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Flux homomorphisms and principal bundles
over infinite dimensional manifolds

K.-H. Neeb, C. Vizman

Abstract. Flux homomorphisms for closed vector-valued differential forms on infinite dimensional
manifolds are defined. We extend the relation between the kernel of the flux for a 2-form w and
Kostant’s exact sequence associated to a principal bundle with curvature w to the context of infinite-
dimensional fiber and base space. We then use these results to construct central extensions of infinite
dimensional Lie groups.

In finite-dimensional symplectic geometry one frequently encounters actions a: Gx M — M
of a connected Lie group G by automorphism on a connected symplectic manifold (M,w). This
means that for all vector fields &(X), X € g, of the derived action the 1-forms i4x)w are
closed. The action is called hamiltonian if all these 1-forms are exact, which in turn is equivalent
to the existence of a moment map M — g*. Passing to a central extension g of the Lie algebra g
of G, the moment map can be made equivariant. This means we have the following commutative
diagram linking the two exact sequences of Lie algebras:

0 - R - C®MR - XpamM) — 0

-] T

0 - R — g — g - 0,

where C°°(M,R) denotes the Lie algebra of smooth functions on M endowed with the Poisson
bracket. If, in addition, (P,#) is a T-bundle over M with connection 1-form # and curvature
w, then Xp(P) = C>®(M), so the action of the simply connected Lie group G with Lie algebra
g on M can be lifted to an action on P preserving the connection 1-form 6. In the infinite-
dimensional setting, things become more complicated for several reasons, one crucial point being
that not every topological Lie algebra belongs to a Lie group.

In this paper we study actions a:G x M — M of infinite-dimensional Lie groups on
infinite-dimensional manifolds preserving a closed 2-form with values in a sequentially complete
locally convex space 3. If T' C 3 is a discrete subgroup, Z := 3/T', and there is a principal Z-
bundle P over M with curvature w and connection 1-form 6, then we give conditions for lifting
the action of G on M to an action of a central Lie group extension G of G by #-preserving
automorphisms of the Z-bundle P. All manifolds and Lie groups considered in this paper are
modeled over locally convex spaces ([Mil83]) which are not necessarily assumed to be sequentially
complete ([Gl01]). The assumption of sequential completeness is only needed for 3 to ensure the
existence of integrals leading to parallel transport, local exactness of closed differential forms etc.
We do also not assume that the manifold M is smoothly paracompact which is usually done to
classify principal bundles over M (cf. [Bry93]).

The structure of the paper is as follows. In the first section we define a flux homomorphism
for a closed p-form w on an infinite-dimensional manifold M . Here the main point is to see
that the approach, as f.i. in Banyaga’s book [Ban97], can also be used in the context of infinite-
dimensional manifolds. Having applications to principal bundles for infinite-dimensional abelian
Lie groups in mind, we even work with vector-valued differential forms, which causes no serious
additional difficulites. Let w be a closed p-form on the manifold M with values in the sequentially
complete locally convex (s.c.l.c.) space 3 and T, C 3 be the group of periods obtained by
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integration of w over piecewise smooth cycles. Let H, ggl(M ,3,L,) denote the quotient of the
space of closed 3-valued (p — 1)-forms modulo those with periods contained in T',, and for a
curve ¢:[0,1] = D, (M) := {¢ € Diff(M): p*w = w} which is smooth in the appropriate sense,
let 6'(1)(t) € X(M) denote its left logarithmic derivative in ¢. For a curve ¢ from idas to ¢
we then define the flux homomorphism associated to w by

1
SuiDy(M)g = HEZ (M, 3,T),  Su(p) = [/ ialw)(t)wdt]-
0

Here D, (M )y denotes the group of all those w-preserving diffeomorphisms of M which can be
reached from idp; by a curve which is smooth in a natural sense.

Let T' C 3 be a discrete subgroup and Z := 3/T" the corresponding quotient Lie group. Then
the case p = 2 of the flux homomorphism is used in Section II to analyse which diffeomorphisms
of M can be lifted to an automorphism of a Z-principal bundle over M with curvature w €
0%(M,3). In this case Ty, C T is automatically discrete. The main point of Section II is a
generalization of a result of B. Kostant from [Ko70], characterizing automorphisms of (M,w)
which can be lifted to automorphisms of (P,#) as those which do not change the holonomy
of closed curves in M. From that we derive further that for smooth one-parameter curves in
D, (M) the condition from Kostant’s Theorem is equivalent to the curve lying in the kernel
of a modified flux homomorphism D, (M), — Hggl(M ,3,I). Eventually we arrive at the
result that the smooth path-component of the identity in Aut(P,#) is a central Z-extension
of the kernel of the modified flux homomorphism. In [RS81], using Sobolev technics, T. Ratiu
and R. Schmid obtained a similar result for compact symplectic manifolds (M,w) which admit
quantizing manifolds (P,6).

A similar result in the particular case of a compact quantizable symplectic manifold (M, w)
was obtained by T. Ratiu and R. Schmid using Sobolev technics in [RS81].

In Section III we consider a principal Z-bundle ¢: P — M on a connected manifold M
with a connection 1-form 6 and a smooth action a:G x M — M of a connected Lie group G
on M which is hamiltonian with respect to the curvature form w € Q2(M,3) of (P,6). Then
the results of Section IT implies that all maps a4 can be lifted to automorphisms of (P,§), and
we thus obtain a central group extension G of G by Z. The main result of Section IIT is that
if we endow G with the manifold structure obtained from pulling back the bundle P via orbit
maps of G on M, then G is a Lie group acting smoothly by automorphisms on (P,8).

The ideas for the main constructions of this paper are not new (see f.i. [PS86] and [Bry93]).
Our main point is that we show how they can be extended to infinite-dimensional manifolds and
Lie groups without the burden of artificial assumptions such as smooth paracompactness which

is first not so easy to verify and on the other hand not even satisfied for many Banach manifolds
([KM97]).

I. Flux homomorphisms for infinite-dimensional manifolds

In this section M denotes a possibly infinite-dimensional smooth manifold modeled over a locally
convex space and 3 a sequentially complete locally convex (s.c.l.c.) space ([Gl01]). We write
OP(M,3) for the space of 3-valued smooth p-forms on M, ZP(M,3) for the subspace of closed
forms, BP(M,3) C Z*(M,3) for the space of exact forms, and Hi, (M, 3) := ZP(M,3)/BP(M,3)
for the corresponding de Rham cohomology space. We do not consider any topology on all these
spaces.
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Vector fields and differential forms

Definition I.1.  (a) We write D(M) := Diff (M) for the group of all diffeomorphisms of M
and X(M) for the Lie algebra of vector fields on M. For w € QP(M,3) we write

Do(M):={pe DIM):p*'w=w} and X,(M):={pe€X(M):Lxw =0},

where
Lx:=ixod+doix.

(b) Let I C R be an interval. A curve ¢:I — D(M) is called smooth if the corresponding map
I'x M — M,(t,z) = o(t).z is smooth. Then we obtain for each ¢t € I a vector field

d

3 () (t)(2) := () -

o(7r).x

T=t

which is called the left logarithmic derivative of ¢ in t. Here ¢.v := T(¢).v refers to the action
of D(M) on the tangent bundle T'(M) of M. The corresponding right logarithmic derivative is
given by

(@@ = e e) )
and satisfies
(1) 5 (@)(1) = o). 3 @)(1), el

(c) We call p,¢ € D(M) smoothly homotopic if there exists a smooth curve v:[0,1] — D(M)
with v(0) = ¢ and v(1) = ¢. We write D(M ) for the normal subgroup of those diffeomorphisms
which are smoothly homotopic to the identity and likewise D, (M) for the normal subgroup of
those elements of D, (M) which can be connected to idy; by a smooth curve in D, (M).

(d) For a smooth manifold M and a Lie group K we define for a smooth function f € C*(M, K)
the left logarithmic derivative of f by

0" (f)(x) = dAp(ay-1 (F (@))df (2): T (M) — & = T (K).

This derivative can be viewed as a €-valued 1-form on M. We also write simply §'(f) = f~1.df
and observe the product rule

§'(frf2) = Ad(fo) 7101 (f1) + 61 (f2)
([KM97, 38.1]). -

Lemma 1.2. For w € QP(M,3) and a smooth curve ¢:] —¢,e[— D(M) with ¢(0) =idy and
¢©'(0) =X € X(M) we have

where the limit is considered pointwise on p-tuples of tangent vectors of M .

Proof. This is proved exactly as [Ne00, Lemma A.2.4]. [



4 Flux homomorphisms and principal bundles 19.04.2002

Lemma 1.3. Let M and N be manifolds. If the smooth maps p,: N — M are smoothly
homotopic, then for each w € ZP(M,3) the form p*w — Y*w is exact.
Proof. This can be obtained with the same arguments as Lemma 34.2 in [KM97]. Because
it will be instructive for the following, we give a direct proof for the case M = N, where
v, € D(M) are smoothly homotopic in D(M).

First we note that for any X € X(M) the closedness of w implies

Lxw=1xdw + d(ixw) = d(ixw).

Now let 0:[0,1] = D(M) be a smooth curve connecting ¢ to ¢. Then

Yd
V'w—ptw = / o(1)*wdt,
0

T=t

dr

and Lemma 1.2 implies that this integral equals

1

/01 Loty (0(t)"w) dt = /Old(iaz(a)(t)(a(t)*w)) dt = d[/o it oy 1) (0 ()" ) ]

In view of the sequential completeness of 3, the integral fol ist()(t)(0(t)*w) dt exists as a Riemann
integral and defines an element of QP~1(M,3). This completes the proof. ]

Lemma 1.4. If ¢o:I — D,(M) is a smooth curve, then for each t € I the vector fields
8L () (t),67 (@) (t) are contained in X,(M).

Proof. In view of ¢(t)*w = w, t € I, Lemma 1.2 shows that the left logarithmic derivative
satisfies

0= % g P = L)1) w = Lot () ()@
and the right logarithmic derivative satisfies
0= di _ o(m) w = ()" Lo ) nw
7| r=t
which implies Lsr(,)pw = 0. ]

The flux homomorphism associated to w
For w € ZP(M,3) the map
Vi1 X (M) = H Y (M,3), X — [ixw]
is a homomorphism of Lie algebras because
(1.2) ix,y)w = [Lx,iylw = Lxiyw = d(ixiyw) +ixd(iyw) = d(ixiyw) € BP~Y (M, 3).

Its kernel X, (M)®* consists of those vector fields for which ixw is exact. For ¢ € D, (M) and
X € X,(M) Lemma 1.3 shows that

oo xW —ixw = (¢ )*(ixw) —ixw
is exact. Therefore
[t xw] = [ixw]
in H?='(M,3). Tt follows in particular from (1.2) that for a smooth curve ¢:I — D, (M) we
have
[is () (@] = [ir ) )]
Although the group D, (M) is far from having a reasonable Lie group structure if M is

infinite-dimensional, we will see in this subsection how the Lie algebra homomorphism ~ can be
“integrated” to a group homomorphism on D, (M)g.
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Definition I.5.  (a) For w € QP(M,3), N a triangulated compact p-dimensional oriented
manifold, and o: N — M a piecewise smooth map, the integral

/w::/a*aJEz,
o N

is defined because 3 is sequentially complete. The subgroup T, C 3 generated by the images of
these integrals is called the ps-period group of w (“ps” stands for piecewise smooth).
If M is smoothly paracompact, then de Rham’s Theorem holds for M ([KM97, Thm.
34.7]), so that
Hip (M, 3) = Hg,, (M, 3) = Hom(H, (M, Z), ).

sing

Therefore each closed p-form w corresponds to a unique homomorphism H,(M,Z) — 3 whose
image is called the period group of w. It seems that this period group might be larger than the
ps-period group. For p = 1 this is not the case because every singular 1-cycle has piecewise
smooth representatives. The fact that the cone over a connected one-dimensional manifold is
homeomorphic to the 2-dimensional disc with boundary implies that singular 2-cycles can also
be represented by piecewise smooth maps N — M, but a similar argument does not work for
higher dimensions. This motivates our definition of ', , because this subgroup is better accessible
than the full period group of w. It also has the advantage that our constructions remain valid
for manifolds which are not smoothly paracompact, which already includes Banach manifolds
modeled on spaces like ['(N,R) ([KM97, 14.11]).

(b) For a subgroup I' C 3 we define
BP(M,3,T) :={w e ZP(M,3):T, CT}, Hgp(M,T) := BP(M,5,I')/B*(M, 3)

and
H(Ij)R(Maﬁar) = ZP(M,j)/Bp(M,j,F) = H(Ij)R(Maﬁ)/H(Zj)R(Ma F)

For elements of the space HY (M,3,T) we define the integral over piecewise smooth maps
0:N — M (N compact, oriented, triangulated manifold) via

/U[w] :=/Jw+1“€Z:=g,/F.

This integral has to be interpreted as an element of the quotient group Z. ]

Remark I.6. If ' C 3 is a discrete subgroup and Z := 3/I' is the corresponding quotient
Lie group, then we can identify B'(M,3,T') in a natural way with §'(C>°(M, Z)) (cf. [Ne0O,
Sect. IIT]). n

We will integrate vy to a group homomorphism S,: D, (M) — H?~Y(M,3,T,).

Lemma 1.7. Let ¢:[a,b] = D,(M) be a piecewise smooth closed curve. Then
b
/ iaz(w)(t)w dt € Bpil(M,j,Fw).

Proof. It is easy to see that the integral f; isi(p)(tyw dt defines an element of ZP=1(M,3).
One only has to use that for a smooth map [a,b] x X — 3, X a manifold, integration over [a, b]
yields a smooth function X — 3.

Let 0: N — M be piecewise smooth map, where N is a triangulated oriented (p — 1)-
dimensional manifold. Then the map

hi[a,b] x N = M, (t,z) — o(t).0(x)
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is smooth and we have for vy,...,v,_1 € T(N):

) ), p(t ).da(m)(vl,...,vp_l))
)(51(@(0(0(96)) o(z)(v1,. .., 0p1))
(

We thus obtain

b b b
(13) / h*w = / / o* (i(;z(w)(t)w) dt = / / i(;z(@)(t)w dt = / (/ i(;z(@)(t)w dt)
la,b]x N a JN a Jo o a

As ¢ is a closed curve, we may consider h as a piecewise smooth map S' x N — M . Therefore
f[a pxn h*w € Ty, which proves the lemma. m

Proposition 1.8.  Let ¢ € D,(M)o and ¢:[0,1] = D,(M) a piecewise smooth curve with
e =1(1) and (0) =idar. Then

1
(14) Sw3Dw(M)0 - Hp_l(MaﬁaI‘w)a Y= 1/](1) = [A idl(w)(t)Wdt

is a well defined group homomorphism.

Proof. If n:[0,1] — D, (M) is another smooth curve from idys to ¢, then concatenation
yields a closed curve in D, (M), so that Lemma 1.7 implies that

1 1
/Oi(;z(,p)(t)wth/o i(;l(n)(t)wdt+Bp71(M53:Fw)

Therefore S, is well defined by (1.4). To see that S, is a group homomorphism, suppose that
a:[0,1] = D, (M) is a piecewise smooth curve connecting idas to ¢, and that 3:[0,1] — D, (M)
is a piecewise smooth curve connecting idys to ¥. Then

§:[0,1] = Do, (M), &(t) == {Z(fg(zt -1) igi i 2 E)’,El}

is a piecewise smooth curve from idas to . Then

[ 284 (a)(2t) for t € [0, 1]
§'(&)(t) = {le(g)(Qt —1) fortels 1]

implies

1 1
Sw ((p ¢] 1/}) = / Z'(;I(E)(t)w dt = / 2i51(a)(2t)w dt + / 22'51(3)(2,5_1)(,0 dt
0 0 1

1 1
=/ i5t (a)(t wdt+/ it (@) (1w dt = Sy, (@) + Su ().
0
[

The homomorphism S, in (1.4) is called the flur homomorphism associated to the closed
p-form w € ZP(M,3).
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Remark 1.9. In [Ban97, p.56] the flux homomorphism for a closed p-form w € ZP(M,R) on a
finite-dimensional manifold M is defined on the simply connected covering group ﬁu’c(M )o of
the identity component D, .(M)o of the group D, (M) of w-preserving diffeomorphisms with
compact support as follows. An element g of this covering group is represented by a piecewise

smooth curve ¢:[0,1] = D, (M) from e to the image of ¢ in D, .(M)o. Then

1

S Dy e(M)o = HYZL(M,R),  S,(g) := [/ i51 () ()W dt]
0

defines a group homomorphism which descends to a group homomorphism

(1.5) St Dye(M)o — Hi' (M, R)/II,

where T := S, (1 (D, o(M))).
Applying Lemma 1.7 to 3 = R, we see that IT C H?.'(M,T,). Let

m HS (M, 3) /T — HA N (M, 5) /Hyy (M, Ty) = Hi ' (M,5,T.)

denote the projection. Then the relation between the two flux homomorphisms in (1.4) and (1.5)
is

S, =moS,. n

Remark 1.10. Suppose that p = 2. Let ¢:[0,1] = D, (M) be a piecewise smooth curve with
$(0) = 1, (1) = ¢ and £:S' — M a piecewise smooth loop. Then (1.3) implies that we have
in the sense of Definition 1.5

(1.6) [su0= [ w

where 0:]0,1] x St — M is given by o(t,s) = ¢(t).£(s) (cf. [MDS98, p. 317]). This means that
the flux homomorphism is the “symplectic area” of surface swept out by a closed curve which is
moved by a curve of symplectomorphisms, hence the name “flux homomorphism.” ]

Group actions and the flux homomorphism

Let a:G x M — M be a smooth left action of the connected Lie group G on M. We
write a(g) := a4 = a(g,-) for the diffecomorphism of M defined by the element g € G. The
corresponding Lie algebra homomorphism &: g — X(M) is given by

a(X)(p) :=Ta(1,p)(=X,0).

Let w € ZP(M,3). Then [Ne00, Lemma A.2.5] (see also Lemma I.4) implies that a(G) C
D, (M) is equivalent to &(g) C X, (M). We call the action a hamiltonian if all 1-forms isx)w,
X € g, are exact. One would like to take this as the infinitesimal criterion for a(G) C ker S,,,
but the situation is a bit subtle because in general S, can not be viewed as a homomorphism of
Lie groups.

Proposition I.11.  Let w € ZP(M,3) be a closed p-form and a:G x M — M a smooth action
of the connected Lie group G on M . For the assertions

(1) «a(G) CkerS,.

(2) All 1-forms is(x)w are exact.

we then have (2) = (1) and the converse holds if p=2 and T, is discrete.
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Proof.  Assume that a(G) C D,(M). Let g € G and #:[0,1] = G a smooth curve from 1
to g. Then (t) := ay () is a smooth curve from 1 to ay in D(M). We then have

D) = plt) o

(1) = o) .2

T=t dr

2| 60)a) = Ta@) (6 )0,0) = ~4@ W)H) ).

a(P(r)).y

T=t

=Ta(1,y)(v(t) !

T=t

Therefore )

1
Sw(ag) = |:/ i51(¢)(t)w dt] = —|:/ id(azw)(t))w dt]
0 0
(2) = (1): If all (p—1)-forms i4x)w are exact, then their periods vanish. Hence all periods of
1
/0 Ta(st (v) ()@ At
vanish, and therefore a(G) C ker S,, .

(1) = (2): Suppose, conversely, that a(G) C kerS,. Then we obtain for each smooth curve
¥:[0,1] = G with ¢(0) =1 that

T
/(; id(az(w)(t))wdt S Bpil(M,j,Fw).

If T, is discrete, then this implies for each piecewise smooth map o: N — M (N a (p—1)-
dimensional, compact, oriented and triangulated manifold), that

T

/0 / T (w) ()W dt € T
T

/ /idw’w)(t»wdtzo
0 o

because T',, is discrete. Taking the derivative in T' = 0, we thus obtain

ia (s (w) (o)« € BPH(M,3,{0})

for each T € [0, 1], and therefore

and since ¢'(1)(0) can be any element of g, we see that
ia(x)w € B (M,3,{0}), X eg.

If, in addition, p = 2, then [Ne00, Th. IT1.6] implies that B'(M,3,{0}) coincides with the
space of exact 1-forms, and we conclude that is(x)w is exact for each X € g. ]

I1. Lifting diffeomorphisms to principal bundles

In this section 3 denotes a s.c.l.c. space, I C 3 a discrete subgroup, and Z := 3/T" the abelian
quotient Lie group with the exponential function exp,(z) :== 2+ T'. Let ¢:P — M be a
principal Z-bundle over the connected manifold M with principal right action p: P x Z — P.
Let 6 € Q' (P,3) be a connection 1-form, i.e. 8(p(X)) = X for each X € 3 and p%f = 6 for each
z€ Z.If 07 =8 (idy) is the Maurer—Cartan form on Z, then the connection form condition is
equivalent to 7,0 = 67 for each orbit map n,:Z — P,z = y.z. The curvature form w € 0%(M,3)
is defined by ¢*w = df.
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Parallel transport and holonomy

Remark II.1. (a) Although the existence of solutions of ordinary differential equations in
infinite-dimensional vector spaces is problematic if they are not Banach spaces, the assumption
of sequential completeness guarantees the existence of Riemann integrals. Hence there exists for
each continuous curve n:[a,b] — 3 and each X, € 3 a differentiable curve v:[a,b] — 3 with
¢(a) = Xo and ¢’ = 1. Then the curve ¢ := exp, ot satisfies 0! (va) = ¥g'.dpag =" = 1.
(b) The remarks under (a) imply that each piecewise differentiable curve n:[a,b] = M can be
lifted to a curve 7:[a,b] — P with horizontal tangent vectors, i.e., those in the kernel of §. We
then call i a horizontal lift of n. In fact, since this is a local assertion, we may assume that the
bundle ¢: P — M is trivial, i.e., P = M x Z with ¢(z,2) = z. Then o: M — P,z — (z,1) is
a smooth section and we obtain a gauge potential A := o*0 € Q'(M,3) and 6§ = ¢*A + p%0z,
where pz: P — Z is the projection onto the second factor. To obtain a lift of , we have to look
for a piecewise differentiable function h:[a,b] — Z for which the curve 7j(t) := (n(t), h(t)) has
horizontal tangent vectors. This means that for each ¢ we have

0= 0((t))(77 () = Aln() (' (1)) + h(t) ™1 () = A(m(1)) (' (2)) + &' (R) (2).

Since the differential equation
8'(h)(t) = —A(n(t))(n' ()
has a unique solution on [a,b] for each initial value in Z, the assertion follows.
(c) For any piecewise differentiable curve 7:[a,b] — M we then obtain a parallel transport map

Pt(n):q~" (n(a)) = ¢~ (n(b))

by assigning to an element y € ¢~'(n(a)) the value 7(b) of the unique continuous horizontal
lift 7:[a,b] = P of n with 7(a) = y. It is easy to see that the parallel transport maps are
Z -equivariant.

If n is a loop, then Pt(n) maps ¢ '(n(a)) into itself and commutes with Z, hence is given
by the action of an element h(n) € Z, called the holonomy of the loop n. This means that each
horizontal lift 77 of n satisfies

1(b) = 1(a)-h(n)-

(d) If +:]0,1] = M is a piecewise smooth path, then we write 1:[0,1] — M for the piecewise
smooth path given by (t) := (1 —t). If :[0,1] — M is another piecewise smooth path, then
we define the composition of ¢ and n by

[ n(2t) for t € [0, %]
(Wxm)(t) = {¢(2t —1) forte[L1]

Then it is easy to verify that

Pt(¢) L =Pt(¢f) and  Pt(¢ xn) = Pt(y) o Pt(n). n

Proposition I1.2.  Let Ay := {(z,y) € R2:0 < z,y,z +y < 1}, ¢:0Ay — M be a piecewise
smooth loop, and o: Ay — M a piecewise smooth extension of 1. Then

h(y) = expy, ( - /A o*w).

2

Proof. (cf. [Bry93, Prop. 2.4.6]) Using simplicial subdivisions of A, and observing that both
sides are the sums of the contributions of all small smooth singular simplices, we may w.l.o.g.
assume that im(c) lies in an open set U over which the bundle is trivial. We may therefore
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assume that P = M x Z with ¢(z,z) = x is a trivial bundle. Let o: M — P,z + (z,1) be the
canonical global section and A := ¢*#. Then we can write 6 as

0=q*A +p*Zez,

where pz: P — Z is the projection. We parametrize 9A, by a piecewise smooth map [0,1] —
0A,, so that we may consider ¢ as a piecewise smooth map [0,1] = M. Let ¢(t) = (¢(t), 2(t))
be a piecewise smooth horizontal lift of ¢. Then z satisfies the differential equation

8'(2)(t) = —A((1))-¢' ().

We now calculate
h(1h) = 2(1)2(0) /5l dt):epo /A "(t) d )

:epo(— w*A —epo A —epo /dA) :epo(—/w)

[0,1] ¥

:epo(—/ a*w).
Ao

For smoothly paracompact manifolds the following corollary follows also from the classifi-
cation of smooth principal Z-bundles by their Chern classes. In our setting it is a more or less
direct consequence of Proposition I1.2.

Corollary II.3. Let g : P — M be a principal Z = 3/T -bundle with principal connection
form 6. Then the group T, of periods of the curvature form w is a subgroup of T .

Proof. The abelian group Z; ,,(M,Z) of piecewise smooth 1-cycles in M consists of formal
linear combinations of 1 * )9 * ... %, with ¢y,..., 1, smooth curves in M closing to a cycle.
The holonomy along piecewise smooth loops defines a group homomorphism

h: Zy (M, Z) = Z.

Let 0 : Copw(M,Z) - Zi py(M,Z) be the boundary map for piecewise smooth 2-chains
in M. Then Proposition I1.2 implies that

h(0o) = expy, (—/w).

a

It follows that for 2-cycles o € Z3 (M, Z) the integral [ w € I'. This proves T, CT. [

Remark I1.4. Proposition I1.2. is very close to the construction of a global group cocycle for
a central extension of a simply connected Lie group G by Z ([Ne00]).

Let w € Z2(g,3) be a continuous Lie algebra cocycle and Q the corresponding left invariant
closed 3-valued 2-form on G with Q1 = w. We assume that ', C " and that Z :=3/T.

On the Lie group G' we choose a left invariant system agj of smooth paths from g to
h. This means that a,, = A\ o g 4-15 and that the paths from 1 to a group element may be
chosen freely. From the simple connectedness of G we can then derive for each triple (g, h,u)
of group elements the existence of a piecewise smooth map gy pn,.: A2 — G with respect to a
simplicial subdivision of A, whose boundary values are given by the cycle ay, + apu — g0 -
Then the global cocycle is obtained by

flg,h) :=expy, (/a Q)

In view of Proposition II.2, we have f(g,h) = h(0a1,g,4n). [
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Lifting diffeomorphisms to principal bundles

In the following we write C’gﬁ,(Sl,M ) for the set of maps S — M which are piecewise
smooth with respect to a finite subdivision of S! into intervals and # for the group of ”holonomy
preserving” diffeomorphisms:

H = {p € Dy(M): (VL € Cpo (S", M))h(p o £) = h(0)}.
Remark I1.5. From Proposition II.2 we obtain for each ¢ € D(M) with
(V0 € Co (S',M)) h(p o) = h(l)

and for each piecewise smooth map o: Ay — M the relation

/ap*w—/wel“.

Pick m € M and let ¢:U — M be a chart of M with m = ¢(0) € ) (U) and U open and
convex in the locally convex space V. For v,w € U and h > 0 we consider the map

on:Ay = U, (z,y) := xhv + yhw.
Then 5 5
lim — = lim — rp*w = (P*w)(0
,gmﬁmw;gmL%muwmumw
and likewise

fin 2 [ = @) 0) ),

h—0 h2

In particular we have

lim/ w=0 and lim/ P 'w =0,
h—0 ooy, h—0 $poon

and since T is discrete, we get
/ 0w — / w=0
Yooy Yooy

for h sufficiently small. Eventually this implies that ¥*w = ¥*p*w on U, and hence that
@*w = w. Therefore we also have

H = {p € D(M): (V€ € C3,(SY, M))h(p 0 £) = h(0)}. n

For finite dimensional manifolds M and w real-valued, B. Kostant shows in [Ko70] that H
is the group of those diffeomorphisms on the basis M which can be lifted to automorphisms of
(P,0). For compact symplectic manifolds (M, w), T. Ratiu and R. Schmid show in [RS81] that
the identity component of H*T!, the group of elements in # which are of Sobolev class H*t!,
equals the kernel of the flux homomorphism, i.e. the group of Hamiltonian diffeomorphisms of
Sobolev class H**!. In this subsection we show similar results in our infinite dimensional setting.

For a subgroup II C T, let

- HCIIR(Mv 3> Fw) — H(}R(Ma 3> H)
be the canonical projection and define the flux homomorphism corresponding to 11 by

SH = 7 © Sw:Dw(M)O — H(}R(M73’H)
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Proposition I1.6.  Let Sp denote the fluxr homomorphism associated to T whose existence
follows from T, CT'. Then

ker(Sr) = { € Do (M)o: (V€ € C2%,(SY, M))h(p 0 £) = h(£)}.

Proof. Let ¢:[0,1] = D, (M) be piecewise smooth with ¢(0) =1, £:[0,1] = M a piecewise
smooth loop in M, and define a piecewise smooth map

0:[0,1] % [0,1] = M, (,5) = o(t).£(s).

Then
co:[0,1] = M, ¢o(t) := p(¢).£(0) = p(t).£(1)

is a piecewise smooth curve. Let ¢p:[0,1] — P denote a horizontal lift of ¢ and f; denote the
unique horizontal lift of the curve £:(s) := p(t).£(s) with £:(0) = ¢(¢). Then

5:00,1] X [0,1] = P, (t,5) > £y(s)
is a piecewise smooth lift of 0. We define ¢ (t) := Zg(l) Both curves ¢y and ¢; lie over ¢g, and

C1(t) = Pt(£y)(Co(t)) = Co(t)-h(ly).
The condition ¢(1) € ker Sr is equivalent to the relation [, S,,(¢(1)) € T' for all piecewise
smooth loops £ in M. According to formula (1.6), we have

A&wmzlw

fo foom o Lo - o
—Aoz—A¥@uma@Mt

because the curves @, £ and ¢; are horizontal. We have & () = &(t).h(¢;). Therefore

(1) = & (1).h(l) + p(0" (h(6:))) (o (2)),

Further

where

. d
&' (h(£y)) = h(t) .Eh(&) €3

Since the vectors ¢, (t) are horizontal, the same holds for ¢(¢).h(¢;), and we obtain

Aw:—ékm%»m

To evaluate this integral, let H:[0,1] — 3 be a lift of the curve [0,1] — Z,¢ — h({¢). Then

/w_ /}T H(0) — H(1).

This integral is in T' if and only if h(p(1) o £) = h(€;) = h(¢). This completes the proof. n
Let
Aut(P) :={p € D(P):(Vz € Z)pop, =p.op} and Aut(P,60) := Aut(P) N Dy(P).
Then we have two group homomorphisms
¢ Aut(P) - D(M) and ¢ :=q. |aut(p,0): Aut(P,8) — D, (M)
which are defined by g.(p)og = goyp. It is easy to see that ker g. = C*®(M, Z), where we associate

to a smooth function f: M — Z the diffeomorphism p; of P given by py(y) := ps(gy) (v). For
each such operator we have

pi0 =0+ ¢35 (f).
Therefore py € Aut(P,0) is equivalent to df = 0, which, in view of the connectedness of M,

means that f is constant. Therefore ker(q?) = Z. We want to describe the image of ¢? in
D,,(M).
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Theorem II.7. For each principal Z-bundle q: P — M with connection 1-form 6 and
curvature w € Q*(M,3) we have a short exact sequence of groups

1> 7 < Aut(P,0) - H — 1.

Since Z is central in Aut(P,0), this sequence defines a central extension of H by Z.

Proof. It remains to be shown that im(q?) = H.

First we show that im(¢?) C H. So let ¢:[0,1] — M be a piecewise smooth loop and
(:[0,1] — P a horizontal lift. Let @ € Aut(P,0) and ¢ = ,(@). Then o [ is a horizontal lift
of ¢ o/, and therefore

G(0(0)).h(p 0 ) = F(E(1)) = G(£(0).h(£)) = F(£(0)).h(£)

implies that h(p o) = h({).
Now we assume ¢ € H and construct ¢ € Aut(P,6) with ¢/(y)) = . Let zo € M. We
start with a Z-equivariant isomorphism

Voot g (o) = a7 (p(20))-

Let y € P and z := ¢(y). For a piecewise smooth path :[0,1] = M from zy to = we define

¥(y) = Pt(p 07) 0 Yy o Pt(1) ™ () € 47" (2(x))-

We claim that ), is independent of . So let n:[0,1] — M be another piecewise smooth path
from zy to . Then y~' xn is a loop in zo. Our claim is equivalent to the relation

Pt(p 07) 0 thy, o Pt(7) ™" = Pt(p o) 0 by, o Pt(n) ™"

on ¢~ '(z), which follows from

Pt(‘p o (7_1 * 77)) ° wmo ° Pt(7_1 * 77)_1 = Ph(po(y—1txn)) © %0 ° p}:(l,y—1*n)

= Ph(po(y—1xn)) © 92(1771*,7) 0 g, = Ph(y—1txn) © P,;(l,yﬂ*n) 0 Yy = Yay-
We now obtain a well defined map

Y:P = P, (y) =9,(y) for (1) =q(y).

Now we investigate the properties of . FEventually we will show that ¢ € Aut(P,0) with
a2(d) = .

(1) We obviously have g o = ¢ o ¢ because ¢, maps ¢~ '(z) to ¢~ (¢(z)).

(2) ¢ commutes with the action of Z on P because this is true for ¢,, and all parallel transport
maps.

(3) ¢ intertwines parallel transport maps in the sense that

Y o Pt(n) = Pt(pon) o

In fact, suppose that 1:[0,1] — M is a piecewise smooth path from z; to z5. Then we choose
a path v from zy to z1, so that 7 xy connects zo to xo. Therefore we have on ¢~ ' (z;)

¥ 0 Pt(n) = thyer, 0 Pt(n) = Pt(p 0 (7)) © thag 0 Pt(n )" 0 Pt(n)
= Pt(p o) Pt(p 07) 0y, 0 Pt(y) !
= Pt(p o n)hy = Pt(pon)y.

(4) ¢ is a smooth map. Let U be a neighborhood of z € M which is diffeomorphic to an open
convex subset of a locally convex space, so that we may view U as such a set. Then we have
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for each z; € U a canonical path from z to x; given by 7,,(t) := z + ¢(x1 — z). From the
discussion in Remark II.1(c) it then follows easily that the parallel transport map

Uxq~'(z) = q ' (U), (x1,2) Pt(ne,)-2
is smooth, and similarly, its inverse map

g "(U)=>Uxq (), yr Pt "y

is smooth.
To see that ¢ is smooth, we now choose a fixed path v from zy to x, so that we have on
¢ '(z1), 71 € U, the relation

¥ = Pt(p ong,) Pt(p 0 7)the, Pt(7) ™" Pt(na,) "

Therefore the preceding remarks imply that ¢ is smooth on ¢~!(U), and since = was arbitrary,
the smoothness of 1) follows. We likewise see that 1) ~! is smooth.

(5) Next we show that ¢ € Aut(P,f). It remains to see that ¢*0 = 6. Let v € Ty(P)
be a horizontal tangent vector. Then there exists a path 7:[0,1] — M and a horizontal lift
7:[0,1] = P with 5'(0) =wv. For each t € [0,1] we now have

V() = Pt(v]0,1)7(0),
and hence
$(F(t) = Pt(p o vlo,0)¢(5(0)),
showing that 1 o7 is a horizontal lift of the path ¢ o~. Taking derivatives in ¢t = 0, we see that
dip(y)-v = (12 7)'(0)

is horizontal. Moreover, (2) implies that 1) o p, = p. ot for all z € Z, so that
$op(X) = 5(X), X €3
For X € 3 we now obtain

(W 0)(y) (v + p(X) () = () (d(y).v + dip(y).p(X)(y) = 0¥ (y))-p(X) (¥ (y))
=X =0(y)(v+ p(X)(y))-
This proves that ¢*0 = 8, and the proof is complete. ]

In the following corollary the connected component Go of a subgroup G C D(M) is
considered with respect to piecewise smooth curves in G (cf. Definition I.1).

Corollary II.8. For each principal Z-bundle q: P — M with connection 1-form 6 and
curvature w € Q*(M,3) we have a short exact sequence of groups

1— 7 < Aut(P,0)o — (ker Sp)g — 1,

where Sp:Dy,(M)o — Hig(M,3,T) is the flux homomorphism for the subgroup T' of T,,.

Proof. Let (t)o<t<i be a smooth curve in H with ¢y =idy and ¢ = ¢. We fix a point
xo € M. Then we have a smooth curve (:[0,1] = M,t — @i(z). We define the maps

Ytz = Pt(Co,4): q '(zo) = g (@t(ﬂfo))

and write ¢, for the unique extension of ¢ ,, to an element of Aut(P, ) satisfying qoy; = ¢;0q
(Theorem I1.7). Tt remains to see that (¢¢)o<¢<1 is a smooth curve of diffeomorphisms of P in
the sense of Definition I.1.
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We proceed as in Step (4) of the proof of Theorem II.7. Let z € M and U be a
neighborhood of z which is diffeomorphic to an open convex subset of a locally convex space, so
that we may view U as such a set. Then we have for each zy € U a canonical path from z to
x1 given by 1, (t) := x + t(x1 — z). To see that (¢, 1) — ¥(x1) is smooth, we now choose a
fixed path v from o to z, so that we have on ¢ (z1), z; € U, the relation

P = Pt(pr 0 My ) P01 0 )00 PH(7) ' Pt(ns,) "

Here the product of the rightmost two factors does not depend on ¢, and its smoothness follows
as in the proof of Theorem II.7. Therefore it remains to consider the map

[07 1] X qil(xo) — Pa (ta 2) = Pt(cpt ° nm) Pt(‘pt o 7)¢t,z0-2,

whose smoothness follows from the observation that if a curve depends smoothly on one pa-
rameter, then the parallel transport along that curve depends smoothly on that parameter, too.
This in turn follows from the discussion in Remark II.1 and the corresponding statement on the
smooth dependence of integrals of smooth functions on parameters. ]

ITI. Application to central extensions of Lie groups

Let ¢:P — M be a principal Z-bundle with connection 1-form # and curvature w. Further
let G be a connected Lie group and a: G x M — M be a smooth Lie group action which is
hamiltonian, which is equivalent to

a(G) CkerS, CD,(M)

because the period group of w is contained in T' by Corollary I1.3, hence discrete.

As we have seen in Corollary I1.8, the bundle P defines a central Z-extension of the group
H D (ker S, )o. Viewing « as a homomorphism G — H, we can pull back this central extension
to a central Z-extension G of G. The main result of this section will be the observation that G
is a Lie group, that the natural projection qg: G — G is a Z-principal bundle, and that G acts
smoothly on P by automorphisms of (P,6).

We start by defining the abstract group G as the pull back
G={(9,¥) € G x Aut(P,0):ql() =} and q5:G > G, (9,9) = g.

In view of Theorem I1.7, a(G) C H implies that gg: G- Gisa surjective group homomorphism.
Its kernel is isomorphic to Z = kerq? (Corollary IL.8), and this is a central subgroup of G.
Therefore g defines a central Z-extension of G.

Proposition IIL.1. Let ¢:P — M be a principal Z-bundle with connection form 6, Ny a
connected manifold, N1 a manifold and

(p:N1XN2—)M

a smooth map. Let pi(x) := @(x,t). Then all the bundles P, := ¢ P — Ny are isomorphic as
principal Z -bundles.

Proof. Since N, is connected, it suffices to prove the assertion for Ny = [0,1] and a family
of maps ¢t := @(+,t): N := N; — M which is smooth in the sense that the corresponding map
N % [0,1] = M is smooth.
To obtain a bundle isomorphism : Py — P;, we consider P; := ¢; P as the manifold
Py :={(z,y) € N x P:g(x) = q(y)}

with the bundle projection ¢p,(z,y) = x. Then we define the map

'QZ}:PO - Pla ¢(m,y) = (vat('Yx)'y)v Vet [Oal] - Ma’)/a:(t) = @t(m)-

It is easy to see that v is a smooth bundle isomorphism. ]
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Lemma IIL.2. For m, € M let pp,:G — M,g — g.m, be the orbit map and P, := ¢}, P
the corresponding pullback Z -bundle over G. Pick an element y, € P with q(y,) = m,. Then

8:G = Pn, CGX P, (9,%) = (9,%.0)

is a bijection. We thus obtain on G a smooth manifold structure. If M is connected, this
manifold structure does not depend on the choice of m .

Proof. If ®(g,v1) = ®(g,12), then 1.y, = 5.y, and
alg)og=qot =qo

leads to 1o = 11 . Hence & is injective.

To see that ® is surjective, let (g,y) € P, . Then ¢(y) = g.m,. Let (g,v¢) € G. Then
q(¥.y,) = g.m, and since (g,¥Z) C @, there also exists a z € Z with y,.z = y. Therefore
® is surjective. We now transport the manifold structure from P, to G to obtain a natural
manifold structure on the group G , such that the quotient homomorphism qg: G — G defines
on G the structure of a principal Z-bundle. The independence of the differentiable structure on
G 22 Pp,, from m, follows from Proposition III.1. [

Lemma IT1.3. Let G be a group endowed with the structure of a connected manifold such that
(1) all left multiplication maps A\y:G — G,z — gx are smooth, and

(2) multiplication and inversion are smooth on identity neighborhoods.

Then G is a Lie group.

Proof. We have to show that the map u:G x G — G, (z,y) — xy ! is smooth. That
it is smooth in an identity neighborhood follows from (2). Moreover, (2) implies that there
exists an open symmetric identity neighborhood V' such that for all elements g € V' the right
multiplication map p,(z) = zg is smooth in an identity neighborhood. Now pyzA, = App, for
g,h € G, together with (1) implies that the maps p,, g € V', are smooth on all of G. Since
all left multiplications on G are smooth, all sets aV, a € G, are open, which implies that
H :={],, V™ is an open subgroup of G. Its other cosets gH are also open, so that H is closed,
and the connectedness of GG implies that H = G'. Therefore all right multiplications p,, g € G,
are smooth.
Fix (g,h) € G x G. We then have

o (Ag X An)(z,y) = plgz, hy) = gzy~"'h™" = (g 0 pp-1 0 p)(z,y),

showing that p is smooth in a neighborhood of (g,h). As g and h were arbitrary, the smoothness
of u follows. ]

In view of Lemma III.2, we obtain for each m, € M on the group G a natural manifold
structure. We have to show that the group multiplication on G is smooth with respect to this
manifold structure.

Theorem 1II.4. Let ¢:P — M be a principal Z -bundle with connection 1-form 6 and
curvature w € Z*(M,3). Further let a:G x M — M be a hamiltonian action on (M w). Then

there exists a central Lie group extension qq: G — G and a smooth action @& of G on P by
automorphisms of (P,0) such that qoa = ao (idg Xq).

Proof. Let G be the pull back of the central Z-extension Aut(P,6) — H by the homomor-
phism a:G — H C D,(M). We consider the action

a:éxp_)Pa ((gaw)ay)'_)w(y)

of G on P. Since all elements of Aut(P #) are smooth, the group G actson P by smooth maps.
Therefore it remains to endow G with a Lie group structure for which g¢g: G — G is a central
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Lie group extension and to show that for this manifold structure on G' the map @ is smooth in
a neighborhood of each pair (1,y,) € G x P.

To this end, we first give a local description of the action. Let U C M be an open subset
of M on which the bundle P |y is trivial. Let opy:U — P be a smooth section of this bundle,
and Ay := 0*6 the corresponding local gauge potential. We identify ¢~!(U) with U x Z in such
a way that o(x) = (z,1) for z € U.

Let z, € U and y, := o(x,). In view of the continuity of the action of G on M, there exists
an open identity neighborhood V¢ in G and an open neighborhood Vi, of z, with Vg .V, CU.
Here we may w.l.o.g. assume that V), is diffeomorphic to an open convex subset of a locally
convex space.

We endow G with the manifold structure obtained from Lemma II1.2. Pulling back the
smooth section oy to a smooth local section of the bundle gq: G — G, we obtain a smooth local
section

06:Va C o, (U) = G, g (9.0,)  with .y, = 0u(g.7,)
(see the proof of Lemma III.2). Now the action map
@:Gx P =P, ((9.9),9) = ¥(y)
restricts to a map
(Vax Z)x (Vu x Z) > UxZ, ((9,2),(z,2) = (9.7, f(g,7)22"),

where f:Vg xVar — Z is a function for which all the partial maps f, := f(g,-) are smooth with
fo(zo) =1 and fi = 1. This means that

Yoz, 2") = (g2, fo()2"), g€ Vg, x€Vy,2' €Z.
In product coordinates the connection 1-form 6 can be written as
0 =q"Av +p30z,
where pyz:U X Z — Z is the Z-projection. Therefore
0 =30 =q oAy + q*0' (fy) + pyz

leads to
Ay = o)Ay + 6 (f,)-

From dAy = w we derive that the 1-form Ay —aj; Ay on Vi is closed, hence exact by

the assumption that V), is diffeomorphic to a convex set and the Poincaré Lemma (cf. [Ne0O0,
Lemma ITI.3]). Now there exists a unique smooth function

oV —3  with  fi(z,) =0, dfi = (Av —ayAv)|vy-
Moreover, the explicit formula in the Poicaré-Lemma implies that the function
[V x Ve =3, (9,7) = fi(z)
is smooth. Let fZ :=exp,of3. Then
7V x Vi = Z
is a smooth function, and the functions f/ := f”(g,-) satisfy f/(z,) = 1 and 0'(f]) =

(Ay — a;AU) [var - We conclude that f, = ng for each g € Viz. It follows in particular that the
action map @ is smooth on (Vg x Z) x (Vi X Z).
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If G carries a Lie group structure for which the natural map Vg x Z < G is a local
diffeomorphism, the fact that G acts by smooth maps on P implies that @ is a smooth action
because z, € M was arbitrary.

It therefore remains to see that G is a Lie group. Let us assume, in addition, that Vg is
symmetric with V2.Vyy C U. We then have

0c(91)0c(92) = (9192, Vg, %g2)
and
Vg1 g (w0, 1) = g, (92.T0, 1) = (9192-T0, F (g1, g2-T0))-
Therefore

¢g1¢gz = ¢9192f(91592-w0)'

Hence the local group cocycle corresponding to the section og is given by

foe(91,92) = f(g1,92-70)-

The smoothness of this function Vg x Vg — Z implies that multiplication and inversion on G
are smooth in an identity neighborhood. That the left multiplications are also smooth follows
from the fact that G acts by smooth maps on the bundle P, hence on the pull back bundles
obtained from orbit maps G — M, g — g.7,, and therefore also on GG. Now Lemma III.3 implies
that G is a Lie group. ]

Remark IIL.5. To obtain the Lie algebra cocycle corresponding to the Lie group structure on
G obtained from the point z, € M, we use a bundle chart on an open neighborhood U of z, .
With the notation from above, we then have

Oé;AU — Ay = fg_ldfg
on Vis. For the left invariant 2-form € := ¢} w on G and the local 1-form 0y := ¢; Ay we
then have dfy = 0, and the local functions fg& = f4 0 @y, defining the local group cocycle of
€ satisfy
Xiby — 0p = 6'(f]) = dfi.
The condition 8y (x,) = 0 means that the image of the differential of the local section in z,

is the horizontal space, and this can be assumed, as can be seen from Step 4 in Theorem II.7.
We therefore see with [Ne00, Th. I1.7] that the Lie algebra cocycle corresponding to the central

extension G of G is given by
N (X,Y) = wy, (dpz, (1)(X),dpe, (1) (V) = we, (&(X)(20), &(Y)(2,0)).

As all local group cocycles obtained by the construction in the proof of Theorem III.4
correspond to equivalent central Lie group extensions Z — G —» G, the group cocycles are
equivalent, which implies in particular that the corresponding Lie algebra cocycles are equivalent
because M is assumed to be connected.

A direct argument for that can be given as follows. Let zp,2z; € M and 7 a curve in M
joining xo and x;. Then 5 :g — R given by

B(X) = /id(x)w
v
has the property that Q7° — Q7' = df. Indeed, formula (1.2) implies that

—B(X,Y]) = - / oy = / d(w(@(X), (V)

= w(@(X), &(Y))(@1) - w(@(X), &(Y)) (o).
| |

In [Bry93, 2.4.8] and [PS86] one also finds a construction of a “Lie group” G via the
pullback of the group extension Aut(P,6) — D, (M), but no argument is given for the Lie group
structure on G and the independence of the point one uses to pull back the bundle P —+ M to
a Z-bundle over G.
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Remark III.6. If the action of G on M has a fixed point 7o, then the central Lie group
extension G — G is trivial (cf. [Bry93, Th. 2.4.12]). In fact, we have a natural lift :G — G
given by 7(g)q-1(z0) = idg—1(z0) given by taking ¢,, = id;-1(4,) in the proof of Theorem IL.7.
The construction above shows that we thus obtain a smooth section G — G which is group
homomorphism. ]

Remark IIL.7. In [Bry93] and [We89] one also finds a discussion of the situation for C/A-
bundles over M, where A C C is a countable subgroup which need not be discrete. This should
generalize to the case where I' C 3 is an arbitrary subgroup.

The bundles considered in this section should be constructed as follows. Let Z :=3/T". On
M we consider the sheaf S; with S;(U) = C*°(U,3), the constant sheaf Sr, and the quotient
sheaf Sz :=S;/Sr.

Suppose that M is smoothly paracompact. Then the sheaf cohomologies

HY(M,S;,) and H?*(M,S,)
vanish, and the long exact sequence in sheaf cohomology yields an isomorphism
Hl(MagZ) = HQ(MagF)‘

As the group H?(M,Sr) is isomorphic to the Cech cohomolgy group H?(M,T), we see in
particular that if T is discrete and Z = K(1,T) is a CW-complex, then H'(M,S7) classifies
the Z-bundles over M . Nevertheless, the group H'(M,S7) is defined in all cases.

For relations to Souriau’s concept of diffeological groups, we refer to [So85] and [DI85]. m
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