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The aim of this paper is to present a new joint approa
h to the Helmholtz

de
omposition in in�nite 
ylinders and in in�nite layers 
 = � � R

k

in the

fun
tion spa
e L

q

(R

k

;L

r

(�)) using even arbitrary Mu
kenhoupt weights with

respe
t to x

0

2 � � R

n�k

and, if possible, exponential weights with respe
t

to x

00

2 R

k

; 1 � k � n � 1; n � 2: For n = 2 we get the Helmholtz

de
omposition for a strip, for n = 3 in an in�nite 
ylinder or an in�nite layer

and for n > 3 in some (non{physi
al) unbounded domains of 
ylinder or layer

type. The proof based on a weak Neumann problem uses a partial Fourier

transform and operator{valued multiplier fun
tions, the R{boundedness of

the family of multiplier operators and an extrapolation property in weighted

L

q

{spa
es.

1 Introdu
tion

The Helmholtz de
omposition of ve
tor �elds into a solenoidal and a gradient

part is an important tool in the analysis of instationary Stokes and Navier{

Stokes equations via analyti
 semigroup theory [29℄. Besides L

2

{theory whi
h

is available in any domain [23℄ and numerous L

q

{results on bounded and

0

Mathemati
al Subje
t Classi�
ation 2000: 35J20, 35J25, 35Q35,76D99
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exterior domains, see e.g. [13, 16, 21, 25, 30℄ and [9, 10℄ for an approa
h in

weighted spa
es, there are only few L

q

{results on domains with non
ompa
t

boundaries. So{
alled aperture domains have been 
onsidered in [7, 8, 17℄.

In an in�nite layer su
h as (�1; 1)�R

2

a more or less expli
it representa-

tion and a multiplier te
hnique 
an be used [1, 32℄; for other approa
hes see

[18, 19, 20, 22℄ and also [17℄. However, the Helmholtz de
omposition for an

in�nite 
ylinder 
 = ��R where � � R

n�1

is a bounded domain requires a

more re�ned analysis [22, 24, 27, 28℄. To get the de
omposition

u = u

0

+rp

of a given ve
tor �eld u su
h that div u

0

= 0 and the normal 
omponent � �u

0

vanishes on �
 in the weak sense, the weak Neumann problem

�p = div u in 
; � � (rp� u) = 0 on �


has to be solved; then the Helmholtz proje
tion P is de�ned by Pu = u

0

:=

u � rp: In [24℄ the solution of the weak Neumann problem is based on

the splitting �� = �(�

2

1

+ : : : + �

2

n�1

) � �

2

n

and the existen
e of bounded

imaginary powers of ��

0

and of ��

2

n

in suitable fun
tion spa
es. A more


lassi
al analysis has been used in [22, 27, 28℄; standard L

2

{estimates are

re�ned by exponential weights via St. Venant's prin
iple to yield an L

q

{

theory, q 6= 2; of the weak Neumann problem. This approa
h allows to


onsider also domains of 
ylinder or layer type with varying 
ross se
tion,

see [18, 19, 20℄.

In this paper we present an operator-theoreti
al approa
h for both in�nite


ylinders and in�nite layers. Using a partial Fourier transform F w.r.t. x

00

2

R

k

we solve the weak Neumann problem ��p = F; i.e.,

Z




rp � r'dx = hF; 'i 8' 2 C

1

0

(
):

For every Fourier variable � 2 R

k

nf0g there exists a solution operator M(�)

leading to a Fourier multiplier operator F

�1

M(�)F with an operator{valued

multiplier fun
tion M(�) on L

r

(�){valued fun
tions, 1 < r < 1: To prove

the 
ontinuity of F

�1

MF on L

q

(R; L

r

(�)) we need the R{boundedness of

the operator family fM(�) : 0 6= � 2 R

k

g; see Se
tion 2. For these rea-

sons we extend the Neumann problem to weighted L

r

{spa
es using arbitrary

Mu
kenhoupt weights. Then results from harmoni
 analysis will prove the

2



R{boundedness of fM(�)g; and a re
ent multiplier theorem [26℄ will 
omplete

the proof in 
ase of L

q

{estimates without weights w.r.t. x

00

2 R

k

: To extend

the results to exponentially weighted L

q

{estimates it suÆ
es to 
onsider a

perturbation of the original Neumann problem.

This paper is organized as follows. In Se
tion 2 we start with the de�nition

of several important fun
tion spa
es and of Mu
kenhoupt weights. Then we

present the main theorems on the weak Neumann problem (Theorem 2.1)

and the Helmholtz de
omposition (Theorem 2.2). The se
tion ends with

some results for weighted fun
tion spa
es. Se
tion 3 deals with the weak

Neumann problem after applying a partial Fourier transform, and Se
tion 4

introdu
es the main tools from harmoni
 analysis and multiplier theory to


omplete the proof of Theorems 2.1 and 2.2. The paper ends with a result

on exponentially weighted estimates in 
ase of in�nite layers (Theorem 4.4).

2 Main Theorems and Preliminaries

Let 
 = � � R

k

be an in�nite 
ylinder or layer with 
onstant 
ross se
tion

� � R

n�k

; 1 � k � n� 1; where � is a bounded domain with C

1

{boundary.

The exterior normal ve
tor on �
 = �� � R

k

and also on �� � R

k

will be

denoted by �: Due to the produ
t stru
ture of 
 the 
anoni
al splitting x =

(x

0

; x

00

) 2 
 with x

0

2 � and x

00

2 R

k

will analogously be applied to ve
tor

�elds u = (u

0

; u

00

) and to di�erential operators. In parti
ular r = (r

0

;r

00

);

and � = �

0

+ �

00

: In order to des
ribe our main theorems on the weak

Neumann problem and the Helmholtz de
omposition we have to introdu
e

several fun
tion spa
es.

We use standard notation for 
lassi
al Lebesgue spa
es su
h as L

q

(
)

�

=

L

q

(R

k

;L

q

(�)) with norm k�k

q;


= k�k

q

, 1 � q < 1; for lo
al Lebesgue

spa
es L

q

lo


(
 and for Sobolev spa
es H

1

q

(
): The same notation will be used

for spa
es of ve
tor �elds or matrix �elds when 
onfusion 
an be ex
luded.

In parti
ular we use the short notation ku; vk

q

for kuk

q

+ kuk

q

; even if u

and v are tensors of di�erent order. Furthermore we need the homogeneous

Sobolev spa
e

^

H

1

q

(
) = fu 2 L

1

lo


(
)=R : ru 2 L

q

(
)g

of equivalen
e 
lasses of fun
tions equipped with the norm kruk

q

: The dual

spa
e [(

^

H

1

q

0

(
))℄

�

of

^

H

1

q

0

(
) where q

0

=

q

q�1

is denoted by

^

H

�1

q

(
); its norm

3



by k � k

�1;q

: Note that

^

H

�1

q

(
) is not the dual spa
e of a spa
e of fun
tions

with vanishing tra
e on the boundary �� of �.

Given 1 < r < 1 a fun
tion 0 � ! 2 L

1

lo


(R

n�k

) is 
alled an A

r

{weight

(Mu
kenhoupt weight of 
lass A

r

) on R

n�k

i�

A

r

(!) := sup

Q

�

1

jQj

Z

Q

! dx

0

�

�

�

1

jQj

Z

Q

!

�1=(r�1)

dx

0

�

r�1

<1 :

Here Q runs through the set of all bounded 
ubes Q � R

n�k

with edges

parallel to the main axes of R

n�k

and jQj denotes the Lebesgue measure of Q.

The real number A

r

(!) is 
alled the A

r

{
onstant of the weight !. Note that

! 2 A

r

= A

r

(R

n�k

) yields !

0

:= !

�1=(r�1)

2 A

r

0

with A

r

0

(!

0

) = A

r

(!)

r

0

=r

.

Given ! 2 A

r

; 1 < r <1; and an arbitrary domain � � R

n�k

let

L

r

!

(�) =

n

u 2 L

1

lo


(�) : jjujj

r;!

=

�

Z

�

juj

r

! dx

0

�

1=r

<1

o

:

It is well-known [9℄ that L

r

!

(�) is a separable re
exive Bana
h spa
e with

dense subspa
e C

1

0

(�). In parti
ular L

r

!

(�)

�

= L

r

0

!

0

(�). In addition to

the weighted Sobolev spa
e H

1

r;!

(�) with norm kru; uk

r;!

we introdu
e the

homogeneous Sobolev spa
e

^

H

1

r;!

(�) =

�

u 2 L

1

lo


(�)=R : r

0

u 2 L

r

!

(�)

	

equipped with the norm kruk

r;!

. The dual spa
e of

^

H

1

r

0

;!

0

(�) will be denoted

by

^

H

�1

r;!

(�); the norm of a fun
tional F 2

^

H

�1

r;!

(�) is de�ned by

kFk

�1;r;!

= sup

'

jhF; 'ij

kr'k

r

0

;!

0

;

where the supremum is taken over all non
onstant ' 2

^

H

1

r

0

;!

0

(�). Sin
e

^

H

1

r;!

(�) 
an be 
onsidered as a 
losed subspa
e of L

r

!

(�)

n�k

, Hahn-Bana
h's

theorem easily implies that F 2

^

H

�1;r

!

(�) 
an be written in the form

F = f � r

0

; i.e., hF; 'i =

Z

�

f � r

0

'dx

0

for all ' 2

^

H

1

r

0

;!

0

(�); here f 2 L

r

!

(�)

n�k

and kFk

�1;r;!

= kfk

r;!

.
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On an in�nite 
ylinder or layer 
 = ��R

k

where � � R

n�k

is a bounded

C

1

{domain we introdu
e the fun
tion spa
e

L

q

(L

r

!

) := L

q

�

R

k

;L

r

!

(�)

�

of Bo
hner-integrable L

r

!

(�){valued L

q

{fun
tions, 1 < q <1; with norm

kuk

q;r;!

=

�

Z

R

k

ku(�; x

00

)k

q

r;!

dx

00

�

1=q

:

Furthermore we need the homogeneous Sobolev spa
e

^

H

1

q;r;!

(
) =

�

u 2 L

1

lo


(
)=R : ru 2 L

q

(L

r

!

)

	

with norm kruk

q;r;!

and the dual spa
e

^

H

�1

q;r;!

(
) of

^

H

1

q

0

;r

0

;!

0

(
) with norm

k�k

�1;q;r;!

.

It is 
lassi
al to 
onsider exponential weights e

�x

n

; � 2 R; w.r.t. x

n

2 R

for an in�nite 
ylinder, see [27, 28℄. For the more general domain 
 =

� � R

k

; � � R

n�k

; 1 � k � n � 1; to be 
onsidered in this paper we

introdu
e exponential weights w.r.t. x

00

2 R

k

via the exponential e

��x

00

where

� 2 R

k

: Then we de�ne the weighted spa
es

L

q

�

(L

r

!

) =

�

u 2 L

1

lo


(
) : kuk

q;�;r;!

:= ke

��x

00

uk

q;r;!

<1

	

and

^

H

1

q;�;r;!

(
) =

�

u 2 L

1

lo


(
)=R : kruk

q;�;r;!

<1

	

;

the dual spa
e of

^

H

1

q

0

;��;r

0

;!

0

(
) will be denoted by

^

H

�1

q;�;r;!

(
) with norm

k�k

�1;q;�;r;!

.

Finally we de�ne the spa
e of solenoidal ve
tor �elds

L

q

�

(L

r

!

)

�

:= C

1

0;�

(
)

k�k

q;�;r;!

where C

1

0;�

(
) =

�

u 2 C

1

0

(
)

n

: div u = 0

	

: By Proposition 2.8 below

L

q

�

(L

r

!

)

�

=

�

u 2 L

q

�

(L

r

!

)

n

: div u = 0; u � � = 0 on �


	

where div u = 0 and the vanishing normal 
omponent u � � = 0 on �
 have

to be interpreted in the weak sense, i.e.,

R




u � r' = 0 for all ' 2 C

1

0

(
).
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Note that a ve
tor �eld u 2 L

q

�

(L

r

!

)

�

has a vanishing 
ux in the following

sense: For every ball B

00

r

(x

00

) � R

k

with 
enter x

00

2 R

k

Z

���B

00

r

(x

00

)

u

00

� � do =

Z

��B

00

r

(x

00

)

div u dx = 0:

For a 
ylinder 
 = �� R we 
on
lude that the 
lassi
al 
ux

�(u)(x

n

) :=

Z

�

u

n

(x

0

; x

n

) dx

0

= 0 for a.a. x

n

2 R:

A
tually for every slab �� (x

n

; y

n

) � 


0 =

Z

��(x

n

;y

n

)

div u dx = �(u)(y

n

)� �(u)(x

n

)

where by H�older's inequality j�(u)(x

n

)j � 
 ku(�; x

n

)k

r;!

; thus the 
onstant

�(u)(x

n

) is L

q

�

{integrable on R.

Now the main theorems are as follows.

Theorem 2.1 Let � � R

n�k

be a bounded domain with C

1

{boundary, let

1 < q; r <1 and ! 2 A

r

.

(1) Given F 2

^

H

�1

q;r;!

(
) the weak Neumann problem

Z




rp � r'dx = hF; 'i 8' 2

^

H

1;q

0

(
): (2.1)

has a unique solution u 2

^

H

1

q;r;!

(
); furthermore

kruk

q;r;!

� CkFk

�1;q;r;!

with a 
onstant C = C

�


; q; r;A

r

(!)

�

.

(2) Let �

1

> 0 denote the smallest positive eigenvalue of the Neumann-

Lapla
ian in

^

H

1;2

(�) and let 
 = � � R � R

n

be an in�nite 
ylinder.

Then for every � 2 (�

p

�

1

;

p

�

1

) the assertion (1) extends to every F 2

^

H

�1

q;�;r;!

(
); moreover the solution u 2

^

H

1

q;�;r;!

(
) satis�es the estimate

kruk

q;�;r;!

� C(�) kFk

�1;q;�;r;!

:

6



(3) If in (2) the fun
tional F satis�es the estimate jhF; 'ij �


(F )ke

�jx

n

j

r'k

q

0

;r

0

;!

0

for some � 2 (0;

p

a

1

); then also ke

�jx

n

j

ruk

q;r;!

�


 
(F ):

For details of exponentially weighted estimates in in�nite layers 
 =

�� R

k

; 2 � k � n� 1; see Theorem 4.4 in Se
tion 4.

Theorem 2.2 (1) Given 
 = � � R

k

as in Theorem 2.1 �x 1 < q; r < 1

and ! 2 A

r

: Then there exists a unique 
ontinuous linear proje
tion

P = P

q;r;!

: L

q

(L

r

!

)

n

! L

q

(L

r

!

)

�

� L

q

�

(L

r

!

)

n

with range L

q

(L

r

!

)

�

su
h that KerP

q;r;!

= r

^

H

1

q;r;!

(
) : Every u 2

L

q

(L

r

!

)

n

has the unique de
omposition

u = u

0

+rp ; u

0

= Pu ; rp = (I � P )u

satisfying

ku

0

;rpk

q;r;!

� Ckuk

q;r;!

where C = C

�


; q; r; A

r

(!)

�

:

(2) Con
erning the duality produ
t on L

q

(L

r

!

)

P

�

q;r;!

= P

q

0

;r

0

;!

0

; [L

q

(L

r

!

)

�

℄

�

= L

q

0

(L

r

0

!

0

)

�

:

(3) Let 
 = � � R � R

n

be an in�nite 
ylinder and let � 2 (�

p

�

1

;

p

�

1

).

Then there exists a proje
tion

P = P

q;�;r;!

: L

q

�

(L

r

!

)

n

! L

q

�

(L

r

!

)

�

su
h that KerP

q;�;r;!

= r

^

H

1

q;�;r;!

(
) : Every u 2 L

q

�

(L

r

!

)

n

has the unique

de
omposition u = u

0

+rp; u

0

= Pu satisfying

ku

0

;rpk

q;�;r;!

� Ckuk

q;�;r;!

where C = C

�


; q; �; r; A

r

(!)

�

: Moreover, P

�

q;�;r;!

= P

q

0

;��;r

0

;!

0

and

[L

q

�

(L

r

!

)

�

℄

�

= L

q

0

��

(L

r

0

!

0

)

�

: If even ke

�jx

n

j

uk

q;r;!

< 1 for some � 2

(0;

p

�

1

); then also ke

�jx

n

j

(u

0

;rp)k

q;r;!

� 
ke

�jx

n

j

uk

q;r;!

:
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Remark 2.3 The di�erent 
onstants C = C(!) in Theorems 2.1 { 2.2 do

not depend on the expli
it form of the weight ! 2 A

r

, but only on the

A

r

{
onstant A

r

(!). Moreover it is important to note that even for every

d � 1

sup

�

C(!) : ! 2 A

r

; A

r

(!) � d

	

<1 :

A 
onstant C = C(!) : A

r

! R

+

with this property is 
alled A

r

{
onsistent.

In all subsequent proofs we will 
he
k that the 
ru
ial 
onstants C = C(!)

are A

r

{
onsistent.

Before 
oming to the proof of Theorems 2.1 and 2.2 in Se
tion 3 and 4 below

we prove several results for Mu
kenhoupt weights and for weighted fun
tion

spa
es.

Lemma 2.4 Let 1 < r <1 and ! 2 A

r

(R

n�k

).

(1) Let T : R

n�k

! R

n�k

be a bije
tive, bi-Lips
hitz ve
tor �eld. Then also

! Æ T 2 A

r

and A

r

(! Æ T ) � 
A

r

(!) with a 
onstant 
 = 
(T; r) > 0

independent of !.

(2) De�ne the weight ~!(x

0

) = !(~x; jx

n�k

j) for x

0

= (~x; x

n�k

) 2 R

n�k

. Then

~! 2 A

r

and A

r

(~!) � 2

r

A

r

(!).

(3) Let � � R

n�k

be a bounded domain. Then there exist s

1

; s

2

2 (1;1)

su
h that the 
ontinuous embeddings

L

s

1

(�) � L

r

!

(�) � L

s

2

(�)

hold. Here s

1

and

1

s

2

are A

r

{
onsistent. Moreover, if Q � R

n�k

denotes

a 
ube with � � Q, the embedding 
onstants do not depend on the weights

! 2 W � A

r

provided that

sup

!2W

A

r

(!) <1 ;

Z

Q

! dx

0

= 1 for all ! 2 W : (2.2)

Proof For the elementary properties (1), (2) see [11, 12℄. The embeddings

(3) are based on the Reverse H�older Inequality [14℄ for the weight ! and on

the 
lassi
al H�older Inequality; for details see Lemma 2.2 in [12℄.

Proposition 2.5 Let � � R

n�k

be a bounded Lips
hitz domain and let 1 <

r <1:

8



(1) For every ! 2 A

r

the embedding H

1

r;!

(�) � L

r

!

(�) is 
ompa
t.

(2) Consider a sequen
e of weights (!

j

) � A

r

satisfying (2.2) for W = f!

j

:

j 2 Ng and a �xed 
ube Q � R

n�k

with � � Q. Further let (u

j

) be a

sequen
e of fun
tions on � satisfying

sup

j

ku

j

k

H

1

r;!

j

(�)

<1 and u

j

* 0 in H

1

s

(�)

for j !1 where s 2 (1;1) is given by Lemma 2.4(3). Then

ku

j

k

r;!

j

! 0 for j !1 :

(3) Under the same assumptions on (!

j

) � A

r

as in (2) 
onsider a sequen
e

of fun
tions (v

j

) on � satisfying

sup

j

kv

j

k

r;!

j

<1 and v

j

* 0 in L

s

(�)

for j !1. Then 
onsidering v

j

as fun
tionals on H

1

r

0

;!

0

j

(�)

kv

j

k

[H

1

r

0

;!

0

j

(�)℄

�

! 0 for j !1 :

Proof For (1), (2) see Theorems 2.3, 2.4 in [12℄. Note that in a �rst step of

the proof of (2) the uniformly bounded embeddings H

1

r;!

j

(�) � H

1

s

(�), see

Lemma 2.4(3), allow to �nd u 2 H

1

s

(�) su
h that w.l.o.g. u

j

* u in H

1

s

(�)

and u

j

! u in L

s

(�). The se
ond step in [12℄ yields for every " > 0 a linear

operator T

"

: L

s

(�)! C

1

(
) su
h that

ku

j

� T

"

(u)k

r;!

j

� " for all suÆ
iently large j : (2.3)

Under the given assumption u

j

* 0 in H

1

s

(�) we 
on
lude that even u = 0,

T

"

(u) = 0 and 
onsequently that ku

j

k

r;!

j

! 0.

To prove (3) �nd for every j 2 N a '

j

2 H

1

r

0

;!

0

j

(�) su
h that

kv

j

k

[H

1

r

0

;!

0

j

(�)℄

�

=

Z

�

v

j

'

j

dx

0

; k'

j

k

H

1

r

0

;!

0

j

(�)

= 1 :

By the de�nition of A

r

(!

j

) and H�older's inequality

1 �

�

1

jQj

Z

Q

!

j

dx

0

�

�

�

1

jQj

Z

Q

!

0

j

dx

0

�

r�1

� A

r

(!

j

) <1 :

9



Hen
e due to (2.2) also !

0

j

satis�es a uniform integrability 
ondition on Q;

w.l.o.g. we may assume that

R

Q

!

0

j

dx

0

= 1. Applying (2.3) to ('

j

) we �nd

for " > 0 a fun
tion �

"

2 C

1

(
) su
h that w.l.o.g. k'

j

� �

"

k

r

0

;!

0

j

� " for all

large j. Thus

kv

j

k

H

1

r

0

;!

0

j

(�)

�
�

�

�

�

Z

�

v

j

�

"

dx

0

�

�

�

+

�

�

�

Z

�

v

j

('

j

� �

"

)dx

0

�

�

�

;

where the �rst term on the right-hand side 
onverges to 0 for j ! 1 by

assumption; the se
ond term is bounded by C" uniformly in j 2 N . Now (3)

is proved.

Corollary 2.6 (Poin
ar�e Inequality) Let 1 < r < 1, ! 2 A

r

and � �

R

n�k

be a bounded Lips
hitz domain. Then there exists an A

r

{
onsistent


onstant 
 > 0 su
h that

kuk

r;!

� 
kr

0

uk

r;!

for all u 2 H

1

r;!

(�) with vanishing integral mean

R

�

u dx

0

= 0.

Proof The proof is based on Proposition 2.5; for details see [12℄.

Lemma 2.7 Under the assumptions of Theorem 2.1 C

1

0

(
)=R is dense in

^

H

1

q;�;r;!

(
) for every 1 < q; r <1; ! 2 A

r

and � 2 R

k

:

Proof Given u 2

^

H

1

q;�;r;!

(
) de�ne the de
omposition

u = u

�

+ v; u

�

(x

00

) :=

1

j�j

Z

�

u(x

0

; x

00

)dx

0

su
h that v has vanishing means on � for a.a. x

00

2 R

k

. Con
erning the

approximation of u

�

in

^

H

1

q;�

(R

k

) = fh 2 L

1

lo


(R

k

)=R :

Z

R

k

e

q��x

00

jr

00

h(x

00

)j

q

dx

00

<1g ,!

^

H

1

q;�;r;!

(
)


onsider a fun
tional F 2

^

H

1

q;�

(R

k

)

�

vanishing on C

1

0

(R

k

)=R: We may as-

sume w.l.o.g. that F 2 L

q

0

��

(R

k

)

k

and that

0 =

Z

R

k

r

00

v(x

00

) � F (x

00

) dx

00

for all v 2 C

1

0

(R

k

):
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Thus r

00

F = 0 in the sense of distributions. Hen
e F � 
onst and even

F � 0, sin
e F 2 L

q

0

��

(R

k

)

k

: Now Hahn{Bana
h's Theorem implies that

C

1

0

(R

k

)=R is dense in

^

H

1

q;�

(R

k

):

Con
erning v let ' 2 C

1

0

(R

k

) be equal to 1 for x

00

2 B

00

1=2

(0) and vanish

for x

00

=2 B

00

1

(0): Then for N 2 N

kr

�

'

�

x

00

N

�

v(x)

�

�rvk

q;�;r;!

� 
k

�

'

�

x

00

N

�

� 1

�

rvk

q;�;r;!

+




N

�

Z

B

00

N

(0)

e

q��x

00

kv(�; x

00

)k

q

r;!

dx

00

�

1=q

where the �rst term on the right{hand side 
onverges to 0 for N ! 1 by

Lebesgue's Theorem on Dominated Convergen
e. Sin
e

R

�

v(x

0

; x

00

)dx

0

= 0

and 
onsequently kv(�; x

00

)k

r;!

� 
 kr

0

v(�; x

00

)k

r;!

for a.a. x

00

2 R

k

with a


onstant 
 = 
(r; !;�) due to Poin
ar�e's inequality, see Corollary 2.6, we


on
lude that v is approximated in

^

H

1

q;�;r;!

(
) by fun
tions with 
ompa
t

support and vanishing mean on � for a.a. x

00

2 R. Ignoring the weight

e

��x

00

on B

00

N

(0), using the above Poin
ar�e inequality on � and the 
lassi
al

Poin
ar�e inequality on B

00

N

(0) we may assume that v is 
ontained in a non-

homogeneous Sobolev spa
e H

1

q;r;!

(
) and has 
ompa
t support in ��B

00

N

(0):

By Theorem 1.1 in [4℄ there exists a linear bounded extension operator E

0

:

H

1

r;!

(�)! H

1

r;!

(R

n�k

). Applying E

0

to v(�; x

00

) for a.a. x

00

2 B

00

N

(0) we get a

bounded linear extension operator E su
h that Ev is weakly di�erentiable,

suppEv � R

n�k

� B

00

N

(0) and Ev 2 H

1

q;r;!

(R

n

): Choose � 2 C

1

0

(R

n�k

) with

R

R

n�k

�(x

0

)dx

0

= 1, let �

"

(x

0

) = "

k�n

�

�

x

0

"

�

and J

"

w(x

0

) = �

"

�w(x

0

). Then the

family fJ

v

e : " > 0g of Friedri
hs' molli�er operators is uniformly bounded

on L

r

!

(R

n�k

) su
h that J

"

w ! w in L

r

!

(R

n�k

) as "! 0+, see Remark 3.4 in

[9℄. Thus

Z

R

k

�

k(J

"

E � I) v(�; x

00

)k

q

r;!;�

+ k(rJ

"

E �r) v(�; x

00

)k

q

r;!;�

�

dx

00

! 0

as " ! 0+ due to Lebesgue's theorem. Then a further k{dimensional mol-

li�
ation pro
ess on L

q

(L

r

!

) with respe
t to the x

00

{variables proves that v

may be approximated in H

1

q;�;r;!

(
) by C

1

0

(
).

Proposition 2.8 Under the assumptions of Theorem 2.1

L

q

�

(L

r

!

)

�

=

�

u 2 L

q

�

(L

r

!

)

n

: div u = 0 ; � � u = 0 on �


	

:
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Proof Sin
e by de�nition C

1

0;�

(
) is dense in L

q

(L

r

!

)

�

, the in
lusion "�\ is

obvious. To prove the opposite in
lusion let F 2 L

q

0

��

(L

r

0

!

0

)

n

be a fun
tional

vanishing on C

1

0;�

(
), i.e.,

R




F � 'dx = 0 for all ' 2 C

1

0;�

(
). Sin
e F 2

L

1

lo


(
)

n

, de Rham's argument (for an elementary proof see Theorem 1.1 in

[21℄) yields a p 2 L

1

lo


(
) su
h that F = rp. Consequently p 2

^

H

1

q

0

;��;r

0

;!

0

(
);

and the density of C

1

0

(
)=R in

^

H

1

q

0

;��;r

0

;!

0

(
) shows that

Z




F � u dx =

Z




rp � u dx = 0

for all u 2 L

q

�

(L

r

!

)

n

with div u = 0, � � u = 0 on �
. Now the theorem of

Hahn-Bana
h 
ompletes the proof.

3 The Weak Neumann Problem in Fourier Spa
e

Given an in�nite 
ylinder or layer 
 = ��R

k

where � � R

n�k

is a bounded

domain with C

1

{boundary, �xed 1 < q; r < 1 and a weight ! 2 A

r

=

A

r

(R

n�k

) we 
onsider the weak Neumann problem

��u = F with u 2

^

H

1

q;r;!

(
); F 2

^

H

�1

q;r;!

(
) :

To be more pre
ise, we are looking for the unique solution u 2

^

H

1

q;r;!

(
) of

the variational problem

Z




ru � r'dx = hF; 'i 8' 2

^

H

1

q

0

;r

0

;!

0

(
) : (3.1)

Sin
e F 
an be written in the form F = f � r with f = (f

0

; f

00

) 2 L

q

(L

r

!

)

n

and kFk

�1;q;r;!

= kf

0

; f

00

k

q;r;!

, (3.1) is restated in the form

Z

R

k

Z

�

(r

0

u

0

� r

0

'+r

00

u � r

00

')dx

0

dx

00

=

Z

R

k

Z

�

(f

0

� r

0

'+ f

00

� r

00

')dx

0

dx

00

: (3.2)

Under suitable assumptions on u and F; f we use a partial Fourier transform

F =

^

with respe
t to x

00

2 R

k

and with Fourier variable � 2 R

k

: Then

Parseval's formula yields the variational problem

Z

R

k

Z

�

(r

0

û � r

0

'̂+ �

2

û'̂) dx

0

d� =

Z

R

k

Z

�

(

^

f

0

� r

0

'̂+

^

f

00

� i�'̂) dx

0

d�

12



for all suitable 
omplex{valued fun
tions ': Here for short �

2

= j�j

2

. Con-

sidering test fun
tions of tensor produ
t type '(x

0

; x

00

) =  (x

0

)�(x

00

) where

 2 C

1

(�);� 2 C

1

0

(R

k

), we are led to the variational problem

Z

�

(r

0

û � r

0

 + �

2

û ) dx

0

=

Z

�

(

^

f

0

� r

0

 +

^

f

00

� i� ) dx

0

(3.3)

for all  2 C

1

(�) or even for all  2 H

1

r

0

;!

0

(�) and for all � 2 R

k

: Shortly

we write

r

0

û � r

0

+ �

2

û =

^

f

0

� r

0

� i� �

^

f

00

or equivalently

(��

0

+ �

2

)û =

^

f

0

� r

0

� i� �

^

f

00

in �

� � (r

0

û�

^

f

0

) = 0 on ��

(3.4)

for all � 2 R

k

. Here for �xed � 2 R

k

the right{hand side fun
tions

^

f

0

;

^

f

00

are

in L

r

!

(�) and the Neumann boundary 
ondition has to be understood in a

formal sense. Before solving (3.4) in � and above all in R

n�k

or R

n�k

+

we 
ite

the H�ormander{Mi
hlin Multiplier Theorem in weighted spa
es.

Theorem 3.1 Let m 2 C

n�k

(R

n�k

nf0g) admit a 
onstant M 2 R su
h that

j�j




�

�

�




m(�)

�

�

� M for all � 2 R

n�k

nf0g (3.5)

and multi{indi
es 
 2 N

n�k

0

with j
j � n � k: Then for all 1 < r < 1

and ! 2 A

r

(R

n�k

) the multiplier operator Tf = F

�1

m(�)Ff de�ned for

all rapidly de
reasing fun
tions f 2 S(R

n�k

) 
an be uniquely extended to a

bounded linear operator from L

r

!

(R

n�k

) to L

r

!

(R

n�k

): Moreover there exists

an A

r

{
onsistent 
onstant C = C(r;A

r

(!)) su
h that

kTk

r;!

� CMkfk

r;!

:

For the proof see Chapter IV, Theorem 3.9 in [14℄. The A

r

{
onsisten
y

of the 
onstant C 
an be 
he
ked by 
arefully examining the proof in [14℄.

Theorem 3.2 Let � denote the whole spa
e R

n�k

or the half spa
e R

n�k

+

;

let 1 < r < 1 and ! 2 A

r

(R

n�k

): Then for every � 2 R

k

�

= R

k

nf0g and

^

f = (

^

f

0

;

^

f

00

) 2 L

r

!

(�)

n

problem (3.4) has a unique solution û 2 H

1

r;!

(�): This

solution satis�es the a priori estimate

kr

0

û; i�ûk

r;!

� 
k

^

fk

r;!

(3.6)

with an A

r

{
onsistent 
onstant 
 = 
(A

r

(!)) independent of � 2 R

k

�

:
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Proof In the proof we will omit the notation

^

for the original partial Fourier

transformF whi
h led from (3.2) to (3.3), sin
e we have to introdu
e a further

partial Fourier transform.

First let � = R

n�k

: Then we apply the (n � k){dimensional Fourier

transform G =

�

with the Fourier variable � 2 R

n�k

to (3.3), (3.4) to get the

problem

(�

2

+ �

2

)~u(�) = �i� �

~

f

0

� i� �

~

f

00

in S

0

(R

n�k

)

where �

2

= ���; no boundary 
ondition is needed in this 
ase. For its expli
it

solution ~u(�) = (�

2

+ �

2

)

�1

(�i� �

~

f

0

� i� �

~

f

00

) we have

0

�

g

r

0

u

f

i�u

1

A

=

0

B

B

�

�
 �

�

2

+ �

2

�
 �

�

2

+ �

2

� 
 �

�

2

+ �

2

� 
 �

�

2

+ �

2

1

C

C

A

�

0

�

~

f

0

~

f

00

1

A

:

All matrix elements satisfy the H�ormander{Mi
hlin multiplier 
ondition (3.5)

with a 
onstant M independent of � 2 R

k

�

: Thus Theorem 3.1 yields the a

priori estimate (3.6) with an A

r

{
onsistent 
onstant 
 independent of � 2 R

k

�

:

If f = 0 and 
onsequently

~

f = 0; also ~u = 0 and u = 0 proving the uniqueness

assertion for every � 2 R

k

�

:

Next let � = R

n�k

+

= fx

0

= (x

�

; x

n�k

) : x

�

2 R

n�k�1

; x

n�k

> 0g and �x

f = (f

0

; f

00

) = (f

�

; f

n�k

; f

00

) 2 L

r

!

(�)

n

; ! 2 A

r

(R

n�k

). At this moment it is


onvenient to assume w.l.o.g. that ! is even w.r.t. x

n�k

; see Lemma 2.4(2).

Due to the formal boundary 
ondition �

n�k

u � f

n�k

= 0 on ��

�

=

R

n�k�1

we extend f

n�k

in an odd way to f

n�k;o

2 L

r

!

(R

n�k

) and f

�

; f

00

in an even

way to f

�

e

, f

00

e

2 L

r

!

(R

n�k

). By the results proved just before there exists a

unique u 2 H

1

r;!

(R

n�k

) su
h that

(��

0

+ �

2

)u = f

�

e

� r

�

+ f

n�k;o

� �

n�k

� i� � f

00

e

on R

n�k

:

Sin
e f

�

e

is even w.r.t. x

n�k

et
., also u(x

�

;�x

n�k

) solves this equation. Hen
e

the uniqueness assertion proves that u is even w.r.t. x

n�k

: Given  2 C

1

0

(�)

let  

e

2 H

1

r

0

;!

0

(R

n�k

) be its even extension to R

n�k

. Then

Z

�

f

�

� r

�

 dx

0

=

1

2

Z

R

n�k

f

�

e

� r

�

 

e

dx

0

;

Z

�

f

n�k

�

n�k

 dx

0

=

1

2

Z

R

n�k

f

n�k;o

�

n�k

 

e

dx

0

;

14



similar identities hold for the integrals involving f

00

and u sin
e u is even.

Hen
e u a
tually solves (3.3). Finally

kr

0

u; i�uk

r;!;�

� kr

0

u; i�uk

r;!;R

n�k

� 


�

A

r

(!)

�

kf

�

e

; f

n�k;o

; f

00

e

k

r;!;R

n�k
� 


r




�

A

r

(!)

�

kfk

r;!;�

:

If f = 0 and u 2 H

1

r;!

(�) is a solution of (3.3) on �, then u

e

2 H

1

r;!

(R

n�k

)

solves (3.3) on R

n�k

with a vanishing right-hand side. Thus u

e

= 0, u = 0

proving the uniqueness assertion.

Remark 3.3 Assume

^

f 2 L

r

1

!

1

(�)

n

\L

r

2

!

2

(�)

n

for exponents 1 < r

i

<1 and

weights !

i

2 A

r

i

, i = 1; 2. Then the unique solution û 2 H

r

1

!

1

(�) of (3.4)

also satis�es û 2 H

r

2

!

2

(�). For the proof in the 
ase � = R

n�k

note that

the solution is uniquely de�ned by ~u(�) = (�

2

+ �

2

)

�1

(�i� �

~

f

0

� i� �

~

f

00

) in

S

0

(R

n�k

). If � = R

n�k

+

, the extension te
hniques in the proof of Theorem 3.2

prove the uniqueness of u.

Next we 
onsider the Neumann problem (3.4) in a bended half spa
e

�

�

� R

n�k

,

�

�

= fx

0

= (x

�

; x

n�k

) 2 R

n�k

: x

n�k

> �(x

�

)g ;

where � 2 C

0;1

(R

n�k�1

).

Theorem 3.4 Let n � 3, 1 < r < 1, ! 2 A

r

(R

n�k

); 1 � k � n � 2 and

� 2 C

0;1

(R

n�k�1

). There exists an A

r

{
onsistent 
onstant K = K(r; !) > 0

with the following property: Assume that kr

0

�k

1

�

1

K

. Then for every

� 2 R

k

�

and for every

^

f = (

^

f

0

;

^

f

00

) 2 L

r

!

(�

�

)

n

problem (3.4) has a unique

solution û 2 H

1

r;!

(�

�

). This solution satis�es the a priori estimate (3.6) with

an A

r

{
onsistent 
onstant 
 = 


�

A

r

(!); K

�

independent of � 2 R

k

�

.

Proof For notational 
onvenien
e we omit the symbol

^

and write u instead

of û et
. The problem (3.3) in �

�

is redu
ed to the half spa
e problem

via the 
oordinate transform � : �

�

! R

n�k

+

; ~x

0

= (~x

�

; ~x

n�k

) = �(x

0

) :=

(x

�

; x

n�k

��(x

�

)): Obviously � is a bije
tion with Ja
obian equal to 1. For a

fun
tion u on �

�

we de�ne ~u(~x

0

) = u(�

�1

(~x

0

)) and denote by

~

�

j

;

~

r

0

et
. the

derivatives w.r.t. the variable ~x 2 R

n�k

+

: In parti
ular, using �

n�k

� = 0;

�

j

u(x

0

) =

�

~

�

j

� (�

j

�)

~

�

n�k

�

~u(~x

0

); 1 � j � n� k ;

kuk

r;!;�

�

= k~uk

r;~!;R

n�k

+

; kruk

r;!;�

�

� 
(1 + kr

0

�k

1

)k

~

r~uk

r;~!;R

n�k

+

:
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Here the modi�ed weight ~!(~x

0

) = !(�

�1

(~x

0

)) satis�es ~! 2 A

r

and A

r

(~!) �


A

r

(!) where 
 = 
(�) is independent of !, see Lemma 2.8 (1).

Given  2 H

1

r

0

!

0

(�

�

) the variational problem (3.3) yields

Z

R

n�k

+

(

~

r

0

~u �

~

r

0

~

 + �

2

~u

~

 )d~x

0

=

Z

R

n�k

+

(

~

f

0

�

~

r

0

~

 +

~

f

00

� i�

~

 )d~x

0

+R(

~

 ; ~u;

~

f; �) (3.7)

with the remainder

R(

~

 ) =

Z

R

n�k

+

�

(r

0

� �

~

r

0

~

 )

~

�

n�k

~u+ (r

0

� �

~

r

0

~u)

~

�

n�k

~

 

� jr

0

�j

2

~

�

n�k

~u

~

�

n�k

~

 � (

~

f

0

� r

0

�)

~

�

n�k

~

 

�

d~x

0

:

Thus ~u 
an be 
onsidered as a solution of (3.3) on R

n�k

+

with modi�ed right{

hand side where

~

f

00

is un
hanged, but

~

f

0

has to be repla
ed by

~

f

0

+

�

~

�

n�k

~u

�

r

0

� + (r

0

� �

~

r

0

~u)e

n�k

� jr

0

�j

2

�

~

�

n�k

~u

�

e

n�k

� (

~

f

0

� r

0

�)e

n�k

with the unit ve
tor e

n�k

= (0; : : : ; 0;1) 2 R

n�k

:

If kr

0

�k

1

is suÆ
iently small, Kato's perturbation method implies that

the impli
it problem (3.7) has a unique solution ~u: For more details of this

standard argument see e.g. [8℄. A
tually, the a priori estimate (3.6) for ~u

on R

n�k

+

with an A

r

{
onsistent 
onstant 
 proves that there exists an A

r

{


onsistent 
onstant K su
h that for � with kr

0

�k

1

�

1

K

the solution ~u

satis�es

k

~

r

0

~u; i�~uk

r;~!;R

n�k

+

�

~

Ck

~

fk

r;~!;R

n�k

+

where again

~

C is A

r

{
onsistent. This estimate yields (3.6) for u on �

�

with

an A

r

{
onsistent 
onstant 
 > 0. Furthermore the uniqueness assertion for

~u in (3.7) proves the uniqueness of u:

Remark 3.5 Assume

^

f 2 L

r

1

!

1

(�

�

)\L

r

2

!

2

(�

�

) for exponents 1 < r

i

<1 and

weights !

i

2 A

r

i

; i = 1; 2: Then for � 2 C

0;1

(R

n�k�1

) satisfying kr

0

�k

1

�

min(

1

K

1

;

1

K

2

) where K

i

= K(r

i

; !

i

) the unique solution û 2 H

1

r

1

;!

1

(�

�

) of (3.4)

also satis�es û 2 H

1

r

2

;!

2

(�

�

): The proof is based on the 
onstru
tion of û in

the proof of Theorem 3.4 and on Remark 3.3.
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Next we will 
onsider a bounded domain � � R

n�k

with boundary of


lass C

1

: It is well{known that the Neumann eigenvalue problem

��

0

û = �û in �;

�û

��

= 0 on � (3.8)

has a sequen
e of nonnegative eigenvalues 0 = �

0

< �

1

� �

2

� : : : and


orresponding eigenfun
tions û

j

2 W

1;r

(�) \ C

1

(�): These eigenvalues and

eigenfun
tions do not depend on the exponent r 2 (1;1) of the L

r

{spa
e in

whi
h (3.8) is analyzed. It is even allowed to 
onsider (3.8) in weighted spa
es

L

r

!

; ! 2 A

r

: The proof is based on standard ellipti
 regularity te
hniques and

on the embeddings L

s

1

(�) � L

r

!

(�) � L

s

2

(�); see Lemma 2.4(3).

To avoid diÆ
ulties originating from the eigenvalue �

0

= 0 of (3.8) when

solving (3.4) in bounded domains � � R

n�k

we introdu
e the spa
es

L

r;0

!

(�) = fu 2 L

r

!

(�) :

Z

�

u dx

0

= 0g;

H

1;0

r;!

(�) = fu 2 L

r;0

!

(�) : ru

0

2 L

r

!

(�)g

of fun
tions with vanishing integral mean on �. Note that H

1;0

r;!

(�) is 
om-

pa
tly embedded into L

r;0

!

(�) and that kruk

r;!

is a norm on H

1;0

r;!

(�); see

Proposition 2.5 and Corollary 2.6.

To extend L

q

(L

r

!

)-estimates without weights w.r.t. x

00

2 R

k

to exponen-

tially weighted L

q

{estimates we 
onsider (3.3),(3.4) also for 
omplex � in the

strip

S

�

= f� = � + i� 2 C

k

: �; � 2 R

k

; j�j < �g; � > 0:

For � 2 S

�

(3.4) has the form

(��

0

+ �

2

+ 2i� � � � �

2

)û =

^

f

0

� r

0

� i(� + i�) �

^

f

00

in �

� � (r

0

û�

^

f

0

) = 0 on ��

(3.9)

whi
h formally is the partial Fourier transform of the equation

(��+ 2� � r

00

� �

2

)u = f

0

� r

0

+ f

00

� r

00

+ � � f

00

in 
 together with the boundary 
ondition �u=�� = f

0

� � on �
:

Theorem 3.6 Let � � R

n�k

be a bounded domain of 
lass C

1

; let 1 < r <1

and ! 2 A

r

: Then for every � 2 S

�

; 0 < � <

p

�

1

; and

^

f = (

^

f

0

;

^

f

00

) 2 L

r

!

(�)

n

with

^

f

00

2 L

r;0

!

(�)

k

17



problem (3.9) has a unique solution û 2 H

1;0

r;!

(�) satisfying the a priori esti-

mate

kr

0

û; �ûk

r;!

� 
k

^

fk

r;!

(3.10)

with an A

r

{
onsistent 
onstant 
 independent of � 2 S

�

:

Note that due to the 
ondition

^

f

00

2 L

r;0

!

(�)

k

and its impli
ation û 2

H

1;0

r;!

(�) it suÆ
es to 
onsider only test fun
tions  2 H

1;0

r

0

;!

0

(�) in the varia-

tional formulation of (3.9). In the �rst step of the proof of Theorem 3.6 we

prove a preliminary estimate.

Lemma 3.7 In the setting of Theorem 3.6 a solution û 2 H

1;0

r;!

(�) of (3.9)

satis�es the a priori estimate

kr

0

û; �û; ûk

r;!

� 


�

k

^

fk

r;!

+ kûk

r;!

+ kr

0

ûk

[H

1

r

0

!

0

(�)

n

℄

�

�

(3.11)

with an A

r

{
onsistent 
onstant 
 > 0 independent of � 2 S

�

:

Proof The 
losure of the bounded domain � 
an be 
overed by a �nite

number of balls B

1

; : : : ; B

m

� R

n�k

. Furthermore there are 
ut-o� fun
tions

0 � '

1

; : : : ; '

m

2 C

1

0

(R

n�k

) with supp'

j

� B

j

and

P

m

j=1

'

j

= 1 in �.

Sin
e �� � C

1

, for every j with B

j

\ �� 6= ; there exists a perturbation

�

j

2 C

1

(R

n�k�1

) su
h that (after a suitable translation and rotation T

j

of

the 
oordinate system) B

j

\� � �

j

:= �

�

j

and B

j

\�� � ��

j

. Assume that

ea
h B

j

\ � is a Lips
hitz domain. Looking at the A

r

{
onsistent 
onstant

K = K(r; !) in Theorem 3.4 we 
an even 
hoose a �xed, suÆ
iently large and

A

r

{
onsistent number m = m(K) 2 N su
h that ea
h fun
tion �

j

satis�es

kr

0

�

j

k

1

�

1

K

. Thus we may use the same partition of unity

�

'

j

	

m

j=1

for

every ! 2 A

r

, A

r

(!) � d. Sin
e the 
oordinate transform T

j

does not

essentially a�e
t the subsequent estimates, e.g. A

r

(!) � A

r

(! Æ T

j

) by

Lemma 2.4(1), we suppress this transform in the following. If B

j

\ �� = ;

it will be 
onvenient to de�ne �

j

:= R

n�k

+

:

Again, for notational 
onvenien
e, we write u instead of û, et
. We start

with a solution u of (3.9) when � = � 2 R

k

�

: Given a test fun
tion  

j

2

C

1

0

(�

j

), 1 � j � m, we will use '

j

 

j

�d

j

2 H

1;0

r

0

;!

0

(�) with d

j

=

1

j�j

R

�

'

j

 

j

dx

0

as an admissable test fun
tion in (3.3) on �. Note that the 
onstant d

j

drops

18



out in (3.3) sin
e u; f

00

2 L

r;0

!

(�). Then an elementary 
al
ulation yields the

identity

Z

�

j

�

r

0

(u'

j

) � r

0

 

j

+ �

2

(u'

j

) 

j

�

dx

0

=

Z

�

j

�

(f

0

'

j

) � r

0

 

j

+ (f

00

'

j

) � i� 

j

�

dx

0

+R

j

( 

j

)

with the remainder term R

j

= R

j

1

+R

j

2

+R

j

3

, where

R

j

1

( 

j

) =

Z

�

j

ur

0

'

j

� r

0

 

j

dx

0

;

R

j

2

( 

j

) =

Z

�

j

(f

0

�r

0

u)( 

j

� 


j

) � r

0

'

j

dx

0

;

R

j

3

( 

j

) =

Z

�

j

g

j

� i� 

j

dx

0

;

here 


j

=

1

jB

j

\�j

R

B

j

\�

 

j

dx

0

is used to guarantee that  

j

� 


j

2 L

r

0

;0

!

0

(B

j

\�)

and to de�ne

g

j

(x

0

) =

i�

�

2

1

jB

j

\ �j

�

Z

�

(f

0

�r

0

u) � r

0

'

j

dy

0

�

�

B

j

\�

(x

0

) :

Besides the trivial estimate jR

j

1

( )j � 
kuk

r;!

kr

0

 k

r

0

;!

0

;�

j

Poin
ar�e's in-

equality on B

j

\ � implies that

jR

j

2

( )j � 


�

kfk

r;!

+ kr

0

uk

[H

1

r

0

!

0

(�)

n

℄

�

�

kr

0

 k

r

0

;!

0

;�

j

:

Obviously R

j

3

( ) satis�es the estimate

jR

j

3

( )j � kg

j

k

r;!

k� k

r

0

;!

0

;�

j

with

kg

j

k

r;!

�




j�j

�

kfk

r;!

+ kr

0

uk

r;!

�

; (3.12)

this inequality will be used for j�j suÆ
iently large, say for j�j � M . For

small j�j we exploit the fa
t that u solves (3.3) in �. Repla
ing '

j

in the
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de�nition of g

j

by '

j

� '

j�

2 H

1;0

r

0

!

0

(�) with '

j�

=

1

j�j

R

�

'

j

dx

0

we rewrite g

j

in the form

g

j

(x

0

) =

i�

�

2

1

jB

j

\ �j

�

Z

�

(�

2

u+ i� � f

00

)'

j

dy

0

�

�

B

j

\�

(x

0

):

Consequently

kg

j

k

r;!

� 
(kfk

r;!

+ k�uk

r;!

) : (3.13)

Now apply the a priori estimate (3.6) to u'

j

and sum up for j = 1; : : : ; m

to get that

kr

0

u; �uk

r;!

� 


�

kfk

r;!

+ kuk

r;!

+ kr

0

uk

[H

1

r

0

!

0

(�)

n

℄

�

�

for all � 2 R

k

�

. There we used that the term




j�j

kr

0

uk

r;!

, whi
h, to begin

with, appears on the right-hand side of this estimate, see (3.12), 
an be

absorbed by the term kr

0

uk

r;!

on the left-hand side for j�j � M ; then for

j�j < M we use (3.13) to estimate g

j

and R

j

3

( ). Note that all 
onstants are

A

r

{
onsistent due to the 
orresponding assertions in Theorems 3.2 and 3.4

and in Poin
ar�e's inequality; in parti
ular the bound M is A

r

{
onsistent.

To extend (3.11) to 
omplex � = �+ i� 2 S

�

; � 6= 0; we write (3.9) in the

form

(��

0

+ �

2

)u = f

0

� r

0

� i� � (f

00

+ 2�u) + �

2

u+ � � f

00

: (3.14)

For a test fun
tion  2 H

1

r

0

;!

0

(�) the 
ru
ial term �

2

u + � � f

00

satis�es the

estimate

j

Z

�

(�

2

u+ � � f

00

) dx

0

j � 
ku; f

00

k

r;!

kr

0

 k

r

0

;!

0

due to the vanishing means of u; f

00

on � and Poin
ar�e's inequality. Thus

the fun
tional �

2

u + � � f

00

may be rewritten in the form h � r

0

where

khk

r;!

� 
ku; f

00

k

r;!

: Therefore the �rst part of the proof, i.e. the 
ase

� = � 2 R

k

�

, 
ompletes the proof when � 6= 0: If � = 0 or even � = 0,

we may add u on both sides of (3.9) to get (3.11).

Proof of Theorem 3.6 Assume that (3.10) is not satis�ed with an A

r

{


onsistent 
onstant 
: Thus there exist sequen
es (�

j

) � S

�

where �

j

=

�

j

+ i�

j

; �

j

; �

j

2 R

k

, (!

j

) � A

r

with A

r

(!

j

) � d;

^

f

j

2 L

r

!

j

(�)

n

with
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^

f

00

j

2 L

r;0

!

j

(�)

k

and 
orresponding solutions û

j

2 H

1;0

r;!

j

(�) of (3.9) su
h that,

omitting the symbol

^

; w.l.o.g.

1 = kr

0

u

j

; �

j

u

j

k

r;!

j

� jkf

j

k

r;!

j

for every j 2 N: (3.15)

By Lemma 2.4 there exists an s 2 (1;1) not depending on j 2 N su
h that

(r

0

u

j

); (�

j

u

j

); (u

j

) � L

s

(�) are bounded.

Hen
e these sequen
es will admit weakly 
onvergent subsequen
es in L

s

(�):

Omitting an additional subindex for subsequen
es we have to distinguish 3


ases 
on
erning the behavior of (�

j

):

First Case �

j

! �

0

2 S

�

nf0g : We may assume that u

j

* u in H

1

s

(�)

for j !1 and that u satis�es

(��

0

+ �

2

0

)u = 0 in �;

�u

��

= 0 on �

in the weak sense. Sin
e ��

2

0

di�ers from every eigenvalue �

l

of the Neu-

mann eigenvalue problem (3.8) we 
on
lude that u = 0: In parti
ular u

j

* 0;

r

0

u

j

* 0 in L

s

(�) for j !1: Then the 
ompa
tness assertions of Proposi-

tion 2.5(2),(3) imply that

ku

j

k

r;!

j

+ kr

0

u

j

k

[H

1

r

0

;!

0

j

(�)

n

℄

�

! 0 for j !1:

But this 
onvergen
e yields a 
ontradi
tion to (3.11) and (3.15).

Se
ond Case �

j

! 0: In this 
ase u

j

* u inH

1

s

(�) where u solves ��

0

u =

0; �u=�� = 0: But sin
e

R

�

u

j

dx

0

= 0 for every j 2 N ; also

R

�

u dx

0

= 0

yielding u = 0. Thus we will arrive at the same 
ontradi
tion as before.

Third Case j�

j

j ! 1 : Obviously u

j

* 0 and 
onsequently alsor

0

u

j

* 0

yielding the same 
ontradi
tion as above.

Up to now we proved the a priori estimate (3.10) for every � 2 S

�

;

f 2 X := L

r

!

(�)

n�k

� L

r;0

!

(�)

k

and a given solution u 2 H

1;0

r;!

(�); the 
onstant 
 in (3.10) is A

r

{
onsistent. In

parti
ular the uniqueness of a solution is guaranteed. To prove the solvability

of the Neumann problem �x � 2 S

�

and 
onsider the bounded linear operator

T

r;!

: H

1;0

r;!

(�)! H

1;0

r

0

;!

0

(�)

�

; T

r;!

u = r

0

u � r

0

+ �

2

u;
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where �

2

= �

2

+2i� � ���

2

: Obviously T

r;!

is inje
tive and its dual operator

(T

r;!

)

0

equals T

r

0

;!

0

: To prove the surje
tivity of T

r;!

it suÆ
es due to the

Closed Range Theorem to show that T

r;!

has a 
losed range.

For these reasons we introdu
e the 
losed subspa
e

Y = ff = (f

0

; f

00

) 2 X : f

0

� r

0

� i� � f

00

= 0g

of X. Then we 
onsider the linear operators

T

1

: H

1;0

r;!

(�)! X=Y; T

1

u =

�

(r

0

u; i�u)

�

;

where [f ℄ 2 X=Y denotes the equivalen
e 
lass in the quotient spa
e X=Y

represented by f 2 X; and

T

2

: X=Y ! H

1;0

r

0

;!

0

(�)

�

; T

2

[f ℄ = f

0

� r

0

� i� � f

00

:

Obviously both operators are bounded and T

r;!

= T

2

Æ T

1

: Moreover T

2

is

inje
tive, surje
tive and 
onsequently, due to the Open Mapping Theorem,

an isomorphism. Hen
e there exists a 
onstant 


1

> 0 su
h that

kT

2

[f ℄k

[H

1;0

r

0

;!

0

(�)℄

�

� 


1

inf

h2[f ℄

khk

r;!

= 


1

kfk

X=Y

:

Con
erning T

1

the a priori estimate (3.10) yields a 
onstant 
 > 0 su
h that

kr

0

u; �uk

r;!

� 
 inf

�

kfk

r;!

: f 2

�

(r

0

u; i�u)

�	

= 
kT

1

uk

X=Y

;

note that every f 2 [(r

0

u; i�u)℄ is an admissable right-hand side in (3.4) with

solution u: Combining the previous estimates leads to the inequality

kT

2

Æ T

1

uk

[H

1;0

r

0

;!

0

(�)℄

�

� 


1

kT

1

uk

X=Y

�




1




kr

0

u; �uk

r;!

:

Thus T

r;!

= T

2

Æ T

1

has 
losed range. Now the proof of Theorem 3.6 is


omplete.

Next we extend Theorem 3.6 in a 
ertain sense from

^

f 2 X to all

^

f 2

L

r

!

(�)

n

and rewrite the result in a more operator{theoreti
al way. For � =

� + i� 2 S

�

let

M

�

(�) : L

r

!

(�)

n

! L

r

!

(�)

n

; M

�

(�)(

^

f) = (r

0

û; �û);
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denote the bounded linear solution operator of 3.9; however

^

f is repla
ed by

^

f

0

� r

0

� i(� + i�) �

�

^

f

00

�

^

f

00

�

�

where

^

f

00

�

(x

00

) =

1

j�j

Z

�

^

f

00

(x

0

; x

00

) dx

0

:

Let jjjT jjj denote the operator norm for a linear map T 2 L(L

r

!

(�)

n

):

Corollary 3.8 Given 1 < r < 1; ! 2 A

r

and � 2 [��; �℄; 0 < � <

p

�

1

the operator family fM

�

(�) : � 2 R

k

�

g has the following properties: M

�

(�)

is Fr�e
het{di�erentiable w.r.t. � 2 R

k

�

and there exists an A

r

{
onsistent


onstant 
 = 
(�) su
h that for every multi{index 
 2 f0; 1g

k

jjjM

�

(�)jjj+ jjj j�j




�




M

�

(�)jjj � 
 for all � 2 R

k

�

:

Proof The uniform estimate of jjjM

�

(�)jjj is a 
onsequen
e of (3.10). Sin
e

� enters (3.9) in a polynomial way it is easy to show that M

�

(�) is Fr�e
het

di�erentiable. Given û(�) 2 H

1;0

r;!

(�) by (r

0

û; �û) = M

�

(�)(

^

f) the Fr�e
het

derivative v̂

j

(�) = �û(�)=��

j

; n�k+1 � j � n; solves the Neumann problem

r

0

v̂

j

� r

0

+ (�

2

+ 2i� � � � �

2

)v̂

j

= �i(

^

f

00

j

�

^

f

00

j;�

)� 2(�

j

+ i�

j

)û:

Then j�jv̂

j

solves a similar Neumann problem and Theorem 3.6 yields the

estimate

k j�j(r

0

v̂

j

; �v̂

j

; v̂

j

)k

r;!

� 
k

^

f; �û; ûk

r;!

� 
k

^

fk

r;!

for every n�k+1 � j � n with an A

r

-
onsistent 
onstant 
 = 
(�) > 0: For

the mixed se
ond order derivative �

2

M

�

=��

j

��

l

; n � k + 1 � j 6= l � n; we

pro
eed in a similar way. The fun
tion ŵ

jl

= (�

2

M

�

=��

j

��

l

)

^

f satis�es the

equation

r

0

ŵ

jl

� r

0

+ (�

2

+ 2i�� � �

2

)ŵ

jl

= �2(�

l

+ i�

l

)v̂

j

� 2(�

j

+ i�

j

)v̂

l

admitting the estimate k j�j

2

(r

0

ŵ

jl

; �ŵ

jl

)k

r;!

� 
k

^

fk

r;!

: Analogously we

show that every set of partial derivatives fj�j




�




M

�

(�) : � 2 R

k

�

g; 
 2 f0; 1g

k

;

is uniformly bounded in the operator norm jjj � jjj: The generi
 
onstant 
 in

these estimates is A

r

{
onsistent and independent of � 2 R

k

; j�j < �:

By Corollary 3.8 M

�

(�) satis�es the 
lassi
al H�ormander{Mi
hlin multi-

plier 
ondition, 
f. Theorem 3.1. However M

�

(�) is operator{valued and will
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be applied to Bana
h spa
e{valued fun
tions, e.g. to f 2 L

q

(R

k

;L

r

!

(�))

n

:

It is well{known, see e.g. [3℄, that in this setting the H�ormander{Mi
hlin


ondition is not suÆ
ient to guarantee the L

q

(R

k

;L

r

!

(�)){
ontinuity of the

map

f 7! (r

0

u;r

00

u) = F

�1

M

�

(�)Ff:

4 The Weak Neumann Problem and the Helmholtz

De
omposition

To deal with the Fourier multiplier operator F

�1

M

�

(�)F we refer to a re
ent

multiplier theorem of

�

Strkalj{Weis [26℄ and introdu
e the de�nition of R{

bounded operator families. In that de�nition fr

j

(�)g will denote a sequen
e

of independent, symmetri
, f�1; 1g{valued random variables on [0; 1℄; e.g.

the Radema
her fun
tions

r

j

(s) = sign sin(2

j

�s); j 2 N :

De�nition Let X be a Bana
h spa
e. A subset T � L(X) is 
alled R{

bounded if there exists a 
onstant C > 0 and a p 2 [1;1) su
h that

Z

1

0

k

N

X

j=1

r

j

(s)T

j

x

j

k

p

ds � C

Z

1

0

k

N

X

j=1

r

j

(s)x

j

k

p

ds

for all T

1

; : : : ; T

N

2 T ; x

1

; : : : ; x

N

2 X and N 2 N : The smallest 
onstant

C in this inequality is 
alled the R{bound R(T ) of T :

Due to Kahane's inequality [6℄ the de�nition of R{boundedness does not

depend on the 
hoi
e of the exponent p 2 [1;1): Then Khin
hin's inequality

[6℄ and Fubini's Theorem easily yield the following equivalent de�nition for

Lebesgue spa
es X = L

r

(�; �) using square fun
tion estimates. For further

details see also [5℄.

Lemma 4.1 Let (�;A; �) be a measure spa
e, 1 < r <1 and X = L

r

(�; �):

Then T � L(X) is R{bounded i� there exists a 
onstant C > 0 su
h that

k

�

N

X

j=1

jT

j

f

j

(�)j

2

�

1=2

k � Ck

�

N

X

j=1

jf

j

(�)j

2

�

1=2

k

for all T

1

; : : : ; T

N

2 T ; f

1

; : : : ; f

N

2 X and N 2 N :
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To state the multiplier theorem of

�

Strkalj{Weis (Theorem 4.4 in [26℄, see

also Theorem 3.7 in [15℄ and, for the one{dimensional 
ase, [31℄) we need

the notion of UMD {spa
es, see [2, 3℄. A Bana
h spa
e X is 
alled a UMD {

spa
e i� the Hilbert transform is 
ontinuous for fun
tions f 2 L

p

(R;X);

1 < p < 1: It is well-known that every Lebesgue spa
e X = L

r

(�; �);

1 < r <1; is UMD .

Theorem 4.2 Let X be a UMD{spa
e and let fM(�) : � 2 R

k

�

g � L(X) be

a k{times Fr�e
het di�erentiable operator family on X su
h that the sets

�

j�j




�




M(�) : � 2 R

k

�

	

; 
 2 f0; 1g

k

; are R{bounded.

Then the operator F

�1

M(�)F de�ned on C

1

0

(R

k

;X) extends to a bounded

linear operator on L

p

(R

k

;X) for 1 < p < 1: Furthermore there exists a


onstant 
 > 0 independent of M(�) su
h that

jjjF

�1

MFjjj � 


X


2f0;1g

k

R

��

j�j




�




M(�) : � 2 R

k

�

	�

:

We note that the above estimate of jjjF

�1

MFjjj is easily obtained

when examining the proof in [26℄. To apply Theorem 4.2 to the operator

family fM

�

(�)g we need an important extrapolation property of operators

on weighted fun
tion spa
es, see [14℄, and its 
onsequen
e 
on
erning R{

boundedness [12℄.

Theorem 4.3 Let 1 < r; s <1; ! 2 A

r

and let � � R

n�k

be an open set.

Furthermore let T � L(L

r

!

(�)) satisfy the estimate

kTfk

s;�

� Ckfk

s;�

for all T 2 T ;

for all f 2 L

r

!

(�) \ L

s

�

(�) and for every weight � 2 A

s

with a 
onstant

C = C(A

s

(�)): Then T is R{bounded on L(L

r

!

(�)):

This result easily extends to T � L(L

r

!

(�)

n

):

Proof of Theorem 2.1 By Theorems 4.2, 4.3 and by Corollary 3.8 F

�1

M

�

(�)F

de�nes a bounded linear operator on L

q

(R

k

;L

r

!

(�)

n

) for every 1 < q; r <1

and ! 2 A

r

: Looking at (3.9) we solved the variational problem

ru � r+ 2� � r

00

u� �

2

u = f � r � f

00

�

� r

00

+ � � (f

00

� f

00

�

) (4.1)
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with ru 2 L

q

(R

k

;L

r

!

(�)) due to the L

q

{
ontinuity of F

�1

M

�

F : Moreover

u 2 L

q

(R

k

;L

r;0

!

(�)) and by Poin
ar�e's inequality

kru; uk

q;r;!

� 
kfk

q;r;!

(4.2)

with a 
onstant 
 = 
(�) > 0 independent of f 2 L

r

!

(�):

To prove exponentially weighted estimates let j�j � � <

p

�

1

; g 2

C

1

0

(R

k

;L

r

!

(�)

n

) and let v denote the solution of (4.1) with f repla
ed by

g satisfying krvk

q;r;!

� 
kgk

q;r;w

: Then (4.1) may be rewritten as

Z




r(ve

���x

00

) � r('e

��x

00

)dx

=

Z




�

(ge

���x

00

) � r('e

��x

00

)� (g

00

�

e

���x

00

) � r

00

('e

��x

00

)

�

dx:

Thus u = ve

���x

00

solves the Neumann problem ��u = f � r � f

00

�

� r

00

in 
;

� � (ru � f) = 0 on �
; with the right{hand side de�ned by f = ge

���x

00

:

Moreover, due to the estimate of v;

ke

��x

00

r

0

u; e

��x

00

r

00

u+ �e

��x

00

uk

q;r;!

� 
ke

��x

00

fk

q;r;!

:

Sin
e v(�; x

00

) 2 L

r;0

!

(�); Poin
ar�e's inequality yields the estimate

kruk

q;�;r;!

� 
kfk

q;�;r;!

: (4.3)

Due to the density of C

1

0

(R

k

;L

r

!

(�)) in L

q

�

(L

r

!

(�)); these results extend to

every f 2 L

q

�

(L

r

!

(�)

n

):

Sin
e the solution 
onstru
ted up to now solves the Neumann problem

ru � r = f � r � f

00

�

� r

00

we still have to solve the equation

ru � r = f

00

�

� r

00

(4.4)

and to �nd exponentially weighted estimates w.r.t. to x

00

; if possible. Sin
e

f

00

�

= f

00

�

(x

00

); we �nd a solution of (4.4) by solving the Neumann problem

r

00

u � r

00

= f

00

�

� r

00

in R

k

:

Let E denote the fundamental solution of the Lapla
ian on R

k

: Then

u(x

00

) = E �div f

00

�

(x

00

) solves (4.4) admitting the a priori estimate jjr

00

ujj

q

�


jjf

00

�

jj

q

; 1 < q < 1: Sin
e even for f

00

�

2 C

1

0

(R

k

)

k

only jr

00

u(x

00

)j � 
jx

00

j

�k
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an be guaranteed, in general there is no exponentially weighted estimate.

But if f

00

�

is a potential �eld, i.e., f

00

�

= r

00

h for a s
alar{valued fun
tion h,

then obviously u = h yielding the a priori estimate

jjr

00

ujj

q;�

= jjr

00

hjj

q;�

= jjf

00

�

jj

q;�

:

In parti
ular, the one{dimensional 
ase k = 1 when 
 is an in�nite 
ylinder

always admits exponentially weighted estimates.

It remains to prove the uniqueness of solutions. Let u 2

^

H

1

q;�;r;!

(
) be a

solution of the problem

Z




ru � r'dx = 0 for all ' 2

^

H

1

q

0

;��;r

0

;!

0

(
):

Looking at \test fun
tions" ' not depending on x

0

2 � we 
on
lude that

R

�

u(x

0

; x

00

)dx

0

is 
onstant in x

00

2 R

k

; say

R

�

u(x

0

; �)dx

0

� 0: Now the ex-

isten
e result proved just before for fun
tionals F 2

^

H

�1

q

0

;��;r

0

;!

0

(
) easily

implies that

hu; F i = 0 for all F 2

^

H

�1

q

0

;��;r

0

;!

0

(
):

Next 
hoose F

^

= g(x

0

; x

00

) 2 C

1

0

(
) satisfying

R

�

g(x

0

; �)dx

0

� 0: The esti-

mate

jhF;  ij = j

Z




g dxj �

Z

R

k

kg(�; x

00

)k

r

0

;!

0

kr

0

 (�; x

00

)k

r;!

dx

00

� kgk

q

0

;��;r

0

;!

0

kr k

q;�;r;!

for  2 H

1

q;�;r;!

(
) shows that a
tually F 2

^

H

q;�;r;!

(
): Thus

R




ug dx = 0

for all g 2 C

1

0

(
) with

R

�

g(x

0

; �)dx

0

� 0: Sin
e

R

�

u � 0; the restri
tion

R

�

g � 0 may be omitted, and a standard density argument yields u � 0:

Assume that jhF; 'ij � 
(F )ke

�jx

n

j

r'k

q

0

;r

0

!

0

for some � 2 (0;

p

�

1

): Then

there exists f 2 L

1

lo


(
) su
h that hF; 'i =

R




f �r'dx for all ' 2 C

1

0

(
) and

ke

�jx

n

j

fk

q

0

;r

0

!

0

� 
(F ): In parti
ular f 2 L

q

��

(L

r

!

) and the unique solution

u 2

^

H

1

q;r;!

(
) satis�es the estimate

Z

R

e

�jx

n

j

kru(�; x

n

)k

r;!

dx

n

� 


Z

R

(e

�x

n

+ e

��x

n

)kfk

q

r;!

dx

n

� 
 
(F ):

Now Theorem 2.1 is 
ompletely proved.
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Proof of Theorem 2.2 (1) Given u 2 L

q

�

(L

r

!

)

n

let p 2

^

H

1

q;�;r;!

(
) denote the

unique solution of the weak Neumann problem

(rp;r') = (u;r') for all ' 2

^

H

1

q

0

;��;r

0

;!

0

(
):

By Theorem 2.1 we know that krpk

q;�;r;!

� 
kuk

q;�;r;!

: Then the Helmholtz

proje
tion P = P

q;�;r;!

is de�ned by u

0

= Pu = u � rp: Obviously P is

a bounded linear proje
tion on L

q

�

(L

r

!

) with kernel r

^

H

1

q;�;r;!

(
): Moreover

Proposition 2.8 immediately implies that the range of P equals L

q

�

(L

r

!

)

�

.

Finally the uniqueness assertion of Theorem 2.1 yields the uniqueness of the

Helmholtz de
omposition.

(2) Using (1) standard duality arguments prove the assertion on P

�

and

L

q

�

(L

r

!

)

�

; see [8, 13, 16℄.

By the previous analysis there are exponentially weighted estimates w.r.t.

x

00

2 R

k

for an in�nite layer 
 = � � R without any further restri
tions.

In the �nal theorem we summarize the results for arbitrary domains 
 =

� � R

k

; 2 � k � n � 1: It is 
onvenient to des
ribe the result on the weak

Neumann problem by using fun
tions f and not fun
tionals F .

Theorem 4.4 Let � � R

n�k

; n � 3; 2 � k � n � 1; be a bounded domain

with C

1

{boundary, let 1 < q; r <1; ! 2 A

r

(R

n�k

) and � 2 R

k

; j�j <

p

�

1

:

(1) Assume that for f 2 L

q

�

(L

r

!

)

n

the k{dimensional �eld

f

00

�

(x

00

) =

1

j�j

Z

�

f

00

(x

0

; x

00

) dx

0

is a potential �eld. Then the weak Neumann problem

ru � r = f � r

has a unique solution u 2

^

H

1

q;�;r;!

(
) satisfying the estimate

kruk

q;�;r;!

� 
kfk

q;�;r;!

:

(2) Assume that for u 2 L

q

�

(L

r

!

) the k{dimensional �eld u

00

�

=

1

j�j

R

�

u

00

(x

0

; x

00

) dx

0

is a potential �eld. Then u admits a unique Helmholtz

de
omposition

u = u

0

+rp in L

q

�

(L

r

!

)

n
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and the exponentially weighted estimate

ku

0

;rpk

q;�;r;!

� 
kuk

q;�;r;!

with a 
onstant 
 > 0 independent of u:

(3) If in (1) or (2) ke

�jx

00

j

fk

q;r;!

<1 or ke

�jx

00

j

uk

q;r;!

<1; resp., for some

� 2 (0;

p

�

1

); then even







e

�jx

00

j

(1 + �jx

00

j)

(k�1)=(2q)

ru







q;r;!

� 
ke

�jx

00

j

fk

q;r;!

(4.5)

or







e

�jx

00

j

(1 + �jx

00

j)

(k�1)=(2q)

(u

0

;rp)







q;r;!

� 
ke

�jx

00

j

uk

q;r;!

: (4.6)

Proof It remains to prove (4.5). Sin
e f 2 L

q


�

(L

r

!

) for some � 2 (0;

p

�

1

)

and for every 
 2 R

k

; j
j = 1; for short 
 2 S

k�1

; by (1) and Fubini's theorem

Z

S

k�1

Z

R

k

e

q�
�x
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dx
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Z
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dx
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d
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j
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q
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:

To get a lower bound of the left{hand side we use for �xed x

00

2 R

k

with

�jx

00

j � 1 the elementary estimate

R

S

k�1

e

q�
�x

00

d
 � 
e

�jx

00

j

: For �jx

00

j > 1

use polar 
oordinates on S

k�1

to get

Z

S
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�x

00

d
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Z

�

0

(sin �)
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j
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:

Thus the inequality

Z

S

k�1

Z

R

k

e

q�
�x

00

kru(�; x

00

)k

q

r;!

dx

00

d
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Z

R

k

e

q�jx

00

j

(1 + �jx

00
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(k�1)=2

kruk

q

r;!

dx
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proves (4.5).

We note that the estimates (4.5) and (4.6) 
an be improved 
on
erning the

denominator (1 + �jx

00

j)

(k�1)=2

in the L

2

{
ase for small � and for q 6= 2 by

using e.g. interpolation theory.
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