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Abstract

Three kinds of proper actions of increasing strength are defined. We
prove that the three definitions specialize to the definitions by Bour-
baki, by Palais, and by Baum, Connes, and Higson in their respective
settings. The third of these, which thus turns out to be the strongest,
originally only concerns actions of second countable locally compact
groups on metrizable spaces. In this situation, it is shown to coincide
with the other two definitions if the total space locally has the Lindel6f
property and the orbit space is regular.! 2

Introduction

Proper actions are an important generalization of actions of compact groups.
They were introduced by Palais [16] as continuous actions of locally compact
groups on completely regular spaces such that certain neighbourhoods of
stabilizers are compact. Bourbaki [5] calls a continuous action of an arbitrary
topological group proper if all stabilizers are compact and a certain map is
closed. The Baum—-Connes conjecture for second countable locally compact
groups G, as formulated by Baum, Connes, and Higson [2], states that
a certain map from the equivariant K-homology of a classifying space for
proper G-actions to the topological K-theory of the reduced C*-algebra of G
is an isomorphism. In this context, a continuous action of G on a metrizable
space is defined to be proper if each point lies in a slice and the orbit space
is metrizable.

The relations between these three definitions of a proper action are ob-
scured by the fact that they are given in three different settings and in terms
of different concepts. This note starts with the single notion of “Cartan ac-
tions” of general topological groups. It defines three kinds of proper actions
as Cartan actions for which the orbit space is a Hausdorff space, regular,
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and paracompact, respectively. These three definitions are equivalent to the
concepts due to Bourbaki, to Palais, and to Baum, Connes, and Higson in
their respective settings. In the course of the proof of this equivalence, we
characterize the three kinds of proper actions for locally compact groups in
the spirit of Palais [16]. This characterization differs considerably from our
definition, so that it becomes even more transparent how the three concepts
increase in strength.

If G is a topological group and Y is a topological space then the action
of Gon GxY by g.(¢,y) := (99',y) is a Cartan action. The orbit space of
this action is homeomorphic to Y. Hence for actions on general spaces, any
two of the three concepts of a proper action are inequivalent. Moreover, there
are Cartan actions of R on Gs-subsets of R? for which the orbit space is not a
Hausdorff space, or a non-regular Hausdorff space. However, under suitable
hypotheses on a group G and a space X, if the orbit space of a Cartan action
of G on X is regular then it is even paracompact. Extending an observation
by Abels [1], we prove this for Cartan actions of locally compact Lindel6f
groups G on paracompact locally Lindelof spaces X. In particular, all three
concepts of a proper action are equivalent for actions of second countable
locally compact groups on second countable locally compact spaces. This
special case has recently been proved by Chabert, Echterhoff, and Meyer [7].

I thank Stephen Millington who brought this problem to my attention
and introduced me to the Baum—Connes conjecture.

1 Notions of proper actions
If a group G acts on a set X and A, B C X are subsets, set
og(A,B):={g € G|g.ANB # B}.

For a,b € X, write 0g(a,b) := og({a},{b}) = {9 € G | g.a = b}. Note that
this set is either empty or a coset of a stabilizer.

The symbol U(-) denotes the neighbourhood filter of a point or of a
subset of a topological space.

We follow Bourbaki [5] in calling a topological space quasi-compact if
every open covering has a finite subcovering. Compactness, local compact-
ness, and paracompactness include the Hausdorff separation property.

1.1 Definition. A continuous action of a topological group G on a topo-
logical space X is called a Cartan action if all stabilizers are quasi-compact
and for each point x € X and each neighbourhood U C G of the sta-
bilizer (G, there is a neighbourhood V' C X of z such that every group
element which maps a point of V into V belongs to U, i.e.

Vee XVYU cU(G,) IV el(z): og(V,V) CU.



A proper action is a Cartan action with a Hausdorff orbit space.

A Palais-proper action is a Cartan action with a regular orbit space.

A strongly proper action is a Cartan action with a paracompact orbit
space.

1.2 Remark (Relations to established definitions). The most wide-
spread concept of a proper action probably is the one to be found in Bour-
baki [5, I11.4, Def. 1]. By Proposition 1.4, a continuous action of a topological
group on a topological space is proper in the sense of Bourbaki if and only
if it is proper in the sense of our definition.

Palais [16] only considers actions of locally compact groups on completely
regular spaces. Theorem 1.6 shows that his concepts of a Cartan G-space
and of a proper G-space [16, 1.1.2 and 1.2.2] are equivalent to our definitions
of a Cartan action and of a Palais-proper action.

Baum, Connes, and Higson [2] restrict themselves to actions of second
countable locally compact groups on metrizable spaces. As we will see in
Remark 3.6, such an action is proper in their sense if and only if it is strongly
proper in our sense.

1.3 Remark (Implications and separating examples). Let G be a
topological group, and let H be a subgroup. If the natural action of GG
on G/H is a Cartan action then H is quasi-compact. Conversely, assume
that H is quasi-compact. Choose g € GG, and let U C G be a neighbour-
hood of the subgroup gHg !, which is the stabilizer of gH € G/H under
the natural action of G. By continuity of the group multiplication and
quasi-compactness of H, there is a neighbourhood V' C G of g such that
VHV 1 CU. The neighbourhood V' := VH/H of gH in G/H satisfies
og(V',V') C U. We conclude that the natural action of G on the coset
space G/H is a Cartan action if and only if the subgroup H is quasi-compact.
Assume that this is the case, and let Y be an arbitrary topological space.
The action of G on G/H xY by g(¢'H,y) := (99'H,y) is a Cartan action
with orbit space homeomorphic to Y. For an arbitrary topological group GG
and suitable topological spaces Y, this construction yields Cartan actions
of G which are not proper, proper actions which are not Palais-proper, and
Palais-proper actions which are not strongly proper.

Here the orbit space lacks a certain topological property which the total
space of the action also lacks. Thus the following examples may be more
surprising. Palais [16, p. 298] describes a Cartan action of R on [—1,1] x R
which is not proper. An example of a proper action of R on a Gs-subset
of R? which is not Palais-proper is due to Bebutov (see Hajek [12, p. 79], cf.
Bhatia and Szeg6 [3, IV.1.5.5] and Abels [1, 1.6]).

However, a Palais-proper action of R on a separable metric space is
automatically strongly proper. More generally, let G be a locally compact
group such that the quotient of G by its identity component is compact.



(Such a group is called almost connected.) A result sketched by Abels in
the introduction to [1] asserts, translated into our terminology, that every
Palais-proper action of G on a paracompact locally Lindel6f space is strongly
proper. Corollary 3.5 below extends this result to actions of locally compact
Lindel6f groups. (A locally compact group is a Lindel6f space if and only
if it has an open almost connected subgroup of countable index.) Weaker
hypotheses may entail that Palais-properness of an action implies strong
properness. For instance, Abels [1] conjectured that every Palais-proper
action of a connected locally compact group on a paracompact space is
strongly proper.

By Part (b) of Corollary 3.5, every proper action of a locally compact
Lindelof group on a paracompact locally compact space is strongly proper.

1.4 Proposition. A continuous action of a topological group G on a topo-
logical space X is proper if and only if the map (g,z) — (z,9.2): G x X —
X x X is proper (i.e. closed with quasi-compact fibres).

In other words, the present definition of a proper action is equivalent to
Bourbaki’s [5, I11.4, Def. 1].

Proof. It was proved in [4, 2.1] that the action of G on X is proper in the
sense of Bourbaki if and only if all stabilizers are quasi-compact and

Va,2' € XVU € U(og(z,2')) IV €eU(z),V' eU(a"): oa(V,V') CU.

It is easy to see that this condition is equivalent to the present definition of
a proper action. O

This paper follows Bourbaki [5] in considering topological groups which
may not be Hausdorff spaces. However, it should be emphasized that the
relation between topological groups and Hausdorff groups is much closer
than that between topological spaces and Hausdorff spaces in general. For a
topological group G, this relation is described via the closure N of {1} in G,
which is the smallest closed normal subgroup of G. The quotient G/N is
the universal Hausdorff group associated to G (in the sense of categories).
A subset A C G is open (respectively closed) if and only if AN = A and A/N
is an open (respectively closed) subset of G/N. In this sense, the topology
of G is derived from the topology of the Hausdorff group G/N. A subset
A C G is quasi-compact if and only if AN/N is a compact subset of G/N.
If this is the case then the quasi-compact set AN is the closure of A in G.
A coset space of G is a Ty-space if and only if it is a completely regular space
if and only if it is the coset space of a closed subgroup of G (see Hewitt and
Ross [13, 8.14(a)]). In particular, every action of G on a Ty-space X factors
through an action of G/N on X.



Let a topological group G act continuously on a topological space X.
Following Palais [16, 1.2.1], we will say that a subset A C X is G-small if
every point x € X has a neighbourhood V' such that o (A4, V) is contained
in a quasi-compact subset of G. Equivalently, the closure of o(A,V) in G is
quasi-compact. This is because every quasi-compact subset of a topological
group has quasi-compact closure. Note that the closure of a G-small subset
is G-small.

1.5 Lemma. Let a topological group G act continuously on a topological
space X, and let A C X be a closed G-small subset. Then the following
assertions hold:

(a) The restriction w: G x A — X, (g,a) — g.a of the action to G x A is
a proper map.

(b) The restriction p: A — G\X, a — G.a of the orbit projection to A is
a proper map.

Proof. (a) If z € X then w™'(z) = {(g9,97'.2) | g € 0g(4,{z})} is
a continuous image of the set og(A4,{z}). This set is closed because A
is closed, so that it is quasi-compact because A is G-small. Hence the
fibres of w are quasi-compact. Let C' C G x A be a closed subset, and
let z € X \ w(C). Choose a neighbourhood V' of = such that the closure K
of 0g(A,V) in G is quasi-compact. The restriction of w to K x A is a proper
map (see Bourbaki [5, III.4, Prop. 1]). As VNG.A =V NK.A, we conclude
that V \ w(C) =V \ w(C N (K x A)) is a neighbourhood of = which does
not meet w(C).

(b) The fibre of p through = € A is G.x N A = 0¢(A, {r})~'.z. Being a
continuous image of the quasi-compact set o(A4, {z}), it is quasi-compact.
If B C Ais a closed subset then B is also G-small. Hence the orbit satura-
tion G.B of B in X is closed by part (a), so that p(B) is closed in the orbit
space G\ X. O

1.6 Theorem (Proper actions of locally compact groups). Let a
locally compact group G act continuously on a topological space X.

(a) The action of G on X is a Cartan action if and only if any two distinct
points on an orbit have disjoint neighbourhoods in X and

Vee X 3AV eU(x): og(V,V) is compact.

(b) The action of G on X is proper if and only if X is a Hausdorff space
and

Ve,o' € X 3V e U(z),V' eU(z'): 0¢(V, V') is compact.



(¢) The action of G on X is Palais-proper if and only if X is regular and
each point of X has a G-small neighbourhood, i.e.

Vee X3V el(z) V' € X IV € U(z'): o¢(V,V') is compact.

(d) The action of G on X is strongly proper if and only if X is paracompact
and there is an open G-small subset V' of X such that G.V = X.

Proof. (a) Assume that the action is a Cartan action. Let x € X. If g € G
is a group element such that g.xz # x then G\ {g} is a neighbourhood of
the stabilizer G, whence we may choose a neighbourhood V' of x such that
g € 0(V,V). This means that V and ¢g.V are disjoint neighbourhoods of
and of g.z. Let U be a compact neighbourhood of the stabilizer G;. Choose
a neighbourhood V' of # in X such that og(V',V') C U. The closure of
oq(V', V') in G is compact.

Conversely, assume that the condition in (a) is satisfied. Choose a point
z € X. If g.z # z for an element g € G then there are neighbourhoods U
of g and V, V' of z, g.x such that VNV’ =0 and U.V C V'. Hence U is
disjoint from og(V, V). This proves that

Gy = m UG(V7 V)
Veu(x)

This intersection is compact by hypothesis. Let U be an open neighbourhood
of G;. Then we find neighbourhoods Vi,...,V, of x such that

n
U2 ()oa(Vi,V;) 2oa(Vin--- NV, Vin---nV,).
j=1

(b) If X is a Hausdorff space and z,z’ € X then we find as above that
oa(z,2') = o, V) |V €U(n), V' €U}

The arguments from part (a) yield that the condition in (b) is equivalent to
the characterization of proper actions used in the proof of Proposition 1.4.
Alternatively, Proposition 1.4 implies that part (b) is the well-known charac-
terization of proper actions of locally compact groups given by Bourbaki [5,
I11.4, Prop. 3 and Prop. 7].

(c) Assume that the action of G on X is Palais-proper, and let x € X.
Choose an open neighbourhood W of x such that o (W1, W1) has compact
closure in (G. As the orbit space is regular, we may choose a closed G-
invariant neighbourhood W5 of  in X which is contained in G.W;. We claim
that the neighbourhood V' := W1 NW5 of z is G-small. Indeed, if 2’ € G.W7,
say z' € g.W1, then g.W7 is a neighbourhood of ' for which o¢(V, g.W7) C
g.0c(W1,W1) has compact closure in G. If 2/ € X \ G.W; then X \ W5 is a



neighbourhood of 2’ such that og(V, X \ Wa) = (). (This part of the proof
has been adapted from Palais [16, 1.2.5].) The closure of V in X is a G-
small subset of X, and it is regular since it is a Hausdorff space and admits
a proper map onto a regular space (Lemma 1.5 and Engelking [10, 3.7.23]).
As every point of X has a closed regular neighbourhood, we conclude that X
is regular.

Conversely, assume that X is regular and that each point of X has a
G-small neighbourhood. Choose z € X, and let W be a G-invariant neigh-
bourhood of z. Choose a G-small closed neighbourhood W; of z which
is contained in W. Lemma 1.5 shows that the G-invariant neighbour-
hood G.W; C W of z is closed in X. Hence the orbit space G\ X is regular.
Moreover, we may choose a neighbourhood W5 of = such that og(Wy, Ws)
has compact closure in G. Then V := W) N Wy is a neighbourhood of =
such that o (V, V) has compact closure. Part (a) shows that the action is
a Cartan action.

(d) Suppose that the action of G on X is strongly proper. Then it
is Palais-proper, so that part (c) yields a covering i of X by G-small
open sets. Let 20 be a locally finite open refinement of the open cover-
ing {pr(U) | U € U} of G\X, where pr denotes the orbit projection. For
each W € 20, choose Uy € 4 such that W C pr(Uw), and set Vi :=
Uw Npr (W), so that pr(Vy) = W. Let V be the union of the G-small
open sets Vi, where W ranges over 20. Then V is an open subset of X
with G.V = X. We claim that V is G-small. Let z € X. Choose a neigh-
bourhood V' of 2 in X such that pr(V') meets only finitely many elements
Wi,..., Wy, of 20. For each j € {1,...,n}, let V; C V' be a neighbourhood
of z such that og(V,, V;) has compact closure in G. Then the closure of

n
oa(V,Vin---nVy) C | Joa(Viv,, V)

j=1
is compact. Hence V is indeed G-small. Let A be the closure of V in X,
which is G-small. Then A is paracompact because it admits a proper map
onto the paracompact space G\ X, see Lemma 1.5 and Dugundji [9, XI.5.3].
Locally compact groups are paracompact (Bourbaki [5, II1.4, Prop. 13]).
The product of a paracompact locally compact space with a paracompact
space is paracompact (use Engelking [10, 5.1.34 and 5.1.36], cf. [10, 5.5.5]).
Therefore, the product G x A is paracompact. Lemma 1.5 yields a proper

map from G x A onto X. Hence X is paracompact [9, VIII.2.6].

Conversely, part (c) shows that the action is Palais-proper if the con-
dition in (d) is satisfied. Lemma 1.5 yields a proper map from the closure
of V in X onto the orbit space, whence G\ X is paracompact [9, VIII.2.6].
O

1.7 Proposition. The orbit space of a strongly proper action of a locally
compact group G on a metrizable space X is metrizable.



Proof. Theorem 1.6 yields a G-small subset V' C X such that G.V =
X. Let A be the closure of V in X. Then A is a G-small subset of X,
and the restriction of the orbit projection to A is a proper map onto G\ X
by Lemma 1.5. The image of a proper map with metrizable domain is
metrizable (see Dugundji [9, XL.5.2]). O

2 Slices

If G is a group and H < G is a subgroup which acts on a set S then H
acts on G x S by h.(g,s) := (gh™',h.s). The orbit space of this action is
called the twisted product G x i S. The H-orbit of (g,s) € G x S is written
as [g,s] € G xg S. The full group G acts on G xg S by g.[¢',s] := [g¢', s].
For elementary properties of twisted products, see Bredon [6, 1.6] or tom
Dieck [8, L.4].

2.1 Definition. Let a Hausdorff group G act continuously on a Hausdorff
space X, and let H be a closed subgroup of G. An H-slice in X for the action
of G is an H-invariant subset S C X such that the continuous G-equivariant
map

lg,8] —> g.s: GxgS— X

is an open embedding.
We say that the action has enough slices if for each point x € X, there
is a compact subgroup K < G such that z is contained in an K-slice.

2.2 Remark. If § is an H-slice for an action of G on X then G.S is an
open subset of X and g.s — gH: G.S — G/H is a continuous G-equivariant
surjection.

This property of an H-slice can be used as a definition. Consider a
continuous action of a locally compact group G on a Hausdorff space X,
and let H be a closed subgroup of G. Assume that S C X is an H-slice in
the sense of Palais [16, 2.1.1], which means that S is H-invariant, the set
Y :=(G.S is open in X, and there is a continuous G-equivariant map from Y
onto G/H which maps S to the base-point H € G/H. Then the map

[g,8] — g.s: Gxg S — Y

is a G-equivariant homeomorphism (see [4, 3.2]). Therefore, our definition
of an H-slice is equivalent to the definition by Palais.

2.3 Proposition. Let G be a topological group, and let H < G be a
subgroup which acts continuously on a topological space S. Then the natural
action of G on the twisted product Y := G x g S is a Cartan action if and
only if the action of H on S is a Cartan action. Moreover, the map

p: H\S — G\Y, H.s+— G.[1,5]



is a homeomorphism.
In particular, the action of G on G Xy S is proper, Palais-proper, or
strongly proper if and only if so is the action of H on §.

Proof. Using the notation of Definition 1.1, observe that all g,¢' € G and
all s,s" € S satisty

o6 (9,8}, 198 =g onls,s') g~
In particular, this yields G|, = gH. sg 1. Therefore, all stabilizers of the
action of G on Y are quasi-compact if and only if all stabilizers of the action
of H on S are quasi-compact.

Assume that the action of G on Y is a Cartan action, and let U C H
be an open neighbourhood of the stabilizer Hs,. Let U’ C G be an open
subset with U' M H = U. Then U’ is an open neighbourhood of G|, 5 = H.
Hence there is a neighbourhood V' C Y of [1, s] such that o(V,V) C U".
The pre-image W of V' under the continuous injection s +— [1,5]: S — Y is
a neighbourhood of s in S such that oy (W, W) C U.

Conversely, assume that the action of H on S is a Cartan action, and
let U C G be a neighbourhood of the stabilizer G, ;) = gH,g~'. By con-
tinuity of the group multiplication and quasi-compactness of H,, there are
neighbourhoods V' C G of g and V! C H of H, such that VV'V~—! C U.
Choose a neighbourhood W C S of s such that o (W, W) C V'. Let W' the
image of V x W under the H-orbit projection from G x S onto Y. Then W'
is a neighbourhood of [g, s] which satisfies og(W',W') C U.

It is easy to see that ¢ is a continuous bijection. For a subset U of S, the
image of H\H.U C H\S under ¢ is the image of G x U C G x S under the
natural projection of G x S onto G\Y, which is an open map. This implies
that ¢ is open. 0

2.4 Lemma. A continuous action of a Hausdorff group G on a Hausdorff
space X which has enough slices is a Cartan action.

Proof. Choose a point £ € X. Let K < G be a compact subgroup such
that z is contained in a K-slice S C X. As the stabilizer GG, is contained
in K, it is a compact subgroup. Since K is compact, Theorem 1.6 implies
that the action of this group on S is a Cartan action. Proposition 2.3 yields
that the action of G on the neighbourhood G.S of x is a Cartan action.
Therefore, the action of G on X is a Cartan action. O

2.5 Theorem. A continuous action of a locally compact group G on a
completely regular space X has enough slices if and only if it is a Cartan
action.

Proof. Lemma 2.4 asserts that the action is a Cartan action if it has enough
slices. Conversely, assume that the action of G on X is a Cartan action. By



Palais’s main result in [16, 2.3.3], if G is a Lie group and z € X then z is
even contained in a Gg-slice. If G is an almost connected locally compact
group then every identity neighbourhood of G contains a compact normal
subgroup N such that G/N is a Lie group. (This was proved by Yamabe [17]
and by Gluskov [11, Theorem 9], see also Montgomery and Zippin [15, Chap-
ter IV] and Kaplansky [14, I1.10, Theorem 18].) Applying this fundamental
result to suitable almost connected open subgroups of an arbitrary locally
compact group G, one can deduce from Palais’s Slice Theorem that the ac-
tion of G on X has enough slices. For proper actions, this was carried out
in [4, 3.8]. The proof need hardly be changed for Cartan actions, but we
can also apply the result [4, 3.8] directly if we cover X by G-invariant open
sets on which G acts properly. Such a covering is provided by Theorem 1.6.
Indeed, let © € X, and choose an open neighbourhood V' C X of « such
that o (V,V) has compact closure in G. Then the action of G on G.V is
proper (even Palais-proper). O

3 Paracompactness and metrizability
of orbit spaces

Recall that a Lindelof space is a topological space with the property that
every open covering contains a countable subcovering. Every regular Lin-
del6f space is paracompact (see Dugundji [9, VIIL.6.5]). In particular, every
regular locally Lindel6f space is completely regular, so that every Cartan
action on such a space has enough slices.

3.1 Proposition. The following statements about a regular locally Lindelof
space X are equivalent:

(i) X is paracompact.
(ii) Every open covering of X has a locally countable open refinement.
(iii) X is a topological sum of Lindelof spaces.

This observation and an indication of the following proof are due to Hijek
[12, Prop. 13]. They generalize the well-known equivalence of statements (i)
and (iii) for locally compact spaces X (cf. Dugundji [9, XI.7.3]).

Proof. (i) = (ii) By definition, every open covering of a paracompact space
has an open refinement which is even locally finite.

(ii) = (iii) Let & be an open covering of X such that U is a Lindelsf
space for each U € U. Let V be a locally countable open refinement of U.
Then each element of ¥V meets at most countably many others. Assuming
that () € V, we call elements V, V' € V equivalent if there is a finite chain
Vi,...,Vy of elements of V such that V = Vi, V! = V,,, and V;_1NV; # () for

10



every j € {1,...,n}. For each element V' € V, the equivalence class [V] is
countable. If V. V' € V are not equivalent then the open sets | J[V] and (J[V']
are disjoint. Hence X is the topological sum of its subspaces | J[V], where [V]
ranges over the equivalence classes in V. As each subspace |J[V] is closed,
we find that U[V] = Uy ¢y V7 is a countable union of Lindel6f spaces and
hence has the Lindelof property.

(iii) = (i) A regular Lindelof space is paracompact (see Dugundji [9,
VIIL.6.5]). A topological sum of paracompact spaces is paracompact. [l

3.2 Proposition. The following statements about a regular space X are
equivalent:

(i) X is a metrizable locally Lindel6f space.
(ii) X has a locally countable basis.

(iii) X is a topological sum of second countable spaces.

Proof. (i) = (ii) The metrizable space X is paracompact. For each n € N,
let U,, be a locally finite open refinement of the covering {U,,(z) | z € X}.
Then U := |J,,cnyUn is a basis. Choose a point z € X, and let V C X be a
Lindelof neighbourhood of z. For each n € N, the neighbourhood V' meets
at most countably many sets from U,. Hence V meets at most countably
many sets from U.

(ii) = (iii) Let U be a locally countable basis of X. Omitting some basis
sets, we may assume that each element of I/ is non-empty and meets at
most countably many others. Call basis sets U,U’ € U equivalent if there
is a finite chain Uy,...,U, of elements of U/ such that U = Uy, U' = U,,
and Uj_1 NU; # 0 for each j € {1,...,n}. Let [U] denote the equivalence
class of U € U. If U, U’ € U are not equivalent then |J[U] and [U'] are
disjoint. Each equivalence class [U] is countable, and it is a basis of the open
subset |J[U] of X. Hence X is the topological sum of its second countable
subspaces |J[U], where [U] ranges over the equivalence classes in U.

(iii) = (i) A second countable regular space has the Lindel6f property,
and it is metrizable by the Urysohn Metrization Theorem (cf. Dugundji [9,
IX.9.2]). A topological sum of metrizable spaces is metrizable. a

3.3 Lemma. Let a locally compact Lindelof group G act continuously on
a regular locally Lindelof space X. Let F be a locally countable family of
subsets of X. Then the image of F under the orbit projection X — G\X is
a locally countable family.

Proof. Let x € X be an arbitrary point. Choose a Lindel6f neighbourhood
U C X of x. It suffices to show that G.U is a Lindelof space, since this
implies that G.U meets at most countably many members of F. The locally
compact Lindel6f group G is the union of a countable family (K, )pen of

11



compact subsets. The product K, x U is a Lindel6f space for each n € N
(see Dugundji [9, XI.5.4]), whence so is its continuous image K,.U (see [9,
VIIL.6.6]). Therefore, the countable union |J,, .y K».U = G.U is a Lindelof
space. U

3.4 Theorem. Let a locally compact Lindel6f group G act continuously
on a regular locally Lindelof space X . Suppose that the orbit space G\X is
regular.

(a) If X is paracompact then so is G\ X.

(b) If X is metrizable then so is G\ X.

Proof. (a) Since the orbit projection pr: X — G\X is a continuous open
map, the orbit space G\X has the local Lindel6f property. Let U be an
open covering of G\X. Choose a locally finite open refinement V of the
open covering {pr }(U) | U € U} of X. Then {pr(V) | V € V} is an
open covering of G\X which refines ¢/ and which is locally countable by
Lemma 3.3. Proposition 3.1 yields that G\ X is paracompact.

(b) Proposition 3.2 shows that X has a locally countable basis, the image
of which under the orbit projection is a basis of G\X, and this basis is
locally countable by Lemma 3.3. A second application of Proposition 3.2
yields that G\ X is metrizable. O

3.5 Corollary. Let G be a locally compact Lindelof group.

(a) An action of G on a paracompact locally Lindeldf space is strongly
proper if and only if it is Palais-proper.

(b) An action of G on a paracompact locally compact space is strongly
proper if and only if it is proper.

Proof. Assertion (a) follows immediately from Theorem 3.4. If G acts prop-
erly on a paracompact locally compact space X then the orbit space G\X
is locally compact and hence regular. Theorem 3.4 shows that the action is
strongly proper. O

3.6 Remark. Baum, Connes, and Higson [2] call a continuous action of a
second countable locally compact group G on a metrizable space X proper
if it has enough slices and G\X is metrizable. By Proposition 1.7 and
Theorem 2.5, these conditions are satisfied if and only if the action is strongly
proper. Under the hypotheses on X given by Corollary 3.5, it suffices to
assume that the action is Palais-proper or just proper.
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