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Abstra
t

In this paper we propose di�erentiability properties for positively

homogeneous risk measures. These properties ensure that the gradi-

ent 
an be applied for reasonable risk 
apital allo
ation on non-trivial

portfolios. We show that the di�erentiability properties are ful�lled

for a wide 
lass of 
oherent risk measures based on the mean and the

one-sided moments of a risky payo�. In 
ontrast to quantile-based risk

measures like Value-at-Risk, risk measures of this 
lass allow allo
ation

in portfolios of very general distributions, e.g. dis
rete ones. In an ex-

ample we show how a parti
ular risk measure of this 
lass 
an be 
hosen

by adapting it to the VaR of a 
ertain portfolio. As a 
onsequen
e, the

risk 
apital 
orresponding to the VaR 
an be allo
ated by the gradient

due to the adapted risk measure.
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1 Introdu
tion

From the works Denault (2001) and Tas
he (2000) it is known that

di�erentiability of risk measures is 
ru
ial for risk 
apital allo
ation in

portfolios. The reason is, that in the 
ase of di�erentiable 
oherent or, more

general, di�erentiable positively homogeneous risk measures the gradient

due to asset weights has �gured out to be the unique reasonable per-unit

allo
ation prin
iple. However, a result of this paper shows that at least in the


oherent 
ase di�erentiability on all portfolios is not desirable. As a solution

�
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we de�ne weaker di�erentiabiliy properties. For positively homogeneous and,

in parti
ular, 
oherent risk measures these properties allow allo
ation by the

gradient on all relevant portfolios. Ex
luded are portfolios that 
ontain only

one type of assets. However, in these 
ases the allo
ation problem is trivial.

As an example for these weakened di�erentiability properties we introdu
e

a wide 
lass of 
oherent risk measures based on the mean and the one-sided

moments of a risky payo�. In 
ontrast to quantile-based risk measures like

Value-at-Risk, risk measures of this 
lass allow allo
ation in portfolios of

very general distributions, e.g. dis
rete ones in the 
ase of 
redit risk. In a

numeri
al example we show, how a parti
ular risk measure of this 
lass 
an

be 
hosen by adapting it to the VaR of a 
ertain portfolio. As a 
onsequen
e,

the risk 
apital 
orresponding to the VaR 
an be allo
ated by the gradient

due to the adapted risk measure.

Given a probability spa
e (
;A;Q) we will 
onsider the ve
tor spa
e

L

p

(
;A;Q), or just L

p

(Q ), for 1 � p � 1. Even though L

p

(Q) 
onsists

of equivalen
e 
lasses of p-integrable random variables, we will often treat its

elements as random variables. Due to the 
ontext, no 
onfusion should arise.

The notation will be as follows. We have jjXjj

p

= (E

Q

jXj

p

)

1

p

and jjXjj

1

=

ess.supfjXjg. Re
all, that L

p

(Q ) � L

q

(Q) if 1 � q < p � 1; sin
e jj:jj

q

� jj:jj

p

.

X

�

is de�ned as maxf�X; 0g. We denote �

�

p

(X) = jj(X � E

Q

[X℄)

�

jj

p

. Now,

let U � R

n

for n 2 N

+

= N n f0g be open and positively homogeneous, i.e.

for u 2 U we have �u 2 U for all � > 0. A positively homogeneous fun
tion

is a fun
tion f : U ! R, where f(�u) = �f(u) for all � > 0, u 2 U . When f

is also di�erentiable at every u = (u

1

; : : : ; u

n

) 2 U , we obtain the well-known

Euler Theorem

f(u) =

n

X

i=1

u

i

�f

�u

i

(u): (1.1)

We 
onsider a one-period framework, that means we have the present time

0 and a future time horizon T . Between 0 and T no trading is possible. We

assume risk to be given by a risky payo� X, i.e. a random variable out of

L

p

(Q) representing a 
ash
ow at T . We want to 
onsider a risk measure �(X)

to be the extra minimum 
ash added to X that makes the position a

eptable

for the holder or a regulator. For this reason, we state the following de�nition.

DEFINITION 1.1. A risk measure on L

p

(Q), 1 � p � 1, is de�ned by a

fun
tional � : L

p

(Q) ! R.
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We now give a de�nition of 
oherent risk measures. For a further motivation

and interpretation of this axiomati
 approa
h to risk measurement we refer to

the arti
le of Artzner et al. (1999).

DEFINITION 1.2. A fun
tional � : L

p

(Q) ! R, where 1 � p � 1, is 
alled

a 
oherent risk measure (CRM) on L

p

(Q ) if the following properties hold.

(M) Monotoni
ity: If X � 0 then �(X) � 0.

(S) Subadditivity: �(X + Y ) � �(X) + �(Y ).

(PH) Positive homogeneity: For � � 0 we have �(�X) = ��(X).

(T) Translation: For 
onstants a we have �(a+X) = �(X)� a.

As we work without interest rates - in 
ontrast to Artzner et al. (1999)

- there is no dis
ounting fa
tor in de�nition 1.2. A generalization of CRM

to the spa
e of all random variables on a probability spa
e 
an be found in

Delbaen (2000a). However, having p � 1 prevents us from being for
ed to

allow in�nitely high risks. See Delbaen (2000a) for details on this topi
.

2 Risk 
apital allo
ation by the gradient

Let us 
onsider the payo� X(u) :=

P

n

i=1

u

i

X

i

2 L

p

(Q) of a portfolio u =

(u

i

)

1�i�n

2 R

n


onsisting of assets (or subportfolios) with payo�s X

i

2 L

p

(Q ).

DEFINITION 2.1. A portfolio base in L

p

(Q ) is a ve
tor B 2 (L

p

(Q))

n

,

n 2 N

+

. The 
omponents of B do not have to be linearly independent.

Having B = (X

1

; : : : ; X

n

), a risk measure � on the payo�s L

p

(Q) implies a

risk measure �

B

on the portfolios R

n

. In parti
ular, we de�ne �

B

: R

n

! R by

�

B

: u 7! �(X(u)). If �

B

is obtained from a CRM � on L

p

(Q) and X

n

is the

only 
onstant 
omponent in B and not equal zero, �

B

is also 
alled 
oherent

(
f. Denault (2001)). If � ful�lls axiom (S) and (PH) in de�nition 1.2, �

B

is

subadditive and positively homogenous on R

n

.

Due to diversi�
ation e�e
ts (or subadditivity of the risk measure) the total

risk of a portfolio is usually assumed to be less then the sum of the risks of

ea
h subportfolio, i.e. we often have �

B

(u) <

P

n

i=1

�

B

(u

i

e

i

), where e

i

is the

i-th 
anoni
al unit ve
tor in R

n

. For this reason it is important to know how

risk 
apital should be allo
ated to the subportfolios or single assets, and hen
e

how the subportfolios should bene�t from the diversi�
ation.
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DEFINITION 2.2. Given a portfolio base B and a risk measure �

B

on R

n

a per-unit allo
ation in u 2 R

n

is a ve
tor (a

i

(�

B

; u))

1�i�n

, su
h that

n

X

i=1

u

i

a

i

(�

B

; u) = �

B

(u): (2.1)

In Denault (2001) the author drives the attention of the reader to a result

of Aubin in the theory of 
oalitional games with fra
tional players. Aubin's

theorem states, that in the 
ase of a positively homogeneous, 
onvex and dif-

ferentiable 
ost fun
tion, the 
ore of su
h a game (Aubin uses the pre�x fuzzy)


onsists of one element: the gradient of the 
ost fun
tion due to the normed

weights of the players (Aubin (1979)). From this result it is immediate, that

in the 
ase of a subadditive and positively homogeneous risk measure (e.g.

a 
oherent one), whi
h is di�erentiable at a portfolio u 2 R

n

, the gradient

(

��

B

�u

i

(u))

1�i�n

is the unique fair per-unit allo
ation. To derive this statement

from Aubin's result, the notion of 
ost fun
tions in game theory has to be

repla
ed by our notion of a risk measure. The players of the game are given

by the 
ertain u

i

X

i

, 
oalitions of fra
tional players are given by portfolios v,

with 0 � v � u, where the given portfolio u 
an without loss of generality be

assumed to be positive. Note, that under positive homogeneity, 
onvexity and

subadditivity are equivalent. The 
ore of su
h a game is build up of all per-unit

allo
ations (a

i

(�

B

; u))

1�i�n

, su
h that for all 
oalitions v with 0 � v � u we

have

P

n

i=1

v

i

a

i

(�

B

; u) � �

B

(v). That means, no sub
oalition v of u features

less standalone risk than the risk, the 
oalition v would have been 
harged by

the respe
tive per-unit allo
ation due to u. In this sense, the elements of the


ore are fair allo
ations. For CRM Denault proves, that the Aumann-Shapley

value, whi
h is the above gradient, features 
ertain 
oheren
e properties (De-

nault (2001)). For a deeper study of the 
onne
tions between the theory of


onvex games and 
oherent risk measures we refer to Delbaen (2000b).

In the 
ase of just positively homogeneous risk measures the theory of 
on-

vex games is no longer suitable to model the allo
ation problem. However, it is

still possible to talk about reasonable allo
ations. Tas
he (2000) 
onsiders the

so-
alled return on risk-adjusted 
apital (RORAC) of the payo�X(u) of a port-

folio u. He de�nes the risk-adjusted return fun
tion f(u) = E

Q

[X(u)℄=�

B

(u).

Note, that what we 
alled risk measure is denoted e
onomi
 
apital by Tas
he,

whereas he de�nes risk as 
u
tuation risk from the mean. Now, the idea is

to 
all a per-unit allo
ation reasonable for performan
e measurement with �

B

,

when (a

i

(�

B

; u))

1�i�n

gives the right signals for 
hanges in the portfolio. More
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pre
ise, if E

Q

[X

i

℄=a

i

(�

B

; u) > f(u), there should be an "

0

> 0, su
h that for

all " 2 (0; "

0

) we have f(u � "e

i

) < f(u) < f(u + "e

i

). Analogously, for

E[X

i

℄=(a

i

(�

B

; u)) < f(u) we demand f(u� "e

i

) > f(u) > f(u + "e

i

). Tas
he

shows, that in the 
ase of di�erentiable positively homogeneous risk measures

the unique per-unit allo
ation (a

i

(�

B

; u))

1�i�n

that is 
ontinuous on R

n

and

suitable for performan
e measurement due to the risk adjusted return fun
tion

is the gradient (

��

B

�u

i

(u))

1�i�n

(Tas
he (2000)).

In both approa
hes, Denault's and Tas
he's, the relationship between total

risk and risk 
ontribution per unit is established by the Euler Theorem (
f.

(1.1)), i.e. �

B

(u) =

P

n

i=1

u

i

��

B

�u

i

(u). Hen
e, 
on
erning risk 
apital allo
ation

due to a (subadditive) positively homogeneous risk measure on L

p

(Q), it would

be desirable to have �

B

to be di�erentiable on R

n

for every portfolio base B 2

(L

p

(Q))

n

for all n 2 N

+

. Considering the initial � on L

p

(Q), this implies the

existen
e of Gâteaux-derivatives, i.e. derivatives due to dire
tions on L

p

(Q).

PROPOSITION 2.3. For a 
oherent risk measure � on L

p

(Q), 1 � p �

1, the following properties are equivalent: (i) � is Gâteaux-di�erentiable on

L

p

(Q), (ii) � is linear, (iii) � is minimal, i.e. there is no CRM �

0

6= � with

�

0

(X) � �(X) for all X 2 L

p

(Q). Di�erentiability of � on L

p

(Q ) implies (i),

(ii) and (iii).

COROLLARY 2.4. A 
ontinuous 
oherent risk measure � on L

p

(Q ) is

Gâteaux-di�erentiable on L

p

(Q ), 1 < p < 1, if and only if there exists a

probability measure Q

�

� Q on 
, su
h that �(X) = �E

Q

�

[X℄.

The proof of 2.3 is omitted sin
e equivalen
e of (i) and (ii) 
an be shown

by a simple appli
ation of the 
oheren
e axioms, and as CRM are sublinear

fun
tionals, the well-known proof for equivalen
e of (ii) and (iii) in the general

sublinear 
ase 
an easily be adapted to the CRM 
ase. The 
orollary follows

from the duality of the L

p

(Q) spa
es.

As the two statements are also true for subspa
es of L

p

(Q), we fa
e the

following problem: If �

B

is a di�erentiable CRM on R

n

, then it is easy to show

that �

B

is linear. Therefore �

B

features no diversi�
ation e�e
ts. We also

obtain that � is linear on the linear span hBi of the 
omponents of B, whi
h

implies that � is a minimal CRM on hBi. Hen
e, di�erentiability on the whole

R

n

might be not useful.

Now, 
onsider a portfolio base B = (X

1

; : : : ; X

n

) and a portfolio u =

u

i

e

i

= (0; : : : ; 0; u

i

; 0; : : : ; 0), u

i

2 R, 1 � i � n. In this 
ase the allo
ation
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problem is trivial, sin
e by (2.1) the risk 
apital allo
ated to X

i

- whi
h is the

only asset - is simply �

B

(u)=u

i

. The following de�nition is motivated by this


onsideration.

DEFINITION 2.5. Consider a portfolio base B = (X

1

; : : : ; X

n

) 2

(L

p

(Q))

n

, n 2 N

+

, 1 � p � 1, and a portfolio u 2 R

n

. De�ne U

e

=

S

n

i=1

he

i

i,

where he

i

i � R

n

is the linear span of e

i

. We propose to 
all a (subadditive) pos-

itively homogeneous risk measure � on L

p

(Q ) suitable for risk 
apital allo-


ation by the gradient due to the portfolio base B if the fun
tion �

B

: R

n

! R

with �

B

: u 7! �(X(u)) is di�erentiable on the open set R

n

n U

e

.

Having a quantile-based risk measure � like VaR, it is known that �

B

is

not di�erentiable on R

n

nU

e

in general. Roughly speaking, for di�erentiability

at least one of the X

i

has to posses a 
ontinuous density (Tas
he (2000)).

Hen
e, it is a problem to deal with dis
rete spa
es (
;A;Q) like e.g. in the 
ase

of 
redit portfolios or digital options. It will be shown below, that the step to

moment based risk measures avoids this diÆ
ulty. Beside the di�erentiability

diÆ
ulties, it is know, that VaR is not subadditive (Artzner et al. (1999)).

As diversi�
ation is not rewarded, this is a major drawba
k.

3 A 
lass based on one-sided moments

We de�ne a 
lass of 
oherent risk measures whi
h depend on the mean and the

one-sided higher moments of a risky position.

LEMMA 3.1. Given a payo� X 2 L

p

(Q), where 1 � p � 1 and 0 � a � 1,

the risk measure �

p;a

with

�

p;a

(X) = �E

Q

[X℄ + a � �

�

p

(X) = �E

Q

[X℄ + a � jj(X �E

Q

[X℄)

�

jj

p

(3.1)

is 
oherent on L

p

(Q ).

Delbaen (2000b) shows that these risk measures 
an be obtained by the set of

probability measures (also 
alled generalized s
enarios, 
ompare Artzner et

al. (1999)) P = f1 + a(g � E[g℄) j g � 0; jjgjj

q

� 1g; where q = p=(p� 1) and

probability measures are identi�ed with their densities. In Delbaen (2000a)

we �nd another type of risk measures that are 
onne
ted to higher moments.

Proof of lemma 3.1. The L

p

-norm on the right side of (3.1) is �nite, sin
e

X 2 L

p

(Q). Axiom (T) and (PH) are obvious. From Minkowski's inequality
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and the inequality (a+b)

�

� a

�

+b

�

for a; b 2 R, we obtain axiom (S). Axiom

(M): Let X � 0. We have X � E

Q

[X℄ � �E

Q

[X℄, therefore (X � E

Q

[X℄)

�

�

E

Q

[X℄ and hen
e jj(X � E

Q

[X℄)

�

jj

1

= ess.supf(X � E

Q

[X℄)

�

g � E

Q

[X℄:

Sin
e jj(X � E

Q

[X℄)

�

jj

p

� jj(X � E

Q

[X℄)

�

jj

1

for p 2 [1;1℄, we get jj(X �

E

Q

[X℄)

�

jj

p

� E

Q

[X℄: Remembering 0 � a � 1, this 
ompletes the proof.

The L

p

-norms imply that �

q;a

� �

p;a

if q < p. The following result is on

weighted sums of 
oherent risk measures and generalizes the well-known fa
t

that 
onvex sums of CRM are again CRM.

LEMMA 3.2. Let I � R be an index set and (�

i

)

i2I

be a family of 
oherent

risk measures respe
tively de�ned on L

p(i)

(Q ), where p : I ! [1;1℄. Let

(�

i

)

i2I

be pointwise uniformly bounded on L

sup p(I)

(Q) in the sense that there

is a fun
tion b : L

sup p(I)

(Q) ! R

+

0

su
h that for ea
h X 2 L

sup p(I)

(Q) we

have j�

i

(X)j � b(X) for all i 2 I. Let R be a random variable with range

I that is de�ned on a probability spa
e 


0

with measure P. Now, if for all

X 2 L

sup p(I)

(Q) the mapping �

R(:)

(X) : 


0

! R is measurable,

�(X) = E

P

[�

R

(X)℄ (3.2)

de�nes a 
oherent risk measure on L

sup p(I)

(Q).

Proof. � is wellde�ned, sin
e for ea
h X 2 L

sup p(I)

(Q) we know from j�

i

(X)j �

b(X) and the measurability assumption, that �

R

(X) is a bounded random

variable and therefore P-integrable. Now, the 
oheren
e axioms are obvious

by the properties of E

P

.

Using lemma 3.2, the result of lemma 3.1 
an be generalized.

PROPOSITION 3.3. Let X 2 L

p

(Q) be a risky payo�, 1 � p � 1 and

0 � a � 1. Let P be a random variable on a probability spa
e (


0

;P) with

range P (


0

) � [1; p℄. The risk measure

�(X) = �E

Q

[X℄ + a �E

P

[�

�

P

(X)℄ (3.3)

is 
oherent on L

p

(Q ). We have �E

Q

[X℄ � �(X) � ess.supf�Xg:

Proof. Due to lemma 3.1 we 
onsider a family (�

i;a

)

i2[1;p℄

of 
oherent risk

measures given by (3.1), respe
tively de�ned on L

i

(Q). Now, let b(X) =

jE

Q

[X℄j + jj(X � E

Q

[X℄)

�

jj

p

: Clearly, j�

i

(X)j � b(X) for all 1 � i � p. For

all X 2 L

p

(Q ) the mapping �

P (:);a

(X) : 


0

! R is measurable, sin
e P (:) is
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measurable and for all Y 2 L

p

(Q ) the mapping q 7! jjY jj

q

is measurable on

P (


0

), as it is 
ontinuous due to the relative topology on P (


0

) in R [ f1g

with the 
anoni
al topology. We obtain 
oheren
e of (3.3) by lemma 3.2. The

last statement follows from jj:jj

p

� jj:jj

1

and �

�

1

= ess.supf(X �E

Q

[X℄)

�

g =

ess.supf�X +E

Q

[X℄g.

An immediate 
onsequen
e of the proof is that for a parti
ular X, � 
an be


hosen su
h that �(X) equals any value in [�E

Q

[X℄; ess.supf�Xg℄.

EXAMPLE 3.4. �(X) = �E

Q

[X℄+a

1

�

�

1

+a

2

�

�

2

+ : : :+a

1

�

�

1

, where a

p

� 0

for p 2 f1; 2; 3; : : : ;1g and a

1

+

P

1

p=1

a

p

� 1 is a 
oherent risk measure on

L

q

(Q ), where q := supfpja

p

> 0g (we use the 
onvention 0�(�1) = (�1)�0 =

0). In parti
ular, a

2

= a

1

=

1

2


ould be interpreted as a 
oherent mixture of

the (�; �)- and the maximum-loss-prin
iple.

DEFINITION 3.5. For B 2 (L

p

(Q ))

n

, n 2 N

+

, 1 < p <1, the set U

C

(B)

denotes the set of all u 2 R

n

, for whi
h

P

n

i=1

u

i

X

i

� 
onst:

LEMMA 3.6. The set R

n

n U

C

(B) is open in R

n

.

Proof. The linear mapping X(:) : R

n

! L

p

(Q ), where u 7! X(u), is bounded,

sin
e jjX(u)jj

p

�

P

n

i=1

ju

i

j � jjX

i

jj

p

� jjujj �

P

n

i=1

jjX

i

jj

p

. Hen
e, X(:) is 
ontin-

uous on R

n

. The set C of all 
onstant elements of L

p

(Q ) is 
losed, sin
e L

p

(Q)

is a Bana
h-spa
e due to the theorem of Riesz-Fis
her and every Cau
hy-

sequen
e of 
onstant elements in L

p

(Q ) 
onverges to a 
onstant limit in L

p

(Q)

(due to L

p

-norm). Sin
e X(:) is 
ontinuous, [X(:)℄

�1

(C) = U

C

(B) is 
losed

and R

n

n U

C

(B) open.

We 
an now state a result on di�erentiability of the 
lass of 
oherent risk

measures that was introdu
ed in proposition 3.3.

PROPOSITION 3.7. Assume B 2 (L

p

(Q ))

n

, n 2 N

+

, 1 < p < 1 and

0 � a � 1. Let 1 < P � p be a random variable on a probability spa
e

with measure P. The risk measures �

B

implied by (3.3) are di�erentiable on

R

n

n U

C

(B). The partial derivatives are

��

B

�u

i

(u) = �E

Q

[X

i

℄ + a �E

P

[�

�

P

(X(u))

1�P

� (3.4)

E

Q

[(�X

i

+E

Q

[X

i

℄) � ((X(u)� E

Q

[X(u)℄)

�

)

P�1

℄℄:
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The proof of proposition 3.7 is rather te
hni
al and therefore given in the

appendix. We want to show, that the risk measures (3.3) a
tually 
an not

be di�erentiable at some u 2 U

C

(B). We suppose u 2 U

C

(B), a > 0 and

the risk measure de�ned by (3.1), whi
h is the spe
ial 
ase P � 
onst: We

have �

p;a

(u) = �E

Q

[X(u)℄, sin
e X(u) � E

Q

[X(u)℄. Easily we obtain the two

di�erent one-sided partial derivatives �E

Q

[X

i

℄ + a � jj(�X

i

� E

Q

[X

i

℄)

�

jj

p

in

u, but jj(X

i

� E

Q

[X

i

℄)

�

jj

p

6= jj(�X

i

+ E

Q

[X

i

℄)

�

jj

p

in general. So, we have no

di�erentiability in general.

COROLLARY 3.8. Under the assumptions of 3.7, the risk measures � im-

plied by (3.3) are suitable for risk 
apital allo
ation by the gradient due to the

portfolio base B if the 
omponents X

1

; : : : ; X

n

of B are linearly independent

and X

n

�= 0 is 
onstant. The per-unit allo
ations are expli
itly given by (3.4).

Proof. U

C

(B) = h(0; : : : ; 0; 1)i � U

e

.

Corollary 3.8 is the main result on risk 
apital allo
ation by the 
onsidered


lass of 
oherent risk measures. We did not make any assumptions on the

underlying probability spa
e (
;A;Q), e.g. dis
rete spa
es 
an be taken into


onsideration. The assumption of linear independen
e is quite weak, as it

should be no problem to �nd a ve
tor base in a real market. Even the parti
ular


hoi
e of the portfolio base B is not important, as the gradient is an aggregation

invariant allo
ation prin
iple (Denault (2001)). That means, if we have two

di�erent portfolio bases B and B

0

as given in 
orollary 3.8, with hBi = hB

0

i,

there exists a linear isomophism A on R

n

, su
h that we have X(u) � X

0

(u

0

)

and �

B

(u) = �

B

0

(u

0

) for every u = Au

0

2 R

n

. We therefore obtain from

standard analysis for any two equivalent portfolios v and v

0

with v = Av

0

n

X

i=1

v

0

i

��

B

0

�u

0

i

(u

0

) =

n

X

i=1

v

i

��

B

�u

i

(u): (3.5)

So, the risk 
apital allo
ated to equivalent subportfolios, i.e. subportfolios with

the same payo� in L

p

(Q ), is identi
al.

4 Numeri
al example

In this example we want to show how risk 
apital obtained by the Value-at-

Risk 
an be allo
ated using the risk measures from se
tion 3. In parti
ular, we
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use a risk measure of type �

p;1

(X) = �E

Q

[X℄ + �

�

p

(X) as given in (3.1). We

de�ne the Value-at-Risk by

VaR

�

(X) = � inffx : Q (X � x) > �g: (4.1)

Now, suppose two sto
hasti
ally independent payo� variables X

1

; X

2

with dis-

tributions as given in table 1. The portfolio base is given by B = (X

1

; X

2

; 1).

X

1

and X

2


ould be interpreted as one unit of a 
redit engagement. Ob-

x Q(X

1

= x) Q(X

2

= x)

0.0 0.78 0.96

-0.5 0.20 0.02

-1.0 0.02 0.02

Table 1: Distribution of X

1

; X

2

viously, X

1

bears higher risks as losses are more probable. We 
onsider the

portfolio u = (u

1

; u

2

) = (1000; 1000). Easily we 
ompute VaR

0:05

(X(u)) = 500.

To allo
ate the given risk 
apital, we adjust �

B

(u) by 
hoosing p, su
h that

�

p;1

(X(u)) = VaR

0:05

(X(u)) = 500. We obtain p � 2:9157. From the dis
rete

version of (3.4) (j
j = 9, P � p, a = 1) we obtain

��

B

�u

1

(u) � 0:31504 and

��

B

�u

2

(u) � 0:18496. The risk 
apital allo
ated to u

1

X

1

is 315:04, for u

2

X

2

it

is 184:96. To 
he
k what happens for a more 
onservative VaR, we 
ompute

VaR

0:01

(X(u)), whi
h is 1000. We obtain p � 9:4355 and the risk 
apital al-

lo
ated to u

1

X

1

is 477:98, for u

2

X

2

it is 522:02. It is interesting that in the

se
ond 
ase more risk 
apital is allo
ated to X

2

, whi
h seems to bear less risk.

However, the relative di�eren
e is quite small 
ompared to the �rst 
ase. This

seems to be reasonable as we have VaR

0:01

(u

1

X

1

) = VaR

0:01

(u

2

X

2

) = 1000.

A Appendix

The proof of proposition 3.7 needs the following te
hni
al lemmas.

LEMMA A.1. Let U be an open subset of R

n

, n 2 N

+

, and f : U � 
! R

be a fun
tion with following properties:

a) ! 7! f(u; !) is Q -integrable for all u 2 U .

b) u 7! f(u; !) is in any u 2 U partial di�erentiable with respe
t to u

i

.


) There exists a Q -integrable fun
tion h

U

� 0 on 
 with

�

�

�

�f

�u

i

(u; !)

�

�

�

�

h

U

(!) for all (u; !) 2 U � 
.
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The fun
tion '(u) =

R

f(u; !)dQ(!) on U is partially di�erentiable with re-

spe
t to u

i

. The mapping ! 7!

�f

�u

i

(u; !) is Q -integrable and for u 2 U

�'

�u

i

(u) =

Z

�f

�u

i

(u; !)dQ(!): (A.1)

Proof. By the dominated 
onvergen
e theorem.

LEMMA A.2. De�ne U = 4u

1

� � � � � 4u

n

� R

n

, where for all i 2

f1; : : : ; ng 4u

i

is a nonempty, bounded and open interval in R. Let X(u) =

P

n

i=1

u

i

X

i

be a sum of real-valued random variables X

i

2 L

p

(Q ) with u =

(u

1

; : : : ; u

n

) 2 U , n 2 N

+

and 1 < p < 1. Let y(u) be a real-valued fun
tion

that is di�erentiable, bounded and for whi
h y(u) < ess.supf�X(u)g on U .

The partial derivatives

�y

�u

i

(u) are also assumed to be bounded on U . Under

this assumptions, jj(X(u) + y(u))

�

jj

p

is di�erentiable on U .

Proof. De�ne g(u; !) = (X(u; !) + y(u))

�

. For 1 � i � n we will prove

existen
e and 
ontinuity of the partial derivatives of jjg(u)jj

p

.

Existen
e: We have jjg(u)jj

p

=

�R

g(u; !)

p

dQ(!)

�

1=p

: Now, if we 
an apply

lemma A.1 to g

p

(where f from A.1 
orresponds to g

p

) and if g(u) is not


onstant 0 for every u 2 U , we obtain for every i

�jjg(u)jj

p

�u

i

(u) =

Z

�g

p

�u

i

(u) dQ �

1

p

�

�

Z

g(u)

p

dQ

�

1

p

�1

: (A.2)

Note, that for u 2 U we have g(u) > 0 on a set of measure greater 0, sin
e

y(u) < ess.supf�X(u)g. Therefore the right integral in (A.2) is greater 0 (no

division by zero!). We are going to 
he
k the points a) to 
) from lemma A.1.

Ad a). ! 7! g(u; !)

p

is Q -integrable, sin
e X(u) 2 L

p

(Q) and y(u) 2 R. Ad

b). First, we 
onsider the fun
tion [(:)

�

℄

p

: R ! R

+

0

, x 7! (x

�

)

p

: Clearly, this

fun
tion is di�erentiable for 1 < p < 1. Now, g(u; !)

p

= [(

P

n

i=1

u

i

X

i

(!) +

y(u))

�

℄

p

- as a 
ombination of a di�erentiable and a partially di�erentiable

fun
tion - is partially di�erentiable at u

i

. We obtain

�g

p

�u

i

(u; !) = �

�

X

i

(!) +

�y

�u

i

(u)

�

� p � g(u; !)

p�1

: (A.3)

Ad 
). There exist positive 
onstants a and b, su
h that for all j 2 f1; : : : ; ng

we have j

�y

�u

j

(u)j � a and jy(u)j � b on U . Now, de�ne

u

max

(U) = supfju

0

j

j : u

0

j

2 4u

j

; j 2 f1; : : : ; ngg; (A.4)
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whi
h is �nite, and

k

U

(!) = n � u

max

(U) �max

j

fjX

j

(!)jg+ b: (A.5)

Clearly, k

U

(!) � g(u; !). Now de�ne

h

U

(!) = (jX

i

(!)j+ a) � p � (k

U

(!))

p�1

: (A.6)

Comparing this to (A.3), we 
learly obtain

0 �

�

�

�

�

�g

p

�u

i

(u; !)

�

�

�

�

� h

U

(!) (A.7)

for all (u; !) 2 U � 
. Con
erning integrability of (A.6) we know that

(jX

i

(!)j + a) � p is p-integrable, sin
e X

i

is. We also know that (k

U

(!))

p�1

is

p

p�1

-integrable. The latter statement follows from the fa
t that every single

jX

j

(!)j is p-integrable and therefore k

U

(!) - as a multiple of the maximum plus

a 
onstant - is p-integrable. We further have 1=p+(p�1)=p = 1. As an imme-

diate 
onsequen
e of H�older's inequality the produ
t h

U

(!) of (jX

i

(!)j+ a) � p

and (k

U

(!))

p�1

is integrable.

Continuity: Consider a sequen
e (u

n

)

n2N

with lim

n!1

u

n

= u in U =

4u

1

� � � � � 4u

n

. Now, substitute u by u

n

in (A.2). For �x ! 2 
 it fol-

lows from the de�nition of g(u) and (A.3) that the substituted expressions

under the integrals in (A.2) 
onverge (pointwise in !) to the original expres-

sions (in u). Now have in mind, that h

U

(A.7) dominates the left integrand of

(A.2) and (k

U

)

p

(A.5) dominates the right one. As h

U

and (k

U

)

p

are integrable

it follows from the dominated 
onvergen
e theorem that the substituted inte-

grals themselves 
onverge to the original integrals. Hen
e, (A.2) is 
ontinuous

in u.

LEMMA A.3. Assume B 2 (L

p

(Q))

n

, n 2 N

+

, 1 < p < 1. Suppose 0 �

a � 1. The risk measures �

B

(u) implied by (3.1) are di�erentiable on R

n

n

U

C

(B). The partial derivatives are

��

B

�u

i

(u) = �E

Q

[X

i

℄ + a � �

�

p

(X(u))

1�p

� (A.8)

E

Q

[(�X

i

+E

Q

[X

i

℄) � ((X(u)� E

Q

[X(u)℄)

�

)

p�1

℄:

Proof. As RnU

C

(B) is open, it 
an be seen as union of bounded n-dimensional

open intervals U . We fo
us on the L

p

(Q )-norm expression in �

B

(u). De�ne

y(u) = �E

Q

[X(u)℄. Now, the requirements of lemma A.2 are satis�ed, sin
e
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�E

Q

[X(u)℄ < ess.supf�X(u)g as long as X(u) �= 
onst: We obtain that the

risk measure is di�erentiable in U and

��

B

�u

i

(u) = �E

Q

[X

i

℄ +

Z

�g

p

�u

i

(u)dQ � a �

1

p

� jjg(u)jj

1�p

p

: (A.9)

As (A.9) does not depend on the 
hoi
e of the parti
ular U � R

n

n U

C

(B),

�

B

(u) is di�erentiable on R

n

nU

C

(B). Sin
e by de�nition jjg(u)jj

p

= �

�

p

(X(u)),

we obtain (A.8) by 
ombining (A.3) with (A.9).

Proof of proposition 3.7. We use the notation from the proofs of the lem-

mas A.2 and A.3. Assume U = 4u

1

� � � � � 4u

n

to be a bounded nonempty

n-dimensional open interval in R

n

nU

C

(B), where for all i 2 f1; : : : ; ng 4u

i

is

an open interval. Consider equation (3.3). We have

E

P

[�

�

P

(X(u))℄ =

Z

jjg(u)jj

P (!

0

)

dP(!

0

) : (A.10)

We prove the existen
e and 
ontinuity of the partial derivatives of (A.10).

Existen
e: Again, we are going to 
he
k the points a) to 
) from lemma A.1

(f 
orresponds to jjg(u)jj

P (!

0

)

). Ad a). !

0

7! jjg(u)jj

P (!

0

)

is integrable, sin
e

jjg(u)jj

P (!

0

)

� jjg(u)jj

p

< 1. Ad b). Sin
e P (!

0

) is �x, it follows from the

proof of lemma A.3 (equation (A.9)), that u 7! jjg(u)jj

P (!

0

)

is in every point

u 2 U partially di�erentiable with respe
t to u

i

. Ad 
). From (A.9) we get

�f

�u

i

(u; !

0

) =

Z

�g

P (!

0

)

�u

i

(u)dQ �

a

P (!

0

)

� jjg(u)jj

1�P (!

0

)

P (!

0

)

: (A.11)

From (A.3) we obtain

�g

P (!

0

)

�u

i

(u; !) = �(X

i

(!)� E

Q

[X

i

℄) � P (!

0

) � g(u; !)

P (!

0

)�1

: (A.12)

As g(u; !)

P (!

0

)�1

is

P (!

0

)

P (!

0

)�1

-integrable, we get from H�older's inequality

�

�

�

�

Z

�g

P (!

0

)

�u

i

(u; !)dQ

�

�

�

�

�

�

�

�

�

�

�

�

�

�g

P (!

0

)

�u

i

(u; !)

�

�

�

�

�

�

�

�

1

(A.13)

� jj(X

i

� E

Q

[X

i

℄)jj

P (!

0

)

� P (!

0

) � jjg(u)jj

P (!

0

)�1

P (!

0

)

:

Combining this with (A.11) we obtain

�

�

�

�

�f

�u

i

(u; !

0

)

�

�

�

�

� jj(X

i

�E

Q

[X

i

℄)jj

P (!

0

)

� a (A.14)

� jj(X

i

�E

Q

[X

i

℄)jj

p

� a � 
onst:
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Choosing h

U

(!

0

) = jj(X

i

�E

Q

[X

i

℄)jj

p

� a, this 
ompletes the proof of 
). From

the arbitrariness of U � R

n

n U

C

(B), we obtain partial di�erentiability of �

on R

n

n U

C

(B). Equation (3.4) follows from the 
ombination of lemma (A.1)

with the result (A.8) of lemma A.3.

Continuity: As we know from the proof of lemma A.3, expression (A.11) is


ontinuous on R

n

nU

C

(B). By (A.14), dominated 
onvergen
e proves 
ontinuity

of the partial derivatives.

Referen
es

[1℄ Artzner, P., Delbaen, F., Eber, J.-M., Heath, D. (1999) - Coherent mea-

sures of risk, Mathemati
al Finan
e, Vol. 9, No. 3, 203-228

[2℄ Aubin, J.-P. (1979) -Mathemati
al Methods of Game and E
onomi
 The-

ory, North-Holland Publishing Co., Amsterdam

[3℄ Delbaen, F. (2000a) - Coherent risk measures on general probability

spa
es, ETH Z�uri
h, http://www.math.ethz.
h/~delbaen/ftp/preprints/

RiskMeasuresGeneralSpa
es.pdf

[4℄ Delbaen, F. (2000b) - forth
oming notes of the tutorial at the S
uola

Normale Superiore, Pisa

[5℄ Denault, M. (2001) - Coherent Allo
ation of Risk Capital, Journal of Risk,

Vol. 4, No. 1, 1-34.

[6℄ Tas
he, D. (2000) - Risk 
ontributions and performan
e measurement,

working paper, TU M�un
hen, http://www-m4.mathematik.tu-muen
hen.

de/m4/pers/tas
he/risk
on.pdf

TU Darmstadt, FB 04 / AG 9, S
hlossgartenstr. 7, 64289 Darmstadt, Ger-

many; E-mail address: t�s
her�mathematik.tu-darmstadt.de


