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The aim of this paper is to present a new joint approah to the Helmholtz

deomposition in in�nite ylinders and in in�nite layers 
 = � � R

k

in the

funtion spae L

q

(R

k

;L

r

(�)) using even arbitrary Mukenhoupt weights with

respet to x

0

2 � � R

n�k

and, if possible, exponential weights with respet

to x

00

2 R

k

; 1 � k � n � 1; n � 2: For n = 2 we get the Helmholtz

deomposition for a strip, for n = 3 in an in�nite ylinder or an in�nite layer

and for n > 3 in some (non{physial) unbounded domains of ylinder or layer

type. The proof based on a weak Neumann problem uses a partial Fourier

transform and operator{valued multiplier funtions, the R{boundedness of

the family of multiplier operators and an extrapolation property in weighted

L

q

{spaes.

1 Introdution

The Helmholtz deomposition of vetor �elds into a solenoidal and a gradient

part is an important tool in the analysis of instationary Stokes and Navier{

Stokes equations via analyti semigroup theory [29℄. Besides L

2

{theory whih

is available in any domain [23℄ and numerous L

q

{results on bounded and

0
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exterior domains, see e.g. [13, 16, 21, 25, 30℄ and [9, 10℄ for an approah in

weighted spaes, there are only few L

q

{results on domains with nonompat

boundaries. So{alled aperture domains have been onsidered in [7, 8, 17℄.

In an in�nite layer suh as (�1; 1)�R

2

a more or less expliit representa-

tion and a multiplier tehnique an be used [1, 32℄; for other approahes see

[18, 19, 20, 22℄ and also [17℄. However, the Helmholtz deomposition for an

in�nite ylinder 
 = ��R where � � R

n�1

is a bounded domain requires a

more re�ned analysis [22, 24, 27, 28℄. To get the deomposition

u = u

0

+rp

of a given vetor �eld u suh that div u

0

= 0 and the normal omponent � �u

0

vanishes on �
 in the weak sense, the weak Neumann problem

�p = div u in 
; � � (rp� u) = 0 on �


has to be solved; then the Helmholtz projetion P is de�ned by Pu = u

0

:=

u � rp: In [24℄ the solution of the weak Neumann problem is based on

the splitting �� = �(�

2

1

+ : : : + �

2

n�1

) � �

2

n

and the existene of bounded

imaginary powers of ��

0

and of ��

2

n

in suitable funtion spaes. A more

lassial analysis has been used in [22, 27, 28℄; standard L

2

{estimates are

re�ned by exponential weights via St. Venant's priniple to yield an L

q

{

theory, q 6= 2; of the weak Neumann problem. This approah allows to

onsider also domains of ylinder or layer type with varying ross setion,

see [18, 19, 20℄.

In this paper we present an operator-theoretial approah for both in�nite

ylinders and in�nite layers. Using a partial Fourier transform F w.r.t. x

00

2

R

k

we solve the weak Neumann problem ��p = F; i.e.,

Z




rp � r'dx = hF; 'i 8' 2 C

1

0

(
):

For every Fourier variable � 2 R

k

nf0g there exists a solution operator M(�)

leading to a Fourier multiplier operator F

�1

M(�)F with an operator{valued

multiplier funtion M(�) on L

r

(�){valued funtions, 1 < r < 1: To prove

the ontinuity of F

�1

MF on L

q

(R; L

r

(�)) we need the R{boundedness of

the operator family fM(�) : 0 6= � 2 R

k

g; see Setion 2. For these rea-

sons we extend the Neumann problem to weighted L

r

{spaes using arbitrary

Mukenhoupt weights. Then results from harmoni analysis will prove the

2



R{boundedness of fM(�)g; and a reent multiplier theorem [26℄ will omplete

the proof in ase of L

q

{estimates without weights w.r.t. x

00

2 R

k

: To extend

the results to exponentially weighted L

q

{estimates it suÆes to onsider a

perturbation of the original Neumann problem.

This paper is organized as follows. In Setion 2 we start with the de�nition

of several important funtion spaes and of Mukenhoupt weights. Then we

present the main theorems on the weak Neumann problem (Theorem 2.1)

and the Helmholtz deomposition (Theorem 2.2). The setion ends with

some results for weighted funtion spaes. Setion 3 deals with the weak

Neumann problem after applying a partial Fourier transform, and Setion 4

introdues the main tools from harmoni analysis and multiplier theory to

omplete the proof of Theorems 2.1 and 2.2. The paper ends with a result

on exponentially weighted estimates in ase of in�nite layers (Theorem 4.4).

2 Main Theorems and Preliminaries

Let 
 = � � R

k

be an in�nite ylinder or layer with onstant ross setion

� � R

n�k

; 1 � k � n� 1; where � is a bounded domain with C

1

{boundary.

The exterior normal vetor on �
 = �� � R

k

and also on �� � R

k

will be

denoted by �: Due to the produt struture of 
 the anonial splitting x =

(x

0

; x

00

) 2 
 with x

0

2 � and x

00

2 R

k

will analogously be applied to vetor

�elds u = (u

0

; u

00

) and to di�erential operators. In partiular r = (r

0

;r

00

);

and � = �

0

+ �

00

: In order to desribe our main theorems on the weak

Neumann problem and the Helmholtz deomposition we have to introdue

several funtion spaes.

We use standard notation for lassial Lebesgue spaes suh as L

q

(
)

�

=

L

q

(R

k

;L

q

(�)) with norm k�k

q;


= k�k

q

, 1 � q < 1; for loal Lebesgue

spaes L

q

lo

(
 and for Sobolev spaes H

1

q

(
): The same notation will be used

for spaes of vetor �elds or matrix �elds when onfusion an be exluded.

In partiular we use the short notation ku; vk

q

for kuk

q

+ kuk

q

; even if u

and v are tensors of di�erent order. Furthermore we need the homogeneous

Sobolev spae

^

H

1

q

(
) = fu 2 L

1

lo

(
)=R : ru 2 L

q

(
)g

of equivalene lasses of funtions equipped with the norm kruk

q

: The dual

spae [(

^

H

1

q

0

(
))℄

�

of

^

H

1

q

0

(
) where q

0

=

q

q�1

is denoted by

^

H

�1

q

(
); its norm
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by k � k

�1;q

: Note that

^

H

�1

q

(
) is not the dual spae of a spae of funtions

with vanishing trae on the boundary �� of �.

Given 1 < r < 1 a funtion 0 � ! 2 L

1

lo

(R

n�k

) is alled an A

r

{weight

(Mukenhoupt weight of lass A

r

) on R

n�k

i�

A

r

(!) := sup

Q

�

1

jQj

Z

Q

! dx

0

�

�

�

1

jQj

Z

Q

!

�1=(r�1)

dx

0

�

r�1

<1 :

Here Q runs through the set of all bounded ubes Q � R

n�k

with edges

parallel to the main axes of R

n�k

and jQj denotes the Lebesgue measure of Q.

The real number A

r

(!) is alled the A

r

{onstant of the weight !. Note that

! 2 A

r

= A

r

(R

n�k

) yields !

0

:= !

�1=(r�1)

2 A

r

0

with A

r

0

(!

0

) = A

r

(!)

r

0

=r

.

Given ! 2 A

r

; 1 < r <1; and an arbitrary domain � � R

n�k

let

L

r

!

(�) =

n

u 2 L

1

lo

(�) : jjujj

r;!

=

�

Z

�

juj

r

! dx

0

�

1=r

<1

o

:

It is well-known [9℄ that L

r

!

(�) is a separable reexive Banah spae with

dense subspae C

1

0

(�). In partiular L

r

!

(�)

�

= L

r

0

!

0

(�). In addition to

the weighted Sobolev spae H

1

r;!

(�) with norm kru; uk

r;!

we introdue the

homogeneous Sobolev spae

^

H

1

r;!

(�) =

�

u 2 L

1

lo

(�)=R : r

0

u 2 L

r

!

(�)

	

equipped with the norm kruk

r;!

. The dual spae of

^

H

1

r

0

;!

0

(�) will be denoted

by

^

H

�1

r;!

(�); the norm of a funtional F 2

^

H

�1

r;!

(�) is de�ned by

kFk

�1;r;!

= sup

'

jhF; 'ij

kr'k

r

0

;!

0

;

where the supremum is taken over all nononstant ' 2

^

H

1

r

0

;!

0

(�). Sine

^

H

1

r;!

(�) an be onsidered as a losed subspae of L

r

!

(�)

n�k

, Hahn-Banah's

theorem easily implies that F 2

^

H

�1;r

!

(�) an be written in the form

F = f � r

0

; i.e., hF; 'i =

Z

�

f � r

0

'dx

0

for all ' 2

^

H

1

r

0

;!

0

(�); here f 2 L

r

!

(�)

n�k

and kFk

�1;r;!

= kfk

r;!

.
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On an in�nite ylinder or layer 
 = ��R

k

where � � R

n�k

is a bounded

C

1

{domain we introdue the funtion spae

L

q

(L

r

!

) := L

q

�

R

k

;L

r

!

(�)

�

of Bohner-integrable L

r

!

(�){valued L

q

{funtions, 1 < q <1; with norm

kuk

q;r;!

=

�

Z

R

k

ku(�; x

00

)k

q

r;!

dx

00

�

1=q

:

Furthermore we need the homogeneous Sobolev spae

^

H

1

q;r;!

(
) =

�

u 2 L

1

lo

(
)=R : ru 2 L

q

(L

r

!

)

	

with norm kruk

q;r;!

and the dual spae

^

H

�1

q;r;!

(
) of

^

H

1

q

0

;r

0

;!

0

(
) with norm

k�k

�1;q;r;!

.

It is lassial to onsider exponential weights e

�x

n

; � 2 R; w.r.t. x

n

2 R

for an in�nite ylinder, see [27, 28℄. For the more general domain 
 =

� � R

k

; � � R

n�k

; 1 � k � n � 1; to be onsidered in this paper we

introdue exponential weights w.r.t. x

00

2 R

k

via the exponential e

��x

00

where

� 2 R

k

: Then we de�ne the weighted spaes

L

q

�

(L

r

!

) =

�

u 2 L

1

lo

(
) : kuk

q;�;r;!

:= ke

��x

00

uk

q;r;!

<1

	

and

^

H

1

q;�;r;!

(
) =

�

u 2 L

1

lo

(
)=R : kruk

q;�;r;!

<1

	

;

the dual spae of

^

H

1

q

0

;��;r

0

;!

0

(
) will be denoted by

^

H

�1

q;�;r;!

(
) with norm

k�k

�1;q;�;r;!

.

Finally we de�ne the spae of solenoidal vetor �elds

L

q

�

(L

r

!

)

�

:= C

1

0;�

(
)

k�k

q;�;r;!

where C

1

0;�

(
) =

�

u 2 C

1

0

(
)

n

: div u = 0

	

: By Proposition 2.8 below

L

q

�

(L

r

!

)

�

=

�

u 2 L

q

�

(L

r

!

)

n

: div u = 0; u � � = 0 on �


	

where div u = 0 and the vanishing normal omponent u � � = 0 on �
 have

to be interpreted in the weak sense, i.e.,

R




u � r' = 0 for all ' 2 C

1

0

(
).
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Note that a vetor �eld u 2 L

q

�

(L

r

!

)

�

has a vanishing ux in the following

sense: For every ball B

00

r

(x

00

) � R

k

with enter x

00

2 R

k

Z

���B

00

r

(x

00

)

u

00

� � do =

Z

��B

00

r

(x

00

)

div u dx = 0:

For a ylinder 
 = �� R we onlude that the lassial ux

�(u)(x

n

) :=

Z

�

u

n

(x

0

; x

n

) dx

0

= 0 for a.a. x

n

2 R:

Atually for every slab �� (x

n

; y

n

) � 


0 =

Z

��(x

n

;y

n

)

div u dx = �(u)(y

n

)� �(u)(x

n

)

where by H�older's inequality j�(u)(x

n

)j �  ku(�; x

n

)k

r;!

; thus the onstant

�(u)(x

n

) is L

q

�

{integrable on R.

Now the main theorems are as follows.

Theorem 2.1 Let � � R

n�k

be a bounded domain with C

1

{boundary, let

1 < q; r <1 and ! 2 A

r

.

(1) Given F 2

^

H

�1

q;r;!

(
) the weak Neumann problem

Z




rp � r'dx = hF; 'i 8' 2

^

H

1;q

0

(
): (2.1)

has a unique solution u 2

^

H

1

q;r;!

(
); furthermore

kruk

q;r;!

� CkFk

�1;q;r;!

with a onstant C = C

�


; q; r;A

r

(!)

�

.

(2) Let �

1

> 0 denote the smallest positive eigenvalue of the Neumann-

Laplaian in

^

H

1;2

(�) and let 
 = � � R � R

n

be an in�nite ylinder.

Then for every � 2 (�

p

�

1

;

p

�

1

) the assertion (1) extends to every F 2

^

H

�1

q;�;r;!

(
); moreover the solution u 2

^

H

1

q;�;r;!

(
) satis�es the estimate

kruk

q;�;r;!

� C(�) kFk

�1;q;�;r;!

:
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(3) If in (2) the funtional F satis�es the estimate jhF; 'ij �

(F )ke

�jx

n

j

r'k

q

0

;r

0

;!

0

for some � 2 (0;

p

a

1

); then also ke

�jx

n

j

ruk

q;r;!

�

 (F ):

For details of exponentially weighted estimates in in�nite layers 
 =

�� R

k

; 2 � k � n� 1; see Theorem 4.4 in Setion 4.

Theorem 2.2 (1) Given 
 = � � R

k

as in Theorem 2.1 �x 1 < q; r < 1

and ! 2 A

r

: Then there exists a unique ontinuous linear projetion

P = P

q;r;!

: L

q

(L

r

!

)

n

! L

q

(L

r

!

)

�

� L

q

�

(L

r

!

)

n

with range L

q

(L

r

!

)

�

suh that KerP

q;r;!

= r

^

H

1

q;r;!

(
) : Every u 2

L

q

(L

r

!

)

n

has the unique deomposition

u = u

0

+rp ; u

0

= Pu ; rp = (I � P )u

satisfying

ku

0

;rpk

q;r;!

� Ckuk

q;r;!

where C = C

�


; q; r; A

r

(!)

�

:

(2) Conerning the duality produt on L

q

(L

r

!

)

P

�

q;r;!

= P

q

0

;r

0

;!

0

; [L

q

(L

r

!

)

�

℄

�

= L

q

0

(L

r

0

!

0

)

�

:

(3) Let 
 = � � R � R

n

be an in�nite ylinder and let � 2 (�

p

�

1

;

p

�

1

).

Then there exists a projetion

P = P

q;�;r;!

: L

q

�

(L

r

!

)

n

! L

q

�

(L

r

!

)

�

suh that KerP

q;�;r;!

= r

^

H

1

q;�;r;!

(
) : Every u 2 L

q

�

(L

r

!

)

n

has the unique

deomposition u = u

0

+rp; u

0

= Pu satisfying

ku

0

;rpk

q;�;r;!

� Ckuk

q;�;r;!

where C = C

�


; q; �; r; A

r

(!)

�

: Moreover, P

�

q;�;r;!

= P

q

0

;��;r

0

;!

0

and

[L

q

�

(L

r

!

)

�

℄

�

= L

q

0

��

(L

r

0

!

0

)

�

: If even ke

�jx

n

j

uk

q;r;!

< 1 for some � 2

(0;

p

�

1

); then also ke

�jx

n

j

(u

0

;rp)k

q;r;!

� ke

�jx

n

j

uk

q;r;!

:
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Remark 2.3 The di�erent onstants C = C(!) in Theorems 2.1 { 2.2 do

not depend on the expliit form of the weight ! 2 A

r

, but only on the

A

r

{onstant A

r

(!). Moreover it is important to note that even for every

d � 1

sup

�

C(!) : ! 2 A

r

; A

r

(!) � d

	

<1 :

A onstant C = C(!) : A

r

! R

+

with this property is alled A

r

{onsistent.

In all subsequent proofs we will hek that the ruial onstants C = C(!)

are A

r

{onsistent.

Before oming to the proof of Theorems 2.1 and 2.2 in Setion 3 and 4 below

we prove several results for Mukenhoupt weights and for weighted funtion

spaes.

Lemma 2.4 Let 1 < r <1 and ! 2 A

r

(R

n�k

).

(1) Let T : R

n�k

! R

n�k

be a bijetive, bi-Lipshitz vetor �eld. Then also

! Æ T 2 A

r

and A

r

(! Æ T ) � A

r

(!) with a onstant  = (T; r) > 0

independent of !.

(2) De�ne the weight ~!(x

0

) = !(~x; jx

n�k

j) for x

0

= (~x; x

n�k

) 2 R

n�k

. Then

~! 2 A

r

and A

r

(~!) � 2

r

A

r

(!).

(3) Let � � R

n�k

be a bounded domain. Then there exist s

1

; s

2

2 (1;1)

suh that the ontinuous embeddings

L

s

1

(�) � L

r

!

(�) � L

s

2

(�)

hold. Here s

1

and

1

s

2

are A

r

{onsistent. Moreover, if Q � R

n�k

denotes

a ube with � � Q, the embedding onstants do not depend on the weights

! 2 W � A

r

provided that

sup

!2W

A

r

(!) <1 ;

Z

Q

! dx

0

= 1 for all ! 2 W : (2.2)

Proof For the elementary properties (1), (2) see [11, 12℄. The embeddings

(3) are based on the Reverse H�older Inequality [14℄ for the weight ! and on

the lassial H�older Inequality; for details see Lemma 2.2 in [12℄.

Proposition 2.5 Let � � R

n�k

be a bounded Lipshitz domain and let 1 <

r <1:

8



(1) For every ! 2 A

r

the embedding H

1

r;!

(�) � L

r

!

(�) is ompat.

(2) Consider a sequene of weights (!

j

) � A

r

satisfying (2.2) for W = f!

j

:

j 2 Ng and a �xed ube Q � R

n�k

with � � Q. Further let (u

j

) be a

sequene of funtions on � satisfying

sup

j

ku

j

k

H

1

r;!

j

(�)

<1 and u

j

* 0 in H

1

s

(�)

for j !1 where s 2 (1;1) is given by Lemma 2.4(3). Then

ku

j

k

r;!

j

! 0 for j !1 :

(3) Under the same assumptions on (!

j

) � A

r

as in (2) onsider a sequene

of funtions (v

j

) on � satisfying

sup

j

kv

j

k

r;!

j

<1 and v

j

* 0 in L

s

(�)

for j !1. Then onsidering v

j

as funtionals on H

1

r

0

;!

0

j

(�)

kv

j

k

[H

1

r

0

;!

0

j

(�)℄

�

! 0 for j !1 :

Proof For (1), (2) see Theorems 2.3, 2.4 in [12℄. Note that in a �rst step of

the proof of (2) the uniformly bounded embeddings H

1

r;!

j

(�) � H

1

s

(�), see

Lemma 2.4(3), allow to �nd u 2 H

1

s

(�) suh that w.l.o.g. u

j

* u in H

1

s

(�)

and u

j

! u in L

s

(�). The seond step in [12℄ yields for every " > 0 a linear

operator T

"

: L

s

(�)! C

1

(
) suh that

ku

j

� T

"

(u)k

r;!

j

� " for all suÆiently large j : (2.3)

Under the given assumption u

j

* 0 in H

1

s

(�) we onlude that even u = 0,

T

"

(u) = 0 and onsequently that ku

j

k

r;!

j

! 0.

To prove (3) �nd for every j 2 N a '

j

2 H

1

r

0

;!

0

j

(�) suh that

kv

j

k

[H

1

r

0

;!

0

j

(�)℄

�

=

Z

�

v

j

'

j

dx

0

; k'

j

k

H

1

r

0

;!

0

j

(�)

= 1 :

By the de�nition of A

r

(!

j

) and H�older's inequality

1 �

�

1

jQj

Z

Q

!

j

dx

0

�

�

�

1

jQj

Z

Q

!

0

j

dx

0

�

r�1

� A

r

(!

j

) <1 :

9



Hene due to (2.2) also !

0

j

satis�es a uniform integrability ondition on Q;

w.l.o.g. we may assume that

R

Q

!

0

j

dx

0

= 1. Applying (2.3) to ('

j

) we �nd

for " > 0 a funtion �

"

2 C

1

(
) suh that w.l.o.g. k'

j

� �

"

k

r

0

;!

0

j

� " for all

large j. Thus

kv

j

k

H

1

r

0

;!

0

j

(�)

�
�

�

�

�

Z

�

v

j

�

"

dx

0

�

�

�

+

�

�

�

Z

�

v

j

('

j

� �

"

)dx

0

�

�

�

;

where the �rst term on the right-hand side onverges to 0 for j ! 1 by

assumption; the seond term is bounded by C" uniformly in j 2 N . Now (3)

is proved.

Corollary 2.6 (Poinar�e Inequality) Let 1 < r < 1, ! 2 A

r

and � �

R

n�k

be a bounded Lipshitz domain. Then there exists an A

r

{onsistent

onstant  > 0 suh that

kuk

r;!

� kr

0

uk

r;!

for all u 2 H

1

r;!

(�) with vanishing integral mean

R

�

u dx

0

= 0.

Proof The proof is based on Proposition 2.5; for details see [12℄.

Lemma 2.7 Under the assumptions of Theorem 2.1 C

1

0

(
)=R is dense in

^

H

1

q;�;r;!

(
) for every 1 < q; r <1; ! 2 A

r

and � 2 R

k

:

Proof Given u 2

^

H

1

q;�;r;!

(
) de�ne the deomposition

u = u

�

+ v; u

�

(x

00

) :=

1

j�j

Z

�

u(x

0

; x

00

)dx

0

suh that v has vanishing means on � for a.a. x

00

2 R

k

. Conerning the

approximation of u

�

in

^

H

1

q;�

(R

k

) = fh 2 L

1

lo

(R

k

)=R :

Z

R

k

e

q��x

00

jr

00

h(x

00

)j

q

dx

00

<1g ,!

^

H

1

q;�;r;!

(
)

onsider a funtional F 2

^

H

1

q;�

(R

k

)

�

vanishing on C

1

0

(R

k

)=R: We may as-

sume w.l.o.g. that F 2 L

q

0

��

(R

k

)

k

and that

0 =

Z

R

k

r

00

v(x

00

) � F (x

00

) dx

00

for all v 2 C

1

0

(R

k

):

10



Thus r

00

F = 0 in the sense of distributions. Hene F � onst and even

F � 0, sine F 2 L

q

0

��

(R

k

)

k

: Now Hahn{Banah's Theorem implies that

C

1

0

(R

k

)=R is dense in

^

H

1

q;�

(R

k

):

Conerning v let ' 2 C

1

0

(R

k

) be equal to 1 for x

00

2 B

00

1=2

(0) and vanish

for x

00

=2 B

00

1

(0): Then for N 2 N

kr

�

'

�

x

00

N

�

v(x)

�

�rvk

q;�;r;!

� k

�

'

�

x

00

N

�

� 1

�

rvk

q;�;r;!

+



N

�

Z

B

00

N

(0)

e

q��x

00

kv(�; x

00

)k

q

r;!

dx

00

�

1=q

where the �rst term on the right{hand side onverges to 0 for N ! 1 by

Lebesgue's Theorem on Dominated Convergene. Sine

R

�

v(x

0

; x

00

)dx

0

= 0

and onsequently kv(�; x

00

)k

r;!

�  kr

0

v(�; x

00

)k

r;!

for a.a. x

00

2 R

k

with a

onstant  = (r; !;�) due to Poinar�e's inequality, see Corollary 2.6, we

onlude that v is approximated in

^

H

1

q;�;r;!

(
) by funtions with ompat

support and vanishing mean on � for a.a. x

00

2 R. Ignoring the weight

e

��x

00

on B

00

N

(0), using the above Poinar�e inequality on � and the lassial

Poinar�e inequality on B

00

N

(0) we may assume that v is ontained in a non-

homogeneous Sobolev spae H

1

q;r;!

(
) and has ompat support in ��B

00

N

(0):

By Theorem 1.1 in [4℄ there exists a linear bounded extension operator E

0

:

H

1

r;!

(�)! H

1

r;!

(R

n�k

). Applying E

0

to v(�; x

00

) for a.a. x

00

2 B

00

N

(0) we get a

bounded linear extension operator E suh that Ev is weakly di�erentiable,

suppEv � R

n�k

� B

00

N

(0) and Ev 2 H

1

q;r;!

(R

n

): Choose � 2 C

1

0

(R

n�k

) with

R

R

n�k

�(x

0

)dx

0

= 1, let �

"

(x

0

) = "

k�n

�

�

x

0

"

�

and J

"

w(x

0

) = �

"

�w(x

0

). Then the

family fJ

v

e : " > 0g of Friedrihs' molli�er operators is uniformly bounded

on L

r

!

(R

n�k

) suh that J

"

w ! w in L

r

!

(R

n�k

) as "! 0+, see Remark 3.4 in

[9℄. Thus

Z

R

k

�

k(J

"

E � I) v(�; x

00

)k

q

r;!;�

+ k(rJ

"

E �r) v(�; x

00

)k

q

r;!;�

�

dx

00

! 0

as " ! 0+ due to Lebesgue's theorem. Then a further k{dimensional mol-

li�ation proess on L

q

(L

r

!

) with respet to the x

00

{variables proves that v

may be approximated in H

1

q;�;r;!

(
) by C

1

0

(
).

Proposition 2.8 Under the assumptions of Theorem 2.1

L

q

�

(L

r

!

)

�

=

�

u 2 L

q

�

(L

r

!

)

n

: div u = 0 ; � � u = 0 on �


	

:
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Proof Sine by de�nition C

1

0;�

(
) is dense in L

q

(L

r

!

)

�

, the inlusion "�\ is

obvious. To prove the opposite inlusion let F 2 L

q

0

��

(L

r

0

!

0

)

n

be a funtional

vanishing on C

1

0;�

(
), i.e.,

R




F � 'dx = 0 for all ' 2 C

1

0;�

(
). Sine F 2

L

1

lo

(
)

n

, de Rham's argument (for an elementary proof see Theorem 1.1 in

[21℄) yields a p 2 L

1

lo

(
) suh that F = rp. Consequently p 2

^

H

1

q

0

;��;r

0

;!

0

(
);

and the density of C

1

0

(
)=R in

^

H

1

q

0

;��;r

0

;!

0

(
) shows that

Z




F � u dx =

Z




rp � u dx = 0

for all u 2 L

q

�

(L

r

!

)

n

with div u = 0, � � u = 0 on �
. Now the theorem of

Hahn-Banah ompletes the proof.

3 The Weak Neumann Problem in Fourier Spae

Given an in�nite ylinder or layer 
 = ��R

k

where � � R

n�k

is a bounded

domain with C

1

{boundary, �xed 1 < q; r < 1 and a weight ! 2 A

r

=

A

r

(R

n�k

) we onsider the weak Neumann problem

��u = F with u 2

^

H

1

q;r;!

(
); F 2

^

H

�1

q;r;!

(
) :

To be more preise, we are looking for the unique solution u 2

^

H

1

q;r;!

(
) of

the variational problem

Z




ru � r'dx = hF; 'i 8' 2

^

H

1

q

0

;r

0

;!

0

(
) : (3.1)

Sine F an be written in the form F = f � r with f = (f

0

; f

00

) 2 L

q

(L

r

!

)

n

and kFk

�1;q;r;!

= kf

0

; f

00

k

q;r;!

, (3.1) is restated in the form

Z

R

k

Z

�

(r

0

u

0

� r

0

'+r

00

u � r

00

')dx

0

dx

00

=

Z

R

k

Z

�

(f

0

� r

0

'+ f

00

� r

00

')dx

0

dx

00

: (3.2)

Under suitable assumptions on u and F; f we use a partial Fourier transform

F =

^

with respet to x

00

2 R

k

and with Fourier variable � 2 R

k

: Then

Parseval's formula yields the variational problem

Z

R

k

Z

�

(r

0

û � r

0

'̂+ �

2

û'̂) dx

0

d� =

Z

R

k

Z

�

(

^

f

0

� r

0

'̂+

^

f

00

� i�'̂) dx

0

d�

12



for all suitable omplex{valued funtions ': Here for short �

2

= j�j

2

. Con-

sidering test funtions of tensor produt type '(x

0

; x

00

) =  (x

0

)�(x

00

) where

 2 C

1

(�);� 2 C

1

0

(R

k

), we are led to the variational problem

Z

�

(r

0

û � r

0

 + �

2

û ) dx

0

=

Z

�

(

^

f

0

� r

0

 +

^

f

00

� i� ) dx

0

(3.3)

for all  2 C

1

(�) or even for all  2 H

1

r

0

;!

0

(�) and for all � 2 R

k

: Shortly

we write

r

0

û � r

0

+ �

2

û =

^

f

0

� r

0

� i� �

^

f

00

or equivalently

(��

0

+ �

2

)û =

^

f

0

� r

0

� i� �

^

f

00

in �

� � (r

0

û�

^

f

0

) = 0 on ��

(3.4)

for all � 2 R

k

. Here for �xed � 2 R

k

the right{hand side funtions

^

f

0

;

^

f

00

are

in L

r

!

(�) and the Neumann boundary ondition has to be understood in a

formal sense. Before solving (3.4) in � and above all in R

n�k

or R

n�k

+

we ite

the H�ormander{Mihlin Multiplier Theorem in weighted spaes.

Theorem 3.1 Let m 2 C

n�k

(R

n�k

nf0g) admit a onstant M 2 R suh that

j�j



�

�

�



m(�)

�

�

� M for all � 2 R

n�k

nf0g (3.5)

and multi{indies  2 N

n�k

0

with jj � n � k: Then for all 1 < r < 1

and ! 2 A

r

(R

n�k

) the multiplier operator Tf = F

�1

m(�)Ff de�ned for

all rapidly dereasing funtions f 2 S(R

n�k

) an be uniquely extended to a

bounded linear operator from L

r

!

(R

n�k

) to L

r

!

(R

n�k

): Moreover there exists

an A

r

{onsistent onstant C = C(r;A

r

(!)) suh that

kTk

r;!

� CMkfk

r;!

:

For the proof see Chapter IV, Theorem 3.9 in [14℄. The A

r

{onsisteny

of the onstant C an be heked by arefully examining the proof in [14℄.

Theorem 3.2 Let � denote the whole spae R

n�k

or the half spae R

n�k

+

;

let 1 < r < 1 and ! 2 A

r

(R

n�k

): Then for every � 2 R

k

�

= R

k

nf0g and

^

f = (

^

f

0

;

^

f

00

) 2 L

r

!

(�)

n

problem (3.4) has a unique solution û 2 H

1

r;!

(�): This

solution satis�es the a priori estimate

kr

0

û; i�ûk

r;!

� k

^

fk

r;!

(3.6)

with an A

r

{onsistent onstant  = (A

r

(!)) independent of � 2 R

k

�

:
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Proof In the proof we will omit the notation

^

for the original partial Fourier

transformF whih led from (3.2) to (3.3), sine we have to introdue a further

partial Fourier transform.

First let � = R

n�k

: Then we apply the (n � k){dimensional Fourier

transform G =

�

with the Fourier variable � 2 R

n�k

to (3.3), (3.4) to get the

problem

(�

2

+ �

2

)~u(�) = �i� �

~

f

0

� i� �

~

f

00

in S

0

(R

n�k

)

where �

2

= ���; no boundary ondition is needed in this ase. For its expliit

solution ~u(�) = (�

2

+ �

2

)

�1

(�i� �

~

f

0

� i� �

~

f

00

) we have

0

�

g

r

0

u

f

i�u

1

A

=

0

B

B

�

�
 �

�

2

+ �

2

�
 �

�

2

+ �

2

� 
 �

�

2

+ �

2

� 
 �

�

2

+ �

2

1

C

C

A

�

0

�

~

f

0

~

f

00

1

A

:

All matrix elements satisfy the H�ormander{Mihlin multiplier ondition (3.5)

with a onstant M independent of � 2 R

k

�

: Thus Theorem 3.1 yields the a

priori estimate (3.6) with an A

r

{onsistent onstant  independent of � 2 R

k

�

:

If f = 0 and onsequently

~

f = 0; also ~u = 0 and u = 0 proving the uniqueness

assertion for every � 2 R

k

�

:

Next let � = R

n�k

+

= fx

0

= (x

�

; x

n�k

) : x

�

2 R

n�k�1

; x

n�k

> 0g and �x

f = (f

0

; f

00

) = (f

�

; f

n�k

; f

00

) 2 L

r

!

(�)

n

; ! 2 A

r

(R

n�k

). At this moment it is

onvenient to assume w.l.o.g. that ! is even w.r.t. x

n�k

; see Lemma 2.4(2).

Due to the formal boundary ondition �

n�k

u � f

n�k

= 0 on ��

�

=

R

n�k�1

we extend f

n�k

in an odd way to f

n�k;o

2 L

r

!

(R

n�k

) and f

�

; f

00

in an even

way to f

�

e

, f

00

e

2 L

r

!

(R

n�k

). By the results proved just before there exists a

unique u 2 H

1

r;!

(R

n�k

) suh that

(��

0

+ �

2

)u = f

�

e

� r

�

+ f

n�k;o

� �

n�k

� i� � f

00

e

on R

n�k

:

Sine f

�

e

is even w.r.t. x

n�k

et., also u(x

�

;�x

n�k

) solves this equation. Hene

the uniqueness assertion proves that u is even w.r.t. x

n�k

: Given  2 C

1

0

(�)

let  

e

2 H

1

r

0

;!

0

(R

n�k

) be its even extension to R

n�k

. Then

Z

�

f

�

� r

�

 dx

0

=

1

2

Z

R

n�k

f

�

e

� r

�

 

e

dx

0

;

Z

�

f

n�k

�

n�k

 dx

0

=

1

2

Z

R

n�k

f

n�k;o

�

n�k

 

e

dx

0

;
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similar identities hold for the integrals involving f

00

and u sine u is even.

Hene u atually solves (3.3). Finally

kr

0

u; i�uk

r;!;�

� kr

0

u; i�uk

r;!;R

n�k

� 

�

A

r

(!)

�

kf

�

e

; f

n�k;o

; f

00

e

k

r;!;R

n�k
� 

r



�

A

r

(!)

�

kfk

r;!;�

:

If f = 0 and u 2 H

1

r;!

(�) is a solution of (3.3) on �, then u

e

2 H

1

r;!

(R

n�k

)

solves (3.3) on R

n�k

with a vanishing right-hand side. Thus u

e

= 0, u = 0

proving the uniqueness assertion.

Remark 3.3 Assume

^

f 2 L

r

1

!

1

(�)

n

\L

r

2

!

2

(�)

n

for exponents 1 < r

i

<1 and

weights !

i

2 A

r

i

, i = 1; 2. Then the unique solution û 2 H

r

1

!

1

(�) of (3.4)

also satis�es û 2 H

r

2

!

2

(�). For the proof in the ase � = R

n�k

note that

the solution is uniquely de�ned by ~u(�) = (�

2

+ �

2

)

�1

(�i� �

~

f

0

� i� �

~

f

00

) in

S

0

(R

n�k

). If � = R

n�k

+

, the extension tehniques in the proof of Theorem 3.2

prove the uniqueness of u.

Next we onsider the Neumann problem (3.4) in a bended half spae

�

�

� R

n�k

,

�

�

= fx

0

= (x

�

; x

n�k

) 2 R

n�k

: x

n�k

> �(x

�

)g ;

where � 2 C

0;1

(R

n�k�1

).

Theorem 3.4 Let n � 3, 1 < r < 1, ! 2 A

r

(R

n�k

); 1 � k � n � 2 and

� 2 C

0;1

(R

n�k�1

). There exists an A

r

{onsistent onstant K = K(r; !) > 0

with the following property: Assume that kr

0

�k

1

�

1

K

. Then for every

� 2 R

k

�

and for every

^

f = (

^

f

0

;

^

f

00

) 2 L

r

!

(�

�

)

n

problem (3.4) has a unique

solution û 2 H

1

r;!

(�

�

). This solution satis�es the a priori estimate (3.6) with

an A

r

{onsistent onstant  = 

�

A

r

(!); K

�

independent of � 2 R

k

�

.

Proof For notational onveniene we omit the symbol

^

and write u instead

of û et. The problem (3.3) in �

�

is redued to the half spae problem

via the oordinate transform � : �

�

! R

n�k

+

; ~x

0

= (~x

�

; ~x

n�k

) = �(x

0

) :=

(x

�

; x

n�k

��(x

�

)): Obviously � is a bijetion with Jaobian equal to 1. For a

funtion u on �

�

we de�ne ~u(~x

0

) = u(�

�1

(~x

0

)) and denote by

~

�

j

;

~

r

0

et. the

derivatives w.r.t. the variable ~x 2 R

n�k

+

: In partiular, using �

n�k

� = 0;

�

j

u(x

0

) =

�

~

�

j

� (�

j

�)

~

�

n�k

�

~u(~x

0

); 1 � j � n� k ;

kuk

r;!;�

�

= k~uk

r;~!;R

n�k

+

; kruk

r;!;�

�

� (1 + kr

0

�k

1

)k

~

r~uk

r;~!;R

n�k

+

:
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Here the modi�ed weight ~!(~x

0

) = !(�

�1

(~x

0

)) satis�es ~! 2 A

r

and A

r

(~!) �

A

r

(!) where  = (�) is independent of !, see Lemma 2.8 (1).

Given  2 H

1

r

0

!

0

(�

�

) the variational problem (3.3) yields

Z

R

n�k

+

(

~

r

0

~u �

~

r

0

~

 + �

2

~u

~

 )d~x

0

=

Z

R

n�k

+

(

~

f

0

�

~

r

0

~

 +

~

f

00

� i�

~

 )d~x

0

+R(

~

 ; ~u;

~

f; �) (3.7)

with the remainder

R(

~

 ) =

Z

R

n�k

+

�

(r

0

� �

~

r

0

~

 )

~

�

n�k

~u+ (r

0

� �

~

r

0

~u)

~

�

n�k

~

 

� jr

0

�j

2

~

�

n�k

~u

~

�

n�k

~

 � (

~

f

0

� r

0

�)

~

�

n�k

~

 

�

d~x

0

:

Thus ~u an be onsidered as a solution of (3.3) on R

n�k

+

with modi�ed right{

hand side where

~

f

00

is unhanged, but

~

f

0

has to be replaed by

~

f

0

+

�

~

�

n�k

~u

�

r

0

� + (r

0

� �

~

r

0

~u)e

n�k

� jr

0

�j

2

�

~

�

n�k

~u

�

e

n�k

� (

~

f

0

� r

0

�)e

n�k

with the unit vetor e

n�k

= (0; : : : ; 0;1) 2 R

n�k

:

If kr

0

�k

1

is suÆiently small, Kato's perturbation method implies that

the impliit problem (3.7) has a unique solution ~u: For more details of this

standard argument see e.g. [8℄. Atually, the a priori estimate (3.6) for ~u

on R

n�k

+

with an A

r

{onsistent onstant  proves that there exists an A

r

{

onsistent onstant K suh that for � with kr

0

�k

1

�

1

K

the solution ~u

satis�es

k

~

r

0

~u; i�~uk

r;~!;R

n�k

+

�

~

Ck

~

fk

r;~!;R

n�k

+

where again

~

C is A

r

{onsistent. This estimate yields (3.6) for u on �

�

with

an A

r

{onsistent onstant  > 0. Furthermore the uniqueness assertion for

~u in (3.7) proves the uniqueness of u:

Remark 3.5 Assume

^

f 2 L

r

1

!

1

(�

�

)\L

r

2

!

2

(�

�

) for exponents 1 < r

i

<1 and

weights !

i

2 A

r

i

; i = 1; 2: Then for � 2 C

0;1

(R

n�k�1

) satisfying kr

0

�k

1

�

min(

1

K

1

;

1

K

2

) where K

i

= K(r

i

; !

i

) the unique solution û 2 H

1

r

1

;!

1

(�

�

) of (3.4)

also satis�es û 2 H

1

r

2

;!

2

(�

�

): The proof is based on the onstrution of û in

the proof of Theorem 3.4 and on Remark 3.3.
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Next we will onsider a bounded domain � � R

n�k

with boundary of

lass C

1

: It is well{known that the Neumann eigenvalue problem

��

0

û = �û in �;

�û

��

= 0 on � (3.8)

has a sequene of nonnegative eigenvalues 0 = �

0

< �

1

� �

2

� : : : and

orresponding eigenfuntions û

j

2 W

1;r

(�) \ C

1

(�): These eigenvalues and

eigenfuntions do not depend on the exponent r 2 (1;1) of the L

r

{spae in

whih (3.8) is analyzed. It is even allowed to onsider (3.8) in weighted spaes

L

r

!

; ! 2 A

r

: The proof is based on standard ellipti regularity tehniques and

on the embeddings L

s

1

(�) � L

r

!

(�) � L

s

2

(�); see Lemma 2.4(3).

To avoid diÆulties originating from the eigenvalue �

0

= 0 of (3.8) when

solving (3.4) in bounded domains � � R

n�k

we introdue the spaes

L

r;0

!

(�) = fu 2 L

r

!

(�) :

Z

�

u dx

0

= 0g;

H

1;0

r;!

(�) = fu 2 L

r;0

!

(�) : ru

0

2 L

r

!

(�)g

of funtions with vanishing integral mean on �. Note that H

1;0

r;!

(�) is om-

patly embedded into L

r;0

!

(�) and that kruk

r;!

is a norm on H

1;0

r;!

(�); see

Proposition 2.5 and Corollary 2.6.

To extend L

q

(L

r

!

)-estimates without weights w.r.t. x

00

2 R

k

to exponen-

tially weighted L

q

{estimates we onsider (3.3),(3.4) also for omplex � in the

strip

S

�

= f� = � + i� 2 C

k

: �; � 2 R

k

; j�j < �g; � > 0:

For � 2 S

�

(3.4) has the form

(��

0

+ �

2

+ 2i� � � � �

2

)û =

^

f

0

� r

0

� i(� + i�) �

^

f

00

in �

� � (r

0

û�

^

f

0

) = 0 on ��

(3.9)

whih formally is the partial Fourier transform of the equation

(��+ 2� � r

00

� �

2

)u = f

0

� r

0

+ f

00

� r

00

+ � � f

00

in 
 together with the boundary ondition �u=�� = f

0

� � on �
:

Theorem 3.6 Let � � R

n�k

be a bounded domain of lass C

1

; let 1 < r <1

and ! 2 A

r

: Then for every � 2 S

�

; 0 < � <

p

�

1

; and

^

f = (

^

f

0

;

^

f

00

) 2 L

r

!

(�)

n

with

^

f

00

2 L

r;0

!

(�)

k

17



problem (3.9) has a unique solution û 2 H

1;0

r;!

(�) satisfying the a priori esti-

mate

kr

0

û; �ûk

r;!

� k

^

fk

r;!

(3.10)

with an A

r

{onsistent onstant  independent of � 2 S

�

:

Note that due to the ondition

^

f

00

2 L

r;0

!

(�)

k

and its impliation û 2

H

1;0

r;!

(�) it suÆes to onsider only test funtions  2 H

1;0

r

0

;!

0

(�) in the varia-

tional formulation of (3.9). In the �rst step of the proof of Theorem 3.6 we

prove a preliminary estimate.

Lemma 3.7 In the setting of Theorem 3.6 a solution û 2 H

1;0

r;!

(�) of (3.9)

satis�es the a priori estimate

kr

0

û; �û; ûk

r;!

� 

�

k

^

fk

r;!

+ kûk

r;!

+ kr

0

ûk

[H

1

r

0

!

0

(�)

n

℄

�

�

(3.11)

with an A

r

{onsistent onstant  > 0 independent of � 2 S

�

:

Proof The losure of the bounded domain � an be overed by a �nite

number of balls B

1

; : : : ; B

m

� R

n�k

. Furthermore there are ut-o� funtions

0 � '

1

; : : : ; '

m

2 C

1

0

(R

n�k

) with supp'

j

� B

j

and

P

m

j=1

'

j

= 1 in �.

Sine �� � C

1

, for every j with B

j

\ �� 6= ; there exists a perturbation

�

j

2 C

1

(R

n�k�1

) suh that (after a suitable translation and rotation T

j

of

the oordinate system) B

j

\� � �

j

:= �

�

j

and B

j

\�� � ��

j

. Assume that

eah B

j

\ � is a Lipshitz domain. Looking at the A

r

{onsistent onstant

K = K(r; !) in Theorem 3.4 we an even hoose a �xed, suÆiently large and

A

r

{onsistent number m = m(K) 2 N suh that eah funtion �

j

satis�es

kr

0

�

j

k

1

�

1

K

. Thus we may use the same partition of unity

�

'

j

	

m

j=1

for

every ! 2 A

r

, A

r

(!) � d. Sine the oordinate transform T

j

does not

essentially a�et the subsequent estimates, e.g. A

r

(!) � A

r

(! Æ T

j

) by

Lemma 2.4(1), we suppress this transform in the following. If B

j

\ �� = ;

it will be onvenient to de�ne �

j

:= R

n�k

+

:

Again, for notational onveniene, we write u instead of û, et. We start

with a solution u of (3.9) when � = � 2 R

k

�

: Given a test funtion  

j

2

C

1

0

(�

j

), 1 � j � m, we will use '

j

 

j

�d

j

2 H

1;0

r

0

;!

0

(�) with d

j

=

1

j�j

R

�

'

j

 

j

dx

0

as an admissable test funtion in (3.3) on �. Note that the onstant d

j

drops

18



out in (3.3) sine u; f

00

2 L

r;0

!

(�). Then an elementary alulation yields the

identity

Z

�

j

�

r

0

(u'

j

) � r

0

 

j

+ �

2

(u'

j

) 

j

�

dx

0

=

Z

�

j

�

(f

0

'

j

) � r

0

 

j

+ (f

00

'

j

) � i� 

j

�

dx

0

+R

j

( 

j

)

with the remainder term R

j

= R

j

1

+R

j

2

+R

j

3

, where

R

j

1

( 

j

) =

Z

�

j

ur

0

'

j

� r

0

 

j

dx

0

;

R

j

2

( 

j

) =

Z

�

j

(f

0

�r

0

u)( 

j

� 

j

) � r

0

'

j

dx

0

;

R

j

3

( 

j

) =

Z

�

j

g

j

� i� 

j

dx

0

;

here 

j

=

1

jB

j

\�j

R

B

j

\�

 

j

dx

0

is used to guarantee that  

j

� 

j

2 L

r

0

;0

!

0

(B

j

\�)

and to de�ne

g

j

(x

0

) =

i�

�

2

1

jB

j

\ �j

�

Z

�

(f

0

�r

0

u) � r

0

'

j

dy

0

�

�

B

j

\�

(x

0

) :

Besides the trivial estimate jR

j

1

( )j � kuk

r;!

kr

0

 k

r

0

;!

0

;�

j

Poinar�e's in-

equality on B

j

\ � implies that

jR

j

2

( )j � 

�

kfk

r;!

+ kr

0

uk

[H

1

r

0

!

0

(�)

n

℄

�

�

kr

0

 k

r

0

;!

0

;�

j

:

Obviously R

j

3

( ) satis�es the estimate

jR

j

3

( )j � kg

j

k

r;!

k� k

r

0

;!

0

;�

j

with

kg

j

k

r;!

�



j�j

�

kfk

r;!

+ kr

0

uk

r;!

�

; (3.12)

this inequality will be used for j�j suÆiently large, say for j�j � M . For

small j�j we exploit the fat that u solves (3.3) in �. Replaing '

j

in the
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de�nition of g

j

by '

j

� '

j�

2 H

1;0

r

0

!

0

(�) with '

j�

=

1

j�j

R

�

'

j

dx

0

we rewrite g

j

in the form

g

j

(x

0

) =

i�

�

2

1

jB

j

\ �j

�

Z

�

(�

2

u+ i� � f

00

)'

j

dy

0

�

�

B

j

\�

(x

0

):

Consequently

kg

j

k

r;!

� (kfk

r;!

+ k�uk

r;!

) : (3.13)

Now apply the a priori estimate (3.6) to u'

j

and sum up for j = 1; : : : ; m

to get that

kr

0

u; �uk

r;!

� 

�

kfk

r;!

+ kuk

r;!

+ kr

0

uk

[H

1

r

0

!

0

(�)

n

℄

�

�

for all � 2 R

k

�

. There we used that the term



j�j

kr

0

uk

r;!

, whih, to begin

with, appears on the right-hand side of this estimate, see (3.12), an be

absorbed by the term kr

0

uk

r;!

on the left-hand side for j�j � M ; then for

j�j < M we use (3.13) to estimate g

j

and R

j

3

( ). Note that all onstants are

A

r

{onsistent due to the orresponding assertions in Theorems 3.2 and 3.4

and in Poinar�e's inequality; in partiular the bound M is A

r

{onsistent.

To extend (3.11) to omplex � = �+ i� 2 S

�

; � 6= 0; we write (3.9) in the

form

(��

0

+ �

2

)u = f

0

� r

0

� i� � (f

00

+ 2�u) + �

2

u+ � � f

00

: (3.14)

For a test funtion  2 H

1

r

0

;!

0

(�) the ruial term �

2

u + � � f

00

satis�es the

estimate

j

Z

�

(�

2

u+ � � f

00

) dx

0

j � ku; f

00

k

r;!

kr

0

 k

r

0

;!

0

due to the vanishing means of u; f

00

on � and Poinar�e's inequality. Thus

the funtional �

2

u + � � f

00

may be rewritten in the form h � r

0

where

khk

r;!

� ku; f

00

k

r;!

: Therefore the �rst part of the proof, i.e. the ase

� = � 2 R

k

�

, ompletes the proof when � 6= 0: If � = 0 or even � = 0,

we may add u on both sides of (3.9) to get (3.11).

Proof of Theorem 3.6 Assume that (3.10) is not satis�ed with an A

r

{

onsistent onstant : Thus there exist sequenes (�

j

) � S

�

where �

j

=

�

j

+ i�

j

; �

j

; �

j

2 R

k

, (!

j

) � A

r

with A

r

(!

j

) � d;

^

f

j

2 L

r

!

j

(�)

n

with
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^

f

00

j

2 L

r;0

!

j

(�)

k

and orresponding solutions û

j

2 H

1;0

r;!

j

(�) of (3.9) suh that,

omitting the symbol

^

; w.l.o.g.

1 = kr

0

u

j

; �

j

u

j

k

r;!

j

� jkf

j

k

r;!

j

for every j 2 N: (3.15)

By Lemma 2.4 there exists an s 2 (1;1) not depending on j 2 N suh that

(r

0

u

j

); (�

j

u

j

); (u

j

) � L

s

(�) are bounded.

Hene these sequenes will admit weakly onvergent subsequenes in L

s

(�):

Omitting an additional subindex for subsequenes we have to distinguish 3

ases onerning the behavior of (�

j

):

First Case �

j

! �

0

2 S

�

nf0g : We may assume that u

j

* u in H

1

s

(�)

for j !1 and that u satis�es

(��

0

+ �

2

0

)u = 0 in �;

�u

��

= 0 on �

in the weak sense. Sine ��

2

0

di�ers from every eigenvalue �

l

of the Neu-

mann eigenvalue problem (3.8) we onlude that u = 0: In partiular u

j

* 0;

r

0

u

j

* 0 in L

s

(�) for j !1: Then the ompatness assertions of Proposi-

tion 2.5(2),(3) imply that

ku

j

k

r;!

j

+ kr

0

u

j

k

[H

1

r

0

;!

0

j

(�)

n

℄

�

! 0 for j !1:

But this onvergene yields a ontradition to (3.11) and (3.15).

Seond Case �

j

! 0: In this ase u

j

* u inH

1

s

(�) where u solves ��

0

u =

0; �u=�� = 0: But sine

R

�

u

j

dx

0

= 0 for every j 2 N ; also

R

�

u dx

0

= 0

yielding u = 0. Thus we will arrive at the same ontradition as before.

Third Case j�

j

j ! 1 : Obviously u

j

* 0 and onsequently alsor

0

u

j

* 0

yielding the same ontradition as above.

Up to now we proved the a priori estimate (3.10) for every � 2 S

�

;

f 2 X := L

r

!

(�)

n�k

� L

r;0

!

(�)

k

and a given solution u 2 H

1;0

r;!

(�); the onstant  in (3.10) is A

r

{onsistent. In

partiular the uniqueness of a solution is guaranteed. To prove the solvability

of the Neumann problem �x � 2 S

�

and onsider the bounded linear operator

T

r;!

: H

1;0

r;!

(�)! H

1;0

r

0

;!

0

(�)

�

; T

r;!

u = r

0

u � r

0

+ �

2

u;
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where �

2

= �

2

+2i� � ���

2

: Obviously T

r;!

is injetive and its dual operator

(T

r;!

)

0

equals T

r

0

;!

0

: To prove the surjetivity of T

r;!

it suÆes due to the

Closed Range Theorem to show that T

r;!

has a losed range.

For these reasons we introdue the losed subspae

Y = ff = (f

0

; f

00

) 2 X : f

0

� r

0

� i� � f

00

= 0g

of X. Then we onsider the linear operators

T

1

: H

1;0

r;!

(�)! X=Y; T

1

u =

�

(r

0

u; i�u)

�

;

where [f ℄ 2 X=Y denotes the equivalene lass in the quotient spae X=Y

represented by f 2 X; and

T

2

: X=Y ! H

1;0

r

0

;!

0

(�)

�

; T

2

[f ℄ = f

0

� r

0

� i� � f

00

:

Obviously both operators are bounded and T

r;!

= T

2

Æ T

1

: Moreover T

2

is

injetive, surjetive and onsequently, due to the Open Mapping Theorem,

an isomorphism. Hene there exists a onstant 

1

> 0 suh that

kT

2

[f ℄k

[H

1;0

r

0

;!

0

(�)℄

�

� 

1

inf

h2[f ℄

khk

r;!

= 

1

kfk

X=Y

:

Conerning T

1

the a priori estimate (3.10) yields a onstant  > 0 suh that

kr

0

u; �uk

r;!

�  inf

�

kfk

r;!

: f 2

�

(r

0

u; i�u)

�	

= kT

1

uk

X=Y

;

note that every f 2 [(r

0

u; i�u)℄ is an admissable right-hand side in (3.4) with

solution u: Combining the previous estimates leads to the inequality

kT

2

Æ T

1

uk

[H

1;0

r

0

;!

0

(�)℄

�

� 

1

kT

1

uk

X=Y

�



1



kr

0

u; �uk

r;!

:

Thus T

r;!

= T

2

Æ T

1

has losed range. Now the proof of Theorem 3.6 is

omplete.

Next we extend Theorem 3.6 in a ertain sense from

^

f 2 X to all

^

f 2

L

r

!

(�)

n

and rewrite the result in a more operator{theoretial way. For � =

� + i� 2 S

�

let

M

�

(�) : L

r

!

(�)

n

! L

r

!

(�)

n

; M

�

(�)(

^

f) = (r

0

û; �û);
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denote the bounded linear solution operator of 3.9; however

^

f is replaed by

^

f

0

� r

0

� i(� + i�) �

�

^

f

00

�

^

f

00

�

�

where

^

f

00

�

(x

00

) =

1

j�j

Z

�

^

f

00

(x

0

; x

00

) dx

0

:

Let jjjT jjj denote the operator norm for a linear map T 2 L(L

r

!

(�)

n

):

Corollary 3.8 Given 1 < r < 1; ! 2 A

r

and � 2 [��; �℄; 0 < � <

p

�

1

the operator family fM

�

(�) : � 2 R

k

�

g has the following properties: M

�

(�)

is Fr�ehet{di�erentiable w.r.t. � 2 R

k

�

and there exists an A

r

{onsistent

onstant  = (�) suh that for every multi{index  2 f0; 1g

k

jjjM

�

(�)jjj+ jjj j�j



�



M

�

(�)jjj �  for all � 2 R

k

�

:

Proof The uniform estimate of jjjM

�

(�)jjj is a onsequene of (3.10). Sine

� enters (3.9) in a polynomial way it is easy to show that M

�

(�) is Fr�ehet

di�erentiable. Given û(�) 2 H

1;0

r;!

(�) by (r

0

û; �û) = M

�

(�)(

^

f) the Fr�ehet

derivative v̂

j

(�) = �û(�)=��

j

; n�k+1 � j � n; solves the Neumann problem

r

0

v̂

j

� r

0

+ (�

2

+ 2i� � � � �

2

)v̂

j

= �i(

^

f

00

j

�

^

f

00

j;�

)� 2(�

j

+ i�

j

)û:

Then j�jv̂

j

solves a similar Neumann problem and Theorem 3.6 yields the

estimate

k j�j(r

0

v̂

j

; �v̂

j

; v̂

j

)k

r;!

� k

^

f; �û; ûk

r;!

� k

^

fk

r;!

for every n�k+1 � j � n with an A

r

-onsistent onstant  = (�) > 0: For

the mixed seond order derivative �

2

M

�

=��

j

��

l

; n � k + 1 � j 6= l � n; we

proeed in a similar way. The funtion ŵ

jl

= (�

2

M

�

=��

j

��

l

)

^

f satis�es the

equation

r

0

ŵ

jl

� r

0

+ (�

2

+ 2i�� � �

2

)ŵ

jl

= �2(�

l

+ i�

l

)v̂

j

� 2(�

j

+ i�

j

)v̂

l

admitting the estimate k j�j

2

(r

0

ŵ

jl

; �ŵ

jl

)k

r;!

� k

^

fk

r;!

: Analogously we

show that every set of partial derivatives fj�j



�



M

�

(�) : � 2 R

k

�

g;  2 f0; 1g

k

;

is uniformly bounded in the operator norm jjj � jjj: The generi onstant  in

these estimates is A

r

{onsistent and independent of � 2 R

k

; j�j < �:

By Corollary 3.8 M

�

(�) satis�es the lassial H�ormander{Mihlin multi-

plier ondition, f. Theorem 3.1. However M

�

(�) is operator{valued and will
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be applied to Banah spae{valued funtions, e.g. to f 2 L

q

(R

k

;L

r

!

(�))

n

:

It is well{known, see e.g. [3℄, that in this setting the H�ormander{Mihlin

ondition is not suÆient to guarantee the L

q

(R

k

;L

r

!

(�)){ontinuity of the

map

f 7! (r

0

u;r

00

u) = F

�1

M

�

(�)Ff:

4 The Weak Neumann Problem and the Helmholtz

Deomposition

To deal with the Fourier multiplier operator F

�1

M

�

(�)F we refer to a reent

multiplier theorem of

�

Strkalj{Weis [26℄ and introdue the de�nition of R{

bounded operator families. In that de�nition fr

j

(�)g will denote a sequene

of independent, symmetri, f�1; 1g{valued random variables on [0; 1℄; e.g.

the Rademaher funtions

r

j

(s) = sign sin(2

j

�s); j 2 N :

De�nition Let X be a Banah spae. A subset T � L(X) is alled R{

bounded if there exists a onstant C > 0 and a p 2 [1;1) suh that

Z

1

0

k

N

X

j=1

r

j

(s)T

j

x

j

k

p

ds � C

Z

1

0

k

N

X

j=1

r

j

(s)x

j

k

p

ds

for all T

1

; : : : ; T

N

2 T ; x

1

; : : : ; x

N

2 X and N 2 N : The smallest onstant

C in this inequality is alled the R{bound R(T ) of T :

Due to Kahane's inequality [6℄ the de�nition of R{boundedness does not

depend on the hoie of the exponent p 2 [1;1): Then Khinhin's inequality

[6℄ and Fubini's Theorem easily yield the following equivalent de�nition for

Lebesgue spaes X = L

r

(�; �) using square funtion estimates. For further

details see also [5℄.

Lemma 4.1 Let (�;A; �) be a measure spae, 1 < r <1 and X = L

r

(�; �):

Then T � L(X) is R{bounded i� there exists a onstant C > 0 suh that

k

�

N

X

j=1

jT

j

f

j

(�)j

2

�

1=2

k � Ck

�

N

X

j=1

jf

j

(�)j

2

�

1=2

k

for all T

1

; : : : ; T

N

2 T ; f

1

; : : : ; f

N

2 X and N 2 N :
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To state the multiplier theorem of

�

Strkalj{Weis (Theorem 4.4 in [26℄, see

also Theorem 3.7 in [15℄ and, for the one{dimensional ase, [31℄) we need

the notion of UMD {spaes, see [2, 3℄. A Banah spae X is alled a UMD {

spae i� the Hilbert transform is ontinuous for funtions f 2 L

p

(R;X);

1 < p < 1: It is well-known that every Lebesgue spae X = L

r

(�; �);

1 < r <1; is UMD .

Theorem 4.2 Let X be a UMD{spae and let fM(�) : � 2 R

k

�

g � L(X) be

a k{times Fr�ehet di�erentiable operator family on X suh that the sets

�

j�j



�



M(�) : � 2 R

k

�

	

;  2 f0; 1g

k

; are R{bounded.

Then the operator F

�1

M(�)F de�ned on C

1

0

(R

k

;X) extends to a bounded

linear operator on L

p

(R

k

;X) for 1 < p < 1: Furthermore there exists a

onstant  > 0 independent of M(�) suh that

jjjF

�1

MFjjj � 

X

2f0;1g

k

R

��

j�j



�



M(�) : � 2 R

k

�

	�

:

We note that the above estimate of jjjF

�1

MFjjj is easily obtained

when examining the proof in [26℄. To apply Theorem 4.2 to the operator

family fM

�

(�)g we need an important extrapolation property of operators

on weighted funtion spaes, see [14℄, and its onsequene onerning R{

boundedness [12℄.

Theorem 4.3 Let 1 < r; s <1; ! 2 A

r

and let � � R

n�k

be an open set.

Furthermore let T � L(L

r

!

(�)) satisfy the estimate

kTfk

s;�

� Ckfk

s;�

for all T 2 T ;

for all f 2 L

r

!

(�) \ L

s

�

(�) and for every weight � 2 A

s

with a onstant

C = C(A

s

(�)): Then T is R{bounded on L(L

r

!

(�)):

This result easily extends to T � L(L

r

!

(�)

n

):

Proof of Theorem 2.1 By Theorems 4.2, 4.3 and by Corollary 3.8 F

�1

M

�

(�)F

de�nes a bounded linear operator on L

q

(R

k

;L

r

!

(�)

n

) for every 1 < q; r <1

and ! 2 A

r

: Looking at (3.9) we solved the variational problem

ru � r+ 2� � r

00

u� �

2

u = f � r � f

00

�

� r

00

+ � � (f

00

� f

00

�

) (4.1)
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with ru 2 L

q

(R

k

;L

r

!

(�)) due to the L

q

{ontinuity of F

�1

M

�

F : Moreover

u 2 L

q

(R

k

;L

r;0

!

(�)) and by Poinar�e's inequality

kru; uk

q;r;!

� kfk

q;r;!

(4.2)

with a onstant  = (�) > 0 independent of f 2 L

r

!

(�):

To prove exponentially weighted estimates let j�j � � <

p

�

1

; g 2

C

1

0

(R

k

;L

r

!

(�)

n

) and let v denote the solution of (4.1) with f replaed by

g satisfying krvk

q;r;!

� kgk

q;r;w

: Then (4.1) may be rewritten as

Z




r(ve

���x

00

) � r('e

��x

00

)dx

=

Z




�

(ge

���x

00

) � r('e

��x

00

)� (g

00

�

e

���x

00

) � r

00

('e

��x

00

)

�

dx:

Thus u = ve

���x

00

solves the Neumann problem ��u = f � r � f

00

�

� r

00

in 
;

� � (ru � f) = 0 on �
; with the right{hand side de�ned by f = ge

���x

00

:

Moreover, due to the estimate of v;

ke

��x

00

r

0

u; e

��x

00

r

00

u+ �e

��x

00

uk

q;r;!

� ke

��x

00

fk

q;r;!

:

Sine v(�; x

00

) 2 L

r;0

!

(�); Poinar�e's inequality yields the estimate

kruk

q;�;r;!

� kfk

q;�;r;!

: (4.3)

Due to the density of C

1

0

(R

k

;L

r

!

(�)) in L

q

�

(L

r

!

(�)); these results extend to

every f 2 L

q

�

(L

r

!

(�)

n

):

Sine the solution onstruted up to now solves the Neumann problem

ru � r = f � r � f

00

�

� r

00

we still have to solve the equation

ru � r = f

00

�

� r

00

(4.4)

and to �nd exponentially weighted estimates w.r.t. to x

00

; if possible. Sine

f

00

�

= f

00

�

(x

00

); we �nd a solution of (4.4) by solving the Neumann problem

r

00

u � r

00

= f

00

�

� r

00

in R

k

:

Let E denote the fundamental solution of the Laplaian on R

k

: Then

u(x

00

) = E �div f

00

�

(x

00

) solves (4.4) admitting the a priori estimate jjr

00

ujj

q

�

jjf

00

�

jj

q

; 1 < q < 1: Sine even for f

00

�

2 C

1

0

(R

k

)

k

only jr

00

u(x

00

)j � jx

00

j

�k
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an be guaranteed, in general there is no exponentially weighted estimate.

But if f

00

�

is a potential �eld, i.e., f

00

�

= r

00

h for a salar{valued funtion h,

then obviously u = h yielding the a priori estimate

jjr

00

ujj

q;�

= jjr

00

hjj

q;�

= jjf

00

�

jj

q;�

:

In partiular, the one{dimensional ase k = 1 when 
 is an in�nite ylinder

always admits exponentially weighted estimates.

It remains to prove the uniqueness of solutions. Let u 2

^

H

1

q;�;r;!

(
) be a

solution of the problem

Z




ru � r'dx = 0 for all ' 2

^

H

1

q

0

;��;r

0

;!

0

(
):

Looking at \test funtions" ' not depending on x

0

2 � we onlude that

R

�

u(x

0

; x

00

)dx

0

is onstant in x

00

2 R

k

; say

R

�

u(x

0

; �)dx

0

� 0: Now the ex-

istene result proved just before for funtionals F 2

^

H

�1

q

0

;��;r

0

;!

0

(
) easily

implies that

hu; F i = 0 for all F 2

^

H

�1

q

0

;��;r

0

;!

0

(
):

Next hoose F

^

= g(x

0

; x

00

) 2 C

1

0

(
) satisfying

R

�

g(x

0

; �)dx

0

� 0: The esti-

mate

jhF;  ij = j

Z




g dxj �

Z

R

k

kg(�; x

00

)k

r

0

;!

0

kr

0

 (�; x

00

)k

r;!

dx

00

� kgk

q

0

;��;r

0

;!

0

kr k

q;�;r;!

for  2 H

1

q;�;r;!

(
) shows that atually F 2

^

H

q;�;r;!

(
): Thus

R




ug dx = 0

for all g 2 C

1

0

(
) with

R

�

g(x

0

; �)dx

0

� 0: Sine

R

�

u � 0; the restrition

R

�

g � 0 may be omitted, and a standard density argument yields u � 0:

Assume that jhF; 'ij � (F )ke

�jx

n

j

r'k

q

0

;r

0

!

0

for some � 2 (0;

p

�

1

): Then

there exists f 2 L

1

lo

(
) suh that hF; 'i =

R




f �r'dx for all ' 2 C

1

0

(
) and

ke

�jx

n

j

fk

q

0

;r

0

!

0

� (F ): In partiular f 2 L

q

��

(L

r

!

) and the unique solution

u 2

^

H

1

q;r;!

(
) satis�es the estimate

Z

R

e

�jx

n

j

kru(�; x

n

)k

r;!

dx

n

� 

Z

R

(e

�x

n

+ e

��x

n

)kfk

q

r;!

dx

n

�  (F ):

Now Theorem 2.1 is ompletely proved.
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Proof of Theorem 2.2 (1) Given u 2 L

q

�

(L

r

!

)

n

let p 2

^

H

1

q;�;r;!

(
) denote the

unique solution of the weak Neumann problem

(rp;r') = (u;r') for all ' 2

^

H

1

q

0

;��;r

0

;!

0

(
):

By Theorem 2.1 we know that krpk

q;�;r;!

� kuk

q;�;r;!

: Then the Helmholtz

projetion P = P

q;�;r;!

is de�ned by u

0

= Pu = u � rp: Obviously P is

a bounded linear projetion on L

q

�

(L

r

!

) with kernel r

^

H

1

q;�;r;!

(
): Moreover

Proposition 2.8 immediately implies that the range of P equals L

q

�

(L

r

!

)

�

.

Finally the uniqueness assertion of Theorem 2.1 yields the uniqueness of the

Helmholtz deomposition.

(2) Using (1) standard duality arguments prove the assertion on P

�

and

L

q

�

(L

r

!

)

�

; see [8, 13, 16℄.

By the previous analysis there are exponentially weighted estimates w.r.t.

x

00

2 R

k

for an in�nite layer 
 = � � R without any further restritions.

In the �nal theorem we summarize the results for arbitrary domains 
 =

� � R

k

; 2 � k � n � 1: It is onvenient to desribe the result on the weak

Neumann problem by using funtions f and not funtionals F .

Theorem 4.4 Let � � R

n�k

; n � 3; 2 � k � n � 1; be a bounded domain

with C

1

{boundary, let 1 < q; r <1; ! 2 A

r

(R

n�k

) and � 2 R

k

; j�j <

p

�

1

:

(1) Assume that for f 2 L

q

�

(L

r

!

)

n

the k{dimensional �eld

f

00

�

(x

00

) =

1

j�j

Z

�

f

00

(x

0

; x

00

) dx

0

is a potential �eld. Then the weak Neumann problem

ru � r = f � r

has a unique solution u 2

^

H

1

q;�;r;!

(
) satisfying the estimate

kruk

q;�;r;!

� kfk

q;�;r;!

:

(2) Assume that for u 2 L

q

�

(L

r

!

) the k{dimensional �eld u

00

�

=

1

j�j

R

�

u

00

(x

0

; x

00

) dx

0

is a potential �eld. Then u admits a unique Helmholtz

deomposition

u = u

0

+rp in L

q

�

(L

r

!

)

n
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and the exponentially weighted estimate

ku

0

;rpk

q;�;r;!

� kuk

q;�;r;!

with a onstant  > 0 independent of u:

(3) If in (1) or (2) ke

�jx

00

j

fk

q;r;!

<1 or ke

�jx

00

j

uk

q;r;!

<1; resp., for some

� 2 (0;

p

�

1

); then even





e

�jx

00

j

(1 + �jx

00

j)

(k�1)=(2q)

ru





q;r;!

� ke

�jx

00

j

fk

q;r;!

(4.5)

or





e

�jx

00

j

(1 + �jx

00

j)

(k�1)=(2q)

(u

0

;rp)





q;r;!

� ke

�jx

00

j

uk

q;r;!

: (4.6)

Proof It remains to prove (4.5). Sine f 2 L

q

�

(L

r

!

) for some � 2 (0;

p

�

1

)

and for every  2 R

k

; jj = 1; for short  2 S

k�1

; by (1) and Fubini's theorem

Z

S

k�1

Z

R

k

e

q��x

00

kru(�; x

00

)k

q

r;!

dx

00

d

� 

Z

R

k

Z

S

k�1

e

q��x

00

kf(�; x

00

)k

q

r;!

dx

00

d � ke

�jx

00

j

fk

q

q;r;!

:

To get a lower bound of the left{hand side we use for �xed x

00

2 R

k

with

�jx

00

j � 1 the elementary estimate

R

S

k�1

e

q��x

00

d � e

�jx

00

j

: For �jx

00

j > 1

use polar oordinates on S

k�1

to get

Z

S

k�1

e

q��x

00

d � 

Z

�

0

(sin �)

k�2

e

q�jx

00

j os �

d�

� e

q�jx

00

j

Z

�=2

0

�

k�2

e

�q�jx

00

j�

2

=2

d� � e

q�jx

00

j

(�jx

00

j)

�(k�1)=2

:

Thus the inequality

Z

S

k�1

Z

R

k

e

q��x

00

kru(�; x
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We note that the estimates (4.5) and (4.6) an be improved onerning the

denominator (1 + �jx

00

j)

(k�1)=2

in the L

2

{ase for small � and for q 6= 2 by

using e.g. interpolation theory.
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