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Abstra
t

Using a 
hara
terisation of maximal L

p

-regularity by R-bounded operator families

we prove global in time estimates in L

p

(R

+

;L

q

(
)); 1 < p; q <1; for solutions of the

instationary Stokes system in an aperture domain 
 � R

n

; n � 3; with �
 2 C

1;1

:

The results are applied to obtain new global in time estimates for weak solutions of

the Navier-Stokes equations with nonvanishing 
ux through the aperture.

AMS 
lassi�
ation: 35Q30, 35D05, 47D06

1 Introdu
tion

For n � 3 and d � 0 let R

n

�

= fx = (x

1

; : : : ; x

n

) 2 R

n

: �x

n

> d=2g. Then an open


onne
ted set 
 � R

n

is 
alled an aperture domain if there is a bounded set B � R

n

su
h

that 
 [B = R

n

+

[ R

n

�

[B: We assume �
 2 C

1;1

:
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ements




M
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Figure 1: An aperture domain

For a smooth bounded (n�1)-dimensional manifoldM with unit normal ve
tor � dire
ted

downwards dividing 
 into two 
onne
ted 
omponents 


�

and a solenoidal, suÆ
iently

smooth ve
tor �eld u : 
 ! R

n

the 
ux of u through the aperture is de�ned by �(u) =

R

M

u � � d�.

In an aperture domain we 
onsider the instationary Navier-Stokes system

u

t

+ (u;ru)��u+rp = f; divu = 0 in R

+

� 
 (1)

u = 0 on �
; u(x; 0) = u

0

(x) in 
: (2)

In [5℄ M. Franzke 
onstru
ted a global weak solution with pres
ribed 
ux �(u) = � under

suitable assumptions on the data in the 
ase n = 3. Here we are interested in global
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estimates in L

s

(0; T ;L

q

(
))�spa
es of u

t

;r

2

u;rp for su
h a weak solution. This kind of

estimate was obtained in [10℄ for the whole spa
e, the half spa
e, bounded and exterior

domains for exponents 1 < s; q < 1 satisfying 2=s + n=q = n + 1: However, if 
 is an

aperture domain a new e�e
t o

urs in the 
ase �(u) 6= 0 : The 
onditions 2=s+n=q = n+1

and s > 1 yield q < n

0

:= n=(n � 1); but for q � n

0

a solenoidal ve
tor �eld u 2 L

q

(
)

n

ne
essarily has vanishing 
ux (see [2℄, [5℄). Therefore in the 
ase �(u) 6= 0 the regularity

result 
an not be the same as for the domains 
onsidered in [10℄. We have to use the sum

of spa
es L

s

(R

+

;L

q

) + L

r

(R

+

;L

�

) for 1 < s; q; r; � <1; 2=s+ n=q = n+ 1; � > n

0

:

Writing for simpli
ity L

s

(R

+

;L

q

) for L

s

(R

+

;L

q

(
)

N

) regardless ofN 2 N and denoting

the respe
tive norm by k � k

s;q

the result reads as follows:

Theorem 1.1 Let 
 � R

n

; n � 3; be an aperture domain with boundary of 
lass C

1;1

,

let 1 < s; q; r < 1; 2=s + n=q = n + 1 and assume f 2 L

s

(R

+

;L

q

); u

0

2 L

[s;q℄

�

(
) and

� 2W

1;r

(R

+

) with �(u

0

) = �(0). Let u be a weak solution of the Navier-Stokes equations

(1)-(2) with 
ux �(u) = � and let rp be the asso
iated pressure gradient. Then

u

t

; r

2

u;rp 2 L

s

(R

+

;L

q

) +

\

�>n

0

L

r

(R

+

;L

�

): (3)

The respe
tive norms of u

t

; r

2

u;rp in L

s

(R

+

;L

q

)+L

r

(R

+

;L

�

) for � > n

0


an be estimated

by a 
onstant C

s;r;q;�

> 0 times

kfk

s;q

+ kuk

2�2=s

2;1

kruk

2=s

2;2

+ ku

0

k

[s;q℄;�

+ k�k

W

1;r

(R

+

)

: (4)

If � = 0 it holds u

t

;r

2

u;rp 2 L

s

(R

+

;L

q

):

Here L

[s;q℄

�

(
) denotes an appropriate spa
e for the initial value with norm k�k

[s;q℄;�

de�ned

in Se
tion 4 below. For the pre
ise de�nition of a weak solution of the Navier-Stokes

equations with 
ux � see Se
tion 5 below.

As in [10℄ our proof of global L

s

(R

+

;L

q

)-estimates for the Navier Stokes equations

rests on L

s

(R

+

;L

q

)-estimates of the instationary Stokes system

u

t

��u+rp = f; divu = 0 in R

+

� 
 (5)

u

�

�

�


= 0; u(0) = u

0

; �(u) = �: (6)

In [8℄ the a priori estimate

Z

T

0

f ku

t

k

s

q

+ kr

2

uk

s

q

+ krpk

s

q

g dt � C

�

Z

T

0

kfk

s

q

dt+ ku

0

k

s

[s;q℄

+ k�k

s

W

1;s

(0;T )

�

; (7)

for 0 < T < 1 with C = C

T

> 0 is proved. But it has remained open if the 
onstant

C = C

T

in (7) 
an be 
hosen independently of T 2 (0;1): The aim of this paper is not

only to give a positive answer to this question but also to improve the new method of

proof from [8℄ whi
h rests on resolvent estimates in weighted L

q

-spa
es for Mu
kenhoupt

weights.

It is well known from semigroup theory that the behaviour of the solution of the

instationary Stokes system for large times 
orresponds to the behaviour of the solution of

the Stokes resolvent system

�u��u+rp = f; divu = 0 in 
; u = 0 on �
 (8)
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for small values of the modulus of � 2 �

"

:= f� 2 C n f0g : jarg �j < � � " g; 0 < " <

�

2

.

The idea used in [8℄ to prove (7) is as follows: An abstra
t theorem on maximal

L

p

-regularity (see [11℄, [12℄ or Theorem 4.3 below) is 
ombined with the fa
t that for L

q

-

spa
es the assumptions of this theorem 
an be veri�ed by using weighted L

q

-estimates of

the 
orresponding resolvent problem. To be more spe
i�
, for 1 < q < 1 and a weight

! 2 A

q

in the Mu
kenhoupt 
lass (see De�ntion 2.1) de�ne the weighted L

q

-spa
e

L

q

!

(
) = fu 2 L

1

lo


(
) : kuk

q

q;!

:=

Z




juj

q

! dx <1g:

Then by [8℄ the validity of the estimate

k�uk

q;!

� C kfk

q;!

; � 2 �

"

; j�j � Æ > 0 (9)

in (8) for all weights ! 2 A

q

together with the fa
t that C = C

";Æ

(!) depends only on the

A

q

-
onstant (see De�nition 2.1) of the weight ! 2 A

q

implies (7). The dependen
e of C

in (9) on Æ > 0 
orresponds to the (possible) dependen
e of the 
onstant C in (7) on T .

In the 
ase without weights in [2℄ the resolvent estimate (9) was proved with a 
onstant

C independent of Æ > 0. The proof rests on a uniqueness assertion for the stationary

Stokes system and on Sobolev imbedding inequalities. In order to transfer this approa
h

to the weighted situation we need weighted Sobolev inequalities, whi
h require additional

restri
tions on the 
lass of weight fun
tions; therefore we are not able to verify the estimate

(9) with a 
onstant independent of Æ > 0 for all Mu
kenhoupt weights ! 2 A

q

.

A
tually a smaller 
lass of weights turns out to be suÆ
ient: Let

�

A

q

= A

1

[f!

�1=(q

0

�1)

:

! 2 A

1

g � A

q

for 1 < q < 1; 1=q + 1=q

0

= 1. We observe that (7) follows for all

1 < s; q < 1 from the resolvent estimate (9) for q = 2 and for all weights ! 2

�

A

2

with

a 
onstant C independent of Æ > 0 and depending only on the A

1

-
onstant of ! (see

Theorem 4.2 below). Indeed, we have weighted Sobolev inequalities at hand to prove (9)

with a 
onstant independent of Æ > 0 for n

0

< q < n and all weight fun
tions in

�

A

q

:

2 Preliminaries

A 
ube Q is a subset of R

n

of the form �

n

j=1

I

j

; where I

1

; : : : ; I

n

� R are bounded intervals

of the same length.

De�nition 2.1 Let 1 < q <1. A fun
tion 0 � ! 2 L

1

lo


(R

n

) is 
alled A

q

-weight, if

A

q

(!) := sup

Q

�

1

jQj

Z

Q

! dx

��

1

jQj

Z

Q

!

�

1

q�1

dx

�

q�1

<1; (10)

where the supremum is taken over all 
ubes Q � R

n

and jQj is the Lebesgue measure of

Q. A fun
tion 0 � ! 2 L

1

lo


(R

n

) is 
alled A

1

-weight, if

A

1

(!) := sup

Q

n

�

1

jQj

Z

Q

! dx

�

ess sup

x2Q

1

!(x)

o

<1;

where the supremum is taken over all 
ubes Q � R

n

. For 1 � q < 1 the value A

q

(!) is


alled the A

q

-
onstant of !:

Finally we set A

1

:=

S

1�q<1

A

q

.
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Obviously 
ubes may be repla
ed by balls in this de�nition. We use the abbreviations !(S)

for

R

S

!(x) dx for a measurable subset S � R

n

; q

0

:=

q

q�1

and !

0

:= !

�

1

q�1

if 1 < q <1 is

�xed. For 1 < q <1; ! 2 A

q

and an open set U � R

n

note that with respe
t to the dual

produ
t (f; g) =

R

U

f g dx the dual spa
e of L

q

!

(U) 
an be identi�ed with L

q

0

!

0

(U):

In the sequel 
onstants C = C(!) > 0 in weighted L

q

-estimates depending on the

weight ! 2 A

q

; 1 � q <1; will appear. We 
all su
h a 
onstant A

q

-
onsistent if for every




0

> 0 it 
an be 
hosen uniformly for all ! 2 A

q

with A

q

(!) � 


0

.

Lemma 2.1 (Properties of Mu
kenhoupt weights)

(i) For 1 < q <1 : ! 2 A

q

() !

0

= !

�

1

q�1

2 A

q

0

: It holds A

q

(!) = A

q

0

(!

0

)

q�1

.

(ii) A

p

� A

q

and A

q

(!) � A

p

(!) for 1 � p � q � 1.

(iii) For every ! 2 A

1

there are 
onstants C > 0 and Æ > 0 su
h that for every ball B

and every subset A � B

!(A)

!(B)

� C

�

jAj

jBj

�

Æ

:

(iv) ! 2 A

1

) !(R

n

) =1:

(v) jxj

�

and (1 + jxj)

�

are A

q

-weights for �n < � < n(q � 1).

(vi) For 1 < q <1 and ! 2 A

q

there is a 1 < p

0

< q su
h that ! 2 A

p

for all p

0

< p < q:

(vii) For all ! 2 A

q

and 1 < q <1 it holds

R

R

n

!(x)(1 + jxj)

�nq

dx <1:

Proof: (i) follows immediately from the de�nition.

(ii) [9℄, Chapter IV, Theorem 1.14.

(iii) See [9℄, Chapter IV, Theorem 2.9.

(iv) By iii) there is for ! 2 A

1

some Æ > 0 su
h that !(B

R

) � R

nÆ

!(B

1

)!1 for R!1:

(v) See [4℄, Lemma 2.3 v).

(vi) [9℄, Chapter IV, Theorem 2.6.

(vii) [4℄, Lemma 2.2 (iii). 2

The following ni
e property of the 
lass of weighted L

q

-spa
es equipped with Mu
ken-

houp weights will be useful:

Lemma 2.2 Let 1 < r; q <1; v 2 A

r

and ! 2 A

q

. Then there exist s > 1 and a weight

� 2 A

s

su
h that

L

r

v

(R

n

) + L

q

!

(R

n

) � L

s

�

(R

n

):

Here � 
an be 
hosen in the form �(x) = (1 + jxj)

��

with 0 < � < n.

Proof: By Lemma 2.1 (vi) there exist p < q and � < r su
h that ! 2 A

p

and v 2 A

r

and p=q = r=� =: s: By (i) and (vi) of the same lemma there are "; Æ > 0 su
h that

!

�

1

p�1

2 A

p

0

�"

and v

�

1

��1

2 A

�

0

�Æ

. Let maxf

p

0

�"

p

0

;

�

0

�"

�

0

g < t < 1 and � = nt. Then with

�(x) := (1 + jxj)

��

2 A

1

� A

s

we get by H�older's inequality

Z

R

n

jf j

s

� dx � kfk

s

q;!

�

Z

R

n

!(x)

�

1

p�1

(1 + jxj)

��p

0

dx

�

1=p

0

:
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Sin
e �p

0

� n(p

0

� ") and !

�

1

p�1

2 A

p

0

�"

the last fa
tor on the left hand side is �nite by

Lemma 2.1 (vii). Analogously

Z

R

n

jf j

s

� dx � kfk

s

r;v

�

Z

R

n

v(x)

�

1

��1

(1 + jxj)

���

0

dx

�

1=�

0

:

Sin
e ��

0

� n(p

0

� Æ) and v

�

1

��1

2 A

�

0

�Æ

an appli
ation of Lemma 2.1 (vii) 
ompletes the

proof. 2

Lemma 2.3 Let n

0

< q <1 and ! 2 A

1

: Then (1 + j � j)

q

! 2 A

q

or equivalently

(1 + j � j)

�q

0

!

0

2 A

q

0

. Furthermore A

q

((1 + j � j)

q

!) � 
A

1

(!):

Proof: Using the notation

R

�

M

g :=

1

jM j

R

M

g dx we have for x

0

2 R

n

and R > 0

�

Z

�

B

R

(x

0

)

(1 + jxj)

q

!

� �

Z

�

B

R

(x

0

)

(1 + jxj)

�q

0

!

�

1

q�1

�

q�1

�

�

Z

�

B

R

(x

0

)

(1 + jxj)

q

!

�

ess sup

x2B

R

(x

0

)

1

!(x)

�

Z

�

B

R

(x

0

)

(1 + jxj)

�q

0

�

q�1

:

Sin
e q

0

< n we 
an estimate this quantity from above as follows (
f. [4℄, p. 260)

� 
 maxf(1 + jx

0

j)

q

; (1 +R)

q

g

�

Z

�

B

R

(x

0

)

!

�

ess sup

x2B

R

(x

0

)

1

!(x)

minf(1 +R)

�q

; (1 + jx

0

j)

�q

g

� 


�

Z

�

B

R

(x

0

)

!

�

ess sup

x2B

R

(x

0

)

1

!(x)

� 
A

1

(!) <1:

2

For 1 < q < 1; ! 2 A

q

; k � 1 and a domain 
 � R

n

we de�ne the weighted Sobolev

spa
es

W

k;q

!

(
) = fu 2 L

q

!

(
) : D

�

u 2 L

q

!

(
); j�j � kg;




W

1;q

!

(
) = fu 2W

1;1

lo


(
) : ru 2 L

q

!

(
)

n

g;

equipped with their respe
tive norm k � k

k;q;!

and seminorm kr � k

q;!

: The subspa
e of

fun
tions u 2 W

1;q

!

(
) and u 2




W

1;q

!

(
) with tra
e u

�

�

�


= 0 is denoted by W

1;q

0;!

(
)

and




W

1;q

0;!

(
) respe
tively (see [6℄, [8℄ for the de�nition of the tra
e). The dual spa
es of

W

1;q

0

0;!

0

(
);




W

1;q

0

0;!

0

(
) and




W

1;q

0

!

0

(
) :=




W

1;q

0

!

0

(
)=C are denoted by W

�1;q

!

(
);




W

�1;q

0;!

(
) and




W

�1;q

!

(
) respe
tively. The norm of




W

�1;q

!

(
) is denoted by k � k

�1;q;!

: If ! � 1 we simply

write L

q

(
); W

1;q

(
);




W

�1;q

(
); : : :

Lemma 2.4 Let 
 � R

n

be an aperture domain with Lips
hitz boundary.

i) Let 1 < q <1; ! 2 A

q

and (1 + j � j)

�q

! 2 A

q

: Then there is a 
onstant C > 0 su
h

that for every u 2




W

1;q

!

(
) there are 
onstants K

�

with

ku�K

�

k

q;(1+j�j)

�q

!;


�

� C kruk

q;!;


�

:

The 
onstant C = C(!) > 0 
an be 
hosen as an in
reasing fun
tion of

A

q

(!)A

q

((1 + j � j)

�q

!):

5



ii) Let n

0

< q < 1; ! 2 A

1

. Then there is an A

1

-
onsistent 
onstant C > 0 su
h that

for every u 2




W

1;q

0

!

0

(
) there are 
onstants K

�

with

ku�K

�

k

q

0

;(1+j�j)

�q

0

!

0

;


�

� C kruk

q

0

;!

0

;


�

:

Proof: i) The estimate for the whole spa
e R

n

is a spe
ial 
ase of Corollary 3.7 in [4℄.

The 
onstant appearing in this result is an in
reasing fun
tion of A

q

0

(!

0

)A

q

0

((1+ j � j)

�q

0

!

0

).

Sin
e 


�

and !

0

2 A

q

0

satisfy the assumptions in [1℄ for the existen
e of bounded linear

extension operators E

�

:




W

1;q

!

(


�

) !




W

1;q

!

(R

n

) with A

q

-
onsistent norms assertion i) is


lear.

ii) Sin
e !

0

; (1 + j � j)

�q

0

!

0

2 A

q

0

by Lemma 2.3, we 
an apply i). It follows from

Lemma 2.3 that A

q

0

(!

0

)A

q

0

(!

0

(1 + j � j)

�q

0

) � 
A

1

(!)

2=(q�1)

: Hen
e by the properties of

the 
onstant in i) the 
onstant C > 0 is A

1

-
onsistent. 2

Remark: Note that the imbeddings




W

1;q

!

(R

n

) ,! L

q

(1+jxj)

�q

!

(R

n

)=C and




W

1;q

!

(R

n

) ,!

L

r

!

(
)=C ; 1 < r <1; are not true for general Mu
kenhoupt weights ! 2 A

q

: Let 1 < q < n

and !(x) = (1 + jxj)

��

with n� 1 < � < n yielding ! 2 A

q

. Further 
onsider a sequen
e

(u

k

) � C

1

0

(R

n

) su
h that u

k

is equal to 1 for jxj < k; equal to 0 for jxj > k + 1 and

jru

k

j is bounded independent of k: Then kru

k

k

q;!

! 0 for k ! 1 while the sequen
es

ku

k

k

(1+jxj)

�q

!

and ku

k

k

r;!

are in
reasing.

For n < q <1 one may take even ! � 1 to get a 
ounter-example.

3 Resolvent estimates for the Stokes system

We need a uniqueness assertion for the stationary Stokes system

��u+rp = 0; divu = 0 in 
; (11)

u

�

�

�


= 0; �(u) = 0: (12)

To redu
e this problem to perturbed Stokes problems on half spa
es R

n

�

and on bounded

domains we introdu
e a lo
alisation te
hnique:

Let B be an open ball 
entered at 0 su
h that 
 [B = R

n

+

[ R

n

�

[B. Let B

0

be another

open ball B

0

with B

0

� B su
h that 
[B

0

= R

n

+

[R

n

�

[B

0

. Furthermore we may assume

that there is a bounded domain G � 
 with B \
 � G and with boundary of 
lass C

1

or

C

1;1

, if �
 2 C

1

or �
 2 C

1;1

; respe
tively. We de�ne 
ut-o� fun
tions � 2 C

1

(R

n

) and

�+; �

�

2 C

1

(R

n

+

[ R

n

�

[B

0

) by the following properties:

0 � �; �

+

; �

�

� 1; �

+

+ �

�

+ � = 1 on 


� = 0 on R

n

n B; � = 1 on B

0

;

�

+

= 1 on R

n

+

nB; �

+

= 0 on R

n

�

[B

0

;

�

�

= 1 on R

n

�

nB; �

�

= 0 on R

n

+

[B

0

:

Lemma 3.1 Let 1 < q < 1; ! 2 A

q

and let 
 � R

n

be an aperture domain with

�
 2 C

1;1

. Furthermore let u 2




W

2;q

!

(
) \




W

1; q

!

(
) and p be a solution of the Stokes

system (11), (12). Assume that there are 
onstants K

�

su
h that p � K

�

2 L

q

!

(


�

).

Then u = 0 and rp = 0.

6



Proof: For U = R

n

�

; G and � = �

�

; � 
onsider the lo
al equations

��(�u) +r(�p) =

~

f; div(�u) = ~g; (�u)

�

�

�U

= 0;

where

~

f = �2(r�)ru � (��)u + (r�)p and ~g = (r�) � u. Here we repla
e p by p�K

�

if U = R

n

�

.

Let U = R

n

�

: Note that be
ause of the bounded support of r� we have for some

1 < s < 1 that

~

f 2




W

�1;s

0

(U)

n

:= and ~g 2 L

s

(U) (see [7℄), Lemma 2.2) and that

(�u; �(p �K

�

)) 2




W

1;q

!

(U)

n

� L

q

!

(U) is a weak solution of the stationary Stokes system

in U = R

n

�

with right hand sides

~

f and ~g. Hen
e Theorem 5.2 (II) in [6℄ yields (�u; �(p�

K

�

)) 2




W

1;s

(R

n

�

)

n

�L

s

(R

n

�

). Now we are in the 
ase without weights and one 
an 
on
lude

by a pro
edure using Sobolev's imbedding exa
tly as in [2℄ p. 20 that r(�u) 2 L

2

(R

n

�

).

Let U = G: Noting

~

f 2 L

s

(G)

n

and ~g � W

1;s

(G) \




W

�1;s

(G) Theorem 3.3 ii) in

[7℄ implies that (�u; �p) 2 W

2;s

(G)

n

�W

1;s

(G); again a bootstrapping argument yields

r(�u) 2 L

2

(G)

n

.

We get that ru 2 L

2

(
)

n

2

: Following the arguments in [2℄ p. 20 we 
on
lude that

u = 0 and rp = 0. 2

Lemma 3.2 Let ! 2 A

1

; n

0

< q < 1; 0 < " <

�

2

and let 
 � R

n

be an aperture domain

with �
 2 C

1;1

. Then for every f 2 L

q

0

!

0

(
)

n

and every � 2 �

"

there is a unique solution

(u; p) 2W

2;q

0

!

0

(
)

n

�




W

1;q

0

!

0

(
) of the Stokes resolvent system

�u��u+rp = f; div u = 0 in 
; u

�

�

�


= 0; �(u) = 0: (13)

Furthermore there is an A

1

-
onsistent 
onstant C = C(!; ") > 0 su
h that

k�uk

q

0

;!

0

+ kr

2

uk

q

0

;!

0

+ krpk

q

0

;!

0

� C kfk

q

0

;!

0

(14)

for all � 2 �

"

.

Proof: Sin
e !

0

2 A

q

0

by Lemma 2.1 (i), the existen
e and uniqueness assertion as well as

the estimate (14) for j�j � Æ > 0 with a 
onstant C = C(Æ) depending A

q

0

-
onsistently on

!

0

(and therefore depending A

1

-
onsistently on !) is proved in [8℄. So it remains to prove

that under the assumptions of the lemma C is independent of Æ > 0 and A

1

-
onsistent.

Assume this was not true. Then there is a 


0

> 0 a sequen
e (!

j

) � A

1

with sup

j

A

1

(!

j

) �




0

and a sequen
e (�

j

) � �

"

with �

j

! 0 for j !1 and (u

j

; p

j

) 2 W

2;q

0

!

0

j

(
)

n

�




W

1;q

0

!

0

j

(
)

solving (13) with respe
t to � = �

j

and f = f

j

su
h that

k(�

j

u

j

;r

2

u

j

;rp

j

)k

q

0

;!

0

j

= 1; (15)

kf

j

k

q

0

;!

0

j

! 0: (16)

A standard 
ut-o� te
hnique [8℄ and Theorem 1.1 in [7℄ yield the preliminary estimate:

k(�

j

u

j

;r

2

u

j

;rp

j

)k

q

0

;!

0

j

� C ( kf

j

k

q

0

;!

0

j

+ku

j

k

1;q

0

;!

0

j

;G

(17)

+ k�

j

u

j

k

[W

1;q

!

j

(G)℄

0

+ kp

j

k

q

0

;!

0

j

;G

):

By Lemma 2.4 and (15) there is a 
onstant C > 0 and a 
onstant (n�n)-Matrix K

�

j

su
h

that kru

j

�K

�

j

k

q

0

;(1+j�j)

�q

0

!

0

;


�

� C kr

2

u

j

k

q

0

;!

0

j

;


� C: Note that ru

j

2 L

q

0

!

0

j

(


�

)

n

2

and

7



K

�

j

�ru

j

2 L

q

0

(1+j�j)

�q

0

!

0

j

(


�

)

n

2

; thus K

�

j

2 L

q

0

(1+j�j)

�q

0

!

0

j

(


�

)

n

2

: Sin
e (1 + j � j)

�q

0

!

0

j

2 A

q

0

by Lemma 2.3, this implies K

�

j

= 0 by Lemma 2.1 iv). Hen
e with a 
onstant C > 0

independent of j

kru

j

k

q

0

;!

0

j

(1+j�j)

�q

0

;


+ kr

2

u

j

k

q

0

;!

0

j

(1+j�j)

�q

0

;


� C kr

2

u

j

k

q

0

;!

0

j

;


� C:

Sin
e due to the proof of Lemma 2.3 A

q

0

((!

0

j

(1+j�j)

�q

0

) � 
A

1

(!

j

)

1

q�1

� 
 


1

q�1

0

; by Lemma

2.2 in [8℄ there is an 1 < s < n

0

and a weight fun
tion � = (1 + j � j)

��

2 A

1

; 0 < � < n;

su
h that all the spa
es L

q

0

!

0

j

(1+j�j)

�q

0

(
) are 
ontinuously imbedded into L

s

�

(
); where

the embedding 
onstant 
an be 
hosen uniformly with respe
t to j. Hen
e L

q

0

!

0

j

(
) is


ontinuously imbedded into L

s

v

(
); v = (1 + j � j)

s

� with imbedding 
onstant independent

of j: Assuming w.l.o.g. that s < � < n we get that v = (1 + j � j)

s��

2 A

1

.

Thus the sequen
es (ru

j

); (r

2

u

j

) and (rp

j

) are bounded in L

s

�

(
)

n

2

; L

s

v

(
)

n

3

and

L

s

v

(
)

n

; respe
tively. Therefore, suppressing the notation of subsequen
es, we get the

weak 
onvergen
es ru

j

* ru 2 L

s

�

(
)

n

2

; r

2

u

j

* r

2

u 2 L

s

v

(
)

n

3

and rp

j

* rp 2

L

s

v

(
)

n

;

R

G

p dx = 0: Sin
e v 2 A

s

and � = (1 + j � j)

�s

v 2 A

s

we get from Lemma 2.4

i) 
onstants K

�

su
h that p � K

�

2 L

s

�

(


�

). Furthermore divu = 0: Sin
e u

k

�

�

�


= 0

and be
ause of the spe
ial form of � we 
on
lude by Poin
ar�e's inequality that u

k

* u

weakly in L

s

(
 \

^

B) for all balls

^

B with 
 \

^

B 6= 0. Hen
e u 2 L

s

lo


(
)

n

; u

�

�

�


= 0 and

��u+rp = 0 in the distributional sense. As in [2℄ p. 22 one shows �(u) =

R

M

u�� ds = 0:

Therefore Lemma 3.1 
an be applied to u 2




W

2;s

v

(
)

n

\




W

1;s

�

(
)

n

�




W

2;s

�

(
)

n

\




W

1;s

�

(
)

n

and rp 2 L

s

v

(
)

n

� L

s

�

(
)

n

with p�K

�

2 L

s

�

(


�

) to 
on
lude that u = 0 and rp = 0.

Note that A

q

0

(!

0

j

) � A

1

(!

j

)

1

q�1

� 


1

q�1

0

: Thus we may use a 
ompa
tness argument

(Lemma 2.3 in [8℄) to show exa
tly as in the proof of Theorem 1.1 in [8℄ that (after


hoosing a subsequen
e) all the terms on the right hand side of (17) 
onverge to 0. This


ontradi
ts (15). 2

4 Maximal L

p

-Regularity for the instationary Stokes system

To apply an abstra
t result on maximal L

p

-regularity stated as Theorem 4.3 below, we

introdu
e the Stokes operator in weighted L

q

-spa
es. In [8℄ the Helmholtz de
omposition

of weighted L

q

-spa
es in aperture domains 
 � R

n

with boundary of 
lass C

1

L

q

!

(
)

n

= L

q

!; �

(
)�G

q

!

(
)

is proved for 1 < q < 1 and arbitrary ! 2 A

q

. Here L

q

!; �

(
) denotes the 
losure in

L

q

!

(
)

n

of the spa
e C

1

0;�

(
) of smooth, solenoidal ve
tor �elds with 
ompa
t support in


 and G

q

!

(
) are the gradient �elds in L

q

!

(
)

n

. The 
orresponding bounded proje
tion

operator from L

q

!

(
)

n

onto L

q

!; �

(
) with kernel G

q

!

(
) is denoted by P

q;!

.

Then the Stokes operator A

q;!

is de�ned as follows:

D(A

q;!

) =W

2;q

!

(
)

n

\W

1;q

0;!

(
)

n

\ L

q

!; �

(
)

A

q;!

u = �P

q;!

�u for u 2 D(A

q;!

):

Lemma 6.2 in [8℄ shows that D(A

q;!

) = fu 2W

2;q

!

(
)

n

\W

1;q

0;!

(
)

n

: div u = 0; �(u) = 0g:

If ! � 1 we simply write L

q

�

(
); A

q

; � � � :

8



Theorem 4.1 Let ! 2 A

1

; 1 < q <1; 0 < " <

�

2

and let 
 � R

n

be an aperture domain

with �
 2 C

1;1

. Then for all � 2 �

"

the resolvents (�+A

q;!

)

�1

and (�+A

q

0

;!

0

)

�1

exist.

For 1 < q < n there is an A

1

-
onsistent 
onstant C = C("; !) > 0 su
h that the

estimate

k� (�+A

q;!

)

�1

fk

q;!

� C kfk

q;!

8f 2 L

q

!; �

(
): (18)

holds uniformly for all � 2 �

"

.

For n

0

< q < 1 there is an A

1

-
onsistent 
onstant C = C("; !) > 0 su
h that the

estimate

k� (�+A

q

0

;!

0

)

�1

fk

q

0

;!

0

� C kfk

q

0

;!

0

8f 2 L

q

0

!

0

;�

(
) (19)

holds uniformly for all � 2 �

"

.

Proof: Sin
e ! 2 A

1

� A

q

and !

0

2 A

q

0

the existen
e of the resolvents (� + A

q;!

)

�1

and (� + A

q

0

;!

0

)

�1

for � 2 �

"

follows from Theorem 1.1 in [8℄. The estimate (19)

follows immediately from Lemma 3.2. The estimate (18) is proved by duality: Let

g 2 L

q

!; �

(
); f 2 L

q

0

!

0

(
)

n

and let u; p be the solution of the Stokes resolvent system


orresponding to �; f from Lemma 3.2. Then for v = (�+A

q;!

)

�1

g 2 L

q

!

(
)

n

j(v; f)j = j(v; �u��u+rp)j = j(�v ��v; u)j = j(g; u)j �

1

j�j

kgk

q;!

kfk

q

0

;!

0

:

Sin
e f 2 L

q

0

!

0

(
)

n

= [L

q

!

(
)

n

℄

0

was arbitrary the estimate (18) follows. 2

To apply a 
hara
terisation of maximal regularity due to L. Weis ([11℄, [12℄) we intro-

du
e the notion of R-bounded operator families. In the sequel L(X) denotes the spa
e of

bounded linear operators on a Bana
h spa
e X.

De�nition 4.1 Let X be a Bana
h spa
e. A subset T � L(X) is 
alled R-bounded if

there exists a 
onstant C 2 R su
h that

Z

1

0










N

X

j=1

r

j

(u)T

j

x

j










X

du � C

Z

1

0










N

X

j=1

r

j

(u)x

j










X

du (20)

for all T

1

; : : : ; T

N

2 T ; x

1

; : : : ; x

N

2 X and N 2 N, where (r

j

) is a sequen
e of indepen-

dent, symmetri
ally distributed, f�1; 1g-valued random variables de�ned on [0; 1℄, e.g. the

Radema
her fun
tions. The smallest 
onstant C su
h that (20) holds is 
alled R-bound of

T and is denoted by R(T ).

Lemma 4.1 Let (
; �; �) be a measure spa
e, 1 < q < 1 and X = L

q

(
; �). Then

T � L(X) is R-bounded if and only if there is a 
onstant C 2 R su
h that










�

N

X

j=1

jT

j

f

j

j

2

�

1

2










L

q

(
;�)

� C










�

N

X

j=1

jf

j

j

2

�

1

2










L

q

(
;�)

(21)

for all T

1

; : : : ; T

N

2 T ; f

1

; : : : ; f

N

2 X and N 2 N.
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Proof: See e.g. [7℄, Lemma 4.2. 2

Note that for q = 2 we have !

0

= !

�1=(q�1)

= !

�1

for a weight fun
tion ! 2 A

2

; i.e.,

!

�1

means

1

!

; this notation should not 
ause 
onfusion with an inverse fun
tion.

The following Theorem is a 
onsequen
e of the proof of Theorem 6.4., Chapter V, in [9℄,

although the statement given there is weaker. We give the proof with slight modi�
ations

for the 
onvenien
e of the reader.

Theorem 4.2 Let 1 < q <1 and let 
 � R

n

be an open set. Further let T � L(L

q

(
))

be a family of linear operators with the property that for all ! 2 A

1

there is a 
onstant

C = C(!) > 0 depending only on the A

1

-
onstant of ! su
h that the following estimates

hold

kTfk

2;!

� C kfk

2;!

8f 2 L

q

(
) \ L

2

!

(
); (22)

kTfk

2;!

�1
� C kfk

2;!

�1
8f 2 L

q

(
) \ L

2

!

�1

(
): (23)

Then T is R-bounded in L

q

(
).

Proof: First, let 
 = R

n

and q > 2. Set s =

�

q

2

�

0

and 1 < � := (1 + s)=2 < s. Then

given 0 � w 2 L

s

(R

n

) let W (x) = (Mw

�

(x))

1

�

and observe that

i) w(x) �W (x)

ii) kWk

s

� C

s

kwk

s

.

iii) W 2 A

1

with A

1

-
onstant depending only on s (see [9℄, Theorem 3.4, Chapter II).

It follows from i), iii) and (22)

kTfk

2;w

� kTfk

2;W

� C kfk

2;W

;

where C does not depend on the 
hoi
e of w but only on s: Given sequen
es (T

j

) � T and

(f

j

) � L

q

(R

n

) there exists 0 � w 2 L

s

(R

n

) with norm kwk

s

= 1 su
h that










�

X

j

jT

j

f

j

j

2

�

1

2










q

=










X

j

jT

j

f

j

j

2










1

2

s

0

=

�

Z

R

n

X

j

jT

j

f

j

j

2

w dx

�

1

2

� C

�

Z

R

n

X

j

jf

j

j

2

W dx

�

1

2

� C










X

j

jf

j

j

2










1

2

s

0

kWk

1

2

s

� C










�

X

j

jf

j

j

2

�

1

2










q

where C depends only on s, i.e., T is R-bounded in L

q

(R

n

):

Let q < 2. Choose g = (g

1

; : : : ; g

N

) 2 L

q

0

(R

n

)

N

with norm kgk

q

0

= 1 su
h that










�

N

X

j=1

jT

j

f

j

j

2

�

1

2










q

=

N

X

j=1

Z

R

n

T

j

f

j

g

j

dx

=

N

X

j=1

Z

R

n

f

j

(T

j

)

0

g

j

dx �










�

X

j

jf

j

j

2

�

1

2










q










�

X

j

j(T

j

)

0

g

j

j

2

�

1

2










q

0

:
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By (23) and a duality argument using (L

2

!

(R

n

))

0

= L

2

!

�1

(R

n

) there is an A

1

-
onsistent


onstant C > 0 su
h that k(T )

0

fk

2;!

� C kfk

2;!

for all ! 2 A

1

; all T 2 T and all f 2

L

q

0

(R

n

)\L

2

!

(R

n

): Sin
e q

0

> 2 the �rst step of the proof yields a 
onstant C independent

of N su
h that










�

N

X

j=1

j(T

j

)

0

g

j

j

2

�

1

2










q

0

� C










�

N

X

j=1

jg

j

j

2

�

1

2










q

0

= 1:

This proofs the 
laim in the 
ase q < 2 and 
 = R

n

.

The 
ase q = 2 follows from interpolation.

The assertion for a general open set 
 � R

n


an be redu
ed to 
 = R

n

by extending

the fun
tions by 0 to R

n

: See [7℄, proof of Theorem 4.3, for details. 2

Let A be the generator of an analyti
 semigroup in the Bana
h spa
e X. We 
onsider

the abstra
t Cau
hy problem

u

t

�Au = f; u(0) = 0: (24)

For f 2 L

1

lo


([0;1);X) the mild solution on J = R

+

is given by u(t) =

R

t

0

e

(t�s)A

f(s)ds:

De�nition 4.2 Let 1 < s < 1 and f 2 L

s

(J;X). We say that A has the property MR

of maximal regularity, if for every 0 < T <1 and every f 2 L

s

(0; T ;X) the mild solution

u of (24) belongs to W

1;s

(0; T ;X) \ L

s

(0; T ;D(A)) and if there is a 
onstant C 2 R su
h

that the estimate

ku

t

k

L

s

(0;T ;X)

+ kAuk

L

s

(0;T ;X)

� C kfk

L

s

(0;T ;X)

(25)

holds.

A generator A of a bounded analyti
 semigroup is said to have the property MR

1

of

maximal regularity if A has the property MR and the estimate (25) holds with a 
onstant

C independent of T 2 (0;1); i.e., (0; T ) 
an be repla
ed by the in�nite interval (0;1) in

(25).

For an aperture domain with boundary of 
lass C

1;1

the property MR was proved

for the Stokes operator �A

q;!

in L

q

!; �

(
) even for general Mu
kenhoupt weights, see [8℄.

In the sequel we show in the 
ase without weights that the Stokes operator A

q

has the

propertyMR

1

.

The following 
hara
terisation of maximal regularity by R-bounded operator families

is due to L. Weis [11℄, [12℄. Re
all that a UMD spa
e X is de�ned to be a Bana
h spa
e

su
h that the Hilbert transform is bounded from L

p

(R;X) to L

p

(R;X) for 1 < p <1: It

is well known that L

q

(
; �) is an UMD spa
e for 1 < q <1 .

Theorem 4.3 Let A be the generator of a bounded analyti
 semigroup in a UMD spa
e

X. Then A has the property of maximal regularity MR

1

, i� the operator family

f� (��A)

�1

: � 2 iR; � 6= 0g

is R-bounded.

Theorem 4.4 Let 1 < q <1 and let 
 � R

n

; n � 3; be an aperture domain with bound-

ary of 
lass C

1;1

. Then the Stokes operator �A

q

generates a bounded analyti
 semigroup

in L

q

�

(
), whi
h has the property MR

1

of maximal regularity.
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Proof: We 
an write �(� +A

q

)

�1

P

q

for � 2 iR n f0g as an n � n-martix (A

�

i;j

)

i;j=1;:::n

of linear bounded operators on L

q

(
):

Re
all from Lemma 2.2 that for 1 < q < 1 and v 2 A

2

there exist s 2 (1;1) and

� 2 A

s

su
h that L

2

v

(
) + L

q

(
) � L

s

�

(
): Applying the uniqueness assertion of Theorem

1.1 in [8℄ to the pair (s; v) we get (�+A

q

)

�1

P

q

f = (�+A

s;�

)

�1

P

s;�

f = (�+A

2;v

)

�1

P

2;v

f

for f 2 L

q

(
)

n

\ L

2

v

(
)

n

: We will use this fa
t with v = ! and v = !

�1

in the following

arguments.

Sin
e furthermore n

0

< 2 < n for n � 3 and sin
e ! 2 A

1

implies ! 2 A

2

as well as

!

�1

2 A

2

; the operators A

�

i;j

i; j = 1; : : : ; n; extend by Theorem 4.1 and the boundedness

properties of the Helmholtz proje
tion (see Theorem 3.1 in [8℄) to linear bounded operators

on L

2

!

(
) and on L

2

!

�1

(
) for all ! 2 A

1

with A

1

-
onsistent norm bound independent

of � 2 iR n f0g. Hen
e Theorem 4.2 yields that the operator families fA

�

i;j

: � 2

iR n f0g g are R-bounded in L(L

q

(
)) for i; j = 1; : : : ; n: This implies the R-boundedness

of f� (�+A

q

)

�1

: � 2 iR n f0g g in L(L

q

�

(
)): Thus Theorem 4.3 
ompletes the proof. 2

To formulate the global in time result for the instationary Stokes system following

from Theorem 4.4 with a nonvanishing 
ux and a nonzero inital value we introdu
e some

notation:

For n

0

< q <1 and an aperture domain 
 � R

n

with Lips
hitz boundary there exists

a 
ux fun
tion � 2W

2;q

(
)

n

satisfying

�

�

�

�


= 0; div� = 0; �(�) = 1; (26)

see [5℄, Theorem 1.4.

We introdu
e some appropriate spa
es for the initial value:

L

[s;q℄

�

(
) := fu 2 L

q

�

(
) : kuk

[s;q℄

<1g;

kuk

[s;q℄

:= kuk

q

+ kA

q

e

�tA

q

uk

L

s

(R

+

;L

q

�

(
))

:

L

[s;q℄

�

(
) := L

[s;q℄

�

(
)� spanf�g

ku+ ��k

[s;q℄;�

:= kuk

[s;q℄

+ j�j

for 1 < s; q <1: Note that the 
ux �(u) =

R

M

u � � d� initially de�ned for u 2W

1;q

0

(
)

n

extends uniquely to a bounded linear fun
tional on the subspa
e f u 2 L

q

(
)

n

: divu =

0; u � �

�

�

�


= 0g of L

q

(
)

n

(see [5℄, Theorem 1.7).

Theorem 4.5 Let 1 < s; q <1 and let 
 be as in Theorem 4.4. Let f 2 L

s

(R

+

;L

q

(
)

n

):

i) For n

0

< q <1; � 2 W

1;s

(R

+

) and u

0

2 L

[s;q℄

�

(
) with �(u

0

) = �(0) there exists a

unique solution (u;rp) of the Stokes system (5), (6) with 
ux �(u) = � satisfying

r

2

u 2 L

s

(R

+

;L

q

(
)

n

2

); u

t

; rp 2 L

s

(R

+

;L

q

(
)

n

); (27)

Z

1

0

f ku

t

k

s

q

+ kr

2

uk

s

q

+ krpk

s

q

g dt � C

�

Z

1

0

kfk

s

q

dt+ ku

0

k

s

[s;q℄;�

+ k�k

s

W

1;s

�

(28)

with a 
onstant C = C(s; q;
) > 0:

12



ii) For 1 < q < n

0

and u

0

2 L

[s;q℄

�

(
) there exists a unique solution (u;rp) of the Stokes

system (5), (6) satisfying (27). Furthermore u has a vanishing 
ux �(u) = 0 for all

t > 0 and there is a 
onstant C = C(s; q;
) > 0 su
h that

Z

1

0

fku

t

k

s

q

+ kr

2

uk

s

q

+ krpk

s

q

g dt � C

�

Z

1

0

kfk

s

q;!

dt+ ku

0

k

s

[s;q℄

�

:

Proof: This theorem is a 
onsequen
e of Theorem 4.4. For further details we refer the

reader to the proof of Theorem 6.1 in [8℄. 2

5 Weak solutions of the Navier-Stokes equations with non-

vanishing 
ux

Let 
 � R

n

; n � 3; be an aperture domain with C

1;1

-boundary. We 
onsider the Navier-

Stokes equations

u

t

+ u � ru��u+rp = f; divu = 0 in R

+

� 
 (29)

u = 0 on �
; u(x; 0) = u

0

(x): (30)

Then u is 
alled a weak solution of the Navier-Stokes equations in 
 with 
ux � if

u 2 L

1

(R

+

; L

2

(
)

n

); ru 2 L

2

(R

+

; L

2

(
)

n

2

);

divu = 0 in R

+

� 
 u = 0 on R

+

� �
; �(u) = � in R

+

;

(u(t); v(t)) +

Z

t

0

f�(u; v

t

) + (ru;rv) + (u � ru; v)g d�

= (u

0

; v(0)) +

Z

t

0

(f; v) d�

for all t > 0 and all v 2 C

1

0

([0;1);C

1

0;�

(
)).

For n = 3 in [5℄, Theorem 1.1, the existen
e of a global weak solution with pres
ribed


ux � is shown under the assumptions

f 2 L

1

(R

+

;L

2

(
)

3

) + L

2

(R

+

;




W

�1;2

(
)

3

); � 2W

1;1

(R

+

) (31)

and u

0

2 L

2

(
)

3

with div u

0

= 0; u

0

� �

�

�

�


= 0; �(u

0

) = �(0); (32)

where �(0) denotes the tra
e of � 2W

1;1

(R

+

) at 0:

Proof of Theorem 1.1: The fun
tion v = u� �� satis�es �(v) = 0 and is a weak

solution of

v

t

��v + u � ru+rp = f � �

0

�+ ���; div v = 0 (33)

v

�

�

�


= 0; v(0) = u

0

� �(0)� 2 L

[s;q℄

�

:

As usual (
f. [10℄) one gets the estimate

ku � ruk

s;q

� C kuk

2�2=s

2;1

kruk

2=s

2;2

: (34)

13



De�ne

V (t) = e

�tA

q

[u

0

� �(0)�℄ +

Z

t

0

e

�(t�s)A

q

P

q

[f � (u � ru)℄(s) ds

W (t) = �

Z

t

0

e

�(t�s)A

�

P

�

[�

0

�� ���℄(s) ds; � > n

0

:

By (34), the properties �;�� 2 L

�

for � > n

0

; � 2 W

1;r

(R

+

); u

0

� �(0)� 2 L

[s;q℄

�

(
) and

Theorem 4.4 we get

V

t

; A

q

V 2 L

s

(R

+

;L

q

); W

t

; A

�

W 2 L

r

(R

+

;L

�

) 8� > n

0

; (35)

and the respe
tive norms 
an be estimated by kfk

s;q

+ kuk

2�2=s

2;1

kruk

2=s

2;2

+ ku

0

k

[s;q℄;�

+

k�k

W

1;r

(R

+

)

. Set ~v := V +W and � := minfr; sg. Note that L

q

+

T

�>n

0

L

�

� L

q

+L

2

� L

q

!

where ! = (1 + j � j)

�


2 A

1

; n(2 � q)=2 < 
 < n. Hen
e ~v 2 L

�

(0; T ;D(A

q;!

)) \

W

1;�

(0; T ;L

q

!

) for every 0 < T <1 and ~v is a solution of

~v

t

+A

q;!

~v = P

q;!

[f � u � ru� �

0

�+ ���℄ =: F; ~v(0) = u

0

� �(0)�: (36)

Applying the Yosida approximation J

k

= (I +A

q;!

=k)

�1

(whi
h exists by Theorem 1.1 in

[8℄) to v it follows from Theorem 1.2 in [8℄ that J

k

v 2 L

�

(0; T ;D(A

q;!

)) \W

1;�

(0; T ;L

q

!

)

for 0 < T <1 and

(J

k

v)

t

+A

q;!

(J

k

v) = J

k

F;

see also [10℄ for details. Theorem 1.1 and Theorem 1.2 in [8℄ imply that (J

k

v) is uni-

formly bounded in L

�

(0; T ;D(A

q;!

))\W

1;�

(0; T ;L

q

!

). This yields v 2 L

�

(0; T ;D(A

q;!

))\

W

1;�

(0; T ;L

q

!

) for 0 < T < 1 and v

t

+ A

q;!

v = F: Hen
e the uniqueness statement of

Theorem 1.2 in [8℄ yields v = ~v a.e. in R

+

.

Note that the 
onditions on s and q imply q < n

0

< n. Therefore (see [5℄, Theorem

2.8)

kr

2

V k

q

� C kA

q

V k

q

; kr

2

Wk

�

� C kA

�

Wk

�

; n

0

< � < n:

Sin
e u = v+�� = V +W +�� and rp = f �u

t

+�u�u �ru; the proof is 
omplete. 2

Remark: Assume s = r in Theorem 1.1 and note that for 
 > n(n

0

� q)=n

0

and

! = (1 + j � j)

�


the embedding

L

q

+

\

�>n

0

L

�

� L

q

!

holds. Therefore the norm of u

t

; r

2

u;rp in L

s

(R

+

;L

q

!

) 
an be estimated by (4). The

exponents s; q satisfy the the 
ondition 2=s+n=q = n+1 as in the 
ase of the whole spa
e,

the half spa
e, a bounded or an exterior domain (see [10℄) and the exponent 
 > 0 of the

weight fun
tion tends to 0 if s tends to 1 and q tends to n

0

.
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