
Integral operators with shifts on homogeneous

groups

Vladimir S. Rabinovi
h

�

, Ste�en Ro
h

Dedi
ated to G. S. Litvin
huk on the o

asion of his 70th birthday.

Abstra
t

We study Fredholm properties of integral operators with shifts on ho-

mogeneous groups. This investigation is based on the limit operators

method whi
h allows us to redu
e the problem of Fredholmness of 
on-

volution operators with variable 
oeÆ
ients and with variable shifts to the

problem of invertibility of 
onvolution operators with 
onstant 
oeÆ
ients

and 
onstant shifts. For the invertibility of these operators, methods of

harmoni
 analysis on non
ommutative groups are available.

1 Introdu
tion

Let X be a homogeneous group (see, for instan
e, [18℄, and also Se
tion 3.1). We


onsider the C

�

-algebra of operators a
ting on L

2

(X) whi
h is generated by the

operators of the form


I +

N

X

i=1

M

Y

j=1

a

ij

K

ij

T

ij

(1)

where 
 2 C , the a

ij

are operators of multipli
ation by fun
tions a

ij

2 L

1

(X),

the K

ij

are operators of right 
onvolution on the group X with kernels k

ij

in

L

1

(X), and the T

ij

are operators of right shift by fun
tions g

ij

: X ! X,

(T

ij

)u(x) = u(x � g

ij

(x)); x 2 X:

The fun
tions g

ij

will be spe
i�ed later su
h that the operators T

ij

: L

2

(X) !

L

2

(X) be
ome bounded.

�
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The goal of this paper is to examine the Fredholm and semi-Fredholm prop-

erties of operators of the form (1) and of their limits with respe
t to the norm

topology of L(L

2

(X)).

A well-known and ar
hetypi
al example of a non
ommutative homogeneous

group is the Heisenberg group. Singular integral operators and pseudodi�erential

operators on the Heisenberg group have been intensively studied by many authors

(see, for example, the monographs [18, 12, 21, 22℄ whi
h also 
ontain extensive

bibliographies). The Fredholm property of operators in some algebras generated

by 
onvolution operators and operators of multipli
ation by bounded fun
tions

on general non
ommutative lo
ally 
ompa
t groups was the subje
t of [19, 20℄.

Integral operators with 
onstant 
oeÆ
ients and 
onstant shifts (i.e., a

ij

2 C and

g

ij

2 R) on the real half-line are 
onsidered in [4℄. There is also an extensive

bibliography devoted to singular integral and pseudodi�erential operators with

shifts (see, for instan
e, [1, 3, 6, 7, 5℄ and the referen
es therein).

Our approa
h is essentially di�erent from the approa
hes of the 
ited papers.

It is based on the limit operators method whi
h has been developed in [8, 9, 10,

13, 14, 15℄ to study the Fredholm properties of large 
lasses of pseudodi�erential

operators and 
onvolution operators on R

N

and Z

N

. Here we apply this method

to investigate the Fredholm and semi-Fredholm properties of integral operators

with shifts. We employ an axiomati
 s
heme for the limit operators method whi
h

has been proposed in [17℄. It should be mentioned that the results of this paper

are new even for the operators with non
onstant shifts on the group R

N

.

2 The limit operators method

We start with re
alling the axiomati
 s
heme for the appli
ation of the limit

operators method developed in [17℄. Let H be a Hilbert spa
e and L(H) the

C

�

-algebra of all bounded linear operators a
ting on H. Suppose that we are

given

(A1) operators P;

^

P 2 L(H) with P

^

P =

^

PP = P:

(A2) a 
ountable set fU

�

g

�2�

of unitary operators on H su
h that, with P

�

:=

U

�

PU

�

�

and

^

P

�

:= U

�

^

PU

�

�

,

X

�2�

kP

�

uk

2

= kuk

2

and

X

�2�

k

^

P

�

uk

2

� Ckuk

2

(2)

for all u 2 H with a 
onstant C independent of u.

(A3) a sequen
e (W

k

)

k2N

of unitary operators on H and an asso
iated sequen
e

(D

k

)

k2N

of mappings from � into itself su
h that W

k

U

�

= U

D

k

(�)

W

k

for all

� 2 � and k 2 N , and su
h that the operators

^

P

(k)

:= W

k

^

PW

�

k


onverge

strongly to the identity operator on H. We also set P

(k)

:= W

k

PW

�

k

and

P

k;�

:=W

k

P

�

W

�

k

as well as

^

P

k;�

:= W

k

^

P

�

W

�

k

.
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(A4) a bounded sequen
e (Q

r

)

r2N

of operators in L(H) su
h that

{ there is a distinguished set B of sequen
es in � whi
h 
ontains all

sequen
es (�

m

) for whi
h there exist a k 2 N and a sequen
e (r

m

) in

N tending to in�nity su
h that

P

k; �

m

Q

r

m

6= 0 for allm 2 N ; (3)

{ every subsequen
e of a sequen
e in B belongs to B,

{ the set B is invariant with respe
t to ea
h of the mappings D

k

, i.e. if

(�

m

) 2 B, then (D

k

�

m

) 2 B for every k,

{ for ea
h r 2 N and ea
h sequen
e (�

m

) 2 B,

s-lim

m!1

U

�

�

m

Q

r

U

�

m

= I: (4)

Sin
e both the U

�

and the W

k

are unitary operators, one also has

X

�2�

kP

k;�

uk

2

= kuk

2

and

X

�2�

k

^

P

k;�

uk

2

� Ckuk

2

for all u 2 H and k 2 N and

P

k;�

^

P

k;�

=

^

P

k;�

P

k;�

= P

k;�

for all � 2 � and k 2 N .

De�nition 2.1 We say that the operator A

�

is the limit operator of A 2 L(H)

with respe
t to the sequen
e � = (�

j

) 2 B if, for every k 2 N,

lim

j!1

k(U

�

�

j

AU

�

j

� A

�

)

^

P

(k)

k = lim

j!1

k(

^

P

(k)

)

�

(U

�

�

j

AU

�

j

� A

�

)k = 0:

The set of all limit operators of A with respe
t to sequen
es in B will be denoted

by lim

B

(A).

The following proposition des
ribes some elementary properties of limit operators.

Proposition 2.2 Let � 2 B, and let A; B 2 L(H) be operators for whi
h the

limit operators A

�

and B

�

exist. Then

(a) kA

�

k � kAk.

(b) (A+B)

�

exists and (A+B)

�

= A

�

+B

�

.

(
) (A

�

)

�

exists and (A

�

)

�

= (A

�

)

�

.

(d) if C; C

n

2 L(H) are operators with kC�C

n

k ! 0, and if the limit operators

(C

n

)

�

exist for all suÆ
iently large n, then C

�

exists and kC

�

�(C

n

)

�

k ! 0.
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De�nition 2.3 Let A

0

(H) denote the set of all operators A 2 L(H) with the

following properties

(a) lim

k!1

k[P

k;�

; A℄k = 0 and lim

k!1

k[P

k;�

; A

�

℄k = 0 uniformly with respe
t

to � 2 �,

(b) every sequen
e in B possesses a subsequen
e � for whi
h the limit operator

A

�

exists,

(
) there is a k

0

2 N su
h that P

k;�

A = P

k;�

A

^

P

k;�

for all k � k

0

.

Further, let A(H) denote the 
losure of A

0

(H) in L(H).

It is easy to 
he
k that A

0

(H) and A(H) are linear spa
es. Moreover, every

operator A in A(H) also satis�es 
onditions (a) and (b) (the latter follows from

Proposition 2.2), and if A and B are operators whi
h satisfy (a) and (b), then

their produ
t also satis�es these 
onditions. On the other hand, 
ondition (
)

(whi
h is the abstra
t analogue of the band property) is not stable with respe
t

to norm limits and produ
ts of operators.

Let �(A) := inf

kfk=1

kAfk refer to the lower norm of the operator A 2 L(H).

It is well-known that A is invertible from the left if and only if �(A) > 0 and

invertible from the right if and only if �(A

�

) > 0. Thus, A is invertible if and

only if both �(A) > 0 and �(A

�

) > 0.

For every non-zero (but not ne
essarily 
losed) subspa
e L of H we also 
on-

sider the lower norm of the restri
tion Aj

L

of A onto L. If, in parti
ular, L is the

range of a non-zero operator P 2 L(H), then we 
all

�(Aj

P (H)

) = inf

kPfk=1

kAPfk

the lower norm of A relative to P . The lower norms of A relative to the Q

r

are


losely related to the Fredholm properties of A (see the proof of Theorem 4.5

below).

The following result has been proved in [17℄.

Theorem 2.4 Let A 2 A(H). Then

lim inf

r!1

�(Aj

Q

r

(H)

) = inf

A

�

2lim

B

(A)

�(A

�

): (5)

3 Operators on homogeneous groups

3.1 Homogeneous groups

Following [18℄, Chapter XIII, Se
tion 5, we 
ite some fa
ts on homogeneous groups

whi
h are needed in what follows. Homogeneous groups X arise by equipping R

m

with a Lie group stru
ture and with a family of dilations that a
t as group

automorphisms on X. To be pre
ise, assume we are given smooth mappings
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(x; y) 7! x � y and x 7! x

�1

from R

m

to R

m

whi
h provide R

m

with a Lie

group stru
ture, and assume that the origin of R

m

is the identity element of the

asso
iated Lie group. Further we suppose that a

1

� : : : � a

m

are positive integers

su
h that the dilations

D

Æ

: (x

1

; : : : ; x

m

) 7! (Æ

a

1

x

1

; : : : ; Æ

a

m

x

m

)

are group automorphisms for every Æ > 0, i.e. that

D

Æ

(x � y) = D

Æ

x �D

Æ

y for all x; y 2 R

m

:

It follows from these assumptions that the group operation is ne
essarily of the

form

x � y = x+ y +Q(x; y)

where Q : R

m

! R

m

satis�es

Q(0; 0) = Q(x; 0) = Q(0; x) = 0 for every x 2 R

m

:

Moreover, if one writes Q = (Q

1

; : : : ; Q

m

), then ea
h Q

r

is a polynomial in 2m

real variables whi
h is homogeneous of degree a

r

. Thus, Q 
ontains no pure

monomials in x or y.

The Eu
lidean measure dx is both left and right invariant with respe
t to

the group multipli
ation, hen
e, it is the Haar measure on X. Note also that

d(D

Æ

x) = Æ

a

dx where a := a

1

+ : : :+ a

m

.

An ar
hetypi
al example of a homogeneous non-
ommutative group is the

Heisenberg group H

n

whi
h 
an be identi�ed with the produ
t C

n

� R, provided

with the group operation

(w; s) � (z; t) := (w + z; s+ t+ 2=hw; zi)

where hw; zi :=

P

n

j=1

w

j

�z

j

. Consider the norm fun
tion � on R

m

, de�ned by

�(x) := max

1�j�m

fjx

j

j

1=a

j

g:

Note that �(x) � 0 and �(x) = 0 if and only if x = 0. Also, �(D

Æ

x) = Æ�(x), and

there is a 
onstant 
 > 0 su
h that

�(x � y) � 
(�(x) + �(y)) and �(x

�1

) � 
�(x):

Set �(x; y) := �(x

�1

� y). Then the 
olle
tion of all balls

B(x; ") := fy 2 X : �(x; y) < "g; " > 0;

forms an open neighborhood basis of the point x 2 X.
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3.2 Multipli
ation operators on X

Throughout what follows, let X be a homogeneous group. By C

b

(X) we denote

the C

�

-algebra of all 
ontinuous fun
tions on X with kfk

1

:= sup

x2X

jf(x)j <1,

and we let BUC(X) stand for the C

�

-subalgebra of C

b

(X) whi
h 
onsists of the

uniformly 
ontinuous fun
tions, i.e. f 2 C

b

(X) belongs to BUC(X) if, for ea
h

" > 0, there is a Æ > 0 su
h that jf(x)� f(y)j < " whenever �(x; y) < Æ.

Further, we let Q(X) refer to set of all measurable bounded fun
tions a on X

su
h that

lim sup

y!1

Z




ja(y

�1

� x)j dx = 0

for every 
ompa
t 
 � X. It is easy to 
he
k that BUC(X) is a C

�

-subalgebra

of L

1

(X) and that Q(X) is a 
losed ideal of L

1

(X).

3.3 Convolution operators on X

Given k 2 L

1

(X) we de�ne the operator of right 
onvolution by k by

(C

k;r

u)(x) :=

Z

R

m

k(x

�1

� y)u(y)dy =

Z

R

m

k(z)u(x � z)dz; x 2 R

m

:

It is well-known that C

k;r

is bounded on L

2

(R

m

) and invariant with respe
t to

the left shift,

U

l;g

C

k;r

= C

k;r

U

l;g

where (U

l;g

f)(x) := f(g � x) for g 2 X:

We denote by V

r

(X) the set of all operators C

k;r

of right 
onvolution by a fun
tion

k 2 L

1

(R

m

). Note that, if a 2 Q(X) and T 2 V

r

(X), then aT and TaI are 
ompa
t

operators on L

2

(X) (see [20℄).

Let Y be a dis
rete subgroup of the group X whi
h a
ts freely on X su
h that

X=Y is a 
ompa
t manifold. Let M be a fundamental domain of X with respe
t

to the a
tion of Y on X by left shift, i.e., M is a bounded domain in X su
h that

X =

[

�2Y

� �M:

Let M

0

be an open neighborhood of M su
h that the family f�M

0

g

�2Y

provides

a 
overing of X of �nite multipli
ity. Let f : X ! [0; 1℄ be a 
ontinuous fun
tion

with f(x) = 1 if x 2 M and f(x) = 0 outside M

0

, and let ' be the non-negative

fun
tion whi
h satis�es

'

2

(x) :=

f(x)

P

�2Y

f(� � x)

:

For � 2 Y, set '

�

(x) := '(� � x). Evidently, 0 � '

�

(x) � 1 and

X

�2Y

'

2

�

(x) = 1; x 2 X: (6)
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In that sense, the family f'

2

�

g

�2Y

forms a partition of unity on X. For Æ > 0, set

'

Æ; �

(x) := '

�

(D

Æ

x). The following is proved in [17℄.

Proposition 3.1 Let K 2 V

r

(X). Then lim

Æ!0

k['

Æ; �

I; K℄k = 0 uniformly with

respe
t to � 2 Y.

3.4 Shift operators on X

Let g = (g

1

; : : : ; g

m

) : X ! X. We 
onsider the shift operators of the form

(T

g

u)(x) := u(x � g(x))

where

(�) g

j

2 C

1

b

(X) for all j.

(�) The mapping F

g

: X ! X; x 7! x � g(x) is invertible.

(
) lim

x!1

det(dF

g

(x)) = 1 were df refers to the derivative of the fun
tion

f : R

m

! R

m

.

Proposition 3.2 If g satis�es the 
onditions (�)� (
), then the operator T

g

is

bounded on L

2

(X).

Proof. We have

kT

g

uk

2

=

Z

R

m

ju(F

g

(x))j

2

dx =

Z

R

m

ju(y)j

2

j det dF

�1

g

(y)j dy � Ckuk

2

where C := sup

y2R

m

j det dF

�1

g

(y)j <1 due to 
onditions (�) and (
).

We 
all the fun
tion g slowly os
illating if, in addition to the 
onditions (�)�(
),

(Æ) lim

x!1

kdg(x)k = 0:

The 
lass of all shifts T

g

with g slowly os
illating will be denoted by R(X).

Proposition 3.3 Let T

g

2 R(X). Then

lim

Æ!0

k['

Æ; �

I; T

g

℄k = 0 uniformly with respe
t to � 2 Y:

Proof. For every u 2 L

2

(X), one has

k['

Æ; �

I; T

g

℄ uk � sup

x2X

j'

Æ;�

(x)� '

Æ; �

(x � g(x))j kT

g

uk

� C sup

x2X

j'

Æ; �

(x)� '

Æ; �

(x � g(x))j kuk:
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Let us estimate

j'

Æ; �

(x)� '

Æ; �

(x � g(x))j = j'(D

Æ

(� � x))� '(D

Æ

(� � x) �D

Æ

(g(x)))j:

The fun
tion g is bounded due to assumption (�). Hen
e,

kD

Æ

(g(x))k

1

� max

1�j�m

Æ

a

j

kgk

1

:

Sin
e ' is uniformly 
ontinuous on X we obtain that, given " > 0, one �nds a

Æ

0

> 0 su
h that, if max

1�j�m

Æ

a

j

kgk

1

< Æ

0

, then

sup

x2X

j'

Æ; �

(x)� '

Æ; �

(x � g(x))j < "

uniformly with respe
t to � 2 Y. This implies the assertion.

Here are a few instan
es where the requirements (�)� (Æ) are satis�ed.

Example A. If g is a 
onstant fun
tion then, evidently, T

g

belongs to R(X).

Example B. Let X be the 
ommutative group R

m

where

(T

g

u)(x) = u(x+ g(x));

and let the 
onditions (�) and (Æ) be ful�lled. If one of the 
onditions

max

1�j�m

m

X

k=1

sup

x

�

�

�

�

�g

j

(x)

�x

k

�

�

�

�

< 1; max

1�k�m

m

X

j=1

sup

x

�

�

�

�

�g

j

(x)

�x

k

�

�

�

�

< 1 (7)

is satis�ed, then T

g

2 R(X). Indeed, the 
onditions (7) imply that

F

g

: R

m

! R

m

; x 7! x + g(x)

is a 
ontra
tion. Thus, by the Bana
h �xed point theorem, F

g

is invertible, and

it follows from 
ondition (Æ) that

lim

x!1

det(dF

g

(x)) = 1

when
e 
ondition (
).

Example C. Let H

n

be the Heisenberg group with 
oordinates (x; y; t) 2 R

n

�

R

n

� R. Consider the fun
tion g(x; y; t) := (p(x; y); q(x; y); �(x; y; t)) where

the mapping

(x; y) 7! (p(x; y); q(x; y)) : R

2n

! R

2n

is subje
t to a 
ondition analogous to (7) and where, 
onsequently, the mapping

(x; y) 7! �(x; y) := (x + p(x; y); y + q(x; y))

8



is invertible. Thus, the system

x

0

= x + p(x; y); y

0

= y + q(x; y)

possesses a unique solution

x = f(x

0

; y

0

); y = '(x

0

; y

0

):

Moreover we suppose that g is slowly os
illating in the sense that

lim

(x;y)!1

d

x

p(x; y) = lim

(x;y)!1

d

y

p(x; y) = 0; (8)

lim

(x;y)!1

d

x

q(x; y) = lim

(x;y)!1

d

y

q(x; y) = 0; (9)

lim

(x;y;t)!1

d

x

�(x; y; t) = lim

(x;y;t)!1

d

y

�(x; y; t) = lim

(x;y;t)!1

d

t

�(x; y; t) = 0: (10)

Let, moreover,

sup

(x;y;t)2R

2n+1

jd

t

�(x; y; t)j < 1: (11)

Then the mapping F

g

: R

2n+1

! R

2n+1

, whi
h sends (x; y; t) to

(x; y; t) � g(x; y; t) = (x+ p(x; y); y + q(x; y);

t + �(x; y; t) + 2 (h(x; q(x; y)i � hy; p(x; y)i)

is invertible. Indeed, for arbitrary (x

0

; y

0

; t

0

) 2 R

2n+1

, the equation

t

0

= t+ �(f(x

0

; y

0

); '(x

0

; y

0

); t) + 2	(x

0

; y

0

)

where

	(x

0

; y

0

) := hf(x

0

; y

0

); q(f(x

0

; y

0

); '(x

0

; y

0

))i � h'(x

0

; y

0

); p(f(x

0

; y

0

); '(x

0

; y

0

))i

has a unique solution t due to (11). This proves 
ondition (�), and 
ondition (
)

follows sin
e (8)� (10) imply that

lim

(x; y; t)!1

det(d

(x; y; t)

F

g

(x; y; t)) = 1:

Consequently, under the above assumptions, T

g

2 R(H

2n+1

).

4 Fredholmness of 
onvolution operators with

shifts

We denote by B(BUC(X); V

r

(X); R(X)) the smallest C

�

-subalgebra of L(L

2

(X))

whi
h 
ontains all operators of the form

A = 
I +

N

X

j=1

L

Y

k=1

a

jk

K

jk

b

jk

T

jk

(12)

9



where 
 2 C , a

jk

; b

jk

2 BUC(X), K

jk

2 V

r

(X) and T

jk

2 R(X). Further we

write B

0

(BUC(X); V

r

(X); R(X)) for the smallest symmetri
 (but not ne
essarily


losed) subalgebra of L(L

2

(X)) whi
h 
ontains all operators of the form (12) where

the kernel fun
tions of the 
onvolution operators K

jk

are 
ompa
tly supported.

To study the Fredholmness of operators in B(BUC(X); V

r

(X); R(X)) by the

limit operators method, we spe
ify the axioms (A1) { (A4) as follows.

(A1) Let

^

M be an open set whi
h 
ontains the 
losure M

0

of M

0

and for whi
h

the 
overing f�

^

Mg

�2Y

of X has a �nite multipli
ity. Then we let P be the

operator of multipli
ation by ' and

^

P be the operator of multipli
ation by

the 
hara
teristi
 fun
tion of

^

M .

(A2) We 
hoose � := Y and let U

�

, � 2 �, be the operator of left shift by �,

(U

�

u)(x) := (U

l; �

u)(x) = u(� � x):

Observe that then P

�

is the operator of multipli
ation by '

�

. Hen
e, the

�rst 
ondition in (2) follows from (6)

X

kP

�

uk

2

=

X

h'

�

u; '

�

ui =

X

h'

2

�

u; ui = hu; ui = kuk

2

;

and the se
ond one follows similarly due to the �nite multipli
ity of the


overing f�

^

Mg.

(A3) We 
hoose a sequen
e (Æ

k

)

k2N

of positive numbers with Æ

k

! 0 as k ! 1

and su
h that D

Æ

�1

k

Y � Y, and we de�ne W

k

(W

k

u)(x) := Æ

a=2

k

u(D

Æ

k

x)

with a := a

1

+ : : :+ a

m

. Then

W

k

U

�

= U

D

Æ

�1

k

�

W

k

for all k 2 N and � 2 Y;

and the operators

^

P

(k)


onverge strongly to the identity.

(A4) For r 2 N , let Q

r

be the operator of multipli
ation by the 
hara
teristi


fun
tion of fx 2 X : �(x; 0) > rg, and let B be the set of all sequen
es in

Y whi
h tend to in�nity. Then 
onditions (3) and (4) are ful�lled.

We show that, under these assumptions, the algebra B

0

(BUC(X); V

r

(X); R(X))

is a subset of A

0

and, hen
e, its 
losure B(BUC(X); V

r

(X); R(X)) is a subset of

A.

Proposition 4.1 Let A 2 B(BUC(X); V

r

(X); R(X)). Then

lim

k!1

k[A; P

k;�

℄k = 0 uniformly with respe
t to � 2 Y: (13)

10



Proof. For operators of the form (12), the proof follows immediately from Propo-

sitions 3.1 and 3.3 in 
onne
tion with Proposition 2.2. Sin
e the set of all opera-

tors A whi
h satisfy (13) is a C

�

-subalgebra of L(L

2

(X)), the result holds for all

operators in B(BUC(X); V

r

(X); R(X)).

Proposition 4.2 Let A 2 B

0

(BUC(X); V

r

(X); R(X)). Then, for all � 2 Y and

for all suÆ
iently large k,

P

k;�

A = P

k;�

A

^

P

k;�

:

Proof. Given an open set N � X, let �

N

refer to the 
hara
teristi
 fun
tion of

N and, for k 2 N and � 2 Y, de�ne �

N

k;�

in analogy to '

k;�

. Thus,

^

P

k;�

is the

operator of multipli
ation by �

^

M

k;�

. We 
onsider the set C of all operators B on

L

2

(X) with the following property. If N

1

; N

2

are open sets with N

1

� N

2

then,

for every � 2 Y and every suÆ
iently large k,

�

N

1

k;�

B = �

N

1

k;�

B�

N

2

k;�

I:

It is evident that C 
ontains the operators aI of multipli
ation by bounded fun
-

tions on X, the operators K of right 
onvolution by 
ompa
tly supported measur-

able fun
tions on X , and all shift operators T 2 R(X). The set C also 
ontains

the adjoints of these operators. This is again evident for the adjoints of aI and K

(the adjoint of aI is the operator of multipli
ation by the 
omplex 
onjugate of

a, and K

�

is the operator of right 
onvolution by the fun
tion x 7! k(x

�1

) whi
h

is also 
ompa
tly supported). Let now T = T

g

be a shift operator in R(X). The

substitution rule shows that the adjoint of T

g

is the operator T

h

bI where

h(y) = (g(F

�1

g

(y)))

�1

and b = j det dF

�1

g

j:

The mapping h is 
ontinuous and bounded, and b is a bounded and uniformly


ontinuous fun
tion, whi
h follows from property (
). Thus, the in
lusion T

�

2 C

will follow on
e we have shown that C is an algebra.

Let A; B in C. Then, 
learly, A + B 2 C. To prove that AB 2 C, let N

1

; N

2

be open sets with N

1

� N

2

, and 
hoose an open set N

0

su
h that

N

1

� N

0

� N

0

� N

2

:

Then

�

N

1

k;�

AB = �

N

1

k;�

A�

N

0

k;�

B�

N

2

k;�

I = �

N

1

k;�

AB�

N

2

k;�

I;

whi
h implies that AB 2 C. Consequently, B

0

(BUC(X); V

r

(X); R(X)) � C,

when
e the assertion.

Proposition 4.3 Let A 2 B(BUC(X); V

r

(X); R(X)), and let � = (�

k

) be a

sequen
e in B. Then there is a subsequen
e

~

� of � for whi
h the limit operator

A

~

�

exists.

11



Proof. We start with verifying the assertion for the operators in the algebra

B

0

:= B

0

(BUC(X); V

r

(X); R(X)). Let D denote the set of all operators A 2 B

0

having the property that every sequen
e in B has a subsequen
e

~

� = (

~

�

k

) su
h

that the operators U

�1

~

�

k

AU

~

�

k


onverge

�

-strongly as k!1.

We 
laim that D 
ontains the generating operators of B

0

. Sin
e D is an

algebra (whi
h 
an be easily shown), this implies that B

0

� D.

If aI is the operator of multipli
ation by the fun
tion a 2 BUC(X), then

U

�1

�

k

aU

�

k

is the operator of multipli
ation by the fun
tion x 7! a(�

k

�x). The fun
-

tions in BUC(X) are bounded and uniformly 
ontinuous by de�nition. Hen
e,

by the Arzel�a-As
oli theorem, the sequen
e � possesses a subsequen
e

~

� su
h

that the fun
tions x 7! a(

~

�

k

� x) tend uniformly on 
ompa
t subsets of X to a


ertain bounded fun
tion a

~

�

as k ! 1. Consequently, the operators U

�1

~

�

k

aU

~

�

k


onverge strongly to a

~

�

I, and the strong 
onvergen
e of the adjoint sequen
e

follows analogously.

If A = K is a 
onvolution operator, then there is nothing to prove be
ause A


ommutes with the U

k

.

Next we 
onsider the operator T = T

g

2 R(X) of shift by the fun
tion g.

Then one has

(U

�1

�

k

T

g

U

�

k

u)(x) = u(x � g(�

k

� x)):

Sin
e the fun
tions x 7! g(�

k

� x) are uniformly bounded with respe
t to k 2 N

and equi
ontinuous on 
ompa
t subsets of X, the Arzel�a-As
oli theorem implies

the existen
e of a subsequen
e

~

� of � su
h that the fun
tions x 7! g(

~

�

k

� x)


onverge uniformly on 
ompa
ts in X to a 
ertain bounded fun
tion g

~

�

. Sin
e g

is slowly os
illating, the fun
tion g

~

�

is 
onstant.

We pro
eed with showing that the strong limit of the operators U

�1

~

�

k

T

g

U

~

�

k

as

k !1 exists and that

s-lim

k!1

U

�1

~

�

k

T

g

U

~

�

k

= T

g

~

�

: (14)

Let u be a 
ompa
tly supported 
ontinuous fun
tion on X. Thus, u is uniformly


ontinuous on X, and there exists a 
ompa
t subset 
 of X su
h that

u(x � g(

~

�

k

� x))� u(x � g

~

�

) = 0 whenever x =2 


(re
all that g is bounded). It is further evident from the de�nition of g

~

�

that, for

arbitrary Æ > 0, there exists a k

0

2 N su
h that, for all k � k

0

and all x 2 
,

�(g(

~

�

k

� x); g

~

�

) < Æ. Sin
e u is uniformly 
ontinuous, this implies that for ea
h

" > 0, there exists a k

0

2 N su
h that

sup

x2


ju(x � g(

~

�

k

� x))� u(x � g

~

�

)j < " for all k � k

0

:

Thus,

lim

k!1

U

�1

~

�

k

T

g

U

~

�

k

u = T

g

~

�

u

12



for every 
ontinuous and 
ompa
tly supported fun
tion u on X. Sin
e these fun
-

tions form a dense subset of L

2

(X), this implies (14). The strong 
onvergen
e of

the adjoint sequen
e follows from the representation of T

�

g

derived in the previous

proof, from the above results, and from the fa
t that D is an algebra.

The remaining part of the proof makes use of the elementary fa
t that, if

A

n

! A andB

�

n

! B

�

strongly, and ifK is 
ompa
t, then kA

n

KB

n

�AKBk ! 0.

Every operator in B

0


an be written as a sum of operators of the form ACB

where C is the operator of 
onvolution by a 
ompa
tly supported fun
tion, and

where A; B 2 B

0

. Let � 2 B and m 2 N . We 
hoose a subsequen
e

~

� of � su
h

that

U

�1

~

�

k

AU

~

�

k

! A

~

�

and U

�1

~

�

k

BU

~

�

k

! B

~

�

�

-strongly as k !1. It follows from the proof of the previous proposition that,

if N is suÆ
iently large,

U

�1

~

�

k

ACBU

~

�

k

^

P

(m)

= U

�1

~

�

k

AU

~

�

k

CU

�1

~

�

k

BU

~

�

k

^

P

(m)

= U

�1

~

�

k

AU

~

�

k

C

^

P

(N)

U

�1

~

�

k

BU

~

�

k

^

P

(m)

:

Sin
e the operator C

^

P

(N)

is 
ompa
t, it follows from the fa
t just mentioned that

k(U

�1

~

�

k

ACBU

~

�

k

� A

~

�

CB

~

�

)

^

P

(m)

k ! 0

as k ! 1. The dual 
ondition follows analogously. Thus, A

~

�

CB

~

�

is a limit

operator of ACB. This yields the assertion for operators in B

0

and, employing

Proposition 2.2 (d), also for operators in B(BUC(X); V

r

(X); R(X)).

The following theorem is a 
orollary of the general Theorem 2.4.

Theorem 4.4 Let A 2 B(BUC(X); V

r

(X); R(X)). Then

lim inf

r!1

�(Aj

Q

r

L

2

(X)

) = inf

A

�

2�

B

(A)

�(A

�

):

As a 
orollary of the previous theorem we derive the desired 
riteria of semi-

Fredholmness and Fredholmness.

Theorem 4.5 Let A 2 B(BUC(X); V

r

(X); R(X)). Then

(a) A is a �

+

-operator if and only if

inf

A

�

2�

B

(A)

�(A

�

) > 0: (15)

(b) A is a �

�

-operator if and only if

inf

A

�

2�

B

(A)

�(A

�

�

) > 0: (16)

(
) A is a Fredholm operator if and only if all limit operators of A are invertible

and if the norms of their inverses are uniformly bounded.
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Proof. We will show assertion (a) only. The proof of (b) pro
eeds similarly, and

(
) is a 
onsequen
e of (a) and (b).

Let (15) be satis�ed. Then, by Theorem 4.4, there exist an r 2 N and a


onstant C > 0 su
h that

jhQ

r

A

�

AQ

r

f; Q

r

fij � CkQ

r

fk

2

for all f 2 L

2

(X): (17)

This implies that the operator Q

r

A

�

AQ

r

is invertible on L

2

(Q

r

X), i.e. there is

an operator B su
h that

BQ

r

A

�

AQ

r

= Q

r

: (18)

It follows from the inverse 
losedness of C

�

-algebras that the operator B belongs

to the smallest C

�

-subalgebra B(BUC(X); V

r

(X); R(X); Q

r

) of L(L

2

(X)) whi
h


ontains the algebra B(BUC(X); V

r

(X); R(X)) and the operator Q

r

.

Let J

0

refer to the 
losed ideal of B(BUC(X); V

r

(X); R(X); Q

r

) whi
h is gen-

erated by the operators I�Q

r

, r 2 N , and let J

1

stand for the smallest 
losed ideal

of that algebra whi
h 
ontains all operators in V

r

(X) and all 
ompa
t operators.

It is evident from the de�nition of the algebra B(BUC(X); V

r

(X); R(X); Q

r

) that

for every operator G in this algebra, there is a (uniquely determined) 
omplex

number 


G

su
h that G�


G

I 2 J

1

. Clearly, the mapping G 7! 


G

is a 
ontinuous

algebra homomorphism. Sin
e 


Q

r

= 1, it follows from (18) that 


A

6= 0.

The equality (18) further implies that there is an operator R

0

in the algebra

B(BUC(X); V

r

(X); R(X); Q

r

) su
h that R

0

A � I 2 J

0

. If we set R := 


A

R

0

�

AR

0

+ I, then

RA� 


A

I = 


A

R

0

A� AR

0

A+ A� 


A

I = (


A

I � A)(R

0

A� I):

Sin
e T

0

:= R

0

A� I 2 J

0

and T

1

:= 


A

I�A 2 J

1

, the operator RA�


A

I = T

1

T

0

is 
ompa
t. Hen
e, and be
ause of 


A

6= 0, A is a �

+

-operator.

Conversely, let A be a �

+

-operator. Then there is a 
ompa
t operator T as

well as a positive 
onstant C su
h that the a priori estimate

CkAuk � kuk � kTuk; u 2 L

2

(X);

holds (see [11℄, I, Lemma 2.1). This estimate yields

CkAQ

r

uk � kQ

r

uk � kTQ

r

uk

for all u 2 L

2

(X) and r 2 N . Due to the strong 
onvergen
e of the operators Q

r

to 0, there is an r

0

2 N su
h that kTQ

r

0

k � C=2. Thus,

kAQ

r

0

uk �

C

2

kQ

r

0

uk for all u 2 L

2

(X)

when
e lim inf

r!1

�(Aj

Q

r

L

2

(X)

) > 0. This implies (15) via Theorem 4.4.

Finally, we are going to spe
ialize the results of the previous theorem to a 
lass

14



of operators for whi
h the invertibility of their limit operators 
an be e�e
tively


he
ked. A fun
tion a 2 C

b

(X) is 
alled slowly os
illating at in�nity if, for every


ompa
t 
 � X,

lim

x!1

sup

y2


ja(x � y)� a(x)j = 0:

For example, if a 2 C

1

b

(X) and

lim

x!1

�a(x)

�x

j

= 0; 1 � j � m;

then a is slowly os
illating at in�nity. We write SO(X) for the 
lass of all slowly

os
illating fun
tions on X and setW (X) := SO(X)+Q(X). Let further the algebra

B(W (X); V

r

(X); R(X)) be de�ned in analogy to B(BUC(X); V

r

(X); R(X)). We


laim that all limit operators of operators in B(W (X); V

r

(X); R(X)) are invariant

with respe
t to left shifts.

Let a 2 Q(X) and K 2 V

r

(X). Then the operators aK and KaI are 
ompa
t

(see [20℄). Hen
e, the limit operators of these operators exist with respe
t to

every sequen
e � 2 B, and they are equal to zero.

Further, let a be slowly os
illating, � = (�

m

)

m2N

2 B, and let a

~

�

be as in the

proof of Proposition 4.3. Then, evidently,

a

~

�

(x)� a

~

�

(y) = lim

m!1

(a(�

m

� x)� a((�

m

� x) � (x

�1

� y))) = 0

for arbitrary x; y 2 X. Thus, a

~

�

is indeed a 
onstant fun
tion.

In parti
ular, if A 2 B(W (X); V

r

(X); R(X)), then every limit operator of

A belongs to the smallest C

�

-subalgebra B(V

r

(X); R




(X)) of L(L

2

(X)) whi
h


ontains all 
onvolution operators in V

r

(X) and all shift operators in R(X) by a


onstant fun
tion (i.e. by an element of the group X).

Thus, in this spe
ial setting, Theorem 4.5 redu
es the problem of (semi-) Fred-

holmness for operators in B(W (X); V

r

(X); R(X)) to the problem of invertibility

of operators in the algebra B(V

r

(X); R




(X)) whi
h are invariant with respe
t to

left shifts by elements in X. To study this invertibility problem, methods of (non-


ommutative) harmoni
 analysis are available (
p. [22℄). For example, in 
ase of

the 
ommutative group R

n

, the operator

A := 
I +

N

X

j=1

K

j

T

j

where 
 2 C , K

j

is a 
onvolution with kernel k

j

2 L

1

(R

n

) and T

j

is the shift by

g

j

2 R

n

, is invertible on L

2

(R

n

) if and only if

inf

�2R

n

j
 +

N

X

j=1

^

k

j

(�)e

ih�; g

j

i

j > 0

where

^

k

j

refers to the Fourier transform of k

j

.
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