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The aim of this paper is to present a new joint approach to the Helmholtz
decomposition in infinite cylinders and in infinite layers 2 = ¥ x R* in the
function space LI(R¥; L"(X)) using even arbitrary Muckenhoupt weights with
respect to ' € ¥ C R** and, if possible, exponential weights with respect
tox" € RF, 1 <k <n-1, n > 2 Forn = 2 we get the Helmholtz
decomposition for a strip, for n = 3 in an infinite cylinder or an infinite layer
and for n > 3 in some (non—physical) unbounded domains of cylinder or layer
type. The proof based on a weak Neumann problem uses a partial Fourier
transform and operator—valued multiplier functions, the R—boundedness of
the family of multiplier operators and an extrapolation property in weighted
L%—spaces.

1 Introduction

The Helmholtz decomposition of vector fields into a solenoidal and a gradient
part is an important tool in the analysis of instationary Stokes and Navier—
Stokes equations via analytic semigroup theory [29]. Besides L?-theory which
is available in any domain [23] and numerous L?-results on bounded and
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exterior domains, see e.g. [13, 16, 21, 25, 30] and [9, 10] for an approach in
weighted spaces, there are only few L?-results on domains with noncompact
boundaries. So—called aperture domains have been considered in [7, 8, 17].

In an infinite layer such as (—1,1) x R* a more or less explicit representa-
tion and a multiplier technique can be used [1, 32]; for other approaches see
[18, 19, 20, 22] and also [17]. However, the Helmholtz decomposition for an
infinite cylinder Q = ¥ x R where ¥ C R*™! is a bounded domain requires a
more refined analysis [22, 24, 27, 28]. To get the decomposition

u=1uy+ Vp

of a given vector field u such that divuy = 0 and the normal component v - ug
vanishes on 02 in the weak sense, the weak Neumann problem

Ap=divu in Q, v-(Vp—u)=0 on 0

has to be solved; then the Helmholtz projection P is defined by Pu = ug :=
u — Vp. In [24] the solution of the weak Neumann problem is based on
the splitting —A = —(0? + ...+ 02_,) — 02 and the existence of bounded
imaginary powers of —A’ and of —9? in suitable function spaces. A more
classical analysis has been used in [22, 27, 28|; standard L?—estimates are
refined by exponential weights via St. Venant’s principle to yield an L7-
theory, ¢ # 2, of the weak Neumann problem. This approach allows to
consider also domains of cylinder or layer type with varying cross section,
see [18, 19, 20].

In this paper we present an operator-theoretical approach for both infinite
cylinders and infinite layers. Using a partial Fourier transform F w.r.t. " €
R* we solve the weak Neumann problem —Ap = F i.e.,

/ Vp-Vedr = (F,p) Yye Cr(Q).
Q

For every Fourier variable £ € R \ {0} there exists a solution operator M (€)
leading to a Fourier multiplier operator F M (-)F with an operator—valued
multiplier function M(-) on L"(X)-valued functions, 1 < r < oo. To prove
the continuity of F~'MF on LY(R, L" (X)) we need the R-boundedness of
the operator family {M(£) : 0 # £ € RF}, see Section 2. For these rea-
sons we extend the Neumann problem to weighted L"—spaces using arbitrary
Muckenhoupt weights. Then results from harmonic analysis will prove the



R-boundedness of { M (-)}, and a recent multiplier theorem [26] will complete
the proof in case of Li-estimates without weights w.r.t. 2" € R¥. To extend
the results to exponentially weighted L9—estimates it suffices to consider a
perturbation of the original Neumann problem.

This paper is organized as follows. In Section 2 we start with the definition
of several important function spaces and of Muckenhoupt weights. Then we
present the main theorems on the weak Neumann problem (Theorem 2.1)
and the Helmholtz decomposition (Theorem 2.2). The section ends with
some results for weighted function spaces. Section 3 deals with the weak
Neumann problem after applying a partial Fourier transform, and Section 4
introduces the main tools from harmonic analysis and multiplier theory to
complete the proof of Theorems 2.1 and 2.2. The paper ends with a result
on exponentially weighted estimates in case of infinite layers (Theorem 4.4).

2 Main Theorems and Preliminaries

Let Q = ¥ x R* be an infinite cylinder or layer with constant cross section
Y CR** 1<k <n-—1, where ¥ is a bounded domain with C''-boundary.
The exterior normal vector on 9 = 9% x R* and also on 0¥ C RF will be
denoted by v. Due to the product structure of €2 the canonical splitting x =
(2',2") € Q with 2’ € ¥ and 2” € R* will analogously be applied to vector
fields u = (v',u”) and to differential operators. In particular V = (V', V"),
and A = A’ + A”. In order to describe our main theorems on the weak
Neumann problem and the Helmholtz decomposition we have to introduce
several function spaces.

We use standard notation for classical Lebesgue spaces such as L9(2) =
LY(R¥; L9(X)) with norm ||[|g0 = |Illy, 1 < ¢ < oo, for local Lebesgue
spaces L (Q and for Sobolev spaces H(£2). The same notation will be used
for spaces of vector fields or matrix fields when confusion can be excluded.
In particular we use the short notation ||u, v||, for ||ul|, + ||ull4, even if u
and v are tensors of different order. Furthermore we need the homogeneous
Sobolev space

HY(Q) ={u€ Li, (Q)/R: Vu e LYQ)}
of equivalence classes of functions equipped with the norm ||Vul|,. The dual

space [(lf];,(Q))]* of PAI,},(Q) where ¢' = _L; is denoted by H,*((2), its norm



by || - ||-1,4- Note that H'q_l(Q) is not the dual space of a space of functions
with vanishing trace on the boundary 0% of X.
Given 1 < r < oo a function 0 < w € L} (R**) is called an A,~weight

loc

(Muckenhoupt weight of class A,) on R % iff

A (w) = Slép (ﬁ/@wdz') : (ﬁ/@w‘l/(“”dx')rl < 00.

Here @ runs through the set of all bounded cubes @ C R** with edges

parallel to the main axes of R*~* and |Q| denotes the Lebesgue measure of Q.

The real number A, (w) is called the A,—constant of the weight w. Note that

we A, = A (R F) yields w' := w V01 € A, with A (w') = A, (w)"/".
Given w € A,, 1 < r < 00, and an arbitrary domain ¥ C R** let

18) = {u & Lhl®) s Nl = ([ furwae’)™ <0}

It is well-known [9] that L] (X) is a separable reflexive Banach space with
dense subspace C§°(X). In particular L7 (X)* = L7,(¥). In addition to
the weighted Sobolev space H (¥) with norm ||Vu, ull.. we introduce the
homogeneous Sobolev space

a2 ={ue L, (X)/R: VueL,(X)}
equipped with the norm ||Vu||,,. The dual space of PAI},,W, () will be denoted

by H;}(X); the norm of a functional F € H; }(X) is defined by

F
1P 1 = sup 222
" Vel

where the supremum is taken over all nonconstant ¢ € f[},vw,(E). Since
PAI,{W(E) can be considered as a closed subspace of L7 (3)"~* Hahn-Banach’s

theorem easily implies that F € H;%"(X) can be written in the form
F=f-V', ie, (F, ) :/f~V'<,0dx'
s

for all ¢ € HY

rw

(¥); here f € L,(X)" " and [|F'||-1,r0 = [| |-



On an infinite cylinder or layer = ¥ x R* where ¥ C R** is a bounded
C'-domain we introduce the function space

LY(L) == L (RS L,(5)

of Bochner-integrable L7 (¥)-valued Li-functions, 1 < ¢ < oo, with norm

l/q
fallras = ( [ty de) "
RFE

Furthermore we need the homogeneous Sobolev space

ol ., Q) ={ue L (Q)/R: Vue L(L)}

q;r,w loc

with norm ||Vu||yy. and the dual space H:! (Q) of H. , () with norm

g;7w g5t w'
(-

It is classical to consider exponential weights e*”» o € R, w.r.t. z, € R
for an infinite cylinder, see [27, 28]. For the more general domain 2 =
YxRF, ¥ Cc R** 1 <k < n—1, to be considered in this paper we
introduce exponential weights w.r.t. " € R* via the exponential e**" where
a € R*. Then we define the weighted spaces

LE(L,) = {u € Lige () = [|ullgasre = €% tll g < 00}

and X _
Hy () = {u € Li,.(Q)/R: |[|[Vu

q?a;TJW

q,057,W < OO} )

Q) will be denoted by H_ L () with norm

the dual space of lflql, 4,057

||'||—1,q,oc;r,w .
Finally we define the space of solenoidal vector fields

el I(
y T OGTT W

LA(LL) o= O @) "
where Cg2 () = {u € C°(Q)" : divu = 0}. By Proposition 2.8 below
Li(L])e = {ue LYLL)" : divu=0, u-v =0 on dQ}

where divu = 0 and the vanishing normal component v - v = 0 on 92 have
to be interpreted in the weak sense, i.e., [,u- Ve =0 for all ¢ € C§°(Q).



Note that a vector field u € LI(L!), has a vanishing flux in the following
sense: For every ball B"(z") C R* with center 2" € R¥

/ u"~l/d0:/ divudzr = 0.
Sx&BY (2 Sx Bl (2

For a cylinder €2 = ¥ x R we conclude that the classical flux

o(u)(x,) = / Up (2, xp)d’ =0 for a.a. z, € R
>

Actually for every slab ¥ x (z,,y,) C §2

0— / o divude= 3(u) (yn) — ¢(u)(x)

where by Holder’s inequality |¢(u)(x,)| < ¢ ||u(-, 2,)||rw; thus the constant
o(u)(xy,) is LL-integrable on R.
Now the main theorems are as follows.

Theorem 2.1 Let ¥ C R** be a bounded domain with C*~boundary, let
1<qg,r<ooandw € A,.

(1) Given F € H! (Q) the weak Neumann problem

q,7r,w
/ Vp-Vods = (F,¢) Yoe HY(Q). (2.1)
Q

has a unique solution u € PAIql;r,w(Q); furthermore

IVullgro < CIE| 1w

with a constant C = C(Q, q,r, A (w)).

(2) Let ay > 0 denote the smallest positive eigenvalue of the Neumann-
Laplacian in HY*(X) and let Q = ¥ x R C R* be an infinite cylinder.
Then for every o € (—y/aq, /o) the assertion (1) extends to every F €

qué;r,w(Q); moreover the solution u € lflql,amw(Q) satisfies the estimate

Hquq,a;nw < C(a) ||FHqu7a;r,w'



(3) If in (2) the functional F satisfies the estimate [(F,¢)] <
c(F)||eXeIN @] . ur for some a € (0, /ay), then also ||V ul| g, <
ce(F).

For details of exponentially weighted estimates in infinite layers 2 =
Y x Rf, 2 <k <n—1, see Theorem 4.4 in Section 4.

Theorem 2.2 (1) Given Q = X x R* as in Theorem 2.1 fir 1 < q, r < o0
and w € A,. Then there exists a unique continuous linear projection

P = Py s LLL)" — LU(LL)s C Lg(LL)"

with range LY(L},), such that Ker Py, = VPAIql;W(Q). Every u €
LA(LI)™ has the unique decomposition

u=uy+Vp, uy=Pu, Vp=(I—-Pu

satisfying
w0, Vllgsrew < Cllullgrw
where C' = C’(Q, q,r, AT(w)) .
(2) Concerning the duality product on L(L[)

Prw= Pq'ﬂ"',uﬂ ) [Lq(LZ;)U]* = Lq,(Lg’)a'

q;T,w

(3) Let Q =X x R CR" be an infinite cylinder and let o € (—\/ay,/aq).
Then there exists a projection

P = Fyarw: Le(LL)" = La(Ly)s

such that Ker Py = VH! . (Q). Every u € LL(L)" has the unique

q,o5T,W
decomposition u = uy + Vp, uyg = Pu satisfying

||u07 Vp q,057,W S C'||U/ q,057,W
where C = C(Q,q,a,r, Ar(w)). Moreover, P; .., = Py _apw and
[LL(LT),)* = LLG(L)y . If even le* @y < o0 for some o €

(0, y/ar), then also [|e45 (g, Vp) s < e’ .



Remark 2.3 The different constants C' = C(w) in Theorems 2.1 — 2.2 do
not depend on the explicit form of the weight w € A,, but only on the
A,—constant A, (w). Moreover it is important to note that even for every
d>1

sup {C(w) : w e 4,;, A (w) <d} < 0.
A constant C' = C'(w) : A, — R, with this property is called A, —consistent.

In all subsequent proofs we will check that the crucial constants C' = C(w)
are A,—consistent.

Before coming to the proof of Theorems 2.1 and 2.2 in Section 3 and 4 below
we prove several results for Muckenhoupt weights and for weighted function
spaces.

Lemma 2.4 Let 1 <r < 0o and w € A, (R"F).

(1) Let T : R% — R"* be a bijective, bi-Lipschitz vector field. Then also
woT € A, and A (woT) < c A, (w) with a constant ¢ = ¢(T,r) > 0
independent of w.

(2) Define the weight &(z') = w(Z, |z, _&|) for 2’ = (Z,2, &) € R**. Then
weA and A (0) < 2" A, (w).

(3) Let ¥ C R* % be a bounded domain. Then there exist si,sy € (1,00)
such that the continuous embeddings

L' (X) C L',(S) C L*(%)

hold. Here s1 and é are A,—consistent. Moreover, if Q C R"% denotes

a cube with ¥ C Q, the embedding constants do not depend on the weights
we W C A, provided that

sup A, (w) < oo, / wdr' =1 forallweW. (2.2)
weWw Q

Proof For the elementary properties (1), (2) see [11, 12]. The embeddings
(3) are based on the Reverse Holder Inequality [14] for the weight w and on
the classical Holder Inequality; for details see Lemma 2.2 in [12]. [ |

Proposition 2.5 Let ¥ C R** be a bounded Lipschitz domain and let 1 <
r < 00.



(1) For every w € A, the embedding H (¥) C L,(X) is compact.

(2) Consider a sequence of weights (w;) C A, satisfying (2.2) for W = {w; :
j € N} and a fized cube Q C R"™F with ¥ C Q. Further let (u;) be a
sequence of functions on X satisfying

sup ||lu;llg1 () < oo and w; =0 in H(X)
j )

for j — oo where s € (1,00) is given by Lemma 2.4(3). Then

||uj||r,wj —0 forj—o0.

(3) Under the same assumptions on (w;) C A, as in (2) consider a sequence
of functions (v;) on X satisfying

sup ||vjl/w; < oo andv; — 0 in L*(X)
J

(%)

for j — oo. Then considering vj as functionals on H
J

! w

||UjH[HT1/7w/_(E)}* — 0 fO'f'j — 0.

J

Proof For (1), (2) see Theorems 2.3, 2.4 in [12]. Note that in a first step of
the proof of (2) the uniformly bounded embeddings H},wj (X) € HI(D), see
Lemma 2.4(3), allow to find v € H}(¥) such that w.l.o.g. u; = u in H}(Y)
and u; — w in L*(X). The second step in [12] yields for every € > 0 a linear

operator T : L*(X) — C*°(Q2) such that
|luj — To(u)|rw; < e for all sufficiently large j. (2.3)

Under the given assumption u; — 0 in H}(X) we conclude that even u = 0,
1:(u) = 0 and consequently that [[u,]|,.; — 0.
To prove (3) find for every j € Na ¢; € H), ,(X) such that
)}

foslan, o = [ esesdes Mol =1
i}

rwh (2)

By the definition of A, (w;) and Hélder’s inequality

1< (ﬁ/@wj d:c’) : (|;ﬁ|/Qw; dx')rl < A (w)) < o0,
9



Hence due to (2.2) also wj satisfies a uniform integrability condition on @);
w.lo.g. we may assume that fQ wjdx" = 1. Applying (2.3) to (p;) we find

for £ > 0 a function ¢, € C*°(Q) such that w.lo.g. ||¢; — el < € for all
large 7. Thus

loslls, oy < ‘/Uj¢gdx‘+‘/v] — $.)da’

where the first term on the right-hand side converges to 0 for ;7 — oo by
assumption; the second term is bounded by Ce uniformly in j € N. Now (3)
is proved. ]

Corollary 2.6 (Poincaré Inequality) Let 1 < r < 0o, w € A, and X C
R** be a bounded Lipschitz domain. Then there exists an A,—consistent
constant ¢ > 0 such that

ullrew < e Vil
for allw € H (X) with vanishing integral mean [, udz' = 0.
Proof The proof is based on Proposition 2.5; for details see [12]. [ |

Lemma 2.7 Under the assumptions of Theorem 2.1 C°(Q)/R is dense in
H! . () for every 1 < q, r < oo, w € A, and o € RF.

q7a7T7w

Proof Given u € H! . () define the decomposition

q,05T,W

1
u=ux+uv, ux(a"):= B / u(a', 2")dx’!
s

such that v has vanishing means on ¥ for a.a. 2” € R¥. Concerning the
approximation of uy in

Q)

qarw(

qu,a(Rk) = {h € Li,.(R")/R : / ™|V h(2")|? da" < oo}
Rk

consider a functional F' € H} (R*)* vanishing on Cg°(RF)/R. We may as-
sume w.l.o.g. that ¥ € L7 (RF)* and that

0= / V(") - F(2")da" for all v e C°(RF).
RFk

10



Thus V"F = 0 in the sense of distributions. Hence F' = const and even
F = 0, since F € L% (R¥)F. Now Hahn-Banach’s Theorem implies that
C5°(R¥)/R is dense in H, (R¥).

Concerning v let ¢ € C°(R¥) be equal to 1 for 2" € B{},(0) and vanish
for 2 ¢ BY(0). Then for N € N

19 (2 (5)0(@) = Vollyre

i

T C -z l/q
< el (e = 1) Volluara+ 5 ( | o I
N

where the first term on the right-hand side converges to 0 for N — oo by
Lebesgue’s Theorem on Dominated Convergence. Since [, v(z’,z")dz’ = 0
and consequently [[v(-,2")],» < c|[V'v(,2")|,w for a.a. 2" € RF with a
constant ¢ = ¢(r,w,X) due to Poincaré’s inequality, see Corollary 2.6, we
conclude that v is approximated in I{Iqua;w(Q) by functions with compact
support and vanishing mean on ¥ for a.a. z” € R. Ignoring the weight
e®*" on B%(0), using the above Poincaré inequality on ¥ and the classical
Poincaré inequality on B} (0) we may assume that v is contained in a non-
homogeneous Sobolev space Hj,, ,(€2) and has compact support in S x BY(0).

By Theorem 1.1 in [4] there exists a linear bounded extension operator E’ :
H,(¥) = H},(R""). Applying E' to v(-,2") for a.a. 2" € By (0) we get a
bounded linear extension operator £ such that Ev is weakly differentiable,
supp Ev C R"™" x B{(0) and Ev € H,, (R"). Choose p € C§°(R"*) with
Jan—r p(@)da’ =1, let p.(2') = ek_”p(%’) and J.w(z') = p.*w(z'). Then the
family {J,e : € > 0} of Friedrichs’ mollifier operators is uniformly bounded
on L7 (R"*) such that Jow — w in LT (R" %) as ¢ — 0+, see Remark 3.4 in

[9]. Thus

[ 0E = Do)+ I(VLE = 9wl ) do” =50
Rk

as ¢ — 0+ due to Lebesgue’s theorem. Then a further k-dimensional mol-
lification process on LY(L!) with respect to the z”—variables proves that v

may be approximated in H} .. () by C5°(Q). ]

Proposition 2.8 Under the assumptions of Theorem 2.1

LA(LL)e ={ue LL(LL)" : divu=0, v-u=0on d}.

11



Proof Since by definition C§% (€2) is dense in L(L[,),, the inclusion ”C* is
obvious. To prove the opposite inclusion let F' € L(i'a(LL’,)” be a functional
vanishing on Cg%,(Q), i.e., [, F - @dx = 0 for all p € C§%(Q). Since F €
Li ()", de Rham’s argument (for an elementary proof see Theorem 1.1 in

loc 1
[21]) yields ap € Ly, (§2) such that I = Vp. Consequently p € H, Q),

loc
and the density of C°(Q2)/R in flql,,_a;r,,w,(Q) shows that

/F-ud:c:/Vp~udx:0
Q Q

for all w € LL(L!)" with dive = 0, v - u = 0 on 0. Now the theorem of
Hahn-Banach completes the proof.

el I(
y T OGT W

3 The Weak Neumann Problem in Fourier Space

Given an infinite cylinder or layer Q = ¥ x R* where ¥ C R** is a bounded
domain with C'-boundary, fixed 1 < ¢, r < oo and a weight w € A, =

A, (R"*) we consider the weak Neumann problem
—Au=F with weH (Q), FeH],(Q).

;7w

To be more precise, we are looking for the unique solution u € }AI(};W(Q) of
the variational problem

/ Vu-Veods =(F,p) Yope€ PAI(},;T,M,(Q) : (3.1)
Q

Since F' can be written in the form F = f -V with f = (f', f") € LY(L])"
and ||F||-1grw = If's f|lgrw, (3.1) is restated in the form

/ /(V'u' V' + V' - V'p)da'da"
R’k S5

:/t/uﬂv¢+fﬂv%mfm0 (3.2)
RF J X

Under suitable assumptions on v and F), f we use a partial Fourier transform
F = " with respect to 2” € RF and with Fourier variable ¢ € R*. Then
Parseval’s formula yields the variational problem

/Rk/E(V’a.v—’¢>+§2a$)dx’d§:/Rk/E(ff.v/(ﬁJrfu_@)dx,df

12



for all suitable complex—valued functions ¢. Here for short £ = [£]2. Con-
sidering test functions of tensor product type ¢(2',2") = ¢(2')®(z") where
Y € C®(X),® € C°(RF), we are led to the variational problem

/ (V' - Vi + E2ay) da' = / (f -V + f"-i&a)) da (3-3)
b b

for all ¢ € C*°(X) or even for all ¢ € H}, ,,(X) and for all £ € R¥. Shortly
we write X R
V'ﬁ'vl—i-fQﬁ:f"V'—if-f"
or equivalently
(~A'+&)a = f-V' —it-f' inX

. (3.4)
v-(V'u—f") =0 on 0%

for all € € RF. Here for fixed £ € R¥ the right-hand side functions f', f are
in L7 (X) and the Neumann boundary condition has to be understood in a
formal sense. Before solving (3.4) in ¥ and above all in R** or R we cite
the Hormander—Michlin Multiplier Theorem in weighted spaces.

Theorem 3.1 Let m € C" F(R**\{0}) admit a constant M € R such that
u["|7m ()| < M for all p € R*F\{0} (3.5)

and multi-indices v € Ny ™" with |y| < n — k. Then for all 1 < r < oo
and w € A.(R"*) the multiplier operator Tf = F~m()Ff defined for
all rapidly decreasing functions f € S(R**) can be uniquely extended to a
bounded linear operator from LT (R"*) to LT (R"*). Moreover there exists
an A, —consistent constant C = C(r, A.(w)) such that

1Tl < CM|llror

For the proof see Chapter IV, Theorem 3.9 in [14]. The A,—consistency
of the constant C' can be checked by carefully examining the proof in [14].

Theorem 3.2 Let ¥ denote the whole space R** or the half space Rﬁ_k,
let 1 <r < oo andw € A.(RF). Then for every £ € RF = RF\{0} and
f=(f,f") e L' (Z)" problem (3.4) has a unique solution & € H} ,(X). This
solution satisfies the a priori estimate

||V’aaifa||r,w < C||f

W (36)
with an A,—consistent constant ¢ = c(A,(w)) independent of € € RE.

13



Proof In the proof we will omit the notation " for the original partial Fourier
transform F which led from (3.2) to (3.3), since we have to introduce a further
partial Fourier transform.

First let ¥ = R" % Then we apply the (n — k)-dimensional Fourier
transform G = ~ with the Fourier variable p € R"* to (3.3), (3.4) to get the
problem

(W + Ea(p) = —ip- f —i&- f" in S'(R"F)

where p?2 = - p1; no boundary condition is needed in this case. For its explicit
solution a(u) = (u* + &)~ (—ip - f/ —i& - f") we have

= pep  p®E -
V'u _ P - f
icu E@u £®¢ R

'u2 + é‘? 'u2 _|_£2
All matrix elements satisfy the Hormander-Michlin multiplier condition (3.5)
with a constant M independent of £ € R¥. Thus Theorem 3.1 yields the a
priori estimate (3.6) with an A,—consistent constant ¢ independent of £ € R”.
If f = 0 and consequently f = 0, also & = 0 and u = 0 proving the uniqueness
assertion for every & € RF.

Next let ¥ = Ry % = {2’ = (2,2, &) : 2* € R**1 2, 4 > 0} and fix
f=U1" = o ) e L (E), we A(R*F). At this moment it is
convenient to assume w.l.o.g. that w is even w.r.t. x, g, see Lemma 2.4(2).
Due to the formal boundary condition 0,_zu — fo_r, = 0 on 9% = R**-1
we extend f,_j in an odd way to f,_x, € LL(R**) and f*, f” in an even
way to fF, f/ € L' (R*%). By the results proved just before there exists a
unique u € H}' ,(R"*) such that

(A" +Pu=fr -V + fo ko On g —i&- fI on R* .

Since f; is even w.r.t. @,y etc., also u(x*, —w,_x) solves this equation. Hence
the uniqueness assertion proves that u is even w.r.t. x,_;. Given ¢ € C§°(X)
let . € H ,(R**) be its even extension to R**. Then

1
[revear = 5[ g,
) 2 Rnr—k
1
/fnkankwdx, = 5 fnfkvoanfkwedxl;
by Rn—k

14



similar identities hold for the integrals involving f” and wu since u is even.
Hence u actually solves (3.3). Finally

IV u, igu

T,UJ,Z S ||V,u7 Z-f?’LHT,(JJ?]Rn_k

S C(Ar(w)) ||f;> fnfkvoa fél 7w, Rk S CTC('AT(W)) HfHT,W;E .

If f=0and u e H} (Y) is a solution of (3.3) on X, then u, € H} (R"")
solves (3.3) on R"* with a vanishing right-hand side. Thus u, = 0, u = 0
proving the uniqueness assertion. [

Remark 3.3 Assume f € Ly (X)" N L2 (X)" for exponents 1 < r; < oo and
weights w; € A,,, ¢ = 1,2. Then the unique solution & € H[!(X) of (3.4)
also satisfies & € H/2(Z). For the proof in the case & = R"™* note that
the solution is uniquely defined by a(u) = (42 + €2)~ (—ip - f/ — i€ - f") in
S'(R*F). If £ = R""* the extension techniques in the proof of Theorem 3.2
prove the uniqueness of w.

Next we consider the Neumann problem (3.4) in a bended half space
Y, CRH,

Yo = {0 = (2%, 3, ) ER"F 1, > 0(a%)},
where o € COL(RM+1),

Theorem 3.4 Letn >3, 1 <r < oo, w € A(R*"*), 1 <k <n-2and
o € COL R 1), There exists an A,—consistent constant K = K(r,w) > 0
with the following property: Assume that ||V'o|lw < . Then for every
€ € R and for every f = (f', f") € L7,(S,)" problem (3.4) has a unique
solution @ € Hy ,(X,). This solution satisfies the a priori estimate (3.6) with

an A,—consistent constant ¢ = ¢(A,(w), K) independent of £ € RE.

Proof For notational convenience we omit the symbol * and write u instead
of 4 etc. The problem (3.3) in 3, is reduced to the half space problem
via the coordinate transform ¢ : ¥, — R & = (% 7,4) = o(2') =
(x*, 2k — o(2¥)). Obviously ¢ is a bijection with Jacobian equal to 1. For a
function u on X, we define (') = u(¢~"(#')) and denote by 9;, V' etc. the

derivatives w.r.t. the variable 7 € RT’“. In particular, using d,_xo = 0,

Opu(a’) = (0; — (0;0)0n—p)i(@), 1<j<n—k,

lulrws, = il ggm-r, Vullres, < e+ 1Yol IVal, g e
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Here the modified weight ©(z') = w(¢™! (7)) satisfies © € A, and A, (©) <
cA,(w) where ¢ = ¢(¢) is independent of w, see Lemma 2.8 (1).
Given ¢ € H!, ,(3,) the variational problem (3.3) yields

/ (Vi - V' + E2a0)di
R7
= (f' - V' + f" - i&d)di’ + R(4, i, f,0) (3.7)
with the remainder
RO) = [ (9090t (Vo 000
Rf’“
V028, iyt — (f - v'a)én,kz/})df:'.

Thus @ can be considered as a solution of (3.3) on R with modified right—
hand side where f” is unchanged, but f’ has to be replaced by

f, + (5n7k71) VIU + (VIU : @'ﬁ)en,k - ‘V’U’2((§n,kﬁ)€n,k - (fl . V’U)en,k

with the unit vector e,_ = (0, ..., 0,1) € R* %,

If ||V'0||« is sufficiently small, Kato’s perturbation method implies that
the implicit problem (3.7) has a unique solution @. For more details of this
standard argument see e.g. [8]. Actually, the a priori estimate (3.6) for @
on Rﬁ‘:k with an A,—consistent constant ¢ proves that there exists an A,—
consistent constant K such that for o with ||[V'o|l < & the solution @
satisfies

V4, i€, g gnt < ClIf

~ n—Fk
@, Ry

where again C' is A, consistent. This estimate yields (3.6) for u on ¥, with
an A,—consistent constant ¢ > 0. Furthermore the uniqueness assertion for
@ in (3.7) proves the uniqueness of u. u

Remark 3.5 Assume [ € L} (E5) N L2 (Xs) for exponents 1 < 7; < oo and
weights w; € A,,, i = 1,2. Then for ¢ € CO(R"7*~1) satisfying ||V'0||o <

min(z-, ;) where K; = K (r;,w;) the unique solution @ € H;, , (¥,) of (3.4)

also satisfies o € H}MZ(EU). The proof is based on the construction of % in

the proof of Theorem 3.4 and on Remark 3.3.
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Next we will consider a bounded domain ¥ C R** with boundary of
class C'. It is well-known that the Neumann eigenvalue problem

. ou
—At=caotin ¥, —=0onX (3.8)
ov
has a sequence of nonnegative eigenvalues 0 = oy < a3 < ay < ... and

corresponding eigenfunctions 4; € W (X) N C=(X). These eigenvalues and
eigenfunctions do not depend on the exponent r € (1,00) of the L™—space in
which (3.8) is analyzed. It is even allowed to consider (3.8) in weighted spaces
L7, w e A,. The proof is based on standard elliptic regularity techniques and
on the embeddings L*(X) C L' (X) C L*2(X), see Lemma 2.4(3).

To avoid difficulties originating from the eigenvalue oy = 0 of (3.8) when
solving (3.4) in bounded domains ¥ C R*~* we introduce the spaces

L) = {uEL;(E):/Eud:c’zo},

HINE) = {ueL(D): V' € L(D)}

of functions with vanishing integral mean on X. Note that H;)(X) is com-
pactly embedded into L[°(X) and that ||Vu,. is a norm on H}J(X), see
Proposition 2.5 and Corollary 2.6.

To extend L7(L")-estimates without weights w.r.t. z” € R* to exponen-
tially weighted L?-estimates we consider (3.3),(3.4) also for complex ( in the
strip

Sg={(=¢+iaeC: &acR |a|< B}, B>0.

For ¢ € Sz (3.4) has the form
(—A' +&+2a-E—ad)i = f-V —i(+ia)- f" inX (39)
v-(Vi—f) = 0 on 0% '

which formally is the partial Fourier transform of the equation
(~A+2a-V'—aPHu=f -V + " V'+a-f
in Q together with the boundary condition du/dv = f'- v on 0S.

Theorem 3.6 Let Y C R"* be a bounded domain of class C', let1 < r < 0o
and w € A,. Then for every ( € Sz, 0 < f < /o, and

f=W e Ly®)" with f"e L (E)
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problem (3.9) has a unique solution @ € H})(X) satisfying the a priori esti-
mate

V'@, il < el flreo (3.10)

with an A,—consistent constant ¢ independent of ¢ € Sg.

Note that due to the condition f” € L7°(Z)* and its implication @ €
H}9(X) it suffices to consider only test functions 1 € H:,&,(E) in the varia-

tional formulation of (3.9). In the first step of the proof of Theorem 3.6 we
prove a preliminary estimate.

Lemma 3.7 In the setting of Theorem 8.6 a solution u € H})(X) of (3.9)
satisfies the a priori estimate

V'@, ¢, a

T,w S C(HfHT,(A} + Ha

W + HVI’&H[H’:IW,(Z)n]*) (311)
with an A,—consistent constant ¢ > 0 independent of ¢ € Sp.

Proof The closure of the bounded domain X can be covered by a finite
number of balls By, ..., B,, C R**. Furthermore there are cut-off functions
0 < ¢1,...,0m € CPR"F) with suppy; C B; and > = 1in X
Since 9% C C*, for every j with B; N 0¥ # ) there exists a perturbation
oj € CY(R" 1) such that (after a suitable translation and rotation T} of
the coordinate system) B;NY C X; := ¥, and B;NJY C 0%;. Assume that
each B; N ¥ is a Lipschitz domain. Looking at the A,—consistent constant
K = K(r,w) in Theorem 3.4 we can even choose a fixed, sufficiently large and
A,—consistent number m = m(K) € N such that each function o, satisfies
V')l < +. Thus we may use the same partition of unity {¢; };n:l for
every w € A,, A.(w) < d. Since the coordinate transform 7} does not
essentially affect the subsequent estimates, e.g. A,(w) ~ A, (w o Tj) by
Lemma 2.4(1), we suppress this transform in the following. If B; N 90X = ()
it will be convenient to define ¥; := R,

Again, for notational convenience, we write u instead of 4, etc. We start
with a solution u of (3.9) when ¢ = £ € Rf. Given a test function 1; €
C5°(5), 1 < j < m, wewilluse g —d; € H,/,(8) with d; = 5 [ ¢j4da’
as an admissable test function in (3.3) on X. Note that the constant d; drops

18



out in (3.3) since u, f” € L:°(X). Then an elementary calculation yields the
identity

/z, (V' (up;) - V1iby + €2 (ugp;)b; ) da’

= [ (e T+ () T + R

i
with the remainder term R/ = R{ + R% + R?);, where

Ri(;) = / V', - i,
E.

J

Ri(yy) = / (' = V') (& — ) Vg da'
s

7

Ri(y;) = /Z.gj'ﬁ/)jdx';

J

here ¢; = m fB]_ﬁE 1, da' is used to guarantee that v; —¢; € L:,’O(Bj ny)
and to define

! . 1 ! ! ! ! !
o) = & sy (LU= 90 Tias ) x (@),

Besides the trivial estimate |R}(¢)| < ¢|[ul]re |V ||y o x; Poincaré’s in-
equality on B; N X implies that

IRy(¢)| < c(||f

oo+ 19l sy) 11974

P w3 -
Obviously R (1)) satisfies the estimate
[RLW)] < [gjllr 18] wrs;,
with
95l < 17 (15 s 19l (3.12)

this inequality will be used for |€| sufficiently large, say for |£|] > M. For
small |{] we exploit the fact that u solves (3.3) in ¥. Replacing ¢, in the
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definition of g; by ¢; — ;5 € HYY (X) with g5 = ‘—Q [5 pida’ we rewrite g;
in the form

] 1
gj(a') = é—g BNy (/E(SQU + i€ - f")p; d?/) x8;ns(2').

Consequently

19517 < Ul llreo + [1€0lr ) - (3.13)

Now apply the a priori estimate (3.6) to ug; and sum up for j =1,... ,m
to get that

||V’Uafu||r,w < C(Hf”r,w + [Ju

re H VUl (-

for all £ € R¥. There we used that the term 0 |V'wl|,, which, to begin
with, appears on the right-hand side of this estimate, see (3.12), can be
absorbed by the term ||V'ul|,, on the left-hand side for |§| > M; then for
€] < M we use (3.13) to estimate g; and R}(1)). Note that all constants are
A,—consistent due to the corresponding assertions in Theorems 3.2 and 3.4
and in Poincaré’s inequality; in particular the bound M is A,—consistent.

To extend (3.11) to complex ¢ = £+ia € Sg, € # 0, we write (3.9) in the
form

(A + &&= -V —i& (" +20u) + Pu+ - f. (3.14)

For a test function ¢ € H,y ,(¥) the crucial term ou + a - f” satisfies the
estimate

/
raol [V

| / (@ut o fyde) < clu, £

due to the vanishing means of u, f"” on ¥ and Poincaré’s inequality. Thus
the functional o?u + « - f” may be rewritten in the form h - V' where
|hllrw < cf|u, f"]|rw- Therefore the first part of the proof, i.e. the case
¢ = & € R¥, completes the proof when & # 0. If £ = 0 or even ¢ = 0,
we may add u on both sides of (3.9) to get (3.11). n

Proof of Theorem 3.6 Assume that (3.10) is not satisfied with an A,—
consistent constant c. Thus there exist sequences ((;) C Sz where (; =
fj + iCYj, fj,CYj € Rk, (Wj) C A, with Ar(w]') < d, fj € LZ](E)” with
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fIre L)(%)* and corresponding solutions a; € H}) () of (3.9) such that,
omitting the symbol ", w.l.o.g.

1= ||V, Guy

ri; > G| fillrw, forevery jeN. (3.15)
By Lemma 2.4 there exists an s € (1,00) not depending on j € N such that
(V'u;), (Guy), (u;) € L*(X)  are bounded.

Hence these sequences will admit weakly convergent subsequences in L*(X).
Omitting an additional subindex for subsequences we have to distinguish 3
cases concerning the behavior of ({;).

First Case ¢; — ¢y € Sp\{0} : We may assume that u; — u in H(X)
for j — oo and that u satisfies

0
(—A +(u=0in %, a_ZZO on ¥
in the weak sense. Since —(? differs from every eigenvalue o; of the Neu-
mann eigenvalue problem (3.8) we conclude that u = 0. In particular u; — 0,

V'u; = 0in L*(X) for j — oco. Then the compactness assertions of Proposi-
tion 2.5(2),(3) imply that

||Uj||r,wj + ||V,U]||[Hjl ¥ (x)n]* — 0 for ] —r OQ.
“

But this convergence yields a contradiction to (3.11) and (3.15).

Second Case (; — 0. In this case u; — u in H}(X) where u solves —A'u =
0, du/Ov = 0. But since [ju;ds’ = 0 for every j € N, also [udz’ = 0
yielding v = 0. Thus we will arrive at the same contradiction as before.

Third Case |(;| — oo : Obviously u; — 0 and consequently also V'u; — 0
yielding the same contradiction as above.

Up to now we proved the a priori estimate (3.10) for every ¢ € Sg,

feX =L (2)"Fx L%k

and a given solution u € H};J(X); the constant ¢ in (3.10) is A,—consistent. In
particular the uniqueness of a solution is guaranteed. To prove the solvability
of the Neumann problem fix ¢ € Sg and consider the bounded linear operator

Tow: HYJ(E) = Hyy(B), Trou=V'u-V' +(Cu,

rw
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where (% = €2+ 2ia- € — o?. Obviously T, is injective and its dual operator
(T, .)" equals T, ,s. To prove the surjectivity of T, it suffices due to the
Closed Range Theorem to show that 7T, , has a closed range.

For these reasons we introduce the closed subspace

Y={f=(,fYeX: f -V —i(-f"=0}
of X. Then we consider the linear operators
T - H:,’(B(E) — X/K Tiu = [(vlu7 ZCU)};

where [f] € X/Y denotes the equivalence class in the quotient space X/Y
represented by f € X, and

Ty: X)Y — H 0 (2), Df]=f-V' —i(- "

Obviously both operators are bounded and T, , = 15 o T7. Moreover T is
injective, surjective and consequently, due to the Open Mapping Theorem,
an isomorphism. Hence there exists a constant ¢; > 0 such that

s e = 2 . il = ol -
Concerning 77 the a priori estimate (3.10) yields a constant ¢ > 0 such that

|V'u, Cul|rw < ¢ inf{Her,w fe [(V'u,iCu)]} = c||Tvul|x/v;

note that every f € [(V'u,iCu)] is an admissable right-hand side in (3.4) with
solution u. Combining the previous estimates leads to the inequality

C
ITy o TluH[H:;Ow,(Z)}* > || Thullx/y 2 ;1 1V, Gl -

Thus 7;,, = T, o T has closed range. Now the proof of Theorem 3.6 is
complete. m

Next we extend Theorem 3.6 in a certain sense from f € X to all f €
L7 (X)" and rewrite the result in a more operator-theoretical way. For ( =
§+ia € Splet

Mo (&) s LL(S)" = LL(%)", M.(&)(f) = (V'a, &),
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denote the bounded linear solution operator of 3.9; however f is replaced by

~

A A A 1 A
[V =i +ia)- (f"— f8) where fi(z") = E/ (', 2") dz'.
x
Let |||T'|]| denote the operator norm for a linear map 7' € L(LI (X)").

Corollary 3.8 Given 1 <r < o0, w € A, and o € [-3,0], 0 < B < \Ja;
the operator family {My(E) : € € RF} has the following properties: My(€)
is Fréchet—differentiable w.r.t. €& € RF and there exists an A,.—consistent
constant ¢ = ¢(f) such that for every multi-index v € {0,1}*

1Mo O +ELITMa(OI S ¢ for all € € R

Proof The uniform estimate of |||M,(+)||| is a consequence of (3.10). Since
¢ enters (3.9) in a polynomial way it is easy to show that M,(-) is Fréchet
differentiable. Given 4(£) € H;)(X) by (V'u,&0) = M,(€)(f) the Fréchet
derivative v;(§) = 0u(§)/0¢;, n—k+1 < j < n, solves the Neumann problem

V- V4 (€ + 2ia- € — a?); = —i(fl — flly) — 2(& + iaj)a.

Then |]0; solves a similar Neumann problem and Theorem 3.6 yields the
estimate

HIEI(V'D5, €05, 05)lrw < €llf, €8y dllrer < €l fllre

for every n —k+1 < j < n with an A,-consistent constant ¢ = ¢(5) > 0. For
the mixed second order derivative 0°M, /0&;0&, n —k+1 < j #1 < n, we
proceed in a similar way. The function w; = (02Ma/6£j8&)f satisfies the
equation

V' - V' + (€2 + 2iaf — o®)j = —2(& + ioy) 0 — 2(&; + a0y

admitting the estimate || |€]*(V'j1, €0j1)|lrw < ¢||fllrw- Analogously we
show that every set of partial derivatives {|£]707 M, (€) : € € R¥}, v € {0, 1},
is uniformly bounded in the operator norm ||| - |||. The generic constant ¢ in

these estimates is A,—consistent and independent of a € RF, |o| < 3. [ |

By Corollary 3.8 M,(-) satisfies the classical Hérmander—Michlin multi-
plier condition, cf. Theorem 3.1. However M, (§) is operator—valued and will
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be applied to Banach space—valued functions, e.g. to f € LI(RF; L (X))
It is well-known, see e.g. [3], that in this setting the Hérmander-Michlin
condition is not sufficient to guarantee the LI(R¥; LT (¥))—continuity of the
map

fr (V'u, V') =F M, ()Ff.

4 The Weak Neumann Problem and the Helmholtz
Decomposition

To deal with the Fourier multiplier operator F~'M,(-)F we refer to a recent
multiplier theorem of Strkalj~Weis [26] and introduce the definition of R—
bounded operator families. In that definition {r;(-)} will denote a sequence
of independent, symmetric, {—1,1}-valued random variables on [0, 1], e.g.
the Rademacher functions

rj(s) = sign sin(2’ws), j €N

Definition Let X be a Banach space. A subset 7 C L(X) is called R~
bounded if there exists a constant C' > 0 and a p € [1,00) such that

1 N 1 N
/0 IS ()T Pds < © / IS ry(s)alPds
j=1 j=1

forall Ty,... , Iy € T, x1,... ,xy € X and N € N. The smallest constant
C in this inequality is called the R—bound R(T) of T.

Due to Kahane’s inequality [6] the definition of R-boundedness does not
depend on the choice of the exponent p € [1,00). Then Khinchin’s inequality
[6] and Fubini’s Theorem easily yield the following equivalent definition for
Lebesgue spaces X = L"(X, ) using square function estimates. For further
details see also [5].

Lemma 4.1 Let (3,2, i) be a measure space, 1 <r < oo and X = L' (2, u).
Then T C L(X) is R-bounded iff there exists a constant C' > 0 such that

N ,\ /2 N )\ 12
(X maOR) 1< en(X 1568)
j=1 j=1
forallTy,... Ty €T, f1,..., [y € X and N € N.
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To state the multiplier theorem of Strkalj~Weis (Theorem 4.4 in [26], see
also Theorem 3.7 in [15] and, for the one-dimensional case, [31]) we need
the notion of UMD-spaces, see [2, 3]. A Banach space X is called a UMD—
space iff the Hilbert transform is continuous for functions f € LP(R; X),
1 < p < oo. It is well-known that every Lebesgue space X = L"(X, p),
1<r<oo,is UMD.

Theorem 4.2 Let X be a UMD-space and let {M(£) : £ € RF} € L(X) be
a k—times Fréchet differentiable operator family on X such that the sets

{lgoTM(€) - € e REY, v € {0,1}F,  are R-bounded.

Then the operator F~*M(-)F defined on C°(R¥; X) extends to a bounded
linear operator on LP(R¥; X) for 1 < p < oo. Furthermore there exists a

constant ¢ > 0 independent of M(-) such that

NFIMF<e Y, R({EMOME) € €RLY).

v€{0,1}*

We note that the above estimate of |||[F~'MF||| is easily obtained
when examining the proof in [26]. To apply Theorem 4.2 to the operator
family {M,(-)} we need an important extrapolation property of operators

on weighted function spaces, see [14], and its consequence concerning R—
boundedness [12].

Theorem 4.3 Let 1 <r, s < oo, w € A, and let ¥ C R"™* be an open set.
Furthermore let T C L(L(X)) satisfy the estimate

1f

for all f € LI (X) N LX) and for every weight v € Ay with a constant
C = C(As(v)). Then T is R-bounded on L(L[,(X)).

s < C\fllsy forall T eT,

This result easily extends to 7 C L(L(X)™).

Proof of Theorem 2.1 By Theorems 4.2, 4.3 and by Corollary 3.8 F 1M, (-)F
defines a bounded linear operator on LI(R¥; L” (¥£)") for every 1 < ¢,r < oo
and w € A,. Looking at (3.9) we solved the variational problem

Vu-V+2a-V'u—c*u=f-V—fa-V'+a (f"—fL (4.1)
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with Vu € LY(RF; L7 (X)) due to the Li¢—continuity of F~*M,F. Moreover
u € LI(RF; L"%(X)) and by Poincaré’s inequality

IVu, u”q;nw < CHf”q;r,w (4.2)

with a constant ¢ = ¢(«) > 0 independent of f € L] (X).

To prove exponentially weighted estimates let |a] < 8 < /a1, g €
Cs°(RF; LT (2)™) and let v denote the solution of (4.1) with f replaced by
g satisfying || Vo|lgrw < ¢/|g|lgrw- Then (4.1) may be rewritten as

/ V(ve™ ") - V(pe*™ )dx
Q

" "

- / ((ge") - V(e™™") — (ghe ") - V" (pe™*")) do.

Thus u = ve " solves the Neumann problem —Au = f -V — f2.V" in Q,
v-(Vu— f) = 0 on 09, with the right-hand side defined by f = ge **".
Moreover, due to the estimate of v,

14" V'u, e V"u + ae®® ul| g < cl|€¥ Fllgrw-

Since v(-, 2") € L;°(X), Poincard’s inequality yields the estimate

||quq7a;r,w < C||qu7a;r,w~ (4.3)

Due to the density of C$°(R¥; L7 (X)) in LL(L7 (X)), these results extend to
every f € LI(LT (X)").

Since the solution constructed up to now solves the Neumann problem
Vu-V=f-V—fll.V" we still have to solve the equation

Vu-V=fl-v" (4.4)

and to find exponentially weighted estimates w.r.t. to z”, if possible. Since

&= f¥(z"), we find a solution of (4.4) by solving the Neumann problem

V'u-V"=fL.V" in R
Let E denote the fundamental solution of the Laplacian on RF. Then

u(x") = Exdiv f{(z") solves (4.4) admitting the a priori estimate ||V"ul|, <
c||f2]], 1 < g < oo. Since even for f& € C°(RE)* only |[V"u(2")| < clz”|~*
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can be guaranteed, in general there is no exponentially weighted estimate.
But if f{ is a potential field, i.e., fi = V"h for a scalar—valued function h,
then obviously u = h yielding the a priori estimate

||V”U||q, _||V”h||q, _||f ||q,

In particular, the one-dimensional case k¥ = 1 when (2 is an infinite cylinder
always admits exponentially weighted estimates.

It remains to prove the uniqueness of solutions. Let u € H;a rw($2) be a
solution of the problem

/ Vu-Vodr =0 forall ¢e€ ﬁ;,j,a;r,vw,(ﬁ).
Q

Looking at “test functions” ¢ not depending on x’ € X we conclude that

[ u(a’, 2")dz’ is constant in 2" € RF, say [, u(2’,-)dz’ = 0. Now the ex-
1stence result proved just before for functlonals F € H ! o (1) easily
implies that
(u, F) =0 forall F e H_ "o (€2)-
Next choose F' £ g(a',2") € C°(Q) satisfying J59(@',-)ds" = 0. The esti-
mate
‘(F,@/)H - ’/Q gwd.ﬂ < /Rk Hg(-,x”) W ||v,§/)(',$”)||r,wd$”
< gl w IVl 050

for ¢ € H, ... (Q) shows that actually F € Hyupo(Q). Thus Jo ugdr =0
for all g € C§°(Q) with [ g(a',-)da’ = 0. Since [, u = 0, the restriction

fz g = 0 may be omitted, and a standard density argument yields u = 0.
Assume that [(F, )| < ¢(F )Hea”"'Vngq . for some a € (0, /a;). Then

there exists f € Lloc(ﬁ) such that (F), fQ f-Vdz forall p € C°(Q) and

||ea|“"”|f||q;r < ¢(F). In particular f € L%, (L") and the unique solution

u € HL, (Q) satisfies the estimate

q;r,w

[ eI, < ¢ [ @+ e do, < o)
R R

Now Theorem 2.1 is completely proved. [ ]
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Proof of Theorem 2.2 (1) Given u € Li(L])" let p € FI(JI,&;W(Q) denote the
unique solution of the weak Neumann problem

(Vp, Vo) = (u,Vy) forall ¢e qul, Q).

el I(
y T oGT W

By Theorem 2.1 we know that ||VD||g.arw < ¢||t]lgarw- Then the Helmholtz
projection P = P, ... is defined by vy = Pu = u — Vp. Obviously P is
a bounded linear projection on LZ(L!)) with kernel Vﬁ;a;r,w(Q). Moreover
Proposition 2.8 immediately implies that the range of P equals LZ(L!),.
Finally the uniqueness assertion of Theorem 2.1 yields the uniqueness of the
Helmholtz decomposition.

(2) Using (1) standard duality arguments prove the assertion on P* and

L4 (LI)*, see [8, 13, 16]. u

By the previous analysis there are exponentially weighted estimates w.r.t.
2" € R¥ for an infinite layer = ¥ x R without any further restrictions.
In the final theorem we summarize the results for arbitrary domains €2 =
Y x RF, 2 < k <n—1.1It is convenient to describe the result on the weak
Neumann problem by using functions f and not functionals F'.

Theorem 4.4 Let X CR* % n>3,2<k <n—1, be a bounded domain
with Ct~boundary, let 1 < q,7 < 00, w € A.(R**) and a € R¥, || < \/ay.

(1) Assume that for f € LL(LT)" the k—dimensional field
1
g([L’H) — E/‘ f”(I,7$H) dajl
s

15 a potential field. Then the weak Neumann problem

Vu.-V=f-V
has a unique solution u € I:Iql,amw(Q) satisfying the estimate

||VU||q,amw < CHf

q,05T,W

(2) Assume that for w € Li(L!) the k—dimensional field uf, =
‘15' Jo (!, 2") dx' is a potential field. Then u admits a unique Helmholtz

decomposition
u=uo+Vp in LI(L))"
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and the exponentially weighted estimate

||u07 Vp q,057,W S C||u

q7a;r7w
with a constant ¢ > 0 independent of u.

3) Ifin (1) or (2) ||eX="] g < 00 0T ey, g < 00, TEsp., for some
( q7 ) q7 )
a € (0,/a1), then even

I
cale’]

| (1 + alfz"]) =D/ Vo < ele™ Fllgr (4.5)
or
ealz”| a
H (]- + ()Z|I"|)(k_1)/(2q) (u07 Vp)Hq;r,w S C||€ U’Hq;r,w- (46)

Proof It remains to prove (4.5). Since f € L, (L;,) for some o € (0, /a1)
and for every v € R¥, |y| = 1, for short v € S*~1, by (1) and Fubini’s theorem

Lo e vu e deay

Sk—1 JRE ’

< C/ / AT F (2, dady < clle |,
Rk Sk—l ) bAS

To get a lower bound of the left-hand side we use for fixed 2” € R* with
alz”] < 1 the elementary estimate [y, , €7 dy > ce®®’l. For alz"| > 1
use polar coordinates on S*~! to get

™
/ eqafyw” d’)/ > C/ (sin 9)16—26(104|;1:”|cosz9 do
Sk—1 0
/2 )
> cetol®”l / gk—2¢=aelz"10%/2 gp > CeqauII'(Oé|l‘”|)_(k_1)/2.
0

Thus the inequality

qalz"|

av-z' e
/S“ /R 1|\ Vu(-, )[4, da"dy > C/Rk T a|x,,|)(k_l)/2uw||g,w da"

proves (4.5). u

We note that the estimates (4.5) and (4.6) can be improved concerning the
denominator (1 + a|z”|)*=1/2 in the L?-case for small o and for ¢ # 2 by
using e.g. interpolation theory.
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