Integral operators with shifts on homogeneous
groups

Vladimir S. Rabinovich] Steffen Roch

Dedicated to G. S. Litvinchuk on the occasion of his 70th birthday.

Abstract

We study Fredholm properties of integral operators with shifts on ho-
mogeneous groups. This investigation is based on the limit operators
method which allows us to reduce the problem of Fredholmness of con-
volution operators with variable coefficients and with variable shifts to the
problem of invertibility of convolution operators with constant coefficients
and constant shifts. For the invertibility of these operators, methods of
harmonic analysis on noncommutative groups are available.

1 Introduction

Let X be a homogeneous group (see, for instance, [18], and also Section 3.1). We
consider the C*-algebra of operators acting on L?*(X) which is generated by the
operators of the form

N M
~vI + ZHainisz‘j (1)
i=1 j=1

where v € C, the a;; are operators of multiplication by functions a;; € L*(X),
the Kj; are operators of right convolution on the group X with kernels £;; in
LY(X), and the T;; are operators of right shift by functions g;; : X — X,

(Tij)u(z) = uz - gij(z)), @eX

The functions g;; will be specified later such that the operators T;; : L*(X) —
L?*(X) become bounded.
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The goal of this paper is to examine the Fredholm and semi-Fredholm prop-
erties of operators of the form (1) and of their limits with respect to the norm
topology of L(L*(X)).

A well-known and archetypical example of a noncommutative homogeneous
group is the Heisenberg group. Singular integral operators and pseudodifferential
operators on the Heisenberg group have been intensively studied by many authors
(see, for example, the monographs [18, 12, 21, 22] which also contain extensive
bibliographies). The Fredholm property of operators in some algebras generated
by convolution operators and operators of multiplication by bounded functions
on general noncommutative locally compact groups was the subject of [19, 20].
Integral operators with constant coefficients and constant shifts (i.e., a;; € C and
gij € R) on the real half-line are considered in [4]. There is also an extensive
bibliography devoted to singular integral and pseudodifferential operators with
shifts (see, for instance, [1, 3, 6, 7, 5] and the references therein).

Our approach is essentially different from the approaches of the cited papers.
It is based on the limit operators method which has been developed in [8, 9, 10,
13, 14, 15] to study the Fredholm properties of large classes of pseudodifferential
operators and convolution operators on RY and Z". Here we apply this method
to investigate the Fredholm and semi-Fredholm properties of integral operators
with shifts. We employ an axiomatic scheme for the limit operators method which
has been proposed in [17]. It should be mentioned that the results of this paper
are new even for the operators with nonconstant shifts on the group RY .

2 The limit operators method

We start with recalling the axiomatic scheme for the application of the limit
operators method developed in [17]. Let H be a Hilbert space and L(H) the
C*-algebra of all bounded linear operators acting on H. Suppose that we are
given

(A1) operators P, P € L(H) with PP = PP = P.

(A2) a countable set {Us,}aen of unitary operators on H such that, with P, :=
U,PU}; and P, :=U,PU;,

D Paull® = [lull® and > [|Paull® < Cllul? (2)
acA aEA

for all w € H with a constant C independent of .

(A3) a sequence (W)gen of unitary operators on H and an associated sequence
(Dp)ken of mappings from A into itself such that WU, = Up, (o)W} for all
a € A and £ € N, and such that the operators Pk .= Wka,;‘ converge
strongly to the identity operator on H. We also set P := Wi, PW} and
Py.o i= Wi P,W; as well as Py o := Wi P, W
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(A4) a bounded sequence (Q,),en of operators in L(H) such that

— there is a distinguished set B of sequences in A which contains all
sequences (f,,) for which there exist a k¥ € N and a sequence (r,,) in
N tending to infinity such that

Py 5,Qr, #0 forallm e N, (3)

— every subsequence of a sequence in B belongs to B,

— the set ‘B is invariant with respect to each of the mappings Dy, i.e. if
(Bm) € B, then (Dyf,,) € B for every k,

— for each r € N and each sequence (3,,) € B,
s-lim,, oo U, Q. Us,, = 1. (4)
Since both the U, and the W} are unitary operators, one also has

D MPeoull® = llul® and Y|P qull® < Offul?

aEA acA

for all w € H and k € N and
Pk,apk,a - pk,apk,a - Pk,a
for all @ € A and £ € N.

Definition 2.1 We say that the operator Ag is the limit operator of A € L(H)
with respect to the sequence = (;) € B if, for every k € N,

lim [|(U3, AUs, — A) PW| = lim [|(P)* (U5, AU, — Ag)]| = 0.
The set of all limit operators of A with respect to sequences in B will be denoted
by limeg (A).
The following proposition describes some elementary properties of limit operators.

Proposition 2.2 Let § € B, and let A, B € L(H) be operators for which the
limit operators Ag and Bg exist. Then

(@) [[Agll < [1A]l-

(b) (A+ B)g exists and (A+ B)g = Ag + Bs.
(c) (A*)p exists and (A*)s = (Ap)*.
(d)

d) if C, C,, € L(H) are operators with ||C —C,|| — 0, and if the limit operators
(Ch)p exist for all sufficiently large n, then Cy exists and ||Cs—(Cy)s|| — 0.
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Definition 2.3 Let Ay(H) denote the set of all operators A € L(H) with the
following properties

(@) limg oo [ Pr,as Alll = 0 and limg_,o0 ||[Pr, o A*]|] = 0 uniformly with respect
to a € A,

(b) every sequence in B possesses a subsequence [ for which the limit operator
Ap exists,

(c) there is a ky € N such that Py, A = PkyaApk,a for all k > k.
Further, let A(H) denote the closure of Ao(H) in L(H).

It is easy to check that Ay(H) and A(H) are linear spaces. Moreover, every
operator A in A(H) also satisfies conditions (a) and (b) (the latter follows from
Proposition 2.2), and if A and B are operators which satisfy (a) and (b), then
their product also satisfies these conditions. On the other hand, condition (c)
(which is the abstract analogue of the band property) is not stable with respect
to norm limits and products of operators.

Let v(A) := inf|f=1 [|Af|| refer to the lower norm of the operator A € L(H).
It is well-known that A is invertible from the left if and only if v(A) > 0 and
invertible from the right if and only if »(A*) > 0. Thus, A is invertible if and
only if both v(A) > 0 and v(A*) > 0.

For every non-zero (but not necessarily closed) subspace L of H we also con-
sider the lower norm of the restriction A|;, of A onto L. If, in particular, L is the
range of a non-zero operator P € L(H), then we call

A = inf ||[AP
W(Aleun) = jnf [|APS]|

the lower norm of A relative to P. The lower norms of A relative to the (), are
closely related to the Fredholm properties of A (see the proof of Theorem 4.5
below).

The following result has been proved in [17].

Theorem 2.4 Let A € A(H). Then

liminfv(Alg, ) = inf  v(Ap). (5)

r—00 Ag€limy (A)

3 Operators on homogeneous groups

3.1 Homogeneous groups

Following [18], Chapter XIII, Section 5, we cite some facts on homogeneous groups
which are needed in what follows. Homogeneous groups X arise by equipping R™
with a Lie group structure and with a family of dilations that act as group
automorphisms on X. To be precise, assume we are given smooth mappings



(z,y) — x -y and x — 2! from R™ to R™ which provide R™ with a Lie
group structure, and assume that the origin of R™ is the identity element of the
associated Lie group. Further we suppose that a; < ... < a,, are positive integers
such that the dilations

Ds: (z1, ..y Tp) = (0% 2y, ..., 6O ay)
are group automorphisms for every ¢ > 0, i.e. that
Ds(x-y) = Dsx - Dy for all x, y € R™.

It follows from these assumptions that the group operation is necessarily of the
form

zy=x+y+Qz,y)
where () : R — R™ satisfies

Q(0,0) = Q(z,0) = Q(0,z) =0 for every x € R™.

Moreover, if one writes @ = (Q1, ..., @), then each @, is a polynomial in 2m
real variables which is homogeneous of degree a,. Thus, () contains no pure
monomials in x or y.

The Euclidean measure dx is both left and right invariant with respect to
the group multiplication, hence, it is the Haar measure on X. Note also that
d(Dsx) = 6“dx where a := a; + ...+ ay,.

An archetypical example of a homogeneous non-commutative group is the
Heisenberg group H" which can be identified with the product C" x R, provided
with the group operation

(w, 5) - (2, 8) = (w+2, s+t + 23w, 2))
where (w, 2) 1= 7 | w;Z;. Consider the norm function p on R™, defined by

— 11/a;
pla) = max {|z;[ /" }.

Note that p(z) > 0 and p(xz) = 0 if and only if x = 0. Also, p(Dsz) = dp(z), and
there is a constant ¢ > 0 such that

plx-y) < clp(z) + p(y)) and  pa) < cp(x).
Set p(z, y) := p(x~" - y). Then the collection of all balls
B(z,e):={yeX:p(z,y) <e}, >0,

forms an open neighborhood basis of the point x € X.



3.2 Multiplication operators on X

Throughout what follows, let X be a homogeneous group. By C,(X) we denote
the C*-algebra of all continuous functions on X with || f||e := sup,ex | f(2)] < o0,
and we let BUC(X) stand for the C*-subalgebra of C,(X) which consists of the
uniformly continuous functions, i.e. f € Cy(X) belongs to BUC(X) if, for each
e > 0, there is a § > 0 such that |f(z) — f(y)| < € whenever p(z, y) < 9.

Further, we let Q(X) refer to set of all measurable bounded functions a on X
such that

lim sup/ la(y - x)|de =0
"

Yy—00

for every compact 2 C X. It is easy to check that BUC(X) is a C*-subalgebra
of L>(X) and that Q(X) is a closed ideal of L*>(X).

3.3 Convolution operators on X

Given k € L'(X) we define the operator of right convolution by & by

(Crpu)(z) == /m E(x™ - y)u(y)dy = /m k(z)u(z - z)dz, =€ R™.

It is well-known that Cj, is bounded on L?*(R™) and invariant with respect to
the left shift,

U gCryr = CrrU,, where (Uy,f)(z):=f(g-z) forgeX

We denote by V;.(X) the set of all operators Cy . of right convolution by a function
k € L'(R™). Note that, ifa € Q(X) and T € V,(X), then aT and T'al are compact
operators on L*(X) (see [20]).

Let Y be a discrete subgroup of the group X which acts freely on X such that
X/Y is a compact manifold. Let M be a fundamental domain of X with respect
to the action of Y on X by left shift, i.e., M is a bounded domain in X such that

X= U a- M.
acY
Let M' be an open neighborhood of M such that the family {aM'},cy provides
a covering of X of finite multiplicity. Let f : X — [0, 1] be a continuous function

with f(z) = 1if x € M and f(z) = 0 outside M’, and let o be the non-negative
function which satisfies
f(x)

2
o) = =
Zg@{ f(ﬂ ’ .T)
For a € Y, set p,(z) := p(a - x). Evidently, 0 < ¢,(z) <1 and

Zg@i(x) =1 zeX (6)

acY



In that sense, the family {¢? }cy forms a partition of unity on X. For 6 > 0, set
©5,a(7) = po(Dsz). The following is proved in [17].

Proposition 3.1 Let K € V,(X). Then lims_||[¢s !, K]|| = 0 uniformly with
respect to a € Y.

3.4 Shift operators on X
Let g = (g1, -- -, gm) : X = X We consider the shift operators of the form

(Tyu)(2) == u(z - g(x))
where
() g; € CHX) for all j.
(8) The mapping F, : X = X, z +— z - g(z) is invertible.

(7) limy_ o det(dF,(x)) = 1 were df refers to the derivative of the function
f:R™ - R™.

Proposition 3.2 If g satisfies the conditions (o) — (), then the operator T, is
bounded on L*(X).

Proof. We have
Tl = [ Ju(F@)Pde = [ Juty)PldecdF, )] dy < Clul?

where C':= sup,cgm |det dF, ' (y)| < oo due to conditions (£) and (7). n

We call the function g slowly oscillating if, in addition to the conditions (a)) — (7y),
(0) limg o0 [|dg(z)|| = 0.

The class of all shifts 7}, with ¢ slowly oscillating will be denoted by R(X).

Proposition 3.3 Let T, € R(X). Then

lim l@s,al, Tylll =0  uniformly with respect to o € Y.
i

Proof. For every u € L*(X), one has

llps,als Tolull < sup|psa(z) = @salz- g(@)] [Tyl

< Csup |05,0(%) — @5,a(x - g(2))] [|ull.
TE



Let us estimate

|05,0(%) = ¢s,a(7 - g(2))| = [o(Ds(a - x)) = (Ds(a - z) - Ds(g(x)))]

The function ¢ is bounded due to assumption («). Hence,

1D5(9(2))[lo0 < max 6% [[g]|oo.

1<j<m

Since ¢ is uniformly continuous on X we obtain that, given ¢ > 0, one finds a
(50 > 0 such that, if maXi<;j<m 0% ||g||oo < (50, then

sup I5.0(x) — 9aale - g(@))] < 2
e

uniformly with respect to o € Y. This implies the assertion. [
Here are a few instances where the requirements () — () are satisfied.
Example A. If g is a constant function then, evidently, 7, belongs to R(X). =

Example B. Let X be the commutative group R™ where

(Tyu)(z) = u(z + g(x)),

and let the conditions («) and (9) be fulfilled. If one of the conditions

max Zsup ‘8gj(m)‘ <1, max Zsup ‘ ng(x)‘ <1 (7)
k—1 T =

is satisfied, then T, € R(X). Indeed, the conditions (7) imply that
Fy:R" - R", zw—x+g(x)

is a contraction. Thus, by the Banach fixed point theorem, Fj is invertible, and
it follows from condition () that

lim det(dFy(z)) =1

Tr—00
whence condition (7). ]

Example C. Let H" be the Heisenberg group with coordinates (z, y, t) € R” X
R™ x R. Consider the function g(zx, y, t) := (p(z, v), q¢(x, y), 7(z, y, t)) where
the mapping

(z,y) = (p(z, v), q(z, y)) : K" — R*"

is subject to a condition analogous to (7) and where, consequently, the mapping
(z,y) = @(z, y) == (z + p(z, y), y +q(z, y))

8



is invertible. Thus, the system
o =w+plr,y), ¥ =y+ay)
possesses a unique solution
v=f@'y), y=e@ y).

Moreover we suppose that ¢ is slowly oscillating in the sense that

lim dyp(z,y) = lim dyp(z,y) =0, (8)
(@,y)—o0 (@,y)—o00
lim dyq(z,y) = lim dyq(z,y) =0, 9)
(m,y)—ro00 (@,y)—o00
lim dy7(z,y,t) = lim dyr(z,y,t)= lim d7(z,y,t)=0. (10)
(@y,t) =00 (@y,t) =00 (@,y,t) =00

Let, moreover,

sup  |diT(z,y,t)| < 1. (11)
(z,y,t)eRZn+1

Then the mapping F, : R**! — R*"*! which sends (z,y,t) to
(@, y,t) - glz,y,t) = (z+p, y), y+qz,y),
t+ 7@y, 1) +2({(z, a(z, y)) — (v, p(z,)))
is invertible. Indeed, for arbitrary (2, ¢/, t') € R*"*1 | the equation
t=t+7(f(", y), el y), 1) +2¥ (", y)
where
(', y') o= (f(@', y), a(f(2, ¥), (@, ¥)) — (@, ¥), p(f (@', ), (@', ¥)))

has a unique solution ¢ due to (11). This proves condition (/3), and condition ()
follows since (8) — (10) imply that

lim  det(d,y,oFy(z, y, 1)) = 1.

(z,y,t)—00

Consequently, under the above assumptions, T, € R(H***!). n

4 Fredholmness of convolution operators with
shifts

We denote by B(BUC(X), V,(X), R(X)) the smallest C*-subalgebra of L(L?*(X))
which contains all operators of the form

N L
A=I+ > ] aiwKikbinTin (12)

j=1 k=1
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where v € C, aj, bjr € BUC(X), Kj € V.(X) and T}, € R(X). Further we
write By (BUC(X), V;(X), R(X)) for the smallest symmetric (but not necessarily
closed) subalgebra of L(L?(X)) which contains all operators of the form (12) where
the kernel functions of the convolution operators K}, are compactly supported.

To study the Fredholmness of operators in B(BUC(X), V,.(X), R(X)) by the
limit operators method, we specify the axioms (A1) — (A4) as follows.

(A1) Let M be an open set which contains the closure M’ of M’ and for which
the covering {aM } ey of X has a finite multiplicity. Then we let P be the
operator of multiplication by ¢ and P be the operator of multiplication by
the characteristic function of M.

(A2) We choose A :=Y and let U,, @ € A, be the operator of left shift by «,
(Ugu)(z) == (U, qu)(z) = u(a - x).

Observe that then P, is the operator of multiplication by ¢,. Hence, the
first condition in (2) follows from (6)

Do NPaull? = (wau, pau) =Y (wau, u) = (u, u) = |lu]l?,

and the second one follows similarly due to the finite multiplicity of the
covering {aM}.

(A3) We choose a sequence (dy)ren of positive numbers with 0y — 0 as &k — oo
and such that Dék’lY C Y, and we define W

(Wyu)(z) == 60> u(Ds, )
with a :=a; + ...+ a;,. Then

WiUa = Up_aWi forallk e Nand o € Y,
k

and the operators P*) converge strongly to the identity.

(A4) For r € N, let @, be the operator of multiplication by the characteristic
function of {z € X : p(z, 0) > r}, and let B be the set of all sequences in
Y which tend to infinity. Then conditions (3) and (4) are fulfilled.

We show that, under these assumptions, the algebra By(BUC(X), V,(X), R(X))
is a subset of A and, hence, its closure B(BUC(X), V;(X), R(X)) is a subset of
A.

Proposition 4.1 Let A € B(BUC(X), V,(X), R(X)). Then

klim I[A, Pr.o]l| =0 uniformly with respect to o € Y. (13)
—00
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Proof. For operators of the form (12), the proof follows immediately from Propo-
sitions 3.1 and 3.3 in connection with Proposition 2.2. Since the set of all opera-
tors A which satisfy (13) is a C*-subalgebra of L(L?*(X)), the result holds for all
operators in B(BUC(X), V,(X), R(X)). =

Proposition 4.2 Let A € By(BUC(X), V;(X), R(X)). Then, for all « € Y and
for all sufficiently large k,

Pk;,aA = Pk,aApk;,a-

Proof. Given an open set N C X, let " refer to the characteristic function of
N and, for £ € N and a € Y, define XkN,a in analogy to ¢ o. Thus, Py , is the

operator of multiplication by X,]g‘;,[a. We consider the set C of all operators B on

L*(X) with the following property. If Ny, N, are open sets with N C N then,
for every o € Y and every sufficiently large &,

Xk, aB Xk BXk I.

It is evident that C contains the operators al of multiplication by bounded func-
tions on X, the operators K of right convolution by compactly supported measur-
able functions on X, and all shift operators 7" € R(X). The set C also contains
the adjoints of these operators. This is again evident for the adjoints of al and K
(the adjoint of al is the operator of multiplication by the complex conjugate of
a, and K* is the operator of right convolution by the function z — k(z~') which
is also compactly supported). Let now T' = T}, be a shift operator in R(X). The
substitution rule shows that the adjoint of T} is the operator 7,01 where

h(y) = (9(F, "(y))~" and b=|detdF,"].

9

The mapping h is continuous and bounded, and b is a bounded and uniformly
continuous function, which follows from property (). Thus, the inclusion 7% € C
will follow once we have shown that C is an algebra.

Let A, B in C. Then, clearly, A+ B € C. To prove that AB € C, let N;, N,
be open sets with N; C N,, and choose an open set N’ such that

N, C N C N' C N,.
Then
XioAB = X o AXE o BXia = X ABX; L,

which implies that AB € C. Consequently, By(BUC(X), V,(X), R(X)) C C,
whence the assertion. [

Proposition 4.3 Let A € B(BUC(X), V.(X), R(X)), and let 8 = (B) be a
sequence in B. Then there is a subsequence 3 of B for which the limit operator
Aj eists.
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Proof. We start with verifying the assertion for the operators in the algebra
B, := By(BUC(X), V;(X), R(X)). Let D denote the set of all operators A € By
having the property that every sequence in ‘B has a subsequence B = (Bk) such
that the operators UB’;AUBIc converge *-strongly as k — oo.

We claim that D contains the generating operators of By,. Since D is an
algebra (which can be easily shown), this implies that By C D.

If al is the operator of multiplication by the function ¢ € BUC(X), then
Uﬂ_klang is the operator of multiplication by the function z +— a(f-x). The func-
tions in BUC(X) are bounded and uniformly continuous by definition. Hence,
by the Arzela-Ascoli theorem, the sequence [ possesses a subsequence B such
that the functions x — G(Bk x) tend uniformly on compact subsets of X to a
certain bounded function az as k — oo. Consequently, the operators U - aUﬂk
converge strongly to azl, and the strong convergence of the adjoint sequence
follows analogously.

If A= K is a convolution operator, then there is nothing to prove because A
commutes with the Uj.

Next we consider the operator 7" = T, € R(X) of shift by the function g.
Then one has

(U5 T, U 0) (@) = ulz - g(By - ).
Since the functions x — g(f - x) are uniformly bounded with respect to k € N
and equicontinuous on compact subsets of X, the Arzela-Ascoli theorem implies
the existence of a subsequence § of § such that the functions = — g¢(B - )
converge uniformly on compacts in X to a certain bounded function 95 Since ¢
is slowly oscillating, the function g; is constant.

We proceed with showing that the strong limit of the operators UB_:TQU 5, as
k — oo exists and that

s-limkmUﬂingng =T, (14)
Let u be a compactly supported continuous function on X. Thus, u is uniformly
continuous on X, and there exists a compact subset {2 of X such that

w(@ - g(Be - ) — u(x - 95) =0 whenever x ¢ Q

(recall that g is bounded). It is further evident from the definition of g; that, for
arbitrary ¢ > 0, there exists a ky € N such that, for all £ > kq and all x € €,
p(g(By - ), g5) < 9. Since u is uniformly continuous, this implies that for each
g > 0, there exists a kg € N such that

sup [u(z - g(By - ) — u(z - 95)| <& forallk > ko.
TEQN

Thus,
lim U 1TU U= ngu

k—o0
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for every continuous and compactly supported function v on X. Since these func-
tions form a dense subset of L?(X), this implies (14). The strong convergence of
the adjoint sequence follows from the representation of T derived in the previous
proof, from the above results, and from the fact that D is an algebra.

The remaining part of the proof makes use of the elementary fact that, if
A, — Aand B} — B* strongly, and if K is compact, then |4, KB,—AKB|| — 0.

Every operator in By can be written as a sum of operators of the form ACB
where C' is the operator of convolution by a compactly supported function, and
where A, B € By. Let 8 € B and m € N. We choose a subsequence 3 of 3 such
that

U, AUs, — Az and U3 'BUj — B;

*-strongly as k — oco. It follows from the proof of the previous proposition that,
if N is sufficiently large,

-1 - m _ —1 - —1 - > m
U, 'ACBU; P = U, 'AU; CU; 'BU; P
_ rr=l A7, PN T=1 R, Plm
= U;'AU; CP™MUBU; PO
Since the operator CPM) is compact, it follows from the fact just mentioned that
(U5 ACBU;, — A;CB3) PM™| = 0
as k — oo. The dual condition follows analogously. Thus, A;CBj is a limit

operator of AC'B. This yields the assertion for operators in By and, employing
Proposition 2.2 (d), also for operators in B(BUC(X), V,(X), R(X)). n

The following theorem is a corollary of the general Theorem 2.4.

Theorem 4.4 Let A € B(BUC(X), V,(X), R(X)). Then

Hminfr(Alo r20) =  inf  v(Ag).
iminfv(Alg,L2(x)) AB6133<A>”( 8)

As a corollary of the previous theorem we derive the desired criteria of semi-
Fredholmness and Fredholmness.

Theorem 4.5 Let A € B(BUC(X), V,(X), R(X)). Then
(a) A is a ®-operator if and only if

inf v(Ag) > 0. (15)

Ag€om (A)
(b) A is a ®_-operator if and only if

inf  v(A%) > 0. 16
UL (A3) (16)

(¢) A is a Fredholm operator if and only if all limit operators of A are invertible
and if the norms of their inverses are uniformly bounded.
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Proof. We will show assertion (a) only. The proof of (b) proceeds similarly, and
(¢) is a consequence of (a) and (b).

Let (15) be satisfied. Then, by Theorem 4.4, there exist an 7 € N and a
constant C' > 0 such that

(QrA™AQ,f, Qrf)| > CllQ fII* for all f € L*(X). (17)

This implies that the operator Q,A*AQ, is invertible on L?(Q,X), i.e. there is
an operator B such that

It follows from the inverse closedness of C*-algebras that the operator B belongs
to the smallest C*-subalgebra B(BUC(X), V,(X), R(X), @Q,) of L(L?*(X)) which
contains the algebra B(BUC(X), V,(X), R(X)) and the operator Q,.

Let Jy refer to the closed ideal of B(BUC(X), V;(X), R(X), @,) which is gen-
erated by the operators I —Q),, r € N, and let J; stand for the smallest closed ideal
of that algebra which contains all operators in V;.(X) and all compact operators.
[t is evident from the definition of the algebra B(BUC(X), V,(X), R(X), @,) that
for every operator G in this algebra, there is a (uniquely determined) complex
number 74 such that G —v4I € J;. Clearly, the mapping G — 7¢ is a continuous
algebra homomorphism. Since v, = 1, it follows from (18) that v4 # 0.

The equality (18) further implies that there is an operator R’ in the algebra
B(BUC(X), V,(X), R(X), Q) such that R"'A — T € Jy. If we set R := y4R —
AR' + I, then

RA—’}/AI:’}/AR,A—AR,A+A—’)/AI: (’}/AI—A)(R,A—I)

Since Ty := R'A—1 € Jy and T} := y4I — A € Jp, the operator RA — vyl = T1 T,
is compact. Hence, and because of v4 # 0, A is a . -operator.

Conversely, let A be a ®,-operator. Then there is a compact operator 1" as
well as a positive constant C' such that the a priori estimate

CllAull = [ull = |Tull, v e L*(X),
holds (see [11], I, Lemma 2.1). This estimate yields
CllAQrull = [|Qull — T Qrull

for all u € L*(X) and r € N. Due to the strong convergence of the operators Q,
to 0, there is an ry € N such that ||7Q,,|| < C/2. Thus,

C
14Qroull = 5 1@roull for allu € LA (X)

whence lim inf,_, o v(A|q,12(x)) > 0. This implies (15) via Theorem 4.4. ]

Finally, we are going to specialize the results of the previous theorem to a class
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of operators for which the invertibility of their limit operators can be effectively
checked. A function a € Cy(X) is called slowly oscillating at infinity if, for every
compact 2 C X,

lim sup |a(z - y) — a(x)| = 0.

L—00 ()

For example, if a € C}(X) and

im 20— 1<i<m,

Z—00 axj
then a is slowly oscillating at infinity. We write SO(X) for the class of all slowly
oscillating functions on X and set W (X) := SO(X)+Q(X). Let further the algebra
B(W(X), V;(X), R(X)) be defined in analogy to B(BUC(X), V,(X), R(X)). We
claim that all limit operators of operators in B(W (X), V,(X), R(X)) are invariant
with respect to left shifts.

Let a € Q(X) and K € V,(X). Then the operators aK and Kal are compact
(see [20]). Hence, the limit operators of these operators exist with respect to
every sequence € B, and they are equal to zero.

Further, let a be slowly oscillating, 8 = (B,n)men € B, and let a; be as in the
proof of Proposition 4.3. Then, evidently,

a3(z) — a5(y) = lim (a(fy - 2) —a((B-2) - (27 - 9)) = 0

for arbitrary =, y € X. Thus, aj is indeed a constant function.

In particular, if A € B(W(X), V.(X), R(X)), then every limit operator of
A belongs to the smallest C*-subalgebra B(V;(X), R¢(X)) of L(L*(X)) which
contains all convolution operators in V,(X) and all shift operators in R(X) by a
constant function (i.e. by an element of the group X).

Thus, in this special setting, Theorem 4.5 reduces the problem of (semi-) Fred-
holmness for operators in B(W (X), V,(X), R(X)) to the problem of invertibility
of operators in the algebra B(V,(X), R¢(X)) which are invariant with respect to
left shifts by elements in X. To study this invertibility problem, methods of (non-
commutative) harmonic analysis are available (cp. [22]). For example, in case of
the commutative group R", the operator

N
A=qI+)Y KT,

J=1

where v € C, Kj is a convolution with kernel k; € L'(R") and Tj is the shift by
g; € R", is invertible on L*(R") if and only if

N
inf [y + ) ki(©)ee9)| >0
j=1

EER™
where l;:j refers to the Fourier transform of k;.
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