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Abstract

Using a characterisation of maximal LP-regularity by R-bounded operator families
we prove global in time estimates in LP(Ry ; L1(Q)), 1 < p, ¢ < oo, for solutions of the
instationary Stokes system in an aperture domain Q C R?, n > 3, with 9Q € C1'.
The results are applied to obtain new global in time estimates for weak solutions of
the Navier-Stokes equations with nonvanishing flux through the aperture.

AMS classification: 35Q30, 35D05, 47D06

1 Introduction

Forn >3 and d > 0 let R = {x = (z1,... ,2,) € R* : £z, > d/2}. Then an open
connected set  C R" is called an aperture domain if there is a bounded set B C R” such
that QU B =R} UR" U B. We assume 0 € cht.
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Figure 1: An aperture domain

For a smooth bounded (n — 1)-dimensional manifold M with unit normal vector v directed
downwards dividing {2 into two connected components {2+ and a solenoidal, sufficiently
smooth vector field u : @ — R” the flux of u through the aperture is defined by ®(u) =
f yUu-vdo.

In an aperture domain we consider the instationary Navier-Stokes system

u+ (u, Vu) —Au+Vp=f, divu=0in Ry xQ (1)
u=0o0n 09, u(z,0)=up(z) inQ. (2)

In [5] M. Franzke constructed a global weak solution with prescribed flux ®(u) = « under
suitable assumptions on the data in the case n = 3. Here we are interested in global



estimates in L*(0,T; LI(Q))) —spaces of us, V?u, Vp for such a weak solution. This kind of
estimate was obtained in [10] for the whole space, the half space, bounded and exterior
domains for exponents 1 < s,q < oo satisfying 2/s + n/q = n + 1. However, if  is an
aperture domain a new effect occurs in the case ®(u) # 0 : The conditions 2/s+n/q = n+1
and s > 1 yield ¢ < n' :=n/(n — 1), but for ¢ < n’ a solenoidal vector field u € L7(Q)"
necessarily has vanishing flux (see [2], [5]). Therefore in the case ®(u) # 0 the regularity
result can not be the same as for the domains considered in [10]. We have to use the sum
of spaces L*(Ry; L) 4+ L"(Ry; LP) for 1 < s,q,7m,p < 00,2/s+n/g=n+1, p>n'.

Writing for simplicity L*(Ry ; L?) for L*(R, ; LY(Q)") regardless of N € N and denoting
the respective norm by || - |54 the result reads as follows:

Theorem 1.1 Let Q C R*, n > 3, be an aperture domain with boundary of class C11,
let 1 < s,q,7 < 00,2/s+n/qg=mn+1 and assume f € L*(Ry;L7), up € L[;’q}(Q) and
a € W (Ry) with ®(ug) = «(0). Let u be a weak solution of the Navier-Stokes equations
(1)-(2) with flur ®(u) = « and let Vp be the associated pressure gradient. Then

u, V2u, Vp € L (R L) + (1) LT(Ry; L) (3)

p>n'

The respective norms of ug, Vu, Vp in LS(Ry ; LY)+L" (R ; LP) for p > n' can be estimated
by a constant Cs 4, > 0 times
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If o = 0 it holds ug, VZu,Vp € L¥(Ry; L9).

Here L[; ’q](Q) denotes an appropriate space for the initial value with norm ||-[|, 4, defined
in Section 4 below. For the precise definition of a weak solution of the Navier-Stokes
equations with flux « see Section 5 below.

As in [10] our proof of global L*(Ry;LY)-estimates for the Navier Stokes equations
rests on L*(Ry; LY)-estimates of the instationary Stokes system

w—Au+Vp=f divu=0 inR; xQ (5)

u‘aﬂ =0, u(0)=wugy, P(u)=ca (6)

In [8] the a priori estimate
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for 0 < T < oo with C = Cp > 0 is proved. But it has remained open if the constant
C = Cr in (7) can be chosen independently of 7' € (0,00). The aim of this paper is not
only to give a positive answer to this question but also to improve the new method of
proof from [8] which rests on resolvent estimates in weighted L%-spaces for Muckenhoupt
weights.

It is well known from semigroup theory that the behaviour of the solution of the
instationary Stokes system for large times corresponds to the behaviour of the solution of
the Stokes resolvent system

AMi—Au+Vp=f divu=0 inQ, uwu=0 ondQd (8)



for small values of the modulus of X € ¥; :={A € C\ {0} : |arg | <7 —€},0<e< T,

The idea used in [8] to prove (7) is as follows: An abstract theorem on maximal
LP-regularity (see [11], [12] or Theorem 4.3 below) is combined with the fact that for L%-
spaces the assumptions of this theorem can be verified by using weighted L?-estimates of
the corresponding resolvent problem. To be more specific, for 1 < ¢ < oo and a weight
w € Ay in the Muckenhoupt class (see Defintion 2.1) define the weighted L9-space

IL@) = {u € L) 5 full = [ uftwdo < o).

Then by [8] the validity of the estimate
[Aullgw < Cllfllgw, A €Xe, [\[ 26 >0 (9)

in (8) for all weights w € A, together with the fact that C' = C. ;(w) depends only on the
Aj-constant (see Definition 2.1) of the weight w € A, implies (7). The dependence of C
in (9) on § > 0 corresponds to the (possible) dependence of the constant C' in (7) on T'.

In the case without weights in [2] the resolvent estimate (9) was proved with a constant
C independent of § > 0. The proof rests on a uniqueness assertion for the stationary
Stokes system and on Sobolev imbedding inequalities. In order to transfer this approach
to the weighted situation we need weighted Sobolev inequalities, which require additional
restrictions on the class of weight functions; therefore we are not able to verify the estimate
(9) with a constant independent of 6 > 0 for all Muckenhoupt weights w € A,.

Actually a smaller class of weights turns out to be sufficient: Let A, = Alu{wfl/(qlfl) :
we A} CAyjforl < g < oo,1/qg+1/q = 1. We observe that (7) follows for all
1 < s,q < oo from the resolvent estimate (9) for ¢ = 2 and for all weights w € Ay with
a constant C' independent of § > 0 and depending only on the A;-constant of w (see
Theorem 4.2 below). Indeed, we have weighted Sobolev inequalities at hand to prove (9)
with a constant independent of § > 0 for n' < ¢ < n and all weight functions in A,.

2 Preliminaries

A cube Q is a subset of R” of the form II7_,I;, where I1,... , I, C R are bounded intervals
of the same length.

Definition 2.1 Let 1 < ¢ < 0o. A function 0 <w € L} (R") is called Ag-weight, if

loc

Ay(w) i= s (ﬁ/@mﬁ (ﬁ/czw_fzild:r)q_l < 0, (10)

where the supremum is taken over all cubes @ C R" and |Q)| is the Lebesque measure of
Q. A function 0 <w € L] (R") is called A,-weight, if

1 1
Ai(w) = sgp{ (@/de!l?) essilelg m } < 00,

where the supremum is taken over all cubes Q C R*. For 1 < q < oo the value Ay(w) is
called the Ag4-constant of w.
Finally we set Aoo = ;< yco0 Ag-



Obviously cubes may be replaced by balls in this deﬁnition. We use the abbreviations w(.S)

1
for fs x) dx for a measurable subset S C R", ¢/ := % and w' ;= w T if 1 < g < oois
fixed. For 1 < g <00, w € Ay and an open set U C R” note that with respect to the dual

product (f,g) = [;; f gdx the dual space of LL(U) can be identified with LZ;,(U).

In the sequel constants C = C(w) > 0 in weighted L?-estimates depending on the
weight w € Ay, 1 < ¢ < oo, will appear. We call such a constant A,-consistent if for every
co > 0 it can be chosen uniformly for all w € A, with A4(w) < co.

Lemma 2.1 (Properties of Muckenhoupt weights)
1
(i) Forl<g<oo: we€A, < w=w a1 € Ay. It holds Ay(w) = Ay ()7 L.
(i) Ay, C Ay and Ay(w) < Ap(w) for 1 <p < q < oo.

(11i) For every w € Ao there are constants C' > 0 and 6 > 0 such that for every ball B
and every subset A C B

0
:’(—;1)) <c (%) .
(v) we Ax = w(R") = oo.

(v) |z|* and (1 + |z|)* are Ag-weights for —n < o < n(q —1).

(vi) Forl < q < oo andw € Ag thereis a 1 < py < q such that w € Ay for allpy < p < q.

(vii) For all w € Aq and 1 < q < oo it holds [z, w(z)(1 + |z|) ™™ dx < co.

Proof: (i) follows immediately from the definition.

(ii) [9], Chapter IV, Theorem 1.14.

(iii) See [9], Chapter IV, Theorem 2.9.

(iv) By iii) there is for w € Ay some § > 0 such that w(Bg) > R™w(B;) — oo for R — cc.
(v) See [4], Lemma 2.3 v).

(vi) [9], Chapter IV, Theorem 2.6.

(vii) [4], Lemma 2.2 (iii). O

The following nice property of the class of weighted L?-spaces equipped with Mucken-
houp weights will be useful:

Lemma 2.2 Let 1 <r,q <oo,v € A, and w € A;. Then there exist s > 1 and a weight
p € As such that

Ly (R")+ LI(R") C LZ(R”).
Here p can be chosen in the form p(x) = (1 + |z|)~® with 0 < a < n.

Proof: By Lemma 2.1 (vi) there exist p < ¢ and 7 < r such that w € A, and v € A,
and p/q =r/T = s. By (i) and (vi) of the same lemma there are ¢, > 0 such that

w rt €Ay . and v 7= = € Ay _y. Let max{p 7;75}<t< 1 and @ = nt. Then with
p(x) := (14 |z|) “ € A C As; we get by Holder s mequality

1 ! 1/p
[ Astpds <17l ( [ w71 0 jo) o d) "
Rn Rn

4



Since ap’ > n(p’ — ¢) and WP € Ay _. the last factor on the left hand side is finite by
Lemma 2.1 (vii). Analogously

!

[ 1 pds < sz ([ o) 7 o) o)

1
Since at’ > n(p' —0) and v~ 71 € A,/_s an application of Lemma 2.1 (vii) completes the
proof. |

Lemma 2.3 Let n' < ¢ < oo and w € Ay. Then (1+|-|)?w € A, or equivalently
(1+]-])"9w € Ay. Furthermore Ag((1+|-])9w) < ¢ A1 (w).

Proof: Using the notation f,, g := ﬁ J1s 9 dz we have for zo € R” and R > 0

(f,,. axlbre) (f, vl we)™

1 / qfl
< ][ (14 |z))?w) ess sup — ][ (14 |z)~? .
( Br (o) ) v€Bp(zo) W(T) ( Br (o) )

Since ¢’ < n we can estimate this quantity from above as follows (cf. [4], p. 260)

< ¢ max{(1 + |zo|)?, (1 + R)q}<][

Br(zo

1
<ec w)ess sup — < cAj(w) < 0.
< () 0 iy < e

z€Bg(xo) W\T

1
w)ess sup —— min{(1 4+ R) 9, (1 + |zo|) ¢
) ) 2€Bp(z) W(T) { [=ol)}

O
For 1 < ¢ <oo,w € Ay, k > 1 and a domain 2 C R" we define the weighted Sobolev
spaces

WEI(Q) = {u € LL(Q) : D € LE(Q), |o| < k},

Wh(Q) = {u e WSH(Q) : Vue LL(Q)"},
equipped with their respective norm || - ||, and seminorm ||V - ||4.. The subspace of
functions v € Wy%(Q) and u € Wo%(Q) with trace u|,, = 0 is denoted by Wolf((l)
and Wol”g(ﬁ) respectively (see [6], [8] for the definition of the trace). The dual spaces of
Woly’g:(Q), WOI,’:JI:(Q) and )//V\:};q,(Q) = Wi}q,(ﬁ)/c are denoted by W, (), Woj’q(ﬁ) and
ng’q(ﬁ) respectively. The norm of )7\/\;1"1(9) is denoted by || - || -1,4w- If w = 1 we simply
write LI(Q), Whe(Q), W=H4(Q),...

Lemma 2.4 Let Q2 C R" be an aperture domain with Lipschitz boundary.

i) Let 1 < g < oo, we€ Ay and (1+|-|)" 9w € A,. Then there is a constant C > 0 such
that for every u € Wyl(Q) there are constants K+ with

[ — K*g,14-sw,00 < C |V

q,(.d,Qj: "

The constant C = C(w) > 0 can be chosen as an increasing function of
Ag(w)Ag (1 + - )7 w).



ii) Let n' < ¢ < 0o, w € Ay. Then there is an Aj-consistent constant C > 0 such that
for every u € Wi,’q (Q) there are constants KT with

lu — Ki”q’,(IH-\)*Q’W’,Qi < CVullg w0 -

Proof: i) The estimate for the whole space R" is a special case of Corollary 3.7 in [4].
The constant appearing in this result is an increasing function of Ay (w') Ay ((14]-])~9 w').
Since Q4+ and w’' € Ay satisfy the assumptions in [1] for the existence of bounded linear
extension operators Ey : Wi?(Q1) — Wh(R") with A,-consistent norms assertion i) is
clear.

ii) Since ', (1 +|-])77w' € Ay by Lemma 2.3, we can apply i). It follows from
Lemma 2.3 that Ay (w')Ay (W'(1+]-])"7) < cA1(w)?(4~ Y. Hence by the properties of
the constant in i) the constant C' > 0 is A;-consistent. m

Remark: Note that the imbeddings WL(R") — L?H‘x‘),qw(ﬂ%")/(c and WHI(R") <
L7, (2)/C, 1 < r < oo, are not true for general Muckenhoupt weights w € A;: Let 1 < ¢ <n
and w(z) = (1 + |z|)~* with n — 1 < a < n yielding w € A,;. Further consider a sequence
(ug) C C§°(R™) such that uy is equal to 1 for |z| < k, equal to 0 for |z| > k£ + 1 and
|Vuy| is bounded independent of k. Then ||Vuy|qw — 0 for & — oo while the sequences
vkl (14]e]) 2w and [Jugllrw are increasing.

For n < ¢ < co one may take even w =1 to get a counter-example.

3 Resolvent estimates for the Stokes system
We need a uniqueness assertion for the stationary Stokes system

—Au+Vp=0, divu=0 in{, (11)
u‘m =0, ®(u)=0. (12)
To reduce this problem to perturbed Stokes problems on half spaces R} and on bounded
domains we introduce a localisation technique:
Let B be an open ball centered at 0 such that QUB =R! UR” UB. Let B’ be another
open ball B' with B' C B such that QU B’ =R} UR"” UB’. Furthermore we may assume
that there is a bounded domain G' C © with BN C G and with boundary of class C! or
CHlif 9Q € C! or 92 € C1Y, respectively. We define cut-off functions € C°(R") and
n+,n- € C*°(R} UR? U B') by the following properties:

0§77a77+7717§177l++777+77:_10n9
n=0onR"\ B,n=1o0n B

ny =1lonRY\B,n, =0onR* UB,

n-=1onR* \B,n_=0on R} UB"

Lemma 3.1 Let 1 < q < oo,w € Ay and let & C R be an aperture domain with
0Q € CY'. Furthermore let u € Wf’q(ﬁ) N Wj’q(Q) and p be a solution of the Stokes
system (11), (12). Assume that there are constants K* such that p — KT € L& (04).
Then v =0 and Vp = 0.



Proof: For U =R} ,G and ¢ = n4,n consider the local equations
~A(pu) +V(gp) = f, div(gu) =3, (pu)],, =0,

where f = —2(V¢)Vu — (Ad)u + (V)p and § = (V¢) - u. Here we replace p by p — K+
if U = RY.

Let U = R} : Note that because of the bounded support of V¢ we have for some
1 < s < oo that f € Wofl’s(U)” = and g € L*(U) (see [7]), Lemma 2.2) and that
(¢u, p(p — KF)) € W\i’q(U)” x LL(U) is a weak solution of the stationary Stokes system
in U = R% with right hand sides f and §. Hence Theorem 5.2 (II) in [6] yields (¢u, (p —

Ky)) e /Wl’s(Ri )" x L*(R} ). Now we are in the case without weights and one can conclude
by a procedure using Sobolev’s imbedding exactly as in [2] p. 20 that V(¢u) € L?(R%).
Let U = G: Noting f € L¥(G)" and § C W55(G) N W~1%(G) Theorem 3.3 ii) in
[7] implies that (¢u, ¢p) € W25(G)" x WH*(G); again a bootstrapping argument yields
V(¢pu) € L*(G)".
We get that Vu € L2(Q)". Following the arguments in [2] p. 20 we conclude that
u =0 and Vp=0. O

Lemma 3.2 Let w € Ay, n' < q<00,0<e <% andlet Q CR" be an aperture domain
with 0Q € CY1. Then for every f € LZ;,(Q)” and every A € Y. there is a unique solution
(u,p) € Wj,’q’(Q)” X Wiiq’(ﬁ) of the Stokes resolvent system

A—Au+Vp=f, divu=0 1inQQ, 0, ®(u)=0. (13)

ulpg =
Furthermore there is an Aj-consistent constant C = C(w,€) > 0 such that

[Aullg o + ||V2U||q’,w’ +IVpllgw < Cllfllgw (14)
for all X € 2.

Proof: Sincew’ € Ay by Lemma 2.1 (i), the existence and uniqueness assertion as well as
the estimate (14) for |A| > § > 0 with a constant C' = C(6) depending A, -consistently on
w' (and therefore depending A;-consistently on w) is proved in [8]. So it remains to prove
that under the assumptions of the lemma C' is independent of § > 0 and A;-consistent.
Assume this was not true. Then there is a ¢y > 0 a sequence (w;) C Ay with sup; A1 (w;) <

co and a sequence (\;) C X, with A\; — 0 for j — oo and (uj,p;) € Wj,fq’(Q)" X Wi}q’(ﬁ)
J J
solving (13) with respect to A = A; and f = f; such that
1Ay V205, Vi)llg o, = 1, (15)
il = 0. (16)
A standard cut-off technique [8] and Theorem 1.1 in [7] yield the preliminary estimate:
1gtags V23, 0 s < C (lfsll a3 g1, (1)

+ ||>‘juj||[wl’_q((;)]/ + ||pj|
“j

q’aw;'aG )

By Lemma 2.4 and (15) there is a constant C' > 0 and a constant (n x n)-Matrix Kf such
that | Vu; — K57, < C|V2ujlly w0 < C. Note that Vu; € LY, (24)" and

L[~ w2 j

7



K; - VUJEL(I_H . ,,(Qi) , thus KieL‘(IIH Ny (Q1)™. Since (1+]-]) 7w} € Ay

]
by Lemma 2.3, this 1mp11es K;E = 0 by Lemma 2.1 iv). Hence with a constant C' > 0
independent of j

“V“j“q/,w;(H\.\)—q’,Q + “Vzuj||qf,w;(1+|.|)—q’,9 <C Hvzuqu’,w;,Q <C.

1

Since due to the proof of Lemma 2.3 Ay ((w}(1+]-[) ) < cAy(wj)TT = < cc¢{™", by Lemma
2.2 in [8] there is an 1 < s < n’ and a weight function p = (1+|-])"* € 41,0 < a < n,

such that all the spaces Lz;,;.(1+|~|)—q

the embedding constant can be chosen uniformly with respect to 7. Hence Lg,{(Q) is
J

/() are continuously imbedded into L;((2), where

continuously imbedded into Lf(€2),v = (1 + | - |)*p with imbedding constant independent
of j. Assuming w.l.o.g. that s < a < n we get that v = (1+|-[)*~* € A;.

Thus the sequences (Vu;), (VZu;) and (Vp;) are bounded in L"”(Q)"2 L3 ()" and
L3 ()™, respectively. Therefore, suppressmg the notation of subsequences we get the
weak convergences Vu; — Vu € L5(Q)", Viu; — V?u € L5 ()" and Vp; = Vp €
L))", [opdz = 0. Since v € A; and p = (14 ]-])"%v € A, we get from Lemma 2.4
i) constants K1 such that p — Ky € Ls(Qi) Furthermore divu = 0. Since uk‘aﬁ =0
and because of the special form of p we conclude by Poincaré’s inequality that uy — w
weakly in L*(Q N B) for all balls B with Q@ N B # 0. Hence u € L}, .(Q)", =0 and
—Au+Vp = 0 in the distributional sense. As in [2] p. 22 one shows ®(u) = [,, u-vds = 0.
Therefore Lemma 3.1 can be applied to u € WUQ’S(Q)" N WI’S(Q)" C W2’S(Q)” N WI’S(Q)”
and Vp € L ()" C L;(2)" with p Ky E L5(92+) to conclude that u =0 and Vp = 0.

Note that Ay (w;) < Al(wj)q I < ¢f7'. Thus we may use a compactness argument
(Lemma 2.3 in [8]) to show exactly as in the proof of Theorem 1.1 in [8] that (after
choosing a subsequence) all the terms on the right hand side of (17) converge to 0. This

contradicts (15). O

4 Maximal LP-Regularity for the instationary Stokes system

To apply an abstract result on maximal LP-regularity stated as Theorem 4.3 below, we
introduce the Stokes operator in weighted L?-spaces. In [8] the Helmholtz decomposition
of weighted Li-spaces in aperture domains Q C R” with boundary of class C*

LE()" = L ,(2) @ G§,(2)

is proved for 1 < ¢ < oo and arbitrary w € A,. Here L ,(Q2) denotes the closure in
LL(Q)™ of the space C5% (Q) of smooth, solenoidal vector fields with compact support in
Q and G&(Q) are the gradient fields in L (2)". The corresponding bounded projection
operator from L{(Q)™ onto L, »(2) with kernel G4 () is denoted by P, .

Then the Stokes operator Ay, is defined as follows:

D(Agw) = W2 N Wyl ()" N LY ()
Aguwu = —P; ,Au for u € D(Agw)-

Lemma 6.2 in [8] shows that D(Ag) = {u € Wf’q(Q)"ﬂW&,’f(Q)" cdivu =0, ®(u) =0}.
If w =1 we simply write L& (2), Ay, - -



Theorem 4.1 Letw € A1,1 <qg<o00,0<¢e <G and let Q& CR" be an aperture domain
with 02 € CYY. Then for all X € . the resolvents (A + Ay ) ™" and (A + Ay )" emist.

For 1 < q < n there is an Aj-consistent constant C = C(e,w) > 0 such that the
estimate

N+ Ag) fllgw < Clifllgw  Vf € LE 5(9). (18)

holds uniformly for all X € ¥..
For n' < q < oo there is an A;-consistent constant C = C(e,w) > 0 such that the
estimate

A A+ Aq’,w’)ilf“q’,w’ <C “f“q’,w’ Vf e LZ/,U(Q) (19)
holds uniformly for all X € ¥..

Proof: Since w € A; C A, and o' € Ay the existence of the resolvents (A + Ag,,) "
and (A + Ay )7 for X € X, follows from Theorem 1.1 in [8]. The estimate (19)
follows immediately from Lemma 3.2. The estimate (18) is proved by duality: Let
g € LL,(Q),f € LZ;,(Q)” and let u,p be the solution of the Stokes resolvent system
corresponding to A, f from Lemma 3.2. Then for v = (A + A, )" tg € LE(Q)"

[Fllg -

q’w

(0, )] = (0, Xt — At V)| = | (Ao — Av, )] = [(g,u)] < ﬁug

Since f € Lg;,(Q)” = [L{,(2)")" was arbitrary the estimate (18) follows. O

To apply a characterisation of maximal regularity due to L. Weis ([11], [12]) we intro-
duce the notion of R-bounded operator families. In the sequel £(X) denotes the space of
bounded linear operators on a Banach space X.

Definition 4.1 Let X be a Banach space. A subset T C L(X) is called R-bounded if
there exists a constant C' € R such that

1N .
/0 szzlrj(U)Tj:erXdugC/o H;’I"j(u)xj“)(du (20)

for all Ty,... , Ty € T, z1,... ,2y € X and N € N, where (rj) is a sequence of indepen-
dent, symmetrically distributed, {—1,1}-valued random variables defined on [0, 1], e.g. the
Rademacher functions. The smallest constant C' such that (20) holds is called R-bound of
T and is denoted by R(T).

Lemma 4.1 Let (2, X, u) be a measure space, 1 < q < oo and X = L4(Q,u). Then
T C L(X) is R-bounded if and only if there is a constant C € R such that

H(le |ijj|2) Lot < CH(JZ1 |fj|2)

forall'ly,...  Tn €T, f1,...,fn € X and N € N.

(21)

L(Q,p)



Proof: Seee.g. [7], Lemma 4.2. O

Note that for ¢ = 2 we have w' = w /(01 = w1 for a weight function w € A, i.e.,

w1 means E this notation should not cause confusion with an inverse function.

The following Theorem is a consequence of the proof of Theorem 6.4., Chapter V, in [9],
although the statement given there is weaker. We give the proof with slight modifications
for the convenience of the reader.

Theorem 4.2 Let 1 < g < oo and let Q@ C R" be an open set. Further let T C L(L(£2))
be a family of linear operators with the property that for all w € A; there is a constant

C = C(w) > 0 depending only on the Aj-constant of w such that the following estimates
hold

ITfl20 < Cllfll2w Vf e LYQ) N L), (22)
ITfll2w-t < Clfllow-r V€LY NLE(Q). (23)

Then T is R-bounded in L(S2).

Proof: First, let 2 = R" and ¢ > 2. Set s = (%)' and 1 < 0 := (1 +5s)/2 < s. Then
given 0 < w € L¥(R") let W(z) = (Mw”(a;))% and observe that

i) w(z) < W(x)
i) [Wly < C .
iii) W € A; with Aj-constant depending only on s (see [9], Theorem 3.4, Chapter II).

It follows from i), iii) and (22)

1T fll20 < NTfll2w < ClF 2w

where C' does not depend on the choice of w but only on s. Given sequences (7}) C 7 and
(fj) C LA(R™) there exists 0 < w € L*(R") with norm ||w||s = 1 such that

(S, -]

= </anj:|ijj|2"Ud$ %<C / Zlfﬂ de);

<c|| i i ch(Zml?f ;
7 J

where C' depends only on s, i.e., T is R-bounded in L?(R™).
Let ¢ < 2. Choose g = (g1, ... ,gn) € LY (R*)N with norm lglly = 1 such that

H( |Tfy % Z/ Tifj g5 dx
—Z/ f @yede < || (S 15)°
J

(i)’
J

a
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By (23) and a duality argument using (L2(R"))" = L?_,(R") there is an A;-consistent
constant C' > 0 such that [|(T) fll2w < C||fll2w for all w € A;, all T € T and all f €

LY (R*) N L2 (R™). Since ¢' > 2 the first step of the proof yields a constant C' independent
of N such that

=1.

ql

[(Cmyae)], <o |(SC k)’
j=1 j=1

This proofs the claim in the case ¢ < 2 and 2 = R",

The case ¢ = 2 follows from interpolation.

The assertion for a general open set 2 C R" can be reduced to 2 = R" by extending
the functions by 0 to R™. See [7], proof of Theorem 4.3, for details. O

Let A be the generator of an analytic semigroup in the Banach space X. We consider
the abstract Cauchy problem

up — Au = f, u(0) = 0. (24)

For f € L} ([0,00); X) the mild solution on J = R, is given by u(t) = f(f e(=9)A4 f(s)ds.

loc

Definition 4.2 Let 1 < s < o0 and f € L°(J,X). We say that A has the property MR
of mazimal regularity, if for every 0 < T < oo and every f € L*(0,T; X) the mild solution
u of (24) belongs to W15(0,T; X) N L*(0,T; D(A)) and if there is a constant C € R such
that the estimate

Nwtllzs0,m;x) + 1Al s o,msx) < C I fllLso,m;x) (25)

holds.

A generator A of a bounded analytic semigroup is said to have the property MRy of
mazimal reqularity if A has the property MR and the estimate (25) holds with a constant
C independent of T € (0,00), i.e., (0,T) can be replaced by the infinite interval (0,00) in
(25).

For an aperture domain with boundary of class C™! the property MR was proved
for the Stokes operator — A, in L{, ;(2) even for general Muckenhoupt weights, see [8].
In the sequel we show in the case without weights that the Stokes operator A, has the
property MR .

The following characterisation of maximal regularity by R-bounded operator families
is due to L. Weis [11], [12]. Recall that a UMD space X is defined to be a Banach space
such that the Hilbert transform is bounded from LP(R; X) to LP(R; X) for 1 < p < oo. It
is well known that L?(€, ) is an UMD space for 1 < g < oo .

Theorem 4.3 Let A be the generator of a bounded analytic semigroup in a UMD space
X. Then A has the property of mazimal reqularity MR, iff the operator family

AA=A)71 XNeiR A#£0}
18 R-bounded.

Theorem 4.4 Letl < g < oo and let Q@ CR", n > 3, be an aperture domain with bound-
ary of class C1'. Then the Stokes operator — Ay generates a bounded analytic semigroup
in LE(Y), which has the property MRoo of mazimal reqularity.

11



Proof: We can write A(A + A,) 1P, for A € iR\ {0} as an n x n-martix (Af"j)iyjzl,mn
of linear bounded operators on L4(£2).

Recall from Lemma 2.2 that for 1 < ¢ < oo and v € Ay there exist s € (1,00) and
p € Ag such that L2(Q) + LI(Q) C L7(€2). Applying the uniqueness assertion of Theorem
1.1 in [8] to the pair (s,v) we get (A+Ay) T P f = A+ Asp) P pf = A+ Azy) Poy f
for f € LY(Q)" N L2(2)". We will use this fact with v = w and v = w™! in the following

arguments.
Since furthermore n’ < 2 < n for n > 3 and since w € A; implies w € Ay as well as
w™ € Ay, the operators Ag\J- 1,7 =1,...,n, extend by Theorem 4.1 and the boundedness

properties of the Helmholtz projection (see Theorem 3.1 in [8]) to linear bounded operators
on L2(2) and on L? () for all w € A; with A;-consistent norm bound independent
of A € iR\ {0}. Hence Theorem 4.2 yields that the operator families {Af:j A€
iR\ {0} } are R-bounded in £(L%(12)) for ¢,5 = 1,..., n. This implies the R-boundedness
of {A(A+Ay) 1 : A€iR\{0}} in £(LE(Q)). Thus Theorem 4.3 completes the proof. O

To formulate the global in time result for the instationary Stokes system following
from Theorem 4.4 with a nonvanishing flux and a nonzero inital value we introduce some
notation:

For n’ < g < oo and an aperture domain Q C R" with Lipschitz boundary there exists
a flux function y € W4(Q)" satisfying

Xog =0, divx=0, @()=1, (26)

see [5], Theorem 1.4.
We introduce some appropriate spaces for the initial value:

LEA(9Q) = {u € LY + [[ulljng < o0 },

g

lells,g) = llullg + 1MAge™ 0l oz, 130
LE9(Q) = Ll#9(Q) @ span{x}
||U + aX”[s,q},x = HUH[S,(ﬂ + |a|

for 1 < s,q < co. Note that the flux ®(u) = [,, u - v do initially defined for u € W, ()"
extends uniquely to a bounded linear functional on the subspace { u € LI(2)" : divu =
0, u- u‘m =0} of LI(Q2)™ (see [5], Theorem 1.7).

Theorem 4.5 Let 1 < s,q < oo and let Q be as in Theorem 4.4. Let f € L*(Ry; LY(Q)"™).

i) Forn' < q < oo, a € WHé(Ry) and ug € L[;’q](Q) with ®(up) = «(0) there erists a
unique solution (u, Vp) of the Stokes system (5), (6) with flurx ®(u) = « satisfying

V2u e L*(Ry; LY)™), w, Vp € L*(Ry; LI(Q)™), (27)

o0 o0

/0 {uut||;+||v2u||;+||Vpu;}dtsc( / ||f||3dt+’|U0||fs,q],x+||a“f/v1,s)
(28)

with a constant C' = C(s,q,) > 0.

12



ii) For1 < q<mn'anduy € L([,s’q](Q) there exists a unique solution (u, Vp) of the Stokes
system (5), (6) satisfying (27). Furthermore u has a vanishing fluz ®(u) = 0 for all
t > 0 and there is a constant C = C(s,q,Q) > 0 such that

[ty + 192l + 19005 @t < © ([t + ol ):

Proof: This theorem is a consequence of Theorem 4.4. For further details we refer the
reader to the proof of Theorem 6.1 in [8]. O

5 Weak solutions of the Navier-Stokes equations with non-
vanishing flux

Let Q C R?, n > 3, be an aperture domain with C'»'-boundary. We consider the Navier-
Stokes equations

u+u-Vu—Au+Vp=f, diviu=0inR; xQ (29)
u=0o0n09dQ, u(r,0)=uy(x). (30)

Then w is called a weak solution of the Navier-Stokes equations in 2 with flux « if

u€ L®(Ry, L*(Q)"), Vue LRy, LXQ)"),
divu=0inRy xQ w=0o0onR;y x99, &(u)=cainRy,

t
(u(t),v(t)) +/0 {=(u,v) + (Vu,Vv) + (u - Vu,v) } dr

t
0

= (up,v(0)) +/ (f,v)dr

for all £ > 0 and all v € C§([0, 00); C§% (2)).
For n = 3 in [5], Theorem 1.1, the existence of a global weak solution with prescribed
flux « is shown under the assumptions

J € LRy LA(Q)°) + LAR WHA(Q)), € WHI(Ry) (31)
and wug € L*(Q)? with divug = 0, ug - V‘aﬂ =0, ®(up) = «(0), (32)
where «(0) denotes the trace of « € WHI(R,) at 0.

Proof of Theorem 1.1: The function v = u — @ satisfies ®(v) = 0 and is a weak
solution of

v—Av+u-Vu+Vp=f—adyx+aly, dive=0 (33)
v‘m =0, v(0)=uy— a(0)x € L4

As usual (cf. [10]) one gets the estimate

2—2/s 2/s
lu - Vullsg < C llulls 2 IVulss. (34)
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Define
t
V(t) = e fug — a(0)x] + /0 AP~ (u- Vu))(s) ds

t
W(t) = —/ e~ =94 p o'y — alx](s)ds, p>n'.
0

By (34), the properties x, Ay € L” for p > n/, a € WY (Ry), ug — a(0)x € Lgf’q}(Q) and
Theorem 4.4 we get

Vi, AV € L¥(Ry; LY), Wy, AW € L'(Ry; LP) Vp>n/, (35)
and the respective norms can be estimated by ||f|ls,, + ||u||§;z/s||Vu||g,/; + llwollfs,q, +
lellwir e,y Set @ :=V +W and 7 := min{r, s}. Note that LI+, L? C LI+L* C L,
where w = (14 |- |)77 € A1, n(2—-¢q)/2 <y < n. Hence 0 € L™(0,T;D(Ayw)) N
WLHT(0,T; LY) for every 0 < T < oo and © is a solution of

O+ Ayl = Pyulf —u-Vu—d'x+alx] = F, ©(0)=up— a(0)x. (36)

Applying the Yosida approximation J; = (I + A, /k)~" (which exists by Theorem 1.1 in
8]) to v it follows from Theorem 1.2 in [8] that Jyv € L7(0,T; D(Ay.)) NWL7(0,T; LY)
for 0 < T < o0 and

(Jk’l))t + Aq,w(Jk’U) = Ji F,

see also [10] for details. Theorem 1.1 and Theorem 1.2 in [8] imply that (Jxv) is uni-
formly bounded in L7 (0,T; D(A,)) "W (0, T; LE). This yields v € L7(0,T; D(Ag)) N
WLT(0,T; L) for 0 < T < oo and vy + Agwv = F. Hence the uniqueness statement of
Theorem 1.2 in [8] yields v = v a.e. in R;.

Note that the conditions on s and ¢ imply ¢ < n' < n. Therefore (see [5], Theorem
2.8)

IV2Vly < ClAV Il VW], < ClAW o, n' < p<n.
Sinceu =v4+ax =V +W+ax and Vp = f —u;+ Au — u - Vu, the proof is complete. O

Remark: Assume s = r in Theorem 1.1 and note that for v > n(n' — ¢)/n’ and
w=(1+]-1])"7 the embedding

L1+ (L c Lt

p>n'

holds. Therefore the norm of u;, V2u, Vp in L*(R,; LY) can be estimated by (4). The
exponents s, ¢ satisfy the the condition 2/s+mn/q = n+1 as in the case of the whole space,
the half space, a bounded or an exterior domain (see [10]) and the exponent vy > 0 of the
weight function tends to 0 if s tends to 1 and ¢ tends to n'.
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