))tlf(a+b+c) + |6tAu0 - UO|X

for all t € (0,77] with ¢(t) — 0 for ¢ — 0. Since 7} > 0 and ; > 0 can be chosen
arbitrarily small it follows wu(t) — ug for ¢ — 0 in X.
To show limy_,ot9=|u(t)|¢ = 0 in b) note that

t
142 () < 140 / 1€ e (Fu(s)lw -+ 1£(5)w) ds + 172l uolg
0
t
< Cypio / (t — ) u(s)y |uls)] ds
0
t
+ c(t) y e / (t —s) s Cds + t* e ug |
0

t
<(4C B +c(t)) vt / (£ — )45 ds + 17 My
0
<Oy (B + ()t 44 let .

for t € (0,T}]. Note that due to the assumptions t4=%|e*Auy|g — 0 for t — 0 and 3
can be chosen arbitrarily small by choosing 7} small. Moreover ¢(t) — 0 for t — 0.
The remaining estimates are analogous and thus the claim follows b). O

An analysis of the proof of Theorem 6.1 shows that Banach’s fixed point theorem
is applicable if 5 > 0 and supg., ;- c(t) are sufficiently small. This was achieved
by choosing T > 0 sufficiently small. The following corollary is based on the fact
that the smallness of 5 > 0 and supy,.p- ¢(t) can also be guaranteed by choosing
some norms of uy and f small enough.

Corollary 6.1 i) Additionally to the assumptions of the preceding theorem let
the semigroup {€'*};>o be uniformly bounded in L(Y)N L(Z) and let R > 0.
Then T* > 0 does not depend on the choice of an initial value ug € Y N 2
with max{|uoly, [uo|z} < R and on f € C([0,T],W) with || f||cqo,mw) < R.
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ii) Additionally to the assumptions of Theorem 6.1 let T = 0o and a+b+c = 1.
Then there are constants ¢; > 0 and co > 0 such that for all uy and f
satisfying |uo|x < ¢1 and supyoyco 17| flw < co the solution u from Theorem
6.1 exists on (0,00), i.e., a)- ¢) hold for arbitrary T* > 0.

Proof: i) Since et € L(Y) N L(Z) and max{|uo|y, |uo|z} < R,
£t |etAu0|y < CRt andt |etAu0|Z < CRt"

Comparing with (38) we get that 5 can be chosen arbitrarily small and independent
of ug if T* tends to zero. Furthermore for |f(t)lw < R, t € [0,7] the quantity
c(t) = t**¢|f(t)|w only depends on R but not on f.

ii) Let 8 > 0 be given. Because of (35)-(37) we get (38) for all ¢ > 0, if |up|y is
sufficiently small. Replace c(t) by ¢z := supycycoo 7 f(¢)|w. Choosing ¢z small
enough and assuming that § > 0 is given sufficiently small, then u(t) exists on
(0, 00). O

7 Instationary Navier-Stokes equations

Let © be equal to the half space R" or to a bounded domain with C'!-boundary.
We show a local existence result for strong solutions of the instationary Navier-
Stokes equations (1) in weighted Sobolev spaces. Our aim is to embed results from
[22] and [12] into the weighted context.

Proof of Theorem 1.1: Choose f = "“T‘Hl and v = "‘TJ"S. Then 5 >0, 8 €
(o, 1—=6) and v € (0, 3). Furthermore S+v = %+a._Since 0<a+i<a+i=p+7,
we can choose 3 € (0, ) and 7 € (0,7) such that 3 +7% = &+ 3. Hence by (4)

QP = QT < Cw(@) YQCU.
Since f = v + % — 0, Theorem 5.1 yields that
F: DP1(Q) x D?1(Q) — D;%(Q) (39)
is bilinear bounded. Then for y € (a, 1 — §) and
W= D,7(Q), X = D)
Y =27=D%(Q), , G=D"(Q) (40)
a=a+0, b=c=f—-a, , d=pu+9
by Lemma 4.2 the assumptions of Theorem 6.1 are satisfied: It holds a, b, ¢ > 0 and

d € (a,1) by the choice of 3, 7, 0 and p. Furthermore a+b+c¢ = a+d+2(f—a) =1
by the choice of 5.

By Lemma 4.2 the assumptions (I) and (II) of Theorem 6.1 on the semigroup
e are satisfied. By (39) the assumptions of Theorem 6.1 on F are satisfied.
Since b+c¢=2(f —a) =1—0 — a, we have

|f|W = ||f||D‘;5"I(Q) = 0(.[/.(5-1-04—1) — O(t_b_c)_
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Then an application of Theorem 6.1 yields the assertions a),b),c).
Concerning uniqueness, note that if a) and b) hold for some p > O"T‘S“ = 0,
then because of

lull pga < C lullpgallull pae
with 6 = % (see [16], Chapter 2, Theorem 6.10) it follows that b) is satisfied for
i = (. Hence the claim follows from the uniqueness statement of Theorem 6.1, if
we choose = 3 = @=L in (40), i.e., Y = Z = G = D54(Q). O

Remark: For the proof of Theorem 1.1 we formally only need to assume that
—3 < o < 1. But note that the condition (4) can hold for w € A, only if

(1+ 2@)% > 1. (41)

The reason is that (4) implies for the mean value of w on @

|Q|(1+207)%—1 <C w(Q)

Q-
If (1+2a&) 1 < 1, then for |Q| — 0 the left hand side tends to infinity. By Lebesgue’s
differentiation theorem this implies w = oo a.e. on €2, which is impossible because
ofwe A, C L,.(R"). By @ >@ and (41) we obtain the condition

loc
n 1
n_loa 42
2 3¢ (42)

This lower bound for a was also found in [12] in the case without weights, i.e.,

w=1.

Let ¢ and « be as in Theorem 1.1. Then in the case that (2 is a bounded
C"™!-domain examples of weight functions w satisfying the assumption (4) are

|z — 2]° for —n < f<(1+2a)g—n,
d(z,082)" for —1 < f <min{g—1, (14 2a)q —n},

where xy € R” is arbitrary and d(z, 02) is the distance from x to 0f.
If @ = R}, then (4) implies that the weight is not allowed to decrease for
|z| — oo: More precisely, it follows from (4) that

w(Qo + ) > C(Qo)

for x € R* and a fixed cube @y, i.e. w(z) — 0 for |z| — oo is not possible. Simple
examples of weights satisfying the condition (4) for 2 = R are

|z — x|° for 0 < B < (1+2a)g —n,
1+|x_x0|ﬂ for —n< <0,
xi for 0 < 8 <min{q — 1, (1 + 2a)q — n},
1+ af for —1<p <0,
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where xy € R" is arbitrary and z,, denotes the nth component of a vector x =
(.Tl, ,l‘n) € R:':

The way how to conclude from Theorem 1.1 the existence of local strong solu-
tions of the Navier-Stokes equations (2) is standard and completely analogous to
the case without weights (see [12]). Therefore we skip the proof of the following
result and refer to [12] for details:

Theorem 7.1 Additionally to the assumptions of Theorem 1.1 let f : (0,T7] —
Lg ,(Q2) be Holder continuous on [g,T] for every 0 < & < T. Then there ezists a
T* >0 and a local strong solution u € C([0,T*], D3(Q)) N C*((0,T*], LE, ,(2)) of
the Navier-Stokes equations (2) on [0,T*| satisfying assertion b) of Theorem 1.1
and u(t) € D(A,) for allt € (0,77].

The solution is unique if assertion b) of Theorem 1.1 holds for some pu > 1_‘5%.

We conclude with a global existence result for small data: Let €2 be a bounded
CY1-domain. Then the following corollary is an easy consequence of Corollary 6.1
and the fact that the constant C' in Lemma 4.2 ii) is independent of 7" if 2 is
bounded:

Corollary 7.1 Let Q be a bounded C*'-domain. Then there are constants ¢, > 0

and ca > 0 such that the solution u of the Navier-Stokes equations given by Theorem
7.1 exists globally on Ry if

HuO“Dﬁ’q <c and sup tl_a_6||f(t)||[);5’q < .
0<t<oo
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