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Abstrat

We study Fredholm properties of integral operators with shifts on ho-

mogeneous groups. This investigation is based on the limit operators

method whih allows us to redue the problem of Fredholmness of on-

volution operators with variable oeÆients and with variable shifts to the

problem of invertibility of onvolution operators with onstant oeÆients

and onstant shifts. For the invertibility of these operators, methods of

harmoni analysis on nonommutative groups are available.

1 Introdution

Let X be a homogeneous group (see, for instane, [18℄, and also Setion 3.1). We

onsider the C

�

-algebra of operators ating on L

2

(X) whih is generated by the

operators of the form

I +

N

X

i=1

M

Y

j=1

a

ij

K

ij

T

ij

(1)

where  2 C , the a

ij

are operators of multipliation by funtions a

ij

2 L

1

(X),

the K

ij

are operators of right onvolution on the group X with kernels k

ij

in

L

1

(X), and the T

ij

are operators of right shift by funtions g

ij

: X ! X,

(T

ij

)u(x) = u(x � g

ij

(x)); x 2 X:

The funtions g

ij

will be spei�ed later suh that the operators T

ij

: L

2

(X) !

L

2

(X) beome bounded.

�
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The goal of this paper is to examine the Fredholm and semi-Fredholm prop-

erties of operators of the form (1) and of their limits with respet to the norm

topology of L(L

2

(X)).

A well-known and arhetypial example of a nonommutative homogeneous

group is the Heisenberg group. Singular integral operators and pseudodi�erential

operators on the Heisenberg group have been intensively studied by many authors

(see, for example, the monographs [18, 12, 21, 22℄ whih also ontain extensive

bibliographies). The Fredholm property of operators in some algebras generated

by onvolution operators and operators of multipliation by bounded funtions

on general nonommutative loally ompat groups was the subjet of [19, 20℄.

Integral operators with onstant oeÆients and onstant shifts (i.e., a

ij

2 C and

g

ij

2 R) on the real half-line are onsidered in [4℄. There is also an extensive

bibliography devoted to singular integral and pseudodi�erential operators with

shifts (see, for instane, [1, 3, 6, 7, 5℄ and the referenes therein).

Our approah is essentially di�erent from the approahes of the ited papers.

It is based on the limit operators method whih has been developed in [8, 9, 10,

13, 14, 15℄ to study the Fredholm properties of large lasses of pseudodi�erential

operators and onvolution operators on R

N

and Z

N

. Here we apply this method

to investigate the Fredholm and semi-Fredholm properties of integral operators

with shifts. We employ an axiomati sheme for the limit operators method whih

has been proposed in [17℄. It should be mentioned that the results of this paper

are new even for the operators with nononstant shifts on the group R

N

.

2 The limit operators method

We start with realling the axiomati sheme for the appliation of the limit

operators method developed in [17℄. Let H be a Hilbert spae and L(H) the

C

�

-algebra of all bounded linear operators ating on H. Suppose that we are

given

(A1) operators P;

^

P 2 L(H) with P

^

P =

^

PP = P:

(A2) a ountable set fU

�

g

�2�

of unitary operators on H suh that, with P

�

:=

U

�

PU

�

�

and

^

P

�

:= U

�

^

PU

�

�

,

X

�2�

kP

�

uk

2

= kuk

2

and

X

�2�

k

^

P

�

uk

2

� Ckuk

2

(2)

for all u 2 H with a onstant C independent of u.

(A3) a sequene (W

k

)

k2N

of unitary operators on H and an assoiated sequene

(D

k

)

k2N

of mappings from � into itself suh that W

k

U

�

= U

D

k

(�)

W

k

for all

� 2 � and k 2 N , and suh that the operators

^

P

(k)

:= W

k

^

PW

�

k

onverge

strongly to the identity operator on H. We also set P

(k)

:= W

k

PW

�

k

and

P

k;�

:=W

k

P

�

W

�

k

as well as

^

P

k;�

:= W

k

^

P

�

W

�

k

.
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(A4) a bounded sequene (Q

r

)

r2N

of operators in L(H) suh that

{ there is a distinguished set B of sequenes in � whih ontains all

sequenes (�

m

) for whih there exist a k 2 N and a sequene (r

m

) in

N tending to in�nity suh that

P

k; �

m

Q

r

m

6= 0 for allm 2 N ; (3)

{ every subsequene of a sequene in B belongs to B,

{ the set B is invariant with respet to eah of the mappings D

k

, i.e. if

(�

m

) 2 B, then (D

k

�

m

) 2 B for every k,

{ for eah r 2 N and eah sequene (�

m

) 2 B,

s-lim

m!1

U

�

�

m

Q

r

U

�

m

= I: (4)

Sine both the U

�

and the W

k

are unitary operators, one also has

X

�2�

kP

k;�

uk

2

= kuk

2

and

X

�2�

k

^

P

k;�

uk

2

� Ckuk

2

for all u 2 H and k 2 N and

P

k;�

^

P

k;�

=

^

P

k;�

P

k;�

= P

k;�

for all � 2 � and k 2 N .

De�nition 2.1 We say that the operator A

�

is the limit operator of A 2 L(H)

with respet to the sequene � = (�

j

) 2 B if, for every k 2 N,

lim

j!1

k(U

�

�

j

AU

�

j

� A

�

)

^

P

(k)

k = lim

j!1

k(

^

P

(k)

)

�

(U

�

�

j

AU

�

j

� A

�

)k = 0:

The set of all limit operators of A with respet to sequenes in B will be denoted

by lim

B

(A).

The following proposition desribes some elementary properties of limit operators.

Proposition 2.2 Let � 2 B, and let A; B 2 L(H) be operators for whih the

limit operators A

�

and B

�

exist. Then

(a) kA

�

k � kAk.

(b) (A+B)

�

exists and (A+B)

�

= A

�

+B

�

.

() (A

�

)

�

exists and (A

�

)

�

= (A

�

)

�

.

(d) if C; C

n

2 L(H) are operators with kC�C

n

k ! 0, and if the limit operators

(C

n

)

�

exist for all suÆiently large n, then C

�

exists and kC

�

�(C

n

)

�

k ! 0.
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De�nition 2.3 Let A

0

(H) denote the set of all operators A 2 L(H) with the

following properties

(a) lim

k!1

k[P

k;�

; A℄k = 0 and lim

k!1

k[P

k;�

; A

�

℄k = 0 uniformly with respet

to � 2 �,

(b) every sequene in B possesses a subsequene � for whih the limit operator

A

�

exists,

() there is a k

0

2 N suh that P

k;�

A = P

k;�

A

^

P

k;�

for all k � k

0

.

Further, let A(H) denote the losure of A

0

(H) in L(H).

It is easy to hek that A

0

(H) and A(H) are linear spaes. Moreover, every

operator A in A(H) also satis�es onditions (a) and (b) (the latter follows from

Proposition 2.2), and if A and B are operators whih satisfy (a) and (b), then

their produt also satis�es these onditions. On the other hand, ondition ()

(whih is the abstrat analogue of the band property) is not stable with respet

to norm limits and produts of operators.

Let �(A) := inf

kfk=1

kAfk refer to the lower norm of the operator A 2 L(H).

It is well-known that A is invertible from the left if and only if �(A) > 0 and

invertible from the right if and only if �(A

�

) > 0. Thus, A is invertible if and

only if both �(A) > 0 and �(A

�

) > 0.

For every non-zero (but not neessarily losed) subspae L of H we also on-

sider the lower norm of the restrition Aj

L

of A onto L. If, in partiular, L is the

range of a non-zero operator P 2 L(H), then we all

�(Aj

P (H)

) = inf

kPfk=1

kAPfk

the lower norm of A relative to P . The lower norms of A relative to the Q

r

are

losely related to the Fredholm properties of A (see the proof of Theorem 4.5

below).

The following result has been proved in [17℄.

Theorem 2.4 Let A 2 A(H). Then

lim inf

r!1

�(Aj

Q

r

(H)

) = inf

A

�

2lim

B

(A)

�(A

�

): (5)

3 Operators on homogeneous groups

3.1 Homogeneous groups

Following [18℄, Chapter XIII, Setion 5, we ite some fats on homogeneous groups

whih are needed in what follows. Homogeneous groups X arise by equipping R

m

with a Lie group struture and with a family of dilations that at as group

automorphisms on X. To be preise, assume we are given smooth mappings
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(x; y) 7! x � y and x 7! x

�1

from R

m

to R

m

whih provide R

m

with a Lie

group struture, and assume that the origin of R

m

is the identity element of the

assoiated Lie group. Further we suppose that a

1

� : : : � a

m

are positive integers

suh that the dilations

D

Æ

: (x

1

; : : : ; x

m

) 7! (Æ

a

1

x

1

; : : : ; Æ

a

m

x

m

)

are group automorphisms for every Æ > 0, i.e. that

D

Æ

(x � y) = D

Æ

x �D

Æ

y for all x; y 2 R

m

:

It follows from these assumptions that the group operation is neessarily of the

form

x � y = x+ y +Q(x; y)

where Q : R

m

! R

m

satis�es

Q(0; 0) = Q(x; 0) = Q(0; x) = 0 for every x 2 R

m

:

Moreover, if one writes Q = (Q

1

; : : : ; Q

m

), then eah Q

r

is a polynomial in 2m

real variables whih is homogeneous of degree a

r

. Thus, Q ontains no pure

monomials in x or y.

The Eulidean measure dx is both left and right invariant with respet to

the group multipliation, hene, it is the Haar measure on X. Note also that

d(D

Æ

x) = Æ

a

dx where a := a

1

+ : : :+ a

m

.

An arhetypial example of a homogeneous non-ommutative group is the

Heisenberg group H

n

whih an be identi�ed with the produt C

n

� R, provided

with the group operation

(w; s) � (z; t) := (w + z; s+ t+ 2=hw; zi)

where hw; zi :=

P

n

j=1

w

j

�z

j

. Consider the norm funtion � on R

m

, de�ned by

�(x) := max

1�j�m

fjx

j

j

1=a

j

g:

Note that �(x) � 0 and �(x) = 0 if and only if x = 0. Also, �(D

Æ

x) = Æ�(x), and

there is a onstant  > 0 suh that

�(x � y) � (�(x) + �(y)) and �(x

�1

) � �(x):

Set �(x; y) := �(x

�1

� y). Then the olletion of all balls

B(x; ") := fy 2 X : �(x; y) < "g; " > 0;

forms an open neighborhood basis of the point x 2 X.
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3.2 Multipliation operators on X

Throughout what follows, let X be a homogeneous group. By C

b

(X) we denote

the C

�

-algebra of all ontinuous funtions on X with kfk

1

:= sup

x2X

jf(x)j <1,

and we let BUC(X) stand for the C

�

-subalgebra of C

b

(X) whih onsists of the

uniformly ontinuous funtions, i.e. f 2 C

b

(X) belongs to BUC(X) if, for eah

" > 0, there is a Æ > 0 suh that jf(x)� f(y)j < " whenever �(x; y) < Æ.

Further, we let Q(X) refer to set of all measurable bounded funtions a on X

suh that

lim sup

y!1

Z




ja(y

�1

� x)j dx = 0

for every ompat 
 � X. It is easy to hek that BUC(X) is a C

�

-subalgebra

of L

1

(X) and that Q(X) is a losed ideal of L

1

(X).

3.3 Convolution operators on X

Given k 2 L

1

(X) we de�ne the operator of right onvolution by k by

(C

k;r

u)(x) :=

Z

R

m

k(x

�1

� y)u(y)dy =

Z

R

m

k(z)u(x � z)dz; x 2 R

m

:

It is well-known that C

k;r

is bounded on L

2

(R

m

) and invariant with respet to

the left shift,

U

l;g

C

k;r

= C

k;r

U

l;g

where (U

l;g

f)(x) := f(g � x) for g 2 X:

We denote by V

r

(X) the set of all operators C

k;r

of right onvolution by a funtion

k 2 L

1

(R

m

). Note that, if a 2 Q(X) and T 2 V

r

(X), then aT and TaI are ompat

operators on L

2

(X) (see [20℄).

Let Y be a disrete subgroup of the group X whih ats freely on X suh that

X=Y is a ompat manifold. Let M be a fundamental domain of X with respet

to the ation of Y on X by left shift, i.e., M is a bounded domain in X suh that

X =

[

�2Y

� �M:

Let M

0

be an open neighborhood of M suh that the family f�M

0

g

�2Y

provides

a overing of X of �nite multipliity. Let f : X ! [0; 1℄ be a ontinuous funtion

with f(x) = 1 if x 2 M and f(x) = 0 outside M

0

, and let ' be the non-negative

funtion whih satis�es

'

2

(x) :=

f(x)

P

�2Y

f(� � x)

:

For � 2 Y, set '

�

(x) := '(� � x). Evidently, 0 � '

�

(x) � 1 and

X

�2Y

'

2

�

(x) = 1; x 2 X: (6)
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In that sense, the family f'

2

�

g

�2Y

forms a partition of unity on X. For Æ > 0, set

'

Æ; �

(x) := '

�

(D

Æ

x). The following is proved in [17℄.

Proposition 3.1 Let K 2 V

r

(X). Then lim

Æ!0

k['

Æ; �

I; K℄k = 0 uniformly with

respet to � 2 Y.

3.4 Shift operators on X

Let g = (g

1

; : : : ; g

m

) : X ! X. We onsider the shift operators of the form

(T

g

u)(x) := u(x � g(x))

where

(�) g

j

2 C

1

b

(X) for all j.

(�) The mapping F

g

: X ! X; x 7! x � g(x) is invertible.

() lim

x!1

det(dF

g

(x)) = 1 were df refers to the derivative of the funtion

f : R

m

! R

m

.

Proposition 3.2 If g satis�es the onditions (�)� (), then the operator T

g

is

bounded on L

2

(X).

Proof. We have

kT

g

uk

2

=

Z

R

m

ju(F

g

(x))j

2

dx =

Z

R

m

ju(y)j

2

j det dF

�1

g

(y)j dy � Ckuk

2

where C := sup

y2R

m

j det dF

�1

g

(y)j <1 due to onditions (�) and ().

We all the funtion g slowly osillating if, in addition to the onditions (�)�(),

(Æ) lim

x!1

kdg(x)k = 0:

The lass of all shifts T

g

with g slowly osillating will be denoted by R(X).

Proposition 3.3 Let T

g

2 R(X). Then

lim

Æ!0

k['

Æ; �

I; T

g

℄k = 0 uniformly with respet to � 2 Y:

Proof. For every u 2 L

2

(X), one has

k['

Æ; �

I; T

g

℄ uk � sup

x2X

j'

Æ;�

(x)� '

Æ; �

(x � g(x))j kT

g

uk

� C sup

x2X

j'

Æ; �

(x)� '

Æ; �

(x � g(x))j kuk:
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Let us estimate

j'

Æ; �

(x)� '

Æ; �

(x � g(x))j = j'(D

Æ

(� � x))� '(D

Æ

(� � x) �D

Æ

(g(x)))j:

The funtion g is bounded due to assumption (�). Hene,

kD

Æ

(g(x))k

1

� max

1�j�m

Æ

a

j

kgk

1

:

Sine ' is uniformly ontinuous on X we obtain that, given " > 0, one �nds a

Æ

0

> 0 suh that, if max

1�j�m

Æ

a

j

kgk

1

< Æ

0

, then

sup

x2X

j'

Æ; �

(x)� '

Æ; �

(x � g(x))j < "

uniformly with respet to � 2 Y. This implies the assertion.

Here are a few instanes where the requirements (�)� (Æ) are satis�ed.

Example A. If g is a onstant funtion then, evidently, T

g

belongs to R(X).

Example B. Let X be the ommutative group R

m

where

(T

g

u)(x) = u(x+ g(x));

and let the onditions (�) and (Æ) be ful�lled. If one of the onditions

max

1�j�m

m

X

k=1

sup

x

�

�

�

�

�g

j

(x)

�x

k

�

�

�

�

< 1; max

1�k�m

m

X

j=1

sup

x

�

�

�

�

�g

j

(x)

�x

k

�

�

�

�

< 1 (7)

is satis�ed, then T

g

2 R(X). Indeed, the onditions (7) imply that

F

g

: R

m

! R

m

; x 7! x + g(x)

is a ontration. Thus, by the Banah �xed point theorem, F

g

is invertible, and

it follows from ondition (Æ) that

lim

x!1

det(dF

g

(x)) = 1

whene ondition ().

Example C. Let H

n

be the Heisenberg group with oordinates (x; y; t) 2 R

n

�

R

n

� R. Consider the funtion g(x; y; t) := (p(x; y); q(x; y); �(x; y; t)) where

the mapping

(x; y) 7! (p(x; y); q(x; y)) : R

2n

! R

2n

is subjet to a ondition analogous to (7) and where, onsequently, the mapping

(x; y) 7! �(x; y) := (x + p(x; y); y + q(x; y))

8



is invertible. Thus, the system

x

0

= x + p(x; y); y

0

= y + q(x; y)

possesses a unique solution

x = f(x

0

; y

0

); y = '(x

0

; y

0

):

Moreover we suppose that g is slowly osillating in the sense that

lim

(x;y)!1

d

x

p(x; y) = lim

(x;y)!1

d

y

p(x; y) = 0; (8)

lim

(x;y)!1

d

x

q(x; y) = lim

(x;y)!1

d

y

q(x; y) = 0; (9)

lim

(x;y;t)!1

d

x

�(x; y; t) = lim

(x;y;t)!1

d

y

�(x; y; t) = lim

(x;y;t)!1

d

t

�(x; y; t) = 0: (10)

Let, moreover,

sup

(x;y;t)2R

2n+1

jd

t

�(x; y; t)j < 1: (11)

Then the mapping F

g

: R

2n+1

! R

2n+1

, whih sends (x; y; t) to

(x; y; t) � g(x; y; t) = (x+ p(x; y); y + q(x; y);

t + �(x; y; t) + 2 (h(x; q(x; y)i � hy; p(x; y)i)

is invertible. Indeed, for arbitrary (x

0

; y

0

; t

0

) 2 R

2n+1

, the equation

t

0

= t+ �(f(x

0

; y

0

); '(x

0

; y

0

); t) + 2	(x

0

; y

0

)

where

	(x

0

; y

0

) := hf(x

0

; y

0

); q(f(x

0

; y

0

); '(x

0

; y

0

))i � h'(x

0

; y

0

); p(f(x

0

; y

0

); '(x

0

; y

0

))i

has a unique solution t due to (11). This proves ondition (�), and ondition ()

follows sine (8)� (10) imply that

lim

(x; y; t)!1

det(d

(x; y; t)

F

g

(x; y; t)) = 1:

Consequently, under the above assumptions, T

g

2 R(H

2n+1

).

4 Fredholmness of onvolution operators with

shifts

We denote by B(BUC(X); V

r

(X); R(X)) the smallest C

�

-subalgebra of L(L

2

(X))

whih ontains all operators of the form

A = I +

N

X

j=1

L

Y

k=1

a

jk

K

jk

b

jk

T

jk

(12)

9



where  2 C , a

jk

; b

jk

2 BUC(X), K

jk

2 V

r

(X) and T

jk

2 R(X). Further we

write B

0

(BUC(X); V

r

(X); R(X)) for the smallest symmetri (but not neessarily

losed) subalgebra of L(L

2

(X)) whih ontains all operators of the form (12) where

the kernel funtions of the onvolution operators K

jk

are ompatly supported.

To study the Fredholmness of operators in B(BUC(X); V

r

(X); R(X)) by the

limit operators method, we speify the axioms (A1) { (A4) as follows.

(A1) Let

^

M be an open set whih ontains the losure M

0

of M

0

and for whih

the overing f�

^

Mg

�2Y

of X has a �nite multipliity. Then we let P be the

operator of multipliation by ' and

^

P be the operator of multipliation by

the harateristi funtion of

^

M .

(A2) We hoose � := Y and let U

�

, � 2 �, be the operator of left shift by �,

(U

�

u)(x) := (U

l; �

u)(x) = u(� � x):

Observe that then P

�

is the operator of multipliation by '

�

. Hene, the

�rst ondition in (2) follows from (6)

X

kP

�

uk

2

=

X

h'

�

u; '

�

ui =

X

h'

2

�

u; ui = hu; ui = kuk

2

;

and the seond one follows similarly due to the �nite multipliity of the

overing f�

^

Mg.

(A3) We hoose a sequene (Æ

k

)

k2N

of positive numbers with Æ

k

! 0 as k ! 1

and suh that D

Æ

�1

k

Y � Y, and we de�ne W

k

(W

k

u)(x) := Æ

a=2

k

u(D

Æ

k

x)

with a := a

1

+ : : :+ a

m

. Then

W

k

U

�

= U

D

Æ

�1

k

�

W

k

for all k 2 N and � 2 Y;

and the operators

^

P

(k)

onverge strongly to the identity.

(A4) For r 2 N , let Q

r

be the operator of multipliation by the harateristi

funtion of fx 2 X : �(x; 0) > rg, and let B be the set of all sequenes in

Y whih tend to in�nity. Then onditions (3) and (4) are ful�lled.

We show that, under these assumptions, the algebra B

0

(BUC(X); V

r

(X); R(X))

is a subset of A

0

and, hene, its losure B(BUC(X); V

r

(X); R(X)) is a subset of

A.

Proposition 4.1 Let A 2 B(BUC(X); V

r

(X); R(X)). Then

lim

k!1

k[A; P

k;�

℄k = 0 uniformly with respet to � 2 Y: (13)

10



Proof. For operators of the form (12), the proof follows immediately from Propo-

sitions 3.1 and 3.3 in onnetion with Proposition 2.2. Sine the set of all opera-

tors A whih satisfy (13) is a C

�

-subalgebra of L(L

2

(X)), the result holds for all

operators in B(BUC(X); V

r

(X); R(X)).

Proposition 4.2 Let A 2 B

0

(BUC(X); V

r

(X); R(X)). Then, for all � 2 Y and

for all suÆiently large k,

P

k;�

A = P

k;�

A

^

P

k;�

:

Proof. Given an open set N � X, let �

N

refer to the harateristi funtion of

N and, for k 2 N and � 2 Y, de�ne �

N

k;�

in analogy to '

k;�

. Thus,

^

P

k;�

is the

operator of multipliation by �

^

M

k;�

. We onsider the set C of all operators B on

L

2

(X) with the following property. If N

1

; N

2

are open sets with N

1

� N

2

then,

for every � 2 Y and every suÆiently large k,

�

N

1

k;�

B = �

N

1

k;�

B�

N

2

k;�

I:

It is evident that C ontains the operators aI of multipliation by bounded fun-

tions on X, the operators K of right onvolution by ompatly supported measur-

able funtions on X , and all shift operators T 2 R(X). The set C also ontains

the adjoints of these operators. This is again evident for the adjoints of aI and K

(the adjoint of aI is the operator of multipliation by the omplex onjugate of

a, and K

�

is the operator of right onvolution by the funtion x 7! k(x

�1

) whih

is also ompatly supported). Let now T = T

g

be a shift operator in R(X). The

substitution rule shows that the adjoint of T

g

is the operator T

h

bI where

h(y) = (g(F

�1

g

(y)))

�1

and b = j det dF

�1

g

j:

The mapping h is ontinuous and bounded, and b is a bounded and uniformly

ontinuous funtion, whih follows from property (). Thus, the inlusion T

�

2 C

will follow one we have shown that C is an algebra.

Let A; B in C. Then, learly, A + B 2 C. To prove that AB 2 C, let N

1

; N

2

be open sets with N

1

� N

2

, and hoose an open set N

0

suh that

N

1

� N

0

� N

0

� N

2

:

Then

�

N

1

k;�

AB = �

N

1

k;�

A�

N

0

k;�

B�

N

2

k;�

I = �

N

1

k;�

AB�

N

2

k;�

I;

whih implies that AB 2 C. Consequently, B

0

(BUC(X); V

r

(X); R(X)) � C,

whene the assertion.

Proposition 4.3 Let A 2 B(BUC(X); V

r

(X); R(X)), and let � = (�

k

) be a

sequene in B. Then there is a subsequene

~

� of � for whih the limit operator

A

~

�

exists.

11



Proof. We start with verifying the assertion for the operators in the algebra

B

0

:= B

0

(BUC(X); V

r

(X); R(X)). Let D denote the set of all operators A 2 B

0

having the property that every sequene in B has a subsequene

~

� = (

~

�

k

) suh

that the operators U

�1

~

�

k

AU

~

�

k

onverge

�

-strongly as k!1.

We laim that D ontains the generating operators of B

0

. Sine D is an

algebra (whih an be easily shown), this implies that B

0

� D.

If aI is the operator of multipliation by the funtion a 2 BUC(X), then

U

�1

�

k

aU

�

k

is the operator of multipliation by the funtion x 7! a(�

k

�x). The fun-

tions in BUC(X) are bounded and uniformly ontinuous by de�nition. Hene,

by the Arzel�a-Asoli theorem, the sequene � possesses a subsequene

~

� suh

that the funtions x 7! a(

~

�

k

� x) tend uniformly on ompat subsets of X to a

ertain bounded funtion a

~

�

as k ! 1. Consequently, the operators U

�1

~

�

k

aU

~

�

k

onverge strongly to a

~

�

I, and the strong onvergene of the adjoint sequene

follows analogously.

If A = K is a onvolution operator, then there is nothing to prove beause A

ommutes with the U

k

.

Next we onsider the operator T = T

g

2 R(X) of shift by the funtion g.

Then one has

(U

�1

�

k

T

g

U

�

k

u)(x) = u(x � g(�

k

� x)):

Sine the funtions x 7! g(�

k

� x) are uniformly bounded with respet to k 2 N

and equiontinuous on ompat subsets of X, the Arzel�a-Asoli theorem implies

the existene of a subsequene

~

� of � suh that the funtions x 7! g(

~

�

k

� x)

onverge uniformly on ompats in X to a ertain bounded funtion g

~

�

. Sine g

is slowly osillating, the funtion g

~

�

is onstant.

We proeed with showing that the strong limit of the operators U

�1

~

�

k

T

g

U

~

�

k

as

k !1 exists and that

s-lim

k!1

U

�1

~

�

k

T

g

U

~

�

k

= T

g

~

�

: (14)

Let u be a ompatly supported ontinuous funtion on X. Thus, u is uniformly

ontinuous on X, and there exists a ompat subset 
 of X suh that

u(x � g(

~

�

k

� x))� u(x � g

~

�

) = 0 whenever x =2 


(reall that g is bounded). It is further evident from the de�nition of g

~

�

that, for

arbitrary Æ > 0, there exists a k

0

2 N suh that, for all k � k

0

and all x 2 
,

�(g(

~

�

k

� x); g

~

�

) < Æ. Sine u is uniformly ontinuous, this implies that for eah

" > 0, there exists a k

0

2 N suh that

sup

x2


ju(x � g(

~

�

k

� x))� u(x � g

~

�

)j < " for all k � k

0

:

Thus,

lim

k!1

U

�1

~

�

k

T

g

U

~

�

k

u = T

g

~

�

u

12



for every ontinuous and ompatly supported funtion u on X. Sine these fun-

tions form a dense subset of L

2

(X), this implies (14). The strong onvergene of

the adjoint sequene follows from the representation of T

�

g

derived in the previous

proof, from the above results, and from the fat that D is an algebra.

The remaining part of the proof makes use of the elementary fat that, if

A

n

! A andB

�

n

! B

�

strongly, and ifK is ompat, then kA

n

KB

n

�AKBk ! 0.

Every operator in B

0

an be written as a sum of operators of the form ACB

where C is the operator of onvolution by a ompatly supported funtion, and

where A; B 2 B

0

. Let � 2 B and m 2 N . We hoose a subsequene

~

� of � suh

that

U

�1

~

�

k

AU

~

�

k

! A

~

�

and U

�1

~

�

k

BU

~

�

k

! B

~

�

�

-strongly as k !1. It follows from the proof of the previous proposition that,

if N is suÆiently large,

U

�1

~

�

k

ACBU

~

�

k

^

P

(m)

= U

�1

~

�

k

AU

~

�

k

CU

�1

~

�

k

BU

~

�

k

^

P

(m)

= U

�1

~

�

k

AU

~

�

k

C

^

P

(N)

U

�1

~

�

k

BU

~

�

k

^

P

(m)

:

Sine the operator C

^

P

(N)

is ompat, it follows from the fat just mentioned that

k(U

�1

~

�

k

ACBU

~

�

k

� A

~

�

CB

~

�

)

^

P

(m)

k ! 0

as k ! 1. The dual ondition follows analogously. Thus, A

~

�

CB

~

�

is a limit

operator of ACB. This yields the assertion for operators in B

0

and, employing

Proposition 2.2 (d), also for operators in B(BUC(X); V

r

(X); R(X)).

The following theorem is a orollary of the general Theorem 2.4.

Theorem 4.4 Let A 2 B(BUC(X); V

r

(X); R(X)). Then

lim inf

r!1

�(Aj

Q

r

L

2

(X)

) = inf

A

�

2�

B

(A)

�(A

�

):

As a orollary of the previous theorem we derive the desired riteria of semi-

Fredholmness and Fredholmness.

Theorem 4.5 Let A 2 B(BUC(X); V

r

(X); R(X)). Then

(a) A is a �

+

-operator if and only if

inf

A

�

2�

B

(A)

�(A

�

) > 0: (15)

(b) A is a �

�

-operator if and only if

inf

A

�

2�

B

(A)

�(A

�

�

) > 0: (16)

() A is a Fredholm operator if and only if all limit operators of A are invertible

and if the norms of their inverses are uniformly bounded.

13



Proof. We will show assertion (a) only. The proof of (b) proeeds similarly, and

() is a onsequene of (a) and (b).

Let (15) be satis�ed. Then, by Theorem 4.4, there exist an r 2 N and a

onstant C > 0 suh that

jhQ

r

A

�

AQ

r

f; Q

r

fij � CkQ

r

fk

2

for all f 2 L

2

(X): (17)

This implies that the operator Q

r

A

�

AQ

r

is invertible on L

2

(Q

r

X), i.e. there is

an operator B suh that

BQ

r

A

�

AQ

r

= Q

r

: (18)

It follows from the inverse losedness of C

�

-algebras that the operator B belongs

to the smallest C

�

-subalgebra B(BUC(X); V

r

(X); R(X); Q

r

) of L(L

2

(X)) whih

ontains the algebra B(BUC(X); V

r

(X); R(X)) and the operator Q

r

.

Let J

0

refer to the losed ideal of B(BUC(X); V

r

(X); R(X); Q

r

) whih is gen-

erated by the operators I�Q

r

, r 2 N , and let J

1

stand for the smallest losed ideal

of that algebra whih ontains all operators in V

r

(X) and all ompat operators.

It is evident from the de�nition of the algebra B(BUC(X); V

r

(X); R(X); Q

r

) that

for every operator G in this algebra, there is a (uniquely determined) omplex

number 

G

suh that G�

G

I 2 J

1

. Clearly, the mapping G 7! 

G

is a ontinuous

algebra homomorphism. Sine 

Q

r

= 1, it follows from (18) that 

A

6= 0.

The equality (18) further implies that there is an operator R

0

in the algebra

B(BUC(X); V

r

(X); R(X); Q

r

) suh that R

0

A � I 2 J

0

. If we set R := 

A

R

0

�

AR

0

+ I, then

RA� 

A

I = 

A

R

0

A� AR

0

A+ A� 

A

I = (

A

I � A)(R

0

A� I):

Sine T

0

:= R

0

A� I 2 J

0

and T

1

:= 

A

I�A 2 J

1

, the operator RA�

A

I = T

1

T

0

is ompat. Hene, and beause of 

A

6= 0, A is a �

+

-operator.

Conversely, let A be a �

+

-operator. Then there is a ompat operator T as

well as a positive onstant C suh that the a priori estimate

CkAuk � kuk � kTuk; u 2 L

2

(X);

holds (see [11℄, I, Lemma 2.1). This estimate yields

CkAQ

r

uk � kQ

r

uk � kTQ

r

uk

for all u 2 L

2

(X) and r 2 N . Due to the strong onvergene of the operators Q

r

to 0, there is an r

0

2 N suh that kTQ

r

0

k � C=2. Thus,

kAQ

r

0

uk �

C

2

kQ

r

0

uk for all u 2 L

2

(X)

whene lim inf

r!1

�(Aj

Q

r

L

2

(X)

) > 0. This implies (15) via Theorem 4.4.

Finally, we are going to speialize the results of the previous theorem to a lass

14



of operators for whih the invertibility of their limit operators an be e�etively

heked. A funtion a 2 C

b

(X) is alled slowly osillating at in�nity if, for every

ompat 
 � X,

lim

x!1

sup

y2


ja(x � y)� a(x)j = 0:

For example, if a 2 C

1

b

(X) and

lim

x!1

�a(x)

�x

j

= 0; 1 � j � m;

then a is slowly osillating at in�nity. We write SO(X) for the lass of all slowly

osillating funtions on X and setW (X) := SO(X)+Q(X). Let further the algebra

B(W (X); V

r

(X); R(X)) be de�ned in analogy to B(BUC(X); V

r

(X); R(X)). We

laim that all limit operators of operators in B(W (X); V

r

(X); R(X)) are invariant

with respet to left shifts.

Let a 2 Q(X) and K 2 V

r

(X). Then the operators aK and KaI are ompat

(see [20℄). Hene, the limit operators of these operators exist with respet to

every sequene � 2 B, and they are equal to zero.

Further, let a be slowly osillating, � = (�

m

)

m2N

2 B, and let a

~

�

be as in the

proof of Proposition 4.3. Then, evidently,

a

~

�

(x)� a

~

�

(y) = lim

m!1

(a(�

m

� x)� a((�

m

� x) � (x

�1

� y))) = 0

for arbitrary x; y 2 X. Thus, a

~

�

is indeed a onstant funtion.

In partiular, if A 2 B(W (X); V

r

(X); R(X)), then every limit operator of

A belongs to the smallest C

�

-subalgebra B(V

r

(X); R



(X)) of L(L

2

(X)) whih

ontains all onvolution operators in V

r

(X) and all shift operators in R(X) by a

onstant funtion (i.e. by an element of the group X).

Thus, in this speial setting, Theorem 4.5 redues the problem of (semi-) Fred-

holmness for operators in B(W (X); V

r

(X); R(X)) to the problem of invertibility

of operators in the algebra B(V

r

(X); R



(X)) whih are invariant with respet to

left shifts by elements in X. To study this invertibility problem, methods of (non-

ommutative) harmoni analysis are available (p. [22℄). For example, in ase of

the ommutative group R

n

, the operator

A := I +

N

X

j=1

K

j

T

j

where  2 C , K

j

is a onvolution with kernel k

j

2 L

1

(R

n

) and T

j

is the shift by

g

j

2 R

n

, is invertible on L

2

(R

n

) if and only if

inf

�2R

n

j +

N

X

j=1

^

k

j

(�)e

ih�; g

j

i

j > 0

where

^

k

j

refers to the Fourier transform of k

j

.
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