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Abstract

In this paper we propose differentiability properties for positively
homogeneous risk measures. These properties ensure that the gradi-
ent can be applied for reasonable risk capital allocation on non-trivial
portfolios. We show that the differentiability properties are fulfilled
for a wide class of coherent risk measures based on the mean and the
one-sided moments of a risky payoff. In contrast to quantile-based risk
measures like Value-at-Risk, risk measures of this class allow allocation
in portfolios of very general distributions, e.g. discrete ones. In an ex-
ample we show how a particular risk measure of this class can be chosen
by adapting it to the VaR of a certain portfolio. As a consequence, the
risk capital corresponding to the VaR can be allocated by the gradient
due to the adapted risk measure.
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1 Introduction

From the works DENAULT (2001) and TASCHE (2000) it is known that
differentiability of risk measures is crucial for risk capital allocation in
portfolios. The reason is, that in the case of differentiable coherent or, more
general, differentiable positively homogeneous risk measures the gradient
due to asset weights has figured out to be the unique reasonable per-unit
allocation principle. However, a result of this paper shows that at least in the

coherent case differentiability on all portfolios is not desirable. As a solution

*The author thanks F. Delbaen, J. Kindler, J. Lehn and U. Schmock for valuable com-
ments and suggestions.
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we define weaker differentiabiliy properties. For positively homogeneous and,
in particular, coherent risk measures these properties allow allocation by the
gradient on all relevant portfolios. Excluded are portfolios that contain only
one type of assets. However, in these cases the allocation problem is trivial.
As an example for these weakened differentiability properties we introduce
a wide class of coherent risk measures based on the mean and the one-sided
moments of a risky payoff. In contrast to quantile-based risk measures like
Value-at-Risk, risk measures of this class allow allocation in portfolios of
very general distributions, e.g. discrete ones in the case of credit risk. In a
numerical example we show, how a particular risk measure of this class can
be chosen by adapting it to the VaR of a certain portfolio. As a consequence,
the risk capital corresponding to the VaR can be allocated by the gradient

due to the adapted risk measure.

Given a probability space (£2,.4,Q) we will consider the vector space
LP(Q, A,Q), or just LP(Q), for 1 < p < oco. Even though LP(Q) consists
of equivalence classes of p-integrable random variables, we will often treat its
elements as random variables. Due to the context, no confusion should arise.
The notation will be as follows. We have ||X||, = (EQ|X|”)?17 and || X || =
ess.sup{|X|}. Recall, that LP(Q) C LY(Q) if 1 < g < p < o0, since [|.||7 < |[|.]|P.
X7 is defined as max{—X,0}. We denote o, (X) = [|(X — Eg[X])"[[,. Now,
let U C R* for n € N, = N\ {0} be open and positively homogeneous, i.e.
for u € U we have \u € U for all A > 0. A positively homogeneous function
is a function f : U — R, where f(Au) = Af(u) for all A > 0, w € U. When f
is also differentiable at every u = (uq,...,u,) € U, we obtain the well-known

Euler Theorem

f(u) = Zuig—i(u). (1.1)

i=1

We consider a one-period framework, that means we have the present time
0 and a future time horizon 7. Between 0 and 7' no trading is possible. We
assume risk to be given by a risky payoff X, i.e. a random variable out of
LP(Q) representing a cashflow at 7. We want to consider a risk measure p(X)
to be the extra minimum cash added to X that makes the position acceptable

for the holder or a regulator. For this reason, we state the following definition.

DEFINITION 1.1. A risk measure on LP(Q), 1 < p < o0, is defined by a
functional p : LP(Q) — R.
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We now give a definition of coherent risk measures. For a further motivation
and interpretation of this axiomatic approach to risk measurement we refer to
the article of ARTZNER ET AL. (1999).

DEFINITION 1.2. A functional p : L*(Q) — R, where 1 < p < o0, is called
a coherent risk measure (CRM) on LP(Q) if the following properties hold.

(M) Monotonicity: If X > 0 then p(X) < 0.
(S) Subadditivity: p(X +Y) < p(X) + p(Y).

(PH) Positive homogeneity: For A > 0 we have p(AX) = Ap(X).
(T) Translation: For constants a we have p(a+ X) = p(X) — a.

As we work without interest rates - in contrast to ARTZNER ET AL. (1999)
- there is no discounting factor in definition 1.2. A generalization of CRM
to the space of all random variables on a probability space can be found in
DELBAEN (2000a). However, having p > 1 prevents us from being forced to
allow infinitely high risks. See DELBAEN (2000a) for details on this topic.

2 Risk capital allocation by the gradient

Let us consider the payoff X (u) := >, u;X; € LP(Q) of a portfolio u =
(ui)1<i<n € R™ consisting of assets (or subportfolios) with payoffs X; € LP(Q).

DEFINITION 2.1. A portfolio base in LP(Q) is a vector B € (L?(Q))",
n € Ny. The components of B do not have to be linearly independent.

Having B = (X1,...,X,), a risk measure p on the payoffs L?(Q) implies a
risk measure pg on the portfolios R*. In particular, we define pg : R* — R by
pp = u— p(X(u)). If pp is obtained from a CRM p on LP(Q) and X, is the
only constant component in B and not equal zero, pp is also called coherent
(cf. DENAULT (2001)). If p fulfills axiom (S) and (PH) in definition 1.2, pp is
subadditive and positively homogenous on R".

Due to diversification effects (or subadditivity of the risk measure) the total
risk of a portfolio is usually assumed to be less then the sum of the risks of
each subportfolio, i.e. we often have pg(u) < >° , pp(u;e;), where e; is the
i-th canonical unit vector in R™. For this reason it is important to know how
risk capital should be allocated to the subportfolios or single assets, and hence

how the subportfolios should benefit from the diversification.
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DEFINITION 2.2. Given a portfolio base B and a risk measure pg on R"

a per-unit allocation in u € R* is a vector (a;(pp,u))i1<i<n, such that

Z uiai(pp; u) = pp(u). (2.1)

In DENAULT (2001) the author drives the attention of the reader to a result
of Aubin in the theory of coalitional games with fractional players. Aubin’s
theorem states, that in the case of a positively homogeneous, convex and dif-
ferentiable cost function, the core of such a game (Aubin uses the prefix fuzzy)
consists of one element: the gradient of the cost function due to the normed
weights of the players (AUBIN (1979)). From this result it is immediate, that
in the case of a subadditive and positively homogeneous risk measure (e.g.
a coherent one), which is differentiable at a portfolio u € R", the gradient
(?Tlf(u))lgign is the unique fair per-unit allocation. To derive this statement
from Aubin’s result, the notion of cost functions in game theory has to be
replaced by our notion of a risk measure. The players of the game are given
by the certain u;X;, coalitions of fractional players are given by portfolios v,
with 0 < v < u, where the given portfolio u can without loss of generality be
assumed to be positive. Note, that under positive homogeneity, convexity and
subadditivity are equivalent. The core of such a game is build up of all per-unit
allocations (a;(pp,u))1<i<n, such that for all coalitions v with 0 < v < u we
have > 7  viai(pp,u) < pp(v). That means, no subcoalition v of u features
less standalone risk than the risk, the coalition v would have been charged by
the respective per-unit allocation due to u. In this sense, the elements of the
core are fair allocations. For CRM Denault proves, that the Aumann-Shapley
value, which is the above gradient, features certain coherence properties (DE-
NAULT (2001)). For a deeper study of the connections between the theory of
convex games and coherent risk measures we refer to DELBAEN (2000b).

In the case of just positively homogeneous risk measures the theory of con-
vex games is no longer suitable to model the allocation problem. However, it is
still possible to talk about reasonable allocations. TASCHE (2000) considers the
so-called return on risk-adjusted capital (RORAC) of the payoff X (u) of a port-
folio u. He defines the risk-adjusted return function f(u) = Eq[X (u)]/ps(u).
Note, that what we called risk measure is denoted economic capital by Tasche,
whereas he defines risk as fluctuation risk from the mean. Now, the idea is
to call a per-unit allocation reasonable for performance measurement with pg,

when (a;(pg, ©))1<i<n gives the right signals for changes in the portfolio. More
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precise, if Eg|X;]/a;(pp,u) > f(u), there should be an €y > 0, such that for
all e € (0,g9) we have f(u —ee;) < f(u) < f(u + ce;). Analogously, for
E[X;])/(a;(pp,u)) < f(u) we demand f(u —ee;) > f(u) > f(u + ce;). Tasche
shows, that in the case of differentiable positively homogeneous risk measures
the unique per-unit allocation (a;(pp, u))1<i<n that is continuous on R" and
suitable for performance measurement due to the risk adjusted return function
is the gradient (aapTE:(u))lgiSn (TASCHE (2000)).

In both approaches, Denault’s and Tasche’s, the relationship between total
risk and risk contribution per unit is established by the Euler Theorem (cf.
(1.1)), ie. pp(u) = >, ui%pr(u). Hence, concerning risk capital allocation
due to a (subadditive) positively homogeneous risk measure on LP(Q), it would
be desirable to have pg to be differentiable on R” for every portfolio base B €
(LP(Q))™ for all n € N;. Considering the initial p on LP(Q), this implies the

existence of Gateaux-derivatives, i.e. derivatives due to directions on L?(Q).

PROPOSITION 2.3. For a coherent risk measure p on LP(Q), 1 < p <
00, the following properties are equivalent: (i) p is Gateauz-differentiable on
LP(Q), (ii) p is linear, (iii) p is minimal, i.e. there is no CRM p' # p with
P(X) < p(X) for all X € LP(Q). Differentiability of p on LP(Q) implies (i),
(i1) and (iii).

COROLLARY 2.4. A continuous coherent risk measure p on LP(Q) is

Gateauz-differentiable on LP(Q), 1 < p < oo, if and only if there ezists a
probability measure Q, ~ Q on Q, such that p(X) = —Eq, [X].

The proof of 2.3 is omitted since equivalence of (i) and (ii) can be shown
by a simple application of the coherence axioms, and as CRM are sublinear
functionals, the well-known proof for equivalence of (ii) and (iii) in the general
sublinear case can easily be adapted to the CRM case. The corollary follows
from the duality of the LP(Q) spaces.

As the two statements are also true for subspaces of LP(Q), we face the
following problem: If pp is a differentiable CRM on R”, then it is easy to show
that pp is linear. Therefore pp features no diversification effects. We also
obtain that p is linear on the linear span (B) of the components of B, which
implies that p is a minimal CRM on (B). Hence, differentiability on the whole
R™ might be not useful.

Now, consider a portfolio base B = (X,...,X,) and a portfolio u =
uie; = (0,...,0,u;0,...,0), u; € R 1 < i < n. In this case the allocation
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problem is trivial, since by (2.1) the risk capital allocated to X; - which is the
only asset - is simply pg(u)/u;. The following definition is motivated by this

consideration.

DEFINITION 2.5. Consider a portfolio base B = (Xy,...,X,) €
(LP(Q)™, n e Ni, 1 <p < oo, and a portfolio u € R". Define U, = |J_,(e:),
where (e;) C R™ is the linear span of e;. We propose to call a (subadditive) pos-
itively homogeneous risk measure p on LP(Q) suitable for risk capital allo-
cation by the gradient due to the portfolio base B if the function pg : R* — R
with pp : u — p(X(u)) is differentiable on the open set R \ Uk.

Having a quantile-based risk measure p like VaR, it is known that pg is
not differentiable on R" \ U, in general. Roughly speaking, for differentiability
at least one of the X; has to posses a continuous density (TASCHE (2000)).
Hence, it is a problem to deal with discrete spaces (€2, .4, Q) like e.g. in the case
of credit portfolios or digital options. It will be shown below, that the step to
moment based risk measures avoids this difficulty. Beside the differentiability
difficulties, it is know, that VaR is not subadditive (ARTZNER ET AL. (1999)).

As diversification is not rewarded, this is a major drawback.

3 A class based on one-sided moments

We define a class of coherent risk measures which depend on the mean and the

one-sided higher moments of a risky position.

LEMMA 3.1. Given a payoff X € LP(Q), where 1 <p < oo and 0 <a <1,

the risk measure p, o with
Ppa(X) = —Eq[X]+a-0, (X) = —Eo[X]+a-[[(X —Eo[X])"|l, (3.1)
is coherent on LP(Q).

DELBAEN (2000b) shows that these risk measures can be obtained by the set of
probability measures (also called generalized scenarios, compare ARTZNER ET
AL. (1999)) P = {1+a(g — E[g]) | g > 0;|gll, < 1}, where ¢ = p/(p — 1) and
probability measures are identified with their densities. In DELBAEN (2000a)

we find another type of risk measures that are connected to higher moments.

Proof of lemma 3.1. The LP-norm on the right side of (3.1) is finite, since
X € LP(Q). Axiom (T) and (PH) are obvious. From Minkowski’s inequality
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and the inequality (a+0)~ < a”+b~ for a,b € R, we obtain axiom (S). Axiom
(M): Let X > 0. We have X — Eg[X] > —Eg[X], therefore (X — Eg[X])™ <
Eg[X] and hence [[(X — Eg[X]) ||l = ess.sup{(X — Eg[X])"} < Eg[X].
Since [|(X — Bol[X])llp < [I(X — Eg[X]) |l for p € [1,00], we get [|(X —
Eq[X])7 ||, < Eg[X]. Remembering 0 < a < 1, this completes the proof. O

The LP-norms imply that p,, < p,q if ¢ < p. The following result is on
weighted sums of coherent risk measures and generalizes the well-known fact

that convex sums of CRM are again CRM.

LEMMA 3.2. Let I C R be an index set and (p;)ic; be a family of coherent
risk measures respectively defined on LP®(Q), where p : I — [1,00]. Let
(pi)icr be pointwise uniformly bounded on L*"PP)(Q) in the sense that there
is a function b : LSPPU(Q) — Ry such that for each X € LS**P(Q) we
have |p;(X)| < b(X) for all i € I. Let R be a random variable with range
I that is defined on a probability space €' with measure P. Now, if for all
X € 15rD(Q) the mapping pr()(X) : € = R is measurable,

p(X) = Ep[pr(X)] (3.2)
defines a coherent risk measure on L***P(D(Q).

Proof. pis welldefined, since for each X € Ls"P()(Q) we know from |p;(X)| <
b(X) and the measurability assumption, that pr(X) is a bounded random
variable and therefore P-integrable. Now, the coherence axioms are obvious

by the properties of Ep. O
Using lemma 3.2, the result of lemma 3.1 can be generalized.

PROPOSITION 3.3. Let X € LP(Q) be a risky payoff, 1 < p < oo and
0 <a < 1. LetP bea random variable on a probability space (V',P) with
range P(2') C [1,p]. The risk measure

p(X) = —Eq[X] + a - Ep[op (X)) (3-3)
is coherent on LP(Q). We have —Eqg[X]| < p(X) < ess.sup{—X}.

Proof. Due to lemma 3.1 we consider a family (pia)icnp of coherent risk
measures given by (3.1), respectively defined on LY(Q). Now, let b(X) =
|Eq[X]| + |[(X — Eg[X])7||p- Clearly, |p;(X)| < b(X) for all 1 < ¢ < p. For
all X € L?(Q) the mapping pp().(X) : @ — R is measurable, since P(.) is



3 A CLASS BASED ON ONE-SIDED MOMENTS 8

measurable and for all Y € LP(Q) the mapping ¢ — ||Y||, is measurable on
P(), as it is continuous due to the relative topology on P(€) in R U {oco}
with the canonical topology. We obtain coherence of (3.3) by lemma 3.2. The
last statement follows from ||.||, < ||| and o5, = ess.sup{(X — Eq[X])"} =
ess.sup{—X + Eqg[X]}. O

An immediate consequence of the proof is that for a particular X, p can be

chosen such that p(X) equals any value in [—~Eg[X], ess.sup{—X}].

EXAMPLE 3.4. p(X) = —Eg[X|+ a0, +a20, +...+ a0, where a, >0

for p € {1,2,3,...,00} and ao + D7, @, < 1is a coherent risk measure on

L%(Q), where ¢ := sup{p|a, > 0} (we use the convention 0-(£o0) = (£o0)-0 =
1

0). In particular, a; = ao = 3 could be interpreted as a coherent mizture of

the (p, 0)- and the maximum-loss-principle.

DEFINITION 3.5. For B € (LP(Q))", n € N, 1 < p < o0, the set Us(B)
denotes the set of all w € R", for which Y, u;X; = const.

LEMMA 3.6. The set R* \ Uc(B) is open in R™.

Proof. The linear mapping X (.) : R* — LP(Q), where u +— X (u), is bounded,
since || X (u)ll < S0, Jl - [[Xel|p < [Jull- S0y (1l Hence, X () is contin-
uous on R™. The set C of all constant elements of LP(Q) is closed, since L?(Q)
is a Banach-space due to the theorem of Riesz-Fischer and every Cauchy-
sequence of constant elements in LP(Q) converges to a constant limit in LP(Q)
(due to LP-norm). Since X(.) is continuous, [X(.)]"}(C) = Ux(B) is closed
and R" \ Uc(B) open. O

We can now state a result on differentiability of the class of coherent risk

measures that was introduced in proposition 3.3.

PROPOSITION 3.7. Assume B € (LP(Q))", n € Ny, 1 < p < oo and
0 <a<1 Letl < P < p be a random variable on a probability space
with measure P. The risk measures pg implied by (3.3) are differentiable on
R"\ Uc(B). The partial derivatives are

66[;?(“) = —Eq[Xi]+a-Eelop(X ()" (3.4)
Eo[(—X: + Eo[Xi]) - (X (1) — Bo[X(w)]) )" ).
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The proof of proposition 3.7 is rather technical and therefore given in the
appendix. We want to show, that the risk measures (3.3) actually can not
be differentiable at some u € Ug(B). We suppose u € Ug(B), a > 0 and
the risk measure defined by (3.1), which is the special case P = const. We
have p,.(u) = —Eg[X (u)], since X (u) = Eg[X (u)]. Easily we obtain the two
different one-sided partial derivatives —Eg[X;] + a - ||(£X; F Eg[X;]) ||, in
u, but [|(X; — Eg[X:])7|lp # [|[(—Xi + Eg[Xi])~||, in general. So, we have no

differentiability in general.

COROLLARY 3.8. Under the assumptions of 3.7, the risk measures p im-
plied by (3.3) are suitable for risk capital allocation by the gradient due to the
portfolio base B if the components Xy,...,X, of B are linearly independent
and X, #0 is constant. The per-unit allocations are explicitly given by (3.4).

Proof. Uc(B) = ((0,...,0,1)) C U,. O

Corollary 3.8 is the main result on risk capital allocation by the considered
class of coherent risk measures. We did not make any assumptions on the
underlying probability space (2, .4,Q), e.g. discrete spaces can be taken into
consideration. The assumption of linear independence is quite weak, as it
should be no problem to find a vector base in a real market. Even the particular
choice of the portfolio base B is not important, as the gradient is an aggregation
invariant allocation principle (DENAULT (2001)). That means, if we have two
different portfolio bases B and B’ as given in corollary 3.8, with (B) = (B'),
there exists a linear isomophism A on R", such that we have X (u) = X'(v)
and pp(u) = pp(u') for every u = Au’ € R*. We therefore obtain from

standard analysis for any two equivalent portfolios v and v' with v = Av’

n n

/apB’ no__ .apB
> o0l (W) =) v o (u). (3.5)

=1 =1

So, the risk capital allocated to equivalent subportfolios, i.e. subportfolios with

the same payoff in LP(Q), is identical.

4 Numerical example

In this example we want to show how risk capital obtained by the Value-at-

Risk can be allocated using the risk measures from section 3. In particular, we
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use a risk measure of type p,1(X) = —Eqg[X] + 0, (X) as given in (3.1). We
define the Value-at-Risk by

VaR,(X) = —inf{z : QX < z) > a}. (4.1)

Now, suppose two stochastically independent payoff variables X, X5 with dis-
tributions as given in table 1. The portfolio base is given by B = (X, X5, 1).

X; and X, could be interpreted as one unit of a credit engagement. Ob-

v | QX =2) | QX =)

0.0 0.78 0.96
-0.5 0.20 0.02
-1.0 0.02 0.02

Table 1: Distribution of X, X5

viously, X; bears higher risks as losses are more probable. We consider the
portfolio u = (uy, ug) = (1000, 1000). Easily we compute VaRg o5(X (u)) = 500.
To allocate the given risk capital, we adjust pp(u) by choosing p, such that
ppa (X (u)) = VaRg05(X (u)) = 500. We obtain p ~ 2.9157. From the discrete
version of (3.4) (|2] = 9, P = p, a = 1) we obtain Z"T?(u) ~ 0.31504 and
?fT’;(u) ~ 0.18496. The risk capital allocated to u;X; is 315.04, for us X, it
is 184.96. To check what happens for a more conservative VaR, we compute
VaR01 (X (u)), which is 1000. We obtain p ~ 9.4355 and the risk capital al-
located to uy X, is 477.98, for us Xy it is 522.02. It is interesting that in the
second case more risk capital is allocated to Xy, which seems to bear less risk.
However, the relative difference is quite small compared to the first case. This

seems to be reasonable as we have VaR 1 (u1X7) = VaRg 01 (u2X2) = 1000.

A Appendix

The proof of proposition 3.7 needs the following technical lemmas.

LEMMA A.1. Let U be an open subset of R, n € N., and f: U xQ =R

be a function with following properties:
a) w— f(u,w) is Q-integrable for all u € U.
b) u— f(u,w) is in any v € U partial differentiable with respect to u;.

c) There exists a Q-integrable function hy > 0 on Q with
hy(w) for all (u,w) € U x Q.

2 (u,w)| <
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The function p(u) = [ f(u,w)dQw) on U is partially differentiable with re-
spect to u;. The mapping w — 8f (u w) is Q-integrable and for u € U

Iy of
Proof. By the dominated convergence theorem. O

LEMMA A.2. Define U = Au; X --- X Au,, C R, where for all 1 €
{1,...,n} Au; is a nonempty, bounded and open interval in R. Let X (u) =
Yo wX; be a sum of real-valued random variables X; € LP(Q) with u =
(ug, ... u,) €U, n €Ny and 1 < p < oo. Let y(u) be a real-valued function
that is differentiable, bounded and for which y(u) < ess.sup{—X(u)} on U.
The partial derivatives g—i(u) are also assumed to be bounded on U. Under

this assumptions, ||(X (u) + y(u))~||, is differentiable on U.

Proof. Define g(u,w) = (X(u,w) + y(u))~. For 1 < i < n we will prove
existence and continuity of the partial derivatives of ||g(u)]],.

Ezistence: We have ||g(u)||, = ([ g(u, w)? dQ(w )) v . Now, if we can apply
lemma A.1 to g (where f from A.1 corresponds to ¢*) and if g(u) is not

constant 0 for every u € U, we obtain for every 7

Aoty [ 22, . L (/gwyd@>;l, (A2

Note, that for u € U we have g(u) > 0 on a set of measure greater 0, since
y(u) < ess.sup{—X(u)}. Therefore the right integral in (A.2) is greater 0 (no
division by zero!). We are going to check the points a) to ¢) from lemma A.1.
Ad a). w+— g(u,w)? is Q-integrable, since X (u) € LP(Q) and y(u) € R. Ad
b). First, we consider the function [(.)7]? : R — Ry, @ — (27)P. Clearly, this
function is differentiable for 1 < p < oo. Now, g(u,w)? = [(D_1, u; X;(w) +
y(u))~]? - as a combination of a differentiable and a partially differentiable

function - is partially differentiable at u;. We obtain

Puw) = - (N4 @) gyt (A

Ad c¢). There exist positive constants a and b, such that for all j € {1,... ,n}
we have |§Ty(u)| < a and |y(u)] < bon U. Now, define
J

Umax (U) = sup{|u}] : u; € Auy, j € {1,...,n}}, (A.4)
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which is finite, and
hu (W) = 1 - tmax(U) - max{ | X5(w) [} + 0. (A-5)
Clearly, ky(w) > g(u,w). Now define
hy(w) = (IXs(w)| +a) - p - (ku(w))P~". (A.6)

Comparing this to (A.3), we clearly obtain

< hy(w) (A.7)

for all (u,w) € U x Q. Concerning integrability of (A.6) we know that
(|X;(w)| + a) - p is p-integrable, since X; is. We also know that (ky(w))?~!
is I%—integrable. The latter statement follows from the fact that every single
| X;(w)] is p-integrable and therefore &y (w) - as a multiple of the maximum plus
a constant - is p-integrable. We further have 1/p+ (p—1)/p = 1. As an imme-
diate consequence of Holder’s inequality the product hy(w) of (| X;(w)|+a)-p
and (ky(w))P~! is integrable.

Continuity: Consider a sequence (uy)peny with lim, ,u, = uw in U =
Auy X --- X Au,. Now, substitute u by u, in (A.2). For fix w € Q it fol-
lows from the definition of g(u) and (A.3) that the substituted expressions
under the integrals in (A.2) converge (pointwise in w) to the original expres-
sions (in u). Now have in mind, that hy (A.7) dominates the left integrand of
(A.2) and (ky)? (A.5) dominates the right one. As hy and (ky)P are integrable
it follows from the dominated convergence theorem that the substituted inte-
grals themselves converge to the original integrals. Hence, (A.2) is continuous

in u. ]

LEMMA A.3. Assume B € (L?(Q))", n € Ny, 1 < p < 0o. Suppose 0 <
a < 1. The risk measures pg(u) implied by (3.1) are differentiable on R™ \
Uc(B). The partial derivatives are

dpp
8Ui

(u) = —Eq[Xi]+a-o, (X(u)" " (A-8)
Eo[(—Xi + Eg[Xi]) - (X (u) — Eg[X(w)]) )" ]
Proof. As R\ U¢ (B) is open, it can be seen as union of bounded n-dimensional

open intervals U. We focus on the LP(Q)-norm expression in pg(u). Define

y(u) = —Eg[X (u)]. Now, the requirements of lemma A.2 are satisfied, since
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—Eg[X (u)] < ess.sup{—X(u)} as long as X (u) # const. We obtain that the

risk measure is differentiable in U and

P (u) = ~BolX] + [ G @dQ-a- gl . (49)

As (A.9) does not depend on the choice of the particular U C R" \ Ug(DB),
ps(u) is differentiable on R* \ U¢(B). Since by definition |[g(u)||, = o, (X (u)),
we obtain (A.8) by combining (A.3) with (A.9). O

Proof of proposition 3.7. We use the notation from the proofs of the lem-
mas A.2 and A.3. Assume U = Au; X --- X Au, to be a bounded nonempty
n-dimensional open interval in R" \ Ux(B), where for all i € {1,... ,n} Au; is

an open interval. Consider equation (3.3). We have

W] = [ o)l d() (.10

We prove the existence and continuity of the partial derivatives of (A.10).
Ezistence: Again, we are going to check the points a) to ¢) from lemma A.1
(f corresponds to ||g(u)||pwn). Ad a). W' — ||g(u)||pwr is integrable, since
llg(u) ||y < [lg(u)]], < oo. Ad b). Since P(w') is fix, it follows from the
proof of lemma A.3 (equation (A.9)), that u — ||g(u)||pr) is in every point
u € U partially differentiable with respect to u;. Ad ¢). From (A.9) we get

0g"") a 1 P()
noo_ : : N A1l
) = [ B s eI ()
From (A.3) we obtain

gt ")

(1) = ~(Xi(w) — BolXi) - P(w) - g(w)" )1 (A1)

As g(u,w)P@) -1 s PI(DuE‘,“)’zl-integrable, we get from Holder’s inequality

9aP )
=

Combining this with (A.11) we obtain

of
ou;

IN

(A.13)

Pw")
Hag (4, )

1

P(w)—1
< (15 — BolX)lpwy - PW') - llg(u)l[5e) 72,

= (u,)

< (X = EgXaDllpe) - @ (A.14)

IN

[|(Xi = Eo[Xi])l|p - @ = const.
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Choosing hy(w') = [|(X; — Eg[Xi])||, - @, this completes the proof of ¢). From
the arbitrariness of U C R" \ Ux(B), we obtain partial differentiability of p
on R" \ Ug(B). Equation (3.4) follows from the combination of lemma (A.1)
with the result (A.8) of lemma A.3.

Continuity: As we know from the proof of lemma A.3, expression (A.11) is
continuous on R*\U¢x(B). By (A.14), dominated convergence proves continuity

of the partial derivatives. O
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