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Abstra
t

Three kinds of proper a
tions of in
reasing strength are de�ned. We

prove that the three de�nitions spe
ialize to the de�nitions by Bour-

baki, by Palais, and by Baum, Connes, and Higson in their respe
tive

settings. The third of these, whi
h thus turns out to be the strongest,

originally only 
on
erns a
tions of se
ond 
ountable lo
ally 
ompa
t

groups on metrizable spa
es. In this situation, it is shown to 
oin
ide

with the other two de�nitions if the total spa
e lo
ally has the Lindel�of

property and the orbit spa
e is regular.
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Introdu
tion

Proper a
tions are an important generalization of a
tions of 
ompa
t groups.

They were introdu
ed by Palais [16℄ as 
ontinuous a
tions of lo
ally 
ompa
t

groups on 
ompletely regular spa
es su
h that 
ertain neighbourhoods of

stabilizers are 
ompa
t. Bourbaki [5℄ 
alls a 
ontinuous a
tion of an arbitrary

topologi
al group proper if all stabilizers are 
ompa
t and a 
ertain map is


losed. The Baum{Connes 
onje
ture for se
ond 
ountable lo
ally 
ompa
t

groups G, as formulated by Baum, Connes, and Higson [2℄, states that

a 
ertain map from the equivariant K-homology of a 
lassifying spa
e for

proper G-a
tions to the topologi
alK-theory of the redu
ed C

�

-algebra of G

is an isomorphism. In this 
ontext, a 
ontinuous a
tion of G on a metrizable

spa
e is de�ned to be proper if ea
h point lies in a sli
e and the orbit spa
e

is metrizable.

The relations between these three de�nitions of a proper a
tion are ob-

s
ured by the fa
t that they are given in three di�erent settings and in terms

of di�erent 
on
epts. This note starts with the single notion of \Cartan a
-

tions" of general topologi
al groups. It de�nes three kinds of proper a
tions

as Cartan a
tions for whi
h the orbit spa
e is a Hausdor� spa
e, regular,
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and para
ompa
t, respe
tively. These three de�nitions are equivalent to the


on
epts due to Bourbaki, to Palais, and to Baum, Connes, and Higson in

their respe
tive settings. In the 
ourse of the proof of this equivalen
e, we


hara
terize the three kinds of proper a
tions for lo
ally 
ompa
t groups in

the spirit of Palais [16℄. This 
hara
terization di�ers 
onsiderably from our

de�nition, so that it be
omes even more transparent how the three 
on
epts

in
rease in strength.

If G is a topologi
al group and Y is a topologi
al spa
e then the a
tion

of G on G� Y by g:(g

0

; y)

:

= (gg

0

; y) is a Cartan a
tion. The orbit spa
e of

this a
tion is homeomorphi
 to Y . Hen
e for a
tions on general spa
es, any

two of the three 
on
epts of a proper a
tion are inequivalent. Moreover, there

are Cartan a
tions of R on G

Æ

-subsets of R

2

for whi
h the orbit spa
e is not a

Hausdor� spa
e, or a non-regular Hausdor� spa
e. However, under suitable

hypotheses on a group G and a spa
e X, if the orbit spa
e of a Cartan a
tion

of G on X is regular then it is even para
ompa
t. Extending an observation

by Abels [1℄, we prove this for Cartan a
tions of lo
ally 
ompa
t Lindel�of

groups G on para
ompa
t lo
ally Lindel�of spa
es X. In parti
ular, all three


on
epts of a proper a
tion are equivalent for a
tions of se
ond 
ountable

lo
ally 
ompa
t groups on se
ond 
ountable lo
ally 
ompa
t spa
es. This

spe
ial 
ase has re
ently been proved by Chabert, E
hterho�, and Meyer [7℄.

I thank Stephen Millington who brought this problem to my attention

and introdu
ed me to the Baum{Connes 
onje
ture.

1 Notions of proper a
tions

If a group G a
ts on a set X and A;B � X are subsets, set

�

G

(A;B)

:

= fg 2 G j g:A \B 6= ;g:

For a; b 2 X, write �

G

(a; b)

:

= �

G

(fag; fbg) = fg 2 G j g:a = bg. Note that

this set is either empty or a 
oset of a stabilizer.

The symbol U(�) denotes the neighbourhood �lter of a point or of a

subset of a topologi
al spa
e.

We follow Bourbaki [5℄ in 
alling a topologi
al spa
e quasi-
ompa
t if

every open 
overing has a �nite sub
overing. Compa
tness, lo
al 
ompa
t-

ness, and para
ompa
tness in
lude the Hausdor� separation property.

1.1 De�nition. A 
ontinuous a
tion of a topologi
al group G on a topo-

logi
al spa
e X is 
alled a Cartan a
tion if all stabilizers are quasi-
ompa
t

and for ea
h point x 2 X and ea
h neighbourhood U � G of the sta-

bilizer G

x

, there is a neighbourhood V � X of x su
h that every group

element whi
h maps a point of V into V belongs to U , i.e.

8x 2 X 8U 2 U(G

x

) 9V 2 U(x) : �

G

(V; V ) � U:
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A proper a
tion is a Cartan a
tion with a Hausdor� orbit spa
e.

A Palais-proper a
tion is a Cartan a
tion with a regular orbit spa
e.

A strongly proper a
tion is a Cartan a
tion with a para
ompa
t orbit

spa
e.

1.2 Remark (Relations to established de�nitions). The most wide-

spread 
on
ept of a proper a
tion probably is the one to be found in Bour-

baki [5, III.4, Def. 1℄. By Proposition 1.4, a 
ontinuous a
tion of a topologi
al

group on a topologi
al spa
e is proper in the sense of Bourbaki if and only

if it is proper in the sense of our de�nition.

Palais [16℄ only 
onsiders a
tions of lo
ally 
ompa
t groups on 
ompletely

regular spa
es. Theorem 1.6 shows that his 
on
epts of a Cartan G-spa
e

and of a proper G-spa
e [16, 1.1.2 and 1.2.2℄ are equivalent to our de�nitions

of a Cartan a
tion and of a Palais-proper a
tion.

Baum, Connes, and Higson [2℄ restri
t themselves to a
tions of se
ond


ountable lo
ally 
ompa
t groups on metrizable spa
es. As we will see in

Remark 3.6, su
h an a
tion is proper in their sense if and only if it is strongly

proper in our sense.

1.3 Remark (Impli
ations and separating examples). Let G be a

topologi
al group, and let H be a subgroup. If the natural a
tion of G

on G=H is a Cartan a
tion then H is quasi-
ompa
t. Conversely, assume

that H is quasi-
ompa
t. Choose g 2 G, and let U � G be a neighbour-

hood of the subgroup gHg

�1

, whi
h is the stabilizer of gH 2 G=H under

the natural a
tion of G. By 
ontinuity of the group multipli
ation and

quasi-
ompa
tness of H, there is a neighbourhood V � G of g su
h that

V HV

�1

� U . The neighbourhood V

0

:

= V H=H of gH in G=H satis�es

�

G

(V

0

; V

0

) � U . We 
on
lude that the natural a
tion of G on the 
oset

spa
e G=H is a Cartan a
tion if and only if the subgroupH is quasi-
ompa
t.

Assume that this is the 
ase, and let Y be an arbitrary topologi
al spa
e.

The a
tion of G on G=H � Y by g(g

0

H; y)

:

= (gg

0

H; y) is a Cartan a
tion

with orbit spa
e homeomorphi
 to Y . For an arbitrary topologi
al group G

and suitable topologi
al spa
es Y , this 
onstru
tion yields Cartan a
tions

of G whi
h are not proper, proper a
tions whi
h are not Palais-proper, and

Palais-proper a
tions whi
h are not strongly proper.

Here the orbit spa
e la
ks a 
ertain topologi
al property whi
h the total

spa
e of the a
tion also la
ks. Thus the following examples may be more

surprising. Palais [16, p. 298℄ des
ribes a Cartan a
tion of R on [�1; 1℄� R

whi
h is not proper. An example of a proper a
tion of R on a G

Æ

-subset

of R

2

whi
h is not Palais-proper is due to Bebutov (see H�ajek [12, p. 79℄, 
f.

Bhatia and Szeg�o [3, IV.1.5.5℄ and Abels [1, 1.6℄).

However, a Palais-proper a
tion of R on a separable metri
 spa
e is

automati
ally strongly proper. More generally, let G be a lo
ally 
ompa
t

group su
h that the quotient of G by its identity 
omponent is 
ompa
t.
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(Su
h a group is 
alled almost 
onne
ted.) A result sket
hed by Abels in

the introdu
tion to [1℄ asserts, translated into our terminology, that every

Palais-proper a
tion of G on a para
ompa
t lo
ally Lindel�of spa
e is strongly

proper. Corollary 3.5 below extends this result to a
tions of lo
ally 
ompa
t

Lindel�of groups. (A lo
ally 
ompa
t group is a Lindel�of spa
e if and only

if it has an open almost 
onne
ted subgroup of 
ountable index.) Weaker

hypotheses may entail that Palais-properness of an a
tion implies strong

properness. For instan
e, Abels [1℄ 
onje
tured that every Palais-proper

a
tion of a 
onne
ted lo
ally 
ompa
t group on a para
ompa
t spa
e is

strongly proper.

By Part (b) of Corollary 3.5, every proper a
tion of a lo
ally 
ompa
t

Lindel�of group on a para
ompa
t lo
ally 
ompa
t spa
e is strongly proper.

1.4 Proposition. A 
ontinuous a
tion of a topologi
al group G on a topo-

logi
al spa
e X is proper if and only if the map (g; x) 7! (x; g:x) : G�X !

X �X is proper (i.e. 
losed with quasi-
ompa
t �bres).

In other words, the present de�nition of a proper a
tion is equivalent to

Bourbaki's [5, III.4, Def. 1℄.

Proof. It was proved in [4, 2.1℄ that the a
tion of G on X is proper in the

sense of Bourbaki if and only if all stabilizers are quasi-
ompa
t and

8x; x

0

2 X 8U 2 U

�

�

G

(x; x

0

)

�

9V 2 U(x); V

0

2 U(x

0

) : �

G

(V; V

0

) � U:

It is easy to see that this 
ondition is equivalent to the present de�nition of

a proper a
tion. �

This paper follows Bourbaki [5℄ in 
onsidering topologi
al groups whi
h

may not be Hausdor� spa
es. However, it should be emphasized that the

relation between topologi
al groups and Hausdor� groups is mu
h 
loser

than that between topologi
al spa
es and Hausdor� spa
es in general. For a

topologi
al group G, this relation is des
ribed via the 
losure N of f1g in G,

whi
h is the smallest 
losed normal subgroup of G. The quotient G=N is

the universal Hausdor� group asso
iated to G (in the sense of 
ategories).

A subset A � G is open (respe
tively 
losed) if and only if AN = A and A=N

is an open (respe
tively 
losed) subset of G=N . In this sense, the topology

of G is derived from the topology of the Hausdor� group G=N . A subset

A � G is quasi-
ompa
t if and only if AN=N is a 
ompa
t subset of G=N .

If this is the 
ase then the quasi-
ompa
t set AN is the 
losure of A in G.

A 
oset spa
e of G is a T

0

-spa
e if and only if it is a 
ompletely regular spa
e

if and only if it is the 
oset spa
e of a 
losed subgroup of G (see Hewitt and

Ross [13, 8.14(a)℄). In parti
ular, every a
tion of G on a T

0

-spa
e X fa
tors

through an a
tion of G=N on X.

4



Let a topologi
al group G a
t 
ontinuously on a topologi
al spa
e X.

Following Palais [16, 1.2.1℄, we will say that a subset A � X is G-small if

every point x 2 X has a neighbourhood V su
h that �

G

(A; V ) is 
ontained

in a quasi-
ompa
t subset of G. Equivalently, the 
losure of �

G

(A; V ) in G is

quasi-
ompa
t. This is be
ause every quasi-
ompa
t subset of a topologi
al

group has quasi-
ompa
t 
losure. Note that the 
losure of a G-small subset

is G-small.

1.5 Lemma. Let a topologi
al group G a
t 
ontinuously on a topologi
al

spa
e X, and let A � X be a 
losed G-small subset. Then the following

assertions hold:

(a) The restri
tion ! : G�A! X; (g; a) 7! g:a of the a
tion to G�A is

a proper map.

(b) The restri
tion p : A! GnX; a 7! G:a of the orbit proje
tion to A is

a proper map.

Proof. (a) If x 2 X then !

�1

(x) = f(g; g

�1

:x) j g 2 �

G

(A; fxg)g is

a 
ontinuous image of the set �

G

(A; fxg). This set is 
losed be
ause A

is 
losed, so that it is quasi-
ompa
t be
ause A is G-small. Hen
e the

�bres of ! are quasi-
ompa
t. Let C � G � A be a 
losed subset, and

let x 2 X n !(C). Choose a neighbourhood V of x su
h that the 
losure K

of �

G

(A; V ) in G is quasi-
ompa
t. The restri
tion of ! to K�A is a proper

map (see Bourbaki [5, III.4, Prop. 1℄). As V \G:A = V \K:A, we 
on
lude

that V n !(C) = V n !(C \ (K � A)) is a neighbourhood of x whi
h does

not meet !(C).

(b) The �bre of p through x 2 A is G:x \ A = �

G

(A; fxg)

�1

:x. Being a


ontinuous image of the quasi-
ompa
t set �

G

(A; fxg), it is quasi-
ompa
t.

If B � A is a 
losed subset then B is also G-small. Hen
e the orbit satura-

tion G:B of B in X is 
losed by part (a), so that p(B) is 
losed in the orbit

spa
e GnX. �

1.6 Theorem (Proper a
tions of lo
ally 
ompa
t groups). Let a

lo
ally 
ompa
t group G a
t 
ontinuously on a topologi
al spa
e X.

(a) The a
tion of G on X is a Cartan a
tion if and only if any two distin
t

points on an orbit have disjoint neighbourhoods in X and

8x 2 X 9V 2 U(x) : �

G

(V; V ) is 
ompa
t.

(b) The a
tion of G on X is proper if and only if X is a Hausdor� spa
e

and

8x; x

0

2 X 9V 2 U(x); V

0

2 U(x

0

) : �

G

(V; V

0

) is 
ompa
t.
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(
) The a
tion of G on X is Palais-proper if and only if X is regular and

ea
h point of X has a G-small neighbourhood, i.e.

8x 2 X 9V 2 U(x) 8x

0

2 X 9V

0

2 U(x

0

) : �

G

(V; V

0

) is 
ompa
t.

(d) The a
tion of G onX is strongly proper if and only ifX is para
ompa
t

and there is an open G-small subset V of X su
h that G:V = X.

Proof. (a) Assume that the a
tion is a Cartan a
tion. Let x 2 X. If g 2 G

is a group element su
h that g:x 6= x then G n fgg is a neighbourhood of

the stabilizer G

x

, when
e we may 
hoose a neighbourhood V of x su
h that

g 62 �

G

(V; V ). This means that V and g:V are disjoint neighbourhoods of x

and of g:x. Let U be a 
ompa
t neighbourhood of the stabilizer G

x

. Choose

a neighbourhood V

0

of x in X su
h that �

G

(V

0

; V

0

) � U . The 
losure of

�

G

(V

0

; V

0

) in G is 
ompa
t.

Conversely, assume that the 
ondition in (a) is satis�ed. Choose a point

x 2 X. If g:x 6= x for an element g 2 G then there are neighbourhoods U

of g and V , V

0

of x, g:x su
h that V \ V

0

= ; and U:V � V

0

. Hen
e U is

disjoint from �

G

(V; V ). This proves that

G

x

=

\

V 2U(x)

�

G

(V; V ):

This interse
tion is 
ompa
t by hypothesis. Let U be an open neighbourhood

of G

x

. Then we �nd neighbourhoods V

1

; : : : ; V

n

of x su
h that

U �

n

\

j=1

�

G

(V

j

; V

j

) � �

G

(V

1

\ � � � \ V

n

; V

1

\ � � � \ V

n

):

(b) If X is a Hausdor� spa
e and x; x

0

2 X then we �nd as above that

�

G

(x; x

0

) =

\

f �

G

(V; V

0

) j V 2 U(x); V

0

2 U(x

0

)g:

The arguments from part (a) yield that the 
ondition in (b) is equivalent to

the 
hara
terization of proper a
tions used in the proof of Proposition 1.4.

Alternatively, Proposition 1.4 implies that part (b) is the well-known 
hara
-

terization of proper a
tions of lo
ally 
ompa
t groups given by Bourbaki [5,

III.4, Prop. 3 and Prop. 7℄.

(
) Assume that the a
tion of G on X is Palais-proper, and let x 2 X.

Choose an open neighbourhoodW

1

of x su
h that �

G

(W

1

;W

1

) has 
ompa
t


losure in G. As the orbit spa
e is regular, we may 
hoose a 
losed G-

invariant neighbourhoodW

2

of x inX whi
h is 
ontained inG:W

1

. We 
laim

that the neighbourhood V

:

=W

1

\W

2

of x is G-small. Indeed, if x

0

2 G:W

1

,

say x

0

2 g:W

1

, then g:W

1

is a neighbourhood of x

0

for whi
h �

G

(V; g:W

1

) �

g:�

G

(W

1

;W

1

) has 
ompa
t 
losure in G. If x

0

2 X nG:W

1

then X nW

2

is a

6



neighbourhood of x

0

su
h that �

G

(V;X nW

2

) = ;. (This part of the proof

has been adapted from Palais [16, 1.2.5℄.) The 
losure of V in X is a G-

small subset of X, and it is regular sin
e it is a Hausdor� spa
e and admits

a proper map onto a regular spa
e (Lemma 1.5 and Engelking [10, 3.7.23℄).

As every point of X has a 
losed regular neighbourhood, we 
on
lude that X

is regular.

Conversely, assume that X is regular and that ea
h point of X has a

G-small neighbourhood. Choose x 2 X, and let W be a G-invariant neigh-

bourhood of x. Choose a G-small 
losed neighbourhood W

1

of x whi
h

is 
ontained in W . Lemma 1.5 shows that the G-invariant neighbour-

hood G:W

1

�W of x is 
losed in X. Hen
e the orbit spa
e GnX is regular.

Moreover, we may 
hoose a neighbourhood W

2

of x su
h that �

G

(W

1

;W

2

)

has 
ompa
t 
losure in G. Then V

:

= W

1

\W

2

is a neighbourhood of x

su
h that �

G

(V; V ) has 
ompa
t 
losure. Part (a) shows that the a
tion is

a Cartan a
tion.

(d) Suppose that the a
tion of G on X is strongly proper. Then it

is Palais-proper, so that part (
) yields a 
overing U of X by G-small

open sets. Let W be a lo
ally �nite open re�nement of the open 
over-

ing fpr(U) j U 2 Ug of GnX, where pr denotes the orbit proje
tion. For

ea
h W 2 W, 
hoose U

W

2 U su
h that W � pr(U

W

), and set V

W

:

=

U

W

\ pr

�1

(W ), so that pr(V

W

) = W . Let V be the union of the G-small

open sets V

W

, where W ranges over W. Then V is an open subset of X

with G:V = X. We 
laim that V is G-small. Let x 2 X. Choose a neigh-

bourhood V

0

of x in X su
h that pr(V

0

) meets only �nitely many elements

W

1

; : : : ;W

n

of W. For ea
h j 2 f1; : : : ; ng, let V

j

� V

0

be a neighbourhood

of x su
h that �

G

(V

W

j

; V

j

) has 
ompa
t 
losure in G. Then the 
losure of

�

G

(V; V

1

\ � � � \ V

n

) �

n

[

j=1

�

G

(V

W

j

; V

j

)

is 
ompa
t. Hen
e V is indeed G-small. Let A be the 
losure of V in X,

whi
h is G-small. Then A is para
ompa
t be
ause it admits a proper map

onto the para
ompa
t spa
e GnX, see Lemma 1.5 and Dugundji [9, XI.5.3℄.

Lo
ally 
ompa
t groups are para
ompa
t (Bourbaki [5, III.4, Prop. 13℄).

The produ
t of a para
ompa
t lo
ally 
ompa
t spa
e with a para
ompa
t

spa
e is para
ompa
t (use Engelking [10, 5.1.34 and 5.1.36℄, 
f. [10, 5.5.5℄).

Therefore, the produ
t G � A is para
ompa
t. Lemma 1.5 yields a proper

map from G�A onto X. Hen
e X is para
ompa
t [9, VIII.2.6℄.

Conversely, part (
) shows that the a
tion is Palais-proper if the 
on-

dition in (d) is satis�ed. Lemma 1.5 yields a proper map from the 
losure

of V in X onto the orbit spa
e, when
e GnX is para
ompa
t [9, VIII.2.6℄.

�

1.7 Proposition. The orbit spa
e of a strongly proper a
tion of a lo
ally


ompa
t group G on a metrizable spa
e X is metrizable.
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Proof. Theorem 1.6 yields a G-small subset V � X su
h that G:V =

X. Let A be the 
losure of V in X. Then A is a G-small subset of X,

and the restri
tion of the orbit proje
tion to A is a proper map onto GnX

by Lemma 1.5. The image of a proper map with metrizable domain is

metrizable (see Dugundji [9, XI.5.2℄). �

2 Sli
es

If G is a group and H � G is a subgroup whi
h a
ts on a set S then H

a
ts on G � S by h:(g; s)

:

= (gh

�1

; h:s). The orbit spa
e of this a
tion is


alled the twisted produ
t G�

H

S. The H-orbit of (g; s) 2 G� S is written

as [g; s℄ 2 G�

H

S. The full group G a
ts on G �

H

S by g:[g

0

; s℄

:

= [gg

0

; s℄.

For elementary properties of twisted produ
ts, see Bredon [6, I.6℄ or tom

Die
k [8, I.4℄.

2.1 De�nition. Let a Hausdor� group G a
t 
ontinuously on a Hausdor�

spa
e X, and letH be a 
losed subgroup of G. An H-sli
e in X for the a
tion

of G is an H-invariant subset S � X su
h that the 
ontinuous G-equivariant

map

[g; s℄ 7�! g:s : G�

H

S ! X

is an open embedding.

We say that the a
tion has enough sli
es if for ea
h point x 2 X, there

is a 
ompa
t subgroup K � G su
h that x is 
ontained in an K-sli
e.

2.2 Remark. If S is an H-sli
e for an a
tion of G on X then G:S is an

open subset of X and g:s 7! gH : G:S ! G=H is a 
ontinuous G-equivariant

surje
tion.

This property of an H-sli
e 
an be used as a de�nition. Consider a


ontinuous a
tion of a lo
ally 
ompa
t group G on a Hausdor� spa
e X,

and let H be a 
losed subgroup of G. Assume that S � X is an H-sli
e in

the sense of Palais [16, 2.1.1℄, whi
h means that S is H-invariant, the set

Y

:

= G:S is open in X, and there is a 
ontinuous G-equivariant map from Y

onto G=H whi
h maps S to the base-point H 2 G=H. Then the map

[g; s℄ 7�! g:s : G�

H

S �! Y

is a G-equivariant homeomorphism (see [4, 3.2℄). Therefore, our de�nition

of an H-sli
e is equivalent to the de�nition by Palais.

2.3 Proposition. Let G be a topologi
al group, and let H � G be a

subgroup whi
h a
ts 
ontinuously on a topologi
al spa
e S. Then the natural

a
tion of G on the twisted produ
t Y

:

= G�

H

S is a Cartan a
tion if and

only if the a
tion of H on S is a Cartan a
tion. Moreover, the map

' : HnS �! GnY; H:s 7�! G:[1; s℄
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is a homeomorphism.

In parti
ular, the a
tion of G on G �

H

S is proper, Palais-proper, or

strongly proper if and only if so is the a
tion of H on S.

Proof. Using the notation of De�nition 1.1, observe that all g; g

0

2 G and

all s; s

0

2 S satisfy

�

G

([g; s℄; [g

0

; s

0

℄) = g

0

�

H

(s; s

0

) g

�1

:

In parti
ular, this yields G

[g;s℄

= gH

s

g

�1

. Therefore, all stabilizers of the

a
tion of G on Y are quasi-
ompa
t if and only if all stabilizers of the a
tion

of H on S are quasi-
ompa
t.

Assume that the a
tion of G on Y is a Cartan a
tion, and let U � H

be an open neighbourhood of the stabilizer H

s

. Let U

0

� G be an open

subset with U

0

\H = U . Then U

0

is an open neighbourhood of G

[1;s℄

= H

s

.

Hen
e there is a neighbourhood V � Y of [1; s℄ su
h that �

G

(V; V ) � U

0

.

The pre-image W of V under the 
ontinuous inje
tion s 7! [1; s℄ : S ! Y is

a neighbourhood of s in S su
h that �

H

(W;W ) � U .

Conversely, assume that the a
tion of H on S is a Cartan a
tion, and

let U � G be a neighbourhood of the stabilizer G

[g;s℄

= gH

s

g

�1

. By 
on-

tinuity of the group multipli
ation and quasi-
ompa
tness of H

s

, there are

neighbourhoods V � G of g and V

0

� H of H

s

su
h that V V

0

V

�1

� U .

Choose a neighbourhoodW � S of s su
h that �

H

(W;W ) � V

0

. Let W

0

the

image of V �W under the H-orbit proje
tion from G�S onto Y . Then W

0

is a neighbourhood of [g; s℄ whi
h satis�es �

G

(W

0

;W

0

) � U .

It is easy to see that ' is a 
ontinuous bije
tion. For a subset U of S, the

image of HnH:U � HnS under ' is the image of G�U � G� S under the

natural proje
tion of G� S onto GnY , whi
h is an open map. This implies

that ' is open. �

2.4 Lemma. A 
ontinuous a
tion of a Hausdor� group G on a Hausdor�

spa
e X whi
h has enough sli
es is a Cartan a
tion.

Proof. Choose a point x 2 X. Let K � G be a 
ompa
t subgroup su
h

that x is 
ontained in a K-sli
e S � X. As the stabilizer G

x

is 
ontained

in K, it is a 
ompa
t subgroup. Sin
e K is 
ompa
t, Theorem 1.6 implies

that the a
tion of this group on S is a Cartan a
tion. Proposition 2.3 yields

that the a
tion of G on the neighbourhood G:S of x is a Cartan a
tion.

Therefore, the a
tion of G on X is a Cartan a
tion. �

2.5 Theorem. A 
ontinuous a
tion of a lo
ally 
ompa
t group G on a


ompletely regular spa
e X has enough sli
es if and only if it is a Cartan

a
tion.

Proof. Lemma 2.4 asserts that the a
tion is a Cartan a
tion if it has enough

sli
es. Conversely, assume that the a
tion of G on X is a Cartan a
tion. By

9



Palais's main result in [16, 2.3.3℄, if G is a Lie group and x 2 X then x is

even 
ontained in a G

x

-sli
e. If G is an almost 
onne
ted lo
ally 
ompa
t

group then every identity neighbourhood of G 
ontains a 
ompa
t normal

subgroup N su
h that G=N is a Lie group. (This was proved by Yamabe [17℄

and by Glu�skov [11, Theorem 9℄, see also Montgomery and Zippin [15, Chap-

ter IV℄ and Kaplansky [14, II.10, Theorem 18℄.) Applying this fundamental

result to suitable almost 
onne
ted open subgroups of an arbitrary lo
ally


ompa
t group G, one 
an dedu
e from Palais's Sli
e Theorem that the a
-

tion of G on X has enough sli
es. For proper a
tions, this was 
arried out

in [4, 3.8℄. The proof need hardly be 
hanged for Cartan a
tions, but we


an also apply the result [4, 3.8℄ dire
tly if we 
over X by G-invariant open

sets on whi
h G a
ts properly. Su
h a 
overing is provided by Theorem 1.6.

Indeed, let x 2 X, and 
hoose an open neighbourhood V � X of x su
h

that �

G

(V; V ) has 
ompa
t 
losure in G. Then the a
tion of G on G:V is

proper (even Palais-proper). �

3 Para
ompa
tness and metrizability

of orbit spa
es

Re
all that a Lindel�of spa
e is a topologi
al spa
e with the property that

every open 
overing 
ontains a 
ountable sub
overing. Every regular Lin-

del�of spa
e is para
ompa
t (see Dugundji [9, VIII.6.5℄). In parti
ular, every

regular lo
ally Lindel�of spa
e is 
ompletely regular, so that every Cartan

a
tion on su
h a spa
e has enough sli
es.

3.1 Proposition. The following statements about a regular lo
ally Lindel�of

spa
e X are equivalent:

(i) X is para
ompa
t.

(ii) Every open 
overing of X has a lo
ally 
ountable open re�nement.

(iii) X is a topologi
al sum of Lindel�of spa
es.

This observation and an indi
ation of the following proof are due to H�ajek

[12, Prop. 13℄. They generalize the well-known equivalen
e of statements (i)

and (iii) for lo
ally 
ompa
t spa
es X (
f. Dugundji [9, XI.7.3℄).

Proof. (i)) (ii) By de�nition, every open 
overing of a para
ompa
t spa
e

has an open re�nement whi
h is even lo
ally �nite.

(ii)) (iii) Let U be an open 
overing of X su
h that U is a Lindel�of

spa
e for ea
h U 2 U . Let V be a lo
ally 
ountable open re�nement of U .

Then ea
h element of V meets at most 
ountably many others. Assuming

that ; 62 V, we 
all elements V; V

0

2 V equivalent if there is a �nite 
hain

V

1

; : : : ; V

n

of elements of V su
h that V = V

1

, V

0

= V

n

, and V

j�1

\V

j

6= ; for

10



every j 2 f1; : : : ; ng. For ea
h element V 2 V, the equivalen
e 
lass [V ℄ is


ountable. If V; V

0

2 V are not equivalent then the open sets

S

[V ℄ and

S

[V

0

℄

are disjoint. Hen
e X is the topologi
al sum of its subspa
es

S

[V ℄, where [V ℄

ranges over the equivalen
e 
lasses in V. As ea
h subspa
e

S

[V ℄ is 
losed,

we �nd that

S

[V ℄ =

S

V

0

2[V ℄

V

0

is a 
ountable union of Lindel�of spa
es and

hen
e has the Lindel�of property.

(iii)) (i) A regular Lindel�of spa
e is para
ompa
t (see Dugundji [9,

VIII.6.5℄). A topologi
al sum of para
ompa
t spa
es is para
ompa
t. �

3.2 Proposition. The following statements about a regular spa
e X are

equivalent:

(i) X is a metrizable lo
ally Lindel�of spa
e.

(ii) X has a lo
ally 
ountable basis.

(iii) X is a topologi
al sum of se
ond 
ountable spa
es.

Proof. (i)) (ii) The metrizable spa
e X is para
ompa
t. For ea
h n 2 N,

let U

n

be a lo
ally �nite open re�nement of the 
overing fU

1=n

(x) j x 2 Xg.

Then U

:

=

S

n2N

U

n

is a basis. Choose a point x 2 X, and let V � X be a

Lindel�of neighbourhood of x. For ea
h n 2 N, the neighbourhood V meets

at most 
ountably many sets from U

n

. Hen
e V meets at most 
ountably

many sets from U .

(ii)) (iii) Let U be a lo
ally 
ountable basis of X. Omitting some basis

sets, we may assume that ea
h element of U is non-empty and meets at

most 
ountably many others. Call basis sets U;U

0

2 U equivalent if there

is a �nite 
hain U

1

; : : : ; U

n

of elements of U su
h that U = U

1

, U

0

= U

n

,

and U

j�1

\ U

j

6= ; for ea
h j 2 f1; : : : ; ng. Let [U ℄ denote the equivalen
e


lass of U 2 U . If U;U

0

2 U are not equivalent then

S

[U ℄ and

S

[U

0

℄ are

disjoint. Ea
h equivalen
e 
lass [U ℄ is 
ountable, and it is a basis of the open

subset

S

[U ℄ of X. Hen
e X is the topologi
al sum of its se
ond 
ountable

subspa
es

S

[U ℄, where [U ℄ ranges over the equivalen
e 
lasses in U .

(iii)) (i) A se
ond 
ountable regular spa
e has the Lindel�of property,

and it is metrizable by the Urysohn Metrization Theorem (
f. Dugundji [9,

IX.9.2℄). A topologi
al sum of metrizable spa
es is metrizable. �

3.3 Lemma. Let a lo
ally 
ompa
t Lindel�of group G a
t 
ontinuously on

a regular lo
ally Lindel�of spa
e X. Let F be a lo
ally 
ountable family of

subsets of X. Then the image of F under the orbit proje
tion X ! GnX is

a lo
ally 
ountable family.

Proof. Let x 2 X be an arbitrary point. Choose a Lindel�of neighbourhood

U � X of x. It suÆ
es to show that G:U is a Lindel�of spa
e, sin
e this

implies that G:U meets at most 
ountably many members of F . The lo
ally


ompa
t Lindel�of group G is the union of a 
ountable family (K

n

)

n2N

of
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ompa
t subsets. The produ
t K

n

� U is a Lindel�of spa
e for ea
h n 2 N

(see Dugundji [9, XI.5.4℄), when
e so is its 
ontinuous image K

n

:U (see [9,

VIII.6.6℄). Therefore, the 
ountable union

S

n2N

K

n

:U = G:U is a Lindel�of

spa
e. �

3.4 Theorem. Let a lo
ally 
ompa
t Lindel�of group G a
t 
ontinuously

on a regular lo
ally Lindel�of spa
e X. Suppose that the orbit spa
e GnX is

regular.

(a) If X is para
ompa
t then so is GnX.

(b) If X is metrizable then so is GnX.

Proof. (a) Sin
e the orbit proje
tion pr: X ! GnX is a 
ontinuous open

map, the orbit spa
e GnX has the lo
al Lindel�of property. Let U be an

open 
overing of GnX. Choose a lo
ally �nite open re�nement V of the

open 
overing fpr

�1

(U) j U 2 Ug of X. Then fpr(V ) j V 2 Vg is an

open 
overing of GnX whi
h re�nes U and whi
h is lo
ally 
ountable by

Lemma 3.3. Proposition 3.1 yields that GnX is para
ompa
t.

(b) Proposition 3.2 shows that X has a lo
ally 
ountable basis, the image

of whi
h under the orbit proje
tion is a basis of GnX, and this basis is

lo
ally 
ountable by Lemma 3.3. A se
ond appli
ation of Proposition 3.2

yields that GnX is metrizable. �

3.5 Corollary. Let G be a lo
ally 
ompa
t Lindel�of group.

(a) An a
tion of G on a para
ompa
t lo
ally Lindel�of spa
e is strongly

proper if and only if it is Palais-proper.

(b) An a
tion of G on a para
ompa
t lo
ally 
ompa
t spa
e is strongly

proper if and only if it is proper.

Proof. Assertion (a) follows immediately from Theorem 3.4. If G a
ts prop-

erly on a para
ompa
t lo
ally 
ompa
t spa
e X then the orbit spa
e GnX

is lo
ally 
ompa
t and hen
e regular. Theorem 3.4 shows that the a
tion is

strongly proper. �

3.6 Remark. Baum, Connes, and Higson [2℄ 
all a 
ontinuous a
tion of a

se
ond 
ountable lo
ally 
ompa
t group G on a metrizable spa
e X proper

if it has enough sli
es and GnX is metrizable. By Proposition 1.7 and

Theorem 2.5, these 
onditions are satis�ed if and only if the a
tion is strongly

proper. Under the hypotheses on X given by Corollary 3.5, it suÆ
es to

assume that the a
tion is Palais-proper or just proper.
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[7℄ J�erôme Chabert, Siegfried E
hterho�, and Ralf Meyer, Deux remarques

sur l'appli
ation de Baum-Connes, C. R. A
ad. S
i. Paris S�er. I Math.

332 (2001), no. 7, 607{610 (Fren
h).

[8℄ Tammo tom Die
k, Transformation groups, Studies in Mathemati
s 8,

de Gruyter, Berlin 1987.

[9℄ James Dugundji, Topology, Allyn and Ba
on, Boston 1966.

[10℄ Ryszard Engelking, General topology, se
ond ed., Sigma Series in Pure

Mathemati
s 6, Heldermann Verlag, Berlin 1989.

[11℄ Viktor M. Glu�skov, The stru
ture of lo
ally 
ompa
t groups and

Hilbert's �fth problem, Amer. Math. So
. Transl., II. Ser. 15 (1960),

55{93, transl. of Usp. Mat. Nauk. 12 (1957), no. 2, 3{41.

[12℄ Otomar H�ajek, Parallelizability revisited, Pro
. Amer. Math. So
. 27

(1971), 77{84.

[13℄ Edwin Hewitt and Kenneth A. Ross, Abstra
t harmoni
 analysis I, 2nd

ed., Grundlehren der mathematis
hen Wissens
haften 115, Springer,

Berlin 1979.

[14℄ Irving Kaplansky, Lie algebras and lo
ally 
ompa
t groups, Chi
ago Le
-

tures in Mathemati
s, The University of Chi
ago Press, 1971.

13



[15℄ Deane Montgomery and Leo Zippin, Topologi
al transformation groups,

Inters
ien
e, New York 1955.

[16℄ Ri
hard S. Palais, On the existen
e of sli
es for a
tions of non-
ompa
t

Lie groups, Ann. of Math., II. Ser. 73 (1961), 295{323.

[17℄ Hidehiko Yamabe, A generalization of a theorem of Gleason, Ann. of

Math., II. Ser. 58 (1953), 351{365.

14


