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Abstra
t

The problem of strong solvability of the nonstationary Navier-Stokes

equations is 
onsidered in weighted L

q

-spa
es L

q

!

(
); where the domain


 � R

n

is equal to the half spa
e R

n

+

or to a bounded domain with boundary

of 
lass C

1;1

and the weight ! belongs to the Mu
kenhoupt 
lass A

q

. We give

general 
onditions on the weight fun
tion ensuring the existen
e of a unique

strong solution at least lo
ally in time. In parti
ular, these 
onditions admit

weight fun
tions ! 2 A

q

; whi
h be
ome singular at the boundary or, in the


ase 
 = R

n

+

, grow for jxj ! 1:

AMS 
lassi�
ation: 35Q30, 35D05, 76D05

1 Introdu
tion

In this paper we investigate the existen
e of strong solutions in weighted L

q

-spa
es

of the instationary Navier-Stokes equations

u

t

+ u � ru� ��u +rp = f in (0; T )� 
 (1a)

div u = 0 in (0; T )� 
 (1b)

u = 0 on (0; T )� �
 (1
)

u(0) = u

0

in 
: (1d)

Here 
 � R

n

is a bounded domain with boundary of 
lass C

1;1

or the half spa
e

R

n

+

; u denotes the unknown velo
ity �eld, p is the unknown pressure, while the

external for
e f and the initial velo
ity u

0

are given and � > 0 is the 
onstant

vis
osity.

There are numerous referen
es 
on
erning the problem of strong solvability of

the Navier-Stokes system in L

q

-spa
es; we mention only [8℄, [14℄ for q = 2 and [12℄,

[22℄ for general L

q

-spa
es and refer to [12℄ for a more 
omplete survey.
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Our aim is to embed the results in L

q

-spa
es without weights [12℄, [22℄ into the

weighted 
ontext for a large 
lass of weight fun
tions. For this purpose we exploit

results from [6℄, [7℄ on the Stokes operator in weighted L

q

-spa
es, 1 < q < 1; for

general weight fun
tions of Mu
kenhoupt 
lass A

q

(see De�nition 2.1).

To de�ne the Stokes operator in weighted L

q

-spa
es let 1 < q <1; ! 2 A

q

;

L

q

!

(
) := fu 2 L

1

lo


(
) : kuk

q

q;!

=

Z




juj

q

! dx <1g

and use the existen
e of the Helmholtz de
omposition, see [5℄,

L

q

!

(
)

n

= L

q

!;�

(
)�G

q

!

(
)

where L

q

!;�

(
) is the 
losure of C

1

0;�

(
) = fu 2 C

1

0

(
)

n

: div u = 0g in L

q

!

(
)

n

and

G

q

!

(
) are the gradient �elds in L

q

!

(
)

n

. Using the bounded Helmholtz proje
tion

P

q;!

: L

q

!

(
)

n

! L

q

!;�

(
) we de�ne the Stokes operator A

q;!

in L

q

!;�

(
) by

D(A

q;!

) = W

2;q

!

(
)

n

\ L

q

!;�

(
) \ fu 2 W

1;q

!

(
)

n

: u

�

�

�


= 0g

A

q;!

= �� P

q;!

� on D(A

q;!

);

where W

1;q

!

(
) and W

2;q

!

(
) denote the Sobolev spa
es over L

q

!

(
) of order 1 and

2 respe
tively. It was shown in [6℄, [7℄ that the Stokes operator �A

q;!

generates a

bounded analyti
 semigroup in L

q

!;�

(
): Applying the Helmholtz proje
tion P to

the Navier-Stokes equations (1) yields the initial value problem

u

t

+A

q;!

u = Pf � P (u � ru); u(0) = u

0

(2)

in L

q

!; �

(
) or more generally in the spa
es D

�;q

!

(
) de�ned as

D

�;q

!

(
) := D((I +A

q;!

)

�

) for � > 0

equipped with the norm kuk

D

�;q

!

(
)

:= k(I +A

q;!

)

�

uk

q;!

; where D((I +A

q;!

)

�

) is

the domain of the fra
tional power (I + A

q;!

)

�

in L

q

!; �

(
). For � < 0 we de�ne

D

�;q

!

(
) to be the dual spa
e of D

��;q

0

!

0

(
); where q

0

=

q

q�1

and !

0

= !

�1=(q�1)

: For

� = 0 let D

0;q

!

(
) := L

q

!; �

(
).

Using that the Stokes operator �A

q;!

generates a bounded analyti
 semigroup

fe

�tA

q;!

g

t�0

we 
an reformulate (2) in integral form

u(t) = e

�tA

q;!

u

0

+

Z

t

0

e

�(t�s)A

q;!

fPf(s)� P (u � ru)(s)g ds (3)

for all t 2 (0; T ).

Then our main result on solvability of (3) reads as follows:

Theorem 1.1 Let 1 < q < 1; ! 2 A

q

and let 
 be a bounded C

1;1

-domain or

the half spa
e R

n

+

. Moreover let

n

2q

�

1

2

< � < 1 and assume that there exists an

�� 2 (�

1

2

; �), su
h that

jQj

(1+2��)

q

n

� C !(Q) (4)
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for some C 2 R

+

and for all 
ubes Q � U , where U = R

n

+

if 
 = R

n

+

and

U � R

n

is a neighbourhood of 
 if 
 is a bounded C

1;1

-domain. Set A := A

q;!

and

Fu := �P (u � ru).

Finally let u

0

2 D

�;q

!

(
) and for some Æ 2 [0;

1

2

) with �� < Æ < 1�� and some

T > 0 let

f 2 C((0; T ℄; D

�Æ;q

!

(
)) and kf(t)k

D

�Æ;q

!

= o(t

�+Æ�1

) for t! 0:

Then there is a T

�

> 0 and a unique 
urve u : [0; T

�

℄ �! D

�;q

!

(
) with the

properties

a) u 2 C([0; T

�

℄; D

�;q

!

(
)) and u(0) = u

0

.

b) u 2 C([0; T

�

℄; D

�;q

!

(
)) for � < � < 1� Æ and lim

t!0

t

���

ku(t)k

D

�;q

!

= 0.


) u(t) = e

�tA

u

0

+

R

t

0

e

�(t�s)A

fFu(s) + f(s)g ds for all t 2 [0; T

�

℄.

The mapping u : [0; T

�

℄ ! D

�;q

!

(
) is uniquely determined if it satis�es a), b) for

some � �

��Æ+1

2

and 
).

Comparing this result with results in the 
ase without weights we see that in [22℄

and [12℄ the same lower bound n=2q� 1=2 for the 
hoi
e of � was found. In [12℄ it

was possible to in
lude even the limit 
ase � = n=2q� 1=2 be
ause of the result in

[13℄. Thus ex
ept of this limit 
ase we have the same restri
tions on the 
hoi
e of q

and � but we 
an additionally admit a weight fun
tion satisfying the 
ondition (4).

Roughly spoken, (4) means that the weight fun
tion is not allowed to be
ome too

small. In parti
ular, we 
an 
hoose weight fun
tions ! 2 A

q

whi
h are bounded

from below by positive 
onstants but be
ome singular at the boundary �
 or grow

for jxj ! 1 in the 
ase 
 = R

n

+

: Hen
e we obtain more pre
ise informations about

the behaviour of the solution near �
 and for jxj ! 1: Some simple examples of

weight fun
tions obeying (4) are given in Se
tion 7.

Finally, Theorem 1.1 implies the unique lo
al solvability of the Navier-Stokes

equations in the evolutionary formulation (2) in weighted L

q

-spa
es under addi-

tional regularity assumptions on f (Theorem 7.1 in Se
tion 7 below). Moreover we

get even global existen
e results under smallness assumptions on the norms of u

0

and f in the 
ase of a bounded domain 
 (Corollary 7.1).

This paper is organized as follows: In Se
tion 2 we introdu
e the 
lass of Mu
k-

enhoupt weights and �x some notation.

Se
tion 3 dis
usses with imbedding properties of weighted Bessel potential

spa
es H

�;q

!

(
) for � 2 R exploiting results on the boundedness of fra
tional inte-

gral operators in weighted L

q

-spa
es [18℄, extension theorems in weighted Sobolev

spa
es [1℄ and the 
omplex interpolation method. For these weighted imbedding

theorems more restri
tive assumptions than ! 2 A

q

are needed. These assumptions

�nally lead to the 
ondition (4) in Theorem 1.1.

After summarizing results on the Stokes operator A

q;!

from [6℄, [7℄ and dis-


ussing properties of the spa
es D

�;q

!

(
) in Se
tion 4, we 
ompare the spa
es
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D

�;q

!

(
) with the weighted Bessel potential spa
es H

�;q

!

(
) : Sin
e up to now there

is no proof of boundedness of the purely imaginary powers of the Stokes operator

A

q;!

for general Mu
kenhoupt weights ! 2 A

q

, we 
an only use the imbeddings

D

�;q

!

(
) ,! H

2�;q

!

(
) ,! D

�;q

!

(
)

for � < � < �.

Combining the results of Se
tion 3 and Se
tion 4 we derive weighted estimates

of the nonlinearity P (u � ru) in Se
tion 5.

In Se
tion 6 an abstra
t existen
e theorem for integral equations of the form

(3) is proved with the help of Bana
h's �xed point theorem generalizing a result of

[22℄.

In Se
tion 7 we apply the abstra
t results of Se
tion 6 and the estimates of the

nonlinear term in Se
tion 5 to obtain Theorem 1.1. Then by standard arguments

Theorem 1.1 yields results on unique lo
al and global solvability of the initial value

problem (2) in weighted spa
es stated as Theorem 7.1 and Corollary 7.1 in Se
tion

7 below.

2 Preliminaries

By a 
ube Q we mean a subset of R

n

of the form �

n

j=1

I

j

; where I

1

; : : : ; I

n

� R are

bounded intervals of the same length. Thus 
ubes have always sides parallel to the

axes.

De�nition 2.1 Let 1 < q < 1. A fun
tion 0 � ! 2 L

1

lo


(R

n

) is 
alled an A

q

-

weight if

A

q

(!) := sup

Q

�

1

jQj

Z

Q

! dx

��

1

jQj

Z

Q

!

�

1

q�1

dx

�

q�1

<1; (5)

where the supremum is taken over all 
ubes Q � R

n

and jQj assigns the Lebesgue

measure of Q. A

q

(!) is 
alled the A

q

-
onstant of !.

We use the abbreviation !(A) for

R

A

!(x) dx and set !

0

:= !

�

1

q�1

if q 2 (1;1)

is �xed.

Note that if 1 < q <1 and q

0

= q=(q�1); then (L

q

!

(
))

0

�

=

L

q

0

!

0

(
) with respe
t

to the usual dual produ
t (f; g) =

R




f g dx. Note that !

0

2 A

q

0

.

Simple examples of A

q

-weights are radially symmetri
 weights of the form

!(x) = jx� x

0

j

�

for �n < � < n(q � 1) or more generally distan
e fun
tions of

the form !(x) = dist (x;M)

�

for a k-dimensional 
ompa
t Lips
hitzian manifold

M and �(n� k) < � < (n� k)(q � 1): For further examples we refer to [2℄.

For Mu
kenhoupt weights there is a weighted version of the H�ormander-Mi
hlin

multiplier theorem (see [9℄, Chapter IV, Theorem 3.9 or [2℄, Theorem 3.3).
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Theorem 2.1 (H�ormander-Mi
hlin multiplier theorem with weights)

Let m 2 C

n

(R

n

nf0g) have the property that

9M 2 R : jD

�

m(�)j �M j�j

�j�j

8 � 2 R

n

n f0g; j�j = 0; 1; : : : ; n:

Then for all 1 < q < 1 and ! 2 A

q

the multiplier operator




Tf = m

b

f de�ned for

S
hwartz fun
tions f 2 S = S(R

n

) 
an be extended uniquely to a bounded linear

operator from L

q

!

(R

n

) to L

q

!

(R

n

) witha norm depending only on n; q;M and A

q

(!):

For a domain 
 � R

n

; 1 < q < 1; ! 2 A

q

and k 2 N we de�ne the weighted

Sobolev spa
e

W

k;q

!

(
) := fu 2 L

q

!

(
) : D

�

u 2 L

q

!

(
); j�j � kg

kuk

k;q;!

:=

�

X

j�j�k

kD

�

uk

q

q;!

�

1

q

:

If 
 is the half spa
e R

n

+

or a bounded Lips
hitz domain, the tra
e of fun
tions in

W

1;q

!

(
) on the boundary is well de�ned (see [6℄, [7℄). By W

1;q

0;!

(
) we denote the

subspa
e of fun
tions from W

1;q

!

(
) with zero tra
e.

Next we prove an extension theorem following from results of Chua [1℄. For the

de�nition of an (";1)-domain see [1℄ or [6℄, De�nition 3.1. It is easy to 
he
k that

every bounded Lips
hitz domain and the half spa
e R

n

+

are (";1)-domains.

Theorem 2.2 Let 1 < q <1 and ! 2 A

q

. Let 
 � R

n

be an (";1)-domain and

m 2 N. Then there exists a linear, bounded extension operator E

m

: W

m;q

!

(
) !

W

m;q

!

(R

n

) and a 
onstant C > 0 su
h that for k = 0; 1; : : : ; m

kE

m

uk

k;q;!;R

n

� C kuk

k;q;!;


(6)

for all u 2 W

k;q

!

(
).

Proof: For unbounded (";1)-domains the result follows from Theorem 1.5 in [1℄.

For a bounded (";1)-domain Theorem 1.4 in [1℄ yields the existen
e of a

bounded neighbourhood U of 
 and the existen
e of an extension operator E :

W

m;q

!

(
)!W

m;q

!

(U) su
h that

kr

k

Euk

q;!;U

� C kr

k

uk

q;!;


for k = 0; 1; : : : ; m: Let ' 2 C

1

0

(U) with ' � 1 on 
: Then E

m

:= 'E is the

desired extension operator. 2

3 Weighted Bessel potential spa
es

On S

0

(R

n

) we de�ne for s 2 R the operator

�

s

f := F

�1

(1 + j�j

2

)

s

2

F f 8f 2 S

0

;

5



where F is the Fourier transformation on S

0

. Then for 1 < q <1 and ! 2 A

q

the

weighted Bessel potential spa
e is de�ned by

H

s;q

!

(R

n

) := ff 2 S

0

: kfk

H

s;q

!

= k�

s

fk

q;!

<1g : (7)

Note that H

s;q

!

(R

n

) is a re
exive Bana
h spa
e. The weighted Multiplier The-

orem 2.1 yields the imbedding H

s

1

;q

!

(R

n

) ,! H

s

2

;q

!

(R

n

) for s

1

� s

2

.

In the sequel the 
omplex interpolation method (see e.g. [17℄ or [21℄) will be

used. Given two 
ompatible Bana
h spa
es X and Y and � 2 (0; 1) the respe
tive


omplex interpolation spa
e is denoted by [X; Y ℄

�

: Further let [X; Y ℄

�

= X for

� = 0 and [X; Y ℄

�

= Y for � = 1.

Lemma 3.1 Let 1 < q <1; ! 2 A

q

and k 2 N.

i) H

k;q

!

(R

n

) =W

k;q

!

(R

n

) with equivalent norms.

ii) Let 0 < s < k. Then [L

q

!

(R

n

); H

k;q

!

(R

n

)℄

�

= H

s;q

!

(R

n

) for � =

s

k

.

Proof: i) The assertion follows from Theorem 2.1 (
f. Propostion 6.1 in [20℄,

Chapter 13). ii) The proof is based on the boundedness of the purely imaginary

powers �

iy

in L

q

!

(R

n

); whi
h is an easy 
onsequen
e of the weighted Multiplier

Theorem 2.1. We refer to the proof of Proposition 6.2 in [20℄, Chapter 13. 2

3.1 A weighted embedding lemma

For 0 < � < n de�ne the fra
tional integral operator

I

�

g(x) =

Z

R

n

g(y)

jx� yj

n��

dy: (8)

In the sequel Q assigns a 
ube in R

n

with sides parallel to the axes. A weight

fun
tion ! has the reverse doubling property (RD), if

(RD) 9 �; Æ 2 (0; 1) : !(ÆQ) � � !(Q) 8Q � R

n

:

From [18℄ (Theorem 1 (B)) we 
ite the following theorem about boundedness

of the operator I

�

in weighted L

p

-spa
es.

Theorem 3.1 Let 0 < � < n and 1 < p < q < 1. Let v; ! � 0 be measurable

fun
tions on R

n

su
h that both ! and v

�

1

p�1

have the property (RD). If

(A

�

p;q

) jQj

�

n

�1

�

Z

Q

!

�

1

q

�

Z

Q

v

�

1

p�1

�

1

p

0

� C 8Q � R

n

;

then

kI

�

fk

q;!

� C kfk

p;v

(9)

for all f 2 L

p

v

(R

n

).
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Remark: Every Mu
kenhoupt weight ! 2 A

1

:=

S

1<q<1

A

q

has the property

(RD) (see e.g. [9℄, Chapter IV, Lemma 2.4).

The operator I

�


an be written as a multiplier operator in the form

d

I

�

f = 
 j�j

��

b

f 8f 2 S (10)

(see [19℄, Chapter V, Lemma 2 (b)), where 
 > 0 depends only on n; �. Sin
e I

�

neither maps S into itself nor 
an be well de�ned on S

0

we 
onsider the spa
e

M := ff 2 S :

b

f � 0 in a neighbourhood of 0g; (11)

whi
h is obviously mapped by I

�

into itself. For f 2 M the 
omposition I

�

�

�

f =


F

�1

j�j

��

(1 + j�j

2

)

�

2

F 2M is well-de�ned and with

J

�

g := 


�1

F

�1

j�j

�

(1 + j�j

2

)

�

�

2

Fg 8g 2 M

we have J

�

I

�

�

�

f = f for all f 2 M:

We show the density of M in weighted Bessel potential spa
es H

s;q

!

(R

n

).

Lemma 3.2 Let 1 < q <1; ! 2 A

q

and let s 2 R. ThenM is dense in H

s;q

!

(R

n

):

Proof: Choose a 
ut-o� fun
tion � 2 C

1

0

(R

n

) with � � 1 in a neighbourhood of

0. Set �

"

(�) = �(

�

"

) for " > 0 and 
onsider the multiplier operator

d

T

"

f(�) = �

"

(�)

b

f(�) (12)

for f 2 S

0

. We 
laim that

8f 2 S : T

"

f ! 0 in L

q

!

(R

n

) (13)

for "! 0. Sin
e for k = 1; : : : ; n

j�j

k

jr

k

�

"

(�)j �

�

�

�

�

"

�

�

�

k

�

�

�

(r

k

�)

�

�

"

�

�

�

�

� C

�

with C

�

independent of " > 0, Theorem 2.1 implies the uniform boundedness of

fT

"

: " > 0g in L(L

q

!

(R

n

): Sin
e

b

f 2 S we 
an use Theorem 2.1 again to obtain

kT

"

fk

q;!

� C

!;f

kF

�1

�

"

k

q;!

= "

n

C

!;f

k(F

�1

�)(" �)k

q;!

: (14)

Sin
e ! 2 A

q

there is a Æ > 0 su
h that ! 2 A

q�Æ

(see [9℄, Chapter IV, Theorem

2.6). For

�

Æ := q

�1

nÆ > 0 we get be
ause of F

�1

� 2 S the estimate

j(F

�1

�)("x)j � 


0

(1 + j"xj)

�

Æ�n

� 
 "

�

Æ�n

(1 + jxj)

�

Æ�n

:

Applying this estimate to the right hand side of (14) yields

"

n

k(F

�1

�)(" �)k

q;!

� 
 "

n

"

�

Æ�n

�

Z

R

n

!(x)

(1 + jxj)

n(q�Æ)

dx

�

1

q

! 0

7



for " ! 0, sin
e the integral is �nite for ! 2 A

q�Æ

(see [2℄, Lemma 2.2 iii)). This

shows (13).

Obviously (I � T

"

)f 2 M for f 2 S. By (13) we obtain

kf � (I � T

"

)fk

H

s;q

!

= kT

"

fk

H

s;q

!

= kT

"

�

s

fk

q;!

! 0

for "! 0 and f 2 S.

It remains to show the density of S in H

s;q

!

(R

n

). But this fa
t follows from the

density of S in L

q

!

(R

n

) (see [6℄) and the fa
t that �

�s

: L

q

!

(R

n

) ! H

s;q

!

(R

n

) is an

isomorphism mapping S onto S. 2

Now it is easy to prove a weighted Sobolev imbedding theorem:

Theorem 3.2 Let 1 < q <1; ! 2 A

q

; 0 < � < n and 1 < q < s <1. Let

jQj

�

n

�1

�

Z

Q

!

�

1

s

�

Z

Q

!

�

1

q�1

�

1

q

0

� C (15)

for some 0 < � � � and for all 
ubes Q � R

n

. Then it holds the imbedding

H

�;q

!

(R

n

) ,! L

s

!

(R

n

): (16)

Proof: Sin
e A

q

� A

s

the operator J

�

= 


�1

F

�1

j�j

�

(1 + j�j

2

)

�

�

2

F extends by

the multiplier theorem 2.1 to a linear bounded operator from L

s

!

(R

n

) to L

s

!

(R

n

) .

Hen
e for f 2 M it follows by Theorem 3.1 that

kfk

s;!

= kJ

�

I

�

�

�

fk

s;!

� C kI

�

�

�

fk

s;!

� C k�

�

fk

q;!

= C kfk

H

�;q

!

:

Sin
e by Lemma 3.2 the spa
e M is dense in H

�;q

!

(R

n

); we get the embedding

H

�;q

!

(R

n

) ,! L

s

!

(R

n

): Sin
e � � � the embedding (21) is proved. 2

Remark: The assumption (15) is satis�ed if ! 2 A

q

and

jQj

�

n

!(Q)

1

s

�

1

q

� C (17)

for all 
ubes Q � R

n

with a 
onstant C > 0 independent of Q. In fa
t,

jQj

�

n

�1

�

Z

Q

!

�

1

s

�

Z

Q

!

�

1

q�1

�

1

q

0

= jQj

�

n

!(Q)

1

s

�

1

q

jQj

�1

!(Q)

1

q

!

�

1

q�1

(Q)

1

q

0

� C A

q

(!)

1

q

:

Sin
e 1 � jQj

�1

!(Q)

1

q

!

�

1

q�1

(Q)

1

q

0

the 
ondition (17) is also ne
essary for (15). In

the sequel we will work with the 
ondition (17) instead of (15).

3.2 Bessel potential spa
es on domains

De�nition 3.1 A domain 
 � R

n

is 
alled an extension domain if for all m 2 N

there exists an extension operator E

m

su
h that for all 1 < q < 1; ! 2 A

q

and

k = 0; 1; : : : ; m

E

m

: W

k;q

!

(
)!W

k;q

!

(R

n

)

is linear and bounded.

8



Theorem 2.2 states that every (";1)-domain - and thus the half spa
e R

n

+

and

every bounded Lips
hitz domain - is an extension domain.

In the sequel let 1 < q <1; ! 2 A

q

and 
 � R

n

be an extension domain. For

� 2 R we de�ne

H

�;q

!

(
) :=

n

g

�

�




: g 2 H

�;q

!

(R

n

)

o

with norm kuk

H

�;q

!

(
)

= inffkgk

H

�;q

!

: g 2 H

�;q

!

(R

n

); g

�

�




= ug: Lemma 3.1 and the

extension property of the domain imply that H

k;q

!

(
) = W

k;q

!

(
) for k 2 N . We

have the following interpolation property:

Theorem 3.3 Let 1 < q < 1; ! 2 A

q

and let 
 � R

n

be an extension damain.

Then for k 2 N und 0 � � � k

H

�;q

!

(
) = [L

q

!

(
);W

k;q

!

(
)℄

�

k

:

Proof: Sin
e 
 is an extension domain, there is a linear bounded extension

operator

E : W

k;q

!

(
)! W

k;q

!

(R

n

) and E : L

q

!

(
)! L

q

!

(R

n

):

By 
omplex interpolation and Lemma 3.1 it follows that

E : [L

q

!

(
);W

k;q

!

(
)℄

�

k

! [L

q

!

(R

n

);W

k;q

!

(R

n

)℄

�

k

= H

�;q

!

(R

n

)

is linear and bounded. This implies the embedding

[L

q

!

(
);W

k;q

!

(
)℄

�

k

,! H

�;q

!

(
): (18)

Repla
ing in the arguments above the extension operator E by the respe
tive re-

stri
tion operator, we get the embedding (18) in the other dire
tion. 2

The reiteration property of 
omplex interpolation (see [21℄ or [17℄) yields:

Corollary 3.1 Under the assumptions of the pre
eding theorem on q; !;
 the in-

terpolation property

H


;q

!

(
) = [H

�;q

!

(
); H

�;q

!

(
)℄

�

holds with 
 = (1� �)� + �� for all 0 � � � � and 0 � � � 1.

Theorem 3.3 implies the existen
e of a linear bounded extension operator E :

H

�;q

!

(
)! H

�;q

!

(R

n

) for all � � 0. Therefore Theorem 3.2 yields weighted Sobolev

embeddings for extension domains 
.

Theorem 3.4 Let 1 < q < 1; ! 2 A

q

; 0 < � < n and 1 < q < s < 1 and let


 � R

n

be an extension domain. If there exists an 0 < � � � su
h that

jQj

�

n

!(Q)

1

s

�

1

q

� C (19)

for all 
ubes Q � R

n

, then it holds the imdedding

H

�;q

!

(
) ,! L

s

!

(
): (20)

9



As we already mentioned the half spa
e R

n

+

and every bounded Lips
hitz do-

mains are (";1)-domains and therefore by Theorem 2.2 extension domains. Fur-

thermore it 
an be shown that for these domains 
 it is suÆ
ient to verify the


ondition (19) on the weight fun
tion ! only for 
ubes Q 
ontained in a neighbour-

hood of 
; if 
 is bounded, or 
ontained in R

n

+

; for 
 = R

n

+

. Sin
e the proof of this

fa
t is elementary but rather lengthy it will be omitted and we refer to [4℄, proof

of Satz 8.8, for details. This yields the following result:

Corollary 3.2 Let 1 < q <1; ! 2 A

q

; 0 < � < n and 1 < q < s <1:

i) Let 
 � R

n

be a bounded Lips
hitz domain and let U be a neighbourhood of


. If there exists an � 2 (0; �℄ su
h that (19) is satis�ed for all 
ubes Q � U;

then it holds the imbedding

H

�;q

!

(
) ,! L

s

!

(
): (21)

ii) Let 
 = R

n

+

: Then the imbedding (21) holds if (19) is satis�ed for some

� 2 (0; �℄ and for all 
ubes Q � R

n

+

:

4 The Stokes operator

Let 1 < q <1; ! 2 A

q

and let 
 = R

n

;R

n

+

or a bounded C

1;1

-domain. Re
all the

de�nition of the Stokes operator A

q;!

from the introdu
tion.

The results from [6℄, [7℄ yield the following properties of the Stokes operator:

Theorem 4.1 i) The Stokes operator A

q;!

: D(A

q;!

) � L

q

!; �

(
) �! L

q

!; �

(
)

is densely de�ned and 
losed.

ii) For every f 2 L

q

!; �

(
) and � 2 �

"

= f� 2 C n f0g : jarg �j < � � " g; 0 <

" <

�

2

; the resolvent problem

�u+A

q;!

u = f (22)

has a unique solution u 2 D(A

q;!

). There is a 
onstant C

"

su
h that

j�jkuk

q;!

+ kA

q;!

uk

q;!

� C

"

kfk

q;!

: (23)

For all 1 < p <1; v 2 A

p

and f 2 L

q

!; �

(
) \ L

p

v;�

(
) it holds

(�+A

q;!

)

�1

f = (�+A

p;v

)

�1

f: (24)

For a bounded C

1;1

-domain 
 the Stokes operator A

q;!

is boundedly invertible.

For � 2 �

"

[ f0g the Stokes resolvent problem (22) has a unique solution

satisfying the estimate

j�jkuk

q;!

+ kuk

W

2;q

!

(
)

� C

"

kfk

q;!

: (25)

10



iii) For 
 = R

n

or R

n

+

kr

2

uk

q;!

� C kA

q;!

uk

q;!

; (26)

kuk

W

2;q

!

(
)

� C k(I +A

q;!

)uk

q;!

(27)

for all u 2 D(A

q;!

).

iv) For 
 = R

n

; R

n

+

and a bounded C

1;1

-domain the Stokes operator �A

q;!

gen-

erates a bounded analyti
 semigroup in L

q

!; �

(
).

For 
 = R

n

or R

n

+

it holds 0 =2 �(A

q;!

); but 0 2 �(I+A

q;!

) and �(A

q;!

+I) also

generates a bounded analyti
 semigroup fe

�t (I+A

q;!

)

g: Hen
e the fra
tional powers

(I +A

q;!

)

�

; � 2 R; 
an be de�ned in the usual way (see e.g. [16℄).

De�nition 4.1 Let 
 = R

n

;R

n

+

or a bounded C

1;1

-domain and � > 0. Then de�ne

D

�;q

!

(
) := D((I +A

q;!

)

�

)

equipped with the norm kuk

D

�;q

!

(
)

:= k(I+A

q;!

)

�

uk

q;!

: Let D

��;q

!

(
) := [D

�;q

0

!

0

(
)℄

0

and D

0;q

!

(
) := L

q

!; �

(
).

Sin
e L

q

!; �

(
) - as a 
losed subspa
e of L

q

!

(
)

n

- is a re
exive Bana
h spa
e of

L

q

!

(
)

n

and sin
e for � � 0

(I +A

q;!

)

��

: L

q

!; �

(
) �! D

�;q

!

(
) (28)

is an isometri
 isomorphism D

�;q

!

(
) is a re
exive Bana
h spa
e.

By [16℄ Theorem 2.7 the interse
tion

T

1

n=1

D

n;q

!

(
) is dense in L

q

!; �

(
). Then

the isometri
 isomorphism (28) implies that D

�;q

!

(
) is dense in D

�;q

!

(
) for � >

� � 0. In the sequel we will show (see Lemma 4.1) that L

q

!; �

(
) is dense in D

�;q

!

(
)

for � < 0; this implies the density of D

�;q

!

(
) in D

�;q

!

(
) for arbitrary � > �.

Sin
e for a bounded C

1;1

-domain 
 � R

n

the Stokes operator A

q;!

is invertible,

the spa
es D

�;q

!

(
) and D(A

�

q;!

) 
oin
ide for 0 � � � 1 in this 
ase with equivalent

norms k � k

D

�;q

!

(
)

and kA

�

q;!

� k

q;!

(see e.g. [15℄).

Lemma 4.1 Let 
 = R

n

;R

n

+

or a bounded C

1;1

�domain and � > 0. Then

D

��;q

!

(
) is isomorphi
 to the 
ompletion of the spa
e L

q

!; �

(
) with respe
t to the

norm k(I +A

q;!

)

��

� k

q;!

.

Let 0 � � � 1 and let 
 a bounded C

1;1

-domain. Then the norms kA

��

q;!

� k

q;!

and k(I +A

q;!

)

��

� k

q;!

are equivalent on L

q

!; �

(
).

Proof: From Theorem 4.1 ii) and the fa
t that (L

q

!

(
))

0

= L

q

0

!

0

(
) it follows by

standard arguments that (A

q;!

)

0

= A

q

0

;!

0

and [(A

q;!

+ �)

�1

℄

0

= (A

q

0

;!

0

+ �)

�1

for

� 2 C n R

�

. This implies [(I + A

q

0

;!

0

)

��

℄

0

= (I + A

q;!

)

��

by the de�nition of

fra
tional powers (see [16℄).
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The last assertion follows from the remark above that the spa
es D

�;q

!

(
) and

D(A

�

q;!

) 
oin
ide with equivalent norms k � k

D

�;q

!

(
)

� kA

�

q;!

� k

q;!

for 0 � � � 1 if


 is a bounded C

1;1

-domain. 2

Using the relation e

�tA

q;!

= e

t

e

�t (I+A

q;!

)

; t � 0; and the well known relations

between the semigroup e

�t (I+A

q;!

)

and the fra
tional powers (I + A

q;!

)

�

(see e.g.

[16℄) we obtain the following results:

Lemma 4.2 Let 
 = R

n

; R

n

+

or a bounded C

1;1

-domain.

i) Let � > 0. Then the Stokes semigroup fe

�tA

q;!

; t > 0g extends uniquely to a

bounded C

0

-semigroup on D

��;q

!

(
) - again denoted by fe

�tA

q;!

; t > 0g.

ii) For all �1 < � < � <1 and T > 0 there is a 
onstant C

T

su
h that

ke

�tA

q;!

uk

D

�;q

!

(
)

� C

T

t

���

kuk

D

�;q

!

(
)

8u 2 D

�;q

!

(
)

for all t 2 (0; T ℄: If 
 is a bounded C

1;1

-domain, C

T

is independent of T > 0.

iii) For � > � and u 2 D

�;q

!

(
)

lim

t!0

t

���

ke

�tA

q;!

uk

D

�;q

!

(
)

= 0:

Proof: i) For u 2 L

q

!; �

(
) we get by Lemma 4.1

ke

�tA

q;!

uk

D

��;q

!

(
)

= k(I +A

q;!

)

��

e

�tA

q;!

uk

q;!

= ke

�tA

q;!

(I +A

q;!

)

��

uk

q;!

� Ck(I +A

q;!

)

��

uk

q;!

= Ckuk

D

��;q

!

(
)

:

Then the density of L

q

!; �

(
) in D

��;q

!

(
) yields i).

ii) For u 2 D

�;q

!

(
)\L

q

!; �

(
) Lemma 4.1, Theorem 6.13 in [16℄ and the relation

e

�tA

q;!

= e

t

e

�t (I+A

q;!

)

imply

ke

�tA

q;!

uk

D

�;q

!

(
)

= k(I +A

q;!

)

�

e

�tA

q;!

uk

q;!

= k(I +A

q;!

)

���

e

�tA

q;!

(I +A

q;!

)

�

uk

q;!

� C

T

t

���

kuk

D

�;q

!

(
)

for all t 2 (0; T ℄: Sin
e for a bounded C

1;1

-domain 
 in the above 
al
ulation

(I +A

q;!

)

���


an be repla
ed by A

���

q;!

; the 
onstant C

T

is independent of T > 0

in this 
ase. The density of D

�;q

!

(
) \ L

q

!; �

(
) in D

�;q

!

(
) 
ompletes the proof.

iii) Let " > 0 be given. Sin
e D

�;q

!

(
) \ L

q

!; �

(
) is dense in D

�;q

!

(
) there is

a v 2 D

�;q

!

(
) \ L

q

!; �

(
) su
h that ku � vk

D

�;q

!

< ": From part i) and ii) of this

lemma it follows that

t

���

ke

�tA

q;!

uk

D

�;q

!

� t

���

ke

�tA

q;!

vk

D

�;q

!

+ t

���

ke

�tA

q;!

(u� v)k

D

�;q

!

� C

T

( t

���

kvk

D

�;q

!

+ ");

for 0 < t � T: Letting t! 0 and noting that " > 0 was arbitrarily given yields the

assertion. 2
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Lemma 4.3 Let 0 � � � 1 and let 
 = R

n

; R

n

+

be a bounded C

1;1

-domain. Then

the smooth fun
tions C

1

(
)

n

\D(A

q;!

) are dense in D

�;q

!

(
).

Proof: Given f 2 C

1

0;�

(
) and 1 < r < 1 standard regularity theory of the

stationary Stokes equation ([10℄, Chapter IV, Theorem 4.2) yields the existen
e of

a solution u 2

T

1

k=1

W

k;r

lo


(
)

n

� C

1

(
)

n

of the equationA

r

u = �u+f: This means

(I+A

r

)

�1

(C

1

0;�

(
)) � C

1

(
)

n

: Then (24) yields (I+A

q;!

)

�1

(C

1

0;�

(
)) � C

1

(
)

n

:

Sin
e C

1

0;�

(
) is dense in L

q

!; �

(
) and (I +A

q;!

)

�1

: L

q

!; �

(
) �! D(A

q;!

) is a

topologi
al isomorphism, (I + A

q;!

)

�1

(C

1

0;�

(
)) is dense in D(A

q;!

) and therefore

in D

�;q

!

(
). 2

Next we use the 
omplex interpolation method ([17℄, [21℄) to 
ompare the spa
es

D

�;q

!

(
) to the spa
es H

s;q

!

(
). The following properties of the domains of fra
tional

powers are needed:

Lemma 4.4 Let X be a Bana
h spa
e, �A : D(A) � X ! X a generator of

a bounded analyti
 semigroup on X and � 2 (0; 1): Let D(A

�

) for 0 < � < 1 be

equipped with the graph norm. Then the 
ontinuous embeddings

[D(A

�

); D(A

�

)℄

�

,! D(A




) ,! [D(A

�

); D(A

�

)℄

�

hold for 0 � � � � � 1; 0 � � < � < � � 1 and 
 = �� + (1� �)�.

Proof: In [3℄, Theorem 6.16, the imbeddings [X;D(A)℄

�

,! D(A

�

) and

D(A

�

) ,! [X;D(A)℄

�

are proven for all 0 � � < � < � � 1. Sin
e �A

���

also generates a bounded analyti
 semigroup on X (see [15℄, Se
tion 10), we may

apply this result to obtain [X;D(A

���

)℄

�

,! D(A


��

). Sin
e A

�

is an isomor-

phism from [D(A

�

); D(A

�

)℄

�

to [X;D(A

���

)℄

�

and from D(A




) to D(A


��

); we

get [D(A

�

); D(A

�

)℄

�

,! D(A




): The se
ond embedding is proved analogously. 2

Lemma 4.5 For every 0 � � � 1; 0 � � � 1 and every " > 0 it holds

(1) D

�+";q

!

(
) ,! H

2�

!

(
);

(2) [L

q

!; �

(
); D

��;q

!

(
)℄

�

,! D

����";q

!

(
):

Proof: (1) By Lemma 4.4 and Theorem 3.3

D

�+";q

!

(
) ,! [L

q

!; �

(
); D(A

q;!

)℄

�

,! [L

q

!

(
); H

2;q

!

(
)℄

�

= H

2�;q

!

(
):

(2) Corollary 4.4 yields D

��+";q

0

!

0

(
) ,! [L

q

0

!

0

;�

(
); D

�;q

0

!

0

(
)℄

�

by duality. 2

5 Estimates of the nonlinear term

Let 1 < q < 1; ! 2 A

q

and let 
 � R

n

be equal to R

n

+

or to a bounded domain

with �
 2 C

1;1

. In this situation P = P

q;!

denotes the 
orresponding Helmholtz

proje
tion and A = A

q;!

denotes the 
orresponding Stokes operator.

13



Lemma 5.1 For 1 � j � n and � >

1

2

there is a 
onstant C 2 R

+

su
h that

kP

q;!

�

j

uk

D

��;q

!

� Ckuk

q;!

for all u 2 C

1

0

(
)

n

; i.e., the operator P�

j

de�ned on C

1

0

(
)

n

extends to a bounded

linear operator from L

q

!

(
)

n

to D

��;q

!

(
).

Proof: Sin
e � >

1

2

; Lemma 4.5 (1) implies that �

j

�(I +A

q

0

;!

0

)

��

: L

q

0

!

0

;�

(
) ,!

L

q

0

!

0

(
)

n

is bounded, where � denotes the inje
tion L

q

0

!

0

;�

(
) � L

q

0

!

0

(
)

n

: Sin
e the

adjoint operator of � is P

q;!

the result follows from duality. 2

We de�ne for suÆ
iently regular ve
tor �elds u and v on 


F (u; v) := P (u � rv) = P

�

n

X

j=1

u

j

�

j

v

�

:

Theorem 5.1 Let 0 < � < �

0

; 0 < 
 < 


0

and assume there exists a 
onstant

C > 0 su
h that

jQj

2(
+�)

q

n

� C !(Q) (29)

for all 
ubes Q � U , where U = R

n

+

if 
 = R

n

+

and U is a neighbourhood of 
 if 


is a bounded C

1;1

-domain. Then for all Æ 2 [0;

1

2

℄

F : D

�

0

;q

!

(
)�D




0

�Æ+

1

2

;q

!

(
)! D

�Æ;q

!

(
)

is bounded as a bilinear map.

Proof: In this proof C > 0 denotes a generi
 
onstant. For

1

q

=

1

s

+

1

r

and all

! 2 A

q

satisfying

jQj

2�

n

!(Q)

1

r

�

1

q

= jQj

2�

n

!(Q)

�

1

s

� C 8Q � U (30)

jQj

2


n

!(Q)

1

s

�

1

q

� C 8Q � U (31)

it follows from Corollary 3.2, Lemma 4.5 i) and the boundedness of P in L

q

!

(
)

n

that

kP (u � ru)k

q;!

� kuk

r;!

krvk

s;!

� Ckuk

H

2�;q

!

krvk

H

2
;q

!

� Ckuk

D

�

0

;q

!

kvk

D

�
+

1

2

;q

!

(32)

for 
 < �
 < 


0

.

Choosing s =

(
+�)q

�

we get �




�

1

s

=

1

s

�

1

q

: Hen
e both (30) and (31) are

equivalent to (29) for this 
hoi
e of s.

Sin
e F is bilinear, it is suÆ
ient to show the boundedness of F on a dense

subspa
e. By Lemma 4.3 the spa
e D(A) \ C

1

(
)

n

is dense in D

�;q

!

(
) for all

14



� � 0: Hen
e we 
an assume additionally that u; v 2 C

1

(
). Then div u = 0

implies u � rv =

P

n

j=1

�

j

(u

j

v):

Under the same assumptions on s; r and ! it follows from Lemma 5.1 for arbi-

trary " > 0 that

kP (u � rv)k

D

�

1

2

�";q

!

�

n

X

j=1

kP�

j

(u

j

v)k

D

�

1

2

�";q

!

� Ck jujjvj k

q;!

� Ckuk

r;!

kvk

s;!

� C kuk

H

2�;q

!

kvk

H

2
;q

!

� C kuk

D

�

0

;q

!

kvk

D

�
;q

!

:

Hen
e for �xed u 2 D

�

0

;q

!

(
) the operator F

u

: v 7! F (u; v) is linear and bounded

from D

�
+

1

2

;q

!

(
) to L

q

!; �

(
) and from D

�
;q

!

(
) to D

�

1

2

�";q

!

(
). Interplotaion yields

that

F

u

: [D

�
+

1

2

;q

!

(
); D

�
;q

!

(
)℄

�

�! [L

q

!; �

(
); D

�

1

2

�";q

!

(
)℄

�

is linear and bounded with norm less or equal to Ckuk

D

�

0

;q

!

. Lemma 4.4 implies for

0 � Æ �

1

2

the embeddings

D




0

+

1

2

�Æ;q

!

(
) ,! [D

�
+

1

2

;q

!

(
); D

�
;q

!

(
)℄

�

; (33)

[L

q

!; �

(
); D

�

1

2

�";q

!

(
)℄

�

,! D

�Æ;q

!

(
); (34)

if �
 �

�

2

< 


0

� Æ and

�

2

+ "� < Æ; or if Æ = � = 0. For Æ 2 (0;

1

2

℄ these 
onditions

are satis�ed by some � 2 [0; 1℄ if " > 0 is small enough. Then F

u

: D




0

+

1

2

�Æ;q

!

(
)!

D

�Æ;q

!

(
) is bounded with norm � C kuk

D

�

0

;q

!

. Sin
e F (u; v) = F

u

(v); the proof is


omplete. 2

6 Abstra
t existen
e theorem

In this se
tion we follow [22℄ the abstra
t existen
e theorem in [22℄. However we

introdu
e an additional Bana
h spa
e and an inhomogeneity f . This implies a more

general lo
al existen
e result for strong solutions of the Navier-Stokes equations.

Theorem 6.1 Let W;X; Y; Z and G be Bana
h spa
es, whi
h are imbedded into a


ommon topologi
al ve
tor spa
e. Furthermore let fe

tA

g

t�0

be a C

0

-semigroup on

X satisfying the following assumptions:

(I) For every t > 0 the operator e

tA

extends to a linear bounded operator from

W to X. There exists some a 2 (0; 1) and positive 
onstants C and T su
h

that

je

tA

uj

X

� C t

�a

juj

W

for all u 2 W und t 2 (0; T ℄.

15



(II) For every t > 0 it holds e

tA

2 L(X; Y ) \ L(X;Z) \ L(X;G). There exist

b > 0; 
 > 0; d 2 (a; 1) and positive 
onstants C and T su
h that

je

tA

uj

Y

� C t

�b

juj

X

(35)

je

tA

uj

Z

� C t

�


juj

X

(36)

je

tA

uj

G

� C t

�(d�a)

juj

X

(37)

for all u 2 X and t 2 (0; T ℄. Furthermore e

tA

u 2 C((0; T ℄; Y )\C((0; T ℄; Z)\

C((0; T ℄; G) and

lim

t!0

t

b

je

tA

uj

Y

= lim

t!0

t




je

tA

uj

Z

= lim

t!0

t

d�a

je

tA

uj

G

= 0:

for all u 2 X.

Additionally assume that a+ b + 
 � 1.

Let

F : Y � Z !W

be a bilinear bounded mapping and F (u) := F (u; u).

Then for every u

0

2 X and f 2 C((0; T ℄;W ) for some T > 0 with jf(t)j

W

=

o(t

�b�


) for t ! 0 there exists some T

�

> 0 and a unique 
urve u : [0; T

�

℄ ! X

with the properties:

a) u : [0; T

�

℄! X is 
ontinuous and u(0) = u

0

:

b) u 2 C((0; T

�

℄; Y ) \ C((0; T

�

℄; Z) \ C((0; T

�

℄; G) and

lim

t!0

t

d�a

ju(t)j

G

= lim

t!0

t

b

ju(t)j

Y

= lim

t!0

t




ju(t)j

Z

= 0:


) u(t) = e

tA

u

0

+

R

t

0

e

(t�s)A

(Fu(s) + f(s) )ds for all t 2 [0; T

�

℄.

Furthermore T

�

> 0 
an be 
hosen independly of the 
hoi
e of G.

Proof: Let u

0

2 X and �; �; T > 0 be su
h that

je

tA

u

0

j

X

� �; t

b

je

tA

u

0

j

Y

� �; t




je

tA

u

0

j

Z

� � (38)

for all t 2 (0; T ℄: For T ! 0 the value � > 0 
an be 
hosen arbitrarily small.

For �; � and T satisfying (38) let M = M(�; �; T ) be the set of all mappings

u : (0; T ℄! X satisfying

u 2 C((0; T ℄; X) \ C((0; T ℄; Y ) \ C((0; T ℄; Z) \ C((0; T ℄; G);

ju(t)j

X

� 2�; t

b

ju(t)j

Y

� 2�; t




ju(t)j

Z

� 2�; sup

t2(0;T ℄

t

d�a

ju(t)j

G

<1

16



for all t 2 (0; T ℄. Let 
 := sup

t2(0;T ℄

t

d

je

tA

j

L(W;G)

: Then M(�; �; T ) equipped with

the metri


d(u; v) = sup

t2(0;T ℄

(
 ju(t)� v(t)j

X

+ 
 t

b

ju(t)� v(t)j

Y

+


 t




ju(t)� v(t)j

Z

+ t

d�a

ju(t)� v(t)j

G

)

is a nonempty 
omplete metri
 spa
e. For u 2M de�ne the operator

Fu(t) = e

tA

u

0

+

Z

t

0

e

(t�s)A

(Fu(s) + f(s) )ds:

In order to apply Bana
h's �xed point theorem we show that F : M ! M is a

q�
ontra
tion with q < 1 if T > 0 is suÆ
iently small.

To show that F mapsM into itself, we only prove that t

b

jFu(t)j

Y

� 2� for � > 0

and T > 0 suÆ
iently small. The remaining estimates are proved analogously:

t

b

jFu(t)j

Y

� t

b

Z

t

0

je

(t�s)A

j

L(W;Y )

jFu(s)j

W

ds

+ t

b

Z

t

0

je

(t�s)A

j

L(W;Y )

jf(s)j

W

ds+ t

b

je

tA

u

0

j

Y

� C t

b

Z

t

0

(t� s)

�b�a

ju(s)j

Y

ju(s)j

Z

ds+ 
(t) t

b

Z

t

0

(t� s)

�b�a

s

�b�


ds+ �

� ( 4C �

2

+ 
(t) ) t

b

Z

t

0

(t� s)

�b�a

s

�b�


ds+ �

=

~

C ( �

2

+ 
(t) ) t

1�(a+b+
)

+ � � 2�;

where lim

t!0


(t) = 0 and the last �-sign holds for t 2 (0; T ℄, if T > 0 and � > 0

are suÆ
iently small.

We show that for T small enough F is a q-
ontra
tion with q < 1, i.e.,

d(Fu;Fv) � q d(u; v) 8 u; v 2 M:

We prove only t

d�a

jFu(t) � Fv(t)j

G

� q d(u; v); where q < 1 for t 2 (0; T ℄ and

T > 0 small enough. The remaining estimates are proved analogously.

t

d�a

jFu(t)�Fv(t)j

G

� t

d�a

Z

t

0

je

(t�s)A

j

L(W;G)

jFu(s)� Fv(s)j

W

ds

� C t

d�a

Z

t

0

(t� s)

�d

(ju(s)j

Y


 ju(s)� v(s)j

Z

+ jv(s)j

Z


 ju(s)� v(s)j

Y

) ds

� 2C � t

d�a

Z

t

0

(t� s)

�d

s

�b�


d(u; v) ds

=

~

C � t

1�(a+b+
)

d(u; v) � q d(u; v)
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for t 2 (0; T ℄ with some q < 1, if T > 0 and � > 0 are suÆ
iently small. Note that


 may depend on the 
hoi
e of the spa
e G, but

~

C > 0 is independent of G. Hen
e

T > 0 
an be 
hosen independently of the 
hoi
e of G.

Choosing for T and for � small values T

�

> 0 and �

�

> 0, Bana
h's �xed point

theorem implies the existen
e of a unique �xed point u 2 M(�; �

�

; T

�

) of F , i.e.,


) is proved. In a) and b) it remains to investigate the behaviour of u for t! 0:

Let �

1

� �

�

and T

1

� T

�

be su
h that (38) is satis�ed, and let u

1

and u

be the �xed points of F in M(�; �

1

; T

1

) and in M(�; �

�

; T

�

) respe
tively. Sin
e

M(�; �

1

; T

1

) �M(�; �

�

; T

1

) the uniqueness of u implies u

1

= u

�

�

(0;T

1

℄

.

We show a). Due to the assumptions

ju(t)� u

0

j

X

�

Z

t

0

je

(t�s)A

j

L(W;X)

(jFu(s)j

W

+ jf(s)j

W

) ds+ je

tA

u

0

� u

0

j

X

�

~

C ( �

2

1

+ 
(t))t

1�(a+b+
)

+ je

tA

u

0

� u

0

j

X

for all t 2 (0; T

1

℄ with 
(t) ! 0 for t ! 0. Sin
e T

1

> 0 and �

1

> 0 
an be 
hosen

arbitrarily small it follows u(t)! u

0

for t! 0 in X.

To show lim

t!0

t

d�a

ju(t)j

G

= 0 in b) note that

t

d�a

ju(t)j

G

� t

d�a

Z

t

0

je

(t�s)A

j

L(W;G)

(jFu(s)j

W

+ jf(s)j

W

) ds+ t

d�a

je

tA

u

0

j

G

� C 
 t

d�a

Z

t

0

(t� s)

�d

ju(s)j

Y

ju(s)j

Z

ds

+ 
(t) 
 t

d�a

Z

t

0

(t� s)

�d

s

�b�


ds+ t

d�a

je

tA

u

0

j

G

� ( 4C �

2

1

+ 
(t) ) 
 t

d�a

Z

t

0

(t� s)

�d

s

�b�


ds+ t

d�a

je

tA

u

0

j

G

�

~

C 
 ( �

2

1

+ 
(t))t

1�(a+b+
)

+ t

d�a

je

tA

u

0

j

G

:

for t 2 (0; T

1

℄. Note that due to the assumptions t

d�a

je

tA

u

0

j

G

! 0 for t! 0 and �

1


an be 
hosen arbitrarily small by 
hoosing T

1

small. Moreover 
(t)! 0 for t! 0:

The remaining estimates are analogous and thus the 
laim follows b). 2

An analysis of the proof of Theorem 6.1 shows that Bana
h's �xed point theorem

is appli
able if � > 0 and sup

0<t<T

�


(t) are suÆ
iently small. This was a
hieved

by 
hoosing T

�

> 0 suÆ
iently small. The following 
orollary is based on the fa
t

that the smallness of � > 0 and sup

0<t<T

�


(t) 
an also be guaranteed by 
hoosing

some norms of u

0

and f small enough.

Corollary 6.1 i) Additionally to the assumptions of the pre
eding theorem let

the semigroup fe

tA

g

t�0

be uniformly bounded in L(Y ) \ L(Z) and let R > 0.

Then T

�

> 0 does not depend on the 
hoi
e of an initial value u

0

2 Y \ Z

with maxfju

0

j

Y

; ju

0

j

Z

g � R and on f 2 C([0; T ℄;W ) with kfk

C([0;T ℄;W )

� R.
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ii) Additionally to the assumptions of Theorem 6.1 let T =1 and a+ b+ 
 = 1.

Then there are 
onstants 


1

> 0 and 


2

> 0 su
h that for all u

0

and f

satisfying ju

0

j

X

� 


1

and sup

0<t<1

t

b+


jf j

W

� 


2

the solution u from Theorem

6.1 exists on (0;1), i.e., a)- 
) hold for arbitrary T

�

> 0:

Proof: i) Sin
e e

tA

2 L(Y ) \ L(Z) and maxfju

0

j

Y

; ju

0

j

Z

g � R,

t

b

je

tA

u

0

j

Y

� C R t

b

and t




je

tA

u

0

j

Z

� C R t




:

Comparing with (38) we get that � 
an be 
hosen arbitrarily small and independent

of u

0

if T

�

tends to zero. Furthermore for jf(t)j

W

� R; t 2 [0; T ℄ the quantity


(t) = t

b+


jf(t)j

W

only depends on R but not on f .

ii) Let � > 0 be given. Be
ause of (35)-(37) we get (38) for all t > 0, if ju

0

j

X

is

suÆ
iently small. Repla
e 
(t) by 


2

:= sup

0<t<1

t

b+


jf(t)j

W

. Choosing 


2

small

enough and assuming that � > 0 is given suÆ
iently small, then u(t) exists on

(0;1). 2

7 Instationary Navier-Stokes equations

Let 
 be equal to the half spa
e R

n

+

or to a bounded domain with C

1;1

-boundary.

We show a lo
al existen
e result for strong solutions of the instationary Navier-

Stokes equations (1) in weighted Sobolev spa
es. Our aim is to embed results from

[22℄ and [12℄ into the weighted 
ontext.

Proof of Theorem 1.1: Choose � =

��Æ+1

2

and 
 =

�+Æ

2

. Then � > 0; � 2

(�; 1�Æ) and 
 2 (0;

1

2

). Furthermore �+
 =

1

2

+�: Sin
e 0 < ��+

1

2

< �+

1

2

= �+
;

we 
an 
hoose

�

� 2 (0; �) and �
 2 (0; 
) su
h that

�

� + �
 = �� +

1

2

. Hen
e by (4)

jQj

2(

�

�+�
)

q

n

= jQj

(1+2��)

q

n

� C !(Q) 8Q � U:

Sin
e � = 
 +

1

2

� Æ; Theorem 5.1 yields that

F : D

�;q

!

(
)�D

�;q

!

(
) �! D

�Æ;q

!

(
) (39)

is bilinear bounded. Then for � 2 (�; 1� Æ) and

W = D

�Æ;q

!

(
); X = D

�;q

!

(
)

Y = Z = D

�;q

!

(
); ; G = D

�;q

!

(
) (40)

a = � + Æ; b = 
 = � � �; ; d = �+ Æ

by Lemma 4.2 the assumptions of Theorem 6.1 are satis�ed: It holds a; b; 
 > 0 and

d 2 (a; 1) by the 
hoi
e of �; 
; Æ and �: Furthermore a+b+
 = �+Æ+2(���) = 1

by the 
hoi
e of �.

By Lemma 4.2 the assumptions (I) and (II) of Theorem 6.1 on the semigroup

e

�tA

are satis�ed. By (39) the assumptions of Theorem 6.1 on F are satis�ed.

Sin
e b+ 
 = 2(� � �) = 1� Æ � �; we have

jf j

W

= kfk

D

�Æ;q

!

(
)

= o(t

Æ+��1

) = o(t

�b�


):
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Then an appli
ation of Theorem 6.1 yields the assertions a),b),
).

Con
erning uniqueness, note that if a) and b) hold for some � �

��Æ+1

2

= �,

then be
ause of

kuk

D

�;q

!

� C kuk

�

D

�;q

!

kuk

1��

D

�;q

!

with � =

���

���

(see [16℄, Chapter 2, Theorem 6.10) it follows that b) is satis�ed for

� = �. Hen
e the 
laim follows from the uniqueness statement of Theorem 6.1, if

we 
hoose � = � =

��Æ+1

2

in (40), i.e., Y = Z = G = D

�;q

!

(
). 2

Remark: For the proof of Theorem 1.1 we formally only need to assume that

�

1

2

< � < 1: But note that the 
ondition (4) 
an hold for ! 2 A

q

only if

(1 + 2�)

q

n

� 1: (41)

The reason is that (4) implies for the mean value of ! on Q

jQj

(1+2��)

q

n

�1

� C

!(Q)

jQj

:

If (1+2��)

q

n

< 1; then for jQj ! 0 the left hand side tends to in�nity. By Lebesgue's

di�erentiation theorem this implies ! � 1 a.e. on 
, whi
h is impossible be
ause

of ! 2 A

q

� L

1

lo


(R

n

). By � > � and (41) we obtain the 
ondition

n

2q

�

1

2

< �: (42)

This lower bound for � was also found in [12℄ in the 
ase without weights, i.e.,

! � 1.

Let q and � be as in Theorem 1.1. Then in the 
ase that 
 is a bounded

C

1;1

-domain examples of weight fun
tions ! satisfying the assumption (4) are

jx� x

0

j

�

for � n < � < (1 + 2�)q � n;

d(x; �
)

�

for � 1 < � < minfq � 1; (1 + 2�)q � ng;

where x

0

2 R

n

is arbitrary and d(x; �
) is the distan
e from x to �
.

If 
 = R

n

+

; then (4) implies that the weight is not allowed to de
rease for

jxj ! 1: More pre
isely, it follows from (4) that

!(Q

0

+ x) � C(Q

0

)

for x 2 R

n

and a �xed 
ube Q

0

, i.e. !(x)! 0 for jxj ! 1 is not possible. Simple

examples of weights satisfying the 
ondition (4) for 
 = R

n

+

are

jx� x

0

j

�

for 0 � � < (1 + 2�)q � n;

1 + jx� x

0

j

�

for � n < � < 0;

x

�

n

for 0 � � < minfq � 1; (1 + 2�)q � ng;

1 + x

�

n

for � 1 < � < 0;
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where x

0

2 R

n

is arbitrary and x

n

denotes the nth 
omponent of a ve
tor x =

(x

1

; : : : ; x

n

) 2 R

n

+

.

The way how to 
on
lude from Theorem 1.1 the existen
e of lo
al strong solu-

tions of the Navier-Stokes equations (2) is standard and 
ompletely analogous to

the 
ase without weights (see [12℄). Therefore we skip the proof of the following

result and refer to [12℄ for details:

Theorem 7.1 Additionally to the assumptions of Theorem 1.1 let f : (0; T ℄ !

L

q

!; �

(
) be H�older 
ontinuous on ["; T ℄ for every 0 < " < T: Then there exists a

T

�

> 0 and a lo
al strong solution u 2 C([0; T

�

℄; D

�;q

!

(
)) \C

1

((0; T

�

℄; L

q

!; �

(
)) of

the Navier-Stokes equations (2) on [0; T

�

℄ satisfying assertion b) of Theorem 1.1

and u(t) 2 D(A

q;!

) for all t 2 (0; T

�

℄.

The solution is unique if assertion b) of Theorem 1.1 holds for some � �

1�Æ+�

2

.

We 
on
lude with a global existen
e result for small data: Let 
 be a bounded

C

1;1

-domain. Then the following 
orollary is an easy 
onsequen
e of Corollary 6.1

and the fa
t that the 
onstant C in Lemma 4.2 ii) is independent of T if 
 is

bounded:

Corollary 7.1 Let 
 be a bounded C

1;1

-domain. Then there are 
onstants 


1

> 0

and 


2

> 0 su
h that the solution u of the Navier-Stokes equations given by Theorem

7.1 exists globally on R

+

if

ku

0

k

D

�;q

!

� 


1

and sup

0<t<1

t

1���Æ

kf(t)k

D

�Æ;q

!

� 


2

:
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