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Abstrat

Three kinds of proper ations of inreasing strength are de�ned. We

prove that the three de�nitions speialize to the de�nitions by Bour-

baki, by Palais, and by Baum, Connes, and Higson in their respetive

settings. The third of these, whih thus turns out to be the strongest,

originally only onerns ations of seond ountable loally ompat

groups on metrizable spaes. In this situation, it is shown to oinide

with the other two de�nitions if the total spae loally has the Lindel�of

property and the orbit spae is regular.
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Introdution

Proper ations are an important generalization of ations of ompat groups.

They were introdued by Palais [16℄ as ontinuous ations of loally ompat

groups on ompletely regular spaes suh that ertain neighbourhoods of

stabilizers are ompat. Bourbaki [5℄ alls a ontinuous ation of an arbitrary

topologial group proper if all stabilizers are ompat and a ertain map is

losed. The Baum{Connes onjeture for seond ountable loally ompat

groups G, as formulated by Baum, Connes, and Higson [2℄, states that

a ertain map from the equivariant K-homology of a lassifying spae for

proper G-ations to the topologialK-theory of the redued C

�

-algebra of G

is an isomorphism. In this ontext, a ontinuous ation of G on a metrizable

spae is de�ned to be proper if eah point lies in a slie and the orbit spae

is metrizable.

The relations between these three de�nitions of a proper ation are ob-

sured by the fat that they are given in three di�erent settings and in terms

of di�erent onepts. This note starts with the single notion of \Cartan a-

tions" of general topologial groups. It de�nes three kinds of proper ations

as Cartan ations for whih the orbit spae is a Hausdor� spae, regular,
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and paraompat, respetively. These three de�nitions are equivalent to the

onepts due to Bourbaki, to Palais, and to Baum, Connes, and Higson in

their respetive settings. In the ourse of the proof of this equivalene, we

haraterize the three kinds of proper ations for loally ompat groups in

the spirit of Palais [16℄. This haraterization di�ers onsiderably from our

de�nition, so that it beomes even more transparent how the three onepts

inrease in strength.

If G is a topologial group and Y is a topologial spae then the ation

of G on G� Y by g:(g

0

; y)

:

= (gg

0

; y) is a Cartan ation. The orbit spae of

this ation is homeomorphi to Y . Hene for ations on general spaes, any

two of the three onepts of a proper ation are inequivalent. Moreover, there

are Cartan ations of R on G

Æ

-subsets of R

2

for whih the orbit spae is not a

Hausdor� spae, or a non-regular Hausdor� spae. However, under suitable

hypotheses on a group G and a spae X, if the orbit spae of a Cartan ation

of G on X is regular then it is even paraompat. Extending an observation

by Abels [1℄, we prove this for Cartan ations of loally ompat Lindel�of

groups G on paraompat loally Lindel�of spaes X. In partiular, all three

onepts of a proper ation are equivalent for ations of seond ountable

loally ompat groups on seond ountable loally ompat spaes. This

speial ase has reently been proved by Chabert, Ehterho�, and Meyer [7℄.

I thank Stephen Millington who brought this problem to my attention

and introdued me to the Baum{Connes onjeture.

1 Notions of proper ations

If a group G ats on a set X and A;B � X are subsets, set

�

G

(A;B)

:

= fg 2 G j g:A \B 6= ;g:

For a; b 2 X, write �

G

(a; b)

:

= �

G

(fag; fbg) = fg 2 G j g:a = bg. Note that

this set is either empty or a oset of a stabilizer.

The symbol U(�) denotes the neighbourhood �lter of a point or of a

subset of a topologial spae.

We follow Bourbaki [5℄ in alling a topologial spae quasi-ompat if

every open overing has a �nite subovering. Compatness, loal ompat-

ness, and paraompatness inlude the Hausdor� separation property.

1.1 De�nition. A ontinuous ation of a topologial group G on a topo-

logial spae X is alled a Cartan ation if all stabilizers are quasi-ompat

and for eah point x 2 X and eah neighbourhood U � G of the sta-

bilizer G

x

, there is a neighbourhood V � X of x suh that every group

element whih maps a point of V into V belongs to U , i.e.

8x 2 X 8U 2 U(G

x

) 9V 2 U(x) : �

G

(V; V ) � U:
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A proper ation is a Cartan ation with a Hausdor� orbit spae.

A Palais-proper ation is a Cartan ation with a regular orbit spae.

A strongly proper ation is a Cartan ation with a paraompat orbit

spae.

1.2 Remark (Relations to established de�nitions). The most wide-

spread onept of a proper ation probably is the one to be found in Bour-

baki [5, III.4, Def. 1℄. By Proposition 1.4, a ontinuous ation of a topologial

group on a topologial spae is proper in the sense of Bourbaki if and only

if it is proper in the sense of our de�nition.

Palais [16℄ only onsiders ations of loally ompat groups on ompletely

regular spaes. Theorem 1.6 shows that his onepts of a Cartan G-spae

and of a proper G-spae [16, 1.1.2 and 1.2.2℄ are equivalent to our de�nitions

of a Cartan ation and of a Palais-proper ation.

Baum, Connes, and Higson [2℄ restrit themselves to ations of seond

ountable loally ompat groups on metrizable spaes. As we will see in

Remark 3.6, suh an ation is proper in their sense if and only if it is strongly

proper in our sense.

1.3 Remark (Impliations and separating examples). Let G be a

topologial group, and let H be a subgroup. If the natural ation of G

on G=H is a Cartan ation then H is quasi-ompat. Conversely, assume

that H is quasi-ompat. Choose g 2 G, and let U � G be a neighbour-

hood of the subgroup gHg

�1

, whih is the stabilizer of gH 2 G=H under

the natural ation of G. By ontinuity of the group multipliation and

quasi-ompatness of H, there is a neighbourhood V � G of g suh that

V HV

�1

� U . The neighbourhood V

0

:

= V H=H of gH in G=H satis�es

�

G

(V

0

; V

0

) � U . We onlude that the natural ation of G on the oset

spae G=H is a Cartan ation if and only if the subgroupH is quasi-ompat.

Assume that this is the ase, and let Y be an arbitrary topologial spae.

The ation of G on G=H � Y by g(g

0

H; y)

:

= (gg

0

H; y) is a Cartan ation

with orbit spae homeomorphi to Y . For an arbitrary topologial group G

and suitable topologial spaes Y , this onstrution yields Cartan ations

of G whih are not proper, proper ations whih are not Palais-proper, and

Palais-proper ations whih are not strongly proper.

Here the orbit spae laks a ertain topologial property whih the total

spae of the ation also laks. Thus the following examples may be more

surprising. Palais [16, p. 298℄ desribes a Cartan ation of R on [�1; 1℄� R

whih is not proper. An example of a proper ation of R on a G

Æ

-subset

of R

2

whih is not Palais-proper is due to Bebutov (see H�ajek [12, p. 79℄, f.

Bhatia and Szeg�o [3, IV.1.5.5℄ and Abels [1, 1.6℄).

However, a Palais-proper ation of R on a separable metri spae is

automatially strongly proper. More generally, let G be a loally ompat

group suh that the quotient of G by its identity omponent is ompat.
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(Suh a group is alled almost onneted.) A result skethed by Abels in

the introdution to [1℄ asserts, translated into our terminology, that every

Palais-proper ation of G on a paraompat loally Lindel�of spae is strongly

proper. Corollary 3.5 below extends this result to ations of loally ompat

Lindel�of groups. (A loally ompat group is a Lindel�of spae if and only

if it has an open almost onneted subgroup of ountable index.) Weaker

hypotheses may entail that Palais-properness of an ation implies strong

properness. For instane, Abels [1℄ onjetured that every Palais-proper

ation of a onneted loally ompat group on a paraompat spae is

strongly proper.

By Part (b) of Corollary 3.5, every proper ation of a loally ompat

Lindel�of group on a paraompat loally ompat spae is strongly proper.

1.4 Proposition. A ontinuous ation of a topologial group G on a topo-

logial spae X is proper if and only if the map (g; x) 7! (x; g:x) : G�X !

X �X is proper (i.e. losed with quasi-ompat �bres).

In other words, the present de�nition of a proper ation is equivalent to

Bourbaki's [5, III.4, Def. 1℄.

Proof. It was proved in [4, 2.1℄ that the ation of G on X is proper in the

sense of Bourbaki if and only if all stabilizers are quasi-ompat and

8x; x

0

2 X 8U 2 U

�

�

G

(x; x

0

)

�

9V 2 U(x); V

0

2 U(x

0

) : �

G

(V; V

0

) � U:

It is easy to see that this ondition is equivalent to the present de�nition of

a proper ation. �

This paper follows Bourbaki [5℄ in onsidering topologial groups whih

may not be Hausdor� spaes. However, it should be emphasized that the

relation between topologial groups and Hausdor� groups is muh loser

than that between topologial spaes and Hausdor� spaes in general. For a

topologial group G, this relation is desribed via the losure N of f1g in G,

whih is the smallest losed normal subgroup of G. The quotient G=N is

the universal Hausdor� group assoiated to G (in the sense of ategories).

A subset A � G is open (respetively losed) if and only if AN = A and A=N

is an open (respetively losed) subset of G=N . In this sense, the topology

of G is derived from the topology of the Hausdor� group G=N . A subset

A � G is quasi-ompat if and only if AN=N is a ompat subset of G=N .

If this is the ase then the quasi-ompat set AN is the losure of A in G.

A oset spae of G is a T

0

-spae if and only if it is a ompletely regular spae

if and only if it is the oset spae of a losed subgroup of G (see Hewitt and

Ross [13, 8.14(a)℄). In partiular, every ation of G on a T

0

-spae X fators

through an ation of G=N on X.
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Let a topologial group G at ontinuously on a topologial spae X.

Following Palais [16, 1.2.1℄, we will say that a subset A � X is G-small if

every point x 2 X has a neighbourhood V suh that �

G

(A; V ) is ontained

in a quasi-ompat subset of G. Equivalently, the losure of �

G

(A; V ) in G is

quasi-ompat. This is beause every quasi-ompat subset of a topologial

group has quasi-ompat losure. Note that the losure of a G-small subset

is G-small.

1.5 Lemma. Let a topologial group G at ontinuously on a topologial

spae X, and let A � X be a losed G-small subset. Then the following

assertions hold:

(a) The restrition ! : G�A! X; (g; a) 7! g:a of the ation to G�A is

a proper map.

(b) The restrition p : A! GnX; a 7! G:a of the orbit projetion to A is

a proper map.

Proof. (a) If x 2 X then !

�1

(x) = f(g; g

�1

:x) j g 2 �

G

(A; fxg)g is

a ontinuous image of the set �

G

(A; fxg). This set is losed beause A

is losed, so that it is quasi-ompat beause A is G-small. Hene the

�bres of ! are quasi-ompat. Let C � G � A be a losed subset, and

let x 2 X n !(C). Choose a neighbourhood V of x suh that the losure K

of �

G

(A; V ) in G is quasi-ompat. The restrition of ! to K�A is a proper

map (see Bourbaki [5, III.4, Prop. 1℄). As V \G:A = V \K:A, we onlude

that V n !(C) = V n !(C \ (K � A)) is a neighbourhood of x whih does

not meet !(C).

(b) The �bre of p through x 2 A is G:x \ A = �

G

(A; fxg)

�1

:x. Being a

ontinuous image of the quasi-ompat set �

G

(A; fxg), it is quasi-ompat.

If B � A is a losed subset then B is also G-small. Hene the orbit satura-

tion G:B of B in X is losed by part (a), so that p(B) is losed in the orbit

spae GnX. �

1.6 Theorem (Proper ations of loally ompat groups). Let a

loally ompat group G at ontinuously on a topologial spae X.

(a) The ation of G on X is a Cartan ation if and only if any two distint

points on an orbit have disjoint neighbourhoods in X and

8x 2 X 9V 2 U(x) : �

G

(V; V ) is ompat.

(b) The ation of G on X is proper if and only if X is a Hausdor� spae

and

8x; x

0

2 X 9V 2 U(x); V

0

2 U(x

0

) : �

G

(V; V

0

) is ompat.
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() The ation of G on X is Palais-proper if and only if X is regular and

eah point of X has a G-small neighbourhood, i.e.

8x 2 X 9V 2 U(x) 8x

0

2 X 9V

0

2 U(x

0

) : �

G

(V; V

0

) is ompat.

(d) The ation of G onX is strongly proper if and only ifX is paraompat

and there is an open G-small subset V of X suh that G:V = X.

Proof. (a) Assume that the ation is a Cartan ation. Let x 2 X. If g 2 G

is a group element suh that g:x 6= x then G n fgg is a neighbourhood of

the stabilizer G

x

, whene we may hoose a neighbourhood V of x suh that

g 62 �

G

(V; V ). This means that V and g:V are disjoint neighbourhoods of x

and of g:x. Let U be a ompat neighbourhood of the stabilizer G

x

. Choose

a neighbourhood V

0

of x in X suh that �

G

(V

0

; V

0

) � U . The losure of

�

G

(V

0

; V

0

) in G is ompat.

Conversely, assume that the ondition in (a) is satis�ed. Choose a point

x 2 X. If g:x 6= x for an element g 2 G then there are neighbourhoods U

of g and V , V

0

of x, g:x suh that V \ V

0

= ; and U:V � V

0

. Hene U is

disjoint from �

G

(V; V ). This proves that

G

x

=

\

V 2U(x)

�

G

(V; V ):

This intersetion is ompat by hypothesis. Let U be an open neighbourhood

of G

x

. Then we �nd neighbourhoods V

1

; : : : ; V

n

of x suh that

U �

n

\

j=1

�

G

(V

j

; V

j

) � �

G

(V

1

\ � � � \ V

n

; V

1

\ � � � \ V

n

):

(b) If X is a Hausdor� spae and x; x

0

2 X then we �nd as above that

�

G

(x; x

0

) =

\

f �

G

(V; V

0

) j V 2 U(x); V

0

2 U(x

0

)g:

The arguments from part (a) yield that the ondition in (b) is equivalent to

the haraterization of proper ations used in the proof of Proposition 1.4.

Alternatively, Proposition 1.4 implies that part (b) is the well-known hara-

terization of proper ations of loally ompat groups given by Bourbaki [5,

III.4, Prop. 3 and Prop. 7℄.

() Assume that the ation of G on X is Palais-proper, and let x 2 X.

Choose an open neighbourhoodW

1

of x suh that �

G

(W

1

;W

1

) has ompat

losure in G. As the orbit spae is regular, we may hoose a losed G-

invariant neighbourhoodW

2

of x inX whih is ontained inG:W

1

. We laim

that the neighbourhood V

:

=W

1

\W

2

of x is G-small. Indeed, if x

0

2 G:W

1

,

say x

0

2 g:W

1

, then g:W

1

is a neighbourhood of x

0

for whih �

G

(V; g:W

1

) �

g:�

G

(W

1

;W

1

) has ompat losure in G. If x

0

2 X nG:W

1

then X nW

2

is a

6



neighbourhood of x

0

suh that �

G

(V;X nW

2

) = ;. (This part of the proof

has been adapted from Palais [16, 1.2.5℄.) The losure of V in X is a G-

small subset of X, and it is regular sine it is a Hausdor� spae and admits

a proper map onto a regular spae (Lemma 1.5 and Engelking [10, 3.7.23℄).

As every point of X has a losed regular neighbourhood, we onlude that X

is regular.

Conversely, assume that X is regular and that eah point of X has a

G-small neighbourhood. Choose x 2 X, and let W be a G-invariant neigh-

bourhood of x. Choose a G-small losed neighbourhood W

1

of x whih

is ontained in W . Lemma 1.5 shows that the G-invariant neighbour-

hood G:W

1

�W of x is losed in X. Hene the orbit spae GnX is regular.

Moreover, we may hoose a neighbourhood W

2

of x suh that �

G

(W

1

;W

2

)

has ompat losure in G. Then V

:

= W

1

\W

2

is a neighbourhood of x

suh that �

G

(V; V ) has ompat losure. Part (a) shows that the ation is

a Cartan ation.

(d) Suppose that the ation of G on X is strongly proper. Then it

is Palais-proper, so that part () yields a overing U of X by G-small

open sets. Let W be a loally �nite open re�nement of the open over-

ing fpr(U) j U 2 Ug of GnX, where pr denotes the orbit projetion. For

eah W 2 W, hoose U

W

2 U suh that W � pr(U

W

), and set V

W

:

=

U

W

\ pr

�1

(W ), so that pr(V

W

) = W . Let V be the union of the G-small

open sets V

W

, where W ranges over W. Then V is an open subset of X

with G:V = X. We laim that V is G-small. Let x 2 X. Choose a neigh-

bourhood V

0

of x in X suh that pr(V

0

) meets only �nitely many elements

W

1

; : : : ;W

n

of W. For eah j 2 f1; : : : ; ng, let V

j

� V

0

be a neighbourhood

of x suh that �

G

(V

W

j

; V

j

) has ompat losure in G. Then the losure of

�

G

(V; V

1

\ � � � \ V

n

) �

n

[

j=1

�

G

(V

W

j

; V

j

)

is ompat. Hene V is indeed G-small. Let A be the losure of V in X,

whih is G-small. Then A is paraompat beause it admits a proper map

onto the paraompat spae GnX, see Lemma 1.5 and Dugundji [9, XI.5.3℄.

Loally ompat groups are paraompat (Bourbaki [5, III.4, Prop. 13℄).

The produt of a paraompat loally ompat spae with a paraompat

spae is paraompat (use Engelking [10, 5.1.34 and 5.1.36℄, f. [10, 5.5.5℄).

Therefore, the produt G � A is paraompat. Lemma 1.5 yields a proper

map from G�A onto X. Hene X is paraompat [9, VIII.2.6℄.

Conversely, part () shows that the ation is Palais-proper if the on-

dition in (d) is satis�ed. Lemma 1.5 yields a proper map from the losure

of V in X onto the orbit spae, whene GnX is paraompat [9, VIII.2.6℄.

�

1.7 Proposition. The orbit spae of a strongly proper ation of a loally

ompat group G on a metrizable spae X is metrizable.
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Proof. Theorem 1.6 yields a G-small subset V � X suh that G:V =

X. Let A be the losure of V in X. Then A is a G-small subset of X,

and the restrition of the orbit projetion to A is a proper map onto GnX

by Lemma 1.5. The image of a proper map with metrizable domain is

metrizable (see Dugundji [9, XI.5.2℄). �

2 Slies

If G is a group and H � G is a subgroup whih ats on a set S then H

ats on G � S by h:(g; s)

:

= (gh

�1

; h:s). The orbit spae of this ation is

alled the twisted produt G�

H

S. The H-orbit of (g; s) 2 G� S is written

as [g; s℄ 2 G�

H

S. The full group G ats on G �

H

S by g:[g

0

; s℄

:

= [gg

0

; s℄.

For elementary properties of twisted produts, see Bredon [6, I.6℄ or tom

Diek [8, I.4℄.

2.1 De�nition. Let a Hausdor� group G at ontinuously on a Hausdor�

spae X, and letH be a losed subgroup of G. An H-slie in X for the ation

of G is an H-invariant subset S � X suh that the ontinuous G-equivariant

map

[g; s℄ 7�! g:s : G�

H

S ! X

is an open embedding.

We say that the ation has enough slies if for eah point x 2 X, there

is a ompat subgroup K � G suh that x is ontained in an K-slie.

2.2 Remark. If S is an H-slie for an ation of G on X then G:S is an

open subset of X and g:s 7! gH : G:S ! G=H is a ontinuous G-equivariant

surjetion.

This property of an H-slie an be used as a de�nition. Consider a

ontinuous ation of a loally ompat group G on a Hausdor� spae X,

and let H be a losed subgroup of G. Assume that S � X is an H-slie in

the sense of Palais [16, 2.1.1℄, whih means that S is H-invariant, the set

Y

:

= G:S is open in X, and there is a ontinuous G-equivariant map from Y

onto G=H whih maps S to the base-point H 2 G=H. Then the map

[g; s℄ 7�! g:s : G�

H

S �! Y

is a G-equivariant homeomorphism (see [4, 3.2℄). Therefore, our de�nition

of an H-slie is equivalent to the de�nition by Palais.

2.3 Proposition. Let G be a topologial group, and let H � G be a

subgroup whih ats ontinuously on a topologial spae S. Then the natural

ation of G on the twisted produt Y

:

= G�

H

S is a Cartan ation if and

only if the ation of H on S is a Cartan ation. Moreover, the map

' : HnS �! GnY; H:s 7�! G:[1; s℄
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is a homeomorphism.

In partiular, the ation of G on G �

H

S is proper, Palais-proper, or

strongly proper if and only if so is the ation of H on S.

Proof. Using the notation of De�nition 1.1, observe that all g; g

0

2 G and

all s; s

0

2 S satisfy

�

G

([g; s℄; [g

0

; s

0

℄) = g

0

�

H

(s; s

0

) g

�1

:

In partiular, this yields G

[g;s℄

= gH

s

g

�1

. Therefore, all stabilizers of the

ation of G on Y are quasi-ompat if and only if all stabilizers of the ation

of H on S are quasi-ompat.

Assume that the ation of G on Y is a Cartan ation, and let U � H

be an open neighbourhood of the stabilizer H

s

. Let U

0

� G be an open

subset with U

0

\H = U . Then U

0

is an open neighbourhood of G

[1;s℄

= H

s

.

Hene there is a neighbourhood V � Y of [1; s℄ suh that �

G

(V; V ) � U

0

.

The pre-image W of V under the ontinuous injetion s 7! [1; s℄ : S ! Y is

a neighbourhood of s in S suh that �

H

(W;W ) � U .

Conversely, assume that the ation of H on S is a Cartan ation, and

let U � G be a neighbourhood of the stabilizer G

[g;s℄

= gH

s

g

�1

. By on-

tinuity of the group multipliation and quasi-ompatness of H

s

, there are

neighbourhoods V � G of g and V

0

� H of H

s

suh that V V

0

V

�1

� U .

Choose a neighbourhoodW � S of s suh that �

H

(W;W ) � V

0

. Let W

0

the

image of V �W under the H-orbit projetion from G�S onto Y . Then W

0

is a neighbourhood of [g; s℄ whih satis�es �

G

(W

0

;W

0

) � U .

It is easy to see that ' is a ontinuous bijetion. For a subset U of S, the

image of HnH:U � HnS under ' is the image of G�U � G� S under the

natural projetion of G� S onto GnY , whih is an open map. This implies

that ' is open. �

2.4 Lemma. A ontinuous ation of a Hausdor� group G on a Hausdor�

spae X whih has enough slies is a Cartan ation.

Proof. Choose a point x 2 X. Let K � G be a ompat subgroup suh

that x is ontained in a K-slie S � X. As the stabilizer G

x

is ontained

in K, it is a ompat subgroup. Sine K is ompat, Theorem 1.6 implies

that the ation of this group on S is a Cartan ation. Proposition 2.3 yields

that the ation of G on the neighbourhood G:S of x is a Cartan ation.

Therefore, the ation of G on X is a Cartan ation. �

2.5 Theorem. A ontinuous ation of a loally ompat group G on a

ompletely regular spae X has enough slies if and only if it is a Cartan

ation.

Proof. Lemma 2.4 asserts that the ation is a Cartan ation if it has enough

slies. Conversely, assume that the ation of G on X is a Cartan ation. By

9



Palais's main result in [16, 2.3.3℄, if G is a Lie group and x 2 X then x is

even ontained in a G

x

-slie. If G is an almost onneted loally ompat

group then every identity neighbourhood of G ontains a ompat normal

subgroup N suh that G=N is a Lie group. (This was proved by Yamabe [17℄

and by Glu�skov [11, Theorem 9℄, see also Montgomery and Zippin [15, Chap-

ter IV℄ and Kaplansky [14, II.10, Theorem 18℄.) Applying this fundamental

result to suitable almost onneted open subgroups of an arbitrary loally

ompat group G, one an dedue from Palais's Slie Theorem that the a-

tion of G on X has enough slies. For proper ations, this was arried out

in [4, 3.8℄. The proof need hardly be hanged for Cartan ations, but we

an also apply the result [4, 3.8℄ diretly if we over X by G-invariant open

sets on whih G ats properly. Suh a overing is provided by Theorem 1.6.

Indeed, let x 2 X, and hoose an open neighbourhood V � X of x suh

that �

G

(V; V ) has ompat losure in G. Then the ation of G on G:V is

proper (even Palais-proper). �

3 Paraompatness and metrizability

of orbit spaes

Reall that a Lindel�of spae is a topologial spae with the property that

every open overing ontains a ountable subovering. Every regular Lin-

del�of spae is paraompat (see Dugundji [9, VIII.6.5℄). In partiular, every

regular loally Lindel�of spae is ompletely regular, so that every Cartan

ation on suh a spae has enough slies.

3.1 Proposition. The following statements about a regular loally Lindel�of

spae X are equivalent:

(i) X is paraompat.

(ii) Every open overing of X has a loally ountable open re�nement.

(iii) X is a topologial sum of Lindel�of spaes.

This observation and an indiation of the following proof are due to H�ajek

[12, Prop. 13℄. They generalize the well-known equivalene of statements (i)

and (iii) for loally ompat spaes X (f. Dugundji [9, XI.7.3℄).

Proof. (i)) (ii) By de�nition, every open overing of a paraompat spae

has an open re�nement whih is even loally �nite.

(ii)) (iii) Let U be an open overing of X suh that U is a Lindel�of

spae for eah U 2 U . Let V be a loally ountable open re�nement of U .

Then eah element of V meets at most ountably many others. Assuming

that ; 62 V, we all elements V; V

0

2 V equivalent if there is a �nite hain

V

1

; : : : ; V

n

of elements of V suh that V = V

1

, V

0

= V

n

, and V

j�1

\V

j

6= ; for

10



every j 2 f1; : : : ; ng. For eah element V 2 V, the equivalene lass [V ℄ is

ountable. If V; V

0

2 V are not equivalent then the open sets

S

[V ℄ and

S

[V

0

℄

are disjoint. Hene X is the topologial sum of its subspaes

S

[V ℄, where [V ℄

ranges over the equivalene lasses in V. As eah subspae

S

[V ℄ is losed,

we �nd that

S

[V ℄ =

S

V

0

2[V ℄

V

0

is a ountable union of Lindel�of spaes and

hene has the Lindel�of property.

(iii)) (i) A regular Lindel�of spae is paraompat (see Dugundji [9,

VIII.6.5℄). A topologial sum of paraompat spaes is paraompat. �

3.2 Proposition. The following statements about a regular spae X are

equivalent:

(i) X is a metrizable loally Lindel�of spae.

(ii) X has a loally ountable basis.

(iii) X is a topologial sum of seond ountable spaes.

Proof. (i)) (ii) The metrizable spae X is paraompat. For eah n 2 N,

let U

n

be a loally �nite open re�nement of the overing fU

1=n

(x) j x 2 Xg.

Then U

:

=

S

n2N

U

n

is a basis. Choose a point x 2 X, and let V � X be a

Lindel�of neighbourhood of x. For eah n 2 N, the neighbourhood V meets

at most ountably many sets from U

n

. Hene V meets at most ountably

many sets from U .

(ii)) (iii) Let U be a loally ountable basis of X. Omitting some basis

sets, we may assume that eah element of U is non-empty and meets at

most ountably many others. Call basis sets U;U

0

2 U equivalent if there

is a �nite hain U

1

; : : : ; U

n

of elements of U suh that U = U

1

, U

0

= U

n

,

and U

j�1

\ U

j

6= ; for eah j 2 f1; : : : ; ng. Let [U ℄ denote the equivalene

lass of U 2 U . If U;U

0

2 U are not equivalent then

S

[U ℄ and

S

[U

0

℄ are

disjoint. Eah equivalene lass [U ℄ is ountable, and it is a basis of the open

subset

S

[U ℄ of X. Hene X is the topologial sum of its seond ountable

subspaes

S

[U ℄, where [U ℄ ranges over the equivalene lasses in U .

(iii)) (i) A seond ountable regular spae has the Lindel�of property,

and it is metrizable by the Urysohn Metrization Theorem (f. Dugundji [9,

IX.9.2℄). A topologial sum of metrizable spaes is metrizable. �

3.3 Lemma. Let a loally ompat Lindel�of group G at ontinuously on

a regular loally Lindel�of spae X. Let F be a loally ountable family of

subsets of X. Then the image of F under the orbit projetion X ! GnX is

a loally ountable family.

Proof. Let x 2 X be an arbitrary point. Choose a Lindel�of neighbourhood

U � X of x. It suÆes to show that G:U is a Lindel�of spae, sine this

implies that G:U meets at most ountably many members of F . The loally

ompat Lindel�of group G is the union of a ountable family (K

n

)

n2N

of

11



ompat subsets. The produt K

n

� U is a Lindel�of spae for eah n 2 N

(see Dugundji [9, XI.5.4℄), whene so is its ontinuous image K

n

:U (see [9,

VIII.6.6℄). Therefore, the ountable union

S

n2N

K

n

:U = G:U is a Lindel�of

spae. �

3.4 Theorem. Let a loally ompat Lindel�of group G at ontinuously

on a regular loally Lindel�of spae X. Suppose that the orbit spae GnX is

regular.

(a) If X is paraompat then so is GnX.

(b) If X is metrizable then so is GnX.

Proof. (a) Sine the orbit projetion pr: X ! GnX is a ontinuous open

map, the orbit spae GnX has the loal Lindel�of property. Let U be an

open overing of GnX. Choose a loally �nite open re�nement V of the

open overing fpr

�1

(U) j U 2 Ug of X. Then fpr(V ) j V 2 Vg is an

open overing of GnX whih re�nes U and whih is loally ountable by

Lemma 3.3. Proposition 3.1 yields that GnX is paraompat.

(b) Proposition 3.2 shows that X has a loally ountable basis, the image

of whih under the orbit projetion is a basis of GnX, and this basis is

loally ountable by Lemma 3.3. A seond appliation of Proposition 3.2

yields that GnX is metrizable. �

3.5 Corollary. Let G be a loally ompat Lindel�of group.

(a) An ation of G on a paraompat loally Lindel�of spae is strongly

proper if and only if it is Palais-proper.

(b) An ation of G on a paraompat loally ompat spae is strongly

proper if and only if it is proper.

Proof. Assertion (a) follows immediately from Theorem 3.4. If G ats prop-

erly on a paraompat loally ompat spae X then the orbit spae GnX

is loally ompat and hene regular. Theorem 3.4 shows that the ation is

strongly proper. �

3.6 Remark. Baum, Connes, and Higson [2℄ all a ontinuous ation of a

seond ountable loally ompat group G on a metrizable spae X proper

if it has enough slies and GnX is metrizable. By Proposition 1.7 and

Theorem 2.5, these onditions are satis�ed if and only if the ation is strongly

proper. Under the hypotheses on X given by Corollary 3.5, it suÆes to

assume that the ation is Palais-proper or just proper.
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