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Abstrat

In this paper we propose di�erentiability properties for positively

homogeneous risk measures. These properties ensure that the gradi-

ent an be applied for reasonable risk apital alloation on non-trivial

portfolios. We show that the di�erentiability properties are ful�lled

for a wide lass of oherent risk measures based on the mean and the

one-sided moments of a risky payo�. In ontrast to quantile-based risk

measures like Value-at-Risk, risk measures of this lass allow alloation

in portfolios of very general distributions, e.g. disrete ones. In an ex-

ample we show how a partiular risk measure of this lass an be hosen

by adapting it to the VaR of a ertain portfolio. As a onsequene, the

risk apital orresponding to the VaR an be alloated by the gradient

due to the adapted risk measure.

MSC: 91A80, 91B28, 91B30, 91B32

Keywords: oherent risk measures, one-sided moments, risk apital
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1 Introdution

From the works Denault (2001) and Tashe (2000) it is known that

di�erentiability of risk measures is ruial for risk apital alloation in

portfolios. The reason is, that in the ase of di�erentiable oherent or, more

general, di�erentiable positively homogeneous risk measures the gradient

due to asset weights has �gured out to be the unique reasonable per-unit

alloation priniple. However, a result of this paper shows that at least in the

oherent ase di�erentiability on all portfolios is not desirable. As a solution

�
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1 INTRODUCTION 2

we de�ne weaker di�erentiabiliy properties. For positively homogeneous and,

in partiular, oherent risk measures these properties allow alloation by the

gradient on all relevant portfolios. Exluded are portfolios that ontain only

one type of assets. However, in these ases the alloation problem is trivial.

As an example for these weakened di�erentiability properties we introdue

a wide lass of oherent risk measures based on the mean and the one-sided

moments of a risky payo�. In ontrast to quantile-based risk measures like

Value-at-Risk, risk measures of this lass allow alloation in portfolios of

very general distributions, e.g. disrete ones in the ase of redit risk. In a

numerial example we show, how a partiular risk measure of this lass an

be hosen by adapting it to the VaR of a ertain portfolio. As a onsequene,

the risk apital orresponding to the VaR an be alloated by the gradient

due to the adapted risk measure.

Given a probability spae (
;A;Q) we will onsider the vetor spae

L

p

(
;A;Q), or just L

p

(Q ), for 1 � p � 1. Even though L

p

(Q) onsists

of equivalene lasses of p-integrable random variables, we will often treat its

elements as random variables. Due to the ontext, no onfusion should arise.

The notation will be as follows. We have jjXjj

p

= (E

Q

jXj

p

)

1

p

and jjXjj

1

=

ess.supfjXjg. Reall, that L

p

(Q ) � L

q

(Q) if 1 � q < p � 1; sine jj:jj

q

� jj:jj

p

.

X

�

is de�ned as maxf�X; 0g. We denote �

�

p

(X) = jj(X � E

Q

[X℄)

�

jj

p

. Now,

let U � R

n

for n 2 N

+

= N n f0g be open and positively homogeneous, i.e.

for u 2 U we have �u 2 U for all � > 0. A positively homogeneous funtion

is a funtion f : U ! R, where f(�u) = �f(u) for all � > 0, u 2 U . When f

is also di�erentiable at every u = (u

1

; : : : ; u

n

) 2 U , we obtain the well-known

Euler Theorem

f(u) =

n

X

i=1

u

i

�f

�u

i

(u): (1.1)

We onsider a one-period framework, that means we have the present time

0 and a future time horizon T . Between 0 and T no trading is possible. We

assume risk to be given by a risky payo� X, i.e. a random variable out of

L

p

(Q) representing a ashow at T . We want to onsider a risk measure �(X)

to be the extra minimum ash added to X that makes the position aeptable

for the holder or a regulator. For this reason, we state the following de�nition.

DEFINITION 1.1. A risk measure on L

p

(Q), 1 � p � 1, is de�ned by a

funtional � : L

p

(Q) ! R.
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We now give a de�nition of oherent risk measures. For a further motivation

and interpretation of this axiomati approah to risk measurement we refer to

the artile of Artzner et al. (1999).

DEFINITION 1.2. A funtional � : L

p

(Q) ! R, where 1 � p � 1, is alled

a oherent risk measure (CRM) on L

p

(Q ) if the following properties hold.

(M) Monotoniity: If X � 0 then �(X) � 0.

(S) Subadditivity: �(X + Y ) � �(X) + �(Y ).

(PH) Positive homogeneity: For � � 0 we have �(�X) = ��(X).

(T) Translation: For onstants a we have �(a+X) = �(X)� a.

As we work without interest rates - in ontrast to Artzner et al. (1999)

- there is no disounting fator in de�nition 1.2. A generalization of CRM

to the spae of all random variables on a probability spae an be found in

Delbaen (2000a). However, having p � 1 prevents us from being fored to

allow in�nitely high risks. See Delbaen (2000a) for details on this topi.

2 Risk apital alloation by the gradient

Let us onsider the payo� X(u) :=

P

n

i=1

u

i

X

i

2 L

p

(Q) of a portfolio u =

(u

i

)

1�i�n

2 R

n

onsisting of assets (or subportfolios) with payo�s X

i

2 L

p

(Q ).

DEFINITION 2.1. A portfolio base in L

p

(Q ) is a vetor B 2 (L

p

(Q))

n

,

n 2 N

+

. The omponents of B do not have to be linearly independent.

Having B = (X

1

; : : : ; X

n

), a risk measure � on the payo�s L

p

(Q) implies a

risk measure �

B

on the portfolios R

n

. In partiular, we de�ne �

B

: R

n

! R by

�

B

: u 7! �(X(u)). If �

B

is obtained from a CRM � on L

p

(Q) and X

n

is the

only onstant omponent in B and not equal zero, �

B

is also alled oherent

(f. Denault (2001)). If � ful�lls axiom (S) and (PH) in de�nition 1.2, �

B

is

subadditive and positively homogenous on R

n

.

Due to diversi�ation e�ets (or subadditivity of the risk measure) the total

risk of a portfolio is usually assumed to be less then the sum of the risks of

eah subportfolio, i.e. we often have �

B

(u) <

P

n

i=1

�

B

(u

i

e

i

), where e

i

is the

i-th anonial unit vetor in R

n

. For this reason it is important to know how

risk apital should be alloated to the subportfolios or single assets, and hene

how the subportfolios should bene�t from the diversi�ation.
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DEFINITION 2.2. Given a portfolio base B and a risk measure �

B

on R

n

a per-unit alloation in u 2 R

n

is a vetor (a

i

(�

B

; u))

1�i�n

, suh that

n

X

i=1

u

i

a

i

(�

B

; u) = �

B

(u): (2.1)

In Denault (2001) the author drives the attention of the reader to a result

of Aubin in the theory of oalitional games with frational players. Aubin's

theorem states, that in the ase of a positively homogeneous, onvex and dif-

ferentiable ost funtion, the ore of suh a game (Aubin uses the pre�x fuzzy)

onsists of one element: the gradient of the ost funtion due to the normed

weights of the players (Aubin (1979)). From this result it is immediate, that

in the ase of a subadditive and positively homogeneous risk measure (e.g.

a oherent one), whih is di�erentiable at a portfolio u 2 R

n

, the gradient

(

��

B

�u

i

(u))

1�i�n

is the unique fair per-unit alloation. To derive this statement

from Aubin's result, the notion of ost funtions in game theory has to be

replaed by our notion of a risk measure. The players of the game are given

by the ertain u

i

X

i

, oalitions of frational players are given by portfolios v,

with 0 � v � u, where the given portfolio u an without loss of generality be

assumed to be positive. Note, that under positive homogeneity, onvexity and

subadditivity are equivalent. The ore of suh a game is build up of all per-unit

alloations (a

i

(�

B

; u))

1�i�n

, suh that for all oalitions v with 0 � v � u we

have

P

n

i=1

v

i

a

i

(�

B

; u) � �

B

(v). That means, no suboalition v of u features

less standalone risk than the risk, the oalition v would have been harged by

the respetive per-unit alloation due to u. In this sense, the elements of the

ore are fair alloations. For CRM Denault proves, that the Aumann-Shapley

value, whih is the above gradient, features ertain oherene properties (De-

nault (2001)). For a deeper study of the onnetions between the theory of

onvex games and oherent risk measures we refer to Delbaen (2000b).

In the ase of just positively homogeneous risk measures the theory of on-

vex games is no longer suitable to model the alloation problem. However, it is

still possible to talk about reasonable alloations. Tashe (2000) onsiders the

so-alled return on risk-adjusted apital (RORAC) of the payo�X(u) of a port-

folio u. He de�nes the risk-adjusted return funtion f(u) = E

Q

[X(u)℄=�

B

(u).

Note, that what we alled risk measure is denoted eonomi apital by Tashe,

whereas he de�nes risk as utuation risk from the mean. Now, the idea is

to all a per-unit alloation reasonable for performane measurement with �

B

,

when (a

i

(�

B

; u))

1�i�n

gives the right signals for hanges in the portfolio. More
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preise, if E

Q

[X

i

℄=a

i

(�

B

; u) > f(u), there should be an "

0

> 0, suh that for

all " 2 (0; "

0

) we have f(u � "e

i

) < f(u) < f(u + "e

i

). Analogously, for

E[X

i

℄=(a

i

(�

B

; u)) < f(u) we demand f(u� "e

i

) > f(u) > f(u + "e

i

). Tashe

shows, that in the ase of di�erentiable positively homogeneous risk measures

the unique per-unit alloation (a

i

(�

B

; u))

1�i�n

that is ontinuous on R

n

and

suitable for performane measurement due to the risk adjusted return funtion

is the gradient (

��

B

�u

i

(u))

1�i�n

(Tashe (2000)).

In both approahes, Denault's and Tashe's, the relationship between total

risk and risk ontribution per unit is established by the Euler Theorem (f.

(1.1)), i.e. �

B

(u) =

P

n

i=1

u

i

��

B

�u

i

(u). Hene, onerning risk apital alloation

due to a (subadditive) positively homogeneous risk measure on L

p

(Q), it would

be desirable to have �

B

to be di�erentiable on R

n

for every portfolio base B 2

(L

p

(Q))

n

for all n 2 N

+

. Considering the initial � on L

p

(Q), this implies the

existene of Gâteaux-derivatives, i.e. derivatives due to diretions on L

p

(Q).

PROPOSITION 2.3. For a oherent risk measure � on L

p

(Q), 1 � p �

1, the following properties are equivalent: (i) � is Gâteaux-di�erentiable on

L

p

(Q), (ii) � is linear, (iii) � is minimal, i.e. there is no CRM �

0

6= � with

�

0

(X) � �(X) for all X 2 L

p

(Q). Di�erentiability of � on L

p

(Q ) implies (i),

(ii) and (iii).

COROLLARY 2.4. A ontinuous oherent risk measure � on L

p

(Q ) is

Gâteaux-di�erentiable on L

p

(Q ), 1 < p < 1, if and only if there exists a

probability measure Q

�

� Q on 
, suh that �(X) = �E

Q

�

[X℄.

The proof of 2.3 is omitted sine equivalene of (i) and (ii) an be shown

by a simple appliation of the oherene axioms, and as CRM are sublinear

funtionals, the well-known proof for equivalene of (ii) and (iii) in the general

sublinear ase an easily be adapted to the CRM ase. The orollary follows

from the duality of the L

p

(Q) spaes.

As the two statements are also true for subspaes of L

p

(Q), we fae the

following problem: If �

B

is a di�erentiable CRM on R

n

, then it is easy to show

that �

B

is linear. Therefore �

B

features no diversi�ation e�ets. We also

obtain that � is linear on the linear span hBi of the omponents of B, whih

implies that � is a minimal CRM on hBi. Hene, di�erentiability on the whole

R

n

might be not useful.

Now, onsider a portfolio base B = (X

1

; : : : ; X

n

) and a portfolio u =

u

i

e

i

= (0; : : : ; 0; u

i

; 0; : : : ; 0), u

i

2 R, 1 � i � n. In this ase the alloation
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problem is trivial, sine by (2.1) the risk apital alloated to X

i

- whih is the

only asset - is simply �

B

(u)=u

i

. The following de�nition is motivated by this

onsideration.

DEFINITION 2.5. Consider a portfolio base B = (X

1

; : : : ; X

n

) 2

(L

p

(Q))

n

, n 2 N

+

, 1 � p � 1, and a portfolio u 2 R

n

. De�ne U

e

=

S

n

i=1

he

i

i,

where he

i

i � R

n

is the linear span of e

i

. We propose to all a (subadditive) pos-

itively homogeneous risk measure � on L

p

(Q ) suitable for risk apital allo-

ation by the gradient due to the portfolio base B if the funtion �

B

: R

n

! R

with �

B

: u 7! �(X(u)) is di�erentiable on the open set R

n

n U

e

.

Having a quantile-based risk measure � like VaR, it is known that �

B

is

not di�erentiable on R

n

nU

e

in general. Roughly speaking, for di�erentiability

at least one of the X

i

has to posses a ontinuous density (Tashe (2000)).

Hene, it is a problem to deal with disrete spaes (
;A;Q) like e.g. in the ase

of redit portfolios or digital options. It will be shown below, that the step to

moment based risk measures avoids this diÆulty. Beside the di�erentiability

diÆulties, it is know, that VaR is not subadditive (Artzner et al. (1999)).

As diversi�ation is not rewarded, this is a major drawbak.

3 A lass based on one-sided moments

We de�ne a lass of oherent risk measures whih depend on the mean and the

one-sided higher moments of a risky position.

LEMMA 3.1. Given a payo� X 2 L

p

(Q), where 1 � p � 1 and 0 � a � 1,

the risk measure �

p;a

with

�

p;a

(X) = �E

Q

[X℄ + a � �

�

p

(X) = �E

Q

[X℄ + a � jj(X �E

Q

[X℄)

�

jj

p

(3.1)

is oherent on L

p

(Q ).

Delbaen (2000b) shows that these risk measures an be obtained by the set of

probability measures (also alled generalized senarios, ompare Artzner et

al. (1999)) P = f1 + a(g � E[g℄) j g � 0; jjgjj

q

� 1g; where q = p=(p� 1) and

probability measures are identi�ed with their densities. In Delbaen (2000a)

we �nd another type of risk measures that are onneted to higher moments.

Proof of lemma 3.1. The L

p

-norm on the right side of (3.1) is �nite, sine

X 2 L

p

(Q). Axiom (T) and (PH) are obvious. From Minkowski's inequality
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and the inequality (a+b)

�

� a

�

+b

�

for a; b 2 R, we obtain axiom (S). Axiom

(M): Let X � 0. We have X � E

Q

[X℄ � �E

Q

[X℄, therefore (X � E

Q

[X℄)

�

�

E

Q

[X℄ and hene jj(X � E

Q

[X℄)

�

jj

1

= ess.supf(X � E

Q

[X℄)

�

g � E

Q

[X℄:

Sine jj(X � E

Q

[X℄)

�

jj

p

� jj(X � E

Q

[X℄)

�

jj

1

for p 2 [1;1℄, we get jj(X �

E

Q

[X℄)

�

jj

p

� E

Q

[X℄: Remembering 0 � a � 1, this ompletes the proof.

The L

p

-norms imply that �

q;a

� �

p;a

if q < p. The following result is on

weighted sums of oherent risk measures and generalizes the well-known fat

that onvex sums of CRM are again CRM.

LEMMA 3.2. Let I � R be an index set and (�

i

)

i2I

be a family of oherent

risk measures respetively de�ned on L

p(i)

(Q ), where p : I ! [1;1℄. Let

(�

i

)

i2I

be pointwise uniformly bounded on L

sup p(I)

(Q) in the sense that there

is a funtion b : L

sup p(I)

(Q) ! R

+

0

suh that for eah X 2 L

sup p(I)

(Q) we

have j�

i

(X)j � b(X) for all i 2 I. Let R be a random variable with range

I that is de�ned on a probability spae 


0

with measure P. Now, if for all

X 2 L

sup p(I)

(Q) the mapping �

R(:)

(X) : 


0

! R is measurable,

�(X) = E

P

[�

R

(X)℄ (3.2)

de�nes a oherent risk measure on L

sup p(I)

(Q).

Proof. � is wellde�ned, sine for eah X 2 L

sup p(I)

(Q) we know from j�

i

(X)j �

b(X) and the measurability assumption, that �

R

(X) is a bounded random

variable and therefore P-integrable. Now, the oherene axioms are obvious

by the properties of E

P

.

Using lemma 3.2, the result of lemma 3.1 an be generalized.

PROPOSITION 3.3. Let X 2 L

p

(Q) be a risky payo�, 1 � p � 1 and

0 � a � 1. Let P be a random variable on a probability spae (


0

;P) with

range P (


0

) � [1; p℄. The risk measure

�(X) = �E

Q

[X℄ + a �E

P

[�

�

P

(X)℄ (3.3)

is oherent on L

p

(Q ). We have �E

Q

[X℄ � �(X) � ess.supf�Xg:

Proof. Due to lemma 3.1 we onsider a family (�

i;a

)

i2[1;p℄

of oherent risk

measures given by (3.1), respetively de�ned on L

i

(Q). Now, let b(X) =

jE

Q

[X℄j + jj(X � E

Q

[X℄)

�

jj

p

: Clearly, j�

i

(X)j � b(X) for all 1 � i � p. For

all X 2 L

p

(Q ) the mapping �

P (:);a

(X) : 


0

! R is measurable, sine P (:) is
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measurable and for all Y 2 L

p

(Q ) the mapping q 7! jjY jj

q

is measurable on

P (


0

), as it is ontinuous due to the relative topology on P (


0

) in R [ f1g

with the anonial topology. We obtain oherene of (3.3) by lemma 3.2. The

last statement follows from jj:jj

p

� jj:jj

1

and �

�

1

= ess.supf(X �E

Q

[X℄)

�

g =

ess.supf�X +E

Q

[X℄g.

An immediate onsequene of the proof is that for a partiular X, � an be

hosen suh that �(X) equals any value in [�E

Q

[X℄; ess.supf�Xg℄.

EXAMPLE 3.4. �(X) = �E

Q

[X℄+a

1

�

�

1

+a

2

�

�

2

+ : : :+a

1

�

�

1

, where a

p

� 0

for p 2 f1; 2; 3; : : : ;1g and a

1

+

P

1

p=1

a

p

� 1 is a oherent risk measure on

L

q

(Q ), where q := supfpja

p

> 0g (we use the onvention 0�(�1) = (�1)�0 =

0). In partiular, a

2

= a

1

=

1

2

ould be interpreted as a oherent mixture of

the (�; �)- and the maximum-loss-priniple.

DEFINITION 3.5. For B 2 (L

p

(Q ))

n

, n 2 N

+

, 1 < p <1, the set U

C

(B)

denotes the set of all u 2 R

n

, for whih

P

n

i=1

u

i

X

i

� onst:

LEMMA 3.6. The set R

n

n U

C

(B) is open in R

n

.

Proof. The linear mapping X(:) : R

n

! L

p

(Q ), where u 7! X(u), is bounded,

sine jjX(u)jj

p

�

P

n

i=1

ju

i

j � jjX

i

jj

p

� jjujj �

P

n

i=1

jjX

i

jj

p

. Hene, X(:) is ontin-

uous on R

n

. The set C of all onstant elements of L

p

(Q ) is losed, sine L

p

(Q)

is a Banah-spae due to the theorem of Riesz-Fisher and every Cauhy-

sequene of onstant elements in L

p

(Q ) onverges to a onstant limit in L

p

(Q)

(due to L

p

-norm). Sine X(:) is ontinuous, [X(:)℄

�1

(C) = U

C

(B) is losed

and R

n

n U

C

(B) open.

We an now state a result on di�erentiability of the lass of oherent risk

measures that was introdued in proposition 3.3.

PROPOSITION 3.7. Assume B 2 (L

p

(Q ))

n

, n 2 N

+

, 1 < p < 1 and

0 � a � 1. Let 1 < P � p be a random variable on a probability spae

with measure P. The risk measures �

B

implied by (3.3) are di�erentiable on

R

n

n U

C

(B). The partial derivatives are

��

B

�u

i

(u) = �E

Q

[X

i

℄ + a �E

P

[�

�

P

(X(u))

1�P

� (3.4)

E

Q

[(�X

i

+E

Q

[X

i

℄) � ((X(u)� E

Q

[X(u)℄)

�

)

P�1

℄℄:
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The proof of proposition 3.7 is rather tehnial and therefore given in the

appendix. We want to show, that the risk measures (3.3) atually an not

be di�erentiable at some u 2 U

C

(B). We suppose u 2 U

C

(B), a > 0 and

the risk measure de�ned by (3.1), whih is the speial ase P � onst: We

have �

p;a

(u) = �E

Q

[X(u)℄, sine X(u) � E

Q

[X(u)℄. Easily we obtain the two

di�erent one-sided partial derivatives �E

Q

[X

i

℄ + a � jj(�X

i

� E

Q

[X

i

℄)

�

jj

p

in

u, but jj(X

i

� E

Q

[X

i

℄)

�

jj

p

6= jj(�X

i

+ E

Q

[X

i

℄)

�

jj

p

in general. So, we have no

di�erentiability in general.

COROLLARY 3.8. Under the assumptions of 3.7, the risk measures � im-

plied by (3.3) are suitable for risk apital alloation by the gradient due to the

portfolio base B if the omponents X

1

; : : : ; X

n

of B are linearly independent

and X

n

�= 0 is onstant. The per-unit alloations are expliitly given by (3.4).

Proof. U

C

(B) = h(0; : : : ; 0; 1)i � U

e

.

Corollary 3.8 is the main result on risk apital alloation by the onsidered

lass of oherent risk measures. We did not make any assumptions on the

underlying probability spae (
;A;Q), e.g. disrete spaes an be taken into

onsideration. The assumption of linear independene is quite weak, as it

should be no problem to �nd a vetor base in a real market. Even the partiular

hoie of the portfolio base B is not important, as the gradient is an aggregation

invariant alloation priniple (Denault (2001)). That means, if we have two

di�erent portfolio bases B and B

0

as given in orollary 3.8, with hBi = hB

0

i,

there exists a linear isomophism A on R

n

, suh that we have X(u) � X

0

(u

0

)

and �

B

(u) = �

B

0

(u

0

) for every u = Au

0

2 R

n

. We therefore obtain from

standard analysis for any two equivalent portfolios v and v

0

with v = Av

0

n

X

i=1

v

0

i

��

B

0

�u

0

i

(u

0

) =

n

X

i=1

v

i

��

B

�u

i

(u): (3.5)

So, the risk apital alloated to equivalent subportfolios, i.e. subportfolios with

the same payo� in L

p

(Q ), is idential.

4 Numerial example

In this example we want to show how risk apital obtained by the Value-at-

Risk an be alloated using the risk measures from setion 3. In partiular, we



A APPENDIX 10

use a risk measure of type �

p;1

(X) = �E

Q

[X℄ + �

�

p

(X) as given in (3.1). We

de�ne the Value-at-Risk by

VaR

�

(X) = � inffx : Q (X � x) > �g: (4.1)

Now, suppose two stohastially independent payo� variables X

1

; X

2

with dis-

tributions as given in table 1. The portfolio base is given by B = (X

1

; X

2

; 1).

X

1

and X

2

ould be interpreted as one unit of a redit engagement. Ob-

x Q(X

1

= x) Q(X

2

= x)

0.0 0.78 0.96

-0.5 0.20 0.02

-1.0 0.02 0.02

Table 1: Distribution of X

1

; X

2

viously, X

1

bears higher risks as losses are more probable. We onsider the

portfolio u = (u

1

; u

2

) = (1000; 1000). Easily we ompute VaR

0:05

(X(u)) = 500.

To alloate the given risk apital, we adjust �

B

(u) by hoosing p, suh that

�

p;1

(X(u)) = VaR

0:05

(X(u)) = 500. We obtain p � 2:9157. From the disrete

version of (3.4) (j
j = 9, P � p, a = 1) we obtain

��

B

�u

1

(u) � 0:31504 and

��

B

�u

2

(u) � 0:18496. The risk apital alloated to u

1

X

1

is 315:04, for u

2

X

2

it

is 184:96. To hek what happens for a more onservative VaR, we ompute

VaR

0:01

(X(u)), whih is 1000. We obtain p � 9:4355 and the risk apital al-

loated to u

1

X

1

is 477:98, for u

2

X

2

it is 522:02. It is interesting that in the

seond ase more risk apital is alloated to X

2

, whih seems to bear less risk.

However, the relative di�erene is quite small ompared to the �rst ase. This

seems to be reasonable as we have VaR

0:01

(u

1

X

1

) = VaR

0:01

(u

2

X

2

) = 1000.

A Appendix

The proof of proposition 3.7 needs the following tehnial lemmas.

LEMMA A.1. Let U be an open subset of R

n

, n 2 N

+

, and f : U � 
! R

be a funtion with following properties:

a) ! 7! f(u; !) is Q -integrable for all u 2 U .

b) u 7! f(u; !) is in any u 2 U partial di�erentiable with respet to u

i

.

) There exists a Q -integrable funtion h

U

� 0 on 
 with

�

�

�

�f

�u

i

(u; !)

�

�

�

�

h

U

(!) for all (u; !) 2 U � 
.
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The funtion '(u) =

R

f(u; !)dQ(!) on U is partially di�erentiable with re-

spet to u

i

. The mapping ! 7!

�f

�u

i

(u; !) is Q -integrable and for u 2 U

�'

�u

i

(u) =

Z

�f

�u

i

(u; !)dQ(!): (A.1)

Proof. By the dominated onvergene theorem.

LEMMA A.2. De�ne U = 4u

1

� � � � � 4u

n

� R

n

, where for all i 2

f1; : : : ; ng 4u

i

is a nonempty, bounded and open interval in R. Let X(u) =

P

n

i=1

u

i

X

i

be a sum of real-valued random variables X

i

2 L

p

(Q ) with u =

(u

1

; : : : ; u

n

) 2 U , n 2 N

+

and 1 < p < 1. Let y(u) be a real-valued funtion

that is di�erentiable, bounded and for whih y(u) < ess.supf�X(u)g on U .

The partial derivatives

�y

�u

i

(u) are also assumed to be bounded on U . Under

this assumptions, jj(X(u) + y(u))

�

jj

p

is di�erentiable on U .

Proof. De�ne g(u; !) = (X(u; !) + y(u))

�

. For 1 � i � n we will prove

existene and ontinuity of the partial derivatives of jjg(u)jj

p

.

Existene: We have jjg(u)jj

p

=

�R

g(u; !)

p

dQ(!)

�

1=p

: Now, if we an apply

lemma A.1 to g

p

(where f from A.1 orresponds to g

p

) and if g(u) is not

onstant 0 for every u 2 U , we obtain for every i

�jjg(u)jj

p

�u

i

(u) =

Z

�g

p

�u

i

(u) dQ �

1

p

�

�

Z

g(u)

p

dQ

�

1

p

�1

: (A.2)

Note, that for u 2 U we have g(u) > 0 on a set of measure greater 0, sine

y(u) < ess.supf�X(u)g. Therefore the right integral in (A.2) is greater 0 (no

division by zero!). We are going to hek the points a) to ) from lemma A.1.

Ad a). ! 7! g(u; !)

p

is Q -integrable, sine X(u) 2 L

p

(Q) and y(u) 2 R. Ad

b). First, we onsider the funtion [(:)

�

℄

p

: R ! R

+

0

, x 7! (x

�

)

p

: Clearly, this

funtion is di�erentiable for 1 < p < 1. Now, g(u; !)

p

= [(

P

n

i=1

u

i

X

i

(!) +

y(u))

�

℄

p

- as a ombination of a di�erentiable and a partially di�erentiable

funtion - is partially di�erentiable at u

i

. We obtain

�g

p

�u

i

(u; !) = �

�

X

i

(!) +

�y

�u

i

(u)

�

� p � g(u; !)

p�1

: (A.3)

Ad ). There exist positive onstants a and b, suh that for all j 2 f1; : : : ; ng

we have j

�y

�u

j

(u)j � a and jy(u)j � b on U . Now, de�ne

u

max

(U) = supfju

0

j

j : u

0

j

2 4u

j

; j 2 f1; : : : ; ngg; (A.4)
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whih is �nite, and

k

U

(!) = n � u

max

(U) �max

j

fjX

j

(!)jg+ b: (A.5)

Clearly, k

U

(!) � g(u; !). Now de�ne

h

U

(!) = (jX

i

(!)j+ a) � p � (k

U

(!))

p�1

: (A.6)

Comparing this to (A.3), we learly obtain

0 �

�

�

�

�

�g

p

�u

i

(u; !)

�

�

�

�

� h

U

(!) (A.7)

for all (u; !) 2 U � 
. Conerning integrability of (A.6) we know that

(jX

i

(!)j + a) � p is p-integrable, sine X

i

is. We also know that (k

U

(!))

p�1

is

p

p�1

-integrable. The latter statement follows from the fat that every single

jX

j

(!)j is p-integrable and therefore k

U

(!) - as a multiple of the maximum plus

a onstant - is p-integrable. We further have 1=p+(p�1)=p = 1. As an imme-

diate onsequene of H�older's inequality the produt h

U

(!) of (jX

i

(!)j+ a) � p

and (k

U

(!))

p�1

is integrable.

Continuity: Consider a sequene (u

n

)

n2N

with lim

n!1

u

n

= u in U =

4u

1

� � � � � 4u

n

. Now, substitute u by u

n

in (A.2). For �x ! 2 
 it fol-

lows from the de�nition of g(u) and (A.3) that the substituted expressions

under the integrals in (A.2) onverge (pointwise in !) to the original expres-

sions (in u). Now have in mind, that h

U

(A.7) dominates the left integrand of

(A.2) and (k

U

)

p

(A.5) dominates the right one. As h

U

and (k

U

)

p

are integrable

it follows from the dominated onvergene theorem that the substituted inte-

grals themselves onverge to the original integrals. Hene, (A.2) is ontinuous

in u.

LEMMA A.3. Assume B 2 (L

p

(Q))

n

, n 2 N

+

, 1 < p < 1. Suppose 0 �

a � 1. The risk measures �

B

(u) implied by (3.1) are di�erentiable on R

n

n

U

C

(B). The partial derivatives are

��

B

�u

i

(u) = �E

Q

[X

i

℄ + a � �

�

p

(X(u))

1�p

� (A.8)

E

Q

[(�X

i

+E

Q

[X

i

℄) � ((X(u)� E

Q

[X(u)℄)

�

)

p�1

℄:

Proof. As RnU

C

(B) is open, it an be seen as union of bounded n-dimensional

open intervals U . We fous on the L

p

(Q )-norm expression in �

B

(u). De�ne

y(u) = �E

Q

[X(u)℄. Now, the requirements of lemma A.2 are satis�ed, sine
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�E

Q

[X(u)℄ < ess.supf�X(u)g as long as X(u) �= onst: We obtain that the

risk measure is di�erentiable in U and

��

B

�u

i

(u) = �E

Q

[X

i

℄ +

Z

�g

p

�u

i

(u)dQ � a �

1

p

� jjg(u)jj

1�p

p

: (A.9)

As (A.9) does not depend on the hoie of the partiular U � R

n

n U

C

(B),

�

B

(u) is di�erentiable on R

n

nU

C

(B). Sine by de�nition jjg(u)jj

p

= �

�

p

(X(u)),

we obtain (A.8) by ombining (A.3) with (A.9).

Proof of proposition 3.7. We use the notation from the proofs of the lem-

mas A.2 and A.3. Assume U = 4u

1

� � � � � 4u

n

to be a bounded nonempty

n-dimensional open interval in R

n

nU

C

(B), where for all i 2 f1; : : : ; ng 4u

i

is

an open interval. Consider equation (3.3). We have

E

P

[�

�

P

(X(u))℄ =

Z

jjg(u)jj

P (!

0

)

dP(!

0

) : (A.10)

We prove the existene and ontinuity of the partial derivatives of (A.10).

Existene: Again, we are going to hek the points a) to ) from lemma A.1

(f orresponds to jjg(u)jj

P (!

0

)

). Ad a). !

0

7! jjg(u)jj

P (!

0

)

is integrable, sine

jjg(u)jj

P (!

0

)

� jjg(u)jj

p

< 1. Ad b). Sine P (!

0

) is �x, it follows from the

proof of lemma A.3 (equation (A.9)), that u 7! jjg(u)jj

P (!

0

)

is in every point

u 2 U partially di�erentiable with respet to u

i

. Ad ). From (A.9) we get

�f

�u

i

(u; !

0

) =

Z

�g

P (!

0

)

�u

i

(u)dQ �

a

P (!

0

)

� jjg(u)jj

1�P (!

0

)

P (!

0

)

: (A.11)

From (A.3) we obtain

�g

P (!

0

)

�u

i

(u; !) = �(X

i

(!)� E

Q

[X

i

℄) � P (!

0

) � g(u; !)

P (!

0

)�1

: (A.12)

As g(u; !)

P (!

0

)�1

is

P (!

0

)

P (!

0

)�1

-integrable, we get from H�older's inequality

�

�

�

�

Z

�g

P (!

0

)

�u

i

(u; !)dQ

�

�

�

�

�

�

�

�

�

�

�

�

�

�g

P (!

0

)

�u

i

(u; !)

�

�

�

�

�

�

�

�

1

(A.13)

� jj(X

i

� E

Q

[X

i

℄)jj

P (!

0

)

� P (!

0

) � jjg(u)jj

P (!

0

)�1

P (!

0

)

:

Combining this with (A.11) we obtain

�

�

�

�

�f

�u

i

(u; !

0

)

�

�

�

�

� jj(X

i

�E

Q

[X

i

℄)jj

P (!

0

)

� a (A.14)

� jj(X

i

�E

Q

[X

i

℄)jj

p

� a � onst:
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Choosing h

U

(!

0

) = jj(X

i

�E

Q

[X

i

℄)jj

p

� a, this ompletes the proof of ). From

the arbitrariness of U � R

n

n U

C

(B), we obtain partial di�erentiability of �

on R

n

n U

C

(B). Equation (3.4) follows from the ombination of lemma (A.1)

with the result (A.8) of lemma A.3.

Continuity: As we know from the proof of lemma A.3, expression (A.11) is

ontinuous on R

n

nU

C

(B). By (A.14), dominated onvergene proves ontinuity

of the partial derivatives.
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