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Abstrat

Using a haraterisation of maximal L

p

-regularity by R-bounded operator families

we prove global in time estimates in L

p

(R

+

;L

q

(
)); 1 < p; q <1; for solutions of the

instationary Stokes system in an aperture domain 
 � R

n

; n � 3; with �
 2 C

1;1

:

The results are applied to obtain new global in time estimates for weak solutions of

the Navier-Stokes equations with nonvanishing ux through the aperture.

AMS lassi�ation: 35Q30, 35D05, 47D06

1 Introdution

For n � 3 and d � 0 let R

n

�

= fx = (x

1

; : : : ; x

n

) 2 R

n

: �x

n

> d=2g. Then an open

onneted set 
 � R

n

is alled an aperture domain if there is a bounded set B � R

n

suh

that 
 [B = R

n

+

[ R

n

�

[B: We assume �
 2 C

1;1

:
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Figure 1: An aperture domain

For a smooth bounded (n�1)-dimensional manifoldM with unit normal vetor � direted

downwards dividing 
 into two onneted omponents 


�

and a solenoidal, suÆiently

smooth vetor �eld u : 
 ! R

n

the ux of u through the aperture is de�ned by �(u) =

R

M

u � � d�.

In an aperture domain we onsider the instationary Navier-Stokes system

u

t

+ (u;ru)��u+rp = f; divu = 0 in R

+

� 
 (1)

u = 0 on �
; u(x; 0) = u

0

(x) in 
: (2)

In [5℄ M. Franzke onstruted a global weak solution with presribed ux �(u) = � under

suitable assumptions on the data in the ase n = 3. Here we are interested in global
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estimates in L

s

(0; T ;L

q

(
))�spaes of u

t

;r

2

u;rp for suh a weak solution. This kind of

estimate was obtained in [10℄ for the whole spae, the half spae, bounded and exterior

domains for exponents 1 < s; q < 1 satisfying 2=s + n=q = n + 1: However, if 
 is an

aperture domain a new e�et ours in the ase �(u) 6= 0 : The onditions 2=s+n=q = n+1

and s > 1 yield q < n

0

:= n=(n � 1); but for q � n

0

a solenoidal vetor �eld u 2 L

q

(
)

n

neessarily has vanishing ux (see [2℄, [5℄). Therefore in the ase �(u) 6= 0 the regularity

result an not be the same as for the domains onsidered in [10℄. We have to use the sum

of spaes L

s

(R

+

;L

q

) + L

r

(R

+

;L

�

) for 1 < s; q; r; � <1; 2=s+ n=q = n+ 1; � > n

0

:

Writing for simpliity L

s

(R

+

;L

q

) for L

s

(R

+

;L

q

(
)

N

) regardless ofN 2 N and denoting

the respetive norm by k � k

s;q

the result reads as follows:

Theorem 1.1 Let 
 � R

n

; n � 3; be an aperture domain with boundary of lass C

1;1

,

let 1 < s; q; r < 1; 2=s + n=q = n + 1 and assume f 2 L

s

(R

+

;L

q

); u

0

2 L

[s;q℄

�

(
) and

� 2W

1;r

(R

+

) with �(u

0

) = �(0). Let u be a weak solution of the Navier-Stokes equations

(1)-(2) with ux �(u) = � and let rp be the assoiated pressure gradient. Then

u

t

; r

2

u;rp 2 L

s

(R

+

;L

q

) +

\

�>n

0

L

r

(R

+

;L

�

): (3)

The respetive norms of u

t

; r

2

u;rp in L

s

(R

+

;L

q

)+L

r

(R

+

;L

�

) for � > n

0

an be estimated

by a onstant C

s;r;q;�

> 0 times

kfk

s;q

+ kuk

2�2=s

2;1

kruk

2=s

2;2

+ ku

0

k

[s;q℄;�

+ k�k

W

1;r

(R

+

)

: (4)

If � = 0 it holds u

t

;r

2

u;rp 2 L

s

(R

+

;L

q

):

Here L

[s;q℄

�

(
) denotes an appropriate spae for the initial value with norm k�k

[s;q℄;�

de�ned

in Setion 4 below. For the preise de�nition of a weak solution of the Navier-Stokes

equations with ux � see Setion 5 below.

As in [10℄ our proof of global L

s

(R

+

;L

q

)-estimates for the Navier Stokes equations

rests on L

s

(R

+

;L

q

)-estimates of the instationary Stokes system

u

t

��u+rp = f; divu = 0 in R

+

� 
 (5)

u

�

�

�


= 0; u(0) = u

0

; �(u) = �: (6)

In [8℄ the a priori estimate

Z

T

0

f ku

t

k

s

q

+ kr

2

uk

s

q

+ krpk

s

q

g dt � C

�

Z

T

0

kfk

s

q

dt+ ku

0

k

s

[s;q℄

+ k�k

s

W

1;s

(0;T )

�

; (7)

for 0 < T < 1 with C = C

T

> 0 is proved. But it has remained open if the onstant

C = C

T

in (7) an be hosen independently of T 2 (0;1): The aim of this paper is not

only to give a positive answer to this question but also to improve the new method of

proof from [8℄ whih rests on resolvent estimates in weighted L

q

-spaes for Mukenhoupt

weights.

It is well known from semigroup theory that the behaviour of the solution of the

instationary Stokes system for large times orresponds to the behaviour of the solution of

the Stokes resolvent system

�u��u+rp = f; divu = 0 in 
; u = 0 on �
 (8)
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for small values of the modulus of � 2 �

"

:= f� 2 C n f0g : jarg �j < � � " g; 0 < " <

�

2

.

The idea used in [8℄ to prove (7) is as follows: An abstrat theorem on maximal

L

p

-regularity (see [11℄, [12℄ or Theorem 4.3 below) is ombined with the fat that for L

q

-

spaes the assumptions of this theorem an be veri�ed by using weighted L

q

-estimates of

the orresponding resolvent problem. To be more spei�, for 1 < q < 1 and a weight

! 2 A

q

in the Mukenhoupt lass (see De�ntion 2.1) de�ne the weighted L

q

-spae

L

q

!

(
) = fu 2 L

1

lo

(
) : kuk

q

q;!

:=

Z




juj

q

! dx <1g:

Then by [8℄ the validity of the estimate

k�uk

q;!

� C kfk

q;!

; � 2 �

"

; j�j � Æ > 0 (9)

in (8) for all weights ! 2 A

q

together with the fat that C = C

";Æ

(!) depends only on the

A

q

-onstant (see De�nition 2.1) of the weight ! 2 A

q

implies (7). The dependene of C

in (9) on Æ > 0 orresponds to the (possible) dependene of the onstant C in (7) on T .

In the ase without weights in [2℄ the resolvent estimate (9) was proved with a onstant

C independent of Æ > 0. The proof rests on a uniqueness assertion for the stationary

Stokes system and on Sobolev imbedding inequalities. In order to transfer this approah

to the weighted situation we need weighted Sobolev inequalities, whih require additional

restritions on the lass of weight funtions; therefore we are not able to verify the estimate

(9) with a onstant independent of Æ > 0 for all Mukenhoupt weights ! 2 A

q

.

Atually a smaller lass of weights turns out to be suÆient: Let

�

A

q

= A

1

[f!

�1=(q

0

�1)

:

! 2 A

1

g � A

q

for 1 < q < 1; 1=q + 1=q

0

= 1. We observe that (7) follows for all

1 < s; q < 1 from the resolvent estimate (9) for q = 2 and for all weights ! 2

�

A

2

with

a onstant C independent of Æ > 0 and depending only on the A

1

-onstant of ! (see

Theorem 4.2 below). Indeed, we have weighted Sobolev inequalities at hand to prove (9)

with a onstant independent of Æ > 0 for n

0

< q < n and all weight funtions in

�

A

q

:

2 Preliminaries

A ube Q is a subset of R

n

of the form �

n

j=1

I

j

; where I

1

; : : : ; I

n

� R are bounded intervals

of the same length.

De�nition 2.1 Let 1 < q <1. A funtion 0 � ! 2 L

1

lo

(R

n

) is alled A

q

-weight, if

A

q

(!) := sup

Q

�

1

jQj

Z

Q

! dx

��

1

jQj

Z

Q

!

�

1

q�1

dx

�

q�1

<1; (10)

where the supremum is taken over all ubes Q � R

n

and jQj is the Lebesgue measure of

Q. A funtion 0 � ! 2 L

1

lo

(R

n

) is alled A

1

-weight, if

A

1

(!) := sup

Q

n

�

1

jQj

Z

Q

! dx

�

ess sup

x2Q

1

!(x)

o

<1;

where the supremum is taken over all ubes Q � R

n

. For 1 � q < 1 the value A

q

(!) is

alled the A

q

-onstant of !:

Finally we set A

1

:=

S

1�q<1

A

q

.
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Obviously ubes may be replaed by balls in this de�nition. We use the abbreviations !(S)

for

R

S

!(x) dx for a measurable subset S � R

n

; q

0

:=

q

q�1

and !

0

:= !

�

1

q�1

if 1 < q <1 is

�xed. For 1 < q <1; ! 2 A

q

and an open set U � R

n

note that with respet to the dual

produt (f; g) =

R

U

f g dx the dual spae of L

q

!

(U) an be identi�ed with L

q

0

!

0

(U):

In the sequel onstants C = C(!) > 0 in weighted L

q

-estimates depending on the

weight ! 2 A

q

; 1 � q <1; will appear. We all suh a onstant A

q

-onsistent if for every



0

> 0 it an be hosen uniformly for all ! 2 A

q

with A

q

(!) � 

0

.

Lemma 2.1 (Properties of Mukenhoupt weights)

(i) For 1 < q <1 : ! 2 A

q

() !

0

= !

�

1

q�1

2 A

q

0

: It holds A

q

(!) = A

q

0

(!

0

)

q�1

.

(ii) A

p

� A

q

and A

q

(!) � A

p

(!) for 1 � p � q � 1.

(iii) For every ! 2 A

1

there are onstants C > 0 and Æ > 0 suh that for every ball B

and every subset A � B

!(A)

!(B)

� C

�

jAj

jBj

�

Æ

:

(iv) ! 2 A

1

) !(R

n

) =1:

(v) jxj

�

and (1 + jxj)

�

are A

q

-weights for �n < � < n(q � 1).

(vi) For 1 < q <1 and ! 2 A

q

there is a 1 < p

0

< q suh that ! 2 A

p

for all p

0

< p < q:

(vii) For all ! 2 A

q

and 1 < q <1 it holds

R

R

n

!(x)(1 + jxj)

�nq

dx <1:

Proof: (i) follows immediately from the de�nition.

(ii) [9℄, Chapter IV, Theorem 1.14.

(iii) See [9℄, Chapter IV, Theorem 2.9.

(iv) By iii) there is for ! 2 A

1

some Æ > 0 suh that !(B

R

) � R

nÆ

!(B

1

)!1 for R!1:

(v) See [4℄, Lemma 2.3 v).

(vi) [9℄, Chapter IV, Theorem 2.6.

(vii) [4℄, Lemma 2.2 (iii). 2

The following nie property of the lass of weighted L

q

-spaes equipped with Muken-

houp weights will be useful:

Lemma 2.2 Let 1 < r; q <1; v 2 A

r

and ! 2 A

q

. Then there exist s > 1 and a weight

� 2 A

s

suh that

L

r

v

(R

n

) + L

q

!

(R

n

) � L

s

�

(R

n

):

Here � an be hosen in the form �(x) = (1 + jxj)

��

with 0 < � < n.

Proof: By Lemma 2.1 (vi) there exist p < q and � < r suh that ! 2 A

p

and v 2 A

r

and p=q = r=� =: s: By (i) and (vi) of the same lemma there are "; Æ > 0 suh that

!

�

1

p�1

2 A

p

0

�"

and v

�

1

��1

2 A

�

0

�Æ

. Let maxf

p

0

�"

p

0

;

�

0

�"

�

0

g < t < 1 and � = nt. Then with

�(x) := (1 + jxj)

��

2 A

1

� A

s

we get by H�older's inequality

Z

R

n

jf j

s

� dx � kfk

s

q;!

�

Z

R

n

!(x)

�

1

p�1

(1 + jxj)

��p

0

dx

�

1=p

0

:
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Sine �p

0

� n(p

0

� ") and !

�

1

p�1

2 A

p

0

�"

the last fator on the left hand side is �nite by

Lemma 2.1 (vii). Analogously

Z

R

n

jf j

s

� dx � kfk

s

r;v

�

Z

R

n

v(x)

�

1

��1

(1 + jxj)

���

0

dx

�

1=�

0

:

Sine ��

0

� n(p

0

� Æ) and v

�

1

��1

2 A

�

0

�Æ

an appliation of Lemma 2.1 (vii) ompletes the

proof. 2

Lemma 2.3 Let n

0

< q <1 and ! 2 A

1

: Then (1 + j � j)

q

! 2 A

q

or equivalently

(1 + j � j)

�q

0

!

0

2 A

q

0

. Furthermore A

q

((1 + j � j)

q

!) � A

1

(!):

Proof: Using the notation

R

�

M

g :=

1

jM j

R

M

g dx we have for x

0

2 R

n

and R > 0

�

Z

�

B

R

(x

0

)

(1 + jxj)

q

!

� �

Z

�

B

R

(x

0

)

(1 + jxj)

�q

0

!

�

1

q�1

�

q�1

�

�

Z

�

B

R

(x

0

)

(1 + jxj)

q

!

�

ess sup

x2B

R

(x

0

)

1

!(x)

�

Z

�

B

R

(x

0

)

(1 + jxj)

�q

0

�

q�1

:

Sine q

0

< n we an estimate this quantity from above as follows (f. [4℄, p. 260)

�  maxf(1 + jx

0

j)

q

; (1 +R)

q

g

�

Z

�

B

R

(x

0

)

!

�

ess sup

x2B

R

(x

0

)

1

!(x)

minf(1 +R)

�q

; (1 + jx

0

j)

�q

g

� 

�

Z

�

B

R

(x

0

)

!

�

ess sup

x2B

R

(x

0

)

1

!(x)

� A

1

(!) <1:

2

For 1 < q < 1; ! 2 A

q

; k � 1 and a domain 
 � R

n

we de�ne the weighted Sobolev

spaes

W

k;q

!

(
) = fu 2 L

q

!

(
) : D

�

u 2 L

q

!

(
); j�j � kg;



W

1;q

!

(
) = fu 2W

1;1

lo

(
) : ru 2 L

q

!

(
)

n

g;

equipped with their respetive norm k � k

k;q;!

and seminorm kr � k

q;!

: The subspae of

funtions u 2 W

1;q

!

(
) and u 2



W

1;q

!

(
) with trae u

�

�

�


= 0 is denoted by W

1;q

0;!

(
)

and



W

1;q

0;!

(
) respetively (see [6℄, [8℄ for the de�nition of the trae). The dual spaes of

W

1;q

0

0;!

0

(
);



W

1;q

0

0;!

0

(
) and



W

1;q

0

!

0

(
) :=



W

1;q

0

!

0

(
)=C are denoted by W

�1;q

!

(
);



W

�1;q

0;!

(
) and



W

�1;q

!

(
) respetively. The norm of



W

�1;q

!

(
) is denoted by k � k

�1;q;!

: If ! � 1 we simply

write L

q

(
); W

1;q

(
);



W

�1;q

(
); : : :

Lemma 2.4 Let 
 � R

n

be an aperture domain with Lipshitz boundary.

i) Let 1 < q <1; ! 2 A

q

and (1 + j � j)

�q

! 2 A

q

: Then there is a onstant C > 0 suh

that for every u 2



W

1;q

!

(
) there are onstants K

�

with

ku�K

�

k

q;(1+j�j)

�q

!;


�

� C kruk

q;!;


�

:

The onstant C = C(!) > 0 an be hosen as an inreasing funtion of

A

q

(!)A

q

((1 + j � j)

�q

!):
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ii) Let n

0

< q < 1; ! 2 A

1

. Then there is an A

1

-onsistent onstant C > 0 suh that

for every u 2



W

1;q

0

!

0

(
) there are onstants K

�

with

ku�K

�

k

q

0

;(1+j�j)

�q

0

!

0

;


�

� C kruk

q

0

;!

0

;


�

:

Proof: i) The estimate for the whole spae R

n

is a speial ase of Corollary 3.7 in [4℄.

The onstant appearing in this result is an inreasing funtion of A

q

0

(!

0

)A

q

0

((1+ j � j)

�q

0

!

0

).

Sine 


�

and !

0

2 A

q

0

satisfy the assumptions in [1℄ for the existene of bounded linear

extension operators E

�

:



W

1;q

!

(


�

) !



W

1;q

!

(R

n

) with A

q

-onsistent norms assertion i) is

lear.

ii) Sine !

0

; (1 + j � j)

�q

0

!

0

2 A

q

0

by Lemma 2.3, we an apply i). It follows from

Lemma 2.3 that A

q

0

(!

0

)A

q

0

(!

0

(1 + j � j)

�q

0

) � A

1

(!)

2=(q�1)

: Hene by the properties of

the onstant in i) the onstant C > 0 is A

1

-onsistent. 2

Remark: Note that the imbeddings



W

1;q

!

(R

n

) ,! L

q

(1+jxj)

�q

!

(R

n

)=C and



W

1;q

!

(R

n

) ,!

L

r

!

(
)=C ; 1 < r <1; are not true for general Mukenhoupt weights ! 2 A

q

: Let 1 < q < n

and !(x) = (1 + jxj)

��

with n� 1 < � < n yielding ! 2 A

q

. Further onsider a sequene

(u

k

) � C

1

0

(R

n

) suh that u

k

is equal to 1 for jxj < k; equal to 0 for jxj > k + 1 and

jru

k

j is bounded independent of k: Then kru

k

k

q;!

! 0 for k ! 1 while the sequenes

ku

k

k

(1+jxj)

�q

!

and ku

k

k

r;!

are inreasing.

For n < q <1 one may take even ! � 1 to get a ounter-example.

3 Resolvent estimates for the Stokes system

We need a uniqueness assertion for the stationary Stokes system

��u+rp = 0; divu = 0 in 
; (11)

u

�

�

�


= 0; �(u) = 0: (12)

To redue this problem to perturbed Stokes problems on half spaes R

n

�

and on bounded

domains we introdue a loalisation tehnique:

Let B be an open ball entered at 0 suh that 
 [B = R

n

+

[ R

n

�

[B. Let B

0

be another

open ball B

0

with B

0

� B suh that 
[B

0

= R

n

+

[R

n

�

[B

0

. Furthermore we may assume

that there is a bounded domain G � 
 with B \
 � G and with boundary of lass C

1

or

C

1;1

, if �
 2 C

1

or �
 2 C

1;1

; respetively. We de�ne ut-o� funtions � 2 C

1

(R

n

) and

�+; �

�

2 C

1

(R

n

+

[ R

n

�

[B

0

) by the following properties:

0 � �; �

+

; �

�

� 1; �

+

+ �

�

+ � = 1 on 


� = 0 on R

n

n B; � = 1 on B

0

;

�

+

= 1 on R

n

+

nB; �

+

= 0 on R

n

�

[B

0

;

�

�

= 1 on R

n

�

nB; �

�

= 0 on R

n

+

[B

0

:

Lemma 3.1 Let 1 < q < 1; ! 2 A

q

and let 
 � R

n

be an aperture domain with

�
 2 C

1;1

. Furthermore let u 2



W

2;q

!

(
) \



W

1; q

!

(
) and p be a solution of the Stokes

system (11), (12). Assume that there are onstants K

�

suh that p � K

�

2 L

q

!

(


�

).

Then u = 0 and rp = 0.

6



Proof: For U = R

n

�

; G and � = �

�

; � onsider the loal equations

��(�u) +r(�p) =

~

f; div(�u) = ~g; (�u)

�

�

�U

= 0;

where

~

f = �2(r�)ru � (��)u + (r�)p and ~g = (r�) � u. Here we replae p by p�K

�

if U = R

n

�

.

Let U = R

n

�

: Note that beause of the bounded support of r� we have for some

1 < s < 1 that

~

f 2



W

�1;s

0

(U)

n

:= and ~g 2 L

s

(U) (see [7℄), Lemma 2.2) and that

(�u; �(p �K

�

)) 2



W

1;q

!

(U)

n

� L

q

!

(U) is a weak solution of the stationary Stokes system

in U = R

n

�

with right hand sides

~

f and ~g. Hene Theorem 5.2 (II) in [6℄ yields (�u; �(p�

K

�

)) 2



W

1;s

(R

n

�

)

n

�L

s

(R

n

�

). Now we are in the ase without weights and one an onlude

by a proedure using Sobolev's imbedding exatly as in [2℄ p. 20 that r(�u) 2 L

2

(R

n

�

).

Let U = G: Noting

~

f 2 L

s

(G)

n

and ~g � W

1;s

(G) \



W

�1;s

(G) Theorem 3.3 ii) in

[7℄ implies that (�u; �p) 2 W

2;s

(G)

n

�W

1;s

(G); again a bootstrapping argument yields

r(�u) 2 L

2

(G)

n

.

We get that ru 2 L

2

(
)

n

2

: Following the arguments in [2℄ p. 20 we onlude that

u = 0 and rp = 0. 2

Lemma 3.2 Let ! 2 A

1

; n

0

< q < 1; 0 < " <

�

2

and let 
 � R

n

be an aperture domain

with �
 2 C

1;1

. Then for every f 2 L

q

0

!

0

(
)

n

and every � 2 �

"

there is a unique solution

(u; p) 2W

2;q

0

!

0

(
)

n

�



W

1;q

0

!

0

(
) of the Stokes resolvent system

�u��u+rp = f; div u = 0 in 
; u

�

�

�


= 0; �(u) = 0: (13)

Furthermore there is an A

1

-onsistent onstant C = C(!; ") > 0 suh that

k�uk

q

0

;!

0

+ kr

2

uk

q

0

;!

0

+ krpk

q

0

;!

0

� C kfk

q

0

;!

0

(14)

for all � 2 �

"

.

Proof: Sine !

0

2 A

q

0

by Lemma 2.1 (i), the existene and uniqueness assertion as well as

the estimate (14) for j�j � Æ > 0 with a onstant C = C(Æ) depending A

q

0

-onsistently on

!

0

(and therefore depending A

1

-onsistently on !) is proved in [8℄. So it remains to prove

that under the assumptions of the lemma C is independent of Æ > 0 and A

1

-onsistent.

Assume this was not true. Then there is a 

0

> 0 a sequene (!

j

) � A

1

with sup

j

A

1

(!

j

) �



0

and a sequene (�

j

) � �

"

with �

j

! 0 for j !1 and (u

j

; p

j

) 2 W

2;q

0

!

0

j

(
)

n

�



W

1;q

0

!

0

j

(
)

solving (13) with respet to � = �

j

and f = f

j

suh that

k(�

j

u

j

;r

2

u

j

;rp

j

)k

q

0

;!

0

j

= 1; (15)

kf

j

k

q

0

;!

0

j

! 0: (16)

A standard ut-o� tehnique [8℄ and Theorem 1.1 in [7℄ yield the preliminary estimate:

k(�

j

u

j

;r

2

u

j

;rp

j

)k

q

0

;!

0

j

� C ( kf

j

k

q

0

;!

0

j

+ku

j

k

1;q

0

;!

0

j

;G

(17)

+ k�

j

u

j

k

[W

1;q

!

j

(G)℄

0

+ kp

j

k

q

0

;!

0

j

;G

):

By Lemma 2.4 and (15) there is a onstant C > 0 and a onstant (n�n)-Matrix K

�

j

suh

that kru

j

�K

�

j

k

q

0

;(1+j�j)

�q

0

!

0

;


�

� C kr

2

u

j

k

q

0

;!

0

j

;


� C: Note that ru

j

2 L

q

0

!

0

j

(


�

)

n

2

and

7



K

�

j

�ru

j

2 L

q

0

(1+j�j)

�q

0

!

0

j

(


�

)

n

2

; thus K

�

j

2 L

q

0

(1+j�j)

�q

0

!

0

j

(


�

)

n

2

: Sine (1 + j � j)

�q

0

!

0

j

2 A

q

0

by Lemma 2.3, this implies K

�

j

= 0 by Lemma 2.1 iv). Hene with a onstant C > 0

independent of j

kru

j

k

q

0

;!

0

j

(1+j�j)

�q

0

;


+ kr

2

u

j

k

q

0

;!

0

j

(1+j�j)

�q

0

;


� C kr

2

u

j

k

q

0

;!

0

j

;


� C:

Sine due to the proof of Lemma 2.3 A

q

0

((!

0

j

(1+j�j)

�q

0

) � A

1

(!

j

)

1

q�1

�  

1

q�1

0

; by Lemma

2.2 in [8℄ there is an 1 < s < n

0

and a weight funtion � = (1 + j � j)

��

2 A

1

; 0 < � < n;

suh that all the spaes L

q

0

!

0

j

(1+j�j)

�q

0

(
) are ontinuously imbedded into L

s

�

(
); where

the embedding onstant an be hosen uniformly with respet to j. Hene L

q

0

!

0

j

(
) is

ontinuously imbedded into L

s

v

(
); v = (1 + j � j)

s

� with imbedding onstant independent

of j: Assuming w.l.o.g. that s < � < n we get that v = (1 + j � j)

s��

2 A

1

.

Thus the sequenes (ru

j

); (r

2

u

j

) and (rp

j

) are bounded in L

s

�

(
)

n

2

; L

s

v

(
)

n

3

and

L

s

v

(
)

n

; respetively. Therefore, suppressing the notation of subsequenes, we get the

weak onvergenes ru

j

* ru 2 L

s

�

(
)

n

2

; r

2

u

j

* r

2

u 2 L

s

v

(
)

n

3

and rp

j

* rp 2

L

s

v

(
)

n

;

R

G

p dx = 0: Sine v 2 A

s

and � = (1 + j � j)

�s

v 2 A

s

we get from Lemma 2.4

i) onstants K

�

suh that p � K

�

2 L

s

�

(


�

). Furthermore divu = 0: Sine u

k

�

�

�


= 0

and beause of the speial form of � we onlude by Poinar�e's inequality that u

k

* u

weakly in L

s

(
 \

^

B) for all balls

^

B with 
 \

^

B 6= 0. Hene u 2 L

s

lo

(
)

n

; u

�

�

�


= 0 and

��u+rp = 0 in the distributional sense. As in [2℄ p. 22 one shows �(u) =

R

M

u�� ds = 0:

Therefore Lemma 3.1 an be applied to u 2



W

2;s

v

(
)

n

\



W

1;s

�

(
)

n

�



W

2;s

�

(
)

n

\



W

1;s

�

(
)

n

and rp 2 L

s

v

(
)

n

� L

s

�

(
)

n

with p�K

�

2 L

s

�

(


�

) to onlude that u = 0 and rp = 0.

Note that A

q

0

(!

0

j

) � A

1

(!

j

)

1

q�1

� 

1

q�1

0

: Thus we may use a ompatness argument

(Lemma 2.3 in [8℄) to show exatly as in the proof of Theorem 1.1 in [8℄ that (after

hoosing a subsequene) all the terms on the right hand side of (17) onverge to 0. This

ontradits (15). 2

4 Maximal L

p

-Regularity for the instationary Stokes system

To apply an abstrat result on maximal L

p

-regularity stated as Theorem 4.3 below, we

introdue the Stokes operator in weighted L

q

-spaes. In [8℄ the Helmholtz deomposition

of weighted L

q

-spaes in aperture domains 
 � R

n

with boundary of lass C

1

L

q

!

(
)

n

= L

q

!; �

(
)�G

q

!

(
)

is proved for 1 < q < 1 and arbitrary ! 2 A

q

. Here L

q

!; �

(
) denotes the losure in

L

q

!

(
)

n

of the spae C

1

0;�

(
) of smooth, solenoidal vetor �elds with ompat support in


 and G

q

!

(
) are the gradient �elds in L

q

!

(
)

n

. The orresponding bounded projetion

operator from L

q

!

(
)

n

onto L

q

!; �

(
) with kernel G

q

!

(
) is denoted by P

q;!

.

Then the Stokes operator A

q;!

is de�ned as follows:

D(A

q;!

) =W

2;q

!

(
)

n

\W

1;q

0;!

(
)

n

\ L

q

!; �

(
)

A

q;!

u = �P

q;!

�u for u 2 D(A

q;!

):

Lemma 6.2 in [8℄ shows that D(A

q;!

) = fu 2W

2;q

!

(
)

n

\W

1;q

0;!

(
)

n

: div u = 0; �(u) = 0g:

If ! � 1 we simply write L

q

�

(
); A

q

; � � � :

8



Theorem 4.1 Let ! 2 A

1

; 1 < q <1; 0 < " <

�

2

and let 
 � R

n

be an aperture domain

with �
 2 C

1;1

. Then for all � 2 �

"

the resolvents (�+A

q;!

)

�1

and (�+A

q

0

;!

0

)

�1

exist.

For 1 < q < n there is an A

1

-onsistent onstant C = C("; !) > 0 suh that the

estimate

k� (�+A

q;!

)

�1

fk

q;!

� C kfk

q;!

8f 2 L

q

!; �

(
): (18)

holds uniformly for all � 2 �

"

.

For n

0

< q < 1 there is an A

1

-onsistent onstant C = C("; !) > 0 suh that the

estimate

k� (�+A

q

0

;!

0

)

�1

fk

q

0

;!

0

� C kfk

q

0

;!

0

8f 2 L

q

0

!

0

;�

(
) (19)

holds uniformly for all � 2 �

"

.

Proof: Sine ! 2 A

1

� A

q

and !

0

2 A

q

0

the existene of the resolvents (� + A

q;!

)

�1

and (� + A

q

0

;!

0

)

�1

for � 2 �

"

follows from Theorem 1.1 in [8℄. The estimate (19)

follows immediately from Lemma 3.2. The estimate (18) is proved by duality: Let

g 2 L

q

!; �

(
); f 2 L

q

0

!

0

(
)

n

and let u; p be the solution of the Stokes resolvent system

orresponding to �; f from Lemma 3.2. Then for v = (�+A

q;!

)

�1

g 2 L

q

!

(
)

n

j(v; f)j = j(v; �u��u+rp)j = j(�v ��v; u)j = j(g; u)j �

1

j�j

kgk

q;!

kfk

q

0

;!

0

:

Sine f 2 L

q

0

!

0

(
)

n

= [L

q

!

(
)

n

℄

0

was arbitrary the estimate (18) follows. 2

To apply a haraterisation of maximal regularity due to L. Weis ([11℄, [12℄) we intro-

due the notion of R-bounded operator families. In the sequel L(X) denotes the spae of

bounded linear operators on a Banah spae X.

De�nition 4.1 Let X be a Banah spae. A subset T � L(X) is alled R-bounded if

there exists a onstant C 2 R suh that

Z

1

0







N

X

j=1

r

j

(u)T

j

x

j







X

du � C

Z

1

0







N

X

j=1

r

j

(u)x

j







X

du (20)

for all T

1

; : : : ; T

N

2 T ; x

1

; : : : ; x

N

2 X and N 2 N, where (r

j

) is a sequene of indepen-

dent, symmetrially distributed, f�1; 1g-valued random variables de�ned on [0; 1℄, e.g. the

Rademaher funtions. The smallest onstant C suh that (20) holds is alled R-bound of

T and is denoted by R(T ).

Lemma 4.1 Let (
; �; �) be a measure spae, 1 < q < 1 and X = L

q

(
; �). Then

T � L(X) is R-bounded if and only if there is a onstant C 2 R suh that







�

N

X

j=1

jT

j

f

j

j

2

�

1

2







L

q

(
;�)

� C







�

N

X

j=1

jf

j

j

2

�

1

2







L

q

(
;�)

(21)

for all T

1

; : : : ; T

N

2 T ; f

1

; : : : ; f

N

2 X and N 2 N.
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Proof: See e.g. [7℄, Lemma 4.2. 2

Note that for q = 2 we have !

0

= !

�1=(q�1)

= !

�1

for a weight funtion ! 2 A

2

; i.e.,

!

�1

means

1

!

; this notation should not ause onfusion with an inverse funtion.

The following Theorem is a onsequene of the proof of Theorem 6.4., Chapter V, in [9℄,

although the statement given there is weaker. We give the proof with slight modi�ations

for the onveniene of the reader.

Theorem 4.2 Let 1 < q <1 and let 
 � R

n

be an open set. Further let T � L(L

q

(
))

be a family of linear operators with the property that for all ! 2 A

1

there is a onstant

C = C(!) > 0 depending only on the A

1

-onstant of ! suh that the following estimates

hold

kTfk

2;!

� C kfk

2;!

8f 2 L

q

(
) \ L

2

!

(
); (22)

kTfk

2;!

�1
� C kfk

2;!

�1
8f 2 L

q

(
) \ L

2

!

�1

(
): (23)

Then T is R-bounded in L

q

(
).

Proof: First, let 
 = R

n

and q > 2. Set s =

�

q

2

�

0

and 1 < � := (1 + s)=2 < s. Then

given 0 � w 2 L

s

(R

n

) let W (x) = (Mw

�

(x))

1

�

and observe that

i) w(x) �W (x)

ii) kWk

s

� C

s

kwk

s

.

iii) W 2 A

1

with A

1

-onstant depending only on s (see [9℄, Theorem 3.4, Chapter II).

It follows from i), iii) and (22)

kTfk

2;w

� kTfk

2;W

� C kfk

2;W

;

where C does not depend on the hoie of w but only on s: Given sequenes (T

j

) � T and

(f

j

) � L

q

(R

n

) there exists 0 � w 2 L

s

(R

n

) with norm kwk

s

= 1 suh that







�

X

j

jT

j

f

j

j

2

�

1

2







q

=







X

j

jT

j

f

j

j

2







1

2

s

0

=

�

Z

R

n

X

j

jT

j

f

j

j

2

w dx

�

1

2

� C

�

Z

R

n

X

j

jf

j

j

2

W dx

�

1

2

� C







X

j

jf

j

j

2







1

2

s

0

kWk

1

2

s

� C







�

X

j

jf

j

j

2

�

1

2







q

where C depends only on s, i.e., T is R-bounded in L

q

(R

n

):

Let q < 2. Choose g = (g

1

; : : : ; g

N

) 2 L

q

0

(R

n

)

N

with norm kgk

q

0

= 1 suh that







�

N

X

j=1

jT

j

f

j

j

2

�

1

2







q

=

N

X

j=1

Z

R

n

T

j

f

j

g

j

dx

=

N

X

j=1

Z

R

n

f

j

(T

j

)

0

g

j

dx �







�

X

j

jf

j

j

2

�

1

2







q







�

X

j

j(T

j

)

0

g

j

j

2

�

1

2







q

0

:
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By (23) and a duality argument using (L

2

!

(R

n

))

0

= L

2

!

�1

(R

n

) there is an A

1

-onsistent

onstant C > 0 suh that k(T )

0

fk

2;!

� C kfk

2;!

for all ! 2 A

1

; all T 2 T and all f 2

L

q

0

(R

n

)\L

2

!

(R

n

): Sine q

0

> 2 the �rst step of the proof yields a onstant C independent

of N suh that







�

N

X

j=1

j(T

j

)

0

g

j

j

2

�

1

2







q

0

� C







�

N

X

j=1

jg

j

j

2

�

1

2







q

0

= 1:

This proofs the laim in the ase q < 2 and 
 = R

n

.

The ase q = 2 follows from interpolation.

The assertion for a general open set 
 � R

n

an be redued to 
 = R

n

by extending

the funtions by 0 to R

n

: See [7℄, proof of Theorem 4.3, for details. 2

Let A be the generator of an analyti semigroup in the Banah spae X. We onsider

the abstrat Cauhy problem

u

t

�Au = f; u(0) = 0: (24)

For f 2 L

1

lo

([0;1);X) the mild solution on J = R

+

is given by u(t) =

R

t

0

e

(t�s)A

f(s)ds:

De�nition 4.2 Let 1 < s < 1 and f 2 L

s

(J;X). We say that A has the property MR

of maximal regularity, if for every 0 < T <1 and every f 2 L

s

(0; T ;X) the mild solution

u of (24) belongs to W

1;s

(0; T ;X) \ L

s

(0; T ;D(A)) and if there is a onstant C 2 R suh

that the estimate

ku

t

k

L

s

(0;T ;X)

+ kAuk

L

s

(0;T ;X)

� C kfk

L

s

(0;T ;X)

(25)

holds.

A generator A of a bounded analyti semigroup is said to have the property MR

1

of

maximal regularity if A has the property MR and the estimate (25) holds with a onstant

C independent of T 2 (0;1); i.e., (0; T ) an be replaed by the in�nite interval (0;1) in

(25).

For an aperture domain with boundary of lass C

1;1

the property MR was proved

for the Stokes operator �A

q;!

in L

q

!; �

(
) even for general Mukenhoupt weights, see [8℄.

In the sequel we show in the ase without weights that the Stokes operator A

q

has the

propertyMR

1

.

The following haraterisation of maximal regularity by R-bounded operator families

is due to L. Weis [11℄, [12℄. Reall that a UMD spae X is de�ned to be a Banah spae

suh that the Hilbert transform is bounded from L

p

(R;X) to L

p

(R;X) for 1 < p <1: It

is well known that L

q

(
; �) is an UMD spae for 1 < q <1 .

Theorem 4.3 Let A be the generator of a bounded analyti semigroup in a UMD spae

X. Then A has the property of maximal regularity MR

1

, i� the operator family

f� (��A)

�1

: � 2 iR; � 6= 0g

is R-bounded.

Theorem 4.4 Let 1 < q <1 and let 
 � R

n

; n � 3; be an aperture domain with bound-

ary of lass C

1;1

. Then the Stokes operator �A

q

generates a bounded analyti semigroup

in L

q

�

(
), whih has the property MR

1

of maximal regularity.
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Proof: We an write �(� +A

q

)

�1

P

q

for � 2 iR n f0g as an n � n-martix (A

�

i;j

)

i;j=1;:::n

of linear bounded operators on L

q

(
):

Reall from Lemma 2.2 that for 1 < q < 1 and v 2 A

2

there exist s 2 (1;1) and

� 2 A

s

suh that L

2

v

(
) + L

q

(
) � L

s

�

(
): Applying the uniqueness assertion of Theorem

1.1 in [8℄ to the pair (s; v) we get (�+A

q

)

�1

P

q

f = (�+A

s;�

)

�1

P

s;�

f = (�+A

2;v

)

�1

P

2;v

f

for f 2 L

q

(
)

n

\ L

2

v

(
)

n

: We will use this fat with v = ! and v = !

�1

in the following

arguments.

Sine furthermore n

0

< 2 < n for n � 3 and sine ! 2 A

1

implies ! 2 A

2

as well as

!

�1

2 A

2

; the operators A

�

i;j

i; j = 1; : : : ; n; extend by Theorem 4.1 and the boundedness

properties of the Helmholtz projetion (see Theorem 3.1 in [8℄) to linear bounded operators

on L

2

!

(
) and on L

2

!

�1

(
) for all ! 2 A

1

with A

1

-onsistent norm bound independent

of � 2 iR n f0g. Hene Theorem 4.2 yields that the operator families fA

�

i;j

: � 2

iR n f0g g are R-bounded in L(L

q

(
)) for i; j = 1; : : : ; n: This implies the R-boundedness

of f� (�+A

q

)

�1

: � 2 iR n f0g g in L(L

q

�

(
)): Thus Theorem 4.3 ompletes the proof. 2

To formulate the global in time result for the instationary Stokes system following

from Theorem 4.4 with a nonvanishing ux and a nonzero inital value we introdue some

notation:

For n

0

< q <1 and an aperture domain 
 � R

n

with Lipshitz boundary there exists

a ux funtion � 2W

2;q

(
)

n

satisfying

�

�

�

�


= 0; div� = 0; �(�) = 1; (26)

see [5℄, Theorem 1.4.

We introdue some appropriate spaes for the initial value:

L

[s;q℄

�

(
) := fu 2 L

q

�

(
) : kuk

[s;q℄

<1g;

kuk

[s;q℄

:= kuk

q

+ kA

q

e

�tA

q

uk

L

s

(R

+

;L

q

�

(
))

:

L

[s;q℄

�

(
) := L

[s;q℄

�

(
)� spanf�g

ku+ ��k

[s;q℄;�

:= kuk

[s;q℄

+ j�j

for 1 < s; q <1: Note that the ux �(u) =

R

M

u � � d� initially de�ned for u 2W

1;q

0

(
)

n

extends uniquely to a bounded linear funtional on the subspae f u 2 L

q

(
)

n

: divu =

0; u � �

�

�

�


= 0g of L

q

(
)

n

(see [5℄, Theorem 1.7).

Theorem 4.5 Let 1 < s; q <1 and let 
 be as in Theorem 4.4. Let f 2 L

s

(R

+

;L

q

(
)

n

):

i) For n

0

< q <1; � 2 W

1;s

(R

+

) and u

0

2 L

[s;q℄

�

(
) with �(u

0

) = �(0) there exists a

unique solution (u;rp) of the Stokes system (5), (6) with ux �(u) = � satisfying

r

2

u 2 L

s

(R

+

;L

q

(
)

n

2

); u

t

; rp 2 L

s

(R

+

;L

q

(
)

n

); (27)

Z

1

0

f ku

t

k

s

q

+ kr

2

uk

s

q

+ krpk

s

q

g dt � C

�

Z

1

0

kfk

s

q

dt+ ku

0

k

s

[s;q℄;�

+ k�k

s

W

1;s

�

(28)

with a onstant C = C(s; q;
) > 0:

12



ii) For 1 < q < n

0

and u

0

2 L

[s;q℄

�

(
) there exists a unique solution (u;rp) of the Stokes

system (5), (6) satisfying (27). Furthermore u has a vanishing ux �(u) = 0 for all

t > 0 and there is a onstant C = C(s; q;
) > 0 suh that

Z

1

0

fku

t

k

s

q

+ kr

2

uk

s

q

+ krpk

s

q

g dt � C

�

Z

1

0

kfk

s

q;!

dt+ ku

0

k

s

[s;q℄

�

:

Proof: This theorem is a onsequene of Theorem 4.4. For further details we refer the

reader to the proof of Theorem 6.1 in [8℄. 2

5 Weak solutions of the Navier-Stokes equations with non-

vanishing ux

Let 
 � R

n

; n � 3; be an aperture domain with C

1;1

-boundary. We onsider the Navier-

Stokes equations

u

t

+ u � ru��u+rp = f; divu = 0 in R

+

� 
 (29)

u = 0 on �
; u(x; 0) = u

0

(x): (30)

Then u is alled a weak solution of the Navier-Stokes equations in 
 with ux � if

u 2 L

1

(R

+

; L

2

(
)

n

); ru 2 L

2

(R

+

; L

2

(
)

n

2

);

divu = 0 in R

+

� 
 u = 0 on R

+

� �
; �(u) = � in R

+

;

(u(t); v(t)) +

Z

t

0

f�(u; v

t

) + (ru;rv) + (u � ru; v)g d�

= (u

0

; v(0)) +

Z

t

0

(f; v) d�

for all t > 0 and all v 2 C

1

0

([0;1);C

1

0;�

(
)).

For n = 3 in [5℄, Theorem 1.1, the existene of a global weak solution with presribed

ux � is shown under the assumptions

f 2 L

1

(R

+

;L

2

(
)

3

) + L

2

(R

+

;



W

�1;2

(
)

3

); � 2W

1;1

(R

+

) (31)

and u

0

2 L

2

(
)

3

with div u

0

= 0; u

0

� �

�

�

�


= 0; �(u

0

) = �(0); (32)

where �(0) denotes the trae of � 2W

1;1

(R

+

) at 0:

Proof of Theorem 1.1: The funtion v = u� �� satis�es �(v) = 0 and is a weak

solution of

v

t

��v + u � ru+rp = f � �

0

�+ ���; div v = 0 (33)

v

�

�

�


= 0; v(0) = u

0

� �(0)� 2 L

[s;q℄

�

:

As usual (f. [10℄) one gets the estimate

ku � ruk

s;q

� C kuk

2�2=s

2;1

kruk

2=s

2;2

: (34)
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De�ne

V (t) = e

�tA

q

[u

0

� �(0)�℄ +

Z

t

0

e

�(t�s)A

q

P

q

[f � (u � ru)℄(s) ds

W (t) = �

Z

t

0

e

�(t�s)A

�

P

�

[�

0

�� ���℄(s) ds; � > n

0

:

By (34), the properties �;�� 2 L

�

for � > n

0

; � 2 W

1;r

(R

+

); u

0

� �(0)� 2 L

[s;q℄

�

(
) and

Theorem 4.4 we get

V

t

; A

q

V 2 L

s

(R

+

;L

q

); W

t

; A

�

W 2 L

r

(R

+

;L

�

) 8� > n

0

; (35)

and the respetive norms an be estimated by kfk

s;q

+ kuk

2�2=s

2;1

kruk

2=s

2;2

+ ku

0

k

[s;q℄;�

+

k�k

W

1;r

(R

+

)

. Set ~v := V +W and � := minfr; sg. Note that L

q

+

T

�>n

0

L

�

� L

q

+L

2

� L

q

!

where ! = (1 + j � j)

�

2 A

1

; n(2 � q)=2 <  < n. Hene ~v 2 L

�

(0; T ;D(A

q;!

)) \

W

1;�

(0; T ;L

q

!

) for every 0 < T <1 and ~v is a solution of

~v

t

+A

q;!

~v = P

q;!

[f � u � ru� �

0

�+ ���℄ =: F; ~v(0) = u

0

� �(0)�: (36)

Applying the Yosida approximation J

k

= (I +A

q;!

=k)

�1

(whih exists by Theorem 1.1 in

[8℄) to v it follows from Theorem 1.2 in [8℄ that J

k

v 2 L

�

(0; T ;D(A

q;!

)) \W

1;�

(0; T ;L

q

!

)

for 0 < T <1 and

(J

k

v)

t

+A

q;!

(J

k

v) = J

k

F;

see also [10℄ for details. Theorem 1.1 and Theorem 1.2 in [8℄ imply that (J

k

v) is uni-

formly bounded in L

�

(0; T ;D(A

q;!

))\W

1;�

(0; T ;L

q

!

). This yields v 2 L

�

(0; T ;D(A

q;!

))\

W

1;�

(0; T ;L

q

!

) for 0 < T < 1 and v

t

+ A

q;!

v = F: Hene the uniqueness statement of

Theorem 1.2 in [8℄ yields v = ~v a.e. in R

+

.

Note that the onditions on s and q imply q < n

0

< n. Therefore (see [5℄, Theorem

2.8)

kr

2

V k

q

� C kA

q

V k

q

; kr

2

Wk

�

� C kA

�

Wk

�

; n

0

< � < n:

Sine u = v+�� = V +W +�� and rp = f �u

t

+�u�u �ru; the proof is omplete. 2

Remark: Assume s = r in Theorem 1.1 and note that for  > n(n

0

� q)=n

0

and

! = (1 + j � j)

�

the embedding

L

q

+

\

�>n

0

L

�

� L

q

!

holds. Therefore the norm of u

t

; r

2

u;rp in L

s

(R

+

;L

q

!

) an be estimated by (4). The

exponents s; q satisfy the the ondition 2=s+n=q = n+1 as in the ase of the whole spae,

the half spae, a bounded or an exterior domain (see [10℄) and the exponent  > 0 of the

weight funtion tends to 0 if s tends to 1 and q tends to n

0

.
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