
Computational Integer Programming and Cutting

Planes

Armin Fügenschuh Alexander Martin

September 19, 2001

1 Introduction

The study and solution of linear integer programs lies in the heart of discrete op-

timization. Various problems in science, technology, business, and society can

be modeled as linear integer programming problems and their number is tremen-

dous and still increasing. It is not in the least surprising that there is no unique

method that solves all integer programming problems. This handbook, for in-

stance, documents the variety of ideas, approaches and methods that help to solve

integer programs, see also the surveys [2, 55]. Among the most successful methods

are currently LP based branch-and-bound algorithms where the underlying linear

programs (LPs) are possibly strengthened by cutting planes. For example, most

commercial integer programming solvers, see [76], or special purpose codes for

problems like the traveling salesman problem are based on this method.

The purpose of this paper is to describe the main ingredients of todays (commercial

or research oriented) solvers for integer programs. Consider an integer program or

more general a mixed integer program (MIP) in the form

zMIP = min

T

x

s.t. Ax

�

�

=

�

b

l � x � u

x 2 Z

N

� R

C

;

(1)

where M;N and C are finite sets with N and C disjoint, A 2 R

M�(N[C)

; ; l; u 2

R

N[C

; b 2 R

M . An integer variable x
j

2 Z with l

j

= 0 and u

j

= 1 is called

binary. If some variable x
j

has no lower or upper bound, we assume l
j

= �1 or

u

j

= +1, respectively.

1

Usually, (1) models a problem arising in some application and the formulation

for modeling this problem is not unique. In fact, for one and the same problem

various formulations might exist and the first task we are faced with is to select

an appropriate formulation. This issue will be discussed in Section 2. Very often

however, we do not have our hands on the problem itself but just get the problem

formulation as given in (1). In this case we must extract all relevant information

for the solution process from the constraint matrix A, the right-hand side vector

b and the objective function , i. e., we have to perform a structure analysis. This

is usually part of the so-called preprocessing phase of mixed integer programming

solvers and will also be discussed in Section 2. Thereafter, we have a problem, still

in the format of (1), but containing no more obviously redundant information.

The route we follow to solve anNP-hard problem like (1) to optimality is to attack

it from two sides. First, we consider the dual side and determine a lower bound on

the objective function by relaxing the problem. The basic idea of all relaxation

methods is to get rid of the part of the problem that makes it difficult. The methods

differ in which part to delete and in the way to reintroduce the deleted part. The

most common used approach is to relax the integrality constraints to obtain a linear

program and reintroduce the integrality by adding cutting planes. This will be the

main focus of Section 3. In addition, we will discuss in this section other relaxation

methods that delete part of the constraints and/or variables. Second, we consider

the primal side and try to find some good feasible solution in order to determine

an upper bound. Unfortunately, very little is done in this respect in general mixed

integer solvers, an issue that will be discussed in Section 4.3.

If we are lucky the best lower and upper bounds coincide and we have solved the

problem. If not, we have to resort to some enumeration scheme, and the one that

is mostly used in this context is branch-and-bound. We will discuss branch-and-

bound strategies in Section 4 and we will see that they have a big influence on the

solution time and quality.

Needless to say that the described outline is not the only way for the solution of

(1), but it is definitely the most used and very often among the most successful.

Other ideas include semidefinite programming, combinatorial relaxations, basis

reduction, Gomory’s group approach, test sets and optimal primal algorithms, see

the various articles in this handbook.

2 Formulations and Structure Analysis

The first step in the solution of an integer program is to find the “right” formula-

tion. The right formulation is of course not unique and it strongly depends on the

2

solution method one wants to use to solve the problem. The method we mainly

focus on in this paper is LP based branch-and-bound. The criterion for evaluating

formulations that is mostly used in this context is the tightness of the LP relaxation,

see (10) for a definition. There are no general rules like the fewer the number of

variables and/or constraints the better the formulation. Very often a theoretical

analysis is necessary to get the right insides. In the following we exemplarily dis-

cuss a classical problem from combinatorial optimization, the Steiner tree problem,

which underpins the statement that fewer variables is not always better.

Given an undirected graph G = (V;E) and a node set T � V , a Steiner tree for T

in G is a subset S � E of the edges such that (V (S); S) contains a path from s to

t for all s; t 2 T , where V (S) denotes the set of nodes incident to an edge in S. In

other words, a Steiner tree is an edge set S that spans T . The Steiner tree problem

is to find a minimal Steiner tree with respect to some given edge costs
e

; e 2 E.

A canonical way to formulate the Steiner tree problem as an integer program is to

introduce, for each edge e 2 E, a variable x
e

indicating whether e is in the Steiner

tree (x
e

= 1) or not (x
e

= 0). Consider the integer program

min

T

x

x(Æ(W)) � 1; for all W � V;W \ T 6= ;;

(V nW) \ T 6= ;;

0 � x

e

� 1; for all e 2 E;

x integer;

(2)

where Æ(X) denotes the cut induced by X � V , i. e., the set of edges with one end

node in X and one in its complement, and x(F) :=

P

e2F

x

e

, for F � E. The

first inequalities are called (undirected) Steiner cut inequalities and the inequali-

ties 0 � x

e

� 1 trivial inequalities. It is easy to see that there is a one-to-one

correspondence between Steiner trees in G and 0=1 vectors satisfying the undi-

rected Steiner cut inequalities. Hence, the Steiner tree problem can be solved via

(2). Another way to model the Steiner tree problem is to consider the problem

in a directed graph. We replace each edge [u; v℄ 2 E by two anti-parallel arcs

(u; v) and (v; u). Let A denote this set of arcs and D = (V;A) the resulting di-

graph. We choose some terminal r 2 T , which will be called the root. A Steiner

arborescence (rooted at r) is a set of arcs S � A such that (V (S); S) contains a

directed path from r to t for all t 2 T n frg. Obviously, there is a one-to-one cor-

respondence between (undirected) Steiner trees in G and Steiner arborescences in

D which contain at most one of two anti-parallel arcs. Thus, if we choose arc costs

~

(u;v)

:= ~

(v;u)

:=

[u;v℄

, for [u; v℄ 2 E, the Steiner tree problem can be solved by

finding a minimal Steiner arborescence with respect to ~. Note that there is always

an optimal Steiner arborescence which does not contain an arc and its anti-parallel

3

counterpart, since ~ � 0. Introducing variables y
a

for a 2 Awith the interpretation

y

a

:= 1, if arc a is in the Steiner arborescence, and y
a

:= 0, otherwise, we obtain

the integer program

min ~

T

y

y(Æ

+

(W)) � 1; for all W � V; r 2W;

(V nW) \ T 6= ;;

0 � y

a

� 1; for all a 2 A;

y integer;

(3)

where Æ+(X) := f(u; v) 2 A j u 2 X; v 2 V n Xg for X � V , i. e., the set

of arcs with tail in X and head in its complement. The first inequalities are called

(directed) Steiner cut inequalities and 0 � y

a

� 1 are the trivial inequalities.

Again, it is easy to see that each 0=1 vector satisfying the directed Steiner cut

inequalities corresponds to a Steiner arborescence, and conversely, the incidence

vector of each Steiner arborescence satisfies (3). Which of the two models (2) and

(3) should be used to solve the Steiner tree problem in graphs?

At first glance, (2) is preferable to (3), since it contains only half the number of

variables and basically the same number of constraints. However, it turns out that

the optimal value of the LP relaxation of the directed model z
d

:= minf~

T

y j y

satisfies the trivial and directed Steiner cut inequalitiesg is greater than or equal to

the corresponding value of the undirected formulation z
u

:= minf

T

x j x satisfies

the trivial and undirected Steiner cut inequalitiesg. Even, if the undirected formu-

lation is tightened by the so-called Steiner partition inequalities, this relation holds

[18]. This is even more astonishing, since the separation problem of the Steiner

partition inequalities is difficult (NP-hard), see [36], whereas the directed Steiner

cut inequalities can be separated in polynomial time by max flow computation.

Finally, the disadvantage of the directed model that the number of variables is dou-

bled is not really a bottleneck. Since we are minimizing a non-negative objective

function, the variable of one of two anti-parallel arcs will usually be at its lower

bound and rarely touched by the solution algorithm. Thus, the directed model is

much better than the undirected, though it contains more variables. And in fact,

most state-of-the-art solvers for the Steiner tree problem in graphs use formulation

(3) or one that is equivalent to (3), see [49] for further references.

The Steiner tree problem shows that it is not easy to find a tight problem formula-

tion and that often a non-trivial analysis is necessary to come to a good decision.

Once we have decided on some formulation we face the next step, the step of

eliminating redundant information in (1). This so-called preprocessing step is very

important, in particular, if we have no influence on the formulation step discussed

above. In this case it is not only important to eliminate redundant information,

4

but also to perform a structure analysis to extract as much information as possible

from the constraint matrix. We will give a non-trivial example at the end of this

section. Before we come to this point let us briefly sketch the main steps that are

usually performed within preprocessing. Most of these options are drawn from

[3, 12, 22, 43, 78]. We denote by s

i

2 f�;=g the sign of row i, i. e., (1) reads

minf

T

x : Axs b; l � x � u; x 2 Z

N

� R

C

g. We consider the following cases:

Duality Fixing. Suppose there is some column j with
j

� 0 that satisfies a
ij

� 0

if s
i

= ‘�’, and a

ij

= 0 if s
i

= ‘=’ for i 2 M . If l
j

> �1, we can

fix column j to its lower bound. If l
j

= �1 the problem is unbounded

or infeasible. The same arguments apply to some column j with

j

� 0.

Suppose a
ij

� 0 if s
i

= ‘�’, a
ij

= 0 if s
i

= ‘=’ for i 2 M . If u
j

< 1,

we can fix column j to its upper bound. If u
j

=1 the problem is unbounded

or infeasible.

Forcing and Dominated Rows. Here, we exploit the bounds on the variables to

detect so-called forcing and dominated rows. Consider some row i and let

L

i

=

X

j2P

i

a

ij

l

j

+

X

j2N

i

a

ij

u

j

U

i

=

X

j2P

i

a

ij

u

j

+

X

j2N

i

a

ij

l

j

(4)

where P
i

= fj : a

ij

> 0g and N

i

= fj : a

ij

< 0g. Obviously, L
i

�

P

n

j=1

a

ij

x

j

� U

i

. The following cases might come up:

1. Infeasible row:

(a) s

i

= ‘=’, and L
i

> b

i

or U
i

< b

i

(b) s

i

= ‘�’, and L
i

> b

i

In these cases the problem is infeasible.

2. Forcing row:

(a) s

i

= ‘=’, and L
i

= b

i

or U
i

= b

i

(b) s

i

= ‘�’, and L
i

= b

i

Here, all variables in P
i

can be fixed to its lower (upper) bound and all

variables in N

i

to its upper (lower) bound when L

i

= b

i

(U
i

= b

i

).

Row i can be deleted afterwards.

3. Redundant row:

(a) s

i

= ‘�’, and U
i

< b

i

.

5

This row bound analysis can also be used to strengthen the lower and upper

bounds of the variables. Compute for each variable x
j

�u

ij

=

8

<

:

(b

i

� L

i

)=a

ij

+ l

j

; if a
ij

> 0

(b

i

� U

i

)=a

ij

+ l

j

; if a
ij

< 0 and s
i

= ‘=’

(L

i

� U

i

)=a

ij

+ l

j

; if a
ij

< 0 and s
i

= ‘�’

�

l

ij

=

8

<

:

(b

i

� U

i

)=a

ij

+ u

j

; if a
ij

> 0 and s
i

= ‘=’

(L

i

� U

i

)=a

ij

+ u

j

; if a
ij

> 0 and s
i

= ‘�’

(b

i

� L

i

)=a

ij

+ u

j

; if a
ij

< 0:

Let �u
j

= min

i

�u

ij

and �

l

j

= max

i

�

l

ij

. If �u

j

� u

j

and �

l

j

� l

j

, we speak

of an implied free variable. The simplex method might benefit from not

updating the bounds but treating variable x
j

as a free variable (note, setting

the bounds of j to �1 and +1 will not change the feasible region). Free

variables will always be in the basis and are thus useful in finding a starting

basis. For mixed integer programs however, it is better in general to update

the bounds by setting u

j

= minfu

j

; �u

j

g and l

j

= maxfl

j

;

�

l

j

g, because

the search region of the variable within an enumeration scheme is reduced.

In case x
j

is an integer (or binary) variable we round u

j

down to the next

integer and l
j

up to the next integer. As an example consider the following

inequality (taken from mod015 from the Miplib1):

�45x

6

� 45x

30

� 79x

54

� 53x

78

� 53x

102

� 670x

126

� �443

Since all variables are binary, L
i

= �945 and U

i

= 0. For j = 126 we

obtain �

l

ij

= (�443 + 945)=� 670+ 1 = 0:26. After rounding up it follows

that x
126

must be one.

Note that with these new lower and upper bounds on the variables it might

pay to recompute the row bounds L
i

and U

i

, which again might result in

tighter bounds on the variables.

Coefficient Reduction. The row bounds in (4) can also be used to reduce coeffi-

cients of binary variables. Consider some row i with s
i

= ‘�’ and let x
j

be

a binary variable with a
ij

6= 0.

If

8

<

:

a

ij

< 0; U

i

+ a

ij

< b

i

; set a

0

ij

= b

i

� U

i

;

a

ij

> 0; U

i

� a

ij

< b

i

; set

�

a

0

ij

= U

i

� b

i

;

b

i

= U

i

� a

ij

;

(5)

1
Miplib is a public available test set of real-world mixed integer programming problems [13].

6

where a0
ij

denotes the new reduced coefficient. Consider the following in-

equality of example p0033 from the Miplib:

�230x

10

� 200x

16

� 400x

17

� �5

All variables are binary, U
i

= 0, and L

i

= �830. We have U
i

+ a

i;10

=

�230 < �5 and we can reduce a
i;10

to b
i

�U

i

= �5. The same can be done

for the other coefficients, and we obtain the inequality

�5x

10

� 5x

16

� 5x

17

� �5

Note that the operation of reducing coefficients to the value of the right-hand

side can also be applied to integer variables if all variables in this row have

negative coefficients and lower bound zero. In addition, we may compute the

greatest common divisor of the coefficients and divide all coefficients and the

right-hand side by this value. In case all involved variables are integer (or

binary) the right-hand side can be rounded down to the next integer. In our

example, the greatest common divisor is 5, and dividing by that number we

obtain the set covering inequality

�x

10

� x

16

� x

17

� �1:

Aggregation. In mixed integer programs very often equations of the form

a

ij

x

j

+ a

ik

x

k

= b

i

appear for some i 2 M; k; j 2 N [C . In this case, we may replace one of

the variables, x
k

say, by

b

i

� a

ij

x

j

a

ik

: (6)

In case x
k

is binary or integer, the substitution is only possible, if the term

(6) is guaranteed to be binary or integer as well. If this is true or x
k

is a

continuous variable, we aggregate the two variables. The new bounds of

variable x

j

are l

j

= maxfl

j

; (b

i

� a

ik

l

k

)=a

ij

g and u

j

= minfu

j

; (b

i

�

a

ik

u

k

)=a

ij

g if a
ik

=a

ij

< 0, and l
j

= maxfl

j

; (b

i

� a

ik

u

k

)=a

ij

g and u
j

=

minfu

j

; (b

i

� a

ik

l

k

)=a

ij

g if a
ik

=a

ij

> 0.

Of course, aggregation can also be applied to equations whose support is

greater than two. However, this might cause additional fill in the matrix.

Hence, aggregation is usually restricted to constraints and columns with

small support.

7

Disaggregation. Disaggregation of columns is to our knowledge not an issue in

preprocessing of mixed integer programs, since this usually blows up the

solution space. It is however applied in interior point algorithms for linear

programs, because dense columns result in dense blocks in the Cholesky

decomposition and are thus to be avoided [34].

On the other hand, disaggregation of rows is an important issue for mixed in-

teger programs. Consider the following inequality (taken from the Miplib-

problem p0282)

x

85

+ x

90

+ x

95

+ x

100

+ x

217

+ x

222

+ x

227

+ x

232

� 8x

246

� 0 (7)

where all variables involved are binary. The inequality says that whenever

one of the variables x
i

with i 2 S := f85; 90; 95; 100; 217; 222; 227; 232g

is one, x
246

must also be one. This fact can also be expressed by replacing

(7) by the following eight inequalities:

x

i

� x

246

� 0 for all i 2 S: (8)

This formulation is tighter in the following sense: Whenever any variable in

S is one, x
246

is forced to one as well, which is not guaranteed in the original

formulation. On the other hand, one constraint is replaced by many (in our

case 8) inequalities, which might blow up the constraint matrix. However

within a cutting plane procedure, see the next section, this problem is not

really an issue, because the inequalities in (8) can be generated on demand.

Probing. Probing is sometimes used in general mixed integer programming codes,

see, for instance, [78]. The idea is to set some binary variable temporarily to

zero or one and try to deduce further fixings from that. These implications

can be expressed in inequalities as follows:

(x

j

= 1) x

i

= �))

�

x

i

� l

i

+ (�� l

i

)x

j

x

i

� u

i

� (u

i

� �)x

j

(x

j

= 0) x

i

= �))

�

x

i

� �� (�� l

i

)x

j

x

i

� �+ (u

i

� �)x

j

(9)

As an example, suppose we set in (7) variable x
246

temporary to zero. This

implies that x
i

= 0 for all i 2 S. Applying (9) we deduce the inequality

x

i

� 0 + (1� 0)x

246

= x

246

for all i 2 S which is exactly (8).

8

Besides the described cases, there are trivial ones like empty rows, empty, infea-

sible, and fixed columns, parallel rows and singleton rows or columns that we re-

frain from discussing here. One hardly believes at this point that such examples or

some of the above cases really appear in mixed integer programming formulation,

because better formulations are straight-forward to derive. But such formulation

do indeed come up and mixed integer programming solvers must be able to han-

dle them. Reasons for their existence are that formulations are often made by

non-experts or are sometimes generated automatically by some matrix generating

program.

In general, all these tests are iteratively applied until all of them fail. Typically,

preprocessing is applied only once at the beginning of the solution procedure, but

sometimes it pays to run the preprocessing routine more often on different nodes

in the branch-and-bound phase, see Section 4. There is always the question of the

break even point between the running time for preprocessing and the savings in the

solution time for the whole problem. There is no unified answer to this question. It

depends on the individual problem, when intensive preprocessing pays and when

not. Martin [58], for instance, performs some computational tests for the instances

in the Miplib. His results show that preprocessing reduces the problem sizes

in terms of number of rows, columns, and non-zeros by around 10% on average.

The time spent in preprocessing is neglectable (below one per mill). Interesting to

note is also that for some problems presolve is indispensable for their solution. For

example, problem fixnet6 from the Miplib is an instance, where most solvers

fail without preprocessing, but with presolve the instance turns out to be very easy.

Observe also that the preprocessing steps discussed so far consider just one single

row or column at a time. The question comes up, whether one could gain something

by looking at the structure of the matrix as a whole. This is a topic of computational

linear algebra where one tries on one side to speed-up algorithms for matrices in

special forms and on the other hand tries to develop algorithms that detect certain

forms after reordering columns and/or rows. Interesting to note is that the main

application area in this field are matrices arising from PDE systems. Very little has

been done in connection with mixed integer programs. In the following we want

to discuss one case, which shows that there might be more potential for MIPs.

Consider a matrix in so-called bordered block diagonal form as depicted in Figure

1.

Suppose the constraint matrix of (1) has such a form and suppose even that there

are just a few or even no coupling constraints. In the latter case the problem de-

composes into number of blocks many independent problems, which can be solved

much faster than the original problem. Even if there are coupling constraints this

structure might help for instance to derive new cutting planes. The question arises

9

A

1

A

2

. . .

A

k

coupling constraints

Figure 1: Matrix in bordered block diagonal form

do MIPs have such a structure, possibly after reordering columns and rows? There

are, of course, some obvious cases, where the matrix is already in this form, like

multi-commodity flow problems, multiple knapsack problems or other packing

problems. But, there are problems where bordered block diagonal form is hidden in

the problem formulation (1) and can only be detected after reordering columns and

rows. In [16] Borndörfer et al. have analyzed this question and checked whether

matrices from MIPs can be brought into this form. They have tested on various

instances, especially on problems whose original formulation is not in bordered

block diagonal form, and it turns out that many problems have indeed such a form.

Even more the developed heuristics for detecting such a form are fast enough to be

incorporated into preprocessing of a MIP solver. Martin and Weismantel [58, 59]

have developed cutting planes that exploit bordered block diagonal form and the

computational results for this class of cutting planes are very promising. Of course,

this is just a first step of exploiting special structures of MIP matrices and more

needs to be done in this direction.

3 Relaxations

In this section we attack (1) from the dual side by determining good lower bounds.

This is done by relaxing the problem. We consider three different types of relax-

ation ideas. The first and most common is to relax the integrality constraints and to

find cutting planes that strengthen the resulting LP relaxation. This is the topic of

Section 3.1. In Section 3.2 we sketch further well-known approaches, Lagrange re-

laxation as well as Dantzig-Wolfe and Benders’ decomposition. The idea of them

is to delete part of the constraint matrix and reintroduce it into the problem either

in the objective function or via column generation or cutting planes, respectively.

10

3.1 Cutting Planes

The focus of this section is on describing cutting planes that are used in general

mixed integer programming solvers. Mainly, we can classify cutting planes gen-

erating algorithms in two groups: one is exploiting the structure of the underlying

mixed integer program, the other not. We first take a closer look on the latter

group, in which we find the so-called Gomory cuts, mixed integer rounding cuts

and lift-and-project cuts.

Suppose we want to solve the mixed integer program (1), where we assume for

simplicity that we have no equality constraints and that N = f1; : : : ; pg and C =

fp + 1; : : : ; ng. If we drop the integrality condition on the variables x
1

; : : : ; x

p

,

we obtain the so-called linear programming relaxation, or LP relaxation for short:

zLP = min

T

x

s.t. Ax � b

x 2 R

n

:

(10)

For the solution of the latter we have either polynomial (ellipsoid and interior point)

or efficient (interior point and simplex) algorithms at hand.

The crucial point in the theory of solving general mixed integer problems is a

sufficient good understanding of the underlying polyhedrons. To problem (1) we

associate the polyhedron PMIP := onvfx 2 Z

p

� R

n�p

: Ax � bg, i. e., the

convex hull of all feasible points for (1). In the same way we define the associated

polyhedron of problem (10) by PLP := onvfx 2 R

n

: Ax � bg. Of course,

PMIP � PLP and zLP � zMIP, so PLP can be viewed as a relaxation of PMIP. Our main

goal is to tighten this approximation.

Note that if x� = (x

�

1

; : : : ; x

�

n

) is an optimal solution of (10) and x

� is in Zp �

R

n�p , then it is already an optimal solution of (1) and we are done. But this is

unlikely to happen after just solving the relaxation. It is more realistic to expect

that some (or even all) of the variables x�
1

; : : : ; x

�

p

are not integral. In this case there

exists at least one inequality a

T

x � � that is feasible for PMIP but not satisfied by

x

�. From a geometric point of view, x� is cut off by the hyperplane aTx � � and

therefore aTx � � is called a cutting plane. The problem of determining whether

x

� is in PMIP and if not of finding such a cutting plane is called the separation

problem. If we found a cutting plane aTx � �, we add it to the problem (10) and

obtain

min

T

x

s.t. Ax � b

a

T

x � �

x 2 R

n

;

(11)

11

which strengthens (10) in the sense that PLP � PLP1 � PMIP, where PLP1 :=

onvfx : Ax � b; a

T

x � �g is the associated polyhedron of (11). Note that

the first inclusion is strict by construction.

The process of solving (11) and finding a cutting plane is now iterated until the

solution is inZp�Rn�p (this will be the optimal solution of (1)). Let us summarize

the cutting plane algorithm discussed so far:

Algorithm 1 (Cutting Plane)

1. Let k := 0 and LP 0 the linear programming relaxation of the mixed integer

program (1).

2. Solve LP k. Let ~xk be an optimal solution.

3. If ~xk is in Zp� Rn�p , stop; ~xk is an optimal solution of (1).

4. Otherwise, find a linear inequality, that is satisfied by all feasible mixed

integer points of (1), but not by ~x

k.

5. Add this inequality to LP k to obtain LP k+1.

6. Increase k by one and go to Step 2.

The remaining of this section is devoted to the question on how to find good cutting

planes.

3.1.1 Gomory Integer Cuts

We start with the pure integer case, i. e., p = n in problem (1), which we now

call integer program (IP). The algorithm we present in the sequel is making use

of information given by the simplex algorithm. Hereto we transform the problem

into standard form by adding slack variables. As we will see below, its main step

is based on integer rounding, but this step only works accurate if the constrained

matrix A and the right-hand side b are integral (for computational issues, this isn’t

really a restriction) and all variables x have to be non-negative. Summing up, we

talk about the following problem:

min

T

x

s.t. Ax = b

x 2 Z

n

+

;

(12)

with A 2 Z

n�m and b 2 Zm. We call the associated polyhedron P St
IP
:= onvfx 2

Z

n

+

: Ax = bg.

12

Let x� be an optimal solution of the LP relaxation of (12). We partition x� into two

subvectors x�
B

and x

�

N

, where B � f1; : : : ; ng is a basis of A, i. e., A
B

regular,

with

x

�

B

= A

�1

B

b�A

�1

B

A

N

x

�

N

� 0 (13)

and x�
N

= 0 for the non-basic variables N = f1; : : : ; ngnB. If x� is integral, we

found an optimal solution of (12). Otherwise, at least one of the values in x�
B

must

be fractional. So we choose i 2 B such that x�
i

=2 Z. From (13) we get for the i-th

variable of x
B

.

A

�1

i�

b =

X

j2N

A

�1

i�

A

�j

x

j

+ x

i

; (14)

where A�1

i�

denotes the i-th row of A�1 and A
�j

the j-th column of A, respectively.

We set �b
i

:= A

�1

i�

b and �a

ij

:= A

�1

i�

A

�j

for short. Since x
j

� 0 for all j,

x

i

+

X

j2N

b�a

ij

x

j

� x

i

+

X

j2N

�a

ij

x

j

=

�

b

i

: (15)

We can round down the right-hand side, since x was assumed to be integral and

thus the left=hand side in (15) is integral. So we obtain

x

i

+

X

j2N

b�a

ij

x

j

� b

�

b

i

: (16)

This inequality is valid for all integral points of P St
IP

, but it cuts off x�, since x�
i

=

�

b

i

=2 Z, x�
j

= 0 for all j 2 N and b�b
i

 <

�

b

i

. Named after its inventor, inequalities

of this type are called Gomory cuts [31, 33]. Furthermore, all values of (16) are

integral. After introducing another slack variable we add it to (12) still fulfilling

the requirement that all values in the constrained matrix, the right-hand side and

the new slack variable have to be integral. Gomory showed that after repeating this

steps a finite number of times, an integer optimal solution is found.

3.1.2 Gomory Mixed Integer Cuts

The previous approach of generating valid inequalities fails if both integer and

continuous variables are present. It fails, because rounding down the right-hand

side may cut off some feasible points of P St
MIP := onvfx 2 Z

p

+

�R

n�p

+

: Ax = bg,

if x cannot be assumed to be integral. For the general mixed-integer case, we

develop three different methods to obtain valid inequalities. They are all more or

less based on the following disjunctive argument.

13

Lemma 2 Let P and Q be two polyhedra in Rn and a

T

x � �, bTx � � valid

inequalities for P and Q respectively. Then

n

X

i=1

min(a

i

; b

i

)x

i

� max(�; �)

is valid for onv(P [Q).

We start again with a mixed integer problem in standard form, but this time with

p < n, i. e.,

min

T

x

s.t. Ax = b

x 2 Z

p

+

� R

n�p

+

:

(17)

Let P St
MIP be the convex hull of all feasible solutions of (17). Consider again (14),

where B is a basis, x
i

; i 2 B; is an integer variable and �

b

i

; �a

ij

are defined accord-

ingly. We divide the set N of non-basic variables in N+

:= fj 2 N : �a

ij

� 0g

and N

�

:= NnN

+. As we already mentioned, every feasible x of (17) satisfies

x

B

= A

�1

B

b�A

�1

B

A

N

x

N

, hence

�

b

i

�

X

j2N

�a

ij

x

j

2 Z:

So there exists k 2 Z such that
X

j2N

�a

ij

x

j

= f(

�

b

i

) + k;

where f(�) := �� b� for � 2 R. In order to apply the disjunctive argument, we

distinguish the following two cases,
P

j2N

�a

ij

x

j

� 0 and
P

j2N

�a

ij

x

j

� 0. In the

first case
X

j2N

+

�a

ij

x

j

� f(

�

b

i

)

follows. In the second case we get

X

j2N

�

�a

ij

x

j

� f(

�

b

i

)� 1 � 0

or, equivalently,

�

f(

�

b

i

)

1� f(

�

b

i

)

X

j2N

�

�a

ij

x

j

� f(

�

b

i

):

14

Now we apply the disjunctive argument to the disjunction P := P

St
MIP \ fx :

P

j2N

�a

ij

x

j

� 0g and Q := P

St
MIP \ fx :

P

j2N

�a

ij

x

j

� 0g. Because of

max(�a

ij

; 0) = �a

ij

for j 2 N

+ and max(�

f(

�

b

i

1�f(

�

b

i

)

�a

ij

; 0) = �

f(

�

b

i

)

1�f(

�

b

i

)

�a

ij

for

j 2 N

� we obtain the valid inequality for P St
MIP

X

j2N

+

�a

ij

x

j

�

f(

�

b

i

)

1� f(

�

b

i

)

X

j2N

�

�a

ij

x

j

� f(

�

b

i

); (18)

which cuts off x�. It is possible to strengthen inequality (18) in the following way.

Observe that the derivation of it does not change, if we add integer multiples to

those variables x
j

, j 2 N , that are integral (only the value of k might change).

By doing this we may put the coefficient of each integer variable x
j

either in the

set N+ or N�. If we put it in N

+, the derivation of the inequality yields �a

ij

as

coefficient for x
j

. Thus the best possible coefficient after adding integer multiples

is f(�a
ij

), the gap between right-hand and left-hand side is now as small as possible.

In N

� the final coefficient is �
f(

�

b

i

)

1�f(

�

b

i

)

�a

ij

, so the smallest gap is achieved by the

factor
f(

�

b

i

)(1�f(�a

ij

))

1�f(

�

b

i

)

. We still have the freedom to select between N+ and N�, but

we will obtain the best possible coefficients by using min(f(�a

ij

);

f(

�

b

i

)(1�f(�a

ij

))

1�f(

�

b

i

)

).

Putting all this together yields Gomory’s mixed integer cut [32]:

P

j2N; integer:

f(�a

ij

)�f(

�

b

i

)

f(�a

ij

)x

j

+

P

j2N; integer:

f(�a

ij

)>f(

�

b

i

)

f(

�

b

i

)(1�f(�a

ij

))

1�f(

�

b

i

)

x

j

+

P

j2N

+

j non-integer

�a

j

x

j

�

P

j2N

�

j non-integer

f(

�

b

i

)

1�f(

�

b

i

)

�a

j

x

j

� f(

�

b

i

):

(19)

Gomory showed that an algorithm based on iteratively generated inequalities of

this type solves (1) after a finite number of steps, if the objective function value

T

x is integer for all x 2 fx 2 Z
p

+

� R

n�p

+

: Ax = bg.

Though Gomory’s mixed integer cuts are known since the sixties they received

their computational breakthrough in the nineties with the paper by [8]. In the

meantime they are incorporated in basically every MIP solver, see, for instance

[14]. Note that Gomory’s mixed integer cuts can always be applied, the separation

problem for the optimal LP solution is easy. However, adding these inequalities

might cause numerical difficulties, see the discussion in [69].

3.1.3 Mixed-Integer-Rounding Cuts

We start developing the idea of this kind of cutting planes by considering the subset

X := f(x; y) 2 Z�R

+

: x�y � bg of R2 with b 2 R. We split onv(X) into two

15

disjoint subsets P := onv(X \ f(x; y) : x � bbg) and Q := onv(X \f(x; y) :

x � bb + 1g). For P the inequalities x � bb � 0 and 0 � y are valid and

therefore every linear combination of them is also valid. Hence, if we multiply

them by 1� f(b) and 1 respectively, we obtain

(x� bb)(1 � f(b)) � y:

For Q we scale the valid inequalities �(x�bb) � �1 and x�y � b with weights

f(b) and 1 to get

(x� bb)(1 � f(b)) � y:

Now the disjunctive argument, Lemma 2, implies that (x�bb)(1� f(b)) � y, or

equivalently:

x�

1

1� f(b)

y � bb (20)

is valid for onv(P [Q) = onv(X).

From this basic situation we change now to more general settings. Consider the

mixed integer setX := f(x; y) 2 Z

n

+

�R

+

: a

T

x�y � bgwith a 2 Rn and b 2 R.

We define a partition of f1; : : : ; ng by N1

:= fi 2 f1; : : : ; ng : f(a

i

) � f(b)g

and N2

:= f1; : : : ; ngnN

1. With this setting we obtain

X

i2N

1

ba

i

x

i

+

X

i2N

2

a

i

x

i

� y � a

T

x� y � b:

Now let w :=

P

i2N

1

ba

i

x

i

+

P

i2N

2

da

i

ex

i

2 Z and z := y +

P

i2N

2

(1 �

f(a

i

))x

i

� 0, then we obtain (remark that da
i

e � ba

i

 = 1)

w � z =

X

i2N

1

ba

i

x

i

+

X

i2N

2

da

i

ex

i

�

X

i2N

2

(1� a

i

+ ba

i

)x

i

� y

=

X

i2N

1

ba

i

x

i

+

X

i2N

2

a

i

x

i

� y � b:

and (20) yields

w �

1

1� f(b)

z � bb:

Substituting w and z gives

X

i2N

1

ba

i

x

i

+

X

i2N

2

�

da

i

e �

1� f(a

i

)

1� f(b)

�

x

i

�

1

1� f(b)

y � bb:

16

Easy computation shows that this is equivalent to

n

X

i=1

�

ba

i

+

max(0; f(a

i

)� f(b))

1� f(b)

�

x

i

�

1

1� f(b)

y � bb:

Thus we showed that this is a valid inequality for onv(X), the mixed integer

rounding (MIR) inequality.

Nemhauser and Wolsey [65] discuss MIR inequalities in a more general setting.

They prove that MIR inequalities provide a complete description for any mixed

0 � 1 polyhedron. Marchand and Wolsey [54, 56] show the computational merits

of MIP inequalities in solving general mixed integer programs.

3.1.4 Lift-and-Project Cuts

The cuts presented here only apply to 0 � 1 mixed integer problems. The idea of

’lift and project’ is to find new inequalities not in the original problem space but in

a higher dimensional (lifting). By projecting these inequalities back to the original

space tighter inequalities can be obtained. Many different versions on how to lift

and how to project back can be found in literature [6, 53, 77]. The method we

want to review in detail is due to Balas et al. [6, 7]. It is based on the following

observation:

Lemma 3 If � + a

T

x � 0 and � + b

T

x � 0 are valid for a polyhedron P , then

(�+ a

T

x)(� + b

T

x) � 0 is also valid for P .

We consider a 0 � 1 program in the form of (1) with w. l. o. g. no equality con-

straints, in which the system Ax � b already contains the trivial inequalities

0 � x

i

� 1 for all i 2 f1; : : : ; pg. The following steps give an outline of the

lift-and-project procedure:

Algorithm 4 (Lift-and-Project)

1. Choose an index j 2 f1; : : : ; pg.

2. Multiply each inequality of Ax � b once by x
j

and once by 1 � x

j

giving

the new (non-linear) system:

(Ax)x

j

� bx

j

(Ax)(1 � x

j

) � b(1� x

j

)

(21)

3. Lifting: substitute x

i

x

j

by y
i

for i 2 f1; : : : ; ngnfjg and x

2

j

by x
j

. The

resulting system of inequalities is again linear and finite and the set of its

feasible points L
j

(P) is therefore a polyhedron.

17

4. Projection: project L
j

(P) back to the original space by eliminating all vari-

ables y
i

. Call the resulting polyhedron P
j

.

In [6] it is proven that P
j

= onv(P \ fx 2 R

n

: x

j

2 f0; 1g), i. e., the j-th

component of each vertex of P
j

is either zero or one. Moreover, they showed that

a repeated application of Algorithm 4 on the first p variables yields

((P

1

)

2

: : :)

p

= onv(P \ fx 2 R

n

: x

1

; : : : ; x

p

2 f0; 1gg) = PMIP:

In fact, this result does not depend on the order in which one applies lift-and-

project. Every permutation of f1; : : : ; pg yields PMIP.

The crucial step we did not describe up to now is how to carry out the projection

(Step 4). As L
j

(P) is a polyhedron, there exist matrices D;B and a vector d such

that L
j

(P) = f(x; y) : Dx + By � dg. Thus we can describe the (orthogonal-)

projection of L
j

(P) onto the x-space by

P

j

= fx : (u

T

D)x � u

T

d for all u � 0; u

T

B = 0g:

Now that we are back in our original problem space, we can start finding valid

inequalities by solving the following linear program for a given fractional solution

x

� of the underlying mixed integer problem:

max u

T

(Dx

�

� d)

s.t. u

T

B = 0

u 2 R

n

+

:

(22)

The set C := fu 2 R

n

+

: u

T

B = 0g in which we are looking for the optimum is a

polyhedral cone. So the optimum is either 0, if the variable x
j

is already integral,

or the linear program is unbounded (infinity). In the latter case let u� 2 C be an

extreme ray of the cone in which direction the linear program (22) is unbounded.

Then u� will give us the cutting plane (u

�

)

T

Dx � (u

�

)

T

d that indeed cuts off x�.

Computational experiences with lift-and-project cuts to solve real-world problems

are discussed in [6, 7].

3.1.5 Knapsack Inequalities

The cutting planes discussed so far had one thing in common: they do not make

use of special structures of the given problem. In this section we want to generate

valid inequalities by investigating the underlying combinatorial problem. The in-

equalities that are generated in this way are usually (but not always) better in the

sense that they lead to better approximations of PMIP than the general purpose cuts

discussed before.

18

We start again with the pure integer case. A knapsack problem is a 0 � 1 integer

problem with just one inequality a

T

x � �. Its polytope, the 0 � 1 knapsack

polytope, is the following set of points:

PK(N; a; �) := onvfx 2 f0; 1g

N

:

X

j2N

a

j

x

j

� �g

with a finite set N , weights a 2 ZN
+

and some capacity � 2 Z
+

.

Observe that each inequality of a 0 � 1 program gives raise to a 0 � 1 knapsack

polytope. And thus each valid inequality known for the knapsack polytope can

be used to strengthen the 0 � 1 program. In the sequel we derive some known

inequalities for the 0�1 knapsack polytope that are also useful for solving general

0� 1 integer problems.

Cover inequalities. A subset C � N is called a cover if
P

j2C

a

j

> �, i. e.,

the sum of the weights of all items in C is bigger than the capacity of the

knapsack. To each cover belongs the cover inequality

X

j2C

x

j

� jCj � 1;

a valid inequality for PK(N; a; �). The ’best’ inequalities of this type are

those belonging to minimal covers, i. e., C � N is a cover and for every

s 2 C we have
P

j2Snfsg

a

j

� �. In what sense are they ’best’? It was

shown that minimal cover inequalities define facets of PK(C; a; �), i. e., the

dimension of the face that is induced by the inequality is one less than the di-

mension of the polytope. Non-minimal cover only give faces, but not facets.

Moreover, if a cover is not minimal, the corresponding cover inequality is

superfluous, because it can be expressed as a sum of minimal cover inequal-

ities and some upper bound constraints. Minimal cover inequalities might

be strengthened by a technique called lifting that we present in detail in the

next section.

(1; k)-configuration inequalities. Padberg [68] introduced this class of inequali-

ties. Let S � N be a set of items that fits into the knapsack,
P

j2S

a

j

� �,

and suppose there is another item z 2 NnS such that ~

S [fzg is a minimal

cover for every ~

S � S with cardinality j ~Sj = k. Then we will say, (S; z) is

a (1; k)-configuration and we can derive the following inequality:

X

j2S

x

j

+ (jSj � k + 1)x

z

� jSj;

19

which we call (1; k)-configuration inequality. They are connected to mini-

mal cover inequalities in the following way: a minimal cover S is a (1; jSj�

1)-configuration and a (1; k)-configuration with respect to (S; fzg) with k =

jSj is a minimal cover. Moreover, one can show that (1; k)-configuration in-

equalities define facets of PK(S [fzg; a; �).

Extended weight inequalities. Weismantel [80] pointed out that minimal cover

and (1; k)-configuration inequalities both have a common source. He intro-

duced extended weight inequalities which include both classes of inequali-

ties as special cases. Denote a(T) :=
P

j2T

a

j

and consider a subset T � N

such that a(T) < �. With r := � � a(T), the inequality

X

i2T

a

i

x

i

+

X

i2NnT

max(a

i

� r; 0)x

i

� a(T): (23)

is valid for PK(N; a; �). It is called weight inequality with respect to T .

The name weight inequality reflects that the coefficients of the items in T

equal their original weights and the number r := � � a(T) corresponds to

the remaining capacity of the knapsack when x
j

= 1 for all j 2 T . There

is a natural way to extend weight inequalities by (i) replacing the original

weights of the items by relative weights and (ii) using the method of sequen-

tial lifting that we outline in Section 3.1.8.

Let us consider a simple case by associating weights one to the items in T .

Denote by S the subset of NnT such that a
j

� r for all j 2 S. For a chosen

permutation �

1

; : : : �

jSj

of S we apply sequential lifting, see Section 3.1.8,

and obtain lifting coefficients w
j

, j 2 S such that

X

j2T

x

j

+

X

j2S

w

j

x

j

� jT j;

is a valid inequality for PK(N; a; �), called the (uniform) extended weight

inequality. They already generalize minimal cover and (1; k)-configuration

inequalities and can be generalized themselves to inequalities with arbitrary

weights in the starting set T , see [80].

The separation of minimal cover inequalities is widely discussed in the literature.

The complexity of cover separation has been investigated in [27, 47, 37], whereas

algorithmic and implementation issues are treated among others in [22, 38, 43, 74,

83]. The ideas and concepts suggested to separate cover inequalities basically carry

over to extended weight inequalities. Typical features of a separation algorithm for

cover inequalities are: fix all variables that are integer, find a cover (in the extended

20

weight case some subset T) usually by some greedy-type heuristics, and lift the

remaining variables sequentially.

Cutting planes derived from knapsack relaxations can sometimes be strengthened

if special ordered set (SOS) inequalities
P

j2Q

x

j

� 1 for some Q � N are avail-

able. In connection with a knapsack inequality these constraints are also called

generalized upper bound constraints (GUBs). It is clear that by taking the addi-

tional SOS constraints into account stronger cutting planes may be derived. This

possibility has been studied in [22, 46, 82, 63, 38].

From pure integer knapsack problems we switch now to mixed 0 � 1 knapsack,

where some continuous variables appear. As we will see, the concept of covers

is also useful in this case to describe the polyhedral structure of the associated

polytopes. Consider the mixed 0� 1 knapsack set

P

S

(N; a; �) = f(x; s) 2 f0; 1g

N

� R

+

:

X

j2N

a

j

x

j

� s � �g

with non-negative coefficients, i. e., a
j

� 0 for j 2 N and � � 0.

Now let C � N be a cover and � :=

P

j2C

a

j

� b > 0. Marchand and Wolsey

[57] recently showed that the inequality

X

j2C

min(a

j

; �)x

j

� s �

X

j2C

min(a

j

; �)� � (24)

is valid for P
S

(N; a; �). Moreover, this inequality defines a facet of P
S

(C; a; �).

This result marks a contrast to the pure 0 � 1 knapsack case, where only minimal

covers induce facets. Computational aspects of these inequalities are also discussed

in [54, 57].

Cover inequalities appear also in other contexts. In [17] cover inequalities are de-

rived for the knapsack set with general integer variables. Unfortunately, in this

case, the resulting inequalities do not define facets of the convex hull of the knap-

sack set restricted to the variables defining the cover. More recently, the notion of

cover has been used to define families of valid inequalities for the complementarity

knapsack set [25].

3.1.6 Flow Cover Inequalities

From (mixed) knapsack problems with only one inequality we now turn to more

complex polyhedral structures. Consider within a capacitated network flow prob-

lem some node with a set of ingoing arcs N . Each inflow arc j 2 N has a capacity

a

j

. By y
j

we denote the (positive) flow that is actually on arc j 2 N . Moreover,

21

the total inflow (i. e., sum of all flows on the arcs in N) is bounded by b 2 R

+

.

Then the (flow) set of all feasible points of this problem is given by

X = f(x; y) 2 f0; 1g

N

� R

N

+

:

X

j2N

y

j

� b; y

j

� a

j

x

j

; 8j 2 Ng: (25)

We want to demonstrate how to use the mixed knapsack inequality (24) to derive

new inequalities for the polyhedron onv(X). Let C � N be a cover for the

knapsack in X , i. e., C is a subset of N satisfying � :=

P

j2C

a

j

� b > 0 (usually

covers for flow problems are called flow covers). From
P

j2N

y

j

� b we obtain

X

j2C

a

j

x

j

�

X

j2C

s

j

� b;

by discarding all y
j

for j 2 NnC and replacing y

j

by a

j

x

j

� s

j

for all j 2 C ,

where s
j

� 0 is a slack variable. Using the mixed knapsack inequality (24), we

have that the following inequality is valid for X:

X

j2C

min (a

j

; �) x

j

�

X

j2C

s

j

�

X

j2C

min (a

j

; �)� �;

or equivalently, substituting a
j

x

j

� y

j

for s
j

,

X

j2C

�

y

j

+max(a

j

� �; 0)(1 � x

j

)

�

� b: (26)

It was shown by Padberg et al. [70] that this last inequality, called flow cover

inequality, defines a facet of onv(X), if max

j2C

a

j

> �.

Flow models have been extensively studied in the literature. Various generaliza-

tions of the flow cover inequality (26) have been derived for more complex flow

models. In [73], a family of flow cover inequalities is described for a general single

node flow model containing variable lower and upper bounds. Generalizations of

flow cover inequalities to lot-sizing and capacitated facility location problems can

also be found in [1, 71]. Flow cover inequalities have been used successfully in

general purpose branch-and-cut algorithms to tighten formulations of mixed inte-

ger sets [40, 39, 74].

3.1.7 Set Packing Inequalities

The study of set packing polyhedra plays a prominent role in combinatorial opti-

mization and integer programming. Suppose we are given a set X := f1; : : : ;mg

and a finite system of subsets X
1

; : : : ;X

n

� X . For each j we have a real number

22

j

representing the gain for the use of X
j

. In the set packing problem we ask for

a selection N � f1; : : : ; ng such that [
j2N

X

j

� X with X

i

\ X

j

= ; for all

i; j 2 N with i 6= j and
P

j2N

j

is maximal. We can model this problem by

introducing incidence vectors a
j

2 f0; 1g

m for each X

j

; j 2 f1; : : : ; ng, where

a

ij

= 1 if and only if i 2 X

j

. Let A := (a

ij

) 2 f0; 1g

m�n. For the decision which

subset we put into the selection N we introduce x 2 f0; 1g

n, with x
j

= 1 if and

only if j 2 N . With this definitions we can state the set packing problem as the

following 0� 1 integer program:

max

T

x

s.t. Ax � 1l

x 2 f0; 1g

n

:

(27)

This problem is important not only from a theoretical but also from a computational

point of view: set packing problems often occur as subproblems in (mixed) integer

problems. A good understanding of 0�1 integer programs with 0�1 matrices can

substantially speed up the solution process of general mixed integer problems.

In the sequel we study the set packing polytope P (A) := onvfx 2 f0; 1g

n

:

Ax � 1lg associated to (27). An interpretation of this problem in a graph theoretic

sense is helpful to obtain new valid inequalities that strengthen the LP relaxation of

(27). The column intersection graph G(A) = (V;E) of A 2 f0; 1g

m�n consists

of n nodes, one for each column with edges ij between two nodes i and j if and

only if their corresponding columns in A have a common non-zero entry in some

row. There is a one-to-one correspondence between 0 � 1 feasible solutions and

stable sets in G(A), where a stable set S is a subset of nodes such that for all

i; j 2 S holds ij =2 E. Consider a feasible vector x 2 f0; 1g

n with Ax � 1l,

then S = fi 2 N : x

i

= 1g is a stable set in G(A) and vice versa, each stable

set in G(A) defines a feasible 0 � 1 solution x via x
i

= 1 if and only if i 2 S.

Observe that different matrices A;A0 have the same associated polyhedron if and

only if their corresponding intersection graphs coincide. It is therefore customary

to study P (A) via the graph G and denote the set packing polytope and the stable

set polytope, respectively, by P (G).

What can we say about P (G)? The following observations are immediate:

(i) P (G) is full dimensional.

(ii) P (G) is down monotone, i. e., if x 2 P (G) and y 2 f0; 1g

n with 0 � y � x

then y 2 P (G).

(iii) The non-negative constraints x
j

� 0 induce facets of P (G).

It is a well-known fact that P (G) is completely described by the non-negative

constraints (iii) and the edge-inequalities x
i

+x

j

� 1 for ij 2 E if and only if G is

bipartite, i. e., there exists a partition (V

1

; V

2

) of the nodes V such that every edge

23

has one node in V
1

and one in V
2

. If G is not bipartite, then it contains odd cycles.

They give rise to the following odd cycle inequality

X

j2V

C

x

j

�

jV

C

j � 1

2

;

where V

C

� V is the set of nodes of cycle C � E of odd cardinality. This

inequality is valid for P (G) and defines a facet of P ((V

C

; E

V

C

)) if and only if

C is an odd hole, i. e., a cycle without chords [66]. This class of inequalities can

be separated in polynomial time using an algorithm based on the computation of

shortest paths, see Lemma 9.1.11 in [35] for details.

A clique (C;E

C

) in a graph G = (V;E) is a subset of nodes and edges such that

for every two i; j 2 C; i 6= j there exists an edge ij 2 E

C

. A clique (C;E

C

) is

said to be maximal if every i 2 V with ij 2 E for all j 2 C is already contained

in C . From a clique (C;E

C

) we obtain the clique inequality

X

j2C

x

j

� 1;

which is valid for P (G). It defines a facet of P (G) if and only if the clique is

maximal [30, 66]. In contrast to the class of odd cycle inequalities, the separa-

tion of clique inequalities is difficult (NP-hard), see Theorem 9.2.9 in [35]. But

there exists a larger class of inequalities, called orthonormal representation (OR)

inequalities, that includes the clique inequalities and can be separated in polyno-

mial time [35]. Beside odd cycle, clique and OR-inequalities there are many other

inequalities known for the stable set polytope. Among these are blossom, odd an-

tihole, wheel, antiweb and web, wedge inequalities and many more. [15] gives a

survey on these constraints including a discussion on their separability.

3.1.8 Lifted Inequalities

The lifting technique is a general approach that has been used in a wide variety

of contexts to strengthen valid inequalities. A field for its application is the reuse

of inequalities within branch-and-bound, where some inequality that is only valid

under certain variable fixings is made globally valid by applying lifting, see Section

4. Assume for simplicity that all integer variables are 0� 1. Consider an arbitrary

polytope P � R

N and let L � N . Suppose we have an inequality

X

j2L

w

j

x

j

� w

0

; (28)

24

which is valid for P
L

:= onv(P \ fx : x

j

= 0 8j 2 NnLg). (Note that without

loss of generality, we investigate the lifting of a variable x
j

that has been set to 0,

because setting x

j

to 1 is equivalent to setting variable x
j

= 1 � x

j

to 0.) The

lifting problem is to find lifting coefficients w
j

for j 2 NnL such that

X

j2N

w

j

x

j

� w

0

(29)

is valid for P . Ideally we would like inequality (29) to be “strong”, i. e., if inequal-

ity (28) defines a face of high dimension of P
L

, we would like the inequality (29)

to define a face of high dimension of P as well.

One way of obtaining coefficients (w

j

)

j2NnL

is to apply sequential lifting: lifting

coefficients w
j

are calculated one after another. That is we determine a sequence

of N nL according to which we obtain compute coefficients. Let k 2 N nL be the

first index in this sequence. The coefficient w
k

is computed for a given k 2 N n L

so that

w

k

x

k

+

X

j2L

w

j

x

j

� w

0

(30)

is valid for P
L[fkg

.

We explain the main idea of lifting on the knapsack polytope: P := PK(N; a; �). It

is easily extended to more general cases. Define the lifting function as the solution

of the following 0� 1 knapsack problem:

�

L

(u) := min w

0

�

X

j2L

w

j

x

j

s.t.
X

j2L

a

j

x

j

� � � u;

x 2 f0; 1g

L

:

We set �
L

(u) := +1 if fx 2 f0; 1g

L

:

P

j2L

a

j

x

j

� � � ug = ;. Then

inequality (30) is valid for P
L[fkg

if w
k

� �

L

(a

k

), see [67, 81]. Moreover, if

w

k

= �

L

(a

k

) and (28) defines a face of dimension t of P
L

, then (30) defines a

face of P
L[fkg

of dimension t+ 1.

If one now intends to lift a second variable, then it becomes necessary to update

the function �

L

. Specifically, if k 2 N n L was introduced first with a lifting

25

coefficient w
k

, then the lifting function becomes

�

L[fkg

(u) := min w

0

�

X

j2L[fkg

w

j

x

j

s.t.
X

j2L[fkg

a

j

x

j

� � � u;

x 2 f0; 1g

L[fkg

;

so in general, function �

L

can decrease as more variables are lifted in (note that

w

j

� 0 for all j 2 N in the knapsack problem). As a consequence, lifting co-

efficients depend on the order in which variables are lifted and therefore different

orders of lifting often lead to different valid inequalities.

One of the key questions to be dealt with when implementing such a lifting ap-

proach is how to compute lifting coefficients w
j

. To perform “exact” sequential

lifting (i. e., to compute at each step the lifting coefficient given by the lifting func-

tion), we have to solve a sequence of integer programs. In the case of the lifting of

variables for the 0 � 1 knapsack set this can be done efficiently using a dynamic

programming approach based on the following recursion formula,

�

L[fkg

(u) = min(�

L

(u);�

L

(u+ a

k

)� �

L

(a

k

)):

Using such a lifting approach, facet-defining inequalities for the 0 � 1 knapsack

polytope have been derived [9, 5, 41, 81, 67] and embedded in a branch-and-bound

framework to solve particular types of 0� 1 integer programs to optimality [22].

We now take a look on how to apply the idea of lifting to the more complex poly-

tope associated to the flow problem discussed in Section 3.1.6. Consider the set

X

0

= f

�

x

y

�

2 f0; 1g

L[fkg

� R

L[fkg

+

:

P

L[fkg

y

j

� b; y

j

� a

j

x

j

; j 2 L [fkgg:

Note that with (x

k

; y

k

) = (0; 0), this reduces to the flow set, see (25)

X = f(x; y) 2 f0; 1g

L

� R

L

+

:

X

j2L

y

j

� b; y

j

� a

j

x

j

; j 2 Lg:

Now suppose that the inequality

X

j2L

w

j

x

j

+

X

j2L

v

j

y

j

� w

0

is valid and facet-defining for onv(X).

26

As before, let

	

L

(u) = min w

0

�

P

j2L

w

j

x

j

�

P

j2L

v

j

y

j

s.t.
P

j2L

y

j

� b� u

y

j

� a

j

x

j

; j 2 L

(x; y) 2 f0; 1g

L

� R

L

+

:

Now the inequality

X

j2L

w

j

x

j

�

X

j2L

v

j

y

j

+ w

k

x

k

+ v

k

y

k

� w

0

is valid for onv(X 0

) if and only ifw
k

+v

k

u � 	

L

(u) for all 0 � u � a

k

, ensuring

that all the feasible points with (x

k

; y

k

) = (1; u) satisfy the inequality.

So the inequality defines a facet if the affine function w
k

+v

k

u lies below the func-

tion 	

L

(u) in the interval [0; a
k

℄ and touches it in two points different from(0; 0),

thereby increasing the number of affinely independent tight points by the number

of new variables. In theory, “exact” sequential lifting can be applied to derive valid

inequalities for any kind of mixed integer set. However, in practice, this approach

is only useful to generate valid inequalities for sets for which one can associate a

lifting function that can be evaluated efficiently. In [39] it is also shown how to lift

the pair (x
k

; y

k

) when y
k

has been fixed to a
k

and x
k

to 1.

Lifting is applied in the context of set packing problems to obtain facets from

odd-hole inequalities [66]. Other uses of sequential lifting can be found in [17]

where the lifting of continuous and integer variables is used to extend the class of

lifted cover inequalities to a mixed knapsack set with general integer variables. In

[58, 59] lifting is used to define (lifted) feasible set inequalities for an integer set

defined by multiple integer knapsack constraints.

3.2 Further Relaxations

In the preceding section we have simplified the mixed integer program by relaxing

the integrality constraints and by trying to force the integrality of the solution by

adding cutting planes. In the methods we are going to discuss now we keep the

integrality constraints, but relax part of the constraint matrix that causes difficulties.

3.2.1 Lagrange Relaxation

Consider again (1). The idea of Lagrangean relaxation is to delete part of the con-

straints and reintroduce them into the problem by putting them into the objective

27

function attached with some penalties. Split A and b into two parts A =

�

A

1

A

2

�

and b =

�

b

1

b

2

�

, where A

1

2 R

m

1

�n

; A

2

2 R

m

2

�n

; b

1

2 R

m

1

; b

2

2 R

m

2 with

m

1

+m

2

= m. Then, assuming w. l. o. g. no equality constraints (1) reads

min

T

x

s.t. A

1

x � b

1

A

2

x � b

2

x 2 Z

p

� R

n�p

:

(31)

Consider for some fixed � 2 Rm1

+

the following function

L(�) = min

T

x� �

T

(b

1

�A

1

x)

s.t. x 2 P

2

;

(32)

where P

2

= fx 2 Z

p

� R

n�p

: A

2

x � b

2

g. (32) is called the Lagrangean

function. Obviously, (32) is a lower bound for (31), since for any feasible solution

�x of (31) we have

T

�x �

T

�x� �

T

(b

1

�A

1

�x) � min

x2P

2

T

x� �

T

(b

1

�A

1

x) = L(�)

Since this holds for each � � 0 we get that

max

��0

L(�) (33)

yields a lower bound for (1). (33) is called Lagrangean relaxation. Let �� be an

optimal solution to (33). The questions remain, how good is L(��) and how to

compute ��. An answer to the first question gives the following equation:

L(�

�

) = minf

T

x : A

1

x � b

1

; x 2 onv(P

2

)g: (34)

A proof of this result can be found for instance in [64, 75]. Since

fx 2 R

n

: Ax � bg � fx 2 R

n

: A

1

x � b

1

; x 2 onv(P

2

)g

� onvfx 2 Z

p

� R

n�p

: Ax � bg

we conclude form (34)

zLP � L(�

�

) � zMIP: (35)

Furthermore, zLP = L(�

�

) for all objective functions if and only if fx 2 R

n

:

A

2

x � b

2

g is integral.

28

It remains to discuss how to compute L(�

�

). From a theoretical point of view

it can be shown using the equivalence of separation and optimization that L(��)

can be determined in polynomial time, if minf~

T

x : x 2 onv(P

2

)g can be

computed in polynomial time for any objective function ~, see for instance [75].

In practice, L(��) is determined by applying subgradient methods. The function

L(�) is piecewise linear, concave and bounded from above. Consider for some

fixed �

0

2 R

m

1

+

an optimal solution x

0 for (32). Then, g0 = A

1

x � b

1

is a

subgradient for L in �0, i. e.,

L(�)� L(�

0

) � (g

0

)

T

(�� �

0

);

since

L(�)� L(�

0

) =

T

x

�

� �

T

(b

1

�A

1

x

�

)� (

T

x

0

� (�

0

)

T

(b

1

�A

1

x

0

))

�

T

x

0

� �

T

(b

1

�A

1

x

0

)� (

T

x

0

� (�

0

)

T

(b

1

�A

1

x

0

))

= (g

0

)

T

(�� �

0

):

Hence, for �� we have (g

0

)

T

(� � �

0

) � L(�

�

) � L(�

0

) � 0. This suggests in

order to find �� to start with some �0, compute

x

0

= argminf

T

x� (�

0

)

T

(b

1

�A

1

x) : x 2 P

2

g

and determine iteratively, �0; �1; �2; : : : by setting �k+1

= �

k

+ �

k

g

k , where �k

is some step length to be specified. This iterative method is the essence of the

subgradient method. Details and refinements of this method can be found in [64].

Of course, the quality of the Lagrangean relaxation strongly depends on the set of

constraints that is relaxed. On one side, we must compute (32) for various values

of � and thus it is necessary to determine one value of L(�) fast. Therefore one

may want to relax as many (complicated) constraints as possible. On the other

hand, the more constraints are relaxed the worse the bound L(�

�

) will get, see

[51]. Therefore, one always must find a compromise between these two conflicting

goals.

Lagrangean relaxation is also very often used if the underlying linear programs of

(1) are just too big to be solved directly and even the relaxed problems in (32) are

still large. Often the relaxation can be done in a way that the evaluation of (32)

can be solved combinatorially. In the following we give some applications where

this method has been successfully applied and a good balance between these two

opposite objectives can be found.

Consider the traveling salesman problem where we are given a set of nodes V =

f1; : : : ; ng and a set of edges E. The nodes are the cities and the edges are pairs of

cities that are connected. Let
ij

for ij 2 E denote the traveling time between city

29

i and city j. The traveling salesman problem (TSP) now asks for a tour that starts

in city 1, visits every other city exactly once, returns to city 1 and has minimal

travel time. We can model this problem by the following 0 � 1 integer program.

The binary variable x
ij

2 f0; 1g equals 1 if city j is visited right after city i is left,

and equals 0 otherwise, so x 2 f0; 1gE . The equations

X

fi:ij2Eg

x

ij

= 2 8j 2 V

(degree constraints) ensure that every city is entered and left exactly once, respec-

tively. To eliminate subtours, for any U � V with 2 � jU j � jV j � 1, the

constraints

X

fij2E:i;j2Ug

x

ij

� jU j � 1

have to be added. By relaxing the degree constraints in the integer programming

formulation for the traveling salesman problem, we are left with a spanning tree

problem, which can be solved fast by the greedy algorithm. A main advantage of

this TSP relaxation is that for the evaluation of (32) combinatorial algorithms are

at hand and no general LP or IP solution techniques must be used. Held and Karp

[42] proposed this approach in the seventies and they solved instances that could

not be solved with any other method at that time.

Other examples where Lagrangean relaxation is used are multicommodity flow

problems arising for instance in vehicle scheduling or scenario decompositions of

stochastic mixed integer programs. In fact, the latter two applications fall into a

class of problems where the underlying matrix has bordered block diagonal form,

see Figure 1. If we relax the coupling constraints within a Lagrangean relaxation,

the remaining matrix decomposes into k independent blocks. Thus, one value L(�)

is the sum of k individual terms that can be determined separately. Often each

single block A

i

models a network flow problem, a knapsack problem or the like

and can thus be solved using special purpose combinatorial algorithms.

3.2.2 Dantzig-Wolfe Decomposition

The idea of decomposition methods is to decouple a set of constraints (variables)

from the problem and treat them at a superordinate level, often called master prob-

lem. The resulting residual subordinate problem can often be solved more effi-

ciently. Decomposition methods now work alternately on the master and subordi-

nate problem and iteratively exchange information to solve the original problem to

optimality. In this section we discuss two well known examples of this approach,

30

Dantzig-Wolfe decomposition and Benders’ decomposition. We will see that as in

the case of Lagrangean relaxation these methods also delete part of the constraint

matrix. But instead of reintroducing this part in the objective function, it is now

reformulated and reintroduced into the constraint system.

Let us start with Dantzig-Wolfe decomposition [23] and consider again (31), where

we assume for the moment that p = 0, i. e., a linear programming problem. Con-

sider the polyhedron P

2

= fx 2 R

n

: A

2

x � b

2

g. It is a well known fact

about polyhedra that there exist vectors v
1

; : : : ; v

k

and e
1

; : : : ; e

l

such that P 2

=

onv(fv

1

; : : : ; v

k

g) + one(fe

1

; : : : ; e

l

g). In other words, x 2 P

2 can be written

in the form

x =

k

X

i=1

�

i

v

i

+

l

X

j=1

�

j

e

j

(36)

with �
1

; : : : ; �

k

� 0;

P

k

i=1

�

i

= 1 and �

1

; : : : ; �

l

� 0. Substituting for x from

(36) we may write (31) as

min

T

(

k

X

i=1

�

i

v

i

+

l

X

j=1

�

j

e

j

)

s.t. A

1

(

k

X

i=1

�

i

v

i

+

l

X

j=1

�

j

e

j

)� b

1

k

X

i=1

�

i

= 1

� 2 R

k

+

; � 2 R

l

+

;

which is equivalent to

min

k

X

i=1

(

T

v

i

)�

i

+

l

X

j=1

(

T

e

j

)�

j

s.t.

k

X

i=1

(A

1

v

i

)�

i

+

l

X

j=1

(A

1

e

j

)�

j

� b

1

k

X

i=1

�

i

= 1

� 2 R

k

+

; � 2 R

l

+

:

(37)

(37) is called the master problem of (31). Comparing formulations (31) and (37)

we see that we reduced the number of constraints from m to m
1

, but obtain k + l

31

variables instead of n. k+ l might be large compared to n, in fact even exponential

(consider for example the unit cube in Rn with 2n constraints and 2

n vertices) so

that there seems to be at first sight no gain in using formulation (37). However,

we can use the simplex algorithm for the solution of (37). For ease of exposition

abbreviate (37) by minfw

T

� : D� = dg with D 2 R

(m

1

+1)�(k+l)

; d 2 R

m

1

+1.

Recall that the simplex algorithm starts with a (feasible) basis B � f1; : : : ; k +

lg; jBj =m

1

+1; with D
B

non-singular and the corresponding (feasible) solution

�

�

B

= D

�1

B

d and �

�

N

= 0, where N = f1; : : : ; k + lg n B. Observe that D
B

2

R

(m

1

+1)�(m

1

+1) is (much) smaller than a basis for the original system (31) and

that only a fraction of the variables (m
1

+1 out of k+ l) are possibly non-zero. In

addition, on the way to an optimal solution the only operation within the simplex

method that involves all columns is the pricing step, where it is checked whether the

reduced costs w
N

� ~y

T

D

N

are non-negative with ~y being the solution of yTD
B

=

w

B

. The non-negativity of the reduced costs can be verified via the following linear

program:

max (

T

� �y

T

A

1

)x

s.t. A

2

x � b

2

x 2 R

n

;

(38)

where �y are the first m
1

components of the solution of ~y. The following cases

might come up:

(i) (38) has an optimal solution ~x with (

T

� �y

T

A

1

)~x < ~y

m

1

+1

.

In this case, ~x is one of the vectors v
i

; i 2 f1; : : : ; kg, with corresponding

reduced cost

w

i

� ~y

T

D

�i

=

T

v

i

� ~y

T

�

A

1

v

i

1

�

=

T

v

i

� �y

T

A

1

v

i

� ~y

m

1

+1

< 0:

In other words,
�

A

1

v

i

1

�

is the entering column within the simplex algorithm.

(ii) (38) is unbounded.

Here we obtain a feasible extreme ray e� with (

T

� �y

T

A

1

)e

�

< 0. e� is one

of the vectors e
j

; j 2 f1; : : : ; lg. It yields a column
�

A

1

e

j

0

�

with reduced

cost

w

k+j

�D

�(k+j)

=

T

e

j

� ~y

T

�

A

1

e

j

0

�

=

T

e

j

� �y

T

(A

1

e

j

) < 0:

That is,
�

A

1

e

j

0

�

is the entering column.

32

� � �

� � �

� � �

Figure 2: Extending Dantzig-Wolfe decomposition to integer programs

(iii) (38) has an optimal solution ~x with (

T

� �y

T

A

1

)

T

~x � ~y

m

1

+1

.

In this case we conclude using the same arguments as in (i) and (ii) that

w

i

� ~y

T

D

�i

� 0 for all i = 1; : : : ; k + l proving that x� is an optimal

solution for the master problem (37).

Observe that the whole problem (31) is decomposed into two problems, i. e., (37)

and (38), and the approach iteratively works on the master level (37) and the sub-

ordinate level (38). The procedure starts with some feasible solution for (37) and

generates new promising columns on demand by solving (38). Such procedures are

commonly called column generation or delayed column generation algorithms.

The approach can also be extended to general integer programs with some cau-

tion. In this case problem (38) turns from a linear to an integer linear program.

In addition, we have to guarantee in (36) that all feasible integer solutions x of

(31) can be generated by (integer) linear combinations of the vectors v
1

; : : : ; v

k

and e

1

; : : : ; e

l

. Hereto, it is not sufficient to require � and � to be integer. Con-

sider as a counterexample the problem maxfx

1

+ x

2

: A

1

x � b

1

; A

2

x � b

2

; x 2

f0; 1; 2g

2

g with A

1

=

�

1 0

0 1

�

, b
1

=

�

1:5

1:5

�

and A

2

= (1; 1); b

2

= 2. In this case,

P

2

= onv(f

�

0

0

�

;

�

2

0

�

;

�

0

2

�

g), see Figure 2, but the optimal solution
�

1

1

�

of the inte-

ger program is not an integer linear combination of the vertices of P 2. However,

with the addition that all variables are 0 � 1, this difficulty does not occur, since

any 0� 1 solution of some 0� 1 polyhedron is always a vertex of that polyhedron.

And in fact, column generation algorithm are not only used for the solution of large

linear programs, but especially for large 0� 1 integer programs.

Of course, the presented Dantzig-Wolfe decomposition for linear or 0 � 1 integer

programs is just one type of column generation algorithms. Others solve the subor-

dinate problem not via general linear or integer programming techniques, but use

combinatorial or sort of explicit enumeration algorithms. Furthermore, the prob-

lem is often not modeled via (31), but directly as in (37). This is, for instance, the

case when the set of feasible solutions have a rather complex description by linear

33

inequalities, but can easily be incorporated into some enumeration scheme.

The application area where Dantzig-Wolfe decomposition or column generation is

used is very broad, for instance in airline crew scheduling, vehicle routing, public

mass transport, network design, to name just a few. Of course, also integer pro-

grams with bordered block diagonal form, see Figure 1, nicely fit into this context.

In contrast to Lagrangean relaxation, where the coupling constraints are relaxed,

Dantzig-Wolfe decomposition keeps these constraints in the master problem and

relaxes the constraints of the blocks having the advantage that (38) decomposes

into independent problems, one for each block.

3.2.3 Benders’ Decomposition

Let us finally turn to Benders’ decomposition [10]. Benders’ decomposition also

deletes part of the constraint matrix, but in contrast to Dantzig-Wolfe decompo-

sition, where we delete part of the constraints and reintroduce them via column

generation, we now delete part of the variables and reintroduce them via cutting

planes. In this respect, Benders’ decomposition is dual to Dantzig-Wolfe decompo-

sition, so one can say, Benders’ reformulation is good in getting rid of complicating

variables. Consider again (1) and write it in the form

min

T

1

x

1

+

T

2

x

2

s.t. A

1

x

1

+A

2

x

2

� b

x

1

2 R

n

1

; x

2

2 R

n

2

;

(39)

where A = [A

1

; A

2

℄ 2 R

m�n

; A

1

2 R

m�n

1

; A

2

2 R

m�n

2

;

1

; x

1

2 R

n

1

;

2

; x

2

2

R

n

2 with n

1

+ n

2

= n. Note that we have assumed for ease of exposition the

case of a linear program. We will see, however, that what follows is still true

if x
1

2 Z

n

1. Our intention is to get rid of the variables x

2

. These variables

prevent (39) from being a pure integer program in case x

1

2 Z

n

1. Also in the

linear programming case they might be the origin for some difficulties, see the

applications below. One well known approach to get rid of variables is projection,

see also the lift-and-project cuts in Section 3.1. In order to apply projection we

must slightly reformulate (39) to

min z

s.t. �z+

T

1

x

1

+

T

2

x

2

� 0

A

1

x

1

+A

2

x

2

� b

z 2 R; x

1

2 R

n

1

; x

2

2 R

n

2

;

(40)

34

Now, (40) is equivalent to

min z

s.t. �uz+u

T

1

x

1

+ v

T

A

1

x

1

� v

T

b

z 2 R; x

1

2 R

n

1

;

�

u

v

�

2 C;

(41)

where

C = f

�

u

v

�

2 R

m+1

: v

T

A

2

+ u

T

2

= 0; u � 0; v � 0g:

C is a polyhedral cone, thus there exist vectors
�

�u

1

�v

1

�

; : : : ;

�

�u

s

�v

s

�

such that C =

one(f

�

�u

1

�v

1

�

; : : : ;

�

�u

s

�v

s

�

g). These extreme rays can be rescaled such that �u
i

is zero

or one. Thus C = one(f

�

0

v

k

�

: k 2 Kg) + one(f

�

1

v

j

�

: j 2 Jg) with K [J =

f1; : : : ; sg and K \ J = ;. With this description of C , (41) can be restated as

min z

s.t. �z�

T

1

x

1

+ v

T

j

(b�A

1

x

1

) for all j 2 J;

0� v

T

k

(b�A

1

x

1

) for all k 2 K;

z 2 R; x

1

2 R

n

1

:

(42)

(42) is called Benders’ master problem. Benders’ master problem has just n
1

+ 1

variables instead of n
1

+n

2

variables in (39), or in case x
1

2 Z

n

1 we have reduced

the mixed integer program (39) to an almost pure integer program (42) with one

additional continuous variable z. However, (42) contains an enormous number of

constraints, in general exponentially many in n. To get around this problem, we

solve Benders’ master problem by cutting plane methods. We start with a small

subset of extreme rays of C (possibly the empty set) and optimize (42) just over

this subset. We obtain an optimal solution x

�

; z

� of the relaxed problem and we

must check whether this solution satisfies all other inequalities in (42). This can be

done via the following linear program

min v

T

(b�A

1

x

�

1

)+u(z

�

�

T

1

x

�

1

)

s.t.
�

u

v

�

2 C:

(43)

(43) is called Benders’ subproblem. It is feasible, since
�

0

0

�

2 C , and (43) has an

optimal solution value of zero or it is unbounded. In the first case, x�
1

; z

� satisfies

all inequalities in (42) and we have solved (42) and thus (39). In the latter case we

35

obtain an extreme ray
�

u

�

v

�

�

from (43) with (v

�

)

T

(b�A

1

x

�

1

) + u

�

(z

�

�

T

1

x

�

1

) < 0

which after rescaling yields a cut for (42) violated by x

�

1

; z

�. We add this cut to

Benders’ master problem (42) and iterate.

Benders’ decomposition is very often implicitly used within cutting plane algo-

rithms, see for instance the derivation of lift-and-project cuts in Section 3.1. Other

application areas are problems whose constraint matrix has bordered block diag-

onal form, where we have coupling variables instead of coupling constraints, see

Figure 3, i. e., the structure of the constraints is the transposed of the structure of

the matrix in Figure 1. Such problems appear, for instance, in stochastic integer

programming. Benders’ decomposition is attractive in this case, because Benders’

subproblem decomposes into k independent problems.

A

1

A

2

. . .

A

k

Figure 3: Matrix in bordered block diagonal form with coupling variables

4 Branch-and-Bound Strategies

Branch-and-bound algorithms for mixed integer programming use a “divide and

conquer” strategy to explore the set of all feasible mixed integer solutions. But in-

stead of exploring the whole feasible set, they make use of lower and upper bounds

and therefore avoid touching certain (large) parts of the space of feasible solutions.

LetX := fx 2 Z

n�p

�R

n

: Ax � bg be the set of feasible mixed integer solutions

of problem (1). If it is too difficult to compute

zMIP = min

T

x

s.t. x 2 X;

(with a cutting plane approach, for instance,) we can split X into a finite number of

subsets X
1

; : : : ;X

k

� X , such that [k
j=1

X

j

= X and then try to solve separately

each of the subproblems

min

T

x

s.t. x 2 X

j

; 8j = 1; : : : ; k:

36

Afterwards we compare the optimal solutions of the subproblems and choose the

best one. Each subproblem might be as difficult as the original problem, so one

tends to solve them by the same method, i. e., splitting the subproblems again into

further sub-subproblems. The (fast-growing) list of all subproblems is usually or-

ganized as a tree, called branch-and-bound tree. This is the branching part of the

branch-and-bound method.

For the bounding part of this method we assume that we can efficiently compute

a lower bound b

X

j

of subproblem X

j

, i. e., b
X

j

� min

x2X

j

T

x. In the case of

mixed integer programming, this lower bound can be obtained by using any re-

laxation method discussed in Section 3. In the following we suppose we have

chosen the LP relaxation method by relaxing the integrality constraints. It occa-

sionally happens in the course of the branch-and-bound algorithm that the optimal

solution ~x

X

~

j

of the LP relaxation of a subproblem X

~

j

is simultaneously a feasible

mixed integer point, i. e., it lies in X . This allows us to maintain an upper bound

U :=

T

~x

X

~

j

on the optimal solution value zMIP of X , as zMIP � U . To have a

good upper bound U is crucial in a branch-and-bound algorithm, because it en-

ables us to keep the branching tree small: Suppose the solution of relaxation of any

other subproblem X

j

satisfies b
X

j

� U . Then subproblem X

j

and further sub-

subproblems derived from X

j

need not be considered further, because the optimal

solution of this subproblem is in no way better than the best feasible solution ~x

X

~

j

corresponding to U . The following algorithm summarizes the whole procedure:

Algorithm 5 (Branch-and-Bound)

1. Let L be the list of unsolved problems. Initialize L with (1). Set U := +1

as upper bound.

2. Choose an unsolved problem X

j

from the list L and delete it from L.

3. Compute the lower bound b

X

j

by solving the linear relaxation. Let ~x
X

j

be

the optimal solution, so b
X

j

:=

T

~x

X

j

.

4. If ~x
X

j

2 Z

p

�R

n�p , problem X

j

is solved and we found a feasible solution of

X

j

; if U > b

X

j

, set U := b

X

j

and delete all subproblems X
i

with b
X

i

� U

from the list.

5. If ~x
X

j

=2 Z

p

�R

n�p , split problem X

j

into subproblems and add them to the

list L.

6. Go to Step 2, until the list is empty.

37

Each (sub)problem X

j

in the list L corresponds to a node in the branch-and-bound

tree, where the unsolved problems are the leaves of the tree and the node that

corresponds to the entire problem (1) is the root.

As crucial as finding a good upper bound is to find a good lower bound. Sometimes

the LP relaxation turns out to be weak, but can be strengthened by adding cutting

planes as discussed in Section 3.1. This combination of finding cutting planes and

branch-and-bound leads to a hybrid algorithm called branch-and-cut algorithm.

Algorithm 6 (Branch-and-Cut)

1. Let L be the list of unsolved problems. Initialize L with (1). Set U := +1

as upper bound.

2. Choose an unsolved problem X

j

from the list L and delete it from L.

3. Compute the lower bound b

X

j

by solving the linear relaxation. Let ~x
X

j

be

the optimal solution, so b
X

j

:=

T

~x

X

j

.

4. If ~x
X

j

2 Z

p

�R

n�p , problem X

j

is solved and we found a feasible solution of

X

j

; if U > b

X

j

, set U := b

X

j

and delete all subproblems X
i

with b
X

i

� U

from the list.

5. If ~x

X

j

=2 Z

p

� R

n�p , look for cutting planes and add them to the linear

relaxation.

6. Go to Step 3, until no more violated inequalities can be found or violated

inequalities have too little impact in improving the lower bound.

7. Split problem X

j

into subproblems and add them to the list L.

8. Go to Step 2, until the list is empty.

In the general outline of the above branch-and-cut algorithm, there are two steps

in the branch-and-bound part that leave some choices. In Step 2 of Algorithm

6 we have to select the next problem (node) from the list of unsolved problems

to work on next, and in Step 7 we must decide on how to split the problem into

subproblems. Popular strategies are to branch on a variable that is closest to 0:5

and to choose a node with the worst dual bound. In this section we briefly discuss

some more alternatives. We will see that they sometimes outperform the mentioned

standard strategy. For a comprehensive study of branch-and-bound strategies we

refer to [50, 52] and the references therein.

38

4.1 Node Selection

In the following we discuss three different strategies to select the node to be pro-

cessed next, see Step 3 of Algorithm 6.

Best First Search (bfs). Here, a node is chosen with the worst dual bound, i. e.,

a node with lowest lower bound, since we are minimizing in (1). The goal

is to improve the dual bound. However, if this fails early in the solution

process, the branch-and-bound tree tends to grow considerably resulting in

large memory requirements.

Depth First Search (dfs). This rule chooses some node that is “deepest” in the

branch-and-bound tree, i. e., whose path to the root is longest. The advan-

tages are that the tree tends to stay small, since always one of the two sons

are processed next, if the node could not be fathomed. This fact also im-

plies that the linear programs from one node to the next are very similar,

usually the difference is just the change of one variable bound and thus the

reoptimization goes fast. The main disadvantage is that the dual bound ba-

sically stays untouched during the solution process resulting in bad solution

guarantees.

Best Projection. When selecting a node the most important question is, where

are the good (optimal) solutions hidden in the branch-and-bound tree? In

other words, is it possible to guess at some node whether it contains a better

solution? Of course, this is not possible in general. But, there are some rules

that evaluate the nodes according to the potential of having a better solution.

One such rule is best projection. The earliest reference we found for this rule

is a paper of Mitra [60] who gives the credit to J. Hirst. Let z(p) be the dual

bound of some node p, z(root) the dual bound of the root node, �zIP the value

of the current best primal solution, and s(p) the sum of the infeasibilities at

node p, i. e., s(p) =
P

i2N

minf�x

i

�b�x

i

; d�x

i

e��x

i

g, where �x is the optimal

LP solution of node p and N the set of all integer variables. Let

%(p) = z(p) +

�zIP � z(root)

s(root)
� s(p): (44)

The term
�zIP�z(root)

s(root)
can be viewed as a measure for the change in the ob-

jective function per unit decrease in infeasibility. The best projection rule

selects the node that minimizes %(�).

The computational tests in [58] show that dfs finds by far the maximal number

of feasible solutions. This indicates that feasible solutions tend to lie deep in the

39

branch-and-bound tree. In addition, the number of simplex iterations per LP is on

average much smaller (around one half) for dfs than using bfs or best projection.

This confirms our statement that reoptimizing a linear program is fast when just

one variable bound is changed. However, dfs forgets to work on the dual bound.

For many more difficult problems the dual bound is not improved resulting in very

bad solution guarantees compared to the other two strategies. Best projection and

bfs are doing better in this respect. There is no clear winner between the two, some-

times best projection outperforms bfs, but on average bfs is the best. Linderoth and

Savelsbergh [52] compare further node selection strategies and come to a similar

conclusion that there is no clear winner and that a sophisticated MIP solver should

allow many different options for node selection.

4.2 Variable Selection

In this section we discuss rules on how to split a problem into subproblems, if it

could not be fathomed in the branch-and-bound tree, see Step 7 of Algorithm 6.

The only way to split a problem within an LP based branch-and-bound algorithm

is to branch on linear inequalities in order to keep the property of having an LP

relaxation at hand. The easiest and most common inequalities are trivial inequal-

ities, i. e., inequalities that split the feasible interval of a singleton variable. To be

more precise, if j is some variable with a fractional value �x

j

in the current opti-

mal LP solution, we obtain two subproblems, one by adding the trivial inequality

x

j

� b�x

j

 (called the left subproblem or left son) and one by adding the triv-

ial inequality x

j

� d�x

j

e (called the right subproblem or right son). This rule of

branching on trivial inequalities is also called branching on variables, because it

actually does not require to add an inequality, but only to change the bounds of

variable j. Branching on more complicated inequalities or even splitting the prob-

lem into more than two subproblems are rarely incorporated into general solvers,

but turn out to be effective in special cases, see, for instance, [16, 19, 61]. In the

following we present three variable selection rules.

Most Infeasibility. This rule chooses the variable that is closest to 0:5. The heuris-

tic reason behind this choice is that this is a variable where the least ten-

dency can be recognized to which “side” (up or down) the variable should

be rounded. The hope is that a decision on this variable has the greatest

impact on the LP relaxation.

Pseudo-costs. This is a more sophisticated rule in the sense that it keeps a history

of the success of the variables on which one has already branched. To in-

troduce this rule, which goes back to [11], we need some notation. Let P

denote the set of all problems (nodes) except the root node that have already

40

been solved in the solution process. Initially, this set is empty. P+ denotes

the set of all right sons, and P� the set of all left sons, where P = P

+

[P

�.

For some problem p 2 P let

f(p) be the father of problem p.

v(p) be the variable that has been branched on to obtain problem

p from the father f(p).

x(p) be the optimal solution of the final linear program at node p.

z(p) be the optimal objective function value of the final linear pro-

gram at node p.

The up pseudo-cost of variable j 2 N is

�

+

(j) =

1

jP

+

j

j

X

p2P

+

j

z(p)� z(f(p))

dx

v(p)

(f(p))e � x

v(p)

(f(p))

; (45)

where P+

j

� P

+. The down pseudo-cost of variable j 2 N is

�

�

(j) =

1

jP

�

j

j

X

p2P

�

j

z(p)� z(f(p))

x

v(p)

(f(p))� bx

v(p)

(f(p))

; (46)

where P�

j

� P

�. The terms

z(p)�z(f(p))

dx

v(p)

(f(p))e�x

v(p)

(f(p))

and

z(p)�z(f(p))

x

v(p)

(f(p))�bx

v(p)

(f(p))

;

respectively, measure the change in the objective function per unit decrease

of infeasibility of variable j. There are many suggestions made on how to

choose the sets P+

j

and P�

j

, for a survey see [52]. To name one possibility,

following the suggestion of Eckstein [26] one could choose P+

j

:= fp 2

P

+

: v(p) = jg and P

�

j

:= fp 2 P

�

: v(p) = jg, if j has already been

considered as a branching variable, otherwise set P+

j

:= P

+ and P

�

j

:=

P

�. It remains to discuss how to weight the up and down pseudo-costs

against each other to obtain the final pseudo-costs according to which the

branching variable is selected. Here one typically sets

�(j) = �

+

j

�

+

(j) + �

�

j

�

�

(j); (47)

where �+

j

; �

�

j

are positive scalars. A variable that maximizes (47) is chosen

to be the next branching variable. As formula (47) shows, the rule takes the

41

previously obtained success of the variables into account when deciding on

the next branching variable. The weakness of this approach is that at the

very beginning there is no information available, and �(�) is almost identical

for all variables. Thus, at the beginning where the branching decisions are

usually the most critical the pseudo-costs take no effect. This drawback is

tried to overcome in the following rule.

Strong Branching. The idea of strong branching, invented by CPLEX [44] (see

also [4]), is before actually branching on some variable to test whether it

indeed gives some progress. This testing is done by fixing the variable tem-

porarily to its up and down value, i. e., to d�x
j

e and b�x
j

 if �x
j

is the fractional

LP value of variable j, performing a certain fixed number of dual simplex it-

erations for each of the two settings, and measuring the progress in the objec-

tive function value. The testing is done, of course, not only for one variable

but for a certain set of variables. Thus, the parameters of strong branching to

be specified are the size of the candidate set, the maximum number of dual

simplex iterations to be performed on each candidate variable, and a crite-

rion according to which the candidate set is selected. Needless to say that

each MIP solver has its own parameter settings, all are of heuristic nature

and that their justification are based only on experimental results.

The computational experiences in [58] show that branching on a most infeasible

variable is by far the worst, measured in CPU time, in solution quality as well as

in the number of branch-and-bound nodes. Using pseudo-costs gives much better

results. The power of pseudo-costs becomes in particular apparent if the number

of solved branch-and-bound nodes is large. In this case the function �(�) prop-

erly represents the variables that are qualified for branching. In addition, the time

necessary to compute the pseudo-costs is basically for free. The statistics change

when looking at strong branching. Strong branching is much more expensive than

the other two strategies. This comes as no surprise, since in general the average

number of dual simplex iterations per linear program is very small (for the Mi-

plib, for instance, below 10 on average). Thus, the testing of a certain number

of variables (even if it is small) in strong branching is relatively expensive. On the

other hand, the number of branch-and-bound nodes is much smaller (around one

half) compared to the pseudo-costs strategy. This decrease, however, does not com-

pletely compensate the higher running times for selecting the variables in general.

Thus, strong branching is normally not used as a default strategy, but can be a good

choice for some hard instances. A similar report is given in [52], where Linderoth

and Savelsbergh conclude that there is no branching rule that clearly dominates the

others, though pseudo-cost strategies are essential to solve many instances.

42

4.3 Further Aspects

In the remainder of this section we discuss some additional issues that can be found

in basically every state-of-the-art branch-and-cut implementation.

LP Management. The method that is commonly used to solve the LPs within a

branch-and-cut algorithm is the dual simplex algorithm, because an LP basis

stays dual feasible when adding cutting planes. There are fast and robust lin-

ear programming solvers available, see, for instance, [45, 24]. Nevertheless,

one major aspect in the design of a branch-and-cut algorithm is to control

the size of the linear programs. To this end, inequalities are often assigned

an “age” (at the beginning the age is set to 0). Each time the inequality is

not tight at the current LP solution, the age is increased by one. If the in-

equality gets too old, i. e., the age exceeds a certain limit, the inequality is

eliminated from the LP. The value for this “age limit” varies from applica-

tion to application. Another issue of LP management concerns the questions:

When should an inequality be added to the LP? When is an inequality con-

sidered to be “violated”? And, how many and which inequalities should be

added? The answers to these questions again depend on the application. It

is clear that one always makes sure that no redundant inequalities are added

to the linear program. A commonly used data structure in this context is the

pool. Violated inequalities that are added to the LP are stored in this data

structure. Also inequalities that are eliminated from the LP are restored in

the pool. Reasons for the pool are to reconstruct the LPs when switching

from one node in the branch-and-bound tree to another and to keep inequal-

ities that were “expensive” to separate for an easier excess in the ongoing

solution process.

Heuristics. Raising the lower bound using cutting planes is one important aspect

in a branch-and-cut algorithm, finding good feasible solutions early to en-

able fathoming of branches of the search-tree is another. Primal heuristics

strongly depend on the application. A very common way to find feasible so-

lutions for general mixed integer programs is to “plunge” from time to time

at some node of the branch-and-bound tree, i. e., to dive deeper into the tree

and look for feasible solutions. This plunging is done by alternatingly round-

ing/fixing some variables and solving linear programs, until all variables are

fixed, the LP is infeasible, a feasible solution has been found, or the LP

value exceeds the current best solution. This rounding heuristic can be de-

tached from the regular branch-and-bound enumeration phase or considered

within the global enumeration phase. The complexity and the sensitivity to

the change of the LP solutions influences the frequency in which the heuris-

43

tics are called. Some more information hereto can be found, for instance, in

[58, 21, 14].

Reduced Cost Fixing. The idea is to fix variables by exploiting the reduced costs

of the current optimal LP solution. Let �z =

T

�x be the objective function

value of the current LP solution, zIP be an upper bound on the value of the op-

timal solution, and d = (d

i

)

i=1;::: ;n

the corresponding reduced cost vector.

Consider a non-basic variable x
i

of the current LP solution with finite lower

and upper bounds l
i

and u

i

, and non-zero reduced cost d
i

. Set Æ =

z

IP
��z

jd

i

j

,

rounded down in case x
j

is a binary or an integer variable. Now, if x
i

is

currently at its lower bound l
i

and l
i

+ Æ < u

i

, the upper bound of x
i

can be

reduced to l
i

+Æ. In case x
i

is at its upper bound u
i

and u
i

�Æ > l

i

, the lower

bound of variable x
i

can be increased to u
i

� Æ. In case the new bounds l
i

and u

i

coincide, the variable can be fixed to its bounds and removed from

the problem. This strengthening of the bounds is called reduced cost fixing.

It was originally applied for binary variables [22], in which case the vari-

able can always be fixed if the criterion applies. There are problems where

by the reduced cost criterion many variables can be fixed, see, for instance,

[28]. Sometimes, further variables can be fixed by logical implications, for

example, if some binary variable x
i

is fixed to one by the reduced cost cri-

terion and it is contained in an SOS constraint (i. e., a constraint of the form
P

j2J

x

j

� 1 with non-negative variables x
j

; j 2 J), all other variables in

this SOS constraint can be fixed to zero.

5 Final Remarks

In this paper we described the state-of-the-art in solving general mixed integer

programs where we put our emphasis on the branch-and-cut method.

In Section 2 we explained in detail preprocessing techniques and some ideas used

in structure analysis. These are however just two steps, though important, in an-

swering the question on how information that is inherited in a problem can be

carried over to the MIP solver. The difficulty is that the only “language” that MIP

solvers understand and in which information can be transmitted are inequalities:

The MIP solver gets as input some formulation as in (1). But such a formulation

might be worse than others as we have seen for the Steiner tree problem in Section

2 and there is basically no way to reformulate (2) into (3) if no additional informa-

tion like ‘this is a Steiner tree problem’ is given. In other words, there are further

tools necessary that allow to transmit such information. Modeling languages like

AMPL [29] or ZIMPL [48] are going in this direction, but more needs to be done.

44

In Section 3 we described several relaxation methods where we mainly concen-

trated on cutting planes. Although the cutting plane method is among the most

successful to solve general mixed integer programs, it is not the only one and there

is pressure of competition from various sides like semidefinite programming, Go-

mory’s group approach, basis reduction or primal approaches, see the various chap-

ters in this handbook. We explained the most frequently used cutting planes with

general MIP solvers, Gomory cuts, mixed integer rounding cuts, lift-and-project

cuts as well as knapsack and set packing cutting planes. Of course, there are more

and the interested reader will find a comprehensive survey in [55].

Finally, we discussed the basic strategies used in enumerating the branch-and-

bound tree. We have seen that they have a big influence on the performance. A

bit disappointing from a mathematical point of view is that these strategies are

only evaluated computationally and that there is no theoretical proof that tells that

one strategy is better than another.

All in all, mixed integer programming solvers have got much better during the last

years. Their success lies in the fact that they gather more and more knowledge

from the solution of special purpose problems and incorporate it into their codes.

This process will and must continue to push the frontier of solvability further and

further.

Software

The whole paper was about the features of current mixed integer programming

solvers. So we do not want to conclude without mentioning some of them. Due

to the rich variety of applications and problems that can be modeled as mixed

integer programs, it is not in the least surprising that many codes exist and not just

a view of them are business oriented. From time to time, the INFORMS newsletter

OR/MS Today gives a survey on currently available commercial linear and integer

programming solvers, see for instance [76].

The following list shows software where we know that it has included many of the

aspects that are mentioned in this paper: ABACUS, developed at the University of

Cologne [79], provides a branch-and-cut framework mainly for combinatorial op-

timization problems, bc-opt, developed at CORE [20], is very strong for mixed

0 � 1 problems, CPLEX, developed at Incline Village [14, 45], is one of the cur-

rently best commercial codes, MINTO, developed at Georgia Institute of Technol-

ogy [62], is excellent in cutting planes and has included basically all the mentioned

cutting planes and more, MIPO, developed at Columbia University [7], is very good

in lift-and-project cuts, SIP developed at Darmstadt University of Technology and

ZIB, is the software of the authors, SYMPHONY, developed at Cornell University

and Lehigh University [72], has its main focus on providing a parallel framework,

45

and XPRESS-MP, developed at DASH [24], is also one of the best commercial

codes.

References

[1] K. Aardal, Y. Pochet, and L.A. Wolsey. Capacitated facility location: valid inequali-

ties and facets. Mathematics of Operations Research, 20:562 – 582, 1995.

[2] K. Aardal, R. Weismantel, and L.A. Wolsey. Non-standard approaches to integer pro-

gramming. Technical Report CORE DP2000/2, Université Catholique de Louvain,

Louvain-la-Neuve, Belgium, 2000.

[3] E.D. Andersen and K.D. Andersen. Presolving in linear programming. Mathematical

Programming, 71:221 – 245, 1995.

[4] D. Applegate, R.E. Bixby, V. Chvátal, and W. Cook. Finding cuts in the TSP. Tech-

nical Report 95-05, DIMACS, March 1995.

[5] E. Balas. Facets of the knapsack polytope. Mathematical Programming, 8:146 – 164,

1975.

[6] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for

mixed 0� 1 programs. Mathematical Programming, 58:295–324, 1993.

[7] E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-project in

a branch-and-cut framework. Management Science, 42:1229 – 1246, 1996.

[8] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomory cuts revisited. Operations

Research Letters, 19:1 – 9, 1996.

[9] E. Balas and E. Zemel. Facets of the knapsack polytope from minimal covers. SIAM

Journal on Applied Mathematics, 34:119 – 148, 1978.

[10] J.F. Benders. Partitioning procedures for solving mixed variables programming. Nu-

merische Mathematik, 4:238–252, 1962.

[11] M. Benichou, J.M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent.

Experiments in mixed-integer programming. Mathematical Programming, 1:76 –

94, 1971.

[12] R.E. Bixby. Lectures on Linear Programming. Rice University, Houston, Texas,

Spring 1994.

[13] R.E. Bixby, S. Ceria, C. McZeal, and M.W.P. Savelsbergh. An updated mixed integer

programming library: MIPLIB 3.0. Paper and Problems are available at WWW Page:

http://www.caam.rice.edu/�bixby/miplib/miplib.html, 1998.

[14] R.E. Bixby, M. Fenelon, Z. Guand E. Rothberg, and R. Wunderling. MIP: Theory

and practice closing the gap. Technical report, ILOG Inc., Paris, France, 1999.

[15] R. Borndörfer. Aspects of Set Packing, Partitioning, and Covering. Shaker, Aachen,

1998.

46

[16] R. Borndörfer, C.E. Ferreira, and A. Martin. Decomposing matrices into blocks.

SIAM Journal on Optimization, 9:236 – 269, 1998.

[17] S. Ceria, C. Cordier, H. Marchand, and L.A. Wolsey. Cutting planes for integer

programs with general integer variables. Mathematical Programming, 81:201 – 214,

1998.

[18] S. Chopra and M.R. Rao. The Steiner tree problem I: Formulations, compositions

and extension of facets. Mathematical Programming, 64:209 – 229, 1994.

[19] J.M. Clochard and D. Naddef. Using path inequalities in a branch-and-cut code for

the symmetric traveling salesman problem. In L.A. Wolsey and G. Rinaldi, editors,

Proceedings on the Third IPCO Conference, pages 291–311, 1993.

[20] C. Cordier, H. Marchand, R. Laundy, and L.A. Wolsey. bc – opt: a branch-and-

cut code for mixed integer programs. Technical Report CORE DP9778, Université

Catholique de Louvain, Louvain-la-Neuve, Belgium, 1997.

[21] C. Cordier, H. Marchand, R. Laundy, and L.A. Wolsey. bc – opt: a branch-and-cut

code for mixed integer programs. Mathematical Programming, 86:335 – 354, 1999.

[22] H. Crowder, E. Johnson, and M.W. Padberg. Solving large-scale zero-one linear

programming problems. Operations Research, 31:803–834, 1983.

[23] G.B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations

Research, 8:101–111, 1960.

[24] DASH Optimization, Blisworth House, Church Lane, Blisworth, Northants NN7

3BX, UK. XPRESS-MP Optimisation Subroutine Library, 2001. Information avail-

able at URL http://www.dash.co.uk.

[25] I.R. de Farias, E.L. Johnson, and G.L. Nemhauser. Facets of the complementarity

knapsack polytope. Technical Report LEC-98-08, Georgia Institute of Technology,

1998.

[26] J. Eckstein. Parallel branch-and-bound algorithms for general mixed integer pro-

gramming on the CM-5. SIAM Journal on Optimization, 4:794 – 814, 1994.

[27] C.E. Ferreira. On Combinatorial Optimization Problems Arising in Computer System

Design. PhD thesis, Technische Universität Berlin, 1994.

[28] C.E. Ferreira, A. Martin, and R. Weismantel. Solving multiple knapsack problems

by cutting planes. SIAM Journal on Optimization, 6:858 – 877, 1996.

[29] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language for Math-

ematical Programming. Duxbury Press / Brooks/Cole Publishing Company, 1993.

[30] D.R. Fulkerson. Blocking and Anti-Blocking Pairs of Polyhedra. Mathematical

Programming, 1:168–194, 1971.

[31] R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bul-

letin of the American Society, 64:275 – 278, 1958.

47

[32] R.E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-

2597, The RAND Cooperation, 1960.

[33] R.E. Gomory. Solving linear programming problems in integers. In R. Bellman

and M. Hall, editors, Combinatorial analysis, Proceedings of Symposia in Applied

Mathematics, volume 10, Providence RI, 1960.

[34] J. Gondzio. Presolve analysis of linear programs prior to apply an interior point

method. INFORMS Journal on Computing, 9:73 – 91, 1997.

[35] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial

Optimization. Springer, 1988.

[36] M. Grötschel, C.L. Monma, and M. Stoer. Computational results with a cutting plane

algorithm for designing communication networks with low-connectivity constraints.

Operations Research, 40:309 – 330, 1992.

[37] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Cover inequalities for 0� 1 linear

programs: complexity. INFORMS Journal on Computing, 11:117 – 123, 1998.

[38] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Cover inequalities for 0� 1 linear

programs: computation. INFORMS Journal on Computing, 10:427 – 437, 1998.

[39] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Lifted flow cover inequalities for

mixed 0-1 integer programs. Mathematical Programming, 85:439 – 468, 1999.

[40] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Sequence independent lifting in

mixed integer programming. Journal on Combinatorial Optimization, 4:109 – 129,

2000.

[41] P.L. Hammer, E.L. Johnson, and U.N. Peled. Facets of regular 0-1 polytopes. Math-

ematical Programming, 8:179 – 206, 1975.

[42] M. Held and R. Karp. The traveling-salesman problem and minimum spanning trees:

Part ii, 1971.

[43] K.L. Hoffman and M.W. Padberg. Improved LP-representations of zero-one linear

programs for branch-and-cut. ORSA Journal on Computing, 3:121–134, 1991.

[44] ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451,

USA. Using the CPLEX Callable Library, 1997. Information available at URL

http://www.cplex.com.

[45] ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451,

USA. Using the CPLEX Callable Library, 2000. Information available at URL

http://www.cplex.com.

[46] E. Johnson and M.W. Padberg. A note on the knapsack problem with special ordered

sets. Operations Research Letters, 1:18 – 22, 1981.

[47] D. Klabjan, G.L. Nemhauser, and C. Tovey. The complexity of cover inequality

separation. Operations Research Letters, 23:35 – 40, 1998.

48

[48] T. Koch. ZIMPL user guide. Technical Report Preprint 01-20, Konrad-Zuse-Zentrum

für Informationstechnik Berlin, 2001.

[49] T. Koch, A. Martin, and S. Voß. SteinLib: An updated library on Steiner tree prob-

lems in graphs. Preprint Nr. 2135, Darmstadt University of Technology, Department

of Mathematics, December 2000. To appear in Steiner trees in Industry.

[50] A. Land and S. Powell. Computer codes for problems of integer programming. An-

nals of Discrete Mathematics, 5:221 – 269, 1979.

[51] C. Lemaréchal and A. Renaud. A geometric study of duality gaps, with applications.

Mathematical Programming, 90:399 – 427, 2001.

[52] J.T. Linderoth and M.W.P. Savelsbergh. A computational study of search strategies

for mixed integer programming. INFORMS Journal on Computing, 11:173 – 187,

1999.

[53] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0� 1 optimiza-

tion. SIAM Journal on Optimization, 1:166 – 190, 1991.

[54] H. Marchand. A Polyhedral Study of the Mixed Knapsack Set and its Use to Solve

Mixed Integer Programs. PhD thesis, Université Catholique de Louvain, Louvain-la-

Neuve, Belgium, 1998.

[55] H. Marchand, A. Martin, R. Weismantel, and L.A. Wolsey. Cutting planes in inte-

ger and mixed integer programming. Technical Report CORE DP9953, Université

Catholique de Louvain, Louvain-la-Neuve, Belgium, 1999.

[56] H. Marchand and L.A. Wolsey. Aggregation and mixed integer rounding to solve

MIPs. Technical Report CORE DP9839, Université Catholique de Louvain, Louvain-

la-Neuve, Belgium, 1998.

[57] H. Marchand and L.A. Wolsey. The 0�1 knapsack problem with a single continuous

variable. Mathematical Programming, 85:15 – 33, 1999.

[58] A. Martin. Integer programs with block structure. Habilitations-Schrift, Technische

Universität Berlin, 1998.

[59] A. Martin and R. Weismantel. The intersection of knapsack polyhedra and exten-

sions. In R.E. Bixby, E.A. Boyd, and R.Z.Ríos-Mercado, editors, Integer Program-

ming and Combinatorial Optimization, Proceedings of the 6th IPCO Conference,

pages 243 – 256, 1998.

[60] G. Mitra. Investigations of some branch and bound strategies for the solution of

mixed integer linear programs. Mathematical Programming, 4:155 – 170, 1973.

[61] D. Naddef. Polyhedral theory and branch-and-cut algorithms for the symmetric tsp.

In G. Gutin and A. Punnen, editors, The Traveling Salesman Problem and its Varia-

tions. Kluwert, 2001. To appear.

[62] G.L. Nemhauser, M.W.P. Savelsbergh, and G.C. Sigismondi. MINTO, a Mixed IN-

Teger Optimizer. Operations Research Letters, 15:47 – 58, 1994.

49

[63] G.L. Nemhauser and P. H. Vance. Lifted cover facets of the 0� 1 knapsack polytope

with GUB constraints. Operations Research Letters, 16:255 – 263, 1994.

[64] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley,

1988.

[65] G.L. Nemhauser and L.A. Wolsey. A recursive procedure to generate all cuts for 0�1

mixed integer programs. Mathematical Programming, 46:379 – 390, 1990.

[66] M.W. Padberg. On the facial structure of set packing polyhedra. Mathematical Pro-

gramming, 5:199–215, 1973.

[67] M.W. Padberg. A note on zero-one programming. Operations Research, 23:833–837,

1975.

[68] M.W. Padberg. (1; k)-configurations and facets for packing problems. Mathematical

Programming, 18:94–99, 1980.

[69] M.W. Padberg. Classical cuts for mixed-integer programming and branch-and-cut.

Technical report, New York University, 2000. To appear in MMOR.

[70] M.W. Padberg, T.J. Van Roy, and L.A. Wolsey. Valid inequalities for fixed charge

problems. Operations Research, 33:842 – 861, 1985.

[71] Y. Pochet. Valid inequalities and separation for capacitated economic lot-sizing. Op-

erations Research Letters, 7:109 – 116, 1988.

[72] T.K. Ralphs. SYMPHONY Version 2.8 User’s Manual, September 2000. Information

available at http://www.lehigh.edu/ inime/ralphs.htm.

[73] T.J. Van Roy and L.A. Wolsey. Valid inequalities for mixed 0-1 programs. Discrete

Applied Mathematics, 4:199 – 213, 1986.

[74] T.J. Van Roy and L.A. Wolsey. Solving mixed integer programming problems using

automatic reformulation. Operations Research, 35:45 – 57, 1987.

[75] A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester, 1986.

[76] R. Sharda. Linear programming solver software for personal computers: 1995 report.

OR/MS Today, 22(5):49 – 57, 1995.

[77] H. Sherali and W. Adams. A hierarchy of relaxations between the continuous and

convex hull representations for zero-one programming problems. SIAM Journal of

Discrete Mathematics, 3:411–430, 1990.

[78] U.H. Suhl and R. Szymanski. Supernode processing of mixed-integer models. Com-

putational Optimization and Applications, 3:317 – 331, 1994.

[79] S. Thienel. ABACUS A Branch-And-CUt System. PhD thesis, Universität zu Köln,

1995.

[80] R. Weismantel. On the 0/1 knapsack polytope. Mathematical Programming, 77:49–

68, 1997.

50

[81] L.A. Wolsey. Faces of linear inequalities in 0-1 variables. Mathematical Program-

ming, 8:165 – 178, 1975.

[82] L.A. Wolsey. Valid inequalities for 0-1 knapsacks and MIPs with generalized upper

bound constraints. Discrete Applied Mathematics, 29:251–261, 1990.

[83] E. Zemel. Easily computable facets of the knapsack polytope. Mathematics of Oper-

ations Research, 14:760 – 764, 1989.

51

